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All things are made of atoms, and [. . .] everything that living things can do can be

understood in terms of the jiggling and wiggling of atoms.

The Feynman Lectures in Physics



Abstract

This thesis is concerned with developing statistical methods for evaluating and compar-

ing molecular shapes. Techniques from statistical shape analysis serve as a basis for our

methods. However, as molecules are fuzzy objects of electron clouds which constantly

undergo vibrational motions and conformational changes, these techniques should be

modi�ed to be more suitable for the distinctive features of molecular shape.

The �rst part of this thesis is concerned with the continuous nature of molecules. Based

on molecular properties which have been measured at the atom positions, a continuous

�eld�based representation of a molecule is obtained using methods from spatial statis-

tics. Within the framework of reproducing kernel Hilbert spaces, a similarity index for

two molecular shapes is proposed which can then be used for the pairwise alignment of

molecules. The alignment is carried out using Markov chain Monte Carlo methods and

posterior inference. In the Bayesian setting, it is also possible to introduce additional

parameters (mask vectors) which allow for the fact that only part of the molecules may

be similar. We apply our methods to a dataset of 31 steroid molecules which fall into

three activity classes with respect to the binding activity to a common receptor protein.

To investigate which molecular features distinguish the activity classes, we also propose a

generalisation of the pairwise method to the simultaneous alignment of several molecules.

The second part of this thesis is concerned with the dynamic aspect of molecular shapes.

Here, we consider a dataset containing time series of DNA con�gurations which have been

obtained using molecular dynamic simulations. For each considered DNA duplex, both

a damaged and an undamaged version are available, and the objective is to investigate

whether or not the damage induces a signi�cant di�erence to the the mean shape of

the molecule. To do so, we consider bootstrap hypothesis tests for the equality of mean

shapes. In particular, we investigate the use of a computationally inexpensive algorithm

which is based on the Procrustes tangent space. Two versions of this algorithm are

proposed. The �rst version is designed for independent con�guration matrices while

the second version is speci�cally designed to accommodate temporal dependence of the

con�gurations within each group and is hence more suitable for the DNA data.
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Important Operators

The vectorise operator vec(.) of an r × c matrix X with column vectors x1, . . . ,xc

stacks the columns of X to give an rc�vector, i.e

vec(X) = (xT1 , . . . ,x
T
c )T . (0.1)

Let x denote an rc�vector. The inverse vectorise operator vec−1
c (.) then row�wise

forms a matrix with c columns, i.e.

vec(X) = x = (xT1 , . . . ,x
T
c )T ⇔ vec−1

c (x) = X (0.2)

Let X denote a symmetric r × r matrix with entries xij = xji (i, j = 1, . . . r). The

vectorise�half operator vech(.) then vectorises the r(r + 1)/2 distinct elements of X

which can be found in its upper triangle, i.e.

vech(X) = (x11, x12, x22, x13, . . . , xr−1 r, xrr)T . (0.3)

For more information about the above operators see Henderson & Searle (1979) who

provide an account on their history, properties and also give many applications.
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Chapter 1

Introduction

Chemical processes in general are largely governed by the structure (shape) of the in-

volved molecules. Molecular shapes are therefore of great importance in many scienti�c

areas such as rational drug design or molecular recognition. In particular, because mole-

cules which are similar in shape can be expected to exhibit a similar biochemical be-

haviour, it often is of interest to determine the similarity between molecular structures.

However, the notion of molecular shape is complex and there is no generally agreed alge-

braic expression for the similarity between molecular structures which is apparent in the

vast number of similarity indices which have been proposed in the literature. Most of

these indices are thereby obtained in a two�step procedure in which the molecules under

consideration are �rst aligned as closely as possible with respect to a suitable objective

function, and the actual similarity is then calculated based on the thus obtained optimal

relative position.

Although the di�erent approaches to structural alignment draw from a remarkably di-

verse range of mathematical concepts, statistical considerations have not been widely

applied yet. This is somewhat surprising since data on a molecular level are often

confounded with a considerable amount of uncertainty and, in general, accounting for

measurement errors and similar �aws of the data often provides a deeper insight into

underlying principles. The aim of the research presented in this thesis is to develop

statistical methods for evaluating and comparing molecular shapes. These methods will

draw from di�erent areas of statistics. In particular statistical shape analysis, spatial

1



1.1 Modelling and Comparing Continuous Molecular Shapes

statistics, time series analysis and bootstrap methods will play an important role. How-

ever, the established statistical methods need to be combined and modi�ed so that they

can cope with the distinctive features of molecular shapes.

One of the challenges arises from the the fact that molecules are fuzzy objects which

are di�used in space. For example the point�based methods from classical statistical

shape analysis are therefore not ideal for capturing the true nature of molecular shapes.

Another peculiarity is that a global expression for shape similarity may not be appro-

priate in the context of drug design since the entire molecular structure of a ligand is

not usually involved in the interaction with the target molecule. The use of local shape

similarities could therefore provide a better means for �nding molecules with a desired

biochemical activity. Moreover, a considerable challenge is that molecules constantly

undergo vibrational motions and conformational changes so that it would be bene�cial

to take into account the dynamic aspect of the nuclear arrangement.

This thesis is divided into two main parts which consider di�erent aspects of molecular

shapes. In the �rst part (Chapters 3 and 4), we develop a framework for evaluating

and comparing molecular shapes which is speci�cally designed to take into account the

fuzzy nature of molecules. The molecules are assumed to be rigid in this part, and the

focus lies on �nding a suitable alignment method for continuous molecular shapes. The

second part (Chapters 5 and 6) is complementary to this work. Here, the alignment is

carried out using methods from classical statistical shape analysis, and the focus lies on

incorporating the molecular dynamics information in the subsequent comparison.

1.1 Modelling and Comparing Continuous Molecular Shapes

The �rst part of this thesis has been motivated by the structural alignment problem in

chemoinformatics where the main aim is to predict the drug potency of a molecule by

comparing its shape to that of a known drug molecule. Some of the work presented in

this part can be found in Czogiel et al. (2008) and Czogiel et al. (2009).
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1.1 Modelling and Comparing Continuous Molecular Shapes

1.1.1 Background Information

A major goal in pharmaceutical research is the design of selective ligands for protein

and DNA binding � a hard task because the space of ligands with a potential bene�cial

e�ect on the human body is vast. In fact, the number of small organic compounds which

could potentially be orally administered as drugs has been estimated to exceed 1060 (e.g.

Dobson, 2004).

Since in most practical cases the three�dimensional structure of the receptor is unknown,

direct rational drug design techniques such as docking (e.g. Blanley & Dixon, 1993) are

not generally applicable. A way to tackle this problem is to make use of the fact that

any chemical binding process requires some complementarity between the ligand and its

receptor. Ligands which bind to the same target can therefore be expected to possess a

certain degree of shape similarity. When designing new drug molecules, the converse of

this concept is exploited. Here, the underlying conjecture is that molecules of a similar

shape exhibit a similar biochemical activity and hence drug potency.

One way of obtaining a numerical value for the shape similarity of two molecules is

to align their structures to match each other as closely as possible with respect to an

appropriate objective function. As this function is usually designed to measure the degree

of similarity of the ligands dependent on their relative position, its value at the optimal

relative position then provides a similarity measure for the ligands themselves which can

then be exploited in several ways.

For example if the superimposed ligands are known to bind to the same target, then

the optimal alignment approximates the binding geometry of the ligands. It is therefore

possible to deduce the structural binding requirements by extracting the properties com-

mon to all or most of the aligned ligands at certain locations in space (e.g. Kim, 1995).

Moreover, we can learn about the unknown receptor site from the negative imprint of the

set of superimposed ligands (e.g. Crippen, 1987), and recently, Keiser et al. (2007) used

the average pairwise similarity between two sets of ligands which bind to two distinct

proteins to obtain a notion of the similarity of the proteins themselves.

3



1.1 Modelling and Comparing Continuous Molecular Shapes

Perhaps the most widespread application of the structural alignment method, however,

is to use the resulting similarity measure as a scoring function in the screening of lig-

and databases. In this context, the alignment serves as a pre��lter for potential drug

molecules, and ligands which are found to have a high degree of similarity to a known

�lead� compound can then be further tested for bene�cial bioactivity. Overviews of struc-

tural alignment techniques and their applications can be found in Good (1995), Lemmen

& Lengauer (2000), and Bender & Glen (2004), and a summary of the most common

concepts is also provided in Section 4.1.

1.1.2 Structural Alignment and Statistical Shape Analysis

Structural alignment of molecules �lters out the information about their (usually arbi-

trarily recorded) relative position so that subsequent analyses can focus on their rota-

tion/translation invariant properties. Similar problems are well�known in the �eld of

statistical shape analysis which will be described in Section 2.1. In essence, classical

statistical shape analysis is designed for the situation where each object is represented

by a set of points (landmarks), and a shape�based measure of their similarity is obtained

by rotating, translating and scaling the objects relative to each other so that the sum of

the squared distances between corresponding landmarks is minimised.

Although the positions of the atoms in a molecule can serve as landmarks, it is not

possible to directly apply methods from classical statistical shape analysis to the struc-

tural alignment problem because a one�to�one correspondence between atoms of di�erent

molecules is usually not known. A way to tackle this problem is to introduce a labelling

matrix with binary entries which determines whether or not two atoms correspond to

each other. This approach is pursued by Green & Mardia (2006), Dryden et al. (2007)

and Schmidler (2007) who set up a Bayesian framework in which the labelling matrix is

considered to be a random parameter which can be inferred about using posterior analy-

sis. The main di�erence between the three papers is the way the nuisance parameters of

rotation and translation are dealt with. More information about these approaches will

be provided in Section 3.2.

4



1.1 Modelling and Comparing Continuous Molecular Shapes

The methods we propose in the �rst part of this thesis build on these previous appli-

cations of statistical shape analysis to the structural alignment of molecules. However,

we will move away from a point�based representation of molecular shapes and generalise

the concepts to a more realistic continuous representation.

1.1.3 The Steroid Dataset

The dataset we use to evaluate our methods was compiled by Cramer et al. (1988) and

has been used before as a test bed for structural alignment techniques (e.g. Anzali et al.,

1998; Coats, 1998; Dryden et al., 2007). It comprises of 31 steroid molecules which bind

to the same corticosteroid binding globulin (CBG) receptor. For each molecule, the

xyz�coordinates of the atom positions in Å (Ångström: 1Å=10−10 m) as well as the

atom types (e.g. carbon, oxygen, . . . ), the associated van der Waals radii and the partial

atomic charge values at the atom positions are provided.

Roughly speaking, the van der Waals radii de�ne the range of the territory around

each atom in which no other atom can intrude. They provide information about the

steric (shape) properties of the molecules whereas the partial charge values within a

molecule arise from asymmetries of the distribution of electrons in chemical bonds and

are associated with the electrostatic properties of the molecules.

Figure 1.1: Two�dimensional representations of two steroid molecules from the dataset:
The molecules are structurally similar in that their core structure consists of four carbon
rings.
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1.2 Comparing Dynamic Molecular Shapes

A major feature of the steroid dataset is that all molecules share a common core structure

consisting of four carbon rings. Figure 1.1 displays the two steroid molecules aldosterone

and androstanediol. In this two�dimensional representation, the common ring structure

is clearly visible. Good et al. (1993) classi�ed each steroid according to its binding activ-

ity towards the CBG receptor. This provides the opportunity to assess whether or not

the obtained similarities are chemically meaningful in that they re�ect the membership

of the steroids to the di�erent activity classes. The steroid dataset is publicly available

from http://www2.ccc.uni-erlangen.de/services/steroids/.

1.2 Comparing Dynamic Molecular Shapes

The second part of this thesis is motivated by the question of whether or not damage sig-

ni�cantly changes the shape of a DNA (DeoxyriboNucleid Acid) molecule. This question

is important in the �eld of molecular recognition because signi�cant shape di�erences

between damaged and undamaged DNA strands could have an impact on the binding

a�nities of the DNA towards the corresponding repair protein.

1.2.1 Background Information

The DNA is a macromolecule which is found in the cells of living organisms. It is of vital

importance as it contains the instructions needed for the organism to develop, survive

and reproduce.

In the past decades, the DNA has received much attention from various research com-

munities. In particular the characteristic double�helical structure of the DNA is of great

interest as it transmits the genetic information and translates it into simple instructions

for the cellular machinery. In fact, it was the discovery of this structure by Watson &

Crick (1953) which triggered genetics, biochemistry and molecular biology, as understood

at the beginning of the 21st century.
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1.2 Comparing Dynamic Molecular Shapes

Chemically, a DNA molecule (or duplex) consists of two long polymers of repeating

structural building blocks with backbones made of sugars and phosphate groups. These

polymers are the two strands of the DNA. Attached to each sugar is one of four types

of bases, namely cytosine (C), guanine (G), adenine (A) and thymine (T), and it is

the sequence of these bases which codes the genetic information. The bases are also

responsible for the characteristic shape of the DNA because they interact with each

other in a way which stabilises the double�helical arrangement.

The double helix of a DNA molecule is not rigid as it � like every molecule � constantly

undergoes vibrational motions and conformational changes. With the realisation that

these internal motions play a functional role in that they contribute to the binding

properties of the molecule, molecular dynamics (MD) modelling has become one of the

most powerful tools for gaining atomic�level insight into nucleic acids.

The �rst MD simulation of a macromolecule of biological interest was published by

McCammon et al. (1977). Since then, well�de�ned standards for simulation conditions

and protocols have been established (cf. e.g. Olson & Zhurkin, 2000; Giudice & Levery,

2002; Orozco et al., 2003), and today computer packages such as amber (Case et al.,

2005) are available which carry out all�atom simulations of several turns of double helix

with surrounding solvent molecules. Roughly speaking, these simulations are based on

deterministic models in which the atoms of the molecule are viewed as point masses

which are attached to springs (bonds). Using the current atom positions, the equations

of motion are solved to provide the positions at the next time point.

One application of MD simulations which has been of recent interest in the �eld of

molecular recognition is to investigate the question of whether or not damage to DNA

molecules has a signi�cant impact on the shape of the duplexes which could explain why

repair proteins have a larger binding a�nity towards damaged than undamaged DNA

strands (Jiranusronkul & Laughton, 2008).

Damage to DNA is in general caused by physical or chemical agents such as electromag-

netic radiation or substances like nitrogen oxide (found in cigarette smoke) which change
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1.2 Comparing Dynamic Molecular Shapes

the DNA molecules and can thus increase the frequency of DNA mutations above the

natural background level. In particular, oxidative damage and the associated mutations

are thought of as the major contributor to human cancer (Beckman & Ames, 1997).

Of the four nucleic acids guanine is the most prone to oxidation, and one of the most

prevalent guanine�derived lesions is called FapydG. According to Wilson & Bohr (2007),

FapydG is the most ubiquitous lesion associated with high mutagenicity in DNA. Its

structure is very di�erent from that of the original guanine base. In particular, it exhibits

a considerably higher �exibility. This leads to the question how FapydG changes the

overall structure of the DNA which could be connected to its mutagenic potential.

1.2.2 MD Simulations and Statistical Shape Analysis

The datasets which result from MD simulations are multivariate time series in the space

of possible molecular con�gurations. However, they contain redundant information be-

cause the particular location of the molecule at each time step is irrelevant. When

analysing MD time series, it is therefore advisable to employ methods which are invari-

ant under the rotation and translation of the given molecular con�gurations. Like in the

context of the structural alignment of ligands, a basis for analysing MD datasets from

a statistical point of view is therefore given by the methods from the �eld of statistical

shape analysis.

Previous applications of statistical shape analysis to MD simulations of DNA strands

include Dryden et al. (2002, 2009) who consider estimating the con�gurational entropy

of a duplex using a separable Gaussian model in size�and�shape and time, and Dryden

& Zempléni (2006) who investigate the extreme size�and�shape behaviour of DNA se-

quences. The latter can be used to assess whether or not MD simulations have run long

enough to su�ciently explore the con�gurational space. Another application of statisti-

cal shape analysis to MD data can be found in Preston & Wood (2009a) who construct

non�parametric con�dence regions for the mean atomic coordinates of a DNA sequence.
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1.2 Comparing Dynamic Molecular Shapes

Figure 1.2: Thinned sequences for a normal/damaged pair of DNA duplexes: The
displayed pair is AGG (left�hand side) and AFG (right�hand side). Every 100th con-
�guration of each duplex is shown. The grey�level on each side corresponds to the MD
iteration where lighter shades of grey show con�gurations obtained at later iterations.

Motivated by the problem of comparing MD trajectories of damaged and undamaged

DNA strands, we propose a test procedure for the equality of mean shapes in the second

part of this thesis. This test procedure is based on the model by Dryden et al. (2002,

2009) and can be applied for temporally evolving shape data in general.

1.2.3 The DNA Dataset

The dataset at hand is based on the data generated by Jiranusronkul & Laughton (2008)

who apply MD simulations to identify the molecular perturbations to the normal DNA

structure brought about by replacing guanine (G) by FapydG (F). Time series of the

atomic xyz�coordinates of 22 phosphorus backbone atoms are provided for twelve di�er-

ent DNA strands (2,500 observation over time). Following Jiranusronkul & Laughton,

these time series will be denoted as

AGA AGC AGG TGA TGC TGT

AFA AFC AFG TFA TFC TFT.

The twelve time series thereby come as six pairs, and each pair contains both an undam-

aged (top row) and a damaged version (bottom row) of the same duplex.
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1.3 Thesis Outline

Figure 1.2 shows excerpts of the data for the normal/damaged DNA pair AGG/AFG.

Every 100th con�guration for each duplex is displayed. To ensure an unbiased repre-

sentation, the combined data have been optimally aligned and scaled relative to each

other before plotting, and Figure 1.2 shows the con�gurations in their optimal position

and size. The displayed grey�levels thereby show the corresponding MD iteration where

lighter shades show con�gurations obtained at later iterations.

From Figure 1.2, it is not possible to detect any clear distinction between the two du-

plexes. In Chapters 5 and 6 we investigate whether or not there are more subtle di�er-

ences which can be detected numerically using a hypothesis test. To do so, we investigate

the use of non�parametric bootstrap tests for the equality of mean shapes.

1.3 Thesis Outline

In Chapter 2, we provide an introduction to the methods which are applied in this

thesis. As well as giving us tools for analysing the two datasets at hand, these methods

provide starting points for the novel techniques developed. In particular, statistical

shape analysis, spatial statistics and bootstrap methods will play an important role in

this thesis.

From a statistical point of view, the steroid dataset is a set of unlabelled marked point

sets, where �unlabelled� refers to the lack of one�to�one correspondences between the

atoms (landmarks) and �marked� refers to the fact that additional information (e.g.

partial charge values) is provided at each landmark. In Chapter 3, we propose a novel

approach for aligning data of this kind which provides the possibility to counterbalance

the lack of homologous landmarks with the spatial distribution of the given marks. Using

spatial statistics, this idea leads to a continuous representation of the �shape� of a marked

point set. An alignment of two objects can then be carried out using concepts from

statistical shape analysis, reproducing kernel Hilbert spaces and Markov chain Monte

Carlo. Our alignment algorithm is validated using a simulation study based on which

we also formulate guidelines for a successful superposition.
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1.3 Thesis Outline

In Chapter 4, the new alignment methodology is applied to the steroid data. In this

application, it is also of interest to perform a multiple alignment of several molecules.

We therefore propose an extension of the alignment algorithm to several objects which

can be viewed as a continuous version of the generalised Procrustes analysis algorithm

well�known in statistical shape analysis. Applying this extension to the steroid data

then provides the possibility to post�process the alignment results � for example using

exploratory t�tests.

Chapters 5 and 6 are concerned with the construction of a non�parametric hypothesis

test for the equality of two population mean shapes. In Chapter 5, attention is restricted

to the situation where the data at hand are sets of independent con�guration matri-

ces. Based on tangent projections of the observed data, a fast bootstrap algorithm is

proposed whose performance is validated in a simulation study. This algorithm is then

applied to the DNA dataset. However, as described above, the DNA data have been

generated using MD simulations so that the observed molecular con�gurations exhibit

some temporal dependence. In Chapter 6 we therefore propose an amendment of the

bootstrap procedure to time series data. Based on simulated data the superiority of this

amended version can be demonstrated so that test results based on this new bootstrap

test should be more reliable when applied to the DNA data.

Finally, Chapter 7 concludes this thesis with a summary of the main results and discusses

areas for further work.

All algorithms described are implemented using the statistical software package r (R

Development Core Team, 2008).
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Chapter 2

Applied Methods

In this chapter, we provide some background information about the statistical concepts

applied in this thesis. The main topics thereby include statistical shape analysis, spatial

statistics, and bootstrap methods.

2.1 Statistical Shape Analysis

Intuitively, the shape of an object can be characterised as all geometrical information

which remains when translation, scaling and rotation are removed (e.g. Kendall, 1977).

This invariance under the Euclidean similarity transformations implies that the space

of all possible shapes is non�Euclidean in nature which makes de�ning a mathematical

framework for the analysis of shapes not straightforward. Classical statistical techniques

are often not appropriate and new methods have to be developed. In most cases, these

methods are designed for the situation where an m�dimensional object is represented by

a con�guration matrix consisting of the position of k landmarks. Given such a matrix,

the shape of the object can then be derived by removing the similarity transformations

in turn. Since the pioneering papers by Kendall (1984) and Bookstein (1986), there have

been several accounts on the �eld of statistical shape analysis including the books by

Small (1996), Dryden & Mardia (1998) and Kendall et al. (1999). In this chapter, the

treatment is largely based on the book by Dryden & Mardia (1998).
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2.1 Statistical Shape Analysis

2.1.1 Shape � Removing the Similarity Transformations

LetX denote a k×m con�guration matrix. To remove location,X can be pre�multiplied

with a suitable matrix, e.g. the Helmert sub�matrix H or the centering matrix C. The

Helmert sub�matrix is the (k − 1)× k matrix whose ith row has the form

(hi, . . . , hi,−ihi, 0 . . . , 0),

where hi = −{i(i+1)}−1/2 is repeated i times (i = 1, . . . k−1), and the (k×k) centering

matrix C can be written as C = Ik − 1
k1k1

T
k , where Ik denotes the identity matrix in k

dimensions and 1k denotes the k�vector of ones. Note that the two matrices are related

by C = HTH. Pre�multiplication with H or C yields

XH = HX and XC = CX = HTXH ,

i.e. the Helmertised and centred con�guration matrix, respectively, which are invariant

under the location of the original con�guration matrix.

Having �ltered out the translation information from the original landmarks, the scaling

can be removed by normalising with respect to the Frobenius norm which is de�ned as

||XH || =
√
tr(XTHTHX) =

√
tr(XTCX) = ||XC || =: S(X).

The above expression is also called the centroid size of X. It satis�es S(aX) = aS(X),

where a is a positive scalar and therefore is a suitable measure of the size of X. Geo-

metrically, S(X) is the square root of the sum of squared Euclidean distances from each

landmark to the centroid. Using S(X), the scale information can be removed from XH

and XC yielding

Z =
XH

||XH ||
=

HX

||HX||
and ZC =

XC

||XC ||
=

CX

||CX||
(2.1)

which are invariant under the translation and scaling of the original con�guration. The

matrices Z and ZC are called the pre�shape and the centred pre�shape of X, respec-

tively. In this thesis, we will work in terms of pre�shapes which has the advantage that
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2.1 Statistical Shape Analysis

they are of full rank. Since ||Z|| = 1, the space of all pre�shapes is S(k−1)m−1, i.e. the

hypersphere of unit radius in (k − 1)m real dimensions and it is commonly denoted as

Skm. Formally, it is the orbit space of the non�coincident k�point con�gurations in IRm

under the action of translation and isotropic scaling. The term pre�shape was coined

by Kendall (1984) and indicates that only rotation remains to be removed to obtain the

shape of the original con�guration X.

In order to remove rotation, all rotated versions of the pre�shape Z are identi�ed with

each other to form the equivalence class

[X] = {ZΓ : Γ ∈ SO(m)}, (2.2)

where Γ denotes an m × m rotation matrix. As a member of SO(m), i.e. the special

orthogonal group in m dimensions, Γ satis�es ΓTΓ = ΓΓT = Im and |Γ| = 1, where

|.| denotes the determinant of a matrix. The shape of the k × m matrix X is the set

(2.2), and the corresponding shape space is commonly denoted as Σk
m. Formally, Σk

m is

the orbit space of the non�coincident k�point con�gurations in IRm under the action of

the Euclidean similarity transformations. In relation to the pre�shape space, Σk
m is the

quotient space of Skm under the action of SO(m), and the equivalence classes of the form

(2.2) are non�overlapping �bres on the pre�shape space. The dimension of Σk
m is

M = km−m− 1−m(m− 1)/2 (2.3)

as the original con�guration X has km coordinates, Helmertising then reduces the di-

mension by m, isotropic rescaling by one and �nally, m(m − 1)/2 dimensions are lost

when the rotation information is removed.

2.1.2 Metrics on Shape Space

It is possible to de�ne a metric on Σk
m in order to fully de�ne the non�Euclidean shape

metric space. Given two con�gurations X1 and X2 with corresponding pre�shapes Z1

and Z2, a distance which is invariant under the Euclidean similarity transformations is
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2.1 Statistical Shape Analysis

given by the full Procrustes distance

dF (Z1,Z2) = inf
Γ∈SO(m)
β>0

||Z2 − βZ1Γ||,

Alternatively, the partial Procrustes distance can be used which is de�ned as

dP (Z1,Z2) = inf
Γ∈SO(m)

||Z2 −Z1Γ||.

A third possible distance is given by the Riemmanian metric in shape space (Kendall,

1984) which is related to the above distance through

ρ(Z1,Z2) = arcsin
(
dF (Z1,Z2)

)
= 2arcsin

(
dP (Z1,Z2)/2

)
. (2.4)

Geometrically, dP (Z1,Z2) is the closest chordal distance on the pre�shape sphere be-

tween the rotated version of Z1 and Z2, and ρ(Z1,Z2) is the closest great circle distance.

A further discussion of the above distances can be found in Kendall (1984, 1989), Le &

Kendall (1993) and Small (1996).

2.1.3 Procrustes Analysis

Procrustes methods are (mainly descriptive) tools for analysing landmark data which

use the similarity transformations to match con�guration matrices as closely as possible

with respect to a least�squares criterion. They can be traced back to Mosier (1939) and

also �nd application in the comparison of (non�con�guration) matrices Mardia et al.

(e.g. 1979, p.416). Here we consider the case where the underlying perturbation model

for the con�guration matrices X1, . . . ,Xn at hand has the form

Xi = βi(µ+Ei)Γi + 1kγTi , i = 1, . . . , n. (2.5)

where the Ei are i.i.d. zero-mean k×m error matrices which follow an underlying km�

variate distribution FE. As (2.5) involves scaling, rotation and translation, Procrustes

matching in this case involves the full set of similarity transformations.
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2.1 Statistical Shape Analysis

Given two k×m con�guration matricesX1 andX2, the full ordinary Procrustes analysis

(OPA) involves minimising

D2
OPA = ||X2 − βX1Γ− 1kγT ||2 (2.6)

over rotation Γ ∈ SO(m), scaling β > 0 and translation γ ∈ IRm. As described in

Dryden & Mardia (1998, Chapter 5), the optimal values of the matching parameters can

be found analytically, and the corresponding minimum has the form

OSS(X1,X2) = ||X2||2 sin2 ρ(X1,X2),

where ρ(X1,X2) denotes the Riemannian distance de�ned in (2.4). A variant of the full

ordinary Procrustes analysis is the partial ordinary Procrustes analysis which involves

minimising (2.6) over rotation and translation only. This does not change the optimal

rotation matrix and translation vector, but the corresponding minimum then has the

form

OSSp(X1,X2) = ||X1||2 + ||X2||2 − 2||X1||||X2|| cos ρ(X1,X2). (2.7)

Note that it always holds that OSSp(X1,X2) = OSSp(X2,X1), whereas OSS(X1,X2) 6=

OSS(X2,X1) unless the con�gurations are of the same size.

When a random sample of con�guration matrices X1, . . . ,Xn is available, a generalisa-

tion of the full OPA can be used to optimally rotate, translate and scale the con�gurations

relative to each other. The idea of full generalised Procrustes analysis (GPA) was origi-

nally proposed by Kristof & Wingersky (1971); other work on this topic includes Gower

(1975), Langron & Collins (1985), Goodall & Bose (1987) and Goodall (1991). Here, the

appropriate least�squares criterion is

G(X1, . . . ,Xn) =
1
n

n−1∑
i=1

n∑
j=i+1

||(βiXiΓi + 1kγTi )− (βjXjΓj + 1kγTj )||2 (2.8)

which is to be minimised over rotation, translation and scale subject to the constraint

S

{
1
n

n∑
i=1

(βiXiΓi + 1kγTi )

}
= 1.
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2.1 Statistical Shape Analysis

For planar data, the minimum of the above expression can be found analytically (Kent,

1994). If m ≥ 3, however, an iterative procedure has to be applied to minimise the

matching parameters in turn. The corresponding algorithm is due to Gower (1975) and

Ten Berge (1977) and is summarised in Appendix A (cf. also Dryden & Mardia, 1998,

pp.90). It can be shown that

inf
Γi∈SO(m)

γi∈IRm, βi∈IR

G(X1, . . . ,Xn) = inf
µ:S(µ)=1

n∑
i=1

sin2 ρ(Xi,µ). (2.9)

The shape of the minimising con�guration, [µ̂] say, therefore is the sample Fréchet

mean of the shapes [X1], . . . , [Xn] with respect to the full Procrustes distance, where

the Fréchet mean is a generalisation of the expectation in Euclidean space. Given a den-

sity f(.) on a general metric space (M , dist), then the general de�nition of the Fréchet

mean is

arg inf
x∈M

∫
M
dist2(x, y)f(y)dy,

see for example Le & Kume (2000). Existence and uniqueness thereby depend on the

chosen metric. In our case (2.9), [µ̂] is unique if the data is su�ciently concentrated in

relation to the curvature of the corresponding shape space (Le, 1995). In that case it

can serve as an estimate of the mean of the distribution Q[X] in shape space which is

induced by µ and the error distribution FE in (2.5).

An important question is whether [µ̂] is consistent for the population Fréchet mean

[
µ[X]

]
= arg min

[Y ]∈Σk
m

∫
Σk

m

sin2 ρ([X], [Y ]) dQ[X].

Le (1998) gives necessary and su�cient conditions for the consistency of [µ̂] in the planar

case; cf. also Kent & Mardia (1997) and Bhattacharya & Patrangenaru (2003). However,

note that the shape of the mean con�guration µ in landmark space, cf. (2.5), is not always

the same as the population Fréchet mean of the induced distribution in shape space, i.e. it

is possible that [µ] 6=
[
µ[X]

]
. In particular for m ≥ 3 dimensions it is di�cult to identify

the mean in shape space which is induced by a distribution de�ned in landmark space.

This will be further illustrated in Section 5.2.2, cf. Figure 5.1 .
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2.1 Statistical Shape Analysis

2.1.4 Procrustes Tangent Space

The Procrustes tangent space is a Euclidean approximation of the shape space in the

vicinity of a particular point in shape space (the pole of the tangent projection). It is of

fundamental importance because it allows us to linearly approximate the non�Euclidean

geometry of the shape space and facilitates the use of standard multivariate techniques to

tackle many problems which arise in shape analysis. For planar data it was formulated

by Kent (1994) and in higher dimensions by Dryden & Mardia (1993); see also Kent

(1995), Small (1996) and Kendall et al. (1999, Chapter 6) for further discussion. In this

thesis, we consider spaces that are tangent to the pre�shape sphere. It is also possible

to formulate the procedure in terms of centred pre�shapes (Kent & Mardia, 2001).

Let Zµ be the (k − 1) × m pre�shape corresponding to a k × m con�guration matrix

µ and suppose that we are interested in the space tangent to the shape space at the

point [µ]. It can be expressed in terms of a linear subspace of the space tangent to the

pre�shape sphere at Zµ which has the form

TZµ(Skm) =
{
M ∈ IR(k−1)×m : tr{ZT

µM} = 0
}
,

and hence contains all real�valued matrices M of the appropriate dimension which are

orthogonal to the pole Zµ.

The above space is too large for our purposes and for invariance under rotation further

constraints have to be imposed. The resulting space is commonly called the horizontal

subspace of TZµ(Skm) (e.g. Kendall et al., 1999, p.109) and has the form

Hµ(Skm) =
{
M ∈ IR(k−1)×m : tr{ZT

µM} = 0 and ZT
µM = MTZµ

}
, (2.10)

where the symmetry constraint ensures thatM is optimally rotated with respect to Zµ

(e.g. Kent & Mardia, 2001). Considering all constraints, the dimensions of Hµ(Skm) is

M = km−m− 1−m(m− 1)/2, i.e. the same as the corresponding shape space Σk
m.
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2.1 Statistical Shape Analysis

In practice, a pre�shape Z can be projected into Hµ(Skm) by �rst rotating it as closely as

possible to the pole using (2.6). The optimally rotated version ZΓ̂ can then be projected

into Hµ(Skm) using the vectorise operator vec(.) de�ned in (0.1) by

Hµ : Skm → Hµ(Skm)

Z 7→
(
Ikm−m − vec(Zµ)vec(Zµ)T

)
vec(ZΓ̂) = ṽ. (2.11)

The corresponding matrix can be obtained using the inverse vectorise operator (0.2),

i.e. Ṽ = vec−1
m (ṽ). As it satis�es tr{Ṽ T

Zµ} = 0 and Ṽ
T
Zµ = ZT

µ Ṽ , it is also an

element of Hµ(Skm). It can be shown that ||Ṽ || = dF (Zµ,Z), where dF (Zµ,Z) is the

full Procrustes distance between Zµ and Z.

2.1.5 Geodesics in Shape Space and Exponential Map

In general, geodesics in a metric space are the curves which take the �shortest path�

between two points. Here, we are interested in the shortest path between points [Z1]

and [Z2] in Σk
m. As above, this can be de�ned in terms of optimally rotated pre�shapes.

A geodesic on Skm between two orthogonal pre�shapes Z1 and Z2 can be de�ned as

ΓZ2(s) = cos sZ1 + sin sZ2, 0 < s ≤ π/2, (2.12)

where s denotes the Riemannian distance travelled from Z1 to ΓZ2(s). The direction of

the geodesic at the starting point is given by dΓZ2(s)/ds|s=0 = Z2. Proposition 6.1 of

Kendall et al. (1999) states that if a geodesic in Skm starts o� in a horizontal direction,

i.e. if the tangent vector at s = 0 is an element of (2.10), then its tangent vectors remain

horizontal throughout its length. To ensure that the geodesic only contains optimally

rotated pre�shapes, we therefore need to modify the endpoint in (2.12) to

Z̃2 =
1

sin s0

{
Z2Γ̂− cos s0Z1

}
,

where Γ̂ is the rotation matrix which optimally rotates Z2 to match Z1 and s0 is the

Riemannian distance between the two pre�shapes.
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2.2 Stochastic Processes

Being optimally rotated, Z̃2 has the property ZT
1 Z̃2 = Z̃

T
2Z1. Moreover, it satis�es

tr{Z̃T
2Z1} = 0 and ||Z̃2|| = 1 as required. Replacing Z2 by Z̃2 in (2.12) then yields

γΓ̂(s) = cos sZ1 +
sin s
sin s0

{
Z2Γ̂− cos s0Z1

}
=

1
sin s0

{
sin(s0 − s)Z1 +Z2Γ̂

}
, 0 < s ≤ s0. (2.13)

As dγΓ̂(s)/ds|s=0 ∈ HZ1(S
k
m), (2.13) is a geodesic on Skm which only contains pre�shapes

which are optimally rotated with respect to Z1 and therefore corresponds to the geodesic

between the points [Z1] and [Z2] in Σk
m; cf. Kendall et al. (1999, Chapter 6).

Based on the geodesic it is possible to de�ne the exponential map which � given a pole Zµ

� identi�es vectors in Hµ(Skm) with (optimally rotated) pre�shapes whose Riemannian

distance from Zµ is equal to the length of the tangent vector, i.e.

exp : Hµ(Skm) → Skm

M 7→ ΓM/||M ||(||M ||) = γI(||M ||).

Using the inverse of the exponential map it is therefore possible to obtain tangent vectors

in Hµ(Skm) whose length is equal to the Riemannian distance of the corresponding pre�

shape to the pole. The inverse exponential map can then be formulated as

exp−1 : Skm → Hµ(Skm)

Z 7→ ρ(Z,Zµ) ·Hµ(Z)/||Hµ(Z)||, (2.14)

where Hµ(.) is de�ned in (2.11). The resulting vector v† = exp−1(Z) has the same

direction as ṽ = Hµ(Z) but satis�es ||v†|| = ρ(Z,Zµ) = arcsin(||ṽ||).

2.2 Stochastic Processes

A stochastic process is a family of random variables {Z(x) : x ∈ D} de�ned on a domain

D. In this thesis, we will consider random �elds and discrete time series.
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2.2 Stochastic Processes

2.2.1 Spatial Statistics

In spatial statistics, the data at hand have the form z(x1), . . . z(xn), where xi ∈ D

(i = 1, . . . , n) denotes a site within the domain, and z(xi) denotes the value of a random

variable Z(xi) which has been observed at site xi. The main feature of spatial data is

that the set {z(xi)}ni=1 does not represent a sample of size n. Instead, it is regarded as

an incomplete observation of one realisation {z(x) : x ∈ D} of the underlying random

random �eld {Z(x) : x ∈ D}. In this probabilistic framework we are therefore not inter-

ested in trying to reconstruct the exact form of the deterministic function z(.). Instead,

the aim is to carry out inference about the underlying spatial process. The following

treatment is largely based on Schabenberger & Gotway (2005). Other monographs on

spatial statistics include Ripley (1981), Cressie (1993) and Wackernagel (2003), and for

a theoretical account on random �elds see Adler (1981).

2.2.1.1 Stationarity, Moments and Isotropy

A random �eld Z(x) is called strictly stationary if its spatial distribution is invariant

under translation of the coordinates, i.e. if

P
(
Z(x1) < z1, Z(x2) < z2 . . . , Z(xn) < zn

)
=

P
(
Z(x1 + h) < z1, Z(x2 + h) < z2 . . . , Z(xn + h) < zn

)
, ∀n ∈ IN, h ∈ D.

However, strict stationarity is a very stringent assumption, and often it is su�cient

to assume stationarity conditions only for the �rst and second moment of Z(x). This

weaker form of stationarity is called second�order stationarity and implies that

E
(
Z(x)

)
= µ ∀ x ∈ D,

Cov
(
Z(x), Z(x+ h)

)
= σ(h) ∀x,h ∈ D,

where µ ∈ IR denotes the constant mean and σ(.) is the (auto�)covariance function of

the random �eld which plays an important role in spatial modelling.
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2.2 Stochastic Processes

As σ(.) only depends on the lag�vector h under the stationarity assumption, it follows

that the variance Cov
(
Z(x), Z(x)

)
= σ(0) = σ2 is the same everywhere. Note that not

every function on the domain can be used as a covariance function, and care must be

taken to ensure that the choice of σ(.) satis�es

Var
( n∑
i=1

wiZ(xi)
)

= wTΣw ≥ 0 ∀w ∈ IRn;xi ∈ D, (2.15)

where (Σ)ij = σ(xi − xj). This property of valid covariance functions guarantees that

any linear combination of any collection of sample points has a positive variance.

The covariance function of a random �eld determines many of its properties, e.g. the

near�origin behaviour of σ(.) determines the spatial continuity of Z(x) in the mean�

square sense, and the smoothness of Z(x) depends on the number of times its covariance

function is di�erentiable at the origin (cf. Schabenberger & Gotway, 2005, p.52). Another

important property of the covariance function is that it determines the direction of the

correlation structure of the random �eld. If the value σ(h) only depends on the length of

the lag vector h, i.e. if σ(h) = σ(||h||), then σ(.) is called isotropic. Note that isotropy

implies a rotation invariance of Z(x) whereas stationarity implies an invariance under

translation. See Abrahamsen (1997) for a list of isotropic covariance functions.

2.2.1.2 Covariance Estimation

In practice, the covariance function σ(.) is unknown. Many methods in spatial statistics

such as spatial prediction (cf. Section 2.2.1.3), however, require a functional descriptor

of the covariance structure, so that estimating the covariance function is an important

task in the spatial context. Instead of trying to estimate the covariance function directly,

estimation is thereby often based on the semivariogram

σ∗(h) = 1
2Var

{
Z(x)− Z(x+ h)

}
= σ(0)− σ(h)

which has the practical bene�t that σ∗(.) is more robust against violations of the sta-

tionarity assumption.
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2.2 Stochastic Processes

Given the observed data z(x1), . . . z(xn), the semivariogram can be estimated using

the semivariogram cloud which is a plot of the squared di�erences
{
z(xi) − z(xj)

}2

against the associated lag�vector. Provided the mean of the random �eld is constant, the{
z(xi)−z(xj)

}2 unbiasedly estimate the semivariogram at lag xi−xj (e.g. Schabenberger

& Gotway, 2005, p.153). However, the number of pairwise di�erences can be very large

so that the raw semivariogram cloud may be not informative. Matheron (1962) therefore

suggests averaging the squared di�erences of points whose lag vector falls into the class

N(h) = h± ε, where the choice of ε ∈ D is left to the user. If isotropy can be assumed,

then these classes are groups of points whose distance falls into N(||h||) = ||h|| ± ε,

where ε > 0. The resulting estimator of σ∗(||h||) then has the form

σ̂∗(||h||) =
1

2 |N(||h||)|
∑

N(||h||)

{
z(xi)− z(xj)

}2
,

where |N(||h||)| denotes the number of distinct pairs in N(||h||).

The above method yields unbiased estimates of σ∗(.) for a discrete set of lag values ||h||,

i.e. for the centres of the chosen distance classesN(||h||), and a plot of the resulting values

σ∗(||h||) against the corresponding lag lengths ||h|| is called an empirical semivariogram.

In order to obtain estimates of σ∗(.) at any arbitrary lag, a parametric semivariogram

model σ∗(h) = σ(0) − σ(h) can be �tted to the empirical semivariogram, e.g. using a

least�squares method. For more information see for example Olea (2006).

2.2.1.3 Spatial Prediction

A frequent objective in spatial statistics is to predict the value of the random �eld

Z(x) at some speci�ed location x0 ∈ D. Methods for spatial prediction are typically

known as kriging � a term coined by Matheron in honour of D.G. Krige whose work laid

the preliminary groundwork for the �eld of spatial statistics (Krige, 1951; Matheron,

1963). The derivation of a predictor commences with the choice of a loss function which

measures the loss incurred by using a prediction Ẑ∗(x0) instead of Z(x0). The most

common choice is the squared�error loss function under which the average loss is the
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prediction mean squared error PMSE = E
[(
Ẑ∗(x0) − Z(x0)

)2]. It can be shown that

the predictor which miminises the PMSE is the conditional expectation of Z(x0) given

the data at hand (e.g. Schabenberger & Gotway, 2005, p.218). In most cases, however,

this will be di�cult to establish. It is therefore advisable to restrict the search for a good

predictor to the class of linear predictors. In that case, the new objective is to �nd the

Best Linear Unbiased Predictor (BLUP) under squared�error loss.

