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Abstract

This thesis deals with a detailed linear analysis for a two-component reaction-diffusion

system with constant diffusion coefficients. A comprehensive linear stability analysis

results in three types of instabilities: (1) stationary periodic instability, (2) oscillatory

uniform and (3) stationary uniform. The first instability involves pattern formation and

the other two do not. Precise parameter regimes are identified for each.

Travelling wave analysis is performed for the system and a detailed and comprehen-

sive analysis is undertaken of a linear mechanism governing the development and propa-

gation of nonlinear patterns. This analysis focuses on a linear selection mechanism that

gives some insights into the selected speed of invasion of an unstable state by a stable one,

as described both by a fixed form of travelling wave and by a modulated travelling wave.
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Chapter 1

Introduction

1.1 Reaction-Diffusion Equations

Reaction-diffusion equations are a very important class of partial differential equations.

This class of equations is used whenever the spatial spread of a population or chemical

species is of importance. For spatial spread, reaction-diffusion models have successfully

been used in epidemic problems, pattern formation in different biological and ecological

systems and in signal transport. Good overviews are given in Murray [55] and Britton

[13]. The evolution equations for reaction-diffusion are readily obtained from the law of

conservation of mass [54]. For several interacting species or chemicals, for example m

species, the system of equations can appear in the matrix form

∂ ū
∂ t

= D∇2ū+ f̄, (1.1)

where ∇2 is the Laplacian operator and the vector function ū = (u1,u2, ...,um) represents

the concentrations or densities of the species that each diffuses with its own positive con-

stant diffusion coefficient Di, i = 1, ...,m. These coefficients are the diagonal elements of

the diagonal matrix D, the matrix of diffusivities, assuming that there is no cross-diffusion.
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The species or chemicals interact according to the vector source term f̄, the reaction kinet-

ics. Numerous studies concerned with reaction-diffusion processes mainly use the above

equation in modelling systems in many disciplines including biology, chemistry, ecology,

epidemiology and so on.

Nonlinear reaction-diffusion equation models have been widely used to account for

pattern forming phenomena. From a theoretical point of view, one may distinguish two

types of reaction-diffusion structures: (i) global structures resulting from intrinsic symmetry-

breaking instabilities, e.g., Turing structures [71], and (ii) localized structures associated

with fronts, i.e., steep spatial changes of concentration or densities which correspond to

transitions between two states with fast kinetics, e.g., travelling waves [13].

1.2 Travelling Waves

A travelling wave is a wave which travels at constant speed without change in shape. If

u(x, t) represents a travelling wave, the shape of u will be the same for all time and the

speed of propagation of this shape is a constant. If we look at this wave in a travelling

frame moving at the same speed it will appear stationary [55]. One of the most important

properties of nonlinear parabolic systems is their ability to support travelling wave solu-

tions. Unlike the linear wave equation, for example, which is hyperbolic and propagates

any wave profile with a specific speed, reaction-diffusion equations may allow various

wave profiles to propagate, each one with its own characteristic speed [33].

Travelling wave solution can be written in the form u(x, t) = V (z) = V (x− ct) for

some velocity c. Plane wave is a class of travelling waves with V (z) =U(z · s) for some

vector s) (i.e., u =U(z · s− ct)), c a scalar). This class of waves, plane waves, is catego-

rized in one dimension as [26] :

• Wave trains (U periodic)
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• Wave fronts (U(−∞) and U(∞) exist and are unequal)

• Pulses (U(±∞) exist and are equal; U not constant)

and there are other forms in two dimension (x = (x,y), x = rcosθ , y = rsinθ ) :

• Target patterns (u(x, t) =U(r, t), U periodic in t)

• Rotating Spiral patterns (u(x, t) =U(r,θ − ct), U periodic in second argument)

In many natural phenomena we encounter propagating fronts separating different phases.

Propagating fronts play an important role in the spread of epidemics, in population dy-

namics, or the propagation of flames and chemical reactions. Therefore, reaction-diffusion

equations have become a prototype for describing propagating front behaviour, from

chemical waves to biological population. The construction and study of wave solutions

for nonlinear reaction-diffusion systems is an area of great interest, not only in the appli-

cations of the waves themselves, but also in their use in gaining a better understanding of

phenomena in large domains [33].

The propagation of a front into an unstable state is a problem that emerges in many

branches of the natural sciences. These fronts may be classified as: (1) Uniformly trans-

lating fronts, which are in the form u(z) = u(x− ct), where c is the front speed. In this

class of fronts invasion could be either monotonic or oscillatory (see figure 1.1 (a) and

(b)). (2) Pattern forming fronts, a front that generates a nontrivial pattern behind the

wavefront. The front has a finite speed while the pattern is often stationary (see figure 1.1

(c)). Thus these pattern fronts are typically not in the form u(x− ct), and instead they are

spatially and temporally periodic: they are of the type u(z, t) = u(x− ct, t), with u(z, t)

periodic in t with period T , u(z, t) = u(z, t +T ).
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Figure 1.1: Schematic representation of some front types, all moving to the right with speed c. (a)
Monotonic uniform translating front. (b) Front invading the unstable state in oscillatory manner.
(c) Pattern forming front, a front moving to the right leaving a pattern behind. There are possible
states behind the front, such as limit cycles, stationary patterns, and oscillatory patterns.
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1.3 Front Selection

The prototypical model for reaction-diffusion systems is the Fisher-type nonlinear diffu-

sion equation (scalar monostable ), which we use here to illustrate some general princi-

ples:
∂u
∂ t

=
∂ 2u
∂x2 +F(u), (1.2)

where u > 0 may be interpreted as a population density, F(0) = F(1) = 0. This equation

was introduced in 1937 by R.A. Fisher [28], with F(u) = u(1−u). At the same time by

A.N. Kolmogorov, together with I.G. Petrovskii and N.S. Piskunov [42] (hereafter (1.2)

referred to as FKPP). In their work of 1937, Kolmogorov et al. proved the existence of

front solutions u =U(x− ct), characterized by their velocity, c, such that

c ≥ c0 = 2
√

F ′(0), (1.3)

and this result is obtained by a linearisation about u = 0. Moreover, under some as-

sumption on F , they proved that the FKPP-equation, equation (1.2), with a sufficiently

decaying initial data has solutions with speed c0. For more general monostable equations,

it was shown rigorously by Aronson and Weinberger [3], for a sufficiently localized initial

condition the solutions of (1.2) evolve into fronts with a minimal allowed speed cmin, such

that

2
√

F ′(0)≤ cmin ≤ 2sup
u

√
F(u)/u, (1.4)

thus the propagating speed is either equal to or larger than c0. Also, they showed that a

monotonic travelling wave exists for all speeds c ≥ cmin, and none for c < cmin. Therefore,

from these results two selection mechanisms appeared: a linear and nonlinear selection of

the propagation speed. In a linear selection mechanism the front dynamics can be under-

stood by linear analysis since it is essentially determined by linearisation near the unstable
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steady state (u= 0 in case of FKPP equation), so the front is pulled by its leading edge (see

figure 1.1(a)), and in this case the selected front is called pulled front. However, for the

selected fronts with speeds larger than the linear front speed, the details of the nonlinear-

ity of the reaction term, F(u), are important. In this case, the front dynamics are referred

to as pushed, meaning that the front is pushed by its (nonlinear) interior, and a nonlin-

ear analysis is required to determined the front speed. A nonlinear selection principle

has been proposed to that aim (see [74]). Fisher’s equation has been studied extensively,

considering the travelling wave existence problem and the speed of propagation. There is

now a great deal of literature on this subject, see for example [38, 44, 45, 47, 68, 69].

A few scenarios have been proposed regarding the selection mechanism on some non-

linear reaction-diffusion equations, many for scalar equations. Some of the famous meth-

ods used are the marginal stability hypothesis (linear selection) [5, 18, 23, 72] (for a

review see [73]) , structural stability hypothesis [58], construction of exact solutions [22],

variational methods [6, 7], and asymptotic methods [8, 35, 40, 46]. Also, investigation

of the front speed dependence on the system parameters has been discussed numerically

(see [76]).

1.4 Fisher’s Equation

In this section we demonstrate the propagation properties of a front solution to the FKPP

equation. We obtain the eigenvalues that depend on the wave speed, then we can specify

the front linear speed, which is the minimal wave speed. We can also indicate which front

type the equation supports. Consider the equation (FKPP)

∂u
∂ t

= D
∂ 2u
∂x2 +au(1−u), (1.5)
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where D and a are positive parameters. Now rescaling by inserting

x∗ =
√

a
D

x, t∗ = at, (1.6)

and then omitting asterisks, for simplicity, results in

∂u
∂ t

=
∂ 2u
∂x2 +u(1−u). (1.7)

There are two steady states: u = 1 which is a stable steady state, while u = 0 is unstable,

the two states are spatially homogeneous. This indicates that for suitable initial condi-

tions, the wavefront solution is where u at one end (say the stable state) as x →−∞ , and

approaches the other state as x → ∞. Hence, this suggests we should look for a travelling

wavefront solution of (1.5). If such a solution exists, it can be written as

u(x, t) = ϕ(z), z = x− ct, (1.8)

where c is the front speed, which may negative or positive, because (1.7) is invariant for

the x → −x change of variable. In our analysis we assume c ≥ 0. When we substitute

from (1.8) into (1.7), we obtain an ordinary differential equation

d2ϕ
dz2 + c

dϕ
dz

+ϕ(1−ϕ) = 0, (1.9)

where the wavefront solution ϕ(z) satisfies

lim
z→∞

ϕ(z) = 0, lim
z→−∞

ϕ(z) = 1. (1.10)

Now, from (1.9), the character of the front solution ϕ depends on the speed c, thus we

have an eigenvalue problem. We aim to determine the value(s) of c for which a solution
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ϕ(z) exists and satisfies (1.10). In this problem, the uniform stable state ϕ = 1 invades

the unstable ϕ = 0, and we aim to give insights on the manner of invasion and its de-

pendence on the speed c. Therefore, we need to investigate the behaviour of the wave

profile ϕ(z) near the steady states thus we need the linearization (to know the response to

small perturbations). When we linearize (1.9) in the far field, we obtain the perturbation

equation
d2φ
dz2 + c

dφ
dz

+(1−2ϕ0)φ = 0, (1.11)

where φ = φ(z) is the perturbation around the the steady state ϕ0, i.e. ϕ(z) = ϕ0 +φ(z),

and ϕ0 equals 0 or 1, the unstable and stable state, respectively. Equation (1.11) is linear,

thus its solution can be put in the form

φ(z)∝ eµz, (1.12)

where µ is the eigenvalue. When we substitute into (1.11), we obtain the characteristic

equation

µ2 + cµ +1−2ϕ0 = 0, (1.13)

which is quadratic in µ and then the two eigenvalues are

µ1,2 =−c
2
±
[

c2

4
−1+2ϕ0

]1/2

. (1.14)

In the vicinity of the stable state ϕ0 = 1, the eigenvalues are −c/2± (c2/4+1)1/2, which

are real and of opposite sign at any speed c, so excluding exponential growth corresponds

to imposing one boundary condition. For the unstable state ϕ0 = 0, the two eigenvalues

are −c/2± (c2/4− 1)1/2. If c ≥ 2 the two eigenvalues are real and negative (the case

when c = 2 gives a double eigenvalue, µ = −1). Hence ϕ reaches 0 monotonically and

the front profile is like the front shown in figure 1.1 (a). However, if c < 2, the eigenvalues
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are complex conjugates with a negative real part. In this case ϕ reaches 0 in an oscillatory

manner (similar to the front in figure 1.1 (b)). The fastest decay of the slowest decaying

exponential occurs in the repeated root case, at c = 2.

If we look for a travelling wavefront solution to (1.7) for which 0 ≤ u ≤ 1, oscillatory

invasion is not accepted, the allowable wave profile must satisfy the monotonicity of the

solution. Therefore, the minimum wave speed is cmin = 2, which is the wave speed at

which the eigenvalues associated with the leading edge of the front switch from real to

complex. Also, we can say that this wave speed occurs when a double root exists, and

can be obtained by solving (1.13) with the double root equation 2µ + c = 0 (differentiate

(1.13) with respect to µ). An equivalent method, a phase plane method, can be used to

prove that a wavefront solution exists with rang of wave speeds satisfies c ≥ cmin = 2. In

the original dimensional equation (1.5) (using (1.6)), the range satisfies

c ≥ cmin = 2
√

Da. (1.15)

1.5 Linear (pulled) Front Speed

From the previous section we noticed that a minimum wave speed can be obtained from

a double eigenvalue condition. In this section we aim to demonstrate how we can use

this double root criterion to determine the linear (pulled) regime. In the first place, we

introduce the travelling wave coordinates (z, t) = (x − ct, t) into dynamical equations,

then we linearize the obtained equations around the unstable rest state. This results in

a perturbation equation. After that we substitute the ansatz (corresponding for ν ̸= 0 to

modulated travelling wave solution with a time period T = 2π/ν)

u = eiνteµz, (1.16)
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into the perturbation equation to obtain a characteristic equation

Q(µ;c,ν) = 0, (1.17)

where Q is a polynomial in the eigenvalue µ (its degree equals the order of the differential

equation). The travelling front parameters are ν (modulating frequency) and c (wave

speed), which are both real. From (1.16), when the modulating frequency ν is zero, the

front may be a uniformly translating one, u(x− ct), or a modulated one, but in the latter

T (the time period) cannot be determined by the linearisation. However if the modulating

frequency ν takes a nonzero value the wave is necessarily of modulated type with eiνT =

1, so that T = 2π/ν or some integer multiple of that value. If a steady state periodic

pattern is left behind the wavefront it will typically have a spatial wave length 2πc/ν =

cT .

A linear front speed is the speed at which a double eigenvalue occurs. Thus we need

to determine the wave speed that satisfies the characteristic equation (1.17) and the double

root equation
∂

∂ µ
Q(µ;c,ν) = 0. (1.18)

Now let us apply the above conditions (double root conditions), equations (1.17) and

(1.18), on the FKKP-equation (1.7). In the travelling wave coordinates (z, t) = (x− ct, t),

we have
∂ 2

∂x2 =
∂ 2

∂ z2 ,
∂
∂ t

=
∂
∂ t

− c
∂
∂ z

, (1.19)

and then equation (1.7) will be

∂ 2u
∂ z2 + c

∂u
∂ z

− ∂u
∂ t

+u(1−u) = 0. (1.20)

Linearizing around the the unstable state u = 0, and then substituting the perturbation
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displayed in (1.16), results in the characteristic equation (1.17) where

Q(µ;c,ν) = µ2 + cµ +1− iν , (1.21)

and a minimal front speed c = c0 is the speed that satisfies (1.17) and (1.18). Therefore,

c0 is given by

µ2 + c0µ +1− iν = 0, 2µ + c0 = 0, (1.22)

and when we solve, we find that c0 = 2, µ = −1 and ν = 0. This suggests that for all

wave speeds c ≥ c0 = 2, a monotonic front solution exists (the stable state u = 1 invades

u = 0 in monotonic manner) and a patterned front solution (ν ̸= 0) does not occur.

c = 2

c = 2

c > 2c > 2

c < 2

c < 2

-2.0 -1.5 -1.0 -0.5 0.0
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Ν = 0
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HΜ
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Figure 1.2: Reµ , Imµ space, (a) Constant speed contours, saddle point occurs at c = c0 = 2 . (b)
Constant ν contours, a saddle exists when ν = 0.

Figure 1.2 shows constant c and ν contours in Re(µ), Im(µ) space. Equations which

represent the contours are obtained as follows. Substitute µ = X + iY into the charac-

teristic equation µ2 + cµ + 1− iν = 0. This results in a complex equation, which gives

the two real equations X2 −Y 2 + cX + 1 = 0, 2XY + cY − ν = 0. The first equation

represents the contours for c, shown in figure 1.2(a). When we eliminate c, we obtain
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Y (1−X2−Y 2)+νX = 0 which represents the ν contours (shown in figure 1.2(b)). From

figure 1.2, a saddle point appears when a double root exists, and this happened when c= 2

and ν = 0. These results coincide with the well known results in the previous section.

In this chapter we demonstrated the propagation properties in the FKPP-equation, and

the task was easy as the the eigenvalues are known explicitly. This in general cannot

happen in higher order equations, thus we need more computations. Therefore, in chapter

2, we study two higher order differential equations, to demonstrate how we can deal

with equations of degree greater than two when we apply the double root condition that

gives us some insights on the minimal front speed. Our main goal is to extend this linear

analysis to cover a two-component reaction-diffusion system. In chapter 3, we give a

comprehensive instability analysis of the system, and different kinds of bifurcations are

recognised. A travelling wave analysis is performed to determine a linear front speed of

propagation using the double root mechanism, and this analysis in details is presented in

chapters 4, 5 and 6.
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Chapter 2

Higher order Scalar Reaction-Diffusion

Equation

In this chapter we aim to investigate the instability and the propagation properties of

reaction-diffusion equations of fourth order. We study two equations, the extended Fisher

Kolmogorov equation (EFK), and the Swift-Hohenberg equation (SH). Both have been

studied before by related methods (see, [7, 60, 64, 73]) but the analysis here will be

instructive for what follows. These two equations support patterned front solutions, and

in this chapter the double eigenvalue mechanism is used to provide evidence for that

and to determine a minimal front speed. In our discussion for each equation, we start

with linear stability analysis, then we perform a travelling wave analysis to uncover the

propagation properties of the front solution. A minimal front speed is determined, also

indicating the type of the front (patterned front (ν ̸= 0) or not (ν = 0) if we adopt the

simplest assumptions about the form of the front that are consistent with the linearised

analysis).
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2.1 The Extended Fisher-Kolmogorov Equation

The extended Fisher Kolmogorov equation (EFK) is given by

∂u
∂ t

=
∂ 2u
∂x2 − γ

∂ 4u
∂x4 +u−u3. (γ > 0) (2.1)

In the following we discuss the instability of (2.1). Assume that u = us is the rest state,

which can be either 0 or ±1. Linearizing (2.1) about the steady state gives the perturbation

equation
∂ û
∂ t

=
∂ 2û
∂x2 − γ

∂ 4û
∂x4 +(1−3u2

s )û, (γ > 0) (2.2)

where û is the perturbation. We study the evolution modes of a given wave number k,

where the perturbation û = û0eikxeσt , and σ is the temporal growth rate. Substituting into

(2.2) results in the dispersion relation

σ =−k2 − γk4 +(1−3u2
s ). (2.3)

The temporal growth rate σ is plotted versus the wave number k, shown in figure 2.1.

Thus we can say that the steady states us = ±1 are stable and us = 0 is unstable for

the band 0 ≤ k < k+, where k2
+ = (−1+ (1+ 4γ)1/2)/2γ . For this type of instability,

while a non-trivial pattern can arise when the unstable state is perturbed, it is the uniform

perturbation that grows most rapidly.

Now we aim to discuss the front solution properties of the EFK equation. We suppose

that there are two rest states 0 and 1, where u(∞) = 0 and u(−∞) = 1. A front solu-

tion connecting these two states can exist, and in the following we aim to determine the

minimal front speed. Linearising (2.1) around the unstable steady state u = 0, and in the

14
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Figure 2.1: Dispersion relation of (2.1), equation (2.3). The solid line represent the growth rate
when the steady state u = 0, and the dashed when u =±1.

travelling wave coordinates (z, t) = (x− ct, t), one can deduce the linearized equation

∂u
∂ t

− c
∂u
∂ z

=
∂ 2u
∂ z2 − γ

∂ 4u
∂ z4 +u, (2.4)

and substituting the ansatz u = eiνteµz gives the characteristic equation

Q = γµ4 −µ2 − cµ −1+ iν = 0, (2.5)

where ν and c are real and µ is complex. The minimal allowable wave speed c = c0

occurs when there is a double root for Q = 0. To determine this speed we evaluate the

double root condition Q = ∂Q/∂ µ = 0, i. e.

γµ4 −µ2 − cµ −1+ iν = 0 and 4γµ3 −2µ − c = 0, (2.6)

which is a necessary condition for the minimal front speed to exist. To find c and ν , we
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eliminate the eigenvalue µ using the conditions (2.6). We use Sylvester’s Dialytic Method

of Elimination (see appendix A) to obtain

R(c,ν ;γ) = 0, (2.7)

where R(·) is the determinant of Sylvester’s matrix, which appears as

R(c,ν ;γ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 −1 −c −1+ iν 0 0

0 γ 0 −1 −c −1+ iν 0

0 0 γ 0 −1 −c −1+ iν

4γ 0 −2 −c 0 0 0

0 4γ 0 −2 −c 0 0

0 0 4γ 0 −2 −c 0

0 0 0 4γ 0 −2 −c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.8)

Some of the determinant elements are complex. Therefore, equation (2.7) gives two

real equations. These two equations are

ν
(
9γc2 +16γ2 (ν2 −3

)
−16γ −1

)
= 0, (2.9)

−27γc4 +4(36γ +1)c2 +128γ(6γ +1)ν2 −16(4γ +1)2 = 0. (2.10)

Now we solve (2.9) and (2.10) for c and ν . When ν = 0, equation (2.9) is already

satisfied. Then from (2.10) (with ν = 0), fortunately we obtain two solutions explicitly
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for the wave speed. These two wave speeds are

c1 = 2

[
1+36γ − (1−12γ)3/2

54γ

]1/2

, ν1 = 0 (2.11)

c2 = 2

[
1+36γ +(1−12γ)3/2

54γ

]1/2

, ν2 = 0, (2.12)

provided that γ < 1/12. Now there are two solutions for the double root conditions (2.9)

and (2.10), the two speeds c1 and c2 with ν = 0. These two speeds are plotted versus the

parameter γ and shown in figure 2.2 (a), as solid lines (they meet at γ = 1/12). A third

possible solution of (2.9) and (2.10) for ν ̸= 0 exists, and can be determined explicitly as

c3 = 2

[
−17−72γ +(7+24γ)3/2

54γ

]1/2

(2.13)

ν3 =

[
37+192γ +144γ2 −2(7+24γ)3/2

48γ2

]1/2

, (2.14)

provided that γ ≥ 1/12. The variation of c3 and ν3 with γ is shown in figure 2.2 (a) and

(b), as dashed lines.

Now we have all possible solutions of (2.9) and (2.10), which represent the wave speed

and the modulating frequency that meet the double eigenvalue condition. We aim to give

insights on the character of double eigenvalue and the other two roots of the characteristic

equation (2.5). When ν = 0, the coefficient sequence of the characteristic polynomial

is γ,0,−1,−c,−1. Hence, there is only one sign change in the coefficients signs, and

according to Descartes’ Rule of signs (see appendix B.1), there will be at most one real

positive root. Also, one can apply Routh-Hurwitz (RH) criterion (appendix B.2). We find

that the RH conditions are not satisfied (some of the characteristic polynomial coefficients

are negative), hence there is at least one root with positive real part. From this result,

Descartes’ and RH criteria, we can say that for ν = 0, there always a positive root of the
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Figure 2.2: (a) and (b) Double root locus for the extended Fisher-Kolmogorov equation, from
equations (2.11)-(2.14), a transition from ν = 0 to ν ̸= 0 occurs at γ = 1/12 where a negative
triple root exists. (c) Variation of the four roots of (2.5), when γ = 0.02 < 1/12 and ν = 0, solid
lines represent Reµ , and dashed for Imµ , c1 and c2 are the double root speeds. (d) Character of
the real part of a double root (dashed line) and the real part of he other two roots (solid lines) with
γ (γ ≥ 1/12) at c = c3 and ν = ν3.
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characteristic equation. The other three roots are: one negative and two which are either

negative or complex with negative real part. Figure 2.2 (c) shows the four eigenvalues

when ν = 0 and γ = 0.02 < 1/12 versus wave speed c. Two negative double roots exist,

one at speed c = c1 and the other at c2, (c1 < c2). A positive real root always exists,

and the other three roots are negative, that occurs when c1 ≤ c ≤ c2, and otherwise they

are one negative and the other two are complex with negative real part. At c1 the double

root is negative and the other negative root is decaying faster. Hence for c = c1 only one

exponential must be excluded as z → ∞ for the repeated root to dominate there and this

is the speed selected in practice for the EFK equation. However, at c2 both the other

exponentials must be excluded as the double root is negative and the other two are one

negative which is decaying slower than the double eigenvalue and one is positive.

It is obvious from figure 2.2 (a) that when γ = γ∗ = 1/12 the three wave speeds c1, c2

and c3 coincide and at this point ν = 0. It is obvious from figure 2.2 (b) that a transition

from zero to nonzero modulating frequency ν takes place when γ = 1/12. Also, we can

see from figure 2.2 (c), as γ → 1/12 the two speeds c1 and c2 are very close, and when

γ = 1/12 a negative real triple root arises. Therefore we can say that a transition occurs

when the characteristic equation (2.5) has a real triple root at ν = 0. We can determine

the transition point by solving the triple root conditions

Q = ∂Q/∂ µ = ∂ 2Q/∂ µ2 = 0, (ν = 0) (2.15)

where Q is the characteristic equation which displayed in (2.5). Hence these conditions

appear as

γµ4 −µ2 − cµ −1 = 0, 4γµ3 −2µ − c = 0, 6γµ2 −1 = 0, (2.16)

and when we solve these equations, we find γ = 1/12, c = 4
√

2/3 and µ =−
√

2. We use
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Figure 2.3: Reµ , Imµ space plot. Constant speed contours, equation (2.17): (a) γ = 0.05, two real
double roots exist at ν = 0 and speeds c1 ≃ 1.94 and c2 ≃ 2.13, (b) γ = 1/12, triple root exits
at ν = 0 and c = c∗ ≃ 1.89 and (c) γ = 1, a complex double root exits at speed c3 ≃ 2.49 and
ν3 ≃ 0.76. (d) Reµ , Imµ versus ν , equation (2.18), at γ = 1, a double root exists at the saddle
point (when ν ≃ 0.76).
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a triple root condition in our analysis in later chapters when we discuss reaction-diffusion

systems.

When γ > 1/12, the double root speed and the corresponding modulating frequency

ν are displayed in (2.13) and (2.14), which are shown in figure 2.2 (a) and (b) in dashed

lines. At c = c3 the characteristic equation (2.5) has a complex double root with negative

real part, and the other two roots are complex, one with negative real part (decaying faster

that the double root) and the other with positive real part, see figure 2.2 (d).

Figure 2.3 shows the character of a double root discussed above. The plots in this fig-

ure are constant speed c and frequency ν contours in Reµ , Imµ space. A saddle point indi-

cates that a double root exists. Equations which represent these contours can be obtained

by substituting µ = X + iY into the characteristic equation (2.5) and then simplifying to

obtain

γ(X4 −6X2Y 2 +Y 4)−X2 +Y 2 − cX −1 = 0, (2.17)

Y (γ[−3X4 −2X2Y 2 +Y 4]+X2 +Y 2 −1)−νX = 0. (2.18)

20 40 60 80 100
x

0.2

0.4

0.6

0.8

1.0

uHxL

Figure 2.4: Solution of the EFK equation (2.1) when γ = 0.02, and t = 20,30,40 (left to right).
The initial condition is u(x,0) = 0.03e−x2

. The uniform state u = 1 invades u = 0 monotonically.
These solutions are constructed using Mathematica 8 Package (NDSolve).
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Figure 2.5: Solution of the EFK equation (2.1) when γ = 1.0, and t = 20,30,40 (left to right), the
initial condition is a Gaussian of height 0.03 (u(x,0) = 0.03e−x2

). A pattern invades the steady
state u = 0.

Figure 2.4 shows solutions of the EFK equation (2.1) when γ = 0.02 < 1/12, at t =

20,30 and 40, and a uniform translating front travels to the right with a minimal speed

c = c1 displayed in (2.11). Solutions when γ = 1.0 > 1/12 at t = 20,30 and 40, are shown

in figure 2.5. There is a pattern left behind the front invading the unstable state u = 0 with

a minimal linear speed c = c3 shown in (2.13). These solutions are constructed using

Mathematica 8 Package (NDSolve).

2.2 Swift-Hohenberg Equation

In this section we give insights into propagating properties in the Swift-Hohenberg (SH)

equation. By using the double root mechanism we show that the SH equation

∂u
∂ t

= (ε −1)u−2
∂ 2u
∂x2 − ∂ 4u

∂x4 −u3, 0 < ε < 1, (2.19)

supports pattern formed front solutions. First let us discuss the instability of the equation.

