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Abstract

The adhesive interactions between cells and surfaces play a key role in many vital phys-
iological processes, such as innate immune response, tissue formation, or wound heal-

ing, but also in targeted drug delivery and active control on the adhesion of viruses.

Adhesion is often mediated by specific intermolecular bonds, which generally func-
tion under considerable mechanical load. Bond properties can be explored by dynamic
force spectroscopy, which measures the force required to separate two surfaces con-
nected by small numbers of molecular bonds. Motivated by such experiments, the
aim of this thesis is to investigate the adhesive effects of discrete, stochastic binding of

clusters of intermolecular bonds, supported by a rigid or flexible substrate.

The stochastic adhesion of a cluster of bonds connecting a rigid disk and a flat surface is
investigated within the framework of piecewise deterministic Markov processes. The
model accounts for the rupture and rebinding of discrete bonds, depending on the
disk’s motion under applied force. Hydrodynamic forces in the thin layer of viscous
fluid between the two surfaces are described using lubrication theory. Bonds are mod-
eled as identical, parallel springs, and equally share the load. Monte Carlo simula-
tions, capturing the stochastic evolution of clusters with few bonds, are complemented
by various deterministic approximations, valid in the limit of a large number of bonds.
Distinct regions in the parameter space spanned by force and drag are identified, where
cluster’s evolution is largely dictated by either bond kinetics, or enslaved to the disk’s
motion. The stability of the cluster is discussed for non-zero rebinding, while dynamic

force spectroscopy experiments are mimicked under linearly ramped force.

The stochastic evolution of a bond population connecting a flexible membrane to a
rigid wall within a fluid, is also formulated as a Markov process, and spatial effects
are considered by allowing the vertical elastic bonds to differentially share the load,
depending on their extension. The deterministic motion of the membrane, interrupted
by stochastic binding and unbinding of bonds, is formulated as a partial differential
equation, derived using lubrication theory. As shown by stochastic simulations and
deterministic approximations, the volume and distribution of the liquid beneath the
membrane, play a key role in the cluster’s dynamics. The model provides preliminary
evidence of the nature of peeling stochastic processes. Subsequently, the model predicts
that the membrane and the bond population in clusters with sufficiently many bonds
under rebinding, fluctuate near equilibria predicted by the deterministic approxima-
tion. The average population and extension of bonds are shown to be largely inversely

correlated, using a wavelet-based semblance method.
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CHAPTER 1

Introduction

THE LIFE of our bodies is a symphony of as many as 10'® individual cells, grouped
into around 200 different cells types with distinct, specific functions, of which nearly
half are involved in adhesive interactions [4]. These can influence the shape, adhesion
and migration of cells, which in turn are essential elements for many important phys-
iological processes such as morphogenic movements, metastasis, tissue formation and

maintenance [77], inflammation [2], or wound healing [51].

Cellular adhesion consists of the specific binding of a cell to a surface, the extracellular
matrix or another cell using surface ligands called cell adhesion molecules (CAMs). These
molecules recognize each other and bind specifically on a key-lock principle, the two
binding sides being called receptors and ligands [4]. CAMs are of vital importance for
biological life and they appear in most organisms, from bacteria and viruses to human
beings. Plant cells also associate with their neighbours not only through interactions
between their cell walls, but also through specialized junctions between their plasma

membranes [4, 9, 24].

Adhesion of cells occurs at specialized sites spread over the plasma membrane, where
clusters of specific ligands physically link the extracellular transmembrane adhesion
receptors to intracellular structural and signaling proteins. The clusters exhibit a great
diversity of structures and functions. They generally have to function under consider-
able mechanical force which can be exerted from outside or from within the cell and is

known to influence the stochastic formation and rupture of bonds [10].

This thesis concerns the mathematical modelling of the stochastic adhesion of biolog-
ical clusters under force. The applications motivating this work are presented in §1.1.
The biological background is reviewed in §1.2. In §1.3 we overview existing modelling
approaches for cell adhesion. In §1.4 we discuss some mechanical details of modelling

the cell membrane. The organization of the thesis chapters is detailed in §1.5.
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Figure 1.1: Leukocyte adhesion cascade: http://bme.virginia.edu/ley/.

1.1  Motivation

Innate immune response and the leukocyte adhesion cascade

Adhesion plays a key role in the leukocyte adhesion cascade, which is a crucial step in
the innate immune response of our body to an infection. When a tissue is invaded by in-
fectious micro-organisms, it generates specific signals attracting leukocytes (which usu-
ally patrol throughout our organism in order to eliminate potentially harmful agents
or dead cells) to escape from the blood vessel towards the site of infection. The pro-
cess occurs mainly in the post-capillary venules, where haemodynamic shear forces are
minimal due to small radius (usually 8 — 100 ym), and can be understood in several
steps including chemoattraction, rolling adhesion, tight adhesion and (endothelial) transmi-

gration, as presented in Fig. 1.1.

During the “chemoattraction” step, upon recognition of and activation by pathogens,
resident macrophages in the affected tissue release cytokines such as interleukins (IL-1),
tumor necrosis factors (TNF-a) and chemokines. IL-1 and TNF-a cause the endothelial
cells of blood vessels near the site of infection to express cellular adhesion molecules,
including selectins. Circulating leukocytes are localized towards the site of injury or

infection due to the presence of chemokines.

In the “rolling adhesion” phase, carbohydrate ligands on the circulating leukocytes
bind to selectin molecules on the inner wall of the vessel with marginal affinity. The

white cells present in the blood flow, having a typical velocity of several hundreds of
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pum/s, are then tethered through selectin ligands borne by their membranes and they
begin rolling with 50 to 100-fold decreased velocity due to the rapid formation and

dissociation of selectin-ligand bonds [4, 15].

A “firm adhesion” phase follows, that results in the complete cell arrest due to an in-
teraction between integrin receptors (on white cells) and ligands such as ICAM-1 on
endothelial cells. The chemokines released by macrophages activate the rolling leuko-
cytes and cause surface integrin molecules to switch from the default low-affinity state
to a high-affinity state. The activated integrins bind tightly to the complementary re-
ceptors expressed on endothelial cells, with high affinity, causing the immobilization

of the leukocytes, despite the shear forces of the ongoing blood flow [24].

The last step in this succession is the “transmigration”. The cytoskeletons of the leuko-
cytes are reorganized in such a way that the leukocytes are spread out over the en-
dothelial cells. In this form, leukocytes extend pseudopodia and pass through the gaps
between endothelial cells. The leukocytes secrete proteases that degrade the basement
membrane, allowing them to escape the blood vessel in a process known as diapedesis.
Once in the interstitial fluid, leukocytes migrate along a chemotactic gradient towards

the site of injury or infection [24].

Recent papers have also identified additional steps in the adhesion cascade such as
slow rolling, adhesion strengthening, intraluminal crawling, paracellular and transcel-

lular migration [88].

Pathologies

Adhesion molecules contribute to normal biological processes and disease states such
as cancer (invasion and metastasis), inflammatory disorders (rheumatoid arthritis and au-
toimmune diabetes) and cardiovascular diseases (heart attack and stroke) [93]. Palacios
et al. have proven that breast cancer could be identified by relations between the ex-
pression of the P- and E-cadherins [107], while tumor cell progression and metastasis
were found to be dependent on the ability of a tumor cell to adhere to the proteins of
the extracellular matrix and survive at the distant location [29]. Recent studies have
shown that understanding the ability of the integrins in fibroblasts to interact with the
extracellular matrix, apply force and remodel the matrix, may provide better insight
into the pathology of diseases such as fibrosis and cancer that are commonly associated

with aberrant integrin signaling and matrix formation [60].
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Drug development

Adhesion has also found applications in drug design, where it is manipulated to pro-
duce agents with strong recognition and affinity to specific markers on cancer cell surfaces, as
suggested by Kortt ef al. [81]. In chronic inflammatory diseases, the CAMs include E-
selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1
(VCAM-1); they serve to slow and ultimately arrest leukocytes and may overreact to
such a degree that their activity itself becomes harmful. Pharmaceutical agents reduc-
ing the induced expression of one or more of the cell adhesion molecules are expected
to attenuate the inflammatory process [58, 86]. The adhesion cascade is halted when-
ever any of the mentioned steps is suppressed [4, 15], generating severe infections.
Active control of the adhesion of viruses to host cells to reduce viral replication rate,

using specifically engineered drugs, was achieved by English & Hammer [63].

1.2 Biological background

1.2.1 Adhesion molecules and clusters

First steps in cell adhesion

Moscona’s experiments from the early 50’s, where disrupted chick embryos regained
their initial shape, brought to light the existence of cell adhesion molecules [100]. Us-
ing the single molecule experiments available since the mid-80’s, it was found that
CAMs bear highly diversified molecular, structural and topological properties. Even
at present we can notice new molecules, mechanisms and functions that are continu-
ously emerging, and there are novel technologies that allow a more detailed study of

all these.

Main classes of adhesion molecules

The CAMs can be divided into four major groups: selectins, integrins, immunoglobulins
(Ig) and cadherins, sketched in Fig. 1.2. They are embedded in the membrane that
surrounds the cell, and most have sections that are extracellular, transmembraneous,
and intracellular. The length of the extracellular domain of the molecule is typically
2 — 50 nm, the transmembrane domain is typically 6 — 8 nm in length, roughly the

thickness of the membrane [66].

The selectins represent a class of cell-surface CAMs that mediate the adhesion between
leukocytes, platelets and endothelial cells under blood flow in the vascular system. The

selectin family is made up of three members: L-selectin (expressed on leukocytes), E -
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Figure 1.2: Sketch of classical CAMs, as depicted in [66].

selectin (expressed on endothelial cells) and P-selectin (expressed on platelets) [9, 24].

The integrins are a large family of CAMs, able to bind to a large variety of ligands and
being key mediators for the cell-matrix adhesions. An example is the formation of the
stable adhesions in leukocyte arrest, in which integrins on the surface of leukocytes
bind to intercellular adhesion molecules (ICAMs), which are members of the Ig super-

family, expressed on the surface of endothelial cells [9, 24, 71, 72].

The immunoglobulin superfamily (IgCAMs), consists of glycoproteins mediating either
cell-cell or cell-matrix adhesions during early development and in the adult period.
Members of the Ig superfamily can mediate both heterophilic (e.g. with integrins) and
homophilic interactions - in which an adhesion molecule on the surface of one cell binds
to the same molecule on the surface of another cell. For example, the homophilic bind-
ing between N-CAMs (Ig molecules expressed on nerve cells) contributes to the forma-
tion of selective associations between nerve cells during their development. There are
more than 100 members of the Ig superfamily, which mediate a wide variety of cell-cell

interactions [9, 24].

The cadherins can be classified into four main subfamilies: classical cadherins, desmo-
somal cadherins, protocadherins and cadherin-like proteins. There are about twenty
types of classical cadherins, such as N-cadherin (neural cadherin), R-cadherin (retinal),
VE-cadherin (vascular endothelial) and P-cadherin (placental cadherin) that mediate
selective adhesion of other cell types [79]. Cadherins are also the main responsible for
the formation of stable junctions between cells in tissues and they play a fundamental
role in cell-fate regulation and development. For example, homophilic interactions be-
tween E-cadherins lead to the selective adhesion of epithelial cells to one another. In
addition, the protocadherins are expressed in the central nervous system where they

seem to play a role in neuronal synapses adhesion [4, 9, 24].
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There are also new types of surface protein increasingly involved in cell adhesion and
whose functions are still far from being understod. This is the case for the heparan
sulfate proteoglycans (HSPGs), which mediate a variety of cell-cell, cell-matrix and cell-
microorganism adhesions, and the metalloprotease-disintegrins (ADAMs) involved in

processes as myogenesis, neurogenesis and sperm-egg adhesion and fusion [9].

Collective behaviour of adhesion molecules

Cell-cell interactions in which the cytoskeletons of adjacent cells are not linked to one
another are called transient. Important examples of transient interactions can be found
between the cells of the immune system, in the leukocyte adhesion cascade, and they

are generally mediated by selectins, integrins, and members of the Ig superfamily [24].

When adhesive interactions also involve cytoskeletons of cells they are called stable
junctions, and they are divided in four groups. The first two are the adherens junc-
tions and desmosomes, where cadherins or related proteins (desmogleins and desmo-
collins) are linked to actin bundles and respectively intermediate filaments [4, 9, 24].
The specific adhesive properties of desmosomes led to the introduction of the term

hyper-adhesion [51].

Initially wrongly described as apparent fusion between the outer leaflets of plasma
membranes, tight junctions are the closest known contacts between adjacent cells and
form seals that prevent the free passage of molecules (including ions) between the
cells of epithelial sheets. Gap junctions serve as direct connections between the cyto-
plasms of adjacent cells. They provide open channels through the plasma membrane,
which allow ions and small molecules (less than approximately a thousand daltons
~ 1.66 x 10~ kg) to freely diffuse between neighboring cells, but prevent the passage
of proteins and nucleic acids. Most cells in animal tissues - including epithelial cells,
endothelial cells, and the cells of cardiac and smooth muscle - communicate by gap
junctions. In electrically excitable cells, such as heart muscle cells, the direct passage of
ions through gap junctions couples and synchronizes the contractions of neighboring
cells [24].

1.2.2 Processes regulating the adhesive properties of clusters

The adhesion of cells in a fluid environment is complicated by the multitude of biolog-
ical structures, chemical reactions or physical mechanisms, all of which can regulate,

inhibit or facilitate the stochastic formation and rupture of bonds.
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Cell motion

The specific motion of cells can significantly influence the pattern of the adhesion be-
tween cells and a substrate. In the rolling stage of the leukocyte adhesion cascade, the
formation and breaking of molecular bonds happens at the front and at the back of the
contact region between the leukocytes and the endothelium [15, 115], enabling the cells
to resist the haemodynamic forces and to roll on the vessel wall. As mentioned earlier,

this step is mediated by CAMs from the selectin family.

Cell membrane deformations

Deformation of cells affects the area of contact between the cell and the substrate, the
number of bonds that can form, hence the adhesive forces. An example in this sense
is the transition from the rolling to the arrest of the leukocytes in the leukocyte adhe-
sion cascade [4]. As suggested by Fig. 1.1, cell’s arrest may be caused not only by the
stronger integrin bonds, but also by the leukocyte’s deformation which allows an in-
crease in the number of adhesive bonds. Other receptors able to exert forces onto the

cell’s structure are the desmosomes, which help cells resist shearing forces [51].

1.2.3 Experimental techniques

CAMs are tiny and delicate objects, subject to pN forces and nm displacements [15],
so accurate measurement of the physical properties of individual bonds had to wait
for the discovery of appropriate instruments. Current single-molecule manipulation
capacity spans six orders of magnitude in length (10~!° — 10~* m) and force (10~1* —
1078 N) and gives new insight into previously ignored features such as rupture force,
or force spectra, providing a measure of bond energies, lifetimes, and more recently,
entire energy landscapes [15, 16]. Viscoelastic properties can also be measured on short

length scales and in small volumes, such as within cells [103].

Adhesion bonds in cells usually have to operate under force. To understand the be-
haviour of adhesion clusters it is thus vital to investigate bond failure under an applied
force, this being the main idea of the dynamic force spectroscopy (DFS) [41, 103]. This
technique has been used in the study of many important biological bonds including
biotin-avidin, integrin [89], cadherin [8, 109] and selectins [40, 42, 48]. Typically, one
end of the molecule under study is attached to a surface, while the free end is attached
to a device through which force is applied. This setup inspired many models analyzing

the stochastic detachment of surfaces connected by clusters of bonds.
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Figure 1.3: (a) Scheme of an AFM experiment of the forced unbinding of receptor-ligand bonds.
(b) Sketch of a biomembrane force probe (BFP) experiment [42]. The biotinylated red blood cell
is an elastic element which carries a microbead to which the ligands are attached. The bead on

the right is held by a second pipette and is functionalised with the receptors.

Single bond experiments

Ideally, the bonds at the surface and at the probe should specifically bind the ends of
the molecule, support infinite loads and not affect the mechanical or biological prop-
erties of the attached molecule [103]. However no such thing happens in the complex
biological situation, and it is generally difficult to interpret the data from applied force
experiments. The elastic structure of the cell cytoskeleton yields a non-trivial stress-
strain relation [12], which makes it difficult to exert force on adhesion sites in a con-
trolled way. Also, cells react to external stresses and adhesion clusters change their
structure under the influence of applied force, as has been proved by Riveline [120].

The solution is then to examine mechanical properties in single molecule experiments.

The atomic force microscopy (AFM) experiments on biotin-avidin bonds by Gaub and
coworkers [101], enabled the investigation of forced unbinding of single molecules.
Avidin can bind four biotin molecules with an unusually high binding energy of around
20 kpT. After the biotin-coated tip of an AFM-cantilever is stuck to the biotinylated
agarose bead surface and the ligand-receptor pair is bound, the soft, elastic cantilever
tip is retracted at a constant speed with piezo elements leading to a linear increase of

force on the bond with separation, as illustrated in Fig. 1.3 (a).

The biomembrane force probe (BFP) is a popular technique developed by Evans et al. in
1991 [37], and has the possibility to measure bond-forces of only 5 pN with loading-
rates from 0.05 — 60 nN /s (in contrast to the AFM measurements, where the measured
bond-forces were around 100 — 300 pN). In the BFP, the CAMs are carried by a mi-
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Figure 1.4: BFP tip-substrate distance and force versus time for cycles of approach-touch-
separation with formation and rupture of a bond. (a) Loaded at extremely slow rate, a bond
held the tip to the surface for 24 s and broke at ~ 3 pN as the piezo retracted the transducer
(dashed trajectory). The fluctuations in tip position (solid curve) were due to thermal excita-
tions of the BFP. Stretch of the PEG polymers that linked the bond to the glass surfaces is shown
by the slight upward movement (~ 15 nm) under force before detachment. (b) Loaded at ex-
tremely fast rate, a bond held the tip to the surface for ~ 0.003 s (spike in force) and broke at
~ 170 pN as the piezo retracted the test surface (dashed trajectory). The force fluctuations were

due to position uncertainties and BFP stiffness (see Merkel et al. [95]).

crobead and then attached to a lipid vesicle or a red blood cell as sketched in Fig. 1.3 (b).
The vesicle is aspirated in a micropipette at large aspiration pressure. The ligands are
carried on a second bead which is directly held by a pipette. Single molecule binding
is achieved by using a very small concentration of receptors. The sketched spring indi-
cates that the red blood cell behaves to a very good approximation as an elastic spring.
The force constant is determined by the tension of the vesicle which is directly deter-
mined by the aspiration pressure in the pipette [96]. The separation of the vesicles is
analyzed under a microscope, and video is recorded to calculate the rupture force. In
addition, receptor and ligands may be attached to their substrate through elastic teth-
ers, usually polymeric linker molecules. It was shown that generally, a linear relation
between displacement and force on the bond results. The most common loading pro-
tocol is the linear ramp of force in which the transducer is retracted at constant speed

and force increases linearly in time with a constant loading rate [38].



CHAPTER 1: INTRODUCTION

(@ 0050 A (b) 200 ¢ AFM
Force & Strentavidi
®N) 300 5 Streptavidin

g | 150l A Avidin

S 0025/ 200 -
g - 2

i o 100+t
[&]
]
10° f -

) 50t

Loading rate 100 O___Q,‘.Jln..--.k‘l

(PN s7") 102 1 1210t 100
Loading rate (pN s7")

Figure 1.5: Biotin-streptavidin bond strengths. (a) Force histograms from tests of single biotin-
streptavidin bonds demonstrate shift in peak location and increase in width with increase in
loading rate. Gaussian fits used to determine the most frequent rupture force or bond strength
are shown. As 0y increased from +1 pN at the slowest rate to 60 pN at the fastest rate, the
standard error in mean force (the statistical measure for error in strength) ranged from £0.3
pN to 5 pN. (b) Dynamic strength spectra for biotin-streptavidin (circles) and biotin-avidin
(triangles) bonds. Consistent with the high-strength regime is the biotin-streptavidin strength
(x AFM) measured recently by atomic-force microscopy (AFM) (see Merkel et al. [95]).

Fig. 1.4 shows results of BFP experiments on biotin-avidin bonds from the paper of
Merkel [95], in which the loading rate kfvt was changed over several orders of mag-
nitude by setting the BFP force constant k; in the range 0.1 — 3 pN nm~!, and piezo
retraction speed v; in the range 1 — 20000 nm s~ !. The time dependence of the piezo
displacement and force in a typical experiment, is obtained for small (Fig. 1.4 (a)) and
large (Fig. 1.4 (b)) loading rates. The experiment consists of three steps. Initially the
binding sites are pressed together to facilitate binding. Then the pipette carrying the
microbead with the ligands is retracted and the force increases linearly until it vanishes
as the bond breaks. The elasticity of the transducer and the linker molecules holding
the adhesion bonds has an important influence on the interpretation of the results, be-

cause it determines the actual loading rate on the bond [39].

The time-scale for bond rupture decreases with the increasing loading rate while the
rupture force increases Fig. 1.5 (a). Also, the histograms show a sharp peak at small
forces for slow loading and a broad distribution with a maximum at large forces for fast
loading. The dynamic force spectrum depicted in Fig. 1.5 (b), plots bond strength as
function of the logarithm of loading rate and shows a sequence of linear regimes with
increasing slopes for biotin-avidin and biotin-streptavidin, respectively. This points to
the presence of three and two energy barriers along the unbinding pathway, respec-
tively [95].
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In the same general DFS framework, along with the AFM and the BFP, other techniques
have been applied to exert forces on single molecules and investigate bond strengths,
e.g. laser optical tweezers (LOT) [76], magnetic tweezers [130], and more recently inter-
molecular force microscopy (IFM) [136]. In LOT experiments the molecules are tethered
to a dielectric bead which is trapped in the force field of the focus of a single laser beam.
Force is exerted on the adhesion bond by moving the bead with the laser beam. This
technique was applied to measure force-extension curves of the muscle protein titin
[76]. Magnetic tweezers use paramagnetic beads instead of dielectric ones which are
held in a magnetic force field and used in the same way as optical tweezers. They have
been applied, e.g. to investigate DNA elasticity [130]. The IFM was reported to give
signal-to-noise ratios 30-fold higher than the AFM, with force resolution to the sub-
picoNewton level and response time of sub-millisecond level by using a flexible glass
microneedle. This was used to analyze the different bound states of paired nectin and
cadherin molecules, where each bound state was found to have a unique lifetime and
bond length [136].

Experiments on adhesive clusters

The use of DFS in the analysis of biological clusters was attempted in a study related to
the binding of T-lymphocytes and human umbilical vein endothelial cells (HUVECs),
which is mediated by several types of adhesion molecules such as E- and P-selectins, in-
tercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-
1) [145]. An analytical treatment of the behaviour of multiple bonds in DFS experiments
was recently proposed by Willliams [144], where zipper and parallel loading scenarios
are considered and analyzed with the aid of Poisson statistics. However, the collective
behaviour of clusters of biological bonds is still far from being understood and serious

effort is currently made in this direction.

The binding properties of molecular bonds can also be investigated with flow chambers,
where a receptor-bearing cell or particle is driven along a ligand-coated surface in a
laminar shear flow. Using a very dilute concentration of ligands on the wall allows one
to observe transient adhesion events which are mediated by single adhesion bonds.
Such attempts led to the first known experimental single bond rupture, performed by
Harry Goldsmith in 1986 [135], and then used by Alon et al. for the study for leukocyte
rolling [5]. Changing the flow velocity, or the viscosity of the fluid, allows the control
of the force acting on these bonds. The advantages and limitations of this method have

been exposed in the recent review of Bongrand [16].
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Recent experimental advances

In a different approach, multi-wavelength X-ray diffraction methods were used to obtain

the specific structure of ligand-receptor pairs with dngstrem precision [54].

However, despite of the accuracy of the measurements, recent research emphasized
that a proper calibration of the instruments requires a deeper theoretical understanding
of the experimental setup, as suggested by Nassoy [102]. Such detailed theoretical
analyzes have been recently done by Heinrich for BFP experiments [68], and by Clarke
et al. for AFM experiments [20].

1.3 Modeling cell adhesion

Knowledge about single bond behaviour under force has to be integrated into an ap-
propriate description of adhesion clusters of multiple bonds under force, where the
particular details of the situation (rebinding of ruptured bonds, number of bonds in-
volved, loading scenarios, hydrodynamic effects, membrane mechanics and cell dy-
namics) become important for the formulation of an appropriate model, ideally en-

compassing both deterministic and stochastic effects.

1.3.1 Individual bonds: model and rupture

As found by the BFP experiments of Evans & Ritchie [38], the maximum force that a
single bond can withstand not only depends on the physical properties of the bonds,
but also on the loading rate by which the bond is probed.

Bond models

The cornerstone in modelling cell adhesion is the appropriate description of single
bonds. Inspired from the properties of generic polymers and confirmed in various
experiments involving a number of adhesion molecules, the elastic spring model gives
a good approximation for the complex behavior of the adhesion proteins, and also cap-
tures the effects of force and displacement in the dynamics of the cluster [87]. Refined
versions of the linear spring behaviour of clusters, including a multiple-spring model

for the receptor-ligand interaction have also been considered by Schwarz et al. [126].

Anticipated in 1988 by Dembo [28], catch-bonds exhibit an increase in lifetime under
applied force. The existence of the first catch-bond was revealed 15 years later, by
the experiments on selectin-mediated bonds under low force performed by Marshall et

al. [94], while in 2008, a group lead by Sokurenko proved that catch-bond properties
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Figure 1.6: (a) Energy landscape U*(x) along the 1D reaction coordinate x*. Rupture and re-
binding of molecular bonds correspond to transitions of the Brownian particle (black dot) over
the transition state barrier. The bound state (“closed bond”) at x( is separated by the transi-

tion state barrier at x} from the unbound state “open bond”). (b) Original potential U*(x) tilts

under force with the addition of a new potential —F*x*.

are likely widespread [132]. It was suggested to call slip bonds the molecular bonds
which (as expected) display a shorter lifetime under disruptive forces. Studies by the
teams of Evans and Hammer [40, 42, 65] suggested that the catch behaviour could also
be induced by the way force is applied, since the same molecules can exhibit both
catch and slip behaviour for different force (or shear) regimes [7]. Other models for
the behavior of CAMs, such as worm-like chains [35], or non-Hookean elastic springs

(FENE) models used in the study of polymers [47], have been proposed.