In this thesis we consider the case where the constant mean µ of a second�order stationary

random �eld Z(x) is known. In that case, a general linear predictor has the form

Ẑ∗L(x0) = µ+
n∑
i=1

ũi
(
Z(xi)− µ

)
, (2.16)

so that the PMSE becomes a function of the weight vector ũ = (ũ1, . . . , ũn)T . For a

given covariance function, the optimal weight vector can therefore be found by setting

the gradient of the objective function to zero. As the mean of the random �eld is known

and constant over the entire domain, a linear predictor of the form (2.16) is always

unbiased so that no weight constraints have to be imposed to guarantee unbiasedness (e.g.

Wackernagel, 2003, pp.24). The resulting equation system has the solution u = Σ−1σ,

where (Σ)ij = σ(xi −xj) and σ = (σ(x1 −x0), . . . , σ(xn −x0))T . The BLUP of Z(x0)

is then given by

Ẑ∗BLUP(x0) = µ+ uT (Z − µ1n) = µ+ σTΣ−1(Z − µ1n), (2.17)

where 1n denotes the n�vector of ones and Z =
(
Z(x1), . . . , Z(xn)

)T . As σ depends

on x0, the optimal weights adapt to the location of interest. If the observed data vector

z =
(
z(x1), . . . , z(xn)

)T is inserted into (2.17), then ẐBLUP(x0) = µ + uT (z − µ1n) is

the predicted value of Z(x0). This method of spatial prediction is called simple kriging.

2.2.2 Time Series Analysis and Autoregressive Models

A time series can be seen as a random �eld over the domain D = IR+, where D cor-

responds to the positive time line, i.e. it can be denoted as {X(t) : t ∈ IR+}. In most
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practical cases, however, the domain will be a discrete set of indices which represent

equally spaced time points so that the time series will be denoted as {X(t) : t ∈ IN}

or equivalently {Xt}t≥1. The following treatment will largely be based on the books by

Chat�eld (1996) and Cryer & Chan (2008).

2.2.2.1 Stationarity and Moments

Like in the case of spatial data, a frequently made assumption in the context of time

series data is that of stationarity. Both strict and second�order stationarity thereby

imply that an autocovariance function can be de�ned as

γ(s) = E
(
(Xt − µ)(Xt+s − µ)

)
= Cov

(
Xt, Xt+s

)
, s ≥ 0.

Dividing by the common variance σ2 = γ(0) then yields the autocorrelation function

ρ(s) = γ(s)/γ(0). The autocorrelation function provides valuable information about

the underlying data generating process of {Xt}t≥1. Tentatively assuming stationarity, it

can be estimated from an observed data sequence {xt}nt=1 by the sample autocorrelation

function

r(s) =
∑n

t=s+1(xt − x̄)(xt−s − x̄)∑n
t=1(xt − x̄)2

, s = 1, . . . n− 1,

where x̄ = n−1
∑n

t=1 xt denotes the mean of the observed values. The sequence of the

sample autocorrelations coe�cients r(s) provides insight into the dependence structure

of the underlying probability law. A plot of r(s) versus lag s is called a correlogram.

2.2.2.2 Autoregressive Models

In many practical cases where a sequence of values {xt}nt=1 has been observed, it may

be bene�cial to make a parametric assumption about the underlying process {Xt}t≥1.

One popular parametric model is the autoregressive model which was introduced by Yule
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(1926). An autoregressive model of order p (AR(p) model) satis�es the equation

Xt = ψ1Xt−1 + . . .+ ψpXt−p + εt, (2.18)

i.e. the current value of the time series is a linear combination of the p most recent

past values plus a random innovation term. The process {εt}t≥1 is thereby assumed to

be a white noise process, i.e. the εt are assumed to be uncorrelated zero�mean random

variables with unit variance.

Given an AR(p) process, it is of interest whether or not it is stationary. This can be

investigated using the characteristic equation of (2.18) which has the form

ψ(x) = 1− ψ1x− . . .− ψpxp = 0. (2.19)

It can be shown (cf. e.g. Box et al., 2008, Section 3.2.1) that the process is stationary

i� the roots of the characteristic equation exceed one in absolute value, i.e. if they lie

outside the unit circle in the complex plane. Let G−1
1 , . . . , G−1

p denote the roots of (2.19).

An explicit expression of the autocorrelation function of {Xt}t≥1 can be formulated in

terms of G−1
1 , . . . , G−1

p and has the form

ρ(s) = A1G
s
1 + . . .+ApG

s
p, s ≥ 0, (2.20)

where the coe�cients A1, . . . , Ap are chosen to satisfy some conditions based on the

properties ρ(0) = 1 and ρ(s) = ρ(−s) of ρ(.); see for example Chat�eld (1996, p.38).

2.3 MCMC Simulations for Bayesian Inference

Whereas the unknown parameters of a distribution are considered as �xed in classical

statistics, inference within the Bayesian framework is carried out in terms of probability

statements. Here, we review Markov Chain Monte Carlo (MCMC) methods, a group

of simulation methods which facilitate the application of Bayesian methods to many

situations which are too complicated to work with analytically.
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2.3.1 Bayes' Theorem

Let the data at hand be an n�vector x = (x1, . . . , xn)T , and let θ denote a parameter

which determines the data generating process through a likelihood function L(x|θ) which

speci�es the probability distribution of the underlying random variables given a particular

value of the parameter. As θ is assumed to be random here, in addition to specifying

a likelihood, Bayesian inference involves specifying a prior distribution π(θ). This prior

distribution should capture any information about θ which is available before the data

is observed. Within this framework, inference about θ can be based on the posterior

distribution with density

π(θ|x) =
L(x|θ)π(θ)∫
L(x|θ)π(θ)dθ

∝ L(x|θ)π(θ), (2.21)

i.e. the posterior distribution is the conditional distribution of θ given the observed data.

The above formula is referred to as Bayes' Theorem. The primary task of any application

of the Bayesian framework is to develop the joint probability model L(x|θ)π(θ) and to

perform the necessary computations to summarise π(θ|x) in appropriate ways (Gelman

et al., 2004, p.8).

2.3.2 Prior Distributions

There are various approaches for choosing a prior distribution (e.g. Kass & Wasserman,

1996). Here we mention the two approaches of choosing a prior we will employ in this

thesis, namely the conjugate prior and the non�informative prior. The conjugate prior

is a prior distribution for the parameter of interest which (depending on the likelihood)

is chosen in a way that its posterior distribution belongs to the same parametric family

as itself. Formally, if F is a class of likelihood functions L(x|θ), and P is a class of prior

distributions, then the class P is conjugate for F if

π(θ|x) ∈ P ∀ L(.|θ) ∈ F and π(.) ∈ P,

see for example (Gelman et al., 2004).
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2.3 MCMC Simulations for Bayesian Inference

If no reliable prior information about the parameter of interest is available, then a non�

informative prior should be chosen which does not favour one particular value of θ over

others. Typical non�informative priors are the uniform distribution over the parameter

space or Je�reys' prior (Je�reys, 1946). Non�informative priors are related to classical

inference in that the posterior distribution of the parameter primarily contains informa-

tion inherent in the data at hand.

2.3.3 Posterior Estimation

The posterior distribution represents a compromise between the prior model for the

unknown parameter θ and the observed data. Once it has been determined, either

a point estimate or an interval estimate of the unknown parameter can be obtained.

Commonly used point estimates are the posterior mean or the posterior mode, i.e.

θ̂mean = E
(
π(θ|x)

)
and θ̂MAP = arg max

θ∈Θ
π(θ|x) (2.22)

where MAP is short for Maximum A Posteriori. To summarise posterior uncertainty, in-

terval estimates of θ can be obtained based on the quantiles of the posterior distribution.

For example

CI = {θ ∈ Θ : θα/2 ≥ θ ≥ θ1−α/2}, (2.23)

where θα/2 and θ1−α/2 denote the quantiles of π(θ|x), contains 100(1− α)% of the pos-

terior probability. Posterior intervals like this are commonly called credibility intervals.

2.3.4 Markov Chain Monte Carlo

The use of Bayesian methods in applied problems greatly increased at the end of the

20th century. The reason for this recent popularity is the availability of fast computers

combined with the development of Markov Chain Monte Carlo (MCMC) methods.
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A Markov chain is a sequence of random variables {X0,X1,X2, . . .} which is generated

over time. The evolution of a Markov chain is governed by a transition kernel

P(x, A) = Pr(Xt+1 ∈ A|Xt = x) ∀A ⊂ Ω, x ∈ Ω,

where Ω denotes the set of possible values of eachXt. The distribution ofXt+1 therefore

only depends on the current state Xt and not on the remainder {X0,X1, . . . ,Xt−1} of

the history of the chain. This is called the Markov property of the chain.

Within the MCMC framework, the aim is to �nd a transition kernel which (after many it-

erations) generates samples from a known distribution, namely the posterior distribution

π(θ|x). Luckily, this di�cult task can be simpli�ed by the fact that if

π(θ̃|x)p(θ̃, θ̆) = π(θ̆|x)p(θ̆, θ̃), θ̃, θ̆ ∈ Θ, (2.24)

where Θ denotes the parameter space and p(θ̃, θ̆) is the probability
(
determined by

P(., .)
)
of jumping from θ̃ to θ̆, then the posterior distribution is the limiting distribution

of P(., .); see for example Tierney (1994). Equation (2.24) is called the reversibility

condition. There are two important generic choices for P(., .) which satisfy this condition,

namely the Metropolis�Hastings algorithm and the Gibbs sampler.

The Metropolis�Hastings (MH) algorithm was �rst proposed by Metropolis et al. (1953)

in the context of statistical physics and subsequently generalised by Hastings (1970).

For the MH algorithm, a density q(.|θt) needs to be de�ned which, conditional on the

current parameter value θt, generates candidates φ for the subsequent parameter value

θt+1 in the Markov chain. Let q(θt,φ) denote the corresponding probability of jumping

from θt to φ. In most cases, q(θt,φ) will not satisfy condition (2.24). A convenient way

to correct this condition is to adjust the transition probabilities q(θt,φ) and q(φ,θt) by

introducing acceptance probabilities α(θt,φ) and α(φ,θt) for making the actual move.

Thus, the new transition probabilities have the form

pMH(θt,φ) = q(θt,φ)α(θt,φ) and pMH(φ,θt) = q(φ,θt)α(φ,θt),

where α(., .) is to be determined.
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It can be shown (e.g. Chib & Greenberg, 1995; Green, 2001) that the acceptance proba-

bility for a move from the current parameter vector θt to a candidate φ for θt+1 which

ensures reversibility has the form

αHR(θt,φ) = min
{ π(φ|x)q(φ,θt)
π(θt|x)q(θt,φ)

, 1
}

= min
{
HR, 1

}
, (2.25)

where HR = π(φ|x)q(φ,θt)/π(θt|x)q(θt,φ) is called the Hastings ratio. Under the

regularity conditions of irreducibility and aperiodicity (e.g. Smith & Roberts, 1993), the

Markov chain {θ1,θ2,θ3, . . .} generated by the MH algorithm converges to the posterior

distribution π(θ|x). Note that the MH algorithm does not require knowledge about

the normalising constant of π(θ|x) because it appears in both the numerator and the

denominator of the Hastings ratio.

An important special case of the MH algorithm is the Gibbs sampling approach which

derives its name from Gibbs random �elds, where it was used for the �rst time by Geman

& Geman (1984). Here, we denote the unknown parameter vector as θ = (θ1, . . . , θl)T to

distinguish between components and iteration numbers. The idea of the Gibbs sampler

is to directly connect the transition kernel to the target distribution and to use the full�

conditional distributions as proposal distributions. The full conditional distributions

πi(θi|θ(−i),x) are de�ned as the conditional distributions of the components θi (i =

1, . . . , l) given the data and all the other elements θ(−i) of θ. Thus, given a current

parameter vector θt = (θ1
t , . . . , θ

l
t)
T , the next vector θt+1 is simulated in l steps using

θit+1 ∼ πi(θi|θ1
t+1, . . . ,θ

i−1
t+1,θ

i+1
t , . . . ,θlt), i = 1, . . . , l

as proposal distributions. It can be shown the that Hastings ratio in (2.25) is always

equal to one if the full conditional distributions are used to generate candidate values.

If a Markov chain {θ1,θ2,θ3, . . .} is generated using either the MH algorithm or the

Gibbs sampler, then the values θt will eventually be approximate samples from the pos-

terior distribution of interest. However, the speed of convergence varies from application

to application which leads to the practical question how large an initial sample should

be discarded for subsequent analysis.
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A number of convergence diagnostics have been proposed in the literature (e.g. Gelman,

1996). In this thesis, we monitor convergence visually using trace plots. Trace plots

are plots of the history of the parameter values over many iterations. A clear sign

of non�convergence is for example a trend in the simulated data whereas a converged

chain moves around the mode of the posterior distribution. Based on trace plots, it

is possible to approximately determine the burn�in period of the chain, i.e. the period

{θ1, . . . ,θt0} where the generated parameter values cannot yet be considered as samples

from the posterior distribution. Having determined the burn�in period, estimates of

the characteristics of the posterior distribution such as (2.22) and (2.23) should only be

based on the remainder {θt0+1,θt0+2,θt0+3, . . .} of the chain.

2.4 Bootstrap Methods

The bootstrap is a modern approach to statistical inference which falls into the wider class

of resampling methods. Resampling methods are computer�intensive techniques which

create replicates of the original dataset to assess the uncertainty associated with a quan-

tity of interest without making distributional assumptions. Some resampling techniques

go back a long way (e.g. Quenouille, 1949), but it was Efron (1979) who uni�ed ideas

and established the theoretical underpinnings for simulation�based statistical analysis.

Due to their popularity there are many books on bootstrap methods, including Efron

& Tibshirani (1993), Davison & Hinkley (1997) and Chernick (1999). In this section,

some of the notation and the general line of argumentation are based on the introductory

chapter of Hall (1992) where the bootstrap is described as a direct application of the

so�called plug�in (or Russian doll as he calls it) principle.

2.4.1 The Bootstrap as an Application of the Plug�In Principle

Let X be the random variable of interest which follows a certain distribution function F .

In order to make quantitative statements about one of its characteristics θ = t(F ) based

31



2.4 Bootstrap Methods

on a random sample X = {X1, . . . , Xn}, the basic idea of the plug�in principle is to

estimate θ by �rst estimating the population distribution function F and then inserting

the resulting estimate into the same functional t(.) which calculates θ from F . In most

cases F is estimated by the empirical distribution function of the sample at hand, i.e.

F̂n(x) =
1
n

n∑
i=1

I{Xi≤x}, (2.26)

which assigns a probability mass of 1/n to each of the observed values in X . Due to

the Gliwenko�Cantelli theorem (e.g. Chung, 1974, p.133), F̂n has desirable asymptotic

properties.

For most parameters θ = t(F ), the functional t(.) involves an integral over F which

can be approximated by the corresponding integral over F̂ , i.e. conditioned on X . The

bootstrap makes use of the fact that the uncertainty associated with θ̂ = t(F̂ ) can often

also be posed in terms of an integral with respect F . For example if a symmetric 95%

con�dence interval for θ is to be constructed, a constant c0 is sought which satis�es

P
(
θ̂ − c0 ≤ θ ≤ θ̂ + c0

)
= 0.95 ⇔ EF

(
I{θ̂−c0≤ θ≤ θ̂+c0} − 0.95

)
= 0 (2.27)

where IE denotes the indicator function of an event E. To obtain the bootstrap es-

timate of c0, the parameter θ = t(F ) is replaced by θ̂ = t(F̂ ) and the expectation is

evaluated with respect to F̂ instead of F . To �nd an appropriate replacement for θ̂,

a new (re)sampling process is introduced in which F̂ takes over the role as population

distribution function, i.e. like before, the population is replaced by the sample at hand

and calculations are carried out conditional on X .

In a non�parametric setting (and when uniform resampling is applied), a resample X ∗ =

{X∗1 , . . . , X∗n} is an unordered collection of n items drawn from X with replacement, so

that each X∗i has probability of 1/n of being equal to any given one of the Xj 's, i.e.

P(X∗i = Xj |X ) = n−1, 1 ≤ i, j ≤ n. (2.28)

Conditional on X , the X∗j 's are therefore independent and identically distributed.

32



2.4 Bootstrap Methods

Let F̂ ∗ denote the distribution function of a (re)sample X ∗ drawn from F̂ , and let

θ̂∗ = t(F̂ ∗) denote the �resample�approximation� of θ̂. Note that conditional on X , θ̂ is

a �xed constant whereas θ̂∗ is a random variable. With these de�nitions, the bootstrap

estimator of c0 is

ĉ0 = inf
{
c : P

(
θ̂∗ − c ≤ θ̂ ≤ θ̂∗ + c |X

)
≥ 0.95

}
,

i.e. the 95% quantile of the distribution of |θ̂ − θ̂∗| conditional on X , is the bootstrap

estimator of c0. The bootstrap con�dence interval for θ therefore becomes [θ̂− ĉ0, θ̂+ ĉ0],

and it has an approximate coverage of 0.95. This method for constructing a bootstrap

con�dence interval is called the percentile method by Hall (1992). For other, more com-

plex bootstrap con�dence intervals which correct for bias and skewness of F ∗ see for

example Efron (1984) and Efron & Tibshirani (1986).

2.4.2 Monte Carlo Simulation for Approximating Bootstrap Estimates

One problem that frequently arises when using the bootstrap is that the number n∗ of

possible resamples X ∗ from X grows with n very quickly so that an exact calculation

of the desired expected values is usually not feasible. Hence, employing a Monte Carlo

simulation presents a practical solution. Within the bootstrap framework, Monte Carlo

simulations involve taking B resamples {X ∗b , b = 1, . . . , B} from the original sample.

For each of these resamples, a corresponding value θ̂∗b is computed and the required

expected value is then approximated by an average over the iterations. For the example

of constructing a symmetric 95% con�dence interval for θ, the distribution of |θ̂∗ − θ̂|

and hence its quantiles cannot be determined easily. Instead, B resamples are taken,

and each of them results in a value of |θ̂∗b − θ̂|. The value which approximates ĉ0 then is

the 95% quantile of the empirical distribution function of the |θ̂∗b − θ̂|, i.e. the value

ĉB0 = inf

{
c :

1
B

B∑
b=1

I{|θ̂∗b−θ̂| ≤ c} ≤ 0.95

}
.

Using the methodology described above, the �nal bootstrap con�dence interval is [θ̂ −

ĉB0 , θ̂ + ĉB0 ] and has an approximate coverage of 0.95.
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2.4.3 Improving the Coverage Error � Pivoting

The coverage error of the above general bootstrap interval is

∆ = ∆(X , B) = P
(
θ̂ − ĉB0 ≤ θ ≤ θ̂ + ĉB0

)
− 0.95,

and it is determined by two sources of randomness, namely the randomness inherent in

the initial random sample X and the randomness caused by the Monte Carlo resampling.

In some situations, the error due to the dependence on X can be reduced by transforming

the statistic of interest in a way that its (asymptotic) distribution does not depend on

any unknown quantities, and such a statistic is called (asymptotically) pivotal.

A well�known example is the case where the distribution F is known to be normal

but with unknown mean θ = t(F ) and unknown standard deviation σ = s(F ). In

this parametric case, resamples X ∗ are drawn from N(θ̂, σ̂2), where θ̂ = 1
n

∑n
i=1 xi and

σ̂ =
√

1
n

∑n
i=1(xi − θ̂)2. Conditional on X , the distribution of the resampled values

√
n(θ̂∗ − θ̂)/σ̂ is known to be N(0, 1) which depends on the sample at hand through σ̂.

To eliminate this dependence, a studentisation can be carried out which results in

(√n(θ̂∗ − θ̂)
σ̂

|X
)
∼ N(0, 1) ⇒

(√n(θ̂∗ − θ̂)
σ̂∗

)
∼ tn−1

where σ̂∗ denotes the estimated variance of the (re)sample X ∗ and tn−1 denotes the

t�distribution with n − 1 degrees of freedom. The studentised statistic
√
n(θ̂∗ − θ̂)/σ̂∗

follows this distribution independently from X and independently from the true value of

θ. Additionally, the t�distribution does not depend on any unknown quantities so that

in this case, a con�dence interval with exact coverage accuracy can be constructed.

The concept of pivoting can also be applied to non�parametric settings where the test

statistic can be transformed so that its asymptotic distribution has the pivotal property.

Although the resulting con�dence intervals will have a positive coverage error, pivot-

ing usually improves its asymptotic behaviour in that the error decreases with n at a

faster rate, e.g. for the non�parametric symmetric percentile intervals described earlier,

pivoting increases the coverage accuracy from O(n−1) to O(n−2) (e.g. Hall, 1992, p.16).

34



2.4 Bootstrap Methods

2.4.4 Two�sample Problems

The bootstrap is not restricted to situations where the data are a simple random sample

from a single distribution. For example let X = {X1, . . . , XnX} and Y = {Y1, . . . , YnY}

be samples from two independent distributions F and G, and suppose the parameter of

interest has the form θ = t(F,G). In this two�sample situation, the bootstrap estimator

of θ can be obtained by inserting estimators of both F and G into the functional t(.).

A symmetric 95% bootstrap con�dence interval for θ can then be obtained in much

the same way as described for the one�sample case but using separate resamples X ∗ =

{X∗1 , . . . , X∗nX} from X and Y∗ = {Y ∗1 , . . . , Y ∗nY} from Y . Also, once estimates for F

and G have been obtained, Monte Carlo simulations can be used to generate combined

resamples Z∗b = {X ∗b ,Y∗b} (b = 1, . . . , B) which can then be employed as described in

Section 2.4.2 to approximate the con�dence interval of interest.

2.4.5 Bootstrap Hypothesis Testing

In general, hypothesis testing and the construction of con�dence intervals are intimately

connected in that if I is a con�dence interval for an unknown parameter θ with cover-

age probability α, then a (1 − α)�level test of the null hypothesis H0 : θ = θ0 versus

H1 : θ 6= θ0 can be carried out by rejecting H0 if θ0 /∈ I. This duality also holds in

the bootstrap setting so that the statements made above in the context of bootstrap

con�dence intervals also apply when a bootstrap hypothesis test is to be constructed. In

particular it is possible to improve the asymptotic coverage error of a bootstrap test by

using an asymptotically pivotal test statistic which in fact is the �rst of the two guidelines

Hall & Wilson (1991) suggest for the implementation of bootstrap hypothesis testing,

the second guideline being that resampling should be carried out in a way that re�ects

H0 even if the population fails to satisfy H0. To see the rationale behind the second

guideline, recall that hypothesis testing in general involves comparing the observed value

of the test statistic with the distribution which would follow if the null hypothesis were

true. To ensure a meaningful comparison in the bootstrap setting, the distribution of

the resampled test statistic therefore needs to be a good approximation of the null distri-
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bution which can only be achieved if the resampling is based on an empirical cumulative

distribution function which satis�es H0. If this is ignored, the results can be misleading,

especially if H0 is not met. The two guidelines by Hall & Wilson (1991) are therefore

concerned with improving the coverage probability and the power, respectively.

If the hypothesis test is based on a con�dence interval, it is an arbitrarily speci�ed

threshold level α which determines whether or not H0 is rejected. More information

about the data at hand can be obtained by investigating the actually attained signi�cance

level which can also be approximated using Monte Carlo resamples. For our example in

Section 2.4.3, the estimated p�value has the form

p̂ =
#{|θ̂∗b − θ̂|/σ̂∗b > |θ̂ − θ0|/σ̂}+ 1

B + 1
.

Note that we follow Davison & Hinkley (1997, p.161) in adding 1 to the numerator and

denominator in the above formula for the estimated p�value.

2.4.6 Limitations of the Bootstrap

In general, a bootstrap procedure may be termed consistent if the distributions of θ̂ =

t(F̂ ) and θ̂∗ = t(F̂ ∗) agree in the limit (e.g. Bose & Politis, 1993). While this holds

for a variety of situations where the data are independent, Singh (1981) points out the

inadequacy of the i.i.d.bootstrap procedure described above in the context of dependent

data. To give an example, he considers a sequence of m�dependent random variables

X1, X2, . . . with E(X1) = µ and E(X2
1 ) = σ2 <∞, where m�dependent means that two

subsequences of the form {X1, . . . , Xk} and {Xk+l+1, . . . , X2k+l} are independent for any

l ≥ m. Given a sample X = {X1, . . . , Xn}, the central limit theorem for m�dependent

processes holds (cf. e.g. Lahiri, 2003, Appendix A) so that

√
n
(
X̄ − µ

) D−→ N
(
0, σ2 +

m−1∑
i=1

Cov(X1, X1+i)
)
,

where X̄ = 1/n
∑n

i=1Xi denotes the sample mean. The bootstrap method described
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above attempts to estimate the distribution of θ̂ =
√
n
(
X̄−µ

)
based on an i.i.d resample

X ∗ = {X∗1 , . . . , X∗n} from the original sample, and the bootstrap version of θ̂ is θ̂∗ =
√
n
(
X̄∗ − X̄

)
. Conditional on X , it holds under the i.i.d. bootstrap that

√
n
(
X̄∗ − X̄

) D−→ N
(
0, σ2

)
,

so that the bootstrap approximation of the distribution of θ̂ is not consistent.

In the above example the reason for the inconsistency is that i.i.d. resampling from the

given sample fails to account for the lag�covariance terms in the asymptotic variance.

In other situations where the data are dependent, the bootstrap method as proposed by

Efron (1979) will be inadequate for similar reasons because the total data �scrambling�

(Politis, 2003) induced by the i.i.d. resampling loses all the dependence information.

Since the paper by Singh (1981), there have been several attempts in the literature to

extend Efron's (1979) i.i.d. bootstrap to the dependent case. The �rst attempts were

model�based and focused on resampling of the approximately i.i.d. innovations (cf. e.g.

Friedman, 1981, 1984). However, for situations where not enough prior knowledge is

available to specify a parametric model, the breakthrough was achieved when resam-

pling of single observations was replaced with block resampling where a block contains a

number of consecutive observations. This idea was put forward by Hall (1985), Carlstein

(1986), Künsch (1989), Politis & Romano (1992) and others in various forms. In this

thesis we will use the circular block bootstrap by Politis & Romano (1992) which will be

described in Section 6.2. For a detailed treatment of resampling methods for dependent

data see the monograph by Lahiri (2003).

2.5 Reproducing Kernel Hilbert Spaces

A Reproducing Kernel Hilbert Space (RKHS) is a bijection which associates a positive

de�nite kernel with a Hilbert space of functions. Despite having their origin in complex

function theory, RKHSs have recently become widely used in more applied areas such

as neural networks and machine learning. A well�known example for an application of
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the RKHS theory is the Support Vector Machine method in pattern recognition where

groups of data which cannot be separated by a linear function in their original space are

transformed into a higher dimensional space, where a separating hyperplane can be found

(cf. e.g. Vapnik, 1995; Schölkopf et al., 1999). The book by Berlinet & Thomas-Agnan

(2004) presents the theory of RKHSs together with examples of its use in probability

and mathematical statistics.

As the name suggests, a RKHS is a Hilbert space. For a formal and comprehensive

de�nition of Hilbert spaces see for example Promislow (2009, Chapter 4). The property

of a general Hilbert space H which is of interest in this thesis is that it is endowed with

an inner product < ., . >H which in turn facilitates the de�nition of a norm ||.||H. Within

this framework, it also possible to de�ne the angle θxy between two elements x and y via

< x, y >H= ||x||H · ||y||H · cos θxy. (2.29)

Hilbert spaces are important because they provide powerful mathematical tools in many

complicated settings. Due to their connection to Euclidean spaces (which are familiar to

us from every day life and are in fact special cases of Hilbert spaces), they also provide

geometric concepts on which our intuition can rest.

A RKHS is a Hilbert space of functions. A well�known example of another space which

falls into that category is the space of Lebesgue square�integrable functions L2 with

inner product < x(t), y(t) >L2=
∫
x(t)y(t)dt. However, the inner product in L2 can be

very hard to evaluate. One bene�t of RKHS theory is that it provides a way to restrict

the space of functions in L2 to those which allow to de�ne a di�erent, easier to calculate

inner product. The tool for this restriction is a positive de�nite kernel. A symmetric

function K(., .) on IRp× IRp is a positive de�nite kernel if for any L2�function f(.) (other

than the zero function), it holds that∫
IRp

∫
IRp

f(x)K(x,y)f(y) ≥ 0, ∀x,y ∈ IRp, (2.30)

see for example Christianini & Shawe-Taylor (2000, p.35). The above de�nition is a

generalisation of the positive semi�de�nite de�nition for symmetric matrices which can
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be recovered if f(.) is chosen to be a weighted sum of delta functions on a set {x1, . . . ,xn}

with corresponding (scalar) weights {α1, . . . , αn}. In that case, (2.30) reduces to

n∑
i=1

n∑
j=1

αiαjK(xi,xj) ≥ 0.

If this holds for all possible sets {α1, . . . , αn} of weights, then the (n × n) matrix K

where (K)i,j = K(xi,xj) is positive semi�de�nite.

The Moore-Aronszajin theorem (Aronszajan, 1950) says that to any positive de�nite

function K(., .) on IRp × IRp there corresponds a unique RKHS of real valued functions

on IRp and vice versa. In practice, given a positive de�nite function K(., .), the corre-

sponding RKHS HK can be constructed as follows: let Kx(y) = K(x,y) denote the

function of y obtained when x is �xed. The corresponding RKHS HK then has the form

HK =

{
f | f(.) =

n∑
i=1

αiKxi(.); n ∈ IN, αi ∈ IR,xi ∈ IRp

}
. (2.31)

Let Kx1(.) and Kx2(.) be two basic elements of HK . Their inner product in HK is

de�ned as < Kx1 ,Kx2 >Hk
= K(x1,x2). This is the reproducing property of the kernel.

Based on this property, the inner product of two general functions f(.) =
∑n

i=1 αiKxi(.)

and g(.) =
∑m

j=1 βjKxj (.) in HK has the simple form

< f, g >Hk
=

n∑
i=1

m∑
j=1

αiβjK(xi,xj).

Note that functions f(.) ∈ HK are also elements of the �bigger� space L2. By restricting

the space to functions of the form (2.31), however, the inner product can be evaluated

without solving possibly high dimensional overlap integrals.
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Chapter 3

Bayesian Alignment of Unlabelled Marked

Point Sets

In many application areas, the objects of interest are given in form of marked point

sets. In general, a marked point set can be described as a con�guration of points in

two� or three�dimensional Euclidean space where measurements (marks) are available

at each point location. When the objective is to measure the similarity of two of these

objects, this can be achieved by aligning the con�gurations as closely as possible while

taking into account the associated marks. However, a frequent problem is that the

given con�gurations are unlabelled in the sense that there is no natural correspondence

between the points.

One area where the above data situation is frequently encountered is the structural

alignment of molecules (cf. Section 1.1.1) where the con�guration of each molecule is

given by the set of xyz�coordinates of the atom locations, and the marks are additional

measurements such as van der Waals radii or partial charge values measured at the atom

positions. The con�gurations of di�erent molecules are thereby unlabelled as in most

cases, a one�to�one correspondence between the atoms of di�erent molecules cannot be

established.

The task of aligning unlabelled marked point sets has been of recent interest in statistical

shape and image analysis. In Section 3.1, we provide a formal description of the problem

and introduce some notation. To be able to point out the novelty in our methods, we
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then brie�y review the previously proposed statistical approaches in Section 3.2. In

Sections 3.3 to 3.5, we describe our model for comparing unlabelled marked point sets.

In order to validate our method, a simulation study is carried out in Section 3.6. Based

on the results of this study, we are also able to formulate some prerequisites the data

have to satisfy for the alignment to work well. A summary of the work presented in this

chapter is provided in Section 3.7, and the next chapter describes an application of our

methods to the steroid dataset and an extension for the alignment of multiple objects.

3.1 The Problem

A marked point set M can be represented as M = {zM(xM1 ), . . . , zM(xMkM)}, where kM
denotes the number of points inM , xMi ∈ IRm is the coordinate vector of the ith point in

m dimensions, and zM(xMi ) denotes the (scalar) mark observed at the ith point location.

In this setting we wish to develop a measure of similarity between two objects A and B,

say, which does not depend on their relative position, i.e. we wish to �lter out rotations

Γ ∈ SO(m) and translations γ ∈ IRm between the corresponding con�guration matrices

XA ∈ IRkA×m and XB ∈ IRkB×m, where XM row�wise contains the coordinate vectors

xMi (M ∈ {A,B}). As described in Section 2.1.1, the space SO(m) contains the rotation

(special orthogonal) matrices which satisfy ΓTΓ = ΓΓT = Im and |Γ| = 1.

If the similarity between A and B in a certain relative position can be described by a

similarity function of the general form

SAB
(
Γ,γ

)
= S

(
{zA(xA1 ), . . . , zA(xAkA)}, {zB(ΓxB1 + γ), . . . , zB(ΓxBkB + γ)}

)
, (3.1)

where a high value indicates a high similarity of the two point sets in the relative position

de�ned by Γ and γ, then a rotation/translation invariant similarity measure can be

obtained by maximising (3.1) with respect to rotation and translation, i.e.

S(A,B) = sup
Γ∈SO(m)
γ∈IRm

SAB
(
Γ,γ

)
. (3.2)
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To obtain S(A,B), (3.1) has to be optimised with respect to rotation and transla-

tion, i.e. in (m + m(m − 1)/2)�dimensional parameter space. This procedure bears a

clear resemblance to the ordinary partial Procrustes analysis in statistical shape anal-

ysis where analytical methods are applied to superimpose two con�guration matrices

of the same dimension (cf. Section 2.1.3). However, when two objects of the form

A = {zA(xA1 ), . . . , zA(xAkA)} and B = {zB(xB1 ), . . . , zB(xBkB)} are to be aligned, there

usually are no clear one�to�one correspondences between the points. Moreover, not only

the con�guration matrices but also the observed values of the marks should be taken

into account when aligning A and B. Maximising (3.2), therefore, can not in general be

carried out analytically and will involve numerical methods.

There are three main statistical approaches to the problem of aligning two unlabelled

point sets A and B, namely Green & Mardia (2006), Dryden et al. (2007) and Schmidler

(2007) who formulate Bayesian models in which the required numerical calculations are

carried out using Markov chain Monte Carlo (MCMC) methods (cf. Section 2.3.4). In

all three cases, the alignment method proposed is primarily based on the con�guration

matrices XA ∈ IRkA×m and XB ∈ IRkB×m of the considered point sets, and the main

tool for the alignment is a labelling matrix Λ with binary entries which determines

which points of the two point sets correspond to each other. As these papers provide

a starting point for the alignment methodology proposed in this thesis, the following

section provides a brief summary of their main ideas.

3.2 Previous Point�Based Approaches

In order to match two unlabelled con�guration matrices XA ∈ IRkA×m and XB ∈

IRkB×m, Dryden et al. (2007) consider a
(
kA× (kB +1)

)
�dimensional matrix with entries

(Λ)ij =

 I{point xAi in A matches point xBj in B} , i = 1, . . . , kA; j = 1, . . . , kB

I{point xAi in A does not match any point in B} , i = 1, . . . , kA; j = kB + 1
, (3.3)

where I{E} denotes the indicator function of an event E. The matrix Λ therefore de�nes
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a correspondence between points in A and points in B. The actual labelling can be

found in the �rst kB columns. Moreover, as each row in Λ is constrained to sum to one,

the number of zeros in the last column is equal to the number of points nM in A which

match points in B.

For a given Λ, the con�guration matrices of A and B can each be partitioned into two

blocks containing the matching points and the non�matching points, respectively, i.e.

XA = (XA
M,X

A
N) and XB = (XB

M,X
B
N). Both XA

M and XB
M are (nM ×m)�dimensional

matrices which, without loss of generality, can be considered as ordered in a way that

the ith row of XA
M corresponds to the ith row of XB

M. The matching parts of both

con�gurations therefore satisfy the data requirement needed for classical statistical shape

analysis so that an appropriate rotation/translation invariant dissimilarity index is given

by the ordinary partial Procrustes sum of squares OSSp(XA
M,X

B
M) de�ned in (2.7).

Assuming that the point set A is random whereas B is a �xed reference point set, Dryden

et al. (2007) formulate a likelihood for the con�guration matrix XA as

L(XA|Λ, τ,XB) ∝ |A|nM−kA(2π)−Q/2τQ/2 exp
{
− τ

2 OSSp(X
A
M,X

B
M)
}
, (3.4)

where Q = mnM − m(m − 1)/2 and τ is a precision parameter. Moreover, A denotes

a large bounded region in IRm with volume |A|. In essence, (3.4) therefore de�nes an

independent Gaussian/uniform mixture model for the con�guration matrix XA. The

Gaussian part thereby implies that the likelihood for the points in A which match points

in B increases as the rotation/translation invariant dissimilarity OSSp(XA
M,X

B
M) de-

creases, whereas the uniform part arises from the assumption that the non�matching

points in A do not have any preferred region on the domain A.

A likelihood similar to (3.4) has been obtained by both Schmidler (2007) and Green &

Mardia (2006). Like Dryden et al. (2007), Schmidler (2007) formulates the perturbations

of the matching points of A and B in terms of their ordinary partial Procrustes sum of

squares. However, Green & Mardia (2006) use a di�erent starting point and consider

both con�gurations XA and XB as noisy observations of a set of hidden reference points

{µi}, where µi ∈ IRm denotes the coordinate vector of the ith hidden point. With this
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assumption, the two given con�guration matrices can be modelled as

xAi = µξi + εAi and xBj = (Γµηj
+ γ) + εBj , i = 1, . . . , kA; j = 1, . . . , kB, (3.5)

where Γ ∈ SO(m) is a rotation matrix and γ ∈ IRm denotes a translation vector.

Moreover, {εAi} and {εBj} are sets of error terms with probability density functions fA

and fB, respectively, and {ξi} and {ηj} denote sets of indexing arrays which de�ne the

mappings from the hidden point set to the observed coordinate vectors in XA and XB.

The mappings can be summarised in a labelling matrix of the form (3.3), but as multiple

matches are excluded in this model the last column of Λ is omitted here, and both the

rows and the columns are restricted to have a sum of either zero or one. The number of

matches is therefore de�ned as nM =
∑kA

i=1

∑kB
j=1(Λ)ij ∈

{
0, . . . ,min{kA, kB}

}
.

Assuming that the error terms are independent of each other and independent of the

hidden reference points {µi}, the latter can be integrated out and it can be shown that

the likelihood of the con�guration matrices has the form

L(XA,XB|Λ,Γ,γ) = |A|nM−(kA+kB)
∏

i,j:(Λ)ij=1

g(xAi − ΓxBj − γ), (3.6)

where the function g(z) =
∫
fA(z + u)fB(u)du denotes the density of εAi − εBj . If the

error densities fA and fB can be assumed to be normal densities, then (3.6) reduces to

a Gaussian/uniform mixture similar to (3.4). However, (3.6) is symmetric in that the

con�gurations of both point sets A are B are considered as random and the perturbations

between the matching points are formulated in con�guration space directly.

The above shows that previous statistical approaches to the problem of aligning un-

labelled point sets are based on a labelling matrix Λ which imposes a correspondence

on the unlabelled con�gurations. As Λ is a likelihood parameter, it can be inferred

about using MCMC simulations and posterior inference. In Dryden et al. (2007) and

Schmidler (2007), the employed posterior estimate of Λ automatically determines the

matching parameters as Γ and γ are optimised out within the Procrustes framework.

Rather than being optimised out, Γ and γ are integrated out in Green & Mardia (2006)

using simultaneous Bayesian inference about the transformation and the matching.
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The above methods are designed to align unlabelled point sets. If additional information

is provided at each point location and the objects of interest are unlabelled marked point

sets of the form A = {zA(xA1 ), . . . , zA(xAkA)} and B = {zB(xB1 ), . . . , zB(xBkB)}, Green &

Mardia (2006) and Dryden et al. (2007) provide a way to extend their models by adding

extra terms to the likelihood which increase the probability of matching points with

similar marks.

One potential problem with the above methods is the need for imposing a correspondence

structure on the points of the two objects. In particular in the molecular context where

the points are associated with atom locations, such a correspondence might not exist in

every application so that a method which does not rely on point correspondences seems

to be preferable. Moreover, it would be desirable to be able to incorporate the marks

in a more direct and natural way. With these goals in mind and the above methods as

starting point, we develop an alignment methodology for unlabelled marked point sets

which moves away from the point�based representation of the point sets and de�nes a

similarity measure of the form (3.1) based on a continuous notion of their �shapes�.

In essence, the novel idea developed in this thesis is to counterbalance the absence of

point correspondences by assuming that the marks in both objects follow the same spatial

distribution. With this assumption, a continuous version of (3.5) can be used where

A = {zA(xA1 ), . . . , zA(xAkA)} and B = {zB(xB1 ), . . . , zB(xBkB)} are regarded as two (rotated

and translated) noisy point samples of a common underlying hidden reference �eld Z(x).

In order to obtain a continuous representation of each point set which resembles Z(x),

methods from spatial statistics can then be used to predict the unobserved reference �eld

and the alignment can be based on the predicted �elds ẐA(x) and ẐB(x).

3.3 A Continuous Representation of Marked Point Sets

Consider a marked point set M = {z(x1), . . . , z(xk)}, where the index M for the co-

ordinates and marks is omitted for clarity in this section. In order to reconstruct the

underlying reference �eld, the marks of M are interpolated into IRm using spatial pre-
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diction. As described in Section 2.2.1, in the context of spatial statistics, the vector

z =
(
z(x1), . . . , z(xk)

)T is viewed as a sample of one realisation z(x) of a random �eld{
Z(x) : x ∈ IRm

}
which in the following is assumed to be second�order stationary with

a constant mean µ and a (known) covariance function σ(h) = Cov
(
Z(x), Z(x + h)

)
(cf. Section 2.2.1.1). As our main objective is the comparison of two or more point sets

(which are assumed to stem from the same underlying reference �eld), the actual value

of µ is not of interest in our application and can be set to zero without loss of generality.

With the above assumptions, simple kriging is appropriate for predicting the value of the

random �eld at a location of interest x0. Given µ is set to zero, for a general location x

this yields the predicted �eld

Ẑ(x) = zTΣ−1σ(x) =
k∑
i=1

wiσ(xi − x) (3.7)

where the vector of weightsw = Σ−1z is optimal in terms of the prediction mean squared

error (PMSE) if the stationarity assumption is met; cf. Section 2.2.1.3. In this section,

the subscript �BLUP� is omitted for clarity and we use Ẑ(x) to refer to the predicted

�eld obtained using simple kriging.

Given a marked point set M = {z(x1), . . . , z(xk)}, the predicted �eld Ẑ(x) combines

the information about the geometry of the associated con�guration matrix XM and

the values of the associated marks. Moreover, with the assumption that M is a noisy

pointwise observation of an underlying stationary hidden reference �eld Z(x), Ẑ(x) is

the optimal representation of Z(x) which can be obtained based on the given data. In

the following, we will treat the predicted �eld as a continuous representation of M .