There is one steady state u = us = 0, and in the following we discuss its instability type.

At u = 0, the dispersion relation of (2.19) (assuming that the perturbation is in the form
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eikxeσt) is

σ = 2k2 − k4 +(ε −1), (2.20)

Thus for 0 < ε < 1, there is a band of wave numbers k− < k < k+, for which u = 0 is

unstable (the fastest growing mode k = 1), see figure 2.6 . Therefore, we can say that a

pattern can arise as a result of disturbing the zero state.

k- k+
k = 1

0.0 0.5 1.0 1.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

k

Σ

Figure 2.6: Dispersion relation of (2.19), equation (2.20). The fastest growing mode k = 1, the
unstable wave numbers k− < k < k+.

In the following we aim to discuss the propagation properties of the SH equation

solution. We linearise equation (2.19) around u = 0 (unstable steady state) and then in the

travelling wave coordinates (z, t) = (x− ct, t) the perturbation equation is

∂u
∂ t

− c
∂u
∂ z

=−2
∂ 2u
∂ z2 − ∂ 4u

∂ z4 +(ε −1)u, (2.21)

where u = u(z, t) = u(x− ct, t), assuming that u is the perturbation, and c is the wave
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speed. Then we substitute u = u0eiνteµz to obtain the following characteristic equation

µ4 +2µ2 − cµ − (ε −1)+ iν = 0, (2.22)

where the eigenvalue µ is complex, while c and ν are real.

Now we find the double root condition. As in the previous section, the quartic equation

Q = µ4 +2µ2 − cµ − (ε −1)+ iν = 0 results in two real equations, which can be put in

the form

27c4 +32c2(9ε −8)+256
(
ν2 + ε3 − ε2 −3ν2ε

)
= 0 (2.23)

ν
(
8
(
ν2 −3ε2 +2ε

)
−9c2) = 0, (2.24)

and when we solve for c and ν , we find two possible solutions. The first is given by

c1 =
4

3
√

3

[
8−9ε +(4−3ε)3/2

]1/2
, ν1 = 0, (2.25)

which corresponds to a positive double eigenvalue for (2.22) (we will see later when we

discuss the roots’ character), while the other solution is

c2 =
4

3
√

3

[
−1+18ε +(1+6ε)3/2

]1/2
, (2.26)

ν2 =
4√
3

[
−2+30ε +9ε2 +2(1+6ε)3/2

]1/2
, (2.27)

where a double complex root with negative real part exists. Figure 2.7 (a) and (b) show

these two solutions versus the parameter ε (0 < ε < 1).

In the following we discuss the eigenvalues’ character. Let us start with the case

ν = 0. From (2.22), and when 0 < ε < 1, the coefficients’ signs always support two

sign changes. According to Descartes’ rule, there will be at most two positive real roots
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Figure 2.7: (a) and (b) Double root locus for the SH equation, (a) Speed versus ε , (b) modulating
frequency versus ε , solid lines represent (2.25) where a positive double root, and on the dashed
lines a double complex root with negative real part, from (2.26)-(2.27). (c) The four roots versus
the wave speed, solid lies represent the real part and dotted lines for imaginary parts, a positive
double root exits at c = c1 and the other two roots are complex with negative real parts (the roots
of (2.22) when ν = 0 and ε = 0.3). (d) The real parts of a double root (dashed line) and the
corresponding other two roots (solid lines, one positive and the other is negative and less than the
double root) versus ε , the roots computed at c = c2 and ν = ν2 shown in (2.26) and (2.27).
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or none. Since not all the polynomial coefficients are negative, the RH criterion is not

satisfied. Therefore, there will be at least one complex root with positive real part. From

this result, we can say that the characteristic equation must have two roots, which are

either positive or complex with positive real parts (a positive double root exists at c = c1),

and the other two roots are complex with negative real part. The four eigenvalues versus

the speed c are shown in figure 2.7 (c), the roots of (2.22) when ν = 0 and ε = 0.3. For a

nonzero value for ν , equation (2.22) always has a complex double root with negative real

part, and the other two roots are complex, one with negative and one with positive real

part, the double root is the dominant, see figure 2.7 (d).
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Figure 2.8: Solution of the SH equation when ε = 0.1, and at t = 70,90,110 (left to right). The
initial condition is a Gaussian of height 0.01. A pattern invades the unstable state u = 0, the front
moving to the right. These solution are obtained using Mathematica 8 Package NDSolve.

From the above investigation of the eigenvalues, we can deduce the following. At

c = c1 a real positive double root exists, while at c = c2 there is a complex double root

with negative real part. Hence, in practice, c = c2 is the speed selected in practice for

the SH equation. Thus we can say that a front invades the unstable state u = 0 with a

minimal speed c = c2, and leaves a pattern behind. Figure 2.8 shows solutions of the SH

equation when ε = 0.1 at successive times. Therefore, equation (2.19) supports patterned

front solutions.
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2.3 Summary

We have discussed the propagation properties in two examples of higher order reaction-

diffusion equations, the EFK and the SH equation. We have demonstrated how to recog-

nise two types of front solutions, uniform translating and patterned fronts for these two

equations. A linear front speed is determined using the double root condition, similar

results obtained by the marginal stability mechanism (see, [7, 64, 73]). The double root

speed and the associated angular frequency are computed from the resultant of the char-

acteristic equation using the Sylvester’s Dialytic Method of Elimination. To ensure the

existence of a front, we need to give insight on the character of the double roots and the

other two roots (with the help of RH criterion and Descartes’ rule of signs, appendix A, as

it is hard to obtain the four roots explicitly). The double root has to be slowest decaying

one present for the selection mechanism to make sense.

Now in this chapter we have given a brief outline on the properties of a front so-

lution of two examples of reaction-diffusion equation of fourth order. We consider the

above analysis as a motivation and a guide in to analyse reaction-diffusion systems. The

next chapters are devoted for discussing a two-component reaction-diffusion system. We

mainly investigate the instabilities that arise and find a minimal front speed (linear pulled

regime). Instabilities in a two-component reaction-diffusion system are discussed in chap-

ter 3, which indicates the kinds of instabilities of rest states. Then we continue with a

travelling wave analysis in chapters 4-6.
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Chapter 3

Instabilities in Two-Component

Reaction-Diffusion Systems

3.1 Introduction

3.1.1 Two-component reaction-diffusion systems

Reaction-diffusion systems can give rise to a number of interesting phenomena, like e.g.,

threshold behaviour, multiple steady states and hysteresis, spatial patterns, moving fronts

or pulses and oscillations. The study of these phenomena needs a variety of different

methods from many areas of mathematics, for example numerical methods, bifurcation

and stability theory, singular perturbation theory and many others. Linear analysis is a

generally used method for evaluating the behaviour of perturbations in a nonlinear system

in the vicinity of a stationary state. In linear analysis one takes into account only the terms

that are linear in perturbations to the steady state so it cannot predict the post-bifurcation

behaviour of the system. However, within its limitations the method is typically quite

effective in predicting the existence of an instability and its characteristic wave number

[30].
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In this chapter we aim to discuss the possible bifurcations that may arise in a two-

component reaction-diffusion system. In the case of two-species models (say U(x, t) and

V (x, t)), the system (1.1) is then in the form

∂U
∂ t

= DU ∇2U +F(U,V ),

∂V
∂ t

= DV ∇2V +G(U,V ),

(3.1)

where F and G are the kinetics, which are the only nonlinear terms that appear in the

system. The form of the kinetics F and G in (3.1) determines the behaviour of the system.

These terms can be derived from the formulae describing the reaction by using the law

of mass action [54] or devised based on phenomenological considerations. There are nu-

merous possibilities for the exact form of the reaction kinetics depending on the chemical

reaction being modeled, including the Gray-Scott model [31, 32], the Gierer-Meinhardt

model [29], the Schnackenberg model [20, 21], the Brusselator model [12, 48, 81], and

the Lengyel-Epstein model [50].

3.1.2 Pattern Forming Phenomena

Pattern formation in mathematics refers to the process that, by changing a bifurcation pa-

rameter, a spatially homogeneous steady state loses stability to spatially inhomogeneous

perturbations, and stable inhomogeneous solutions may arise. Alan Turing showed in

1952 that a particular mathematical system could produce spatial patterns from an arbi-

trary initial state [71]. He demonstrated that such a reaction-diffusion system in a closed

spatially extended domain could, under appropriate parameter constraints, evolve into a

spatially heterogeneous pattern, due to small fluctuations in chemical concentrations ini-

tiated by thermal noise alone. This phenomenon was termed diffusion-driven instability

[57]. Since Turing’s paper, pattern formation in nonlinear complex systems has become
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one of the central problems of the natural, social, and technological sciences. The study

of biological pattern formation has gained popularity since the 1970s: Segel and Jackson

[65] were the first to apply Turing’s ideas to a problem in population dynamics. At the

same time, Gierer and Meinhardt [29] gave a biologically justified formulation of a Tur-

ing model and studied its properties by employing numerical simulation. In the literature,

many reaction-diffusion models have been proposed and analysed, both mathematically

and via numerical simulation (for reviews see, for example [13, 27, 33, 55]). The vast

majority of models studied involve only two components since this is the simplest such

system that exhibits the fundamental property of diffusion-driven instability.

Nowadays, pattern formation has become a broad interest and stimulates many de-

tailed studies. There are numerous works in the literature concerned with pattern forma-

tion studying the types of diffusion instability for two and more species systems. Re-

searchers have been investigating many kinds of spatial, temporal, and spatiotemporal

patterns in biology [41, 49, 53], chemistry [50, 57, 75, 80], physics [2, 17, 36], ecology

[4, 56, 59] and in epidemiology [51].

3.1.3 Bifurcation

With some control parameters continuously changing, a nonlinear reaction-diffusion sys-

tem initially in a homogeneous steady state may undergo a bifurcation to form patterns.

Studies of reaction-diffusion systems have led to the characterization of three basic types

of symmetry-breaking bifurcations (Hopf, Turing, and wave bifurcation), responsible for

the emergence of these patterns. The classification of these bifurcations is based on linear

stability analysis of a homogeneous state [17, 79].

In the following we analyse different types of bifurcation that may arise in reaction-

diffusion systems. Assume that the solution, the perturbation of the linearized version

of (3.1), is proportional to eσt+i⃗k·⃗x. The space-independent Hopf bifurcation breaks the
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temporal symmetry of the system and gives rise to oscillations that are uniform in space

and periodic in time and in this case

Re(σ) = 0, Im(σ) ̸= 0 at k = 0, (3.2)

If instead this instability is stationary in time, the bifurcation type is called stationary

uniform and essentially it does not involve pattern formation (we call this type monotonic

in this chapter).

The (stationary) Turing bifurcation breaks the spatial symmetry, leading to the for-

mation of patterns that are stationary in time and periodic in space. In this type

Re(σ) = 0, Im(σ) = 0 at k = kT ̸= 0. (3.3)

The wave bifurcation (oscillatory Turing or finite-wavelength Hopf) breaks both spa-

tial and temporal symmetries, generating patterns that are periodic in both space and time

and in this type

Re(σ) = 0, Im(σ) ̸= 0 at k = kw ̸= 0. (3.4)

In reaction-diffusion systems, most studies have been devoted to patterns which emerge

in excitable systems near a Hopf bifurcation [24, 37, 70] and to Turing structures arising

from Turing instability[14, 37, 55]. More recently, attention has turned towards patterns

arising from the wave instability [19, 34, 78, 82]. The wave instability plays an important

role in pattern formation in many systems, such as binary fluid convection [16], heteroge-

neous chemical reactions [15, 62], and electrochemical systems [62].

The individual bifurcations and patterns emerging from them are well characterized.

However, there have been fewer studies of the characteristics when the symmetry-breaking

instabilities interact. Pattern formation arising from interaction between Hopf and Turing
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modes have been analyzed in detail for specific models [25, 52, 61, 81]. Pattern formation

arising near the Hopf and wave bifurcations was studied and a large variety of simple and

complex patterns were observed [19, 82]. Also, there are systems that possess a range of

parameters where Turing and wave instabilities interact and as a result patterns due to this

interaction were investigated [75, 79].

In section 2, we give different canonical forms for the linearized system of (3.1). Also,

we derive the characteristic equations and the conditions for stability. In section 3.2, we

give a discussion when the diffusion ratio λ = DV/DU is unity, which is a special case as

we will see later (this case gives useful information about necessary conditions for pattern

formation), and we continue the discussion for both 0 ≤ λ < 1 and λ > 1 in section 4 and

5, respectively. At the end of this chapter, in section 6, we give a summary of the obtained

results in the form of tables.

3.2 Linear Stability Analysis

The first stage of pattern formation can usually be investigated by linear stability analysis.

In the following subsections, we present some basics of the linear stability analysis that

will lead to the dispersion relation, which helps us in constructing the stability diagram

(bifurcation diagram).

3.2.1 Linearised system

Assume that system (3.1) has a spatially uniform steady state

U(x, t) =U0, V (x, t) =V0, (3.5)
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where

F(U0,V0) = 0, G(U0,V0) = 0. (3.6)

The above uniform steady state solution can be either stable or unstable in respect to

disturbances. In order to examine under what conditions the spatially homogeneous state

becomes unstable with respect to small spatially inhomogeneous fluctuations, we perturb

the steady state (U0,V0) with small perturbations (Û(x, t),V̂ (x, t)) so that

U(x, t) = U0 +Û(x, t), (3.7)

V (x, t) = V0 +V̂ (x, t). (3.8)

We consider the problem in one spatial dimension x̂ and to facilitate later rescalings

set t = t̂. We substitute from (3.7) and (3.8) into (3.1) to obtain

∂ (U0 +Û)

∂ t̂
= Du

∂ 2(U0 +Û)

∂ x̂2 +F(U0 +Û ,V0 +V̂ ), (3.9)

∂ (V0 +V̂ )

∂ t̂
= Dv

∂ 2(V0 +V̂ )

∂ x̂2 +G(U0 +Û ,V0 +V̂ ). (3.10)

Now, using the fact that (U0,V0) is a uniform steady state solution and linearizing the

kinetics, F and G, around the steady state, gives

∂Û
∂ t̂

= Du
∂ 2Û
∂ x̂2 +aÛ +bV̂ , (3.11)

∂V̂
∂ t̂

= Dv
∂ 2V̂
∂ x̂2 + cÛ +dV̂ , (3.12)

where Du,Dv,a,b,c, and d are all real numbers (the first two are non-negative; the other
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four can take either sign) and

 a b

c d

=

 ∂ F
∂U

∂F
∂V

∂G
∂U

∂ G
∂V


(U0,V0)

. (3.13)

The above linearized system, (3.11)-(3.12), provides the linear stability equations de-

termining the behaviour of small perturbations (Û ,V̂ ) to the steady state solution (U0,V0).

Now we aim to reduce the number of parameters appearing in these equations to express

them in a canonical form. To eliminate the parameter a, we put the solution in the form

Û = eat̂ û, V̂ = eat̂ v̂. (3.14)

Then we substitute into the system (3.11)-(3.12) to obtain

∂ û
∂ t̂

= Du
∂ 2û
∂ x̂2 +bv̂, (3.15)

∂ v̂
∂ t̂

= Dv
∂ 2v̂
∂ x̂2 + cû+(d −a)v̂. (3.16)

Now, we substitute the following new variables

u =
û
b
, v =

v̂
|d −a|

, x =

√
|d −a|

Du
x̂, t = |d −a|t̂, (3.17)

so that (3.15) and (3.16) become

∂u
∂ t

=
∂ 2u
∂x2 + v, (3.18)

∂v
∂ t

= λ
∂ 2v
∂x2 +αu± v, (3.19)
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where

λ =
Dv

Du
, α =

bc
(d −a)2 , (3.20)

provided that a ̸= d and b ̸= 0, noting that b ̸= 0 is necessary for the two equations to be

coupled fully. The positive sign in (3.19) corresponds to the case when (d −a) > 0, and

the negative is for (d − a) < 0. From the above system, displayed in (3.18) and (3.19),

which contains only two parameters, λ ≥ 0 and α , without loss of generality 0 ≤ λ ≤ 1

holds, but it may sometimes also be convenient to consider λ > 1.

We assumed above that a ̸= d for the validity of (3.17); however, for a comprehensive

study we must also take into account the case when a = d. In this case, when a = d, the

system displayed in (3.15) and (3.16) becomes

∂ û
∂ t̂

= Du
∂ 2û
∂ x̂2 +bv̂, (3.21)

∂ v̂
∂ t̂

= Dv
∂ 2v̂
∂ x̂2 + cû, (3.22)

and for further elimination of parameters, we substitute the following

u =
û√
|bc|

, v =
v̂
c
, x =

√√
|bc|

Du
x̂, t =

√
|bc|t̂, (3.23)

into (3.21) and (3.22) to obtain

∂u
∂ t

=
∂ 2u
∂x2 ± v, (3.24)

∂v
∂ t

= λ
∂ 2v
∂x2 +u. (3.25)

Now, we aim to obtain the eigenvalues of the two systems displayed in (3.18) and

(3.19), and also the two systems displayed in (3.24) and (3.25), the four systems are dis-
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played in table 3.1. So, in the next two sections we give the derivation of the characteristic

equation and also the stability condition corresponding to each system.

Table 3.1: The four different canonical forms of a linearised RD system

System Equations Conditions

∂u
∂ t

=
∂ 2u
∂x2 + v GV −FU > 0

I
∂v
∂ t

= λ
∂ 2v
∂x2 +αu+ v

∂u
∂ t

=
∂ 2u
∂x2 + v GV −FU < 0

II
∂v
∂ t

= λ
∂ 2v
∂x2 +αu− v

∂u
∂ t

=
∂ 2u
∂x2 + v GV −FU = 0,FV GU > 0

III
∂v
∂ t

= λ
∂ 2v
∂x2 +u

∂u
∂ t

=
∂ 2u
∂x2 − v GV −FU = 0,FV GU < 0

IV ∂v
∂ t

= λ
∂ 2v
∂x2 +u

3.2.2 The characteristic equation

As the coefficients involved with the systems displayed in equations (3.18)-(3.19) and

also (3.24)-(3.25) are constants, we assume the solution of these systems in the Fourier

form  u

v

=

 c1

c2

eσt+ikx, (3.26)
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where σ is the rate of growth or decay of perturbations, k is the perturbation wave number,

and c1,c2 are constants. We substitute (3.26) into (3.18) and (3.19) to obtain

[
σI+ k2D−R1

]
E = 0, (3.27)

and into (3.24) and (3.25) to obtain

[
σI+ k2D−R2

]
E = 0, (3.28)

where I and 0 are the identity and the zero matrix respectively. The matrices D, R1, R2,

and the vector E are defined as

D =

 1 0

0 λ

 , R1 =

 0 1

α ±1

 , R2 =

 0 ±1

1 0

 , E =

 c1

c2

 . (3.29)

From the linear algebraic systems displayed in (3.27) and (3.28), the determinant of

the coefficient matrix must be zero for nontrivial solutions, and as a result, we obtain a

quadratic equation for the eigenvalue σ . In the case of the system displayed in (3.18) and

(3.19), a ̸= d, the characteristic equation is

det
[
σI+ k2D−R1

]
= 0, (3.30)

and for the system displayed in (3.24) and (3.25), when a = d, the characteristic equation

is given by

det
[
σI+ k2D−R2

]
= 0. (3.31)

In each case, the eigenvalues are the two solutions of the relevant characteristic equa-

tion (dispersion relation). The eigenvalue σ is thus given as a function of the wave mode
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k. In the analysis below, we focus most on the larger of the two roots, since this is the

growth rate of the most dangerous perturbation.

3.2.3 Condition for stability

In this section we give expressions for the net growth rate for each case, these help us to

find the stability condition(s) and then we can construct the stability diagram. Now let the

perturbations (Û ,V̂ ) be such that

 Û

V̂

 ∝ eσ t+ikx, (3.32)

then in the case of a ̸= d, we refer to (3.14), (3.17), and (3.26), and undo the substitutions

(omitting hats) to obtain

σ = σR1 = a+ |d −a|σ , k =

√
|d −a|

Du
k, (3.33)

where σ is the solution of the characteristic equation (3.30). Hence the growth rate,

Re(σ+
R1
), can be written as

Re(σ+
R1
) = a+ |d −a|Re(σ+), (3.34)

where σ+ the larger root of the characteristic equation (3.30), then for a solution to

be stable, the maximum of the growth rate, Re(σ+
R1
)m, must be negative, i.e. a+ |d −

a|Re(σ+)m < 0, or equivalently

δ1 +Re(σ+)m < 0 if a ̸= d, (3.35)
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where δ1 =
a

|d−a| , and σ+
m is the maximum of the larger root of the characteristic equation

(3.30).

Now we aim to find a stability condition similar to (3.35) in the case a = d. When we

refer to equations (3.14), (3.23), and (3.26), we find that

σ = σR2 = a+
√

|bc|σ , k =

√√
|bc|

Du
k, (3.36)

where σ is the solution of the characteristic equation (3.31). Hence for stability, a+√
|bc|Re(σ+)m < 0, or

δ2 +Re(σ+)m < 0 if a = d, (3.37)

where δ2 =
a√
|bc|

(provided that b ̸= 0 and c ̸= 0), and Re(σ+)m is the maximum of the

larger root of the characteristic equation (3.31).

Making use of the above stability conditions (3.35) and (3.37), we can construct the

stability diagram in each case. The stability diagram is a parameter space plot that indi-

cates the stable and unstable regions. We construct these plots at the most unstable wave

number k, at which the maximum of Re(σ+
R1
) and Re(σ+

R2
) occurs, in the two cases a ̸= d

and a = d. Thus we give insights into the change of the eigenvalues σ of the canonical

forms of linearised systems (displayed in Table 3.1), due to a change in the wave number

k, focusing on the fastest growing mode or the slowest decreasing mode. We study in

three separate sections each of the four systems (I, II, III, and IV), see table 3.1, consid-

ering equal diffusivity λ = 1, then 0 ≤ λ < 1 and finally λ > 1. We end each section

by a summary table. The tables include k∗ which is the wave number corresponding to

the fastest growing or the slowest decaying perturbation mode, and σ∗ is the correspond-

ing eigenvalue and the corresponding parameter regimes. From these tables we give a

comprehensive investigation of the instabilities in a two-component reaction diffusion

39



systems.

3.3 A : Analysis for λ = 1

In this section we give a detailed analysis for each case of the four cases shown in table

3.1, considering the diffusion ratio to be unity, i.e. λ = 1. The results from this case

indicate that unequal diffusion coefficients is a necessary condition for stationary periodic

and oscillatory periodic instabilities to arise. We study the dispersion relation and its

dependence on the system parameters and construct the stability diagram.

3.3.1 Case I

Here we discuss the system of the form

∂u
∂ t

=
∂ 2u
∂x2 + v, (3.38)

∂v
∂ t

=
∂ 2v
∂x2 +αu+ v. (3.39)

In this case the characteristic equation is given by (3.30), and referring to (3.29) we find

that

D =

 1 0

0 1

 , R1 =

 0 1

α 1

 , (3.40)

then substitute into (3.30) to obtain the quadratic equation

σ2
A1 +

[
2k2 −1

]
σA1 + k4 − k2 −α = 0, (3.41)

where σA1 is the eigenvalue of the system (3.38)-(3.39), and is given by

σA1 =
1
2

[
1−2k2 ±

√
1+4α

]
. (3.42)
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From the above form for σA1, the roots are complex if α < −1/4 and real for α ≥

−1/4. Also, the real part of the larger root, Re(σ+
A1), (the growth rate) can be put in the

form

Re(σ+
A1) =


1
2(1−2k2 +

√
1+4α) if α ≥−1/4

1
2(1−2k2) if α <−1/4

(3.43)

which is a monotonic decreasing function in k. Hence the maximum Re(σ+
A1)m always

occurs at k = 0 and appears in the form

Re(σ+
A1)m =


1
2(1+

√
1+4α) α ≥−1/4, Im(σA1) = 0

1
2 α <−1/4, Im(σA1) =

1
2

√
|1+4α|.

(3.44)

0.5 1.0 1.5 2.0

K3

K2

K1

0

1

2

k

Re(s
A1

), Im(s
A1

)

(a) a = 1

0.5 1.0 1.5 2.0

K3

K2

K1

0

1

2

k

Re(s
A1

), Im(s
A1

)

(b) a = K1

Figure 3.1: The eigenvalues at different values of α , from equation (3.42). (a) α = 1, (b) α =−1.
The solid line represents the real part and the dashed line represents the imaginary.

Figure 3.1 shows the dispersion relation at different values of α and figure 3.2 shows

the stability diagram; the boundary curve between the the stable and unstable regions is

given by (form (3.35), condition for stability)

Re(σ+
A1)m +δ1 = 0 (3.45)
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where Re(σ+
A1)m is given by (3.44). It is obvious that for α < −1/4, there is a Hopf

bifurcation as the stability is crossed; for α ≥ −1/4, by contrast, there is a monotonic

bifurcation at zero wave number.

Figure 3.2: The stability diagram for the system shown in (3.38) and (3.39). The boundary between
the two regions represents equation (3.45).

3.3.2 Case II

In this subsection we discuss the system

∂u
∂ t

=
∂ 2u
∂x2 + v, (3.46)

∂v
∂ t

=
∂ 2v
∂x2 +αu− v. (3.47)

The characteristic equation is given by (3.30). From (3.29) and for λ = 1, we find that

D =

 1 0

0 1

 , R1 =

 0 1

α −1

 , (3.48)
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then substitute into (3.30) to obtain

σ2
A2 +

[
2k2 +1

]
σA2 + k4 + k2 −α = 0, (3.49)

where σA2 is the eigenvalue of the system (3.46)-(3.47) and hence takes the form

σA2 =
1
2

[
−1−2k2 ±

√
1+4α

]
. (3.50)

Figure 3.3: The eigenvalues at different values of α , from equation (3.50). (a) α = 1, (b) α =−1.
The solid line represents the real part and the dashed line represents the imaginary part.

Therefore, we can say that the roots are complex if α < −1/4 and purely real for

α ≥−1/4. Also, for the larger eigenvalue, σ+
A2, the real part can be put in the form

Re(σ+
A2) =


1
2(−1−2k2 +

√
1+4α) if α ≥−1/4

1
2(−1−2k2) if α <−1/4,

(3.51)

which is a monotonic decreasing function in k. Hence, the maximum, Re(σ+
A2)m always
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occurs at k = 0 and takes the form

Re(σ+
A2)m =


1
2(−1+

√
1+4α) α ≥−1/4, Im(σ+

A2) = 0

−1
2 α <−1/4, Im(σ+

A2) =
1
2

√
|1+4α|.

(3.52)

Figure 3.4: The stability diagram for the system displayed in (3.46) and (3.47). The boundary
between the two regions represents equation (3.53).

The dispersion relation is shown in figure 3.3 at two different values of α . Figure 3.4

shows the stability diagram, where the curve that separates the two regions is given by

(from (3.35), condition for stability)

Re(σ+
A2)m +δ1 = 0, (3.53)

where Re(σ+
A2)m is given by (3.52). Also, in this case when α < −1/4, Hopf instability

can arise; when α ≥−1/4, monotonic instability at zero wave number may arise.
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3.3.3 Case III

In this subsection we discuss the system

∂u
∂ t

=
∂ 2u
∂x2 + v, (3.54)

∂v
∂ t

=
∂ 2v
∂x2 +u, (3.55)

and from (3.29) we substitute

D =

 1 0

0 1

 , R2 =

 0 1

1 0

 (3.56)

into (3.31) to obtain

σ2
A3 +2k2σA3 + k4 −1 = 0, (3.57)

where σA3 is the eigenvalue of the system (3.54)-(3.55) and hence is given by

σA3 =−k2 ±1. (3.58)

The two eigenvlaues are purely real for any value of k and are each a monotonic

decreasing function of k. Hence the maximum value of the larger root, (σA3)m = 1, always

occurs at k = 0. Then the maximum growth rate in this case equals δ2+1, and from (3.37),

the system is stable if δ2 <−1 and unstable if δ2 >−1. We can add that in this case, only

a monotonic instability occurs at k = 0 (neither Hopf nor Turing bifurcations can arise).
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3.3.4 Case IV

In this case the system appears in the form

∂u
∂ t

=
∂ 2u
∂x2 − v, (3.59)

∂v
∂ t

=
∂ 2v
∂x2 +u, (3.60)

and from (3.29), we substitute

D =

 1 0

0 1

 , R2 =

 0 −1

1 0

 (3.61)

into (3.31) to obtain the quadratic equation

σ2
A4 +2k2σA4 + k4 +1 = 0, (3.62)

where σA4 is the eigenvalue of the system (3.59)-(3.60), which is thus given by

σA4 =−k2 ± i. (3.63)

The two roots are complex conjugates for any value of k. The real part is a monotonic

decreasing function of k. Hence the maximum, Re(σA4)m = 0, always occurs at k = 0.

