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Abstract

Telomeres are repetitive elements of DNA which are located at the ends of chro-

mosomes. During cell division, telomeres on daughter chromomeres shorten

until the telomere length falls below a critical level. This shortening restricts

the number of cell divisions. In this thesis, we use mathematical modelling to

study dynamics of telomere length in a cell in order to understand normal age-

ing (telomere shortening), Werner’s syndrome (a disease of accelerated ageing)

and the immortality of cells caused by telomerase (telomere constant length

maintenance).

In the mathematical models we compared four possible mechanisms for telom-

ere shortening. The simplest model assumes that a fixed amount of telomere

is lost on each replication; the second supposes that telomere loss depends

on telomere length; for the third case the amount of telomeres loss per divi-

sion is fixed but the probability of dividing depends on telomere length; the

fourth cases has both telomere loss and the probability of division dependent

on telomere length. We start by developing Monte Carlo simulations of normal

ageing using these four cases. Then we generalize the Monte Carlo simula-

tions to consider Werner’s syndrome, where the extra telomeres are lost during

replication accelerate the ageing process. In order to investigate how the distri-

bution of telomere length varies with time, we derive, from the discrete model,

continuum models for the four different cases. Results from the Monte Carlo

simulations and the deterministic models are shown to be in good agreement.

In addition to telomere loss, we also consider increases in telomere length caused

by the enzyme telomerase, by appropriately extending the earlier Monte Carlo
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simulations and continuum models. Results from the Monte Carlo simulations

and the deterministic models are shown to be in good agreement. We also show

that the concentration of telomerase in cells can control their proliferative po-

tential.
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ŷ1 = 5/3, l = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.21 Graph shows µ(t) plotted against t with parameter β = 0.5, ŷ0 = 0.5,
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CHAPTER 1

Introduction

1.1 Introduction

Getting old is one of the most natural things in the world. Understanding

why/how we age and what controls the length of a person’s life has become an

active area of research. Different animals have a wide variety of lifespan. For

example, the lifespan of rats is about 3 years, a cat is about 15 years and the life

expectancy of human beings is about 75 years to 120 years. The average human

lifespan has increased from 45 years old two thousands years ago to today’s 75

years old. A number of factors have contributed to these changes. These in-

clude improvements in our environment, better medical care, the development

of science and technology [3]. In addition to considering external factors, we

should also consider what happens inside the human body. It is composed of

organs, which are composed of cells. Therefore in order to better understand

ageing, we should start by considering what happens to an individual cell and

its progeny and how changes associated with ageing are affected by processes

occurring at the subcellular level, such as changes in telomere length [4].

During the early 20th century, people believed that normal cells were immor-

tal and that getting old was caused by activity outside the cell. In the 1960s

Hayflick and Moorehead [5] performed a series of experiments which over-

turned the view that normal cell were immortal. Their experiments involved

letting normal human fibroblasts cells replicate and they found that the cells
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could not divide forever; after a certain number of cell divisions the population

of cells reached a finite limit, which is called the Hayflick limit. After that, the

cells stopped replicating and became senescent. Cellular senescence is defines

as a state in which cell replication is arrested, but the cell may remain alive

and functional for many years before it dies [6]. In later work, Hayflick and

Moorehead observed that in the mouse lens epithelium, the number of senes-

cent cells increases as the animal ages. They also found that some types of cell

became immortal: these include abnormal cells and cancer [7]. Hayflick and

Moorehead’s pioneering work has excited considerable interest in researchers

and interested in understanding ageing.

1.2 Telomeres

We need to consider what happens inside a cell to find out why most cells

have a finite replication limit. Normal human cells contain two kinds of ge-

netic material: DNA and RNA. In general, double-stranded DNA is organized

into 46 chromosomes (see Figure 1.1). Chromosomes also contain DNA binding

proteins and different organisms contain different numbers of chromosomes.

Telomeres are repetitive DNA which are located at the ends of chromosomes.

The major role of telomeres is to protect the chromosomes against the loss of

genetic material and to prevent fragments of chromosomes from rejoining [8].

RNA is a single-stranded long chain molecule of nucleotides, which carries ge-

netic information and is involve in protein synthesis.

The telomeres of different species contains different repeated sequences of telom-

eric DNA, e.g., Tetrahymena has the telomeric repeats GGGGTT [9], arabidopsis

thaliana has the telomeric repeats AGGGTTT [10], humans have the telomeric

repeats TTAGGG [11]. Recent research has focused on how telomeres control

proliferation in human cells.

When a cell divides, its chromosomes are duplicated in a process called DNA

replication. When chromosomes are duplicated, one of the daughter chromo-
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Figure 1.1: Paired strands of DNA formed the double helix chromosomes.

somes is shortened at the 5’ end due to the unidirectional synthesis of a new

chain. This was first suggested in the early 1970s by Olovnikov [12] who also

pointed out that on each replication a certain number of DNA sequences would

be lost until the telomere length falls below a critical level. When this happens

the cell stops replicating [13]. Olovnikov’s hypothesis is consistent with the

Hayflick limit. Experiment data shows telomere length in normal human cells

is approximately 3k to 15k basepairs with the telomere shorting rate is 50− 200

basepairs per replication [14].

Figure 1.2: Replication fork. As the fork moves from right to left, opening the parent

DNA, new bases are added to the leading and lagging strands. The thick lines indicate

the template strands. The thin lines indicate the replicated strands and the arrows

show the direction of replication.
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Before cell division, the two strands of DNA separate at a certain point and form

a “bubble”. Replication proceeds from the bubble either as a unidirectional or a

bidirectional process. During replication, the double-stranded DNA splits into

two single strands at the origin, forming a Y-shaped replication fork. Figure 2.1

illustrates how replication starts at the 5′ end and moves in the 5′ to 3′ direction

on both the leading and lagging strands. As replication proceeds from the 5′ to

the 3′ direction, the new sub-chain on the leading strand (as illustrated in Figure

2.1) can be continuously synthesized in the same direction of, 5′ to 3′, by using

the strand of the DNA double helix in a 3’ to 5’ as a template. However on the

lagging strand, replication is more complicated. The sequence on the lagging

strand cannot be constructed in the 3′ to 5′ direction on the template strands.

Instead, before replication primase (RNA primer) must attach separately at the

starting point and short sequences of 5′ to 3′ are formed. These discontinuous

segments are called Okazaki fragments, being named after the person who dis-

covered them [15]. Eventually Okazaki fragments are linked by DNA ligase,

to produce a continuous, single-stranded DNA. After the lagging strand forms,

the binding RNA primer is removed. This leads to shortening of the telomere

at the 5′ end. This process is known as the replication problem.

When the telomere length is critically short, telomeres lose their protective func-

tion, triggering DNA damage which can lead to end-to-end fusions, chromo-

some breakage, or rejoining. These changes cause permanent cell replication

arrest. While end-replication causes telomeres to shorten, it is not the only

mechanism by which telomeres shorten; other factors that contribute to telom-

ere shortening include environmental (life) stress [16], the accumulation of sin-

gle strand breaks [17] and oxidative stress [18]. Since telomere length always

shortens (if we do not consider extension factors, such as telomerase), there is

a limit time for at which the cell halts replication due to telomere length re-

striction. In this thesis, we use telomere length as a key factor in determining a

cell’s proliferative capacity and we assume that end-replication problem is the

only factor which can cause telomere shortening. The amount of telomere loss

varies during replication. We consider different mechanisms by which telom-

ere length may be regulated and use discrete/stochastic models (Chapter 2) and
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deterministic/continuum models (Chapter 4) to study how telomere length in

a single cell changes of time in order to understand normal ageing.

1.3 Senescence and ageing

A cell is said to be senescent if it stops dividing. Senescence was first identified

by Hayflick and Moorhead in 1961. They observed that there was a limit to the

number of times that a normal cell could to divide [5]. Most human cells go

through 30-60 population doubling before they reach senescence. Cell senes-

cence is different from cell apoptosis. Apoptosis is the process of programmed

cell death. During apoptosis, a cell begins to shrink and its DNA becomes frag-

mented, leading to chromatin condensation which causes the nucleus to break

up into small pieces. Apoptotic cells continue to shrink and package them-

selves into cell fragments which can be removed by macrophages and neigh-

boring cells [8]. While a few senescent cells are removed by phagocytosis, most

senescent cells will remain alive and functional for many years before they are

removed [19].

There is evidence that telomere shortening is directly related to cell senescence.

Experiments reported in [20] reveal that the telomeres of human fibroblasts

which are senescent are shorter than replication cells and that the proportion

of cells which are dividing is directly proportional to the mean telomere length.

Allsopp and Harley suggested the existence of a critical telomere length which

triggers DNA damage and induces cell senescence. In our discrete/stochastic

models (in Chapter 2, 3, 5), we specify critical telomere length such that if the

telomere length of the chromosomes is lower than this critical value, then cell

replication will halt and the cell will remain in the senescent state.

There is a strong link between cellular senescence and ageing [21]. Observa-

tions of newborn baby’s cells indicate there are almost no senescent cells. A

small number of senescent cells are detected in adults and a large number in

older people. These results suggest that the number of senescent cells increases
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with donor age. Thus one of the key factors in normal ageing is the accumula-

tion of senescent cells. While the accumulation of senescent cells is not normally

harmful, they can express factors, which affect neighboring cells. These factors

include degradative enzymes which may disrupt the cell’s microenvironment,

causing mutations and changes in normal tissue structure and function [22].

These changes also contribute to ageing.

The process of senescence is quite complicated and involves many different

mechanisms, apart from telomere shortening. Senescence can be caused in

different ways including: oxidative stress [23] [24], mitochondrial dysfunc-

tion [18], somatic mutation [25]. In the following sections we will explain briefly

how these stresses affect telomere length and cell senescence, but in our model

we assume that only telomere length regulates cellular senescence.

1.4 Other factors cause senescent and ageing

Many independent studies show that oxidative stress can cause telomere short-

ening and DNA damage. The accumulation of oxidative damage has also been

identified as a major cause of ageing. Studies show that oxidative stress can

accelerate telomere shorting in fibroblasts by causing damage to telomeric frag-

ments of DNA, especially on the 5’ site of 5’-GGG-3’ in the telomere sequence

[26]. Experiments using sheep embryos and human fibroblasts [27] were ex-

posed to different oxygen concentration revealed that under 5% oxygen (hy-

poxia) the cells have significantly longer proliferation times than under 20%

oxygen (normoxia) level, because normoxia levels lead to increase in DNA

damage. An increase in oxidative stress, can accelerate telomere loss, leading to

the early onset of cell senescence. Thus oxidative stress responsible for cellular

senescence. However, under conditions of oxidative stress, telomere length can

be maintained [17].

Mitochondria are tiny organelles that generate energy for cells. They are the

major source of reactive oxygen species. Longer-lived mammals generally have
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fewer mitochondria, which suggests that the density of mitochondria may in-

fluence ageing [28]. There is experimental evidence to support this. For exam-

ple an increase in the number of mitochondrial in human diploid fibroblasts

will rapidly induce senescence [29].

Somatic mutations alter gene structures. Therefore, in principle, the accumu-

lation of mutations in somatic cells should cause normal cell functions to be

lost or cell death to be triggered, thus speeding up the ageing process. Further,

the frequency of somatic mutations increases dramatically with age, which sug-

gests that the mutation rate increases exponentially rather than remaining un-

changed or increasing linearly in time [30]. Somatic theory, which is based on

experimental observations, suggest that DNA damage, genetic mutations and

abnormal chromosomes cause cell senescence and death [31].

1.5 Capping of Chromosome ends

In 2000 Blackburn [32] suggested that telomeres have two states: capped and

uncapped, and that they switch stochastically between the two states. Capping

protects a telomere end from breaking or rejoining and also allows the cell to

replicate. During cell division, temporary uncapping occurs. While a telomere

is uncapped, telomerase can act on it. Once telomerase has finished elongating

the telomere, it switches back to the capped state. Blackburn also suggested that

when the length of a telomere is too short or there is insufficient active telom-

erase, telomeres will become uncapped. Under certain circumstances, telom-

eres can switch between the uncapped and capped states [33]. If a cell remains

in the uncapped state for too long, it will experience DNA damage, which pre-

vents its from switching back. The uncapped state will then trigger replication

arrest.

Since telomeres switch stochastically between the capped and uncapped states,

a population of cells will not start/finish division at the same time. Therefore,

when we model cell division we need to consider the probability of cell divi-
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sion. In our Chapters 2 and 4, we model cell replication in normal ageing by

allowing the probability of cell division and different amount of telomere loss

to vary with telomere length.

1.6 Werner’s syndrome

Werner’s syndrome is an inherited disease in which the most characteristic fea-

ture is the rapid appearance of ageing (see Figure 1.3). This normally appears

in the second or third decade when patients develop grey hair, wrinkled skin,

alopecia, diabetes mellitus and juvenile cataracts, etc [34]. The average lifespan

for Werner’s syndrome patients is about 46 and their deaths are usually linked

to malignant tumors.

Figure 1.3: Pictures of Werner’s syndrome patients.

To gain a better understanding of Werner’s syndrome, we start at the cellular

level. Fibroblasts from Werner’s syndrome patients can only achieve roughly 20

population doublings, which is 40 population doublings less than normal hu-

man fibroblasts. The limited lifespan of Werner’s syndrome patients is caused

by a genomic instability, such as chromosomal aberration [35], large sponta-

neous deletions of the DNA sequence, which cause accelerated telomere loss,

attenuated apoptosis and mutations in telomerase. Report on patient with
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Werner’s syndrome from 1939-1995, show that most have cancer [36]. Because

Werner’s syndrome cells exhibit genomic instability, telomere dysfunction (loss

of end-capping structure or loss of telomeric repeat sequence), promotes the

early onset cancer [37].

The molecular pathway of Werner’s syndrome is unknown, though several hy-

potheses have been proposed, such as mutator phenotype, in this the Werner’s

syndrome patient developed chromosomal aberration, deletions [38], and a

higher somatic mutation rate [39]. There is strong evidence that Werner’s syn-

drome accelerates a cell’s journey to senescence. Experiments in [40] have

shown dramatic shortening of telomeres in Werner’s syndrome fibroblasts and

B-lymphoblastoid cells happen faster than in normal fibroblasts and B-lymph-

oblastoid cells. This suggests that dramatic telomere shortening can trigger

cell senescence earlier in Werner’s syndrome. Other observations include that

when a population of Werner’s syndrome cells becomes senescent, it has a wide

range of telomere lengths 3.5 k to 18.5 k basepairs. This is a much wider range

than from a population of normal cells typically 5.5 k to 9 k basepairs. A possi-

ble explanation for this is that Werner’s syndrome cells contain some critically

short telomeres whereas most cells contain chromosomes with longer telom-

eres. Telomere dysfunctions occur due to critically short telomeres; in the ab-

sence of recombination, this would trigger senescent [41].

Another hypothesis proposed in [42] is that a mutation in the Werner Syndrome

gene (WRN) plays an important role in Werner syndrome. WRN lies on chro-

mosome 8 in humans and is a member of the RecQ helicase family. RecQ heli-

case play an important role in DNA repair, maintenance of genomic instability

and homologous recombination [42]. This is the one of the most important

physiological roles of the WRN protein.

Thus Werner’s syndrome can be used as a model for accelerated ageing. In

Chapter 3 we combine the abrupt telomere shortening caused by Werner’s syn-

drome and with normal ageing. Since the molecular pathway for Werner’s syn-

drome is unknown, we assume that telomere shortening can happens at either
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end of chromosomes.

Until now we have focussed on the telomere shortening or abrupt shortening

and how this may shortening our lifespan. Now we focus on in germline and

immortal cells in which telomere length can be maintained or extended in a

number of different ways, such as telomerase and alternative lengthening of

telomeres (ALT). We introduce these ideas in the following section.

1.7 Telomerase

Telomerase is an enzyme which has two major components: the telomerase re-

verse transcriptase TERT and the template RNA component (hTR or hTERC).

These can be encoded to provide a template to add telomeric repeat sequences

to chromosomes which lengthen the telomere [8]. Telomerase action was ini-

tially discovered in 1985 by Greider and Blackburen. When they extracted it

from Tetrahymena cells and added it into the oligomer (the telomere primer),

then they observed that telomeric GGGGTT repeats were added to the 3’ ends.

The amount of telomerase in a normal human cell is limited, except during

early fetal development [43]. For immortal cells (with long or indefinite life

spans) such as germline cells and most tumor cells, telomerase activity is high

and easy to detect [44] [45]. The direct evidence for telomerase increasing

telomere length in human cells was gained by co-culturing telomerase nega-

tive cells with telomerase expressing cells. The lifespan of co-culturing telom-

erase negative cells was extended by at least 20 population doubling [46]. This

suggests that telomerase can extend human life. The principle by which hu-

man telomerase is believed to act is by adding specific DNA sequence repeats

TTAGGG onto the 3’ ends of chromosomes.

The pathway describing telomerase activity has yet to be identified. Some ex-

periments suggest that telomerase does not act on all telomeres at each cell

cycle and that telomere elongation depends on telomere length, with shorter

10



CHAPTER 1: INTRODUCTION

telomeres elongating more frequently than longer ones [47] [48]. The action of

telomerase on shorter telomeres is large and can rapidly lengthen them [49].

Some experiments suggested that, in human tumor cells, telomerase acts on

most leading and lagging daughter chromosomes in a manner that is indepen-

dent of telomere length [50]. These results indicate that telomere length is not

the only factor involved in activating telomerase. In the stochastic and deter-

ministic telomerase models of Chapter 5, we focus on how telomerase extends

cell proliferation in normal ageing. We not only assume that the telomere gain

caused by telomerase is fixed, but also consider cases for which the amount of

telomere gain also depends on telomere length.

Thus, the telomere exists in an equilibrium between a telomerase-extendible

state, which allows telomere extension, and a non-extendible state. This bal-

ance is called telomere length homeostasis [48] [51]. The longer the length of

a telomere the higher the probability that it is in the non-extendible state. The

shorter the telomere the higher the probability that it is in the extendible state.

The mechanism regulating telomere length homeostasis is that, longer telom-

ere normally switches to a non-extendible state which cannot be lengthened via

telomerase. In that state, telomere length keeps decreasing due to the end repli-

cation problem. When the telomere length reaches a lower limit, the telomere

switches to the extendible state, in which telomerase can lengthen the telomere.

As the telomere length gets longer, the cycle will repeat.

1.8 Alternative lengthening of telomeres (ALT)

Telomerase plays an important role in maintaining the telomere length, but

it is not the only mechanism. There is some evidence that, in the absence of

telomerase activity, some immortal cells and tumor cells maintain their telom-

ere length by a mechanism called alternative lengthening of telomere (ALT) [52]

[53].

Telomere recombination can be observed experimentally by inserting two or
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three DNA tags into the telomere of ALT cells, at population doubling 23. After

population doubling 63, the number of tagged telomeres in the cell increases to

10 [54]. These results indicate that telomeric recombination has occurred. The

ALT events involve recombination, but details of the mechanism by which this

occurs remain unclear. Two alternative hypotheses have been proposed.

Some people have proposed that recombination can be achieved without copy-

ing telomeric sequences, by using unequal sister chromatid exchange instead.

This can also extend proliferation [55]. Equal sister chromatid exchange can

not affect the cell’s proliferation. Unequal sister chromatid exchange increases

the total number of cells which leads to longer proliferation. For another peo-

ple have proposed that telomere elongation can be achieved by using existing

telomeric sequence from other chromosomes as a template [56], this causes a

net gain in telomeric sequences.

1.9 Mathematical modelling of cells proliferation

Levy et al. [1] modelled telomere shortening due to the “end-replication” prob-

lem by developing a single chromosome model. When the chromosome is du-

plicated, the new chain in the daughter chromosome is shortened by a constant

amount on the 5’ end due to the unidirectional synthesis of a new chain. Their

model predicts that the average telomere length decreases linearly with gener-

ation number and is consistent with experimental data. They also determined

the fraction of dividing chromosomes. In our model of normal ageing (Chap-

ter 2), we also assumed that the “end-replication” problem causes the telomere

shortening. Our chromosome model (Case I) is similar to Levy’s model; we fix

the amount of telomere shortening during each replication and we obtain the

mean telomere length and the fraction of replicating chromosomes. We also de-

termine a cell-level model in which each cell contains 46 chromosomes.

Arino et al. [57] extended Levy’s work, by assuming that the lifespan of individ-

ual cells were independent (which is more realistic) and termed a cell senescent
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if the length of the shortest telomere in the cell fell below a critical value. In

our stochastic cells models (Chapters 2 and 3) we also use the shortest telom-

ere in the cells to determine cell senescence. In Arino’s model they assumed

constant telomere loss and viewed cell proliferation as a branching process.

They fitted their model to two sources of the data, obtaining good agreement

in both cases. Oloffson and Kimmel [58] extended Arino’s model, to allow for

cell death. Since the cells die without replication, they obtained that the cells

no longer growth exponential. The models developed in this thesis do not con-

sider cell death, all cells are assumed to exist in one of two states: replicating

and senescent. Once a chromosome becomes senescent it will remains in that

state in the absence of telomerase activation.

The three models described above are based on the assumption that all chro-

mosomes lose the same amount of telomere on each division. The stochastic

and deterministic model of normal ageing that we developed are also based

on this assumption (see Case I in Chapters 2 and 4 respectively). Motivated by

Levy and Arino’s work, Rubelj [59] developed a stochastic model in which there

was gradual telomere shortening and also abrupt telomere shortening. Abrupt

telomere shortening occurs in the telomeric border region and is more com-

mon among short chromosomes. When abrupt telomere shortening occurs, the

cell will only replicate a certain number of times. In order to prevent all cells

having the same proliferative potential, Rubelj assumed that there was a non

zero probability that a replicative cell did not divide and that this probability

was proportional to the cell’s age. Results predicted that in the later genera-

tions (before all the cells had become senescent) the distribution of telomeres is

bimodal. This prediction is qualitatively different from that obtained the grad-

ual telomere shortening model. Guided by Rubelj’s work, when we simulated

Werner’s syndrome (Chapter 3), we assume that there is the constant loss of

telomeres (caused by normal ageing) and the probability of extra loss (caused

by Werner’s syndrome). The resulting stochastic cell model also exhibits a dis-

tribution of telomere length that is bimodal at later generations.

In addition to the “end-replication problem”, oxidative stress, somatic muta-
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tions in nuclear and mitochondrial DNA are all causes of telomere shortening.

Sozou and Kirkwood [60] used oxidative stress to measure the rate of telomere

shortening and introduced somatic mutations as a secondary cause of senes-

cence. In their simulations the level of oxidative stress is assumed to depend

on the numbers of mutant mitochondrial with in a cell. They used the num-

bers of normal and damaged mitochondria in the cell and the probability of

a mitochondrion suffering a mutation during cell replication, to estimate the

proportion of mitochondria that are damaged. They assumed that the telomere

shortening rate is linearly proportional to the damage rate. They modelled so-

matic mutations by assuming a small nuclear mutation rate per cell cycle. This

means that if a cell suffers a somatic mutation, then it will only replicate certain

number of times. The simulation results obtained from their stochastic models

fit the experimental data well. Sozou and Kirkwood also stochastically mod-

elled a variety of oxidative stress, somatic mutation and mitochondrial DNA

separately, to see how each change affects the cell senescence.

Kirkwood and Proctor modelled telomere shortening due to oxidative stress

[61]. The main mechanisms for telomere loss is still assumed to be the “end-

replication problem”. However, there is additional loss associated with pro-

cessing the single-strand breaks. Single-strand breaks happen during replica-

tion and can occur anywhere on the parent telomere, affecting telomere length.

They also assumed that the frequency of single-strand breaks depends on the

level of oxidative stress. Their model agrees well with experimental data, pre-

dicting that under oxidative stress, single strand breaks play an important role

in telomere shortening. In later work Kirkwood and Proctor [62] extended this

model [61] by distinguishing between capped and uncapped states, assuming

that uncapped telomeres will not replicate. The probability of being uncapped

is modelled via a Hill function which depends on telomere length. Their im-

proved stochastic model exhibits results which are similar to original one, but

give further insight into how the capped state affects ageing.

Richter et al. [63] incorporated DNA repair as a positive feedback mechanism

into their model of telomere shortening. They model the telomere shortening
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rate, y, as follows

y = y0 + y1 ROS − y2DNA repairs ,

y0 as a constant caused by the end replication problem, y1ROS is a loss of telom-

ere due to reactive oxygen species (ROS), y2 is the DNA repair rate which varies

depending on the level of DNA damage, more damage leading to more repair.

Since there is maximum rate at which DNA repairs can occur, a sigmoid func-

tion is used. The model accounts for uncapping in a similar way to that used by

Proctor and Kirkwood [62]. The resulting simulation also fits the experimental

data well.

While many mechanisms are known to cause telomere shortening, the exact

rate of shortening is still unclear. Most mathematical models assume a constant

rate of telomere loss; recently Buijs et al. [64] modelled telomere shortening as

dependent on telomere length itself. They assumed a telomere loss rate which

was linearly dependent on telomere length, so that

telomere loss = constant + telomere length× factor .

where the constant loss is caused by the end-replication problem and the second

term is attributed to a shortening factor which can be estimated by comparison

with experimental data. These results confirm that telomere shortening is de-

pendent on telomere length.

Portugal et al. took a different approach, developed a stochastic model in which

telomere shortening occurs at a constant rate and the probability of cell division

depends on the telomere length [65]. The probability of division is assumed to

be proportional to the difference between telomere length and a critical length.

The resulting stochastic model yields approximately Gompertzian growth in

which cells have a replication rate that decreases linearly with telomere length.

Motivated by Levy et al. [1], Buijs et al. [64] and Portugal et al. [65], in this

thesis we consider four different rules or models for describing cell division

and telomere shorting in the stochastic and deterministic models presented in
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Chapter 2 and 4. First, a constant telomere loss model with a constant cell di-

vision rate; second, a length-dependent telomere loss model with a constant

cell division rate; third, a constant telomere loss model with length-dependent

division rate; fourth, a length-dependent telomere loss and length-dependent

dividing rate which is new.

Blagoev developed a mathematical model to study the effect of telomerase ac-

tivity on cell proliferation [66]. At each cell division, the rate of telomere loss

was assumed to be of the form

telomere loss = constant loss − telomere gain × extension probability .

The extension probability was determined on the basis of three independent

probabilities, namely, the probability that the telomere was in an extendible

state (in an open state telomerase can associate with the telomere), the proba-

bility of telomerase associating with the telomere and the probability of telom-

erase being in the neighborhood of the telomere. They performed simulations

for telomeres which were shorter and longer than the equilibrium length. They

found that after several replications, both systems approach the same steady

state length. In Chapter 5 we developed a model that incorporates telomerase

and which differs from that of Blagoev, by using a different telomere loss and

gain terms. In our model we assume that telomerase acts on the telomere all

the time. We start by considering the simplest case for which the net amount of

telomere loss per replication is equal to the constant telomere loss (due to age-

ing) minus a constant telomere gain (due to telomerase). We then extend the

model by assuming that both telomere shortening (due to ageing) and telomere

extension (due to telomerase) are telomere length dependent. The new model

converges to an equilibrium length which is consistent with the Blagoev model.

1.10 Outline of Thesis

Since telomere length is a key factor in determining a cell’s proliferative poten-

tial, our aim in this thesis is to investigate the mechanisms that regulate telom-

ere length and to understand how telomere shortening affects the ageing pro-
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cess. We use a combination of discrete/stochastic and deterministic/continuum

models to study the dynamics of telomere length in a single cell in order to un-

derstand normal ageing, Werner’s syndrome and immortal cells. The thesis is

divided into five further chapters as follows.

In Chapter 2, we consider stochastic models of normal ageing. Our Monte Carlo

simulations are applied to four cases by not only consider the telomere short-

ening but also the probability of cell divisions in both chromosomes level and

cell level.

In Chapter 3, we consider a stochastic model of Werner’s syndrome. We not

only consider the case where Werner’s syndromes occurs every generation, but

also the case where Werner’s syndrome occurs stochastically combined with

normal ageing.

In Chapter 4, we developed continuum models of normal ageing, using the

four different cases as in Chapter 2. We determined the models in both chro-

mosomes level and cell level.

In Chapter 5, we consider the telomere lengthening caused by telomerase. We

introduce Monte Carlo simulations and continuum models for two different

cases. Case I, there is a constant telomere loss (normal ageing) with a constant

telomere gain (due to telomerase). Case II, there is length-dependent telomere

loss (normal ageing) with length-dependent telomere gain (due to telomerase).

In Chapter 6, we review the thesis, summarize our results we and suggest the

directions for future work.
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Stochastic simulations of normal

ageing

2.1 Introduction

In order to understand why people age, we start from the basic unit of the hu-

man body: the cell. Each human cell contains 46 chromosomes. Chromosomes

carry genetic material, namely DNA, and protein. The region of repetitive DNA

at the end of the chromosomes, called telomeres [8], protect against the loss

of genetic material and regulate chromosome fragments rejoining each other.

When the telomere length is critically short, chromosomes become uncapped,

which leads to end-to-end fusions, chromosome breakage, or rejoining. There-

fore chromosomal instability depends on the telomere state and length.

Before cell division, the two strands of the DNA are separated at a certain ori-

gin under the influence of proteins, forming a “bubble”. Replication proceeds

either as an unidirectional or a bidirectional process from the bubble. During

replication, the double-stranded DNA splits into two single strands at the ori-

gin, forming a Y-shaped replication fork (see Figure 2.1).

Figure 2.1 illustrates how replication starts at the 5′ end and moves in the 5′ to

3′ direction on both the leading and lagging strands. As the replication process

only occurs in the 5′ to 3′ direction of synthesis, on the leading strand, the new
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Figure 2.1: Replication fork. As the fork moves left, opening the parent DNA, new

bases are added to leading and lagging strands. The thick lines indicate the template

strands. The thin lines indicate the replicated strands and the arrows show the direc-

tion of replication.

sub-chain can be continuously synthesized since this in the same direction (5′

to 3′), but on the lagging strand replication is more complicated. The sequence

on the lagging strand cannot be constructed in the 3′ to 5′ direction. Instead, be-

fore replication a primase (RNA primer) must attach separately at the starting

point and short sequences of 5′ to 3′ are formed, these discontinuous segments

are called Okazaki fragments, being named after the person who discovered

them. Eventually Okazaki fragments are linked by DNA ligase, which results a

continuous stranded of DNA. After the lagging strand forms, the binding RNA

primer is removed [15]. This results in a shortening of the telomere at the 5′

end. This is called the end replication problem.

A number of basepairs are lost from one end of the chromosome due to incom-

plete replication of the DNA strand. During chromosome replication, normal

chromosome replication produces one chromosome which is identical to its par-

ent and one chromosome which is slightly shorter. To simplify the chromosome

replication process illustrated in Figure 2.1, so that it can be modelled mathe-

matically, we assume that m, h are the number of basepairs of the telomere at

each end of the chromosome and we assume that y is the average number of

basepairs lost per replication. The replication and division processes as shown

in Figure 2.2.
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Figure 2.2: Illustration of the effects of chromosome replication on telomere length.

The thick lines indicate the template (parent) strands. Thin lines denote the replicated

strands of the template in the daughter chromosomes and arrows indicate the direction

of replication.

In the parent chromosomes, as shown in Figure 2.2, the shorter strand of DNA

is manufactured from the longer strand, which results in an inherited deletion

of y basepairs at the 5′ end. In each daughter chromosome one strand of DNA

is from the parent, indicated by thick lines with telomere lengths of (m, h) at the

left and right hand ends of the upper strand respectively and (m, h− y) on the

lower strand. The other strand is synthesized in a replication process, giving

strand telomere lengths (m, h− y) and (m− y, h− y) respectively. The change

in telomere lengths of both strands can be written more compactly as m h

m h− y

→
 m h

m h− y

+

 m− y h− y

m h− y

 . (2.1.1)

Cells have a limit growth, was first discovered by Hayflick and Moorehead [5]

in the 1960s. When one of the telomeres of the chromosome falls below a thresh-

old value, the chromosome stops replicating [12]. This lower level of the telom-

ere length is called the critical value. If the telomere length of the chromosome

is lower than the critical value, the cell remains in the senescent state. A chro-

mosome can not divide forever, after several divisions it will stop replicating

and become senescent due to telomere length restriction. Thus telomere length
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is a key factor in determining a cell’s potential for proliferation.

We consider the dynamics of telomere loss in a cell in order to understand the

normal ageing process. In this chapter we perform Monte Carlo simulations

of the the chromosome model and cell model (46 chromosomes). The amount

of telomere lost per chromosome replication and the probability that a chro-

mosome divides may varies. For example chromosomes with longer telomeres

may lose more telomeres and have a greater probability of dividing than those

with shorter telomeres see [64] and [65]. Therefore we consider four differ-

ent cases of the model. In Case I a fixed amount telomere loss every genera-

tion. In Case II, telomere loss dependent on the telomere length; in Case III,

a fixed amount of telomere is lost, but cell-division occurs with a probability

dependent on telomere length. Case IV is a combination of Case II and Case

III, where telomere loss and the probability of cell division are dependent on

telomere length. In each case we are interested in the average telomere length

of the chromosomes and the fraction of the dividing chromosomes (or cells).

All the models presented in this section are based on the following assump-

tions: first, there is no telomere elongation during the chromosome replica-

tion, such as that caused by telomerase activity and there are no recombination

events between telomeres, etc. Second, a cell can only exist in one of two states:

a dividing state or a senescent state. When a cell becomes senescent, it will re-

main in that state: it can not start dividing again. We do not consider cell death

in the system.

Iteration number can be defined as follow: if there are 200 cells in the initial

state, in the first iteration we check every cell to see whether it can divide. If a

cell can divide, it produces two daughter cells, both of which will be present in

the next iteration. If a cell cannot divide, it remains in the next iteration. Then

one iteration has occurred. In many experiments the population doubling time

is the time-scale of interest [67]. The population doubling is the time required

for the cell number to double. For example, if there are 200 cells initially and the

population increases to 400 cells, then one population doubling has occurred.
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In the simulations presented in this thesis, we used generation number = iter-

ation number, as the time-scale of interest due to its mathematical simplicity.

We note, however, that in the literature, generation number is sometimes taken

to mean population doublings. The duration of “a generation” we use is fixed,

whereas the population doubling time varies as cells age due to cells becoming

senescent. Generation time and population doubling are identical initially if all

cells are able to divide, otherwise one population doubling time is longer than

one generation time.

2.2 The chromosome model

2.2.1 Tracking one chromosome in each generation

To simulate telomere shortening in a single chromosome, we use the chromo-

some replication rule (2.1.1) and fix zero as the critical value of the telomere

length at which cells become senescent. We consider a chromosome with ini-

tial telomere lengths of m = h = 6000 basepairs and a loss rate of y = 200

basepairs per replication. Putting these values of m, h, y in (2.1.1), the average

telomere length of the parent chromosome is 5950 basepairs ([6000 + 6000 +

6000 + (6000− 200)] ÷ 4 = 5950). Before chromosomes reach senescence, we

expect exponential growth in their number, however, due to the restrictions of

computer memory, we randomly pick one of the two daughter chromosomes.

Let randomly picked chromosome replicate and then randomly pick one of two

chromosomes. Repeated this process many times until the length of the telom-

ere becomes too short for replication to occur (when the telomere length falls

below the critical value). The chromosome then stops replicating and becomes

senescent. During each generation we record the telomere length of the chro-

mosomes.

In order to see how telomere length varies with generation number, we perform

8000 simulations. Figure 2.3 shows that as the generation number increases, the

average telomere length of the population decreases from 5950 basepairs to 150

basepairs. Thereafter the average telomere length remains the same, indicat-
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Figure 2.3: The average telomere length of 8000 simulations plotted against gener-

ation number for the single chromosome model. Parameter values: m = h = 6000

basepairs and y = 200 basepairs per replication.

ing that replication has halted and that the population has become senescent.

Between generations 1 and 100, telomere length decreases linearly with gen-

eration number, indicating that the average rate of telomere loss during this

stage is constant. After generation 100, the curve plateaus to a constant value of

about 150 basepairs where telomere loss halts. The results presented in Figure

2.3 were obtained by setting y = 200 basepairs per replication, which corre-

sponds to an average loss of y/4 = 50 basepairs per telomere per generation.

A naive calculation suggests it would take about 119 generations for a telomere

of length 5950 basepairs to shorten to length zero and become senescent. In

practice random selection of the daughter chromosomes causes a small delay

in the time takes to reach senescence.

The case present here is the simplest one, where telomere loss and the prob-

ability of chromosome divides are both constant. We introduce four cases, to

investigate the effect of making telomere loss and the probability of division.
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2.2.2 Unified view of Cases I-IV

If we denote by Kg
n the number of chromosomes with telomere length n at gen-

eration g and by y the number of basepairs that are lost when a cell divides,

then by applying the replication rule (2.1.1), we deduce that the discrete chro-

mosome replication process can be written as

Kg
n → Kg+1

n + Kg+1
n−y , with probability Pdiv . (2.2.1)

In practice the amount of telomere lost (y) per chromosome replication may

vary. For example, chromosomes with longer telomeres may lose more telom-

ere than those with shorter telomeres (see [64] and [65]). We denote by Y(n) the

amount of telomere lost from a telomere of length n. We postulate that Y(n) is

linearly dependent on the telomere length at generation (g− 1), so that,

Y(n) = y0 + y1n , (2.2.2)

where y0 and y1 are constants.

In practice the probability that a chromosome divides may not always be con-

stant and chromosomes with longer telomeres may have a greater probability

of dividing than ones with shorter telomeres. Therefore, we assume the prob-

ability of a chromosome dividing, Pdiv(n), is dependent on the chromosome’s

telomere length n where 0 ≤ Pdiv(n) ≤ 1. We postulate the form

Pdiv(n) = (a + bn)α , (2.2.3)

where a and b are constants, α is a parameter which controls Pdiv, with 0 ≤ α ≤
1.

In order to see clearly how changes in average telomere lengths depend on

telomere loss Y(n) and the probability that a chromosome divides Pdiv(n), we

consider 4 different cases, as outlined in Table 2.1.

Case I is the simplest, with a constant telomere loss (y0) basepairs per division

and fixed probability of cell division (Pdiv = 1). Case II is slightly more com-

plicated than Case I, telomere loss now depending on telomere length (y(g) =
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Case Pdiv(n) Y(n)

Case I Pdiv(n) = 1 Y(n) = y0

Case II Pdiv(n) = 1 Y(n) = y0 + y1n

Case III Pdiv(n) = (a + bn)α Y(n) = y0

Case IV Pdiv(n) = (a + bn)α Y(n) = y0 + y1n

Table 2.1: 4 cases where parameters a, b, α, y0, y1 are constant.

y0 + y1n) although the probability of cell division remains fixed. For Case III,

we assumed that telomere loss occurs at a constant rate as for Case I. However

the probability of cell division depends on telomere length Pdiv = (a + bn)α.

For Case IV both the rate of telomere loss and the probability of chromosomes

replication depend on telomere length. If the parameters y0, y1, α, a, b are cho-

sen appropriately, Cases I, II and III can be considered as special cases of Case

IV: Case I is recovered from Case IV when y1 = 0 and α = 0. Case II is obtained

by fixing α = 0 and Case III when y1 = 0. Simulation results for these 4 cases

are presented below.

2.2.3 Pseudocode for the simulations

Definitions of variable and parameter: N = “the number of chromosomes in the

cell”, NGen = “the number of generations to be simulated”, Data(i).NumCell =

“the number of cells at generation i”, Data(i).Chrom stores the telomere lengths

of the four ends of the chromosome in generation i. The pseudocode used in

this chapter are listed below:

Data(1).NumCell=1; %Initial number of cells

Data(1).Chrom=Initial telomere length of each chromosomes in a cell;

y0, y1 determine amount of telomere loss;

a, b, alpha determine probability of cell replication;

for i=2:NGen %First main loop;

nc=0; % counter for the number of cells.

