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Abstract

Computer simulations of biological systems provide novel data while both supporting

and challenging traditional experimental methods. However, continued innovation is

required to ensure that these technologies are able to work with increasingly complex

systems.

Coarse–grained approximations of protein structure have been studied using a lattice

model designed to find low–energy conformations. A hydrogen–bonding term has been

introduced. The ability to form β–sheet has been demonstrated, and the intricacies of

reproducing the more complex α–helix on a lattice have been considered.

An alternative strategy, that of better utilising computing power through the technique

of milestoning, has shown good agreement with previous experimental and computa-

tional work. The increased efficiency allows significantly less extreme simulation condi-

tions to be applied than those used in alternative simulation methods, and allows more

simulation repeats.

Finally, the principles of Least Action Dynamics have been employed to combine the

two approaches described above. By splitting a simulation trajectory into a number of

smaller components, and using the lattice model to optimise the path from a start struc-

ture to an end structure, it has been possible to efficiently generate dynamical informa-

tion using an alternative method to traditional molecular dynamics.

i



Acknowledgements

Throughout my PhD studies I have been fortunate enough to work with many talented

and knowledgable researchers, both staff members and other PhD students. Foremost

amongst these are my supervisors, Prof. Hirst and Prof. Williams. I would like to sin-

cerely thank them for the help and support they have provided over the past three years.

My thanks also to Mark Oakley for discussion over the course of the project, and for de-

veloping the first version of the LaMP software.

In addition, other group members have made working in the laboratory both fun and

scientifically exciting. Particular thanks are given to Craig Bruce for doing all things

sysadmin, to Ben Bulheller for all manner of geeky conversation, and to Claire-Louise

Evans for assistance with CHARMM.

On a more personal level, I thank my partner Rebecca for all the encouragement and

support she has given me over the course of my research.

Finally, my thanks to the following groups for funding:

• Nottingham Nanoscience and Nanotechnology Interdisciplinary Doctoral Training

Centre

• The School of Pharmacy, University of Nottingham

• The School of Chemistry, University of Nottingham

ii



Contents

1 Introduction 2

1.1 Protein Folding and Aggregation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivation for Understanding Protein Folding . . . . . . . . . . . . 2

1.1.2 Protein Folding Theories . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Protein Misfolding and Aggregation . . . . . . . . . . . . . . . . . . 11

1.2 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Background to Molecular Dynamics Simulations . . . . . . . . . . . 18

1.2.2 The Problems Faced . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.2.3 Coarse-Grain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.3 Forced Protein Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.3.1 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . 42

1.3.2 Molecular Dynamics Simulations of Protein Unfolding . . . . . . . 44

1.4 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



2 LaMP - A Lattice Model of Proteins 48

2.1 Origins of the Model and Minor Developments . . . . . . . . . . . . . . . . 48

2.1.1 PDB2Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1.2 Lattice Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Force Field Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.1 Existing Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2.2 Hydrogen Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3 Forced Protein Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Forced Protein Unfolding 85

3.1 Titin I27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Milestoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.1 Milestoning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Explicit Solvent Milestoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.1 Initial Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.2 Explicit Solvent Milestoning . . . . . . . . . . . . . . . . . . . . . . . 99

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

iv



4 Least Action Dynamics 114

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.1 Principle of Least Action . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.2 Action–Derived Molecular Dynamics . . . . . . . . . . . . . . . . . 117

4.2 Action-Derived Lattice Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.3 Forced Unfolding of Titin I27 . . . . . . . . . . . . . . . . . . . . . . 122

5 Conclusions 127

5.1 LaMP - A Lattice Model of Protein Folding . . . . . . . . . . . . . . . . . . 128

5.2 Explicit Solvent Milestoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Least–Action Lattice Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 131

References 134

v



List of Abbreviations

Aβ – Amyloid-β.

ADLD – Action–Derived Lattice Dynamics.

ADMD – Action–Derived Molecular Dynamics.

AFM – Atomic force microscopy.

APP – Amyloid Precursor Protein.

BSE – Bovine Spongiform Encephalopathy.

CJD – Creutzfeldt-Jakob disease.

CF – Cystic fibrosis.

CFTR – Cystic fibrosis transmembrane conductance regulator.

DNA – Deoxyribonucleic acid.

EEF1 – Effective energy function.

GB – Generalised Born.

GBSA – Generalised Born Surface Area.

HP – Hydrophobic-Polar.

vi



I27 – I27 domain of Titin.

Ig – Immunoglobulin.

MC – Monte Carlo.

MD – Molecular dynamics.

PDB – Protein Data Bank.

REx – Replica Exchange.

RMSD – Root Mean Square Deviation.

SMD – Steered molecular dynamics.

vii



List of Figures

1.1 A flat energy landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 A ‘pathway’ energy landscape. . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 A ‘funnel’ energy landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Protein misfolding pathways. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Transmission electron micrograph image of Aβ fibrils . . . . . . . . . . . . 16

1.6 Diagrammatic representation of Alzheimer’s A–β fibril structure . . . . . 17

1.7 A dihedral angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8 An improper dihedral (torsion) angle. . . . . . . . . . . . . . . . . . . . . . 25

1.9 The Lennard-Jones potential. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.10 Cut–off and switching functions. . . . . . . . . . . . . . . . . . . . . . . . . 27

1.11 Schematic representation of 3- to 6-site water models. . . . . . . . . . . . . 31

1.12 Lattices and their coordination numbers. . . . . . . . . . . . . . . . . . . . 38

1.13 Typical AFM apparatus for forced unfolding. . . . . . . . . . . . . . . . . . 43

1.14 Sawtooth force extension curve for multimeric Titin I27. . . . . . . . . . . . 44

2.1 Excerpt from a LaMP custom lattice definition file. . . . . . . . . . . . . . . 55

viii



2.2 The ‘move by two bonds’ move. . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 A lowest-energy octamer generated by LaMP v1.0. . . . . . . . . . . . . . . 58

2.4 Miyazawa–Jernigan contact energies. . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Hydrogen bonding in β–sheets. . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Formation of a single LaMP hydrogen bond. . . . . . . . . . . . . . . . . . 64

2.7 Incorrect β–sheet hydrogen bonding patterns in LaMP. . . . . . . . . . . . 65

2.8 Corrected β–sheet hydrogen bonding patterns in LaMP. . . . . . . . . . . . 66

2.9 An example of β–sheet bonding in LaMP. . . . . . . . . . . . . . . . . . . . 68

2.10 i:i+4 hydrogen bonding in the alpha–helix. . . . . . . . . . . . . . . . . . . 70

2.11 Example structures resulting from i:i+4 contact hydrogen bond definition. 71

2.12 A geometrically–perfect α–helix and the best–fit FCC lattice equivalent. . . 72

2.13 i:i+4 distance in α–helices and β–sheets. . . . . . . . . . . . . . . . . . . . . 74

2.14 Mean backbone angle between helix residues i and i+4. . . . . . . . . . . . 76

2.15 A sample test α–helix and the resulting LaMP structure. . . . . . . . . . . . 78

2.16 A poly-Alanine helix after 107 calculation steps. . . . . . . . . . . . . . . . 79

2.17 Lattice unfolding of Titin I27, using hydrogen bonding terms. . . . . . . . 82

2.18 Lattice unfolding of Titin I27, without hydrogen bonding terms. . . . . . . 83

3.1 Titin’s place in the sarcomere. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Sawtooth extension plot for I27. . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 The I27 domain of Titin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Splitting a simulation into several sections by Milestoning. . . . . . . . . . 92

ix



3.5 I27 extension under 300 pN of force in implicit solvent. . . . . . . . . . . . 97

3.6 Unfolding events in implicit solvent. . . . . . . . . . . . . . . . . . . . . . . 98

3.7 Unfolding events in explicit solvent. . . . . . . . . . . . . . . . . . . . . . . 98

3.8 Energy landscape of Titin I27 under 200 pN of force. . . . . . . . . . . . . . 101

3.9 Intermediate structures obtained from milestoning. . . . . . . . . . . . . . 103

3.10 Transition structures obtained from milestoning. . . . . . . . . . . . . . . . 104

3.11 Unfolding structures obtained from milestoning. . . . . . . . . . . . . . . . 105

3.12 Energy landscape of I27 under forces from 200 pN to 300 pN. . . . . . . . 106

3.13 I27 contact maps at 200 pN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.14 Diagrammtic example of the “QK” method. . . . . . . . . . . . . . . . . . . 108

3.15 Energy landscape of I27, by the “QK” method. . . . . . . . . . . . . . . . . 109

3.16 Energy landscape of I27, by the “QK” method. . . . . . . . . . . . . . . . . 110

3.17 Prediction of the physiological unfolding force of I27. . . . . . . . . . . . . 112

4.1 Possible paths for an object moving through space. . . . . . . . . . . . . . . 115

4.2 Discretising a least action pathway. . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Structures obtained with varying ADMD timesteps. . . . . . . . . . . . . . 122

4.4 Schematic of the Least Action Lattice Dynamics method. . . . . . . . . . . 123

4.5 Trajectory resulting from Least Action Lattice Dynamics (1 ns timestep). . 124

4.6 Trajectory resulting from Least Action Lattice Dynamics (100 ns timestep). 125

x



List of Tables

1.1 Diseases involving amyloid fibril formation . . . . . . . . . . . . . . . . . . 14

1.2 Proteins which form amyloid fibrils in vitro. . . . . . . . . . . . . . . . . . . 15

2.1 Default backbone energy values for the FCC lattice. . . . . . . . . . . . . . 62

2.2 Relative frequencies of FCC lattice moves in helix fragments. . . . . . . . . 73

2.3 Relative backbone angle frequencies in α–helix and β–sheet. . . . . . . . . 75

2.4 Backbone vector angle definitions. . . . . . . . . . . . . . . . . . . . . . . . 75

2.5 Relative frequencies of backbone torsion angle. . . . . . . . . . . . . . . . . 77

3.1 Extension of the I27 domain in implicit solvent. . . . . . . . . . . . . . . . . 96

4.1 Timesteps used in ADMD validation. . . . . . . . . . . . . . . . . . . . . . 121

1



Chapter 1

Introduction

1.1 Protein Folding and Aggregation

1.1.1 Motivation for Understanding Protein Folding

Proteins are essential for life in all organisms, from the simplest examples of prion pro-

teins and viruses, through to complex eukaryotic animals and plants. The pathway

from genetic code to functional protein has been studied heavily for more than 50 years,

but definitive answers about various aspects of the process remain elusive. One area

which has received continual interest is that of how proteins fold into their unique three-

dimensional shapes.

In recent decades a range of discoveries, from the elucidation of the structure of DNA

through to developments in technologies such as NMR and x-ray crystallography, have

greatly enhanced our understanding of each end of the protein folding process. The

mechanism by which a protein chain is synthesised from a DNA sequence using amino

acids is generally understood, and we are able to determine the final, folded three-

dimensional structure of many proteins in their native states (and indeed in other, per-
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turbed states). However, the middle stage in this process - that of the actual folding

from an unstructured polypeptide chain to a functional three-dimensional structure - is

still relatively unknown. A variety of methods have been proposed for this mechanism

(see section 1.1.2), but it is important to understand why this particular problem has

remained at the forefront of the scientific community’s consciousness.

A Scientific Problem

The protein folding problem was brought to the fore by Levinthal in the 1960s (1). Prior

to his work, it was assumed that proteins folded by randomly sampling conformations

until the native state was discovered. Levinthal suggested that proteins used some more

systematic approach to folding. His conservative estimates (discussed in more detail in

section 1.1.2), suggested that a random search strategy would require sampling of an

infeasible number of conformations. This simple observation resulted in a shift in think-

ing about the mechanisms of protein folding; researchers began to look for method in a

process previously assumed to have none. The ability of proteins to fold is intriguing

because it seems to take place in a directed fashion, but, in the majority of cases, with-

out any external influence or guidance. Although chaperone proteins may assist in the

folding or unfolding of other proteins, or prevent their aggregation into non–functional

forms, they are by no means a prerequisite for these activities. This implies that all the

information required to form a functional molecule is bound up in the sequence of each

protein. That this folding process gives the same end result time after time is a remark-

able feat, and one which has therefore understandably captured the imagination of many

researchers over the years.
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Treatment of Diseases

There are more practical reasons for developing a greater understanding of protein fold-

ing. The ability of a protein to fold into its native state is vital for it to be biologically

active. Should a protein fold into an incorrect conformation, its ability to catalyse a reac-

tion, remain mechanically strong, or transport another molecule may be diminished or

entirely lost. Should such an error occur on a regular basis, disease symptoms can result

(2). For example, mutations in the cystic fibrosis transmembrane conductance regulator

(CFTR) gene can lead to the production of proteins which are unable to fold correctly.

This in turn leads to a loss of function, and the disease symptoms of cystic fibrosis (CF).

However, a mutated protein has a different sequence to the wild-type and so differences

in the folding process may be expected.

Equally interesting are those proteins that cause disease by failing to fold correctly even

though they are not mutated. Clinical symptoms of Alzheimer’s disease are caused by

aggregation of a mis-folded form of the amyloid-β protein, a protein which is normally

present in the human body (3). Even when the sequence of this protein is not mutated,

some (as yet unknown) event can cause spontaneous misfolding. Several misfolding

events can be followed by aggregation and the formation of insoluble neuronal plaques.

A number of diseases show similar forms of action, including Huntingdon’s disease and

Parkinson’s disease.

Aggregation is also important in prion diseases, whereby correctly folded proteins ag-

gregate in a similar fashion to that seen in Alzheimer’s disease. There is obviously there-

fore a motivation to correct misfolding defects, either as a strategy to reduce symptoms

or to try and prevent them altogether. Current research is having some success identify-

ing potential means of preventing aggregation in vitro (4).
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A firm understanding of processes upstream of aggregation would enable such diseases

to be tackled at their root, rather than in a reactive manner.

1.1.2 Protein Folding Theories

The Sequence / Structure / Function Relationship

One of the most important realisations in the field of protein folding took place when

Anfinsen showed that the three-dimensional structure of a protein was determined by

the amino acid sequence (5). The dependence of a protein on its specific native state con-

formation for biological activity was already known at the time. However, Anfinsen’s

experiments involving the denaturation and renaturation of bovine pancreatic ribonucle-

ase showed that when all tertiary structure is removed from a protein, the information

necessary to re–form that structure (the native state) is still contained within the protein.

He demonstrated this using ribonuclease which had been denatured using urea; when

the denaturant was removed, the inactive ribonuclease regained its activity. Indeed, fur-

ther work on a variety of enzymes showed that certain sections of a protein chain could

even be cleaved without the protein losing its ability to fold.

As a result of this work, Anfinsen stated that “the native conformation is determined

by the totality of interatomic interactions and hence by the amino acid sequence” (6).

Another important conclusion of this work was that the native state of the protein was

also the most energetically favourable. As each specific amino acid sequence would have

only one global energy minimum, the protein would favour that conformation each time

it folded. This became known as “the thermodynamic hypothesis”, and thus the primary

structure and native state of a protein were acknowledged to be intrinsically linked.
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Anfinsen’s work established where the information needed to fold a protein was stored,

but thoughts subsequently turned to how proteins reach their native conformation.

Levinthal’s Paradox

Around the same time that Anfinsen was finding the link between amino acid sequence

and tertiary structure, Levinthal was also considering the protein folding problem. He

pointed out that a protein could not fold by sampling every possible conformation until

the global energy minimum was reached; the timescale for doing so would be infeasible

(1). Such a process is described by a flat energy landscape, providing no guidance to the

protein on taking a particular pathway to the native state (Figure 1.1). For example, in

a 150 residue peptide with only three degrees of freedom in the backbone, there must

be 3150 different conformations, or 3.7x1071. Assuming that 1012 conformations can be

sampled every second, the protein would still require 7x1053 years to work through them

all. This argument, countering the conclusions of Anfinsen, suggested that the native

state of a protein was not the global minimum, but rather a local minimum. It is also

worth noting that some metastable proteins can take on non-native structures with a

lower energy than the native conformation (7). Levinthal’s suggested process for folding

was that of a ‘pathway’ to the minimum, rather than a random search. He also proposed

that ‘segments’ of structure would form initially, and would make further condensation

of the protein into recognisable structure elements more likely (8).

Anfinsen in fact supported this latter theory, by suggesting that proteins fold via “nucle-

ation” events. He also discussed the idea of protein folding being a co-operative process,

requiring the whole protein to come together in a coherent structure before becoming bi-

ologically functional. The results of experiments detailed in his 1973 paper indicated
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Figure 1.1: A flat energy landscape; the native state is point N. Reproduced from (9).

that folding could take place at any point with a complete protein, not only during its

synthesis on the ribosome.

Levinthal’s idea of pathways in folding can be visualised as an energy landscape which

consists of a channel to guide the protein towards the native state (the local minimum

on the landscape). An example of this is seen in Figure 1.2. By following this channel,

a folding protein does not have to explore the entire energy landscape before finding

the native state, thus overcoming Levinthal’s numbers problem. The idea does suggest,

however, that a folding protein will always follow the same path as it folds.
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Figure 1.2: An energy landscape with a ‘pathway’ to guide the folding protein toward

the native state N from the denatured state A. Reproduced from (9).

Folding Funnels

In the years following the development of the ‘pathway’ model, researchers realised that

it was not sufficient to adequately explain all aspects of folding. The model was intended

to represent a protein folding from a denatured conformation to the native state. If the

native state is the lowest point on the landscape, then denatured states are represented

by all other points. It is therefore possible to start from a denatured state which is not in

the ‘pathway’, thus going against the principles of the model. Since denaturation exper-

iments such as Anfinsen’s had shown that proteins can re–fold to the native state from

any number of different denatured conformations, the model is obviously deficient. A
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logical expansion of the argument leads to the development of multiple pathways, which

in turn can be developed into a generalised ‘funnel’ with a rugged landscape (Figure 1.3).

Figure 1.3: A true ‘funnel’ free energy landscape. Reproduced from (9).

This funnel model is sufficient to describe all the nuances of protein folding seen from

Anfinsen’s work through to current developments in the field. A protein can move from

any point at the top of the funnel, i.e. any denatured structure, to the native state at the

bottom of the funnel. The free energy reduces as the molecule moves from the top of the

landscape to the bottom. While there is no single specific pathway to follow, the protein

will be to some extent guided in its folding by the presence of ‘hills’ and ‘valleys’ in the
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landscape (representing transition states and intermediates respectively).

While undoubtedly an improvement on previous concepts, the funnel model does not

necessarily provide an accurate model of the whole protein folding picture. For exam-

ple, it does not convey the contribution that conformational entropy plays in protein

folding. Mirny et al. (10) point out that when moving from an intermediate to a transi-

tion state, the protein may actually increase in energy. At first glance, such an increase

may seem counter-intuitive on a funnel diagram, but this is due to the fact that entropy

is not represented explicitly. Prior to the transition state, folding is driven by a loss in

entropy, counteracting any gain in energy. Once the transition state is passed, the re-

action becomes energetically-driven and the concept of continually moving towards a

lower energy state becomes valid once again. One way to consider this is for the width

for the funnel to act as a general indicator of conformational entropy; as a protein pro-

gresses from the fringes of the funnel to the centre, entropy decreases even if energy

increases. Despite such nuances, the funnel method has become widely used and is the

most prevalent concept used to explain protein folding and energy landscapes at the

current time.

The Mechanics of Folding

While protein folding funnels help us visualise how a particular protein may proceed

from denatured to fully folded, they provide no detail about the three-dimensional struc-

tures adopted during the process. There have been several theories proposed regarding

the actual physical mechanisms of protein folding. One of the first utilised the hierarchi-

cal nature of proteins’ structural elements. Known as the ’framework model’, it postu-

lated that the secondary structure elements would form first, and that these would dif-

fuse around before eventually interacting together to create the tertiary structure (11, 12).
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This view has subsequently been replaced to some degree by the ’hydrophobic collapse’

or ’nucleation–condensation’ model (13). This entails the hydrophobic residues aggre-

gating to escape the aqueous solvent as much as possible. This forms a hydrophobic

core, with more hydrophilic elements on the exterior. True protein folding, however, is

likely to be a mixture of the two methods, although there is still much research being

undertaken in this area.

1.1.3 Protein Misfolding and Aggregation

Misfolding Diseases

A protein must be folded into a specific three-dimensional conformation to have any

biological activity. A variety of factors may cause a protein to lose this specific shape,

resulting in not only a loss of biological activity, but in some cases in toxicity as well. As

Anfinsen discovered, the biological activity of a protein is directly linked to the amino

acid sequence. Thus, any alteration in the sequence through genetic mutation can cause

the protein to fold incorrectly or not at all. As mentioned previously, cystic fibrosis is

caused by mutations in the CFTR gene (14). This gene encodes a chloride ion channel

protein, which is important for the production of mucosal secretions. The ∆F508 muta-

tion, for example, deletes a phenylalanine residue, and without it the protein produced

from the mutated gene is unable to fold. Humans have two copies of the CFTR gene;

if both are mutated in this way then no functional CFTR protein is produced, and CF

results.

Another less well-known example affects lysosomes, the organelles responsible for catabolism

of macromolecules within cells (15). When lysosomal proteins fail to fold, the organelles

cannot operate effectively and a build-up of partially degraded material can occur within
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them. The defective protein may be an internal component of the lysosome or part of the

membrane. Regardless of the location, mutations in any one of a number of proteins

can result in over 40 lysosomal diseases. In the examples above, and various others, the

wild-type protein performs a specific job, and fails to do so only when the integrity of

the genetic code for the protein is compromised.

Protein Aggregation / Prion Diseases

An alternative class of proteopathic diseases involves proteins in which the wild-type

genes are unaffected, but the wild-type protein still suffers a loss of function through

a failure to fold correctly. Such proteins may fold incorrectly immediately following

synthesis on the ribosome, or as a result of spontaneous unfolding from the native state

and re–folding (Figure 1.4). Regardless of the method by which the protein reaches the

alternative conformation, the end result is aggregation of molecules of the protein into

insoluble plaques. In Alzheimer’s disease, the proteins involved are tau and amyloid-β

(Aβ). Aβ is formed from Amyloid Precursor Protein (APP) by two successive cleavage

events. β-Secretase splits a soluble extracellular fragment from the membrane-bound

APP molecule. The main molecule is then cleaved again, in the transmembrane domain,

byγ-Secretase, producing Aβ (16). The extracellular aggregations of Aβ protein are the

bodies first seen by Alzheimer during his characterisation of the disease, and the plaques

and their precursors are its main cytotoxic element (3). The cytotoxicity can be attributed

both to the interactions of amyloidogenic proteins with other cell components, and to the

sheer volume of aggregated protein (17).

Aggregation in this manner is seen in multiple other diseases, including Huntington’s

disease and Parkinson’s disease (Table 1.1). A similar mechanism is also seen in the prion
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Figure 1.4: Possible pathways to protein misfolding of wild-type proteins (18).

diseases, which include Bovine Spongiform Encephalopathy (BSE) and Creutzfeldt-Jakob

disease (CJD) (19). Prion diseases are caused by a protein folding from its normal form,

PrPC, to a protease-resistant conformer known as PrPSc (20). While the physiological

function of PrPC is still not fully understood, it is clear that PrPSc is the causative agent

in prion diseases. Like the amyloid-β protein in Alzheimer’s disease, mis–folded prion

proteins aggregate in elongated fibres to form insoluble plaques. The mis–folding of one

molecule of PrPC can initiate a cascade effect, causing many other molecules to unfold

and subsequently take on the PrPSc form (21). This effect leads to the phenomenon of

the spongiform encephalopathies being transmissible diseases (22, 23, 24).

