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Abstract

This work contains two main areas of research within the field of bonding

and spectroscopy. The first is the interactions of metals and metal ions

with rare gas atoms; the second concerns vibrational dynamics in para-

fluorotoluene (pFT). The research has been carried out as part of a

collaboration between the SOCAR and Reid groups at the University of

Nottingham and also involved external research teams.

The work combines the results from experiments employing several

different spectroscopic techniques with theoretical calculations, which

support the experimental data, assist in their interpretation and provide

new information.

Resonance enhanced multiphoton ionisation spectroscopy is employed to

investigate the Au–Xe and Au–Ne neutral complexes in the region of the

62PJ ← 62S1/2 Au atomic transition. High-level ab initio calculations provide

further insight, which is necessary to explain the unusual spectra obtained.

A theoretical study of complexes containing Group 2 metal cations and rare

gases also reveals some unexpected trends that are related to some of the

effects seen in the Au–RG series.

A combination of nanosecond zero electron kinetic energy spectroscopy

and time-resolved picosecond photoelectron spectroscopy is employed to

investigate the vibrational dynamics of pFT. Excitation via several different

vibrational states allows the study of a Fermi resonance, statistical

intramolecular vibrational energy redistribution and an intermediate case

that shows evidence of so-called “doorway states”.
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1. Introduction

1.1 Interactions between Metals and Rare Gases

There is considerable interest in the interactions between metals (neutrals

and ions) and ligands. Such interactions are commonplace in the upper

atmosphere1,2 but also occur in biological processes3 and are important in

industrial applications. 4 , 5 Understanding the details of the chemistry is

therefore very important in several different fields.

The interactions here concern diatomic systems, one metal atom or ion

with a single rare gas atom. One might expect the behaviour of these

complexes to be quite straightforward, with bonding attributable to purely

physical interactions, i.e. inductive and van der Waals forces; however

some unexpected trends have been uncovered and the bonding has proven

to be far from simple.

CM–RG complexes (CM = coinage metal [Cu, Ag and Au]; RG = rare gas)

have previously been studied experimentally by Duncan and co-workers

(Cu–Kr, Ag–RG [RG = Ar, Kr, Xe] and Au–Ar)6,7,8 and Jouvet (Ag–Ar).9 The

SOCAR group have added to this research with a re-investigation of Au–

Ar10 and a study on Au–Kr.11 This work is continued here with Au–Xe and

Au–Ne. The neutral complexes have been studied experimentally using

resonance enhanced multiphoton ionisation (REMPI) spectroscopy; this

work has been supplemented by theoretical calculations, which assist in

assigning the spectra and provide further insight into the reasons certain

electronic states can be observed experimentally in the spectroscopy of

some Au–RG complexes but not others. Trends across the whole series

(including theoretical results for Au–He and Au–Rn) are also discussed.
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Group 2 M+–RG complexes are of interest in this context because, like Au,

Group 2 metal monocations have a single electron in the outermost s

orbital (the d orbitals of transition metals are filled before the ns orbital).

They might therefore be expected to show some similar behaviour.

The interactions of Group 2 metal ions and dications with rare gases have

been studied in this work employing ab initio calculations. Previous

research involving similar systems has been extensive and the results were

summarised in a review article by Bellert and Breckenridge published in

2002.12 This article also introduced a model potential that could be used to

describe such systems if their interactions were assumed to be purely

physical in origin. The theoretical results in this thesis are discussed with

reference to the model potential. Previous relevant experimental and

theoretical results are also discussed in detail in the relevant chapters.

1.2 Vibrational Dynamics in para-Fluorotoluene

Intramolecular vibrational redistribution (IVR) is the randomisation of

energy across a molecule following the initial excitation of a specific mode

of vibration or wavepacket. The suggestion that in some cases this process

could be slow compared with collisions between molecules has led to the

idea of bond-selective chemistry, where reactions could be controlled by

making a specific bond more susceptible to rupture.13

IVR rates and the factors influencing them have been the subject of many

investigations. 14 , 15 , 16 , 17 , 18 However, it has so far proven impossible to

produce a unifying theory that will enable the prediction of an IVR rate for

a specific system or excitation. The focus is therefore on the collection and

analysis of empirical data.
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The work in this thesis continues from that of previous studies carried out

by the SOCAR and Reid groups into para-fluorotoluene. This molecule has

previously been studied by Okuyama et al. 19 using nanosecond

fluorescence. The Reid group added to this research, employing picosecond

photoelectron spectroscopy to estimate IVR lifetimes following excitation

via several different vibrational modes. This work was supplemented by

zero electron kinetic energy (ZEKE) spectroscopy data, which was carried

out by the SOCAR group.20,21,22,23,24 More recent ZEKE data is compared

and contrasted here to time-resolved picosecond photoelectron spectra;

the time-resolved data gives more detailed information than that

previously available of the vibrational dynamics following excitation via

four selected vibrational states in the S1 electronic excited state.
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2. Background and Methods Employed in the

Study of Metal-Rare Gas Complexes

2.1 Introduction

One might consider diatomic complexes to be among the simplest of

systems to study. However, the interactions between metals and rare

gases have proved to be most unusual, showing unexpected trends and

prompting one to ask exactly when an interaction can be viewed as

physical and when it must be viewed as chemical.

In the systems considered in this work, there are two main physical

attractive forces to consider. The first is inductive, which usually only

occurs if one interacting partner has a permanent charge or dipole moment.

Of interest to the present work is that a metal ion can induce a dipole

moment in a rare gas atom, which leads to an attraction between them.

The second type of force, dispersive (or van der Waals) interactions, occur

even where no permanent charge, dipole moment or multipole moment

exists in either atom; a random fluctuation in one creates an instantaneous

dipole moment, which similarly induces a dipole moment in the other. Both

inductive and dispersive interactions lead to many higher order terms

(ion/induced quadrupole, etc.) in the interaction potential. An ion/induced

dipole interaction energy has an R-4 dependence, while for a random

dipole/induced dipole interaction it is R-6 (where R is the internuclear

separation). In some cases, however, dispersive forces can still dominate

the interaction, as will be seen in Chapter 4.

At short R, repulsive forces rapidly become more dominant. These include

the electrostatic repulsion between the electrons and between the nuclei
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and also Pauli repulsion, since electrons are fermions and therefore obey

the Pauli Exclusion Principle.

2.2 Vibrational Levels and the Morse Potential

The behaviour of a diatomic system can be modelled by treating it as a

quantum mechanical harmonic oscillator. Similar to a classical ball-and-

spring, the potential energy, V, of the system is given by

ܸ =
1

2
ଶݔ݇

(2.1)

Here k represents the force constant and x is the displacement. If Equation

2.1 is substituted into the Schrödinger equation,

ቆ−
ℏଶ

2݉

݀ଶ

ଶݔ݀
+ ቇ߰(ݔ)ܸ = ߰ܧ

(2.2)

the solutions for the allowed vibrational energies can be shown to be

௩ܧ = ℎ߱൬ݒ+
1

2
൰

(2.3)

The mass, m, must be replaced by the reduced mass, µ, unless one of the

atoms can be assumed to be infinitely heavy. For a diatomic with different

masses ma and mb:

=ߤ
݉ ݉ 

݉  + ݉ 

(2.4)

The harmonic vibrational frequency, ωe, is dependent on the force constant

and the reduced mass:

߱ =
1

ߨ2
ඨ
݇

ߤ

(2.5)

In spectroscopy, Equation 2.3 is usually expressed as a term value

(ݒ)ܩ = ߱൬ݒ+
1

2
൰

(2.6)
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When this form is employed, both G and ωe are usually expressed in

wavenumbers (cm-1).

For a strongly bound system, the harmonic approximation can be used at

low v. In reality, the potential of a diatomic system is anharmonic and the

bond will break if sufficient energy is supplied. The true form of the

potential is shown in Figure 2.1.

At very close range, nuclear, electronic and Pauli repulsion are dominant,

while the attractive forces (see Section 2.1) are more significant at larger

R. There have been attempts to describe the potential accounting for the

repulsive and attractive parts, one of the most successful being the Morse

potential.

Figure 2.1: General form of a diatomic potential energy curve. The parameters

marked are De, the depth of the potential, D0, the energy between the zero-point

and the asymptote and Re, the equilibrium bond separation.
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The Morse potential has the form

ܸ = [1ܦ − ݁ି(ି)]ଶ (2.7)

De is the depth of the potential well and a is a constant that depends on

the molecule and electronic state.

Substituting this expression for the potential into the Schrödinger equation

(2.2) gives

௩ܧ = ℎ߱൬ݒ+
1

2
൰− ℎ߱ݔ൬ݒ+

1

2
൰
ଶ (2.8)

or, as a term value

௩ܩ = ߱൬ݒ+
1

2
൰− ߱ݔ൬ݒ+

1

2
൰
ଶ (2.9)

The second term on the right-hand side of Equation 2.9 accounts for the

anharmonicity and ωexe is known as the anharmonicity constant. The

Morse potential works well near the bottom of the potential well, but fails

at higher vibrational levels.

2.3 Rotational Energy Levels

Diatomic molecules or complexes have two axes of rotation, with the

centre of mass as the origin. The moment of inertia is defined as

=ܫ ଶܴߤ (2.10)

The total rotational angular momentum, M, is quantised and has the

allowed values

ܯ ଶ = ℏଶܰ(ܰ + 1) (2.11)

N is the rotational quantum number and can take the values 0, 1, 2, etc.

The classical rotational energy is given by

௧ܧ =
ܯ ଶ

ܫ2

(2.12)
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Substituting from Equations 2.10 and 2.11 gives the result

ேܧ =
ℏଶܰ(ܰ + 1)

ଶܴߤ2
= ܰ)ܰܤ + 1) (2.13)

This gives the definition for the rotational constant, B, which is inversely

proportional to the square of the internuclear separation.

2.4 Franck-Condon Factors

Electronic transitions occur when there is an interaction between the

complex and a photon. The probability of a transition is given by ,ଶଵ|ଶܯ|

where M21 is the transition dipole moment for a transition from level 1 to

level 2. The transition dipole moment can be calculated from the rovibronic

wavefunctions of the respective levels and the electric dipole moment

operator, μ.

ࡹ ଶଵ = න ߰ଶ߰ࣆଵ݀߬ (2.14)

The integral includes both spatial and spin coordinates. Using the Born-

Oppenheimer approximation, the wavefunction can be factorised into its

electronic, vibrational and rotational parts.

Ignoring the rotational part, which depends on the orientation of the

molecule relative to an arbitrary axis, the transition dipole moment can be

expressed in terms of the electronic and nuclear coordinates, r and R:1

ࡹ ଶଵ = න ߰ଵ(ݎ,ܴ)ߤ߰ଶ(ݎ,ܴ)݀ݎන ߰ଵ௩(ܴ)߰ଶ௩(ܴ)ܴ݀ (2.15)

It is assumed that the electronic wavefunction can be approximated at all

times during a vibration by using the equilibrium nuclear separation, Re.

Equation 2.15 forms the basis of electronic and vibrational selection rules,

determined by the first and second integrals on the right hand side

respectively.
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The square of the second integral is known as the Franck-Condon factor

(FCF). The Franck-Condon principle states that an electronic transition is

rapid when compared to the period of molecular vibration. The

consequence of this is that when a diatomic molecule or complex is excited

into a higher electronic state, the instantaneous value of R remains

constant, i.e. only vertical transitions are allowed (see Figure 2.2).

Figure 2.2: Schematic diagram showing some allowed transitions to a higher excited

electronic state.

The FCF describes the extent to which the vibrational wavefunctions of the

two levels involved in a transition overlap. In Figure 2.2 it can be seen that

for the v’=0←v’’=0 transition the FCF will be small and excitation to a

higher vibrational level is more likely. This would be reflected in the

intensities of the relevant peaks in the spectrum. Franck-Condon

simulations use calculated potential curves to estimate the appearance of a

spectrum based on the Franck-Condon factors.

P
o

te
n

ti
al

e
n

e
rg

y

Internuclear separation

v=0

v=1

v=2

v=0

v=1

v=2



~ 11 ~

2.5 Experimental Methods

2.5.1 REMPI Technique

In this thesis, results will be presented that arise from the probing of the

vibrational levels in selected electronic excited states of the neutral Au–Ne

and Au–Xe complexes using resonance enhanced multiphoton ionisation

(REMPI) spectroscopy. In a one-colour, two-photon REMPI process (1+1),

the complex absorbs two photons from the same laser pulse. The

probability of absorption is greater when the photon energy is resonant

with a vibrational level in the excited electronic state. The laser is therefore

scanned through a range of photon energies; when the energy is resonant

with a vibrational level in the excited state, more ions will be detected. For

a two-colour, two-photon REMPI process (1+1’), a separate laser is used

for ionisation. The energy of this second laser can then be fixed; this has

the advantage that levels at energies of less than half the ionisation

potential of the complex can be scanned in a two-photon process.

2.5.2 Equipment Employed in REMPI Experiments

The equipment employed for REMPI experiments by the SOCAR group has

already been described in detail in refs. 2, 3 and 4; a brief description is

included here to provide context for the results presented in Chapter 3.

A gold rod (Goodfellow, 99.95%, 25 mm length, 5 mm diameter) was held

in a custom-built laser vaporisation (LaVa) source. Au atoms were ablated

using the second harmonic of a Nd:YAG laser (Continuum Minilite II, 532

nm, ~6 mJ/pulse). The rod was slowly translated and rotated by a four-

phase stepper motor (Philips, unipolar 7.5° step angle, 12V 5.3W); this

ensured continual ablation from a new area of the rod. The Au atoms were



picked up in a pulse of gas, which then passed through a narrow exit

channel allowing collisional cooling of the Au atoms to occur before the gas

pulse entered a high-vacuum chamber (working pressure ~8 x 10-5 bar),

resulting in a supersonic jet expansion.
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therefore be used as a mass spectrometer, showing the times at which

ions were detected by the MCPs. The Au signal was easily identifiable and

could therefore be used as a reference to identify other peaks by mass. By

scanning the laser and monitoring the oscilloscope, it was therefore

possible to find a resonant frequency for a complex since an ion peak was

visible only when the appropriate frequency was reached.

Figure 2.4: Side view of vacuum chamber showing position o

ablation of gold rod (path shown in blue).

The apparatus is set up to detect signals at the TOF of t

complex. The excitation laser is then scanned in the
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Research Systems SR272 data acquisition program.
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2.6 Analysing REMPI Data

2.6.1 Birge-Sponer Analysis

Once a REMPI spectrum has been obtained, from Equation 2.9 it can be

shown that the spacing between the vibrational peaks, Gv+1-Gv is given by

ܩ∆
௩ା

ଵ
ଶ

= ߱− 2߱ݔ(ݒ+ 1) (2.16)

A plot of ΔGv+½ against v+1 can therefore be used to calculate the

spectroscopic constants ωe and ωexe for the first excited state. This is

described as a Birge-Sponer (BS) plot.

D0 is simply given by the sum of the energy spacings, or the area under

the plot. This can be shown to be given by

ܦ
ᇱ =

߱
ᇱଶ

4߱ݔ
ᇱ
−
߱
ᇱ

2
+
߱ݔ

ᇱ

4

(2.17)

The first term on the right-hand side of Equation 2.17 is equal to the depth

of the potential:

ܦ
ᇱ =

߱
ᇱଶ

4߱ݔ
ᇱ

(2.18)

The ground state dissociation energy can then be estimated.

ܦ
ᇱᇱ= ܦ

ᇱ+ ܶ− ெܧ∆ (2.19)

The quantity T0 is the electronic transition energy for the v0’←v0’’ transition

and ΔEM is the energy of the equivalent transition in the free metal atom.

2.6.2 LeRoy-Bernstein Analysis

In practice, a BS plot will only be linear for vibrational levels near the base

of the potential well. The gradient of the plot will tend to decrease as the

dissociation limit is reached (see Figure 2.7). If the recorded spectrum

shows vibrational levels near the dissociation limit the dissociation energy
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may therefore be overestimated. In this case, the LeRoy-Bernstein (LB)

analysis5,6 may be more appropriate.

Figure 2.7: An example of a Birge-Sponer plot from theoretical data and Equation

2.16. Note the curvature of the plot at high v.

In their work, LeRoy and Bernstein suggested that if the attractive

potential can be modelled as −


ோ
(where C and n are constants) and the

vibrational first differences, ΔGv, are defined as

௩ܩ∆ =
−௩ିଵܧ] [௩ାଵܧ

2

(2.20)

then

௩ܩ∆

ଶ

(ାଶ)
൨

∝ ܦ
ᇱ− ௩ܧ

(2.21)

where Ev is the vibrational energy of the state. In the case of the Au–RG

complexes, the interaction is that of a random dipole/induced dipole and

hence the potential varies as R-6 (i.e. n=6). A plot of ΔGv
3/2 against Ev

should therefore be linear, with D0 as the intercept.
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The LB method is expected to give more reliable values of D0 where

spectra are recorded with vibrational levels near the dissociation limit. It is

not appropriate for levels near the bottom of the potential unless the well

is very shallow.

2.6.3 Isotopic Analysis

In order to determine the spectroscopic constants using either the BS or LB

analyses, it is necessary first to assign an absolute vibrational numbering

to the spectrum. If only one isotopologue of the complex can be seen

experimentally, this is very difficult, although it may be achievable through

a Franck-Condon simulation and high level ab initio calculations. The most

reliable method is through isotopic analysis.

The vibrational levels of two different isotopologues of the same complex

are slightly shifted relative to each other. The shift is given by the following

formula

=ݒ∆ (1 − ߱(ߩ
ᇱቀݒ+

ଵ

ଶ
ቁ− (1 − ݔଶ߱(ߩ

ᇱ(ݒ+
ଵ

ଶ
)ଶ (2.22)

where ρ is the square root of the ratio of the reduced masses of the two

isotopologues.4

The first observed vibrational number is assigned the value ξ. A BS

analysis can then be carried out for different values of ξ. From Equation

2.16, ωexe’ can be determined from the gradient, which will be the same

for each plot; ωe’ will have a different value for each value of ξ. Using

Equation 2.22, it is then possible to derive theoretical curves of Δv against

v-ξ for different values of ξ. The experimental values can then be plotted

and compared with the theoretical curves to determine the value of ξ.
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2.7 Theoretical Methods

It is often useful to perform theoretical calculations in addition to carrying

out experimental work. These can be compared to results obtained

experimentally to check their accuracy, employed as a guideline when

there are discrepancies in parameters derived from different experiments

or using different methods and also used to investigate states and systems

that cannot be studied experimentally, for example in the cases of Au–He

or Au–Rn, where either the bond is too weak for the complex to be formed

experimentally or because the chemicals are unsafe to use in a laboratory.

There are many computational methods available to calculate the potential

energy curves of diatomic systems. Several of them have been employed

by other researchers in previous investigations of some of the complexes

described in Chapters 4 and 5. The methods are described in standard

computational chemistry textbooks such as Ref. 7. As stated therein, in

general the accuracy depends on the ability of the method to describe the

electron correlation and, with a medium-sized basis set, is expected to

follow the order below.

HF<<MP2<CISD<MP4(SDQ)~CCSD<MP4<CCSD(T) (2.23)

The method chosen depends on a balance between the accuracy required

and the cost in computing time. In this work, the majority of calculations

are at the RCCSD(T) level. This is the so-called ‘gold standard’ of quantum

chemistry and is usually expected to give accurate results in these systems.

For larger atoms only the outermost electrons are included in the

correlation; the inner orbitals are approximated using an effective core

potential (ECP). This is a reasonable approximation as the inner electrons

are not usually involved in bonding. The details of basis sets used are

given in the relevant chapters.
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The calculations have included corrections for basis set superposition error

(BSSE) effects. This arises because for calculations involving both atoms

the basis sets of both atoms are used, whereas for calculations involving

only one atom this will not be the case. This means that the energy in the

former case will be artificially lower.

The full counterpoise correction accounts for this by using a ‘dummy’ atom;

calculations employ the basis functions of the absent atom but not the

nucleus or electrons. The correction can be calculated in terms of two

atoms, A and B with energies calculated using the basis sets a and b

respectively:

ܧ∆ = (ܣ)ܧ + (ܤ)ܧ − (ܣ)ܧ − (ܤ)ܧ (2.24)

For greater accuracy, the ab initio calculations can be performed using two

basis sets (e.g. QZ and 5Z) and then extrapolated to the basis set limit

(the energy that would be obtained were it possible to perform the

calculation with an infinite number of basis functions). This is done using

the two-point formula of Halkier et al.8,9

ஶܧ ൫ܧ௫,ܧ௬൯=
௫ܧଷݔ − ௬ܧଷݕ

−ଷݔ ଷݕ
(2.25)

Chapter 3 also includes some CASSCF multi-reference calculations

including spin orbit coupling (CASSCF+MRCI+SO), which are used for the

excited states of Au–RG complexes. Multi-reference calculations are

necessary when considering states that interact with each other.

2.8 Analysing Theoretical Results

The calculations in this work were performed using MOLPRO.10 Potential

energy curves have been calculated pointwise. This curve is then used as

input to the LEVEL11 program, which calculates an interpolated curve in

addition to the values of Ev and Bv for each bound level in the complex.
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A precise value for Re can be obtained directly from the minimum of the

curve. A fit to a plot of Ev against v+½ for the lowest few levels can be

used to obtain ωe and ωexe (see Equations 2.8 and 2.9). The values of α

and the equilibrium rotational constant, Be, can be found by plotting Bv

against v+½ and using the equation

௩ܤ = +ݒ൬ߙ−
1

2
൰+ ܤ (2.26)
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3. Electronic Spectroscopy of Au–RG Complexes

(RG=Ne, Xe)

3.1 Introduction

The experimental work on Au–Xe was completed before the author joined

the Spectroscopy of Complexes and Radicals (SOCAR) group at the

University of Nottingham. The experimental data for Au–Ne was collected

in collaboration between Richard Plowright and the author. Several of the

figures in this chapter were previously published in Ref. 1 ; these are

acknowledged in the figure captions. In addition, a Franck-Condon

simulation has been carried out by the author using experimental Au–Ar

data previously published in ref. 2.

3.1.1 Au–Xe

Following previous investigations into Au–Ar and Au–Kr complexes by the

SOCAR group2,3 Au–Xe has been studied using high resolution spectroscopy.

This work has been supplemented with high-level ab initio calculations and

Franck-Condon simulations, which provide further insight and assist with

the assignment of the reported spectra.

The Au–Xe complex is of particular interest because, unlike others in the

Au–RG series, some evidence of chemical bonding has been proposed in

the cation.4,5,6,7,8 However, these results contradict some conclusions made

by others.9

An important step towards experimental study of the cation is the

characterisation of electronic states in the neutral species. The region

studied in this case is in the vicinity of the 62PJ ← 62S1/2 Au atomic

transition; the corresponding molecular orbitals are shown in Figure 3.1. It
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was found for Au–Ar and Au–Kr that the D2Π1/2 and D2Π3/2 excited states

are bound considerably more strongly than the X2Σ1/2
+ ground state. This

has been attributed to the shift in the electron density off the internuclear

axis, thus allowing greater interaction between the rare gas atom and the

cationic gold core. Related effects have been observed in the Group 2–RG

cationic complexes (this will be discussed further in Chapters 4 and 5). The

interactions in these excited states of Au–Xe may therefore be expected to

mimic those in the cation.

Figure 3.1: Schematic diagram showing the relationship between the atomic state

combinations (on the right-hand side of the figure), and the complex electronic

states (left-hand side). The large, doubly occupied 6s orbital surrounding the much

smaller, singly occupied 5d orbitals shown has been omitted from the 52D states for

clarity. Figure reproduced from Ref. 1.
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In contrast, electron density in the E2Σ1/2
+ state is located along the

internuclear axis, making the bond weaker. It is therefore unsurprising that

this state has not been observed in Au–Ar or Au–Kr, although effects from

its interaction with the D2Π1/2 state were seen in Au–Ar; this caused a

“shelf” in the outer wall of the D2Π1/2 state, which was manifested in the

spectrum as a sudden drop in the line spacing and symmetric rotational

profiles at high energy.

There are a number of naturally occurring isotopes of xenon [the most

abundant include 128Xe(1.9%), 129Xe(26.4%), 130Xe(4.1%), 131Xe(21.2%),

132Xe(26.9%), 134Xe(10.4%) and 136Xe(8.9%)], 10 which has allowed

absolute vibrational numbering of the progressions in the spectra to be

determined from the shifts observed for the different isotopologues (see

Chapter 2).

3.1.2 Au–Ne

Au–Ne was similarly investigated to complete the work on the Au–RG

series. No previous work on this complex was found in the literature;

however the results obtained earlier for other complexes in this series

indicated a clear relationship between the polarisability of the rare gas and

the strength of the bond in the ground state of the complex. As noted

above, the D2ΠΩ states are more strongly bound since the electron density

is located off the internuclear axis. This effect would also be expected to

increase with polarisability, which can be clearly seen in the recorded

spectra as a red shift from the associated atomic transition. Given the low

polarisability of Ne, one would expect the Au–Ne complex to be less

strongly bound than any of the previous complexes studied, with the

increase in bond strength between the X2Σ1/2
+ state and the D2Π1/2 and

D2Π3/2 excited states being less pronounced. A review by Bellert and
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Breckenridge11 notes that significantly weaker bonding in Ne complexes

with isovalent alkaline earth metal cations has previously been attributed

to its low polarisability.

As with Au–Xe, the current study has combined REMPI spectroscopic

experiments in the vicinity of the 2PJ ← 2S1/2 atomic Au transitions with

high-level ab initio calculations, which have been used to characterise the

potential energy curves of the ground state and the excited states of

interest.

Neon has fewer stable isotopes than xenon; only two are found naturally in

significant abundance [20Ne (90.5%) and 22Ne (9.3%)]12. It was possible to

obtain spectra for both these isotopes and hence derive the absolute

vibrational numbering.

3.2 Experimental Methods

A thorough description of the experimental procedure for the Au–RG

experiments can be found in Refs. 1, 2, and 3 and so only a brief

description of the details specific to these experiments is presented here

for completeness.

