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Abstract

The adhesive interactions between cells and surfaces play a key role in many vital phys-

iological processes, such as innate immune response, tissue formation, or wound heal-

ing, but also in targeted drug delivery and active control on the adhesion of viruses.

Adhesion is often mediated by specific intermolecular bonds, which generally func-

tion under considerable mechanical load. Bond properties can be explored by dynamic

force spectroscopy, which measures the force required to separate two surfaces con-

nected by small numbers of molecular bonds. Motivated by such experiments, the

aim of this thesis is to investigate the adhesive effects of discrete, stochastic binding of

clusters of intermolecular bonds, supported by a rigid or flexible substrate.

The stochastic adhesion of a cluster of bonds connecting a rigid disk and a flat surface is

investigated within the framework of piecewise deterministic Markov processes. The

model accounts for the rupture and rebinding of discrete bonds, depending on the

disk’s motion under applied force. Hydrodynamic forces in the thin layer of viscous

fluid between the two surfaces are described using lubrication theory. Bonds are mod-

eled as identical, parallel springs, and equally share the load. Monte Carlo simula-

tions, capturing the stochastic evolution of clusters with few bonds, are complemented

by various deterministic approximations, valid in the limit of a large number of bonds.

Distinct regions in the parameter space spanned by force and drag are identified, where

cluster’s evolution is largely dictated by either bond kinetics, or enslaved to the disk’s

motion. The stability of the cluster is discussed for non-zero rebinding, while dynamic

force spectroscopy experiments are mimicked under linearly ramped force.

The stochastic evolution of a bond population connecting a flexible membrane to a

rigid wall within a fluid, is also formulated as a Markov process, and spatial effects

are considered by allowing the vertical elastic bonds to differentially share the load,

depending on their extension. The deterministic motion of the membrane, interrupted

by stochastic binding and unbinding of bonds, is formulated as a partial differential

equation, derived using lubrication theory. As shown by stochastic simulations and

deterministic approximations, the volume and distribution of the liquid beneath the

membrane, play a key role in the cluster’s dynamics. The model provides preliminary

evidence of the nature of peeling stochastic processes. Subsequently, the model predicts

that the membrane and the bond population in clusters with sufficiently many bonds

under rebinding, fluctuate near equilibria predicted by the deterministic approxima-

tion. The average population and extension of bonds are shown to be largely inversely

correlated, using a wavelet-based semblance method.
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Ciprian Ionuţ Duduială is the one who first told me of this project; he welcomed me

when I arrived here and helped me with everything I needed. Ana Maria Gheorghe
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CHAPTER 1

Introduction

THE LIFE of our bodies is a symphony of as many as 1013 individual cells, grouped

into around 200 different cells types with distinct, specific functions, of which nearly

half are involved in adhesive interactions [4]. These can influence the shape, adhesion

and migration of cells, which in turn are essential elements for many important phys-

iological processes such as morphogenic movements, metastasis, tissue formation and

maintenance [77], inflammation [2], or wound healing [51].

Cellular adhesion consists of the specific binding of a cell to a surface, the extracellular

matrix or another cell using surface ligands called cell adhesion molecules (CAMs). These

molecules recognize each other and bind specifically on a key-lock principle, the two

binding sides being called receptors and ligands [4]. CAMs are of vital importance for

biological life and they appear in most organisms, from bacteria and viruses to human

beings. Plant cells also associate with their neighbours not only through interactions

between their cell walls, but also through specialized junctions between their plasma

membranes [4, 9, 24].

Adhesion of cells occurs at specialized sites spread over the plasma membrane, where

clusters of specific ligands physically link the extracellular transmembrane adhesion

receptors to intracellular structural and signaling proteins. The clusters exhibit a great

diversity of structures and functions. They generally have to function under consider-

able mechanical force which can be exerted from outside or from within the cell and is

known to influence the stochastic formation and rupture of bonds [10].

This thesis concerns the mathematical modelling of the stochastic adhesion of biolog-

ical clusters under force. The applications motivating this work are presented in §1.1.

The biological background is reviewed in §1.2. In §1.3 we overview existing modelling

approaches for cell adhesion. In §1.4 we discuss some mechanical details of modelling

the cell membrane. The organization of the thesis chapters is detailed in §1.5.

1



CHAPTER 1: INTRODUCTION

Figure 1.1: Leukocyte adhesion cascade: http://bme.virginia.edu/ley/.

1.1 Motivation

Innate immune response and the leukocyte adhesion cascade

Adhesion plays a key role in the leukocyte adhesion cascade, which is a crucial step in

the innate immune response of our body to an infection. When a tissue is invaded by in-

fectious micro-organisms, it generates specific signals attracting leukocytes (which usu-

ally patrol throughout our organism in order to eliminate potentially harmful agents

or dead cells) to escape from the blood vessel towards the site of infection. The pro-

cess occurs mainly in the post-capillary venules, where haemodynamic shear forces are

minimal due to small radius (usually 8 − 100 µm), and can be understood in several

steps including chemoattraction, rolling adhesion, tight adhesion and (endothelial) transmi-

gration, as presented in Fig. 1.1.

During the “chemoattraction” step, upon recognition of and activation by pathogens,

resident macrophages in the affected tissue release cytokines such as interleukins (IL-1),

tumor necrosis factors (TNF-α) and chemokines. IL-1 and TNF-α cause the endothelial

cells of blood vessels near the site of infection to express cellular adhesion molecules,

including selectins. Circulating leukocytes are localized towards the site of injury or

infection due to the presence of chemokines.

In the “rolling adhesion” phase, carbohydrate ligands on the circulating leukocytes

bind to selectin molecules on the inner wall of the vessel with marginal affinity. The

white cells present in the blood flow, having a typical velocity of several hundreds of

2



CHAPTER 1: INTRODUCTION

µm/s, are then tethered through selectin ligands borne by their membranes and they

begin rolling with 50 to 100-fold decreased velocity due to the rapid formation and

dissociation of selectin-ligand bonds [4, 15].

A “firm adhesion” phase follows, that results in the complete cell arrest due to an in-

teraction between integrin receptors (on white cells) and ligands such as ICAM-1 on

endothelial cells. The chemokines released by macrophages activate the rolling leuko-

cytes and cause surface integrin molecules to switch from the default low-affinity state

to a high-affinity state. The activated integrins bind tightly to the complementary re-

ceptors expressed on endothelial cells, with high affinity, causing the immobilization

of the leukocytes, despite the shear forces of the ongoing blood flow [24].

The last step in this succession is the “transmigration”. The cytoskeletons of the leuko-

cytes are reorganized in such a way that the leukocytes are spread out over the en-

dothelial cells. In this form, leukocytes extend pseudopodia and pass through the gaps

between endothelial cells. The leukocytes secrete proteases that degrade the basement

membrane, allowing them to escape the blood vessel in a process known as diapedesis.

Once in the interstitial fluid, leukocytes migrate along a chemotactic gradient towards

the site of injury or infection [24].

Recent papers have also identified additional steps in the adhesion cascade such as

slow rolling, adhesion strengthening, intraluminal crawling, paracellular and transcel-

lular migration [88].

Pathologies

Adhesion molecules contribute to normal biological processes and disease states such

as cancer (invasion and metastasis), inflammatory disorders (rheumatoid arthritis and au-

toimmune diabetes) and cardiovascular diseases (heart attack and stroke) [93]. Palacios

et al. have proven that breast cancer could be identified by relations between the ex-

pression of the P- and E-cadherins [107], while tumor cell progression and metastasis

were found to be dependent on the ability of a tumor cell to adhere to the proteins of

the extracellular matrix and survive at the distant location [29]. Recent studies have

shown that understanding the ability of the integrins in fibroblasts to interact with the

extracellular matrix, apply force and remodel the matrix, may provide better insight

into the pathology of diseases such as fibrosis and cancer that are commonly associated

with aberrant integrin signaling and matrix formation [60].

3



CHAPTER 1: INTRODUCTION

Drug development

Adhesion has also found applications in drug design, where it is manipulated to pro-

duce agents with strong recognition and affinity to specific markers on cancer cell surfaces, as

suggested by Kortt et al. [81]. In chronic inflammatory diseases, the CAMs include E-

selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1

(VCAM-1); they serve to slow and ultimately arrest leukocytes and may overreact to

such a degree that their activity itself becomes harmful. Pharmaceutical agents reduc-

ing the induced expression of one or more of the cell adhesion molecules are expected

to attenuate the inflammatory process [58, 86]. The adhesion cascade is halted when-

ever any of the mentioned steps is suppressed [4, 15], generating severe infections.

Active control of the adhesion of viruses to host cells to reduce viral replication rate,

using specifically engineered drugs, was achieved by English & Hammer [63].

1.2 Biological background

1.2.1 Adhesion molecules and clusters

First steps in cell adhesion

Moscona’s experiments from the early 50’s, where disrupted chick embryos regained

their initial shape, brought to light the existence of cell adhesion molecules [100]. Us-

ing the single molecule experiments available since the mid-80’s, it was found that

CAMs bear highly diversified molecular, structural and topological properties. Even

at present we can notice new molecules, mechanisms and functions that are continu-

ously emerging, and there are novel technologies that allow a more detailed study of

all these.

Main classes of adhesion molecules

The CAMs can be divided into four major groups: selectins, integrins, immunoglobulins

(Ig) and cadherins, sketched in Fig. 1.2. They are embedded in the membrane that

surrounds the cell, and most have sections that are extracellular, transmembraneous,

and intracellular. The length of the extracellular domain of the molecule is typically

2 − 50 nm, the transmembrane domain is typically 6 − 8 nm in length, roughly the

thickness of the membrane [66].

The selectins represent a class of cell-surface CAMs that mediate the adhesion between

leukocytes, platelets and endothelial cells under blood flow in the vascular system. The

selectin family is made up of three members: L-selectin (expressed on leukocytes), E -
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Figure 1.2: Sketch of classical CAMs, as depicted in [66].

selectin (expressed on endothelial cells) and P-selectin (expressed on platelets) [9, 24].

The integrins are a large family of CAMs, able to bind to a large variety of ligands and

being key mediators for the cell-matrix adhesions. An example is the formation of the

stable adhesions in leukocyte arrest, in which integrins on the surface of leukocytes

bind to intercellular adhesion molecules (ICAMs), which are members of the Ig super-

family, expressed on the surface of endothelial cells [9, 24, 71, 72].

The immunoglobulin superfamily (IgCAMs), consists of glycoproteins mediating either

cell-cell or cell-matrix adhesions during early development and in the adult period.

Members of the Ig superfamily can mediate both heterophilic (e.g. with integrins) and

homophilic interactions - in which an adhesion molecule on the surface of one cell binds

to the same molecule on the surface of another cell. For example, the homophilic bind-

ing between N-CAMs (Ig molecules expressed on nerve cells) contributes to the forma-

tion of selective associations between nerve cells during their development. There are

more than 100 members of the Ig superfamily, which mediate a wide variety of cell-cell

interactions [9, 24].

The cadherins can be classified into four main subfamilies: classical cadherins, desmo-

somal cadherins, protocadherins and cadherin-like proteins. There are about twenty

types of classical cadherins, such as N-cadherin (neural cadherin), R-cadherin (retinal),

VE-cadherin (vascular endothelial) and P-cadherin (placental cadherin) that mediate

selective adhesion of other cell types [79]. Cadherins are also the main responsible for

the formation of stable junctions between cells in tissues and they play a fundamental

role in cell-fate regulation and development. For example, homophilic interactions be-

tween E-cadherins lead to the selective adhesion of epithelial cells to one another. In

addition, the protocadherins are expressed in the central nervous system where they

seem to play a role in neuronal synapses adhesion [4, 9, 24].
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There are also new types of surface protein increasingly involved in cell adhesion and

whose functions are still far from being understod. This is the case for the heparan

sulfate proteoglycans (HSPGs), which mediate a variety of cell-cell, cell-matrix and cell-

microorganism adhesions, and the metalloprotease-disintegrins (ADAMs) involved in

processes as myogenesis, neurogenesis and sperm-egg adhesion and fusion [9].

Collective behaviour of adhesion molecules

Cell-cell interactions in which the cytoskeletons of adjacent cells are not linked to one

another are called transient. Important examples of transient interactions can be found

between the cells of the immune system, in the leukocyte adhesion cascade, and they

are generally mediated by selectins, integrins, and members of the Ig superfamily [24].

When adhesive interactions also involve cytoskeletons of cells they are called stable

junctions, and they are divided in four groups. The first two are the adherens junc-

tions and desmosomes, where cadherins or related proteins (desmogleins and desmo-

collins) are linked to actin bundles and respectively intermediate filaments [4, 9, 24].

The specific adhesive properties of desmosomes led to the introduction of the term

hyper-adhesion [51].

Initially wrongly described as apparent fusion between the outer leaflets of plasma

membranes, tight junctions are the closest known contacts between adjacent cells and

form seals that prevent the free passage of molecules (including ions) between the

cells of epithelial sheets. Gap junctions serve as direct connections between the cyto-

plasms of adjacent cells. They provide open channels through the plasma membrane,

which allow ions and small molecules (less than approximately a thousand daltons

≃ 1.66 × 10−24 kg) to freely diffuse between neighboring cells, but prevent the passage

of proteins and nucleic acids. Most cells in animal tissues - including epithelial cells,

endothelial cells, and the cells of cardiac and smooth muscle - communicate by gap

junctions. In electrically excitable cells, such as heart muscle cells, the direct passage of

ions through gap junctions couples and synchronizes the contractions of neighboring

cells [24].

1.2.2 Processes regulating the adhesive properties of clusters

The adhesion of cells in a fluid environment is complicated by the multitude of biolog-

ical structures, chemical reactions or physical mechanisms, all of which can regulate,

inhibit or facilitate the stochastic formation and rupture of bonds.
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Cell motion

The specific motion of cells can significantly influence the pattern of the adhesion be-

tween cells and a substrate. In the rolling stage of the leukocyte adhesion cascade, the

formation and breaking of molecular bonds happens at the front and at the back of the

contact region between the leukocytes and the endothelium [15, 115], enabling the cells

to resist the haemodynamic forces and to roll on the vessel wall. As mentioned earlier,

this step is mediated by CAMs from the selectin family.

Cell membrane deformations

Deformation of cells affects the area of contact between the cell and the substrate, the

number of bonds that can form, hence the adhesive forces. An example in this sense

is the transition from the rolling to the arrest of the leukocytes in the leukocyte adhe-

sion cascade [4]. As suggested by Fig. 1.1, cell’s arrest may be caused not only by the

stronger integrin bonds, but also by the leukocyte’s deformation which allows an in-

crease in the number of adhesive bonds. Other receptors able to exert forces onto the

cell’s structure are the desmosomes, which help cells resist shearing forces [51].

1.2.3 Experimental techniques

CAMs are tiny and delicate objects, subject to pN forces and nm displacements [15],

so accurate measurement of the physical properties of individual bonds had to wait

for the discovery of appropriate instruments. Current single-molecule manipulation

capacity spans six orders of magnitude in length (10−10 − 10−4 m) and force (10−14 −
10−8 N) and gives new insight into previously ignored features such as rupture force,

or force spectra, providing a measure of bond energies, lifetimes, and more recently,

entire energy landscapes [15, 16]. Viscoelastic properties can also be measured on short

length scales and in small volumes, such as within cells [103].

Adhesion bonds in cells usually have to operate under force. To understand the be-

haviour of adhesion clusters it is thus vital to investigate bond failure under an applied

force, this being the main idea of the dynamic force spectroscopy (DFS) [41, 103]. This

technique has been used in the study of many important biological bonds including

biotin-avidin, integrin [89], cadherin [8, 109] and selectins [40, 42, 48]. Typically, one

end of the molecule under study is attached to a surface, while the free end is attached

to a device through which force is applied. This setup inspired many models analyzing

the stochastic detachment of surfaces connected by clusters of bonds.
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(a) (b)

Figure 1.3: (a) Scheme of an AFM experiment of the forced unbinding of receptor-ligand bonds.

(b) Sketch of a biomembrane force probe (BFP) experiment [42]. The biotinylated red blood cell

is an elastic element which carries a microbead to which the ligands are attached. The bead on

the right is held by a second pipette and is functionalised with the receptors.

Single bond experiments

Ideally, the bonds at the surface and at the probe should specifically bind the ends of

the molecule, support infinite loads and not affect the mechanical or biological prop-

erties of the attached molecule [103]. However no such thing happens in the complex

biological situation, and it is generally difficult to interpret the data from applied force

experiments. The elastic structure of the cell cytoskeleton yields a non-trivial stress-

strain relation [12], which makes it difficult to exert force on adhesion sites in a con-

trolled way. Also, cells react to external stresses and adhesion clusters change their

structure under the influence of applied force, as has been proved by Riveline [120].

The solution is then to examine mechanical properties in single molecule experiments.

The atomic force microscopy (AFM) experiments on biotin-avidin bonds by Gaub and

coworkers [101], enabled the investigation of forced unbinding of single molecules.

Avidin can bind four biotin molecules with an unusually high binding energy of around

20 kBT. After the biotin-coated tip of an AFM-cantilever is stuck to the biotinylated

agarose bead surface and the ligand-receptor pair is bound, the soft, elastic cantilever

tip is retracted at a constant speed with piezo elements leading to a linear increase of

force on the bond with separation, as illustrated in Fig. 1.3 (a).

The biomembrane force probe (BFP) is a popular technique developed by Evans et al. in

1991 [37], and has the possibility to measure bond-forces of only 5 pN with loading-

rates from 0.05 − 60 nN/s (in contrast to the AFM measurements, where the measured

bond-forces were around 100 − 300 pN). In the BFP, the CAMs are carried by a mi-
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Figure 1.4: BFP tip-substrate distance and force versus time for cycles of approach-touch-

separation with formation and rupture of a bond. (a) Loaded at extremely slow rate, a bond

held the tip to the surface for 24 s and broke at ∼ 3 pN as the piezo retracted the transducer

(dashed trajectory). The fluctuations in tip position (solid curve) were due to thermal excita-

tions of the BFP. Stretch of the PEG polymers that linked the bond to the glass surfaces is shown

by the slight upward movement (∼ 15 nm) under force before detachment. (b) Loaded at ex-

tremely fast rate, a bond held the tip to the surface for ∼ 0.003 s (spike in force) and broke at

∼ 170 pN as the piezo retracted the test surface (dashed trajectory). The force fluctuations were

due to position uncertainties and BFP stiffness (see Merkel et al. [95]).

crobead and then attached to a lipid vesicle or a red blood cell as sketched in Fig. 1.3 (b).

The vesicle is aspirated in a micropipette at large aspiration pressure. The ligands are

carried on a second bead which is directly held by a pipette. Single molecule binding

is achieved by using a very small concentration of receptors. The sketched spring indi-

cates that the red blood cell behaves to a very good approximation as an elastic spring.

The force constant is determined by the tension of the vesicle which is directly deter-

mined by the aspiration pressure in the pipette [96]. The separation of the vesicles is

analyzed under a microscope, and video is recorded to calculate the rupture force. In

addition, receptor and ligands may be attached to their substrate through elastic teth-

ers, usually polymeric linker molecules. It was shown that generally, a linear relation

between displacement and force on the bond results. The most common loading pro-

tocol is the linear ramp of force in which the transducer is retracted at constant speed

and force increases linearly in time with a constant loading rate [38].
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Figure 1.5: Biotin-streptavidin bond strengths. (a) Force histograms from tests of single biotin-

streptavidin bonds demonstrate shift in peak location and increase in width with increase in

loading rate. Gaussian fits used to determine the most frequent rupture force or bond strength

are shown. As σf increased from ±1 pN at the slowest rate to ±60 pN at the fastest rate, the

standard error in mean force (the statistical measure for error in strength) ranged from ±0.3

pN to ±5 pN. (b) Dynamic strength spectra for biotin-streptavidin (circles) and biotin-avidin

(triangles) bonds. Consistent with the high-strength regime is the biotin-streptavidin strength

(⋆ AFM) measured recently by atomic-force microscopy (AFM) (see Merkel et al. [95]).

Fig. 1.4 shows results of BFP experiments on biotin-avidin bonds from the paper of

Merkel [95], in which the loading rate k f vt was changed over several orders of mag-

nitude by setting the BFP force constant k f in the range 0.1 − 3 pN nm−1, and piezo

retraction speed vt in the range 1 − 20000 nm s−1. The time dependence of the piezo

displacement and force in a typical experiment, is obtained for small (Fig. 1.4 (a)) and

large (Fig. 1.4 (b)) loading rates. The experiment consists of three steps. Initially the

binding sites are pressed together to facilitate binding. Then the pipette carrying the

microbead with the ligands is retracted and the force increases linearly until it vanishes

as the bond breaks. The elasticity of the transducer and the linker molecules holding

the adhesion bonds has an important influence on the interpretation of the results, be-

cause it determines the actual loading rate on the bond [39].

The time-scale for bond rupture decreases with the increasing loading rate while the

rupture force increases Fig. 1.5 (a). Also, the histograms show a sharp peak at small

forces for slow loading and a broad distribution with a maximum at large forces for fast

loading. The dynamic force spectrum depicted in Fig. 1.5 (b), plots bond strength as

function of the logarithm of loading rate and shows a sequence of linear regimes with

increasing slopes for biotin-avidin and biotin-streptavidin, respectively. This points to

the presence of three and two energy barriers along the unbinding pathway, respec-

tively [95].
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In the same general DFS framework, along with the AFM and the BFP, other techniques

have been applied to exert forces on single molecules and investigate bond strengths,

e.g. laser optical tweezers (LOT) [76], magnetic tweezers [130], and more recently inter-

molecular force microscopy (IFM) [136]. In LOT experiments the molecules are tethered

to a dielectric bead which is trapped in the force field of the focus of a single laser beam.

Force is exerted on the adhesion bond by moving the bead with the laser beam. This

technique was applied to measure force-extension curves of the muscle protein titin

[76]. Magnetic tweezers use paramagnetic beads instead of dielectric ones which are

held in a magnetic force field and used in the same way as optical tweezers. They have

been applied, e.g. to investigate DNA elasticity [130]. The IFM was reported to give

signal-to-noise ratios 30-fold higher than the AFM, with force resolution to the sub-

picoNewton level and response time of sub-millisecond level by using a flexible glass

microneedle. This was used to analyze the different bound states of paired nectin and

cadherin molecules, where each bound state was found to have a unique lifetime and

bond length [136].

Experiments on adhesive clusters

The use of DFS in the analysis of biological clusters was attempted in a study related to

the binding of T-lymphocytes and human umbilical vein endothelial cells (HUVECs),

which is mediated by several types of adhesion molecules such as E- and P-selectins, in-

tercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-

1) [145]. An analytical treatment of the behaviour of multiple bonds in DFS experiments

was recently proposed by Willliams [144], where zipper and parallel loading scenarios

are considered and analyzed with the aid of Poisson statistics. However, the collective

behaviour of clusters of biological bonds is still far from being understood and serious

effort is currently made in this direction.

The binding properties of molecular bonds can also be investigated with flow chambers,

where a receptor-bearing cell or particle is driven along a ligand-coated surface in a

laminar shear flow. Using a very dilute concentration of ligands on the wall allows one

to observe transient adhesion events which are mediated by single adhesion bonds.

Such attempts led to the first known experimental single bond rupture, performed by

Harry Goldsmith in 1986 [135], and then used by Alon et al. for the study for leukocyte

rolling [5]. Changing the flow velocity, or the viscosity of the fluid, allows the control

of the force acting on these bonds. The advantages and limitations of this method have

been exposed in the recent review of Bongrand [16].
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Recent experimental advances

In a different approach, multi-wavelength X-ray diffraction methods were used to obtain

the specific structure of ligand-receptor pairs with ångstrøm precision [54].

However, despite of the accuracy of the measurements, recent research emphasized

that a proper calibration of the instruments requires a deeper theoretical understanding

of the experimental setup, as suggested by Nassoy [102]. Such detailed theoretical

analyzes have been recently done by Heinrich for BFP experiments [68], and by Clarke

et al. for AFM experiments [20].

1.3 Modeling cell adhesion

Knowledge about single bond behaviour under force has to be integrated into an ap-

propriate description of adhesion clusters of multiple bonds under force, where the

particular details of the situation (rebinding of ruptured bonds, number of bonds in-

volved, loading scenarios, hydrodynamic effects, membrane mechanics and cell dy-

namics) become important for the formulation of an appropriate model, ideally en-

compassing both deterministic and stochastic effects.

1.3.1 Individual bonds: model and rupture

As found by the BFP experiments of Evans & Ritchie [38], the maximum force that a

single bond can withstand not only depends on the physical properties of the bonds,

but also on the loading rate by which the bond is probed.

Bond models

The cornerstone in modelling cell adhesion is the appropriate description of single

bonds. Inspired from the properties of generic polymers and confirmed in various

experiments involving a number of adhesion molecules, the elastic spring model gives

a good approximation for the complex behavior of the adhesion proteins, and also cap-

tures the effects of force and displacement in the dynamics of the cluster [87]. Refined

versions of the linear spring behaviour of clusters, including a multiple-spring model

for the receptor-ligand interaction have also been considered by Schwarz et al. [126].

Anticipated in 1988 by Dembo [28], catch-bonds exhibit an increase in lifetime under

applied force. The existence of the first catch-bond was revealed 15 years later, by

the experiments on selectin-mediated bonds under low force performed by Marshall et

al. [94], while in 2008, a group lead by Sokurenko proved that catch-bond properties
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Figure 1.6: (a) Energy landscape U∗(x) along the 1D reaction coordinate x∗. Rupture and re-

binding of molecular bonds correspond to transitions of the Brownian particle (black dot) over

the transition state barrier. The bound state (“closed bond”) at x∗C is separated by the transi-

tion state barrier at x∗B from the unbound state “open bond”). (b) Original potential U∗(x) tilts

under force with the addition of a new potential −F∗x∗.

are likely widespread [132]. It was suggested to call slip bonds the molecular bonds

which (as expected) display a shorter lifetime under disruptive forces. Studies by the

teams of Evans and Hammer [40, 42, 65] suggested that the catch behaviour could also

be induced by the way force is applied, since the same molecules can exhibit both

catch and slip behaviour for different force (or shear) regimes [7]. Other models for

the behavior of CAMs, such as worm-like chains [35], or non-Hookean elastic springs

(FENE) models used in the study of polymers [47], have been proposed.

Stochastic rupture of single bonds under force

The stochastic dissociation of single bonds under force is a key issue in cell adhesion.

Most commonly used models for bond adhesion assume that receptors and ligands are

elastic springs which interact via a reversible chemical process

Receptor + Ligand
k∗off

⇌
k∗on

Bond (1.3.1)

to form bond complexes, themselves having spring-like properties, where k∗on and k∗off

are the forward and reverse reaction rates. Using a thermodynamic approach, Bell [10]

and Dembo et al. [28] proposed two such models based on the interaction energies

between free, bound and transition states.

A breakthrough was made by Bell in the late 70’s [10]. He estimated that the force re-

quired to separate two cells is much greater than the expected electrical forces between
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cells, and the reaction rates for membrane-bound reactants would increase exponen-

tially when force is applied, as in

k∗off(F∗) = k∗0 exp(F∗/F∗
0 ), (1.3.2)

where k∗0 is the individual bond off-rate in the absence of force, F∗ the applied force

and F∗
0 = kBT∗/x∗0 a force scale for bond strength (kB the Boltzmann constant and T∗

the absolute temperature), where x∗0 represents a unit displacement along the rupture

coordinate (a typical scale in (1.3.2) being F∗
0 ≃ 4 pN, for x∗0 ≃ 1 nm).

The above rate was obtained by describing the rupture of bonds in the framework of

Kramers’ theory [67, 82, 138], as a thermally activated escape from a potential well. The

main idea behind this approach is to replace the various states of a molecule (in adhe-

sion closed and open bonds) with a “reaction coordinat” x∗, representing the distance

between both fragments. Assuming the bond molecule undergoes Brownian motion in

the x∗-direction, the rupture of biological bonds can be modelled as the escape of the

particle sketched in Fig. 1.6 (a), from the potential well of coordinate x∗C.

An imposed dissociating force F∗ modifies the initial energy landscape to U∗(x∗) −
F∗x∗. If the barrier is very sharp, its height E∗

B reduces in proportion to the product of

F∗ and the “reactive compliance” x∗0 = x∗C − x∗B, where x∗C and x∗B are the coordinates of

the bottom of the well and the barrier. For sharp transition barriers, Kramers’ theory

applies and the particle has to jump over a barrier of height E∗
B − F∗x∗B, as sketched in

Fig. 1.6 (b). In the notation of [38], the rupture rate under force is

k∗off = ν∗De−(E∗
B−F∗x∗B)/kBT∗

= ν∗De−E∗
B/kBT∗

eF∗x∗B/kBT∗
= k∗0eF∗/F∗

0 ,

so formula (1.3.2) is obtained, where ν∗D has the dimension of an inverse time and is

determined by the shape of the potential.

The one-step model for single bond rupture under force was generalized and put in a

firm theoretical basis by Evans and Ritchie [38] for barriers of finite width, where the

shape and the position of bound state and barrier changes with force. This leads to a

algebraic force dependence of ν∗D and to corrections in the dependence of the barrier

height on F∗. Despite its simplicity and the flaws generated by its use in inappropri-

ate situations [125], Bell’s model is still widely used with good results. At present,

intensive effort is made to establish a theoretical base for the rupture of single bonds,

accounting for different bounding states and protein unfolding.

Dembo et al. [28] refined the model proposed by Bell [10], for the transition rate of

Hookean springs under force, and obtained the formula

k∗off(F∗) = k∗0 exp

{[
κ∗TS

κ∗
(L∗

TS − L∗) F∗ +
κ∗ − κ∗TS

2(κ∗)2
(F∗)2

]
/kBT∗

}
, (1.3.3)
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where L∗ is the unstressed bond length and κ∗ its stiffness, and the subscript TS de-

notes “transition state”. The association rate is derived through an affinity coefficient

k∗a ≡ k∗on/k∗off, which represents the relative chance of a bond forming or breaking and

is assumed to form the Boltzmann distribution. Dembo’s model for the transition rate

of Hookean springs under force predicts a rate

k∗a(F∗) = k∗a(0) exp

(
− (F∗)2

2κ∗kBT∗

)
, (1.3.4)

where k∗a(0) is the binding affinity in the absence of force. In particular, for κ∗TS = κ∗,

from (1.3.4) one recovers Bell’s formula (1.3.2) for an elastic spring

k∗off(F∗) = k∗0 exp{[(L∗
TS − L∗) F∗]/kBT∗}. (1.3.5)

Writing the force exerted on the bond as F∗ = κ∗(h∗ − L∗), and substituting L∗
TS = L∗

in (1.3.4), one obtains the most common version of Dembo’s rate

k∗off(h∗) = k∗0 exp

(
κ∗TS − κ∗

2kBT∗ (h∗ − L∗)2
)

. (1.3.6)

More models used in bond kinetics are reviewed in [146].

1.3.2 Clusters

Most dynamic interactions between cells and substrates involve clusters of 2-100 adhe-

sion molecules [15], which collectively share the mechanical load.

Bond population structure and position

A first problem in the study of clusters is to select the types of bonds involved. Most

models consider homogeneous populations bond populations, and depending on the

simulated experiment, bonds can be parallel to the direction of the force [31, 35, 49] (as

for the DSF experiments), or they can be tilted to an angle [115] (as in the case of flow

chambers). If two different species of adhesion bonds are present in the membrane, e.g.

with different length, the membrane has to bend between two unlike adhesion bonds.

This additional energy for bending can induce different dynamic regimes with clearly

distinct patterns of stickers and repellers at intermediate times separation between the

different species of molecules, as suggested by theoretical analysis from [143].

Mechanical loading scenarios

Of the same importance is the distribution of force between the bonds of the cluster. Ex-

periments performed on heterogeneous clusters suggested that the pulling force may

not be distributed evenly among the bonds [145], and this may be the reason why
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Figure 1.7: Loading scenarios for adhesion clusters. The direction of the force is indicated by

arrows. (a) parallel bonds, (b) serial bonds (c) unfolding bonds and (d) zipper-like arrangement

with sequentially loaded bonds [36].

most models involve homogeneous clusters. Multiple bonds can act as cooperative

(simultaneous breakage) bonds in cadherin or as uncooperative bonds (bonds rupture

sequentially) in nectin [136]. Another difference of clusters compared to single bonds

is that the bonds can be loaded to different extents (sometimes even a fraction loaded

while the rest unloaded) and that rebinding of broken bonds becomes important, being

facilitated by the remaining intact bonds which keep the binding sites in close vicinity.

In regard to the distribution of force between the bonds and the behaviour upon bond

breakage, different loading scenarios can be distinguished for multiple bonds as shown

in Fig. 1.7. In the case of parallel bonds depicted in Fig. 1.7 (a), the force is redis-

tributed among the intact bonds but the cluster as a whole remains intact until the last

bond breaks. This scenario can be applied for diverse cellular adhesion clusters and

for many DFS experiments on multiple bonds. Serial bonds sketched in Fig. 1.7 (b), in-

dividually feel the force applied to the whole chain and the breakage of the first bond

disrupts the whole cluster as in the case of protein filaments such as actin. In the case of

unfolding presented in Fig. 1.7 (c), bond breakage only extends the chain and the load-

ing process starts anew, as in the case of proteins like the muscle protein titin in which

several folded protein domains unfold and extend upon loading. In the zipper-like

arrangement shown in Fig. 1.7 (d), the first bond of the chains is subject to the whole

force and as soon as it breaks, the next bond is loaded. This model can be used as a

model for RNA or DNA unzipping [90], or to examine the peeling of a cell off a surface

[70]. In general (and for more dimensions), combined scenarios are conceivable.
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Association and dissociation of bonds in a cluster

Dissociation and association dynamics of parallel adhesion clusters was first discussed

by Bell [10]. Although it is clear that force leads to accelerated cluster dissociation, it

is usually not known how it is distributed over the different closed bonds in different

situations of interest. In many cases, most prominently in rolling adhesion, only a few

of the different bonds are loaded to an appreciable degree, thus dissociation occurs in

a peeling fashion [28, 62]. However, due to geometrical reasons, even in this case there

will be a subset of bonds which are loaded to a similar extent.

Factors as the initial number of closed bonds, the physical properties of the bonds (rest

length, elastic constant, affinity, extensibility), the local geometry (flat or curved sur-

face), the membrane properties (rigid or elastic) and the binding range (constant or

variable) have a significant influence on the association rates for clusters, which in turn

have a deep impact on cluster’s lifetime and stability [10, 31, 35, 38].

1.3.3 Mechanical details of the models

Hydrodynamics

Because of the scales involved in cell adhesion, we generally deal with low Reynolds

number flows, so there is negligible inertia [114]. The first to introduce hydrodynam-

ics to the problem of cell adhesion were Hammer & Laffenburger [61], who exploited

classical solutions (Goldman, Cox & Brenner [55, 56]) for the force and torque on a

smooth rigid sphere rolling in a shear flow over a flat plane at zero Reynolds number.

They balanced hydrodynamic forces on the cell with adhesive forces arising from dis-

tributed bonds in a small region at the base of the cell, close to the plane, employing

Bell’s (1978) kinetic model, to determine the number and strength of receptors required

for adhesion. The membrane-fluid-surface interaction is usually addressed using thin

film theory, and non-linear drag forces arise [70]. A non-zero slip boundary condition for

the fluid-substrate interaction could eventually be considered [142], since the widely

used no-slip boundary condition is not very suitable for modelling submicron and es-

pecially nanoscale flows, while surface roughness is another issue one should account

for [139], when modelling cell adhesion.

Membrane mechanics

The adhesive behaviour of cells or capsules in a liquid environment is complicated by

their mechanical properties like bending stiffness or shear elasticity, as highlighted by

e. g. Pozrikidis [112, 113], Hodges & Jensen [70], or Reboux et al. [116]. As a result,
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the members of the biotechnology community are now examining the mechanics of

thin elastic shells under contact forces (a well known topic in civil and mechanical en-

gineering), and recently, many man-made micro- or nano-capsules have found a wide

range of industrial applications [116].

In BFP experiments, the lipid vesicles are typically under strong tension and often,

the vesicles are only used as elastic force transducers while the bonds are attached to

rigid microbeads. At the same time, adhesion receptors in clusters are densely packed

(relative distances are in the range of nm) and are attached firmly to the cytoskeleton

of the cell. Therefore, effects of membrane fluctuations are small and can be neglected

in the context of tight adhesion clusters (cadherin-mediated, for example). However

the situation changes in the case of transient bonds and different models analyzing the

peeling [28, 70] (where bending and stiffness of the membrane are key parameters) or

rolling of leukocytes [70, 115] have been proposed.

The most commonly used models for membranes with negligible bending stiffness are

discussed by e.g. Risso & Carin [119] or Wan et al. [140], but experimental validation

proved a very difficult task as shown by Smith et al. [131]. A more in-depth review of

cell mechanics is presented in [116].

1.3.4 Deterministic models for the dynamics of bonds in a cluster

In addition to the rupture rate (1.3.2), Bell also proposed a deterministic model for

the non-equilibrium dissociation of adhesion clusters under force [10]. He emphasized

that “a little patience will suffice” for individual biological bonds to rupture even in the

absence of force, but the situation changes dramatically if the bonds are linked together

in a cluster, because the probability for all the receptors to be simultaneously unbound

is very small. The equilibrium properties of adhesion clusters under rebinding were

also discussed in [10].

Thermodynamic models

Soon after, a series of thermodynamic models for describing adhesion between two cells or

between a cell and a surface was developed by Bell et al. [11], integrating details about

the complementary receptors on the two surfaces (e.g. lateral mobility, heterogeneity,

total number per cell), the cell-cell bridges that mediate adhesion (e.g. spring constant,

length, binding constant), the repulsive forces between cells (e.g. compressibility of the

glycocalyx, thickness of the glycocalyx, lateral mobility of the glycocalyx), and notions

about the purely geometrical parameters of adhesion (e.g. maximum contact area, total

surface areas of the two cells, heterogeneity vs. uniformity of contact distance). A
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strong limitation of thermodynamic models is that they say nothing about the kinetic

process involved in reaching equilibrium. The deterministic Bell-model has also been

extended by Seifert [127, 128] to treat the linear loading of a cluster of adhesion bonds,

which usually is applied in DFS experiments.

Point attachment model

The framework proposed by Bell was used to analyze leukocyte rolling in shear flow by

Hammer et al. in 1987 [61], in a model referred to as the “point attachment model”

because it considers the contact area between the cell and the surface to be a small,

homogeneous region that mediates the initial attachment of the cell to the surface. The

cell is modelled as a rigid sphere and the receptors at the surface of the cell are as-

sumed to convect and to diffuse into the contact area. The main finding is that the

adhesion parameters, such as the bond formation rate, the receptor-ligand affinity, the

fluid mechanical force, the receptor mobility, the number of receptors and the contact

area may significantly enhance the peeling of the cell from the substrate. A key result

is that there are two regimes in which different chemical and physical forces domi-

nate: increasing bond formation rate means fewer receptors are required for adhesion

at a fixed dimensionless dissociation constant, and an increasing dissociation constant

means more receptors are required for adhesion at a fixed bond formation rate.

Membrane peeling

A famous model for the behaviour of bonds under force was proposed by Dembo et

al. [28], who found different expressions for the binding rates, assuming that the dif-

ferences between the transition state and the bonded state illustrated in Fig. 1.6, can be

described by a change in the spring constant only, as seen in (1.3.3). He also used the

transition state theory but in the specific context of Hookean potentials. In his model,

a piece of a thin, inextensible membrane is attached to a fixed wall and a pulling force

is exerted on one end, while the other end is held fixed, in the so called “peel test”.

The attachment and detachment under force is analyzed by coupling the equations for

deformation of the membrane with equations for the chemical kinetics of the CAMs.

Dembo also related bond stress to bond strain and the chemical rate constants of the

adhesion molecules to bond strain, and derived a formula for critical tension, finally

predicting that force does not necessarily increase dissociation rate, but could actually

decrease it, postulating that applied force could entrap a dissociating ligand, in what

we call now a catch-bond. His prophecy was found to be true 15 years later [94].
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Membrane spreading and peeling

On the same vein, a detailed analysis of spreading and peeling interactions between cells

and substrates, mediated by clusters of bonds was performed by Hodges & Jensen in

2002 [70]. The cell is modelled as an extensible membrane under tension containing

fluid of constant volume. In the rapid binding kinetics regime, the authors model the

sedimentation of the cell onto the plane under adhesive forces (spreading), followed by

removal of the cell from the plane under the action of an external force (peeling), using

lubrication theory to describe the the thin-film flow between the cell and the plane. It

is shown that these events are dominated respectively by quasi-steady spreading and

peeling motions. Also, a relation between cell rolling speed and shear rate is deter-

mined: at low speeds it is linear and independent of the viscosity of the suspending

fluid; at higher speeds it is nonlinear and viscosity-dependent.

Bond tilting and sliding friction

A continuation of this work was done by Reboux et al. [115]. The cell adhering to a

biological interface is modelled as a rigid cylinder moving in a viscous shear flow near a

wall. Adhesion forces arise through intermolecular bonds between receptors on the cell

and their ligands on the wall, which form flexible tethers that can stretch and tilt as the

base of the cell moves past the wall. A microscale calculation (for two parallel sliding

plates) reveals a nonlinear force-speed relation arising from bond formation, tilting and

breakage. Two distinct types of macroscale cell motion are then predicted: either bonds

adhere strongly and the cell rolls (or tank treads) over the wall without slipping, or the

cell moves near its free stream speed with bonds providing weak frictional resistance

to sliding. The model predicts bistability between these two states, implying that at

critical shear rates the system can switch abruptly between rolling and free sliding,

and suggesting that sliding friction arising through bond tilting may play a significant

dynamical role in some cell adhesion applications.

Multiscale modelling: continuum approaches

An effective multiscale computational approach for the study of the adhesion of cells was

proposed by N’Dri et al. [104]. The cellular level model consists of a continuum rep-

resentation of the field equations and a moving boundary tracking capability to al-

low the cell to change its shape continuously. At the receptor-ligand level, a bond

molecule is modelled as an elastic spring. Communication between the macro/micro-

and nanoscale models is interactive during the computation. The computational model

is assessed using an adherent cell, rolling and deforming along the vessel wall under

imposed shear flows. The intracellular viscosity and interfacial tension are found to
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directly affect the rolling of a cell while the presence of a nucleus increases the bond

lifetime, and decreases the cell rolling velocity. Furthermore, it is found that a cell with

a larger diameter rolls faster, and decreases the bond lifetime. This study shows that

cell rheological properties have significant effects on the adhesion process, contrary to

what has been hypothesized in most literature.

1.4 Stochastic models for adhesion clusters

A main issue in cell adhesion is to find the right coupling between the determinis-

tic descriptions of the cell and environment with the stochastic behaviour of clusters

consisting of few bonds. Also, an important issue is to examine the accuracy of the

well-established deterministic models in the small number of bonds limit.

Limitations of deterministic models

Since the deterministic limit could only describe the dynamics of the cluster in the

large number of bonds limit (see e.g. [10], [28], [15]), a stochastic approach is required

for the study of the fluctuations in the life of small clusters. When the stochastic models

account for both rupture and reformation of broken bonds, analytical formulas are dif-

ficult to obtain, so results are explored mainly via Monte Carlo (and related) stochastic

simulation algorithms.

As in the case of deterministic models, specially designed stochastic model are also

developed to evaluate specific experiments, for example the binding probability be-

tween ligands and receptors on opposing surfaces as a function of contact time [146].

A stochastic version of the Bell-model has been introduced and studied in the large sys-

tem limit and for specific parameter values by Cozens-Roberts et al. [26], who extended

the model proposed by Dembo et al. [28] to obtain probabilities for the formation of

bonds.

Adhesive dynamics

Another important contribution of Hammer was the introduction of adhesive dynamics

(AD) in 1992 [62], a computational method to simulate the adhesion of cells to sur-

faces. The method involves solving the equation of motion for a cell, and incorporates

molecular properties such as bond kinetics and compliance. It has been successful at

simulating the dynamics of cell adhesion under flow, and for predicting how dynamic

states of adhesion follow from molecular properties. It has also been used to simu-

late virus-cell interaction, the aggregation of cells in linear flows, and the detachment

of cells from surfaces. Brownian adhesive dynamics (BRAD) was a novel technique in-
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troduced by Hammer et al. [63, 64] to simulate viral attachment to surfaces, which

coupled Brownian motion simulations and adhesive dynamics. The method is capable

of simulating multiple ligand/receptor pairs between the virus and cell, extendable to

any geometry, and to any virus/cell system.

Purely stochastic models: parallel clusters of bonds under constant and linear force

In an interesting approach towards the analysis of the stochastic dynamics of cell adhe-

sion clusters, Tees et al. [134] made use of the survival functions inspired from the the-

ory of reliability engineering of electric components and networks and the Bell model

for bond rupture under applied force. They derived closed-form expressions for the

probability distribution of the break-up time with multiple-independent or interacting

bonds (and compared them with Monte Carlo simulations), showing that the average

lifetime of n bonds scales with the n-th harmonic number multiplied by the lifetime of

a single bond. Bond reformation was not analyzed, but identified in reliability theory

as “maintained system”, while a method for addressing the non-uniform distribution

of force between connected bonds was proposed.

In several papers, Erdmann & Schwarz use a stochastic version of the Bell model to

analyze the stochastic dynamics of parallel clusters of bonds under constant [31], or

linearly ramped force [32], with rebinding. Neglecting most mechanical aspects, the

model has three dimensionless parameters: the cluster dimension n (total number of

binding sites), the dissociating force f (or ramping coefficient for ramped force) and

the rebinding coefficient γ. The state of the system is completely characterized by the

number of closed bonds and the stochastic dynamics of the cluster are given by the

one-step Master Equation (ME):

dPk

dt
= rk+1Pk+1 + gk−1Pk−1 − [rk + gk]Pk, k = 0, . . . , n; Pk(0) = δkn, (1.4.1)

where Pk(t) is the probability to have k closed bonds at time t, while rk and gk repre-

sent the stochastic rupture and rebinding rates for the clusters having k closed bonds.

The ME is obtained from the analysis of the probability flux at the states k = 0, . . . , n

[50, 138]. Different boundary conditions for the birth and death process involving the

bond population are considered [122, pp. 194]. An absorbing boundary condition for

the completely dissociated state for a cluster (zero bonds), is inspired from DSF experi-

ments, where receptor and ligand are usually retracted by an elastic recoil of the linker

molecules and rebinding is impossible. The state with zero bonds is called reflecting if

rebinding is still possible.

Using a deterministic approximation for the ME the authors identify the relevant scal-

ing f /n and identify three forcing regimes. In the low force regime, the cluster decays
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exponentially, while in the intermediate force regime the decay is much faster and there

is a sequential rupture of bonds (in the no rebinding case). In the large force limit, the

model predicts a catastrophic rupture regime because the dissociation of the first bond

leads to the instant dissociation of the cluster.

Once the ME (3.2.2) is solved (either analytically or numerically), many relevant quan-

tities can be calculated. In the particular cases of zero force or no rebinding the ME can

be solved even analytically. In the general case with force and rebinding the authors

determine the critical force for dissociation analytically, while the solution of the ME

is computed from stochastic simulations using the Gillespie algorithm [53]. A special

focus was on the comparison between the deterministic and stochastic approximations

for the solution of the ME and it is found that the deterministic approach only works

well for low force and no rebinding, since it includes neither effects of fluctuations, nor

the effect of an absorbing boundary.

