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Abstract 

 

 

This research aims to study the mechanical properties of single-walled carbon 

nanotubes. In order to overcome the difficulties of spanning multi-scales from 

atomistic field to macroscopic space, the Cauchy-Born rule is applied to link the 

deformation of atom lattice vectors at the atomic level with the material 

deformation in a macro continuum level. Single-walled carbon nanotubes are 

modelled as Cosserat surfaces, and modified shell theory is adopted where a 

displacement field-independent rotation tensor is introduced, which describes the 

rotation of the inner structure of the surface, i.e. micro-rotation. Empirical 

interatomic potentials are applied so that stress fields and modulus fields can be 

computed by the derivations of potential forms from displacement fields and 

rotation fields. A finite element approach is implemented. Results of simulations 

for single-walled carbon nanotubes under stretching, bending, compression and 

torsion are presented. In addition, Young’s modulus and Poisson ratio for graphite 

sheet and critical buckling strains for single-walled carbon nanotubes are 

predicted in this research.  
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Chapter 1  

 

Introduction 

 

 

1.1 Background  

It was a revolution in nano-science when carbon nanotubes (CNTs) were 

discovered by Iijima in 1991 with their outstanding properties. Because of their 

unique electrical properties and extremely high thermal conductivity, CNTs have 

been used for electronics, field-emission displays, energy storage, functional 

fillers in composites, and some biomedical devices (Ajayan and Zhou 2001; 

Baughman et al. 2002; Endo et al. 2006). Moreover, CNTs have high elastic 

modulus (>1TPa), large elastic strain - up to 5%, and large breaking strain - up to 

20% (Iijima 1991). Their excellent mechanical properties could lead to many 

more applications. For example, with their amazing strength and stiffness, plus the 

advantage of lightness, perspective future applications of CNTs are in aerospace 

engineering and virtual bio-devices.  
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CNTs have been studied worldwide by scientists and engineers since their 

discovery, but a robust, theoretically precise and efficient prediction of the 

mechanical properties of CNTs has not yet been found. The problem is, when the 

size of an object is small to nano-scale, their many physical properties cannot be 

modelled and analyzed by using constitutive laws from traditional continuum 

theories, since the complex atomistic processes affect the results of their 

macroscopic behaviour. In this case, atomistic simulations can give more precise 

modelled results of the underlying physical properties. However, fully atomistic 

simulations of a whole carbon nanotube are computationally infeasible at present.  

Thus, a new atomistic and continuum mixing modelling method is needed to solve 

the problem, which requires crossing the length and time scales. The research here 

is to develop a proper technique of spanning multi-scales from atomic to 

macroscopic space, in which the constitutive laws are derived from empirical 

atomistic potentials which deal with individual interactions between single atoms 

at the micro-level, whereas Cosserat continuum theories are adopted for a shell 

model through the application of the Cauchy-Born rule to give the properties 

which represent the averaged behaviour of large volumes of atoms at the macro-

level.  

Since experiments of CNTs are relatively expensive at present, and often 

unexpected manual errors could be involved, it will be very helpful to have a 

mature theoretical method for the study of mechanical properties of CNTs. Thus, 

if this research is successful, it could also be a reference for the research of all 

sorts of research at the nano-scale, and the results can be of interest to aerospace, 

biomedical engineering and other displines.  
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1.2 Structure of carbon nanotubes 

Carbon nanotubes (CNTs) are tubular carbon molecules with particular properties. 

Generally, they can be divided in two main categories: single-walled carbon 

nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). SWCNTs 

can be considered as rectangular strips of hexagonal graphite monolayers rolling 

up to cylinder tubes. Two types of SWCNTs with high symmetry are normally 

selected by researchers, which are zigzag SWCNTs and armchair SWCNTs.  

When some of the atomic bonds are parallel to the tube axis, the CNT is called a 

zigzag CNT, while if the bonds are perpendicular to the axis, it is called an 

armchair CNT, and for any other structures, they are called chiral CNTs, as shown 

in Figure 1.1 (Dresselhaus et al. 1996).  

 

 

 

Figure 1-1: Some SWCNTs with different chiralities. (a) armchair structure (b) zigzag 

structure (c) chiral structure (Dresselhaus et al. 1996) 
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Figure 1-2:  Basis vectors and chiral vector 

 

Chiral vector    is a vector that maps an atom of one end of the tube to the other.  

   can be an integer multiple of     and    , which are two basis vectors of the 

graphite cell. Then we have             , with integer   and   , and the 

constructed CNT is called a       CNT, as shown in Figure 1.2. It can be proved 

that for armchair CNTs    , and for zigzag CNTs     . For example, in 

Figure 1.2, the structure is designed to be a (4,0) zigzag SWCNT. 

MWCNT can be considered as the structure of a bundle of concentric SWCNTs 

with different diameters. The length and diameter of MWCNTs are different from 

those of SWCNTs, which means, of course, their properties differ significantly. 

This research concentrates on solving the mechanical properties of SWCNTs. In 

further research, MWCNTs can be modelled as a collection of SWCNTs, provided 

the interlayer interactions are modelled by Van der Waals forces in the simulation. 
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A SWCNT can be modelled as a hollow cylinder by rolling a graphite sheet as 

shown in Figure 1.3. If a planar graphite sheet is considered to be an undeformed 

configuration, and the SWCNT is defined as the current configuration, then the 

relationship between the SWCNT and the graphite sheet can be shown to be: 

             
  

 
        

  

 
                                

where        are the material co-ordinates of a point in the initial configuration 

and       and    are the co-ordinates in the current configuration. R is the radius 

of the modelled SWCNT. The relationship between the integers     and the 

radius of SWCNT   is given by                 , where       , 

and    is the length of a non-stretched C-C bond which is         given by Wu 

et al. (2006).  

 

 

 

Figure 1-3: Illustration of a graphite sheet rolling to SWCNT 

 

As a graphite sheet can be ‘rolled’ into a SWCNT, we can ‘unroll’ the SWCNT to 

a plane graphite sheet. Since a SWCNT can be considered as a rectangular strip of 

hexagonal graphite monolayer rolling up to a cylindrical tube, the general idea is 

that it can be modelled as a cylindrical shell, a cylinder surface, or it can pull-back 
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to be modelled as a plane sheet deforming into curved surface in three-

dimensional space. A MWCNT can be modelled as a combination of a series of 

concentric SWCNTs with inter-layer interatomic reactions.  

Provided the continuum shell theory captures the deformation at the macro-level, 

the inner micro-structure can be described by finding the appropriate form of the 

potential function which is related to the position of the atoms at the atomistic 

level. Therefore, the SWCNT can be considered as a generalized continuum with 

microstructure. 

 

1.3 Literature Review 

1.3.1 Aim: study on mechanical properties of carbon nanotubes 

 

 

Figure 1-4: Electron micrographs of the cross section of different types of carbon nanotube 

(Iijima, 1991) 
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Since the discovery of CNTs, their mechanical properties have been the subject of 

many studies. Generally, CNTs can be divided into two types: single-walled 

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs). A transmission 

electron micrograph of different types of carbon nanotube is shown in Figure 1.4.  

1.3.1.1 Young’s modulus 

Young’s modulus and Poisson ratio are two independent elastic constants which 

are important measures of stiffness in classical elasticity theory. However, the 

established definitions of elastic measures in solid mechanics may fail in CNTs, 

since the spacing and the inner structure are very complex at the nano-scale. 

Iijima (1991) obtained Young’s modulus of CNTs around 1TPa. Treacy et al. 

(1996) observed a much higher Young’s modulus of CNTs to an axial load. A 

large scatter in the value of Young’s modulus for CNTs exists, whether in 

experimental results or in theoretical calculations, which varies from 0.5TPa to 

6TPa. In addition, researchers also presented different points of view on how the 

scale of tube diameter affects Young’s modulus of CNTs.  

Different authors presented different points of view about the dependence of 

CNT’s Young’s modulus on the tube diameter. Chang and Gao (2003) derived 

the expressions for the elastic modulus and Poisson ratio of a SWCNT as a 

function of the CNT diameter. They compared their results with those from other 

researchers in Figure 1.5. Li and Chou (2003) predicted that Young’s modulus 

and the shear modulus increase with the increasing of tube diameter, with an 

average Young’s modulus around 1TPa (Figure 1.6). Wang et al. (2006) presented 

similar results for Young’s modulus in length and circumferential directions and 

pointed out two different sets of parameters for potential models which result in 
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significantly different outcomes, as shown in Figure 1.7. Avila and Lacerda 

(2008) demonstrated the same trend for Young’s modulus and Poisson ratio 

against the tube diameter (Figure 1.8).  

On the other hand, Gao and Li (2003) concluded that Young’s modulus is not 

directly proportional to the tube diameter, and they also demonstrated that 

Young’s modulus depends on the wall thickness of CNTs, which is shown in 

Figure 1.9. Lei et al. (2011) obtained the inversely proportional results for 

Young’s modulus against tube diameter, as shown in Figure 1.10. Parvaneh and 

Shariati (2011) as well gained the inverse results, and they proved that the 

calculation of Young’s modulus was also affected by aspect ratio and loading 

types (Figure 1.11). 

 Meo and Rossi (2006) modelled and calculated Young’s modulus of CNTs of an 

average of 0.915TPa, which is independent of the tube diameter. They pointed 

out, that this diameter-independence was also obtained by Wen et al. (2004) and 

only a very slight dependence was obtained by Jin and Yuan (2003). This shows 

that some of the statements to be found in the literature are contradictory. 

 

 

Figure 1-5: Young’s modulus and Poisson ratio with dependence on tube diameter. Open 

symbols for armchair tubes and solid symbols for zigzag tubes.  (Chang and Gao, 2003) 
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Figure 1-6: Young’s modulus and shear modulus with dependence on tube diameter. (Li and 

Chou, 2003) 

 

       

Figure 1-7: Young’s modulus and circular modulus with dependence on tube diameter. BP1 

and BP2 are two potential models.  (Wang et al. 2006) 

 

  

Figure 1-8: Young’s modulus and Poisson ratio with dependence on tube diameter. (Avila 

and Lacerda, 2008) 
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Figure 1-9: Young’s modulus and Poisson ratio with dependence on tube diameter and wall 

thickness. T is the wall thickness. (Gao and Li, 2003) 

 

  

Figure 1-10: Young’s modulus and Poisson ratio with dependence on tube diameter.  (Lei et 

al. 2011) 

 

     

Figure 1-11: Young’s modulus with dependence on tube diameter and aspect ratio.  

(Parvaneh and Shariati, 2011) 

 



Chapter 1: Introduction 

 

- 11 - 

1.3.1.2 Bending, buckling and torsion 

All the above cited authors in Section 1.3.1.1 have shown that CNTs exhibit very 

high stiffness in their axial direction, however, CNTs as a whole, especially 

SWCNTs, are very flexible in bending mode since their length is much larger than 

their diameter. Huhtala et al. (2002) simulated two sets of SWCNTs under 

bending strain, and gave out the result deformations as shown in Figure 1.12.   

At larger strains, CNTs tend to have non-linear behaviour, but the changes are 

reversible with no atomic rearranging or bond breaking, this behaviour is called 

resilience (Hertel et al. 1998).  

Figure 1.13 shows the simulation of buckling of a SWCNT under axial 

compression (Yakobson et al. 1996). With the strain increasing, the tube buckled 

into pattern b and then into pattern c. It buckled sideways at point d and squashed 

asymmetrically at point e. They also presented simulations of torsion 

deformations of SWCNTs as shown in Figure 1.14. Arroyo and Belystchko (2004) 

simulated deformations of SWCNTs under compression and under torsion as well 

(Figure 1.15).  

 

 

Figure 1-12: Two sets of simulations of nanotube behaviour under increasing bending strain 

(Huhtala et al. 2002) 
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Figure 1-13: Simulation of SWCNT under axial compression (Yakobson et al. 1996) 

 

 

Figure 1-14: Simulation of SWCNT under torsion  (Yakobson et al. 1996) 

 

 

 

Figure 1-15: Simulation of compressed and twisted SWCNTs (Arroyo and Belytschko, 2004) 
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1.3.2 Inspirations on methodologies 

1.3.2.1 Nanomechanics 

Traditional continuum mechanics have been used to model CNTs in early years. 

Govindjee and Sackman (1999) used a simple Bernoulli–Euler beam model and 

continuum elastic theory to calculate the Young’s Modulus of CNTs. Pantano et 

al. (2004) built CNT models with shell theory using continuum methods as well. 

Natsuki and Endo (2004) also simulated mechanical properties of CNTs based on 

a continuum shell model. Afterwards continuum cylindrical shell models were 

widely applied in the buckling analysis of CNTs (He et al. 2005, Zhang et al. 

2006, Yang and Wang 2007). But, as shown by Govindjee and Sackman (1999), 

the mechanical properties of CNTs are distinctly dependent on the size of the 

system, thus in nano-scale situations, the constitutive laws of traditional 

continuum mechanics are no longer applicable. Wang et al. (2006) also proved the 

dependence on scale effect in studying CNTs. They observed that solutions 

obtained from classical elastic beam and shell model were significantly 

overestimated, so the scale effect had to be taken into account to provide 

reasonable results.  

The more accurate modelling of CNTs is via atomistic methods, which considers 

each atom as its fundamental unit and describes their behaviour by a series of 

equations. One of the most popular atomistic models of CNTs is the empirical 

potential molecular mechanics model, which considers a series of atoms as 

repeating units and predicts the potential energies as a function of the positions of 

atoms. Bao et al. (2004) studied Young’s moduli of CNTs based on molecular 

http://www.accelrys.com/technologies/modeling/materials/qm/
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dynamics (MD) simulation. Chang and Gao (2003) also presented the elastic 

properties of SWCNTs through a molecular mechanics approach, and 

recommended further applications of molecular mechanics in CNTs modelling. 

Liew et al. (2004) also used MD simulations to describe the mechanical properties 

of CNTs. In addition to the elastic properties, such as Young’s modulus and 

Poisson’s ratio, they studied the plastic behaviour and the fracture of CNTs. Sun 

and Zhao (2005) used a finite element model based on molecular mechanics to 

calculate the strength of SWCNTs.  Meo and Rossi (2006) applied molecular 

mechanics based finite element approach to simulate the fracture progress in 

CNTs.  

Atomistic simulation is necessary for the fracture study of CNTs, because 

continuum mechanics cannot capture all the details of an atomic bond breakage or 

dislocation at a micro-level (Belytschko et al. 2002, Lu and Bhattacharya 2005, 

Meo and Rossi 2006). Since this research is concentrating on the study of the 

elastic properties of CNTs, there is no need for a full atomistic simulation of a 

whole CNT which would be extremely computationally expensive and time 

consuming rendering it impractical. Therefore, a new atomistic and continuum 

mixing method needs to be established, which is computationally practical and 

can provide more accurate physical results than a classical continuum theory.  

To apply continuum mechanics to the study of CNTs, the first step is to think 

about how to link the continuum behaviour of CNTs with the atomic deformations 

at the nano-level. In this aspect, the inspiration came from Arroyo and Belytschko 

(2003, 2004) with the idea of applying modified Cauchy-Born rule on the study of 

mechanical properties of CNTs.  
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1.3.2.2 The Cauchy-Born rule 

The Cauchy-Born rule is a rule to link the atomistic field to the continuum world 

that describes the relations between the deformation of atom lattice vectors and 

the deformation of bulk vectors. As  pointed out by Arroyo and Belytschko (2003, 

2004), the Cauchy–Born rule is not directly suitable to applications of CNT, 

because CNT can be viewed as a curved surface, and the deformation gradient 

maps the deformed vector on the tangent space of the deformed curve instead of 

the real chord vector which lies on the curve. In order to achieve more accurate 

results through Cauchy-Born rule, different kinds of modifications have been 

created. Arroyo and Belytschko (2003, 2004) developed a so-called exponential 

Cauchy-Born rule which was demonstrated naturally mapping the tangent vector 

into the chord on the curved surface. Guo et al. (2006) presented a higher order 

Cauchy-Born rule by preserving more higher-order terms in Taylor’s expansion to 

improve the accuracy of approximation. Since modification of the Cauchy-Born 

rule is an important inspiration of this research, the exponential and higher order 

Cauchy-Born rules are briefly explained. 