An important point in formula (3.7) is that the predicted �eld at a general location

x ∈ IRm can be expressed as a linear combination of versions of the covariance function

σ(.) which are centred at the point locations xi of the considered marked point set M

where (if the assumptions are correct) the weights are optimal with respect to squared�

error loss. We now show why this representation will be very useful in the subsequent

considerations.
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In Section 2.2.1.1 we mentioned that not every function can be considered as a covariance

function of a stationary random �eld. In particular, for a function σ(.) to be a valid

covariance function it must have the property that for any set of point locations x1, . . .xn,

the resulting covariance matrix

Σ =



σ(0) σ(x1 − x2) . . . σ(x1 − xn−1) σ(x1 − xn)

σ(x2 − x1) σ(0) . . . σ(x2 − xn−1) σ(x2 − xn)
...

...
. . .

...
...

σ(xn−1 − x1) σ(xn−1 − x2) . . . σ(0) σ(xn−1 − xn)

σ(xn − x1) σ(xn − x2) . . . σ(xn − xn−1) σ(0)


is positive semi�de�nite. Hence, if σ

(
h
)

= Cov
(
Z(x), Z(x + h)

)
is considered as the

value of a kernel function σK(., .) on IRm × IRm evaluated at (x,x + h), then σK(., .)

satis�es the requirements for being a positive de�nite kernel (cf. Section 2.5). By virtue

of the Moore-Aronszajin theorem (cf. Section 2.5) it therefore holds that for every valid

covariance function σ(.) there exists a unique reproducing kernel Hilbert space (RKHS)

of functions which has the form

Hσ =

{
f | f(.) =

n∑
i=1

αi σK(.,xi)

}
. (3.8)

Moreover, for two functions f(.) =
∑n

i=1 αi σK(.,xi) ∈ Hσ and g(.) =
∑n′

j=1 βj σK(.,xj) ∈

Hσ the inner product is de�ned in terms of the covariance function as

< f, g >Hσ=
n∑
i=1

n′∑
j=1

αiβj σK(xi,xj) =
n∑
i=1

n′∑
j=1

αiβj σ(xi − xj),

and the norm of a function f(.) ∈ Hσ has the form

||f ||Hσ =< f, f >
1/2
Hσ

=
{ n∑
i=1

n∑
j=1

αiαj σK(xi,xj)
}1/2

=
{ n∑
i=1

n∑
j=1

αiαj σ(xi − xj)
}1/2

.

Note that our continuous representation (3.7) of a marked point setM = {z(x1), . . . , z(xk)}

is a member of Hσ, where the weights are chosen to optimally represent the hidden ref-

erence �eld Z(x). This observation can be directly utilised for the alignment of two

marked point sets.
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3.4 Pairwise Similarity of Unlabelled Marked Point Sets

Now consider two point sets A = {zA(xA1 ), . . . , zA(xAkA)} and B = {zB(xB1 ), . . . , zB(xBkB)}.

To align the two point sets, we are interested in a similarity function of the form (3.1)

which determines the similarity of A and B in a certain relative position. To de�ne a

suitable similarity function, we consider B as moveable, i.e.

B = {zB(ΓxB1 + γ), . . . , zB(ΓxBkB + γ)},

where Γ ∈ SO(m) denotes a rotation matrix and γ ∈ IRm denotes a translation vector.

We can now use (3.7) to obtain the corresponding predicted �elds

ẐA(x) =
kA∑
i=1

wA
i σ
(
xAi − x

)
and ẐB(x) =

kB∑
i=1

wB
i σ
(
(ΓxBi + γ)− x

)
which serve as continuous representations of A and B.

As both �elds ẐA(x) and ẐB(x) are members of Hσ, we can de�ne a similarity function

of the form (3.1) in terms of the inner product < . , . >Hσ as

CAB(Γ,γ) =
< ẐA(x), ẐB(x) >Hσ

||ẐA(x)||Hσ ||ẐB(x)||Hσ

(3.9)

=

∑n
i=1

∑m
j=1w

A
i w

B
j σ
(
xi − (Γxj + γ)

)
||ẐA(x)||Hσ ||ẐB(x)||Hσ

.

The above function is a variant of Pearson's correlation coe�cient for continuous data.

The numerator term measures the �overlap� of the �elds (in a certain relative position)

whereas the denominator is a rotation/translation invariant normalising constant which

ensures that CAB(Γ,γ) ∈ [−1, 1]. Note that the variance parameter σ2 of the applied

covariance function cancels out. Also note that (3.9) can be interpreted as the cosine of

the angle between the two predicted �elds in a certain relative position; cf. (2.29).

We shall call the above similarity function the Kernel Carbo function as it is a modi�ca-

tion of a similarity function proposed by Carbo et al. (1980) in the context of �eld�based
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molecular alignment (cf. Section 4.1). The �elds considered in the original paper are

the electron densities of the two molecules under study, and the similarity is de�ned in

terms of < . , . >L2 , i.e. the inner product in the space of Lebesgue square�integrable

functions L2. As both �elds in our setting are members of the RKHS Hσ, the Carbo

similarity function can be kernelised by replacing < . , . >L2 with < . , . >Hσ which has

the advantage that (3.9) does not require evaluating overlap integrals over IRm.

Optimising (3.9) with respect to rotation and translation yields the Kernel Carbo Index

C(A,B) = sup
Γ∈SO(m)
γ∈IRm

CAB(Γ,γ), (3.10)

which is invariant under rigid�body transformations of A and B. In situations where a

discrepancy rather than a similarity measure is required, (3.9) can be uniquely mapped

into the appropriate codomain using

DAB(Γ,γ) =
1− CAB(Γ,γ)
1 + CAB(Γ,γ)

∈ [0,∞), (3.11)

and applying the same transformation to (3.10) yields a rotation/translation invariant

distance between two marked point sets.

Note that the denominator of (3.9) is invariant under rotation and translation of the point

set B. The discrepancy measure (3.11) is therefore intimately linked to an alternative

discrepancy measure de�ned as

D̃AB(Γ,γ) = ||ẐA(x)− ẐB(x)||2Hσ

= ||ẐA(x)||2Hσ
+ ||ẐB(x)||2Hσ

− 2 < ẐA(x), ẐB(x) >Hσ .

Hence, the rigid�body parameters which minimise DAB(Γ,γ) can also be obtained using

D̃AB(Γ,γ). However, throughout this thesis we will use DAB(Γ,γ) as Carbo�based dis-

crepancy measure. Also note that the actual kriging does not need to be performed to

evaluate (3.9) or (3.11) because the �elds ẐA(x) and ẐB(x) are not compared at individ-

ual locations x0. Instead, the Carbo�based indices provide global similarity measures of

the point sets A and B which compare the associated �elds in their totality.
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3.5 MCMC for Aligning Unlabelled Marked Point Sets

In Section 3.3, we have developed a continuous representation of a marked point set

which provides a natural way to incorporate both the geometry of its point con�guration

and the associated marks. If the dataset at hand contains two marked point sets A =

{zA(xA1 ), . . . , zA(xAkA)} and B = {zB(ΓxB1 +γ), . . . , zB(ΓxBkB +γ)} which are recorded in

an arbitrary position, then the Kernel Carbo index (3.9) is a suitable objective function

which measures the similarity of the point sets in a given relative position so that

(Γ̂, γ̂) = arg max
Γ∈SO(m)
γ∈IRm

CAB(Γ,γ) = arg min
Γ∈SO(m)
γ∈IRm

DAB(Γ,γ)

should provide the optimal alignment parameters. This optimisation, however, is di�cult

in practice. We therefore develop a Bayesian model for the alignment of two marked point

sets. A rotation/translation invariant similarity index can then be obtained by inserting

posterior point estimates of the rotation and translation parameters into (3.9).

Within the Bayesian framework, it also is possible to introduce extra parameters which

can improve the alignment. In this thesis, we consider introducing a mask vector for

each point set to allow for the possibility that they match only in parts whereas other

parts may have been generated by di�erent underlying reference �elds or may be largely

a�ected by noise.

3.5.1 The Likelihood

Let λA ∈ IRkA and λB ∈ IRkB denote the mask vectors. Each of their entries is de�ned

to be an indicator function, i.e. λMi ∈
{
0, 1
}
which determines if the ith point of set

M (M ∈ {A,B}) is considered to contribute to the matching parts (λMi = 1) or not

(λMi = 0). Taking the mask vector into account, the predicted version of the common

reference �eld based on M then has the form ẐM(x;λM) =
∑

i:λMi =1w
M
i (λM)σ(xMi − x),

and the resulting partial Kernel Carbo function for two masked �elds ẐA(x;λA) and
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3.5 MCMC for Aligning Unlabelled Marked Point Sets

ẐB(x;λB) in a certain relative position becomes

CAB(Γ,γ,λA,λB) =
∑

i:λAi =1

∑
j:λBj =1

w̃A
i (λA)w̃B

j (λB)σ
(
xAi − (ΓxBj + γ)

)
, (3.12)

where the tilde indicates that the kriging weights are normalised by the corresponding

term in the normalising constant of the Carbo index, i.e. w̃M
i (λM) = wM

i (λM)/NM(λM),

where NM(λM) = ||ẐM(x;λM)||Hσ .

With the assumption that the matching parts of the two point sets are noisy pointwise

observations of the same underlying reference �eld, we de�ne the likelihood of the two

marked point sets A = {zA(xA1 ), . . . , zA(xAkA)} and B = {zB(ΓxB1 +γ), . . . , zB(ΓxBkB+γ)}

in the relative position de�ned by Γ and γ as

L
(
A,B |θ,γ,λA,λB, τ

)
∝ τ exp

{
−τ DAB(Γ,γ,λA,λB)

}
,

where θ denotes the vector of the Euler angles which speci�es a rotation matrix Γ(θ)

and γ denotes a displacement vector between A and B. Further, τ ∈ IR+ is a precision

parameter which determines the mean and variance of the model. The mask vectors

in the above likelihood play a similar role as the labelling matrices in Green & Mardia

(2006) and Dryden et al. (2007) except in our framework, there is no need to establish

one�to�one or many�to�one correspondences between points in A and B. This becomes

particularly clear from (3.12) as all pairs of matching points xAi and xBj are compared.

The mask vectors are therefore de�ned separately for each point set.

The above likelihood is chosen in this thesis because it performed well in pilot simulations.

Other possible choices include the half�normal likelihood

L
(
A,B |θ,γ,λA,λB, τ

)
∝ τ1/2 exp

{
−τ D2

AB(Γ,γ,λA,λB)
}
,

which is less accommodating of outliers and might be preferable in some situations. In

both cases, the rigid�body parameters θ and γ are parameters in the likelihood so that

our Bayesian framework is similar to that by Green & Mardia (2006) in that they will

be integrated out (rather than optimised out as in Dryden et al., 2007).
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3.5.2 Prior Distributions

In order to set up a Bayesian framework, prior distributions for the unknown parameters

θ, γ, λA, λB and τ need to be speci�ed. As we do not have any prior information about

the rigid�body parameters θ and γ, we choose uninformative priors for these parameters

and treat them as a priori uniformly distributed on SO(m) and on a large bounded

region in IRm, respectively.

For the translation vector, we therefore have π(γ) ∝ 1. The uniform density fU (θ) on

SO(m) is more complicated and depends on the dimension m. In the two�dimensional

case, fU (θ) ∝ 1. For m = 3, the appropriate measure depends on the parameterisation

of SO(3). In this thesis, we use the Euler angles in the so�called x�convention (e.g.

Goldstein et al., 2002, pp.150), where Γ is decomposed in the following elementary

rotation matrices

Γ(θ) =


cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1




1 0 0

0 cos θ2 sin θ2

0 − sin θ2 cos θ2




cos θ1 sin θ1 0

− sin θ1 cos θ1 0

0 0 1

 .

With the domains −π ≤ θ1, θ3 < π and −π/2 ≤ θ2 < π/2, every Γ ∈ SO(3) is uniquely

determined apart from a singularity at θ2 = −π/2 (e.g. Naimark, 1964, p.6), and the

invariant probability measure is given by dΓ = (8π2)−1 cos(θ2)dθ1dθ2dθ3 (e.g. Miles,

1965) so that fU (θ) ∝ cos(θ2) for SO(3).

Let ΛkM denote the space of all kM�vectors with entries of either zero or one. To prevent

the situation where only very few points are used in the �eld comparison, we introduce

a (�xed) penalty parameter ζ > 1 and de�ne the joint prior density of the mask vectors

as

π(λA,λB|ζ) ∝ ζ
P

i λ
A
i +

P
i λ

B
i , (λTA ,λ

T
B ) ∈ ΛkA × ΛkB .

The penalty parameter therefore inherently comprises prior assumptions about the extent

of the matching parts of A and B. Moreover, we choose a Gamma prior for the precision
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parameter, i.e.

π(τ |α, β) ∝ τα−1 exp(−βτ), τ ≥ 0,

where α > 0 is a shape parameter and β > 0 is a scale parameter. This choice of prior

distribution is generic in that it is conjugate to the likelihood (cf. Section 3.5.2). With

the further assumptions that all unknown parameters are independent a priori, their

joint posterior density is

π
(
θ,γ,λA,λB, τ |A,B, α, β, ζ

)
∝ τα exp

{
−τ
(
DAB(Γ,γ,λA,λB) + β

)}
· ζ

P
i λ

A
i +

P
i λ

B
i · fU (θ), (3.13)

Note that this can be regarded as a mixture model over ΛkA × ΛkB .

3.5.3 Posterior Sampling

We use MCMC to sample from the posterior distribution (cf. Section 2.3.4). The re-

sulting point estimates for the rigid�body parameters and the mask vectors can then be

substituted into DAB(Γ,γ,λA,λB) to yield a rotation/translation invariant point esti-

mate of the distance

D̂(A,B) = DAB(Γ̂, γ̂, λ̂A, λ̂B). (3.14)

Within the MCMC scheme, τ is updated with a Gibbs step, i.e. we use samples from the

full�conditional distribution

π(τ |θ,γ,λA,λB, A,B) ∼ Γ
(
α+ 1, DAB(Γ,γ,λA,λB) + β

)
(3.15)

to propose updates of τ which are then accepted at every iteration. Updated versions

of the other parameters are obtained in four blocks, each using a Metropolis�Hastings

step. For the rigid�body parameters, we use random walk proposals with normally dis-

tributed noise and standard deviations η1 and η2 for the Euler angles and the translation

parameters, respectively.
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A proposal distribution for the masks vectors λA and λB can be obtained by choosing

an entry at random and then switching its value from zero to one or vice versa. The

algorithm we use ensures that the de�ned Markov chain is irreducible and aperiodic so

that it will eventually converge to the posterior distribution (3.13).

Due to the symmetry of the proposal distributions, convergence to and sampling from the

limiting distribution in practice results in an approximate stochastic minimisation of the

discrepancy term, and this behaviour can be emphasised by choosing a prior distribution

with a large mean for τ . To see this, note that (ignoring the cosine term in the posterior

distribution for m = 3), the Hastings ratio (HR) de�ned in (2.25) for the considered

Metropolis�Hastings steps can take the following forms

HR =


exp
{
(DAB −D∗AB)

}τ
, for an update of γ or θ,

ζ · exp
{
(DAB −D∗AB)

}τ
, if a point xAi or xBi is included,

1/ζ · exp
{
(DAB −D∗AB)

}τ
, if a point xAi or xBi is deleted,

(3.16)

where D∗AB denotes the distance which results from the new proposed set of parameter

values, andDAB denotes the distance at the previous step. Moreover, deleting or adding a

point from the matching parts of A and B is associated with updating the corresponding

entry in λA or λB. As described in Section 2.3.4, a proposed set of parameters will be

accepted with probability αHR = min{HR, 1}. From (3.16) it follows that

HR > 1⇔


D∗AB < DAB, for an update of γ or θ

D∗AB < DAB + log ζ
τ , if a point xAi or xBi is included

D∗AB < DAB − log ζ
τ , if a point xAi or xBi is deleted.

(3.17)

Updates of the rigid�body parameters are therefore always accepted if they decrease the

discrepancy term. When updating the mask vectors, however, the penalty parameter

comes into play. It can be seen from (3.17) that ζ > 0 encourages the inclusion of points

in the matching parts of A and B as an increase of the discrepancy term up to (log ζ)/τ

is tolerated if a point is included whereas an exclusion must decrease the discrepancy by

at least (log ζ)/τ . As expected, the larger the value of the penalty parameter, the more

points will therefore be included in the matching parts of the point sets.
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The precision parameter τ does not only in�uence the updating procedure of the mask

vectors. From both (3.16) and (3.17) it follows that large values of τ in general encourage

updates which yield small values of the discrepancy term. In particular, if HR < 1 and

updates are not automatically accepted, then the acceptance probability αHR decreases

with τ in all three cases. From that it is possible to predict how the discrepancy term and

the penalty parameter will interact in course of the algorithm: given that τ is updated

using its full conditional distribution (3.15) with

E(τ |θ,γ,λA,λB, A,B) =
α+ 1

DAB + β
and Var(τ |θ,γ,λA,λB, A,B) =

α+ 1
(DAB + β)2

,(3.18)

it follows that smaller values of DAB are likely to increase the value of the precision

parameter which in turn is likely to result in smaller discrepancy values.

The MCMC algorithm we propose to superimpose two unlabelled marked point sets

A = {zA(xA1 ), . . . , zA(xAkA)} and B = {zB(ΓxB1 + γ), . . . , zB(ΓxBkB + γ)} will therefore

usually progress as follows: at the start of the sampling procedure where the discrepancy

between the point sets is usually large due to a poor superposition, small precision values

will be proposed which allows the algorithm to accept many �uphill moves� in terms of

the discrepancy. At this initial stage, the parameter space can therefore be explored

thoroughly. However, once the goodness of the superposition increases and small dis-

crepancy values are obtained, the value of the precision parameter will increase and thus

prevent the algorithm from accepting superposition which result in a large discrepancy.

In that, our MCMC algorithm is similar to the simulated annealing algorithm proposed

by (Kirkpatrick et al., 1983) which simulates from

π
(
θ,γ,λA,λB, τ |A,B, α, β, ζ

)1/T
,

where T > 0 is slowly reduced deterministically.

From the above considerations, it is also possible to formulate a guideline for the choice

of the hyperparameters α and β. In essence, large values of α will result in large values of

the precision parameter τ which could prevent the algorithm from adequately exploring

the parameter space so that it is likely to get stuck in a local maximum of the posterior
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distribution. Values which are too small on the other hand will prevent the algorithm

from homing in on a good superposition. The same principle applies for β. In particular,

we want β to be small enough to not mask the impact of the discrepancy value on the

proposed values of τ. In any practical situation, choosing adequate values of α and β

therefore has to be a balance between the two extremes.

3.6 Simulation Study

To evaluate the performance of our alignment method, we simulate unlabelled marked

point sets A = {zA(xA1 ), . . . , zA(xAkA)} and B = {zB(xB1 ), . . . , zB(xBkB)} which share a

common underlying reference �eld. This reference �eld determines the optimal relative

position of A and B. Using the MCMC algorithm described above, the optimal alignment

can be estimated by means of (post burn�in) posterior summary statistics of the accepted

Euler angles and translation vectors. The performance of our alignment method can

therefore be assessed by the deviation of the �nal relative position from the optimal

alignment. If some contamination points which are not related to the underlying reference

�eld are also included in the point sets, then posterior summary statistics of the mask

vectors λA and λB provide a further way to validate our method.

3.6.1 Obtaining Marked Point Sets With a Common Reference Field

As a reference �eld we use a realisation of a zero�mean Gaussian random �eld. We

generate this by de�ning a grid of 961 (31 × 31) regularly spaced points yi within the

unit square and simulating from

Z̃ = (Z̃(y1) . . . Z̃(y961))
T ∼ N (0,Σ) ,

where (Σ)ij = σW(||yi − yj ||) is the value of a Whittle covariance function with unit

variance and range parameter ρ = 0.2.
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The Whittle covariance function is a member of the class of Matérn covariance functions

which has the general form

σM(h) = σ2 1
2ν−1Γ(ν)

(
2ν1/2||h||

ρ

)ν
Kν

(
2ν1/2||h||

ρ

)
, (3.19)

where σ2 = σ(0) denotes the variance of the random �eld and ρ > 0 is a range parameter

which determines how quickly the covariance between Z(x) and Z(x+h) decreases with

||h||. Moreover, Γ(.) denotes the Gamma function and Kν(.) is the modi�ed Bessel

function of the third kind of order ν (e.g. Abramowitz & Stegun, 1964, Section 9.6). In

this context, ν is a smoothness parameter as it determines the number of times σM(.) is

di�erentiable at the origin (cf. e.g. Haskard, 2007). The above parameterisation has been

suggested by Handcock & Wallis (1994) because it has the appealing property that the

resulting correlation functions are comparable for di�erent values of ν as the correlation

at a separation distance of ||h|| = ρ
√

2 takes a value of approximately exp(−2). Using

this parameterisation, (3.19) reduces to the exponential covariance function σexp(h) =

σ2 exp{−
√

2 ||h||/ρ} for ν = 1/2, and the Whittle covariance function which is associated

with ν = 1. Figure 3.1 displays several examples of the Matérn covariance function which

are relevant in this simulation study. The red line shows the Whittle covariance function

with range ρ = 0.2. The other lines show the exponential covariance function with

ρ = 0.2 (yellow), ρ = 0.3 (blue) and ρ = 0.1 (green). In all cases, σ2 is chosen to be one.

Figure 3.1: Examples of Matérn covariance functions: The red line shows the Whittle
covariance function with ρ = 0.2. The other lines show the exponential correlation
function with ρ = 0.2 (yellow), ρ = 0.3 (blue) and ρ = 0.1 (green). In all cases σ2 = 1.
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Figure 3.2 shows two realisations z̃ of Z̃. To be able to assess the performance of the

mask vectors, we de�ne the marked point sets in two parts, i.e. A = {Atrue, Acont}

and B = {Btrue, Bcont}, where �true� denotes the part of each point set which stems

from the underlying reference �eld z̃ (and should therefore be included in the alignment

procedure) and �cont� denotes the contaminated part. We obtain Btrue by randomly

choosing ktrueB entries i1, . . . , iktrueB
from z̃ and adding some Gaussian noise with standard

deviation σε to the corresponding marks, i.e.

Btrue = {zB(xB1 ), . . . , zB(xBktrueB
)} = {z̃(yi1) + εB1 , . . . , z̃(yiktrue

B

) + εBktrueB
}.

For Bcont, kcontB = kB − ktrueB locations on the (31 × 31) grid are chosen at random and

the corresponding marks are random values from a uniform distribution on [−c, c].

To obtain Atrue, we introduce a nearness parameter κ ∈ IN and de�ne a set of grid points

Uκ as the union of neighbourhoods around the points xBi (i = 1, . . . , ktrueB ), where each

neighbourhood contains the vertically, horizontally and diagonally adjacent grid points

in a (2κ+1)×(2κ+1)�box around the corresponding xBi . The points x
A
i (i = 1, . . . , ktrueA )

are then chosen at random from Uκ and Atrue is de�ned as

Atrue = {zA(xA1 ), . . . , zA(xAktrueA
)} = {z̃(xA1 ) + εA1 , . . . , z̃(x

A

ktrueA
) + εAktrueA

}.

Figure 3.2: Examples of underlying reference �elds: As reference �elds we use realisations
of a zero�mean isotropic Gaussian random �eld with a Matérn covariance function (ν = 1
and ρ = 0.2, σ2 = 1).
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3.6 Simulation Study

Figure 3.3: Two examples of sampling schemes: On both sides, the chosen points for
Btrue are shown as big green circles, and the points for Atrue are shown as small red
circles. On the left�hand side, we chose ktrueB = ktrueB = 80 and κ = 1 whereas the
right�hand side shows the case ktrueB = ktrueB = 40 and κ = 4.

The kcontA = kA− ktrueA points in Acont are obtained in the same way as the contamination

points in B. Note that this sampling scheme does not create correspondences between

points in Atrue and Btrue. This is further demonstrated in Figure 3.3, where the left�hand

side shows an example of a sampling scheme with ktrueB = ktrueA = 80 and κ = 1 whereas

ktrueB = ktrueA = 40 and κ = 4 on the right�hand side. The big green circles show the points

in Btrue and the small red circles show the points in Atrue. The impact of κ is clearly

visible. For our simulation study we consider three realisations of Z̃, and for each of these

realisations we de�ne 12 di�erent pairs of marked point sets by varying the parameters

ktrue = ktrueA = ktrueB ∈ {40, 80}, kcont = kcontA = kcontB ∈ {0.05ktrue, 0.1ktrue, 0.15ktrue} and

κ ∈ {1, 4}. Moreover, we choose c = 7 and σε =
√

0.02. Generated as above, the 36 pairs

A and B are recorded in the optimal relative position, and the optimal mask vectors are

λTA = (1T
ktrueA

,0T
kcontA

) and λTB = (1T
ktrueB

,0T
kcontB

).

3.6.2 Hyperparameter Settings

To obtain a starting point for the algorithm, we randomly rotate and translate B away

from this position, and the MCMC algorithm should ideally reconstruct the original
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3.6 Simulation Study

alignment as closely as possible. For each pairwise superposition 50,000 MCMC iter-

ations are carried out which each contain �ve blocks updating the rotation parameter

(proposal sd: 0.75◦), the translation vector (proposal sd for each entry: 0.01), the preci-

sion parameter, and the two mask vectors, respectively.

The Kernel Carbo similarity calculations are based on the exponential kernel, i.e. (3.19)

with ν = 0.5. Initially we use ρ = 0.6 but within the �rst 1,000 iterations, this value

is dynamically reduced to ρ = 0.2. This initial phase allows the algorithm to home in

on a good alignment even if the two points sets are far away from their optimal relative

position. After the initial phase, ρ = 0.2 is kept �xed for all iterations. The corresponding

covariance function is shown as the yellow line in Figure 3.1. The covariance estimation

described in Section 2.2.1.2 is not applied here as the contamination points distort the

empirical semivariogram (cf. also Appendix B where we describe an ad�hoc approach to

alleviate this problem). However, in the following we will show that choosing the exact

right form of the covariance kernel is not essential for a good alignment.

The hyperparameters which govern the full conditional distribution of τ are α and β. We

choose β = 0.05 which yielded good results in pilot runs: larger values for β mask the

impact of the discrepancy on the proposed values for τ whereas smaller values increase

the full conditional mean of τ and therefore the probability of getting trapped in a local

mode (cf. Section 3.5.3). The same reasoning applies for the chosen value of α = 200.

In the pilot runs it became obvious that the value for the penalty parameter ζ has a big

impact on the alignment result. We therefore include ζ as a variable parameter in our

simulation study and consider ζ = {10, 50, 90}.

Simultaneous inference about the rigid�body parameters, the precision parameter and

the mask vectors is a di�cult task and it is not surprising that the MCMC algorithm

sometimes gets trapped in a local mode. To overcome this di�culty, we propose a big

change of the rigid�body parameters by increasing the standard deviations of the random

walk proposals to 60◦ (rotation) and 0.3 (translation) every 125 iterations. Moreover,

we restart the algorithm if the Carbo distance exceeds 0.3 after 7,500 iterations.
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3.6 Simulation Study

3.6.3 Results

For each of the 36 pairs A and B, we use all three values of ζ so that we consider 108

MCMC runs. For each run, the starting position of the movable point set B is ob-

tained by rotating and translating it using Γ(θ0) and γ0, where θ0 and γ0i (i = 1, 2)

are uniformly distributed on [−20◦, 20◦] and [−0.1, 0.1], respectively. Moreover, both

mask vectors are initiated using λMi ∼ Bernoulli(0.5) (i = 1, . . . , kM; M = A,B). Figures

3.4-3.6 show the typical output of a successful run. As described in Section 2.3.4, the

convergence of the MCMC algorithm can be monitored by the trace plots of the involved

parameters. The trace plots in Figures 3.4 and 3.5 indicate that the algorithm converges

quickly. This is due to the interplay between the precision parameter τ and the Kernel

Carbo distance described in Section 3.5.3 which can be observed in the left�hand side

and right�hand side plot of the bottom row of Figure 3.4. Obviously, this interplay leads

to a steady increase of the posterior distribution (3.13).

Figure 3.4: Top Row: Trace plot of the rigid�body parameters (in terms of the initial
relative position of the two points sets under consideration). Bottom row: Trace plots
of the precision parameter, the log�posterior (up to a constant) and the Kernel Carbo
discrepancy. In all plots, every 100th simulated value is displayed.
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The top row of Figure 3.5 shows the trace plots for the number of points
∑kA

i=1 λ
A
i and∑kB

i=1 λ
B
i which are involved in the �eld calculation and are hence considered to belong

to Atrue and Btrue, respectively. Like the other parameters, these values also converge

quickly. A (post burn�in) summary of the two mask vectors is displayed in the bottom

row of Figure 3.5. The big circles show the mean values of the binary entries over all

post�burn in iterations. As the entries of the corresponding mean vectors λ̄A and λ̄B

take values between zero and one, they can be interpreted as the estimated posterior

probability of the corresponding point belonging to the matching part of the point sets.

Moreover, the small circles display the mask vectors which are observed at the maximum

a posteriori (cf. Section 2.3.3) iteration. For the example considered here, the true mask

vectors are λTM = (1T80,0
T
12) (M = A,B), and the algorithm is able to reconstruct the

mask vector very well for both point sets.

Figure 3.5: Top Row: Trace plots of the number of points involved in the �eld calcula-
tion. Bottom Row: Two possible point estimates for the mask vectors of A (left) and B
(right). The big circles show the mean values of the (0,1)�entries for the masks vectors
(which can be interpreted as the estimated posterior probability for the corresponding
point to belong to the common reference �eld), and the small circles display the observed
mask vectors at the MAP iteration. The total number of points in A and B is 92, and
the last 12 points in each set are contamination points.
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One way to assess the performance of the alignment procedure numerically is to use the

MAP estimates of the rigid�body parameters to transform the moveable point set B

from its initial position to the MAP position and to determine the closeness of the MAP

position to the position which was originally generated as described in Section 3.6.1.

The closeness can be determined by the root mean squared deviation (RMSD) of the

corresponding con�guration matrices XMAP
B ∈ IRkB×2 and Xorig

B ∈ IRkB×2, i.e.

RMSD (XMAP
B ,Xorig

B ) =

√√√√ 1
kB

kB∑
i=1

||xBi,MAP
− xBi,orig||2,

where xBi,MAP
and xBi,orig denote the xy�coordinate vectors of the ith point in the corre-

sponding con�guration matrix. For our example, Figure 3.6 shows the initial (left) and

the MAP (right) position of B. In both cases, the original position is displayed in grey.

The MCMC algorithm is able to reproduce the original position very well. Here, the

RMDS�value is reduced from 0.479 to 0.032 by the alignment algorithm.

In the following, we choose a RMSD�value of 0.1 as a benchmark for a successful align-

ment. With this benchmark, 76% of the runs can be considered as successful. As ex-

pected, the best performance (89% success rate) is achieved with ktrue = 80 and kcont = 4.

If the nearness parameter is in addition chosen as κ = 1, 100% of the MCMC runs are

Figure 3.6: Successful alignment: The left�hand side shows the initial position of point
set B and the right�hand side shows the position of B at the MAP iteration. Like in
Figure 3.2 the colours correspond to the values of the marks. The original position is
displayed in grey on both sides.
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successful. The most di�cult setting is ktrue = 40 and kcont = 6 with a success rate of

44%. If in addition κ = 4, this combination yields a success rate of only 22%. Overall,

the number of contamination points has the biggest impact on the results as the success

rate drops from 92% for kcont = 0.05ktrue to 53% for kcont = 0.15ktrue. The impacts of the

nearness parameter and the penalty parameter in this setting are considerable as well:

85% for κ = 1 and 67% for κ = 4, and 61% for ζ = 10, 81% for ζ = 50 and 86% for

ζ = 90.

The above results point out that a satisfactory alignment can be obtained if the number of

non�contamination points is large enough to represent the main features of the underlying

reference �eld and large relative to the number of contamination points. Moreover,

especially when the number of points is small and the sampling of the reference �eld is

sparse, it is important that the non�contamination points in A and B represent the same

features of the reference �eld (which is not always the case if ktrue = 40 and κ = 4). From

an algorithmic point of view, large values for the penalty value ζ are favourable as they

prevent the algorithm from converging to solutions with a low Kernel Carbo distance

mainly by dismissing relevant points from the �eld calculation.

All the above trends can be emphasised by rerunning the experiments using θ ∼ U[−60◦,60◦]

and γi ∼ U[−0.3,0.3] (i = 1, 2) to obtain the starting position of B. In this more challeng-

ing setting, 48% of the 108 runs can be classi�ed as successful, and the sampling scheme

for the point sets drastically in�uences the success rate as it ranges from 83% (ktrue = 80

and kcont = 4) to 17% (ktrue = 40 and kcont = 6). The impact of the penalty parameter in

this setting can be summarised as: 33% for ζ = 10, 47% for ζ = 50 and 61% for ζ = 90.

In both settings, the performance of our alignment procedure can be much improved if

there are some points in A and B which can be identi�ed as non�contamination points

prior to the alignment because in that case, the corresponding entries of the mask vectors

can be �xed to one. For our examples, identifying some relevant points (on average 12

per point set) improves the overall success rate from 76% to 93% in the �rst setting

and from 48% to 78% in the second setting. In many applications it may be possible to

identify some relevant points so that the possibility of incorporating this knowledge is a

valuable tool to improve the alignment in practice.
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Finally, we rerun the above experiments with di�erent values for the range parameter ρ.

For example with ρ = 0.3 (displayed as the blue line in Figure 3.1), overall success rates

of 77% in the �rst and 48% in the second, more challenging setting are achieved, and for

ρ = 0.1 (displayed as the green line in Figure 3.1), the corresponding success rates are

77% and 52%. These results demonstrate that choosing the correct covariance function

for the spatial interpolation is not crucial for the performance of the algorithm.

3.7 Summary

In this chapter we proposed a novel method for aligning two unlabelled marked point

sets which is based on the assumption that both point sets are noisy pointwise observa-

tions of a common hidden reference �eld. The main di�erence between our methodology

and previous approaches to the problem is that we use spatial interpolation of the given

marks to obtain a continuous representation of the point sets. Within the framework of

reproducing kernel Hilbert spaces and by using the Carbo index from structural bioin-

formatics, a similarity index of the two points sets can be formulated in terms of the

predicted �elds. This has the advantage that point correspondences do not need to be

estimated.

The actual alignment is carried out within the MCMC framework. This enables us to

incorporate mask vectors which automatically determine the matching regions of the

considered point sets whilst ignoring the rest which helps to reduce the level of noise in

the alignment procedure. Our alignment method works well in a simulation study � in

particular if the point sets satisfy a certain nearness criterion which measures whether

or not they represent the same features of the hidden reference �eld.

In the next chapter, we will apply the algorithm to the steroid data described in Section

1.1.3. In the context of structural alignment of molecules, it is also of interest to align

several molecules simultaneously. We will therefore also propose an extension of the

method described in this chapter which can carry out an alignment of multiple unlabelled

marked point sets.
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Chapter 4

Bayesian Alignment of Continuous Molecular

Shapes

As described in Chapter 1, the concept of molecular similarity is of great importance

in rational drug design because similar molecules can be expected to exhibit a similar

drug potency. As molecular data are often given in the form of unlabelled marked point

sets where the individual points represent the position of atoms within the molecules

and the marks are some additional properties such as partial charge values which have

been measured at the atom locations, the (partial) Kernel Carbo index and the MCMC

scheme developed in the previous chapter can directly be utilised to obtain a shape�based

similarity index for molecules.

In particular if all molecules of the given dataset bind to the same receptor, the as-

sumption of a common underlying reference �eld is suitable for this application because

the underlying reference �eld can in that case be interpreted as a negative imprint of

the binding pocket of the receptor. The MCMC scheme described in Section 3.5 then

determines the parts of each molecule which �t into the binding pocket and aligns the

molecules based on these parts only so that the resulting relative position should re-

produce the relative binding positions of the molecules. Moreover, using a �eld�based

representation of the molecules is not only bene�cial in that correspondences between

atoms of di�erent molecules do not need to estimated. It also provides a possibility to

account for the continuous, fuzzy nature of a molecule.
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4.1 Structural Alignment of Molecules � Literature Review

Section 4.1 provides a brief literature review of previously proposed molecular alignment

techniques and points out similarities and di�erences to our method. In Section 4.2, we

apply our methodology to the steroid dataset and show that resulting similarity values

are chemically relevant in that they are associated with the di�erences in the binding

activity to the common receptor protein. To investigate this fact further and assess

where around the molecular skeletons the di�erences occur, we propose an extension of

our superposition algorithm which can perform an alignment of multiple marked point

sets in Section 4.3. We apply this extension to the steroid data in Section 4.4. Section

4.5 provides a summary of the main points in this chapter.

4.1 Structural Alignment of Molecules � Literature Review

As molecular recognition is inherently a three�dimensional phenomenon, most similarity

indices and their associated methods for structural molecular alignment are based on

comparing the three�dimensional geometrical features of the molecules of interest. These

methods generally fall into three categories, namely atom�based methods, methods which

are based on hard�sphere representations of the involved molecules, and �eld�based

methods.

Atom�based methods mainly utilise the con�guration matrix XM of each molecule for

determining a suitable superposition. Additional information from the marks is not nec-

essarily required but can be used to improve the superposition results. From a statistical

point of view, atom�based alignment of molecules therefore is the problem of aligning

unlabelled point sets. The relevant approaches have already been described in Section

3.2, and the links to our alignment methodology have been pointed out.

Hard�sphere models for molecular shape treat a molecule as a set of intersecting spheres

centred at the atom position. The most common choice for the associated radii is the

van der Waals radii. In a hard�sphere model, the volume of a molecule is usually de�ned

as the volume of the union of the van der Waals spheres which can be calculated based
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4.1 Structural Alignment of Molecules � Literature Review

on the inclusion�exclusion principle (e.g. Hall, 1998, pp.8) as

V (M) = V (∪ SMi ) =
∑
i=1

V (SMi )−
∑
i<j

V (SMi ∩ SMj ) +
∑
i<j<k

V (Si ∩ SMj ∩ SMk )− . . . , (4.1)

where SMi denotes the van der Waals sphere of the the ith atom in M whose radius is

equal to the corresponding van der Waals radius rMi (i = 1, . . . , kM). Based on their van

der Waals volumes, the similarity of two molecules A and B in a certain relative position

can then be de�ned as the volume of their overlapping parts

VAB
(
Γ,γ

)
= V (A ∩ B) = V (A) + V (B)− V (A ∪ B). (4.2)

This overlap volume is a special case of (3.1) where the marks of the two molecules

(point sets) are the van der Waals radii. A rotation/translation invariant similarity can

therefore be obtained by maximising (4.2) with respect to rotation and translation (e.g.

Masek et al., 1993).

It can be argued (e.g. Mezey, 1995) that both the atom�based and the hard�sphere

methods do not re�ect the true nature of the involved molecules which are in fact fuzzy

bodies of electronic clouds whose electron density fades away gradually with the distance

from the molecular skeleton. To account for the fuzziness of molecular bodies, Grant &

Pickup (1995) de�ne a molecular density as

ρGM(x) =
∑
i

ρGM,i(x)−
∑
i<j

ρGM,i(x)ρGM,j(x) +
∑
i<j<k

ρGM,i(x)ρGM,j(x)ρGM,k(x)− . . . , (4.3)

where ρG
M,i(x) = γMi exp(−αMi ||x − xMi ||2) is an isotropic Gaussian function centred at

the ith atom position xMi . With this de�nition, the modi�ed molecular volume becomes

V G(M) =
∫
ρGM(x)dx which is a direct generalisation of V (M) as (4.1) can be written in

the same form as (4.3) but using the step functions ρHS
M,i(x) = I{||x−xMi ||≤rMi }

. Grant &

Pickup (1995) choose the parameters γMi and αMi of each ρG
M,i(.) so that the new �volume�

of the ith atom matches that of the corresponding van der Waals sphere, i.e.∫
ρGM,i(x)dx =

∫
ρHSM,i(x)dx = V (SMi ) = 4

3πr
M
i

3, i = 1, . . . , kM.

The Gaussian version V G(M) of the molecular volume therefore resembles the hard�
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sphere version V (M). However, V G(M) is based on a softer description of the molecular

density which is more in line with the true nature of a molecule. In a follow�up paper,

Grant et al. (1996) use the above de�nitions to obtain a similarity measure for two

molecules A and B in a certain relative position as

V G
AB(Γ,γ) =

∫
ρGA(x)ρGB(x)dx,

which again is a special case of (3.1) so that optimising over rotation and translation

provides a rotation/translation invariant similarity index.

The work by Grant et al. (1996) can be viewed as a link between molecular alignment

techniques which are based on hard�sphere representations of molecular shapes and the

family of �eld�based methods where each molecule M (M ∈ {A,B}) is represented

as a �eld PM(x) of a molecular property P over IR3. One possible use of the �eld

representations is to obtain sets of isosurfaces which can be compared using topological

considerations (e.g. Mezey, 1993). More commonly, however, the �elds are compared

over the entire space IR3 using overlap�based functions such as the (L2�)Carbo function

CL2
AB(Γ,γ) =

∫
PA(x)PB(x)dx( ∫

P 2
A(x)dx

)1/2( ∫
P 2
B(x)dx

)1/2 (4.4)

whose kernelised version we utilise in our alignment method (cf. Section 3.4). For an

overview of other �eld�based similarity indices see for example Petke (1993).

The (L2�)Carbo index has originally been proposed to assess the similarity of two mole-

cules with respect to their electron density. Despite having the virtue of being �rmly

grounded in quantum chemistry, the electron density of a moleculeM is hard to calculate

and was soon to be replaced by an approximation of the form

PQ
M(x) =

kM∑
i=1

qMi
||x− xMi ||

, (4.5)

where xMi denotes position of the ith atom of M and qMi denotes the associated partial

charge value. Similar to the kriging�based evaluation of �elds described in Section 3.3,

the �eld (4.5) is obtained as a linear combination of the given marks (i.e. the partial
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charge values in this case). However, the weights in (4.5) are the inverse distance weights

which contain less information than the kriging weights in (3.7). Moreover, if the �elds

PQ
A (x) and PQ

B (x) of two molecules A and B are inserted into (4.4), the overlap integral

in the numerator cannot be evaluated without expensive numerical calculations.

To overcome the latter drawback, Good et al. (1992) propose a further approximation

to the electron density and replace the inverse distance weights in (4.5) by a series of

isotropic Gaussian functions, i.e.