Effects of receptor-ligand distance in clusters at equilibrium

Another model proposed by Erdmann and Schwarz is used to assess the impact of

receptor-ligand distance (considered constant) on cluster stability [35]. A one-step ME

is derived which incorporates the effect of cooperative binding through a finite num-

ber of polymeric ligand tethers, of fixed length. The authors also consider Fokker-

Planck and mean field equations [50, 117], as continuum limits of the ME. Polymers

are modeled either as harmonic springs or as worm-like chains. In both situations the

authors find bistability between bound and unbound states for intermediate values

of receptor-ligand distance and calculate the corresponding switching times. For small

cluster sizes, stochastic effects destabilize the clusters at large separation, as shown by a

detailed analysis of the stochastic potential resulting from the Fokker-Planck equation.

Adhesion clusters between elastic substrates

Employing the same ME approach, Gao et al. [49] analyzed an idealized stochastic-

elasticity model of two elastic bodies joined by a cluster consisting of multiple molecular

bonds, using elastic descriptions of adhesive contact on large scales and statistical de-

scriptions of single-bond behaviors on small scales. The coupled stochastic-elasticity

governing equations were solved numerically using Monte Carlo simulations. The

aim was to investigate how the lifetime and strength of a molecular cluster are influ-

enced by the adhesion size, the bond rebinding rate, and the elastic stiffness of the cell-

substrate system. It was showed that depending on the adhesion size and the relative

stiffness of the surrounding elastic media with respect to the adhesion cluster, there is a

transition between uniform and crack-like singular distributions of interfacial traction.
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For a given adhesion size, the average cluster lifetime approaches infinity asymptoti-

cally as the applied load is reduced below a critical value, defined as the strength of the

bond cluster. Finally, the initial growth of a small cluster tends to stabilize adhesion as

a result of collective effects in a stochastic process, in agreement with [31].

1.5 Overview and structure of thesis

The aim of this thesis is to propose and validate simple models addressing the validity

of deterministic approximations, and to examine the importance of stochastic effects,

for discrete adhesive molecular clusters with few bonds, which rupture and rebinding

with rates depending on the motion of a rigid, or flexible substrate. The thesis is laid

out as follows.

Chapter 2

Here we develop a stochastic model for the evolution of a cluster of molecular bonds,

connecting a flat surface to a rigid disk moving in a viscous fluid, under the influ-

ence of an applied force. The state of the system is characterized by the number of

bonds and their extension at time t. Bonds are modelled as elastic springs under force,

which rupture under force according to the Bell formula (1.3.2), and rebind with height-

dependent rates. Between the rupture and rebinding events, the disk moves determin-

istically along curves depending on cluster population, force and drag. Bond and disk

properties are incorporated in a dimensionless drag coefficient spanning over several

orders of magnitude, which justifies a detailed treatment of the limiting cases of zero-

and infinite-drag. The model dynamics is formulated in the framework of piecewise-

deterministic Markov-processes proposed by Davis in 1984 [27, 111], and we derive

an exact stochastic algorithm for simulating individual trajectories. A deterministic

framework is also proposed.

As the model’s main purpose is the development of tools suitable for studying the

coupling between a continuous motion and the stochastic rupture and rebinding of

bonds, the mechanical details are simple. Among other limitations, the model only

accounts for the vertical motion of the disk, thin-film conditions are assumed to be

valid for the entire cluster lifetime (and beyond), and no spatial effects generated by

the rupture of various bonds (assumed identical) are considered. However, despite the

model’s simplicity, the methods we have developed allow the tackling of much more

complex problems. In this work for example, spatial effects are addressed in Chapter

5, where the bonds attached to a flexible membrane are differentially stretched.
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Chapter 3

In this Chapter we analyze the zero-drag limit, where we recover the models proposed

by Erdmann & Schwarz [31, 33], and the infinite-drag problem, which together give a

good idea about the range of cluster’s lifetime and decay profile. The time-independent

transition rates greatly simplify cluster dynamics described by a ME (3.2.2), which is

solved using analytic formulas, a Fokker-Planck equation (FPE), the Gillespie algo-

rithm and deterministic approximations. Two parameter maps give a quantitative es-

timation of the constant force and loading rate regimes predicted by [31, 33]. The ratio

f /n which fully characterizes the deterministic cluster decay, is found to have a lim-

ited relevance in the stochastic dynamics of the cluster, as direct solutions of the ME

reveal that larger clusters decay faster than smaller ones, at same f /n. However, with

rebinding, larger clusters may again survive longer for the same value of f /n.

Chapter 4

This Chapter presents the drag-induced dynamics. The patterns of disk’s detachment

under constant force and drag are summarized in a parameter map. For small drag, the

disk jumps between fixed positions, with the bonds breaking while the disk is station-

ary. In the intermediate drag regime, the bonds break as the disk moves between the

equilibria. For large drag the disk moves little, and the bonds rupture due to thermal

fluctuations. The region where the Erdmann & Schwarz model assumptions are valid

is localized near the zero-drag boundary, while the “catastrophic” failure of bonds pre-

dicted in [31], does not happen anymore in the presence of drag. The distribution of

cluster lifetimes and extension is examined using simulated trajectories. The cluster

decay profiles confirm the force and drag regimes identified earlier. Stochastic simula-

tions are validated against probability functions obtained from an analytical formula,

and we also present results involving probabilities in time and height coordinates. For

the problem with rebinding, we present a phase plane analysis of the deterministic

equation, which identifies the stable and unstable equilibria, as well as of saddle points

for the number of bonds and disk’s displacement. The second part of the Chapter is

dedicated to the study of the cluster’s dynamics under ramped force, where we iden-

tify three distinct loading-rate regimes. For this case we develop simulations aimed at

mimicking the DFS experiments, with an emphasis on cluster size, and drag.

In the third part of the Chapter we examine a possible PDE formulation for the time-

evolution of the probability density of the bivariate stochastic process having the bond

population and disk displacement as variables, following the work of Lipniacki [91].

A solution based on the method of characteristics is developed and compared against
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stochastic simulations. For large drag (c ∼ 100) the transition rates are time-independent

and the estimates of Pk(t) representing the probability of having k bonds at time t are

in good agreement, in contrast with the results obtained for c ∼ 1. A possible cause

is suggested by the analytical solutions for the probabilities Pk computed in Appendix

4.A, which show that P1 is a n-dimensional integral with time-dependent limits. As

this indicates that the problem may even not admit a PDE formulation, we formulate

integro-differential forward and backward equations for the evolution of the density,

whose solutions are to be checked against stochastic simulations.

Chapter 5

Further we extend the results obtained for the vertical motion of a disk, to the vertical

motion of a thin, flexible membrane connected to a planar surface via adhesion clusters,

in the presence of hydrodynamic effects and vertical forces at the membrane bound-

aries. The variable gap between the two surfaces differentially stretches the bonds,

assumed to behave as elastic springs under force. The bonds are also allowed to form

and break at discrete binding sites spread over the membrane. The dynamics of the

membrane-clusters system are addressed in the framework of piecewise deterministic

Markov processes, and an exact stochastic algorithm is developed for the simulation of

individual trajectories. The coupled evolution of adhesion clusters and the membrane’s

displacement is approximated by a differential equation whose solution is compared

against results obtained from averages of the stochastic simulations. The membrane

detachment time is strongly affected by the liquid volume underneath, by the bond

population, and by the forces acting at the boundaries. The membrane displacement

and bond populations are related using a wavelet-based semblance analysis.

The main conclusions of the thesis are reviewed in Chapter 6, where we also discuss

potential further work.
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Adhesive molecular bond clusters

between a disk and a surface

THE COUPLING between the cell’s motion and the stochastic formation and dissoci-

ation of biological bonds represents a core interest in cell adhesion. Intensive research

has been done considering detailed descriptions of cell’s mechanics and continuous

bond densities [28, 70, 115], or purely stochastic bond dynamics [31].

In this chapter we formulate a simple theoretical model coupling the stochastic evo-

lution of discrete bonds to a simple motion between two surfaces, inspired from the

DFS experiments [38, 95], presented in Chapter 1. To this end, we consider a clus-

ter of bonds connecting a flat surface and a thin rigid disk moving vertically under

force, in a fluid environment. The specific length-scales make thin-film effects impor-

tant, while the small Reynolds number at cellular level ensures inertia can be neglected

[114]. Following Bell [10], we consider a cluster of parallel and identical bonds, which

act cooperatively and equally share the mechanical load. The bonds are modeled as

elastic springs under force [98], which rupture and rebind due to thermal fluctuations.

Bell’s model is used for modelling the rupture rate of single bonds under force (1.3.2),

while the rebinding of ruptured bonds depends on cluster’s extension.

In §2.1 we formulate a detailed statement of the model, derive the equation of motion

for the disk and propose appropriate rebinding and rupture rates. We then present a

non-dimensional version of the model, and assess the role played by Brownian effects.

In §2.2 we detail the methods involved in our study. Cluster dynamics are addressed in

the framework of continuous-time Markov processes, and an exact stochastic algorithm

is developed for simulating individual trajectories of the system. We also formulate a

differential equation model for the coupled evolution of the bond population and the

cluster’s extension. In §2.3 we analyze the model and few possible extensions.
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2.1 A stochastic model for a cluster of elastic bonds

In this section we formulate the full statement of the problem, discuss the rupture and

rebinding rates, and then derive the non-dimensional version of the model. The effects

of inertia and Brownian forces on the vertical motion of the disk are also discussed.

2.1.1 Deterministic motion of the disk

We consider a cluster of n biological bonds, connecting a fixed flat surface and a thin

disk of diameter 2R∗, which moves in a liquid of viscosity µ∗ and density ρ∗, under the

action of a time-dependent dissociating force F∗(t∗) at time t∗. It is assumed that the

bonds in the cluster are identical, parallel, equally share the load when connected, and

behave under force as elastic springs of unstressed length L∗ and elastic modulus κ∗.

The length of the bonds at time t∗ is denoted by h∗(t∗) (also representing the displace-

ment of the disk, which does not tilt). The bonds rupture and rebind due to thermal

fluctuations and the stress induced by their extension. A schematic of the model is

sketched in Fig. 2.1, and the values of the parameters are displayed in Table 2.1.

For a disk of density ρ∗ and vertical velocity v∗ (same order of magnitude as the velocity

of in-flow or rolling leukocytes) given in Table 2.1, the Reynolds number is

Re =
ρ∗v∗(2R∗)

µ∗ ∼ 10−3, (2.1.1)

suggesting that inertia can be safely neglected in our problem (F∗
inertia ≃ 0) [114].

Figure 2.1: Elastic springs in an aqueous environment (dimensional): Cluster with n = 5 bonds

(k = 2 connected) of rest length L∗ attached to a thin disk (a) and a substrate (b), separated

by the distance h∗(t∗) at time t∗. The disk moves subject to elastic force F∗
el, drag force F∗

d and

dissociating force F∗.
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Parameters Values References

Total number of bonds/cluster, n 2-100 [15]

Factor of rebinding rate, γ 1-100 [31]

Temperature, T∗
0 298 K [10, 49, 78]

Rest length of bond, L∗ 10-100 nm [11]

Unstressed bond off-rate, k∗0 2.8 s−1 [78]

Cell radius, R∗ 4 µm [78]

Single bond stiffness, κ∗ 0.01 − 5 dyn cm−1 [15, 115]

Viscosity of surrounding liquid, µ∗ 10−3 Pa s [78]

Density of surrounding liquid, ρ∗ 1 g/cm3 [78]

Force scale in bond dissociation, F∗
0 4 pN [10, 31, 49]

Leukocyte flow velocity, v∗F 100 µm s−1 [15]

Leukocyte rolling velocity, v∗R 1 − 2 µm s−1 [15]

Table 2.1: Range of relevant parameters for the disk motion in a liquid, and bond dynamics.

The disk’s motion can be obtained from the balance of the forces acting on the disk,

F∗
d + F∗

el − F∗ = 0, (2.1.2)

where F∗
d is the drag force exerted by the surrounding liquid over the disk’s surface,

F∗
el is the elastic force in the stretched bonds and F∗ is the dissociating force. Effects of

inertia and Brownian forces on the disk’s vertical motion are addressed in §2.1.4.

From the values given in Table 2.1, we obtain the ratio L∗/R∗ ≈ 0.01 ≪ 1, so hydrody-

namic adhesive effects are very important. The (nonlinear) drag force on the moving

disk is derived in Appendix 2.A (2.A.15), using thin film theory [1]

F∗
d =

3πµ∗(R∗)4

2h∗3

dh∗

dt∗
(2.1.3)

where a no-slip boundary condition was considered. Although slip at the boundaries

is likely to occur in the nm range [139], the equations for the drag force do not change

significantly, therefore the no-slip boundary is sufficient for the purpose of this work.

Formulae of the drag force on a one-dimensional plate moving vertically are also pre-

sented in Appendix 2.A, for no-slip (2.A.9) and slip (2.A.12) boundary conditions.

The elastic force in k connected and stretched bonds is

F∗
el = kκ∗(h∗ − L∗). (2.1.4)

Substituting the expressions of drag and elastic force in (2.1.2), the equation for the

displacement of the disk with k bonds attached to it is

3πµ∗(R∗)4

2(h∗)3

dh∗

dt∗
= F∗ − kκ∗(h∗ − L∗), h∗(0) = h∗0 > 0. (2.1.5)
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Since the bonds break and rebind, the displacement of the disk is a piecewise deter-

ministic stochastic variable, with the disk moving along solutions of (2.1.5) for the time

intervals between the rupture/rebinding events.

2.1.2 Dissociation and association rates

Thermally activated rupture and rebinding of single molecular bonds are stochastic

events, so the adhesion clusters’ dynamics has to be described as a stochastic process.

Usually, cell adhesion molecules function under force. The influence of a mechanical

force on the rupture kinetics of biomolecular bonds was first discussed by Bell [10],

who modelled the rupture of molecular bonds in the framework of Kramers’ theory

[67, 82], as a thermally activated escape over a transition-state barrier. Bell’s formula

for the single bond dissociation (rupture, breakage) rate under force is

k∗off(F∗
b ) = k∗0eF∗

b /F∗
0 , (2.1.6)

where k∗0 is the individual bond off-rate in the absence of force, F∗
b the applied force per

bond and F∗
0 = kBT∗

0 /x0 a force scale depending on the structure of the bond, which

determines a force scale for bond strength (kB is the Boltzmann constant and x∗0 is the

displacement along the rupture coordinate). For the typical values x∗0 ≃ 1 nm and

physiological temperature T∗
0 ≃ 300 K, the force required to enhance the biological

bond’s rupture is F∗
0 ≃ 4 pN.

Equation (2.1.6) suggests that rupture occurs even in the absence of force, due to ther-

mal fluctuations. Back to our problem, the bonds are modelled as linear springs, so the

force acting per single bond is F∗
b = κ∗(h∗ − L∗). For estimating typical elastic bond

forces, it is reasonable to consider that weak bonds are longer, while stiff bonds are

shorter. Under this assumption, the values in Table 2.1 give

κ∗L∗ ∼ 1 − 50 pN. (2.1.7)

While the dissociation rate k∗off mainly depends on the internal structure of the bond,

the association (rebinding) rate k∗on includes the formation of an encounter complex and

depends on the details of the situation under consideration [31]. Since displacement is

a key factor in the formation of the encounter complex [108], the association rate k∗on is

assumed to decay exponentially with the extension of the cluster, as in the formula

k∗on(h∗) = k∗0γe α(1−h∗/L∗), (2.1.8)

where parameters γ and α are intrinsic properties of the adhesion molecule, accounting

for the affinity of the bond at its rest length and it’s scaling with displacement varia-

tions, respectively.
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2.1.3 Non-dimensional model

It is convenient to define the non-dimensional length h = (L∗)−1h∗ , time t = k∗0t∗ ,

applied force f = F∗/(κ∗L∗) , loading rate µ = F∗/(κ∗L∗k∗0t∗) and initial displacement

of the disk h0 = (L∗)−1h∗(0). To denote both constant and ramped force, we use the

notation f (t). The non-dimensional version of (2.1.5) is

v =
dh
dt

= −1

c
h 3 [kh − ( f (t) + k)] , h(0) = h0, (2.1.9)

representing the disk velocity with k bonds attached, at time t and height h, where

c =
3π

2

µ∗k∗0(R∗)4

κ∗(L∗)3
, (2.1.10)

is a non-dimensional drag coefficient. For the values of κ∗, k∗0 , R∗ and L∗ from Table 2.1,

the range of the drag coefficient is obtained as 0.01 ≤ c ≤ 104.

The solution of (2.1.9) for t ≥ u is denoted by h = Hk(t; u, hu), where hu represents the

displacement of the disk at time t = u. When f is constant, (2.1.9) is autonomous and

Hk(t; u, hu) = Hk(t − u; 0, hu), with the initial condition Hk(0; 0, hu) = hu.

The stochastic variables N(t) ∈ {0, 1, . . . n} (discrete) and H(t) ∈ [0, ∞) (continuous),

representing the number of closed bonds (the remaining n − N(t) are open) and the

disk’s displacement respectively, completely determine the state of the system at time

t. The state N = n is the number of binding sites in the cluster, and represents a reflecting

(the next event is rupture) boundary for the stochastic variable N(t). The state N = 0

can be either absorbing or reflecting depending on wether rebinding after complete dis-

sociation is possible (small displacement or force) or not (large force or displacement).

From (2.1.6), a single bond dissociates with the rate k∗off/k∗0 = eβ(h−1), where

β = F∗
el/F∗

0 = x∗0κ∗L∗/(kBT∗
0 ). (2.1.11)

The estimates for κ∗L∗ (2.1.7) predict the range 1 ≤ β ≤ 15. The height-dependent

rupture rate for the time segment when clusters have k = 0, . . . , n closed bonds is

therefore given by

rk(h) = keβ(h−1). (2.1.12)

Using (2.1.8), the dimensionless rebinding rate for a single molecule is k∗on/k∗0 = γe α(1−h).

In a cluster with n binding sites, rebinding is assumed proportional to the number of

open bonds [10, 61]. The rebinding rate for clusters having k = 0, . . . , n closed bonds is

gk(h) = γ(n − k)e α(1−h). (2.1.13)

The rebinding rates used at N = 0 for the stochastic birth and death process [122, p.372],

are g0 = γne α(1−h) for reflective, and g0 = 0 for absorbing boundaries, respectively.
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In summary, we have developed a new stochastic model for the evolution of clusters

of biological bonds connecting a disk and a surface. The stochastic rupture (2.1.12) and

rebinding (2.1.13) rates depend on the position of the disk moving under the influence

of the force f , along solutions of the deterministic equation (2.1.9). The parameters in

our system are n, f (or µ for ramped force) and c, together with α, β and γ, which are

intrinsic properties of the bond.

2.1.4 Brownian and inertial effects in the disk’s dynamics

For the specific problem of cell adhesion, preliminary studies found that adherent cells

(rigid disk and flat surface in our problem) can be distinguished from the ones not

adhering to a surface, as they do not undergo significant Brownian oscillations [84].

As mentioned in Table 2.1, the disk’s length scale is in the µm range, the bond length

in the 10 nm range, while the timescale of molecular collisions is on the order of 10−12

s and the lengthscale of molecular mean free paths is on the order of 10−10 − 10−9 m.

The tiny length- and time- scales suggest a deeper investigation of the role played by

Brownian forces acting on the disk in the vertical direction, in our particular model.

Our results reflect the findings from the DFS experiments performed by Merkel et al.

[95], discussed in §1.2.3. As depicted in Fig. 1.4, the thermal excitation induced fluc-

tuations of the probe were about 2 − 5 nm, compared to the dissociating force induced

displacement, which was of 30 − 40 nm at slow, and 500 nm at fast loading rates, re-

spectively.

When accounting for the disk’s mass and Brownian motion, the dimensional equation

for the displacement of the disk is

M∗
disk

dh∗2

dt∗2
+ G∗ dh∗

dt∗
= F∗(t∗) − F∗

el(t∗) + F∗
B(t∗), (2.1.14)

where M∗
disk is the mass of the disk, G∗ the coefficient of dh∗/dt∗ in (2.1.3), F∗

B a stochas-

tic force induced by external fluctuations, and F∗ is the applied force on the disk. The

deterministic component of the right-hand member in the previous equation will be

denoted by F∗
det = F∗ − F∗

el.

The Brownian force F∗
B is an irregular and unpredictable stochastic process, but its av-

erage properties are simple. The average vanishes, and because F∗
B(t∗) is caused by the

collisions of the individual molecules of the surrounding liquid (the water molecule is

about 0.1 by 0.2 nm in size) and varies rapidly, we can postulate that

〈F∗
B(t∗)〉 = 0, (2.1.15)

〈F∗
B(t∗1)F∗

B(t∗2)〉 = ΓBδ(t∗1 − t∗2),
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where ΓB is a constant and δ represents the Dirac function. The idea is that each col-

lision is practically instantaneous and that successive collisions are uncorrelated [138,

Chapter IX].

Balancing the first two terms in (2.1.14), and the Brownian noise on the disk, we obtain

the scalings
M∗

diskh∗

(t∗)2
∼ G∗h∗

t∗
∼ F∗

det. (2.1.16)

From this equation, the relaxation time following a collision is found to scale as

t∗ ∼ M∗
disk

G∗ .

Denoting by h∗ the disk displacement length scale, V∗ the velocity scale and kBT∗ the

thermal energy, we obtain

h∗ ∼ V∗t∗, kBT∗ ∼ M∗
disk(V∗)2. (2.1.17)

Einstein [30], predicted that Brownian motion of a particle in a fluid at a thermody-

namic temperature T∗ is characterized by a diffusion coefficient D∗ , and as shown in

[18], the root mean square displacement in any direction after a time t∗ is
√

D∗t∗. As a

consequence of this fact, as well as from (2.1.16) and (2.1.17) we obtain

D∗ ∼ (h∗)2

t∗
∼ (V∗)2t∗ ∼ kBT∗

M∗
disk

t∗ ∼ kBT∗

G∗ . (2.1.18)

The scales from (2.1.16) and (2.1.18) can be written as

1

t∗
∼ F∗

det

G∗h∗
∼ D∗

(h∗)2
. (2.1.19)

Finally, from (2.1.18) and (2.1.19) we obtain the non-dimensional number

B =
h∗

D∗
F∗

det

G∗ =
G∗

kBT∗ h∗
F∗

det

G∗ =
h∗F∗

det

kBT∗ , (2.1.20)

representing the ratio between the work done by deterministic forces and the thermal

energy in the system. In the B ≫ 1 limit, Brownian effects can be neglected. Rewriting

the right-hand side of (2.1.20) and using β ∼ .25 − 12.5, h ≥ 1, f ≥ 0 and L∗/x∗0 ∼
10 − 100 (see Table 2.1), we obtain

B = βh( f − 1)
L∗

x∗0
≫ 1, (2.1.21)

for even relatively small forces, so Brownian effects are negligible for small forces.

A more accurate model accounting for the disk’s fluctuations under Brownian forces,

can be formulated using a stochastic differential equation (SDE)[69], rather than the

ordinary differential equation (ODE) (2.1.9), which currently describes the motion of

the disk. Nonetheless, the stochastic process would not be piecewise deterministic

anymore, but system’s trajectories can still be simulated.
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2.2 Methods

In this section we present the notations and methods used to address the cluster dy-

namics. First, the behaviour of the cluster under force is formulated in the framework

of inhomogeneous continuous-time Markov processes. An exact stochastic algorithm

is derived, which allows the simulation of individual trajectories of the disk with bonds

attached to it. Trajectories are then processed to obtain various probabilities, expected

values for the number of closed bonds in the cluster, as well as estimates for the cluster

lifetime and final extension of the bonds. A deterministic approximation for the simul-

taneous evolution of the number of closed bonds and displacement is then derived.

Despite being computationally expensive, stochastic simulations are the most reliable

method, able to render the stochastic fluctuations in clusters with few bonds. These

are compared against deterministic approximations and analytical solutions, when the

latter are available.

2.2.1 Exact stochastic simulations

When clusters have few bonds, stochastic fluctuations become important. The prob-

lem is first formulated as a Markov process and then we derive a stochastic algorithm

for the simulation of random variables N(t) and H(t). The individual trajectories are

then processed to obtain frequency functions which approximate (in the limit of a large

number of individual trajectories) the marginal distributions for the Markov process.

The number of closed bonds N(t) ∈ {0, 1, . . . , n} evolves stochastically through the

rupture or rebinding of a single bond, while height evolves deterministically between

the rupture events. Once the process reaches the absorbing state N = 0 (for absorbing

boundary at N = 0) or a certain value of time (for reflecting boundary at N = 0), we

stop the simulation. Let ti (i ≥ 0) be the time of the i-th rupture or rebinding event,

and let k = N(ti), Hi = H(ti). Suppose that k ≥ 1. The process {N(t)}t≥ti , starting at

the initial height Hi is an inhomogeneous continuous time Markov process, with finite

state space E = {k − 1, k, k + 1} and time-dependent transition rates

λk→k−1(t) = rk(H(t)), (k > 0), (2.2.1a)

λk→k+1(t) = gk(H(t)), (k < n), (2.2.1b)

where H(t) = Hk(t; ti, Hi), for t ∈ [ti, ti+1] and r0(H(t)) = gn(H(t)) = 0.

The simulation of the next rupture or rebinding (referred to as an “event”) is done in

two distinct steps. The first step is to identify the time of the next event ti+1, while the

second is to identify wether the event is a rupture or a rebinding.
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Step 1: Next event time

The total transition rate from the state N(t) = k at time t is denoted by

λk(t) = λk→k−1(t) + λk→k+1(t).

We calculate the distribution of the time spent in the state with k closed bonds starting

at time ti (the sojourn time), defined as

S = inf{t̃ > 0 : N(ti + t̃) 6= k}. (2.2.2)

Let

Q (t̃) = Pr {S > t̃ | N(ti) = k} .

Clearly Q(0) = 1 and as ∆t̃ ↓ 0, by the Markov property we obtain

Q(t̃ + ∆t̃) = Q (t̃) (1 − λk(ti + t̃)∆t̃) + o(∆t̃).

This gives
dQ
dt̃

(t̃) = −λk (ti + t̃) Q (t̃) ,

with the solution

Q (t̃) = exp

{
−
∫ t̃

0
λk(ti + u)du

}
.

The cumulative distribution function of S is, for t̃ > 0,

FS (t̃) = Pr {S ≤ t̃ | N(ti) = k} = 1 − Pr {S > t̃ | N(ti) = k}

= 1 − Q (t̃) = 1 − exp

{
−
∫ t̃

0
λk(ti + u)du

}
. (2.2.3)

Considering the uniformly distributed variable ξ ∼ U(0, 1), the sojourn time satisfies

S ∼ F−1
S (ξ), thus we need to solve FS(S) = ξ, which is equivalent to

exp

{
−
∫ S

0
λk(ti + u)du

}
= 1 − ξ. (2.2.4)

Denoting by K the hazard function of the distribution Q [122, Chapter IX] defined as

K ( t̃ ) =
∫ t̃

0
λk(ti + u)du, (2.2.5)

we can write (2.2.4) as exp{−K(S)} = 1 − ξ, hence

K(S) = − log(1 − ξ) ⇔ S = K−1(− log(1 − ξ)).

Since we also have 1 − ξ ∼ U(0, 1), the time is simulated from

S = K−1(− log(ξ)). (2.2.6)

35



CHAPTER 2: ADHESIVE CLUSTERS BETWEEN A RIGID DISK AND A FLAT SURFACE

As K−1 cannot be obtained analytically, (2.2.6) is solved numerically together with the

motion of the disk from the system

dh
dt

= −1

c
h 3[kh − ( f (t) + k)], h(0) = Hi, (2.2.7a)

dK
dt

= λk(t), K(0) = 0, (2.2.7b)

which is integrated until K(t) hits the value − log(ξ).

The time of the next event is obtained as ti+1 = ti + S.

Step 2: Next event nature

To simulate the next state visited by {N(t)}, note that

Pr {N(t) = j | N(ti) = k, S = t} =
λk→j(t)

λk(t)
, (j = k − 1, k + 1).

For our problem, the event happening at time ti+1 is a rupture if

ζ ≤ λk→k−1(ti+1)

λk(ti+1)
=

rk

(
H(ti+1)

)

rk

(
H(ti+1)

)
+ gk

(
H(ti+1)

) , (2.2.8)

and rebinding otherwise, where ζ ∼ U(0, 1) and ξ are independent. The above proce-

dure is repeated from the new state N(ti+1), H(ti+1).

In the case when more events are possible at a given time, we can use the following re-

sult. If X1, . . . , Xm, m ≤ 2 are independent exponentially distributed random variables

with rate parameters λ1, . . . , λm, then

min{X1, . . . , Xm}

is also exponentially distributed, with parameter λ1 + λ2 + · · · + λm. The index of the

variable which achieves the minimum is distributed according to the law

Pr {Xk = min{X1, X2, . . . , Xm}} =
λk

∑
m
i=1 λi

. (2.2.9)

A proof of this classical result can be found in [122].

For our model, we define

Sk =





0, k = 0

λ1 + · · · + λk, k = 1, . . . , m,

and the next event is chosen to be Xk, if ξ ∈ [Sk−1, Sk], where ξ ∼ U(0, 1).
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General observations

The above algorithm is exact in principle, the only sources of inaccuracy being the

choice of the random number generator, the precision used for solving (2.2.7) and the

finite number of trajectories used to estimate various statistics.

2.2.2 Dynamics of the disk-bond system

The interaction between the number of bonds and the moving disk can be assessed

using various statistics. Here we define various types of probability densities and dis-

tributions, average number of closed bonds, mean cluster lifetime, as well as other rel-

evant statistics. In this chapter all disk trajectories start from the same initial height

H(0) = h0, while the influence of randomness in the initial height (normally dis-

tributed initial disk displacement) is analyzed in Appendix 3.A.

Probability of having k bonds at time t

The output N(t) of many individual simulations is used to estimate the probability

Pk(t; 0, h0) = Pr{N(t) = k | H(0) = h0}, (2.2.10)

of having k bonds at time t, for k = 0, . . . , n.

Counting how many simulations out of Ns satisfy N(t) = k, we obtain the relative

frequency functions

P(Ns)
k (t; 0, h0) =

{number of simulations with N(t) = k | H(0) = h0}
Ns

. (2.2.11)

The above functions satisfy the conservation property

n

∑
k=0

P(Ns)
k (t; 0, h0) = 1, t > 0, (2.2.12)

and in the large number of simulations limit we have, by the strong law of large num-

bers, almost surely, that

lim
Ns→∞

P(Ns)
k (t; 0, h0) = Pk(t; 0, h0),

with the rate of convergence being in general of order 1/
√

Ns (using the central limit

theorem) [75].

The above probabilities exist for all values of the parameters (including the problem

with rebinding) and provide an accurate description of the evolution of the number of

bonds (mean, variance) and cluster lifetime, but give no information about the bonds’
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Figure 2.2: Simulated trajectory of the disk (dashed line) realized for n = 5, k = 3, h0 = 1,

γ = 0, β = 0 and f = 1 in the (t, h) space. The disk moves along Hn(t; 0, h0) until un, the time

when the n-th bond breaks. The time when the k-th bond ruptures is uk.

extension. In the absence of rebinding, the bonds rupture sequentially and the tra-

jectory is uniquely determined by the rupture times un, . . . , u1. In this particular case

the trajectories contributing to Pk(t; 0, h0) are subject to specific geometrical constraints

H(t) ∈ [Hn(t; 0, h0), Hk(t; 0, h0)] , as shown in Fig. 2.2.

These geometrical properties of the disk’s trajectories are used in Appendix 4.A to de-

rive analytical formulas for the probabilities Pk(t; 0, h0), which are used in Chapter 4 to

validate the stochastic simulations.

Probability of having k bonds at height h

When H(t) is strictly monotonic (e.g. in the case of vanishing rebinding), a one-to-one

correspondence between time and height can be established for a single simulation. We

can consider then probabilities of having a certain number of bonds at a given height,

to obtain important information about the evolution of the cluster under force with the

displacement of the disk. Denoting Th = inf{t ≥ 0 : H(t) = h}, we can define

PH
k (h; 0, h0) = Pr{N(Th) = k | H(0) = h0}, (2.2.13)

representing the probability of having k bonds at height h. These probabilities give an

idea about the most likely height where the rupture events occur, and the computations

are similar to those for Pk(t; 0, h0). The displacement H(t) is monotonic for h0 = 1 and

zero rebinding.
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Probability densities and cumulative distributions over h, of having k closed bonds

at time t

Both N(t) and H(t) can be used to estimate the distribution functions

Fk(t, h; 0, h0) = Pr{N(t) = k, H(t) < h | H(0) = h0}, (2.2.14)

of having k bonds at time t, and within the range [0, h), for k = 0, . . . , n.

In the absence of rebinding, a single trajectory contributes to Fk(t, h; 0, h0) if N(t) = k

and H(t) ∈ [Hn(t; 0, h0), h] . The relative frequency function for this event is obtained

as

F(Ns)
k (t, h; 0, h0) =

{no. of simulations for which N(t) = k, H(t) < h, H(0) = h0}
Ns

.

(2.2.15)

Clearly, limh→∞ F(Ns)
k (t, h; 0, h0) = P(Ns)

k (t; 0, h0) and in the large number of simulations

limit we have that almost surely

lim
Ns→∞

F(Ns)
k (t, h; 0, h0) = Fk(t, h; 0, h0).

The density function, defined as

pk(t, h; 0, h0) = lim
δh→0+

Pr{N(t) = k, H(t) ∈ (h, h + δh) | H(0) = h0}
δh

=
∂Fk(t, h; 0, h0)

∂h
,

(2.2.16)

can be explored obtained either directly from simulations (using selected height bins),

via numerical differentiation of (2.2.14), or by using kernel density estimation (see e.g.

Silverman [129]). These functions illustrate how probabilities Pk(t; 0, h0) are distributed

along the height coordinate, and are illustrated in Appendix 3.A and §4.3.

Expected number of closed bonds and variances

Quantities of practical interest are the expectation and variance of N(t), which can be

obtained as

µN(t; 0, h0) =
n

∑
k=0

kPk(t; 0, h0), (2.2.17a)

σ2
N(t; 0, h0) =

n

∑
k=0

k2Pk(t; 0, h0)− µ2
N(t). (2.2.17b)

When no confusion is possible, the usual notations for these quantities will be µN(t)

and σ2
N(t). To approximate the above quantities at time t, we run a number of simula-

tions, for which we estimate the state N(t). In the large number of simulations limit,

the average and variance of the states N(t) converge almost surely to µN(t) and σ2
N(t),

respectively. The analysis of µN and its approximations will highlight the decay of

clusters under various force regimes.
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Cluster dissociation time (“cluster lifetime”)

In the absence of rebinding or for an absorbing boundary at N = 0, the cluster disso-

ciates and the stochastic variable TD(t) representing the time of dissociation (the time

when the last bond breaks or the cluster lifetime) can be defined. The density of TD is

fTD(t) =
dP0(t; 0, h0)

dt
, (2.2.18)

for the probabilities P0(t; 0, h0) defined in (2.2.10). Clearly, as P0(0; 0, t) = 0, we have

∫ u

0
fTD(t)dt =

∫ u

0

dP0(t; 0, h0)

dt
dt = P0(u; 0, h0),

which should satisfy limu→∞ P0(u; 0, h0) = 1, when the cluster dissociates.

Of particular importance is the mean dissociation time µTD , defined as

µTD =
∫ ∞

0
t fTD(t)dt.

From Ns simulations, this can be estimated by

µ̂TD =
∑

Ns
i=1 Ti

Ns
, (2.2.19)

where Ti is the moment when the i-th trajectory hits the absorbing boundary N = 0.

The standard deviation σTD can also provide useful information about the cluster be-

haviour and can be estimated by

σ̂TD =

√
∑

Ns
i=1(Ti)2

Ns
− µ̂2

TD
. (2.2.20)

Cluster dissociation height

When the cluster dissociates in finite time, the stochastic variable HD(h) representing

the dissociation height (disk displacement at dissociation) can be defined. When the

probabilities PH
k (h; 0, h0) exist, the density of HD is given by

fHD(h) =
dPH

0 (h; 0, h0)

dh
. (2.2.21)

Of practical interest is the mean displacement of the disk at dissociation, defined as

µHD =
∫ ∞

0
h fHD (h)dh.

This can be estimated from Ns individual simulations as

µ̂HD =
∑

Ns
i=1 H(Ti)

Ns
,
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where Ti is the time when the i-th trajectory hits the absorbing boundary N = 0 and

H(Ti) is the value of the random variable H at that time (for this particular realization).

Important information is obtained from the standard deviation σHD , estimated by

σ̂HD =

√
∑

Ns
i=1 H2(Ti)

Ns
− µ̂2

HD
.

2.2.3 A deterministic approach

When the cluster has sufficiently many bonds, the rupture of an individual bond has a

small effect on the behaviour of the cluster as a whole, and the number of closed bonds

can be assumed to vary continuously. Denoting by Nd(t) the (continuous) number of

closed bonds, we consider the continuous approximations of the discrete rates (2.1.12)

and (2.1.13) in terms of two independent variables

rd(Nd, Hd) = Ndeβ(Hd−1)

gd(Nd, Hd) = γ(n − Nd)e α(1−Hd), (2.2.22)

obtained by replacing k and h with their deterministic analogues Nd and Hd. The bal-

ance between the deterministic rupture and rebinding rates (2.2.22), together with (2.1.9),

can be used to write down a system of deterministic equations for the simultaneous

evolution of Hd(t) and Nd(t) as

dNd

dt
= −Ndeβ[Hd−1]

︸ ︷︷ ︸
Rupture

+ γ(n − Nd)e α(1−Hd)

︸ ︷︷ ︸
Rebinding

, (2.2.23a)

dHd

dt
= −1

c

[
NdHd

4 − ( f + Nd) Hd
3
]

, (2.2.23b)

with the initial conditions Hd(0) = h0, and Nd(0) = n. When the number of closed

bonds is large, we examine the parameter values for which we have Nd(t) → µN(t).

In the case of no rebinding the cluster dissociates in finite time, with the rates given by

(2.1.12). Moreover, in the large Nd limit, where the lifetime of the last remaining bond

is very short compared to the lifetime of the cluster, the latter can be approximated

with the scalar value Td (in contrast to TD(t), which is a random variable) satisfying

Nd(Td) = 1. Asymptotic approximations of Td provide essential information about the

relevant scalings in the model as done by Erdmann et al. [31]. The performance of the

Td in estimating the median of the densities of TD is illustrated in Fig. 4.3 for constant

force and in Fig. 4.17 for linearly ramped force.

Although intuitive, the deterministic limit can also be derived rigourously as shown

in Appendix 2.B, in the framework of stochastic hybrid systems discussed in [106] by

Pakdaman et al., who prove a law of large numbers with exponential convergence.
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2.3 Summary

In this chapter we have introduced a new model for the stochastic behaviour of clus-

ters of biological bonds under force and rebinding. Several experiments confirmed the

elasticity of bonds under force [98], for example the length of fibronectin in response to

applied force may increase 5- to 6-fold [73]. The extension of bonds is coupled to the

nonlinear motion of a disk under force, which represents a significant extension over

models assuming a constant displacement using polymeric spacers [35].

As the bonds in the clusters are short compared to the lengthscale of the contact region,

the adhesion of clusters is enhanced by hydrodynamic effects. In our model, the deter-

ministic motion of the disk (2.1.9), predicts that the external force initiating the motion

is not entirely transmitted to the bonds, being mediated by drag. In the zero-drag limit

(discussed in Chapter 3) we will recover the models proposed by Erdmann & Schwarz

for constant [31, 32], and linear forces [33], respectively.

As a result of the low Reynolds number (2.1.1), inertia is neglected in this model [114].

The role played by the Brownian forces on the vertical motion of the disk with bonds

attached was also proven to be negligible even for small forces in §2.1.4. The model

can be further improved to encompass the disk’s Brownian oscillations, by replacing

the nonlinear ODE describing the motion of the disk (2.1.9), with a SDE.

The problem was formulated as a piecewise deterministic, bivariate, continuous-time

Markov process, accounting for the number of closed bonds in a cluster N(t), and their

extension under force H(t). The increase in complexity introduced by the movable disk,

comes at the cost of having time-dependent transition rates (2.2.22).

A stochastic algorithm for simulating single trajectories of the system was proposed in

§2.2.1, used to estimate several cluster statistics (lifetime, various probability functions,

decay profile), detailed in §2.2.2. Finally, a deterministic approximation was proposed

in §2.2.3, which is used in Chapter 4 for the study of cluster dissociation time (2.2.18)

and extension (2.2.21).

A generalization of the model which addresses the behaviour of clusters of biological

bonds connecting a fixed, flat surface to a moving and flexible membrane is presented

in Chapter 5. The methods are also based on extensions of the ones presented in §2.2

for the disk-bonds model.
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Appendix

2.A Thin film adhesion

The adhesion of cells to a rigid surface is enhanced by adhesive effects generated by

the thin-film of fluid between, which can be described using lubrication theory. The

key feature of thin-film theory is that one dimension is much larger than the other. An

example of such problem is a coin stuck tightly to a surface by putting a small amount

of water between the two, when a surprisingly large force is required to pull the coin

away from the table. This is possible because compared to the diameter of the coin, the

height of the film of water is very small and as such is amenable to lubrication analysis.

In this Appendix we present the Reynolds’ lubrication equation, together with some

applications relevant to the study of cell adhesion, based on [1].

2.A.1 Lubrication equations

The general Navier-Stokes equation are used to derive the 2D and 3D versions of the

classical Reynolds’ lubrication equations [1, 80]. To derive the lubrication equations

assume that a curved surface having velocity components (U, V, W) sits on a thin film

of fluid as shown in diagram 2.3 and the horizontal velocity components of the surface

U and V are of the same magnitude. We use the notations L and h for the typical hor-

izontal (x, y) and vertical (z) dimensions. The changes in the z direction are expected

to be large compared to those in the x and y directions

∂

∂x
,

∂

∂y
∼ O

(
1

L

)
≪ ∂

∂z
∼ O

(
1

h

)
=⇒ δ =

h
L
≪ 1.

The velocity vector is u =

(
u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)

)
, while the pressure

is p(x, y, z, t). The density is ρ, the viscosity is µ and kinematic viscosity is ν = µ/ρ.

Assuming steady flow, the Navier-Stokes equation can be written as

∇ · u = 0,
∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u, (2.A.1)
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where the first part is also known as the continuity equation. Assuming no slip bound-

ary conditions at the interface between the fluid and the two surfaces (u = 0 at z = 0

and z = h), u and v must change by an amount of U as z varies over a distance h. The

sizes of the terms in (2.A.1) can be obtained as

t ∼ L
U

,
∂u
∂x

∼ U
L

,
∂2u
∂x2

∼ U
L2

,
∂u
∂y

∼ U
L

,
∂2u
∂y2

∼ U
L2

,
∂u
∂z

∼ U
h

,
∂2u
∂z2

∼ U
h2

,

with similar estimates for the derivatives of v and w.

From the continuity equations we obtain

∇ · u =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 =⇒ ∂w
∂z

∼ O

(
U
L

)
=⇒ w ∼ O

(
Uh
L

)
,

which leads to the estimates

∂u

∂t
∼
(

O

(
U2

L

)
, O

(
U2

L

)
, O

(
U2h
L2

))
,

u · ∇u ∼
(

O

(
U2

L

)
, O

(
U2

L

)
, O

(
U2h
L2

))
,

and

∇2u ∼
(

O

(
U
h2

)
, O

(
U
h2

)
, O

(
δ

U
h2

))
.

The above expressions suggest that
∣∣∣∣
∂u

∂t

∣∣∣∣ , |u · ∇u| ≪ ν|∇2u| if δ2

(
UL
ν

)
≪ 1,

so the terms ∂u/∂t and u · ∇u in (2.A.1) neglected.

The quantity R = UL/ν defines the Reynolds number, while Rm = δ2R is referred to

as the modified Reynolds number.

It is sensible to non-dimensionalize by setting

x = LX, y = LY, z = hZ, u = Uû, v = Vv̂, w =
Uh
L

ŵ,

where the vertical scales come from the continuity equation found in the first part of

(2.A.1). The pressure scale is determined from the estimate

∂p
∂x

∼ µ
∂2u
∂z2

,

suggesting that p ∼ µUL/h2, so we can write p = (µUL/h2) p̂.

Substituting in equation (2.A.1), we obtain

Rm [ûûX + v̂ûY + ŵûZ] = − p̂X + δ2ûXX + δ2ûYY + ûZZ,

Rm [ûv̂X + v̂v̂Y + ŵv̂Z] = − p̂Y + δ2v̂XX + δ2v̂YY + v̂ZZ,

R2
m [ûŵX + v̂ŵY + ŵŵZ] = − p̂Z + δ4ŵXX + δ4ŵYY + δ2ŵZZ,

ûX + v̂Y + ŵZ = 0. (2.A.2)
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Figure 2.3: Diagram of the length scales in a thin film of liquid, situated between the fixed

surface z = 0 and the mobile surface z = h(x, y, t).

In the limit δ → 0 and Rm → 0 and restoring the dimensions we obtain the reduced set

of equations

0 = −px + µuzz,

0 = −py + µvzz,

0 = −pz,

ux + vy + wz = 0, (2.A.3)

with boundary conditions

u = v = w = 0 on z = 0; u = U, v = V, w = W on z = h(x, y, t).

It is clear that there is no vertical pressure gradient, so p = p(x, y, t). We integrate the

first two equations of (2.A.3) twice with respect to z and obtain

u =
1

2µ
px

(
z2 − zh

)
+

Uz
h

, (2.A.4)

v =
1

2µ
py

(
z2 − zh

)
+

Vz
h

. (2.A.5)

Integrating the continuity equation, the vertical velocity component is found from the

equation

−w =
∫ z

0
(ux + vy) dz,

which for z = h becomes

−W =
∫ h

0
(ux + vy) dz =

∂

∂x

∫ h

0
u dz +

∂

∂y

∫ h

0
v dz − Uhx − Vhy.

Using the expressions for u and v and integrating, the three-dimensional version of the

Reynolds lubrication equation is obtained as

∂

∂x

[
h3 ∂p

∂x

]
+

∂

∂y

[
h3 ∂p

∂y

]
= 6µ

(−Uhx − Vhy + 2W
)

. (2.A.6)
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Figure 2.4: Diagram of the length scales in a thin film of liquid, situated between the fixed

surface z = 0 and the mobile surface z = h(x, t).

2.A.2 Applications - adhesion near a flat rigid wall

Since the biological bonds are of a much smaller length compared to the cell scales, the

cells subject to adhesion forces are moving very close to a surface, so the lubrication

theory can be effectively applied in the study of cell adhesion. Of a particular impor-

tance is the drag force on the surface moving vertically near a flat, rigid and horizontal

wall, which is derived here for a two-dimensional plate of length a and for a disk of

radius a. These results can be directly coupled with the dissociating force and the elas-

tic force in the bonds in the adhesive models, to derive the equation of motion for the

moving surface.

Adhesion of a flat plate

The first application of lubrication theory computes the force resisting the motion be-

tween two parallel plane walls moving away from the other, and having liquid be-

tween, as shown in Fig. 2.4.

The thickness h(t) changes due to an unsteady flow, but we assume

∂

∂t
≪ ν

∂2

∂z2
, (2.A.7)

so that the unsteadiness enters only through the change in the boundary condition.

More details about the validity of this approximation can be found in [1].

Since the y coordinate is absent, we only need to solve the Reynolds lubrication equa-
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tion
∂

∂x

[
h3 ∂p

∂x

]
= 6µ (−Uhx + 2W) , (2.A.8)

for the boundary conditions

u = w = 0 on z = 0; u = 0, w =
dh
dt

on z = h(t), p(0, h) = p(a, h) = p0.

where U = 0 (no lateral move), W = dh
dt , and h independent of x (the mobile surface

is flat). At the same time, the pressure is the same at the ends of the plate, and only

depends on h. In this case, the above equation becomes

d

dx

(
h3 dp

dx

)
= 12µ

dh
dt

,

and by integration we have
dp
dx

=
12µ

h3

dh
dt

+ A(h).

Integrating again and applying the boundary conditions, we obtain

p(x, h) − p0 =
6µ

h3

dh
dt

x2 + xA(h).