1.3.2.2.1 Exponential Cauchy-Born rule 

Arroyo and Belytschko (2003, 2004) described two-dimensional manifold 

deforming in three-dimensional Euclidean space. The undeformed surface 

      represents the planar grapheme as the reference configuration. It is 

changed by the deformation map into the deformed surface     . The 

deformation gradient   is the tangent of the configuration map   , which maps 

infinitesimal vectors of the undeformed plane    into vectors on the tangent plane 

of the deformed surface   (Figure 1.16). The standard Cauchy-Born rule      
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produces vectors after deformation map on the tangent plane of the deformed 

surface instead of the real chord on the curve of the surface. In order to capture the 

effect of curvature in the deformed surface, Arroyo and Belytschko (2003, 2004) 

composed the standard Cauchy-Born rule with an exponential map, and 

represented the so-called exponential Cauchy-Born rule, which naturally maps the 

tangent space onto the curved surface. This is accomplished by  

                                                                              

where ‘   ’ defines the exponential map. The exponential map brings the original 

deformed vector after the standard Cauchy-Born rule, which lies on the tangent 

plane of the curved surface,      , i.e. the tangent deformed lattice vector to 

the chord of the curved surface (Figure 1.16). 

 

Figure 1-16: Illustration of the exponential Cauchy-Born rule (Arroyo and Belytschko, 2003) 

 

Consider the principal directions of the curved surface are    and   , and the 

normal vector at point   is      . Then the components of   can be calculated 

as 

 
  

  
   

    

    
   

      
      

   
    

     
 

    
     

                                  



Chapter 1: Introduction 

 

- 17 - 

where   is the Green deformation tensor defined by      , and   is the pull 

back of   on the undeformed body,     . By defining              , the 

local approximation to the exponential Cauchy-Born rule is 

   
  

  

  

  

 
 

 
         

         

    
 

 
   

    

 
  

    

 
   

    

 
  
 

 
                          

where      are the principal curvatures corresponding to     , which can be 

obtained from the eigenvalue problem  

                                                                           

where   is the curvature tensor. Then the deformed chord vector   can be a 

function of the undeformed lattice vector  , the Green deformation tensor    and 

the curvature tensor  . The bond length  , and the angle   between two deformed 

bonds   and   can be calculated from 

                                                                     

        
   

   
       

    

   
                                          

Therefore, the lengths of bonds and angles between bonds have been written in 

terms of two strain measures   and  , i.e.            and  

            , which are further used to formulate continuum constitutive 

functions on the base of inter-atomic potentials which consist of functions of  

bond lengths and angles. The strain energy density (energy per unit undeformed 

area) can be written as 
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   defines the area of a unit cell,        are the bond lengths of the three bonds 

connected on one atom,        are the bond angles between the three bonds. 

Two stress measures, a force stress tensor, where     is the second Piola-Kirchhoff 

stress tensor, and a moment like stress tensor  , can be derived from  

     
    

  
   

    

  
                                                   

Lagrangian elasticity tensors can be obtained by second derivatives 

   
     

   
   

     

   
     

     

     
                            

These three tensors represent in-plane stiffness, bending stiffness and coupling 

stiffness respectively (Arroyo and Belytschko, 2002,2003,2004). It is written     

instead of    due to the consideration of inner displacement functioning in the 

potential form, which will be further explained in Section 2.3.2.  

1.3.2.2.2 Higher order Cauchy-Born rule 

Guo et al. (2006) presented an extension of the standard Cauchy-Born rule by 

introducing a higher order deformation gradient. In classical continuum 

mechanics deformation gradient is defined by 

                                                                      

Instead of the standard Cauchy-Born rule      , Leamy et al. (2003) defined 

the deformed lattice vector   as 

         
 

 

                                                           

     is assumed to be a Taylor’s expansion of the deformation field  
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By retaining two terms of the expansion, approximated deformed lattice vector 

can be expressed as 

         
 

 
                                                 

As shown in Figure 1.17, the higher order term brings the tangent vector from the 

standard Cauchy–Born rule closer to the real deformed configuration. The 

accuracy of approximation can be improved by introducing more higher-order 

terms, although the computation work will be more time consuming.  

The strain energy density    can be expressed as 

                         
 

  
    

 

   

                                       

which represents the potential for an atom  , and    is the area of a representative 

cell at the undeformed configuration. 

 

 

Figure 1-17: Illustration of the higher order Cauchy-Born rule (Guo et al. 2006) 
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where     and     denote the deformed and undeformed lattice vectors. The 

following relations hold 

                                                        

with which the strain energy density can be written as 

                                                                      

The first Piola-Kirchhoff stress tensor    and the higher-order stress tensor    are 

   
   

  
 

 

  
    

 

   

                                                     

   
   

  
 

 

   
    

 

   

                                              

where     is the generalized force defined as 

    
   

    
                                                                     

Let           , where 

        

 

   

                                                                 

    is taken as the form of interatomic potential for carbon. 

The generalized stiffness      is defined as 

      
    

    
 

    

        
                                                    

The modulus tensors   can be derived as 
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Again it is written     instead of    because of the inclusion of inner 

displacement in potential functions. 

Both the above methods are based on the same idea by adding extra higher order 

terms into the deformation gradient in order to approximate the real curve after 

standard Cauchy-Born rule, which is different in this research where the standard 

Cauchy-Born rule stays to describe the strain at the tangent plane, and 

modification is made by adding a displacement field-independent rotation tensor 

at each point of the surface, which describes the curvature by rotating the 

deformed vector on the tangent plane into the real deformed curve itself. Thus, the 

Cosserat continuum theory is introduced via the independent rotation tensor in 

order to describe the curvature of the deformed surface after applying the standard 

Cauchy-Born rule to the tangent vectors. Cosserat surface as a shell model is 

established in this research since SWCNT can be modelled as a hollow cylindrical 

shell, therefore built as a two-dimensional surface instead of a three-dimensional 

solid continuum.  

1.3.2.3 Cosserat surface as a shell model 

SWCNTs, as well MWCNTs have been modelled as linear elastic shells (Tu and 

Ou-yang, 2002, Pantano et al. 2004) or non-linear elastic shells (Arroyo and 

Belytschko, 2002,2003,2004) via continuum mechanics methods. In the linear 

elastic range, Young’s modulus and the wall thickness were found by fitting the 

interatomic model, covering a large range from 0.5TPa to 6TPa, and from 0.06nm 

to 0.6 nm. 
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Wu et al. (2008) developed a finite-deformation shell theory for CNTs based on 

the interatomic potentials for carbon. Shell theory based on interatomic potentials 

is the approach by all the authors above and as well as in this research. Wu et al. 

(2008) set a relationship for the rates of the second Piola-Kirchhoff stress tensor    

and the bending moment tensor   to the increments of Green strain tensor   and 

curvature tensor   as 

                                                               

     
                                                          

where  ,   and   ,   
  are the tension, bending and coupling rigidity derived 

from interatomic potentials 

  
 

  
 
  

  
    

 

  
 
  

  
     

 

  
 
  

  
    

   
 

  
 
  

  
            

and it modified the constitutive model in classical continuum shell theory by 

adding extra coupling terms to describe the stress-curvature and moment-strain 

relations.  

Sansour and Bednarczyk (1995) presented a shell theory for the Cosserat surface 

which is considered as a two-dimensional manifold in Cosserat continuum, and 

the surface is attached with a determined displacement field and an independent 

rotation field. In classical continuum mechanics elasticity theory there are two 

elastic constants involved which can be directly derived from the displacement 

field, but Cosserat continuum theory introduces one more material constant that is 

related to a three parametric rotation tensor attached to every particle of the 

continuum, which takes into consideration size effects in the calculations. The 

theory has been developed in further years to model viscoplastic shells (Kollman 
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and Sansour, 1999), and hyperelastic behaviours (Haefner et al. 2002), and also to 

study finite strain elastoplasticity (Sansour et al. 2006), and finite strain plasticity 

(Sansour 2006).  

 

 

Figure 1-18: Deformation of pinched cylinder (Sansour and Kollmann, 1998) 

 

These studies identified significant advantages over classical shell theory and 

original Cosserat continuum methods. The introduced rotation tensor is an 

independent variable which provides an insight into the interior structure of the 

surface. Drilling degrees are included in a completely natural way. This approach 

can produce good results for shells under large deformation, as shown in Figure 

1.18. 

SWCNT can be considered as a two-dimensional manifold and can be solved with 

the Cosserat surface shell theory demonstrated by Sansour and Bednarczyk 

(1995), where the rotation field is already at a micro-level. However, the Cosserat 

surface shell theory (Sansour and Bednarczyk, 1995) is based on constitutive laws 

from conventional continuum theory, for the study of CNTs, which will be 
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deviated in this research by constitutive laws derived from empirical interatomic 

potentials which describe the real interactions among atoms at an atomic level.  

1.4 Outline 

This research is to propose a new multi-scale modelling method to simulate the 

mechanical properties of SWCNTs. The central idea of the method is to consider 

SWCNT as a Cosserat surface based on continuum shell theory. Constitutive laws 

are derived from empirical interatomic potential functions which describe the 

local potential of CNTs at the atomic level. The Cauchy-Born rule is applied to 

connect the atomic description to a macroscopic space, which provides the strain 

changing on the deformed surface. A shift vector is needed for the hexagonal 

arrangement of atoms in SWCNT. An independent rotation tensor is employed to 

compute the change of curvature of the deformed surface which is introduced in 

Cosserat surface shell theory to overcome the application of the standard Cauchy-

Born rule on the study of CNTs. The Cosserat surface shell model is then 

analyzed to produce results and simulations through a finite element approach.  

Chapter 1 has given the background of CNTs and the previous studies of CNTs. 

The literature review mainly includes research results of the linear and non-linear 

elastic properties of CNTs from previous researchers, and discusses the 

methodologies for studying SWCNTs. From inadequate continuum mechanics to 

computationally difficult atomistic simulations, we are looking for a decent 

approach to link them and give more accurate results of CNTs in a practical way.  

Chapter 2 presents the whole methodologies. Section 2.1 shows the main structure 

of the modelling methods. Section 2.2 explains the Cauchy-Born rule and why it 
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should be modified when studying CNTs. This section also introduces a shift 

vector which should be taken into account when the Cauchy-Born rule is applied 

to a non-centrosymmetric structure. Section 2.3 presents a shell theory for 

Cosserat surface, in which the deformation gradient, the rotation tensor and the 

strain measures are defined, and where the equilibrium equations are derived from 

the principle of virtual work. Section 2.4 provides the potential forms designed for 

the one-dimensional rod and two-dimensional surface to be applied in the next 

two chapters. Section 2.5 provides the implementation of finite element approach 

based on shell theory of the Cosserat surface. The finite element formulation is 

developed, and an updating method of the rotation tensor is designed so as to be 

path independent.  

Chapter 3 designs an atomic chain model, and simulates the deformations from 

one-dimensional to two-dimensional and to three-dimensional space. Numerical 

modelling equations are given. Results are presented and compared. Simulations 

of a one-dimensional embedded rod, a thread in torsion and a cross section of 

CNTs in bending are demonstrated. It shows that atomic chains and CNTs have 

many behaviours in common. Although the quantitative physical meaning of 

atomic chain is still under development, it gives a fundamental preparation of full 

graphite sheet and CNT simulations.  

Chapter 4 further demonstrates the Cosserat surface as a shell model which is 

applied to a two-dimensional graphite sheet deforming in-plane and out-of-plane. 

Young’s modulus and Poisson ratio are predicted for the graphite sheet and the 

results are compared with the literature. SWCNTs are modelled as cylindrical 

shells, and deformations of SWCNTs under bending, compression and torsion are 
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simulated. Young’s modulus is predicted from cylindrical shell bending models. 

Buckling strains are predicted from force-strain relationship figures for cylindrical 

shell model under compression. A twisting angle against external torque force 

relationship is shown for the cylindrical shell model under torsion. 

Chapter 5 summarises and concludes the work carried out in this research. 

Discussions about the modelling methods and the results are presented. Possible 

improvements are suggested towards the end of the chapter. 
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Chapter 2  

 

Modelling Methods 

 

 

2.1 Main Idea 

The aim of this research is to study the mechanical properties of SWCNTs. Two 

kinds of methodologies have been established by other researchers, one being 

continuum mechanics-based, and the other by atomistic simulations.  

Traditional continuum mechanics have been used to model CNTs in earlier years. 

Two main approaches are based on the Bernoulli–Euler beam model and the 

continuum cylindrical shell model. However, as for the study of the mechanical 

properties of CNTs many of the assumptions in classical continuum mechanics 

are no longer applicable because of the size effect of nano-structures. Wang et al. 

(2006) pointed out that the classical elastic beam and shell models provided 

highly overestimated results when modelling CNTs, thus, the scale effect cannot 
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be ignored, although atomistic simulations give accurate results when modelling 

CNTs, the very fact that one has to calculate every atom in the system makes them 

incredibly time consuming and computationally inefficient. Therefore, a bridge 

linking continuum mechanics and atomistic simulations is developed.    

The Cauchy-Born rule is a rule to relate the deformation of an atom bond vector at 

a micro-level to the deformation of the bulk vector at a macro-level. It is 

applicable for solid crystals, but it is not suitable to apply to CNTs, because the 

map Cauchy-Born builds leads to a deformed vector lying on the tangent plane of 

the curved surface instead of lying on the curve. However motivated by the  

exponential Cauchy-Born rule (Arroyo and Belytschko 2002) and the higher order 

Cauchy-Born rule (Guo et al. 2006), a modification of the standard Cauchy-Born 

to applications for modelling CNTs as shells is established.  

In this research an alternative way is investigated. A shell theory based on 

Cosserat continua is presented to model CNTs following the work of Sansour and 

Bednarczyk (1995). A displacement field-independent rotation tensor is 

introduced to describe the micro-level rotation, which also makes up for the 

shortcomings of the standard Cauchy-Born rule, and can take size-effects into 

account. The main idea of this research is to consider SWCNT as a two-

dimensional manifold and solving it with the Cosserat surface shell theory as 

demonstrated. The deformation can be described by a stretch tensor and a rotation 

tensor. Responding to external force, the surface deforms providing a force stress 

field and a couple stress field. A force stress tensor can be obtained from the first 

derivative of the potential with respect to a stretch tensor, and a couple stress 

tensor can be obtained from the first derivative of the potential with respect to a 
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curvature tensor. Stretch modulus tensors can be found from the second derivative 

of the potential with respect to the stretch tensor, and bending modulus tensor can 

be calculated from the second derivative of potential with respect to the curvature 

tensor. In order to solve for these four fields mentioned above, a way to describe 

the material mechanical properties, one needs to identify the right potential forms 

that are adequate at an atomistic level and applicable for continuum formulations.  

Two sets of models are considered in this research. As a hypothetical example, 

also being the preparation of the whole CNT modelling, an atomic chain model, 

referred to as a Cosserat curve, is developed as a one-dimensional rod deforming 

in a three-dimensional space. Further modelling is carried out by considering 

SWCNT as a Cosserat surface deforming in a three-dimensional space. For the 

atomic chain model, the energy functions are chosen from molecular mechanics, 

which is also called the force field method. The total energy is determined by the 

interactions of the atoms, which takes into account contributions from atom bond 

stretching, bending between atom bonds and torsion energy. This model can be 

considered as an atomic chain that consists of a series of carbon atoms, and C-C 

bonds, which deforms in an atomic field.  

For two-dimensional Cosserat surface of the SWCNT model, empirical functions 

of potentials are adopted which are practical and appropriate to describe the total 

potential of CNTs relatively accurately. The simplest potential functions, for 

example the Morse potential, have no dependence on the environment of the 

atoms, therefore not suitable to apply to a Cosserat surface. Thus we have to go 

for relatively complicated potentials which incorporate the effects of atom bond 

angles and bond orders, among which the Tersoff and Brenner potential (Tersoff, 
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1988, Brenner, 1989) involves the variations of bond energy due to changes in the 

position of an atom and also its neighbour atoms. A first generation of Tersoff and 

Brenner potentials was extensively applied in the study CNTs (Belytschko et al. 

2002, Zhang et al. 2002, Bao et al. 2004, Liew et al. 2004). Brenner et al. (2002) 

made a few adjustments and developed a second generation of Brenner potentials, 

which they claimed to be more accurate to model the real interactomic reactions.  

The finite element formulation is developed on the basis of variational principles. 

The stress fields and the modulus fields can thus be calculated via iteration 

procedures by updating displacement fields and rotation fields, where the rotation 

fields are designed to be path-independent in updating.  

Section 2.2 demonstrates the Cauchy-Born rule, and also explains how the 

Cauchy-Born rule links continuum systems with the atomistic world, and why it 

should be modified to study surfaces when modelling CNTs. Also, an inner shift 

vector is introduced due to the restrictions of the Cauchy-Born rule when applied 

to the hexagonal structure of carbon cells. Section 2.3 presents the shell theory of 

the Cosserat surface, where a displacement field-independent rotation tensor is 

introduced, which is applied in this research instead of the modified Cauchy-Born 

rule, by rotating the tangent vector which is on the tangent plane of deformed 

surface into the real curve which lies on the deformed surface. Section 2.4 aims to 

find the appropriate forms of the potential functions to describe the potential of 

the atomic chain and the potential of a graphite sheet which is also used as a 

potential for CNTs. Section 2.5 furnishes the implementation of finite element 

approach of the Cosserat surface. 
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2.2 Cauchy-Born rule 

2.2.1 Standard Cauchy-Born rule 

The Cauchy–Born rule is an assumption made to link the deformation of the 

atomistic field to that of continuum field. It is normally used for bulk materials, 

e.g. space-filling crystals. In such homogeneous materials, without consideration 

of any defects, the Cauchy-Born rule is applied to show the relationship between 

the deformation of atomic lattice vectors and the deformation of the whole bulk 

material in the continuum field.  