Thus, the maximum growth rate in this case equals δ2, so the system is stable if δ2 < 0

and unstable if δ2 > 0, and we can say that only Hopf bifurcations can occur.

To end this section, we give a summary of the above obtained results in table 3.2,

where k∗ is the wave number corresponding to the fastest growing or the slowest decaying

perturbation mode, and σ∗ is the corresponding eigenvalue. We conclude that for λ = 1

the maximum growth rate always occurs at k = 0 and the growth rate is a monotonic

46



decreasing function of the wave number k. It follows that a Turing instability never arises

for λ = 1 (i.e. DU = DV ); this is consistent with the established result that a Turing

bifurcation requires the diffusion coefficients to be different [55]. However, there can be

oscillatory (Hopf) and/or monotonic instability at k = 0.

Table 3.2: Instabilities for the four systems when λ = 1

System k2
∗ Re(σ∗) Im(σ∗) Conditions Kind of Bifn.

I 0
1
2
(1+

√
1+4α) 0 α ≥−1/4 Monotonic

0
1
2

1
2
(
√

|1+4α|) α <−1/4 Hopf

II 0
1
2
(−1+

√
1+4α) 0 α ≥−1/4 Monotonic

0 −1
2

1
2
(
√

|1+4α|) α <−1/4 Hopf

III 0 1 0 −− Monotonic

IV 0 0 1 −− Hopf

3.4 B : Analysis for 0 ≤ λ < 1

In the previous section we studied how the eigenvalues behave for the four different cases

assuming that λ = 1. In this section we study the previous stated four systems I, II, III,

and IV, but when 0 ≤ λ < 1.

3.4.1 Case I

Here we discuss the system

∂u
∂ t

=
∂ 2u
∂x2 + v, (3.64)

∂v
∂ t

= λ
∂ 2v
∂x2 +αu+ v. (3.65)
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In this case the characteristic equation is given by (3.30), and referring to (3.29), we

find that

D =

 1 0

0 λ

 , R1 =

 0 1

α 1

 , (3.66)

then we substitute into (3.30) to obtain

σ2
B1 +

[
(1+λ )k2 −1

]
σB1 +λk4 − k2 −α = 0, (3.67)

where σB1 is the eigenvalue of the system (3.64)-(3.65), and given by

σB1 =
1
2

[
1− (1+λ )k2 ±

√
[1+(1−λ )k2]

2
+4α

]
. (3.68)

Figure 3.5: Typical domain for complex eigenvalues, σB1, 0 < λ < 1. The dashed curve shows, for
λ = 0.5, the condition for a repeated root (switch between purely real and complex eigenvalues),
given by [1+ k2/2]2 +4α = 0.

Figure 3.5 shows the domain for complex eigenvalues when λ = 0.5. For α ≥−1/4,

the two eigenvalues are purely real, for whatever values of k and λ . For α < −1/4, the

eigenvalues are complex when 0 ≤ k < kr, then the roots change to purely real when
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k ≥ kr, where

kr =

(
(−4α)1/2 −1

1−λ

)1/2

, (3.69)

which is the wave number at which a repeated root exists. Also, we see from (3.68) that

for large values of k the two roots are pure real and distinct and take the approximate

values −λk2 and −k2, respectively, consistent with the dominance of the diffusion terms

in (3.64)-(3.65) in that limit. When λ is close to 1 the dashed curve opens to be the

horizontal line α =−1/4, consistent with the earlier results of section 3.3.1.

In our analysis, we need to examine the extreme values for the real part of the larger

root (growth rate), which is useful in the linear stability analysis, where we focus most on

the most positive eigenvalue. Since the eigenvalues may change from complex to real as

k increases (when α <−1/4), in order to determine the maximum growth rate over all k,

we need to consider both types of eigenvalues, then determine the global maximum.

Let us discuss first the case when the eigenvalues are complex. This case may arise

only when α <−1/4, and for small k (i.e. 0≤ k < kr). From (3.68), when the eigenvalues

are complex, the real part is

Re(σB1) =
1
2
[
1− (1+λ )k2] , (3.70)

which is a monotonic decreasing function of k; the maximum value is 1/2, occuring at

k = 0. Therefore, we can say that

Re(σB1)≤
1
2

and Im(σB1) ̸= 0 when α <−1/4 and 0 ≤ k < kr. (3.71)

When the roots are purely real, we aim to examine any maxima of σB1. Let σB1 have

a maximum at k = k∗, differentiate both sides of (3.68), focusing on the larger root, then
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from the condition (
dσB1

dk

)
k=k∗

= 0, (3.72)

we obtain

k2
∗

[
λ
(
(1−λ )k2

∗+1
)2

+(1+λ )2α
]
= 0. (3.73)

We try to find the possible solutions for (3.73), the non-negative real values of k∗, and

the corresponding values of σB1. The first possible solution is

k∗ = kB11 = 0, (3.74)

then we substitute into the dispersion relation (3.68), for the bigger root, to obtain the first

maximum, σB11 that given by

σB11 =
1
2

(
1+

√
1+4α

)
, α ≥−1/4, (3.75)

Thus the first possibility for a maximum value, σB11 (purely real), exists at k = 0 and

when α ≥−1/4.

The second possible nonnegative root of (3.73) is k∗ = kB12 that satisfies

λ
(
(1−λ )k2

B12 +1
)2

+(1+λ )2α = 0, (3.76)

which gives

k2
B12 =

1
1−λ

[
−1+

√
−α(1+λ )2

λ

]
, 0 < λ < 1, (3.77)

provided that

λ +α(1+λ )2 ≤ 0, (3.78)
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and hence α must be non-positive for the existence of a maximum at k∗ = kB12 and from

(3.69)

k2
B12 − k2

r =
1

1−λ

[
−1+

√
−α(1+λ )2

λ

]
−

(
(−4α)1/2 −1

1−λ

)

=
(−α)1/2(1−λ 1/2)2

λ 1/2(1−λ )
> 0,

hence kB12 is always greater than kr as we will see in plotting the eigenvalues versus the

wave number (kB12 > kr). The value of the maximum σB12 can be obtained by direct

substitution of kB12 into (3.68) or differentiating (3.67) with respect to k, to give

2σB1
dσB1

dk
+
(
(1+λ )k2 −1

) dσB1

dk
+2(1+λ )kσB1 +4λk3 −2k = 0,

then the condition shown in (3.72), after substituting k = kB12 and σB1 = σB12, gives

σB12 =
1−2λk2

B12
1+λ

, (3.79)

provided that the condition (3.78) is satisfied.

We construct a graph in α,λ space (figure 3.6) in which we show the regions where

the maximum occurs and the corresponding nature of the eigenvalue. From the above

analysis, we conclude that there is always a maximum at k = 0. If α ≥−1
4 (regions I and

II in figure 3.6), the roots are pure real and there is a maximum, σB11, given by (3.75),

and if α <−1
4 (regions III and IV), the roots are complex, then we consider the real part

of the roots, hence we find that the real part has a maximum which is 1/2 (see (3.71)).

Furthermore, there can also be a maximum at a positive k (regions II, III, and IV), the

roots are pure real and this maximum, σB12, is given by (3.79), and occurs at k = kB12
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Figure 3.6: The α,λ space, Γ1 given by λ +α(1+λ )2 = 0, and Γ2 given by (1+λ )2+16λα = 0.
Region I (on the right of Γ1): the maximum of the growth rate occurs at k = 0 and Im(σB1) = 0.
Regions II and III (bounded by Γ1 and Γ2): the maximum occurs at k > 0 and Im(σB1) = 0 .
Region IV: the maximum equals to 1/2 and occurs at k = 0, Im(σB1) ̸= 0.

displayed in (3.77); see figure 3.7, which shows constant-k contours inside the regions I,

II and III, these curves represent equation (3.76) at different value of kB12.

Next we determine the global maximum of the larger root in the different regions in

α,λ space, that gives insights on the most unstable wave number. In region I, figure 3.7,

the only existing maximum is σB11, which occurs at zero wave number, hence the most

dangerous wave number is k = 0 and as the eigenvalues are pure real, only a monotonic

bifurcation may exist. In regions II and III (bounded by the curves Γ1 and Γ2) σB12 is the

maximum. However in region IV, 1/2, which is the real part of the complex root is the

maximum (see (3.71)). We can prove that as follows. We substitute kB12 from (3.77) into

(3.79)

σB12 =
1

1+λ

[
1− 2λ

1−λ

(
−1+

√
−α(1+λ )2

λ

)]
,
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Figure 3.7: The α,λ space, constant k-contours are shown in the region left to Γ1 in a maximum,
σB12 occurs at k = kB12 > 0 and Im(σB1) = 0, (shown are k = 0.2,0.4 and 0.6), represent equation
(3.76).

then we simplify to obtain

σB12 =
1

1−λ

[
1−2(−αλ )1/2

]
. (3.80)

Now in region II where −1/4 < α < 0, σB12 and σB11 are increasing functions of α .

Therefore, they take their minimum values at α = −1/4, then when we substitute α =

−1/4 into (3.80) and (3.75), respectively, we can say that σB12 > 1/(1+λ 1/2) and σB11 >

1/2. From this result, we can say that σB12−σB11 > 1/(1+λ 1/2)−1/2, then we simplify

to obtain σB12−σB11 > (1−λ 1/2)/2(1+λ 1/2)> 0, hence we find that σB12 > σB11, i.e.,

σB12 is the maximum in region II and as this maximum occurs at a non-zero value of k,

k = kB12, that means Turing bifurcation can exist. In regions III and IV, when α <−1/4,

there are two maximum values, σB12 that occurs at k = kB12 and 1/2 which is the real part

of a complex eigenvalue that arise at k = 0. From (3.80)

σB12 −
1
2
=

1
1−λ

[
1−2(−αλ )1/2

]
−1/2,
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then rearranging terms gives

2(1−λ )(σB12 −
1
2
) = 1+λ −4

√
−αλ , (α <−1/4). (3.81)

Hence for 0≤ λ < 1, σB12 =
1
2 if 1+λ −4

√
−αλ = 0 or equivalently, (1+λ )2+16αλ =

0, which represents the boundary curve between regions III and IV (the curve Γ2, see

figure 3.7). Also, we can say that for α < −1/4 and (1+λ )2 + 16αλ > 0 (region III),

σB12 > 1/2, and as a result, σB12 is the maximum in region III and Turing bifurcations

may exist. However, when (1+λ )2 + 16αλ < 0 (region IV), σB12 < 1/2, and then the

real part of the complex root at k = 0 (which is 1/2) is the maximum, and as a result

there can be a Hopf bifurcation. Figure 3.8 shows the variation of the eigenvalues with

k at different values of λ (λ = 0.2,0.5,0.7). Figure 3.8(a) shows the transition between

regions I and II (occurs at λ = 1/2), figure 3.8(b) shows the eigenvalues on the border line

between the two regions II and III (at α =−1/4), and the switching between regions III

and IV (transition between Hopf and Turing bifurcations takes place at λ = 0.5) is shown

in figure 3.8(c).

From the above discussion, we can obtain the maximum value of the growth rate,

Re(σ+
B1)m, which helps us in constructing the stability diagram. This depends on the

regions in the α,λ space, as follows:

Re(σ+
B1)m =


σB11 region I

σB12 regions II and III

1/2 region IV ,
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Figure 3.8: Variation of the eigenvalues with k at different values of λ , (λ = 0.2,0.5,0.7) (a)
α =−0.22, the transition between the two regions I and II, (b) α =−0.25, the boundary between
II and III, (d) α =−0.28, transition between III and IV (In (c) λ = 0.2 seems to give Turing and
λ = 0.7 seems to give Hopf, λ = 0.5 is a critical value).
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or can be written as

Re(σ+
B1)m =


1
2(1+

√
1+4α) α ≥ −λ

(1+λ )2 , Im(σB1) = 0
1−2λk2

B12
1+λ

−(1+λ )2

16λ ≤ α < −λ
(1+λ )2 , Im(σB1) = 0

1/2 α < −(1+λ )2

16λ , Im(σB1) =
√
|α +1/4|,

(3.82)

where kB12 is given by (3.77), and from this relation and referring to (3.34) and (3.35), we

can construct the stability diagram. Figure 3.9 shows this diagram at different values of

λ .

Figure 3.9: The stability diagram for different values of λ , λ = 0.05,0.1 and 0.8. The equation of
the boundary curve is given by Re(σ+

B1)m +δ1 = 0.

Finally, we conclude that in this case, a monotonic bifurcation can exist at k = 0 in

region I and Turing in regions II and III (see figure 3.8). Also, on the boundary curve Γ2,

α = −(1+λ )2

16λ , between regions III and IV, the switch between Turing and Hopf bifurcations

takes place. A Hopf bifurcation exists in region IV, while Turing arises in region III (see

figure 3.8(c)). Furthermore, when λ = 0 a Turing bifurcation arises only when α < 0, and

Hopf does not exist.
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3.4.2 Case II

Here we discuss the system

∂u
∂ t

=
∂ 2u
∂x2 + v, (3.83)

∂v
∂ t

= λ
∂ 2v
∂x2 +αu− v. (3.84)

The characteristic equation is given by (3.30), and from (3.29)

D =

 1 0

0 λ

 , R1 =

 0 1

α −1

 , (3.85)

then we substitute into (3.30) to obtain

σ2
B2 +

[
(1+λ )k2 +1

]
σB2 +λk4 + k2 −α = 0, (3.86)

and hence the two eigenvalues are

σB2 =
1
2

[
−1− (1+λ )k2 ±

√
[(1−λ )k2 −1]2 +4α

]
. (3.87)

Figure 3.10 shows the domain for the complex eigenvalue (computed at λ = 0.5).

When λ is close to unity, the curve opens to be the line α =−1/4. Also, the eigenvalues

are complex when −1/4 < α < 0 and k1 < k < k2, and also when α <−1/4 and 0 ≤ k <

k2, where k1 and k2 (wave numbers where a repeated root exists) are given by

k1 =

√
1

1−λ
(1−2

√
−α), −1/4 < α < 0, (3.88)

k2 =

√
1

1−λ
(1+2

√
−α), α < 0. (3.89)
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Figure 3.10: Typical domain for a complex root displayed in (3.87), λ < 1. The graph for λ = 0.5
and the dashed curve represents (k2/2−1)2 +4α = 0.

We follow a similar method to the previous case to examine the extreme values of the

bigger root in this case. In this case, σB2 has always a maximum at k = 0 (say σB21).

When α ≥−1/4, σB2 is real (purely real root, see figure 3.10), and σB21 is given by

σB21 =
1
2

(
−1+

√
1+4α

)
≥−1/2, α ≥−1

4
, (3.90)

and when α <−1/4, −1/2 is the maximum value of the real part of σB2 and Im(σB2) =

1
2

√
1+4α ̸= 0. Furthermore, there can also be a maximum at a non-zero value of k (at

which the root is pure real), this positive value of the wave number can be obtained as

follows. Suppose that σB2 has a maximum at k = k∗, we differentiate both sides of (3.87)

with respect to k, focusing on the larger root, then we substitute the condition of the

maxima to obtain

k2
∗

[
λ
(
(1−λ )k2

∗−1
)2

+(1+λ )2α
]
= 0, (3.91)
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then we solve for a possible positive root of (3.91), k∗ = kB21, which has the form

k2
B22 =

1
1−λ

[
1+

√
−α(1+λ )2

λ

]
, 0 < λ < 1, α ≤ 0, (3.92)

and from (3.89)

k2
B22 − k2

2 =
1

1−λ

[
1+

√
−α(1+λ )2

λ

]
− 1

1−λ
(1−2

√
−α)

=

√
−α(1−

√
λ )2

√
λ (1−λ )

> 0,

hence we can say kB22 > k2 (see figure 3.11 (b) and (c)).

The value of σB22 can be obtained by differentiating (3.86) with respect to k then

substituting the condition for a maximum and inserting k = kB22 into the result to obtain

σB22 =−
1+2λk2

B22
1+λ

, α ≤ 0. (3.93)

Now we aim to check the global maximum, which corresponds to the most unstable

wave number. First, for α ≥ 0 (see figure 3.11(a)), there is only one maximum, which

occurs at zero wave number, σB21, given by (3.90) and as the roots are pure real, there

is a monotonic bifurcation at k = 0. Second, for −1/4 ≤ α < 0 (see figure 3.11(b),

eigenvalues at α =−0.15), there are two maximum values where the roots are pure real,

σB21 and σB22, and in the following we aim to examine which one is the global maximum.

From (3.93)

σB22 +
1
2

= −
1+2λk2

B22
1+λ

+
1
2

= − 1−λ
2(1+λ )

−
2λk2

B22
(1+λ )

< 0, (3.94)

hence σB22 < −1/2, and as −1/2 ≤ σB21 < 0 when −1/4 ≤ α < 0 (see (3.90)), then
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Figure 3.11: The real part of the eigenvalues (equation (3.87)) at λ = 0.2,0.3 and 0.4, (a) α = 0.6,
(b) α = −0.15, and (c) α = −0.6 (Hopf bifurcation). (d) The stability diagram; the equation of
the boundary curve is given by Re(σ+

B2)m +δ1 = 0
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σB21 is the maximum, and since the roots are pure real it follows that there is a monotonic

bifurcation at k = 0. Third and finally, for α <−1/4 (see figure 3.11(c), the eigenvalues

at α =−0.6), there two maximum values: the first is −1/2, which occurs at k = 0 where

the eigenvalues are complex, and the second is σB22, which occurs at a positive wave

number k = kB22 where the eigenvalues are pure real. From (3.94), as σB22 <−1/2 then

the global maximum is the first (the real part of a complex root that occurs at k = 0), and

hence a Hopf bifurcation can arise.

From the above discussion we can say that the maximum of the real part of the larger

root Re(σ+
B2)m can be written as

Re(σ+
B2)m =


1
2(−1+

√
1+4α) α ≥−1/4, Im(σB2) = 0

−1
2 α <−1/4, Im(σB2) =

1
2

√
|1+4α|

(3.95)

In figure 3.11, we show in (a), (b), and (c) the dispersion relation at different values of

α and λ , and the stability diagram in (d). In this case, we conclude that the most unstable

wave number is k = 0 and the associated eigenvalue is given by (3.95). Therefore, there is

no Turing instability; however, a monotonic bifurcation can exist at k= 0 when α ≥−1/4,

and a Hopf bifurcation can exist when α <−1/4.

3.4.3 Case III

In this subsection we consider the system

∂u
∂ t

=
∂ 2u
∂x2 + v, (3.96)

∂v
∂ t

= λ
∂ 2v
∂x2 +u. (3.97)
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From (3.29) we substitute

D =

 1 0

0 λ

 , R2 =

 0 1

1 0

 , (3.98)

into (3.31) to obtain

σ2
B3 +(1+λ )k2σB3 +λk4 −1 = 0, (3.99)

and hence the two eigenvalues of the system (3.96)-(3.97) are given by

σB3 =
1
2

[
−(1+λ )k2 ±

√
(1−λ )2k4 +4

]
. (3.100)

For all values of λ and wave number k, the eigenvalues are pure real. Also, the

maximum value of the larger root, (σ+
B3)m = 1 and occurs at k = 0. To show this, we

assume that the larger root, σ+
B3, has its maximum at k = k∗, then

(
d
dk

σ+
B3

)
k=k∗

= 0,

or

k∗(λ (1−λ )2k4
∗+(1+λ )2) = 0, (3.101)

which has only one possible solution k∗ = 0. Figure 3.12 shows the two eigenvalues when

λ = 0.5.

In this case, the roots are pure real for any value of k and λ . The roots are monotonic

decreasing functions in k and the maximum value of the larger root, (σB3)m = 1, which

occurs at k = 0 for any λ . Hence, the system is stable if δ2 < −1 and unstable if δ2 >

−1 and neither Hopf nor Turing bifurcation can exist, only monotonic bifurcation can

arise. Also, we can say that, as the most unstable wave number and the growth rate are

independent of λ , the above analysis also applies when we discuss the system (3.96)-
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Figure 3.12: The eigenvalues of the system (3.96)-(3.97), given by equation (3.100), at λ = 0.5.
The eigenvalues are pure real roots and we see that the maximum of each occurs at k = 0.

(3.97) in the next section in case C3 when λ > 1 .

3.4.4 Case IV

In this subsection we are concerned with the system

∂u
∂ t

=
∂ 2u
∂x2 − v, (3.102)

∂v
∂ t

= λ
∂ 2v
∂x2 +u, (3.103)

and from (3.29) we substitute

D =

 1 0

0 λ

 , R2 =

 0 −1

1 0

 (3.104)

into (3.31) to obtain

σ2
B4 +(1+λ )k2σB4 +λk4 +1 = 0, (3.105)
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and hence the two roots are given by

σB4 =
1
2

[
−(1+λ )k2 ±

√
(1−λ )2k4 −4

]
. (3.106)

1 2 3

K8

K6

K4

K2

0

2

k

Re(sB4), Im sB4

0.2

0.4

0.6

Figure 3.13: The eigenvalues σB4 of the system (3.102)-(3.103), given by equation (3.106), at
λ = 0.2,0.4 and 0.6. The maximum occurs at k = 0, where the roots are pure complex (Hopf
bifurcation).

The two roots are complex for 0 ≤ k <
√

2/|1−λ | and pure real for k ≥
√

2/|1−λ |

at any value of λ ̸= 1( for λ = 1 the roots are complex, studied in subsection 3.3.4). Figure

3.13 shows the roots, displayed in (3.106), at different values of λ . When the roots are

complex, the maximum value of the real part is zero and this occurs at k = 0 and for any

λ . When the roots are real, the larger root has a maximum that is always negative for

any λ and k. To show this, suppose that σB4 has a maximum at k = k∗, differentiate both

sides of (3.105) and substitute the condition for an extreme value, then simplify to obtain

the maximum value (σB4)m = −2λk2
∗/(1+ λ ), which is negative for any k and λ . We

conclude that the most unstable wave mode is k = 0, where correspondingly, Re(σB4) = 0

and Im(σB4) = 1; hence there is always a Hopf bifurcation. The growth rate equals δ2.

Hence, the system is stable if δ2 < 0 and unstable if δ2 > 0. Also, since the results above
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are valid for any value of λ , there is no need for additional discussion of the case λ > 1

and the above results are sufficient.

In table 3.3, we give a summary of our results for the above analysis, for the four

cases, focusing on the fastest growing mode k∗, and the corresponding eigenvalue (real

and imaginary parts); indicating the corresponding condition(s) on system parameters and

the kind of bifurcations appear. From this table, in case I, when λ = 1 Turing bifurcation

disappears (as k∗ goes to infinity), and this table coincides with thee summary table 3.2 in

the previous section (λ = 1) in all cases.
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3.5 C : Analysis for λ > 1

For a comprehensive study of the instabilities of a two-component RD system and for

convenience, in this section we study the four systems studied in the previous section

(case B), but for λ > 1. Here we follow the same procedure as in our analysis when

λ < 1. As we study the same systems, we already have the dispersion relations and the

equations for the most unstable wave numbers. Therefore, we proceed directly to the

analysis using these relations.

3.5.1 Case I

In this subsection we study system I, equations (3.64) and (3.65), for which the eigenval-

ues (see (3.68)) are

σC1 =
1
2

[
1− (1+λ )k2 ±

√
[1+(1−λ )k2]

2
+4α

]
. (3.107)

Figure 3.14 shows the domain for a complex eigenvalue (computed at λ = 2). The eigen-

values are complex when −1/4 < α < 0 and k3 < k < k4, and also when α <−1/4 and

0 ≤ k < k4 (a repeated root exists at k = k3 and k = k4, k3 < k4) where

k3 =

√
1

1−λ
(−1+2

√
−α), −1/4 < α < 0, (3.108)

k4 =

√
1

1−λ
(−1−2

√
−α), α < 0. (3.109)

For α ≥ 0 (see figure 3.15(a)), there is only one maximum, which occurs at zero wave

number, σC11, given by

σC11 =
1
2

(
1+

√
1+4α

)
≥ 1

2
, α ≥−1/4, (3.110)
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Figure 3.14: Typical domain for a complex root for σC1. The graph for λ = 2, the boundary
(dashed curve) [1− k2]2 +4α = 0.

hence there is a monotonic bifurcation at k = 0 (α ≥ 0) as the roots are pure real. When

−1/4 < α < 0 (see figure 3.15(b)), two maximum values appear: σC11 at k = 0 and σC12

at k = kC12 > 0, where σC11 is given by (3.110), and σC12 can be written as (see (3.79))

σC12 =
1−2λk2

C12
1+λ

, (3.111)

where kC12 is the possible positive solution of (3.73), which is given by

k2
C12 =

1
1−λ

[
−1−

√
−α(1+λ )2

λ

]
, α < 0, λ > 1. (3.112)

From (3.109)

k2
C12 − k2

4 =
1

1−λ

[
−1−

√
−α(1+λ )2

λ

]
− 1

1−λ
(−1−2

√
−α)

=

√
−α(1−

√
λ )2

√
λ (λ −1)

> 0, (3.113)
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hence we can say kC12 > k4 (see figure 3.15(b) and (c)).

The two maximum values σC11 and σC12 correspond to a pure real root, and from

(3.111), we can say that

σC12 −
1
2

=
1−2λk2

C12
1+λ

− 1
2

=
1−λ
1+λ

−
2λk2

C12
1+λ

< 0. (3.114)

Hence σC12 < 1/2, and as σC11 ≥ 1/2 (see (3.110)), σC11 is the overall maximum. As the

roots are pure real, there is a monotonic bifurcation at k = 0. Finally, when α < −1/4

(see figure 3.15(c)), there are two maximum values: the first is 1/2, which occurs at k = 0

where the eigenvalues are complex, and the second is σC12, which occurs at a positive

wave number k = kC12 where the eigenvalues are pure real. From above, as σC12 < 1/2,

the global maximum is the first (the real part of the complex root at zero wave number)

and hence Hopf bifurcation can exist.

From the above analysis the maximum growth rate in this case, which always occurs

at k = 0, can be put in the form

Re(σ+
C1)m =


1
2(1+

√
1+4α) α ≥−1/4, Im(σC1) = 0

1
2 α <−1/4, Im(σC1) =

1
2

√
|1+4α|.

(3.115)

Hence we conclude that a Turing instability cannot arise, since the most unstable wave

number is k = 0, while a monotonic and Hopf bifurcations arise. Making use of (3.115),

we construct the stability diagram shown in figure 3.15(d).
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Figure 3.15: The real part of the eigenvalues (equation (3.107)) at λ = 10,25 and 100, (a) α = 1,
(b) α = −0.2, and (c) α = −1 (Hopf bifurcation). (d) The stability diagram; the equation of the
boundary curve is given by Re(σ+

C1)m +δ1 = 0
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3.5.2 Case II

We study the system discussed in case B2, (3.83)-(3.84), but for λ > 1. Here the eigen-

values are (same as in case B2, see (3.87))

σC2 =
1
2

[
−1− (1+λ )k2 ±

√
[(1−λ )k2 −1]2 +4α

]
. (3.116)

However in this case the domain of complex roots is different, as shown in figure

3.16 (compared to case B2, figure 3.10). We notice that complex roots appear only when

α <−1/4 and 0 ≤ k < k0, where

k0 =

(
1− (−4α)1/2

(1−λ )

)1/2

, α <−1/4, (3.117)

which is the wave number at which there is a repeated root.

k
0.2 0.4 0.6 0.8 1.0 1.2

a

K1.5

K1.0

K0.5

0

0.5

Im(s
C2
)s 0

Figure 3.16: Typical domain for complex eigenvalues from (3.116) with λ > 1. The dashed curve
shows the boundary (existence of a repeated root) at λ = 2.