Since p(a, h) = p0, we obtain

A(h) = −6µa
h3

dh
dt

,

and the pressure is finally

p(x, h) = p0 +
6µ

h3

dh
dt

x(x − a).

The force (per unit length) resisting the motion F is computed from the formula

F =
∫ a

0
(p − p0) dx =

6µ

h3

dh
dt

∫ a

0
x(x − a) dx = −µa3

h3

dh
dt

. (2.A.9)

This suggests that for the two-dimensional problem, F ∼ O(h−3) as h → 0.

Adhesion of a flat plate with slip

It is often the case that in nanoscale flows a slip at the boundary occurs, which is ex-

pressed as
λ

µ
τ = u,

at the boundaries, where λ > 0 is determined from experiments and called slip length.

The equations for the problem described in Fig. 2.4, become

0 = −px + µuzz,

0 = −pz,

ux + wz = 0, (2.A.10)
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with boundary conditions

u = λ
∂u
∂y

, w = 0 on z = 0; u = −λ
∂u
∂y

, w =
dh
dt

on z = h(x, t).

Integrating the first equation of (2.A.10) twice with respect to z, we obtain

u =
1

2µ
pxz2 + Az + B.

Since dh/dx = 0, applying the boundary conditions we find

A = − 1

2µ
pxh, B = −λ

1

2µ
pxh,

and obtain

u =
1

2µ
px

(
z2 − hz − λh

)
. (2.A.11)

The third equation of (2.A.10) gives

w = −
∫ y

0

∂u
∂x

dy,

so for y = h we have

−dh
dt

=
∂

∂x

∫ h

0
u dy =

1

2µ

∂

∂x

[
px

(
h3

3
− h3

2
− λh2

)]
,

which is integrated to give

px =
12µ

h2(h + 6λ)

dh
dt

x.

Integrating in x and using that p(0, h) = p(a, h) = p0, we finally obtain

p(x, h) = p0 +
6µ

h2(h + 6λ)

dh
dt

x(x − a).

The force per unit length resisting the motion F, is computed from the formula

F =
∫ a

0
(p − p0) dx =

6µ

h2(h + 6λ)

dh
dt

∫ a

0
x(x − a) dx = − µa3

h2(h + 6λ)

dh
dt

. (2.A.12)

This suggests that for the two-dimensional problem, F ∼ O(h−3) as h → 0. One can

notice that the solutions as λ → 0, are the ones obtained for the no-slip boundary. It is

anticipated that the slip boundary solution for the disk is not very much different.

Adhesion of a flat disk

Assume that a thin disk of radius a is immersed in a liquid of viscosity µ. Writing the

velocity in polar coordinates, we obtain

u = ur(r, z, t)er + uz(r, z, t)ez,
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and using the new coordinates the thin film equation becomes

∂p
∂r

= µ
∂2ur

∂z2
, p = p(r, t),

with the no slip boundary condition ur = 0 at z = 0 and z = h(t). Integrating twice

with respect to z we obtain

ur =
1

2µ

∂p
∂r

z(z − h).

From the incompressibility condition we have

1

r
∂

∂r
(rur) +

∂uz

∂z
= 0,

from which we obtain (after replacing ur, integration in z for the boundary condition

uz = 0 on z = 0)

uz = − 1

2µr
∂

∂r

(
r

∂p
∂r

)(
z3

3
− hz2

2

)
.

Using the boundary condition uz = dh/dt at z = h(t), gives

∂

∂r

(
r

∂p
∂r

)
=

12µr
h3

dh
dt

,

which after integration in r becomes

∂p
∂r

=
6µr
h3

dh
dt

+
C(t)

r
.

To prevent singularity at r = 0, we have C(t) = 0, and integrating once again we obtain

p =
3µ

h3

dh
dt

r2 + D(t). (2.A.13)

Having p = p0 at r = a, this gives

p − p0 =
3µ

h3

dh
dt

(r2 − a2), (2.A.14)

and the upward force exerted by the fluid on the disk is

F =
∫ 2π

0

∫ a

0
(p − p0)r dr dθ = −3π

2

µa4

h3

dh
dt

. (2.A.15)

Since the vertical velocity is of order dh dt, from the continuity equation ∇ · u = 0 we

infer that the horizontal velocity is of order ah−1dh/ dt. The conditions h ≪ L, Rm ≪ 1

and (2.A.7) for this problem are written as

h ≪ a, h
dh
dt

≪ ν.

The computations are based on [1].
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2.B Stochastic hybrid systems: deterministic limits

In this section we adapt the theory of stochastic hybrid systems developed by Pak-

daman et al. in [106], for analyzing the stochastic adhesion of clusters connecting a

surface to a moving disk (Chapter 2). Compared to the renewal type algorithm used

in Chapter 2 for the simulation of trajectories of the disk-bond system, the current for-

malism has the advantage of allowing a smooth passage to the global perspective over

the system dynamics. This is particularly useful for showing that the solutions of the

process converge in probability to the deterministic limit described in §2.2.3, while the

speed of convergence is estimated as a function of the population of bonds in the clus-

ter. The formulation of the disk-bond dynamics as a stochastic hybrid process for a

cluster having n binding sites is detailed below.

Let u(k) for 1 ≤ k ≤ n be a collection of n independent jump Markov processes having

the state space {0, 1}, representing the state (open or closed) of the k-th binding site in

the cluster. The extension of the connected bonds in the cluster is the spacial variable

Hn(t). The transition between the closed and open states for individual binding has the

rates r̃(Hn) and g̃(Hn) defined as

r̃(Hn) = exp(β(Hn − 1)); g̃(Hn) = γ exp(α(1 − Hn)), (2.B.1)

corresponding to the rupture and rebinding rates for clusters of individual bonds de-

fined in §2.1.3.

The stochastic hybrid model (Sn) consists of two variables: an empirical measure of the

population size en(t), and the displacement of the plate Hn(t), at time t. A convenient

measure of the population size is

en(t) =

(
1

n

n

∑
k=1

δ0(u(k)(t)),
1

n

n

∑
k=1

δ1(u(k)(t))

)
(2.B.2)

where δi(k) represents the Kronecker delta function, which is 1 when k = i and 0

otherwise. By defining un(t) = 1/n ∑
n
k=1 δ1(u(k)(t)), (2.B.2) can be simplified to en(t) =

(1 − un(t), un(t)). Between the jumps of en(t), the disk’s motion is deterministic.

To summarize, the hybrid model (Sn) can be written as

Ḣn(t) = v(Hn(t), en(t)), en(t) = (1 − un(t), un(t)), (2.B.3a)

Hn(0) = h0, en(0) = (u0, 1 − u0), (2.B.3b)

where similarly to (2.1.9), v is defined by

v =
dHn

dt
= −n

c
Hn

3
[

unHn − ( f̂ + un)
]

. (2.B.4)
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The above general condition allows the cluster to start with any number of initial

bonds, and the components of en are the proportions of processes in states 0 and 1.

The solution of the stochastic model (Sn) is given by Xn(t) = (Hn(t), un(t)). Each

element of the sequence of jump Markov processes {un}n≥1 is characterized by

• its state space En = {0, 1/n, 2/n, . . . , 1};

• its intensity λn(Hn, u) = n[ur̃(Hn(t)) + (1 − u)g̃(Hn(t))];

• its jump law

µn(Hn, u, y) = µ+(Hn, u)δy(u + 1/n) + µ−(Hn, u)δy(u − 1/n),

where

µ+(Hn, u) =
(1 − u)g̃(Hn(t))

ur̃(Hn(t)) + (1 − u)g̃(Hn(t))
, (2.B.5a)

µ−(Hn, u) =
ur̃(Hn(t))

ur̃(Hn(t)) + (1 − u)g̃(Hn(t))
, (2.B.5b)

are the probabilities deciding the nature of the next event (rupture or rebinding).

As one could easily see, both the intensity and jump law are time dependent through

Hn(t).

In [106] it is proven that the deterministic system (D) defined by

Ḣd(t) = v(Hd(t), ud(t)), u̇d(t) = (1 − ud(t)) g̃(Hd(t)) − ud(t)r̃(Hd(t)), (2.B.6a)

Hd(0) = h0, ud(0) = u0, (2.B.6b)

represents the asymptotic limit of the solution of (Sn) for sufficiently large n, under

the fluid limit assumption. We explain below what this assumption means. Let (Wn)

be a sequence of homogeneous Markov processes with states spaces En ⊂ R
k, intensi-

ties λn(w), and jump law µn(w, dy), with the flow defined as Fn(w) = λn(w)
∫

En
(z −

w)µn(w, dz). The fluid limit occurs if the flow admits a limit and if the second-order

moment of the jump size converges to zero when n → ∞. As in our stochastic hybrid

models (Sn) the jumps are of size 1/n and the intensity is proportional with n, we are

in the fluid limit assumption.

A more general version of this model, also developed in [106], allows a global formula-

tion of the problem with multiple bond populations, attached to connected plates, and

also allows the analysis of situations where the spatial coordinate Hn has more dimen-

sions (lateral displacement of the plates). This may be potentially used for formulating

a global treatment of the membrane-disk model presented in Chapter 5, and to justify

the deterministic approximation for the system dynamics presented in §5.2.3.
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Limiting drag approximations

THE VERTICAL MOTION of the disk in the surrounding fluid is strongly dependent

on hydrodynamic drag, which also modulates the force transmitted to the bonds (2.1.2).

The properties of the disk, fluid and bonds have been incorporated in the dimension-

less drag coefficient c ∼ 10−2 − 104 (2.1.10), which spans over several orders of magni-

tude and justifies a detailed treatment of the limiting cases of zero- and infinite-drag.

In the zero-drag limit, the disk’s motion faces no resistance from the surrounding liq-

uid, so the bonds support the whole dissociating force. When the disk starts moving

from the initial displacement h0 = 1 (2.1.9), and the rates (2.1.12) and (2.1.13) are com-

puted for β = 1 and α = 0 respectively, we recover the models proposed by Erdmann

& Schwartz, for constant [31], and linearly ramped force [33]. The state of the system

is entirely described by the number of closed bonds, while the cluster dynamics are

determined by only three parameters: the initial dimension of the cluster n, the rebind-

ing coefficient γ and the force f (constant) or the loading rate µ (linear force). On the

other hand, for infinite drag the disk barely moves, and the unstretched bonds associate

and dissociate under thermal fluctuations. The results obtained allow us to predict the

range of cluster’s lifetime and decay profile. As in many cases, the initial position of

the disk is not fixed, we examine the effects induced by a normally distributed initial

disk height, for the limiting-cases.

This Chapter is laid out as follows. In §3.1 we derive the trajectories of the disk for the

zero- and infinite-drag limits, together with the relevant rupture and rebinding rates. In

§3.2 we derive the master equation (ME) associated to the system [50, 138], and propose

a solution based on the matrix exponential. We detail the numerical computation of the

solution of the ME, and then sketch a simplified stochastic algorithm for simulating the

system’s individual trajectories. We end up with two deterministic approximations for

the evolution of the mean number of closed bonds, one obtained from truncations of
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the ME, and the other based on the Fokker-Planck equation (FPE) [117, 138]. The be-

haviour of clusters under constant force is analyzed in §3.3, for the vanishing rebind-

ing (disk detachment), vanishing force and finally, for finite force and finite rebinding

cases. Extending the work of Erdmann & Schwarz [31], we propose new probabilistic

justifications for separating the various forcing regimes in (n, f /n) coordinates. We

then compare a number of cluster statistics obtained by various methods. Particular

attention is paid to the absorbing and reflecting boundaries at N = 0. Some results for

the linearly ramped force are presented in §3.4. The deterministic approach relating

the small, medium and large loading rates discussed in [33], is complemented with

a probabilistic criterion to obtain a parameter map of the loading regimes in (n, µ/n)

coordinates. We also compare cluster statistics obtained from stochastic simulations

with their deterministic approximations. The implications of the results for the general

model are discussed in §3.5.

3.1 Disk motion in the limiting drag cases

In this section we present the disk trajectories under zero- and infinite-drag, together

with the corresponding rupture and rebinding rates.

The zero-drag limit

In the zero-drag limit (c ≪ 1), we expand (2.1.9) as h = h0 + ch1 + · · · , and obtain

(after the identification of coefficients of order zero in c) that 0 = (h0)3

[
h0 −

(
f
k + 1

)]
.

Replacing h = f
k + 1 in (2.1.12) and (2.1.13) together with β = 1, α = 0, h0 = 1, we

obtain the rupture and rebinding rates ke f /k and γ(n − k), which show that the models

proposed by Erdmann & Schwarz in [31], are recovered in the zero drag limit.

When k bonds are attached, the disk moves along solutions of (2.1.9), which in the

zero-drag limit are

h(t) = 1 + f (t)/k. (3.1.1)

This means that immediately after a rebinding/rupture event, the disk reaches a con-

stant height under constant force (see Fig. 4.1, c = 0.1), or moves along a certain line

under ramped force (see Fig. 4.15, c = 0.1), until the next event happens. When k bonds

are closed, the rupture (backward) and rebinding (forward) rates are denoted by

rk = ke fb , gk = γ(n − k), (3.1.2)

where fb = f (t)/k is the force per connected bond.
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The infinite-drag limit

In the large drag limit, (c ≫ 1,) we expand (2.1.9) as h = h0 + h1
c + · · · , h(0) = 1 and

identifying the coefficients of order zero and one in 1
c , we obtain

dh0

dt
= 0 (h0(0) = 1),

dh1

dt
= −k(h0)

4 + (k + f )(h0)
3 (h1(0) = 0).

For h0 = 1, the disk does not move significantly, since the dissociating force is balanced

by drag, so the rupture and rebinding rates are

rk = k, gk = γ(n − k), (3.1.3)

which indicates that the infinite-drag limit can be recovered from (3.1.2) for f = 0.

This chapter is focused on the zero-drag problem and only mentions the infinite-drag

limit results for cluster lifetimes or decay profiles, and in Appendix 3.A, where we

discuss the impact of alternative distributions of the disk’s initial height.

3.2 Methods

The main difference between the constant and linearly ramped force is that transition

rates are time-independent for constant force, and time-dependent for ramped force.

We give an overview of the available methods, with an emphasis on the constant force

case, where a significant number of different approaches can be used and compared.

3.2.1 Master equation

The deterministic models employed in the analysis of clusters with large number of

bonds fail to describe the stochastic fluctuations in small clusters, which can be de-

scribed using the one-step master equation. Assuming a small time interval [t, t + ∆t),

the cluster can leave the state N(t) = k ∈ {1, . . . , n − 1} to k − 1 or k + 1, with proba-

bility (rk + gk)∆t. In the same time interval, the state k can only be reached from states

k − 1 and k + 1 with probabilities gk−1∆t and rk+1∆t, respectively. Since the probability

for two events to take place in the time interval (t, t + ∆t) scales with (∆t)2, we are

actually dealing with a one-step process, also referred to as a “birth and death pro-

cess” [138]. With zero drag, the disk moves directly to the position given by (3.1.1),

the initial position is of the disk is not relevant and the simplified notation Pk(t) is

used instead of Pk(t; 0, h0), for the probabilities defined in (2.2.10). If the probabilities

Pk(t) = Pr {N(t) = k} are known, at time t + ∆t they will satisfy the equation

Pk(t + ∆t) =

[
1 − (rk + gk)∆t

]
Pk(t) + rk+1∆tPk+1(t) + gk−1∆tPk−1(t), (3.2.1)
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where the first term represents the probability that the cluster remains in the state with

k bonds, while the second and third are the probabilities to enter state k from the states

k + 1 and k − 1, respectively. In the limit ∆t → 0 we obtain the one-step ME

dPk

dt
= rk+1Pk+1 + gk−1Pk−1 − [rk + gk]Pk, k = 0, . . . , n; Pk(0) = δkn, (3.2.2)

where rn+1 = r0 = gn = g−1 = 0. More compact expressions can be obtained following

the notations from the book of Van Kampen [138], who uses the “step operator” E

which is defined by its effect on an arbitrary function q(k) :

Eq(k) = q(k + 1), E
−1q(k) = q(k − 1). (3.2.3)

With the aid of this symbol the ME (3.2.2) may be written

dPk

dt
= (E − 1)rkPk + (E

−1 − 1)gkPk, k = 0, . . . , n; Pk(0) = δkn, (3.2.4)

where rn+1 = r0 = gn = g−1 = 0. These conditions are justified by the modelling

assumptions. As n is the maximal number of available binding site, the state n + 1

does not exist (rn+1 = 0), while when all sites are occupied, no bond can be formed

(gn = 0). At the same time, the state −1 does not exist, which justifies r0 = g−1 = 0.

Special attention is paid to the difference between the rebinding rates at k = 0, which

are g0 = nγ (reflecting boundary) and g0 = 0 (absorbing boundary). Each situation is

analyzed separately. A full solution of (3.2.2) generally provides most relevant infor-

mation about the cluster dynamics: mean number of bonds, dissociation rate, etc.

In matrix notation, the ME can be written from (3.2.2) as [138]

dP

dt
= A(t)P0, (3.2.5)

where P(t) = (P0(t), . . . , Pn(t))T
and A(t) is a (n + 1) × (n + 1) matrix defined as

A(t) =





−g0 r1 0 0 · · · 0 0 0

g0 −r1 − g1 r2 0 · · · 0 0 0

0 g1 −r2 − g2 r3 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 · · · gn−2 −gn−1 − rn−1 rn

0 0 0 0 · · · 0 gn−1 −rn





, (3.2.6)

which is time-dependent for ramped force, as (2.1.12) gives rk = rk(t) = k exp(µt).

The system (3.2.5) is a first order linear ODE system, and can be solved by integration.

When the matrices A(t) commute for any times t1, t2 > 0 (A(t1)A(t2) = A(t2)A(t1),

e.g. for constant force), the direct analytical formula

P(t) = e
∫ t

0 A(s) dsP0, (3.2.7)
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is a solution for (3.2.5), where eA denotes the matrix exponential. For constant force

(3.2.7) can be written as

P(t) = eAtP0. (3.2.8)

Even in the absence of a full analytical solution, the ME can be used to obtain the

expectation and variance of N(t), which in the compact notation 〈ak〉 = ∑
n
k=0 akPk [85],

can be written as

µN = 〈k〉 =
n

∑
k=0

kPk, (3.2.9a)

σ2
N =

n

∑
k=0

k2Pk − 〈k〉2. (3.2.9b)

From (3.2.2), these satisfy the system [138]

dµN

dt
=

n

∑
k=0

d(kPk)

dt
= −

n

∑
k=0

rkPk +
n

∑
k=0

gkPk = −〈rk〉+ 〈gk〉, (3.2.10a)

dσ2
N

dt
= 〈gk + rk〉 + 2〈(k − 〈k〉)[gk − rk]〉. (3.2.10b)

These results are exact, and their form is the same for constant ( f ) and linearly ramped

(µt) force. Stochastic simulations can be used to estimate (3.2.10), as shown in §2.2.2.

Numerical solution

As a first order ODE system, the ME can be easily solved numerically (for example

using a ode45 routine implemented in Matlabr). The difficulty is that the magnitude

of the entries in matrix A ranges from O(n) to O(e f ), which makes the problem stiff for

large values of f and n. The use of the analytical formula (3.2.7) extends considerably

the dimension of the clusters for which we can solve the ME numerically. The matrix

exponential is evaluated using either the expm Matlabr built-in routine (based on Padé

approximation with scaling and squaring), or the formula

eX = V diag(exp(diag(D))) V−1,

where for a given matrix X, V is the matrix whose columns are the eigenvectors of

X, while D is the diagonal matrix having the eigenvalues of X on the main diagonal.

Results are presented in §3.3 below.

3.2.2 Deterministic approximation

When the ME itself is difficult to solve, one can obtain important information from a

deterministic approximation for the evolution of µN and σ2
N . To this end, a continuous

analogue of the transition rates r and g on the interval [0, n], with the notation rk = r(k)

and gk = g(k) is used, and several approximations for (3.2.10) can be obtained.
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Leading order

The deterministic approximation for the mean number of closed bonds evolves at a net

rate given by the difference between rupture and rebinding, as in the equation

dµN

dt
= −µNe f /µN + γ(n − µN) = −r(µN) + g(µN), (3.2.11)

first studied by Bell [10] for constant force, and later by Seifert [127] for ramped force.

When the rates r and g are linear functions of k, we have

〈r(k)〉 = r(〈k〉), 〈g(k)〉 = g(〈k〉),

so equation (3.3.1) becomes (3.2.11). The range where the linearity assumption works,

requires careful examination. While gk (3.1.2) is linear, rk may be considered linear

only for f ≪ 1, where rk ≈ k. As force increases, rk ≈ k exp( f /k), and (3.2.11) is no

longer a good approximation.

Higher order approximations

Assuming that r and g can be expanded in Taylor series around the average µN , we

write k = µN + (k − µN) and introduce the expansion in (3.2.10), to obtain [31]

dµN

dt
= −r(µN) + g(µN) +

∞

∑
i=2

g(i)(µN) − r(i)(µN)

i!
〈(k − µN)i〉, (3.2.12a)

dσ2
N

dt
= r(µN) + g(µN) +

∞

∑
i=2

[
g(i)(µN) + r(i)(µN)

i!
+ 2

g(i−1)(µN) − r(i−1)(µN)

(i − 1)!

]
〈(k − µN)i〉,

(3.2.12b)

where the first order term vanishes because 〈(k − µN)〉 = 0. Truncating after second

order term (error of magnitude 〈(k − µN)3〉), one obtains [31]

dµN

dt
= −µNe f /µN + γ(n − µN) − f 2

2µ3
N

σ2
N , (3.2.13a)

dσ2
N

dt
= µNe f /µN + γ(n − µN) −

[
e f /µN

(
2 − 2 f

µN
− f 2

2µ3
N

)
+ 2γ

]
σ2

N , (3.2.13b)

which is compared against solutions of (3.2.10), later in §3.3.1.

Probabilistic justification

There is also a probabilistic basis for considering (3.2.11), which because rk and gk are

functions of k/n, is precisely the large-n limit of the solution of the ME (3.2.2). Denoting

by Xn(t) the number of closed bonds at time t, in the terminology of Ethier and Kurtz

[43, Chapter 11], {Xn}n≥1 is a density-dependent population process. Taking f = n f̂ ,

the following law of large numbers (see Theorem 2.1 on page 456 [43]) can be obtained.
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Theorem. For any t > 0,

sup
0≤s≤t

∣∣∣∣
Xn(t)

n
− N̂(t)

∣∣∣∣ → 0 as n → +∞ almost surely, (3.2.14)

where N̂(t) satisfies the ODE

dN̂
dt

= −N̂e f̂ /N̂ + γ(1 − N̂), N̂(0) = 1. (3.2.15)

One can check easily that (3.2.15) is exactly (3.2.11) after the substitution µN = nN̂.

3.2.3 Gillespie Algorithm

For constant force, the rates are time-independent and a simplified version of the al-

gorithm presented in §2.2.1, called the Gillespie algorithm [53] is available. The fact

that makes it simple and efficient is that rather than discretizing time in small steps,

the algorithm generates steps between subsequent reactions (assumed to happen one

at a time). For our problem, the possible reactions are rebinding and rupture with cor-

responding rates gk and rk. The sojourn time in the state with k bonds is

Sk = min

(
− ln(ξgk )

γ(n − k)
, − ln(ξrk)

ke f /k

)
, (3.2.16)

where ξgk , ξrk ∼ U(0, 1) [31]. The next reaction is the one for which the minimum is

attained. A single simulation generates a vector with the event times and one with

the states of the system, allowing the computation of N(t). The probabilities Pk(t), are

obtained as the frequency of k = 0, . . . , n in sufficiently many simulations (104 − 106).

For ramped force f = µt, the rates are time-dependent and trajectories are simulated

using the algorithm described in §2.2.1. However, as the disk’s displacement is locally

linear, the sojourn time Sk,t0
in the state with k bonds starting at time t0 (2.2.6), can be

solved exactly giving the formula

Sk,t0
= min

[
− ln(ξgk)

γ(n − k)
,

k
µ

ln

(
1 − µ/k

keµt0/k
ln ξrk

)]
, (3.2.17)

where ξgk , ξrk ∼ U(0, 1).

3.2.4 Fokker-Planck Equation (FPE)

The FPE is a special type of ME, often used to replace the discrete solution {Pk(t)}0≤k≤n

of the ME (3.2.2), with a continuous approximation P(X, t) which is the solution of a

PDE (and hopefully easier to solve), where X is as a continuous variable interpolating

{0, 1, . . . , n}. In §3.3 we examine parameter regions and time-windows where the FPE
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approximation is valid, and then show that the FPE’s first moments better approximate

µN and σ2
N defined in (3.2.9), than the second order deterministic truncations (3.2.13).

In one dimension the FPE can be written as

∂P(x, t)
∂t

= − ∂

∂x

[
AFPE(x, t)P(x, t)

]
+

1

2

∂2

∂x2

[
BFPE(x, t)P(x, t)

]
, (3.2.18)

where the range of x is continuous and the coefficients AFPE(x, t) and BFPE(x, t) may be

any positive differentiable functions [138, Chapter VIII]. The first term in the right-hand

side of (3.2.18) is called convection or drift term, while the second is called diffusion or

fluctuation term.

Derivation of the FPE

The FPE is derived assuming a large cluster dimension n, and “smooth” rates rk and

gk (i.e. small changes between k and k + 1) [138, Chapter VIII]. Assuming that φ(t)

describes the macroscopic motion of the max of Pk(t), one expects Pk to exhibit a sharp

maximum at some position of order nφ(t), while its width to be of order n1/2 [138,

Chapter X]. To capture this, we set

X = nφ(t) + n1/2x, (3.2.19)

where the new variable x is of order 1. The continuous analogue P(X, t) is expected to

verify

P(k, t) ≈ Pk(t). (3.2.20)

The initial condition of the ME (3.2.2) gives in the new variable

P(X, 0) = δ(X − n). (3.2.21)

Equation (3.2.19) is a time-dependent transformation from the variable X to the new

variable x, involving the yet undetermined function φ(t). The function P(X, t) trans-

forms into a function Π(x, t) of x according to

P(X, t) = P(nφ(t) + n1/2x, t) =
1

n1/2
Π(x, t). (3.2.22)

We shall find Π(x, t), which will allow us to compute P(X, t) and then Pk(t). The results

are then compared against the solution of the ME (3.2.2). The sketch of the expected

behaviour of P(X, t) is depicted in Fig. 3.1.

Consider the continuous and scaled versions of the rates rk and gk defined as

R(φ) = φe f̂ /φ, G(φ) = γ(1 − φ), φ ∈ [0, 1], f̂ = f /n. (3.2.23)
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Figure 3.1: The evolution of the probability density P(X, t), as N(t) decreases to an equilibrium.

The operator E changes k into k + 1 in (3.2.3), therefore x into x + n−1/2 in (3.2.22).

Using (3.2.20) and (3.2.22), the terms of the ME (3.2.2) in the new variables are

rkPk = nR(k/n)
1

n1/2
Π(x, t) = n1/2R

(
φ +

x
n1/2

)
Π(x, t),

rk+1Pk+1 = nR

(
k + 1

n

)
1

n1/2
Π

(
x +

1

n1/2
, t

)
= n1/2R

(
φ +

x
n1/2

+
1

n

)
Π

(
x +

1

n1/2
, t

)
,

gkPk = nG(k/n)
1

n1/2
Π(x, t) = n1/2G

(
φ +

x
n1/2

)
Π(x, t),

gk−1Pk−1 = nG

(
k − 1

n

)
1

n1/2
Π

(
x − 1

n1/2
, t

)
= n1/2G

(
φ +

x
n1/2

− 1

n

)
Π

(
x − 1

n1/2
, t

)
.

Using Taylor expansions of R and G about φ, and of Π about x, we obtain

rk+1Pk+1 − rkPk = R
∂Π

∂x
+

1

n1/2

(
xR′ ∂Π

∂x
+

R
2

∂2Π

∂x2
+ R′Π

)
+ O(1/n), (3.2.24a)

gk−1Pk−1 − gkPk = −G
∂Π

∂x
+

1

n1/2

(
− xG′ ∂Π

∂x
+

G
2

∂2Π

∂x2
− G′Π

)
+ O(1/n), (3.2.24b)

where R′ and G′ denote the differentials of the single-variable functions R and G. Using

(3.2.19), the left-hand side of the ME (3.2.2) in the new variables is

dPk

dt
=

1

n1/2

(
∂Π

∂t
− n1/2 dφ

dt
∂Π

∂x

)
. (3.2.25)

The ME can now be written as

1

n1/2

(
∂Π

∂t
− n1/2 dφ

dt
∂Π

∂x

)
= (R − G)

∂Π

∂x
+

1

n1/2

[
x(R′ − G′)

∂Π

∂x

+ (R′ − G′)Π +
1

2
(R + G)

∂2Π

∂x2

]
+ O(1/n). (3.2.26)
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Identifying the terms of orders O(1) and O(n−1/2) in (3.2.26) we obtain

O(1) :
dφ

dt
= A(φ) (3.2.27)

O(1/n1/2) :
∂Π(x, t)

∂t
= −A′(φ)

∂

∂x
xΠ +

1

2
B(φ)

∂2Π

∂x2
, (3.2.28)

with the coefficients

A(φ) = G(φ) − R(φ) = γ(1 − φ)− φe f̂ /φ, φ(0) = 1, (3.2.29a)

−A′(φ) = −G′(φ) + R′(φ) = γ + e f̂ /φ
(

1 − f̂ /φ
)

, (3.2.29b)

B(φ) = R(φ) + G(φ) = φe f̂ /φ + γ(1 − φ). (3.2.29c)

Function φ describes the macroscopic evolution of the cluster and is similar to the lead-

ing order deterministic equation (3.2.11). The terms of smaller orders represent fluctu-

ations below the molecule level O(1/n), and are therefore neglected. Equation (3.2.28)

is a linear Fokker-Planck equation, also called the “linear noise approximation” [138,

Chapter X.4], whose coefficients depend on time through φ.

Solution of the FPE

As shown in [138, Chapter VIII.6], the FPE (3.2.28) for a homogeneous boundary con-

dition at ±∞ is solved by a Gaussian, therefore it suffices to find the first and second

moments of x. On multiplying (3.2.28) by x and x2 one obtains the first two moments

of x and the variance

〈x〉t = A(φ)〈x〉, (3.2.30a)

〈x2〉t = 2A′(φ)〈x2〉+ B(φ) (3.2.30b)

〈〈x2〉〉t = 2A′(φ)〈〈x2〉〉+ B(φ), (3.2.30c)

where the more compact notation

〈〈x2〉〉 = 〈x2〉 − 〈x〉2 (3.2.31)

for the variance was used. As our aim is to solve the ME with initial delta distribution

(3.2.21) and with φ(0) = 1 for the microscopic part. It follows that the initial fluctua-

tions vanish,

〈x〉t=0 = 〈x2〉t=0 = 〈〈x2〉〉t=0 = 0. (3.2.32)

As shown in [138, Chapter X.4, Chapter VIII.6]), (3.2.28) is solved by the Gaussian

Π(x, t) =

(
2π〈〈x2〉〉2

)−1/2

exp

[
− (x − 〈x〉)2

2〈〈x2〉〉

]
. (3.2.33)
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One can see that (3.2.33) is the solution (3.2.28) for a homogeneous boundary at ±∞,

and extends beyond the interval [0, n]. From (3.2.22), P(X, t) is also solved by a Gaus-

sian, for which we find the mean and variance.

Inserting the solution of φ(t) in (3.2.30a) with the initial conditions (3.2.32) one obtains

the mean and variance of x. These are used to obtain the mean and variance of the

original variable X, as

〈X〉 = nφ(t) + n1/2〈x〉, (3.2.34a)

〈〈X2〉〉 = n〈〈x2〉〉. (3.2.34b)

Differentiating (3.2.34a), the equations for the mean and variance are

d〈X〉
dt

= n
dφ

dt
+ n1/2 d〈x〉

dt
= n

(
G − R

)
(φ) + n1/2(G′ − R′)〈x〉

= n

(
G(φ)− R(φ)

)
+

(
G′(φ)− R′(φ)

)
(〈X〉 − nφ) , (3.2.35a)

d〈〈X2〉〉
dt

= 2

(
G′(φ) − R′(φ)

)
〈〈X2〉〉+ n

(
R(φ) + G(φ)

)
, (3.2.35b)

with the initial conditions 〈X〉t=0 = n and 〈〈X2〉〉t=0 = 0. One can note that φ(t) is not

a trivial scaling of 〈X〉 with n, as the two are related by

d(〈X〉 − nφ)

dt
=

(
G′(φ)− R′(φ)

)
(〈X〉 − nφ) , (3.2.36)

which suggests that 〈X〉 is a higher approximation for the first moment of the ME than

(3.2.11). Simple computations show that it is not equivalent to (3.2.13a), and generally

approximates µN better, as we shall confirm in §3.3.

From (3.2.19), (3.2.22) we obtain

P(X, t) =
1

n1/2
Π

(
1

n1/2
(X − nφ), t

)
. (3.2.37)

As the mean and variance of 1
n1/2 (X − nφ) are n−1/2〈X〉 − n1/2φ and 〈〈x〉〉/n respec-

tively, one can use (3.2.33) to write

P(X, t) =
1

n1/2

(
2π

1

n
〈〈X2〉〉2

)−1/2

exp

(
−

[
1

n1/2 (X − nφ)− 1
n1/2 (〈X〉 − nφ)

]2

2 1
n 〈〈X2〉〉

)
,

(3.2.38)

which after simplification proves that P(X, t) is indeed the Gaussian

P(X, t) =

(
2π〈〈X2〉〉2

)−1/2

exp

[
− (X − 〈X〉)2

2〈〈X2〉〉

]
. (3.2.39)
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As the Gaussian distribution (3.2.39) extends beyond the interval [0, n], the values

P(k, t) computed from the FPE are expected to be a good match for the discrete prob-

abilities Pk(t) just over a limited interval inside [0,n] which is far from the boundaries,

and over a limited time-window. A significant improvement over the current solution

can be made by considering no-flux boundaries at X = 0 and X = n, to preserve the

probability inside the interval [0, n].

In summary, the ME (3.2.2) is approximated by a FPE with homogeneous boundary

conditions at ±∞, which is solved by a Gaussian. The comparison between the solu-

tions of the FPE and the ME, as well as estimates for the time-windows over which the

FPE is a good approximation for the ME are presented in §3.3.1 and §3.3.2 below.

3.3 Results for constant force

When force is sufficiently large, the effects of rebinding are negligible. In this section we

overview some relevant results regarding the cluster behaviour in n, f and γ parameter

space, for zero rebinding §3.3.1, zero force with rebinding §3.3.2, and non-zero force

with rebinding §3.3.3.

3.3.1 Vanishing rebinding

First, an analytical solution for the ME (3.2.2) is discussed, and used to confirm the

existence of three distinct forcing regimes. Then, the FPE approach is validated against

deterministic approximations (3.2.13), and exact solutions of the ME computed from

(3.2.8). We then analyze the cluster’s decay and finally, prescribe upper and lower

bound for cluster lifetime, using results obtained for zero- and infinite-drag.

Probabilities and force regimes

In the absence of rebinding, the cluster decay is a pure death process, with time-independent

rates rk. A direct formula for the state probabilities Pk(t) is available [75]

Pk(t) =

( n

∏
j=k+1

rj

) n

∑
j=k

(
e−r jt

n

∏
i=k, i 6=j

1

ri − rj

)
, (3.3.1)

valid for ri 6= rj. In case f is such that ri = rj, (3.3.1) is replaced by

Pk(t) =

( n

∏
j=k+1

rj

) n

∑
j=k

(
e−r jt

n

∏
i=k, ri 6=r j

1

ri − rj

n

∏
i=k, ri=r j, i 6=j

t
2

)
, (3.3.2)

using that

lim
∆→0

(1 − e−t∆)/∆ = t, ∆ = ri − rj.
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Figure 3.2: Probabilities Pk(t) obtained from the exact formula (3.3.1) for cluster size n = 10,

rebinding coefficient γ = 0 and (a) f = 0.1; (b) f = 1; (c) f = 10; (d) f = 100.

For f = 0, (3.3.1) represents the stochastic version of the radioactive decay with the bi-

nomial distribution Pk(t) = (n
k)(1− e−t)n−ke−kt. The full solution of the ME represented

by the state probabilities Pk(t) is depicted in Fig. 3.2, suggesting the existence of three

forcing regimes.

In what follows, we shall refer to a state k ∈ 0, . . . , n as being “visited” by the cluster at

time t ≥ 0, if

Pk(t) > Pi(t), k ∈ {0, . . . , n}, i 6= k (3.3.3)

Under small force, there exists a time interval when the cluster visits each of the states

k = 0, . . . , n (the probability Pk verifies (3.3.3)), as depicted in Fig. 3.2 (a). Because in

the absence of rebinding the cluster dissociates, P0 approaches unity in the long run,

while all other Pk’s vanish. As force increases, some of the states with lower number

of bonds k are not visited, as illustrated in Fig. 3.2 (b) (state k = 1 not visited) and

(c) (states k = 5, 4, 3, 2, 1 not visited), so the medium force regime can be considered to

begin with the minimal force required for the cluster not to visit all states. Finally, from

a certain value of f , the cluster only visits the states n and 0, as plotted in Fig. 3.2 (d).

The cluster decay in this regime is called “catastrophical”, the dissociation of the whole

cluster immediately following the rupture of the first bond.
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Figure 3.3: Force regimes in the (n, f /n) coordinates, generated from the analysis of probabil-

ities Pk(t) obtained from (3.2.8) (solid lines). Solid lines represent boundaries computed from

the numerical solution of the ME (3.2.8) for various values of n, while dotted lines represent re-

sults obtained by extrapolating the simulated data, using spline cubic functions. Plot obtained

for n = 2, . . . , 100, γ = 0 reveal the existence of small force (I), medium force (II) and large force

(III) regimes.

Force regimes obtained from the probability functions

The number of visited states defined in (3.3.3) is used to characterize the three force

regimes as a function of cluster size, depicted in Fig. 3.3. Solid lines are determined by

solutions (3.2.8) of the ME (3.2.2) (for values of up to n ∼ 50), while dotted asymptotes

represent cubic spline extrapolations of the simulated data. For each value of n, the

solutions (3.2.8) were computed for increasing values of f , and the small-intermediate

and intermediate-large force boundaries, were identified using the function

D( f , t) = max
k=0,...,n

Pk(t).

The force regions are (I) for #{D( f , t)|t ≥ 0} = n + 1, (II) for 2 < #{D( f , t)|t ≥ 0} <

n + 1 and (III) for #{D( f , t)|t ≥ 0} = 2, where #{D} denotes the cardinal of set D.

The results predict that a small constant force is required to destabilize the smooth

cluster decay ( f ≃ 1/7), while the force required for the cluster’s catastrophic failure

scales quadratically with n ( f ≃ n2/2).

Comparison ME vs. FPE

Despite the small cluster dimension n = 10, the solutions P(k, t) of the FPE (3.2.38),

approximate reasonably well the solutions Pk(t) of the ME (3.2.2), especially for small

force over a limited time-window, as sketched in Fig. 3.4 (a). As anticipated, the ap-

proximation is poor at the boundaries of [0, n], as seen in Fig.3.4 (a), where P0(t) may
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Figure 3.4: Solutions Pk(t) of the ME obtained from (3.2.8), are compared against the FPE ap-

proximations P(k, t) (3.2.38), for n = 10, γ = 0 and (a) f = 1; (b) f = 10.

be severely underestimated by P(X, t). The situation gets even worse with the increase

in force, as depicted in Fig. 3.4 (b). This is expected, as the rupture rates increase ex-

ponentially with force, and the small number of bonds in the final phase ensure a big

difference between the rates rk and rk+1. We expect then the FPE method to be totally

irrelevant for approximating the catastrophic failure solution shown in Fig.3.2 (d) for

f = 100, where cluster dynamics are dominated by the probabilities P0 and Pn.

Cluster decay profiles

In the absence of the rebinding, the number of closed bonds in the cluster decays with

time, until the cluster finally dissociates. The profile of this decay is analyzed from

stochastic simulations of the system and deterministic approximations of µN . The

deterministic equation (3.2.11) can be transformed using the substitutions f = n f̂ and

µN = N̂n, into

dN̂
dt

= −N̂e f̂ /N̂ + γ(1 − N̂), N̂(0) = 1. (3.3.4)

which only depends on γ and f̂ , the two key parameters of the deterministic model.

As discussed in Sec. §3.2, due to the nonlinear form of rk (and continuous analogues

r(x) = xe f /x, where these are defined), the first moment µN(t) of the stochastic solu-

tion for the mean number of closed bonds (3.3.1) is not identical with the solution of

the deterministic equation (3.2.11). In Fig. 3.5, results for µN(t) derived from stochastic

simulations, the exact solution of the ME (3.2.2), the second-order deterministic ap-

proximation (3.2.13a), and solutions of the FPE (3.2.35a) are compared to each other.

For small force, the non-linearity is small and all methods agree in the initial phase of

decay, as depicted in Fig. 3.5 (a).
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Figure 3.5: Comparison between single simulation trajectory (thin solid line) and µN(t) ob-

tained from the FPE (3.2.35a), DE (3.2.13a) (generally shadowed by FPE), ME (3.2.2) and av-

erage of 104 trajectories (perfectly match ME) for n = 10, γ = 0 and (a) f = 0.1; (b) f = 1; (c)

f = 10; (d) f = 100.

As shown in Fig. 3.5 (b) and (c), with the increase in force, the deterministic approx-

imations deviate sooner and more significantly from results generated from the ME,

with the FPE mean (3.2.35a) performing better than the deterministic mean (3.3.1).

All deterministic results exhibit a steep breakdown since r(µN) and dµN/dt diverge

as µN → 0. In the large force regime depicted in Fig. 3.5 (d) both deterministic ap-

proximations completely fail in describing the final decay phase, and the only reliable

results are obtained from stochastic simulations. The stochastic results for µN(t) show

no scaling with f /n alone, because the ME includes all moments of the probability

distribution {Pk(t)}n
k=0.

In Fig. 3.6 we compare the variance σ2
N(t) obtained from averages of stochastic simula-

tions with results obtained from the exact solution (3.2.8) of the ME (3.2.2), the second

order deterministic approximation of the variance (3.2.10b) obtained from (3.2.13b)

and the solution of (3.2.35b), obtained from the FPE. The solutions agree even worse

than the means, as the deterministic variances blow in finite time. As previously, the

deterministic results are only relevant for the incipient phase of the decay, especially
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Figure 3.6: Variance σ2
N(t) obtained from the FPE (3.2.35a), DE (3.2.13b), ME (3.2.2), and the

average of 104 trajectories (perfectly match ME) for n = 10, γ = 0 and (a) f = 0.1; (b) f = 1; (c)

f = 10; (d) f = 100.

for small force, as depicted in Fig. 3.6 (a). As shown in Fig. 3.6 (b), (c) and (d), both

deterministic approximations fail. The larger the force, the faster and worse the predic-

tion. The conclusion is that one can only rely on stochastic simulations and the exact

solution of the ME for describing the fluctuations in the terminal phase of the decay.

Cluster decay and the ratio f /n

The dependence of the normalized decay µN/n on the initial loading per bond f /n

is depicted in Fig. 3.7, where we compare the solution of (3.3.4) against results from

stochastic simulations. The difference between the two solutions increases with f ,

while for the same f /n, a large cluster decays faster than a small one. This is because

for a large cluster the decay is slower in the initial phase, while after some ruptures the

large force is shared by fewer bonds, so the decay becomes much faster. The determin-

istic approximation (3.3.4) does not reveal this behaviour, as the solution is completely

determined by the ratio f /n.

For certain pure death processes, the relation between the deterministic decay and the

mean number of closed bonds can be analyzed using a result of Ball & Donnelly [6,
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Figure 3.7: Plot of µN(t)/n obtained from the DE (3.2.11) (solid lines), and the exact solution of

the ME (3.2.8) realized for γ = 0, n = 4, 8, 16, 32 and (a) f /n = 0.01; (b) f /n = 0.1; (c) f /n = 1;

(d) f /n = 10.

Theorem 3.2]. When the rates r0 = 0, r1, . . . , rn form a convex (concave) sequence, let

r(x), x ∈ [0, n] be any extension of r from the integers 0, 1, . . . , n to the closed real

interval [0, n] which retains the property of convexity. The differential equation

dx
dt

= −r(x), x(0) = n,

provides a deterministic approximation for a certain death process N(t), t ≥ 0 (defined

in [122, Chapter 6]). Then,

µN(t) ≥ (≤)x(t), (t ≥ 0)

if r0, r1, . . . , rn form a concave (convex) sequence. Further, the inequalities are strict for

all t > 0 if the sequence r0, r1, . . . , rn is strictly concave or strictly convex.

Unfortunately, as shown in Fig. 3.8, the result above can only be applied for f = 0,

where the rates are linear, the sequence is both concave and convex, hence the deter-

ministic and stochastic means are the same. In all other cases, the sequence is only

convex on the interval [1, n]. However, the result indicates that the deterministic mean

initially overestimates, and terminally underestimates the stochastic mean, as shown

in Figs. 3.5 and 3.7.
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Mean cluster dissociation time

As explained in §1.2.3, most DFS experiments measure the dissociation time TD defined

in §2.2.2 (2.2.18) as a stochastic variable. We examine the dependence of its mean µTD

(“cluster lifetime”) and variance σ2
TD

on cluster size and applied force, and confirm the

three force regimes identified before in cluster dynamics.

Since the stochastic decay of the cluster represents a succession of Poisson processes

with time-independent rates rk, and as shown in [75], the expected lifetime of the clus-

ter is the sum of the inverses of the rates

µTD =
n

∑
k=1

1

rk
=

n

∑
k=1

1

ke f /k
. (3.3.5)

For small force ( f̂ ≪ 1/n), the lifetime (3.3.5) is well approximated by

µTD ≈
n

∑
k=1

1

k
≈ ln n +

1

2n
+ Γ, (3.3.6)

in agreement with previous findings [31, 134].

For intermediate force (1/n ≪ f̂ ≪ 1), the cluster decays slowly for k > f where we

can approximate rk ≈ k. The decay becomes much faster for f /k > 1, and the cluster

passes rapidly through the states k, . . . , 1. The lifetime can then be estimated from

µTD ≈
n

∑
k= f

1

k
≈ ln(n/ f ). (3.3.7)
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For large force, the dominant term in (3.3.5) is the one corresponding to the rupture of

the first bond so the average lifetime is

µTD ≈ e− f /n/n, (3.3.8)

because after the first bond breaks, all the other ones follow almost instantly.

The variance of the lifetime of the cluster bounded from above

σ2
TD

=
n

∑
k=1

1

r2
k

≤
n

∑
k=1

1

k2
≤

∞

∑
k=1

1

k2
=

π2

6
. (3.3.9)

This result is particularly useful for clusters with long life, where fluctuations are small

compared to the lifetime.

In Appendix 3.B we present estimates for the cluster lifetime obtained from the analysis

of the deterministic equation (3.2.11) as done by [31], and we also compare them with

the results obtained from the analysis above.

Limiting values for the mean cluster lifetime

The limiting drag cases provide upper and lower bounds for the mean cluster lifetime

µTD , which are illustrated in Fig. 3.9 as functions of f /n for clusters having n = 1,

10, 100, 1000 and 10000 bonds, respectively. The horizontal dashed lines represent the

mean cluster lifetime in the infinite-drag limit, which is force-independent. In the zero-

drag limit, µTD severely diminishes with the increase in force. For finite drag (Chapter

4) and given values of f and n, the stochastic mean dissociation time µTD is located

between the values corresponding to the coordinates ( f /n, n) in Fig. 3.9.
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3.3.2 Vanishing force: role of rebinding

Rebinding can stabilize the decay of the cluster, and for sufficiently small force the

bond population may fluctuate about an equilibrium value. In the absence of force, the

disk is stationary and system’s dynamics are dictated by only cluster dimension and

rebinding. In this case the ME (3.2.2) can be solved explicitly for a reflective boundary

at k = 0, and the validity of the FPE approximation (3.2.39) can be examined. The

dependence of the cluster’s lifetime on n and γ is also examined.