Similar to local crystal kinematics, where the deformation of the crystal vectors 

are described by the Cauchy-Born rule, the deformation of the bulk atom lattice, 

and respectively the bond vectors connecting two neighbouring atoms, can be 

described by the local deformation gradient. So, in essence, the deformation 

gradient is assumed to be constant within a small portion of the atom lattice and 

the latter can be dealt with as a bundle of lines where relative angles do not 

change, i.e. the tangent bundles. We find here the similarity to nonlocal theories.  

Consider Φ as the deformation map when a space-filling continuum body 

     deforms to     , i.e.         . Let   define a point in body   , 

while   is its position in body   after deformation, then we have the relationship 

      . The deformation gradient   is defined as the derivative of the 

deformation map,      , which also means that it maps infinitesimal line 

elements from the deformed configuration to reference configuration 
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In elasticity theory, under finite strains, the deformation of space-filling 

continuum is homogeneous at the atomistic scale. Thus, the space-filling 

continuum undergoes the same deformation as the atomic lattice vectors as 

established by the Cauchy-Born rule: 

                                                                        (2.2) 

where   is the deformed lattice vector, and   is the undeformed lattice vector in 

the continuum. Equation (2.2) is the essence of the Cauchy-Born rule which 

shows the link between atomistic and continuum deformations, as shown in 

Figure 2.1. 

 

Figure 2-1: Illustration of Cauchy-Born rule 

 

However, in case of CNTs, we have to deal with a curved surface consisting of 

chords, which are the bonds connecting the atoms laying in them. Although the 

Cauchy-Born rule is valid for the bulk atom lattice, it does not apply to the chords 

of CNTs. This is due to the fact that deformation vertical to the CNT’s axis is 

accompanied by a change of curvature of the surface. This also means the angles 

between the atom bonds must have changed as well. In this case, the deformation 

at the surface of the CNT that is pure stretch of the chords, and can be described 
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by the deformation gradient, but the out-of-plane deformation which is related to 

the change of angles between connected chords, must be separately described, e.g. 

by the change of curvature of the surface. 

Arroyo and Belytschko (2003,2004) first pointed out, though Cauchy–Born rule is 

suitable to apply for space-filling crystal material, it is not adequate to apply to 

CNTs, which can be viewed as a curved surface with nano-scale thickness, 

especially when it involves in large curvature effects. Because the deformation 

gradient tensor   maps the infinitesimal material vectors    and   , if SWCNT is 

considered as a plane surface without thickness, the deformed lattice vector   will 

be falling on the tangent plane of the curved surface , which means the standard 

Cauchy-Born rule gives inaccurate result of deformed lattice vector    , as a 

tangent vector which is tangent to the curve,  instead of the accurate result of the 

real chord vector which is lying on the curve. Different kinds of modifications 

have been made to overcome the shortcomings mentioned above for the use of the 

standard Cauchy-Born rule in the study of properties of CNTs, such as the 

exponential Cauchy-Born rule, the higher order Cauchy-Born rule, the local 

Cauchy-Born rule, etc., some of which have been explained in Section 1.3.2.2.  

2.2.2 Shift vector 

Due to the non-centrosymmetric hexagonal atomic structure of CNTs, the 

standard Cauchy-Born rule cannot be applied directly for CNTs because it cannot 

satisfy the inner equilibrium of the representative cell. A system is said to be 

centrosymmetric when at any time for one point at position         there is 

always another point at position          . For a centrosymmetric lattice there 

has to be another lattice pointing the opposite direction from the same atom, 
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which is not the case for CNTs. The Cauchy-Born rule ensures the equilibrium of 

centrosymmetric lattices because the forces of paired lattices are equal and 

opposite under homogeneous deformation.  

The hexagonal lattice of a graphite sheet, which is called a Bravais multi-lattice, is 

not centrosymmetric, however, it consists of two centrosymmetric sub-lattices. 

Therefore, it is essential to introduce an in-plane shift vector as a bridge of two 

centrosymmetric sub-lattices. The position vectors of multi-lattice, two 

centrosymmetric sub-lattices, and an inner displacement of the atom sites are 

described in Figure 2.2. 

 

Figure 2-2: Multi-lattice, sub-lattices, and shift vector 

 

Let             define the basis vectors of a centrosymmetric sub-lattice, and    

be the relative shift vector of two sub-lattices. To reach the required degrees of 

freedom, an additional kinematic variable is introduced, by describing the 
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perturbation of the shift vector, denoted by  . The bond vectors    (i=1, 2, 3) after 

the perturbation are 

                                                                   

where     are the undeformed bond vectors.  

Let         , then the bond vectors are 

                                                       

The introducing of shift vector results in differences of solutions in the stress and 

modulus fields for materials with centrosymmetric or non-centrosymmetric 

atomic structures, which are presented in the following. 

2.2.2.1 Centrosymmetric atomic structure 

Let   define the deformation gradient, from Cauchy-Born rule, we have 

                                                                             

Define     to be the undeformed bond vector between atom I and J. The bond 

length after deformation is 

                                                                           

The interatomic potential can be described as 

                                                              

where bond length     and bond angle between     and    , denoted by     , 

are 

                                                                          

          
   

     
     

 

       
                                                 

and bond length     is 
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Strain energy density is expressed as 

   
                         

   
                              

where    is the area of the representative atomic cell, and the force tensor can be 

expressed as  

   
   

  
 

 

  
  

  

    

    

  
  

  

    

    

  
          

  
  

     

     

  
       

                                                                            

2.2.2.2 Non-centrosymmetric atomic structure  

Let   define the inner displacement of a sub-lattice  , with the undeformed lattice 

vector   . Since       , the deformed lattice   under inner perturbation and 

deformation gradient can be written as 

                                                                    

Then the bond length between atoms   and   becomes 

                                                                  

Same as before the strain energy density is 

   
                         

   
                                   

The bond angle can be obtained from  
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As an inner variable,   can be computed by minimising the strain energy density 

with respect to   

   

  
                                                                        

which leads to 

                                                                      

Then we have 

                                                                      

The force tensor is now the direct derivative 

   
   

  
 

   

  
 

   

  

  

  
 

   

  
                                      

The modulus tensor    

   
   

  
 

 

  
 
   

  
  

 

  
 
   

  
 
  

  
 

   

  

 

  
 
  

  
  

 

  
 
   

  
 

 
    

    
 

    

    

  

  

 
    

    
 

    

    
 
    

    
 

  
    

    
                                                  

This is also a footprint of the derivations for dealing with inner displacement 

vector in Section 4.1. Wang et al. (2006) pointed out the results obtained without 

inner displacement were closer to atomistic simulation and experimental results 

than those with inner displacement. But Arroyo and Belytschko (2004) insisted 

that, even so, non-relaxation results were theoretically incorrect.  
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2.3 The Cosserat surface as a shell model 

The central idea of Cosserat surface is to consider a thin three-dimensional 

classical continuum shell as a two-dimensional Cosserat continuum manifold, i.e. 

a Cosserat surface. A displacement field and a rotation field are introduced 

specifically, where they are independent of each other. Cosserat continuum theory 

is different from classical continuum theory by introducing a displacement field-

independent rotation tensor, which can describe the behaviour of the inner 

structure within the surface, i.e. at a micro-level. Cosserat surface theory is to 

apply Cosserat continuum theory into a shell model, where the first and second 

strain measures are designed to be strain measures of the shell, which leads all 

different formulations from original Cosserat continuum theory (Sansour and 

Bednarczyk, 1995). 

2.3.1 The deformation gradient 

Let       define a two-dimensional surface, and     be the real numbers. The 

map 

                                                                       

depends on the parameter    . (Here   is a surface to surface map, as a 

counterpart of body to body map Φ, as mentioned in Section 2.2.1.) The reference 

configuration is defined by           .  For simplicity, we write   instead 

of       and    instead of      , then we have 

                                                                       

At time  ,   is a point in the reference configuration and   is the point in the 

deformed configuration, then the relations hold  
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             and                                                  

           are the co-ordinates attached to the surface at  , (Figure 2.3). Let 

   ,     be the tangent spaces of     and     respectively, we can calculate the 

covariant base vectors as 

   
  

   
                                                             

with       , and 

   
  

   
                                                             

with         . 

The Riemannian metric can be obtained by 

           and                                              

 

 

 
Figure 2-3: Deformation on Cosserat surface 
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The determinants of    and    are indicated by   and   . The basic skew-

symmetric three-dimensional Levi-Civita tensor, also known as the permutation 

tensor, is denoted by 

      
                                    
                                    
                                                     

                            

and 

            

     
 

  
                                                              

where            by its Euclidean structure. Here,       are set to be 1, 2 or 3. In 

absolute notation, it reads 

                                                                

Similarly, the two-dimensional Ricci tensors are  

     
                                   

                                  
   

    

 
 

  
 

  
                               

 
 

  
                               

                              

The normal vector is defined by             at the reference configuration, 

where it is easily seen that     . For a curvature tensor       
    , its 

components are given by            . Also a Cartesian frame is considered 

by   ,         and the quantities can be obtained from  

                                                            

which describes the relations of the two base systems. 
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The deformation gradient   is defined as the tangent of the map  ,     , 

where 

             , or                                                

  can be given as the tensor product 

                                                                 

The displacement field is introduced by the displacement vector  

                                                                    

and we have 

                                                                   

and   

                                                              

where comma denotes partial derivatives. 

2.3.2 The rotation tensor 

One of the assumptions of the shell theory is that a displacement field as well as a 

rotation field are attached to the Cosserat surface, both of which are assumed to be 

independent of each other. The rotation field is introduced by an orthogonal tensor 

        which is described by an exponential map 

             
  

  
 

  

  
     

      

   
  

        

    
           

with      , and with      to be the corresponding axial vector of  .  

For any       ,  it has a closed expression 

     
      

   
      

        

    
                             

If    coincides with  , the relation gives 
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So   is an eigenvector of  . If we use the rotation      , where   is the 

identity tensor, the relation is obtained              . 

Furthermore, taking the derivative of the relation       , one has 

         
                                                       

Notice that            , where       is the tangent space of      , which 

defines the Lie algebra (Hall, 2003), that consists of all the skew-symmetric 

tensors. Let    be the axial vector of       , then one can get the relation 

   
      

   
    

        

    
       

 

   
 

      

    
 
       

   
           

   is related to   which is the eigenvector of  . 

Variation of   can be given by left or right multiplications 

                                                            

where   and   are both skew-symmetric. 

Let   and   be the axial vectors of   and  , the variation of    can be derived by 

                                                                

which means               , and we have 

                                                             

So  

                                                                

Similarly it can be derived that           . 

2.3.3   Strain measures 

The first Cosserat deformation tensor is 
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And the second Cosserat deformation tensor is 

                                                                  

Alternatively,   can be written as 

   
 

 
                                                          

where ( ) denotes a double contraction; the relation holds            , where 

 ,   are two second order tensors and      is the trace operation.  

A strain measure can be defined as    that vanishes at the reference configuration  

                                                                   

where     at the reference configuration. 

The strain tensors can be decomposed with respect to the tangential base system at 

the reference configuration 

      
                 

                          

                         
                   

when writing the displacement and the rotation field in terms of Cartesian 

components 

      ,                                                          

the strain measures can be finally expressed as 
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2.3.4 Principle of virtual work  

In a pure mechanical theory, the internal potential function for the Cosserat 

surface depends on the two strain tensors   and   

            
 

                                                 

where   is the density of the surface. The force tensor and the couple tensor are 

defined as 

   
          

  
                                                      

   
          

  
                                                     

Notice that here   is the Boit-like stress tensor, which is different from but related 

with the first Piola-Kirchhoff stress tensor    in Equation (1.18) and the second 

Piola-Kirchhoff stress tensor     in Equation (1.8).  

For the Cosserat surface, the principle of virtual work holds 

                                                                    

While the external virtual work is defined as 
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where   is the density at reference configuration,    is the area element of the 

curved surface  , and    is the line element on its boundary   ,   and   are the 

forces and torques on the surface, and    and    are corresponding forces on the 

boundary.  

With these relations and 

                                                               

along with the geometric boundary conditions, equilibrium equations can be 

derived: 

   
          

  
     

          

  
      

 

    
 

             

             
  

                                                                  

              
 

    
 

                          
  

   

                                                                                                                                           

The first and second variations of the strain measure   are 

                                                         

                                                             

The first and second variations of strain measure   can be defined by  

                                                                

                                                   

So  

                               
 

 
 

                 



Chapter 2: Modelling Methods 

 

- 46 - 

                                                   

                             
 

 
                   

We write        and       , and so we have 

                                  

The vitual principle equation can be expressed as 

                            
 

    
 

             

             
  

                                                                 

Since                                                

and with the use of the divergence theorem, it becomes 

   
 

 
                         

 

 
              

 

        
  

                  
 

             

             
  

                                                                 

   are the components of the external normal vector at the boundary    which 

lies on the tangent plane of  .  

Because    and   are free variations, we have the localized governing equations 

for the equilibrium, the Euler-Lagrange equations in  , 

 

 
                                                                         

        
 

 
                                                    

which can be alternatively expressed as 
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and we also get the natural boundary conditions on    

                                                                     

                                                                  

 

2.4 Potentials 

The mechanical properties of CNTs are largely determined by the interatomic 

forces, which are governed by the chemical bonds, which are expressed in terms 

of interatomic potential models. An ideal potential model should be able to 

accurately describe the interactions which bind the atoms together.  

Empirical potentials are used extensively, which take simple forms of atomic 

positions alone, which provide great advantages in theoretical simulations. Many 

interatomic potential models have been developed and reported in the literature, 

some of them are simple, while some of them are relatively complicated. Using 

different potential models can result in totally different results. Wu et al. (2008) 

pointed out that the use of two generations of Brenner potentials results in totally 

opposite results in modelling the critical strains of CNTs in tension, as shown in 

Figure 2.4, where     represents the axisymmetric bifurcation, and           

represents the nonaxisymmetric bifurcation.  Even by using the same potential 

model, the use of different parameters leads to a big difference as well. Wang et 

al. (2006) demonstrated the difference in modelling Young’s modulus of CNTs by 

using two sets of parameters in Tersoff-Brenner potential, as shown in Figure 2.5. 
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Figure 2-4: Opposite results in modelling critical strain of CNTs in tension by using two 

generations of Brenner potential (Wu et al. 2008) 

 

 

Figure 2-5: Difference of Young’s modulus of CNTs by using two sets of parameters in 

Tersoff-Brenner potential (Wang et al. 2006) 

 

That gives us an idea why the theoretical results of the mechanical properties of 

CNTs exhibit a large scatter, and why we should choose the empirical potential 

model carefully. Basically, potentials are chosen for different targets in examining 

different material properties that one wants to study. Therefore, how complicated 

a potential one chooses depends on what kind of properties it is capable to 

reproduce. In this research, two types of potentials are chosen for one-dimensional 

rod modelling and two-dimensional surface modelling, respectively. For one-
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dimensional atomic chain modelling, a simple atomistic potential form is chosen 

based on a force field. For two-dimensional CNT shell modelling, a more 

complicated second generation REBO potential is chosen. 

2.4.1 Atomistic potential based on a force field 

Rappi et al. (1992) gave a full periodic table force field for a molecular mechanics 

study. They presented the potential energy of a molecule expressed as a 

superposition of various bonded interactions and non-bonded interactions of the 

form  

                                                                

Bonded interactions include all the interactions of the atom with its neighbouring 

atoms.    is the bond stretch energy,    is the bond angle bending energy which 

describes the angular distortions,    is the dihedral angle torsion and    is the 

inversion torsion term. Non-bonded interactions are      that describes the 

interaction caused by van der Waals forces, and     that involves the electrostatic 

interactions.  

Bond stretch energy can be expressed as 

   
 

 
          

                                                    

or with Morse function 

         
            

 
                                              

    is the force constant,     is the bond dissociation energy, and     is the original 

bond length .  

Angle bond energy for a bond angle   is given as 



Chapter 2: Modelling Methods 

 

- 50 - 

                 

 

   

                                             

which simplifies to 

   
    

  
                                                        

The torsion potential for a torsion angle       is also expressed as a small cosine 

Fourier expansion 

                                                                  

 

   

 

where    is a shape factor. 