%Consider replication of each cell;

for j=1:Data(i-1).NumCell %Second main loop;
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n=mean(Data(i-1).Chrom(:,:,j)); %average telomere length.

y=y0+y1*n; %telomere loss function y.

P=(a+b*n)^{alpha}; %probability of cells dividing

If telomere length exceeds critical value and

random number < P (probability of cell division);

Then cell divides;

for each chromosomes generate two daughter chromosomes

and allocate daughter chromosomes randomly to

daughter cells;

else

cell remains same in next generation if cell does

not divide;

end

end % end of second loop-replicating cells;

If number of cells over 200, we need passage: randomly select 200.

end % end of first main loop - generation number.

This is one simulation, we can repeat this to obtain average telomere length

and the average fraction of senescent cells. For the chromosome model we pick

N = 1 and for the cell model we pick N = 46 instead. To simulate for each case,

we need to choose specific parameter values for y0, y1 and a, b and α separately.

More infirmations about the MATLAB code is listed in Appendix A.1.

2.2.4 Case I: Constant loss of telomeres

Our simulations start with a single chromosome and we track its progeny over

each generation until the total number of chromosomes exceeds 200. We then

passage by randomly selecting 200 of these chromosomes. In the next gen-

eration, all chromosomes divide (if their telomeres are sufficiently long to al-

low replication), and when the population exceeds 200, we passage so that

once again 200 chromosomes are selected from the population. This process

is repeated until all telomere lengths are too short to allow further replication.

At this stage the entire population is senescent. We use the same simulation

method as in Section 2.2.3, with parameters y1 = 0 and α = 1.
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Figure 2.4: Averaged results of 1000 simulations; the dashed line is the average telom-

ere length plotted against generation number of passaging model, the solid lines indi-

cated two standard deviations above and below the mean. The dash-dotted line shows

how the average telomere length varies with generation number for the earlier sin-

gle chromosome model. Both models use the same parameters, m = h = 6000 and

y = 200.

At each generation we record not only the average telomere length but also

the number of chromosomes that have just replicated. We denote by N(g) the

number of chromosomes at generation g, φdiv(g) represents the fraction of di-

viding chromosomes at generation (g− 1) and φsen(g) the fraction of senescent

chromosomes at generation (g− 1), so that

φdiv(g) =
N(g)− N(g− 1)

N(g− 1)
, φsen(g) = 1− φdiv(g). (2.2.4)

For comparison with the ageing model presented in Section 2.2.1, we performed

simulations, fixing m = n = 6000 basepairs for the initial chromosomes and as-

suming y = 200 basepairs are deleted during each replication.

Figure 2.4 shows that as the generation number increases, the average telomere

length decreases, reaching a value of 150 basepairs after about 150 generations.

Thereafter, the average telomere length remains constant, which indicates that

27



CHAPTER 2: STOCHASTIC SIMULATIONS OF NORMAL AGEING

replication has stopped and that senescence has occurred. Comparison of the

dashed line and the dash-dotted line shows good agreement between the cell

passaging model and the earlier model of telomere shortening in a single chro-

mosome. Figure 2.4 also shows how the standard deviation increases as the

generation number increases, reaching a maximum value of 450 at generation

90 before decreasing almost to zero at generation 180.

(a) (b)

Figure 2.5: In Figure 2.5(a), the dashed line shows how the average (over 1000 sim-

ulations) of telomere length per chromosome varies with generation number, the solid

line above (below) the dashed line is the average telomere length plus (minus) twice the

standard deviation. Figure 2.5(b) use the same simulation data from Figure 2.5(a). In

Figure 2.5(b), the dashed line shows how the average of telomere length per chromo-

some varies with population doublings, the solid line above (below) the dashed line is

the average telomere length plus (minus) twice the standard deviation.

In Figure 2.5 we represent the results from Figure 2.4 in order to show how the

average telomere length changes with generation numbers (2.5(a)) and popula-

tion doublings (2.5(b)). In Figure 2.5(b), for the first 100 population doublings,

the average telomere length decreases linearly as the number of population

doublings increases; thereafter the average telomere length slowly asymptotes

to 200. We note also that the number of population doublings approaches 150

when the generation number approaches 500. This is because when some of

the chromosomes are senescent, it takes more than one generation to achieve
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population doubling.

(a) (b)

Figure 2.6: Average results of 1000 simulations. In Figure 2.6(a), the dashed line

is the fraction of dividing chromosomes plotted against generation number, the solid

lines indicate two standard deviations above and below the fraction of dividing chro-

mosomes. Figure 2.6(b) uses the simulation data from Figure 2.6(a). In Figure 2.6(b),

the dashed line is the fraction of dividing chromosomes plotted against population dou-

bling, the solid lines indicate two standard deviations above and below the fraction of

dividing chromosomes.

In Figure 2.6 we show how, for the simulation results presented in Figure 2.5,

the fraction of dividing chromosomes changes with both generation number

and population doubling. Figure 2.6(a) shows that from generation 1 to 90,

all chromosomes are replicating. Comparing Figures 2.5(a) and 2.6(a) we note

that during this period the rate of loss of telomere is constant. After generation

90 some chromosomes stop replicating and the fraction of senescent chromo-

somes rapidly increases from zero. After generation 180 the dashed line tends

to zero slowly, as the fraction of senescent chromosomes approaches unity. This

explains why the standard deviation plotted in Figure 2.5(a) changes with gen-

eration number in the manner observed. Between generations 9 and 90, all 200

of the randomly selected chromosomes replicate to produce 400 chromosomes

from which we select 200 for the next generation. At generation 90 the telomere

length of some chromosomes has reached its minimum and they stop repli-
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cating. Chromosomes with longer telomeres continue to divide, reducing the

average telomere length and causing the distribution of lengths to approach a

limiting vale and the standard deviation to fall. After generation 180 nearly

all chromosomes are senescent. In this case any chromosomes that are ‘ran-

domly selected’ maintain their minimum telomere length on each subsequent

generation and therefore variation is close to zero. Figures2.6(b) shows how the

fraction of dividing cells changes with population doubling rather than gener-

ation number. Before 90 population doubling, all the chromosomes replicate

due to all chromosomes having significant longer telomeres during that period

as shown in Figure 2.5(b). Thereafter some of the chromosomes become senes-

cent, leading to a reduction in the proportion of dividing chromosomes until

the entire population is senescent at approximately 150 population doublings.

2.2.5 Case II: Telomere loss depend on telomere length

In this section the simulations are similar to those presented in Section 2.2.4.

We consider a single chromosome, with telomere length 5950 basepairs and

passage it to senescence. The difference between these simulations and those of

Section 2.2.4 is that the rate of telomere loss is non-constant (compare (2.1.1) and

(2.2.2)). For comparison with the simpler case of a constant loss of telomeres at

each generation, and in order to make the average telomere loss 200 basepairs

per generation, we fix y0 = 100 in (2.2.2). We choose y1 so that the remaining

100 basepairs are lost by a telomere of length 2975 (the median telomere length),

i.e., 100 = 2975y1 hence y1 = 1/30, so that (2.2.2) becomes Y(n) = 100 + y1/30.

In Figure 2.7, we show how the average rate of telomere loss decreases with

generation number when shortening is length-dependent. At earlier genera-

tions the average telomere length decreases more rapidly than for the constant

loss model. However once the average telomere length falls below 3000 base-

pairs, the average telomere length decreases more slowly. After generation 180,

the average telomere length for both models is similar as all chromosomes are

senescent.
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Figure 2.7: Averaged results of 1000 simulations. The dashed lines indicate results of

the passaging model with telomere length dependent shorting (Y(n) = 100 + y1/30).

The middle dashed line shows how the average telomere length varies with generation

number , the dashed lines above and below indicated two standard deviations above and

below the mean. The solid lines show how telomere shortening proceeds when telomere

shortening is independent of length (Y(n) = 200). The middle solid line shows how

the average telomere length varies with generation number and the solid lines above

and below are the two standard deviations above and belove the mean.

Figure 2.8 shows how the fraction of dividing chromosomes for the length

dependent and constant loss models changes with generation numbers when

telomere loss is length-dependent. Between generations 1 and 80 all chromo-

somes in both models divide because their telomeres are sufficiently long. After

generation 80, the fraction of dividing chromosomes initially decreases more

rapidly while telomere loss occurs at a constant, although the fractions are the

same again by generation 160. For later generations, the fraction of dividing

chromosomes in the length-dependent model decreases more rapidly than for

the model with constant loss and their fractions of both models eventually ap-

proach zero. The model with constant telomere loss reaches senescence more

rapidly for the following reason. The senescence starts around generation 80,

at which time the length-dependent model loses Y(n) = 100 + 1600/30 = 153

basepairs per generation and then the telomere loss decreases from 153 to 100.

Consequently telomere loss is much smaller than for the model with a con-
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Figure 2.8: Averaged results of 1000 simulations. The dashed lines indicate results of

the passaging model with telomere length dependent shorting (Y(n) = 100 + y1/30).

The middle dashed line is the average fraction of dividing chromosomes plotted against

generation number, the dashed lines above and below indicated two standard deviations

above and below the average. The solid lines indicate the results of a passaging model

with constant telomere loss per replication (Y(n) = 200). The middle solid line is the

average fraction of dividing chromosomes plotted against generation number, the solid

lines above and below indicated two standard deviations above and below the average.

stant telomere loss of 200 basepairs event for the constant loss model has longer

telomere length (400 basepairs) at generation 80.

In figures 2.9(a) and 2.9(b) we show how the average telomere length and the

fraction of dividing chromosomes changes as the number of population dou-

blings increases. Before 90 population doublings, all chromosomes replicate

with an approximately linear reduction in average telomere length as the num-

ber of population doublings increases. After that, the fraction of dividing chro-

mosomes decreases and approaches zero after approximately 160 population

doubling by which time the average telomere length is approximately 250 base-

pairs.
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(a) (b)

Figure 2.9: In Figure 2.9(a), the dashed line shows how telomere length changes with

population doublings when shortening is length-dependent (Case II of the average of

1000 simulations), the solid lines delineate two standard deviations above and below

the average. Figure 2.9(b) uses the same simulation data from Figure 2.9(a). In Figure

2.9(b), the dashed line shows how the fraction of dividing chromosomes changes with

population doubling, the solid lines indicated two standard deviations above and below

the fraction of dividing chromosomes.

2.2.6 Case III: Chromosome division dependent on telomere length

For cases I and II, we distinguish two types of chromosomes: those which can

divide and those which are senescent. By contrast, for Case III since the proba-

bility of cell duration is no longer constant, we distinguish three types of chro-

mosomes: those which have just divided, those which could have divided but

did not divide and those which are senescent. We denote by N(g) the number

of chromosomes at generation g and by φdiva(g) the fraction of chromosomes

that divided at generation (g− 1), so that

φdiva(g) =
N(g)− N(g− 1)

N(g− 1)
. (2.2.5)

At each generation, we monitor the telomere length of all N(g) chromosomes

and we use this information to determine how many cells are senescent (i.e.

how many cells cannot divide because their chromosome are too short). We

denote by Ns(g) the number of chromosomes which are senescent at generation

g. Then (N(g) − Ns(g)) represents the number of chromosomes which could
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divide on the next generation. We denote by φsen(g) the fraction of senescent

chromosomes at generation g and by φdiv(g) the fraction of chromosomes which

could divide on generation (g + 1), so that

φsen(g) =
Ns(g)
N(g)

, (2.2.6)

φdiv(g) =
N(g)− Ns(g)

N(g)
. (2.2.7)

We denote by φdivp(g) the proportion of chromosomes which have the potential

to divide, but do not do so at generation g + 1, so that

φdivp(g) = φdiv(g)− φdiva(g) . (2.2.8)

The simulations presented in this section are similar to those presented in Sec-

tion 2.2.4. We start with a single chromosome with telomere length of 5950

basepairs, and passage its progeny to senescence. We denote by Li the initial

average telomere length of a chromosome and by Lc the critical telomere length

of the chromosome. The new feature of these simulations is that the proba-

bility of chromosome division now depends on telomere length, as in (2.2.3)

where we fix Li = 5950 basepairs and Lc = 200 basepairs. For the simplest

case, we fix α = 1 so that Pdiv is linearly dependent on telomere length. We

ensure that 0 ≤ Pdiv ≤ 1 by choosing a = −Lcritical/(Linitial − Lcritical) and

b = n/(Linitial − Lcritical). With these choice, we have Pdiv = (n − 200)/5750.

We estimate y, the assumed constant amount of telomeres lost per replication

by requiring, for consistency with Case I, that an average telomere 200 base-

pairs are lost per replication. We assume further that this average loss rate is

achieved when the telomeres are of length Linitial/2 = 2975. With Pdiv defined

above, we estimate y by requiring Pdiv(L = 2975)y = 200, so that y = 414 base-

pairs. To summarize, for Case III we have y = 414 and Pdiv = (n− 200)/5750.

In Figure 2.10, the average telomere length for Case III is plotted against gen-

eration number and shown to decrease faster than Case I until about gener-

ation 90. This is because for Case III Y(n) = 414 which is more than twice

the value used for Case I. The probability of replication Pdiv, decreases linearly

with telomere length and before generation 90, Pdiv > 1/2, combining these
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Figure 2.10: Average results of 1000 simulations. The dashed lines indicate the results

for Case III with Pdiv(n) = (n − 200)/5750 and a constant loss of Y(n) = 414

basepairs per replication. The middle dashed line is the average telomere length plotted

against generation, the dashed lines above and below indicated two standard deviations

above and below the mean. The solid lines indicate the results for Case I with a constant

telomere loss of Y(n) = 200 basepairs. The middle solid line is the average telomere

length plotted against generation number and the solid lines above and below are the

two standard deviations above and belove the mean.

results it is clear that the average telomere loss for Case III is greater than for

Case I (200 basepairs) at least initially. When the telomere length decreases

below 2975 basepairs, the average amount of telomere lost per generation for

Case III is less than 200 basepairs. The average telomere length for both models

reaches 1700 basepairs by generation 90. After generation 90 the average telom-

ere length decreases faster for Case I than Case III, and by generation 180, the

average telomere lengths of both models are similar and remain fixed thereafter

because all cells are senescence.

Figure 2.11 shows how for cases I and III the fraction of dividing chromosomes

φdiv(g) changes with generation number. For Case I, all chromosomes divide

between generations 1 and 90. After that, some chromosomes become senes-

cent and the fraction of dividing chromosomes decreases from 1, and slowly
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Figure 2.11: Average results of 1000 simulations. The dotted lines indicate the mean

fraction of dividing chromosomes φdiv(n) plotted against generation number for Case

III with Pdiv(n) = (n− 200)/5750 and a constant loss of Y(n) = 414 basepairs. The

dash-dotted lines above and below indicated two standard deviations above and below

the mean. The dashed line indicates the mean fraction of dividing chromosomes plotted

against generation number for Case I with a constant telomere loss of Y(n) = 200.

The solid lines above and below indicate two standard deviations above and below the

mean.

approaches zero . For Case III, the cells do not become senescent until about

generation 120 and 30 generations later than for Case I (see Figure 2.11). The

reason for that is at generation 90, both models predict the same average telom-

ere length 1700 basepairs (see Figure 2.10), but for Case III, after generation 90,

Pdiv(n) < 1/4 (Pdiv(n) < (1700− 200)/5750) which results cells in becoming

senescent later than Case I. After generation 120, for Case III, some chromo-

somes become senescent and the fraction of dividing chromosomes decreases

more slowly for Case III than Case I. The large increase in standard deviation

with generation number arises because events with small probabilities occur

over many generations.

In figures 2.12 we show how the proportion of each type of chromosome changes

with generation numbers (a) and population doubling (b). At each generation
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(a) (b)

Figure 2.12: Average results of 1000 simulations of Case III with Li = 5950 base-

pairs, Pdiv(n) = (n − 200)/5750 and a constant loss of Y(n) = 414 basepairs. In

Figure 2.12(a), the dash-dotted line indicates the fraction of senescent chromosomes

φsen plotted against generation number. The dotted line indicates the fraction of chro-

mosomes which actually divided φdiva in the previous generation. The dashed line

indicates the fraction of chromosomes which still have the potential to divide but did

not divide in the previous generation φdivp due to the probability of dividing. The solid

line indicates the fraction of non-senescent chromosome φdiv. Figure 2.12(b) use the

same simulation data from Figure 2.12(a). In Figure 2.12(b), the dash-dotted line indi-

cates the fraction of senescent chromosomes φsen plotted against population doublings.

The dotted line indicates the fraction of chromosomes which actually divided φdiva in

the previous population doublings. Same notation as in (a).

number, φdiv the fraction of dividing chromosomes which can replicate consists

of chromosomes which divided (φdiva) and chromosomes which could have di-

vided but failed to do so (φdivp). We note that the fraction of cells which actually

divide φdiva decreases and that the proportion of senescent chromosomes φsen

increases over time. The fraction of chromosomes which have the potential to

divide, but do not do so φdivp , increases with generation numbers, attaining a

max value at about generation 150 before declining to zero. This quantity de-

creases monotonically with generation number. As a check on our numerics we

calculate the sum φdiva + φdivp + φsen, noting that this quality should and is be

equal to unity.

37



CHAPTER 2: STOCHASTIC SIMULATIONS OF NORMAL AGEING

2.2.7 Case IV: Telomere loss and chromosome division depend on telom-

ere length

From the literature review we know telomere length plays an important role

in both telomere loss and chromosome division, so we develop a model with

both telomere loss dependent on telomere length and chromosomes division

depend on telomere length, which is a combination of Sections 2.2.5 and 2.2.6.

The telomere loss rule follows (2.2.2) and the probability of chromosome di-

vides follows (2.2.3).

For Cases I and II, we distinguish two types of chromosomes: those which can

divide and those which are senescent. For Case III, we distinguish three types

of chromosomes: those which have just divided, those which could divide but

do not and those which are senescent. For Case IV, since the probability for

chromosomes divides varies with telomere length, we again distinguish three

types of chromosomes, as for Case III and we use (2.2.5)-(2.2.8) to calculate φdiva ,

φsen, φdiv and φdivp respectively.

The simulations performed in this section are similar to those in Section 2.2.4.

We start with a single chromosome with telomere length 5950 basepairs and

passage its progeny to senescence. We use telomere loss and chromosome divi-

sion are both depends on telomere length, as in equation (2.2.2), (2.2.3) respec-

tively. We fix Lc = 200 basepairs, Li = 5950 basepairs and α = 1, therefore

Pdiv(n) = (n− 200)/5750. For a fair comparison, we must ensure that the aver-

age telomere loss is 200 basepairs per replication, we fix y0 = 207 basepairs half

the value used in Case III, the remaining 207 basepairs are lost by the form y1n,

so to balance the median telomere length 2975 basepairs having a probability

of P = 1/2, 207 = 2975y1, yielding y1 ≈ 1/14. So Y(n) = 207 + n/14. For ease

of comparison we summaries in Table 2.2. The expressions that we use for Pdiv

and Y(n) for cases I-IV.

In Figure 2.13, we compare cases I and IV. Initially the average telomere length

for Case IV decreases faster than for Case I (i.e. until generation 92). This is
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Case Pdiv(n) Y(n)

Case I 1 200

Case II 1 100 + n
30

Case III n−200
5750 414

Case IV n−200
5750 207 + n

14

Table 2.2: The summary of expressions for Pdiv(n) and Y(n) for cases I-IV.

Figure 2.13: Average results of 1000 simulations. The dashed lines indicate the results

for Case IV with Pdiv(n) = (n− 200)/5750 and y(g) = 207 + n/14 basepairs. The

middle dashed line is the average telomere length plotted against generation, the dashed

lines above and below indicated two standard deviations above and below the mean.

The solid lines indicate the results for Case I with a constant telomere loss of Y(n) =

200 basepairs. The middle solid line is the average telomere length plotted against

generation number and the solid lines above and below are two standard deviations

above and below the mean.

because for Case IV Y(n) = 207 + n/14 and Pdiv(n) = (n− 200)/5750. When

L = 3075 basepairs, Pdiv = 0.5 and Y(n) = 426 so that the average telomere

loss is Pdiv(n)Y(n) = 213 basepairs. Consequently telomeres whose lengths

n exceed 3075 basepairs have Pdiv(n) > 0.5 and Y(n) > 426, and as a result,

the average telomere loss (Pdiv × Y(n)) exceeds 200 basepairs, the average loss

for Case I. For both cases the average telomere length reaches 1500 basepairs
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at generation 92. For Case IV, when the telomere length reaches 1500 base-

pairs, Pdiv(n) = 0.278 and Y(n) = 314 basepairs, so the average telomere loss

(Pdiv×Y(n)) is 87 basepairs, which is less than the average loss for Case I. After

generation 180, the average telomere length for Case I approaches a constant,

indicating that the population is senescent. However for Case IV, as the telom-

ere length decreases, Pdiv decreases, so that telomere length decreases slowly

and the population reaches senescence slowly as well.

Figure 2.14: Average results of 1000 simulations. The dotted lines indicate the mean

fraction of dividing chromosomes φdiv(n) for Case IV plotted against generation num-

ber of passaging model with Pdiv(n) = (n − 200)/5750 and Y(n) = 207 + n/4

basepairs. The dash-dotted lines above and below indicated two standard deviations

above and below the mean. The dashed lines indicate the fraction of dividing chromo-

somes plotted against generation number for Case I. The solid lines above and below

indicate two standard deviations above and below the fraction of dividing chromosomes

(Case I).

In Figure 2.14 we compare φdiv the fraction of dividing chromosomes for cases

I and IV. For Case I, all chromosomes can divide between generations 1 to 80.

After that, some of the chromosome become senescent and the fraction of di-

viding chromosomes decreases monotonically from unity to zero. In Case IV,

the fraction of dividing chromosomes φdiv remains it unity until generation 170,
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90 generation later than for Case I. This is because, the average telomere length

for Case IV reaches the critical telomere length of 200 basepairs later than for

Case I. After 170 generations, φdiv for Case IV decreases slowly to zero. Since

Pdiv(n) = (n− 200)/5750 , the probability of division and the average telomere

length decrease, as the generation number increases, causing a slower approach

to senescence.

(a) (b)

Figure 2.15: Average results of 1000 simulations of Case IV with Li = 5950, Pdiv(n)

= (n− 200)/5750 and Y(n) = 207 + n/4. In Figure 2.15(a), the dash-dotted line

indicates the fraction of senescent chromosomes φsen plotted against generation num-

ber. The dotted line indicates the fraction of chromosomes which actually divided φdiva

in the previous generation. The dashed line indicates the fraction of chromosomes

which still have the potential to divide but did not divide in the previous generation

φdivp due to the probability of dividing. The solid line indicates the fraction of non-

senescent chromosome φdiv. Figure 2.15(b) the same data as Figure 2.15(a) plotted

against population doublings.

In Figure 2.15 we show how the proportion of each type of chromosome changes

with generation number (a) and population doubling (b). We note that the

fraction of cells which actually divide φdiva decreases and that the proportion of

senescent chromosomes φsen increases over time. The fraction of chromosome
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which have the potential to divide, but do not do so φdivp , increases with gener-

ation numbers, attaining a max value at about generation 150 before declining

to zero. As a check on our numerics we calculate the sum φdiva + φdivp + φsen,

noting that this quality should be equal to unity.

2.3 The cell model

2.3.1 Preliminaries

The chromosome model presented in Section 2.2 can be seen as a simple case

of the cell model for which there is only one chromosome in each cell. We use

N to denote the number of chromosomes in the cell. This number differs be-

tween organisms. For example small deer contain only 6 chromosomes while

carp contain over 100 chromosomes [68]. Since there are 46 chromosomes in a

normal human cell, in this section we fix N = 46. Before the cell replicates, we

check that none of the telomeres within the cell have fallen below the critical

value. If one of the chromosomes has reached the critical value, then the cell

will not replicate. If a cell replicates, it produces two daughter cells. We assume

that daughter chromosomes are allocated randomly to each of the daughter

cells.

Each chromosome obeys the replication rule (2.2.1), Kg
n → Kg+1

n + Kg+1
n−L. For

stochastic simulations we keep track of the length of each chromosomes in cell.

However, for theoretical analysis of telomere length dynamics (Chapter 4), we

only keep track of total telomere length in the cell. We use Cg
m to denote a cell

with total telomere length m at generation g. We still use Y(n) to denote the

amount of telomere lost during each chromosomes replication; g represents the

generation number, Pcdiv denote the probability of cell division. If a cell repli-

cates, the daughter chromosomes are randomly allocated to the daughter cells.

There are 2N ways in which the 2N daughter chromosomes can be randomly

allocated to the two daughter cells. The discrete cell replication rule can be
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written as

Cg
m → Cg+1

m−jL + Cg+1
m−(N−j)L j = 0, 1, .., N

with probability 2−N
(

N
j

)
and Pcdiv . (2.3.1)

In this section we continue to use length dependent telomere loss, so that

Y(n) = y0 + y1n , (2.3.2)

where y0 and y1 are constants. The cell division rate also depends on telomere

length via

Pcdiv(n) = (a + bn)α , (2.3.3)

where a b and α are constants.

In the following section we reconsider the four cases of telomere shortening

that were introduced in Section 2.2. The cell-level expressions for Pdiv and Y(n)

are summarized in Table 2.3. In Case I telomere loss and probability of cell di-

vision are both constant; in Case II telomere loss is length-dependent; in Case

III replication is probabilistic with constant loss; in Case IV replication is prob-

abilistic with length-dependent loss.

Case Probability of cell dividing Pcdiv telomere loss Y(n)

Case I Pcdiv = 1 Y(n) = y0

Case II Pcdiv = 1 Y(n) = y0 + y1n

Case III Pcdiv = (a + bn)α Y(n) = y0

Case IV Pcdiv = (a + bn)α Y(n) = y0 + y1n

Table 2.3: 4 cell-level cases where parameter a, b, α, y0, y1 are constants.

2.3.2 Case I: Constant telomere loss and constant probability of cell divi-

sion

We start with a single cell, fixing m = n = 6000 basepairs for each of its 46

chromosomes. We assume that Y(n) = 200 basepairs are deleted from each

43



CHAPTER 2: STOCHASTIC SIMULATIONS OF NORMAL AGEING

daughter chromosome during each replication event. We use the passaging

method outlined in Sections 2.2.4 and 2.2.3 with parameter N = 46, so that at

each generation we record not only the average telomere length of the cell but

also the average shortest telomere length of the 46 chromosomes in each cell.

(a) (b)

Figure 2.16: In Figure 2.16(a), the dashed line is the average of 1000 simulations of

telomere length of the chromosome against generation numbers, the solid line above

(below) is the average telomere length plus (minus) twice the standard deviation. The

dash-dot line shows the average length of the shortest telomere in a cell. Figure 2.16(b)

use the same simulation data from Figure 2.16(a) plotted against h population dou-

bling.

In Figure 2.16 we present the average results of 1000 simulations in order to

show how the average telomere length changes with generation number (2.16(a))

and population doublings (2.16(b)). Figure 2.16(a) shows that as the generation

number increases from 1 to 90, the average telomere length of the cells decreases

linearly. After generation 90, the solid curve plateaus at a constant value of

about 1100 basepairs. After generation 100, telomere loss halts because all the

cells are senescent (Figure 2.17(a)). Figure 2.16(a) also shows how the aver-

age length of the shortest telomere in a cell decreases linearly as the generation

number increases until generation 100, but it decreases faster than the average

telomere length . The shortest telomere length reaches 200 basepairs (the critical

length) at about generation 100. This explains why cells became senescent with
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long average telomere length (1100 basepairs), because for the cell replication

rule, when the shortest telomere length of the chromosomes in the cell reaches

critical value, the whole cell stops replicating, even through all the rest of the

chromosomes still have longer telomeres. So when the average of the short-

est telomere length reaches 200 basepairs (at about 100 generations), the whole

population becomes senescent. Figure 2.16(b) shows the same phenomenon as

figures 2.16(a), in the population doubling time scale. With constant probabil-

ity of cell division, when all telomere length of the cell over the critical length,

there is little difference between generation number and population doublings.

(a) (b)

Figure 2.17: Averaged results of 1000 simulations from the same simulations as Fig-

ure 2.16. In Figure 2.17(a), the dashed line is the fraction of dividing cells plotted

against generation number, the solid lines indicated two standard deviations above

and below the fraction of dividing cell. Figure 2.17(b) the same data as Figure 2.17(a)

plotted against population doubling.

In Figure 2.17 we show how, for the simulation results presented in Figure

2.16, the fraction of dividing cells changes with both generation number (a)

and population doubling timescales (b). From these figures we see that before

generation 90, population doubling and generation numbers are identical since

all the chromosomes replicate. Thereafter the generation number increases to

110 while the population doubling slowly approaches to 95 which means that

some of the cells are senescent. When the population stops rising, all cells are

45



CHAPTER 2: STOCHASTIC SIMULATIONS OF NORMAL AGEING

senescent. Figure 2.16(b) shows that initially the average telomere length de-

creases linearly and stops decreasing at 95 population doublings where the

mean telomere length is 1100 basepairs. Figure 2.17(b) reveals that cells start

to become senescent after about 80 population doublings and that all cells are

senescent after about 95 population doublings.

Figure 2.18: Series of plots showing the distribution of average telomere lengths

within a population of 200 cells at generations 10, 30, 50, 70, 90, 110, 130, 150,

when chromosomes shortening and replication are described by Case I. In order to see

clearly how the distributions change we reduced the horizontal scale (average telomere

length) by a factor of 10.
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Figure 2.19: Series of plots showing the distribution of average shortest telomere

lengths from a population of 200 cells at generations 10, 30, 50, 70, 90, 110, 130,

150, when chromosomes shortening and replication are described by Case I. In order

to see clearly how the distributions change we reduced the horizontal scale (average

telomere length) by a factor of 10.

In order to determine the distribution of telomere lengths we illustrate the aver-

age and shortest telomere length of 200 cells in one simulation at generations 10,

30, 50, 70, 90, 110, 130, 150 respectively. The resulting data is presented in Fig-

ures 2.18 and 2.19. As the generation number increases the distribution spreads

out and moves towards the region of lower telomere lengths. The graphs in Fig-

ure 2.18 show that the corresponding results for generations 110, 130, 150 are

identical, indicating that the cells are not replicating. This is confirmed by the

47



CHAPTER 2: STOCHASTIC SIMULATIONS OF NORMAL AGEING

results presented in Figure 2.19 which show that at generation 110 the shortest

telomeres have reached the critical length.

2.3.3 Unified view of Cases I-IV

In this section the simulations are similar to those for normal cell ageing pre-

sented in Section 2.3.2. We start with a cell which has a 46 chromosomes and

average telomere length of 46 chromosomes is 5950 basepairs, and follow its

progeny to senescence. We use Y(n)(see (2.3.2)) to denote the telomere loss and

Pcdiv (2.3.3) for the probability of cell division.

In previous chromosome simulations, we chose chromosome division Pdiv as a

constant (α = 0, cases I and II) or linearly dependent on telomere length (α = 1

cases III and IV). In this section, we not only consider cell division which de-

pends linearly on telomere length (α = 1), but also cases for which 0 ≤ α ≤ 1.

For cases I and III, the three parameters α, y0 and y1 are chosen to ensure that

the average telomere loss per chromosomes replication is 200 basepairs. We fix

α = 0, 0.25, 0.5, 0.75, 1 separately with a constant telomere loss of Y(n), and

for cases II and IV length-dependent telomere loss Y(n) is given by (2.3.3). The

parameter values listed in Table 2.4, correspond to 10 different cases each of

which gives a mean telomere loss of 200 basepairs per chromosome replication.

Case I is the simplest, where the cell always divides if the telomere length of

all its chromosomes exceed the critical length. Further, during replication the

loss of telomere is constant (200 basepairs). Case I is identical to the model we

present in Section 2.3.2. Case II has the same cell dividing probability as Case I,

but the telomere loss Y(n) in each replication is dependent on telomere length.

In order to make the average telomere loss 200 basepairs, we pick y0 = 100

(half of value of Y(n) in Case I), and balance the median telomere length of

2975 basepairs via 200 = 100 + 2975y1, to obtain y1 = 1/30, hence in Case II,

Y(n) = 100 + n/30. In Case III-I, the probability of cell replication is dependent

on telomere length. In order to obtain an average telomere loss of 200 basepairs

we pick the medium point of the telomere length L = 2975 basepairs and let
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Case α y0 y1

Case I 0 200 0

Case II 0 100 1
30

Case III-I 0.25 240 0

Case III-II 0.5 288 0

Case III-III 0.75 345 0

Case III-IV 1 414 0

Case IV-I 0.25 120 1
25

Case IV-II 0.5 144 1
21

Case IV-III 0.75 172.5 1
17

Case IV-IV 1 207 1
14

Table 2.4: The parameters values in Table 2.2 generate 10 different cases, each

of which has an average telomere loss of 200 basepairs per chromosome repli-

cation.

Pcdiv(n)Y(n) = 200 which implies Y(n) = 240 when α = 0.25. Following the

same rule we obtain the values of Y(n) for cases III-II, III-III, III-IV specified in

Table 2.4. In Case IV-I, the way we calculate Y(n) is similar to that for Case II.

We fix y0 = 120, which is half the value of y0 in Case III-I and to balance the

other half we choose y1 = 1/25. Similarly the expressions for Y(n) for cases

IV-II, IV-III, IV-IV follow.

We split the 10 cases in Table 2.4 into two groups, according to whether telom-

ere shortening depends on telomere length (group 2, which contains cases II,

IV-I, IV-II, IV-III, IV-IV) or not (group 1, which contains cases I, III-I, III-II, III-

III, III-IV ).

Figure 2.20 shows how the average telomere length of the cells in Cases I and

III changes with generation number and population doubling for different val-

ues of Pcdiv. Before generation 80, Case III-IV loses telomeres at the fastest rate

followed by Case III-III, III-II, III-I, I which is similar to the single chromosome

constant loss model. When the cells reach senescence, Case III-IV remains with
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(a) (b)

Figure 2.20: Average results of 1000 simulations. In Figure 2.20(a), average cell

telomere length plotted against generation number for Cases I, III-I, III-II, III-III, III-

IV (with parameters shown in Table 2.4 ). Figure 2.20(b) the same data as Figure

2.20(a) plotted against population doublings.

the longest telomeres length of the cell followed by cases III-III, III-II, I,III-I; this

is because Case III-IV has the largest constant loss y0. From Figure 2.20(b) it

is clear that, as the population doubling increases, the average telomere length

decreases linearly and Case III-IV loses telomeres at the fastest rate followed by

cases III-III, III-II, III-I, I.

For cases I and II, we distinguish two types of cells: those which can divide

and those which are senescent. By contrast, for cases III and IV since the proba-

bility of cell duration is no longer constant, we distinguish three types of cells:

those which have just divided, those which could have divided but did not,

and those which are senescent. We denote by NC(g) the number of cells at

generation g, so that

φcdiva(g) =
NC(g)− NC(g− 1)

NC(g− 1)
. (2.3.4)

On each generation, we monitor the telomere length of all NC(g) cells and

we use this information to determine how many cells are senescent (i.e how

many cells cannot divide because their chromosome are too short). We de-

note by NCs(g) the number of cells which are senescent at generation g. Then
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(NC(g) − NCs(g)) represents the number of cells which could divide on the

next generation. We denote by φcsen(g) the fraction of senescent cells at gen-

eration g and by φcdiv(g) the fraction of chromosomes which could divide on

generation (g + 1), so that

φcsen(g) =
NCs(g)
NC(g)

, (2.3.5)

φcdiv(g) =
NC(g)− NCs(g)

NC(g)
. (2.3.6)

We denote by φcdiva(g) the fraction of cells that actually divide at generation g

and φcdivp(g) the fraction of cells that have the potential to divide, but not do so

at generation g, so that

φcdivp(g) = φcdiv(g)− φcdiva(g) . (2.3.7)

For comparison of cases III and IV with cases I and II, we use the fraction of di-

viding chromosomes φcdiv(g) for cases III and IV where φcdiv(g) = φcdiva(g) +

φcdivp(g).

(a) (b)

Figure 2.21: In Figure 2.21(a), fraction of dividing cells φcdiv(g) plotted against gen-

eration number for cases I, III-I, III-II, III-III, III-IV (with the parameters shown in

Table 2.4 ). Figure 2.21(b) the same data as Figure 2.21(a) plotted against against

population doublings. Average results of 1000 simulations.

In Figure 2.21 we show how the fraction of dividing cells φcdiv(g) for cases I
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and III varies with generation numbers (a) and population doublings (b). Fig-

ure 2.21(a) shows that the bigger α is, the smaller Pcdiv, which results in the

fraction of dividing cells for Case III-IV decreasing most rapidly, followed by

cases III-III, III-II, III-I, I. Whatever the value of Pcdiv, cases I and III reach senes-

cence at about the same time (generations 110 to 120). Comparing the results of

the cell model with the chromosome model for cases I and III-IV, the main dif-

ference is that the cell model reaches senescence earlier with a longer average

telomere length than the chromosome model. This is due to senescence being

triggered by the shortest telomere of 46 hitting a lower threshold.

(a) (b)

Figure 2.22: In Figure 2.22(a), average telomere length plotted against generation

number for cases II, IV-I, IV-II, IV-III, IV-IV. (with the parameters shown in Table

2.4). Figure 2.22(b) the same data as Figure 2.22(a) plotted against population dou-

blings..Average results of 1000 simulations.

In Figures 2.22(a) and 2.23(a) the average telomere length of the cell and the

fraction of dividing cells are plotted against generation number for cases II, IV-

I, IV-II, IV-III, IV-IV respectively. Figures 2.22(a) and 2.23(b) shows the same

simulation data as in Figures 2.22(a) and 2.23(b) respectively, plot against pop-

ulation doubling instead. The behavior of the five cases in these four figures is

almost identical to that depicted in Figures 2.20 and 2.21.
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(a) (b)

Figure 2.23: In Figure 2.23(a), fraction of dividing cells φcdiv(g) plotted against gen-

eration number for Cases I, III-I, III-II, III-III, III-IV (with the parameters shown in

Table 2.4 ). Figure 2.23(b) the same data as Figure 2.23(a) plotted against population

doublings. Average results of 1000 simulations.

Hence, although the single chromosome model is a gross simplification of the

more realistic N = 46 chromosome cell model, it retains all the essential mech-

anisms of ageing and senescence.

2.4 Conclusions

In this chapter we have developed a chromosome-level model and a cell-level

model of telomere loss during replication and compared four different choices

for chromosome replication and telomere shortening rules. Case I represents

the constant telomere loss model in which a fixed amount of telomere is lost

during chromsome/cell replication. In 1992 Levy et al. [1] modelled telomere

shortening with a constant telomere loss caused by the “end-replication” prob-

lem. Their model predicted average telomere length decreases linearly with

generation numbers. In our first model we see that the average telomere length

of the chromosomes in the cell decreases linearly when the population dou-

bling or generation numbers increases before the cells became senescent which

is consistent with Levy’s work (see Figure 2.24 (A)). Figure 2.24 (A) shows that
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our simulation results are identical to Levy’s work (the two lines lie over each

other) and we also compared with the data he used.

Figure 2.24: (A) The circles are the experimental data from [1]. The solid line is our

simulation result of average telomere length plotted against population doubling and

the dotted line is Levy’s results. (B) The circles are experimental data from [2]. The

solid line is our simulation result and the dotted line is Buijs’ results. Note that the

solid and dotted lines coincide. (C) The solid line indicates the number of cells plotted

against population doublings for Case III and the dotted line is Gompertzian growth.

All three plots demonstrate the close agreement between our simulation results, those

of previous models, and experimental data.

