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ABSTRACT 

In this thesis we examine several extensions to the dynamic 

linear model framework, outlined by Harrison and Stevens (1976), 

in order to adapt these models for use in the on-line analysis of 

medical time series that arise from routine clinical settings. 

The situation with which we are most concerned is that where we 

are monitoring individual patients and wish to detect abrupt 

changes in the patient's condition as soon as possible. 

.A detailed background to the study and application of dynam- 

is linear models is given, and other techniques for time series 

monitoring are also discussed when appropriate. We present a 

selection of specific models that we feel may prove to be of pract- 

ical use in the modelling and monitoring of medical time series, 

and we illustrate how these models may be utilized in order to 

distinguish between a variety of alternative changepoint-types. 

The sensitivity of these models to the specification of prior 

information. is examined in detail. 



The medical background to the time series examined requires 

the development of models and techniques enabling us to analyze 

generally unequally-spaced time series. We test the performance 

of the resulting models and techniques using simulated data. We 

then attempt to build a framework for bivariate time series model- 

ling, allowing, once more, for the possibility of unequally- 

spaced data. In particular, we suggest mechanisms whereby caus- 

ality and feedback may be introduced into such models. 

Finally, we report on several applications of this method- 

ology to actual medical time series arising in various contexts, 

including kidney and bone-marrow transplantation and foetal heart 

monitoring. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 INTRODUCTION 

Rapid growth in information technology has made it possible 

for more people to be able to store large quantities of numerical 

information on a computer. In particular it has become possible 

to store long and dense sequences of time-related data, thus pres- 

eating a growing opportunity for statistical' time series analysis. 

The motivation for this thesis has been provided by medical 

time series and associated problems of 'real-time' monitoring, 

where the timing of events of clinical interest is often the crit- 

ical ingredient. All the statistical modelling in this thesis has, 

therefore, been based upon the time-domain approach to time series 

analysis rather than the frequency-domain approach. 

It should also be borne in mind that the ideas presented in 

this thesis have been derived from an attempt to approach problems 

encountered in routine clinical settings. In particular, the 
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time series of interest consist of measurements on 'human patients', 

who have presented themselves naturally in the course of clinical 

practice. Groups of patients, for whom the methods are intended, 

will therefore tend to be extremely heterogeneous in nature (un- 

like those from a clinical trial, where controlled conditions 

often result in homogeneous groups of subjects). 

The methodology which we shall adopt, and extend, is relat- 

ed to that of Harrison and Stevens (1976) who set out a Bayesian 

approach to time series analysis using, as its foundation, the 

concept of a dynamic linear model (DLM). In order to deal with 

'discontinuous' behaviour, multi-process modelling was also in- 

corporated into the DLM framework, resulting in a time-series 

'tracking' procedure that would rapidly adjust to sudden changes 

in the underlying model.: 

This approach has been shown to be useful not only in the 

forecasting situation (Harrison and Stevens 1975) but also in the 

monitoring situation (Smith and West 1983), where the swift det- 

ection of sudden changes in pattern is the feature of interest. 

We take the view that when dealing with an on-line problem 

(that is, one where decisions concerning intervention have to be 

made on a sequential basis), the ability to interpret new inform- 

ation in the light of previous information (i. e. to adopt a 

Bayesian approach) is essential, especially when it is known that 

previous interventions have actually taken place. 

There are a number of problems, however, which must be over- 

come if this type of analysis is to. be implemented in a clinical 

setting. Appropriate DLM's must be created for the different 

series encountered in medical monitoring contexts, and allowance 
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must be made for the possibility of missing or, more generally, 

unequally-spaced responses, arising from the irregular collection 

of data which is common to a routine clinical environment. The 

DLM framework has, therefore, been extended in this thesis in 

order to handle sets of data arising from periods of medical 

supervision. 

1.2 OUTLINE OF THESIS 

In Chapter 2, we discuss the use of dynamic linear models 

with particular reference to the recursive aspect of the proced- 

ures (Kalman 1960, Lindley and Smith 1972, Young 1974, Priestly 

1980). The work of Harrison and Stevens (1976) is reviewed, and 

some extensions to their ideas are discussed. In particular, the 

use of a conjugate prior distribution (DeGroot 1970, Aitchison 

and Dunsmore 1975), for the case of unknown observation variance 

(as proposed by West 1982, Smith and West 1983), is discussed in 

some detail, and the specific choice of prior parameter estimates 

is examined. Reference is also made to the work of Godolphin 

and Harrison (1975) in which attention is drawn to some equival- 

ences between DLM's and the more conventional time series models 

of Box and Jenkins (1970). The DLM algorithms are described in 

full for a selection of potentially useful models, with special 

reference to the medical setting. 

In Chapter 3, we review the idea of multi-process models 

and the assumptions upon which these are based (Kullback and 

Leibler 1951, Harrison and Stevens 1971,1976). The use of this 

type of modelling for monitoring time series for changepoints is 

examined (Harrison and Stevens 1975, Smith and West 1983), and 
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some multi-state representations are presented pictorially for 

a selection of models. Performance and sensitivity are discus- 

sed in relation to the ability to detect changepoints. 

In Chapter 4, we extend the ideas of the previous chapters 

to incorporate the possibility of unequally-spaced responses in 

time (Clinger and Van Ness 1976, Jones 1980). A general principle 

is proposed which leads to individual formulations for a select- 

ion of models, with particular reference to variance updating. 

Performance and sensitivity are investigated using simulated data. 

In Chapter 5, we investigate the formulation of bivariate 

time-series models (Tiao and Box 1981). Problems of interpret- 

ation are discussed, including the interaction between individual 

variables (Newbold 1979). We introduce the idea of Markovian 

state-dependence and we re-examine the relevant probability dis- 

tributions in the presence of generally unequally-spaced bivar- 

sate data. The performance, and sensitivity, of two specific 

bivariate models, is investigated using simulated data. 

Finally, in Chapter 6, we present a set of applications 

of our methodology to actual medical time series. The setting 

of kidney transplantation (Smith and Cook 1980, West 1982, Smith 

and West 1983) is the starting point for these illustrations, 

and the ideas presented in previous chapters are demonstrated 

both for this case and for other applications of interest. 

1.3 NOTATION 

Much of the notation used in this thesis follows directly 

from that employed by Harrison and Stevens. (1976). The symbol 

11 indicates a vector (or matrix) quantity so that, for instance, 



-5- 

yt denotes a vector whereas yt denotes a scalar. 

The symbol M is used to denote a 'state' (with respect to 

the multi-state structure) so that, for instance, M 
(J) 

would mean 

that state j obtains. For the situation where movements between 

states are subject to Markovian behaviour, two superscripts may 

be attached to the state symbol M. For instance, 
M 

Mt(j) would 

mean that state j obtains at time t given that state i obtained 

at time t-1. 

The time index is attached to various parameters by way of 

a subscript: 

(a) For the case of equally-spaced observations, the 

letter 't' is used, e. g. yt, 2 
t, et, etc., so that t not only 

indexes the number of observations but also corresponds to the 

actual time (in whatever units are chosen for the application). 

(b) For the case of unequally-spaced observations, the 

letter 'k' is used as the time index, e. g. yk' 6k' Ck, etc. 

In this case, k will not necessarily correspond to the actual 

time at which the kth response was measured, which is instead 

denoted by Tk. 

Other notation is either fairly standard, for example 

N(u, Q2) indicates the normal distribution with mean p and var- 

iance a, ý the expected value of 4, etc. or has been defined 

explicitly as necessary. 

000 
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CHAPTER IW0 

DYNAMIC LINEAR MODELS 

2.1 INTRODUCTION TO DYNAMIC LINEAR MODELS 

2.1.1 INTRODUCTORY REMARKS 

When we are monitoring a medical time series based on 

a biochemical or physical indicator (or set of indicators), we are 

often concerned with detecting changes in pattern, particularly 

if the transition is from a stable or improving condition to one 

of deterioration. Much of our attention in this thesis is devot- 

ed to the development of certain modelling and inference 'tools' 

which will allow us to provide a formal framework for this kind 

of monitoring situation. 

In order to determine whether or not there have been devi- 

ations from a 'normal' pattern of behaviour, we need to know, 

of course, what the 'normal' pattern is considered to be. This 

may appear to be a trivial statement but, in fact, much of the 

literature of model identification (see, for example, Akaike 1974) 

is concerned with precisely this problem. 
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In the medical context we need models of patterns of behav- 

iour which are realistic enough to capture the nature of the 

series encountered, but simple enough for the non-mathematically- 

minded clinician to be able to understand them. This means that 

the model parameters will need to have simple, meaningful inter- 

pretations (such as 'level' or 'slope'), preferably bearing some 

relationship to the underlying mechanisms, be they physiological, 

pharmacological, pathological or biological. These considerat- 

ions suggest that state-space representations of time series (see, 

for example, Anderson and Moore 1979) will be more useful than the 

conventional functional-form representations proposed by Box and 

Jenkins (1970). 

It will be reasonably straightforward to combine sub-models 

in a meaningful way in order to create a global model, since the 

initial models and their parameters have meaningful interpretat- 

ions in the first place. This facility is essential in medical/ 

biological modelling where, due to complexity, the overall model 

is often split into so-called 'compartments'. It is at the com- 

partment level that modelling usually takes place; these compart- 

ments then being joined together to form a global model (Matis 

and Wehrly 1979, Carson, Cobelli and Finkelstein 1983). 

Another fundamental consideration is that if we use the 

recursive state-space time series formulation, we can allow for 

a change in the underlying model between recursions. This has 

considerable advantages, both for monitoring (where an unexpected 

change in model may have occurred) and intervention (where a 

deliberate attempt to change some model parameters may have 

occurred). 
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The above paragraphs outline the dynamic linear modelling 

approach (Harrison and Stevens 1976); the next section discusses 

some of the existing work related to the use of DLM's. 

2.1.2 BACKGROUND TO MODELLING TECHNIQUES 

From the point of view of mathematical or statistical 

modelling, it is often best to work with as simple a model as is 

consistent with the problem under study. It is not surprising, 

therefore, that a considerable amount of attention has been given 

to the application of linear models to statistical data handling. 

For a comprehensive guide to the use of linear models for classic- 

al statistical analysis, see Searle (1971), and for a more recent 

viewpoint, summarizing the concepts of, so-called, generalized 

linear models (which avoid classical assumptions of normality) 

see McCullagh and Nelder (1983), based on the original theoretic- 

al work of Neider and Wedderburn (1972). 

In the field of time series analysis, there have been two 

main branches of study; the time-domain approach and the freq- 

uency-domain approach. In this thesis, we shall concentrate on 

the former and, in particular, on the-use of recursive algorithms 

for time series analysis (see, for example: Young 1974). These 

are very appealing for the problems we have in mind in that not 

only do they provide a means for on-line tracking of time-related 

sequences of observations, but they are also closely related to 

Bayesian methodology. 

Lindley and Smith (1972) presented an hierarchical Bayesian 

approach to linear modelling problems, an approach which was 

generalized by Harrison and Stevens (1976) to the time-dependent 
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framework of dynamic linear modelling. Although this latter 

work was originally geared towards producing practical forecasts 

(particularly in business and economics) the recursive and flex- 

ible nature of the algorithms enabled them to be extended, also, 

to the monitoring situation, as shown by Smith and West (1983). 

The Dynamic Linear ModeZ (DLM) 

yt = Mt + 6t (2.1) 

G2.2) 
.. t wet-1 

+ 
,. t' 

where 

Mt= vector of observations made at time t 

6t = vector of system parameters at time t 

Ht = known regression matrix at time t (2.3) 

G= known transition matrix 

Et, rt = zero-mean, random vectors at time t. 

For the basic DLM we make the following assumptions about 

the quantities outlined in (J. 3): 

(i) c is independent of Ms, Ys? t 

(ii) ct, wt are independent of At-l, Vt given the 

past observations yl, ..., yt-1 (denoted by 
(2.4) Dt-1) 

«t 
is independent of wt. iý t 

(iv) ýt ý' N(0, Et) : tit 'ti N(0, Wt) . 

The DLM described above has two components: (2.1) 

is the observation equation, describing the measuring process 
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which relates the current system parameters to the resulting 

observations; whereas (2.2) is the system equation, 

describing the process by which the system parameters evolve in 

time. Clearly, a further assumption here is that the system para- 

meter evolution is Markovian in nature. We note in passing that 

the case where 0 t= et_1 = ... =8 and Et =E... =E are 

time-independent reduces to the classical linear model formulat- 

ion. 

There are a number of fairly obvious extensions of the 

above model. For instance, the transition (or system) matrix, 

G, could be allowed to be time-dependent rather than fixed, result- 

ing in a transition matrix, Gt, which can change from time-point 
4. 

to time-point, further extending the model's flexibility. This 

extension to the DLM structure will become necessary for the 

developments we shall describe in Chapter 4. 

In recent years, there have been a number of papers describ- 

ing various extensions of the standard DLM framework. West 

(1981,1982) discusses robustification of the algorithm by drop- 

ping Assumption (iv) above; West et al. (1994) go on to describe non- 

linear versions of such models, thus formulating a framework for 

dynamic general linear models. We shall take the view that the 

normality assumptions are probably adequate for the medical prob- 

lems studied in this thesis. However, the techniques discussed 

by West could certainly be combined with the methods described 

in this thesis, should a situation arise which warrants this kind 

of approach. 

If the assumptions of (2.4) are maintained, and 

if it is further assumed that, initially, 
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o 
ti N(mot Co) (2.5) 

S. Iw 

and that at time t-1 the distribution of 8t-1, given the data, 

Mt_,, 
up to that point, is described by D 

(et-llDt-1) ý, N(rn 1 Ct-1) (2.6) 
^1 ^1 Af 9ý 

then, at time t, the distribution of 0t given all the data, Dt, 

up to and including time t is given by: 

(0 IDt) ti N(rn Ct) (2.7) 0- i- 

where the values of mt and Ct are obtained recursively from the 
dý P- 

Kalman Filter algorithms (Kalman and Bucy 1961). 

Following the notation of (2.3), let 

Pt = Ht. 
-1 -t 

et yt- Pt 

pt = GCt-1G 
T+ 

Wt (2.8) 

Ft 
T 

= HtPtHt + Et 

and st = PtHT(Ft)-1, 

then 

mt gm 
t-1 + Stet (2.9) 

C=P 
. -t At -SF ST. (2.10) 

-t. -t! t 

In order to calculate the-quantities involved, one more 

assumption has been made; that is, it has been assumed that both 

the observation and system variances are known for each time t. 
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To overcome the problem of unknown variances, Harrison and Stevens 

(1976) suggested the use of discrete-valued grids, covering a 

range likely to include plausible values for the variances. The 

'inefficiency' of this approach had been criticized by Stoodley 

and Mirnia (1979), and a more efficient procedure for on-line var- 

iance updating was put forward by West (1982), based on the idea 

of a joint conjugate prior distribution for the normal distribut- 

ion with unknown mean and variance (see, for example, DeGroot 

1970). 

Let us rewrite 

Var(ct) = Et as c2RE 
and oo P. (2.11) 

Var(wt) = Wt as c2RtýJ 

and assume that 

60 1, N(mo, c2co) (2.12) 

and 
(6t-1lDt-1) ., N(mt-1, c2Ct_i) (2.13) 

(replacing (2.5) and (2.6) respectively) where, in general, c2 is 

time-dependent. 

Then the equations of (2.8) can be rewritten: 

vt 
- Htýmt-1 

Ht Yt ft 

Pt = GCt-1GT + Rw (2.14) 
0»W00 ow 

Ft = HtPtH T 
+ RE 

T -1 
St 

= p_ttýrt) ' 
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If c2 is known, the recursion described by (2.14) is identi- 

cal to that of (2.8). However, when c2 is unknown West (1982) 

proposes the following procedure. 

Let X= c2. We replace (2.13) by 1 

(6t-1IDt-1'a) ti N(rt-1'A 
lit-1) (2.15) 

and 

(AIDt-1) (2.16) 

where U' G(a, ß) means that U has a gamma distribution defined by 

_ 
ßaua-le 

ßu 

'u>0 P(u) - NO 

where 
00 

r(a) =I ua-le-udu, a>0 JO 

so that 

Na) = (a - 1)r(a - 1), a>1. (2.17) 

We also assume that, initially, 

X ti G(in0, ir0). (2.18) 

Standard Bayesian analysis (see, for example, DeGroot 1970) shows 

that 

(0 IDt, X) % N(mt, X_1Ct) (2.19) 
el p- d- d-0 

and 

(XIDt) ti G(Int, jrt) (2.20) 

where mt and C are defined by (2.9), (2.10) and (2.14), and where 
f-t 
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nt = nt-1 +1 (2.21) 

rt = rt-1 +eT (F 
t)-1e 

(2.22) 
0% f. I't 

with et and Ft as defined by (2.14). 

This procedure has been demonstrated (Smith and West 1983, Trimble 

et al. 1983) to be an improvement on the method of Harrison and 

Stevens (1976). 

Specifying Prior Variance Information 

The specification of initial system variance, defined as RW 

from (2.11), is very much open to debate. An alternative method 

for expressing the information described by Rw is discussed later. 
N 

In terms of specifying X, however, one must choose suitable start- 

ing values for no and r0 in (2.18). 

Let us assume, for example, that the variance law is const- 

ant (i. e. that c2 does not depend upon the process mean), and that 

we have some prior estimate for the value of c2. It seems sens- 

ible to equate the expected value, arising from the proposed gamma 

distribution, to this estimate. 

Theorem 2.1.2 

If X" G(a, ß), i. e. 

then 

axa-le-ßa 
P(a) r(a) x>0 

E(X 
1) 

=aß 1" a> 1 

and 

Var(X-1) =ß. a>2. 
(a - 1)2(a-2) 

(2.23) 

(2.24) 

(2.25) 
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Proof 

By straightforward manipulation. 

CoroZZary 2.1.2 

For the distribution defined by (2.18) we have 

(sr) r 
2 

(no > 2) E(ý 
1) 

(gin - 1) n-0 00 
and 

-1 
(jr0)2 

Var(ý )= 
(ino - 1)2(in0 - 2) 

2r2 
0 -2 (no > 4) . 

(no - 2) (no - 4) 

Since we require non-negative values for Var(X 
1) 

the choice of 

no is restricted to the range n0>4, with an infinite variance 

resulting from the equality. 

NOTE: If we have a fixed estimate of c2 we can tune our uncert- 

ainty in this estimate by adjusting no without altering the ratio 

ö/(no - 2); our uncertainty is decreased as no is increased, e. g. 

(i) ro = 0.3, no =5 

r 
E(X 

1) 
=n 

°2=0.1 

0 

2 

-1 
2ro 

Var(X) =2=0.02 
(no - 2) (no - 4) 

(ii) ro= 4.8, no = 50 

(2.26) 

(2.27) 

E(X-1) = 0.1 

Var(A-1) ti 0.0004. 
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Alternative approaches to the estimation of c2 have been 

suggested (Ameen and Harrison 1982, Cantarelis and Johnston 1983) 

though Ameen and Harrison (1982) acknowledged that the approach 

taken by West is 'operationally elegant and is properly Bayesian'. 

Discounting 

A procedure has been proposed by Harrison and his colleag- 

ues (Ameen and Harrison, 1982,1983,1984, Harrison and Johnston 

1983, Johnston and Harrison 1983) which side-steps the problem of ' 

specifying a covariance matrix, Rte, strictly in terms of varianc- 

es and covariances. This method involves the use of, so-called, 

discount parameters, and is based upon simple ideas of exponent- 

ial smoothing (see, for example, Brown 1963). 

The effect of Rw on the updating recursion appears in (2.14), 

via 

Var(A ID4 
1) = P` = GC} 1rT +R. 

In other words, Rw increases the system variance. The discounting 

concept is to replace the additive Rw by a multiplicative quantity, N 

At, so that (2.28) becomes 
. 41 

Var(A tI Dt-1) MtA 
'GC TA' 

where At is a diagonal matrix of positive discount factors, 1/fit' 

i=1, ..., n, Xit <1 (where n is the number of parameters in the 

model). 

In this way the effect of A will also be to increase the 
O-t 

(2.28) 

(2.29) 

system variance, by multiplicatively discounting information. 
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Notice that different discount factors may be introduced for indi- 

vidual parameters, unlike much of the earlier work in this area, 

where the choice of a single discount factor for all the parameters 

had been adopted (see, for example, Sorenson and Sacks 1971). 

The rationale behind the adoption of this formulation is 

threefold. It is asserted that: 

(i) most 'practitioners' find it difficult to specify 

the elements of Rw, and that 'many modellers have a natural feel 

for discounting' (Ameen and Harrison 1982); 

(ii) the discount vector (matrix) is invariant to scale; 

(iii) the limiting form of forecast function is identical 

to that obtained using the RW formulation as long as A is expres- 
P' /- t 

sed in a particular way. 

We are mainly interested in the monitoring of medical time 

series, and therefore have no real concern with forecast functions; 

limiting forms of these functions are of even less interest, since 

most of the series we consider are not only finite, but are also 

reasonably short. 

It can also be seen that, using the formulation described 

by (2.11) to (2.22), the choice of ýw is also scale invariant, 

since measurement of scale is diverted into the estimation of c2. 

In fact, for multiprocess models, the choice of non-zero 

elements of Rýtý has a simple interpretation. The size of the element 

depicts: the number of times greater than the variance, c2, the 

magnitude of a change is likely to be. For instance, if a level 
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change could plausibly be of a magnitude of up to 20 times that of 

the normal variation, then the element of Rw corresponding to level 

change would be 20. With discount matrices, however, the elements 

have no comparable interpretation with respect to changepoints. 

For these reasons, coupled with the fact that normal discount 

models are only 'coherent' for series with no missing observations 

(Ameen and Harrison 1982), whereas we will be investigating the case 

of unequally-spaced measurements, it was felt that the original form- 

ulation of the DLM, involving the 51 matrix, was more applicable 

to the problems we shall be considering than the discount factor 

approach. The former procedure has therefore been adopted in this 

thesis. 

Let us now turn our attention to a number of specific models 

which fit into the general DLM framework. Since some of these 

relate closely to the ARIMA-class of models, we note first the work 

of Godolphin and Harrison (1975) in which theoretical equivalences 

between dynamic linear models and ARIMA models (Box and Jenkins 

1970) are derived. It was shown that certain. dynamic linear models 

can be reparaaeterizedto form ARIMA models, though extra restrict- 

ions will then be imposed upon the model parameters. For instance, 

it was reported by Godolphin and Harrison (1975) that the linear 

growth model can be rewritten in the form of an IMA(0,2,2) model. 

This fact was well known, but it was shown that for the equivalence 

to hold true, further restrictions on the moving average parameter 

space were necessary in addition to the stationary and invertibil- 

ity conditions. 

However, in the work that follows these ideas are bypassed, 

in that it is typically assumed from the outset that any model 
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structure is associated with the system equations (2.2), and that 

the observation equation will be of the form 

't-ut+_tý 

i. e. what is observed is merely the level of a series along with 

observational error. Therefore, if et = [utelt en-lt] then, 

in DLM terms, H will be assumed to be of the form 
P-t 

(2.30) 

H 
.=H= 

[1 0 ... 0], Vt (2.31) 

[NB: The sinusoidal models of Sections 2.3.3 and 2.3.4 are the 

exceptions to this rule. ] 

This particular formulation is chosen because it is felt 

that many 'indicators' of clinical conditions are of a nature where- 

by their measurement involves a machine-reading (corresponding to, 

say, a concentration of the indicator in fluid). In other words, 

the observer, be it human or computer, will 'see' the machine- 

reading and record this value, thus introducing potential observ- 

ation errors. 

The next section deals with the iteration required between 

timepoints; in the following section, we describe a selection of 

useful models. 

2.2 RECURSIVE ESTIMATION 

Although the general framework of a dynamic linear model in- 

corporates the possibility of multiple observations (see Chapter 5), 

we restrict ourselves at present to the case of a univariate observation, 

yt, for simplicity of exposition. 
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We have seen in the previous section that if 

pcetýDt-,, X> ti xcrt-iX-lct-1 ) 
and 

P(XI Dt-l) ti G(Int-1'irt-1) 

then 

(etIDt X) " N(it, X-1ct) 
and 

(XIDt) ti G(int, irt) 

with mt and Ct defined by (2.9), (2.10) and (2.14), and nt and rt 

defined by (2.21), (2.22) and (2.14). It can also be seen that: 

P(YtIDt_,, X) ti N(ft, a_1Ft) 

where ft and Ft are defined in (2.14). So, 

(P(YtIDt-1 

(2.32) 

- 1) 
(Yt -ft)2 (-Irt-1)(Int-1)In t-1 

0(27TX 
Ft exp[- 

2X-1F 
t 

r( nt-1) Jx 

x exp[-(Jr t-1)X]da 

aF 
pt-lt-1) +1) -1e 

--t r(nJ°3A4t1 ý 
2(rt-1 +g] 

t 

F 
rt-it-1)" 

r( (nt-1 + 1) 

t T(int-1) 2 

[ (r + 
(Yt - ft) 

), 
j(nt-l + 1) 

t-1 Ft 

(using the gamma distribution) 

-j (in Pr -In « Ft rt-lt-t t (using the definitions of (2.21) 

and (2.22)) 
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i. e. P(YtýDt)1 a Ft rani 1 rt 
ntý 

which has the form of a t-density (see, for example, Aitchison 

and Dunsmore 1975). 

This is the predictive density which will be useful not only 

for providing predictions but also. in the derivation of multi- 

process probabilities (see Section 3.2). 

Nuisance Parameters 

When the model depends upon either one or more nuisance 

parameters, , we adopt the following procedure. 

First, we assign a probability distribution to over a 
r 

sensibly defined range using a discrete-valued grid. For inst- 

ance, if the system model is a first order autoregressive process 

and the autoregressive parameter is considered as a nuisance 

parameter, then a suitable range would be (-1,1) and some kind 

of distribution would be specified over this range; for example, 

a flat distribution (e. g. uniform) might express prior ignorance 

as to the magnitude of 0. 
N 

In this case, we have: 

P(0 lD 
1, 

X, ti N(m ýX-1c ) 
Nt_ 

1 
06 F. Ntý1 Nt-1 

and 

P(ýIDt-1ý) ti G(Jnt-1'rt-1) 

where, now, mt_1, rt-1 and t_1 are dependent on ý, i. e. they will 

typically have different values at each point on the q-grid. 

(2.33) 

(2.34) 

(2.35) 

Therefore, replacing (2.19) and (2.20), we have: 
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and 

P(8 ID 
, 
X, ý) '' N(m ,X 

1C 
) (2.36) 

r. t pt ^o rt .. t 

P(XIDt, o) 'v G(ýlnt, jrt) (2.37) 

where mt and C are defined by (2.9), (2.10) and (2.14); and nt 

and rt are defined by (2.21), (2.22) and (2.14), except that each 

of the quantities in (2.14) now depends on 

Let the probability distribution of at time t-1, over 

a suitable grid 0, be represented by 
0.1 

P(ýIDt-1) Kt-1(». (2.38) 

Then 

p(O IDt, A) _Y p(OtIDt, X, e)p(eiDDt, A) 
A. t A. 

_ p(6 ID 
, 
X, e) .K (e), (2.39) 

0~t 0- NtN 

where the first term in the summation is defined by (2.36); this 

replaces (2.19) when is present. Also, 
r 

p(XIDt) _I p(1IDtý)p(flDt) 

I p(XjDt, ý)Kt(ý), (2.40) 

where the first terms in the summation is defined by (2.37); this 

replaces (2.20) when 4 is present. Moreover, 

P(YtIDt-1) -G P(YtIDt-1'e)P(eIDt-1) 

- P(YtIDt-1'ý)Kt-1(e), (2.41) 
(D 00 
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where the first term in the summation is defined by (2.33) for 

each grid point; this replaces (2.33) when is present. 

Note that (2.39) represents a mixture of normal distribut- 

ions. We use the minimum Kullback-Leibler divergence criterion 

(Kullback and Leibler 1951) to approximate (2.39) with: 

and 

) Mt =i mt(e)Kt(0- 

Ct = G{c (ý) + (mt( )- mt)(m ()- mt)T}Kt(ý) t 

Similarly (2.40) is a mixture of gamma distributions which we 

replace by 

C(rt(0))-'Kt(ý) 

again derived by minimizing the Kullback-Leibler divergence (see 

West 1982 for details). 

In order to calculate the quantities in (2.42) and (2.43), 

we need to update the grid weights iteratively, so that 

P(IDt) = 
P(YtIDt-1'VP(4I2t-1) 

tcý) = I P(YtIDt-1, O)P(OIDt-1) 

(using Bayes' theorem), i. e. 

P(YtIDt_i, )Kt-1(. ) 
Kt(W) _ 

P(Yt Dt-1'ý)Kt-1( ) 

where p(ytlDt-l, 
4) 

is calculated from (2.33) for each grid-point 

(2.42) 

(2.43) 

(2.44) 

in (D. 
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2.3 THE MODELS 

2.3.1 LINEAR GROWTH 

The linear growth model can be written as: 

Yt=Pt+Et 

Pt -ut-l+ßt+apt. 
at = ßt-1 + dat 

0 

where ut is usually interpreted as the system level at time t, 

and ßt is the incremental growth (i. e. slope) at time t. Further- 

more it is assumed that: 

(i) Et ti N(0, A 1'RE); 

(ii) 611t ti N(0, ß 
1R11 

); 

(iii) 6ßt ti N(O, X 
1Rß)0 

and that these perturbations are independent of one another. 

It is important to note that although no suffix t has been at- 

tached to the variances, they are assumed to be time-dependent. 

Using the DLM representation, 'we may write: 

lit 
yt = [' 0] ß+ Et 

t 

fliti _11 
Ut-1 

+ 
1auf + aßt 

ßt o1 ßt-1 aßt 

i. e. 
ut 11 aUt + aßt 

Ht =H= [1 0], Ot =ß, G=, wt = 
at 016 at 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 
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and 

RE =R RW =Ru+ 
Rß Rß 

(2.51) 
Rß Rß 

Assuming (2.12) and (2.13) to hold, and writing: 

art-1 - 

mt-1 
(2.52) 

and 

bt-1 

ct-1 - 

Mt-1 MB 
t-1 (2.53) 

MB 
t-1 

Bt-1 

we can use the Kalman filter equations of (2.14) to see that: 

ft = 
-H t -t-1 

[1 01 
1 

{() 
11 

bt 

mt--11 
=- mt-1 + bt-1 

et - yt ft - Yt mt-1 - bt-1 

P_ 
Pllt p12t 

= GC GT +R 
rt rat-ln r(, p p12t p22t 

Therefore 

1uit p12t 
_11 

A"t-1 mBt-1 10+ Ru + Rß RQ 

p12p22t 01 Mt-1 Bt-1 11 Rß Rß 

Ait-1+Bt-1+21Bt-t+R +RB +MB +R 
_uß t-1 t-1 ß 

Bt-1 + UB t-1 + Rß Bt-1 + Rß 

Ft = HtPtH Tt+ RE = Pult + R£ 

Pllt 

S= 
slt 

=P HT (a. F )-1 _ 
Pllt + RE 

rt S At t P12t 
2t 

Pllt + RE 
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If p(6tIDtjA) ti N(mt, X 
1Ct) 

then, from (2.9): 
10 

mt 
mt 

G mt-1 + Stet =11 
mt-1 

+ 
Slt 

(yt - mt-1 - bt-1ý 
bt 01 bt-1 S2t 

_ 
mt-1 + bt-1 + Slt(yt - mt-1 - bt-1) 

(2.54) 
-s 

bt-1 + S2t(yt - mt-1 - bt-1) 

and, from (2.10) 

T 
P11 

Ct = Pt - StFtSt = 
S2 

ltFt 
r12t w S1tS2tFt 

(2.55) 

P12t - S1tS2tFt 
P22t S22 

tFt 

The updating of X is as defined by (2.16), (2.20) to (2.22). 

2.3.2 QUADRATIC GROWTH 

Although the linear growth model is very useful in 

practice, a linear trend will not always fully describe patterns 

in time series. Therefore higher order polynomials may be more 

applicable and, in particular, allowance for a quadratic term may 

be desirable. 

The quadratic growth model is a straightforward extension 

of the linear growth model, described in the previous section: 

yt=ut+Et 

Pt = ut-1 + ßt + apt 
at = ßt-1 + Yt + aßt 

It = Yt-1 + Olt 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

where the parameters and perturbations have a similar interpretation 
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to the linear growth model, with the additional parameter, Yt' 

representing the increment in slope at time t. In addition to 

the assumptions of the previous section, we have a further inde- 

pendent disturbance 6yt A. N(0, )1 R) 

In DLM form 

u 
+ Et (2.60) yt = [1 0 0] It 

Yt 

1u 111 u- 
Sut + dßt + syt 

It =011 
t-1 

+ 6ßt +6t' (2.61) 

yt 001 yt-1 Öyt 

i. e. 

and 

ut 111 
Ht =H= [1 o 0], et= ßt , G=o 11, 

yt 001 

(2.62) 

1Sut + aßt + 6yt 

wt dßt + 6yt 

6yt 

R+R+RR+RR 
ußyßYY 

Re = RE, R= Rß + RY Rß + RY RY (2.63) 

RRR 
YYY 

If imt-1 

mt-1 bt-1 (2.64) 

gt-1 

and I Mt-1 MB 
t-1 

MGt-1 

Ct-1 MB 
t-1 

Bt-1 BGt-1 ' 
(2.65) 

MG 
t-1 

BG 
t-1- 

Gt-1 

then, from (2.14), we have: 
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111 mt-1 

f= [1 0 0] 011b= m+ b+ g 
t001t t-1 t-1 t-1 

gt-1 

et = yt ft = yt - mt-1 - bt-1 gt-1 

fiit p12t p13t 111 Mt-1 MB 
t-1 

MGt-1 100 

0- p12t P22t p23t = 011 MBt-1 -t-1 BGt-1 110 

P13t P23t p33t 001 MGt-1 BGt-1 Gt-1 111 

R +R + R R+ R R 
u ß y y y 

+ +R R + R R R 
ß Y ß y Y 

R ft R 
Y Y Y 

i. e. 

lit - Mt-i + Bt-1 + Gt-1 + 2(MBt-1 + MG 
t-1 + BGt-1) 

+Ru+Rß+Ry 

P12t - Bt-1 + Gt-1 + MB 
t-1 + MGt-1 + 2BGt-1 + Rß +R 

P13t = Gt-1 + MGt-1 + BGt-1 + Ry 

'22t - Bt-1 + Gt-1 + 2BGt-1 + Rß +R 

p23t = Gt-1 + BGL-1 + Ry 

P33t - Gt-1 + 
"y 

Pllt 

pt = (1 0 0] P12t 

P13t 

Sit [Put 

rt S2t p12t 

S3t IP13t 

p12t 

p22t 

p23t 

P13t 1 

P23t 0 +R =P +R 
E lit E 

p33t 

P12t p13t 11 

P22t P23t 0 
pllt +R 

E p23t p33t 

plit 

pllt + RE 

pl2t 

pllt + R£ 

P13t 

Alit + R£ 
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Then 

and 

1mt 111 {mtll Sit 

m= lbt = 10 11 bt-1 + Sgt (y 
t- mt-1 - bt-1 9 t-1 

gt 001 gt-1 
[s3jt 

mt-1 + bt-1 + gt-1 + Slt(yt - mt-1 - bt-1 gt-1) 

- bt-1 + gt-1 + S2t(yt - mt-1 - bt-1 gt-1 

gt-1 + S3t(yt - mt-1 - bt-1 gt-l 

Mt MBt MGt 

= hBt Bt BGt 

MGt BGt Gt 

Alit S2 itFt 
p12t S1tS2tFt 

P13t S1tS3tFt 

p12t - S1tS2tFt 

_ p22t 2 S2tFt 

p23t - S2tS3tFt 

P13t S1tS3tFt 

p23t - S2tS3tFt 

2 p33t - S3tFt 

Again, I updating is defined by (2.16) and (2.20) to (2.22). 

2.3.3 A SINUSOIDAL MODEL 

Many medical time series exhibit rhythmic behaviour, 

possibly due to the existence of, so-called, body-clocks which 

synchronize various bodily functions (More-Ede, Sulzman and Fuller 

1982). Cyclic patterns in the human often have a periodicity of 

about twenty-four hours, reflecting the light/dark, activity/rest 

phases of daily life (Minors and Waterhouse 1981), although some 

rhythms, such as respiratory patterns (see, for example, Hrushesky 

1984), will clearly have a shorter periodicity and others, such as 

menstrual cycles (see, for example, Rebar and Yen 1979), a much 

longer periodicity. 

(2.66) 

(2.67) 
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For this reason cyclical models have considerable applic- 

ation to medical time series. In this section, we consider the 

simplest such model, the sinusoidal waveform. Ideally, we would 

like to be able to estimate the characteristics of the waveform 

independently of one another, and so the following configuration 

is adopted: 

yt ut + Ctat + Et 

lit - ut-i + dut 

at = at-i + öat 

where 

ct = cos (2it + 4) 

W= the rhythm frequency 

0= the phase 

gt N(0, X-1Re) 

611t ti N(O, X-1RU) 
dat ti N(O, a_1 ä) 

and where ut can be interpreted as the level of the series at 

time t, with at representing the rhythm amplitude at time t. 

We will often be able to assume that w is fixed and known 

(for instance, when a period of 24 hours is specified), whereas 

it is unlikely that we will be able to stipulate an accurate value 

for ý. Therefore, we adopt the procedure described in Section 

2.2, and use a discrete-valued grid to recursively update our 

beliefs about 4. In the absence of further information the 

range adopted for this purpose is [0,271), representing all pos- 

sible values for ý. 

(2.68) 

(2.69) 

(2.70) 

(2.71) 
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It is, of course, possible to include w in this updating 

procedure, by way of a two-dimensional grid. In this case the 

range for w will depend upon some prior knowledge of the suppos- 

ed periodicity and the frequency of data sampling. For example, 

for hourly measurements of a debatable daily rhythm, a suitably 

wide range for w might be [1/96,1), having a periodicity between 

1 and 96 hours. Probabilities are then assigned to (m, c) co- 

ordinates in such a way that the marginals for w and 0 are easily 

computed (see Appendix A2.2). 

Writing (2.68) to (2.70) in DLM form, we have: 

qt = [i cu t] at + Et (2.72) 
t 

ut io ut-i dut 
a=+ as (2.73) 

to1 at-1 t 

i. e. Ht = [1 ct] _ [1 cos(2nrt + ý)] 

ut 10 dut 

}(2.74) 

Ht 
at 01t 

dat 

NOTES: 

(i) The form of Ht is different from that of (2.31), since 

we wish to keep the estimation of rhythm amplitude independent of 

the rhythm level; 

(ii) although Pt is not constant, it is known for all times 

t, for each (W, O) pairing (or for each value of ý, if w is assumed 

to be fixed). 

Also, 
Ru o 

(2.75) 
f"E £, -0R 
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If 
mt-1 

wt-1 1a. iJ 

C 
t-1 MAt_11 

MA 
t-1 

At-1 

(2.76) 

and 

then: 

ft = [1 ct] 
10 mt-o 

i 

[atj 

=+ cai 

et = yt ft = yt - mt-1 Etat-1 

p_ 
pllt p12t 

=10 
13t-1 MAt-1 fi 0+ Ru 0 

Ra 
t 

p12t p22t 01 MA 
t-1 

At-1 to 1 to 

_ 
Mt-1 + RI, MA 

t-1 

MA 
t-i 

At-1 + Ra 

M+R MA 1 
Ft = [1 ct] 

t-1 u t-1 
+ Re 

MA 
t-1 

At-i +p ct 

22-M 
t-1 

+ 2ctMAt-1 + ctAt-1 + Ru + ctRa + RE 

Slt Mt-1 + Ru MA 
t-1 

11 
S= 

t s2t MA 
t-1 

At-1 +R ct 
it 

+ ctMMAt-1 +R 

Ft 

MA 
t-1 

+c tAt-1 + ct ä 

Ft 

(2.77) 
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So, 
mt 

at 

10 mt_1ý ýsit 

+I (Yt - mt-1 + ctat-1) 
at 01 at-1% ýS2t 

_ Imt_1 
+ Sit(Yt - mt-1 - Etat-1ý 

(2.78) 

at-1 + S2t(Yt - mt-1 ctat-1) 

and 

C= 
Mt MAt 

- 

rat-1 + Ru - 
2it 

Ft MAt-1 - SitS2tFt 
(2.79) 

~t 
LMAt 

At 

[MA_1 

SitS2tFt At-i + Ra - S22 
tFt 

Because ý is present, as either 4 or (w, ý), we use (2.35), (2.37), 

(2.40), (2.21) and (2.22) to update A, and (2.38) and (2.44) to 

update ý. 
r 

2.3.4 A SINUSOIDAL MODEL WITH LINEAR GROWTH 

The sinusoidal model of the previous section can be 

extended to include a term for slope, resulting in a superposit- 

ion of the sinusoidal model with the linear growth model of Sect- 

ion 2.3.1. 

In DLM form: 

lit 
qt = [i oc t] Bt + et (2.80) 

at 

ut 110 ut-1 sut + aßt 
at =010 ßt-1 + aßt (2.81) 

at 001 at-1 dat 

i. e. 
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If 

and 

then 

Ht = [1 0 ct ]= [1 0 cos (girrt + ý) ] 

1tl 110 Sut + Ößt (2.82) 

6t = ßt 
'^=010, Wt = aßt 

A 
at o01 dat 

R+R Rß 0 

R= 
w 

Rß Rß 0 RE - RE (2.83) 

0 0R 
a 

mt-1 

bt-1 (2.84) 

a 

Mt-1 MB 
t-1 

MA 
t1 

C 
t-1 = 

[MBt1 
B 

t-1 
BA (2.85) 

t-1 

NLA 
t-1 

BAt-1 At-1 

ft = 

et = 

Pllt 

, 
Pt P12t 

P13t 

mt-1 + bt-1 + Etat-1 

yt - mt-1 - bt-1 - Etat-1 

p12t P13t 

p22t p23t 

p23t "33t 

+B +2MB +R +R B +MB +R MA +BA t-1 t-1 t-1 ß t-1 t-i t-1 t-1 

= Bt-1 + MB 
t-1 + Rß Bt-1 + Rß BAt-1 

MAt-1 + BAt-1 BAt-1 At-1 +R 

Ft = Piit + 2ctPi3t + 
2tp33t 

+ Re 
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It 

Then 

pllt +c tp13t 
Sit 

Ft 

P12t +c tp23t 
s 

2t = Ft 

p13t +c tP33t 
S3t 

Ft 

fine) mt-1 + bt-1 + Slt(yt - mt-1 - bt-1 ctat-1) 

bt = bt-1 (yt - + S2 m 1b 1 1) ctat t t- t- - 

a a +S - (y m -b ý c a t t-1 t 3t t-1 t-1 t-1 t 

and 

(2.86) 

IMt MB 
t t 

P 
lit - SF 

it t 12t it 2t t 
SSF 

13t 
P - SS3tF 

it t 

MBt Bt BAt P12t - SitS2tFt p22t - S2tFt P23t - S2tS3tFt 

MAt BAt At lPi3t 
- SitS3tFt P23t S2tS3tFt P33t - S3tFt 

and X are updated as for the basic sinusoidal model of the 

previous section. This model may be useful when, for instance, 

the day-to-day variations consist of a linear trend along with a 

within-day rhythm. 