The inversion term is given as 

                                                                    

Van der Waals force interaction is described by a Lennard-Jones 6-12 type 

expression 

             
   

 
 
 

  
   

 
 
  

                                              

where     is the distance between two non- bonded atoms. 

Electrostatic interactions are expressed as 

 

        
    

    
                                                                 

where   ,    are the charges and     is the distance in angstroms. 

Li and Chou (2003) modelled the deformation of CNTs via a structural mechanics 

approach, by considering the bonds between two atoms as a load bearing beam 

members. They built up the potential as the sum of the total energy due to valence 

of bonded interactions and nonbonded interactions 
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They pointed out that the harmonic approximation is good enough to describe the 

energy when the system undergoes small deformations, so they applied the 

simplest harmonic forms of the energies and merged the dihedral angle torsion 

term and the inversion term into a single term, expressed as  

   
 

 
        

                                                      

   
 

 
        

                                                      

         
 

 
        

                                              

And they were the first ones to point out, through structural mechanics 

calculation, that the molecular material parameters   ,    and    stand in direct 

relation with the structural mechanics parameters of the beam,  which is given as 

   
  

 
             

  

 
     

  

 
                                         

where   ,   , and    are three stiffness parameters that describe the stretch, 

bending, and torsion properties of the beam member. This has been applied 

widely by researchers afterwards into the finite element modelling of CNTs by 

setting C-C bond elastic parameters with ANSYS or ABAQUS or other 

commercial finite element software. 

Meo and Rossi (2006) proposed a finite element model to simulate mechanical 

properties of SWCNTs, by using non-linear spring elements to model carbon 

bonds.  
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They pointed out the effects of           and     can be neglected for uniaxial 

loading and small strain assumption, so they only used the first two terms in the 

energy form.  

The bond energy is chosen as another expression of Morse potential 

                   
 
                                                

with parameters for SWCNTs           ,                      and 

           .  

The bond angle energy takes the form 

   
 

 
        

                 
                                       

with the parameters                     ,             and         

           .  

Avila and Lacerda (2008) evaluated Young’s modulus and Poisson ratio of 

SWCNTs by the approach of Li and Chou (2003) using the relation between 

structural mechanics parameters and molecular material parameters. They 

implemented a macro subroutine into ANSYS V.10 and chose         

        ,                        and                       . 

Dun et al. (2010) applied a stick-spiral model to calculate the constitutive law for 

CNTs buckling analysis. They used the potential form  

           

                  
 
     

 

 
        

                    

with                ,              and                   . 
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Shokrieh and Rafiee (2010) considered the C-C bond as a beam element and 

studied Young’s modulus of CNTs by adopting the potential  

             
 

 
        

   
 

 
        

                      

with                  and                       . 

Parvaneh and Shariati (2011) studied the effects of defects and loading on the 

prediction of Young’s modulus of SWCNTs. They adopted the energy form  

                                                              

with 

                   
 
                                                 

   
 

 
        

                 
                                       

   
 

 
                                                             

   
 

 
                                                             

where                   and                  . They took the 

dihedral angle torsion and out-of plane torsion into consideration.  

Finally, an atomistic potential is chosen in this research by considering the bond 

stretch energy and the bond angle energy. And the torsion energy is considered in 

one-dimensional deformation embedded in a three-dimensional space. For one-

dimensional deformation embedded in a two-dimensional space, the potential is 

taking to be 
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where               ,              and                   . 

For one-dimensional deformation in a three-dimensional space case, the potential 

is expressed as 

              

                  
 
      

 

 
        

 

  
 

 
        

                                                                              

where               ,             ,                         

and                       .  

2.4.2 Potential form for SWCNT  

In early stages, the potentials used for molecular mechanics were empirical 

isotropic pair potentials, e.g. Lennard-Jones potential, Morse potential, etc. They 

take the form    

              
    

                                                  

while          when       .    is a cut-off radius. In these models, the 

potential only depends on the distance between two atoms, and does not consider 

the information about the environment of the atom. For example, Morse potential 

is given by  
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Such potentials were used extensively because of their simplicity. However, these 

models suffer a major drawback because they do not depend on the atom’s 

environment, which gives no difference for a bulk atom and a surface atom. 

Therefore, they are inappropriate to apply for Cosserat surface.  

In order to involve the bond angle and the neighbouring atoms of a selected atom, 

more complicated bond order potential forms were developed, among which 

Tersoff and Brenner’s models were proved to be successful. 

 Brenner (1990) presented a Tersoff-Brenner interatomic potential for carbon as  

                                                                          

      

 

For atoms   and  , where     is the distance between atoms   and  ,    and    are 

the repulsive and attractive pair terms given by 

      
    

   
                                                                 

      
     

   
 
   

 
         

                                                    

The parameter          and      are determined from the known physical 

properties of carbon. The function    is merely a smooth cutoff function to limit 

the range of the potential, and is given by 

      

 
 

 
     

 

 
       

       

     
         

     

                               

          and          is chosen as cutoff radius by Zhang et al. (2002). 

The parameter      represents a multi-body coupling between the bond from atom I 

to atom J and the local environment of atom I, and is given by 
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where     is the distance between atom I and K,    is the cutoff function,      is 

the angle between bonds I-J and I-K, and the function   is given by 

          
  

 

  
  

  
 

  
           

                                       

Two sets of parameters for carbon which is given by Brenner (1990): 

1.              ,       ,         ,              ,   

       ,            ,      ,         

2.              ,       ,         ,              ,   

       ,              ,       ,         

which gives the equilibrium bond length of CNTs as 0.142 and 0.145nm from the 

two sets of parameters respectively (Zhang et al. 2002). 

Bao et al. (2004) applied a second-generation reactive empirical bond order 

(REBO) potential energy expression for hydrocarbons presented by Brenner 

(2002). In the REBO potential, the total potential energy of the system is given by 

                             

      

                                         

where     is the distance between atoms I and J, and      is a many-body empirical 

bond order term.    and    are repulsive and attractive terms.  

              
 

 
                                                   

               
                                                

 

   

 

   is a cut-off function which is given by 
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which is used to cut off the interactions when atoms become too close, where 

          and          .  

Brenner et al. (2002) gave the parameters for carbons as  

             ,              ,               ,              , 

             ,              ,               ,               , 

              .  

where                    and            . 

The bond order function      is 

     
 

 
    

       
        

      
                                           

where 

   
            

       

                

    

                           

              

 

   

         
 
                                         

For             ,            ,           ,            , 

           ,           ,            . 

For               ,            ,           ,           ,    

       ,           ,           . 

For            ,            ,           ,           ,    

       ,           ,           . 
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where F is a tricubic spline. 

   
    

                    

      

       

 

 

                  

      

       

 

 

             

        

      
                          

      

                    

with       
           , and  

  
                                                    

            

       

 

   
                                        

              

                

                for C-C bonds.       is the dihedral angle among four 

atoms,                    with              and             .  

Since    
   attributes to various radical energies, such as vacancies, it can be 

neglected in this research, and    
   describes the conjugate terms of the 

interactions between I-J bond, which is also neglected for the computation.  

 

2.5 The finite element approach 

2.5.1 The finite element formulation 

The governing equations of the Cosserat surface in shell theory have been derived 

in Section 2.4. With the energy forms chosen from Section 2.5, the internal 

potential can be write as       . 
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We can reformulate 

              
 

    
 

                          
  

   

                                                                                                                                           

as 

   
       

  
     

       

  
      

 

    
 

             

             
  

                                                                 

To build a finite element formulation, we introduce the Euclidean vectors 

  

 
 
 

 
 
  

  
  

  
  

   
 
 

 
 

                                                           

      

 
 
 

 
 
      
      
      
      
      
       

 
 

 
 

  and        

 
  
 

  
 
      

      

      

      

      

       
  
 

  
 

                           

where        are the components of   that is the eigenvector of the rotation tensor 

 . 

Define      as the external potential with the relation            . 

Equation (2.119) can now be written as 
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where      , similarly        . 

                                                                 

  
      

   
   

        

    
      

 

   
 

      

    
 
      

   
             

Let 

      
      

   
  

        

    
     

 

   
 

      

    
 
     

   
            

then the external work can be expressed as 

                
 

                       

                       
  

                                                    

                      
 

            
  

                        

where vector   is the generalized force corresponding to  .  

2.5.2 Updating method 

The updating method is designed to be path independent, following the approach 

presented by Sansour and Wagner (2003). 

At one loading step, equilibrium equations are in displacement field    and 

rotation field   , with changing of external loading, new state of equilibrium 

established in new kinematical fields      and     . The update of displacement 

field naturally goes like 
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here,   is the iteration step, and   is load step. 

The rotation increment can be obtained by                   . But 

the rotation tensor itself cannot be interpolated, only its rotation parameters can. 

Since     at the reference configuration, let rotation vector   
   

 be given at 

nodel points, where     at the reference configuration. Instead of   
 
 

     
   

, corresponding    and   
 
 can describe rotation tensor with parameters at 

nodal points which can be interpolated in a classical way.  

Quaternion is used to relate a product    of two vectors   and  , expressed as 

                                                                  

where    is a complex number with      . 

In the quaternion language, the rotation tensor can be written as        and 

       , and we have            , which means   and   are not 

independent. 

Set 

      
   

 
                                                     

      
   

 
 

 

   
                                                    

Let   and   at an iteration step   be    and   , and let   and   for the iteration 

step be     and   , we have 

       
    

 
            

    

 
 

  

    
 

       
    

 
            

    

 
 

  

    
                                 

Then the updated rotation tensor is 
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Then   can be interpolated in the classical way. 

2.5.3 Four node element interpolation 

The constitutive relations are determined by derivatives of the potentials chosen in 

Section 2.5. The finite element equations are based on the formulation of Equation 

(2.122). Four node elements are chosen, and same bi-linear interpolations are set 

for all components of   and  . The natural co-ordinates    on the surface are 

defined as 

                

 

   

  
   

                

 

   

  
                                            

where           define the co-ordinates of a point within the element.   
    

 are 

the co-ordinates on the edges of the element.         are the shape functions 

defined as 

        
 

 
                                                           

with           -  -      -          -      and        -      -    . 

For four node element, the displacement field, as well as the rotation field of the 

element is in matrix 
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   is   at the nodal points of the element. With four nodes and six degrees of 

freedom on each node,       , and matrix   consists of all the shape functions, 

       . 

The solution is achieved using Newton-Raphson iterative method, where the 

second derivative of potential        with respect to displacement field   must 

be evaluated, a very involved operation, the details of which are not presented 

here.  
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Chapter 3  

 

Atomic Chain: Cosserat Curve  

 

 

This chapter is meant as a preparation of a full analysis of carbon nanotube (CNT) 

as a cylindrical shell, where we consider a long slender CNT as an atomic chain 

model and simulates the deformations of the atomic chain as a one-dimensional 

straight line to a curve in two-dimensional space as well as in three-dimensional 

one. The equations for Cosserat curve are derived as a step-down of the general 

forms of equations in Section 2.3 for Cosserat surface. Atomic chains under 

bending, torsion and dynamic loadings are studied in section 3.4. This chapter 

aims to produce qualitative results in modelling CNTs’ deformations from 

relatively simply one-dimensional Cosserat curve theory, meanwhile it builds a 

platform for further development of the quantitative physical meanings from 

atomic chain models.  
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3.1 Atomic chain modelling 

This section presents a Cosserat curve background of the atomic chain model 

deforming from one-dimension (1-D) in a two-dimensional (2-D) plane, while the 

equations for a one-dimensional (1-D) Cosserat curve of a chain deforming in a 

three-dimensional (3-D) space can be simply derived from Section 2.3 by 

reducing   to 1.  

Let us consider a point   in the   -    plane laying on a curve   parameterised by 

the co-ordinate  . Then the position of   at certain time   is given by 

         
     

                                               

Where   is the tangent and   the normal vector at  . The tangent vector at   in 

the reference configuration is expressed as 

  
  

  
                                                                              

and in the current configuration as 

  
  

  
  

  

  
 

   

  
   

   

  
           

       
                      

where      denote the Cartesian components of    . 

The normal vector is given by 

                                                                 

For later usage, the natural basis vectors    are related to the Cartesian ones by 

     
                                                       (3.5) 

with 
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With the help of the tangent vectors in the current and reference configurations the 

deformation gradient is formulated as 

          
      

       

     
                     (3.6) 

Or alternatively in the Cartesian frame 

       
   

      
       

   
    

     

  
   

    
        

      
     

              (3.7) 

Now the undeformed chord   is mapped to its deformed equivalent   via the 

deformation gradient and a rotation tensor  , the latter accounts for the curvature 

of the curve  : 

      
      

         
        

                        (3.8) 

Accordingly, we consider two strain measures, a stretch-like tensor 

       
                      

                       
                   (3.9) 

and a change of curvature tensor 

   
    

  
                                              (3.10) 

This means, we have three kinematical relations to determine the three unknowns 

  ,    and  . It is possible to neglect the stretch component    , if the number of 

unknowns is reduced by one. This can be achieved, if                and 

                . However, in order to avoid the complexity of higher gradients 

and the requirement of an independent rotation tensor,       is necessary in this 

computation. 

From Section 2.3, we know that, for the Cosserat surface, the covariant base 

vectors    are 
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                                                      (3.11) 

Cartesian co-ordinate vectors are related to the inverse base vector    by 

       
                                                       (3.12) 

        

       
  

along with (3.7) and (3.9) , we have 

                                             
   

                                     
    

When the reference configuration is a straight line, it leads to       and     

 . 

From (3.9), the components of stretch tensor   can be expressed as 

             
          

                                      (3.13) 

              
          

                                  (3.14) 

where   
  stands for      and   

  stands for     .  

The variation of the strain energy density    is expressed as 

                                                             (3.15) 

where   is the force tensor and   is the couple tensor, and the couple tensor is a 

scalar in one-dimensional case. 
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The variation of the strain energy density can be further obtained with the 

relations between the stretch tensor, the curvature tensor and the deformed 

configuration variables   ,    and  : 

     
    

   
    

    

   
    

    

  
  

         
          

             
          

     

     
    

   
    

    

   
    

    

  
  

         
         

             
         

     

       

Similarly, the second variations can be derived 

      
     

   
   

     
  

     

   
   

     
  

     

     
    

    
     

     
    

   

 
     

    
    

           
           

          
           

   

           
          

       

      
     

   
   

     
  

     

   
   

     
  

     

     
    

    
     

     
    

   

 
     

    
    

           
            

 

         
            

              
  

        
       

      

The second variation of the strain energy density is 
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where   is the stretch modulus like tensor and   is the bending modulus like 

tensor, where   in one-dimensional case is a scalar, and    is the couple modulus 

like tensor, which is the second derivative of the strain energy density over the 

strain tensor and the curvature tensor. The component of the stretch modulus like 

tensor in 11-11 direction gives the tension rigidity which is related to the tension 

modulus 

      
    

        
                                                                   

The tensor-like bending modulus also known as bending rigidity is related to 

bending modulus 

  
    

    
                                                                      

The shear modulus is related to tensor-like stretch modulus 11-13 component 

      
    

        
                                                             

The principle of virtual work with total potential        holds 

                                                                     (3.23) 

where      defines the external virtual work, which is given by 
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where   is the external force corresponding to displacement  , and   is the 

external moment.  

With two node element modelling atomic chain, the state of equilibrium can be 

achieved by updating   and   in the iterations, expressed as 

    
 

     
   

      , and      
 

     
   

     

where   is the load step and   is the iteration step. 

 

3.2 Atomic chain deformation in 2-D space 

The strain energy density is the total strain energy per unit length  

   
 

 
                                                           

where   is the length of the chain. 

 

Figure 3-1: Sketch of 1-D atomic chain deforming in 2-D 

 

With the atomic chain model, we consider the total potential   as the sum of the 

bond stretch energy   , the bond angle bending energy    and an additional term 

       which takes into account the shear effect out-of-palne.  
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The stretch energy is a function of the bond length  , and the bending energy is a 

function of the bond angle  , as given by the force field mentioned in Section 

2.4.1. The additional energy is a function of the shear component of the stretch 

tensor    . 

Figure 3.1 shows a one-dimensional atomic chain deforming in two-dimensional 

space. According to the Cauchy-Born rule, the deformed vector on the tangent 

plane    is 

                                                                 (3.27) 

We consider the real deformed vector at the chord of the curve   by a 

rotation of the tangent vector    through an angle  . Then the length of   is 

                                                            (3.28) 

In equation (3.26), the relation between the deformed bond length   and the 

reference bond length    is  

                                                                (3.29) 

The bond angle   in equation (3.26) can be obtained from 

                                                             (3.30) 

Then the total energy in equation (3.26) can be expressed as a function of    ,     

and  .  