It is not only proteins involved in disease which form amyloid fibrils. A number of other

proteins have been seen to form fibrils in vitro (Table 1.2), but not in vivo (17) .
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Disease Main Aggregate Component

Alzheimer’s disease Aβ peptides (plaques); tau protein (tangles)

Spongiform encephalopathies Prion (whole or fragments)

Parkinson’s disease α–synuclein (wt or mutant)

Huntington’s disease Huntingtin

Primary systemic amyloidosis Ig light chains (whole or fragments)

Secondary systemic amyloidosis Serum amyloid A (whole or 76–residue fragment)

Senile systemic amyloidosis Transthyretin (whole or fragments)

Injection–localised amyloidosis Insulin

Table 1.1: Diseases of proteins involving amyloid fibril formation. Adapted from (17).

Amyloid Fibril Formation

Much like the protein folding problem, the motivation to understand the formation of

amyloid aggregate formation is two–fold. Firstly, there is the obvious aim of developing

treatments for the variety of diseases in which amyloid plaques are implicated. There

is, however, an interesting phenomenon which is almost the opposite of that described

in section 1.1.1. The observation that unique individual protein primary structures give

rise to unique three-dimensional tertiary structures is not necessarily always true. In-

deed, the diseases caused by amyloid formation show very similar, stable structures de-

spite the disparity between the amino acid sequences of the different proteins involved

(25, 26). This is, in effect, an interesting inversion of the traditional protein folding prob-

lem.

A large proportion of the research into the amyloidoses has revolved around Alzheimer’s

disease, due to its high-profile and incidence rate compared to prion diseases and other
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Domain / Protein Source

Endostatin Human

Stefin B Human

Amphoterin Human

ADA2H Human

Apolipoprotein CII Human

Apomyoglobin Equine

Fibronectin type III module Murine

Phosphoglycerate kinase Yeast

Fibroblast growth factor Notophthalmus viridescens

Apocytochrome c Hydrogenobacter thermophilus

Table 1.2: Proteins found to form fibrils in vitro. Adapted from (17).

diseases involving fibril formation. Work in the 1960s determined that the plaques seen

in neuronal tissue of Alzheimer’s disease sufferers are composed of aggregates of indi-

vidual filaments (27, 28) of Aβ. Each of these has subsequently been found to have a

diameter of approximately 7–10 nm and lengths of 100 nm upwards (29) (Figure 1.6).

However, the inherent insolubility and non–crystalline nature of the highly stable fila-

ments meant that further structural information could not be resolved using the methods

employed at the time. These included x-ray crystallography and liquid-state nuclear

magnetic resonance (NMR). Indeed, the protein responsible for forming the filaments

was only isolated and sequenced in 1984 (30). Shortly after the discovery of the presence

of fibrils in neuronal plaques, data from x-ray diffraction experiments showed that the

fibrils consist predominantly of β–sheet. The distances of 4.75 Å and 9.8 Å obtained from

the original experiments indicated β–strands spaced in parallel or anti–parallel configu-
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ration, and several sheets lying alongside each other, respectively (31). This suggested a

“cross-β” conformation, that is, the sheets run perpendicular to the fibril axis (32). More

recent cryogenic electron microscopy and NMR work has supported this observation

(33, 34). Each fibril consists of several protofilaments, in common with other amyloid–

forming proteins (35, 36).

Figure 1.5: Transmission electron micrograph image of Aβ fibrils. Reproduced from

(37).

In 2003, Tycko et al. brought together molecular constraint data from a variety of sources,

including their own solid– and liquid–state NMR experiments, and developed a model

for the structure of the Aβ protofilaments (37). The model indicated that they are con-

structed from two individual molecules twisted around each other. Each molecule con-

tains two anti–parallel β–strands, in the cross–β formation. Stability is conferred by the

confinement of hydrophobic residues to the interior of the protofilament, with polar and

charged residues on the outside of the structure. Previous work on an Aβ fragment,

containing only residues 34 to 42 (Aβ34−42) also suggested that an anti–parallel confor-

mation was most likely (38, 39). However, subsequent work on Aβ10−35 established that

a parallel conformation may indeed be possible (40).
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Figure 1.6: Diagrammatic representation of Alzheimer’s amyloid–β fibril structure. Re-

produced from (33).

Despite advances in the determination of the structure of the Aβ fibrils, relatively little

is understood about the mechanism of protein aggregation. Contrary to initial assump-

tions that Aβ was entirely insoluble, it has been found to be soluble under certain condi-

tions (41, 42). Suggested trigger factors for the switch from soluble α–helix to insoluble

β–sheet have included localised changes in pH (43). It has recently become apparent that,

whatever the mechanism, the species involved in the early stages formation of complete

fibrils may be as important as the fibrils themselves. Cytotoxic effects have been caused

by the pre–fibrillar aggregates of amyloid–forming proteins which are not seen in any

natural diseases (19, 44). The methods of cytotoxicity vary, but include alterations in the

level of intracellular Ca2+ ions, and in the exocytotic ability of cells.
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Prion diseases have also been shown to consist of very similar structures to those seen in

Alzheimer’s disease; the yeast prion Sup35 has a cross-β structure (45) containing very

little water (46), while the Ure2p prion has been shown to contain predominantly paral-

lel β-sheet (47, 48). Molecular dynamics simulations of the Sup35 prion have indicated

that aggregation may proceed from an anti–parallel starting structure towards a parallel

conformation in more mature oligomers (49).

Computational models capable of determining low–energy structures may provide an

insight into the native structures of functional proteins in their native state. However,

they could also shed new light on diseases involving highly stable mis–folded molecules

such as amyloid fibrils. The nature of these structures makes them hard study physically,

and information derived from in silico work may help develop treatments for the numer-

ous diseases involving fibril formation.

1.2 Computer Simulations

1.2.1 Background to Molecular Dynamics Simulations

Successes and Milestones

The field of molecular dynamics simulation has developed since the late 1950s, shortly

after computers first became available to researchers (50). The first molecular dynamics

programs used hard sphere models to simulate liquids (51). These were subsequently

developed to model biological molecules such as proteins, initially in the absence of

solvent (52), and then in simple lipid bilayer membranes (53). As available computing

power has increased, the ability to simulate solvent, both implicitly and explicitly, has

become commonplace.
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One of the first major simulations of a biological molecule was that of bovine pancreatic

trypsin inhibitor. This work by McCammon et al. was published in Nature in 1977, and

represented a massive computational effort. McCammon used the x-ray structure of the

inhibitor to perform dynamics calculations and investigate fluctuations about the aver-

age structure (52). The system consisted of 500 atoms in a vacuum, with a simulation

duration of 9.2 ps. This work was fundamental in shifting the view of proteins from

one of rigid structures to more dynamic systems with a certain level of flexibility and

fluidity. Since that time, the field has expanded rapidly, and current simulations typi-

cally involve much larger systems, or longer timescales. The first simulations of DNA

were completed in 1986 (54), and allowed the predicted structures seen in the model to

be compared with NMR restraint data. Whilst the system size of eight base-pairs and

approximately 1,200 water molecules is very modest by today’s standards, this was an

important development in modelling work.

In 1998 Duan and Kollman carried out the first 1 µs simulation of a protein in explicit

water (55). They looked at the early stages of protein folding in the Villin headpiece, a

system which also featured in the Folding@home project in 2006 (56). Around 500 µs

of simulation in explicit solvent were generated by the massive parallel architecture of

the latter project, demonstrating that an increasingly detailed picture of protein folding

could be obtained from Monte Carlo as well as molecular dynamics simulations. Also in

2006, the entire Satellite Tobacco Mosaic virus (over one million atoms) was simulated

by Freddolino and co-workers (57). The ability to study the entire viral system allowed

them to establish that the protein capsid was significantly less stable in the absence of the

RNA core. Their results also agreed with previous studies on the stability of the capsid

and the core.
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Principles of Molecular Dynamics

Molecular dynamics software packages such as CHARMM (58), Amber (59), NAMD

(60) and GROMACS (61) all integrate Newton’s equation of motion (Equation 1.2.1) to

determine the positions of atoms at a future point in time.

F = ma (1.2.1)

where F is force, m is mass and a is acceleration.

However, this is not a trivial operation, and a variety of algorithms are used in molecular

dynamics simulations. It is assumed that the positions of the atoms at points forwards

and backwards in time can be approximated by Taylor series expansions (Equation 1.2.2).

r (t + ∆t) = r (t) + ∆t · v (t) +
∆t2

· a (t)

2
+

∆t3
· b (t)

6

r (t − ∆t) = r (t) − ∆t · v (t) +
∆t2

· a (t)

2
−

∆t3
· b (t)

6

(1.2.2)

where r is atomic position, t is time, v is velocity, a is acceleration and b is the rate of

change of acceleration.

By adding the Taylor expansions, we can calculate the atomic position at t + ∆t; this is

the Verlet algorithm (Equation 1.2.3).

r (t + ∆t) = 2r (t) − r (t − ∆t) + ∆t2a(t) (1.2.3)

Note that the first– and third–order terms from the Taylor expansions have cancelled out,

meaning that we need only calculate a (t), the acceleration. This is just the force divided

by the mass (Equation 1.2.1). The force can be calculated as the derivative of the energy
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with respect to the change in position of the atom (Equation 1.2.4), and the mass of each

atom is known. In this manner, the Verlet algorithm can be solved.

F = −
dE

dr
(1.2.4)

where F is force, E is energy and r is atomic position.

One disadvantage this method has is that it does not explicitly calculate velocity values

for the atoms in the system. While they can be estimated, there are some related algo-

rithms which are often used in preference to the basic Verlet algorithm.

The “leapfrog” algorithm calculates velocities at the half–step (Equation 1.2.5), and these

therefore “leapfrog” the coordinates, which are calculated at the full step (Equation

1.2.6).

v

(

t +
∆t

2

)

= v

(

t −
∆t

2

)

+ [∆t · a (t)] (1.2.5)

r (t + ∆t) = r (t) +

[

∆t · v

(

t +
∆t

2

)]

(1.2.6)

The lack of ∆t2
· a (t) term means that this algorithm is more accurate than the standard

Verlet algorithm. It also requires only one set of atomic coordinates to be stored in mem-

ory at any given time, rather than the three sets used with standard Verlet.

Another popular algorithm used is the “Velocity Verlet” algorithm. This has the ad-

vantage of calculating both the atomic positions and coordinates at the full step, i.e. in

synchrony. Firstly the positions at t + ∆t are calculated (Equation 1.2.7).
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r (t + ∆t) = r (t) + [v (t) · ∆t] +
a (t) · ∆t2

2
(1.2.7)

The velocities at the half–step are then calculated (Equation 1.2.8), and from this the

positions at the full step (Equation 1.2.9).

v

(

t +
∆t

2

)

= v (t) +
[∆t · a (t)]

2
(1.2.8)

r (t + ∆t) = r (t) +

[

v

(

t +
∆t

2

)

· ∆t

]

(1.2.9)

The velocities at the same point can then be calculated (Equation 1.2.10).

v (t + ∆t) = v (t) +
[a (t) + a (t + ∆t)] · ∆t

2
(1.2.10)

The molecular dynamics force field describes how each of the different forces on an atom

contributes to its overall energy. The force field is thus made up of several different

components, which can be calculated differently depending on the software package

being used. As a general principle, the force field includes two types of interaction,

bonded and non- bonded (Equation 1.2.11).

Vtotal = Vbonded + Vnon−bonded (1.2.11)

where V is potential energy.

Each of these is in turn composed of several different terms, which combine to give the

total energy of a system at a given point in time.
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The bonded terms collectively refer to any term which describes the impact of a property

of one or more covalent bonds on a system’s energy. It is made up of four main terms

(Equation 1.2.12).

Vbonded = Vlength + Vangle + Vdihedral + Vimproper (1.2.12)

Bond length, or stretching, relates to the length of a covalent bond between two atoms,

and its deviation from the equilibrium length. The greater the deviation, the more en-

ergy is required to maintain the conformation. While a Morse potential gives a better

representation of the term, many systems use a simpler harmonic potential to reduce

calculation time. The “bond angle” term is effectively a measure of the deviation from

the equilibrium angle formed by three atoms which are bonded together in a linear fash-

ion. A harmonic potential is also most often used to model this interaction.

The dihedral bond angle, or torsion angle, applies where two pairs of covalently bonded

atoms are themselves joined by another covalent bond (Figure 1.7). It is the angle be-

tween the planes formed by the two atom pairs.

The rotatable nature of the central bond means that a harmonic energy function is not

appropriate, and so a function of periodic form is used instead. In practice, the energy is

given by the sum of the term over all dihedral angles in the molecule (Equation 1.2.13).

This term is sometimes referred to as the proper dihedral angle.

υdihedral = ∑
dihedrals

1
2

Vn[1 + cos(nφ − δ)] (1.2.13)

where υ is energy, Vn is the force constant, n is periodicity and δ is phase.
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Figure 1.7: A dihedral angle.

n is the periodicity of the angle, while δ is the phase. υn is the force constant. By varying

the periodicity and force constant, it is possible to model the number and relative size of

the minima present in the function.

The improper dihedral or torsion angle is used to correct for the out-of-plane motions of

an atom which is bonded to three others in a non-linear fashion (Figure 1.8).

It is defined as the angle between the planes formed by atoms i,j,k and j,k,l. Some algo-

rithms use a different parameter, that is, the distance between the central atom, j, and the

plane formed by atoms i,k,l.

The non–bonded terms are the more complex terms making up the force–field. They

model the forces on atoms caused by electrostatic interactions and van der Waal’s forces.

Van der Waal’s forces are the attractive and repulsive forces caused by the electrons

clouds of adjacent atoms. When atoms are very close together, they are subjected to

a strong repulsive force as their electron clouds overlap. As the distance increases, con-
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Figure 1.8: An improper dihedral (torsion) angle.

tinual fluctuations in the distributions of electrons cause instantaneous dipoles to form.

The presence of a dipole on one atom can cause another dipole to form in a different

nearby atom. The attractive force between dipoles becomes dominant at this distance,

and then diminishes as the distance between the atoms increases. The van der Waal’s

interactions are commonly represented by the Lennard-Jones potential (Figure 1.9) (62).

Whereas van der Waal’s forces are caused by fleeting interactions between electrons with

constantly shifting electron distributions, electrostatic interactions are a result of partial

or whole charges on atoms of a molecule with an overall neutral charge. As with van

der Waal’s interactions, electrostatic interactions occur between each pair of atoms in a

system.
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Figure 1.9: The Lennard-Jones potential.

To avoid the high computational cost of calculating long–range non–bonded interac-

tions which normally have little impact on the system, a cut–off system may be imple-

mented. For example, the 6-12 Lennard-Jones potential used to represent van der Waal’s

interactions tends towards zero as the distance between two atoms increases. A cut–off

function can specify that there is no interaction beyond a certain distance, that distance

being less than the range over which interactions are normally seen (typically around 9

Å). At the relevant distance the energy becomes zero, and remains so for all atom pairs

further apart than the cut–off. The algorithm does not need to calculate any van der

Waal’s forces beyond the threshold distance, and so computational time is saved.

As can be seen from Figure 1.10, use of a cut–off distance alone can cause a discontinu-

ity in the energy at the cut–off. As the calculation of force is based on the derivative of

the energy, a discontinuity can prove problematic. A switching function can be used to
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Figure 1.10: Cut–off (red) and switching (green) functions.

modify the potential in a manner which ensures that it truncates smoothly at the cut–off

distance. Other methods designed to save time in the calculation of these forces and

long–range electrostatics are Particle Mesh Ewald (PME) (63) and Particle-Particle Par-

ticle Mesh (P3M) (64), both of which entail fitting atomic charges onto a regular grid to

facilitate faster computation.

There are a variety of ways in which the solvent surrounding macromolecules in molec-

ular dynamics simulations can be treated. In early models, solvent was neglected alto-

gether in vacuum simulations (52). The next major step was to represent the solvent in

an implicit manner, a method which is still in widespread use. While atoms in the solute

are represented explicitly, the solvent does not contain any explicit atoms. Instead, the

solvent is represented by a bulk continuum around the solute, with a higher dielectric

27



constant. The aim is to determine the solvation free energy of the solute, that is, the

free energy change when the molecule is moved from a vacuum to the medium. The

Poisson-Boltzmann equation can be solved to determine the solvation energy, but doing

so is very computationally expensive. While some programs do exist to calculate solu-

tions numerically (65), they run relatively slowly.

The solvation free energy can be considered as the sum of a cavity term, a van der Waal’s

term for solute-solvent interactions, and a solute-solvent term to polarise the solvent

around the solute (Equation 1.2.14).

Gsol = Gcav + GvdW + Gpol (1.2.14)

where Gsol is solvation free energy, Gcav is the cavity solvation energy term, GvdW is

solvation energy of solute-solvent interactions and Gpol is the polarisation component.

The first two terms in Equation 1.2.14 can be related to the sum of solvent accessible

surface areas, as seen in Equation 1.2.15 (66).

∆Gsol ≈ ∑
i

σi ASAi (1.2.15)

where σi is an empirical atomic solvation parameter and ASAi is solvent–accessible sur-

face area.

This leaves only the electrostatic polarisation term, Gpol , to calculate.
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The Generalised Born equation states that:

Gpol = −166
(

1 −
1
ǫ

) n

∑
i=1

n

∑
j=1

qiqj

fGB
(1.2.16)

where qi and qj are the partial charges of atoms i and j, ǫ is the dielectric constant and rij

is the distance between the two atoms.

where:

fGB = r2
ij + bibj exp

(

−

r2
ij

4bibj

)

(1.2.17)

It is important that bi and bj be calculated correctly; these are the Born radii of the atoms.

The atomic radius is not appropriate, because the atom is not fully solvent–exposed.

The effective Born radius is a parameter which reflects the degree by which the atom is

“buried” within the solute molecule. By reducing the Born radius, we reduce the effect

of the atom on the solvation energy. The aim is therefore to determine a Born radius

which accurately reflects the contribution of the solvent–exposed area of the atom to the

polarisation energy.

Some of these methods may also be supplemented with details of non-polar contribu-

tions to the solvation energy, calculated from the solvent–accessible surface area. These

combined methods are often known as GBSA, or Generalised Born Surface Area, meth-

ods.

The effective energy function (EEF1) is a modification to the CHARMM19 polar energy

term (67). It allows more accurate calculation of the solvation energy of the solute. This

is achieved through solvent–exclusion principles, whereby the solvation energy of an

atom is reduced in proportion to the amount by which other solute atoms shield it from
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the solvent. The sum of these individual atomistic contributions gives the solvation en-

ergy of the solute.

Explicit solvent models represent each atom in the solvent in the same manner as those

in the solute. The major drawback of this methodology is the requirement to calculate

trajectories for all the solvent atoms; this requires a large amount of computing power.

In biological systems the solute is usually water, and a variety of different models have

been developed to simulate the interactions between the solvent and solute. The TIP3P

model (68) uses a rigid representation of the three atoms making up each water molecule.

Each atom is assigned a point charge, and this relatively simple model results in fast

calculations. Other models may use different geometries, for example SPC (69), which

uses an ideal tetrahedral geometry rather than the experimentally-derived geometry for

water. In some cases a Lennard-Jones potential may also be applied to certain atoms

(typically the oxygen) in addition to partial charges. A popular derivative of TIP3P is

the four–site TIP4P model. In addition to the three atoms found in TIP3P, the model also

includes a “dummy” atom with a partial charge designed to represent the oxygen lone

pairs. Other more sophisticated models may include charges for each individual lone

pair (70), and six–point models which combine the extra sites found in both TIP4P and

TIP5P (71). While the various models have been shown to reproduce phenomena such

as melting more accurately than other models, their increased complexity results in a

greater computational requirement.

When using explicit solvent, the size of the solvent box surrounding the solute must be

taken into account. The box must be large enough that its edges do not affect the so-

lute, but not so large that valuable computational time is spent calculating trajectories

for water molecules which have no discernible affect on the solute. Periodic boundary

conditions are often implemented to overcome these problems. The main simulation cell
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Figure 1.11: Schematic representation of 3- to 6-site water models. Exact geometries

vary, depending on the particular model. M represents a “dummy” atom,

L represents a lone pair.

is surrounded by a number of identical cells in all dimensions, the movements of which

also mirror those of the main cell. If a solvent molecule moves out of one side of the

main cell, an identical one therefore moves in to the cell from the opposite side. In this

way, the total number of solvent molecules remains constant, and there are no edge or

surface effects. It is important to ensure that there is sufficient distance between the so-

lute and the edge of the cell to prevent solute molecules in neighbouring cells interacting

with one another. While a cubic cell shape is common, a truncated octohedral cell can

reduce the number of water molecules which need to be simulated, and thus speed up

the calculation.

Another consideration is the treatment of temperature and pressure during simulations.

Temperature is derived from the mean kinetic energy of the atoms in the simulation

(Equation 1.2.18), while pressure can be thought of as the force applied to the boundary

“walls” of the simulation box by the atoms within.

Ēk =
3
2

NkT (1.2.18)

where Ēk is average kinetic energy, N is the number of degrees of freedeom, k is the

Bolztmann constant, and T is temperature.
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The simplest ensemble type is where the number of atoms (N), the volume of the simula-

tion (V) and the energy (E) remain constant throughout the simulation. This is known as

the microcanonical ensemble. The pressure and temperature of the simulation cell may

alter; this allows time–averaged values to be calculated, as all microstates in the ensem-

ble are equally likely to be sampled.

In a canonical ensemble, the number of atoms (N), the volume of the simulation (V), and

the temperature (T) all remain constant. This is also known as NVT dynamics. NVT sim-

ulations use a thermostat to ensure that the temperature of the system does not vary. The

simplest method for maintaining temperature is the direct scaling of atomic velocities,

but small temperature fluctuations as would be expected in biological systems are in-

hibited by this method. The Berendsen thermostat rescales atomic velocities in a similar

manner, but the rate of temperature change is kept proportional to the temperature dif-

ference (69). This results in the system tending towards the specified temperature, rather

than always being reset to the same value. A more tightly-regulated version of NVT can

be implemented with the Nosé-Hoover algorithm, which models heat exchange between

the system and a heat bath (72, 73). This entails the addition of an extra, dimensionless,

degree of freedom to the system, which is then used to apply friction to the system and

therefore reduce atomic velocities and temperature. Other heat bath systems have been

proposed, such as that developed by Andersen (74) whereby the velocity of a randomly

selected atom is replaced by one from a Maxwell-Boltzmann distribution.

An isothermic-isobaric ensemble involves maintaining the system at a constant temper-

ature but also a constant pressure (also known as NPT). For this reason, a thermostat

similar to those used in NVT simulations is required, along with a barostat. A number of

barostat models have been proposed to work in similar ways to thermostats. Berendsen’s

method (69) involves scaling the size of the simulation cell and the atomic coordinates
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to maintain a constant pressure (as opposed to scaling velocities to maintain tempera-

ture). Other systems have been developed to maintain pressure in a manner more akin

to the Nosé-Hoover thermostat, that is, the addition of an extra degree of freedom to

effect changes in pressure. This type of system can be conceptualised as the addition of

a piston to the simulation, albeit one which adjusts the system volume in an isotropic or

anisotropic manner rather than a traditional cylindrical piston.

Monte Carlo Simulations

As discussed previously, the native state of a protein is a low–energy conformation, as

are structures seen in amyloid plaques. For this reason it is often desirable to derive low–

energy structures computationally. While this can be done by studying how a system

evolves over time, there are alternative ways to sample a protein’s configurational space.

One commonly used method in such work is that of Monte Carlo simulation.

A starting structure is passed to the algorithm, and the energy calculated. A change

is made to the structure, and the energy is re–calculated. If the new structure has a

lower energy than the original, it is carried forward and the process repeated. If the

new structure is less stable, there is still the possibility of accepting it, according to a

probability known as the Metropolis criterion (Equation 1.2.19).

p = e−∆E/RT (1.2.19)

where p is the probability of accepting a move, E is potential

energy, R is the ideal gas constant, and T is temperature.