The rare gas [either Ne or a small quantity of Xe in a carrier gas (Ne or Ar)]

was pulsed over a gold rod (Goodfellow, 99.95% pure) held in the LaVa

source. The gas mixture originated from a holding cylinder, which was held

at approximately 11 bar. Au atoms were ablated from the rod using the

second harmonic of a Nd:YAG laser (Continuum Minilite II, 532 nm, ~6

mJ/pulse). Au–RG clusters were formed in the expansion following passage

through a narrow exit channel into the vacuum chamber.

In the case of Au–Ne, one-colour REMPI was used for all experiments;

specifically from the frequency-doubled output of a Sirah dye laser pumped
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by the third harmonic of a Surelite III Nd:YAG laser (355 nm, ~120

mJ/pulse). The investigations into the D2Π1/2 state required Coumarin 540A

as the laser dye, while Coumarin 480 was used for investigations of the

D2Π3/2 state.

For Au–Xe, both one-colour and two-colour ionisation schemes were

employed. The 2P1/2 ← 2S1/2 energetic region was investigated with one-

colour REMPI; this employed the frequency-doubled output of a Sirah dye

laser pumped by the second harmonic of a Surelite III Nd:YAG laser (532

nm, ~100 mJ/pulse) with Coumarin 540A as the laser dye. Two-colour

REMPI was employed for the 2P3/2 ← 2S1/2 energetic region; this required

the counter-propagating frequency-doubled outputs of two Sirah dye lasers,

utilising the laser dyes Coumarin 480 for the excitation step and

Rhodamine B for the ionisation step. The excitation step again employed

the second harmonic of the Surelite III Nd:YAG laser as the pump for the

dye laser; the third harmonic of the same laser (355 nm, ~130 mJ/pulse)

was used as a pump for the ionisation step.

3.3 Au–Xe Results

3.3.1 Theoretical Results

The spectroscopic constants for the ground state of Au–Xe were calculated

using standard high-level ab initio methods. The calculations were

performed on Magellan13 using MOLPRO.14 A potential energy curve for the

X2Σ1/2
+ state was calculated using a series of single point RCCSD(T)

calculations. In this case the relativistic effective core potentials

ECP60MDF15 and ECP28MDF16 were used for Au and Xe respectively. The

calculations were performed using QZ and 5Z quality basis sets, correlating

only the 5s and 5p electrons of Xe and the 5d and 6s electrons of Au. The

full counterpoise correction was used to correct for basis set superposition
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error. The results were then extrapolated to the basis set limit. The

LEVEL 17 program was then used to obtain the spectroscopic constants,

which are shown in Table 3.1. The 197Au–132Xe isotopologue was used in

the calculations.

Further calculations have been performed by other members of the group;

these will be referred to in Section 3.3.4 to maintain the flow of the

discussion.

Table 3.1: Calculated spectroscopic parameters for 197Au–132Xe X2Σ+. Re is the

equilibrium bond length, D0 is the energy between the zero point vibrational energy

and the asymptote, De is the depth of the potential, ωe is the harmonic vibrational

frequency and ωexe is the anharmonicity constant.

Basis set Re/Å D0’’/cm-1 De’’/cm-1 ωe/cm-1 ωexe/cm-1

d-aVQZ 3.54 408.9 419.9 22.2 0.258

d-aV5Z 3.48 452.8 464.4 23.4 0.248

d-aV∞Z 3.42 503.1 515.5 24.7 0.256

3.3.2 Experimental Results

Two experimental spectra for Au–Xe were obtained. The first, shown in

Figure 3.2, is in the region of the 2P1/2 atomic transition (the transition lies

to the blue of the spectrum). Several isotopologues were gated, which

contributes to the width of the peaks. Figure 3.2 additionally shows a

Franck-Condon simulation, which will be discussed in more detail in the

next section.
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Figure 3.2: The top trace shows the REMPI spectrum obtained from the D2Π1/2 ←

X2Σ1/2
+ transition in Au–Xe. The vibrational numbering was obtained from isotopic

analysis of the higher energy features (above v’=28) Hot bands are identified by

asterisks. The strong feature marked with an arrow does not fit the vibrational

series. Its intensity relative to the other features was affected by experimental

conditions; its origin is unclear. The bottom trace shows a Franck-Condon

simulation of the spectrum, which is discussed in Section 3.3.3. The figure was

previously published in Ref. 1.

Figure 3.3 shows the spectrum recorded in the vicinity of the Au (62P3/2)

atomic transition, the position of which is shown. Initially, a search was

carried out to the red of the atomic transition, in accordance with the

expected position of the D2Π3/2 state, which was observed in both Au–Ar2

and Au–Kr.3 No spectrum was found in this region however, and this

spectrum was recorded following a search to higher energy.
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Figure 3.3: Two-colour REMPI spectrum of Au–Xe in the region of the Au (62P3/2)

energy. Hot bands are identified by asterisks. Figure reproduced from Ref. 1.

The spectroscopic constants have been derived from a least-squares fit of

the vibrational energy term values to the standard Morse expression (see

Chapter 2) and the values for the 197Au–132Xe isotopologue are given in

Table 3.2.

Table 3.2: Spectroscopic constants derived for the D2Π1/2 and unassigned Ω=1/2 

states for 197Au–132Xe. Symbols are defined in the header for Table 3.1.

D2Π1/2 Unassigned Ω=1/2 

ωe 157.2 120.1

ωexe 1.230 2.724

De’ 5,025 1,324

D0’ 4,947 1,265
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3.3.3 Franck-Condon Simulation

A potential energy curve was calculated for the X2Σ1/2
+ state using the

MORSE program and the De, ωe and Re values obtained from the ab initio

calculations using the extrapolation to the basis set limit. The experimental

values of De and ωe obtained for the spectrum in the region of the 2P1/2

atomic transition were used to generate similar curves for the excited state.

The curves could then be used to simulate the expected REMPI spectrum

based on the Franck-Condon factor (FCF) using the SpecSim18 program.

The change in the equilibrium bond length between the two electronic

states, ΔR, was varied to find the best fit to the experimental data. The

higher energy features were narrower, suggesting that their intensities

were least likely to have been affected by any predissociation processes;

the focus was therefore on matching the intensities in the simulated

spectrum to these features. Figure 3.2 shows the simulation at ΔR=0.65 Å.

In addition to matching the intensities at the higher vibrational quantum

numbers, the intensities at low ν are also quite well reproduced. However,

there is a dramatic loss of intensity in the centre of the spectrum, where

one would expect to find the maximum. This indicates that there must be a

mechanism by which these transitions are losing intensity.

It was not possible to reproduce the higher energy state satisfactorily with

a Franck-Condon simulation. Figure 3.4 shows a simulation with ΔR=1.2 Å.

It is clear that the peak intensities at high v’ have been reduced

dramatically; it is therefore necessary to consider possible predissociation

mechanisms for both states.
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Figure 3.4: Top trace shows the REMPI spectrum from Figure 3.3; bottom trace

shows a Franck-Condon simulation.

3.3.4 Discussion

The lower energy spectrum shown in Figure 3.2 has been assigned to the

D2Π1/2 ← X2Σ1/2
+ transition. It is slightly red-shifted compared to the Au

(62P1/2) ← Au (62S1/2) atomic transition, which lies at 37,358.9 cm-1.19 A

value for D0’ can be estimated using the Morse fit and the ab initio value of

D0’’; this gives a value of 5,083 cm-1, which is close to the derived value in

Table 3.2. However the other spectrum, shown in Figure 3.3, is to the blue

of the atomic Au (62P3/2) ← Au (62S1/2) transition. The vibrational

numbering is much lower than that for the D2Π1/2 ← X2Σ1/2
+ transition and

the derived dissociation energy is much lower, indicating a more weakly

bound state; this is not consistent with findings for the D2Π3/2 ← X2Σ1/2
+

transition for Au–Ar2 and Au–Kr3, where the values of v’ are high. This

indicates that the spectrum in Figure 3.3 is not the result of this transition.

From the Morse values, it is possible to derive T0 (the energy of the v’=0 ← 

v’’=0 transition) as 40,621 cm-1; hence the energy to the apparent
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dissociation limit of this state is at 41,886 cm-1. The atomic excitation

energy (41,174 cm-1)19 can be combined with the ab initio D0’’ value to

yield an asymptotic value of 41,677 cm-1. This suggests that there is a

barrier to dissociation with a height of ~200 cm-1; however the accuracy of

this calculation is limited by the accuracy of the ab initio calculation and

the errors associated with the fitting procedure.

Figure 3.5: Schematic energy level diagram showing the energy region close to the

Au 62PJ levels. The A, B and C states arise from Au(5d96s2) + Xe and are split into

two groups correlating to the 52DJ spin-orbit levels. The curves have been generated

using RCCSD(T) methods and have been shifted according to the experimental

atomic splitting (assuming the curves are not interacting with others). The D and E

curves are CASSCF + MRCI + Q calculations, but shifted so that the atomic spin orbit

asymptotes are at the correct energy. The dashed curve represents the state from

which the spectrum in Figure 3.3 arises. The left-hand diagram is in the absence of

interaction between the dashed curve and the E state; the right-hand diagram is in

the presence of this interaction. Note the production of a “hump” consistent with

observations. Figure reproduced from Ref. 1.
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There are several possibilities regarding the origin of this spectrum. Figure

3.5 shows a schematic diagram showing the approximate locations of the

states in this region that are relevant to the following discussion. The

dashed curve is a hypothetical illustration of the state that gives rise to the

observed spectrum. Since it has been deduced that there is a barrier in the

outer part of the curve, its minimum must lie below the E2Σ1/2
+ state; there

must therefore be interaction between these two states.

It is unlikely that the spectrum results from the E2Σ1/2
+ ← X2Σ1/2

+ transition;

as noted in Section 3.1, this state is expected to be very weakly bound and

would not support the number of observed vibrational levels. However,

there is the possibility that this state interacts with others resulting in the

behaviour seen in these experiments.

Another possibility for the origin of the spectrum is a charge transfer (CT)

state. Evidence for the mixing of CT states into metal dimer excited states

has previously been reported.20,21,22 Au has a very high electron affinity

(~19,000 cm-1)23 and the lowest ionisation energies for Xe are 97,834 and

108,371 cm-1 for the 2P3/2 and 2P1/2 states respectively. This, in

combination with the Coulomb attraction between Au- and Xe+ at

separations close to the expected value of Re for the higher energy state

recorded, make it plausible that there could be CT states in this region.

Ideally, one would incorporate repulsive terms and higher order ion-

induced multipole terms into the calculation, but since these terms act in

opposite directions the energy calculations here should be a reasonable

approximation. The states arising from the Au- + Xe+(2P3/2) asymptote are

expected in this energy region, whereas those from the Au- + Xe+(2P1/2)

asymptote would be higher in energy. The “5p-hole” on Xe+ could either be

aligned along or perpendicular to the internuclear axis, resulting in a CT

2Σ1/2
+ or CT 2Π3/2 state respectively. Both states are expected to be
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strongly bound because of the Coulomb attraction; however the reduced

repulsion in the former owing to the position of the hole on the axis would

make it stronger than the latter.

Since the dissociation energy of the observed state is relatively low, it

would therefore seem unlikely that it is a CT state. There could, however,

be interaction between the CT 2Σ1/2
+ state and the E2Σ1/2

+ state via

configuration interaction. The crossing between the states would need to

occur above the Au(62P3/2) + Xe asymptote (see Figure 3.5), as the

convergence point is above this energy. The mixing between these states

would therefore be expected to produce a curve as shown in Figure 3.5,

with a local minimum near the Re value of the CT 2Σ1/2
+ state and the outer

wall rising above the aforementioned atomic asymptote before the curve

turns to converge to it.

A further possibility, if the binding energy of the complex is high enough, is

that Au Rydberg states could be involved. A set of CASSCF + MRCI + Q +

SO calculations were performed, keeping the Xe orbitals and the Au 5d and

lower doubly occupied, to probe this region. States arising from the 7s and

7p Rydberg states were found and are shown in Figure 3.6. It can be seen

that there is a configuration interaction between the E2Σ1/2
+ state and the

state arising from the 7s Rydberg asymptote. However, this interaction

would be insufficient to produce the spectrum recorded and would be

inconsistent with the convergence limit derived in the experiment.
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Figure 3.6: CASSCF + MRCI + Q + SO calculations on the excited states of Au–Xe.

The Xe orbitals and the 5d and lower-energy Au orbitals are kept doubly occupied in

these calculations. The D and E states arise from the Au-localised 62PJ ← 62S1/2

excitation, the other states correspond to excitation of the Au 6s electron to the 7s

and 7p Rydberg orbitals. The position of the Au(4P5/2) + Xe asymptote has been

marked, using the experimental value for the Au(4P5/2) ← Au(62S1/2) excitation

energy. Figure reproduced from Ref. 1.

The final possibility considered is the involvement of a molecular state

correlating to a higher-lying Au (5d96s6p) + Xe state. These states are

inverted owing to the d9 hole; the lowest level corresponds to the atomic

Au (5d96s6p, 4P5/2) state at 42,164 cm-1.19 This is only 990 cm-1 above the

62P3/2 level19 and could therefore interact with this state. An attractive Ω = 

½ state [Au (5d96s6pπ)–Xe] could undergo a case (c) avoided crossing 

with the inner repulsive wall of the Au (5d106pσ)–Xe, Ω = ½ state; the 
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result would be a state bound by ~1,100 cm-1 (see Figure 3.5). The Morse

analysis indicated that the dissociation limit lies above the atomic

asymptote (vide supra), and a small outer wall avoided crossing maximum

in the potential curve would be consistent with this conclusion.

If spin-orbit coupling is neglected, a 4P atom interacting with a 1S atom can

give rise to 4Π and 4Σ+ states; including spin-orbit coupling leads to the Au

states 4P5/2,
4P3/2 and 4P1/2, which each interact with Xe. The molecular

states to be expected are 4Π5/2,3/2,1/2 and 4Σ3/2,1/2
+. If Hund’s case (c)

coupling (or an intermediate case) is considered, one can expect molecular

states of like-Ω to be mixed. It has already been noted that the d9 hole

causes the states to be inverted and that the location of the electron

density off the internuclear axis would cause the Π states to be bound 

more strongly than the Σ states. If the non-crossing rule is applied to 

states of like-Ω then it can be deduced that the lowest energy state will be 

a “pure Π” 4Π5/2 state; the other states can be expected to have mixed Π/Σ 

character. The next highest states expected are 4Π3/2 and 4Π1/2, each of

which correlate to the Au (4P5/2) + Xe asymptote; other states correlating

to higher atomic asymptotes will be found at higher energies.

RCCSD(T) potential energy curve (PEC) calculations have been performed

on the 4Π state using aug-cc-pVQZ-PP and aug-cc-pV5Z-PP basis sets 

(neglecting spin-orbit coupling and the counterpoise correction). As for the

ground state, the energies were extrapolated to the basis set limit. The

spectroscopic constants derived were D0=2,220 cm-1, Re=2.89 Å, ωe=85.5

cm-1 and ωexe=1.15 cm-1. However, since these values will be affected by

interaction with CT, Rydberg and Au (5d96s2)–Xe states it is difficult to

verify their accuracy without detailed multi-reference calculations including

SO coupling.
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The values can be compared to those of a similar system: D0 and Re have

been estimated for Hg (5d106s6pπ)–Xe 3Π states from spectroscopic 

experimental results.24 For the 3Π0 state, which is “pure” Hg (6s6pπ)–Xe in 

nature, the values obtained were D0=1,400 cm-1 and Re=3.1±0.2 Å. The Re

value is similar to the ab initio result for Au–Xe (4Π); D0 is significantly

lower, but one would expect this owing to the extra 5d electron, which

would provide additional shielding of the core and reduce the bond

strength.

The T0 value for the observed state is ~40,681 cm-1. The Au (4P5/2) + Xe

lies at 42,164 cm-1 + D0’’ (=42,667); therefore the dissociation energy of

this state with respect to this asymptote can be calculated as 1,986 cm-1.

This is quite close to the estimate from the ab initio calculation for the 4Π 

state.

This makes the 4ΠΩ state seem a likely candidate for the spectrum in

Figure 3.3; the possibilities are 4Π5/2,
4Π3/2 and 4Π1/2.

4Π5/2 can be excluded

on the grounds that it is not allowed in a single-photon transition from the

X2Σ1/2
+ state. It is unlikely that the 4Π3/2 state will be observed since it will

be coupled to the D2Π3/2 state, which appears to be fully predissociated in

the Franck-Condon window. This leaves the 4Π1/2 state, mixed with the

E2Σ1/2
+, as the most likely option; this is illustrated by the dashed line in

Figure 3.5. However it is still possible that CT states are involved (vide

supra).

The proposed avoided crossing results in a maximum in the lower Ω=½ 

curve at large R and a minimum at approximately 3 Å. The transition to

this “mixed” Ω=½ state will retain some of the 2P3/2 ← 2S1/2 atomic

character; the electronic transition moment will vary strongly with R. This,

in addition to the sudden drop-off in the Franck-Condon intensity as the
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energy of the maximum is reached, could explain why it was not possible

to simulate the unusual intensity profile seen in Figure 3.3.

It can be seen from Figure 3.5 that the repulsive regions of the A2Δ3/2 and

B2Δ1/2 potential curves, which correlate to the higher Au(2D3/2) + Xe

asymptote appear to cross both the D2Π1/2 and D2Π3/2 curves in the bound

region. This would account for the absence of the D2Π3/2 bands if there

were complete dissociation on the REMPI timescale, owing to the efficient

coupling between the repulsive wall of the A2Δ3/2 state and the inner limb

of the strongly bound D2Π3/2 state. If the D2Π3/2 state has pure Au

(6s6pπ)–Xe character and the A2Δ3/2 state has pure Au(5d96s2)–Xe

character then one would expect the coupling between them to be very

weak, since it requires a two-electron orbital change, which is atomically

forbidden. However it is known that, owing to the strong spin-orbit

coupling of Au, the atomic Au(5d106p 2P3/2,1/2) states have a small amount

of Au (5d96s6p) character, which can include spin-orbit mixing in of 4P

character.25,26 This would allow an efficient coupling via an allowed one-

electron orbital change (5d96s6p ← 5d96s2)

The D2Π1/2 state, shown in Figure 3.2, seems to be predissociated in a v’

dependent manner. This could possibly be explained by considering the

relative atomic energy spacings of the two relevant asymptotic J=1/2

states versus the two relevant asymptotic J=3/2 states. The 4P3/2 state is

5,833 cm-1 above the 2P3/2 state, while the 4P1/2 state is 15,838 cm-1 above

the 2P1/2 state19 (owing to the inverted nature of the “d-hole” 4P states);

consequently the mixing of the 5d96s6p 4PJ character is expected to be

much less for the 2P1/2 state than for the 2P3/2 state. On the REMPI

timescale, the D2Π1/2 state therefore appears to undergo relatively slow

predissociation compared with that of the D2Π3/2 state. It would then be

deduced that the states from v’ = 16-27 overlap those of the repulsive
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d9s2B2Π1/2 state with maximum probability at ~v’ = 24, while the 2Π1/2

vibrational states with v’ = 28-32 do not and are therefore largely

unaffected.

3.4 Au–Ne Results

3.4.1 Theoretical Results

The X2∑+ state was investigated employing ab initio methods as described

in Chapter 2 and Section 3.3.1. In addition, calculations were performed

for the ground states of Au–He and Au–Rn to complete the series.

Calculations were performed over a range of interatomic spacings to

generate a potential curve using MOLPRO.14 As for Au–Xe, the calculations

were performed employing standard Dunning style basis sets of QZ and 5Z

quality for He and Ne; these were augmented by a set of diffuse functions,

which were derived in an even-tempered fashion from the two most diffuse

functions in the basis set. The basis sets cc-pwCVXZ-PP 27 and aug-cc-

pVXZ-PP28 were employed for Au and Rn respectively in addition to the

relativistic effective core potential ECP60MDF29, which was employed for

both. The basis sets were also augmented (doubly for Au and singly for Rn)

with primitive diffuse functions, derived as above. The full counterpoise

correction was employed to correct for BSSE and each point was

extrapolated to the basis set limit. The LEVEL program17 was again used

followed by the least-squares fitting procedure to derive the spectroscopic

constants, which are shown in Table 3.3, together with the results for Au–

Ar and Au–Kr from refs 2 and 3. The lowest four energy levels were used

for the fitting procedure, with the exception of Au–He, which was

calculated to have only two bound levels. The 197Au, 4He, 20Ne and 222Rn

isotopes were used in the calculations.
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Table 3.3: Calculated spectroscopic constants for the X2Σ+ state of Au–RG. B0 is the

equilibrium rotational constant in the lowest vibrational level; other constants are

defined in the header to Table 3.1.

Complex Basis set Re/Å De/cm-1 D0/cm-1 B0/cm-1

Au–He d-aVQZ 4.11 14.6 5.7 0.203

d-aV5Z 4.10 14.9 5.9 0.205

d-aV∞Z 4.08 15.3 6.1 0.207

Au–Ne d-aVQZ 3.84 46.2 37.0 0.0599

d-aV5Z 3.83 46.7 37.5 0.0601

d-aV∞Z 3.83 47.2 38.0 0.0603

Au–Ar (ref. 2) d-aV∞Z 3.73 176.5 163.9 0.0358

Au–Kr (ref. 3) d-aV∞Z 3.64 284.8 273.0 0.0214

Au–Xe d-aV∞Z 3.42 515.5 503.1 0.0181

Au–Rn d-aVQZ 3.30 704.2 690.0 0.00147

d-aV5Z 3.26 758.6 743.4 0.00151

d-aV∞Z 3.22 820.3 804.1 0.00155

RCCSD(T)/aVQZ calculations were also performed on the D2Π state of Au–

Ne (spin-orbit coupling was not included in the calculation; this would be

expected merely to raise the D2Π3/2 curve by a constant amount without

affecting the other parameters). The calculated spectroscopic constants

were: Re=3.08 Å, De=168 cm-1, D0=147 cm-1, ωe=42 cm-1 and ωexe=3.0

cm-1. In addition, CASSCF+MRCI+Q calculations have been performed by

members of the group to generate potential energy curves for the 2Π1/2,

2Π3/2 and 2Σ1/2
+ states; these are shown in Figure 3.7.
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Figure 3.7: CASSCF+MRCI+Q/aVQZ calculations for the D2Π1/2, 3/2 and E2Σ1/2
+ states

of Au–Ne. Figure reproduced from Ref. 1.

3.4.2 Experimental Results

The REMPI spectrum recorded for the D2Π3/2 ← X2Σ1/2
+ transition in 197Au–

20Ne is shown in Figure 3.8. It was also possible to obtain a spectrum for

the 197Au–22Ne isotopologue; this allowed the absolute vibrational

numbering to be deduced (see Figure 3.9 and Chapter 2).

The non-resonant Au signal was extremely strong and the MCPs were not

able to recover fully from this before the Au–Ne clusters were detected.

This had a significant effect on the intensities of the peaks in the spectra,

particularly at high v. The relatively low abundance of 22Ne meant that only

the lower energy features could be observed; however this was sufficient

to measure the isotopic shifts.
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Figure 3.8: Single-colour REMPI of the D2Π1/2 ← X2Σ1/2
+ transition for 197Au–20Ne.

Figure previously published in Ref. 1.

Figure 3.9: Low energy region of the D2Π1/2 ← X2Σ1/2
+ transition for 197Au–20Ne and

197Au–22Ne. Note the shift in the peak maxima, which enables the absolute

vibrational numbering to be determined. Figure previously published in Ref. 1.
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The spectroscopic constants were then derived using the standard Morse

expression; the results are shown in Table 3.4.

Table 3.4: Derived spectroscopic parameters for the 197Au–20Ne D2Π3/2 state.

Symbols are defined in the header to Table 3.1. All values are in cm-1.

Parameter Morse LeRoy-Bernstein

ωe 36.9

ωexe 2.35

De’ 145.1 153.9a

D0’ 127.8 136.0

D0’’ 31.4 40.0
aEstimated from the D0’ value using the Morse potential vibrational constants.

Figure 3.10: LeRoy-Bernstein (top) and Birge-Sponer (bottom) plots for the

observed 197Au–20Ne spectrum. The solid circles indicate the experimental data

points; the solid lines are the least squares fit. Figure previously published in Ref. 1.
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Figure 3.10 shows LeRoy-Bernstein30 and Birge-Sponer plots (see Chapter

2). The LeRoy-Bernstein plot gives a better fit to the data and is in better

agreement with the ab initio D0 values; this suggests that the values

calculated from this method are the more reliable (they are also shown in

Table 3.4). This may be expected, since the Birge-Sponer analysis is only

reliable when applied to levels at low v’, near the bottom of the well. It

could not therefore be expected to perform well for a species with few

bound levels.

As previously stated in Section 3.2, it was necessary to switch the dye to

investigate the 2P1/2 ← 2S1/2 atomic Au transition region, where one would

expect the D2Π1/2 ← X2Σ1/2
+ transition to occur. When this was done, it was

not possible to detect a Au–Ne signal. Switching the carrier gas to Ar

confirmed that clustering was occurring, since the D2Π1/2 ← X2Σ1/2
+

transition of Au–Ar was detected immediately, as it had been before.2

Returning to Ne as the carrier gas still yielded no spectrum for this region,

although once the dye was switched back the upper state spectrum could

again be recorded satisfactorily. It was therefore concluded that either the

D2Π1/2 state was very weakly bound or the Franck-Condon factors are too

small in this region to allow the transition to be detected. This is also

supported by the calculations shown in Figure 3.7.

3.4.3 Franck-Condon Simulations

A Franck-Condon simulation was performed for the Au–Ne spectrum; the

method is the same as for the Au–Xe simulation (see Section 3.3.3). This

is shown in Figure 3.11.

RCCSD(T) calculations for the non spin-orbit D2Π state, which is expected 

to have the same shape as the D2Π3/2 state, give an Re value of 3.08 Å.

Since, as explained in the previous section, the intensities of the peaks in
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the spectrum are unreliable, it was decided to use this value in the

simulation. The calculated values are in reasonably good agreement with

the experimentally derived results. The experimental values of De and ωe

are used, however, while the ground state potential energy curve is

simulated using the calculated constants shown in Table 3.3.