2.3.5 ARMA MODELS 

Patterns in time series are not always obvious, but 

intuitively one might imagine that 'today's' observation is some- 

how related to the recent history of measurements; the value of 

a medical variable is very unlikely to double (say) overnight. 

In these situations a low-order ARMA model (Box and Jenkins 1970) 

may provide an adequate description of the structure in the data. 

(2.87) 
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Again, it is pointed out that, in this thesis, the structure is 

assumed to reside in the system equations. Godolphin and 

Harrison (1975) have demonstrated that this leads to a different 

structure for the observations themselves, but we are not concern- 

ed with the observation structure here (see Chapter 4 for remarks 

about model identification using series of observations). There- 

fore, a grid for an ARMA parameter is specified over the appropri- 

ate stationarity region of the parameter space, without the addit- 

ional restrictions suggested by Godolphin and Harrison (1975). 

2.3.5.1: AR(1). 

follows: 

The first-order autoregressive model is as 

yt=lit +£t 
Pt - vt = )<ut-i'- Vt-i) + 611 

t 

vt = vt-1 + dvt 

where pt can be interpreted as the true (error-free) recording 

at time t, with Vt representing the level of the series at time 

t; $ is the autoregressive parameter which, for this model, is 

considered as a nuisance parameter. Also, we assume that: 

Et ti N(0, X-1RE); 611t ti N(0, a_1R11 ); Svt ti N(0, X-1Rv). 

The grid method is used to update 4, using the 'natural' 

range (-1,1) corresponding to the range which results in station- 

arity. 

NOTE: (2.90) allows the level to fluctuate in any case, 

but should we wish other forms of non-stationarity we could 

incorporate an extra component into the model in a similar way 

(2.88) 

(2.89) 

(2.90) 
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to the inclusion of a slope component in the sinusoidal model 

(see previous section), thereby restricting ý to the stationary 

range even for non-stationary time series. 

In DLM form we have: 

yt = [1 0]t+t 
t 

H =H= [1 0], 0=tj, G= 
1- Iý, 

r 
Ht 

#4 rt lut *% 01 

ti- ut-i auf + dvt 
_+ (2.92) 

t01 
t-1 aft 

i. e. 

{sut + dvt 

/ý-t 6vt 

and 

(2.91) 

(2.93) 

Ru + RV RV 
R£ = Re, R (2.94) 

W= 
Rv RV 

If 

mt-1 - 
mt-1 

(2.95) 
vt-1 

and 
Mt-1 MVt-1 

. -t-1 
(2.96) 

then 

ft = [i of 
1- mt-1 

= pmt-1 + (1 - ýyt-1 
01 

IV 

t-1 

et yt - pmt-1 (1 - q) v t-1 
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P_ 
pllt P12t 

=41 
Mt-1 MV 

t-1 
0 

rt p12t P22t 01j Wt-1 Vt-1 j 1- 1 

R+ R R 
u v v 

R R 
V V 

that is, 
fAlit p12t 

is equal to 
P12t P22t 

{2M 

t-1 + 2ý(1 O)MVt-1 + (1 - 
2Vt-1 

+ R11 + Rv (1 - ý)Vt + 4mv 
t-1 + RV 

(1 - ý)Vt-1 + ýMvt-i + Rv Vt-1 + RV 

Pllt P12t l 

t= 
[1 01 

PP0+ 
RE = Pilt + RE 

12t 22t 

s= 
sit 

= r- t Szt 

So, 

Alit 

Flit + RE 

p12t 

pllt + RC 

mmt 1- mt-1 it 
mt =_+e t 

vt 01 vt-1 Sgt 

pmt-1 + (1 - ý) vt-1 + Sit(yt pmt-1 (1 ý) vt-1) 
_ (2.97) 

vt-1 + S2t(yt - pmt-1 (1 - q) t-1) 

c_ 

[Mt rat 
= 

1Piit 
-S2 1tFt P12t - SitS2tFt 

(2.98) 
rt Mv 

t 
Vt p12t - S1tS2tFt P22t - S2tFt 
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A and 4' are updated as in Section 2.3.3 (see Appendix A2.1 for init- 

ial setting of the ý grid). 

2.3.5.2: 14A(1). The following configuration is proposed for the 

first-order moving average model: 

yt = Pt + Ct (2.99) 

lit = vt + dut - nöut-1 (2.100) 

vt = vt-i + dvt (2.101) 

where ut is the (error-free) time series reading at time t, Vt is the 

level of the series at time t and n is the moving average parameter. 

Also, 6t ti N(O, )L-1Re), 611t ti N(O, A-1RR) and 6vt ti N(O, a-1RV). Once 

more, a suitable range for a grid for n is (-1,1), corresponding to 

the conditions for stationarity. 

In DLM form: 

yt = [i 0] t+ Et (2.102) 
Vt 

ut l=101 lit-1 dut - Haut-i + avt 
+ (2.103) 

Vt 01 Vt-1 SVt 

i. e. 

fut o1 
«t 

=H= [1 0], et =c=, 

tj 
, P- 01 

_ 
out'Haut-ý+övt 

It 
dvt 

(2.104) 

and 
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R + Tj 
2R 

+ R R 
PE = RE, RW u U 

R 

V V 

R 
V V 

NOTE: With ý=0 in the AR(l) model of Section 2.3.5.1, the G matrix 
0 

is identical to the above, since the moving average structure is 

wholly contained in the Wt vector. 
V. 

If 

_ 
mt-1 

mt-1 
v t-1 

and 

then 

mt-i mvt-ý 

MV t-1 vt-i 

ßt = I1 0] 
01 mt-1 

= ýt-1 
01 ýt-1 

et = yt vt-1 

P11t P12t Vt-1 +R+ n2R +RV+R 
P= =puV 

t-1 V 
Nt P12t P22t Vt-1 + Rv Vt-1 + Rv 

Ft = Plit + Re 

Sit 

_ 
Mt 

s 2tl 

Then 

FL't 

Flit + Rg 

p12t 

Alit +R 

At = 
Mt 

= 
vt-1 + Slt(yt - vt-1) 

vt vt-1 + S2t(yt - Vt-1ý 

(2.105) 

(2.106) 

(2.107) 

(2.108) 
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and 2 

C_ IMt MYt 
_ 

Alit Sit Ft 

t 
MVt Vt J lP12t 

SitS2tFt 

pl2t - S1tS2tFt 

2 
p22t - S2tFt 

(2.109) 

A and Ti are updated as for Section 2.3.3. 

2.3.5.3: AR(2). As a straightforward extension of the AR(1) model, 

the AR(2) model is as follows: 

st=P +Et 
ut - Vt = ýi(ut-1 - Vt-1 + ý2(ut-2 - Vt-2 + dut 

Vt = Vt-1 + ÖVt, 

where ut is the (error-free) recording at time t, vt is the level at 

time t, and ý19ý2 are the autoregressive parameters, with: 

Et ti N(0, X-1RE), auf ti N(0, X-1RU), d't ti N(0, X-1RV). 

The region for the (h, Y grid is again specified by refer- 

ring to the stationarity conditions: ý1 + 02 <<1, 

k2I < 1. 

In DLM form we may write: 

ut 
yt = [1 0 0] ut-1 + £t 

Vt 

H 
k1 ý2 1- ýl - ý2 ut-1 Sut + ý2sut-1 + 6vt 

ut-i -100 ut-Z +0 
Vt 001 ut-1 Svt 

(2.110) 

(2.111) 

(2.112) 

(2.113) 

(2.114) 

i. e. 
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and 

If 

and 

then 

Vt ý1 ý2 

o, rt=x= [1 o o), et= ut-i G=10 

i "t 00 

Sut + 42SVt-1 + 6Vt 

Wi 0 

Svt 

R + 
2R 

+ R 0 R 
u V 2 V V 

RE= RE, = 0 0 0 

R 0 R 
V V 

mit-1 

mt-1 - mOt-1 

Mit-1 

c mm Mt-1 t-1 

MVlt-1 

MMt-1 mvit-1 

. MO 
t-1 

mvOt-1 

MVOt-1 Vt-1 

ft = ýlmlt-1 + ý2mot-1 + (1 - ý1 - ý2)vt-1 

et = yt - Ylt-1 - ý2mOt-1 (1 - ý1 - Yvt-1 

pllt P12t p13t 

pt p12t '22t p23t 

1'13t P23t P33t 

where 

(2,115) 

(2.116) 

(2.117) 

( 2.118 ) 

_ pllt -2 1Mlt-1 + 2ý1ý2ýIMt-1 + 21(1 - ý1 - YMVlt-1 

+ 22 M0t-1 + 242(1 - ýl - ý2)MY°t-1 + (1 - ý1 - ý2)2Vt-1 

+Fu +Rß(1+42) 

p12t = iM1t-1 + YMt-1 + (1 - ýl - YMVlt-1 
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p13t - g1MVlt-1 + YN°t-1 + (1 ýl - ý2ýýt-1 + RV 

P22t - Mlt-1 

p23t - Mvlt-1 

P33t - vt-1 + RV 

Ft = Pllt + RE 

Sit p11t/Ft 

st S2t p12t/Ft 

ts3tJ P 

So, 

m1t Olmlt-1 + 02mOt-1 + (1 - 01 - 02)vt-1 + Sltet 

= mot = mit-1 + S2tet (2.119) 

t t-1 + S3tet 

and 

Mit mm t mvlt 

C= 
t 

MM 
t 

MO 
t 

MVO 
t 

MVlt MV0t V. 

pllt - S1tFt p12t - S1tS2tFt P13t - S1tS3tFt 

P12t - SitS2tFt p22t - S2tFt p23t - S2tS3tFt (2.120) 

P13t - Sit SJt 
t 

p23t - S2tS3tFt p33t S3tFt 

and q are updated as for Section 2.3.3; see Appendix A2.2 for the 

initial setting of the grid. 

2.3.5.4: MA(2). The MA(2) model is an extension of the MA(l) model 

of Section 2.3.5.2: 

yt = lit + gt (2.121) 
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ut = vt + Öut - nlapt-1 - n2611 t-2 
(2.122) 

vt = vt-1 + 6vt (2.123) 

where ut is the (error-free) recording at time t, ut is the level at 

time t and nl, n2 are the moving average parameters, updated by a grid 

satisfying the stationarity conditions nl + n2 < 1, n2 - nl < 1, 

Intl < 1. Also, ct ti N(O, A-1RE), dut ti N(0, X 
1R 

and sut ' N(0, A-1RV). 

So, in DLM form, we have: 

u 
yt = [1 0] 

t+ 
Et (2.124) 

lvt 
ut 

=01 
ut-1 

+ 
Iauf - nlaut-1 - n2aut-2 + Svt 

(2.125) 
vt 01 vt-1 6vt 

i. e. 
Pt 10 1 

xt=H=[10], e= c= Nt Vt 01' 

(2.126) 

auf - n1dut-1 - n2aut-2 + Övt 

wt = 
avt 

and 2R+ 
niR + 

2R 
+RR 

R= Rey R_uu2uvV (2.127) 
RR 

J 

Vv 

If 

= 
t-1 

ýt-1 (2.128) 
v 

t-1 

and 

= 
Mt-1 "Vt-1 

t-1 (2.129) 
mv 

t-1 
Vt-1 

then, 

ft vt-1 
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et = yt vt-1 

P_ 

f11 
t 

P12t 

= 

[vt_i + Ru + T12RV + n2R + RV Vt-1 + RV 

At 
ýP12t p22t Vt-1 + RV Vt-1 + Rv 

Ft = Pllt + Re 

S_(: J2 t 

So 

and 

Plit 

Alit + RE 

P12t 

6p lit 
+R 

_ 
mt Iv' t-1 + Slt(yt - vt-1) 

in (2.130) 
Vt vt-1 + S2t(yt - vt-1) 

Mt MVt 
_ 

Alit -S2 itFt p12t - Sit S 
2t 

Ft 

2 (2.131) mvt Vt p12t - SitS2tFt p22t - S2tFt 

A and (nl, n2) are updated as for Section 2.3.3. 

2.3.5.5: ARMA(1,1). The models of Sections 2.3.5.1 and 2.3.5.2 

can be combined to produce the ARMA(l, l) model: 

yt = lit + Ct (2.132) 

lit - Vt = 0(ut-1 - Vt-1) + Öut - nd't-1 (2.133) 

vt = vt-1 + Övtf (2.134) 

where pt is the (error-free) recording at time t, Vt is the level at 

time t, ý is the autoregressive parameter and n is the moving aver- 

age parameter. Also, Et 't, N(O, ), -1RE), 
t 'L N(0, X-1Ru) and 

6Vt 'A, N(p, X-1RV) 
. 
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Continuing to adopt stationarity conditions in order to form 

the (4', n) grid, we have: 

ICI <1 and Inl < 1. 

In DLM form, 

u t 
yt = [1 0] + Et 

Vt 
(2.135) 

ut ý1- {t_ 
1 

auf - nsut-1 + dVt 

Vt01V+ dV 
(2.136) 

t-1 t 

i. e. 

xt =x = [i o], 
ut 41- 

o 
010 f=vt, c=01 

(2.137) 

{out - haut-i + dvt 
It = 

Svt 

and 2R 
+RR 

RE = Rc, Rý =uuVV (2.138) 
RR 

V 

If 

mt-1 = 
mt-1 

(2.139) 
V 
't-1 

and 

= 
Mt-1 mvt-1 

ýt-1 (2.140) 
MYt-1 Vt-1 

then 

ft = 4mt-1 + (1 - O)vt-1 

et = yt - Omt-1 G- O°t-l 
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_ 
Alit p12t 

pt 

P12t p22t 

2Mt-1 
+ 2ý(1 - ý)LiVt-1 + (1 - 

2Vt-1 

+R+fl2 R +Rv 

¢vt-1 + (1 - OVt-1 + RV 

Ft = pllt + RE 

I piit 

[s1t P11t + Re 

S= 
"-t S2t p12t 

pIit + Re 

Then 

4MVt-1 + (1 - ý)Vt-1 + Rv 

Vt-1 + RV 

m_ 
mt pmt-1 + (1 - 0)vt-1 + Sitet 

(2.141) 
ýt ýt-1 + S2tet 

and 2 
IMt t IPult - S1tFt P12t - SitS2tFt 

0-t 
MV VP-SS 2F tp- 

S2 F 
(2.142) 

tt 12t lt t 22t 2t t 

A and (6, n) are updated as for Section 2.3.3. (See Appendix A2.2 

for the initial grid setting. ) 

000 
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APPENDIX TWO 

INITIAL GRID SETTINGS 

A2.1 ONE-DIMENSIONAL GRIDS 

For those models where is present with dimension one (e. g. 

n for the MA(l) model) we must specify a range for the value of 

(e. g. (-1,1) for the MA(l) model). Once this range has been speci- 

fied, we must decide how many nodes are required on the grid. This 

choice is influenced by two factors, namely the desire to keep comp- 

utation to a minimum (obviously, the more nodes in the grid the 

greater the number of calculations involved) and the desire to ob- 

tain satisfactory accuracy (the greater. the number of nodes the more 

precise the parameter estimates available). 

Let NN be the number of nodes chosen. Then, for a non- 

informative prior, we could use a uniform distribution, so that: 

P(q_fi(n)), =NN' NN. 

In other situations we may have some prior idea of the locat- 

ion of 0 within the specified range. Let. the range for 0 be 

(OL'OU) and let the prior best estimate for 0 be OM located at the 

Mth node (assuming OL is the first node and OU is the NNth). Then 
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a simple way of incorporating this knowledge, without placing too 

much confidence in ýM, is to set up the following triangular dist- 

ribution: 

P(o _ 
(i)) 

=2 
(1 - 1) 

M 
(NN - 1) (M - 1)' 

=2 
(NN - i) 

i=M+1, .., NN. 
(NN - 1) (NN - M) 

A2.2 TWO-DIMENSIONAL GRIDS 

(a) Square Grids. In those models where q has two dimens- 

ions it will be a straighforward matter to set up a uniform distri- 

bution when the restrictions on 4 are purely modular, e. g. 

loll < a, I02I < b. In this case a square grid results. 

If the number of nodes in the direction of 01 is Ni, and in 

the direction of 02 is N2 (so that NN = Ni x N2), then: 

P«1 = 
(nl) 

and h= ý2n2)) = NN , Vnl = 1, ..., Ni; 

Vn2 = 1, ..., N2 

with 

P(Ol = 0(nl)) = N1 , Vnl = 1, ..., Ni 

and 

_ 
2) 

__ 
1 

Vn2 = 1, ..., N2 p(02 ' ý2 
(n) 

N2 ' 

so that a uniform distribution results for both ýl and ý2. 

(b) Triangular Grids. For the AR(2) and MTA(2) models extra 

restrictions on 0 result in a triangular grid. In this case a 
P. 

uniform distribution in two dimensions results in a triangular 

distribution along each of the individual axes. 
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Clearly, for each of these situations, if we have precise 

prior knowledge about the location of it can be incorporated 

very easily, e. g. if it is known that ýl = 0.8 (at node nj, say) 

and ý2 = -0.6 (at node nk), then we could set 

(ni) (n2) 
P01 = ý1 and ý2 = ý2 )=1, if nl = nj and -n2 = nk 

= 0, otherwise. 

000 
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CHAPTER THREE 

MODELLING DISCONTINUITIES 

3.1 INTRODUCTION TO MULTI-PROCESS MODELS 

3.1.1 INTRODUCTORY REMARKS 

Harrison and Stevens (1976) showed that by a simple 

extension of the dynamic linear model framework, described in the 

previous chapter, we can also model time series discontinuities. 

The idea of multi-process models was introduced, whereby it was 

considered that any of a number of models could obtain at a partic- 

ular timepoint. Specifically, they define two classes: one where 

a unique model obtains at all timepoints, the model being a choice 

from a discrete set of alternative models; and one where the model 

chosen need not be unique for all timepoints, but, in fact, can 

change from one recursion to another. 

For the remainder of this thesis we restrict our attention 

to the latter case of multi-process models, since they facilitate 

the handling of changepoints in a time series as well as providing 
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the means for changepoint detection (Smith and West 1983, Trimble 

et al. 1983). 

Multi-process modelling permits the entire model to change 

between time points; however, the accommodation of innovations 

is managed by manipulation of the observation and system variances, 

Re and Fes, without altering the underlying model structure, defin- 

ed by the system matrix, G. This involves the setting up of a, 

so-called, multistate structure for the variances. 

Let J be the number of models (states) which could obtain 

at any time t. Then the : multistate structure is described by 

{Mtj), pöj); j=1, ..., J}, where: M(J) means that model j 

obtains at time t and pöj) is the probability that model j obtains. 

It has been assumed here that the probability of a partic- 

ular model obtaining at time t is independent of the previous 

time series history, i. e. it does not depend upon the model which 

obtained at the previous timepoint; this assumption is relaxed 

in Chapter 5. 

Before we discuss the mechanics of time series monitoring 

by means of the multistate dynamic linear model, we shall briefly 

review previous literature related to the monitoring of time- 

related observations and to the problem of changepoint determinat- 

ion. 

3.1.2 BACKGROUND TO MONITORING TECHNIQUES 

Time series arise in a great many fields of applicat- 

ion and so it is not surprising that developments in the area of 

time series monitoring have originated in a variety of contexts. 

Early contributions sprung from the field of control engine- 

ering where one of the most influential contributions was that of 
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Kalman (1960,1961), who developed general results for filtering 

and prediction problems with the aim of achieving optimum control 

(resulting in the, so-called, Kalman Filter). At around the same 

time, results on optimal control policies, involving optimal para- 

meter estimates, were published by Joseph and Tou (1961). There- 

after followed a succession of papers in related areas, including: 

control theory (Filippov 1962, Markus and Lee 1962, Zadeh and Desoer 

1963, McGill 1965), navigation, guidance and missile tracking 

(Schmidt 1966, Sorenson 1966). The Kalman Filter and associated 

methodology mainly appeared in the control theory literature, 

although some statisticians also made early contributions (see, 

for example, Box and Jenkins 1962). 

Alongside the techniques for optimal control, came methods 

for forecasting from observed time series, mainly arising from 

the work of economists (see, for example, Winters 1960, Brown 1963). 

This work continued throughout the following two decades (e. g. 

Kirby 1967, Crane and Crotty 1967, Wheelwright and Makridakis 1973) 

and, again, statisticians played an active part (e. g. Cox 1961, 

Box and Jenkins 1970) along with operational researchers (e. g. 

Trigg 1964, Trigg and Leach 1967). The (1967) paper of Trigg and 

Leach deals with subject matter which is much closer to the kind 

of situation in which we are interested: that of automatic respons- 

es to out-of-control signals. 

In their paper, Trigg and Leach treat the traditional fore- 

cast system smoothing constant (see, for example, Brown 1963) as 

if it were a parameter, and control its value automatically by 

equating it to the error-tracking signal (see,, for example, 

Montgomery and Johnson 1976 for an account of tracking signals). 



- 54 - 

When the system is 'out-of-control' (i. e. the error tracking 

signal is 'large') the smoothing constant is increased, thereby 

increasing the weighting given to more recent data, in order to 

facilitate rapid adjustment to the change in time series pattern. 

This method of tracking, and associated techniques, usually comes 

under the heading of adaptive control, and represents a way of 

adjusting to changes in time series rather than detecting these 

changes. 

Other statistical approaches have also been made to model 

changepoint phenomena in time series. In (1965) Box and Tiao 

investigated level changes in time series represented by ARIMA 

models, and extended some of these ideas in their (1975) paper. 

It was assumed, retrospectively, that the timepoint at which the 

single possible level change had occurred was known, but that the 

magnitude of the change was unknown and, therefore, needed to be 

estimated. This amounts to the assumption that a known intervent- 

ion has occurred, resulting in a possible change of unknown size. 

This assumption was relaxed by Smith (1977) who employed similar 

models, but without specifying the timepoint at which a change 

may have occurred. Instead, a prior distribution for the time- 

point of change was selected and then updated, using Bayes theorem, 

into the corresponding posterior. The mode, say,. of this poster- 

ior distribution could then be taken as the timepoint at which a 

level change was most likely to have happened. Clearly, once a 

level change has been located in a series (if one exists at all), 

the series can be split into two at the changepoint and the process 

repeated on the two 'halves', in order to provide a pragmatic pro- 

cedure for finding further level changes. 
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Of course, a change in process level is not the only time 

series innovation in which we are interested. Other literature 

of interest has focussed on detecting changes in the slope of a 

straight line, from the work of Bacon and Watts (1971) through 

to the paper by Smith and Cook (1980); or has been concerned 

with detecting changes in regression models (see, for example, 

Ferreira 1975, Brown, Durbin and Evans 1975) or with the problem 

of detecting changes in linear models in general (see, for example, 

Chin Choy and Broemeling 1980, Holbert 1982, Booth and Smith 1982). 

There have been many attempts to develop techniques for the 

accommodation of outliers (see, for example, Dixon 1953, Box and 

Tiao 1968, Abraham and Box 1978). Although relatively few of 

these have been concerned with outliers in time-related sequences 

of observations, the work of Fox (1972) and of Abraham and Box 

(1979) is relevant. A corner of the literature has also touched 

upon the problem of detecting a change in the variance of a time 

series model (Wichern, Miller and Hsu 1976, Hsu 1979, Diaz 1982). 

Much of the work referenced thus far has been concerned 

with the retrospective identification of time series discontinuit- 

ies. We now turn our attention to procedures for the prospective, 

or 'on-line', detection of changepoints. 

Cumulative Sum Techniques. One of the best known methods for the 

prospective detection of a shift in the level of a time series is 

the cumulative sum (CUSUM) technique, dating from the work of Page 

(1954), and described in detail by van Dobben de Bruyn (1968). 

The basic idea of the CUSUM is very simple. Let 

yl'y2' **" Yi' ... be an observed time series which has a 'target' 

mean of T (often derived as the mean of a control sample). Then, 
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rather than simply plotting the values of yt against time t, the 

CUSUM plots the values of Et against time, where 

Ei = (yl - T) + (y2 - T) + ... + (y1 - T). (3.1) 

If the time series is stable (i. e. is not subject to a shift in 

mean) the values of yt will fluctuate around the target value T, 

and so the values of Et will fluctuate around zero. However, a 

change in the mean level of the observation series will result in 

a slope change away from zero in the CUSUM sequence. The magni- 

tude of the slope is equal to the level change in-the observation 

series. 

As far as process control is concerned, a 'mask' is usually 

adopted such that if the Et series drifts beyond one of the bound- 

aries, the process is deemed to be out-of-control (see, for example, 

Edwards 1980 for the mechanics of this procedure). However, this 

highlights an important drawback to the CUSUM procedure in the 

medical monitoring context, namely that, unless one is willing to 

tolerate a large number of false alarms, the delay between the 

timepoint at which the process becomes unstable and the timepoint 

at which the CUSUM mask boundary has been crossed may be too great. 

Hinkley (1971) has produced some theoretical results concerning 

inferences about the timepoint of change using the CUSUM technique 

and further results have been obtained by Johnson and Bagshaw (1974), 

Bagshaw and Johnson (1977) and Ezzet (1985). 

Another major problem with the CUSUM method is that it is 

designed, primarily, to capture changes in the level of a time 

series onl ; it is not designed to distinguish between several 

types of discontinuity. 
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However, in (1979)"Stoodley and Mirnia adopted a backward CUSU?; 

scheme (as in Harrison and Davies 1964), in conjunction with a 

modified form of the linear growth model, in order to detect trans- 

ients, changes in level and changes in the slope of a time series. 

However, their choice of limits for the CUSUM component and their 

definitions of changepoint type were somewhat arbitrary and, as 

they pointed out, lackingin 'theoretical foundation'. It is, 

therefore, very difficult to extend these methods so that they 

apply to other time series models than linear growth without retain- 

ing the ad-hoc threshold definitions. 

In fact Ameen and Harrison (1983) did extend the methods 

used by Stoodley and Mirnia (1979), so that a backward CUSUM scheme 

could be used to monitor the forecasts of a time series represent- 

ed by a general dynamic linear model. A specific dynamic linear 

model was chosen, which described the 'stable state' of the series 

(in the terminology of Section 3.1), and this model was used to 

produce one-step-ahead forecasts and their corresponding forecast 

errors. The errors were then monitored by the backward CUSUM 

method, as in Harrison and Davies (1964). If a change is signal- 

led by the CUSUM scheme then a set of multi-process models is 

applied to the ensuing data (i. e. a multistate structure is employ- 

ed), until such time as the posterior probability of a return to 

the stable state is greater than a particular threshold, at which 

point the single stable-state model, with updated. parameters, is 

re-introduced, and the CUSUM scheme reset. In this approach, the 

type of changepoint can be determined by the multistate compon- 

ent of the system, whereas the timing of change is determined by 

the CUSUM component. 
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This method of monitoring and forecasting is, in fact, a 

modification of the earlier work of Harrison and Stevens (1976), 

in which they suggested the imposition of a multistate structure 

onto the dynamic linear model framework, discussed in detail in 

Chapter 2 of this thesis. However, if the concept of discounting 

is introduced (Ameen and Harrison 1982) as a replacement for the 

updating of the covariance matrix of the normal dynamic linear 

model (see Section 2.1.2), this complicates the use of multi- 

process models for modelling discontinuities since, as mentioned 

earlier, the discount parameters do not have a simple interpret- 

ation with regards to changepoints. We require, therefore, the 

introduction of another monitoring technique alongside the dynam- 

ic linear model structure when the discounting principle is used; 

Ameen and Harrison (1983) adopt the CUSUM scheme and claim that 

this monitoring system is more efficient than the original multi- 

process system, since the phases where a single model is applied 

to the data (i. e. in periods of stability) result in fewer calc- 

ulations. This is, of course, true although the decrease in 

computation may not be great, since the competing models (which 

are introduced when the CUSUM component registers an out-of-control 

signal) need to be constantly updated, albeit marginally, even 

when the system has reverted to its stable state. It can also 

be seen that although the methods of Ameen and Harrison (1983) 

avoid the ad-hoc definitions of changepoint-type used by Stoodley 

and Mirnia (1979), they do rely on the introduction of an arbit- 

rary threshold in order to determine when the return to stability 

has occurred. They also rely on the usual CUSUM 'cut-off' rules 

for the initial detection of instability, therefore possibly 
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resulting in an inadmissable delay in the detection of the onset 

of instability. 

Let us now turn our attention to the addition of a multi- 

state structure to the normal dynamic linear model framework, as 

described by Harrison and Stevens (1976). By retaining the error- 

covariance-matrix formulation, as opposed to the discount-matrix 

formulation, we may easily incorporate models for the detection 

of the onset of instability without having to call on alternative 

monitoring schemes. 

Multistate ModeZZing. Define the multistate structure as in 

Section 3.1.1. Then the dynamic linear model given by (2.1) and 

(2.2) can be extended to: 

cý) yt = Htet + ýt 
(ý) et = cet_1 +t 01. ý 

for j=1, ..., J, where 

E«) = var(E(3)) _ x-1R(j) 
,,. t .t .C 

W(3) = var(w(»)) _ ý-1R(J) 
At At �w 

so that (3.2) and (3.3) represent J possible models, 

differing only through the elements of R£ and R It will be 

shown in Section 3.3 how particular choices of R and R can result 
«E n, W 

in a variety of changepoint models. 

As well as the assumptions given by (2.4), it will also be 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

assumed here (as noted earlier) that: 
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(MtU)JH) = Poi)' 3=1, ..., J, 't (3.6) 

where H is the process history prior to time t. We may now re- 

write the Kalman Filter recursion, given in (2.12) to (2.22), 

as follows (it being understood throughout that i, j run through 

the range 1, ..., J): 

8o ti N(mo1Xý1Co) 

Equation (2.15) is replaced by: 

(3.7) 

P(et-1IDt_i, X, Mti1 ) ti N(mtil, A-1Ct1 ) (3.8) 

Equation (2.16) is replaced by: 

P(XI Dt-1'Mtil) ti G(int-1'irtii) (3.9) 

where, again, U ti G((X, ß) means that U has a gamma distribution. 

We assume that the initialization of (3.9) is given by (2.18). 

Upon receipt of Mt, we can update (3.8) and (3.9) to give: 

P(6 l Dt, X, M(i)'m(i)) ti N(m(i3), x-1c(ii)) (3.10) 

and 

P(XIDt, Mtii, M 

where m('J) and C(tii) are 

m(ij) = GmM 
rt -- t-1 

(i)) 
ti G(jnt, jrtij)) (3.11) 

given by the Kalman Filter recursions: 

+ Stij)e(1) (3.12) 
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S(iý)F(ii)(S(ii))T 
ýt rt . mot ýt nt 

and where, by standard Bayesian conjugate analysis, nt and rtij) 

are given by: 

(3.13) 

nt = nt-1 +1 (3.14) 

(ii) 
= r(1) + (e(i))T(F(ij))-le(i) (3.15) 

t-1 "t t wt 

with 

H Gm 
«t t,. -t-l 

e(i) 
«t - ßßi) -t ftt 

P(iJ) = GC(i)GT + 
(j) 

rt ""t-l- ý-tA 

F(ii) 
Nt 

=H P(13)HT + RQ) 
` t"t rt NE 

S(ij) = p(i3)HT(F(iJ))-1 
d" t rt Nt A. t 

It should be clear that whereas (3.8) and (3.9) describe J 

models, (3.10) and (3.11) describe J2 models. In other words, each 

iteration produces a J-fold increase in the number of models under 

consideration and, plainly, this will soon explode even when the 

number of states, J, is small: e. g. when J=2 there would be 

over 1000 models by the time t= 10! 

We will therefore have to approximate the forms of (3.10) 

and (3.11), so that they resemble (3.8) and (3.9), in order to 

avoid this problem. The next section describes a pragmatically 

successful algorithm for the general class of multistate dynamic 

linear models. 

(3.16) 
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3.2 RECURSIVE ESTIMATION 

As in Chapter 2, we shall restrict ourselves, for ease of 

exposition, to a univariate observation yt. 

From Equations (3.2), (3.3) and (3.16) we have: 

P(YtIDt-1'X'Mti1'Mtý)) ti N(fti)'A-1Ftiý)) (3.17) 

so that 

P(Y ID 
, M(i), M(J)) = 

f°P(YtD 

, M(i), M(ý)X)P(XID ýM(i), M(ý))dX t ýt-1 t-1 t ýt-1 t ^-t-1 t-1 t 

_tIDt-1'Mtil'Mt3)+a)P(>, IDt-1ý11it11)da 
Ip(y 

and, following the arguments of Section 2.2, we can use (3.17) and 

(3.9) to show that: 

Z(i1) = P(Y ýD M(i)M(3)) (F(ib)i(r(i))int-1(r(iý)-int t 0-t-11 t1tt t-1 t 

If we let 

p(i) = P(M(3)ID ) 
tt nt 

and 

P(ii) = P(M(i), M(J)ID ) t t-1 t 't 

Then ., using (3.19), 

J 

P(YtIDt-1) 
iIl 

P(Ytlot-1, Mtii)P(MLiiI Dt-1) 

JJ 
=GI P(YtIDt-1'Mtil'MtQ))P(M 

1=1 j=1 tQ)IDt-1'Mtil)lPtil 

(3.18) 

(3.19) 

(3.20) 

Using (3.6) we see that 
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P(YtIDt-l) = 
JJ 

(i3) (j) (i) 

iLl jLl 
Zt po pt-i (3.21) 

From Equation (3.20), 

P(ii) = P(M(i)'MQ)ID ) 
t t-1 t -t 

= ID (i)(3)(i)(J) 
P(Y ID )/P(Y ) 

t ýt-1, 
M 

t-1 ,mt )P(M 
t-1 'M t 06 t-1 t 

Dt-1 

(using Bayes theorem) 

= Z(ij)P(M(3)ID QMM )P(m 
M ID )/P(Y !D 

tt tit-1 t-1 t-1 r-t-1 t rt-1 

so that 

(ii) 
_ z(ii) 

(j) (i) 
D pt t po pt-lýp(ytýf. t-1) 

(using Equations (3.6) and (3.19)), where Z('J) is given by (3.18) 

and where the denominator is given by (3.21). 

Completing the Recursion 

1. CoZZapsing Procedures: In order to close the recursion, 

we need to approximate (3.10) and (3.11) so that they take the 

forms of (3.8) and (3.9) respectively. The normal approximation 

used is that proposed by Harrison and Stevens (1976); West (1982) 

pointed out that the 'collapsing' mixture employed was, in fact, 

that which minimized the well-known Kullback-Leibler divergence, 

and the gamma approximation we use is also that which minimizes the 

Kullback-Leibler divergence (see West (1982) for details). We 

therefore make the following assumptions: 

(3.22) 
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where 

and 

We approximate the J2 normal distributions: 

N(m(ij), X- 
1c(i3)), 

i=1, ..., J, j=1, ..., J (3.23) 
f- t &t 

by the J mixtures: N(m(j), a rtj) j=1, ..., J 
J., t 

m(j) _c (p(ii)/p(j))m(11) (3.24) 
rt i=G1 

tt rt 

c(J) =c (p(ii)/p(3)){C(ij) + (m(i3) _ m(i)) 
Nt iL_1 

tt /"t t rt 

x (mti3) MtJ))T} (3.25) 

We approximate the J2 gamma distributions: G(Int, jrtij) 

J, j=1, ..., J by the J mixtures: 

G(Int, jrtj))º j=1, ..., J, (3.26) 

where 

(r(j))-1 _C (p(i. 
i)/p(i))(r(ii))-1 (3.27) 

t 
i==1 

ttt 

2. Updating Procedures: We have now shown how to update 

the parameter estimates and covariances from (3.8) and (3.9) to 

(3.23) and (3.26) having received the latest observation, yt. To 

complete the process we must specify the form of p(J). t 

Now 

P(i) = P(M(»)ID ) 
tt rt 

= P(YtIDt-1'Mti))P(Mti)IDt-1)/P(YtIDt-1) 

(using Bayes theorem) 

JM (3) (i) (j) (j) 
P(YtIDt-11Mt-1, Mt )P<Mt-1I't-1'Mt )]'Po 

P(Yt Dt-1) 
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(using Equation (3.6)), so that 

p(1) = Z(ii)p(i)p(j)/P(Y ID ) (3.28) 
t 

1L_1 
t t-1 ot rt-1 

where Z('J) is given by (3.18) and where the denominator is given 

by (3.21). 

State Probabilities 

As a by-product of the parameter-updating process, we have 

calculated the quantities ptj), j=1, ..., J. It can easily be 

seen that p(J) = p(Mtj)IDt) denotes the probability that state j 

obtains at time t, given all the data up to and including time 

t. So that, for instance, if state j represents the change in 

level model (see Section 3.3) p(J) is the probability of a change 

in level at time t, and therefore can be used to indicate the tim- 

ing of the changepoint. However, when some change in pattern 

occurs at time t, it may not be readily apparent which particular 

one of several alternative types of change of pattern has obtain- 

ed until further information is available., It may be essential, 

therefore, to be able to update our beliefs about the state 

obtaining. at time t having received observations y t+l, yt+2' .. " 

in addition to those up to time t. 

Let 

0(i) = p(M(i)ID ) 
t t-1 r. t 

and 

T(h) = p(M(h)ID ) 
t t-2 Nt 

(3.29) 

(3.30) 

so that Otis denotes the one-step-back probability of state i 
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obtaining at time t-1, and Tth) denotes the two-steps-back prob- 

ability of state h obtaining at time t-2. For example, if h is 

the level change model, Týhý denotes the probability of a level 

change at time t-2 given all the data up to and including time 

t-2 and the additional observations yt-1 and yt. 

We use Bayes theorem in order to calculate the quantities in 

(3.29) and (3.30), so that: 

0 
(i) 

= p(M(i)ID ) 
t t-1 rt 

= P(YtIDt-11m 
M 
t-1 t 

)P(mM l 
t-1)/P(YtIDt-1) 

_ 

Jc 
(ii) (. 1) (1) 

Zt PO Pt-1/P(YtiDt-i) (3.31) 
j=1 

with ZtiJ) specified by (3.18) and the denominator by (3.21). 

Similarly, 

I 
T(h) P(M(h)ID ) 

t t-2 jt 

= P(YtIDt_,, M(h2)P(Mth)ID 
-1)/P(YtIDt-1) 

JC 
(h) (i) (3) (h) 

L P(YtIDt-1'Mt-2, Mt )Po Ot-1/P(YtIDt-1 
j=1 

JJ 
(ij) (i) 

(h) (J) (i) (h) 
LLz "P(Mt-1IDt-l, 14-214t )-p 

o . 0t-1 
j=1 i=1 

P(Yt I- 
JJ 

(ij) (hi) (i) JC 
(hi) (i) (j) (h) 

_J 
iLlZt 

ýZt-1 po ýiLlZt-1 Po 'Po 'fit-1 

- (3.32) 
P(YtL t-1) 

where Z('J) is specified by (3.18), Z(hi) has been calculated at t t-1 
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time t-1 from (3.18), 0(h) is given by (3.31) and the denominat- 

or is given by (3.21). 

Summary of Iteration 

(i) Using (3.6), (3.8) and (3.9) as the starting point, 

calculate (3.12), (3.13), (3.14) and (3.15) via the quant- 

ities in (3.16); 

(ii) Use (3.14), (3.15) and (3.16) to calculate (3.18); 

(iii) Use (3.18) to calculate (3.21); 

(iv) Use (3.18) and (3.21) to calculate (3.22), (3.28), 

(3.31) and (3.32); 

(v) Use (3.22) and (3.28) along with (3.12), (3.13), 

(3.14) and (3.15) to calculate (3.24), (3.25) and (3.27); 

(vi) Use (3.6), (3.23) and (3.26) as the starting point 

for the next iteration. 

Nuisance Parameters 

If the model depends upon one or more nuisance parameters, 

we adopt the procedure outlined in Chapter 2 and specify a 

probability distribution for over a suitably chosen discrete 

grid (see Appendix 2 for initial conditions). 

We replace (3.8) and (3.9) by: 

P(et-llNt_�X, Mtii, ý) % N(mt-1 Nt-1 (3.33) 

and 

P(XID , m(i), ý) 'L G(3n , 
jr(i)) (3.34) 

/-t-1 t-1 r t-1 t-1 
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where m(i), 
(i) 

and r(i) now all depend on 4, so that if there 
rt-1 

9t-1 
t-1 

are NN nodes in the grid, (P, (3.33) and (3.34) represent NN pos- 

sible sible Normal-gamma distributions. 

It can be readily seen that: 

P(6 ID 
pX9M(i)'M(i), 

ý) b N(m(ii)9x-1C(ii)) (3.35) 
rt /. t t-1 tr tit ht 

and 

P(x1pt'Mti1, Aýtý), e) % G(Int. irtiý) (3.36) 

where m(id) C(if), n and r(id) are defined by (3.12), (3.13), 
rt rt tt 

(3.14), (3.15) and (3.16) for each node in $. 