Here we can also say that (as in our discussion of case B1), there is always a maxi-

mum at wave number k = 0, and if α ≥ −1/4 (regions I and II in α,λ space, see figure
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3.17(a)), the eigenvalues are pure real (see figure 3.17(b), larger root at α = −0.15) and

the maximum value, σC21, is given by

σC21 =
1
2

(
−1+

√
1+4α

)
≥−1/2, α ≥−1

4
. (3.118)

When α < −1/4 (regions III and IV in α,λ space, see figure 3.17(a)), and at k = 0 the

eigenvalues are complex and −1/2 is the maximum of the real part (see figure 3.17(c)).

Furthermore, there can also be a maximum, σC = σC22 at a positive k = kC22. This maxi-

mum appears in regions II, III and IV in α,λ space, where λ +α(1+λ )2 ≤ 0. The wave

number k = kC22 (the possible positive solution of (3.91)) is given by

k2
C22 =

1
1−λ

[
1−
√

−α(1+λ )2

λ

]
, λ > 1, α ≤ −λ

(1+λ )2 , (3.119)

and for α <−1/4 and from (3.117)

k2
C22 − k2

0 =
1

1−λ

[
1−
√

−α(1+λ )2

λ

]
− 1− (−4α)1/2

(1−λ )

=

√
−α(1−

√
λ )2

√
λ (λ −1)

> 0, (3.120)

hence we can say kC22 > k0 (see figure 3.17(c), the eigenvalues at α =−0.4). The value

of σC22 in terms of kC22 can be written as (refer to (3.93))

σC22 =−
1+2λk2

C22
1+λ

, λ > 1, α ≤ −λ
(1+λ )2 . (3.121)

Now as we give insights on maxima of σC2, we aim to investigate the global maximum

appear in the different regions in α,λ space. From the above, σC21 is the only maximum

that appears in region I (on the right of the curve Γ1, where λ +α(1+λ )2 = 0), and as

the roots are pure real, there is a monotonic bifurcation at k = 0. In region II (bounded
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(c) Roots at a = K0.4

Figure 3.17: (a) α,λ space. Γ1 is given by λ +α(1+λ )2 = 0 and Γ2 by (1+λ )2 + 16λα = 0
(boundary between Hopf and Turing bifurcations). In region I (on the right of Γ1) the maximum of
the growth rate occurs at k = 0 and Im(σC2) = 0. In region II and region III (Turing), the maximum
occurs at k > 0 and Im(σC2) = 0 . In region IV (Hopf) the maximum equals −1/2 and occurs at
k = 0, Im(σC2) ̸= 0. (b) The bigger root at α = −0.15. (c) The real part of the eigenvalues at
α =−0.4.
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by Γ1 and the line α = −1/4), there are two maximum, σC21 and σC22, and σC22 is the

global maximum; and we demonstrate that as follows. From (3.119), we substitute kC22

into (3.121) to obtain

σC22 = − 1
1+λ

(
1+

2λ
1−λ

[
1−
√

−α(1+λ )2

λ

]
1+2λk2

C22
1+λ

)
=

1
λ −1

(
1−2

√
−αλ

)
. (3.122)

Now when −1/4 < α < 0 and as σC22 and σC21 are increasing functions of α , we can say

that (substitute α = −1/4 into (3.118) and (3.122), respectively) σC22 > −1/(1+λ 1/2)

and σC21 > −1/2. Then σC22 − σC21 > (−1 + λ 1/2)/2(1 + λ 1/2) > 0. Therefore, in

region II, σC22 > σC21, i.e., σC22 is the maximum; since this maximum occurs at a non-

zero value of k, k = kB12, Turing bifurcations can exist. Figure 3.17(b) shows the larger

root at α =−0.15 and different values for λ and the transition between the two regions I

and II takes place at λ = 4.5 (on the boundary curve Γ1, see figure 3.17(a)). Finally, when

α < −1/4 there are two maximum values: σC22 (the maximum in region III), which

occurs at k = kC22 and −1/2 (the maximum in region IV) which is the real part of a

complex eigenvalue that arises at k = 0 (see figure 3.17(c), the roots when α =−0.4 and

different values of λ ). To prove this, from (3.122)

σC22 +1/2 =
1

λ −1

(
1−2

√
−αλ

)
+1/2

=
1

2(λ −1)

(
1+λ −4

√
−αλ

)
, (α <−1/4) (3.123)

and rearranging terms gives

2(λ −1)(σC22 +1/2) = 1+λ −4
√

−αλ , (α <−1/4,λ > 1). (3.124)
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Therefore, σC22 = −1/2 if 1+λ −4
√
−αλ = 0, or equivalently, (1+λ )2 +16αλ = 0,

which represents the boundary curve between regions III and IV (the curve Γ2, see figure

3.17(a)). Also, when α < −1/4 and (1+ λ )2 + 16αλ > 0 (region III), σC22 > −1/2,

and as a result σC22 is the maximum in region III and then Turing bifurcation may exist.

However, when (1+λ )2 +16αλ < 0 (region IV), σC22 <−1/2, and then the real part of

the complex root at k = 0 (which is −1/2) is the maximum, and Hopf bifurcations can

exist (see figure 3.17(c), the eigenvalues at when α = −0.6 and different value of λ , a

transition between Turing and Hopf bifurcations occurs at λ = 4.2).

From the above discussion we can say that the maximum growth rate, Re(σ+
C3)m can

be written as

Re(σ+
C2)m =


σC21 region I

σC22 regions II and III

−1/2 region IV

K2 K1 0 1

K0.6

K0.4

K0.2

0.2

0.4

0.6

51020
30

a

d
1

Stable

Unstable

Figure 3.18: The stability diagram for different values of λ , λ = 5,10,20, and 30. The equation
of the boundary curve is given by Re(σ+

C2)m +δ1 = 0.
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or

Re(σ+
C2)m =


1
2(−1+

√
1+4α) α ≥ −λ

(1+λ )2 , Im(σC2) = 0

−1+2λk2
C22

1+λ − (1+λ )2

16λ ≤ α < −λ
(1+λ )2 , Im(σC2) = 0

−1/2 α <− (1+λ )2

16λ , Im(σC2) ̸= 0

(3.125)

where kC22 is given by (3.119). We use equation (3.125) to construct the stability diagram

shown in figure 3.18 at different values of λ . We conclude that a Turing bifurcation arises

in regions II and III (see figure 3.17), while Hopf arises in region IV.

3.5.3 Case III

We consider the system displayed in (3.96) and (3.97) in the case of λ > 1. From the

previous discussion in case B3, the eigenvalues are

σC3 =
1
2

[
−(1+λ )k2 ±

√
(1−λ )2k4 +4

]
. (3.126)

Referring to the analysis in case B3, we recall that the roots are pure real for any value of

k and λ .

The roots are monotonic decreasing functions of k and the maximum value of the

larger root, (σC3)m = 1, always occurs at k = 0. The growth rate equals δ2 + 1. Hence

the system is stable if δ2 <−1 and unstable if δ2 >−1. Figure 3.19 shows the two roots

displayed in (3.126) at two different values of λ , the roots are pure real and the maximum

at k = 0, hence only monotonic bifurcation can exist.

3.5.4 Case IV

Here we focus on the system (3.102)-(3.103) when λ > 1. Referring to the case B4, the

eigenvalues are
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Figure 3.19: The two roots of equation (3.126) at two different values of λ : (a) λ = 2, (b) λ = 10.
In each case the roots are pure real and the maximum at k = 0.

σC4 =
1
2

[
−(1+λ )k2 ±

√
(1−λ )2k4 −4

]
. (3.127)

Figure 3.20 shows σC4 at different values of the diffusion ratio, λ = 2,4 and 10. From

the previous analysis for the case B4, we conclude that the most unstable wave mode is

k = 0, at which Re(σC4) = 0 and Im(σC4) = 1. Also, the maximum growth rate equals

δ2. Hence, the system is stable if δ2 < 0 and unstable if δ2 > 0. In this case, only Hopf

bifurcation occurs.

In table 3.4, we give a summary of our results for the above analysis in this section, for

the four cases, focusing on the fastest growing mode k∗, the corresponding eigenvalue, and

the relevant associated condition(s) on the system parameters. From this table, in case II,

when λ = 1 Turing bifurcation disappears (as k∗ goes to infinity), and this table coincides

with thee summary table 3.2 in the previous section (λ = 1) in all cases.
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Figure 3.20: Case C4: The eigenvalues of the system (3.102)-(3.103), given by equation (3.106),
at λ = 2,4 and 10. The maximum is at k = 0, where the roots are complex.

3.6 Summary of Results

In this section we end the chapter by giving a summary of the instabilities that arise in

two-component reaction-diffusion systems, that we rewrite the results in each section in

terms of the parameters in the original system, i.e., the diffusion coefficients Du, Dv and

the reaction parameters fu, fv,gu, gv. We use the above tables and redo substitutions for

the two parameters α and λ (refer to (3.20)), the eigenvalues and wave numbers using

(3.33) and (3.36).

Now we can say that for two-component reaction-diffusion equations of the form

∂u
∂ t

= Du∇2u+ f (u,v),

∂v
∂ t

= Dv∇2v+g(u,v),

(3.128)

three types of bifurcation types arise; stationary periodic , oscillatory uniform, and sta-

tionary uniform. The following tables give a summary of the instabilities in the three

cases: Du = Dv in table 3.5, Du > Dv in table 3.6 and Du < Dv in table 3.7. In each case,
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we indicate wave number of the fastest growing (or the slowest decreasing) mode, the

corresponding eigenvalue, and the conditions connecting the system parameters. When

the instability is stationary periodic, the pattern wave number k = kT is given by

kT =

[
−|gv − fu|+(Du +Dv)(| fvgu|/DuDv)

1
2

|Du −Dv|

]1/2

. (3.129)

From our results we notice that Du ̸= Dv must be satisfied for stationary periodic in-

stability, and this result is confirmed earlier when we discussed the special case Du = Dv

(λ = 1) in section 3.3, this is a well known results (refer for example to [13, 55]). From

our analysis here, we have given a complete classification of the instabilities that arise in

a two-component reaction diffusion system. However most of the work in the literature,

regarding the instabilities, focuses on specific types of instability (specially Turing bifur-

cation, of course when pattern formation is concerned), and for certain models. For ex-

ample see, in discussing Hopf bifurcation [24, 37, 70], Turing instability [14, 37, 55], and

interaction between Hopf and Turing [25, 52, 61, 81]. As our instability study gives com-

prehensive classification of the bifurcations, it is useful when we study two-component

reaction-diffusion systems, specially to pattern formation and front propagation problems.
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Chapter 4

Modulated Travelling Wave and the

Characteristic Equations

In the first two chapters the FKKP, EFK, and SH equations have been discussed. We

performed a traveling wave analysis. We introduced a linear selection mechanism that

gives some insights into the selected speed of invasion of an unstable state by a stable one,

as described both by a fixed form of travelling wave and by a modulated travelling wave.

In the travelling wave coordinates for a linearised system, we deduced a characteristic

equation. Then we used the double root mechanism to give some insights on the minimum

front speed. The results obtained in the first two chapters motivates us to use this linear

mechanism for the two-component reaction-diffusion systems. Therefore, in this chapter,

for reaction-diffusion system we deduce the modulated travelling wave equations and

then the characteristic equations (different cases are considered to give a comprehensive

study). In the next two chapters, we discuss the mechanism considering equal and unequal

diffusion coefficients.
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4.1 Linearised Reaction-Diffusion Equations

In one space dimension, say x, a standard mathematical form for reaction-diffusion mod-

els with two interacting components U(x, t) and V (x, t) is

∂U
∂ t

= DU
∂ 2U
∂x2 + f (U,V ),

∂V
∂ t

= DV
∂ 2V
∂x2 +g(U,V ),

(4.1)

where DU and DV are the diffusion coefficients, and f and g are the kinetic terms, which

are the only nonlinear terms that appear in the system. We assume that the system (4.1)

has a spatially uniform steady state (U0,V0) (can be translated to the origin (0,0)), then

the linearised equations of the perturbation (u,v) around the steady state can be written as

∂u
∂ t

= DU
∂ 2u
∂x2 +a1u+b1v, (4.2)

∂v
∂ t

= DV
∂ 2v
∂x2 +a2u+b2v, (4.3)

where DU ,DV ,a1,b1,a2, and b2 are all real numbers, the first two are positive and the

other four are the elements of the Jacobian matrix a1 b1

a2 b2

=

 ∂ f
∂U

∂ f
∂V

∂g
∂U

∂g
∂V


(U0,V0)

, (4.4)

and take either signs.

We use the transformation (to reduce the number of parameters)

x̂ =

√
|a1|
DU

x, t̂ = |a1|t, û =
u
b1

, v̂ =
v

|a1|
(4.5)
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and then dropping hats (for simplicity) gives

ut = uxx ±u+ v, (4.6)

vt = λvxx + γu+ηv, (4.7)

where

λ =
DV

DU
, γ =

b1a2

a2
1
, η =

b2

|a1|
, a1 ̸= 0, (4.8)

and the ± sign leads to two cases, say S1 and S2. The first case S1 ivolves the positive

sign that corresponds to the case a1 > 0, while the negative sign in the other case S2

corresponds to a1 < 0. We cannot reduce (4.2) and (4.3) to the system (4.6) and (4.7)

when a1 = 0, thus we next consider the case a1 = 0 to give a comprehensive discussion

of the system (4.1). If a1 = 0 and when we use the transformations

x̂ =

√
|b2|
DU

x, t̂ = |b2|t, û =
u
|b2|

, v̂ =
v
a2

, (4.9)

equations (4.2) and (4.3) become

ut = uxx +ρv, (4.10)

vt = λvxx +u± v, (4.11)

where

ρ =
b1a2

b2
2

(4.12)

and the ± sign tells us that there are two subcases, namely S3 and S4: the positive sign

(when b2 > 0) corresponds to S3 and the negative sign (when b2 < 0) in the case S4. Table

4.1 shows the four canonical forms of the obtained four linearized systems that will be

discussed.
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Table 4.1: The four different canonical forms for the linearised system of (4.1)

Case Equations Conditions

∂u
∂ t

=
∂ 2u
∂x2 +u+ v

∂ f
∂U

> 0

S1
∂v
∂ t

= λ
∂ 2v
∂x2 + γu+ηv

∂u
∂ t

=
∂ 2u
∂x2 −u+ v

∂ f
∂U

< 0

S2
∂v
∂ t

= λ
∂ 2v
∂x2 + γu+ηv

∂u
∂ t

=
∂ 2u
∂x2 +ρv

∂ f
∂U

= 0,
∂g
∂V

> 0

S3
∂v
∂ t

= λ
∂ 2v
∂x2 +u+ v

∂u
∂ t

=
∂ 2u
∂x2 +ρv

∂ f
∂U

= 0,
∂g
∂V

< 0

S4 ∂v
∂ t

= λ
∂ 2v
∂x2 +u− v
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4.2 Characteristic Equation

Here the characteristic equations for the four different cases are obtained. In the travelling

wave coordinates (z, t) = (x− ct, t), where c is the wave speed and for the two cases S1

and S2, equations (4.6) and (4.7) become

ut − cuz = uzz ±u+ v, (4.13)

vt − cvz = λvzz + γu+ηv. (4.14)

Let us assume that the system displayed in (4.13) and (4.14) has a solution in the form

 u

v

 ∝ eiνt+µz, (4.15)

where ν is a real number, and µ (the eigenvalue) is complex. A non-trivial solution of

equations (4.13) and (4.14) in the form shown in (4.15) leads to the condition

det

 µ2 + cµ − iν ±1 1

γ λ µ2 + cµ − iν +η

= 0, (4.16)

which gives the characteristic equation

(µ2 + cµ ±1− iν)(λ µ2 + cµ +η − iν)− γ = 0, (4.17)

where ν and c are real and µ can be complex. The equation with the positive sign in the

first bracket corresponds to case S1 (where fU > 0), and the one with the negative sign is

for case S2 (where fU < 0).

Similarly for the two cases S3 and S4 the characteristic equations can be deduced as
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follows. Referring to the system (4.10) and (4.11), the travelling wave equations are

ut − cuz = uzz +ρv, (4.18)

vt − cvz = λvzz +u± v, (4.19)

and a non-trivial solution of equations (4.13) and (4.14) in the form shown in (4.15) leads

to the condition

det

 µ2 + cµ − iν ρ

1 λ µ2 + cµ ±1− iν

= 0, (4.20)

which gives the following characteristic equations

(µ2 + cµ − iν)(λ µ2 + cµ ±1− iν)−ρ = 0, (4.21)

where ν and c are real and µ can be complex. The equation with the positive sign in

the second bracket corresponds to case S3, and the one with the negative sign is for case

S4. For the above four characteristic equations, in the next two chapters, we discuss the

eigenvalue character focusing on the double root condition which gives a minimum linear

front speed.

4.3 Linear Front Speed

In our analysis, in chapters 5 and 6, we investigate the dependence of the eigenvalues, the

roots of the quartic equations (4.17) and (4.21), on the wave speed c. We give insights

on the change in the kinds of the roots due to the change in the parameters η ,γ,ρ and

the diffusion ratio λ . Through our discussion, we determine speeds at which a repeated

root exists, and then classify the eigenvalues at these speeds (the double root and the
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other two roots). This gives some insights on the minimum wave speed and helps us to

understand the speed selection problem for the class of reaction-diffusion equations we

study. A minimal front speed is the speed at which the double root is the slowest decaying

eigenvalue (dominant root), assuming that the state (u,v) = (0,0) at infinity is an unstable

one and the front moves to the right. If one of the other two roots is positive or decaying

slower than the double root, a boundary condition must be imposed at infinity to discard

this root. Thus in our analysis we need to count how many roots are decaying slower than

that double root, this gives us some insights on the imposed conditions. The real part of

the double root of course needs to be negative to correspond to decay into the trivial state.

When there is no double root, as we will see later, the steady state is stable.

In the following chapter, for the four cases shown in table 4.1, we examine the roots

of the above characteristic equations separately considering the special case λ = 1. This

case, as we will see later, gives evidence for the double root mechanism in determining a

minimum front speed, that is why we put this case in a separate chapter. We determine

the double root speed and the associated conditions on the system parameters γ , η , and

ρ . Later in chapter 6, we continue discussion with λ ̸= 1.

90



Chapter 5

Travelling Wave Analysis for Equal

Diffusion Coefficients Systems

In this chapter we study system (4.1), when the two components U and V have equal

diffusion coefficients, DU = DV = D, i.e., we aim to perform travelling wave analysis for

a system of the form
∂U
∂ t

= D
∂ 2U
∂x2 + f (U,V ),

∂V
∂ t

= D
∂ 2V
∂x2 +g(U,V ),

(5.1)

where D is the diffusion coefficient, which is real. The linearised form of the above system

is

∂u
∂ t

= D
∂ 2u
∂x2 +a1u+b1v, (5.2)

∂v
∂ t

= D
∂ 2v
∂x2 +a2u+b2v, (5.3)

where (u,v) is the perturbation around a steady state. The parameters D,a1,b1,a2, and b2

are all real numbers, the first is positive and the other four are the elements of the Jacobian

matrix which is shown in (4.4).
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5.1 Decoupled Equations

The linearised equations (5.2) and (5.3) can be decoupled, as we now show. Suppose

w(x, t) = u(x, t)+θv(x, t), (5.4)

where θ is a parameter which depends on the reaction parameters a1,b1,a2, and b2. Now

differentiating both sides of (5.4) with respect to t, and with x twice results in

∂w
∂ t

=
∂u
∂ t

+θ
∂v
∂ t

, (5.5)

∂ 2w
∂x2 =

∂ 2u
∂x2 +θ

∂ 2v
∂x2 , (5.6)

then substitute ut and vt , from (5.2) and (5.3) into (5.5) to obtain

∂w
∂ t

= D
(

∂ 2u
∂x2 +θ

∂ 2v
∂x2

)
+(a1 +θa2)u+(b1 +θb2)v, (5.7)

which can be put in the form
∂w
∂ t

= D
∂ 2w
∂x2 +Aw, (5.8)

where

A = a1 +θa2 and θA = b1 +θb2. (5.9)

Hence θ satisfies the quadratic a2θ 2 +(a1 −b2)θ −b1 = 0; and the two values of θ are

θ± =
1

2a2

(
b2 −a1 ±

√
(b2 −a1)2 +4a2b1

)
, (5.10)

and consequently, the parameter A (from (5.9)) takes the two values

A± =
1
2

(
b2 +a1 ±

√
(b2 −a1)2 +4a2b1

)
. (5.11)
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From the above results, the linearised equations (5.2) and (5.3) can be decoupled using

(5.4) where θ is given by (5.10). The obtained equations are (from (5.8))

∂w
∂ t

= D
∂ 2w
∂x2 +A±w, (5.12)

where the A± are shown in (5.11). Equation (5.12) is of the same type as the scalar

equation, we discussed in chapter 1, Fisher’s type equation. Thus we can say that a front

solution for reaction-diffusion system (5.1) exists, and its characteristic is similar to that of

Fisher’s equation which we discussed in chapter 1. In the following section, we examine

the eigenvalues; the roots of the quartic equations (4.17) and (4.21), deduced in chapter 4,

for equal diffusion coefficients. We use the double root mechanism to obtain a minimum

front speed, from which we deduce that the front solution is the same as the scalar case

(Fisher’s type).

5.2 The Characteristic Equations

In this section we aim to examine the character of the eigenvalues of the obtained charac-

teristic equations (4.17) and (4.21) when λ = 1. Hence for the two cases S1 and S2 the

characteristic equations are

(µ2 + cµ ±1− iν)(µ2 + cµ +η − iν)− γ = 0, (5.13)

where c and ν are real, µ is complex, and the parameters η and γ are displayed in (4.8).

For the other two cases, S3 and S4, the characteristic equations are given by

(µ2 + cµ − iν)(µ2 + cµ ±1− iν)−ρ = 0, (5.14)
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where c and ν are real, µ is complex, and ρ is shown in (4.12). In the following we study

each characteristic equation in a separate subsection.

5.2.1 Case S1

In this case the characteristic equation is (5.13) with the positive sign in the first bracket,

and appears as

µ4+2cµ3+(c2+η+1− i2ν)µ2+c(η+1− i2ν)µ−iν(η+1)+η−γ−ν2 = 0. (5.15)

Explicit form of the four roots can be obtained. These four eigenvalues are given by

−c
2
± 1

2

(
c2 −2(η +1)±2

√
(η −1)2 +4γ + i4ν

)1/2

. (5.16)

We examine these roots to find the double root speed. A double root can exist at three

wave speeds. The first speed c = c1, which appears as

c2
1 = 2

[
η +1+

√
(η −1)2 +4γ

]
, ν = ν1 = 0, (5.17)

provided that (η − 1)2 + 4γ ≥ 0, and if η + 1 < 0 then η − γ < 0, hence c1 appears in

regions I and II (see figure 5.1, γ,η space plot). Now when we substitute c = c1 and

ν = ν1 from (5.17) into (5.16), the four roots are

µ1,2 = − 1√
2

(
(η +1)+

√
(η −1)2 +4γ

)1/2

, (5.18)

µ3 = − 1√
2

(
(η +1)+

√
(η −1)2 +4γ

)1/2

− ((η −1)2 +4γ)1/4, (5.19)

µ4 = − 1√
2

(
(η +1)+

√
(η −1)2 +4γ

)1/2

+((η −1)2 +4γ)1/4, (5.20)
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and they are all real; the double root µ1,2 is negative and µ3 < µ1,2 < 0, and µ4 is negative

when η − γ > 0 (µ4 > µ1,2), and positive when η − γ < 0.

l1G
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III1

III2

�

IV
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U
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Figure 5.1: γ,η space, showing different regions corresponding to different types roots of (5.15),
see table 5.1. Curves Γ, ϒ, l1, and l2 represent (η −1)2 +4γ = 0, η2 +2γ +1 = 0, η − γ = 0 and
η = −1, respectively. The borderline between regions I and III, the curve Γ (solid), which is the
borderline between ν = 0 and ν ̸= 0.

The second wave speed c = c2 is given by

c2
2 = 2

[
η +1−

√
(η −1)2 +4γ

]
, ν2 = 0, (5.21)

provided that (η −1)2 +4γ ≥ 0, η +1 > 0 and η − γ > 0 (means region I in figure 5.1).

When we substitute from (5.21) into (5.16), the four roots are

µ1,2 = − 1√
2

(
(η +1)−

√
(η −1)2 +4γ

)1/2

, (5.22)

µ3,4 = − 1√
2

(
(η +1)−

√
(η −1)2 +4γ

)1/2

± i((η −1)2 +4γ)1/4, (5.23)
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hence the double root is real and negative and the other two roots are complex conjugate

with negative real part.

The third wave speed c = c3 where

c2
3 = 2 [η +1] , ν3 =

1
2

√
−(η −1)2 −4γ, (5.24)

provided that η + 1 > 0 and (η − 1)2 + 4γ < 0 (means region III in figure 5.1). On the

boundary curve Γ, where (η − 1)2 + 4γ = 0 a transition occurs from ν = 0 and ν ̸= 0.

Now the four roots at c = c3 can be put in the form

µ1 = µ2 =−c3

2
, µ3 =−c3

2
−
√

ν3 − i
√

ν3, µ4 =−c3

2
+
√

ν3 + i
√

ν3, (5.25)

where c3 and ν3 are given by (5.24). The double root is real and negative and the

other two roots are complex, one with negative real part (corresponds to fastest decay-

ing eigenvalue), and the other (µ = µ4) with either positive or negative real part (corre-

sponds to slowest decaying eigenvalue). The switching from positive to negative occurs

when Re(µ4) = 0, i. e. c3 = 2
√

ν3, and when we substitute from (5.24), we obtain

η + 1 =
√

−(η −1)2 −4γ which can be simplified to η2 + 2γ + 1 = 0. This is the bor-

derline between Re(µ4) > 0 and Re(µ4) < 0, which represents the curve ϒ, a boundary

curve between the two regions III1 (where Re(µ4)< 0) and III2 (where Re(µ4)> 0 ), see

5.1.

The eigenvalues in different regions in in γ,η space (see figure 5.1 ) are summarized

in table 5.1. In this table the double root speed and the character of the double root and

the other two roots are presented in different parameter regimes. In the roots type column,

we use letters to represent the eigenvalue; bold letters represent the double root, where

capital for real parts of a complex root, and small for purely real roots, letter p represents

a real and positive root while n is used for real and negative eigenvalue. The roots are in
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ascending order to count the roots which are slower and faster decaying than the double

root, that helps in identifying the imposed conditions to make the double root dominant.

For example, the root type nnp means the double root is real and negative and the other

two roots one is positive and one is negative, and the double eigenvalue is the dominant

(as the letters are arranged regarding the ascending order of the real part of the roots).

Table 5.1: Types of eigenvalues for (5.15). Bold letters represent the double root, capital for real
parts of a complex root, and small for purely real roots. The roots are in ascending order.

Conditions (Speed)c Roots Types
η − γ ≤ 0 c1 nnp

η − γ > 0,(η −1)2 +4γ ≥ 0,η +1 > 0 c1,c2 nnn,NNn
(η −1)2 +4γ < 0,η2 +2γ +1 > 0,η +1 > 0 c3 NnN

η2 +2γ +1 < 0,η +1 > 0 c3 NnP
η − γ > 0,η +1 < 0 − −

From the above classification of the eigenvalues and the kind of the double root, we

notice that the double root is always real and negative. When η − γ ≤ 0, a minimum

speed is c = c1 (given by (5.17)), and the character of the roots is nnp, i.e. the double

root is negative and slowest decay, and there is a positive root. That means a boundary

condition must be imposed at infinity to discard this root. For other parameter regimes

one can easily knows the double root speed and the character of the roots. Also, from the

above table, no double root speed exits when η − γ > 0,η + 1 < 0. In the following we

interpret that. When we substitute η and γ from (4.8), these conditions are

∂ f
∂U

∂g
∂V

− ∂ f
∂V

∂g
∂U

> 0,
∂g
∂V

+
∂ f
∂U

< 0, (5.26)

and when refer to the results of the instability analysis in chapter 3 (from table 3.5), we

97



find the following. The maximum temporal growth rate σ∗ can be put in the form

σ∗ =
1
2

 ∂g
∂V

+
∂ f
∂U

+

√(
∂g
∂V

+
∂ f
∂U

)2

−4
(

∂ f
∂U

∂g
∂V

− ∂ f
∂V

∂g
∂U

) , (5.27)

hence from (5.26), the maximum growth rate is always negative, Re(σ∗)< 0. Therefore,

the steady state is always stable. Hence we can conclude that in travelling wave analysis,

in some parameter regimes if a characteristic equation has no double root, it proves that

the rest state is stable.