Stochastic rupture of single bonds under force

The stochastic dissociation of single bonds under force is a key issue in cell adhesion.
Most commonly used models for bond adhesion assume that receptors and ligands are

elastic springs which interact via a reversible chemical process

ks
Receptor + Ligand < Bond (1.3.1)

on

to form bond complexes, themselves having spring-like properties, where k;,, and kg
are the forward and reverse reaction rates. Using a thermodynamic approach, Bell [10]
and Dembo et al. [28] proposed two such models based on the interaction energies

between free, bound and transition states.

A breakthrough was made by Bell in the late 70’s [10]. He estimated that the force re-

quired to separate two cells is much greater than the expected electrical forces between
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cells, and the reaction rates for membrane-bound reactants would increase exponen-

tially when force is applied, as in
of(F") = koexp(F*/Fy), (1.3.2)

where k) is the individual bond off-rate in the absence of force, F* the applied force
and Fy = kpT*/x; a force scale for bond strength (kg the Boltzmann constant and T*
the absolute temperature), where x; represents a unit displacement along the rupture

coordinate (a typical scale in (1.3.2) being Fy ~ 4 pN, for xj ~ 1 nm).

The above rate was obtained by describing the rupture of bonds in the framework of
Kramers’ theory [67, 82, 138], as a thermally activated escape from a potential well. The
main idea behind this approach is to replace the various states of a molecule (in adhe-
sion closed and open bonds) with a “reaction coordinat” x*, representing the distance
between both fragments. Assuming the bond molecule undergoes Brownian motion in
the x*-direction, the rupture of biological bonds can be modelled as the escape of the

particle sketched in Fig. 1.6 (a), from the potential well of coordinate x.

An imposed dissociating force F* modifies the initial energy landscape to U*(x*) —
F*x*. If the barrier is very sharp, its height Ej reduces in proportion to the product of
F* and the “reactive compliance” x; = x{ — xj, where x and x are the coordinates of
the bottom of the well and the barrier. For sharp transition barriers, Kramers’ theory
applies and the particle has to jump over a barrier of height E; — F*x}, as sketched in

Fig. 1.6 (b). In the notation of [38], the rupture rate under force is

« _ ox —(ER—F*x%)/kgT* _ % ,—E}/kgT* ,;F*x3/kgT* _ 1% ,F*/F}
off = VDE (Ep 5) =vpe "B e B =kpe” 70,

so formula (1.3.2) is obtained, where v}, has the dimension of an inverse time and is

determined by the shape of the potential.

The one-step model for single bond rupture under force was generalized and put in a
firm theoretical basis by Evans and Ritchie [38] for barriers of finite width, where the
shape and the position of bound state and barrier changes with force. This leads to a
algebraic force dependence of v}, and to corrections in the dependence of the barrier
height on F*. Despite its simplicity and the flaws generated by its use in inappropri-
ate situations [125], Bell’s model is still widely used with good results. At present,
intensive effort is made to establish a theoretical base for the rupture of single bonds,

accounting for different bounding states and protein unfolding.

Dembo et al. [28] refined the model proposed by Bell [10], for the transition rate of
Hookean springs under force, and obtained the formula
K* —Kpg

s(F*) = Ky exp { [’;T S (Lys — L") F* + W(P*)2] /kBT*}, (13.3)
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where L* is the unstressed bond length and «* its stiffness, and the subscript TS de-
notes “transition state”. The association rate is derived through an affinity coefficient
ka = k. /Ky, which represents the relative chance of a bond forming or breaking and
is assumed to form the Boltzmann distribution. Dembo’s model for the transition rate

of Hookean springs under force predicts a rate

*\2
ki (F*) =k (0) exp ( - 21£ka)T*>, (1.3.4)

where £} (0) is the binding affinity in the absence of force. In particular, for «}¢ = x*,

from (1.3.4) one recovers Bell’s formula (1.3.2) for an elastic spring
;"ff(F*) = kyexp{[(Lts — L") F*]/kgT"}. (1.3.5)

Writing the force exerted on the bond as F* = «*(h* — L*), and substituting L7¢ = L*

in (1.3.4), one obtains the most common version of Dembo’s rate
* * * Kpg — K * *\2
() = kjexp <EIS<T (h* — L") > (1.3.6)

More models used in bond kinetics are reviewed in [146].

1.3.2 Clusters

Most dynamic interactions between cells and substrates involve clusters of 2-100 adhe-

sion molecules [15], which collectively share the mechanical load.

Bond population structure and position

A first problem in the study of clusters is to select the types of bonds involved. Most
models consider homogeneous populations bond populations, and depending on the
simulated experiment, bonds can be parallel to the direction of the force [31, 35, 49] (as
for the DSF experiments), or they can be tilted to an angle [115] (as in the case of flow
chambers). If two different species of adhesion bonds are present in the membrane, e.g.
with different length, the membrane has to bend between two unlike adhesion bonds.
This additional energy for bending can induce different dynamic regimes with clearly
distinct patterns of stickers and repellers at intermediate times separation between the

different species of molecules, as suggested by theoretical analysis from [143].

Mechanical loading scenarios

Of the same importance is the distribution of force between the bonds of the cluster. Ex-
periments performed on heterogeneous clusters suggested that the pulling force may

not be distributed evenly among the bonds [145], and this may be the reason why
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Figure 1.7: Loading scenarios for adhesion clusters. The direction of the force is indicated by
arrows. (a) parallel bonds, (b) serial bonds (c) unfolding bonds and (d) zipper-like arrangement

with sequentially loaded bonds [36].

most models involve homogeneous clusters. Multiple bonds can act as cooperative
(simultaneous breakage) bonds in cadherin or as uncooperative bonds (bonds rupture
sequentially) in nectin [136]. Another difference of clusters compared to single bonds
is that the bonds can be loaded to different extents (sometimes even a fraction loaded
while the rest unloaded) and that rebinding of broken bonds becomes important, being

facilitated by the remaining intact bonds which keep the binding sites in close vicinity.

In regard to the distribution of force between the bonds and the behaviour upon bond
breakage, different loading scenarios can be distinguished for multiple bonds as shown
in Fig. 1.7. In the case of parallel bonds depicted in Fig. 1.7 (a), the force is redis-
tributed among the intact bonds but the cluster as a whole remains intact until the last
bond breaks. This scenario can be applied for diverse cellular adhesion clusters and
for many DFS experiments on multiple bonds. Serial bonds sketched in Fig. 1.7 (b), in-
dividually feel the force applied to the whole chain and the breakage of the first bond
disrupts the whole cluster as in the case of protein filaments such as actin. In the case of
unfolding presented in Fig. 1.7 (c), bond breakage only extends the chain and the load-
ing process starts anew, as in the case of proteins like the muscle protein titin in which
several folded protein domains unfold and extend upon loading. In the zipper-like
arrangement shown in Fig. 1.7 (d), the first bond of the chains is subject to the whole
force and as soon as it breaks, the next bond is loaded. This model can be used as a
model for RNA or DNA unzipping [90], or to examine the peeling of a cell off a surface

[70]. In general (and for more dimensions), combined scenarios are conceivable.
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Association and dissociation of bonds in a cluster

Dissociation and association dynamics of parallel adhesion clusters was first discussed
by Bell [10]. Although it is clear that force leads to accelerated cluster dissociation, it
is usually not known how it is distributed over the different closed bonds in different
situations of interest. In many cases, most prominently in rolling adhesion, only a few
of the different bonds are loaded to an appreciable degree, thus dissociation occurs in
a peeling fashion [28, 62]. However, due to geometrical reasons, even in this case there

will be a subset of bonds which are loaded to a similar extent.

Factors as the initial number of closed bonds, the physical properties of the bonds (rest
length, elastic constant, affinity, extensibility), the local geometry (flat or curved sur-
face), the membrane properties (rigid or elastic) and the binding range (constant or
variable) have a significant influence on the association rates for clusters, which in turn

have a deep impact on cluster’s lifetime and stability [10, 31, 35, 38].

1.3.3 Mechanical details of the models

Hydrodynamics

Because of the scales involved in cell adhesion, we generally deal with low Reynolds
number flows, so there is negligible inertia [114]. The first to introduce hydrodynam-
ics to the problem of cell adhesion were Hammer & Laffenburger [61], who exploited
classical solutions (Goldman, Cox & Brenner [55, 56]) for the force and torque on a
smooth rigid sphere rolling in a shear flow over a flat plane at zero Reynolds number.
They balanced hydrodynamic forces on the cell with adhesive forces arising from dis-
tributed bonds in a small region at the base of the cell, close to the plane, employing
Bell’s (1978) kinetic model, to determine the number and strength of receptors required
for adhesion. The membrane-fluid-surface interaction is usually addressed using thin
film theory, and non-linear drag forces arise [70]. A non-zero slip boundary condition for
the fluid-substrate interaction could eventually be considered [142], since the widely
used no-slip boundary condition is not very suitable for modelling submicron and es-
pecially nanoscale flows, while surface roughness is another issue one should account

for [139], when modelling cell adhesion.

Membrane mechanics

The adhesive behaviour of cells or capsules in a liquid environment is complicated by
their mechanical properties like bending stiffness or shear elasticity, as highlighted by
e. g. Pozrikidis [112, 113], Hodges & Jensen [70], or Reboux et al. [116]. As a result,
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the members of the biotechnology community are now examining the mechanics of
thin elastic shells under contact forces (a well known topic in civil and mechanical en-
gineering), and recently, many man-made micro- or nano-capsules have found a wide

range of industrial applications [116].

In BFP experiments, the lipid vesicles are typically under strong tension and often,
the vesicles are only used as elastic force transducers while the bonds are attached to
rigid microbeads. At the same time, adhesion receptors in clusters are densely packed
(relative distances are in the range of nm) and are attached firmly to the cytoskeleton
of the cell. Therefore, effects of membrane fluctuations are small and can be neglected
in the context of tight adhesion clusters (cadherin-mediated, for example). However
the situation changes in the case of transient bonds and different models analyzing the
peeling [28, 70] (where bending and stiffness of the membrane are key parameters) or

rolling of leukocytes [70, 115] have been proposed.

The most commonly used models for membranes with negligible bending stiffness are
discussed by e.g. Risso & Carin [119] or Wan et al. [140], but experimental validation
proved a very difficult task as shown by Smith et al. [131]. A more in-depth review of

cell mechanics is presented in [116].

1.3.4 Deterministic models for the dynamics of bonds in a cluster

In addition to the rupture rate (1.3.2), Bell also proposed a deterministic model for
the non-equilibrium dissociation of adhesion clusters under force [10]. He emphasized
that “a little patience will suffice” for individual biological bonds to rupture even in the
absence of force, but the situation changes dramatically if the bonds are linked together
in a cluster, because the probability for all the receptors to be simultaneously unbound
is very small. The equilibrium properties of adhesion clusters under rebinding were

also discussed in [10].

Thermodynamic models

Soon after, a series of thermodynamic models for describing adhesion between two cells or
between a cell and a surface was developed by Bell et al. [11], integrating details about
the complementary receptors on the two surfaces (e.g. lateral mobility, heterogeneity,
total number per cell), the cell-cell bridges that mediate adhesion (e.g. spring constant,
length, binding constant), the repulsive forces between cells (e.g. compressibility of the
glycocalyx, thickness of the glycocalyx, lateral mobility of the glycocalyx), and notions
about the purely geometrical parameters of adhesion (e.g. maximum contact area, total

surface areas of the two cells, heterogeneity vs. uniformity of contact distance). A
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strong limitation of thermodynamic models is that they say nothing about the kinetic
process involved in reaching equilibrium. The deterministic Bell-model has also been
extended by Seifert [127, 128] to treat the linear loading of a cluster of adhesion bonds,

which usually is applied in DFS experiments.

Point attachment model

The framework proposed by Bell was used to analyze leukocyte rolling in shear flow by
Hammer et al. in 1987 [61], in a model referred to as the “point attachment model”
because it considers the contact area between the cell and the surface to be a small,
homogeneous region that mediates the initial attachment of the cell to the surface. The
cell is modelled as a rigid sphere and the receptors at the surface of the cell are as-
sumed to convect and to diffuse into the contact area. The main finding is that the
adhesion parameters, such as the bond formation rate, the receptor-ligand affinity, the
fluid mechanical force, the receptor mobility, the number of receptors and the contact
area may significantly enhance the peeling of the cell from the substrate. A key result
is that there are two regimes in which different chemical and physical forces domi-
nate: increasing bond formation rate means fewer receptors are required for adhesion
at a fixed dimensionless dissociation constant, and an increasing dissociation constant

means more receptors are required for adhesion at a fixed bond formation rate.

Membrane peeling

A famous model for the behaviour of bonds under force was proposed by Dembo et
al. [28], who found different expressions for the binding rates, assuming that the dif-
ferences between the transition state and the bonded state illustrated in Fig. 1.6, can be
described by a change in the spring constant only, as seen in (1.3.3). He also used the
transition state theory but in the specific context of Hookean potentials. In his model,
a piece of a thin, inextensible membrane is attached to a fixed wall and a pulling force
is exerted on one end, while the other end is held fixed, in the so called “peel test”.
The attachment and detachment under force is analyzed by coupling the equations for
deformation of the membrane with equations for the chemical kinetics of the CAMs.
Dembo also related bond stress to bond strain and the chemical rate constants of the
adhesion molecules to bond strain, and derived a formula for critical tension, finally
predicting that force does not necessarily increase dissociation rate, but could actually
decrease it, postulating that applied force could entrap a dissociating ligand, in what

we call now a catch-bond. His prophecy was found to be true 15 years later [94].
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Membrane spreading and peeling

On the same vein, a detailed analysis of spreading and peeling interactions between cells
and substrates, mediated by clusters of bonds was performed by Hodges & Jensen in
2002 [70]. The cell is modelled as an extensible membrane under tension containing
fluid of constant volume. In the rapid binding kinetics regime, the authors model the
sedimentation of the cell onto the plane under adhesive forces (spreading), followed by
removal of the cell from the plane under the action of an external force (peeling), using
lubrication theory to describe the the thin-film flow between the cell and the plane. It
is shown that these events are dominated respectively by quasi-steady spreading and
peeling motions. Also, a relation between cell rolling speed and shear rate is deter-
mined: at low speeds it is linear and independent of the viscosity of the suspending

fluid; at higher speeds it is nonlinear and viscosity-dependent.

Bond tilting and sliding friction

A continuation of this work was done by Reboux et al. [115]. The cell adhering to a
biological interface is modelled as a rigid cylinder moving in a viscous shear flow near a
wall. Adhesion forces arise through intermolecular bonds between receptors on the cell
and their ligands on the wall, which form flexible tethers that can stretch and tilt as the
base of the cell moves past the wall. A microscale calculation (for two parallel sliding
plates) reveals a nonlinear force-speed relation arising from bond formation, tilting and
breakage. Two distinct types of macroscale cell motion are then predicted: either bonds
adhere strongly and the cell rolls (or tank treads) over the wall without slipping, or the
cell moves near its free stream speed with bonds providing weak frictional resistance
to sliding. The model predicts bistability between these two states, implying that at
critical shear rates the system can switch abruptly between rolling and free sliding,
and suggesting that sliding friction arising through bond tilting may play a significant

dynamical role in some cell adhesion applications.

Multiscale modelling: continuum approaches

An effective multiscale computational approach for the study of the adhesion of cells was
proposed by N'Dri et al. [104]. The cellular level model consists of a continuum rep-
resentation of the field equations and a moving boundary tracking capability to al-
low the cell to change its shape continuously. At the receptor-ligand level, a bond
molecule is modelled as an elastic spring. Communication between the macro/micro-
and nanoscale models is interactive during the computation. The computational model
is assessed using an adherent cell, rolling and deforming along the vessel wall under

imposed shear flows. The intracellular viscosity and interfacial tension are found to
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directly affect the rolling of a cell while the presence of a nucleus increases the bond
lifetime, and decreases the cell rolling velocity. Furthermore, it is found that a cell with
a larger diameter rolls faster, and decreases the bond lifetime. This study shows that
cell rheological properties have significant effects on the adhesion process, contrary to

what has been hypothesized in most literature.

1.4 Stochastic models for adhesion clusters

A main issue in cell adhesion is to find the right coupling between the determinis-
tic descriptions of the cell and environment with the stochastic behaviour of clusters
consisting of few bonds. Also, an important issue is to examine the accuracy of the

well-established deterministic models in the small number of bonds limit.

Limitations of deterministic models

Since the deterministic limit could only describe the dynamics of the cluster in the
large number of bonds limit (see e.g. [10], [28], [15]), a stochastic approach is required
for the study of the fluctuations in the life of small clusters. When the stochastic models
account for both rupture and reformation of broken bonds, analytical formulas are dif-
ficult to obtain, so results are explored mainly via Monte Carlo (and related) stochastic

simulation algorithms.

As in the case of deterministic models, specially designed stochastic model are also
developed to evaluate specific experiments, for example the binding probability be-
tween ligands and receptors on opposing surfaces as a function of contact time [146].
A stochastic version of the Bell-model has been introduced and studied in the large sys-
tem limit and for specific parameter values by Cozens-Roberts et al. [26], who extended
the model proposed by Dembo et al. [28] to obtain probabilities for the formation of
bonds.

Adhesive dynamics

Another important contribution of Hammer was the introduction of adhesive dynamics
(AD) in 1992 [62], a computational method to simulate the adhesion of cells to sur-
faces. The method involves solving the equation of motion for a cell, and incorporates
molecular properties such as bond kinetics and compliance. It has been successful at
simulating the dynamics of cell adhesion under flow, and for predicting how dynamic
states of adhesion follow from molecular properties. It has also been used to simu-
late virus-cell interaction, the aggregation of cells in linear flows, and the detachment

of cells from surfaces. Brownian adhesive dynamics (BRAD) was a novel technique in-
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troduced by Hammer et al. [63, 64] to simulate viral attachment to surfaces, which
coupled Brownian motion simulations and adhesive dynamics. The method is capable
of simulating multiple ligand /receptor pairs between the virus and cell, extendable to

any geometry, and to any virus/cell system.

Purely stochastic models: parallel clusters of bonds under constant and linear force

In an interesting approach towards the analysis of the stochastic dynamics of cell adhe-
sion clusters, Tees et al. [134] made use of the survival functions inspired from the the-
ory of reliability engineering of electric components and networks and the Bell model
for bond rupture under applied force. They derived closed-form expressions for the
probability distribution of the break-up time with multiple-independent or interacting
bonds (and compared them with Monte Carlo simulations), showing that the average
lifetime of n bonds scales with the n-th harmonic number multiplied by the lifetime of
a single bond. Bond reformation was not analyzed, but identified in reliability theory
as “maintained system”, while a method for addressing the non-uniform distribution

of force between connected bonds was proposed.

In several papers, Erdmann & Schwarz use a stochastic version of the Bell model to
analyze the stochastic dynamics of parallel clusters of bonds under constant [31], or
linearly ramped force [32], with rebinding. Neglecting most mechanical aspects, the
model has three dimensionless parameters: the cluster dimension 7 (total number of
binding sites), the dissociating force f (or ramping coefficient for ramped force) and
the rebinding coefficient <. The state of the system is completely characterized by the
number of closed bonds and the stochastic dynamics of the cluster are given by the

one-step Master Equation (ME):

dp
d—tk =111 P + gk_lpk_l — [Tk -I-gk]Pk, k=0,...,n; Pk(O) = Orn, (1.4.1)

where Pi(t) is the probability to have k closed bonds at time t, while r; and g repre-
sent the stochastic rupture and rebinding rates for the clusters having k closed bonds.
The ME is obtained from the analysis of the probability flux at the statesk = 0,...,n
[50, 138]. Different boundary conditions for the birth and death process involving the
bond population are considered [122, pp. 194]. An absorbing boundary condition for
the completely dissociated state for a cluster (zero bonds), is inspired from DSF experi-
ments, where receptor and ligand are usually retracted by an elastic recoil of the linker
molecules and rebinding is impossible. The state with zero bonds is called reflecting if

rebinding is still possible.

Using a deterministic approximation for the ME the authors identify the relevant scal-

ing f/n and identify three forcing regimes. In the low force regime, the cluster decays

22



CHAPTER 1: INTRODUCTION

exponentially, while in the intermediate force regime the decay is much faster and there
is a sequential rupture of bonds (in the no rebinding case). In the large force limit, the
model predicts a catastrophic rupture regime because the dissociation of the first bond

leads to the instant dissociation of the cluster.

Once the ME (3.2.2) is solved (either analytically or numerically), many relevant quan-
tities can be calculated. In the particular cases of zero force or no rebinding the ME can
be solved even analytically. In the general case with force and rebinding the authors
determine the critical force for dissociation analytically, while the solution of the ME
is computed from stochastic simulations using the Gillespie algorithm [53]. A special
focus was on the comparison between the deterministic and stochastic approximations
for the solution of the ME and it is found that the deterministic approach only works
well for low force and no rebinding, since it includes neither effects of fluctuations, nor

the effect of an absorbing boundary.

Effects of receptor-ligand distance in clusters at equilibrium

Another model proposed by Erdmann and Schwarz is used to assess the impact of
receptor-ligand distance (considered constant) on cluster stability [35]. A one-step ME
is derived which incorporates the effect of cooperative binding through a finite num-
ber of polymeric ligand tethers, of fixed length. The authors also consider Fokker-
Planck and mean field equations [50, 117], as continuum limits of the ME. Polymers
are modeled either as harmonic springs or as worm-like chains. In both situations the
authors find bistability between bound and unbound states for intermediate values
of receptor-ligand distance and calculate the corresponding switching times. For small
cluster sizes, stochastic effects destabilize the clusters at large separation, as shown by a

detailed analysis of the stochastic potential resulting from the Fokker-Planck equation.

Adhesion clusters between elastic substrates

Employing the same ME approach, Gao et al. [49] analyzed an idealized stochastic-
elasticity model of two elastic bodies joined by a cluster consisting of multiple molecular
bonds, using elastic descriptions of adhesive contact on large scales and statistical de-
scriptions of single-bond behaviors on small scales. The coupled stochastic-elasticity
governing equations were solved numerically using Monte Carlo simulations. The
aim was to investigate how the lifetime and strength of a molecular cluster are influ-
enced by the adhesion size, the bond rebinding rate, and the elastic stiffness of the cell-
substrate system. It was showed that depending on the adhesion size and the relative
stiffness of the surrounding elastic media with respect to the adhesion cluster, there is a

transition between uniform and crack-like singular distributions of interfacial traction.
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For a given adhesion size, the average cluster lifetime approaches infinity asymptoti-
cally as the applied load is reduced below a critical value, defined as the strength of the
bond cluster. Finally, the initial growth of a small cluster tends to stabilize adhesion as

a result of collective effects in a stochastic process, in agreement with [31].

1.5 Overview and structure of thesis

The aim of this thesis is to propose and validate simple models addressing the validity
of deterministic approximations, and to examine the importance of stochastic effects,
for discrete adhesive molecular clusters with few bonds, which rupture and rebinding
with rates depending on the motion of a rigid, or flexible substrate. The thesis is laid

out as follows.

Chapter 2

Here we develop a stochastic model for the evolution of a cluster of molecular bonds,
connecting a flat surface to a rigid disk moving in a viscous fluid, under the influ-
ence of an applied force. The state of the system is characterized by the number of
bonds and their extension at time t. Bonds are modelled as elastic springs under force,
which rupture under force according to the Bell formula (1.3.2), and rebind with height-
dependent rates. Between the rupture and rebinding events, the disk moves determin-
istically along curves depending on cluster population, force and drag. Bond and disk
properties are incorporated in a dimensionless drag coefficient spanning over several
orders of magnitude, which justifies a detailed treatment of the limiting cases of zero-
and infinite-drag. The model dynamics is formulated in the framework of piecewise-
deterministic Markov-processes proposed by Davis in 1984 [27, 111], and we derive
an exact stochastic algorithm for simulating individual trajectories. A deterministic

framework is also proposed.

As the model’s main purpose is the development of tools suitable for studying the
coupling between a continuous motion and the stochastic rupture and rebinding of
bonds, the mechanical details are simple. Among other limitations, the model only
accounts for the vertical motion of the disk, thin-film conditions are assumed to be
valid for the entire cluster lifetime (and beyond), and no spatial effects generated by
the rupture of various bonds (assumed identical) are considered. However, despite the
model’s simplicity, the methods we have developed allow the tackling of much more
complex problems. In this work for example, spatial effects are addressed in Chapter

5, where the bonds attached to a flexible membrane are differentially stretched.
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Chapter 3

In this Chapter we analyze the zero-drag limit, where we recover the models proposed
by Erdmann & Schwarz [31, 33], and the infinite-drag problem, which together give a
good idea about the range of cluster’s lifetime and decay profile. The time-independent
transition rates greatly simplify cluster dynamics described by a ME (3.2.2), which is
solved using analytic formulas, a Fokker-Planck equation (FPE), the Gillespie algo-
rithm and deterministic approximations. Two parameter maps give a quantitative es-
timation of the constant force and loading rate regimes predicted by [31, 33]. The ratio
f/n which fully characterizes the deterministic cluster decay, is found to have a lim-
ited relevance in the stochastic dynamics of the cluster, as direct solutions of the ME
reveal that larger clusters decay faster than smaller ones, at same f/n. However, with

rebinding, larger clusters may again survive longer for the same value of f/n.