Exact probabilities and cluster dynamics for f=0

The deterministic equation (3.3.4) reads

dµN

dt
= γ(n − µN) − µN , µN(0) = n, (3.3.10)

which has the solution

µN(t) = n
γ + e−(1+γ)t

1 + γ
. (3.3.11)

The solution relaxes exponentially fast to the equilibrium configuration

Neq = lim
t→∞

µN(t) = γn/(1 + γ),

predicting an infinite deterministic cluster lifetime.

The analysis of the stochastic birth and death process reveals the key role played by the

boundary condition in the cluster’s dynamics. For a reflecting boundary at k = 0, N(t)

can be viewed as a sum of n independent and identically distributed random variables,

corresponding to single bond clusters. At time t, a single bond can be either open or

closed, with probabilities P′
0(t) and P′

1(t), which satisfy P′
0 + P′

1 = 1 at all times. The

corresponding ME for clusters with a single bond is

dP′
1

dt
= −r1P′

1 + g0P′
0, P′

1(0) = 1, (3.3.12a)

dP′
0

dt
= −g0P′

0, P′
0(0) = 0, (3.3.12b)

with r1 = 1 and g0 = γ. One can show that (3.3.12) is solved by

P′
1(t) =

γ + e−(1+γ)t

1 + γ
, P′

0(t) =
1 − e−(1+γ)t

1 + γ
. (3.3.13)

Denoting by

q =
γ + e−(1+γ)t

1 + γ
, (3.3.14)

the number of bonds in the single bond cluster is distributed as a Binomial random

variable B(1, q) [122, Chapter 2].

72



CHAPTER 3: LIMITING DRAG APPROXIMATIONS

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

t

P
k(t

) P
5

P
10

P
0

0 1 2 3 4
0

0.2

0.4

0.6

t

P
k(t

)
P

10

P
5

(b)(a)

Figure 3.10: Probabilities Pk(t), k = 0, . . . , n where n = 10, f = 0, γ = 1, realized for (a)

reflecting boundary at k = 0 computed from (3.3.15) and (b) absorbing boundary at k = 0 (105

simulated trajectories).

Since N(t) is a sum of n such processes, it is distributed as B(n, q) so the ME (3.2.2) is

solved by

Pk(t) =

(
n
k

)
qk (1 − q)n−k =

(
n
k

)
(

γ + e−(1+γ)t
)k (

1 − e−(1+γ)t
)n−k

(1 + γ)n . (3.3.15)

The probabilities verify limt→∞ Pk(t) = (n
k)

γk

(1+γ)n , so in the long run the distribution of

the bonds in the cluster stabilizes to an equilibrium, as shown in Fig. 3.10 (a). However,

as foreseen by Bell, the cluster might dissociate even in the absence of force, if we wait

for long enough. This scenario corresponds to an absorbing boundary at k = 0, where

Pk(t) can no longer be obtained in a closed analytical form. As depicted in Fig. 3.10 (b),

all probabilities Pk(t) for k ≥ 1 reach a peak value, after which they vanish in the long

run. The only increasing probability is P0(t), as the cluster finally dissociates.

From (3.3.14), the mean and variance of N(t) are

µN(t) = nq, σ2
N(t) = nq(1 − q). (3.3.16)

The relative standard deviation σN/µN scales as µ−1/2
N for all times, thus fluctuation

effects decrease with increasing bond number, converging to the stationary state value

lim
t→∞

σN/µN =
√

(1 + γ)Neq =
√

γn.

This indicates that larger rebinding not only increases the equilibrium number of bonds,

but also decreases the size of the fluctuations around the equilibrium value Neq.
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Domain of validity of the FPE

It was shown in Fig. 3.4 that the FPE can accurately approximate the solutions Pk(t)

of the (3.2.2), for certain values of force and cluster size, in a limited time-window.

For zero-force, one can obtain explicit estimates of the parameter values γ and n when

the FPE is a valid approximation for the FPE, together with the corresponding time-

windows. As the argument is rather technical, we just present the parameter map,

while the details can be found in Appendix 3.C.

The parameter regions where the FPE approximation is valid are sketched in Fig. 3.11.

The criterion does not apply in region (0) (left of the dashed line). The FPE is not valid

in (I), is valid in [tmin, ∞) in (I I) and is valid in the time interval [tmin, tmax] in (III),

where tmin and tmax can be determined (when real), from (3.C.7).

Cluster lifetime

From [138], the mean cluster lifetime absorbing boundary is given by

µTD =
1

γ + 1

( n

∑
k=1

1

k
+

n

∑
k=1

(
n
k

)
γk

k

)
. (3.3.17)

This equation is a polynomial of order n − 1 in γ, and for f = 0 we recover the result

from (3.3.5). The dependence of µTD on γ and n is depicted in Fig. 3.12 (a) and (b). For
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Figure 3.12: Cluster lifetime µTD
from (3.3.17), plotted as a (a) function of γ; (b) function of n.

γ < 1 the cluster lifetime grows logarithmically with cluster size, for moderate values

of n. The increase of µTD with the cluster size is much faster (exponential) for γ > 1.

3.3.3 Finite force, finite rebinding

Force destabilizes the cluster, while rebinding stabilizes it again. In the context of ad-

hesion clusters it was shown by Bell [10], that a cluster of bonds remains stable up to a

critical force denoted by fc, which can be determined theoretically or from experiment.

In general, the probabilities Pk(t) can be obtained from stochastic simulations or from

the direct solution (3.2.8) which involves the matrix exponential. Explicit solutions can

be obtained for n = 2, 3 [31], but these become complicated for larger values of n.

Critical force

The critical force that destabilizes a cluster of size n can be estimated from the de-

terministic equation (3.2.11). Denoting by Neq the value of µN at equilibrium (when

dµN/dt = 0), we can write (3.2.11) as

Neqe f /Neq = −γ(n − Neq). (3.3.18)

At small force f , (3.3.18) has two roots, the larger one corresponding to a stable equi-

librium, as shown in Fig. 3.13 (a). As force increases, a saddle-node bifurcation occurs.

Above the critical force no roots exist and the cluster becomes unstable. Exactly at criti-

cal loading, the two roots collapse, the slopes of the right- and left-hand side of (3.3.18)
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Figure 3.13: (a) dNd/dt as a function of Nd, computed from (3.2.11). For forces f < fc two

steady states exist, which merge at f = fc and vanish for f > fc. Plot realized for n = 10, γ = 1,

and fc ≃ 2.7846 obtained from (3.3.20). (b) Number of closed bonds at equilibrium as a function

of f /n, obtained from (3.3.18) for n = 10. For f ≤ fc there is a unique real solution, while for

f > fc there is no real solution (cluster disintegrates). Circles represent critical force and cluster

size, respectively.

become equal, so by differentiating (3.3.18) we obtain

e feq/Neq

(
1 − feq

Neq

)
= −γ. (3.3.19)

Solving the system (3.3.18) and (3.3.19), the critical values for force and number of

closed bonds are obtained as

fc = npln

(
γ

e

)
, Nc = n

pln

(
γ
e

)

1 + pln

(
γ
e

) , (3.3.20)

where pln(a) is defined as the solution x of xex = a.

From the deterministic point of view, the cluster behaviour can summarized as follows:

for f ≤ fc we have N(t) → Nc, while for f > fc the cluster dissociates in finite time.

We shall see below, that the stochastic behaviour of the cluster is strongly influenced by

the boundary condition at N = 0, which is reflective if g0 = γn, or absorbing if g0 = 0

(rebinding no longer possible once the state N = 0 is reached).

Reflecting and absorbing boundaries

The mean number of bonds µN(t) is illustrated in Figs. 3.14 and 3.15, for a reflecting

and an absorbing boundary at N = 0, respectively. In both figures, the means com-

puted from the FPE (3.2.35a) and the deterministic equation (3.2.11) are superposed.
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Figure 3.14: Comparison of single simulation trajectory with µN(t) obtained from the FPE

(3.2.35a), DE - Neq (3.2.11), ME (3.2.2) and average of 104 trajectories for n = 10, γ = 1 and (a)

f = 1; (b) f = fc ≃ 2.78; (c) f = 5; (d) f = 10, for a reflecting boundary at k = 0.

The reflecting boundary is the natural boundary for the deterministic equations (3.2.11)

and (3.2.35a), as one can see in Fig. 3.14. For subcritical force f < fc (Fig. 3.14 (a)) all

methods agree, and the single trajectory fluctuates about the predicted equilibrium.

Starting from the critical force f < fc depicted in Fig. 3.14 (b), deterministic results

deviate from the stochastic solutions, and for supercritical force f > fc they predict an

increasingly abrupt collapse with the increase in f , as seen in Figs. 3.14 (c) and (d).

The absorbing boundary case is plotted in Fig. 3.15. The deterministic equations are

formulated for a reflecting boundary, so significant deviations from the stochastic mean

(which predicts dissociation) arise even for subcritical force, as seen in Fig. 3.15 (a).

Starting from f = fc, the deterministic mean also predicts cluster dissociation (Fig. 3.15

(b)), but initially overestimates the stochastic results, and then predicts a sudden decay

(Figs. 3.14 (c) and (d)). Compared to Fig. 3.5, the difference between the deterministic

and stochastic results is enhanced by rebinding.

In summary, the deterministic approximations correctly estimate the number of closed

bonds at equilibrium for a reflecting boundary, but fail to predict the cluster disintegra-

tion time for f > fc. In the large-force limit, the effect of rebinding is negligible.
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Figure 3.15: Comparison between single simulation trajectory and µN(t) obtained from the FPE

(3.2.35a), DE - Neq (3.2.11), ME (3.2.2) and average of 104 trajectories for n = 10, γ = 1 and (a)

f = 1; (b) f = fc ≃ 2.78; (c) f = 5; (d) f = 10, for an absorbing boundary at k = 0.

Cluster lifetime

For an absorbing boundary, the cluster dissociates no matter how large the rebinding is.

The average cluster lifetime can even be obtained in a closed form, using the formula

of the mean extinction time for a Markov process [138],

µTD =
n

∑
k=1

1

rk
+

n−1

∑
k=1

n

∑
j=k+1

∏
j−1
i=j−k g(i)

∏
j
i=j−k r(i)

. (3.3.21)

For n = 2, (3.3.21) yields

µTD = e− f +
e− f /2

2
+ γ

e−3 f /2

2
, (3.3.22)

In general, one can prove that the average lifetime is a polynomial of order n − 1 in γ,

whose leading coefficient is exp (− f /(1 + 1/2 + · · · + 1/n)) /n.

In the large number of bonds limit we have 1 + 1/2 + · · · + 1/n ≃ ln n, so the leading

term of the polynomial is n−( f +1). For γ > 1 and large n, the lifetime verifies

µTD ≃ O

(
γn−1

n f +1

)
.
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Figure 3.16: Cluster lifetime µTD
as a function of γ obtained from (3.3.21), for n = 2, 5, 10 and

(a) f/n=0.01; (b) f/n=0.1; (c) f/n=1; (d) f/n=10.

In general, force always affects most strongly those terms of highest order in γ, thus

for γ > 1, application of force is therefore an efficient way to reduce average lifetime

µTD . For γ < 1, µTD is dominated by those terms of lowest order in γ, thus here the

reduction of lifetime with increasing force is only weakly modulated by rebinding.

In Fig. 3.16 we examine the lifetime of the cluster obtained from (3.3.21), as a function

of γ , for constant values of f /n and various values of n. For small f /n, the lifetime

of the cluster increases rapidly with γ, and the larger clusters survive for longer, as

depicted in Figs. 3.16 (a) and (b). With the increase in force, for small values of γ a

switch occurs, and as discussed for vanishing rebinding, larger clusters can dissociate

faster than the smaller ones, being the case even for f /n = 1. However, as depicted

in Fig. 3.16 (c), the large clusters can again survive longer than the smaller ones, as

rebinding increases. In Fig. 3.16 (d) it is also shown that the value of γ from where this

switch back takes place is also not f /n dependent.
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3.4 Results for ramped force

The ramped force profile is very common in the DFS experiments [38] earlier discussed

in §1.2.3, one of the reasons being that no steady state is possible. The slope µ of the

linear force µt is usually called loading rate. As the coefficients of the ME (3.2.2) are time-

dependent, analytical solutions cannot be obtained explicitly, therefore we shall mostly

rely on stochastic simulations. In this section we focus on the vanishing rebinding

case, and first examine the three loading regimes suggested by the probability profiles

as discussed in §3.3.1, and then by the deterministic equation (3.2.11). Decay profiles

obtained from averages of stochastic simulations are compared against solutions of the

deterministic equation (3.2.13a). In the end we present the evolution of force in single

simulations and the rupture force distribution for single and multiple bond clusters.

3.4.1 Loading regimes

As for constant force, the cluster’s dynamics under ramped force are also characterized

by three-loading rate regimes that we determine below.

Probability functions

The analysis of the probabilities Pk(t) help us describe more clearly the different load-

ing regimes predicted by the analysis of the deterministic equation (3.2.11). The quali-

tative difference between the probability profiles depicted in Fig. 3.17 suggests consid-

ering three loading regimes, defined by the same argument used for Fig. 3.2.

The number of visited states (3.3.3) is used to characterize the three loading regimes,

depicted in Fig. 3.18. Solid lines are numerical solutions of the ME (3.2.5), while dotted

asymptotes are obtained by cubic spline extrapolation of computed data. For each

value of n, the ME was solved for increasing values of µ, and the small-intermediate

and intermediate-large force boundaries, were identified using the function

D(µ, t) = max
k=0,...,n

Pk(t).

The loading regions are (I) for #{D(µ, t)|t ≥ 0} = n + 1, (II) for 2 < #{D(µ, t)|t ≥ 0} <

n + 1 and (III) for #{D(µ, t)|t ≥ 0} = 2, where #{D} denotes the cardinal of set D.

The scales are not as obvious as for constant force case, depicted in Fig. 3.3. The transi-

tion between regions (I) and (I I) is made at a small loading rate, which now increases

with n (opposed to the constant force value f ∼ 1/7 in Fig. 3.3). On the other hand,

the transition between regions (II) and (III) takes place at much higher loading rates,

which increase much faster than the constant forces in Fig. 3.3.
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Figure 3.17: Probabilities Pk(t) obtained from the numerical solution of the ME (3.2.2), for n =

10, γ = 0 and loading rates (a) µ = 0.1; (b) µ = 1; (c) µ = 100; (d) µ = 10000 (cf Fig. 3.2).
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Figure 3.18: Loading regimes in the (n, µ/n) coordinates, generated by the probabilities Pk(t)

obtained from the numerical solution of the ME (3.2.2) (solid lines). Solid lines represent bound-

aries computed from the numerical solution of the ME (3.2.5) for various values of n, while dot-

ted lines are obtained by cubic spline extrapolation of the data. Plot obtained for n = 2, . . . , 50,

γ = 0 reveal the existence of small (I), medium (II), and large loading rate (III) regimes.
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Analysis of the deterministic equation

The analysis of (3.2.11) for linearly ramped force f = µt was first done by Seifert [127].

We present it below to support the empirical findings based on the properties of the

probabilities Pk(t). For γ = 0 the equation reduces to

dµN

dt
= −µNeµt/µN , µN(0) = n. (3.4.1)

Considering the auxiliary variable u(t) = t/µN(t), (3.4.1) becomes

du
dt

=
u
µ

+ uµt = u

(
1 +

1

t

)
+ u(eµu − 1). (3.4.2)

The magnitude of the terms of (3.4.2) at different times, reveals the existence of three

loading regimes [33], summarized below.

For slow loading (µ ≪ 1) the cluster behaves similarly to the small constant force case,

so we have µN(t) = ne−t, and since Td verifies µN(Td) = 1, we have Td ∼ ln n.

For intermediate loading (1 < µ ≪ n) the initial phase is similar to slow loading, and the

crossover to fast decay takes place at Td ∼ ln(n/µ).

For fast loading (µ ≫ n) the lifetime of the adhesion cluster scales with Td ∼ (n/µ) ln(µ/n).

Cluster decay comparison

The mean number of closed bonds µN obtained from stochastic simulations, determin-

istic approximations and the numerical solution of the ME (3.2.2) provide a clear image

of the decay profiles of the cluster under various loading regimes. As depicted in Fig.

3.19 (a), the results agree very well for small loading rate, where the cluster decays

exponentially. The mean computed from the deterministic equation (3.4.1), starts de-

viating from the stochastic results even starting from µ = 1, as shown in Fig. 3.19 (b),

where deterministic results predict a faster decay. As illustrated in Fig. 3.19 (c) and

(d), the differences become more pronounced with the increase in µ. As expected, the

difference between the deterministic and stochastic results is greatest for the largest

values of µ, but considerably the deterministic equation for µ = 10000 performs much

better than for constant force f = 100, plotted in Fig. 3.5 (one should also note that the

rupture force is about µt ∼ 50).

A specific feature of the cluster’s dynamics under ramped force is that even for large

loading rates, there is a plateau where the decay is not very significant, followed by

a region of rapid decay. The conclusion is that for large loading rates, the longer the

clusters survive, the more rapid their final decay phase is.
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Figure 3.19: Comparison between single simulation trajectory and µN(t) obtained from the

DE (3.4.1), ME (3.2.2) and average of 104 trajectories for n = 10, γ = 0 and loading rates (a)

µ = 0.1; (b) µ = 1; (c) µ = 100; (d) µ = 10000.

3.4.2 Mimicking DFS experiments

Our model can be easily adapted for mimicking DFS experiments, not only for single

bonds, but also for finding the unbinding pathway of the cluster. As discussed in §1.2.3

for single bonds, the notion of rupture force can be extended to clusters, as the force

measured when the last bond dissociates.

In accordance with the findings of Merkel et al. [95] presented in §1.2.3, bond strength

is not only a property of the bond, but is influenced by the loading rate µ, as one can see

from the evolution of force µt in the rupture of a single bond depicted in Fig. 3.20 (a),

for µ = 10, µ = 100 and µ = 1000. Because in the zero-drag limit the relation between

force and disk displacement is linear (3.1.1), the disk’s trajectory for single bonds can

be read directly from the graph. The rupture force histogram illustrated in Fig. 3.20 (b)

shows that the spread of rupture forces increases with µ.

Our model can also be used to predict unbinding pathways for clusters having multi-

ple bonds. In the zero-drag limit, the disk’s displacement is piecewise linear, having

slope µ/k when k bonds are connected, as suggested by (3.1.1). This indicates that for

multiple bond clusters much larger forces µt are attained, as plotted in Fig. 3.20(a),

for µ = 10, µ = 100 and µ = 1000. Despite the added complexity, the rupture force
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Figure 3.20: Cluster rupture force histograms for (a) n = 1; (b) n = 10, computed from 104

simulated trajectories for loading rates µ = 10, 102, 103. Dotted line represent a fitted normal

density, with the same mean and variance as the simulated data.

histogram illustrated in Fig. 3.20 (b) predicts that the rupture forces are normally dis-

tributed.

For comparing the simulated results against experimental data, one should restore the

dimensions of time and force, and to use physiological data for the bond properties κ∗,

L∗ and k∗0 . The role of drag is examined in Chapter 4.

3.5 Summary

The drag coefficient c (2.1.10) spanning several orders of magnitude lead us examine

the zero- and infinite-drag limiting cases. It was first established in §3.1 that the disk’s

movement is solved by h(t) = 1 + f (t)/k (3.1.1), which is either locally constant for

a force f that is constant, or piecewise linear for linearly ramped force f = µt. The

infinite-drag limit was also identified as equivalent to the zero-force subcase of the

zero-drag problem. The computation of the transition rates showed that the models

proposed by Erdmann & Schwarz [31, 33] can be recovered as the zero-drag limit of

our model.

Several methods have been developed specifically for this problem, of which we stress

the Fokker-Plank equation (FPE) and the solution of the ME using the matrix exponen-

tial. We have established that the FPE (3.2.35a) generally gives better results for the

mean and variance of the bond population, than the second order truncation of the de-

terministic equation (3.2.13), as depicted in Figs. 3.5 and 3.6. The FPE was found to be a

good approximation for the solution of the ME (3.2.2) far enough from the boundaries,
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over a limited time-window (Fig. 3.4), which depends on the parameter values (Fig.

3.11). Also, the matrix exponential was much more efficient than the brute force solu-

tions of the ME (stiff for large clusters), considerably extending the cluster dimension

where useful results can be obtained numerically.

Using the solutions Pk(t) of the ME (3.2.2) we have confirmed the existence of three

forcing (small, intermediate, large) and three loading rate (slow, intermediate, fast)

regimes, illustrated in Figs. 3.3 and 3.18, respectively. Our results also provide quanti-

tative estimates for the corresponding boundaries, completing the qualitative descrip-

tions discussed in [31] and [33].

The decay profile of clusters was extensively analyzed for the parameters n, f , γ, µ.

The deterministic decay (3.2.13) overestimates the initial phase, and underestimates the

late phase of the decay, computed from stochastic simulations or from the numerical

solution of the ME (3.2.2) (Fig. 3.5). The ratio f /n which completely characterizes

the deterministic decay, does not influence the stochastic decay as much, the latter

predicting that larger clusters decay faster for same value of f /n (Fig. 3.7). Larger

clusters may again decay slower, for sufficiently large rebinding (Fig. 3.16). The decay

of clusters is also strongly influenced by the choice of the boundary condition at N(t) =

0, as illustrated in Figs. 3.15 and 3.14, for an absorbing and reflecting boundary.

Cluster lifetime strongly depends on force and cluster dimension (Fig. 3.9), or rebind-

ing (Fig. 3.16). Using the stochastic estimations for the mean cluster lifetime, we have

established upper and lower bounds for cluster lifetime under drag, which are depicted

in Fig. 3.9.

For the constant loading rate problem we have mimicked a DFS experiment, showing

that the model is able to predict the rupture force as a function of the loading rate.

Also, distributions of the rupture force computed for single and multiple bond clusters

have shown an increasing spread with the increase in µ, but also, that rupture forces for

clusters are normally distributed (see Fig. 3.20). The analysis is completed in Chapter

4, where we examine the dependence of the results on finite drag.

As suggested by the experiments of Merkel et al. [95], Brownian effects play an impor-

tant role especially for slow loading (see Fig. 1.4), so the addition of Brownian noise

in the disk-bond system is expected to offer a closer resemblance with the experimen-

tal setup. After calibration with data from single bond experiments, our model can be

used for a better understanding of the experiments for cluster unbinding.
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3.A Normally distributed initial condition

Different assumptions about the experimental setup require the consideration of sev-

eral types of initial condition, generated by the position of the disk relative to an equi-

librium. In the ideal case when in all experiments the disk starts from the same height,

the initial height is sampled from a Dirac distribution centered about the equilibrium

position. Since all experiments are subject to error, the initial height is likely sampled

from a normal distribution N (h0, σ2), where σ > 0 is estimated from measurements.

The role played by the distribution of the initial height is found to be significantly drag-

dependent, with an importance ranging from no effect in the absence of drag (rapid

jumps of the disk between equilibria), towards the preservation of many features of

the initial configuration, in the infinite-drag limit (the disk does not move).

For a given type of initial condition we define the distributions

Fk(t, h) = Pr{N(t) = k | H(t) < h}, (3.A.1)

and the corresponding densities pk(t, h). Following the previous discussions, the den-

sities pk(t, h) provide most of the useful information regarding the cluster.

3.A.1 The zero-drag limit

In the zero-drag limit, the disk with k bonds attached to it rapidly moves to the equi-

librium height hk,eq = 1 + f /k, and only after this moment bond’s rupture takes place.

The time-dependent probability functions can be converted straightaway into (time,

height) coordinates, as

pk(t, h) = δ(h − hk,eq)Pk(t), (3.A.2)

so the initial condition does not affect the cluster’s dynamics.
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3.A.2 The infinite-drag limit

In the infinite-drag limit, the initial condition plays a key role, as the applied force is to-

tally annihilated by the drag (the disk motion is negligible). The parameters involved

in this limit are n, β and the distribution N. Despite its simplicity, this case is an in-

teresting limit case for the general problem. As shown previously, the rupture rates

are time-independent (but height-dependent instead). Not surprisingly, they are also

force-independent, since in this case the bonds do not ’feel’ the force. An analytical for-

mula for the probability functions can be obtained in this case, in both time and height

coordinates.

Densities pk(h, t)

Starting from a fixed initial height, the population of closed bonds keeps an unchanged

length, with height dependent rates. In the absence of rebinding, the cluster is subject

to a linear death process, with the rates

rk(h) = keβ(h−1), k = 0, . . . , n, h > 0, (3.A.3)

representing the decay rate of the cluster of k bonds at height h. For convenience we

shall denote by βh = eβ(h−1) the decay rate of an individual bond at height h. The

general solution for a linear death process of individual death rate βh, is computed as

shown in [75, Chapter 6], to obtain

Pr{N(t) = k, H(t) = h} =

(
n
k

)
e−kβht

(
1 − e−βht

)n−k

. (3.A.4)

When the initial condition is sampled from a normal distribution N (h0, σ), the initial

values of the joint densities are

pk(0, h) =






1
σ
√

2π
e−

(h−h0)2

2σ2 , if k = n;

0 if k ≤ n − 1.
(3.A.5)

Assuming the bonds start evolving from an un-stretched position, the situation h0 = 1

is considered.

The probability densities are given by

pk(t, h) = pn(0, h)

(
n
k

)
e−kβht

(
1 − e−βht

)n−k

, (3.A.6)

where pn(0, h) comes from the initial density at height h, (n
k) from the way we choose

the k closed bonds out of the initial n, e−kβht is the decay rate of the cluster with k closed

bonds, and

(
1 − e−βht

)n−k

from the evolution of the (n − k) bonds left open.
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Figure 3.21: Probability densities pk(t, h) obtained from the exact formula (3.A.6), for n = 10,

β = 1, h0 = 1, σ = 0.1, with the initial condition (3.A.5) and (a) k = 10; (b) k = 7; (c) k = 3;

(d) k = 0. The position in the (t, h)−space of the global maximum of pk(t, h), is marked with

squares, while the position of the peak pk(t, h) for given values of h is marked with circles.

Fig. 3.21 reveals the existence of several types of densities pk(0, h) for k = 0, . . . , n with

distinct geometric properties. First, an initial phase, in which the pn(h, t) decays with

time, with a velocity depending on h (Fig. 3.21 (a)) For 1 ≤ k ≤ n− 1, pk(h, t) resembles

a peak which moves to the right as k decreases (Figs. 3.21 (b) and (c)). Finally, p0(h, t)

increases back to the value pn(h, 0), as t → ∞.

For each value of height h, pk(t, h) peaks at time

tk(h) =
− ln(k/n)

βh
, (3.A.7)

and has the magnitude

pk(tk(h), h) = pn(0, h)

(
n
k

)
kk(n − k)n−k. (3.A.8)

The densities pk(t, h) attain a global maximum for the value of h maximizing pn(0, h),

as observed in Fig. 3.21 (b) and (c).
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Cluster lifetime and decay

As seen before for the zero-drag limit (3.3.5), the expected cluster lifetime for a dis-

placement of the disk h, can be computed from the formula

µTDh
(h) =

n

∑
k=1

1

rk(h)
=

n

∑
k=1

1

keβ(h−1)
. (3.A.9)

Averaging over all heights the expected lifetime of the cluster can be obtained from

formula

µTD =
∫ ∞

−∞
µTDh

(h)c=∞ pn(h, 0)dh =
∫ ∞

−∞

n

∑
k=1

1

keβ(h−1)

1

σ
√

2π
e−

(h−1)2

2σ2 dh

=
n

∑
k=1

1

k
eβ2σ2

∫ ∞

−∞

1

σ
√

2π
e−

(h−1−βσ2)2

2σ2 dh =

( n

∑
k=1

1

k

)
eβ2σ2

.

(3.A.10)

The mean time until absorption scales once again with the harmonic number Hn =

∑
n
k=1

1
k . The minimum value µTD = ∑

n
k=1

1
k , is obtained when σ = 0 (Dirac initial con-

dition), and increases exponentially with the variance σ2. Due to physical constraints

(the lower bound of the initial height is positive, so the variance σ2 is small) we could

predict the lifetime of the cluster to be bounded above by (∑
n
k=1

1
k )eβ2

. One should note

that the lifetime of the cluster also increases exponentially with β2.

The expected number of closed bonds E[N(t)]c=∞ can be obtained by using the integral

formula

E[N(t)]c=∞ =
n

∑
k=1

kPk(t) =
n

∑
k=1

k
∫ ∞

−∞
pk(t, h)dh

=
∫ ∞

−∞

n

∑
k=1

kpn(0, h)

(
n
k

)
e−kβht

(
1 − e−βht

)n−k

dh. (3.A.11)

Following the same steps, the variance Var[N(t)]c=∞ is obtained as

Var[N(t)]c=∞ =
n

∑
k=1

k2Pk(t) −
(

n

∑
k=1

k2Pk(t)

)2

= n
∫ ∞

−∞
pn(0, h)e−βh t

(
1 − e−βht

)
dh.

(3.A.12)

When σ = 0 and h0 = 1, the initial condition verifies pn(0, h) = δ(h− 1), and we obtain

the limiting cases

E[N(t)]c=∞ = ne−t, Var[N(t)]c=∞ = ne−t(1 − e−t). (3.A.13)
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3.B Deterministic and stochastic approximations of cluster lifetime

The estimates for the cluster lifetime obtained from the analysis of the deterministic

equation for Td (3.2.11) as done by [31], are compared against the results obtained

for the mean dissociation time µTD of the stochastic process, computed from the exact

formulas (3.3.5), presented in §3.3.1.

Cluster lifetime estimations from (3.2.11)

The cluster’s lifetime defined in (2.2.18) can be estimated via a deterministic analysis

of (3.3.4) for γ = 0, or via a stochastic analysis of the solution of (3.2.2). The three

parameter regimes behaviour of the cluster discovered by Erdmann and Schwarz [31]

is supported by a parameter map obtained via stochastic simulations, which helps us

determine the region’s boundaries.

As seen from (3.3.4), the deterministic decay is determined by f /n = f̂ , and we obtain

t(N̂) = Ei
(

f̂
)
− Ei

(
f̂

N̂

)
, (3.B.1)

where Ei(z) is the exponential integral, defined by Ei(z) ≡
∫ ∞

z e−x/x dx.

Considering the deterministic cluster lifetime Td as the time required to reach the state

with one bond attached, this is given by

Td = Ei
(

f̂
)
− Ei(n f̂ ), (3.B.2)

Using the expansion of Ei(z) for different ranges of z, three forcing regimes relative to

the initial number of bonds are identified.

For small force ( f̂ ≪ 1/n) the small argument expansion of the exponential integral is

Ei(z) ≈ −Γ − ln z (where Γ = 0.5772 is Euler’s constant) [59], so

Td ≈ − ln f̂ + ln
(

n f̂
)
≈ ln n. (3.B.3)

For intermediate force (1/n ≪ f̂ ≪ 1) we can write (3.B.2) as a sum of two integrals

Td =
∫ 1

f̂

e−x

x
dx +

∫ n f̂

1

e−x

x
dx. (3.B.4)

Since x > 1, the second integral is bounded from above by 1/e, while in the first integral

we can expand the integrand for small arguments to obtain

∫ 1

f̂

e−x

x
dx ≈

∫ 1

f̂

1 − x
x

dx ≈ ln

(
1

f̂

)
.
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Figure 3.22: (a) Plot of µTD
(3.3.5) (solid line), as a function of f /n for n = 10, compared against

deterministic approximations for small (3.B.3) (dotted line), medium (3.B.5) (dashed line) and

large force (3.B.6) (dash-dotted line). The horizontal circles represent the approximation for

small force (3.3.6), while the circles in the lower part of the figure the large force approximation

(3.3.8); (b) Relative error (µTD
− Td)/µTD

as a function of f /n, for n = 10 and n = 100.

Under the assumption that f̂ ≪ 1, the second integral in (3.B.4) can be neglected and

we obtain the scaling

Td ≈ − ln( f̂ ) = ln(1/ f̂ ). (3.B.5)

Because f̂ ≪ 1, both exponential integrals in (3.B.1) can be replaced by the small ar-

gument approximation as long as f̂ . N̂, so the cluster will decay exponentially in its

initial phase until the force per bond reaches f̂ . N̂. When f̂ /N̂ > 1, cluster dissocia-

tion will be faster and the overall cluster lifetime scales is a function of the scale f̂ , as

opposed to zero-force situation given by (3.B.3).

For large force ( f̂ ≫ 1) the second term in (3.B.2) can be neglected and the large argu-

ment approximation for the exponential integral , Ei(x) ≈ e−x/(1 + x) [10], gives the

approximation

Td ≈ e− f /n

1 + f /n
≈ n

f
e− f /n =

1

f̂
e− f̂ . (3.B.6)

The small argument expansion is not possible in any of the two terms of (3.B.1), and

the cluster decays faster than exponential over the whole range of time. As in (3.B.5), f̂

is the key parameter and Td decreases much faster than exponential with the increase

of f̂ . The cluster decay in this parameter region is also called ’catastrophic’, since the

dissociation of the cluster and the rupture of the first bond take place almost simulta-

neously, as seen in Fig. 3.22 (a).
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Lifetime comparison: stochastic vs. deterministic

There is a fairly good agreement between the deterministic and stochastic predictions

for cluster lifetime, with some notable differences. For small force, the deterministic

approximation underestimates the expected lifetime with more than Γ = 0.57 (signif-

icant for small clusters e.g. for n = 10 and f ≪ 1, Td = ln(10) ∼ 2.30). For medium

force, both approximations predict negative for f /n > 1. Of course, the f /n = O(1)

range is expected to be the one where the deterministic approximations differ most

from (3.3.5). Finally, in the large force regime, the stochastic result does not depend on

the ratio f /n. The two approximations for large force match for f ≃ O(n2), which is

important in finding the boundary between the medium and large force regimes.

The lifetime computed from formula (3.3.5) is compared against the deterministic ap-

proximations for small, medium and large force in Fig 3.22 (a), for (n = 10) bonds. For

large force, the stochastic estimate (3.3.7) of formula (3.3.5) is more accurate than the

deterministic approximation (3.B.6), for f /n ≥ n − 1 (actually for quite large forces)

while in the medium-large force (n < f < n2), the deterministic approximation can be

used with better results. As depicted in Fig 3.22 (b), their performance improves with

the increase in the cluster dimension.

3.C Validity domain of the FPE for zero force

For vanishing force, the FPE (3.2.39) can also be solved explicitly. It can be easily shown

that the mean and variance verify

〈X〉 = µN = nq, 〈〈X2〉〉 = σ2
N = nq(1 − q), (3.C.1)

so the solution is

P(X, t) =

(
2πnq(1 − q)

)−1/2

exp

[
− (X − nq)2

2nq(1 − q)

]
. (3.C.2)

Fig. 3.23 illustrates a good agreement between solutions of the FPE and the ME, espe-

cially ’far enough’ from the boundaries. If n is large enough, the skew of the distribu-

tion is not too great. If a suitable continuity correction is used [44], a good approxima-

tion to the binomial distribution B(n, q) is given by the normal distribution

B(n, q) ∼ N (nq, nq(1 − q)). (3.C.3)

The approximation generally improves as n increases, and we have to decide whether

n is large enough, and q is far enough from the extremes of zero or one [17].
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Figure 3.23: Solutions Pk(t) of the master equation (3.2.2) obtained from (3.2.8), are compared

against the FPE approximations P(k, t) (3.2.38), for n = 10 and γ = 1. The legend also contains

MEs and FPEs which represent the stationary solutions (3.3.15) and (3.C.2).

The normal approximation in (3.C.3) is adequate only if

µN ± 3σN = nq ± 3
√

nq(1 − q) ∈ [0, n]. (3.C.4)

This explains why the FPE approximation was working far enough from the bound-

aries. The approximation (3.C.4) is in fact a consequence of the central limit theorem

[75]. Simple manipulations show that (3.C.4) is equivalent to

9

n + 9
≤ q(t) ≤ n

n + 9
, (3.C.5)

which also shows that it may only be applied for n ≥ 9. As q(0) = 1 does not verify

(3.C.5), we expect the normal approximation not to work in the initial phase. It is worth

then to check whether (3.C.5) is verified at least for the stationary distribution, where

q(∞) = γ/(1 + γ). With these notations, (3.C.4) is verified if

9

n
≤ γ ≤ n

9
. (3.C.6)

One could then ask which is the time window where the approximation is valid, which

can be obtained from (3.C.5) as a function of n and γ. As q(t) is decreasing between 1

and γ/(1 + γ), we obtain the following situations

• If the r.h.s of (3.C.6) is false, then the r.h.s of (3.C.5) is false, which indicates that

the FPE is not valid at all;
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• If (3.C.6) is true, there is tmin > 0 verifying

q(tmin) =
n
9

,

and the FPE is valid on [tmin, ∞);

• If the l.h.s of (3.C.6) is false, there are tmax > tmin > 0 verifying

q(tmin) =
n
9

, q(tmax) =
9

n
,

and the FPE is valid on the time interval [tmin, tmax).

Using the definition(3.3.14), the times tmin and tmax can be obtained explicitly from

t = −
ln

(
(1 + γ)q − γ

)

1 + γ
. (3.C.7)

For the values n = 10 and γ = 1 plotted in Fig. 3.23, we are in the second situation,

and the FPE is accurate in the time window t ∈ [1.47, ∞).
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Cluster dynamics under finite drag

THE LIFETIME and decay profiles of the cluster vary significantly between the zero-

and infinite-drag limits, when considering a cluster attached to a rigid disk in a fluid

environment, as shown in Chapter 3. In this Chapter we examine the role of finite

drag in the stochastic dynamics of the disk-bond system, under constant and linearly

ramped force.

Constant loading in cell adhesion represents a good approximation for situations where

the physical properties of the adhesion site do not change much during the lifetime of

the adhesion cluster. This is the case with the adhesions of endothelial cells or the

adhesion of white blood cells when they have been arrested in the bloodstream. In

other cases of interest, the force exerted on adhesion clusters is not a constant but varies

in time, as during the build-up of force at newly formed contacts in migrating cells, or

during the rolling adhesion phase of the leukocyte cascade. Also, the most commonly

used profile for the dissociating force in DFS experiments initiated by Evans & Ritchie

is the ramped force [38], which has the advantage of shortening bond’s lifetime to an

appreciable degree.

We first sketch some trajectories of the disk for various values of drag and force, and

then analyze distributions of the dissociation time and final extensions of the cluster.

For the particular case of no rebinding, some analytical formulae obtained for various

probability functions (e.g. the probability to have k closed bonds at time t) are used

to validate the stochastic simulations. For non-zero drag, we employ a phase plane

analysis to obtain information about the critical force regimes, and identify the critical

forces require to destabilize the cluster.

Bonds tend to survive longer in the presence of drag, but under constant loading rate,

force also increases with time, generating a very abrupt decay in the terminal phase of

cluster’s dissociation. We examine how our model captures this feature, and analyze
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the cluster’s decay and lifetime as functions of loading rate and drag. We also simulate

a DFS experiment for single and multiple bond clusters for non-zero drag in §4.2, and

compare the results against the ones obtained in Chapter 3 and in [95].

A global description of the joint-time-height densities of having k bonds is examined in

§4.3, in the framework of a differential Chapman Kolmogorov equation (dCKE) (4.3.1),

as suggested by Lipniacki [91]. This PDE, which seeks to capture the nonlinear evo-

lution of the piecewise deterministic Markov process, is solved using the method of

characteristics, and is tested against stochastic simulations. The agreement of the two

solutions for large drag indicate that the approach may be valid in some circumstances,

but the disagreement for small values of drag suggests that either the Markov process

cannot be formulated as a PDE, or our numerical method is not accurate for the given

problem. To address this issue we derive an integro-differential equation for the evo-

lution of the probability density (4.3.14), in §4.3.4.

The Chapter is laid out as follows. In §4.1 we examine the case of constant force in the

presence of drag, and the force necessary to destabilize the cluster under rebinding.

In §4.2 we illustrate the effects of ramped force on the evolution of the system, and

simulate data suitable for the analysis of the DFS experiments. A global formulation of

the cluster dynamics in terms of a dCKE is attempted in §4.3. The implications of our

results are discussed in §4.4. This Chapter is followed by an Appendix.

4.1 Constant force

In this section we study the evolution of clusters of biological bonds under constant

force and drag. We first examine trajectories of the disk under various values of force

and drag and then analyze distributions of cluster lifetimes and extensions. Analyt-

ical formulae for probabilities are used to validate the results obtained by stochastic

simulations, and then cluster decay profiles and lifetimes are analyzed, using both de-

terministic and stochastic methods. For the problem with rebinding, we derive the

force necessary to destabilize the cluster, and compute the bond population and disk

displacement at equilibrium.

The disk’s motion between events is solved using Matlabr ode45s ode solver, to ensure

the accuracy of the simulations. The integration of the deterministic approximation

(2.2.23) is performed using Matlabr stiff ode solver ode15s with relative and absolute

tolerances of 10−7 and 10−8, respectively. These values ensure that the solver does not

fail to converge in the final abrupt decay of Nd, in the absence of rebinding.
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Figure 4.1: (a) Disk’s displacement Hk(t) (dashed lines) with k = 1, . . . , 5 bonds attached (2.1.9),

towards the equilibrium heights (4.1.2) (solid lines), for f = 2, h0 = 2, β = 1, c = 1, in the

absence of rupture. (b) Displacement of the disk in the (t, h)-plane, for n = 5, f = 2, h0 =

1, β = 1, and c = 0.1, 1, 10, as the bonds break. The circles represent the rupture coordinates.

4.1.1 Preliminaries: local and global motion of the disk

Drag and force significantly affect disk’s motion between events and individual trajec-

tories, indicating the existence of distinct patterns in the system’s dynamics.

Disk trajectories as function of drag

For a constant force f and number of bonds k ≥ 1, the disk moves deterministically

along the solution curves Hk(t) of (2.1.9)

dh
dt

= −1

c
h 3 [kh − ( f + k)] , h(0) = h0, (4.1.1)

where c is a drag coefficient (2.1.10), which converge asymptotically towards the value

heq, k =
f
k

+ 1, (4.1.2)

while for k = 0 the disk moves freely under the influence of the dissociating force. The

equilibrium curves satisfy heq, n ≤ heq, n−1 ≤ · · · ≤ heq, 1, so the more bonds attached,

the lower the equilibrium position is, as shown in Fig. 4.1 (a).

As suggested by (4.1.1), drag sets the time-scale for reaching the equilibria and the

six orders of magnitude it spans generates significant variations between the profile of

individual trajectories. For large drag, the disk barely moves (depending on force and

number of bonds), and ruptures occur before the disk changes position significantly.

For very small values of drag the disk motion has a staircase profile, and the bonds

rupture when the disk is stationary at the equilibrium, as seen in Fig. 4.1 (b).
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Figure 4.2: Plot of 10 individual trajectories of the disk (solid lines) in the (time, height)-plane,

for n = 10 bonds, f = 0.1, 1, 10, 100 and c = 0.1, 1, 10, 100. The circles indicate the position of

the rupture events, while the dashed line represents the deterministic approximation (2.2.23).

Disk trajectories in the (c, f )-plane

In Fig. 4.2 we plot individual trajectories of the disk in the (time, height)-space, real-

ized for various values of f and c, against solutions of the deterministic approximation

(2.2.23), integrated until Nd(Td) = 1. The disk’s displacement is negligible for small

force/large drag, and can be significant for large forces. Fig. 4.2 suggests the exis-

tence of distinct regions in the (c, f ) parameter space. In certain cases ( f ≫ c, c ≫ f

or f ≃ c ≫ n), simulated trajectories differ little from the deterministic approxima-

tion, sometimes being even able to estimate accurately cluster’s dissociation time and

height (c = 1, f = 100). In other cases, individual trajectories show wide variation

about the deterministic approximation, which is unable to capture the large variations

of the stochastic breakup times (c = 0.1, f = 1) or cluster extensions (c = 1, f = 1).
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Figure 4.3: Histograms of simulated cluster dissociation times TD(t) realized for n = 10, h0 = 1,

β = 1, f = 0.1, 1, 10, 100 and c = 0.1, 1, 10, 100, obtained from 104 single trajectories. Horizon-

tally, the red vertical lines represent the times Td obtained from Nd(Td) = 1 in (2.2.23).

Distribution of the dissociation times

The distribution of the corresponding dissociation times TD obtained from stochastic

simulations is plotted in Fig. 4.3, against solutions of the deterministic approximation

(2.2.23). For small force ( f = 0.1) the distributions depend little on drag. At the same

time, the dissociation of the cluster happens over a wide time interval, as in the case of

vanishing force, where the bonds’ rupture is entirely caused by thermal fluctuations.

As force increases, the time interval where the cluster dissociates shifts to smaller val-

ues and becomes narrower. Increasing drag for large force ( f = 100), the distributions

TD dramatically shrink and shift to the left.

The deterministic lifetime Td obtained by solving Nd(Td) = 1 in (2.2.23), is generally

in good agreement with the the mean of TD, with notable exceptions for f = 100, c =

1, 10.
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Figure 4.4: Histograms of simulated cluster dissociation height HD(h) of a cluster realized for

n = 10, h0 = 1, β = 1, f = 0.1, 1, 10, 100 and c = 0.1, 1, 10, 100, obtained from 104 single trajecto-

ries. Horizontally, the red vertical lines represent the deterministic height Hd(Td), solved from

Nd(Td) = 1 in (2.2.23).

Distribution of the dissociation height

The dissociation height HD is plotted in Fig 4.4. For small values of force and drag, the

disk jumps to the next equilibrium heq,k before the k-th bond breaks, so the dissociation

height is approximately h = heq,1 (Fig. 4.4, c = 0.1, f = 0.1, 1). This suggests that

for any f > 0, HD converges to δ(h − 1 − f ) in the zero-drag limit (this is not obvious

in our figure, as for f = 10, 100 a much smaller c is needed). As drag increases, HD

shifts towards 1 and shrinks as seen for f = 0.1 Fig. 4.4, approaching δ(h − h0) in the

infinite-drag limit.

The deterministic displacement Hd(Td) obtained by solving Nd(Td) = 1 in (2.2.23), is

generally in good agreement with the mean of HD.
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Figure 4.5: Statistics of the cluster’s rupture for n = 10 bonds, as functions of drag and force,

realized from minimum 3000 simulations per (c, f ) point (50 points used for each). (a) µTD
; (b)

σ2
TD

; (c) µHD
; (d) σ2

HD
. The dashed line represents results for f = 0.

Means and variances of TD and HD from stochastic simulations

The means and variances of the random variables TD and HD defined in §2.2.2 are

depicted in Fig. 4.5. For small force, µTD is drag independent, as in Fig. 4.5 (a).

As expected, µTD is shortened by raising the force force, and increases with drag (for

fixed force), being bounded by ∑
n
k=1

1
n , as shown in (3.3.6). The variance σ2

TD
indicates

that the distribution does not change for small force (as predicted earlier by Fig. 4.3).

As force increases, the distributions are initially completely force-dominated for small

drag, with all the bonds breaking rapidly in a narrow time region. However, as drag

increases, the motion of the disk is slower, and the cluster dynamics are similar to the

case of f = 0, all curves converging to ∑
n
k=1

1
n2 (3.3.9), as shown in Fig. 4.5 (b).