P̃Q
M(x) =

kM∑
i=1

qMi
(
γ̃M1 exp{−α̃M1 ||x− xMi ||2}+ . . .+ γ̃MnG exp{−α̃MnG ||x− x

M
i ||2}

)
. (4.6)

For a given order nG of the Gaussian expansion, the coe�cients α̃Mk and γ̃Mk are chosen

to optimally �t the inverse distance terms in a least�squares sense. The resulting values

for nG ≤ 3 can be found in Good (1995). If the above approximation of the electron

density is inserted into (4.4), then both the numerator and the denominator reduce to

a series of two-centre Gaussian overlap integrals which can be solved analytically. The

required optimisation over rotation and translation can therefore be carried out using

gradient�based methods (McMahon & King, 1997).

The above shows that Gaussian functions play an important role in the �eld�based

structural alignment of two molecules as the overlap integral of two Gaussians can be

evaluated analytically. Another method which makes use of Gaussian functions is the

SEAL (Steric and Electrostatic Alignment) method proposed by Kearsley & Smith (1990)

where two molecules A and B are aligned by maximising the similarity index

SSEAL
AB (Γ,γ) =

kA∑
i=1

kB∑
j=1

wij exp
(
−αSEAL||xAi − (ΓxBj + γ)||2

)
(4.7)

with respect to rotation and translation. The weights wij are thereby chosen to be

weighted averages of the electrostatic and steric properties of atom i in A and atom j in

B, i.e. ωij = wQq
A
i q

B
j +wSvAi v

B
j , where q

M
i denotes the partial charge value associated with

the ith atom position in molecule M and vMi denotes some power of the corresponding

van der Waals radius rMi .
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Despite not being explicitly based on the overlap of two molecular �elds in a certain

relative position, it is the SEAL function which is most directly related to our proposed

kriging�based Kernel Carbo similarity index (3.9). To see this consider two unlabelled

marked point sets A = {zA(xA1 ), . . . , zA(xAkA)} and B = {zB(ΓxB1 +γ), . . . , zB(ΓxBkB+γ)}.

If the kriging is performed based on the Gaussian covariance function

σG(h) = σ2 exp{−||h||2/ρ2}, (4.8)

(which is another special case of a Matérn covariance function (3.19) with ν →∞), then

the kriged �elds have the form

ẐA(x) = σ2
kA∑
i=1

wA
i exp{||xAi − x||/ρ2} and ẐB(x) = σ2

kB∑
i=1

wB
i exp{||(ΓxBi + γ)− x||/ρ2},

where the weight wM
i denotes the ith element of the weight vector wM = Σ−1

M zM with

(Σ)Mij = σ2 exp{−||xMi − xMj ||2/ρ2} (M ∈ {A,B}). In that case the (L2�)Carbo index

becomes

CL2
AB(Γ,γ) =

∑kA
i=1

∑kB
j=1w

A
i w

B
j exp

{
−||xAi − (ΓxBj + γ)||2/(2ρ2)

}
NANB

, (4.9)

where NM =
(∑kM

i=1

∑kM
j=1w

M
i w

M
j exp{−||xMi − xMj ||2/(2ρ2)}

)1/2
M ∈ {A,B}. Note that

if the Gaussian covariance function is used, then the (L2�)Carbo index of the kriged �elds

(4.9) is almost identical to its kernelised version which is of the same form but without

the factor two in the denominator term within the exponential function. This is a special

feature of the Gaussian covariance function which in turn makes the numerator of both

the (L2�)Carbo index and its kernelised version very similar to the SEAL objective

function (4.7) if kriging is used to construct the molecular �elds.

The SEAL method is well�established in the structural alignment community so that

the similarity of its objective function to our kriging�based (partial) Kernel Carbo index

is reassuring. While it does not allow for the possibility that only parts of the molecules

match, the SEAL method does provide the opportunity to incorporate two molecular

properties, namely the steric properties in the form of the van der Waals radii and the

electrostatic properties in the form of the partial charge values. The same concept of

71



4.2 Application to the Steroid Molecules

using a weighted average of multiple properties can also be applied to the (partial) Kernel

Carbo index, and for the following application we introduce a multivariate version of

(3.12) which is obtained by �rst calculating the univariate indices separately, and then

calculating a weighted average where the weights are positive and normalised to sum

to one. The resulting multivariate partial Kernel Carbo index therefore takes values

between minus one and one like its univariate equivalent and can therefore be directly

transformed to a distance and utilised within the MCMC scheme in the same way.

4.2 Application to the Steroid Molecules

We now consider the application of our alignment method for unlabelled marked point

sets to the steroid data. As described in Section 1.1.3, the (numerical) marks provided

at the atom location for each of the 31 steroid molecules in this dataset are the van der

Waals radii and the partial charge values. Moreover, the unit of the xyz�coordinates is

Å (Ångström). As the alignment carried out by the MCMC algorithm is asymmetric in

the sense that molecule A is treated as �xed and the other molecule B as moveable, we

carry out each of the 930 (31·30) possible pairwise superpositions.

4.2.1 Hyperparameter Settings

For each superposition, 10,000 MCMC iterations are used, and each iteration contains �ve

blocks updating rotation, translation, precision, and the two mask vectors, respectively.

In an initial phase of the MCMC algorithm, we use the information about both the

partial charge values and the (cubed) van der Waals radii by calculating a bivariate

partial Kernel Carbo index as described above. Both univariate indices are thereby

based on the Gaussian covariance function (4.8). As the variance parameters cancel out,

they do not need to be estimated. Assuming that the electrostatic �eld which gives rise

to the partial charge values of the molecules has the same covariance structure across

the given steroids, the range parameter ρ for the electrostatic �eld is estimated by visual
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4.2 Application to the Steroid Molecules

inspection of a pooled empirical semivariogram function of all 31 considered molecules

(cf. Section 2.2.1.2) where �pooled� means that the semivariogram clouds of all molecules

are combined before the distance classes are obtained. Doing so yields a range parameter

of ρ2
Q = 40.33, and the range of the steric �eld is taken to be the largest van der Waals

radius in the data set, i.e. ρ2
S = 8.67.

The initial phase for each pairwise superposition comprises nI = 2, 000 MCMC iterations

during which the relative weights of the univariate partial Kernel Carbo indices are chosen

dynamically as

wQ =
nI − i
nI

and wS =
i

nI
, i = 1, . . . , nI. (4.10)

The electrostatic �eld are therefore only used for an approximate alignment and their

impact fades out as the algorithm proceeds. This has a similar e�ect to decreasing the

range of a univariate partial Kernel Carbo index dynamically as we did in the simulation

study in Section 3.6 and helps the algorithm home in on a good solution. In the molecular

context, however, the above bivariate method has the advantage that it directly mimics

real�life molecular recognition where the long�range electrostatic attraction governs the

initial approach of the molecules whereas the short�range repulsive steric forces gradually

take over and become the chief manipulator for the binding a�nity (e.g. Richards, 1993).

After the initial 2,000 iterations, the alignment is adjusted using the steric �elds only.

For reasons outlined in Section 3.6, we use α = 31 and β = 0.04 which worked well

in pilot runs. Based on these pilot runs we also choose the penalty parameter value

ζ = 3. As standard deviations of the proposal distributions we use η1 = 3.25◦ for the

rotation parameters and η2 = 0.5Å for the translation parameters, and these values en-

sure acceptance rates between 20% and 40%. The standard deviation for the rotation

parameters is thereby in line with previously described proposal distributions for rota-

tion parameters in the molecular context (e.g. Green & Mardia, 2006). We de�ne the

initial relative position of the two molecules by �rst aligning both molecules along their

principal axes. We then translate and rotate the random test molecule using γ0 and

Γ(θ0) where γ0i (i = 1, 2, 3) and θ0i (i = 1, 2, 3) are uniformly distributed on [−5Å, 5Å]

and [−90◦, 90◦], respectively.
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4.2 Application to the Steroid Molecules

In the majority of the 930 cases, the algorithm converges quickly. However, like in the

simulation study, the algorithm can sometimes get trapped in a local mode (which mostly

corresponds to an alignment along the wrong principal axes in this application) so that

a restart is necessary. We restart the algorithm if the sum of the 10% smallest distances

between atoms of the test and reference molecule exceeds 400 Å after 1,500 iterations

or if the mean of the Carbo distance values between iteration 3,000 and 4,000 exceeds

0.1. The latter can thereby be interpreted as a convergence criterion whereas the �rst is

merely used as an early detector for an alignment along the wrong principal axes.

4.2.2 Example Run

Figure 4.1 shows an example result where aldosterone has successfully been superimposed

onto androstanediol (cf. also Figure 1.1). The top row shows orthographic views of the

initial relative position of the two molecules, and the relative position according to the

Figure 4.1: Successful alignment of two steroid molecules: Orthographic views of the
starting position (top row) and the MAP position (bottom row) for the alignment of
aldosterone and androstanediol are shown. The carbon rings are displayed as solid lines,
and the remaining atoms are shown as circles (aldosterone) and crosses (androstanediol).
The unit of all axes is Ångström (Å).
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4.2 Application to the Steroid Molecules

MAP estimates of the rigid�body parameters after a burn�in period of 3,500 iterations are

displayed in the bottom row. The trace plots for this superposition are shown in Figures

4.2 and 4.3. The MCMC chain converges quickly and the trace plots show a similar

behaviour as the corresponding plots obtained in the simulation study (cf. Figures 3.4 and

3.5). In this example, the acceptance rate for the rotation parameters is 37.95%, proposed

translation vectors were accepted for 21.50% of the iterations, and the acceptance rates

for the mask vectors λA and λB are 34.40% and 34.81%, respectively. Moreover, inserting

the MAP estimates of the rigid�body parameters and the mask vectors into the Kernel

Carbo discrepancy (3.14) yields D̂MAP(A,B) = 0.027.

In order to obtain a similar value D̂mean(A,B) based on the estimates of the posterior

mean values of the rigid�body and mask parameters, a threshold must be de�ned for

the entries of the (post burn�in) mean mask vectors λ̄A and λ̄B which are displayed

as big circles in the bottom row of Figure 4.2. Based on the observation that entries

λ̄Mi (M ∈ {A,B}, i ∈ {1, . . . , kM}) below a threshold of pcrit = 0.7 appear as outliers

Figure 4.2: Trace plots and (post burn�in) posterior summary statistics of the mask
vectors for the superposition of aldosterone and androstanediol: The top row shows the
trace plots of the number of matching atoms in both molecules, and the bottom row
shows the MAP (small circles) and the posterior mean (big circles) estimates of the
corresponding mask vectors.
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in most of the 930 performed superpositions, we set all entries below 0.7 to zero and

all entries above 0.7 to one to obtain thresholded posterior mean estimates of the mask

vectors which can then be inserted into (3.14). Doing so for the considered example

yields D̂mean(A,B) = 0.012. From a decision theoretical point of view (cf. Appendix C),

choosing a threshold of pcrit = 0.7 for the mean mask vectors thereby indicates that we

consider a false inclusion of an atom as worse than a false exclusion which is readily

justi�ed by the fact that falsely including atoms can distort an alignment more severely

than falsely omitting relevant atoms.

Figure 4.3: Trace Plots of the scalar parameters for the steroid application: The top
two rows show the trace plots for the Euler angles and the translation parameters,
respectively. The bottom row shows the plots for the precision parameter, the resulting
log�posterior density values and the Kernel Carbo discrepancy. Like in Figure 3.4, the
interplay between the discrepancy and the precision parameter is clearly visible.
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4.2 Application to the Steroid Molecules

Table 4.1: Prior sensitivity of the alignment of aldosterone and androstanediol: The im-
pact of the penalty parameter (top part) and α (bottom part) on the marginal posterior
distribution of the parameters of interest. The credibility intervals are based on every
20th value of MCMC period.

ζ 95% CI for τ 95% CI for
∑

j λ
A
j 95% CI for

∑
j λ

B
j

2 (226.62, 543.78) (34, 46) (34, 45)

3 (230.93, 543.30) (37, 49) (38, 48)

4 (250.69, 562.65) (40, 51) (40, 49)

5 (244.67, 548.41) (41, 51) (42, 51)

α 95% CI for τ 95% CI for
∑

j λ
A
j 95% CI for

∑
j λ

B
j

21 (102.53, 315.95) (36, 48) (37, 48)

31 (221.14, 515.13) (38, 49) (38, 49)

41 (344.68, 770.30) (38, 48) (39, 49)

51 (432.36, 1010.77) (35, 48) (37, 50)

4.2.3 Prior Sensitivity

To investigate the sensitivity of the alignment to the prior distributions, we again consider

the alignment of aldosterone and androstanediol. The top part of Table 4.1 shows how

di�erent values of the penalty parameter ζ a�ect the empirical (post burn�in) 95%

credibility intervals of the number of included atoms for both molecules; cf. Section 2.3.3.

As expected, the total number of included atoms increases with ζ. As the two molecules

in the example run are structurally very similar, they can be aligned more closely if

more atoms are included so that the credibility interval for the precision parameter τ

is shifted towards higher values as ζ increases. After a certain threshold, however, even

larger values for the penalty parameter force the algorithm to include more atoms in the

similarity calculations than desired and the precision decreases. Moreover, the bottom

part of Table 4.1 shows that � in terms of the number of included atoms � the algorithm

is robust against changes of α. Also, as the posterior mean and variance of the precision

parameter directly depend on α, the credibility intervals for τ become wider and get

shifted towards higher values as α increases.

We do not include a prior sensitivity analysis of β as decreasing β has the same e�ect on

the algorithm as increasing α and vice versa. These contrary e�ects become clear from the
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�rst and second posterior moments of the precision parameter τ , cf. (3.18). The bottom

part of Table 4.1 therefore inherently covers a prior sensitivity analysis with respect to

β. However, as mentioned in Section 3.5.3, it is vital that β is not substantially larger

than discrepancy values which result from a good superposition because the interplay

between the precision parameter and the discrepancy could not take place in such a case.

4.2.4 Chemical Relevance of the Results

As mentioned in Section 1.1.3, Good et al. (1993) classi�ed each steroid according to its

binding activity towards the CBG receptor as 1 (high), 2 (intermediate), or 3 (low). The

pairwise distances which result from the 930 superpositions can therefore be regarded

as chemically meaningful if they re�ect the membership of the steroid molecules to the

three activity classes, i.e. if steroids within an activity class can be aligned more closely

than those from di�erent activity classes. In terms of our assumption about a common

underlying reference �eld, such a result would indicate that there are actually three dif-

ferent reference �elds which exhibit di�erent small scale variations and hence di�erent

abilities to �t into the protein binding pocket.

Figure 4.4: Dendrograms of the partial Kernel Carbo distances for the steroid molecules:
The left�hand side dendrogram is based on Dmean(.), and the dendrogram on the right�
hand side is calculated using DMAP(.). The labels correspond to the activity classes of
the steroids (1=high, 2=intermediate, 3=low).
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We assess the chemical relevance of our results by performing two cluster analyses using

Ward's (1963) method. To account for the asymmetry in our alignment method, the

applied pairwise dissimilarity measures for two molecules A and B are thereby based on

both the MCMC run which superimposes A on B and the MCMC run which superim-

poses B on A. In particular, we use

D̃mean(A,B) =
√
D̂mean
A→B D̂mean

B→A and D̃MAP(A,B) =
√
D̂MAP
A→B D̂MAP

B→A,

where the arrow denotes the direction of the superposition and, as above, �mean� and

�MAP� indicate which type of (post burn�in) point estimate for the parameters is inserted

into the Carbo distance (3.14).

Figure 4.4 shows the dendrograms resulting from the cluster analyses. The graph on

the left�hand side is based on D̃mean(.), and the right�hand side shows the dendrogram

calculated using D̃MAP(.). The labels on both sides correspond to the activity classes

of the steroid molecules. It is notable that both distance measures lead to a very good

separation of high and low activity steroids. In particular, the cluster analysis based

on D̃MAP(.) is at the highest level able to separate these two activity classes completely.

Overall, our distance can separate the activity classes as well as the distance which Dry-

den et al. (2007) found to have the highest separation power, and it clearly outperforms

the other distances de�ned in their paper.

4.3 Multiple Alignment of Unlabelled Marked Point Sets

The above dendrograms indicate that it is plausible to assume that there are at least

two di�erent reference �elds underlying the steric properties of the steroid data. It is

therefore of interest to determine these �elds and examine where di�erences occur as they

could give rise to the di�erent binding activities. In this section, we therefore propose

an extension of our pairwise alignment method for unlabelled marked points based on

which the mean �elds of the di�erent activity classes can be determined.
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4.3 Multiple Alignment of Unlabelled Marked Point Sets

In the multiple alignment problem, the objective is to simultaneously superimpose n

unlabelled marked point sets M1, . . .Mn which are recorded in a certain position, i.e.

Mi = {zMi(Γixi1 + γi), . . . , z
Mi(Γixiki

+ γi)}, i = 1, . . . , n,

where xil denotes the coordinate vector of the lth point in Mi (l = 1, . . . , ki), zMi(xil)

denotes the corresponding mark, and Γi ∈ SO(m) and γi ∈ IRm de�ne the position

of Mi. Recall that Γi = Γ(θi), where θi is a (m(m − 1)/2)�vector of Euler angles.

Previous approaches to simultaneously aligning several unlabelled marked point sets

include Dryden et al. (2007) and Ru�eux & Green (2009) which provide generalisations

of the methods described in Section 3.2. Here, we adapt the generalised Procrustes

analysis (GPA) algorithm for discrete landmark data (cf. Appendix A) to our �eld�based

approach.

To do so, let λi ∈ Λki
denote a �xed mask vector for the ith point set where, as before,

Λki
denotes the space of ki�vectors with entries of either zero or one. Further suppose

that simple kriging is performed using a positive de�nite covariance function σ(.). The

corresponding normalised predicted �eld then has the form

Z̃i(x;λi,θi,γi) =
∑
l:λi

l=1

w̃li(λi)σ
(
(Γixil + γi)− x

)

where λil denotes the lth entry of λi, and w̃li(λi) denotes the corresponding normalised

kriging weight which is de�ned using the norm ||.||Hσ as in (3.12).

In the classical GPA context, the aim is to �nd an alignment of the given objects (con-

�guration matrices) which minimises the sum of their pairwise distances as measured by

(2.8), and if the objects are commensurate in scale, then a partial GPA can be carried

out where the scaling parameters are �xed to one. A similar goodness of �t criterion for

the multiple superposition of n unlabelled marked point sets in terms of their predicted

(masked) �elds can be formulated as

C(θ,γ,λ) =
n−1∑
i=1

n∑
j=i+1


∑
l:λi

l=1

∑
l′:λj

l′=1

w̃li(λi)w̃
l′
j (λj)σ

(
(Γixil + γi)− (Γjx

j
l′ + γj)

)
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=
n−1∑
i=1

n∑
j=i+1

< Z̃i(x;λi,θi,γi), Z̃j(x;λj ,θj ,γj) >Hσ , (4.11)

where λT = (λT1 , . . . ,λ
T
n ) ∈ ΛP

i ki
, θT = (θT1 , . . . ,θ

T
n ) ∈ IRm(m−1)n/2 and γT =

(γT1 , . . . ,γ
T
n ) ∈ IRmn denote the stacked vectors of the involved mask, rotation and

translation parameters, respectively. For the multiple alignment of M1, . . . ,Mn we want

to maximise (4.11) with respect to the m(m− 1)n/2 +mn+
∑

i ki parameters.

From the bilinearity property of an inner product it follow that

C(θ,γ,λ) =
n−1∑
i=1

n∑
j=i+1

< Z̃i(x;λi,θi,γi), Z̃j(x;λj ,θj ,γj) >Hσ

=
1
2

n∑
i=1

∑
j 6=i

< Z̃i(x;λi,θi,γi), Z̃j(x;λj ,θj ,γj) >Hσ

=
1
2

n∑
i=1

< Z̃i(x;λi,θi,γi),
∑
j 6=i

Z̃j(x;λj ,θj ,γj) >Hσ

∝ 1
n

n∑
i=1

< Z̃i(x;λi,θi,γi), Z̃(i)(x;λ(i),θ(i),γ(i)) >Hσ ,

where Z̃(i)(x;λ(i),θ(i),γ(i)) is a �normalised mean �eld� of all but the ith point set, i.e.

Z̃(i)(x;λ(i),θ(i),γ(i)) =
1

n− 1

∑
j 6=i

∑
l:λj

l =1

w̃jl (λj)σ
(
(Γjx

j
l + γj)− x

)
,

where θT(i) = (θT1 , . . . ,θ
T
i−1,θ

T
i+1, . . .θ

T
n ), γT(i) = (γT1 , . . . ,γ

T
i−1,γ

T
i+1, . . .γ

T
n ) and λT(i) =

(λT1 , . . . ,λ
T
i−1,λ

T
i+1, . . .λ

T
n ). It therefore follows that (4.11) can be decomposed as

C(θ,γ,λ) ∝ 1
n

n∑
i=1

C(i)(θi,γi,λi;θ(i),γ(i),λ(i)),

where C(i)(θi,γi,λi;θ(i),γ(i),λ(i)) denotes the partial Kernel Carbo index between the

normalised �eld Z̃i(x;λi,θi,γi) ofMi and Z̃(i)(x;λ(i),θ(i),γ(i)). Due to this decomposi-

tion, the optimisation of the overall partial Kernel Carbo index C(θ,γ,λ) can therefore

be carried out stepwise by maximising C(i)(θi,γi,λi;θ(i),γ(i),λ(i)) in turn. The vectors

θ(i), γ(i) and λ(i) are thereby kept �xed at each step.
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4.4 Simultaneous Alignment of the Steroid Molecules

An optimisation of C(θ,γ,λ) is di�cult so we replace it by posterior inference within the

MCMC scheme developed for the pairwise alignment. As before, the choice of the prior

distribution for the precision parameter τ determines how much the algorithm pushes

the estimates of the other model parameters towards the posterior mode. An iterative

stochastic optimisation of the normalised �elds Z̃i(x) can therefore be formulated by

employing a �large precision version� of the MCMC algorithm for the pairwise align-

ments and then using the obtained MAP estimates to determine a new mean �eld. This

procedure will in practice decrease C(θ,γ,λ) at every step and can be repeated until a

convergence criterion is met.

Algorithm 4.1 summarises our �eld GPA algorithm. As the objective of the multiple

alignment is to �nd the features common to all or most of the objects, the algorithm

superimposes each point set on the smallest (in terms of the number of points) one in the

data set as a �rst step. Contrary to the pairwise alignment which started at a random

place in the parameter space, this initialisation will be close to the global optimum which

justi�es the use of the large prior mean for the precision values.

4.4 Simultaneous Alignment of the Steroid Molecules

In this Section, we apply Algorithm 4.1 to the steroid molecules with the aim of obtaining

the mean steric �elds for each of the three activity groups. As a �rst step, the algorithm is

applied to the entire set of the 31 steroids which is useful to determine the overall optimal

relative position of the molecules. The pairwise superpositions carried out in step 1 are

thereby performed as described before but with ζ = 2 to incorporate the knowledge

that the reference molecule in all superpositions has a small number of atoms. The

superpositions on the mean �elds (step 7) are obtained using only the discrepancies of

the steric �elds
(
i.e. wQ = 0 in (4.10)

)
. As the initial molecular �elds obtained in step 1

are good approximations of the �elds which minimise the multiple Kernel Carbo index,

we use α = 600 and β = 0.0001 to ensure that the full conditional distribution of the

precision parameter has a large mean value at each iteration, and we reduce the standard

deviations of the proposal distributions for the rigid�body parameters to η1 = 0.75 Å
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Algorithm 4.1 Stochastic GPA for multiple unlabelled marked point sets

1: choose the smallest molecule as reference molecule and superimpose the n − 1 remaining
molecules onto it

2: de�ne d← d0, where d0 > tol and tol is a positive tolerance threshold
3: calculate the multiple Carbo index C(θ,γ,λ)
4: while d > tol do

5: for i in (1 : n) do
6: using the current parameter values for rotation, translation and mask vectors, calculate

a normalised mean �eld Z̃(i)(x) omitting the ith molecule
7: based on the discrepancy D(i)(θi,γi,λi), superimpose the ith molecular �eld onto

Z̃(i)(x); Z̃(i)(x) thereby takes the role of the reference molecule and λ(i), θ(i) and γ(i)

are treated as �xed
8: record the MAP estimates for position and mask of the ith molecule
9: end for

10: calculate the updated C∗(θ,γ,λ)
11: d← C∗(θ,γ,λ)− C(θ,γ,λ)
12: C(θ,γ,λ)← C∗(θ,γ,λ)
13: end while

and η2 = 0.03◦. Moreover, we set the number of iterations for each MCMC run in step

7 to 500, and the tolerance value to tol = 0.0001. The algorithm is therefore used as a

stochastic optimiser.

The algorithm converges after the 9th �eld GPA iteration (cf. Figure F.1 in Appendix

F). Figure 4.5 shows orthographic views of the resulting overlays. The superposition

after step 1 of the �eld GPA algorithm is displayed in the top row, and the bottom row

shows the �nal overlay. For clarity, the random starting positions of the steroids are not

displayed in this picture. However, the top row of Figure 4.1 gives an indication of how

far from the optimal overlay the algorithm started.

The relative positions obtained in the �eld GPA provide the best overall alignment of

the 31 steroid molecules. To explore where the di�erences between the steric mean

�elds of the three activity groups are most pronounced, we perform the generalised �eld

matching within each group separately to obtain mask vectors which re�ect the steric

properties common to all molecules within a group but with the features of the individual

molecules removed. Using these mask vectors and the relative positions obtained in the

overall �eld GPA, we then calculate the mean �elds for each group. Figure 4.6 displays

xy�cross�sections of the three mean �elds for di�erent values of z. Light points thereby
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Figure 4.5: Overlay of the 31 steroid molecules obtained with the �eld GPA: Ortho-
graphic projections of the the relative position of the 31 steroid molecules after step 1
are shown in the top row. The bottom row shows orthographic projections of the �nal
relative position.

correspond to locations where the displayed steric �eld takes a large value whereas dark

points show �eld values close to zero.

Due to the fact that the common ring structure of the molecules is almost planar, the

middle row (z = 0) essentially depicts the ring atoms of the mean �elds and is similar

for all three activity groups. At z = 1.5 and z = −1.5, however, di�erences occur and,

as expected, the observed di�erences are most pronounced between the mean �eld of the

high and low activity groups. To assess the di�erences for each pair (Ca, Cb) of activity

classes (a, b = 1, 2, 3; a 6= b) numerically, we consider a (two sample) t��eld of the form

tab(x) =
Z̄a(x)− Z̄b(x)

s∗pool(x)
√

1
na

+ 1
nb

, x ∈ IR3, (4.12)

where na and nb denote the number of molecules in activity class Ca and Cb, respectively,

Z̄a(x) and Z̄b(x) denote the corresponding mean �elds, and s∗2pool(x) = s2pool(x)+d, is the

84



4.4 Simultaneous Alignment of the Steroid Molecules

pooled variance (with d = 0.001 a small o�set to avoid spuriously large values in regions

far away from the centre). For each pairwise comparison we de�ne a three�dimensional

grid G and calculate a t�value of the form (4.12) at a large number (142, 598) of points.

Here we use (4.12) as an exploratory tool rather than a formal test to see where the most

pronounced di�erences occur.

Figure 4.7 shows the regions in which the (absolute) t��eld for each comparison exceeds

a threshold of eight. The main feature which distinguishes the high activity class from

the other two classes is that the very active molecules commonly extend to the right of

the ring structure much more than the other molecules. From the original data it can

be seen that the associated atoms are oxygen and carbon atoms. Another interesting

di�erence is located at the top left�hand side of the molecules where the low activity class

di�ers from the other two classes in the location of oxygen atoms. These �ndings are

Figure 4.6: Cross�sections of the mean steric �elds of the three activity groups: The left
column shows the mean �eld of the high activity group, the middle column that of the
medium activity group and the right column shows the mean �eld of the low activity
group. The di�erent rows display cross sections at z = −1.5 (top row), z = 0 (medium
row), and z = 1.5 (bottom row). Light points correspond to locations with large values
of the displayed �eld whereas dark values show points with values close to zero.
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Figure 4.7: Thresholded t��elds resulting from pairwise comparisons of the steric mean
�elds of the three activity classes: Left�Hand Side: Low vs. Medium Activity Class,
Middle: Low vs. High Activity Class, Right�Hand Side: Medium vs. High Activity
Class. The shaded areas display regions where the t��eld takes absolute values of larger
than eight.

in line with Figure 4.6 and they are also supported by Figure 9 in Dryden et al. (2007)

and support the conjecture that the steric properties of the steroid molecules have a

discriminating e�ect with respect to the binding a�nity towards the CBG receptor.

4.5 Summary

In this chapter, we pointed out similarities and di�erences of our �eld�based alignment

method for two unlabelled marked point sets with previously proposed methods. We saw

that it is related to a number of well�established structural alignment techniques but has

the considerable advantage that mask vectors can be incorporated in the optimisation

procedure which makes the alignment less susceptible to outliers.

We then applied the pairwise alignment to the steroid data set. A good superposition

could be achieved for all pairs of steroids, and using a cluster analysis of the resulting

partial Kernel Carbo distances, it could also be seen that the distances are chemically

relevant in that they are associated with the di�erent binding activities of the steroids.

In order to assess where the main steric di�erences between the activity classes can
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be found, we proposed an extension of the pairwise �eld�based alignment to multiple

unlabelled marked point sets. When applied to the steroid data, the mean steric �elds of

the activity classes could be obtained. Using a t��eld as an exploratory tool, the regions

around the molecular skeletons could then be identi�ed where the steric properties di�er

the most between the activity classes.
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Chapter 5

Fast Bootstrap Hypothesis Testing for

Independent Con�guration Matrices

In the previous two chapters we developed methods for the Bayesian alignment of unla-

belled marked point sets which can be applied to the comparison of two or more (rigid)

molecules. However, the methodology developed so far does not take into account that

every molecule constantly undergoes vibrational motions and conformational changes.

Information about the dynamic behaviour of molecules can be obtained using molecular

dynamic (MD) simulations (cf. Section 1.2.1). In datasets obtained by MD simulations,

each molecule is given in the form of a time series of its atom positions, i.e. an essential

feature of such datasets is that a group of temporally dependent con�guration matrices

is provided for each object.

There are many other situations where the dataset at hand comprises two or more groups

of con�guration matrices, e.g. landmark data for human faces which can be divided into

age groups (cf. Evison & Vorder Bruegge, 2008; Preston & Wood, 2009b) or data on

skull shapes of male and female monkeys (e.g. Amaral et al., 2007; Dryden & Mardia,

1998, Chapter 1). A frequent objective in such a situation is to investigate whether or

not the underlying data generating processes of the two groups can be considered to be

equal. One approach of tackling this problem is to employ a bootstrap hypothesis test

where the null hypothesis is the equality of the underlying distributions. However, as

location and scale of the given data are not of interest here, conventional multivariate

bootstrap tests cannot be applied.
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In this and the following chapter, we investigate the use of a fast bootstrap methodology

which operates in the Procrustes tangent space of the combined data (cf. Section 2.1.4).

Our approach is novel in that the Procrustes tangent space is only calculated once

prior to the actual resampling � an approximation which facilitates a straightforward

way of transforming the data to the null hypothesis (cf. Section 2.4.5) and reduces the

computational cost of the resampling procedure.

We �rst focus on the situation where the con�guration matrices in each group are as-

sumed to be independent which will be the case in many applications. In Section 5.1,

the underlying problem is stated in a general form and a literature review about the

existing techniques is given. We describe our fast bootstrap algorithm in Section 5.2,

and a simulation study is carried out to evaluate its performance. In Section 5.3, the

method is applied to the dataset described in Amaral et al. (2007) where it is of interest

to investigate sexual dimorphism in the mean shape of male and female chimpanzees.

In this application, the independence assumption is met. In Section 5.4, we also apply

the fast bootstrap algorithm to the DNA dataset described in Section 1.2.3. Here, the

objective is to investigate whether or not distributional di�erences between damaged and

undamaged duplexes can be found as this could explain why the damaged DNA mole-

cules have a higher binding a�nity towards the corresponding repair proteins. However,

the independence assumption is not met for the DNA data so that methods which as-

sume independence are not ideal. This is demonstrated in Section 5.5. Motivated by this

problem, a more appropriate bootstrap test for molecular dynamics data is proposed in

the next chapter. Section 5.6 concludes this chapter with a summary of the main results.

5.1 Hypothesis Tests in Shape Analysis � Literature Review

Consider the situation where the given data consist of two samples X = {X1, . . . ,XnX}

and Y = {Y 1, . . . ,Y nY} of (k ×m) con�guration matrices, where k ≥ m + 1. To test

whether or not the underlying data generating processes can be considered as equal,

various approaches have been proposed which require di�erent levels of assumptions.

An assumption common to all methods proposed so far, however, is that the groups are
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independent from each other and that the con�guration matrices within each group form

a simple random sample. The employed shape models in landmark space can therefore

be formulated as

Xi = βi(µX +Ei)Γi + 1kγTi , i = 1, . . . , nX

and (5.1)

Y j = βj(µY +Ej)Γj + 1kγTj , j = 1, . . . , nY,

where the βs are positive scale factors, the Γs are rotation matrices and the γs are

translation vectors. Moreover, µX and µY are the population mean con�gurations, and

the error matrices are assumed to be mutually independent and

vec(Ei)
i.i.d∼ FX and vec(Ej)

i.i.d∼ Fy, i = 1, . . . , nX; j = 1, . . . , nY. (5.2)

The km�variate error distributions FX and FY are thereby unknown but assumed to have

the zero�vector as their mean.

As described in Section 2.1.3, the mean con�gurations µX and µY in combination with

the error distributions induce certain distributions Q[X] and Q[Y ] on Σk
m with population

mean shapes
[
µ[X]

]
and

[
µ[Y ]

]
, respectively. The following paragraphs provide a short

summary of two�sample hypothesis testing for the problem

H0 :
[
µ[X]

]
=
[
µ[Y ]

]
vs. H1 :

[
µ[X]

]
6=
[
µ[Y ]

]
. (5.3)

Again, note that the mean shapes
[
µ[X]

]
and

[
µ[Y ]

]
of the distributions in Σk

m are not

necessarily equal to the shapes of the mean con�gurations µX and µY.

5.1.1 Parametric Approaches

Most parametric approaches are based on the Procrustes tangent space approximation to

shape space. To obtain a common tangent space for both groups, generalised Procrustes

analysis (GPA, cf. Section 2.1.3) is performed on all nX+nY con�guration matrices. The
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pre�shape Zµ̂ of the minimising con�guration µ̂ of (2.9) is then taken as the pole and

the tangent vectors for both groups are calculated using the projections (2.11) or (2.14).

Both projections could be used here but in the following, we demonstrate the methods

with the tangent vectors obtained from the inverse exponential map.

Let v†1, . . . ,v
†
nX and w†1, . . . ,w

†
nY denote the resulting tangent vectors for the two groups.

To test (5.3), multivariate normal models for the tangent vectors can be proposed, e.g.

v†i ∼ N(ξX,Σ) and w†j ∼ N(ξY,Σ), i = 1, . . . , nX; j = 1, . . . , nY, (5.4)

where the v†i and w
†
j are all mutually independent. As the null hypothesis (5.3) implies

ξX = ξY, the classical two�sample Hotelling's T 2�test (e.g. Mardia et al., 1979, Chapter

3) can be carried out. For that, the Mahalanobis squared distance

D2 = (v̄† − w̄†)T
(
nXS

†
v + nYS

†
w

nX + nY − 2

)−
(v̄† − w̄†), (5.5)

is calculated where v̄† = n−1
X

∑nX
i=1 v

†
i , w̄

† = n−1
Y

∑nY
i=1w

†
i , S

†
v and S†w are the maxi-

mum likelihood estimators of Σ based on the two groups (i.e. with divisors nX and nY,

respectively), and A− denotes the generalised inverse of the matrix A. Assuming that

nX+nY > M+2, whereM is the dimension of the corresponding shape space
(
cf. (2.3)

)
,

it is well�known that under H0

T 2 =
nXnY(nX + nY −M − 1)

(nX + nY)(nX + nY − 2)M
D2 ∼ FM,nX+nY−M−1, (5.6)

where FM,nX+nY−M−1 denotes an F�distribution with M and nX + nY −M − 1 degrees

of freedom. Here, H0 is rejected for large values of T 2.

In case the assumption of equal covariance matrices in model (5.4) is questionable, i.e. in

the (multivariate) Behrens�Fisher case, T 2 can be modi�ed to

T †J
2

= (v̄† − w̄†)T
(

1
nX
S†v +

1
nY
S†w

)−
(v̄† − w̄†). (5.7)

This statistic was proposed by James (1954) as a multivariate generalisation of the Welch

test (Welch, 1947). The distribution of (5.7) is not easy to specify, but as (S†v/nX +
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S†w/nY) is a consistent estimator for the variance of (v̄† − w̄†), it can be shown that

its asymptotic distribution under H0 is χ2
M (e.g. Seber, 1984, p.115). Note that T 2 and

T 2
J are proportional for equal sample sizes nX and nY. Also note that (5.7) can also be

de�ned in terms of the unbiased estimators of the covariance matrices (i.e. with divisors

nX − 1 and nY − 1, respectively) which does not change its asymptotic distribution.

For situations in which the error distributions FX and FY in (5.1) can be assumed to be

isotropic normal, Goodall (1991) proposes a test for (5.3) based on

F =
nX + nY − 2
n−1
X + n−1

Y

d2
F (µ̂X, µ̂Y)∑nX

i=1 d
2
F (Xi, µ̂X) +

∑nY
j=1 d

2
F (Y j , µ̂Y)

appr.∼ FM,(nX+nY−2)M . (5.8)

The approximate F�distribution thereby results from approximate χ2�distributions of

the involved Procrustes distances and their approximate mutual independence.

5.1.2 Non�parametric Approaches

The above distributional assumptions can be relaxed if a bootstrap test is applied

(cf. Section 2.4.5). As pointed out by Hall & Wilson (1991), the achieved type I er-

ror and power of a bootstrap test are more satisfactory if an (asymptotically) pivotal

test statistic is used and resampling is performed under the null hypothesis. Unfortu-

nately, adhering to either of these suggestions is not straightforward in the context of

shape analysis due to the nuisance parameters of location and scaling. The papers by

Amaral et al. (2007) and Preston & Wood (2009a,b) are concerned with this problem

and investigate the use of bootstrap hypothesis testing in shape analysis for the planar

shape and the higher dimensional re�ection�shape case, respectively.

5.1.2.1 Planar Shape Data

In the two�dimensional case, the algebra for computing angles and distances between

complex pre�shapes on the complex pre�shape sphere has a direct analogy to the cal-
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culation of angles and distances between unsigned unit vectors in IRd (e.g. Dryden &

Mardia, 1998, p.69). This analogy is exploited by Amaral et al. (2007). Based on the

paper by Fisher et al. (1996), who propose pivotal methods for constructing a con�dence

region for the mean direction or the mean polar axis of one sample of directional or axial

data, Amaral et al. (2007) transfer the methodologies to the two�dimensional shape case

and extend them to multi�sample problems.

Consider the two�sample problem and let the sets X = {ZX
1 , . . . ,Z

X
nX
} and Y =

{ZY
1 , . . . ,Z

Y
nY
} denote two independent random samples of complex pre�shapes in d di-

mensions with population mean pre�shapes mX and mY, respectively. Further, let m̂X

and m̂Y be the sample mean pre�shapes which can be obtained analytically in the planar

case (Kent, 1994). Here, the null hypothesis in (5.3) can be written asH0 : mX = eiψmY,

where ψ ∈ (0, 2π] denotes an arbitrary angle. Under H0, both mX and mY are there-

fore members of an equivalence class of the form [m0] = {eiθm0 : θ ∈ (0, 2π]}. A

rotation�invariant estimator of m0 can be obtained using

m̂0 = arg min
m:||m||=1

2(nX + nY)m∗
(
M̂
∗
XĜ
−1

X M̂X + M̂
∗
YĜ
−1

Y M̂Y

)
m

= arg min
m:||m||=1

T0(m), (5.9)

where M̂X and M̂Y are
(
(d − 1) × d

)
complex matrices which project onto the tan-

gent space of the pre�shape sphere at m̂X and m̂Y, respectively. Further, ĜX is a

consistent estimator of the asymptotic covariance matrix of n1/2
X M̂Xm0 and ĜY is de-

�ned accordingly. The pooled estimator for m0 is therefore given by the eigenvector of

Â0 = (nX + nY)
(
M̂
∗
XĜ
−1

X M̂X + M̂
∗
YĜ
−1

Y M̂Y

)
corresponding to its smallest eigenvalue,

and an estimator of the common mean shape [m0] is the equivalence class of pre�shapes

{eiψ m̂0 : ψ ∈ (0, 2π]}.

Let λmin = T0(m̂0) denote the smallest eigenvalue of Â0. Under some fairly mild condi-

tions (e.g. existence of a well�de�ned common mean shape m0) it holds that

n
1/2
X M̂Xm0

D→ CNd−1(0,GX) and n
1/2
Y M̂Ym0

D→ CNd−1(0,GY),

where CNd−1 denotes the complex normal distribution in d − 1 complex dimensions.
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Consequently, λmin
D→ χ2

2(d−1) under the null hypothesis so that it can be used as an

asymptotically pivotal test statistic. Amaral et al. (2007) also introduce a method to

adhere to Hall & Wilson's (1991) second guideline. They propose transformations of the

pre�shapes at hand which result in an equality of their sample mean pre�shapes while

changing X and Y as little as possible. Resampling from the transformed samples then

satis�es the recommendation that resampling should be performed under H0.

Using Monte Carlo simulations, Amaral et al. (2007) compare the performance of the

λmin�test with those based on the test statistics (5.6), (5.13) and (5.8). In each case, both

the bootstrap version of the test and the version based on the theoretical distribution

of the test statistic are considered. Generally, the bootstrap versions outperform the

tabular versions and overall, the bootstrap test based on λmin yields the best results and

is the recommended test.

5.1.2.2 Shape Data in Higher Dimensions

Motivated by the above results, Preston & Wood (2009a,b) investigate the use of boot-

strap test procedures for shape data in m ≥ 3 dimensions. In this case, estimating

population mean shapes in the Procrustes framework requires an iterative algorithm

(cf. Appendix A) which, combined with the computer�intensive nature of the bootstrap,

can be very time�consuming. Preston & Wood (2009a,b) therefore make use of the com-

putationally more appealing multidimensional scaling (MDS) approach to shape analysis(
cf. Kent, 1994, and Dryden et al., 2008

)
, where inference is based on ZZT 1 and Z de-

notes a (Helmertised) pre�shape of dimension (k − 1)×m (cf. Section 2.1.1).

The rationale behind the MDS approach is that ZZT is invariant under rotation and

re�ection so that the relevant re�ection size�and�shape space can be represented as

Pm(k − 1) = {P ∈ P(k − 1) | 1 ≤ rank(P ) ≤ m& tr(P ) = 1},

where P(k) is the space of k × k positive semi�de�nite symmetric matrices.
1 Preston & Wood (2009a,b) work with transposed versions of the pre�shapes de�ned in this thesis.
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The mean of a random pre�shape Z can be then de�ned using the spectral decomposition

Ξ = E(ZZT ) = U∆UT where ∆ = diag(δ1, . . . , δk−1) and U = (u1, . . . ,uk−1) (e.g.