Chapter 4

This Chapter presents the drag-induced dynamics. The patterns of disk’s detachment
under constant force and drag are summarized in a parameter map. For small drag, the
disk jumps between fixed positions, with the bonds breaking while the disk is station-
ary. In the intermediate drag regime, the bonds break as the disk moves between the
equilibria. For large drag the disk moves little, and the bonds rupture due to thermal
fluctuations. The region where the Erdmann & Schwarz model assumptions are valid
is localized near the zero-drag boundary, while the “catastrophic” failure of bonds pre-
dicted in [31], does not happen anymore in the presence of drag. The distribution of
cluster lifetimes and extension is examined using simulated trajectories. The cluster
decay profiles confirm the force and drag regimes identified earlier. Stochastic simula-
tions are validated against probability functions obtained from an analytical formula,
and we also present results involving probabilities in time and height coordinates. For
the problem with rebinding, we present a phase plane analysis of the deterministic
equation, which identifies the stable and unstable equilibria, as well as of saddle points
for the number of bonds and disk’s displacement. The second part of the Chapter is
dedicated to the study of the cluster’s dynamics under ramped force, where we iden-
tify three distinct loading-rate regimes. For this case we develop simulations aimed at

mimicking the DFS experiments, with an emphasis on cluster size, and drag.

In the third part of the Chapter we examine a possible PDE formulation for the time-
evolution of the probability density of the bivariate stochastic process having the bond
population and disk displacement as variables, following the work of Lipniacki [91].

A solution based on the method of characteristics is developed and compared against

25



CHAPTER 1: INTRODUCTION

stochastic simulations. For large drag (¢ ~ 100) the transition rates are time-independent
and the estimates of Py () representing the probability of having k bonds at time ¢ are
in good agreement, in contrast with the results obtained for ¢ ~ 1. A possible cause
is suggested by the analytical solutions for the probabilities P, computed in Appendix
4.A, which show that P; is a n-dimensional integral with time-dependent limits. As
this indicates that the problem may even not admit a PDE formulation, we formulate
integro-differential forward and backward equations for the evolution of the density,

whose solutions are to be checked against stochastic simulations.

Chapter 5

Further we extend the results obtained for the vertical motion of a disk, to the vertical
motion of a thin, flexible membrane connected to a planar surface via adhesion clusters,
in the presence of hydrodynamic effects and vertical forces at the membrane bound-
aries. The variable gap between the two surfaces differentially stretches the bonds,
assumed to behave as elastic springs under force. The bonds are also allowed to form
and break at discrete binding sites spread over the membrane. The dynamics of the
membrane-clusters system are addressed in the framework of piecewise deterministic
Markov processes, and an exact stochastic algorithm is developed for the simulation of
individual trajectories. The coupled evolution of adhesion clusters and the membrane’s
displacement is approximated by a differential equation whose solution is compared
against results obtained from averages of the stochastic simulations. The membrane
detachment time is strongly affected by the liquid volume underneath, by the bond
population, and by the forces acting at the boundaries. The membrane displacement

and bond populations are related using a wavelet-based semblance analysis.

The main conclusions of the thesis are reviewed in Chapter 6, where we also discuss

potential further work.
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Adhesive molecular bond clusters

between a disk and a surface

THE COUPLING between the cell’s motion and the stochastic formation and dissoci-
ation of biological bonds represents a core interest in cell adhesion. Intensive research
has been done considering detailed descriptions of cell’s mechanics and continuous

bond densities [28, 70, 115], or purely stochastic bond dynamics [31].

In this chapter we formulate a simple theoretical model coupling the stochastic evo-
lution of discrete bonds to a simple motion between two surfaces, inspired from the
DFS experiments [38, 95], presented in Chapter 1. To this end, we consider a clus-
ter of bonds connecting a flat surface and a thin rigid disk moving vertically under
force, in a fluid environment. The specific length-scales make thin-film effects impor-
tant, while the small Reynolds number at cellular level ensures inertia can be neglected
[114]. Following Bell [10], we consider a cluster of parallel and identical bonds, which
act cooperatively and equally share the mechanical load. The bonds are modeled as
elastic springs under force [98], which rupture and rebind due to thermal fluctuations.
Bell’s model is used for modelling the rupture rate of single bonds under force (1.3.2),

while the rebinding of ruptured bonds depends on cluster’s extension.

In §2.1 we formulate a detailed statement of the model, derive the equation of motion
for the disk and propose appropriate rebinding and rupture rates. We then present a
non-dimensional version of the model, and assess the role played by Brownian effects.
In §2.2 we detail the methods involved in our study. Cluster dynamics are addressed in
the framework of continuous-time Markov processes, and an exact stochastic algorithm
is developed for simulating individual trajectories of the system. We also formulate a
differential equation model for the coupled evolution of the bond population and the

cluster’s extension. In §2.3 we analyze the model and few possible extensions.
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2.1 A stochastic model for a cluster of elastic bonds

In this section we formulate the full statement of the problem, discuss the rupture and
rebinding rates, and then derive the non-dimensional version of the model. The effects

of inertia and Brownian forces on the vertical motion of the disk are also discussed.

2.1.1 Deterministic motion of the disk

We consider a cluster of n biological bonds, connecting a fixed flat surface and a thin
disk of diameter 2R*, which moves in a liquid of viscosity y* and density p*, under the
action of a time-dependent dissociating force F*(t*) at time t*. It is assumed that the
bonds in the cluster are identical, parallel, equally share the load when connected, and
behave under force as elastic springs of unstressed length L* and elastic modulus x*.
The length of the bonds at time t* is denoted by /*(+*) (also representing the displace-
ment of the disk, which does not tilt). The bonds rupture and rebind due to thermal
fluctuations and the stress induced by their extension. A schematic of the model is

sketched in Fig. 2.1, and the values of the parameters are displayed in Table 2.1.

For a disk of density p* and vertical velocity v* (same order of magnitude as the velocity
of in-flow or rolling leukocytes) given in Table 2.1, the Reynolds number is

_ P 2RY)

*

Re ~ 1073, (2.1.1)

suggesting that inertia can be safely neglected in our problem (F;, ,,,;, ~ 0) [114].

Py F* | F!

tnertia

2R
Figure 2.1: Elastic springs in an aqueous environment (dimensional): Cluster with n = 5 bonds
(k = 2 connected) of rest length L* attached to a thin disk (a) and a substrate (), separated
by the distance h*(t*) at time t*. The disk moves subject to elastic force F;, drag force F; and

dissociating force F*.
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Parameters Values | References
Total number of bonds/cluster, n 2-100 [15]
Factor of rebinding rate, 7y 1-100 [31]
Temperature, T 298 K | [10, 49, 78]
Rest length of bond, L* 10-100 nm [11]
Unstressed bond off-rate, k; 2.8s7! [78]
Cell radius, R* 4 ym [78]
Single bond stiffness, «* 0.01 —5dyncm™* [15, 115]
Viscosity of surrounding liquid, p* 1073 Pas [78]
Density of surrounding liquid, p* 1g/cm? [78]
Force scale in bond dissociation, F; 4pN | [10,31, 49]
Leukocyte flow velocity, v} 100 pm s~ ! [15]
Leukocyte rolling velocity, v} 1—2ums! [15]

Table 2.1: Range of relevant parameters for the disk motion in a liquid, and bond dynamics.

The disk’s motion can be obtained from the balance of the forces acting on the disk,
Fi+F,—F =0, (2.1.2)

where Fj is the drag force exerted by the surrounding liquid over the disk’s surface,
F}; is the elastic force in the stretched bonds and F* is the dissociating force. Effects of

inertia and Brownian forces on the disk’s vertical motion are addressed in §2.1.4.

From the values given in Table 2.1, we obtain the ratio L*/R* ~ 0.01 < 1, so hydrody-
namic adhesive effects are very important. The (nonlinear) drag force on the moving
disk is derived in Appendix 2.A (2.A.15), using thin film theory [1]
. 3t (R*)*dh*
b =— 53
2p di*
where a no-slip boundary condition was considered. Although slip at the boundaries

(2.1.3)

is likely to occur in the nm range [139], the equations for the drag force do not change
significantly, therefore the no-slip boundary is sufficient for the purpose of this work.
Formulae of the drag force on a one-dimensional plate moving vertically are also pre-

sented in Appendix 2.A, for no-slip (2.A.9) and slip (2.A.12) boundary conditions.
The elastic force in k connected and stretched bonds is
o =kx*(h* —L"). (2.1.4)

Substituting the expressions of drag and elastic force in (2.1.2), the equation for the
displacement of the disk with k bonds attached to it is

37T}1*(R*)4 dn* o s . . .
) ar L =L, 1(0) =k > 0. (2.1.5)
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Since the bonds break and rebind, the displacement of the disk is a piecewise deter-
ministic stochastic variable, with the disk moving along solutions of (2.1.5) for the time

intervals between the rupture/rebinding events.

2.1.2 Dissociation and association rates

Thermally activated rupture and rebinding of single molecular bonds are stochastic
events, so the adhesion clusters” dynamics has to be described as a stochastic process.
Usually, cell adhesion molecules function under force. The influence of a mechanical
force on the rupture kinetics of biomolecular bonds was first discussed by Bell [10],
who modelled the rupture of molecular bonds in the framework of Kramers’ theory
[67, 82], as a thermally activated escape over a transition-state barrier. Bell’s formula

for the single bond dissociation (rupture, breakage) rate under force is
sy (Fp) = kgefe /%, (2.1.6)

where k) is the individual bond off-rate in the absence of force, F; the applied force per
bond and Fj = kT /xo a force scale depending on the structure of the bond, which
determines a force scale for bond strength (kg is the Boltzmann constant and x; is the
displacement along the rupture coordinate). For the typical values xj ~ 1 nm and
physiological temperature Ty ~ 300 K, the force required to enhance the biological

bond’s rupture is Fj ~ 4 pN.

Equation (2.1.6) suggests that rupture occurs even in the absence of force, due to ther-
mal fluctuations. Back to our problem, the bonds are modelled as linear springs, so the
force acting per single bond is F; = «*(h* — L*). For estimating typical elastic bond
forces, it is reasonable to consider that weak bonds are longer, while stiff bonds are

shorter. Under this assumption, the values in Table 2.1 give

K*L* ~ 1 — 50 pN. (2.1.7)

While the dissociation rate kj; mainly depends on the internal structure of the bond,
the association (rebinding) rate k;,,, includes the formation of an encounter complex and
depends on the details of the situation under consideration [31]. Since displacement is
a key factor in the formation of the encounter complex [108], the association rate k}, is

assumed to decay exponentially with the extension of the cluster, as in the formula
Kon(h*) = kgoye® 0= /1), (2.1.8)

where parameters 7y and « are intrinsic properties of the adhesion molecule, accounting
for the affinity of the bond at its rest length and it’s scaling with displacement varia-

tions, respectively.
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2.1.3 Non-dimensional model

It is convenient to define the non-dimensional length h = (L*)~'h* , time t = kjt*,
applied force f = F*/(x*L*) , loading rate y = F*/(x*L*k;t*) and initial displacement
of the disk hy = (L*)~'h*(0). To denote both constant and ramped force, we use the
notation f(t). The non-dimensional version of (2.1.5) is
o= % = 203 [~ (F() +K)], h(0) = ho, (2.1.9)
representing the disk velocity with k bonds attached, at time t and height /1, where
_ 37 kg (R
is a non-dimensional drag coefficient. For the values of ¥*, ki, R* and L* from Table 2.1,

the range of the drag coefficient is obtained as 0.01 < ¢ < 10%.

The solution of (2.1.9) for t > u is denoted by h = Hy(t; u, h,,), where h,, represents the
displacement of the disk at time t = u. When f is constant, (2.1.9) is autonomous and
Hy(t;u,hy) = Hi(t — u;0,hy,), with the initial condition H(0;0, ) = hy,.

The stochastic variables N(t) € {0,1,...n} (discrete) and H(t) € [0,00) (continuous),
representing the number of closed bonds (the remaining n — N(t) are open) and the
disk’s displacement respectively, completely determine the state of the system at time
t. The state N = n is the number of binding sites in the cluster, and represents a reflecting
(the next event is rupture) boundary for the stochastic variable N(t). The state N = 0
can be either absorbing or reflecting depending on wether rebinding after complete dis-

sociation is possible (small displacement or force) or not (large force or displacement).

From (2.1.6), a single bond dissociates with the rate k;‘ﬁ/ ky = eP("=1) where
B=F,/F = xgx"L*/(kgTy). (2.1.11)

The estimates for «*L* (2.1.7) predict the range 1 < B < 15. The height-dependent
rupture rate for the time segment when clusters have k = 0,...,n closed bonds is
therefore given by

re(h) = keP=1), (2.1.12)

Using (2.1.8), the dimensionless rebinding rate for a single molecule is k%, /k; = ye*(1 7).
In a cluster with n binding sites, rebinding is assumed proportional to the number of

open bonds [10, 61]. The rebinding rate for clusters having k = 0,. .., n closed bonds is
ge(h) = y(n —k)e*=M, (2.1.13)

The rebinding rates used at N = 0 for the stochastic birth and death process [122, p.372],

are go = yne*(1-" for reflective, and gy = 0 for absorbing boundaries, respectively.
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In summary, we have developed a new stochastic model for the evolution of clusters
of biological bonds connecting a disk and a surface. The stochastic rupture (2.1.12) and
rebinding (2.1.13) rates depend on the position of the disk moving under the influence
of the force f, along solutions of the deterministic equation (2.1.9). The parameters in
our system are 7, f (or u for ramped force) and c, together with «, 8 and -y, which are

intrinsic properties of the bond.

2.1.4 Brownian and inertial effects in the disk’s dynamics

For the specific problem of cell adhesion, preliminary studies found that adherent cells
(rigid disk and flat surface in our problem) can be distinguished from the ones not

adhering to a surface, as they do not undergo significant Brownian oscillations [84].

As mentioned in Table 2.1, the disk’s length scale is in the ym range, the bond length
in the 10 nm range, while the timescale of molecular collisions is on the order of 10~12
s and the lengthscale of molecular mean free paths is on the order of 1071 — 10~ m.
The tiny length- and time- scales suggest a deeper investigation of the role played by

Brownian forces acting on the disk in the vertical direction, in our particular model.

Our results reflect the findings from the DFS experiments performed by Merkel et al.
[95], discussed in §1.2.3. As depicted in Fig. 1.4, the thermal excitation induced fluc-
tuations of the probe were about 2 — 5 nm, compared to the dissociating force induced
displacement, which was of 30 — 40 nm at slow, and 500 nm at fast loading rates, re-
spectively.

When accounting for the disk’s mass and Brownian motion, the dimensional equation

for the displacement of the disk is

where M., is the mass of the disk, G* the coefficient of dh*/dt* in (2.1.3), Fj a stochas-

tic force induced by external fluctuations, and F* is the applied force on the disk. The

deterministic component of the right-hand member in the previous equation will be
denoted by F;, = F* — F},.

The Brownian force Fj is an irregular and unpredictable stochastic process, but its av-
erage properties are simple. The average vanishes, and because Fj(t*) is caused by the
collisions of the individual molecules of the surrounding liquid (the water molecule is

about 0.1 by 0.2 nm in size) and varies rapidly, we can postulate that
(F(t")) =0, (2.1.15)
(Fp(t)Fg(t2)) = T'pd(H — 1),

32



CHAPTER 2: ADHESIVE CLUSTERS BETWEEN A RIGID DISK AND A FLAT SURFACE

where I'p is a constant and J represents the Dirac function. The idea is that each col-
lision is practically instantaneous and that successive collisions are uncorrelated [138,
Chapter IX].

Balancing the first two terms in (2.1.14), and the Brownian noise on the disk, we obtain

the scalings
Mgiph” LG
(t* )2 1
From this equation, the relaxation time following a collision is found to scale as

~ Fj,. (2.1.16)

oo M;isk
G*
Denoting by h* the disk displacement length scale, V* the velocity scale and kpT* the

thermal energy, we obtain

W~ VA, kpT* ~ M (V)2 (2.1.17)

Einstein [30], predicted that Brownian motion of a particle in a fluid at a thermody-
namic temperature T* is characterized by a diffusion coefficient D* , and as shown in
[18], the root mean square displacement in any direction after a time t* is v/ D*t*. As a

consequence of this fact, as well as from (2.1.16) and (2.1.17) we obtain

(h*)?

kpT* kgT*
D* ~ e o (V) o~ (2.1.18)
t Mdisk G
The scales from (2.1.16) and (2.1.18) can be written as
1 F;, D*
G RE (2.1.19)
Finally, from (2.1.18) and (2.1.19) we obtain the non-dimensional number
B = EFd*et _ G h* F;et _ h*Fd*et (2120)

- D*G*  kgT* G*  kgT*’
representing the ratio between the work done by deterministic forces and the thermal
energy in the system. In the B > 1 limit, Brownian effects can be neglected. Rewriting
the right-hand side of (2.1.20) and using p ~ 25 -125,h > 1, f > O and L*/x5 ~
10 — 100 (see Table 2.1), we obtain

*

B = Bh(f — 1)% > 1, (2.1.21)
0

for even relatively small forces, so Brownian effects are negligible for small forces.

A more accurate model accounting for the disk’s fluctuations under Brownian forces,
can be formulated using a stochastic differential equation (SDE)[69], rather than the
ordinary differential equation (ODE) (2.1.9), which currently describes the motion of
the disk. Nonetheless, the stochastic process would not be piecewise deterministic

anymore, but system’s trajectories can still be simulated.
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2.2 Methods

In this section we present the notations and methods used to address the cluster dy-
namics. First, the behaviour of the cluster under force is formulated in the framework
of inhomogeneous continuous-time Markov processes. An exact stochastic algorithm
is derived, which allows the simulation of individual trajectories of the disk with bonds
attached to it. Trajectories are then processed to obtain various probabilities, expected
values for the number of closed bonds in the cluster, as well as estimates for the cluster
lifetime and final extension of the bonds. A deterministic approximation for the simul-

taneous evolution of the number of closed bonds and displacement is then derived.

Despite being computationally expensive, stochastic simulations are the most reliable
method, able to render the stochastic fluctuations in clusters with few bonds. These
are compared against deterministic approximations and analytical solutions, when the

latter are available.

2.2.1 Exact stochastic simulations

When clusters have few bonds, stochastic fluctuations become important. The prob-
lem is first formulated as a Markov process and then we derive a stochastic algorithm
for the simulation of random variables N(t) and H(t). The individual trajectories are
then processed to obtain frequency functions which approximate (in the limit of a large

number of individual trajectories) the marginal distributions for the Markov process.

The number of closed bonds N(t) € {0,1,...,n} evolves stochastically through the
rupture or rebinding of a single bond, while height evolves deterministically between
the rupture events. Once the process reaches the absorbing state N = 0 (for absorbing
boundary at N = 0) or a certain value of time (for reflecting boundary at N = 0), we
stop the simulation. Let ¢; (i > 0) be the time of the i-th rupture or rebinding event,
and let k = N(t;), H; = H(t;). Suppose that k > 1. The process { N(t)};>¢,, starting at
the initial height H; is an inhomogeneous continuous time Markov process, with finite

state space E = {k — 1,k, k + 1} and time-dependent transition rates
Ak—k-1(t) = re(H(t)), (k> 0), (2.2.1a)
Ak—>k+l(t) = gk(H(t))/ (k < 1’1), (221b)
where H(t) = Hk(t; ti, H,‘), fort € [t,‘, ti+l] and 7’0<H<t)) = gn(H(t)) =0.

The simulation of the next rupture or rebinding (referred to as an “event”) is done in
two distinct steps. The first step is to identify the time of the next event t; 1, while the

second is to identify wether the event is a rupture or a rebinding.
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Step 1: Next event time

The total transition rate from the state N(f) = k at time ¢ is denoted by

Ak(t) = A1 (8) + At (£)-

We calculate the distribution of the time spent in the state with k closed bonds starting

at time #; (the sojourn time), defined as
S=inf{f > 0: N(t; +f) # k}. (2.2.2)

Let
Q(f) =Pr{S>F|N(t;) =k}.

Clearly Q(0) = 1 and as Af | 0, by the Markov property we obtain
Q(f+ AF) = Q(F) (1 — Ax(t; + F)AF) + o(AF).
This gives

dQ
df

(B = - (ti+HQ(F),
with the solution

Q(F) = exp {_ /:Ak(ti -I-u)du} .

The cumulative distribution function of S is, for f > 0,
Fs(F) =Pr{S <F¥|N(t;) =k} =1—Pr{S > F|N(t;) =k}
f
=1-0Q(fH :1—exp{ —/ Ak(ti—l—u)du}. (2.2.3)
0

Considering the uniformly distributed variable ¢ ~ U(0, 1), the sojourn time satisfies

S ~ F5*(¢), thus we need to solve Fs(S) = &, which is equivalent to

exp{—/os /\k(ti—l—u)du} —1-c (2.2.4)
Denoting by K the hazard function of the distribution Q [122, Chapter IX] defined as
K(F) = /OE/\k(ti—l—u)du, (2.2.5)
we can write (2.2.4) as exp{ —K(S)} =1 — ¢, hence
K(S) = —log(1— &)  § = K~ 1(~log(1 - &)).
Since we also have 1 — ¢ ~ U(0, 1), the time is simulated from

S = K }(—1log(&)). (2.2.6)
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As K~! cannot be obtained analytically, (2.2.6) is solved numerically together with the

motion of the disk from the system

% - _%hs[kh ~(f()+K)], h0)=H,, (2.2.72)
illf =A(t), K(0)=0, (2.2.7b)

which is integrated until K(t) hits the value —log({).

The time of the next event is obtained as t;, 1 = t; + S.

Step 2: Next event nature

To simulate the next state visited by {N(t) }, note that
Pr{N(t) =j|N(t;)) =k S=1t} = ——

For our problem, the event happening at time t; is a rupture if

Mok1(tis1) rk<H(ti+1))
o () -+ (1 <z+1>>' =2

and rebinding otherwise, where { ~ U(0,1) and ¢ are independent. The above proce-

¢ <

dure is repeated from the new state N(t;,1), H(t41).

In the case when more events are possible at a given time, we can use the following re-
sult. If Xy, ..., X;;, m < 2 are independent exponentially distributed random variables

with rate parameters Ay, ..., Ay, then
min{Xy,..., Xy}

is also exponentially distributed, with parameter A; + Ay + - - - + A,,. The index of the

variable which achieves the minimum is distributed according to the law

Pr{X; = min{Xy,Xs,..., Xu}} = 2.29)

Zl Ail
A proof of this classical result can be found in [122].

For our model, we define

0, k=0
S, =
M+-4+A, k=1,...,m

and the next event is chosen to be Xy, if ¢ € [Sx_1, Sx], where ¢ ~ U(0,1).

36



CHAPTER 2: ADHESIVE CLUSTERS BETWEEN A RIGID DISK AND A FLAT SURFACE

General observations

The above algorithm is exact in principle, the only sources of inaccuracy being the
choice of the random number generator, the precision used for solving (2.2.7) and the

finite number of trajectories used to estimate various statistics.

2.2.2 Dynamics of the disk-bond system

The interaction between the number of bonds and the moving disk can be assessed
using various statistics. Here we define various types of probability densities and dis-
tributions, average number of closed bonds, mean cluster lifetime, as well as other rel-
evant statistics. In this chapter all disk trajectories start from the same initial height
H(0) = hp, while the influence of randomness in the initial height (normally dis-

tributed initial disk displacement) is analyzed in Appendix 3.A.

Probability of having k bonds at time ¢

The output N(f) of many individual simulations is used to estimate the probability
Pe(t0,hp) = Pr{N(t) =k | H(0) =ho}, (2.2.10)

of having k bonds at time ¢, fork = 0,...,n.

Counting how many simulations out of N; satisfy N(f) = k, we obtain the relative

frequency functions

Pk(NS)(t; 0,hp) — {number of simulations VI\:llth N(t) =k | H(0) = ho}‘ (2.2.11)
S

The above functions satisfy the conservation property
= (N
Y PM(50,h0) =1, >0, (2.2.12)
k=0

and in the large number of simulations limit we have, by the strong law of large num-

bers, almost surely, that

lim P™)(£0,h9) = Pe(t;0,ho),

Ns—o00

with the rate of convergence being in general of order 1/+/Ns (using the central limit
theorem) [75].

The above probabilities exist for all values of the parameters (including the problem
with rebinding) and provide an accurate description of the evolution of the number of

bonds (mean, variance) and cluster lifetime, but give no information about the bonds’
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Figure 2.2: Simulated trajectory of the disk (dashed line) realized forn = 5,k = 3, hy = 1,
v =0,6=0and f = 1in the (t,h) space. The disk moves along H,(t;0, hy) until u,, the time
when the n-th bond breaks. The time when the k-th bond ruptures is u.

extension. In the absence of rebinding, the bonds rupture sequentially and the tra-
jectory is uniquely determined by the rupture times u,, ..., u;. In this particular case
the trajectories contributing to P (t; 0, ko) are subject to specific geometrical constraints
H(t) € [Hu(t;0,hp), He(t;0,hp)], as shown in Fig. 2.2.

These geometrical properties of the disk’s trajectories are used in Appendix 4.A to de-
rive analytical formulas for the probabilities Py(t;0, ho), which are used in Chapter 4 to

validate the stochastic simulations.

Probability of having k bonds at height /

When H(t) is strictly monotonic (e.g. in the case of vanishing rebinding), a one-to-one
correspondence between time and height can be established for a single simulation. We
can consider then probabilities of having a certain number of bonds at a given height,
to obtain important information about the evolution of the cluster under force with the

displacement of the disk. Denoting Tj, = inf{t > 0 : H(t) = h}, we can define
P (h;0,hg) = Pr{N(T;) =k | H(0) = ho}, (2.2.13)

representing the probability of having k bonds at height h. These probabilities give an
idea about the most likely height where the rupture events occur, and the computations
are similar to those for Py(t;0, hp). The displacement H(t) is monotonic for iy = 1 and

zero rebinding.
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Probability densities and cumulative distributions over /, of having k closed bonds

at time ¢
Both N(t) and H(t) can be used to estimate the distribution functions

Fe(t,1;0,h9) = Pr{N(t) =k, H(t) < h | H(0) = hy}, (2.2.14)
of having k bonds at time t, and within the range [0, %), fork =0,...,n.