5.2.2 Case S2

Here we discuss equation (5.13) with the negative sign in the first bracket. In this case the

characteristic equation can be put in the form

µ4+2cµ3+(c2+η−1− i2ν)µ2+c(η−1− i2ν)µ−iν(η−1)−η−γ−ν2 = 0, (5.28)

and the four roots are given by

−c
2
± 1

2

(
c2 −2(η −1)±2

√
(η +1)2 +4γ + i4ν

)1/2

, (5.29)

and we can follow same way as in the previous subsection to discuss the eigenvalues. A

summary of eigenvalues types indicated in table 5.2. From (5.29) a double root µ =−c/2

exists at three values of speed c. The first is given by

c2
1 = 2

[
η −1+

√
(η +1)2 +4γ

]
, ν = ν1 = 0, (5.30)
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provided that (η + 1)2 + 4γ ≥ 0, and if η − 1 < 0 then η + γ > 0, hence c1 appears in

regions I and II, these regions are shown in figure 5.2. The four roots at c = c1 are

µ1,2 = − 1√
2

(
(η −1)+

√
(η +1)2 +4γ

)1/2

, (5.31)

µ3 = − 1√
2

(
(η −1)+

√
(η +1)2 +4γ

)1/2

− ((η +1)2 +4γ)1/4, (5.32)

µ4 = − 1√
2

(
(η −1)+

√
(η +1)2 +4γ

)1/2

+((η +1)2 +4γ)1/4, (5.33)

hence they are all real. The double root is negative and the third root is negative such that

µ3 < µ1,2 < 0. The fourth root µ4 is negative when η + γ < 0 (µ4 > µ1,2), and positive

when η + γ > 0. The second wave speed c = c2 is given by

c2
2 = 2

[
η −1−

√
(η +1)2 +4γ

]
, ν2 = 0, (5.34)

provided that (η + 1)2 + 4γ ≥ 0, η − 1 > 0 and η + γ < 0 (region I), and the four roots

are

µ1,2 = − 1√
2

(
(η −1)−

√
(η +1)2 +4γ

)1/2

, (5.35)

µ3,4 = − 1√
2

(
(η −1)−

√
(η +1)2 +4γ

)1/2

± i((η +1)2 +4γ)1/4, (5.36)

hence the double root is real and negative, while the other two roots are complex with

negative real part.

Finally, the third wave speed c = c3, where

c2
3 = 2 [η −1] , ν3 =

1
2

√
−(η +1)2 −4γ, (5.37)
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Figure 5.2: γ,η space, showing different regions corresponding to different roots types of (5.28).
Curves Γ, ϒ, l1, and l2 represent (η + 1)2 + 4γ = 0, η2 + 2γ + 1 = 0, η + γ = 0 and η = 1,
respectively. The borderline between regions I and III, the curve Γ (solid), which is the borderline
between ν = 0 and ν ̸= 0.

provided that η −1 > 0 and (η +1)2 +4γ < 0 (region III), and the four roots are

µ1 = µ2 =−c3

2
, µ3 =−c3

2
−
√

ν3 − i
√

ν3, µ4 =−c3

2
+
√

ν3 + i
√

ν3, (5.38)

hence the double root is real and negative.The other two roots are complex, one with

negative real part, and the other with either positive or negative real part, and as in the

previous case we can deduce that the switching occurs when η2+2γ +1 = 0, the border-

line between Re(µ4)> 0 and Re(µ4)< 0, which represents the curve ϒ, a boundary curve

between the two regions III1 (where Re(µ4)< 0) and III2 (where Re(µ4)> 0 ), see 5.1 .

The eigenvalues in different regions in in γ,η space (see figure 5.2) are summarized

in table 5.1. In this case a travelling wave solution can exist with a minimum speed c1, c2,

or c3 displayed in (5.30), (5.34) and (5.37). Also, when η + γ < 0 and η −1 < 0 the rest

state is stable.
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Table 5.2: Types of eigenvalues for (5.28). Bold letters represent the double root, capital for real
parts of a complex root, and small for purely real roots. The roots are in ascending order.

Conditions (Speed)c Roots Types
η + γ ≥ 0 c1 nnp

η + γ < 0,(η +1)2 +4γ ≥ 0,η −1 > 0 c1,c2 nnn,NNn
(η +1)2 +4γ < 0,(η +1)2 +4γ > 0,η −1 > 0 c3 NnN
(η +1)2 +4γ < 0,(η +1)2 +4γ > 0,η −1 > 0 c3 NnP

η + γ < 0,η −1 < 0 − −

5.2.3 Case S3

In this case, from (5.14) (with the positive sign in the second bracket), the characteristic

equation is

µ4 +2cµ3 +(c2 +1− i2ν)µ2 + c(1− i2ν)µ − iν −ρ −ν2 = 0, (5.39)

which is exactly equation (5.15) when η = 0 and γ = ρ . Thus we can say that equation

(5.39) has a negative double root µ = −c/2, where c and the parameter ν are given by

(from equations (5.17), (5.21) and (5.24), with η = 0 and γ = ρ)

c2
1 = 2

[
1+
√

1+4ρ
]
, ν1 = 0, ρ >−1/4 (5.40)

c2
2 = 2

[
1−
√

1+4ρ
]
, ν2 = 0, −1/4 < ρ < 0 (5.41)

c2
3 = 2, ν3 =

1
2
(−1−4ρ)1/2, ρ <−1/4. (5.42)

Also, from table 5.1, a summary of the character of the eigenvalues of (5.39) can be

obtained. Set η = 0 and replace γ by ρ to obtain a summarising table 5.3.
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Table 5.3: Types of eigenvalues for (5.15). Bold letters represent the double root, capital for real
parts of a complex root, and small for purely real roots. The roots are in ascending order.

Conditions (Speed)c Roots Types
ρ > 0 c1 nnp

−1/4 < ρ < 0 c1,c2 nnn,NNn
−1/2 < ρ <−1/4 c3 NnN

ρ <−1/2 c3 NnP

5.2.4 Case S4

We refer to (5.14) (with the negative sign in the second bracket), to obtain the character-

istic equation

µ4 +2cµ3 +(c2 −1− i2ν)µ2 − c(1+ i2ν)µ + iν −ρ −ν2 = 0, (5.43)

and when we compare with (5.28), we find that (5.43) is a special case. If we insert

η = 0 and replace γ by ρ in (5.28), this yields equation (5.43). Thus we can say that from

equations (5.30)-(5.37), there is only one speed at which a double root µ =−c/2, which

is real and negative, can exist (from equation (5.30)) where

c2 = 2
[
−1+

√
1+4ρ

]
, ν = 0, ρ ≥ 0. (5.44)

and the other two roots are real, one negative which is less than the double root and the

other is positive. Hence we conclude that for ρ ≥ 0, equation (5.43) has a negative real

double root, however no double roots exist when ρ < 0 (the state we linearise around is

stable).
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5.3 Summary

In this chapter we have discussed a two-component reaction-diffusion system with equal

diffusion coefficients, which is displayed in system (5.1). We used a double eigenvalue

mechanism to determine a minimum wave speed, and this speed has been determined

explicitly. We noticed that if there is a double root, it always negative and real, as can be

expected from the relationship of the linearized system with equal diffusion coefficients

to the scalar case. This provides evidence for the relevance of the double eigenvalue

mechanism we adopt to determine a linear front speed. Also, a borderline between the

case ν = 0 and ν ̸= 0 is determined (here the curve Γ). When a double root exists and

one of the other root is complex with a real part which is either positive or negative, a

borderline on which the real part switches is deduced (here the curve ϒ represents this

borderline). From our analysis in this chapter we conclude that solutions of the reaction-

diffusion system shown in system (5.1) are similar to that of the scalar case (Fisher’s

equation).

In the following chapter we give a detailed discussion for a system of different diffu-

sion coefficients, i. e. Du ̸= Dv, specifically when Du > Dv, with no loss of generality.

The analysis in this chapter for the special case λ = 1 was not complicated as we already

know the wave speed and the frequency (in explicit form) at which a double root exists,

and we even know the four eigenvalues, and the borderlines discussed above, which tells

us that equal diffusion coefficients is a limiting case. However, in general it is hard to find

a solution of quartic polynomial equation explicitly. Also, the double root conditions may

be more complicated than obtained here, and so we must find solutions numerically, and

argue the problem graphically as we will see. Also a more complicated formula for curve

which is similar to Γ (transition from ν = 0 to ν ̸= 0) will be deduced in the next chapter,

when we discuss the case 0 < λ < 1, and we deduce that Γ is a limiting transition curve

when the diffusion ratio tends to one.
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Chapter 6

Travelling Wave Analysis for Unequal

Diffusion Coefficients Systems

Travelling wave anaysis for equal diffusion coefficients is performed in the previous chap-

ter. In this chapter we continue for reaction-diffusion systems in the case when the dif-

fusion coefficients are different. The four characteristic equations (4.17) and (4.21) are

investigated, focusing on a fractional diffusion ratio, i. e. 0 < λ < 1 without loss of gen-

erality. This chapter is in four sections, each section being devoted to a separate equation.

We classify the eigenvalues when a double root exists, the character of the double root

and the other two roots is determined indicating the root dominance (counting the roots

that decaying slower than the double root). The wave speed at these conditions can be

calculated, which results in a minimal value of the propagating front speed. Also we give

a recipe for borderlines between ν = 0 and ν ̸= 0, and between the negative real part and

positive real part of an eigenvalue when a repeated root exists. These lines are determined

explicitly in the case where the diffusion ratio is unity.
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6.1 Case S1

In this case fu > 0, and when we refer to (4.17) with the positive sign, the characteristic

equation is

λ µ4+c(1+λ )µ3+(λ +η+c2−i(λ +1)ν)µ2+c(1+η−2iν)µ+η−γ−ν2−i(η+1)ν = 0,

(6.1)

and the double root equation is

4λ µ3 +3c(1+λ )µ2 +2(λ +η + c2 − i(λ +1)ν)µ + c(1+η −2iν) = 0, (6.2)

where ν and c are real and µ can be complex.A summary of a classification of a double

root and the corresponding other two roots is shown in tables 6.1 and 6.2, and in the

following we discuss these results.

6.1.1 Double root speed

To find the double root speed, we eliminate the eigenvalue µ from equations (6.1) and

(6.2) . The eliminant of (6.1) and (6.2), or equivalently the resultant of (6.1), is com-

plex. Thus we obtain from this resultant two real equations, and these two equations are

displayed in (A.14) and (A.15). We solve these equations to obtain c and ν , the double

eigenvalue speed and frequency, and plots are generated at different regimes of system pa-

rameters λ , η and γ . We observe that a double root speed c is zero in two cases. The first is

when ν2 =−(1+γ) for η =−1 and γ <−1. The second case when ν2 = 4λγ/(1−λ )2,

and η = λ ,γ > 0. These results can be obtained easily when we substitute c = 0 into

equations (6.1) and (6.2) and then solve for the modulating frequency ν .

The resultant equations (A.14) and (A.15) reduce to one equation when ν = 0, equa-

tion (A.16). From this equation, c = 0 when η = γ or (η − λ )2 + 4γλ = 0. Also,
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we can say that as
(
4γ +(η −1)2)→ 0, a wave speed c goes to very large values (as(

4γ +(η −1)2) is the coefficient of the largest power, the leading order in (A.16)), hence

we may consider 4γ +(η −1)2 = 0 as an asymptote for the double root wave speed, and

this requires γ < 0. These results help when we plot the speed in different parameter

regimes in that we know where the speed goes to zero and also to very large values, as we

will see in graphs.

6.1.2 Purely imaginary eigenvalue

Here we discuss the existence of a pure imaginary root for the characteristic equation

(6.1). This helps us in the eigenvalue classification. Assume that at c =C equation (6.1)

has a pair of pure imaginary roots, say µ = ±iω , where ω is real. We aim to determine

the possible non-negative values of C. Now substitute c = C and µ = iω into (6.1) to

obtain a complex equation from which we can obtain the two real equations

(1−ω2)(η −λω2)− (ωC−ν)2 − γ = 0, (6.3)

(ωC−ν)(η +1− (1+λ )ω2) = 0. (6.4)

We solve the above two equations to obtain C. The first possible solution is

C1 =

√
2λν2

λ +η ± ((λ +η)2 −4λ (η − γ))1/2 , (6.5)

provided that

(λ +η)2 −4λ (η − γ)≥ 0, (6.6)
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In addition, if λ +η > 0, then η − γ ≥ 0, and if λ +η ≤ 0, then η − γ < 0. The second

possible solution is given by

C2 =

√
1+λ
1+η

(
ν +

√
−γ(1+λ )2 +(η −λ )2

(1+λ )2

)
, (6.7)

provided that

η >−1, γ(1+λ )2 +(η −λ )2 ≤ 0, (6.8)

and consequently γ must be negative. It is obvious that when ν = 0, there is only one

speed for a purely imaginary root to exist, which is C = C0 and given by (6.7) when

ν = 0. This speed can be put in the form

C0 =

√
−γ(1+λ )2 +(η −λ )2

(1+λ )(1+η)
, (6.9)

provided that the conditions displayed in (6.8) hold.

6.1.3 Triple root condition

Now we discuss the transition curve, where the double root frequency ν switches between

zero to nonzero value (triple root condition was discussed in chapter 2, the analysis of the

EFK equation). The transition occurs when the polynomial equation

Q = λ µ4 + c(1+λ )µ3 +(λ +η + c2)µ2 + c(1+η)µ +η − γ = 0 (6.10)

has a triple root (we discussed this condition in chapter 2). It is clear that a zero triple

root exists when η = γ =−1 and c2 = 1−λ . If the triple root is negative, the signs of the

polynomial coefficients must be ++++±. However, the sign sequence is ++−+−

when a positive triple root exists (there must be exactly three sign changes according to
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Descartes’ rule of signs). Thus in the two sequences, the coefficient of µ , for c > 0, must

be positive. Hence equation (6.10) has a triple root on the condition η >−1.

The transition curve can be obtained by solving the three equations (triple root condi-

tions)

Q = 0,
∂Q
∂ µ

= 0,
∂ 2Q
∂ µ2 = 0, (6.11)

or

λ µ4 + c(1+λ )µ3 +(λ +η + c2)µ2 + c(1+η)µ +η − γ = 0, (6.12)

4λ µ3 +3c(1+λ )µ2 +2(λ +η + c2)µ + c(1+η) = 0, (6.13)

6λ µ2 +3c(1+λ )µ +(λ +η + c2) = 0. (6.14)

From the above conditions we eliminate µ and c (using the elimination method shown

in Appendix A) to obtain the triple root condition displayed in (A.17), see Appendix A,

which is a closed form in system parameters λ , η and γ .

For different values of λ , the transition curve which is represented by (A.17) is plotted

in η , γ space in figure 6.1. The transition curves exists for η ≥ −1, and all satisfy γ =

η =−1. We notice that the curves corresponding to 0 < λ ≤ 1/2 lie in the region γ ≥−1,

however those for 1/2< λ ≤ 1 exist when γ < 0. Hence when we classify the eigenvalues,

we discuss the character of the double roots considering the above parameter regimes. A

summary of the double root and the other two roots classification when 0 < λ ≤ 1/2 in

table 6.1, and for 1/2 < λ ≤ 1 in table 6.2.

In the following we discuss the eigenvalue classification in different parameter regimes.

In the eigenvalue classification we use bold letter to represent the double root, capital for

real parts of a complex root, and small for purely real roots. The roots are in ascending

order to determine the character of the double root and the other two roots as we did in

the previous chapter.
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Figure 6.1: (Left) Triple root locus for (6.10) in η , γ space, equation (A.17), for λ = 0.1 to 1.
When γ > 0 a triple root exists when 0 < λ ≤ 1/2, and when γ < 0, it exists for 1/2 < λ ≤ 1. A
triple root cannot exist for η <−1. (Right) A close-up picture for the locus near the origin.

6.1.4 Classification when γ = 0

When γ = 0 the four roots of (6.1) are

1
2

(
−c±

√
c2 −4+ i4ν

)
,

1
2λ

(
−c±

√
c2 −4ηλ + i4νλ

)
, (6.15)

Hence we can say that there is no double root speed when ν is nonzero, however there

are two speeds c1 = 2 and c2 = 2(ηλ )1/2 when ν = 0, figure 6.2 shows these two speeds

versus the parameter η . In the following we classify the roots at these speeds. When we

substitute c = c1 = 2 into (6.15), the four roots are

µ1,2 =−1, µ3 =
1
λ

(
−1− (1−ηλ )1/2

)
, µ4 =

1
λ

(
−1+(1−ηλ )1/2

)
, (6.16)
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Hence the double root at c1 is real and negative and the type of the other two roots (µ3

and µ4) depend on the parameters λ and η as follows. When η < 0, µ3 is negative real

and less than the double root, however µ4 is positive and real, hence at c = c1 and when

η < 0 the type of the eigenvalues is nnp. When ηλ > 1, they are complex conjugate

with a negative real part which equals −1/λ (this real part is less than the double root),

and the type of the roots are NNn. When ηλ < 1 and η > 0, µ3 and µ4 are always real

and negative; µ3 <−1 and µ4 ≶−1 depending on the parameters and we discuss this as

follows. Assume that µ4 >−1, it means

1
λ

(
−1+(1−ηλ )1/2

)
>−1,

and when we simplify we obtain the condition η < 2−λ . Hence we can say that when

0 < η < 2−λ , the eigenvalue −1 < µ4 < 0 and when η > 2−λ and ηλ < 1, µ4 <−1.

Thus we can say that at c = c1 and when 0 < η < 2−λ the roots type is nnn, however

when 2−λ < η < 1/λ , the type is nnn.

In the following we discuss the double root speed c = c2. When we substitute c =

c2 = 2(ηλ )1/2 into (6.15), the four roots are

µ1,2 =−
√

η/λ , µ3 =−
√

ηλ −
√

ηλ −1, µ4 =−
√

ηλ +
√

ηλ −1,

(6.17)

provided that η > 0. The double root is real and negative, and when 0 < η < 1/λ the

other two roots are complex conjugate with a negative real part (greater than the double

root), then the type of the eigenvalues is nNN. When η > 1/λ , µ3 and µ4 are negative and

real, and the double root is always less than these two roots, hence the roots type is nnn.

A summary for the above obtained results for γ = 0 is shown in table 6.1. In figure 6.2a,

the double root speeds c1 and c2 versus η are plotted, and vertical dotted lines indicate the

roots types transition. At γ = 0 and λ = 0.4, we plot the four eigenvalues versus speed c
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Figure 6.2: (a) Double root locus for equation (6.1), c versus η when γ = 0, where c1 = 2 and
c2 = 2(ηλ )1/2, the vertical dotted lines are: (1) η = 0, (2) η = 2−λ and (3) η = 1/λ . (b)-(e)
The four eigenvalues as a function of speed c, when λ = 0.4, γ = 0, and (b) η =−2, (c) η = 0.5,
(d) η = 2 and (e) η = 4, solid lines represent the real part and dotted line represent the imaginary
part of eigenvalues.
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when η = −2,0.5,2 and 4 (shown in figure 6.2(b)-(e)), these figures show the character

of the eigenvalues that given in table 6.1 for γ = 0.

Table 6.1: Classification of a double root and the other two roots of (6.1) when 0 < λ ≤ 1/2.
Bold letters represent the double root, capital for real parts of a complex root, and small for purely
real roots. The roots are in ascending order, d1 = (η −1)2 +4γ, d2 = (η −λ )2 +4γλ , and d3 =
(η −λ )2 + γ(1+λ )2, and a real triple root exists at η = η∗.

Conditions (Speed)c Roots Types Figures

γ
=

0 η ≤ 0 c1 nnp
0 < η ≤ 2−λ c1,c2 nnn,nNN 6.2

2−λ < η ≤ 1/λ c1,c2 nnn,nNN
η > 1/λ c1,c2 NNn,nnn

γ
>

0

η ≤ λ c4 nnp
λ < η ≤ η∗ c4 nnp

c5 NPP/NNP 6.3 , 6.4
η∗ < η ≤ γ c2,c3,c4 nnp,nnp,nnp

η > γ c1,c2,c3,c4 NNn,nnn,nnn,nnn

−
1
≤

γ
<

0

η ≤ γ c1 nnp
η > γ,d1 ≥ 0 c1,c4 nnn,nPP

d1 < 0,η ≤ η∗ c1,c2,c4 nnn,nnn,nPP
d1 < 0,η > η∗ c4 nNN 6.5

c5 NNN
d1 > 0 c3/c4 NNn,nnn/nNN,nnn

c5 NNN

γ
<
−

1

η ≤ γ c1 nnp
η > γ,d1 ≥ 0 − −
d1 < 0,d2 ≥ 0 c2 nnp

d2 < 0,η ≤−1 c4 nPP
η >−1,d3 ≤ 0 c4 nPP,nNN

c5 NNP/NNN 6.6 , 6.7
d3 > 0,d1 < 0 c4 nNN

c5 NNN
d1 > 0 c3,c4 NNn,nnn/nNN,nnn

c5 NNN

112



c1

c2

c3

c4

c5

1 2 3

0

1

2

3

4

5

Η

c
Hs

pe
ed
L

HaL

Ν5

1 2

4

0

1

2

3

4

5

Η

Ν

HbL

Figure 6.3: Double root locus for equation (6.1), c versus η when 0 < λ < 1/2 and γ > 0, dotted
lines are: (1) η = λ , (2) η = η∗, (3) η = γ and (4) ν = 2

√
γλ/(1−λ ). The types of the roots at

these speeds are shown in table 6.1.

6.1.5 Classification when 0 < λ ≤ 1/2

For γ > 0 and 0 < λ ≤ 1/2, double root speeds and modulating frequency versus η are

shown in figure 6.3, which represent the solutions for the double root equations (A.14) and

(A.15), shown in Appendix A. The solid lines represent the speed when ν = 0, and the

dashed when ν ̸= 0. In the following we examine the eigenvalue type at these speeds. Let

us start with the double root speed c = c5, which exists in the interval λ < η < η∗, where

η∗ satisfies the triple root condition (A.17). To determine the character of the double root

and the other two roots, we find the double root and the other two roots at specific system

parameters. Assume that λ = 0.2 and γ = 10, then solving (A.17) to obtain η = η∗ ≃ 7.1,

Hence we can say that 0 < c5 < 2.3 and it exists for 0.2 < η < 7.1, and at η = 5 the

double root speed c = c5 ≃ 1.8 and the frequency ν = ν5 ≃ 0.35. For λ = 0.2 and γ = 10

and η = 5, we plot constant speed contours in Re(µ), Im(µ) space, see figure 6.4(a), the

contours represent speeds around the double root speed c5 ≃ 1.8 where a saddle point

exists (these contours represent equation (A.18), Appendix A). Also, in Re(µ), Im(µ)

space, constant frequency contours are plotted, see figure 6.4(b). The contours represent

frequencies around the double root frequency ν = ν5 ≃ 0.35, and these contours from
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equation (A.19) (Appendix A). From these plots we know the character of the double

root, which is complex with negative real part. To uncover the character of the other two

roots, we solve the characteristic equation (6.1). In figure 6.4(c) and (d), when λ = 0.2

and γ = 10, we plot the real part of the double root and the other two roots versus η and

speed c, respectively, where 0.2 < η < 7.1 and 0 < c5 < 2.3. The double root (dashed

line) is complex with negative real part and the other two roots are complex, one with

positive real part and the real part of the can be either positive or negative (switching

occurs when c = C1 shown in (6.5)). From our discussion the type of the eigenvalues

when c = c5 can be NPP or NNP, and this is shown in a summary table 6.1. Thus we can

say that to make the double root dominant at c = c5, two conditions must be imposed to

discard exponentials correspond to the other two roots.

In the following we examine the roots’ character for the other double root speeds,

c = ci, i = 1,2,3,4 (see figure 6.3, the solid lines). These speeds represent the possible

solutions of equation (A.16) (see Appendix A), where the modulating frequency is zero,

ν = 0. We mainly fix the system parameters and solve the characteristic equation (when

ν = 0) at different values of c. Then we plot the four eigenvalues versus the wave speed

c (see 6.3(e) and (f)), from these plots we can know the character of the roots. Also, we

use the Routh-Hurwitz criterion and Descartes’ Rule of signs to examine the roots. Now

when ν = 0, and from (6.1), the sequence of the characteristic polynomial coefficients is

λ , c(1+λ ), λ +η + c2, c(1+η), η − γ. (6.18)

Then for γ > 0 and η > γ , all the coefficients are positive and Routh-Hurwitz criterion is

satisfied (see Appendix B, equations (B.9) and (B.10)), all eigenvalues are either negative

and real or complex with negative real parts. Figure 6.3(e) shows the four eigenvalues

when λ = 0.2, γ = 10 and η = 20. The solid lines represent the real part and dotted
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line represent the imaginary part of eigenvalues. From this figure, there are four repeated

roots and all are real and negative. These double roots occurs at speeds c1, c2, c3 and c4,

and the character of the double root and the other two roots are NNn,nnn,nnn and nnn,

respectively. If η∗ < η < γ , there are three double root speed (see figure 6.3), c2, c3 and

c4. Routh-Hurwitz criterion is not satisfied (as η −γ < 0). Hence at least there is one root

which is complex with positive real part. From (6.18), the sign sequence is ++++−.

Thus there is only one sign change, and according to Descarte’s Rule of signs, at most

there is one positive and real root. From this result a positive real root always exists and

the other three roots are negative or one negative and two are complex conjugate with

negative real parts. Hence the eigenvalue type at the double root speeds c2, c3 and c4 is

nnp,nnp and nnp, respectively. When η < η∗, see figure 6.3, there is only one double

root which occurs at c = c4 and the type of the eigenvalue is nnp. Figure 6.3(f) shows

the eigenvalues variation with speed when λ = 0.2 and γ = 10 and η = 5 < η∗ (here

η∗ ≃ 7.1). The above results are shown in table 6.1.

Figure 6.5(a) and (b) show the double root speed and frequency when 0 < λ ≤ 1/2

and −1 ≤ γ < 0 (the possible solutions of equations (A.14) and (A.15), Appendix A). On

the dashed line, where c = c5, the double root and the other two roots are complex with

negative real parts. Figure 6.5(c) indicates the variation of the real parts of the double root

(µ1,2 dashed line) and the other two roots with η , when λ = 0.2 and γ = −0.5. For the

double root speeds c = ci, i = 1,2,3,4, when d1 = (η − 1)2 + 4γ tends to zero a double

root goes to very large values, and this happens at c2 and c3, and the speed c4 = 0 when

η = γ , see 6.5(a). The eigenvalues types at these speeds are are shown in table 6.1, and the

roots versus speed are potted in figures 6.5(d)-(f) at certain values of system parameters.

These figures helps to determine the character of the roots at double root speeds.