This methodology leads to a situation whereby more stable conformations are always

accepted, i.e. movement towards the bottom of the energy landscape. However, the pos-

33



sibility of moving to higher–energy structures is always present, and this prevents the

simulation becoming stuck in local minima. By altering the temperature, the probability

of accepting less stable structures can be amended, and thus the tendency of the model

to “jump” around the energy landscape can be influenced. Such methods have been in

use since the 1970s, when they were used to probe secondary–structure elements (75),

along with basic models of protein folding (76, 77). More recently, alternative methods

to explore landscapes have been developed. For example, “model–hopping” (78) in-

volves swapping the energy functions used for the various simulations in an ensemble.

One simulation may utilise several different functions over its duration, enabling varia-

tions in the fidelity of its “walk” around the energy landscape. Again, this reduces the

probability of the simulation becoming held in a local minimum.

1.2.2 The Problems Faced

There are several problems to be overcome when carrying out computer simulations

of biological systems. The main restriction on the development of in silico models has

always been the availability of sufficient computing power to deal with larger systems.

However, there are other factors which can prevent a system being simulated sufficiently

accurately to produce a worthwhile model.

Accuracy of the Models

Careful consideration of all the parameters involved in a simulation is necessary if the

data obtained are to be of any value. There are a variety of factors which can cause a

simulation to fail; some are avoidable, others are assumptions inherent in the theories

and models being used.
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Of critical importance is the selection of the time step used in the simulation. Obviously

a large time step is desirable as it minimises the number of calculations required and

maximises the timescale of the simulation. However, the time step must remain shorter

than the fastest vibrational motion in the system. In biological systems this is most often

the covalent bonds to hydrogen. As a result, the time step must be kept to 1 fs. When

using implicit solvent in the absence of hydrogen atoms, a 2 fs time step may be used.

If explicit solvent is being used, it is possible to fix the covalent bond and prevent its

vibration (for example, the SHAKE algorithm (79)). This also allows a 2 fs time step. Al-

gorithms have been developed to use multiple different time steps in a single simulation

and thereby increase the speed of the calculations, but these are not in widespread use

(80, 81).

The accuracy of the force field being used is one area in which a variety of approxima-

tions are introduced. These are often a bid to increase computational efficiency, with the

resultant increase in simulation speed offset against a minimal decrease in the accuracy

of the model. For example, the Lennard-Jones potential was originally described as a

generic term, 1/rn - 1/rm, with the subsequent use of 1/r12 and 1/r6 in molecular dy-

namics being based on the computational efficiency of squaring the latter to obtain the

former. Switching and shifting functions allow researchers to neglect long–range non–

bonded interactions, to increase the speed of simulations. Indeed, all the approximations

indicate a balance between accuracy and speed of simulation, a point noted by van Gun-

steren in 1990 (82) but just as valid today.

The methods reviewed here are all designed to increase the accuracy of an MD force

field, but there are some properties which remain difficult to model. The fixed point

charges commonly placed on a solvent molecule in MD are not an accurate reflection of

the true charge distribution. The distribution is dynamic in nature, moving around the
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molecule rather than remaining static, and solvents are therefore polarisable. Although

many models do not include the added complexity of polarisability in their considera-

tion of system energy, a number of polarisable force fields for water do exist (83, 84, 85).

More generally, they cover a range of solvents (86), and may focus on specific systems

such as protein–ligand interactions (87). However, specialised force fields have also been

developed for application to macromolcular biological systems (88, 89, 90, 91).

Regardless of the accuracy of the force field, a simulation must sample the conforma-

tional space sufficiently. A failure to do so could result in the model not finding the

“best” structure, pathway or event in a given scenario. The algorithm chosen must allow

barriers in the energy landscape to be overcome, but it is also important that sufficient

temporal sampling also takes place. While the simulation of processes such as protein

folding will obviously require a long time to model, it is also important to ensure that,

for example, Monte Carlo simulations are given sufficient time to explore the conforma-

tional space thoroughly.

Computational Power

One of the main factors preventing continued development of molecular dynamics meth-

ods is the nature of the pair-wise interactions, the properties of which must be calculated

at each step. Consequently as the system size increases, the number of interactions, and

therefore calculations, also increases. As the development of computing power seems

to be matching Moore’s law, the capabilities of current machines are much greater than

those of even a few years ago. For example, in 1990 van Gunsteren wrote that a “simu-

lations of liquids typically involve 102 or 103 atoms” (82), whereas is it not unusual for

current simulations to contain over 104 atoms. Even with increasing computing power,

the time taken to run simulations of events like protein folding, especially given the
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probabilistic nature of such events, can still make them impractical.

Recently, research has been focusing on ways of leveraging cluster CPU power in a more

parallel fashion. There are a wide range of possible cluster setups, ranging from local

systems with high–speed interconnects to “grid” systems with nodes at a number of geo-

graphical locations (for example, the Folding@Home project (18)). There are also various

ways to split the data between the computing nodes. However, increases in computing

power are not the only solutions being investigated, with the continued development of

coarse-grain models (see section 1.2.3) to maximise the use of existing facilities.

1.2.3 Coarse-Grain Models

Given the discrepancy in time between in vivo and in silico protein folding events, there

has always been a drive to increase the efficiency of the computational models. One way

to achieve this is to move from atomistic representations of proteins into simpler models.

This may be a simplification of the conformational space, or in the representation of the

residues themselves.

Lattice Models

Any algorithm must be capable of efficiently searching the conformational space of the

molecule being studied. In the case of atomistic models, that space is usually so large

that it takes a long time to sample it sufficiently. One way to reduce the size of the search

space, without reducing the conformational space too severely, is to implement a lattice

framework. This entails restricting all atoms, or residues, to points on a regular lattice.

The protein structure then takes the form of a self-avoiding walk. The coordination

number of the lattice is important (Figure 1.12); a higher coordination number provides
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a better fit to biological structures, but the more complex lattice also results in longer

computation times.

Figure 1.12: Cubic, body-centred cubic and face-centred cubic lattices, and their coordi-

nation numbers (92).

Some of the simplest lattice models were first developed to try and explain the funda-

mental principles behind protein folding. By using small peptides on simple lattices,

several groups were able to reveal factors which influence protein folding. One model

often used on a lattice, although not restricted to coarse–grain applications, is that de-

veloped by Gō et al. (93). It specifies that native contacts have a favourable energy, while

other contacts have zero energy. This bias ensures that a search for the lowest energy

conformation will be guided towards the native state. In this way, an extended protein

conformation can be provided to the algorithm, and the development from that extended

state to the native state can be seen. Similar work with lattice models has revealed the

role of funnel energy landscapes (94) and the importance of hydrophobic interactions

(95). Li et al. (96) used both 2D (square) and 3D (cubic) lattices to look at what they

termed the “designability” of proteins. They found evidence for the enhanced stabil-

ity of regular structures, such as secondary structure elements. The phase diagram of a

simple protein, showing transitions between molten globule, random coil and “frozen”

native state was derived by Dinner et al. using a 2D lattice (97).

38



Other models have subsequently looked at the folding of specific proteins, that is, the

manner in which individual proteins fold on lattices rather than the general principles

behind all folding. They primarily involve the development of potentials to simulate

folding of proteins, and are based on statistical data such as that found in the Protein

Data Bank (PDB). The models include work by Miyazawa and Jernigan (98, 99), who de-

veloped potential data for each of the pairwise interactions between the 20 amino acids.

Skolnick and Kolinski (100) used an advanced potential to fold a globular protein on a

210 lattice, resulting in a structure similar to the native state. Their potential combined

a slight bias towards the native state with hydrophobicity data from the Miyazawa–

Jernigan work.

Model Resolution

While a lattice can, in theory, be employed on any resolution model, they are most com-

monly used in models employing a reduced resolution. Rather than including each atom

in the molecule, these systems group heavy atoms together into larger particles. The

method was first introduced by Levitt and Warshel in 1975 (101), and has remained in

constant use since. Their simulations of pancreatic trypsin inhibitor used two centres for

each residue, one on the Cα and one on the Cβ to represent the side–chain. Other varia-

tions since have used single centroids for each residue, thus further reducing the number

of particles in the system (102). The benefit of these changes is a reduction in the total

number of particles in the system, and therefore a reduction in the number of pairwise

interactions to be calculated at each time step. This in turns means that less time is taken

to carry out the simulation.
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Hydrophobic-Polar Models

The Hydrophobic-Polar (HP) model was developed as a way to simplify simulations

by reducing the complexity of interactions between particles in a system. It was pro-

posed in 1985 by Dill et al. (103), and is based on the observation that interactions be-

tween hydrophobic residues are important for protein folding (“hydrophobic collapse”).

These residues are attracted to each other and favour a position in the centre of the pro-

tein, away from the polar solvent. By classifying each of the 20 amino acids as either

hydrophobic or polar, and assigning a favourable energy to interactions between hy-

drophobic residues, this phenomenon can be reproduced. The HP model has been used

extensively in lattice simulations (95, 96), on both 2D and 3D lattices. Modifications have

been made to the model. Blackburne and Hirst used a 3D diamond lattice to investigate

the ‘designability’ of proteins (104). Their model utilised the ‘shifted-HP’ variant of the

HP technique, which includes a term to prevent very compact structures being formed.

Decatur developed the standard HP potential to include varying hydrophobicity values

for each of the amino acids (105).

Multiscale Models

Coarse–grain models offer a significant time saving over atomistic models. However,

it is also possible to combine both methods. One option is to use the two techniques

independently; de Mori et al. used a coarse–grain Monte Carlo search algorithm to gen-

erate compact structures from an extended conformation of the villin headpiece (106).

These candidate structures were then fed into an atomistic model for more detailed sim-

ulations. Aspartic proteases have been studied using conventional molecular mechanics

around the active site region, but single particles centred on Cα atoms around the rest of
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the protein (107). Using both representations in the system allowed the authors to main-

tain a more detailed model in the complex active site, while retaining the influence of

the rest of the molecule. This is essentially a similar principle to that of QM/MM, where

quantum mechanics (QM) are paired with molecular mechanics (MM). Other multiscale

methods entail moving molecule representations between different resolution models or

force fields. The “ResEx” model developed by Lyman (108) allows simulations to swap

between coarse-grain and atomistic levels of detail. This permits greater sampling, thus

avoiding techniques such as increased temperature, but retains detailed simulations as

well. “Model Hopping” (78) modifies this concept by alternating between different force

fields rather than resolutions. Moving models between force fields helps them overcome

energy barriers, for example, by moving to a potential where the limiting factor does not

influence the energy as much.

1.3 Forced Protein Unfolding

Anfinsen’s work showed that all the information necessary to fold a protein was con-

tained within the primary sequence, and that denatured proteins could re–fold under

favourable conditions (6). His work used chemical denaturants to unfold a simple pro-

tein, but more recently unfolding experiments have been able to focus on mechanical

proteins. These are molecules which are subject to force as part of their native function,

and are therefore resistant to unfolding. Some may even repeatedly fold and unfold

naturally as part of their biological activity. The development of methods which apply

forces to these proteins (both in vitro and in silico) has allowed the investigation of not

only mechanical strength, but also folding/unfolding energy landscapes, folding barri-

ers, intermediates, and natural re–folding processes.
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1.3.1 Experimental Techniques

Atomic Force Microscopy

The atomic force microscope (AFM) is a type of scanning probe microscope (109), devel-

oped from the scanning tunnelling microscope in 1986 (110). It utilises a cantilever with

a probe tip mounted at one end. The cantilever is positioned so that the tip is brought

almost into contact with the surface of the sample. Over the course of the experiment,

the tip is moved across the surface. Non–bonded interactions between the tip and the

surface cause the tip to move up and down in parallel with the surface topography, de-

flecting the cantilever by varying amounts in the process. This deflection can be recorded

and used to reconstruct a representation of the surface. In tapping mode, variations in

the oscillation frequency of the tip are used to determine surface features. A small tip is

crucial to AFM, with a typical radius of curvature of less than 50 nm. Depending on the

experimental setup, AFM can be capable of a vertical resolution of 0.01 nm.

While AFM is often used as a technique for probing non–biological surfaces to deter-

mine their topography, it has also been used more widely. For example, conformational

changes in lysozyme were observed from a change in the height of the molecule (112).

Florin et al. (113) measured the force required to separate a variety of ligand–receptor

pairs, by coating a surface with receptor and the AFM tip with ligand. By first bringing

the AFM tip onto the surface to allow binding, and then pulling it away again, the force

required to separate the two molecules could be measured. A similar procedure was car-

ried out with streptavidin and biotin by Allen et al. (114). Measurements on intra– and

inter–molecular bonding in DNA were subsequently carried out by Lee et al. (115). By

1997, AFM was being used to determine a number of properties of biological molecules,

including elasticity, variations in sample surface composition and various length mea-
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Figure 1.13: Typical AFM apparatus for forced unfolding of a multi–domain protein.

Reproduced from (111).

surements of cells and DNA (116). Fluorescence and circular dichroism had previously

suggested that the muscle protein titin unfolded in a reversible manner (117, 118). The

protein proved a suitable target for studies investigating the force required to simulate

natural unfolding via the breaking of intramolecular bonds. Rief et al. (119) carried

out the first of a series of experiments, and saw the now well–recognised sawtooth pat-

tern in the force curves (Figure 1.14). This indicated that individual domains within the

molecule unfolded sequentially rather than cooperatively. These were the first of many

experiments on titin and its component domains (discussed in further detail in section

3.1). The presence of an intermediate in the stepwise unfolding of spectrin has also been

demonstrated (120), the modular nature of the extra-cellular matrix protein tenascin con-

firmed (121), and the effect of force on energy landscapes has been investigated (122).
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Figure 1.14: Typical sawtooth force extension curve for multimeric titin I27. Each peak

represents a single I27 domain unfolding under force (119).

1.3.2 Molecular Dynamics Simulations of Protein Unfolding

Developments in the application and accuracy of AFM have allowed researchers to

probe new aspects of unfolding processes and energy landscapes. The ability to sim-

ulate these computationally has developed at the same time, and provides complemen-

tary data to those obtained from experimental work. However, the length of time taken

to carry out atomistic simulations has meant that several strategies have been applied to

facilitate unfolding within a feasible timescale.

Elevated Temperature

In some cases, the temperature of the simulations can be increased in order to promote

unfolding. The first simulations of protein unfolding, which looked at non–mechanical

proteins, utilised temperatures of 498 K to unfold an 83–residue protein in explicit sol-

vent over 2.2 ns (123). While these results, and others (124) suggest that elevated tem-

peratures may be a useful way of reducing computational overhead, their application
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should be carefully considered. Paci and Karplus compared molecular dynamics sim-

ulations at elevated temperatures (300 K to 500 K) to unfolding by force (125). They

found that the two methods of unfolding gave different results, with the force–induced

unfolding revealing intermediates which were not present in the temperature–induced

unfolding pathways. The high temperature runs showed a much smoother unfolding

profile than the steered molecular dynamics (SMD) runs, with the N and C termini not

moving apart until late in the simulation.

Constant Velocity vs. Constant Force

SMD simulations by Lu and Schulten (126) revealed, in detail, the breaking of crucial

hydrogen bonds between β–strands in the structure of the I27 domain of titin. Their

simulations were carried out in both constant force and constant velocity modes. The

former entailed the application of a number of different forces to the N–terminus of the

protein, while the position of the C–terminus remained fixed. Despite the fact that AFM

work had previously shown only 150 pN of force were required to induce unfolding over

a period of milliseconds (119, 121), Lu and Schulten had to apply forces between 750 pN

and 1200 pN to witness unfolding over 1.25 µs of simulation time. In this case, excessive

force had to be applied in order to cause the protein to unfold within a computationally

accessible timescale. Similarly, constant force simulations resulted in a high peak force

of 2100 pN. Similar forces had been required in previous SMD simulations by the group

(127).

The speed of constant velocity simulations was also increased to ensure that the molecule

unfolded. AFM work had pulled I27 apart at a speed of 1 µm/s, whereas simulations

required speeds of between 0.1 and 0.5 Å/ps. The latter equates to 5 x 107 µm/s, or a

difference of more than seven orders of magnitude. Lu and Schulten suggest that their
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results are qualitatively similar to those obtained from AFM, and that they can be scaled

to give agreement with the experiments. However, any improvements to molecular dy-

namics protocols which bring them closer to physiological conditions would be useful;

this fact is also acknowledged by Gao et al. (128). As researchers are provided with ever

more computing power, so the fidelity of simulations can be increased and the severity

of the simulation conditions reduced. This in turn should allow simulations to be carried

out using, for example, temperatures and forces much more akin to those found physi-

ologically than have previously been required. Rather than relying solely on increased

computing power, it is important to optimise use of the existing resource through the

development of new methods. Only by combining these tactics will in silico work be

able to inform and complement in vitro studies.

1.4 Aims and Objectives

The aim of this work is to investigate methods which may increase the efficiency and

scope of computer simulations of protein folding and unfolding. The ability to better

simulate physiological conditions is also considered.

In Chapter 2, a lattice model of protein folding is developed. The model uses a coarse–

grain representation of a polypeptide, with each residue bound to a lattice point. This

reduces both the number of pairwise interactions to be calculated, and the search space,

resulting in a program which can quickly generate structures and determine those with

the lowest energy.

The technique of milestoning is discussed in Chapter 3. Unlike the lattice model, this

method retains all–atom representations of proteins. In order to increase the simulation

efficiency, a trajectory is split into a number of sections. This allows each section to be
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run in parallel, but also has a number of other benefits that increase the probability of

witnessing rare events and allow the application of lower forces than has previously

been possible.

Chapter 4 utilises the efficiency of the lattice model to generate a dynamic trajectory

using an alternative method to the integration of Newton’s laws of motion. By consid-

ering the principle of Least Action, the most probable path from a start structure to an

end structure is derived, providing a number of structures between to make up a full

trajectory.
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Chapter 2

LaMP - A Lattice Model of Proteins

2.1 Origins of the Model and Minor Developments

The long-term aim of the LaMP project is to develop a coarse–grain lattice model to study

protein folding and aggregation. This builds upon existing work which has utilised one

or both of the main elements of this model. The first coarse–grain model to be suc-

cessfully applied to protein folding was developed by Levitt and Warshal in 1975 (101).

They acknowledged that the number of degrees of freedom in an atomistic simulation

was too great to model effectively, so sought a method to reduce this. Each amino acid

was represented by two simulation particles. As their simulations progressed and sug-

gested stable folded structures, they moved towards increasingly less coarse–grain mod-

els, eventually creating final candidate structures from fully atomistic simulations. Their

conclusions also touched on the general subject of how folding takes place, an issue

which was still being debated fiercely at the time. Miyazawa and Jernigen defined a

simple residue:residue potential in 1985 (98), allowing amino acids to be treated as sin-

gle particles in simulations rather than aggregations of multiple atoms or points. While
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originally discussed by Levitt and Warshel in 1975, the development of methods to re–

construct all–atom models from α–carbon backbones took many years but has proved

complementary (129, 130). While many coarse–grain and lattice methods have simu-

lated protein folding, no definitive model has emerged. The combination of these fea-

tures, in an efficient model capable of accurately creating tertiary protein structure, has

yet to be achieved. Current coarse–grain models have progressed beyond the HP model

which has persisted for many years, with the off–lattice BLN model proteins forming

a target for research (131). These group residues into the traditional hydrophobic (H),

but also hydrophilic (L) and neutral (N). These have been used to model generic ter-

tiary structure elements such as the β–hairpin and β–barrel (132, 133). Nevertheless,

the HP model remains an important tool which has been extended in a similar man-

ner to create the generic HPNX model and derivatives (134). Search strategies are also

growing to encompass alternative methods such as genetic algorithms (135, 136). Lat-

tice models, meanwhile, have also grown in complexity, not least in the lattice types

used. The first models used the simple cubic lattice (137) moving on to the more com-

plex cubo–octohedral (138) as available computing power increased, and finally on to

face–centred cubic (139). Some models have also experimented with the imposition of

conditions on the ability of atoms to occupy particular points on a conventional Bravais

lattice, resulting in the 210 lattice, for example (100, 140). Consideration has been given

to the initial transfer of the protein to a lattice (141), the move sets used (137), and to

the representation of water both implicitly and explicitly (142, 143). The simulation of

hydrogen bonding and the subsequent formation of secondary structure has proved a

more difficult challenge. Both water models have been employed in attempts to create

energy functions which accurately promote the formation of α–helix (144, 145) and β–

sheet (139, 146). While models have been reported as capable of forming both helix and
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sheet (102), no preferred method has yet emerged which displays sufficient homology

with experimental results to be applied to larger systems without prior knowledge of

the folded structure.

LaMP functionality was, in common with most protein folding models (147), to be ac-

complished by presenting the program with a starting all–atom, off–lattice structure and

having it generate the lowest–energy permutation of that structure (according to the

force field parameters). As native and aggregated states represent energy minima, the

resultant structures could prove useful in a number of research areas. The LaMP package

consists of two main programs; PDB2Lattice converts off–lattice structures into a lattice

format, and LatticeSearch uses the resultant lattice structures to search for the most stable

conformation.

While the first version of the model was capable of finding very low energy structures

very quickly, this was subject to the limitations of the force field. As a result, the struc-

tures generated were not biologically relevant, and the package had the potential to be-

come more user–friendly. While the development of the force field was the primary

objective, discussed in section 2.2.2, a number of smaller improvements to both the us-

ability and accuracy of the model are discussed below.

2.1.1 PDB2Lattice

The first step in running a lattice simulation is the conversion of a standard Protein Data

Bank (PDB) file from an all-atom, off-lattice structure to a coarse-grain lattice representa-

tion. The PDB2Lattice program is used to carry out this conversion. The program extracts

the coordinates of each Cα molecule from the PDB file. Coordinates for all other atoms

are discarded. Since version 1.0 of the program, compatibility with the PDB file format

(148) has been significantly increased. Each of the Cα atoms is used to represent the cen-
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tre of the entire residue in which it was originally incorporated. A lattice grid is overlaid

onto the off–lattice structure. Each residue is moved to the nearest lattice point. Finally,

a number of Monte Carlo search steps (discussed in section 2.1.2) are carried out to min-

imise the RMSD of the lattice structure compared to the off-lattice structure.

The actual fitting process has also been improved in the latest version of the program.

Originally, a search of 10,000 Monte Carlo fitting steps was carried out regardless of the

size of the protein. Whilst sufficient with smaller polypeptides, this gave poorer results

with large proteins. The relatively small number of steps did not sufficiently search con-

formational space. The number of search steps is now therefore proportional to the size

of the molecule being fitted, with a minimum value of 10,000 steps. This resulted in the

model being able to find a lower energy structure on approximately 20% more occasions

than with the default number of steps.

Another problem with the first version of the program was a tendency to create overlap-

ping residues, that is, for two residues to be occupying the same lattice coordinate, and

therefore the same point in space. Whilst these overlaps were detected, and the RMSD

of the fit weighted to reduce them, the situation was not ideal. The current version has

minimised this problem by detecting such clashes, and moving one of the residues to

the next-nearest unoccupied lattice point. In a test set of 109 proteins with a total of

9062 residues, this reduced the total number of overlapping residues from 29 residues

in 22 proteins to zero. The mean RMSD to off-lattice structure was 1.4077 Å prior to

the modification, and 0.86 Å after. The model is therefore closer to guaranteeing a true

’self–avoiding walk’ for lattice structures.
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2.1.2 Lattice Search

Metropolis Monte Carlo Search

Monte Carlo methods provide a way of simulating systems using random sampling.