Figure 3.11: Franck-Condon simulation of the observed 197Au–20Ne spectrum, using

parameters from ab initio calculations. Bottom trace is the experimental spectrum,

middle trace is the simulation and top trace is both spectra overlaid. The intensities

of the simulated spectrum have been scaled so that the v’=0 intensity matches that

of the experimental one (the first visible peak, seen at approximately 41,075 cm-1).

Figure previously published in Ref. 1.

As expected, the intensities in the simulation are very different from those

in the recorded REMPI spectrum. In addition to the problem with the non-

resonant Au signal, the intense laser power required to observe the weaker

features led to saturation of those that were most intense. The intensities

have therefore been scaled using the first feature in the recorded spectrum;

this is the feature least likely to have been saturated.
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The rotational profiles of the bands have also been simulated using the Bv

values from the RCCSD(T)/d-aVQZ calculation of the excited state and the

B0 value from the ground state calculation. This simulation is shown in

Figure 3.12. It is not possible to resolve the individual rotational lines in

the recorded spectrum, so a Gaussian line profile has been used with the

full width at half maximum set to 0.8 cm-1. The simulated vibrational bands

have been individually scaled to match the intensity of the recorded band,

owing to the unreliability of the intensities. The rotational profile was most

accurately reproduced with the rotational temperature set to 15 K.

Figure 3.12: Simulated rotational profiles for the vibrational features in the

experimental Au–Ne spectrum, showing the gradual change from blue to red shaded

bands. The simulations employ the calculated Bv values for the D2Π3/2 state. The

intensities of each band have been scaled to match the corresponding experimental

value. Figure previously published in Ref. 1.

A Franck-Condon simulation has also been calculated for the D2Π3/2 ←

X2Σ1/2
+ Au–Ar spectrum originally reported in ref 2; this employed the ab

initio (RCCSD(T)/d-aV∞Z) values for the ground state reported in that 

paper and some new RCCSD(T)/d-aVQZ calculations performed in this



~ 47 ~

work for the excited state. The derived constants for the excited states

were: Re=2.62 Å, ωe=116 cm-1 and De= 1,782 cm-1. The simulated

spectrum can be seen in Figure 3.13. This has allowed an approximate

absolute vibrational numbering of the spectrum, which was not possible

before. The first band is assigned to v’=9 and Morse fitting allows the

derivation of the spectroscopic constants ωe=114 cm-1 and ωexe=1.9 cm-1.

Figure 3.13: Franck-Condon simulation of the D2Π3/2 ← X2Σ1/2
+ transition for Au–Ar,

using parameters from the ab initio calculations reported in this work for the D2Π3/2

state and from ref. 2 for the ground state. The bottom trace is the experimental

spectrum, the middle trace is the simulation and the top trace is both spectra

overlaid. The intensities of the simulated spectrum have been scaled so that the

intensities of the first few bands match the experimental ones. Note that the hot

band features (corresponding to excitation from v’ = 1 and 2) have also been

simulated and scaled to give the best match to the experimental intensities; the

relative intensities represent a vibrational temperature of about 15 K. Figure

previously published in Ref. 1.
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3.4.4 Discussion

It was noted in Section 3.4.2 that the REMPI spectrum for the transition

D2Π1/2 ← X2Σ1/2
+ in Au–Ne could not be observed. The CASSCF+MRCI+Q

calculations can give some insight as to why this is the case. These

calculations include the spin-orbit interaction and indicate a very clear

difference between the potential energy curves for the D2Π1/2 and D2Π3/2

states. These states are expected to be more strongly bound than the

E2Σ1/2
+ state (see Section 3.1); however Figure 3.7 indicates that mixing

occurs, leading to a D2Π1/2 curve with a very shallow well and a shallow

minimum at approximately 5.0 Å. Since for the ground state Re=3.8 Å

(Table 3.3), the FCFs for this transition would be very small. They are

much larger for the D2Π3/2 state, which has a minimum at 3.08 Å.

The ab initio calculations have enabled simulations that have reproduced

satisfactorily the spacings and rotational profiles in the recorded Au–Ne

spectrum and have generated spectroscopic constants comparable with

those derived experimentally. It can therefore be concluded that this level

of calculation gives a reasonably good representation of the potential

curves and one can be fairly confident of the vibrational assignments made

for the Au–Ar spectrum.

It is interesting to note that both the Au–Ne and Au–Ar D2Π3/2 ← X2Σ1/2
+

spectra show intensities to high v’ that are greater than those that the FC

simulations predict. This could be explained by further configurational and

spin-orbit mixing, perhaps from Ω=3/2 states arising from the lower Au 

(52D) + RG (1S) or higher Au (4P5/2) + RG (1S) and Au (7p) + RG (1S)

asymptotes.

Since this work was completed, photodissociation experiments of Au–Xe

have been carried out by R. J. Plowright and collaborators at the University
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of Oxford using velocity map imaging.31 These studies showed that Au+

ions were produced in the dissociation and possible mechanisms for charge

transfer were therefore discussed in detail.

3.5 Trends in the Au–RG series

Table 3.3 shows the results of the RCCSD(T) calculations for the ground

state of all the species in the Au–RG series. It is therefore possible to see

how the spectroscopic constants change as the rare gases become heavier

and more polarisable.

It is to be expected that the increased polarisablity leads to stronger

bonding, as has been seen in many previous studies of metal-rare gas

complexes;11 this is reflected in the value of De, which can be seen in Table

3.3 to increase with the size of the rare gas atom.

The change in Re, by contrast, is not as one might expect. Although the

van der Waals radii of the rare gas atoms increase considerably from He to

Rn, the Re values in the complex decrease. This behaviour has been seen

for the lighter rare gases for other M–RG or M+–RG complexes; for

example Na–RG (RG=Ne, Ar, Kr)32,33,34 , Group 2 M+–RG ions (RG=He, Ne,

Ar) (see Chapters 4 and 5) and Group 12 M+–RG (RG=He, Ne, Ar).35 As

with Au–RG, these complexes have a single, polarisable s electron on the

metal/metal ion; it has been suggested that in some cases the s-electron

cloud becomes distorted as the RG atom approaches. This may lead to

deshielding of the core and enhanced attraction as R decreases and the RG

polarisability increases. However, for the trend to continue to even the

heaviest rare gases is believed to be unprecedented. In the same set of

calculations, similar trends were also seen in ab initio calculations for Ag–

RG and Cu–RG.36 The calculated values of Re and De for Au–He are very
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similar to those obtained by Cargnoni et al.,37 who also employed high-

level ab initio methods and large basis sets.

It is difficult to compare the Au (6p) states directly as the different

complexes show very different spectroscopic behaviour. The D2Π1/2 state is

not observed in Au–Ne, whereas for Au–Ar2 it was found to be significantly

perturbed at high v’ and a long progression was seen for Au–Kr.3 In Au-Xe

a long progression was also observed, but the centre of the spectrum

shows a significant loss of intensity. The D2Π3/2 spectrum was recorded for

Au–Ne, Au–Ar and Au–Kr (although this progression was severely

curtailed); however in Au–Xe this state could not be seen. Instead, a

spectrum that has been attributed to a mixing of the E2Σ1/2
+ state and a

higher 4Π1/2 state was observed. These effects can be understood with

reference to the ab initio calculations.

The mixing of the E2Σ1/2
+ state with the D2Π1/2 state is believed to occur

throughout the series; however while in Au–Ne this leads to a very shallow

well and small FCFs that make the state unobservable, in Au–Ar the state

was seen but showed strong perturbation. In Au–Kr and Au–Xe, the most

significant effects appear to be outside the FC window. It is very probable

that similar mixing occurs in Au–He.

Another common effect is the interaction of the D2Π3/2 state with others of

like-Ω, as is seen here for Au–Xe; this results in the predissociation of the 

D2Π3/2 state in this case (see Section 3.4.2). The interaction between the

A2Δ3/2 and 2Π3/2 states was also deemed the most likely cause of the

predissociation of the higher v’ states in Au–Kr.3
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3.6 Conclusions

REMPI spectra have been presented for the Au–Xe and Au–Ne complexes,

obtained in the region of the strong 2PJ ← 2S atomic transition. It was

possible to obtain spectra for more than one isotopologue in each case,

enabling the assignment of absolute vibrational numbering.

The spectroscopy of these complexes has proven to be far from

straightforward, and ab initio methods have therefore been employed to

assist in assigning the spectra and explaining the unusual intensity profiles

seen in many cases.

The lower energy state of Au–Xe has been assigned to the D2Π1/2 ← X2Σ1/2
+

transition. A Franck-Condon simulation was performed, which reproduced

the intensities at both high and low energies reasonably well, however the

centre of the spectrum showed an unexpected loss of intensity; this was

explained by indirect coupling with the B2Π1/2 state, leading to v-dependent

predissociation.

The low vibrational numbering and dissociation energy of the Au–Xe

spectrum recorded at higher energy led to the conclusion that it could not

be from the D2Π3/2 ← X2Σ1/2
+ transition. Other possible assignments were

discussed, employing ab initio calculations to support arguments; the most

likely candidate was deemed to be a state arising from a case (c)

interaction between the E2Σ1/2
+ state and a 4Π1/2 state, with the latter

arising from the Au(4P5/2) + Xe asymptote. However, it is possible that

charge transfer states could also be involved. A non-FC profile is again

observed; this may be explained by the R-dependence of the electronic

transition moment and the presence of a barrier in the outer wall of the

potential curve, leading to tunnelling/predissociation of states in the

energy region of the barrier.
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It was only possible to record spectra for one transition in Au–Ne, which

has been assigned to D2Π3/2 ← X2Σ1/2
+. The D2Π1/2 ← X2Σ1/2

+ transition

could not be observed; this is believed to be due to mixing with the E2Σ1/2
+

state, which results in a very weakly bound state and poor FCFs.

A Franck-Condon profile has been simulated for the spectrum recorded for

Au–Ne employing the Re values from ab initio calculations. The intensities

cannot be reproduced; this is attributed to difficulties in subtracting the

substantial non-resonant Au signal and the saturation of the most intense

features. The rotational profile was well reproduced using Bv values from

ab initio calculations; this simulation suggests a rotational temperature of

approximately 15 K.

A Franck-Condon simulation has also been performed for a previously

recorded spectrum of the D2Π3/2 ← X2Σ1/2
+ transition in Au–Ar using new ab

initio calculations, which has allowed a suggested absolute vibrational

numbering and the derivation of spectroscopic constants. From these

simulations, it has been suggested that further configurational and spin-

orbit mixings occur, which lead to a rise in intensity at high v’.

The trends across the Au–RG series have also been discussed. With

reference to the ab initio calculations on the ground state, it has been

noted that although the De values show the expected increase from He-Rn,

the Re values show an unexpected steady decrease. It was suggested that

this could be a result of the distortion of the polarisable Au (6s) electron

cloud as the RG atom approaches, which decreases the repulsion and

increases the attraction. This effect will be discussed further in Chapters 4

and 5, where related phenomena are seen in the Group 2 metal ion–rare

gas series.
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For the spectroscopic results, it was noted that most of the differences in

the spectra that could be observed for the different complexes could be

explained by three main features: the mixing of the E2Σ1/2
+ state with the

D2Π1/2 state, which leads to the non-observation of the D2Π1/2 ← X2Σ1/2
+

transition in Au–Ne and a strong perturbation in Au–Ar (this does not

impact the spectra for heavier species as the main effect occurs outside

the FC window); the interaction of the D2Π3/2 state with others of like-Ω, 

which causes the D2Π3/2 ← X2Σ1/2
+ to be severely curtailed in Au–Kr and

absent in Au–Xe; and the involvement of higher states arising from the Au

(4P5/2) + RG asymptote, which gives rise to the observation of a

hypothesised mixed character Ω=½ state for Au–Xe close to the energy of 

the 62P3/2 state.
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4. Theoretical Study of M+–RG and M2+–RG

Complexes (M=Ca-Ra; RG=He-Rn)

4.1 Introduction

In addition to high-resolution electronic spectroscopic experiments,

members of the SOCAR group have previously calculated ground state

potential energy curves (PECs) for the Group 1 metal cation–rare gas

complexes using high level ab initio methods.1,2,3,4,5 This chapter describes

how this work has been continued with the Group 2 metals, in

collaboration with Adrian Gardner of the SOCAR group and external

collaborators.

The calculated PECs have been employed to derive spectroscopic

parameters of the complexes and to learn more about the interactions

between metal cations and rare gas atoms. The PECs have also been used

by L. A. Viehland and co-workers at Chatham University, USA in order to

calculate transport coefficients for metal cations and dications moving

through a bath of rare gas atoms. These can be useful in understanding

ion-molecule reactions.6,7,8,9,10

Employing RCCSD(T) methods similar to those described for the Au–RG

ground state calculations in Chapter 3, spectroscopic constants have been

derived for M+–RG and M2+–RG complexes (M=Be-Ra; RG=He-Rn). These

results are compared with previous theoretical and experimental results

where available. Some unusual trends have been seen in the series and

these are discussed. It is noted that the complexes involving the lighter

metals (Be and Mg), while showing similar trends to the heavier complexes,

have a somewhat different rationale behind them; these are therefore

discussed separately in Chapter 5.
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The results will also be discussed with reference to a model potential

proposed by Bellert and Breckenridge. 11 This model is based on a

multipolar expansion and as such accounts for physical interactions only. It

includes inductive attraction terms and dispersion terms, with the repulsive

term modelled by an exponential form; attractive interactions are included

to terms of order R-8.

Bellert and Breckenridge suggested that the metal cation-rare gas

interaction could be described using the following equation if the cation has

no permanent quadrupole moment.
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−
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−
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−
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24଼ܴ
+ ோି݁ܣ (4.1)

Z represents the “effective” charge on the metal cation. αRGD, αRGQ and αRGO

are the dipole, quadrupole and octopole polarisabilities of the rare gas

atom respectively. BRG is the higher order dipole-quadrupole polarisability

of the rare gas and γ is the higher order second dipole hyperpolalarisability

of the rare gas. The C6 terms represent the first dispersive term (random-

dipole/induced-dipole) and the C8 term represents the second dispersive

term (random dipole/induced quadrupole, random-quadrupole/induced

dipole). The C6 coefficient is calculated using the Slater-Kirkwood

approximation,12 and the C8 coefficient is calculated using the Koutselos-

Mason approximation.13 The simple Ae-bR repulsive term was chosen due to

its simplicity and ability to model the repulsion accurately14 (Z, A and b are

fitted parameters).
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4.2 Computational Details

For He-Ar, the standard aug-cc-pV5Z basis sets15,16,17 were employed; for

Kr-Rn the basis sets employed were the standard ECP+valence basis sets,

ECP10MDF_aV5Z-PP, ECP28MDF_aV5Z-PP and ECP60MDF_aV5Z-PP

respectively.18 The core electrons in each of the metals were described by

a relativistic effective core potential (ECP); ECP10MDF, ECP28MDF,

ECP46MDF and ECP78MDF for Ca, Sr, Ba and Ra respectively. The ECPs

include relativistic effects, but not spin-orbit coupling. These were used in

combination with valence basis sets, which were designed by E. P. F. Lee

using the following method.

For calcium, an open-shell restricted Hartree-Fock (ROHF) calculation was

carried out on Ca+ employing an uncontracted (19s17p) even-tempered

basis set; 19s (centre=1.4; ratio=1.8) and 17p (centre=1.7; ratio=2.4)

functions were used. The computed coefficients of the basis functions of

the occupied atomic orbitals obtained from this calculation were used as

the coefficients for the contracted [2s1p] basis functions designed to

describe the 3s and 3p electrons of Ca+ and Ca2+ (since these may be

considered as valence for the dication) and the 4s electron of Ca+. To these,

additional uncontracted basis functions were added19 such that the basis

set could be described as ECP10MDF [11s8p5d4f3g2h], which is

approximately the same standard as an aug-cc-pV5Z basis set. The first

and second ionisation energies have been calculated employing the

RCCSD(T) method and this basis set, yielding 6.109 and 11.866 eV; these

are in good agreement with experimentally obtained values of 6.113 and

11.872 eV.20

For strontium, the small core ECP28MDF basis set describes the [Ar]3d10

electrons. A valence basis set was designed using an ROHF calculation on



~ 59 ~

Sr+ using an uncontracted (19s15p) even-tempered basis set; 19s

(centre=0.5; ratio=1.7) and 15p (centre=1.0; ratio=1.5) functions were

used. The computed coefficients of the basis functions of the occupied

atomic orbitals obtained from this calculation were used as the coefficients

for contracted [2s1p] basis functions to describe the 4s and 4p electrons of

Sr+ and Sr2+ and also the 5s electron of Sr+. To these, additional

uncontracted basis functions were added,21 such that the basis set could be

described as ECP28MDF [11s10p5d4f3g2h]. This can also be regarded as

approximately the same standard as an aug-cc-pV5Z basis set. The first

and second ionisation energies were calculated as for calcium, yielding

5.683 and 11.009 eV; again, these compare well with the experimental

results, 5.695 and 11.031 eV.22

For barium, the small core ECP46MDF was employed to describe the

[Kr]4d10 electrons. In order to derive the valence basis set an ROHF

calculation was run on Ba+ using a (19s16p) even-tempered basis set; 19s

(centre=1.0; ratio=1.7) and 16p (centre=1.1; ratio=1.5) functions were

used. The computed coefficients were used to generate contracted [2s1p]

basis functions used to describe the 5s and 5p electrons of Ba+ and Ba2+

and also the 6s electron of Ba+. Uncontracted basis functions were added

to these23 such that the overall basis set could be described as ECP46MDF

[7s6p5d4f3g2h]; again, this can be regarded as approximately aug-cc-

pV5Z standard. The calculated ionisation energies for barium were 5.186

and 9.958 eV, which again compare well with the experimental values

(5.21124 and 10.004 eV25 respectively).

For radium, a valence basis set had previously been derived; 26 two h

polarisation functions (ζ=0.35 and 0.05) were incorporated so that the

overall basis set could be described as EPF60MDF [10s10p5d4f3g2h].
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For Ca2+–Xe the 4d orbitals of Xe are lower in energy than the 3p orbitals

of Ca2+; for this reason they were correlated. The following tight functions

were added to the basis set for Xe: d[ζ=3.84 and 1.92]; f[ζ=3.9146 and

1.702]; g[ζ=2.8]; h[ζ=2.6].

For Ca2+–Rn and Sr2+–Rn the 5d orbitals of Rn have energies similar to

those of the 3p Ca2+ orbitals and the 4p Sr2+ orbitals, so these were also

correlated. The following tight functions were therefore added to the Rn

basis set: d[ζ=2.9 and 1.3]; f[ζ=1.7]; g[ζ=1.7]; h[ζ=1.7].

In all other cases for Kr-Rn the outermost occupied d orbitals were

correlated as well as the valence s and p orbitals. For Ne, the 1s orbital

was frozen, as were the 1s, 2s and 2p orbitals of Ar. For the metal ions, all

electrons were correlated except those described by the ECPs. The full

counterpoise correction was applied and the internuclear separation, R,

was varied over a wide range (1-50 Å). The step size was generally around

0.1 Å at short R, 0.025 Å around the minimum and gradually became

larger at longer R.

As for the Au–RG ground states (see Chapter 3), the MOLPRO27 suite of

programs was employed for the calculations and the potential energy

curves were used as input to the LEVEL 28 program. The spectroscopic

constants were derived by using a least-squares fitting procedure to the

standard Morse expressions for the lowest few energy levels. The most

abundant naturally occurring isotope of each element was used (40Ca, 88Sr,

138Ba, 226Ra, 4He, 20Ne, 40Ar, 84Kr, 132Xe and 222Rn).
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4.3 Results

Tables 4.1–4.4 show the spectroscopic constants derived for M+–RG

complexes. The force constants, k, have been calculated from the simple

harmonic relationship

߭=
1

ߨ2
ඨ
݇

ߤ
(4.2)

ν is the frequency of the vibration, which can be calculated from ωe, and μ

is the reduced mass of the complex

=ߤ
݉݉ 

݉ + ݉ 
(4.3)

De
MORSE has been determined from the standard Morse expression using the

calculated values of ωe and ωexe (see Chapter 2). Previous theoretical and

experimental results found in the literature are also included in the tables

for comparison.

In general, good agreement is seen with previous experimental work. The

results from theoretical studies have varied considerably; each species will

be considered in turn.



Table 4.1: Spectroscopic constants for Ca+–RG. Re is the equilibrium bond length (Å), De is the depth of the potential, D0 is the energy between the zero-

point and the asymptote, ωe is the harmonic vibrational frequency, ωexe is the anharmonicity constant, Be is the equilibrium rotational constant at the

minimum, α is the spin-rotation constant (all in cm-1), k is the harmonic force constant (Nm-1). Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Ca+–He 4.259 35.9 23.3 25.6 4.884 0.264 7.30x10-3 33.5 0.93 0.141
Ref. 29a 4.1 51.1

Ref. 30b 4.4 30

Ref. 31c 4.01 44.4

Ca+–Ne 3.760 109 97.4 24.8 1.503 0.0889 5.91x10-3 102 0.94 0.484

Refs. 11 and 32 3.70±0.05d 115±5d 103±5d 26±2d

Ref. 3030b 4.0 124

Ref. 33e 3.867 90.2 21.0

Ref. 31c 3.08 1.77

Ca+–Ar 3.256 742 712 60.6 1.590 0.0795 2.55x10-3 577 0.78 4.33

Refs.11,34,35,36,37 3.20±0.15f 810±60g 69±2d

Ref. 33e 3.166 762.0 65.2

Ref. 38h 3.152 885 789 73 2.70

Ref. 35g 775±50

Ref. 34d 735±100

Ref. 39d 890±100

Ca+–Kr 3.305 1200 1160 69.7 1.307 0.0570 1.16x10-3 929 0.78 7.76

Refs.11,34,3535,3636,3737 3.30±0.15f 1280±80g 77±2d

Ref. 38h 3.202 1376 1252 68 1.49

Ref. 35g 1244±60

Ref. 3434d 1400±150

Ref. 39 d 840±100 74

Ca+–Xe 3.457 1780 1740 78.2 1.033 0.0460 6.35x10-4 1480 0.83 11.1

Refs.11,34,35,36,37 3.45±0.25f 1850±100g 84±2d

Ref. 3535g 1811±80

Ref. 34d 2300±150

Ca+–Rn 3.487 2190 2150 81.9 0.878 0.0410 4.58x10-4 1910 0.87 13.4
aModel potential. bCI calculation. cB3LYP calculation. dPhotodissociation spectroscopy. eMP2 calculation. fEstimate from Re values

of Ca–RG Rydberg states. gTwo-colour photoionisation. hRCCSD(T) calculation.
~ 62 ~



Table 4.2: Spectroscopic constants for Sr+–RG. Symbols and units used are as for Table 4.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Sr+–He 4.547 28.9 18.5 21.1 4.12 0.220 6.52x10-2 27.1 0.94 0.10

Sr+–Ne 4.005 91.3 81.9 19.5 1.11 0.0650 3.98x10-3 85.6 0.94 0.37

Ref. 40a 77 67/85 19.5±1.5

Sr+–Ar 3.385 646 623 47.3 1.21 0.0535 1.62x10-3 464 0.72 3.63

Ref. 41a 827±244 803±244 49.5 0.75

Ref. 42b 3.662 694 38.7 0.72

Sr+–Kr 3.433 1050 1030 51.1 0.850 0.0333 5.78x10-4 765 0.73 6.62

Ref. 43a 1231 1205±580 52±1 0.6

Sr+–Xe 3.591 1560 1530 54.7 0.600 0.0248 2.78x10-4 1250 0.80 9.32

Ref. 44a 1974±435/1200 54.6 0.38

Sr+–Rn 3.617 1940 1910 55.4 0.470 0.0205 1.77x10-4 1630 0.84 11.4
aPhotodissociation spectroscopy. bicMRCI+Q calculation.
Table 4.3 Spectroscopic constants for Ba+–RG. Symbols and units used are as for Table 4.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Ba+–He 4.950 21.8 13.4 16.7 3.39 0.183 5.55x10-2 21 0.95 0.0636

Ba+–Ne 4.291 72.6 65.4 15.1 0.82 0.0529 2.91x10-3 70 0.95 0.235

Ba+–Ar 3.385 693.1 664.3 58.6 2.19 0.0476 1.47x10-3 392 0.57 6.27

Ref. 45 3.364a 680b 61.7±1.5c 2.3±0.2c [1.25x10-3]d

Ref. 46e 3.47 ~800 38.7 0.72

Ba+–Kr 3.479 1093.0 1066.3 53.9 1.02 0.0267 4.28x10-4 712 0.65 8.92

Ba+–Xe 3.653 1568.9 1542.9 52.3 0.61 0.0187 1.97x10-4 1121 0.71 10.87

Ba+–Rn 3.709 1916.2 1891.5 49.5 0.41 0.0144 1.11x10-4 1494 0.79 12.31
aR0 value from high-resolution laser induced fluorescence experiments. bLower resolution dispersed fluorescence experiments.
cFitted RKR potential from experiment. dEstimated. eInversion of experimental transport data.
~ 63 ~



Table 4.4: Spectroscopic constants for Ra+–RG. Symbols and units used are as for Table 4.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Ra+–He 4.885 23.3 14.5 17.6 3.55 0.186 5.53x10-2 21.8 0.94 0.0717

Ra+–Ne 4.276 76.5 68.6 16.3 0.917 0.0504 3.11x10-3 72.5 0.95 0.288

Ra+–Ar 3.759 486 469 34.3 0.776 0.0351 9.49x10-4 379 0.78 2.36

Ra+–Kr 3.775 793 775 34.9 0.520 0.0193 2.94x10-4 586 0.74 4.40

Ra+–Xe 3.917 1170 1160 35.9 0.351 0.0132 1.27x10-4 918 0.78 6.33

Ra+–Rn 3.944 1470 1450 34.6 0.248 0.00967 6.85x10-5 1210 0.82 7.89

Table 4.5: Spectroscopic constants for Ca2+–RG. Symbols and units used are as for Table 4.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Ca2+–He 2.351 1240 1110 279 17.8 0.841 6.05x10-3 1090 0.88 16.6
Ref. 30a 2.41 1160

Ca2+–Ne 2.461 2080 1990 183 4.67 0.209 5.59x10-3 1790 0.86 26.2

Ref. 30a 2.51 1680

Ref. 3333b 2.446 2062 185.6

Ref. 47c 2.472 1780

Ca2+–Ar 2.735 5670 5580 200 1.90 0.113 1.21x10-3 5260 0.93 47.1

Ref. 3333b 2.699 5873.1 203.4

Ca2+–Kr 2.865 7320 7230 179 1.14 0.0759 5.73x10-4 6990 0.95 51.1

Ca2+–Xe 3.04 9550 9460 173 0.804 0.0595 3.40x10-4 9340 0.98 54.4

Ca2+–Rn 3.115 10770 10690 165 0.601 0.0513 2.59x10-4 11380 1.06 54.7
aCISD calculations. bMP2(full) calculations; De value corrected for BSSE. cCCSD(T) calculation. Corrected for BSSE.
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Table 4.6: Spectroscopic constants for Sr2+–RG. Symbols and units used are as for Table 4.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Sr2+–He 2.565 914 805 224 12.8 0.672 5.25x10-2 981 1.07 11.3

Sr2+–Ne 2.654 1600 1530 141 3.69 0.147 3.87x10-3 1340 0.84 19.0

Sr2+–Ar 2.903 4580 4510 151 1.38 0.0728 7.18x10-4 4160 0.91 37.1

Sr2+–Kr 3.026 6000 5940 128 0.727 0.0429 2.74x10-4 5610 0.93 41.3

Sr2+–Xe 3.203 7970 7910 120 0468 0.0312 1.44x10-4 7710 0.97 44.9

Sr2+–Rn 3.265 8990 8930 111 0.351 0.0251 9.64x10-5 8830 0.98 46.0

Table 4.7: Spectroscopic constants for Ba2+–RG. Symbols and units used are as for Table 4.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Ba2+–He 2.842 637.6 552 175.7 14.0 0.542 4.88x10-2 551 0.86 7.07

Ba2+–Ne 2.907 1162.5 1108 110.9 3.15 0.114 3.20x10-3 976 0.84 12.6

Ba2+–Ar 3.130 3519.9 3459 122.1 1.19 0.0554 5.58x10-4 3132 0.89 27.2

Ba2+–Kr 3.244 4682.6 4632 100.8 0.59 0.0307 1.92x10-4 4305 0.92 31.3

Ba2+–Xe 3.413 6309.2 6262 94.0 0.37 0.0215 9.42x10-5 5970 0.94 35.2

Ba2+–Rn 3.481 7218.8 7176 85.3 0.26 0.0164 5.77x10-5 6996 0.96 36.5

Table 4.8: Spectroscopic constants for Ra2+–RG. Symbols and units used are as for Table 4.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Ra2+–He 2.947 562 484 160 12.2 0.496 4.49x10-2 528 0.94 5.96

Ra2+–Ne 3.001 1040 993 101 2.91 0.102 2.83x10-3 869 0.83 11.0

Ra2+–Ar 3.214 3220 3170 111 1.08 0.0481 4.71x10-4 2860 0.89 24.6

Ra2+–Kr 3.326 4320 4270 89.0 0.502 0.0249 1.47x10-4 3940 0.91 28.6

Ra2+–Xe 3.495 5840 5800 81.3 0.300 0.0166 6.68x10-5 5500 0.94 32.5

Ra2+–Rn 3.562 6690 6660 71.6 0.200 0.0119 3.73x10-5 6420 0.96 33.9
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Ca+–RG

For Ca+–He, the results here are in good agreement with the configuration

interaction (CI) calculation of Czuchaj et al.,30 but the B3LYP calculation31

and the model potential by Monteiro et al.29 both yield dissociation

energies that are rather higher. Since coupled cluster calculations are

expected to describe these weakly interacting systems more accurately

than B3LYP calculations, this suggests that the value obtained from the

model potential is an over-estimate.