In the absence of rebinding, a single trajectory contributes to F(t,;0,hp) if N(t) = k
and H(t) € [H,(t0,hp),h] . The relative frequency function for this event is obtained

as

Fk(NS)(t, 150, o) = {no. of simulations for WhIChII\\;(t) =k H(t) <h H(0) = ho}‘

(2.2.15)
Clearly, lim;, ., Fk(Ns) (t,h;0,hy) = Pk(Ns) (£;0,hp) and in the large number of simulations
limit we have that almost surely
lim F™ (4,150, ho) = Fe(t, 150, ko).
The density function, defined as
im Pr{N(t) =k H(t) € (h,h+dh) | H(0) = hg}  0F(t,h;0,ho)

= im oh oh ’
(2.2.16)

can be explored obtained either directly from simulations (using selected height bins),

pr(t, 1;0, ho)

via numerical differentiation of (2.2.14), or by using kernel density estimation (see e.g.
Silverman [129]). These functions illustrate how probabilities Py (t; 0, i) are distributed
along the height coordinate, and are illustrated in Appendix 3.A and §4.3.

Expected number of closed bonds and variances

Quantities of practical interest are the expectation and variance of N(t), which can be

obtained as

n
un(£:0,ho) =Y kP(£0, ko), (2.2.17a)
k=0
o (£0,h0) = Y KPPe(t;0,h0) — i (t). (2.2.17b)
k=0

When no confusion is possible, the usual notations for these quantities will be /()
and 0% (t). To approximate the above quantities at time ¢, we run a number of simula-
tions, for which we estimate the state N (). In the large number of simulations limit,
the average and variance of the states N(t) converge almost surely to pn(t) and 0% (t),
respectively. The analysis of uy and its approximations will highlight the decay of

clusters under various force regimes.
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Cluster dissociation time (“cluster lifetime”)

In the absence of rebinding or for an absorbing boundary at N = 0, the cluster disso-
ciates and the stochastic variable Tp(t) representing the time of dissociation (the time

when the last bond breaks or the cluster lifetime) can be defined. The density of Tp is

fro(t) = LO(Z?’ h), (2.2.18)

for the probabilities Py(t;0, hy) defined in (2.2.10). Clearly, as Py(0;0, t) = 0, we have

u [ dPQ(t;O, ho) B )
/O fTD(t)dt - /0 Tdt - Po(u/ Olho)/

which should satisfy lim, .« Po(1;0,h9) = 1, when the cluster dissociates.

Of particular importance is the mean dissociation time .1, defined as

pr, = /O tfr, (t)dt
From N; simulations, this can be estimated by

i T

iy = = (2.2.19)

where T; is the moment when the i-th trajectory hits the absorbing boundary N = 0.

The standard deviation o7, can also provide useful information about the cluster be-

haviour and can be estimated by

N (T;)2
o7, = \/ Lo (1) a2 (2.2.20)

Cluster dissociation height

When the cluster dissociates in finite time, the stochastic variable Hp(h) representing
the dissociation height (disk displacement at dissociation) can be defined. When the
probabilities P (11;0, ho) exist, the density of Hp is given by

 dPH(1;0, k)
fap(h) = ——g— (2.2.21)

Of practical interest is the mean displacement of the disk at dissociation, defined as
MHp = /0 hfn, (h)dh

This can be estimated from N; individual simulations as

Yo H(T)
HHD Ns 4
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where T; is the time when the i-th trajectory hits the absorbing boundary N = 0 and

H(T;) is the value of the random variable H at that time (for this particular realization).
Important information is obtained from the standard deviation oy, estimated by

. Lo HA(T)
i = \/T ~ iy

2.2.3 A deterministic approach

When the cluster has sufficiently many bonds, the rupture of an individual bond has a
small effect on the behaviour of the cluster as a whole, and the number of closed bonds
can be assumed to vary continuously. Denoting by Nj(t) the (continuous) number of
closed bonds, we consider the continuous approximations of the discrete rates (2.1.12)

and (2.1.13) in terms of two independent variables

ra(Ng, Hy) = NgePHeV

8¢(Nay Ha) = y(n = Ny)e* =110, (22.22)
obtained by replacing k and & with their deterministic analogues N; and H,. The bal-
ance between the deterministic rupture and rebinding rates (2.2.22), together with (2.1.9),

can be used to write down a system of deterministic equations for the simultaneous
evolution of Hy(t) and Ny(t) as

dN,
dtd = —NyePlH1 |y (n — Ny)e*(1-Ha), (2.2.23a)
Rupture Rebinding
dH 1
dtd -1 [Nde4—(f+Nd)Hd3]r (2.2.23b)

with the initial conditions H;(0) = ho, and N;(0) = n. When the number of closed
bonds is large, we examine the parameter values for which we have N;(t) — un(t).
In the case of no rebinding the cluster dissociates in finite time, with the rates given by
(2.1.12). Moreover, in the large N; limit, where the lifetime of the last remaining bond
is very short compared to the lifetime of the cluster, the latter can be approximated
with the scalar value T, (in contrast to Tp(t), which is a random variable) satisfying
N;(T;) = 1. Asymptotic approximations of T; provide essential information about the
relevant scalings in the model as done by Erdmann et al. [31]. The performance of the
Ty in estimating the median of the densities of Tp is illustrated in Fig. 4.3 for constant

force and in Fig. 4.17 for linearly ramped force.

Although intuitive, the deterministic limit can also be derived rigourously as shown
in Appendix 2.B, in the framework of stochastic hybrid systems discussed in [106] by

Pakdaman et al., who prove a law of large numbers with exponential convergence.
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2.3 Summary

In this chapter we have introduced a new model for the stochastic behaviour of clus-
ters of biological bonds under force and rebinding. Several experiments confirmed the
elasticity of bonds under force [98], for example the length of fibronectin in response to
applied force may increase 5- to 6-fold [73]. The extension of bonds is coupled to the
nonlinear motion of a disk under force, which represents a significant extension over

models assuming a constant displacement using polymeric spacers [35].

As the bonds in the clusters are short compared to the lengthscale of the contact region,
the adhesion of clusters is enhanced by hydrodynamic effects. In our model, the deter-
ministic motion of the disk (2.1.9), predicts that the external force initiating the motion
is not entirely transmitted to the bonds, being mediated by drag. In the zero-drag limit
(discussed in Chapter 3) we will recover the models proposed by Erdmann & Schwarz

for constant [31, 32], and linear forces [33], respectively.

As a result of the low Reynolds number (2.1.1), inertia is neglected in this model [114].
The role played by the Brownian forces on the vertical motion of the disk with bonds
attached was also proven to be negligible even for small forces in §2.1.4. The model
can be further improved to encompass the disk’s Brownian oscillations, by replacing
the nonlinear ODE describing the motion of the disk (2.1.9), with a SDE.

The problem was formulated as a piecewise deterministic, bivariate, continuous-time
Markov process, accounting for the number of closed bonds in a cluster N(t), and their
extension under force H(t). The increase in complexity introduced by the movable disk,

comes at the cost of having time-dependent transition rates (2.2.22).

A stochastic algorithm for simulating single trajectories of the system was proposed in
§2.2.1, used to estimate several cluster statistics (lifetime, various probability functions,
decay profile), detailed in §2.2.2. Finally, a deterministic approximation was proposed
in §2.2.3, which is used in Chapter 4 for the study of cluster dissociation time (2.2.18)

and extension (2.2.21).

A generalization of the model which addresses the behaviour of clusters of biological
bonds connecting a fixed, flat surface to a moving and flexible membrane is presented
in Chapter 5. The methods are also based on extensions of the ones presented in §2.2
for the disk-bonds model.
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2.A Thin film adhesion

The adhesion of cells to a rigid surface is enhanced by adhesive effects generated by
the thin-film of fluid between, which can be described using lubrication theory. The
key feature of thin-film theory is that one dimension is much larger than the other. An
example of such problem is a coin stuck tightly to a surface by putting a small amount
of water between the two, when a surprisingly large force is required to pull the coin
away from the table. This is possible because compared to the diameter of the coin, the
height of the film of water is very small and as such is amenable to lubrication analysis.
In this Appendix we present the Reynolds’ lubrication equation, together with some

applications relevant to the study of cell adhesion, based on [1].

2.A.1 Lubrication equations

The general Navier-Stokes equation are used to derive the 2D and 3D versions of the
classical Reynolds’ lubrication equations [1, 80]. To derive the lubrication equations
assume that a curved surface having velocity components (U, V, W) sits on a thin film
of fluid as shown in diagram 2.3 and the horizontal velocity components of the surface
U and V are of the same magnitude. We use the notations L and & for the typical hor-
izontal (x,y) and vertical (z) dimensions. The changes in the z direction are expected

to be large compared to those in the x and y directions

0 0 1 d 1 h
The velocity vector is u = <u(x, v,z t),0(x,y,zt),w(x,y, z,t)> , while the pressure
is p(x,y,z,t). The density is p, the viscosity is y and kinematic viscosity is v = pu/p.

Assuming steady flow, the Navier-Stokes equation can be written as

du

V-u=0, 5

+u-Vu= _¥ + vV, (2.A.1)
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where the first part is also known as the continuity equation. Assuming no slip bound-
ary conditions at the interface between the fluid and the two surfaces (u = 0atz = 0
and z = h), u and v must change by an amount of U as z varies over a distance h. The
sizes of the terms in (2.A.1) can be obtained as

Lo U Pu U o U Pu U U Fu U
u ox L° o9x* L[¥ oy L° o9y2 L2 o0z h' 922 h?¥

with similar estimates for the derivatives of v and w.

t~

From the continuity equations we obtain

Ju Jdv oJw Jw u Uh

which leads to the estimates
Ju U? U? uznh
7~ (1) (1) (%))
u? u? uzh
wva~(o(T).0 (7)o (%))

and
u u u
2
v~ (0 ()0 () 0 ()
The above expressions suggest that
aa—‘t‘ ,Ju-Vu| < vV if 52 (%) <1,

so the terms du/dt and u- Vuin (2.A.1) neglected.

The quantity R = UL/v defines the Reynolds number, while R,, = 2R is referred to

as the modified Reynolds number.

It is sensible to non-dimensionalize by setting

x=LX, y=LY, z=hzZ, u=Uil, v=V9, w:sz,
where the vertical scales come from the continuity equation found in the first part of

(2.A.1). The pressure scale is determined from the estimate

o P

ax ~Hoaz
suggesting that p ~ uUL/h?, so we can write p = (uUL/h?)p.

Substituting in equation (2.A.1), we obtain

Ry, [fiflx + 0ty + Wiiz] = —px + 6*lxx + Py + fizz,
Ry, [(i0x + 0Dy + Wby] = —py + 6%0xx + 6%Dyy + D27,
R}, [ix + 0y + Dz] = —pz + 8*xx + 8 yy + 0%hzz,
fix + 0y +dz = 0. (2.A.2)
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Figure 2.3: Diagram of the length scales in a thin film of liquid, situated between the fixed

surface z = 0 and the mobile surface z = h(x,y,t).

In the limit § — 0 and R;;, — 0 and restoring the dimensions we obtain the reduced set

of equations

0= —px+puz,
0= —py+ pvz,
0=—ps,
uy + oy +w; =0, (2.A.3)

with boundary conditions
u=v=w=0onz=0 u=Uv=V, w=Wonz=h(xy,t).

It is clear that there is no vertical pressure gradient, so p = p(x,y, t). We integrate the

first two equations of (2.A.3) twice with respect to z and obtain

1 2 Uz

u= ﬂpx (z — zh> + T (2.A.4)
1 5 Vz

v = ﬂpy (z zh) + i (2.A.5)

Integrating the continuity equation, the vertical velocity component is found from the
equation

z
—w:/ (ux +vy,)dz,
0

which for z = h becomes

h 9 rh 0 [h
_W:/O (ux+vy)dzza_x/o udz+®/0 vdz — Uhy — Vhy.

Using the expressions for u and v and integrating, the three-dimensional version of the

Reynolds lubrication equation is obtained as

9 [,39p] | 9 [a0p] _ o o
- [h ax} o [h S| = 60 (~Uhe = Viy +2W) (2.A.6)
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Z F'S
. Moving wall
h
p=Dpo h(t): P =po
Fluid ° | “© 7

F?J:}:;zd wall

Figure 2.4: Diagram of the length scales in a thin film of liquid, situated between the fixed

surface z = 0 and the mobile surface z = h(x, t).

2.A.2 Applications - adhesion near a flat rigid wall

Since the biological bonds are of a much smaller length compared to the cell scales, the
cells subject to adhesion forces are moving very close to a surface, so the lubrication
theory can be effectively applied in the study of cell adhesion. Of a particular impor-
tance is the drag force on the surface moving vertically near a flat, rigid and horizontal
wall, which is derived here for a two-dimensional plate of length a and for a disk of
radius a. These results can be directly coupled with the dissociating force and the elas-
tic force in the bonds in the adhesive models, to derive the equation of motion for the

moving surface.

Adhesion of a flat plate

The first application of lubrication theory computes the force resisting the motion be-
tween two parallel plane walls moving away from the other, and having liquid be-

tween, as shown in Fig. 2.4.

The thickness &(t) changes due to an unsteady flow, but we assume

t 0z2’

: 2.A.7)

so that the unsteadiness enters only through the change in the boundary condition.

More details about the validity of this approximation can be found in [1].

Since the y coordinate is absent, we only need to solve the Reynolds lubrication equa-
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tion

d [ 50p| _ _
P [h ﬁ} = 6y (—Uhy +2W), (2.A.8)

for the boundary conditions

u=w=0onz=0, u=0w= % onz = h(t), p(0,h) =p(ah)= po.
where U = 0 (no lateral move), W = ‘(ii—;tz, and & independent of x (the mobile surface
is flat). At the same time, the pressure is the same at the ends of the plate, and only
depends on /. In this case, the above equation becomes

d (,5dp\ . dh
a(h@—lz”dt'

and by integration we have

dp  12udh
Integrating again and applying the boundary conditions, we obtain
_ budh

2
p(x,h) —po = s dtx + xA(h).

Since p(a,h) = po, we obtain

_ 6buadh
and the pressure is finally
- ou dh
Pl k) = pot 25 hx(x —a)

The force (per unit length) resisting the motion F is computed from the formula

_ [ _6udh [° _ ua®dh
F—/O (p—po)dx = 3 dt/o x(x —a)dx = RET (2.A.9)

This suggests that for the two-dimensional problem, F ~ O(h~3) as h — 0.

Adhesion of a flat plate with slip

It is often the case that in nanoscale flows a slip at the boundary occurs, which is ex-

pressed as
A

—T=1u,

H
at the boundaries, where A > 0 is determined from experiments and called slip length.

The equations for the problem described in Fig. 2.4, become

0= —Px + Hilzz,
0 = _Pz,
u_x + ZUZ — 0, (Z.A.lo)
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with boundary conditions

ou ou dh
u—A@,w—Oonz—O, u= —A@,w— aonz—h(xlf)-

Integrating the first equation of (2.A.10) twice with respect to z, we obtain

1
u= ﬂpxzz—l—Az—i—B.

Since dh/dx = 0, applying the boundary conditions we find

1 1
A=——ph, B=—-A—pyh
Zny , Zny ’
and obtain
1
u= ﬂpx (22 —hz — /\h) . (2.A.11)
The third equation of (2.A.10) gives
Y du
w = — 0 ad ,

so for y = h we have

dn o h 19 noon 5
‘a—a/o“dy—m[”%‘?‘”ﬂ'

which is integrated to give
12y dh

Px =2+ erydt™
Integrating in x and using that p(0,) = p(a, h) = po, we finally obtain

ou dh

p(x,h) = Po + maX(l‘ — ll).

The force per unit length resisting the motion F, is computed from the formula

_ [ _ S dh ot = PO dh
P_/o(p po)dx_hz(h+6}\)dt/ox(x VY= —mreyar @A

This suggests that for the two-dimensional problem, F ~ O(h~3) as i — 0. One can
notice that the solutions as A — 0, are the ones obtained for the no-slip boundary. It is
anticipated that the slip boundary solution for the disk is not very much different.

Adhesion of a flat disk

Assume that a thin disk of radius a is immersed in a liquid of viscosity u. Writing the

velocity in polar coordinates, we obtain
u=u.(r,zt)e +uy(r,zt)e,
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and using the new coordinates the thin film equation becomes

I Fu, B
5 = Waa p=pt),
with the no slip boundary condition u, = 0 at z = 0 and z = h(t). Integrating twice
with respect to z we obtain
1 9dp

Uy = ﬂgZ(Z —h)

From the incompressibility condition we have

10 ou,
rar )t =0

from which we obtain (after replacing u,, integration in z for the boundary condition
L () (2
== Torar o 2 )
Using the boundary condition u, = dh/dt at z = h(t), gives

d < Bp) 12ur dh

U, =0onz=0)

or \ or T
which after integration in r becomes

op _ oprdn  C(t)
or  h3 dt r

To prevent singularity at ¥ = 0, we have C(t) = 0, and integrating once again we obtain

_ 3udh 2
=3 a + D(t). (2.A.13)
Having p = po at r = a, this gives
Budh ’
—Po=45 dt( —a), (2.A.14)

and the upward force exerted by the fluid on the disk is

27 ra 4
F= / / (p— po)rdrd — — 2 e dl (2.A.15)
0 0

Since the vertical velocity is of order dh dt, from the continuity equation V - u = 0 we
infer that the horizontal velocity is of order ah~Ydh/ dt. The conditions h < L, R,,, < 1
and (2.A.7) for this problem are written as
dh
h , h— .
<La a7 <Lv

The computations are based on [1].
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2.B Stochastic hybrid systems: deterministic limits

In this section we adapt the theory of stochastic hybrid systems developed by Pak-
daman et al. in [106], for analyzing the stochastic adhesion of clusters connecting a
surface to a moving disk (Chapter 2). Compared to the renewal type algorithm used
in Chapter 2 for the simulation of trajectories of the disk-bond system, the current for-
malism has the advantage of allowing a smooth passage to the global perspective over
the system dynamics. This is particularly useful for showing that the solutions of the
process converge in probability to the deterministic limit described in §2.2.3, while the
speed of convergence is estimated as a function of the population of bonds in the clus-
ter. The formulation of the disk-bond dynamics as a stochastic hybrid process for a

cluster having n binding sites is detailed below.

Let u®) for 1 < k < n be a collection of n independent jump Markov processes having
the state space {0, 1}, representing the state (open or closed) of the k-th binding site in
the cluster. The extension of the connected bonds in the cluster is the spacial variable
H,(t). The transition between the closed and open states for individual binding has the
rates 7(H, ) and ¢(H,) defined as

P(Hy) = exp(B(H, —1)); §(Hyp) = yexp(a(l —Hy)), (2.B.1)
corresponding to the rupture and rebinding rates for clusters of individual bonds de-

fined in §2.1.3.

The stochastic hybrid model (S,,) consists of two variables: an empirical measure of the
population size e, (t), and the displacement of the plate H,(t), at time t. A convenient

measure of the population size is
1& 1&
en(t) = (— Y o), ~ Y 5l(u<">(t>)> (2B2)
= =

where J;(k) represents the Kronecker delta function, which is 1 when k = i and 0
otherwise. By defining u,(t) = 1/n Y.7_, 6;(u®(t)), (2.B.2) can be simplified to ¢, (t) =

(1 — uy(t), un(t)). Between the jumps of e, (t), the disk’s motion is deterministic.

To summarize, the hybrid model (S, ) can be written as

H,(t)
H,(0)

o(Hu(t), ealt)), ea(t) = (1= un(t), ua(t)), (2.B.3a)
ho, ey (0) = (uo, 1-— uo), (2.B.3b)

where similarly to (2.1.9), v is defined by

_dH,

BT

~2Hy® [waHy = (f + 1)) (2.B4)
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The above general condition allows the cluster to start with any number of initial

bonds, and the components of e, are the proportions of processes in states 0 and 1.

The solution of the stochastic model (S,) is given by X, (t) = (Hy(t), us(t)). Each

element of the sequence of jump Markov processes {u, },>1 is characterized by
e its state space E, = {0,1/n,2/n,...,1};
e its intensity A, (H,, u) = n[uf(H,(t)) + (1 —u)§(Hu(t))];
e itsjump law

pn(Hu 1, y) = " (Hu, u)8y (u +1/n) + p= (Hy, )0y (u — 1/n),

where
o (1w ®) :
) = G 0) + (- () (b5
wo(Hpu) = ub(Hu () (2.B.5b)

uf(Hu(t)) + (1 — u)g(Ha(t))’

are the probabilities deciding the nature of the next event (rupture or rebinding).

As one could easily see, both the intensity and jump law are time dependent through
H,(t).

In [106] it is proven that the deterministic system (D) defined by

Hy(t) = v(Ha(t),ua(t)), tia(t) = (1 —ua(t)) §(Ha(t)) — ua(t)7(Ha(t)), (2.B.6a)
Hy(0) = ho, u4(0) = uo, (2.B.6b)

represents the asymptotic limit of the solution of (S,) for sufficiently large n, under
the fluid limit assumption. We explain below what this assumption means. Let (W)
be a sequence of homogeneous Markov processes with states spaces E, C R¥, intensi-
ties A, (w), and jump law p,(w, dy), with the flow defined as F,(w) = A, (w) fEn (z—
w)uy(w,dz). The fluid limit occurs if the flow admits a limit and if the second-order
moment of the jump size converges to zero when n — oco. As in our stochastic hybrid
models (S,) the jumps are of size 1/n and the intensity is proportional with 1, we are

in the fluid limit assumption.

A more general version of this model, also developed in [106], allows a global formula-
tion of the problem with multiple bond populations, attached to connected plates, and
also allows the analysis of situations where the spatial coordinate H,, has more dimen-
sions (lateral displacement of the plates). This may be potentially used for formulating
a global treatment of the membrane-disk model presented in Chapter 5, and to justify

the deterministic approximation for the system dynamics presented in §5.2.3.
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Limiting drag approximations

THE VERTICAL MOTION of the disk in the surrounding fluid is strongly dependent
on hydrodynamic drag, which also modulates the force transmitted to the bonds (2.1.2).
The properties of the disk, fluid and bonds have been incorporated in the dimension-
less drag coefficient ¢ ~ 1072 — 10* (2.1.10), which spans over several orders of magni-

tude and justifies a detailed treatment of the limiting cases of zero- and infinite-drag.

In the zero-drag limit, the disk’s motion faces no resistance from the surrounding lig-
uid, so the bonds support the whole dissociating force. When the disk starts moving
from the initial displacement iy = 1 (2.1.9), and the rates (2.1.12) and (2.1.13) are com-
puted for B = 1 and & = 0 respectively, we recover the models proposed by Erdmann
& Schwartz, for constant [31], and linearly ramped force [33]. The state of the system
is entirely described by the number of closed bonds, while the cluster dynamics are
determined by only three parameters: the initial dimension of the cluster 1, the rebind-
ing coefficient v and the force f (constant) or the loading rate y (linear force). On the
other hand, for infinite drag the disk barely moves, and the unstretched bonds associate
and dissociate under thermal fluctuations. The results obtained allow us to predict the
range of cluster’s lifetime and decay profile. As in many cases, the initial position of
the disk is not fixed, we examine the effects induced by a normally distributed initial

disk height, for the limiting-cases.

This Chapter is laid out as follows. In §3.1 we derive the trajectories of the disk for the
zero- and infinite-drag limits, together with the relevant rupture and rebinding rates. In
§3.2 we derive the master equation (ME) associated to the system [50, 138], and propose
a solution based on the matrix exponential. We detail the numerical computation of the
solution of the ME, and then sketch a simplified stochastic algorithm for simulating the
system’s individual trajectories. We end up with two deterministic approximations for

the evolution of the mean number of closed bonds, one obtained from truncations of
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the ME, and the other based on the Fokker-Planck equation (FPE) [117, 138]. The be-
haviour of clusters under constant force is analyzed in §3.3, for the vanishing rebind-
ing (disk detachment), vanishing force and finally, for finite force and finite rebinding
cases. Extending the work of Erdmann & Schwarz [31], we propose new probabilistic
justifications for separating the various forcing regimes in (n, f/n) coordinates. We
then compare a number of cluster statistics obtained by various methods. Particular
attention is paid to the absorbing and reflecting boundaries at N = 0. Some results for
the linearly ramped force are presented in §3.4. The deterministic approach relating
the small, medium and large loading rates discussed in [33], is complemented with
a probabilistic criterion to obtain a parameter map of the loading regimes in (1, jt/n)
coordinates. We also compare cluster statistics obtained from stochastic simulations
with their deterministic approximations. The implications of the results for the general

model are discussed in §3.5.

3.1 Disk motion in the limiting drag cases

In this section we present the disk trajectories under zero- and infinite-drag, together

with the corresponding rupture and rebinding rates.

The zero-drag limit
In the zero-drag limit (¢ < 1), we expand (2.1.9) as h = hg + ch; + - - -, and obtain
(after the identification of coefficients of order zero in c) that 0 = (hg)? [ho — (% + 1) ] .

Replacing i = £ + 1 in (2.1.12) and (2.1.13) together with = 1, &« = 0, hy = 1, we
obtain the rupture and rebinding rates ke//* and (1 — k), which show that the models

proposed by Erdmann & Schwarz in [31], are recovered in the zero drag limit.

When k bonds are attached, the disk moves along solutions of (2.1.9), which in the

zero-drag limit are
h(t) =1+ f(t)/k. (3.1.1)

This means that immediately after a rebinding/rupture event, the disk reaches a con-
stant height under constant force (see Fig. 4.1, c = 0.1), or moves along a certain line
under ramped force (see Fig. 4.15, c = 0.1), until the next event happens. When k bonds

are closed, the rupture (backward) and rebinding (forward) rates are denoted by
e = kelt, e =7v(n—k), (3.1.2)
where f, = f(t)/k is the force per connected bond.
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The infinite-drag limit

In the large drag limit, (c >> 1,) we expand (2.1.9) as h = hg + " 4 ..., h(0) = 1 and

identifying the coefficients of order zero and one in 1, we obtain
dh dh
=0 (o) =1), T = k() + (k+ f) (k) (m(0) =0).

For hy = 1, the disk does not move significantly, since the dissociating force is balanced

by drag, so the rupture and rebinding rates are

ry =k, g ="v(n—k), (3.1.3)
which indicates that the infinite-drag limit can be recovered from (3.1.2) for f = 0.