Mardia et al., 1979, p.469), and the so�called mean φ�shape of Z is de�ned as

φ(Ξ) =
1

δ1 + . . .+ δk−1

m∑
i=1

δiuiu
T
i ∈ Pm(k − 1),

and it is unique if δm > δm+1. Its sample analogue for a sample X = {Z1, . . . ,Zn} of

pre�shapes is de�ned by φ(Ξ̂), where Ξ̂ = n−1
∑n

i=1ZiZ
T
i .

In the one�sample case the null hypothesis of interest is H0 : φ(Ξ) = M , where M ∈

Pm(k − 1). To test H0, Preston & Wood (2009a) propose two statistics of the form

T̃ (M) = n
(
H̃cM (M)

)T
Ĝ
−1

M ,cM H̃cM (M), (5.10)

where H̃cM (.) denotes a function similar to (2.11) so that H̃cM (M) is a vectorised version

of the projection of the hypothesised matrix M onto the tangent space TM̂ (Pm(k − 1))

of Pm(k − 1) at M̂ = φ(Ξ̂), and Ĝ
M ,cM denotes the asymptotic covariance matrix

of n1/2H̃cM (M). For both versions of (5.10), it can be shown that n1/2H̃cM (M) D→

N(0, Ĝ
M ,cM ) under H0 (cf. also Dryden et al., 2008). The proposed statistics are there-

fore asymptotically pivotal with a limiting χ2�distribution and can be seen as direct

generalisations of the λmin�statistic in the one�sample case (Amaral et al., 2007).

In a second paper, Preston & Wood (2009b) also explore the use of bootstrap testing in

the two�sample case. In the MDS�setting, the test problem (5.3) becomes

H0 : φ(ΞX) = φ(ΞY) vs. H1 : φ(ΞX) 6= φ(ΞY), (5.11)

where φ(ΞX) and φ(ΞY) denote the population mean φ�shapes of the samples X and Y .

In this case a direct generalisation of the λmin�statistic would have the form

T̃0(M̂) = nXT̃X(M̂) + nYT̃Y(M̂), where M̂ = arg min
M∈Pm(k−1)

T̃0(M),

and T̃X(.) and T̃Y(.) are de�ned as in (5.10) but using the sample mean φ�shapes of X
and Y as the pole for the tangent projections.
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Unfortunately, such a direct generalisation does not appear feasible. As complex algebra

(where orthogonal transformations can be carried out as multiplications) cannot be used

here, the corresponding optimisation problems become too complicated to be performed

repeatedly within a bootstrap procedure. Preston & Wood (2009b) therefore explore the

use of three computationally simpler test statistics which are de�ned in TcMp
(Pm(k−1)),

where M̂p = φ(Ξ̂p) and

Ξ̂p =
1

nX + nY


(
nX∑
i=1

ZX
i Z

X
i
T

)
+

 nY∑
j=1

ZY
jZ

Y
j
T

 .

The test statistics they consider are the James statistic TJ as de�ned in (5.13), a reg-

ularised variant of (5.13), and a statistic based on the empirical likelihood by Owen

(2001). All three test statistics are asymptotically pivotal under mild conditions with

limiting distributions based on the χ2�distribution and outperform their tabular version

regarding their achieved signi�cance value in simulations.

Regarding Hall & Wilson's (1991) second guideline, Preston & Wood (2009b) consider

three methods of resampling under the null hypothesis. The �rst two of these approaches

(resampling the centred tangent vectors and resampling the tangent vectors with appro-

priate resampling probabilities) involve �xing the tangent space to TcMp
(Pm(k − 1))

whereas the tangent space in the third approach is calculated anew for each resample.

Like in Amaral et al. (2007), this last method of transforming to the null hypothesis

changes the given data as little as possible. Preston & Wood (2009b) �nd that despite

involving fewer approximations, the third method of resampling from the null hypothesis

does not outperform the other ones and overall, centering the data in the �xed tangent

space yields the best results on the grounds of both computational costs and accuracy.

5.2 Fast Bootstrap Test in Procrustes Tangent Space

The simulation studies by Amaral et al. (2007) (for planar shapes) and Preston & Wood

(2009a,b) (using the MDS approach to shape analysis) indicate a superior performance
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of bootstrap hypothesis tests over classical hypothesis tests. This leads to the question

of whether bootstrap tests also perform well for m ≥ 3 dimensions when the data are

projected onto the Procrustes tangent space (cf. Section 2.1.4). This is important as Pro-

crustes methods are more widely used in shape analysis than MDS methods. Especially

when the re�ection information of the given data should be retained, Procrustes methods

are vital tools as any MDS�based calculation is inherently invariant under re�ection.

To answer the above question, a Monte Carlo simulation study is carried out. We thereby

focus on the case where the �observed tangent space� is �xed once it has been calculated

based on the original data as this is much faster than carrying out a new GPA at every

bootstrap iteration. Fixing the tangent space adds another level of approximation to

the bootstrap procedure because it e�ectively reduces (5.3) to the standard multivariate

problem of testing the equality of the mean vectors of two populations. If it can be

demonstrated that this approximation works as well in the Procrustes as in the MDS

setting, then the use of GPA in combination with bootstrap hypothesis testing becomes

a practicable method for shape data in m ≥ 3 dimensions.

5.2.1 Fast Bootstrap Algorithm

We now describe the fast bootstrap algorithm we propose in this thesis. The algorithm

is designed for the data situation described at the beginning of Section 5.1, i.e. we are

dealing with two samples X = {X1, . . . ,XnX} and Y = {Y 1, . . . ,Y nY} of independent

con�guration matrices, and we are interested in the test problem (5.3). A pseudo�code

for our algorithm is given in Algorithm 5.1.

5.2.1.1 Remove the information about position and scale of data

GPA is carried out using the entire set {X1, . . . ,XnX ,Y 1, . . . ,Y nY} of con�guration

matrices in order to obtain (an icon of) the sample Fréchet mean shape, [µ̂p] say, of

the combined sample (cf. Section 2.1.3). The data are then projected into Hµ̂p(S
k
m),
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Algorithm 5.1 Fast bootstrap algorithm for testing the null hypothesis of equal
mean shapes when the con�guration matrices are independent

1: carry out GPA on the entire set of con�guration matrices {X1, . . . , XnX
, Y 1, . . . , Y nY

}
2: obtain the tangent vectors ev1, . . . , evnX

, ew1, . . . , ewnY
by projecting the optimally rotated, translated

and scaled data onto the observed tangent space Hµ̂p(Sk
m)

3: eliminate the redundant dimensions and obtain tangent vectors v1, . . . , vnX
, w1, . . . , wnY

using the
the projections (5.12)

4: calculate the observed value T 2
J,obs

5: transform to the null hypothesis by centering to give X c = {vc
1, . . . , v

c
nX
} and Yc = {wc

1, . . . , w
c
nY
}

6: for b in (1 : B) do

7: select random samples of size nX and nY with replacement from X c and Yc, respectively
8: calculate the bootstrap value T 2∗

J,b of the test statistic

9: end for

10: calculate the estimated p�value p̂ =
`
1 +

PB
b=1 I{T2

J,obs
>T2∗

J,b}
´
/

`
B + 1

´

i.e. the horizontal subspace of the tangent space of the pre�shape sphere at a pre�shape

which corresponds to [µ̂p]. As described in Section 2.1.4, the resulting tangent vectors

are invariant under location and scale of the original data. Here we use the inverse

exponential map (2.14) which has the advantage that it preserves the natural, intrinsic

distance of the corresponding shape space Σk
m between the pole and the observations.

This �rst step of the algorithm transforms the shape data into multivariate data in

Euclidean space, and the bootstrap procedure we propose is formulated conditional on

Hµ̂p(S
k
m), i.e. the original con�guration matrices are only used to obtain a suitable Eu-

clidean approximation of the shape space. All of the following steps are carried out

in Hµ̂p(S
k
m) which has the advantage that the computer�intensive GPA only has to be

carried out once in the course of the algorithm.

5.2.1.2 Eliminate the Redundant Dimensions

Let v†1, . . . ,v
†
nX andw†1, . . . ,w

†
nY denote the tangent vectors of the con�guration matrices

of the �rst and second group, respectively, and let D† =
(
v†1, . . . ,v

†
nX ,w

†
1, . . . ,w

†
nY

)T
denote the combined data matrix. Due to its invariance under location and scale of the

original con�guration matrices, the dimension of Hµ̂p(S
k
m) is M = k(m − 1) −m(m −

1)/2− 1 whereas the length of each tangent vector is (k − 1)m > M .
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To avoid problems with singularity in the course of the algorithm, the tangent vectors

are projected into an appropriate M�dimensional subspace of IR(k−1)m. The desired

projection can thereby be determined based on the sample covariance matrix, S† =

(nX + nY)−1D†
T
CD†, where C denotes the centering matrix in nX + nY dimensions.

As S† is singular, its spectral decomposition can be written as

S† =
(
P 1 P 2

) Λ 0

0 0

 P T
1

P T
2

 = P 1ΛP T
1 ,

where Λ = diag{λ1, . . . , λM} denotes the diagonal matrix of the non�zero eigenvalues

of S†, and the 0s denote matrices of zeros. The matrix of eigenvectors P =
(
P 1P 2

)
∈

O
(
k(m− 1)

)
can therefore be decomposed into two matrices P 1 ∈ V

(
(k− 1)m,M

)
and

P 2 ∈ V
(
(k − 1)m, (k − 1)m −M

)
, where V (r, c) denotes the space of (r × c)�matrices

with the property V (r, c) =
{
A ∈ IRr×c : ATA = Ic

}
. The transformations

vi = P T
1 v
†
i and wj = P T

1w
†
j (5.12)

therefore result in a new
(
(nX + nY)×M

)
�dimensional data matrix D = D†P 1 whose

sample covariance matrix P T
1 S
†P 1 = Λ contains the entire variability of the original

tangent vectors, i.e. the M�dimensional subspace of interest is spanned by the eigen-

vectors of S† associated with the non�zero eigenvalues, and the transformations (5.12)

project the original tangent vectors into this space (cf. also Díaz-García et al., 1997).

5.2.1.3 Choice of the Test Statistic

The tangent vectors V = {v1, . . . ,vnX} and W = {w1, . . .wnY} form our original sample

and are used to calculate the observed value of the test statistic. Here, we choose the

James statistic

T 2
J = (v̄ − w̄)T

(
1
nX
Sv +

1
nY
Sw

)−1

(v̄ − w̄), (5.13)

where v̄ = n−1
X

∑nX
i=1 vi, w̄ = n−1

Y

∑nY
i=1wi, Sv and Sw are the sample covariance matri-

ces of the groups (with divisors nX and nY, respectively). This statistic is essentially the
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same as (5.7), but after transformations (5.12) the generalised inverse can be replaced

by the usual inverse. Assuming we have continuous data, the multivariate central limit

theorem (e.g. Mardia et al., 1979, p.51) holds, and (5.13) is asymptotically pivotal with

a limiting χ2
M�distribution for the same reasons as (5.7).

5.2.1.4 Transformation to the Null Hypothesis and Resampling

To investigate how extreme the observed value is under the null hypothesis, repeated

resamples from both V = {v1, . . . ,vnX} and W = {w1, . . . ,wnY} are taken to ap-

proximate the distribution of (5.13) under H0. Note that conditioning on the observed

samples V and W of tangent vectors implies conditioning on the observed samples X
and Y of con�guration matrices and the observed tangent space Hµ̂p(S

k
m). For our algo-

rithm the chosen method of resampling under the null hypothesis is that of centering the

(projected) tangent vectors. This is the natural choice for multivariate Euclidean data

and the method which performed best in the MDS setting (Preston & Wood, 2009b).

Resamples are therefore taken from Vc = {vc1, . . . ,vcnX} and Wc = {wc
1, . . . ,w

c
nY
} where

vci = vi − v̄ (i = 1, . . . , nX) and wc
j = wj − w̄ (j = 1, . . . , nY).

Each resample results in a bootstrap value T 2∗
J,b and as described in Section 2.4.5, a Monte

Carlo estimate of the corresponding p�value can be calculated using

p̂ =
# {T 2∗

J,b > T 2
J,obs}+ 1

B + 1
, (5.14)

where B denotes the number of Monte Carlo resamples.

5.2.2 Evaluation � A Monte Carlo Simulation Study

We carry out a Monte Carlo simulation study in which the bootstrap procedure described

above is repeated a large number of times under the same conditions. The data are

generated in landmark space. In particular, we use two multivariate normal models
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to simulate independent 4×3 con�guration matrices. The models thereby di�er in the

underlying dependence structure of the coordinates, i.e. in the (12 × 12)�dimensional

covariance matrix Σ̃C
1. The �rst model assumes isotropy, i.e. we simulate from

Shape Model 1:

vec(X) ∼ N
(
vec(µ), σ2

cI
)
, (5.15)

where µ denotes the mean con�guration matrix. To de�ne a non�isotropic model we use

the factorisation Σ̃C = Σm⊗Σk which allows us to model separately the variation iden-

tical at each landmark (summarised in Σm) and the covariance between the landmarks

(summarised in Σk) (cf. Dryden & Mardia, 1998, p.167). Here we use

Shape Model 2:

vec(X) ∼ N

vec(µ), σ2
c


1 1/4 1/4

1/4 1 1/4

1/4 1/4 1

⊗


1 1/2 0 1/4

1/2 1 1/8 0

0 1/8 1 0

1/4 0 0 1



 .(5.16)

5.2.2.1 Assessing the Performance of the Fast Bootstrap Tests and Problems

Let nsim denote the number of Monte Carlo iterations, and let p̂1, . . . , p̂nsim denote the

corresponding estimated p�values. As the theoretical p�value of a test is a random vari-

able which follows a uniform distribution on [0, 1] under H0, the empirical distribution of

the nsim estimated p�values under H0 is a good indicator for the performance of the test:

if it is close to uniform, then the applied test statistic and the involved approximations

are appropriate for the problem at hand. Of special interest is thereby the lower tail of

this distribution as it has a direct impact on the achieved (empirical) signi�cance value

α̂ = 1
nsim

∑nsim
i=1 I

H0

{p̂i≤α} of the test for small (and hence typical) values of α. If α̂ ≈ α,

then the applied test is good in terms of its achieved signi�cance level.

1The reason for this notation will become clear in Section 6.1.1.
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Under the alternative, the distribution of the theoretical p�value is skewed to the right

(e.g. Bhattacharya & Habtzghi, 2002). This should be re�ected in the empirical distri-

bution of p̂ under H1 so that the estimated power β̂ = 1
nsim

∑nsim
i=1 I

H1

{p̂i≤α} usually has

a larger value than the speci�ed α. The power thereby obviously depends on the de-

gree of deviance from H0, e.g. for test problem (5.3), the power depends on the distance

(cf. Section 2.1.2) between the two population mean shapes, i.e. β̂ = β̂
(
ρ
(
[µ[X]], [µ[Y ]]

))
.

While the above facts provide straightforward guidelines for assessing the performance

of a test when the data at hand are Euclidean, it is more di�cult in the shape context

due to the nuisance parameter of rotation, location and scale. In particular, for m ≥ 3

dimensions it is di�cult to control the distribution in shape space which is induced by

a certain model in con�guration space
(
cf. also Section 2.1.3 and the comment after

(5.3)
)
. Figure 5.1 demonstrates this statement. Here, shape model 2 is used to generate

50×1, 000 con�guration matrices for each standard deviation σc ∈ {0.1, 0.2, 0.3, 0.4, 0.5},

and each time the mean con�guration µ is taken to be the icon of the regular tetrahedron

which is denoted as X̆0 in (5.17). For each set of 1,000 con�guration matrices, GPA is

carried out so that we have 50 icons µ̂σc
1 , . . . , µ̂

σc
50 per standard deviation whose shapes

Figure 5.1: Impact of the standard deviation in shape model 2 on the mean shape: The
displayed con�gurations are optimally rotated, translated and scaled icons of estimated
mean shapes. Each estimate has been calculated using GPA on 1,000 con�guration
matrices which were generated from shape model 2 with the same mean con�guration
(displayed in green) but with di�erent standard deviations. The icons are colour�coded
corresponding to the employed standard deviation

(
σc = 0.1 (yellow), σc = 0.2 (orange),

σc = 0.3 (red), σc = 0.4 (pink), and σc = 0.5 (purple)
)
.
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estimate the corresponding population mean shape [µσc

[X]]. On these icons, a new GPA

is carried out. Figure 5.1 shows the resulting optimally rotated, translated and scaled

con�gurations. The colours correspond to the associated standard deviation
(
σc = 0.1

(yellow), σc = 0.2 (orange), σc = 0.3 (red), σc = 0.4 (pink), and σc = 0.5 (purple)
)
. A

clear trend is visible which indicates that [µσc

[X]] depends on the standard deviation.

The above shows that it is di�cult to simulate con�guration matrices X = {X1, . . . ,XnX}

and Y = {Y 1, . . . ,Y nY} in a way that the corresponding shapes satisfy the null hypoth-

esis in (5.3) but exhibit di�erent dependence structures. When assessing the empirical

signi�cance level of the fast bootstrap test, we will therefore concentrate on the case

where all con�guration matrices are simulated using the same model
(
either (5.15) or

(5.16)
)
in landmark space. Despite this di�culty, we use the Riemannian distance be-

tween [µX] and [µY] to assess the e�ect of ρ([µ[X]], [µ[Y ]]) on the power of the test.

This is reasonable as ρ([µX], [µY]) ≈ ρ([µ[X]], [µ[Y ]]), and when assessing the power, it is

not essential to know the exact distance between the population mean shapes so that

ρ([µX], [µY]) can provide valuable information about the underlying deviance from the

null hypothesis.

For empirical power calculations, we therefore want to choose the mean con�gurations µX

and µY in a way that their shapes exhibit a certain Riemannian distance. As described

in Section 2.1.5, this can be achieved using a geodesic of the form (2.13): starting at

a pre�shape ZµX associated with µX, another pre�shape ZµY can be generated whose

shape [µY] exhibits a certain Riemannian distance s from [µX]. If the mean con�guration

of the second group µY is chosen to be an icon of [µY], then ρ([µX], [µY]) = s as desired.

5.2.2.2 Simulated Data

In our simulation study, the mean con�gurations µX and µY we consider for the shape

models (5.15) and (5.16) are icons from the geodesic path which connects the shape of

the regular tetrahedron
(
the con�guration matrix of a corresponding icon is given by

X̆0 in (5.17)
)
with the shape of the con�guration Y̆ which results from moving the �rst
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landmark in X̆0 to the position (1, 1,−1), i.e. the considered geodesic is de�ned as the

shortest path in shape space which connects the shapes of

X̌0 =


1 1 1

−1 −1 1

−1 1 −1

1 −1 −1

 and Y̆ =


1 1 −1

−1 −1 1

−1 1 −1

1 −1 −1

 . (5.17)

Figure 5.2 visualises this geodesic in terms of optimally rotated, translated and scaled

icons. The green con�guration shows the regular tetrahedron, the black sequence displays

icons along the geodesic and the blue points correspond to con�gurations X̆1, X̆2, X̆3

whose shapes exhibit distances ρ1 = π/16, ρ2 = π/8 and ρ3 = π/4 from [X̆0].

The mean con�guration of the �rst group is kept �xed at µX = X̆0 in all cases. To

assess the achieved signi�cance level and power, the con�gurations X̆0, . . . , X̆3 are used

in turn as mean con�guration µY for the second group. Di�erent values of σc and di�erent

sample sizes are considered for both shape models, namely σc ∈ {0.1, 0.2, 0.3, 0.5} and

nX, nY ∈ {20, 50, 100}. In all cases, the number of bootstrap iterations is �xed at B = 200

and each scenario is repeated in nsim = 2, 500 Monte Carlo iterations.

Figure 5.2: Geodesic between X̆0 and Y̆ : The green con�guration is the regular tetra-
hedron which is taken as the starting point of the geodesic, the black con�gurations are
icons along the path and the blue con�gurations correspond to shapes with Riemannian
distances of ρ1 = π/16, ρ2 = π/8 and ρ3 = π/4 from the regular tetrahedron.
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5.2.2.3 Results for Shape Model 1

Consider shape model (5.15). We �rst simulate con�gurations X = {X1, . . . ,XnX} and

Y = {Y 1, . . . ,Y nY} whose shapes satisfy the null hypothesis of our test problem (5.3),

i.e. we use µX = µY = X̆0 and the same value for the standard deviation σc for both

groups (cf. Section 5.2.2.1). Moreover, we generate the same number of matrices for

each group, i.e. nX = nY = n and we consider all combinations of standard deviations

σc ∈ {0.1, 0.2, 0.3, 0.5} and sample sizes n ∈ {20, 50, 100}. In all cases the empirical

distribution of the estimated p�values follows the uniform distribution closely. Figure

5.3 illustrates this observation for the challenging case σc = 0.5.

Figure 5.3: Null distribution of the nsim estimated p�values and the observed values of
the James statistic for data simulated according to (5.15): The three rows correspond to
the sample sizes (top: nX = nY = 20, middle: nX = nY = 50, bottom: nX = nY = 100),
and σc = 0.5 for all cases. The �rst and second column show histograms and empirical
distribution functions of the estimated p�values. In columns three and four histograms
and the empirical distribution functions of the test statistics are displayed. The null
distribution of the estimated p�values is very close to uniform (dashed line in columns one
and two) and the empirical distribution of the James statistic approaches its asymptotic
χ2

5�distribution (dashed lines in columns three and four) as the sample size grows.
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The rows in Figure 5.3 correspond to the di�erent sample sizes (top: nX = nY = 20,

middle: nX = nY = 50, bottom: nX = nY = 100). It can be seen that even for a large

value of σc = 0.5, the distribution of the estimated p�values (solid line) is close to that of

the uniform distribution (dashed line) for all sample sizes. The approximations inherent

in the considered test procedure therefore do not seem to have a negative e�ect on

the achieved signi�cance value. The empirical distribution of the James statistic (solid

line) is also displayed. As the dimension of the shape space for (4 × 3)�dimensional

con�guration matrices is M = 5, its limiting distribution is the χ2
5�distribution here. It

can be seen the the empirical distribution of the test statistic approaches this limiting

distribution (dashed line) as the sample size grows.

In Table 5.1, we compare the empirical signi�cance levels α̂ of the fast bootstrap test with

the empirical signi�cance levels α̂tab of the tabular test (where the estimated p�values are

calculated based on the quantiles of the χ2
5�distribution) for di�erent nominal signi�cance

levels α. It can be seen that α̂ is close to the nominal value in most cases whereas α̂tab

dramatically exceeds the nominal level for small n. In those cases, the tabular test is

too liberal and tends to detect spurious di�erences between the population mean shapes

[µ[X]] and [µ[Y ]]. The standard deviation does not seem to have a big impact on the

achieved signi�cance levels of both tests. At least for the small sample size n = 20, this

is quite surprising as σc = 0.5 in combination with a mean con�guration of X̆0 entails a

very large amount of variability in the generated data.

We now concentrate on a nominal signi�cance value of α = 0.05. The left�hand side

of Table 5.2 shows the resulting achieved signi�cance level and power for all considered

combinations of sample sizes and standard deviations. As described in Section 5.2.2.2,

the mean con�guration of the �rst groups is thereby kept �xed at µX = X̆0 whereas the

mean con�guration of the second group varies according to the geodesic path displayed

in Figure 5.2, i.e. µY ∈ {X̆0, . . . , X̆3}, and the columns in Table 5.2 correspond to the

resulting Riemannian distances ρ(µX,µY) = ρ([X̆0], [X̆i]) (i = 0, . . . , 3). It can be seen

that the power of the test is very good. In most cases it increases quickly with the

true distance of the mean shapes of the two populations, and the rate of this increase

depends on the sample size and the standard deviation: the power increases faster with

large sample sizes and small standard deviations.
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Table 5.1: Comparison of the bootstrap and the tabular signi�cance levels for shape
model 1: The achieved signi�cance level α̂ of the fast bootstrap test is close to the
nominal level α in all cases whereas the achieved signi�cance level of the tabular test
α̂tab can dramatically exceed the nominal level.

α = 0.01 α = 0.05 α = 0.1
n σc α̂ α̂tab α̂ α̂tab α̂ α̂tab

20

0.1 0.01 0.05 0.046 0.135 0.098 0.206
0.2 0.009 0.045 0.038 0.112 0.08 0.185
0.3 0.009 0.046 0.038 0.118 0.078 0.185
0.5 0.01 0.046 0.041 0.123 0.083 0.192

50

0.1 0.012 0.018 0.049 0.073 0.101 0.136
0.2 0.014 0.02 0.052 0.066 0.089 0.118
0.3 0.014 0.02 0.052 0.07 0.092 0.13
0.5 0.018 0.022 0.057 0.076 0.103 0.135

100

0.1 0.013 0.015 0.057 0.063 0.11 0.13
0.2 0.013 0.012 0.047 0.058 0.096 0.105
0.3 0.014 0.016 0.056 0.067 0.105 0.122
0.5 0.014 0.012 0.052 0.064 0.099 0.112

Table 5.2: Achieved signi�cance level and power for a nominal signi�cance value of
α = 0.05 based on con�gurations generated using shape model 1 (left�hand side) and
shape model 2 (right�hand side): In most cases the power increases quickly with the
deviance from the null hypothesis. However, when the sample size is small relative to
the standard deviation, the fast bootstrap test becomes less powerful.

Shape Model 1 Shape Model 2

α̂ and β̂ α̂ and β̂

n σc 0 π/16 π/8 π/4 0 π/16 π/8 π/4

20

0.1 0.046 0.995 1 1 0.034 1 1 1
0.2 0.038 0.448 0.984 1 0.035 0.626 0.999 1
0.3 0.038 0.162 0.6 0.965 0.028 0.245 0.826 1
0.5 0.041 0.06 0.122 0.22 0.039 0.072 0.185 0.417

50

0.1 0.049 1 1 1 0.05 1 1 1
0.2 0.052 0.949 1 1 0.045 0.995 1 1
0.3 0.052 0.519 0.99 1 0.05 0.705 0.999 1
0.5 0.057 0.114 0.352 0.658 0.049 0.175 0.565 0.908

100

0.1 0.057 1 1 1 0.046 1 1 1
0.2 0.047 1 1 1 0.051 1 1 1
0.3 0.056 0.859 1 1 0.047 0.975 1 1
0.5 0.052 0.224 0.677 0.948 0.055 0.353 0.899 0.999
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5.2.2.4 Results for Shape Model 2

To assess the performance of Algorithm 5.1 for the case of a non�isotropic dispersion

structure, all above calculations are repeated with con�guration matrices simulated ac-

cording to (5.16). The results are very similar to the isotropic case. Figure 5.4 is the

equivalent to Figure 5.3 for shape model 2 (i.e. for σc = 0.5). Again, the empirical

distribution of the estimated p�values is close to uniform in all cases so that our fast

bootstrap test should perform very well in terms of its achieved signi�cance level. Also,

the empirical distribution of the James statistic approaches its limiting distribution as

the sample size grows. The corresponding �gures for smaller values of σc show similarly

good results. A summary of the performance of Algorithm 5.1 in terms of its achieved

signi�cance value can be found Table 5.3.

Figure 5.4: Null distribution of the nsim estimated p�values and the observed values
of the James statistic for data simulated according to shape model 2: The three rows
correspond to the sample sizes (top: nX = nY = 20, middle: nX = nY = 50, bottom:
nX = nY = 100), and σc = 0.5 for all cases. Like in the isotropic case, the null distribution
of the estimated p�values is very close to uniform and the empirical distribution of the
James statistic approaches its asymptotic χ2

5�distribution as the sample size grows.
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Table 5.3: Comparison of the bootstrap and the tabular signi�cance levels for shape
model 2: Like in the isotropic case (cf. Table 5.1), the fast bootstrap outperforms the
tabular test in the majority of cases as the tabular test tends to be too liberal.

α = 0.01 α = 0.05 α = 0.1
α̂ α̂tab α̂ α̂tab α̂ α̂tab

20

0.1 0.006 0.043 0.034 0.128 0.083 0.198
0.2 0.004 0.044 0.036 0.12 0.078 0.188
0.3 0.004 0.039 0.029 0.117 0.075 0.175
0.5 0.005 0.043 0.039 0.122 0.083 0.195

50

0.1 0.008 0.023 0.05 0.077 0.101 0.132
0.2 0.008 0.018 0.046 0.074 0.092 0.132
0.3 0.01 0.021 0.05 0.08 0.101 0.147
0.5 0.01 0.019 0.049 0.077 0.094 0.129

100

0.1 0.01 0.014 0.046 0.056 0.093 0.113
0.2 0.008 0.012 0.051 0.065 0.097 0.119
0.3 0.01 0.014 0.047 0.054 0.094 0.111
0.5 0.008 0.014 0.055 0.064 0.101 0.119

Table 5.3 shows that Algorithm 5.1 performs very well. Only for n = 20 is the achieved

signi�cance level systematically too small. The small quantiles of the empirical distribu-

tion of p̂ in that case do not, therefore, accurately represent the corresponding quantiles

of the uniform distribution (cf. also the top row of Figure 5.4). However, the deviance

of the achieved signi�cance level from the nominal level for the tabular test is larger in

all cases so that Algorithm 5.1 clearly outperforms the tabular test.

Finally, the right�hand side of Table 5.2 shows the achieved signi�cance level and power

for the case µX = X̆0 and µY ∈ {X̆0, . . . , X̆3} in shape model 2. It can be seen that the

bootstrap test performs very well in terms of its power, unless the standard deviation

is large relative to the sample size. Compared to the left�hand side of Table 5.2, the

bootstrap test in the non�isotropic case is slightly more conservative.

5.2.2.5 Speed Comparison

We use the name �fast bootstrap� for the bootstrap algorithm described in this chapter

because Algorithm 5.1 avoids determining a new tangent space at each bootstrap iter-
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ation. Instead, the given data are projected only once into the observed tangent space

Hµ̂p(S
k
m), and resamples are taken from the resulting (centred) tangent vectors. As it

deals with the nuisance parameters of rotation, translation and scale prior to resampling,

this procedure e�ectively transforms the shape problem into a multivariate test problem.

In the above simulation study we show that the inherent approximations do not seem to

have a negative e�ect on the achieved signi�cance level and power of the test, Here, we

will quantify the gain in speed over the version of Algorithm 5.1 which takes resamples

from the original con�guration matrices X = {X1, . . . ,XnX} and Y = {Y 1, . . . ,Y nY}

and calculates a new tangent space Hµ̂∗pb
(Skm) with pole

µ̂∗pb
= arg min

µ:S(µ)=1


nX∑
i=1

sin2 ρ(X∗ib ,µ) +
nY∑
j=1

sin2 ρ(Y ∗jb ,µ)


at each iteration. As described in Section 2.1.3, determining µ̂∗pb

requires the use of an

iterative algorithm for m ≥ 3 dimensions so that we expect a considerable increase in

computational cost compared to Algorithm 5.1.

We �rst compare the speed for the case where each group consists of 20 con�guration

matrices. As before, we use 200 bootstrap iterations to obtain an estimated p�value. We

run both version of the algorithm 100 times on a high performance GRID computer. The

average running time of Algorithm 5.1 is 0.84 seconds with a standard deviation (sd) of

0.02 seconds. The slow version takes on average 110.08 seconds (sd: 0.54 seconds) to

complete. This e�ect is ampli�ed if the sample size in each group is increased to 100. In

that case, the running time of Algorithm 5.1 is still fast with an average of 2.81 seconds

(sd: 0.03 seconds) whereas the average running time of the slow version is 566.35 seconds

(sd: 26.01 seconds). Although speed comparisons like this obviously depend on the exact

implementation and can vary between programmers, the gain in speed achieved by using

Algorithm 5.1 is substantial.

Another advantage of Algorithm 5.1 over its slow counterpart is that �xing the tangent

space and centering the resulting tangent vectors presents a natural and successful way

to adhere to Hall & Wilson's (1991) second guideline. For the slow bootstrap version,

the original con�guration matrices would have to be transformed to the null hypothesis.
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Due to the non�homogeneity of the shape space for m ≥ 3 dimensions, it is not clear how

that can be done. The bene�t of the fast bootstrap algorithm proposed in this section

is therefore twofold.

5.3 Application to the Skull Data

Algorithm 5.1 is designed for the situation where the data follow the general shape model

(5.1), i.e. it assumes independence of the given objects. Before we apply it to the DNA,

we �rst consider an application where this assumption is met. In particular, we consider

the dataset analysed in Amaral et al. (2007) (cf. also O'Higgins & Dryden, 1993) which

contains landmark data of skull shapes for male and female chimpanzees. The objective

in this application is to examine whether or not male and female chimpanzees have

di�erent mean skull shapes. The dataset comprises k = 8 landmarks inm = 2 dimensions

in the midline of the cranium of 28 male and 26 female chimpanzees. Figure 5.5 shows

the landmarks for both sexes which were registered using partial GPA (i.e. involving

rotation and translation only).

Figure 5.5: Landmark data for skulls of female and male chimpanzees: The con�gura-
tions within both groups were registered using the partial GPA algorithm. The left�hand
side shows the landmarks of the skulls for the 26 female apes, and the right�hand side
shows the landmarks of the skulls for the 28 male apes.
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To investigate the speci�city of the test, we �rst randomly partition each group into two

equally sized subsamples and apply Algorithm 5.1 to the subsamples within the groups

(using B=1,000 bootstrap iterations). Note that the null distribution of the James

statistic is the χ2
12�distribution for this application. The resulting estimated p�values

are p̂ = 0.886 (T 2
J,obs = 13.552) for the male chimpanzees and p̂ = 0.704 (T 2

J,obs = 26.954)

for the female chimpanzees. Both tests therefore correctly �nd no evidence against the

null hypothesis of equal mean shapes.

We then use Algorithm 5.1 to compare the full set of con�guration matrices of the

two groups (again using B = 1, 000). The resulting estimated p�value is p̂ = 0.245

with an observed value of the James statistic of T 2
J,obs = 24.356. As expected, the

estimated p-value is smaller than the ones obtained when con�gurations within either

group are compared, but no evidence can be found which supports the conjecture that

the mean shapes of the skulls for male and female chimpanzees are signi�cantly di�erent.

These results are in line with those in Amaral et al. (2007) where p̂ = 0.227. However,

note that the observed value of the James statistic in their paper is slightly di�erent

(T̃ 2
J,obs = 23.456) as it was obtained using the version of the James statistic which is

based on the unbiased estimators of the covariance matrices (cf. Section 5.1.1).

5.4 Application to the DNA Data

We now consider the DNA data described in Section 1.2.3 where the question of interest

is whether or not the guanine lesion FapydG (F) induces a signi�cant change in the shape

of a DNA duplex when it is compared with its undamaged counterpart. Here, we restrict

our attention to potential di�erences between the mean shapes. Figure 5.6 shows the

sample mean shapes of the twelve DNA duplexes in terms of pairwise optimally rotated,

translated and scaled icons. For each pair, the grey con�guration shows the mean shape

of the undamaged molecule, and the black con�guration shows the mean shape of its

damaged version. Di�erences can be seen, and in order to assess whether or not these

di�erences are above the noise level we apply Algorithm 5.1 to each of the pairs, i.e. the

groups in this application consist of the 2,500 con�gurations for each duplex.
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AGA/AFA AGC/AFC AGG/AFG

TGA/TFA TGC/TFC TGG/TFG

Figure 5.6: Optimally aligned and scaled icons of the sample mean shapes of the twelve
DNA duplexes: The black con�gurations correspond to damaged DNA molecules and
the grey con�gurations correspond to molecules where guanine has been replaced by
FapydG.

As the data have been obtained using molecular dynamics simulations where the con-

�guration at each iteration (time point) is obtained based on the con�guration at the

previous iteration (cf. Section 1.2.1), the con�gurations within each molecule (group)

cannot be considered as independent. Figure 5.7 shows an example of this temporal

dependence. To obtain this �gure, partial GPA has been carried out on the entire set of

30,000 (12 duplexes × 2,500 time points) con�gurations in the dataset. Each con�gura-

tion has then been projected onto the Procrustes tangent space of the resulting overall

sample mean shape. Doing so yields twelve multivariate time series of 2,500 time points.
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5.4 Application to the DNA Data

Figure 5.7: Time series of a tangent coordinate for the AFA duplex: Partial GPA has
been performed on the entire set of 30,000 con�guration matrices, and all con�gurations
have been projected onto the Procrustes tangent space at the overall sample mean shape.
The left hand side shows the time series of the �rst tangent coordinate for the AFA duplex
and the right�hand side shows the corresponding correlogram. It can be seen that the
data are heavily correlated.

The time series on the left�hand side in Figure 5.7 shows the temporal dependence of

the �rst tangent coordinate of the AFA duplex, and the right�hand side shows the cor-

responding correlogram
(
cf. Section 2.2.2.1

)
. It can be seen that the data within each

molecule are heavily correlated.

To obtain approximately independent con�gurations in each group, thinning can be

applied where only a fraction of the data is used. Ideally, the degree of thinning is

thereby minimal while eliminating most of the temporal dependence. Figure 5.7 indicates

that the thinning needs to be considerable in order to obtain approximately independent

observations in each group. However, in this application the dimension of the shape space

is large, i.e.M = 3k− 7 = 59 so that we need nX +nY > 61 con�gurations in the pooled

sample to calculate the observed value of the James statistic (5.13). Moreover, to ensure

that the covariance estimate in (5.13) is not ill�conditioned for the bootstrap samples,

the pooled sample size needs to be even bigger than 61 due to repetition of observations
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5.4 Application to the DNA Data

Table 5.4: Estimated p�values and observed values of the James statistic for tests for
the equality of mean shapes of the six pairs of (thinned) DNA data: Di�erent values
of thinning are applied which yield similar results. Only for the pair AGA/AFA is the
evidence against the null hypothesis of equal mean shapes ambiguous.

every 30th every 40th every 50th every 60th

pair p̂ T 2
J,obs p̂ T 2

J,obs p̂ T 2
J,obs p̂ T 2

J,obs

A.A 0.007 54.57 0.016 62.22 0.016 73.51 0.254 56.38

A.C 0.001 416.09 0.001 403.52 0.001 318.58 0.001 348.70

A.G 0.001 269.04 0.001 201.76 0.001 185.41 0.001 236.08

T.A 0.001 293.03 0.001 242.35 0.001 268.72 0.001 195.67

T.C 0.001 287.85 0.001 303.14 0.001 222.69 0.001 223.70

T.G 0.001 226.68 0.001 227.55 0.001 199.87 0.001 179.95

in the resamples. For the DNA data, an appropriate degree of thinning therefore has

to strike a compromise between these two requirements and it is not clear which value

will work best. To investigate the impact of eliminating observations, we apply di�erent

degrees of thinning, namely including every 30th, every 40th, every 50th and every 60th

observation of each DNA duplex. Note that using every 60th con�guration leaves only

82 observations in the pooled sample. We therefore add a small constant (10−6) to the

diagonal elements of the covariance estimate in (5.13) before carrying out the inversion.

This computationally avoids the above mentioned problem of singularity.

Table 5.4 shows the resulting estimated p�values and observed values of the James statis-

tic for all damaged/undamaged pairs of DNA duplexes (the dot represents either G or

F in the left�hand column). All values are based on B = 1, 000 bootstrap iterations. It

can be seen that, based on Algorithm 5.1, there is very strong evidence against the null

hypothesis of equal mean shapes for most pairs of duplexes. Note that an estimated p�

value of 1/1001 ≈ 0.001 indicates that none of the resampled bootstrap values of the test

statistic is smaller than the observed value, cf. (5.14). For most damaged/undamaged

pairs, the degree of thinning does not change this results. Only for the AGA/AFA pair,

does it have an impact on the estimated p�value: while p̂ suggests very strong evidence

against the null hypothesis when every 30th, every 40th or every 50th con�guration of

both AGA and AFA are included in the test procedure, it increases if the test is based on

only every 60th con�guration. The corresponding observed values of the test statistic,

however, do not change substantially. As they are much smaller than the observed values
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Table 5.5: Estimated p�values and observed values of the James statistic for tests for the
equality of mean shapes within each (thinned) duplex: Here every 30th con�guration of
each duplex is used. In each case, the test correctly �nds no evidence against the null
hypothesis of equal mean shapes at the 5% signi�cance level.

duplex p̂ T 2
J,obs duplex p̂ T 2

J,obs duplex p̂ T 2
J,obs

AGA 0.668 40.88 AGC 0.371 52.06 AGG 0.160 65.93

AFA 0.277 54.51 AFC 0.533 45.28 AFG 0.298 53.72

TGA 0.809 36.43 TGC 0.435 48.14 TGG 0.446 48.71

TFA 0.606 41.23 TFC 0.079 65.73 TFG 0.262 59.74

of the test statistic for the other pairs, it can be concluded that the mean shapes of all

but the AGA/AFA pair are su�ciently di�erent to yield very large observed values of

the test statistic so that the thinning does not have an impact on the result. Based on

Table 5.4, the mean shapes of the AGA/AFA pair are not as di�erent as those for the

other pairs. The corresponding observed values of the test statistic are moderately large

so that the applied degree of thinning can a�ect the results.

Note that Figure 5.6 supports the �ndings summarised in Table 5.4 as the mean shapes

of the AGA/AFA pair do not appear as di�erent as the mean shapes of the other pairs.

Moreover, Table 5.5 shows that Algorithm 5.1 correctly �nds no evidence against the null

hypothesis of equal mean shapes at the 5% level if it is applied to con�gurations within

the same duplex. Here, every 30th con�guration for each molecule is used, and to obtain

the two groups the con�gurations were randomly split into subsamples of equal size.

While these results are reassuring, Figure 5.7 suggests that the applied level of thinning

is not su�cient for the data to meet the independence assumption. The following section

shows how even small temporal correlations can distort the results.

5.5 Problems with Temporally Dependent Data

To assess the performance of Algorithm 5.1 for temporally dependent shape data, we

simulate time series of (4 × 3)�dimensional con�guration matrices in landmark space

using the Time Orthogonal Principal Component (TOPC) model proposed by Dryden

116



5.5 Problems with Temporally Dependent Data

Figure 5.8: Empirical distribution of the estimated p�values and the observed values of
the James statistic for dependent data with small correlations: The data were simulated
from the separable TOPC�AR(1) model (cf. Section 6.1.1.3) with ψ = 0.1 (top), ψ = 0.15
(middle), ψ = 0.2 (bottom). Even for these small correlations, Algorithm 5.1 produces
unreliable results. In particular, based on the empirical distribution of the estimated
p�values, the test is very liberal with a large type I error.