The analysis of HD confirms that the larger the drag, the smaller the disk’s displace-

ment, as illustrated in Fig. 4.5 (c). As suggested by Fig. 4.4, the variance σ2
HD

should

vanish at zero drag for any positive force, raise to a maximal value as drag increases,

and vanish again as drag approaches infinity, as depicted in Fig. 4.5 (d). The larger the

force, the higher the corresponding peak is, and especially for large force, even a small

amount of drag can provoke a significant variance in the final displacement.
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Figure 4.6: Probabilities Pk(t; 0, h0) for n = 10, c = 1, β = 1, γ = 0 in the case of (a) low force

( f /n = 0.1). Analytical solutions (dotted lines) and stochastic simulations (solid lines) obtained

for 104 trajectories; (b) large force f /n = 50 (right) (results obtained from 104 trajectories).

4.1.2 Testing stochastic simulations against other methods

The stochastic fluctuations in the system can be accurately described in terms of the

various types of probability functions described in §2.2.2.

Validation of the stochastic simulations

For vanishing rebinding, the probabilities Pk(t; 0, h0) (2.2.10) for k = 0, . . . , n can be

obtained analytically (as n + 1− k-dimensional integrals, see (4.A.14) in Appendix 4.A)

and used to validate the stochastic simulations. For k = n, n− 1 analytical formulae are

obtained in Appendix 4.A for the distributions Fk(t, h; 0, h0) and densities pk(t, h; 0, h0)

of Pk(t; 0, h0) over the height coordinate, defined by (2.2.14) and (2.2.16) respectively.

The probabilities Pn, Pn−1 and Pn−2 are evaluated using the integral formulae (4.A.6,

4.A.11, 4.A.13), and compared against their stochastic counterparts in Fig. 4.6 (a).

Catastrophic failure of cluster under force and drag

An important result concerns the influence of drag on the behaviour of the probability

functions Pk(t; 0, h0). For low force, the rupture events are expected to occur sequen-

tially as in Fig. 4.6 (a), while for large force per bond, Erdmann & Schwarz [31] predict

a catastrophic rupture regime sketched in Fig. 3.2 (d), where the only visited states (in

the sense discussed in (3.3.3)) are the ones with 0 and n bonds. As shown in Fig. 4.6 (b),

for small drag (c = 1), the cluster does not exhibit the catastrophic behaviour anymore,

even under large force, at least for the parameter values investigated. However, the

length of the time-segment containing the rupture events significantly shrinks.
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Figure 4.7: Probabilities PH
k (h; 0, h0) obtained from 104 trajectories, for n = 10, h0 = 1, β = 1,

γ = 0, and (a) c = 0.1, f = 500; (b) c = 1, f = 500; (c) c = 10, f = 500; (d) c = 0.1, f = 0.1; (e)

c = 1, f = 0.1; (f) c = 10, f = 0.1.

The probability of having k bonds at height h: influence of drag and force

We can use stochastic simulations to predict alternative descriptions of the evolving

bond-disk system, for example with respect to disk height rather than time.

The probabilities PH
k defined in (2.2.13) are illustrated in Fig. 4.7. For large force, the

disk rapidly moves over a long range, with all the bonds attached. The rupture of a first

bonds is immediately follow by the others, until the cluster disintegrates, as depicted in

Fig. 4.7 (a), (b) and (c). As drag increases, the height region where the rupture events

occur drifts to smaller values.

In the low-drag-low-force regime depicted in Fig. 4.7 (d), the disk jumps between the

equilibrium heights heq,k (4.1.2), so each of the probabilities PH
k is about 1 inside the seg-

ments [heq,k+1, heq,k] for k = 1, . . . , n − 1. The domains where k bonds are attached can

be easily identified by measuring the length of these intervals. The profiles of the prob-

abilities PH
k is significantly altered by the increase in drag, the passage between subse-

quent states becoming smoother. As one can see in Fig. 4.7 (e), in the intermediate-drag

regime the probabilities PH
k intersect their neighbors when their value is about 1/2. In

the large-drag-low-force regime sketched in Fig. 4.7 ( f ), there are many overlapped

states. In this case the disk barely moves and bonds break under thermal excitation.
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Figure 4.8: Densities and cumulative distributions defined in §3.2, obtained for n = 10, c = 1,

β = 1, h0 = 1, γ = 0, from 104 simulations. (a) p8(t, h; 0, h0), (b) F8(t, h; 0, h0), (c) p1(t, h; 0, h0),

(d) F1(t, h; 0, h0). Trajectories Hk(t; 0, h) are solutions of (2.1.9).

Probability density and cumulative distribution over h of having k bonds at time t

The corresponding distributions Fk(t, h; 0, h0) and densities pk(t, h; 0, h0) defined in (2.2.14)

and (2.2.16), provide a clear image of the way probabilities Pk(t; 0, h0) are distributed

over the height coordinate. This allows the simultaneous analysis of the most probable

rupture times and extensions in the (N, H) space.

In Fig. 4.8 we examine the time-height probabilistic description of the decay of a cluster

having initially 10 closed bonds. As suggested by (4.A.19), the curves Hk(t; 0, h0) play

a very important role in establishing the region where the distributions change signif-

icantly. The profiles of the densities pk and distributions Fk change significantly as the

bonds rupture. In the initial phase, pk is positive only between H10 and Hk, and both

the distribution Fk and density pk have their peaks near the upper curve, as revealed

by Fig. 4.8 (a) and (b). In the terminal phase, the densities expand to the whole area

between H10 and Hk (now much wider), as shown in Fig. 4.8 (c) and (d) and the peaks

moves to the right, while still being close to the upper curve Hk.

We can conclude that for a given cluster, at the moment when the highest probability

of having k closed bonds is attained, the disk is probably situated near the curve Hk.
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Figure 4.9: Normalized decay of the cluster for n = 10 bonds, (a) f = 0.1; (b) f = 1; (c) f = 10;

(d) f = 100. Results from 104 stochastic trajectories realized for c = 0.1, 1, 10, 100 (solid lines)

and c = ∞ (dashed lines), are compared against solutions of the deterministic equations (2.2.23)

(dotted lines).

The motion of the disk is however largely force and drag dependent, so the conclusion

is valid in this form only for the small force, small drag regime.

Expected number of closed bonds and variances

Cluster decay, represented by the mean number of bonds µN(t), is depicted in Fig. 4.9.

As shown in (3.A.13), µN(t) = n exp(−t) and σ2
N(t) = n exp(−t) (1 − exp(−t)) . Dy-

namics are similar in the infinite-drag limit, plotted with dashed lines in Fig. 4.9 (a).

For intermediate force, the cluster decays faster under small drag, as depicted in Fig.

4.9 (b) and (c). For large force, there is a significant difference in the decay profiles,

as illustrated in Fig. 4.9 (d). For small drag, the rupture of the first bond leads to the

immediate disintegration of the cluster as a whole. The deterministic decay obtained

from (2.2.23) accurately approximates the cluster decay just for small (exponential de-

cay) and large force (either exponential decay, or abrupt rupture of bonds), as shown

by Fig. 4.9 (a) and (d). As force increases from 1 to 10, the deterministic decay for

c = 10 deviates more from the stochastic value, as depicted in Fig. 4.9 (b) and (c).
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Figure 4.10: Evolution of the normalized standard deviation σN(t)/n for n = 10 bonds, (a)

f = 0.1; (b) f = 1; (c) f = 10; (d) f = 100. Results from 104 stochastic trajectories realized for

c = 0.1, 1, 10, 100 (solid lines) and c = ∞ (dashed lines) (3.A.13).

The normalized standard deviations for the number of closed bonds, σN(t)/n, identi-

fies the times when the rupture of bonds is most intensive. In the small force regime

( f ≪ 1) depicted in Fig. 4.10 (a), the situation is identical for all drag values, and

the bonds rupture under thermal excitation. As force increases ( f ≃ 1), variance pro-

files begin to differentiate and the higher the drag, the slower the decay is, as sketched

in Fig. 4.10 (b). For larger values of force ( f ≃ 10 ≃ n) we can identify three drag

regimes, as shown in Fig. 4.10 (c). For small drag (c ≪ n), the disk moves reaches a

near equilibrium position, when the bonds start breaking rapidly, generating a sharp

peak of σN(t)/n. For intermediate drag (c ≃ n), bonds start dissociating while the

disk is still moving. After the disk reaching a critical position, σN(t)/n exhibits a sharp

peak, suggesting a rapid cluster disintegration. The profile of σN(t)/n is now lower

and wider, reflecting the dampening of the rupture events intensity, generated by drag

on the moving disk. For large drag (c ≫ n), the bonds break before the disk moves

significantly, and the bonds decay smoothly. Finally, for the large force case ( f ≪ n)

depicted in Fig. 4.10 (d), the bonds do not “feel” the force, being shielded by drag for

a while. Soon after the disk’s displacement increases, the ruptures become very rapid

and the cluster dissociates.
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4.1.3 Non-zero rebinding: Critical force and equilibrium configurations

Force destabilizes the cluster, while rebinding stabilizes it again. In the context of adhe-

sion clusters under constant force, it was shown by Bell that a cluster of bonds remains

stable up to a critical force denoted by fc, which is to be determined theoretically or

from experiment [10]. Here we analyze the force required to destabilize a cluster, and

estimate the number of bonds at equilibrium. The computations are largely similar to

the ones in §3.3.3.

In this section a phase plane analysis of the deterministic system (2.2.23) is presented.

This approach leads to the discovery of analytical formulae for the critical force to

destabilize the cluster and the critical initial number of bonds to ensure that a non-zero

equilibrium is attained. Also, a stability analysis for the equilibrium configurations is

performed.

Phase plane analysis

The starting point of this analysis is the deterministic system is (2.2.23), where for con-

venience, the notations x = Nd, y = Hd are used, along with the physical constraints

0 ≤ x ≤ n and y > 0.

In the new notations (2.2.23) gives

dx
dt

= X(x, y) ≡ −x eβ (y−1) + γ (n − x) e α (1−y), (4.1.3)

dy
dt

= Y(x, y) ≡ −(xy4 − (x + f )y3)/c.

The nullclines for (4.1.3) can be written in explicit form as

dx
dt

= 0 : y(x) = 1 +
1

β + α
log

(
γ(n − x)

x

)
, (4.1.4)

dy
dt

= 0 : y(x) = 1 +
f
x

(0 < x ≤ n).

The equilibrium configurations (x0, y0) are the solutions of the system satisfy the rela-

tions

x0e
f (β+α)

x0 = γ (n − x0), y0 =
f

x0
+ 1. (4.1.5)

The terms of the Jacobian matrix J(x0, y0)

(
x

y

)

, J(x0, y0) =

(
Xx(x0, y0) Xy(x0, y0)

Yx(x0, y0) Yy(x0, y0)

)

,
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in our case are

Xx = −eβ (y−1) − γ e α (1−y), (4.1.6)

Xy = −x β eβ (y−1) − γ (n − x) α e α (1−y),

Yx = −y4 − y3

c
,

Yy = −4 x y3 − 3 (x + f ) y2

c
.

To find the eigenvalues of J(x0, y0) we solve the equation det(J(x0, y0) − λI2) = 0,

which is the quadratic equation

λ2 + Bλ + C = 0, (4.1.7)

with the coefficients

B = eβ (y−1) + γ e α (1−y) +
4 x y3 − 3 (x + f ) y2

c
, (4.1.8)

C =

(
eβ (y−1) + γ e α (1−y)

)(
4 x y3 − 3 (x + f ) y2

)

c

−

(
x β eβ (y−1) + γ (n − x) α e α (1−y)

)
(y4 − y3)

c
= det J(x, y).

The discriminant ∆ = B2 − 4C of (4.1.7) is defined for {(x, y) | 0 ≤ x ≤ n, y ≥ 1} as

∆(x, y) =

(
eβ (y−1) + γ e α (1−y) − 4 x y3 − 3 (x + f ) y2

c

)2

+
4 (x β eβ (y−1) + γ (n − x) α e α (1−y)) (y4 − y3)

c
> 0,

and shows that both roots λ1 and λ2 of (4.1.7) are real for (x, y) in the specified region.

The coefficients B and C satisfy

λ1 + λ2 = −B/2, λ1λ2 = C.

Since γ > 0, B is always positive, so least one of the eigenvalues values is negative.

For the analysis of C we also use the second part of (4.1.5) (only having in mind that

now x = x0, y = y0) to obtain (after some computational effort)

C =
(x + f )3e−

f α
x

x4 c

(
(x − f )x e

(β+α) f
x + x2 γ − f γ α n + f γ α x

)
. (4.1.9)

Using the first part of (4.1.5) we have x e
(β+α) f

x = γ(n − x), so (4.1.9) is equivalent to

C =
γ(x + f )3e−

f α
x

x4 c

[(
n + (β + α) f

)
x − f (β + α) n

]
. (4.1.10)
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Figure 4.11: The derivative of the number of closed bonds dx/dt(x, y) along the nullcline

dy/dt = 0 : y = f /x + 1, as a function of x. For forces f < fc two steady states exist, which

merge at f = fc and vanish for f > fc. In this figure n = 100, β = 1, α = 0.2, γ = 1, where as

computed from (4.1.13), fc ≃ 23.2054.

The sign of C (therefore the nature of the equilibrium point) depends on the position of

x0 relative to a critical value denoted by

xBIF =
n f (β + α)

n + f (β + α)
, (4.1.11)

which only depends on f (β + α) and n. There are three cases.

Case 1. x0 > xBIF. In this case C > 0 and the roots of (4.1.7) satisfy 0 > λ1 > λ2, so

(x0, y0) is a stable node.

Case 2. x0 = xBIF. In this case C = 0 and the roots of the equation (4.1.7) satisfy

λ1 = 0 > λ2, so (x0, y0) is a degenerate saddle point.

Case 3. x0 < xBIF. In this case C < 0 and the roots of the equation (4.1.7) satisfy

λ1 > 0 > λ2, with |λ2| > |λ2| > 0, so (x0, y0) is a saddle point.

Equilibrium solution - critical force regime

The focus here is to analyze the number of solutions for (4.1.5) in different forcing and

drag regimes.

Force destabilizes the cluster, while rebinding stabilizes it again. In the context of adhe-

sion clusters it was shown by Bell that a cluster of bonds remains stable up to a critical

force denoted by fc, which is to be determined theoretically or from experiment. For

the stability analysis it is helpful to examine the equation (4.1.5).
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Figure 4.12: Phase plane of the system (4.1.5) realized for n = 100, c = 1, β = 1, α = 0.2, γ = 1

in the cases of (a) subcritical force f = 10, (b) critical force f = fc = 23.2054 and (c) supercriti-

cal force f = 50 regimes.

The relation between the stability of the number of closed bonds in the cluster and force

is sketched in Fig. 4.11. At small force, this equation has two roots, with the larger

one corresponding to a stable equilibrium (since as shown in Fig. 4.12 a), the roots

are separated by the line x = xBIF). As the force increases, a saddle-node bifurcation

occurs, at the point where dy/dt = dx/dt = d2x/dt2 = 0. For forces above the critical

limit, no roots exist therefore the cluster is unstable.

Precisely at the critical force, the two roots collapse and the slopes of the two terms

of equation (4.1.5) become equal. The coordinates ( fc, xc) where this happens in the

force-displacement plane represent the solution of the system






xce
f (β+α)

xc = γ (n − xc),

e(β+γ) fc/xc

(
1 − (β + γ) fc/xc

)
= −γ,

(4.1.12)

where fc and xc represent the critical force and the coordinate where the two roots col-

lapse. The critical values for the cluster size and force can be obtained in an analytical

form as

xc = n
pln

(
γ
e

)

1 + pln

(
γ
e

) , (4.1.13)

fc =
n

β + α
pln

(
γ

e

)
, (4.1.14)

where the product logarithm function pln is the solution a of aea = b, as in §3.3.3.

110



CHAPTER 4: CLUSTER DYNAMICS UNDER FINITE DRAG

10
0

10
510

−2

10
−1

10
0

10
1

γ

f c(β
+

δ)
/n

γ/e
0.5 ln γ

log (γ/e) − log(log(γ/e) )

Figure 4.13: Critical force (4.1.13) in relation to the total cluster size and (β + α), as function of

the rebinding constant γ. It scales linearly with (dotted line) at small, logarithmically (dashed

line) for medium γ. In the large γ limit it approaches asymptotically ln(γ/e)− ln ln(γ/e) (dash-

dotted line).

Equation (4.1.5) can also be solved directly using the pln notation having the solution

x0 = − n (β + α) f

pln

(
− (β + α) f e

(β+α) f
n

γ n

)
n − (β + α) f

, (4.1.15)

which highlights the importance of the scaling (β + α) f .

The impact of the three forcing regimes on the phase plane descriptions of the system

is sketched in Fig. 4.12. In the presented situation, the critical force is fc = 23.2053,

and the drag is small compared to the initial number of bonds (c/n ≪ 1). There are

two timescales here. On a O(c/n) time scale there is a rapid relaxation onto the curve

dy/dt = 0, and a slow bond breakage. Over O(1) times the system can be described

then as a 1D equation along the dy/dt nullcline.

The subcritical force regime f = 10 < fc is plotted in Fig. 4.12 (a) and it can be seen that

the intersection of the nullclines generates two equilibrium points. The line (xBIF, y)

with xBIF computed from (4.1.11), separates the two equilibrium points and using the

earlier analysis, the point at the right of xBIF is a stable node, while the other one is

a saddle point. For critical force, the two previous equilibrium points collapse into a

single equilibrium point, which in the case sketched in Fig. 4.12 (b) is a saddle point,

since xBIF = 21.7846 > 21.7812 = xc. For supercritical force the cluster dissociates in

all situations and no equilibrium is attained, as shown in Fig. 4.12 (c) for f = 50.
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Figure 4.14: Dependence of x0 on force and rebinding. In this figure n = 100, β = 1, α = 0.2.

For each γ ∈ {1, 5, 10}, the squares represent the equilibrium for zero force which is γn/(1 + γ),

while the circles represent the equilibrium number of bonds xc at critical force fc , computed

from (4.1.13). Solid lines represent the stable nodes, while the dashed lines stand for the saddle

points. The dotted line represents the value of xBIF = n f (β+α)
n+ f (β+α)

.

Asymptotic approximations for the critical force fc are illustrated in Fig. 4.13 for small,

intermediate and large values of the rebinding coefficient γ.

The critical force scales in a trivial way with n and (β + α), and in a complicated way

with γ. For γ < 1 we obtain fc ≃ γn/[e(β + α)]. Since the cluster dissociates even in the

absence of force, the critical force is zero in the absence of rebinding. For γ > 1 and up

to the appreciable high value γ ≃ 100 we have fc ≃ 0.5n/(β + α) ln γ. This dependence

shows that the single bond scale set by (α + β) sets the force scale on which the cluster

dissociates. The crossover of fc from linear to logarithmic dependence on γ is shown

in Fig. 4.13. In the large γ limit the critical force is well approximated by n/(β +

α)
[
ln(γ)− ln

(
e ln(γ/e)

)]
, where we can see a weak deviation from the logarithmic

dependence as γ increases, as shown in Fig. 4.13. The asymptotic expansions of the

pln function are based on [25].

In Fig. 4.14 is sketched the dependence of the number of closed bonds at equilibrium

x0, on force and rebinding. As one could easily notice, for all values of γ, the upper

arch of x0 is situated entirely above the corresponding value of xBIF, so the values on

this branch represent stable nodes.
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Figure 4.15: (a) Disk’s displacement Hk(t) (dashed lines) with k = 1, . . . , 5 bonds attached

(2.1.9), towards the equilibrium heights (4.1.2) (solid lines), for ramped force f = t + 2, h0 =

2, β = 1, c = 1. (b) Disk’s displacement in the (t, h)-plane, for n = 5, f = t + 2, h0 = 1, β =

1, γ = 0 and c = 0.1, 1, 10, as the bonds break. Circles indicate bond rupture coordinates.

4.2 Cluster dynamics under ramped force

The most commonly used profile for the dissociating force in DFS experiments is the

ramped force [38], since it has the advantage of shortening the lifetime to an appreciable

degree. We examine how our model captures this feature. Results of the stochastic

description will be compared to deterministic results. As the force increases with time,

rebinding is only relevant for the initial evolution of the system. To capture the effects

of ramping the force, in this section we assume therefore, vanishing rebinding.

4.2.1 Preliminaries

Drag and loading rate significantly affect the disk’s motion between events and indi-

vidual trajectories, indicating the existence of distinct patterns in system’s dynamics.

Disk trajectories

Since the motion of the disk depends on force (2.1.9), ramping the force will alter sig-

nificantly the profile of the motion of the disk, as one can see in Fig. 4.15. As shown in

Fig. 4.15 (a), in the absence of ruptures, the disk approaches asymptotically the curves

heq, k =
µt
k

+ 2. (4.2.1)

The disk’s trajectories under different drag regimes are illustrated in 4.15 (b). Com-

pared to Fig. 4.1 (b), the disk’s displacement is permanently increasing.
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Figure 4.16: Plot of 10 individual disk trajectories (solid lines) in the (time, height)-plane, for

n = 10 bonds, µ = 0.1, 1, 10, 100 and c = 0.1, 1, 10, 100. The circles indicate the position of the

rupture events, while red the dashed line represents the deterministic approximation (2.2.23).

Disk trajectories in the (c, µ)-plane

As shown earlier, the trajectories of the disk exhibit a large variety of behaviour. In

Fig. 4.16 we plot individual trajectories of the disk in (time, height)-space, realized for

various values of µ and c, against solutions of the deterministic approximation (2.2.23).

Compared to Fig. 4.2, the deterministic trajectories of the disk approximate to a much

greater extent their stochastic counterparts, and significant variations can only be seen

for small drag (c = 0.1, 1). The disk’s displacement is negligible for small force/large

drag, and can be significant for large loading rates. Fig. 4.16 suggests the existence

of distinct regions in the (c, µ) parameter space. At the same time, for large drag and

loading rate (c, µ ≥ 10), the profile of the disk’s displacement in the final phase is

almost a vertical climb following a plateau, suggesting a sudden dissociation of bonds.
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Figure 4.17: Dissociation time TD(t) of a cluster for n = 10, h0 = 1, β = 1, µ = 0.1, 1, 10, 100

and c = 0.1, 1, 10, 100, obtained from 104 single trajectories. Horizontally, the red vertical lines

represent the times Td obtained from Nd(Td) = 1 in (2.2.23).

Distribution of the dissociation times

The distribution of the dissociation time TD obtained from stochastic simulations is

plotted in Fig. 4.17, against solutions of the deterministic approximation (2.2.23). For

small loading rate (bottom line), the results are similar to Fig. 4.3. Drag significantly

extends cluster lifetime, especially for large loading rates (horizontal). Increasing the

loading rate, rapidly shortens cluster lifetime, especially for large drag (c = 100),

where the bonds kept near the equilibrium by drag, suddenly rupture once force be-

comes large enough. At large loading rates, the force distribution is narrow, as seen for

larger values of µ, especially and large drag, as for µ = 100, c = 100. An important

parameter in the loading rate experiments is the rupture force µTD, whose relevance

is discussed later in this section. The deterministic lifetime Td obtained by solving

Nd(Td) = 1 in (2.2.23), is generally in good agreement with the the mean of TD.
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Figure 4.18: Dissociation height HD(h) of a cluster for n = 10, h0 = 1, β = 1, µ = 0.1, 1, 10, 100

and c = 0.1, 1, 10, 100, obtained from 104 single trajectories. Horizontally, the red vertical lines

represent the deterministic height Hd(Td), solved from Nd(Td) = 1 in (2.2.23).

Distribution of the dissociation heights

The distribution of the dissociation height HD is plotted in Fig 4.18. As the disk moves

permanently, the profiles of HD are very different from the ones shown in Fig. 4.4 for

constant force. For small drag (c = 0.1), the disk moves almost freely under force,

and HD rapidly shifts to larger values, while spreading over a wider region. Along

the bottom line, the displacement is significant even for small loading rate and drag

(µ = c = 0.1). Keeping µ fixed and increasing drag, HD approaches δ(h − 1) in the

infinite-drag limit. For large drag (c = 100), the distribution HD initially confined near

1, is spread to the right with the increase of µ.

The deterministic displacement Hd(Td) ( represented in Fig 4.18 by red dots) obtained

by solving Nd(Td) = 1 in (2.2.23), is generally in good agreement with the mean of HD

in the upper part of the antidiagonal of Fig. 4.18.
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Figure 4.19: Statistics of the cluster’s rupture for n = 10 bonds, as functions of drag and force,

realized from minimum 3000 simulations per (c, µ) point (a) µTD
; (b) σ2

TD
; (c) µHD

; (d) σ2
HD

.

The dashed line represents results for µ = 0. Both c and µ domains are spanned by 50 logarith-

mically spaced points.

Means and variances of TD and HD obtained from stochastic simulations

The mean values and variances of TD and HD defined in §2.2.2 as functions of loading

rate and drag are depicted in Fig. 4.19. As anticipated, µTD increases with drag (for

fixed loading rate), having the upper bound ∑
n
k=1

1
n as predicted in Chapter 3 (see Fig.

4.5), and decreases with the loading rate. Also, in the small force regime µTD is largely

drag independent, while for large force it increases with drag, as in Fig. 4.19 (a). The

behaviour of µHD and σHD depicted in Fig. 4.19 (c) and (d), can be interpreted in the

same key as their correspondents for constant force, plotted in Fig. 4.5 (c) and (d).

The variance σ2
TD

instead has a significantly different profile, as shown in Fig. 4.5 (b)..

For small drag, the profile is drag-independent. Increasing drag at a constant µ, the

variance exhibits a minimum for a certain value of drag (which increases with µ),

where the lifetimes also start to increase in µTD . This coordinate may potentially have

experimental values, allowing us to choose the value of c that leads to the most precise

measurement of µTD . Increasing drag even further, σ2
TD

near the value ∑
n
k=1

1
n2 (3.3.9).
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Figure 4.20: Small drag (c=0.1) cluster dissociation histograms for (a) displacement, n = 1 bond;

(b) rupture force, n = 1 bond; (c) displacement, n = 10 bonds; (b) rupture force, n = 10 bonds,

computed from 104 simulated trajectories for loading rates µ = 1, 10, 102, 103, 104. The dotted

line represents a fitted normal density, with the same mean and variance as the simulated data.

4.2.2 Mimicking DFS experiments

Our model can used to mimick the DFS experiments, not only for single bonds, but

also for clusters with multiple bonds. As discussed in §1.2.3, in experiments we can

measure the force when the last bond dissociates. In this section we show that drag can

fundamentally change the distribution patterns of the rupture force, as a direct conse-

quence of force buildup. In accordance with the findings of Merkel et al. [95] presented

in §1.2.3, bond strength is not only a property of the bond, but is also influenced by the

loading rate µ, as one can see in Fig. 4.20 (b). Moreover, disk trajectories are consid-

erably modified by drag (see Fig. 4.15), and so does the distribution of the individual

bond rupture forces, illustrated in Figs. 4.21 (b) and 4.20 (b).

For small drag the profile of rupture forces shares the same properties with the zero-

drag experiment, for both single bond, and multiple bond clusters in Fig. 3.20: the

force distribution shifts to the right with the increase in loading rate, the effect being

amplified for larger clusters, where the force profiles are normally distributed.
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Figure 4.21: Intermediate drag (c=1) cluster dissociation histograms for (a) displacement, n = 1

bond; (b) rupture force, n = 1 bond; (c) displacement, n = 10 bonds; (b) rupture force, n =

10 bonds, computed from 104 simulated trajectories for loading rates µ = 1, 10, 102, 103, 104.

The dotted line represents a fitted normal density, with the same mean and variance as the

simulated data.

In Fig. 4.20 (a) and (c) we also plot for comparison the distribution of final displace-

ment, showing that cluster displacement is significantly increased by loading rate. The

difference in the position of the final displacement distributions is more evident for

smaller values of loading rate. Nonetheless, even for relatively small clusters, the final

displacement closely resembles a normal distribution.

Drag induced effects can already be observed for c = 1. The distribution of final force

and displacement illustrated in Fig. 4.21 for both single and multiple bond clusters are

strikingly different, compared to Fig. 4.20. First, as drag slows down the extension

of individual bonds, the final displacement’s distribution is much wider. At the same

time, drag has induces a significant separation between the rupture force distributions

as shown Fig. 4.21 (b), which is even more evident as the cluster dimension is increased.

Model predictions can be compared against experiments, if we restore the dimensions

of time and force, and use physiological data for the bond properties κ∗, L∗ and k∗0 , and

also for the parameters of the experimental setup R∗ and µ∗.
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In summary, the bond/cluster rupture force is not only a bond or loading property, but

also depends on drag. Drag enhances the separation between the bond rupture force

distributions induced by increasing loading rate.

Note: The histograms in Figs. 4.20 and 4.21 are realized using 21 bins, between the

minimum and maximum of the simulated data. The wider bins corresponding to µ =

104 in Figs. 4.20 (b) and 4.21 (b), appear because the data was not filtered for the very

rare extreme events, which occured.

4.3 A possible PDE formulation of cluster dynamics

In this section we analyze a differential Chapman-Kolmogorov Equation (dCKE) for-

mulation, proposed to be suitable for the analysis of stochastic processes with joint con-

tinuous and discrete state space, inspired from the paper of Lipniacki et al. [91]. The

starting point is the formulation of the problem as a piecewise-deterministic Markov

process with the random variables N(t) and H(t), representing the number of closed

bonds and the displacement of the disk, respectively. We wish to determine if this pro-

cess can be reformulated as a dCKE. We solve the relevant dCKE with the method of

characteristics, and then compare the results against stochastic simulations. We find

that the solution approximates well the stochastic simulations for large values of drag,

but performs poorly for small values of drag, especially in the terminal phase of the

cluster’s decay. We explain the results, and derive forward and backward integro-

differential equations for the bivariate Markov Processes (N, H), in §4.3.4.

4.3.1 The dCKE

The steps described in [91], are adapted to our problem in Appendix 4.B, leading to

a forward equation describing the evolution of the cluster in the velocity field v(h, k)

written as

∂pk(h, t)
∂t

+
∂

∂h

[
v(h, k)pk(h, t)

]
= (4.3.1)

= − [rk(H(t)) + gk(H(t))] pk(h, t) + gk−1(H(t))pk−1(h, t) + rk+1(H(t))pk+1(h, t),

where k = 0, 1, . . . , n and pk(h, t) represents the probability density over h, of having

k closed bonds at time t (2.2.16). For a fixed k = 0, . . . , n, the displacement H satisfies
dH(t)

dt = v(H(t), k), where

v(h, k) = −1

c
h 3 [kh − ( f + k)] , (4.3.2)
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The rupture and rebinding rates

rk(H) = λk, k−1(H) = keβ(H−1), (4.3.3a)

gk(H) = λk, k+1(H) = (n − k)e−δ(H−1), (4.3.3b)

are similar to the ones defined in §2.1.3.

The initial condition for this problem is a Gaussian

pk(h, 0) =






1
σ
√

2π
e−

(h−h0)2

2σ2 , if k = n;

0 if k ≤ n − 1,
(4.3.4)

with a small standard deviation σ > 0, to mimick what would happen in an experi-

ment. We briefly describe the solution of (4.3.1-4.3.4) by the method of characteristics.

4.3.2 Solution along characteristics

The system of PDEs (4.3.1) is generally called a linear advection or transport equation,

describing the evolution of the probability density pk in a flow having the velocity field

v(h, k). In the absence of rebinding, pk can be obtained recurrently from pk+1, . . . , pn

for k = 0, . . . , n − 1. The system of PDE’s (4.3.1) becomes






dh
dt = −(1/c)

[
kh4 − (k + f ) h3

]
, h(0) = h0,

dpk
dt = −

[
keβ(h−1) + dv(h,k)

dh

]
pk(h, t) + (k + 1)eβ(h−1)pk+1(h, t),

(4.3.5)

where pn+1 ≡ 0 (as n is the maximum number of binding sites) and the initial condi-

tion pk(h0, 0) satisfies (4.3.4). As seen in Fig. 4.22 and discussed in Appendix 4.B.3, the

characteristic curves converge to a fixed line which depends on the number of bonds.

For large values of drag, the convergence is very slow. The properties of the charac-

teristic curves have a significant impact on the solution of (4.3.5), since they determine

the direction along which the initial configuration is transported. For simplicity, the

solution is tested for constant force.

Solution for the initial decay pn

First we solve pn along a numerous set of characteristic curves, from the equation

dh
dt

= −(1/c)
[

nh4 − (n + f )h3
]

, h(0) = h0 (4.3.6)

dpn

dt
=
[
−neβ(h−1) + (1/c)

(
4nh3 − 3(n + f )h2

)]
pn(h, t),

where pn(h0, 0) satisfies (4.3.4). The previous equation is solved using the classical

Runge-Kutta ode45 Matlabr routine.
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Figure 4.22: Transport of pk(h, t) in the velocity field v(h, k, t) for k = 5 and f = 5t + 1. Ar-

rows show the direction of the flow field, while the solid line represents the asymptote of the

characteristic curves (dotted lines).

Solution for the steps k = 0, . . . , n − 1.

To avoid confusions between the characteristic curves corresponding to different bond

populations k, the solution of the equation





dh
dt = v(h, k),

h(0) = h0.

is denoted by hk(t). Suppose that for a given k ∈ n − 1, . . . , 0 we already obtained the

densities down to pk+1, computed along a sufficiently large number of characteristic

curves hk+1. The algorithm used for the computation of the densities pk along the char-

acteristic curves hk is described below.

• Obtain the curves hk−1 starting at the same initial heights h0.

The characteristic curves (implicitly the densities) are only solved only below a

relevant height hmax.

• For each value of time t, the values of pk+1 computed at (hk+1(t), t), are used to

approximate pk+1 along the new characteristic curves (hk(t), t).

In Matlabr this is done using linear or cubic interpolation (interp1).

• The density pk is obtained by solving (4.3.5) along each characteristic curve hk, us-

ing the source term (k + 1) exp(β(hk − 1))pk+1(hk(t), t). This is done in Matlabr

using a time-dependent coefficient routine based on ode45.
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Figure 4.23: Solution comparison for k = 10. (a) characteristics (4.3.2) for k = 10 (solid) and

k = 9 (dotted) bonds; (b) density p10(h, t) (4.3.5); (c) p10(h, t) at the time when attains its maxi-

mum (characteristics - solid line, simulations - histogram); (d) Estimate of P10(t) = Pr{N(t) =

k} =
∫ ∞

0 pk(h, t)dh from simulations (circles) and the method of characteristics (solid line). The

parameters are n = 10, f = 1, β = 1, h0 ∼ N(1, 10−2), and c = 100 (large drag).

4.3.3 Validation of the solution against stochastic simulations

Solutions of the dCKE obtained by the method of characteristics are compared against

results obtained from stochastic simulations, for large and small values of drag.

Large drag

In the infinite-drag limit the characteristic curves are straight lines hk(t) ≡ h, and the

p′ks do not exhibit singularities. Since vk = O(1/c), the evolution of the probability

densities pk at height h is given at leading order by the equation

dpk(h, t)
dt

= −rk(h)pk(h, t) + rk+1(h)pk+1(h, t), (4.3.7)

pk(h, 0) =






1
σ
√

2π
e−

(h−h0)2

2σ2 , if k = n;

0 if k ≤ n − 1,
(4.3.8)
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Figure 4.24: Solution comparison for k = 6. (a) characteristics (4.3.2) for k = 6 (solid) and

k = 5 (dotted) bonds; (b) density p6(h, t) (4.3.5); (c) p6(h, t) at the time when attains its maxi-

mum (characteristics - solid line, simulations - histogram); (d) Estimate of P6(t) = Pr{N(t) =

k} =
∫ ∞

0 pk(h, t)dh from simulations (circles) and the method of characteristics (solid line). The

parameters are n = 10, f = 1, β = 1, h0 ∼ N(1, 10−2), and c = 100 (large drag).

where rn+1 ≡ r0 ≡ 0 (for the reasons discussed in §3.2.1 (3.2.4)). The solution of (4.3.7)

is given by (3.A.6), which was analyzed earlier in Appendix 3.B.

For large but finite drag (c = 100), the solutions obtained from the method of charac-

teristics show a good agreement with the ones obtained from stochastic simulations.

We compare solutions for n = 10 bonds from the initial phase k = 10 (initial decay of

the cluster) and k = 6 (intermediate phase).

In Figs. 4.23 and 4.24 (a), the characteristic curves corresponding to k (solid line) and

k − 1 (dotted line) bonds are shown to differ little for large drag. In Figs. 4.23 and

4.24 (b) a contour plot for pk is presented, together with its maximum (square). The

densities pk(h, t) are depicted in Figs. 4.23 and 4.24 (c) at the fixed time tk,max, when

the maximum of pk is attained in the (h, t) space. A comparison of the probabilities

Pk(t) = Pr{N(t) = k} =
∫ ∞

0 pk(h, t)dh (2.2.10) is plotted in Figs. 4.23 and 4.24 (d).

The results are motivated by the slow variation of the characteristics between consecu-

tive states of the system.
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Figure 4.25: Comparison of solutions obtained from the method of characteristics and stochas-

tic simulations in the terminal phase of cluster decay (k = 1). The parameters are n = 10,

f = 1, β = 1, h0 ∼ N(1, 10−2), Hmax = 2.5 > 1 + f and c = 1 (small drag). (a) characteristics

(4.3.2) for k = 2 (solid) and k = 1 (dotted) bonds; The characteristic hk(t) for k = 1 start-

ing from hk(0) = Hmax is denoted by CCmax(t). (b) Distributions F1(CCmax(t), t) (3.A.1) from

the dCKE solved along characteristics are compared against F1(CCmax(t), t) (dotted, red line)

and F1(Hmax, t) (dotted, blue line), as well as probabilities P1(t) (dashed, black line) defined by

(2.2.10) estimated from stochastic simulations.

Small drag

For small drag, the characteristics corresponding to consecutive states quickly become

different as depicted in Fig. 4.25 (a) for k = 1.

The comparison of between the characteristics and stochastic simulations solutions

plotted in Fig. 4.25 (b) shows a strong disagreement, especially in the final cluster

decay phase (k=1). The solution pk(h, t) obtained from the dCKE (4.3.2) along 1000

or 2000 characteristics starting from equally spaced points in the interval [0.5, Hmax] is

used to estimate the distribution

Fk(H(t), t) = Pr{N(t) = k | H(t) < H(t)}, (4.3.9)

along different curves H(t).

Denoting by CCmax(t) the characteristic h1(t) starting from h1(0) = Hmax = 2.5 > 1+ f ,

we compute the distribution F1(CCmax(t), t) (solid lines), which differs little with the

increase in the number of characteristics.

The distribution F1 is also estimated from stochastic simulations along different curves.

As shown in Fig. 4.25 (b), lines obtained from simulations along H(t) = 2.5 (Stoc

Hmax - red dotted line) and H(t) = CCmax(t) (Stoc CC - blue dotted line), as well as
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the probabilities P1(t) (dashed, black line) are superposed, indicating that the region

between the chosen characteristic curves contains all the probability to have one bond.

The difference between the solutions obtained from the dCKE and stochastic simu-

lations seems to be sensitive neither to the height grid choice, nor to the number of

characteristic curves.

In summary, the solution of the dCKE computed using the method of characteristics

was shown to be significantly different from the results obtained from stochastic sim-

ulations, particularly for smaller values of the drag coefficient c. This indicates that a

PDE formulation is not appropriate for our model. The solution is to derive new for-

ward/backward equations for the evolution of the probability densities pk(t, h), which

is presented below.

4.3.4 Bivariate stochastic processes

In this section we examine a bivariate stochastic process {(X(t), H(t)) : t ≥ 0} with

state space E × R, where E = {0, 1, 2, . . . , n}. For i = 1, 2, . . . , n, when X(t) = i, H(t)

follows the deterministic path described by the ODE

dH
dt

= vi(H).

For i = 1, 2, . . . , n, whilst X(t) is in state i, it jumps to state j (j 6= i) at rate qij(H(t)).

The process {(X(t), H(t))} is Markov. For convenience we shall use these notations

below.

Sojourn time in a state

For i = 1, 2, . . . , n, let

qi(h) = ∑
j∈E,j 6=i

qij(h),

be the rate at which {X(t)} leaves state i if H(t) = h.

Suppose that (X(0), H(0)) = (i, h0) and let T = inf{t ≥ 0 : X(t) 6= i} be the time when

{X(t)} first leaves the state i. Then,

Pr{T > t} = exp

(
−
∫ t

0
qi (hi(u; h0)) du

)
,

where hi(u; h0) is the solution of

dh
dt

= vi(h), h(0) = h0.

As shown previously, T has the pdf

fi(t; h0) = qi (hi(t; h0)) exp

(
−
∫ t

0
qi (hi(u; h0)) du

)
, (t > 0). (4.3.10)
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Forward equation

Suppose that X(0) = i and H(0) has density πi(h) (h ∈ R). For t ≥ 0, let

Fj(t, h) = Pr {X(t) = j, H(t) ≤ h} , (j = 1, . . . , n; h ∈ R), (4.3.11)

and

pj(t, h) =
∂

∂h
Fj(t, h). (4.3.12)

Our aim is to find an equation satisfied by the densities pj(t, h) (j = 1, . . . , n; h, t ≥ 0).

Fix t, j and h with i 6= j. To determine an equation for pj(t, h), let U = sup{U < t :

X(t) 6= j} be the time of the last jump of {X(t)} in (0, t).

For u ∈ [0, t], let h̃j(u; t, h) be the solution of the ODE

dh̃
dt

= vj(h), h̃(t) = h.

Hence, assuming for simplicity that h̃j(u; t, h) is increasing in h, given X(t) = j and

U = u we have the relation

H(t) ∈ (h, h + ∆h) ⇐⇒ H(u) ∈
(

h̃j(u; t, h), h̃j(u; t, h) +
∂h̃j(u; t, h)

∂h
∆h + o(∆h)

)
.

(4.3.13)

Thus we obtain

Pr {X(t) = j, H(t) ∈ (h, h + ∆h)} =
∫ t

0
∑
k 6=j

Pr

{
X(u−) = k, H(u) ∈

(
h̃j(u; t, h),

h̃j(u; t, h) +
∂h̃j(u; t, h)

∂h
∆h + o(∆h)

)}
qkj
(
h̃j(u; t, h)

)
exp

(
−
∫ t

u
qj
(
h̃j(s; t, h) ds

) )
du.

It follows that for j 6= i, pj(t, h) satisfies the integral equation

pj(t, h) =
∫ t

0
∑
k 6=j

pj
(
u, h̃j(u; t, h)

) ∂h̃j(u; t, h)

∂h
qkj
(
h̃j(u; t, h)

)
exp

(
−
∫ t

u
qj
(
h̃j(s; t, h) ds

) )
du.

When j = i, there is an extra term corresponding to {X(t)} not jumping in (0, t). Specif-

ically,

pi(t, h) =
∫ t

0
∑
k 6=i

pi

(
u, h̃i(u; t, h)

)
∂h̃i(u; t, h)

∂h
qki

(
h̃i(u; t, h)

)
exp

(
−
∫ t

u
qi
(
h̃i(s; t, h) ds

) )
du

+ πi

(
h̃i(0; t, h)

)
∂h̃i(0; t, h)

∂h
exp

(
−
∫ t

0
qi
(
h̃i(s; t, h)ds

) )
. (4.3.14)
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Backward equation

For i, j ∈ E, y, z ∈ R and t ≥ 0, let

Fij(t, y, z) = Pr {X(t) = j, H(t) ≥ z | X(0) = i, H(0) = y} .

Fix i ∈ E and y ∈ R. Suppose that (X(0), H(0)) = (i, y) and let

V = inf{t > 0 : X(t) 6= i},

be the time of the first jump of {X(t)}. Then, for j 6= i and z ∈ R

Fij(t, y, z) =
∫ t

0
∑
k 6=i

exp

(
−
∫ u

0
qi (hi(s; y)) ds

)
qik (hi(u; y)) Fkj

(
t − u, hi(u; y), z

)
du,

and for j = i there is an extra term corresponding to {X(t)} not jumping in (0, t)

Fii(t, y, z) =
∫ t

0
∑
k 6=i

exp

(
−
∫ u

0
qi (hi(s; y)) ds

)
qik (hi(u; y)) Fki

(
t − u, hi(u; y), z

)
du

+ exp

(
−
∫ t

0
qi (hi(u; y)) du

)
1{hi(t;y)≤z}. (4.3.15)

The conditioning argument is classical. We have used [74, p.183] for the forward and

[121, p.67] for the backward arguments, respectively.

4.4 Summary

The addition of drag allowed a more detailed physical understanding of the system

mechanics. Drag was shown to strongly influence the disk’s motion under force, which

resulted in significant changes in bond dynamics, under the two force profiles consid-

ered in this study. For constant force it was shown that the disk moves towards equi-

libria depending on the force magnitude and the number of bonds. When rebinding

is considered, this was shown to generate stable equilibria, for forces below a critical

force. Forces larger than this critical value were found to destabilize the cluster. It was

also shown that a large force considerably reduces cluster lifetime, but the catastrophic

failure of bonds (instantaneous jump between probabilities P10(t) and P0(t)) predicted

in [31], was not spotted, even for very large values of force. The interplay between force

and drag was examined using cluster dissociation time and displacements, as well as

averages and standard deviations of the bond population. For large drag, the disk

barely moves and the cluster’s evolution is largely dictated by bond kinetics, while for

small drag bond dynamics are enslaved to the motion of the disk. In between, there is

a transient regime, where the bonds break as the disk moves.
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Drag has an even more profound impact when the disk is under ramped force. It was

shown that large values of drag allow the bonds to extend at a slower rate, hence to

survive for longer. At the same time, force has the time to build up, resulting in a very

abrupt terminal decay. We also simulated cluster statistics aimed at mimicking dy-

namic force spectroscopy experiments. Adding drag significantly changes the profile

of the rupture force distributions. If in the absence of drag the distributions were over-

lapping to an appreciable degree, adding drag induces an increasingly pronounced

separation. The behaviour of clusters is even more distinct, as the cluster dimension

increases and the bonds are gradually exposed to larger forces, until they eventually

break. The expected sudden cluster dissociation for large values of drag and loading

rate, is evident in Fig. 4.21.

A possible PDE formulation for the time-evolution of the probability density of the

stochastic process (N, H) was examined, following the work of [91]. A solution based

on the method of characteristics was developed, and compared against stochastic sim-

ulations, showing a good agreement for large values of drag, but a poor agreement

for the late phase of the cluster decay. We have identified two potential reasons for

this outcome. One is associated with the difficulty of solving the PDE system us-

ing a characteristic-based method. The complicated nature of the solution geometry

is largely generated by the characteristics converging curve. This generates solutions

resembling a Dirac distribution of decreasing magnitude, for certain values of the pa-

rameters. Moreover, the density pk represents a source term used to compute pk−1,

which significantly complicates the problem. However, we were able to obtain reli-

able numerical solutions in some parts of the parameter space. A different possibility

is that the problem may not even admit a PDE formulation, at all. This is suggested

by the complicated nature of the marginal probabilities Pk(t; 0, h0), solved explicitly

for the initial condition (4.3.4). As the solution was a multi-dimensional integral with

time-dependent limits, it is expected that the formula for the density pk(h, t) is even

more complicated. To address this issue, we have developed in §4.3.4 forward (4.3.14)

integro-differential formula, for the evolution of the probability densities correspond-

ing to the bivariate stochastic process (N, H).

In Chapter 5 we shall also address spatial effects induced by the differential stretching

of bonds located beneath a flexible membrane.
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4.A Exact analytical solutions for Pk(t; 0, h0)

In certain cases, analytical formulae for the probability functions characterizing the

cluster dynamics can be obtained. The theory of simple death processes with time-

dependent rates is used to obtain the probabilities Pk(t; 0, h0) (2.2.10) defined in §2.2.2.

The first rupture occurring in a cluster having k out of n closed bonds left is referred to

as “the rupture of the k-th bond”, for k = 1, . . . , n.