Ca+–Ne has been the subject of photodissociation experiments by Reddic

et al.32 Their values for Re, De and ωe are all in excellent agreement with

those reported here. The B3LYP calculation again yields a higher value for

the dissociation energy;31 the CI value is in reasonable agreement,30 as is

Kirschner’s MP2(full)+ΔBSSE calculation.33

A considerable amount of work has been done on Ca+–Ar. There is fairly

good agreement with the dissociation energies obtained from

photodissociation34 experiments of Ca+–Ar and two-colour photoionisation

threshold experiments35 on the first metastable triplet state of Ca–Ar. This

method uses accurate measurements of the ionisation potential of the

excited state [IP(Ca*–Ar)], the known ionisation potential of Ca(4s14p1)

[IP(Ca*)] and the value of D0 for the excited state [D0(Ca*–Ar)], which is

estimated from previous experiments and ab initio methods. D0 for the

ionised complex can therefore be calculated from the equation

(ݎܣାܽܥ)ܦ = ܫܲ (∗ܽܥ) − ܫܲ (ݎܣ∗ܽܥ) + (ݎܣ∗ܽܥ)ܦ (4.4)

The argument is that since the bond energy for a low energy metastable

state of the neutral complex will be much smaller than the bond energy of

the ionised complex, the relative error on the calculated bond energy of

the ion will also be much smaller if it depends on the error on the bond
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energy of the excited state. The value for the bond length, which has been

estimated from spectroscopic studies on the Rydberg states of Ca–

Ar,11 ,36 ,37 is in excellent agreement with the value reported here. The MP2

calculation33 is in better agreement than the CCSD(T) calculation of

Heinemann et al.38 Theoretical values of De=789 cm-1 and ωe=67.7 cm-1

reported in ref. 34 are in good agreement with the present study; however,

no details of how the calculations were performed were given.

For Ca+–Kr, two photodissociation experiments have been reported;

Duncan’s group report a dissociation energy slightly higher than that

presented herein,34 while a much lower value was found by Buthelezi et

al.39 Buthelezi and co-workers studied a cationic state tentatively assigned

to the C2Σ+ state, which yielded a short progression. It has been

suggested34 that the three vibrational bands measured for Ca+–Kr by

Buthelezi and co-workers are insufficient for a reliable Morse extrapolation.

Since they have only obtained results for one isotopologue of Ca+–Ar, it is

also possible that their vibrational numbering for Ca+–Ar is incorrect; this

may explain the unlikely similarity in the binding energies for the two

complexes. Duncan’s group investigated the D2Π cationic states, which 

yielded longer vibrational progressions; their extrapolation is therefore

likely to give the more reliable results. The value obtained from

photoionisation is only slightly above that obtained here.35 As for Ca+–Ar,

theoretical values are given in ref. 34 that are in excellent agreement with

the current study (De=1186 cm-1, ωe=72.8 cm-1), but no details about the

calculation were given.

The De value found in the present study for Ca+–Xe is considerably lower

than that yielded by the photodissociation experiments of Duncan et al.34

These experiments do show a reasonably long progression; however it is

noted that the vibrational numbering has an uncertainty of v±2. The
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present value is well above the lower bound of Kaup and Breckenridge’s

value obtained from photoionisation.35

Re has been estimated for the cationic complexes from the Rydberg states

of Ca–Ar, Ca–Kr and Ca–Xe;11,36,37 these values are in excellent agreement

with those reported here. In ref. 11, ωe has also been estimated from ΔG1/2

values reported in refs. 34 and 32. Although these values are in reasonable

agreement with those reported here, they are consistently slightly higher.

Sr+–RG

A considerable amount of work on Sr+–RG complexes has been carried out

by Velegrakis and co-workers. This has included spectroscopic work on

RG=Ne-Xe and theoretical calculations on the Sr+–Ar complex.40,41 ,42,43,44

For Sr+–Ne, the values of ωe and ωexe obtained by Velagrakis et al.40 are in

excellent agreement with those reported herein. They have employed two

methods to calculate the dissociation energy for the ground state. The first

uses the spectroscopic constants that were calculated from vibrational

analysis of the hot band separation; the second uses the De value for the

excited states. The two values obtained are 85 and 67 cm-1 respectively;

the value calculated here is much closer to the former.

The Birge-Sponer (BS) and LeRoy-Bernstein (LB) methods have been

employed to estimate D0 for Sr+–Ar, Sr+–Kr and Sr+–Xe.41,42,43 The average

of these values is given, with the results from the LB and BS analyses used

as the upper and lower bounds respectively, for Sr+–Ar and Sr+–Kr. For

RG=Ne-Xe, De was also calculated from an electrostatic potential function

including a simple


ோ
repulsive term and the ion-induced dipole attractive

term. Upper and lower bounds have been found using the limits of 1e and

2e for the effective charge on the ion, q. They determined that the “best
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value” for q was approximately 1.4 and for m approximately 8, using fits to

their data from previous experiments and referring to previous work on

model potentials by Bellert and Breckenridge.11 The results given here are

consistently within their limits, although towards the lower bound. The

experimental results for ωe are in very good agreement with those

obtained here. The ωexe values for RG=Ar-Xe are rather low; however this

is unsurprising since those values were estimated from the only two

observed energy levels using the Morse expression. Their theoretical

spectroscopic parameters for Sr+–Ar have been obtained using the MRCI

approach;42 these are in fairly good agreement with those reported herein.

Ba+–RG

For the Ba+–RG series, high quality spectroscopic data is only available for

the Ar complex; this work by Panov et al.45 yields results in very good

agreement with those presented here. It is interesting to note that the BS

plot in ref. 45 was nonlinear, indicating a severe deviation from Morse-like

behaviour. The dissociation energy was therefore estimated using a model

potential, partly based on a Rydberg-Klein-Rees (RKR) fit to the data. The

agreement with the spectroscopic values derived from ion mobility

experiments46 is not as good.

Ra+–RG

There do not appear to be any previous results for Ra+–RG for comparison.

M2+–RG

The spectroscopic constants for M2+–RG are shown in tables 4.5–4.8. No

experimental values have been found for any of the species; however,

since this work was carried out, Koyanagi and Bohme have reported the

first observation of Ba2+–RG complexes.48 The Ba dications were produced
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by electrospray ionisation and the complexes formed in a selected ion flow

tube; complexes with Ar, Kr, Xe and (tentatively) He were observed.

There have been some theoretical studies of Ca2+–RG. The CISD study of

Czuchaj et al.30 generally shows good agreement with the present study,

although the De value for Ca2+–Ne is somewhat lower. Kirschner’s MP2

results are in excellent agreement; B3LYP values in the same study were

very similar.33 The CCSD(T) calculations reported for Ca2+–Ne yield a De

value somewhat lower than that found in this study; however the Re value

is in much better agreement. No theoretical studies have been found for

any of the other dicationic series investigated here.

4.4 Trends

Figure 4.1 shows the variation in Re with the rare gas for each of the

different metal ions. It can be seen that there is a minimum at M+–Ar for

all four metals; however the decrease in bond length between M+–Ne and

M+–Ar is not as substantial for Ca, Sr and Ra as it is for Ba. The De values

follow a monotonically increasing trend with a significant increase between

M+–Ne and M+–Ar. The values of ωe are quite similar for the lighter He and

Ne complexes, there is a significant increase for M+–Ar and the values

remain constant for the heavier species. One might expect this since this

parameter is dependent on the balance between the increasing interaction

energy and reduced mass; the force constants are mass independent and

show monotonically increasing trends from He to Rn, again with sharp

increases (factors of 9±1) between M+–Ne and M+–Ar. The ratios

De
MORSE/De indicate severe deviations from Morse-like behaviour for the

heavier rare gases; this is particularly true for Ar and Kr, but the effect is

still significant for Xe and Rn.
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Figure 4.1: Variation in Re for Mn+–RG (M=Ca, Sr, Ba and Ra; n=1 and 2). The solid

lines are for the M+-RG species, and the dashed lines are for the M2+–RG species.

Different symbols represent different metals: Ca, rhombi; Sr, squares; Ba, circles

and Ra, triangles. Note the presence of a minimum in the Re values observed at

RG=Ar for each of the M+–RG species; the M2+–RG species do not have such a

minimum.

By contrast, the dicationic complexes show trends that are more similar to

those seen in the isoelectronic alkali metal cation–RG complexes.5,6.7.8 Re

and De increase gradually with the mass of the complex and the force

constants do not show the same dramatic increase between Ne and Ar; the

increase is only by a factor of 1.8-2.2. The Re values for the dication

complexes presented here are significantly smaller than those for the alkali

metal cation complexes (this may be expected, since the dominant

ion/induced-dipole term in these isoelectronic cases is proportional to Z2).

The M2+ ions are also slightly smaller; the combination of these factors

causes a substantial decrease in Re and a correspondingly large increase in
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De.

Figure 4.2: BS plots for Ca+–Ar and Ca2+–Ar (dots) employing the calculated

vibrational energy levels described herein. The lines are obtained by employing the

Morse parameters that were obtained from the lowest few energy levels (see Tables

4.1 and 4.5).

The De
MORSE/De ratios also indicate that the dication series show more

Morse-like behaviour. This is illustrated in Figure 4.2, which shows BS plots

for Ca+–Ar and Ca2+–Ar, based on the calculated potentials. It can be seen

that Ca+–Ar deviates from the Morse line very quickly, whereas Ca2+–Ar

shows Morse-like behaviour up to at least v=30. This may be expected

because of the much deeper potential well of the dicationic species.

4.5 Discussion

It was found in Chapter 3 that for the Au–RG complexes the Re values

decreased as the size of the rare gas atom increased. It was suggested

that this could be due to the increasing polarisability, which led to the

electron density shifting off-axis and consequent deshielding of the core,

allowing the rare gas atom to move closer. It can be seen that, for the
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lighter rare gases, a related effect seems to occur in the complexes studied

here. It will be argued that, in both cases, the effect seen is hybridisation

of the singly occupied, highly polarisable s orbital of the metal atom/ion

with the lowest unoccupied orbital.

It has been noted that between the M+–Ne and M+–Ar complexes Re

decreases significantly, while De and k have a similarly large increase. This

effect may be expected to some extent because of the relatively high

polarisability of Ar when compared to He or Ne; this would lead to a rise in

the attractive terms in the multipole expansion of the long range potential

(see Equation 4.1), an effect seen previously in alkali metal cationic

complexes.11, 49 However, since it is expected that the leading charge-

induced dipole term will be dominant, one might expect the increase to

vary approximately linearly with the polarisability; thus a fourfold increase

would be predicted. The substantial decrease observed in Re induces an

increase in both De and k that is much greater than this, indicating a

stronger interaction than would be expected if only the physical forces

described by Equation 4.1 were involved.

A substantial increase in De between M+–Ne and M+–Ar has previously

been seen for M = Sc, Ti and Mn by Partridge and co-workers.50 All of

these metals have a 3dn4s1 electron configuration in the cation ground

state. It was argued in ref. 50 that s-dσ hybridisation on the metal could

be causing the electron density to move off-axis, resulting in reduced

electron repulsion. This would allow the rare gas atom to move closer and

increase the magnitude of the attractive induction and dispersion terms.

The polarisability of He and Ne was deemed insufficient for the extra

attractive interaction to overcome the energy required for hybridisation;

this would explain the jump in De between Ne and Ar. Examining the

Mulliken populations, Partridge et al. found that the 3d population in Ti+–Ar
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was 2.21e, compared with 2.00e and 2.09e for Ti+–He and Ti+–Ne

respectively. The same effect occurs to a much lesser extent in the Sc+–RG

series, but it is noted that the same cannot occur for Mn+ as the relevant

states are of different spin.

Examining the Mulliken populations for Ba+–Ar, employing restricted

Hartree-Fock (RHF) calculations and using the RCCSD(T) value for Re, it

was found that the 5d orbital showed an increase of 0.05e above the

expected occupancy. For the other metals, the increase was much smaller,

0.003e, 0.012e and 0.012e for Ca, Sr and Ra respectively.

It is possible that the low Re values are partly caused by dispersion effects;

this would suggest that the calculated spectroscopic parameters would be

greatly affected by the exclusion of electron correlation. Dispersion effects

would then be neglected, reducing the attraction between the metal ion

and the rare gas atom. In order to investigate this possibility, RHF

calculations, which do not include dynamic electron correlation, were

performed to determine Re and De. The results are shown in Tables 4.9-

4.12.
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Table 4.9: Spectroscopic constants for Ca+–RG and Ca2+–RG calculated at the RHF level and RCCSD(T) level (in square brackets). Symbols and units are as

stated in header for Table 4.1. De ratio is the ratio RCCSD(T):RHF.

Re De De ratio Re De De ratio

Ca+–He 4.93 [4.26] 14 [36] 2.6 Ca2+–He 2.42 [2.35] 975 [1240] 1.3
Ca+–Ne 4.70 [3.76] 29 [109] 3.8 Ca2+–Ne 2.53 [2.46] 1550 [2080] 1.3

Ca+–Ar 4.02 [3.26] 198 [742] 3.7 Ca2+–Ar 2.80 [2.74] 4710 [5670] 1.2

Ca+–Kr 3.67 [3.31] 417 [1200] 2.9 Ca2+–Kr 2.93 [2.87] 6120 [7320] 1.2

Ca+–Xe 3.70 [3.46] 803 [1780] 2.2 Ca2+–Xe 3.12 [3.04] 8130 [9550] 1.2

Ca+–Rn 3.71 [3.49] 1080 [2190] 2.0 Ca2+–Rn 3.19 [3.12] 9180 [10770] 1.2

Table 4.10: Spectroscopic constants for Sr+–RG and Sr2+–RG calculated at the RHF level and RCCSD(T) level (in square brackets). Symbols and units are as

stated in header for Table 4.1. De ratio is the ratio RCCSD(T):RHF.

Re De De ratio Re De De ratio

Sr+–He 5.30 [4.55] 10 [29] 2.9 Sr2+–He 2.67 [2.57] 672 [914] 1.4
Sr+–Ne 5.05 [4.01] 22 [91] 4.1 Sr2+–Ne 2.75 [2.65] 1103 [1600] 1.4

Sr+–Ar 4.40 [3.39] 144 [646] 4.5 Sr2+–Ar 3.00 [2.90] 3591 [4580] 1.3

Sr+–Kr 3.92 [3.43] 304 [1050] 3.5 Sr2+–Kr 3.13 [3.03] 4760 [6000] 1.3

Sr+–Xe 3.91 [3.59] 611 [1560] 2.5 Sr2+–Xe 3.30 [3.20] 6426 [7970] 1.2

Sr+–Rn 3.91 [3.62] 843 [1940] 2.3 Sr2+–Rn 3.37 [3.27] 7307 [8990] 1.2
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Table 4.11: Spectroscopic constants for Ba+–RG and Ba2+–RG calculated at the RHF level and RCCSD(T) level (in square brackets). Symbols and units are

as stated in header for Table 4.1. De ratio is the ratio RCCSD(T):RHF.

Re De De ratio Re De De ratio

Ba+–He 5.83 [4.95] 7 [22] 3.1 Ba2+–He 2.98 [2.84] 4.35 [638] 1.5
Ba+–Ne 5.54 [4.29] 15 [73] 4.9 Ba2+–Ne 3.05 [2.91] 739 [1162] 1.6

Ba+–Ar 4.84 [3.38] 99 [693] 7.0 Ba2+–Ar 3.26 [3.13] 2586 [3520] 1.4

Ba+–Kr 3.98 [3.48] 241 [1093] 4.5 Ba2+–Kr 3.38 [3.24] 3503 [4683] 1.3

Ba+–Xe 4.04 [3.65] 515 [1569] 3.1 Ba2+–Xe 3.54 [3.41] 4823 [6309] 1.3

Ba+–Rn 4.06 [3.71] 720 [1916] 2.7 Ba2+–Rn 3.61 [3.48] 5537 [7219] 1.3

Table 4.12: Spectroscopic constants for Ra+–RG and Ra2+–RG calculated at the RHF level and RCCSD(T) level (in square brackets). Symbols and units are

as stated in header for Table 4.1. De ratio is the ratio RCCSD(T):RHF.

Re De De ratio Re De De ratio

Ra+–He 5.78 [4.89] 7 [23] 3.3 Ra2+–He 3.10 [2.95] 372 [562] 1.5
Ra+–Ne 5.50 [4.28] 16 [77] 4.8 Ra2+–Ne 3.16 [3.00] 637 [1040] 1.6

Ra+–Ar 4.94 [3.76] 99 [486] 4.9 Ra2+–Ar 3.36 [3.21] 2303 [3220] 1.4

Ra+–Kr 4.60 [3.78] 184 [793] 4.3 Ra2+–Kr 3.47 [3.33] 3150 [4320] 1.4

Ra+–Xe 4.46 [3.92] 359 [1170] 3.3 Ra2+–Xe 3.64 [3.50] 4374 [5840] 1.3

Ra+–Rn 4.39 [3.94] 508 [1470] 2.9 Ra2+–Rn 3.70 [3.56] 5043 [6690] 1.3
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As expected, Re showed an increase for all complexes following the

exclusion of electron correlation, while De decreased. The ratio of the

RCCSD(T) De to the RHF De (denoted De ratio) gives an indication of the

effect of the dispersive interactions. For Ca+, Sr+ and Ra+, this ratio

reaches a maximum for M+–Ne and M+–Ar, both of which have similar

ratios.

However, Ba+–Ar appears to be a special case where the ratio is much

larger than for any of the other complexes in the series. The most likely

cause of this is the very diffuse, polarisable 6s orbital of Ba+, which causes

a very large dispersive attraction between the ion and the rare gas atom.

The attraction is counterbalanced by repulsive terms arising from the

interaction with the rare gas electrons. The low polarisability of He and Ne

makes the overall interaction very weak, despite the relatively low

repulsion; the high polarisability of Kr, Xe and Rn results in a much

stronger interaction, although this is partly balanced by increased repulsion.

However, for Ba+–Ar the balance appears to be in favour of the increased

attraction, which outweighs the repulsion resulting in a much shorter Re

and a much higher dissociation energy.

For further evidence of the importance of dispersion effects Bellert and

Breckenridge’s11 model potential equation (Equation 4.1) was employed to

investigate the existence of factors affecting the potential beyond the

normally expected physical interactions. The equation can be differentiated

twice, with the first differential equation (set equal to zero) relating to the

potential energy minimum at equilibrium bond length and the second

describing the “curvature” of the potential (this is related to ωe). Using the

calculated values of Re, De and ωe, the three equations could be solved for

Z, b and A.
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Table 4.13 shows the values of Z, the effective charge on the metal cation,

for each of Ba+–RG (RG=He-Xe). They have been calculated including all

the terms and also by progressively omitting the higher order terms.

Table 4.13: Calculated Z values with removal of terms in the model potential given

in Equation 4.1 (terms removed include the term(s) stated and all those of higher

order).

Terms Removed Ba+–He Ba+–Ne Ba+–Ar Ba+–Kr Ba+–Xe

None 1.190 1.169 0.422 0.803 0.860

1st R8 (C8) 1.238 1.258 0.862 0.987 1.064

2nd R8 (ion/induced octopole) 1.190 1.170 0.423 0.808 0.867

3rd R8 (γ) 1.190 1.170 0.422 0.804 0.861

all R8 1.238 1.259 0.867 0.995 1.075

R7 1.240 1.261 0.875 1.009 1.094

1st R6 (C6) 1.321 1.359 1.109 1.199 1.246

2nd R6 (ion/induced quadrupole) 1.247 1.273 0.905 1.050 1.147

all R6 1.328 1.372 1.150 1.250 1.310

If the model is describing the system correctly, the value of Z should be

approximately equal to 1. It is clearly much lower than this for the heavier

rare gases, which implies that the model has failed for these systems. It

was noted in ref 11 that while this model was shown to work well for many

similar systems, it appeared to fail for Au+–Xe and Ba+–Ar. It was

suggested that in the case of Ba+–Ar this could be because the values of Re,

De and ωe (obtained from refs. 51 and 45) were inaccurate. It now seems

more likely that the model fails because interactions of a more chemical

nature are taking place that the model is not designed to describe. It can

be seen that the removal of the dispersion terms, involving the C6 and C8

coefficients, has the largest effect on the value of Z, causing it to rise most

dramatically. This indicates that these terms provide a large amount of the

interaction energy, and hence that dispersion effects are very significant;
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this supports the conclusions reached from the results of the RHF

calculations.

The sharp increase in De between M+–Ne and M+–Ar in each of the series

can be understood within this picture. The ratio of the increase in De

between these two complexes calculated at the RCCSD(T) level is 6.8, 7.1,

9.5 and 6.4 for M=Ca, Sr, Ba and Ra respectively; this again indicates an

enhanced effect in Ba+–Ar compared with other M+–Ar complexes. In

contrast, for the M2+ complexes the ratios are much smaller (2.9±0.2).

This makes sense in the light of the higher occupancy of the (n-1)d orbital

for Ba+–Ar when compared with the other M+–Ar complexes (vide supra).

It can be concluded that s-dσ hybridisation is the most likely cause of the

increased attraction in Ba+–Ar and that the effect is much smaller for the

other metal cations.

Table 4.14: Energies of the lowest 2D states of Ca+, Sr+, Ba+ and Ra+. These states

are formed from an excitation of the outermost ns electron into the (n-1)d orbital in

each case. Values are taken from ref. 22.

Ion Excited state Energy (cm-1)

Ca+ 2D3/2 13,650
2D5/2 13,710

Sr+ 2D3/2 14,560

2D5/2 14,840

Ba+ 2D3/2 4,870

2D5/2 5,670

Ra+ 2D3/2 12,080

2D5/2 13,740

This can be understood with reference to Table 4.14, which shows the

energy required to promote the outermost ns electron to the lowest 2D

states of the M+ ions. The 5d orbitals of Ba+ are very low-lying when

compared to those of the other M+. The high promotion energy of Ra+

relative to Ba+ is most likely due to the relatively greater stabilisation of
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the 7s orbital versus the 6d orbital by the relativistic and lanthanide effects.

In heavy atoms, electrons moving near the speed of light are affected by

relativity, which causes the orbitals to be contracted. The occupation of the

3f lanthanide orbital and the substantial contraction of the Ra 7s orbital

may in turn explain the slightly smaller Re values for Ra+–He and Ra+–Ne

when compared with the Ba+ species. However, the differences are very

small and the errors on the values are difficult to quantify.