When 0 < λ ≤ 1/2 and γ < −1, the double root speed and frequency are shown in

figure 6.6. From this figure, the speed is zero when η = γ (c1 = 0), d2 = (η − λ )2 +
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Figure 6.4: The character of the roots at speeds shown in figure 6.3. (a), (b) constant speed
and frequency contours in Re(µ), Im(µ) space: a saddle point exists at double root speed, at
c = c5 ≃ 1.8 in (a), and frequency ν = ν5 ≃ 0.35 in (b), the double root is complex with negative
real part, λ = 0.2, γ = 10 and η = 5. (c) and (d) The real part of the four eigenvalues versus η and
c, dashed line represents the double root. (e) and (f) The four eigenvalues versus the wave speed,
solid lines represent the real part and dotted lines for imaginary part, λ = 0.2, γ = 10, (e) η = 20
and (f) η = 5.
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4γλ = 0 (c2 = c4 = 0) and when η = −1 (c5 = 0, ν5 =
√
−1− γ). Also, when when

d1 = (η − 1)2 + 4γ tends to zero the two speeds c2 and c3 tends to be very large. In the

following we discuss the type of the roots in these different parameter regimes. When

η ≤ γ , from (6.18), the coefficient sign sequence is ++±−−. Then from Descartes’

Rules of Signs, one of the four roots is always positive and real. Thus we can say that

when η ≤ γ , a negative real double root exists at c = c1 and the other two roots are both

real and one is positive and the other is negative. The four eigenvalues are plotted against

the speed when λ = 0.3, γ = −5 and η = −8, and shown in figure 6.7(b), and in this

case the type of the roots is nnp. When η > γ and d1 = (η − 1)2 + 4γ > 0 (the region

between the vertical dotted lines 1 and 2 in figure 6.6(a)), no double root exists and from

our results in the previous chapter we can say that in this region the uniform state is stable

and no travelling wave can be observed when the state is is perturbed.

If d1 =(η−1)2+4γ < 0 and d2 =(η−λ )2+4γλ > 0 (the region between the vertical

dotted lines 2 and 3 in figure 6.6(a)), a real positive double root exists at c = c2, and the

other two roots are real and negative, see figure 6.7(c) which shows the four eigenvalues

versus the speed when λ = 0.3, γ = −5 and η = −3. Hence we can say that the roots

are of the type nnp, thus c2 can not be selected as the double root is positve. When

d2 = (η −λ )2 +4γλ < 0 and η <−1 (the region between the vertical dotted lines 3 and

4, see figure 6.6(a)), a real and negative double root exists at c = c4, and the other two

roots are complex conjugate with a positive real (roots type nPP).

When η > −1 and d3 = (η − λ )2 + γ(1+ λ )2 < 0 (the region between the vertical

dotted lines 4 and 5 in figure 6.6(a)), a purely imaginary root can exist at c = C2 (from

(6.7) and (6.8)). In this region two double roots appear one at c = c4 and the other at

c = c5. The double eigenvalue at speed c4 is real and negative, and the other two roots

are complex conjugate with a real part that can be either positve or negative (switching

happens at c = C2), hence the roots type are nPP or nNN, see figure 6.7(d). The double
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root which arises at c = c5 (and η >−1) is complex with negative real part, and the other

two roots are complex, one with negative real part and the real part of the other can be

either positive or negative (transition occurs at c =C2). Figure 6.7(a) shows the real parts

of the double root and the other two roots versus speed at λ = 0.3, γ =−5, the roots types

can be NNP or NNN. Finally, when d1 = (η −1)2+4γ > 0, two real and negative double

root exists one at c = c3 and the other at c = c4. The four eigenvalues against speed c

shown in figures 6.7(e) and (f) at λ = 0.3, γ = −5 and η = 7 in (e) and η = 10 in (f).

Form these figures one can observe that at c = c3 the roots type can be NNn or nnn, while

it can be either nNN or nnn at c = c4. The above results are summarised in table 6.1.
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Figure 6.6: Double root locus for (6.1) when 0 < λ < 1/2, γ < −1. (1) η = γ , (2) and (6)
d1 = (η −1)2+4γ = 0, (3) d2 = (η −λ )2 +4γλ = 0, (4) η =−1, (5) d3 = (η −λ )2 +γ(1+λ )2

and (7) ν =
√
−1− γ .

6.1.6 Classification when 1/2 < λ ≤ 1

Table 6.2 gives a summary for the classification of the double root and the other two roots

for the characteristic equation (6.1), when 1/2 < λ < 1. The classification is given for

different regimes for the parameter γ: γ = 0, γ > 0, −1 < γ < 0 and γ ≤ −1, and in the
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Figure 6.7: The character of double roots in figure 6.6. (a) The variation of the real part of the
double root (dashed line, at c = c5) and the other two roots (solid line) with speed c , λ = 0.3 and
γ =−5. (b)-(f) The four eigenvalues versus speed c when λ = 0.3, γ =−5 and at different values
of η : (b) −8, (c) −3, (d) 2, (e) 7 and (f) 10.
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following we aim to interpret briefly the results shown in this table, following the same

way as in the previous case 1/2 < λ < 1.

Table 6.2: Classification of a double root and the other two roots of (6.1) when 1/2 < λ ≤ 1.
Bold letters represent the double root, capital for real parts of a complex root, and small for purely
real roots. The roots are in ascending order, d1 = (η −1)2 +4γ, d2 = (η −λ )2 +4γλ , and d3 =
(η −λ )2 + γ(1+λ )2, and a real triple root exists at η = η∗.

Conditions (Speed)c Roots Types Figures

γ
=

0

Same classification as in table 6.1

γ
>

0

η ≤ λ c1 nnp
λ < η ≤ γ c1 nnp

c3 NPP/NNP 6.8
η > γ c1,c2 nnn,NNn

c3 NNP/NNN

−
1
≤

γ
<

0

η ≤ γ c1 nnp
η > γ,d1 ≥ 0 c1,c4 nnn,nNN

d1 < 0,η ≤ η1∗ c1,c2,c4 nnn,nnn,nNN
η > η1∗,d1 ≤ 0, c4 nNN

c7 NNN
d1 > 0,η ≤ η2∗ c3/c4 NNn,nnn/nNN,nnn 6.9, 6.10

c7 NNN
η ≤ η2∗ c3,c4,c5,c6 NNn,nnn,nnn,nnn

γ
<
−

1

η ≤ γ c1 nnp
η > γ,d1 ≥ 0 − −
d1 < 0,d2 ≥ 0 c2 nnp

d2 < 0,η ≤−1 c4 nPP
η >−1,d3 ≤ 0 c4 nPP,nNN

c7 NNP/NNN 6.11
d3 > 0,d1 < 0 c4 nNN

c7 NNN
d1 > 0,η ≤ η∗ c3,c4 NNn,nnn/nNN,nnn

c7 NNN
η > η∗ c3,c4,c5,c6 NNn,nnn,nnn,nnn

When γ = 0, the four roots are given by (6.15), and from our previous analysis for

0 < λ ≤ 1/2, we can say that the roots types are the same. Therefore, we refer to table

6.1 to classify the roots when γ = 0. If γ > 0, a double root speed and frequency versus

η shown in figure 6.8(a), which represent the solution of equations (A.14) and (A.15)
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(Appendix A). The solid lines represents the two speeds c = c1 and c = c2 ( and ν = 0),

where a real negative double root exists, and the other two roots are classified as follows.

When η < γ , form (6.18), the coefficient sign sequence is ++±±−. Hence according

to Descartes’ Rules of Sign, the real positive roots can be either three or one, and as

the double root is real and negative, hence the other two roots are one negative and one

positive. Therefore, when η < γ the double root speed c = c1, and the roots type is nnp

(see figure 6.8(d), the four eigenvalues versus speed when λ = 0.7, γ = 2 and η =−2).

If η > γ and γ > 0, the coefficient sign sequence is always +++++, thus there is no

positive real roots. Since the Routh-Hurwitz conditions are satisfied and the double root

is negative, then the other two roots are either negative or complex with negative real part.

Figure 6.8(e) shows the four eigenvalues λ = 0.7, γ = 2 and η = 4, the roots types are

nnn and NNn at speed c1 and c2, respectively. The double root speed c = c3 (see 6.8(a),

dashed line) exists when η > λ . At this speed the double root is complex with negative

real part and the other two roots are complex and their real parts can either be positive

or negative. Figure 6.8(c) shows the variation of the real part of the double root (dashed

line) and the real part of the other two roots with speed, when λ = 0.7, γ = 2. The real

part of the other two roots switches from positive to negative at c =C1 (the speed where

purely imaginary root exists), which is given by (6.5). The types the roots type at c = c3

can be one of the three types NPP, NNP and NNN.

Figure 6.9(a) and (b) shows a double root speed and frequency versus η when −1 <

γ < 0. The solid line represents speed at which a negative real double root exists, however

dashed line is for the speed at which the double root is complex root with negative real

part, at c = c7 (and ν = ν7). From this figure, one can observe that the speed c7 exists

for η∗1 < η < η∗2, where a triple root exists at η∗1 and η∗2. This can be understood

when when we refer to triple root locus in the γ,η space (see figure 6.1), we find that

when 1/2 < λ < 1 and for any value of γ such that −1 < γ < 0, there are two different
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Figure 6.8: (a), (b) Double root locus for equation (6.1) when 1/2 < λ < 1, γ > 0, dotted lines are:
(1) η = λ , (2) η = γ and (3) ν = 2

√
γλ/(1−λ ). (c) The variation of the real part of the double

root (dashed line, at c = c3) and the other two roots (solid line) with speed c, λ = 0.7, γ = 2. (d)
and (e) The four eigenvalues as a function of speed c at λ = 0.7, γ = 2 and at different values of
η : (d)−2 , (e) 2, solid lines represent the real part and dotted line represent the imaginary part of
eigenvalues.
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Figure 6.9: (a) and (c) Double root locus for equation (6.1) when 1/2 < λ < 1, −1 ≤ γ < 0. (1)
η = γ , (2) and (4) (η −1)2 +4γ = 0, (3) and (5) η = η∗.
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Figure 6.10: The character of the double root and the other tow roots for the double root speeds
appear in figure 6.9. (a) The variation of the double root (dashed line, at c = c7) and the other two
roots (solid line) with c, λ = 0.7, γ = −0.5 . (b)-(e) The four eigenvalues versus speed c when
λ = 0.7, γ = −0.5 and η is: (b) −2, (c) −0.4, (d) 0.5, (e) 2.5 and (f) 3, solid lines represent the
real part and dotted line represent the imaginary part of eigenvalues.
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values of η at which a triple root exists for the characteristic equation. We plot the real

parts of the double root and the other two roots, shown in figure 6.10(a), when λ = 0.7

and γ = −0.5, and from this figure the roots type is always NNN. For the other double

root speeds c = ci, i = 1,2, ...,6, the character of the double root and the other two roots is

known when we plot the four eigenvalues of the characteristic equation versus the speed in

different regimes. These plots are depicted in figures 6.10(b)-(f). In case of 1/2 < λ < 1
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Figure 6.11: (a), (b)Double root locus for equation (6.1) when 1/2 < λ < 1, γ < −1. (1) η = γ ,
(2) and (6) d1 = (η −1)2 +4γ = 0, (3)d2 = (η −λ )2 +4γλ = 0, (4) η =−1, (5) d3 = (η −λ )2 +
γ(1+λ )2 = 0, (7) η = η∗ and (8) ν =

√
−1− γ .

and γ <−1 (see figure 6.11), a positive real double root exists at speed c = c2, a negative

real double root exists when c = ci, i = 1,3,4,5,6. There is also a complex double root

with negative real part when c = c7 and ν = ν7 (the dashed line in figure 6.11), where

−1 < η < η∗. Figure 6.12 (a) indicates the real parts of the double root and the other two

roots versus the speed when (at c = c7), when λ = 0.7 and γ = −5. From this figure we

observe that the type of the roots can be either NNP or NNN, and the switching occurs

at c =C2 which is given by (6.7). In figures 6.12 (b)-(f), the four eigenvalues are plotted

versus speed when λ = 0.7, γ =−5 and η =−10,−3.5,1.0,5,20. These plots indicates

the root type at the double root speeds c = ci, i = 1,2, ...,6, these types are shown in table
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6.2.
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Figure 6.12: (a) The variation of the real part of the double root (dashed line, at c = c7) and the
other two roots (solid line) with speed c , λ = 0.7 and γ =−5. (b)-(f) The four eigenvalues versus
speed c when λ = 0.7, γ = −5 and η is: (b) −10, (c) −3.5, (d) 1.0, (e) 5 and (f) 20, solid lines
represent the real part and dotted line represent the imaginary part of eigenvalues.

6.2 Case S2

In this case fu < 0, we refer to (4.17) with the negative sign to find that the characteristic

equation is

λ µ4+c(1+λ )µ3+(c2−λ +η−iν(λ +1))µ2+c(η−1−2iν)µ−η−γ−ν2−i(η−1)ν = 0,

(6.19)
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and the double root equation is then

4λ µ3 +3c(1+λ )µ2 +2(c2 −λ +η − iν(λ +1))µ + c(η −1−2iν) = 0, (6.20)

where ν and c are real and µ can be complex.

6.2.1 Double root speed

One can repeat same procedure as in the previous case. We eliminant µ using the above

two equations using the Sylvester’s elimination method. The eliminant of (6.19) is com-

plex and gives two real equations. These two equations are displayed in (A.22) - (A.23),

and reduce to (A.24) when ν = 0 (see appendix A). We solve these resultant equations for

travelling wave parameters, speed c and modulating frequency ν . Then we insert these

values of c and ν into the quartic equation (6.19) to determine the character of a double

root and the corresponding two roots.

6.2.2 Triple root condition

A triple root satisfies the following equations (condition at which a transition from ν = 0

to ν ̸= 0 occurs)

λ µ4 + c(1+λ )µ3 +(−λ +η + c2)µ2 + c(η −1)µ −η − γ = 0, (6.21)

4λ µ3 +3c(1+λ )µ2 +2(−λ +η + c2)µ + c(η −1) = 0, (6.22)

6λ µ2 +3c(1+λ )µ +(−λ +η + c2) = 0, (6.23)

and when we eliminate µ and c we obtain the triple root condition which is displayed in

(A.25). This condition is shown in figure 6.13 in the γ , η space at different values of λ .
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Figure 6.13: (a) Triple root locus for (6.10) in η , γ space, equation (A.25), for λ = 0.1 to 1. When
γ >−1 a triple root exists when 0 < λ < 1/2, and when γ < 0, it exists for 1/2 < λ ≤ 1. A triple
root cannot exist for η < 0. (b) A close-up picture for the locus near the origin.

6.2.3 Purely imaginary root

As in the previous case, we need to compute the speed at which a real part switches from

positive to negative. One can obtain this speed at which the characteristic equation has a

purely imaginary root. There are two speeds, the first is

C1 =

√
2λν2

η −λ +((η −λ )2 +4λ (η + γ))1/2 , (6.24)

provided that

(η −λ )2 +4λ (η + γ)≥ 0, (6.25)

In addition, if η −λ < 0, then η + γ > 0. The second purely imaginary root speed c =C2

is

C2 =

√
1+λ
η −1

(
ν +

√
−γ(1+λ )2 +(η +λ )2

(1+λ )2

)
, (6.26)
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provided that

η > 1, γ(1+λ )2 +(η +λ )2 ≤ 0. (6.27)

and from (6.26), the speed at which a purely imaginary root exists when ν = 0 is given by

C0 =

√
−γ(1+λ )2 +(η +λ )2

(1+λ )(η −1)
, (6.28)

provided that conditions (6.27) are satisfied.

6.2.4 Summary of roots classification

Now by following same way in discussing the character of the eigenvalues in the previous

case, we can easily obtain the results for this case. A summary of the results are shown

in tables 6.3 and 6.4. Variation of double root speed and the eigenvalues with system

parameters λ , γ , and η are plotted. These plots help in uncovering the classification of

eigenvalues shown in summary tables.
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Figure 6.14: (a) Double root locus for (6.19) when γ = 0, c1 = 2
√

ηλ . (b) The four eigenvalues
versus speed c, λ = 0.4 γ = 0 and η = 3.
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Table 6.3: Types of eigenvalues for (6.19) when 0 < λ < 1/2. Bold letters represent the double
root, capital for real parts of a complex root, and small for purely real roots. The roots are in
ascending order, q1 = (η +1)2 +4γ, q2 = (η +λ )2 +4γλ , and q3 = (η +λ )2 + γ(1+λ )2, and a
real triple root exists at η = η∗.

Conditions (Speed)c Roots Types Figures

γ
=

0 η ≤ 0 − − 6.14
η > 0 c1 nnp

γ
>

0

η ≤−γ − −
−γ < η ≤−λ c1 nnp 6.15
−λ < η ≤ η∗ c1 nnp

c4 NPP,NNP
η > η∗ c1,c2,c3 nnp,nnp,nnp,

−
1
≤

γ
<

0

q1 ≥ 0 − −
q1 < 0,q2 ≥ 0 c1 nnp
q2 < 0,q1 ≥ 0 c2 nPP
q1 > 0,q2 ≤ 0 c2/c3 nPP,npp/NNp,nnp 6.16 , 6.17

q2 > 0,η ≤−γ c2,c4 npp,npp
−γ < η ≤ η∗ c2,c4,c5 nnp,nnp,nnp

η > η∗ c2 nnp
c6 NNP

γ
<
−

1

q1 ≥ 0 − −
q1 < 0,q2 ≥ 0 c1 nnp
q2 < 0,η ≤ 1 c2 nPP
η > 1,q3 ≤ 0, c2 nPP,nNN

c4 NNP 6.18 , 6.19
q3 > 0,q1 ≤ 0 c2 nNN

c4 NNP
q1 > 0,η ≤−γ c2,c3 nNN,nnn/NNn,nnn

c4 NNP
η >−γ c2 nnp

c4 NNP
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Figure 6.15: Double root locus for for (6.19) when 0 < λ < 1/2, γ > 0, dotted lines are (1)
η = −γ , (2) η = −γ , (3) η = η∗ and (4) ν = 2

√
γλ/(1− λ ). (c) and (d) The variation of the

double root (dashed line) and the other two roots (solid line) with η and c4, respectively, when
λ = 0.3 and γ = 5 . (e) and (f) The four eigenvalues versus speed c when, λ = 0.3 and γ = 5 and
(e) η =−3, (f) η = 20, solid lines represent the real part and dotted line represent the imaginary
part of eigenvalues.
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Table 6.4: Types of eigenvalues for (6.19) when 1/2 ≤ λ < 1. Bold letters represent the double
root, capital for real parts of a complex root, and small for purely real roots. The roots are in
ascending order, q1 = (η +1)2 +4γ, q2 = (η +λ )2 +4γλ , and q3 = (η +λ )2 + γ(1+λ )2, a real
triple root exists at η = η∗.

Conditions (Speed)c Roots Types Figures

γ
=

0

Same classification as in table 6.3.

γ
>

0

η ≤−γ − −
−γ < η ≤−λ c1 nnp 6.20

η >−λ c1 nnp
c2 NPP,NNP

−
1
≤

γ
<

0

q1 ≥ 0 − −
q1 < 0,q2 ≥ 0 c1 nnp
q2 < 0,q1 ≥ 0 c2 nPP 6.21 , 6.22

q1 < 0,η ≤−γ c2,c3 nPP,npp/nnp,NNp
−γ < η < η∗ c2 nnp

c6 NNP
η ≥ η∗ c2,c4,c5 nnp,nnp,nnp

γ
<
−

1

q1 ≥ 0 − −
q1 < 0,q2 ≥ 0 c1 nnp
q2 < 0,η ≤ 1 c2 nPP
η > 1,q3 ≤ 0, c2 nPP,nNN

c6 NNP 6.23 , 6.24
q3 > 0,q1 ≤ 0 c2 nNN

c6 NNP
q1 > 0,η ≤−γ c2,c3 nNN,nnn/NNn,nnn

c6 NNP/NNN
−γ < η < η∗ c2 nnp

c6 NNP
η ≥ η∗ c2,c4,c5 nnp,nnp,nnp
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Figure 6.20: (a), (b) Double root locus for (6.19) when 1/2 ≤ λ < 1, γ > 0, dotted lines are (1)
η =−γ , (2) η =−γ and (3) ν = 2

√
γλ/(1−λ ). (c) The variation of the double root (dashed line)

and the other two roots (solid line) with c2. (d) The four eigenvalues versus speed c, when λ = 0.7
and γ = 5 and η = 3, solid lines represent the real part and dotted line represent the imaginary part
of eigenvalues.
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Figure 6.21: Double root locus for (6.19) when 1/2 ≤ λ < 1, −1 < γ < 0. (1) and (4) (η +1)2 +
4γ = 0, (2) (η +λ )2 +4γλ = 0, (3) (η +λ )2 + γ(1+λ )2 = 0, (5) η =−γ , (6) η = η∗.
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Figure 6.22: (a) The variation of the double root (dashed line) and the other two roots (solid line)
with η at c = c6 (see figure 6.21), λ = 0.6 and γ = −0.8 . (b)-(d) The four eigenvalues versus
speed c, when λ = 0.6 and γ = −0.8 and different values of η : (b) −2.6, (c) -1, (d) -0.7 and (e)
10, solid lines represent the real part and dotted line represent the imaginary part of eigenvalues.
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Figure 6.23: Double root locus for (6.19) when 1/2≤ λ < 1, γ <−1. (1) and (4) (η+1)2+4γ = 0,
(2) (η +λ )2 +4γλ = 0, (3) η = 1, (5) η =−γ , (6) η = η∗ and (7) ν =

√
−1− γ .
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Figure 6.24: (a) The variation of the double root (dashed line, (see figure 6.23)) and the other two
roots (solid line) with η at c = c6 and λ = 0.7, γ =−10. (b)-(f) The four eigenvalues versus speed
c when λ = 0.7 and γ =−10 and different values of η : (b) −7, (c) -3, (d) 3, (e) 6 and (f) 25, solid
lines represent the real part and dotted line represent the imaginary part of eigenvalues.
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6.3 Case S3

In this case fu = 0 and gv > 0, the characteristic equation ( (4.21) with the positive sign

in the second bracket) is

λ µ4 + c(λ +1)µ3 +
(
c2 +1− iν(λ +1)

)
µ2 + c(1− i2ν)µ −ρ −ν2 − iν = 0, (6.29)

where ν and c are real and µ can be complex. A summary of the roots type is shown in

table 6.5. In the following we determine the wave speed at which equation (6.29) has a

purely imaginary root, which can help in eigenvalues classification. Equation (6.29) has

µ =±iω at c =C, and there two speeds. The first is such that

C =C1 =
ν
ω1

, ω2
1 =

1
2λ

[1+(1+4λρ)1/2], (6.30)

provided that 1+4λρ ≥ 0, and the second is given by

C =C2 =
√

1+λ

(
ν +

√
−1+ρ(1+λ )2

(1+λ )2

)
, ω2

2 = 1/(1+λ ), (6.31)

provided that 1+ ρ(1+ λ )2 ≤ 0. From this result, if ν = 0 there is only one possible

non-zero value, C2 =C0, and can be written as

C0 =

√
−1+ρ(1+λ )2

(1+λ )
, ν = 0, (6.32)

on the condition 1+ρ(1+λ )2 < 0.

A double root speed and frequency can be obtained by solving the two equations

(A.28) and (A.29) (Appendix A), the two equation represent the resultant of the char-

acteristic equation (6.29) . They are solved for c and ν at specific values of the system

parameter λ and ρ and then we plot the obtained solutions.
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A triple root conditions are

λ µ4 + c(λ +1)µ3 +
(
c2 +1

)
µ2 + cµ −ρ = 0, (6.33)

4λ µ3 +3c(λ +1)µ2 +2
(
c2 +1

)
µ + c = 0, (6.34)

6λ µ2 +3c(λ +1)µ2 +
(
c2 +1

)
= 0, (6.35)

and for a fixed λ (0 < λ < 1), the above conditions are solved for c, ρ and µ . Figure 6.25

shows the variation of c, ρ and µ with λ . We notice that a triple root exists when ρ ≥

−1/4; when 0 < λ ≤ 1/2 it exists for ρ ≥ 0, and when 1/2 < λ ≤ 1 it exists for −1/4 <

ρ < 0. Thus in the summary table we present the eigenvalue classification considering

these parameter regimes.
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Figure 6.25: The variation of c, ρ and µ with λ when equation (6.29) (with ν = 0) has a triple
root, the solution of equations (6.33)-(6.35). The triple root µ = µ∗ is always negative and exists
for ρ ≥−1/4; When ρ ≥ 0, 0 < λ ≤ 1/2, and if −1/4 ≤ ρ < 0, then 1/2 < λ ≤ 1.

When ν = 0 the sequence of the characteristic polynomial coefficients is λ ,c(1+
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λ ),c2 +1,c,−ρ . The the RH sequence B.3 (see Appendix B.2) will be

λ , (1+λ )c,
(1+λ )c2 +1

1+λ
,

(1+λ )c2 +1+ρ(1+λ )2

(1+λ )c
, −ρ. (6.36)

From this sequence we can discuss the character of the roots as follows. If ρ > 0, there

will be only one sign change and this results in there is only one real and positive root, and

consequently the other roots can either be negative or complex conjugate with negative

real parts. When −1/(1+λ )2 < ρ < 0, there is no sign changes and all the roots have a

negative real part. However when ρ < −1/(1+λ )2, two sign change is possible and in

this case there will be two complex conjugate roots with positive real part and the other

two roots are either negative or complex with negative real part.

Now let us demonstrate the character of the roots at double root speeds when 0 <

λ ≤ 1/2. A double root exists at different wave speeds when ν = 0, these speeds c = ci,

i = 1,2,3,4 are represented by the solid lines shown in figure 6.26. Two other speeds c5

and c6 exist when ν ̸= 0, represented by the dashed lines. At these double root speeds, we

determine the character of the double root and the other two roots as follows.
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Figure 6.26: Double root locus for (6.29) when 0 < λ ≤ 1/2, possible solutions of (A.28) and
(A.29). Vertical dotted lines are: (1) ρ =−1/4λ , (2) ρ =−1/(1+λ )2, (3) ρ =−1/4, (4) ρ = 0
and (5) ρ = ρ∗. The character of the eigenvalues are shown in figure 6.27.
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Figure 6.27: (a), (b) The variation of the double root (dashed line) and the other two roots (solid
line) with ρ at c = c6 and c = c5 (see figure 6.26) when λ = 0.2. (c)-(f) The four eigenvalues
versus speed c when λ = 0.2 and at different values of ρ: (c) ρ = 6, (d) ρ = 0.05, (e) ρ =−0.1,
(f) ρ = −1, solid lines represent the real part and dotted line represent the imaginary part of
eigenvalues.
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When 0 < λ ≤ 1/2 and ρ > ρ∗ > 0, a double root exists at c = c4 and c = c6 (see

figure 6.26 ). When c = c4 a negative and real double root exits and the other two roots

are one negative and one positive, the four roots of (6.29) versus speed c are shown in

figure 6.27(c). Then the type of the roots at c = c4 is nnp. At c = c6 and ν = ν6, the real

part of the double root and the other two root is plotted versus ρ , shown in figure 6.27(a),

and the type of the roots can either be NNP or NPP. The double root is complex with

negative real part, and the other two roots are complex, one with positive real part and the

real part of the second can be either positive or negative (a purely imaginary root exists at

a speed c =C2 displayed in (6.31)).

When 0 < ρ < ρ∗ (see figure 6.26), three double root speeds exist, c1,c3 and c4. We

proved earlier that in this region, there is one real and positive root, and the other roots can

either be negative or complex conjugate with negative real parts. Hence the double root

at these speeds is negative and real and the other two roots are one positive and real and

one is negative and real. Figure 6.27(d) indicates the character of the roots at the speeds

c1,c3 and c4 which are nnp,nnp and nnp, respectively.

When ρ < 0, a complex double root with negative real part exists at c = c5 and ν = ν5,

and the other two roots are complex, one with positive real part and the real part of the

second can be either positive or negative (a purely imaginary root exists at a speed c =C1

displayed in (6.30)). The real part of the double root and the other two root is plotted

versus ρ , shown in figure 6.27(b), and the type of the roots can either be NNN or NNP.

Also, when ρ < 0 two double roots which are real and negative, occur at the speeds

c = c1 and c = c2. The speed c2 exists only when −1/4 < ρ < 0, and the character of

the root a this speed is NNn or nnn, while at c = c1 the roots type can be nNN or nnn.