The standard Cauchy-Born rule provides the change of the bond length via 

Equation (3.28), and the independent rotation tensor is related to the bond angle 

by Equation (3.30), the choosing of which is explained in Appendix B.  
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3.3 Atomic chain deformation in 3-D space 

As shown in Figure 3.2, in a three-dimensional case, the atomic chain also 

deforms in direction 2, so in comparison to the potential in Equation (3.26), we 

have three more terms:    is the torsion potential as mentioned in section 2.4.1, an 

additional shear energy term considering the shear effect from direction 1 to 

direction 2, and the spin energy for the rotation in the third dimension 

(longitudinal rotation). 

 

 

Figure 3-2: Sketch of 1-D atomic chain deforming in 3-D 

 

                       

     
                     

          
       

 

      
      

                                                                                        

Same as in Equation (3.24) and (3.25), the bond length   and the bond angle   can 

be obtained by 

        

                                                           (3.32) 

The angle of the torsion   is related to the second curvature variable    
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                                                           (3.33) 

Thus the total energy in Equation (3.31) can be expressed as a function of six 

variables    ,    ,     ,   ,    and    .  

 

3.4 Results and discussions 

3.4.1 1-D to 2-D atomic chain simulation         

Figure 3.3 is an atomic chain model with two fixed ends under uniform loading.  

 

 
Figure 3-3: Atomic chain model with two fixed ends under uniform load 

 

 

Figure 3-4: Deformation of atomic chain under small uniform load 

 

Figure 3-5: Deformation of atomic chain under large uniform load 
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Figure 3.4 gives the small deformation configuration of the chain under a small 

loading situation, and Figure 3.5 shows a large deformation configuration under a 

large loading situation which demonstrates highly non-linear behaviour. Figure 

3.5 can be compared with an image of the non-linear behaviour which happens to 

a two fixed ended noodle stripe under pressure, it shows plastic-like behaviour, 

but the deformation is reversible. 

 

Figure 3-6: Deformation of CNTs under bending (Huhtala et al. 2002) 

 

Huhtala et al. (2002) demonstrated the deformation of SWCNT under bending as 

shown in Figure 3.6. Their results of deformation of the top surface of simulated 

SWCNTs matches the configurations obtained from the atomic chain model. 

Figure 3.7 shows an atomic chain model with one fixed end and one free end 

under a moment loading at the free end. Figure 3.8 gives the deformation of the 

chain under a small moment situation.  

 

 

Figure 3-7: Cantilever atomic chain model under moment 
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Figure 3-8: Deformation of atomic chain under small moment 

 

 

Figure 3-9: Deformation of atomic chain under large moment 

 

The deformation in Figure 3.8 expresses a perfect arc, which fits in with the beam 

theory from classical continuum mechanics. With the moment increasing, it 

results in a very large deformation as shown in Figure 3.9. The chain model in 

Figure 3.9 can be imagined as bending a steel string fixed at its end, except, as 

well, the final deformation is reversible in this case. 

As shown in Figure 3.4 and Figure 3.8, under small loading, the deformation of 1-

D atomic chain is similar with the result of 1-D beam model obtained from 

classical continuum mechanics analysis. With the loading increasing, simulation 

shows that the atomic chain model is rather flexible and can exhibit very large 

deformed configurations, as demonstrated in Figure 3.5 and Figure 3.9. Non-
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linear behaviour is involved in these large deformations, but they are reversible, 

i.e. still within the elastic range.  

In the study of CNTs, the phenomena of large and reversible distorted 

configurations which involves no bond-breaking or atomic rearrangements, is 

called resilience response (Hertel and Martel, 1998). It is shown from the figures 

that the atomic chain model is different from a continuum beam model because 

the atomic chain can undergo large plastic-like deformations within the elastic 

range. CNTs also present a variety of these resilience behaviours. Dai et al. 

(1996) reported the experimental evidence of CNTs’ resilience, which included 

the ability of CNT to reversibly undergo large non-linear deformations and also 

their ability to survive a crash during impact. A 1-D atomic chain model can be a 

qualitative model of CNT when it is considered as a 1-D Cosserat curve, provided 

the appropriate numerical values of the elastic constants of CNTs are incorporated 

in the potential forms. 

 

3.4.2 Simulation of 1-D atomic chain in 3-D space 

Figure 3.10 is an atomic chain fixed at one end under uniform loading.  Figure 

3.11 and Figure 3.12 show the deformation results of a 1-D chain in 3-D space 

and of a 1-D chain in a 2-D space separately.  

 

Figure 3-10: Cantilever atomic chain under uniform load 
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Figure 3-11: Cantilever atomic chain under uniform load in 3-D space 

 

 

Figure 3-12: Cantilever atomic chain under uniform load in 2-D space 

 

Similarly, Figure 3.13 is an atomic chain model with two hinged ends under 

uniform loading, and Figure 3.14 shows the deformation of a 1-D chain in 3-D 

space, whereas Figure 3.15 shows the result of a 1-D chain in 2-D space.  

 

 

Figure 3-13:  Atomic chain with two hinged ends under uniform load 

                  

-38.11
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Figure 3-14: Deformation of atomic chain with two hinged ends under uniform load in 3-D 

space 

 

 

Figure 3-15: Deformation of atomic chain with two hinged ends under uniform load in 2-D 

space 

 

Same as in Figure 3.7, Figure 3.16 is a cantilever model under moment at the free 

end in 3-D space. Figure 3.17 and Figure 3.18 demonstrate the deformations 

computed for 1-D chain model in 3-D space and 2-D space, respectively. 

 

 

 

Figure 3-16:  Cantilever atomic chain under moment 

-21.78

-12.45
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Figure 3-17:  Deformation of cantilever atomic chain under moment in 3-D space 

 

 

 

Figure 3-18: Deformation of cantilever atomic chain under moment in 2-D space 

 

In all the cases, the displacements in the 3-D space give slightly larger values than 

the values in the case of 2-D space. This might be caused by two sets of different 

parameters applied in the potential forms in these two models, and also the added 

potential forms should have effects on the results of the final deformations as 

well. However, the differences are less than 1.0%, so the agreement between the 

results from the two atomic chain models is acceptable.  

 

-20.45
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3.4.3 The atomic chain as a dynamic rod  

A dynamic rod is modelled to simulate an atomic chain under dynamic loading, as 

shown in Figure 3.19. Atomic chain fixed at one end is modelled as a Cosserat 

curve, and four sets of moment loading are applied to the chain model in-plane 

and out-of-plane, the moments are twice larger as in the middle than at the end 

point of the chain, in order to make an obvious curve that is easier to observe in 

the results. The moment loadings change with time, increasing linearly to an 

assigned peak value and then decreasing linearly to zero, as is shown in Figure 

3.19. 

 

 

 

Figure 3-19:  Atomic chain dynamic rod  

 

The kinetic energy is chosen of the form 

  
 

 
        

 

 
                                                    

where   is the mass,    is the velocity,    is the moment of inertia, and   is the 

rotational velocity, which holds relation of           .    is the spin tensor, 

which is related to rotation tensor   from 
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(a) Deformation of dynamic rod on 1-3 plane at time step 100 

 

(b) Deformation of dynamic rod on 1-3 plane at time step 150 

 

(c) Deformation of dynamic rod on 1-3 plane at time step 200 
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(d) Deformation of dynamic rod on 1-3 plane at time step 250 

 

(e) Deformation of dynamic rod on 1-3 plane at time step 300 

 

(f) Deformation of dynamic rod on 1-3 plane at time step 300 

Figure 3-20: Deformation of dynamic rod on 1-3 plane 
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(a) Deformation of dynamic rod on 1-2 plane at time step 100 

 

(b) Deformation of dynamic rod on 1-2 plane at time step 150 

 

 

(c) Deformation of dynamic rod on 1-2 plane at time step 200 
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(d) Deformation of dynamic rod on 1-2 plane at time step 250 

 

(e) Deformation of dynamic rod on 1-2 plane at time step 300 

 

(f) Deformation of dynamic rod on 1-2 plane at time step 350 

Figure 3-21: Deformation of dynamic rod on 1-2 plane 
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(a) Deformation of dynamic rod in isometric view at time step 100 

 

 

(b) Deformation of dynamic rod in isometric view at time step 150 

 

 

(c) Deformation of dynamic rod in isometric view at time step 200 
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(d) Deformation of dynamic rod in isometric view at time step 250 

 

 

(e) Deformation of dynamic rod in isometric view at time step 300 

 

 

(f) Deformation of dynamic rod in isometric view at time step 350 

Figure 3-22: Deformation of dynamic rod in isometric view 
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With a total of 350 time steps, the configurations of the rod deformation in-plane, 

i.e. on the 1-3 plane, are shown in Figure 3.20 at time step 100, 150, 200, 250, 300 

and 350. Figure 3.21 shows the deformation of the rod in 1-2 plane at time steps 

100, 150, 200, 250, 300 and 350. And Figure 3.22 gives an isometric view of the 

configurations over the same time steps. 

The simulation reflects whipping a soft rope, with force or moment applied in-

plane and out-of-plane. The external loading increases and decreases with time. 

Figure 3.22 demonstrates a three-dimensional image of the process, which 

altogether supports the idea that a 1-D atomic chain model deforming in 3-D 

space could be considered for simulating CNTs under vibration or under similar 

dynamic loading cases.  

 

3.4.4 Simulation of atomic chain in torsion 

We consider an atomic chain with two hinged ends, with the assumption that both 

ends allow rotations, and one end allows horizontal movement. As the model of 

the atomic chain is rather flexible, we can imagine it as a model of a soft thread. 

First, we add a torsion loading at the end of the thread, as shown in Figure 3.23. 

Keeping the deformation after torsion, we apply an instant small disturbance on 

the thread to give it sideways deformation, which is only for the help of the 

simulation, because in an ideal model, the atomic chain will not buckle under pure 

compression. After the disturbance, we push one end of the thread to make it 

bend. The whole loading process is shown in Figure 3.23 and Figure 3.24.  
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Figure 3-23: Atomic chain model in torsion 

 

     

 

    

Figure 3-24: A small disturbance and force to buckle 

 

The simulation result shows, after the instant disturbance, that the thread tends to 

vibrate about a random weak spot with small amplitude, which is shown in Figure 

3.25.  Because it is a one-dimensional model, we cannot see the torsion 

deformation of the thread in the figure.  

 

 

Figure 3-25:  Deformation of atomic chain after small disturbance 

 

Figure 3.26 demonstrates the simulation of thread coiling after the disturbance, 

with the pushing load applied. In reality, if you take a thread, roll it at the ends, 
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then the two ends bend together, it will result in a DNA-like shape, rotating and 

twisting, similar to the deformation shown in Figure 3.26, which is the original 

inspiration of this simulation. 

 

 

Figure 3-26: Simulation of atomic chain coiling up 

 

 

Figure 3-27:  Atomistic simulation of torsion of CNT (Yakobson et al. 1996) 
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Yakobson et al. (1996) used atomistic methods to simulate the torsion of CNTs, 

the deformation pattern changed from a straight spiral to sideways buckling and 

then coils into a loop, as shown in Figure 3.27. The abrupt change is large and 

non-linear but reversible, that is, CNTs have ‘shape memory’. This very feature is 

captured in the simulation of the atomic chain. It can be realized that the atomic 

chain model and CNTs have a lot of elastic properties in common. They are 

flexible in bending, and they can stand extremely large deformations while the 

change is reversible. Although the numerical values of the results obtained from 

atomic chain model may not match those of CNTs, they can still provide 

qualitative information related to simulations of CNTs.  

 

3.4.5 Atomic ring: simulation of cross section of CNT under 

bending  

Kutana and Giapis (2006) presented bending deformations of CNTs by the use of 

molecular dynamics simulations. Figure 3.28 was given as transient deformations 

of the cross section of SWCNTs under bending.  Vodenitcharova and Zhang 

(2004) also simulated an atomic ring, cross sectional view of deformed CNT 

under bending is shown in Figure 3.29. Motivated by these results, an atomic 

chain, in this case, an atomic ring is simulated as a cross section of a CNT under 

bending. When CNT is in bending, the bottom of the tube is under tension and the 

top of the tube is under compression. Thus, it is simulated as a radius-inward 

pressure at the top of the ring and a radius-outwards stretch at the bottom of the 

ring, as shown in Figure 3.30. Figure 3.31 depicts the deformed atomic ring as 

simulated using the present approach.  
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Figure 3-28: Transient deformations of the cross section of SWCNTs under bending (Kutana 

and Giapis, 2006)  

 

Figure 3-29: Deformed atomic rings in simulating cross section of CNT under bending 

(Vodenitcharova and Zhang, 2004) 

 

 

Figure 3-30: Sketch of the strategy of atomic ring in simulation of CNT in bending 
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Figure 3-31: Deformed atomic ring in simulating cross section of SWCNT under bending 

       

The real physical meaning of an atomic chain is still under development. All the 

results given in the sections above are only qualitative results, which, however, 

capture the elastic behaviour of CNTs in qualitative terms. Although the results do 

not provide quantitative properties of CNTs, atomic chain models do establish a 

good preparation for the next step of modelling SWCNTs as Cosserat surface, 

where the quantitative descriptions for elastic properties of SWCNTs will be 

demonstrated in Chapter 4. 
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Chapter 4  

 

Single-walled Carbon Nanotube: 

Cosserat Surface 

 

 

This chapter applies the Cosserat surface theory in modelling and simulating 

carbon nanotubes’ (CNTs) behaviours. CNTs are modelled as unrolled two-

dimensional graphite sheets or as cylindrical shell models. Potential forms are 

applied as described in Section 2.4, where, in this chapter, the in-plane and out-of-

plane contributions are considered for the calculation of stress fields and moment 

fields. The mechanical properties of CNTs, such as Young’s modulus and Poisson 

ratio are predicted as tension and bending models, and the deformations of CNTs 

under bending, compression and torsion loadings are simulated in Section 4.2 to 

Section 4.6.   
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4.1 Carbon nanotube modelling 

In two dimensions the potential for CNTs is in the form of   

                             

      

                                       

with  

              
 

 
                                                 

               
                                              

 

   

 

and  

      

 
 

 
     

       
       

     
           

     

                           

while 

     
 

 
    

       
                                                           

where 

   
            

       

                

    

                           

              

 

   

         
 
                                         

where all the quantities are already defined in Section 2.4. The potential is 

expressed as a function of the three bond lengths and the three bond angles. If an 

atom A and its neighbouring atoms are as shown in Figure 4.1, the potential can 

be expressed as                                , where    ,     and     are 

the deformed bond lengths of A-B, A-C and A-D bonds, and     ,      and      
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are the deformed bond angles between A-B and A-C, between A-B and A-D and 

between A-C and A-D bonds. 

 

Figure 4-1: Atom A and its first and second nearest neighbours 

 

One may notice, there are also second nearest neighbouring atoms            , 

     ) involved in the potential form. To avoid the lengthy expansion of the total 

energy form, here only the formula for atom A and its neighbours is derived. The 

same method is applied to atom B, C and D, which gives the final total potential 

form in terms of    and   (See Appendix C). 

We recall the definition of the curvature tensor 

   
         

         

   
                                          

and the strain tensor 

   
         

         

   
                                          

The components              and     contribute to the extra terms for shear 

energy and spin energy in the total energy formulation. Two principal directions 
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   and     can be found on the reference plane. Let    and    be the components 

of the undeformed vector   along    and    directions, which then rotate to   
  

and   
  by the rotation tensors     and   , as shown in Figure 4.2, which define 

the micro-rotation on the reference plane.  

 

 

 

 
Figure 4-2: Micro-rotation on the reference plane 

 

The principal curvatures    and     can be obtained from the equation 

    
        

        
                                             

Then, we have 

      
                                      

 
                    

The principal directions can be obtained from 

 
         

         
  

    

    
   

 
 
                                           

They are normalized by 

    
      

                                                                

resulting in 
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Thus, the principal directions    and and     are obtained as 

    
    

    
  

 
 
 
 
 

 
 
 
 

 

    
      

   
 
 

 

    
      

   
 
 

 
 
 
 
 

 
 
 
 

 

     
     

     
  

 
 
 
 
 

 
 
 
 

 

    
       

   
 
 

 

    
       

   
 
 

 
 
 
 
 

 
 
 
 

                                

The lattice vector    is the vector that the undeformed lattice vector   rotates to 

after applying the micro-rotation tensor, which is given by 

     
    

                                                     

where 

            

                                                                  

Finally  
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The final deformed lattice vector    is obtained after rotating by   then after 

stretching by  , which is expressed as 

                                                          

The vector length after stretch is  

                                                             

The strain energy density is the total potential of the atom over the area 

          
                    

  
                                    

where              
  ,   is the undeformed bond length, and  

                                

                                

                                                                   

Considering the shift vector 

         
     

         
     

         
                                                         

Since the length doesn’t change during the rotation, the deformed bond length 

only depends on the strain tensor    
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where    
 ,    

  and    
  are the undeformed bond vectors between A-B, A-C and 

A-D atoms.  