Figure 4.3: MOLDEN52 contour diagrams of the Hartree-Fock HOMO for each of the

M+–RG complexes calculated at the RCCSD(T) Re value. The values of the contours

were selected to show the details clearly and to allow comparison between the plots.

The different colours indicate opposite signs of the wavefunction.
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MOLDEN 52 plots of contours of the RHF wavefunctions for the highest

occupied molecular orbital (HOMO) were calculated by A. M. Gardner at the

respective RCCSD(T) Re value for each of the M+–RG complexes; these are

shown in Figure 4.3. No obvious deviations from the spherical ns orbital of

the metal ion are apparent for any of the He complexes; slight

perturbations are seen for the Ne species. For the M+–Ar complexes,

however, the electron density is shifted off-axis, consistent with the s-dσ

hybridisation indicated by the population analysis. It is unsurprising that

similar effects are seen in M+–Kr, M+–Xe and M+–Rn, which also show

severe deviations from the spherical ns orbitals.

MOLDEN plots have also been calculated for Au–RG in ref. 53. These also

show evidence for hybridisation, particularly for the heavier rare gases. In

this case, the effect is sp hybridisation, resulting in a shift in electron

density away from the Au atom but along the internuclear axis. Evidence

was also seen in ref. 53 for charge transfer, which also increases with the

atomic number of the rare gas. These effects not only serve to explain the

unusual trend in Re seen in Chapter 3, but also the failure of the model

potential to describe the interaction of Au+–Xe; if these effects are seen in

the neutral species, they can be expected to be more substantial in the

cation.
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Table 4.15: Comparison of Re values (Å) for Alk+–RG (refs. 5,6,7,8), M+–RG and M2+–

RG.

Alk M M2+ Alk+ M+

He

K Ca 2.35 2.83 4.26

Rb Sr 2.57 3.07 4.55

Cs Ba 2.84 3.36 4.95

Fr Ra 2.95 3.47 4.89

Ne

K Ca 2.46 2.92 3.76

Rb Sr 2.65 3.14 4.01

Cs Ba 2.91 3.40 4.29

Fr Ra 3.00 3.49 4.28

Ar

K Ca 2.74 3.22 3.26

Rb Sr 2.90 3.43 3.39

Cs Ba 3.13 3.64 3.39

Fr Ra 3.21 3.71 3.79

Kr

K Ca 2.87 3.36 3.31

Rb Sr 3.03 3.56 3.43

Cs Ba 3.24 3.76 3.48

Fr Ra 3.33 3.83 3.78

Xe

K Ca 3.04 3.56 3.46

Rb Sr 3.20 3.75 3.59

Cs Ba 3.41 3.95 3.65

Fr Ra 3.50 4.01 3.92

Rn

K Ca 3.12 3.64 3.49

Rb Sr 3.27 3.84 3.62

Cs Ba 3.48 4.03 3.71

Fr Ra 3.56 4.09 3.94

Table 4.15 shows a comparison of the Re values of the Group 2 M+(ns1)

ions with the Group 1 Alk+[(n-1)p6] ions.5,6,7,8 For He, the values for the

Group 2 ions are all much larger than those of the Group 1 ions; this is

expected since there is little distortion of the M+ (ns) orbital and these are

known to be much larger than the M+ [(n-1)p] orbitals.54 However, for Ar

and the heavier rare gases the Re values are comparable to, or even less

than those for the equivalent Alk+–RG complexes. This indicates that there

must be a huge distortion of the large, polarisable M+ ns electron clouds in

these complexes, as is seen in Figure 4.3. It is remarkable that even a

weak interaction with an inert gas such as Ar can generate such large

shifts in the electron density in these ions. It is possible that if correlation
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were included, further distortion of the ns orbitals would occur for the

heavier complexes; however, since it can be clearly seen at the RHF level if

the RCCSD(T) Re value is used, it is apparent that the effect is mainly

caused by the close proximity of the RG atom, which is permitted because

of the dispersion effects included in the RCCSD(T) calculation.

Note that Sr+–Ar and Ba+–Ar have almost identical Re values; for every

other case for Ar-Rn in Table 4.15, Re increases as the size of the ion

increases. This is also likely to be a result of the increased s-dσ

hybridisation that occurs for the Ba+–Ar complex.

If the unusual behaviour seen in the Group 2 M+(ns1)–RG complexes is

partially due to s-dσ hybridisation, then one would not expect to see such

behaviour in the Group 12 M+[(n-1)d10ns1]–RG complexes. In these

species, the (n-1)d shells are filled and lower lying and the excited nd

levels are much higher in energy; thus a much greater energy would be

required to “promote” the electron and induce hybridisation. De
MORSE/De

values for M+–RG (M=Zn, Cd and Hg) have been calculated from data

previously published by the group55,56 and found to be in the range of

0.86-1.20, indicating that these species show much more Morse-like

behaviour.

With the evidence pointing to s-dσ hybridisation, it is unsurprising that the

model potential described in ref. 11 fails to describe this system accurately,

as it is designed to describe only physical interactions. The hybridisation

will also affect the polarisability of the rare gas atoms, so the values used

in the equation, which are for an unperturbed ns orbital, will not be correct

in this instance.



~ 84 ~

4.6 Conclusions

Accurate ab initio interaction potentials have been calculated for Mn+–RG

(M=Ca, Sr, Ba and Ra; n=1 and 2; RG=He-Rn) complexes. Spectroscopic

constants derived from these curves have been compared to experimental

results (where they exist) and good agreement has been demonstrated. As

with the Au–RG series examined in Chapter 3, it appears that dispersive

effects cause some unexpected results. For the Au–RG series it was

suggested that the shift in electron density along the internuclear axis and

away from the RG atom could be causing reduced repulsion and increased

attraction due to the deshielding of the cationic core; this allowed the more

polarisable rare gas atoms to move closer and led to an unexpected

decrease in Re as the van der Waals radius increased. In the complexes

studied here, investigation of the occupancy of the (n-1)d orbitals at the

RHF level and calculation of MOLDEN molecular wavefunction plots has

shown that s-dσ hybridisation is present in Ba+–Ar and, to a lesser extent,

in the other M+–Ar complexes studied. Hybridisation is not noticeable in

M+–He and M+–Ne; the polarisability of these rare gases is small and the

increased attraction is not large enough to overcome the energy required

for hybridisation. It has also been noted that the promotion energy from

the ns to the (n-1)d orbitals in Ba+ is much lower than for Ca+, Sr+ and

Ra+; this accounts for the smaller extent of hybridisation in the latter

complexes, as again the increased attraction cannot overcome the cost. It

was noted that similar MOLDEN plots in ref 53 showed that sp hybridisation

is present in the heavier Au–RG complexes, creating similar effects.

The results have also been discussed with reference to a model potential

put forward by Bellert and Breckenridge;11 since it cannot be used to
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describe these systems correctly, this indicates that the interaction cannot

be described purely by the physical processes, which is consistent with the

idea of s-dσ hybridisation.
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5. Theoretical Study of M+–RG and M2+–RG

Complexes (M=Be, Mg; RG=He-Rn)

5.1 Introduction

To complete the work on Group 2 metal ion–rare gas complexes described

in the last chapter, M+–Rg and M2+–RG (M=Be, Mg; RG=He-Rn) have been

investigated, in collaboration with Adrian Gardner from the SOCAR group.

The ab initio methods are the same as those described for Ca-Ra; however

there are some striking differences in the results that indicate that these

complexes do not show the same behaviour as those involving the heavier

metals. These results are again compared with previous theoretical and

experimental results where available. The trends seen in the series are

discussed and possible explanations for the unusual behaviour are put

forward.

As for the potential energy curves for M=Ca-Ra described in Chapter 4, the

calculated curves described in this chapter have been used to generate ion

mobility data by L. A. Viehland and co-workers at Chatham University, USA.

This data has been made available to other users via the Chatham

database.1

5.2 Computational Details

For He-Ar, the standard aug-cc-pVQZ and aug-cc-pV5Z basis sets2,3,4 were

employed; for Kr-Rn the basis sets employed were the standard

ECP+valance basis sets, ECP10MDF_pV5Z-PP, ECP28MDF_pV5Z-PP and

ECP60MDF_pV5Z-PP respectively.5 Tight functions were added to describe

the correlation of the inner-valence d orbitals (see ref. 6 for functions and

exponents). Standard aug-cc-pVQZ and aug-cc-pV5Z basis sets were
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employed for beryllium and magnesium, each augmented with tight

functions of each angular momentum type to allow description of core-

valence correlation.3, 7 Each of the basis sets was augmented by an

additional set of diffuse basis functions of each angular momentum type,

obtained in an even-tempered way from the two lowest exponents in each

case, so that each basis set was overall doubly augmented with diffuse

functions.

For Kr-Rn, the outermost occupied d orbitals were correlated, along with

the valence s and p orbitals. For He and Be, all electrons were correlated;

for Mg and Ne only the 1s orbital was frozen, while for Ar the 1s, 2s and 2p

orbitals were frozen.

The full counterpoise correction was applied and the internuclear

separation, R, was varied over a range of approximately 1-10 Å. The step

size was generally around 0.1 Å at short R, 0.025 Å around the minimum

and gradually became larger at longer R.

As for the Au–RG ground states (see Chapter 3), MOLPRO8 was employed

for the calculations and the potential energy curves were used as input to

the LEVEL9 program. For RG=He-Ar, the interaction energy for each R was

extrapolated to the basis set limit (see Chapter 2). The spectroscopic

constants were derived by using a least-squares fitting procedure to the

standard Morse expressions for the lowest few energy levels. The most

abundant naturally occurring isotope of each element was used (9Be, 24Mg,

4He, 20Ne, 40Ar, 84Kr, 132Xe and 222Rn).
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5.3 Results

Tables 5.1 and 5.2 show the spectroscopic constants derived for M+–RG.

The force constants, k, have been calculated from the simple harmonic

relationship, which is described in Chapters 2 and 4.

De
MORSE has been calculated from the standard Morse expression using the

calculated values of ωe and ωexe (see Chapter 2). Previous theoretical and

experimental results found in the literature are also included in the tables

for comparison.

While previous experimental work is limited, there is good overall

agreement with the current results, which will be discussed in detail below.

As for the heavier metals in Group 2, the results from theoretical studies

vary widely.

For Be+–He, the agreement is good; the current study yields both the

shortest Re value and the highest dissociation energy.

For Be+–Ne, the results presented here show reasonable agreement with

the MP2 values of Bu et al.; however Frenking et al. report a shorter bond

length for both MP2 and MP4 level of theory.13 Their reported value of ωe is

also four times that reported here, the latter being in much better

agreement with the QCISD(T) value.11 The larger value of ωe results in the

substantial difference between De and D0 stated in ref. 13; however the

reported BSSE of 1,200 cm-1 suggests that these results may be unreliable.

The present values are obtained at a higher level of theory and are in good

agreement with the QCISD(T) values of ref. 11.



Table 5.1: Spectroscopic constants for Be+–RG. Re is the equilibrium bond length (Å), De is the depth of the potential, D0 is the energy between the zero-

point and the asymptote, ωe is the harmonic vibrational frequency, ωexe is the anharmonicity constant, Be is the equilibrium rotational constant at the

minimum, α is the spin-rotation constant (all in cm-1), k is the harmonic force constant (Nm-1). Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Be+–He 2.924 133.1 97.8 76.3 11.7 0.723 0.142 125 0.94 0.950
Ref. 10 3.132a 70b 68a

Ref. 11c 2.96 124 73

Ref. 12a 3.104 60 65

Be+–Ne 2.454 407.2 375.3 65.2 1.47 0.456 6.07x10-3 723 1.78 1.555

(1s correlated) 2.462 403.7 371.7 65.6 1.63 0.453 5.92x10-3

Ref. 13a 1.856 259

Ref. 13b 2.054 314 175

Ref. 11c 2.59 359 68

Be+–Ar 2.084 4427.7 4247.7 364.1 8.94 0.528 1.47x10-2 3710 0.84 57.4

Ref. 13a 2.045 382

Ref. 13b 2.104 3812 3637

Ref. 14d 4500±700

Ref. 15e 2.0855±0.0006 4112±200 3933±200 362.7±0.1 8.92±0.05 0.5271±0.0003 (1.45±0.03)x10-2

Be+–Kr 2.221 6053.2 5871.8 365.5 5.82 0.420 8.16x10-3 5740 0.95 64.0

Ref. 14d 6500±1000

Ref. 16e 2.2201 367.14 6.21 0.42030 8.21x10-3

Be+–Xe 2.407 8239.8 8054.3 372.8 4.04 0.345 4.86x10-3 8600 1.04 69.0

Ref. 14d 10000±2000

Ref. 17f ~9000 ~367 ~3.7

Be+–Rn 2.486 9490.5 9305.7 371.0 3.32 0.315 3.81x10-3 10400 1.10 70.1
aMP2 calculation. bMP4/MP2 calculation. cQCISD(T) calculation. dRecommended value from review of data up to 2001. eHigh resolution emission experiments.
fEmission experiments.
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Table 5.2: Spectroscopic constants for Mg+–RG. Symbols and units used are as for Table 5.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Mg+–He 3.482 73.2 51.7 45.8 7.68 0.412 9.00x10-2 68.3 0.95 0.424
Ref. 18a 3.565 70 21

Ref. 19b 3.56 65 44

Ref. 20c 3.611 30 44

Ref. 21c 3.685 76.6 42

Mg+–Ne 3.145 203.1 182.3 43.1 2.44 0.157 9.87x10-3 191 0.94 1.19

Ref. 14d 3.15 216±100 46

Ref. 18a 3.298 170 33

Ref. 22b 3.25 179 39

Ref. 23e 3.17±0.05f 117±50 96±50 41g

Mg+–Ar 2.822 1298.6 1246.7 104.8 2.53 0.141 4.07x10-3 1090 0.84 9.71

Refs. 24,25h 1237±40

Ref. 14d 2.81±0.03 1290±60 100±3

Ref. 18a 2.894 1140 92

Ref. 26i 2.854 1041 90g

Refs. 27,28e 2.825±0.007f 1281 96g

Refs. 28,29j 1210±165

Mg+–Kr 2.884 1978.1 1919.4 118.4 2.08 0.109 2.13x10-3 1690 0.85 15.4

Refs. 30,31h 1891±80

Ref. 14d ~2.80 1949±100 116

Refs.27,28e 1923 112g

Ref. 26i 2.886 1863 115g

Refs.28,29 j 1812±591

Mg+–Xe 3.018 2972.7 2905.8 134.8 1.66 0.0912 1.23x10-3 2740 0.92 21.7

Refs. 30,31h 2848±150

Ref. 14d ~2.90 2910±100 124

Refs. 27,28 e 4182 120g

Refs. 28,29 j 3299±1654

Mg+–Rn 3.064 3639.0 3568.8 141.1 1.41 0.0830 9.19x10-4 3530 0.97 25.4
aMCPF calculation. bQCISD(T) calculation. cMP2 calculation. dRecommended value from review of data up to 2001. ePhotodissociation experiments. fR0 value.
gΔG1/2 value hPhotoionisation experiments. iCISD calculation. jDissociation energies re-evaluated in consideration of near-dissociation behaviour.
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Table 5.3 Spectroscopic constants for Be2+–RG. Symbols and units used are as for Table 5.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Be2+–He 1.428 7574.5 7131.3 902.0 27.4 2.981 1.21x10-1 7423 0.98 133
Ref. 10 1.453a 6610b 829a

Ref. 11c 1.43 7389 877

Be2+–Ne 1.577 10983 10648 675.0 10.5 1.091 2.35x10-2 10850 0.99 167

Ref. 11c 1.58 10601 664

Be2+–Ar 1.867 24874 24530 691.9 5.15 0.658 7.38x10-3 23240 0.93 207

Be2+–Kr 2.009 29875 29559 634.9 3.91 0.513 4.80x10-3 25750 0.86 193

Be2+–Xe 2.197 36974 36677 594.3 3.37 0.414 3.42x10-3 26200 0.71 175

Be2+–Rn 2.288 40496 40216 563.5 3.11 0.373 2.92x10-3 25530 0.63 162

T

aMP2 calculation. bMP4/MP2 calculation. cQCISD(T) calculation.
able 5.4: Spectroscopic constants for Mg2+–RG. Symbols and units used are as for Table 5.1. Results from this work are shown in bold.

Re De D0 ωe ωexe Be α De
MORSE De

MORSE/De k

Mg2+–He 1.885 2752.7 2526.8 462.3 21.1 1.38 7.47x10-3 2532 0.92 43.2
Ref. 19a 1.91 2550 441

Ref. 20b 1.910 2144 434

Ref. 32 2.054b 2170c

Ref. 32 1.909d

Mg2+–Ne 2.035 4224.1 4072.2 306.6 6.05 0.373 8.59x10-3 3884 0.92 60.4

Ref. 22a 2.08 3806 285

Ref. 32 2.058b 3600c

Ref. 32 2.066d

Mg2+–Ar 2.318 10894 10730.5 328.2 2.55 0.209 2.09x10-3 10560 0.97 95.2

Ref. 32 2.396b 9881c

Ref. 32 2.345d

Mg2+–Kr 2.453 13668 13520 296.8 1.63 0.150 1.11x10-3 13510 0.99 96.9

Mg2+–Xe 2.632 17849 17707 284.3 1.20 0.120 6.99x10-4 16840 0.94 96.7

Mg2+–Rn 2.711 20113 19978 271.0 1.02 0.106 5.56x10-4 18000 0.89 93.7
aQCISD(T) calculation. bMP2 calculations. cObtained using a non-standard dG2thaw(QCI)//B3LYP/dB4G method. dB3LYP calculation.
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High-resolution spectroscopic results from emission spectra are available

for Be+–Ar;15 these provide very precise values for the bond length and the

vibrational and rotational constants. These show excellent agreement with

the calculated values reported here for Re, ωe, ωexe, Be and α. The

dissociation energy reported in ref. 15 was estimated from approximate

potentials, with the values in Table 5.1 considered the “best” average

values. However, Goble et al.33 looked at the same data considering other

model potential forms and suggested that 4,157 cm-1 was a reasonable

lower bound for De; LeRoy and Lam 34 considered the form of near-

dissociation expansions and concluded that De = 4,500±50 cm-1. In view of

the different interpretations of the data, Bellert and Breckenridge14

recommended a value of 4,500±700 cm-1. The excellent agreement with

the other quantities determined by the high-resolution experiments

suggests that the present calculated value is reliable. This value is in very

good agreement with the value of LeRoy and Lam34 and comfortably within

the error limits given by Bellert and Breckenridge.14 It is also consistent

with the lower bound suggested by Goble et al.33

Coxon et al.17 have provided results from high-resolution emission

experiments for Be+–Kr; again, this yields very precise results that

compare well with the present calculated values for the bond length and

the vibrational and rotational constants. No dissociation energy was

reported in this study; however a value of D0 = ~6,000 cm-1 from an

earlier low-resolution study35 and an estimate of De = 6,500±1,000 cm-1

from Bellert and Breckenridge14 are in very good agreement with the

present calculation.

A low-resolution emission study of Be+–Xe yielded vibrational constants in

very good agreement with those obtained here.17 The estimated value of

the dissociation energy is also in fair agreement with the present result.
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The estimate given in the review14 was 11,000±2,000 cm-1; like the value

for Be+–Kr, this estimate was made assuming the ratios to Be+–Ar would

be similar to that in the Mg+–RG series. A recalculation suggests that the

estimate given for Be+–Xe was a typographical error, the true value being

10,000 cm-1.

No previous data was found for Be+–Rn.

There are no experimental values for Mg+–He, but several theoretical

studies have been conducted. The present values of Re and De are in good

agreement with those from the modified coupled pair functional (MCPF)

calculations;18 however the ωe from that study is less than half of the

current result. In contrast, the QCISD(T) calculations19 and the MP2 results

from both refs. 20 and 21 indicate an ωe value much closer to the present

one. This suggests that the MCPF calculation is not sufficient to describe

this system. The MP2 study of Bu and Zhong20 yields a very low result for

the dissociation energy; again, the other studies yield results much closer

to the current one.

Duncan’s group have performed ultraviolet photodissociation experiments

on Mg+–RG for RG=Ne, Ar, Kr and Xe.23,27,28 The dissociation energy

obtained for Mg+–Ne is much smaller than the present value; this was

derived from a Birge-Sponer (BS) extrapolation of the upper state (see

Chapter 2). However, the hot band structure indicated a ΔG1/2 value of 41

cm-1, which is in good agreement with the result calculated here (the

calculated value of ΔG1/2 is 38.2 cm-1). Their R0 value is also very similar to

the present Re value. The QCISD(T) calculations of Leung et al.22 yield

results in reasonable agreement with the current values, although they

indicate slightly weaker bonding. The MCPF calculations indicate even

weaker bonding.18
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For Mg+–Ar, the experimentally derived values by Duncan28 are in

reasonable agreement with the present value (the present value of ΔG1/2

has been calculated as 99.8 cm-1). In a similar way to that described for

Be+–Ar (vide supra) the data has also been reanalysed by LeRoy29 in

consideration of near-dissociation behaviour. Both the original

experimental result and the current calculated value of D0 are well within

the error range given by LeRoy. In separate experiments by Breckenridge

and Massick,24,25 ionisation potentials were found using photoionisation

spectroscopy and used to estimate the ground state dissociation energy

from the equation given below.

ܫܲ ܯ) (ݎܣ݃ + ܯ)ܦ ݃ାݎܣ) = ܯ)ܦ (ݎܣ݃ + ܫܲ ܯ) ݃) (5.1)

Since the ionisation thresholds can be determined within a few

wavenumbers, the results from this method are expected to be more

reliable; the uncertainty essentially arises from the determination of

D0(MgAr). The authors of ref. 24 believe that careful consideration of

several experimental estimates of this figure lead to a reasonably accurate

result (they quote an error of ±40 cm-1); the value of D0(Mg+Ar) obtained

with this method is very close to that presented here and in reasonable

agreement with the photodissociation value (given the stated error range).

The MCPF18 and CISD26 calculations are also in reasonable agreement,

although the dissociation energies are a little low.

Duncan’s experimental values for Mg+–Kr27,28 can be seen to be in very

good agreement with those presented here, as can the value of D0 from

the photoionisation experiments.30,31 LeRoy’s analysis of the spectroscopic

data29 again yields a value consistent with both the experimental results

and the value calculated here, although the error range is very large. The

CISD calculation26 again yields a slightly lower dissociation energy, but the

Re and ωe values are in good agreement with those presented here.
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For Mg+–Xe, the value of D0 derived by Duncan and co-workers27,28 is much

higher than that presented here. The reanalysis by LeRoy, however, yields

a much lower value and both the present value and the original

experimental one are within the substantial error range. The

photoionisation experiments of Breckenridge30,31 yield a value in better

agreement with the current study and with significantly smaller error limits.

No previous studies of Mg+–Rn have been found with which to compare.

5.4 Trends

In the Chapter 4, it was noted that there were unusual trends in the

spectroscopic constants for the M+–RG series (M=Ca-Ra), which were

attributed to s-dσ hybridisation. This mixing causes the electron density to

move off the internuclear axis, which reduces the repulsion and allows the

RG atom closer to the centre of the metal ion at equilibrium separations.

This creates a synergistic increase in the attractive terms, particularly in

the dispersion terms, which have great significance for these heavier

species because of the large metal cation polarisability. The effect was

enhanced in the Ba+ complex, which was attributed to the low-lying 5d

orbitals.

In the cases of Be+ and Mg+, the lowest lying d orbitals lie above the

lowest lying p orbitals; thus the effects seen here can be expected to result

from sp mixing. It should be noted that the 2P states lie ~30,000 cm-1

above the 2S state; 36 this is a significant energy separation and it is

therefore somewhat surprising that mixing is seen. This has again been

shown using MOLDEN37 wavefunction plots by A. M. Gardner, which are

shown in Figure 5.1.
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It can be seen from Tables 5.1 and 5.2 that for both M+ there is a fall in

the Re values from M+–He to M+–Ar and thereafter the values gradually rise

with the atomic number of the RG atom. This is similar to the trends seen

for Ca-Ra and may be explained in a similar way: the movement of the

electron density from between the two atoms increases the attractive

terms and allows a closer approach, while the increasing repulsive terms

for the heavier rare gases eventually outweighs this effect resulting in a

gradual increase in Re. Since the Re value is the distance between the

centres of mass, it is possible that for the larger rare gases this value

increases while the outermost orbital of the RG atom is actually closer to

the metal ion than in the smaller species. Again, for the dicationic species

(Tables 5.3 and 5.4) Re increases monotonically, consistent with normal

Alk+–RG trends14,39 (see Chapter 4).

The trend in the dissociation energies is prima facie as one would expect,

with an increase as the size and polarisability of the rare gas atom

increases; however, as with the heavier Group 2 metals, the rise between

Ne and Ar is greater than might be predicted. Using the rare gas

polarisabilities reported in ref. 40, the successive polarisability ratios can

be calculated as 1.9, 4.1, 1.5, 1.6 and 1.3. It was noted in Chapter 4 that

if the charge/induced-dipole interaction were dominant then the successive

De ratios might be expected to be similar; it was also noted that for

M+=Ca+-Ra+ the rise in De between Ne and Ar was much greater than the

predicted fourfold increase. This is also true for Be+ and Mg+; the ratios are

10.9 and 6.4 respectively. The ratios for M+–He to M+–Ne (M=Be-Ra) are

also consistently higher than the polarisability ratio of 1.9, ranging from

2.8-3.3. For the heavier rare gases, the De ratios are much closer to the

polarisability ratios.
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However, the leading term is also dependent on Re (see Equation 4.1);

Table 5.5 shows the ratios of successive DeRe
4 values for each of the Group

2 M+–RG series. This indicates ratios that are generally comparable to the

polarisability ratios. The major exception is for Be; the ratio between Be+–

He and Be+–Ne is slightly low, while for Be+–Ne to Be+–Ar, the ratio is

unexpectedly high. This indicates that in general it is the short Re values

that account for the large increase in De; however the behaviour of Be+–Ne

suggests that this interaction is particularly unusual.