Let 

p( IDt-1, M2 )= Ktil(ý) (3.37) 

and 

P(ýIDt, Mtil, Mtý)) = Ktiý)0) (3.38) 

Then, we replace (3.10) by: 

(i) (i) 
= p(A I (i) (i) (i)(3) 

p(At Dt'X, Mt-1, Mt )i 
Ä't 

NtX, Mt-1, Mt e)p(ý1D , 
X, M ,M t-1 t 

P(OtIUtoxpm 
l, 

M 
i) ý)K(i3)(ý) (3.39) 

(D tý 

where the first term in the summation is given by (3.35). In 

practice, (3.39) is a mixture of normals and we approximate by an 

N((ij)'A-1C(ij)) distribution, where 

m(ij) _ m(id)( )"K(iý)( ) 
#**. 

t 
(D f.. 

t 
r 

and 

(3.40) 

(i i) (ii) (ii) (ii) (ii) (ij) T (ij) c= i[c (e) + (ht () -m) Nmt (2) - mt )] Kt (N) 

` (3.41) 
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Similarly, we replace (3.11) by: 

PAID , M(i), M(i)) _i PAID , MU)ýM(3), q)K(13)(q) (3.42) 
I-t t-l t 

(D 
Nt t-l t ^. t 

F 

where the first term in the summation is given by (3.36). Since 

(3.42) is a mixture of gamma distributions we approximate it by 

(r(id))-1 _C (r(iý)(ý))-1K(iý)(ý). (3.43) 
t LP tt,. 

r 

We now replace (3.18) by: 

Ztiý) ()= P(Yt IDt-l, t: 
(i) 

M(J) 

(F(ij)) (r 
M 

)int-l(r(iJ))-int (3.44) t t-1 t 

where F('J), r( and r('J) now depend on d. 
t t-1 t 

In order to calculate (3.40), (3.41) and (3.43) we need to 

'J)(ý), 
where, using Bayes theorem, derive K( 

t f- 

Kti3)(4) = p(elDt, Mti), Mtj)) 

P(YtIDM 
M 

Mti)' )p(ýIDt-1'M('), m(i)) 
t-1 t 

j P(Y ID 
, M(i)'ME3), ý)P(elD 

, MEi)ýM(3)) tt,., ,. Nt-L t-1 t 
r 

Z(1 
J)( )K(i W t t-l, 

_ 
C ýii)(ý)Kti (3.45) i(ý) 

$L 

where Z(1J)(4) is given by (3.44). 
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Updating the Probabilities: 

1. P(lJ) = P(M<i), M(J)ID 
t t-1 t 0% t 

= P(YtID , M(i), M(3))P(! d(i), M(j)ID )/P(Y ID ) 
N t-1 t-1 t t-l t Ft-l t 

rtýl 

Z(ii) (A)KG) q) . P(3)P(i)/P(YtID ) (3.46) 
tr t-1 .-o t-1 rt-1 

where Z(ij)Q) is given by (3.44). 

2. p(i) = P(Mtj)IDt) 

J 
(i) (3) (i) Q) 

P(YtIDt-1'Mt-lýMt )Pt-1Po /P(YtIDt-1) 
1=1 

(from Equation (3.28)) 

__ 
Jc 

c (ii) (i) (i) (3) 
GL Zt ( )Kt-1(ý)-Pt-1Pa /P(YtIDt-1) (3.47) 

i=1 $ 

where Zti3)(ý) is given by (3.44). 

3.0M t= p(MtiiIDt) 

J (i) (j) (i) (J) 
_ P(YtI-t-1'Mt-11Mt )Pt-1Po /P(Ytlr t-1) 3=ý 

(from Equation (3.31)) 

= 

Jc 
C (i3) (i) (i) (3) 

GL Zt ()Kt-1(ýý"pt-lpo ýP(YtIDt-1) (3.48) 

j=l $ r 

where Z(ij)(0) is given by (3.44). 
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4. T( 
h) 

= p(Mth)IDt) t -2 o- 

JJ (h) (i) (J)) 
_{GG P(YtIDt-1'Mt-2'Mt-l, btt 

j=1 i=1 

(h) (i) (i) 
P(yt-iIDt-2'Mt-2, Mt-i)Po (j) 

XJ 'po 0(h)1 /P(y 
t-1) 

p(Y lD 
, M(h) 

(1))p(i) 
t-1 rt-2 t-2 t-1 0 

A=1 

(from Equation (3.32)) 

JJ 
{GG [L zti3)Ki(hi)()J 

j=1 i=1 

z' (»Kth2(4)IP 
i) o 

Q) (h) 

Z(hi)(ý)K(h)(ý)p 
M t-1 t olt-1 

i=1 
t-1 ,. t-2 -- o 

(hi) (h) JJ 
(i3) 

Zt-1 ()Kt-2(ý) 
{J=1 

i=l ýlZt 
)"c 

Z(hi)(ý)K(h)(»), L t-1 L t-2 

[L L(hi)(w 
(h)(oP(1)] 

t-1 i t-2 ro 
Xp 

(D 
0(h)}/P(YtIDt-1) (3.49) 

LL Zthl, ( j)Kth2 öiý 0 t-1 
( )P 

i=1 ý 

(using Equation (3.45)), where Ztij)(ý) is given by (3.44), Z 
(hi) 

(4) 
t-I 

has been calculated at time t-1 from (3.44), and where 0(h) has 

been calculated at time t-1 from (3.48). 
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5. Ký") (c) = P(4IDtjMJ)) 
0% t 

JM (j) (i) (j) 
_ p(4ID ,MM )p(M ID 

,M) 
i=1 ^ ^t t-11 t t-1 ^t t 

- 

Ztii) (O)KM 0) 

i=1 p(Y 
ID 

, M(i), M(j) 
t *%t-1 t-1 t 

(using Bayes theorem) 

P(Y ID (1) (J) (1) 
t.. t-i'Mt-1'Mt 

)Pt-1 

p(yIDt i M(3)) 
te- -1 t 

Z(iJ)(ý)K(i)(e)p(i) 

GL Z(ig) (e)K(i) Mp(i) 
i=1 t ^' t-1 ... t-1 

where Z(1J)(c) is given by (3.44 

Summary of Iteration in the Presence of Nuisance Parameters, 0 

(i) Using (3.6), (3.33), (3.34) and (3.37) as the start- 

ing point, calculate (3.12), (3.13), (3.14) and (3.15) 

via the quantities in (3.16) for each node in '; 

(ii) Use (3.14), (3.15) and (3.16) to calculate (3.44) 

for each node in 4; 

(iii) Use (3.37) and (3.44) to calculate (3.45), (3.46), 

(3.47), (3.48), (3.49) and (3.50); 

(iv) Use (3.45) along with (3.12), (3.13), (3.14) and 

(3.15) to calculate (3.40), (3.41) and (3.43); 

(v) Use (3.40), (3.41), (3.43), (3.46) and (3.47) to 

(3.50) 

calculate (3.24), (3.25) and (3.27); 
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(vi) Use (3.6), (3.35) and (3.36) as the starting point 

for the next iteration. 

3.3 THE CHANGEPOINT MODELS 

In this section we shall examine the implications of attach- 

ing a multistate structure to the models described in Section 2.3. 

As has been mentioned previously, changepoint models can be intro- 

duced through the adjustment of observation and system variances, 

without having to change the underlying model structure described 

by G. 

3.3.1 LINEAR GROWTH 

Consider the linear growth model of Section 2.3.1 with 

a multistate structure imposed according to (3.2) and (3.3): 

Yt-ut+Et(3) 
(j) 

ut - ut-1 + ßt + auf 

+c dßi) ßt - ßt-i 

with 

E(3) ti N(O, A-1R(i)) 

duty) ti N(0, X-1R Üý)) 

dß(J) ti N(O, X-1R(3)) 

We have four simple states (i. e. J= 4): 

(i) j=1: 
e=1, Rül) = 0, Rß1) = 0. In this case 

6p (J) 
and Ößtj) are identically zero, and therefore lit and ßt will 

(3.51) 

(3.52) 

(3.53) 

(3.54) 



- 74 - 

not be perturbed, which represents the system in the steady state. 

(ii) If dutj) were non-zero only at time t, this would 

affect 11 
t and, since ut is related to ut+l according to (3.52), 

ut+l' ut+2 and so on would also be influenced. Therefore, a single 

non-zero autj) results in a change in the level of the measure- 

ments, y, beginning at time t. This can be achieved by setting: 

R(2) = 1, R(t) = positive, R(2) = 0. 

(iii) If Sß(j) were non-zero only at time t, this would 

affect ßt and, since ßtis related to ßt+l according to (3.53), 

t+l' 
ßt+2 and so on would also be influenced. Also, according 

to (3.52), ut+l will be influenced by $t+l and ut (which is af- 

fected by ßt). In other words, a single non-zero aßtj) results 

in an incremental effect on the level, u, and therefore produces 

a change in the slope of the measurements, y, beginning at time 

t. This can be achieved by setting: R(3) = 1, R(3) = 0, 

Rß3) = positive. 

(i v) If C(J) were very large only at time t, this would 

affect yt according to (3.51) but not future values of y, since 

yt+l is not directly related to yt. Therefore, a single large 

C(J) results in a transient observation at time t. This can be 

achieved by setting RC 
(4) 

= large positive, R14) = 0, Rß 
4) 

= 0. 

Clearly, it would be possible to extend the multistate 

structure by including simple-state combinations in the overall 

model, e. g. with RE 
5) 

= 1, R(5) = positive, Rß 
5) 

= positive we 

may model the situation where there is a concurrent level change 

and slope change (see Figure 3.1). 



Y 

time 
Level Change + Slope Change 
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FIGURE 3.1 
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For the remainder of this thesis, however, we restrict our- 

selves to a single changepoint type at any one timepoint. See 

Figure 3.2 for a pictorial display of the linear growth multi- 

state structure where, for clarity of presentation, it is assumed 

that Ct =0 Vt (where 

ID )) x-1Ct = var( 
Ißt) 

t 

Ißt 

NOTE: It can be seen from Figure 3.2 that the current observation, 

yt (circled in diagram), may not be sufficient to discriminate 

between changepoint-types, and that it is necessary to receive 

yt+l in order to be able to attempt to identify a specific change 

in pattern. 

3.3.2 QUADRATIC GROWTH 

For the multistate quadratic growth model: 

yt = Pt + e(3) (3.55) 

Pt = ut-1 + ßt + du J) (3.56) 

at = ßt-1 + Yt + dßtJ) (3.57) 

Yt - Yt-1 + 6Y(J) (3.58) 

where 

j) 
ti N(0, X-1 R(J) 

6p (j) ti N(0, X-1 Rüg)) 

1 (3.59) 
6a (j) 

ti N(0, ß-R(i) ( 

6y Q) 
ti N(O, X-1RU)) 

the four error terms combine with the steady-state model to prod- 

uce five simple states, i. e. J=S. 



(a) 

(c) 

Y 

(a) 

t 

Y 

(c) 

time 

y 

(b) 

Y 

(d) 

1 : time 
t 

j=1: steady state; (b) j=2: 

j=3: slope change, dßt > 0; (d) 

FIGURE 3.2 

t me 

time 
t 

level change, dut > 0; 

j=4: transient, Et large 



- 76 - 

Pictorially, the multistate structure is shown in Figure 

3.3, with Ct =0 for clarity. 

3.3.3 SINUSOIDAL MODEL 

yt = ut + ctat + E: 
Q) 

(3.60) 

pt = ut-1 + duti) (3.61) 

at = at-1 + data) (3.62) 

where 

ct = cos(2iüt + ý) 

and 

E(3) % N(0, X-1REj)) 

54 j) ti N(0, X-1R üý)) (3.63) 

data) % N(O, A-1RC») 

This multistate structure is demonstrated in Figure 3.4, assum- 

ing Ct =0 for clarity. 

Note that there are nuisance parameters in this model since 

ct = cos(27rWt + d) with w (the frequency) and t (the phase) treat- 

ed as nuisance parameters. The dynamic linear model specified 

above does not consider sudden changes in w or p. If this sit- 

uation were likely to arise we would need to formulate an altern- 

ative dynamic linear model in order to handle it. However, 

for many medical time series w is fairly rigid, since the rhythmic 

frequency is likely to be reasonably stable (either a twenty-hour- 

hour rhythm, seven-day rhythm, a twenty-eight-day cycle, etc. ); 

is also unlikely to change rapidly, e. g. in rheumatoid arthritis, 

the time at which patients exhibit the most severe symptoms (usual- 

ly in the morning) has been shown to be fairly constant across 

individuals (Kowanko et al. 1982). 
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3.3.4 SINUSOIDAL MODEL WITH LINEAR GROWTH 

yt _ 'pt + Etat + 
ta) 

(j) 
ut -ut-+ßt+aut 

ß=ß-+ 6ß(3) t t1 t 
cý) at = at-1 + Sat 

where 

ýj) 
ti N(O, X-1RQ)) 

(J) 
'U N(O, X- R11(j) 

dß(i) ti N(O, X-1R(j)) 

da(j) ti N(O, X-1RQ)) 

The four error terms combine with the steady state to produce a 

five-state model (J = 5) as demonstrated by. Figure 3.5 with ýt =0 

for clarity. 

3.3.5 ARMA MODELS 

For the models presented in Section 2.3.5, the ARMA 

parameters are treated as nuisance parameters. We shall not 

therefore be concerned with sudden changes in these parameters, 

although, of course, the grid method of estimation described in 

Section 2.2 allows for the accommodation of gradual changes, by 

recursively -updating the distribution of upon receipt of suc- 

cessive observations. 

Our experience has been that for those medical situations 

thus encountered where an ARMA model is adequate, sudden changes 

in the ARMA parameters have no apparent physical interpretation. 

If, however, a situation arises where a change in an ARMA para- 

meter is seen to be important, one could specify an alternative 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 
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dynamic linear model along the lines of that described by Harrison 

and Stevens (1976), or one could use the techniques proposed by 

Ezzet and Smith (1985), based upon the score statistic, which may 

be more appropriate to this detection problem. 

3.3.5.1: AR(1). 

yt = lit + E(i) (3.69) 

ut - Vt = ý(ut-1 - Vt-1) + 6110) (3.70) 

Vt = Vt-1 + ÖVtQ) (3.71) 

where 

E(i) ti N(O, x-1R(i)) 

Öut1) % N(O, X-1R(i)) (3.72) 

6v (i) 
% N(O, X-1RV3)) 

The multistate structure is shown in Figure 3.6. Notice 

that the changepoint phenomenon arising from a large 6V(J) takes 

on a different appearance depending upon whether the autoregres- 

sive parameter, 4, is positive or negative; this type of discont- 

inuity is referred to as an 'impulse'. Figures 3.7 to 3.10 demon- 

strate this changing impulse characteristic for a variety of 

values in the range (-1,1), using simulated data with a change- 

point (impulse) occurring at time t= 50. 

3.3.5.2: MAN). 

yt = ut +C) (3.73) 

lit = ut + 15 
i) 

- n6li(i) (3.74) 

Vt = Vt_1 + dVt (3.75) 
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where 

E 
Q) 

ti N(O, X-1R(j)) 

6P(J) ti N(O, X IR(J)) 
(3.76) 

t 11 

6v (j) 
ti N(O, X-1Rv»)) 

The multistate structure is given in Figure 3.11 where, once 

more, the impulse is dependent upon the sign of n. Figures 3.12 

to 3.15 demonstrate this dependence, using simulated data with an 

impulse at time t= 48. 

3.3.5.3: AR(2). 

yt = ut + £ý3) (3.77) 

ut - Vt = 01(ut-1 - Vt-1) + 02(ut-2 - Vt-2) +6 
(i) (3.78) 

vt =v+ 
(3) 

(3.79) 
t-1 apt 

where 

c(j) ti N(0, A-1R(j)) 

öuti) ti N(0, X-1RuQ) (3.80) 

6V(J) ti N(0, A-1RVj)) 

The multistate, structure, using typical values of ý142 

is given in Figure 3.16; Figures 3.17 to 3.20 show the effect of 

changes in 01 and 02 on the impulse characteristic (changepoint 

at time t= 50). Note that for Figures 3.17 and 3.18, 

i+ 
4ý2 < 0, resulting in a damped sinusoidal autocorrelation 

function and pseudoperiodic patterns in the time series, whereas 
2 

for Figures 3,19 and 3.20, ý1 + 4ý2 >0 resulting in an autocorrel- 

ation function which is a mixture of damped exponentials (see Box 

and Jenkins (1970) for the derivation of this property). 
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3.3.5.4: MAi2). 

yt = ut + E(J) (3.81) 

Pt = Vt + butt) - nidutii - n2duth) (3.82) 

Vt = IV V 
t-1 + 6Vt (3.83) 

where 

E(i) ti N(0, X-1R(»)) 

öut1) ti N(O, X-1R(i)) (3.84) 

ÖVtý) ti N(0, A-1RV ») 

The multistate structure, using typical values of nl, n2, 

is shown in Figure 3.21; Figures 3.22 to 3.25 demonstrate the 

effect of changes in n1 and n2 on the impulse characteristic 

(with changepoint at time t= 48). 

3.3.5.5: ARMA(1,1). 

where 

yt = 'pt +E 
Q) 

(3.85) 

ut - vt = ý(ut-1 - vt-1) + 6110) - nSutii (3.86) 

Q) Vt = Vt-1 + 6vt (3.87) 

£(j) ti N(O, X-1Re3)) 

6p (J) 
'L N(O, a-1R(J)) (3.88) 

t 11 

6V(J) N(O, X-1RvQ)) 

The aultistate structure, using typical values of ý, n, is 

shown in Figure 3.26; Figures 3.27 to 3.30 show the effect of 

changes in ý and n on the impulse characteristic (with the change- 

point at time t= 49). 
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3.4 PERFORMANCE AND SENSITIVITY 

In this section we shall investigate the 'performance' of 

the models described in Chapters 2 and 3. To do this, we select 

three specific models for illustration; namely the linear growth 

model (of Sections 2.3.1 and 3.3.1), the sinusoidal model (of 

Sections 2.3.3 and 3.3.3) and the first order autoregressive model 

(of Sections 2.3.5.1 and 3.3.5.1). In each case performance is 

assessed on a simulated time series which, in its stable state, 

exhibits the behaviour associated with the model in question, 

though several simulated changepoints have been induced in each 

of the three series (see Appendices 3 for details). 

Measures of Performance 

Performance is assessed in two areas: 

(a) Event detection, 

(b) Estimation and forecasting. 

In each of these areas we consider two aspects: 

(a) Event detection: 

(i) magnitude of signal - how certain were we that 

a changepoint was observed? 

(ii) false alarms - how many times did signals occur 

when no changepoint was present? 

We use the one-step-back probabilities of a specific changepoint- 

type (as defined by Equations (3.31) or (3.48)) as the 'signal' 

referred to above. 
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(b) Estimation and Forecasting: 

(i) Parameter Estimation - compare estimates of 

model and nuisance parameters, obtained via the multistate Kalman 

Filter recursions, with the actual (pre-set) parameter values; 

(ii) Observation Estimation, i. e. Forecasts - we 

use one-step-ahead forecasts, given by Equation (2.14), to assess 

the local forecasting ability of the models; as well as present- 

ing plots of these forecasts, ft, superimposed on the correspond- 

ing time series, yt, and plots of the associated one-step-ahead 

forecast errors, et(= yt - ft), we also use two quantitative meas- 

ures: 
t 

1. Sum of squares of forecast errors = SSFE(t) _ ei 
2 

1=1 
(used by Stoodley and Mirnia 1979), so that a lower SSFE(t) 

implies better forecasting; 

2. Mean absolute deviation = MAD(t) =t 
ijlleil 

(used 

by Ameen and Harrison 1982), so that a lower MAD(t) also implies 

better forecasting. 

Sensitivity 

We shall examine how sensitive the models are to small changes 

in the following parameters: 

(a) (na, ro) pairs - keeping the initial variance estimate 

constant, according to Equation (2.28); 

(b) r0 - changing the initial variance estimate; 

(c) RE, Imo - changing the multistate conditions; e-W 
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(d) m- small changes to each component in turn; 
ro 

(e) NN - the number of nodes for the grid (AR(1) and 
r 

sinusoidal models only). 

Sensitivity will be judged on changes in the performance measures 

described earlier. 

3.4.1 LINEAR GROWTH 

3.4.1.1: Initial Setting. For the data set described in Append- 

ix A3.1 the following prior values were employed: 

-0 
f 150, 

; ro = 
(0 

0.0 51 

no = 5; ro = 45; (so E(c2) = ro/(no - 2) = 15) 

j= 1 j= 2 j= 3 j= 4 

p 
(J) 

= 0.85 0.06 0.07 0.02 
0 

R£J) =111 30 

R(J) =0 20 00 

R(J) =00 10 0 

(a) The event detection techniques summarized in Section 

3.2 were applied to the data, and the results are shown in Figure 

3.31; the uppermost plot shows the actual data series plotted 

against time, and the lower three plots show each of the relev- 

ant one-step-back probabilities associated with the corresponding 

observation. 

Notice that: 
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0(3) = 0.799 
26 

036) = 1.000 

0(2) = 1.000 
51 

and 081) = 1.000 (all to three decimal places). 

If we use Oti) > 0.2 (1 = 2,3,4), say, as a criterion for a positive 

signal, then the number of false alarms (false positives) = NFP = 2. 

(b) (i) The final estimate of 6 is N100 - 
[_116.9) 

(comp- 

ared to the theoretical values of 
(--57.51 

5.0 J). 
(ii) The one-step-ahead forecasts (asterisks) are 

shown along with the raw data in the uppermost plot of Figure 3.32; 

the lower plot shows the progression of one-step-ahead forecast 

errors. 

In this case: 

SSFE(100) = SSFE = 13878 

and MAD(100) = MAD = 7.85. 

3.4.1.2: Sensitivity Analysis. For each case the remaining para- 

meter settings, initially, are unchanged from those given in the 

previous section. 

(a) (not r0) 

(i) no = 25; ro = 345 

(ii) no = 50; ro = 720. 

The multistate Kalman Filter results along with one-step-ahead fore- 

casts (asterisks) are shown in Figure 3.33 and Figure 3.34 respect- 

ively, for (i) and (ii). In this case: 
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(ii) R(2) = 180, R(3) = 90, R(4) = 270 (see Figures 3.37 and 3.38) 

(i) (ii) 

026) 0.838 0.858 
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2. b 
0 

(i) b = 1.667 (ii) b = 15 
o o 

3.42, 3.43 and 3.44) 

(i) (ii) 

026) 0.782 0.771 

034) 0.988 0.988 

0(2) 0.997 0.997 
51 

O ) 0.986 0.986 
bi 

NFP 1 2 

117.0 .9 
(-11 

p100 [. 
_S. 4, 

8.3) 
1 

SSFE 15441 15054 

MAD 8.15 7.86 

(iii) bo = -5 (see Figures 

(iii) 

0.786 

0.989 

0.997 

0.986 

3 

_8.41 
1_ 117.0 

15923 

J 

8.27 

3.4.2 SINUSOIDAL MODEL 

3.4.2.1: Initial Setting. For the data set described in Appendix 

A3.2 the following-prior values were employed: 

r-o 
1100 

30, ' ýo 
10 

3) 

no = 5; ro = 45 (therefore E(c2) = 15) 

with pö 
», R(J), R(J). J=1, ..., 4, identical to that given in 

Section 3.4.1.1. 

For the ý grid, a range of (00,3600 was used with NN = number 

of nodes = 36. 

Using these values the multistate Kalman Filter results 

are shown in Figure 3.45, and the corresponding forecasts and fore- 

cast errors in Figure 3.46.. 
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We have: 022) = 0.213 

036) = 0.997 

, 0 = 0.992 53 

0 
) 

= 1.000 81 

NFP =0 

150.0 
N100 15.4 

X100 = 90.0 

SSFE = 17297 

MAD = 9.1 

3.4.2.2: Sensitivity Analysis. 

150.0 
(N 

15.0 , theoretically) 

(ý = 90.0°, theoretically) 

Multistate Kalman Filter results for (i) to (xii) in 

Table 3.1 are displayed in Figures 3.47 to 3.58 respectively. 

Figures 3.59 and 3.60 show the progression of the ý grid through 

the analysis for NN = 36 and for NN = 12, respectively. In these 

three-dimensional plots the x-axis denotes the ý range (00,3600], 

the y-axis denotes time (0,100] and the z-axis denotes probability 

(0.0,1.0). 

NOTE: w= 1/12 has been assumed fixed and known. 

3.4.3 AR(1) 

3.4.3.1: Initial Setting. For the data set described in Appen- 

dix A3.3 the following prior values were employed: 

__ 
10 C_ 

(15 0 
No 

(10 

No 0 15 

no = 5; ro = 3.0 (therefore E(c2) = 1.0) 

with pöW, RES), 
J) 

j=1, ..., 4 identical to the values given 
f-V 

in Section 3.4.1.1, and with NN = 21 for the q-grid. 
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Using these values the irultistate. Kalman Filter results are 

shown in Figure 3.61, and the corresponding forecasts and forecast 

errors in Figure 3.62. 

We have: 

o22) = 0.679 

033) = 0.842 
1 

033) = 0.742 
6 

051) = 0.840 

0 
)= 

0.298 
72 

081) = 0.999 

NFP= 3 

V100 = 18.6 

X100 = 0.72 

SSFE = 756 

(V = 18.9, theoretically) 

(ý = 0.70, theoretically) 

MAD = 1.77 

3.4.3.2: Sensitivity Analysis. Multistate Kalman Filter results 

for (i) to (x) in Table 3.2 are displayed in Figures 3.63 to 3.72, 

respectively. Figures 3.73 and 3.74 show the progression of the 

0 grid through the analysis for NN = 21 and NN = 11 respectively. 

3.4.4 CONCLUSIONS 

The purpose of the above simulations was to study the 

sensitivity of performance to small changes in prior parameter 

settings. Our general conclusions are as follows: 

(a) If we increase no and ro in such a way as to keep the 

ratio ro/(no - 2) a constant, we retain the same initial estimate 
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of X c, but our variance on that estimate is smaller (see Sect- -1 =2 

ion 2.1.2), corresponding to greater confidence in our initial estim- 

ate of A-1. 

The effects of this increase on the various performance measur- 

es are very small. Such changes as we have observed as as follows: 

As (no, r0) increases - event probabilities decrease 

- number of false positives decreases 

- SSFE/MAD increases 

- eýý estimation: no change. 

This indicates that, for the series under study, c2 was perhaps more 

changeable than our initial variance on c2 allowed for. 

(b) By decreasing roe holding no constant, we lower our 

initial estimate of c2 and the following changes in performance 

obtain: 

As r0 decreases - event probabilities increase 

- number of false positives increases 

- SSFE/MAD decreases 

- e, ý estimation: no change. 

Most of these changes are small, but the increase in the number 

of false positives can be large. Clearly, with too small an 

estimate of c2 we are likely to signal observations which are 

outside the stated variance range, though within the correct var- 

lance range, thus precipitating false alarms. 

(c) By increasing Re, R we would expect event detection 

to be more difficult, since the magnitude of a change needs to 

be greater to reveal its presence. Referring to the results in 

Sections 3.4,1 to 3.4.3, however, we see that changes in RE, N 

have little effect on either the event probabilities or the number 
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of false positives, as the learning procedure for A adjusts itself 

to take account of the sizes of these multipliers (see Figures 

3.38,3.52 and 3.68). However, the SSFE and MAD increase notic- 

eably (implying that observation tracking is poorer). 

This indicates that the initial choice of Re, Rw is not crit- 

ical to the event detection problem, though some care must be 

taken if we seek to use the models for forecasting. 

(d) Making the initial changepoint probabilities small 

(pöi), i=2,3,4) has a negligible effect on either event detection 

or forecasting and estimation. 

(e) Changes to the components of No have little effect on 

the detection of changes; however the number of false positives 

may increase, especially in the initial stages while the system 

learns about the correct 'level' of io (see Figures 3.41,3.55 and 

3.71; see Chapter 6 for an example where this property is exploit- 

ed). It takes the system a little time to re-adjust, as reflect- 

ed by the inflated values of SSFE and MAD, mainly due to an init- 

ial period of poor tracking. 

(f) We might expect that the results would be much less 

accurate if we were to decrease the number of nodes in the ý grid, 

but a change in NN seems to have hardly any effect on any of the 

performance measures. 

N. B. Notice the effect of an impulse on the d-updating 

procedure (Figures 3.73 and 3.74); the amount of information about 

ý provided by an impulse is considerable and the grid method of 

estimation reacts quickly. 
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As an attempt at an overall summary, we might say that: 

(1) as far as estimation is concerned, the models are 

not very sensitive to the starting values of any of the parameters; 

(ii) the most sensitive parameter is 
Mo: 

a poor initial 

estimate may result in too many false positives (especially early 

on) and lead to poor forecasts; 

(iii) ro is also fairly critical, as the number of false 

alarms will be great if r0 is too small; 

(iv) the models are not sensitive to the choice of NN; 

(v) changes in the specification of Re and R have more 
I#W 

effect on forecasting than on change detection (re. Section 2.1.2). 

000 
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APPENDIX THREE 

DATA SETS 

A3.1 LINEAR GROWTH 

, 100 observations were Using the starting values of 60 = 
{100 

generated according to the linear growth model of Section 2.3.1 

with the errors, Et, simulated from Et ti N(0,15). 

At t= 25 the slope was reversed in sign, so that at = -5, 

t> 25. 

At t= 50 the level was increased by 50%, so that 

1150 =3 1149/2 + ß50' 

At t= 35, iu35 was added to y35 (in addition to 635) result- 

ing in a transient observation; a second transient was created 

at t= 80 by subtracting j'80 from y80. 

The following data set obtained: 

TIME OBSERVATION TIME OBSERVATION 

1.00 103.79 51.00 131.51 
2.00 112.76 52.00 122.24 
3.00 119.21 53.00 118.36 
4.00 121.93 54.00 117.32 
5.00 125.98 55.00 108.12 
6.00 132.89 56.00 107.61 
7.00 144.86 57.00 104.21 
8.00 143.62 58.00 103.28 
9.00 145.05 59.00 93.68 

10.00 150.60 60.00 90.26 
11.00 157.31 61.00 84.68 
12.00 159.62 62.00 77.64 
13.00 162.02 63.00 65.47 
14.00 175.72 64.00 64.90 
15.00 171.36 65.00 67.75 
16.00 183.24 66.00 55.49 
17.00 190.49 67.00 51.63 
18.00 189.18 68.00 39.56 
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TIME OBSERVATION TIME OBSERVATION 

19.00 197.00 69.00 38.23 
20.00 208.88 70.00 35.83 
21.00 212.22 71.00 25.67 
22.00 209.98 72.00 26.92 
23.00 218.91 73.00 20.30 
24.00 224.29 74.00 15.27 
25.00 215.60 75.00 9.59 
26.00 207.26 76.00 3.82 
27.00 209.75 77.00 5.41 
28.00 199.45 78.00 0.17 
29.00 193.58 79.00 -3.59 
30.00 189.76 80.00 -56.25 
31.00 182.29 81.00 -18.70 
32.00 171.58 82.00 -23.26 
33.00 173.82 83.00 -32.89 
34.00 168.86 84.00 -36.84 
35.00 207.50 85.00 -45.25 
36.00 154.23 86.00 -49.28 
37.00 154.43 87.00 -46.39 
38.00 143.58 88.00 -55.75 
39.00 139.13 89.00 -63.08 
40.00 134.74 90.00 -58.03 
41.00 133.71 91.00 -67.29 
42.00 124.52 92.00 -75.54 
43.00 116.52 93.00 -79.86 
44.00 117.02 94.00 -81.74 
45.00 114.46 95.00 -88.94 
46.00 107.64 96.00 -97.98 
47.00 106.68 97.00 -95.29 
48.00 99.97 98.00 -99.94 
49.00 96.19 99.99 -103.46 
50.00 138.32 100.00 -119.56 

A3.2 SINUSOIDAL MODEL 

Using the starting values of ýo = 
(100) 

and _ Tr/2,100 

observations were generated according to the sinusoidal model 

of Section 2.3.3 with Ct ti N(0,15). 

At t= 25 the amplitude was decreased by 50%, so that 

at = 15, t> 25. 

At t= 50 the level was increased by 50%, so that pt = 150, 

t> 50. 

At t= 35, ill35 = 50 was added to y35 resulting in a trans- 

lent observation; a second transient was created at t= 80 by 

subtracting IV 
80 = 75 from y80. 
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The following data set obtained: 

TIME OBSERVATION TIME OBSERVATION 

1.00 111.89 51.00 164.21 
2.00 130.09 52.00 159.50 
3.00 124.26 53.00 156.90 
4.00 128.02 54.00 152.32 
5.00 116.83 55.00 145.03 
6.00 100.29 56.00 140.44 
7.00 86.02 57.00 136.86 
8.00 74.48 58.00 142.41 
9.00 64.00 59.00 143.18 

10.00 72.32 60.00 146.70 
11.00 82.53 61.00 158.19 
12.00 97.73 62.00 163.02 
13.00 121.45 63.00 170.49 
14.00 126.29 64.00 166.28 
15.00 127.04 65.00 156.36 
16.00 123.18 66.00 152.22 
17.00 115.28 67.00 142.12 
18.00 95.18 68.00 132.09 
19.00 78.83 69.00 125.88 
20.00 69.48 70.00 131.90 
21.00 69.74 71.00 140.00 
22.00 77.68 72.00 143.51 
23.00 85.32 73.00 157.65 
24.00 94.46 74.00 160.16 
25.00 94.33 75.00 162.86 
26.00 94.95 76.00 164.06 
27.00 102.85 77.00 156.72 
28.00 100.44 78.00 150.35 
29.00 99.33 79.00 139.88 
30.00 96.73 80.00 92.01 
31.00 91.54 81.00 136.67 
32.00 87.02 82.00 138.58 
33.00 82.49 83.00 146.65 
34.00 85.00 84.00 145.93 
35.00 127.50 85.00 158.90 
36.00 100.75 86.00 165.75 
37.00 110.16 87.00 162.84 
38.00 108.08 88.00 158.00 
39.00 116.23 89.00 151.65 
40.00 116.22 90.00 149.36 
41.00 108.84 91.00 141.46 
42.00 106.49 92.00 136.32 
43.00 93.25 93.00 134.27 
44.00 89.04 94.00 135.12 
45.00 83.77 95.00 143.24 
46.00 85.65 96.00 152.02 
47.00 92.15 97.00 156.13 
48.00 103.56 98.00 162.32 
49.00 116.62 99.00 170.26 
50.00 161.52 100.00 161.46 
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A3.3 AR(1) 

Using the starting values of 60 = 110) and = 0.7,100 

observations were generated according tolthe AR(1) model of Sect- 

ion 2.3.5.1 with Et ti N(0,1.0). 

At t= 30 and t= 35 level changes were simulated by setting 

RV 
30 

= RV 
35 

= 10, i. e. SV30 ti N(0,10) and SV35 ti N(0,10). 

At t= 25 and t= 75 impulses were simulated by setting 

R=R= 20, i. e. SU25 ti N(0,20) and 5p75 ti N(0,20). 
'25 U75 

At t= 50 and t= 80 transients were simulated by setting 

RE 
50 

= RE 
80 

= 30, i. e. e50ti N(0,30) and C80 ti N(0,30). 

The following data set obtained: 

TIME OBSERVATION TIME OBSERVATION 

1.00 10.14 51.00 18.43 
2.00 7.86 52.00 16.72 
3.00 10.65 53.00 17.38 
4.00 10.07 54.00 16.46 
5.00 7.71 55.00 15.82 
6.00 9.03 56.00 16.15 
7.00 10.95 57.00 17.57 
8.00 12.49 58.00 16.23 
9.00 9.28 59.00 13.97 

10.00 8.14 60.00 14.99 
11.00 9.28 61.00 15.14 
12.00 10.35 62.00 14.80 
13.00 10.41 63.00 14.04 
14.00 9.95 64.00 14.78 
15.00 10.70 65.00 16.51 
16.00 10.36 66.00 17.57 
17.00 10.39 67.00 18.68 
18.00 12.06 68.00 19.51 
19.00 10.34 69.00 18.87 
20.00 10.22 70.00 18.76 
21.00 11.61 71.00 19.76 
22.00 8.39 72.00 19.09 
23.00 9.61 73.00 17.50 
24.00 10.38 74.00 17.52 
25.00 16.30 75.00 14.15 
26.00 12.17 76.00 16.66 
27.00 13.99 77.00 18.10 
28.00 13.27 78.00 18.40 
29.00 13.10 79.00 16.51 
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TIME OBSERVATION TIME OBSERVATION 

30.00 20.26 80.00 4.00 
31.00 19.60 81.00 17.69 
32.00 19.50 82.00 18.47 
33.00 19.18 83.00 17.96 
34.00 17.16 84.00 19.70 
35.00 22.82 85.00 20.90 
36.00 22.99 86.00 18.90 
37.00 21.05 87.00 20.56 

38.00 20.72 88.00 19.09 

39.00 23.92 89.00 19.60 
40.00 20.79 90.00 19.80 
41.00 22.33 91.00 18.21 

42.00 20.90 92.00 20.28 
43.00 20.12 93.00 21.20 
44.00 19.88 94.00 20.35 

45.00 20.07 95.00 19.50 
46.00 18.43 96.00 17.77 
47.00 18.81 97.00 19.97 
48.00 19.98 98.00 17.41 
49.00 18.56 99.00 18.09 
50.00 8.44 100.00 17.91 

000 
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CHAPTER F0UR 

UNEQUALLY-SPACED MEASUREMENTS 

4.1 INTRODUCTION TO TIME SERIES WITH UNEQUALLY-SPACED DATA 

4.1.1 INTRODUCTORY REMARKS 

Medical time series obtained during routine clinical 

supervision have certain special characteristics, which need to 

be taken into account at the modelling stage if we are to utilize 

the methods discussed in earlier chapters. In particular, measure- 

ments are likely to be received at unevenly-spaced timepoints. 

There are several reasons why this might be the case, including 

the closure of laboratories (for instance at weekends., holidays, 

etc. ), occasional sample mishandling, missed appointments, the 

fact that the patient might leave the 'in-patient' environment 

(making it more difficult to obtain measurements) and, most import- 

ant of all, a change in the severity of the patient's condition. 

Clearly, if the health of a patient deteriorates the frequency of 

sampling is likely to be increased, since the clinician will wish 
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to keep a closer check on the patient's condition; conversely, 

the patient may be monitored less frequently if his/her condit- 

ion appears to be improving. In extreme cases, where the clinic- 

ian is on the lookout for sudden events which might radically 

change the course of a 'disease', the interaction between event 

detection and the underlying between-sample time interval is of 

fundamental importance, and will be examined in Chapter 5. 

Using the terminology of Jones (1985), we might say that the 

medical. time series we are interested in are likely to be truly 

unequally-spaced rather than equally-spaced with occasional mis- 

sing observations, although the latter could also arise from 

sample mishandling, missed appointments, etc. It will be neces- 

sary, therefore, to reformulate the models described earlier in 

order to accommodate the possibility of truly unequally-spaced 

observations. 

A number of factors have influenced our strategy for model- 

ling unequally-spaced time series: 

(i) the desire to incorporate changepoint models and hence 

to retain a state-space (recursive) formulation based on a 

discrete-time, rather than a continuous-time, representation for 

unequally-spaced models (see Section 4.2 for a fuller discussion 

of this point); 

(ii) the relative absence of literature relating to irreg- 

ularly-spaced time series in the time domain; 

(iii) the desire to develop a modelling framework that is 

both conceptually simple and widely applicable to a range of 

specific models. 
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NOTATION: Due to the algebraic complexity of the following sect- 

ions, we make some preliminary remarks on notation. 

It is assumed that '. k' will denote the time index for an 

unequally-spaced time series so that, for instance, yk denotes the 

kth observation and not, in general, the observation at time k 

(unless the first k observations happen to be evenly-spaced). 

The time at which the kth observation is made will be denot- 

ed by Tk, so that for the case of equally-spaced measurements 

Tk = k, '#k. 

The interval between consecutive observations will be denot- 

ed by dk = Tk - Tk_l (initially it is assumed that To = 0, so that 

dl = T1). Notice that if dk >1 then no observation is made at 

time Tk-l + 1, since Tk > Tk_l + 1. Notice, further, that dk >0 

vk, since T. > Tk-l and that if Tk is measured in whole units for 

each k, dk CZ 

Further notation will be defined as necessary. 

4.1.2 BACKGROUND TO UNEQUALLY-SPACED TIME SERIES MODELLING 

The topic of unequally-spaced measurements in time 

is one which has attracted relatively little attention in the time 

series literature. One (tentative) explanation for this, perhaps, 

is that the majority of actual time series applications for which 

much of the existing theory has been developed have involved reg- 

ularly spaced data, with very few 'missing' observations. For 

instance, in data arising from economic sources which inspired 

many of the early ideas in time series analysis (see, for example, 

Box and Jenkins 1970, Wheelwright and Makridakis 1973, Montgomery 

and Johnson 1976) unbroken weekly, monthly or quarterly series 
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were very much the norm. However, in recent years, as the scope 

of applications has increased, a number of authors have suggest- 

ed that this is not invariably the case and that, for a variety 

of reasons, economic and commercial time series may well contain 

missing observations or be unequally-spaced (Doran 1974, Robinson 

1977, Harvey and Pierse 1984). Certainly, this is so, in the 

strict sense, where 'monthly' data is concerned, owing to the 

differing lengths of calendar months. 

Although, historically, literature on unequally-spaced time 

series is sparse, it appears that the subject has generated a 

good deal more interest during the last ten years or so. Among 

the earliest papers were those of Jones (1962) and Parzen (1963), who 

both deal with the implementation of spectral analysis in the pres- 

ence of missing observations and, in particular, periodically 

missing observations, e. g. daily measurements, but with no measure- 

ments obtainable at weekends. This work was extended by Clinger 

and Van Ness (1976), who develop a general cyclic sampling scheme 

with observations at: 

T1, ..., Tk, Tl + m, ..., Tk + in, T1 + 2m, ..., Tk + 2m, ... 

In this case, too, the spectral approach to time series analysis 

has been adopted. 

Spectral approaches were also used by Scheinok (1965), and 

Bloomfield (1970) although, instead of periodic sampling, these 

authors assumed that the presence or absence of an observation 

was governed by a random mechanism, so that missing time-points 

arise probabilistically. 
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Other work on missing observations in time series includes 

that of Sargan and Drettakis (1974) and Dunsmuir and Robinson 

(1981) on the accommodation of missing values in ARMA models. 

Sargas and Drettakis (1974) use a state-space approach estimat- 

ing the missing observations, whereas Dunsmuir and Robinson (1981) 

apply frequency-domain methodology to the problem of estimating 

spectral densities in the presence of missing data. 

In (1980), Jones presented a method for calculating the exact 

likelihoods of ARMA models in the presence of missing observat- 

ions, using a state-space approach involving the Kalman Filter. 

This work, complemented by the recent advances in maximum likeli- 

hood estimation techniques (see, for example, Harvey and Phillips 

1979), constitutes a breakthrough in the area of time series 

analysis with missing data and seems to have stimulated a renew- 

ed interest in the whole topic (Ansley and Kohn 1983, Harvey and 

Pierse 1984). Indeed, it is the basic principle from Jones 

(1980) that will be utilized in this thesis, as outlined in the 

following section. 