The four eigenvalues versus the wave speed are shown in figure 6.27(e), which is clearly

indicates the types of the roots at c1 and c2. When ρ <−1/4, a negative real double root

exists at c = c1, see figure 6.26(a), and the other two roots are complex conjugate with
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either positive or negative real part. For these two roots, the switching occurs at c = C0

which displayed in (6.32), and provided that 1+ρ(1+λ )2 < 0. Hence, we can say that

for −1/(1+ λ )2 < ρ < −1/4, the double root is negative and real and the other two

roots are complex conjugate with a negative real part (the roots type is nNN). However

when ρ <−1/(1+λ )2 (the speed C0 exists), see figure 6.27(f). Thus we can say that the

double root is real and negative and and the other two roots are complex conjugate with

either positive or negative real part (the roots type is nPP or nNN). We finished the case

0 < λ ≤ 1/2, and for the case 1/2 < λ ≤ 1, one can follow same steps in discussing the

roots types. The character of roots can easily be known from figures 6.28 and 6.29. In the

end a summary of the root classification is indicated in table 6.5.
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Figure 6.28: Double root locus for (6.29) when 1/2 < λ < 1, possible solutions of (A.28) and
(A.29). Vertical dotted lines are: (1) ρ =−1/4λ , (2) ρ =−1/(1+λ )2, (3) ρ =−1/4, (4) ρ = 0
and (5) ρ = ρ∗ (−1/4 < ρ∗ < 0). The character of the eigenvalues are shown in figure 6.29.
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Figure 6.29: (a), (b) The variation of the double root (dashed line) and the other two roots (solid
line) with ρ at c= c5 and c= c6 (see figure 6.28) when λ = 0.6. (c)-(f) The four eigenvalues versus
speed c when λ = 0.6 and at different values of ρ: (c) ρ = 0.5, (d) ρ = −0.05, (e) ρ = −0.22
and (f) ρ =−1.4, solid lines represent the real part and dotted line represent the imaginary part of
eigenvalues.
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Table 6.5: Types of eigenvalues for (6.5). Bold letters represent the double root, capital for real
parts of a complex root, and small for purely real roots. The roots are in ascending order, ρ1 =
−1/4λ and ρ2 =−1/(1+λ )2, a negative triple root exists at ρ = ρ∗.

Conditions (Speed)c Roots Types Figures

0
<

λ
≤

1/
2

ρ ≥ ρ∗ c4 nnp
c6 NNP,NPP

0 ≤ ρ < ρ∗ c1,c3,c4 nnp,nnp,nnp
−1/4 ≤ ρ < 0 c1/c2 nNN,nnn/NNn,nnn

c5 NNN 6.26 , 6.27
ρ2 ≤ ρ <−1/4 c1 nNN

c5 NNN,NNP
ρ < ρ2 c1 nNN,nPP

c5 NNP

1/
2
<

λ
≤

1

ρ > 0 c4 nnp
c6 NNP,NPP

ρ∗ ≤ ρ < 0 c1,c2,c3,c4 nnn,NNn,nnn,nnn
−1/4 ≤ ρ < ρ∗ c1,c2 nnn,NNn

c5 NNN
ρ2 ≤ ρ <−1/4 c1 nNN 6.28 , 6.29

c5 NNN
ρ1 ≤ ρ < ρ2 c1 nNN,nPP

c5 NNN
ρ < ρ1 c1 nNN,nPP

c5 NNN,NNP
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6.4 Case S4

In this case fu = 0 and gv < 0, and the characteristic equation is (refer to (4.21) with the

negative sign in the first bracket)

λ µ4 + c(λ +1)µ3 +
(
c2 −1− iν(λ +1)

)
µ2 − c(1+ i2ν)µ −ρ −ν2 + iν = 0, (6.37)

where ν and c are real and µ can be complex. The resultant is complex, which gives us

two real equations (A.31) and (A.32) (the double root conditions, Appendix A). When

ν = 0, these two equations reduce to equation (A.33), which is solved to obtain the double

root speed c when ν = 0. The obtained solutions are shown in figure 6.30; the solid

lines represent these speeds. From (A.33) a double root speed is zero when ρ = 0 or

ρ =−1/4λ , and takes very large values as ρ →−1/4. In this case, a triple root does not

exists, hence a transition from ν = 0 and ν ̸= 0 can not occur.

Let us discuss the roots character when ν = 0. The sequence of the characteristic

polynomial coefficients is λ ,c(1+ λ ),c2 − 1,−c,−ρ . When ρ > 0, there is only one

change of sign in this sequence, hence a positive real root always exists. Thus we can say

that when ν = 0 and ρ > 0, if a double root exists, it will be real and negative. At this

result, when ρ > 0 the four roots are one real and positive, one real and negative, and the

other two are either real and negative or complex conjugate with negative real part. When

ρ < 0 there are always two sign change in the sequence. Thus there will be two real and

positive roots or two complex conjugate roots with positive real part. Therefore the other

two roots are negative or complex conjugate with negative real part.

Now from figure 6.30, speed c2 exists when −1/4λ ≤ ρ < −1/4, which is zero at

ρ = 0 and goes to infinity as ρ →−1/4. At c = c2 a positive double root exists and the

other two roots are negative. Thus the roots type is nnp, see the eigenvalues versus speed

in figure 6.31(c). For the other two speeds c = c1 and c = c3, a real and negative double
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Figure 6.30: Double root locus for (6.29), possible solutions of (A.31) and (A.32). Vertical dotted
lines are: (1) ρ =−1/4λ , (2) ρ =−1/4, (3) ρ = 0. At c = c4, there a complex double root with
positive real part, a real and negative double exists when c = c1 and c = c3, while at c = c2 the
double root is real and positive.The character of the eigenvalues are shown in figure 6.29.

eigenvalue exists, and the other two roots are: one positive and one negative when c = c3

(see 6.31(b)), and complex conjugates with positive real part at c = c1 (see 6.31(d)). Thus

the root type at c1 is nPP, while at c3 is nnp.

Table 6.6: Types of eigenvalues for (6.37) when 0 < λ < 1, see figure 6.30. Bold letters represent
the double root, capital for real parts of a complex root, and small for purely real roots. The roots
are in ascending order

Conditions Speedc Roots Type Figures
ρ > 0 c3 nnp

c4 NNP
−1/4 ≤ ρ ≤ 0 − − 6.30 , 6.31

−1/4λ ≤ ρ <−1/4 c2 nnp
ρ <−1/4λ c1 nPP

In case of ν is nonzero, a complex double root with positive real part exists at c = c4

and ν = ν4, provided that ρ > 0. The speed c = c4 and the frequency ν = ν4 versus

ρ shown in figure 6.30 (dashed line), which represent the solution of (A.31) and (A.32)

when λ = 0.2. The double root is complex with positive real part and when we check the

other two roots, they are complex with negative real parts. The variation of the real part
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Figure 6.31: (a) The variation of the double root (dashed line) and the other two roots (solid line)
with ρ at c = c4 and λ = 0.2. (b)-(d) The four eigenvalues versus speed c when λ = 0.2 and at
different values of ρ : (c) ρ = 1.0, (c) ρ = −0.3 and (d) ρ = −3.0, solid lines represent the real
part and dotted line represent the imaginary part of eigenvalues.
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of the double root and the real parts of the other two root is shown in figure see 6.31(a),

hence the type of the roots is then NNP. Hence c4 can not be the selected speed. The

character of the double root and the other two roots are shown in table 6.6

6.5 Summary

In this chapter a travelling wave analysis has been performed for a linearised two-component

reaction-diffusion system in which the diffusion coefficients of the two components are

different. We have discussed four cases, which gives a comprehensive study of the sys-

tem. In each case, the characteristic equation is quartic and a double root mechanism

(linear selection) is used to give some insights on a linear front speed. In our analysis we

focused on indicating the character of the double root and other roots.

From the classification of the roots, we gave an idea about the imposed boundary

conditions, which in turns make the double root the slowest decay (dominant exponential).

We have given a recipe of borderlines between different regimes. For example, we have

described where the double root speed switches between zero and non-zero frequency

(ν = 0 and ν ̸= 0), the triple root condition represents the borderline in this case. Also,

we have pointed out the regimes where the speed at which the sign of a real part of

an eigenvalue switches from positive to negative exists, which helps in uncovering the

character of the roots.

At some parameter regimes, there are two different wave speeds associated with the

same root character, and it is not immediately clear in the basis of the current analysis we

need to know which speed is selected as a linear front speed. This is an open question and

need further analysis, and we hope to answer it in the future.
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Chapter 7

Conclusion and Future Work

This thesis has been concerned with studying scalar reaction-diffusion equations and

a two-component reaction-diffusion systems with constant diffusion coefficients. We

looked at the instabilities and bifurcation problems, along with travelling wave analy-

sis has been performed, investigating the existence of front solutions. We have introduced

a linear selection mechanism governing the development and propagation of nonlinear

patterns.

A detailed analysis of the instabilities that arise in the system is performed, using

linear stability analysis. There are two kinds of instabilities: the first type is uniform in-

stability, as the most unstable wave number is k = k∗ = 0, and the second type is a spatially

a spatially periodic instability with k = k∗ ̸= 0. Depending on whether the eigenvalue σ

is real or complex, each of these two types has two subtypes: stationary when the eigen-

value is a purely real and oscillatory in case of a complex eigenvalue. Thus there are

four kinds of instabilities: (1) stationary uniform, (2) oscillatory uniform, (3) stationary

periodic and (4) oscillatory periodic.

Pattern formation is typically associated with the second two types. There is a vast and

rich body of literature dealing with the patterning properties of two-component reaction-
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diffusion system, considering specific models (such as Gierer-Meinhardt model, Brusse-

lator model and Gray-Scott model) can be found in the books by Briton [13], Fife [27] ,

Grindrod [33] and Murray [55]. Many kinds of patterns (spatial and/or temporal) are in-

vestigated in biology [41, 49, 53], chemistry [50, 57, 77, 80], physics [2, 17, 36], ecology

[4, 56, 59] and in epidemiology [51].

In the literature, the majority of researchers focus on a specific reaction-diffusion sys-

tem, considering one or two types of instabilities, and that encourages us to give a com-

prehensive study of the possible instabilities that arise in reaction-diffusion system of two

components with constant diffusion coefficients. From our linear instability analysis, the

first three types of instabilities can all arise in a two-component reaction-diffusion system,

i. e. stationary uniform, oscillatory uniform and stationary periodic. Precise parameter

regimes are identified for each type. For the stationary periodic type, it is a necessary

condition that the diffusion coefficients be different (see Murray [55]). The most unstable

wave number in this case and the associated temporal growth rate are obtained explicitly.

The fourth instability does not arise and in the following we give the reason.

For a system of two variables, the quadratic characteristic equation is σ2 + p(k2)σ +

q(k2) = 0, where σ is the eigenvalue and k is the wave number. The coefficient p(k2) is

always monotonic in the wave number ( p = a−bk2, where a and b are real and depend

on the system parameters). Thus we can say that Re(σ) is always monotonic in k; hence

Re(σ) never has a maximum at a wave number k > 0 which is a necessary condition for

the oscillatory periodic type. Thus in our study, we concluded that in a two-component

reaction diffusion system the oscillatory periodic instability never arises. However, this

type of instability can arise for system of at least three variables, as in this type Im(σ) ̸= 0

and Re(σ) must a non-monotonic function of the wave number k (see Vanag [75]).

A three-component model (extended Brusselator model, system (7.1) with f = a−

(1+b)u+u2v− cu+dw, g = bu−u2v and h = cu−dw, a,b,c and d are real) has been
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studied by Dolnik et al [79] and by Vanag [75], and complex patterns appeared as a

result of instability of oscillatory periodic type. Therefore, in the future we aim to give

a detailed analysis for the instabilities, similar to our study of two-component, that can

arise in a three-component systems (with general kinetics), i.e.

∂u
∂ t

= Du∇2u+ f (u,v,w),

∂v
∂ t

= Dv∇2v+g(u,v,w),

∂w
∂ t

= Dw∇2w+h(u,v,w),

(7.1)

where Du, Dv and Dw are the diffusion coefficients which are positive and real.

Travelling wave analysis is performed for reaction-diffusion equations. We focused

on a linear selection mechanism, the double root mechanism, that gives some insights

on the lower bound of the selected speed of invasion of unstable state by a stable one,

considering a fixed form of travelling wave and a modulated travelling wave. The char-

acteristic equation we have studied is obtained by introducing the travelling wave coordi-

nates (z, t) = (x−ct, t) into differential equations, then we linearise the obtained travelling

wave equations around the unstable rest state. From these linearised equations we obtain

the characteristic equation. Through our discussion, we determine speeds at which a re-

peated root exists, and then classify the eigenvalues at these speeds (the double root and

the other two roots). This gives some insights on the minimum wave speed and helps us

to understand the speed selection problem for the class of reaction-diffusion equations we

study.

A minimal front speed is the speed at which the double root is the slowest decaying

eigenvalue (dominant root), assuming that the state at infinity is an unstable one and the

front moves to the right. In chapter 2, we studied two scalar reaction diffusion equations,

the extended Fisher’s equation and the Swift-Hohenberg equation, applying the double
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root mechanism. The obtained results (minimum front speeds) in chapter 2 were con-

sistent with the results obtained by the marginal stability mechanism (see, [7, 64, 73]).

From our results of a fourth order reaction diffusion equations, we wanted to apply the

mechanism on systems. Thus we continued our analysis with a two-component reaction-

diffusion system with constant diffusion coefficients, in chapters 4, 5 and 6. A detailed

and comprehensive analysis of the linear mechanism investigating the development and

propagation of nonlinear patterns is performed. We have given a recipe for investigating

the dependence of the linear front speed on the system parameters.

In the future, we aim to include the three-component system (7.1) in the analysis. We

want to give some highlights onto the wave instability that arises in these systems. Also,

we hope to discuss the nonlinear fronts whose asymptotic speed is larger than the asymp-

totic linear front (which have been investigated). That is to consider analysis to linear

(pulled) versus the nonlinear (pushed) fronts. However this needs different approaches

to the analysis, requesting a nonlinear treatment. Some specific reaction-diffusion sys-

tems were discussed, considering the travelling wave existence problem and the speed of

propagation (see for example King et al [35, 40] , Billingham [8–10], Leach[46], Qi[63],

Landman et al [43], Kim[39], Sherratt [66, 67]). Thus in the future we aim to discuss two-

component reaction-diffusion systems with more general nonlinearity in their kinetics.
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Appendix A

Sylvester’s Method of Elimination and

Double Root Conditions

A.1 Sylvester’s Method of Elimination

If p and q are two polynomials which can be factored into linear factors

p(x) = a0(x− r1)(x− r2) · · ·(x− rm) (A.1)

q(x) = b0(x− s1)(x− s2) · · ·(x− sn), (A.2)

then the resultant R( f ,g) of f and g is defined as

Rx(p,q) = an
0bm

0

m

∏
i=1

n

∏
j=1

(ri − s j). (A.3)

From the definition, it is clear that the resultant will equal zero if and only if p and q

have at least one common root. An explicit formula for the resultant as a determinant was
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given by Sylvester [1]. Suppose that

p(x) = a0xm +a1xm−1 + · · ·+am−1x+am (A.4)

q(x) = b0xn +b1xn−1 + · · ·+bn−1x+bn, (A.5)

Then Rx(p,q) can be expressd as an (m+n)× (m+n) determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . am 0 . . . 0

0 a0 a1 . . . am−1 am . . . 0
. . . . . . . .

0 0 . . . . . am

b0 b1 b2 . . . bn 0 . . . 0

0 b0 b1 . . . bn−1 bn . . . 0
. . . . . . . .

0 0 . . . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Rx(p,q) (A.6)

To construct this determinant, one first lists the coefficients of p, padded with zeros at the

end, then constructs subsequent rows by shifting one column to the right each time until

one runs out of zeros at the end, then one repeats the same procedure with q. Resultants

are very useful for solving simultaneous systems of polynomial equations. Suppose that

one has a system of two equations f (x,y) = 0,g(x,y) = 0. Then f and g can be regarded as

polynomials in x whose coefficients are functions of y. One can then form the resultant by

computing the determinant of a matrix as above. Since the coefficients were polynomials

in y, the resultant will be a polynomial in y. In order for the two equations to have

a solution, the resultant must equal zero; hence setting the resultant to zero gives an

equation for the y values of solutions of the system. Once one solves for these y values,

one can substitute them back in to the original equations and solve for the corresponding
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x values. In other words, the resultant allows one to eliminate a variable from a system

of equations. For this reason, resultants are also known as eliminant. By using resultants

to eliminate variables repeatedly one variable at a time, one solve systems of equations in

more than two unknowns.

A.2 Double Root Conditions

Consider the case in which q(x) is the derivative of p(x) with respect to x. In this case,

there must be at least one common root; a double root of p(x) exists. Hence we can say

that resultant Rx(p,q) must be zero, i.e.,

Rx(p,
d p
dx

) = 0. (A.7)

Consider a cubic polynomial equation

p(x) = A3µ3 +A2µ2 +A1µ +A0 = 0, (A.8)

then we construct the resultant using (A.6) and apply (A.7) to obtain

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A3 A2 A1 A0 0

0 A3 A2 A1 A0

3A3 2A2 A1 0 0

0 3A3 2A2 A1 0

0 0 3A3 2A2 A1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (A.9)

which can be simplified to

4A3A3
1 −A2

2A2
1 −18A0A1A2A3 +4A0A3

2 +27A2
0A2

3 = 0, (A.10)
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which is a condition for p(x) to have a double root. Also, a condition for a double root of

the quartic polynomial equation

A4µ4 +A3µ3 +A2µ2 +A1µ +A0 = 0 (A.11)

can be obtained. This condition is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A4 A3 A2 A1 A0 0 0

0 A4 A3 A2 A1 A0 0

0 0 A4 A3 A2 A1 A0

4A4 3A3 2A2 A1 0 0 0

0 4A4 3A3 2A2 A1 0 0

0 0 4A4 3A3 2A2 A1 0

0 0 0 4A4 3A3 2A2 A1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (A.12)

and can appear as

(A.13)

−27A3
4A4

1 + 18A2A3A2
4A3

1 − 4A3
3A4A3

1 + 144A0A2A3
4A2

1

− 4A3
2A2

4A2
1 − 6A0A2

3A2
4A2

1 + A2
2A2

3A4A2
1 − 192A2

0A3A3
4A1

− 80A0A2
2A3A2

4A1 + 18A0A2A3
3A4A1 + 256A3

0A4
4 − 128A2

0A2
2A3

4

+ 16A0A4
2A2

4 + 144A2
0A2A2

3A2
4 − 27A2

0A4
3A4 − 4A0A3

2A2
3A4 = 0.

A.2.1 Case S1

Here consider

A4 = λ , A3 = c(1+λ ), A2 = c2 +λ +η − iν(1+λ ) ,

A1 = c(η +1− i2ν), A0 = η − γ −ν2 − iν(1+η),
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then equation (A.13) results in the two real equations

λ
[
(η − 1)2 + 4γ

]
(λ − 1)2c8 − 2λ (λ − 1)

[
γ(λ (3λ + 10) + η(λ (9λ − 10)− 3)− 9)

+(η −1)
(
(2(λ −1)λ −1)η2−2((λ −3)λ +1)η +(λ −2)λν2+ν2−λ (λ +2)+2

)]
c6

+ λ
[
(1 − 8(λ − 1)λ )η4 + 4(λ (2λ (4λ − 5)− 1) + 2)η3

+ 2
(
−4λ 4 − 20λ 3 + 51λ 2 − 20λ + (λ − 1)2(2λ − 11)(2λ + 1)ν2 − 4

)
η2

+ 4
(
(λ − 1)2(λ (2λ + 23) + 2)ν2 + (λ − 2)λ (λ (2λ + 3)− 4)

)
η + (λ − 1)4ν4

−2(λ −1)2(λ +2)(11λ −2)ν2+λ 2(λ (λ +8)−8)+γ2(λ (λ (9(4−3λ )λ −2)+36)−27)
+ 2γ

(
−(λ (2λ + 5)(3λ − 4) + 3)η2 + 2(λ (λ (λ (9λ + 13)− 48) + 13) + 9)η

− 5(λ − 1)2(λ (3λ + 14) + 3)ν2 − λ (λ (λ (3λ − 20) + 7) + 6)
)]

c4

−4λ
[
(λ −1)3(λ (4λ +13)+η((λ −13)λ −4)−1)ν4−2(λ −1)

(
(λ (11λ −17)−2)η3

+(9λ (1−2(λ −2)λ )−3)η2 +3λ (λ ((λ −3)λ −12)+6)η +λ 2(λ (2λ +17)−11)
)

ν2

+ (η − λ )2 (λη3 + (2(4 − 5λ )λ + 1)η2 + λ (λ (λ + 8)− 10)η + λ 2)
+ 4γ2λ (λ ((10 − 9λ )λ + 3) + η(λ (3λ + 10)− 9))
+ γ

(
(3λ (5λ − 2)− 1)η3 + λ (49 − λ (31λ + 26))η2

+ (λ (λ ((88 − 49λ )λ + 38)− 80) + 3)ν2η + λ 2(λ (49λ − 26)− 31)η
+(λ −1)λ (λ (λ (3λ −77)−39)+49)ν2−λ 3(λ (λ +6)−15)

)]
c2+16λ 2

[
−(λ −1)4ν6

− (λ − 1)2 (−10η2 − 5η + (γ − 5(η + 2))λ 2 + γ + 2(−5γ + η(2η + 11) + 2)λ
)

ν4

+
(
8λ ((λ − 4)λ + 1)γ2

+ 2
(
3λ 4 − 18(η + 1)λ 3 + 11(η(η + 4) + 1)λ 2 − 18η(η + 1)λ + 3η2)γ

+ (η − λ )2 (−5(2η + 1)λ 2 + 2(η(2η + 11) + 2)λ − 5η(η + 2)
))

ν2

+ (η − γ)
(
(η − λ )2 + 4γλ

)2]
= 0,

(A.14)

158



(A.15)

νλ (λ − 1)2[6γ(λ + 1)+ (η − 1)(η(λ + 2)− 2λ − 1)]c6

+ νλ (λ − 1)
[
γ(η(λ (39 − λ (9λ + 16)) + 6)

+ λ (16 − 3λ (2λ + 13)) + 9)
+ η3(2(5 − 4λ )λ + 3) + η2 (4λ 3 − 21λ + 2

)
+ η

(
−2λ 3 + 21λ 2 − (λ − 1)2(2λ + 3)ν2 − 4

)
+ (λ − 1)2(3λ + 2)ν2 − λ (λ + 4)(3λ − 2)

]
c4

+ νλ
[
−4γ2λ (λ + 1)(λ (9λ − 22) + 9)

+ γ
(
η2(λ ((19 − 31λ )λ + 31)− 3)

+ 2ηλ (λ + 1)(λ (49λ − 106) + 49)
+ λ 2(λ ((31 − 3λ )λ + 19)− 31)
+ (λ − 1)2(λ + 1)((λ − 42)λ + 1)ν2)
+η4((13−12λ )λ +1)+η3(4λ (λ (11λ −16)+2)+4)
+ 2η2 ((λ − 3)(λ − 1)2(6λ + 1)ν2

− 3λ (λ + 1)(2λ − 3)(3λ − 2)
)

+ 4ηλ 2(λ (λ (λ + 2)− 16) + 11)
− 4η(λ − 1)2(λ + 1)((λ − 9)λ + 1)ν2

+ λ 3(λ (λ + 13)− 12) + (λ − 1)4(λ + 1)ν4

− 2(λ − 1)2λ (λ + 6)(3λ − 1)ν2]c2 + 8(λ
−1)λ 2ν3 [2γ(η(λ (3λ −8)+1)−λ ((λ −8)λ +3))+(η
−λ )

(
−5(η +1)λ 2 +(η(3η +14)+3)λ −5η(η +1)

)]
− 4νλ 2 [4γλ +(η −λ )2][(η −λ )(η(η − 5λ + 5)−λ )
− 4γ

(
−2(η + 1)λ + η + λ 2)]

− 4(λ − 1)3λ 2ν5(η(λ − 5) + 5λ − 1) = 0.

159



When ν = 0, these two equations reduce to the following equation

(A.16)λ
[
(λ −1)2 [4γ+(η−1)2]c8−2(λ −1)

[
γ(η(λ (9λ −10)−3)+λ (3λ +10)−9)

+ (η − 1)
(
η2(2(λ − 1)λ − 1)− 2η((λ − 3)λ + 1)− λ (λ + 2) + 2

)]
c6

+
[
4λ 3 (9γ2 − γ(η − 5)(3η + 2) + η(2η(4η − 5)− 1) + 2

)
− 2λ 2 (γ2 + γ(η(7η + 96) + 7) + η(η(4η(η + 5)− 51) + 20) + 4

)
+ 4λ

(
9γ2 + γ(2η + 3)(5η − 1) + (η − 2)η(η(2η + 3)− 4)

)
− 27γ2

+λ 4 (36γη −3γ(9γ +2)−8η2+8η +1
)
−6γη2+36γη +η4+8η3−8η2]c4

+ 4
[
−4γ2λ (η(λ (3λ + 10)− 9) + λ ((10 − 9λ )λ + 3))

+γ
(
η3(3(2−5λ )λ+1)+η2λ (λ (31λ+26)−49)+ηλ 2((26−49λ )λ+31)+λ 3(λ (λ+6)−15)

)
− (η − λ )2 (η3λ + η2(2(4 − 5λ )λ + 1) + ηλ (λ (λ + 8)− 10) + λ 2)]c2

− 16λ (γ − η)
(
4γλ + (η − λ )2)2] = 0.

Also we can deduce that equation (A.11) has a triple root (for ν = 0) when

(A.17)

324γ3λ 5 − 1008γ3λ 4 + 1432γ3λ 3 − 1008γ3λ 2 + 324γ3λ
+ 108γ2η2λ 5 − 387γ2η2λ 4 + 780γ2η2λ 3 − 714γ2η2λ 2

+ 288γ2η2λ − 27γ2η2 − 522γ2ηλ 5 + 1896γ2ηλ 4

− 2844γ2ηλ 3 + 1896γ2ηλ 2 − 522γ2ηλ − 27γ2λ 6

+ 288γ2λ 5 − 714γ2λ 4 + 780γ2λ 3 − 387γ2λ 2 + 108γ2λ
− 9γη4λ 4 + 102γη4λ 3 − 138γη4λ 2 + 66γη4λ − 9γη4

− 126γη3λ 5 + 600γη3λ 4 − 1200γη3λ 3 + 996γη3λ 2

−354γη3λ +36γη3−9γη2λ 6+318γη2λ 5−1227γη2λ 4

+1908γη2λ 3−1227γη2λ 2+318γη2λ −9γη2+36γηλ 6

− 354γηλ 5 + 996γηλ 4 − 1200γηλ 3 + 600γηλ 2

− 126γηλ − 9γλ 6 + 66γλ 5 − 138γλ 4 + 102γλ 3 − 9γλ 2

+ 8η6λ 3 − 12η6λ 2 + 6η6λ − η6 + 24η5λ 4 − 96η5λ 3

+ 102η5λ 2 − 42η5λ + 6η5 + 24η4λ 5 − 168η4λ 4

+ 372η4λ 3 − 303η4λ 2 + 102η4λ − 12η4 + 8η3λ 6

− 96η3λ 5 + 372η3λ 4 − 588η3λ 3 + 372η3λ 2 − 96η3λ
+ 8η3 − 12η2λ 6 + 102η2λ 5 − 303η2λ 4 + 372η2λ 3

− 168η2λ 2 + 24η2λ + 6ηλ 6 − 42ηλ 5 + 102ηλ 4

− 96ηλ 3 + 24ηλ 2 − λ 6 + 6λ 5 − 12λ 4 + 8λ 3 = 0,
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If we substitute µ = Re(µ)+ iIm(µ) = x+ iy, where x and y are real, into the quartic

equation (A.11) we obtain the two real equations

(A.18)c2x2 − c2y2 + cλx3 + cx3 + cηx−3cλxy2 −3cxy2 + cx+2cνy− γ +η −ν2

+ λx4 + ηx2 + λx2 − 6λx2y2 + 2λνxy + 2νxy + λy4 − ηy2 − λy2 = 0,

(A.19)2c2xy + 3cλx2y + 3cx2y − 2cνx − cλy3 − cy3 + cηy + cy − ην − ν
+ 4λx3y − λνx2 − νx2 − 4λxy3 + 2ηxy + 2λxy + λνy2 + νy2 = 0,

where x, y are the real and imaginary parts of the eigenvalue, c, ν , λ , γ and η are all real

parameters. Now eliminating the parameter ν from these two equations gives

(A.20)

4c4x4 + 8c3x3 (η + (λ + 1)x2 − (λ + 1)y2 + 1
)

+ c2x2 (−4γ + η(5η + 14) + (λ (5λ + 14) + 5)x4

+ 2x2 (5ηλ + 7η + 7λ − 3(λ (λ + 6) + 1)y2 + 5
)

+ (λ (5λ + 14) + 5)y4 − 2y2(5ηλ + 7η + 7λ + 5) + 5
)

+ cx
(
η + (λ + 1)x2 − (λ + 1)y2 + 1

)(
−4γ + η(η + 6)

+(λ (λ +6)+1)x4+2x2 ((η +3)λ +3η +((λ −10)λ +1)y2+1
)

+ (λ (λ + 6) + 1)y4 − 2y2((η + 3)λ + 3η + 1) + 1
)

− γ
(
η + (λ + 1)x2 − (λ + 1)y2 + 1

)2
+
(
x2 − y2 + 1

)
(η + λ (x − y)(x + y))

(
(λ + 1)2x4

+ 2x2 (ηλ + η + λ + ((λ − 6)λ + 1)y2 + 1
)

+
(
η − (λ + 1)y2 + 1

)2)
= 0,

and for fixed values of λ , γ and η , this equation represents the constant speed contours

in the x, y space (the Re(µ), Im(µ) space). If there is a double root exists the contours

corresponding to double root speed meet to form a saddle point.