This chapter is focused on the zero-drag problem and only mentions the infinite-drag
limit results for cluster lifetimes or decay profiles, and in Appendix 3.A, where we

discuss the impact of alternative distributions of the disk’s initial height.

3.2 Methods

The main difference between the constant and linearly ramped force is that transition
rates are time-independent for constant force, and time-dependent for ramped force.
We give an overview of the available methods, with an emphasis on the constant force

case, where a significant number of different approaches can be used and compared.

3.2.1 Master equation

The deterministic models employed in the analysis of clusters with large number of
bonds fail to describe the stochastic fluctuations in small clusters, which can be de-
scribed using the one-step master equation. Assuming a small time interval [t,t + Af),
the cluster can leave the state N(t) = k € {1,...,n — 1} to k — 1 or k + 1, with proba-
bility (r¢ + gx)At. In the same time interval, the state k can only be reached from states
k — 1 and k + 1 with probabilities gx_1 At and r1At, respectively. Since the probability
for two events to take place in the time interval (t,t + At) scales with (At)?, we are
actually dealing with a one-step process, also referred to as a “birth and death pro-
cess” [138]. With zero drag, the disk moves directly to the position given by (3.1.1),
the initial position is of the disk is not relevant and the simplified notation Pg(t) is
used instead of Pi(t;0,hp), for the probabilities defined in (2.2.10). If the probabilities
P(t) = Pr{N(t) = k} are known, at time t + At they will satisfy the equation

P(t+ At) = [1 — (re+ gk)At] Pi(t) + 118t Pei1 (1) + Ge—18tPe—1 (1), (3.2.1)
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where the first term represents the probability that the cluster remains in the state with
k bonds, while the second and third are the probabilities to enter state k from the states

k 4+ 1 and k — 1, respectively. In the limit At — 0 we obtain the one-step ME

dPp
d—tk = 11 Pep1 + Q1 Peo1 — e + 8P, k=0,...,n; P(0) = (3.2.2)

wherer, 1 =19 = g» = g-1 = 0. More compact expressions can be obtained following
the notations from the book of Van Kampen [138], who uses the “step operator” [E

which is defined by its effect on an arbitrary function g(k) :
Eq(k) = q(k+1), E 'q(k) =q(k—1). (32.3)

With the aid of this symbol the ME (3.2.2) may be written
dP -1
O (E—1)rPe+ (E" —1)gxPr, k=0,...,n;, P(0) =gy, (3.2.4)
where 7,41 = 19 = g» = g§-1 = 0. These conditions are justified by the modelling
assumptions. As n is the maximal number of available binding site, the state n + 1
does not exist (r,+1 = 0), while when all sites are occupied, no bond can be formed

(¢n = 0). At the same time, the state —1 does not exist, which justifies 1o = g_1 = 0.

Special attention is paid to the difference between the rebinding rates at k = 0, which
are go = nvy (reflecting boundary) and gop = 0 (absorbing boundary). Each situation is
analyzed separately. A full solution of (3.2.2) generally provides most relevant infor-

mation about the cluster dynamics: mean number of bonds, dissociation rate, etc.

In matrix notation, the ME can be written from (3.2.2) as [138]
dp

a?:A@m, (3.2.5)

where P(t) = (Py(t),..., Py(t))" and A(t) isa (n + 1) x (1 + 1) matrix defined as

- " 0 0 --- 0
g0 —1—g ) o - 0
0 —ry — r3 o 0 0 0

A(t) = &1 278 T3 ., (3.2.6)

8n—2 —8n-1—"Tu-1 TIn

o .- 0 8n—1 —Tn

which is time-dependent for ramped force, as (2.1.12) gives r, = ri(t) = kexp(ut).
The system (3.2.5) is a first order linear ODE system, and can be solved by integration.
When the matrices A(t) commute for any times t1,f, > 0 (A(t1)A(f2) = A(t2)A(t1),

e.g. for constant force), the direct analytical formula

P(t) = el AL dsp, (3.2.7)
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is a solution for (3.2.5), where ¢A denotes the matrix exponential. For constant force
(3.2.7) can be written as
P(t) = APy, (3.2.8)

Even in the absence of a full analytical solution, the ME can be used to obtain the
expectation and variance of N(f), which in the compact notation (a;) = Y} 2, Px [85],

can be written as

un = (k) = ) kP, (3.2.9a)
k=0
oy = Xn: KD — (k)2 (3.2.9b)
k=0

From (3.2.2), these satisfy the system [138]

d " d(k n "

5‘ S =L (dpk) ==Y Pt ) gkPe=—(r) +(gk), (3.2.10a)
t k=0 : k=0 k=0

d 2

SN = (ge+ i) +2{(k — (k) [k — 7). (3.2.10b)

These results are exact, and their form is the same for constant (f) and linearly ramped

(ut) force. Stochastic simulations can be used to estimate (3.2.10), as shown in §2.2.2.

Numerical solution

As a first order ODE system, the ME can be easily solved numerically (for example
using a ode45 routine implemented in Matlab®). The difficulty is that the magnitude
of the entries in matrix A ranges from O(#) to O(e/), which makes the problem stiff for
large values of f and n. The use of the analytical formula (3.2.7) extends considerably
the dimension of the clusters for which we can solve the ME numerically. The matrix
exponential is evaluated using either the expm Matlab® built-in routine (based on Padé

approximation with scaling and squaring), or the formula
eX = Vdiag(exp(diag(D))) V',

where for a given matrix X, V is the matrix whose columns are the eigenvectors of
X, while D is the diagonal matrix having the eigenvalues of X on the main diagonal.

Results are presented in §3.3 below.

3.2.2 Deterministic approximation

When the ME itself is difficult to solve, one can obtain important information from a
deterministic approximation for the evolution of yy and ¢%;. To this end, a continuous
analogue of the transition rates r and g on the interval [0, n], with the notation r, = r(k)

and gx = g(k) is used, and several approximations for (3.2.10) can be obtained.
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Leading order

The deterministic approximation for the mean number of closed bonds evolves at a net

rate given by the difference between rupture and rebinding, as in the equation

d
—S‘Z“ = —pune/ M Ly (n—un) = —r(un) + 8(1n), (3.2.11)
tirst studied by Bell [10] for constant force, and later by Seifert [127] for ramped force.

When the rates r and g are linear functions of k, we have

so equation (3.3.1) becomes (3.2.11). The range where the linearity assumption works,
requires careful examination. While g, (3.1.2) is linear, ry may be considered linear
only for f < 1, where 1y ~ k. As force increases, 1y ~ kexp(f/k), and (3.2.11) is no

longer a good approximation.

Higher order approximations

Assuming that r and g can be expanded in Taylor series around the average uy, we

write k = pn + (k — py) and introduce the expansion in (3.2.10), to obtain [31]

© () ,
déll—tN = —r(un) +8(un) + Eg (i) ((k—un)"), (3.2.12a)
i=2
dogy 0 40 (i-1) Hi=1) ‘
(3.2.12b)

where the first order term vanishes because ((k — uy)) = 0. Truncating after second

order term (error of magnitude ((k — py)?)), one obtains [31]

dVN — _yNef/VN _|_ r)/(n - yN) — f_zo'z (3.2.13a)
dt 23 Y
2 2
dt KN ZVN

which is compared against solutions of (3.2.10), later in §3.3.1.

Probabilistic justification

There is also a probabilistic basis for considering (3.2.11), which because rx and g are
functions of k/n, is precisely the large-n limit of the solution of the ME (3.2.2). Denoting
by X, (t) the number of closed bonds at time ¢, in the terminology of Ethier and Kurtz
[43, Chapter 11], {X, },>1 is a density-dependent population process. Taking f = nf,

the following law of large numbers (see Theorem 2.1 on page 456 [43]) can be obtained.
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Theorem. For any t > 0,

Xa(t)

sup -N (t)' — 0 as n — +ocoalmost surely, (3.2.14)
o<s<t| T
where N(t) satisfies the ODE
dN < % L
o = —Ne/’N 4 9(1-N), N(0)=1. (3.2.15)

One can check easily that (3.2.15) is exactly (3.2.11) after the substitution uy = nN.

3.2.3 Gillespie Algorithm

For constant force, the rates are time-independent and a simplified version of the al-
gorithm presented in §2.2.1, called the Gillespie algorithm [53] is available. The fact
that makes it simple and efficient is that rather than discretizing time in small steps,
the algorithm generates steps between subsequent reactions (assumed to happen one
at a time). For our problem, the possible reactions are rebinding and rupture with cor-
responding rates gx and . The sojourn time in the state with k bonds is

o . ln(g k) ln(grk)
Sk = min (—quk), — ik ) (3.2.16)

where ¢, &, ~ U(0,1) [31]. The next reaction is the one for which the minimum is
attained. A single simulation generates a vector with the event times and one with
the states of the system, allowing the computation of N(t). The probabilities Py(t), are

obtained as the frequency of k = 0, ..., n in sufficiently many simulations (10* — 10°).

For ramped force f = ut, the rates are time-dependent and trajectories are simulated
using the algorithm described in §2.2.1. However, as the disk’s displacement is locally
linear, the sojourn time S ;, in the state with k bonds starting at time ¢ty (2.2.6), can be

solved exactly giving the formula

. ln@gk) k u/k
Sk,fo = min _’}/(T—k), ﬁ ln (1 — W 11’1 grk>:| , (3217)

where Cg,, ¢, ~ U(0,1).

3.2.4 Fokker-Planck Equation (FPE)

The FPE is a special type of ME, often used to replace the discrete solution { Py (t) }o<x<
of the ME (3.2.2), with a continuous approximation P(X,t) which is the solution of a
PDE (and hopefully easier to solve), where X is as a continuous variable interpolating

{0,1,...,n}. In §3.3 we examine parameter regions and time-windows where the FPE
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approximation is valid, and then show that the FPE’s first moments better approximate

un and (712\] defined in (3.2.9), than the second order deterministic truncations (3.2.13).

In one dimension the FPE can be written as

oP(x,t) ad

= —— |Arpe(x, t)P(x,t) —l—l i
ot - ox FPE\ A, ’

2922

|:BFpE(x, t)P(x, t):|, (3218)

where the range of x is continuous and the coefficients Arpg(x, t) and Brpg(x, t) may be
any positive differentiable functions [138, Chapter VIII]. The first term in the right-hand
side of (3.2.18) is called convection or drift term, while the second is called diffusion or

fluctuation term.

Derivation of the FPE

The FPE is derived assuming a large cluster dimension 7, and “smooth” rates r; and
gk (ie. small changes between k and k + 1) [138, Chapter VIII]. Assuming that ¢(t)
describes the macroscopic motion of the max of Py(t), one expects Py to exhibit a sharp
maximum at some position of order n¢(t), while its width to be of order nl/2 [138,

Chapter X]. To capture this, we set
X = n¢(t) +n'?x, (3.2.19)

where the new variable x is of order 1. The continuous analogue P(X, t) is expected to

verify
P(k,t) =~ P(t). (3.2.20)
The initial condition of the ME (3.2.2) gives in the new variable

P(X,0) = 6(X —n). (3.2.21)

Equation (3.2.19) is a time-dependent transformation from the variable X to the new
variable x, involving the yet undetermined function ¢(f). The function P(X,t) trans-

forms into a function I'l(x, t) of x according to

P(X,t) = P(ng(t) +n'?x,t) = #H(x,t). (3.2.22)

We shall find T1(x, t), which will allow us to compute P(X, t) and then Py (t). The results
are then compared against the solution of the ME (3.2.2). The sketch of the expected
behaviour of P(X, t) is depicted in Fig. 3.1.

Consider the continuous and scaled versions of the rates r; and g defined as
R(9)=¢e!"?, Gp)=7(1~¢), ¢c01], f=f/n (3.2.23)
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P(X,0)

P(Xt)

P(X, t
P(X,0)

n(p(oo) X n(p(tz) n(p(tl) ng(0)

Figure 3.1: The evolution of the probability density P(X, t),as N(t) decreases to an equilibrium.

The operator [E changes k into k + 1 in (3.2.3), therefore x into x + n~1/2 in (3.2.22).
Using (3.2.20) and (3.2.22), the terms of the ME (3.2.2) in the new variables are

/2R ((p-l- 1/2>H(x,t),
k+1\ 1 1 1
7’k+1Pk+1:nR< . >n1/2 X+ 1/2, > —nl/ZR((P+ 1/2—|— >H<X+m,t>,

kP =nG(k/n)—— 1/2 IT(x,t) = 1/2G<¢+ 1/2>H(x,i?),

k—1\ 1 1 1 1 1
gklpklznG<T>mH(x—m,t> =n G((P'i‘ 172 E)H(x—m,t>

Using Taylor expansions of R and G about ¢, and of IT about x, we obtain

1Py = nR(k/n)—— 1/2 IT(x,t)

oIl 1 oIl  ROTI
rk_;'_]Pk_A'_]—rkPk:Rg'i‘ nl/Z( R,a_+§a—+RH> +O(1/7’l), (3.2.24a)
oIl 1 oIl Go’I1
gk*lpkfl _ngk = —G$ + m( G/$ + = > ﬁ — G,H> +O(1/1’l), (3224b)

where R" and G’ denote the differentials of the single-variable functions R and G. Using
(3.2.19), the left-hand side of the ME (3.2.2) in the new variables is

= <_ _ 128900 (3.2.25)

ot dt ox

The ME can now be written as
1 E)H_ 12dgp oIl B oIl 1 ;o ,\ Ol
W(W mqrax ) T ROy T FR -G

1 0°T1

+ (R = GHIT+ 2(R +G)=— 52 ] +0(1/n). (3.2.26)
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Identifying the terms of orders O(1) and O(n~'/?) in (3.2.26) we obtain

0(1) : % — A(9) (32.27)
1/2y . MI(x, ) O 1, 01
O(1/n'?) S = —A(g) 5T+ SB($)S 5, (3.2.28)

with the coefficients

A(§) = G(¢) — R(¢) = 7(1—¢) — e /?, 9(0) =1, (3.2.29a)
—A(p) = =G (9) + R'(¢) =y +e//? (1= f/9), (3.2.29b)
B(¢) = R(¢) +G(¢) = pe//? + (1 - ¢). (3.2.29¢)

Function ¢ describes the macroscopic evolution of the cluster and is similar to the lead-
ing order deterministic equation (3.2.11). The terms of smaller orders represent fluctu-
ations below the molecule level O(1/n), and are therefore neglected. Equation (3.2.28)
is a linear Fokker-Planck equation, also called the “linear noise approximation” [138,

Chapter X.4], whose coefficients depend on time through ¢.

Solution of the FPE

As shown in [138, Chapter VIIL6], the FPE (3.2.28) for a homogeneous boundary con-
dition at fo0 is solved by a Gaussian, therefore it suffices to find the first and second
moments of x. On multiplying (3.2.28) by x and x> one obtains the first two moments

of x and the variance

(x)r = A(¢)(x), (3.2.30a)
(x?); = 2A"(¢)(x?) + B(9) (3.2.30b)
() =2A"(9){((x*)) + B(9), (3.2.30c)

((x%)) = (%) — (x)? (3.2.31)

for the variance was used. As our aim is to solve the ME with initial delta distribution
(3.2.21) and with ¢(0) = 1 for the microscopic part. It follows that the initial fluctua-
tions vanish,

(x)i=0 = (¥*)1=0 = ((x*))1=0 = 0. (3.2.32)

As shown in [138, Chapter X.4, Chapter VIIL6]), (3.2.28) is solved by the Gaussian

-1/2 _ 2
II(x,t) = <27r(<x2>>2> exp [— %} (3.2.33)
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One can see that (3.2.33) is the solution (3.2.28) for a homogeneous boundary at £oo,
and extends beyond the interval [0, n]. From (3.2.22), P(X, t) is also solved by a Gaus-

sian, for which we find the mean and variance.

Inserting the solution of ¢(t) in (3.2.30a) with the initial conditions (3.2.32) one obtains
the mean and variance of x. These are used to obtain the mean and variance of the

original variable X, as

(X) = ne(t) +n'’?(x), (3.2.34a)
((X2)) = n((x). (3.2.34b)

Differentiating (3.2.34a), the equations for the mean and variance are

% = ’% * ”1/2% - <G - R> (¢) + n/2(G' — R')(x)

—n(clo) - k@) + (C10) - K@) (X) =np),  G2350)

2
d<<§i ) _ 2<G'(¢) - Rf(¢)> ((X2)) + n(R(¢) + G(qb)), (3.2.35b)

with the initial conditions (X);—o = n and ((X?));—o = 0. One can note that ¢(t) is not

a trivial scaling of (X) with 1, as the two are related by

S — (0= R ) ((X) = n9), (3:236)

which suggests that (X) is a higher approximation for the first moment of the ME than
(3.2.11). Simple computations show that it is not equivalent to (3.2.13a), and generally

approximates i better, as we shall confirm in §3.3.

From (3.2.19), (3.2.22) we obtain
1 1
P(X,t) = mﬂ W(X —ng),t). (3.2.37)

As the mean and variance of #(X — ng) are n=V2(X) — n'/2¢ and ((x))/n respec-

tively, one can use (3.2.33) to write

2
b #<2n%<<xz>>2>l/zexp<— [#(X—nqb)—#(()()—nqb)] )

25:((X2)
(3.2.38)
which after simplification proves that P(X, t) is indeed the Gaussian
—-1/2 2
X~ (X))
P(X,t) = (27((X? 2) ex [—(7] 3.2.39
0 = (2n(000?)  exp| - S (3:239)
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As the Gaussian distribution (3.2.39) extends beyond the interval [0, n], the values
P(k,t) computed from the FPE are expected to be a good match for the discrete prob-
abilities Py(t) just over a limited interval inside [0,n] which is far from the boundaries,
and over a limited time-window. A significant improvement over the current solution
can be made by considering no-flux boundaries at X = 0 and X = n, to preserve the

probability inside the interval [0, n].

In summary, the ME (3.2.2) is approximated by a FPE with homogeneous boundary
conditions at £oco, which is solved by a Gaussian. The comparison between the solu-
tions of the FPE and the ME, as well as estimates for the time-windows over which the

FPE is a good approximation for the ME are presented in §3.3.1 and §3.3.2 below.

3.3 Results for constant force

When force is sufficiently large, the effects of rebinding are negligible. In this section we
overview some relevant results regarding the cluster behaviour in n, f and -y parameter
space, for zero rebinding §3.3.1, zero force with rebinding §3.3.2, and non-zero force
with rebinding §3.3.3.

3.3.1 Vanishing rebinding

First, an analytical solution for the ME (3.2.2) is discussed, and used to confirm the
existence of three distinct forcing regimes. Then, the FPE approach is validated against
deterministic approximations (3.2.13), and exact solutions of the ME computed from
(3.2.8). We then analyze the cluster’s decay and finally, prescribe upper and lower

bound for cluster lifetime, using results obtained for zero- and infinite-drag.

Probabilities and force regimes

In the absence of rebinding, the cluster decay is a pure death process, with time-independent

rates 7. A direct formula for the state probabilities Py(t) is available [75]

P(t) = < ﬁ rj> i <e_r/'t ﬁ 'irj)' (3.3.1)

j=k+1 j=k i=k, it i

valid for r; # r;. In case f is such that r; = r;, (3.3.1) is replaced by

Pi(t) = ( I r]-) y <er# T - 1] %) (33.2)

j=kt1 =k i=k,ritr; 0T T ik ri=r, it

using that

- _ A _ e
ilg})(l e )/ A=t A=ri—r1j
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Figure 3.2: Probabilities Py(t) obtained from the exact formula (3.3.1) for cluster size n = 10,
rebinding coefficient y = 0 and (a) f = 0.1; (b) f = 1; (¢) f = 10; (d) f = 100.

For f =0, (3.3.1) represents the stochastic version of the radioactive decay with the bi-
nomial distribution P¢(t) = (7)(1 —e~*)" *e~*. The full solution of the ME represented
by the state probabilities Py(t) is depicted in Fig. 3.2, suggesting the existence of three

forcing regimes.

In what follows, we shall refer to a state k € 0, ..., n as being “visited” by the cluster at

time t > 0, if
Pe(t) > Pi(t), ke{0,...,n}, i#k (3.3.3)

Under small force, there exists a time interval when the cluster visits each of the states
k =0,...,n (the probability P, verifies (3.3.3)), as depicted in Fig. 3.2 (a). Because in
the absence of rebinding the cluster dissociates, Py approaches unity in the long run,
while all other P;’s vanish. As force increases, some of the states with lower number
of bonds k are not visited, as illustrated in Fig. 3.2 (b) (state k = 1 not visited) and
(c) (states k = 5,4, 3,2,1 not visited), so the medium force regime can be considered to
begin with the minimal force required for the cluster not to visit all states. Finally, from
a certain value of f, the cluster only visits the states n and 0, as plotted in Fig. 3.2 (d).
The cluster decay in this regime is called “catastrophical”, the dissociation of the whole

cluster immediately following the rupture of the first bond.
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fin

Figure 3.3: Force regimes in the (1, f /1) coordinates, generated from the analysis of probabil-
ities Py (t) obtained from (3.2.8) (solid lines). Solid lines represent boundaries computed from
the numerical solution of the ME (3.2.8) for various values of 1, while dotted lines represent re-
sults obtained by extrapolating the simulated data, using spline cubic functions. Plot obtained
forn =2,...,100, v = O reveal the existence of small force (I), medium force (II) and large force

(II) regimes.

Force regimes obtained from the probability functions

The number of visited states defined in (3.3.3) is used to characterize the three force
regimes as a function of cluster size, depicted in Fig. 3.3. Solid lines are determined by
solutions (3.2.8) of the ME (3.2.2) (for values of up to n ~ 50), while dotted asymptotes
represent cubic spline extrapolations of the simulated data. For each value of 1, the
solutions (3.2.8) were computed for increasing values of f, and the small-intermediate

and intermediate-large force boundaries, were identified using the function
D(f,t) = max DP(t).
k=0,...n
The force regions are (I) for #{D(f,t)|t > 0} = n+1, (II) for 2 < #{D(f, )|t > 0} <
n+1and (II) for #{D(f,t)|t > 0} = 2, where #{D} denotes the cardinal of set D.

The results predict that a small constant force is required to destabilize the smooth
cluster decay (f ~ 1/7), while the force required for the cluster’s catastrophic failure

scales quadratically with n (f ~ n?/2).

Comparison ME vs. FPE

Despite the small cluster dimension n = 10, the solutions P(k, t) of the FPE (3.2.38),
approximate reasonably well the solutions P (t) of the ME (3.2.2), especially for small
force over a limited time-window, as sketched in Fig. 3.4 (a). As anticipated, the ap-

proximation is poor at the boundaries of [0, 7], as seen in Fig.3.4 (a), where Py(t) may
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Figure 3.4: Solutions Px(t) of the ME obtained from (3.2.8), are compared against the FPE ap-
proximations P(k, t) (3.2.38), forn = 10,y = 0and (a) f = 1; (b) f = 10.

be severely underestimated by P(X, t). The situation gets even worse with the increase
in force, as depicted in Fig. 3.4 (b). This is expected, as the rupture rates increase ex-
ponentially with force, and the small number of bonds in the final phase ensure a big
difference between the rates r; and r¢1. We expect then the FPE method to be totally
irrelevant for approximating the catastrophic failure solution shown in Fig.3.2 (d) for

f = 100, where cluster dynamics are dominated by the probabilities Py and P,,.

Cluster decay profiles

In the absence of the rebinding, the number of closed bonds in the cluster decays with
time, until the cluster finally dissociates. The profile of this decay is analyzed from
stochastic simulations of the system and deterministic approximations of yy . The
deterministic equation (3.2.11) can be transformed using the substitutions f = nf and
UN = N n, into .

dN

o= —Ne//V 4 9(1-K), N(0)=1. (3.34)

which only depends on 7 and £, the two key parameters of the deterministic model.

As discussed in Sec. §3.2, due to the nonlinear form of r; (and continuous analogues
r(x) = xef/*, where these are defined), the first moment 1y (t) of the stochastic solu-
tion for the mean number of closed bonds (3.3.1) is not identical with the solution of
the deterministic equation (3.2.11). In Fig. 3.5, results for yx(t) derived from stochastic
simulations, the exact solution of the ME (3.2.2), the second-order deterministic ap-

proximation (3.2.13a), and solutions of the FPE (3.2.35a) are compared to each other.

For small force, the non-linearity is small and all methods agree in the initial phase of

decay, as depicted in Fig. 3.5 (a).
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Figure 3.5: Comparison between single simulation trajectory (thin solid line) and px(t) ob-

tained from the FPE (3.2.35a), DE (3.2.13a) (generally shadowed by FPE), ME (3.2.2) and av-
erage of 10* trajectories (perfectly match ME) for n = 10,y = 0 and (a) f = 0.1; (b) f = 1; (c)
£ =10;(d) f = 100.

As shown in Fig. 3.5 (b) and (c), with the increase in force, the deterministic approx-
imations deviate sooner and more significantly from results generated from the ME,
with the FPE mean (3.2.35a) performing better than the deterministic mean (3.3.1).
All deterministic results exhibit a steep breakdown since r(py) and duy/dt diverge
as uy — 0. In the large force regime depicted in Fig. 3.5 (d) both deterministic ap-
proximations completely fail in describing the final decay phase, and the only reliable
results are obtained from stochastic simulations. The stochastic results for py(t) show
no scaling with f/n alone, because the ME includes all moments of the probability
distribution {P(t) }}_,.

In Fig. 3.6 we compare the variance 0% (t) obtained from averages of stochastic simula-
tions with results obtained from the exact solution (3.2.8) of the ME (3.2.2), the second
order deterministic approximation of the variance (3.2.10b) obtained from (3.2.13b)
and the solution of (3.2.35b), obtained from the FPE. The solutions agree even worse
than the means, as the deterministic variances blow in finite time. As previously, the

deterministic results are only relevant for the incipient phase of the decay, especially
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Figure 3.6: Variance 0% (t) obtained from the FPE (3.2.35a), DE (3.2.13b), ME (3.2.2), and the

average of 10* trajectories (perfectly match ME) for n =10,y = 0 and (a) f = 0.1; (b) f = 1; (c)
f =10; (d) f = 100.

for small force, as depicted in Fig. 3.6 (a). As shown in Fig. 3.6 (b), (c) and (d), both
deterministic approximations fail. The larger the force, the faster and worse the predic-
tion. The conclusion is that one can only rely on stochastic simulations and the exact

solution of the ME for describing the fluctuations in the terminal phase of the decay.