Case II corresponds to the situation in which telomere loss during chromo-
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some/cell replication is dependent on the length of the telomere. In 2004 Buijs

[64] simulated how telomere shortening is dependent on telomere length. Fig-

ure 2.24 (B) shows that our simulation results for Case II are consistent with

Buijs’ results and with the experimental data used by Buijs. In Case III, the

probability of cell division is a random process dependent on telomere length

whereas telomere loss occurs at a constant rate. In 2008 Portugal [65] devel-

oped a similar stochastic model in which telomere shortening occurs at a con-

stant rate but cell division depends on telomere length. Their focus was on the

growth rate of the cell more than average telomere length and they predicted

a Gompertzian growth in the cell population. Figure 2.24 (C) shows that the

cell population in our simulations can be fitted by Gompertzian growth. How-

ever, in our second and third models we focus on how average telomere length

changes with generation numbers and the fraction of the dividing cells and the

comparisons of these data with Case I.

While the first three models have been used by previous researchers, the work

relating to Case IV is new. In Case IV, we combined telomere length depen-

dent loss with a probabilistic cell division model with probability dependent

on telomere length. If the parameters are chosen appropriately, Case I, II and

III can be considered as special cases of Case IV. By verifying the parameter

to see how the cell’s lifespan changes when both telomere shortening and the

division probability dependent on telomere length. Our Monte Carlo simula-

tions suggest that the average telomere length of the chromosomes in each cell

decreases when the population doubling or generation number increases until

the cells become senescent. After that the average telomere length of the chro-

mosomes in the cell slowly approaches a limiting value, at which stage all the

cells are senescent. We also consider how the fraction of dividing cells changes

as the generation number increases. We notice that cells with one chromosome

become senescent when their telomeres are at about 150 to 250 basepairs. How-

ever, the cell model with 46 chromosomes reaches senescence at about 1150

to 1500 basepairs, because if the length of one chromosome is lower than the

critical value and all the other of chromosomes contain longer telomeres, the

cell must still stop dividing. Thus, as the number of chromosomes in the cell
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increases, the average telomere length at which they become senescent also in-

creases.

(a) (b)

Figure 2.25: Average results of 200 simulations for Case IV. The circles are the exper-

imental data from [2]. In Figure 2.25(a), the solid line is the average telomere length

plotted against population doubling, the dashed lines indicated two standard devia-

tions above and below the mean. In Figure 2.25(b), the solid line is the fraction of

non-dividing cells plotted against population doubling, the dashed lines indicate two

standard deviations above and below the fraction of dividing cells.

Figure 2.25 demonstrates that our stochastic simulation results for Case IV can

be made to fit well with experimental data [2] in both average telomere length

and the fraction of non-dividing cells. So we can use our model to compare

with experimental data to estimate the amount of telomere loss and the prob-

ability of a cell dividing, for example to fitted data [2], we use initial telomere

length 12200 k basepairs and amount of telomere loss is Y(n) = 10 + 0.043n

and the probability of cell dividing is Pdiv(n) = (n/12200− 0.03)0.25.

In this Chapter we only developed a stochastic model, in Chapter 4 we intro-

duce and analyze mathematical models of these cases separately, in order to see

how the telomere length and fraction of senescent cells vary with time (popu-

lation doubling/generation number) as well as the shape of the distribution.
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Stochastic simulations of Werner’s

syndrome

3.1 Introduction

Werner’s syndrome is an inherited disease in which the most characteristic fea-

ture is the rapid appearance of ageing, which appears in the second or third

decade when patients develop grey hair, alopecia and atrophic skin [34]. Most

Werner’s syndrome patients die in their forties, their deaths usually being linked

to cancer [69].

To gain a better understanding of Werner’s syndrome, we start at the cellu-

lar level. Experiments have shown that dramatic shortening of telomeres in

Werner’s syndrome fibroblasts happens faster than in normal cells [70]. Cells

from Werner’s syndrome patients show large deletions in DNA [38], so Werner’s

syndrome accelerates a cell’s journey to senescence. When a population of

Werner’s syndrome cells become senescent, it has a wider range of telomere

lengths than a population of normal cells. The molecular pathway of Werner’s

syndrome is unknown. A possible explanation is that Werner’s syndrome cells

contain some very short telomeres with most of chromosomes retaining longer

telomeres [41]. These short telomeres cause premature senescence.

In order to model Werner’s syndrome, we assume that there is an extra loss in
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telomere length [71] when a cell divides. Thus we treat Werner’s syndrome as

an accelerated model of normal ageing. In this chapter, we generalize the chro-

mosome replication rule to include extra deletions caused by Werner syndrome

and we use a similar method to that presented in Chapter 2 to model Werner’s

syndrome. We develop a deterministic chromosome model (assuming that

Werner’s syndrome deletions occur at every replication) and a more general

refined stochastic model (which combines with normal ageing and Werner’s

syndrome). Then we scale up these models from the chromosome level to the

cell level.

Figure 3.1: Illustration of the effects of chromosome replication with Werner’s syn-

drome. The thick lines indicate the template (parent) strands. The thin lines indicate

the replicated strands of the template in the daughter chromosomes. The arrows show

the directions of replication and m, n, n− y, m− x, etc indicate the telomere lengths.

In Werner’s syndrome the replication process is more complicated than for nor-

mal ageing. We assume that m, n are the number of basepairs of the telomere

at each end of the chromosome. During replication, not only are y basepairs
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lost from one of the daughter chromosome as in normal ageing, but there is an

additional loss of x basepairs at one or other end of one of the daughter chro-

mosomes. As a result, depending on where the additional loss occurs, there are

4 different ways in which replication can occur, we illustrate the replication and

dividing process in Figure 3.1.

In Figure 3.1, in each daughter chromosome, one strand of DNA is from the par-

ent (indicated by a thick line), one daughter cell has the same telomere length as

its parent and the other has x fewer of basepairs. The additional loss of telom-

ere can occur from any of the four sides of strands which gives four possible

outcomes of the replication process. The other strand, indicated by the thin line

is manufactured in a replication process of the template in the daughter chro-

mosome which loses y basepairs during replication. In daughter chromosomes

if we remove longer telomere strand to the top and shorter stand to the bottom,

so replication in Figure 3.1, can be written more compactly as m n

m n− y

→
 n− y m

n− y m− y

+

 m n− x

m n− y− x

 , (3.1.1a)

 m n

m n− y

→
 n− y m

n− y m− y

+

 m− x n

m− x n− y

 , (3.1.1b)

 m n

m n− y

→
 n− y− x m

n− y− x m− y

+

 m n

m n− y

 , (3.1.1c)

 m n

m n− y

→
 n− y m− x

n− y m− y− x

+

 m n

m n− y

 . (3.1.1d)

Chromosome replication is restricted by telomere length: if this exceeds some

critical length, then (3.1.1a)-(3.1.1d) happen with equal probability 1/4. In nor-

mal ageing, chromosomes stop replicating when the telomere length reaches a

critical value which we have assumed to be zero. In Werner’s syndrome there

is a range of telomere lengths for which the chromosome may attempt to repli-

cate and fail part way through, leaving just the parent chromosome. Generally,
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there are four possible outcomes m y

m 0

→
 0 m

0 m− y

+

 m y− x

m −x

 , (3.1.2a)

 m y

m 0

→
 0 m

0 m− y

+

 m− x y

m− x 0

 , (3.1.2b)

 m y

m 0

→
 −x m

−x m− y

+

 m y

m 0

 , (3.1.2c)

 m y

m 0

→
 0 m− x

0 m− y− x

+

 m y

m 0

 . (3.1.2d)

Both the daughter chromosomes in (3.1.2b) and (3.1.2d) are viable (with non-

negative-telomere length), but outcomes (3.1.2a) and (3.1.2c) produce one vi-

able (non-negative-telomere length) daughter and one non-viable (negative-

telomere length) daughter chromosome. In practise, chromosomes cannot have

negative telomere length so (3.1.2a) and (3.1.2c) cannot happen. Instead, the

mother chromosomes will remain the same in this generation. When one end

of a Werner’s syndrome chromosome reaches the critical telomere length, the

three possible outcomes following replication are m y

m 0

→
 0 m

0 m− y

+

 m− x y

m− x 0

 , (3.1.3a)

 m y

m 0

→
 0 m− x

0 m− x− y

+

 m y

m 0

 , (3.1.3b)

 m y

m 0

→
 m y

m 0

 . (3.1.3c)

Since we assume (3.1.2a)-(3.1.2d) happen with equal probability 1/4, so we as-

sume (3.1.3a) and (3.1.3b) happen with equal probability 1/4 and (3.1.3c) hap-

pens with probability 1/2. We use MATLAB to run the stochastic simulations

and the pseudocode for there simulations is similar to that in Chapter 2 Sec-

tion 2.2.3. The difference is that when a cell replicates, it follows the Werner’s

syndrome replication rule above or a combination of the Werner’s syndrome
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replication rule with the normal ageing replication rule together.

All the models presented in this section are based on the following assump-

tions: first, there is no telomere elongation during chromosome replication as

there is no telomerase activity and no recombination events between telomeres.

Second, in a Werner’s syndrome intermediate senescent state, some mecha-

nisms of replication are available, but others are prohibited. If the stochastic

term indicates a prohibited type of replication (such as in (3.1.2b) and (3.1.2d)),

we assume that the cell does not divide and instead remains the same (as in

3.1.3c), but if an acceptable form of replication is chosen (such as (3.1.2a) and

(3.1.2c)), then it occurs as in (3.1.3a) and (3.1.3b). Third, we do not consider cell

death, that is there is no cell removal from the system.

3.2 Chromosome level model of Werner’s syndrome

3.2.1 Pure Werner’s syndrome model

We use the same passaging method as in Chapter 2. Our simulations start with

a single chromosome and we track its progeny over subsequent generations un-

til the total number of chromosomes exceeds 200. We then passage by randomly

selecting 200 of these chromosomes. In the next generation, all chromosomes

divide (if their telomeres are sufficiently long to allow replication), and we pas-

sage so that once again 200 chromosomes are selected from the population. This

process is repeated until all telomeres are too short to allow further replication.

At this stage the entire population is senescent. During division, the rule for

chromosome replication is as follows: if a telomere has not reached the critical

length then the four outcomes in (3.1.1a)-(3.1.1d) occur with equal probabilities

1/4. When the length of one of the telomeres reaches the critical value, then the

chromosome stops replicating with probability 1/2 (case (3.1.3c)) and the other

two possible outcomes cases ((3.1.3a) and (3.1.3b)) occur with equal probabili-

ties 1/4.
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For comparison with our earlier results for normal telomere shortening, we

start our simulations with a single chromosome for which m = n = 6000 base-

pairs. We fix y = 200 and x = 200 basepairs and choose the critical telomere

length to be 200 basepairs. We allow the new chromosome to replicate. On

each generation chromosomes are selected for replication and one of (3.1.1a)-

(3.1.1d) is chosen at random provided that the telomere length exceeds the crit-

ical length, otherwise one of (3.1.3a)-(3.1.3c) is chosen at random replication

when one of telomere length is equal to the critical length, and replication is

attempted. This process is repeated until all telomere lengths are too short to

allow further replication. At this stage the entire population is senescent.

At each generation we record not only the average telomere length but also

the number of chromosomes that have just replicated. We denote by N(g) the

number of chromosomes at generation g, φdiv(g) represents the fraction of di-

viding chromosomes at generation (g− 1) and φsen(g) the fraction of senescent

chromosomes at generation (g− 1), so that

φdiv(g) =
N(g)− N(g− 1)

N(g− 1)
, φsen(g) = 1− φdiv(g). (3.2.1)

In Figure 3.2 we show how the average telomere length for Werner’s syndrome

and normal ageing vary with generation number (Figure 3.2(a)) and population

doubling (Figure 3.2(b)). In Figure 3.2(a), as the generation number increases,

the average telomere length of Werner’s syndrome simulation decreases, reach-

ing a value of 250 basepairs after about 100 generation. Thereafter, the average

telomere length remains constant, which indicates that replication has stopped

and that senescence has occurred. Hence in Werner’s syndrome, telomere short-

ening is much faster than in normal ageing (in normal ageing it takes about 150

generations for senescence to occur). Figure 3.2(b) shows that the same phe-

nomenon, vary with population doublings instead of generation number.

Figure 3.3 we show how the fraction of dividing chromosomes for Werner’s

syndrome and normal ageing vary with generation numbers (Figure 3.3(a))

and population doubling (Figure 3.3(b)). Figure 3.3(b) shows how before 90
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(a) (b)

Figure 3.2: Average of 2000 simulations. The middle dashed line indicates the average

length of telomere plotted against generation number (Figure 3.2(a)) and population

doubling (Figure 3.2(b)) with the Werner’s syndrome active x = y = 200 basepairs

per replication, the dashed lines above and below are the means plus or minus twice

the standard deviation. The middle solid line is the average length of telomere plotted

against generation number (Figure 3.2(a)) and population doubling (Figure 3.2(b))

with normal ageing y = 200 basepairs, the solid lines above and below are the means

plus or minus twice the standard deviation. Figure 3.2(b) use the same simulation

data from Figure 3.2(a).

population doubling, all the chromosomes are replicating, after generation 180

nearly all chromosomes are senescent. Figure 3.3(a) shows that simulation of

Werner’s syndrome from generation 1 to 40, all chromosomes are replicating.

Comparing Figures 3.3(a) and 3.2(a) we note that during this period the rate of

loss of telomere is constant. At generation 40 the telomere length of some of

the chromosomes reaches their minimum and stop replicating. Chromosomes

with longer telomeres continue to divide, reducing the average telomere length

and cause an increase in the spread or standard deviation of the distribution of

lengths. After generation 40 some chromosomes stop replicating and the frac-

tion of senescent chromosomes rapidly increases from zero. After generation

110 nearly all chromosomes are senescent.
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(a) (b)

Figure 3.3: Average of 2000 simulations. The middle dashed line is the fraction of

dividing chromosomes plotted against generation number (Figure 3.3(a)), and against

population doubling (Figure 3.3(b)) with the Werner’s syndrome active x = y = 200

basepairs, the dashed line above or below is the mean plus or minus twice the standard

deviation. The middle solid line is the fraction of dividing chromosomes plotted against

generation number (Figure 3.3(a)), and against population doubling (Figure 3.3(b))

with the normal ageing y = 200 basepairs, the solid line above or below is the mean

plus or minus twice the standard deviation. Figure 3.3 use the same simulation data

from Figure 3.2.

3.2.2 Combination model with normal ageing and Werner’s syndrome

Additional deletions associated with Werner’s syndrome do not necessarily

happen after each replication event. In this section, we assume that when a

replication occurs shortening is governed by Werner’s syndrome (one of (3.1.1a)-

(3.1.1d) or (3.1.3a)-(3.1.3c)) with probability p and otherwise with probability

1− p, division is regulated by (2.1.1) (normal ageing, Kg
n → Kg+1

n + Kg+1
n−y).

When a Werner’s syndrome deletion occurs, replication follows one of equa-

tions (3.1.1a)-(3.1.1d), each with equal probability 1/4, provided that the telom-

ere length exceeds the critical telomere length. Chromosome replication fol-

lows one of equations (3.1.3a)-(3.1.3b) with equal probability 1/4 and (3.1.3c)

with probability 1/2 if the telomere length is less than or equal to the critical

telomere length. Using the same notation as before, y is the amount of telomere
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lost in normal ageing and x is the amount of extra telomere lost due to Werner’s

syndrome.

We not only focus on the average telomere length and the fraction of divid-

ing chromosomes through time (evolution of generation number or population

doubling), but also on how telomere length and the fraction of dividing chro-

mosomes changes as p, the probability of Werner’s syndrome deletion, varies.

We assume that the product of xp = constant, in order to make the average

amount of telomere lost per replication the same. We consider a range of val-

ues of x, p where xp = 200, see Table 3.1. For comparison we also present

results for the case p = x = 0 which corresponds to normal ageing. The case

p = 1 corresponds to previous case in Section 3.2.1.

p 0 0.2 0.4 0.6 0.8 1

x 0 1000 500 333 250 200

Table 3.1: Values of p and x.

We use the passaging method described in Section 2.2.4, starting with a single

chromosome with initial telomere length m = n = 6000 basepairs and y = 200

basepairs. The average telomere loss per replication in Werner’s syndrome is

such that xp = 200 basepairs. Still use 200 basepairs as the critical telomere

length. We simulate 6 different choices of p and x (see Table 3.1).

Figure 3.4 shows the average telomere length against population doubling, for

five different probabilities of Werner’s syndrome happening and the case of

normal ageing. As the population doubling increase, the average telomere

length of all the Werner’s syndrome cases decrease and approaches 100 popu-

lation doubling, 50 population doubling less than normal ageing (p = 0, x = 0).

When the probability of Werner’s deletions lies between 0.4 and 1, there is little

difference in average telomere loss between the population doubling. At larger

p, the curves in Figure 3.4 drop linearly and then have a sharp transition to hor-

izontal. We summarize the data from Figure 3.4 in Table 3.2 where the average
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Figure 3.4: Series of plots showing how, for Werner’s syndrome, the average telomere

length varies with population doublings. For each value of p, average results from 2000

simulation are presented. Parameter Values: y = 200, (p, x) = (0, 0); (0.2, 1000);

(0.4, 500); (0.6, 333); (0.8, 250); (1, 200). Key: the solid line is the average telom-

ere length, the dashed lines are the average average telomere length plus (minus) 2

standard deviations.

telomere length approaches a constant (chromosome became senescent). Table

3.2 shows that the average telomere length in Werner’s syndrome reaches a con-

stant faster than normal ageing (p = 0). Apart from p = 0.2, under Werner’s

syndrome, all population becomes senescent after 93 population doubling. If

we were only to consider the average effects of Werner’s deletions, all cases

(except p = 0) should yield the same results, because the average rate of telom-
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ere loss on each replication is the same (200 basepairs). When the chromosomes

become senescent, the six cases approach different constant values.

p x Population doubling Average telomere length

0 0 150 250

0.2 1000 110 387

0.4 500 93 300

0.6 333 89 216

0.8 250 89 247

1 200 97 244

Table 3.2: Data from Figure 3.4.

p senescent first appear population becomes senescent

0 85 150

0.2 11 110

0.4 20 93

0.6 27 89

0.8 31 89

1 35 97

Table 3.3: Summary of data from Figure 3.5.

Figure 3.5 shows how, for Werner’s syndrome the fraction of non-senescent

chromosomes varies with population doubling and p. Apart from the normal

ageing all the graphs are similar. We summarize the data in Table 3.3 which

shows that under Werner’s syndrome (p > 0), the lower the value of p, the

sooner the chromosomes become senescence and all become senescent after ap-

proximately the same number of population doubling.

Figure 3.6(a) shows how the standard deviation of average telomere length
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Figure 3.5: Series of plots showing how, for Werner’s syndrome, the proportion of

non-senescent chromosomes varies with population doublings. For each value of p,

average results from 2000 simulation are presented. Parameter Values: y = 200,

(p, x) = (0, 0); (0.2, 1000); (0.4, 500); (0.6, 333); (0.8, 250); (1, 200). Key: the solid

line is the average fraction of non senescent chromosomes, the dashed lines are the

average mean plus (minus) 2 standard deviations.

varies with population doublings (a). As p increases, the peak of the standard

deviation of average telomere length shrinks and moves to later times (gen-

eration number or population doubling). Comparing these figures with Table

3.3 we see the peak happens after the chromosomes start to senescence. The

standard deviation approaches a constant indicating that the entire population

reaches senescent, when there are no more changes in chromosome length. Fig-
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(a) (b)

Figure 3.6: Figure 3.6(a) showing how, for Werner’s syndrome, the standard deviation

of the average telomere length varies with population doubling, showed in simulations

in (Figure 3.4). Figure 3.6(b) showing how the standard deviation of the fraction of

non-senescent chromosomes varies with population doublings showed in simulations

of (Figure 3.5) for p = 0, 0.2, 0.4, 0.6, 0.8, 1.

ure 3.6(b) shows how the standard deviation of the fraction of non senescent

chromosomes varies with population doublings. At early times the standard

deviation is zero since all chromosomes are dividing. Once senescent chromo-

somes appear (see Table 3.3), the standard deviation increases, reaching a max-

imum point and then decreasing to a constant value at which time the entire

population has become senescent. The figures reveal that for 0.4 ≤ p ≤ 1 the

shape of curves are similar.

3.3 Cell level model Werner’s syndrome

3.3.1 Introduction

The chromosome level model of Werner’s syndrome presented in Section 3.2

can be viewed as the simplest cell model, with only one chromosome per cell.

We now extend our model to account for the fact that there are 46 chromosomes

in a normal human cell. Before the cell replicates, it checks all 46 chromosomes,

to make sure none of them will fall below the critical value at which senes-
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cence occurs. If one of the chromosomes has reached this critical value, then

the cell will not replicate. During cell division, the rules of chromosome repli-

cation are: if the the telomere has not reached or fall below the critical length,

then the four possible outcomes (3.1.1a)-(3.1.1d) occur with equal probability

(p = 0.25). By contrast, when one of the telomeres reaches the critical value,

then the chromosome stops replicating with probability 0.5 (cases (3.1.3c) or

it divides according to either (3.1.3a) or (3.1.3b), with equal probabilities 0.25.

After replication daughter chromosomes are allocated randomly to each of the

two daughter cells.

3.3.2 Pure Werner’s syndrome cell model

We start with a single cell, fixing m = n = 6000 basepairs for each of its 46

chromosomes and assume that y = 200 basepairs are deleted due to normal

ageing whereas x = 200 basepairs are deleted due to Werner’s syndrome. As

before we use 200 basepairs as the critical telomere length and passage the cells

as outline in Section 3.2.1. The rules for replication under Werner’s syndrome

follows those presented in the introduction (3.3.1). We denote by NC(g) the

number of cells at generation g, φcdiv(g) is the fraction of dividing cells at gen-

eration g− 1 and φcsen(g) is the fraction of senescent cells at generation (g− 1).

Then we have

φcdiv(g) =
NC(g)− NC(g− 1)

NC(g− 1)
, φcsen(g) = 1− φcdiv(g). (3.3.1)

In Figure 3.7 we plot the evolution of the average telomere length against gen-

eration number, comparing cells affected with Werner’s syndrome with those

undergoing normal ageing and plot how they varies with generation number

(Figure 3.7(a)) and population doubling (Figure 3.7(b)). In Figure 3.7(a) as the

generation number increases, the average length of telomere with Werner’s

syndrome decreases, reaching a value of 1750 basepairs after about 50 gener-

ation. Thereafter, the average telomere length remains constant, which indi-

cates that senescence has occurred. If the shortest telomere in the cell falls be-

low the critical value, the whole cell stops replicating, even if all the rest of the
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(a) (b)

Figure 3.7: The middle dashed line indicates the average length of telomere of the cells

plotted against generation number (Figure 3.7(a)) and population doubling (Figure

3.7(b)) with the Werner’s syndrome active x = y = 200 basepairs per replication,

the dashed lines above and below are the means plus or minus twice the standard

deviation. The dotted line indicates the average shortest telomere length of the cells

plotted against generation number (Figure 3.7(a)) and population doubling (Figure

3.7(b)). The middle solid line is the average length of telomere of the cells plotted

against generation number (Figure 3.7(a)) and population doubling (Figure 3.7(b))

with normal ageing y = 200 basepairs, the solid lines above and below are the means

plus or minus twice the standard deviation. Figure 3.7(b) use the same simulation

data from Figure 3.7(a). Average of 2500 simulations.

chromosomes still have longer telomeres. When the average shortest telomere

length in the cell reaches zero after about 50 generations, the cell stops replicat-

ing. This explains why senescent cells have telomeres whose average length is

longer than their normal counterparts (1750 basepairs) rather than 1150 base-

pairs. Comparing these results with those for normal ageing, shows that in

Werner’s syndrome the rate of telomere shortening is approximately twice as

faster as in normal ageing. In normal ageing it takes 100 generations for the

telomere length of a cell to decrease from 5950 basepairs to 1150 basepairs,

whereas with Werner’s syndrome and x = 200 basepairs it takes 50 genera-

tions for senescence to occur. Figure 3.7(b) shows the same phenomena as Fig-

ure 3.7(a).
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(a) (b)

Figure 3.8: The middle dashed line is the fraction of dividing cells plotted against

generation number (Figure 3.8(a)), and against population doubling (Figure 3.8(b))

with the Werner’s syndrome active x = y = 200 basepairs, the dashed line above

or below is the mean plus or minus twice the standard deviation. The middle solid

line is the fraction of dividing cells plotted against generation number (Figure 3.8(a)),

and against population doubling (Figure 3.8(b)) with the normal ageing y = 200

basepairs, the solid line above or below is the mean plus or minus twice the standard

deviation. Figure 3.8 use the same simulation data from Figure 3.7. Average of 2500

simulations.

Figure 3.8 shows how the fraction of dividing cells in Werner’s syndrome and

normal ageing varies with generation number (Figure 3.8(a)) and population

doubling (Figure 3.8(b)). For Werner’s syndrome, from generations 1 to 30, all

cells are replicating in Werner’s simulation. After generation 35 some cells stop

replicating and the fraction of senescent chromosomes rapidly increases from

zero. After generation 60 the dashed line tends to zero slowly, as the fraction of

senescent cell approaches unity. In normal ageing simulations, cells start to be-

come senescent at generation 75 and the entire population is senescent by gen-

eration 110, which is approximately twice as many generations as it takes for

the Werner’s syndrome simulations. These results also indicate that Werner’s

syndrome accelerates the ageing process.
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3.3.3 Combination cell model with normal ageing and Werner’s syndrome

In this section, we use a similar simulation method to that outlined in in Sec-

tion 3.2.2. We assume that for each chromosome replication extra Werner’s syn-

drome deletions occur with probability p, while normal ageing deletions occur

with probability 1− p. When the additional Werner’s syndrome deletions oc-

cur, the chromosome replication is via one of equations (3.1.1a)-(3.1.1d), each

occurring probability, 1/4, provided that the telomere length exceeds the criti-

cal value. Otherwise replication is via one of equations (3.1.3a)-(3.1.3b) which

occur with equal probability 1/4 or via equation (3.1.3c) which occurring with

probability 1/2. When the telomere length of the chromosome falls below than

the critical value, then the cell becomes senescent.

We investigate how evolution of the average telomere length and the fraction

of dividing cells changes with generation number and population doubling.

We also consider how these quantities depend on p, the probability that extra

deletions occurs. We start with a single cell with 46 chromosomes, each having

initial telomere length m = n = 6000 basepairs. We fixed y = 200 basepairs

as the telomere loss cause by normal ageing. To facilitate comparison between

the different cases, we fix the average amount of telomere loss per replication

so that xp = constant (200 basepairs) and vary p as stated in Table 3.1.

Figure 3.9 shows how the average telomere length per cell varies with popu-

lation doublings, for five cases of Werner’s syndrome and one for normal ag-

ing. The larger p, the sharper the transition from linear decay to plateau for as

senescence. As the population doubling increases, the average telomere length

of all the Werner’s syndrome cases decreases and approaches 45 population

doubling which is about half the number for normal ageing (p = 0, x = 0),

since the telomere loss per replication in Werner’s syndrome is twice that of

normal ageing. For the Werner’s syndromes simulations, the cells reach senes-

cence at approximately the same population doubling, regardless of the value

of p.
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Figure 3.9: Series of plots showing how, for Werner’s syndrome, the average telomere

length of the cell with 46 chromosomes varies with population doublings. The differ-

ent plots correspond to different probabilities with which the extra deletions associated

with Werner’s syndromes occur. For each value of p, average results from 2000 simula-

tion are presented. Parameter Values: y = 200, (p, x) = (0, 0); (0.2,1000); (0.4,500);

(0.6,333); (0.8,250); (1,200). Key: the solid line is the average telomere length, the

dashed lines are the average average telomere length plus (minus) 2 standard devia-

tions.

In Table 3.4 we summarize some of the data from the simulations presented in

Figure 3.9. These data relate to the average telomere length and when the popu-

lation approaches senescence. The table shows that the average telomere length

of the cells approaches a constant more rapidly when Werner’s syndrome oc-

curs. Apart from p = 0.2, when Werner’s syndrome occurs, the cells become
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p x Population doubling Average telomere length

0 0 90 1150

0.2 1000 60 1840

0.4 500 50 1830

0.6 333 46 1790

0.8 250 46 1750

1 200 50 1760

Table 3.4: Data from Figure 3.9.

senescent after about 48 population doubling. From Table 3.4, we also note

that when Werner’s syndrome occurs, the average telomere length of the cell at

senescence is significantly longer than for normal ageing.

p senescent first appear population becomes senescent

0 74 90

0.2 9 60

0.4 17 50

0.6 23 46

0.8 28 46

1 31 50

Table 3.5: Summary of data from Figure 3.10.

Figure 3.10 shows how, for Werner’s syndrome, the fraction of non senescent

cells varies with population doubling and with probability p. Apart from the

normal ageing case (p = 0) and when p = 0.2, all the graphs are similar. We

summarize some of these data in Table 3.5, which shows that the lower the

value of p (apart p = 0) the earlier the cells start to senescence and the later the

whole population becomes senescent.

Figure 3.11(a) shows how the standard deviation of the cells’s telomere length

varies with population doublings. In Werner’s syndrome as p increases, the

75



CHAPTER 3: STOCHASTIC SIMULATIONS OF WERNER’S SYNDROME

Figure 3.10: Series of plots showing how for Werner’s syndrome, the proportion of

non-senescent cells varies with population doublings. The different plots correspond

to different probabilities with which the extra deletions associated with Werner’s syn-

dromes occur. For each value of p, average results from 2000 simulation are pre-

sented. Parameter Values: y = 200, (p, x) = (0, 0); (0.2,1000); (0.4,500); (0.6,333);

(0.8,250); (1,200). Key: the solid line is the average fraction of non senescent chromo-

somes, the dashed lines are the average mean plus (minus) 2 standard deviations.

peak of standard deviation of average telomere length of the cell reduces in

height and moves to later times (population doubling). Comparing these fig-

ures with Table 3.5, we see that the peak happens after the cells first became

senescent. The standard deviation of telomere length approaches a constant

(dependent on p), indicating that the entire population has become senescent.

Figure 3.11(b) shows how the standard deviation of the fraction of non-senescent
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(a) (b)

Figure 3.11: Figure 3.11(a) showing how, for Werner’s syndrome, the standard devi-

ation of the average telomere length varies with population doubling, showed in sim-

ulations in (Figure 3.9). Figure 3.11(b) showing how the standard deviation of the

fraction of non-senescent chromosomes varies with population doublings showed in

simulations of (Figure 3.10) for p = 0, 0.2, 0.4, 0.6, 0.8, 1.

cells varies with generation and population doubling. The maximum peak of

each standard deviation happens after all the population has become senescent.

In order to illustrate the distribution of telomere lengths in Werner’s syndrome,

we have calculated the average and shortest telomere length of 200 cells in one

simulation, at generations 10, 15, 20, 25, 30, 35, 40, 45 respectively. The result-

ing data is presented in Figures 3.12 and 3.13. In Figure 3.12 as the generation

number increases the mean telomere length reduces. The distribution slowly

spreads out and moves towards the lower telomere length. In Figure 3.13,

at generations 10, 15 and 20, we observe that the distribution of the shortest

telomere length is bimodal, the generation number increases, the distribution

becomes to unimodal and approaches zero telomere length. At generation 45,

nearly all the cells have zero telomere length and are senescent. The average

telomere length, however is still quite long (see Figure 3.12).
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Figure 3.12: Histogram of average telomere length of the cell for range of generation

number in one simulation of Werner’s syndrome with p = 0.2. The horizontal scale

in graph is reduced by a factor of 10.

3.4 Conclusion

In this chapter we have showed the effects on chromosome replication and

telomere length of Werner’s syndrome. During replication, not only are y base-

pairs lost from one of the daughter chromosomes, as in normal ageing, but there

is an additional loss of x basepairs at one or other end of one of the daughter
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Figure 3.13: Histogram of shortest telomere length of the cell for range of generation

number in one simulation of Werner’s syndrome with p = 0.2. The horizontal scale

in graph is reduced by a factor of 10.

chromosomes. Based on the replication rule, we developed a chromosome-

level model and a cell-level model for Werner’s syndrome. In each model we

developed a deterministic system where Werner’s syndrome occurs all the time

(p = 1) and stochastic model where Werner’s syndrome occurs with prob-

ability p and normal ageing occurs with probability 1 − p. Comparing the

results of Werner’s syndrome and normal ageing, shows that Werner’s syn-
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drome cells (chromosomes) reach senescence earlier than normal ageing which

indicates that Werner’s syndrome can accelerate the ageing process matching

the Werner’s syndrome’s characteristic clinical feature, the rapid appearance of

ageing [34].

Another significant observation from the cell model is that when cells with

Werner’s syndrome become senescent, they contain longer telomeres than nor-

mal ageing cells. Figure 3.7 indicates that the shortest telomere length of the

chromosomes in the cells reach the critical value, even the average telomere

length is still quite long. These results are consistent with an explanation of

Werner’s syndrome cells [41], which predicts that population of Werner’s syn-

drome cells will contain some very short telomeres but the majority will retain

longer telomeres. Thus we observe that Werner’s syndrome not only can an

accelerate telomere shortening, but also that short telomeres in cells can cause

premature senescence. Both of these properties contribute to accelerated ageing

that characterizes Werner’s syndromes.
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Continuum models of telomere

shortening in normal ageing

4.1 Introduction

Normal chromosome replication produces one chromosome which is identical

to its parent and one which is slightly shorter. In this chapter, we use the chro-

mosome replication rules introduced in Chapter 2. We denote by m, h are the

numbers of basepairs in the telomere at each end of the chromosome and by y,

the average number of basepairs lost per replication. We represent the replica-

tion process in the following manner:

Figure 4.1: Chromosome replication rule.

In this chapter, we denote by n the average telomere length of a pair chro-
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mosomes (four ends), by Kg
n the number of chromosomes with total telomere

length n at generation g and by Y the number of basepairs that are lost when

a cell divides. Then the discrete chromosome replication process depicted in

Figure (4.1) can be written as

Kg
n → Kg+1

n + Kg+1
n−Y , (4.1.1)

and we assume that this event occurs with probability Pdiv. In general, the

telomere loss Y during chromosome replication may vary and the probability

that a chromosome divides may not always be constant. For example, chro-

mosomes with longer telomeres have the potential to lose more basepairs than

those with shorter telomeres and may have a greater probability of dividing

than ones with shorter telomeres [64] [65]. Consequently in this chapter we

continue to assume Y(n) = y0 + y1n and Pdiv(n) = (a + bn)α where y0, y1, a, b

and α are constants and n is the average telomere length of chromosomes (four

ends). As in Chapter 2, we will develop chromosome and cell-based models

and consider 4 different cases. For comparison with Chapter 2 , the cases we

consider are as outlined in Table 4.1.

Case Pdiv Y

Case I Pdiv = 1 Y(n) = L

Case II Pdiv = 1 Y(n) = y0 + y1n

Case III Pdiv = (a + bn)α Y(n) = L

Case IV Pdiv = (a + bn)α Y(n) = y0 + y1n

Table 4.1: Summary of the rules for cell division and telomere shortening that

we consider.

Case I has constant telomere loss Y(n) = y0 basepairs and dividing probability

Pdiv = 1. Case II has length-dependent loss Y(n) = y0 + y1n basepairs where

y0, y1 are constant and n is average telomere length of chromosomes and di-

viding probability Pdiv = 1 . Case III has constant loss Y(n) = L basepairs and

the probability of dividing is dependent on telomere length Pdiv = (a + bn)α

where a, b, α are constants. Case IV has length-dependent loss Y(n) = y0 + y1n
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basepairs and the probability of dividing is dependent on telomere length as

well Pdiv = (a + bn)α. In Chapter 2 we have already simulated the stochastic

models for chromosome model (Section 2.2) and cell model(Section 2.3) respec-

tively with four different cases. In this chapter we focus on the continues model

instead of discrete model, we formulate Monte Carlo descriptions and contin-

uum analogues (PDE) of these models.

In 1992 Levy et al. modelled the telomere shortening using a constant telomere

loss, Case I [1]. Their model predict average telomere length decreases linearly

with generation numbers and consistent with experimental data. Stochastic

simulation for Case II and Case III were developed by Buijs [64] et al. and Por-

tugal [65] et al. respectively. For Case III, Portugal [65] only consider the cell

replication rate is linearly depends on the telomere length, apart from that, we

also consider the nonlinear cases in cell-level model. The work relating to Case

IV is new. Our main aim in this chapter is to build models that combine a vari-

able rate of telomere shortening with a variable probability of cell division, to

see how the cell’s lifespan changes when both telomere shortening and division

depend on telomere length (Case IV).

4.2 Mathematical chromosome model of normal age-

ing

In the following sections, we start with the chromosomes model where we as-

sumed each cell contained only one chromosome. If one of the chromosomes

has reached this critical value, the cell will not replicate. If a cell replicates, it

produces two daughter cells. Here we are going to consider four different cases,

summarized in Table 4.1. In each cases we focus on the continuum model in-

stead discrete model, we formulate Monte Carlo descriptions and continuum

analogues (PDE) of these models.
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4.3 Case I: Constant loss of telomeres

4.3.1 Discrete model

In Case I both the telomere loss per replication and the probability of cell divi-

sion are constant. We denote by Kg
n the number of chromosomes with telomere

length n at generation g and by L the number of basepairs that are lost when

a chromosome divides, and assume that the chromosomes evolve according to

the discrete chromosome replication:

Kg
n → Kg+1

n + Kg+1
n−L , with probability Pdiv = 1 , (4.3.1)

where g, n, L ∈ N. We assume that initially there is one chromosome with

telomere length ninitial = Q basepairs. We replace (4.3.1) by the following ki-

netic equation:

Kg+1
n = Kg

n + Kg
n+L . (4.3.2)

We assume that (4.3.2) admits separable solutions of the form Kg
n = eγg+χn

where the growth rate γ depends on χ the decays rate of the distribution in n.

Substituting the trial solution into (4.3.2) leads to the dispersion relation for

eγ(g+1)+χn = eγg+χn + eγg+χ(n+L) ,

or eγ = 1 + eχL . (4.3.3)

This describes how quickly the distribution which decays with rate χ in n,

grows in time, g. Rapidly decaying distributions (−χ � 1) grow more slowly

(have a smaller χ) than distributions which decay slowly in n, that is (−χ� 1).

4.3.2 Continuum model

We wish to construct a continuum description of the process (4.3.3). If we as-

sume that χ is small then this expression reduces to

γ ≈ ln 2 +
χL
2

+
1
8

χ2L2 . (4.3.4)

Our aim here is to develop a PDE with the same relation as (4.3.4). In general,

the number of chromosomes K becomes very large over a few generations and
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can therefore be treated as a continuous variable. We also replace the discrete

generation number g by a continuous time variable, t. Since the telomere length

in the normal human cells is approximately 3k to 15k basepairs and the average

telomere loss during chromosome replication is 50− 200 basepairs [14] , which

is much less than the initial telomere length, we can treat telomere length, n,

as a continuous variable. To construct a continuous model in which telomere

length q and generation number g are continuous, we replace Kg
n by K(n, t)

where t = g, so t, n, K ∈ R . The continuous analogue of (4.3.2) is assumed

to be the simplest partial differential equation which has the same dispersion

relation as (4.3.4), so that

∂K
∂t

= K ln 2 +
1
2

L
∂K
∂n

+
1
8

L2 ∂2K
∂n2 . (4.3.5)

We assume that at t = 0 we have a single chromosome, with mean telomere

length ninitial = Q. So that K(n, 0) = δ(n− Q). We solve (4.3.5) by prescribing

the following initial and boundary conditions:

K(n, 0) = δ(n−Q) and K(n, t)→ 0 as n→ ±∞ . (4.3.6)

This is an approximation to the more restrictive conditions of ∂K/∂n = 0 at

n = 0 and n = Q + h for some h > 0, since telomere of length greater than Q

and less than zero cannot be constructed. However we note that (4.3.2) implies

∂K/∂n→ 0 as n→ ∞ and when interpreting the results later, we only consider

n ≥ 0. Here K(n, t)/(
∫

K(j, t)dj) is the probability density function.