Ideas for modelling time series with generally unequally- 

spaced observations, rather than purely missing values, stem 

from the literature on aliassing (see, for example, Shapiro and 

Silverman 1960, Loynes 1969). There was very little activity 

in this area up until the late 1970's when Clinger and Van Ness 

(1976) re-introduced the periodic sampling concept. Once again, 

a spectral approach was adopted by many of the authors who tackled 

the problem (Robinson 1977,1980). The general strategy has been 

to fit a continuous-time model to a discrete set of observations 

which are generally unequally-spaced. In conjunction with the 
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spectral analysis approach of Robinson (1980), some authors adopt- 

ed a time domain representation of the continuous modelling of 

discrete time series (Phadke and Wu 1974, Jones 1981, Kitagawa 

1984). 

A detailed account of continuous modelling for discrete 

observations, using a state-space approach, can be found in Jones 

(1985), in which ARIMA models are the main focus of attention. 

An application of these techniques can be found in Jones and 

Tryon (1986). 

4.2 GENERAL FRAMEWORK 

4.2.1 UNDERLYING ASSUMPTIONS 

We note, first of all, that the adoption of a recurs- 

ive, time-domain approach to the incorporation of unequally- 

spaced data is essential in the medical monitoring context since 

we need to be able to detect the timepoints of model discontinuity. 

The dynamic linear model provides an ideal framework for this 

strategy. We recall, from (2.1) and (2.2) that the dynamic 

linear model involves two components: the observation equation 

and the system equation. Following Jones (1980) and Harvey and 

Pierse (1984), the essence of the state-space approach to missing 

observations is to bypass the observation-updating steps of the 

Kalman Filter recursion, and to complete the system-update 

steps by replacing the 'missing' estimates of 0 and W by their 
N0 

most recent estimates. In terms of the dynamic linear model, 

therefore, we disregard the observation equation (2.1), subject 

to the following provisos. 
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P4.1. The observation error at timepoint k, Ek' is not depend- 

ent upon the length of the sampling interval. 

P4.2. The length of the sampling interval is not dependent upon 

the magnitude, 8k, 
of 0 at timepoint k. 

Generally, it seems to us that P4.1 will be a reasonable 

assumption; if the interval between measurements is very large, 

however, there may be a chance of larger observation errors due, 

for example, to a lack of practise in the measurement procedures. 

We will assume that any lack-of-practise effects that might exist 

are negligible. 

Assumption P4.2 implies that the level of 8k does not deter- 

mine the length of the sampling interval. This assumption may 

appear to be slightly questionable, in the medical setting, since 

the levels of, represent the well-being of the patient. How- 

ever, dk is only affected by e 
k-1' e k-2' .... etc. and not by 6 

k. 

P4.2 also provides another insight into the accommodation 

of missing data. If the observation at timepoint k is unavail- 

able, its associated error component is also missing. However, 

this error component is unknown even if the observation is pres- 

ent. Therefore, for those models where the error structure exhibits 

time-dependent behaviour (e. g. MA models) we will imagine that 

the error exists even if an observation has not been made, and 

we merely replace the variance of that error by the most recent 

variance estimate. If a measurement has been made, we can up- 

date this variance first and then use the updated. estimate (see 

Section 4.3.5). 
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We also choose to adopt discrete-time, rather than continuous- 

time, state-space formulations, in direct contrast to the views 

of Jones (1985). The main motivation for our choice of approach 

concerns the modelling of between-timepoint behaviour. A contin- 

uous model implies that the behaviour between timepoints is (in 

some sense) smooth and akin to the timepoint-to-timepoint model. 

For instance, if the linear growth model is adequate to describe 

the behaviour of daily observations then a continuous form would 

imply that the within-day behaviour is also linear. However, in 

the medical setting, we will sometimes wish to use an alternative 

within-day sub-model, for instance the sinusoidal model (see Sect- 

ion 2.3.3). In general, the micro-kinetics governing the dis- 

ease process may well be extremely complex and an approximation 

by the 'macro'-model is unlikely to represent the characteristics 

of these mechanisms. 

We see, therefore, that our ability to incorporate sub- 

models, and to build up a global model from these sub-models 

would be severely restricted by the use of continuous models. 

However, there are genuine interpretational problems for some of 

the global models we shall consider when fractions of time inter- 

vals are permitted. Consider, for example, the case of a discrete 

AR(l) process with a negative autoregressive parameter. What 

model should we invoke if the time interval is suddenly halved? 

In the light of these considerations, we shall adopt a 

discrete-time, recursive approach to the incorporation of unequally- 

spaced observations, and we shall make the further assumption 

that: 

P4.3. We can conceive of a basic 'time unit' representing the 

smallest conceivable interval between observations, so that no 
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fractions of this basic interval are possible. Therefore, we 

have dk c Z+. 

NOTE: By the simple addition of a growth component, etc. to the 

standard DLM representations of ARMA models (see Section 2.3.5) 

we may avoid the complications associated with the standard approach- 

es to ARIMA models and unequally-spaced timepoints (namely, that 

first differences, etc. are difficult to form when some of the 

observations are not present), but will still allow for non- 

stationarities in the steady-state time series. 

4.2.2 THE DLM FOR UNEQUALLY-SPACED OBSERVATIONS 

In this section we provide a general formulation of 

the dynamic linear model when the time series is obtained at 

unequally-spaced timepoints. 

We rewrite the DLM described by (2.1) and (2.2) in 

the form: 

Wyk 
H 

k 
ek + 

, 
gT (4.1) 

d%T 

ek 
. 
Gk 0k + (4.2) 

where 

yk is the kth observation vector (made at time Tk) 

2k is the vector of system parameters at time Tk 

HT is a regression matrix, fully specified at time T{ (4.3) 
k 

4 is a transition -matrix, dependent on d, =k k-1 

ET , oo are zero-mean, random vectors associated with time T; 
k 

We make the following assumptions: 
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P4.4. is independent of k 
rE, t, k 

P4.5. 
'WT are independent of 6 ýk given D (i. e. the 

nkk k-1 e-k-1 

past k-1 observations) 

P4.6. hT is independent of Wk, 'tk 
k 

P4.7. NT 'ti, 'N(0, X_ Rý) N(0, X NW(k)) 
k 

Notice that ET is dependent only on the timepoint k and not on the 
~ 

time interval dk, so its variance is equivalent to that given for 

the equally-spaced DLM (Equation (2.11)). Following on from the 

discussions of the previous section, the form of Wk has yet to be 

determined from the system -update for missing observations, and 

therefore its variance may not be equivalent to the equally-spaced 

case, in which var(c A iRW 

Since (4.1) is completely specified, except for 6k, we deal 

only with the system equations (4.2), in order. to find the form 

of 6k. Two distinct possibilities arise in the equally-spaced 

formulation: (a) G is not time-dependent, as in (2.2), or (b) 

G is time-dependent. We shall examine each of these situations 
w 

in turn. 

NOTE: When an observation is made at time Tk, we define 6k = 0T 

4.2.2.1: Constant Transition Matrix. For equally-spaced (unit) 

intervals between successive observations, we restate (2.2): 

et = cet-1 + Vt 

LEMMA 4.1: When the interval between successive observations is 

(4.4) 

E Z+ units, we may write: 
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Tk 
dk cG k-t ek N ek-1 + 

t=T 
k-1+1 

W 

PROOF: Assume (4.5) to be true for k=j and assume that the 

observation actually occurs at time Tj = Tk + 1. Then, accord- 

ing to (4.4), we may write: 

e' _ ~eTý_1 + c3 

=GBk+«` 
k+1 

(since Tk = Ti - 1) 

Tk 

= G[Gdkek-1 +I GTk-t^t] + WT +1 
(using (4.5)) 

t=Tk-1+1 k 

T 

_ ýdk+lek-1 + CTk+l-tW +W 
t=T +1 «t . -Tk 

k-1 
Tk+l 

=G 
dk+lek-1 

+ GTk+l-t wt (since G° 

t=T+1 
k-1 

Since Ti = Tk + 1, and dj = dk +1 we have: 

diej 
__ 

^ 
ek-1 + 

T 

GTJ-twt 
t=TkL-1+1 P- ow 

Therefore if (4.5) is true for dk it is also true for dk + 1; 

but (4.5) holds for dk = 1, since (4.5) then reduces to: 

6k = G6ý-1 +wTk (c. f. (4.4)) 

Hence (4.5) holds for any integer dk >1 by induction. 

In terms of (4.2), we have 

ýk G 
dk. 

(4.5) 

(4.6) 
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VARIANCE CALCULATIONS 

Let 
T 

GTk-t 
kw i- t=Tk_1+1 ~ n. t 

In order to calculate the variance of p. we consider two distinct 
N 

situations: 

(a) w 
r. t 

is independent of w 
s' . Vs t 

(b) ýt is not independent of ws, for some sTt. 

(a) Independent Errors. From (2.11) we have var(w X-1R 

when the interval between observations is one unit. 

If the interval between observations is dk units then: 

Tk 

var(rk) = -1BW(k) = a-1 GTk_tR(GTk-t)T" 
t=Tk_1+1 

Equation (4.8) follows directly from (4.7) assuming independence 

in the 
Mwt 

sequence. Notice that we have made use of the idea 

put forward in the previous section, in that we are proceeding 

as if these errors exist even when an observation does not, and 

have replaced their variance by the most recent estimate (in our 

case, the estimate of a-1 made at timepoint k- 1). 

(b) Error Dependence. For the case where the wt's are not 

all independent: 

(4.7) 

(4.8) 

ri 
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var(Mk) _R (k) 

T 

CT 
k 

GTk-tR (GTk-t)T + jk 1 
cov(GTk-iW 

Tk-3W 
) 

.. - v- t=Tk-L1+1 ~ Mi) r i=Tk-l+l j=Tk-1+l ^�G i 

(idj) 

(4.9) 

This, too, follows directly from (4.7) when the Wt's are not all 

independent. The exact form of the covariance term depends upon 

the extent of 
ÄW 

dependence and the precise structure of G. 

4.2.2.2: Time Dependent Transition Matrix. For equally-spaced 

(unit) intervals between successive observations, we have: 

et=ct, t_l+wt 

where the transition matrix, Gt, is now permitted to be dependent 
N 

on time. 

LEMMA 4.2: When the interval between successive observations is dk 

units, we may write: 

(4.10) 

Tk Tk-1 Tk 

11 
^'k 

GtJek-1 +L 
_II 

GiJ^t +w (4.11) 
t_Tk-1+1 t-Tk-1+1 

(i=Il 

k 

(dk>l) 

PROOF: Assume (4.11) to be true and assume that the observation 

actually occurs at time Tj = Tk + 1. Then, according to (4.10), 

we may write 
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ej rTjeTJ-1 + -Ti 

G 
; -Tk+18k 

+ rTk+1 (since Tk = Ti - 1) 

Tk Tk-1 Tk 

= GT 
+11 

1R Gt, ek-1 +I II Gi1Wt + ýT }+ ýT 
+1 k t=Tk-1+1 t=Tk-l+lli=t+1 kk 

(using (4.11)) 

Tk+1 Tk-1 Tk+1 

II G J0 +1 
(R 

GI W+ Gw+ 
ýt=Tk-1+1~t Nk-1 

t-Tk-1+11i-t+l^i At . -Tk+1^Tk ^, Tk 

Ti Tý-1 Ti 
LT 

. I^t + wT Gt) ek-1 +T 
+1 

j 

k-1 +1 t_k-1 i t+1 Jj 

Therefore, if (4.11) is true for dk it is also true for dk + 1; 

but (4.11) holds for dk =1 since (4.11) then reduces to 

8k = GTkek-1 +w (c. f. (4.10)). 

Hence (4.11) holds for any integer dk >1 by induction. In terms 

of (4.2), we have: 

Tk 

Gk = II G 
t=Tk-1+1 

t 

VARIANCE CALCULATIONS: Let 

T-1 Tk 

W1 II Gil w+w 
t=Tk-1+1 i=t+1 g 

(dk>l) 

(4.12) 

(4.13) 
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The variances follow immediately from (4.13) for both the case of 

independent and dependent N t's. 

(a) Independent Errors 

var(a1) _ X-1Rw(k) 

-1 

Tk-1 Tk Tk 
T 

=a (R +1I jI GiJ R 11 G) (4.14) 
AW t=Tk-1+1(i=t+1~ W i=t+1"i 

(dk>1) 

(b) Error Dependence 

var(wk) = a-1Rw(k) 

Tk-1 Tk Tk 

_ _1(R +1 IT G)R lI Gil 
T) 

~W t=Tk-l+l li=t+lA i "w i=t+1^ J 

(dk>1) 

Tk-1 Tk-1 Tý Tk 

+ cov( II G. )ws, I 11 G. 1 wt) 
s=Tk-1+1 t=Tk-l+l m=s+1 In=t+1 

(s$t, dk>1) 

Tk-1 Tk 

+ cov(wT II GlW 
ti t=Tk1 +1 k n=t+1 n' 

(dk>1) 

Tk-1 Tk 

ý +x cov(ln=t+l TI G (. 
t ~W , Tk t=Tk-1+1 ~n) 

(dk>1) 

(4.15) 
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NOTES ON KALMAN FILTER RECURSION: The above is achieved by minor 

modifications to the Kalman Filter recursions given by (3.16). 

We replace: 

(i) G by G 
and 

(ii) RW3) by 
NRW» 

(k) . 

4.3 MODEL REFORMULATION 

Using the general structure defined in Section 4.2 we now 

describe in detail a number of special cases; in particular, the 

univariate models outlined in Section 2.3 and extended in Section 

3.3. We note that, for each of these models, the transition 

matrix, G, is time-independent for the equally-spaced, unit- 

interval case (henceforth referred to as the equally-spaced model). 

Therefore we use the result of Lemma 4.1 throughout in order to 

formulate the unequally-spaced model. 

In the derivation of unequally-spaced growth models, the 

following identities will prove to be of use: 

j1i 
(i) =n (4.16) 

(ii) 
nt= n(n + 1) 12 (4.17) 

t=1 

n 2 n(n + 1)(2n + 1) ýt= (4.18) 
6 

t=1 

n3= 
n2(n + 1)2 4.19) (iv) t4< 

t=l 

n4 n(n + 1) (2n + 1) (3n2 + 3n - 1) (v) 1t= 
30 

(4.20) 
t=1 
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4.3.1 LINEAR GROWTH 

Restatement of the Equally Spaced Model 

et=cet-l + rt 
i. e. 

ut ý' ut_1 auf + sßt 
ß-01ß+ aß (4. al) 

t t-1 t 

Derivation of the Unequally-Spaced model 

Tk 

G_ 
dk Tk-t ek ek-1 + 

t=Tk-1+1N 
ýt 

i. e. 

Now 

since 

So 

Pk 11 
dk 

uk-1 
Tk 

11IT Öut + dßt 
_+x (4.22) 

ßk 01 ßk-1 t=Tk-1+1 01 Ößt 

i i 
Gi = 
r- 0 1 

1 i+l 
Gi+l = GG 

i=111= 
A rn- 

010101 

Tk Tk 

µk 1 dk 
k-1 

1 sut +I (Tk -t+ 1)aßt 

I t=Tk-l+l t=Tk-1+1 
_+ (4.23) 

Tk 

ßk 01 
k-1 L ut 

t=Tk-l+l 

(Notice that ßk is interpreted as the slope at timepoint k; ßk can 

only be interpreted as the increment if the current interval is one 

unit. ) 
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Variance Calculation 

Equally-spaced model: 

+ R R R 
11 ß 

R = 
º W . R R ß ß 

Tk 

R (k) =G 
Tk-tR 

(GTk-t)T 
W 

t=TkL-1+1 

Tk 
1 Tk -t RI, + Rß R- ß10 i 

t=Tk-1+1 01 Rß Rß 

[Tk 

-t1 

I Tk Tk 

(Tk -t+ 1)2R 
t=Tk-1+1 

Ru + 
t=Tk-1+1 

= Tk 

(Tk -t+ 1)R 
t=Tk-1+1 

dk(dk + 1)(2dk + 1)Rß 
dkR1 +6 

Tk 

(Tk -t+ 1)R 
t=Tk-1+1 

Tk 

Rß 
t=Tk_1+1 

dk(dk + 1) 

2 

K 

dk(dk + l)Rß 

2 
dkRß 

(4.24) 

(4.25) 

(using (4.16), (4.17) and (4.18)). 



- 118 - 

4.3.2 QUADRATIC GROWTH 

Restatement of the Equally-Spaced Model 

pt 111 li t-1 
dut + dßt + 8yt 

ßt =011 ßt-1 + aßt + 8yt (4.26) 

Yt 001 Yt-1 6yt 

Derivation of the Unequally -Spaced Model 

uk 111 
dk 

Pk-l'T 111 
Tk-t öut + Ößt + dyt 

k 
ßk = 

10 
11 ßk-1 +L011 8ßt + dyt 

t=T +1 
yk 001 Yk-1 

k-1 
00 1J IJ ayt 

(4.27) 

Now 

1i 
1(i+1) 

2 

Gi =01i 
f- 

001 

since 

1 111 1 
i(i + 1)ý 

2 

G 
i+l 

GGi = 0 110 1 1 

0 010 0 1 

1 i+1 (i + 1) (i + 2) 
2 

= 0 1 + 

0 0 1 

So 
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dk(dk + 1) 

c1 
dk 

2 Iuk-1 

ßk =01 dk ßk-1 

Yk 10 01J lYk-1 

Tk Tk Tk 
(T 

k- 
t+l)(Tk-t+2)6yt 

SUt + (Tk-t+1)6ßt + 
t=Tk-1+1 t=Tk-1+1 t=Tk-1+1 Y 

+ 

Tk 

SYt 
t=Tk_1+1 

(4.28) 

Variance Calculation 

Equally-spaced model: 

Ru + Rß + RY Rß + RY RY 

R= Rß +R Rß +RR yYY 

R. RR 
YYY 

Tk i1 Tk-t 

R (k) 101 
f-W t=Tk-1+1 

00 

1 

x Tk -t 

(T 
k- 

t)(Tk-t+l) 

2 

(Tk-t)(Tk-t+l) 
Ru +^+ Rß +R 2ayy 

Ry 

Tk-t Rß + R1 Rß +Y R1 

1 R1 Ry RY 

00 
10 

Tk-t 1 

I''11 W12 W13 

w12 W22 W23 , say 

w13 w23 w33 

Tk Tk 

at + (Tk-t+1)6yt 
t=Tk-1+1 t=Tk-1+1 

(4.29) 
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where 

Tk Tk 

W11 =R+ (Tk -t+ 1) 
2R 

t=Tk-1+1 t=Tk-1+1 

Tk 

+I* (Tk -t+ 1) 
2 

(Tk -t+ 2) 
2R 

t=Tk-1+1 

and 

Tk Tk 

W12 =L (Tk -t+ 1)R + ;, (T -t +1)2(T -t +2)RY 
t=Tk-l+l t=Tk-1+1 

kk 

Tk 

W13 =L J(Tk -t+ i)(Tk -t +2)RY 
t=Tk-1+1 

Tk Tk 

w22 =R+ (Tk -t+ 1)2R 
t=Tk-1+1 

ß 
t=Tk-1+1 

Tk 

W23 = (Tk -t+ 1)R 
t=Tk-1+1 

Tk 

W33 =R. 
t=Tk-1+1 Y 

Using (4.16) to (4.20) we can see that: 

Ck (Tk -t+ 1)(Tk -t+ 2) dk(dk + 1)(2dk + 1) 
(1) G[ 

t=Tk_l+l 
26 

dk(dk + 1) 
+2] 

dk(dk + 1)(dk + 2) 

6 
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Ck (Tk -t+ 1)2(Tk -t+ 2) d2(d + 1) 
(ii) L 

t=Tk-1+1 
24 

dk(dk + 1)(2dk + 1) 
+6 

dk(dk + 1)(dk + 2)(3dk + 1) 

24 

Tk 
(Tk -t+ 1)2(Tk -t+ 2)2 

(iii) Z 

t=Tk-1+1 4 

dk(dk + 1)(2dk + 1)(3d2 + 3dk - 1) d2(dk + 1) 
2 

1 
30 +2 

dk(dk + 1)(2dk + 1) 
+6] 

dk(dk + 1)(dk + 2)(3d2 + 6dk + 1) 

60 

So 

and 

W11 = dkRu +16 dk(dk + 1)(2dk + 1)Rß 

+ 60 
dk(dk + 1) (dk + 2) (3dk + 6dk + 1)RY 

W12 =dk(dk + 1)Rß + 24 
dk(dk + 1)(dk + 2)(3dk + 1)RY 

W13 =- dk(dk + 1)(dk + 2)RY 

W22 = dkRß +6 dk(dk + 1) (2d. + 1)Ry 

W23 = idk(dk + 1)RY 

"(4.30) 

W33 dkRy 
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4.3.3 SINUSOIDAL MODEL 

Restatement of the Equally-Spaced Model 

ut 1o lIlt_il auf 
qt to 1 at-1 aat 

Derivation of the Unequally-Spaced Model 

Clearly, Gi = Ii =I and so r .- 10- 

fljkl -1 
o uk-1 

1 ak-1 

Variance Calculation 

Equally-spaced model: 

R D 
u - ~W O R 

a 
Therefore, 

RW(k) _ 
dkR 0 

0 dkRa 

(using (4.16)). 

Tk 

I dut t=Tk_1+1 

Tk 

y Sat 
t=Tk_1+1 

4.3.4 SINUSOIDAL MODEL WITH LINEAR GROWTH 

Restatement of the Equally-Spaced ModeZ 

lit' i10 pt-i auf + 6ßt 

at =010 ßt-1 + Ößt 

at 001 at-i Sat 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 
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Derivation of the Unequally-Spaced Model 

110 'llk_ 
T110 

Tk t ÖUt + Ößt 
k 

=010 ßk_1 + lo 10 aßt 
1. =T +l [cJ 901 lctk_lJ k-1 

001 Sat 

Now 
1i0 

Gi =010 
001 

since 
1101101 1+ 10 

Gi+l = GGi =010010=010 
0 4%0- 001001001 

So 

uk 1 dk 0 uk-1 

ßk = 010 ßk-1 + 

ak 001 ak-1 

Variance Calculation 

Tk Tk 

auf + (Tk -t+ 1) Ößt 
t=Tk-1+1 t=Tk-1+1 

Tk 

aßt t=Tk-1+1 

Tk 

Sat 
t=Tk-1+1 

Equally-spaced model: 

fRP+Rß Rß 

rW 
= Rß Rß 0 

0 0 R 
a 

Tk 1 Tk -t 0 R +R R 
u ß ß 

R (k) _101 0 R R 
t1w tT +l k-l 00 1 0 0 

0 1 0 0 

0 Tk - t 1 0 

Ra 0 0 1 

(4.36) 

0 

(4.37) 
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R(k) =I 

TTT 
kk2k 

R+ (Tk-t+1) Rß (Tk-t+1)R 
t=Tk-1+1 t=Tk-l+l t=Tk-1+1 

Tk Tk 

(Tk -t+ 1)R Rß 
t=Tk-1+1 t=Tk_l+l 

00 

and, using the results of (4.16) to, (4.18), we see that: 

dR+ 
dk(dk + 1)(2dk + 1)Rß dk(dk + 1)R 

0 
k 11 62 

d (d + 1)R 
R(k) k k2 

dkRß 0 

00dkRa 

4.3.5. ARMA MODELS 

4.3.5.1: AR! 1) 

Restatement of the Equally-Spaced ModeZ 

Iliti 1- ut-1 dut + avt 

tvt 01 vt-1 avt 

Derivation of the Unequally-Spaced Model 

1uk 1- 1'{k_11 Tk c1- Tk -t auf + SVt 

Vk 01 Vk-1 t=Tk-l+1 
01 aVt 

0 

0 

Tk 

II 
t=Tk_1+1 

(4.38) 

(4.39) 
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Now 

i 1qi 
G= 

01 

since 

Gi+l = GGi =1 
ýi 

~ ~~ 010 

So 

1_ 

10 

i+l 
1- 

1 

ýk Tk-t6p 
+ 

Tk 

ÖV dk 
1- 

dk 
uk-1 t=Tk-1+1 

t 
t=Tk-1+1 

t 
l1k 

+ Tk 
Vk 01 Vk-1 1 dVt 

t=Tk-1+1 

Variance Calculation 

Equally-spaced model: 

R + R R 
R = 

u V V 
W R R 

Tk Tk-t 
1_ 

Tk-t 
R+RR 

Tk-t 

Rw(k) _ 
=T 

UVV 
Tk-t 

t k-l+l 
01 ftV RV 1T 

Tý Tk 
2(Tk-t)R 

+ ýk R ýk R 
t=Tk-l+l t-Tk-1+1 V t=Tk-1+1 V 

Tk Tk 

t=Tk-1+1 
RV 

t=Tk-1+1 
RV 

But, 

Tk 
2(Tk-t) 

t=TkL-1+1 

2dk 
dk1ý 

[&2] s=e 

s=0 1_ e2 

1 

(4.40) 

(4.41) 

(4.42) 

(as the sum of a geometric progression with Ifl < 1). So, using 

(4.16) and (4.42), we have: 
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1- ý2dk 

1- ý2 
Ru + dkRV 

RW(k) 

dkRV 

4.3.5.2: M4(1) 

Restatement of the Equally-Spaced Model 

dkR 
V 

dkRv 

ut 01 ut-i "'t - nbut-i + övt 

vt 01 vt-1 dvt 

Derivation of the Unequally-Spaced ModeZ 
[ilk) 0 1) 

dk 
Uk-1 

Tk 
01 

Tk-t Silt - 11öut-1 + 6vt 

_+ 
Vk 01 Vk-1 t=Tk-1+1 01 ÖVt 

Now 
0110 

Gi 1>1 and Go =I= 
01~01 

since 
0101r01 

G GG 
i+l 1= 

to 
10101 

So 

1uk 01 fPk_1) Tk-1 a Vt 611T - na uT 
-1 

+ 6vT 

+I+kkk 
Vk 01 Vk1 t=Tk-1+1 6Vt ÖVT 

i. e. 

auT 
uk 

-01 
uk-1 

+ 
uk 01 uk-1 

Tk 

_ nSuT l+ 
but 

k- t=Tk_l+1 
Tk 

avt t=T+1 k_1 

(4.43) 

(4.44) 

(4.45) 
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Variance Calculation 

Equally-spaced model: 

2 
R (1 + n ) + R R 

V v R = 
~W R R 

V V 

Since wt contains error terms common to. w we use (4.9) to calc- 
r-t-1 

ulate RW(k), obtaining 

(4.46) 

Tk-1 
01R (1 + n2) +RR00 [R(1+n)+R 2R 

lR(il(k) 
= 

1{ uVV+uV V} 

t=Tk-1+1 01 RV RV 11 RV R 

Tk-1 Tk-1 
dvi dV 

cov( 
i=Tk-1+1 J=Tk-l+l dv1 dv 

(ijgj'dk>1) 

Tk-l dV Tk-1 dV 
+I cov(w .t)+I cov( 

t I, wT ) 
t=Tk-1+1 ~ Tk dVt t=Tk-1+1 6Vt k 

(dk>l) (dk>1) 

Due to the structure of 
19, 

the covariance terms are all zero, since 

cov(dvi. 5v )=0 Vi 30 j, and using (4.16) we have: 

[R(1 +n2)+ dkRV dkRV 
ýW(k) = (4.47) 

dkRV dkRv 

4.3.5.3: AR (2). 

Restatement of the Equalty-, Spaced ModeZ 

1ut f4)i ý2 1-h- ý2 Iut-1 auf + ý26vt-1 + övt 

ut-1 -100 ut-2 +0 (4.48) 

tVt 
001 

k_1i 
6vt 
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Derivation of the Unequally-Spaced Model 

1"ls q1 ý2 "1-ý2 k llk-1 Tk 111k-1 
=100 Ik-2 +1 

t=T +1 kk 
001 

1Yk_lJ 
k-1 

0 

611 
t+ý26vt_1+6vt 

x0 

avt 

T 
k-t 

00 

01 

In order to calculate hi, we note that G can be written in the form: 

G= SIMI-1 

where A has eigenvalues of G on its diagonal and zeroes elsewhere, 

and where n is the matrix of corresponding eigenvectors. 
N 

The eigenvalues of G, denoted by a1, A2, A3, satisfy: 

(A - 01)X(X - 1) + 02(1 - A) =0 

i. e. (A - 1) (X2 -4 1X - ý2) =0 

(see, for example, Cox and Miller, 1965), i. e. 

Al= 1 

+�(O1+4q2) 
ý2 

2 

ý1 - �(ý1 + 4ý2) 
ý3 

2 

(4.49) 

(4.50) 

(4.51) 

and we find 



- 129 - 

1 A2 

2= 1 1 1 
N 

1 0 0 

so that 

1 

52-1 = -1 r 

1 

From (4.49) we see that 

i. e. 

ýi+l - ý1+1 
32 

r 113-ý2 32 

O 

03- X2 

x3 1- X3 /(A3 - 12) ' 

-X2 -(1 - A2) 

Gi = SZAiS2-1 
r ýr w 

i+1 i+l ý3ý2 - A2A3 

ii 
3x2 - x2x3 

0 

x3 - x2 + (1 - A3)A2+1 

- (1 -X )xi+1 23 

Ä3)a2 

- (1 - x2)3 

A3 - A2 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

where A2 and A3 are defined by (4.51). So 



- 130 - 

uk 

k-1 2 

Vk 

k-1 

X uk-2 

Vk-1 

Adk+l _ Xdk+l A 7, dk+1 
-X Xdk+l 

32 3'2 23 

X3k - Adk A3adk -A Xdk 
2223 

00 

Tk 

1k (ATk-t+l - 
Tk-t+lýau 

t=T-1+1 
32 

x3 - x2 + (1 -X )X 
dk +l 

32 

- (1 - 2)Xdk+1 

a3 - x2 + (1 -X )Xdk 
32 

- (1 - X2)X3k 

x3 - A2 

Tk 

+ ýTk-t+l - xTk-t+1)dV ý2t--Tk-1+1(3 
2 t-1 

Tk 

(A3 - A2 +A2 A3 Ct+l 
- X3XZk t+1)dVt 

+T 
t=Tk-1+1 

1 
+A3 

_"2 

CT 
k 

(ATk-t - XTk-t)dU + Tk ()XTk-t - 
Tk-t)SV 

L32t232 t-1 
t=Tk-1+1 t=Tk-1+1 

Tk-1 

+I (A3 - A2 + A2X3k-t - X3X2T k-t)Sv 
t=Tk-l+l 

(dk>1) 

Tk 

(a a) av 32 
t=Tk-1+1 

t 

(4.56) 
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Variance Calculation 

Equally-spaced model: 

Ru + RV(1 +Z0 RV 

RW =000 

RV 0 RV 

Tk-1 
1R(k) 

= A-1 LC GTk-tRý(GTk-t)T + A-1ý 

+lm e- 

(dk>l) 

Tk-1 Tk-1 

+ cov(GTk_iwi, GTk-jw ) 
.-.. ,.,.. j i=Tk_1+1 j=Tk_l+1 

(i2dj'd k>l) 

Tk-1 

+L cov(W GTk-tW ) 
t=Tk_1+1 

Tk .,, J-t 

(dk>1) 

Tk-1 

+I cov(GTk-twtoýT ) 
t=Tk-1+1 k 

(dk>1) 

Now 

6pT +ý26vT-1+ÖVT 
kkk 

cov(W 'MG 
Tkit) 

= cov( 0 
ox 

1X 

k32 

(4.57) 

I aVT i 

X 

(XTk-t+1 - xTk-t+l)(du + öV 
-)+ 

(ý + aTk-t+l 32t2t13223 

- xTk-t+l)ßV 
32t 

Tk-t 
- Alk-t)(Öut + g26Vt-1) + (A3 - X2 + A2X3k-t 

- ý3x2k-t) dvt 

(A3 - A2)ÖVt 
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This covariance is only non-zero for t= Tk - 1, in which case 

e2(X3 - '2 + 2ý3 2) 2(X3 - A2) ý2(ý3 - A2) 

i 
covariance =1000 

X- RV 32 
000 

X2(1 + 12X3) ý2 ý2 

=000 

000 

X2(1 - 

=o00 

000 

(since X 
23X= -ý2 irom (4.50). ) By symmetry, cov(GTk-thto 

k) 
is also 

non-zero only for t= Tk - 1, and is equal to 

{21 
-00 

1R ý2 00 
V 

e2 00 

Therefore 

Tk-1 Tk-1 

cov(W GTk-tw )+I c0Y(GTk-tw ,w) 
t=Tk-1+1 P`Tk Nrt t=Tk-1+1 ý. ý- t f-Tk 

I 2e2(1 - e2 ý2 ý2 

=A RV ý2 00 (4.58) 

ý2 00 
dR >1 
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Let fg(t) 

G 
Tk-t 

r= 
g(t + 1) 

0 

where 

ATk-t+l - ATk-t+l 

g(t) -32 A3- A2 

Then 

(4.59) 

ß(i)611 1+ 
12g(i)tVi-1 + (1 - 2g(i + 1))6Vi 

cov(GTk-' itGTk-iwý) = cov( g(i + 1)dui + ý2g(i + 1)6Vi-1 + (1 - 2g(i + 2))6Vi , 

6v1 

B(1)au1 + ý2g(WvJ-1 + (1 - ý2g(J + 1))6VJ 

go + 1)611 1+ 
ý2g(j + 1)avJ-1 + (1 - 2g(J + 2))IVý ) 

avi 

This covariance is zero unless j=i-1 or j=i+1 (1 j0 j), and 

if j=i-1 is equal to: 

e2g(1)(1 - e2g(i)) 

x-1RV e2g(i + 1)(1 - e2g(1)) 

0 

ý`9(i)(1 - 4Zg(i + 1)) 

ý2g(i + 1)(1 - 42g(i + 1)) 

0 

By symmetry, for j=i+1 the covariance term is: 

02g(i + 1) (1 - 2g(i + 1)) 

1-1RV 02g(i + 1)(1 - c2g(i + 2)) 

02g(i + 1) 

2g(t + 1) 1- g(t) - 42g(t + 1) 

ý2g(t + 2) 1- g(t + 1) - 42g(t + 2) 

01 

02g(1 + 2)(1 -0 2g(1 + 1)) 

ý2g(i + 2) (1 - 02g(i + 2)) 

ý2g(i + 2) 

02g(i) 

02g(1 + 1) 

0 

0 

0 

0 

Therefore 
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Tk-1 Tk-1 
U11 

LL cov(GTk-iwi'GTk-JW )= X-1R U21 
i=Tk-1+1 j=Tk-1+1 V 

U31 

U12 U13 

U22 U23 

U32 U33, 
d 

k>2 

(4.60) 

say, where 
Tk-1 Tk-1 

U11 = ý2( L ß(i) - ý2 L [g(1)]2) 
i=Tk-1+2 i=Tk-1+2 

Tk-2 Tk-2 

+ ý2( g(i + 1) - 02 [ß(i + 1) 12) 

i=Tk-1+1 i=Tk-1+1 

Tk-1 Tk-1 

12 = 02( g(i) - 02 g(i). g(i + 1)) 
i=Tk-1+2 i=Tk-1+2 

Tk-2 Tk-2 

+ 2( 
I g(i + 2) -21 g(i + 1). g(i + 2)) 

i=Tk-1+1 i=Tk-1+1 

Tk 1 

13 = ý2 Tl g(i) 
i=Tk_1+2 

Tk-1 Tk-1 

U21 = 02( I ß(i + 1) -21 ß(i). g(i + 1)) 
i=Tk-1+2 i=Tk-1+2 

Tk-2 Tk-2 

+ ý2( 1 g(i + 1) -21 g(i + 1). g(i + 2)) 
i=Tk-1+1 i=Tk-1+1 

Tk-1 Tk-1 

2` _ ý2 g(i + 1) -2 [g(i + 1)]2) 
1=Tk-1+2 i=Tk-1+2 

Tk-2 Tk-2 

-1 g(i + 2) -21 [g(i + 2)]2) 
i=TL-1+1 i--T 

k-1+1 

Tk-1 

1) U23 = q2 L g(i + 
i_Tk_1+2 
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Tk-2 

31 = ý2 1 g(i + 1) 
i=Tk-1+1 

Tk-2 

g(i + 2) U32 - 02i=Tk-1+1 

and 

U33=0 

Also, 

Tk-1 
v11 

LC GTk-tR (GTk-t)T = V12 
t=Tk-1tl 

V13 

say, where 

Tk-1 

V11 - Ru [g(t)]2 

t_-Tk-l+l 

V12 V13 

V22 V23 

V23 V33-d 
k>1 

Tk-1 Tk-1 

ß(t + 1) + RV2 [ß(t)]2 - 242 1 

t--T k-1+1 
t=Tk-1+1 

T -1 k 
+ZI [g(t + 1)]2 + dk - 1} 

t=Tk-1+1 

Tk 1 

V=R g(t). g(t + 1) 
12 ut=Tk-1+1- 

Tk-1 T1 

+R {ý2 g(t). g(t + 1) -1 g(t + 1) 
V 2t=Tk-1+1 2 

t=Tk-1+1 

(4.61) 

Tk-1 Tk 1 

- ýý 1 g(t + 2) + ý2 
21 

g(t + 1). g(t + 2) + dk - 1} 
t=Tk-1+1 t=Tk-1+1 
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Tk-1 

V13 = Rv(dk -1-2G ß(t + 1) } 

t=Tk-l+l 

Tk-1 

[g(t+1)]Z V22 =RL ut=Tk_1+1 

Tk 1 Tk-1 

+ Rv{ý2 x [g(t + 1) 12 
- 2ý2 g(t + 2) 

t=Tk-1+1 t=Tk-1+1 

Tk 
2G [g(t + 2)] 

2+ 
dk - 1} 

t=Tk_1+1 

Tk 1 

V23= RV{dk -1- 42 L g(t + 2)} 
t=Tk-1+1 

and 

V33 = RV{dk - 1}. 

R(k) is then formed by summing. the matrices given in (4.58), (4.60) 

and (4.61) and adding this sum to RW (given by (4.57)) when dk > 1. 

NOTE: If ýZ =0 (AR(1) model), all covariance terms vanish and 

(dropping the second row/column) we have: 

Tk-1 

R1, + RV RV IRp 
_1 

ýi(Tk-t) + Rv(dk - 1) RV(dk - 1) 

R(k) _+ 
t-Tk-1+1 

RV RV Rv(dk - 1) Rv(dk - 1) 

In order to define the quantities in (4.60) and (4.61) explicit- 

ly we note that: 
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Tk-1 Tk-2 
1 

g(t + 1) 
t=Tk-l+l 

(a) G g(t) _ 
t=Tk_1+2 

(b) 

(C) 

Tk-2 

1 g(t + 2) t=Tk-1+1 

11- 
Xdk-1 1- Adk-1 

32 

Tk-2 

L [g(t + 1)]2 
t=Tk-1+1 

1 
1- 713dk 2(1 - (X X3) dk) 

1- 

2 _ 
(1 _X)21_ X2 

-1- X2X3 
323 

1-ý2dk 
+2-1 

1-a2 
2 

T1T2 

(d) I [gct + 1ý]2 =I [g(t + 2)]2 
t=Tk-1+2 t=Tk-1+1 

2(dk-1) 

11-3 

(A3 - ý2) 21- A2 

2(1 - (a2ý3)dk 
1) 

1- 
2X3 

1- 12(dk-1) 
2 

1-X2 

11- 
X3k 1- 2k 

21-3 1- x2 

Tk-1 
1 

g(t + 1) 
t=Tk-1+2 

Tk-l 

G [g(t) ]2 = 
t=Tk_1+2 
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Tk-1 Tk-2 

(e) I 
g(t). g(t + 1) _I g(t + 1). g(t + 2) 

t--T 
k-1+2 t=Tk-l+l 

(dk-1) 
el(1 - (X x )dg-1) 1 1X3(1 - X2 

323 

(A3 - A2)2 1- a3 1- A2 A3 

-1 

4.3.5.4: MA(2). 

Restatement of the Equally-Spaced Model 

Iut 01 'It-i auf - miaut-i - n2aut-2 + avt 
vt -01 vt-1 + övt 

Derivation of the Unequally-Spaced Model 

Recall from Section 4.3.5.2 that G=G Vi >1 with G° = I. 

So 

(4.62) 

Uk 01 (k_1 k-1 01 611t - Tllaut-1 - r'26"t-2 + 6")t 

_+TL 
Vk 01 Vk-1 t=Tk-1+1 01 6vt 

f° 1 uk-1 
+ 

IPTk 
01 IVk-1 

+ 
SuTk n1SuTk-1 

SVT 

126UTk-2 + SVTk 

k 
Tk 

n1S'T 
-1 

- n2S'T 
-2 

+ 6vt 
kk t=Tk_1+1 (4.63) 

Tk 

I avt t=Tk-l+1 

(1 - a2(dk-1)) 
22 

1- a2 
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Variance Calculation 

Equally-spaced model: 

Ru(1 
2+n2+ 

RV Rv 
R+n= 
~W RR 

VV 

-1R (k) _ 
1{ 

Tck_1 
RV RV 

+ 
Ru(1 + nl + n2) + Rv RV 

x X- 
rW 

L} 
t=Tk_1+1 RV RV Rv R 

Tk-1 Tk-1 Öv ov 

+ cov( ) 

ilk-1+1 J=Tk-1+1 6v1 ovj 

Tk 1 avt Tk-1 dVt 
+I cov(c I)+I cov( ,W) 

t=Tk-1+1 ~Tk ÖVt t=Tk-1+1 ÖVt rTk 

and it is clear that all covariance terms vanish since 

cov(dvi, Svj) =0 Yi -74 j. So 

R (k) _ 

Tk Tk 

Ru(1 + n1 
2+ 

n2) +ýý 2 
t=Tk-1+1 V t=Tk-1+1 V 

Tk Tk 

t=Tk-1+1 
RV 

t=T 
RV 

k-1 +1 

R (1 + T1 + n2) + dkRv 
u 

dkRv 

dkRv 

dk 
VR 

(using (4.16)). 

(4.64) 

(4.65) 
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4.3.5.5: ARMA(1,1). 