Consider that k = 1, . . . , n bonds are attached at time t, let u be the time of the last

rupture and hu ≡ H(u). The transition rate at this moment (from (2.1.12)) is denoted

by

λk(t; u, hu) = keβ(Hk(t;u,hu)−1), t ≥ u. (4.A.1)

Let Tk(u, hu) be the time when one of the k remaining closed bonds ruptures, provided

that last rupture occurred at time u and height hu.

Denote by P+
k (t; u, hu) = Pr{Tk ≥ t | H(u) = hu}, the probability that the rupture of

the k-th bond occurs after time t, when we start from the initial condition (u, hu).

The distribution of Tk(u, hu) is given by

P−
k (t; u, hu) = Pr{Tk < t | H(u) = hu} = 1 − P+

k (t; u, hu), (4.A.2)

while the density of Tk(u, hu) is given by the formula

fk(t; u, hu)∆t = Pr{t ≤ Tk < t + ∆t | H(u) = hu}, ∆t > 0, (4.A.3)

which as ∆t → 0 becomes

fk(t; u, hu) =
∂P−

k (t; u, hu)

∂t
= −∂P+

k (t; u, hu)

∂t
. (4.A.4)
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Solution for Pn

We first compute Pn(t; 0, h0). Since the probability to have n bonds at time t is the same

as the probability that the first rupture occurs after time t, we have

Pn(t; h0, 0) = P+
n (t; 0, h0) = Pr{Tn ≥ t | H(0) = h0}.

The transition rate from the state with n closed bonds and initial height h0 is λn(t; 0, h0) =

neβ(Hn(t;0,h0)−1). For a small ∆t > 0, the change in Pn in the time interval [t, t + ∆t) is

given by

Pn(t + ∆t; 0, h0) = Pn(t; 0, h0)(1 − λn(t; 0, h0))∆t,

so as ∆t → 0 we obtain

dPn(t; 0, h0)

dt
= −λn(t; 0, h0)Pn(t; 0, h0), (4.A.5)

with the initial condition Pn(0; 0, h0) = 1.

The solution of (4.A.5) is obtained by direct integration

Pn(t; 0, h0) = e−
∫ t

0 duλn(u;0,h0). (4.A.6)

From (4.A.2) we obtain P−
n (t; 0, h0) = 1 − e−

∫ t
0 duλn(u;0,h0), while (4.A.4) yields

fn(t; 0, h0) = λn(t; 0, h0)e−
∫ t

0 duλn(u;0,h0). (4.A.7)

Before proceeding with the other cases, we derive some useful relations. First, the

probability of having no rupture in the time interval [u, t) when the disk starts at time

u and height hu with k = 1, . . . , n bonds attached is computed as above

P+
k (t; u, hu) = e−

∫ t
u dsλk(s;u,hu), (4.A.8)

where λk is given by (4.A.1). The densities fk are obtained as

fk(t; u, hu) = λk(t; u, hu)e−
∫ t

u dsλk(s;u,hu). (4.A.9)

Solution for Pn−1

The next step is to find Pn−1(t; 0, h0). Since we only have (n − 1) closed bonds at time

t, we analyze all single trajectories in the (t, h)−space which could contribute to this

probability. A single path contributes Pn−1 at time t if the rupture of the n-th bond

takes place at a time u with 0 ≤ u ≤ t, and then nothing happens until t. This can be

expressed as

Pn−1(t; 0, h0) =
∫ t

0
du fn(u; 0, h0)P+

n−1

(
t; u, Hn(u; 0, h0)

)
, (4.A.10)
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and (4.A.10) becomes

Pn−1(t; 0, h0) =
∫ t

0
du fn(u; 0, h0)e−

∫ t
u dsλn−1(s;u,Hn(u;0,h0)). (4.A.11)

Replacing fn from (4.A.7) we obtain

Pn−1(t; 0, h0) =
∫ t

0
duλn(u; 0, h0)e−

∫ u
0 dsλn(s;0,h0)e−

∫ t
u dsλn−1(s;u,Hn(u;0,h0)). (4.A.12)

Solution for Pk, k = 0, . . . , n − 2

Obtaining explicit formulae for Pk, where k = 0, . . . , n − 2, needs the use of more ap-

propriate notation. Denote by uk the time when one of the remaining k closed bonds

ruptures where clearly 0 ≤ un ≤ un−1 ≤ · · · ≤ u1.

Define hn = Hn
(
un; 0, h0

)
to be the height of the disk at the moment of the first rupture.

For k = 1, . . . , n we obtain recursively

hk = Hk
(
uk; uk+1, hk+1

)
= Hk

(
uk; uk+1, Hk+1(uk+1; uk+2, hk+2)

)
= ...

Clearly, h1 is a function of u1, u2, . . . , un. When f is constant one obtains

hn−1 = Hn−1

(
un−1; un, hn

)
= Hn−1

(
un−1 − un; 0, hn

)
= Hn−1

(
un−1 − un; 0, Hn(un; 0, h0)

)
,

· · ·
h1 = H1

(
u1 − u2; 0, h2

)
= H1

(
u1 − u2; 0, H2(u2 − u3; 0, H3(. . . Hn(un; 0, h0) . . . ))

)
.

Analyzing all the paths which could contribute, the probability Pn−2 is obtained as

Pn−2

(
t; 0, h0

)
=
∫ t

0
dun fn (un; 0, h0)

∫ t

un

dun−1 fn−1 (un−1; un, hn) P+
n−2 (t; un−1, hn−1) .

(4.A.13)

This relation is easily generalized to

Pk
(
t; 0, h0

)
=
∫ t

0
dun fn (un; 0, h0)

∫ t

un

dun−1 fn−1 (un−1; un, hn) . . . (4.A.14)

∫ t

uk+2

duk+1 fk+1(uk+1; uk+2, hk+2)P+
k (t; uk+1, hk+1),

where P+
k and fk(uk; uk+1, hk+1) are given by (4.A.8) and (4.A.9) respectively.

To compute Pk(t; 0, h0) an n − k + 1 dimensional integral for uk+1, . . . , un and P+
k has to

be estimated, which is only practical for small clusters.

Probability density and cumulative distribution over h of having k bonds at time t

The next thing to do would be to obtain some analytical formulae for the distribution

of the probabilities Pk(t; 0, h0) defined in (2.2.10) over h, using the cumulative distribu-

tions and densities Fk(t, h; 0, h0) and pk(t, h; 0, h0), defined by (2.2.14) and (2.2.16).
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Probabilities for k = n

In this case the distribution of Pn(t; 0, h0) is easy to track in (t, h)-space, since the only

paths contributing to the probability Pn(t; 0, h0) (hence to Fn(t, h; 0, h0) and pn(t, h; 0, h0))

are the ones moving along Hn(s; 0, h0) for the time s ≥ t. We clearly obtain

Fn(t, h; 0, h0) =





0, h < Hn(t; 0, h0),

Pn(t; 0, h0), h ≥ Hn(t; 0, h0),
(4.A.15)

which means essentially that at time t we have a step function with the jump at height

Hn(t; 0, h0) and magnitude Pn(t; 0, h0).

The density pn(t, h; 0, h0) be expressed as follows

pn(t, h; 0, h0) =
∂Fn(t, h; 0, h0)

∂h
= Pn(t; 0, h0)δ

(
h − Hn(t; 0, h0)

)
, (4.A.16)

where δ(h − Hn(t; 0, h0)) stands for the Dirac δ function, and Pn is given by (4.A.6).

Probabilities for k = n − 1

The paths contributing to the probability Pn−1(t; 0, h0) have only a rupture in the time

interval [0, t], which determines H(t) uniquely in the interval [Hn(t; 0, h0), Hn−1(t; 0, h0)].

For a fixed value of t > 0 define the bijective function (only without rebinding) Ht :

[0, t] → [Hn(t; 0, h0), Hn−1(t; 0, h0)], given by the formula

Ht(u) = Hn−1(t; u, Hn(u; 0, h0)),

and by H−1
t : [Hn(t; 0, h0), Hn−1(t; 0, h0)] → [0, t] its inverse. For a fixed h consider

u = H−1
t (h). Since the segments starting at the same times and heights are steeper as

the number of closed bonds decreases, the paths satisfying H(t) ≤ h are exactly the

ones for which un ≥ u, so

Fn−1(t, h; 0, h0) =
∫ t

H−1
t (h)

dun fn(un; 0, h0)Pn−1(t; un, hn), (4.A.17)

where un, hn and fn are those defined as in the previous section. The densities are

obtained as follows

pn−1(t, h; 0, h0) =
∂Fn−1(t, h; 0, h0)

∂h
=− dH−1

t (h)

dh
fn(u; 0, h0)P+

n−1(t; u, Hn(u; 0, h0))

=− 1

dHt(u)
dt fn(u; 0, h0)P+

n−1(t; u, Hn(u; 0, h0)).

(4.A.18)

It is known from the literature [21, 83, 111] that in the presence of rebinding, or for

k ≤ n − 2, only numerical approximations are usually possible and the most common
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approach is to use Monte-Carlo simulations developed in Chapter 2. It can be easily

shown that in the zero-drag limit we obtain the formulas predicted in [31], for constant

force and vanishing rebinding.

In the general case, we can still say that due to geometrical constraints, the paths con-

tributing to Fk can not reach the region below Hn(t; 0, h0) or the region above Hk(t; 0, h0),

for k = 0, . . . , n so the distributions are locally constant outside the region between the

curves Hn(t; 0, h0) and Hk(t; 0, h0), that is

Fk(t, h; 0, h0) =





0, h < Hn(t; 0, h0),

Pk(t; 0, h0), h ≥ Hk(t; 0, h0).
(4.A.19)

4.B The differential Chapman-Kolmogorov Equation (dCKE)

In this appendix we discuss a PDE formulation suitable for the analysis of stochastic

processes with joint continuous and discrete state space, based on [91].

4.B.1 The dCKE for the disk-bonds model

Following the steps used by Lipniacki et al. in [91], we derive the dCKE corresponding

to a Markov process which consists of a piecewise deterministic motion described by

the continuous r. v. H(t), which is depends on the stochastic jumps of the discrete

r. v. N(t), which takes values {0, 1, . . . , n}. The boundary N(t) = 0 is assumed to

be absorbing (rebinding is no longer possible once complete dissociation is attained),

while the boundary N(t) = n is assumed to be reflecting (once we have n bonds, the

following event is a rupture). In the case when the Brownian fluctuations of the disk

are significant, we can use a global description of our problem, as a system of SDEs. For

the moment, since the motion of the disk is piecewise deterministic, we will describe

the evolution of the height in terms of single realizations of the r.v. N(t).

Derivation

For the moment assume that N = N(t) is a right-continuous function having the do-

main and codomain defined as

N : [0, ∞) → {0, 1, . . . , n}. (4.B.1)

The displacement can be represented by a family of autonomous ODEs of the form

dH
dt

(t; h0, 0) = v(H, N), t ≥ 0, (4.B.2)

H(0; h0, 0) = h0,
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where h0 ∈ R, and H = H(t; h0, 0), v are real valued functions.

The functions v are assumed to be continuous and bounded, having the domain and

codomain given by

v : D × {0, 1, . . . , n} → R. (4.B.3)

The domain D = [0, d] is considered to be invariant for the system i.e., for initial condi-

tions h0 ∈ D and any N(t), we have H(t) ∈ D. This is indeed the case for N = 1, . . . , n

for constant force f , while for N = 0 we could use a different equation for v(H, 0),

since the disk escapes from the region where the thin-film approximation applies (see

Chapter 3).

For a given N(t), the solution of the system (4.B.2) extended from value Hs at time s is

denoted by simply

H(t) = H(t; Hs, s), t ≥ s, (4.B.4)

and defines a mapping H∗(·; s, t) = H(t; ·, s) : R → R, which represents a translation

from s to t, along the solution of the ODE (4.B.2) (see [91]).

We can now go back to our problem, where the function N(t) is itself a continuous-

time finite Markov chain with finite state space. Provided that at time t ≥ 0 we have

N(t) = k ∈ 0, 1, . . . , n and a small ∆t > 0 is chosen, there is at most one event (rupture

or rebinding) which could happen in the time interval [t, t + ∆t]. In this case, at time

t + ∆t we could only have N(t + ∆t) ∈ {k − 1, k, k + 1}. In terms of probabilities this

writes as

Pr{N(t + ∆t) = k − 1 | N(t) = k} = λk, k−1 (H(t)) ∆t + o(∆t), (4.B.5)

Pr{N(t + ∆t) = k + 1 | N(t) = k} = λk, k+1 (H(t)) ∆t + o(∆t),

Pr{N(t + ∆t) = k | N(t) = k} =

[
1 − λk, k−1 (H(t)) − λk, k+1 (H(t))

]
∆t + o(∆t),

where λk, k−1(H) and λk, k+1(H) represent the rupture and rebinding rates defined by

(2.2.1a), in §2.2.1. Since number of closed bonds only varies in the range {0, 1, . . . , n},

we use the convention λ0,−1 = λn, n+1 = 0. Since the boundary N(t) = 0 is absorbing,

the transition rate λ0, 1 also vanishes. These rates are bounded and continuous on D.

As one could see, the transition intensities of the process N are coupled to the solution

of the ODE system (4.B.2).

We shall derive the evolution equation for the joint distributions of the random vari-

ables H(t) (continuous) and N(t) (discrete), at a given time t. Consider k ∈ 0, . . . , n,

h ∈ D and denote by pk(h, t) the joint function of probability density (in H(t)) and

probability (in N(t)). It is assumed that the initial condition pn(h, 0) is known for any
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value of h. We can define the probability function

P∗
k (h, ∆h, t) = Pr{H(t) ∈ (h, h + ∆h), N(t) = k} (4.B.6)

= pk(h, t)∆h + o(∆h). (4.B.7)

For t ≥ 0, we also define Pk(h, ∆h, t, ∆t) as

Pk(h, ∆h, t, ∆t) = Pr{Ht, H(t + ∆t; Ht , t) ∈ (h, h + ∆h), N(t + ∆t) = k}, (4.B.8)

representing the probability that Ht+∆t falls into the region (h, h + ∆h) containing so-

lutions of system (4.B.2), provided that at time t we also had Ht ∈ (h, h + ∆h) and the

number of bonds satisfies N(t + ∆t) = k.

The major difference between P∗
k and Pk is that the first one considers the situation

when N(t) = k, while the latter takes N(t + ∆t) = k. In the case when N(t) = k no

jump occurs in the time interval (t, t + ∆t], (so N(t + ∆t) = 0 as well), we have

Pk(h, ∆h, t, ∆t) = Pk(h, ∆h, t, 0) = P∗
k (h, ∆h, t). (4.B.9)

Assuming small ∆t and N(t + ∆t) = k, then at time t we could only have N(t) ∈
{k − 1, k, k + 1}.

Balancing the inputs and outputs in the time interval [t, t + ∆t], we find that Pk satisfies

Pk(h, ∆h, t, ∆t) = P∗
k (h, ∆h, t)

[
1 − ∑

l∈{k−1, k+1}
λk, l(H(t))∆t − o(∆t)

]
(4.B.10)

+ ∑
l∈{k−1, k+1}

P∗
l (h, ∆h, t)

[
λl, k(H(t))∆t − o(∆t)

]
.

Using the notation λkk = − (λk, k−1 + λk, k+1) and the relations (4.B.9) and (4.B.10), as

∆ → 0 we obtain

∂Pk(h, ∆h, t, ∆t)
∂∆t

∣∣∣∣
∆t=0

= lim
∆→0

Pk(h, ∆h, t, ∆t) − Pk(h, ∆h, t, 0)

∆t
(4.B.11)

= P∗
k (h, ∆h, t)λkk(H(t)) + P∗

k−1(h, ∆h, t)λk−1, k(H(t)) + P∗
k+1(h, ∆h, t)λk+1, k(H(t)),

As which is in fact the partial derivative at ∆t = 0.

An integral formula for Pk(h, ∆t, ∆t) is derived using Fig. 4.26. Note that the solutions

of (4.B.2) starting within the interval (h, h + ∆h), end in the range

H̃ = H∗
(

(h, h + ∆h); t, t + ∆t

)
.

Since we want to obtain all the paths having N(t + ∆t) = k, we obtain

Pk(h, ∆h, t, ∆t) =
∫

H̃
pk

(
ξ, t + ∆t

)
dξ, k = 0, . . . n. (4.B.12)
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Figure 4.26: Scheme used for the derivation of the probability function Pk(h, h + ∆h, t, t + ∆t).

Since H̃ is not easily representable, we use a change of variable ξ = H∗(u; t, t + ∆t) to

obtain

Pk(h, ∆h, t, ∆t) =
∫ h+∆h

h

∣∣∣∣
dH∗(u; t, t + ∆t)

du

∣∣∣∣pk

(
H∗(u; t, t + ∆t), t + ∆t

)
du, (4.B.13)

which holds for k = 0, . . . n.

We also have

Pk(h, ∆h, t, 0) = P∗
k (h, ∆h, t) =

∫ h+∆h

h
pk(u, t) du, k = 0, . . . n. (4.B.14)

Following the computations of Lipniacki [91] which involve the sensitivity matrix de-

fined in [124, Chapter 11], we find that

∣∣∣∣
dH∗(u; t, t)

du

∣∣∣∣ = 1, (4.B.15)

and

d

d∆t

{∣∣∣∣
dH∗(u; t, t + ∆t)

du

∣∣∣∣

}

∆t=0

=
∂v(u, N(t))

∂u
. (4.B.16)

Replacing (4.B.14) into (4.B.11), differentiating under the integral sign in (4.B.13) and

using (4.B.15), (4.B.16) , we finally obtain

∂Pk(h, ∆h, t, ∆t)
∂∆t

∣∣∣∣
∆t=0

=
∫ h+∆h

h

{
∂pk(u, t)

∂t
+

∂v(u, k)
∂u

pk(u, t) + v(u, k)
∂pk(u, t)

∂u

}
du.

(4.B.17)

Comparing (4.B.11), (4.B.17) and using (4.B.14), the evolution equation for pk is ob-
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tained as a system of first-order linear PDEs:

∂pk(h, t)
∂t

+
∂v(h, k)

∂h
pk(h, t) + v(h, k)

∂pk(h, t)
∂h

= (4.B.18)

pk(h, t)λkk(H(t)) + ∑
l∈{k−1, k+1}

pl(h, t)λl, k(H(t)), k = 0, 1, . . . , n.

In a compact form the above system can be written as

∂pk(h, t)
∂t

+
∂

∂h

[
v(h, k)pk(h, t)

]
= pk(h, t)λkk(H(t)) + ∑

l∈{k−1, k+1}
pl(h, t)λl, k(H(t)),

(4.B.19)

for k = 0, 1, . . . , n.

Preservation of probability property

It can be proven that at each time t the joint densities pk have the preservation of prob-

ability property. Adding equations (4.B.19) for k = 0, . . . , n one obtains

n

∑
k=0

∂pk(h, t)
∂t

+
∂

∂h

[
v(h, k)pk(h, t)

]
= 0, (4.B.20)

where we used the relation for the total leaving rate from state N(t) = k given by

λkk = − ∑
l∈{k−1, k+1}

λk, l.

Since we assumed the existence of the invariant domain D for system (4.B.2), for all k

and t we have supp pk(·, t) ⊆ D. We show that the integral of the marginal distribution

ρ(h, t) defined as

ρ(h, t) =
n

∑
k=0

pk(h, t), (4.B.21)

is preserved in time, using equation (4.B.20).

Let [a, b] be a real interval such that cl D ⊂ (a, b). For this interval we have the boundary

conditions

pk(a, t) = pk(b, t) = 0, k = 0, . . . , n. (4.B.22)

Applying the Newton-Leibnitz formula to the marginal distribution ρ and the values

of pk on the boundaries given by (4.B.22), we obtain

∂

∂t

∫ b

a
ρ(h, t) dh = −

n

∑
k=0

∫ b

a

∂

∂h

[
v(h, k)pk(h, t)

]
dh (4.B.23)

= −
n

∑
k=0

[
v(b, k)pk(b, t) − v(a, k)pk(a, t)

]
(4.B.24)

= 0.
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This proves that the marginal distribution is time invariant. The value of the marginal

distributions norming
∫ b

a ρ(h, t) dh is not determined by the system (4.B.19) itself, so

we can impose ∫ b

a
ρ(h, t) dh = 1.

This feature can be explained as follows. Since the system (4.B.2) describes the mo-

tion of a particle in the R × {0, 1, . . . , n} space, the conservation of marginal prob-

ability norming is a natural consequence of the fact that the particle remains in the

D × {0, 1, . . . , n} subdomain.

4.B.2 Initial conditions

Different assumptions about the experimental setup require the consideration of sev-

eral types of initial condition, generated by the position of the disk relative to an equi-

librium. In the ideal case when in all experiments the disk starts from the same height,

the initial height is sampled from a Dirac distribution centered about the equilibrium

position. Since all experiments are subject to error we could also assume that the initial

height is sampled from a normal distribution N(h0, σ2), where the standard deviation

σ > 0 is a parameter to be estimated from measurements.

In the one dimensional case, the forward equation describing the evolution of the clus-

ter in the velocity field v(h, k) is

∂pk(h, t)
∂t

+
∂

∂h

[
v(h, k)pk(h, t)

]
= (4.B.25)

= − [rk(H(t)) + gk(H(t))] pk(h, t) + gk−1(H(t))pk−1(h, t) + rk+1(H(t))pk+1(h, t),

where for a fixed k = 0, . . . , n, the displacement H satisfies dH(t)
dt = v(H(t), k). The

rupture and rebinding rates

rk(H) = λk, k−1(H) = keβ(H−1),

gk(H) = λk, k+1(H) = γ(n − k)e−α(H−1),

defined in §2.1.3 or §4.3.1.

Impulse initial condition.

Assuming the initial displacement of the disk h0 is constant over different experiments,

the initial condition for the system (4.B.25) is

pk(h, 0) =





δ(h − h0), if k = n;

0 if k ≤ n − 1,
(4.B.26)

where δ is the Dirac delta function. We shall call this the impulse initial condition.
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Initial height sampled from a normal distribution.

Repeating the experiment with the detachment of the disk several times it is unlikely

to start each time from the same initial position. It is then reasonable to assume that the

initial height is sampled from a normal distribution N(h0, σ2). This initial condition for

(4.B.25) writes as

pk(h, 0) =






1
σ
√

2π
e−

(h−h0)2

2σ2 , if k = n;

0 if k ≤ n − 1.
(4.B.27)

and will be called the normal initial condition.

4.B.3 Solution of the dCKE using the method of characteristics

The most effective and popular method for the numerical solution of hyperbolic equa-

tions is via the method of characteristics. If the initial data is smooth, this method is the

most reliable companion to the stochastic simulations.

The system of PDEs (4.B.25) is generally called a linear advection or transport equation,

describing the evolution of the probability density pk in a flow having the velocity field

v(h, k). Although possibly of the simplest PDE, this simplicity is deceptive in the sense

that it can be very difficult to integrate numerically since it propagates discontinuities,

a distinctive feature of first order hyperbolic PDEs [110]. The difficulty is enhanced by

the nonlinearity of the velocity field.

The idea of this method is to transform the system of PDEs into a system of ODEs which

can be solved along some curves called characteristics. Stepping in t is then replaced

with stepping along a characteristic line.

In the absence of rebinding, pk only depends on pk+1, . . . , pn for k = 0, . . . , n. The sys-

tem of PDE’s (4.B.25) to be solved recurrently becomes






dh
dt = −(1/c)

[
kh4 − (k + f ) h3

]
, h(0) = h0,

dpk
dt = −

[
keβ(h−1) + dv(h,k)

dh

]
pk(h, t) + (k + 1)eβ(h−1)pk+1(h, t),

(4.B.28)

where pn+1 ≡ 0, and the initial condition pk(h0, 0) satisfies (4.B.27).

Characteristic curves

The properties of the characteristic curves have a significant impact on the solution

of (4.B.28), since they determine the direction along which the initial configuration is
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Figure 4.27: Characteristic curves for c = 1. a) k = 5, f = 1; b) k = 0, f = 1; c) k = 5, f = 5t + 1;

d) k = 0, f = 5t + 1. The stencils suggest the scheme used in a FD difference algorithm. If the

disk moves upwards we use a downwind scheme, while in the other case an upwind scheme.

transported. In the general case of time-dependent force, the characteristic curve cor-

responding to k = 0, . . . , n closed bonds which starts from the initial height h0 satisfies

dh
dt

= v(h, k, t) = −(1/c)

[
kh4 − (k + f (t)) h3

]
, h(0) = h0. (4.B.29)

The solution of the non-linear equation (4.B.29) is denoted by h(t). Even for a constant

force f ( when v(h, k, t) = v(h, k)), the characteristic curve hk(t) can only be obtained as

a function of t in implicit form, as

1

α3
2

[

ln

(∣∣∣∣
hk − α2

hk

∣∣∣∣

)
+

α2

hk
+

1

2

(
α2

hk

)2
]

= α1t + C,

where we have denoted

C =
1

α3
2

[
ln

(∣∣∣∣
t − α2

t

∣∣∣∣

)
+

α2

t
+

1

2

(α2

t

)2
]

,

and α1 = −k/c, α2 = f /k + 1.

The characteristic curves for constant and linearly ramped forces are sketched in Fig. 4.27.

Note that for k = 1, . . . , n the characteristic curves approach the equilibrium curves

hk, eq(t) = f (t)
k + 1. For constant force these curves represent a constant height

lim
t→∞

hk(t) =
f
k

+ 1,
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Figure 4.28: Plot of −eβx + (1/c)(1 + x)3 for β = 1, and c=0.9, 1, 2, 3 a) All intersections with

the horizontal axis; b) caption with the region near the origin.

provided that hk(0) > 0.

For k = 0 the disk moves upwards with a high velocity

(
dh
dt = f

c h 3

)
. The latter situ-

ation has to be amended since the disk soon escapes from the thin-film approximation

region.

Since we don’t have the characteristic curves in explicit analytic form, finding closed

explicit formulas for the pk along these curves is very unlikely (as it was the case for

the analytical solution in the full (h, t) space ). The evolution of pk along these curves

is depicted in Fig. 4.22.

4.B.4 Qualitative behaviour of the dCKE solution: infinite-time limit

In this section the qualitative analysis of the dCKE solutions in the infinite-time limit

is done. The performance of the dCKE is assessed for various drag regimes, by com-

paring the solutions obtained from the method of characteristic curves with the ones

obtained from stochastic simulations.

The method of characteristics is particularly helpful in the analysis of the qualitative

behaviour of the probability densities. We prove that the profile of pk is driven in the

long term by the behaviour of pk along the characteristic curve h(t) = hk, eq, and by the

forcing regimes.

In the low force regime, pk approaches a spike centered at h = hk, eq, whose integral

along the height coordinate vanishes for k = 1, . . . , n, while for large force the pk only

exhibits a decay of the initial probability in the long run.
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Figure 4.29: Plot of −eβx + (1/c)(1 + x)3 for c = β = 1.

Evolution of pn along the equilibrium characteristic curve

As shown in Chapter 3, the characteristic curves describing the motion of the disk with

n bonds attached in the absence of a rupture event, approach the equilibrium height

heq, n = 1 + f /n. Along the constant height characteristic curve h(t) = 1 + f /n, pn

satisfies

dpn

dt

(
1 + f /n, t

)
= n

[
−eβ( f /n) +

1

c
(1 + f /n)3

]
pn(1 + f /n, t). (4.B.30)

For a fixed value of β, define the function R : [0, ∞) → R

R(x) = −eβx +
1

c
(1 + x)3, (4.B.31)

representing the coefficient of pn in (4.B.30), as a function of x, and also define the

function R∗ : [0, ∞) → R

R∗(x) = (1 + x)3e−βx.

The maximum of R∗ is R∗(x0) =

(
3/β

)3

exp(β − 3), attained for x0 = 3/β − 1. Since

β ≃ 1, we only focus on the case β = 1, for which maximal value is 27/e2. The profiles

of R(x) for different values of c are sketched in Fig. 4.28.

It is shown that the profile of the p′ks is determined by their position relative to the

solutions of R(x) = 0. Depending on the drag coefficient c, the equation R(x) = 0, has

1. No solution for c > 27/e2 ≈ 3.6541.

2. Two (distinct) positive solutions for 1 < c < 3.6541.

3. One negative and one positive solution for 0 < c < 1.
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Figure 4.30: Force driven patterns for pn, realized for n = 10, c = 1 and β = 1. a) Infinite spike

f /n = 0.1 < x∗ for f = 1; b) Damped spike f /n = 6 > x∗, for f = 60.

The special cases are

4. A single positive solution (superposed solutions) for c = 3.6541.

5. Two distinct solutions: x∗ = 0 and x∗ = 5.7114 for c = 1.

Equation (4.B.30) is solved by

pn(1 + f /n, t) = pn(1 + f /n, 0)enR( f /n)t, pn(1 + f /n, 0) ≥ 0, (4.B.32)

If pn(1 + f /n, 0) = 0, the trivial solution pn(1 + f /n, t) = 0, t > 0 is obtained.

For pn(1 + f /n, 0) > 0, the solution pn(1 + f /n, t) is a decreasing (to 0 if R( f /n) < 0)

or increasing (to ∞ if R( f /n) > 0) exponential.

In the particular case c = 1, the different profile of pn can be examined using Fig. 4.29.

The solution x∗ of R(x) = 0 divides the force space into three regions. For a force

verifying f /n < x∗ (small force), one has R( f /n) > 0, so pn(1 + f /n, t) increases to ∞.

However, pn shrinks with time as sketched in Fig. 4.30 (a), so the marginal distribution

Pn(t) =
∫ ∞

0
pn(h, t)dh,

is expected to decrease to 0 as t → ∞.

For a force verifying f /n > x∗ (large force), one has R( f /n) < 0 and pn(1 + f /n, t)

decays to 0 as in Fig. 4.30 (b).

For f /n = x∗, the solution is a constant function, pn(1 + f /n, t) = pn(1 + f /n, 0).
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Figure 4.31: Coefficients Ck(h), k = 0, . . . , n obtained for n = 10, c = 1, and β = 1, in three

distinct force regimes (a) small force f /n < f = 1 < x∗ = 5.7; (b) medium force f /n < x∗ <

f = 10; (c) large force x∗ < f /n < f = 100.

Evolution of pn along a general characteristic curve

The evolution of pn along a characteristic curve starting at the initial height h0 6=
1 + f /n, follows in the same manner. Initially pn evolves according with the sign of

R(h0), while after the characteristic curve approaches the equilibrium, the profile is

dominated by the sign of R( f /n), and can be examined in Fig. 4.31.

Profile of pk for k = n − 1, . . . , 0

A similar approach can be considered for the other cases, using the evolution of p′ks

along the corresponding characteristic curves. The system (4.B.28) can be written as






dh
dt = −(1/c)

[
kh4 − (k + f ) h3

]
, h(0) = h0,

dpk
dt = Ck(h)pk(h, t) + Sk(h, t),

(4.B.33)

where the initial condition pk(h0, 0) satisfies (4.B.27), while

Ck(h) = −
[

keβ(h−1) +
dv(h, k)

dt

]
, (4.B.34)

Sk(h, t) = (k + 1)eβ(h−1)pk+1(h, t). (4.B.35)

Consider a characteristic curve hn−1(t) along which examine the behaviour of pn−1.

Since hn−1 collapses onto the equilibrium hn−1, eq = 1 + f /(n − 1), the long run be-

haviour of pn−1(hn−1(t), t) is dictated by the coefficients Cn−1 and Sn−1 at h = hn−1, eq

and t > 0.
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Since in the long run pn is significantly positive along near the characteristic curve

h(t) = 1 + f /n, one has limt→0 Sn−1(1 + f /(n − 1), t) = 0, so Sn−1 vanishes along

this curve. The conclusion is that the coefficient Ck(1 + f /(n − 1)) alone dictates the

behaviour of pn−1.

For any k = 1, . . . , n − 1, the characteristic curves hk collapse in finite time onto the

equilibrium hk, eq. Since the source terms decay rapidly for large times away from the

curve h(t) = 1 + f /k, it can be assumed that pk after some time t0, satisfies approxi-

mately the equation

dpk

dt

(
1 + f /k, t

)
≃ k

[
−eβ( f /k) +

1

c
(1 + f /k)3

]
pk(1 + f /k, t), (4.B.36)

with the approximate solution

pk(1 + f /k, t) ≃ pk(1 + f /k, t0)ekR( f /k)t,

where the function R(x) depicted in Fig. 4.29 was defined in (4.B.31) and the initial

condition at t = t0 verifies pk(1 + f /k, t0) ≥ 0.

4.B.5 Force and drag regimes

The different profiles of the p′ks can be used to identify various regions in the force and

drag parameter space.

General force regimes

As established earlier, the profiles of the densities pk depend on the position of f /k,

k = 1, . . . , n relative to the solutions of the equation R(x) = 0, where R is given by

(4.B.31).

Case 1. Large drag: c > 27/e2. Equation R(x) = 0 has no real solution.

In this case irrespective of force, all the densities pk vanish in the infinite time limit.

Case 2. Medium drag : 1 < c ≤ 27/e2. Equation R(x) = 0 has two positive solutions,

0 < x1 < x2.

For various values the force f , the behaviour of the densities pk can be very different.

To summarize, pk is an infinite width-infinite tall spike for each value of f and k for

which we have x1 ≤ f /k ≤ x2.

There are several types of behaviour:

1. Very small force: f /n < · · · < f < x1.

2. Very large force: f /n > x2.
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3. Intermediate force: f /n < x1 < f /k < x2 < f , f /n < · · · < f /k < x1 < f /k − 1 <

· · · < f < x2, and x1 < f /n < · · · < f /k < x2 < f /k − 1 < · · · < f .

If c = 27/e2, the solution of the equation R(x) = 0 is x = 2 and we can even have only

a single infinitely-tall spike, if f /k = 2 for some values of f and k.

Case 3. Small drag : 0 < c ≤ 1. Equation R(x) = 0 has one positive and one negative

root x1 < 0 < x2.

The discussion for this case is similar to the one already done for c = 1, with the only

difference that x∗ = x2.

Force regimes for c = 1

For c = 1, the analysis of Fig. 4.29 highlights the existence of three forcing regimes.

• Small force: f < x∗. In this case, the profile of pk in the large time limit for k =

1, . . . , n is a spike which gets narrower and higher as the time goes.

• Intermediate force: There exists k∗ ∈ 2, . . . , n such that

f
k∗

< x∗ <
f

k∗ − 1
.

In this case the densities pk exhibit a spike behaviour for k = k∗, k∗ + 1, . . . , n, and

they are damped to 0 if k = 1, . . . , k∗ − 1.

• Large force: f /n > x∗. In this case all p′ks are damped to 0.

147



CHAPTER 5

Adhesive molecular bond clusters

between a membrane and a surface

IN THIS CHAPTER we extend the results obtained for the vertical motion of a disk

with bonds attached underneath, to the vertical motion of a thin, flexible membrane

connected to a flat planar surface via adhesion clusters, in the presence of hydrody-

namic effects and vertical forces acting at the membrane boundaries.

The variable gap between the two surfaces differentially stretches the bonds, assumed

to behave as elastic springs under force. The bonds are allowed to form and break at

discrete binding sites spread over the membrane, as in the adhesive dynamics models

extensively analyzed by Hammer [61, 66], or by Ward et al. [141], for rigid cells. The dy-

namics of the membrane-clusters system are addressed in the framework of piecewise

deterministic Markov processes, and an exact stochastic algorithm is developed for the

simulation of individual trajectories. As an approximation for the coupled evolution

of adhesion clusters and the membrane’s displacement, we also formulate a differen-

tial equation whose solution is compared against results obtained from averages of the

stochastic simulations.

This Chapter is laid out as follows. In §5.1 we develop a model for the binding ki-

netics of clusters attached to a moving membrane, in the limit of negligible sliding

and small membrane slope. In §5.2 we introduce a stochastic simulation algorithm, a

deterministic limit and present the wavelet-based semblance method. Numerical and

deterministic results are given in §5.3 for the problem of liquid spreading beneath the

membrane, and in §5.4 for the problem of fluid spreading in the presence of upwards

and downwards forcing at the membrane’s left-end. In §5.5 the individual simula-

tions are analyzed by comparing several statistics using the wavelet-based semblance

method, and the comparison against the deterministic limit. Also in this section, we
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discuss some measures for the stochastic peeling of discrete adhesion clusters. In §5.6

the results are summarized, and suggestions for further study are outlined.

5.1 A stochastic model for clusters between a surface and a membrane

In this section we present a detailed statement of the physical model. The balance of

forces in the system is used to derive the equations characterizing the motion of the

membrane with bonds attached to it. The dimensionless problem is then formulated,

followed by an analysis of relevant initial and boundary conditions.

5.1.1 The dimensional model

The membrane model consists of a thin, long and wide rectangular surface, attached

to a rigid planar substrate through clusters of biological bonds. We use the notation

x∗, y∗ for horizontal coordinates, t∗ for time, h∗(x∗, y∗, t∗) for membrane displacement

and X∗, Y∗ for the horizontal lengthscales. Between the two surfaces there is a narrow

gap filled with a liquid of viscosity µ∗, which exerts a pressure p∗ on the membrane’s

surface. In each section perpendicular to the axis 0y∗, the membrane is subject to a

tension T∗. The membrane’s shape and behaviour are assumed uniform along the 0y∗

axis, so the system may be reduced to a 2D problem in the coordinates (x∗, h∗(x∗, t∗))

(as h∗(x∗, y∗, t∗) = h∗(x∗, t∗)). The lengthscales involved in our model satisfy the thin-

film conditions

X∗, Y∗ ≫ h∗(x∗, y∗, t∗), (5.1.1)

so the vertical motion of the membrane is subject to significant viscous forces and is

derived using lubrication theory [1].

It is assumed that the bonds are identical, parallel to the vertical axis, differentially

share the load when connected (depending on their extension), and behave as elas-

tic springs of rest length L∗ and elastic modulus κ∗. The formation and termination of

bonds is naturally caused by thermal fluctuations, while the rupture of bonds increases

exponentially with the mechanical loading, as suggested by Bell [10]. Adapted to our

problem, it is natural to assume that the association and dissociation rates depend ex-

ponentially on the membrane’s displacement, as discussed in Chapter 2.

The receptor-ligand bonds sharing the same coordinate x∗ are grouped in a cluster and

are located at the fixed coordinates X∗
1 , . . . , X∗

M along the 0x∗ axis. The clusters have

N1(t∗), . . . , NM(t∗) ≥ 0 bonds and extension H∗
1 (t∗), . . . , H∗

M(t∗) at time t∗. It is also

realistic to assume that the binding sites support a finite number of bonds n1, . . . , nM.
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As individual bonds are allowed to break and rebind, the variables N1(t∗), . . . , NM(t∗)

are discrete, and H∗
1 (t∗), . . . , H∗

M(t∗) are continuous random variables, respectively.

To investigate the dynamics of the membrane/bond system, we consider a model prob-

lem in which initially, a liquid drop of considerable height (∼ 3 − 10L∗) is squeezed

under the membrane’s left-end, while the connected bonds are in equilibrium, and

located near the right end of the membrane. Assuming the liquid’s total mass is con-

served in the contact region, the release of the membrane allows the blob to spread to

the right, widening the vertical gap between the surfaces, and stretching the bonds in

the process.

Between the stochastic jumps in the number of bonds, the membrane moves deter-

ministically, so the model is a piecewise deterministic Markov process. The individual

trajectories of the system can be simulated using an adapted version of the algorithm

presented in §2.2.1, which consists of several steps. First, one has to solve the deter-

ministic motion of the membrane for a fixed configuration of bonds K1, . . . , KM. The

following step is simulating the time of the next event. This is followed by finding the

location (index i = 1, . . . , M of the cluster involved), and finally the nature of the event

(rupture or rebinding).

In a tight adhesion scenario, sliding of bonds is expected to have a negligible impact

on the cell-substrate interaction, so for the moment the lateral motion of the membrane

is assumed negligible (nonetheless, a model accounting for the membrane’s lateral dis-

placement is formulated in Appendix 5.B).

Discrete membrane notations

The membrane is assumed to be composed of flat connected plates, having the hori-

zontal coordinates of their edges given by the partition

x∗1 = 0, x∗2 = ∆∗, . . . , x∗m = (m − 1)∆∗ = LX∗, m ∈ N, m ≥ 2, (5.1.2)

where L is a non-dimensional scaling for the domain length, the deterministic motion

of the membrane for a given configuration of clusters located at X∗
1 , . . . , X∗

M can ob-

tained in the ∆∗ → 0 limit.

Assuming the partition is fine enough to include the clusters’ horizontal coordinates

{X∗
1 , . . . , X∗

M} ⊆ {x∗1 , . . . , x∗m}, (5.1.3)

we denote by k1, . . . , km the number of closed bonds at coordinates x∗1 , . . . , x∗m. This is

defined by ki = Nj for any pair (i, j) ∈ {1, . . . , m} × {1, . . . , M} satisfying x∗i = X∗
j , and

zero otherwise.
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Figure 5.1: Force balance on the membrane region near the i-th node.

A diagram of the forces present in our model is sketched in Fig. 5.1. The coordinates of

the i-th node along the membrane are x∗i and h∗i (t∗) = h∗(x∗i , t∗), while the two plates

it connects are called the i-th (to the left, having vertices (x∗i−1, 0, h∗i−1), (x∗i−1, Y∗, h∗i−1),

(x∗i , 0, h∗i ) and (x∗i , Y∗, h∗i )) and (i + 1)-th (to the right).

The angles made by the two plates with the 0x∗ axis are θi and θi+1, so the tangent and

normal directions of the i-th plate are

t i = (cos θi, sin θi) ≈ (1, θi) , θi ≪ 1, (5.1.4a)

n i = (− sin θi, cos θi) ≈ (−θi, 1) , θi ≪ 1. (5.1.4b)

Beneath each of the plates i and (i + 1), the constant pressures denoted by p∗i−1/2 and

p∗i+1/2 exert force in the directions of the normals n i and n i+1, as sketched in Fig. 5.1.

In each section parallel to x∗0z∗, the membrane’s tension which acts in the directions of

the plates i and (i + 1), pointing outwards from the edge (x∗i , y∗, h∗i ), is denoted by T∗
i

and T∗
i+1.

Finally, the ki bonds located along the coordinates (x∗i , y∗) generate a vertical elastic

force at the i-th membrane node, having magnitude

F∗
i = kiκ

∗(h∗i − L∗). (5.1.5)
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Force balance and deterministic membrane motion

In the absence of horizontal displacement, the overall motion of the membrane is given

by the evolution of the nodes h∗1(t∗), . . . , h∗m(t∗). The motion of the i-th node of the

membrane can be derived from the force balance on the region situated below the dot-

ted domain depicted in Fig. 5.1.

Summing up the forces generated by the membrane tension, pressures and bonds’ stiff-

ness described earlier, we have

[
T∗

i+1t i+1 − T∗
i t i

]
Y∗ + kiκ

∗(h∗i − L∗)(−ẑ) +
[
p∗i−1/2n i + p∗i+1/2n i+1

]
Y∗ ∆∗

2
= 0. (5.1.6)

Defining the average of the pressures below the dotted domain by

p∗i =
p∗i−1/2 + p∗i+1/2

2
, (5.1.7)

and assuming uniform tensions in the membrane, as well as small angles θi, θi+1 ≪ 1,

we use (5.1.4) to write the vertical component of (5.1.6) as

T∗ (θi+1 − θi) Y∗ − kiκ
∗(h∗i − L∗) + p∗i ∆∗Y∗ = 0, (5.1.8)

which by using θi =
(
h∗i − h∗i−1

)
/∆∗, becomes

T∗

∆∗
(
h∗i+1 − 2h∗i + h∗i−1

)
Y∗ − kiκ

∗(h∗i − L∗) + p∗i ∆∗Y∗ = 0. (5.1.9)

Dividing (5.1.9) by ∆∗Y∗ we obtain

p∗i = − T∗

(∆∗)2

(
h∗i+1 − 2h∗i + h∗i−1

)
+ (F ∗

i /Y∗)/∆∗, (5.1.10)

where

F ∗
i /Y∗ = ki/Y∗κ∗(h∗i − L∗) (5.1.11)

represents the elastic force density at node i (ki/Y∗ is the linear density of bonds in

the transverse direction). The units of the quantities in (5.1.10) are [p∗i ] = N/m2 (pres-

sure), [T∗] = N/m (membrane tension). The components of the elasticity coefficient

κ∗(ki/Y∗) have the units [ki/Y∗] bonds/m (linear density of bonds) and [κ∗]=N/m

(stiffness of an individual bond), showing that (5.1.10) is dimensionally consistent.

The meaning of (5.1.10) is that for a given partition x∗1 , . . . , x∗m, the force F ∗
i /Y∗ is dis-

tributed over an interval of length ∆∗, which as ∆∗ → 0 acts as a Dirac mass function

of magnitude F ∗
i /Y∗, localized at x∗ = x∗i . Counting all the clusters situated at the co-

ordinates X∗
1 , . . . , X∗

M, the downwards force acting at x∗ in the section perpendicular to

0y∗ is given by

F∗(x∗, t∗) =
M

∑
i=1

Ni(t∗)/Y∗κ∗ [h∗(x∗, t∗) − L∗] δ(x∗ − X∗
i ). (5.1.12)
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Finally, in the ∆∗ → 0 limit, the pressure and the smooth function h∗ that interpolates

coordinates (x∗i , h∗i ) satisfy

p∗ = −T∗h∗x∗x∗ + F∗. (5.1.13)

The vertical motion of the membrane under tension T∗ and force F∗ can be obtained by

introducing the pressure term from (5.1.13) in the mass and flux conservation equations

h∗t∗ + q∗x∗ = 0, (5.1.14a)

q∗ = − 1

12µ∗ (h∗)3 p∗x∗ , (5.1.14b)

derived using lubrication theory [1] (see also Appendix 2.A), to obtain

h∗t∗ =
1

12µ∗

[
(h∗)3p∗x∗

]

x∗
=

1

12µ∗

[
(h∗)3

(
− T∗h∗x∗x∗ + F∗

)

x∗

]

x∗
. (5.1.15)

Association and dissociation of bonds

The deterministic motion of the membrane is perturbed by the stochastic formation

and breakage of bonds. The rates for the rupture and rebinding of individual bonds

are the same as given in §2.1.2, while the transition rates for clusters are discussed in

the section dedicated to the dimensionless model.

5.1.2 Dimensionless model

Relation (5.1.10) can be explicitly written as

p∗i = − T∗

(∆∗)2

(
h∗i+1 − 2h∗i + h∗i−1

)
+ ki

κ∗L∗

Y∗∆∗

(
h∗i
L∗ − 1

)
, (5.1.16)

which suggests defining the non-dimensional variables

t = k∗0t∗, (5.1.17a)

h = (L∗)−1h∗, hi = (L∗)−1h∗i , Hi = (L∗)−1H∗
i , (5.1.17b)

x = (X∗)−1x∗, xi = (X∗)−1x∗i , Xi = (X∗)−1X∗
i , (5.1.17c)

∆ = ∆∗/X∗, (5.1.17d)

p = p∗
X∗Y∗

κ∗L∗ , (5.1.17e)

T = T∗ Y∗

X∗κ∗
, (5.1.17f)
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where k∗0 is the individual unstretched bond off-rate, introduced in §2.1.2. In the new

notations, (5.1.16) can be written in dimensionless form as

pi = − T
∆2

(hi+1 − 2hi + hi−1) +
fi

∆
, (5.1.18)

where fi = ki(hi − 1). Using the same argument as for the dimensional problem, the

general equation of the pressure as ∆ → 0 is shown to be

p = −Thxx + f , (5.1.19)

where the force f pointing downwards is given by the function

f (x, t) =
M

∑
i=1

Ni(t) [h(x, t) − 1] δ(x − Xi). (5.1.20)

In the new variables, (5.1.15) becomes

ht =
1

c

[
h3

(
− Thxx + f

)

x

]

x

, (5.1.21)

where the dimensionless parameter c, defined by

c =
12µ∗k∗0(X∗)3Y∗

κ∗(L∗)3
, (5.1.22)

has a similar role to the drag coefficient (2.1.10) introduced in §2.2.1 for the plate model.