Also, we can deduce a formula similar to (A.20), but to represent contours for the pa-

rameter ν . We refer to (A.18) and (A.19) and eliminate c to obtain the following required
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equation (constant ν contours in the Re(µ), Im(µ) space)

(λ − 1)2λx10y2 − (λ − 1)2(λ + 1)νx9y
+ x8 ((λ − 1)2ν2 + λ (λ (5λ − 6) + 5)y4 +

(
λ 2 − 1

)
y2(η − λ )

)
− νx7y

(
(λ − 1)(η(λ + 3)− 3λ − 1) + 4(λ + 1)

(
λ 2 + 1

)
y2)

+ x6
(

2(η − 1)(λ − 1)ν2 + 2λ (λ (5λ − 2) + 5)y6 − 4(λ + 1)y4 (η + λ 2)
+ y2 (−λ

(
2γ + η2 + 1

)
+ λ 2(3γ − η + 2) + 3γ + 2η2 − η + (λ (7λ + 10) + 7)ν2))

+ νx5y
(
−4γ(λ + 1) + (η − 1)((η + 3)λ − 3η − 1)− 8(λ + 1)ν2

− 6(λ + 1)3y4 + y2 ((η + 13)λ 2 + 10(η + 1)λ + 13η + 1
))

+ x4
(

ν2 (4γ + (η − 1)2 + 4ν2)+ 2λ (λ (5λ + 2) + 5)y8 − 6(λ + 1)2y6(η + λ )

+y4 (γ(λ (5λ −6)+5)+λ
(
η2+η(λ +8)+(11λ +26)ν2+6λ

)
+6η2+η +λ +11ν2)

+ y2 ((−η − 1)(2γ(λ + 1) + (η − 1)(η − λ ))− 8ν2(η(λ + 2) + 2λ + 1)
))

− νx3y
(
−(η + 1)

(
4γ + (η − 1)2 + 8ν2)+ 4(λ + 1)(λ (λ + 4) + 1)y6

− y4 ((5η + 17)λ 2 + 26(η + 1)λ + 17η + 5
)

+ 2y2 ((η + 1)(η(λ + 5) + 5λ + 1) + 4(λ + 1)ν2))
+ x2y2

(
−4γ2 + η

(
(5η + 14)ν2 + (η − 2)η

)
+ η + 5ν2 + λ (λ (5λ + 6) + 5)y8

− 4(λ + 1)y6(2ηλ + η + λ (λ + 2)) + γ
(
−(η − 6)η − 4ν2 + ((λ − 6)λ + 1)y4 − 1

)
+ y4 (η2(5λ + 6) + η(λ (5λ + 16) + 5) + (λ (5λ + 14) + 5)ν2 + λ (6λ + 5)

)
+ 2y2 ((η + 1)2(−(η + λ ))− ν2(η(5λ + 7) + 7λ + 5)

))
− νxy3 (−η + (λ + 1)y2

− 1
)(

−4γ + η(η + 6) + (λ (λ + 6) + 1)y4 − 2y2(η(λ + 3) + 3λ + 1) + 1
)

+ y4 (η − (λ + 1)y2 + 1
)2 ((

y2 − 1
)(

λy2 − η
)
− γ
)
= 0.

(A.21)

A.2.2 Case S2

Consider

A4 = λ , A3 = c(1+λ ), A2 = c2 −λ +η − iν(1+λ ) ,

A1 = c(η −1− i2ν), A0 =−η − γ −ν2 − iν(η −1),
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then equation (A.13) results in the two real equations(
λ (η + 1)2 + 4γ

)
(λ − 1)2c8 − 2λ (λ − 1)

(
γ
(
3(3η − 1)λ 2 − 10(η + 1)λ − 3η + 9

)
+(η +1)

(
(2(λ −1)λ −1)η2+2((λ −3)λ +1)η +(λ −2)λν2+ν2−λ (λ +2)+2

))
c6

− λ
[
(8(λ − 1)λ − 1)η4 + 4(λ (2λ (4λ − 5)− 1) + 2)η3

+ 2
(
4λ 4 + 20λ 3 − 51λ 2 + 20λ − (λ − 1)2(2λ − 11)(2λ + 1)ν2 + 4

)
η2

+ 4
(
(λ − 1)2(λ (2λ + 23) + 2)ν2 + (λ − 2)λ (λ (2λ + 3)− 4)

)
η − (λ − 1)4ν4

+2(λ −1)2(λ +2)(11λ −2)ν2−λ 2(λ (λ +8)−8)+γ2(λ (λ (9λ (3λ −4)+2)−36)+27)
+ 2γ

(
(λ (2λ + 5)(3λ − 4) + 3)η2 + 2(λ (λ (λ (9λ + 13)− 48) + 13) + 9)η

+ 5(λ − 1)2(λ (3λ + 14) + 3)ν2 + λ (λ (λ (3λ − 20) + 7) + 6)
)]

c4

−4λ
[
(λ −1)3 ((η −4)λ 2 −13(η +1)λ −4η +1

)
ν4 −2(λ −1)

(
(λ (11λ −17)−2)η3

+3(3λ (2(λ −2)λ −1)+1)η2+3λ (λ ((λ −3)λ −12)+6)η +λ 2(11−λ (2λ +17))
)

ν2

+ (η + λ )2 (λη3 + (2λ (5λ − 4)− 1)η2 + λ (λ (λ + 8)− 10)η − λ 2)
+ 4γ2λ (η(λ (3λ + 10)− 9) + λ (λ (9λ − 10)− 3))
+ γ

(
(3λ (5λ − 2)− 1)η3 + λ (λ (31λ + 26)− 49)η2

+ (λ (λ ((88 − 49λ )λ + 38)− 80) + 3)ν2η + λ 2(λ (49λ − 26)− 31)η
−(λ −1)λ (λ (λ (3λ −77)−39)+49)ν2+λ 3(λ (λ +6)−15)

)]
c2+16λ 2

(
−(λ −1)4ν6

− (λ − 1)2 (−10η2 + 5η + (γ + 5(η − 2))λ 2 + γ + 2(−5γ + η(2η − 11) + 2)λ
)

ν4

+
(
8λ ((λ − 4)λ + 1)γ2

+ 2
(
3λ 4 + 18(η − 1)λ 3 + 11((η − 4)η + 1)λ 2 − 18(η − 1)ηλ + 3η2)γ

+ (η + λ )2 ((4λ − 5)η2 + 2(λ (5λ − 11) + 5)η + (4 − 5λ )λ
))

ν2

+ (−γ − η)
(
(η + λ )2 + 4γλ

)2)
= 0,

(A.22)
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νλ (λ − 1)2[6γ(λ + 1) + (η + 1)(η(λ + 2) + 2λ + 1)]c6

− νλ (λ − 1)
[
γ(η(λ (λ (9λ + 16)− 39)− 6) + λ (16 − 3λ (2λ + 13)) + 9)

+η3(2λ −3)(4λ +1)+η2 (4λ 3−21λ +2
)
+η

(
2λ 3−21λ 2+(λ −1)2(2λ +3)ν2+4

)
+ (λ − 1)2(3λ + 2)ν2 − λ (λ + 4)(3λ − 2)

]
c4 + νλ

[
−4γ2λ (λ + 1)(λ (9λ − 22) + 9)

+ γ
(
η2(λ ((19 − 31λ )λ + 31)− 3)− 2ηλ (λ + 1)(λ (49λ − 106) + 49)

+ λ 2(λ ((31 − 3λ )λ + 19)− 31) + (λ − 1)2(λ + 1)((λ − 42)λ + 1)ν2)
+ η4((13 − 12λ )λ + 1)− 4η3(λ (λ (11λ − 16) + 2) + 1)
+ 2η2 ((λ − 3)(λ − 1)2(6λ + 1)ν2 − 3λ (λ + 1)(2λ − 3)(3λ − 2)

)
− 4ηλ 2(λ (λ (λ + 2)− 16) + 11) + 4η(λ − 1)2(λ + 1)((λ − 9)λ + 1)ν2

+ λ 3(λ (λ + 13)− 12) + (λ − 1)4(λ + 1)ν4 − 2(λ − 1)2λ (λ + 6)(3λ − 1)ν2]c2

+ 4νλ 2 [−16γ2λ (η(2λ − 1) + (λ − 2)λ ) + 4γ
(
η3(1 − 3λ ) + η2(9 − 11λ )λ

+η(11−9λ )λ 2+η(λ −1)(λ (3λ −8)+1)ν2−(λ −3)λ 3+(λ −1)λ ((λ −8)λ +3)ν2)
+ 2(λ − 1)ν2(η + λ )

(
5(η − 1)λ 2 + (η(3η − 14) + 3)λ − 5(η − 1)η

)
+ (λ − 1)3ν4(−(η(λ − 5)− 5λ + 1))− (η + λ )3(η(η + 5λ − 5)− λ )

]
= 0.

(A.23)

When ν = 0, these two equations reduce to one equation

(A.24)λ
(
(λ −1)2 [4γ+(η+1)2]c8−2(λ −1)

[
γ
(
3(3η−1)λ 2−10(η+1)λ −3η+9

)
+ (η + 1)

(
η2(2(λ − 1)λ − 1) + 2η((λ − 3)λ + 1)− λ (λ + 2) + 2

)]
c6

−
[
−4λ 3 (9γ2 − γ(η + 5)(3η − 2)− 2η2(4η + 5) + η + 2

)
+ λ 4 (27γ2 + 6γ(6η + 1) + 8η(η + 1)− 1

)
+ 2λ 2 (γ2 + γ(η(7η − 96) + 7) + η(2η + 1)(η(2η − 11)− 20) + 4

)
− 4λ

(
9γ2 + γ(2η − 3)(5η + 1) + η(η + 2)(η(2η − 3)− 4)

)
+ 27γ2 + 6γη2

+36γη−η4+8η3+8η2]c4−4
[
4γ2λ (η(λ (3λ +10)−9)+λ (λ (9λ −10)−3))

+γ
(
η3(3λ (5λ−2)−1)+η2λ (λ (31λ+26)−49)+ηλ 2(λ (49λ−26)−31)+λ 3(λ (λ+6)−15)

)
+ (η + λ )2 (η3λ + η2(2λ (5λ − 4)− 1) + ηλ (λ (λ + 8)− 10)− λ 2)]c2

− 16λ (γ + η)
[
4γλ + (η + λ )2]2) = 0.
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Also in this case, the triple root condition is

(A.25)

324γ3λ 5 − 1008γ3λ 4 + 1432γ3λ 3 − 1008γ3λ 2 + 324γ3λ
+ 108γ2η2λ 5 − 387γ2η2λ 4 + 780γ2η2λ 3 − 714γ2η2λ 2

+ 288γ2η2λ − 27γ2η2 + 522γ2ηλ 5 − 1896γ2ηλ 4

+ 2844γ2ηλ 3 − 1896γ2ηλ 2 + 522γ2ηλ − 27γ2λ 6

+ 288γ2λ 5 − 714γ2λ 4 + 780γ2λ 3 − 387γ2λ 2 + 108γ2λ
− 9γη4λ 4 + 102γη4λ 3 − 138γη4λ 2 + 66γη4λ − 9γη4

+ 126γη3λ 5 − 600γη3λ 4 + 1200γη3λ 3 − 996γη3λ 2

+354γη3λ −36γη3−9γη2λ 6+318γη2λ 5−1227γη2λ 4

+1908γη2λ 3−1227γη2λ 2+318γη2λ −9γη2−36γηλ 6

+ 354γηλ 5 − 996γηλ 4 + 1200γηλ 3 − 600γηλ 2

+ 126γηλ − 9γλ 6 + 66γλ 5 − 138γλ 4 + 102γλ 3 − 9γλ 2

+ 8η6λ 3 − 12η6λ 2 + 6η6λ − η6 − 24η5λ 4 + 96η5λ 3

− 102η5λ 2 + 42η5λ − 6η5 + 24η4λ 5 − 168η4λ 4

+ 372η4λ 3 − 303η4λ 2 + 102η4λ − 12η4 − 8η3λ 6

+ 96η3λ 5 − 372η3λ 4 + 588η3λ 3 − 372η3λ 2 + 96η3λ
− 8η3 − 12η2λ 6 + 102η2λ 5 − 303η2λ 4 + 372η2λ 3

− 168η2λ 2 + 24η2λ − 6ηλ 6 + 42ηλ 5 − 102ηλ 4

+ 96ηλ 3 − 24ηλ 2 − λ 6 + 6λ 5 − 12λ 4 + 8λ 3 = 0,

The constant speed contour is given by

(A.26)

4c4x4 + 8c3x3 (η + (λ + 1)x2 − (λ + 1)y2 − 1
)

+ c2x2 (−4γ + η(5η − 14) + (λ (5λ + 14) + 5)x4

− 2x2 (−5ηλ − 7η + 7λ + 3(λ (λ + 6) + 1)y2 + 5
)

+ (λ (5λ + 14) + 5)y4 − 2y2(5ηλ + 7η − 7λ − 5) + 5
)

+ cx
(
η + (λ + 1)x2 − (λ + 1)y2 − 1

)(
−4γ + (η − 6)η

+(λ (λ +6)+1)x4+2x2 ((η −3)λ +3η +((λ −10)λ +1)y2−1
)

+ (λ (λ + 6) + 1)y4 + y2(−2η(λ + 3) + 6λ + 2) + 1
)

− γ
(
η + (λ + 1)x2 − (λ + 1)y2 − 1

)2
+
(
x2 − y2 − 1

)
(η + λ (x − y)(x + y))

(
(λ + 1)2x4

+ 2x2 ((η − 1)(λ + 1) + ((λ − 6)λ + 1)y2)
+
(
−η + (λ + 1)y2 + 1

)2)
= 0
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The constant frequency contour is

(λ − 1)2λx10y2 − (λ − 1)2(λ + 1)νx9y
+ x8 ((λ − 1)2ν2 + λ (λ (5λ − 6) + 5)y4 +

(
λ 2 − 1

)
y2(η + λ )

)
− νx7y

(
(λ − 1)(η(λ + 3) + 3λ + 1) + 4(λ + 1)

(
λ 2 + 1

)
y2)

+ x6
(

2(η + 1)(λ − 1)ν2 + 2λ (λ (5λ − 2) + 5)y6 + 4(λ + 1)y4 (λ 2 − η
)

+y2 (γ(λ (3λ −2)+3)+η2(−(λ −2))+η
(
λ 2+1

)
+(λ (7λ +10)+7)ν2+λ (2λ −1)

))
− νx5y

(
4γ(λ + 1)− (η + 1)((η − 3)λ − 3η + 1) + 8(λ + 1)ν2

+ 6(λ + 1)3y4 + y2(−η(λ (λ + 10) + 13) + λ (13λ + 10) + 1)
)

+ x4
(

ν2 (4γ + (η + 1)2 + 4ν2)+ 2λ (λ (5λ + 2) + 5)y8 − 6(λ + 1)2y6(η − λ )

+ y4 (γ(λ (5λ − 6) + 5) + η2(λ + 6)− η(λ (λ + 8) + 1) + (λ (11λ + 26) + 11)ν2

+λ (6λ + 1)
)
+ y2 ((1−η)(2γ(λ + 1)+ (η + 1)(η +λ ))− 8ν2(η(λ + 2)− 2λ − 1)

))
− νx3y

(
−(η − 1)

(
4γ + (η + 1)2 + 8ν2)+ 4(λ + 1)(λ (λ + 4) + 1)y6

+ y4(−η(λ (5λ + 26) + 17) + λ (17λ + 26) + 5)

+ 2y2 ((η − 1)(η(λ + 5)− 5λ − 1) + 4(λ + 1)ν2))
+ x2y2

(
−4γ2 + η

(
(5η − 14)ν2 − η(η + 2)

)
− η + 5ν2 + λ (λ (5λ + 6) + 5)y8

+ 4(λ + 1)y6(λ (λ + 2)− η(2λ + 1)) + γ
(
−η(η + 6)− 4ν2 + ((λ − 6)λ + 1)y4 − 1

)
+ y4 (η2(5λ + 6)− η(λ (5λ + 16) + 5) + (λ (5λ + 14) + 5)ν2 + λ (6λ + 5)

)
+ 2y2 (ν2(−η(5λ + 7) + 7λ + 5)− (η − 1)2(η − λ )

))
− νxy3 (−η + (λ + 1)y2

+ 1
)(

−4γ + (η − 6)η + (λ (λ + 6) + 1)y4 + y2(−2η(λ + 3) + 6λ + 2) + 1
)

− y4 (−η + (λ + 1)y2 + 1
)2 (γ +

(
y2 + 1

)(
η − λy2)) = 0.

(A.27)
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A.2.3 Case S3

Consider

A4 = λ ,

A3 = c(1+λ ),

A2 = c2 +1− iν(1+λ ),

A1 = c(1− i2ν),

A0 = −ρ −ν2 + iν ,

equation (A.13) results in the two real equations

(A.28)

λ
(
(λ − 1)2(4ρ + 1)c8

−2(λ −1)
[
λ 2 (ν2+9ρ+2

)
−2λ

(
ν2+5ρ+1

)
+ν2−3ρ−1

]
c6

+
[
λ 4 (ν4 + ν2(8 − 30ρ)− 27ρ2)

− 4λ 3 (ν4 + 2ν2(10ρ + 7) + 3(1 − 3ρ)ρ
)

+ 2λ 2 (3ν4 + 11ν2(10ρ + 3)− ρ(ρ + 7)− 4
)

+ 4λ
(
−ν4 + ν2(1 − 20ρ) + ρ(9ρ + 10) + 2

)
+ ν4

− 2ν2(15ρ + 11)− 3ρ(9ρ + 2) + 1
]

c4 − 4
[
λ 5ν4

− λ 4 (16ν4 + 49ν2ρ
)
+ 2λ 3 (19ν4 + 11ν2(4ρ − 1) + 6ρ2)

+ λ 2 (−28ν4 + ν2(38ρ + 56) + 5ρ(8ρ + 3)
)

+ λ
(
ν4 − 10ν2(8ρ + 3)− 6ρ(6ρ + 1) + 1

)
+ 4ν4 + ν2(3ρ − 4)− ρ

]
c2

− 16λ
[
(λ − 1)4ν6 + (λ − 1)2ν4(λ ((λ − 10)ρ + 4) + ρ − 10)

− ν2(2λ (ρ(4((λ − 4)λ + 1)ρ + 11λ − 18) + 2) + 6ρ − 5)

+ ρ(4λρ + 1)2
])

= 0,
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(A.29)

λν
(
(λ − 1)2(6(λ + 1)ρ + λ + 2)c6

− (λ − 1)
[
λ
(
λ
(
(2λ − 1)ν2 +(9λ + 16)ρ + 8

)
− 4ν2 − 39ρ − 10

)
+ 3

(
ν2 − 2ρ − 1

)]
c4

+
[
λ 5ν2 (ν2 + ρ

)
− λ 4 (3ν4 + ν2(43ρ − 12) + 36ρ2)

+ λ 3 (2ν4 + ν2(42ρ − 58) + ρ(52ρ − 31)
)

+ λ 2 (2ν4 + ν2(42ρ + 74) + ρ(52ρ + 19)− 12
)

− λ
(
3ν4 + ν2(43ρ + 22) + ρ(36ρ − 31)− 13

)
+ ν4 + ν2(ρ − 6)− 3ρ + 1

]
c2

−4λ
[
(λ −5)(λ −1)3ν4−2(λ −1)ν2(2(λ (3λ −8)+1)ρ +3λ −5)

+ (4λρ + 1)((8λ − 4)ρ + 1)
])

= 0.

When ν = 0, these two equations reduce to one equation

(A.30)

λ
[
(λ −1)2(4ρ +1)c8 −2(λ −1)[λ (9λρ +2λ −10ρ −2)−3ρ −1)c6

+
[
−8λ 2 + (λ (λ (9(4 − 3λ )λ − 2) + 36)− 27)ρ2

− 2(λ (2λ + 5)(3λ − 4) + 3)ρ + 8λ + 1
]

c4

− 4
[
4λ (λ (3λ + 10)− 9)ρ2 + (3λ (5λ − 2)− 1)ρ + λ

]
c2

− 16λρ(4λρ + 1)2
]
= 0.

A.2.4 Case S4

In this case consider

A4 = λ ,

A3 = c(1+λ ),

A2 = c2 −1− iν(1+λ ),

A1 = −c(1+ i2ν),

A0 = −ρ −ν2 + iν ,
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then equation (A.13) results in the two real equations

(A.31)

λ
(
(λ − 1)2(4ρ + 1)c8

+2(λ −1)
[
λ 2 (ν2+9ρ+2

)
−2λ

(
ν2+5ρ+1

)
+ν2−3ρ−1

]
c6

+
[
λ 4 (ν4 + ν2(8 − 30ρ)− 27ρ2)

− 4λ 3 (ν4 + 2ν2(10ρ + 7) + 3(1 − 3ρ)ρ
)

+ 2λ 2 (3ν4 + 11ν2(10ρ + 3)− ρ(ρ + 7)− 4
)

+ 4λ
(
−ν4 + ν2(1 − 20ρ) + ρ(9ρ + 10) + 2

)
+ ν4

− 2ν2(15ρ + 11)− 3ρ(9ρ + 2) + 1
]

c4 + 4
[
λ 5ν4

− λ 4 (16ν4 + 49ν2ρ
)
+ 2λ 3 (19ν4 + 11ν2(4ρ − 1) + 6ρ2)

+ λ 2 (−28ν4 + ν2(38ρ + 56) + 5ρ(8ρ + 3)
)

+ λ
(
ν4 − 10ν2(8ρ + 3)− 6ρ(6ρ + 1) + 1

)
+ 4ν4 + ν2(3ρ − 4)− ρ

]
c2

− 16λ
[
(λ − 1)4ν6 + (λ − 1)2ν4(λ ((λ − 10)ρ + 4) + ρ − 10)

− ν2(2λ (ρ(4((λ − 4)λ + 1)ρ + 11λ − 18) + 2) + 6ρ − 5)

+ ρ(4λρ + 1)2
])

= 0,

(A.32)

λν
(
(λ − 1)2(6(λ + 1)ρ + λ + 2)c6

+(λ − 1)
[
λ
(
λ
(
(2λ − 1)ν2 +(9λ + 16)ρ + 8

)
− 4ν2 − 39ρ − 10

)
+ 3

(
ν2 − 2ρ − 1

)]
c4

+
[
λ 5ν2 (ν2 + ρ

)
− λ 4 (3ν4 + ν2(43ρ − 12) + 36ρ2)

+ λ 3 (2ν4 + ν2(42ρ − 58) + ρ(52ρ − 31)
)

+ λ 2 (2ν4 + ν2(42ρ + 74) + ρ(52ρ + 19)− 12
)

− λ
(
3ν4 + ν2(43ρ + 22) + ρ(36ρ − 31)− 13

)
+ ν4 + ν2(ρ − 6)− 3ρ + 1

]
c2

+4λ
[
(λ −5)(λ −1)3ν4−2(λ −1)ν2(2(λ (3λ −8)+1)ρ +3λ −5)

+ (4λρ + 1)((8λ − 4)ρ + 1)
])

= 0.
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When ν = 0, the these two equations reduce to one equation

(A.33)

λ
(
(λ −1)2(4ρ +1)c8 +2(λ −1) [λ (9λρ +2λ −10ρ −2)−3ρ −1]c6

−
[
(λ (λ (9λ (3λ − 4) + 2)− 36) + 27)ρ2

+ 2λ (2λ + 5)(3λ − 4)ρ + 8(λ − 1)λ + 6ρ − 1
]

c4

+ 4
[
4λ (λ (3λ + 10)− 9)ρ2 + (3λ (5λ − 2)− 1)ρ + λ

]
c2

− 16λρ(4λρ + 1)2
)
= 0.
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Appendix B

Descartes’ Rule of Signs and

Routh-Hurwitz Conditions

B.1 Descartes’ Rule of Signs

Consider the polynomial equation

Q(µ) = a0µn +a1µn−1 + ...+an−1µ +an = 0, (B.1)

where the coefficients ai, i = 0,1, ...,n are all real. Let N be the number of sign changes in

the sequence of coefficients a_0, a_1, ... , a_n, ignoring any which are zero. Deacartes’Rule

of Signs says that there are at most N roots of (B.1), which are real and positive, and fur-

ther, that there are N, N −2 or N −4,... real positive roots. For instance, if there are two

sign changes in the sequence of coefficients of a polynomial (N = 2), then there are either

2 or 0 positive real roots (see Murray [54]).
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B.2 Routh-Hurwitz Conditions

Consider the polynomial equation (B.1) with all the coefficients are real, and assume that

an ̸= 0, since otherwise µ = 0 would be a solution and the order of the polynomial would

then be of order n− 1. We require conditions on the ai such that the roots of Q(µ) have

Reµ < 0. The necessary and sufficient conditions for this to hold are the Routh-Hurwitz

conditions. They read

D0 = a0 > 0

D1 = a1 > 0

D2 =

∣∣∣∣∣∣∣
a1 a3

a0 a2

∣∣∣∣∣∣∣> 0

D3 =

∣∣∣∣∣∣∣∣∣∣
a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣∣
> 0

... (B.2)

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 . . . .

a0 a2 a4 . . .

0 a1 a3 . . .

0 a0 a2 . . .

. . . . . .

0 0 . . . ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0, k = 1,2, ...,n.

The Routh-Hurwitz criterion requires that there is no sign change in the Routh-Hurwitz

sequence (RH sequence)

D0,D1,
D2

D1
,
D3

D2
, ...,

Dn

Dn−1
. (B.3)
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for the polynomial Q(µ) to have all of the roots be with negative real part. If there are

sign changes, the number of these changes equals to the number of roots with positive

real part (see [11], [54]). If all the roots of the polynomial Q(µ) are negative or complex

with negative real part, then coefficients ai > 0, i = 0,1, ...,n (necessary not sufficient

condition).

Now for the cubic equation

a0µ3 +a1µ2 +a2µ +a3 = 0 (B.4)

the conditions for Reµ < 0 can be written as

ai > 0, i = 0,1,3 (B.5)

a1a2 −a0a3 > 0, (B.6)

and if these conditions are not satisfied then there must be roots with positive real part and

the number of these roots equals to the number of sign change in the RH sequence (from

(B.3))

a0,a1,
a1a2 −a0a3

a1
,a3. (B.7)

Also, for the quartic equation

a0µ4 +a1µ3 +a2µ2 +a3µ +a4 = 0 (B.8)

the Routh-Hurwitz conditions are

ai > 0, i = 0,1,3,4 (B.9)

a1a2a3 −a0a2
3 −a2

1a4 > 0. (B.10)
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If the RH conditions are not fulfilled, then there will be roots with positive real part

and the number of these roots equals to the sign change in the RH sequence

a0,a1,
a1a2 −a0a3

a1
,
a1a2a3 −a0a2

3 −a2
1a4

a1a2 −a0a3
,a4. (B.11)
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