On the other hand, the bond angles are related to the curvature tensor    

               
                    

         

               
                    

         

The bond angle between A-B and A-C bond can be obtained from 

           
       

      
 

       
           

                   
                         

                   
         

     
             

         
             

    

 

Similarly, we can get the other two bond angles from 

               
                    

         

           
       

      
 

           
       

      
                                               

Define the bond lengths    ,    ,    as    (i=1,2,3) and the bond angles     , 

    ,     as    (i=1,2,3), then the potential can be expressed in terms of     

and  . For simplicity, we write   instead of    to present the strain energy 

density for the rest of this section. Then the internal degree of freedom   can be 

determined by minimizing the strain energy density          with respect to   

  

  
                                                            

  

  
   

  

   

   

  
 

  

   

   

  
 

 

   

                                         

Strain energy density W again can be written as a function of the strain tensor   

and the curvature tensor   
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The force tensor can be obtained from 

  
  

  
 

  

  
 

  

  

  

  
 

  

  
                                      

where 

  

    
   

  

   

   

    
 

  

   

   

    
                                  

 

   

 

The couple tensor can be calculated from 

  
  

  
 

  

  
 

  

  

  

  
 

  

  
                                    

where 

  

    
   

  

   

   

    
 

  

   

   

    
 

 

   

  
  

   

   

    

 

   

                

The tensor-like stretch modulus reads 

  
  

  
 

  

  
 

  

  
 
  

  
 

   

    
 

   

    
 
  

  
                 

with the relation of  

        

  
   

one can derive 

        

  
 

        

  
 
  

  
   

  

  
   

   

    
 

  

 
   

    
 

Then   is obtained as 
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where 

   

        
    

   

      

   

    

   

    
 

   

      

   

    

   

    
 

  

   

    

        

 

   

 

   

 
   

      

   

    

   

    
 

   

      

   

    

   

    
 

  

   

    

        
  

   

       
    

   

      

   

   

   

    
 

   

      

   

   

   

    
 

  

   

    

       

 

   

 

   

 
   

      

   

   

   

    
 

   

      

   

   

   

    
 

  

   

    

       
  

   

      
    

   

      

   

   

   

   
 

   

      

   

   

   

   
 

  

   

    

      

 

   

 

   

 
   

      

   

   

   

   
 

   

      

   

   

   

   
 

  

   

    

      
  

   

       
    

   

      

   

    

   

   
 

   

      

   

    

   

   
 

  

   

    

       

 

   

 

   

 
   

      

   

    

   

   
 

   

      

   

    

   

   
 

  

   

    

       
  

The tensor-like bending modulus reads  

  
  

  
 

  

  
 

  

  
 
  

  
 

   

    
 

   

    
 
  

  
                

Similarly from 
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where 
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In the non-linear calculation, the minimizing of the strain energy density 

         with respect to   carries out by an updating procedure where the 

change of   is calculated by 

   

    
    

  

  
          

   

    
 

  
  

  
                              

By inserting   into the potential, the stress fields and the modulus fields can be 

calculated via a finite element method presented in Section 2.5.  

 

4.2 Graphite sheet: Young’s modulus and Poisson 

ratio 

Ijimia (1991) discovered CNTs and predicted SWCNTs’ Young’s modulus to be 

about 1TPa. The following years much experimental research had been carried out 

to confirm CNTs’ Young’s modulus. Tension tests, bending methods, thermal 

vibration tests had been applied, and the experimental results of Young’s modulus 

for SWCNTs ranged from 0.81TPa to 1.28TPa (Wong et al. 1997, Krishnan et al. 

1998, Salvatat et al. 1999). Meanwhile, some researchers concentrated on 

theoretical studies of the elastic modulus of CNTs. Various theories and 
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methodologies had been presented, and the reported numerical values for Young’s 

modulus of SWCNTs ranged from 0.5TPa to 6TPa, as shown in Table 4.1. The 

experimental data demonstrated a large scatter already due to the high frequencies 

of errors from machines and manual processing at the nano-scale. Compared with 

a range of 0.47TPa from experimental results, more surprisingly the theoretical 

results have a range of scatter up to 5.5TPa. Yakobson (1996) first addressed this 

ridiculous large scatter of the reported results for CNTs’ Young’s modulus, which 

is now known as ‘Yakobson’s paradox’. Huang et al. (2006) discussed this issue 

and identified the cause of ‘Yakobson’s paradox’ as being the ‘ill-defined’ CNTs’ 

wall thickness from various theories and methodologies and also different types of 

loading situations. 

Theoretically, the tension rigidity, or just ‘  ’, should be good enough to present 

the elastic tension properties of CNTs, however, to compare with other authors’ 

results, here we apply the linear classical continuum mechanics assumption of 

shell theory, which leads us to solve for Young’s modulus  , Poisson’s ratio  , 

and a case by case defined wall thickness  . The tension rigidity is the 11-11 

component of the stretch modulus  

      
  

    
                                                          

Poisson’s ratio is captured in the 11-22 component of the stretch modulus-like 

tensor  

       
  

    
                                                        

and the bending rigidity is the dominating component in the bending modulus 

defined as     
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From (4.38) to (4.40), Poisson’s ratio can be calculated by 

  
     

     
                                                            

The defined tube wall thickness is given by 

     
  

     
                                                            

and Young’s modulus is expressed as 

       

    

 
                                                        

In this section, we consider a graphite sheet with the reference configuration being 

a flat surface lying in the 1-2 plane. Two methods are considered to calculate 

Young’s modulus. One is via tension simulation by stretching the graphite sheet, 

which provides the results of Poisson’s ratio   and tension rigidity   , while the 

other method is by bending a sheet fixed at one end providing a cantilever which 

has bending rigidity involved, and so provides the virtual wall thickness to finally 

compute Young’s modulus.  

Figure 4.3 shows a sketch of the tension method. A graphite sheet under uni-axial 

loading is designed. Due to the geometric symmetry, we take one quarter of the 

sheet, and set the boundary as shown in Figure 4.3, which allows stretching in 

direction 2 and breathing in direction 1. b is the width of the sheet, L is the length, 

and p is the uniform stretch loading in direction 2 and u is the displacement in 

axial direction. A zigzag SWCNT is studied, and L is chosen to be 8nm, while b is 

changing from 1nm to 8nm.  
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Figure 4-3: Graphite sheet under uniform stretch loading 

 

Young’s modulus E can be also calculated with the stress-strain (  –  ) relation as   

  
 

 
                                                                  

The p-  relation is given in Figure 4.4 for b=1, 2 and 3nm, where the vertical axis 

p is defined by units of force per length and the horizontal axis is the change in 

length. The p-  relation is non-linear, which means the modulus-like tensor and 

further the tension rigidity both change when the loading increases. As Figure 4.4 

shows, there is a trend that the tension rigidity decreases with an increasing sheet 

width, but the beginning ratios for all cases have only small differences.  The 

values, i.e. the tension rigidity, change from 240 N/m to 800 N/m. If the initial 

value is chosen to be the tension rigidity, which provides Eh= 240 N/m 

(0.240TPa.nm), the result is similar to the values obtained from Arroyo and 

Belytschko (2004), Guo et al. (2006), and Wang et al. (2006), where results of 

SWCNTs’ Young’s modulus up to 0.69TPa with wall thickness of 0.334 or 

0.34nm, i.e. Eh=0.230 or 0.235TPa.nm were presented.  
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If we do not consider the initial value to calculate Young’s modulus, some value 

in the non-linear p-  relation curve has to be found to define it. For simplicity, one 

can select a changing point as shown in Figure 4.4, and calculate the proportional 

ratio as well as the value of Eh. Alternatively, we select the changing point and 

define a selected area, e.g. 50 points around the selected point, and refer to the 

values of        and      , and then calculate the average value of Eh and   . The 

latter method is chosen here. From the selected point and selected area, we find 

the stretch modulus-like tensor components, and then from the relation of tension 

rigidity and shear component, the results have been computed with an average 

Eh=320.5N/m and an average Poisson ratio of 0.395. If the wall thickness is 

chosen to be 0.34nm, which is the effective SWCNT wall thickness provided by 

most of other authors, then Young’s modulus of graphite sheet attains the value of 

0.943TPa, which is within the range of experimental results.  

 

Figure 4-4: Strain and stretch loading relationship from tension method 
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The bending method is sketched in Figure 4.5. A cantilever graphite sheet is under 

uniform loading in the third direction. A zigzag SWCNT with L = 8nm, while b is 

changing from 1nm to 8nm, is investigated. The loading and displacement 

relationship is also non-linear, so we use the same method to select the point and 

area and find the dominating bending modulus-like tensor component from the 

calculation. With the bending method, and from the relation of the bending 

rigidity and tension rigidity, an average Young’s modulus of graphite sheet of 

5.526TPa is calculated, with a corresponding average wall thickness of 0.058nm. 

A comparison of numerical results for Young’s modulus, wall thickness and 

tension rigidity of SWCNTs or graphite sheets with other authors is presented in 

Table 4.1. 

 

Figure 4-5: Graphite sheet under bending with uniform loading at the free end 

 

 

It shows little differences of Young’s modulus and Possion ratio with respect to 

the sheet width and sheet aspect ratio b/L in this graphite sheet computation.  
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Natsuki et al. (2004) calculated Poisson ratio, they presented results varied from 

0.27 to 0.33 for zigzag SWCNTs. Avila and Lacerda (2008) reported an average 

Poisson value of SWCNTs ranging from 0.15 to 0.29.  Arroyo and Belytschko 

(2004) applied expentential Cauchy-Born rule by using the first generation 

Tersoff-Brenner potential and gave poisson ratio to be 0.412. Guo et al. (2006) 

used higher order Cauchy-Born rule by using the same interatomic potential form 

as Arroyo and Belytschko (2004), and they obtained Poisson ratio to be 0.429. The 

Poisson ratio obtained from second generation Brenner potential, which is closer 

to the ones reported from atomistic methods, is observed to be lower than the one 

computed from first generation potentials which proves that the second generation 

Brenner potential is more adequate to describe the internal structure of CNTs.  
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Table 4-1:  Comparison of Young’s modulus and tension rigidity 

 

Authors 

Wall 

thickness 

h (nm) 

Young’s 

modulus 

E (TPa) 

Tension 

rigidity 

Eh (N/m) 

Yakobson et al. (1996) 0.066 5.5 363.0 

Hernandez et al. (1998) 0.34 1.24 421.6 

Zhou et al. (2000) 0.074 5.1 377.4 

Tu and Ou-yang (2002) 0.075 4.7 352.5 

Gao and Li (2003) 0.066 5.5 363.0 

Jin and Yuan (2003) 0.34 1.238 420.9 

Li and Chou (2003) 0.34 1.01 343.4 

Pantano et al. (2004) 0.075 4.84 363.0 

Tserpes and Papanikos (2005) 0.147 2.395 352.1 

Guo et al. (2006) 0.34 0.69 234.6 

Wang et al. 1 (2006) 0.34 0.69 234.6 

Meo and Rossi (2006) 0.34 0.945 321.3 

Wang et al. 2 (2006) 0.334 1.01 337.3 

Avila and Lacerda (2008) 0.34 1.005 341.7 

Lei et al. (2011) 0.34 1.04 353.6 

Parvaneh and Shariati (2011) 0.34 1.170 397.8 

Present 0.058 5.526 320.5 
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4.3 Cylindrical shell model: tension 

Cylindrical shell model under stretch is designed as shown in Figure 4.6. Uniform 

stretching load is applied at both ends of the cylindrical shell. The length of the 

tube is fixed to L=8nm, the load at both ends is of a constant value of F=16nN, 

while the uniform load applied is p=16nN/b, with b being the width of sheet and 

    , where D is the diameter of the tube, and u is the displacement. Since the 

displacement and force curve is non-linear, it is again flexible to choose which 

tangent value to go for and we decide to use a different method from Section 4.2. 

So we choose the alternative straight forward method, in this case, to calculate 

SWCNT’s Young’s modulus directly from the displacement u, with the relation 

  
 

 
          

 

  
 
 

 
 

  

    
                                       

 

 

Figure 4-6: Sketch of cylindrical shell model under tension 
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First, an armchair SWCNT is studied and tube diameters are chosen from 

0.407nm increasing to 4.746nm, i.e. from (3,3) to (35,35) armchair SWCNTs. In 

order to compare the results reasonably with other authors’ results, the effective 

wall thickness is chosen to be 0.34 nm as they did. Part of the results of 

deformations of SWCNT under stretching are shown in Figure 4.7. Results of 

values are listed in Table 4.2. The dependence of Young’s modulus of armchair 

SWCNT on tube diameter is shown in Figure 4.8. 

 

 

(a) Deformation of cylindrical shell under tension (D=0.542nm; L=8nm) 

 

 

(b) Deformation of cylindrical shell under tension (D=0.949nm; L=8nm) 
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(c) Deformation of cylindrical shell under tension (D=1.898nm; L=8nm) 

 

(d) Deformation of cylindrical shell under tension (D=3.254nm; L=8nm) 

 

 

(e) Deformation of cylindrical shell under tension (D=4.339nm; L=8nm) 

Figure 4-7: Deformation of cylindrical shell model under tension 
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Table 4-2: Dependence of Young’s modulus on tube diameter for armchair 

SWCNTs 

Diameter D (nm) 
Displacement u 

(nm) 

Tension rigidity 

Eh (N/m) 

Young’s modulus 

(TPa) 

0.542 0.226237 332.0 0.977 

1.085 0.134154 280.0 0.823 

1.492 0.103227 264.6 0.778 

1.898 0.083827 256.0 0.753 

2.305 0.070461 250.8 0.738 

2.848 0.057684 248.0 0.730 

3.390 0.048704 246.8 0.726 

3.797 0.043567 246.3 0.724 

4.746 0.035005 245.2 0.721 

 

 

Figure 4-8: Dependence of Young’s modulus on tube diameter for armchair SWCNTs 
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The same method is applied to zigzag SWCNTs with length L=8nm, and F= 

16nN. Accordingly, (6,0) to (60,0) zigzag SWCNTs are studied. Part of the results 

are listed in Table 4.3. The resulting values of Young’s modulus for zigzag 

SWCNTs as well as for armchair SWCNTs are converging at 0.72TPa. Parvaneh 

and Shariati (2011) applied atomistic modelling with the help of the software 

ABAQUS, produced results for Young’s modulus of zigzag SWCNTs under axial 

tension and compared it with two other authors, as shown in Figure 4.10. The 

results computed in this research, as shown in Figure 4.9, are in good agreement 

with Natsuki et al. (2003) when the tube diameter is less than 1nm, and the results 

are in good agreement with Shen and Li (2004) when tube diameter is larger than 

1nm. 

Table 4-3: Dependence of Young’s modulus on tube diameter for zigzag SWCNTs 

Diameter D (nm) Displacement u 

(nm) 

Tension rigidity 

Eh (N/m) 

Young’s modulus 

(TPa) 

0.470 0.212707 407.8 1.199 

0.783 0.157699 330.0 0.971 

1.252 0.113149 287.5 0.846 

1.722 0.088466 267.4 0.786 

2.192 0.072412 256.7 0.755 

2.662 0.060748 252.0 0.741 

3.131 0.052113 249.7 0.734 

3.601 0.045597 248.1 0.730 

4.697 0.035132 246.9 0.726 
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Figure 4-9: Dependence of Young’s modulus on tube diameter for zigzag SWCNTs 

 

Figure 4-10: Dependence of Young’s modulus on tube diameter for zigzag SWCNTs 

(Parvaneh and Shariati, 2011) 

 

Lei et al. (2011) presented a molecular mechanics model to predict Young’s 

modulus of SWCNTs. They obtained the curve of results with the same trend, as 

shown in Figure 4.12, although they arrived a minimum value of Young’s 

modulus around 1.04TPa, and showed that Young’s modulus of zigzag SWCNTs 
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is slightly larger than the one of armchair SWCNTs. We obtained comparable 

results, and the values become very close with the tube diameter increasing.  

 
 

Figure 4-11: Comparison of Young’s modulus for armchair and zigzag SWCNTs 

 

Figure 4-12: Comparison of Young’s modulus for armchair and zigzag SWCNTs (Lei et al. 

2011) 
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4.4 Cylindrical shell model: bending 

4.4.1 One end fixed bending 

First a cylindrical shell under bending is considered with one end fixed and 

external force applied at the free end, as shown in Figure 4.13. An armchair 

SWCNT is modelled, with length L=16nm and a diameter changing from 

0.407nm to 4.746nm. The deformation after bending is as shown in Figure 4.14.  