As specified in Table 2.1, the dimensional variables are in the ranges κ∗ ≃ 0.01 − 5

dyn/cm = 10−5 − 5 · 10−3 N/m, µ∗ ∼ 10−3 Pa ·s = 10−3 N/m2, L∗ ∼ 10 − 100 nm and

k∗0 ∼ 2.8 s−1. For a membrane patch of dimensions X∗ ∼ Y∗ ∼ 1 µm [141], and a typical

bond elastic force range κ∗L∗ ∼ 1 − 50 (2.1.7), we obtain c ∈ [10−3, 102].

Defining the dimensionless flux

q = q∗
1

k∗0 L∗X∗ , (5.1.23)

the lubrication equations (5.1.14) can be written in dimensionless form as

ht + qx = 0, (5.1.24a)

q = −1

c
h3 px. (5.1.24b)

Remark. The force f (x, t) defined in (5.1.20) only accounts at present for the vertical

force in the elastic bonds. The formulation of the model allows considering much more

complex forcing regimes (x− and t− dependent). In this thesis we shall only consider

vertical forces acting at the membrane boundaries, starting from §5.1.3.
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Boundary conditions

As the evolution of h depends on hxxxx, a double boundary condition is imposed at

each end of the membrane. Considering solutions which are symmetric near x = 0

and x = L, and the conservation of fluid below the membrane, a set of convenient

boundary conditions for this problem is

hx(0, t) = hx(L, t) = 0, hxxx(0, t) = hxxx(L, t) = 0. (5.1.25)

As long as no rupture or rebinding happens, the membrane relaxes towards an equilib-

rium position, which the absence of bonds is a line parallel to the horizontal axis 0x∗,

whose height depends on the amount of liquid below the membrane.

Initial condition

As we want to examine the motion of the liquid drop under the left part of the mem-

brane depicted in Figs. 5.1 or 5.2, we would ideally like the support (the set of points

where the function is not zero) of the membrane’s initial position to include this drop.

Denoting the density of the normal distribution of mean µ and standard deviation σ by

Nµ,σ(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ [0, L], (5.1.26)

and its scaled version by Nµ,σ(x) = N0,σ(x)/
∫ L

0
N0,σ(x)dx, x ∈ [0, L], we obtain the

initial condition

h(x, 0) = 1 + ΛN0,σ(x), (5.1.27)

where Λ > 0 is a scaling factor and the bonds are assumed to be initially at equilibrium

Hi(0) = 1. This function clearly satisfies the boundary condition at x = 0, and also

the boundary condition at x = L (with an exponentially small error), for small enough

values of σ, for example σ ≤ L/6.

A more rigorous approach is to consider the family of smooth functions

fa,b(x) =






exp

(
− b

(1−x2)a

)
, |x| < 1

0, |x| ≥ 1,

(5.1.28)

often called mollifiers [123], having the support included in the compact interval [−1, 1].

As seen in Fig. 5.2 (a), varying the parameters a and b, a wide variety of profiles can be

obtained. These functions can be modified to have unit integral over the interval [0, ∞]

and their support included in any interval [−e, e], e > 0, by the transformation

fa,b,e(x) =
1

e
fa,b

(
x
e

)
1∫ ∞

x=0
fa,b(x)dx

. (5.1.29)
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Figure 5.2: Positive part of the mollifiers obtained from (5.1.29) for (a, b) =

(0.5, 0.5), (1, 1), (2, 2) and L = 1, compared against N0,σ defined in (??) for (a) e = 1, σ = L/3;

(a) e = 0.5, σ = L/6.

This is particularly useful for our problem, when we want the liquid drop to be con-

fined in a subinterval [0, e] of [0, L]. A couple of candidates for the shape of the mem-

brane’s initial position are depicted in Fig. 5.2 (b), suggesting a large variety of profiles.

The initial membrane position could be

h(x, 0) = 1 + Λ fa,b,e(x), (5.1.30)

where Λ > 0 is a scaling factor, and 0 < e ≤ L.

Conservation of fluid volume

Denoting by V the fluid volume below the membrane, the mass conservation is

∫ L

0
h(x, t)dx = L + Λ = V,

valid for all the initial conditions generated by (5.1.27) and (5.1.30).

Dissociation and association rates

Using the same argument as in Chapter 2, if at time t the state of the system is H(t) =

(H1(t), . . . , HM(t)) and N(t) = (K1, . . . , KM) , with Ki ∈ {0, . . . , ni}, i = 1, . . . , M, the

rupture and rebinding rates corresponding to the local transitions to Ki − 1 and Ki + 1

bonds in cluster i, are:

ri,Ki
(Hi(t)) = Ki exp (β(Hi(t) − 1)) , (5.1.31a)

gi,Ki (Hi(t)) = γ(ni − Ki) exp (−α(Hi(t) − 1)) , (5.1.31b)

where α, β and γ have the same meaning as established in §2.1.3.
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5.1.3 Membrane motion under vertical force at boundaries

The spreading membrane model can be adapted for the study of adhesive peeling and

rolling of cells, when the membrane’s boundaries are subject to the vertical forces fL

(left) and fR (right). The new overall profile of the downwards force will then be

f (x, t) = − fLδ(x)− fRδ(x − L) +
M

∑
i=1

Ni(t) [h(x, t) − 1] δ(x − Xi). (5.1.32)

Due to these point forces, the boundary conditions also change.

Boundary conditions

As discussed for the membrane spreading, a double boundary condition is imposed

at each end of the membrane. Considering solutions symmetric near the ends, the

boundary conditions are shown (see Appendix 5.A.2) to be

h+
x (0, t) = − fL

2T
, h−x (L, t) =

fR

2T
, h+

xxx(0, t) = h−xxx(L, t) = 0. (5.1.33)

5.2 Solution of the model

The dynamics of the membrane-clusters system are addressed in the framework of

piecewise deterministic Markov processes, and an exact stochastic algorithm is de-

veloped for the simulation of individual trajectories. The deterministic motion of the

membrane is solved using a finite difference approach, while the stochastic jumps are

simulated using an adapted version of the algorithm developed in §2.2.1. As an ap-

proximate treatment for the coupled evolution of the adhesion clusters and the mem-

brane’s displacement, we also formulate a differential equation, whose solution is com-

pared against averages of stochastic simulations. In the end we present a wavelet-based

semblance analysis approach, based on the work of Cooper & Cowan [23], which is

later used for the comparison of simulated time series.

5.2.1 Numerical scheme for the deterministic motion of the membrane

The differential equation (5.1.21) characterizing the vertical motion of the membrane

with bonds attached, can be transformed into a system of m coupled ODEs, corre-

sponding to each node of the partition x1 = 0, x2 = ∆, . . . , xm = (m − 1)∆ = L using

a finite difference method [99]. From (5.1.24), the mass conservation at node i can be

written as

dhi

dt
+

(qi+1/2 − qi−1/2)

∆
= 0, (ht + qx = 0), (5.2.1)
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while the pressure gradient beneath plate i is (pi − pi−1) /∆, so the mean flux can be

approximated by

qi−1/2 =
1

c
(hi−1/2)

3 (pi − pi−1)

∆
, (q = −1

c
h3 px), (5.2.2)

where hi−1/2 = (hi + hi−1) /2. Finally, the average pressure pi can be obtained from

(5.1.18) as

pi = −T
(hi+1 − 2hi + hi−1)

∆2
+

fi

∆
, fi = fi(hi, Ni), (p = −Thxx + f ). (5.2.3)

As seen in (5.1.21), ht is a function of hxxxx, so the time evolution of hi is expected to

depend on at least four neighbours.

Combining (5.2.1), (5.2.2) and (5.2.3), we obtain

dhi

dt
= − 1

∆
(qi+1/2 − qi−1/2) ,

= − 1

∆

(
− 1

c
(hi+1/2)

3 (pi+1 − pi) /∆ +
1

c
(hi−1/2)

3 (pi − pi−1) /∆

)
,

=
1

c∆2

(
(hi+1 + hi)

3

8

[
− T

∆2

(
(hi+2 − 2hi+1 + hi) − (hi+1 − 2hi + hi−1)

)
+

fi+1 − fi

∆

]

− (hi + hi−1)
3

8

[
− T

∆2

(
(hi+1 − 2hi + hi−1)− (hi − 2hi−1 + hi−2)

)
+

fi − fi−1

∆

])

=
1

8c∆4

(
(hi+1 + hi)

3

[
− T (hi+2 − 3hi+1 + 3hi − hi−1) + ∆ ( fi+1 − fi)

]

− (hi + hi−1)
3
[
− T (hi+1 − 3hi + 3hi−1 − hi−2) + ∆ ( fi − fi−1)

])
, (5.2.4)

where fi = ki (hi(t) − 1) , valid for i = 3, . . . , m − 2.

For symmetrical solutions near the boundaries x = 0 and x = L, (5.2.4) can still be

used for i = 1, 2 and i = m − 1, m if we define h0 = h2, h−1 = h3 and hm+1 = hm−1,

hm+2 = hm−2.

When vertical forces fL and fR are applied at x = 0 and x = L, the equations (5.2.4) are

still valid, if we define f1 = − fL + k1[h1 − 1] and fm = − fR + km[hm − 1].

5.2.2 Exact stochastic simulation of the next rupture or rebinding

As the membrane moves deterministically for a fixed cluster configuration, the indi-

vidual trajectories of the membrane-clusters system are uniquely defined by the time,

location and nature of the stochastic jumps (also called “events”) in the number of

bonds corresponding to each cluster. An adapted version of the algorithm detailed in

§2.2.1, which allows the simulation of all the three steps is presented below.

158



CHAPTER 5: ADHESIVE CLUSTERS BETWEEN A FLEXIBLE MEMBRANE AND A SURFACE

Step 1: Next event time

The total transition rates at node i and at state (H(t), N(t)) respectively, are

λi,Ki
= ri,Ki

(Hi(t)) + gi,Ki
(Hi(t)), (5.2.5a)

λK(t) =
M

∑
i=1

λi,Ki
(t). (5.2.5b)

As seen in §2.2.1, the time until the next event S is simulated from the formula

− log(ξ1) =
∫ S

0
λK(u)du, (5.2.6)

where ξ1 ∼ U(0, 1), so the next event happens at time Tev = t + S.

Step 2: Next event location

Once we know the time of the next event Tev, the cluster involved in the event can be

identified by partitioning the interval [0, 1] in M time-intervals proportional to the rates

λi,Ki
(Tev), as

[
0,

λ1,K1
(Tev)

λK(Tev)
,

∑
2
j=1 λj,Kj

(Tev)

λK(Tev)
, . . . ,

∑
M−1
j=1 λj,Kj

(Tev)

λK(Tev)
,

∑
M
j=1 λj,Kj

(Tev)

λK(Tev)
= 1

]
. (5.2.7)

For a given ξ2 ∼ U(0, 1), the event is located at cluster i ∈ {1, . . . , M} if

ξ2 ∈
[

∑
i−1
j=1 λj,Kj

(Tev)

λK(Tev)
,

∑
i
j=1 λj,Kj

(Tev)

λK(Tev)

)
, (5.2.8)

where the convention ∑
0
j=1 = 0 was used.

Step 3: Next event nature

The decision upon the nature (rupture or rebinding) of the event follows the same

idea. Having identified the location i of the event, the interval [0, 1] is partitioned in

two segments proportional with ri,Ki
(Hi(Tev)) and gi,Ki

(Hi(Tev)) , as for instance
[

0,
ri,Ki

(Hi(Tev))

λi,Ki
(Tev)

,
ri,Ki

(Hi(Tev)) + gi,Ki
(Hi(Tev))

λi,Ki
(Tev)

= 1

]
. (5.2.9)

A bond ruptures if

ξ3 ∈
[

0,
ri,Ki

(Hi(Tev))

λi,Ki
(Tev)

)
, (5.2.10)

and a new bond is formed otherwise, where ξ3 ∼ U(0, 1). In the absence of rebinding

this step is not required.

The above algorithm is exact in principle, in the sense that the sources of inaccuracy

lie in the choice of the random number generator and the precision used for solving S

in (5.2.6). When estimating probability distributions, a source of error is also the finite

number of trajectories. One should note that ξ1, ξ2 and ξ3 are independent.
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5.2.3 A deterministic approach

When the total number of bonds in the clusters is large enough, the rupture and re-

binding of individual bonds has a small effect on the behaviour of the system as a

whole, and the number of closed bonds can be assumed to vary continuously. We shall

propose both a discrete and a continuous version of the deterministic limit.

The deterministic analogues of h(x, t), hi and Ni(t) are denoted by hd(x, t), Hd,i(t) =

hd(Xi, t) and Nd,i(t) for i = 1, . . . , M. With these notations, the deterministic rupture

and rebinding rates for cluster i = 1, . . . , M at time t can be defined as

rd,i(t) = Nd,i(t) exp [β(Hd,i(t) − 1)] , (5.2.11a)

gd,i(t) = γ (ni − Nd,i(t)) exp [−α(Hd,i(t) − 1)] , (5.2.11b)

obtained by replacing Ki and Hi in (5.1.31) with their deterministic analogues. The

deterministic system dynamics are then given by

dNd,i

dt
(t) = −rd,i(t) + gd,i(t), (5.2.12a)

∂hd

∂t
(x, t) =

1

c

[
h3

d

(
− T

∂2hd

∂x2
+ fd

)

x

]

x

, (5.2.12b)

where the deterministic force fd is

fd(x, t) =
M

∑
i=1

Nd,i(t) [hd(x, t) − 1] δ(x − Xi). (5.2.13)

This problem can be solved very similarly to the membrane’s motion discussed earlier,

and results are compared against stochastic simulations in §5.3, §5.4 and §5.5.

One could further proceed to the continuum limit in which fd is replaced by a smooth

function Fd that interpolates fd at x = Xi. In the same way are defined the smooth

displacement Hd interpolating Hd,i, and the smooth bond density Nd interpolating Nd,i

at x = Xi. The continuous and deterministic rupture and rebinding rates denoted by

Rd(x, t) and Gd(x, t) are defined as

Rd(x, t) = Nd(x, t) exp [β(Hd(x, t) − 1)] , (5.2.14a)

Gd(x, t) = γ (ni − Nd(x, t)) exp [−α(Hd(x, t) − 1)] . (5.2.14b)

The dynamics of the continuous deterministic system are given by

∂Nd

∂t
(x, t) = −Gd(x, t) + Gd(x, t), (5.2.15a)

∂Hd

∂t
=

1

c

[
H3

d

(
− T

∂2Hd

∂x2
+ Fd

)

x

]

x

, (5.2.15b)

where the continuous deterministic force Fd is

Fd(x, t) = Nd(x, t) [Hd(x, t) − 1] . (5.2.16)
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(a) (b)

Figure 5.3: (a) Real part of the complex Morlet wavelet. (b) Imaginary part of the complex

Morlet wavelet [23].

5.2.4 Time series comparison using wavelet-based semblance analysis

The continuous wavelet transform (CWT) can be used in the semblance analysis of

time and spatial data series to display their correlations as a function of both scale

(wavelength) and time (or position). The method was introduced by Cooper & Cowan

[23], and used for the study of Earth gravity and pseudogravity profiles. Among the

advantages are the straightforward computations accompanied by an effective visual

aid in their interpretation, as well as the wider generality of the method, compared to

the Fourier-based semblance analysis.

We briefly describe the basic formulas, while detailed summaries of wavelet analysis

are contained in [92] or [105]. The continuous wavelet transform (CWT) of a dataset

w(t) is given by [92, p.5]:

CWTw(u, s) =
∫ ∞

−∞
w(t)

1

|s|0.5
Ψ∗
(

t − u
s

)
dt, (5.2.17)

where s is scale, u is displacement, Ψ is the mother wavelet used, and ∗ means complex

conjugate. The CWT is therefore a convolution of the data with scaled version of the

mother wavelet. As in [23], we use the complex Morlet wavelet shown in Fig. 5.3:

Ψ(x) =
1

π fb
e2πi fcxe−x2/ fb , (5.2.18)

where fb controls the wavelet bandwidth and fc is the wavelet centre frequency.

A great advantage of the method over the Fourier transform-based approach, is that

it does not require the assumption that the frequency content of a data set is constant

with time (or position), hence providing much better temporal or spatial resolution.
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The use of different values of s in (5.2.17) gives information about the behaviour of the

dataset at different scales.

One method of comparing two time series w1 and w2 using wavelets is the cross-

wavelet transform [22], defined as

CWTw1,w2 = CWTw1
× CWT∗

w2
, (5.2.19)

which is a complex quantity having an amplitude given by

Aw1,w2 =| CWTw1,w2 |, (5.2.20)

and local phase

θw1,w2 = tan−1

(ℑ(CWTw1,w2)

ℜ(CWTw1,w2)

)
. (5.2.21)

Finally, the semblance is defined as

Sw1,w2 = cos(θw1,w2), (5.2.22)

which ranges from −1 (inversely correlated) through zero (uncorrelated) to +1 (corre-

lated). Because θw1,w2 and Sw1,w2 (when no confusion is possible, we use S, for simplic-

ity) compare phase angles rather than amplitude information, they have the advantage

that the two datasets being compared do not have to have the same units. The dis-

advantage of the lack of amplitude information is the sensitivity to the noise, so the

authors in [23] also defined

Dw1,w2 = cosn(θw1,w2) | CWTw1
× CWT∗

w2
|, (5.2.23)

which is particularly useful when one is interested in the phase correlations between

dataset regions having larger amplitudes.

For our model, the method represents a powerful tool for visualizing the correlations

between the evolution of the bond populations and the membrane’s positions, when

the system is subject to motion, rupture and rebinding near the equilibrium.

5.3 Results: Membrane spreading

In this section steady states and validate codes, then analyze the behaviour of the bond

population below the membrane, as the fluid confined near the left-end boundary

spreads freely from it’s initial position (see Fig. 5.2). We then analyze the membrane’s

detachment, and finally discuss the influence of rebinding. The dependence of system’s

dynamics on most of the model parameters is examined from the analysis of relevant

statistics.
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5.3.1 Code validation using equilibria

Following the membrane’s release, the liquid blob starts spreading to the right (as de-

picted in Fig. 5.5), pushing the membrane upwards and stretching the connected bonds

underneath. For a fixed configuration of clusters, the membrane relaxes towards a

steady state, which is solved explicitly and employed to validate the codes used for

solving the deterministic motion of the membrane, between the rupture and rebind-

ing events. As shown in §3.1 for the disk-bonds model, the steady states represent the

discrete positions occupied by the membrane in the zero-drag limit. The main steps of

the algorithm solving the steady states and an example are detailed below, while the

details can be found in Appendix 5.A.1.

Steady state solution

From (5.1.21), for a given cluster configuration, the membrane is in equilibrium if

c
dh
dt

= 0 =

[
h3(−Thxx + f )x

]

x

, (5.3.1)

with the boundary conditions hx = hxxx = 0 at x = 0, L.

Denoting the equilibrium position by h = heq(x), we integrate (5.3.1) in x to obtain

h3(−Thxx + f )x = B, which satisfies the boundary conditions only for B = 0, so

−Thxx + f = C, (5.3.2)

where C is a constant to be determined. When the membrane is attached to the surface

through M clusters located at X1, . . . , XM each having K1, . . . , KM bonds, (5.3.2) can be

written explicitly as

−Thxx +
M

∑
i=1

Ki[h(x) − 1]δ(x − Xi) = C. (5.3.3)

Integrating (5.3.3) for ǫ > 0 over the interval [Xi − ǫ, Xi + ǫ] and letting ǫ → 0 one

obtains

−
[

Th′
]X+

i

X−
i

+ Ki(h − 1)

∣∣∣∣
x=Xi

= 0. (5.3.4)

This suggests that the Dirac just imposes a jump in h′ at Xi, which is directly propor-

tional to Ki and inversely proportional to T. For x ∈ (Xi, Xi+1), the solution satisfies

hxx = −C/(2T), so it is locally solved by a parabola. When no clusters are attached the

steady state is h(x) = V
L . A full algorithm for solving the steady state for M clusters

located at X1, . . . , XM and having K1, . . . , KM bonds is detailed in Appendix 5.A.1.
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Figure 5.4: Membrane steady state obtained for L = 1, V = 1.5 in the situations (a) X1 =

.5, N1(t) = 2 for T = .5, 2, 5; (b) T = 2, X1 = .5, X2 = .75, X3 = 1, and (N1, N2, N3) =

{(1, 1, 0), (2, 2, 0), (2, 2, 3)} bonds. Squares represent the clusters’s ends.

Dependence on parameters

The steady state membrane position is strongly influenced by the parameters of the

problem, as seen in Fig. 5.4. As suggested by (5.3.4) and depicted in Fig. 5.4 (a), a small

(dimensionless) tension T may induce sharp cusps at the cluster’s coordinates. This

indicates that in our problem T should be reasonably large, as otherwise our thin film

assumptions may no longer be valid near the cusps.

The variation in the number of clusters/bonds as well, significantly changes the mem-

brane’s equilibrium position, as sketched in Fig. 5.4 (b). The more clusters/bonds we

have, the larger elastic forces make the membrane take a lower equilibrium position, as

well as to bend more at the cluster’s coordinates. The presence of a large cluster at the

membrane’s right end, may also induce an equilibrium position which decreases with

the increase in x.

Numerical methods

The integration of the system (5.2.4) which solves the deterministic motion of the mem-

brane between events, is performed using Matlabr stiff ODE solver ode15s with rel-

ative and absolute tolerances of 10−7 and 10−8, respectively. These values ensure that

the solver does not fail to converge even when solving the abrupt decay of Nd,i (5.2.12),

in the absence of rebinding. The Matlabr Runge-Kutta ODE solver ode45 could not

solve the problem in reasonable time, as the time-scale for the liquid relaxation is very

small compared to the timescale of the bond rupture.
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Figure 5.5: Motion of the membrane from the initial position given by (5.1.27), towards the

steady state in the absence of rupture/rebinding. The results are obtained for T = 1, c = 1,

σ = 1/6, L = 1, V = 1.5 and (a) one cluster having X1 = .5, N1(t) = 2; (b) two clusters having

X1 = .5, X2 = .75 and N = (N1(t), N2(t)) = 2. Squares represent the clusters’s ends.

Validation of membrane trajectories

The numerical code solving the deterministic motion of the membrane is validated by

showing that for sufficiently large times the membrane approaches the steady state as

depicted in Fig. 5.5, assuming a fixed number of bonds.

From (5.1.21) we infer that the drag coefficient c determines the timescale of the con-

vergence h(x, t) → heq(x), but plays no role in the position of the steady state. The

steady states are particularly relevant in the zero-drag limit, where following a change

in the cluster structure (rupture or rebinding), the membrane reaches the correspond-

ing steady state long before the next event happens.

Having solved the membrane motion between events, the next step is to simulate in-

dividual trajectories of the system, and compare their average against deterministic

approximations.

5.3.2 Membrane detachment in the absence of rebinding

In the absence of rebinding the bonds can only dissociate and the clusters decay and

stretch with the rates (5.1.31), depending on their extension. The overall cluster’s dis-

sociation time can be defined, as the moment when the last bond ruptures and the

membrane starts moving freely. The system’s dynamics can be explored from individ-

ual simulated trajectories, but also from averages of stochastic simulations compared

against deterministic approximations.
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Figure 5.6: Motion of the membrane from the initial position h(x, 0) (5.1.27), towards the equi-

librium heq(x) = V, as the bonds dissociate. Results are obtained for T = 1, c = 1, L = 1, β = 1,

σ = 1/8, V = 3 and four clusters having Xi = 1/2 + (i − 1)/8, Ni(0) = 1, for i = 1, . . . , 4. (a)

Membrane position at the dissociation times; (b) Events’ time and location; (c) Cluster trajec-

tories Hi(t), i = 1, . . . , 4. We have used solid lines for as long as the bonds are connected, and

dotted lines after dissociation. Crosses represent the location of the rupture events.

Single trajectory analysis

Immediately after the membrane attached to the surface through clusters of bonds is

released from the initial position, the liquid drop moves to the right, pushing the mem-

brane upwards and extending the bonds, as depicted in Fig. 5.6 (a). As the bonds start

to rupture, following an event, the membrane moves along a different path, depend-

ing on the current number of bonds and membrane’s position. A single trajectory of

the system is then a sequence of time segments [Tev, Tev+1), along which the number

of bonds is constant, while the membrane’s motion is deterministic and can be solved

from (5.1.21). The dissociation rates (5.1.31a) predict that individual bonds dissoci-

ate even at equilibrium, due to thermal fluctuation. When extended, the bonds break

in a much more rapid succession. The time and location of the rupture events dia-

gram presented in Fig. 5.6 (b) shows that the first bond to break is not necessarily the

one stretched first. The clusters’ extensions Hi(t) in single simulations are also not-

monotonic, as one can see in the trajectory of H4(t) in Fig. 5.6 (c).

Finally, in Fig. 5.6 the membrane is rather stationary between the events and the clus-

ters are then suddenly extended to new equilibria following a rupture. This behaviour

is similar to the one of the disk-bond system in the zero-drag limit discussed in Chapter

3, and indicates that c = 1 belongs to a low drag regime for the membrane model.

Fig. 5.6 also shows that event in the absence of rebinding, the cluster extensions are not

necessarily increasing, as it was the case with the bonds attached to a disk problem,

discussed in Chapter 4 (see Fig. 4.1 (b)).
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Figure 5.7: (a) Stochastic average decay µNi
(solid lines) vs. deterministic Nd,i decay (dotted

lines), i = 1, . . . , 4; (b) Stochastic average extension µHi
(solid lines) vs. deterministic extension

Hd,i (dotted lines), i = 1, . . . , 4. Stochastic averages are computed from 1600 trajectories. Results

obtained for T = 1, c = 1, L = 1, β = 1, σ = 1/8, V = 3 and four clusters having Xi =

1/2 + (i − 1)/8, and Ni(0) = 1, for i = 1, . . . , 4.

Mean bond population and extension of clusters

Of particular interest are the mean bond populations in each cluster µN1
, . . . , µNM and

the average cluster extensions µH1
, . . . , µHM , obtained from stochastic simulations or by

solving the discrete deterministic equation (5.2.12). Although not a property of individ-

ual simulations, the clusters situated closer to the left-end decay faster on average, as

depicted in Fig. 5.7 (a). This is clearly because the liquid drop spreads to the right, ex-

tending the bonds near the left-end faster and higher than the ones near the right-end,

as seen in Fig. 5.7 (b). The solution of the deterministic approximation (5.2.12-5.2.13)

is a good match for the average of stochastic trajectories, despite the small number of

simulations (1600), assumed to be enough to guarantee an error of about 2.5% (using

the central limit theorem [75]).

The cluster’s decay can also be examined from the profile of standard deviations of

the cluster’s dimension σN1
, . . . , σNM and cluster extensions σH1

, . . . , σHM , obtained from

a large number of simulations. As suggested by the means, Fig. 5.8 (a) shows that

on average, the clusters break successively from the left to the right. indicating the

existence of a ’peeling on average’ process. The peeling of the membrane is going to be

examined in a special section later on. As seen in Fig. 5.8 (b), the standard deviations

σH1
, . . . , σHM display peaks proportional to the rates at which the clusters are extended,

and then vanish as the bonds dissociate and the membrane relaxes to the equilibrium

heq(x) = V.
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Figure 5.8: Standard deviation of the number of (a) closed bonds σNi
, i = 1, . . . , 4 and (b)

extension of each cluster σHi
, i = 1, . . . , 4 computed from 1600 simulations. Results obtained

for T = 1, c = 1, L = 1, β = 1, σ = 1/8, V = 3 and four clusters having Xi = 1/2 + (i − 1)/8,

Ni(0) = 1, for i = 1, . . . , 4.

The overall cluster decay can also be examined via the stochastic average decay and

deterministic decay normalized by the total number of bonds

µN(t) =
∑

M
i=1 µNi

(t)

∑
M
i=1 ni

, (5.3.5a)

µNd
(t) =

∑
M
i=1 µNd,i

(t)

∑
M
i=1 ni

. (5.3.5b)

At the time when ∑
M
i=1 Ni(t) = 0, the membrane is no longer attached to the surface.

The first time when this happens represents the membrane’s detachment time, denoted

by TD. The density of TD and relevant statistics can be estimated from stochastic simu-

lations. In the absence of rebinding, the mean lifetime can be defined as µTD .

Effect of increasing fluid volume

For larger volumes of liquid, the membrane is pushed faster and higher, so the cluster

decays more rapidly, as illustrated in Fig. 5.9 (a). The same effect can be identified in

Fig. 5.9 (b), where the histograms of the detachment time TD become narrower and µTD

is a decreasing function of V.

We can also make some quantitative estimates on the range of µTD . Given that for most

of the time we have 1 ≤ h ≤ V, the rupture rates are bounded by

Ki ≤ ri,Ki
= Ki exp [β(Hi − 1)] ≤ Ki exp [β(Hi − 1)] , i = 1, . . . , M. (5.3.6)

The left-hand equality is attained in the c → ∞ limit, while the other in the c → 0 limit.
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Figure 5.9: (a) Stochastic vs. deterministic overall decay profiles (5.3.5), for V = 1.5 and V = 3 ;

(b) Histogram of of the membrane detachment time TD(t), from 1600 trajectories when V = 1.5

(dotted line) and V = 3 (solid line). Results obtained for T = 1, c = 1, L = 1, β = 1, σ = 1/8,

and four clusters having Xi = 1/2 + (i − 1)/8, Ni(0) = 1, for i = 1, . . . , 4.

In the two limits, the transition rates (5.1.31a) are time-independent and cluster’s decay

is sequence of Poisson processes, as discussed when we derived (3.3.5) in §3.2.1. When

the intensity of the process is r, the mean lifetime is 1/r and the variance is 1/r2. For

single bond clusters we obtain the following intervals for the mean and variance of TD

M

∑
i=1

1

i
exp [−β(V − 1)] ≤ µTD ≤

M

∑
i=1

1

i
, (5.3.7a)

M

∑
i=1

1

i2
exp [−2β(V − 1)] ≤ σ2

TD
≤

M

∑
i=1

1

i2
≤ π2

6
. (5.3.7b)

In the example depicted in Fig. 5.9 (b) we have 1.26 < µTD = 1.34 < 2.08 for V = 1.5

and 0.28 < µTD = 0.37 < 2.08 for V = 3.

Lower and upper bounds for Ni(t) can also be obtained from (5.3.6) as

ni

exp

[
− exp [β(V − 1)] t

]

exp [−β(V − 1)]
≤ Ni(t) ≤ ni exp(−t), i = 1, . . . , M,

from where we obtain

exp

[
− exp [β(V − 1)] t

]

exp [−β(V − 1)]
≤ µN(t) ≤ exp(−t). (5.3.8)

In the presence of rebinding, new bonds will form again after the system hits the

boundary ∑
M
i=1 Ni(t) = 0, so the detachment time is no longer defined.

In summary, the clusters decay and stretch differentially depending on their location

and the membrane’s detachment time is decreased by increasing the fluid’s volume.
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Figure 5.10: Motion of the membrane from the initial position (5.1.27), towards the equilibrium

heq(x) = V, as the bonds form and break. Results are obtained for T = 1, c = 10, L = 1, β = 1,

σ = 1/8, V = 3, α = 1, γ = 1 and four clusters having Xi = 1/2 + (i − 1)/8, Ni(0) = 1, for

i = 1, . . . , 4. (a) Membrane position at various times (region above 3.5 not shown, to allow the

distinction between the membrane’s positions). (b) Event time, location and nature. Rebinding

represented by circles and rupture by crosses.

5.3.3 Membrane dynamics under rupture and rebinding of bonds

When rebinding is present, the boundary ∑
M
i=1 Ni(t) = 0, is reflective, so new bonds

are allowed to form. As suggested by the analysis of steady states in §5.3.1, the more

bonds we have in a cluster, the lower the position of the membrane is likely to be,

so if after a rupture event the membrane generally moves upwards towards heq = V,

following a rebinding event the membrane moves towards a lower position, farther

from the equilibrium.

Single trajectories under rebinding

Immediately after the membrane attached to the surface through clusters of bonds is

released from the initial position, the liquid drop moves to the right, pushing the mem-

brane upwards and extending the bonds which rupture sequentially, as depicted in Fig.

5.10 (a). From time to time, some of the rupture bonds reform, as illustrated in Fig. 5.10

(b) (red circles), the newly formed bonds rapidly pulling the membrane downwards,

as seen in 5.10 (a) (the upper curves containing circles).

As illustrated in Fig. 5.11, for drag c = 10 the membrane’s motion is slower, and the

trajectories of the membrane are smoother. At the same time, one can spot three time-

regions with distinct behaviour in the evolution of the membrane-cluster system. In

region (I), the fluid spreads rapidly beneath the bonds, so the system is dominated
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Figure 5.11: Cluster trajectories Hi(t), i = 1, . . . , 4 represented together with the rebinding (cir-

cles) and rupture (crosses) times. Connected bonds are represented by solid lines, while disso-

ciated bonds by dashed lines. Results obtained for T = 1, c = 10, L = 1, β = 1, σ = 1/8, V = 3,

α = 1, γ = 1 and four clusters located at Xi = 1/2 + (i − 1)/8, and having Ni(0) = 1 bonds,

i = 1, . . . , 4. System dynamics dominated by (I) flow; (II) bond kinetics; (III) fluctuations near

an equilibrium.

by the fluid flow. It is only after some time when the bonds start to break and re-

bind. The system enters in the second phase (II) dominated by bond kinetics, where

the rapid variation in the number of bonds produces significant local variations in the

trajectories Hi(t). Eventually, the membrane approaches an equilibrium position where

Hi(t) ∼ V. In this region (III), there is small, but non-zero probability for new bonds to

form. Occasionally, a new bond forms, followed by small oscillations of the membrane

near the equilibrium, and finally, by the rapid dissociation of the stretched bond. At

equilibrium, the average waiting time for the formation of a new bond is exponentially

increasing with V as 1/ ∑
M
i=1 gi,0 ∼ exp[α(V − 1)]/4. Once a new bond is formed in

cluster i, the probability for the same bond to rupture is

ri

ri + ∑
M
j 6=i,j=1 gi,0

∼ 1

1 + (M − 1)γ exp [−(α + β)(V − 1)]
. (5.3.9)

For α = 1, β = 1, M = 3, γ = 1, V = 3 the probability that the following event is an-

other rebinding is about 5%. However, this probability greatly improves by increasing

γ and M, or by decreasing α, β and V. For V = 1.5 the probability of rebinding is

already close to 52%, and 75% for V = 1.
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Figure 5.12: (a) Stochastic average decay µNi
(solid line) vs. deterministic Nd,i decay (dotted

line); (b) Stochastic average extension µHi
(solid line) vs. deterministic extension Hd,i (dotted

line), i = 1, . . . , 4.Results obtained for T = 1, c = 1, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 1.

The clusters are located at Xi = 1/2 + (i − 1)/8, and have Ni(0) = 1 bonds for i = 1, . . . , 4.

Stochastic average computed from 1600 simulations.

Mean bond population and extension of clusters

For large rebinding, the membrane may even not detach from the substrate, so the

average decay of individual clusters µNi
, i = 1, . . . , 4 is expected to stabilize to a non-

zero equilibrium Neq,i. At the same time, the clusters’ average extensions µHi
are also

expected to approach an equilibrium, as illustrated in Fig. 5.12. Compared to Fig. 5.7,

the clusters’ decay is slowed down by rebinding.

Because the trajectories permanently fluctuate even near the equilibrium, the standard

deviations σNi
and σHi

of the bond populations Ni(t) and cluster extensions Hi(t) do

not vanish any more. Moreover, they exhibit significant fluctuations as depicted in Fig.

5.13, and a much larger number of simulations is required to obtain a certain accuracy.

At the same time, compared to Fig. 5.8, it takes longer for the clusters to reach the final

equilibrium position.

Impact of the rebinding parameters and bond population size

The role played by the rebinding parameters α and γ in the system dynamics is exam-

ined in Fig. 5.14. Being an average of µN1
, . . . , µNM , the overall decay µN(t) converges

to a non-zero equilibrium, for any values of the parameters. For a given configuration

of bonds M = 4, the smaller α, the higher the equilibrium position is, as one can see

from the comparison of the results obtained for α = 0, γ = 1 and α = 1, γ = 1. This

is expected, because the rebinding rates are decreasing with α. From the comparison
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Figure 5.13: Standard deviation of the (a) bond population σNi
, i = 1, . . . , 4 and (b) cluster

extension σHi
, i = 1, . . . , 4 computed from 1600 simulations. Results obtained for T = 1, c = 1,

L = 1, β = 1, σ = 1/8, V = 3, and rebinding parameters α = 1, γ = 1. The clusters are located

at Xi = 1/2 + (i − 1)/8, and have Ni(0) = 1 bonds for i = 1, . . . , 4.
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Figure 5.14: Influence of the rebinding parameters γ and α on the overall cluster decay µN(t)

(5.3.5a) obtained from the average of 500 simulations. Plot realized for T = 1, c = 1, L = 1,

β = 1, σ = 1/8, V = 3 and M = 4 or 25 clusters are located at Xi = 1/2 + (i − 1)/(2M), for

i = 1, . . . , M having Ni(0) = 1 bonds for i = 1, . . . , M.

α = 1, γ = 1 and α = 1, γ = 5, one can see that the equilibrium position is higher when

γ increases. Finally, for the same parameters α and γ but for different cluster config-

urations M = 4 and M = 25, the cluster with more bonds has a larger proportion of

connected bonds at equilibrium.
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5.3.4 Membrane vs. disk model dynamics under rebinding

Using the rates (5.1.31) and the algorithm presented in §6.2.2, we show that the dy-

namics of the bond-disk model were fully determined by α + β and γ, while in the

membrane model α, β and γ act independently.

For a given configuration of bonds K1, . . . , KM of length H1, . . . , HM at time t, the prob-

ability of the next event to be located in cluster i, is proportional to

λi,Ki

∑
M
j=1 λj,Kj

=
Kieβ(Hi−1) + γ(ni − Ki)e−α(Hi−1)

∑
M
j=1 Kje

β(Hj−1) + γ(nj − Kj)e−α(Hj−1)
. (5.3.10)

On the other hand, when the location i is known, the probability that the next event is

a rupture is proportional to

ri,Ki

λi,Ki

=
Kieβ(Hi−1)

Kieβ(Hi−1) + γ(ni − Ki)e−α(Hi−1)
= exp[(α + β)(Hi − 1)]

Ki

Ki + γ(ni − Ki)
.

(5.3.11)

In the disk model the bonds share the same extension H, so the rate (5.3.10) is

λi,Ki

∑
M
j=1 λj,Kj

=
Kie(α+β)(H−1) + γ(ni − Ki)

∑
M
j=1 Kje(α+β)(H−1) + γ(nj − Kj)

, (5.3.12)

which is a function of α + β and γ only. As the probability deciding the nature of the

next event (5.3.11) is also a function of α + β, the trajectory of the disk-bond system is

determined by only α + β and γ.

On the other hand, for the membrane model we generally have Hi 6= Hj, in which case

(5.3.10) depends on each of the variables α, β, and γ.

5.4 Results: Membrane dynamics under vertical force

In many adhesive interactions between cells and substrates, the membranes are also

subject to various forces at the boundaries of the contact region, as it is the case for

peeling or rolling of leukocytes along the blood vessels [28, 70, 115]. A step closer to-

wards modelling more complex adhesive scenarios is to consider that the spreading of

the liquid blob is stimulated by applying vertical forces at the boundaries. We begin

with the identification of steady states for fixed cluster configurations, used to make

predictions about system’s evolution and to validate the codes. The effects of positive

and negative vertical force on the membrane’s ends are examined in parallel, using in-

dividual trajectories and averages of stochastic simulations. The membrane’s detach-

ment in the absence of rebinding and the membrane’s fluctuation near an equilibrium

in the presence of rebinding are also dealt with separately.
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5.4.1 Code validation using equilibria

In the absence of rupture and rebinding events, the membrane moves towards an equi-

librium position depending on the number/position of clusters, and now also on the

applied forces fL and fR. The main steps of the algorithm used for solving the steady

states and an example are presented below, while the technical details can be found

in Appendix 5.A.2. The solution for the deterministic motion of the membrane under

force is shown to converge towards the steady state. Finally, the general behaviour of

the system is assessed from the shape of limiting steady states.

Steady states

Following the steps used for the membrane spreading problem presented in §6.3.1,

the steady state for the membrane attached to the surface through M clusters having

K1, . . . , KM bonds located at the coordinates X1, . . . , XM, satisfies

−Thxx − fLδ(x) − fRδ(x − L) +
M

∑
i=1

Ki(h(x) − 1)δ(x − Xi) = C, (5.4.1)

which can be solved in a very similar way to (5.3.3), the main difference being the

boundary conditions. As the solution is again expected to consist of parabola arches,

we still have h+
xxx(0) = h−xxx(L), and we just have to find the directional derivatives

h+
x (0) and h−x (L). To do this, (5.4.1) is integrated over the intervals [ǫ, ǫ] and [L − ǫ, L +

ǫ], and as ǫ → 0 we obtain

−
[

Th′
]0+

0−
− fL = 0, −

[
Th′
]L+

L−
− fR = 0, (5.4.2)

which suggests the existence of jumps in h′ at x = 0 and x = L, directly proportional

to fL and fR, and inversely proportional to T. For symmetry reasons, we should have

the same slope with different signs at the right and left of zero (and the same near L)

so the boundary conditions are

h+
x (0) = − fL

2T
, h−x (L) =

fR

2T
. (5.4.3)

When no clusters are attached, we have hxx = −C/(2T) for 0 < x < L, so the steady

state is solved by the quadratic h(x) = − C
2T x2 + Ax + B, subject to the boundary con-

ditions (5.4.3) and the volume conservation property
∫ L

0 h(x, t)dx = V. Simple compu-

tations reveal that

h(x) =
fL + fR

4LT
x2 − fL

2T
x +

2 fL − fR

12T
L +

V
L

, (5.4.4)

which is a line for fL = fR = 0. The algorithm for solving the steady state position of

the membrane under upwards forces fL and fR at x = 0 and x = L respectively, when
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Figure 5.15: Membrane steady state obtained for L = 1, V = 1.5 and force fL = 1 in the

situations (a) X1 = .5, N(t) = 2 for T = .5, 2, 5; (b) T = 2, X1 = .5, X2 = .75, X3 = 1,

(N1, N2, N3) = (1, 1, 0), (2, 2, 0), (2, 2, 3). Squares represent the clusters’s ends.

K1, . . . , KM bonds are located at the coordinates X1, . . . , XM is described in Appendix

5.A.2. For the rest of the chapter we shall focus on the case fL 6= 0 = fR.

Dependence on tension and number of clusters

The steady state membrane position is strongly influenced by the parameters of the

problem, as seen in Fig. 5.15. As suggested by (5.4.2) and depicted in Fig. 5.15 (a), a

small tension T may induce sharp cusps at the cluster’s coordinates. The lateral force

significantly changes the membrane’s overall position, abruptly raising the left end

when fL > 0. It is expected that moving towards such a steady state, the clusters situ-

ated near the left end will experience a larger force than the ones situated at the right.

The variation in the number of clusters/bonds as well, also significantly changes the

membrane’s equilibrium position, as sketched in Fig. 5.4 (b). The more clusters/bonds

we have, the larger elastic forces make the membrane take a lower equilibrium posi-

tion. The presence of a large cluster at the membrane’s right end, may tilt the mem-

brane even more, as shown by the dash-dotted line.

The behaviour of the steady states under force is depicted in Fig. 5.16 and provides

a useful insight in the dynamics of the membrane-clusters system. This study is es-

pecially relevant for vanishing rebinding, or even in the presence of small rebinding,

when the membrane fluctuates near the steady state. Because in general the fluid

drop spreads much faster than the bond’s breakage time, the membrane stabilizes

near an equilibrium position, with all the bonds still connected Ni = ni (dotted lines),

i = 1 . . . , M (bond’s ends attached to the membrane are represented by squares). After
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Figure 5.16: Membrane steady states under different forces fL, for L = 1, V = 3, T = 1 and

(a) M = 4; (b) M = 25. The clusters located at Xi = 1/2 + (i − 1)/(2M), and have Ni ∈ {0, 1}
bonds, i = 1, . . . , M. Squares represent the clusters’s ends.

a while, one of the bonds ruptures and the membrane immediately moves towards the

next equilibrium. Finally, when all the bonds break , the membrane moves towards the

final equilibrium where Ni = 0 (solid lines), i = 1 . . . , M.

Dependence on force and cluster size. Impact on single simulations

The steady states for M = 4 are illustrated in Fig. 5.16 (a), where the dashed line

represents the steady state fL = 0 in the absence of bonds. The positive force fL > 0 at

x = 0, pulls up the left-end of the membrane, tilting the steady state positions clockwise

and bringing them closer to the initial position. The liquid drop contained under the

membrane’s initial position first relaxes to the steady state Ni = 1, fL = 4, waiting for a

bond to break. When this finally happens, the liquid fills the region corresponding the

next steady state, until the membrane reaches the final position, corresponding to Ni =

0, fL = 4. For negative force fL < 0 the membrane’s left end is pushed downwards,

thus the steady states are tilted anti-clockwise. After all the bonds break, the membrane

stabilizes to a position in which the right end is significantly over the equilibrium line

heq(x) = V corresponding to fL = 0. It is then sensible to anticipate that cluster’s

lifetime (when defined) is an increasing function of fL.

The steady states for M = 25 clusters and larger forces are plotted in Fig. 5.16 (b).

As expected, for a large positive force fL = 10 the membrane’s left end for the steady

state corresponding to Ni = 1 stands at a higher position, while the right end is at a

lower position than for fL = 4 and M = 4. This is an effect of the large number of

clusters holding the membrane, but also of the larger force which raises the left end
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Figure 5.17: Membrane motion towards the steady state in the absence of rupture/rebinding.

Results obtained for fL = 5, T = 1, c = 1, σ = 1/6, L = 1, V = 1.5 and (a) one cluster having

X1 = .5, N1 = 2; (b) two clusters having X1 = .5, X2 = .75 and N1 = N2 = 2. Squares represent

the clusters’s ends at equilibrium, while t1 = 10−2, t2 = 10−3, t3 = 10−4.

of the membrane. As the bonds break, the membrane moves towards the position

corresponding to Ni = 0, fL = 10, which is lower than for Ni = 0, fL = 4 in Fig. 5.16

(a), as an effect of the larger force. A large negative force fL = −10, can significantly

change the cluster’s extension from Ni = 1, fL = −10 to Ni = 0, fL = −10.

The steady states also reveal the pattern of the sequential bond breakage, as the rupture

and rebinding rates depends on the cluster’s extension. As one can see for fL > 0, in

each equilibrium position the most stretched cluster is near the left-end, which makes

this bond the most likely to rupture, so a peeling pattern could be spotted in the system

dynamics. Under fL < 0, the situation is more complex, as the maximal membrane

displacement moves from the left to the right. It is expected that in a first phase the

bonds near the left end break first, while after some time (provided there are still some

bonds left ) the peeling starts from the right.

Validation of membrane trajectories

The numerical solution of the membrane motion is validated by showing that for suffi-

ciently large times the membrane approaches the steady state as depicted in Fig. 5.17.

From (5.1.21) we infer that the drag coefficient c determines the timescale of the con-

vergence h(x, t) → heq(x), but plays no role in the position of the steady state. The

steady states are particularly relevant in the zero-drag limit, where following a change

in the cluster structure (rupture or rebinding), the membrane reaches the correspond-

ing steady state long before the next event happens.
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Figure 5.18: Stochastic average extension of clusters µHi
under force (a) fL = 10; (b) fL = −10,

for M = 25 clusters having Xi = 1/2 + (i − 1)/(2M), and Ni(0) = 1, for i = 1, . . . , M. Results

obtained for T = 1, c = 1, L = 1, β = 1, σ = 1/8, V = 3 and 1600 simulations. Arrows indicate

the direction in which i = 1, . . . , M increases.