4.3.3 Fourier analysis

The derivation of (4.3.5) can be explained more rigorously by considering the

evolution of the system in Fourier space. Firstly we note that (4.3.1) implies

exponential growth of the form Kg
n = 2g f (n, g) where f (n, g) is the probability

density function and
∫

f (n, g)dn = 1. Hence (4.3.2) can be written as

f (n, g + 1) = 1
2 [ f (n, g) + f (n + L, g)] . (4.3.7)

Now we use Fourier transform, where f̂ (k, g) = F ( f (n, g)) =
∫ ∞
−∞ eikn f (n, g)dn.

Then (4.3.7) can be transform to

f̂ (k, g + 1) = 1
2(1 + e−ikL) f̂ (k, g) . (4.3.8)

85



CHAPTER 4: CONTINUUM MODELS OF TELOMERE SHORTENING IN NORMAL
AGEING

We expand f̂ about f̂ (k, g + 1
2) using Taylor series to obtain

f̂ (k, g + 1
2) +

1
2

∂ f̂ (k, g + 1
2)

∂g
=

1
2
(1 + e−ikL)

[
f̂ (k, g + 1

2)− 1
2

∂ f̂ (k, g + 1
2)

∂g

]
.

(4.3.9)

Smooth distributions which vary slowly in n correspond to small values of k.

Assuming the solution f (n, g) is slowly varying in n, (4.3.9) can be written as

f̂ (k, g + 1
2) +

1
2

∂ f̂ (k, g + 1
2)

∂g

=
1
2

(
2− ikL +

i2k2

2

)[
f̂ (k, g + 1

2)− 1
2

∂ f̂ (k, g + 1
2)

∂g

]
, (4.3.10)

and further rearrange and expanding leads to

∂ f̂ (k, g + 1
2)

∂g
= f̂ (k, g + 1

2)
(
−1

2
ikl +

1
8

i2k2L2
)

. (4.3.11)

Now we invert the Fourier transform, to gain

∂ f (n, t)
∂t

=
1
2

L
∂ f (n, t)

∂n
+

1
8

L2 ∂2 f (n, t)
∂n2 . (4.3.12)

Since Kg
n = 2g f (n, g), we can write 2tK(n, t) = f (n, t) where f (n, t) is also a

probability density function, t = g and
∫

f (n, t)dn = 1. Hence (4.3.12) can be

written as (4.3.5).

4.3.4 General solution for PDE

Consider the following linear partial differential equation

∂K
∂t

= αK + β
∂K
∂n

+ D
∂2K
∂n2 , (4.3.13)

with initial condition K(n, 0) = δ(n−Qinitial) and boundaries conditions K → 0

as n → ±∞ where α, β, D and Qinitial are constants. We use Fourier transform

to solve (4.3.13). In terms of the Fourier transforms K̂(k, t)

K̂(k, t) = F (K) =
∫ ∞

−∞
eiknK(n, t)dn , (4.3.14)

F
(

∂K
∂n

)
=

∫ ∞

−∞

∂K(n, t)
∂n

eikndn =
∫ ∞

−∞

∂

∂n
(eiknK)− ikeiknKdn

= [eiknK]∞−∞ − ikK̂(k, t) , (4.3.15)
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The requirement that K(n, t) → 0 as n → ±∞ implies that [eiknK]∞−∞ = 0 and

hence that

F
(

∂K
∂n

)
= −ikK̂(k, t) . (4.3.16)

Consequently further derivatives can be easily calculated and

F
(

∂2K
∂n2

)
= −ikF

(
∂K
∂n

)
= −k2K̂(k, t) . (4.3.17)

Substituting with (4.3.14), (4.3.16), (4.3.17) in (4.3.13) supplies the following

ODE for K̂
∂K̂
∂t

= αK̂− βikK̂− Dk2K̂ =
(

α− βik− Dk2
)

K̂ , (4.3.18)

with solution

K̂ = A(k) exp
[(

α− βik− Dk2
)

t
]

, (4.3.19)

where A(k) is an arbitrary function. The initial conditions K(n, 0) = δ(n −
Qinitial) transform to give

K̂(k, 0) =
∫ ∞

−∞
eiknδ(n−Qinitial)dn = eikQinitial . (4.3.20)

We substitute (4.3.20) into (4.3.19) to find A = eikQinitial , hence

K̂ = exp
[(

α− βik− Dk2
)

t + ikQinitial

]
. (4.3.21)

Inverting the Fourier transform we obtain the general solution

K(n, t) = F−1(K̂) =
1

2π

∫ ∞

−∞
e−iknK̂(k, t)dk

=
1

2
√

πDt
exp

[
αt− (n + βt−Qinitial)2

4Dt

]
. (4.3.22)

Let µ = Qinitial − βt,σ =
√

2Dt, so (4.3.22) can be written as

K(n, t) =
eαt
√

2πσ2
exp

[
− (n− µ)2

2σ2

]
. (4.3.23)

This is a Gaussian distribution, with mean µ and variance σ2 and growth rate

eαt.
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4.3.5 General solution for our model

Using the method outlined above, with α = ln 2, β = 1
2 L, D = 1

8 L2 and Qinitial =

Q, we deduce that the solution for (4.3.5) is that

K(n, t) =
2t+1

L
√

2πt
exp

[
−

2(n + 1
2 Lt−Q)2

L2t

]
. (4.3.24)

This is a Gaussian distribution, with mean Q− Lt/2 and variance L2t/4. For

Figure 4.2: Distribution of telomere length with t = 10, 13, 16.

comparison with the stochastic simulations, we pick Q = 6000 basepairs and

L = 100 basepairs. Figure 4.2 shows that, the chromosome number increases

exponentially with time and the distribution of telomere length moves towards

the left it becomes more diffuse.

Figure 4.3 indicates that the average telomere length decreases linearly before

the chromosome becomes senescent, are suit which is in good agreement with

stochastic simulation presented in Chapter 2 Section 2.2.4.
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Figure 4.3: Average telomere loss against time. Solid line is the theory mean Q −
Lt/2 and dashed line is the stochastic simulation which did on the first year.

4.4 Case II: telomere loss depends on telomere length

As before, we denote by Kg
n the number of chromosomes with mean telomere

length n at generation g. The amount of telomere lost during replication now

depends on telomere length so that Y(n) = y0 + y1n where y0, y1 are positive

constants and 0 ≤ 1 ≤ 1. We remark that Case I is a special case of Case II, with

y1 = 0. The chromosome replication process can be written as

Kg
n → Kg+1

n + Kg+1
n−y0−y1n , (4.4.1)

Using (4.4.1), we know that Kg+1
n can come from Kg

n or Kg
j where j− y0 − y1 j =

n, which implies j = (n + y0)/(1− y1). Hence the process is modelled mathe-

matically via the following kinetic equation

Kg+1
n = Kg

n + Kg
n+y0
1−y1

. (4.4.2)

We seek trial solutions to (4.4.2) of the form Kg
n = eγg(α + βn)p where the

growth rate γ depends on n, α, β and p as follows

eγ = 1 +
[

1
1− y1

+
y0β− y1α

(1− y1)(α + βn)

]p
. (4.4.3)
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We require that the growth rate γ be independent of telomere length n and

hence fix α = y0β/y1 so that (4.4.3) simplifies to give

eγ = 1 + (1− y1)−p .

The limit p → 0 corresponds to the limit χ → 0 used for Case I. In order to

convert the system (4.4.2) into one more similar to Case I, we transform from n

to x via ex = y0 + y1n, or equivalently

x = ln(y0 + y1n) . (4.4.4)

With K̃g
x = Kg

n, we have

Kg
n+y0
1−y1

= K̃g

ln
(

y0+y1

(
n+y0
1−y1

)) = K̃g
ln(y0+y1n)−ln(1−y1)

= K̃g
x−ln(1−y1)

,

which implies (4.4.2) can be written as

K̃g+1
x = K̃g

x + K̃g
x+L̃ , (4.4.5)

where L̃ = − ln(1− y1). We assume that (4.4.5) admits separable solutions of

the form K̃g
x = eγg+χx where the growth rate γ = γ(χ) is such that eγ = 1 + eχL

or equivalently

eγ = 1 + e−χ ln(1−y1) . (4.4.6)

If we assume χ� 1 then (4.4.6) reduces to give

γ ≈ ln 2− 1
2

χ ln(1− y1) +
1
8

χ2 ln2(1− y1) . (4.4.7)

Compare equations (4.3.4) and (4.4.7), we conclude that the dispersion relation

for Case II is identical to that for Case I with L = − ln (1− y1).

For the continuous model we replace the generation number by a continuous

time variable t and Kg
n and K̃g

x by K(n, t) and K̃(x, t) respectively. Equation

(4.4.5) is replaced by the simplest partial differential equation that possesses

the dispersion relation (4.4.7), so that

∂K̃(x, t)
∂t

= ln(2)K̃(x, t)− 1
2

ln(1− y1)
∂K̃(x, t)

∂x
+

1
8

ln2(1− y1)
∂2K̃(x, t)

∂x2 .

(4.4.8)
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Since x = ln(y0 + y1n), we have

d
dx

=
y0 + y1n

y1

d
dn

, (4.4.9)

d2

d2x
=

(y0 + y1n)2

y2
1

d2

d2n
+

y0 + y1n
y1

d
dn

, (4.4.10)

and we deduce that the partial differential equation for K(n, t) is

∂K(n, t)
∂t

= ln(2)K(n, t) +
(y0 + y1n)[ln2(1− y1)− 4 ln(1− y1)]

8y1

∂K(n, t)
∂n

+

(y0 + y1n)2 ln2(1− y1)
8y2

1

∂2K(n, t)
∂n2 . (4.4.11)

We assume that when t = 0, K(n, t) is K(n, 0) = δ(n−Q) and y1
y0+y1n

∫ ∞
−∞ δ(x−

ln (y0 + y1Q))dx = 1. Equivalently, since x = ln(y0 + y1n) we have K̃(x, 0) =
y1

y0+y1Q δ(x− ln (y0 + y1Q)).

Using the approach outlined in Section (S4.3.4), with α = ln 2, β = −1
2 ln (1− y1),

D = 1
8 ln2 (1− y1), Qinitial = ln (y0 + y1Q) and

K̃(x, 0) =
y1

y0 + y1Q
δ(x− ln (y0 + y1Q)) . (4.4.12)

We deduce that the general solution of (4.4.8) is

K̃(x, t) = −
√

22ty1

(y0 + y1Q)
√

tπ ln(1− y1)
×

exp

{
−

2[x− t
2 ln(1− y1)− ln(y0 + y1Q)]2

t ln2(1− y1)

}
. (4.4.13)

Further the solution for Kg
n is

Kg
n = −

√
22ty1

(y0 + y1Q)
√

tπ ln(1− y1)
×

exp

{
−

2[ln(y0 + y1n)− t
2 ln(1− y1)− ln(y0 + y1Q)]2

t ln2(1− y1)

}
.

(4.4.14)

In the above expressions we view n as a real number. In practice, it is restricted

to integers in the range 0 ≤ n ≤ Nmax. We introduce µn(t) to represent the
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average telomere length of a chromosome at time t so that

µn(t) =

∫ Nmax

0
nK(n, t)dn∫ Nmax

0
K(n, t)dn

, (4.4.15)

where Nmax = Q is the maximum telomere length at time t (this cannot exceed

the initial telomere length). Since x = ln(y0 + y1n), we can rewrite (4.4.15) in

terms of K̃(x, t) as

µn(t) =

∫ ln(y0+y1Q)

ln y0

(
ex − y0

y1

)
K̃(x, t)exdx∫ ln(y0+y1Q)

ln y0

K̃(x, t)exdx
. (4.4.16)

Using σn(t) to denote the variance of the telomere length at time t, we find

σ2
n(t) =

∫ Nmax

0
[n− µn(t)]2K(n, t)dn∫ Nmax

0
K(n, t)dn

=

∫ ln(y0+y1Q)

ln y0

[
ex − y0

y1
− µn(t)

]2

K̃(x, t)ex

∫ ln(y0+y1Q)

ln y0

K̃(x, t)exdx
. (4.4.17)

For comparison with our earlier stochastic simulations (see Chapter 2), we

choose Q = 5950 basepairs, y0 = 50 and y1 = 1/60 in which case the amount

of telomere loss at each replication is identical to that for the stochastic simula-

tions. A comparison of our results is presented in Figure 4.4. The mean telom-

ere length of the stochastic simulation lies within two standard deviations of

the µn(t) theoretical mean. Before t = 120 the mean telomere length, µn(t), for

the theoretical model lies within two standard deviations of the mean of the

stochastic simulation. At long times the theoretical estimate of µn(t) is more

than two standard deviations less than the stochastic mean, since at these times

nearly all the chromosomes have become senescent.

When chromosomes divide they produce two daughter chromosomes with non-

negative telomere length. From (4.4.2), we require that the telomere length be
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Figure 4.4: The middle solid line is the average telomere length µn(t) (4.4.15) and

the solid lines above and below is the average telomere length µn(t) plus or minus two

standard deviations, σn(t) (4.4.17). The middle dashed line is the average telomere

length against generation number in stochastic simulation which we obtained early

and the dashed lines above and below is the average telomere length of stochastic sim-

ulations plus or minus two standard deviations.

greater than y0/(1− y1) for cell division to occur. A telomere length less than

y0/(1 − y1) leads to cell senescence. Hence the fraction of dividing chromo-

somes φdiv(t), can be described by

φdiv(t) =

∫ Nmax

y0
1−y1

K(n, t)dn

∫ Nmax

0
K(n, t)dn

=

∫ ln(y0+y1Q)

ln
[
y0+y1

(
y0

1−y1

)] K(x, t)exdx

∫ ln(y0+y1Q)

ln y0

K(x, t)exdx
. (4.4.18)

In Figure 4.5 we show how the fraction of dividing chromosomes changes over

time for the stochastic and continuum models. The theoretical fraction φdiv(t)

and the stochastic fraction are identically the same until t = 110 and then di-

verge slightly but still remain within two standard deviations of each other.

Thus continuum model still a good approximation to discrete one.
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Figure 4.5: The dashed line shows the proportion of dividing cells φdiving(t) (4.4.18).

The solid line in the middle is the fraction of dividing chromosomes from our stochastic

simulations. The solid lines above and below are two standard deviations away from

the fraction of dividing chromosomes stochastic simulations.

4.5 Case III: length-dependent chromosome division

The probability of a chromosome replicating is Pdiv = an + b where a, b are

constants chosen such that 0 ≤ Pdiv ≤ 1. Since we start with one chromosome

with initial telomere length Q and the discrete reaction equation can be written

as

Kg+1
n = Kg

n + (an + b)Kg
n+L , with probability an + b . (4.5.1)

We approximate (4.5.1) by the continuous system

Kg
n = K(x, t) with K(x, 0) = δ(x−Q) . (4.5.2)

where t = gh ( h � 1), x = n/Q and ψ = L/Q. We substitute from (4.5.2) into

(4.5.1) to obtain

K(x, t + h) = K(x, t) + (aQx + b) K(x + ψ, t) . (4.5.3)
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Since L, the telomere loss is much smaller than the Q, the initial telomere length,

so ψ� 1. Thus we assume that

a� 1� Q and aQ ∼ O(1) and ψ� 1 . (4.5.4)

Under these assumptions, we can perform a Taylor series expansion of (4.5.3)

to obtain

K + hKt = K + (aQx + b)
(

K + ψKx +
1
2

ψ2Kxx

)
, (4.5.5)

Kt =
(aQx + b)

h

(
K + ψKx +

1
2

ψ2Kxx

)
, (4.5.6)

we assume b ∼ O(h) and introduce

x̂ =
(aQx + b)

h
, so

∂

∂x̂
=

aQ
h

∂

∂x
, (4.5.7)

and we K(x, 0) = δ(x − Q) transforms to give K(x̂, 0) = δ(x̂ − Q̂) where Q̂ =

(aQ + b)/h. If we introduce l = aQψ/h = aL/h then (4.5.6) can be written as

Kt = x̂
(

K + lKx̂ +
1
2

l2Kx̂x̂

)
. (4.5.8)

We assume that (4.5.8) admits solutions of the form

K(x̂, t) = g(t) f (x̂, t) , (4.5.9)

where g(t) =
∫ ∞

0 K(x̂, t)dx̂ is the total number of chromosomes in the system at

time t. Consequently, f (x̂, t) represents their probability distribution, so that∫ ∞

x̂=0
f (x̂, t)dx̂ = 1 , (4.5.10)

with f → 0 as x̂ → 0 and f x̂ → 0 as x̂ → ∞. We also define the average telomere

length

µ̂(t) =
∫ ∞

x̂=0
x̂ f (x̂, t)dx̂ , (4.5.11)

and µ = (hµ̂− b)/(aQ).

If we substitute with (4.5.9) in (4.5.8) and integrate with respect to x̂, then we

have:∫ ∞

0

∂

∂t
[g(t) f (x̂, t)]dx̂ =

∫ ∞

0
x̂
[

g(t) f (x̂, t) + lg(t) f x̂(x̂, t) +
1
2

l2g(t) f x̂x̂(x̂, t)
]

dx̂ ,
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implies

gt(t) = g(t)
{

µ̂(t) + l[x̂ f (x̂, t)]∞0 − l +
1
2

l2[x̂ f x̂(x̂, t)]∞0 −
1
2

l2[ f (x̂, t)]∞0

}
,

gt(t) = g(t)(µ̂(t)− l) . (4.5.12)

Equation (4.5.12) is an evolution equation for the total number of chromosomes

in the system and f̂ (x̂, t) control the shape distribution of the telomere length.

We determine how f̂ (x̂, t) evolves by substituting (4.5.9) into (4.5.8) to obtain

gt(t) f (x̂, t) + g(t) ft(x̂, t) = x̂g(t)
[

f (x̂, t) + l f x̂(x̂, t) +
1
2

l2 f x̂x̂(x̂, t)
]

.(4.5.13)

Inserting (4.5.12) into (4.5.13) yields

ft(x̂, t) = [x̂− µ̂(t) + l] f (x̂, t) + lx̂ f x̂(x̂, t) +
1
2

l2x̂ f x̂x̂(x̂, t) . (4.5.14)

We multiply (4.5.14) by x̂ and integrate once with respect to x̂ to obtain∫ ∞

0
x̂ ft(x̂, t)dx̂ =

∫ ∞

0
(x̂2 − µ̂x̂ + lx̂) f (x̂, t)dx̂ +

∫ ∞

0
lx̂2 f x̂(x̂, t)dx̂ +∫ ∞

0

1
2

l2x̂2 f x̂x̂(x̂, t)dx̂ , (4.5.15)

µ̂t(t) =
∫ ∞

0
x̂2 f (x̂, t)dx̂− µ̂2(t)− lµ̂(t) + l2 , (4.5.16)

where ∫ ∞

0
x̂2 fx(x̂, t)dx̂ = [ f (x̂, t)x̂2]∞0 − 2

∫ ∞

0
f (x̂, t)x̂dx̂ = −2µ̂(t) , (4.5.17)∫ ∞

0
x̂2 fxx(x̂, t)dx̂ = −2[ f (x̂, t)x̂]∞0 + 2

∫ ∞

0
f (x̂, t)dx̂ = 2 . (4.5.18)

If we introduce the variance of f , so Var[ f ] =
∫ ∞

0 x̂2 f dx̂ − µ̂2, then µ̂t(t) =

Var[ f ]− lµ̂(t) + l2 and Var[ f ] evolves according to

d
dt

Var[ f ] =
d
dt

(∫ ∞

0
x̂2 f dx̂− µ̂2

)
=
∫ ∞

0
x̂2 ftdx̂− 2µ̂µ̂t

=
∫ ∞

0
x̂2
{

[x̂− µ̂(t) + l] f + lx̂ f x̂ +
1
2

l2x̂ f x̂x̂

}
dx̂− 2µ̂µ̂t

=
∫ ∞

0
x̂3 f dx̂ + (l − µ̂− 3l)(Var[ f ] + µ̂2) + 3l2µ̂

−2µ̂[Var[ f ]− lµ̂(t) + l2]

=
∫ ∞

0
x̂3 f dx̂− µ̂3 − 3µ̂Var[ f ]− 2Var[ f ]l + l2µ̂ , (4.5.19)
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where ∫ ∞

0
x̂3 f x̂dx̂ = −3

∫ ∞

0
x̂2 f dx̂ = −3(Var[ f ] + µ̂2) , (4.5.20)∫ ∞

0
x̂3 f x̂x̂dx̂ = 6

∫ ∞

0
x̂ f dx̂ = 6µ̂ . (4.5.21)

Equations (4.5.16) and (4.5.19) reveal how the moments of f depend on higher

order moments. Since (4.5.14) does not, in general, admit explicit analytical

solutions, we investigate the dynamics of (4.5.14) by considering the asymptotic

limit for which l � 1 and the governing PDE simplifies.

4.5.1 First order PDE

Neglecting terms which are quadratic in the small parameter l � 1, (4.5.14)

simplifies to give:

ft(x̂, t) = [x̂− µ̂(t) + l] f (x̂, t) + lx̂ f x̂(x̂, t) . (4.5.22)

We use the method of characteristics to solve this first order PDE. We introduce

the characteristic variables where ds = dt = −dx̂/(lx̂) = d f /[(x̂− µ + l) f ] and

parameterized the initial conditions on s = 0 by α so that when s = 0, t = 0,

x = α, f = δ(α− Q̂).

dt
ds

= 1⇒ t = s ,

since t = 0 when s = 0.

dx̂
ds

= −lx̂ ⇒ x̂ = αe−ls ,

since x̂ = α when s = 0. Finally

d f
ds

= [x̂− µ̂(t) + l] f ⇒ ln f = −α

l
e−ls −

∫ s

0
µ̂(t)ds + ls + A3 ,

⇒ f = δ(α− Q̂) exp
[

α

l
+ ls− α

l
e−ls −

∫ s

0
µ̂(t)ds

]
, (4.5.23)

since f = δ(α− Q̂) when s = 0.

Since x̂ = αe−ls we have

α = x̂els = x̂elt . (4.5.24)
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We substitute t = s and α = x̂elt in (4.5.23) to obtain

f (x̂, t) = δ(x̂elt − Q̂) exp

[
x̂elt

l
+ lt− x̂

l
−
∫ t

0
µ̂(s)ds

]
. (4.5.25)

We know that
∫ ∞

x̂=0 f (x̂, t)dx̂ = 1, so we let u = x̂elt ⇒ x̂ = ue−lt and du = eltdx̂,

then

1 =
∫ ∞

x̂=0
f (x̂, t)dx̂ = e−lt

∫ ∞

x̂=0
δ(u− Q̂) exp

[
u
l

+ lt− ue−lt

l
−
∫ t

0
µ̂(s)ds

]
du ,

exp
[∫ t

0
µ̂(s)ds

]
=
∫ ∞

x̂=0
δ(u− Q̂) exp

(
u
l
− ue−lt

l

)
du = exp

[
Q̂
l
(1− e−lt)

]
,

∫ t

0
µ̂(s)ds =

Q̂
l
(1− e−lt) ,

and hence

Figure 4.6: The solid line is the computer simulation in Chapter 2 Case III (Section

2.2.6), mean telomere length with initial telomere length 5950, plotted against gen-

eration number. The dashed line is theoretical mean µ(t) (4.5.26), plotted against

generation number, with parameters a = 1/6000, h = 1, L = 100, l = aL/h and

Q̂ = 1.

µ̂(t) = Q̂e−lt . (4.5.26)
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In Figure 4.6 we use (4.5.26) to plot µ̂(t) against time (dashed line). For com-

parison present we simulation results for Case III from Chapter 2 (Section 2.2.6)

(solid line), which shows how the length of the telomere (normalized by its

initial length) varies with generation number. At early times (before genera-

tion 25) the two lines are identical; at later times the theoretical mean decreases

faster than the stochastic simulation and as time increase the difference between

the two curves increases. This result indicates that the expression for µ̂(t) ob-

tained from the first order PDE is not accurate at longer times, probably due

to the spread (variance of the distribution somehow slowing down the loss of

telomere).

Now we solve for g(t), total number of chromomeres in the system noting first

that, from (4.5.25) and (4.5.26)

f (x̂, t) = δ(x̂elt − Q̂) exp

[
x̂elt

l
+ lt− x̂

l
− Q̂

l
(1− e−lt)

]

= δ(x̂elt − Q̂) exp

[
x̂(elt − 1)− Q̂(1− e−lt)

l
+ lt

]
. (4.5.27)

We put (4.5.26) back into (4.5.12) to obtain that:

gt(t) = g(t)(Q̂e−lt − l) , (4.5.28)

hence

g(t) = B exp

(
− Q̂

l
e−lt − lt

)
. (4.5.29)

where B is a constant. Our initial condition for g(t) is g(0) = 1, so B = eQ̂/l

(4.5.29) can be rewritten as

g(t) = exp

[
Q̂
l
(1− e−lt)− lt

]
. (4.5.30)

The expression for the number of chromosomes used in Figure 4.7 is (4.5.30).

Since l � 1 so (4.5.30) can be rewritten as g(t) ≈ exp[(Q̂ − l)t]. This indi-

cate that the growth rate approximately has exponential growth. But Figure 4.7

shows the chromosome has exponential growth rate until t = 40, then it starts
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Figure 4.7: Plot g(t) (4.5.30), the total number of chromosomes in the system , varies

on a logarithmic scale with time t, with parameters given by a = 1/6000, b = −1/30,

h = 1, L = 400, l = aL/h and Q̂ = (1 + b)/h.

decrease, then approach a constant where indicate the chromosomes become

senescent. For our model we only need to consider the g(t) increase part.

Our analysis of the first order PDE (4.5.22) supplies expressions for µ̂(t), g(t)

and f (x̂, t). However these expressions are only valid for short times. For

greater accuracy, we must consider the second order PDE (4.5.14). Before we

go to the second order PDE, first we solve second order PDE numerically.

4.5.2 Numerical results

We use MATLAB to solve second order PDE numerically. MATLAB has a

standard solver for ordinary differential equations (ODEs) ode45 which uses

a Runge-Kutta method with a variable time step to solve

ft(x̂, t) = [x̂− µ̂(t) + l] f (x̂, t) + lx̂ f x̂(x̂, t) +
1
2

l2x̂ f x̂x̂(x̂, t) , (4.5.31)

subject to the initial condition f (x̂, 0) = δ(x̂ − Q̂) and boundary conditions;

f (x̂ = 1, t) = 0 and d f
dt |x̂=0= 0.
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In order to use the ODE solver we first reduce (4.5.31) to a system of ODEs

by performing finite difference approximations on the spatial derivatives. In

particular, we use central differences to approximate ∂ f̂k/∂x̂ and ∂2 f̂k/∂x̂2, so

that

∂ f̂k
∂x̂

≈ f̂k+1 − f̂k−1

24x
, (4.5.32)

∂2 f̂k
∂x̂2 ≈ f̂k+1 − 2 f̂k + f̂k−1

(4x)2 , (4.5.33)

where f̂k = f̂ (k4x, t) and 4x is the mesh spacing for the spacial discretisa-

tion. Let x̂k = k4x, k = 1, 2, 3, .., kend. Since f (x̂, 0) = δ(x̂ − Q̂), we transform

the initial conditions to f (kend − 1, 0) = 0.1/4x, f (kend − 2, 0) = 0.8/4x and

f (kend − 3, 0) = 0.1/4x. So (4.5.31) can be reduced to the ODEs system

ft(1, t) = [x̂− µ̂(t) + l] f (x̂1, t) +
1

2(4x)2 l2x̂1( f (x̂2, t)− 2 f (x̂1, t)) , (4.5.34)

and for i = 2..iend − 1,

ft(k, t) = [x̂− µ̂(t) + l] f (x̂k, t) +
1

24x
lx̂k[ f (x̂k+1, t)− f (x̂k−1, t)]

+
1

2(4x)2 l2x̂1[ f (x̂i+1, t)− 2 f (x̂i, t) + f (x̂i−1, t)] , (4.5.35)

ft(kend, t) = 0 . (4.5.36)

Now we use MATLAB to solve this system of ODEs.

In Figure 4.8, we present the numerical solutions for f (x̂, t) for (4.5.31), differ-

ent times t. When t = 2, the distribution of f (x̂, t) looks like a Dirac δ function

which agrees with our initial conditions. As time t increases, the distribution

f (x̂, t) becomes more dispersed and moves toward the left hand side like trav-

eling wave. When t = 25, the distribution peaks near x̂ = 0.72, when t = 50,

the distribution peaks near x̂ = 0.58, which means it takes4t = 25 for the dis-

tribution move 0.24 to the left hand side, suggestion the speed of propagation

is 0.01. When t = 100, the distribution peaks near x̂ = 0.5, which means that

the profile moves more slowly as time increases. The distributions at t = 200

and t = 300 are almost identical, suggesting that the system has evolved to a

steady state.
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Figure 4.8: Numerical solution of f (x̂, t) plotted against x̂ with t = 2, 25, 50, 100,

200, 300. With parameters a = 0.95/6000, b = 0.05, h = 1, L = 100, l = 0.0158

and Q̂ = 1.

The profile for f (x̂, t) looks symmetric at both early and long times, see Figure

4.8 . However plots of log( f ) against time, Figure 4.9, indicate that at large

times, f is no longer symmetric.
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Figure 4.9: Top graph shows log( f ) plotted against x̂ at t = 200.

Figure 4.10: (a) As a check on our numerical methods, we verify that
∫

f (x̂, t)dx̂≈ 1.

(b) plots of the numerically computed mean, ˆµ(t). With parameters a = 0.95/6000,

b = 0.05, h = 1, L = 100, l = 0.0158 and Q̂ = 1.
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As a check on the accuracy of our numerical solution, we calculate
∫

f (x̂, t)dx̂.

Figure 4.10(a) shows that
∫

f (x̂, t)dx̂ ≈ 1, which agrees with our requirement

for the function of f . Figure 4.10(b) shows that the numerically calculated

mean, µ̂, decreases slowly until t = 100 and remains constant thereafter.

In order to investigate how telomere length is distributed near µ̂, we need to

look at the moment of function f (x̂, t) of a real variable about mean µ̂. Let

Un =
∫ ∞
−∞(x̂− µ̂)n f (x̂, t)dx̂, where n is positive integer. Normally the first mo-

ment about the mean, U1 is zero and the second central moment U2 about the

mean is the variance. The third central moment, U3 is a measure of the lopsid-

edness of the distribution, also called the skewness, if the third central moment

is zero the distribution is symmetric.

Figure 4.11 shows that the first moment about mean is U1 = 0 as we expected

and the varices, U2 increases with time until t = 150 and after that approach to

a constant. The third moment, U3 is a positive value, indicating that the distri-

bution of telomere length is skewed to the right, which means the tail is heavier

on the right and the distribution is concentrated more closely to the left side of

the mean. Due to U3 being small, the distribution still looks symmetric. The

fourth moment, U4 roughly increases linearly with time t for t < 100. We notice

that the shape of U2 and U4 are quite similar, thus we obtain the relation that

U4 ≈ 3U2
3 (see Figure 4.12).

From the numerical results, we generally understand the how the distribution

of telomere length, mean and moment, varies with time. Now we analyze the

second order PDE with asymptotically over various time scales.

4.5.3 Asymptotic analysis of second order PDE

In order to determine how the distribution of the solution of (4.5.14) spreads,

we retain higher-order terms in our analysis. Accordingly we now consider the

second order PDE

ft(x̂, t) = [x̂− µ̂(t) + l] f (x̂, t) + lx̂ f x̂(x̂, t) +
1
2

l2x̂ f x̂x̂(x̂, t) . (4.5.37)
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Figure 4.11: Figure shows the U1, U2, U3, U4 plotted against t from the numerical

solution.

We let

x̂ = s(t) + z , (4.5.38)

where s(t) = Qe−lt, be our leading order estimate of the mean of the distri-

bution, however, since our higher order analysis below will introduce variance

and skewness to the distribution, we use In to indicate

In =
∫ ∞

−∞
zn f̂ (z, t)dz , (4.5.39)

where n is an integer. Since
∫

f (x̂, t)dx̂ = 1 we have
∫

f (z, t)dz = 1 so that the

mean of the distribution is given by

µ̂(t) =
∫

x̂ f (x̂, t)dx =
∫

(s + z) f (z, t)dz = s + I1 , (4.5.40)
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Figure 4.12: U4/U2
2 plotted against t from the numerical solution.

We use z = x̂− s(t) to transform the independent variables from (x̂, t) to (z, t),

and f (x̂, t) to f̂ (z, t), noting that

∂

∂x̂
=

∂

∂z
, (4.5.41)

∂

∂t
=

∂

∂t
− st

∂

∂z
. (4.5.42)

Under this transformation (4.5.37) can be rewritten as

f̂t − st f̂z = (s + z− µ̂ + l) f̂ + l(s + z) f̂z +
1
2

l2(s + z) f̂zz , (4.5.43)

or

f̂t = (z + l − I1) f̂ + lz f̂z +
1
2

l2(s + z) f̂zz . (4.5.44)

If we multiply both sides of (4.5.44) by z and integrate, we deduce∫ ∞

−∞
z f̂tdz =

∫ ∞

−∞
z(z + l − I1) f̂ dz +

∫ ∞

−∞
lz2 f̂zdz +

∫ ∞

−∞

1
2

l2z(s + z) f̂zzdz ,

dI1

dt
= I2 + (l − I1)I1 − 2l I1 + l2 = I2 − (l + I1)I1 + l2 , (4.5.45)
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where we have used∫ ∞

−∞
z2 f̂zdz = [z2 f̂ ]∞−∞ − 2

∫ ∞

−∞
z f̂ dz = −2I1 ,∫ ∞

−∞
z f̂zzdz = [z f̂z]∞−∞ −

∫ ∞

−∞
f̂zdz = 0 ,∫ ∞

−∞
z2 f̂zzdz = [z2 f̂z]∞−∞ − 2

∫ ∞

−∞
z f̂zdz = −[2z f̂ ]∞−∞ + 2

∫ ∞

−∞
f̂ dz = 2 .

Multiplying both sides of (4.5.44) by z2 and integrating, we obtain∫ ∞

−∞
z2 f̂tdz =

∫ ∞

−∞
z2(z + l − I1) f̂ dz +

∫ ∞

−∞
lz3 f̂zdz +

∫ ∞

−∞

1
2

l2z2(s + z) f̂zzdz ,

dI2

dt
= I3 + (l − I1)I2 − 3l I2 + l2s + 3l2 I1

= I3 − (2l + I1)I2 + l2s + 3l2 I1 , (4.5.46)

where we have used∫ ∞

−∞
z3 f̂zdz = [z3 f̂ ]∞−∞ − 3

∫ ∞

−∞
z2 f̂ dz = −3I2 ,∫ ∞

−∞
z3 f̂zzdz = [z3 f̂z]∞−∞ − 3

∫ ∞

−∞
z2 f̂zdz = −[3z2 f̂ ]∞−∞ + 6

∫ ∞

−∞
z f̂ dz = 6I1 .

Multiplying both sides of (4.5.44) by z3 and integrating, we obtain∫ ∞

−∞
z3 f̂tdz =

∫ ∞

−∞
z3(z + l − I1) f̂ dz +

∫ ∞

−∞
lz4 f̂zdz +

∫ ∞

−∞

1
2

l2z3(s + z) f̂zzdz ,

dI3

dt
= I4 + (l − I1)I3 − 4l I3 + 3l2sI1 + 6l2 I2

= I4 − (3l + I1)I3 + 3l2sI1 + 6l2 I2 , (4.5.47)

where we have used∫ ∞

−∞
z4 f̂zdz = [z4 f̂ ]∞−∞ − 4

∫ ∞

−∞
z3 f̂ dz = −4I3 ,∫ ∞

−∞
z4 f̂zzdz = [z4 f̂z]∞−∞ − 4

∫ ∞

−∞
z3 f̂zdz = −[4z2 f̂ ]∞−∞ + 12

∫ ∞

−∞
z2 f̂ dz = 12I2 .

Since I1, I2, I3 all depend on higher order moments, we need a closure assump-

tion, in order to solve systems ODEs for I1, I2 and I3. From the numerical solu-

tion we obtain U4 ≈ 3U2
2 , so we assume I4 ≈ 3I2

2 , thus (4.5.47) can be written

as
dI3

dt
= 3I2

2 − (3l + I1)I3 + 3l2sI1 + 6l2 I2 . (4.5.48)

Since the PDE involves in I1 (or µ̂(t)) which is more complicated to solve for ex-

plicitly, we solve the ODEs (put ODEs from Table 4.2 have displayed as equa-

tion arrays) which describe the solutions of the PDE (4.5.48) by considering

different time scales.
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f̂t = (z + l − I1) f̂ + lz f̂z +
1
2

l2(s + z) f̂zz (4.5.44)

dI1

dt
= I2− (l + I1)I1 + l2 (4.5.45)

dI2

dt
= I3− (2l + I1)I2 + l2s + 3l2I1 (4.5.46)

dI3

dt
= 3I2

2 − (3l + I1)I3 + 3l2sI1 + 6l2I2 (4.5.48)

Table 4.2: To summarizing the system of equations we need to solve.

4.5.4 The first, short time scale

To solve

f̂t = (z + l − I1) f̂ + lz f̂z +
1
2

l2(s + z) f̂zz . (4.5.49)

We construct solution to (4.5.49) by considering initially the limit t = O(1) and

z = O(l). We rescale z by writing z = lẑ in which case (4.5.49) transforms to

f̂t = (lẑ + l − I1) f̂ + lẑ f̂ẑ +
1
2
(s + lẑ) f̂ẑẑ . (4.5.50)

Since l � 1 and t = O(1), we write s(t) = Q̂e−lt ≈ Q̂ and we anticipate

I1 = O(l) or I1 = O(l2). In either case, at leading order (4.5.50) implies

f̂t =
Q̂
2

f̂ẑẑ . (4.5.51)

We distinguish two separate regions here: an outer region in which [x̂− µ̂(t)]�
1 and f = 0 and an inner region in which [x̂− µ̂(t)]� 1. We give details of the

inner solution below.

Recall that our initial conditions are f (x̂, 0) = δ(x̂ − Q̂), where x̂ = s(t) + z.

This implies that f̂ (z, 0) = δ(s + z− Q̂) ≈ δ(z) since on this time scale s = µ =

Q̂. Further f̂ (ẑ, 0) = δ(lẑ). We can solve (4.5.51) by using the Fourier transform,

which yields the solution

f̂ (ẑ, t) =
1

l
√

2πQ̂t
exp

(
− ẑ2

2Q̂t

)
, (4.5.52)
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since ẑ = (x̂− Q̂)/l. We remark that

f (x̂, t) =
1

l
√

2πQ̂t
exp

[
− (x̂− Q̂)2

2l2Q̂t

]
. (4.5.53)

Figure 4.13: f (x̂, t) varies with x̂ and with t = 1, 3, 5 respectively. With parameters

a = 0.95/6000, b = 0.05, h = 1, L = 100, l = 0.0158 and Q̂ = 1.

Figure 4.13 shows that, the solution for f (x̂, t) is an Gaussian distribution with

means µ̂ = Q̂ and variance = l2Q̂t. As time increases, the distribution’s vari-

ance increases, however, the center of the distribution remains unchanged.