Cluster decay and the ratio f/n

The dependence of the normalized decay /7 on the initial loading per bond f/n
is depicted in Fig. 3.7, where we compare the solution of (3.3.4) against results from
stochastic simulations. The difference between the two solutions increases with f,
while for the same f/n, a large cluster decays faster than a small one. This is because
for a large cluster the decay is slower in the initial phase, while after some ruptures the
large force is shared by fewer bonds, so the decay becomes much faster. The determin-

istic approximation (3.3.4) does not reveal this behaviour, as the solution is completely

determined by the ratio f/n.
For certain pure death processes, the relation between the deterministic decay and the

mean number of closed bonds can be analyzed using a result of Ball & Donnelly [6,
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Figure 3.7: Plot of jux(t)/n obtained from the DE (3.2.11) (solid lines), and the exact solution of
the ME (3.2.8) realized for vy = 0,n = 4,8,16,32and (a) f/n = 0.01; (b) f/n =0.1;(c) f/n =1,
(d) f/n=10.

Theorem 3.2]. When the rates ryp = 0,ry,...,r, form a convex (concave) sequence, let
r(x), x € [0,n] be any extension of r from the integers 0,1,...,n to the closed real

interval [0, n] which retains the property of convexity. The differential equation

dx

T —r(x), x(0)=mn,
provides a deterministic approximation for a certain death process N(t), t > 0 (defined
in [122, Chapter 6]). Then,

pn(t) = (S)x(t),  (£20)

if ro,r1, ..., 7, form a concave (convex) sequence. Further, the inequalities are strict for

all t > 0 if the sequence ro, 1, ...,y is strictly concave or strictly convex.

Unfortunately, as shown in Fig. 3.8, the result above can only be applied for f = 0,
where the rates are linear, the sequence is both concave and convex, hence the deter-
ministic and stochastic means are the same. In all other cases, the sequence is only
convex on the interval [1, n]. However, the result indicates that the deterministic mean
initially overestimates, and terminally underestimates the stochastic mean, as shown
in Figs. 3.5 and 3.7.
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the interval € [0,5]. Line connecting rg = 0,71 = e/ for x € [0,1] and r(x) = xe//* for x € [1,5].

Mean cluster dissociation time

As explained in §1.2.3, most DFS experiments measure the dissociation time Tp defined
in §2.2.2 (2.2.18) as a stochastic variable. We examine the dependence of its mean pr,
(“cluster lifetime”) and variance U%D on cluster size and applied force, and confirm the

three force regimes identified before in cluster dynamics.

Since the stochastic decay of the cluster represents a succession of Poisson processes
with time-independent rates rx, and as shown in [75], the expected lifetime of the clus-

ter is the sum of the inverses of the rates

Z Z e f T (3.3.5)

For small force (f < 1/n), the lifetime (3.3.5) is well approximated by

"1 1
5 %;E %lnn-l-%-l-F, (3.3.6)

in agreement with previous findings [31, 134].

For intermediate force (1/n < f < 1), the cluster decays slowly for k > f where we
can approximate r, ~ k. The decay becomes much faster for f/k > 1, and the cluster

passes rapidly through the states k, . . ., 1. The lifetime can then be estimated from

f % n(n/f). (3.3.7)
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Figure 3.9: Cluster lifetime computed from (3.3.5) for the zero- (solid line) and infinite-drag
(dashed lines) limits, and for iy =1, B =1, v = 0, with n = 1, 10, 100, 1000 and 10000.

For large force, the dominant term in (3.3.5) is the one corresponding to the rupture of
the first bond so the average lifetime is
wr, ~e /" /n, (3.3.8)

because after the first bond breaks, all the other ones follow almost instantly.

The variance of the lifetime of the cluster bounded from above

A I A
=l oSl ESleT ¢ (3.3.9)
k=1"k k=1 k=1

This result is particularly useful for clusters with long life, where fluctuations are small

compared to the lifetime.

In Appendix 3.B we present estimates for the cluster lifetime obtained from the analysis
of the deterministic equation (3.2.11) as done by [31], and we also compare them with

the results obtained from the analysis above.

Limiting values for the mean cluster lifetime

The limiting drag cases provide upper and lower bounds for the mean cluster lifetime
#t,, which are illustrated in Fig. 3.9 as functions of f/n for clusters having n = 1,
10, 100, 1000 and 10000 bonds, respectively. The horizontal dashed lines represent the
mean cluster lifetime in the infinite-drag limit, which is force-independent. In the zero-
drag limit, yi, severely diminishes with the increase in force. For finite drag (Chapter
4) and given values of f and n, the stochastic mean dissociation time pr, is located

between the values corresponding to the coordinates (f/n,n) in Fig. 3.9.
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3.3.2 Vanishing force: role of rebinding

Rebinding can stabilize the decay of the cluster, and for sufficiently small force the
bond population may fluctuate about an equilibrium value. In the absence of force, the
disk is stationary and system’s dynamics are dictated by only cluster dimension and
rebinding. In this case the ME (3.2.2) can be solved explicitly for a reflective boundary
at k = 0, and the validity of the FPE approximation (3.2.39) can be examined. The

dependence of the cluster’s lifetime on 7 and 7 is also examined.

Exact probabilities and cluster dynamics for f=0
The deterministic equation (3.3.4) reads

dpn

g = Yn—pn) =N, pn(0) =n, (33.10)
which has the solution (L)t
+e U
() = n T2 —— iy (3.3.11)

The solution relaxes exponentially fast to the equilibrium configuration
Neg = lim un(t) =ym/(1+7),

predicting an infinite deterministic cluster lifetime.

The analysis of the stochastic birth and death process reveals the key role played by the
boundary condition in the cluster’s dynamics. For a reflecting boundary at k = 0, N(t)
can be viewed as a sum of n independent and identically distributed random variables,
corresponding to single bond clusters. At time ¢, a single bond can be either open or
closed, with probabilities P}(t) and P;(t), which satisfy Pj+ P; = 1 at all times. The

corresponding ME for clusters with a single bond is

dp;
o= nPi+gB, P0)=1, (3.3.12a)
dp;
= ok, B(0) =0, (3.3.12b)

with ry =1 and gg = . One can show that (3.3.12) is solved by

4o (147t 1 — e~ (1)t
Denoting by
v +e*(1+’)/)t
—rre - 3.3.14
1+ ( )

the number of bonds in the single bond cluster is distributed as a Binomial random
variable B(1, ) [122, Chapter 2].
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Figure 3.10: Probabilities Pi(t), k = 0,...,n where n = 10, f = 0, v = 1, realized for (a)
reflecting boundary at k = 0 computed from (3.3.15) and (b) absorbing boundary at k = 0 (10°

simulated trajectories).

Since N(t) is a sum of n such processes, it is distributed as B(n, q) so the ME (3.2.2) is
solved by

n—k

o~ (14 )tk _ e (Hmt
o= Q)eaar = (LT

k
T+y
the bonds in the cluster stabilizes to an equilibrium, as shown in Fig. 3.10 (a). However,

The probabilities verify lim; .o, Pr(t) = (}) (7—)”, so in the long run the distribution of

as foreseen by Bell, the cluster might dissociate even in the absence of force, if we wait
for long enough. This scenario corresponds to an absorbing boundary at k = 0, where
Pi(t) can no longer be obtained in a closed analytical form. As depicted in Fig. 3.10 (b),
all probabilities Py (t) for k > 1 reach a peak value, after which they vanish in the long

run. The only increasing probability is Py(t), as the cluster finally dissociates.

From (3.3.14), the mean and variance of N(t) are

un(t) =ng, oy (t) = nq(1—q). (33.16)
The relative standard deviation on /N scales as yg,l/ 2 for all times, thus fluctuation

effects decrease with increasing bond number, converging to the stationary state value

tli_{T;UN/;uN =/ (1 +7)Neq = /.

This indicates that larger rebinding not only increases the equilibrium number of bonds,

but also decreases the size of the fluctuations around the equilibrium value N,,.
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Figure 3.11: Domain of validity of the FPE (3.C.2) in the (1, y) parameter space, computed for
values suggested by the criterion (3.C.5). The criterion does not apply in region (0) (left of the
dashed line). The FPE is not valid in (I), is valid in [t,;;;,, 00) in (II) and is valid in the time

interval [fmin, tmax] in (IIT), where tpin and fmax can be determined (when real), from (3.C.7).

Domain of validity of the FPE

It was shown in Fig. 3.4 that the FPE can accurately approximate the solutions Py(t)
of the (3.2.2), for certain values of force and cluster size, in a limited time-window.
For zero-force, one can obtain explicit estimates of the parameter values 7y and n when
the FPE is a valid approximation for the FPE, together with the corresponding time-
windows. As the argument is rather technical, we just present the parameter map,

while the details can be found in Appendix 3.C.

The parameter regions where the FPE approximation is valid are sketched in Fig. 3.11.
The criterion does not apply in region (0) (left of the dashed line). The FPE is not valid
in (I), is valid in [t;;;,00) in (II) and is valid in the time interval [fmin, fmax] in (ITD),

where tnin and tyax can be determined (when real), from (3.C.7).

Cluster lifetime

From [138], the mean cluster lifetime absorbing boundary is given by

wr, = 7+1<Z Z() ) (3.3.17)

This equation is a polynomial of order n — 1 in 7, and for f = 0 we recover the result

from (3.3.5). The dependence of yt, on 7y and n is depicted in Fig. 3.12 (a) and (b). For
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Figure 3.12: Cluster lifetime 7, from (3.3.17), plotted as a (a) function of +y; (b) function of 7.

v < 1 the cluster lifetime grows logarithmically with cluster size, for moderate values

of n. The increase of pi,, with the cluster size is much faster (exponential) for ¢ > 1.

3.3.3 Finite force, finite rebinding

Force destabilizes the cluster, while rebinding stabilizes it again. In the context of ad-
hesion clusters it was shown by Bell [10], that a cluster of bonds remains stable up to a

critical force denoted by f., which can be determined theoretically or from experiment.

In general, the probabilities P;(t) can be obtained from stochastic simulations or from
the direct solution (3.2.8) which involves the matrix exponential. Explicit solutions can

be obtained for n = 2,3 [31], but these become complicated for larger values of n.

Critical force

The critical force that destabilizes a cluster of size n can be estimated from the de-
terministic equation (3.2.11). Denoting by N,, the value of uy at equilibrium (when
dpy/dt = 0), we can write (3.2.11) as

Nege!/Net = —(n — Nyp). (3.3.18)

At small force f, (3.3.18) has two roots, the larger one corresponding to a stable equi-
librium, as shown in Fig. 3.13 (a). As force increases, a saddle-node bifurcation occurs.
Above the critical force no roots exist and the cluster becomes unstable. Exactly at criti-

cal loading, the two roots collapse, the slopes of the right- and left-hand side of (3.3.18)
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Figure 3.13: (a) dN;/dt as a function of Ny, computed from (3.2.11). For forces f < f; two
steady states exist, which merge at f = f. and vanish for f > f.. Plotrealized forn =10, y =1,
and f. >~ 2.7846 obtained from (3.3.20). (b) Number of closed bonds at equilibrium as a function
of f/n, obtained from (3.3.18) for n = 10. For f < f, there is a unique real solution, while for
f > fc there is no real solution (cluster disintegrates). Circles represent critical force and cluster

size, respectively.

become equal, so by differentiating (3.3.18) we obtain

efea/Neg [ 1 — & = —7. (3.3.19)
Solving the system (3.3.18) and (3.3.19), the critical values for force and number of

closed bonds are obtained as

pln <%>
(3.3.20)

1+ pln(%)

where pln(a) is defined as the solution x of xe* = a.

fC:TlPh'I(,Y), NC:TI

e

From the deterministic point of view, the cluster behaviour can summarized as follows:
for f < f. we have N(f) — N, while for f > f. the cluster dissociates in finite time.
We shall see below, that the stochastic behaviour of the cluster is strongly influenced by
the boundary condition at N = 0, which is reflective if gy = 7yn, or absorbing if go = 0

(rebinding no longer possible once the state N = 0 is reached).

Reflecting and absorbing boundaries

The mean number of bonds yy(¢) is illustrated in Figs. 3.14 and 3.15, for a reflecting
and an absorbing boundary at N = 0, respectively. In both figures, the means com-

puted from the FPE (3.2.35a) and the deterministic equation (3.2.11) are superposed.
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Figure 3.14: Comparison of single simulation trajectory with i (f) obtained from the FPE

(3.2.35a), DE - N, (3.2.11), ME (3.2.2) and average of 10* trajectories for n = 10, v = 1 and (a)
f=10b)f=f~278(c) f =5;(d) f =10, for a reflecting boundary at k = 0.

The reflecting boundary is the natural boundary for the deterministic equations (3.2.11)
and (3.2.35a), as one can see in Fig. 3.14. For subcritical force f < f. (Fig. 3.14 (a)) all
methods agree, and the single trajectory fluctuates about the predicted equilibrium.
Starting from the critical force f < f. depicted in Fig. 3.14 (b), deterministic results
deviate from the stochastic solutions, and for supercritical force f > f, they predict an

increasingly abrupt collapse with the increase in f, as seen in Figs. 3.14 (c) and (d).

The absorbing boundary case is plotted in Fig. 3.15. The deterministic equations are
formulated for a reflecting boundary, so significant deviations from the stochastic mean
(which predicts dissociation) arise even for subcritical force, as seen in Fig. 3.15 (a).
Starting from f = f,, the deterministic mean also predicts cluster dissociation (Fig. 3.15
(b)), but initially overestimates the stochastic results, and then predicts a sudden decay
(Figs. 3.14 (c) and (d)). Compared to Fig. 3.5, the difference between the deterministic

and stochastic results is enhanced by rebinding.

In summary, the deterministic approximations correctly estimate the number of closed
bonds at equilibrium for a reflecting boundary, but fail to predict the cluster disintegra-

tion time for f > f.. In the large-force limit, the effect of rebinding is negligible.
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Figure 3.15: Comparison between single simulation trajectory and .y (t) obtained from the FPE

(3.2.35a), DE - N, (3.2.11), ME (3.2.2) and average of 10* trajectories for n = 10, v = 1 and (a)
f=10) f=f~278(c)f =5;(d) f =10, for an absorbing boundary at k = 0.

Cluster lifetime

For an absorbing boundary, the cluster dissociates no matter how large the rebinding is.
The average cluster lifetime can even be obtained in a closed form, using the formula

of the mean extinction time for a Markov process [138],

-1 ‘
" —k&(1)
ur, Z +Z Y L (3.3.21)
k= k=1 j= k+11_L]k(1)
For n = 2,(3.3.21) yields
—f/2 —3f/2
nry = e/ + 2 5 +9° 5 (3.3.22)

In general, one can prove that the average lifetime is a polynomial of order n — 1 in 7,

whose leading coefficientisexp (—f/(14+1/2+---+1/n)) /n.

In the large number of bonds limit we have 1 +1/2+ --- +1/n ~ Inn, so the leading

term of the polynomial is n~(/*1). For 7 > 1 and large 1, the lifetime verifies
N ,yn—l
HTp = O<nf+1>'
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Figure 3.16: Cluster lifetime y 7, as a function of y obtained from (3.3.21), for n = 2, 5, 10 and
(a) f/n=0.01; (b) £/n=0.1; (c) f/n=1; (d) £/n=10.

In general, force always affects most strongly those terms of highest order in «, thus
for v > 1, application of force is therefore an efficient way to reduce average lifetime
ur,. For v < 1, ur, is dominated by those terms of lowest order in 7, thus here the

reduction of lifetime with increasing force is only weakly modulated by rebinding.

In Fig. 3.16 we examine the lifetime of the cluster obtained from (3.3.21), as a function
of v, for constant values of f/n and various values of n. For small f/n, the lifetime
of the cluster increases rapidly with <, and the larger clusters survive for longer, as
depicted in Figs. 3.16 (a) and (b). With the increase in force, for small values of v a
switch occurs, and as discussed for vanishing rebinding, larger clusters can dissociate
faster than the smaller ones, being the case even for f/n = 1. However, as depicted
in Fig. 3.16 (c), the large clusters can again survive longer than the smaller ones, as
rebinding increases. In Fig. 3.16 (d) it is also shown that the value of oy from where this

switch back takes place is also not f/n dependent.
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3.4 Results for ramped force

The ramped force profile is very common in the DFS experiments [38] earlier discussed
in §1.2.3, one of the reasons being that no steady state is possible. The slope p of the
linear force pt is usually called loading rate. As the coefficients of the ME (3.2.2) are time-
dependent, analytical solutions cannot be obtained explicitly, therefore we shall mostly
rely on stochastic simulations. In this section we focus on the vanishing rebinding
case, and first examine the three loading regimes suggested by the probability profiles
as discussed in §3.3.1, and then by the deterministic equation (3.2.11). Decay profiles
obtained from averages of stochastic simulations are compared against solutions of the
deterministic equation (3.2.13a). In the end we present the evolution of force in single

simulations and the rupture force distribution for single and multiple bond clusters.

3.4.1 Loading regimes

As for constant force, the cluster’s dynamics under ramped force are also characterized

by three-loading rate regimes that we determine below.

Probability functions

The analysis of the probabilities Py(t) help us describe more clearly the different load-
ing regimes predicted by the analysis of the deterministic equation (3.2.11). The quali-
tative difference between the probability profiles depicted in Fig. 3.17 suggests consid-

ering three loading regimes, defined by the same argument used for Fig. 3.2.

The number of visited states (3.3.3) is used to characterize the three loading regimes,
depicted in Fig. 3.18. Solid lines are numerical solutions of the ME (3.2.5), while dotted
asymptotes are obtained by cubic spline extrapolation of computed data. For each
value of n, the ME was solved for increasing values of y, and the small-intermediate

and intermediate-large force boundaries, were identified using the function
D(u,t) = max Py(f).
k=0,...n

The loading regions are (I) for #{D(p, t)|t > 0} = n+1, (II) for 2 < #H{D(p, t)|t > 0} <
n+ 1 and (1) for #{D(p, t)|t > 0} = 2, where #{D} denotes the cardinal of set D.

The scales are not as obvious as for constant force case, depicted in Fig. 3.3. The transi-
tion between regions (I) and (II) is made at a small loading rate, which now increases
with 7 (opposed to the constant force value f ~ 1/7 in Fig. 3.3). On the other hand,
the transition between regions (II) and (III) takes place at much higher loading rates,

which increase much faster than the constant forces in Fig. 3.3.
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Figure 3.17: Probabilities P (t) obtained from the numerical solution of the ME (3.2.2), for n =
10, v = 0 and loading rates (a) # = 0.1; (b) = 1; (c) # = 100; (d) # = 10000 (cf Fig. 3.2).
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Figure 3.18: Loading regimes in the (1, /n) coordinates, generated by the probabilities Py (t)
obtained from the numerical solution of the ME (3.2.2) (solid lines). Solid lines represent bound-
aries computed from the numerical solution of the ME (3.2.5) for various values of 1, while dot-
ted lines are obtained by cubic spline extrapolation of the data. Plot obtained for n = 2,...,50,

7 = 0 reveal the existence of small (I), medium (II), and large loading rate (III) regimes.

81



CHAPTER 3: LIMITING DRAG APPROXIMATIONS

Analysis of the deterministic equation

The analysis of (3.2.11) for linearly ramped force f = ut was first done by Seifert [127].
We present it below to support the empirical findings based on the properties of the
probabilities Py (t). For v = 0 the equation reduces to

dpn

N — e/, gy (0) = (341)

Considering the auxiliary variable u(t) = t/uy(t), (3.4.1) becomes

du u 1
T, [ - pu
T +u u(l + t) +u(e 1). (34.2)

The magnitude of the terms of (3.4.2) at different times, reveals the existence of three

loading regimes [33], summarized below.

For slow loading (4 < 1) the cluster behaves similarly to the small constant force case,

so we have un(t) = ne!, and since T} verifies un(T;) = 1, we have T; ~ Inn.

For intermediate loading (1 < u < n) the initial phase is similar to slow loading, and the

crossover to fast decay takes place at T; ~ In(n/p).

For fast loading (u > n) the lifetime of the adhesion cluster scales with Ty ~ (n/u) In(pu/n).

Cluster decay comparison

The mean number of closed bonds yy obtained from stochastic simulations, determin-
istic approximations and the numerical solution of the ME (3.2.2) provide a clear image
of the decay profiles of the cluster under various loading regimes. As depicted in Fig.
3.19 (a), the results agree very well for small loading rate, where the cluster decays
exponentially. The mean computed from the deterministic equation (3.4.1), starts de-
viating from the stochastic results even starting from p = 1, as shown in Fig. 3.19 (b),
where deterministic results predict a faster decay. As illustrated in Fig. 3.19 (c) and
(d), the differences become more pronounced with the increase in y. As expected, the
difference between the deterministic and stochastic results is greatest for the largest
values of y, but considerably the deterministic equation for ¢ = 10000 performs much
better than for constant force f = 100, plotted in Fig. 3.5 (one should also note that the

rupture force is about ut ~ 50).

A specific feature of the cluster’s dynamics under ramped force is that even for large
loading rates, there is a plateau where the decay is not very significant, followed by
a region of rapid decay. The conclusion is that for large loading rates, the longer the

clusters survive, the more rapid their final decay phase is.
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Figure 3.19: Comparison between single simulation trajectory and pn(t) obtained from the
DE (3.4.1), ME (3.2.2) and average of 10* trajectories for n = 10, 7 = 0 and loading rates (a)
u=0.1;(b)u =1;(c) u = 100; (d) » = 10000.

3.4.2 Mimicking DFS experiments

Our model can be easily adapted for mimicking DFS experiments, not only for single
bonds, but also for finding the unbinding pathway of the cluster. As discussed in §1.2.3
for single bonds, the notion of rupture force can be extended to clusters, as the force

measured when the last bond dissociates.

In accordance with the findings of Merkel et al. [95] presented in §1.2.3, bond strength
is not only a property of the bond, but is influenced by the loading rate i, as one can see
from the evolution of force ut in the rupture of a single bond depicted in Fig. 3.20 (a),
for y = 10, p = 100 and p = 1000. Because in the zero-drag limit the relation between
force and disk displacement is linear (3.1.1), the disk’s trajectory for single bonds can
be read directly from the graph. The rupture force histogram illustrated in Fig. 3.20 (b)

shows that the spread of rupture forces increases with y.

Our model can also be used to predict unbinding pathways for clusters having multi-
ple bonds. In the zero-drag limit, the disk’s displacement is piecewise linear, having
slope 1 /k when k bonds are connected, as suggested by (3.1.1). This indicates that for
multiple bond clusters much larger forces ut are attained, as plotted in Fig. 3.20(a),

for y = 10, p = 100 and u = 1000. Despite the added complexity, the rupture force
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Figure 3.20: Cluster rupture force histograms for (a) n = 1; (b) n = 10, computed from 10*
simulated trajectories for loading rates u = 10,102,103, Dotted line represent a fitted normal

density, with the same mean and variance as the simulated data.

histogram illustrated in Fig. 3.20 (b) predicts that the rupture forces are normally dis-
tributed.

For comparing the simulated results against experimental data, one should restore the
dimensions of time and force, and to use physiological data for the bond properties «*,

L* and kj. The role of drag is examined in Chapter 4.

3.5 Summary

The drag coefficient ¢ (2.1.10) spanning several orders of magnitude lead us examine
the zero- and infinite-drag limiting cases. It was first established in §3.1 that the disk’s
movement is solved by h(t) = 1+ f(t)/k (3.1.1), which is either locally constant for
a force f that is constant, or piecewise linear for linearly ramped force f = ut. The
infinite-drag limit was also identified as equivalent to the zero-force subcase of the
zero-drag problem. The computation of the transition rates showed that the models
proposed by Erdmann & Schwarz [31, 33] can be recovered as the zero-drag limit of

our model.

Several methods have been developed specifically for this problem, of which we stress
the Fokker-Plank equation (FPE) and the solution of the ME using the matrix exponen-
tial. We have established that the FPE (3.2.35a) generally gives better results for the
mean and variance of the bond population, than the second order truncation of the de-
terministic equation (3.2.13), as depicted in Figs. 3.5 and 3.6. The FPE was found to be a

good approximation for the solution of the ME (3.2.2) far enough from the boundaries,
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over a limited time-window (Fig. 3.4), which depends on the parameter values (Fig.
3.11). Also, the matrix exponential was much more efficient than the brute force solu-
tions of the ME (stiff for large clusters), considerably extending the cluster dimension

where useful results can be obtained numerically.

Using the solutions P (t) of the ME (3.2.2) we have confirmed the existence of three
forcing (small, intermediate, large) and three loading rate (slow, intermediate, fast)
regimes, illustrated in Figs. 3.3 and 3.18, respectively. Our results also provide quanti-
tative estimates for the corresponding boundaries, completing the qualitative descrip-
tions discussed in [31] and [33].

The decay profile of clusters was extensively analyzed for the parameters n, f,y, u.
The deterministic decay (3.2.13) overestimates the initial phase, and underestimates the
late phase of the decay, computed from stochastic simulations or from the numerical
solution of the ME (3.2.2) (Fig. 3.5). The ratio f/n which completely characterizes
the deterministic decay, does not influence the stochastic decay as much, the latter
predicting that larger clusters decay faster for same value of f/n (Fig. 3.7). Larger
clusters may again decay slower, for sufficiently large rebinding (Fig. 3.16). The decay
of clusters is also strongly influenced by the choice of the boundary condition at N(t) =

0, as illustrated in Figs. 3.15 and 3.14, for an absorbing and reflecting boundary.

Cluster lifetime strongly depends on force and cluster dimension (Fig. 3.9), or rebind-
ing (Fig. 3.16). Using the stochastic estimations for the mean cluster lifetime, we have
established upper and lower bounds for cluster lifetime under drag, which are depicted
in Fig. 3.9.