While there are a number of related methods, the general principle involves defining a

set of possible inputs for the system, and then repeating three steps. Inputs are generated

at random and a deterministic calculation is performed on the input; these two steps are

repeated multiple times, before the results are aggregated. Monte Carlo methods are

often used when there is no simple deterministic solution to the problem being investi-

gated, and they are therefore particularly suitable for molecular modelling applications.

The methods were first described in 1949 by Metropolis et al. (149), and have been used

extensively since the 1970s in computational work relating to protein folding, solvent

models, forced unfolding of proteins, and protein aggregation (68, 76, 150, 151).

In LaMP, the Metropolis Monte Carlo method (152) is used to search for the lowest en-

ergy structures. A starting structure is provided to the algorithm, following which a

single alteration is made to the structure. The energy of the molecule is calculated; the

individual terms used are discussed in more detail in Section 2.2.1. If the new structure

is more stable than the original, it becomes the new starting structure. If the structure is

less stable, it is accepted according to a probability represented by equation 2.1.1.

p = e−∆E/RT (2.1.1)

where p is the probability of accepting a move, E is potential energy, R is the ideal gas

constant, and T is temperature.
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The new structure has an alteration made to it, and the cycle is repeated a number of

times. This allows progression to lower energies, while still allowing the model to es-

cape from local energy minima, which may otherwise act as traps. This behaviour can

be modified by adjusting the parameter T, the temperature of the system. Since both

the temperature and the energy of the model are arbitrary, the ideal gas constant, R, is

set to one and thus R and T can be treated as unity. Using a low temperature gives a

more thorough search of a small area of the energy landscape, but may result in searches

becoming trapped in local energy minima. A higher temperature allows the search to

move out of such minima and across a larger portion of the landscape. However, this

high temperature can result in the global potential energy minimum also no longer be-

ing the global free energy minimum.

The treatment of temperature is therefore an important factor when running Monte Carlo

simulations, and a number of optimisations have arisen as a result. A plain Monte Carlo

search utilises a constant temperature, T, but choosing this temperature can be problem-

atic. Ideally, the goal is to combine the thorough searching at low temperatures with

the wider landscape searching of higher temperatures. Simulated Annealing (SA) (153)

involves beginning the simulation at a high temperature, and reducing it over the du-

ration of the calculation. In LaMP, the temperature is reduced in a linear fashion over

the course of the simulation. Replica Exchange (REx) (154) entails setting up multiple

simulations (replicas) at regular intervals between an upper and a lower temperature.

At regular time intervals during the search, structures from two of the replicas are ex-

changed. Thus any one search can run at both high and low temperatures over the course

of a search, providing an improved combination of search breadth and fidelity.
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LaMP provides plain, SA and REx searches, the parameters for which are set in the search

input file. One potential optimisation of the model would be the utilisation of multiple

processors in parallel during REx searches.

Lattice Types

Using a lattice reduces the conformational space being searched, and therefore increases

search speed. Different lattice types have differing degrees of accuracy (101, 155). While

many folding models use square and cubic lattices (143, 145, 156), LaMP uses the face–

centred cubic (FCC) by default.

There are a number of factors to be considered when choosing a lattice. The atomic

packing factor for the cubic lattice is 0.524, whereas the FCC lattice has packing factor of

0.740. This indicates that the latter fills more space than the former; the “dead” space not

filled by the model is conformational space which is not accessible by the search. Hence,

FCC is preferable for an accurate model. The hexagonal close-packed (HCP) lattice has a

similarly high atomic packing factor, but it has been suggested that protein crystal struc-

tures are more akin to FCC (157, 158). Although more accurate than simple lattices such

as cubic, the FCC lattice is more complex due to a higher coordination number. The co-

ordination number of 12 is the highest possible bulk coordination number.

Altering the lattice type can provide more accurate results as a product of an increased

atomic packing factor, but the downside of this method is one familiar to almost all areas

of computational chemistry; increased calculation complexity and therefore increased

run time for simulations. For example, a cubic lattice provides n6 possible conformations

for a peptide of n residues in length. Moving to an FCC lattice gives n12 possibilities, and

therefore requires a much longer search to enumerate all structures (or more realistically,

a large proportion of them).
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To increase the scope of the model, the ability to read in custom lattice formats has been

incorporated. This functionality allows the type of lattice to be defined. The lattice must

be described using an XML file (Figure 2.1) which contains information about the geom-

etry of the lattice, including both the distances between residues (not shown), and the

moves available on the lattice. Custom lattice types can be used in both the PDB2Lattice

and Lattice Search programs.

Figure 2.1: Excerpt from a custom lattice file for body-centred cubic, along with the

moves represented.

Move Sets

During a lattice search, a single alteration is made to the structure on the lattice between

each Monte Carlo energy evaluation. This may be the movement of a single residue, or

entire sections of the protein. It is important to ensure that the set of possible moves

addresses both local and non-local movements, that is, both the movement of individual

residues and a more generalised movement of larger sections of the molecule. To this

end, a variety of possible moves are available within the model. Each of the possible

moves has an equal chance of being selected. The available moves are described below.
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The ‘moveBy2Bonds’ move involves the transposition of a single residue from its current

position to a new, randomly-selected position (Figure 2.2). If the new position is already

occupied, or results in the chain being broken, the move is abandoned.

Figure 2.2: The ‘move by two bonds’ move - a single residue moves from the top posi-

tion to the bottom, causing two bonds to also move.

This move was optimised from the initial version of the software, as some moves are not

possible from certain starting conformations. For example, when three residues lie in a

straight line it is not possible to move the middle residue and retain the correct lattice

distances between all residues. If this move is attempted on such a conformation, it will

be abandoned immediately rather than taking time to fail all possible moves.

‘moveByReptation’ moves the first residue in the chain to a randomly-selected new po-

sition, and moves each subsequent residue to the position previously occupied by its

neighbour. This method has the effect of ’pulling’ the chain along the lattice, and was

first developed to describe the movement of a polymer in a gel (159).

The ‘invert’ move reverses the sequences of residues in the current structure, thus caus-

ing the C-terminus to move to the current position of the N-terminus and vice versa. All
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other residues also move to their respective inverted positions. The final move in the set

is a more localised alteration, ‘moveByTerminalSwing’, in which either the C or N termi-

nus is chosen at random. The selected terminus is moved to a free lattice point nearby,

the selection of which is again random.

2.1.3 Development

Initial development of the LaMP package was by Oakley et al. (160). The package was

written using version 1.5 of the Java programming language (Sun Microsystems). Docu-

mentation for the entire project may be generated using the JavaDoc feature. All devel-

opment was carried out using the Eclipse IDE, with JUnit unit testing procedures and

continuous integration support from CruiseControl. The package was tested on a com-

bination of openSUSE Linux, Apple Mac and Microsoft Windows operating systems.

Individual calculations used a variety of Linux and Apple Mac computers, through a

Condor computing pool.

2.2 Force Field Development

While it is computationally feasible for a model to find the lowest energy structure ac-

cording to a particular function, it is the quality of that energy function which determines

the quality of the resultant structures. A variation in the function will result in a subse-

quent variation in the tendency of the model to create conformations with particular

features. Version 1.0 of the software utilised a limited function, causing it to create struc-

tures that, while the lowest energy for that particular version, were not so biologically

relevant (Figure 2.3).
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Figure 2.3: LMVGGVVIA octamer structure generated by LaMP version 1.0 (160). Note

the compact conformation and lack of secondary structure.

Important aspects such as hydrogen bonding were missing, resulting in the model being

unable to generate, for example, secondary structure elements. It is therefore important

that the force field be defined in a manner which either incorporated these aspects, or

which generates final structures with similar features to those found in nature (i.e. sec-

ondary structure elements).

2.2.1 Existing Terms

The force field used in initial work by Oakley et al. (160) consisted of three terms, dis-

cussed below (Equation 2.2.1). The energy values discussed in each of the following
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sections are contained as default values within the LaMP programs, and relate to the

default FCC lattice. However, they can all be overridden using a custom force–field file

at runtime if required.

E = Σ(EC
p + Er

p) + ΣEbackbone + ΣEhydrogen−bonding (2.2.1)

where E is potential Energy, EC
p is the attractive energy, Er

p is the repulsive energy, Ebackbone

is the backbone angle energy and Ehydrogen−bonding is the hydrogen bonding energy.

The major term deals with the interactions between pairs of residues which are next to

each other on the lattice, and is based on work by Miyazawa and Jernigan (99). They

studied the interactions between each of the possible pairs of the twenty amino acids.

This was based on a sample of over 1,100 interactions in proteins, and built on their ear-

lier work which had used a smaller sample set (98). By analysing the frequency with

which each pair of residues was found in contact, they generated an attractive term

to reflect the propensity for two residues to be close to one another (Figure 2.4). The

LaMP model does not contain explicit water molecules, but the work by Miyazawa and

Jernigen implicitly includes solvent effects. Their 1996 paper states that this includes

hydrophobic effects, although subsequent work has questioned the accuracy of the in-

teractions between hydrophobic residues and has attempted to correct for this (161).
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Figure 2.4: Amino acid contact energies derived by Miyazawa and Jernigan (99).
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There are no distance–dependent relationships on the lattice, only a binary distinction of

’in contact’ or ’not in contact’ depending on whether two residues are on adjacent sites.

For this reason, all distance–dependent terms in the original Miyazawa–Jernigan poten-

tial have been discarded.

The work by Miyazawa and Jernigan also included another term. A purely attractive

term, as described above, would result in tight, compact structures with minimal dis-

tance between residues. To prevent such conformations, and allow the formation of

more extended features, such as α–helix and β–sheet, a repulsive term is included. This

stipulates that any residue with a number of contacts above a certain threshold (speci-

fied per amino acid) should have a positive, or unfavourable, energy associated with it.

This increases the overall energy of the conformation, and thus forces the model to move

away from dense, closely–packed structures.

The nature of a lattice model means that only certain angles can be made between the

residues forming the Cα backbone of the protein. In the cubic lattice, all angles are at 90◦,

while on the face-centred cubic, 60◦, 90◦, 120◦ and 180◦ are all available. The backbone

angles of naturally–occurring proteins tend to, for example, avoid tight turns. Some

backbone angles are, therefore, more prevalent than others. Version 1.0 of the model in-

cluded weightings added to a conformation’s energy, based on the frequency of each of

the available angles. On a cubic lattice this concept is redundant as all bonds are at 90◦,

but default weightings for the FCC lattice were included (Table 2.1).
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Backbone Angle Energy

60◦ 1.032

90◦ 0.353

120◦ 0.146

180◦ 0.000

Table 2.1: Default backbone energy values for the FCC lattice.

2.2.2 Hydrogen Bonding

While hydrogen bonding plays an important part in many areas of protein biology, in

this instance we have attempted only to simulate that which is involved in the formation

of secondary structure. This, for the reasons outlined above, is the most important aspect

of hydrogen bonding in the lattice model, and therefore the first to be addressed.

Hydrogen bonds within lattice structures are treated as a stabilising influence on a con-

formation. Hydrogen bonds in each type of secondary structure identified within the

model (parallel and anti–parallel β–sheet and α–helix) have a negative energy associated

with them. The united atom nature of the model means that bonds are created between

residues rather than between specific functional groups. The restrictions of the lattice

also ensure that hydrogen bonds must only be created between adjacent residues. This

leads to some disparity between the length of actual hydrogen bonds and those created

by the model.

β–sheet is a form of secondary structure commonly found in proteins. Two areas of

protein backbone are held together by hydrogen bonding between the NH groups of

one peptide group, and the C=O groups of the other peptide group. Multiple bonds,

between two areas of the same chain or between different molecules, hold the strands
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together. Multiple strands may thus align to form a sheet, which exhibits a twist over

its gross structure. Two strands lying alongside one another may run in the same direc-

tion, forming a parallel β sheet, or in opposing directions, forming an anti–parallel sheet.

The latter is marginally more stable than the former due to the more linear nature, and

shorter length, of the hydrogen bonds (Figure 2.5). The anti-parallel configuration is also

entropically more favourable.

Figure 2.5: Hydrogen bonding in parallel (top) and anti–parallel (bottom) β–sheet.

The ability to model these interactions is of particular importance due to their inherent

stabilising property within proteins, their ability to promote the formation of tertiary

structures via intra–molecular bonding, and the prevalence of β–sheet in diseases such

as amyloidoses.

The LaMP model calculates the number of parallel and anti–parallel sheet hydrogen

bonds present in a structure, and then adds a proportional negative energy to the overall

energy of the conformation. The simplest example of a hydrogen bond in a sheet confor-

mation involves two residues forming a bond. While not technically a sheet at this stage,
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this provides a starting point from which a sheet may later extend. Two residues lying

next to each other, i.e. in contact on the lattice, is not a sufficient criterion; we must also

ensure that the two strands are lying parallel to one another. From Figure 2.6, it can be

seen that for an anti–parallel sheet, this requires not only residues i and j to be in contact,

but also for i+1 and j-1 to be paired, along with i-1 and j+1.

Figure 2.6: A single hydrogen bond between two anti–parallel strands (left). In the

right–hand conformation, no bond is formed as residues i+1 and j-1 are not

in contact, nor are i-1 and j+1.

This prevents bonds forming between two strands which, for example, run orthogonal

to each other on the lattice. A similar term exists for the initiation of parallel sheets. This

strategy can be extended down the polypeptide chain, with each residue being assessed

in turn for proximity to another chain, followed by an assessment of the proximity of

neighbouring residues. If the relevant requirements are not met, the ’ladder’ of hydrogen

bonds is broken.

The chemical nature of amino acids mean that each residue (excluding the R group) does

not make more than two hydrogen bonds. This is reflected in the model; once two bonds

have been formed, the residue cannot participate in any further hydrogen bonding. The

technique outlined above, of working along a chain and adding hydrogen bonds as soon

as they are found, gives a bonding pattern that includes ’offset’ bonds, whereby residue

i bonds not only with residue j, but also with either j+1 or j-1. This pattern works well

with two β–strands, but was less effective for larger sheets consisting of three strands
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or more. In these cases, the offset bonds take up the second hydrogen–bond available

to each residue, preventing it from making any more. Residues in the second chain are

therefore unable to bond with those in the third, as they each already have the maximum

of two bonds. For multiple chains, this resulted in a network of ’fingers’ (Figure 2.7),

bound only by residues at the ends of chains, which did not suffer the ’offset bonds’

problem.

Figure 2.7: Incorrect pattern of hydrogen bonding with multiple strands. Note that

pairs of strands are separate from one another.

The model was altered to remove the offset hydrogen bond from each residue between

the first and second chains, and replace it with a direct one between the second and

third chains. This resulted in a pattern of bonds which was much more consistent with

those found in nature. The definition successfully recreated the bonding pattern along

β–sheets composed of multiple chains (Figure 2.8).
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Figure 2.8: Corrected bonding patterns in a β–sheet composed of multiple chains.

As previously, by considering both possible orientations of the chains, this definition of

bonding can be used for both parallel and anti–parallel conformations.

To this point, the bonding definition has been considered only in two dimensions, rather

than the three available on the lattice. This two–dimensional testing assumes that mul-

tiple chains all lie in the same plane; all test structures used prior to this point followed

this rule. While bonding between strands in the same plane is a possibility on the lattice,

it is far more likely that chains would lie at different angles, and thus the accuracy of

the definition must be confirmed on the lattice in three dimensions. The strength of the

bonds being created to stabilise the various conformations should also be considered.

The stronger the interactions used in stabilising a particular feature, the more likely that

feature is to form, and to dominate other structural features, which may also be desir-

able. For this reason, the calculations carried out on test structures used a variety of
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energies. When a highly negative energy is associated with hydrogen bonds, fewer such

bonds are required to confer a highly stable (more negative) energy on a conformation.

In effect, the magnitude of the hydrogen bonding energy is so great that it overrides any

positive energy which may result from other terms such as the backbone or repulsive

terms. Given that several hydrogen bonds should exist in a starting structure which al-

ready displays secondary structure, even if the model only retains a certain proportion

of these, they should reduce the energy of the structure significantly, and “lock” it into its

starting conformation or similar. When the model is run with a less negative energy for

the hydrogen bonding term, the influence of the term is diminished, and the secondary

structure elements are less likely to form or be retained. It is important to ensure that a

sufficiently large conformational search space is used to test the model. This gives the

greatest possibility of finding more stable search structures which prevent the original

conformation becoming “locked” in to place, thus testing the bonding definition most

thoroughly.

The main test structure used to assess the effectiveness of the β–sheet hydrogen bonding

definition was the I27 domain of Titin (PDB reference 1TIT). This structure was chosen

not only because other work within this Thesis uses it, but also because it includes one

parallel and one anti-parallel β–sheet. The domain is 89 residues in length. This is larger

than any structure applied to version 1.0 of LaMP, the largest of which was an octamer

of a 9-mer polypeptide.

The native structure of I27 was provided to the model, and run with hydrogen bonding

forces of -10 and -20 units. Control runs were carried out with the bonding term ac-

tive, but a hydrogen bond energy of zero. In this model, no α–helical hydrogen bonding

term was present. All searches ran for 107 steps using Replica Exchange Monte Carlo
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searches. Five replicas were used with temperatures ranging from T = 1.0 to T = 10.0.

The structures resulting from the runs can be seen in Figure 2.9.

Figure 2.9: Top - Control run with no beta–sheet hydrogen bonding. Bottom - Linear

strands in contact when energy = -10.

As expected, the run without any favourable energy term for sheet hydrogen bonds re-

sulted in a structure with no discernible secondary structure. The structure is quite com-

pact, and there are no sections where strands run alongside each other for more than one

lattice unit in length. In contrast, the structure obtained with an interaction energy of -10

units per hydrogen bond shows more promise. In a similar fashion to the native state

starting structure, the molecule shows a more compact and less structured side at one

end, while the other half of the molecule appears to contain anti–parallel beta sheet.

The strands are stacked, rather than forming individual sheets of only one strand thick-

ness. The hydrogen bond definition does not restrict this in any fashion, and this could

be an interesting target for further refinement of the model.
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If the hydrogen bonding force is increased, the structure begins to again resemble the

native conformation. This is most likely a result of LaMP identifying certain hydro-

gen bonds almost immediately the calculation begins. These bonds are given a strong

favourable energy, and the structure becomes locked; any move to an alternative struc-

ture results in too great a gain in energy. With a weaker energy of -10, this problem is

less severe, and the model can explore the conformational space more freely.

Helices are the most common secondary structure element, with α–helix being present

in biological structures much more frequently than 3–10 and π–helices. The α–helix con-

sists of a right–handed helix with a width of 5.4 Å. Each residue forms a 100 ◦ section

of the helix, giving 3.6 residues per full helix turn. This arrangement permits hydrogen

bonding between the carbonyl group of one residue and the amine group of the residue

four positions further along the peptide chain (Figure 2.10). This hydrogen bonding is

responsible for the stability of the helix, and the reproduction of such an effect is required

for any model to represent natural protein structures accurately.

Recreating any secondary structure motif is inherently difficult when restricted to a lat-

tice framework. The primary obstacle with fitting an α–helix is the directionality im-

posed by the lattice. The axis of a natural helix can run in any direction in three–

dimensional space. Even if a good approximation of a helix can be established in one

orientation on a particular type of lattice, subsequent rotation of the helix axis can cause

the representation to break down if there is no rotational lattice symmetry. In the case

of the FCC lattice, the default in LaMP, there is six–fold rotational symmetry, allowing

helices to take on any one of six directions, i.e. three different orientations.

The method utilised in LaMP involves identifying when a structure resembles a helix,

and giving that structure a favourable (i.e. more negative) energy. The defining charac-

teristic of an α–helix is the hydrogen bonding between residues i and i+4. This bonding
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Figure 2.10: i:i+4 hydrogen bonding in the alpha–helix.

pattern repeats down the length of a helix, and is distinct from the type of bonding found

in β–sheet. As this is an inherent part of the helix definition, the same definition was ini-

tially used to identify a helix on the lattice. The model stipulated that residues i and

i+4 should be in contact for a hydrogen bond to result. However, results from trial runs

using this definition gave uncoordinated structures with no definition (Figure 2.11). The

starting structure was a geometrically perfect right–handed helix, created in CHARMM

(58) using phi and psi angles of 58◦ and 47◦ respectively. This was converted to a lat-
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tice structure with the LaMP PDB2Lattice package on the FCC lattice. 109 steps of plain

Monte Carlo search were carried out, at T = 1.5.

Figure 2.11: Example structures resulting from i:i+4 contact hydrogen bond definition.

Inspection of these structures showed that the model was correctly identifying and as-

signing a negative energy to i:i+4 pairings. However, this definition imposed no restric-

tions on residues i+1, i+2 and i+3. These residues were free to move to any legal lattice

location, and thus generate structures which did not necessarily represent helix. The dis-

crete nature of the lattice means that a geometrically perfect helix will never fit directly

onto the model (Figure 2.12).

Therefore, to obtain the best possible representation of a helix using the i:i+4 definition,

it is necessary to exert some influence over the locations of the intermediate residues. An

analysis of the lattice moves made in a number of naturally-occurring helices was carried

out, to determine which ones occurred most frequently in helix configurations. A dataset

consisting of 226 individual helices was obtained from a set of 177 PDB structures. These

structures were chosen on the basis that the only secondary structure elements they con-

tained were α–helices. The relative frequencies of the 12 available lattice moves on the

FCC lattice are shown in Table 2.2.
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Figure 2.12: A geometrically-perfect α-helix (red), and the best–fit FCC lattice equiva-

lent (blue).

This work showed that there is no major distinction between the relative frequencies of

the FCC lattice moves. This is most likely due to the differing orientations of the helices

relative to the lattice. While a number of helices oriented in the same direction could

be expected to show a more distinctive pattern of moves, this would require the model

to restrict the direction of helix formation, and would also be dependent on the type of

lattice. Such a definition is not conducive to the construction of an accurate model.

In light of this discovery, it became apparent that there was no way of accurately re-

stricting the intermediate i+1, i+2 and i+3 residues to locations which would facilitate

the formation of helix between i and i+4. A number of alternative metrics were there-

fore investigated to determine whether any could be used to identify the presence of

a helix. The same dataset of 226 individual helices was used, along with another set

of structures representing β–sheet. These were obtained from a search in the PDB for

structures containing 60 - 100% β–sheet, with no greater than 90% homology between

selected structures.
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Move Relative Frequency

0 -1 1 0.0893

0 -1 -1 0.0876

0 1 1 0.0828

0 1 -1 0.0822

1 0 -1 0.0896

1 0 1 0.0815

1 1 0 0.0799

1 -1 0 0.0842

-1 1 0 0.0787

-1 -1 0 0.0828

-1 0 -1 0.0821

-1 0 1 0.0794

Table 2.2: Relative frequencies of the twelve possible moves on an FCC lattice, in a set

of 226 helical fragments.

As a common feature along the length of the helix, the distance between each pair of

residues should remain constant. In contrast, the distance between any such pair in a β–

sheet cannot be accurately predicted without knowledge of the length of the sheet. On

this basis, it should be possible to observe a difference in the i:i+4 distances in the two

different secondary structure type, and there are two reasonably distinct groups (Figure

2.13).

The more compact helix structures exhibit shorter separation lengths, with over half be-

ing around 2.5 lattice units, and more than 75% of helix i:i+4 interactions happening over

a distance of 2.5 lattice units or less. In contrast, most β–sheet i:i+4 distances are 3.5 lat-
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Figure 2.13: i:i+4 distance in α–helices (red) and β–sheets (green).

tice units or more. There is, however, some overlap between the two sets of data, and

this parameter is not sufficient to be used in isolation as a definition of helix bonding.