Variance[ f (x̂, t)] =
∫ ∞

−∞
(x̂− µ̂)2 f (x̂, t)dx̂ =

∫ ∞

−∞
(Q̂ + z− Q̂)2 f (ξ, t)ldz

= l2Q̂t = I2 . (4.5.54)

From (4.5.39), we determine I1 and I3:

I1 =
∫ ∞

−∞
z f̂ (z, t)dz =

∫ ∞

−∞

z

l
√

2πQ̂t
exp

(
− ẑ2

2Q̂t

)
dz = 0 , (4.5.55)

I3 =
∫ ∞

−∞
z3 f̂ (z, t)dz =

∫ ∞

−∞

z3

l
√

2πQ̂t
exp

(
− ẑ2

2Q̂t

)
dz = 0 . (4.5.56)

From the solution of leading order PDE we obtain that I2 = l2Q̂t and I1 = I3 =

0. In order to see how I1, I2 and I3 change over time. We consider the full sys-

tem rather than the leading order PDE only and use the equations we obtained
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earlier, namely (4.5.45) , (4.5.46), (4.5.48).

Writting I2 = l2 Î2, where Î2 = O(1). From (4.5.45), we deduce I1/I2 = O(1) so

that I1 = l2 Î1, where Î1 = O(1). We remark that I1 = O(l2) is consistent with

our earlier assumption that I1 = O(l) or smaller. Since I4 = 3I2
2 , we deduce

further that I4 = l4 Î4, where Î4 = O(1). From (4.5.48), we deduce I3 has the

same order of I4, which implies I3 = l4 Î3, where Î3 = O(1). Putting these back

into equations (4.5.45), (4.5.46), (4.5.48), we obtain

dÎ1

dt
= Î2 − (l + l2 Î1) Î1 + 1 , (4.5.57)

dÎ2

dt
= l2 Î3 − (2l + l2 Î1) Î2 + Q̂ + 3l2 Î1 , (4.5.58)

dÎ3

dt
= 3 Î2

2 − l2 Î1 Î3 − 3l Î3 + 3Q̂Î1 + 6 Î2 , (4.5.59)

and since l � 1, we deduce that at leading order

dÎ1

dt
= Î2 + 1 , (4.5.60)

dÎ2

dt
= Q̂ , (4.5.61)

dÎ3

dt
= 3 Î2

2 + 3Q̂Î1 + 6 Î2 , (4.5.62)

Solving (4.5.61) subject to Î2(0) = 0, we obtain

Î2(t) = Q̂t . (4.5.63)

Substitution from (4.5.63) in (4.5.60) and integrating subject to Î1(0) = 0, sup-

plies

Î1(t) =
1
2

Q̂t2 + t . (4.5.64)

Put (4.5.63), (4.5.64) back to (4.5.62) using Î3(0) = 0 we obtain,

Î3(t) =
3
2

Q̂2t3 +
9
2

Q̂t2 , (4.5.65)

To summarize, the leading order solutions for I1, I2, I3 are given by:

I1(t) =
1
2

tl2(Q̂t + 1) , I2(t) = l2Q̂t , I3(t) =
3
2

Q̂t2l4(Q̂t + 3) . (4.5.66)

This analysis is based on t = O(1) which is the short time scale and in order to

investigate the dynamics of the full system, we now consider on the next time

scale, where t is larger but still less than O(l−1).
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4.5.5 Second time scale

To solve

f̂t = (z + l − I1) f̂ + lz f̂z +
1
2

l2(s + z) f̂zz , (4.5.67)

we let t = l−σt2 where 1 > σ > 0 and z = lθ ẑ where t2, z are O(1). By matching

to equations (4.5.66), we deduce I1 ∼ l2t2 = l2−2σ Î1, I2 ∼ l2t = l2−σ Î2 and

I3 ∼ l4t3 = l4−3σ Î3 where Î1, Î2, Î3 are O(1). Using these scalings we deduce

that (4.5.67) can be written as

lσ f̂t2 = (lθ ẑ + l − l2−2σ Î1) f̂ + lẑ f̂ẑ +
1
2

l2−2θ(s + lθ ẑ) f̂ẑẑ . (4.5.68)

In the first time scale, the PDE contains the term f̂t1 and f̂ẑẑ only, in the second

time scale, we still need the time derivative f̂t2 and the diffusion term f̂ẑẑ and

one of the f̂ or f̂ẑ terms. If we fix σ = 2− 2θ = 1, which gives the leading order

equation 0 = Î1 f̂ which is not what we expect. So we fix σ = θ = 2− 2θ, which

implies σ = θ = 2/3. Since l � 1, s = Q̂e−l1/3t2 ≈ Q̂ and (4.5.68) implies

f̂t2 = (ẑ− Î1) f̂ +
Q̂
2

f̂ẑẑ , (4.5.69)

where t2 = l2/3t, ẑ = l−2/3z are both O(1), hence t ∼ O(l−2/3) and z ∼ O(l2/3).

We assume f̂ admits a solution of the form f̂ = e−
∫

Î1dt2φ(t2, ẑ). Then (4.5.69)

implies

− Î1e−
∫

Î1dt2φ + e−
∫

Î1dt2φt2 = (ẑ− Î1)e−
∫

Î1dt2φ +
Q̂
2

e−
∫

Î1dt2φẑẑ , (4.5.70)

which simplifies to

φt2 = ẑφ +
Q̂
2

φẑẑ . (4.5.71)

Since I1 = l2/3 Î1, I2 = l4/3 Î2 and I3 = l2 Î3, (4.5.45), (4.5.46), (4.5.48) can be

written as

dÎ1

dt2
= Î2 − (l1/3 + l Î1) Î1 + l2/3 , (4.5.72)

dÎ2

dt2
= Î3 − (2l1/3 + l Î1) Î2 + s + 3l2/3 Î1 , (4.5.73)

dÎ3

dt2
= 3 Î2

2 − Î1 Î3 − 3l1/3 Î3 + 3sÎ1 + 6l2/3 Î2 , (4.5.74)

111



CHAPTER 4: CONTINUUM MODELS OF TELOMERE SHORTENING IN NORMAL
AGEING

since l � 1, which at the leading order reduces to

dÎ1

dt2
= Î2 − Î2

1 ,
dÎ2

dt2
= Î3 − Î1 Î2 + Q̂ ,

dÎ3

dt2
= 3 Î2

2 − Î1 Î3 + 3Q̂Î1 . (4.5.75)

Equations (4.5.75)implies

dÎ1

dÎ2
=

Î2 − Î2
1

Î3 − Î1 Î2 + Q̂
,

dÎ3

dÎ2
=

3 Î2
2 − Î1 Î3 + 3Q̂Î1

Î3 − Î1 Î2 + Q̂
. (4.5.76)

Since we expect Î2 → +∞, from (4.5.76), this suggests Î1 ∼ Î1/2
2 , Î3 ∼ 3Q̂ +

3 Î2
2 / Î1 ∼ 3Q̂ + 3 Î3/2

2 , this pseudo-steady state is stable if the denominator is

positive, which implies

Q̂ + Î3 − Î1 Î2 ≈ 4Q̂ + 2 Î3/2
2 , (4.5.77)

hence clearly the denominator is positive since Q̂ > 0. Now we consider the

equation for Î2(t2), which reduces to

dÎ2

dt2
= 4Q̂ + 2 Î3/2

2 , (4.5.78)

hence as I2 increases, Î2 → ∞ also and Î2 ∼ (t2c − t2)−2 where t2c is the time

when the t2 time-scale finishes, hence Î1 ∼ (t2c − t2)−1, Î3 ∼ 3(t2c − t2)−3.

Since the second time-scale t2 is a slow time scale, but Î1, Î2 and Î3 blow up

as t2 approaches t2c, we need to consider the third time scale t3, defined by

t2 = t2c − lqt3 = l2/3t for some q > 0 and in t3 the scaling are

I1 = l2/3−q Ĩ1 , I2 = l4/3−2q Ĩ2 , I3 = l2−3q Ĩ3 , (4.5.79)

with Ĩ1, Ĩ2, Ĩ3 all O(1). Putting these scalings and ẑ ∼ l2/3−q into (4.5.69), we

observe that the second derivative term becomes subdominant, leading to

f̂t3 = (ẑ− Î1) f̂ , (4.5.80)

together with other terms, which enter the leading order balance in the next

timescale. The effect of the terms in (4.5.80) is to introduce a skew to the distri-

bution. After the third time scale there are more time scales, which we are not

going to solve in details (since they may contain log terms) and in which I1, I2

and I3 grow larger. Instead we jump to the long time scale.
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4.5.6 Very long time scale

To solve the equation

f̂t = (z + l − I1) f̂ + lz f̂z +
1
2

l2(s + z) f̂zz , (4.5.81)

over the long time scale we let t = l−1t3 and z = lθ ẑ where t3, z = O(1). The

quantity s can be written as e−t3 , which is also O(1). We assume I1 = lα Î1 where

Î1 = O(1). Under these rescaling (4.5.81) can be written as

l f̂t3 = (lθ ẑ + l − lα Î1) f̂ + lẑ f̂ẑ +
1
2

l2−2θ(e−t3 + lθ ẑ) f̂ẑẑ . (4.5.82)

Simplifying, we obtain

f̂t3 = (lθ−1ẑ + 1− lα−1 Î1) f̂ + ẑ f̂ẑ +
1
2

l1−2θ(e−t3 + lθ ẑ) f̂ẑẑ . (4.5.83)

Over the long time scale the terms involving e−t3 become more important than

the terms lθ ẑ, so we fix θ− 1 = 1− 2θ which implies θ = 2
3 . For the second time

scale we know I1 = O(l2/3), so we still use this relation in the long time scale,

which implies α = 2/3, so

f̂t3 = (l−1/3ẑ + 1− l−1/3 Î1) f̂ + ẑ f̂ẑ +
1
2

l−1/3(e−t3 + l2/3ẑ) f̂ẑẑ . (4.5.84)

Since l � 1, we deduce that at leading order

0 = (ẑ− Î1) f̂ +
1
2

e−t3 f̂ẑẑ . (4.5.85)

This has the form of an Airy equation, the relevant solution being

f̂ (ẑ, t3) = C1(t3)Ai
(

2
1
3 exp

1
3 t3( Î1 − ẑ)

)
, (4.5.86)

where C1(t3) ia an arbitrary function of t3 and

Ai(ẑ) =
1
π

∫ ∞

0
cos

(
Ψ3

3
+ ẑΨ

)
dΨ .

The Bi(ẑ) function has exponential grow behaviour which we don’t expect in

our solution. In the time available we have not been able to derive asymptotic

approximation for Î1(t3). However, we expect Î1 to increase in time, so we

assume Î1 ∼ t3 and if we set C1(t3) to be constant, we can plot f̂ (ẑ, t3) against ẑ.
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Figure 4.14: Graph of f (x̂, t) against x̂ over the longtime scale with different lt =

t3 = O(1).

We notice that the distribution moves to the right (to larger values of ẑ) as time

increases. However we know x = s(t) + z, so

f̂ (x, t3) = C1(t3)Ai
(

2
1
3 exp

1
3 t3 l−

2
3 (I1 − x + s)

)
. (4.5.87)

We plot (4.5.87) against x, and observe that it moves to the left (to smaller val-

ues of x)(see Figure 4.14). The width of the distribution reduces slightly as it

moves, however by judicious choice of C1(t3) the area under the curve can be

maintained at unity. Also note that the distribution is noticeably skewed.

4.6 Case IV: length-dependent loss and length-dependent

division

Case IV combines cases II and III, namely length-dependent loss and a length-

dependent probability of division. In Case IV the amount of telomere lost dur-

ing replication depends on the telomere length via Y(n) = y0 + y1n where y0, y1

are constants and 0 < y1 < 1 and the probability of a chromosome replicating
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is Pdiv = an + b where a, b are constants chosen to ensure that 0 ≤ Pdiv ≤ 1. The

discrete reaction equation for a single chromosome can be written as

K̂g
n → K̂g+1

n + K̂g+1
n−y0−y1n , with probability an + b . (4.6.1)

Writing Kg
n as the number of chromosomes of type K̂g

n. Since the loss term n →
n− y0 − y1n implies (n + y0)/(1− y1)→ n, we obtain

Kg+1
n = Kg

n + (an + b)Kg
n+y0
1−y1

, together with K0
n = δn,Q , (4.6.2)

Since y1 � 1 , (4.6.2) can be approximately written as

Kg+1
n = Kg

n + (an + b)Kg
n+y0+y1n , together with K0

n = δn,Q . (4.6.3)

We assume that Kg
n, the solution to (4.6.3) can be approximated by the continu-

ous variable

Kg
n = K(x, t) with K(x, 0) = δ(x−Q) , (4.6.4)

where t = gh, x = n/Q and h is small. We assume that at t = 0, we start with a

single chromosome with telomere length Q basepairs, hence K0
n = δn,Q, which

when we take the continuum limit supplies K(x, 0) = δ(x − 1). We substitute

from (4.6.4) into (4.6.3) and obtain

K(x, t + h) = K(x, t) + (aQx + b) K
(

x + y1x +
y0

Q
, t
)

. (4.6.5)

In order to make analytical progress, we require y1x � x and y0/Q� 1. Hence

we assume y1 ∼ y0/Q and introduce l � 1, as a typical size for these quantities.

Nondimensionalising (4.6.5) with a = α/Q, b = β, y0 = lQŷ0 and y1 = lŷ1

where (α, β, ŷ0, ŷ1) ∼ O(1), we obtain

K(x, t + h) = K(x, t) + (αx + β) K(x + lŷ1x + lŷ0, t) . (4.6.6)

Since h, l � 1, lŷ1x + lŷ0 � 1 and we may perform a Taylor series expansion

to obtain

Kt =
(αx + β)

h

[
K + l(ŷ1x + ŷ0)Kx +

l2

2
(ŷ1x + ŷ0)2Kxx

]
. (4.6.7)

We assume (4.6.7) admits solutions of the form

K(x, t) = ξ(t) f (x, t) , (4.6.8)
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where ξ(t) =
∫ ∞

0 K(x, t)dx is the total number of chromosomes in the system at

time t and f (x, t) represents their probability distribution, so that∫ ∞

x=0
f (x, t)dx = 1 , (4.6.9)

with f → 0 as x → 0 and x → +∞. We also define the mean of the distribution

as

µ(t) =
∫ ∞

x=0
x f (x, t)dx . (4.6.10)

If we substitute (4.6.8) into (4.6.7) and integrate with respect to x, we find

ξt =
1
h

∫ +∞

0

{
(αx + β)ξ[ f + l(ŷ1x + ŷ0) fx +

l2

2
(ŷ1x + ŷ0)2 fxx]

}
dx ,

(4.6.11)

and since ∫ ∞

0
(αx + β) f dx = αµ + β , (4.6.12)∫ ∞

0
(αx + β)(ŷ1x + ŷ0) fxdx = −(βŷ1 + αŷ0)− 2αŷ1µ , (4.6.13)∫ ∞

0
(αx + β)(ŷ1x + ŷ0)2 fxxdx = 4αŷ0ŷ1 + 2βŷ2

1 + 6αŷ2
1µ , (4.6.14)

we obtain

hξt

ξ
= αµ + β− l(βŷ1 + αŷ0 + 2αŷ1µ) + l2(2αŷ0ŷ1 + βŷ2

1 + 3αŷ2
1µ) .

(4.6.15)

Equation (4.6.15) is an evolution equation for the total number of chromosomes

in the system ξ(t), whilst f (x, t) controls the distribution of telomere lengths.

We determine how f (x, t) evolves by substituting (4.6.8) into (4.6.7) to obtain

ξt f + ξ ft =
(αx + β)ξ

h

[
f + l(ŷ1x + ŷ0) fx +

l2

2
(ŷ1x + ŷ0)2 fxx

]
. (4.6.16)

Inserting (4.6.15) into (4.6.16) yields

ft =
1
h
[αx + l(βŷ1 + αŷ0)− l2(2αŷ0ŷ1 + βŷ2

1)− µ(α− 2lαŷ1 + 3l2αŷ2
1)] f +

l
h
(αx + β)(ŷ1x + ŷ0) fx +

l2

2h
(ŷ1x + ŷ0)2(αx + β) fxx . (4.6.17)
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We solve (4.6.17) subject to f (x, 0) = δ(x − 1) and the boundary conditions

f → 0 as x → ∞ or x → 0.

Equation (4.6.17) is too complex to solve explicitly, so we investigate its dynam-

ics by construction an asymptotic approximation to (4.6.17) in the lime l � 1

retaining only terms which are linear in l.

4.6.1 First order PDE - General Case

In the limit as l � 1 retaining terms which are linear in l, (4.6.17 supplies

ft =
1
h
[αx + l(βŷ1 + αŷ0)− µα(1− 2lŷ1)] f +

l
h
(αx + β)(ŷ1x + ŷ0) fx .

(4.6.18)

We use the method of characteristics to solve this first order PDE. We introduce

the characteristic variables where

ds = dt =
hdx

−l(αx + β)(ŷ1x + ŷ0)
=

hd f
[αx + l(βŷ1 + αŷ0)− µα(1− 2lŷ1)] f

,

(4.6.19)

and parameterized the initial conditions on s = 0 by τ so that when s = 0,

t = 0, x = τ, f = δ(τ − 1).

dt
ds

= 1⇒ t = s , (4.6.20)

since t = 0 when s = 0. Solving

dx
ds

= − l
h
(αx + β)(ŷ1x + ŷ0) , ⇒ x =

β− A2(τ)ŷ0e−lBs/h

A2(τ)ŷ1e−lBs/h − α
, (4.6.21)

where B = αŷ0 − βŷ1 and A2(τ) is an arbitrary function. Since x = τ when

s = 0, we have A2(τ) = (β + ατ)/(ŷ1τ + ŷ0) and

x(s, τ) =
e−slB/hŷ0τα + e−slB/hŷ0β− βτŷ1 − βŷ0

−e−slB/hŷ1τα− e−slB/hŷ1β + ŷ1τα + αŷ0
. (4.6.22)

Since initial condition, f (s = 0, τ) = δ(τ − 1) and there is no spreading of

distribution, then f remains as a delta function further for all s > 0 and hence

must be located at µ(s, τ), so µ(t) = x(s, τ) |τ=1, so

µ(s) = x(s, τ) |τ=1=
e−slB/hŷ0α + e−slB/hŷ0β− βŷ1 − βŷ0

−e−slB/hŷ1α− e−slB/hŷ1β + ŷ1α + αŷ0
. (4.6.23)
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Following (4.6.20), we know s = t, so

µ(t) =
e−tlB/hŷ0α + e−tlB/hŷ0β− βŷ1 − βŷ0

−e−tlB/hŷ1α− e−tlB/hŷ1β + ŷ1α + αŷ0
. (4.6.24)

From (4.6.24) we deduce that when B = 0 both the numerator and denominator

are zero. The solution for these special cases is presented below, after the gen-

eral solution. For the general case, µ(t) from (4.6.24) supplies µ(t)→ −α/β ≤ 0

as t → +∞ since α, β ≥ 0. For physically realistic solutions 1 ≥ µ(t) ≥ 0 and

hence we only need to consider times for which µ(t) ≥ 0.

Figure 4.15: Graph showing µ(t) (4.6.24) plotted against t with parameters α = 0.5,

β = 0.5, ŷ0 = 0.5, ŷ1 = 0.25, l = 0.05.

In Figure 4.15 we plot µ(t) against t for a general case and note that the average

telomere length decreases from 1 and decreases more slowly as time increases,

reaching zero when t ≈ 45.

To find the time t = tc at which µ(t) = 0, we solve

elBtc βŷ1 + elBtc βŷ0 − ŷ0α− ŷ0β = 0 , (4.6.25)
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which implies

tc =
1
lB

ln
[

ŷ0(α + β)
β(ŷ0 + ŷ1)

]
. (4.6.26)

With B = αŷ0 − βŷ1, (4.6.26) supplies

tc =
1
lB

ln
[

B + βŷ1 + ŷ0β

β(ŷ0 + ŷ1)

]
=

1
lB

ln
[

1 +
B

β(ŷ0 + ŷ1)

]
, (4.6.27)

where α, β, ŷ0, ŷ1 > 0. When B > 0, ln (1 + B/[β(ŷ0 + ŷ1)]) > 0 and tc > 0.

Conversely When B < 0, ln (1 + B/[β(ŷ0 + ŷ1)]) < 0 and tc > 0. Thus, we

conduce that wheneverB 6= 0, tc > 0.

In order to compare the results for the mean obtained from the stochastic model

µ(g) (Section 2.2.7) with the analytical expression from the continuum model

µ(t) , we first rescale the telomere length n by its initial telomere length x =

n/Q, its divided to obtain µ(g) in the range (0, 1). Secondly, we convert t to g,

where we know the generation number g = ht, so µ(g) can be written as

µ(g) =
e−glBŷ0α + e−glBŷ0β− βŷ1 − βŷ0

−e−glBŷ1α− e−glBŷ1β + ŷ1α + αŷ0
. (4.6.28)

Figure 4.16 shows that the means from the stochastic simulation (see Section

2.2.7) and the theoretical calculation (4.6.28) are identical before generation 80.

After that, the theoretical mean decreases faster than the stochastic mean, since

in the stochastic simulation, the chromosome can not divide when the telomere

length is lower than the critical telomere length. Whereas in the theoretical cal-

culations, no such restriction on the minimum telomere length is imposed. We

conclude by noting that our theocratical model is valid only when µ(t) > 0.

Having solved for µ(t), we now return to (4.6.18) to determine the distribu-

tion f (x, t) and hence the evolution of the total number of chromosomes ξ(t).

Now go back to (4.6.19), solving

d f
ds

=
1
h
[αx + l(βŷ1 + αŷ0)− µα(1− 2lŷ1)] f , (4.6.29)

we find

ln f (s, τ) =
α

h

∫ t

0
x(s, τ)ds +

lt
h

(βŷ1 + αŷ0)−
α

h
(1− 2lŷ1)

∫ t

0
µ̂(s)ds + A3(τ) ,
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Figure 4.16: The dashed line shows the µ(g) from (4.6.28) plotted against generation

numbers with parameters α = 0.8, β = 0.2, ŷ0 = 1, ŷ1 = 1.75, l = 0.01 . The

middle solid line is the average telomere length plotted against generation number

from the stochastic simulations with the same parameters, the solid lines above and

below indicated two standard deviations above and below the mean.

where∫ t

0
x(s, τ)ds = −βt

α
+

h
lŷ1α

{
ln[e−lBt/hŷ1(ατ + β)− α(ŷ1τ + ŷ0)]− ln(−B)

}
,

hence

f (s, τ) = A4(τ) exp
{
−βt

α
+

lt
h

(βŷ1 + αŷ0)−
α

h
(1− 2lŷ1)

∫ s=t

s=0
µ̂(s)ds+

h
lŷ1α

{
ln[e−lBt/hŷ1(ατ + β)− α(ŷ1τ + ŷ0)]− ln(−B)

}}
,

(4.6.30)

where A4(τ) are arbitrary functions of integration. From (4.6.24), we obtained

that∫ t

0
µ̂(s)ds = −βt

α
+

h
lŷ1α

ln[e−lBt/hŷ1(α + β)− α(ŷ1 + ŷ0)]−
h ln(−B)

lŷ1α
.

(4.6.31)
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Inserting the initial condition s = 0, t = 0 and f = δ(τ− 1) into (4.6.30) implies

A4(τ) = δ(τ − 1) . (4.6.32)

Equation (4.6.22) yields

τ(s, x) =
ŷ0(αx + β)− e−lBs/hβ(xŷ1 + ŷ0)
e−lBs/hα(xŷ1 + ŷ0)− ŷ1(αx + β)

. (4.6.33)

and since s = t, substitution from (4.6.31) and (4.6.32) into (4.6.30) supplies

f (τ, t) = δ(τ − 1)(B)−2elBt/h
[
e−lBt/hŷ1(α + β)− α(ŷ1 + ŷ0)

]2
×[

e−lBt/hŷ1(ατ + β)− α(ŷ1τ + ŷ0)
e−lBt/hŷ1(α + β)− α(ŷ1 + ŷ0)

] 1
lŷ1

. (4.6.34)

hence

f (x, t) = δ

(
ŷ0(αx + β)− e−lBt/hβ(xŷ1 + ŷ0)
e−lBt/hα(xŷ1 + ŷ0)− ŷ1(αx + β)

− 1

)
(B)−2+2/lŷ1 ×

[
α(ŷ1 + ŷ0)− e−lBt/hŷ1(α + β)

]2− 1
lŷ1 exp

(
lBt
h
− Bt

hŷ1

)
×[

e−lBt/hα(xŷ1 + ŷ0)− ŷ1(αx + β)
]−1/lŷ1

, (4.6.35)

or equivalently, g = t/h,

f (x, g) = δ

(
ŷ0(αx + β)− e−lBgβ(xŷ1 + ŷ0)
e−lBgα(xŷ1 + ŷ0)− ŷ1(αx + β)

− 1

)
(B)−2+2/lŷ1 ×

[
α(ŷ1 + ŷ0)− e−lBgŷ1(α + β)

]2− 1
lŷ1 exp

(
lBg− Bg

ŷ1

)
×[

e−lBgα(xŷ1 + ŷ0)− ŷ1(αx + β)
]−1/lŷ1

. (4.6.36)

From (4.6.36), it is clear that f (x, g) remains as a delta function, but its ampli-

tude increases over time (or with generation number).

Having found the distribution for f (x, t), we now compute the total number

of chromosome ξ(t). We substitute for µ(t) from (4.6.24) into (4.6.15) to obtain
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an expression for ξ(t),

hξt

ξ
= β− l(βŷ1 + αŷ0) + l2(2αŷ0ŷ1 + βŷ2

1) +

α
(

e−
tlB
h ŷ0α + e−

tlB
h ŷ0β− βŷ1 − βŷ0

)
(1− 2lŷ1 + 3l2ŷ2

1)

−e−
tlB
h ŷ1α− e−

tlB
h ŷ1β + ŷ1α + αŷ0

,

ξ(t) = (−B)−
1−2lŷ1+3l2 ŷ2

1
lŷ1

[
e−

tlB
h ŷ1(α + β)− α(ŷ1 + ŷ0)

] 1−2lŷ1+3l2 ŷ2
1

lŷ1 ×

exp
[

tlB
h

(2lŷ1 − 1)
]

. (4.6.37)

and ξ(0) = 1.

We know generation number g = t/h, such that

ξ(g) = (−B)−
1−2lŷ1+3l2 ŷ2

1
lŷ1

[
e−glBŷ1(α + β)− α(ŷ1 + ŷ0)

] 1−2lŷ1+3l2 ŷ2
1

lŷ1 ×

exp [glB(2lŷ1 − 1)] . (4.6.38)

Since l � 1 and B = αŷ0 − βŷ1, (4.6.38) supplies at leading order

ξ(g) =
[

1 +
ŷ1

B
(α + β)

(
1− e−glB

)]1/lŷ1

exp (−glB) . (4.6.39)

In order to see more clearly how ξ(g) varies with g, we consider two asymptotic

limits, one for which g ∼ O(1) and a second for which g ∼ O(1/l) where l � 1.

When g ∼ O(1) and l � 1, (4.6.39) supplies

ξ(g) ≈ exp[(α + β)g] . (4.6.40)

So when g ∼ O(1) , ξ(g) grows exponentially. When g ∼ O(1/l) we write

g = G/l where G ∼ O(1) and (4.6.39) can be written as

ξ(g) ≈ exp
[
(α + β)

Bl

]
exp

[
−e−GB(α + β)

Bl

]
. (4.6.41)

Since B = αŷ0− βŷ1, can neither be positive, negative or zero. We first consider

when g ∼ O(1/l) and B > 0, ξ(g) = ā exp[b̄ exp(c̄t)] which is Gompertzian

growth, with upper asymptote constant ā = exp[(α + β)/(Bl)], growth rate

c̄ = B and negative contestant b̄ = −(α + β)/(Bl). Secondly when B < 0, let
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Cs = exp
[

(α+β)
Bl

]
which is small constant number, Cp1 = −(α + β)/(Bl) which

is a positive number and Cp2 = −B which is also a positive number, so

ξ(g) = Cs exp(CpeCp2G) , (4.6.42)

thus ξ(g) also grows exponentially,when B < 0. B = 0 is a spacial case which

we discuss below.

Figure 4.17: The top graph shows ξ(g) from (4.6.38) plotted against t, the middle

graph shows log(ξ(g)) plotted against t and bottom graph shows log(log(ξ(t)))

against log(t). With parameters α = 0.8, β = 0.2, ŷ0 = 1, ŷ1 = 1.75, l = 0.01.

In Figure 4.17 we show how the number of chromosomes grows dramatically

with generation number. The middle graph shows log(ξ(g)) plotted against g

which is not a straight line which means that ξ(g) does not grow exponentially.

The bottom graph in Figure 4.17 shows log(log(ξ(g))) increasing linearly with
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log(g) which means log(ξ(g)) grows approximately exponentially with log(g).

We fix the upper limit of g at g = 100, because for the parameters used in Figure

4.15 µ(g) ≥ 0 when g < 100 and therefore we only consider ξ(g) in this range.

4.6.2 The special case, B = 0

From µ(t) (4.6.24) we deduce that when B = 0 both the numerator and denom-

inator are zero. So we need to reconsider this case when B = 0. Due to Case IV

the amount of telomere lost per replication is Y(n) = y0 + y1n and the proba-

bility of a chromosome replicating is Pdiv = an + b, α = aQ, b = β, ŷ0 = y0 and

ŷ1 = y1Q. Since B = αŷ0 − βŷ1 = 0 implies αŷ0 = βŷ1 where there are three

outcomes for solving α. First, when ŷ0 = β = 0 and ŷ1 6= 0, then α ∈ N. Third,

when ŷ0 = ŷ1 = 0 and β 6= 0, then α ∈ N. Second, when ŷ0 6= 0, α = βŷ1/ŷ0.

Since in practice, during chromosome replication there must be telomere loss,

we deduce that the case ŷ0 = ŷ1 = 0 cannot hold and do not consider in further.

Special Case I : ŷ0 = β = 0

When ŷ0 = β = 0 and ŷ1 6= 0, implies the amount of telomere lost per replica-

tion is Y(n) = y1n and the probability of a chromosome replicating is Pdiv = an.

Thus the telomere loss and probability of a chromosome replicating are both

proportional to the telomere length directly. Equation (4.6.18) can be written as

ft =
α

h
[x− µ(1− 2lŷ1)] f +

lαŷ1x2

h
fx . (4.6.43)

We introduce the characteristic variables s, where

ds = dt = − hdx
lαŷ1x2 =

hd f
α[x− µ(1− 2lŷ1)] f

, (4.6.44)

and parameterized the initial conditions on s = 0 by τ so that when s = 0,

t = 0, x = τ, f = δ(τ − 1). Solving

dt
ds

= 1⇒ t = s , (4.6.45)

since t = 0 when s = 0. Solving

dx
ds

= − lαŷ1x2

h
, ⇒ x(s, τ) =

τh
lαŷ1sτ + h

, (4.6.46)
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since x = τ when s = 0. Since initial condition, f (s = 0, τ) = δ(τ − 1) and

there is no spreading of the distribution, f remains as a delta function for all

s > 0 and, hence, must be located at µ(s) = x(s, τ) |τ=1, so

µ(s) = x(s, τ) |τ=1=
h

lαŷ1s + h
. (4.6.47)

From (4.6.45) s = t, which implies

µ(t) =
h

lαŷ1t + h
. (4.6.48)

Figure 4.18: Graph of µ(t) (4.6.48) plotted against t with parameters α = 1,ŷ1 =

0.25, l = 0.05, ŷ0 = β = 0.

In Figure 4.18 we use (4.6.48) to plot µ(t) against t for the special Case I, ŷ0 =

β = 0. The average telomere length decreases from unity and decreases slowly

as time increases, in this case the µ(t) can not reach zero, but converges to zero

slowly as time increases.

In order to compare the results for the mean obtained from the stochastic model

µ(g) (Section 2.2.7 ) with the analytical expression from the continuum model

µ(t) (4.6.48), we first rescale the telomere length n by its initial telomere length

125



CHAPTER 4: CONTINUUM MODELS OF TELOMERE SHORTENING IN NORMAL
AGEING

Figure 4.19: The dashed line shows the µ(g) from (4.6.49) plotted against generation

numbers with parameters α = 1, β = 0, ŷ0 = 0, ŷ1 = 5/3, l = 0.01 . The

middle solid line is the average telomere length plotted against generation number

from the stochastic simulations, the solid lines above and below indicated two standard

deviations above and below the mean, for comparison with µ(g)/Q where Q = 5950

basepairs is the initial telomere length.

x = n/Q, its divided to obtain µ(g) in the range (0, 1). Secondly, we convert t

to g, where we know the generation number g = ht, so µ(g) can be written as

µ(g) =
1

lαŷ1g + 1
. (4.6.49)

In Figure 4.19 we compare plots of µ(g) generated from the stochastic simula-

tions and the theoretical calculations: they are identical before generation 120.

After that, the theoretical mean decreases more slowly than the stochastic mean,

but remains within two standard deviations of the stochastic simulations.

Having solved for µ(t), now we back to method of characteristics, using (4.6.44)

to determine the full solution for the distribution f (x, t) and hence the evolu-
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tion of the total number of chromosome ξ(t). Solving

d f
ds

=
α

h
[x− µ(1− 2lŷ1)] f , (4.6.50)

hence

f (s, τ) = A3(τ) exp
[

ln(lαŷ1tτ + h)− ln(h)
lŷ1

− α

h
(1− 2lŷ1)

∫ t

0
µ̂(s)ds

]
,

(4.6.51)

where A3(τ) is an arbitrary function of integration. From (4.6.47), we obtain

∫ t

0
µ̂(s)ds =

[
h ln(lαŷ1s + h)

lαŷ1

]s=t

s=0
=

h ln(lαŷ1t + h)
lαŷ1

− h ln(h)
lαŷ1

, (4.6.52)

so

f = A3(τ)(lαŷ1t + h)2
(

lαŷ1tτ + h
lαŷ1t + h

) 1
lŷ1

h−2 . (4.6.53)

Since f = δ(τ − 1) when s = 0 and t = s, (4.6.53) implies

A3(τ) = δ(τ − 1) . (4.6.54)

From (4.6.46), we obtain

τ(s, x) =
xh

h− lαŷ1sx
, (4.6.55)

and we know s = t, so substituting (4.6.54), (4.6.55) into (4.6.53) yields

f (x, t) = δ

(
hx

h− lαŷ1tx
− 1
) [

1
(h− lαŷ1tx)(lαŷ1t + h)

] 1
lŷ1 ×

h
2

lŷ1
−2(lαŷ1t + h)2 . (4.6.56)

Since g = t/h, so

f (x, g) = δ

(
x

1− lαŷ1xg
− 1
) [

1
(1− lαŷ1xg)(lαŷ1g + 1)

] 1
lŷ1 ×

h
2

lŷ1 (lαŷ1g + 1)2 . (4.6.57)

As we can see from (4.6.57), the function of f (x, g) is now a Delta function with

growing amplitude.
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Having found distribution of f (x, t), we now analyze the total number of chro-

mosome ξ(t). From the first order PDE, we have found the expression for µ(t),

so we now put (4.6.48) and ŷ0 = β = 0 back to (4.6.15) to obtain an expression

for ξ(t),

ξt

ξ
=

α(1− 2lŷ1 + 3l2ŷ2
1)

lαŷ1t + h
, (4.6.58)

hence

ξ(t) =
(

lαŷ1t
h

+ 1
) 1−2lŷ1+3l2 ŷ2

1
lŷ1

, (4.6.59)

since ξ(0) = 1. Since t = gh, such that

ξ(g) = (lαŷ1g + 1)
1−2lŷ1+3l2 ŷ2

1
lŷ1 . (4.6.60)

Since l � 1, ξ(g) ∼ exp(αg).

The top graph in Figure 4.20 show how the number of chromosomes grows

dramatically as the generation number increases. The middle graph shows

log(ξ(g)) plotted against g which is not straight line which mean ξ(g) not

grows exponentially. The bottom graph in Figure 4.20 shows log(log(ξ(g))) in-

creasing linearly with log(g) which means log(ξ(g)) grow exponentially with

log(g). In this case as g increases ξ(t) increases, since µ(t) (obtain from (4.6.48)),

tends to zero slowly as t → +∞ (see Figure 4.18). Cells can’t have unlimited

growth, so g→ +∞ the situation in this case does not meet the actual situation.

Special Case II : α =
βŷ1

ŷ0
when ŷ0 6= 0

In Case IV the amount of telomere lost per replication is Y(n) = y0 + y1n and

the probability of a chromosome replicating is Pdiv = an + b, α = aQ, b = β,

ŷ0 = y0 and ŷ1 = y1Q. When α = βŷ1/ŷ0 and ŷ0 6= 0, implies the amount of

telomere lost per replication is Y(n) = y0 + y1n and the probability of a chro-

mosome replicating is Pdiv = β(y0 + y1n)/y0 = βY(n)/y0, which means the

probability of a chromosome replicating is proportion to the amount of telom-

ere loss.
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Figure 4.20: The top graph shows ξ(g) from (4.6.60) plotted against t, the middle

graph shows log(ξ(g)) plotted against t and bottom graph shows log(log(ξ(t)))

against log(t). With parameters α = 1, β = 0, ŷ0 = 0, ŷ1 = 5/3, l = 0.01.

We put α = βŷ1/ŷ0 back to (4.6.18) and hence obtain

ft =
βŷ1

ŷ0h
[x + 2lŷ0 − µ(1− 2lŷ1)] f +

βl
ŷ0h

(ŷ1x + ŷ0)2 fx . (4.6.61)

We introduce the characteristic variables s, where

ds = dt =
ŷ0hdx

−lβ(ŷ1x + ŷ0)2 =
ŷ0hd f

βŷ1[x + 2lŷ0 − µ(1− 2lŷ1)] f
, (4.6.62)

and parameterized the initial conditions on s = 0 by τ so that when s = 0,

t = 0, x = τ, f = δ(τ − 1). Solving

dt
ds

= 1⇒ t = s , (4.6.63)
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since t = 0 when s = 0. Solving

dx
ds

= − βl
ŷ0h

(ŷ1x + ŷ0)2 (4.6.64)

implies

x(s, τ) =
ŷ0(τh− slβŷ1τ − slβŷ0)
τlβŷ2

1s + lβŷ1ŷ0s + ŷ0h
, (4.6.65)

since x = τ when s = 0, equivalently

τ(s, x) =
ŷ0(xh + slβŷ0 + slxβŷ1)
ŷ0h− xlβŷ2

1s− lβŷ1ŷ0s
. (4.6.66)

Since f (s = 0, τ) = δ(τ− 1) and there is no spreading of distribution, f remains

as a delta function further for all s > 0 and hence must be located at µ(s, τ) and

hence

µ(t) = x(s, τ) |s=t
τ=1=

ŷ0h− ŷ0tlβ(ŷ1 + ŷ0)
lβŷ1t(ŷ1 + ŷ0) + ŷ0h

. (4.6.67)

Figure 4.21: Graph shows µ(t) plotted against t with parameter β = 0.5, ŷ0 = 0.5,

ŷ1 = 0.25, l = 0.05.

In Figure 4.21 we show how the average telomere length µ(t) decreases from

130



CHAPTER 4: CONTINUUM MODELS OF TELOMERE SHORTENING IN NORMAL
AGEING

1 linearly as time increases and reaches zero around t = 55. For t > 55, µ(t)

continues to decrease, becoming n negative. For physically realistic solutions

we only need to consider the times for which 0 ≤ µ(t) ≤ 1. Since t = gh, µ(t)

can be written as

µ(g) =
ŷ0 − glβ(ŷ1 + ŷ0)

lβŷ1g(ŷ1 + ŷ0) + ŷ0
. (4.6.68)

Figure 4.22: The dashed line shows the µ(g) from (4.6.68) plotted against generation

numbers with parameters α = 0.8, β = 0.2, ŷ0 = 9, ŷ1 = 2.25, l = 0.01. The

middle solid line is the average telomere length plotted against generation number

from the stochastic simulations with the same parameters, the solid lines above and

below indicated two standard deviations above and below the mean, for comparison

with µ(g)/Q (the initial telomere length being Q=5950 basepairs).