For the constant loading rate problem we have mimicked a DFS experiment, showing
that the model is able to predict the rupture force as a function of the loading rate.
Also, distributions of the rupture force computed for single and multiple bond clusters
have shown an increasing spread with the increase in y, but also, that rupture forces for
clusters are normally distributed (see Fig. 3.20). The analysis is completed in Chapter

4, where we examine the dependence of the results on finite drag.

As suggested by the experiments of Merkel et al. [95], Brownian effects play an impor-
tant role especially for slow loading (see Fig. 1.4), so the addition of Brownian noise
in the disk-bond system is expected to offer a closer resemblance with the experimen-
tal setup. After calibration with data from single bond experiments, our model can be

used for a better understanding of the experiments for cluster unbinding.
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3.A Normally distributed initial condition

Different assumptions about the experimental setup require the consideration of sev-
eral types of initial condition, generated by the position of the disk relative to an equi-
librium. In the ideal case when in all experiments the disk starts from the same height,
the initial height is sampled from a Dirac distribution centered about the equilibrium
position. Since all experiments are subject to error, the initial height is likely sampled
from a normal distribution N (ho,az), where ¢ > 0 is estimated from measurements.
The role played by the distribution of the initial height is found to be significantly drag-
dependent, with an importance ranging from no effect in the absence of drag (rapid
jumps of the disk between equilibria), towards the preservation of many features of

the initial configuration, in the infinite-drag limit (the disk does not move).

For a given type of initial condition we define the distributions
Fe(t,h) = Pr{N(t) = k| H(t) < h}, (3.A.1)

and the corresponding densities p(t, h). Following the previous discussions, the den-

sities pi(t,h) provide most of the useful information regarding the cluster.

3.A.1 The zero-drag limit

In the zero-drag limit, the disk with k bonds attached to it rapidly moves to the equi-
librium height ., = 1+ f/k, and only after this moment bond’s rupture takes place.
The time-dependent probability functions can be converted straightaway into (time,
height) coordinates, as

pr(t,h) = 6(h — hyeq) Pi(t), (B.A2)

so the initial condition does not affect the cluster’s dynamics.
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3.A.2 The infinite-drag limit

In the infinite-drag limit, the initial condition plays a key role, as the applied force is to-
tally annihilated by the drag (the disk motion is negligible). The parameters involved
in this limit are n, B and the distribution N. Despite its simplicity, this case is an in-
teresting limit case for the general problem. As shown previously, the rupture rates
are time-independent (but height-dependent instead). Not surprisingly, they are also
force-independent, since in this case the bonds do not "feel” the force. An analytical for-
mula for the probability functions can be obtained in this case, in both time and height

coordinates.

Densities py (I, t)

Starting from a fixed initial height, the population of closed bonds keeps an unchanged
length, with height dependent rates. In the absence of rebinding, the cluster is subject

to a linear death process, with the rates
re(h) =keP"=V, k=0,...,n, h>0, (3.A.3)

representing the decay rate of the cluster of k bonds at height h. For convenience we
shall denote by B, = ef("~1) the decay rate of an individual bond at height /. The
general solution for a linear death process of individual death rate B, is computed as

shown in [75, Chapter 6], to obtain
n—k
Pr{N(t) =k H(t) = h} = (’;) e kPut (1 — eﬁhf) . (3.A.4)

When the initial condition is sampled from a normal distribution N (hy, ¢), the initial
values of the joint densities are

(h—hg)?

L e~ 22, ifk=n;

pr(0,h) = ¢ ovar
0 ifk<n-—1.

(3.A.5)

Assuming the bonds start evolving from an un-stretched position, the situation iy = 1

is considered.

The probability densities are given by

n—k
pr(t,h) = p,(0,h) (Z) e kbt (1 — e‘ﬁht> , (3.A.6)

where p,,(0,1) comes from the initial density at height i, (}) from the way we choose

the k closed bonds out of the initial 11, e *Pi! is the decay rate of the cluster with k closed

n—k
bonds, and (1 — e Pt > from the evolution of the (n — k) bonds left open.
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Figure 3.21: Probability densities pi(t, h) obtained from the exact formula (3.A.6), for n = 10,
B =1,hy =1,0 = 0.1, with the initial condition (3.A.5) and (a) k = 10; (b) k = 7; (c) k = 3;
(d) k = 0. The position in the (t,h)—space of the global maximum of pk(t, ), is marked with

squares, while the position of the peak py(t, ) for given values of 1 is marked with circles.

Fig. 3.21 reveals the existence of several types of densities py(0, 1) fork =0, ..., n with
distinct geometric properties. First, an initial phase, in which the p,(h,t) decays with
time, with a velocity depending on / (Fig. 3.21 (a)) For 1 < k < n —1, px(h, t) resembles
a peak which moves to the right as k decreases (Figs. 3.21 (b) and (c)). Finally, po(h, t)

increases back to the value p,(h,0), as t — oo.

For each value of height I, pi(t, h) peaks at time

te(h) = ————= In(k/n), (B.A7)
B
and has the magnitude
Pi(t(h), 1) = pu(0,h) <’,:) KE(n = k)" (3.A.8)

The densities pi(t, h) attain a global maximum for the value of 1 maximizing p, (0, h),
as observed in Fig. 3.21 (b) and (c).
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Cluster lifetime and decay

As seen before for the zero-drag limit (3.3.5), the expected cluster lifetime for a dis-

placement of the disk /1, can be computed from the formula

o1 & 1
HTpy, (h) - k:z:l l’k(l’l) - k:Z:l keB(h=1)" (3.A.9)
Averaging over all heights the expected lifetime of the cluster can be obtained from
formula
o o & 1 1 o2
]/lTD - /;oo IuTDh <h)C:oopn<h/0)dh - /_ookzl Wﬁe 202 dh

L R | ,(hlﬁﬂ 1\ g2
ZePo / dh = ( _> eP
e
kzle k —o0 g'\/27[ kzle k
(3.A.10)
The mean time until absorption scales once again with the harmonic number H, =

Yroq % The minimum value pr, = Y} %, is obtained when ¢ = 0 (Dirac initial con-

dition), and increases exponentially with the variance ¢2. Due to physical constraints

(the lower bound of the initial height is positive, so the variance ¢ is small) we could

predict the lifetime of the cluster to be bounded above by (}}_, %)eﬁz. One should note

that the lifetime of the cluster also increases exponentially with 2.

The expected number of closed bonds E[N(t)].~« can be obtained by using the integral

formula

E[N ()]s = ikpkm - ik [ petemyan
- / kan (0, h) (k) kﬁhf(1—eﬁhf>n_kdh. (3.A.11)

Following the same steps, the variance Var[N(t)].—« is obtained as
n n 2 0
Var[N(t)le=eo = ) FPi(t) - (2 kZPk(O) —n [ pu(0,me P (1= eP) d.
k=1 k=1 —co
(3.A.12)

When o = 0 and hy = 1, the initial condition verifies p,, (0,h) = 6(h — 1), and we obtain

the limiting cases

E[N(t)]c=co = e, Var[N(t)]emeo = ne (1 —e"). (3.A.13)
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3.B Deterministic and stochastic approximations of cluster lifetime

The estimates for the cluster lifetime obtained from the analysis of the deterministic
equation for T; (3.2.11) as done by [31], are compared against the results obtained
for the mean dissociation time 7, of the stochastic process, computed from the exact

formulas (3.3.5), presented in §3.3.1.

Cluster lifetime estimations from (3.2.11)

The cluster’s lifetime defined in (2.2.18) can be estimated via a deterministic analysis
of (3.3.4) for v = 0, or via a stochastic analysis of the solution of (3.2.2). The three
parameter regimes behaviour of the cluster discovered by Erdmann and Schwarz [31]
is supported by a parameter map obtained via stochastic simulations, which helps us

determine the region’s boundaries.

As seen from (3.3.4), the deterministic decay is determined by f/n = f, and we obtain

N

HN) = Ei (f) - El(£> (3.B.1)

where Ei(z) is the exponential integral, defined by Ei(z) = [~ e*/x dx.

Considering the deterministic cluster lifetime T; as the time required to reach the state

with one bond attached, this is given by
T; = Ei ( f) —Ei(nf), (3.B.2)

Using the expansion of Ei(z) for different ranges of z, three forcing regimes relative to

the initial number of bonds are identified.

For small force (f < 1/n) the small argument expansion of the exponential integral is
Ei(z) & —T — Inz (where I = 0.5772 is Euler’s constant) [59], so

T~ ~Inf+1n (n f) ~ Inn. (3.B.3)

For intermediate force (1/n < f < 1) we can write (3.B.2) as a sum of two integrals
1p—x nf e ¥
T, = /  dx+ / ¢ dx. (3.B.4)
Pox 10X

Since x > 1, the second integral is bounded from above by 1/¢, while in the first integral

we can expand the integrand for small arguments to obtain
1,px 11—
[de% Al xdx%ln(i).
f foox f
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Figure 3.22: (a) Plot of y,, (3.3.5) (solid line), as a function of f/n for n = 10, compared against
deterministic approximations for small (3.B.3) (dotted line), medium (3.B.5) (dashed line) and
large force (3.B.6) (dash-dotted line). The horizontal circles represent the approximation for
small force (3.3.6), while the circles in the lower part of the figure the large force approximation

(3.3.8); (b) Relative error (pi1, — Ts)/pt, as a function of f/n, for n = 10 and n = 100.

Under the assumption that f < 1, the second integral in (3.B.4) can be neglected and

we obtain the scaling
T; ~ —In(f) = In(1/f). (3.B.5)

Because f < 1, both exponential integrals in (3.B.1) can be replaced by the small ar-
gument approximation as long as f < KN, so the cluster will decay exponentially in its
initial phase until the force per bond reaches f < N. When f/N > 1, cluster dissocia-
tion will be faster and the overall cluster lifetime scales is a function of the scale f, as

opposed to zero-force situation given by (3.B.3).

For large force (f > 1) the second term in (3.B.2) can be neglected and the large argu-
ment approximation for the exponential integral , Ei(x) ~ e~ */(1 + x) [10], gives the

approximation

e—f/n n 1 N
~ %_7](/,1:_7]( 386
e =€ . .D.
T f/n " f 7 (3.B.6)

The small argument expansion is not possible in any of the two terms of (3.B.1), and

N

the cluster decays faster than exponential over the whole range of time. As in (3.B.5), f

Ty

is the key parameter and T; decreases much faster than exponential with the increase
of f. The cluster decay in this parameter region is also called ’catastrophic’, since the

dissociation of the cluster and the rupture of the first bond take place almost simulta-

neously, as seen in Fig. 3.22 (a).

91



CHAPTER 3: APPENDICES

Lifetime comparison: stochastic vs. deterministic

There is a fairly good agreement between the deterministic and stochastic predictions
for cluster lifetime, with some notable differences. For small force, the deterministic
approximation underestimates the expected lifetime with more than I' = 0.57 (signif-
icant for small clusters e.g. forn = 10 and f < 1, T; = In(10) ~ 2.30). For medium
force, both approximations predict negative for f/n > 1. Of course, the f/n = O(1)
range is expected to be the one where the deterministic approximations differ most
from (3.3.5). Finally, in the large force regime, the stochastic result does not depend on
the ratio f/n. The two approximations for large force match for f ~ O(n?), which is

important in finding the boundary between the medium and large force regimes.

The lifetime computed from formula (3.3.5) is compared against the deterministic ap-
proximations for small, medium and large force in Fig 3.22 (a), for (n = 10) bonds. For
large force, the stochastic estimate (3.3.7) of formula (3.3.5) is more accurate than the
deterministic approximation (3.B.6), for f/n > n — 1 (actually for quite large forces)
while in the medium-large force (n < f < n?), the deterministic approximation can be
used with better results. As depicted in Fig 3.22 (b), their performance improves with

the increase in the cluster dimension.

3.C Validity domain of the FPE for zero force

For vanishing force, the FPE (3.2.39) can also be solved explicitly. It can be easily shown

that the mean and variance verify

(X) =pun =ng, ((X?)) =03 =nqg(1—q), (3.C.1)
so the solution is
—-1/2 . 2
P(X,t) = (27mq(1 - q)) exp [— %] (3.C.2)

Fig. 3.23 illustrates a good agreement between solutions of the FPE and the ME, espe-
cially "far enough’ from the boundaries. If n is large enough, the skew of the distribu-
tion is not too great. If a suitable continuity correction is used [44], a good approxima-

tion to the binomial distribution B(n, ) is given by the normal distribution
B(n,q) ~ N(ng, ng(1 - q)). (3.C.3)

The approximation generally improves as n increases, and we have to decide whether

n is large enough, and g is far enough from the extremes of zero or one [17].
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Figure 3.23: Solutions Pi(t) of the master equation (3.2.2) obtained from (3.2.8), are compared
against the FPE approximations P(k, t) (3.2.38), for n = 10 and v = 1. The legend also contains
ME; and FPE; which represent the stationary solutions (3.3.15) and (3.C.2).

The normal approximation in (3.C.3) is adequate only if

un £30n =ng+34/nq(1 —q) € [0,n]. (3.C4)

This explains why the FPE approximation was working far enough from the bound-
aries. The approximation (3.C.4) is in fact a consequence of the central limit theorem
[75]. Simple manipulations show that (3.C.4) is equivalent to

o
n+9’

<q(t) < (3.C.5)

n+9 —

which also shows that it may only be applied for n > 9. As g(0) = 1 does not verify

(3.C.5), we expect the normal approximation not to work in the initial phase. It is worth

then to check whether (3.C.5) is verified at least for the stationary distribution, where
g(o0) = v/ (14 7). With these notations, (3.C.4) is verified if

9

— << .C.
i (3.C.6)

Nl iy

One could then ask which is the time window where the approximation is valid, which
can be obtained from (3.C.5) as a function of n and 7. As g(t) is decreasing between 1

and /(1 + 1), we obtain the following situations

e If the rh.s of (3.C.6) is false, then the r.h.s of (3.C.5) is false, which indicates that
the FPE is not valid at all;
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o If (3.C.6) is true, there is tyin > 0 verifying
n
q (tmin) - 51
and the FPE is valid on [fmin, ©0);

o If the Lh.s of (3.C.6) is false, there are tmax > tmin > 0 verifying

n 9
q(tmin) - 5/ q<tmax) = E;

and the FPE is valid on the time interval [fmin, max)-

Using the definition(3.3.14), the times fmin and fmax can be obtained explicitly from

in (1479 7)

t=—
1++

3.C.7)

For the values n = 10 and ¢ = 1 plotted in Fig. 3.23, we are in the second situation,

and the FPE is accurate in the time window t € [1.47, ).
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Cluster dynamics under finite drag

THE LIFETIME and decay profiles of the cluster vary significantly between the zero-
and infinite-drag limits, when considering a cluster attached to a rigid disk in a fluid
environment, as shown in Chapter 3. In this Chapter we examine the role of finite
drag in the stochastic dynamics of the disk-bond system, under constant and linearly

ramped force.

Constant loading in cell adhesion represents a good approximation for situations where
the physical properties of the adhesion site do not change much during the lifetime of
the adhesion cluster. This is the case with the adhesions of endothelial cells or the
adhesion of white blood cells when they have been arrested in the bloodstream. In
other cases of interest, the force exerted on adhesion clusters is not a constant but varies
in time, as during the build-up of force at newly formed contacts in migrating cells, or
during the rolling adhesion phase of the leukocyte cascade. Also, the most commonly
used profile for the dissociating force in DFS experiments initiated by Evans & Ritchie
is the ramped force [38], which has the advantage of shortening bond’s lifetime to an

appreciable degree.

We first sketch some trajectories of the disk for various values of drag and force, and
then analyze distributions of the dissociation time and final extensions of the cluster.
For the particular case of no rebinding, some analytical formulae obtained for various
probability functions (e.g. the probability to have k closed bonds at time t) are used
to validate the stochastic simulations. For non-zero drag, we employ a phase plane
analysis to obtain information about the critical force regimes, and identify the critical

forces require to destabilize the cluster.

Bonds tend to survive longer in the presence of drag, but under constant loading rate,
force also increases with time, generating a very abrupt decay in the terminal phase of

cluster’s dissociation. We examine how our model captures this feature, and analyze
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the cluster’s decay and lifetime as functions of loading rate and drag. We also simulate
a DFS experiment for single and multiple bond clusters for non-zero drag in §4.2, and

compare the results against the ones obtained in Chapter 3 and in [95].

A global description of the joint-time-height densities of having k bonds is examined in
§4.3, in the framework of a differential Chapman Kolmogorov equation (dCKE) (4.3.1),
as suggested by Lipniacki [91]. This PDE, which seeks to capture the nonlinear evo-
lution of the piecewise deterministic Markov process, is solved using the method of
characteristics, and is tested against stochastic simulations. The agreement of the two
solutions for large drag indicate that the approach may be valid in some circumstances,
but the disagreement for small values of drag suggests that either the Markov process
cannot be formulated as a PDE, or our numerical method is not accurate for the given
problem. To address this issue we derive an integro-differential equation for the evo-

lution of the probability density (4.3.14), in §4.3.4.

The Chapter is laid out as follows. In §4.1 we examine the case of constant force in the
presence of drag, and the force necessary to destabilize the cluster under rebinding.
In §4.2 we illustrate the effects of ramped force on the evolution of the system, and
simulate data suitable for the analysis of the DFS experiments. A global formulation of
the cluster dynamics in terms of a dCKE is attempted in §4.3. The implications of our

results are discussed in §4.4. This Chapter is followed by an Appendix.

4.1 Constant force

In this section we study the evolution of clusters of biological bonds under constant
force and drag. We first examine trajectories of the disk under various values of force
and drag and then analyze distributions of cluster lifetimes and extensions. Analyt-
ical formulae for probabilities are used to validate the results obtained by stochastic
simulations, and then cluster decay profiles and lifetimes are analyzed, using both de-
terministic and stochastic methods. For the problem with rebinding, we derive the
force necessary to destabilize the cluster, and compute the bond population and disk

displacement at equilibrium.

The disk’s motion between events is solved using Matlab® ode45s ode solver, to ensure
the accuracy of the simulations. The integration of the deterministic approximation
(2.2.23) is performed using Matlab® stiff ode solver ode15s with relative and absolute
tolerances of 10~7 and 10~8, respectively. These values ensure that the solver does not

fail to converge in the final abrupt decay of Ny, in the absence of rebinding.
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Figure 4.1: (a) Disk’s displacement Hy(t) (dashed lines) withk = 1, ...,5bonds attached (2.1.9),

0
towards the equilibrium heights (4.1.2) (solid lines), for f = 2, hg = 2, = 1, ¢ = 1, in the
absence of rupture. (b) Displacement of the disk in the (¢, h)-plane, forn =5, f = 2, hy =
1, B=1,and c = 0.1,1, 10, as the bonds break. The circles represent the rupture coordinates.

4.1.1 Preliminaries: local and global motion of the disk
Drag and force significantly affect disk’s motion between events and individual trajec-

tories, indicating the existence of distinct patterns in the system’s dynamics.

Disk trajectories as function of drag
For a constant force f and number of bonds k > 1, the disk moves deterministically
h(0) = hy, (4.1.1)

along the solution curves Hy(f) of (2.1.9)
dh 1
= I3k (F 4R,
(4.1.2)

dt
where c is a drag coefficient (2.1.10), which converge asymptotically towards the value

heq,k - { + 1/

while for k = 0 the disk moves freely under the influence of the dissociating force. The
equilibrium curves satisty hegn < hegu—1 < -+ < heg 1, S0 the more bonds attached,
a

the lower the equilibrium position is, as shown in Fig. 4.1 (a).
As suggested by (4.1.1), drag sets the time-scale for reaching the equilibria and the
six orders of magnitude it spans generates significant variations between the profile of
individual trajectories. For large drag, the disk barely moves (depending on force and

number of bonds), and ruptures occur before the disk changes position significantly.
For very small values of drag the disk motion has a staircase profile, and the bonds

rupture when the disk is stationary at the equilibrium, as seen in Fig. 4.1 (b).
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Figure 4.2: Plot of 10 individual trajectories of the disk (solid lines) in the (time, height)-plane,
for n = 10 bonds, f = 0.1,1,10,100 and ¢ = 0.1,1,10,100. The circles indicate the position of

the rupture events, while the dashed line represents the deterministic approximation (2.2.23).

Disk trajectories in the (c, f)-plane

In Fig. 4.2 we plot individual trajectories of the disk in the (time, height)-space, real-
ized for various values of f and c, against solutions of the deterministic approximation
(2.2.23), integrated until N;(T;) = 1. The disk’s displacement is negligible for small
force/large drag, and can be significant for large forces. Fig. 4.2 suggests the exis-
tence of distinct regions in the (c, f) parameter space. In certain cases (f > ¢, ¢ > f
or f ~ ¢ > n), simulated trajectories differ little from the deterministic approxima-
tion, sometimes being even able to estimate accurately cluster’s dissociation time and
height (c = 1, f = 100). In other cases, individual trajectories show wide variation
about the deterministic approximation, which is unable to capture the large variations

of the stochastic breakup times (c = 0.1, f = 1) or cluster extensions (c =1, f = 1).
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Figure 4.3: Histograms of simulated cluster dissociation times T (t) realized for n = 10, hy = 1,
g=1f=011,10,100and ¢ = 0.1,1,10, 100, obtained from 10* single trajectories. Horizon-
tally, the red vertical lines represent the times T; obtained from N;(T;) = 1in (2.2.23).

Distribution of the dissociation times

The distribution of the corresponding dissociation times Tp obtained from stochastic
simulations is plotted in Fig. 4.3, against solutions of the deterministic approximation
(2.2.23). For small force (f = 0.1) the distributions depend little on drag. At the same
time, the dissociation of the cluster happens over a wide time interval, as in the case of
vanishing force, where the bonds’ rupture is entirely caused by thermal fluctuations.
As force increases, the time interval where the cluster dissociates shifts to smaller val-
ues and becomes narrower. Increasing drag for large force (f = 100), the distributions

Tp dramatically shrink and shift to the left.

The deterministic lifetime T, obtained by solving N;(T;) = 1 in (2.2.23), is generally
in good agreement with the the mean of Tp, with notable exceptions for f = 100, ¢ =
1, 10.
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Figure 4.4: Histograms of simulated cluster dissociation height Hp (/) of a cluster realized for

n=10,hy =1,p=1, f =0.1,1,10,100and ¢ = 0.1, 1, 10, 100, obtained from 10% single trajecto-

ries. Horizontally, the red vertical lines represent the deterministic height H;(Tj), solved from
N;(T;) =1in (2.2.23).

Distribution of the dissociation height

The dissociation height Hp is plotted in Fig 4.4. For small values of force and drag, the
disk jumps to the next equilibrium f,, « before the k-th bond breaks, so the dissociation
height is approximately h = h.;1 (Fig. 4.4, ¢ = 0.1, f = 0.1, 1). This suggests that
for any f > 0, Hp converges to §(h — 1 — f) in the zero-drag limit (this is not obvious
in our figure, as for f = 10, 100 a much smaller c is needed). As drag increases, Hp
shifts towards 1 and shrinks as seen for f = 0.1 Fig. 4.4, approaching é(h — hp) in the
infinite-drag limit.

The deterministic displacement H;(T,) obtained by solving N;(T;) = 1in (2.2.23), is

generally in good agreement with the mean of Hp.
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Figure 4.5: Statistics of the cluster’s rupture for n = 10 bonds, as functions of drag and force,
realized from minimum 3000 simulations per (¢, f) point (50 points used for each). (a) pit,; (b)

U'%D ; (¢) pap; (d) UIZJD‘ The dashed line represents results for f = 0.

Means and variances of Tp and Hp from stochastic simulations

The means and variances of the random variables Tp and Hp defined in §2.2.2 are
depicted in Fig. 4.5. For small force, jir, is drag independent, as in Fig. 4.5 (a).
As expected, i1, is shortened by raising the force force, and increases with drag (for
fixed force), being bounded by Y}_; 1, as shown in (3.3.6). The variance U%D indicates
that the distribution does not change for small force (as predicted earlier by Fig. 4.3).
As force increases, the distributions are initially completely force-dominated for small
drag, with all the bonds breaking rapidly in a narrow time region. However, as drag
increases, the motion of the disk is slower, and the cluster dynamics are similar to the
case of f = 0, all curves converging to Yi_; % (3.3.9), as shown in Fig. 4.5 (b).

The analysis of Hp confirms that the larger the drag, the smaller the disk’s displace-
ment, as illustrated in Fig. 4.5 (¢). As suggested by Fig. 4.4, the variance UIZ-ID should
vanish at zero drag for any positive force, raise to a maximal value as drag increases,
and vanish again as drag approaches infinity, as depicted in Fig. 4.5 (d). The larger the
force, the higher the corresponding peak is, and especially for large force, even a small

amount of drag can provoke a significant variance in the final displacement.
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Figure 4.6: Probabilities Py(t;0,hp) forn = 10,c =1, B = 1, v = 0 in the case of (a) low force
(f/n = 0.1). Analytical solutions (dotted lines) and stochastic simulations (solid lines) obtained

for 10* trajectories; (b) large force f/n = 50 (right) (results obtained from 10* trajectories).

4.1.2 Testing stochastic simulations against other methods

The stochastic fluctuations in the system can be accurately described in terms of the

various types of probability functions described in §2.2.2.

Validation of the stochastic simulations

For vanishing rebinding, the probabilities Pi(t;0,hp) (2.2.10) for k = 0,...,n can be
obtained analytically (as 7 + 1 — k-dimensional integrals, see (4.A.14) in Appendix 4.A)
and used to validate the stochastic simulations. For k = n,n — 1 analytical formulae are
obtained in Appendix 4.A for the distributions Fi(t, ;0, hy) and densities pi(t, 1;0, ho)
of P(t;0,hy) over the height coordinate, defined by (2.2.14) and (2.2.16) respectively.

The probabilities P,, P,—1 and P,_; are evaluated using the integral formulae (4.A.6,

4.A.11, 4.A.13), and compared against their stochastic counterparts in Fig. 4.6 (a).