Table 5.5: Ratio of polarisabilities of successive rare gases compared with ratios of

successive values of DeRe
4 for each of the M+–RG series.

Polarisability Be Mg Ca Sr Ba Ra

Ne/He 1.9 1.52 1.85 1.85 1.90 1.88 2.00

Ar/Ne 4.1 5.66 4.14 3.82 3.61 3.70 4.07

Kr/Ar 1.5 1.76 1.66 1.71 1.72 1.76 1.53

Xe/Kr 1.6 1.88 1.80 1.78 1.77 1.74 1.65

Rn/Xe 1.3 1.31 1.30 1.28 1.28 1.30 1.24

The trends in ωe are similar to those seen for the heavier metal ions, with

a large jump seen between Ne and Ar and the heavier species having very

similar values; this is expected because of the competing effects of

increasing interaction and reduced mass, which eventually balance out.

The value of k gives a better indication of the effects of increasing

interaction since it is mass-independent. A monotonically increasing trend

with a sharp increase between Ne and Ar can be seen for the monocations,

which is similar to the results for Ca-Ra reported in Chapter 4. There is a

decrease in k for the heavier dication complexes.

The ωexe values show a general decrease from Be+–He to Be+–Rn, except

for the value for Be+–Ne, which is surprisingly low. The value for Mg+–Ne is

only very slightly lower than that for Mg+–Ar. The values of ωexe for the
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Mg+ series are also much lower than the corresponding values for the Be+

complexes; the Be+–Ne value is the only exception to this, being slightly

lower than that for Mg+–Ne. This again indicates some very unusual

behaviour in the Be+–Ne complex.

To investigate this, the calculations were repeated with the Ne 1s orbital

explicitly correlated, employing the d-aug-cc-pwCVQZ and d-aug-cc-

pwCV5Z basis sets for neon 41 together with the basis sets previously

described for beryllium. The energies were then extrapolated pointwise to

the basis set limit. The spectroscopic constants were derived from the

resulting PEC and are also shown in Table 5.1; it can be clearly seen that

the effect of freezing the Ne 1s orbital is minimal.

5.5 Discussion

Figures 5.2 and 5.3 show BS plots for Be+–RG and Mg+–RG respectively,

based on the calculated potentials and derived vibrational energy levels.

Figure 5.2: BS plots of the vibrational term value separations vs the vibrational

number of the upper level of each successive pair for Be+–RG. The inset is an

expanded version of the bottom left-hand portion of the plot.
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Figure 5.3: BS plots of the vibrational term value separations vs the vibrational

number of the upper level of each successive pair for Mg+–RG. The inset is an

expanded version of the bottom left-hand portion of the plot.

The Mg+–RG curves are as one might expect: they show a linear portion at

low v, with a gradual lowering of the slope at high v (He is the exception,

as it has very few vibrational levels and the BS plot is therefore not

expected to be meaningful).

It can be seen from Table 5.1 that each of the De
MORSE/De ratios are less

than 1. The value of De
MORSE is determined using the formula

ܦ
ெ ைோௌா =

߱
ଶ

4߱ݔ
(5.2)

where ωe and ωexe are calculated using the linear portion of the BS plot.

This leads to a value lower than the true De because it does not account for

the lowering of the gradient at high v; it is well known that the Morse

potential fails near the dissociation limit.42

The BS plots for Be+–RG show more unusual behaviour. The Be+–Ar and

Be+–Kr plots are similar to those seen for the Mg+–RG series and it can be
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seen from Table 5.1 that the De
MORSE/De ratio for these complexes is also

less than 1, as expected. However, for Be+–Ne, Be+–Xe and Be+–Rn the

ratio is greater than 1, with the value for Be+–Ne being exceptionally high

The plots for these three species have an atypical form, with the curve

becoming steeper after the initial linear portion, before once again

becoming shallower at high v. This results in an elongated “S” shape,

which is most pronounced in the Be+–Ne curve (the He plot again has too

few levels for meaningful interpretation). Equation 5.2 therefore

overestimates the values of De if the ωe and ωexe values determined from

the lowest few vibrational levels are used, as this assumes a linear BS plot.

Most of the M2+–RG complexes show De
MORSE/De ratios that are slightly

below 1, which are expected due to the normal flattening of the BS plot

near the dissociation limit. However, there are some notable exceptions,

particularly the heavier Be2+ species. These ratios are far lower than would

normally be expected. When the potential curves for Be2+–Kr, Be2+–Xe

Be2+–Rn and Mg2+–Rn were calculated, a second “minimum” was seen at

large separations (>4 Å). The curve for Mg2+–Rn is shown in Figure 5.4 as

an example. On inspection of the Mulliken populations, it was found that

around this second minimum the charge on both the metal and the rare

gas was close to 1. It was therefore concluded that the ground state of

these M2+–RG species undergoes an avoided crossing with a charge

transfer state at long R. This is most likely also the cause of the unusual k

values; multi-reference calculations would be necessary for reliable results.
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Figure 5.4: Calculated potential curve for Mg2+–Rn. Note the second dip in the

potential at longer R.

Returning to the monocationic species, an interesting way to compare the

relative differences between species with very different potential well

depths is to use reduced potential plots.33,43 These have been examined by

many workers44,45 with a view to determining whether a universal diatomic

function exists.46,47 Reduced potentials are obtained by plotting E/De vs

R/Re for each species; this is shown for Be+–RG in Figure 5.5 and for Mg+–

RG in Figure 5.6.

For the Mg+–RG series, the reduced plots are very close together, which

indicates that their interactions are similar in nature. For Be+–RG, this

holds true for Ar-Rn; however the Be+–Ne curve is clearly very different.

The Be+–He curve is slightly steeper than the others, but is generally much

closer.
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Calculating the κ parameter, which has been described as the “reduced

curvature of the potential at Re”
43 is another way to investigate the

difference between interactions. The κ parameter is essentially the

Sutherland parameter put forward in 193848 and has been denoted Δ in 

recent work by Xie and Hsu.47

=ߢ
ܴ
ଶ

ܦ
ቆ
݀ଶܸ

ܴ݀ଶ
ቇ
ோ

(5.3)

This can also be expressed as

=ߢ
߱
ଶ

ܦܤ2
(5.4)

ωe, Be and De are defined in the caption to Table 1. As discussed in Ref. 33,

smaller values of κ indicate a less steep potential near the minimum.

Winn43 found that for strongly bound chemical species κ values range from

0-20, whereas the values for Be+–Ar and Be+–Kr were found to be 27.5

and 29.1 respectively. It was suggested in ref. 48 that the values should

be constant for particular groups of complexes; however this assumption

was based on a rather simple form of interaction potential. One might,

perhaps, expect to find similar values of κ and clear trends in these values

for similar species.

The κ values for the complexes studied herein have been plotted in Figure

5.7, in addition to the alkali metal cation (Alk+) series Li+–RG and Na+–RG

(values have been calculated from spectroscopic quantities presented in

refs. 49, 50 and 51).
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Figure 5.7: Plot of κ for the complexes studied herein and selected Alk+–RG series.

For the M2+–RG series and the isoelectronic Alk+–RG series, the trends are

very similar and the values of κ within a series are quite close. A small

increase is seen between He and Ne, followed by a gradual decrease from

Ne-Rn. For Mg+–RG, the values are again quite similar within the series,

but this time they increase gradually with the size of the rare gas atom.

The Be+–RG series, however, shows a trend more similar to the M2+–RG

and Alk+–RG series, with the exception of the Be+–Ne complex, which has

a strikingly low value.

The increasing κ values seen in the Mg+–RG series indicate the repulsive

wall becoming steeper as the atomic number of the rare gas increases. The

opposite is true for the Be+–RG series (RG=Ar-Rn). On examination of the

HOMO plots for these species in Figure 5.1, it can be seen that there is

significantly reduced electron density along the internuclear axis, allowing

a stronger interaction with the dicationic core. This may explain why this

series is more similar to those of the dicationic complexes. The shift in

electron density is very minimal for the He and Ne complexes; this is
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consistent with the large rise in κ between the Ne and Ar complexes and is

attributable to the low polarisabilities of helium and neon. The lowest

unoccupied electronic orbitals on Be+ and Mg+ are p orbitals; as the rare

gas atom approaches, the unpaired electron density moves into an s-pσ

mixed orbital (see Section 5.4). The high charge density of Be+ results in a

stronger interaction and a larger perturbation of the 2s orbital; this

strengthens the interaction and causes the observed increase in κ (vide

supra). The κ values are seen to decrease with the increasing atomic

number of the rare gas atom for the dicationic series; this is most likely

attributable to the increasingly diffuse nature of the rare gas outer-shell

orbitals. For Mg+–RG, there is still significant electron density between the

dicationic core and the RG atom. This leads to an increase in the repulsive

terms as the atomic number of the rare gas increases; they appear to rise

faster relative to the attractive terms in this case, resulting in a steeper

repulsive potential.

The κ value of Be+–He is comparable to others in the series; however, as

has been noted, Be+–Ne has a remarkably low value. A possible

explanation for this relates to the observed s-pσ hybridisation. The 2s

electron density on Be+ is repelled by the pσ orbital of the RG atom,

resulting in a mixing in of 2pσ character. The repulsive wall of the potential

therefore rises more gently and the value of κ is decreased. It appears that

this effect is significantly more efficient in the case of Be+–Ne than for the

other M+–RG species considered herein. There are two main factors

contributing to this: firstly, the 2pσ orbital of neon has a higher electron

density than the corresponding orbitals of the heavier RG atoms, allowing

for a stronger relative directional interaction with the Be+ electron density;

secondly, in the case of Be+–Ne, subtle changes in the repulsive terms as a

function of R are more obvious because of the small total interaction
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energy. For the heavier species, the much larger polarisabilities mean the

attractive terms are much larger, as is the resultant sp mixing on Be+,

which reduces the repulsion (vide supra); hence such subtle changes in the

repulsive potential are not so obvious. Considering the higher electron

density of the neon orbital, combined with the small size of Ne and in the

light of the HOMO plots in Figure 5.1, it seems possible that the 2pσ orbital

of Ne may be able to partially penetrate into the nodal region of the 2s

orbital of Be+. Indeed, the unusual form of the Be+–Ne potential likely

arises from the fact that the Ne(2pσ) orbitals begin to sample the nodal

region of the Be+ 2s orbital at small R, resulting in less relative repulsion

near Re.

This may lead to the expectation that Be+–He would have a lower κ value

still. However, the 1s electron density in helium is spherical, whereas the

2pσ orbital is much more directional, so the directed charge density is

much higher.

In general, the κ values of the Mg+ complexes are higher than those for

Be+. This can be attributed to the fact that Mg+ has p electrons, so there is

additional pπ-pπ repulsion for RG=Ne-Rn compared with Be+ and also with

the dications. This effect is likely to be contributing to the fact that the

HOMOs in Mg+–RG at Re are less distorted than those for Be+–RG, which in

turn accounts for the lack of anomalous behaviour seen in the Mg+ series

as opposed to the Be+ series. The pπ-pπ repulsion most likely prevents the

Ne atom from penetrating far enough into the 3s orbital to experience the

first nodal region.
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Figure 5.8: Plot of κ for M+–RG and M2+–RG (M=Ca-Ra).

The trends in κ can also be compared with those from the rest of G

which are shown in Figure 5.8. It is evident that most of the M+

follow a similar trend to Mg, with the exception of Ba, which shows

more similar to Be and the dications. As with Be, the Ba+ com

showed considerable reduction in electron density along the inter

axis (see Chapter 4); this presumably causes a relatively much s

interaction with the dicationic core, similar to that seen here in Be.

5.6 Conclusions

Accurate ab inito PECs have been calculated for Ben+–RG and M

complexes for n=1 and 2. As for similar complexes involving

described in Chapter 4, excellent agreement is seen for the Be com

with very precise spectroscopic constants obtained from high-res

emission spectra where this is available (Be+–Ar and Be+–Kr)

agreement is also seen with lower resolution emission spectra for

and previous theoretical results for RG=He, Ne and Rn.
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The trends in Re and De are quite similar to those seen in the M+–RG

(M=Ca-Ra) series. These results, while being unusual for M+–RG

complexes, were rationalised by providing evidence for s-dσ hybridisation;

the movement of electron density off the internuclear axis allowed for a

stronger interaction. A similar effect seems to occur in the Be+ and Mg+

species, except that in this case the lowest unoccupied orbital is a pσ 

orbital, so the shift in electron density is away from the RG atom but along

the internuclear axis. Some other results for Be+–RG were very interesting,

with Be+–Ne showing an unusually low ωexe value. Further investigation

showed that the reduced potential plot for this complex was very different

from those of the rest of the series and also that the κ parameter was far

lower than would be expected, indicating a more gentle rise of the

repulsive potential. This was attributed to high electron density of the

Ne(2pσ) orbital, which enables strong interaction with the Be+ 2s electron

density and enhanced relative sp mixing as electron density moves away

from the approaching neon atom. In general, the trends in the κ parameter

are similar to those in the dications; this is consistent with the deshielding

of the dicationic core, evidenced by the HOMO plots. The Birge-Sponer

plots for Be+–RG (RG=Ne, Xe and Rn) were also very unusual, having an

“S” shape, rather than the expected linear relationship at low v with the

slope becoming gentler as the dissociation limit is approached. For Be+–Ne,

this could be caused by the approaching Ne(2pσ) orbital penetrating to the

nodal region of the Be+ 2s orbital. For the heavier RG atoms, the large

polarisabilities lead to the subtle changes in the repulsive terms being

overcome by the attractive ones.

The results for Mg+–RG are much more straightforward; again, good

agreement is seen with reliable experimental results where available. The

dissociation energies from photoionisation experiments are in better
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agreement with the present values than those from photodissociation

experiments. The reduced potential and κ plots indicate that, unlike the

Be+ potential curves, those for Mg+–RG are very similar to each other. The

presence of pπ-pπ repulsion results in a much steeper repulsive wall.

The Mg+ and Mg2+ κ trends are similar to those for Ca, Sr and Ra. Ba+ has

a trend more similar to Be+ and the dications, although the Ne value is far

more similar to the He value and the other M+–Ne values, and the heavier

Ba+ complexes have much higher κ values. This is presumably also caused

by the deshielding of the dicationic core from the sd mixing, resulting in a

stronger interaction.

In the calculations for some of the heavier dicationic complexes, it was

seen that at longer R the ground state undergoes an avoided crossing with

a charge transfer state. This was observed both in an unexpected drop in

the potential curve and in the Mulliken population, which showed that the

charge was shared equally by the metal and the rare gas at long R. While

this should not affect the calculations for Re and De multi-reference

calculations are required to adequately describe the potential at longer R

and obtain reliable values for ωe and k.
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6. Study of the Vibrational Dynamics of para-

Fluorotoluene

6.1 Introduction

Intramolecular vibrational redistribution (IVR) is of great interest in

chemistry, particularly because of its influence on reaction rates. It is

assumed in standard Rice–Ramsperger–Kassel–Marcus (RRKM) theory that,

following an initial localised excitation, the energy is redistributed across

the whole molecule so quickly that a rupturing bond would display no

memory of the original localisation.1 Experimental studies have shown that

IVR can be observed and measured in some systems, leading to a search

for molecules with rates that are slow compared with collisions between

molecules; this would give the possibility of bond-selective chemistry,

where the bond broken would correspond to where the energy was initially

localised.2

IVR occurs where two or more molecular vibrational levels of similar

energies are coupled together. There has been considerable interest in

studying IVR in electronically excited states.2 If the energy of a vibrational

state in S1 is known, it can easily be prepared using a tuneable laser. If the

laser pulse used for excitation has a relatively wide bandwidth and a short

duration then a superposition of eigenstates is excited. The initially excited

superposition is known (in the harmonic approximation) as the zero-order

bright state (ZOBS) because it resembles an optically accessible zero-order

state; the inaccessible states to which the ZOBS is coupled are known as

zero-order “dark” states. Following the initial excitation, energy then flows

to the dark states as a result of IVR. In the simplest case, where only two

states are coupled (a Fermi resonance), oscillations in the vibrational state
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population can be observed where the energy is repeatedly transferred

between the bright and dark states with a measurable time period that

depends on the separation between the S1 eigenstates. The separation, in

cm-1, is given by:

߭̅=
1

100ܿܶ
(6.1)

where c is the speed of light (≈3 x 108 ms-1) and T is the period of

oscillation (in seconds). The oscillations are called quantum beats. If few

dark states (<~10) are coupled to the bright state, it may be possible to

observe a superposition of quantum beats with different periods that result

in a complex pattern.3 This is known as restricted, or coherent IVR. If,

however, the coupling involves many dark states, the energy may quickly

flow irreversibly from the bright state. Typically lifetimes are between 1 ps

and a few nanoseconds.2,13 This behaviour is described as statistical, or

dissipative IVR. Examples of restricted and statistical IVR are shown in

Figure 6.1.

Figure 6.1: Examples of different IVR behaviour; figure taken from Zewail.4

If it is assumed that the density of states, ρ, is high, and the levels are

equally coupled, then the IVR lifetime, τ, can be found from the Fermi

Golden Rule:5
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1

߬
= ߩ〈ଶܸ〉ߨ2 (6.2)

The root mean square off-diagonal matrix element, ⟨V2⟩½, is a measure of

the coupling. In this case, the decay in the intensity, I, will be of the

exponential form:

(ݐ)ܫ = ି݁ܣ


ഓ+B (6.3)

A and B are parameters that will depend on the experimental set up and

conditions. In the present work, these time-dependent effects are studied

using picosecond photoelectron spectroscopy techniques, which will be

described in Section 6.5. Briefly, a vibrational bright state is prepared in S1.

After a time delay, during which IVR occurs, the molecule is ionised using a

second laser pulse. Measuring the kinetic energy of the photoelectron

allows the internal energy of the cation to be deduced; thus a

photoelectron spectrum showing the vibrational states in the cation can be

obtained. If the time delay between excitation and ionisation is varied, the

changes in the cation vibrational energy spectrum can be monitored, from

which the IVR behaviour that occurred in S1 can be inferred.

If the bandwidth of the laser is much smaller, it is also possible to excite

only one vibrational eigenstate. In this case, there will be no time

dependence in the spectra observed because, by definition, a single

eigenstate is stationary. If IVR is present, this is normally manifested as

congestion in the spectrum, representing an eigenstate that involves

vibration of many parts of the molecule, owing to many different zero

order states being coupled together. Nanosecond laser zero electron kinetic

energy (ZEKE) techniques are employed for this purpose to complement

the picosecond experiments and will be described in Section 6.4; again,

the coupling of states in S1 is deduced by probing the states in the cation

using a multiphoton process.



6.2 Assignment of Vibrational Modes and Eigenstates

The molecule studied in this work is para-fluorotoluene (pFT). There are

different methods of classifying vibrational modes in toluene derivatives.

Varsanyi notation6 was employed in previous related work by Okuyama

and co-workers7 and also by the SOCAR group8 and will be used again here.

This notation is designed to assign the same vibrational mode in different

benzene derivatives with the same label. The modes in pFT that are

associated with the methyl group cannot be assigned with this notation as

they do not occur in benzene. However, these modes are not relevant to

this work, so Vasanyi notation is sufficient.

There have been many studies of IVR in hydrocarbons.2 Much of this has

focussed on finding the IVR lifetimes of different vibrational modes using

techniques such as infrared or fluorescence spectroscopy. It has previously

been found that a methyl rotor acts as an accelerator, drastically reducing

the IVR lifetime. 9 This is thought to be due to the coupling between

vibrational and torsional levels, leading to more avenues through which

IVR can take place. This has led to interest in molecules such as pFT, the

structure of which is shown in Figure 6.2.
Figure 6.2: The structure of a para-

fluorotoluene molecule. The fluorine atom is

shown in blue, carbon dark grey, hydrogen light

grey.
~ 120 ~
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Employing a simple ball and spring model, vibrational states can be

described in terms of bond stretching, rocking, ring breathing, bending, etc.

In pFT there are known to be 39 pure fundamental vibrational modes.

These modes can be classified into different symmetry groups. The

treatment is greatly simplified by assuming that the methyl group can be

treated as a point mass, thereby giving the molecule C2v symmetry. The

peaks in a REMPI, photoelectron or ZEKE spectrum are assigned in

accordance with the fundamental vibrational modes, also including

overtones and combination bands. The superscript after a mode indicates

the quanta of that mode, e.g. a zero-order state described as 6a2 indicates

the overtone vibration that has two quanta of mode 6a. The combination

band 116a1 indicates a vibration has one quanta of mode 1 and one quanta

of mode 6a. An overtone or combination band need not have the same

symmetry as the fundamental(s). The most important modes for the

discussion presented in this work are shown in Figure 6.3.

Figure 6.3: Fundamental vibrational modes of substituted toluene derivatives that

are relevant to this work. Adapted from ref. 10.
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In reality, zero-order states of similar frequencies and symmetries often

couple together. The peaks seen in experimental spectra are therefore

usually not strictly due to any single zero-order vibrational state; in fact

they represent eigenstates that can contain the character of several

different zero-order states. The assignment, therefore, is often used to

refer to an eigenstate has only mostly the character of that zero-order

state. In the simplest case of a two-component Fermi resonance, two

eigenstates are seen in S1, each of which has some character of each of

the zero-order states. If one excites through each eigenstate separately,

one may expect to see different spectra in each case; however if both

eigenstates are excited simultaneously the photoelectron spectrum

recorded for the cation will depend upon the form of the superposition in

S1 at the time of ionisation. If a spectrum is obtained by excitation through

a single eigenstate that contains the character of many different zero-order

states, the spectrum is likely to show considerable congestion as many of

these states will contribute to vibrational excitation in the cation upon

ionisation of S1. If a superposition of such a complicated eigenstate is

prepared, one might expect to see statistical IVR; however there is a

continuous evolution from restricted to statistical IVR and some oscillations

may still be visible.

Selection rules formally prohibit transitions between vibrations in different

symmetry groups and vibrational states with different symmetries do not

couple; one would therefore expect the vibrational states seen in the

cation to have the same symmetry as the vibrational state prepared in the

electronically excited state. This is an important consideration when

assigning spectra.
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6.3 IVR Lifetimes

The IVR lifetime, τ, is a quantity of great interest in terms of the idea of

bond-selective chemistry. However, while there are certain factors that

appear to influence the IVR lifetime, it has proven extremely difficult to

predict the lifetime for any particular molecular vibration.

The choice of molecule is an important one. As mentioned in Section 6.2,

one of the reasons that pFT is of interest is that methyl groups (and

presumably other rotating ligands) are known to act as IVR accelerators.

Bethardy et al.11 believed that molecular flexibility could also be a strong

influence. Their work is focussed on CH stretches and indicates some

correlation between the IVR lifetime and the distance of the vibration from

the centre of flexibility of the molecule for propargyl alcohol, pentyne and

ethanol. However, strong coupling between the bright state and nearby

dark states can cause the model to break down; the extent of such

coupling cannot currently be predicted.

Since IVR relies on coupling to surrounding dark states, it seems logical

that the density of states in the energy vicinity of a zero order vibration

would have an effect on its IVR lifetime. This has been explored by Smalley

and co-workers12 in fluorescence studies of jet-cooled alkylbenzenes. The

emission spectra became increasingly unstructured as the alkyl chains

were extended; this is a strong indication of statistical IVR in later

members of the series, where the density of states is larger. However, IVR

lifetimes cannot be deduced from a non-time-resolved fluorescence

spectrum; less structure does not necessarily imply faster IVR, only that

there will be less structure in a time-resolved spectrum once the IVR has

taken place. Time resolved studies also showed intermediate case IVR for

early members of the series, while those with longer chains were
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completely randomised within a nanosecond. Felker and Zewail3 obtained

more quantitative results in time-resolved studies of jet-cooled anthracene.

They found very little IVR following excitation of vibrations with energies

up to 1,200 cm-1. Intermediate case IVR occurred between 1,380 and

1,520 cm-1, while statistical IVR was observed above 1,520 cm-1. The link

between the density of states and the IVR rate has led some to refer to an

onset of IVR occurring at a particular energy.13 However, since there is

some debate as to how rapid the energy redistribution must be to be

classed as true statistical IVR, such generalisations need to be used with

caution.

Another factor thought to influence IVR lifetimes is the existence of so-

called “doorway states”. The model, which is illustrated in Figure 6.4,

proposes that the bright state is coupled strongly to several dark states;

these in turn are strongly coupled to many more dark states. The energy

may flow through the “tiers” more quickly than if the bright state were less

strongly coupled to many more dark states. Strong oscillations can be

observed as well as an overall exponential decay.

A≈B≈C; BS ↔ Tier 1 > BS ↔ Tier 2 > BS ↔ Tier 3

Figure 6.4: Tier model for IVR. Adapted from ref. 5.
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The presence of doorway states and their influence on IVR lifetimes cannot

currently be predicted; however, their existence can be inferred from

experimental data, as will be seen later in this chapter.

6.4 Nanosecond Zero Electron Kinetic Energy Spectroscopy

6.4.1 ZEKE Technique

The zero electron kinetic energy (ZEKE) spectroscopy experiments

described in this study have been carried out by Adrian Gardner and other

members of the SOCAR group at the University of Nottingham. The general

technique is described below.

The energies of the vibrational levels in the first excited electron state (S1)

of the molecule to be studied are found from a REMPI scan (see Chapter 2).

The “pump” laser can then be tuned to the energy of one of these levels.

Following excitation, a second laser is used to ionise the molecules. In

theory, if this second laser is resonant with a vibrational level in the cation

the electrons should have no kinetic energy following ionisation. If a

delayed pulsed voltage is applied, it is possible to detect these electrons.

By scanning the ionising laser over a range of frequencies, it is therefore

possible to probe the states in the cation that can be accessed by

excitation through a chosen vibrational level in the S1 state. (It should be

noted that in practice it is not very practical to detect free electrons with

zero kinetic energy; in fact, usually the electrons detected are still bound

in very high Rydberg states. Ionisation occurs as a result of the applied

pulsed voltage, which reduces the ionisation potential.)