Restatement of the Equally-Spaced Model 

11 1- ut-ý auf - naut-1 + dvt 
_+ (4.66) 

Vt 01 vt-1 sut 

Derivation of the Unequally-Spaced Model 

uk 1-0 dk 
11k_1 Tk 1 _4 

Tk-t auf - Haut-i + övt 

vk 01 uk-1 t 
k-1 +1 01 $ut 

We have shown in Section 4.3.5.1 that: 

i i i 1 _ q ý 1_ß 

0 1 0 1 

So 

uk odk 1 odk uk-1 

uk 01 uk-1 

Tk-1 Tk-1 
C Tk-tdp 

- Ti c Tk-tau 
+ 

t=TGk-1+1 
t 

t=TTk-1+1 t-1 

+ Tk 

svt 
t=Tk-1+1 

Tk 

1 6vt + auT 
t=Tk-l+l k 

- 
n6pT 

k-1 

(4.67) 

Variance Calculation 

Equally-spaced model: 

+ + R R 
V V R 

R 
V V 

(4.68) 
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Tk {Tk_t 
1- MTh-t R (1 + 1ý2 +RR 

R 
w(k) =X1cuvV 

t=TLk-1+l 01 RV RV 

irk-t 0 

1- ýTk-t 1 

Tk-1 Tk-1 

+II cov(GTk-iW, GTk_j ) 
i=Tk-1+1 J=Tk-1+1 f- ýj 

(iyfj, dk>1) 

T -1 T1 

+k cov(w GTk-tw) + 
k- 

cov(GTk-t; t, ý t=Tk-l+l kr rt t Tk-1+1 k 

(dk>1) (dk>1) 

Now 

Tk-tWt 
[Tktaut 

- noTk-taut-1 + 6Vt 

0. #. ÖVt 

Therefore the only non-zero terms in the final two summations occur 

at time t= Tk - 1, with 

-ns 
COV(cil 'ýý1' 1) = COV( T -1'2T 

)=1uo (4.69) 
k k- kk00 

In the double summation, non-zero terms arise when either j=i-1 

or j=i+1. 

If j=i-1, we have: 

Tk 1 1Tpi T-i 

cov( 

6}1 
i -1 

+ ov1 ýTk-i+ldu1-1 - ngTk-i+ldu 
i-2+ 

5v 

i-Tk-1+2 6vi 6v 
i-i 

k-l 
-nýTk-i. 0Tk-i+l 0 

ý1gL a µi--Tk-1+2 00 
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T -1 

-XR 11e Ck 2(Tk-i) 
0 

u i°TLk-1+1 

00 

e2(dk-2) )R 

e (4.70) 

00 

(as sum of geometric progression). Also, 

Tk Tk-t 1- 
Tk-t 

R(1 + n2) + RV Rv Tk-t 
0 

t=Tk-1+1 01 RV RV 1- ýTk-t 1 

R(1 + 
2)(1 

- 
2dk) 

2+ 
dkRV dkRV 

1- 
_ (4.71) 

dkRV dkRv 

So 

(1 + n2)(1 - ýt2dk) - 2r 
3(1 

- 42(dk-2)) - 2nß(1 - 
2)]RU 

+ dkRV dkRV 
1-ý 

R (k) _ 
dkRV dkRV 

(using (4.69). (4.70) and (4.71)) 

ý(1 + 
2)(1 

- ý2dk) -22º1W(1 - ý2(dk-1))]R 
+ dkRV dkRV 

ýu 
dkRV dkRV 

(4.72) 
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4.4 PERFORMANCE AND SENSITIVITY 

We now examine the performance of multistate dynamic lin- 

ear models with unequally-spaced data, using the measures outlined 

in Section 3.4. In order to do so, we again restrict our attent- 

ion to the linear growth, sinusoidal and AR(l) models, extended 

to the unequally-spaced case in Sections 4.3.1,4.3.3 and 4.3.5.1, 

respectively. In performance terms, we wish to compare our res- 

ults with the equally-spaced models, and so the data sets adopted 

are identical to those used in Section 3.4 except that observat- 

ions have been removed at a number of timepoints. 

In order to examine the sensitivity of these models to the 

'degree of unequal-spacing', we adapt each of the original series 

to produce four extra series. 

SERIES 1: Original data set (see Appendix 3), with observations 

removed at times: 22,24,26,28,43,45,46,47,52,53, i. e. 

10% of the series removed. 

SERIES 2: As Series 1, with additional observations removed at 

times: 55,56,57,58,59,60,62,63,68,69,70,81,83,84, 

91, i. e. 25% of the series removed. 

SERIFS 3: As Series 2, with additional observations removed at 

times: 9,10,11,15,18,20,65,66,67,73,74,77,78,79, 

85,86,87,89,92,94,95,96,97,98,99, i. e. 50% of the 

series removed. 

SERIES 4: Original data set, with observations removed at times: 

1,2,3,4,22,24,26,28,43,45, i. e. 10% of the series removed. 
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Series 4 has been created in order to examine whether or 

not an initial 'blank' period has any serious effects on perform- 

ance; in many medical monitoring contexts, however, this situat- 

ion is unlikely to arise. A more typical sampling pattern might 

be as follows: an initial intense monitoring period, followed 

by a gradual decrease in sampling rate as the patient is seen to 

improve; this decrease in rate might well be interrupted from 

time to time by clinically interesting events which would prompt 

a return to more intense observation. 

NOTES: 

(i) To calculate all the quantities below, the prior val- 

ues given in Sections 3.4.1.1,3.4.2.1 and 3.4.3.1 (for the lin- 

ear growth, sinusoidal and AR(l) models respectively) have been 

used. 

(ii) Since SSFE would increase purely on the number of 

observations, we use only the MAD for comparisons of forecasting 

ability. 

(iii) In terms of event detection, we retain the use of one- 

step-back probabilities, Oti) and the number of false positives, 

NFP (for which 01i) > 0.2, i 1), in order to evaluate perform- 

anceý and we use the final estimate of 9' mloo' in order to 

assess estimation capabilities. 
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4.4.1 LINEAR GROWTH 

TABLE 4.1 

00) 26 0(4) 36 0(2) 
51 

0(4) 
si 

1 
NFP M 

^0 
MAD 

Original 
- 

( 116 9 
Time 0.799 1.000 1.000 1.000 2 . I 

-7 8, 
7.9 

. Series 

Series 1 0.339* 1.000 0.999 1.000 3 
l-7.8J 8.8 

fi -11 Series 2 0.339* 1.000 0.999 0.999 2 
ý 6.9 10.2 

t -11 Series 3 0.688* 1.000 1.000 0.856 1 
f 5.71 15.5 

-1 Series 4 0.375* 1.000 1.000 1.000 4 
ý 

-7.8J 
8.5 

117.5 
Theoretical Values: 

( 

-5.0 

Recall: i=1- steady state 
i=2- level change 
i=3- slope change 
i=4- transient 

*Observation not available at t= 26; 027) used. 

tObservation 
not available at t= 81; 082) used. 

See Figues 4.1 to 4.4 for Kalman Filter results along with one- 

step-ahead forecasts (asterisks) for Series 1 to 4 respectively. 

NOTE: In order to calculate one-step-ahead forecasts we now have: 

fk rTk2kmk-1 

where 

rk GC 

(4.73) 

(c. f. (2.14)) 
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4.4.2 SINUSOIDAL MODEL 

TABLE 4.2 

0(3) 26 0(4) 36 0(2) 51 0(4) 81 NFP m 
^1100 

MAD 

al 0.213 0.997 0.992 1.000 0 
1 , 

90.0 9.1 
Series 15.4 

150 01 
Series 1 0.238* 0.998 0.987 1.000 1 . 

( 
90.0 9.8 

15.41 

t 150 0 
Series 2 0.238* 0.998 0.987 1.000 1 

( ) 
90.0 11.0 

. 153 

t 1 
Series 3 0.158* 0.997 0.984 0.960 1 

, 
91.1 15.8 

18.5 

Series 4 0.250* 0.998 0.990 1.000 1 
150.01 

90.0 9.4 
15.41 

Theoretical Values: 
150.0 

90.0 
15.0 

*Observation not available at t= 26; 027) used. 

tObservation 
not available at t= 81; 082) used. 

See Figures 4.5 to 4.8 for Kalman Filter results along with one- 

step-ahead forecasts for Series 1 to 4 respectively; Figures 

4.9 to 4.12 show on-line estimation of the 4-grid for these 

series. 
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4.4.3 AR(t) 
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4.4.4 CONCLUSIONS 

The results presented in the previous section suggest 

the following conclusions: 

(i) Early unequal-spacing in the time series has no obvi- 

ous detrimental effects on estimation, forecasting or event det- 

ection when compared with the more typical sampling patterns 

(Series 1 and Series 4). 

(ii) An increase in the 'proportion' of unequally-spaced 

data has an adverse effect on forecasting ability, represented 

by the mean absolute deviation, although with < 257, of the data 

missing this effect is minimal. With > 25% missing, however, 

the MAD is appreciably higher than for the complete series. 

(iii) The estimation of e is hardly affected at all by 

unequally-spaced data, although when we approach levels where 

50% of the data is missing, minimal adverse effects can be det- 

ected. 

(iv) For the sinusoidal model, the estimation of the nuis- 

ance parameter, 0, is largely unaffected by the presence of up 

to 50% missing data. For the AR(l) model, there appears to be 

more difficulty in estimating 0 when 25%% of the observations have 

been removed (though with 10% missing the results are similar to 

those obtained for the full series; compare Figure 4.17 with 

Figure (3.73). This could well be due to the information lost 

as a result of a misinterpretation of changepoint type (see next 

paragraph) which leads to poor estimates of first-order auto- 

correlations (see Appendix A4.2). 
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(v) The results show that event detection is largely un- 

affected when the event itself is of a sustained type. If, how- 

ever, the event has only a 'short-term' influence (e. g. impulses 

in ARMA models) there is a greater chance of misinterpreting the 

changepoint-type when observations are missing. For instance, 

an impulse may look very much like a transient if the immediately 

subsequent observations showing a gradual return to the steady 

state are not available. In this situation the information about 

0, which would have been available during the return-to-stability 

period, is now unavailable (see, for instance in Figure 3.73, the 

sudden shift in both location and height of the O-grid around 

t= 26, i. e. immediately following the induced impulse). More- 

over it is possible that we might miss the real signal (or, at 

least, the magnitude of the relevant probability may be lower) 

and, instead, signal a different changepoint-type resulting in a 

false positive. The number of false positives may also be in- 

creased by apparent discontinuities which are merely a feature of 

long gaps between recordings. 

000 
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APPENDIX FOUR 
FURTHER NOTES ON UNEQUAL-SPACING 

A4.1 GENERAL FORMS OF G FOR UNEQUALLY-SPACED DATA 
f 

A4.1.1 POLYNOMIAL GROWTH 

The linear and quadratic growth models of Sections 

4.3.1 and 4.3.2 fall within the general framework of polynomial 

growth models; linear growth being the first-order model, and 

quadratic growth the second-order model. 

For unequally-spaced data: 

and 

Gk = Gdk = 
f1 dk 

for the linear growth model 
P- r- 01 

1 dk 

=01 

00 

for the quadratic growth model. 

dk(dk + 1) 

2 

dk 

1 

Leri a A4.1. For a general polynomial growth model of order n, 

we have 

=Gdk= 
.k 

dk(dk + 1) dk(dk + 1)(dk + 2)... (dk +n- 1) 
1, dß 2 ..... 

",. " dk(dk + 1) 

'2 

Q 
"" 'dk 

(4.74) 
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where dk is the current time interval in units, dk e Z+ 

Proof: Suppose (4.74) holds for interval dk. Then, for an 

interval of dk +1 we have: 

1 

1 
rk 

N-k 0' 

1 

dý (d, 
_ 

+ 1) 

1 
"ak" "z 

0 r 

dk(dk + 1)... (dk +n- 1) 

-. ä 
.- 

.1 

dk(dk + 1) dk(dk '+ 1) ... (dk +n -1) 
1 dk +12+ dk + 1...... 

n+... += dk_ +1 

"d+1 

dk +'l 

'-1 

The (p + 1)th element of the first row of this matrix is: 

dk(dk + 1) dk(dk + 1)(dk + 2) 

k 2! 3! ... 

dk(dk + 1)(dk + 2)... (dk +p- 1) 

p! 
(n >p> 1) 

dk dk(dk + 2) dk(dk + 2)... (dk +p- 1) 

_ (1 + dk){1 +2+ 31 + ... +} 
PS 

(2 + dk) dk dk(dk + 3)... (dk +p- 1) 

k23 (p! /2! ) 

(dk+2) (dk+3) (dk+p - 1) dk 
=(d + 1) ... ( 

k23p1+ (P'/(P - 1)! )) -1 

(dk + 1) (d k+ 
2)(dk + 3)... (d + p) 

p! 

i. e. G' is of the form of hk with d. replaced by dk + 1. So if Gk 
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is correct for dk, it is also correct for dk + 1; but for dk =1 

we have: 

1 

" 1 
G= " =G 
rºk " ... O " 

'1 

and, by induction, ýk holds for any integer dk > 1. 

A4.1.2 ARMA MODELS 

Extending the structure of the ARMA models described 

in Section 2.3.5 we see that the ^ matrix for an ARMA(p, q) model 

is of the form: 

02 
..... ........ 

0 1- 
10 

J. p 1. 
" 1=1 

0 
G (4.75) 

-1. -0 0 

00 "1 

for the equally-spaced case. 

Lemma A4.2. 

11 Adk 0 
Gdk = S21ldkQ-1 _n2. cZ-1 (4.76) 

I0 '""adkl 

where the X's satisfy: 

P 
{(-a)p +1 (-1)J+1(-x)p-j. ei }=0 (4.77) 

j=1 

and where 
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1 P-1 
2 .................. xp-1 

p+l 

" 
P-2 
2 .................. ap-2 

p+l 

.................. 
Ä 

2 p+l 

1 .................. 1 

10.................. 0 

Proof: Gdk can be written in the form QAd -1 where A is a matrix 

with the eigenvalues of G on its diagonal and zeroes elsewhere, and 
01 

is a matrix of corresponding eigenvectors. 

The eigenvalues, X, of G satisfy: 

IG - XII =0 

i. e. 

1- 
e2 

... ................ 
eP 

1 "_A 0 ......................... 0 
". 1"ý'-Jý 0.... ................. 0 

r "1 " =Ä .0 

01-A 

*(1 -A) i.. -a"... 
_- =0 

=o 

(4.78) 

10 0p 
# (1 - 

W(41 - x) ."- 1' 
"-x 

}=0 (4.79) IMý 
"1 

-ý 1 *-x 



- 154 - 

Let 

and 

Then 

- a" 
1 

D=0 (4.80) 
P-1 

"' ' 0 
1 -A (P_1) x (P-1) 

Mi = 1. -x.. 0 (4.81) 

0" "`1 -a 

-A 
1.0 

D= -x .ý P-1 

r '1 -x (p-2) x (p-2) 

= -AD p-2 

Clearly, D1 = -A, so that 

Also 

Dp-1 = (-Jý)p-1 (4.82) 

-A. 
1ý '0 

M2=ý2 '. 

0 
'1 -1 (p-2) x (p-2) 

. e3 

- 1" -A ". rp ýý 

_ ý2D 
P-2 - M3 

_D-D+... 2 p-2 3 p-3 

_ 
P-2 

- 
P-3 

+ 04(-k)p-4 + ... 

_ 3(-A)p-(4.83) 
j-Z 
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Substituting (4.82) and (4.83) into (4.79) we have: 

P 
IG 

- 11 1_ (1 - 1){O - a)(-1)p-1 -1 (-Jt)p-'(-1)1} 

3=2 j 

p 

= (1 - 1) {(-a)p +1 ý(-a)p-J(-1)J+1}. 
j=1 

In order to see that 0. given by (4.78), contains eigenvectors of 

G we note that: 
01- 

q1 
..... 

qp 1- 

1 '. 

GO NN .'N 

1"0 
00 

C1 ýP-1 
...... 

P-1 

iLlýi 
2 P+1 

1.......... 1 

11 0"" ""..... 0 

1 1x2-1 + e2x2-2 + ... + ýP .... 
P+i + ... +P 

1 XP-1 
......................... xP+1 

P 

1 7ý2 
......................... P+1 

10......................... 0 

But, from (4.77), 

P 

JI1ý jxi-j = XP 
i vi 

So, 

1 ....... * xp+l 

1 xp 
2 

-1 
........ 

JP+1 
P, 

G2_ = A. 
i1........ i 

10 """".... o 
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A4.2 PROBLEMS ASSOCIATED WITH IDENTIFICATION OF ARMA MODELS 

When Re =0 in the ARMMA models described earlier we obtain 

an ARMMA structure for the observations themselves. In this case 

we may wish to use an observed time series to identify which ARMA 

model is most suitable for the variable under study. For the 

conventional, equally-spaced case, sample autocorrelations have 

proved to be popular tools for preliminary identification of AF. MA 

order. We examine the problems associated with this approach 

when the time series are unequally-spaced, using the AR(l) model 

for illustration. 

Before looking at sample autocorrelations, we note that the 

theoretical autocorrelations have an anticipated form, e. g. AR(1): 

yk = uk + Ek 

Pk - Vk = ýdk(uk-1 - Vk-1) + auk 

Vk = Vk-1 + 6vk 

where 

Tk 

auk _C 
Tk-tsl 

t=TkL-1+1 

Tk 

and ÖVk = svt. 

k 
t=T_1 +1 

For a classical, steady-state, time series we have Ek = SVk = 0, aft. 

So 

yk -V= ýdk(yk-1 - V) + Öuk. (4.84) 

Let %k = yk - V. Then Xk = ýdk%k_1 + auk' 
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(1) E(Xk) = E((dkX-1 + a1) 

= ýdkE(Xk-1) 

- 
edk+dk-lE(Xk-2) 

As 1 -* -0°' 
k 

E (Xk) - 11 edi = 

i=-oo 

< 1. since 
I1 

(since E(Ö}. tk) = 0, ii ) 

(ii) Var(Xk) = E(Xk) = E{(gdkXk-1 + 4k)2} 

= e2dkE (Xk-1) + 2ýdkE (Xk-1'S}lk) +E (Su 
2) 

_ 
edkE 

(X2 )+ X-1R (1 - ý2dk) 
k-1 11 

1- 42 

(since E(Xs, dut) =0 Is <t and 

E(Su2 = Var(ÖPk) 
2dk d )) 

1-ý 

i. e. Var(Xk) _ 02dkCo2dk-lE(%k-2) +A 
1R (1 - 

2d2-1) 

1 

+-1Ru 
(1 

2k) 

2 
1- 

= e2(dk+dk-1)E(X2 )+ 
Ru 

ý2(dk+dk-1) ) 
k-2 

1- 
2(1 - 

As i -F --00, 

k A-1R k 

Var(Xk) -* ý2i=-°°di + 
2(-1 

- X21=-°°di) 
1- 4) 

ý-1R 

-ý- 
1- ýZ 

(4.85) 

(4.86) 

k 
k 

since 
I di = O° (as di > 1, iti) 

2i=-oodi 
=0 (ý 1) . 

1=-X* 
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(iii) Yk(h) = E(Xk. Xk-h) 

= E{iýTk-Tk-hgk-h + 

_ 
Tk-Tk-hE(X2 

k-h 

(since E(Xk-h. aPt) =0 for t>T 

Tk-Tk-hX-1R 

u 
1- ýz 

So 
Ykk 

Tk-Tk_h 
pk(h) - Var(Xk) =' 

Tk 

L ýTk-tdut) 
. Xk-h} 

t=Tk-h+l 

(using (4.86)) 

Notice that the 'correlation' depends on k as well as h; for the 

equally-spaced case: Tk - Tk-h = h, i'k, i. e. pk(h) = ýh = p(h). 

Sample autocorrelations have, conventionally, been used to 

help in the identification of ARMA order. These statistics are 

based on correlations between successive observations, etc. assum- 

ing that these observations are one unit-apart. If this is not 

necessarily true, the meaning of, say, the standard first-order 

autocorrelation statistic, i. e. 

n 
L (yi - 

i)(Yi+l 

1 i=2 
pl-n n_ 

G (Yj '3'12 
1=1 

is somewhat meaningless since i is not now an index of time in 

units. A replacement for (4.89) is not immediately obvious, and 

it has been found that using merely those observations that are 

one unit apart in the calculation of p1 does not produce good 

(4.87) 

(4.88) 

(4.89) 

estimates of pl. 
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This problem is, as yet, unresolved. We note, though, that 

the three-dimensional c-grid plots we obtain from recursive model- 

fitting may help to provide some clues as to the goodness-of-fit 

of a specific ARMA model. For instance, Figure 4.21 shows how 

the estimation of ý is 'confused' when the model is inappropriate. 

In this case we tried to fit an AR(l) model to data simulated 

from an MA(l)-type mechanism. The outcome suggests natural un- 

certainty as to the true location of ý, and the resulting pattern 

is clearly very different from that which obtains when the model 

is appropriate (see, for instance, Figure 4.17). 

Similarly, Figure 4.22 shows how the estimation of ý, the 

phase, progresses for the sinusoidal model applied to the same 

data set. The 'switching' location of ý through 1800 suggests 

that the amplitude is wobbling around zero (since 

cos( + 180) = -cos(4)), i. e. the sine wave is inappropriate. 

Jones (1980) has pointed out, however, that likelihood- 

based techniques for model identification (e. g. Akaike's Inform- 

ation Criterion; Akaike (1974)) can still be used within a state- 

space framework, by calculating likelihood contributions recurs- 

ively. In the context of the work described here, we note that 

these contributions are of the form given by (3.44), even when 

the time series is unequally-spaced, and so these techniques are 

to be preferred to autocorrelation-based criteria. 

000 
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CHAPTER FIVE 

BIVARIATE MODELS FOR UNEQUALLY-SPACED DATA 

5.1 INTRODUCTION TO BIVARIATE TIME SERIES 

5.1.1 INTRODUCTORY REMARKS 

Medical monitoring often involves the simultaneous 

surveillance of a number of physiological and other functions, 

either directly or by way of a biochemical or physical indicat- 

or. In order to monitor a particular medical condition, sever- 

al alternative indicators may be measured, all of which reflect 

the state of this specific condition, thus giving rise to multiple 

time series. Since all these series are in effect, reflecting 

the same underlying 'disease process' they might be expected to 

be, in some sense, correlated. In particular, they might each 

reveal process instability simultaneously. It would seem sens- 

ible, therefore, to try to incorporate the possible interconnect- 

ions between the series into one overall monitoring model (rather 

than to apply the univariate models to each of the individual 
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series), thereby hoping to refine the discrimination between bio- 

logical and statistical variability. 

In this chapter we shall concentrate on the formulation of 

recursive bivariate time-series models. Even for the bivariate 

time series problem (as opposed to the, more general, multiple 

time series case), the process of model formulation is much more, 

complex than for the univariate case. Interpretation of model 

parameters, for instance, may not be quite so straightforward 

(a slope vector does not have as much intuitive appeal as a 

single slope parameter) and this may be a hindrance in the form- 

ulation of changepoint definitions. For example, we might be 

interested in a change in a slope vector, which is much more 

difficult to visualize than a change in a single slope parameter. 

Additionally, we will require much more knowledge about the system 

under study than in the univariate case, so that the interactions 

between the two series may be properly modelled. 

In line with the 'compartmental' approach to modelling, we 

shall attempt to combine knowledge of the univariate time series 

characteristics together with plausible relationships between the 

two series, including the possibility of causality and feedback 

(where one, or each, of the series is directly dependent upon some 

characteristic of the other, perhaps involving a time-lag; 

Newbold 1979). We must sound a cautionary note, however. The 

univariate sub-models adopted may bear very little resemblance 

to the governing mechanism when there is substantial feedback 

between the series (see Section 5.3.1). 

We are interested, too, in constructing a framework that 

can incorporate missing or, more generally, unequally-spaced 

data, if the models are to be of practical use in the on-line 
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medical monitoring context. Our main objective is the identifi- 

cation of changepoint phenomena and so, in the following sections, 

we shall extend the Dynamic Linear Model structure, outlined in 

the preceding chapters, so that this structure may be used for 

generally unequally-spaced bivariate time series. The next 

section gives a brief summary of previous literature related to 

this topic. 

5.1.2 BACKGROUND TO BIVARIATE TIME SERIES MODELLING 

Statistical analysis of multiple time series dates 

back to the work of Whittle (1953,1963) and Quenouille (1957), 

in which theory was developed to enable the fitting of vector 

autoregressions to sets of equally-spaced time-related data. 

This topic has subsequently attracted considerably more attent- 

ion since the publication of the book by Box and Jenkins (1970), 

in which the authors described the use of the ARIMA class of 

models for univariate time series analysis. Many attempts have 

been made to adapt these techniques to the case of multiple time 

series, both from the point of view of selecting the appropriate 

multivariate ARM. A model and also fitting the chosen model. 

Model identification has been examined by, for instance, Haugh and 

Box (1977), Parzen (1977) and Quinn (1980), while model fitting 

and estimation. have been discussed by, among others, Osborn (1977), 

Hillmer and Tiao (1979), Nicholls and Hall (1979) and by Anderson 

(1980). Also of note is the work of Tiao and Box (1981), in 

which the whole scope of multiple time series analysis, from 

model identification through to diagnostic checking, is present- 

ed for the general class of multivariate ARMA models, while 
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Newbold (1979) proposes a model-building strategy for bivariate 

time series involving causality and feedback. 

We are more concerned, however, with recursive, time-domain 

procedures for fitting pre-selected time series models, as has 

been noted in previous sections. The dynamic linear model frame- 

work, as presented by Harrison and Stevens (1976), incorporates 

the case of multiple observations at a single timepoint, although 

little attention has been given to the specification of between- 

series relationships. The technique, however, is recursive and 

allows for the individual observation series'to be modelled very 

differently: for example, one series might be modelled as a poly- 

nomial growth, while the other could be autoregressive in nature. 

This flexibility is not offered by previous techniques for multi- 

ple time series analysis. In addition, the capacity provided 

by the dynamic linear model to incorporate changepoint phenomena 

is vital, although an attempt has also been made to allow for 

'interventions' using Box-Jenkins techniques by Abraham (1980), 

where he extends the ideas proposed initially by Box and Tiao 

(1975) for univariate series. 

We would also like to be able to take into account unequally- 

spaced, or missing, data. There has been very little attention 

indeed, in the literature, given to the topic of unequally-spaced 

data in multiple time series. One or two articles, however, 

have emerged in recent years, most notably those of Robinson 

(1984) and Jones (1984). Robinson (1984) is mainly concerned 

with inferences, using a non-recursive approach, about fitted 

model parameters (i. e. parameter estimation and hypothesis test- 

ing) when the time series are irregularly-spaced. Jones (1984), 
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on the other hand, studies the fitting of continuous time auto- 

regressions to irregularly-spaced time series from a recursive 

viewpoint, extending the ideas presented initially by Jones (1981) 

whereby model fitting, parameter estimation and transfer funct- 

ion estimation may be carried out for unequally-spaced time ser- 

ies data, using a state-space formulation involving the Kalman 

Filter. Both of these papers generally assume that, although 

the data may be irregularly observed, either all components of 

the observation vector are available at any particular timepoint 

or none of them are available (though the paper by Mehta and Swamy 

(1974) does not make this assumption, when the authors examine 

a Bayesian analysis of a bivariate normal distribution with mis- 

sing observations). Clearly this is a restriction we do not 

wish to impose, since component observations from multiple medic- 

al time series need not be measured simultaneously. 

Finally, on the question of unequally-spaced data, it is 

worth reiterating a remark made by Robinson (1984), who points 

out that certain patterns of unequal spacing will result in the 

unidentifiability of certain models. For example, if an approp- 

riate model for a set of equally-spaced data is the first order 

moving average model, this model will be unidentifiable if every 

other observation is missing. 

In the next section we outline a general framework within 

which the dynamic linear model for unequally-spaced univariate 

time series (as described in Chapter 4) can be extended to the 

case of generally unequally-spaced bivariate time series. These 

models may be used for parameter estimation, prediction or change- 

point detection, though it is the latter which is the main focus 

of interest in this thesis. 
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5.2 GENERAL FRAMEWORK 

5.2.1 UNDERLYING ASSUMPTIONS 

Recall the dynamic linear model given by (2.1) and 

(2.2): 

yt = Ht0t + ýt 

8t = GAt-1 Wt 

where 'y is now the observation vector 
(y2t) ylt 

. 0. t 

In order to utilize knowledge of the univariate time series 

characteristics, we shall find it useful to partition many of 

the vectors and matrices involved into sub-matrices of suitable 

dimension. We shall write: 

ylt eft killt h12t. 

«t ' 
et Ht -, 

y2t e2t h21t ! 
22t 

G11 212 
G= 

G21 G22 

and 
I Elt a11tL R11 R12 

E_, wt =R= 
-t lE2t 

~t w2t ~e R12 R22 

so that many of the characteristics of the y1 series might be 

described by G11, etc. Notice that we need not restrict our 

attention to the case where yl and y2 arise from the same class 

of models, since. G11 may have an entirely different structure to 

G22: e. g. G11 could represent the linear growth model (see 
r 

Section 2.3.1), while M22 could represent the AR(1) model (see 

Section 2.3.5.1). In what follows we shall assume that the 

(5.1) 

(5.2) 

5.3) 
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system transition matrix, G, is time-independent for the equally- 

spaced model, so that the results of Section 4.2.2.1 are applic- 

able. Moreover, in accordance with the philosophy outlined in 

Section 2.1.2, we shall assume the regression matrix, Ht, to be 

of the form 

0 
~1 H= 

ý. t 0 

N? + 

where h and h are possibly time-dependent. In this way, we 

restrict ylt, for example, to depend solely upon 0 and not 
- it 

upon 82t; any steady-state interrelationships between the two 

series will be introduced via the system equation, (5.2). 

The assumptions P4.4 to P4.6, given in Section 4.2.2, 

will be retained: 

P4.4: c is independent of cs ifs t 

(5.4) 

P4.5: Ft, ht are independent of 9t-1, ýt (given Dt-1 (yl' "'' yt-1)) 

P4.6: e is independent of 
fit, 

-Vt. 
P't 

We shall not, however, assume independence between error components: 

e. g. Elt is not necessarily independent of c2t, etc. 

The assumption given by P4.7 will be discussed further in 

Section 5.2.2. 

With regard to unequally-spaced observations, we shall also 

retain the assumptions outlined in Section 4.2.1: 

P4.1: The observation error at timepoint k, 
k, 

is not dependent 

upon the sampling interval, dk. 
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P4.2: dk is not dependent upon 8k 

P4.3: The time 'unit' is the smallest conceivable interval, 

dk c Z+, between observations. 

Some care must be taken, however, with the definition of dk. 

Existing literature on bivariate time series with unequally- 

spaced data generally assumes that ylt and y2t are either observ- 

ed together or not at all. We wish to avoid this restriction 

since, very often in the medical context, only one of the observ- 

ations may be available at any time t. We, therefore, define 

dk as the time in units between the current observation (or 

observation pair), made at time Tk, and the previous observation 

(or observation pair), made at time Tk_l. In this manner, 'k' 

denotes the kth observation vector regardless of whether one or 

both components are actually observed, i. e. 

yk = 

frlTk) 

if both observations are available at 
y2T 

k 
time Tk 

y1Tk if only y1 is available at time Tk 

y2Tk if only y2 is available at time Tk 

e. g. if y k-1 - y1Tk-1 

fy-k 
= y2T (i. e. only 

k 
val will still be dk 

represents the past k 

(i. e. only y1 

Y2 observed at 

= Tk - Tk-1", 

-1 observatii 

observed 

time Tk) , 

If Dk_i 

on vectors 

we may write 

D 1- ( Yk) 
, -k 

" Ac-l'ý 

at time Tk-1) and 

the current inter- 

(Y1, Yr, """, Yk-1) 

(or part-vectors) 

x(5.5) 

(5.6) 

with yk defined by (5.5). 
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In terms of handling missing observations in the timepoint- 

to-timepoint recursion, we retain the ideas proposed in Chapter 

4 only if the full observation vector is observed at time Tk: 

i. e. we bypass the observation equation, (5.1), and update purely 

the system equation, (5.2), using previous variance estimates 

where necessary (see Section 4.2.1 for details). The procedure 

when only one observation component is available at time Tk is 

outlined in Section 5.2.2. 

Finally, in this section, we examine the implications of 

the introduction of bivariate time series for the multistate 

structure. Consider, for example, the case where each of the 

univariate series, yl and y2, can be represented by the linear 

growth model (see Section 3.3.1). Then, for each series, the 

simple multistate structure (disregarding changepoint combinat- 

ions) involves the following four states: steady state, level 

change, slope change and transient (as described in Section 3.3.1). 

Therefore, for the bivariate model, we have 16 possible states 

at any time t: e. g. Mt denotes ylt steady state, y2t steady 

state; Mt(2) denotes ylt steady state, y2t level change; ...; 

M(16) denotes y transient, y transient. 
t lt 2t 

In the most general case, if there are J1 states associat- 

ed with the univariate model for the y1 series, and J2 states 

associated with the univariate model for the y2 series, there 

will be J1 x J2 states associated with the corresponding bivar- 

late model. However, problems may arise with the size of the 

overall model framework when this approach is adopted. Firstly, 

we note that, at each recursion, J1 x J2 prior distributions for 

8 need to be updated to form Ji x J2 posterior distributions, 
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which must then be 'collapsed' back to J1 x J2 posterior distri- 

butions (see Section 3.2 for details). For the bivariate lin- 

ear growth model, for example, 256 model possibilities must be 

incorporated at each recursion. This problem is aggravated 

further if the model contains nuisance parameters, for example 

0 for the bivariate AR(1) model (in which the y1 series is AR(1) 

with autoregressive parameter 01, and the y2 series is AR(l) with 

autoregressive parameter 02, with J1 = J2 = 4, see Section 3.3.5.1). 

If we use a grid with 11 nodes for 01 and for 02' there are then 

30,976 model possibilities at each recursion! The difficulties 

associated with this are threefold. 

(i) If probabilities are attached to each of the possible 

models (see Section 3.2 for details), most of these probabilit- 

ies will be very small indeed. More to the point, if we wish 

to select the most plausible model at a particular timepoint 

we must choose one from 30,976 possibilities (in the AR(l) case). 

It seems likely, therefore, that discrimination between compet- 

ing models may be poor, implying not only poor changepoint dis- 

crimination but also poor ý estimation; this conjecture will be 

investigated in Section 5.4. 

(ii) Compounding the problem in (i), we have the possible 

inaccuracies imposed by the collapsing procedures. For the uni- 

variate case, it has been demonstrated that collapsing procedures 

based on the Sullback-Leibler divergence criterion are reasonably 

accurate and effective both in the context of forecasting and 

estimation (see Harrison and Stevens 1975) and in the context of 
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changepoint detection (see Smith and West 1983, and Section 3.4 

of this thesis). It is not at all clear, however, how well 

these procedures will perform given that we need to collapse 

from 30,976 models down to 16 models at each recursion (as for 

the AR(1) example). 

(iii) The power and accuracy of the computer that is used 

for implementing these algorithms may be crucial; it is not 

clear whether or not the computing time necessary will be too 

long for the models to be of practical use (bearing in mind that 

we were hoping to use the techniques for on-line detection of 

time series discontinuities in, perhaps, critical care situat- 

ions, where dk might be in the order of a few minutes). 

In the next sections, however, we disregard these problems 

of size and proceed with the development of theoretical results, 

on the assumption that problems of implementation will eventual- 

ly be overcome by developments in computing resources. It will 

be seen, in Section 5.4, that much of our concern about model 

size can be largely dismissed, when we investigate the performance 

of specific models on a number of data sets. 

5.2.2 RECURSIVE ESTIMATION 

In accordance with assumption P4.7 and equations 

(3.7) and (3.8), concerning error distributions, we shall assume 

that: 

nck 
N(0,1R ) 

w ti N(0, X Rw(k)) 

(5.7) 

(5.8) 
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0 '\' N(m X-ý0) (5.9) 

and that 

P(ek-1IDk-1'Mkil) ý' N(mkiCk-1) (5.10) 

where 1 (i) 
(i) 

__ 
I-lk-1 

(5.11) 
,m k-1 (i) 

m2k-1 

By adopting this formulation we restrict ourselves to one of two 

situations: 

(i) is known, so that the variances can be completely 

specified; 

(ii) A is unknown and must be estimated recursively, in 

which case the ratio of variances, var(Elk)/var(E2k), must be 

known. 

In order to appreciate the second alternative we note, from 

(5.7), using the definition of RE given by (5; 3), that 

var(Clk) _ X_1}11' var(E2k) = a-1822 

and cov(E1k'E2k) _ A_1R12 

}(5.12) 

Since R11 and R22 are fixed and prespecified, we must also be 

able to specify their ratio R11/R22 = var(Elk)/var(c2k). 

For the case where the variances are completely unknown, 

i. e. when their ratio cannot be specified, we must adopt an 

alternative formulation to that described in (5.7) to (5.12). 

The natural extension to this approach, for the case of unknown 

variances, is discussed in Section 5.2.2.3. Firstly, though, we 

shall consider each of the situations described by (i) and (ii), 
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in turn, in the context of generally unequally-spaced bivariate 

data. 

5.2.2.1 Known Variances 

Case 1: y1k and y2k Available at Time Tk 

From (5.1) and (5.2), we have: 

P()kIek, Mk3)) ti N(HT 8k)L RU 
)) 

(5.13) 
k 

and 

P(ekleg-1'Ak3)) ti N(Gkek-l, ý-iRýý)(k)) (5.14) 

where 

Gk = G, RW(k) = RW if dk =1 

(5.15) 
Tk 

G_ Gdk, R (k) C_ GTk-t R(GTk-t)T, if dk >1 k 
t=TLk-1+1 

(using (4.6) and (4.8), when the current interval is dk units). 

From (5.10) and (5.14), we have: 

Let 

and 

P(6 ID 
-, 

Mý(1), 
(1)) 

N(G m(i)x-1 G C(i)GT + R(i)(k)]) (5.16) 
ek ý-k 1 k-1 ýk. ýk-1 

ý,. 
k-k-1-k Alts 

P(iJ) =G C(i)GT + R(»)(k) (5.17) 
rk A. k-k-19k NU) 

Pk = Dk-1'% 
k) with yk = 

ylk 
(5.18) 

Iy2k 

In order to proceed with the recursion we must calculate the post- 

k: erior distribution for 0 
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M(i) 
Q) (i) (j) 

M(i) 
(j) 

P(6kl DkN-1'Mk )a p(ýký 
%k' -k-11 

Mk-1fMk )P(6kl Dk-1'M1 
-V? 

Ak ) 

exp[-2 <Yk-HTkk)T(R(j))-1(Nk--Tkek) 

_ 
(i) T (ii) 

+ sek 
'-G kmk-1) (ýk 

('))}] Ak - Gkmk-1 

This is the recursion outlined by Harrison and Stevens (1976), 

for vector 
^yk, 

for which the Kalman Filter equations yield the 

following result: 

P(BkýDkýM 
i1 3)) 

ý, N((i1)'A-'C(if)) 
rk 

where 

m(iJ) =G 
iii 

+ S(iJ) - ß(i)i 
k -kýc-1 kk .k 

(5.19) 

(5.20) 

C(ij) = p(13) - S(ii)F(ij)(S(ii))T (5.21) 
.%k -k -. k -k Nk 

and where f(i) F(ij) and S(ij) are defined by. (3.16) with G re- 
-k -k ^. k "º 

placed by Gk and R(j) replaced by R(j)(k). Also 

P(YklPk-l' lcil'MkQ)) 
ý, N(Aki)'ý -1 F 

o- kid) 
(5.22) 

gives the predictive density used for the calculation of multi- 

state probabilities as well as for providing forecasts. 

Notice that the calculation of 
Nm(ij) 

in (5.20), is depend- 

ent upon 
Fyk 

= 
11k1. 

y2k 
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Case 2: Only yik Available at Time Tk 

Theorem 5.2.1 

Consider the dynamic linear model described by 

yk = HT 
k 

8k + Nk (5.23) 

(5.24) 8k = Gkek-1 + Lok 

where 

ylk ''skI elk hl G11k G12k 
(5.25) yk 

1, 
H 
iºT k 

y2k elk k 
r2 ' 21k 

G22k 

P(ýkIMki)) = p( 
£1k 

(M(J)) ý, N(0, a_1REj)), 
£2k 

k 

(5.26) 

P(WkýMk1)) ý, N(O, A-1RW1)(k)) 

and 

E(i) E(i) WO) W(3) 
R(j) _ 

11 12 
R(j)(k) _ «11 a-12 (5.27) 

e E(i) E(i) ^w (W(3))T w(3) 12 22 x-12 '-22 

Assume that A is fixed and known, and that 

P. k-1tDk-1' Moil) 
', N(mil'a-1Ckii) (5.28) 

1ý(i) where D (D denotes that the system is in state k-1 = 
-k_2'Yk-1ý' k-1 

i at timepoint k-1. and 

i 
(i) 
lk-1 

(5.29) (i) 
m2k-i 

Then, if only y1k, and not y2k, is available at time Tk (i. e. 

Dk (Dk-1'y1k))' the posterior distribution for 
Ak 

is given by: 

P(ekIDk, 11 
ii 

,M 
ý)) 

% N( 
ib) 

X-lýkiý) (5.30) 
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where 

(i j) 
_ 

(i) (i j) 
- 

(i) 
ýc - Gkmk-1 + rk (y1k f 

lk (5.31) 

and 

C(if) = P(iJ) - S(13)F(ii) (i3) T 
(5.32) 

ik i- k o- kl lk 
(ýk ) 

with 

f(i) = lk 
[1 b]H PAM 

. -T Pkýk-1 k 

p(ii) p(i3) (i j) 
k _ 

ý- llk ' 12k 
_ i T 

(i) T( j) 
(k) +R G ý ( j) (ij) 

(p12k )p k w k-1 -k 
22k 

F(ib) = HT P(ii)H 
1 [1 0] [ ] + E(j) (5.33) 

ilk #Tkk ITk 0 11 

= hTP(ij)h + E(J) 1 -llk --1 11 

and 

S(ij) p(ij)HT 1 (ij) 1 [ ](F ) 
wk 0 -k -T kllk 

[c. f. (2.9), (2.10) and (2.14)]. 

Proof: Using (5.23) and (5.25), we have: 

y1k = h1e1k + Elk, (5.34) 

i. e. 

P(Y1kIek, Mg3)) ti N(blelkX_lEll) (5.35) 

From (5.24) and (5.28): 

P(9 ID M (D) 
'4 N(G m(i) ýý-1 

(11)) 
(5.36) 

f-k ýk-1 -1 " k-k-1 '-k 

where Pk(1J) is defined by (5.33). 
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Using Bayes theorem: 

P( M(i) 1ý(j)) P(Y le D, M(1)ýM(i))P(6 ID (i)N(j)) ek Dk'N-1' 
k 1k /-k rk-1 k-1 k -k r-k-1 1c-1 k 

exp{- 2[('1k 
hle1k) T(E11, 

)-1(y1k ý1 
1k) 

+ (8 -G 
(1))T(p(ii))-1(A 

-G m(i))]} 
. "k -k t-1 rk ýk o6krk-1 

= exp{- 
2 

Ak1J)}, say. 