Catastrophic failure of cluster under force and drag

An important result concerns the influence of drag on the behaviour of the probability
functions Py(t;0,hg). For low force, the rupture events are expected to occur sequen-
tially as in Fig. 4.6 (a), while for large force per bond, Erdmann & Schwarz [31] predict
a catastrophic rupture regime sketched in Fig. 3.2 (d), where the only visited states (in
the sense discussed in (3.3.3)) are the ones with 0 and n bonds. As shown in Fig. 4.6 (b),
for small drag (c = 1), the cluster does not exhibit the catastrophic behaviour anymore,
even under large force, at least for the parameter values investigated. However, the

length of the time-segment containing the rupture events significantly shrinks.
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Figure 4.7: Probabilities P,fl (h;0,hp) obtained from 104 trajectories, forn = 10, hy =1, p =1,
7¥=0,and (a) c = 0.1, f =500; (b)c =1, f =500; (c) c =10, f =500; (d) c = 0.1, f = 0.1; (e)
c=1f=01(f)c=10 f =0.1.

The probability of having k bonds at height /i: influence of drag and force

We can use stochastic simulations to predict alternative descriptions of the evolving

bond-disk system, for example with respect to disk height rather than time.

The probabilities P]f{ defined in (2.2.13) are illustrated in Fig. 4.7. For large force, the
disk rapidly moves over a long range, with all the bonds attached. The rupture of a first
bonds is immediately follow by the others, until the cluster disintegrates, as depicted in
Fig. 4.7 (a), (b) and (c). As drag increases, the height region where the rupture events

occur drifts to smaller values.

In the low-drag-low-force regime depicted in Fig. 4.7 (d), the disk jumps between the
equilibrium heights h,; x (4.1.2), so each of the probabilities P]f{ is about 1 inside the seg-
ments [l k41, Meqx) for k = 1,...,n — 1. The domains where k bonds are attached can
be easily identified by measuring the length of these intervals. The profiles of the prob-
abilities P! is significantly altered by the increase in drag, the passage between subse-
quent states becoming smoother. As one can see in Fig. 4.7 (¢), in the intermediate-drag
regime the probabilities P/ intersect their neighbors when their value is about 1/2. In
the large-drag-low-force regime sketched in Fig. 4.7 (f), there are many overlapped

states. In this case the disk barely moves and bonds break under thermal excitation.
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Figure 4.8: Densities and cumulative distributions defined in §3.2, obtained for n = 10,c =1,
B=1hy=1,9=0,from 10* simulations. (a) ps(t, h;0,hg), (b) Fs(t,h;0,hg), (c) p1(t, h;0,ho),
(d) Fy(t,h;0, h). Trajectories Hi(t;0,h) are solutions of (2.1.9).

Probability density and cumulative distribution over / of having k bonds at time ¢

The corresponding distributions F(t, ; 0, ho ) and densities pi(t, 1; 0, hy) defined in (2.2.14)
and (2.2.16), provide a clear image of the way probabilities Py(t;0,h) are distributed
over the height coordinate. This allows the simultaneous analysis of the most probable

rupture times and extensions in the (N,H) space.

In Fig. 4.8 we examine the time-height probabilistic description of the decay of a cluster
having initially 10 closed bonds. As suggested by (4.A.19), the curves Hy(t;0, ho) play
a very important role in establishing the region where the distributions change signif-
icantly. The profiles of the densities py and distributions F;, change significantly as the
bonds rupture. In the initial phase, py is positive only between Hyy and Hy, and both
the distribution F; and density py have their peaks near the upper curve, as revealed
by Fig. 4.8 (a) and (). In the terminal phase, the densities expand to the whole area
between Hjp and Hy (now much wider), as shown in Fig. 4.8 (c¢) and (d) and the peaks

moves to the right, while still being close to the upper curve Hy.

We can conclude that for a given cluster, at the moment when the highest probability

of having k closed bonds is attained, the disk is probably situated near the curve Hy.
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Figure 4.9: Normalized decay of the cluster for n = 10 bonds, (a) f = 0.1; (b) f = 1; (¢) f = 10;
(d) f = 100. Results from 10* stochastic trajectories realized for ¢ = 0.1,1,10, 100 (solid lines)
and ¢ = oo (dashed lines), are compared against solutions of the deterministic equations (2.2.23)
(dotted lines).

The motion of the disk is however largely force and drag dependent, so the conclusion

is valid in this form only for the small force, small drag regime.

Expected number of closed bonds and variances

Cluster decay, represented by the mean number of bonds px(t), is depicted in Fig. 4.9.
As shown in (3.A.13), un(t) = nexp(—t) and 0%(t) = nexp(—t) (1 —exp(—t)). Dy-
namics are similar in the infinite-drag limit, plotted with dashed lines in Fig. 4.9 (a).
For intermediate force, the cluster decays faster under small drag, as depicted in Fig.
49 (b) and (c). For large force, there is a significant difference in the decay profiles,
as illustrated in Fig. 4.9 (d). For small drag, the rupture of the first bond leads to the
immediate disintegration of the cluster as a whole. The deterministic decay obtained
from (2.2.23) accurately approximates the cluster decay just for small (exponential de-
cay) and large force (either exponential decay, or abrupt rupture of bonds), as shown
by Fig. 4.9 (a) and (d). As force increases from 1 to 10, the deterministic decay for

¢ = 10 deviates more from the stochastic value, as depicted in Fig. 4.9 (b) and (c).
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Figure 4.10: Evolution of the normalized standard deviation on(t)/n for n = 10 bonds, (a)
f=01;(b) f=1;(c) f=10; (d) f = 100. Results from 10* stochastic trajectories realized for
¢ =0.1,1,10, 100 (solid lines) and ¢ = oo (dashed lines) (3.A.13).

The normalized standard deviations for the number of closed bonds, on/(t)/n, identi-
fies the times when the rupture of bonds is most intensive. In the small force regime
(f < 1) depicted in Fig. 4.10 (a), the situation is identical for all drag values, and
the bonds rupture under thermal excitation. As force increases (f ~ 1), variance pro-
files begin to differentiate and the higher the drag, the slower the decay is, as sketched
in Fig. 4.10 (b). For larger values of force (f ~ 10 ~ n) we can identify three drag
regimes, as shown in Fig. 4.10 (c¢). For small drag (c < n), the disk moves reaches a
near equilibrium position, when the bonds start breaking rapidly, generating a sharp
peak of on(t)/n. For intermediate drag (¢ ~ n), bonds start dissociating while the
disk is still moving. After the disk reaching a critical position, oy (t) /n exhibits a sharp
peak, suggesting a rapid cluster disintegration. The profile of on(t)/n is now lower
and wider, reflecting the dampening of the rupture events intensity, generated by drag
on the moving disk. For large drag (¢ > n), the bonds break before the disk moves
significantly, and the bonds decay smoothly. Finally, for the large force case (f < n)
depicted in Fig. 4.10 (d), the bonds do not “feel” the force, being shielded by drag for
a while. Soon after the disk’s displacement increases, the ruptures become very rapid

and the cluster dissociates.
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4.1.3 Non-zero rebinding: Critical force and equilibrium configurations

Force destabilizes the cluster, while rebinding stabilizes it again. In the context of adhe-
sion clusters under constant force, it was shown by Bell that a cluster of bonds remains
stable up to a critical force denoted by f., which is to be determined theoretically or
from experiment [10]. Here we analyze the force required to destabilize a cluster, and
estimate the number of bonds at equilibrium. The computations are largely similar to
the ones in §3.3.3.

In this section a phase plane analysis of the deterministic system (2.2.23) is presented.
This approach leads to the discovery of analytical formulae for the critical force to
destabilize the cluster and the critical initial number of bonds to ensure that a non-zero
equilibrium is attained. Also, a stability analysis for the equilibrium configurations is

performed.

Phase plane analysis

The starting point of this analysis is the deterministic system is (2.2.23), where for con-
venience, the notations x = N;, y = H; are used, along with the physical constraints
0<x<mnandy > 0.

In the new notations (2.2.23) gives

DX X, ) = —xeP 0D oy (= 20509, (19
d
d—i =Y(x, y) = —(xy* — (x+ f)y’) /c.

The nullclines for (4.1.3) can be written in explicit form as

dx B 1 7(n —x)
5 =0 y(x) _1—i—’3+alog< . ), (4.1.4)
d

The equilibrium configurations (xo, o) are the solutions of the system satisfy the rela-

tions
f(p+e)
xoe 0 =1y(n—xp), Yo= xio +1. (4.1.5)

The terms of the Jacobian matrix J(xo, o)

x _ [ Xx(x0,90)  Xy(x0,50)
(?)I Jo. ) (Yx(xo,yo) Yy(xo,yo)>,
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in our case are

Xx — —E‘B (y_l) — f)/e“(l_y), (416)
Xy = —xBePVD — g (n—x)ae* (1Y),

4_ .3
y,= -4 -V

C
AxyP -3+ )
. .

Y, =

To find the eigenvalues of J(xo, o) we solve the equation det(J(xo,y0) — AL) = O,

which is the quadratic equation
A2 +BA+C=0, (4.1.7)

with the coefficients

3 _ 2
B = e.B (yil) —+ r)/e‘x(lfy) + 4xy 3C(x +f) y , (418)

(60 qent) (s 300 1)

c

<xﬁeﬁ W=D 4 (n — x) oce”‘(l_y)> (y* — %)
- = detJ(x,y).

c

C =

The discriminant A = B2 — 4C of (4.1.7) is defined for {(x,y) |0 < x <n,y > 1} as

(
Alx,y) = (eﬁ<y1> 4 oyet(-y) _ dxy’ —3(96+f)y2)2

c

B(y—1) _ a(1=y)\ (14 _ 4,3
AR 4y (=) et (V) (v =)

0,
c

and shows that both roots A1 and A, of (4.1.7) are real for (x, y) in the specified region.
The coefficients B and C satisfy
AM+A=—-B/2, MA,=C.

Since v > 0, B is always positive, so least one of the eigenvalues values is negative.

For the analysis of C we also use the second part of (4.1.5) (only having in mind that

now x = Xq, ¥ = Yp) to obtain (after some computational effort)

_fe
C:%((x_f)xe(ﬁxw+x2ry—fryan-|—ffyocx>. 4.1.9)

Using the first part of (4.1.5) we have x e(/ﬂx'x)f = y(n — x), so (4.1.9) is equivalent to

C:MKn-l-(,B-i-oc)f)x—f(ﬁ-i-a)n]. (4.1.10)

x4
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Figure 4.11: The derivative of the number of closed bonds dx/dt(x, y) along the nullcline
dy/dt =0: y = f/x+1, as a function of x. For forces f < f. two steady states exist, which
merge at f = f, and vanish for f > f.. In this figure n = 100, § =1, « = 0.2, v = 1, where as
computed from (4.1.13), f. ~ 23.2054.

The sign of C (therefore the nature of the equilibrium point) depends on the position of

xo relative to a critical value denoted by

XBIF = %, (4.1.11)

which only depends on f(f + «) and n. There are three cases.

Case 1. xo > xpyr. In this case C > 0 and the roots of (4.1.7) satisfy 0 > A; > A, so

(x0,0) is a stable node.

Case 2. xp = xpir. In this case C = 0 and the roots of the equation (4.1.7) satisfy

A1 =0 > Ay, s0 (x0,Y0) is a degenerate saddle point.
Case 3. xp < xprr. In this case C < 0 and the roots of the equation (4.1.7) satisfy
A1 >0 > Ay, with [Ay| > |A2] > 0, s0 (x0,10) is a saddle point.

Equilibrium solution - critical force regime

The focus here is to analyze the number of solutions for (4.1.5) in different forcing and

drag regimes.

Force destabilizes the cluster, while rebinding stabilizes it again. In the context of adhe-
sion clusters it was shown by Bell that a cluster of bonds remains stable up to a critical
force denoted by f., which is to be determined theoretically or from experiment. For

the stability analysis it is helpful to examine the equation (4.1.5).
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Figure 4.12: Phase plane of the system (4.1.5) realized forn =100, c =1, =1, 0 =02,y =1
in the cases of (a) subcritical force f = 10, () critical force f = f. = 23.2054 and (c) supercriti-

cal force f = 50 regimes.

The relation between the stability of the number of closed bonds in the cluster and force
is sketched in Fig. 4.11. At small force, this equation has two roots, with the larger
one corresponding to a stable equilibrium (since as shown in Fig. 4.12 a), the roots
are separated by the line x = xpjr). As the force increases, a saddle-node bifurcation
occurs, at the point where dy/dt = dx/dt = d2x/d#? = 0. For forces above the critical

limit, no roots exist therefore the cluster is unstable.

Precisely at the critical force, the two roots collapse and the slopes of the two terms
of equation (4.1.5) become equal. The coordinates (f., x.) where this happens in the

force-displacement plane represent the solution of the system

f(B+a)
xee % =y(n—x),

elbTmfe/xe <1 —(B+ 'Y)fc/x6> =7

(4.1.12)

where f. and x, represent the critical force and the coordinate where the two roots col-

lapse. The critical values for the cluster size and force can be obtained in an analytical

form as
pln(%)
Xe=1—-"2—, (4.1.13)
1 +pln<%>
n
fe= ﬁ+“pln<g>, (4.1.14)

where the product logarithm function pln is the solution a of ae* = b, as in §3.3.3.
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Figure 4.13: Critical force (4.1.13) in relation to the total cluster size and (B + &), as function of
the rebinding constant . It scales linearly with (dotted line) at small, logarithmically (dashed
line) for medium 1. In the large <y limit it approaches asymptotically In(y /e) — InIn(y/e) (dash-
dotted line).

Equation (4.1.5) can also be solved directly using the pln notation having the solution

o= — n(p+a)f , (4.1.15)

(B+a) f
pln <_(:B+a,3/{l€ n ) 1’1—(‘5—|-1X)f

which highlights the importance of the scaling (B + «) f.

The impact of the three forcing regimes on the phase plane descriptions of the system
is sketched in Fig. 4.12. In the presented situation, the critical force is f. = 23.2053,
and the drag is small compared to the initial number of bonds (¢/n < 1). There are
two timescales here. On a O(c/n) time scale there is a rapid relaxation onto the curve
dy/dt = 0, and a slow bond breakage. Over O(1) times the system can be described
then as a 1D equation along the dy/dt nullcline.

The subcritical force regime f = 10 < f. is plotted in Fig. 4.12 (a) and it can be seen that
the intersection of the nullclines generates two equilibrium points. The line (xgir, y)
with xgr computed from (4.1.11), separates the two equilibrium points and using the
earlier analysis, the point at the right of xpr is a stable node, while the other one is
a saddle point. For critical force, the two previous equilibrium points collapse into a
single equilibrium point, which in the case sketched in Fig. 4.12 (b) is a saddle point,
since xp;r = 21.7846 > 21.7812 = x.. For supercritical force the cluster dissociates in

all situations and no equilibrium is attained, as shown in Fig. 4.12 (c) for f = 50.
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Figure 4.14: Dependence of xg on force and rebinding. In this figure n = 100, § = 1, « = 0.2.

Foreachy € {1, 5, 10}, the squares represent the equilibrium for zero force which is yn/ (14 'y),
while the circles represent the equilibrium number of bonds x. at critical force f. , computed

from (4.1.13). Solid lines represent the stable nodes, while the dashed lines stand for the saddle

nf(B+a)
n+f(B+w)

points. The dotted line represents the value of xpjr =

Asymptotic approximations for the critical force f. are illustrated in Fig. 4.13 for small,

intermediate and large values of the rebinding coefficient .

The critical force scales in a trivial way with n and (B + «), and in a complicated way
with . For v < 1 we obtain f, ~ yn/[e(B + «)]. Since the cluster dissociates even in the
absence of force, the critical force is zero in the absence of rebinding. For oy > 1 and up
to the appreciable high value v ~ 100 we have f. ~ 0.51/(f + «) Iny. This dependence
shows that the single bond scale set by (« + B) sets the force scale on which the cluster
dissociates. The crossover of f. from linear to logarithmic dependence on 7 is shown
in Fig. 4.13. In the large < limit the critical force is well approximated by n/(f +
) [In() —1In (eln(7y/e))] , where we can see a weak deviation from the logarithmic
dependence as 7y increases, as shown in Fig. 4.13. The asymptotic expansions of the

pln function are based on [25].

In Fig. 4.14 is sketched the dependence of the number of closed bonds at equilibrium
xo, on force and rebinding. As one could easily notice, for all values of -, the upper
arch of xq is situated entirely above the corresponding value of xp;r, so the values on

this branch represent stable nodes.
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Figure 4.15: (a) Disk’s displacement Hy(t) (dashed lines) with k = 1,...,5 bonds attached
(2.1.9), towards the equilibrium heights (4.1.2) (solid lines), for ramped force f =t +2, hy =
2, B =1,c=1.(b) Disk’s displacement in the (t,h)-plane, forn =5, f =t+2,hy =1, =

1, v =0and ¢ = 0.1,1, 10, as the bonds break. Circles indicate bond rupture coordinates.

4.2 Cluster dynamics under ramped force

The most commonly used profile for the dissociating force in DFS experiments is the
ramped force [38], since it has the advantage of shortening the lifetime to an appreciable
degree. We examine how our model captures this feature. Results of the stochastic
description will be compared to deterministic results. As the force increases with time,
rebinding is only relevant for the initial evolution of the system. To capture the effects

of ramping the force, in this section we assume therefore, vanishing rebinding.

4.2.1 Preliminaries

Drag and loading rate significantly affect the disk’s motion between events and indi-

vidual trajectories, indicating the existence of distinct patterns in system’s dynamics.

Disk trajectories

Since the motion of the disk depends on force (2.1.9), ramping the force will alter sig-
nificantly the profile of the motion of the disk, as one can see in Fig. 4.15. As shown in

Fig. 4.15 (a), in the absence of ruptures, the disk approaches asymptotically the curves
_ut
e,k = 7 T 2. (4.2.1)

The disk’s trajectories under different drag regimes are illustrated in 4.15 (b). Com-

pared to Fig. 4.1 (b), the disk’s displacement is permanently increasing.
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Figure 4.16: Plot of 10 individual disk trajectories (solid lines) in the (time, height)-plane, for
n = 10 bonds, ¢ = 0.1,1,10,100 and ¢ = 0.1,1, 10, 100. The circles indicate the position of the

rupture events, while red the dashed line represents the deterministic approximation (2.2.23).

Disk trajectories in the (c, u)-plane

As shown earlier, the trajectories of the disk exhibit a large variety of behaviour. In
Fig. 4.16 we plot individual trajectories of the disk in (time, height)-space, realized for
various values of y and ¢, against solutions of the deterministic approximation (2.2.23).
Compared to Fig. 4.2, the deterministic trajectories of the disk approximate to a much
greater extent their stochastic counterparts, and significant variations can only be seen
for small drag (¢ = 0.1, 1). The disk’s displacement is negligible for small force/large
drag, and can be significant for large loading rates. Fig. 4.16 suggests the existence
of distinct regions in the (c, #) parameter space. At the same time, for large drag and
loading rate (c, ¢ > 10), the profile of the disk’s displacement in the final phase is

almost a vertical climb following a plateau, suggesting a sudden dissociation of bonds.
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Figure 4.17: Dissociation time Tp(t) of a cluster for n = 10, hg = 1, § = 1, » = 0.1,1,10, 100
and ¢ = 0.1,1,10, 100, obtained from 10* single trajectories. Horizontally, the red vertical lines
represent the times T, obtained from N;(T;) = 1in (2.2.23).

Distribution of the dissociation times

The distribution of the dissociation time Tp obtained from stochastic simulations is
plotted in Fig. 4.17, against solutions of the deterministic approximation (2.2.23). For
small loading rate (bottom line), the results are similar to Fig. 4.3. Drag significantly
extends cluster lifetime, especially for large loading rates (horizontal). Increasing the
loading rate, rapidly shortens cluster lifetime, especially for large drag (¢ = 100),
where the bonds kept near the equilibrium by drag, suddenly rupture once force be-
comes large enough. At large loading rates, the force distribution is narrow, as seen for
larger values of y, especially and large drag, as for 4 = 100, c = 100. An important
parameter in the loading rate experiments is the rupture force uTp, whose relevance
is discussed later in this section. The deterministic lifetime T, obtained by solving

N4(T;) = 1in (2.2.23), is generally in good agreement with the the mean of Tp.
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Figure 4.18: Dissociation height Hp (/) of a cluster forn =10,y =1, =1, » = 0.1,1,10,100
and ¢ = 0.1,1,10, 100, obtained from 10* single trajectories. Horizontally, the red vertical lines
represent the deterministic height H;(T,), solved from N;(T;) = 1in (2.2.23).

Distribution of the dissociation heights

The distribution of the dissociation height Hp is plotted in Fig 4.18. As the disk moves
permanently, the profiles of Hp are very different from the ones shown in Fig. 4.4 for
constant force. For small drag (¢ = 0.1), the disk moves almost freely under force,
and Hp rapidly shifts to larger values, while spreading over a wider region. Along
the bottom line, the displacement is significant even for small loading rate and drag
(u = ¢ = 0.1). Keeping yu fixed and increasing drag, Hp approaches 6(h — 1) in the
infinite-drag limit. For large drag (¢ = 100), the distribution Hp initially confined near

1, is spread to the right with the increase of p.

The deterministic displacement H;(T;) ( represented in Fig 4.18 by red dots) obtained
by solving Ny (T;) = 1in (2.2.23), is generally in good agreement with the mean of Hp
in the upper part of the antidiagonal of Fig. 4.18.
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Figure 4.19: Statistics of the cluster’s rupture for n = 10 bonds, as functions of drag and force,

realized from minimum 3000 simulations per (c, #) point (a) pt,; (b) (T%D ; (€) pap; (d) (TIZ_ID.

The dashed line represents results for 4 = 0. Both c and 4 domains are spanned by 50 logarith-

mically spaced points.

Means and variances of Tp and Hp obtained from stochastic simulations

The mean values and variances of Tp and Hp defined in §2.2.2 as functions of loading
rate and drag are depicted in Fig. 4.19. As anticipated, yr, increases with drag (for
fixed loading rate), having the upper bound Y}_; 2 as predicted in Chapter 3 (see Fig.
4.5), and decreases with the loading rate. Also, in the small force regime 7, is largely
drag independent, while for large force it increases with drag, as in Fig. 4.19 (a). The
behaviour of yp, and op,, depicted in Fig. 4.19 (c) and (d), can be interpreted in the

same key as their correspondents for constant force, plotted in Fig. 4.5 (c) and (d).

The variance U%D instead has a significantly different profile, as shown in Fig. 4.5 (b)..
For small drag, the profile is drag-independent. Increasing drag at a constant y, the
variance exhibits a minimum for a certain value of drag (which increases with p),
where the lifetimes also start to increase in pi7,,. This coordinate may potentially have
experimental values, allowing us to choose the value of ¢ that leads to the most precise

measurement of yi7,. Increasing drag even further, U'%D near the value } }_, # (3.3.9).
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Figure 4.20: Small drag (c=0.1) cluster dissociation histograms for (a) displacement, n = 1 bond;
(b) rupture force, n = 1 bond; (c) displacement, n = 10 bonds; (b) rupture force, n = 10 bonds,
computed from 10* simulated trajectories for loading rates u = 1,10,10% 10%,10*. The dotted

line represents a fitted normal density, with the same mean and variance as the simulated data.

4.2.2 Mimicking DFS experiments

Our model can used to mimick the DFS experiments, not only for single bonds, but
also for clusters with multiple bonds. As discussed in §1.2.3, in experiments we can
measure the force when the last bond dissociates. In this section we show that drag can
fundamentally change the distribution patterns of the rupture force, as a direct conse-
quence of force buildup. In accordance with the findings of Merkel et al. [95] presented
in §1.2.3, bond strength is not only a property of the bond, but is also influenced by the
loading rate i, as one can see in Fig. 4.20 (b). Moreover, disk trajectories are consid-
erably modified by drag (see Fig. 4.15), and so does the distribution of the individual
bond rupture forces, illustrated in Figs. 4.21 (b) and 4.20 (b).

For small drag the profile of rupture forces shares the same properties with the zero-
drag experiment, for both single bond, and multiple bond clusters in Fig. 3.20: the
force distribution shifts to the right with the increase in loading rate, the effect being

amplified for larger clusters, where the force profiles are normally distributed.
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Figure 4.21: Intermediate drag (c=1) cluster dissociation histograms for (a) displacement, n = 1

bond; (b) rupture force, n = 1 bond; (c) displacement, n = 10 bonds; (b) rupture force, n =
10 bonds, computed from 10* simulated trajectories for loading rates u = 1,10,107,103,10%.
The dotted line represents a fitted normal density, with the same mean and variance as the

simulated data.

In Fig. 4.20 (a) and (c) we also plot for comparison the distribution of final displace-
ment, showing that cluster displacement is significantly increased by loading rate. The
difference in the position of the final displacement distributions is more evident for
smaller values of loading rate. Nonetheless, even for relatively small clusters, the final

displacement closely resembles a normal distribution.

Drag induced effects can already be observed for ¢ = 1. The distribution of final force
and displacement illustrated in Fig. 4.21 for both single and multiple bond clusters are
strikingly different, compared to Fig. 4.20. First, as drag slows down the extension
of individual bonds, the final displacement’s distribution is much wider. At the same
time, drag has induces a significant separation between the rupture force distributions

as shown Fig. 4.21 (b), which is even more evident as the cluster dimension is increased.

Model predictions can be compared against experiments, if we restore the dimensions
of time and force, and use physiological data for the bond properties «*, L* and kj, and

also for the parameters of the experimental setup R* and p*.
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In summary, the bond/cluster rupture force is not only a bond or loading property, but
also depends on drag. Drag enhances the separation between the bond rupture force

distributions induced by increasing loading rate.

Note: The histograms in Figs. 4.20 and 4.21 are realized using 21 bins, between the
minimum and maximum of the simulated data. The wider bins corresponding to y =
10* in Figs. 4.20 (b) and 4.21 (b), appear because the data was not filtered for the very

rare extreme events, which occured.

4.3 A possible PDE formulation of cluster dynamics

In this section we analyze a differential Chapman-Kolmo