Figure 5.9: Empirical distribution of the estimated p�values and the observed values of
the James statistic for dependent data with a large correlation of 0.8: Although the data
were simulated under the null hypothesis of equal mean shapes, Algorithm 5.1 would
reject the null hypothesis in almost every case.
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et al. (2009) which will be described in detail in the next chapter. In essence, the TOPC

model introduces some temporal correlation to multivariate Gaussian data in a way that

each principal component (PC) is permitted to have a general dependence structure but

distinct PCs are assumed to be independent. Here, we simulate 750 con�guration ma-

trices for each group using a �rst order autoregressive dependence structure (cf. Section

2.2.2.2) for each PC. Con�guration X̆0 from (5.17) is thereby chosen as the mean con-

�guration for both groups so that the data are simulated using the exact same model

(and in particular satisfy the null hypothesis of equal mean shapes).

Algorithm 5.1 is applied to test for di�erences in the mean shape. In Figure 5.8 the

resulting empirical distributions of the estimated p�values and the James statistic are

displayed for di�erent values of the temporal correlation: ψ = 0.1 (top), ψ = 0.15

(middle) and ψ = 0.2 (bottom). It can be seen that the distribution of the estimated

p�values ceases to follow the uniform distribution even for these small correlations, and

the e�ect of this becomes worse very quickly. Figure 5.9 shows the e�ect of a large

correlation (ψ = 0.8). In this case, almost all p̂ are concentrated at low values. The

fast bootstrap test described in Algorithm 5.1 will therefore reject the null hypothesis

in almost all cases, even if it is true. Given the remaining correlation of the DNA data

after thinning, this yields the question of how this drawback can be recti�ed, and we will

investigate this in the following chapter.

5.6 Summary

In this chapter we proposed a fast bootstrap algorithm which carries out a hypothesis

test for the equality of the population mean shapes of two groups of landmark data. As

opposed to the bootstrap procedures proposed by Amaral et al. (2007), our algorithm

does not use complex algebra and can be applied to landmark data of any dimension. It

is based on the Procrustes tangent space approximation to shape space and can be seen

as complementary to the procedures described by Preston & Wood (2009b) which are

formulated in context of the MDS approach to shape analysis.
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5.6 Summary

The simulation study in Section 5.2.2 shows that our algorithm yields very good results

in terms of both achieved signi�cance level and power if the data within each group are

independent which will be the case in most applications.

When Algorithm 5.1 is applied to the skull data, it yields similar results to those described

in Amaral et al. (2007). When applied to the (thinned) DNA data described in Section

1.2.3, the results suggest that the oxidative guanine lesion FapydG induces signi�cant

changes of the duplexes under study in terms of their mean shapes. However, we brie�y

demonstrated in Section 5.5 that Algorithm 5.1 does not yield reliable results for cases

where the data within each group exhibit some temporal dependence: even for small

correlations, the estimated p�values are systematically too small so that the results in

Table 5.4 are questionable.

The shortcomings of Algorithm 5.1 in the context of temporal data are not surprising as

both the applied test statistic and the resampling procedure are designed for independent

data (cf. Sections 2.4.6 and 6.1.2.1). In the next chapter, we will investigate the question

of how Algorithm 5.1 can be amended to accommodate temporal dependence of the

con�guration matrices within each group, and an alternative bootstrap procedure will

be proposed which is speci�cally designed to test for mean di�erences of temporally

evolving shape data.

119



Chapter 6

Bootstrap Hypothesis Testing for Temporally

Dependent Con�guration Matrices

Like the previous chapter, this chapter is concerned with developing a bootstrap test for

the equality of the underlying population mean shapes of two groups of con�guration

matrices. Motivated by the problem of comparing the mean shapes of two DNA duplexes

which evolve over time, we propose an amendment of Algorithm 5.1 which is speci�cally

designed to accommodate time series of con�guration matrices. The amendment is

concerned with both the applied test statistic and the resampling procedure. As before,

the location and scale of the data will be eliminated using a Procrustes tangent projection

prior to resampling so that we seek a suitable test statistic and resampling algorithm for

multivariate Euclidean data.

6.1 Amending the Test Statistic

In this section, we derive a test statistic for the equality of the population means of two

groups of temporally dependent multivariate Euclidean data. This statistic is based on

the Time Orthogonal Principal Component (TOPC) model by Dryden et al. (2009) and

the likelihood ratio test (LRT) procedure (cf. Appendix D). We show that the new test

statistic can be seen as a direct generalisation of the James statistic (5.13) if the sample

sizes of the two groups are equal.
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6.1 Amending the Test Statistic

6.1.1 Gaussian Models for Random Matrices

The TOPC model is a special case of a Gaussian model for dependent multivariate data.

It can be formulated as a Gaussian model for random matrices. Before we describe the

TOPC model, we brie�y review Gaussian models for random matrices in general.

6.1.1.1 Independent Rows

LetX be the (n×p)�matrix which results from row�wise stacking p�dimensional random

vectors x1, . . . ,xn. If the vectors can be assumed to be independent and multivariate

Gaussian with mean µ and (p × p) covariance matrix Σ̃C , then their joint density has

the familiar form

f(X;θ) =
1√

(2π)np|Σ̃C |n
exp

{
−1

2

n∑
i=1

(xi − µ)T Σ̃
−1

C (xi − µ)

}
, (6.1)

where θT =
(
µT , vech(Σ̃C)T

)
denotes the vector of all involved parameters and vech(.)

denotes the vectorise�half operator de�ned in (0.3). Let Sp denote the (p(p + 1)/2)�

dimensional space of parameters which form a symmetric and positive semi�de�nite

(p× p)�matrix. The entire parameter space can then be written as Θ = {IRp × Sp}.

6.1.1.2 Factored Covariance Model � General Case

If the vectors x1, . . . ,xn exhibit some dependence, this can be captured by introducing

an additional (n×n) covariance matrix Σ̃R to describe the covariance structure between

the rows of X. The covariance matrix for the entire random matrix X then becomes

Σ̃ = E
(
vec(X −M)vec(X −M)T

)
= Σ̃C ⊗ Σ̃R,

where ⊗ denotes the Kronecker product (e.g. Mardia et al., 1979, p.459), andM = E(X)

denotes the mean matrix. With the de�nition µi = E(xi) (i = 1 . . . , n),M has the form
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6.1 Amending the Test Statistic

MT =
(
µ1, . . . ,µn

)
, and the density for X can be written as

f(X;θ) =
1√

(2π)np|Σ̃C ⊗ Σ̃R|
exp

{
−1

2
vec(X −M)T (Σ̃C ⊗ Σ̃R)−1vec(X −M)

}

=
1√

(2π)np|Σ̃C |n|Σ̃R|p
exp

{
−1

2
tr
[
Σ̃
−1

C (X −M)T Σ̃
−1

R (X −M)
]}

. (6.2)

To accommodate the greater generality of (6.2), some additional parameters are neces-

sary. Here, θT =
(
µT1 , . . . ,µ

T
n , vech(Σ̃R)T , vech(Σ̃C)T

)
and Θ = {IRnp × Sn × Sp}. The

above model is commonly called the matrix normal model (cf. e.g. Arnold, 1981, p.312).

6.1.1.3 Time�Dependent Rows

Note that the independence model (6.1) is a special case of (6.2) with Σ̃R = In and

µ1 = . . . = µn = µ. Another special case arises when the dependence between the

rows of X is temporal. In this thesis, we consider �rst and second order autoregressive

(AR) models for the between�row dependence, and we let ΣT denote the corresponding

(n×n) between-row correlation matrix. In the AR(2) case, the elements of ΣT represent

correlations between observations of the form

Yt = ψ1Yt−1 + ψ2Yt−2 + εt,

cf. Section 2.2.2.2. Assuming Var(εt) = 1 ∀t, it can be shown that

Var(Yt) =
1− ψ2

(1 + ψ2)
(
(1− ψ2)2 − ψ2

1

) = σ−2
a ,

where the notation σ−2
a is chosen to be consistent with that by Dryden et al. (2009). The

between�row covariance matrix therefore has the form Σ̃T = σ−2
a ΣT . Let Σ̃C denote

the between�column covariance matrix. The overall covariance matrix of X then is

Σ̃ = Σ̃C ⊗ Σ̃T = Σ̃C ⊗ σ−2
a ΣT = ΣC ⊗ΣT , (6.3)

where Σ̃C = σ2
aΣC . As the individual matrices in factored covariance models are de�ned

only up to a constant, working with the temporal correlation matrix is a sensible choice.
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6.1 Amending the Test Statistic

It is clear that assuming an AR(2) dependence structure for the sequence x1, . . . ,xn

reduces the number of parameters in Σ to 2 + p(p+ 1)/2. If the underlying AR�process

is assumed to be stationary, then the number of parameters in the mean part of the

model can also be reduced because in that case, the Gaussian model for X becomes

f(X;θ) =
1√

(2π)np|ΣC |n|ΣT |p
exp

{
−1

2
tr
[
Σ−1
C (X − 1nµT )TΣ−1

T (X − 1nµT )
]}

,(6.4)

where µ denotes the marginal mean of the xi. The parameter vector of this model

is θT = (µT , ψ1, ψ2, vech(ΣC)T ), and the corresponding parameter space has the form

Θ = IRp × T AR
2 × Sp, where

T AR
2 =

ψ = (ψ1, ψ2)T ∈ IR2 :


ψ1 + ψ2 < 1

ψ1 − ψ2 < 1

|ψ2| < 1

 (6.5)

denotes the stationarity region of an AR(2) process. As mentioned in Section 2.2.2.2,

the form of T AR
2 can be obtained using the characteristic equation (2.19).

Under the stationarity conditions, Siddiqui (1958) shows that the inverse of the temporal

correlation matrix is given by the persymmetric (symmetric about both diagonals) and

pentadiagonal matrix

Σ−1
T = σ−2

a



1 −ψ1 −ψ2 0 . . . 0 0

−ψ1 1 + ψ2
1 −ψ1(1− ψ2) −ψ2 . . . 0 0

−ψ2 −ψ1(1− ψ2) 1 + ψ2
1 + ψ2

2 −ψ1(1− ψ2) . . . 0 0

0 −ψ2 −ψ1(1− ψ2) 1 + ψ2
1 + ψ2

2 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 + ψ2
1 −ψ1

0 0 0 0 . . . −ψ1 1


.(6.6)

Moreover, its determinant is given by

|Σ−1
T | = σ−2n

a

(
(1− ψ2

2)
2 − (1 + ψ2)2ψ2

1

)
. (6.7)

These results are useful when θ is to be estimated using the maximum likelihood method.
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6.1 Amending the Test Statistic

The above model is a special case of the TOPC model introduced by Dryden et al. (2009).

In particular, model (6.4) is a separable AR(2) version of the TOPC model. If ψ2 is set

to zero in all equations, then this reduces to the separable TOPC�AR(1) model.

6.1.2 Likelihood Ratio Test for Dependent Gaussian Observations

Let x1, . . . ,xnX and y1, . . .ynY be two groups of random vectors. Based on model (6.4),

we will derive a LRT for the test problem

H0 : µX = µY vs. H1 : µX 6= µY, (6.8)

where µX = E(xt) (t = 1, . . . , nX) and µY = E(yt) (t = 1, . . . , nY). Under the assumption

Σ̃X = Σ̃Y, where Σ̃X and Σ̃Y are de�ned as in (6.3), the corresponding LR statistic is a

direct generalisation of the Mahalanobis squared distance which in fact can be derived

from a LR statistic under (6.1).

6.1.2.1 The LRT for Independent Vectors

Assuming an equal covariance structure in both groups, the joint likelihood of the data

under (6.1) has the form

L(X,Y ;θ) =
1

(2π)(nX+nY)p/2|Σ̃C |(nX+nY)/2
exp

{
−1

2

nX∑
i=1

(xi − µX)T Σ̃
−1

C (xi − µX)

}

× exp

−1
2

nY∑
j=1

(yj − µY)T Σ̃
−1

C (yj − µY)

 . (6.9)

Here, the joint parameter vector θT =
(
µTX ,µ

T
Y , vech(Σ̃C)T

)
is an element of Θ = (IR2p×

Sp) which can be divided into

Θ0 = {θ ∈ Θ : µX = µY} and Θ1 = {θ ∈ Θ : µX 6= µY}.
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6.1 Amending the Test Statistic

Let θ̂
T

h = (µ̂TX,h, µ̂
T
Y,h, vech( ̂̃ΣC,h)T ) denote the vector which maximises (6.9) within Θh

(h = 0, 1). Under the null hypothesis, µ̂X,0 = µ̂Y,0 = (nX+nY)−1(nXx̄+nYȳ) whereas the

mean vectors under the alternative are estimated separately as µ̂X,1 = x̄ and µ̂Y,1 = ȳ.

Moreover, it can be shown that the estimate of Σ̃C,h (h = 1, 2) has the general form

̂̃ΣC,h =
1

(nX + nY)


nX∑
i=1

(xi − µ̂x,h)(xi − µ̂x,h)T +
nY∑
j=1

(yj − µ̂y,h)(yj − µ̂y,h)T
 .

If θ̂h is inserted in (6.9), then the LR statistic becomes

λ(X,Y ) =
supθ∈Θ0

f(X,Y ;θ)
supθ∈Θ1

f(X,Y ;θ)
=

 |
̂̃ΣC,0|

| ̂̃ΣC,1|


−(nX+nY)/2

. (6.10)

Note that ̂̃ΣC,0 captures the total variation in the data whereas ̂̃ΣC,1 summarises the

within�group variation so that ̂̃ΣC,0 can be decomposed as ̂̃ΣC,0 = ̂̃ΣC,1 +B, where

B =
nXnY

(nX + nY)2
(x̄− ȳ)(x̄− ȳ)T

estimates the between�group variation. Using this decomposition formula (6.10) can be

simpli�ed to

λ(X,Y ) =
{

1 +
nXnY

(nX + nY)2
(x̄− ȳ)T ̂̃Σ−1

C,1(x̄− ȳ)
}−(nX+nY)/2

. (6.11)

The above test is well�known in multivariate statistics (e.g. Srivastava, 2002, pp.109).

As ̂̃ΣC,1 is proportional to the pooled estimator of Σ̃C , the LR statistic can also be

formulated in terms of the Mahalanobis squared distance (5.5). In fact, (6.11) is a

monotone transformation of (5.5) so that both statistics lead to the same test result

within a bootstrap procedure. Moreover, if nX = nY = n, then (6.11) also is a monotone

transformation of the James statistic (5.13) so that the assumption of equal covariances

in the two group can be relaxed in that case. Relaxing the independence assumption,

however, is less straightforward and requires the use of di�erent models.

We now show how the above LRT can be generalised to dependent situations using model

(6.4). To simplify the treatment, we thereby concentrate on the case where nX = nY = n.
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6.1 Amending the Test Statistic

6.1.2.2 Time�Dependent Rows

If the vectors within each group can adequately be modelled using (6.4), then � assuming

a common covariance structure � the joint likelihood has the form

L(X,Y ;θ) =
1

(2π)np|ΣC |n|ΣT |p
exp

{
−1

2
tr
[
Σ−1
C (X − 1nµTX)TΣ−1

T (X − 1nµTX)
]}

× exp
{
−1

2
tr
[
Σ−1
C (Y − 1nµTY)TΣ−1

T (Y − 1nµTY)
]}

, (6.12)

where θT = (µTX ,µ
T
Y , ψ1, ψ2, vech(ΣC)T ). The corresponding parameter space is Θ =

IR2p × T AR
2 × Sp, and the test problem at hand divides Θ into

Θ0 = {θ ∈ Θ : µX = µY} and Θ1 = {θ ∈ Θ : µX 6= µY}. (6.13)

Dryden et al. (2009) describe the ML estimation in the one�sample case. To obtain the

desired LR statistic, this has to be extended to (6.12) taking into account the hypotheses.

It can be shown that the MLEs of the mean vectors have the form

µ̂X,0 =
(X + Y )T Σ̂

−1

T,01n

21Tn Σ̂
−1

T,01n
= µ̂Y,0, µ̂X,1 =

XΣ̂
−1

T,11n

1Tn Σ̂
−1

T,11n
, and µ̂Y,1 =

Y Σ̂
−1

T,11n

1Tn Σ̂
−1

T,11n
.

De�ne α̂ = Σ̂
−1

T,01n/(21
T
n Σ̂
−1

T,01n) and β̂ = Σ̂
−1

T,11n/(1
T
n Σ̂
−1

T,11n). The above estimators

can then be written as weighted means of the vectors x1, . . . ,xn and y1, . . . ,yn, i.e.

µ̂X,0 =
n∑
t=1

α̂t(xt + yt) = µ̂Y,0, µ̂X,1 =
n∑
t=1

β̂txt, and µ̂Y,1 =
n∑
t=1

β̂tyt.

As both Σ̂
−1

T,0 and Σ̂
−1

T,1 have the general form (6.6), all but four rows within each matrix

have the same sum. If n is large, then these end e�ects can be neglected and the above

mean estimators can therefore be approximated well by

µ̂X,0 =
x̄+ ȳ

2
= µ̂Y,0, µ̂X,1 = x̄, and µ̂Y,1 = ȳ. (6.14)

These approximations are asymptotically e�cient (Grenander & Rosenblatt, 1957).
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6.2 Amending the Resampling Procedure

Let ψ̂h denote the MLEs for the AR(2)�parameters under Hh (h = 0, 1). Given ψ̂h, the

corresponding correlation matrix Σ̂T,h is fully determined, and it can be shown that

Σ̂C,h =
1
2n
{
(X − 1nµ̂TX,h)

T Σ̂
−1

T,h(X − 1nµ̂TX,h) + (Y − 1nµ̂TY,h)
T Σ̂
−1

T,h(Y − 1nµ̂TY,h)
}
.(6.15)

The part in the exponential term of (6.12) therefore reduces to np under both hypotheses.

Regarding Σ̂C,h as a function of ψ and using (6.7), it follows that

sup
θ∈Θh

L(X,Y ;θ) = sup
ψ∈T AR2

c · |Σ̂C,h|−nσ−2np
a

(
(1− ψ2

2)
2 − (1 + ψ2)2ψ2

1

)p
,

where c = (2π)−np exp(−np). With the de�nition fh(ψ) = |Σ̂C,h|−nσ−2np
a

(
(1 − ψ2

2)
2 −

(1 + ψ2)2ψ2
1

)p the LR statistic (D.2) then becomes

λ(X,Y ) =
supψ∈T AR2

f0(ψ)

supψ∈T AR2
f1(ψ)

, (6.16)

and the corresponding LRT can be seen as a generalisation of the well�known LRT based

on (6.11). A more detailed derivation of the above statistic is provided in Appendix E.

6.2 Amending the Resampling Procedure

As mentioned in Section 2.4.6, the reason for the inadequacy of Efron's (1979) i.i.d.

bootstrap in the context of dependent data is that by using the resampling scheme

(2.28), all information about the dependence structure is lost. One way to preserve this

information is to use a block bootstrap method where blocks of (consecutive) observa-

tions instead of single observations are resampled. There are di�erent versions of block

bootstrap methods, e.g. the moving block bootstrap (Künsch, 1989; Liu & Singh, 1992)

and the non�overlapping block bootstrap (Carlstein, 1986). Here, we adapt the circular

block bootstrap (CBB) by Politis & Romano (1992) to the two�sample situation.

Consider the situation where the data at hand are two samples X = {x1, . . . ,xn}

and Y = {y1, . . . ,yn} of consecutive multivariate observations from some underlying
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6.2 Amending the Resampling Procedure

(strictly) stationary temporal processes {X}j≥1 and {Y }j≥1 which follow distributions F

and G, respectively. In this two�sample situation, the parameter of interest has the form

θ = t(F,G). To estimate θ, the idea of the CBB is to �wrap� the data around in a �circle�

by de�ning new time series {xi0}i0≥1 and {yi0}i0≥1, where i0 = j if i0 = mn+j for some

integers m ≥ 0 and 1 ≤ j ≤ n, e.g. the (n + 1)st observation of {xi0}i0≥1 corresponds

to the �rst observation in {xj}nj=1. Let l be an integer satisfying 1 < l < n and de�ne

blocks of length l by BX(i0, l) = {xi0 , . . . ,xi0+l−1} and BY(i0, l) = {yi0 , . . . ,yi0+l−1}.

Moreover, de�ne nB = dn/le, where dxe denote the largest integer not exceeding x. To

create resamples X ∗ and Y∗ of the given data, nB blocks are selected at random from

the sets {BX(1, l), . . . ,BX(n, l)} and {BY(1, l), . . . ,BY(n, l)}, respectively, i.e.

X ∗ = {BX(IX1 , l), . . . ,BX(IXnB
, l)} and Y∗ = {BY(IY1 , l), . . . ,BY(IYnB

, l)},

where IX1 , . . . , I
X
nB

and IY1 , . . . , I
Y
nB

are conditionally i.i.d random variables following a

uniform distribution on {1 . . . , n}, i.e.

P(IXj = i |X ) = n−1
B and P(IYj = i |Y) = n−1

B ; 1 ≤ i, j ≤ nB.

Based on these resamples, the underlying distributions can be estimated, and the block

bootstrap estimator of θ is θ̂∗B = t(F̂ , Ĝ). Note that for l = 1, the CBB reduces to the

i.i.d. bootstrap described in Section 2.4.

One of the advantages of the CBB is that each of the original observations receives

equal weight in the resampling procedure, e.g. each observation xj from {xj}nj=1 appears

exactly l times in the collection of blocks {BX(1, l), . . . ,BX(n, l)} which in turn are re-

sampled with equal probabilities. This property distinguishes the CBB from the other

block bootstrap methods. In particular, this means that the conditional expectation of

the bootstrap sample mean equals the sample mean of the original sample {xj}nj=1 (e.g.

Lahiri, 2003, p.34). For our two�sample situation, it therefore holds under the CBB that

E
(
X̄
∗|X

)
= x̄ and E

(
Ȳ
∗|Y

)
= ȳ,

where X̄∗ denotes the sample mean of a resample X ∗ = {BX(IX1 , l), . . . ,BX(IXnB
, l)} =

{X∗1, . . . ,X∗l nB
} and Ȳ ∗ is de�ned in the same way.
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6.3 Bootstrap Test for Temporally Dependent Shape Data

In general, as the properties of a block bootstrap estimator θ̂∗B = θ̂∗B(l) depend on the

block length l, the choice of l is an important issue. In large sample considerations, it

is typically required that l increases with the sample size so that any �nite�dimensional

joint distribution of the underlying processes {Xj}j≥1 and {Y j}j≥1 can eventually be

recovered from the resampled sequences. For a �xed, �nite sample size, the bias of a

block bootstrap estimator usually decreases with the block length whereas its variance

increases. Thus, there is an optimal value of l that balances the trade o� between the

bias and the variance.

In some cases, it is possible to obtain the optimal block length for a given data situation

analytically (cf. e.g. Hall et al., 1995; Lahiri, 2003, Chapter 5) using an expansion of the

mean squared error MSE
(
θ̂∗B(l)

)
=
{
E
(
θ̂∗B(l)

)
− θ
}2 + Var

{
θ̂∗B(l)

}2 which can then be

minimised with respect to l, i.e. lopt = arg min1≥l≥nMSE
(
θ̂∗B(l)

)
. However, the block

bootstrap estimator of interest in this thesis is a block�based version of the LR statistic

(6.16) which has a rather complicated form. We therefore apply a di�erent method to

choose the block length for the test problem at hand (cf. step 5 in Algorithm 6.1), and

within a simulation study it is possible to assess the performance of this method based

on the performance criteria for hypothesis tests (cf. Section 5.2.2.1).

6.3 Bootstrap Test for Temporally Dependent Con�gura-

tion Matrices

In this section, we show how the methods described in Sections 6.1 and 6.2 can be utilised

for testing the equality of the underlying mean shapes of two groups of temporally

dependent con�guration matrices. Given two samples X = {X1, . . . ,Xn} and Y =

{Y 1, . . . ,Y n} of (k×m) con�guration matrices, the considered shape model in landmark

space can in this context be formulated as

Xi = βi(µX +Ei)Γi + 1kγTi and Y j = βj(µY +Ej)Γj + 1kγTj ,

where {vec(Ei)}ni=1 and {vec(Ej)}nj=1 follow a stationary zero�mean stochastic process.

129



6.3 Bootstrap Test for Temporally Dependent Shape Data

Algorithm 6.1 Bootstrap algorithm for testing the null hypothesis of equal mean
shapes when the observations are temporally dependent con�guration matrices

1: carry out GPA on the entire set of con�guration matrices

2: obtain the sequences of tangent vectors {w̃t}nt=1 and {ṽt}nt=1 by projecting the optimally
rotated, translated and scaled data onto the observed tangent space Hµ̂p(Sk

m)
3: eliminate the redundant dimensions to obtain the sequences {wt}nt=1 and {vt}nt=1 and the

corresponding data matrices V and W using (5.12)

4: calculate the observed value λobs(V ,W ) as well as ψ̂
H0

and ψ̂
H1

for the observed samples

5: select block length l and the number of blocks nB using the autocorrelation function based

on ψ̂
H1

as l = arg minl∈INn = |l − lcrit|, where INn = {l ∈ IN : n/l ∈ IN}, lcrit = min{l ∈
IN : |ρ(l)| < ρcrit} and nB = n/l

6: transform to the null hypothesis by centering to yield {wc
t}nt=1 and {vc

t}nt=1

7: periodically extend time series to yield {wc
0t}t≥1 and {vc

0t}t≥1

8: for b in (1 : B) do
9: select random random staring indices IX1 , . . . , I

X
nB

and IY1 , . . . , I
Y
nB

10: form resamples V∗
c = {BX(IX1 , l), . . . ,BX(IXnB

, l)}, W∗
c = {BY(IY1 , l), . . . ,BY(IYnB

, l)} and
corresponding data matrices V ∗

c , W
∗
c from {wc

0t}t≥1 and {vc
0t}t≥1, respectively

11: calculate the bootstrap value λ(b)(V ∗
c ,W

∗
c) of the test statistic

12: end for

13: calculate the estimated p�value p̂ =
(
1 +

∑B
b=1 I{λobs(V ,W )>λ(b)(V ∗

c ,W ∗
c)}
)
/
(
B + 1

)

As before, the βs are positive scale factors, the Γs are rotation matrices, the γs are

translation vectors and µX and µY denote the population mean con�gurations. Like in

the independent case, the mean con�gurations in combination with the error distributions

induce certain distributions Q[X] and Q[Y ] on the corresponding shape space Σk
m, and

the considered test problem is

H0 :
[
µ[X]

]
=
[
µ[Y ]

]
vs. H1 :

[
µ[X]

]
6=
[
µ[Y ]

]
, (6.17)

where
[
µ[X]

]
and

[
µ[Y ]

]
denote the population mean shapes.

6.3.1 The Algorithm

Algorithm 6.1 summarises the amended bootstrap algorithm for testing (6.17) when

the con�guration matrices within each group are temporally dependent. Steps 1�3 are

thereby identical to the corresponding steps in Algorithm 5.1. However, the resulting
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6.3 Bootstrap Test for Temporally Dependent Shape Data

projected tangent vectors in this context form two multivariate time series {wt}nt=1 and

{vt}nt=1 in M dimensions. Row�wise stacking the vectors wi and vi then yields two

(n×M)�matrices V andW based on which the observed value of the test statistic (6.16)

can be calculated (cf. step 4). As described in Section 6.1.2.2, obtaining λobs(V ,W )

involves estimating the weight parameters ψ1 and ψ2 of the assumed underlying AR(2)

process under both the null hypothesis and the alternative. Let

ψ̂
Hh = arg max

ψ∈T AR2

fh(ψ)

denote the MLE of ψ = (ψ1, ψ2)T under Hh (h = 0, 1). Note that ψ̂
H1 is obtained under

a less restrictive model which allows for separate mean vectors of the two groups (for

the considered data situation, Θ0 is (M + 2 + M(M + 1)/2)�dimensional whereas Θ1

contains (2M + 2 +M(M + 1)/2)�dimensional vectors), so that it will �t the observed

data more closely than ψ̂
H0 � especially if the data do not satisfy the null hypothesis.

Step 5 of algorithm 6.1 is concerned with choosing the block length l for the CBB. To

do so, ψ̂
H1 is inserted into the formula for the autocorrelation function ρ(.) of the corre-

sponding AR(2) process; cf. (2.20). Regardless of the speci�c values ψ̂H1
1 and ψ̂H1

2 , ρ(k)

will thereby decrease exponentially as the lag k increases. For every value ρcrit > 0, there

will therefore be a lag value kcrit for which |ρ(kcrit)| < ρcrit, and kcrit obviously depends

on the strength of the dependence. To take into account the dependence structure of the

given data, we select l according to

arg min
l∈INn

= |l − lcrit|, where INn = {l ∈ IN : n/l ∈ IN}, lcrit = min{l ∈ IN : |ρ(l)| < ρcrit},

i.e. l is the integer divisor of the sample size n which is closest to the lag at which the

autocorrelation falls below a certain critical value. With this choice, the number of blocks

required for each resample is nB = n/l. If ρcrit is chosen to be small, then the blocks

{BX(1, l), . . . ,BX(n, l)} and {BY(1, l), . . . ,BY(n, l)} contain almost the entire information

about the dependence structure of the data.

Steps 6 and 7 are preprocessing steps for the actual CBB algorithm. In step 6, the time

series {wt}nt=1 and {vt}nt=1 in both groups are centred. As before, this step is important
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6.3 Bootstrap Test for Temporally Dependent Shape Data

to ensure a meaningful comparison of the observed test statistic with its (estimated)

distribution under the null hypothesis of equal means. In step 7, the centred time

series {wc
t}nt=1 and {vct}nt=1 are periodically extended to yield {wc

0t}t≥1 and {vc0t}t≥1,

respectively.

Steps 8�12 correspond to the CBB algorithm as described in Section 6.2: using condition-

ally independent random variables IX1 , . . . , I
X
nB

and IY1 , . . . , I
Y
nB

as starting indices, resam-

ples V∗c and W∗
c are generated from {BX(1, l), . . . ,BX(n, l)} and {BY(1, l), . . . ,BY(n, l)}.

Based on the corresponding data matrices V ∗c , W
∗
c , the bootstrap value λ(b)(V ∗c ,W

∗
c)

of the test statistic can then be calculated at each bootstrap iteration.

Finally, step 13 comprises of calculating the estimated p�value.

6.3.2 A Monte Carlo Simulation Study

In this section, a simulation study is carried out, and the Monte�Carlo based performance

criteria for hypothesis tests (cf. Section 5.2.2.1) are used to assess the bene�ts of the

employed amendments in Algorithm 6.1.

6.3.2.1 Simulating Dependent Con�guration Matrices

To obtain a stationary sequence {Xt}nt=1 of (k × m) con�guration matrices with a

marginal mean con�guration µ ∈ IRk×m and a separable TOPC-AR(2) dependence

structure, we want to simulate from the matrix normal model

X̃ ∼ N
(
1nvec(µ)T ,ΣT ,ΣC

)
, (6.18)

where X̃ row�wise contains vec(X1), . . . , vec(Xn), ΣT denotes the temporal correlation

matrix between the rows of X̃, and ΣC denotes a multiple of the between column

covariance matrix Σ̃C , i.e. ΣC = σ−2
a Σ̃C as described in Section 6.1.1.3.
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If the underlying AR(2) parameters fall within the stationarity region (6.5), it holds that

vec(Xi) ∼ N
(
vec(µ), Σ̃C

)
, i = 1, . . . , n,

i.e. each row of X̃ marginally follows a normal model for a (k×m) con�guration matrix

such as (5.15) or (5.16) in the previous chapter. However, here we also introduce the cor-

relation matrix ΣT which determines the temporal dependence between the X1, . . .Xn.

To simulate from (6.18), we start with an
(
n × (km)

)
matrix Z with (Z)ij

i.i.d.∼ N(0, 1)

(i = 1, . . . , n; j = 1, . . . , km). For a given vector ψ = (ψ1, ψ2)T of AR(2) parameters, we

then calculate the inverse of the temporal correlation matrix Σ−1
T given by (6.6). As Σ−1

T

is an (n×n) matrix, it can be large. However, many of its entries are zero and we can use

the sparse option of the Matrix package in r to calculate the square root of its inverse.

For a given (km× km) between column covariance matrix Σ̃C and a mean vector µ, we

can then simulate a normally distributed trajectory of con�guration matrices using

Σ1/2
T ZΣ1/2

C + 1nvec(µ)T︸ ︷︷ ︸
˜X

∼ N
(
1nvec(µ)T ,ΣT ,ΣC

)
, (6.19)

where X̃ is de�ned as in (6.18); see also Arnold (1981, p.312).

6.3.2.2 Simulated Data

Like in the previous chapter, this simulation study is based on con�guration matrices

which contain k = 4 landmarks in m = 3 dimensions, i.e. e�ectively we generate data in

M = 3k−7 = 5 dimensions. Here, we use an isotropic between column covariance matrix

Σ̃C = σ2
cI12. The overall dependence structure of a trajectory {Xt}nt=1 or {Y t}nt=1

therefore has the form Σ = σ2I12 ⊗ΣT , where σ2 = σ2
cσ
−2
a .

To determine ΣT , we need a vector ψ = (ψ1, ψ2)T of AR(2) parameters. Initially, we

choose ψ2 = 0 and simulate con�guration matrices from a separable TOPC�AR(1) model

with three di�erent values of ψ1, namely ψ1 ∈ {0.2, 0.5, 0.8}. Figure 6.1 displays the
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Figure 6.1: Autocorrelation functions of the employed AR(1) models: Three di�erent
AR(1) parameters are chosen, namely ψ1 = 0.2 (left), ψ1 = 0.5 (middle), and ψ1 = 0.8
(right). The dependence structure induced on the data varies considerably between
these choices. In each plot, the dotted line is the constant function f(Lag) = 0.1, and
the dashed line corresponds to g(Lag) = 0.01.

correlation structures these choices of ψ1 induce on the data. The horizontal lines show

the constant functions f(s) = 0.1 (dotted) and g(s) = 0.01 (dashed), where s denotes

the lag between two observations. These lines are added to the graphs as 0.1 and 0.01

are the choices we consider for the hyperparameter ρcrit in Algorithm 6.1 (cf. step 5) so

that they give an impression about the selected block lengths.

We consider three values of standard deviations and three sample sizes, namely σ ∈

{0.1, 0.3, 0.5} and n ∈ {150, 500, 750}. Like in Chapter 5, the mean con�gurations µX

and µY are chosen as icons whose shapes lie on the geodesic path displayed in Figure

5.2. In particular, we �x µX = X̆0 as the mean con�guration for the sequence {Xt}nt=1

in all cases and use either µY = X̆0 or µY = X̆2 as the mean con�guration for {Y t}nt=1.

Overall, we therefore consider 54 scenarios, i.e. 27 scenarios (3 AR(1) models × 3 stan-

dard deviations × 3 sample sizes) under H0 and the same number of scenarios under H1.

Moreover, in order to assess the impact of the hyperparameter ρcrit on the results, each

of these 54 parameter combinations is repeated twice using ρcrit = 0.1 and ρcrit = 0.01,

respectively. In all cases, the number of bootstrap iterations is �xed at B = 150, and

each scenario is repeated for nsim = 500 Monte Carlo iterations. The reason for re-

ducing B and nsim compared to the corresponding values in the previous chapter is the

increased computational cost brought about by modifying both the test statistic and the

resampling procedure of Algorithm 5.1.
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6.3.2.3 Results

We �rst focus on the case where the hyperparameter is chosen as ρcrit = 0.1. The results

will subsequently be compared with those obtained using ρcrit = 0.01.

Achieved Signi�cance Level and Power

For the 27 parameter combinations which simulate {Xt}nt=1 and {Y t}nt=1 under H0, we

can assess the performance of Algorithm 6.1 in terms of the distribution of the estimated

p�values (cf. Section 5.2.2.1). The solid lines in Figure 6.2 show the histograms and em-

pirical distribution functions of the estimated p�values for the most and least challenging

of the considered simulation scenarios. The case where n = 750 is combined with σ = 0.1

Figure 6.2: Null distribution of the estimated p�values for sequences of con�guration
matrices simulated according to separable TOPC�AR(1) models and ρcrit = 0.1: The
three rows correspond to the di�erent AR(1) models (top: ψ1 = 0.2, middle: ψ1 =
0.5, bottom: ψ1 = 0.8). The �rst and second column show histograms and empirical
distribution functions of the estimated p�values (solid lines) for the case n = 750 and
σ = 0.1. In columns three and four, the same graphs are displayed for the challenging
case n = 150 and σ = 0.5.
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Table 6.1: Achieved signi�cance level and power for the considered TOPC�AR(1) models
when ρcrit = 0.1: The nominal signi�cance level is taken as 0.05. The test yields good
results in most cases although it can be too liberal in the challenging situation where
both the dependence and the variability of the data are large.

ψ = 0.2 ψ = 0.5 ψ = 0.8
n σ α̂ β̂ α̂ β̂ α̂ β̂

150
0.1 0.034 1 0.05 1 0.06 1
0.3 0.056 1 0.056 0.998 0.12 0.818
0.5 0.056 0.776 0.06 0.528 0.124 0.362

500
0.1 0.054 1 0.052 1 0.082 1
0.3 0.054 1 0.07 1 0.102 1
0.5 0.056 1 0.074 0.984 0.112 0.778

750
0.1 0.056 1 0.052 1 0.074 1
0.3 0.052 1 0.07 1 0.13 1
0.5 0.058 1 0.074 0.984 0.15 0.91

is shown in the �rst and second column and the third and fourth column show the case

where n = 150 is combined with σ = 0.5. The dashed lines show the corresponding

graphs for the uniform distribution, and the rows in this �gure correspond to the dif-

ferent AR(1) models (top: ψ1 = 0.2, middle: ψ1 = 0.5, and bottom: ψ1 = 0.8). The

estimated p�values follow the uniform distribution quite closely in most cases, although a

trend is visible indicating that the lower tail of the distribution starts to become too large

as the dependence increases. However, in comparison with the corresponding graphs in

Chapter 5, i.e. the bottom row of Figure 5.8 (ψ1 = 0.2) and Figure 5.9 (ψ1 = 0.8) which

were in fact generated with a small σ = 0.1, it can be seen that the amendments to

Algorithm 5.1 considerably improve the test procedure.

Table 6.1 summarises the achieved signi�cance level α̂ and power β̂ for a nominal signif-

icance level α = 0.05. The results are consistent across di�erent sample sizes. Moreover,

for ψ1 = 0.2 and ψ1 = 0.5 the achieved signi�cance level α̂ is reasonably close to 0.05 in

all cases. For ψ1 = 0.8, however, α̂ depends on the standard deviation: it takes roughly

the desired value for σ = 0.1 but increases for larger standard deviations. If both the

dependence and the variability of the data are high, then Algorithm 6.1 will therefore

be too liberal. In terms of its power, the test is very good with most values of β̂ being

close to one. Only if the sample size is small relative to the standard deviation, does the

power take smaller values. This phenomenon has already been observed in Table 5.2.
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Figure 6.3: Histograms of the estimated AR(1) parameters under the alternative: Each
histogram displays 3,000 estimates of ψ̂H1

1 obtained in step 4 of Algorithm 6.1. The
rows correspond to ψ1 = 0.2 (top), ψ1 = 0.5 (middle), and ψ1 = 0.8 (bottom), and the
columns correspond to σ = 0.1 (left), σ = 0.3 (middle) and σ = 0.5 (right). For small σ,
the histograms are roughly centred around the AR(1) parameter according to which the
con�guration matrices were simulated. For larger values of σ, ψ̂H1

1 take smaller values.

Estimated AR Coe�cients

As we use 500 Monte Carlo iterations for each of the 54 considered parameter combina-

tions, Algorithm 6.1 is carried out 27,000 times, and each time step 4 yields an estimate

of ψ1 under both H0 and H1. (In this �rst part of the simulation study, ψ2 is kept �xed at

zero when the optimisation (6.16) is carried out.) Of particular interest are thereby the

estimates ψ̂H1
1 obtained under the alternative as they should re�ect the true dependence

structure of the tangent vectors better than the estimates ψ̂H0
1 which are obtained under

a more restrictive model. Figure 6.3 shows histograms of the ψ̂H1
1 which are grouped

according to the true value of ψ1 in landmark space and according to the employed

standard deviation. The rows thereby correspond to ψ1 = 0.2 (top), ψ1 = 0.5 (middle),

and ψ1 = 0.8 (bottom), and the columns correspond to σ = 0.1 (left), σ = 0.3 (middle)
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and σ = 0.5 (right). Each histogram is therefore based on 3,000 values of ψ̂H1
1 . It can

be seen that the estimates are roughly centred around the true parameter in landmark

space (displayed as a bold vertical line) for σ = 0.1. For larger values of the standard

deviation, ψ̂H1
1 tends to be smaller than the employed ψ1. Figure F.2 in Appendix F

shows that the tangent projection for highly dispersed data reduces the correlation of

the data so that this e�ect is not necessarily a �aw in the estimation procedure.

The Test Statistic

As mentioned in Section 6.3.1, the null hypothesis of equal mean shapes induces M

linear constraints on the parameter vector. According to Wilks' theorem (cf. Appendix

D), the asymptotic null distribution of −2 log(λ(V ,W )) would be χ2
M if the data were

independent. Figure 6.4 shows that the χ2�approximation is very good for our case as

Figure 6.4: Null distribution of the observed values of the test statistic for sequences of
con�guration matrices simulated according to separable TOPC�AR(1) models: The rows
correspond to the di�erent AR(1) models (top: ψ1 = 0.2, middle: ψ1 = 0.5, bottom:
ψ1 = 0.8). The �rst and second column show histograms and empirical distribution
functions of the observed values of the LR statistic (solid lines) for the case n = 750 and
σ = 0.1. They are compared with the density and distribution function of χ2

5�distribution
(dashed lines). Columns three and four correspond to n = 150 and σ = 0.5.
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6.3 Bootstrap Test for Temporally Dependent Shape Data

Table 6.2: Achieved signi�cance level and power for the considered TOPC�AR(1) models
when ρcrit = 0.01: The nominal signi�cance level is taken as 0.05. The results are the
same as those in Table for ψ1 = 0.2 and very similar for ψ1 = 0.5. For highly correlated
data, the choice of the hyperparameter ρcrit has an impact on the achieved signi�cance
level and power, and ρcrit = 0.01 yields better results than ρcrit = 0.1

ψ = 0.2 ψ = 0.5 ψ = 0.8
n σ α̂ β̂ α̂ β̂ α̂ β̂

150
0.1 0.034 1 0.056 1 0.072 1
0.3 0.056 1 0.062 0.996 0.064 0.73
0.5 0.056 0.776 0.06 0.528 0.098 0.296

500
0.1 0.054 1 0.052 1 0.058 1
0.3 0.054 1 0.07 1 0.088 1
0.5 0.056 1 0.074 0.984 0.104 0.716

750
0.1 0.056 1 0.052 1 0.058 1
0.3 0.052 1 0.07 1 0.06 1
0.5 0.058 1 0.074 0.984 0.112 0.886

well. This is true for all cases we consider (including the ones described later where the

con�guration matrices are simulated according to a non�normal model) and suggests

that our test statistic is asymptotically pivotal. However, the precise condition for this

to hold need further investigation.