Backbone angles on the lattice are already employed to ensure structures do not tend

towards biologically unfavourable structures, for example those involving high frequen-

cies of 60◦ bends. Analysis of all backbone angles along the entire length of each protein

fragment in the test data sets showed that an angle of 180◦ is unlikely in helices (Table

2.3). These tend to take on tighter 60◦ turns to form the helix. Any tendency to take on

60◦ turns for this reason should be made energetically more favourable than the penalty

imposed by the backbone term. Again, while a general distinction can be seen between

the two data sets, there is insufficient evidence to support the creation of a hydrogen

bonding helix rule on these data alone.

Between residues i and i+4 there are three backbone angles. In a helix it is necessary to

continue a tight spiral formation, while a sheet is more likely to run in a linear fashion.
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Backbone Angle Relative Frequency

α–helix β–sheet

60◦ 0.609 0.058

90◦ 0.183 0.135

120◦ 0.183 0.640

180◦ 0.000 0.167

Table 2.3: Relative backbone angle frequencies in α–helix and β–sheet.

On this basis, taking the mean of these angles for each secondary structure type should

give a more acute angle for helices than for sheets. While this is generally true (Figure

2.14), there is again an overlap which prevents the parameter from defining an accurate

distinction between the two structure types.

A similar result was obtained when taking vector angles between pairs of residues. The

first vector was always assigned to i:i+1, and angles were measured between this and a

number of other vectors (Table 2.4).

Vector One Vector Two

−−−→
i : i+1

−−−−−→
i+1 : i+2

−−−→
i : i+1

−−−−−→
i+2 : i+3

−−−→
i : i+1

−−−−−→
i+3 : i+4

Table 2.4: Backbone vector angle definitions.
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Figure 2.14: Mean backbone angle between residues i and i+4.

Taking the angle between the vectors
−−−→
i : i+1 and

−−−−−→
i+2 : i+3 gives the backbone torsion an-

gle. Due to the constraints of the lattice this angle, like the backbone angle, can only take

on certain discrete values. There is again an overlap between the α–helix and β–sheet

distributions, although nearly 80% of helices have torsion angles of 120◦ or 180◦ (Table

2.5).

None of these parameters gave a definitive separation between helical and sheet struc-

tures, so a combination of factors was considered as a means of identifying relevant mo-

tifs. The LaMP model was amended to apply a helix hydrogen bond between residues

i and i+4 if the distance between the two residues was less than or equal to 2.5 lattice

units and if the backbone torsion angle was greater than or equal to 120◦. When applied

to a set of test molecules, the definition gave encouraging results. The number of hy-

drogen bonds discovered by the model in each structure was compared to the number
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Angle Relative Frequency

α–helix β–sheet

0◦ 0.001 0.261

60◦ 0.058 0.445

90◦ 0.136 0.134

120◦ 0.645 0.134

180◦ 0.136 0.026

Table 2.5: Relative frequencies of backbone torsion angle.

expected. In structures composed entirely of parallel or anti–parallel β–sheet, the model

correctly identified that no i:i+4 hydrogen bonds were present. A set of 72 helical struc-

tures was then tested, in which the model correctly identified the i:i+4 bonds in all but

one structure. The exception to this success was a helix in which several tight 60◦ turns

were present.

Unfortunately, this accuracy did not transfer to biological molecules. When a short (nine

residue) α–helix was presented to the model, and 107 steps of Replica Exchange Monte

Carlo simulation carried out, the model was unable to hold the structure in place using

predominantly hydrogen bonds (Figure 2.15).

Longer helices also produced similar results after 109 steps; simulations on the poly-

alanine 20-mer used earlier in this work produced structures which were much more

compact than the extended starting helix (Figure 2.16). The structures generated by

LaMP had a mean radius of gyration of 4.497 Å, over 15 repeats, versus 8.879 Å for

the starting structure. While a regular repetitive pattern can be seen in some of the struc-

tures, this takes the form of a left–handed helix, and formed in only two of the fifteen
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Figure 2.15: A sample test helix (helix extracted from PDB code 1HTA) and the resulting

structure after 107 steps with the final helix definition.

repeats. The modal number of hydrogen bonds formed was 15, with a minimum of 13

and a maximum of 16. This represents, in all cases, an increase from the nine seen in

the starting conformation. This is likely to be due to the more compact nature of the

structures, allowing more residues to be in contact and form hydrogen bonds. However,

the presence of these bonds appears to have prevented the structures from becoming as

globular as in previous versions of the model, and forced them to take on a more elon-

gated structure. While a useful first step towards the formation of helix, it is clear that

the definition requires further development before α–helices will be reliably reproduced.

Future Considerations

In addition to developing the α–helix term, future development of the model will re-

quire work to combine the two hydrogen–bonding terms. Work so far has been carried

out with only one term activated at any one time. Calculations involving both terms at
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Figure 2.16: Two structures (left, middle) resulting from 107 calculation steps. The start-

ing structure was the poly-Ala helix 20-mer fitted to the lattice (right).

once are affected by the restriction on the number of hydrogen bonds each residue can

form. If, for example, α–helix bonds are assessed first and result in the formation of two

hydrogen bonds on a residue, then no β–sheet bonds can then be made on that residue.

Thus, the prevalence of a particular type of secondary structure can be influenced by the

order in which the different bond types are assessed. Another important factor is the re-

finement of the individual hydrogen bonding term energies. The helix testing described

in this Thesis was carried out with a highly negative energy, to ensure that any desired

features which were identified remained in place; a more suitable value would need to

be determined through further testing of the model. While some models have a fixed

value for the strength of hydrogen bonds (162), it is not unusual for it to be presented

as a parameter to be adjusted. For example, Kirov et al. describe the ability to alter the

strength of hydrogen bonding (163) in an off–latice coarse–grain model. The more com-

plex model developed by Fujitsuka et al. (164) features more advanced modification of
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the bonding strength (based on buriedness of the bond, for example), but still contains a

term for the relative strength of the bonds in relation to other forces. In LaMP, while the

two energies can be assigned independently in a custom specification file, the relative

strengths may need to be adjusted to provide a suitable mix of the two secondary struc-

ture types. If necessary, this may include adaptation of the term on a residue–by–residue

basis to take account of the different propensities of amino acids to form each of the two

structures.

2.3 Forced Protein Unfolding

The model, with a functional β–sheet energy term, was applied to a problem involving

a protein containing a high proportion of sheet. The mechanical stability of the 27th

immunoglobulin domain of the protein Titin has been studied extensively, and forms the

focus of the second chapter of this Thesis. Previous research (126, 165, 166) has indicated

that when the termini of the I27 domain are pulled in opposite directions, the important

unfolding events occur within the first 15 Å of extension. The LaMP model has been used

to elucidate stable structures at 1 Å intervals along this trajectory, allowing comparison

between these and other conformations previously proposed as being important in the

stability of the domain.

2.3.1 Methods

A set of fifteen structures generated by Toofanny et al. (167) was used to represent reg-

ular 1 Å intervals across the first 15 Å of forced extension. These were converted from

all–atom to lattice structures using the LaMP PDB2Lattice package, with a mean RMSD

of 0.873 lattice units. The N– and C–terminal residues were held in place using the new
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RESTRAIN function. The search input file contains a list of residues to be restrained,

which are then prevented from moving through the simulation. This allowed the length

of each starting structure to remain constant throughout the calculations. Each confor-

mation was then run for 109 steps of Replica Exchange simulation, with ten replicas and

temperatures between 1.000 and 5.000. The default FCC lattice was used, along with β–

sheet energy of -10 for hydrogen bonds in both parallel and anti–parallel conformations.

This value is the same as that used in the successful trials which demonstrated the for-

mation of sheet previously. Similarly, the α–helix term was deactivated; as I27 contains

β–sheet exclusively, this should not have adversely affected the results. All runs took

place on Intel processor–based systems through a Condor compute pool.

2.3.2 Results

The unfolding of Titin I27 under force, which is discussed in depth in the next Chapter,

is thought to consist of two main unfolding events. The A and B strands separate, after

which the A’ and G strands are pulled apart. This latter step removes all structural

stability from the protein, which causes it to rapidly unfold to its contour length. The

lattice structures obtained from the LaMP calculations are distributed over a series of

N–to–C terminus distances, and may therefore be considered to offer a coarse trajectory

representing the unfolding process (Figure 2.17).

Unlike earlier iterations of the model, the software produced structures which were not

compact in nature. Although the N– and C–terminal residues were restrained, the main

bulk of each structure remained stable throughout the calculations. Each conformation

also showed good retention of β–sheet structure. Explicit solvent molecular dynamics

studies have suggested that the loss of the majority of sheet structure only occurs after
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Figure 2.17: Unfolding of I27 on an FCC lattice, via milestoning structures. A and B

strands are coloured green, A’ and G strands are orange.

the A’ and G strands have separated, and as the protein unfolds rapidly thereafter. It can

be seen that the lattice structures follow a similar unfolding pattern, with the A and B

strands becoming separated first, followed by the A’ and G strands (Figure 2.17). While

the extended nature of the structures is in part due to the restraints placed on the termini,

there is a marked improvement over the performance of previous versions of the model

which did not have the β–sheet term (Figure 2.18).

These results do not provide any new mechanistic insights into the forced unfolding

of the I27 domain. However, they act as a useful real–world validation of the model’s

β–sheet definition, especially when compared with the previous version. Both the con-

tinued presence of secondary structure elements, and the similar sequence of unfolding

events, further suggest that the bonding definition is capable of reproducing or main-

taining sheet secondary structure in an accurate manner.
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Figure 2.18: Example structures from lattice unfolding of I27 on an FCC lattice, in the

absence (top) and presence (bottom) of hydrogen bonding energies.

2.3.3 Conclusions

This work has demonstrated the development and implementation of hydrogen bond-

ing terms in a lattice model of proteins. The system has been updated to take these bonds

into account when determining the lowest energy structure for a molecule. The β–sheet

term has been shown to align strands in both parallel and anti–parallel orientations, and

to maintain the structure of molecules already containing sheet secondary structure. In

the absence of this term, the model produced compact, globular structures. The develop-

ment of an α–helix term proved more complex, and relies on a number of parameters to

establish the presence of helices. While the combination of these factors has resulted in
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less globular structures, the relative complexity of the helix, combined with the difficulty

of fitting it to the coarse–grain lattice, have meant that this definition has been less suc-

cessful. Nevertheless, the introduction of these hydrogen bonding terms and numerous

other improvements to the model have produced a significant improvement in the bio-

logical relevance of the low–energy structures produced. The model has been proven to

elucidate these conformations in an efficient manner, and therefore continues to display

potential for further development in the future.
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Chapter 3

Forced Protein Unfolding

Protein folding work has long been complemented by studies looking at the forced un-

folding of proteins. Historically, proteins with high mechanical stability have proved

good targets for computational studies. As the computing power available to researchers

increases, these simulations are able to probe ever more delicate processes. Neverthe-

less, it is important to recognise that there are alternative strategies to just increasing the

computational resource available to simulations. The use of techniques to lever existing

facilities, as well as to increase the chances of the event in question occurring, are also

important. These factors combined should allow researchers to access more biologically

relevant timescales, probe processes in finer detail than before, or to alleviate the use of

extreme simulation parameters to promote events of interest.

3.1 Titin I27

The giant filamentous protein Titin, also known as connectin, is found in vertebrate car-

diac and striated muscle, and is the third most plentiful protein within such tissue (after
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myosin and actin). Despite its presence in large quantities, Titin was not discovered un-

til relatively recently due to its size (168). Conventional electrophoresis gels of striated

muscle showed a large undefined band at the top, which for years was not investigated.

However, unconventional 2% gels showed that the band in fact represented a massive

protein. This protein was subsequently named Titin, and it has since been the subject

of much research due to its varied roles. Titin has a molecular weight of over 3 MDa,

making it the largest protein in the human body (169). Each filament is approximately 1

µ m in length with a diameter of 4 nm (169), and consists of approximately 30,000 amino

acids. The carboxy terminus of the protein is bound to myosin filament in the M-line,

and the molecules reaches from here to the Z-disk, thus spanning half a sarcomere across

both the I-band and A-band regions (Figure 3.1).

Figure 3.1: Titin’s place in the sarcomere. Adapted from (169).

The protein consists of tandem arrays of immunoglobulin and fibronectin domains, in-

terspersed with PEVK motifs, unique sequence insertions and other less structured se-

quences. The immunoglobulin domains feature primarily in the I-band region, along

with the PEVK repeats (areas of sequence where the protein is composed of up to 70%

Proline, Glutamic acid, Valine and Lysine). The arrangement of these domains and their

modular structure is determined by differential gene expression in different types of

86



muscle tissue. The carboxy terminus has a serine/threonine kinase domain close to it,

thought to be responsible for the reduction of transcription of serum response transcrip-

tion factor (SRF) as a result of mechanical stress (170). A binding point for the muscle-

specific calpain protease p94 has also been found within the molecule (169, 171). p94 has

the ability to cleave Titin at two points, although one of these can be absent as a result of

differential splicing. While the purpose of these cleavage sites is still unclear, suggested

possibilities include a role in sequestering p94, or a mechanism for the control of Titin

stability (171).

Titin has several roles within the body, including acting as a biomechanical sensor and

playing a role in signalling mechanisms controlling expression of muscle-related genes

(169, 171, 172). These functions also mean that mutations within Titin can result in a

disease state. Indeed, Titin has been implicated in hereditary myopathy with early res-

piratory failure (HREF) through mutations to the kinase domain, and also in increased

muscle stiffness when muscles are over-worked (172). In addition, autoantibodies spe-

cific for Titin have been found in sufferers of the condition myasthenia gravis. While the

primary auto–immune response in these patients is directed towards the acetylcholine

receptor, the secondary response focuses on Titin. All patients have one binding site,

but approximately 40% also show a second site further along the molecule, raising the

possibility of reactivity moving along the length of the Titin molecule as the disease pro-

gresses (173).

Titin’s primary role, however, involves muscle contraction and passive elasticity (174).

The molecule acts as a form of stabiliser, to help ensure that the sarcomere maintains a

regular arrangement during muscle expansion and contraction (175). The passive elas-

ticity operates by two different mechanisms. Under normal (low) forces, an entire Titin
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filament can act as an entropic spring (176), including extension of the PEVK domains.

However, when force is increased, elasticity is achieved through reversible unfolding of

immunoglobulin-like (Ig) domains along the structure (168).

Such unfolding was first studied in entire Titin molecules, with their various component

domains. Rief et al. (119) carried out forced unfolding using the atomic force microscope;

when they plotted the extension of the molecule versus the force applied, they saw the

now well-known saw-tooth pattern (Figure 3.2). Each peak or tooth corresponds to a

single domain unfolding. The domains can therefore be seen to unfold sequentially on

an individual basis, rather than concurrently.

Figure 3.2: The distinctive ‘sawtooth’ extension plot of I27 under force (166).

The variation in the domains present in Titin makes them potentially difficult to study.

It has become common, therefore, to synthesise proteins consisting of multiple repeats

of a single domain (166). This ensures that only the effects of the domain being studied

are measured.
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One domain which has been studied in such a way is the 27th immunoglobulin domain

of Titin. Known as I27, it is situated in the I-band. At 89 residues, it is relatively small

and therefore provides a good model for molecular dynamics simulations as calculations

are not too complex. As predicted by Politou et al. in their 1994 paper, the sections of

Titin containing Ig domains consist mostly of β-sheet secondary structure (177). The I27

domain is composed of seven β-strands, arranged in two anti-parallel β-sheets (Figure

3.3).

Figure 3.3: The I27 domain of Titin, showing the two β-sheets (front and back).

Lu et al. carried out some of the first work looking at the forced unfolding of I27 in 1998

(165), utilising the newly-developed technique of steered molecular dynamics (SMD).

SMD involves the application of force to molecules within a simulation, in order to in-

fluence the behaviour of the system. The technique was first developed in the mid-

1990s, and provided a convenient way to model I27 unfolding on a shorter timescale

than would otherwise be possible. Their SMD simulations fixed the Cα of the N-terminal

leucine residue, and applied a force to the Cα of the Glu88 residue. This force pulled the
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atom at a constant velocity (0.5 Å/ps and 1.0 Å/ps) to extend the molecule. The work

was amongst the first to show single unfolding peaks on a force versus extension curve

in computer simulations (165).

Subsequent AFM work by Marszalek et al. showed the presence of an unfolding inter-

mediate, approximately 7 Å along the unfolding coordinate. The group also carried out

SMD simulations, the results of which showed good agreement with the AFM data (166).

The unfolding to the intermediate state seen by Marszalek et al. in their subsequent AFM

and simulation work was reversible, leading them to hypothesise that such activity may

be important in conferring passive elasticity on Titin.

More SMD studies by Lu and Schulten led to the potential discovery of another inter-

mediate at around 14 Å along the unfolding coordinate (126). Using the same software

and similar methods, they extended their protocol to include both constant velocity and

constant force simulations over 1 ns in explicit solvent. The 14 Å intermediate observed

seemed to provide a more significant barrier to unfolding than the first 7 Å intermediate

structure.

Both of the unfolding events are thought to occur as a result of the breaking of hydrogen

bonds between different β-sheet strands of the I27 domain. The first intermediate is

observed when H-bonds between the A and B strands are broken. This leads to the two

strands becoming detached from one another. Continued application of force leads to the

breaking of H-bonds between the A’ and G strands, and subsequently the unfolding of

the molecule. This second event is referred to by Lu and Schulten as the ’key event’ in I27

unfolding, as it is the main barrier preventing the entire protein from unfolding. In their

2000 paper, the authors suggest that while the H-bonds between the A and B strands

break relatively easily, those holding the A’ and G strands together are only likely to be

broken under the influence of water molecules in the solvent surrounding the protein.
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The solvent molecules effectively out–compete for the H–bonds; the interaction of these

molecules with backbone atoms weakens the residue–to–residue bonds, and the force

applied by the AFM is sufficient to then break them (126).

In 2002, Fowler et al. produced I27 mutants in which the A strand had been altered to

destabilise it, or removed entirely (178). A combination of AFM, NMR and molecular dy-

namics simulations indicated that neither modification had a major effect on the forces

required to unfold the molecule. This would indicate that the A strand exhibits very

little resistance to mechanical force. The force required to promote unfolding is there-

fore likely being used to unfold the intermediate seen by Marszalek et al., rather than to

unfold the native state conformation.

3.2 Milestoning

3.2.1 Milestoning Theory

The principle of milestoning was first introduced by Faradjian and Elber in 2004 (179).

The technique represents a method by which molecular dynamics simulation timescales

can be greatly increased, and is therefore useful for the investigation of long-timescale

events such as protein folding and unfolding. Rather than running a single, lengthy

simulation, milestoning relies on the simulation trajectory being split up into a number

of discrete parts (Figure 3.4). These can be run as separate processes, and the results

compiled into a single ensemble for analysis.

A key element of milestoning simulations is the determination of suitable milestones,

that is, the hyperplanes which split the overall reaction coordinate into several smaller

sections. A natural parameter choice when studying force–induced protein unfolding
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Figure 3.4: Milestoning involves splitting a simulation into several components and

running them as individual simulations. The trajectory shown could also

move to the previous milestone.

is the distance between the N and C termini of the protein. This provides a convenient

measure in this scenario, but many other easily measurable parameters could be used,

such as energy or radius of gyration. Independent simulations are started at each of the

milestones, and ended when they reach either the previous or next milestone. Each of

these calculations is therefore much shorter than one running for the entire length of the

overall trajectory.

There are several benefits to milestoning (180): the most obvious is that each simulation

can be run as a separate process. This gives the advantage of parallel computing without

the inter-process overhead and software customisation normally associated with paral-

lelisation. However, milestoning can also help increase the chances of events such as

unfolding actually taking place during the simulations. Barriers on the energy land-

scape will prevent certain events happening regularly, and the chance of a simulation
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overcoming these barriers is proportional to the size of the barrier. By creating smaller

trajectories with lower individual barriers, an exponential decrease in the number of tra-

jectories required to overcome the barrier is achieved.

These benefits are substantial, but the method is subject to certain assumptions which

must remain true for it to be effective. In particular, there is a requirement for each

simulation to be independent of others, i.e. there must be “loss of memory” between

milestones. This Markovian nature, where the important factor is the time between

milestones rather than time across the entire ensemble, is only maintained if milestones

are a certain distance apart. The average time between each milestone must be signif-

icantly greater than the time taken for equilibration at any point. West et al. suggest a

method by which the minimum number of required hypersurfaces can be determined

(180). This factor precludes the overall trajectory from being split into a large number of

small milestones in a bid to maximise the benefits described above. In their original pa-

per, Faradjian and Elber point out that not all processes can be easily compartmentalised

into the discrete sections required; indeed they suggest that “identifying reaction coor-

dinates that satisfy the above requirement is far from obvious” and are often selected on

an ad hoc basis (179). They also note that the hyperplanes which make up the milestone

boundaries are only approximations, rather than true representations of the hypersur-

faces. This may lead to inaccuracies in calculations, a phenomenon discussed later in

this Thesis. The requirement for an initial reaction coordinate from which the individual

milestoning simulations can be commenced is also a prerequisite not present in some

other types of MD. In practice, a number of structures representing each hypersurface

will suffice, rather than a full reaction coordinate. Vanden-Eijnden et al. detailed the as-

sumptions and drawbacks of the method in 2008 (181).
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Implicit Solvent Milestoning

Work by Toofanny in 2005 (182) was the first to apply the milestoning technique to the

problem of forced protein unfolding. 21 µs of simulation were carried out using an

implicit solvent model. The energy landscapes produced from these results showed en-

couraging agreement with more traditional molecular dynamics trajectories, including

the presence of the intermediate and transition state structures. A further intermediate

was seen at approximately 10 Å similar to that reported by Best et al. (183). This involves

a rearrangement of the A’ and G strands; rather than moving quickly apart following the

concurrent breaking of six hydrogen bonds, as seen in AFM experiments, MD simula-

tions show a slower “sliding” apart of the two strands. Employing an implicit solvent

model does have the advantage of allowing long-timescale events to be observed more

quickly due to decreased friction and damping of the system being studied. However,

Toofanny acknowledges that the utilisation of a more detailed explicit solvent model

would provide a more accurate model, albeit one beyond the scope of available comput-

ing power at that time.

3.3 Explicit Solvent Milestoning

The use of an explicit solvent model should, in the majority of cases, provide a supe-

rior and more detailed model than an implicit solvent approximation. The nature of

molecular dynamics simulations mean that the number of calculations required to cal-

culate one time step is approximately equal to the square of the number of particles in

the system. While a number of strategies have been developed to reduce this number,

the difference in required computational power between the two solvent treatments is

still sizeable. This has traditionally resulted in short timescales and low numbers of re-
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peats. The increased availability of computing power in recent years, along with a better

understanding of how to utilise existing resources, has meant that long-timescale sim-

ulations in explicit solvent are now becoming more common. For the first time, it has

been possible to study the forced unfolding of Titin I27 in explicit solvent at low force

with a large ensemble, using the technique of milestoning.

3.3.1 Initial Simulations

Prior to starting milestoning simulations in explicit solvent, a number of calculations

were run using an implicit solvent model. The aim of these was to obtain an approx-

imation of the magnitude of force required to unfold the I27 domain, and see whether

the extension of the molecule at different forces reproduced the results seen by other

groups. Experimental work to examine the behaviour of mechanically stable proteins

under force has shown that the higher the force applied to a molecule, the more resistant

it becomes to that force (125).

The PDB structure for I27 had the N–terminal nitrogen and C–terminal carbon atoms

pulled in opposing directions using the AFM function of CHARMM. A constant force

was applied to each terminus, with force values from 200 pN to 500 pN. Fifty repeats

of each force were carried out in implicit solvent using the CHARMM19 force field and

EEF1 implicit solvent model. Each run lasted 10 ns, with a timestep of 2 fs using the

CHARMM SHAKE algorithm. All simulations were carried out at a temperature of 300

K.