Figure 4.22 shows that from the stochastic and the theoretical calculation of µ(t)

are identical before generation 120. After that the theoretical value of µ (4.6.68)

decreases faster than the stochastic one, due to the chromosome can not divide

when the telomere length is lower than the critical length, in stochastic sim-

ulation. In the theoretical calculations, there is no restriction on the telomere

length and the chromosome can always divide, even when the telomere length
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is lower than the critical telomere length. Here we only need to consider times

for which µ(t) > 0.

Having solved for µ(t), we now return to (4.6.61) to find the full solution for

the distribution f (x, t) and hence the evolution of the total number of chromo-

some ξ(t). Solving

d f
ds

=
βŷ1[x + 2lŷ0 − µ(1− 2lŷ1)] f

ŷ0h
, (4.6.69)

where from (4.6.65), we obtain

∫ t

0
x(s)ds =

[
ŷ0(h ln(τlβŷ2

1s + lβŷ1ŷ0s + ŷ0h)− slβŷ1)
lβŷ2

1

]s=t

s=0

=
ŷ0

lβŷ2
1

[
h ln(τlβŷ2

1t + lβŷ1ŷ0t + ŷ0h)− tlβŷ1 − h ln(ŷ0h)
]

.

(4.6.70)

and from (4.6.67), we obtain

∫ t

0
µ̂(s)ds =

[
ŷ0(h ln(lβŷ2

1s + lβŷ1ŷ0s + ŷ0h)− slβŷ1)
lβŷ2

1

]s=t

s=0

=
ŷ0

lβŷ2
1
[h ln(lβŷ2

1t + lβŷ1ŷ0t + ŷ0h)− tlβŷ1 − h ln(ŷ0h)] .

(4.6.71)

hence

f (τ, t) = δ(τ − 1)(ŷ0h)−2(lβŷ2
1t + lβŷ1ŷ0t + ŷ0h)2 ×(

τlβŷ2
1t + lβŷ1ŷ0t + ŷ0h

lβŷ2
1t + lβŷ1ŷ0t + ŷ0h

)1/lŷ1

,

(4.6.72)

since s = 0 and f = δ(τ− 1). Hence substitution s = t and (4.6.66) into (4.6.72),

we obtain

f (x, t) = δ

(
ŷ0(xh + tlβŷ0 + tlxβŷ1)
ŷ0h− xlβŷ2

1t− lβŷ1ŷ0t
− 1

)(
lβŷ2

1t + lβŷ1ŷ0t + ŷ0h
)2−1/lŷ1 ×

(ŷ0h− xlβŷ2
1t− lβŷ1ŷ0t)−1/lŷ1(ŷ0h)−2+2/lŷ1 . (4.6.73)
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Since g = t/h, so

f (x, g) = δ

(
ŷ0(x + glβŷ0 + glxβŷ1)
ŷ0 − xlβŷ2

1g− lβŷ1ŷ0g
− 1

)(
lβŷ2

1g + lβŷ1ŷ0g + ŷ0

)2−1/lŷ1 ×

(ŷ0 − xlβŷ2
1g− lβŷ1ŷ0g)−1/lŷ1(ŷ0)−2+2/lŷ1 . (4.6.74)

As we can see from (4.6.74), the function of f (x, g) still stage as a delta function,

but with amplitude grows.

From the first order PDE, we found an expression for µ(t), so we now put

(4.6.67) and α = βŷ1/ŷ0 back into (4.6.15) to obtain an expression for ξ(t),

namely

hξt

ξ
= β(1− 2lŷ1 + 3l2ŷ2

1)

[
1 +

ŷ1(h− tlβŷ1 − tlβŷ0)
lβŷ2

1t + lβŷ1ŷ0t + ŷ0h

]
,

hence

ξ(t) = (ŷ0)−(1−2lŷ1+3l2ŷ2
1)/lŷ1

[
lβŷ2

1t + lβŷ1ŷ0t + ŷ0h
h

](1−2lŷ1+3l2ŷ2
1)/lŷ1

,

(4.6.75)

since ξ(0) = 1 when t = 0. Since t = gh

ξ(g) = (ŷ0)−(1−2lŷ1+3l2ŷ2
1)/lŷ1(lβŷ2

1g + lβŷ1ŷ0g + ŷ0)(1−2lŷ1+3l2ŷ2
1)/lŷ1 .

(4.6.76)

The top graph in Figure 4.23 shows the number of chromosomes grows dra-

matically. The middle graph shows log(ξ(g)) plotted against g which is not

a straight line which means ξ(g) does not grow exponentially. The bottom

graph in Figure 4.23 shows log(log(ξ(g))) increasing linearly with log(g) which

means log(ξ(g)) grow exponentially with log(g).

From the first order PDE, we obtain the solution for average telomere length

µ(t) and the growth rate ξ(t) for both general cases and epical cases. The the-

oretical µ(t) and the stochastic simulations are quite identical before the time

µ(t) > 0, but the shape of the distribution still remains in the delta function.
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Figure 4.23: The top graph shows ξ(g) from (4.6.76) plotted against t, the middle

graph shows log(ξ(g)) plotted against t and bottom graph shows log(log(ξ(t)))

against log(t). With parameters α = 0.8, β = 0.2, ŷ0 = 9, ŷ1 = 2.25, l = 0.01.

In order to understand the how the distribution varies, we need to consider the

second order PDE instead of first order PDE. Here we do not do the further

analysis on the distributions.

4.7 Mathematical cell model of normal ageing

In the previous section, we assumed each cell contained only one chromosome,

whereas in fact, the normal human cell contains 46 chromosomes. In this sec-

tion we upgrade the single chromosome cell model to an N chromosome cell

model. The cell model is more complex than the chromosome model. Before the
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cell replicates, we need to checks all 46 chromosomes, to make sure none of the

telomeres have fallen below the critical value which causes senescence. If one

of the chromosomes has reached this critical value, the cell will not replicate.

If a cell replicates, it produces two daughter cells. The daughter chromosomes

are allocated randomly to each of the daughter cells. The rule for replication of

chromosomes in the cell is the same as in Figure 4.1. We use m, to denote the

total telomere length in the cell, Y(m), to denote the total amount of telomere

lost during each replication and Pcdiv to denote the probability of cell division.

We still consider four different cases as similar as the chromosome model as in

Section 4.2, summarized in Table 4.3.

Case Pcdiv Y(m)

Case I Pcdiv = 1 Y(m) = L

Case II Pcdiv = 1 Y(m) = y0 + y1m

Case III Pcdiv = (a + bm)α Y(m) = L

Case IV Pcdiv = (a + bm)α Y(m) = y0 + y1m

Table 4.3: Summary of the rules for cell division and telomere shortening that

we consider.

4.8 Case I: constant loss

Let N be the number of chromosomes in a cell. Each chromosome obeys the

replication rule (4.1), namely Kg
n → Kg+1

n + Kg+1
n−L. If the telomere length of each

chromosome in a cell is longer than the critical value then the cell replicates;

otherwise it remains senescent. For the discrete model, we use Cg
m to denote the

number of cells with total telomere length m at generation g. We use Y(m) = L

to denote the total amount of telomere lost during each replication; and g to

represent the generation number. If the cell replicates, the daughter chromo-

somes are randomly allocated to the daughter cells in one of the 2N possible

combinations for the 2N chromosomes that are randomly allocated to the two
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daughter cells. The discrete cell replication reaction can be written as

Cg
m → Cg+1

m−jL + Cg+1
m−(N−j)L j = 0, 1, .., N with probability 2−N

(
N
j

)
.

(4.8.1)

Hence, averaging over all the possible arrangements of telomere lengths

Cg
m →

N

∑
j=0

2−N
(

N
j

)(
Cg+1

m−jL + Cg+1
m−(N−j)L

)
, (4.8.2)

which implies

Cg+1
m = 2−N

N

∑
j=0

(
N
j

) [
Cg

m+jL + Cg
m+(N−j)L

]
. (4.8.3)

We assume that the solution has the form Cg
m = eγg+χm where the growth rate

γ depends on the rate of change of the distribution with m, namely χ. For small

χ, (4.8.3) supplies

eγ = 2−N
N

∑
j=0

(
N
j

) [
ejχL + e(N−j)χL

]
≈ 2 + NLχ +

NL2χ2(N + 1)
4

,

so that

γ = ln 2 +
NLχ

2
+

NL2χ2

8
. (4.8.4)

To develop a continuum model with the same dispersion relation as the discrete

one. In general, the number of cells, C, become very large over a few genera-

tions and can therefore be treated as a continuous variable. We also replace

the discrete generation number g by a continuous time variable, t. Since the

amount of telomere loss in the normal human cells, L, is much less than the ini-

tial telomere length, we can treat telomere length, m, as a continuous variable.

Thus we replace the discrete model for Cg
m by a continuum model for C(m, t).

The continuum analogue of (4.8.3) is the simplest partial differential equation

which has the same dispersion relation as (4.8.4), namely

∂C
∂t

= C ln 2 +
1
2

NL
∂C
∂m

+
1
8

NL2 ∂2C
∂m2 . (4.8.5)

Compare this PDE with the single chromosome model, (4.3.5), which is

∂K
∂t

= K ln 2 +
1
2

L
∂K
∂n

+
1
8

L2 ∂2K
∂n2 , (4.8.6)
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we notice that these two PDEs are similar, both containing coefficient of ln(2)

in front of C or K, which means the number of cells increases with the same

growth rate as the chromosome model. If the total telomere length in the cell

is m = N × n, then
∂C
∂m

=
1
N

∂C
∂n

and
∂2C
∂m2 =

1
N2

∂2C
∂n2 , indicating that the speed

of the distribution of C(m, t) moves toward lower telomere lengths is same as

the chromosomes model, but the diffusion terms is significantly smaller (by a

factor of N).

We are interested in comparing the results of our models with experimental

data from experiments on cells taken from human adults. We assume that at

same time (t = 0) cells have telomere length m0 and the cells variance σ = σ0.

We assume the sample of cells taken from experiment at t = t1 has average

telomere length M1 and variance σ = σ1. In order to find σ, we apply similar

methods to those of in Section 5.4 to deduce

d
dt

m(t) = −1
2

NL =⇒ m(t) = m0 −
1
2

NLt , (4.8.7)

d
dt

σ(t) =
NL2

8σ(t)
=⇒ σ(t) =

1
2

√
NL2t + 4σ2

0 . (4.8.8)

From (4.8.7) and (4.8.8) we obtain t1 = 2(m0−M1)/NL and σ1 = 1
2

√
NL2t0 + 4σ2

0 .

We solve (4.8.5) by prescribing the following initial condition C(m, 0) = δ(m−
M1), where M1 is the initial telomere length in the starting cell and σ0 = 0, use

the same method as in Section 4.3 to solve the PDE, we obtain

C(m, t) =
2t
√

2√
(NL2t + 4σ1)π

exp

[
−

2(m + 1
2 LNt−M1)2

NL2t + 4σ1

]
. (4.8.9)

We use µm(t) to denote the average telomere length of the cell at time t which

can be written

µm(t) =

∫ Mmax

0
mC(m, t)dm∫ Mmax

0
C(m, t)dm

. (4.8.10)
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Using σ2
m(t) to denote the variance of the cell’s telomere length at time t, we

find

σ2
m(t) =

∫ Mmax

0
[m− µm(t)]2C(m, t)dm∫ Mmax

0
C(m, t)dm

, (4.8.11)

where Mmax, is the maximum possible telomere length in a cell at time t so that

Mmax = M1 is the initial telomere length.

Figure 4.24: The middle solid line is the average telomere length µm(t)/N and the

solid lines above and below are the average telomere lengths µm(t)/N plus or minus

two standard deviations. The middle dashed line is the average telomere length against

generation number in stochastic simulations (average of 1000 simulations) which we

obtained earlier and the dashed lines above and below are the average telomere lengths

from computer simulations plus or minus two standard deviations.

For comparison with the earlier stochastic simulations, we choose, L = 100,

N = 46 and M1 = 5950× 46, so that the amount of telomere loss at each repli-

cation is identical to the stochastic simulation. A comparison of results is shown

in Figure 4.24. We assume that the average telomere length of a chromosome

in a cell µchro(t) = µm(t)/N. Before t = 90, the mean chromosome telomere

length µchro(t) for the theoretical model and the mean telomere length for the
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stochastic simulation are identical. Thereafter these curves diverge, the mean

telomere length of the stochastic simulation remain 1000 and the average telom-

ere length of the chromosome in the cell µchro(t) continues to decrease until it

reaches zero. This occurs because in the stochastic simulations we require that

if the telomere length of one of the chromosome is zero, then the cell stops repli-

cating and the cell becomes senescent. By contrast, in the theoretical model, the

only restriction is that if the cell’s average telomere length is zero, then the cell

stops replicating.

Inside a cell if the telomere length of a cell’s one of the chromosomes reaches

the critical length, the cell stops dividing, so we need to consider when a cell

reaches senescence. In order to do this we need to look not only at the total

telomere length of the cell, but also at the length of each chromosome. We use

Lg
i where i = 1, .., N to denote the telomere length of the ith chromosome of a

cell at generation g and µg denote the average telomere length of the cell. While

sg denotes the standard deviation of telomere length of the cell. Thus

µg =
1
N

N

∑
i=1

Lg
i , (4.8.12)

s2
g =

N

∑
i=1

1
N

(Lg
i − µg)2 , (4.8.13)

To analyze the standard deviation of telomere lengths, we define

s2
g+1 =

1
N

N

∑
i=1

(Lg+1
i − µg+1)2 , (4.8.14)

where Lg
i denotes he telomere length at generation g of chromosome i. We as-

sume Lg+1
i = Lg

i with probability P = 1/2 and Lg+1
i = Lg

i + L with probability

1− P = 1/2. Then (4.8.14) implies

s2
g+1 =

1
N

N

∑
i=1

[
P(Lg

i − µg+1)2 + (1− P)(Lg
i + L− µg+1)2

]
=

1
N

N

∑
i=1

[
P
(

Lg
i − µg +

1
2

L
)2

+ (1− P)
(

Lg
i +

3
2

L− µg

)2
]

=
1
N

N

∑
i=1

(µg − Lg
i )

2 +
2PL
N

N

∑
i=1

(µg − Lg
i − L) +

3L
N

N

∑
i=1

(
Lg

i − µg +
3
4

L
)

s2
g+1 = s2

g − 2PL2 +
9
4

L2 = s2
g +

5
4

L2 . (4.8.15)
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Thus we obtain the recurrence relations µg+1 = µg− 1
2 L and sg+1 =

√
s2

g + 5
4 L2.

So the mean decreases linearly with rate L/2 and the variance of telomere

lengths increases linearly with rate 5L2/4.

4.8.1 First order statistic

Now we know the mean µ and standard deviation s at each time. We assume

that the distribution of telomere lengths of the chromosome is N(µ, σ). Senes-

cence of the cell depends on the shortest telomere length of the cell: if the short-

est telomere of the cell falls below the critical length, the cell stops replicating

and becomes senescent. If we randomly pick a sample of 46 from N(µ, σ) which

is called {x1, .., x46} and find the minimum of the sample, it is distributed ac-

cording to the first order statistic x(1) = min{x1, .., x46}. Given the basic proba-

bility density function

f (x) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
, (4.8.16)

the distribution function F(x) is

F(x) =
1
2

[
1 + erf

(
x− µ

σ
√

2

)]
, (4.8.17)

and hence that the probability function of the first order statistic is

f1(x1) = 46[1− F(x1)]45 f (x1) . (4.8.18)

For the simplest case we have µ = 0 and σ = 1. The maximum of f(1)(x1),

occurs when f ′(1)(x1) = 0, which is where

f ′(1)(x1) = −
1035

[
1
2 −

1
2erf

(√
2

2 x1

)]44
(e−

1
2 x2

1)2

π
−

23
√

2
[

1
2 −

1
2erf

(√
2

2 x
)]45

x1e−
1
2 x2

1

√
π

,

1
2

[
1− erf

(√
2

2
x1

)]
x1 = − 45√

2π
e−

1
2 x2

1 . (4.8.19)

Solving (4.8.19) numerically yields x = −2.084. This is similar to the expected

value E( f(1)(x1)) = −2.216, i.e.. the mode and mean are close. We expect a

cell reach senescence when its shortest telomere reaches zero length, i.e.. when
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µ− 2.216σ = 0, or when µ = 2.216σ.

We use the recurrence relations µg+1 = µg − 1
2 L and sg+1 =

√
s2

g + 5
4 L2 with

initial conditions µ0 = 5950, s0 = 0 and L = 100, to estimate that when g = 76,

µ ≈ 2.2164σ, i.e. senescence is starts when g = 76. The stochastic simulation

results we obtained earlier, showed that senescence first appears when aver-

age g = 78, so we have good agreement between the stochastic simulation and

theoretical estimates.

4.9 Case II: length dependent loss

As before, we denote by Cg
m the number of cells with total telomere length m at

generation g. The amount of telomere lost y = y(m) during replication depends

on the cell’s telomere length via y(m) = y0 + y1m where y0, y1 are constants and

each chromosome obeys the replication rule Kg
n → Kg+1

n + Kg+1
n−y(m). The discrete

cell replication reaction can be written as

Cg
m → Cg+1

m−j(y0+
my1

N ) + Cg+1
m−(N−j)(y0+

my1
N )

j = 0, 1, .., N with probability 2−N
(

N
j

)
. (4.9.1)

Hence, averaging over all the possible kinetic arrangements of telomere lengths

Cg
m →

N

∑
j=0

2−N
(

N
j

) [
Cg+1

m−j(y0+
my1

N ) + Cg+1
m−(N−j)(y0+

my1
N )

]
, (4.9.2)

which implies

Cg+1
m = 2−N

N

∑
j=0

(
N
j

)Cg
m+jy0

1− y1 j
N

+ Cg
m+(N−j)y0

1−y1+
y1 j
N

 . (4.9.3)

In place of the “dispersion relation” Cg
m ∼ exp(γg + χm), we seek trial solutions

of the form Cg
m = eγg(α + βm)p where γ is the growth rate which depends on

the constants (α, β and the parameter p); α and β will be determined later to

simplify the algebra. When we put the assumed solution into (4.9.3), we obtain

eγ(α + βm)p = 2−N
N

∑
j=0

(
N
j

){[
α +

β(m + jy0)

1− y1 j
N

]p

+

[
α +

β(m + (N − j)y0)

1− y1 + y1 j
N

]p}
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which implies

eγ = 2−N
N

∑
j=0

(
N
j

){[
αN − αy1 j + βN(m + jy0)

(N − y1 j)(α + βm)

]p

+
[

α(N − Ny1 + jy1) + βN(m + (N − j)y0)
(N − Ny1 + jy1)(α + βm)

]p}
,

eγ = 2−N
N

∑
j=0

(
N
j

){[
N

N − y1 j
+

j(βNy0 − αy1)
(N − y1 j)(α + βm)

]p

+
[

N
N − Ny1 + jy1

+
αy1(j− N) + βNy0(N − j)
(N − Ny1 + jy1)(α + βm)

]p}
. (4.9.4)

In order to find the growth rate γ to be independent of the telomere length m,

since α and β are the free parameters, we need fix βNy0 = αy1, which implies

α = Ny0β/y1 and hence

eγ = 2−N
N

∑
j=0

(
N
j

) [(
N

N − y1 j

)p
+
(

N
N − Ny1 + jy1

)p]
. (4.9.5)

In order to transform (4.9.3) into one that is similar to Case I, we transform

variables from m to x via ex = Ny0 + y1m so that

x = ln(Ny0 + y1m) . (4.9.6)

Letting C̃g
x = Cg

m, (4.9.3) can be written as

C̃g+1
x = 2−N

N

∑
j=0

(
N
j

) [
C̃g

x+L̃1
+ C̃g

x+L̃2

]
, (4.9.7)

where L̃1 = − ln(1− y1 j/N) and L̃2 = − ln(1− y1 + y1 j/N). This is because

when m→ (m + y0 j)/(1− y1 j/N),

x = ln(Ny0 + y1m)→ ln

[
Ny0 + y1

(
m + y0 j

1− y1 j
N

)]

= ln(Ny0 + y1m)− ln
(

1− y1 j
N

)
= x− ln

(
1− y1 j

N

)
, (4.9.8)

and when m→ [m + (N − j)y0]/(1− y1 + y1 j/N),

x = ln(Ny0 + y1m)→ ln

{
Ny0 + y1

[
m + (N − j)y0

1− y1 + y1 j
N

]}

= ln(Ny0 + y1m)− ln
(

1− y1 +
y1 j
N

)
= x− ln

(
1− y1 +

y1 j
N

)
.

(4.9.9)
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We assume (4.9.7) has a separable solution of the form C̃g
x = eγg+χx, the disper-

sion relation for (4.9.7) is

eγ = 2−N
N

∑
j=0

(
N
j

) [
e−χ ln

(
1− y1 j

N

)
+ e−χ ln

(
1−y1+

y1 j
N

)]

≈ 2 + 2−N
N

∑
j=0

(
N
j

){
−χ

[
ln
(

1− y1 j
N

)
+ ln

(
1− y1 +

y1 j
N

)]
+

1
2

χ2
[

ln2
(

1− y1 j
N

)
+ ln2

(
1− y1 +

y1 j
N

)]}
.

Since y1 is a small constant satisfying | y1 j/N |≤ 1/N and | −y1 + y1 j/N |<
1/N, ∀j = 0, 1, ..., N we use the following approximation

ln
(

1− y1 j
N

)
≈ −y1 j

N
−

y2
1 j2

2N2 , (4.9.10)

ln
(

1− y1 +
y1 j
N

)
≈ −y1 −

y2
1

2
+

y1 j(1 + y1)
N

−
y2

1 j2

2N2 , (4.9.11)

which implies

ln
(

1− y1 j
N

)
+ ln

(
1− y1 +

y1 j
N

)
≈

y2
1 j(N − j)

N2 − y1 −
y2

1
2

, (4.9.12)

ln2
(

1− y1 j
N

)
+ ln2

(
1− y1 +

y1 j
N

)
≈ y2

1 + y3
1 +

y4
1

4
−

y2
1 j(y2

1 + 3y1 + 2)
N

+
y2

1 j2(4 + 6y1 + 3y2
1)

2N2 −
y4

1 j3

N3 +
y4

1 j4

2N4 .

(4.9.13)

so

2−N
N

∑
j=0

(
N
j

){
−χ

[
ln
(

N − y1 j
N2

)
+ ln

(
1− y1 +

y1 j
N

)]}

≈ −χ2−N
N

∑
j=0

(
N
j

)[
y2

1 j(N − j)
N2 − y1 −

y2
1

2

]
= χ

(
y1 +

y2
1

4
+

y2
1

4N

)
.

(4.9.14)

Similarly

2−N
N

∑
j=0

(
N
j

){
χ2

2

[
ln2
(

1− y1 j
N

)
+ ln2

(
1− y1 +

y1 j
N

)]}

≈ χ2

(
y2

1
4

+
y3

1
8

+
y4

1
64

+
y2

1
4N

+
3y3

1
8N

+
3y4

1
32N

+
3y4

1
64N2 −

y4
1

32N3

)
. (4.9.15)
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We substitute (4.9.14), (4.9.15) into (4.9.10), hence the dispersion relation is

eγ = 2 + Bχ + Fχ2 , (4.9.16)

where

B = y1 +
y2

1
4

+
y2

1
4N

, (4.9.17)

F =
y2

1
4

+
y3

1
8

+
y4

1
64

+
y2

1
4N

+
3y3

1
8N

+
3y4

1
32N

+
3y4

1
64N2 −

y4
1

32N3 , (4.9.18)

which implies

γ = ln(2) + ln
(

1 +
Bχ

2
+

Fχ2

2

)
≈ ln(2) +

Bχ

2
+

(4F− B2)χ2

8
, (4.9.19)

where we let

D =
4F− B2

8
=

y2
1(8y1 + 2y2

1 + 8)
64N

+
y4

1
64N2 −

y4
1

64N3 , (4.9.20)

hence

γ = ln(2) +
Bχ

2
+ Dχ2 . (4.9.21)

For the continuous model we replace the generation number by a continuous

time variable t and Cg
m and C̃g

x by C(m, t) and C̃(x, t) respectively. Equation

(4.9.7) is replaced by a partial differential equation with the dispersion relation

(4.9.21), which is

∂C̃(x, t)
∂t

= ln(2)C̃(x, t) +
B
2

∂C̃(x, t)
∂x

+ D
∂2C̃(x, t)

∂x2 . (4.9.22)

We assume (4.9.22) has a solution of the form

C̃(x, t) =
A(t)

σ(t)
√

2π
exp

[
− (x− µ(t))2

2σ2(t)

]
, (4.9.23)

where the amplitude A(t) is a function of t, σ2(t) is the variance and µ(t) is the

mean, both evaluated using the logarithmic x-scale (4.9.6). Inserting (4.9.23)

into (4.9.22) and equating terms with similar coefficients of (x− µ) we obtain

O(1) :
d
dt

A(t)− A(t)
σ(t)

d
dt

σ(t) = ln(2)A(t)− A(t)D
σ(t)2 , (4.9.24)

O(x− µ(t)) :
d
dt

µ(t) = −B
2

, (4.9.25)

O(x− µ(t))2 :
d
dt

σ(t) =
D

σ(t)
, (4.9.26)
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We solve (4.9.25) with initial condition µ(0) = ln(Ny0 + y1Q) where Q is the

initial cell’s telomere length, to find

µ(t) = −Bt
2

+ ln(Ny0 + y1Q) , (4.9.27)

then (4.9.26) with initial condition σ(0) = σ0 implies

σ(t) =
√

σ2
0 + 2Dt , (4.9.28)

and finally (4.9.24) implies

A(t) = 2tG , (4.9.29)

for some constant G. Thus

C̃(x, t) =
√

22tG

2
√

π(σ2
0 + 2Dt)

exp

{
−

[x + Bt
2 − ln(Ny0 + y1Q)]2

2σ2
0 + 4Dt

}
. (4.9.30)

From (4.9.30) and (4.9.6), C(m, t) can be written as:

C(m, t) =
√

22tG

2
√

π(σ2
0 + 2Dt)

exp

{
−

[ln(Ny0 + y1m) + Bt
2 − ln(Ny0 + y1Q)]2

2σ2
0 + 4Dt

}
.

(4.9.31)

we determine G by noting that at t = 0, there is one cell so that∫ +∞

−∞
C(m, 0)dm = 1 , (4.9.32)

If we assume that the integrand is small everywhere except at n = Q. Then we

deduce from (4.9.32), get G = y1/(Ny0 + y1Q) and

C(m, t) =
√

22ty1

2(Ny0 + y1Q)
√

π(σ2
0 + 2Dt)

×

exp

{
−

[ln(Ny0 + y1m) + Bt
2 − ln(Ny0 + y1Q)]2

2σ2
0 + 4Dt

}
. (4.9.33)

This solution (4.9.33) looks like log-normal distribution where µ is the mode.

Now we go back to determine the PDE in the terms of C(m, t), which has the

solution (4.9.33). Since x = ln(Ny0 + y1m)

∂

∂m
=

∂x
∂m

∂

∂x
=

y1

Ny0 + y1m
∂

∂x
,

∂

∂x
=

(Ny0 + y1m)
y1

∂

∂m
, (4.9.34)

∂2

∂x2 =
(Ny0 + y1m)2

y2
1

∂2

∂m2 +
(Ny0 + y1m)

y1

∂

∂m
. (4.9.35)
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We put (4.9.34), (4.9.35) into the PDE (4.9.22), producing

∂C(m, t)
∂t

= ln(2)C(m, t) +
(B + 2D)(Ny0 + y1m)

2y1

∂C(m, t)
∂m

+D
(Ny0 + y1m)2

y2
1

∂2C(m, t)
∂m2 , (4.9.36)

where B and D are defined in (4.9.17), (4.9.17) respectively. Thus this PDE

(4.9.36) has the solution (4.9.33).

In order to compare the result (4.9.33) with our stochastic simulation in Chapter

2, Section 2.3.3 Case II, we need obtain the mean and variances from C(m, t). In

the above calculations we view m as a real number. However in reality, it is re-

stricted to the range 0� m� Q. We use µm(t) to denote the average telomere

length of the cell at time t which can be written as

µm(t) =

∫ Q

0
mC(m, t)dm∫ Q

0
C(m, t)dm

, (4.9.37)

where Q is the cell’s initial telomere length. Since x = ln(Ny0 + y1m), we

rewrite the integrals in terms of C̃(x, t) as

µm(t) =

∫ ln(Ny0+y1Q)

ln(Ny0)

(
ex − Ny0

y1

)
C̃(x, t)

ex

y1
dx∫ ln(Ny0+y1Q)

ln(Ny0)
C̃(x, t)

ex

y1
dx

. (4.9.38)

Using σm(t) to denote the variance of the telomere length at time t, we find

σ2
m(t) =

∫ Mmax

0
[n− µm(t)]2C(m, t)dm∫ Mmax

0
C(m, t)dm

=

∫ ln(Ny0+y1Q)

ln(Ny0)

[
ex − Ny0

y1
− µm(t)

]2

C̃(x, t)
ex

y1
dx∫ ln(Ny0+y1Q)

ln(Ny0)
C̃(x, t)

ex

y1
dx

. (4.9.39)

For comparison with stochastic simulations obtained earlier (Chapter 2, Sec-

tion 2.3.3, Case II), we choose Q = 5950 × 46, y0 = 50 and y1 = 1/60, this
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Figure 4.25: The middle solid line is the average telomere length µm(t)/N and the

solid lines above and below is the average telomere length µm(t)/N plus or minus

two standard deviations. The middle dashed line is the average telomere length against

generation number in stochastic simulation which we got early and the dashed lines

above and below is the average telomere length of computer simulations plus or minus

two standard deviations.

ensures that the amount of telomere lost at each replication is the same as for

the stochastic simulations. A comparison of results is shown in Figure 4.25. We

use average telomere length of the chromosome in the cell µchro(t) = µm(t)/N.

Before t = 90, the plots of the mean chromosome telomere length µchro(t) for

the theoretical model and stochastic simulation are identical. Thereafter the

curves separate, the mean telomere length of the stochastic simulation remains

at about 1000 and the average telomere length of the chromosome in the cell

µchro(t) continues to decrease until it reaches zero. The reason why this occurs

is that in the stochastic simulation we require all of the cells telomere lengths

to be above the threshold, (otherwise the cell stops replicating and becomes the

senescent), whereas in the theoretical model, the cell only becomes senescent

when its average telomere length is zero.
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4.10 Case III: length dependent cell division

We return to the length-independent loss rate, but include a telomere length de-

pendent probability of dividing. The probability of a chromosome replicating,

is Pdiv = am + b where a, b are constants chosen to ensure that 0 ≤ pdiving ≤ 1.

The discrete cell replication reaction can be written as

Cg
m → (1− am− b)Cg+1

m + (am + b)
N

∑
j=0

2−N
(

N
j

) [
Cg+1

m−jL + Cg+1
m−(N−j)L

]
,

which implies

Cg+1
m = (1− am− b)Cg

m + (am + b)2−N
N

∑
j=0

(
N
j

) [
Cg

m+jL + Cg
m+(N−j)L

]
.

(4.10.1)

One method of generating an approximation solution of this is to assume that

(4.10.1) has a solution of the form

C(m, g) =
A(g)

σ(g)
√

2π
exp

[
− (m− µ(g))2

2σ2(g)

]
, (4.10.2)

where the amplitude A(g), the standard deviation σ(g) and the mean µ(g) of

C(m, g) at time g are all functions of g. Define the qth moment (q = 0, 1, 2, 3) of

the C(m, g) by

Mq(g) =
∫ +∞

−∞
mqC(m, g)dm , (4.10.3)

then it is possible to show that

A(g) = M0(g) , (4.10.4)

µ(g) =
M1(g)
M0(g)

, (4.10.5)

µ2(g) + σ2(g) =
M2(g)
M0(g)

, (4.10.6)

µ3(g) + 3µ(g)σ2(g) =
M3(g)
M0(g)

. (4.10.7)

Integrating (4.10.1) over m, leads to∫ +∞

−∞
Cg+1

m dm = 2−N
N

∑
j=0

(
N
j

) ∫ +∞

−∞
(am + b)

[
Cg

m+jL + Cg
m+(N−j)L

]
dm

+(1− am− b)
∫ +∞

−∞
Cg

mdm . (4.10.8)
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We let m̂ = m + jL, m̃ = m + (N − j)L and substitute from (4.10.8), to find

M0(g + 1) = (1− b)M0(g)−M1(g) + 2−N
N

∑
j=0

(
N
j

)
×{∫ +∞

−∞
(am̂− ajL + b)Cg

m̂dm̂ +
∫ +∞

−∞
[am̃− a(N − j)L + b]Cg

m̃dm̃
}

= aM1(g) + (1 + b− aLN)M0(g) . (4.10.9)

Using similar methods, we multiply (4.10.1) by m and m2 and integrate to obtain

the identities

M1(g + 1) = aM2(g) + (1 + b− 2aLN)M1(g)

+
[

aL2N(N + 1)
2

− bLN
]

M0(g) , (4.10.10)

M2(g + 1) = (1 + b− 3aLN)M2(g) +
[

3
2

aL2N(N + 1)− 2bLN
]

M1(g)

+
[

1
2

bL2N(N + 1)− 1
4

aL3N(N + 3)
]

M0(g) + aM3(g) .

(4.10.11)

We then solve for A(g), µ(g), σ(g), for each generation g, starting for g = 0

following the algorithm:

(1) Given µ(g), σ(g), can calculate Mq(g) where q = 0, 1, 2, 3 using (4.10.4)-

(4.10.7).

(2) Use Mq(g) obtained from (1) to update M0(g + 1), M1(g + 1) and M2(g + 1)

by using (4.10.9)-(4.10.11).

(3) Use M0(g + 1), M1(g + 1) and M2(g + 1) obtained from (2) to update

µ(g + 1) and σ(g + 1) by (4.10.5)and (4.10.6).

(4) Use (4.10.7) to update M3(g + 1), then return back to (1). At each genera-

tion we can use Use (4.10.9)-(4.10.11) to find M0(g), M1(g), M2(g) and also use

(4.10.5) and (4.10.6) to obtain µ(g), σ(g).

Figure 4.26(a) shows that before generation 50, the approximation solution is

consistent with the stochastic results obtained earlier (see Section 2.3.3 Case III-

IVof Chapter 2). However later on, the theoretical mean decreases faster than

the stochastic simulation. In the stochastic simulations, there is a restriction on

telomere length, when the shortest telomere in the cell reaches a critical value,
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(a) (b)

Figure 4.26: In Figure 4.26(a), the middle solid line is the average telomere length

µ(g)/N from theory and the solid lines above and below show µ(g)/N plus or minus

two standard deviations. The middle dashed line is the average telomere length against

generation number from stochastic simulations shown earlier (see Section 2.3.3, Case

III-IVof Chapter 2) and the dashed lines above and below are the average telomere

lengths plus or minus two standard deviations. In Figure 4.26(b), show the A(g)

plotted against generation number.

it indicates that the cell has become senescent. But in our discrete model reach

senescence when the total telomere length in each cell falls to the critical value

times 46, this results in the difference in Figures 4.26(a) in later generations. Fig-

ure 4.26(b) shows t how the numbers of cells increases with generation number,

we notice that the growth rate no longer increases exponentially.

4.11 Case IV: length-dependent loss and length de-

pendent dividing

Case IV combines the previous cases II (length-dependent loss) and III (length-

dependent division probability). The discrete reaction equation can be written

Cg
m → (1− am− b)Cg+1

m

+(am + b)
N

∑
j=0

2−N
(

N
j

)(
Cg+1

m−j(y0+
my1

N )
+ Cg+1

m−(N−j)(y0+
my1

N )

)
,

(4.11.1)

150



CHAPTER 4: CONTINUUM MODELS OF TELOMERE SHORTENING IN NORMAL
AGEING

which implies

Cg+1
m = (1− am− b)Cg

m + (am + b)2−N
N

∑
j=0

(
N
j

)[
Cg

m+jy0
1−y1 j/N

+ Cg
m+(N−j)y0

1−y1+y1 j/N

]
.

(4.11.2)

One method of generating an approximate solution of this is to assume that

(4.10.1) has a solution of the form

C(m, g) =
A(g)

σ(g)
√

2π
exp

(
− (m− µ(g))2

2σ2(g)

)
, (4.11.3)

using the same method as Section 4.10, the recurrence relations can be found as

M0(g + 1) = (1− y1)aM1(g) + (1 + b− ay0N)M0(g) , (4.11.4)

M1(g + 1) =

[
a(y2

1N + 2N − 4y1N + y2
1)

2N

]
M2(g)

+ (1− by1 − 2aNy0 + aNy0y1 + b + ay0y1)M1(g)

+
1
2

Ny0(ay0 − 2b + aNy0)M0(g) , (4.11.5)

M2(g + 1) =

[
1− 3y1 +

3y2
1(1 + N)

2N
−

y3
1(3 + N)

4N

]
aM3(g)

+
{

1 + b(1− 2y1) + ay0y1

[
3− (9 + 3N)y1

4
+ 3N

]
+

(1 + N)by2
1

2N
− 3aNy0

}
M2(g) +

{
3Ny2

0a(N + 1)
2

− 2Ny0b

+y0y1

[
(N + 1)b− 3aNy0(3 + N)

4

]}
M1(g)

+

[
Ny2

0b(N + 1)
2

−
N2y3

0a(N + 3)
4

]
M0(g) . (4.11.6)

Given initial conditions for µ(0), σ(0), A(0), we find initial conditions for M0(0),

M1(0), M2(0), M3(0). Using the same algorithm as in section 4.10 we succes-

sively work out A(g), µ(g), σ(g) for each g.

Figure 4.27(a) shows that before generation 50, the approximate solution is con-

sistent with the stochastic results obtained earlier (see section 2.3.3 Case IV-IV

of Chapter 2). However, later on, the theoretical mean decreases faster than

the stochastic simulation. In the simulations, there is a restriction on telomere
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(a) (b)

Figure 4.27: In Figure 4.27(a), the middle solid line is the average telomere length

µ(g)/N from theory and the solid lines above and below are show µ(g)/N plus

or minus two standard deviations. The middle dashed line is the average telomere

length against generation number from stochastic simulations shown earlier (see sec-

tion 2.3.3, Case IV-IVof Chapter 2) and the dashed lines above and below are the aver-

age telomere lengths plus or minus two standard deviations. In Figure 4.27(b), show

the A(g) plotted against generation number.

length, when the shortest telomere in the cell reaches a critical value indicat-

ing that the cells become senescent. But in our discrete model senescent occurs

when the total telomere length in each cell reaches a critical value times 46, this

results the difference in the later generation. Figure 4.27(b) shows that how the

numbers of cells A(g) increases with generation numbers, we notice that the

growth rate is no longer exponential, due to the dividing rate being dependent

on telomere length.

4.12 Conclusion

In this Chapter, we have developed continuum chromosome-level models and

cell-level models of telomere loss during replication. In order to compare the

continuum solution with Monte Carlo simulations of normal ageing (as pre-

sented in Chapter 2), we now compare the four different choices for chromo-

somes replication and telomere shortening.
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Case I represents the constant telomere loss model in which a fixed amount

of telomere is lost during chromosome replication. When studying telomere

shortening in a single chromosomes, firstly, we constructed a discrete model

for the chromosome replication and then the continuum model was assumed

to be the simplest PDE whose dispersion relation matched that of the analogous

discrete model. Analysis of the resulting continuum model reveals that the dis-

tribution of the telomere length is a Gaussian distribution with mean which

decreases linearly in time following Q − 1
2 Lt and a variance which increases

linearly in time L2t/4. Comparing this mean with the Monte Carlo simulations

for Case I (in Chapter 2 Section 2.2.4), shows good agreement before the chro-

momere becomes senescent.