Let 

(1) (ii) (i j) 
(i) glk (ij) 

_ 
P(ii) 

-12k Gkmk-1 
(1) '- k (ij) T (ii) 

2- 2k 
(P12k ) 

-22k 

and Q(ij) Q(ij) 
(ii) (i j) -1 _ ýº11k "-12k ek (Pk ) 

(Q(ij))T Q(ii) 
-12k 

222k 

For notational convenience, we may drop the superscripts (ij) 

and the suffix k when appropriate, and write, for example, Q11 

in place of @lik, ' etc. Then 

A(ij) _ k 

TT (61h - y1)(hlel - y1) 

E11 
TTTT "11 

t (el - gl e2 
21 T 

Q12 Q e2 -g 

hTh 

= 81(911 + E11 ). 
1 + e2222e2 + 82212e1 + 

e1Q12e2 

hTyhy t(5.37) - 
1(91151 

+ 212,12 +E 
11 

1) 
- (gl@11 + ß2Q12 +E 

11 

1)61 

62(@12 
1+ . 

9; 
Z-222 - (51-12 + F-2522)22 

+ {terms not involving 6}. 
0.1 



- 177 - 

Assume that 

P(6 ID ýyJ 
(i) (i)) 

% N(m(11)x 
1C(11) 

r. k �k $-1 k nk P-k 

(ij) T (ij) -1 (ii) 
exp{- 2(ek - mk ) (^k ) (8k - 

,k 
)} 

cc exp{- 
AB, 

say. 

Write 
D(ij) D(ii) 

(1j) -1 = rllk '-12k (r 
k) 

(D(ij))T D(ij) 
12k -22k 

Then 

B(ij) = gT - mT eT _ MT 
D11 212 el 

-E1 
k 

ý. 
r1 

m1 2 9,21 DT 
12 

R22 82 - 242 

= 81211e1 + 8222222 + e2D1291 + '121282 

(5.38) 

r-1 "11j, 71 + B12 )- (rýlýll + . 22Di2) 1 

(D 
T+ 

D22-2) - (m 
T+ 

. 2. o22). 2 

+ {terms not involving 8}. 

Equating (5.37) and (5.38) we get: 

D11--11+ý 
T 
1'4 11 

D22 = Q22 (5.39) 

212 = Q12 
10 

Dllml + D12m2 Q1191 + Q12 2+ hly1/El1 

and TT 

}5.40 

) 
D12m1 + D225 - '12.1 

+ e22g2 
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i. e. 

(c. f. 

when 

Therefore 

(C(ij))-1 _ 

Q11 

Q1 
2 

_ (P 
(i 

, -k 

T Q12 hlhl/Ell 2 

422 00 

3))-1 
+ rTký0, ýE11))-l El O]ýHTk 

(Ckii))-1 = (pkii))-1 + HT 
T 

(R(j))-1HT 
rkk 

yk _ 
ylk 

.ý Z y2k 

C(ij) = {(hkij))-1 + 
TT 

O]HTk}-1 
P- 11 

= P(ii) - p(ii)uTk111 03HTkP(i3)H 
krll 

+E 
«)}-1 

k .. k -T 0J ýT -k ý-T l0J 11 

x [1 O]HT P(ij) 
k 

(see, for example, Lindley and Smith 1972) 

P(ii) - S(13)F(ij)(S(ij))T 
k --k llk -k 

using the definitions given in (5.33). From (5.40), 

M' IT (j) 

(C 
(ij))-1m(ij) 

= (P(ii))-1 
Elk 

+ 
o-lý'lkýE11 

k Mk k (i) 

,. 2k 2 

which implies that, using (5.41), 

I (p(ij))-1 + 
tlh, /E(J) 

~k 0 

0 (i) 
(ij) -1 

ilk ij) 
p N ýk ) 

(i) 
g2k 

(3) 

+ 
h1y1kýE 

11 

0 

(5.41) 

(5.42) 

(5.43) 
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Substituting the definition of mki3ý, given by the theorem, into 

the left-hand-side of (5.43), we obtain: 

TT 

rp-k1 

gl 
+ F-1(y1 - h9 )+ 

~1h1ý1ýE11 

,,. 
pý2 0 

TT 

+ -i,. ' 11 
p 

ý1 
F-l(y -hg) 

00k0 
11 1 ý1ý1 

hTh /E 0 hT 
_ 

hTh g /E 
_ ^kl «1 + {I + 

1ý1 11 " pk} rl F111 (y1 h gl) + 
! -1s-1ý1 11 

QQ02 

= P-1 
g1 

+ 
F11/E11 

1P12h1E11 
hl 

F-1(y -h g) 
h1h1g1ýE11 

,. k 11 1 ýlý-1 0 g2 012 

= P-1 
gl 

+ 
(hl/E11) (Yl - hlfl) + (hi/Ell)hlgl 

o-k g2 0 

-kT 
=1 

g1 
+ 

hl1y1/E111 

g2 0 

and thus the identity in (5.43) is proven. 

Notice that the calculation of m(ij), in (5.31), is now 
11 

dependent only upon ylkand not y2k. 

Predictive Density 

In this case, the required predictive density is 

p(hlkIDk-1' 
_) 

(j) 
)' From (5.36), we have: 

P(8 ID M(i)ýM(j)) ý. N( 
(i), 

X -lp(iý)) (5.44) 
. ilk . ýk-1 1c-1 "7c Alk 

-ilk 

and so (5.35) and (5.44) give: 
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P(Y (D 
, M(i)r 

(i)) 
ti N(h g(1), x-1(hTP(ii)h + E(j))) lk . k-1 k-1 rl. lk -1-llk r1 11 

ti N(fik), A-1FI(ii 
lk) 

) (5.45) 

NOTE: For the case when only y2k is available at time Tk, the 

results are clearly of a similar form, due to symmetry, i. e. 

(1J) 
=G m(1) + S(iJ)(Y - f(1) (5.46) mk 2k-k-1 

k 2k 2k 

and 

C(ii) = p(ii) - S(hi)F(ii)(S(ii))T (5.47) 
Zk jk r-k 22k -k 

where 

[0 1]H G m(i) 2k PTk-k-k-1 

[0 1]HTp(ij)H 
k110 

I+ E(j) (5.48) 22k ý-T -k ý-T J 22 

and 

S(id) _ p(ii)HTr1)(F(ii))-1 
rk -k -T k 

l1 22k 

5.2.2.2 Known Variance Ratio 

Case 1: ylk and y2k AvaiZabZe at Time Tk 

For the case where A is unknown, we have: 

(1) 
PU kjek, 

Mký), X) ti N(HT Ak, X_1Rý3) (5.49) 
k 

and 

P(A ID 
, M(i), M(ý), ý) N(G m(i)nx-1P(ij) (5.50) 

ftk 
Rk-1 k1N --kýk-1 -k 

Assume that 

P(XýDk-1' 
1) 

ti G(ak-iýßkii) (5.51) 
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where U ti G(a, b) denotes the gamma distribution with parameters 

a and b. Using Bayes theorem, 

P(ek, lIDk, M 
ii'Mki)) 

a P(YkIDk-1'ek'Mki1, Mki)ýX)p(6k, XIDk-1' 
ki1, 

Mki)) 

T (j) -1 ak-1-1 (i) 
a exp[- 2(HTkek k) 

(RE ) (HTkek -r k)]. 
X eXp[-ýßk-1] - 

x 
d8/2exp[- 

-ý(A Gi))T(P(ij))-1(A 20 )] 2k rk- -1 r-k . "k rk-1 

cc ade/Zexp[- 
L(6 

- m(ij)T(C(ij))-1(e - ý(ii))]ýXak-lexp[-Xß(ii)] 
2k -k -- kk ýk k 

where (de x 1) is the dimension of ek, and m(ij) and C(ij) are 

defined by (5.20) and (5.21), with 

ak = ak-1 +1 (5.52) 

ß(ii) = ß(i) + i(y f(i))T(F(ii))-1(y - f(1)) (5.53) 
kk, kk e" kýk rk 

and 41) and N 
kii)as defined by (3.16), so that 

P(6k) Dk, Mkii, Iº1(j) X) " N(m(i3) 'X-1 
('J)) (5.54) 

and 

p(XIDk, Mkil, M 
»)) 

ti G(ak, ß ii) 
). (5.55) 

o. - k 

This is the standard result (see, for example, DeGroot 1970 for 

details) involving, as before, the Kalman Filter update for m 
i3) 

Mk 

and C('J); the predictive density, p(ykIDk-1' 
kil'Mki)), can be 

shown to be proportional to 

Nk(iý))- (ßki))ak-l(ß(ii))-ock (5.56) 

(see Equation (3.18)). 
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Case 2: Only ylk Available at Time Tk 

Theorem 5.2.2 

Consider the dynamic linear model given by (5.23) to (5.27), 

and assume that: 

and 

P(ek-1IDk-1'bk 
-1-ti 

N(miii, ý-1Ck-1) (5.57) 

P(XID , Mý(i)) ' G(a , ß(i)) (5.58) 
, -k-1 k-1 k-1 k-1 

Then, if only y is available at time T (i. e. D= (D y )), Ak-k P-k-1, lk 

the posterior distribution for 8k and A is given by: 

and 

P(8 ID ii i), X) ".. N(- 
i3) 

X-1Dki1)) (5.59) 

P(a (Dk, Mki1, Di(i) ) ti G(CL 
(11) 

) (5.60) 

where m(ij) and C(ij) are given, from Theorem 5.2.1, by (5.31) and k -k 

(5.32), respectively, and where 

ak = ak-1 +1 (5.61) 

and 

ß(i3) = ß(i) + i(Y - i(i))2/F(11) (5.62) k-1 lk lk llk 

[c. f. (5.52) and (5.53)]. 

NOTE: An important special case, that of the static normal lin- 

ear model, is examined in Appendix A5.1. 
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Proof 

Using Bayes theorem and (5.34), (5.36) and (5.58), 

P(8 XID 
,M 

1), 
M(1)) cl p(Y I6 

,D ýM(i)ýM(1) Ä)P(6 , ýID M(1) M(1) 
rk tk k-1 k lk . ok ^-k-1 k-1 k ek . ý. k-1, k-1 -ý 

a ade/2Aak-1+1-1eXp{- 
A(Ylk rh11k 
21 (j) 

11 

From (5.59) and (5.60), 

(5.63) 

p(6 , 
XýD 

, M(i), M(j)) a ade/Zexp[- 
x(6 

- m(iý))T(C(ij))-1(6 - m(11))] 
-, k Pk k-1 

N 
2., -k 

M- ýs ^k 
2k 

x Xa -lexp[-Wij)] 

Equating (5.63) and (5.64), we obtain: 

ak = ak-1 + 

and 

(6k - 
41i))T(c(ui))_l(ek 

- mkii) + 2ßkij) 
b. 

2! i 
Z 

1k 
: 

12lk) 
G 

(i) T (ij) -1 
- 

(i) 

E(j) 
+ (Ak - -k-k-1) 

(ýk ) (-k 
-kmk-1) 

11 
+ 2(') ßk-1 

Since ßkii and 
kij) 

do not contain terms involving 6, the solut- 

ions for m('J) and C(ij) are identical to those given in Theorem 

(i)J} 
x( 6G 

k- -Ok-1ý 
+ 2a(i) 

k-1 

+ (8 -G m(i))TP(ii))-1 
,. k -k-k-1 ^k 

(5.64) 

5.2.1. Upon equating the terms not involving A (using the not- 

ation from Theorem 5.2.1, and dropping superscripts, etc. where 
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convenient) we find: 

mT(D in +Dm)+ mT(DT m+Dm)+ 2R = gT(Q + %25 ) 
ý1 -11-1 -12^2 -2 -12-1 '-22-2 '7t ý1 11g k1 2 

TT 
+ 2(ý12g1 + 2-2282) 

2 
yl 

+E11+2k-i 

hT Y m 
(Q 9+Q+ 

1) 
+ 

T(@T 
g+@)+ 2ß 

r-1 -11, -1 
212. Z2 E 

11 ý-2 "'12 ý-1 -22E2 k 

9 1(Qllg1 + Q12g2ý + g2(Q12g1 + Q22 
2) 

2 
yl 

+ E11 + 2ßk-1 

(using (5.40)), i. e. 

ßk - ßk-1 +{(gl- mi)(Q11ý1 + @l2ß2) + (g2 - m2)(Q12g1 + Q22 E2) 

2TT 
y+ 

E11 E11 

2TT 

=ß+{(gT- mT 
T- 

mT P-1 
L+ yl 

_ 
21h1y1 

k-1 ýl -1 
g 
-2 ' 2].. k EE} 

g2 11 11 

2T 

=ß+ I{ - 

(Y1 - '-lgl) 
h+ 

Y1 (Y1 - ^1 l) hP ~iyl 
k-1 F11 ý1-1 E11 F11 ^1o, 11 E11 

hT 
lYl 

_T 1 E11} 9 

(using (5.31) and (5.33)) 

T 
2 

F11 
2_ ylhlpllhly 

+l k-1 2F11 
(h R1ý - Ylh 

^1gl 
+ E11 yl 

E11 

TTT 

+ 
'-1-1'1pllhlyl 

- 

F119lh1y1} 

E11 E11 
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=ß+1 (h ß) 
2-yhß+ 

y2 _ 
ThTY 

k-1 2F11 rl d lýll 1 E1ý-1 1 

(since FhP hT 
11 

_1+ 
ý1 11_1 

E11 E11 

12 ßk-1 + 2F 
11(y1 

- hlgl) 

i. e. 

(ii) = ßM + k k-1 

_ 
(i) 2 

1k 
ilk 

Predictive Density 

Clearly, 

(i J) 
l lk 

M(i) M(j) 
(i) -1 (i j) 

P(Y1klDk-1' k-1'N , 
X) ti N(flk ,ý Fllk ) (5.65) 

and, from (5.58), 

M (j) P(XIDk-1' k_,, 
) ti G(ak-1'ßkilý' 

Now 

P(Y ýD 
, 

(N1)ý (3)) 
P(Y ID 

, 
(i)ý (J)D 

- , M(i)r 
(J))dX 

lk . k-1 -1 lk . -k-1 -1 k 
ý. 

-k 1 k-1 k 

(i) 2 

a (F(i3))-1(ß(i))ak-1 Xi+ak-l-lexp{-X 
ß(Y1 - fik ) 

llk k-1 
j 

F(ii) llk 

+ 
ki]}dý 

= (Fick, )-i(ß(11)ak -11 1ak-iexp[_Xßk]dX 

« (Fllk))-'(ßki))ak-1(ß(ij))-ak (5.66) 
-1 k 

[c. f. (5.56)]. 
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NOTE: For the case where only y2k is available at time Tk, the 

result is clearly of a similar form to that given by Theorem 

5.2.2, i. e. 

(i) 2 (Y 
2k - f2k ) 

(5.67) k rk-1 + 
F(i3) 

22k 

5.2.2.3 Unknown Variances 

When considering the problem of sampling from a bi- 

variate normal distribution, for which the mean vector, e, and 

covariance matrix, C, are unknown, the standard Bayesian conjug- 

ate analysis (see, for example, DeGroot 1970) proposes a joint 

Normal-Wishart prior distribution for 8 and C. This approach 

poses a number of difficulties when put in the context of multi- 

state dynamic linear models for unequally-spaced data. Recall, 

from (5.1) and (5.4), that: 

it = hleit + cit (5.68) 

and 

y 2t ^2e, 2t + £2t (5.69) 

If we suppose that: 

var(Elt) _ A11Ell, var(c2t) = 21E22 

and cov(eit'E2t) _A 12 E 

}(5.70) 

12 

then 

R var( 
£it [x1Ell ý12E12 

(5.71) 
f-C £2t X12E12 A21E22 
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Let us attempt to write RC in the form 

R= AE (5.72) 
f -r- w� 

where 
-1 X -1 

12 
1 

(5.73) 
X12 ý2 

and 

E= 
e11 e12 

(5.74) 

e21 e22 

Then 

xlell + l 
A 

12 e21 A11e12 + x- 
1 

12 e 22 
AE _ 

x-1e + 12 11 
x-1e 

2 21 
x-1e 

12 12 + X-1e 
2 22 

If AE is to be a covariance matrix for c 
. -f, 't, 

it must be symmetical, 

i. e. 

X-121 + A21 e21 = X-11e12 + X-121 (5.75) 

Now, e21 = e12 = 04 ell = e22 = e, say, so that 

e0 
E_= eI. (5.76) 
~0e 

If e21 yf 0 or e12 y 0, the elements of E must be constrained to 

satisfy (5.75). For instance, if we set a12 =0 (i. e. 

cov(c lt'E2t) = 0), (5.75) yields: 

11 e12 Al 
A2 e21 = 7l 

1e 12 * 
e21 

= ý2 

But, since we need to pre-specify the elements of E, this amounts 
N 
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to having prior knowledge of the ratio var(Elt)/var(e2t), in which 

case the results of Section 5.2.2.2 are applicable. We see, 

therefore, that RE cannot be expressed in the form AE (nor EA) 

unless E= eI, where e is a scalar. In this case, 

alle x- 1 

Ae 
ý11e x-1e 

i. e. 

var(clt) = Xlle, var(c2t) = A21e 

and cov(cit, c2t) = A12e 

Suppose, however, that we wish to incorporate a multi-state 

structure into our overall error structure, in order to accommodate 

model discontinuities. We must use the scalar, e, for this purpose, 

and so we must specify e0), j=1, ..., J. In this case, though, 

if e(j) is large this will cause an aberration in clt and c2t, so 

that simultaneous transients for yl and y2 will be induced. It 

is impossible to manipulate e(3) so that a change is induced in 

only one of the series. In other words, the multi-state struct- 

ure (in its present form, at least) cannot be used when we assume 

an unknown covariance matrix, A. 
r- 

Aside from the difficulties encountered by the imposition 

of a multi-state structure, there is a further problem associat- 

ed with the use of. a joint Normal-Wishart prior distribution when 

the data is unequally-spaced; namely, that this joint distribut- 

ion is not conjugate unless both observations are available at 

(5.77) 

(5.78) 

a particular timepoint (see Appendix A5.2). This is mainly a 

1 
consequence of the fact that if A has a Wishart distribution, 

r%O 
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then (A11)-1 = X1 does not have a Wishart distribution (see, for 

example, DeGroot 1970 for details). Mehta and Swamy (1974), how- 

ever, show how prior-to-posterior analysis can proceed with alter- 

native choices of prior distribution. 

The problem of unknown variances within the unequally- 

spaced bivariate multi-state dynamic linear model context is, as 

yet, unresolved. In Section 5.4, though, we examine how sensi- 

tive the models are, in practice, to a misspecification of the 

variance ratio, var(Cit)/var(C2t), having assumed that this ratio 

must be specified a priori. 

5.3 BIVARIATE DYNAMIC LINEAR MODELS 

5.3.1 DERIVATION OF UNEQUALLY-SPACED BIVARIATE MODELS 

5.3.1.1 General Convents 

Pairs of time series arising from periods of medical 

monitoring are likely to be correlated if each of these series 

reflects the progress of the same medical condition. That is 

to say, in the steady state, when the patient's condition is fol- 

lowing a stable course, there will be some form of correlation 

between the two series. The situation, however, may be much 

more complex than this. It may be that the level, say, of the 

first series is directly dependent upon the level, say, of the 

second series, so that if the first level were to rise, the 

second level would rise too, either simultaneously or, perhaps, 

after some time lag. Using the phraseology of Newbold (1979), 

this results in unidirectional causality. Bidirectional caus- 

ality (feedback) would arise if the level of the second series 
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is also dependent on the level of the first so that, for example, 

a rise in the second series causes a rise in the first which, in 

turn, causes a further rise in the second, and so on. 

There are a number of ways in which we can incorporate 

such behaviour into the dynamic linear model framework. Firstly, 

we note that there is a distinction between causality (either uni- 

or bidirectional) in the steady state (henceforth referred to as 

steady-state causality) and causality with respect to change- 

points (henceforth referred to as changepoint causality). The 

former is of the type described in the previous paragraph, where- 

as the latter implies that a discontinuity in one series would 

induce a discontinuity into the other. In this section, we shall 

examine each of these types of causality, in turn, also taking 

into account the possibility of unequally-spaced data. 

By way of introduction, we note that the concept of steady- 

state causality can be introduced through the off-diagonal ele- 

meats of the bivariate system transition matrix. Recall the 

DLM described by (5.1) to (5.4): 

no 6ý y1t 
=t+ 

slt 
(5.79) [2]t h2 e2t C2t 

11t1 91, G'12 elt-1 Wlt 

+ (5.80) 
e2t 

1 
22 e2t-1 ý2t 

where G11 is the system matrix for the univariate series, y1t, and 

G22 is the system matrix for the univariate series, y2t. Then, 

if G=0 and G=0, this would indicate that 0 and 0 are 
-12 0- #-21 r"It 4-2 t 
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independent processes and that no steady-state causality exists 

between them. If, on the other hand, G 
12 = 0, but G10 this 

would indicate that 81t-1 has a direct influence on 0 (i. e. 

unidirectional causality exists) and, if both G12 and 
N 21 are 

non-zero matrices, there will be feedback (bidirectional causal- 

ity) between the two processes. 

We have assumed, here, that we are able to model each of 

the univariate series independently of one another, via G11 and 

G22 and then stipulate the interaction between the series using 

G and G21. Some care must be taken at this stage of the model- 
# 12 P- 

ling procedure, however, since non-negligible feedback may make 

the modelling of the univariate series very tricky. Figure 5.1 

shows a typical example of this problem. At first glance, it 

may seem reasonable to wodeleach of these series by the sinusoid- 

al model, outlined in Sections 2.3.3,3.3.3 and 4.3.3, and then 

to investigate the interrelationships between the two series. 

However, these (simulated) series were, in fact, generated from 

a bivariate linear growth model with feedback, i. e. 

11 
g11 - 922 

01' 

with 10.2 0.2 

r12 00 

and 
1-0.1 -0.1 

-21 00. 

It could, of course, be argued that even if we had mis-modelled 

the individual series by assuming that they were sinusoidal, the 

effect this would have in the monitoring context might be minimal. 



1 . 1.44ltII1411el1114........... "........ 11.... ". ".. 111 f 1v1 ........... ...... I .......... .. 

FIGURE 5.1 
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It would be very misleading, though, if we were to suggest that 

the mechanism which generated these series was sinusoidal in 

character. 

The sudden change in the pattern of behaviour that can be 

seen towards the end of the series shown in Figure 5.1, is due 

to an induced change in the slope of the uppermost series at 

timepoint t= 90. Notice that this discontinuity has caused 

the lower series to be discontinuous after a time lag of one 

(i. e. at t= 91). This is a feature of steady-state causality, 

in that changes in one series tend to lag changes in the other 

by one timepoint. This restriction can, in fact, be overcome 

by suitable manipulation of the matrix G and the vector wt. 

Consider, for example, the simple bivariate steady DLM given 

by: 

ylt lilt Elt 

'2t 
-2 

U2t 
+ 

E2t 

Pit lit-1 15it1 
112t 112t-1 aunt 

for which 
10 

G 
r 01 

Suppose that we discover that the level of the y1 series may also 

be influenced by the level of the y2 series with a time lag of 

three units, i. e. ji it 
is dependent upon 11 2t-3' Then we may 

write 

(5.81) 

(5 , 82) 

(5.83) 

ult =u lt-1 + Cult-3 + suit (5.84) 
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u2t = u2t-1 + dp2t (5.85) 

where the scalar c indicates the strength (and direction) of the 

dependence of uit on 11 2t-3' 
From (5.85), we can see that: 

11 2t-3 - 12t-1 - (612t-2 + 6'2t-1) (5.86) 

Substituting this result into (5.84) gives: 

lilt - lilt-1 + cu2t-1 - c(au2t-2 + su2t-1) (5.87) 

and hence 

1lilt -1 
lilt-1 

+ 

cult-1 - c(du2t-2 + 5"2t-1) 
-. 2 

cl 
(5.88) 

u2t 01 u2t-1 6112 
t 

so that causality has been introduced via the system matrix, G, 

and the time lag involved has been introduced by manipulation of 

wt 

An alternative way of introducing changepoint causality 

involves a relaxation of the assumption given by Equation (3.6) 

in Section 3.1.2, i. e. 

P(M(J)lh) = poý) J 1ý ..., J, vt, 

which defines the state occupied at time t to be independent of 

all process history. In Section 5.3.1.3 we investigate the 

case where the state occupied at time t is assumed dependent 

upon the state occupied at time t-1: 

P(M(»)lM(i)) _ 
(1)P(j) 

(5.89) t t-1 0 
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and we show how further lagging may be incorporated into this 

Markovian state-transition structure. 

As a final comment, we note that concurrent changepoint 

causality (when the series exhibit discontinuities simultaneous- 

ly) may also be incorporated into the dynamic linear model frame- 

work by allowing the off-diagonal elements of RES) and Rte) to 

be non-zero and, possibly, state-dependent. For example, for 

the DLM given by (5.81) and (5.82) we have: 

Iau R(3) R(J) 
var( 

lt IM(F)) _ X1R(3) = A-1 Ill uu 
sa (5.90) 

au tw 
R(j) R(3) 

' Yý 

2t uu )12 

If we believe that simultaneous level changes were possible, we 

would set Rüü> >0 for some, if not all, J. 

5.3.1.2 Steady-State Causality 

We now examine the way in which 

-11(dk G12(dk) 
ýk 

G21(dk) 
^G 22 

(dk) 

is formed, when the interval between successive observations is 

r dk units (dk CL), given that we have knowledge of the univar- 

late transition matrices, G1i(dk) and G22(dk). We shall consid- 

er, in turn, the cases where there is (i) no causality, 

(ii) unidirectional causality, (iii) feedback in the equally- 

spaced system transition matrix, 

X11 912 

G21 r22 
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Block-Diagonal Transition Matrix 

Assume that there is no causality between elt and 6 -Vt. 

Then we may write: 

X22 

According to Equation (4.6) given in Section 4.2, when the inter- 

val between successive observation vectors (or part-vectors) is 

dk units, we have: 

G11(dk 
ýk 

921(dk 

G12(dk) 
Gdk 

G22 (d 
k 

(5.91) 

(5.92) 

and, using (5.91), it is clear that: 

dk 
G11 0 

k 
Gk 

2ý 
22 

so that 

G11(dk) = Gila G12(dk) = Q, 
^G 21(dk) =0 and G22(dk) = 

dk 

The usefulness of this particularly simple identity lies in the 

fact that, since we have derived Gdk and G 
22 

for a number of 11 

univariate models (see Section 4.3), we need not derive any addit- 

tonal results for the specification of ^k for the bivariate model. 

Note that in this instance, and in the following instances, RW(k) 

(the system perturbation covariance matrix) may be calculated 

using'either (4.8) or (4.9) once Nk has been derived. 

(5.93) 

(5.94) 
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Unidirectional Causality 

Assume that Alt is dependent upon 
elt-1 

(or upon some earli- 

er value of 61, using the arguments put forward in Section 5.3.1.1) 

and that 0it is not dependent on 0 
2t, 

fit, so that 

G11 
G= 
~ G21 

0 r 

222 
(5.95) 

where G21 0. 

Lema 5.3.1 

For any dk c 'L 

d k 
G= Gdk 

r1 0 

k G21(dk) '22 

where F21(dk) satisfies the recurrence relationship: 

-21(dk) 
= 

-G 21. 
G11-1 + 

N22.221 
(dk - 1) 

Proof 

Suppose (5.96) and (5.97) hold for dk = di - 1. Then 

G= Gd3 = G. Gd3-'1 = 
~ý 

G11 g d -1 G11 0 

1 G21 A-2 G21(d3 - 1) G22- 

Gii 0 i; 

2i(dj)3 

(5.96) 

(5.97) 

where 
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e-21(dj) "21'1-11-1 + G22'^21(dj - 1). 

Therefore, if (5.96) and (5.97) are true for dk = d3 -1 they 

are also true for dk = di and, since they clearly hold for 

dk = 1, in which case Gk = G, they must therefore be true for 

all dk C Z+ 
, by induction. 

Notice that the block-diagonal part of Gk may, once again, 

be identified directly in any particular modelling application 

from the results of Section 4.3. Notice, too, that the differ- 

ence equation given by (5.97) involves matrices and its general 

solution, therefore, is dependent upon the elements of these 

matrices. As long as q is completely specified, however, the 

solution of (5.97) is relatively trivial. For the case where 

Gll, G22 and G21 are scalars, (5.97) yields: 

dk1G 
dk-1 11 t 

G21(dk) = G21'G22 
t=O 

(G22) 

Moreover, if IG11/G22I"< 1 this relationship simplifies, still 

further, to: 

dg dk 
G21(G22 - G11) 

G21(dk) = G22 - G11 ' (G11 3$ G22) 

N. B. For the case when G21 =0 but G12 0, it is clear that 

similar results may be derived, due to symmetry. 

Example: For the bivariate steady model with unidirectional 

(5.98) 

(5.99) 

causality, given by (5.88), we have: 
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1c4G 
dk 

=1 
cdk 

0101 

using (5.96) and (5.98). 

A couple of specific models involving unidirectional caus- 

ality will be examined in more detail in Section 5.3.2. 

Feedback 

Assume that 62t is dependent upon elt-1 and that alt is 

dependent upon 
e2t-1'' 

so that 

G= 
G11 G12 

(5.100) 1221 
G22 

where G12 yl 0 and G21 jo 0. 
o- P- 

In this case there is no explicit general form for Gk 

(except for the conventional eigenvalue/eigenvector represent- 

ation) and it is certainly true that G11(dk) Gii, etc., in 

general, since it is easy to show that 

LGh1(d21(dk 

) g22(dk) 

where 

G11(dk) = G11. G11(dk - 1) + G12. S 
1(dk - 1) 

G12(dk) = G11. G12(dk - 1) + G12. G22(dk - 1) 
(5.101) 

G21(dk) -F921'9'il(dk - 1) + G22. 
-ý21 

(dk - 1) 

-22(dk) -21'r12(dk - 1) +G 22'$22( k- 
1) 

We note, once more, however, that this set of recurrence relat- 

ionships can be solved as long as N is completely specified. 
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In this case, however, the results from Section 4.3 are of little 

value. 

Exanple: Consider the bivariate steady model with feedback, for 

which 

G 
G11 G12 1 C1 

GG1 
21 22 

Then (5.101) implies that 

f, k 
1Gulk) G12(dk) 

G21(dk) G22(dk) 

where 

G11(dk) = G11(dk - 1) + c1G21(dk - 1) (5.102) 

G12(dk) = G12(dk - 1) + c1G22(dk - 1) (5.103) 

G21(dk) = G21(dk - 1) + c2G11(dk - 1) (5.104) 

G22(dk) = G22(dk - 1) + c2G12(dk - 1) (5.105) 

From (5.102) and (5.104), we obtain: 

G11(dk + 1) - 2G11(dk) + (1. - clc2)G11(dk - 1) =0 

which implies that 

G11(dk) = I{(1 + Vc1c2)dk + (1 - �c1c2)dk} (5.106) 

and that, using (5.102), 
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G21(dk) 
2T 

2+ �clc2)dk 
- (1 - 

�C c2)dk} (5.107) 
1 

Similarly, 

G22(dk) = i{(1 + �cIc2)dk + (1 - �c1c2)dk} (5.108) 

and 

G12(dk) 
2- c2 

1+ Ic1c2)dk 
- (1 - 

�c1c2)dk} (5.109) 
2 

NOTE: For the bivariate steady model without causality, G=I. 
rk 

5.3.1.3 Changepoint Causality: Markovian State Transition 

We now examine the way in which Markovian state dep- 

endence can be used to incorporate changepoint causality, taking 

unequally-spaced data into account. Recall the definition given 

by (5.89) that 
(i)p(j) 

= p(M(J)IM(i)); i. e. the state, j, at 
0t t-1 

time t is dependent upon the state, i, at time t-1, 'Vt. Thus, 

for instance, if state i represents a change in the ylt series 

and state j represents a change in the y2t series, we have uni- 

directional changepoint causality. 

We could make this definition even more flexible by allow- 

ing the state-dependence to change with time, i. e. 

(3)I (i) (1) (j) (Mt ýt-1) __ Pt, t-1 

For most purposes, however, (5.89) is adequate, bearing in mind 

(1) 
that we could always redefine p(i), at any particular time- 

point, if we had knowledge of an intervention which might change 

our beliefs about the ensuing state. The Markovian formulation 

(5.110) 

is, in fact, very useful for dealing with interventions. Suppose, 
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for example, that an instantly active drug is given to a patient 

at time t-1 and that, just after infusion, we observe an un- 

usually low value (say) in the series being monitored. Then we 

would be much more inclined to believe that another low value 

will follow, at time t, rather than a return to the previous 

steady state, since the drug is believed to have an immediate 

and prolonged effect; i. e. 

p(Sustained Effect, tILow Value, t - 1) > p(Steady State, tlLow Value, t - 1). 

This type of information cannot be incorporated when we use the 

non-dependent poi) formulation unless 

p(Sustained Effect, t) > p(Steady State, t) Tt, which is highly 

undesirable. 

Consider the case when the interval between successive 

observations is dk units, where dk > 1, and let 

M 
p(J) = P(MkMýM(ii) (5.111) 

denote the probability that state j obtains at timepoint k (at 

time Tk) given that state i obtains at timepoint k-1 (at time 

T In order to calculate 
(i) 0) 

k-1 Pk we shall introduce some 

further notation. Since observations are available at times 

Tk_1 and Tk' we may write 

M(J) = MTj) and Mkt = M, 
(i) (5.112) 

k k-1 

Let 

. 1(0) =j and J(dk) =i (5.113) 

and suppose that there are J possible states. Then: 
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(i)(J) 
_ 

(J(dk))P(; (o)) 
= P(M(J(o)) I? (i(dk))) 

Pk Tk 
k-1 

J 
(3(0)) (3(i)) 4(dk)))p(M((l))IM(i(dk))) JTT1 

Tk-1 

_C 
(3(1))pöý(o)), c 

p(MTQ(i))I, 
(j(2))ýMTJ(dk))) 

J(1)=l j(22)=1 k Tk 
k-1 

X MT 
(i(dk)) 

P( T -2 
ýýT ) 

k k-i 

(using (5.89)) 

JJ dk 
j(i)pj(i-1) 

_ 
j(1)=1... j(dk_l)_l i=1 0 

i. e. when the current interval is dk (> 1) units, we use (5.114) 

in lace of 
(i) (j) 

if d=1, we use 
(i) (j) 

place 'k' Po as before. 

A much neater way of arriving at the above relationship 

involves the use of a state transition (J x J) matrix, { po}, 

whose (i, j)th element is (i)pQ)I 
i. e. 0 

(1) (1) (1) (2) (1) (J) 
p 

(J) (1) (J)p(J) 
0 

Then, for dk E Z+ , 
(i)p(J) 

is the (i, j)th element of {po}dk. 

It then becomes clear that if we wish to incorporate a time lag, 

R,, into our Markovian state dependence, we merely set the (i, j)th 

(1) (j) 
- 

(J) (i) 
element of {po} - Pt p(Mt IMt-t)' 

There will clearly be a significant interaction between 

event detection and the sampling interval, since a longer inter- 

val may make the chance of some changepoint-types less likely. 

We note that by using (3.6) (i. e. non-dependent state-transition) 

we have no way of modelling this interaction, whereas (5.116) 

(5.114) 

(5.115) 

(5.116) 
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provides a sensible method for adjusting our beliefs about the 

state occupied according to the size of the sampling interval. 

Note, too, that since {p0} is a stochastic transition matrix, it 

may well equilibriate once the interval is large enough; i. e., 

once the interval is greater than a certain length, our beliefs 

remain unchanged. 

By way of completeness, we shall derive the multistate 

probabilities needed for event detection (re. Section 3.2), for 

(i) 
the case when pký) is preferred to pö 

ý) 
In order to dis- 

criminate fully between alternative changepoint-types, we still 

require quantities of the form p(M(J)IDk), etc., which are not 

dependent upon previous states. Let 

p(J) = P(M(J) ID (5.117) 
k 

0T1) = p(DkiiIDk) (5.118) 
k 

TTh) = p(Ml 
h)IDk) 

(5.119) 
k 

and 

ZkiJ) = P(Fk' 
(1)l-NQ) 

(5.120) 

where Z(ij) is the predictive density (see Section 5.2), and where 

yk and Dk are defined by (5.5) and (5.6), respectively. Then, 

using Bayes theorem and (5.111), 

PTA) = P(Zk 
i M7 )P(N ýDk-1)/P(Yk I 

-1 k 

(ii) (i) (J) (J) 
= Zk P(-1 

ID (J) 
)-p( IDk-1)/P(Yk ýDk-1 

=c 
P((i)ID M(i))P(M(i) (3) I 

G Z(ii) 
N 

-k-l' k-1 k-1IDk-1 P(M Dk-1) 

1=1 
k 

P(Mki) 
IDk-1) P(rk Dk-1) 

(I J) (i) (J) (i) 
_ZPP /P(Y ID ) (5.121) 

i=1 
kk Tk-1 "k . -k-1 
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[c. f. (3.28)], where 

JJ 
(ii) (i) (j) (i) 

P (fyk l2k-1) =11 Zk pk pT (5.122) 
j=1 i=1 k-1 

[c. f. (3.21)]. Also 

0Tk) - P(YklDk-1'Mkii)P( 
(') IDk-1)/P(YkIDk_1 

_J 
(ii) (i) (3) (i) 

3z 
Pk PT 

k-1/P(0^- 
kIDk-1) 

(5.123) 
=l 

k 
I 

[c. f. (3.31)], where P(YkIDk-1) is given by (5.122). Similarly, 

TTK) = P(YkIDk-l'Mkh2)P(Mkh2IDk1)/P(Ykl 
-1) 

J 
(h) 

M(i) 
(i) (h) (h) 

= 
ii1P(YkIDk-l'Mk-2' k-1)P<Mk-1); -l'Mk-2). 

ýTk-1/P(ýYkIDk-1) 

JJ Z(hi) 
(h) (i) 

_CC zkii)(i)pki) 
J 

k-1 pk-1 

. 0Th) /P(^Yk' k-1) (5.124) 
i=1 j=1 

Z 
(hi) (h) (i) k-1 

i1 l k-1 pk-1 

[c. f. (3.32)], where p(N kIDk-1) is given by (5.122) and where Zkhi) 

and 0Th) have been calculated at the previous recursion. 
k-1 

NOTES: (i) If the model contains nuisance parameters, ý, these 

can be incorporated into the above calculations by referring to 

(3.47) to (3.49) in Section 3.2. 

(ii) The idea of Markovian state-transition is not restrict- 

ed to the bivariate case, and may prove to be useful for univar- 

iate models as well. For instance, a patient on kidney dialysis 

would expect the concentration levels of certain blood chemicals 

to drop immediately following treatment. In the absence of further 
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treatment, however, the concentrations of these chemicals would 

soon return to their original levels, since dialysis is not a 

curative treatment. In this case we would like to set 

p(Level Change, tILevel Change, t - 1) quite high. 

5.3.2 SPECIFIC BIVARIATE MODELS 

In order to show how bivariate models for unequally- 

spaced data are formed, we present, here, two particular examples: 

the bivariate linear growth model and the bivariate AR(1)/linear 

growth model. In each case, we have allowed for unidirectional 

steady-state causality, but not feedback. We have also allowed 

for concurrent changepoint causality, by letting the perturbat- 

ions on the level (say) of each series have a non-zero correlat- 

ion. Once we have derived the correct form for G and R (k), 

the unequally-spaced bivariate model can be completely specified, 

and the results from Section 5.2.2 may be used for updating the 

system, on the receipt of successive observation vectors (or 

part-vectors). 

For the most part, notation will conform with that used in 

Section 2.3, except that additional subscripts '1' and '2' will 

be adopted, when appropriate, in order to distinguish between 

those parameters associated with the first series and those assoc- 

iated with the second. In addition, we shall write: 

cov(61tPC2t) = J1Rcc 

cov(6"lt'au2t) = ý`-1 üu 
cov(dßlt' 6$2t) = ß_1Rßß 

(5.125) 

(5.126) 

(5.127) 
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where 6111 is the perturbation associated with the level of the 

first series, etc. 

5.3.2.1 Bivariate Linear Growth Model 

Consider the bivariate model for which each of the 

univariate series is thought to be reasonably well modelled by 

a linear growth model (as described in Sections 2.3.1,3.3.1 and 

4.3.1). Using the notation from Section 5.3.1 we have, for the 

equally-spaced case, 

11 
r11 G22 (5.128) 

01 

Assume also that the level of the second series, p2, is believed 

to be dependent upon the level of the first series, pl, but that 

no feedback exists, so that 

u2t = 112t-1 + 2t + 612t + quit 
(5.129) 

u1t = Vit-1 + ß1t + it 

where c is a scalar (assumed known). Then, 

1100 

0100 
G= (5.130) 

CC11 

0001 

i. e. 
00cc 

(5.131) --12 
00 

and 221 
00 

The full equally-spaced model is: 
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Niti 

it 100o ß1t Eit 

2t 

1 

2. - 
0010 l2t E2t 

, 
ß2t- 

lilt 11 100 
it-1 

ait o10o 
1t-1 

u2t cc11 u2t-1 

ß2t 0001 ß2t_1 

auit + 66it 

sßit 

au2t + Öß2t + c(Sult + dßlt) 

02 
t 

where 

Elt 

ti N(O'X-1 
Re, 

e2t R 
cc 

R 
EE 

Re2 

In addition to the above, we shall assume that: 

var(ault) = A-1 R111. var(bu2t) _ X-1R112, var(dßlt) = ý-1Rßl, 

var(6ß2t) = A-1Rß2, cov(dult'au2t) = A_1Ruu' 

cov(dßlt. öß2t) = A-1Rßß, 

and that all other covariances involved are zero. 