 

 

Figure 4-13: Sketch of one end fixed cylindrical shell model under bending 

 

Figure 4-14: Deformation of one end fixed cylindrical shell under bending (D=4.339nm; 

L=16nm) 
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Within small deformations, from classical continuum mechanics beam theory, the 

deflection at the free end has a relation with the external force as 

  
   

   
        

   

  
                                               

  is the cross section moment of inertia which is calculated as 

  
 

  
    

    
                                                  

with    and    as the outer and inner diameters of the cylindrical cross section, as 

shown in Figure 4.13. If h is defined as the thickness of the shell, then      

  and       , where   is the diameter of the mid-surface of the cylindrical 

shell. Hence 

  
 

 
                                                       

which means that with the bending rigidity EI obtained from this model and the 

tension rigidity Eh computed from a cylindrical shell stretching model, we can 

compute the shell thickness as we did in the graphite sheet model.  

Results of bending rigidity EI against diameter are shown in Figure 4.15. Young’s 

modulus, calculated for h=0.34nm, is shown in Figure 4.16. For models with 

diameter under 1nm, we obtain extremely high values of Young’s modulus, but 

with the diameter increasing to more than 2nm, it tends to be steady around 0.72 

TPa, similar to the results obtained from the cylindrical shell tension model, only 

slightly larger. Young’s modulus has been calculated for h=0.058nm, as well as 

for h=0.34nm and for h=0.15nm. The results computed from cylindrical shell 

tension model, and from this bending model with different tube thicknesses are 

compared in Figure 4.17. For three sets of different diameters separately, they all 

converge to the same value eventually, for h=0.34nm E=0.72TPa, for h=0.15nm 
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E=1.62TPa, and for h=0.058nm E=4.26TPa. By observing the results, it is 

obvious that for predicting Young’s modulus, tension models give much more 

stable results compared to bending models.  

 

 
 
Figure 4-15: Relationship of bending rigidity against tube diameter (one end fixed bending) 

 

 

Figure 4-16: Relationship of Young’s modulus against tube diameter for cylindrical shell 

mode under bending (one end fixed bending) 
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Figure 4-17: Comparison of Young’s modulus for cylindrical shell model from tension 

method and bending method with different wall thickness (h) 

 

Gao and Li (2003) applied a simple Bernoulli-Euler beam theory and used 

molecular potential energy. By considering bending for a graphite sheet treated as 

a unrolled SWCNT, they derived similar curve for Young’s modulus as function 

of the wall thickness as shown in Figure 4.18. 

 

 

Figure 4-18: Young’s modulus varying with SWCNT wall thickness (2T) (Gao and Li, 2003) 
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4.4.2 Two end fixed bending 

A second example of cylindrical shell model under bending is designed with both 

ends fixed and an external force applied in the middle, as shown in Figure 4.19. 

An armchair SWCNT with length L=16nm and a diameter changing from 

0.407nm to 4.746nm, is studied. Deformation after bending is shown in Figure 

4.20.  

 

                   

Figure 4-19: Sketch of two end fixed cylindrical shell model under bending 

 

Figure 4-20: Deformation of two end fixed cylindrical shell under bending (D=3.390nm; 

L=16nm) 
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From classical continuum beam theory, the deflection in the middle of the beam 

has a relation with the external force as 

  
   

     
        

   

    
                                               

The results of bending rigidity EI against diameter as well as comparisons with 

results from the case of one end fixed cylindrical shell are shown in Figure 4.21. 

Results of Young’s modulus calculated for h=0.34nm and comparisons with 

results from cylindrical shell tension method and cylindrical shell with one end 

fixed model are shown in Figure 4.22.  

As for Young’s modulus, two end fixed model also presents a super large value 

for those sets with tube diameter under 1.5nm, which might be caused by the 

effects of the large ratio between tube wall thickness and the small tube diameter 

in application of shell theory in bending situation. These large values drop down 

fast with tube diameter increasing. Not only with this drawback, the model does 

not produce Young’s modulus converging at 0.72TPa, the value keeps going 

down towards zero with a large tube diameter. This might be caused by the local 

bending of SWCNT structure. As demonstrated by Parvaneh and Shariati (2011) 

with atomistic modelling, for two end fixed SWCNTs, there was global bending 

which happened with a large aspect ratio (L/D), and there was local bending that 

happened with a small aspect ratio, as shown in Figure 4.27. With local bending 

of SWCNT, the bending happens at the surface of the tube locally and does not 

affect properties for the rest of the tube, therefore the elastic properties of 

SWCNTs cannot be calculated with equations from classical continuum beam 

theory anymore.   
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Figure 4-21: Relationship of bending rigidity against tube diameter and comparison (two end 

fixed bending) 

 

 

Figure 4-22:  Relationship of Young’s modulus against tube diameter for cylindrical shell 

mode under bending and comparison (two end fixed bending) 
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4.4.3 Simply supported bending 

This cylindrical shell model is designed to be simply supported and with external 

force applied in the middle, as shown in Figure 4.23. An armchair SWCNT with 

length L=16nm and a diameter changing from 0.407nm to 4.746nm, is studied. 

Deformation after bending is shown in Figure 4.24.  

 

 

 

Figure 4-23: Sketch of simply supported cylindrical shell model under bending 

 

Figure 4-24: Deformation of two end fixed cylindrical shell under bending (D=1.898nm; 

L=16nm) 
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Under small deformation, classical continuum beam theory gives the deflection in 

the middle of the beam related to the external force as 

  
   

    
        

   

   
                                               

Results from the bending rigidity EI against diameter and comparisons with the 

other two bending models are shown in Figure 4.25. The pattern of bending 

rigidity from simply supported cylindrical shell model is similarly parallel to the 

pattern of the two fixed end model. A value of EI for the tension model is also 

calculated, with Young’s modulus obtained from the tension model and the cross 

sectional moment of inertia for tube diameter h=0.34nm. The values are slightly 

smaller than the ones obtained from the one end fixed bending model but they 

coincide after 3nm.  

Young’s modulus is also computed for simply supported bending model with wall 

thickness h=0.34nm and comparisons with the other two bending models along 

with cylindrical shell tension model is shown in Figure 4.26. The result for 

Young’s modulus is that it is smaller in the case of simply supported cylindrical 

shell model than in the case of two end fixed bending model. The values drop 

down fast and tend towards zero as those given by the two end fixed bending 

model. At diameter between 2.2 nm and 3.4nm, i.e. aspect ratio between 4.7 and 

7.3, all four sets of models can provide reasonable results. When the diameter is 

smaller than 1nm, three sets of bending models produce unreasonable large values 

of Young’s modulus, which might be because that the tube radius is similar to the 

tube thickness, then Cosserat surface which models SWCNT becomes a thick 

shell, or even an almost solid beam, therefore the result of calculation from 
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Cosseart surface shell theory is no longer valid anymore in the bending situation. 

When the tube diameter is larger than 3nm, the tension model and the one end 

fixed bending model provide similar Young’s modulus of 0.72TPa, whereas the 

two end fixed and simply supported cylindrical shell model produce results 

towards zero, which is not reasonable, since the local bending mode as mentioned 

before would be involved and the SWCNT structure at the surface might have 

changed, thus the equations from classical elastic beam theory can no more be 

applied for computations. 

 

 

Figure 4-25: Relationship of bending rigidity against tube diameter and comparison 

(two end fixed bending) 
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Figure 4-26:  Relationship of Young’s modulus against tube diameter for cylindrical shell 

mode under bending and comparison (two end fixed bending) 

 

From all the results shown above, a conclusion is drawn with respect to the 

application of shell model for SWCNT in bending, that in case of prediction of 

Young’s modulus, direct tension model can provide reasonable results, and one 

end fixed bending model can produce similar results with a large tube diameter, 

whereas two end fixed and simply supported bending models only can be trusted 

within certain range. All three sets of bending models lead to unreasonable large 

values of Young’s modulus when the tube diameter is smaller than 1nm, which 

indicates that bending models in calculation of Young’s modulus have to be 

applied carefully, and a serious consideration should be taken before using 

equations from classical beam theory or shell theory because some of the 
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diameter are of the same order, or when the inner structure of SWCNT changes 

during the calculation.  

Parvaneh and Shariati (2011) adopted atomistic modelling and presented four 

type of bending deformations with, (a) global bending of one end fixed SWCNT, 

(b) local bending of two end fixed SWCNT, (c) global bending of two end fixed 

SWCNT, and (d) global bending of simply supported SWCNT. We simulate the 

same four types of bending modes, as shown in Figure 4.28. 

 

 

 

Figure 4-27:  Global bending and local bending of SWCNTs (Parvaneh and Shariati, 2011) 

 

 

Figure 4-28:  Different bending modes of SWCNTs 
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4.4.4 Two end fixed bending (under uniform loading) 

Yang and E (2006) suggested an example of an armchair SWCNT, where a force 

was applied to each atom of the tube in vertical direction. The configurations of 

the deflected SWCNT are shown in Figure 4.29. And the maximum deflections of 

SWCNT calculated by molecular dynamics (MD), Euler-Bernoulli beam theory 

(linear) and local Cauchy-Born rule (LBC) are shown in Figure 4.31. 

 

 

Figure 4-29: Configurations of deflected armchair SWCNT (Yang and E, 2006) 

 

 

Figure 4-30: Configurations of deflected armchair SWCNT under uniform loading 
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Similar calculation is carried out in this research for a (9,9) armchair SWCNT 

with tube length L=24nm. The configurations of deflected SWCNT are shown in 

Figure 4.30, and the relationship between maximum deflection and external load 

is shown in Figure 4.31. Both of the figures are in good agreement with results 

from Yang and E (2006). They pointed out that, with large deflection, continuum 

theory will no longer hold because two ends of the tube will buckle as shown for 

the last tube in Figure 4.29 and Figure 4.30. 

        

Figure 4-31: Relationship of maximum deflection and external load (Yang and E, 2006) 

 

 

Figure 4-32: Relationship of maximum deflection and external load 
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4.5 Cylindrical shell model: buckling 

For one end fixed cylindrical shell, two types of buckling modes have been 

observed in this research, as shown in Figure 4.33. Yakobson et al. (1996) adopted 

molecular dynamics method to simulate buckling of SWCNTs under axial 

compression, and provided the simulations as shown in Figure 4.34. Our 

cylindrical shell in this research is able to capture the first two buckling patterns.  

 

 

 

Figure 4-33: Two buckling patterns of SWCNTs under axial compression 

 

Figure 4-34: Simulations of buckling patterns of SWCNTs under axial compression 

(Yakobson et al. 1996) 
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For a cylindrical shell with applied compression at both ends, as shown in Figure 

4.35, the buckling deformation is shown in Figure 4.36.  

 

 

Figure 4-35: Sketch of cylindrical shell model under stretching 

 

Figure 4-36: Deformation of cylindrical shell under compression (D=4.266nm; L=8nm) 

 

Zigzag SWCNTs are studied, with the tube length fixed to L=16nm, and the tube 

diameter ranging from 0.939nm to 3.757nm. The critical bucking strain is 

captured via a force-strain relationship as shown in Figure 4.37. The same method 

is applied to capture the critical strains for SWCNTs with length L=16nm as listed 

in Table 4.4 and plotted out in Figure 4.38. It is shown that the critical buckling 

strain decreases when the tube diameter increases for a fixed length, but the 

differences are not significant.  
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(a) Force-strain relationship of cylindrical shell under compression (D=3.288nm; 

L=16nm) 

 

(b) Force-strain relationship of cylindrical shell under compression (D=3.757nm; 

L=16nm) 

Figure 4-37: Force-strain relationship of cylindrical shell under compression with various 

tube diameters 

 

Table 4-4:  Critical strains for zigzag SWCNTs with different tube diameters 

Diameter (nm) 0.939 1.409 1.879 2.348 2.818 3.288 3.757 

Critical strain 0.0417 0.0334 0.0286 0.0259 0.0231 0.0202 0.0174 
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Figure 4-38: Critical strains of zigzag SWCNTs under compression with fixed length 

 

Variations of critical strain with respect to tube diameter are compared in Figure 

4.39 with results from three other authors all of which gained from atomistic 

simulations. While Wang et al. (2005) fixed the tube length to 10.1 nm, Zhou et 

al. (2007) fixed the tube length to 11.0 nm. Their specimens were also studied 

with different chiralities. Differences in tube lengths and chiralities may be the 

cause of the differences in critical strains.   

 

 

Figure 4-39: Comparison of variation of critical strains with respect to tube diameter 
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Second sets of zigzag SWCNTs are studied with respect to the aspect ratio L/D, 

by fixing the tube diameter to D=1.409nm with the tube length ranging from 8nm 

to 40nm. The critical bucking strain is captured from the force strain relationship 

as shown in Figure 4.40. It is shown that the curve of the force-strain relationship 

here varies from what is shown in Figure 4.36, where the aspect ratio is relatively 

small. Apparently after a certain aspect ratio, the force-strain relationship 

decreases beyond the critical strain, i.e. the tube is less stiff. Critical strains for 

SWCNTs with diameter D=1.409nm are listed in Table 4.5. 

 

 

(a) Force-strain relationship of cylindrical shell under compression (D=1.409nm; 

L=32nm) 

 

(b) Force-strain relationship of cylindrical shell under compression (D=1.409nm; 

L=40nm) 

Figure 4-40: Force-strain relationship of cylindrical shell under compression with various 

tube lengths 
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Table 4-5:  Critical strains for zigzag SWCNTs with different aspect ratio 

Tube length (nm) 8 16 24 32 40 

Aspect ratio 5.68 11.36 17.03 22.71 28.39 

Critical strain 0.0556 0.0334 0.0220 0.0130 0.0072 

 

Batra and Sears (2007) applied molecular mechanics to predict critical buckling 

strains for zigzag SWCNTs with tube diameter D=1.19nm, and the tube lengths 

changing from 10.12 nm to 24.51nm. Zhang et al. (2009) assessed nonlocal beam 

and shell models in predicting buckling strains of SWCNTs with tube diameter 

D=0.94nm, and tube lengths changing from 2.8 nm to 30nm. The results for 

critical buckling strains with respect to aspect ratios of SWCNTs together with 

comparisons with results from two authors mentioned above are presented in 

Figure 4.41. The results obtained here are in good agreements with the literature, 

and it is shown that the critical buckling strain decreases when the tube length 

increases with a fixed tube diameter for SWCNTs.  

 

 

Figure 4-41: Comparison of variation of critical strains with respect to aspect ratio 
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It is observed that when the tube aspect ratio becomes larger, modelled SWCNT 

buckles sideways under axial compression rather than the buckling pattern in 

Figure 4.36. Buckling deformations for slender SWCNTs are simulated as shown 

in Figure 4.42, which shows the bending deformations. Liew et al. (2006) 

performed molecular dynamics approach and simulated the deformations for 

SWCNT bundle under axial compression as shown in Figure 4.43, as well as 

proved in this research that buckling under compression should present bending 

deformations for slender SWCNTs. 

 

 

Figure 4-42: Deformation of cylindrical shell under compression (D=1.409nm; L=40nm) 

 

 

Figure 4-43: Bending deformations of SWCNT bundle under axial compression (Liew et al. 

2006) 
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Zhang et al. (2009) applied molecular dynamics (MD) and simulated three types 

of buckling modes depending on the aspect ratios of SWCNTs, as shown in 

Figure 4.44 (a). In this research three similar results are obtained with similar 

aspect ratios for SWCNTs, as shown in Figure 4.44 (b). The results present a 

shell-like buckling mode when the aspect ratio L/D is small, a beam-like bending 

buckling mode when aspect ratio is large, and a shell-beam mixed buckling mode 

when the aspect ratios are in between certain range. Our results are in good 

agreements with results from Zhang et al. (2009). 

 

Figure 4-44: Three types of buckling modes of SWCNTs under axial compression depending 

on the aspect ratios (a) results from Zhang et al. (2009)  (b) present results 
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4.6 Cylindrical shell model: twisting 

A cylindrical shell under torsion with a zigzag SWCNT and external torques at 

both ends, as shown in Figure 4.45, is examined next. Twisting deformations with 

different twisting angles are shown in Figure 4.46.  The relationship between the 

external torque and the twisting angle is drawn in Figure 4.47. 

 

 

Figure 4-45: Sketch of cylindrical shell model under torsion 

 

Figure 4-46: Deformations of cylindrical shell model under torsion 
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Figure 4-47: Relationship of external torque and twisting angle 

 

As is shown in Figure 4.47, a linear relationship is obtained between the external 

torque moment and the twisting angle when the twisting angle is small, it becomes 

a non-linear curve after about 100°.  