The results showed that, while the majority of runs showed full or partial extension of

the protein at forces over 300 pN, there was very little or no extension at 200 pN and 250

pN (Table 3.1).
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Force (pN) Mean Extension (Å)

200 1.3

250 3.3

300 41.4

350 107.8

400 148.8

450 215.4

500 226.2

Table 3.1: Extension of the I27 domain at various forces in implicit solvent.

A typical extension curve for an unfolding trajectory (Figure 3.5) indicates that there are

two main unfolding events, one to an intermediate at approximately 52 Å N-C terminus

distance, with another intermediate at approximately 58 Å. Inspection of the trajectories

for these simulations shows that mechanism of unfolding involves the separation of the

A and B strands, followed later by the A’ and G strands (Figure 3.6).

These results are in agreement with the experimental and computational studies dis-

cussed earlier.

These implicit simulations were designed to give an initial idea of the force required to

extend the domain. The absence of unfolding at lower forces led to the selection of forces

from 300 pN to 500 pN for subsequent work. Although extension of around 40 Å was

seen on average at 300 pN in implicit solvent, in the increased viscosity of an explicit

solvent environment, less extension may be apparent.

In explicit solvent, three repeats of 1.5 ns of simulations were run at each of the selected

forces. The decreased simulation time versus the implicit simulation was due to the
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Figure 3.5: Extension of the I27 domain under 300 pN of force in implicit solvent (red)

and explicit solvent (green).

computationally expensive nature of the explicit solvent model. All simulations used

the CHARMM22 hydrogen parameters, with TIP3P solvent molecules in a 75.4 Å cubic

solvent box. The system included 13275 water molecules. A 1 fs time–step was used.

Electrostatics were treated with Particle Mesh Ewald summation, and non–bonded in-

teractions cut off at 11 Å with a smoothing function between 7.5 Å and 11 Å. A constant

temperature and pressure ensemble (NVT) was used, with the Nosé–Hoover thermostat

maintaining the temperature at 298 K. Version 29b1 of the CHARMM software was used

throughout.

The inherent friction and reduced simulation time compared with the implicit solvent

simulations resulted in less terminus–to–terminus extension. As a result, even at 500 pN

the maximum extension seen was around 55 Å. This includes the first unfolding event

seen in the implicit studies, i.e. the separation of the A and B strands (Figure 3.7). This

extension was noted with forces as low as 300 pN, and so this value was chosen for all
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Figure 3.6: Unfolding events in implicit solvent: separation of A and B strands (orange)

followed by separation of A’ and G strands (green).

subsequent simulations. The second unfolding event, separation of the A’ and G strands,

was not noted in any of the short explicit simulations.

Figure 3.7: Unfolding events in explicit solvent: separation of A and B strands (orange)

but no separation of A’ and G strands (green).

In both sets of simulations, the first unfolding event occurs at 7 Å extension, and in

the implicit simulations the second event occurs at 14 Å extension. After this the protein

extends rapidly. As these two events have been shown by this work and previous studies

to be the important steps in the unfolding process, future work has focussed on the

first 15 Å of extension. Although the implicit solvent simulations indicated that the

98



protein extended to around 300 Å, this is not physiologically relevant as the domain

rarely unfolds to such an extent in muscle tissue.

3.3.2 Explicit Solvent Milestoning

The starting milestoning structures were obtained from work done by Toofanny et al. in

2005. The structures are taken from the first 15 Å of extension in a trajectory obtained

using the Stochastic Difference Equation in Length (SDEL) (184, 185, 186, 187). SDEL ap-

proaches the protein folding issue as a boundary problem, rather than solving Newton’s

equations of motion. The boundaries consist of the folded and unfolded structures, and

the search in this case is for a trajectory which makes the action stationary. From such an

SDEL–derived trajectory, structures were originally extracted by Toofanny et al. at 1 Å in-

tervals. For this work, the structures were solvated in an octahedral solvent box of edge

length 80.655 Å. The solvated structures contained between 14,228 and 14, 272 atoms.

The simulation methods and experimental conditions were the same as those used in

the initial explicit simulations described previously. However, each starting structure

ran for a period of 1 ns, and was then repeated. Although the 1.5 ns simulation time of

previous work was not sufficient to give a full picture of the unfolding process, this piece

of work resulted in multiple 1 ns snapshots. Each 1 ns trajectory can then be broken up

according to the length of the structures contained within. Where two structures have

the same N– to C– terminus length, they are considered to be equal, that is, they both

lie at the same hyperplane. In this manner, it is possible to consider the multiple runs as

a single ensemble. A total of fifty repeats were carried out for each milestone, as serial

processes. This work was carried out with pulling forces of 200, 250 and 300 pN, giving

a total of 750 ns simulation time at each force and 2.25 µs overall.
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Analysis of the movement between milestones can be used to determine an energy land-

scape for the protein under force. A milestone distance is used to create the hyperplanes.

The number of times simulations move between two milestones, and the time taken to

do so, is counted. This can be a movement forwards, i.e. extension of the protein, or

backwards, i.e. contraction. For example, if the milestone distance is set to 0.1 Å and a

trajectory is started at milestone H, the structure could extend 0.1 Å to milestone Hs+1 or

contract 0.1 Å to Hs−1. From the new point, the structure may again extend or contract,

thus passing another milestone. This process is repeated many times, to give multiple

repeats. From the ratio of these folding and unfolding events, it is possible to determine

the energy (Equation 3.3.2).

When a system is in thermodynamic equilibrium, the rate at which it traverses between

two states is exponentially dependent on the difference in free energy of those states.

From the ratio of the proportion of simulations moving forwards to the proportion of

simulations terminating at the previous milestone, it is possible to estimate the free en-

ergy difference between the milestones, according to equation 3.3.1.

∆Em = −ln

(

Proportionm moving f orwards

Proportionm moving backwards

)

(3.3.1)

The overall change in energy as the system traverses the milestones can then be calcu-

lated using equation 3.3.2:

Em =
m

∑
i=1

∆Ei (3.3.2)

By plotting this information for each of the specified milestones, a free energy landscape

can be generated; this is plotted in Figure 3.8.
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Figure 3.8: Energy landscape of Titin I27 under 200 pN of force. TS represents a Transi-

tion State, I an Intermediate and CU the Catastrophic Unfolding event.

The assumptions underlying the above are of a system in thermodynamic equilibrium,

and that the time taken to traverse between milestones is significantly larger than the

time taken to equilibrate at each milestone. Thus, the relative energies are shown as

“energy” in Figure 3.8. While little reliance should be placed on the absolute values

of the “energies” given, the underlying trend that relates to the shape of the energy

landscape reveals valuable information and detail.

This landscape shares features with those proposed by a number of groups, suggesting

that the important unfolding events noted in existing work may be also be seen in the tra-

jectories obtained through these milestoning simulations. These landscapes all include

an initial transition state, representing the energy barrier associated with the breaking

of two hydrogen bonds between the A and B strands. A subsequent intermediate is the

well-characterised meta-stable structure which is present prior to the concurrent break-

ing of six hydrogen bonds between the A’ and G strands. This breakage forms the large
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peak in the energy landscape, and is the main barrier to unfolding of the molecule. It is

this feature that provides the main mechanical strength to the protein. After this transi-

tion state is passed, the mechanical strength is lost, and the molecule proceeds to extend

with little application of force.

The intermediate configuration is noted at approximately 6.5 Å extension; this is in

agreement with a number of previous studies. The structure was first noted by Marsza-

lek et al. (166), with a distance of 6.6 Å obtained from AFM work, and 6 Å from steered

molecular dynamics, at a force of 100 pN. Lu and Schulten calculated the extension to

be between 6 Å and 12 Å depending on the force applied (126). Figure 3.9 shows the

average structure across all runs at the intermediate (46.8 Å N:C distance). The A strand

has become detached from the B strand. The A’ and G strands are still aligned together,

as expected.

The progression from the intermediate to the transition state has been described as “the

key event in force-induced unfolding” of I27 (127) by Lu and Schulten, who found this

burst phase occurring after 3 Å of further extension from the intermediate. From figure

3.8, a distance of 2.8 Å can be derived from this explicit milestoning. This work agrees

with that of Williams et al. (188), who also proposed a 3 Å extension for the event based

on AFM studies. Previous milestoning work in implicit solvent provides a third source

of agreement for the proposed distance (182). Best et al. found the two features to be 3 Å

apart (183).

The well-characterised “all or nothing” nature of individual I27 domain unfolding is

thought to be due to the rapid unfolding after separation the A’ and G strands at the

transition state. The average structure of the transition state conformations show that

these strands are still adjacent to one another at the transition state (Figure 3.10).
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Figure 3.9: The average structure (dark grey) and all structures (light grey) at the 6.5 Å

intermediate, 200 pN. Top oriented to show separation of A and B strands

(orange). Bottom oriented to show A’ and G β–sheet contact remains (green).

An angstrom further along the reaction coordinate, the A’ and G strands have separated.

These strands are responsible for the majority of the structural strength of the molecule,

and their separation results in rapid unfolding of the protein. Figure 3.11 shows these

two strands.

The landscapes at 250 and 300 pN show the same features (Figure 3.12), albeit at ex-

tended distances due to the larger forces being applied.
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Figure 3.10: The average structure (dark grey) and all structures (light grey) at the main

transition state, 200 pN. Top oriented to show continued separation of A

and B strands (orange). Bottom oriented to show A’ and G β–sheet contact

remains (green).

The ability to run repeats of this work at a variety of forces is a consequence of the

efficiency of the milestoning technique. By comparing the relative positions of features

on the landscape at different forces, it is possible to calculate the Young’s modulus, E, of

the molecule (Equation 3.3.3).

E =
F/A0

∆L/L0
(3.3.3)

where E is potential energy, F is force, A0 is initial cross–sectional area, ∆L is change in

length and L0 is initial length.
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Figure 3.11: The average structure (dark grey) and all structures (light grey) after the

main unfolding event, 200 pN. Top oriented to show continued separation

of A and B strands (orange). Bottom oriented to subsequent separation of

A’ and G strands and resulting loss of β–sheet (green).

I27 is an elastic domain, and the Young’s modulus provides an indication of the stiffness

of the protein. Using figures from both landscapes generated above, an original molecule

length (L0) of approximately 7.3 Å is derived. This equates to an Young’s modulus for the

domain of 0.7GPa, which is in the order of those noted for polymers. The calculation of

the Young’s modulus for biological molecules is complicated by the value’s relationship

with the cross–sectional area of the molecule in question. In calculating the value quoted

above, a cross–sectional area of 1 nm2 has been assumed.
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Figure 3.12: The energy landscape of I27 under 200 pN (green), 250 pN (blue) and 300

pN (red) of force.

The sequence of unfolding events described above has been previously elucidated as a

result of a number of in vitro and in silico studies (126, 166). Some work has also involved

exposing the roles of specific residues within the protein (178, 188). Contact maps de-

rived from the milestoning trajectories show that residues identified in those studies also

seem to be important in this work. For example, Li et al created point mutations in the

A’ strand of I27, disrupting hydrogen bonding and therefore destabilising the molecule.

Their work showed residues in the A’ strand to be important in retaining the structure of

the molecule, which is supported by interactions in these milestoning simulations. Fig-

ure 3.13 shows that these residues remain in contact with those making up the G strand

until the main transition state is reached. The protein loses its stability only after the

contacts between these two strands are lost.

Further analysis shows that, using a 6 Å cutoff to define ‘contact’ between residue side–

chains, there were nine A’ and G strand residue pairs in contact at the transition state.
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Figure 3.13: Contact maps for I27 at 200 pN (6 Å cutoff). Top–left shows contacts at

the intermediate, bottom–right shows contacts after the transition state has

been passed.

At 1 Å extension past the transition state, only four of these pairs remained in contact.

The contact maps also show the breaking apart of the A and B strands, i.e. the hydrogen

bonds between residues 4 to 7 and 18 to 25.

The developers of the milestoning method, Elber et al., propose a more detailed analysis

method in their original paper (179, 189). The “QK picture” entails using the individ-

ual times taken for each forward or backward movement. A histogram of transitional

probability and waiting time is produced from this data for each milestone.

These are then used to effectively re–run the simulation. A set number of repeats start at

each milestone, and after one timestep the relevant proportions are moved to the previ-

ous or next milestone ‘bin’ according to the probabilities calculated from the raw data. At

the next timestep, moves are again made according to the probabilities for each separate
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Figure 3.14: A diagrammatic example of the “QK” method. Repeats moving forwards

at each timestep are shown in red, while those moving backwards are

shown in blue. n is the milestone number. t is time.

combination of waiting times and milestone position. Each milestone position may in-

clude repeats which have waited at that point for differing lengths of time; each of these

different waiting time sets will move forwards or backwards in different proportions.

This process is repeated for each milestone and each timestep until there is no further

movement between bins (Figure 3.14). The final distributions of the repeats amongst the

milestones represent the Boltzmann weight of each. From these, it is possible to calculate
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the energy of the milestones in a similar fashion to Equation 3.3.2. Figure 3.15 shows the

energy landscape determined using this method, at a pulling force of 200 pN.

Figure 3.15: Energy landscape of Titin I27 at 200 pN, as determined by QK calculations.

TS represents a Transition State, I an Intermediate and CU the Catastrophic

Unfolding event.

Using this QK method to investigate the explicit solvent milestoning results, it has been

possible to reconstruct energy landscapes at each of the different forces, and compare

their effects (Figure 3.16). In this analysis, there was a separation distance of 0.1 Å be-

tween each milestone. The landscapes show the predominant features seen in the initial

analysis, i.e. the 6 Å transition state and 9 Å intermediate.

Previous work on the forced unfolding of multiple proteins has shown that the appli-

cation of force can tilt the energy landscape (190), and in some cases even alter the un-

folding pathway (178). Given that the effect of force is to lower energy barriers on a

landscape, the subsequent tilting is the logical modification. The increased efficiency of

the milestoning method has allowed increased numbers of repeats to be carried out at a

variety of forces in this work. This in turn has again demonstrated that force can tilt the
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Figure 3.16: Energy landscapes of Titin I27 at 200 pN (green), 250 pN (blue) and 300 pN

(red), as determined by QK calculations.

energy landscape (Figure 3.16). The smaller barriers mean that the protein is more likely

to reach the transition state and therefore also more likely to unfold.

It should be noted that the energy values given in the landscapes resulting from this

work are much smaller than expected. For example, the energy difference between the

intermediate and the second transition state is approximately 3kBT. While the relative

positions of the features on the landscape are correct, as are the relative heights (e.g.

the second transition state is a much larger barrier than the first), the energies cannot

be considered as absolute figures. This may be due to the nature of the hyperplanes,

which are defined based on N–C terminal distance. As the distances seen within results

do not exactly match up with the hyperplane distances, it is possible that there is some

inaccuracy around the subsequent energy difference. Instead of being calculated exactly

between hyperplanes, the energy differences calculated may be between points either

side of the two hyperplanes in question. This presents the possibility of underestimating
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the energy due to effectively omitting the energy associated with certain parts of the

landscape. However, a more likely explanation than this effective “rounding” error is

one discussed by Faradjian et al. (179). They point out that the time taken for a simulation

to travel between milestones must be greater than that required for equilibration at each

hyperplane. It is possible that the timescales in this simulation are not sufficiently great

to ensure such integrity. As the two times become less disparate, the equilibration time

at each milestone becomes significant. This, however, is neglected in these calculations

and may account for the difference between the expected energies and those obtained

using the method.

Work by Marszalek et al. was among the first to examine the unfolding mechanism of

I27. It showed an elongation of the protein which was only noted at a force of 108 ± 19

pN (166). The energies of the intermediate at the forces undertaken in this study indicate

that the predicted value for unfolding to the intermediate is 105 pN (Figure 3.17). This is

therefore in agreement with the work of Marszalek et al. and also that of Williams et al.

(188).

3.4 Conclusions

Computational power has long been the restricting factor in the simulation of biolog-

ical systems. For over a decade, the I27 domain of Titin has been the focus of a large

number of experimental and computational studies. As the processing power available

to researchers has increased, so the in silico studies of I27 have become more detailed.

Here we present the most fine-grained simulations to date. The milestoning method has

allowed multiple repeats to be performed, and in a manner which tends to increase the

frequency of occurrence of traditionally rare events. This method provides the benefits
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Figure 3.17: Explicit milestoning simulations suggest that I27 could unfold to the inter-

mediate structure at a force of approximately 105 pN.

of parallel computing, without the time-consuming requirement to customise software

or communicate between processes during the simulations. In combination with the

availability of a large pool of compute resource, this provided a method by which an

explicit water model could be used to study the effects of very low levels of force on the

molecule.

Previous work in this area has involved simulated forced unfolding by molecular dy-

namics, by the application of a constant force or constant velocity (i.e. steered molecular

dynamics, or SMD) and the subsequent study of the time evolution of one or more sim-

ulations. Presented here is the first simulation of forced unfolding through the analysis

of kinetics. Molecular dynamics simulations are undertaken to reveal the kinetics alone

of transit across the lanscape. Analysis of these kinetics permitted an energy landscape

of the unfolding protein to be produced, and features in this related to the observed

experimental results.
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The results of the simulations have shown good agreement with a number of previous

studies. As well as reinforcing the results of this earlier work, this also suggests that

the forced unfolding of I27 is a suitable model for the application of the milestoning

method. The simulations, at 200, 250 and 300 pN, identified the main features previously

proposed on the forced unfolding pathway. These include the separation of the A and

B strands, which provide less structural stability than the later separation of the A’ and

G strands. The results also suggest that, in line with predictions by other groups, I27

may unfold to the main intermediate structure at forces of approximately 105 pN under

physiological conditions.
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Chapter 4

Least Action Dynamics

4.1 Background

The previous Chapter discussed a method by which a most likely, i.e. lowest–energy,

reaction coordinate could be determined. While traditional molecular mechanics ap-

proaches rely on the integration of Newton’s laws of motion to describe the movement

of a molecule over time, there are alternative methods which can be used to describe mo-

tion. One such method is considered in this Chapter, and developed in a novel manner

utilising the the lattice model introduced in Chapter 2.

4.1.1 Principle of Least Action

An object moving from one point to another over a defined period of time can follow a

number of possible paths. For example, an object thrown straight up into the air could,

hypothetically, return to its start point by moving only upwards and then downwards,

or by oscillating up and down before eventually returning to its starting position (Figure

4.1).
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Figure 4.1: Possible paths for an object thrown straight up into the air returning to its

original position. The true path, on the left, has the smallest action.

The Principle of Least Action states that, for these two alternative paths, the actual one

taken will be that where the average kinetic energy minus the average potential energy is

minimised. When applied to a single point in time, this term is known as the Lagrangian

(Equation 4.1.1).

L = T − V (4.1.1)

where L is the Lagrangian, T is average kinetic energy, and V is average potential energy.

To determine the ‘action’, S, for an object over time, we integrate the Lagrangian over

the duration of the event, t (Equation 4.1.2).

S =
∫ t2

t1

L dt (4.1.2)

where S is the action, t is time, and L is the Lagrangian.
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It follows, therefore, that by optimising the above function over multiple paths, where

the start and end configurations form the boundaries, which can determine which one is

most probable.

The example given above involves a single particle moving in one dimension; when this

principle is applied to a large system such as a protein, moving in three dimensions, it

becomes more complex but equally applicable. The kinetic energy, for example, can be

calculated by considering the movement of each particle in all three dimensions (Equa-

tion 4.1.3).

KE =
m

2

[

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2
]

(4.1.3)

where KE is kinetic energy, m is mass, and t is time.

It should be borne in mind that t has no real meaning in this instance and can be treated

simply as a parameter. In addition, moves undertaken do not have to be physically pos-

sible in the manner required by traditional molecular dynamics; the separation over time

means that each new structure discovered does not necessarily have to be immediately

accessible from the current structure. There are several methods by which the functional

may be minimised, and thus the most likely path determined. For example, it is possible

to generate large numbers of candidate paths, and compare their actions to determine

which has the lowest action. While this is a trivial computation in silico for one path,

assessing a large number of paths becomes more demanding. The methods used to gen-

erate the paths may vary, being either refinements of a previous path (as used in this

Thesis) or generated at random by Monte Carlo, for example. Alternatives have been

proposed which seek to find a stationary point on the function representing the action

(191), but such minimisations often entail the costly calculation of second derivatives.
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One major advantage of least action calculations over molecular dynamics is that they

effectively increase the frequency with which rare events are observed. When moving

between two stable states on an energy landscape, for example, traditional molecular dy-

namics simulations are reliant on probability, running until the energy barrier between

the states is overcome. By its nature, least action moves towards the most likely path

without having the requirement of overcoming this barrier. In addition, it is also possi-

ble to find least action pathways in a manner which does not necessarily require second

derivatives to be calculated.

4.1.2 Action–Derived Molecular Dynamics (ADMD)

The idea of using least action in the realm of molecular dynamics was first explored

by Elber and Karplus in 1987 (192). They used a modified version of CHARMM to

search for the least action paths of conformational changes in cyclohexane, dialanine

and myoglobin. Their choice of examples raises an important point in consideration of

this method, which is that both the start and end conformations of the system must be

known. They noted that the system was efficient at finding local minima, and could also

be run in parallel. Olender and Elber developed the model in the context of a very large

time step (relative to traditional MD) in 1996 (193), using a variety of methods to deter-

mine the best action. These included conjugate gradient minimisation and straight line

interpolation. Despite some success searching for local minima, they found these meth-

ods did not efficiently search for the lowest global action. By employing other variations,

such as a variety of initial guess trajectories and altering the resolution of the intial guess

path, they were able to improve the performance of the model. Lee et al. also found the

former to be important in their work (194). The technique subsequently saw relatively

little use until it was revisited in 2001 (191) and 2003 (195).
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In a computational setting, the time between the start and end configurations, t, is actu-

ally discretised into a number of intervals, P. Each interval represents a small proportion

of the total time (Equation 4.1.4).

∆t =
t

P
(4.1.4)

where t is time, and P is the number of intervals.

The calculations remain applicable because the pathway with the lowest action remains

the same regardless of whether it is calculated alone or as part of a larger path (Figure

4.2). It is this discretisation which also makes ADMD so suitable for being run as a

parallel process.

The total action is then calculated over the sum of these intervals (Equation 4.1.5).

Sh =
P−1

∑
0

Lj ∆ (4.1.5)

where S is the action, P is the number of intervals, and Lj is the Lagrangian.

This is repeated for a number of different paths, with the one corresponding to the lowest

action being the most likely.

4.2 Action–Derived Lattice Dynamics (ADLD)

4.2.1 Introduction

Work to date involving ADMD has used all-atom representations of target systems.

While these undoubtedly provide a higher resolution and accuracy in their use, they
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Figure 4.2: Discretising a least action pathway. The pathway calculated between points

C, D and E alone is the same as that obtained as part of the pathway from

A to G; calculating the small section in isolation does not affect the action.

For this reason, the pathway shown top-right is not the one with the least ac-

tion; the pathway shown bottom-right remains the pathway with the lowest

action, despite being calculated separately.

also require much more computational power and computing time than lower resolu-

tion models. The coarse–grain nature and reduced search space of lattice models make

them ideal tools with which to quickly generate large numbers of candidate structures

for a system. The efficiency of the lattice search allows the conformational space to be

explored in a much more comprehensive manner than would be possible with molecular

dynamics. This in turn means that many more trajectories can be investigated. While a

lattice could be applied to atomistic simulations, integration of the laws of motion on a

lattice are problematic; the lack of such integration in least action also represents another

advantage of the model.
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The LaMP lattice model discussed in Chapter 2 has been employed in order to compare

actions and find least action pathways. A simple example was considered first, to verify

that the model functioned in the expected manner. The method was then been applied

to the unfolding trajectory of Titin I27. This allowed the sampling of high numbers of

candidate structures and actions, and resulted in the creation of a dynamic trajectory

through a means other than the standard integration of Newton’s equations of motion.