Then, for the equally-spaced model, 

1R11 R12 R13 R14 

R12 R22 R23 R24 
R_ 

R13 R23 R33 R34 
, say 

[R14 

R24 R34 R4 

where 

R11= ül+Rß1 

R12 = Rß 
1 

(5.132) 

(5.133) 

(5.134) 

(5.135) 

(5.136) 

(5.137) 
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and 

R13 RPU + Rßß + c(Rp1 + Rte) (5.138) 

R14 = Rßß (5.139) 

R22 =Rß1 (5.140) 

R23 = Rßß + cRßl (5.141) 

R24 = Rßß (5.142) 

R33 =R+ Rß2 + c2(Rul + Rß1) + 2c(Ruu + Rßß) (5.143) 

R34 = Rß2 + cRßß (5.144) 

R44 = Rß2 (5.145) 

In order to form the unequally-spaced equivalent of (5.130) and 

(5.135) we must first derive ^k, and then RW(k), when the inter- 

val is dk units. Using the results from the previous section, 

we see that C must be of the form: 
o-k 

dk 
G11 0 

G21(dk) 
X22 

and, from Section 4.3.1, 

Moreover, 

Let 

1 
Gdk = Gdk 

dk 

- (5.146) r11 -22 l0 1 

dý-1 
G21() = 

0-G 21-11 + G22ý1(dk - 1) (5.147) 

g211(dk) g212(dk) 
(5.148) ý. 21(dg) = 

00 

Then, from (5.146) and (5.147), 
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g211(dk) g212(dk) fc 

l0 0 J l0 

+ 
0 

i. e. 

c1 dk -1 

001 

1 g211(dk - 1) 

10 

g211(dk) =C+ g211(dg - 1) * g211(dk) = cdk 

and 

g212(dk) = cdk + g212(dk - 1) 

= c(dk + (dk - 1) +,,. + 1) 

= jcdk(dk + 1) 

i. e. 

1 dk 00 

0100 

o-k 
cdk lcdk(dk + 1) 1 dk 

0001 

From (4.8), given in Section 4.2, we have 

R (k) = 

Tk 

GTk-tR (G 
Tk-t) T 

0W t=T W Lk-1+1 

g212(dk - 1) 

0 

(5.149) 

(5.150) 

(5.151) 

1 Tk-t 00 R11 R12 R13 R14 

Tk 01 00 R12 R22 R23 R24 

t=Tk-1 +1 c(Tk-t) jc(T t)(Tk t+l) 1 Tk-t R13 R23 R33 R34 

00 01R 
14 

RR 
24 34 44 

R 

1 0 c(T t) 0 

IRilk R12k ... R14k 

Tt 1 3c(Tk t)(Tk-t+1) 0 

X 
0 010 

(ä. l52) 

0 0 Tk t1 1R14k 
..... " ". R44 

say, where 
Ii 1'_ 
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Tk 

Rllk L (RUl + (Tk -t+ 1)2Rß1) 
t=Tk-1+1 

= dkRUl +6 dk(dk + 1) (2dk + 1)Rß1 

Tk 

R12k L (Tk -t+ 1)Rß1 = idk(dk + 1)R 
ßl 

t=Tk-1+1 

Tk 

R13k L 
{RUU + (Tk -t+ 1)2Rßß + c((Tk t+ 1)R 

P1 
t=Tk-1+1 2 

+ J(Tk -t+ 1) (Tk -t+ 2)Rß1) } 

(5.153) 

(5.154) 

= dkRuu +6 dk(dk + 1)(2dk + 1)Rßß 

+ c{jdk(dk + 1)Ru1 + 24 
dk(dk + 1)(dk + 2)(3dk + 1)Rß1} 

(5.155) 

Tk 

R14k (Tk -t+ 1)Rßß = idk(dk + 1)Rßß 
t=Tk-1+1 

Tk 

R22k L Rß1 = dkRßl 
t Tk-1+1 

Tk 

R23k =L {(Tk -t+ 1)Rßß + jc(Tk -t+ 1)(T k-t+ 
2)Rß1} 

t=Tk-1+1 

_ Idk(dk +'1)Rßß +6 cdk(dk + 1)(dk + 2)Rß1 

Tk 

Rßß = dkRßß R24 L 
t =Tk-1+1 

Tk 

R33k {R 
u2 

+ (Tk -t+ 1)2Rß2 + c2[(Tk -t+ 1)2Ru1 
t=Tk-1+1 22 

+} (Tk -t+ 1) (Tk -t+ 2) `ýRß1] 

+ 2c[(T -kt+ 1)R 
uu 

+ J(T 
k-t+ 

1)2 

x (Tk -t+ 2)Rßß} 

(5.156) 

(5.157) 

(5.158) 

(5.159) 



- 211 - 

= dkRU2 +6 dk(dk + 1)(2dk + 1)Rß2 

+ c2{6 dk(dk + 1)(2dk + 1)RUl + 
-Idk(dk 

+ 1) (dk + 2) 
60 

X (3d2 + 6dk + 1)Rß1} 

+ 2c{Udk(dk + 1)RUU + 24 
dk(dk + 1) (dk + 2) 

x (3dk + 1)Rßß} (5.160) 

Tk 

R34k L 
{(Tk -t+ 1)Rß2 + jc(Tk -t+ 1)(Tk -t+ 2)Rßß} 

t=Tk-1+1 

= idk(dk + 1)R 

and Tk 

k= 

R44k 
t=T 

L 

-1+1R2 

(making use of the results 

2+6 cdk(dk + 1)(dk + 2)Rßß (5.161) 

dkRß2 (5.162) 

stated by (4.16) to (4.20)). 

5.3.2.2 AR(1)/Linear Growth Model 

Consider the bivariate model for which the first series 

may be modelled satisfactorily by a first-order autoregressive 

model (as described in Sections 2.3.5.1,3.3.5.1 and 4.3.5.1), 

whereas a linear growth model is thought to be appropriate for the 

second series. We make two notes here. Firstly, the model cont- 

ains a nuisance parameter, ý (by way of the autoregressive para- 

meter, which is treated as such). This means that we may run 

into 'size' problems when it comes to applying the model to actual 

data (see Section 5.2.1). Secondly, this bivariate model differs 

from most of the bivariate models discussed in the literature, in 

that we have assumed that the individual series are generated by 

different classes of model (one being a member of the ARMA class 

of models, and the other being a form of polynomial growth). 

For the equally-spaced case, we have 
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1 
r 

11 and G22 = (5.163) 
0101 

Assume, once more, that the level of the second series, p2, is 

dependent upon the true level of the first series, v, but that 

no feedback exists, so that 

'2t = u2t-1 + ßt + au2t + CVt 
(5.164) 

Vt = Vt-1 + (Vt 

where c is a scalar (assumed known). Then, 

1-00 

o100 
G= (5.165) 

0c11 

0001 

i. e. 

X12 =00 and 90 
21 = (5.166) c 

0000 

The full equally-spaced model is 

where 

U 

ylt 1000 vt Elt 

2t 
0010 IJ2 t 

+ 
E2t 

(5.167) 

at 
ult 41-40o ult-1 suit + Övt 

vt 0100 vdvt 

U2t 0c11 p2t-1 
+ sU2t + Ößt + cdvt 

(5.168) 

It o001 ßt-1 6 at 

lit 

'\ N(O, X1 
REl RCC 

). 
f2t IRR£2 
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In addition to the above, we shall assume that 

var(6pt)= a-1RU1, var(6 2t) _ 
1R112' 

var(ÖVt) = X-1RV9 

var(6Bt) =X 
1Rß, 

cov(6plt'au2t) = ý-1Ruu, (5.169) 

and that all other covariances involved are zero 

Then 

Rul + RV RV Rliu + cRV 0 

RR cR 0 
R=VVV (5.170) 

Rpp + cRV cRV Ru2 + Rß + c2RV Rß 

00 Rß Rß 

If the interval between successive observations is dk units, using 

Lemma 5.3.1 we see that 

dk 
dk__ 

G=G k~ 
G21(dk) G22 

where 

G 
21( 

)=2 G+ 622 21(dk 1) 

Now, from Section 4.3.1, 

Gdk =1dk (5.171) 
- 22 

01 

and, from Section 4.3.5.1, 

ýdk 1- ýdk 
iii = (5.172) 

01 

Let 
0 ý212(dk) 

221(d 
k) - (5.173) 

00 
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Then 

0 g212(dk) 0c edk-1 1- edk-1 

1+ 
110 g2 12 

(d 
k- 

1) 

0000010100 
-2 

i. e. 

g212(dk) =c+ g212(dk - 1) g212(dk) = cdk. (5.174) 

Therefore 

dk 
1- ýdk 00 

0100 
Gk _ (5.175) 

0 cdk 1 dk 

0001 

Using (4.8), 

Tk-t 
1- 0Tk-t 00 

Tk 
0100 

ý(k) L 
t=Tk-1+1 0 c(Tk - t) 1 Tk -t 

0001 

Rul + Rv Rv Ruu + cRý 0 Tk-t 00 0R 

v 
Rv cRv 01- ýTk-t 1 c(Tk - t) 0 

x 
Ruu + cRV cRv Ru2 + Rß +VRH Rß 0010 

00 Rß Rß 00 Tk -t 1) 

Rllk R12k .. ' R14k 

say (5.176) 

LR4k ............ R44k 

where 

TCk 
2(Tk-t) 1- 2dk 

R (5.177) Rllk L 
{ý Rui + RV} _2R1+ dk 

V t=Tk-1+1 1-U 
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Tk 

R12k L RV = dkRV (5.178) 
t=Tk_1+1 

T 

R13k 
k 

{ýTk-tRUU + c(Tk -t+ 1)R 
t=Tk-1+1 

11-_ok 
Reu + jcdk(dk + 1)R (5.179) 

R14k =0 (5.180) 

Tk 

R22k G RV = dkRV (5.181) 
t=Tk_1+1 

Tk 

R23k L c(Tk -t+ 1)RV = Jcdk(dk + 1)R (5.182) 
t=Tk_1+1 

R24k =0 (5.183) 

Tk 

R33k {c2(Tk 
-t+ 1)2RV + Rut + (Tk -t+ 1)2R 

t=Tk-1+1 

=1 c2dk(dk + 1)(2dk + 1) RV + dkRu2 

+6 dk(dk + 1)(2dk + 1)Rß (5.184) 

and 

Tk 

R34k 
t=T-+1(Tk 

-t+ 1)Rß =. Jdk(dk + 1)Rß (5.185) 

k1 

Tk 

R44k L Rß 
kRß (5.186) 

t=Tk-1+1 
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5.4 PERFORMANCE AND SENSITIVITY 

In this section we examine the performance of the two models 

described in Section 5.3.2, i. e. the bivariate linear growth model 

and the bivariate AR(1)/linear growth model. In order to do so, 

we retain the performance measures outlined in Section 3.4, i. e. 

(i) For assessment of event detection, we shall assume that 

Oti) > 0.2, i=2, ..., J is a positive signal (where 0(1) is the 

one-step-back probability of a discontinuity). If Oti) > 0.2 

when no change has actually been induced in the series, this will 

count as a false positive; we shall also. use the number of false 

positives (NFP) as a performance measure. 

(ii) In terms of estimation, we shall compare the parameter 

estimates with the true parameter values. 

(iii) We shall use the two measures, SSFE and MAD (see Sect- 

ion 3.4) for assessment of forecasting ability by applying these 

measures to each of the univariate series in turn, so that we shall 

adopt the notation SSFEl, etc. 

As far as sensitivity is concerned, we shall only attempt to vary 

those parameters in the model that are peculiar to a bivariate 

formulation, such as cov(Cit, C2t), etc. In particular, we will 

be interested to see how sensitive the models are to the correct 

specification of the ratio var(£it)/var(C2t), which will be pre- 

set and fixed throughout the analysis. 
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Multistate Structure: 

Recall from Section 5.2.1, that each of the bivariate models 

involves 16 possible states; these are given in Table 5.1 where, 

for example, 'Level/Slope' denotes a level change in the 'first' 

series and a slope change in the 'second' series at the same time- 

point. Note that in the Figures which illustrate these analyses, 

only a few 'interesting' one-step-back state-probabilities are 

presented (rather than all fifteen types of changepoint-probability) 

and that the lower of the two time series represents the 'first' 

series, with the uppermost plot representing the 'second'. 

TABLE 5.1 

STATE NUMBER 
BIVARIATE LINEARTGROWTHNITAR(1)/LINEAR GROWTH 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Steady/Steady 

Steady/Level 

Steady/Slope 

Steady/Transient 

Level/Steady 

Level/Level 

Level/Slope 

Level/Transient 

Slope/Steady 

Slope/Level 

Slope/Slope 

Slope/Transient 

Transient/Steady 

Transient/Level 

Transient/Slope 

Transient/Transient 

Steady/Steady 

Steady/Level 

Steady/Slope 

Steady/Transient 

Impulse/Steady 

Impulse/Level 

Impulse/Slope 

Impulse/Transient 

Level/Steady 

Level/Level 

Level/Slope 

Level/Transient 

Transient/Steady 

Transient/Level 

Transient/Slope 

Transient/Transient 
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5.4.1 BIVARIATE LINEAR GROWTH MODEL 

In order to assess the performance of the bivariate 

linear growth model, we generated another series according to the 

univariate linear growth model (see Section 2.3.1). Details of 

this series, which will become the first series in the bivariate 

model, can be found in Appendix A5.3. For the second series, we 

use the data set (given in Appendix A3.1) which was also generated 

from a univariate linear growth model, and which was examined 

in Sections 3.4 and 4.4. Using this bivariate time series, we 

created an unequally-spaced bivariate time series by removing 

observations at certain timepoints. For the second series, obser- 

vations were deleted at the timepoints given in Section 4.4 (cor- 

responding to Series 2, in which 25% of the series has been remov- 

ed). For the first series, observations were deleted at the fol- 

lowing times: 

t= 22,26,28,33,43,45,47,48,53,54,55,56,58,59, 

60,61,63,64,65,68,69,70,89,90,91, 

i. e. 25% of this series has also been removed. 

Notice that, for the bivariate time series, there will be 

some timepoints when both yl and Y2 are unavailable (e. g. t= 22), 

some when only y1 is present (e. g. t= 24) and some when only y2 

is present (e. g. t= 33). Reference to Appendices A3.1 and A5.3, 

and to Table 5.1, shows that the following changepoints have been 

induced in the bivariate series. 
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TABLE 5.2 

TIME 
t 

CHANGEPOINT-TYPE SIGNAL OF INTEREST 

24 Level/Steady 025) 

25 Steady/Slope 026) 

35 Steady/Transient 0) 
36 

50 Transient/Level 0514) 

75 Slope/Steady 076) 

80 Transient/Transient 
(16) 

0 
S1 

5.4.1.1 Initial Setting 

The following prior values were employed (see Sect- 

ion 3.4.1.1 for those parameters associated with the second ser- 

ies): 

500 25 0 0.02 0 
4 0 0.2 0 0.01 

ýo 100. ; £0 
0.02 0 10 0 

5 0 0.01 0 0.5 

n=3, r= 30 (i. e. E(X-1) = r /(n - 1) = 15; see 
0° 0 Theorem 2.1.2) 

p«ý = 0.85, j=1 
0 

= 0. 01, j= 2, ..., 16 

R£i) = 2, Rüi) = 0, Rß(i) = 0, j = 1, ..., 4 

R(i) = 2, Rüi) = 40, Rßi) = 0, j = 5, ..., 8 

R(J) = 2, R(j) = 0, R(1) = 20, j = 9, ..., 12 

R(J) = 60 , R(J) = 0, R(i) = 0, j = 13, ..., 16 

R(Z) = 1, R(Z) = 0, Rß2) = 0, j = 1,5,9,13 

RE2) 1, R2) = 20, Rß2 = 0, j = 2,6,10,14 

Ro) =1 , R) 
ü2 

= 0, Rß2 = 10 j = 3,7,11,15 

R(J) 
e2 = 30 , R«) 

112 = 0, R«) ß2 = 0, j = 4,8,12,16 
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so that R(1)/R(1) = var(61t)/var(s2t) =2 (since a-1 = 30 for 
Cl C2 

the first series and X-1 = 15 for the second series - see Appendic- 

es A5.3 and A3.1). Also R(3) = R(J) = R(j) = 0.01 Tj (the two 
cc PP ýa 

univariate series were, in fact, generated independently, but 

many of the discontinuities were induced at coincident timepoints). 

Using these values, the analysis was carried out on both 

the full data set and the unequally-spaced data set (as describ- 

ed above), and the results are presented in Table 5.3. 

5.4.1.2 Sensitivity Analysis 

The following changes to the initial setting were 

examined, with the remaining parameters unaltered from their 

original values in each case: 

Prior 1: REE) = Rüü) = R(ß) = 0.1, Yj 

Prior 2: REE) = Ruu, = R(ß) = 0, Vj 

Prior 3: cov(Ult'u2t) = 0.2 (previously 0.02); 

cov(ßlt'ß2t) = 0.1 (previously 0.01), at t=0 

Prior 4: cov(uit'u2t) = cov(ßit'ß2t) = 0, at t=0 

Prior 5: Ref) = R(1), etc. (i. e. pre-set var(C1 )= var(E2t)) 

l) 
= JR(l), etc. (i. e. pre-set var(e2t)/var(clt) = 2; Prior 6: R( 

Cl E; 2 

the reverse of the true situation) 

Prior 7: All parameters unchanged, except that we adopt a 16 x 16 

Markovian state-transition matrix, {po}, in place of 

0) 
pö, j=1, ..., 16 (see Section 5.3.1.3) for which 

i )p0 
= po 4,6, 

... , 16, 'tj 

(5)p(1) 
= 0.76; 

(5)p(3) 
= 0.1; 

(5)pä3) 
= 0.01, 

2,4,5, ..., 16 
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where p(j) has the original setting given in the prev- 

ious section. 

In other words, we have merely increased 

p(Steady/Slope, tILevel/Steady, t- 1) so that we might 

be able to identify the changes, occurring at t= 24 

and t= 25, more easily. 

Using each of these priors, in turn, the results obtained are 

shown in Table 5.4. 

5.4.2 AR(t)/LINEAR GROWTH MODEL 

In order to assess the performance of the AR(1)/linear 

growth model, we joined together the series described by Appendic- 

es A3.3 and A3.1 (previously examined separately in Sections 3.4 

and 4.4) to form a bivariate time series, of which the first ser- 

ies is autoregressive, while the second is linear growth. We 

created an unequally-spaced bivariate time series by removing 

observations at certain timepoints. For the first series, obser- 

vations were deleted at the times listed in the previous section; 

for the second series, observations were deleted at the times 

listed in Section 4.4 (corresponding to Series 2). Once again, 

therefore, there will be some timepoints where both observations 

are unavailable and some when only one observation is available. 

Reference to Appendices A3.1 and A3.3, and to Table 5.1, 

shows that the following changepoints have been induced in the 

bivariate series. 
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TABLE 5.5 

TIME, t CHANGEPOINT-TYPE SIGNAL OF INTEREST 

25 Impulse/Slope 026 

30 Level/Steady 0, 
31 

35 Level/Transient 0 2) 
36 

50 Transient/Level 0514) 

75 Impulse/Steady 0(5) 
76 

80 Transient/Transient 0816) 

5.4.2.1 Initial Setting 

The following prior values were employed (see Sections 

3.4.1.1 and 3.4.3.1): 

10 100.02 0 
10 0100.01 

_ r0 100 0-0 0.02 0 10 0 
5 0 0.01 0 0.5 

no = 3, ro = 30 (i. e. E(ß-1) = 15) 

p(i) = 0.85, j=1 
0 

= 0.01, j=2, ..., 16 

REi) = 1/15; Rüi) = 0; R(i) = 0, j=1, ..., 4 

REi) = 1/15; R11(i) = 4/3; RVi) = 0, j=5, ..., 8 

R(J) = 1/15; Rüi) = 0; Rvi) = 2/3, j=9, ..., 12 

R(J) = 2; R(i) = 0; R(3) = 0, j= 13, ..., 16 

with RE1), RC2) and Rß) as given in the previous section, so that 

RE1)/R(1) = var(C2 )/var(Elt) = 15 (since -1 
=1 for the first 
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series, and a-1 = 15 for the second series - see Appendices A3.3 

and A3.1). Also 

R(J) = 0.01 j 
cc uu vß 

and NN = number of nodes in the grid for ý, the autoregressive 

parameter = 11. 

Using these starting values, the analysis was carried out on 

both the full and the unequally-spaced data sets, and the results 

are given in Table 5.6. 

5.4.2.2 Sensitivity Analysis 

The following changes to the initial setting were 

examined, with the remaining parameters unaltered from their orig- 

anal values in each case: 

Prior 1: R(J) = R(J) = Ruß) = 0.1, Vj 
cc 1111 

Prior 2: R(J) = R(J) = Riß) = 0, Yj 
cc Pil 

Prior 3: cov(pit'u2t) = 0.2; cov(Vt, ßt) = 0.1, at t=0 

Prior 4: cov(uit'u2t) = cov(Vt, ßt) = 0, at t=0 

Prior 5: RCl = RE2) etc. (i. e. pre-set var(Cit) = var(c2t)) 

Prior 6: RCl = 15RE2, etc. (i. e. pre-set var(cit)/var(c2t) = 15; 

the reverse of the true situation). 

Using each of these priors, in turn, the results obtained are pres- 

ented in Table 5.7. 
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5.4.3 CONCLUSIONS 

Performance 

Discrimination between alternative changepoint types was excel- 

lent, especially taking into account the number of competing models 

involved (further exacerbated when the model has a nuisance para- 

meter, such as in the case of the AR(l)/linear growth model - see 

Section 5.2.1), although there was some difficulty in correctly 

identifying the adjacent changes induced in the bivariate linear 

growth model at t= 24 and t= 25. When a Markovian state-transit- 

ion matrix, {p0}, was adopted, however, involving only marginally 

more information than the original prior, this changepoint-pairing 

was identified properly, and we conclude that {po} is to be pref- 

erred to p(j) whenever it is felt that adjacent discontinuities 

are likely to occur. 

Forecasting ability was comparable to that achieved by the 

corresponding univariate models; estimation of model parameters 

was also reasonable, though there was a hint that estimation was 

slightly poorer for the AR(1)/linear growth model, which contains 

a nuisance parameter, possibly due to the large number of altern- 

ative models involved at a single recursion. 

Sensitivity 

Changes to the off-diagonal elements of C (such as 

cov(dult'au2t)' etc. ) had no effect at all on the performance 

of these models. The same could almost be said of changes to the 

off-diagonal elements of RE, etc., though there was a slight indi- 

cation that, by allowing higher correlations between concurrent 

changepoints, we were better at detecting the induced changes in 

the series. This is probably due to the fact that there was 
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substantial changepoint-correlation in the series actually used, 

in that, not only were many of the discontinuities concurrent but, 

approximately 95% of the time, the series were in the steady- 

state together. However, the improved event detection may have 

been at the cost of poorer parameter estimation (see, for example, 

Figure 5.21 which shows how poorly the autoregressive parameter 

was estimated when these correlations were set too high) and, 

perhaps, a greater number of false positives. 

It is very apparent, however, that the correct specificat- 

ion of the variance ratio, var(cit)/var(E2t), is vital if the 

models are to perform well. Incorrect specification of this 

ratio led to poor event discrimination, including more false pos- 

itives and a number of events being missed altogether (false neg- 

atives), and poor estimation/forecasting. This was especially 

true for the AR(1)/linear growth model, particularly with regard 

to the estimation of the autoregressive parameter, ý. Figures 

5.25 and 5.26 show how very poorly ý has been estimated when the 

incorrect variance ratio was specified; these patterns are remin- 

iscent of the type of pattern one would expect to see, if one had 

specified the wrong univariate model for the ylt series in the first 

place, i. e. if the AR(l) model was inappropriate (see Appendix 

A4.2). 

Overall Conclusions 

We might summarize the results of this chapter by saying that 

the models discussed perform reasonably well on generally unequally- 

spaced bivariate time series, with regard to changepoint detection/ 

discrimination, especially when one considers the size of the models 
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and the number of alternative states involved. This seems to 

suggest that the Kullback-Leibler-based collapsing procedures 

adopted are more than adequate in this context. 

In terms of the amount of computing time necessary, we note 

that a single recursion (i. e. the recalculation of all model para- 

meters, and all relevant multistate probabilities, upon the receipt 

of a single observation vector) takes approximately 0.5 s of CPU 

time (on a University Mainframe computer) for a bivariate model 

without a nuisance parameter (such as the bivariate linear growth 

model), approximately 4s for a model with one nuisance parameter 

(such as the AR(l)/linear growth model), approximately 15 s for a 

model with two nuisance parameters (such as the bivariate AR(1) 

model, in which both series are first-order autoregressive in 

nature), etc. Therefore, even if observations were arriving every 

minute, the models should still be of some practical use. 

The correct specification of the between-series variance- 

ratio is very important if the analyses, using these models, are 

to be believed. As it may often be very difficult to specify this 

ratio beforehand, it is suggested that alternative methods, for 

incorporating completely unknown variances into the bivariate, 

multistate dynamic linear model framework, should be investigated. 

000 
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APPENDIX FIVE 

A5.1 COROLLARY 5.2.2 

Suppose that yT = [y1 y2] is a single sample vector from 

a bivariate normal distribution for which the mean vector, 

vT = [ul u2] has an unknown value and the covariance matrix is 
E C121 

of the form 
lE, 

where F= 
11 

is a specified, positive E12 C22 

definite matrix and. X is unknown. Suppose also that the prior 

joint distribution of 11 and X is given by: 

P(EIX) N N(m, X_1C) 

and 

P(t) " ß(a, ß) 

(A5.1) 

(A5.2) 

where 

= Imil m and C= IC11 C12 
(A5.3) 

m2 C12 C22 
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Then the posterior joint distribution of p and X, if only yl is 

actually observed, is given by: 

P(PIA. Yl) 

P(AIY1) ti G(a*, ß*) 

where 

m* 

C* 
A. 

i. e. (C' 

a* 

11 0 
l 

_C-Cf1'(C11+Eil)-1[1 O]c 

Eii[i o] c- + 
(1)r_-111 [l 0] p- 0 lJ 

CL + = 

and 
(Y1 - ml)l 

ß*=ß+ c11 + £11 

Proof 

In terms of a DLM, we may write 

3'1 
= 

ui 
+ 

el 

y2 u e2 

where 

el 1 E11 £12 
ý 

e2 e12 E22 

Then, with the usual notation 

hl 0 
H==I, G=I and R=0. 
~0h 

(A5.7), (A5.9) and (A5.10), therefore, follow directly from Theo- 

rem 5.2.2, since 

(A5.4) 

(A5.5) 

(A5.6) 

(A5.7) 

(A5.8) 

(A5.9) 

(A5.10) 

(A5.11) 

(A5.12) 

f1 = m1, p=C, F11 -X11 + E11 and S= C(O) (ßi1 + E11)-1 
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(A5.8) follows from the relationship given by (5.41), also contain- 

ed in the theorem. 

In order to demonstrate the truth of (A5.6), we note from 

Theorem 5.2.2 that: 

I 

i. e. 

i* 
=m+ c[ J(C11 + E11)-1(y1 - m1) (using (A5.12)) 

r- 0- 0 

m* _ (C 
1+ 

x 

-1 -1(11 
-Cm+ Elll`0J{ml 

)yl 
_ý m+glll0) 

(0)E11 
[1 0])(M +c 

I1' 
(C11 + E11)-1 4.0 

(yl m1)) (using (A5.8)) 

E11(C11 + E11)-1 (y1 - m1) 

+ C11(C11 + £11)-1(yl - m1)} 

_ -1 -1 1 
C- ý+ £11ll0jY1)' 

NOTE: For the case when Y= 
(yY 

is observed, standard results 
2 

(see, for example, DeGroot (1970)) yield: 

m* 

C* 
i. e. 

(^ 

- ^*ýý-lm + -ly) 

. ý-C + )-lam 

k)-1 = C-1 + £-1 

a* =a+ 1 

and 
ß* _ß +'(R _m 

j- 
+ C)-1(- N 

A5.2 NON-CONJUGACY PROBLEM FOR THE UNKNOWN VARIANCE CASE 

Theorem A5.2 

(c. f. (A5.6)) 

(c. f. (A5.7)) 

(c. f. (A5.8)) 

(c. f. (A5.9)) 

(c. f. (A5.10)) 

Suppose that 0y 
T= [yi y2] is a single sample vector from 

uý 
a bivariate normal distribution for which the mean vector u=, 
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has an unknown value and the covariance matrix, 

1 -1 
A_ 

ý1 X12 

X1 X-1 
' 

12 2 

is an unknown positive definite matrix. Suppose also that the 

prior joint distribution of p and A is given by: 
f- r- 

P(1j1A) " N(m, EA) (A5.13) 
ý. r" r ý. 

P(A 
1) 

% W(a, T) (A5.14) 

where m= 
ýml), 

e is a scalar and where u ti W(a, t) denotes the 
2 

Wishart distribution with a degrees of freedom and precision matrix 

T. Then the posterior joint distribution of u and A, if only yl 

is actually observed, does not have the form of a joint Normal- 

Wishart distribution. 

Proof 

In terms of a DLM, we may write 

1Y1 fii1) leil (A5.15) 
YZ u2 e2 

where 
r-1 -1 

e1 Al X12 

-u N(0, -1 -1 ) 
e2 X12 x2 

i. e. 

P(Y1 (A5.16) 

Now 
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p(k'Alyl) a p(yljk, k)p(j1JA)p(A- (using Bayes theorem) 

a exp{-ý! (y u )2}. IA I bexp 

,1 
(p - m)TA 

1(u 
- m)} 121-1 J" 2s . -- ,. - . ft- 

Now suppose that the posterior joint distribution of 11 and A is 

Normal-Wishart, i. e. 

Then 

p(U, Aly )a IAI (oc*-2)/2exp{-i[ 1 
(u - m*)Tll-1(u - m*) 

,-p. 1 r- c* - 41- ,_d. 

+ tr(T*A-1)] } (A5.20) 

Upon equating (A5.17) and (A5.20), we find: 

x JAI (Ca-3)/2 
exp{-3tr(rA-1) } 

=a Inl(a-2)/2exp{-i(Y 
- 11)2 + 

1(u 
- m)TA-1 (p - m) 1 r- 111£l,. A,. ý. 

+ tr(TA 
1)]} 

(A5.17) 

P(kJA. Y1) 'G N(m*, c*A) 

P(A 
'IY1) 

% W(CL*, T*) 
0- 0- 

(A5.18) 

(A5.19) 

, A, (a*-2)-/2 
= x' IAI (a-2) /2 

ý. 1r 

i. e. 
ln(X1) 

a# =a+ 1n(J AI) (A5.21) 

Also, 

(ý - m*)T11-1(u - m*) + tr(t*A-1) _ A1(Y1 - p1)2 

+E (u - m)TA-1(u - m) 

+ tr(tA-1) 

i. e. 
A=B, 

say, where 
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u- m1* A=E ýui - mi u2 - m2 ]n 
11+ 

tr(T*A 1) 
P- 

I 

u2 m2 

-1 {(U1 
- mi)2 

+ 
(112 - m2)2 2(p1 - mi)(u2 - m*2)} 

+ tr(T*A-1) 
E*IAI A2 Al x12 

112 112 2u u m* m* m* m* 
= 

e*1 
ÄX Z+ 

Al -A 
122 

+ 2(X12 A2 '+ 
2(X12 - xi)u2} 

+ {terms not involving u} 
r- 

Similarly, 

1212 2 
B= iE (^ IA2+ 

al) µ1 + 
c' AI A1 P2 

g 11ý I A12 u1u2 

m2 ml Alyl 

+2 
ml 

_ 
m2 

+ 2( I^IX - c1AIA12 E 
)pl cEl! Ia12 EI"Ialýu2 

fý 12 P. 

+{ terms not involving u} 
d- 

Since A must equal B, (A5.22) and (A5.23) imply that, for instance, 

11 
E*1A1X cI IÄZ 

2+ 
ý1 (from the terms in Ui) 

(A5.22) 

(A5.23) 

(A5.24) 

and 

1-1 

E_Iý al clAIal 
2 (from the terms in u2) (A5.25) 

and, because 4 is positive definite, it is clear that this leads 

to a contradiction since, from (A5.24) 

2 X12 

(c + l)Ä12 
2- EÄla2 

(A5.26) 

whereas, from (A5.25) 
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Cs =£ 

Therefore the posterior joint distribution for 9 and n does not 

have a Normal-Wishart form. 

A5.3 ADDITIONAL DATA SET 

Using the starting values of 60 = ISoo 9 100 observations 

were generated according to the linear growth model of Section 

2.3.1, with the errors, 6t, simulated from Et ' N(0,30). At 

t= 24, a level change was simulated by setting Rp24 = 20, i. e. 

611 
24 

ti N(0,600). At t= 75, a slope change was simulated by 

setting Rß75 = 10, i. e. aß75 ti N(0,300). At t= 50 and t= 80, 

transients were simulated by setting RE50 = RE80 = 30,1. e. 

£50 ti N(0,900) and C80 ti N(0,900). At t= 100, the true value 

3527.6 
The following data set obtained: of 0 was 0= 

r 100 104.8 

TIME OBSERVATION TIME OBSERVATION 

1.0 512.2 23.0 568.1 
2.0 475.9 24.0 641.0 
3.0 535.1 25.0 616.7 
4.0 488.8 26.0 609.4 
5.0 507.1 . 27.0 606.7 
6.0 516.8 28.0 553.7 
7.0 524.5 29.0 604.2 
8.0 557.2 30.0 635.7 
9.0 526.4 31.0. 628.4 

10.0 579.1 32.0 625.5 
11.0 551.3 33.0 630.5 
12.0 561.4 34.0 626.5 
13.0 520.7 35.0 642.3 
14.0 577.4 36.0 638.9 
15.0 511.2 37.0 645.9 
16.0 584.6 38.0 686.8 
17.0 585.3 39.0 702.5 
18.0 580.0 40.0 676.3 
19.0 580.1 41.0 684.3 
20.0 632.1 42.0 735.7 
21.0 567.3 43.0 697.7 
22.0 549.8 44.0 688.6 

(A5.27) 
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TIME OBSERVATION TIME OBSERVATION 

45.0 691.1 7b. 0 801.6 
46.0 682.8 74.0 809.6 
47.0 675.9 75.0 866.0 

48.0 715.8 76.0 1001.6 
49.0 706.9 77.0 1123.1 
50.0 557.8 73.0 1205.9 
51.0 703.5 79.0 1264.3 
52.0 729.4 80.0 1808.0 

53.0 709.1 81.0 1520.7 
54.0 722.1 82.0 1616.8 
55.0 738.5 83.0 1703.3 
56.0 728.1 84.0 1844.4 
57.0 742.5 85.0 1962.2 
58.0 766.3 86.0 2047.1 

59.0 739.4 87.0 2203.8 
60.0 746.7 88.0 2215.3 
61.0 713.1 89.0 2348.9 
62.0 799.7 90.0 2425.0 
63.0 753.1 91.0 2535.2 
64.0 748.3 92.0 2673.3 
65.0 783.1 93.0 2755.1 
66.0 776.1 94.0 2891.2 
67.0 826.9 95.0 3005.0 
68.0 778.4 96.0 3100.5 

69.0 820.1 96.0 3211.9 
70.0 803.1 98.0 3311.9 
71.0 835.5 99.0 3405.1 
72.0 781.0 100.0 3588.7 

OOO 
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CHAPTER SIX 

APPLICATIONS 

Introduction 

In order to illustrate the methodology outlined in previous 

chapters, we now present a selection of applications of these 

models to medical time series. In particular, we shall concen- 

trate on the univariate models which were examined in Chapters 3 

and 4 (namely, the linear growth, sinusoidal and AR(l) models) 

and the bivariate models which were examined in Chapter 5 (namely, 

the bivariate linear growth model and the AR(1)/linear growth 

model). 

Although model identification is crucial to the successful 

implementation of this methodology , we shall not discuss this 

aspect in detail in what follows and we do not claim that the 

particular model chosen for a specific application is necessarily 

the 'correct' or 'best' model in some general 'scientific' sense. 

The examples have been chosen to illustrate the potential applic- 

ation of this methodology to a variety of medical monitoring problems. 
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6.1 UNIVARIATE EXAMPLES 

6.1.1 LINEAR GROWTH MODEL 

6.1.1.1 Kidney Transplantation 

When a patient receives a transplanted kidney it becom- 

es important to monitor the state of kidney function, since reject- 

ion of the new kidney is a common phenomenon. In order to assess 

how well the kidneys are performing (in the sense of clearing 'poison- 

ous' substances from the body), one would ideally like to monitor 

the progress of the Glomerular Filtration Rate (GFR) which is a 

direct measure of this rate of clearance. The GFR, however, is 

unobservable and other biochemical indicators related to kidney 

function serve as proxy measures. The blood concentration of 

creatinine, for example, is widely used as such an indicator. 

Several investigators (for instance Knapp et al. 1977, West 1982) 

have shown that body-weight adjusted reciprocal serum creatinine 

concentrations provide a time series which is well-suited to analys- 

is by the linear growth model, and the corresponding multistate 

dynamic linear model has been shown to be very useful in detect- 

ing kidney rejection episodes (Trimble et al. 1983). However, 

the patients involved were part of a study to determine the useful- 

ness of the statistical methodology and, therefore, great care 

was taken in order to obtain equally-spaced creatinine measurements. 

Here, we consider cases where the data have been collected during 

routine clinical monitoring and therefore contain a number of gaps. 

In order to apply our extended methodology to these unequally- 

spaced series we have used the same baseline prior information as 

was used by Smith and West (1983). 

The first two series presented are each from patients who 

were transplanted by the Renal Transplant Unit Team at the Cardiff 
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Royal Infirmary. For the first of these series (Figure 6.1), 

we see that positive signals (0(3) > 0.2) arise on two occasions: 
k 

Tk =7 and Tk = 16, and we therefore suggest that rejection epi- 

sodes are associated with these events. A retrospective look at 

the clinical record showed that the clinicians concerned initiat- 

ed rejection therapy at precisely the same two timepoints. 

In the second series (Figure 6.2), we again notice two pos- 

itive signals at Tk =9 and at Tk = 111. Reference to the clin- 

ical record showed that rejection therapy was initiated at Tk =9 

and again at Tk = 112, i. e. the second of the signals was one day 

earlier than the clinician's reaction. This is hardly surpris- 

ing, considering both the sparseness of the data leading up to 

this event (implying very little patient/clinician interaction) 

and the fact that chronic renal failure had already begun (depict- 

ed by the slow upward trend). Note, too, that at Tk = 19 a 

'diminished' signal (019) = 0.125) is produced by the analysis; 

it is of interest that the clinical record reports that the pat- 

lent had left the ward, and returned home, just one day before- 

hand. 

These two time series were part of a larger collection of 

cases from Cardiff whose detailed analyses produced results very 

similar to those reported by Trimble et al. (1983), who studied 

a group of patients from Nottingham. The statistical analysis 

detected 24 out of the 25 rejection episodes presented by the 

Cardiff group, with median difference (statistical signal-clinical 

'reaction') of zero days. 

The final series in this section was obtained from a patient 

who was involved in a pilot study initiated by the United Kingdom 

Transplant Services (UKTS) Management Committee. One of the aims 
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of this study was to determine whether or not so-called 'highly- 

sensitized' patients exhibited a different post-transplant pattern 

to patients who were not 'highly-sensitized'. There was a sug- 

gestion that the patterns did indeed differ, in that highly sensi- 

tized patients were more inclined to have a 'grumbling start', 

in the sense that it tended to take longer for the new kidney to 

start to function properly (sometimes reflected by initially high 

concentrations of creatinine). In these situations the analysis 

presented above, using the baseline prior information of Smith and 

West (1983), often failed to detect early rejection episodes (see 

Figure 6.3). We attempted, however, to modify this information 

by adjusting our initial estimate of the slope parameter, which 

was seen (in Section 3.4) to be rather sensitive. We found that 

by changing our initial estimate from b0 = 0.0 to b0 = 0.003 

(i. e. reflecting a belief that the reciprocal of creatinine was 

initially increasing) we were able to identify correctly many of 

these very early events (see Figure 6.4). 

6.1.2.2 Bone Marron Transplantation 

Bone marrow transplantation is one form of treatment 

for patients who have the blood disorder leukemia and, post- 

transplant, such patients are often monitored in terms of time 

series of blood cell counts or concentrations. Jones (1984) 

presented an example in which three such indicators were utilized: 

white blood cell count (WBC), platelet count and haematocrit. 

In this section, and in a number of subsequent sections, we shall 

re-examine these data sets. 

Jones (1984) suggested that, having first taken the logar- 

ithms of the WBC counts and the platelet counts, each of these 
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series could be reasonably modelled by a first order autoregres- 

sive model. Previous experience with series of WBC counts, how- 

ever, has led us to believe that the untransformed counts are likely 

to exhibit AR(1)-type behaviour (see Section 6.1.3.1). It is then 

not unnatural to suppose that the logarithm of these values will 

display a linear structure, since (ignoring error terms) if 

xt = ýXt-1 

then 

1og(XL) = log(c) + log(Xt-1) 

and, since 0 is assumed constant, it is clear that (6.2) has the 

(recursive) form of a straight line. It is, of course, true that 

the setting of Section 6.1.3.1 (that of renal dialysis) is very 

different from that of bone-marrow transplantation, so that there 

is no reason why the steady-state patterns of WBC counts should 

be identical to those encountered in that case. However, inspect- 

ion of the graph of log(WBC) against time (see Figure 6.5) seems 

to suggest a straight line form (bearing in mind that the graph 

depicts post-transplantation observations and may well contain 

changepoints), and so we shall examine the WBC series using the 

linear growth model. 

Before we do so, we note that, whereas Jones (1984) used 

the log10 transformation for WBC and platelet counts, we have pref- 

erred to use natural logarithms; the scales of measurement there- 

fore differ from those presented by Jones (1984). We have assumed 

that the raw WBC count was about 5000 (the lower end of the 'normal 

range'), with a negligible slope, initially. On the log scale 

we thus have prior parameters: 

(6.1) 

(6.2) 
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-o 

(0.0 
' 

(l o os f 

where the elements of 
41 
Co are chosen to give a fairly diffuse prior 

distribution. Results from the analysis are presented in Figure 

6.6, in which the transformed data along with one-step-ahead fore- 

casts can also be seen. 

It is interesting to note that changepoint signals (0T > 0.2) 
k 

are obtained on four occasions: slope changes were detected at 

Tk = 10,16 and 50, and a level change was signalled on day 67. 

The latter illustrates the fact that changepoint-types may be con- 

fused when the data is very sparse (see Section 4.4.4). 

What do these changepoints represent? Clearly, the first 

slope change is an abrupt reversal of slope from negative to posit- 

ive (i. e. from deterioration to improvement) and therefore seems 

to indicate that the treatment became effective at this point. 