Comparison With the Results Obtained Using ρcrit = 0.01

As mentioned earlier, we repeat the above simulations using ρcrit = 0.01 instead of

ρcrit = 0.1 in step 5 of Algorithm 6.1. This should increase the block length l of the

resamples V∗c = {BX(IX1 , l), . . . ,BX(IXnB
, l)}, W∗

c = {BY(IY1 , l), . . . ,BY(IYnB
, l)} which are

obtained during the block bootstrap procedure, and as it can be seen from Figure 6.1,

the change should be most noticeable for the cases where the sequences {Xt}nt=1 and

{Y t}nt=1 have been generated using ψ1 = 0.8. In fact, for ψ1 = 0.8 the maximal of

the 9,000 block lengths (18 parameter combinations with ψ1 = 0.8 × 500 Monte Carlo

iterations) obtained with ρcrit = 0.1 is l = 10 whereas the maximal block length obtained

using ρcrit = 0.01 is l = 25, and 3,716 times the block length increases by nine or more.

For ψ1 = 0.5, only eight block lengths increase by �ve or more when ρcrit = 0.01 is

used, and for ψ1 = 0.2 all block lengths stay the same at l = 5. Substantial changes in

performance are therefore only to be expected for ψ1 = 0.8 � in particular as we use the

same seed for the resampling procedure to allow for a direct comparison.
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6.3 Bootstrap Test for Temporally Dependent Shape Data

Table 6.2 summarises the performance of Algorithm 6.1 when ρcrit = 0.01 is used. For

reasons outlined above, the results for ψ1 = 0.2 and ψ1 = 0.5 are very similar to those

in Table 6.1. For ψ1 = 0.8, however, decreasing ρcrit in general has a bene�cial e�ect on

the achieved signi�cance level. Compared with the respective columns of Table 6.1, it

can be seen that the block bootstrap procedure with the increased block lengths is more

robust against large standard deviations. Although the achieved signi�cance levels for

the combination of ψ1 = 0.8 and σ = 0.5 are still higher than desired, the results have

in particular improved for combinations of ψ1 = 0.8 and σ = 0.3.

6.3.2.4 Additional Simulations

We carry out some more simulations to assess the performance of Algorithm 6.1 under

more challenging conditions.

Non�Normal Data

We repeat all of the above calculation for (4 × 3)�dimensional temporally dependent

con�guration matrices which have been generated as described in Section 6.3.2.1 but

using as a starting point an
(
n × 12

)
matrix Z∗ with (Z∗)ij

i.i.d.∼ t3 (i = 1, . . . , n; j =

1, . . . , 12), where t3 denotes the t�distribution with three degrees of freedom. We choose

this distribution as it is rather extreme in its large tails but still has a �nite variance. The

left�hand side of Table 6.3 provides a summary of the results for a nominal signi�cance

level of α = 0.05. The top half corresponds to Table 6.1 where the hyperparameter value

ρcrit = 0.1 was used, and the bottom half corresponds to Table 6.2 where ρcrit = 0.01.

Overall, the results are similar to those for the normal trajectories. However, the achieved

signi�cance levels for small and moderate correlations (ψ = 0.2 and ψ = 0.5) are more

scattered around the desired value of 0.05, and for the large correlation of ψ = 0.8, the

tendency to yield too large values of α̂ is slightly worse. Moreover, the resulting values

for the power are also slightly worse which is probably due to the large tails of the t3�

distribution. The two groups of tangent vectors in the t3�case will therefore exhibit a

larger overlap than in the normal case. Like before, decreasing the value of ρcrit (and

hence increasing the block length) has in general a bene�cial e�ect on the results.
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Table 6.3: Achieved signi�cance level and power for the more challenging cases of t3�based con�guration matrices and AR(2) dependence
structures: The left�hand side shows the results of the simulations which are based on the t3�distribution with an AR(1) dependence
structure, and the right�hand side shows the results of the simulations which are based on con�gurations generated according to a
TOPC�AR(2) model. The top half in both cases corresponds to Table 6.1 where ρcrit = 0.1 and the bottom half corresponds to Table
6.2 where ρcrit = 0.01.

t3 & ψ1 = 0.2 t3 & ψ1 = 0.5 t3 & ψ1 = 0.8 ψ = (0.2,−0.5)T ψ = (0.4, 0.1)T ψ = (−1.0,−0.75)T

n σ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

150
0.1 0.054 1 0.056 1 0.068 1 0.06 1 0.052 1 0.188 1
0.3 0.052 0.968 0.076 0.742 0.132 0.384 0.09 1 0.052 1 0.356 1
0.5 0.05 0.3 0.06 0.23 0.09 0.17 0.078 0.896 0.066 0.514 0.25 0.878

500
0.1 0.062 1 0.052 1 0.068 1 0.092 1 0.057 1 0.234 1
0.3 0.058 1 0.07 1 0.124 0.862 0.1 1 0.062 1 0.344 1
0.5 0.026 0.848 0.044 0.558 0.124 0.282 0.096 1 0.052 0.972 0.296 1

750
0.1 0.036 1 0.052 1 0.098 1 0.072 1 0.067 1 0.198 1
0.3 0.048 1 0.07 1 0.132 0.95 0.076 1 0.076 1 0.386 1
0.5 0.04 0.964 0.044 0.558 0.108 0.384 .076 1 0.05 1 0.308 1

150
0.1 0.054 1 0.068 1 0.084 1 0.057 1 0.037 1 0.166 1
0.3 0.052 0.968 0.082 0.704 0.096 0.314 0.068 1 0.042 0.99 0.29 1
0.5 0.05 0.3 0.06 0.23 0.098 0.126 0.08 0.906 0.04 0.514 0.268 0.884

500
0.1 0.062 1 0.052 1 0.064 1 0.045 1 0.035 1 0.134 1
0.3 0.058 1 0.07 1 0.08 0.78 0.056 1 0.042 1 0.338 1
0.5 0.026 0.848 0.044 0.558 0.084 0.258 0.086 1 0.062 0.972 0.296 1

750
0.1 0.036 1 0.052 1 0.086 1 0.07 1 0.047 1 0.108 1
0.3 0.048 1 0.07 1 0.104 0.928 0.056 1 0.052 1 0.36 1
0.5 0.04 0.964 0.044 0.558 0.098 0.332 0.076 1 0.07 1 0.308 1
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6.3 Bootstrap Test for Temporally Dependent Shape Data

It can be concluded that the performance of Algorithm 6.1 gets slightly worse if the

trajectories do not follow a normal distribution. However, for the considered t3�based

trajectories, the results are still very good for small and moderate correlations.

Normal Data with AR(2) Dependence

Finally, we consider the case where the trajectories {Xt}nt=1 and {Y t}nt=1 are sequences

of (4 × 3)�con�guration matrices whose vectorised versions follow a separable TOPC�

AR(2) model, i.e. both trajectories are generated as described in Section 6.3.2.1 but here

we use a temporal correlation matrix which is based on a vector ψ = (ψ1, ψ2)T of AR(2)

parameters. In particular, we consider three cases of temporal dependence structures,

namely ψ = (0.2,−0.5)T , ψ = (0.4, 0.1)T and ψ = (−1.0,−0.75)T . Figure 6.5 shows

the corresponding autocorrelation functions. It can be seen that the last case implies

a very strong correlation and hence provides the most challenging scenario. Here, the

horizontal lines represent the constant functions f(s) = ±0.1 (dotted) and g(s) = ±0.01

(dashed), where s denotes the lag between two observations.

The right�hand side of Table 6.3 summarises the results. As before, the top half corre-

sponds to ρcrit = 0.1 and the bottom half corresponds to ρcrit = 0.01. Here, the choice of

ρcrit does not have an overall positive impact on the results. The smaller value ρcrit = 0.01

does tend to decrease the achieved signi�cance level but in some cases this results in α̂

Figure 6.5: Autocorrelation functions of the employed AR(2) models: Three di�erent
combinations of AR(2) parameters are chosen, namely ψ = (0.2,−0.5)T (left), ψ =
(0.4, 0.1)T (middle), and ψ = (−1.0,−0.75)T (right). The dotted lines in each plot are
the constant functions f(Lag) = ±0.1, and the dashed lines corresponds to g(Lag) =
±0.01.
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6.3 Bootstrap Test for Temporally Dependent Shape Data

Figure 6.6: Plot of the estimated AR(2) parameters under the alternative: Each point

cloud displays 3,000 estimates of ψ̂
H1

obtained from the observed data in step 4 of Algo-
rithm 6.1. The di�erent shades of grey correspond to the standard deviation (lightgrey:
σ = 0.1, grey: σ = 0.3, black: σ = 0.5). The true values of the AR(2) parameters are
displayed in red. The triangle correspond to the stationarity region of AR(2) processes
(cf. (6.5)), and the curve corresponds to the cases where ψ2 = −ψ2

1/4. Parameter com-
binations below this curve correspond to complex roots of the characteristic equation of
an AR(2) process (cf. Section 2.2.2.2).

being below the nominal level α = 0.05. It can be seen that the strength of the under-

lying correlation has the biggest impact on the results. For both choices ψ = (0.4, 0.1)T

and ψ = (0.2,−0.5)T , the results are reasonably good. Unfortunately, this changes for

the very strong correlation implied by ψ = (−1.0,−0.75)T where the achieved signi�-

cance levels are dramatically larger than 0.05, and this e�ect is particularly strong for

data with low concentration (i.e. large values of σ).

To further investigate the impact of the standard deviation and the strength of the

correlation on the results, we consider their e�ect on the estimated AR(2) parameter

vector obtained under H1 in step 4 of Algorithm 6.1. Here, we restrict our attention to

the case where ρcrit = 0.1. As before in Section 6.3.2.3, we therefore inspect the estimates

ψ̂
H1 = (ψ̂H1

1 , ψ̂H1
2 )T obtained in 27,000 (54 parameter combination × 500 Monte Carlo

iterations) runs of Algorithm 6.1. Figure 6.6 shows these estimates. The true AR(2)
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6.4 Application to the DNA Data

parameters in landmark space are displayed in red here, and the shades of grey correspond

to the di�erent values of the standard deviation (lightgrey: σ = 0.1, grey: σ = 0.3, black:

σ = 0.5). Figure 6.6 is therefore the counterpart of Figure 6.3. As before, it can be seen

that the standard deviation has a big e�ect on the estimates in that larger standard

deviations lead to estimates ψ̂
H1 which are closer to the centre of the stationarity region

which implies independence. Like Figure F.2, Figure F.3 demonstrates that the tangent

projection plays an important role in this e�ect.

One peculiarity of Figure 6.6 is that the obtained estimates ψ̂
H1 even for the small

standard deviation of σ = 0.1 are not centred around the true AR(2) parameter vector

in landmark space for ψ = (−1.0,−0.75)T (note that ψ = (−1.0,−0.75)T implies a

larger correlation than ψ1 = 0.8). We rerun some of the simulations (i.e. those with

n = 750, ρcrit = 0.1 and µY ∈ {X̆0, X̆2}) with a smaller value of standard deviation,

namely σ = 0.05. Figure F.4 in Appendix F indicates that in that case the correlation

of the data in the observed tangent space is the same as in landmark space because the

resulting estimates ψ̂
H1 are now centred around ψ = (−1.0,−0.75)T . The corresponding

achieved signi�cance level is α̂ = 0.08 which suggests that Algorithm 5.1 is able to deal

with very large correlations if the variability in the data is su�ciently small. In fact,

with σ = 0.03, the achieved signi�cance level reduces to α̂ = 0.044 which is very close to

the nominal value α = 0.05.

6.4 Application to the DNA Data

We now apply Algorithm 6.1 to the DNA data described in Section 1.2.3. As we saw

in the previous section, a very high correlation between the con�gurations within each

group causes the test to reject the null hypothesis of equal mean shapes even if it is true.

To avoid this e�ect, we slightly thin the data and use every 5th molecular con�guration

within each time series. This reduces the number of con�gurations within each group

from 2,500 to 500 which is still large and compared to thinned data we considered in

Section 5.4, the groups will contain much more information about the underlying mean

shapes which is obviously desirable.
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6.4 Application to the DNA Data

We �rst consider the AGA/AFA pair of DNA duplexes and perform GPA on the pooled

set of 1,000 con�guration matrices of the thinned data. After the projection (5.12),

we then have two groups V = {v1, . . . ,v500} and W = {w1, . . . ,w500} of temporally

dependent tangent vectors in M = 59 dimensions which provide the basis for the subse-

quent block bootstrap procedure. To assess how adequate the underlying assumptions of

Algorithm 6.1 are for the DNA data, we estimate the AR(2) parameters and the princi-

pal components of the between column covariance matrix separately for each of the two

groups using a one�sample version of the ML procedure described in Section 6.1.2.2.

For a general sample X = {x1, . . . ,xn} of n temporally dependent vectors in p dimen-

sions, the resulting MLEs of the AR(2) parameters thereby satisfy

ψ̂ = arg min
ψ∈T AR2

|Σ̂C |−n/2{σ−2n
a

(
(1− ψ2

2)
2 − (1 + ψ2)2ψ2

1

)
}p/2, (6.20)

where Σ̂C = 1/n
(
X − 1nx̄T

)TΣ−1
T

(
X − 1nx̄T

)
and X is the (n × p) matrix of the

stacked vectors in the sample (Dryden et al., 2009). Carrying out this estimation for

the considered DNA pair yields ψ̂V = (0.410, 0.197)T for the AGA duplex and ψ̂W =

(0.380, 0.179)T for the AFA duplex. The similarity of these estimates is reassuring for

our assumption of a pooled covariance structure. Moreover, both vectors are well within

the stationarity region of an AR(2) process (cf. Figure 6.6) which is also reassuring.

Table 6.4 shows that this can be observed for all pairs of damaged/undamaged duplexes.

Moreover, the estimated vectors of AR(2) parameters are similar for all molecules.

Table 6.4: Maximum likelihood estimates of the underlying AR(2) parameters of each
duplex under a separable TOPC�AR(2) model: For each damaged/undamaged pair,
GPA on the pooled sample of the (thinned) con�guration matrices was performed, and
the resulting tangent vectors were projected into a 59�dimensional subspace using (5.12).
For each duplex, the MLE (6.20) was then calculated separately.

duplex ψ̂ = (ψ̂1, ψ̂2)T duplex ψ̂ = (ψ̂1, ψ̂2)T

AGA (0.410, 0.197)T AFA (0.380, 0.179)T

AGC (0.409, 0.195)T AFC (0.393, 0.171)T

AGG (0.437, 0.219)T AFG (0.412, 0.182)T

TGA (0.415, 0.201)T TFA (0.395, 0.167)T

TGC (0.383, 0.164)T TFC (0.392, 0.170)T

TGG (0.412, 0.186)T TFG (0.441, 0.202)T
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6.4 Application to the DNA Data

Figure 6.7: Time series of the principal components of shape for the AGA/AFA pair
of DNA duplexes: GPA was performed on the pooled sample of 1,000 con�guration
matrices of the two (thinned) times series. For each group of projected tangent data, the
principal components of shape were obtained separately using the ML estimation under
the separable TOPC�AR(2) model. The left�hand side shows the time series of the �rst
twelve PC scores for the AGA duplex, and the right�hand side shows the corresponding
time series for the AFA duplex.
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6.4 Application to the DNA Data

Figure 6.8: Autocorrelation and partial autocorrelation for shape PC scores of the AGA
duplex: The �rst row shows the correlation structure of the scores on the �rst two shape
PCs, the second row those of the third and fourth shape PC and so on. It can be seen
that the correlation structure is somewhat di�erent on each shape PC. Each partial
autocorrelation function shows only a few spikes which is in line with a low order AR(p)
model.
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6.4 Application to the DNA Data

Based on ψ̂V and ψ̂W, the between column covariance matrices can be estimated as

described above for both molecules AGA and AFA. Dryden et al. (2009) call the corre-

sponding eigenvalues principal components of shape as the between�column structure of

the tangent vectors summarises the dependence between the shape dimensions. Figure

6.7 shows the time series of the �rst twelve shape PC scores for both duplexes. The

left�hand side corresponds to the AGA duplex, and the right�hand side corresponds to

the AFA duplex.

Figure 6.8 row�wise shows the corresponding empirical autocorrelation functions and

empirical partial autocorrelation functions for AGA. The plot of the empirical partial

autocorrelation function thereby is a plot of the lag s against the sth estimated AR

coe�cient, ψ̂ss say, which would occur in an AR(s) process. This plot helps to determine

the order of an AR(p) process: if ψ̂ss is close to zero for all s > s̃, then the order of the

autoregressive process is likely to be s̃ (e.g. Box et al., 2008, pp.66).

It can be seen that the autocorrelation on each shape PC is somewhat di�erent which is

not ideal for our assumption of separability. However, modelling an AR(2) dependence

is in line with the partial autocorrelation functions which exhibit only a few spikes. The

corresponding plots for AFA are provided in Figure F.5 in Appendix F. An observation

which can be made in both Figure 6.8 and Figure F.5 is that the correlation decreases

for higher PCs, and the estimates ψ̂V = (0.410, 0.197)T and ψ̂W = (0.380, 0.179)T strike

a compromise between the di�erent observed correlations.

Table 6.5: Estimated p�Values, observed values of the (transformed) test statistic and
other parameters of Algorithm 6.1 when applied to the DNA data: The tests show
very strong evidence against the null hypothesis of equal mean shapes for all dam-
aged/undamaged pairs of DNA duplexes. The pooled estimates of the AR(2) parameters
obtained under the alternative are in line with those in Table 6.4.

pair p̂ −2 log λobs l ψ̂
H1 = (ψ̂H1

1 , ψ̂H1
2 )T

A.A 0.001 140.976 10 (0.400, 0.187)T

A.C 0.001 742.554 10 (0.416, 0.190)T

A.G 0.001 353.909 10 (0.431, 0.203)T

T.A 0.001 553.790 10 (0.414, 0.189)T

T.C 0.001 507.125 10 (0.396, 0.172)T

T.G 0.001 379.815 10 (0.434, 0.198)T
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6.4 Application to the DNA Data

Table 6.6: Estimated p�values, observed values of the (transformed) test statistic and
other parameters of Algorithm 6.1 when applied within the DNA duplexes: In all cases,
the result correctly indicates no evidence against the null hypothesis of equal mean
shapes at the 5% signi�cance level.

duplex p̂ −2 log λobs duplex p̂ −2 log λobs duplex p̂ −2 log λobs

AGA 0.138 86.562 AGC 0.456 62.949 AGG 0.125 88.90

AFA 0.4 66.096 AFC 0.237 76.181 AFG 0.27 73.857

TGA 0.742 49.788 TGC 0.188 83.862 TGG 0.107 87.134

TFA 0.246 74.555 TFC 0.273 74.363 TFG 0.571 58.093

We now apply Algorithm 6.1 to test for the equality of the mean shapes for all pairs of

damaged/undamaged DNA molecules. Due to the overall superiority of ρcrit = 0.01 we

choose this hyperparameter value for determining the block length. Table 6.5 summarises

the results. All tests are thereby based on B = 1, 000 bootstrap iterations. Like before in

Section 5.4, the results indicate very strong evidence against the null hypothesis of equal

mean shapes for all pairs. Even for the AGA/AFA pair for which the lowest value of

the observed test statistic occurs, does the estimated p�value take the smallest possible

value for B = 1, 000. The fourth column of Table 6.5 shows the pooled MLEs of the

AR(2) parameters which are obtained under the alternative in step 4 of Algorithm 6.1.

It can be seen that they are in line with the corresponding estimates in Table 6.4. The

resulting block length is 10 in each case.

We saw before that small estimated p�values can also be a result of model misspeci�-

cation. We therefore apply Algorithm 6.1 to the data within each DNA strand. To do

so, we divide the (thinned) time series for each duplex into ten parts of 50 iterations

and form the two groups by assigning alternating group membership to the ten parts,

i.e. group 1 of each DNA consists of observations 1, . . . , 50, 101, . . . , 150, . . . , 401, . . . , 450.

Table 6.6 shows that Algorithm 6.1 correctly �nds no evidence against the equality of

equal mean shapes for these within�DNA data. Although the assumption of separability

is not met for the DNA application, the proposed test procedure is therefore able to

distinguish between cases where the null hypothesis is true and those where it is not.

The test results are in line with those in the previous chapter. Overall, it therefore is to

be concluded that the oxidative guanine damage FapydG does induce signi�cant changes
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6.5 Summary

in the mean shapes of the DNA molecules. To investigate further changes in the DNA

structure and dynamics brought about by the damage is left for further work. Some

ideas are mentioned in Section 7.3.

6.5 Summary

In this chapter we proposed a bootstrap algorithm for testing the equality of the un-

derlying population mean shapes for two groups of temporally dependent con�guration

matrices. This algorithm is based on the Procrustes tangent space of the pooled sam-

ple. It can be seen as a direct generalisation of the bootstrap algorithm proposed in

the previous chapter as the applied test statistic is a generalisation of a quantity which

is proportional to the Mahalanobis squared distance (which for equal sample sizes is

turn proportional to the James statistics and hence yields the same results in a boot-

strap procedure), and the used resampling method is a generalisation of the independent

bootstrap applied in Algorithm 5.1.

In a simulation study, the superiority of the amended bootstrap algorithm over Algo-

rithm 5.1 is demonstrated. Whereas Algorithm 5.1 breaks down even for very small

correlations within the groups, the new algorithm works well in most cases. Only for

very large correlations and large standard deviations does it become too liberal and tends

to spuriously reject the null hypothesis.

When applied to the DNA data, the results are consistent with those obtained in the

previous chapter and suggest very strong evidence against the null hypothesis of equal

mean shapes for the damaged/undamaged pairs of DNA molecules. This is interesting in

that it could be linked to the binding activity of the duplexes towards the repair protein

which changes the lesion FapydG back to guanine.
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Chapter 7

Discussion and Further Work

In this thesis we developed statistical methods for modelling and comparing molecular

shapes. In particular, the fuzzy nature of molecules and the fact that molecules con-

stantly undergo conformational changes are important features in molecular modelling

and cannot be addressed with methods from classical statistical shape analysis. In two

separate parts, we therefore developed novel techniques which are speci�cally designed

to incorporate these two molecular properties.

7.1 Modelling and Comparing Continuous Molecular Shapes

In Chapters 3 and 4, we considered the situation where each molecule is given in the

form of a marked point set where the points represent the atom positions and the marks

are values of a molecular property measured at these positions. In order to obtain a

continuous representation of molecular shape, we used kriging of the given marks. This

yields a predicted molecular �eld based on which a comparison of di�erent molecules can

be carried out. Although kriging has been mentioned before in the chemoinformatics lit-

erature (e.g. Fang et al., 2004, and Pen et al., 2006, use kriging to introduce a correlation

structure for the errors when a linear model is set up to predict a molecular property

such as the boiling point from topological measurements of molecules), its application

to the prediction of a molecular �eld provides a novel tool in structural alignment.
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7.1 Modelling and Comparing Continuous Molecular Shapes

We assumed that the marked point sets of the given molecules are noisy pointwise ob-

servations of a common underlying reference �eld which cannot be observed. This as-

sumption is particularly reasonable for molecules which bind to the same target as the

underlying reference �eld can in that case be interpreted as the negative imprint of the

binding pocket of the receptor. With the additional assumption that the reference �eld is

stationary, the constant mean can be set to zero for the purpose of molecular alignment.

The predicted �elds therefore take a form which allows us to view them as members of

the reproducing kernel Hilbert space associated with the employed covariance function.

In order to compare two molecular �elds, we proposed a modi�cation of the Carbo

similarity index which is well�established in the structural alignment community. The

original (L2�)Carbo index essentially generalises Pearson's correlation coe�cient to con-

tinuous functions and measures the similarity of two �elds by an overlap integral, i.e. by

the inner product in the space of Lebesgue square�integrable functions L2. In this thesis,

we introduced a kernelised version of the (L2�)Carbo index which has the advantage that

the �eld overlap can be calculated without expensive numerical integration.

The alignment of two molecules with respect to the Kernel Carbo index was carried out

within a Bayesian framework. Markov chain Monte Carlo sampling and posterior infer-

ence were used to obtain a rotation/translation invariant notion of molecular similarity.

As the rigid�body parameters are integrated out, our alignment method is similar to

that of Green & Mardia (2006). However, it avoids estimating correspondences between

the atoms of di�erent molecules which poses a substantial di�erence to previously pro-

posed methods. With our �eld�based approach, the absence of atom correspondences is

counterbalanced by the spatial distribution of the marks so that it is only necessary to

determine whether or not an atom belongs to the matching part of the molecules. This

is a considerable advantage as correspondences do not exist in every application. In the

simulation study in Chapter 3, we also demonstrated that the mask vectors can identify

contamination points so that our alignment method is somewhat robust to outliers.

Another approach for the pairwise alignment of unlabelled point sets which does not

require correspondences has been formulated by Durrleman et al. (2007) in the context

of aligning brain shapes. They view the given sets of point coordinates as segmented
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lines and formulate a distance between the point sets in terms of a distance between the

lines using �currents� and reproducing kernel Hilbert spaces. The resulting similarity

index bears some algebraic similarities to the Kernel Carbo index. However, Durrleman

et al. (2007) do not incorporate marks or the possibility that only subsets of the given

point sets match but they do use non�rigid deformations.

Our alignment method worked well for pairwise alignments of the steroid molecules

in Chapter 4. We also demonstrated that the resulting rotation/translation invariant

discrepancy values are chemically meaningful in that they are associated with the binding

activities of the steroids towards a common receptor protein. In order to assess which

parts of the molecular �elds di�er between the activity classes, we developed an extension

of the pairwise alignment to the simultaneous superposition of several unlabelled marked

point sets. This extension can be seen as a �eld�based version of the generalised partial

Procrustes algorithm in statistical shape analysis as it determines the optimal matching

parameters for each point set in turn. It is related to the model proposed by Dryden

et al. (2007) where an iterative optimisation of the matching parameters is carried out

with respect to an unknown reference con�guration. Contrary to that, a hidden reference

con�guration is integrated out in the fully model�based Bayesian approach of Ru�eux

& Green (2009) which is an extension of the pairwise method of Green & Mardia (2006).

The fact that our �eld�based approach provides the opportunity to naturally incorporate

additional information is of particular advantage in the multiple comparison setting

because the resulting mean �elds allow straightforward post�processing. For example in

the steroid application we used an exploratory t�test to determine the regions where the

steric mean �eld of the three activity classes di�er the most.

7.2 Comparing Dynamic Molecular Shapes

Chapters 5 and 6 were concerned with comparing the sample mean shapes of DNA mole-

cules with the aim of investigating whether or not the oxidative guanine lesion FapydG

signi�cantly changes the mean shape of a DNA molecule. Motivated by the success of
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bootstrap hypothesis tests for comparing the means shapes of two groups of con�gura-

tion matrices as demonstrated by Amaral et al. (2007) and Preston & Wood (2009b) in

the context of planar shapes and the multidimensional scaling (MDS) approach to shape

analysis, respectively, we considered the bootstrap framework for this problem.

In Chapter 5, we proposed a fast bootstrap algorithm for testing the equality of the

underlying mean shapes of two groups of con�gurations matrices for the case where

the data within each group are independent. Our algorithm is based on the Procrustes

tangent space of the pooled sample. Once obtained, this space is �xed and resampling

is carried out conditional on the �observed tangent space� which considerably reduces

the computational cost of the algorithm. Moreover, as the tangent space is a Euclidean

approximation of the shape space it o�ers a natural way of transforming the data to the

null hypothesis by centering both groups of tangent vectors. We use the James statistic

in tangent space which is asymptotically pivotal so that our bootstrap algorithm meets

both guidelines Hall & Wilson (1991) suggested for general bootstrap hypothesis tests.

Both, centering the tangent vectors and the use of the James statistic were also considered

by Preston & Wood (2009b) in the context of the MDS approach to shape analysis. Our

Procrustes�based work can therefore be viewed as complementary to their paper, and

in particular if the re�ection information of the data should be retained, it provides a

valuable tool for testing for the equality of mean shapes.

In a simulation study we showed that our fast bootstrap algorithm works very well in

terms of both achieved signi�cance level and power if the data are independent. However,

if even a small temporal correlation is present the test tends to be too liberal. This

shortcoming is not surprising as both the resampling procedure and the test statistic are

designed under the independence assumption. Motivated by the DNA data which are

highly correlated within each group (molecule), we therefore extended our fast bootstrap

algorithm to accommodate temporal dependence in Chapter 6.

The new test statistic is based on the separable time�orthogonal principal component

(TOPC) model of Dryden et al. (2009). Assuming an AR(2) dependence structure on

each principal component (PC), we proposed a likelihood ratio statistic. This statistic

can be seen as a direct generalisation of the Mahalanobis squared distance which can be
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derived as a monotone transformation of a likelihood ratio statistic in the independent

case. To generalise the resampling procedure, we applied the circular block bootstrap

of Politis & Romano (1992) where blocks of consecutive observations are resampled to

preserve the dependence structure in the data. We chose the circular block bootstrap for

our algorithm because it does not su�er from edge e�ects so that all observations have

equal probabilities to be part of a resampled block. To determine the block length we

used an ad�hoc criterion which ensures that the block length depends on the estimated

AR(2) correlation structure of the data.

Simulations showed that the amended bootstrap test algorithm works well in most situ-

ations. This includes cases where the con�guration matrices have been simulated based

on the heavy tailed t3�distribution. Only if the data exhibit very large correlations in

combination with a large standard deviation, does it become too liberal. Overall, the

amended bootstrap procedure is able to cope much better with temporal correlations

than the algorithm proposed in Chapter 5. One of the advantages of this is that no or

only a small degree of thinning needs to be applied before the test can be carried out so

that the results are based on more information. Unfortunately, this improvement comes

with an increased computational cost because two optimisations have to be carried out

at each bootstrap iteration.

When applied to the DNA data, both the independent and the dependent version of our

bootstrap test indicated that all pairs of damaged/undamaged DNA duplexes have sig-

ni�cantly di�erent mean shapes. This is interesting as it could be linked to the binding

activity towards the repair protein which changes the damage FapydG back to the orig-

inal base guanine. To investigate whether or not these di�erences are consistent across

all pairs, we carried out further signi�cance tests to compare all pairs of undamaged and

all pairs of damaged DNA. If, for example, the damaged versions do not signi�cantly

di�er from each other, this could be a clue as to how the repair protein recognises the

damage. Unfortunately, no consistent di�erences between the mean shapes of the dam-

aged and undamaged DNA could be found. In fact, for all possible pairs of the twelve

duplexes, both bootstrap tests yielded very small estimated p�values which suggests that

all duplexes have signi�cantly di�erent mean shapes.
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Our analysis in Chapter 6 did, however, reveal a potentially interesting di�erence between

the damaged and undamaged molecules: Table 6.4 suggests that, overall, the temporal

dependence of the con�gurations of the damaged duplexes is slightly smaller than that of

the undamaged molecules. A possible explanation for this is that the hydrogen bonding

of FapydG to the base in the complementary strand is weaker than the one between

guanine and the corresponding base (Jiranusronkul & Laughton, 2008). This observation

is also in line with Table 1 in their paper which shows that the average �uctuation of

the damaged molecules about the starting con�guration is consistently higher (in terms

of the root mean square deviation) than that of the undamaged molecules.

Finally, as mentioned by Dryden et al. (2009), assuming an AR(2) dependence struc-

ture is a reasonable starting point for the DNA application as the molecular dynamics

simulations are based on Newtonian mechanics where the position of a particle can be

determined based on its speed and acceleration (cf. Section 1.2.1). Therefore, given the

past, the previous observation could be used to estimate the speed and the two previous

observations could be used to estimate the acceleration.

7.3 Further Work

Both parts of this thesis generate questions which could be further investigated. In this

section we outline some ideas for further work. In the context of aligning unlabelled

marked point sets, a possible amendment of our methodology is the use of cokriging for

cases where each coordinate in a point set is associated with a vector of marks rather than

a scalar. While the dynamic weighted average approach for the steric and electrostatic

�elds (cf. Section 4.2.1) seems appropriate in the molecular context as it mimics real�

life molecular recognition, it might be bene�cial to account for covariances between the

predicted �elds in other examples. In that case, it would also be of interest to introduce

separate mask vectors for each type of mark to allow for the possibility that the regions

of high similarity di�er between the di�erent types of �elds. Conceptually, this can easily

be incorporated in the Bayesian framework. It would, however, be computationally very

demanding.
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In the simulation study described in Section 3.6, we showed that using the true covari-

ance function of the underlying reference �eld in the Kernel Carbo calculations is not

essential for good alignment results, and that it is more important that the point sets are

samples from similar parts of the underlying reference �eld. For the steroid data, it is the

common core structure of the four carbon rings which satis�es this requirement so that

the alignment works well although the isotropic Gaussian covariance function for the

�eld predictions might not be the correct choice. For general applications where it is not

known whether or not the nearness�requirement is satis�ed, it may be more important

to estimate the covariance function of the underlying reference �eld correctly. However,

if outliers or other contamination points are present, then the results can be distorted.

Applying an outlier detection method will therefore be a bene�cial pre�processing step

before the (pooled) empirical semivariogram is obtained. In Appendix B we describe an

ad�hoc method to do so based on a leave�one�out procedure which also yields adequate

starting values for the mask parameters in the MCMC algorithm. We did not extensively

study the performance of this method so that this is subject to further work.

Our MCMC algorithm does sometimes get stuck in a local maximum of the posterior

distribution. This problem could potentially be alleviated by using �soft� mask vectors

whose entries take values between zero and one instead of being binary. The predicted

�eld for each labelled point set would then be based on all points at all iterations, and the

current soft mask vectors could be incorporated by multiplying the kriging weights by

the corresponding entries. This idea is based on Rangarajan et al. (1997) who describe

a soft matching algorithm for unlabelled point sets using Procrustes analysis and a soft

labelling matrix. For our case, softening the mask vectors would have the additional

computational advantage that the kriging weights do not have to be calculated anew

each time a new mask vector is accepted.

While it would be good to incorporate molecular dynamics in the alignment procedure,

this would be computationally very demanding. A simpler way to account for molecular

�exibility is described by Schmidler (2009) who extends the notion of shape as described

in Section 2.1.1 to a notion of �exible shape based on changepoint analysis. For two

labelled con�guration matrices X ∈ IRk×m and Y ∈ IRk×m with corresponding rows xi

and yi (i = 1, . . . k), a changepoint allows for hinge�like motions of parts of the con-
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�gurations. It is de�ned as an index j (j = 1, . . . , k − 1) such that the transformation

between xj and yj is di�erent from the transformation between xj+1 and yj+1. For ex-

ample, if a single changepoint is present, then two sets (Γ1,γ1) and (Γ2,γ2) of matching

parameters need to be estimated which describe the transformation between the �rst j

rows of X and Y and the last k − j rows of X and Y , respectively. Schmidler (2009)

formulates a Bayesian framework to determine the number of changepoints and their

locations and successfully applies his method to the structural alignment of proteins. A

similar extension of our �eld�based approach would be desirable.

There are also several potential areas for further work which arise from the second part of

this thesis. Firstly, the employed test statistic in Algorithm 6.1 has been derived under

quite a restrictive model so that generalisations are desirable. For example, one could

incorporate the possibility of unequal covariance structures of the two groups. Moreover,

we saw for the DNA data that the assumption of separability is not met (cf. Figures 6.8

and F.5). For the one�sample case, Dryden et al. (2009) account for this by de�ning a

non�separable version of the TOPC model where the correlation structure on each PC is

allowed to follow a di�erent model. They also describe an iterative algorithm to obtain

approximate ML estimates, and it may be worth investigating its use for calculating a

LR statistic of the form (6.16). However, within the bootstrap framework, two of these

optimisations would have to be carried out at each bootstrap iteration which might be

prohibitively slow.

With respect to the resampling procedure in Algorithm 6.1, a possible improvement lies

in the choice of the block length. Step 4 is an ad�hoc method which seems to work well

in most cases considered in this thesis. For the circular block bootstrap as proposed by

Politis & Romano (1992), however, the chosen block length does not need to be an integer

divisor of the sample size. This could re�ne the choice of the block length and improve

the results. Moreover, our method of determining the block length could be compared

with the method proposed by Hall et al. (1995) where (as a step prior to applying a block

bootstrap algorithm to the entire sample) the performance of di�erent block lengths is

assessed by an empirical version of the mean squared error evaluated in terms of the

estimates obtained from subsamples of the given time series and the estimate obtained

from the entire sample.
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Further analysis of the DNA data could also be carried out. Our test results from both

Chapters 5 and 6 indicate that the oxidative guanine lesion FapydG does induce signif-

icant changes to the mean shapes of the given DNA duplexes. It would be interesting

to �nd out what other changes are brought about by replacing G with F. Table 6.4

indicates that there might be a consistent di�erence of the dependence structure be-

tween the damaged and undamaged duplexes. One could investigate if this, combined

with the di�erent mean shapes, leads to di�erent possible extreme con�gurations. A

particularly relevant question is whether or not the damaged versions can assume the

con�guration required for the binding complex with the repair protein more easily than

their undamaged counterparts. However, to fully investigate this, it might be necessary

to incorporate more atoms than just the phosphorus atoms of the DNA backbones.

Like the steroid molecules, the DNA duplexes are obviously also continuous objects.

Despite the absence of marks in the DNA dataset, one could account for this by de-

scribing the two strands of each duplex as continuous curves which interpolate the given

coordinates of the phosphorus atoms. This approach has been applied in the context of

modelling facial shapes by Barry & Bowman (2008) who �t B�splines to a set of land-

marks which describe the faces of children with cleft lip and palate and a similarly aged

control group. Barry & Bowman (2008) then use the spline coe�cients to compare the

facial shapes of the two groups over time. These coe�cients are inherently invariant un-

der rotation and translation so that they can be used instead of the tangent coordinates

of the original landmarks. A similar approach could be used for the DNA data although

the test statistic in Algorithm 6.1 would be harder to interpret in that case.

Finally, it would be interesting to apply our methods to other datasets. As the �eld�

based matching described in Chapters 3 and 4 does not require any prede�ned point�

by�point correspondences, it could be an approach to resolve the alignment problem

for a fairly broad range of applications. Examples include matching organs in medical

images (Rangarajan et al., 1997) or matching two views of the same object from di�erent

cameras (Cross & Hancock, 1998). Moreover, if the objects are represented by closed

outlines which may be occluded by other objects in an image, then a similar approach

can be used to perform a partial matching of the outlines. In fact, this has successfully

been done in Cao et al. (2009). The bootstrap algorithm proposed in Chapter 5 can be
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applied to all situations where two groups of independent con�guration matrices are to

be compared with respect to their mean shapes. This is a frequently occurring situation

and examples include landmark data for human faces which are divided into age groups

(cf. Evison & Vorder Bruegge, 2008; Preston & Wood, 2009b) or comparing the brain

shapes of schizophrenia and normal patients (Bookstein, 1996). If the con�gurations are

observed over time and can be assumed to follow a stationary process, then the bootstrap

procedure proposed in Chapter 6 should be applied.

160



Bibliography

Abrahamsen, P. (1997): A review of Gaussian random �elds and correlation functions.

Technical report , Norwegian Computing Center, Oslo.

Abramowitz, M. & Stegun, I. A. (1964): Handbook of Mathematical Functions. Wash-

ington D.C.: National Bureau of Standards.

Adler, R. J. (1981): The Geometry of Random Fields. Chichester: Wiley.

Amaral, G. J. A., Dryden, I. L., & Wood, A. T. A. (2007): Pivotal bootstrap methods

for k�sample problems in directional statistics and shape analysis. Journal of the

American Statistcial Association, 102, 695�707.

Anzali, S., Gasteiger, J., Holzgrabe, U., Polanski, J., Sadowski, J., Teckentrup, A., &

Wagener, M. (1998): The use of self�organising neural networks in drug design. In:

H. Kubinyi, G. Folkers, & Y. C. Martin (eds.) 3D QSAR in Drug Design, 273�299.

London: Kluwer/ESCOM, 2nd edition.

Arnold, S. F. (1981): The Theory of Linear Models and Multivariate Analysis. Chich-

ester: Wiley.

Aronszajan, N. (1950): Theory of reproducing kernels. Transactions of the American

Mathematical Society , 68, 337�404.

Barry, S. J. E. & Bowman, A. W. (2008): Linear mixed models for longitudinal shape

data with applications to facial modeling. Biostatistics, 9, 555�565.

Beckman, K. B. & Ames, B. N. (1997): Oxidative decay of DNA. Journal of Biological

Chemistry , 272, 19633�19636.

161



BIBLIOGRAPHY

Bender, A. & Glen, R. C. (2004): Molecular similarity: a key technique in molecular

informatics. Organic & Biomolecular Chemistry , 2, 3204�3218.

Berlinet, A. & Thomas-Agnan, C. (2004): Reproducing Kernel Hilbert Spaces in Proba-

bility and Statistics. London: Kluwer Academic Press.

Bhattacharya, B. & Habtzghi, D. (2002): Median of the p value under the alternative

hypothesis. The American Statistician, 56, 202�206.

Bhattacharya, R. & Patrangenaru, V. (2003): Large�sample theory on intrinsic and

extrinsic sample means on manifolds, I. Annals of Statistics, 31, 1�29.

Blanley, J. M. & Dixon, J. S. (1993): A good ligand is hard to �nd: Automated docking

methods. Perspectives in Drug Discovery and Design, 1, 301�319.

Bookstein, F. L. (1986): Size and shape spaces for landmark data in two dimensions

(with discussion). Statistical Sciences, 1, 181�242.

Bookstein, F. L. (1996): Biometrics, biomathematics and the morphometric synthesis.

Bulletin of Mathematical Biology , 58, 313�365.

Bose, A. & Politis, D. N. (1993): A review of the bootstrap for dependent samples.

Technical report , Department of Statistics, Purdue University.

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008): Time Series Analysis. Hoboken:

Wiley, 4th edition.

Cao, Y., Zhang, Z., Czogiel, I., Dryden, I., & Wang, S. (2009): 2D nonrigid partial shape

matching using MCMC and contour subdivision. Submitted for Publication.

Carbo, R., Leyda, L., & Arnau, M. (1980): An electron density measure of the similarity

between two compounds. International Journal of Quantum Chemistry , 17, 1185�

1189.

Carlstein, E. (1986): The use of subseries methods for estimating the variance of a general

statistic from a stationary time series. The Annals of Statistics, 14, 1171�1179.

Case, D. A., Cheatham III, T. E., Darden, T., Gohlke, H., Luo, R., Merz Jr., K. M.,

Onufriev, A., Simmerling, C., Wang, B., &Woods, B. (2005): TheAmber biomolecular

simulation program. Journal of Computational Chemistry , 26, 1668�1688.

162



BIBLIOGRAPHY

Chat�eld, C. (1996): The Analysis of Time Series (An Introduction). London: Chapman

& Hall, 5th edition.

Chernick, M. R. (1999): Bootstrap Methods. Chichester: Whiley.

Chib, S. & Greenberg, E. (1995): Understanding the Metropolis�Hastings algorithm.

The American Statistician, 49, 327�335.

Christianini, N. & Shawe-Taylor, J. (2000): An Introduction to Support Vector Machines.

Cambridge: Cambridge University Press.