Case II corresponds to a situation in which the telomere loss during chromo-

some replication is dependent on the length of the telomere. Constructing the

continuum model by using the same methods as Case I, yields a distribution of

telomere lengths which is log-normal and whose mean is consistence with the

corresponding Monte Carlo simulations (see Section 2.2.5 of Chapter 2).

In Case III the probability of cell division is treated as a random process which

depends on telomere length and telomere loss occurs a constant rate. We obtain

a PDE description by matching with the discrete model, but the PDE does not

admit explicit analytical solutions, therefore we considered the asymptotic limit

for which l � 1 and the governing PDE simplifies. Here l = amount of telom-

ere lost per generation divided by initial telomere length. We started with the

first order PDE, which yields the mean, and does not give a good approxima-

tion to the mean of the Monte Carlo simulations (see Section 2.2.6 of Chapter 2)

at long time. Thus we analyze the second order PDE with asymptotically over

various time scales.

In Case IV, we combined telomere length-dependent loss and probabilistic cell

division model where the probability is dependent on telomere length. This

continuum model is even more complex than for Cases III, so we only con-
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struct solutions for mean for the first order PDE (the O(l) solution). However

the mean of first order PDE is consistent with the Monte Carlo simulations for

Case IV (present in Section 2.2.7 of Chapter 2). We also considered as a special

case, the function of telomere loss is proportional to the function of probability

division (Y(n)/Pdiv = constant). For this situation we obtained a mean consis-

tent with Monte Carlo simulations with the same parameters values.

For the cell level model, the construction of continuum model of Cases I and

II are similar to that used for model single chromosomes. The mean of the dis-

tribution in Continuum model for Case I and Case II give good agreement with

Monte Carlo simulations (present in Chapter 2 Sections 2.3.2 and 2.3.3). But

Case III and Case IV, we developed a discrete model to compare the mean with

Monte Carlo simulations which shown a good consistent before the cell reach

senescent.
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CHAPTER 5

Telomerase

5.1 Introduction

Telomerase is an enzyme. It has two major components: the telomerase reverse

transcriptase TERT and the template RNA component (hTR or hTERC) [8].

These can be encoded to provide a template to add telomeric repeats (human

TTAGGG) onto the 3’ ends of chromosomes and to elongate the telomere.

In the previous chapter, when we modelled chromosome replication, we did

not consider telomerase activity, because the amount of telomerase in normal

human cells is usually limited. However, for immortal cell lines such as germline

cells, most tumor cells, and early fetal cells, telomerase activity is high. There-

fore in this chapter, we focus on telomerase activity, in order to investigate how

it maintains telomere length and controls cell proliferation.

In this chapter, we use the same chromosome replication rule as in Chapter

2, and denote by y the average number of basepairs in a pair of telomeres at

each end of the chromosome; L represents the average number of basepairs lost

per replication. The parent chromosomes has one strand of DNA longer than

the other. The normal chromosome replication process can be summarised by

y −→ (y− L) + y , (5.1.1)

parent replication daughter daughter
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where one daughter chromosome of average length (y) is identical to its parent

and the other is shorter, of average length (y− L). In each daughter chromo-

somes, a shorter strand of DNA is manufactured from the longer parent strand,

which results in an inherited deletion of L basepairs at the 5′ end, due to the

end replication problem.

We denote by T the average number of basepairs gained due to telomerase ac-

tivity. Since the mechanisms by which telomerase acts have yet to be identified,

we assume that telomerase lengthens the telomere at the same time as telom-

ere replication takes place. While some experiments show that telomerase acts

on the shortest telomeres [47], [48], [49], other experiments, involving human

cancer cells, suggest that telomerase acts randomly on the two daughter chro-

mosomes, regardless of their length [50]. Based on those observations, we con-

sider two alternative mechanisms of action. First, it can be added to the parent

chromosomes. Second it can be added to either of the daughter chromosomes.

If telomerase is added before replication, then the process can be represented as

y −→ (y + T) −→ (y + T − L) + (y + T) .(5.1.2)

parent telomerase replication daughter daughter

This situation may describe what happens in cancer cells, where both leading

and lagging daughter chromosomes are elongated.

If the chromosome replicates before telomerase acts, then the replication rule

is more complicated and depends on which daughter chromosomes telomerase

acts upon. We assume that telomerase acts on the longer daughter chromosome

with probability q and on the shorter daughter chromosome with probability p

where 0 ≤ p, q ≤ 1 and p, q are independent. This results in four possible
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replication rules:

y −→ (y− L) + (y) −→ (y + T − L) + (y + T) with probability pq ,

(5.1.3)

y −→ (y− L) + (y) −→ (y− L) + (y + T) with probability q(1− p) ,

(5.1.4)

y −→ (y− L) + (y) −→ (y + T − L) + (y) with probability p(1− q) ,

(5.1.5)

y −→ (y− L) + (y)︸ ︷︷ ︸ −→ (y− L) + (y) with probability (1− q)(1− p) .

(5.1.6)

replication telomerase

We remark that the replication rule for the case for which telomerase acts on

neither daughter chromosomes is identical to the rule used for normal ageing

in Chapter 2. We note also that the replication process (5.1.2) is a special case of

(5.1.3), obtained when p = q = 1. Therefore, we henceforth restrict attention to

case (5.1.3)-(5.1.6). We remark that if we p > q, then telomerase acts preferen-

tially on the shorter chromosomes.

In this chapter we perform stochastic simulations of the chromosome model

with telomerase active, and extend our earlier mathematical analysis for the

chromosome model to account for telomerase activity. For the stochastic and

deterministic models, we focus on two cases: in Case I the amounts of telom-

ere loss and gain are assumed to be constant, whereas in Case II these amounts

depend on the telomere length itself, so that shorter telomeres can lose fewer

telomeres due to ageing and gain more telomere due to telomerase activity [49],

whilst longer telomeres lose more and gain less telomere per replication. We

still use MATLAB to run the stochastic simulations, the pseudocode for simu-

lation are similar as in Chapter 2 Section 2.2.3, the differences are when the cell

replicate it follows replication rule 5.1.3 to 5.1.6.
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5.2 Stochastic simulation of the chromosome model

5.2.1 Constant loss and constant telomerase activity

We start by considering a single chromosome of Q basepairs. We assume that

the amounts of telomere lost and gained during replication are constant, be-

ing equal to L and T basepairs respectively. We assume telomerase acts on

offspring with longer chromosomes with probability q and on offspring with

shorter chromosomes with probability p where 0 ≤ (p, q) ≤ 1 and p, q are in-

dependent.

In our simulations, before each chromosome replicates, we check the average

telomere length of the chromosome. If the telomere length exceeds the critical

telomere length, then the chromosome replicates according to the rules (5.1.3)-

(5.1.6); we choose two random numbers qr and pr from a uniform distribution

on [0, 1]. If qr ≤ q and pr ≤ p, then replication follows rule (5.1.3) where the

telomerase active on both longer and shorter offspring chromosomes. If qr ≤ q

and pr > p, then replication follows rule (5.1.4) where the telomerase is only ac-

tive on the longer offspring chromosome. If qr > q and pr ≤ p, then replication

follows rule (5.1.5) where the telomerase is only active on the shorter offspring.

Otherwise, the chromosome replication follows (5.1.6) where there is no telom-

erase activity and only normal ageing occurs.

Since L and T are assumed to be much smaller than the initial telomere length

Q, initially, the population undergoes exponential growth. Due to restrictions

on computer memory, we cannot track the entire progeny as the number of

chromosomes rapidly becomes large. Therefore we passage using a passaging

model which is similar to the one introduced in Chapter 2.

Our simulations start with a single chromosome and we track its progeny over

each generation until the total number of chromosomes exceeds 200. We pas-

sage by randomly selecting 200 of these chromosomes. In the next generation,

all chromosomes divide (if their telomeres are sufficiently long to allow replica-
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tion), and when the population next exceeds 200, we passage again by selecting

200 chromosomes from the population. This process is repeated until all telom-

ere lengths are too short to allow further replication. During the simulation we

record not only the average telomere length over each generation but also the

fraction of chromosomes which are senescent. We use telomere length to indi-

cate whether a chromosome can proliferate; if the telomere length is less than

the critical telomere length, the chromosome is senescent and otherwise it can

replicate.

Figure 5.1: Averaged results from 5000 simulations shows how the average telomere

length of the chromosomes changes with generation number for four choices of T. Pa-

rameter values: q = 0.6, p = 0.4, L = 100, Q = 5950 and T = 0, 50, 100, 150

basepairs. The solid lines indicate two standard deviations above and below the mean

of each passaging model.

If there is no telomerase activity (T = 0, in Figure 5.1), then the average telom-

ere length always decays (as described in Chapter 2 where we considered nor-

mal ageing). When telomerase is active, (T > 0), then there are three possible

outcomes: the average telomere length decays, stays the same or increases with
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generation number (see Figure 5.1). Each case/simulation starts with the same

initial telomere length (Q = 5950 basepairs) and suffers the same amount of

telomere loss, (L = 100 basepairs per division), the amount of telomere gain, T,

differs. With T = 50 basepairs, the average telomere length decays linearly un-

til generation 150 and then decays more slowly, approaching a constant value of

500 basepairs. Before generation 150, the net amount of telomere loss per gener-

ation is constant L− (p + q)T = 50 basepairs. After generation 150, some chro-

mosomes become senescent. When some cells are senescent, the average telom-

ere length decays more slowly. When the whole population becomes senescent,

the average telomere length remains at a constant value.

With T = 100 basepairs, the average telomere length remains unchanged, since

the net amount of telomere loss per generation is L− (p + q)T = 0 basepairs,

the average telomere gain T being exactly compensated for by the telomere loss

L. In this case, the average telomere length remains basically constant, due to

the increasing variance in telomere lengths a few senescent chromosomes are

formed, at large times, but for the short and intermediate timescales we have

simulated this effect is negligible. With T = 150 basepairs, the average telomere

length increases linearly with generation number. Since the amount of telomere

gain, (p + q)T, per division exceeds the telomere loss of L per division, the net

telomere gain per generation is constant at (p + q)T − L = 50 basepairs.

If there is no telomerase activity (T = 0, as in Figure 5.2 (A)), then the frac-

tion of dividing chromosomes starts from one and only starts to decrease to

zero after after 100 generations (as in Chapter 2, for normal ageing). When

telomerase is activate (T > 0), the behaviour depends on the size of T. In

more detail, if (p + q)T > L, then the average increase in telomere length per

division, (p + q)T, is more than the average telomere loss, L, and so the av-

erage telomere length increases with generation number. Under such condi-

tions all chromosomes remain proliferative, and the fraction of dividing chro-

mosomes remains at 1 as shown in 5.2 (D). If (p + q)T = L, then the average

amount of telomere gain is the same as the average telomere loss and the aver-

age telomere length remains unchanged; the fraction of dividing chromosomes
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Figure 5.2: Averaged results of 5000 simulations shows how the fraction of dividing

chromosomes varies with generation number and the level of telomerase activity for

T = 50, 100 basepairs, indicate with dashed line and dotted line respectively. The

solid lines indicated two standard deviations above and below the fraction of dividing

chromosomes. Parameter values: q = 0.6, p = 0.4, L = 100 basepairs, Q = 5950

basepairs and Lc=200 basepairs.

remains unity, with only a small but increasing standard deviation as the gen-

eration number increases, as indicated in Figure 5.2 (C). If (p + q)T < L, then

the average telomere gain is less than the telomere lost so the average telom-

ere length decreases (see the dashed lines in Figure 5.2 (B)). Until generation

150, all the chromosomes replicate. After generation 150, some chromosomes

reach the critical value and become senescent hence the fraction of dividing
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chromosomes decreases from unity. We note that, even as the average telom-

ere length approaches 500 basepairs, the fraction of dividing chromosomes de-

creases slowly.

5.2.2 Case II: telomere loss and gain depends on telomere length

As before, we start with a single chromosome of telomere length Q basepairs.

Telomere loss due to normal ageing, L = L(n) is now assumed to depend lin-

early on telomere length n so that

L(n) = L0 + L1n , (5.2.1)

where L0, L1 are positive constants and L1 � 1. When telomerase is active,

we assume that the offspring with the longer chromosome is extended with

probability q and the offspring with the shorter chromosome is extended with

probability p. The increase in telomere length due to the action of telomerase,

T = T(n), also depends on the telomere length itself, with shorter telomeres

having more potential to gain than longer ones. Accordingly we set

T(n) = T0 − T1n , (5.2.2)

where T0, T1 are positive constants and T1 � 1. The replication rule for each

chromosome follows equations (5.1.3)-(5.1.6), where now L = L(n) and T =

T(n). We remark that. Case I is a special case of Case II in which L1 = T1 = 0.

The stochastic simulations are similar to those presented for the passaging model

in Section 5.2.1 (Case I). We start by considering a single chromosome, with

telomere length 5950 basepairs, which we passage its progeny to senescence.

The difference between this simulation and that of Section 5.2.1 is that the

amounts of telomere lost and gained are non-constant.

However, in this case, there are four possible long-time outcomes for the aver-

age telomere length and these depend on the values of L0, L1, T0, T1, p and q.

With L(n) = L0 + L1n and T(n) = T0− T1n it is possible to show that L(n) is the

decay function with telomere length and T(n) is an increase function of telom-

ere length. If L0 > T0(p + q), then the curves L = L(n) and T = T(n) never
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Figure 5.3: The solid lines indicate the telomere loss L(n) = 50 + 0.007n basepairs

and the dashed lines indicate the average amount of telomere gain (p + q)T(n) =

(p + q)(T0 − T1n) basepairs, with parameters q = 0.6, p = 0.4. Here we pick four

sets of values of T0, T1, which are (A) T0 = 40, T1 = 0.0005; (B) T0 = 200,

T1 = 0.015; (C) T0 = 170, T1 = 0.0132; (D) T0 = 100, T1 = 0.0125.

intersect. If the average telomere loss per replication always exceeds the aver-

age telomere gain, the average telomere length decays (see Figure 5.3(A)) until

the average telomere length reaches the critical telomere length ncritical = 0. If

L0 < T0(p + q), then the lines L(n) = L0 + L1n and T(n) = T0 − T1n intersect,

where

ninter =
(p + q)T0 − L0

(p + q)T1 + L1
. (5.2.3)
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Depending on the relative values of the point of intersection ninter and the initial

telomere length Q, four different types of behaviors can arise (illustrated in

Figure 5.3). In Figure 5.3, in order to understand how telomerase activity effects

average telomere length, we fix

L(n) = 50 + 0.007n , (5.2.4)

and consider four choices of the parameters T0 and T1, which generate all pos-

sible behaviors.

Figure 5.3(A) shows that when ninter < 0, the average telomere gain is always

less than that lost so that the average telomere length decreases from Q, until

the average telomere length reaches ncritical (the critical telomere length) and

the chromosomes stop replicating. Figure 5.3(B), shows that when ninter > Q

the average telomere length increases from Q, since the amount of telomere

gain exceeds the amount lost. When the average telomere length reaches ninter,

the average telomere length remains at that value, since the amount of telom-

ere gained and lost balance. In Figure 5.3(C) ninter = Q the average telomere

length remains at Q because the average telomere gain and loss are the same.

Lastly, in Figure 5.3(D), ninter < Q so the average telomere length decreases

from Q to ninter > 0 since the average telomere gain is less than that lost. When

the average telomere length reaches ninter (assuming ninter > ncritical), the aver-

age telomere length remains at that value. If ninter < ncritical, than the average

telomere length decreases from Q to ncritical at which stage, the chromosomes

stop replicating.

The simulation results are presented in Figure 5.4. The dashed line shows

the average telomere length varying with generation number when T(n) =

40− 0.005n basepairs. As the generation number increases, the average telom-

ere length decreases until it reaches the critical length. This behaviour can

be explained by referring to Figure 5.3(A) where we plot T(n) and L(n). As

T(n) > L(n), there is no intersection between the two curves and telomere

loss always exceeds the gain. The circled solid line in Figure 5.4 correspond to

the case for which T(n) = 100− 0.0125n basepairs. As the generation num-
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Figure 5.4: Averaged results from 5000 simulations showing how the average telom-

ere length of the chromosomes changes with generation number for four choices

of T, the gain in telomere length where telomerase is achieve. Parameter values:

q = 0.6, p = 0.4, L = 100, Q = 5950 and (A) T(n) = 40 − 0.0005n , (B)

T(n) = 200− 0.015n, (C) T(n) = 170− 0.0132n and (D) T(n) = 100− 0.0125n

basepairs, indicate with dash-dot line, dotted line, solid circle line and dashed line, re-

spectively. The solid lines indicate two standard deviations above and below the mean

of each passaging model.

ber increases, the average telomere length decreases until it reaches about 2600

basepairs and remains at that length there after. In this case, our calculating sug-

gests ninter = 2564 basepairs. This behaviour can be explained by referring to

Figure 5.3(D), since 0 < ninter < Q, at earlier generations, those chromosomes

for which n > ninter, lose more basepairs than they gain, so the average telom-

ere length decreases until it reaches ninter and thereafter it remains unchanged,

due the the balance between the loss and gain. The dotted lines in Figure 5.4

corresponds to the case for which T(n) = 170− 0.0132n basepairs. In this case,

the average telomere length remains fixed at its initial value, ninter = Q = 5950

basepairs. Telomere loss balances telomere gain as shown in Figure 5.3(C) and

there is no change in the average telomere length.
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The dashed lines in Figure 5.4 shows average telomere length against gener-

ation number when T(n) = 200 − 0.015n basepairs as illustrated in Figure

5.3(B). As the generation number increases, the average telomere length in-

creases until it reaches 6800 basepairs and then remains at that length. In this

case, (5.2.3) suggests ninter = 6818 basepairs. At earlier generations, telom-

ere gain exceeds loss, so the average telomere length increases, until it reaches

ninter. In all the four cases above, we note that there is an equilibrium stage

when telomere length reach ninter or zero.

Now we consider the proportions of proliferating and senescent cells illustrated

in Figure 5.5. If there is no telomerase activity or insufficient telomerase to

maintain telomere length, then the fraction of dividing chromosomes remains

at unity for many generations and then decrease until it reaches zero (as shown

in Chapter 1, Case II normal ageing, Figure 2.6). When telomerase is active, the

dynamics of the fraction of dividing chromosomes is different and depends on

the functional forms T(n) and L(n). Figure 5.5 shows the four cases consid-

ered in Figure 5.3 and 5.4, the fraction of dividing chromomeres changes with

generation numbers. In Figure 5.5(B), (C), (D), telomerase is sufficiently ac-

tive to maintain a positive average telomere length. However, the spread of the

distribution means that some chromosomes’ telomeres reach zero length and

so becomes senescent. This causes the line to deviate from unity in the Figure.

This is more noticeable in 5.5(D) since this has a significantly smaller value of

ninter. Although the standard deviation curves exceed unity, this is due to the

non-symmetry form of the fluctuates away from the mean.

5.3 Deterministic model Case I

5.3.1 Discrete model

We assume that during chromosome replication, the average telomere loss is

constant and all cells/chromosomes replicate on each generation. When telom-

erase is active, we assume that a constant amount of telomere is gained at the
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Figure 5.5: Averaged results from 5000 simulations showing how the the fraction of

dividing chromosomes changes with generation number for four choices of T, the gain

in telomere length where telomerase is achieve. Parameter values: q = 0.6, p = 0.4,

L = 100, Q = 5950 and (A) T(n) = 40− 0.0005n, (B) T(n) = 200− 0.015n, (C)

T(n) = 170− 0.0132n, (D) T(n) = 100− 0.0125n basepairs, indicate with dashed

line, dash-dot line, dotted line and solid circle line,respectively. The solid lines indicate

two standard deviations above and below the fraction of dividing chromomeres of each

passaging model.

end of the offspring with the longer chromosome with probability q and that

there is a gain at the end of the offspring with the shorter chromosome with

probability p. We denote by Kg
n the number of chromosomes with telomere
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length n at generation g; by L, the constant amount of basepairs that are lost;

and by T, the constant amount of basepairs gained by telomerase activity. Fol-

lowing the replication rules (5.1.3)-(5.1.6), it is straightforward to show that the

discrete chromosome replication process can be written as

Kg
n → (1− q)Kg+1

n + qKg+1
n+T + (1− p)Kg+1

n−L + pKg+1
n−L+T , (5.3.1)

where the probability of the chromosome dividing is 1. In (5.3.1), g, n, T, L ∈
N, 0 ≤ p, q ≤ 1. We assume that there is initially one chromosome of telomere

length ninitial = Q basepairs, so that K0
n = δn,Q, where δij is the Kronecker delta

function.

The process (5.3.1) is modelled mathematically by the kinetic equation

Kg+1
n = (1− q)Kg

n + qKg
n−T + (1− p)Kg

n+L + pKg
n+L−T . (5.3.2)

In order to solve (5.3.2), we use the method outlined in Section 4.3.1 of Chapter 4

. Firstly we note that (5.3.2) admits separable solutions of the form Kg
n = eγg+χn

where the growth rate γ depends on χ, the rate of change of the distribution

with n. We substitute this trial solution into (5.3.2) to deduce

eγ = 1− q + qe−χT + (1− p)eχL + peχ(L−T) . (5.3.3)

This has the form of a dispersion relation. In order to construct continuum

models which accurately for a wave equation described the evolution of distri-

butions which are slowly varying in n. Hence we assume that χ is small, and

expand this expression obtain to

eγ = 2 + χ(L− qT − pT) +
χ2

2
(qT2 + L2 + pT2 − 2pLT) , (5.3.4)

or

γ ≈ ln 2 +
A
2

χ +
1
8

χ2(2B− A2) , (5.3.5)

where A = L− (q + p)T and B = (L− pT)2 + (p + q− p2)T2.

Let

C = 2B− A2 = [L + T(q− p)]2 + 2T2[q(1− q) + p(1− p)] . (5.3.6)
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Since 0 ≤ p, q ≤ 1, 2T2[q(1 − q) + p(1 − p)] ≥ 0, so C ≥ 0. The only way

C = 0 can occur if p = 1, q = 0 and L = T, in this case A = C = 0 which

means the telomerase always acts on the shorter chromosome and the gain in

telomere length is the same as the loss, so that Kg
n → 2Kg+1

n . The Case C = 0

is thus trivial since the average we require C > 0, in which case the dispersion

relation simplifies to

γ ≈ ln 2 +
A
2

χ +
C
8

χ2 , (5.3.7)

where A and C are known constants.

5.3.2 Continuum model

We have obtained an expression relating the growth rate γ = γ(χ) (5.3.7) of

the discrete reaction (5.3.2) to system parameters. Now our aim is to focus on

the continuum analogue of the discrete model, this being obtained by match-

ing their ”dispersion relations”. In general, the number of chromosomes ∑ Kg
n

becomes large after a few generations (g) and can be treated as a continuous

real number. Since we are interested in the evolution over many generation we

replace the discrete generation number, g, by a continuous time variable t. Ex-

perimented data shows that telomere length in normal human cells is approxi-

mately 3k to 15k basepairs with the telomere shorting rate is 50− 200 basepairs

per replication [14], which is much less than the initial telomere length, hence

the telomere length n can be treated as a continuous variable as well. To con-

struct a model in which the telomere length n, generation number g and chro-

mosome number K are all continuous, we replace Kg
n by K(n, t) where t = g, so

t, n, K ∈ R. The continuous analogue of (5.3.2) is then the simplest partial dif-

ferential equation which has the same ”dispersion relation” as (5.3.7), namely

∂K
∂t

= K ln 2 +
A
2

∂K
∂n

+
C
8

∂2K
∂n2 . (5.3.8)

For the discrete model, we start with a single chromosome with telomere length

ninitial = Q. For the continuum model, we replace the initial telomere length

ninitial = Q by the generalized function K(n, 0) = δ(n − Q), where δ is the

Dirac delta function. Hence we solve (5.3.8) subject to the following initial and
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boundary conditions:

K(n, 0) = δ(n−Q) and K(n, t)→ 0 as n→ ±∞ . (5.3.9)

Following the approach outlined in Chapter 4, it is straightforward to show that

the general solutio to (5.3.8)-(5.3.9) is

K(n, t) =
2t+1
√

2Cπt
exp

[
−

2(n + 1
2 At−Q)2

Ct

]
. (5.3.10)

This solution is a Gaussian distribution with

number of chromosomes = 2t , (5.3.11)

mean = Q− 1
2 At = Q− 1

2 [L− (q + p)T]t , (5.3.12)

variance = 1
4Ct = 1

4 [L + T(q− p)]2t + 1
2 T2[q(1− q) + p(1− p)]t .

(5.3.13)

If there is no telomerase activity (T = 0), then (5.3.10) can be written as

K(n, t) =
2t+1

L
√

2πt
exp

[
−

2(n + 1
2 Lt−Q)2

L2t

]
. (5.3.14)

We remark that solution (5.3.14) is identical to the continuum solution of Case I

in Chapter 4, Section 4.3 where telomere loss was assumed constant and there

was no telomerase. When there is no telomerase activity (T = 0), the average

telomere length decays over time at rate Lt/2 which is faster than when the

telomerase is active and the decay rate is [L− (q + p)T]/2. These results con-

firm that telomerase slows down the rate of telomere loss.

When telomerase is active, there are three possible cases to consider (all illus-

trates in Figure 5.6(a)). First, if L > T(p + q) then the average telomere length

decays over time at decay rate (L − qT − pT)/2, as indicated by the straight

solid line. If, however, L = T(p + q) then the average telomere length remains

fixed as indicated by the dashed line. Finally if L < T(p + q) then the aver-

age telomere length increases linearly with time at rate (qT + pT − L)/2, as

indicated by the dash-dot line. Figure 5.6(b) shows how the variance of the dis-

tribution of K(n, t) increases as T increases.
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(a) (b)

Figure 5.6: Figure 5.6(a) shows the average telomere length (5.3.12) of the chromo-

somes changes with time for three choices of T, the gain in telomere length where telom-

erase is active. Figure 5.6(b) shows the variance (5.3.13) of the distribution for three

choices of T respectively. Parameter values: q = 0.6, p = 0.4, L = 100, Q = 5950

and T = 50, 100, 150 basepairs indicated by solid line, dashed line and dash-dot lines

respectively.

Figure 5.7 shows how the average telomere length varies with generation num-

ber (where time = generation number), for three choices of T, the telomere gain

(T = 50, 100, 150 basepairs). The solid lines correspond to the deterministic so-

lution (5.3.10) and the dashed lines to stochastic simulations (see Section 5.2.1

). We notice that for T = 100 and T = 150, both lines are identical, which indi-

cates that the solutions are in good agreement. When T = 50, these two curves

are identical provided that the generation number is below 150. If the genera-

tion number is above 150, then the deterministic solution decreases faster than

the stochastic solution and eventually approaches zero, whereas the stochas-

tic solutions approach a positive constant as the generation number increase.

This is because in the deterministic solution there is no lower restriction on the

telomere length of chromosomes, whereas in the stochastic simulation chromo-

somes became senescent. The only requirement on the deterministic solution is

that the telomere length, n, is positive. Those with zero or negative length are

assumed to be senescent. In contrast, in the stochastic model, we specify the

critical telomere length and when the chromosome’s telomere reaches this crit-
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Figure 5.7: With parameters: q = 0.6, p = 0.4, L = 100 basepairs and Q = 5950

basepairs, the average telomere length of the chromosome against generation numbers

with three different amounts of telomere gain: T = 50, 100, 150 basepairs. The solid

lines are the deterministic solution (5.3.10) and the dashed lines are the stochastic

simulations from Section (5.2.1). For the x-axis we use time = generation number.

ical length, the chromosome becomes senescent. Therefore the chromosomes

in the stochastic model reach senescence later than those for the deterministic

model.

From (5.3.10), we observe the number of chromosomes grows like 2t. In order to

see clearly how the telomere length K(n, t) is distributed, we plot in Figure 5.8

2−tK(n, t) against of n for varies times, this shows how the distribution changes

as the telomere gain T is varied. The top graph shows the distribution of telom-

ere lengths moves to the left and becoming more diffuse for L > (p + q)T. The

graph in the middle shows that when L = (p + q)T, the distribution of telomere

lengths remains centered at the initial telomere length but the spread increases.

The bottom graph shows that when L < (p + q)T, the distribution of telomere

lengths moves towards the right with increasing variance.
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Figure 5.8: Distribution of 2−tK(n, t) at times t = 1, 5, 10, 20, for 3 different values

of T, the telomere gain ( T = 50, 100, 150) indicate in top, middle and bottom graphes

respectively, with parameters q = 0.6, p = 0.4, L = 100 basepairs and Q = 5950

basepairs.

The values of p, q, T and L control the evolution of the average telomere length.

When the average telomere gain is less than that lost, the average telomere

length decays and the distribution moves towards senescence. When the aver-

age telomere gain is equal to the average amount of telomere loss, the average

telomere length remains the same and the distribution remains centered at the
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initial state. When the average telomere gain exceeds that lost, the average

telomere length increases without limit, and the distribution moves away from

senescence. This case is not really physically realistic because in practice telom-

ere length cannot increase indefinitely, even in immortal cells (whose telomere

length is approximately constant).

5.4 Deterministic model Case II

5.4.1 Discrete model

As before, we denote by Kg
n the number of chromosomes with telomere length

n at generation g. The amount of telomere lost and gained is given by L(n) =

L0 + L1n (5.2.1), T(n) = T0 − T1n (5.2.2). Let l = 1/Q � 1, where Q is the

initial telomere length, so T0, L0 = O(1) and T1, L1 = O(l). The chromosome

replication process can be written as

Kg
n → (1− q)Kg+1

n + qKg+1
n+T0−T1n + (1− p)Kg+1

n−L0−L1n + pKg+1
n−L0−L1n+T0−T1n ,

(5.4.1)

with 0 ≤ p, q ≤ 1 and we start with one chromosome with initial telomere

length ninitial = Q basepairs, that is, K0
n = δn,Q, where δij is the Kronecker delta

function.

Using (5.4.1), we know Kg+1
n can come from Kg

n or Kg
i where i + T0 + T1i = n, Kg

j

where j− L0 − L1 j = n, or Kg
k where k− L0 − L1k + T0 − T1k = n, these imply

i = (n− T0)/(1− T1), j = (n + L0)/(1− L1), k = (n + L0 − T0)/(1− L1 − T1).

We deduce that the process (5.4.1) may be modelled mathematically by

Kg+1
n = (1− q)Kg

n + qKg
n−T0
1−T1

+ (1− p)Kg
n+L0
1−L1

+ pKg
n+L0−T0
1−L1−T1

. (5.4.2)

In (5.4.2), if L and T are O(1), than T1, L1 are O(l) and L0T1, T0L1, L0L1 and T0T1

can be neglected since they are O(l). Then (5.4.2) reduces to

Kg+1
n = (1− q)Kg

n + qKg
n+T1n−T0

+ (1− p)Kg
n+L1n+L0

+ pKg
n+L1n+T1n+L0−T0

.

(5.4.3)
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We perform Taylor series expansions of the terms, on the right hand side of

(5.4.3) and use Kg+1 instead of Kg+1
n , to obtain

Kg+1 ≈ (1− q)Kg + qKg + q(T1n− T0)
∂Kg

∂n
+

1
2

q(T1n− T0)2 ∂2Kg

∂n2

+(1− p)Kg + (1− p)(L1n + L0)
∂Kg

∂n
+

1
2
(1− p)(L1n + L0)2 ∂2Kg

∂n2

+pKg + p(L1n + T1n + L0 − T0)
∂Kg

∂n

+
1
2

p(L1n + T1n + L0 − T0)2 ∂2Kg

∂n2 .

(5.4.4)

or equivalently

Kg+1 = 2Kg + A(n)
∂Kg

∂n
+

1
2

B(n)
∂2Kg

∂n2 , (5.4.5)

where A(n) = A0 + A1n and B(n) = B0 + B1n + B2n2 are given by

A0 = L0 − (q + p)T0 ∼ O(l2) , (5.4.6)

A1 = L1 + (q + p)T1 ∼ O(l) , (5.4.7)

B0 = (p + q)T2
0 + L2

0 − 2pL0T0 ∼ O(1) , (5.4.8)

B1 = 2(L1L0 − pL1T0 − pT1T0 + pL0T1 − qT1T0) ∼ O(l) , (5.4.9)

B2 = 2pL1T1 + (p + q)T2
1 + L2

1 ∼ O(l2) . (5.4.10)

Since L0, L1, T0, T1, p and q are known constants, A0, A1, B0, B1, B2 are known

as well.

We denote by Hg the total number of chromosomes at generation g, which im-

plies

Hg = ∑
n

Kg
n =

∫ ∞

0
Kg

ndn . (5.4.11)

Integrating both sides of (5.4.5) over n, yields∫ ∞

0
Kg+1dn = 2

∫ ∞

0
Kgdn +

∫ ∞

0
A(n)

∂Kg

∂n
dn +

1
2

∫ ∞

0
B(n)

∂2Kg

∂n2 dn ,

(5.4.12)

or

Hg+1 = (2− A1 + 2B2)Hg , (5.4.13)

175



CHAPTER 5: TELOMERASE

since ∫ ∞

0
(A0 + A1n)

∂Kg

∂n
dn = −A1Hg , (5.4.14)∫ ∞

0
(B0 + B1n + B2n2)

∂2Kg

∂n2 dn = − [Kg(B1 + 2B2n)]∞0 +
∫ ∞

0
2B2Kgdn

= 2B2Hg . (5.4.15)

Since l � 1 and due to the scalings noted in (5.4.6)-(5.4.10), we have

Hg+1 ≈ 2Hg , (5.4.16)

which implies

Hg = C02g , (5.4.17)

where C0 is a constant. Initially we start with one chromosome which implies

C0 = 1, so Hg = 2g.

To investigate the shape of the distribution, we write Kg = 2gKg where Kg is

the distribution of the telomere length at generation g and 2g the total number

of chromosomes at generation g. With Kg = 2gKg, (5.4.5) transforms to

2Kg+1 = 2Kg + A(n)
∂Kg

∂n
+

1
2

B(n)
∂2Kg

∂n2 . (5.4.18)

Using Taylor’s series in g, implies

∂Kg

∂g
=

1
2

A(n)
∂Kg

∂n
+

1
4

B(n)
∂2Kg

∂n2 , (5.4.19)

and our initial conditions are K0
n = δ(n − Q), that is, one chromosome with

initial telomere length ninitial = Q basepairs.

5.4.2 Continuum model

Our aim now is to investigate on the continuum analogue of the discrete model,

this being obtained by matching the same PDE (5.4.19). For the continuous

model we replace the generation number by a continuous time variable t, Kg
n

by K(n, t), Hg by H(t) and Kg
n by K(n, t) respectively, so K(n, t) = H(t)K(n, t).
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From the discrete model we have calculated that the total number of chromo-

somes at generation g is Hg = 2g, so H(t) = 2t. In the continuum model

we focus on the shape of the distribution, K(n, t). The continuous analogue of

(5.4.2) is assumed to be the simplest partial differential equation which has the

same dispersion relation as (5.4.19), namely

∂K
∂t

=
1
2

A(n)
∂K
∂n

+
1
4

B(n)
∂2K
∂n2 , (5.4.20)

where A(n) and B(n) are as defined for the discrete model. We fix K(n, 0) =

δ(n − Q) where Q is the initial telomere length and
∫ ∞

0 K(n, 0)dn = 1 so that

we start with only one chromosome.

Introducing x = ln where l = 1/Q � 1, K(n, t) = K̃(x, t), A0 = Â0, A1 =

l Â1, B0 = B̂0, B1 = lB̂1 and B2 = l2B̂2, implies A(n) = Â(x) = Â0 + Â1x,

B(n) = B̂(x) = B̂0 + B̂1x + B̂2x2 where Â0, Â1, B̂0, B̂1, B̂2, x, Â(x), B̂(x) are

O(1). Then (5.4.20) can be written as

∂K̃
∂t

=
1
2

Â(x)l
∂K̃
∂x

+
1
4

B̂(x)l2 ∂2K̃
∂x2 , (5.4.21)

with the initial condition K̃(x, 0) = H1δ(x − 1) where H1 is a constant. Since∫ ∞
0 K(n, 0)dn = 1 and x = n/Q, we have Q

∫ ∞
0 H1K(x, 0)dx = 1, so H1 = 1/Q.

The initial condition is K̃(x, 0) = δ(x− 1)/Q.

Before analyzing (5.4.21), we consider by solving the first order PDE that is

obtained in the limit l → 0 when terms linear in l are retained and quadratic

terms are neglected.

5.4.3 First order PDE

An approximate solution to (5.4.21) can be determined by neglecting the dif-

fusion term which is O(l2), where l = 1/Q � 1. Retaining only O(l) terms,

(5.4.21) simplifies to

∂K̃
∂t

=
1
2

Â(x)l
∂K̃
∂x

. (5.4.22)

We use the method of characteristics to solve this first order PDE. We introduce

the characteristic variables where ds = dt = −2dx/(l Â) and parameterized
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the initial conditions on s = 0 by α so that when s = 0, t = 0, x = α, K̃ =

δ(α− 1)/Q.

dt
ds

= 1 implies t = s , (5.4.23)

since t = 0 when s = 0. Next

dx
ds

= − l
2

Â1x− l
2

Â0 , (5.4.24)

x = e−sl Â1/2

(
α +

Â0

Â1

)
− Â0

Â1
, (5.4.25)

since x = α when s = 0. Which implies

α =
Â0

Â1
(esl Â1/2 − 1) + xesl Â1/2 . (5.4.26)

Finally, solving

dK̃
ds

= 0 we find K̃(s, α) =
1
Q

δ(α− 1) , (5.4.27)

since s = 0 where K̃ = δ(α− 1)/Q.

We have derived expressions for t, n and K̃ in the terms of s and α, from (5.4.23)-

(5.4.27) the explicit solution is

K̃(x, t) =
1
Q

δ

(
Â0

Â1
(etl Â1/2 − 1) + xetl Â1/2 − 1

)
, (5.4.28)

so K̃ = 0 except on the curve

x(t) = e−
t
l Â1/2 +

Â0

Â1
(e−tl Â1/2 − 1) . (5.4.29)

Since x = nl, the solution for K̄(n, t) is

K̄(n, t) =
1
Q

δ

(
Â0

Â1
(etl Â1/2 − 1) + nletl Â1/2 − 1

)
, (5.4.30)

so K̄ = 0 except on the curve

n(t) =
1
l

e−tl Â1/2 +
Â0

l Â1
(e−tl Â1/2 − 1) . (5.4.31)
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Figure 5.9: The peak n(t) from (5.4.31) of the distribution of K̄(n, t) plotted against

time t, with the amount of telomere loss L(n) = 50 + 0.007n basepairs and four

different sets of T0, T1. The solid line corresponds to T(n) = 200− 0.015n; the dash-

dotted line corresponds to T(n) = 170 − 0.0132n; the dashed line corresponds to

T(n) = 100− 0.0125n; the dotted line corresponds to T(n) = 40− 0.005n. In all

cases q = 0.6, p = 0.4.