The second change can be seen to be a (downward) deflection of 

the slope., possibly implying that a less vigorous course of therapy 

was initiated at this point. At Tk = 50, however, a change in 

slope from positive to negative was signalled, and we tentatively 

suggest that this may be due to a transplant rejection episode. 

-As a further guide to the suitability of the model, Figure 

6.7 shows on-line estimation of the 0-grid, from an analysis in 

which it was assumed that an AR(1), with autoregressive parameter 

0, was the correct model for the transformed data. On comparison 

of this display with that found in Appendix A4.2, it seems likely 

that the AR(l) is not the most suitable model. This is also 

confirmed by a drop in forecasting ability (linear growth: 

SSFE = 23.3, MAD = 0.45; AR(1): SSFE = 30.4, MAD = 0.65). 
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6.1.2 SINUSOIDAL MODEL 

Many time series of clinical indicators measured on 

human beings exhibit approximately twenty-four-hour rhythmicity 

(see, for instance, Minors and Waterhouse 1981). Although the 

study of these 'circadian rhythms' is a growing area of research, 

most practising clinicians are not yet convinced of the practical 

advantage that might be gained by taking such information into 

account, even though some studies have shown that the timing of 

drug intake (within a 24 hour time-span) may have substantial 

effects on disease prognosis and drug toxicity (see, for instance, 

Kowanko et al. 1980, Hrushesky et al. 1982). There is clearly 

an additional cost involved in obtaining more than one measure- 

ment per day (both in terms of resource allocation and, perhaps, 

patient inconvenience), and it is therefore very rare for series 

with many measurements per day to be collected in routine clinic- 

al care at the present time. 

In order to illustrate the sinusoidal model, we shall examine 

series arising from two very different clinical research studies 

(one involving animals, the other involving humans) but we emphas- 

ize that this type of model may be suited to more and more diverse 

applications as the clinical significance of human rhythmicity 

becomes more apparent. 

6.1.2.1 Urinary Rhythms 

Circadian rhythms associated with urine production and 

its constituents have been investigated by several authors (see, 

for instance, Buchsbaum and Harris 1971). Perhaps more import- 

antly, however, a number of studies have suggested that certain 

drugs and/or diseases may induce abnormal rhythms or destroy some 
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rhythms altogether (see, for instance, Hillier, Knapp and Cove-Smith 

1980). The following example concerns a sample data set obtained 

from an experiment performed on a group of rats, in order to deter- 

mine whether or not their urinary rhythms were disturbed by the 

introduction of steroidal drugs (Kowanko 1982). 

During the experiment the rats were kept under a constant 

12: 12 light/dark cycle (i. e. 06.00 to 18.00 Light, 18.00 to 06.00 

Dark) for a period of about twelve days. The rats were untreat- 

ed for the first week of the experiment but, on the eighth day, 

the steroidal drug, dexamethasone, was introduced. Urine collect- 

ions were made (mechanically) every four hours throughout the dur- 

ation of the experiment, and a number of urinary variables were 

measured. For our illustration, we examine the resulting time 

series of urinary flow (i. e. volume/4 hours) obtained from one of 

the rats. Due to the expected rhythmicity of this variable, we 

adopted the sinusoidal model (described in Sections 2.3.3,3.3.3 

and 4.3.3) with a fixed periodicity of 24 hours. Figure 6.8 

displays the series along with output from the analysis, for which 

4 hours is equivalent to one time unit. A positive signal 

(OT > 0.2) occurs at one timepoint only, Tk = 44, and at this 
k 

point the system is unsure as to whether there has been a change 

in level (044) = 0.316) or a change in amplitude (044) = 0.415). 

In other words, a discontinuity starting at Tk = 43 (the first 

value on the eighth day) is suspected, suggesting that the intro- 

duction of dexamethasone had an immediate disturbing effect on 

the urinary flow rhythm for this particular rat. 

Examination of the recursive estimates of rhythm level and 

amplitude, provided by the analysis, showed that the mean level of 

the series rose from 1.16 to 1.42 on the introduction of the 
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steroid, and that the rhythm amplitude, in fact, almost doubled 

from 0.36 to 0.68. This analysis has proved to be useful, there- 

fore, in not only quantifying the magnitude of changes to the 

rhythm characteristics, but also in identifying the existence of 

a discontinuity in rhythm when it was very difficult to detect 

this by eye. 

6.1.2.2 Respiration Studies 

The next data set consists of 4-hourly measurements 

(06.00,10.00, etc. ) of peak expiratory flow rate (PEFR, a measure 

of airway capacity) made on an asthmatic patient who was part of 

a trial to examine the effects of various asthmatic drugs and their 

administration. As the trial subjects were human, it was decided 

to minimize patient inconvenience by omitting to take measurements 

at 02.00 hours, thereby producing a cyclic sampling pattern. The 

patients were monitored for several weeks and the underlying drug 

regimen was changed on a number of occasions during this period. 

It has been shown that many respiratory patterns in asthmat- 

ics, including that of PEFR, exhibit circadian rhythmicity, and 

that the airway capacity is often lowest at night, at which time 

there is the greatest risk of respiratory difficulties (Hetzel 

and Clark 1979). For this reason we chose once more, the sinusoid- 

al model in an attempt to reflect the rhythmic characteristics of 

the data. The series, along with one-step-ahead forecasts, and 

the results from the multistate analysis can be seen in Figure 

6.9 (1 unit =1 hour). Changes in the level of the series have 

been signalled at Tk = 150,226 and 330, and although these signals 

correlated very closely with changes to the drug regime, it is 
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readily apparent that no amplitude change has been signalled (even 

though a change in the amplitude seems perfectly obvious from an 

'eyeball' of the time series) and that, in general, the forecasts 

are poor. We might explain this by suggesting that there were 

simultaneous changes in level and amplitude and that our simple 

multistate structure was unable to handle this type of phenomenon. 

By allowing for an additional 'combined' state, perhaps, we might 

have been able to model the situation more closely (see Section 

3.3.1). 

On the other hand, examination of the recursively calculated 

estimate of the rhythm amplitude reveals that the estimate drop- 

ped from 50.6 before the first changepoint to 25.9 afterwards 

(suggesting that there had been a change in the amplitude of the 

PEFR rhythm). For the second changepoint, however, this estim- 

ate changed from 24.1 to 27.1, suggesting that this alteration 

in the drug regimen had little effect on the rhythm amplitude. 

6.1.3 AR(1) MODEL 

6.1.3.1 Long-Term Dialysis 

Renal dialysis is a common form of treatment for 

patients who have serious kidney dysfunction, and is sometimes 

chosen as an alternative to kidney transplantation. Conversely, 

some patients who have received a transplanted kidney are not 

only initially supported by dialysis but, if their kidney event- 

ually fails, they may need to revert to full-time dialysis therapy. 

It is therefore not uncommon for a patient to undergo long-term 

treatment by dialysis in which case, since the condition is chronic 

rather than acute, the patient will be investigated clinically 
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rather infrequently. Successive clinic appointments may be sev- 

eral months apart unless a deterioration in condition occurs, in 

which case the sampling frequency might be increased. Sequences 

of data, arising from these clinic visits, will therefore tend 

to be very unequally-spaced. 

The example considered here consists of a sequence of WBC 

counts, obtained over a period of just over a year, from a pat- 

ient on long-term dialysis. From the point of view of clinical 

care, one is anxious to ensure that the WBC count does not fall 

to too low a level, since this would result in a-weakening of the 

body's defence mechanisms with regard to infections. One is 

often in the position where downward trends in WBC count need to 

be watched very closely, but these trends may be 'confused' by 

the introduction of drugs (especially steroids) which are some- 

times required to treat other symptoms associated with poor renal 

function. These drugs often have the effect of producing trans- 

ient increases in the WBC count and, although these effects are 

anticipated, they still need to be properly considered since 

they might otherwise give a false impression of the underlying 

trend. 

Retrospective examination of twelve renal patients who were 

considered, clinically, to have stable WBC counts indicated that 

half of the WBC series were indistinguishable from white noise, 

whereas the remaining series contained non-negligible first-order 

autocorrelations. For this reasons-, we chose to adopt the AR(l) 

model (as described in Sections 2.3.5.1,3.3.5.1 and 4.3.5.1) 

for the multistate analysis, for which we set 

(50001 {25000 0 
Mo 15000) and 0=0 

25000) 
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The example data series, along with results from the multi- 

state analysis, can be seen in Figure 6.10, where the timescale is 

given in days. Notice that three impulses were detected, each 

coinciding with the introduction of steroids. These events are, 

perhaps, obvious even by eye, but it is emphasized that: 

(i) the detection of these changes was on-line, so that 

quick, automatic signals were available before the full data set 

was 'uncovered', and 

(ii) the analysis has in each case distinguished these 

clinically-meapingful impulses from error-based transients, even 

though the data is, at times, exceedingly scarce and that the 

impulses themselves differ in length of duration. 

Figure 6.11 shows on-line estimation of the grid for ý, 

the autoregressive parameter, which (after a hesitant beginning) 

soon displays reasonable confidence (considering the sparseness 

of the data) in a positive autocorrelation. Comparison with 

Figure 6.7 in Section 6.1.1.2 (roughly the same number of observ- 

ations, but over a much condensed timescale) confirms our belief 

that the AR(1) model is more suited to a series of raw WBC counts 

than to a series of their logarithms. 

6.1.3.2 Foetal Heart Monitoring 

With the recent advent of sophisticated computerized 

foetal monitors, the study of foetal heart rates and other foetal 

parameters is of growing importance. Before the invention of 

these machines it was very difficult to obtain accurate information 
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regarding the characteristics of the foetal heart, but the latest 

generation of monitors provide a tremendous quantity of accurate 

data. In fact, these multi-channelled devices can obtain data 

from, perhaps, a dozen alternative foetal parameters over a time 

scale of seconds, or even milliseconds. There is, of course, 

much debate as to which parameters are important, in terms of 

monitoring the well-being of the foetus and, because it has only 

recently become possible to collect such data in a routine manner, 

it is uncertain at this stage just what information is useful, 

and what is irrelevant. 

What has become clear over the years, however, is that one 

heat-to-beat cycle of the (foetal) heart produces a heart-wave 

which has a consistent, but very complicated, 'shape' in the healthy 

foetus. The statistical or mathematical modelling of such a 

waveform is an horrendously complicated task, owing to the complex- 

ity of the waveform and the fact that it is not clear how this 

waveform changes in times of foetal distress; we make no attempt 

to approach this modelling problem here. 

Obstetricians (and others involved in the examination of 

heart rates) tend to split up this overall waveform into components, 

or sub-waves, generally referred to as the P-wave, the Q-R-S complex 

and the T-wave. For the example given in this section, the data 

set was provided by Mr. H. Jenkins (formerly of the University 

Hospital, Nottingham) and consists of measurements of the duration 

of the S-T segment (the section of the wave starting at the end 

of the Q-R-S complex and ending at the mid-point of the T-wave) 

measured about a baseline of 1000 (the isoelectric line). These 

measurements were recorded every minute for about six hours 
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(throughout the period of labour), and a graph of the resulting 

series can be seen in Figure 6.12. 

In terms of choosing a model for this series, we have very 

little prior information to go on, since not enough is yet known 

about even the stable-state behaviour of such parameters. As 

in the previous section, however, similar data sets suggested 

that there may be some autocorrelation present and so, for simplic- 

ity, we attempted to use the AR(1) model in the multistate analys- 

is. Figure 6.13 shows output from this analysis, along with one- 

step-ahead forecasts for the original series, and there are sev- 

eral points worth making. 

Firstly, it should be apparent that in terms of tracking, 

as depicted by the one-step-ahead forecasts', the model seems to 

perform admirably even towards the end of the series when the 

pattern changes completely. There are also a number of change- 

point signals, sometimes indicating an impulse (e. g. Tk = 180) 

though, more commonly, transients are indicated (Tk = 127,181, 

263 and 275). These signals are associated with sharp downward 

dips (of differing severity and duration) which are each due to 

a single contraction. 

The 'event' which begins at around Tk = 249 (as signalled 

by a level change), and which totally alters the pattern of the 

time series, seems to throw the event-detection analysis into 

total confusion. This 'crisis' is, in fact, a normal, and anti- 

cipated, event: the successful birth of the infant! 

Figure 6.14 displays the on-line estimation of the ý-grid 

(autoregressive parameter). Notice that the impulse (at Tk = 180) 

sharpens the confidence in the estimate for $. It is clear, 
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however, that a great deal of data was necessary to inspire any 

confidence in this parameter estimate, indicating that the AR(l) 

process is, perhaps, not the most suitable choice of model, and 

that we may be able to do better with some alternative model. 

We feel, though, that, given the accuracy of the forecasts and 

the ability to 'detect' contractions, the signs are very encour- 

aging and that if we could gain a greater understanding of the 

mechanisms involved in the production of these complex waveforms, 

this methodology will have considerable potential in the area of 

foetal heart monitoring. 

6.1.3.3 Bone Marrow Transplantation 

We now return to the data sets given in Jones (1984) 

concerning blood cell measurements following a bone-marrow trans- 

plant. We noted, in Section 6.1.1.2, that our experience with 

WBC counts led us to believe that a linear growth model was ap- 

propriate for the ln(WBC) data set. We have no additional exper- 

ience, however, with series of platelet counts or haematocrit, 

and inspection of the time series of these variables suggests 

that the AR(1) model may not be inappropriate. We therefore 

examine each of these series by adopting the multistate AR(1) 

model in the analysis. Recall that, for the platelet count, we 

have chosen to take the natural logarithm of the data, so that 

the scale of measurement differs from that given by Jones (1984). 

For the ln(platelet) series, we choose 

moo= 112.0 
Ca= 

{io. o. 
U100,, 

while for the haematocrit series we set 
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The results from the univariate multistate analyses for each of 

these series, along with one-step-ahead forecasts, can be seen 

in Figures 6.15 and 6.16. Figure 6.15, showing the platelet 

series, indicates 

ed at Tk = 13,20 

series, indicates 

Tk = 43 and 67. 

be a feature of tl 

The drop in 

that level changes (0(3) > 0.2) were suspect- 
k 

and 31. Figure 6.16, showing the haematocrit 

an impulse at Tk = 27, with level changes at 

The remaining signals (Tk = 78 and 85) seem to 

le sparseness of the data. 

the level of haematocrit at Tk = 43 confirms 

our belief that an untoward event, possibly rejection, occurred 

at around this time (see Section 6.1.1.2), although the haemato- 

crit series does not reflect the initial delay in the onset of 

treatment effectiveness. This delay is, perhaps, reflected by 

the ln(platelet) series since a level change was indicated at 

Tk = 13; the second level change signalled in this series 

(Tk = 20) may well be associated with the decrease in slope sig- 

nalled in the ln(WBC) series at Tk = 16. 

If the changepoints that-have been signalled by these 

analyses are genuine, we conclude that, of the indicators examin- 

ed, ln(WBC) provides the clearest view of the post-transplant 

course, although haematocrit may be just as useful in the early 

detection of acute deterioration. 

N. B. For the ln(platelet) series we obtained SSFE = 12.0, 

MAD = 0.38 and for the haematocrit series we obtained SSFE = 479.6, 

MAD = 2.26. 
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6.2 BIVARIATE EXAMPLES 

6.2.1 BIVARIATE LINEAR GROWTH MODEL 

In order to illustrate the use of the bivariate linear 

growth model, we return to the setting of kidney transplantation. 

Besides creatinine, there are many other indicators of kidney 

function, some of them involving alternative blood measurements, 

others involving the execution of certain clinical tests (e. g. 

a biopsy). One of the other most common blood chemicals that is 

used as a guide to the state of a patient's kidneys is the sub- 

stance serum urea, and it was felt that by attempting to model 

the urea and creatinine series in a bivariate manner we might be 

able to further discriminate between those changes which were 

clinically significant and those changes which were not. 

In the example which follows, the creatinine series is the 

first of those presented in Section 6.1.1.1 (see Figure 6.1), 

and the corresponding urea series (from the same patient over 

the same period of time) has been utilized. We note that, from 

earlier studies, a time series of the reciprocal of urea (correct- 

ed for weight) may also be modelled satisfactorily by the linear 

growth model in the setting of kidney transplantation (Knapp 

et al. 1977). 

In terms of the interrelationships between the two series, 

we know very little. We feel (from physiological considerat- 

ions) that there is unlikely to be steady-state causality (see 

Section 5.3.1.2) between the two variables, since a rise (say) 

in one of these chemicals does not directly produce a change in 

the other. However, since the two variables are both indicators 

of the same function (i. e. kidney function) it is likely that 
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the two series will be highly correlated. Moreover, if a change 

in kidney function occurs, this will probably be reflected by 

pattern changes in each of the series, i. e. we need to incorpor- 

ate the possibility of changepoint-causality (see Section 5.3.1.3). 

Using the notation from Section 5.3.2.1, we shall set 

Ruu = Rßß = 0.1 and we shall also set the variance ratio 

var(Cit)/var(s2t) = 0.5 (where Elt is associated with the creatin- 

ine series, £2t the urea series), since this corresponds, approxi- 

mately, to the adjusted ratio of coefficients of variation for the 

two chemicals, provided by the laboratory. 

Using this prior information, Figure 6.17 shows the two ser- 

ies (creatinine the lower of the two), along with the probabilit- 

ies of a dual positive slope change, i. e. a concurrent slope change 

in each of the series, which we shall (as in the univariate case) 

use as a guide to whether or not the kidney has rejected. 

Using our previous criterion for a positive signal, we see 

that 0(11) > 0.2 on two occasions; when Tk =6 and when Tk = 16. 
k 

Notice that the first of these signals is one day earlier than 

the corresponding signal obtained from the univariate analysis 

of creatinine alone and, therefore, one day earlier than the clin- 

ician's reaction. Notice, too, that there are several occasions 

when only one of the two indicators has been measured, so that 

this is an example of a generally unequally-spaced bivariate time 

series. 

6.2.2 AR(1)/LINEAR GROWTH MODEL 

In order to illustrate the use of the Aa(1)/linear 

growth model, we return, once core, to the setting of bone marrow 
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transplantation, and the data sets given by Jones (1984). Recall 

(from Section 6.1.1.2) that we have assumed that the ln(WBC) can 

be modelled by the linear growth model and (from Section 6.1.3.3) 

that the In(platelet) and haematocrit series can each be modelled 

by the AR(1) model. We shall therefore consider the analysis as 

applied to each of two bivariate time series, the first consist- 

ing of ln(platelet) and ln(WBC), and the second consisting of 

haematocrit and ln(WBC). 

6.2.2.1 No Causality 

Jones (1984) discovered that the 'best' trivariate 

model for the three indicators was one in which the WBC counts 

and platelet counts were not causally linked, either through the 

transition matrix or the system-perturbation covariance matrix. 

We have therefore assumed that a suitable bivariate model for 

In(platelet) and ln(WBC) is the AR(l)/linear growth model with- 

out steady-state causality or changepoint-causality. This leads 

to a diagonalization of the various matrices involved (see Sect- 

ion 5.3.1), so that very little prior information is required in 

addition to that previously utilized in Sections 6.1.1.2 and 

6.1.3.3. Because these two indicators are both affected by the 

effectiveness of the bone marrow transplant, we shall assume that 

coincident observations are correlated, by setting RCc = 0.1 

(see Section 5.3.2.2). In order to specify the ratio of observ- 

ation variances, we note that Jones (1984) found that the vari- 

ance associated with the log(platelet) series was nearly twice 

that associated with the log(WBC) series, and so we set the var- 

iance ratio accordingly. 
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Results from the bivariate analysis can be seen in Figure 

6.18 (ln(platelet) the lower of the two series). Apart from the 

detection of the occasional transient in one or other of the ser- 

ies (but not both together - this 'event' could be of some import- 

ance), positive signals (0T > 0.2) were obtained on several occas- 
k 

ions. The level changes indicated by the univariate analysis for 

the ln(platelet) series (see Section 6.1.3.3) atTk = 20 and 

Tk = 31 have each been signalled as the event 'Level change/Steady 

state', i. e. the ln(WBC) fails to confirm the suggested changes. 

Similarly, the slope change found in the ln(WBC) series (see 

Section 6.1.1.2) at Tk = 16 is not mirrored by a change in the 

ln(platelet) series, since at Tk = 16 the event signalled is 

'Steady state/Slope change'. 

There are two occasions, however, when the event 'Level 

change/Slope change' is signalled: at Tk =8 and Tk = 25. The 

first of these seems to correspond to an early signal of the on- 

set of transplant effectiveness, though the second signal appears 

to be a false positive. Notice that the (possible) event of 

most clinical interest (i. e. the deterioration at or around 

Tk = 45) has been missed altogether. 

For this model we found SSFE = 12.0 and MAD = 0.37 for 

the ln(platelet) series, with SSFE = 18.7 and MAD = 0.43 for 

the ln(WBC) series. Examination of the corresponding values 

obtained in the univariate analyses (Sections 6.1.1.2 and 6.1.3.3) 

shows that the forecasting ability of the bivariate model is 

comparable to that attained by the univariate models, with per- 

haps slightly better performance achieved for the ln(WBC) series. 
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6.2.2.2 Unidirectional Causality 

Here we examine a bivariate model for the sequences 

of haematocrit and ln(WBC) which, according to Jones (1984), show- 

ed some signs of causality in that it was suggested that a rise 

in the haematocrit level would be the direct cause of a rise in 

the ln(WBC) level, but not vice versa (so that we have a case of 

unidirectional causality). We tried to incorporate this type 

of behaviour into the model by setting c=0.025 (using the not- 

ation of Section 5.3.2.2), thus allowing for steady-state uni- 

directional causality via the transition matrix, G. Although 

Jones (1984) found no causal links between the system perturb- 

ations, it was felt that we ought to allow for changepoint- 

causality by setting Rcc = Ruu = 0.1. A variance ratio of 

1: 10 was specified since Jones (1984) found that the observat- 

ion error variance for the haematocrit series was negligible. 

Results from the bivariate analysis are given in Figure 

6.19 (the haematocrit series is the lower of the two) and we 

focus our attention, once more, upon the signals (0T > 0.2) 
k 

obtained. We see that we are again able to screen out trans- 

ient observations in one or other of the series (e. g. Tk = 22), 

and that the impulse detected, at Tk = 27, by the univariate 

analysis for haematocrit (see Section 6.1.3.3) is now signalled 

as 'Impulse/Steady state', i. e. this event is not reflected by 

the ln(WBC) series. Of main interest is the fact that the event 

'Level change/Slope change' (with which we are most concerned) 

has been signalled on three occasions: Tk = 10,43 and 67. 

The first of these signals confirms our belief that the bone- 

marrow transplant needed around eight to nine days before it 
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began to take effect, whereas the second signal is further con- 

firmation of an acute deterioration (possible rejection) at 

around day 41. The final signal (Tk = 67) seems to clarify those 

given by the univariate analyses, and may well represent the improve- 

ment due to 'treatment' of the earlier deterioration. 

For this model, SSFE = 490.6, MAD = 2.24 for the haematocrit 

series and SSFE = 24.1, MAD = 0.44 for the ln(WBC) series, which 

are comparable to the values obtained from the univariate analyses 

(Sections 6.1.1.2 and 6.1.3.3). 

Summary of Results from Bone Marrow Transplantation Example 

From our own analyses of the data sets presented by Jones 

(1984) concerning blood cell counts following bone marrow trans- 

plantation, we tentatively conclude that: 

(i) the transplant was ineffectual for the first week or 

so, at which point the treatment suddenly began to take effect; 

(ii) there was a deterioration (possibly 'rejection') in 

the patient's condition beginning at around day 41, which seemed 

to be treated (or was self-corrected) around day 64; 

(iii) the bivariate pairing of haematocrit and WBC appears 

to provide the earliest warning signs for both improvement and, 

more importantly, deterioration; the platelet count appears to 

be misleading in this latter respect. 

Unfortunately, we do not have access to the original clinical 

record for this patient, in order to discover whether or not the 

changepoints we have detected relate to genuine clinical events. 
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APPENDIX SIX 

DATA SETS 

A6.1 RENAL TRANSPLANTATION 

Cardiff Data 

DAY WEIGHT CREATININE UREA 

2.0 49.8 221.0 4.0 
3.0 50.0 126.0 3.5 
5.0 52.0 127.0 3.3 
6.0 52.7 161.0 4.0 
7.0 52.9 186.0 4.5 
8.0 303.0 10.5 
9.0 54.3 343.0 10.5 

10.0 54.2 312.0 8.0 
12.0 55.0 224.0 3.0 

13.0 192.0 2.5 
14.0 171.0 3.3 

15.0 50.3 209.0 5.0 
16.0 48.8 248.0 9.0 
18.0 49.0 281.0 11.0 
19.0 49.2 288.0 8.0 
20.0 51.3 251.0 
22.0 52.0 432.0 17.0 
23.0 51.6 418.0 12.5 
24.0 50.7 451.0 
25.0 51.9 519.0 14.5 
26.0 53.9 623.0 21.0 
27.0 55.0 788.0 17.5 
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DAY WEIGHT CREATININE UREA 

28.0 55.2 882.0 27.0 
29.0 55.2 954.0 24.0 
31.0 55.5 584.0 24.0 
32.0 57.6 666.0 20.0 
33.0 50.8 641.0 20.0 
34.0 51.5 673.0 16.0 
35.0 51.8 655.0 14.0 

36.0 53.7 560.0 13.0 
37.0 54.0 413.0 12.0 
38.0 300.0 8.5 
41.0 52.3 189.0 7.5 
42.0 52.1 175.0 6.5 
44.0 51.5 168.0 7.5 
46.0 47.2 153.0 6.0 

47.0 46.6 159.0 5.8 

49.0 46.0 158.0 5.5 
50.0 45.7 161.0 6.0 
51.0 44.6 155.0 
52.0 44.3 135.0 5.0 

56.0 42.4 183.0 6.5 

DAY WEIGHT CR EATININE GAY' WEIGHT CREATININE 

1.0 65.4 1231.0 56.0 163.0 
2.0 67.7 908.0 61.0 71.0 161.0 

3.0 68.4 484.0 68.0 68.3 161.0 

4.0 68.1 284.0 75.0 71.7 155.0 

5.0 66.7 244.0 82.0 163.0 

6.0 67.5 202.0 89.0 74.9 180.0 
7.0 68.9 176.0 96.0 73.2 204.0 
8.0 70.0 216.0 97.0 215.0 
9.0 68.5 272.0 98.0 215.0 

10.0 68.6 287.0 99.0 200.0 

11.0 69.4 308.0 103.0 73.6 211.0 
12.0 69.8 299.0 104.0 74.5 229.0 
13.0 69.0 292.0 105.0 75.8 223.0 
14.0 68.6 240.0 106.0 74.9 215.0 

15.0 69.1 215.0 107.0 77.2 200.0 

16.0 68.5 189.0 108.0 77.2 199.0 

17.0 69.0 186.0 109.0 73.9 240.0 

19.0 68.7 177.0 110.0 72.3 282.0 

21.0 67.7 162.0 111.0 74.5 306.0 

24.0 68.1 162.0 112.0 74.2 327.0 
26.0 68.1 160.0 113.0 73.2 287.0 

28.0 163.0 114.0 72.2 270.0 

31.0 175.0 115.0 72.6 274.0 
33.0 68.6 159.0 116.0 72.8 261.0 
35.0 69.4 166.0 117.0 74.0 228.0 

38.0 168.0 118.0 73.3 232.0 

40.0 69.4 169.0 119.0 73,5 218.0 

42.0 166.0 122.0 220.0 

45.0 159.0 124.0 229,0 
47.0 69.0 148.0 131.0 73.4 255.0 
49.0 141.0 138.0 72.2 304.0 
52.0 157.0 145.0 71.2 268.0 
54.0 69.6 160.0 
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UKTS PiZot Study Data 

DAY WEIGHT CREATININE 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
11.0 
12.0 
13.0 
15.0 
18.0 
22.0 
29.0 
32.0 

A6.2 URINARY FLOW 

53.8 
52.2 
49.6 
50.4 
51.0 
50.5 
51.0 

52.4 

51.8 
51.1 

623.0 
371.0 
333.0 
264.0 
261.0 
384.0 
357.0 
282.0 
260.0 
273.0 
233.0 
202.0 
176.0 
165.0 
159.0 
200.0 
211.0 
209.0 
189.0 

TIME FLOW TIME FLOW 

1.00 0.77 26.00 1.03 
2.00 2.18 27.00 1.36 
3.00 0.91 28.00 1.33 
4.00 0.65 29.00 1.21 
5.00 0.78 30.00 0.89 
6.00 0.47 31.00 0.74 
7.00 1.09 32.00 0.59 
8.00 0.46 33.00 1.01 
9.00 0.39 34.00 1.29 

10.00 0.45 35.00 1.59 
11.00 0.70 36.00 1.17 
12.00 0.85 37.00 1.32 
13.00 0.64 38.00 0.69 
14.00 0.29 39.00 1.36 
15.00 0.45 40.00 2.01 
16.00 1.14 41.00 1.28 
17.00 1.12 42.00 1.45 
18.00 1.05 43.00 2.79 
19.00 1.14 44.00 2.83 
20.00 0.67 45.00 0.89 
21.00 0.81 46.00 1.48 
22.00 1.69 47.00 0.92 
23.00 1.55 48.00 0.66 
24.00 1.35 49.00 2.99 
25.00 0.27 50.00 1.67 
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TIME FLOW TIME FLOW 

51.00 1.65 62.00 2.27 
52.00 1.61 63.00 1.40 

53.00 1.32 64.00 1.16 
54.00 1.14 65.00 1.24 
55.00 1.70 66.00 1.24 
56.00 2.62 67.00 0.87 
57.00 1.75 68.00 1.29 

58.00 1.27 69.00 1.19 
59.00 0.84 70.00 0.90 
60.00 0.99 71.00 0.60 
61.00 1.82 72.00 0.75 

A6.3 RESPIRATION 

TIME 
(HOURS) PEFR 

TIME 
(HOURS) PEFR 

TIME 
(HOURS) PEFR 

18.00 320.00 130.00 320.00 234.00 200.00 

22.00 270.00 134.00 370.00 238.00 170.00 
30.00 230.00 138.00 330.00 246.00 120.00 
34.00 350.00 142.00 220.00 250.00 160.00 

38.00 370.00 150.00 200.00 254.00 180.00 

42.00 360.00 154.00 220.00 258.00 180.00 
46.00 320.00 158.00 230.00 262.00 150.00 
54.00 240.00 162.00 240.00 270.00 120.00 

58.00 370.00 166.00 240.00 278.00 170.00 
62.00 390.00 174.00 200.00 282.00 170.00 

66.00 340.00 178.00 230.00 286.00 150.00 
70.00 310.00 182.00 240.00 294.00 120.00 
78.00 260.00 186.00 250.00 298.00 150.00 
82.00 380.00 190.00 220.00 302.00 180.00 
86.00 390.00 198.00 180.00 306.00 190.00 

90.00 370.00 202.00 260.00 310.00 160.00 

94.00 280.00 206.00 260.00 318.00 120.00 
102.00 270.00 210.00 230.00 322.00 150.00 
106.00 360.00 214.00 220.00 326.00 220.00 
110.00 380.00 222.00 120.00 330.00 230.00 

114.00 370.00 226.00 160.00 334.00 200.00 

118.00 320.00 230.00 200.00 342.00 180.00 

126.00 260.00 

A6.4 LONG-TERM DIALYSIS 

DAY WBC DAY WBC DAY WBC 

1.00 3.70 56.00 4.00 66.00 5.50 
4.00 2.80 60.00 9.00 67.00 5.70 

11.00 2.60 63.00 4.50 68.00 4.80 
39.00 3.70 64.00 6.40 70.00 3.90 
43.00 4.30 65.00 6.50 71.00 3.90 
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DAY WBC DAY WBC DAY WBC 

72.00 3.70 316.00 4.40 345.00 3.90 

91.00 2.80 319.00 9.20 346.00 1.80 

95.00 3.00 320.00 3.70 348.00 2.60 

126.00 4.30 321.00 3.30 349.00 2.30 
128.00 3.10 322.00 5.10 350.00 4.10 
161.00 3.90 323.00 5.50 351.00 3.60 

191.00 2.50 324.00 7.20 355.00 4.10 

193.00 18.80 326.00 6.40 360.00 2.80 
194.00 12.70 327.00 9.70 364.00 4.70 
196.00 3.20 329.00 12.80 366.00 3.20 
200.00 5.30 338.00 5.20 370.00 2.90 

201.00 4.90 339.00 3.30 372.00 3.10 

238.00 3.90 340.00 2.50 374.00 3.90 

245.00 3.30 341.00 2.50 375.00 3.80 

254.00 2.80 342.00 2.80 376.00 3.10 

273.00 2.90 343.00 1.90 392.00 3.50 
315.00 4.60 

A6.5 FOETAL HEART DATA 

TIME 
(M NUTES) 

ST LENGTH (MINUTES) ST LENGTH 

1.00 1017.20 31.00 997.80 
2.00 1030.70 32.00 981.90 
3.00 1029.00 33.00 856.00 
4.00 1002.90 34.00 890.10 
5.00 1033.50 35.00 1008.50 
6.00 981.50 36.00 1020.00 
7.00 1005.40 37.00 1034.70 
8.00 1020.90 38.00 999.90 
9.00 1021.40 39.00 1014.50 

10.00 1011.90 40.00 1016.20 
11.00 1020.30 41.00 1039.30 
12.00 1017.60 42.00 1025.40 
13.00 1012.70 43.00 1025.10 
14.00 963.20 44.00 1022.30 
15.00 1023.20 45.00 1004.90 
16.00 1022.20 46.00 1016.40 
17.00 1014.30 47.00 1014.00 
18.00 1011.90 48.00 1033.80 
19.00 1028.00 49.00 1023.90 
20.00 1012.70 50.00 1035.70 
21.00 1001.50 51.00 1004.60 
22.00 1003.10 52.00 994.50 
23.00 1027.80 53.00 1018.50 
24.00 987.60 54.00 1008.50 
25.00 982.70 55.00 1045.20 
26.00 997.30 56.00 1012.40 
27.00 1009.40 57.00 1024.70 
28.00 989.60 58.00 1039.70 
29.00 1009.60 59.00 1042.60 
30.00 931.30 60.00 1009.40 



- 267 - 

TIME TIME 
(MINUTES) ST LENGTH (MINUTES) ST LENGTH 

61.00 1011.00 113.00 1011.00 
62.00 1008.90 114.00 1023.20 
63.00 1033.00 115.00 1029.10 
64.00 1027.50 116.00 1049.30 
65.00 1006.90 117.00 1071.40 
66.00 982.00 118.00 1029.70 
67.00 1039.40 119.00 1010.20 
68.00 1011.80 120.00 1068.90 

69.00 1035.20 121.00 991.70 
70.00 1016.40 122.00 1044.30 
71.00 1029.30 123.00 1026.20 
72.00 1043.70 124.00 1011.10 
73.00 1011.10 125.00 1025.60 
74.00 1006.30 126.00 817.40 
75.00 1034.70 127.00 1046.80 
76.00 1034.90 128.00 1016.70 
77.00 1039.80 129.00 1035.10 
78.00 1036.00 130.00 1072.40 
79.00 1025.70 131.00 1017.60 
80.00 1024.80 132.00 1037.50 
81.00 1017.40 133.00 1021.90 
82.00 1011.00 134.00 1037.50 
83.00 1033.20 135.00 992.00 
84.00 1019.40 136.00 979.40 

85.00 1011.80 137.00 975.90 
86.00 1036.10 138.00 1008.50 
87.00 1035.80 139.00 994.00 
88.00 944.80 140.00 1001.50 
89.00 998.20 141.00 1007.90 
90.00 917.30 142.00 1035.80 
91.00 951.80 143.00 1030.00 
92.00 976.30 144.00 1007.40 
93.00 949.60 145.00 1003.50 
94.00 956.50 146.00 1008.50 
95.00 1043.90 147.00 1005.60 
96.00 1014.20 148.00 1008.20 
97.00 998.80 148.00 1003.50 
98.00 994.20 150.00 994.10 
99.00 1000.10 151.00 1020.90 

100.00 976.00 152.00 1005.80 
101.00 992.00 153.00 970.60 
102.00 992.80 154.00 1015.60 
103.00 987.50 155.00 1029.40 
104.00 1005.40 156.00 1010.30 
105.00 1009.30 157.00 998.50 
106.00 1004.90 158.00 1009.60 
107.00 994.00 159.00 1005.50 
108.00 1022.40 160.00 997.90 
109.00 1005.30 161.00 1020.50 
110.00 978.60 162.00 995.80 
111.00 1030.70 163.00 1024.60 
112.00 998.20 164.00 989.20 

ST LENGTH 
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(MINIUTES) ST LENGTH (MINIUTES) ST LENGTH 

165.00 1005.00 217.00 973.70 
166.00 1042.10 218.00 987.30 
167.00 1028.90 219.00 970.60 
168.00 1038.90 220.00 989.20 
169.00 1004.70 221.00 971.90 
170.00 1000.10 222.00 998.00 
171.00 1039.30 223.00 1008.10 
172.00 1041.80 224.00 1018.80 
173.00 1017.60 225.00 982.00 
174.00 978.80 226.00 989.60 
175.00 1022.90 227.00 1028.80 
176.00 1031.20 228.00 991.80 
177.00 1003.90 229.00 1029.90 
178.00 1006.00 230.00 984.30 
179.00 546.80 231.00 968.10 
180.00 714.00 232.00 1004.30 
181.00 1041.20 233.00 1034.90 
182.00 1046.90 234.00 1061.50 
183.00 1034.10 235.00 1068.20 
184.00 1050.70 236.00 1061.90 
185.00 996.40 237.00 1031.40 
186.00 1012.50 238.00 1060.30 
187.00 974.60 239.00 1100.70 
188.00 1014.60 240.00 1076.30 
189.00 977.00 241.00 1102.80 
190.00 1002.90 242.00 1111.70 
191.00 990.60 243.00 1078.80 
192.00 986.50 244.00 1086.70 
193.00 960.50 245.00 1103.00 
194.00 951.20 246.00 1103.30 
195.00 974.30 247.00 1101.20 
196.00 986.20 248.00 1162.30 
197.00 941.40 249.00 1180.70 
198.00 1014.10 250.00 1138.70 
199.00 984.50 251.00 1211.50 
200.00 988.30 252.00 1155.50 
201.00 970.60 253.00 1221.40 
202.00 998.20 254.00 1196.80 
203.00 968.10 255.00 1240.70 
204.00 934.60 256.00 1197.00 
205.00 970.30 257.00 1220.90 
206.00 976.20 258.00 1202.70 
207.00 932.90 259.00 1234.00 
208.00 965.10 260.00 1163.60 
209.00 968.30 261.00 1089.10 
210.00 1016.90 262.00 1295.90 
211.00 1008.90 263.00 1087.20 
212.00 969.20 264.00 1235.50 
213.00 980.80 265.00 1266.80 
214.00 981.00 266.00 1168.70 
215.00 1010.20 267.00 1168.70 
216.00 980.40 268.00 1229.50 
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TIME 
(MINUTES) ST LENGTH 

IME 
(MINUTES) ST LENGTH 

269.00 1150.80 291.00 1434.90 
270.00 1184.70 292.00 1430.60 
271.00 1175.80 293.00 1335.90 
272.00 1199.80 294.00 871.70 
273.00 1148.60 295.00 869.80 
274.00 1050.30 296.00 945.50 
275.00 1220.40 297.00 1006.50 
276.00 1217.50 298.00 1017.60 

277.00 1230.80 299.00 1013.80 
278.00 1277.80 300.00 1006.30 
279.00 1345.60 305.00 1006.30 
280.00 1443.30 315.00 978.60 
281.00 1679.70 316.00 978.60 
282.00 1830.70 317.00 978.60 

283.00 1816.00 319.00 917.90 
284.00 1774.50 321.00 724.30 
285.00 1677.50 322.00 678.80 
286.00 1499.60 324.00 510.80 
287.00 1473.10 328.00 510.80 
288.00 1550.40 331.00 398.20 
289.00 1457.90 332.00 285.60 

290.00 1431.10 

A6.6 BONE MARROW TRANSPLANTATION 

DAY ln(WBC) ln(PLATELET) HAEMATOCRIT 

1.00 5.37 10.29 30.00 
2.00 4.34 9.98 30.00 
3.00 4.79 9.43 28.50 
4.00 4.19 10.60 34.50 
5.00 4.19 10.15 34.00 
6.00 3.50 9.95 32.00 
7.00 3.78 10.34 30.50 
8.00 3.91 10.45 31.00 
9.00 4.61 10.24 33.00 

10.00 5.52 9.44 34.00 
11.00 5.99 10.30 31.50 
12.00 6.25 9.02 27.50 
13.00 6.45 9.60 30.00 
14.00 6.88 9.31 31.50 
15.00 6.63 9.50 33.00 
16.00 6.15 9.50 32.00 
17.00 7.21 10.58 33.00 
18.00 6.97 9.60 33.00 
19.00 7.16 10.52 33.00 
20.00 7.09 10.54 33.00 
21.00- 7.18 10.96 36.50 
22.00 7.35 10.45 32.50 
23.00 7.31 10.91 31.50 
24.00 7.50 11.18 31.50 
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DAY In(WBC) ln(PLATELET) HAEMATOCRIT 

25.00 8.04 11.29 29.50 
26.00 7.84 11.08 22.50 

27.00 7.59 11.25 28.00 

28.00 8.01 11.45 31.00 

29.00 8.22 11.39 30.50 
30.00 8.02 12.00 31.50 

31.00 8.41 12.18 31.00 

32.00 8.22 11.91 31.00 

33.00 8.20 11.94 31.50 

34.00 8.81 11.63 31.00 
35.00 8.87 12.04 31.50 
36.00 9.00 12.21 32.00 

38.00 8.99 12.01 30.00 

39.00 8.99 12.01 30.00 

41.00 9.27 12.13 28.50 
43.00 9.33 12.21 27.00 

46.00 9.12 12.38 28.50 
48.00 8.76 12.07 27.00 

50.00 8.19 11.82 31.00 

53.00 8.02 11.74 29.50 

57.00 7.48 11.88 27.00 

60.00 7.31 12.00 28.50 

64.00 7.74 11.71 35.00 

67.00 8.13 12.01 34.50 

71.00 8.46 12.29 35.00 

74.00 8.88 12.23 31.50 

78.00 8.41 12.16 30.00 

81.00 8.22 12.35 27.50 
85.00 8.61 12.11 35.00 

88.00 8.24 11.94 33.00 

92.00 8.09 12.50 31.50 

000 
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