4.2.2 Validation

The standard LaMP model detailed earlier in this work was used as the basis for the new

model. As previously, the less accurate α–helix term was de–activated for use on I27,

which contains only β–sheet. All searches were carried out using the Replica Exchange

algorithm, with no restraints on the molecules.

The simplest possible example of a least action calculation was chosen, using only three

structures. The beginning and end structures were the same as those used in the previous

section; the middle structure was the fifth intermediate. In each run, a lattice search was

carried out to generate new structures. All searches used the Replica Exchange algorithm

for 107 steps, with new candidate structures saved every 105 steps. The timestep was

varied for each run, as described in Table 4.1.

At the end of each run, the middle structure representing the least action was saved. The

five runs were carried out in series, that is, the end result from Run 1 formed the start

structure for Run 2. This ensured that different start structures were used to initiate each

run.

The structures obtained at each of the separate temperatures were compared. It can

be seen from Figure 4.3 that the structures run using different timescales are markedly
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Run Timestep (ns)

1 10−6

2 102

3 10−5

4 102

5 10−5

Table 4.1: Timesteps used in ADMD validation.

different. However, repeats using the same timestep were found to be the same. The two

runs using a 100 ns timestep generated identical structures, as did the two runs using a

10−5 timestep.

Altering the timestep in the model clearly affects the structures generated, as expected.

The use of a very small timestep infers that a structure needs to move from a start con-

formation to an end conformation very quickly. There is little time for movement, and so

the middle structure could be expected to be close to an interpolation between the start

and end structures. When a large timestep is used, there is more time for the structure

to visit different conformations which may have a smaller action.

The similarity between the structures obtained using identical timesteps is encouraging.

The two structures resulting from the 100 ns timestep are identical, as are those from the

10−5 ns runs. In itself, this suggests that the model consistently finds the lowest action

path within those sampled on a given landscape. However, the difference between the

timestep results is also of interest. With the shortest timestep, 10−6 ns, the structure rep-

resenting the least action has an RMSD of 2.018 Å from the start structure. The RMSD

increases to 3.458 Å when the timestep is increased to 10−5 ns. The conformations re-
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Figure 4.3: Structures obtained from ADMD runs using varying timesteps. Top - bot-

tom: Original conformation, 10−6 ns, 10−5 ns, 102 ns.

sulting from the 100 ns runs are very different to the results from the shorter timestep

runs; the RMSD between the 100 ns structures and the starting structure is 8.046 Å. These

results reflect the expected behaviour of the model when applied to this example, and

support the conclusion that the method is an efficient way of finding the pathway of

least action.

4.2.3 Forced Unfolding of Titin I27

The start configuration for the overall calculation set was defined as the native state (N–

C terminal distance 40.1 Å), while the end configuration was an extended conformation
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(N–C distance 132.6 Å) taken from a previous all-atom forced unfolding trajectory. Ten

other conformations along this trajectory were also chosen, resulting in a total of twelve

structures. Each was converted to a lattice approximation using the PDB2Lattice package

of LaMP.

Figure 4.4: Schematic showing the configuration of the least action lattice dynamics

setup. Each triplet represents a start, a middle and an end structure. Struc-

tures 7 - 12 and triplets starting from structure 4 are omitted for clarity.

As discussed previously, calculation of an action requires three structures; two boundary

structures at the start and end, and a middle structure. It is this middle structure which

is altered to create the different paths, each of which has a different action. The twelve

structures were therefore considered as a set of ten triplets. For each triplet, the start and

end configurations were fixed, and the middle structure altered by LaMP to generate

new candidate structures. A search was carried out on the first triplet, i.e. structures

1, 2 and 3. This generated 1,000 potential ‘middle’ structures. The action for each of

these structures was evaluated, and the conformation resulting in the lowest action then

replaced the existing structure. This process was repeated for the next triplet, consisting
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of structures 2, 3 and 4, and so on for the remaining eight triplets. Each time, the structure

with the least action was carried through to the next calculation. When the final triplet

was completed, the temperature of the search was reduced by 10% and the procedure

started again. This ran for over 400 repeats, resulting in the action being continually

refined from start to finish across the ten triplets.

The method described above replaces the ten original intermediate structures with those

found to represent the least action pathway. By combining these final structures, it is

possible to create a trajectory showing the predicted most probable path from the overall

start structure to the end structure. Figure 4.5 shows the twelve frames in the trajectory

resulting from the work. In these calculations, a timestep of 1.0 ns was used. Over

412,000 structures and actions were generated and evaluated during the calculations.

Figure 4.5: Twelve structures making up the trajectory resulting from Least Action Lat-

tice Dynamics (1 ns timestep).

The calculations were also repeated using the same starting conformations, but a much

larger 100 ns timestep. As noted in the initial validation, the structures obtained with the

longer timestep showed much more variation (Figure 4.6).
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Figure 4.6: A selection of the structures from the I27 unfolding trajectory (100 ns

timestep).

Conclusions

This method has successfully produced a series of structures representing the transition

from a folded to unfolded state in Titin I27. This pathway has the lowest action of those

sampled over the entire trajectory. The structures demonstrate a continued extension

of the molecule, with no artifacts or obvious deficiencies. While the final structures are

broadly similar to the starting structures provided to the model, this is to be expected.

The initial structures were not a disparate set of random structures, but already repre-

sented a trajectory thought to be the likely unfolding pathway.

It should be noted that the model is dependent on the underlying search strategy, and

the potential used to assess the energy of structures. Any further development of the

LaMP model would also benefit this work through more accurate calculation of ener-

gies.
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While the model is an efficient one, the fidelity could be improved by the introduction

of more points between the overall start and end structures. However, this effectively

restricts the trajectory in its earliest phase and would therefore require increased compu-

tation time to allow for this. It should also be borne in mind that all structures generated

for the final trajectory are still united–atom residues bound to the lattice. The next logical

step is to convert these back into all–atom representations, and consider running small

atomistic simulations with mild backbone restraints. This may allow the structures to

relax from the imposed lattice positions towards truer conformations.

The choice of timestep is also an important factor in the quality of the structures pro-

duced. Varying the timestep can cause a large variation in the resulting structures, a

phenomenon which is discussed in more detail below. Further work should therefore be

undertaken to determine the optimal timestep.
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Chapter 5

Conclusions

The use of computers to simulate biological systems has been developed over several

decades. From the simplest polypeptides to large macromolecular systems, these sim-

ulations have developed in parallel with computing power. Over this time our under-

standing of the processes governing protein folding has also developed, and the simula-

tions have progressed as a result of this.

Despite this progression, it is still not possible to accurately simulate large systems on a

relatively short timescale. This is due in part to the size of the systems under scrutiny,

and the inherent complexity of the forces governing their behaviour. It is also a con-

sequence of the systems being studied; these tend to involve relatively rare processes

whereby a system overcomes an energetic barrier. The nature of these events means that

even when simulations can be run, they do not necessarily demonstrate the event of in-

terest.

As well as providing useful insight in isolation, MD data provides a useful tool to com-

plement experimental data. For these reasons, work continues to enhance the capabil-

ities of models. The ability to run simulations in a shorter amount of time has been
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approached from many angles; parallelisation, coarse-grain models, and alterations to

experimental conditions have all been utilised.

This thesis has investigated two such methods. The first involved the development of a

coarse–grain lattice model requiring less computational power than all–atom off–lattice

models. The second technique, milestoning, facilitated better utilisation of existing re-

sources, along with increased probability of observing rare events. Finally, the coarse–

grain model was used to efficiently generate dynamics data, using the principle of Least

Action as an alternative to traditional Newtonian mechanics.

5.1 LaMP - A Lattice Model of Protein Folding

Coarse–grain models reduce the number of particles within the system being studied.

This reduces the number of pairwise contacts, and therefore the number of calculations

required to determine movement at each timestep. By fitting particles within a system to

a grid or mesh, it is possible to reduce the search space for a given problem. Assuming a

suitable grid, or lattice, is chosen, the search may still be of sufficient fidelity to provide

useful structural information. These techniques have been combined into the LaMP pro-

gram, which can be used to discover low–energy protein structures.

A standard PDB structure is converted to a reduced–atom structure on a lattice frame-

work. A Monte Carlo search scheme is used to probe the lattice search space to find con-

formations with the lowest energy, as defined by the model’s energy terms. These terms

have been modified to include reproduction of hydrogen bonding in protein secondary

structure elements. The β–sheet term has been shown to facilitate the production of sheet

elements, whereas the previous version of the model tended towards compact globular

structures. The reproduction of α–helices proved more complex due to the coarse–grain
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nature of the lattice. A number of metrics were investigated and combined to produce

a set of criteria for forming helix. Although this definition also forced the model away

from globular structures, it was not possible to reproduce longer sections of helix. A

variety of other features were added to or changed within the package, including more

accurate conversion of PDB structures to the lattice format, the ability to restrain residues

during a lattice search, and much greater customisation of output.

While β–sheet has been reproduced successfully, the continued development of the α–

helix term is an obvious target for future work. The parameters defined so far have

started to push structures into a relevant conformation, but only over very short peptide

lengths within a larger structure. The application of both terms in a single model will

also prove a crucial point to be addressed. Each term must exert sufficient influence to

cause the formation of the appropriate secondary structure element where appropriate,

but one must not dominate over the other. The model developed so far has provided a

sound base on which these developments can be made.

This model represents the first time that a coarse–grain on–lattice model has been used

in conjunction with Monte Carlo sampling of conformational space to find low–energy

structures. Previous lattice models have, for example, required prior knowledge of the

native or folded state, meaning that they are less applicable to problems where elucida-

tion of this structure has not been possible experimentally. Traditional molecular dynam-

ics have suffered from the requirement for lengthy run times. This has been minimised

in this model by the use of a reduced–atom model, requiring the calculation of fewer

interactions between particles, and the implementation of a lattice system, reducing the

conformational search space. The development of hydrogen bonding within the model,

in order to promote the formation of protein secondary structure, has given initially
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promising results. There is now the potential for further development of the model to

study protein folding in peptide aggregates and other systems.

5.2 Explicit Solvent Milestoning

While it is possible to use ever more powerful processors, or parallelise software and

simulations, milestoning seeks an alternative solution in dealing with large particle num-

bers. By splitting the simulation into a number of discrete parts prior to it beginning, it is

possible not only to effectively parallelise the simulation, but also to increase the chances

of witnessing rare events such as protein unfolding. This dual effect makes milestoning a

suitable choice for running more accurate simulations using the high numbers of atoms

found in explicit solvent models.

The forced unfolding of the I27 domain of Titin has been studied using the milestoning

technique. This is a well-characterised event which has previously been investigated

both in silco and in vitro. Simulations followed an experimental procedure previously

used in both domains, i.e. the application of force to pull the N– and C–termini of the

molecule in opposite directions. The use of milestoning not only allowed multiple re-

peats to be carried out, but also facilitated the use of multiple very low forces of 200 - 300

pN. These are much more physiologically relevant than the extreme conditions which

researchers have previously been forced to use to facilitate unfolding. The experiments

showed good agreement both with other MD simulations and with AFM work. The

energy landscape produced at all forces demonstrated features seen by other groups, in-

cluding the production of an intermediate followed by the crossing of a transition state

to rapid unfolding. The results obtained at different forces also agree with the concept

of force tilting an energy landscape. Finally, extrapolation from the low forces used sug-
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gests that the I27 intermediate may unfold in vivo under approximately 100 pN of force.

These results show encouraging agreement with a number of other studies, and indicate

that milestoning is an efficient method for increasing simulation efficiency without re-

ducing the fidelity of the model being used.

The ability to model events over a physiologically lengthy timescale is a valuable tool,

and one that can be applied across a number of fields. Milestoning has been shown to

reduce the amount of time required to simulate such biologically–relevant timescales,

thus increasing the relevance of simulation data in relation to such process. With partic-

ular reference to forced protein unfolding, any technique which allows the application

of less extreme simulation conditions is particularly useful. Milestoning could there-

fore provide an accurate way of validating in detail previous simulations undertaken

in implicit solvent, or of further reducing the force which is applied to molecules to

demonstrate unfolding. It has also been possible, for the first time, to elucidate an en-

ergy landscape by studying the reaction kinetics alone. The resulting landscape has then

been matched to features predicted through experimental work and traditional molecu-

lar dynamics simulations. This indicates that the method can provide an alternative to

the study of structural data when studying energy landscapes, and the key features of

interest therein.

5.3 Least–Action Lattice Dynamics

Increased efficiency in computer simulations can come from a variety of sources. The

Least Action method has been shown in the past to be a way of generating trajectories for

proteins moving from one state to another. In this Thesis, the method has been enhanced

to also take advantage of the benefits of coarse–grain modelling. The LaMP model dis-
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cussed in Chapter 2 was adapted to generate large numbers of candidate structures from

a starting conformation. A start and end conformation were also defined, forming the

boundaries to the problem. For each of the generated candidate conformations, it was

possible to use LaMP to calculate energies and therefore an action. The pathway with

the lowest action value is the most likely of those sampled.

This model was first tested using a simple example. The aim of this was to ensure that

the software did sample a larger number of structures when using a larger timestep.

As expected, a small timestep resulted in structures with little deviation from the start.

Using a larger timestep permitted the model to explore more conformations within the

search space.

Following this validation, the method was applied to a much larger problem. The bound-

aries of this problem were formed by the start and end conformations of a forced unfold-

ing trajectory for Titin I27. A set of ten structures within this were also selected, and the

least action calculated for each individual structure and its neighbours. This was refined

through several hundred repeats, and thus produced a trajectory deemed to be the one

with the least action. Again, this is subject to the caveat that it is the least action pathway

of those sampled, and the action is also dependant on the energy terms being used to assess

the potential energy (in this case, the LaMP package). Nevertheless, the model produced

a trajectory showing gradual unfolding of the molecule, and was able to produce such

results in a much shorter timescale than would be required by traditional molecular dy-

namics simulations.

This work represented the novel application of the newly–developed LaMP package to

a problem which has been studied many times before using existing off–lattice methods.

The initial results are promising, and refinement of parameters such as the timestep –

and indeed the energy functions within the LaMP model itself – may provide valuable
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results to be considered alongside conventional atomistic simulations. The process of

generating pathways using an iterative process, rather than by more traditional function

minimisation or Monte Carlo for example, has also been shown to be a valid method for

refinement of the action towards the most probably unfolding pathway.
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[21] E. Maşolepsza, M. Boniecki, A. Kolinski and L. Piela. Theoretical model of prion

propagation: a misfolded protein induces misfolding. Proc Natl Acad Sci U S A,

102 (2005): 7835–7840.

[22] L. G. Goldfarb, R. B. Petersen, M. Tabaton, P. Brown, A. C. LeBlanc, P. Montagna,

P. Cortelli, J. Julien, C. Vital and W. W. Pendelbury. Fatal familial insomnia and

familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA poly-

morphism. Science, 258 (1992): 806–808.

[23] R. B. Petersen, M. Tabaton, L. Berg, B. Schrank, R. M. Torack, S. Leal, J. Julien,

C. Vital, B. Deleplanque and W. W. Pendlebury. Analysis of the prion protein gene

in thalamic dementia. Neurology, 42 (1992): 1859–1863.

136



[24] R. Gabizon, H. Rosenmann, Z. Meiner, I. Kahana, E. Kahana, Y. Shugart, J. Ott and

S. B. Prusiner. Mutation and polymorphism of the prion protein gene in Libyan

Jews with Creutzfeldt-Jakob disease (CJD). Am J Hum Genet, 53 (1993): 828–835.

[25] F. Chiti, P. Webster, N. Taddei, A. Clark, M. Stefani, G. Ramponi and C. M. Dobson.

Designing conditions for in vitro formation of amyloid protofilaments and fibrils.

Proc Natl Acad Sci U S A, 96 (1999): 3590–3594.

[26] M. Fändrich and C. M. Dobson. The behaviour of polyamino acids reveals an

inverse side chain effect in amyloid structure formation. EMBO J, 21 (2002): 5682–

5690.

[27] M. Kidd. Paired helical filaments in electron microscopy of Alzheimer’s disease.

Nature, 197 (1963): 192–193.

[28] R. D. Terry. The Fine Structure of Neurofibrillary Tangles in Alzheimer’s Disease.

J Neuropathol Exp Neurol, 22 (1963): 629–642.

[29] R. Tycko. Molecular structure of amyloid fibrils: insights from solid-state NMR. Q

Rev Biophys, 39 (2006): 1–55.

[30] G. G. Glenner and C. W. Wong. Alzheimer’s disease: initial report of the purifi-

cation and characterization of a novel cerebrovascular amyloid protein. Biochem

Biophys Res Commun, 120 (1984): 885–890.

[31] E. D. Eanes and G. G. Glenner. X-ray diffraction studies on amyloid filaments. J

Histochem Cytochem, 16 (1968): 673–677.

[32] H. Inouye, P. E. Fraser and D. A. Kirschner. Structure of beta-crystallite assemblies

formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffrac-

tion. Biophys J, 64 (1993): 502–519.

137



[33] L. C. Serpell, C. C. Blake and P. E. Fraser. Molecular structure of a fibrillar

Alzheimer’s A beta fragment. Biochemistry, 39 (2000): 13,269–75.

[34] R. Tycko. Progress towards a molecular-level structural understanding of amyloid

fibrils. Curr Opin Struct Biol, 14 (2004): 96–103.

[35] M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys and C. C. Blake.

Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol

Biol, 273 (1997): 729–739.

[36] P. E. Fraser, L. K. Duffy, M. B. O’Malley, J. Nguyen, H. Inouye and D. A. Kirschner.

Morphology and antibody recognition of synthetic beta-amyloid peptides. J Neu-

rosci Res, 28 (1991): 474–485.

[37] R. Tycko. Insights into the amyloid folding problem from solid-state NMR. Bio-

chemistry, 42 (2003): 3151–9.

[38] R. G. Spencer, K. J. Halverson, M. Auger, A. E. McDermott, R. G. Griffin and P. T.

Lansbury. An unusual peptide conformation may precipitate amyloid formation

in Alzheimer’s disease: application of solid-state NMR to the determination of

protein secondary structure. Biochemistry, 30 (1991): 10,382–10,387.

[39] J. Lansbury, P. T., P. R. Costa, J. M. Griffiths, E. J. Simon, M. Auger, K. J. Halverson,

D. A. Kocisko, Z. S. Hendsch, T. T. Ashburn, R. G. Spencer and et al. Structural

model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-

sheet comprising a C-terminal peptide. Nat Struct Biol, 2 (1995): 990–8.

[40] T. L. Benzinger, D. M. Gregory, T. S. Burkoth, H. Miller-Auer, D. G. Lynn, R. E.

Botto and S. C. Meredith. Propagating structure of Alzheimer’s beta-amyloid(10-

138



35) is parallel beta-sheet with residues in exact register. Proc Natl Acad Sci U S A,

95 (1998): 13,407–13,412.

[41] H. Sticht, P. Bayer, D. Willbold, S. Dames, C. Hilbich, K. Beyreuther, R. W. Frank

and P. Rösch. Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease. Eur

J Biochem, 233 (1995): 293–298.

[42] S. Zhang, K. Iwata, M. J. Lachenmann, J. W. Peng, S. Li, E. R. Stimson, Y. Lu, A. M.

Felix, J. E. Maggio and J. P. Lee. The Alzheimer’s peptide a beta adopts a collapsed

coil structure in water. J Struct Biol, 130 (2000): 130–141.

[43] C. J. Barrow and M. G. Zagorski. Solution structures of beta peptide and its con-

stituent fragments: relation to amyloid deposition. Science, 253 (1991): 179–182.

[44] S. Baglioni, F. Casamenti, M. Bucciantini, L. M. Luheshi, N. Taddei, F. Chiti, C. M.

Dobson and M. Stefani. Prefibrillar amyloid aggregates could be generic toxins in

higher organisms. J Neurosci, 26 (2006): 8160–8167.

[45] M. Balbirnie, R. Grothe and D. S. Eisenberg. An amyloid-forming peptide from

the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc

Natl Acad Sci U S A, 98 (2001): 2375–80.

[46] R. Diaz-Avalos, C. Long, E. Fontano, M. Balbirnie, R. Grothe, D. Eisenberg and

D. L. Caspar. Cross-beta order and diversity in nanocrystals of an amyloid-forming

peptide. J Mol Biol, 330 (2003): 1165–75.

[47] J. C. Chan, N. A. Oyler, W. M. Yau and R. Tycko. Parallel beta-sheets and polar zip-

pers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p.

Biochemistry, 44 (2005): 10,669–80.

139



[48] F. Shewmaker, R. B. Wickner and R. Tycko. Amyloid of the prion domain of Sup35p

has an in-register parallel beta-sheet structure. Proc Natl Acad Sci U S A, 103 (2006):

19,754–9.

[49] Z. Zhang, H. Chen, H. Bai and L. Lai. Molecular dynamics simulations on the

oligomer formation process of the GNNQQNY peptide from yeast prion protein

Sup35. Biophys J, (2007).

[50] B. J. Alder and T. E. Wainwright. Phase Transition for a Hard Sphere System. J

Chem Phys, 27 (1957): 1208–1209.

[51] A. Rahman. Correlations in the Motion of Atoms in Liquid Argon. Phys Rev, 136

(1964): A405–A411.

[52] J. A. McCammon, B. R. Gelin and M. Karplus. Dynamics of folded proteins. Nature,

267 (1977): 585–590.

[53] P. van der Ploeg and H. J. C. Berendsen. Molecular dynamics simulation of a

bilayer membrane. J. Chem. Phys, 76 (1982): 3271.

[54] W. F. van Gunsteren, H. J. Berendsen, R. G. Geurtsen and H. R. Zwinderman.

A molecular dynamics computer simulation of an eight-base-pair DNA fragment

in aqueous solution: comparison with experimental two-dimensional NMR data.

Ann N Y Acad Sci, 482 (1986): 287–303.

[55] Y. Duan and P. A. Kollman. Pathways to a protein folding intermediate observed

in a 1-microsecond simulation in aqueous solution. Science, 282 (1998): 740–4.

[56] G. Jayachandran, V. Vishal and V. S. Pande. Using massively parallel simulation

and Markovian models to study protein folding: examining the dynamics of the

villin headpiece. J Chem Phys, 124 (2006): 164,902.

140



[57] P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson and K. Schulten.

Molecular dynamics simulations of the complete satellite tobacco mosaic virus.

Structure, 14 (2006): 437–449.

[58] B. Brooks, R. Bruccoleri, D. Olafson, D. States, S. Swaminathan and M. Karplus.

CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics

Calculations. J Comp Chem, 4 (1983): 187–217.

[59] P. K. Weiner and P. A. Kollman. Assisted model building with energy refinement.

A general program for modeling molecules and their interactions. J Comput Chem,

2 (1981): 287–303.

[60] M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kalé, R. D. Skeel and K. Schul-

ten. NAMD—A parallel, object-oriented molecular dynamics program. Inter-

national Journal of Supercomputer Applications and High Performance Computing., 10

(1996): 251–268.

[61] H. Berendsen, D. van der Spoel and R. van Drunen. GROMACS: A message-

passing parallel molecular dynamics implementation. Comp. Phys. Comm., 91

(1995): 43–56.

[62] J. E. Lennard-Jones. Cohesion. Proc. Phys. Soc., 43 (1931): 461–482.

[63] T. Darden, D. York and L. Pedersen. Particle mesh Ewald: An N log(N) method

for Ewald sums in large systems. J Chem Phys, 98 (1993): 10,089.

[64] R. Hockney and J. Eastwood. Computer Simulation Using Particles. IOP, Bristol,

1988.

141



[65] W. Rocchia, E.Alexov and B.Honig. Extending the Applicability of the Nonlinear

Poisson-Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions.