5.4.2 Vanishing rebinding

The application of fL > 0 at x = 0 lifts up the left membrane’s end, and fluid enters

to fill the gap. The membrane remains tilted clockwise, as suggested in Fig. 5.17, as

it approaches the steady states. Under these geometric constraints, the bonds near the

left are on average stretched faster and to a greater extent than the ones located near

the membrane’s right end, as seen in Fig. 5.18 (a).

The application of a negative force fL < 0 at x = 0 pushes down the membrane’s

end, and fluid is squeezed to the right. As bonds rupture, the membrane’s steady state

profiles are expected to tilt anticlockwise, so in the end the right end of the membrane

is at a higher position than the left end. The bonds’ extensions depicted in Fig. 5.18(b)

show that for a certain time the bonds near the left are more stretched than the ones near

the right, while the order is reversed as the bonds rupture and more liquid squeezes in.

As expected, the overall decay of the clusters is faster for negative forces, as illustrated

in Fig. 5.19 (a). The decay profiles for positive and negative force are not very much

different for small clusters (M=4), as the bonds detach due to the fluid flow, and before

the effects of force become significant. The difference is considerable for large clus-

ters (M=25), which survive long enough to experience the different bond stretching

patterns. At the same, the larger clusters decay much slower than the small ones.

The histograms of the membrane detachment times TD plotted in Fig. 5.19 (b) are

clearly shifting the left with the decrease of force, reflecting the faster clusters’ decay.
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Figure 5.19: (a) Overall decay profile µN (5.3.5a); (b) Histogram of the membrane’s detachment

time TD(t), from 1600 trajectories for M=25 clusters and force fL = 10 (dotted line) and fL =

−10 (solid line). Results obtained for T = 1, c = 1, L = 1, β = 1, σ = 1/8, and four clusters

having Xi = 1/2 + (i − 1)/8, Ni(0) = 1, for i = 1, . . . , 4.

5.4.3 System dynamics under rupture and rebinding

In the presence of rebinding, the membrane fluctuates around certain equilibrium con-

figurations, depending on the location and composition of the adhesion clusters, and

also on the forces applied at the boundary. The membrane positions at the first six

events in a single simulation are represented in Fig. 5.20 for positive and negative force.

As anticipated, the membrane moves towards equilibrium positions influenced by the

force on the boundary, and then fluctuates near a certain position. The membrane’s

position is generally titled clockwise for fL > 0, and anti-clockwise for fL < 0.

The differential extension of bonds under a forced membrane is depicted in Fig. 5.21,

where the cluster extensions Hi(t) are plotted along the first seven rupture and rebind-

ing events. As in the spreading problem depicted in Fig. 5.11, the evolution of the

cluster can be divided in three regions dominated by fluid flow (I), bond kinetics (II)

and finally (III) by fluctuations near the equilibrium. There is nonetheless a significant

difference, as the fL forces each cluster to extend differently when in equilibrium.

For positive force fL > 0, the extension of the clusters generally satisfies the relation

H4(t) < H3(t) < H2(t) < H1(t), most notably at equilibrium, when the membrane’s

right end is closer to the substrate, as suggested in Fig. 5.21 (a). When a new bond

eventually forms, has a significant effect on the extension of adjacent clusters, which

rapidly changes. The newly connected bond is suddenly subject to a large loading, and

breaks in a short time, allowing the system to occupy its previous equilibrium position.
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Figure 5.20: Position of the membrane during the first 7 rupture and rebinding events for (a)

fL = 4; (b) fL = −4. Results obtained for T = 1, c = 1, L = 1, β = 1, σ = 1/8, V = 3, α = 1,

γ = 1, and four clusters having Xi = 1/2 + (i − 1)/8, Ni(0) = 1, for i = 1, . . . , 4.
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Figure 5.21: Plot of cluster extensions Hi(t), i = 1, . . . , 4 under vertical forces (a) fL = 4; (b)

fL = −4. Connected bonds are represented by solid lines, while dissociated bonds by dashed

lines. The rebinding and rupture events are represented by circles and crosses, respectively.

Results obtained for T = 1, c = 10, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 1 and four clusters

located at Xi = 1/2 + (i − 1)/8, and having Ni(0) = 1 bonds, i = 1, . . . , 4. System dynamics

dominated by (I) flow; (II) bond kinetics; (III) fluctuations near the equilibrium.

For negative force fL < 0, the membrane’s motion is initially driven by the spreading of

the liquid, which preserves the relation H4(t) < H3(t) < H2(t) < H1(t) through region

(I), and also in phase (II), as shown in Fig. 5.21. Immediately after the dissociation of the

last bond, the force squeezes the liquid near the membrane’s right-end, and reverses

clusters’ extensions to H4(t) > H3(t) > H2(t) > H1(t), at equilibrium. Rarely, a bond

is formed and the system leaves the equilibrium (for a much sorter time for fL > 0).
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Figure 5.22: Overall cluster decay µN(t) (5.3.5) obtained from the average of 500 simulations.

Plot realized for T = 1, c = 1, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 1 and M = 4 or 25

clusters located at Xi = 1/2 + (i − 1)/(2M), having Ni(0) = 1 bonds for i = 1, . . . , M.

One should note that even in the presence of rebinding, the trajectories first hit the

boundary ∑
M
i=1 Ni(t) = 0 at roughly the same time and displacement, mostly because

of the spreading fluid, and before the bonds feel the effects of force. This justifies the

similar decay pattern observed in for the small clusters (M = 4) in Fig. 5.19.

The overall cluster decay µN as a function of force is illustrated in Fig. 5.22 for fixed

rebinding parameters α and γ, and for two cluster configurations having M = 4 and

M = 25 bonds. In all examples, rebinding ensures that a non-zero equilibrium is at-

tained, which is expected to go up as the formation of bonds intensifies.

For the same cluster dimension, the decay trajectories corresponding to positive and

negative forces become increasingly different as rebinding becomes more intensive. As

opposed to the situation depicted in Fig. 5.19, this effect can now be observed even for

small clusters (M=4), as rebinding ensures that the clusters are still active beyond the

time when membrane dynamics become different for fL > 0 and fL < 0.

The behaviour of large clusters offers two different perspectives. For fL > 0, the pres-

ence of rebinding is immediately felt by the dissociated bonds, as the membrane’s

lower position and the higher availability of binding sites is accelerating the forma-

tion of new bonds. However, for fL = −10, the large cluster (M=25) does not benefit

of the larger number of available binding sites, as γ = 1 is not enough to compensate

for the higher extension of the clusters. In the end, the fewer clusters (M=4) located at

a lower position attain a higher equilibrium value.
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Figure 5.23: States of the system (a) Ni(t) and (b) Hi(t), i = 1, 3, 25 in a single simulation,

realized for T = 1, c = 10, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 5, fL = 10 and M = 25

clusters located at Xi = 1/2 + (i − 1)/(2M), having Ni(0) = 10 bonds for i = 1, . . . , M. Results

for 2000 datapoints.

5.5 Analysis of single trajectories and peeling patterns

In this section we examine the behaviour of single trajectories, in the presence of re-

binding and force at the boundaries, over longer timescales. The profile of single trajec-

tories estimated at a fine time-grid is compared against the deterministic limit, which

accurately predicts the equilibrium states of the system (when they exist), for many

clusters (M = 25) having multiple bonds. Several cluster statistics are compared us-

ing a wavelet-based semblance method, and it is shown that the overall cluster decay

and extension are inversely correlated. Finally, we formulate and discuss three types

of stochastic membrane peeling.

5.5.1 Membrane fluctuations near the equilibrium

As seen in the previous two sections, in the presence of rebinding, the membrane’s be-

haviour consists of three phases. The first phase is flow dominated, in which the bonds

are rapidly stretched. The second a slower or faster decay in the number of bonds (de-

pending on V, c, M), while the third is the membrane’s fluctuation near an equilibrium

position. This is estimated using single trajectories and deterministic approximations.
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Figure 5.24: Stochastic and deterministic (a) overall decay µN(t) and µNd
(t); (b) Average bond

extension µH(t) and µHd
(t) in a single simulation realized for T = 1, c = 10, L = 1, β = 1,

σ = 1/8, V = 3, α = 1, γ = 5, fL = 10 and M = 25 clusters located at Xi = 1/2 + (i − 1)/(2M),

having Ni(0) = 10 bonds for i = 1, . . . , M. The time resolution is 2000 points.

The trajectory of the system (N1, . . . , NM, H1, . . . , HM) is completely determined by the

time, location and nature of the events. As suggested by Fig. 5.23 (a), the number of

bonds in each cluster starts fluctuating, with the largest variations in the cluster lo-

cated near the left-end. As illustrated in Fig. 5.23 (b), the reason is the bond’s larger

extension, but the large value γ, does not allow the bonds in N1 to completely disso-

ciate. Similarly to the overall cluster decay (5.3.5), one can define the stochastic and

deterministic clusters’ average extension

µH(t) =
∑

M
i=1 µHi

(t)
M

, (5.5.1a)

µHd
(t) =

∑
M
i=1 µHd,i

(t)

M
. (5.5.1b)

which provides a rough estimate for the membrane’s displacement at the clusters’ co-

ordinates. The good match between the stochastic and deterministic overall decay and

the clusters’ average extension can be seen in Fig. 5.24, where the deterministic limit

is able to predict the equilibrium values near which the system is oscillating, for bond

population and cluster extension.

The interdependence between the variables N1, . . . , NM and H1, . . . , HM is analyzed

using the semblance S (5.2.22), which compares phase angles and ranges from −1 (in-

versely correlated - dark blue) through zero (uncorrelated - green) to +1 (correlated

- red). Unlike the Fourier-transform-based semblance analysis, calculated solely as a

function of frequency, the CWT semblance analysis is calculated as a function of both

scale (or wavelength - here, length of the time window) and time (or position).
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Figure 5.25: (a) Dataset containing N1(t) at 2000 points. (b) Real part of the complex CWT of

dataset in (a). Bright red indicates a large positive amplitude and dark blue indicates a large

negative amplitude. (c) Dataset contining H1(t) at 2000 points. (d) Real part of the complex

CWT of dataset in (c). Bright red indicates a large positive amplitude and dark blue indicates

a large negative amplitude. (e) Semblance S (5.2.22). Bright red corresponds to a semblance of

+1, green to a semblance of zero, and dark blue to a semblance of −1. Results obtained from

a single simulation realized for T = 1, c = 10, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 5,

fL = 10 and M = 25 clusters located at Xi = 1/2 + (i − 1)/(2M), having Ni(0) = 10 bonds for

i = 1, . . . , M. Vertical axes represent the wavelength as in (5.2.17). Code based on [23].

Fig. 5.25 shows the real part of the CWT computed for N1 and H1, and their semblance.

As one can see in Fig. 5.25 (b) and (d), the most significant amplitude changes are

taking place for large wavelengths, while for smaller wavelength these are close to

zero. The rapid variations of small amplitude, generate small and numerous bright

spots in the lower part of Fig. 5.25 (e), suggesting rapid changes in the phase for small

wavelengths. In general, the two variables tend to be negatively correlated with the

increase of the wavelength.
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Figure 5.26: (a) Dataset containing H1(t) at 2000 points. (b) Real part of the complex CWT of

dataset in (a). Bright red indicates a large positive amplitude and dark blue indicates a large

negative amplitude. (c) Dataset contining H2(t) at 2000 points. (d) Real part of the complex

CWT of dataset in (c). Bright red indicates a large positive amplitude and dark blue indicates

a large negative amplitude. (e) Semblance S (5.2.22). Bright red corresponds to a semblance of

+1, green to a semblance of zero, and dark blue to a semblance of −1. Results obtained from

a single simulation realized for T = 1, c = 10, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 5,

fL = 10 and M = 25 clusters located at Xi = 1/2 + (i − 1)/(2M), having Ni(0) = 10 bonds for

i = 1, . . . , M. Vertical axes represent the wavelength, as in (5.2.17). Code based on [23].

Fig. 5.26 shows the real part of the CWT computed for H1 and H2, and their semblance.

Again, as seen in Fig. 5.26 (b) and (d), the most significant changes in amplitude are lo-

calized at large wavelengths. As H1 and H2 represent the extensions of closed neighbor-

ing clusters, it is expected that in general their evolution to be correlated, as suggested

in Fig. 5.26 (e). There are however numerous small bright spots, particularly over

smaller time intervals (wavelengths), which can be explained by the sudden stochastic

variation of clusters N1 and N2, which differentially push the membrane above.
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Figure 5.27: (a) Dataset containing µN(t) at 2000 points. (b) Real part of the complex CWT of

dataset in (a). Bright red indicates a large positive amplitude and dark blue indicates a large

negative amplitude. (c) Dataset contining µH(t) at 2000 points. (d) Real part of the complex

CWT of dataset in (c). Bright red indicates a large positive amplitude and dark blue indicates

a large negative amplitude. (e) Semblance S (5.2.22). Bright red corresponds to a semblance of

+1, green to a semblance of zero, and dark blue to a semblance of −1. Results obtained from

a single simulation realized for T = 1, c = 10, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 5,

fL = 10 and M = 25 clusters located at Xi = 1/2 + (i − 1)/(2M), having Ni(0) = 10 bonds for

i = 1, . . . , M. Vertical axes represent the wavelength, as in (5.2.17). Code based on [23].

Finally, in Fig. 5.27 we examine the CWT and the semblance of µN and µH , computed

from a single trajectory. As before, in Fig. 5.27 (b) and (d), the most significant changes

in amplitude are localized at large wavelengths, but the wavelengths where µN and

µH vary most, are ∼ 250, and ∼ 400, respectively. This indicates that the timescale

over which the bond population varies significantly, is shorter than the timescale cor-

responding to significant variations in the membrane’s position. Interpreting accurate

results from the semblance graph shown in Fig. 5.27 (e) is not straightforward, as the
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track of many effects was lost when we averaged. The two quantities seem to be largely

negatively correlated, especially at small wavelengths, with notable exceptions identi-

fiable near t = 7 and t = 10, where as seen in Fig. 5.25 (a), N1 is in a low position.

5.5.2 Peeling patterns

A significant challenge we are trying to address is the membrane peeling near the

boundary of the contact region. The problem has been intensively studied by many

authors including Dembo et al. [28], Hodges & Jensen [70], or Reboux et al. [115],

mostly by representing the bonds within a continuum framework, where and adher-

ent cell in a shear flow exhibits genuine tank-treading motion, with a peeling process

taking place at the trailing edge of the contact region. In contrast, our model considers

that the bonds form at individual binding spots.

The snapshots illustrated in Fig. 5.28, where the states of Ni are depicted in (a) and

membrane’s positions h(x, t) in (b), at four different times, provide preliminary evi-

dence on the existence of peeling pattern in the evolution of the membrane with bonds

attached to it. One can see that the bond populations are generally decreasing, while

the left-end cluster’s coordinates XC(t) increases with time.

Here we propose three preliminary types of characterization of a peeling process.

Sequential stochastic peeling

As the liquid blob distributes to the right, the bonds to be first stretched are the ones

near the left-end boundary, so these bonds are likely to dissociate first. This suggests

defining the “stochastic peeling” as the process characterized by the successive disso-

ciation of bonds from the left to the right, as illustrated in Fig. 5.29 (c) and (d). It is

clear that such a process is unlikely in the presence of moderate rebinding, so for the

moment we shall discuss the vanishing rebinding limit. As the rupture rates depend

on cluster extension, the membrane’s profile directly influences the peeling frequency.

When the membrane is parallel to the surface, the bonds rupture with the same prob-

ability, and the frequency of a stochastic peeling event for M clusters is easily found

to be a discouraging 1/M!, which suggests that even for M = 4 clusters, stochastic

peeling is unlikely (1/4! ∼ 4%), as seen in Fig. 5.29 (a) and (b).

However, the estimation of sequential peeling events from stochastic simulations, may

still indicate parameter regions facilitating the peeling. The peeling frequencies, to-

gether with mean and standard deviations of the detachment time TD for 2 or 4 clusters

and various values of fL, V and σ can be seen in Table 5.1.
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Figure 5.28: Peeling behaviour identified from a single simulation. The four time phases I, I I,

I I I and IV are consistent with the peeling of the membrane and the dissociation of the clusters

situated near the left-end boundary. The circles represent connected clusters, the crosses disso-

ciated clusters. (a) Bond population Ni(t). (b) Membrane displacement. Plot realized for T = 1,

c = 10, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 1, fL = 0, and M = 25 clusters located at

Xi = 1/2 + (i − 1)/(2M), having Ni(0) = 5 bonds for i = 1, . . . , M.
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Figure 5.29: Single simulation of the stochastic membrane detachment for T = 1, c = 1, σ =

1/3, L = 1, V = 1.5, and four clusters having Xi = 1/2 + (i − 1)/8, i = 1 . . . , 4 and N1(0) =

· · · = N4(0) = 1, plus a fixed cluster at x = 1, having Nend bonds. (a) h(x, t) at the rupture

times, Nend = 1 ; (b) time and location of the rupture event, Nend = 1. (c) h(x, t) at the rupture

times, Nend = 10 ; (d) time and location of the rupture event, Nend = 10.

As illustrated in Fig. 5.29, the presence of a large non-breakable cluster at the right

boundary tilts the membrane’s profile, enhancing the peeling frequency. In a peeling

problem, the fixed cluster can be justified by the presence of a large number of bonds

in the contact region, at the right of the trailing edge, which keep the membrane tightly

attached to the fixed wall. Given the exclusive nature of this definition, we also present

some other alternatives.

Average stochastic peeling

A more inclusive measure of peeling was suggested by the profile of standard devia-

tions σNi
, i = 1, . . . , M depicted in Fig. 5.8 (a). An average stochastic peeling process

may be defined as the process in which the times Ti when σNi
peaks, verify the relation

T1 ≤ T2 ≤ · · · ≤ TM. (5.5.2)

As suggested by Fig. 5.13 (a), this definition may be valid even in the presence of

rebinding. The averages may represent a much better measure of membrane peeling.
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Clusters σ V fL Peeling % µTD σTD

2 1/6 1.5 0 53.9375 % 0.92859 0.64162

2 1/3 1.5 0 50.625 % 0.92433 0.62881

2 1/6 3 0 53.4375 % 0.25229 0.18009

2 1/6 1.5 4 57.125 % 1.0937 0.71159

2 1/6 3 4 57.9375 % 0.30472 0.22843

4 1/6 1.5 0 4.875 % 1.3245 0.67344

4 1/3 1.5 0 4.5625% 1.3553 0.68414

4 1/6 3 0 6.125 % 0.41196 0.2342

4 1/6 1.5 4 5.25 % 1.5686 0.78002

4 1/6 3 4 7.1875 % 0.49677 0.30313

Table 5.1: Clusters and membrane dynamics: nonbreakable right end cluster Nend = 1, fluid

volume V, the normal-like membrane’s initial position (5.1.27) has standard deviation σ =

1/6, 1/3.

Monotonic left-end peeling

Finally, peeling may also be characterized by the position of the non-dissociated cluster

situated closest to the left-end boundary, which we baptize the ’left-end cluster’. An

event is called a monotonic left-end peeling if the coordinate XC(t) of the left-end clus-

ter is an increasing function with time, as in Fig. 5.30, in the peeling region. Using this

definition, in the absence of rebinding any event is a monotonic left-end peeling.

However, things change when rebinding is present. The process can be initially char-

acterized as a monotonic left-end peeling. Initially, the left-end cluster is N1, which dis-

sociates at time t ∼ .48 when it is replaced the cluster N2. An interesting event happens

next, when following the rupture of N2 the left-end cluster coordinate jumps straight

to X6. This suggests that clusters N1 and N2 shielded the rupture of the clusters N3, N4

and N5, which were already dissociated at the time when N2 vanished. The left-end co-

ordinate then jumps again, this time to X13 at t ∼ 1.9. After time t ∼ 2.1 the formation

of bonds before the trailing edge may perturb the monotonic left-end peeling profile,

as one can see in Fig. 5.30.

Going back to Fig. 5.28, the simulation may still be called monotonic left-end peeling

in a broader sense, if the simulation is filtered for a specific timescale, which eliminates

the counting of short-lived bonds before the trailing edge.
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Figure 5.30: Peeling region characterized by the position of the left-end non-dissociated cluster.

Plot realized for T = 1, c = 10, L = 1, β = 1, σ = 1/8, V = 3, α = 1, γ = 1, fL = 0, and

M = 25 clusters located at Xi = 1/2 + (i − 1)/(2M), having Ni(0) = 5 bonds for i = 1, . . . , M.

The membrane peels sequentially with clusters dissociating from left to right until time t ≃ 2.

5.6 Summary

In this chapter we have presented a simple description of the coupling between the de-

terministic continuous motion of a flexible membrane and the stochastic rupture and

formation of discrete bonds. The model predicts the relation between the membrane

displacement and the evolution of bonds, examines the influence of the relevant pa-

rameters.

The first version of the model, ’spreading membrane’, considered the extension of the

bonds as being generated by the spreading of a liquid blob, which widens the gap be-

tween the membrane and the substrate. In the absence of rebinding, the membrane

detaches completely and stabilizes to an equilibrium position, while the bond’s decay

was found to be a function of liquid volume and drag. In the presence of rebinding

the system fluctuates near an equilibrium position, which is well solved by the deter-

ministic approximation. The second version of the model considered vertical forces

applied at the boundaries, ’forced membrane’, when the membrane dynamics signif-

icantly changed. One of the differences is that in the absence of rupture or rebinding

events, the membrane stabilizes to equilibria tilted clockwise for positive, and anti-

clockwise for negative force, respectively. The membrane’s profile is also directly de-

pendent on the sign of the force applied.
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Finally, we have analyzed single simulation profiles, where the deterministic models

were shown to correctly predict the average bond population and cluster extension at

equilibrium (Fig. 5.24). A wavelet-based semblance method, was used to show that

the displacement of adjacent clusters is positively correlated, while cluster’s overall

extension and bond population are negatively correlated Figs. 5.25 and 5.27). Three

definitions were proposed for the stochastic membrane peeling. The sequential peeling

based on the ordered rupture of bonds was found to be promoted in certain regions of

the parameter space, but to occur very rarely even for small clusters. definition based

on stochastic averages, using the differential peaking time of the standard deviations,

observed in Fig. 5.8. Finally, for clusters with multiple bonds, and in the presence of

rebinding, we have proposed a peeling definition based on the position of the cluster

nearest to the left-end, which was found to be more general than the sequential peeling

(Fig. 5.28).

The model can be adapted for the study of cell rolling (by applying forces fL < 0 and

fR > 0 at boundaries) or cell detachment as in the biomembrane force probe (BFP)

experiments (by applying fL > 0, fR > 0). At the same time, the generality of the

methods ensures that the extension of the model do not require significantly different

approaches. The model may be effectively used for the estimation of the number of

biological bonds connecting two surfaces. To do this, one needs to know the geometry

of the contact region, which allows the modelling of the transition rates. From exper-

iments we can obtain the frequency of rupture/rebinding events using the deflections

of the AFM (for example). Simulations could then be used to predict the number of

bonds required to attain the measured frequency. Nonetheless, a significant limitation

of the model in the current form is the liquid volume constraint.
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5.A Numerical solution of the membrane’s steady states

The algorithm for computing the membrane steady states for a given configuration of

bonds is detailed below, for the cases of membrane spreading under flow, and mem-

brane spreading under vertically forced boundaries. We also present a more developed

model, accounting for lateral membrane motion and rotational moments.

5.A.1 Steady states of the membrane: free fluid spreading

For a given cluster configuration X1, . . . , XM and K1, . . . , KM, the membrane’s steady

state is shown the be formed of parabola arches, which have jumps in their derivative

at X1, . . . , XM. The steady state for a single cluster is explicitly solved, and a numerical

algorithm for the solution of the general problem are detailed below.

A single cluster with K1 bonds attached at x = X1.

Integrating (5.3.3) for ǫ > 0 over the interval [X1 − ǫ, X1 + ǫ] and letting ǫ → 0 one

obtains

−
[

Th′
]X+

1

X−
1

+ K1(h − 1)

∣∣∣∣
x=X1

= 0. (5.A.1)

This suggests that the Dirac just imposes a jump in h′ at X1, which is directly propor-

tional to K1 and inversely proportional to T. As in the previous case, at the left and right

of X1 the curve h is still solved by a quadratic. Solving h is reduced now to matching

arcs of parabolas, with prescribed jumps at the nodes and boundary conditions at x = 0

and x = L. In this particular case an analytical solution can be obtained.

The parameters of the problem are T, K1, h0, X1, L, V, and the solution has the properties
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h(x) =





a0x2 + b0x + c0, x < X1,

a1x2 + b1x + c1, x > X1,
(5.A.2a)

[
h′
]X+

1

X−
1

= K1 [h(X1) − h0] /T. (5.A.2b)

The unknowns are the constants a0, b0, c0, a1, b1, c1, C and there are several conditions to

be fulfilled. The first one is

−Th′′(x) = C, x < X1, (5.A.3a)

−Th′′(x) = C, x > X1, (5.A.3b)

which gives a0 = a1 = − C
2T . The boundary conditions at x = 0 and x = L and give

h′(0) = 0 ⇒ b0 = 0, (5.A.4a)

h′(L) = 0 ⇒ − b1

2a1
= L ⇒ b1 =

LC
T

. (5.A.4b)

The continuity condition of the membrane displacement at x = X1

h−(X1) = h+(X1), (5.A.5)

gives c0 − c1 = LC
T X1, which together with (5.A.2b) leads to

c0 =
LC
K1

+ h0 +
C

2T
X2

1 ,

c1 =
LC
K1

+ h0 +
C

2T
X2

1 −
LC
T

X1.

So far, the variables a0, b0, c0, a1, b1 and c1 have been obtained in terms of the initial

parameters and the constant C. Finally, C can be obtained from the conservation of the

fluid volume below the membrane

V =
∫ L

0
h(x)dx =

∫ X1

0
h(x)dx +

∫ L

X1

h(x)dx. (5.A.6)

An important question is wether the system actually has a solution, which can be easily

proven, once we reformulate the system in matrix form Ax = b, where A is

A =





−X1 X1 −1 1 0 0

−1 1 − K1X1
T 0 −K1

T 0 −K1X2
1

T

1 0 0 0 0 0

0 1 0 0 − L
T 0

X2
1

2
L−X2

1
2 X1 L − X1 0 L3

3

0 0 0 0 1
2T 1





(5.A.7)
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and the vectors x and b are

xT =
(

b0 b1 c0 c1 C a
)

(5.A.8a)

bT =
(

0 −K1
T h0 0 0 0 V 0

)
. (5.A.8b)

Simple computations give

det A =

L

[
3LT + K1(L − 3

2 X1)
2 + 3

4 X2
1

]

3T2
> 0, (5.A.9)

so there is a solution of the system for all values of the parameters (as the tension is

clearly positive). The general problem can be dealt with in the same way, although a

complete proof of the existence of the solution is not available yet.

General case: K1, . . . , KM bonds located at the coordinates X1, . . . , XM. The solution

of the general problem when K1, . . . , KM bonds located at the coordinates X1, . . . , XM

follows the steps suggested before. As the analytical solution is very complicated, the

problem is formulated as a linear system of equations, which is then solved numerically

when a unique solution exists. The other parameters in the problem V, T, h0, L being

given, the solution satisfies (5.3.3), where C is an unknown constant. As mentioned

earlier, the steady state solution is composed of the matched parabolic arches h(x) =

aix2 + bix + ci, for x ∈ [Xi, Xi+1), i = 0, . . . , M where X0 = 0, Xm+1 = L.

Inside each interval we have

−Th′′(x) = C, x ∈ (Xi, Xi+1) ⇒ a0 = a1 = · · · = aM = − C
2T

. (5.A.10)

The continuity of the membrane at x = Xi, i = 1, . . . , M gives

h−(Xi) = h+(Xi) ⇒ Xi(bi − bi−1) + ci − ci−1 = 0, i = 1, . . . , M. (5.A.11)

Integrating (5.3.3) for ǫ > 0 over the interval [Xi − ǫ, Xi + ǫ] and letting ǫ → 0 we

obtain the jump in the slope of the membrane at the binding site coordinate Xi, given

by

[
h′
]X+

i

X−
i

= Ki
h(Xi) − h0

T
⇒ bi − bi−1 =

Ki

T

[
aiX

2
i + biXi + ci − h0

]
. (5.A.12)

The boundary conditions at the right and left ends give

h′(0) = 0 ⇒ b0 = 0, (5.A.13a)

h′(L) = 0 ⇒ bM = −2aM L =
CL
T

. (5.A.13b)
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The last relation comes from the conservation of liquid volume below the membrane,

which gives

∫ L

0
h(x)dx =

M

∑
i=0

∫ Xi+1

Xi

h(x)dx

= a
L3

3
+

M

∑
i=0

bi

(
X2

i+1 − X2
i

2

)
+

M

∑
i=0

ci(Xi+1 − Xi) = V. (5.A.14)

The problem can be formulated as a system of 2m + 4 equations (one from (5.A.10), M

from (5.A.11), M from (5.A.12), two from (5.A.13) and one from (5.A.14)). Although b0

and bM can be obtained directly, they still appear in the system for symmetry.

Writing the system in matrix form Ax = b, the matrix A is given by





−X1 X1 · · · 0 0 −1 1 · · · 0 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

...

0 0 · · · −XM XM 0 0 · · · −1 1 0 0

−1 1 − K1X1
T · · · 0 0 0 −K1

T · · · 0 0 0 −K1X2
1

T
...

...
. . .

...
...

...
...

. . .
...

...
...

...

0 0 · · · −1 1 − KMXM
T 0 0 · · · 0 −KM

T 0 −KMX2
M

T

1 0 · · · 0 0 0 0 · · · 0 0 0 0

0 0 · · · 0 1 0 0 · · · 0 0 − L
T 0

X2
1

2
X2

2−X2
1

2 · · · X2
M−X2

m−1

2
L−X2

M
2 X1 X2 − X1 · · · XM − Xm−1 L − XM 0 L3

3

0 0 · · · 0 0 0 0 · · · 0 0 1
2T 1





(5.A.15)

while the vectors x and b are

xT =
(

b0 · · · bM c0 · · · cM C a
)

(5.A.16a)

bT =
(

0 · · · 0 −K1
T h0 · · · −KM

T h0 0 0 V 0
)

. (5.A.16b)

When det A 6= 0 the system has a unique solution.

5.A.2 Steady states of the membrane: vertically forced boundaries

The equilibrium position of the membrane general having K1, . . . , KM bonds attached

at the coordinates X1, . . . , XM and subject to vertical forces fL and fR at the left and

right membrane ends can be obtained using a modified version of the algorithm used

for solving the steady state of the spreading membrane.
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The boundary conditions at the right and left ends (5.A.13) of the membrane are re-

placed by

h+
x (0) = − fL

2T
⇒ b0 = − fL

2T
, (5.A.17a)

h−x (L) =
fR

2T
⇒ 2aM L + bM =

fR

2T
. (5.A.17b)

The solution can be obtained by solving Ax = b, for A given by (5.A.15) and b

bT =
(

0 · · · 0 −K1
T h0 · · · −KM

T h0 − fL
2T

fR
2T V 0

)
. (5.A.18)

5.B Membrane model accounting for lateral motion

To begin with, we stress that all the quantities used in this section are dimensional.

Identical hinged plates of length 2l. Midpoint of each plate is at (xi, hi). The i-th plate is

tilted at the angle θi, resulting in a tangent vector ti = (cos θi, sin θi) and normal vector

ni = (− sin θi, cos θi). We also have in-plane tension Ti in each plate, pressure pi below

each plate and p = 0 above, internal out-of-plane stress resultants Qini, −Qini at the

end of each plate.

Hinges lie at coordinates (xi ± l cos θi, hi ± l sin θi) on plate i, as seen in Fig. 5.31.

Assume ki molecular bonds at the mid-point of the i-th plate, share the force f
i

=
(

0,−ki(hi − h0)

)
, where h0 is the unstressed length. The bonds are assumed not to tilt.

Drag on plate di = (dx
i , dy

i ) to be determined using lubrication theory, scaling

dx
i ∼ −µ(lX/h2

i )dxi/dt, dy
i ∼ −µ(lX2/h3

i )dhi/dt,

from where we obtain

dy
i ∼ lpi, pi = µ(X2/h3

i )dhi/dt.

Force balance on the plate is

0 = Ti+1ti+1 − Ti−1ti−1 + f
i
+ di − Qi+1ni+1 + Qi−1ni−1, (5.B.1)

which in vertical and horizontal direction give

0 = Ti+1 sin θi+1 − Ti−1 sin θi−1 − ki(hi − h0) + dy
i − Qi+1 cos θi+1 + Qi−1 cos θi−1,

(5.B.2a)

0 = Ti+1 cos θi+1 − Ti−1cosθi−1 + dx
i + Qi+1 sin θi+1 − Qi−1 sin θi−1. (5.B.2b)
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Figure 5.31: The elastic springs are attached at the mid-point of the plates of equal length 2l.

Moment on the plate around mid-point (assume drag exerts no net moment) is

0 = lti × (Ti+1ti+1) + (−lti)× (−Ti−1ti−1) + κ(θi+1 − θi)z − κ(θi − θi−1)z

+ (lti) × (−Qi+1ni+1) + (−lti) × ni−1Qi−1, (5.B.3)

where z = ti × ni is a unit vector out of page. So

0 = lTi+1 sin(θi+1 − θi) + lTi−1 sin(θi − θi−1) + κ(θi+1 − 2θi + θi−1)

− lQi+1 cos(θi+1 − θi) − lQi−1 cos(θi − θi−1). (5.B.4)

Assuming all angles are small, the terms quadratic in θ can be discarded in (5.B.2a),

(5.B.2b) and (5.B.4), to obtain

0 = Ti+1θi+1 − Ti−1θi−1 − ki(hi − h0) + dy
i − (Qi+1 − Qi−1) (5.B.5)

0 = Ti+1 − Ti−1 + dx
i + Qi+1θi+1 − Qi−1θi−1.

0 = l[Ti+1(θi+1 − θi) + Ti−1(θi − θi−1)] + κ(θi+1 − 2θi + θi−1) − l(Qi+1 + Qi−1).

Further simplification will be possible after rescaling. The distance between xi and xi+1

is then 2l (to leading order). Introducing smoothly varying functions Θ(x, t), H(x, t),

N(x, t), T(x, t), Dx(x, t), Dy(x, t), Q(x, t) such that Θ(xi, t) = θi, where l ≪ X = length-

scale of variation of continuous variables, we obtain

Ti+1 = T(xi+1, t) ≈ T(xi + 2l, t) = Ti + 2lTx(xi, t) + 1/2(2l)2Txx(xi, t) + · · ·
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and the likes. With these notations (5.B.5) becomes

0 = (Ti + 2lTx)(θi + 2lΘx)− (Ti − 2lTx)(θi − 2lΘx) − N(H − h0) + Dy − 4lQx + · · ·
= 4lTΘx + 4lTxΘ − N(H − h0) + Dy − 4lQx + · · · , (5.B.6)

0 = (Ti + 2lTx) − (Ti − 2lTx) + Dx + (Qi + 2lQx)(Θi + 2lΘx) − (Qi − 2lQx)(Θi − 2lΘx)

= 4lTx + Dx + 2lQxΘ + 2lQΘx

0 = l[(Ti + 2lTx)2lΘx + (Ti − 2lTx)2lΘx]+

κ(θi + 2lΘx + 2l2Θxx − 2θi + θi − 2lΘx + 2l2Θxx) − 2lQi + · · ·
= 2l2TΘx + 4κl2Θxx − 2lQ + · · · .

At this point we can also relate H to θ: hi+1 − hi = 2lHx + O(l2) = l(θi + θi+1) =

2lθi + O(l2), so Hx = Θ. Replacing Θx in (5.B.6) we obtain

0 = 4l(THx)x − N(H − h0) + Dy − 4lQx, (5.B.7)

0 = 4lTx + Dx + 2l(QHx)x,

0 = l(THxx + 2κHxxx) − Q.

We can write the scalings

lTh0

X2
∼ N0h0 ∼ µ

lX2

h3
0

h0

t
∼ lQ

X
, (5.B.8a)

lT
X

∼ µ
lX

h2
0

U ∼ lQ
X

h0

X
, (5.B.8b)

lTh0

X2
∼ lκh0

X3
∼ Q, (5.B.8c)

where H ∼ h0 and U = dX/dt. From (5.B.8a) we obtain

t ∼ µ
lX2

h3
0N0

, X2 ∼ lT
N0

, Q ∼ h0T
X

.

Then (5.B.8b) and (5.B.8c) can be written as

lT
X

∼ µ
lX

h2
0

U ∼ lh0

X2

h0T
X

=
lT
X

h2
0

X2
, (5.B.9a)

lTh0

X2
∼ lκh0

X3
∼ h0T

X
. (5.B.9b)

Since l ≪ h0 ≪ X, the underlined terms are subdominant by h2
0/X2 and l/X, and

therefore can be ignored.

Assuming negligible sliding (large mean tension)

(
U ≪ Th2

0

X2µ

)
, at leading order we

have Tx = 0, so T=constant. In the absence of sliding, Ht =

(
H3

12µ px

)

x

and Dy = pl.
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The first and third equations of (5.B.6) become

0 = 4lTHxx − N(H − h0) + Dy − 8l2κHxxxx

Q = 2lκHxxx. (5.B.10)

Balancing the terms in the first equation we can write

lTh0

X2
∼ N0h0 ∼ µlX2

h3
0

h0

t
∼ l2κh0X4.

Let X = 2

(
lT
N0

)1/2

x̂, t = µ l2T
h3

0N2 t̂, p = N0
l h0 p̂, B = 8κl2h0

(4lT/N)2 , H = h0Ĥ(x̂, t̂), N =

N0N̂(x̂, t̂).

Then

Ht =
1

12

(
H3px

)

x

, (5.B.11)

0 = Hxx − N(H − 1) + p − BHxxxx,

p = N(H − 1) − Hxx + BHxxxx.

Assume steady peeling such that H(x, t) = H(ξ), ξ = x + Vt, V to be determined.

Then VHξ = 1
12

(
H3pξ

)

ξ

and p = N(H − 1)− Hξξ + BHξξξξ . This gives 12V(H − 1) =

H3pξ , assuming p = 0 when H = 1 (bonds unstressed), and further 12V(H − 1) =

H3[N(H − 1)]ξ − H3Hξξξ + BH3Hξξξξ . Assume hinges are weak, B ≪ 1 and we can

formulate coupled ODEs for solving N(ξ).
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Conclusions

THE INTERPLAY between hydrodynamic forces and the stochastic formation and rup-

ture of discrete bonds between moving surfaces has been theoretically investigated.

The deterministic motion of the surfaces, solved by lubrication theory and interrupted

by the stochastic jumps in the bond population, suggested the formulate the model

as a continuous-time piecewise deterministic Markov process. This allowed the simu-

lation of individual trajectories of the system, from which we could obtain important

information on cluster lifetime or bond extension. Stochastic simulations were comple-

mented by deterministic approximations valid in the limit of a large number of bonds.

These give valuable insight into the behaviour of the system and greatly reduce the

mathematical complexity of the problem, as well as the computational cost, but at the

expense of not capturing stochastic effects in the evolution of clusters with few bonds.

The models under investigation are mostly inspired by dynamic force spectroscopy

experiments, which measure force and extension of bonds connecting surfaces at the

level of individual molecules.

As a simple coupling between bond kinetics and continuous cell motion, we consid-

ered in Chapter 2 a theoretical model for the stochastic adhesion of a cluster of bonds

connecting a rigid disk and a flat surface. The model, formulated as a piecewise de-

terministic Markov process, accounts for the rupture and rebinding of discrete bonds,

depending on the disk’s motion under applied force. Hydrodynamic forces in the thin

layer of viscous fluid between the two surfaces are described using lubrication theory,

while inertia at the scales of our model and Brownian motion, were proven to be neg-

ligible in the presence of force. Several experiments confirmed the elasticity of bonds

under force [98], showing that their length in response to applied force may increase 5-

to 6-fold for fibronectin [73], so bonds are modeled as identical, parallel springs, and

equally share the load. The coupling between the bond’s extension and the nonlinear

motion of a disk under force, represents a significant extension over models assuming a
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constant displacement using polymeric spacers [35]. Monte Carlo simulations, captur-

ing the stochastic evolution of clusters with few bonds, are complemented by various

deterministic approximations, valid in the limit of a large number of bonds.

The model considerably simplified the description of the disk’s motion, by squeezing

liquid viscosity, disk dimensions and bond’s stiffness and unstretched length into a

single dimensionless drag coefficient.

Following Erdmann & Schwarz, the zero- and infinite- drag limits of the model were

explored in Chapter 3. Several methods were developed specifically for this problem,

of which we stress the Fokker-Plank equation (FPE) and a matrix exponential-based

the solution of the ME (3.2.2). Using the solutions of the ME (3.2.2) we confirmed the

existence of three forcing (small, intermediate, large) and three loading-rate (slow, in-

termediate, fast) regimes, illustrated in Figs. 3.3 and 3.18, respectively. Our results

provide quantitative estimates for the corresponding boundaries, completing the qual-

itative descriptions discussed in [31] and [33]. A fixed ratio f /n completely charac-

terizes the deterministic decay for any cluster dimension, while stochastic simulations

predict that larger clusters decay faster than smaller ones (Fig. 3.7). Larger clusters

may again decay slower than the clusters with fewer bonds, for sufficiently large re-

binding (Fig. 3.16). Using stochastic estimates for the mean cluster lifetime, we have

established upper and lower bounds for cluster lifetime under drag, depicted in Fig.

3.9. For the constant loading-rate problem we mimicked a DFS experiment, showing

that the model is able to predict rupture force as a function of the loading rate [38], [95].

Also, distributions of the rupture force computed for single and multiple bond clusters

showed an increasing spread with the increase of the loading rate, while rupture forces

for clusters seemed to be normally distributed (see Fig. 3.20).

The effects of drag were investigated in Chapter 4. We identified three distinct regions

in the parameter space spanned by force and drag: for large drag, the disk barely moves

and the cluster’s evolution is largely dictated by bond kinetics; for small drag, bond dy-

namics are enslaved to the disk’s motion; in between, there is a transient regime, where

the bonds break as the disk is moving upwards under force. For non-zero rebinding

we determined the force required to destabilize the cluster and discussed the stable

equilibria of the deterministic approximation.

Drag has an even more profound impact when the disk is under ramped force. Large

drag alow the bonds to extend at a slower rate, hence to survive for longer. At the same

time, force has the time to build up, resulting in a very abrupt terminal decay. Cluster

statistics mimicking dynamic force spectroscopy experiments show that adding drag

significantly changes the profile of the rupture force distributions. If in the absence of
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drag the distributions were overlapping, adding drag makes the profiles differentiate.

The behaviour of clusters is even more different, as large clusters survive longer, being

exposed to larger forces, until they eventually break. The expected sudden cluster

dissociation for large values of drag and loading rate is evident in Fig. 4.16.

We also examined a PDE formulation for the time-evolution of the probability density

of the stochastic process (N, H). Solutions of the dCKE with the method of characteris-

tics showed a good agreement with stochastic simulations for large values of drag, but

a poor agreement for the late phase of the cluster decay. We have identified two po-

tential reasons for this outcome. The first is the complicated geometry of the solution,

which converges to a Dirac distribution with time. In the large-drag limit, this is not

a problem, as the characteristics collapse long after the cluster dissociated, so the code

shows a good agreement with the stochastic results. We still investigate whether the

disagreement for small drag is because of the inaccuracy of the method for the given

problem, but preliminary results indicate that increasing the number of characteristic

curves does not improve the precision of the results. This fact made us wonder whether

the problem may in fact support a PDE formulation. An argument in this sense is the

analytical solution obtained for the marginal probability distributions Pk in Appendix

4.A, which is a n + 1 − k-dimensional integral , with time-dependent limits. As the

densities are some sense differentials of Pk, we feel it is rather unlikely they would sat-

isfy a PDE. To address this issue, we have developed a integro-differential formula, to

be tested against simulations.

The model was extended to include spatial effects and inhomogeneous bonds in Chap-

ter 5, where we considered the stochastic evolution of a bond population connecting a

flexible membrane to a rigid wall, accounting for hydrodynamic forces from fluid in the

space between the membrane and the wall. The model, formulated as a piecewise de-

terministic Markov process, accounts for the rupture and rebinding of discrete bonds,

depending on the membrane’s position. The deterministic motion of the membrane,

interrupted by stochastic binding and unbinding events, is formulated as a partial dif-

ferential equation derived using lubrication theory. Spatial effects were introduced by

modeling the bonds as identical and parallel elastic springs, which form at certain bind-

ing sites spread over the membrane’s surface and which differentially share the load,

depending on their extension. Stochastic simulations of the model were compared

against solutions of a deterministic approximation, and averages of the bond popula-

tion and membrane detachment times were examined, showing that cluster dynamics

are strongly influenced by the amount and the initial distribution of liquid beneath the

membrane. The first version of the model (a “spreading membrane”), considered the

204



CHAPTER 6: CONCLUSIONS

extension of the bonds generated by the spreading of a liquid blob, which widens the

gap between the membrane and the substrate. In the absence of rebinding, the mem-

brane detaches completely and stabilizes to an equilibrium position, while the bond’s

decay was found to be a function of liquid volume and drag. In the presence of rebind-

ing the system fluctuates near an equilibrium position, which is accurately solved by

the deterministic approximation. When vertical force was applied at the boundaries

(a “forced membrane”), the membrane dynamics significantly change, as in the ab-

sence of rupture or rebinding events the membrane stabilizes to tilted equilibria which

differentially stretch the connected clusters. The membrane’s profile is directly depen-

dent on the sign of the force applied. The model provides preliminary evidence of the

nature of the peeling stochastic processes. Subsequently, the model predicts that for

clusters with sufficiently many bonds and in the presence of rebinding, the membrane

and the bond population fluctuate near equilibria predicted by the deterministic ap-

proximation. The average population and extension of clusters are shown to be largely

inversely correlated, using a wavelet-based semblance method.

Future work

The results obtained in Chapters 3 and 4 for ramped force (see Fig. 1.4), showed that

our theoretical investigation generated results sharing the structure of DFS experiments

of Merkel et al. [95]. As illustrated in (1.4), Brownian effects play an important role

especially for slow loading, so the addition of Brownian noise in the disk-bond system

is expected to generate a better rendition of the DFS experiment. After calibrating the

model using experimental data obtained from single bond experiments, our model can

be used for a better understanding of the experiments for cluster unbinding.

At the same time, the integro-differential forward equation proposed as an alternative

to the PDE suggested by Lipniacki [91] can be solved to generate a global description of

the joint time-height probability densities characterizing the bivariate Markov process

(N(t), H(t)) with discrete and continuous states. Although the model has the merit

of coupling discrete bond kinetics to the continuum motion of the disk, it’s simplicity

may not capture many significant physiological processes, as the bonds were treated as

an homogeneous population and without spatial effects apart from the vertical motion

of the membrane.

The preliminary investigation of the simple membrane model raises interesting ques-

tions, one should address before considering more detailed mechanical details, such as

membrane bending stiffness, rotational moment, or lateral displacement. A first thing
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to do is to consider more realistic boundary conditions, that allow liquid to enter below

the membrane. As suggested by the behaviour of the membrane under forced bound-

aries, one could push one of the membrane’s ends while pulling the other, to simulate

stochastic rolling or peeling. Also, by applying upwards forces, one could simulate the

membrane’s detachment as in the DFS experiments. A question which would surely

worth investigating is whether for a force of a given magnitude it is easier to peel, or to

detach the membrane of the surface. Another formulation of this problem is to identify

the optimal force distribution on the membrane that promotes peeling or detachment.
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