Figure 5.9 shows the location of the peak n(t) given by (5.4.31) plotted against

time for four different telomere gain functions. The dotted line indicates the

peak of n(t) where the amount of telomere gain is T(n) = 40− 0.0005n base-

pairs, as t increases the peak of the distribution moves to the left (shorter telom-

eres) until it hits the critical telomere length of zero. This behaviour can be ex-

plained by Figure 5.3(A); the amount of telomere loss is always bigger than the

telomere gain. The dashed line in Figure 5.9 indicates the peak of n(t) where

the amount of telomere gain is T(n) = 100− 0.0125n basepairs, corresponded

to Figure 5.3(D). The peak of the distribution moves to lower n, until the peak

reaches ninter = 2564 basepairs, after which the peak remains stationary. The

dash-dot line indicates the case of Figure 5.3(C) where the amount of telom-

ere gain is T(n) = 170− 0.0132n basepairs. Here the peak of the distribution

remains the same as the initial telomere length. The solid line in Figure 5.9 cor-
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responds to T(n) = 200− 0.015n basepairs. The peak moves to larger n, until

it reaches ninter = 6818 basepairs, after which it remains stationary. This be-

haviour is explained by Figure 5.3(B) where ninter > Q.

By comparing Figure 5.9 with Figure 5.4, we notice that when ninter > 0, the

average telomere obtained from the stochastic simulation (dash-dot line, dotted

lines and solid circle line in Figure 5.4 is identical to the peak of the distribution

obtained from the first order-PDE (see Figure 5.9. When ninter < 0, the curves

are identical at earlier generations, but as the generations increases, the aver-

age telomere length of deterministic model decreases faster than the stochastic

model because in the stochastic model, the restriction of the telomere length

(critical telomere length), results the chromosomes reaching senescence, but in

the deterministic model the only restriction is that the average telomere length

is positive.

The first-order solution only describes how the peak of the distribution moves.

In order to investigate the spread of the distribution, we consider the second-

order PDE.

5.4.4 Second order PDE

Now we return to (5.4.21) retaining terms which are quadratic in l2, so that

∂K̃
∂t

=
1
2

Â(x)l
∂K̃
∂x

+
1
4

B̂(x)l2 ∂2K̃
∂x2 , (5.4.32)

with the initial condition K̃(x, 0) = δ(x− 1)/Q.

The problem for Ǩ(y, t)

For Case II from the Chapter 4, telomere loss depends on telomere length in

normal ageing and the assumed partial differential equation is

∂K(n, t)
∂t

= ln(2)K(n, t) +
(y0 + y1n)[ln2(1− y1)− 4 ln(1− y1)]

8y1

∂K(n, t)
∂n

+
(y0 + y1n)2 ln2(1− y1)

8y2
1

∂2K(n, t)
∂n2 . (5.4.33)
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Since 0 ≤ y1 ≤ 1, (5.4.33) can be approximated by

∂K(n, t)
∂t

= ln(2)K(n, t) + U(n)
∂K(n, t)

∂n
+

1
2

V(n)
∂2K(n, t)

∂n2 , (5.4.34)

where

U(n) = − (y0 + y1n) ln(1− y1)
2y1

, (5.4.35)

V(n) =
(y0 + y1n)2 ln2(1− y1)

4y2
1

= U2(n) . (5.4.36)

Section 5.4 in Chapter 4 shows that the solution of (5.4.33) has a log-normal

distribution. We notice that the PDE (5.4.32) is similar in form to (5.4.34), hence

we shall here look for a solution using similar techniques and exploiting the

fact that l � 1. However no exact solution is possible since in general there is

no special relationship between Â and B̂, from (5.4.34) (where V(n) = U2(n)).

We proceed by transforming from x to y via ey = αx + β, or equivalently

y = ln(αx + β) , (5.4.37)

where α, β are constants, so that

x = α−1(ey − β) , (5.4.38)
∂

∂x
=

α

αx + β

∂

∂y
= αe−y ∂

∂y
, (5.4.39)

∂2

∂x2 = αe−y ∂

∂y
(αe−y ∂

∂y
) = α2e−2y ∂2

∂y2 − α2e−2y ∂

∂y
. (5.4.40)

Letting Ǩ(y, t) = K̃(x, t), (5.4.32) can be written as

∂Ǩ
∂t

=
1
2

F(y)l
∂Ǩ
∂y

+
1
4

D(y)l2 ∂2Ǩ
∂y2 , (5.4.41)

where

F(y) = αe−y Â− 1
2

α2e−2ylB̂

= Â1 −
1
2

lB̂2 + e−y(Â0α− Â1β− 1
2

lB̂1α + lB̂2β)

+
1
2

e−2yl(B̂1αβ− B̂0α2 − B̂2β2) ,

D(y) = B̂2 + e−y(B̂1α− 2B̂2β) + e−2y(B̂0α2 − B̂1αβ + B̂2β2) ,

(5.4.42)
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We let

F0 = Â1 −
1
2

lB̂2 , (5.4.43)

F1 = Â0α− Â1β− 1
2

lB̂1α + lB̂2β , (5.4.44)

F2 =
1
2
(B̂1αβ− B̂0α2 − B̂2β2) , (5.4.45)

D0 = B̂2 , (5.4.46)

D1 = B̂1α− 2B̂2β , (5.4.47)

D2 = B̂0α2 − B̂1αβ + B̂2β2 , (5.4.48)

all of which are O(1), and note that F and D can be written as F(y) = F0 +

F1e−y + F2le−2y and D(y) = D0 + D1e−y + D2e−2y.

The initial condition for (5.4.41) is K̂(y, 0) = H2δ(y − ln(α + β)) where H2 is

a constant. Since Q
∫ ∞

0 K̄(x, 0)dx = 1, the constant H2 can be deduced from

1 = Q
∫ ∞

0
Ǩ(y, 0)

ey

α
dy =

Q
α

∫ ∞

0
H2δ(y− ln(α + β))eydy =

Q
α

H2(α + β) ,

(5.4.49)

hence

H2 =
α

(α + β)Q
. (5.4.50)

So the initial condition is

Ǩ(y, 0) =
αδ(y− ln(α + β))

(α + β)Q
. (5.4.51)

The problem for K̂(z, T̂)

We now transform to a moving frame of reference by via y = S(T̂) + lθz, where

T̂ = lσt and S(T̂) is the function which determines the position of the center

of the distribution, and θ is a positive constant which describes the width scale

of the distribution. We write K̂(z, T̂) = K̂(y, t); and θ, σ will be determined by

balancing terms in the ensuring asymptotic calculation.
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By (5.4.37) we obtain S(0) = ln(α + β). Letting dS/dT̂ = S′ so

∂

∂y
=

∂z
∂y

∂

∂z
+

∂T̂
∂y

∂

∂T̂
= l−θ ∂

∂z
, (5.4.52)

∂

∂t
=

∂z
∂t

∂

∂z
+

∂T̂
∂t

∂

∂T̂
= −lσ−θS′

∂

∂z
+ lσ ∂

∂T̂
, (5.4.53)

and (5.4.41) can be rewritten as

lσ ∂K̂
∂T̂

=
1
2

F̃
∂K̂
∂z

+
1
4

D̃
∂2K̂
∂z2 , (5.4.54)

with the initial condition K̂(z, 0) = δ(lθz) and where

F̃ = Fl1−θ + 2lσ−θS′ = l1−θ(F0 + F1e−S−lθz + F2le−2S−2lθz) + 2lσ−θS′ ,

(5.4.55)

D̃ = l2−2θD = l2−2θ(D0 + D1e−S−lθz + D2e−2S−2lθz) . (5.4.56)

Since e−lθz ≈ 1− lθz

F̃ ≈ l1−θ(F0 + F1e−S + F2le−2S − lθzF1e−S − 2l1+θzF2e−2S) + 2lσ−θS′

= l1−θ(F0 + F1e−S + F2le−2S) + 2lσ−θS′ − lzF1e−S − 2l2zF2e−2S ,

(5.4.57)

D̃ ≈ l2−2θ(D0 + D1e−S + D2e−2S − lθzD1e−S − 2lθzD2e−2S)

= l2−2θ(D0 + D1e−S + D2e−2S)− l2−θ(zD1e−S + 2zD2e−2S) . (5.4.58)

If we choose σ = 1 and θ > 0, then the leading order terms in (5.4.54) all arise

in F̃ and are O(l1−θ) and S(T̂) can be chosen to make these sum to zero. Since

F2 are O(1) and F1 contains O(1) and O(l) terms, we obtain the equation

2S′ = −F0 − F1e−S − F2le−2S , (5.4.59)

S′ = −1
2

Â1 +
1
4

lB̂2 −
1
2
(Â0α− Â1β− 1

2
lB̂1α + lB̂2β)e−S

−1
4
(B̂1αβ− B̂0α2 − B̂2β2)le−2S , (5.4.60)

The evolution of the mean of the distribution

Since l � 1 and we pick Â0α = Â1β, the leading order solution to (5.4.60) is

given by S′0 = −Â1/2, hence

S0 = −1
2

Â1T̂ + C4 , (5.4.61)
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where C4 is an integration constant. The initial condition, S0(0) = ln(α + β),

which implies

S0(T̂) = ln(α + β)− 1
2

Â1T̂ . (5.4.62)

This leading order solution for S(T) exhibits linear decay/growth of S. Con-

verting back to earlier variables, we find y = S(T̂) corresponds to x = α−1(ey−
β), n = Q(ey − β)/α, hence the mean of the distribution is given by µ =

Q(eS(T̂) − β)/α. Since l � 1, the mean of the distribution can be approximated

by

µ(T̂) ∼ Q
α

[
(α + β)e−

1
2 Â1T̂ − β

]
=

QÂ0

Â1

[(
Â1

Â0
+ 1

)
e−

1
2 Â1T̂ − 1

]
. (5.4.63)

Thus we observe convergence to the equilibrium

µ(T̂)eq ∼ −Qβ

α
= −QÂ0

Â1
. (5.4.64)

Figure 5.10 shows how the average telomere length varies with time (where

time = generation number), for four choices of T, the telomere gain: (A),

T(n) = 40− 0.0005n, (B), T(n) = 200− 0.015n, (C), T(n) = 170− 0.0132n,

(D), T(n) = 100 − 0.0125n basepairs. The solid lines correspond to the de-

terministic solution (5.4.63) and the dashed lines to stochastic simulations (see

Section 5.2.2). When (B) T(n) = 200− 0.015n, (C) T(n) = 170− 0.0132n and

(D) T(n) = 100 − 0.0125n, lines from simulations and (5.4.63) are identical,

indicating good agreement. When T(n) = 40 − 0.0005n, these two lines are

identical in early generations. However, for generation numbers > 250, the

deterministic solution decreases faster than the stochastic solution, because the

deterministic solution has no longer restriction on telomere length. In contrast,

in the stochastic model, the chromosomes becomes senescent.

The shape of the distribution

Having solved the leading order terms in (5.4.54) to determine the evolution of

average telomere over time, we return to consider the next order terms. Using
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Figure 5.10: Plots showing the average telomere length of the chromosomes against

time for four choices of T(n) with L(n) = 50 + 0.007n. The solid lines show the

means obtained from (5.4.63) and the dashed lines are the means obtained from the

stochastic stimulations in Section (5.2.2). Parameter values: q = 0.6, p = 0.4,

L = 100, Q = 5950, (A) T(n) = 40− 0.0005n, (B) T(n) = 200− 0.015n, (C)

T(n) = 170− 0.0132n, (D) T(n) = 100− 0.0125n basepairs.

σ = 1, S(T̂) = S0(T̂), (5.4.54) can be written as

∂K̂
∂T̂

=
1
4

[
l1−2θ(D0 + D1e−S + D2e−2S)− l1−θ(zD1e−S + 2zD2e−2S)

] ∂2K̂
∂z2

−1
2
(zF1e−S + 2lzF2e−2S)

∂K̂
∂z

, (5.4.65)

with the initial condition K̂(z, T̂ = 0) = H3δ(S(0) + lθz− ln(α + β)) = H3δ(lθz)

where H3 is a constant. Since Q
∫ ∞

0 K̄(x, 0)dx = 1, so

1 =
∫ ∞

0
K(n, 0)dn = Q

∫ ∞

0
K̄(x, 0)dx =

Q
α

∫ ∞

0
Ǩ(y, 0)eydy

= lθ Q
α

∫ ∞

0
K̂(z, 0)eS(0)+lθzdz = lθ Q

α

∫ ∞

0
H3δ(lθz))eS(0)+lθzdz

=
Q
α

H3(α + β)dz ,

H3 =
α

(α + β)Q
, (5.4.66)
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So the initial condition for K̂(z, 0) is K̂(z, 0) = δ(lθz)× α/[(α + β)Q].

Since D0, D1 D2 and F2 are O(1) and F1 contains O(1) and O(l) terms, (5.4.65)

contains O(l1−2θ), O(l1−θ), O(1) and O(l) terms. Due to a θ being positive

constant, we can neglected O(l1−θ), O(l) terms, so F1 can be rewritten as F̃1 =

Â0α− Â1β. Since we have already chosen β = 1 and α = Â1/Â0, F̃1 = 0. Hence

(5.4.65) can be simplified to

∂K̂
∂T̂

=
1
4

l1−2θ(D0 + D1e−S + D2e−2S)
∂2K̂
∂z2 , (5.4.67)

where S = S0(T̂) is give by (5.4.72).

We solve this (5.4.67) by choose θ = 1/2 and using S(T̂) = S0, the leading

order expression for S(T̂), so (5.4.67) can be rewritten as

∂K̂
∂T̂

=
1
4

[
D0 +

D1

α + β
eÂ1T/2 +

D2

(α + β)2 eÂ1T
]

∂2K̂
∂z2 , (5.4.68)

with the initial condition K̂(z, T̂ = 0) = δ(lθz)× α/[(α + β)Q]. This is simply a

diffusion equation where the time variable has been subjected to a transforma-

tion.

We rescale time T̂ to τ, via

τ(T̂) =
1
4

∫ T̂

0

[
D0 +

D1

α + β
eÂ1T̃/2 +

D2

(α + β)2 eÂ1T̃
]

dT̃

=
1
4

[
D0T̂ +

2D1

Â1(α + β)
eÂ1T̂/2 +

D2

Â1(α + β)2
eÂ1T̂

]
+ C6 ,

(5.4.69)

and C6 is an integration constant. The initial condition for τ(0) = 0, which

implies

C6 = − 1
4Â1(α + β)

[
2D1 +

D2

(α + β)

]
. (5.4.70)

So (5.4.69) can be written as

τ(T̂) =
1
4

[
D0T̂ +

2D1

Â1(α + β)

(
eÂ1T̂/2 − 1

)
+

D2

Â1(α + β)2

(
eÂ1T̂ − 1

)]
.

(5.4.71)
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Equation (5.4.68) can be written as

∂K̂
∂τ

=
∂2K̂
∂z2 , (5.4.72)

with the initial condition K̂(z, τ(0)) = αδ(l1/2z)/[(α + β)Q]. This system has

the solution

K̂(z, τ) =
α

2(α + β)Q
√

lπτ
exp

(
− z2

4τ

)
, (5.4.73)

which is a Gaussian distribution with mean zero, variance= 2τ. This deter-

mines the shape of the distribution, solving our problems. All that remains

is to back to substitute all the transformations so as to express the solution in

terms of our original variables K(n, t).

Since t = l−1T̂, (5.4.71) implies

τ(t) =
1
4

[
D0lt +

2D1

Â1(α + β)

(
eÂ1lt/2 − 1

)
+

D2

Â1(α + β)2

(
eÂ1lt − 1

)]
,

(5.4.74)

we also have y = S(T̂) + lθz = ln(α + β)− 1
2 Â1lt + l1/2z and y = ln(αx + β),

hence

z = l−1/2
[

ln
(

αx + β

α + β

)
+

1
2

Â1lt
]

. (5.4.75)

Inserting (5.4.74) and (5.4.75) back into (5.4.73), we obtain

K̄(x, t) =
| α |

√
Â1

Q
√

πlM(t)
exp

{
− Â1(α + β)2

lM(t)

[
ln
(

αx + β

α + β

)
+

1
2

Â1lt
]2
}

,

(5.4.76)

where

M(t) =
[

D0ltÂ1(α + β)2 + 2D1(α + β)(eÂ1lt/2 − 1) + D2(eÂ1lt − 1)
]

.

(5.4.77)

Since x = nl where l = 1/Q

K̄(n, t) =
| α |

√
Â1

Q
√

πlM(t)
exp

{
− Â1(α + β)2

lM(t)

[
ln
(

αnl + β

α + β

)
+

1
2

Â1lt
]2
}

.

(5.4.78)
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Since K(x, t) = H(t)K̄(n, t), we have

K(n, t) =
2t | α |

√
Â1√

QπM(t)
exp

{
− Â1(α + β)2

lM(t)

[
ln
(

αnl + β

α + β

)
+

1
2

Â1lt
]2
}

,

(5.4.79)

where Â1 = A1l−1 and M(t), A1, D0, D1 and D2, are given by equations (5.4.77),

(5.4.7), (5.4.46), (5.4.47), (5.4.48).

Note that in (5.4.79) we need (αln + β)/(α + β) > 0 due to the singularity

of the logarithm, so there is a singularity at (αln + β)(α + β) = 0. From the

expressions Â0 = L0 − (q + p)T0 and Â1 = [L1 + (q + p)T1]l−1, we see that

Â1 > 0 and Â0 can be either positive or negative, so α can be either positive

or negative. If α ≥ 0, there is no singularity. If α < 0, there is a singularity at

nsing = −1/(lα).

From the earlier stochastic simulation of Case II, we obtain the equilibrium state

is (5.2.3) and note that

ninter =
(p + q)T0 − L0

(p + q)T1 + L1
=
−Â0

l Â1
= − 1

lα
= nsing . (5.4.80)

So the solution (5.4.79) cannot reach the equilibrium state, due to there being

a singularity at ninter. The distribution of telomere lengths of the telomere ap-

proaches the singular point 1/(lα) as t→ ∞.

Now we comment on the shape of the distribution for the different choices of

parameters. If ninter < 0 (see Figure 5.11), the distribution of K̄(n, t) (5.4.78)

starts like a Dirac delta function and as time increases, the distribution moves

toward lower values of telomere length with increases diffusion. The distribu-

tion spreads by diffusion appearing symmetric at early times, at t = 300, we

observe the peak of the distribution moving to the left (toward the value of

ninter). This distribution can move all the way to zero, due to the equilibrium

length formally being negative value as a result of the telomere loss being larger

than the gain.
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Figure 5.11: Series of plots showing how the distribution of K̄(n, t) (see equation

5.4.78) changes over time t, when the amount of telomere loss Y(n) = 50 + 0.007n

basepairs and the amount of telomere gain T(n) = 40− 0.0005n basepairs. Parameter

values: q = 0.6, p = 0.4, Q = 5950 basepairs.

If Qinitial > ninter > 0 (see Figure 5.12), the distribution of K̄(n, t) (5.4.78) starts

like delta function, as time increase, the distribution moves toward the value of

ninter. The shape of the distribution looks symmetric at early times. The distri-

bution cannot move cross the equilibrium state, this results in the distribution

accumulating near the length of ninter, due the amount of the telomere loss be-

ing compensated for the telomere gain at this point.

If Qinitial < ninter (see Figure 5.13), with start with telomere length 2000 base-

pairs, the distribution of K̄(n, t) (5.4.78) again starts like Dirac delta function. As

time increases, the distribution moves toward the value of ninter = 6818 base-

pairs. The shape of the distribution looks symmetric at earlier time, as time
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Figure 5.12: Series of plots showing how the distribution of K̄(n, t) (see equation

5.4.78) changes over time t, when the amount of telomere loss Y(n) = 50 + 0.007n

basepairs and the amount of telomere gain T(n) = 100− 0.0125n basepairs. Param-

eter values: q = 0.6, p = 0.4, Q = 5950 basepairs.

increases the peak of the distribution moves to the right (toward the value of

ninter). The distribution can not move cross the equilibrium state, result is an

accumulating of the distribution near the length of ninter, since here the amount

of the telomere loss and gain almost compensate each other. This results also

shows that, under the telomerase active, the shorter chromosome can lengthen

their telomeres.
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Figure 5.13: Series of plots showing how the distribution of K̄(n, t) (see equation

5.4.78) changes over time t, when the amount of telomere loss Y(n) = 50 + 0.007n

basepairs and the amount of telomere gain T(n) = 200− 0.015n basepairs. Parameter

values: q = 0.6, p = 0.4, Q = 5950 basepairs.

5.5 Conclusion

In this chapter we have extended our earlier discrete and continuum models

of chromosomes replication to investigate the effect of telomerase on telomere

shorting. We produced Monte Carlo simulations for two different cases: Case I,

is characterized by a constant loss of telomeres L and constant telomerase gain

T. The stochastic simulations reveal that the average telomere length depends

on the value of T− (p + q)L. If (p + q)T > L, then the amount of telomere gain

(p + q)T per division is longer than the telomere loss L per division, the aver-

age telomere length increase with generation number, this results in almost all

the chromosomes dividing. This case is not really physically realistic because

in practice telomere length can not increase indefinitely, even in immortal cells

(whose telomere length is approximately constant). If (p + q)T = L, then the
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amount of telomere gain (p + q)T per division is same as the telomere loss L

per division, the average telomere length stays the same. If (p + q)T < L, the

amount of telomere gain (p + q)T per division is less than the telomere loss L

per division, the average telomere length decreases until the telomere length

reaches the critical value.

Case II is more complicated than Case I. In Case II, both the rate of telom-

ere loss L(n) and the rate of gain T(n) depend on telomere length. There

is an equilibrium state of the average telomere, length ninter, where ninter =

[(p + q)T0 − L0]/[(p + q)T1 + L1], obtained in (5.2.3). If ninter < ncritical, the av-

erage telomere length decreases from Q to ncritical and remains at ncritical, due to

chromosomes ceasing to replicate. If Q > ninter > ncritical the average telomere

length decreases from Q until it reaches the equilibrium value ninter and then

remains at that value. If ninter = Q the average telomere length remain at Q

basepairs. If ninter > Q the average telomere length increases from Q to the

equilibrium value ninter. Blagoev’s model showed regardless of whether they

start with longer telomere or shorter telomere, the average telomere will ap-

proach the same value as time increase. Thus the equilibria telomere length

ninter is consistent with telomere steady state length in Blagoev’s model [66].

After the Monte Carlo simulations we modelled both cases mathematically. For

Case I, we constructed a discrete model for the chromosome replication. By

matching the dispersion relation to the discrete model, we obtain a continuum

model, which shows that the distribution of the telomere length is a Gaussian

distribution with mean Q − 1
2(L − qT − pT)t. Comparing this mean with the

Monte Carlo simulations, shows good agreement. For Case II, we again trans-

form from a discrete model to continuum model. The mean obtained form the

PDE gives good agreement with our Monte Carlo simulation. The shape of

the distribution is no longer symmetric, they start symmetric initially, but as

time increases the distribution moves toward the value of ninter, and the peak

of the distribution move to ninter side. The solution form of the deterministic

model (5.4.79) cannot reach ninter, the equilibrium state length, as there is a sin-

gularity at that point. For Case II, we have only considered the case where we
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start with one chromosome. If we start N chromosomes of different telomere

lengths, then as time increases, the chromosomes with initial telomere length

bigger than ninter will lose more telomere than they gain and will approach to

the value near ninter from above, and chromosomes with initial telomere length

lower than ninter will gain more telomere than they lose and will approach the

value near ninter from below. So ninter is a stable equilibrium value.

As we can see, telomerase can maintain or lengthen telomere. However, the

amount of telomerase in normal human cells is limited, except during early fe-

tal development and in tumor cells where the telomerase activity is high. By

verify the telomerase activity, our models showing different proliferative po-

tential. Therefore it is important to understand how telomerase acts and its role

in ageing and tumor progression (cancer). Telomerase inhibitors are designed

to counter theses effects by neutralizing or deactivating telomerase, in this way

halting tumor progression [72].
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Concluding discussion

Each time a cell divides, incomplete replication leads to a shortening of its

DNA. This occurs predominantly at the ends of chromosomes in regions called

telomeres. Telomere length is a key factor in determining a cell’s potential

for proliferation. In this thesis, we have considered the dynamics of telom-

ere length in a cell in order to understand the normal ageing process (telomere

shortening), Werner’s syndrome (an accelerated ageing disease) and the im-

mortality of cells with telomerase (telomere lengthening).

Experiments show that telomere length plays an important role in cell divi-

sion, we assume that both changes in telomere length and cell division depend

on telomere length. Using various types of length-dependent loss and replica-

tion probabilities, we started with Monte Carlo simulations of normal ageing

(Chapter 2) which gave us a guide on how telomere loss affects the ageing pro-

cess. Then we generalized the Monte Carlo simulations to Werner’s syndrome

(Chapter 3), an accelerating ageing process, in which extra telomere is lost dur-

ing cell division. We replaced the discrete models by continuum models of nor-

mal ageing by taking the simplest PDE whose dispersion relation matches that

of the analogous discrete model from Chapter 2. The solutions obtained from

the continuum models are consistent with Monte Carlo simulations. In Chap-

ter 5, we developed Monte Carlo simulations and continuum models of cases in

which telomerase is active, so modelling the lengthening as well as shortening

of telomeres. By verifying the telomerase activity, our models show different
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proliferative potential and also the solution obtained from the continuum mod-

els are consistent with Monte Carlo simulations. Monte Carlo simulations and

continuum models in this thesis have both led to be discovery of many inter-

esting results, as discussed below.

In Chapter 1, we gave a brief literature review covering both the biological

background and modelling of telomeres, senescence, Werner’s syndrome and

telomerase. In Chapter 2, we developed a chromosome-level model and a cell-

level model of telomere loss during replication and compared four different

models which describe chromosome replication and telomere shortening. Case

I represents the constant telomere loss model, in which a fixed amount of telom-

ere is lost during each chromsome/cell replication. Case II corresponds to a

situation in which the telomere loss during each replication is dependent on

the length of the telomere. In Case III, the probability of cell division is a ran-

dom process which depends on telomere length, whereas telomere loss occurs

a constant rate. Case IV, combines telomere length-dependent loss and a prob-

abilistic cell division term with probability dependent on telomere length. If

the parameters are chosen appropriately, Cases I, II and III can be considered as

special cases of Case IV.

Cases I, II and III have been considered by previous researchers. Levy et al. [1]

studied Case I and predicted that average telomere length decreases linearly

with generation numbers. They also obtain the fraction of dividing chromo-

somes. Our simulation results for Case I are consistent with Levy’s results. Buijs

[64] et al. analyzed Case II, with telomere loss linearly depend on the telomere

length. They fitted experimental data of distribution of telomere length, by

verify the shorting parameters, which predict telomere shortening depended

on telomere length. Portugal considered Case III [65] where the probability

of cell’s replication is linearly dependent on telomere length. However in our

analysis of Case III, as well predicting the average telomere length, we have

also considered the fraction of senescent cells. We also considered a non-linear

probability of cells replicating. Our work on Case IV is entirely novel and can

fit well experimental data [2] in terms of both average telomere length and the
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fraction of dividing cells. Thus we can use our model to compare with experi-

mental data to estimate the amount of telomere loss and the probability of a cell

dividing.

We note that cells with one chromosome become senescent when their telom-

eres reach about 150 to 250 basepairs, however, the cell model with 46 chro-

mosomes reach senescence at about 1150 to 1500 basepairs per chromosomes,

because if the length of any one chromosome is lower than the critical value,

then the cell must stop dividing. Thus, as the number of chromosomes in the

cell, N, increases, the average telomere length at which they become senescent

also increases.

In Chapter 3 we show the effects of Werner’s syndrome on chromosome repli-

cation and telomere length. Experiments have shown that there is dramatic

shortening of telomeres in Werner’s syndrome fibroblasts [40] . During replica-

tion, not only are a certain number of basepairs lost from one of the daughter

chromosome due to normal ageing, but there is an additional loss of basepairs

from one or other end of one of the daughter chromosomes caused by Werner’s

syndrome. Based on this replication rule, we have generated Monte Carlo sim-

ulations for a single chromosome model and a cell-level model for Werner’s

syndrome. Comparing these results with those for normal ageing (Chapter 2)

shows that, cells with Werner’s syndrome become senescent much earlier than

normal cells matching the Werner’s syndrome’s characteristic clinical feature,

the appearance of rapid ageing [34]. Another significant observation from the

Werner’s syndrome cell level model is that when cells with Werner’s syndrome

become senescent, they contain much longer telomeres than cells undergoing

normal ageing. If we focus on the shortest telomere length of the chromosomes

in these cells (Figure 3.7), we found that when the shortest telomere length

of the chromosomes in the cells reaches the critical value, the average telom-

ere length is still quite long. These results are consistent with an explanation

of Werner’s syndrome cells [41], which predicts that populations of cells with

Werner’s syndrome will contain some very short telomeres but the majority

will retain longer telomeres. Thus in Werner’s syndrome not only do we ob-
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serve an accelerated telomere shortening, but we also find that short telomeres

in cells can cause premature senescence. Both of these properties contribute to

the accelerated ageing that characterizes Werner’s syndrome.

In Chapter 4, we developed continuum models of chromsome/cell replication

in normal ageing for several different functional forms for the rate of telomere

loss. For comparison with the Monte Carlo simulations from Chapter 2, we

considered the same four cases outlined above. When studying telomere short-

ening in a single chromosomes, the continuum model was assumed to be the

simplest PDE whose dispersion relation matched that of the analogous discrete

model from Chapter 2. Analysis of the resulting continuum model reveals that

for Case I, the telomere lengths is a Gaussian distribution whose mean is in

good agreement with that obtained from the Monte Carlo simulations (see Sec-

tion 2.2.4 of Chapter 2) until the chromomere start to senescent. The continuum

model for Case II yields a distribution of telomere lengths which is a log-normal

and whose mean is consistent with the corresponding Monte Carlo simulations

(see Section 2.2.5 of Chapter 2). In Case III, the continuum model does not ad-

mit explicit analytical solutions. Therefore we considered the asymptotic limit

l � 1 for which the governing PDE simplifies. Here l = amount of telomere

lost per generation divided by initial telomere length. We started with the first

order PDE, which yields the mean, and does not give a good approximation

to the mean of the Monte Carlo simulations (see Section 2.2.6 of Chapter 2) at

long time. Thus we need to go to the second order PDE which we cannot solve

for explicitly. For Case IV, the continuum model is even more complex than for

Case III, so we only construct solutions for mean for the first order PDE (the

O(l) solution). Here the mean is consistent with the Monte Carlo simulations of

Case IV (see Section 2.2.7 of Chapter 2). We also considered a special case, for

which telomere loss is assumed to be proportional to the probability division

(y(n)/pdiv = constant). In this case we obtain a mean which is consistent with

Monte Carlo simulations with the same parameters values.

For the cell level model, the construction of a continuum model is similar to

that used for model single chromosomes. The mean of the distribution of the
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telomere length in the cells in continuum model for Cases I and II are in good

agreement with the Monte Carlo simulations (see sections 2.3.2 and 2.3.3 of

Chapter 2 respectively). However, for Case III and IV we use a discrete mode to

obtain the average telomere length, which are also good agreement with Monte

Carlo simulations (see sections 2.3.2 Case III-IV and IV-IV of Chapter 2 respec-

tively).

In Chapter 5, we extended our discrete and continuum models of chromosome

replication from Chapter 4 to investigate the effect of telomerase on telomere

shortening. Here we only considered two cases: Case I is characterized by a

constant loss of telomeres, L, and constant gain, T due to telomerase; Case II is

characterized by telomere losses L(n) and gains T(n) which depend on telom-

ere length, n.

The Monte Carlo simulations of Case I reveal that the average telomere length

depends on the value of T − (p + q)L where p and q are the probability that

telomere are added to the longer or shorter offspring. If (p + q)T = L, then

(p + q)T, the amount of telomere gain is same as L, the telomere loss, and the

average telomere length remains constant. If (p + q)T < L, then the amount

of telomere gain per division is less than the telomere loss per division and the

average telomere length decreases until it reaches the critical value and senes-

cence is triggered. If (p + q)T > L, the the amount of telomere gain per di-

vision is grater than the amount of telomere loss per division and the average

telomere length increases with generation number. In this case almost all the

chromosomes are always dividing. The case of (p + q)T > L is not physically

realistic because in practice telomere length can not increase indefinitely, even

in immortal cells (whose telomere length is approximately constant).

In addition to the Monte Carlo simulations we also derived continuum models

for both cases. For Case I, we found that distribution of the telomere lengths is

a Gaussian distribution with mean which reduces/increases linearly with time

and the variance increases linearly with time. This mean (average telomere

length) is in good agreement with the mean of Monte Carlo simulations.
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For Case II, the mean obtained form the continuum model is also in good agree-

ment that for the Monte Carlo simulation. However, the shape of the distri-

bution is no longer always symmetric. Over time the distribution moves to-

ward the equilibrium value ninter, and the peak of the distribution approaches

to ninter. However the deterministic model cannot reach the equilibrium state

value ninter, because there is a singularity at that point in equation (5.4.79). If

we start with N chromosomes of different telomere lengths then, over time all

the chromosomes approach ninter either from below or above. In this respect

we can view ninter as a stable equilibrium value. Thus simulations suggests

Case II is more physical realistic than Case I. As we can see, by verifying the

telomerase activity, our models show different proliferative potential. How-

ever, the amount of telomerase in normal human cells is limited, excepts dur-

ing early fetal development and in tumor cells where the telomerase activity is

high. Telomerase inhibitors are designed to counter theses effects by neutraliz-

ing or inactivation telomerase, and in this way, halt tumor progression [72].

In this thesis, as well as performing Monte Carlo simulations of three mod-

els: normal ageing, Werner’s syndrome and the cells with active telomerase,

we have formulated continuum analogues and found good agreement between

asymptotic solutions of the partial differential equations and Monte Carlo sim-

ulations.

We have proposed several extensions for future work, particularly to develop

continuum analogues of Werner’s syndrome, to compare with our Monte Carlo

simulations. Also in our telomerase models, we consider different types of

telomere loss and gain, if we can extend these models to include a probability

of cell division, we might obtain a better understanding of telomerase action.

Also this thesis has examined only Monte Carlo simulations model systems of

telomerase, not involving physical data. If we could compare our continuum

analogues with experimental data to verify the parameters, we might gain a

better understanding the problem in vivo, where differing cell types have vary-

ing initial telomere lengths and a variety of amounts lost/gain each replication.
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Matlab code

A.1 Matlab code for normal ageing

Matlab code file numtelcell.m

function [Cell Data] = numtelcell(emax, lmin, NumGen)

% [emax] is the maximum number of cells in each generation.

% [lmin] is the minimum length of telomere where cell could divide.

% [NumGen] is the generation number

% returns matrix Cell of size 7*NumGen defined as:

% Cell(1,:) is the average mean telomere length in each generation.

% Cell(2,:) is variance of telomere length of cells.

% Cell(3,:) is fraction of cells which actually divided in the

previous generation.

% Cell(4,i) is fraction of senescent cells.

% Cell(5,i) is fraction of cells which had potential divided,

but did not due to the probability of dividing.

% Cell(6,i) is number of cells before passaging.

% Cell(7,i) is number of cells after passaging.

%%%%%%%%%%%%%Constant and initial data for simulations%%%%%%%%%%%%%%%

N=46;% number of telomere in the cell.

Cell = zeros(7, NumGen);

Data(1).NumCell = 1; %start with one cell.

% Initial 4 telomere length of a pair of chromosomes.

Tlength=6000; %Telomere length.

% Initial telomere length in the cell. Assume all the chromosome

% in the cells contains the same length.

for i=1:N

Data(1).Chrom(i,:,1) = [Tlength; Tlength; Tlength; Tlength-200];

end;

% Telomere loss [y = yo+y1*telomere length]. Probability of cell

% dividing [P = ((n-lmin) / 5800)^(alpha)].
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yo = 207; y1 = 1/14; alpha = 1;

Cell(1,1) = mean(Data(1).Chrom(:,1));

Cell(2,1) = 0; Cell(3,1) = 1; Cell(4,1) = 0;

Cell(5,1) = 0; Cell(6,1) = 1; Cell(7,1) = 1;

%%%%%%%%%%%%%%%% Simulation loop%%%%%%%%%%%%%%%%%%%%%%%%%

for i = 2:NumGen

Temp = zeros(N,4, 2*emax); % Temp data

nc = 0; %Number of cells actually after one generation.

ns = 0; %Number of senescent cells.

%Number of cells have potential to divide but did not divide in

%the previous generation due to the probability of dividing.

np = 0;

for j = 1 : Data(i-1).NumCell;

for i1 = 1 : N

Ave(i1) = (mean(Data(i-1).Chrom(i1,:,j)));

end

n = mean(Ave); % n is average telomere length in the cell.

y = y0 + y1*n;

for i2 = 1:N % Check each telomere length over critical vale.

if Data(i-1).Chrom(i2,1, j) > lmin ...

&& Data(i-1).Chrom(i2,4, j) > lmin ...

&& Data(i-1).Chrom(i2,2, j) > lmin ...

&& Data(i-1).Chrom(i2,3, j) > lmin ...

flag(i2) = 1;

else

flag(i2) = 0;

end

end;

Flag=min(flag);

if Flag > 0 %Telomere length allow a cell replicate.

nn = nn + 2;

p = rand(1); %Randomly select from 0 to 1.

p1 = ((n-lmin) / 5800)^(alpha);

if p < p1 % Split into two cells.

for i3 = 1 : N

pp1 = rand(1); %Randomly select from 0 to 1.

%Randomly relocated in one of two daughter cells.

if pp1 > 0.5

%First daughter cells

Temp(i3,:, nc+1) = Data(i-1).Chrom(i3,:, j);

%Second daughter cells

Temp(i3,1, nc+2) = Data(i-1).Chrom(i3,4, j);

Temp(i3,2, nc+2) = Data(i-1).Chrom(i3,3, j);

Temp(i3,3, nc+2) = Data(i-1).Chrom(i3,2, j)-y;

Temp(i3,4, nc+2) = Data(i-1).Chrom(i3,1, j)-y;

else
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%First daughter cells

Temp(i3,1, nc+1) = Data(i-1).Chrom(i3,4, j);

Temp(i3,2, nc+1) = Data(i-1).Chrom(i3,3, j);

Temp(i3,3, nc+1) = Data(i-1).Chrom(i3,2, j)-y;

Temp(i3,4, nc+1) = Data(i-1).Chrom(i3,1, j)-y;

%Second daughter cells

Temp(i3,:, nc+2) = Data(i-1).Chrom(i3,:, j);

end

end

nc = nc + 2;

else

np=np+1;

nc = nc + 1;

Temp(1:N,1:4, nc) = Data(i-1).Chrom(1:N,1:4, j);

end

else

ns = ns + 1; nn = nn + 1; nc = nc + 1;

Temp(1:N,1:4, nc) = Data(i-1).Chrom(1:N,1:4, j);

end

end

if nc <= emax

Data(i).Chrom = Temp(:,:, 1:nc);

Data(i).NumCell = nc;

else %Passaging, randomly select emax cells from nc cells.

m1 = randperm(nc); m2=sort(m1(1:emax))’;

for in = 1 : emax

Data(i).Chrom(:,:, in) = Temp(:,:, m2(in));

end

Data(i).NumCell = emax;

end

%Store the data we need.

%Average telomere length of one chromosomes in cell.

a=mean(Data(i).Chrom(:,:,:));

b=mean(a); %Average telomere length of the cell.

%Average telomere length of all the cells.

Cell(1,i) = sum(b)/Data(i).NumCell;

%Variance of telomere length of cells.

Cell(2,i)=var(b);

%Fraction of cells which actually divided.

Cell(3, i) = (nc - Data(i-1).NumCell )/ Data(i-1).NumCell;

%Fraction of senescent cells.

Cell(4,i) = ss/Data(i-1).NumCell;

%Fraction of cells which had potential divided, but did not.

Cell(5, i) = np/Data(i-1).NumCell;

Cell(6,i) = nc;% Number of cells before passaging.

Cell(7,i) = Data(i).NumCell; %Number of cells after passaging.
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end

This is one simulation, we can repeat this to obtain average Data.
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