Chung, K. L. (1974): A Course in Probability Theory . New York: Academic Press, 2nd

edition.

Coats, E. A. (1998): The CoMFA steroids as a benchmark data set for development of

3D QSAR methods. Perspectives in Drug Discovery and Design, 12, 119�213.

Cramer, R. D., III, Patterson, D. E., & Bunce, J. D. (1988): Comparative molecular

�eld analysis (CoMFA). 1. e�ect of shape on binding of steroids on carrier proteins.

Journal of the American Chemical Society , 110, 5959�5967.

Cressie, N. A. C. (1993): Statistics for Spatial Data. Chichester: Wiley.

Crippen, G. M. (1987): Voronoi binding site models. Journal of Computational Chem-

istry , 8, 943�955.

Cross, A. D. J. & Hancock, E. R. (1998): Graph matching with a dual�step EM algo-

rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 1236�

1253.

Cryer, D. J. & Chan, K.-S. (2008): Time Series Analysis with Applications in R. Berlin:

Springer, 2nd edition.

Czogiel, I., Dryden, I. L., & Brignell, C. J. (2008): Bayesian alignment of continuous

molecular shapes using random �elds. In: S. Barber, P. D. Baxter, A. Gusnato, &

K. V. Mardia (eds.) The Art and Science of Statistical Bioinformatics, 85�88. Leeds:

Leeds University Press.

Czogiel, I., Dryden, I. L., & Brignell, C. J. (2009): Bayesian alignment of unlabelled

marked point sets using random �elds. Submitted for Publication.

163



BIBLIOGRAPHY

Davison, A. C. & Hinkley, D. V. (1997): Bootstrap methods and their applications.

Cambridge: Cambridge University Press.

Díaz-García, J. A., Gutierrey Jáimez, R., & Mardia, K. V. (1997): Wishart and pseudo�

Wishart distributions and some applications to shape theory. Journal of Multivariate

Analysis, 63, 73�87.

Dobson, C. M. (2004): Chemical space and biology. Nature, 432, 824�828.

Dryden, I. L., Hirst, J. D., & Melville, J. M. (2007): Statistical analysis of unlabelled

point sets: comparing molecules in chemoinformatics. Biometrics, 63, 237�251.

Dryden, I. L., Kume, A., Le, H., & Wood, A. T. A. (2008): A multidimensional scaling

approach to shape analysis. Biometrika, 95, 779�798.

Dryden, I. L., Kume, A., Le, H., & Wood, A. T. A. (2009): Statistical inference for func-

tions of the covariance matrix in the stationary Gaussian time�orthogonal principal

components model. Annals of the Institute of Statistical Mathematics, to appear.

Dryden, I. L., Kume, A., Le, H., Wood, A. T. A., & Laughton, C. A. (2002): Size�

and�shape analysis of DNA molecular dynamic simulations. In: K. V. Mardia, R. D.

Aykroyed, & P. McDonnel (eds.) Proceedings in Statistics of Large Datasets. University

of Leeds.

Dryden, I. L. & Mardia, K. V. (1993): Multivariate shape analysis. Sankhy	a, Series A,

55, 460�480.

Dryden, I. L. & Mardia, K. V. (1998): Statistical Shape Analysis. Chichester: Wiley.

Dryden, I. L. & Zempléni, A. (2006): Extreme shape analysis. Journal of the Royal

Statistical Society, Series C , 55, 103�121.

Durrleman, S., Pennec, X., Trouvé, A., & Ayache, N. (2007): Measuring brain variability

via sulcal lines registration: a di�eomorphic approach. In: N. Ayache, S. Ourselin,

& A. Maeder (eds.) Proceedings of Medical Image Computing and Computer Assisted

Intervention (MICCAI), volume 4791 of LNCS. Brisbane.

Efron, B. (1979): Bootstrap methods: another look at the jackknife. Annals of Statistics,

7, 1�26.

164



BIBLIOGRAPHY

Efron, B. (1984): Better boostrap con�dence intervals. Technical report , Stanford Uni-

versity, Department of Statistics.

Efron, B. & Tibshirani, R. J. (1986): Bootstrap methods for standard errors, con�dence

intervals, and other measures of statistical accuracy. Statistical Science, 1, 54�75.

Efron, B. & Tibshirani, R. J. (1993): An Introduction to the Bootstrap. London: Chap-

man & Hall.

Evison, M. P. & Vorder Bruegge, R. W. (2008): The Magna Database: a database of

three�dimensional facial images for research in human identi�cation and recognition.

Forensic Science Communications, 10, [Web].

Fang, K.-T., Ying, H., & Liang, Y.-Z. (2004): New approach by kriging models to

problems in QSAR. Journal of Chemical Information and Computer Sciences, 44,

2106�2113.

Fisher, N. I., Hall, P., Jing, B.-Y., & Wood, A. T. A. (1996): Improved pivotal methods

for constructing con�dence regions with directional data. Journal of the American

Statistical Association, 91, 1062�1070.

Friedman, D. A. (1981): Bootstrapping regression models. Annals of Statistics, 9, 1218�

1228.

Friedman, D. A. (1984): On bootstrapping two�stage least�squares estimates in station-

ary linear models. Annals of Statistics, 12, 827�842.

Gelman, A. (1996): Inference and monitoring convergence. In: W. R. Gilks, S. Richard-

son, & D. J. Spiegelhalter (eds.) Markov chain Monte Carlo in Practice, 131�144.

London: Chapman & Hall.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004): Bayesian Data Analysis.

London: Chapman & Hall, 2nd edition.

Geman, S. & Geman, D. (1984): Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6, 721�741.

Giudice, E. & Levery, R. (2002): Simulations of nucleic acids and their complexes.

Accounts of Chemical Research, 35, 350�357.

165



BIBLIOGRAPHY

Goldstein, H., Poole, C., & Safko, J. (2002): Classical Mechanics. London: Addison

Wesley, 3rd edition.

Good, A. C. (1995): 3D molecular similarity indices and their application in QSAR

studies. In: P. M. Dean (ed.) Molecular Similarity in Drug Design, 24�56. London:

Blackie Academic & Professional.

Good, A. C., Hodgkin, E. E., & Richards, W. G. (1992): The utilisation of Gaussian

functions for the rapid evaluation of molecular similarity. Journal of Chemical Infor-

mation and Computer Sciences, 32, 188�191.

Good, A. C., So, S., & Richards, W. G. (1993): Structure�activity relationships from

molecular similarity matrices. Journal of Medicinal Chemistry , 36, 433�438.

Goodall, C. R. (1991): Procrustes methods in the statistical analysis of shape (with

discussion). Journal of the Royal Statistical Society, Series B , 53, 285�339.

Goodall, C. R. & Bose, A. (1987): Models and Procrustes methods for the analysis of

shape di�erences. In: R. M. Heiberger (ed.) Proceedings of the 19th INTERFACE

Symposium, 445�454. Fairfax Station, Interface Foundation.

Gower, J. C. (1975): Generalized Procrustes analysis. Psychometrika, 40, 33�50.

Grant, J. A., Gallardo, M. A., & Pickup, B. T. (1996): A fast method of molecular

shape comparison: A simple application fo a Gaussian description of molecular shape.

Journal of Computational Chemistry , 17, 1653�1666.

Grant, J. A. & Pickup, B. T. (1995): A Gaussian description of molecular shape. Journal

of Physical Chemistry , 99, 3503�3510.

Green, P. J. (2001): A primer on Markov Chain Monte Carlo. In: O. E. Barndor�-

Nielsen, D. R. Cox, & C. Klüppelberg (eds.) Complex Stochastic Systems, 1�62. Lon-

don: Chapman & Hall.

Green, P. J. & Mardia, K. V. (2006): Bayesian alignment using hierarchical models, with

application in protein bioinformatics. Biometrika, 93, 235�254.

Grenander, U. & Rosenblatt, M. (1957): Statistical Analysis of StationaryTime Series.

Chichester: Wiley.

166



BIBLIOGRAPHY

Hall, M. (1998): Combinatorial Theory . Chichester: Wiley, 2nd edition.

Hall, P. (1985): Resampling a coverage pattern. Stochastic Processes and Their Appli-

cations, 20, 231�246.

Hall, P. (1992): The Bootstrap and Edgeworth Expansion. Berlin: Springer.

Hall, P., Horowitz, J. L., & Jing, B. (1995): On blocking rules for the bootstrap with

dependent data. Biometrika, 82, 561�574.

Hall, P. & Wilson, S. R. (1991): Two guidelines for bootstrap hypothesis testing. Bio-

metrics, 47, 757�762.

Handcock, M. S. & Wallis, J. R. (1994): An approach to statistical spatial�temporal

modeling of meteorological �elds (with discussion). Journal of the American Statistical

Association, 89, 368�390.

Haskard, K. A. (2007): An anisotropic Matérn spatial covariance model: REML estima-

tion and properties. Ph.D. thesis, School of Agriculture, Food and Wine, University

of Adelaide.

Hastings, W. K. (1970): Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57, 97�109.

Henderson, H. V. & Searle, S. R. (1979): Vec and vech operators for matrices, with some

uses in Jacobians and multivariate statistics. Canadian Journal of Statistics, 7, 65�81.

James, G. S. (1954): Tests of linear hypotheses in univariate and multivariate analysis

when the ratios of the population variances are unknown. Biometrika, 41, 19�43.

Je�reys, H. (1946): An invariant form of the prior probability in estiamtion problems.

Proceedings of the Royal Society of London: Series A (Mathematical and Physical

Sciences), 186, 453�461.

Jiranusronkul, S. & Laughton, C. A. (2008): Destabilisation on DNA duplexes by ox-

idative damage at guanine: implications for lesion recognition and repair. Journal of

the Royal Society Interface, 5, 191�198.

Kass, R. E. & Wasserman, L. (1996): The selection of prior distributions by formal rules.

Journal of the American Statistical Association, 91, 1343�1370.

167



BIBLIOGRAPHY

Kearsley, S. K. & Smith, G. M. (1990): An alternative method for the alignment of

molecular structures: maximizing electrostatic and steric overlaps. Tetrahedron Com-

puter Methodology , 3, 315�633.

Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., & Shoichet,

B. K. (2007): Relating protein pharmocology by ligand chemistry. Nature Biotechnol-

ogy , 25, 197�206.

Kendall, D. G. (1977): The di�usion of shape. Advances in Applied Probability , 9,

428�430.

Kendall, D. G. (1984): Shape manifolds, Procrustean metrix and complex projective

spaces. Bulletin of the London Mathematical Society , 16, 81�121.

Kendall, D. G. (1989): A survey of the statistical theory of shape. Statistical Science, 4,

87�120.

Kendall, D. G., Barden, D., Carne, T. K., & Le, H. (1999): Shape and Shape Theory .

Chichester: Wiley.

Kent, J. T. (1994): The complex Bingham distribution and shape analysis. Journal of

the Royal Statistical Society, Series B , 56, 285�299.

Kent, J. T. (1995): Current issues for statistical inference in shape analysis. In: K. V.

Mardia & C. A. Gill (eds.) Current Issues in Statistical Shape Analysis, 167�175.

University of Leeds.

Kent, J. T. & Mardia, K. V. (1997): Consistency of Procrustes estimators. Journal of

the Royal Statistical Society, Series B , 59, 281�290.

Kent, J. T. & Mardia, K. V. (2001): Shape, Procrustes tangent projections and bilateral

systems. Biometrika, 88, 496�485.

Kim, K. H. (1995): Comparative molecular �eld analysis (CoMFA). In: P. M. Dean

(ed.) Molecular Similarity in Drug Design, 291�331. London: Blackie Academic &

Professional.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983): Optimization by simulated

annealing. Science, 220, 671�680.

168



BIBLIOGRAPHY

Krige, D. G. (1951): A statistical approach to some basic mine valuation problems on

the Witwatersrand. Journal of Chemical, Metallurgical, and Mining Society of South

Africa, 52, 119�139.

Kristof, W. & Wingersky, B. (1971): Generalization of the orthogonal Procrustes ro-

tation procedure to more than two matrices. In: Proceedings of the 79th Annual

Convention of the American Psychological Association, 89�90.

Künsch, H. R. (1989): The jackknife and the bootstrap for general stationary observa-

tions. The Annals of Statistics, 17, 1217�1261.

Lahiri, S. N. (2003): Resampling Methods for Dependent Data. Berlin: Springer.

Langron, S. P. & Collins, A. J. (1985): Perturbation theory for generalized Procrustes

analysis. Journal of the Royal Statistical Society, Series B , 47, 277�284.

Le, H.-L. (1995): Mean size�and�shapes and mean shapes: a geometric point of view.

Advances in Applied Probability , 27, 44�55.

Le, H.-L. (1998): On the consistency of Procrustean mean shapes. Advances in Applied

Probability , 30, 53�63.

Le, H.-L. & Kendall, D. G. (1993): The Riemmanian structure of Euclidean shape

spaces: a novel environment for statistics. Annals of Statistics, 21, 1225�1271.

Le, H.-L. & Kume, A. (2000): The Fréchet mean shape and the space of the means.

Advances in Applied Probability , 32, 101�113.

Lemmen, C. & Lengauer, T. (2000): Computational methods for the structural alignment

of molecules. Journal of Computer-Aided Molecular Design, 14, 215�232.

Liu, R. Y. & Singh, K. (1992): Moving blocks jackknife and bootstrap capture weak

dependence. In: R. Lapage & L. Billard (eds.) Exploring the Limits of Bootstrap. New

York: Wiley.

Mardia, K. V., Kent, J. T., & Bibby, J. (1979): Multivariate Analysis. London: Academic

Press.

Masek, B. B., Merchant, A., & Matthew, J. B. (1993): Molecular shape comparison of

angiotensin II receptor antagonists. Journal of Medicinal Chemistry , 36, 1230�1238.

169



BIBLIOGRAPHY

Matheron, G. (1962): Traite de Geostatistique Appliquee, Tome I. Memoires du Bureau

de Recherches Geologiques et Minieres, No. 14, Editions Technip, Paris, 1230�1238.

Matheron, G. (1963): Principles of geostatistics. Economic Geology , 58, 1246�1266.

McCammon, J. A., Gelin, B. R., & Karplus, M. (1977): Dynamics of folded proteins.

Nature, 267, 585�590.

McMahon, A. J. & King, P. M. (1997): Optimization of Carbó molecular similarity

index using gradient methods. Journal of Computational Chemistry , 18, 151�158.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., & Teller, A. H. (1953): Equation

of state calculations by fast computing machines. The Journal of Chemical Physics,

21, 1087�1092.

Mezey, P. G. (1993): Shape in Chemistry . Cambridge: VHC Publishers.

Mezey, P. G. (1995): Methods of molecular shape similarity and topological shape design.

In: P. M. Dean (ed.) Molecular Similarity in Drug Design, 241�268. London: Blackie

Academic & Professional.

Miles, R. E. (1965): On random rotations in IR3. Biometrika, 52, 636�639.

Mosier, C. I. (1939): Determining a simple structure when loadings for certain tests are

known. Psychometrika, 4, 149�162.

Naimark, M. A. (1964): Linear Representations of the Lorentz Group. Oxford: Pergamon

Presss.

O'Higgins, P. & Dryden, I. L. (1993): Sexual dimorphism in hominoids: further studies of

craniofacial shape di�erences in pan, gorilla, and pongo. Journal of Human Evolution,

24, 183�205.

Olea, R. M. (2006): A six-step practical approach to semivariogram modeling. Stochastic

Environmental Research and Risk Assessment , 20, 307�318.

Olson, W. & Zhurkin, V. B. (2000): Modeling DNA deformations. Current Opinion in

Structural Biology , 10, 182�197.

Orozco, M., Pérez, A., Noy, A., & Luque, F. J. (2003): Theoretical methods for the

simulation of nucleic acids. Chemical Society Reviews, 32, 350�364.

170



BIBLIOGRAPHY

Owen, A. B. (2001): Empirical Likelihood . London: Chapman & Hall.

Pen, X.-L., Ying, H., Li, R., & Fang, K.-T. (2006): The application of Kriging and

empirical Kriging based on the variables selected by SCAD. Analytica Chimica Acta,

578, 178�185.

Petersen, K. B. & Pedersen, M. S. (2008): The matrix cookbook. URL http://www2.

imm.dtu.dk/pubdb/p.php?3274.

Petke, J. D. (1993): Cumulative and discrete similarity analysis of electrostatic potentials

and �elds. Journal of Computational Chemistry , 14, 928�932.

Politis, D. & Romano, J. P. (1992): A circular block resampling procedure of stationary

data. In: R. Lapage & L. Billard (eds.) Exploring the Limits of Bootstrap. New York:

Wiley.

Politis, D. N. (2003): The impact of bootstrap methods on time series analysis. Statistical

Science, 18, 219�230.

Preston, S. P. & Wood, A. T. A. (2009a): Bootstrap inference for mean re�ection shape

and size�and�shape from three�dimensional labelled landmark data. Submitted for

Publication.

Preston, S. P. & Wood, A. T. A. (2009b): Two�sample bootstrap hypothesis tests for

three�dimensional labelled landmark data. Submitted for Publication.

Promislow, S. D. (2009): A �rst course in functional analysis. Hoboken: Wiley.

Quenouille, M. H. (1949): Approximate tests of correlation in time series. Journal of the

Royal Statistical Society, Series B , 11, 18�84.

R Development Core Team (2008): R: A Language and Environment for Statistical

Computing . R Foundation for Statistical Computing, Vienna, Austria.

Rangarajan, A., Chui, H., & Bookstein, F. L. (1997): The softassign Procrustes algo-

rithm. In: J. Duncan & G. Gindi (eds.) Information Processing in Medical Imaging ,

29�52. Berlin: Springer.

Richards, W. G. (1993): Computers in drug design. Pure and Applied Chemistry , 65,

231�234.

171

http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274


BIBLIOGRAPHY

Ripley, B. D. (1981): Spatial Statistics. Chichester: Wiley.

Ru�eux, Y. & Green, P. J. (2009): Alignment of multiple con�gurations using hierar-

chical models. Journal of Computational and Graphical Statistics.

Schabenberger, O. & Gotway, C. A. (2005): Statistical Analysis for Spatial Data. London:

Chapman & Hall.

Schmidler, S. C. (2007): Fast Bayesian shape matching using geometric algorithms. In:

J. M. Bernado, D. Herckerman, J. O. Berger, & A. P. Dawid (eds.) Bayesian Statistics,

8. Oxford University Press.

Schmidler, S. C. (2009): Bayesian �exible shape matching with applications to structural

proteomics. Submitted for Publication.

Schölkopf, B., Burges, C. J. C., & Schmola, A. J. (1999): Advances in kernel methods.

Support vector learning . Cambridge: MIT Press.

Seber, G. A. F. (1984): Multivariate Observations. Chichester: Wiley.

Siddiqui, M. M. (1958): On the inversion of the sample covariance matrix in a stationary

autoregressive model. Annals of Mathematical Statistics, 29, 585�588.

Silvey, S. D. (1975): Statistical Inference. Harmondsworth: Penguin Books.

Singh, K. (1981): On the asymptotic accuracy of Efron's bootstrap. Annals of Statistics,

9, 1187�1195.

Small, C. G. (1996): The Statistical Theory of Shape. Berlin: Springer.

Smith, A. & Roberts, G. O. (1993): Bayesian computation via the Gibbs sampler and

related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society,

Series B , 55, 3�24.

Srivastava, M. S. (2002): Methods of Multivariate Statistics. New York: Wiley.

Ten Berge, J. M. F. (1977): Orthogonal Procrustes rotation for two or more matrices.

Psychometrika, 42, 267�276.

Tierney, L. (1994): Markov chains for exloring posterior distributions (with discussion).

Annals of Statistics, 22, 1701�1762.

172



BIBLIOGRAPHY

Vapnik, V. N. (1995): The Nature of Statistical Learning Theory . Berlin: Springer.

Wackernagel, H. (2003): Multivariate Geostatistics. Berlin: Springer, 3rd edition.

Ward, J. H., Jr. (1963): Hierarchical grouping to optimize an objective function. Journal

of the American Statistical Association, 58, 236�244.

Watson, J. D. & Crick, F. H. (1953): A structure for deoxyribose nucleic acids. Nature,

171, 737�738.

Welch, B. L. (1947): The generalisation of �student's� problem when several di�erent

population variances are involved. Biometrika, 34, 28�35.

Wilks, S. S. (1938): The large�sample distribution of the likelihood ratio for testing

composite hypotheses. Annals of Mathematical Statistics, 9, 60�62.

Wilson III, D. M. & Bohr, V. A. (2007): The mechanics of base exicion repair, and its

relationship to aging and disease. DNA Repair , 6, 544�559.

Yule, G. U. (1926): Why do we sometimes get nonsense�correlations between time�

series? � A study in sampling and the nature of time�series. Journal of the Royal

Statistical Society , 89, 1�63.

173



Appendix A

The Generalised Procrustes Algorithm

Algorithm A.1 shows the pseudo�code for the generalised Procrustes algorithm for land-

mark data. For more information see Dryden & Mardia (1998, pp.90).

Algorithm A.1 Generalised Procrustes Algorithm

1: center the con�guration matrices to give XC1 . . .XCn

`
cf.(2.1)

´
2: set XP

C i ←XCi

3: de�ne d← d0, where d0 > tol1 and tol1 is a positive tolerance threshold

4: while d ≥ tol1 do

5: calculate G = 1
n

Pn−1
i=1

Pn
j=i+1 ||X

P
C i −X

P
C j ||

2

6: de�ne e← e0, where e0 > tol2 and tol2 is a positive tolerance threshold

7: while e ≥ tol2 do

8: for i in (1 : n) do

9: calculate X̄(i) = 1
n−1

P
j 6=iX

P
C j , i.e. the mean of all but the ith con�guration matrix

10: optimise ||X̄(i) −XP
C iΓ||

2 over rotation

11: set XP
C i →XP

C iΓ̂, where Γ̂ is the optimal rotation matrix

12: end for

13: calculate G∗ = 1
n

Pn−1
i=1

Pn
j=i+1 ||X

P
C i −X

P
C j ||

2

14: set e← G−G∗ and G← G∗

15: end while

16: for i in (1 : n) do

17: calculate β̂i =

„ Pn
k=1 ||XP

Ck
||2

||XP
Ci

||2

«1/2

φi, where φi is the ith component of the eigenvector φ corre-

sponding to the largest eigenvalue of the (n× n) correlation matrix Φ of the vec(XP
C i)

18: set XP
C i ← β̂iX

P
C i

19: end for

20: calculate G∗ = 1
n

Pn−1
i=1

Pn
j=i+1 ||X

P
C i −X

P
C j ||

2

21: set d← G−G∗ and G← G∗

22: end while
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Appendix B

Leave�One�Out Method for Identifying

Contamination Points

Here, we describe an ad�hoc approach for estimating the common underlying covari-

ance structure of two unlabelled point sets A and B which also yields a method to

identify contamination points. With the assumption that A = {zA(xA1 ), . . . , zA(xAkA)}

and B = {zB(xB1 ), . . . , zB(xBkB)} are noisy pointwise observations of the same underlying

reference �eld, it is appropriate to consider a pooled version of the empirical semivari-

ogram described in Section 2.2.1.2, where �pooled� means that the semivariogram cloud

for each point set is determined separately, but both clouds are combined before the

distance classes are obtained.

Assuming isotropy, the pooled estimate of the common underlying semivariance function

at a separation distance ||h|| then has the form

σ̂∗P(||h||) =
1

2 |N(||h||)|
∑

N(||h||)

{{
zA(xAi )− zA(xAj )

}2 +
{
zB(xBi′)− zB(xBj′)

}2
}
, (B.1)

where, as before, |N(||h||)| denotes the number of distinct pairs in the distance class

N(||h||) centred around ||h||.

If the point sets contain contamination points, then the resulting pooled empirical semi-

variogram can be a poor estimate of the underlying semivariance function. To demon-

strate this, we choose one of the pairs A and B which were considered in the simulation
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study in Section 3.6, namely the case where each point set contains 92 points with

ktrue = ktrueA = ktrueB = 80 matching points and kcont = kcontA = kcontB = 12 contamination

points. Moreover, κ = 4 in this case, and the true underlying covariance function is

the Whittle covariance function with ρ = 0.2 and σ2 = 1. The left�hand side of Figure

B.1 shows the resulting pooled empirical semivariogram for the case that the distance

classes are chosen as N(0.05), N(0.1), N(0.15), . . . It can be seen that it is a rather poor

estimate of the true semivariance function which is shown as the solid line. Due to the

large number of contamination points, however, this is not surprising.

In order to improve the estimate, we want to identify the contamination points and

remove them from (B.1). To do so, we employ a leave�one�out procedure in which the

pooled empirical semivariogram is calculated kA + kB times, and each time one of the

points in either A or B is omitted.

Figure B.1: Pooled empirical semivariograms for unlabelled marked point sets: The
left�hand side shows the pooled empirical semivariogram for the raw data, and the right�
hand side shows the pooled empirical semivariogram after the high�impact points were
removed. Both versions are compared with the true underlying semivariogram (Whittle
with ρ = 0.2 and σ2 = 1) which is shown as the solid line. It can be seen that the
considered leave�one�out method considerably improves the estimate.
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The impact of each point xMi (M ∈ {A,B}, i = 1, . . . kM) on the semivariogram estimate

can then be assessed by calculating the mean of the kA+kB−1 empirical semivariograms

where xMi is involved in the estimation. Let H||h|| denote the set of considered centres

||h|| for the distance classes, i.e. for our example H||h|| = {0.05, 0.1, 0.15, . . .}. If the

resulting values of σ̂∗P,mean(i)(||h||) (||h|| ∈ H||h||) substantially di�er from the empirical

variogram values σ̂∗P,(−i)(||h||) where xMi is deleted, then this is an indication that xMi is

a contamination point. To obtain a numerical value for the impact of xMi , we then sum

these di�erences over the considered distance classes, i.e. we consider

I(xMi ) =
1

|H||h|||
∑

||h||∈H||h||

σ̂∗P,mean(i)(||h||)− σ̂∗P,(−i)(||h||)

to assess the impact of each point xMi . If the absolute value of I(x
M
i ) exceeds a certain

threshold Icrit, then we consider xMi to be a contamination point and delete it from the

calculation when we obtain a new, �nal empirical semivariogram.

Figure B.2: Determining points with high impact on the pooled empirical semivari-
ogram: For each point xMi , the corresponding impact value I(xMi ) is displayed. The last
twelve points in each point set are the real contamination points, and their impact in
shown in red. The threshold is set as Icrit = 0.015 here (shown as grey dashed lines), and
points whose absolute impact is higher than this value are deleted from the subsequent
calculation of the pooled empirical semivariogram.
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For our example, Figure B.2 shows the value of I(xMi ) for each of the 184 points xMi .

The actual contamination points are the last twelve points of each point set, and their

impact is shown in red. It can be seen that they tend to have a higher impact than the

points which were generated from the underlying reference �eld as described in Section

3.6.1. In this example, we choose Icrit = 0.015 as the critical value, and points whose

absolute impact exceeds this threshold are deleted when a new, �nal pooled empirical

semivariogram is calculated. This new estimate is shown on the right�hand side of Figure

B.1. Although our leave�one�out methods does not identify the contamination points

perfectly, the pooled empirical semivariogram where the high�impact points have been

removed is considerably closer to the real underlying semivariance model.

We did not extensively investigate this method, but as demonstrated, �rst results in-

dicate that it can lead to more reliable variogram estimates. Moreover, the threshold

for the impact leads to starting points for the mask vectors λA and λB which are more

informative than the Bernoulli�generated starting masks which are currently applied.
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Appendix C

Decision Theoretical Interpretation of Choosing a

Threshold for the Posterior Mean Mask Vectors

In Section 4.2.2, we mentioned that choosing a threshold of pcrit = 0.7 for setting the

entries of the mean mask vectors λ̄A and λ̄B to one implies that we consider the error

of falsely excluding a point from the partial Kernel Carbo calculation as less severe

than that of including a point which does not in fact belong to the matching parts of

the predicted �elds. To see that, we adapt the decision theoretical considerations for

choosing a labelling matrix described in Green & Mardia (2006) to our situation.

Let λT = (λTA ,λ
T
B ) be the (kA + kB)�vector of the combined true mask entries for both

point sets. Within the decision theory framework, we de�ne a loss function L(λ̂,λ)

which speci�es the cost that arises from declaring the combined mask vector to be λ̂

(λ̂i ∈ {0, 1}, i = 1, . . . , kA + kB) when it is in fact λ. Following Green & Mardia (2006),

we use a component�wise loss function of the form

L(λ̂i, λi) =


l01, if λ̂i = 1 but λi = 0,

l10, if λ̂i = 0 but λi = 1,

0, otherwise.

The aim now is to �nd the vector λ̂ which minimises the marginal posterior expected

loss E
(
L(λ̂,λ)| data

)
where the expectation is taken over the joint marginal posterior

distribution of the two mask vectors λA and λB.
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As described in Chapter 3, the ith entry λ̄Mi of λ̄M (M ∈ {A,B}) can be considered as

the marginal posterior estimate for the corresponding point to belong to the matching

part of the point set. In terms of the combined mask vector λT = (λTA ,λ
T
B ) this means

P̂(λi = 1| data) = λ̄i i = 1, . . . , kA + kB,

so that E
(
L(λ̂,λ)| data

)
can be estimated component�wise as

Ê
(
L(λ̂i, λi)| data

)
= l10 λ̄i · I{λ̂i=0} + l01 (1− λ̄i) · I{λ̂i=1}, i = 1, . . . , kA + kB.

If the risk for the combined mask vector is calculated cumulatively, then it follows that

Ê
(
L(λ̂,λ)| data

)
=

∑
i:λ̂i=0

l10 λ̄i +
∑
i:λ̂i=1

l01 (1− λ̄i)

= (l10 + l01)

 ∑
i:λ̂i=0

l10
l10 + l01

λ̄i +
∑
i:λ̂i=1

l01
l10 + l01

(1− λ̄i)


= (l10 + l01)

 ∑
i:λ̂i=0

l10
l10 + l01

λ̄i


+(l10 + l01)

 ∑
i:λ̂i=1

l01
l10 + l01

−
∑
i:λ̂i=1

(
1− l10

l10 + l01

)
λ̄i


= (l10 + l01)

∑
i

l10
l10 + l01

λ̄i +
∑
i:λ̂i=1

(
l01

l10 + l01
− λ̄i

)

For a given cost ratio K = l01/(l10 + l01) ∈ [0, 1], we have therefore shown that the

combined mask vector which minimises the estimated marginal posterior risk is

λ̂opt = arg min
λ̂∈ΛkA+kB

Ê
(
L(λ̂,λ)| data

)
= arg max

λ̂∈ΛkA+kB

∑
i:λ̂i=1

(λ̄i −K).

Setting all mask elements whose entries are larger than pcrit = 0.7 to one and all others to

zero can therefore be interpreted as choosing the optimal mask vectors which minimises

the estimated marginal posterior risk for a cost ratio of K = 0.7. Note that K > 0.5

implies that false inclusions are less desirable than false omissions.
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Appendix D

Likelihood Ratio Test

The likelihood ratio test (LRT) is a generic test procedure which can be applied when a

parametric model for the data has been speci�ed. Here, we consider the multivariate case.

Let x1, . . . ,xnx and y1, . . .yny
be two groups of p�dimensional vectors with underlying

distributions G and H, respectively. The objective of the LRT is to test for distributional

di�erences between G and H. In particular, if G and H stem from the same parametric

family, then it can be used to test for di�erences between the underlying parameters θx

and θy. The general strategy thereby is to maximise the joint likelihood under both the

null hypothesis and the alternative and assess the ratio of the two resulting values.

Let X ∈ IRnx×p and Y ∈ IRny×p be the matrices which result from stacking the vectors

within each group, and let Lx(X;θx) and Ly(Y ;θy) denote the corresponding likelihood

functions. As we allow the vectors within each group to be dependent in our main

application of the LRT (cf. Chapter 6), the likelihood functions are here de�ned in terms

of the data matrices X and Y instead of the individual vectors. The two groups are

assumed to be independent from each other. The overall likelihood of the data is therefore

L(X,Y ;θ) = Lx(X;θx)Ly(Y ;θy), (D.1)

where θ denotes the overall parameter vector whose elements are a subset of the elements

of θTxy = (θTx ,θ
T
y ). The speci�c subset thereby depends on the additional assumptions.

For example if the covariances of the two groups are assumed to be equal, then the

corresponding elements of θTx and θTy occur only once in the combined parameter vector.
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The parameter space of θ depends on the considered hypothesis. Let Θ0 and Θ1 denote

the parameter spaces under H0 and H1, respectively. The LR statistic then has the form

λ(X,Y ) =
supθ∈Θ0

L(X,Y ;θ)
supθ∈Θ1

L(X,Y ;θ)
,

and the null hypothesis is rejected for small values of λ(X,Y ). Moreover, under some

regularity conditions, Wilks' Theorem (Wilks, 1938) holds which states that λ(X,Y ) is

a pivotal statistic in the sense that −2 log λ(X,Y ) has an asymptotic χ2�distribution

under the null hypothesis. The degrees of freedom thereby correspond to the di�erence

between the dimensions of Θ0 and Θ1. For a sketch of the proof of Wilks' theorem see

for example Silvey (1975, pp.113).
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Appendix E

Derivation of the LRT Statistic for the

TOPC-AR(2) Model

Here we provide a more detailed derivation of the LRT statistic for the separable TOPC

model with an AR(2) dependence structure. As described in Section 6.1.2.2, the joint

likelihood of the two p�dimensional time series {xi}ni=1 and {yj}nj=1 is given by

L(X,Y ;θ) =
1

(2π)np|ΣC|n|ΣT|p
exp

{
−1

2
tr
[
Σ−1

C (X − 1nµTX)TΣ−1
T (X − 1nµTX)

]}

× exp
{
−1

2
tr
[
Σ−1

C (Y − 1nµTY)TΣ−1
T (Y − 1nµTY)

]}
, (E.1)

where X and Y are (n × p) matrices which row�wise contain the observations in the

two groups and θT = (µTX ,µ
T
Y , ψ1, ψ2, vech(ΣC)T ) denotes the parameter vector which

results from assuming that both groups exhibit the same dependence structure.

The test problem at hand divides the parameter space Θ = IR2p × T AR
2 × Sp into

Θ0 = {θ ∈ Θ : µX = µY} and Θ1 = {θ ∈ Θ : µX 6= µY},

and to obtain the LRT statistic, the joint likelihood has to be maximed over Θ0 and Θ1,

respectively. To do so, some matrix calculus has to be applied. The next section provides

the relevant results which can be found in Petersen & Pedersen (e.g. 2008, Chapter 2).
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Some Matrix Calculus

Let a and w be n�vectors and W an (n× n)�matrix, then

Result 1:

f(a) = aTWa ⇒ ∂f

∂a
= (W +W T )a

Result 2:

f(a) = wTa ⇒ ∂f

∂a
= w

Let A be an unstructured, invertible matrix, then

Result 3:

f(A) = tr
[
BA−1C

]
⇒ ∂f

∂A
= −

(
A−1CBA−1

)T
for two general matrices B and C of appropriate dimensions and

Result 4:

f(A) = log |A| ⇒ ∂f

∂A
= (AT )−1.

If A exhibits some structure (e.g. symmetric or diagonal), this has to be taken into

account when the derivatives are obtained, e.g. if A is symmetric, it can be shown that

Result 5:

df

dA
=
[
∂f

∂A

]
+
[
∂f

∂A

]T
− diag

[
∂f

∂A

]
,

where d denotes the derivative with the structure taken into account whereas ∂ ignores

the structure.
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Deriving the Mean Estimators

Under H0 the data follow the same distribution and we have µx,0 = µy,0 =: µ0 in (E.1).

If the values of ψ1, ψ2 and ΣC are known, then the MLE for this parameter is

µ̂0 = arg min
µ∈IRp

tr
{
Σ−1

C (X − 1nµT )TΣ−1
T (X − 1nµT ) + Σ−1

C (Y − 1nµT )TΣ−1
T (Y − 1nµT )

}︸ ︷︷ ︸
=:f0(µ)

Expanding f0(.) leads to

f0(µ) = c0 − tr
{(

Σ−1
C X

TΣ−1
T + Σ−1

C Y
TΣ−1

T

)
1nµT

}
−tr

{
Σ−1

C (1nµT )TΣ−1
T (X + Y )

}
+ 2tr

{
Σ−1

C (1nµT )TΣ−1
T 1nµT

}
= c0 − 2 · 1TnΣ−1

T (X + Y )Σ−1
C µ+ 2 · tr

{
Σ−1

C (1nµT )TΣ−1
T 1nµT

}
,

where c0 is a constant not dependent on µ.

From Results 1 and 2 it follows that

∂

∂µ
1TnΣ

−1
T (X + Y )Σ−1

C µ = Σ−1
C (X + Y )TΣ−1

T 1n
and

∂

∂µ
tr
{
Σ−1

C (1nµT )TΣ−1
T 1nµT

}
= 1TnΣ

−1
T 1n

∂

∂µ
tr
{
Σ−1

C µµ
T
}

= 21TnΣ
−1
T 1nΣ−1

C µ.

Setting the gradient equal to zero then yields

∂f0

∂µ
= 0 ⇔ 21TnΣ

−1
T 1nΣ−1

C µ̂0 = Σ−1
C (X + Y )TΣ−1

T 1n

⇔ µ̂0 =
(X + Y )TΣ−1

T 1n
21TnΣ

−1
T 1n

.

If all rows of Σ−1
T have the same sum, s say, then

µ̂0 =
s(X + Y )T1n

2sn
=
x̄+ ȳ

2
.

Due to the particular structure of Σ−1
T for AR(2) models

(
cf. (6.6)

)
, this is approximately

true for our case and the approximation improves as n grows. Under H1, the estimators

for the individual mean vectors in both groups can be done in a similar manner.
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Deriving the Estimators of the Covariance Matrices

For two given estimates ψ̂1,h and ψ̂2,h of the AR(2) parameters under Hh (h = 0, 1), let

Σ̂T,h be the corresponding estimate of the temporal covariance matrix. Further, let µ̂X,h

and µ̂Y,h be the MLEs of the mean vectors of the two groups. To obtain the MLE of

ΣC,h in this general case, further de�ne

MX,h = (X − 1nµ̂TX,h)
T Σ̂
−1

T,h(X − 1nµ̂TX,h) andMY,h = (Y − 1nµ̂TY,h)
T Σ̂
−1

T,h(Y − 1nµ̂TY,h).

With these de�nitions, the joint log�likelihood for ΣC,h becomes

l(ΣC,h) = −np log(2π)− n log(|ΣC,h|)− p log(|Σ̂T,h|)− 1
2tr
{
Σ−1

C,h(MX,h +MY,h)
}
.

From Results 3�5 it therefore follows that

∂l

∂ΣC,h
= −n

{
2Σ−1

C,h − diag(Σ−1
C,h)
}

−1
2

{
−2
[
Σ−1

C,h(MX,h +MY,h)Σ−1
C,h

]
+ diag

[
Σ−1

C,h(MX,h +MY,h)Σ−1
C,h

]}
=

[
−2nI + Σ−1

C,h(MX,h +MY,h)
]
Σ−1

C,h + diag
{[
nI − 1

2Σ
−1
C,h(MX,h +MY,h)

]
Σ−1

C,h

}
.

Hence the critical point of l(ΣC,h) is given by

∂l

∂ΣC,h
= 0 ⇔ −2nI + Σ̂

−1

C,h(MX,h +MY,h) = 0

⇔ Σ̂C,h = 1
2n(MX,h +MY,h)

as stated in (6.15). When Σ̂C,h is inserted into the joint likelihood (6.12), then

exp
{
−1

2
tr
[
Σ̂
−1

C,h(MX,h +MY,h)
]}

= exp{−np}.

so that

sup
θ∈Θh

L(X,Y ;θ) = sup
ψ∈T AR2

c · |Σ̂C,h|−nσ−2np
a

(
(1− ψ2

2)
2 − (1 + ψ2)2ψ2

1

)p = sup
ψ∈T AR2

fh(ψ),

where c = (2π)−np exp(−np). Inserting the optimising values of the AR(2) parameters

into (6.6) then gives an estimate of Σ̂
−1

T,h.
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Appendix F

Additional Figures

Figure F.1: Sequence of the overall partial Kernel Carbo similarities obtained in course
of the �eld GPA algorithm: Algorithm 4.1 converges quickly, and after 9 iterations of
the �eld GPA, the improvement of the overall Kernel Carbo Index ceases to exceed a
tolerance threshold of 0.0001.

187



Figure F.2: Impact of the variance in landmark space on the correlation structure
in tangent space: Two trajectories of (4 × 3)�con�guration matrices were generated
according to (6.19) with an AR(1) dependence structure (ψ1 = 0.8) and σ = 0.1. GPA
was carried out and the tangent vectors were projected using (5.12). The right�hand
side shows the correlograms of the PC scores of the resulting �ve�dimensional projected
tangent vectors. The correlation structure closely resembles that of the underlying AR(1)
process in landmark space. The procedure was repeated using the same seed but σ =
0.5. The simulated con�gurations are therefore proportional to the previous ones. The
left�hand side shows the correlograms of the �ve PC scores of the resulting projected
tangent vectors. It can be seen that the tangent projection for highly dispersed data
reduces the correlation structure. The horizontal dotted lines show the constant function
f(Lag) = 0.1 on both sides.
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Figure F.3: Impact of the variance in landmark space on the correlation structure in
tangent space: Two trajectories of (4×3)�con�guration matrices were generated accord-
ing to (6.19) with an AR(2) dependence structure (ψ1 = (−1,−0.75)T ) and σ = 0.1.
GPA was carried out and the tangent vectors were projected using (5.12). The right�
hand side shows the correlograms of the PC scores of the resulting �ve�dimensional
projected tangent vectors. The correlation structure closely resembles that of the under-
lying AR(2) process in landmark space. The procedure was repeated using the same seed
but σ = 0.5. The simulated con�gurations are therefore proportional to the previous
ones. The left�hand side shows the correlograms of the �ve PC scores of the resulting
projected tangent vectors. Like for the AR(1) example in Figure F.2, it can be seen that
the tangent projection for highly dispersed data reduces the correlation structure. The
horizontal dotted lines show f(Lag) = ±0.1 on both sides.
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Figure F.4: Plot of the estimated AR(2) parameters under the alternative including
some small variance examples: This �gure is identical to Figure 6.6 except for the points

around ψ = (−1,−0.75)T which show the estimates ψ̂
H1

obtained for con�guration
matrices which were generated with a very low standard deviation of σ = 0.05. In
this case the correlation structure in tangent space re�ects the correlation structure in
landmark space.
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Figure F.5: Autocorrelation and partial autocorrelation for shape PC scores of the AGA
duplex: The �rst row shows the correlation structure of the scores on the �rst two shape
PCs, the second row those of the third and fourth shape PC and so on. It can be seen that
the correlation structure is somewhat di�erent on each PC. Each partial autocorrelation
function shows only a few spikes which is in line with a low order AR(p) model.
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