The advantage of ZEKE spectroscopy is that it gives high energy resolution

(a working resolution of ~7-9 cm-1 is estimated; the unresolved rotational

structure and the pulsed voltage ionisation process cause broadening
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effects).14 The bandwidth of the nanosecond lasers is ~0.3 cm-1, which

allows excitation through a single vibrational eigenstate. The resulting

spectra are therefore not time-dependent. However, if zero-order states

are coupled then evidence of them will often be seen when an eigenstate

containing some of their character is excited. The presence of dissipative

IVR can be deduced through a rise in the baseline near the Δv=0 peak and

congestion in the spectrum; this is an indication of coupling to many dark

states.

6.4.2 Equipment Employed in ZEKE Experiments

ZEKE spectroscopy employs the same equipment described in Chapter 2

and refs. 15 , 16 and 17 for the REMPI experiments, with some

modifications to allow the study of pFT. Further details for ZEKE

experiments can also be found in ref. 8.

The backing gas (argon) is passed over the pFT, which is placed in a

bubbler. The pFT is picked up in the gas flow, which then passes through a

narrow exit channel into the vacuum chamber. The resulting free jet

expansion passes unskimmed into the ionisation chamber. As for the two-

colour REMPI experiments described in Chapter 2, the beam is intersected

by counterpropagating, coaxially, the output of the two dye lasers. The

excitation laser is tuned to the energy determined by the REMPI scan for

each level. Once it is determined that the REMPI signal is almost 100%

two-colour, the voltages are adjusted to detect electrons instead of ions.

The ionisation laser is then scanned over the region of interest to probe the

vibrational levels in the cation. Following the second laser pulse, the

voltage is applied after a delay of several microseconds to allow the

electrons emitted with kinetic energy (prompt electrons) to move away. As
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for REMPI spectroscopy, the signal detected by the MCPs is averaged by

the boxcar and recorded by the computer.

6.5 Picosecond Photoelectron Spectroscopy

6.5.1 Photoelectron Spectroscopy Technique

Photoelectron spectroscopy (PES) experiments using velocity map imaging

(VMI)18 are carried out by the Reid group at the University of Nottingham.

The picosecond lasers employed have a bandwidth of ~13 cm-1. It is

therefore not often possible to excite a single eigenstate, and a group of

eigenstates within the energy range will be prepared coherently. The

resulting spectra are therefore time-dependent, and the temporal

resolution of the lasers allows this time dependence to be monitored.

Unlike REMPI and ZEKE spectroscopy, VMI-PES does not require either

laser to be scanned through a range of frequencies. For a simple

photoelectron spectrum, the pump laser is tuned to a selected vibrational

mode in the first excited electronic state, S1. The second laser is tuned to a

frequency that is above the ionisation limit. The resulting cations will have

an internal energy distribution dependent on the cationic vibrational levels

accessed; the excess energy will be carried away by the photoelectrons. By

measuring the kinetic energy of the photoelectrons it is therefore possible

to deduce the internal energy of the cation, using the formula below.

௧ܧ = ℎ ߭௨  + ℎ ߭− IE − K݁E (6.4)

The objective of the experiments is to investigate IVR processes following

excitation to the selected vibrational level in S1. This is achieved by varying

the time delay between excitation and ionisation, allowing IVR to take

place.
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The energy resolution obtained from these experiments is quite poor

compared with that achievable with ZEKE. However, it can be improved

using a technique known as slow electron velocity imaging (SEVI).

The choice of wavelength for the ionising, or probe laser is a delicate

balance. A lower energy pulse will give better resolution, but only the lower

energy cationic states can be accessed. Typically, a 284 nm probe will give

a resolution >100 cm-1 at the origin, which can improve to ~45 cm-1 for

cation internal energies above 2,000 cm-1. In the present work, the SEVI,

spectra are recorded using four or five different probe wavelengths

between 283 and 295 nm. These spectra are then spliced together such

that each region of the spectrum uses data from the lowest energy probe

possible. This results in an overall spectrum with the best possible

resolution, typically around 40-55 cm-1 across the spectrum.

The experimental work analysed in this thesis was carried out by Julia

Davies of the Reid group. Details of the equipment employed can be found

in ref. 19.

6.5.2 Analysing VMI-PES Data

An example of an image recorded following an ionisation event is shown in

Figure 6.5. The intensity of the electron signal at any point on the detector

is indicated by the brightness of the corresponding pixel in the image.

Each of the rings in the image shown in Figure 6.5 is made by electrons of

equal kinetic energy and hence ejected from molecules resulting in the

same cationic vibrational state. An inversion program called pBasex20 has

been designed to restore a slice through the original three-dimensional

distribution from the two-dimensional image and produce a plot showing
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the photoelectron intensity against the radius of the image. The inversion

of the image is shown in Figure 6.6.

Figure 6.5: Raw image recorded by VMI. Each ring corresponds to a vibrational level

in the cation.

The next step is to subtract the background signal. Single-colour ionisation

events can occur if a molecule absorbs multiple photons from one laser

source instead of being excited by the pump and ionised by the probe. To

compensate for this, images are recorded with the probe beam arriving

before the pump. The spectrum recorded in this way will contain no two-

colour ionisation events and can therefore be subtracted from the spectra

at positive time delays to eliminate the background caused by single-colour

events.
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Figure 6.6: Image produced by inversion using pBasex. This process restores a slice

through the original 3D distribution.

The pBasex program produces an output file that contains the

photoelectron intensity, which is normalised to give unity as the maximum

value, and the distance from the centre of the image, which is measured in

pixels. This distance is directly proportional to the speed of the

photoelectrons, so using the known values of the pump and probe energies

and the ionisation potential of pFT (70,940.0 cm-1) 21 it is possible to

calibrate the energy scale. The scale is set to 0 cm-1 at the origin peak,

which can usually be identified and centred using a Gaussian function.

The energy of the probe laser must be chosen with care. A higher energy

probe will give access to more vibrational levels in the cation; however,

better resolution of the lower energy levels can be achieved by using a

probe of lower energy. This is because the kinetic energy is proportional to

the square of the radius; therefore the best resolution will be achieved

when the photoelectrons strike near the centre of the detector. Where high

energy probes are used, ionisation to the low cation levels will produce fast

electrons that reach close to the edge of the detector.
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The SEVI technique (described in Section 6.5.1) can be used to show the

more obvious changes in the spectra with time; however it is very time

consuming. For more detailed time-resolved work, where spectra must be

recorded at many time delays, it is necessary to select a single probe

wavelength for all spectra.

In all cases, to make any comparisons between spectra it is necessary to

normalise them. For SEVI, the spectra are normalised by taking the

integral of a common energy range and making it equal to 100 units,

usually the energy range will include either the origin or Δv=0 peak (it is

best to use the Δv=0 peak, as it is usually the most intense; however, if

the lowest energy probe data does not include it the origin must be used

instead). To compare the completed SEVI spectrum with others recorded

via the same S1 vibrational level but at different time delays they must

then be normalised over the whole range of interest (-200 to 2,200 cm-1).

The PES recorded at many time delays using the same probe wavelength

are each normalised over the same range as the SEVI.

The background subtraction, calibration and normalisation procedures, as

well as the splicing of SEVI spectra, are carried out using Matlab. The

original data analysis programs, which have been adapted for the purpose

of this study, were written by Alistair Green of the Reid group.

The effects of IVR are most easily demonstrated by plotting the change in

the area under (or between) the peaks with time. This gives a better

indication than the change in the intensity because of the poor energy

resolution and the fact that the peaks can sometimes shift slightly in

energy with time. The area in the regions between the peaks sometimes

increases as the dark states become populated. The areas are measured

using the trapezium rule.
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6.6 Introduction to Current Study

Intramolecular vibrational redistribution (IVR) has previously been studied

in para-fluorotoluene (pFT) by the Reid and SOCAR groups at the

University of Nottingham.22,23,24,14,8 In addition to finding approximate IVR

lifetimes for different vibrational modes, the time-resolved studies of the

Reid group have been compared with frequency-resolved studies by the

SOCAR group to gain better understanding of the complicated dynamics

occurring within the molecule. The present study seeks to take this further:

a thorough analysis of new time-resolved photoelectron spectroscopy data,

which has been recorded by Reid group, is combined with new zero

electron kinetic energy (ZEKE) spectroscopy data gathered by the SOCAR

group. In particular, the work presented here focuses on four different

vibrational levels in the S1 excited state. The combination of the two

techniques gives a clearer picture than could be achieved with only one set

of data.

6.7 REMPI

Figure 6.7 shows a picosecond resonance enhanced multiphoton ionisation

(REMPI) spectrum (see Chapter 2) for pFT, from which the different

vibrational states in S1 can be identified and assigned in accordance with

the nanosecond fluorescence excitation spectrum measured by Okuyama

et al.7 Okuyama’s assignments are also used in the nanosecond REMPI in

Figure 6.8, which shows a smaller energy range at much higher energy

resolution. Each of the four vibrational states indicated in the ps REMPI

spectrum was prepared using a picosecond pump laser and investigated

using time-resolved photoelectron spectroscopy (PES) and slow electron

velocity-map imaging (SEVI). Nanosecond ZEKE spectra were also
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recorded. Each of the states indicated showed very different behaviour and

will therefore be discussed separately.

Figure 6.7: Two-colour REMPI spectrum for pFT from data recorded by Julia Davies

using a 10ps delay between the pump and probe pulses. The four states discussed

in this work are indicated.

6.8 S1 11 Fermi Resonance

6.8.1 Results

Figure 6.8 shows a high-resolution nanosecond REMPI of the region from

700-860 cm-1. It can be seen that the peak identified as the 11 is in fact

two separate peaks. With the nanosecond lasers used for the ZEKE

experiments, which have a bandwidth of only 0.3 cm-1, it is possible to

excite via each S1 vibrational eigenstate separately; however the

picosecond lasers have a much wider bandwidth (~13 cm-1) and must

therefore excite a superposition of the two eigenstates.
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Figure 6.8: High-resolution nanosecond REMPI spectrum of pFT in the region of the

Fermi resonance (from data recorded by Adrian Gardner).

The close proximity and similar intensities of the peaks in the REMPI

spectrum suggests that the zero-order states may be strongly coupled

together if they have the same symmetry.

Figure 6.9: ZEKE spectra via the lower energy eigenstate at 794 cm-1 (bottom trace)

and higher energy eigenstate at 801 cm-1 (top trace) of the Fermi resonance seen in

the REMPI spectrum.
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ZEKE spectra are shown in Figure 6.9. The two peaks seen in the spectra

are further evidence of coupling. The spectrum recorded via the lower

energy S1 eigenstate shows two peaks that are almost equal in intensity,

while in the higher energy eigenstate spectrum the first peak is much

weaker. Factors such as differences in the ionisation cross section of the

two vibrational states could cause this kind of discrepancy. There is very

little congestion in the ZEKE spectra and the baseline does not show a

substantial rise near the Δv=0 peak. The absence of these signatures,

which are normally associated with statistical IVR, suggests that no

exponential decay will be seen in the time-resolved experiments.

Figure 6.10 shows time-resolved SEVI spectra recorded following excitation

of a superposition of the two S1 vibrational eigenstates.
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(labelled B in Figure 6.10) the situation is reversed. The time dependence

can be examined more easily by plotting the area under the peaks (which

has been calculated using the trapezium rule) against the time elapsed.

Photoelectron spectra were recorded at many time delays (at least every

picosecond from 0-50 ps). The time dependence of the areas under the

peaks is shown in Figure 6.11. In these experiments, the time delay occurs

while the molecule is in the S1 state; therefore the time-dependent

changes observed in the ion peak intensities reflect the IVR that occurs in

S1.

Figure 6.11: Area under features identified in Figure 6.10 plotted against pump-

probe time delay. The persistent quantum beats and the absence of exponential

decay in the area under the peaks are clear indications of Fermi coupling. The areas

are taken in the ranges: Origin (-114–166 cm1), A (348–538 cm-1), B (749–943 cm-1)

C (1,199–1,313 cm-1), D (1,537–1,739 cm-1).

Quantum beats are evident in all five of the peaks. The period is 5 ps,

which corresponds to an S1 eigenstate energy separation of approximately

7 cm-1. This is in good agreement with the separation of the eigenstates in

the nanosecond REMPI spectrum. It is worth noting that in ref. 8 the peaks

were reported to be at 793 and 803 cm-1; however on re-examination of
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the data this appears to be an error, with the true position of the higher

energy eigenstate being 800 cm-1.

6.8.2 Discussion

In ref. 8, the Fermi resonance peak to lower energy in the REMPI spectrum

was assigned as the 121 and the peak to higher energy assigned to the 11

(using Varsanyi6 notation), although a previous paper by Okuyama et al.7

assigned both peaks simply as the “11 Fermi resonance”. However, it is

unusual to see two fundamental vibrations coupled together as they are

expected to be relatively well separated in energy. One would normally

expect to see a strong fundamental coupled with a combination band or an

overtone. Table 6.1 shows some experimental and calculated values of

fundamental vibrational frequencies. (The reader is reminded that pure

vibrational zero-order states are rarely seen in real molecules except at

very low energies; when an assignment is made it means only that the

vibration has mostly the character of that state. See Section 6.2 for further

discussion.)

The ground state calculations are in very good agreement with the

experimental results. The excited state calculation for the 121 mode is 695

cm-1, which is in very poor agreement with the wavenumber of the lower

energy eigenstate, at 794 cm-1 in the nanosecond REMPI spectrum. The

calculated value for the 121 in the cation at 718 cm-1 is also in poor

agreement with the ZEKE data, which indicates two Δv=0 peaks at

approximately 822 and 834 cm-1 (see Figure 6.9). This discrepancy was

also noted in ref. 8. In contrast, the calculated value of 822 cm-1 for mode

1 in the cation is in good agreement with the ZEKE data.
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Table 6.1: Experimental and calculated fundamental vibrational frequencies for

normal modes of pFT.

Mode Symmetry Ground Statea Ground Stateb Excited Statec Cationb

1 a1 842 840 801 822

12 a1 728 726 695 718

6a a1 455 453 405 443

17a a2 956 953 669 994

10a a2 810 815 540 777

16a a2 404 418 194 359

5 b1 929 929 725 993

17b b1 817 822 676 835

4 b1 695 699 528 668

16b b1 502 508 464 494

10b b1 342 336 246 270

11 b1 158 144 111 111

6b b2 638 644 550 574

9b b2 424 422 396 417

15 b2 313 303 303 318

aInfrared spectroscopy experiments from ref. 25.
bHarmonic B3LYP/6-311G** calculation (scaling factor 0.986) from ref. 26.
cHarmonic CIS/6-311G** calculation (scaling factor 0.905) from ref. 26.

If it is assumed that the lower energy eigenstate in S1 is a combination

band or overtone, the most likely candidate, given the calculated values

and symmetry considerations, seems to be the 9b2. From the calculated

values in Table 6.1, this would be expected to be at ~792 cm-1 in the

excited state, which is in much better agreement with the nanosecond

REMPI value of 794 cm-1. Furthermore, the calculated value of ~834 cm-1

for 9b2 in the cation is in excellent agreement with the ZEKE spectrum. It

also has the same symmetry (a1) as 11.

It has already been noted that the strong peak labelled B in the SEVI

spectra in Figure 6.10 is the Δv=0 peak. In fact, peak B contains two ∆v=0

peaks from ionisation of S1 11 and S1 9b2 respectively. The quantum beats

clearly indicate a Fermi resonance (further measurements have shown that

strong oscillations are still present up to 500 ps) and the result of this is

that two different SEVI spectra can be observed. At 0 ps (and at each 5 ps
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interval thereafter) peak B corresponds to the D0 11 ion peak, since

ionisation is from the bright state. Using previous assignments from ref. 7,

peaks A, C and D seen in the spectra at these time intervals can be

assigned to the ion 6a1, 116a1 and 12 cation states respectively. This is in

agreement with the ion vibrational state series identified by Bellm et al. of

Xm, Xm6a1, Xm11, Xm9a1 following ionisation of Xm in S1.
23 However, at 2.5

ps (and further 5 ps intervals), the spectrum is obtained by ionising from

the dark state, 9b2. A, B, C and D can therefore be assigned to the 6a1, 9b2,

9b26a1 and 9b211 respectively. It is possible to discern that the ∆v=0 peak

(labelled B in Figure 6.10) shifts slightly in energy, approximately between

813 and 832 cm-1, as it oscillates between the two states. These energies

are in reasonable agreement with the ion peak energies of 822 and 834

cm-1 measured in the nanosecond ZEKE spectra.

While the quantum beats are steady, the amplitude decreases with time.

This is thought to be caused by the differences in the rotational constants

for the bright and dark zero-order vibrational states in S1. This would mean

that the quantum beats are actually a superposition of many oscillations of

very slightly different periods: thus at later time delays they become out of

phase leading to destructive interference. This “rotational dephasing” has

been shown to increase with rotational temperature, with the oscillations in

two-level systems dying away more quickly when more of the rotational

levels in the ground state are initially populated.27
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6.9 S1 18a1

6.9.1 Results

The next case that will be considered in this study is excitation through the

peak at approximately 845 cm-1 in the REMPI spectrum in Figure 6.7. This

peak was assigned to S1 18a1 in both refs. 7 and 8. The ZEKE spectrum

recorded is shown in Figure 6.12.

Figure 6.12: ZEKE spectrum via the 18a1 peak seen at 845 cm-1 in the REMPI

spectrum.

The ZEKE spectrum shows several strong peaks. Some congestion is

observed in the vicinity of the Δv=0 peak at 979 cm-1, which is

characteristic of statistical IVR. This suggests that energy is lost from the

bright state over time to a large number of coupled dark states.

Figure 6.13 shows the SEVI spectra at different time delays. In this case,

the change in ion peak area with time will be examined for three peaks

that show different behaviour. The first, the Δv=0 peak (labelled C in the

SEVI spectrum) is shown in Figure 6.14.
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Figure 6.13: SEVI spectra at selected time delays recorded via the 18a1 peak at 845

cm-1 in the REMPI spectrum. The four peaks labelled A, B, C, D, E and F are at

approximately 490, 880, 970, 1,200, 1,420 and 1,805 cm-1 respectively.

Figure 6.14: Area under the peak labelled C in Figure 6.13 plotted against time

elapsed. Several oscillations are visible in addition to an exponential decrease

overall. The area is taken in the range 936–1,003 cm1.

The oscillations seen in Figure 6.14 are not as distinct as those seen for
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approximately 8 ps, indicating an energy separation of 4 cm-1. The data

have been fitted to an exponential equation of the form:

(ݐ)ܫ = ି݁ܣ


ഓ+B (6.5)

Here, τ indicates the IVR lifetime (see Section 6.3). In this case, the fit

gives an IVR lifetime of approximately 17 ps. The error on this figure is

difficult to quantify. The time delay can be measured very accurately and

the variation in the data when a scan is repeated has been found to be

very small. The main sources of error are therefore likely to be in the

measurement of the area under the peak and the fit to the data. The error

in the area will vary depending on the resolution of the peak and its

intensity relative to the background, the number of data points and the

relative change in area with time. Since in this case the peak is very

intense and the change in area is quite significant, the error is estimated to

be ~5% (±1 ps).

Figure 6.15: Area under the peak labelled B in Figure 6.13 plotted against time

elapsed. Oscillations are regular, but very small in amplitude. The area is taken in

the range 842–902 cm1.
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The second peak considered is that to the left of the strongest peak,

labelled B in Figure 6.13. This peak shows the opposite behaviour to peak

C, actually growing larger with time (Figure 6.15).

The equation of the exponential rise is of the form:

(࢚)ࡵ = −൬ ିࢋ
࢚
+൰࣎  (6.6)

Here, τ = 13.5 ps. This peak is considerably smaller than the Δv=0 peak,

so the error on this figure will be much larger. Again, oscillations are

visible in Figure 6.15; in this case the period is 5 ps, indicating an S1

eigenstate energy separation of approximately 7 cm-1.

The final peak to be considered here is that at 1,200 cm-1, which is labelled

D in Figure 6.13. This peak has negligible intensity at t=0 ps, but appears

later with a maximum at 4 ps. This is illustrated in Figure 6.16.

Figure 6.16: Area under the peak labelled D in Figure 6.13 plotted against time

elapsed. Oscillations are visible very early, but die away quickly, after which the

area is almost constant. The area is taken in the range 1,162–1,222 cm1.

The early oscillations quickly die away in Figure 6.16. The largest

oscillation visible has a period of approximately 8 ps, indicating an energy
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separation of approximately 4 cm-1; however the peak settles quickly to an

almost constant area for time delays >~12 ps, which is a further indication

that there is actually a superposition with one or more oscillations in

addition to the one that is measurable. These oscillations interfere

destructively, resulting in a constant peak intensity.

6.9.2 Discussion

The strong peak labelled C at ~970 cm-1 in the SEVI spectra in Figure 6.13

has already been identified as the 18a1 (Δv=0) peak. Bellm et al.23 saw ion

peaks at 433, 944, 1,361 and 1,733 cm-1 in the ZEKE spectrum via the S1

18a1, which they assigned to the 6a1, 18a1, 18a16a1 and 18a111

respectively. The work by Ayles et al.8 placed the 18a1 peak at 984 cm-1

and the current ZEKE data shows it at 978 cm-1. This suggests that there

may be a calibration issue associated with the Bellm data and that the

peaks seen here at 490, 1,420 and 1,805 (labelled A, E and F in Figure

6.13) are the same as those assigned by Bellm. However, while peaks E

and F are approximately where one would expect to see the 18a16a1 and

18a111, peak A is a little high for the 6a1, which was seen at ~435 cm-1 in

the SEVI obtained via the Fermi resonance (Figure 6.10) and at 440 cm-1

by Ayles. Ayles et al. also saw a peak at ~500 cm-1, which they assigned to

the 11116a1; Peak D was assigned to the 18a1151 in the same paper. Peak

B is currently unassigned

Combining the time-resolved area data from the three peaks analysed

above, it appears that the bright state in this case is coupled to two

“doorway states”, which are further coupled to a large number of other

dark states (see Section 6.3). This would explain the two distinct oscillation

periods of 5 and 8 ps and the exponential decay with a timescale of ~17 ps.

Peaks C and D each show oscillations with periods of 8 ps; however the
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oscillations are out of phase with each other, with peak C showing a

maximum at 0 ps and peak D at 4 ps. This indicates that peak C originates

from ionisation from the bright state, while D comes from ionisation from a

dark state. The loss of structure at long time delays is consistent with the

congestion seen in the ZEKE spectrum.

6.10 S1 131

6.10.1 Results

The peak at approximately 1,195 cm-1 in the REMPI spectrum is identified

as the 131 in refs. 7 and 8. The ZEKE spectrum recorded via this state is

shown in Figure 6.17.

Figure 6.17: ZEKE spectrum recorded via the 131 peak seen at 1,195 cm-1 in the

REMPI spectrum.

The spectrum shows a very small rise in the baseline around the Δv=0

peak; however there is very little congestion, suggesting that clear

structure will still be seen in the time-resolved experiments even at long

time delays.
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The time-resolved SEVI spectra recorded via the 131 is shown in Figure

6.18.
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Figure 6.19: Area under the peak labelled A in Figure 6.18. The decay is exponential

and no regular oscillations are visible. The area has been taken in the range 1,211–

1,243 cm-1.

Figure 6.20: Area under the peak labelled C in Figure 6.18. The decay is exponential.

Although oscillations are visible, this should be treated with caution as the relative

change in the area of peak C is quite small so the errors in the data may be larger

than the amplitude of the oscillations. The area has been taken in the range 2,037–

2,052 cm-1.
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Each of these figures show an exponential decay but no conclusive

evidence for oscillations such as were seen for the 18a1. The equations for

the decay fits, based on Equation 6.5, yield IVR lifetimes of 50.6 and 52.3

ps for A and C respectively. This shows very good agreement; the lifetime

can therefore be estimated to be ~51±3 ps.

Figure 6.21 shows the rise in the background between the peaks in the

regions D and E. These can be seen to rise exponentially as the dark states

are populated. The equations of the fits (which have the form of Equation

6.6) yield lifetimes of 44 and 37 ps for D and E respectively. These figures

are not included in the average lifetime calculation; since it is impossible to

tell how many states are in these regions and the intensities are very low

the errors are expected to be much larger.

Figure 6.21: Area under regions labelled D and E in Figure 6.18. Areas are taken in

the ranges D (1,367-1,577 cm-1), E (1,737-1,916 cm-1).
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6.10.2 Discussion

The ion peak labelled A in Figure 6.18 is the 131 (Δv=0). The most likely

assignments for B and C are 1316a1 and 13111.

In contrast to the time-resolved data obtained via the 18a1 peak (vide

supra), there are no oscillations visible in the decay for the Δv=0 peak,

which leads to the conclusion that in this case no strongly coupled doorway

states are involved. There appear to be oscillations in peak C, but since

they are small enough in amplitude to be within experimental error and are

not seen in any of the other data this is not conclusive. The energy loss is

irreversible, indicating that the bright state could be directly coupled to a

large number of dark states. The rise in the population of the dark states

can also be seen in the exponential rise in the background.

The IVR rate is slower than for the 18a; this may be counterintuitive since

the 131 is at higher energy and the region will therefore have a higher

density of states. However, the absence of strong coupling to doorway

states may slow down the process. The clear structure still evident at 500

ps is consistent with the evidence of the ZEKE spectrum, which shows less

congestion than the 18a1.

6.11 S1 7a1

6.11.1 Results

The peak which can be seen in the REMPI spectrum at ~1,230 cm-1 was

assigned in both refs. 7 and 8 as S1 7a1. The ZEKE spectrum recorded via

this peak is shown in Figure 6.22.
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Figure 6.22: ZEKE spectrum via the 7a1 peak seen at ~1,230 cm-1 in the REMPI

spectrum.

It can be seen that there is very little structure in the spectrum in Figure

6.22, with only the ∆v=0 peak clearly visible at ~1,333 cm-1; other peaks

are only just discernable above the rising baseline in the vicinity of the

peak and at higher energy. This suggests a large number of populated dark

states and, consequently, a statistical IVR process.

The SEVI spectra at selected time delays are shown in Figure 6.23. At 0 ps,

three sharp peaks are observed; however, the structure is very quickly lost

amid the rapidly rising baseline. This again shows that statistical IVR is the

dominant process for this state.