 

 

Figure 4-48: (a) atomistic simulation and (b) local Chauchy-Born rule result of SWCNT 

under twisting (Yang and E, 2006) (c) present result 
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Yang and E (2006) applied local Cauchy-Born rule to simulate SWCNT under 

twisting and compared the result with one from atomistic simulation as shown in 

Figure 4.48 (a) and (b). With the same dimension and twisting angle studied, 

which is a (9,9) armchair SWCNT with tube length L=5nm, and twisting angle 

 =50°, our result from the Cosserat surface shell theory is shown in Figure 4.48 

(c), where it is shown that even with coarse mesh of finite elements, Cosserat 

surface-based shell theory can produce reasonable results.  

However, since van der Waals forces have not been included in the potential form, 

deformations of modelled SWCNT under torsion beyond 148° could not be 

captured, because the up and bottom surfaces are twisting towards each other, in 

which case, the atoms are close enough and their interactions contribute to the 

total energy that cannot be neglected, but they are not neighbours at the reference 

configuration whose interactions are not described by bonded energies. Thus, for 

large twisting angle deformations, as well as for severe buckling deformations and 

severe bending deformations, when two surfaces deform close to each other, van 

der Waals forces have to be considered in the potential.  
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Chapter 5  

 

Conclusions and Discussions 

 

 

5.1 Summary and conclusions 

This research has presented a continuum and atomistic mixing approach to study 

the mechanical properties of SWCNTs. Because of the hollow cylindrical shell 

structure of SWCNT, it can be modelled as a thin shell, thus Cosserat surface as a 

shell model is applied in this research to compute and simulate the mechanical 

properties of SWCNTs, for the independent rotation tensor can describe the 

rotation field at a micro-level, which as well accounts for a hypothetical curvature 

of the deformed surface going beyond the standard Cauchy-Born rule. 

Two sets of models are built in this research. As a tool, an atomic chain, which 

consists of a series of atoms in a chain, is modelled as a Cosserat curve and 

studied through a one-dimensional reduced Cosserat curve theory. For SWCNT, 
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modelled as a Cosserat surface, the mechanical properties have been studied. 

Cauchy-Born rule is applied to link the deformation of the lattice vector at an 

atomistic level to the tangent space of the deformation of the system at a 

continuum level. 

By incorporating the potential form, the stress field and modulus field can be 

derived as the first and second derivatives of the potential over the displacement 

and rotation fields. For the atomic chain model, interatomic potentials are defined 

by a force field, which takes into account bond stretching, bond angle bending and 

bond torsion energies. For SWCNT, sophisticated second generation of Brenner 

potential is chosen, which contains bond stretching and bond angles as well. 

Implementation of the discretization in a finite element approach is accomplished. 

The stress fields and the modulus fields are calculated via an iteration procedure 

where the displacement and rotation fields are updated. The rotation field is path-

independent updated.  

The deformation of an atomic chain under dynamic forces is simulated. 

Simulations of the atomic chain model in torsion is also presented, which shows a 

vibration mode after vertical instant disturbance, and coiling up mode after 

horizontal push. The result matches atomistic simulation of CNTs under torsion 

by Yakobson et al. (1996). Simulation of cross section of SWCNTs under bending 

is carried on by an atomic ring model. The simulation matches the results for the 

deformations of a cross section of SWCNTs under bending from Vodenitcharova 

and Zhang (2004) and Kutana and Giapis (2006).  
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It is shown that the atomic chain model can be used to simulate some behaviour of 

SWCNTs, but only provides qualitative results so far. In order to apply atomic 

chain model in the use of studying mechanical properties of SWCNTs, the relation 

between the structure of the atomic chain and the structure of SWCNT need to be 

studied and built numerically, also the potential forms and parameters need to be 

modified to provide quantitatively accurate results. Despite of the fact that a lot of 

improvements need to be made for atomic chain models to have physical 

meanings, 1-D atomic chain as a Cosserat curve model presents a fine preparation 

for further use of Cosserat surface to model and simulate SWCNTs.  

For the study of SWCNTs, configuration formulas are established in addition to 

introducing an inner displacement because of the non-centrosymmetric hexagonal 

structure of a carbon cell. The mechanical properties of SWCNTs are then 

predicted via the finite element method.  

Young’s modulus and Poisson ratio are predicted for a zigzag SWCNT. With 

tension method, an average tension rigidity of 320.5 N/m and an average Poisson 

ratio of 0.395 are obtained, which are in good agreement with the literature. By 

the bending method, the effective wall thickness of SWCNT is computed as 

0.058nm, which leads to an average of Young’s modulus being 5.526TPa.  

For SWCNT under stretching, results are gained that Young’s modulus is 

decreasing with the increase of tube diameter. By applying wall thickness as 

0.34nm, Young’s modulus is converging at 0.72TPa, by which the result of 

dependence of Young’s modulus on tube diameter for zigzag SWCNTs is in good 

agreement with results from Natsuki et al. (2003), Shen and Li (2004) and 
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Parvaneh and Shariati (2011). And it is shown that Young’s modulus of SWCNT 

with zigzag structure is slightly larger than that of the armchair one, which is 

agreed with the results from Lei et al. (2011). 

SWCNTs under bending are simulated in three situations: one end fixed bending, 

two end fixed bending and two end simply supported bending. The results have 

shown that, as for the prediction of Young’s modulus of SWCNT, bending 

methods have to be considered carefully, although one end fixed model can 

predict similar results with cylindrical shell under tension when the tube diameter 

is large enough, all three sets of bending models provide extremely large values of 

Young’s modulus when the tube diameter is small, while the two end fixed model 

and the two end simply supported model provide values of Young’s modulus 

towards zero when the tube diameter is large. Demonstration of non-local bending 

and local bending of SWCNTs are also presented.  

SWCNTs under compression are simulated. Critical buckling strains have been 

captured by reading the force and strain relationship. The results show that, for a 

fixed tube length, critical buckling strain decreases with the tube diameter 

increasing. And for a fixed tube diameter, critical buckling strain decreases when 

the tube length increases. Results are in good agreement with the literature. 

Twisting deformations of SWCNTs are also simulated, and a non-linear behaviour 

after twisting angle of 100° is captured. 
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5.2 Discussions and recommendations 

Shell models have been applied widely to model SWCNTs (Tu and Ou-yang, 

2002, Pantano et al. 2004, Arroyo and Belytschko, 2002, 2003, 2004). But it is 

hard to define Young’s modulus and shell thickness in a classical linear elastic 

shell theory, where the wall thickness has been calculated from 0.066nm to 

0.34nm as demonstrated in Table 4.1. In this case, Cosserat surface presented a 

great advantage by avoiding the shell thickness as well as Young’s modulus itself, 

but linking the tension and bending rigidities directly to interatomic potentials.  

The link between atomistic deformations and continuum deformations is provided 

by the Cauchy-Born rule. However, the drawback of the Cauchy-Born rule for 

SWCNTs is that the deformation map maps the deformed lattice vector onto the 

tangent plane of the deformed surface, which does not matter for bulk material but 

has significant effects on a thin surface material such as SWCNTs, especially 

when a large curvature is involved. Therefore, modifications need to be made to 

the Cauchy-Born rule for its application to study SWCNTs, in which aspect, 

Cosserat surface as a shell model makes perfect compatibility with the standard 

Cauchy-Born rule, since in a Cosserat surface-based shell theory, a displacement 

field-independent rotation tensor is introduced that describes the curvature at each 

point of the surface, which relates the rotation field to the inner structure of the 

surface, i.e. at a micro-level. Therefore, the Cauchy-Born rule describes the 

tangent map, while the change of curvature of the deformed surface is captured by 

rotation tensor which describes the micro-level rotation map. 
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An ideal potential model should be able to accurately describe the interactions 

among atoms in a SWCNT. How accurate the empirical potentials are defined 

plays a very important role on how well the results come out, because different 

potential models, or even different sets of parameters in the potential form can 

lead to big differences in the results, which was also pointed out by Wang et al. 

(2006) and Wu et al. (2008).  

In this research, we adopt interatomic potential forms based on a force field to 

describe potentials for the atomic chain, which is of advantage since the atomic 

chain model consists of a series of atoms, and so a force field defines all the 

interactions between atoms, except that the C-C bond atomic chain model has not 

been given a physical explanation, since C-C bonds have hexagonal structure in 

the SWCNT structure rather than a straight line. However, an atomic chain model 

presents various behaviours that are similar to SWCNT’s behaviours, so if the 

relation between an atomic chain and SWCNT, or any other similar atomic 

structures, can be studied and constructed and if the potential forms can be 

reformulated, atomic chain models could be very handy for simulation of string-

like nanostructures. 

Cosserat surface as a shell model has been built to simulate SWCNTs. Second 

generation Brenner potential formulation is adopted. The first generation of 

Tersoff-Brenner potential has been applied widely by previous researchers, in 

most cases produced an opposite trend of the results, as shown in Figure 1.2 and 

Figure 1.4, and also as shown in results from Arroyo and Belytschko (2004), 

where Young’s modulus of SWCNT increases with the tube diameter increasing 

and converging at around 0.69TPa. Second generation Brenner potential has not 
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been used as much, since the formulation is new and the adjustments make the 

potential forms much more complicated, and atoms from second layer in the 

neighbourhood are involved in the calculation. Extra potential terms which 

describe shear effects and atom spin effects are added to assure the non-

singularity of the tangent modulus.  

Most researches in recent years have applied atomistic potential forms from force 

field, and built C-C bonds as a beam, rod or spring, and built-in the constitutive 

law into commercial software, such as ANSYS or ABAQUS (Avila and Lacerda, 

2008; Dun et al. 2010; Shokrieh and Rafiee, 2010; Parvaneh and Shariati, 2011). 

The results received in this research are in good agreement with the results from 

these atomistic simulations based on force field potentials. And the results of 

buckling patterns and twisting patterns are still in agreement with previous 

researchers who applied first generation Tersoff-Brenner potential forms, because 

the change of potential forms did affect the results of Young’s modulus, but it 

didn’t affect the bending, buckling and twisting patterns.  

Young’s modulus and Poisson ratio has been obtained from tension and bending 

methods for graphite sheet. Because the force displacement relationship Cosserat 

surface-based shell theory provides is non-linear, it is rather flexible and 

subjective to decide what value to go for to calculate Young’s modulus of graphite 

sheet. Assume wall thickness is 0.34nm, if initial value is selected from the results 

of graphite sheet tension that leads to a Young’s modulus of 0.706TPa. In this 

research, we go for the other method of selecting a changing point and an area 

around it to calculate an average value, in which case, it arrives an average 

Young’s modulus of 0.943TPa for wall thickness 0.34nm, which is in good 
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agreement with the experimental results. But still, the definition of selected area is 

subjective and then the result may vary from time to time.  

Therefore, we decide to use another method which is straight forward to calculate 

Young’s modulus for SWCNTs modelled by cylindrical shells, where we adopt 

the equations from classical elastic beam theory which build a relation between 

external forces and the final deflection. In which way, results of Young’s modulus 

for SWCNTs obtained from the tension model are still within the range, but 

results from the bending models become unreasonable. One end fixed bending 

model can still provide similar results with the tension model when tube diameter 

is large, while the two end fixed and the two end simply supported models result 

in a Young’s modulus value towards zero when tube diameter becomes large. And 

all three sets of bending models produce extremely high values of Young’s 

modulus when the tube diameter is small. All these errors might be caused by two 

reasons, either when the tube diameter is small enough that the size of tube 

diameter and the size of tube wall thickness is similar, in which case, shell theory 

cannot be applied anymore, or when the tube diameter is large enough that there is 

only deformations on the surface rather than the whole system, in which case, the 

equations from classical beam theory are not valid anymore. To sum up, by 

applying continuum theory in calculating properties of SWCNTs, the size effects 

have to be considered, and the assumptions have to be used carefully because they 

may not be valid anymore in some situations, even in elastic cases.  

The whole calculation, except few cases, has been carried on by 8⤫8 element 

models, which includes 486 degrees of freedom for graphite sheet and only 432 

degrees of freedom for cylindrical shell model, which already provide reasonable 
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results with good agreements with the literature. If the calculation is carried on by 

more elements, i.e. finer meshes, it should be able to catch more detailed 

information about the behaviour of SWCNTs.  

Van der Waals force interactions have not been considered in either atomic chain 

model or cylindrical shell model, which contributes to the non-bonded energies in 

the total potential forms. It describes the interatomic reactions between two atoms 

that are not bonded within certain range in SWCNT case, which can normally be 

neglected when the bonded energies dominate the total energy, as is considered in 

this research. However, non-bonded energy cannot be ignored in the study of 

MWCNTs, as van der Waals forces contributes to the interactions between the 

layers of CNTs, in which case we need to add van der Waals force energy, which 

is normally described by Lennard-Jones potential, if we want to do further 

research about MWCNTs. Van der Waals force should also not be neglected when 

SWCNT is studied under severe deformation, like when the tube is under severe 

bending that two ends move towards each other, the atoms from two surfaces 

become close enough but bonded energy cannot define the interactions of the 

close non-bonded atoms which can only be described by van der Waals force, or 

when tube is under large torsion deformation, van der Waals force also needs to 

be included for the atoms on two close surfaces under twisting.  

Future work will focus on: 

1. Check the validation of the potential forms, possible modifications will be 

made to fit the potential in an atomistic level. Neglected terms need to be 

checked if they would make much differences for the results. Applications 
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of other empirical potentials will be used and compared to find an 

optimized solution. 

2. Van der Waals force interactions should be considered based on Lennard-

Jones 6-12 expressions, in order to study more complicated deformations 

of SWCNTs, or possibly MWCNTs. In this case, third and forth buckling 

patterns, severe local bending, and large angle twisting deformations for 

SWCNTs will then be simulated. 

3. More elements with finer meshes need to be applied to provide more 

detailed information.  Nine-node elements will be used to study tensile 

strength, buckling failure, fracture of CNTs, or other aspects involving 

stress concentrating.  

4. Quantitative properties obtained from cylindrical shell models for CNTs 

will be used to calculate parameters in the potential forms for atomic chain 

model, in order to check if an easy 1-D Cosserat curve model can produce 

reasonable results in simulating CNTs’ behaviours.  
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A.  Algorithm Expansion 

Rotation tensor is expressed as 

    
      

   
  

        

    
                                             

and the deformation gradient is in the form of 

                                                                  

And then the strain tensor can be obtained from 

            
      

   
       

        

    
           

    
      

   
        

        

    
                        

when displacement field and rotation field is defined in Cartesian co-ordinates 
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And bring in mind the relation of  
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The relation between base system and Cartesian system is 
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Now, strain tensor is expressed as 

            
     

      

   
               

      
        

    
 

                
            

      
      

   
        

   
      

        

    
             

      

        
    

       
      

   
      

          
            

 
        

    
       

                
            

                                                                                            

Axial vector of       is  

  
      

   
    

        

    
       

 

   
 

      

    
 
       

   
                 

And the curvature tensor becomes 

                                                                          

Rotation tensor 
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B. 1-D Bond Angle Formulation 

 

The potential is formulated as a function of bond length and bond angle, i.e.  

      , where the bond length can be calculated through the standard Cauchy-

Born rule. And the bond angle   is related to the curvature tensor  , which in the 

one-dimensional case is expressed as      . The neighbouring atom bonds AB 

and AC are considered to be a smooth curve, which can be either an internally 

tangent circle or a circumscribed circle. For an internally tangent circle,  

 

         

                                                             

For a circumscribed circle, 
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In this research, a circumscribed circle is used, because in which case the atoms 

are lying on the deformed curve, which should be more adequate to describe the 

system.  

 

C. Total Potential Expansion 

The total potential form for CNTs is 

                             

      

                                      

with  

              
 

 
                                                 

               
                                              

 

   

 

and  



Appendix 

 

- 169 - 

      

 
 

 
     

       
       

     
           

     

                           

while 

     
 

 
    

       
                                                           

 

where 

   
            

       

                

    

                           

              

 

   

         
 
                                         

   
            

       

                

    

                        

In this case 
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Then the total potential is 

                                                           

The bond lengths are 

            
            

                                       

where                          . 

The deformed bond vectors are 

             
                   

                              

And the bond angles are 

           
      

     
                                                    

where                                   

corresponding to                                 . 

Define bond lengths    ,    ,    ,     
,     

,     
,     

,     
,     

 as    

(i=1,2,…,9) and bond angles     ,     ,     ,      ,      ,      ,      , 

     ,       as    (i=1,2,…,9), inner displacement can be determined by 

  

  
   

  

   

   

  
 

  

   

   

  
   

 

   

                                         

where strain energy density            . 

Force tensor can be obtained from 
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Couple tensor can be expressed as 

    
  

    
  

  

   

   

    

 

   

                                                

Stretch modulus-like tensor 
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And bending modulus-like tensor  
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