The variation in area under peaks A, B and C in the SEVI spectrum is

shown in Figures 6.24 and 6.25. The variation is also shown for the areas

of dark states, labelled D and E in Figure 6.26.
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Figure 6.23: SEVI spectra at selected time delays recorded via the 7a1 peak at 1,230

cm-1 in the REMPI spectrum. The three peaks labelled A, B, and C are at

approximately 1,333, 1,772 and 2,146 cm-1 respectively.

As observed in the time-resolved data recorded via the 131, the

exponential fall in the areas under the peaks are mirrored by an

exponential rise in the background between the peaks. A fitting procedure

has been employed to each series.

Figure 6.24: Area under peak A (∆v=0) in Figure 6.23 plotted against time delay.

Area is taken in the range 1,195-1,259 cm-1.
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Figure 6.25: Areas under peaks B and C in Figure 6.23 plotted against time delay.

Areas are taken in the ranges 1,654-1,678 and 2,037-2,052 cm-1 respectively.

Figure 6.26: Areas under regions D and E in Figure 6.23 plotted against time delay.

Areas are taken in the ranges 1,366-1,482 and 1,748-1,867 cm-1 respectively.

0 10 20 30 40 50 60 70 80 90 100

A
re

a
(a

rb
.u

n
it

s)

Time delay (ps)

B

C

Fits

0 10 20 30 40 50 60 70 80 90 100

A
re

a
(a

rb
.u

n
it

s)

Time delay (ps)

D

E

Fits



~ 153 ~

From the fits to the data from peaks A, B and C, the IVR lifetimes are

calculated as 13.3, 13.0 and 13.2 ps respectively. This shows excellent

agreement and the value can therefore be given as 13±1 ps. The lifetimes

obtained from regions D and E are 17.0 and 12.2 ps; again, the very low

intensities in these regions will increase the errors.

6.11.2 Discussion

As has been noted, the Δv=0 peak appears at 1,330 cm-1 in the SEVI

spectrum (labelled A in Figure 6.23). This has been assigned to the 7a1.

The peaks labelled B and C are assigned to the combination bands 7a16a1

and 7a111 respectively.

It is clear that in this case the sharp structure observed at 0 ps is rapidly

lost to a rising signal from the dark states. The irreversible flow of energy

away from the bright state is characteristic of statistical IVR.

Although there may be some oscillations in Figure 6.25, it is not possible to

conclusively determine any strong coupling to doorway states in this

experiment. It is possible that the bright state is directly coupled to many

dark states.

The IVR rate of approximately 13 ps, is shorter than both the 18a1 and the

131 state. This may be expected since the 7a1 is at the highest energy and

will therefore be more likely to be in a region with a higher density of

states. This leads to more states available to which the bright state can

couple and is thought to be a strong contributing factor to IVR lifetimes27,28

(see Section 6.3 for a more complete discussion). However, since the

difference in energy between the S1 states is relatively small, there are

likely to be other factors with a more significant influence in this case.
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6.12 Conclusions

Nanosecond ZEKE and picosecond SEVI spectra have been recorded via

four different vibrational levels of pFT. The first set of experiments

revealed a Fermi resonance between the 11 fundamental mode and the 9b2

overtone. The assignment of the lower energy eigenstate to 9b2 is in

contrast to ref. 8 and has been made using harmonic mode calculations

and symmetry considerations. The ZEKE spectra revealed coupling

between the two zero-order states following separate excitations of the

eigenstates. The time resolved experiments, which excite both eigenstates

coherently, revealed clearly defined quantum beats with a regular period of

5 ps. This indicated an S1 eigenstate energy separation of approximately 7

cm-1, which was found to be in good agreement with the separation of the

eigenstates in the REMPI spectrum. The quantum beats have a decaying

amplitude, a result of rotational dephasing.

The other three states studied showed an exponential decrease in the

population of the bright state, indicating an irreversible redistribution of

energy consistent with statistical IVR. The IVR lifetimes have been

calculated from fits to the exponential decay of the areas under selected

peaks; these are shown in Table 6.2. The time-resolved photoelectron

spectra via S1 18a1 states also showed quantum beats with measurable

periods, indicating the presence of doorway states. Oscillations with two

different periods are identifiable; the S1 eigenstate separations are

measured as 4 and 7 cm-1.
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Table 6.2: IVR lifetimes of the three vibrational states showing irreversible decay in

the population of the bright state.

Vibrational level Energy in S1 IVR lifetime

18a1 845 cm-1 17±1 ps

131 1,195 cm-1 51±3 ps

7a1 1,230 cm-1 13±1 ps

If the density of states is noticeably greater at higher energies in this

region and this influences the IVR lifetimes (vide supra), then the lifetime

via the S1 18a1 is relatively fast. This may be explicable with reference to

the doorway state model (described in Section 6.3), in which the bright

state couples strongly to one or more secondary states, which are further

coupled to many other dark states. It is plausible that this could accelerate

the process of IVR, since the doorway states act as an intermediate step to

enhance the coupling to the other dark states. The S1 131 state shows an

exponential decay with no strong oscillations, indicating that no strongly

coupled doorway states are available; this may be why it shows a much

slower rate of IVR than the 18a1.
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7. Theoretical Study of Cl-–RG Complexes

(RG=He-Rn)

7.1 Introduction

High-level ab initio potential energy curves have previously been published

for F- and Br- and I- interacting with each of the rare gases.1,2,3,4 This work

is continued here with the corresponding Cl- complexes, in collaboration

with C. C. Kirkpatrick and E. P. F. Lee. Employing CCSD(T) methods similar

to those described for the Au–RG ground state calculations in Chapter 3

and the Group 2 metal ion–rare gas calculations described in Chapters 4

and 5, spectroscopic constants have been derived for Cl-–RG complexes

(RG=He-Rn). The potential curves calculated here have also been used by

L. A. Viehland and co-workers at Chatham University, USA in order to

calculate transport coefficients for Cl- ions moving through a bath of atoms

of each rare gas. A considerable amount of transport data are available for

these species;5,6,7,8,9,10,11,12,13 with somewhat more limited scattering14,15

and spectroscopic 16 , 17 , 18 , 19 , 20 data. The spectroscopic results presented

herein are compared with previous theoretical and experimental results.

There have been several previous theoretical studies of Cl- at the CCSD(T)

level; Bera and Das21 studied RG=He-Kr employing aug-cc-pVTZ basis sets

and Naumkin and McCourt22 employed aug-cc-pVQZ basis sets for RG=He-

Ar. Buchachenko et al.23 have investigated Cl--Ar and Cl-–Kr using aug-cc-

pVTZ and aug-cc-pVQZ basis sets augmented with bond functions.

Irikura24 and Sun et al.25 have also studied Cl-–Ar using aug-cc-pV(T+d)Z

and aug-cc-pVQZ basis sets respectively. In addition, there are

experimental values available via the ZEKE spectra for RG=Ar-Xe by

Neumark’s group16,17,20 and for Cl-–Ar by Distelrath and Boesl.18 No
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previous ab initio results have been found for Cl- complexes involving Xe or

Rn and no experimental spectroscopy results have been found for He, Ne

or Rn.

7.2 Computational Details

CCSD(T) calculations have been carried out on these closed-shell systems.

For RG=He-Ne, standard aug-cc-pV5Z and aug-cc-pV6Z basis sets have

been employed, 26 , 27 , 28 with aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z

employed for Ar;29 for all of these, one further diffuse function of each

angular momentum type was added, obtained by an even tempered

extrapolation of the two most diffuse functions in the standard basis set.

For RG=Kr-Rn the relativistic small-core potentials ECP10MDF, ECP28MDF

and ECP60MDF were employed together with the aug-cc-pVQZ-PP and

aug-cc-pV5Z-PP valence basis sets; 30 these were again augmented by

diffuse functions derived in a similar fashion. In all cases, the

corresponding aug-cc-pV(X+d)Z basis sets 29,30 were used for chlorine.

Each potential energy curve was calculated using MOLPRO 31 on the

Magellan32 computer system for about 50 interatomic separations covering

a wide range of R (~1.5 to 50 Å). Each point was corrected for BSSE using

the full counterpoise correction. For RG=He-Ar, the interaction energies

obtained using the quintuple-ζ and hextuple-ζ basis sets were pointwise-

extrapolated to the basis set limit using the two-point cubic formula of

Halkier et al.33,34 For RG=Kr-Rn the extrapolation was carried out from

curves obtained using the QZ and 5Z basis sets. The extrapolated curves

were employed in the calculation of the spectroscopic constants. The

constants have been derived using the LEVEL35 program as described in

Chapters 2, 4 and 5. The most abundant naturally occurring isotope of
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each element was used in all cases (35Cl, 4He, 20Ne, 40Ar, 84Kr, 132Xe and

222Rn).

7.3 Results

The calculated spectroscopic constants are shown in Table 7.1, together

with the results from previous research by other groups.

There have been many theoretical studies of Cl-–RG; only those at the

CCSD(T) level are discussed here, as the lower level results have been

discussed in earlier work21,22,24,25 and the CCSD(T) results are concluded to

be more reliable. These have all been carried out using smaller basis sets

than those employed here and only the Cl-–Ar De value of Irikura24 was

derived with an extrapolation to the basis set limit; it is therefore

unsurprising that the previously calculated dissociation energies are

consistently smaller than those presented here.

Both the studies of Bera and Das21 and Naumkin and McCourt22 yield Re

values close to the present results for Cl-–He and Cl-–Ne. The De values of

Bera and Das are considerably lower than those presented here; those of

Naumkin and McCourt are slightly higher than the former (since they used

larger basis sets), with the value for Cl-–He in quite good agreement with

the present result.



Table 7.1: Spectroscopic constants for Cl-–RG. Re is the equilibrium bond length (Å), De is the depth of the potential, D0 is the energy between the zero-

point and the asymptote, ωe is the harmonic vibrational frequency, ωexe is the anharmonicity constant, Be is the equilibrium rotational constant at the

minimum, α is the spin-rotation constant (all in cm-1), k is the harmonic force constant (Nm-1). Results from the present work are shown in bold.

Re De D0 ωe ωexe Be Α De
MORSE De

MORSE/De k

Cl-–He 3.96 44.2 29.3 26.3 4.18 0.298 7.51x10-2 41.4 0.94 0.147
Ref. 21a 4.05 24.2 29.9 12.00 0.48

Ref. 2222b 4.02 39.4

Cl-–Ne 3.74 119.1 103.7 31.4 2.37 0.0953 8.30x10-3 103.7 0.87 0.739

Ref. 21a 3.83 88.7 28.1 3.74 0.10

Ref. 22b 3.80 101.4

Cl-–Ar 3.67 515.4 488.8 54.0 1.68 0.0671 2.17x10-3 433.9 0.84 3.21

Ref. 16c 3.71±0.08 523±5 53.1

Ref. 18c 354/507 330/480 53.4

Ref. 23b 3.69 500.6

Ref. 22b 3.71 476.9

Ref. 25b 3.67 493.4

Ref. 24d 3.72 434.5

Ref. 24e 514.9e

Ref. 21a 3.72 443.6 52.2 2.73 0.07

Cl-–Kr 3.67 778.1 749.8 57.1 1.25 0.0508 1.14x10-3 653.4 0.84 4.75

Ref. 17c 3.83±0.10 772±8 55.5

Ref. 23a 3.73 719.6

Ref. 21a 3.72 718 2.05 0.05

Cl-–Xe 3.70 1184.4 1152.5 64.3 1.031 0.0445 7.34x10-4 1002.4 0.85 6.74

Ref. 20c 3.57±0.03 1176±10 41.43

Ref. 36a 3.80 980

Cl-–Rn 3.68 1473.7 1439.9 68.1 0.927 0.0412 5.80x10-4 1250.9 0.85 8.27
aCCSD(T)/aug-cc-pVTZ. bCCSD(T)/aug-cc-pVQZ. cZEKE spectroscopy. dCCSD(T)/aug-cc-pV(T+d)Z. eCalculation extrapolated to basis set limit using up to 6Z basis set

energies.
~ 160 ~
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There has been considerably more interest in Cl-–Ar. Neumark’s group16

have derived Re and De values from potentials that have been obtained by

fitting to ZEKE spectra. These values are in good agreement with the

present results, as is their value of ωe. Distelrath and Boesl18 have used

two methods to calculate De from their ZEKE experiments; the lower value

is obtained from a Birge-Sponer (BS) analysis and is very low compared to

the theoretical value calculated here. The second method employed the

measured electron affinities together with the BS extrapolated D0 value of

the neutral Cl-–Ar complex. This value is in much better agreement with

the present figure. The value of ωe is again in excellent agreement with

that calculated here.

It can be seen that there is generally very good agreement for Re from all

the research conducted. However, the variation in the values of De and the

fact that the results most consistent with the experimentally derived values

are those employing extrapolation to the basis set limit suggest that large

basis sets and rigorous electron correlation methods are required to

describe these weakly interacting systems accurately.

Neumark’s group have also carried out ZEKE experiments on Cl-–Kr17 and

Cl-–Xe.20 The values for De in both cases are very close to those presented

here; however the value of Re is slightly higher for Kr and slightly lower for

Xe. Their value of ωe for Cl-–Xe is much lower than the present value; this

is surprising because the values for Ar and Kr are in very good agreement

and one would expect an increase in the vibrational frequency to be more

likely as the RG atoms become heavier and more polarisable.

The theoretical studies for Kr21,23 and Xe36 again show quite good

agreement for the Re values, but the values of De are lower than those

found in the present study.
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For completeness, it is noted that Bera and Das21 also reported

spectroscopic parameters obtained from fitted Lennard-Jones potentials for

Cl-–He and Cl-–Ne. For He they obtain ωe=29.9 cm-1, which is close to the

value calculated here; however the value for ωexe is significantly larger

than the present result. This is consistent with their use of a wide range of

Re in the fitting procedure, hence deviations from Morse like behaviour are

likely to be large. A similar situation holds for Cl-–Ne, where the values of

ωe are again in good agreement, whereas their ωexe value is larger than

the result obtained here.

Rotational constants were also calculated by Bera and Das;21 in general

these are in good agreement with the present results, although the value

for Cl-–He appears high. To investigate this, Be was calculated using their

value of Re; this yielded Be=0.286 cm-1, which is in much better agreement

with the result obtained here.

7.4 Trends

The trend in Re for the first three halide anions interacting with rare gases

can be seen in Figure 7.1. The trend for Cl-–RG is similar to that for F- and

Br- in that there is a slight decrease from He to Ne, after which the value is

almost constant. The variation in Re is much smaller than was seen in the

Group 2 M+–RG complexes (see Chapters 4 and 5).
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Figure 7.1: Plot of Re for X-–RG (X=F-Br; RG=He-Rn). Values for Fl- and Br- are taken

from refs. 1 and 3.

The variation in De is shown in Figure 7.2. As expected, an increase is seen

as the size and polarisability of the rare gas atom increases. The ratio of

the increase between successive rare gases is comparable to the ratio of

the polarisabilities, as predicted by the model potential of Bellert and

Breckenridge37 when the variation in Re is small (see Chapter 4).
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Figure 7.2: Plot of De for X-–RG (X=F-Br; RG=He-Rn). Values for Fl- and Br- are taken

from refs. 1 and 3.

Figure 7.3: Plot of k for X-–RG (X=F-Br; RG=He-Rn). Values for Fl- and Br- are

calculated from data published in refs. 1 and 3.
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The trends for k are similarly plotted in Figure 7.3. These also show the

expected monotonic rise with the polarisability of the rare gas atom,

similar to De. However, the relative rise between He and Ne is rather

higher than the polarisability ratio, a consequence of the larger Re value of

Cl-–He.

In general, the trends seen in the Cl-–RG series are very similar to those

seen for the other halide anions. Since these are closed-shell systems with

significant repulsive terms, they do not show any of the unusual “chemical”

behaviour seen for Au or the Group 2 metal cations. The ratios De
MORSE/De

are very close to 1, indicating that these species generally show reasonably

Morse-like behaviour.

7.5 Discussion

The choice of basis set and correlation method can be crucial to the

accuracy of the interaction potential: since so much previous work has

been devoted to Cl-–RG, this is the ideal system to use to investigate the

reliability of the curves calculated here.

Figure 7.4 shows the standard mobility of Cl- in argon calculated by L. A.

Viehland using the curves discussed here; a curve generated using the 6-

311++G(3df, 3pd) basis set is also employed to calculate the reduced

mobility and the results are compared with experimental data from ref. 42.

It can be seen that the data obtained using the 6-311++G(3df, 3pd) basis

set does not yield transport data within the range of experimental error;

however the aug-cc-pVXZ (X = Q, 5, 6, ∞) converge to the actual data 

points upon reaching the basis set limit. This seems to suggest that the

uncertainties in the experimental data38, 39 , 40, 41 are smaller than those

originally reported. All of the tested basis sets predicted mobility values
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within the limits of experimental error at high E/n0, but they differ

substantially at lower values. Since mobilities at low and high E/n0 values

are associated with the long- and short-range potential values respectively,

it can be concluded that all of these basis sets are adequate for predicting

short-range repulsive interactions, but larger basis sets (at least

quadruple-ζ) are required at large internuclear separations. 

Figure 7.4: Comparison of experimental42 and computed standard mobility values

for Cl- in Ar at 297 K with selected basis sets and constant correlation method. All

values are corrected for BSSE on a point-by-point basis.

Figure 7.5 shows reduced mobility curves generated using the same basis

set (quintuple-ζ) but different correlation methods. It can be seen that the 

perturbation methods (MP2 and MP4) and the coupled-cluster method

(CCSD(T)) generated potentials that yielded mobility values within the

range of experimental error across the entire range of E/n0 values. The RHF

method, however, is clearly insufficient to describe this system; dynamic

electron correlation must be included.
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Figure 7.5: Comparison of experimental42 and computed reduced mobility values for

Cl- in Ar at 297 K with selected correlation methods and quintuple-ζ basis set. All 

values are corrected for BSSE on a point-by -point basis.

7.6 Conclusions

High-level ab initio potential curves have been calculated for Cl-–RG

(RG=He-Rn). The curves have been employed to calculate the

spectroscopic constants and the results have been compared to existing

experimental and theoretical data where available. The agreement with

experimental data is generally very good, which suggests that this level of

theory provides reliable results. The trends seen in the series are

consistent with expectations and with results seen in previous calculations

for halide anion–rare gas complexes.

The curves have been used by L. A. Viehland and co-workers to calculate

transport coefficients for Cl- ions moving through a bath of rare gas atoms.

These also show excellent agreement with previous experimental results,

which is further evidence of the reliability of the potential curves. The
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reduced mobility curves demonstrate that a large basis set is required to

describe the potential accurately, particularly at large internuclear

separations. The mobility values appear to be calculated with good

accuracy across the considered range by the MP2, MP4 and CCSD(T)

methods using a quintuple-ζ basis set. 

References

1 B. R. Gray, T. G. Wright, E. L. Wood and L. A. Viehland, Phys. Chem.
Chem. Phys., 8, 4752 (2006).

2 A. A. Buchachenko, J. Klos, M. M. Szczęśniak, G. Chałasiński, B. R. Gray, 
T. G. Wright, E. L. Wood, L. A. Viehland and E. Qing, J. Chem. Phys., 125,
64305 (2006).

3 A. A. Buchachenko, T. A. Grinev, T. G. Wright and L. A. Viehland, J.
Chem. Phys., 128, 64317 (2008).

4  A. A. Buchachenko, T. V. Tscherbul, J. Kłos, M. M. Szczęśniak, G. 
Chałasiński, R. Webb and L. A. Viehland, J. Chem. Phys., 122, 194311
(2005).

5 I. Dotan, W. Lindinger and D. L. Albritton, J. Chem. Phys., 64, 4544,
(1976).

6 H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason and L. A. Viehland, At.
Data Nucl. Data Tables, 17, 177 (1976).

7 I. Dotan, D. L. Albritton, and F. C. Fehsenfeld, J. Chem. Phys., 66, 2232
(1977).

8 I. Dotan and D. L. Albritton, J. Chem. Phys., 66, 5238 (1977).

9 H.W. Ellis, E.W.McDaniel, D. L. Albritton, L. A. Viehland, S. L. Lin and E. A.
Mason, At. Data Nucl. Data Tables, 22, 179 (1978).

10 M. G. Thackston, F. L. Eisele, W. M. Pope, H. W. Ellis, I. R. Gatland and E.
W. McDaniel, J. Chem. Phys., 70, 3996 (1979).

11 F. L. Eisele, M. G. Thackston, W. M. Pope, H. W. Ellis and E. W. McDaniel,
J. Chem. Phys., 70, 5918 (1979).

12 L. A. Viehland and E. A. Mason, At. Data Nucl. Data Tables, 60, 37
(1995).

13 M. G. Thackston, F. L. Eisele, W. M. Pope, H. W. Ellis, E. W. McDaniel
and I. R. Gatland, J. Chem. Phys., 73, 3183 (1980).

14 C. de Vreugd, R. W. Wignaendts van Resandt and L. Los, Chem. Phys.
Lett., 65, 93 (1979).



~ 169 ~

15 S. Kita, K. Noda and H. Inouye, J. Chem. Phys., 64, 3446 (1976).

16 T. Lenzer, I. Yourshaw, M. R. Furlanetto, G. Reiser and D. M. Neumark, J.
Chem. Phys., 110, 9578 (1999).

17 I. Yourshaw, T. Lenzer, G. Reiser and D. M. Neumark, J. Chem. Phys.,
109, 5247 (1998).

18 V. Distelrath and U. Boesl, Faraday Discuss., 115, 161 (2000).

19 A. A. Buchachenko,M.M. Szczęśniak and G. Chałasiński, J. Chem. Phys.
114, 9929 (2001).

20 T. Lenzer, I. Yourshaw, M. R. Furlanetto, N. L. Pivonka and D. M.
Neumark, J. Chem. Phys., 116, 4171 (2002).

21 N. C. Bera and A. K. Das, Mol. Phys., 105, 1433 (2007).

22 F. Y. Naumkin and F. R.W. McCourt, Chem. Phys. Lett., 292, 63 (1998).

23 A. A. Buchachenko, R. V. Krems, M. M. Szczesniak, Y.-D. Xiao, L. A.
Viehland and G. Chalasinkiski, J. Chem. Phys., 114, 9919 (2001).

24 K. K. Irikura, Int. J. Mass Spectrom., 228, 667 (2003).

25 Y. B. Sun, D. Wu, Z. R. Li and C. C. Sun, Chem. J. Chin. Univ., 23, 121
(2002).

26 T. H. Dunning, Jr., J. Chem. Phys., 90, 1007 (1989).

27 D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys., 100, 2975 (1994).

28 A. K. Wilson, T. V. Mourik and T. H. Dunning, Jr., J. Mol. Struct.:
THEOCHEM, 388, 339 (1996).

29 T. H. Dunning, Jr., K. A. Peterson and A. K. Wilson, J. Chem. Phys., 114,
9244 (2001).

30 K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J. Chem. Phys.,
119, 11113 (2003).

31 R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J.
O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J. Knowles, T.
Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M.
E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schűtz, U. 
Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson and H.-J.
Werner, MOLPRO, a package of ab initio programs designed by H.-J.
Werner and P. J. Knowles, Version 2002.1 (2002).

32 Magellan is a high-performance computer cluster owned by the UK
National Service for Computational Chemistry Software (NSCCS).

33 A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, J. Olsen and
A. K. Wilson, Chem. Phys. Lett., 286, 243 (1998).



~ 170 ~

34 A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper and J. Olsen, Chem.
Phys. Lett., 302, 437 (1999).

35 R. J. LeRoy, Level 7.2—A computer program for solving the radial
Schrődinger equation for bound and quasibound levels, and calculating 
various values and matrix elements, University of Waterloo Chemical
Physics Research Program Report CP-555R (2000).

36 D. Schröder, J. N. Harvey, M. Aschi and H. Schwarz, J. Chem. Phys.,
108, 8446 (1998).

37 D. Bellert and W. H. Breckenridge, Chem. Rev. (Washington, D. C.), 102,
1595 (2002).

38 I. Doton, D. L. Albritton and F. C. Fehsenfeld, J. Chem. Phys., 66, 2232
(1977).

39 I. Dotan and D. L. Albritton, J. Chem. Phys., 66, 5238 (1977).

40 H. W. Ellis, E. W. McDaniel, D. L. Albritton, L. A. Viehland, S. L. Lin and E.
A. Mason, , At. Data Nucl. Data Tables, 22, 179 (1978).

41 M. G. Thackston, F. L. Eisele, W. M. Pope, H. W. Ellis, I. R. Gatland and E.
W. McDaniel, J. Chem. Phys., 70, 3996 (1979).

42 H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason and L. A. Viehland, At.
Data Nucl. Data Tables, 17, 177 (1976).



~ 171 ~

Appendix A

Glossary of Acronyms/Abbreviations

BS Birge-Sponer

BSSE Basis Set Superposition Error

CASSCF Complete Active Space Self-Consistent Field

CI Configuration Interaction

CM Coinage Metal

CT Charge Transfer

ECP Effective Core Potential

FCF Franck-Condon Factor

HOMO Highest Occupied Molecular Orbital

IVR Intramolecular Vibrational Redistribution

LaVa Laser Vaporisation

LB LeRoy-Bernstein

MCP Microchannel Plate

MCPF Modified Coupled Pair Functional

MRCI Multi-reference Configuration Interaction

PEC Potential Energy Curve

PES Photoelectron Spectroscopy

pFT para-fluorotoluene

RCCSD(T) Restricted Coupled Cluster Singles Doubles (Triples)

REMPI Resonance Enhanced Multiphoton Ionisation

RG Rare Gas

RHF Restricted Hartree-Fock

RKR Rydberg-Klein-Rees

ROHF Restricted Open-shell Hartree-Fock

RRKM Rice–Ramsperger–Kassel–Marcus

SEVI Slow Electron Velocity-map Imaging

SO Spin Orbit
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SOCAR Spectroscopy of Complexes and Radicals

TOF Time-Of-Flight

VMI Velocity Map Imaging

ZEKE Zero Electron Kinetic Energy

ZOBS Zero-Order Bright State
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