J Phys Chem B, 105 (2001): 6507.

[66] C. W. Still, A. Tempczyk, R. C. Hawley and T. Hendrickson. Semianalytical treat-

ment of solvation for molecular mechanics and dynamics. J Am Chem Soc, 112

(1990): 6127–6129.

[67] T. Lazaridis and M. Karplus. Effective energy function for proteins in solution.

Proteins, 35 (1999): 133–52.

[68] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein.

Comparison of simple potential functions for simulating liquid water. J Chem Phys,

79 (1983): 926–935.

[69] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren and J. Hermans. Inter-

molecular Forces. Reidel, Dordrecht, 1981.

[70] M. W. Mahoney and W. L. Jorgensen. A five-site model for liquid water and the

reproduction of the density anomaly by rigid, nonpolarizable potential functions.

J Chem Phys, 112 (2000): 8910–8922.

[71] H. Nada and J. P. J. M. van der Eerden. An intermolecular potential model for the

simulation of ice and water near the melting point: A six-site model of H2O. J

Chem Phys, 118 (2003): 7401–7413.

[72] S. Nosé. A Unified Formulation of the Constant Temperature Molecular Dynamics

Methods. J. Chem. Phys., 81 (1984): 511–519.

[73] W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys

Rev A, 31 (1985): 1695–1697.

142



[74] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or

temperature. J Chem Phys, 72 (1980): 2384–2393.

[75] D. E. Neves and R. A. Scott. Monte Carlo calculations on polypeptide chains.

VIII. Distribution functions for the end-to-end distance and radius of gyration for

hard-sphere models of randomly coiling poly(glycine) and poly(L-alanine). Macro-

molecules, 8 (1975): 267–271.

[76] S. Tanaka and H. A. Scheraga. Model of protein folding: inclusion of short-,

medium-, and long-range interactions. Proc Natl Acad Sci U S A, 72 (1975): 3802–

3806.

[77] G. M. Crippen. Topology of globular proteins. II. J Theor Biol, 51 (1975): 495–500.

[78] W. Kwak and U. H. E. Hansmann. Efficient sampling of protein structures by

model hopping. Phys Rev Lett, 95 (2005): 138,102.

[79] J.-P. Ryckaert, C. G and H. J. Berendsen. Numerical Integration of the Cartesian

Equations of Motion of a System with Constraints: Molecular Dynamics of n-

Alkanes. J. Comp. Phys., 23 (1977): 327–341.

[80] W. B. Streett, D. J. Tildesley and G. Saville. Multiple time-step methods in molecu-

lar dynamics. Mol. Phys., 35 (1978): 639–648.

[81] M. E. Tuckerman, B. J. Berne and G. J. Martyna. Molecular dynamics algorithm

for multiple time scales: Systems with long range forces. J Chem Phys, 94 (1991):

6811–6815.

[82] W. F. van Gunsteren and H. J. C. Berendsen. Computer Simulation of Molecular

Dynamics: Methodology, Applications, and Perspectives in Chemistry. Angew.

Chem. Int. Ed. Engl., 29 (1990): 992–1023.

143



[83] P. Ahlstrom, A. Wallqvist, S. Engstrom and B. Jonsson. A molecular dynamics

study of polarizable water. Mol. Phys., 68 (20 October 1989): 563–581.

[84] J. W. Halley, J. F. Rustad and A. Rahman. A polarizable, dissociating molecular

dynamics model for liquid water. J Chem Phys, 5 (1993): 4110–4119.

[85] E. Harder, J. D. Eaves, A. Tokmakoff and B. J. Berne. Polarizable molecules in the

vibrational spectroscopy of water. Proc Natl Acad Sci U S A, 102 (2005): 11,611–

11,616.

[86] W. Xie, J. Pu, A. D. Mackerell and J. Gao. Development of a polarizable inter-

molecular potential function (PIPF) for liquid amides and alkanes. J Chem Theory

Comput, 3 (2007): 1878–1889.

[87] O. Khoruzhii, A. G. Donchev, N. Galkin, A. Illarionov, M. Olevanov, V. Ozrin,

C. Queen and V. Tarasov. Application of a polarizable force field to calculations

of relative protein : ligand binding affinities. Proc Natl Acad Sci U S A, 105 (2008):

10,378–10,383.

[88] M. Souaille, H. Loirat, D. Borgis and M. Gaigeot. MDVRY: a polarizable classical

molecular dynamics package for biomolecules. Computer Physics Communications,

180 (2009): 276 – 301.

[89] S. Patel and C. L. Brooks. CHARMM fluctuating charge force field for proteins:

I parameterization and application to bulk organic liquid simulations. J Comput

Chem, 25 (2004): 1–15.

[90] S. Patel, A. D. Mackerell and C. L. Brooks. CHARMM fluctuating charge force field

for proteins: II protein/solvent properties from molecular dynamics simulations

using a nonadditive electrostatic model. J Comput Chem, 25 (2004): 1504–1514.

144



[91] S. Patel and C. L. Brooks. Fluctuating charge force fields: recent developments

and applications from small molecules to macromolecular biological systems. Mol.

Sim., 32 (2006): 231–249.

[92] ChemTips.com. Internet, 2008.

[93] N. Go. Theoretical Studies of Protein Folding. Annu Rev Biophys Bioeng, 12 (1983):

183–210.

[94] P. G. Wolynes. Recent successes of the energy landscape theory of protein folding

and function. Q Rev Biophys, 38 (2005): 405–410.

[95] K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas and H. S. Chan.

Principles of protein folding–a perspective from simple exact models. Protein Sci,

4 (1995): 561–602.

[96] H. Li, R. Helling, C. Tang and N. Wingreen. Emergence of Preferred Structures in

a Simple Model of Protein Folding. Science, 273 (1996): 666–669.

[97] A. Dinner, A. Sali, M. Karplus and E. Shakhnovich. Phase diagram of a model

protein derived by exhaustive enumeration of the conformations. J Chem Phys, 101

(1994): 1444–1451.

[98] S. Miyazawa and R. L. Jernigan. Estimation of effective interresidue contact ener-

gies from protein crystal structures. Macromolecules, 18 (1985): 534–552.

[99] S. Miyazawa and R. L. Jernigan. Residue-residue potentials with a favorable con-

tact pair term and an unfavorable high packing density term, for simulation and

threading. J Mol Biol, 256 (1996): 623–44.

145



[100] J. Skolnick and A. Kolinski. Simulations of the Folding of a Globular Protein. Sci-

ence, 250 (1990): 1121–1125.

[101] M. Levitt and A. Warshel. Computer simulation of protein folding. Nature, 253

(1975): 694–698.

[102] E.-H. Yap, N. L. Fawzi and T. Head-Gordon. A coarse-grained alpha-carbon pro-

tein model with anisotropic hydrogen-bonding. Proteins, 70 (2007): 626–638.

[103] K. A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,

24 (1985): 1501–1509.

[104] B. P. Blackburne and J. D. Hirst. Three-dimensional functional model proteins:

Structure function and evolution. J Chem Phys, 119 (2003): 3453–3460.

[105] S. Decatur and S. Batzoglou. Protein folding in the Hydrophobic-Polar model on

the 3D triangular lattice, 1996.

[106] G. M. S. de Mori, G. Colombo and C. Micheletti. Study of the Villin headpiece

folding dynamics by combining coarse-grained Monte Carlo evolution and all-

atom molecular dynamics. Proteins, 58 (2005): 459–471.

[107] M. Neri, C. Anselmi, M. Cascella, A. Maritan and P. Carloni. Coarse-grained model

of proteins incorporating atomistic detail of the active site. Phys Rev Lett, 95 (2005):

218,102.

[108] E. Lyman, F. M. Ytreberg and D. M. Zuckerman. Resolution exchange simulation.

Phys Rev Lett, 96 (2006): 028,105.

[109] G. Binnig, C. F. Quate and C. Gerber. Atomic force microscope. Phys Rev Lett, 56

(1986): 930–933.

146



[110] G. Binnig and H. Rohrer. Scanning tunneling microscopy—from birth to adoles-

cence. Rev. Mod. Phys., 59 (1987): 615–625.

[111] T. E. Fisher, A. F. Oberhauser, M. Carrion-Vazquez, P. E. Marszalek and J. M. Fer-

nandez. The study of protein mechanics with the atomic force microscope. Trends

Biochem Sci, 24 (1999): 379–384.

[112] M. Radmacher, M. Fritz, H. G. Hansma and P. K. Hansma. Direct observation of

enzyme activity with the atomic force microscope. Science, 265 (1994): 1577–1579.

[113] E. L. Florin, V. T. Moy and H. E. Gaub. Adhesion forces between individual ligand-

receptor pairs. Science, 264 (1994): 415–417.

[114] S. Allen, J. Davies, A. C. Dawkes, M. C. Davies, J. C. Edwards, M. C. Parker,

C. J. Roberts, J. Sefton, S. J. Tendler and P. M. Williams. In situ observation of

streptavidin-biotin binding on an immunoassay well surface using an atomic force

microscope. FEBS Lett, 390 (1996): 161–164.

[115] G. U. Lee, L. A. Chrisey and R. J. Colton. Direct measurement of the forces between

complementary strands of DNA. Science, 266 (1994): 771–773.

[116] H. G. Hansma, K. J. Kim, D. E. Laney, R. A. Garcia, M. Argaman, M. J. Allen and

S. M. Parsons. Properties of biomolecules measured from atomic force microscope

images: a review. J Struct Biol, 119 (1997): 99–108.

[117] A. Soteriou, A. Clarke, S. Martin and J. Trinick. Titin folding energy and elasticity.

Proc Biol Sci, 254 (1993): 83–86.

[118] H. P. Erickson. Reversible unfolding of fibronectin type III and immunoglobu-

lin domains provides the structural basis for stretch and elasticity of titin and fi-

bronectin. Proc Natl Acad Sci U S A, 91 (1994): 10,114–10,118.

147



[119] M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez and H. E. Gaub. Reversible un-

folding of individual titin immunoglobulin domains by AFM. Science, 276 (1997):

1109–12.

[120] P. F. Lenne, A. J. Raae, S. M. Altmann, M. Saraste and J. K. Hörber. States and tran-

sitions during forced unfolding of a single spectrin repeat. FEBS Lett, 476 (2000):

124–128.

[121] A. F. Oberhauser, P. E. Marszalek, H. P. Erickson and J. M. Fernandez. The molec-

ular elasticity of the extracellular matrix protein tenascin. Nature, 393 (1998): 181–

185.

[122] A. Imparato, S. Luccioli and A. Torcini. Reconstructing the free-energy landscape

of a mechanically unfolded model protein. Phys Rev Lett, 99 (2007): 168,101.

[123] A. Li and V. Daggett. Characterization of the transition state of protein unfolding

by use of molecular dynamics: chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A,

91 (1994): 10,430–10,434.

[124] R. Day, B. J. Bennion, S. Ham and V. Daggett. Increasing temperature accelerates

protein unfolding without changing the pathway of unfolding. J Mol Biol, 322

(2002): 189–203.

[125] E. Paci and M. Karplus. Unfolding proteins by external forces and temperature:

the importance of topology and energetics. Proc Natl Acad Sci U S A, 97 (2000):

6521–6526.

[126] H. Lu and K. Schulten. The key event in force-induced unfolding of Titin’s im-

munoglobulin domains. Biophys J, 79 (2000): 51–65.

148



[127] H. Lu, A. Krammer, B. Isralewitz, V. Vogel and K. Schulten. Computer modeling

of force-induced titin domain unfolding. Adv Exp Med Biol, 481 (2000): 143–60;

discussion 161–2.

[128] M. Gao, H. Lu and K. Schulten. Unfolding of titin domains studied by molecular

dynamics simulations. J Muscle Res Cell Motil, 23 (2002): 513–21.

[129] R. Kaijmierkiewicz, A. Liwo and H. A. Scheraga. Energy-based reconstruction of a

protein backbone from its alpha-carbon trace by a Monte-Carlo method. J Comput

Chem, 23 (2002): 715–723.

[130] Y. Iwata, A. Kasuya and S. Miyamoto. An efficient method for reconstructing pro-

tein backbones from alpha-carbon coordinates. J Mol Graph Model, 21 (2002): 119–

128.

[131] J. D. Honeycutt and D. Thirumalai. Metastability of the folded states of globular

proteins. Proceedings of the National Academy of Sciences, 87 (1990): 3526–3529.

[132] D. J. Wales and P. E. J. Dewsbury. Effect of salt bridges on the energy landscape of

a model protein. The Journal of Chemical Physics, 121 (2004): 10,284–10,290.

[133] S.-Y. Kim. An off-lattice frustrated model protein with a six-stranded beta-barrel

structure. The Journal of Chemical Physics, 133 (2010): 135102.

[134] T. Hoque, M. Chetty and A. Sattar. Extended HP model for protein structure pre-

diction. J Comput Biol, 16 (2009): 85–103.

[135] J. Song, J. Cheng, T. Zheng and J. mao. A Novel Genetic Algorithm for HP

Model Protein Folding. In Proceedings of the Sixth International Conference on Par-

allel and Distributed Computing Applications and Technologies, PDCAT ’05, 935–937.

IEEE Computer Society, Washington, DC, USA, 2005.

149



[136] A. S. M.T. Hoque, M. Chetty. Protein folding prediction in 3D FCC HP lattice

model using genetic algorithm. In IEEE Congress on Evolutionary Computation, 2007.

2007.

[137] J.-M. Shin and W. S. Oh. Study of Move Set in Cubic Lattice Model for Protein

Folding. J Phys Chem, 102 (1998): 6405 – 6412.

[138] L. Toma and S. Toma. Folding simulation of protein models on the structure-

based cubo-octahedral lattice with the Contact Interactions algorithm. Protein Sci,

8 (1999): 196–202.

[139] P. Pokarowski, A. Kolinski and J. Skolnick. A minimal physically realistic protein-

like lattice model: designing an energy landscape that ensures all-or-none folding

to a unique native state. Biophys J, 84 (2003): 1518–26.

[140] Z. Sun, X. Xia, Q. Guo and D. Xu. Protein Structure Prediction in a 210-Type Lat-

tice Model: Parameter Optimization in the Genetic Algorithm Using Orthogonal

Array. Journal of Protein Chemistry, 18 (1999): 39–46. 10.1023/A:1020643331894.

[141] Y. Ponty, R. Istrate, E. Porcelli and P. Clote. LocalMove: computing on-lattice fits

for biopolymers. Nucleic Acids Res, 36 (2008): W216–W222.

[142] B. A. Patel, P. G. Debenedetti, F. H. Stillinger and P. J. Rossky. A Water-Explicit

Lattice Model of Heat-, Cold-, and Pressure-Induced Protein Unfolding. Biophys J,

(2007).

[143] R. B. Pandey and B. L. Farmer. Conformation of a coarse-grained protein chain

(an aspartic acid protease) model in effective solvent by a bond-fluctuating Monte

Carlo simulation. Phys Rev E Stat Nonlin Soft Matter Phys, 77 (2008): 031,902.

150



[144] P. Pokarowski, K. Droste and A. Kolinski. A minimal proteinlike lattice model: an

alpha-helix motif. J Chem Phys, 122 (2005): 214,915.

[145] Y. Chen, Q. Zhang and J. Ding. A coarse-grained model for the formation of alpha

helix with a noninteger period on simple cubic lattices. J Chem Phys, 124 (2006):

184,903.

[146] J. Krawczyk, A. L. Owczarek, T. Prellberg and A. Rechnitzer. Lattice model for

parallel and orthogonal beta sheets using hydrogenlike bonding. Phys Rev E Stat

Nonlin Soft Matter Phys, 76 (2007): 051,904.

[147] A. A. Albrecht, A. Skaliotis and K. Steinhöfel. Stochastic protein folding simulation

in the three-dimensional HP-model. Comput Biol Chem, 32 (2008): 248–255.

[148] J. D. Westbrook and P. M. D. Fitzgerald. The PDB format, mmCIF, and other data

formats. Methods Biochem Anal, 44 (2003): 161–179.

[149] N. Metropolis and S. Ulam. The Monte Carlo method. J Am Stat Assoc, 44 (1949):

335–341.

[150] A. Sali, E. Shakhnovich and M. Karplus. How does a protein fold? Nature, 369

(1994): 248–251.

[151] L. Zhang, D. Lu and Z. Liu. How native proteins aggregate in solution: a dynamic

Monte Carlo simulation. Biophys Chem, 133 (2008): 71–80.

[152] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, E. Teller and A. H. Teller.

Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21

(1953): 1087.

151



[153] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by Simulated Anneal-

ing. Science, 220 (1983): 671–680.

[154] R. H. Swendsen and J.-S. Wang. Replica Monte Carlo simulation of spin glasses.

Phys Rev Lett, 57 (1986): 2607–2609.

[155] C. L. Pierri, A. D. Grassi and A. Turi. Lattices for ab initio protein structure predic-

tion. Proteins, 73 (2008): 351–361.

[156] C. Thachuk, A. Shmygelska and H. Hoos. A replica exchange Monte Carlo algo-

rithm for protein folding in the HP model. BMC Bioinformatics, 8 (2007): 342.

[157] Z. Bagci, R. L. Jernigan and I. Bahar. Residue coordination in proteins conforms to

the closest packing of spheres. Polymer, 43 (2002): 451–459.

[158] Z. Bagci, R. L. Jernigan and I. Bahar. Residue packing in proteins: Uniform distri-

bution on a coarse-grained scale. J Chem Phys, 116 (2002): 2269–2276.

[159] P. G. de Gennes. Reptation of a Polymer Chain the Presence of Fixed Obstacles. J

Chem Phys, 55 (1971): 572.

[160] M. T. Oakley, J. M. Garibaldi and J. D. Hirst. Lattice models of peptide aggregation:

evaluation of conformational search algorithms. J Comput Chem, 26 (2005): 1638–

46.

[161] K. Leonhard, J. M. Prausnitz and C. J. Radke. 3D-Lattice Monte Carlo simulations

of model proteins. Size effects on folding thermodynamics and kinetics. Biophysical

Chemistry, 106 (2003): 81 – 89.

[162] D. De Sancho and A. Rey. Evaluation of coarse grained models for hydrogen bonds

in proteins. J Comput Chem, 28 (2007): 1187–99.

152



[163] D. K. Klimov, M. R. Betancourt and D. Thirumalai. Virtual atom representation of

hydrogen bonds in minimal off-lattice models of alpha helices: effect on stability,

cooperativity and kinetics. Fold Des, 3 (1998): 481–496.

[164] Y. Fujitsuka, S. Takada, Z. A. Luthey-Schulten and P. G. Wolynes. Optimizing

physical energy functions for protein folding. Proteins, 54 (2004): 88–103.

[165] H. Lu, B. Isralewitz, A. Krammer, V. Vogel and K. Schulten. Unfolding of titin

immunoglobulin domains by steered molecular dynamics simulation. Biophys J,

75 (1998): 662–71.

[166] P. E. Marszalek, H. Lu, H. Li, M. Carrion-Vazquez, A. F. Oberhauser, K. Schulten

and J. M. Fernandez. Mechanical unfolding intermediates in titin modules. Nature,

402 (1999): 100–3.

[167] R. D. Toofanny and P. M. Williams. Simulations of multi-directional forced unfold-

ing of titin I27. J Mol Graph Model, 24 (2006): 396–403.

[168] L. Tskhovrebova, J. Trinick, J. A. Sleep and R. M. Simmons. Elasticity and unfold-

ing of single molecules of the giant muscle protein titin. Nature, 387 (1997): 308–12.

[169] L. Tskhovrebova and J. Trinick. Muscle disease: a giant feels the strain. Nat Med,

11 (2005): 478–9.

[170] S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kris-

tensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes,

S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd and M. Gautel.

The kinase domain of titin controls muscle gene expression and protein turnover.

Science, 308 (2005): 1599–1603.

153



[171] S. Labeit, B. Kolmerer and W. A. Linke. The giant protein titin. Emerging roles in

physiology and pathophysiology. Circ Res, 80 (1997): 290–294.

[172] H. L. Granzier and S. Labeit. The giant protein titin: a major player in myocardial

mechanics, signaling, and disease. Circ Res, 94 (2004): 284–95.

[173] E. Lübke, A. Freiburg, G. O. Skeie, B. Kolmerer, S. Labeit, J. A. Aarli, N. E. Gilhus,

R. Wollmann, M. Wussling, J. C. Rüegg and W. A. Linke. Striational autoantibodies

in myasthenia gravis patients recognize I-band titin epitopes. J Neuroimmunol, 81

(1998): 98–108.

[174] K. Wang, R. McCarter, J. Wright, J. Beverly and R. Ramirez-Mitchell. Viscoelasticity

of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament

is a dual-stage molecular spring. Biophys J, 64 (1993): 1161–1177.

[175] J. M. Squire. Architecture and function in the muscle sarcomere. Curr Opin Struct

Biol, 7 (1997): 247–57.

[176] W. A. Linke, M. R. Stockmeier, M. Ivemeyer, H. Hosser and P. Mundel. Character-

izing titin’s I-band Ig domain region as an entropic spring. J Cell Sci, 111 ( Pt 11)

(1998): 1567–74.

[177] A. S. Politou, M. Gautel, M. Pfuhl, S. Labeit and A. Pastore. Immunoglobulin-type

domains of titin: same fold, different stability? Biochemistry, 33 (1994): 4730–7.

[178] S. B. Fowler, R. B. Best, J. L. Toca Herrera, T. J. Rutherford, A. Steward, E. Paci,

M. Karplus and J. Clarke. Mechanical unfolding of a titin Ig domain: structure of

unfolding intermediate revealed by combining AFM, molecular dynamics simula-

tions, NMR and protein engineering. J Mol Biol, 322 (2002): 841–9.

154



[179] A. K. Faradjian and R. Elber. Computing time scales from reaction coordinates by

milestoning. J Chem Phys, 120 (2004): 10,880–10,889.

[180] A. M. A. West, R. Elber and D. Shalloway. Extending molecular dynamics time

scales with milestoning: example of complex kinetics in a solvated peptide. J Chem

Phys, 126 (2007): 145,104.

[181] E. Vanden-Eijnden, M. Venturoli, G. Ciccotti and R. Elber. On the assumptions

underlying milestoning. J Chem Phys, 129 (2008): 174,102.

[182] R. D. Toofanny. Investigations into the Mechanical Unfolding of Proteins in silico. Ph.D.

thesis, University of Nottingham, 2005.

[183] R. B. Best, S. B. Fowler, J. L. Herrera, A. Steward, E. Paci and J. Clarke. Mechanical

unfolding of a titin Ig domain: structure of transition state revealed by combin-

ing atomic force microscopy, protein engineering and molecular dynamics simu-

lations. J Mol Biol, 330 (2003): 867–77.

[184] A. E. Cárdenas and R. Elber. Atomically detailed simulations of helix formation

with the stochastic difference equation. Biophys J, 85 (2003): 2919–2939.

[185] A. E. Cárdenas and R. Elber. Kinetics of cytochrome C folding: atomically detailed

simulations. Proteins, 51 (2003): 245–257.

[186] A. Ghosh, R. Elber and H. A. Scheraga. An atomically detailed study of the folding

pathways of protein A with the stochastic difference equation. Proc Natl Acad Sci

U S A, 99 (2002): 10,394–10,398.

[187] K. T. Atsushi Uchida, Chieko Totsuji and H. Totsuji. Stochastic-Difference-

Equation Method for Long Time-scale Molecular Dynamics Simulations. Mem.

Fac. Eng. Oka. Uni., 40 (2006): 36–39.

155



[188] P. M. Williams, S. B. Fowler, R. B. Best, J. L. Toca-Herrera, K. A. Scott, A. Steward

and J. Clarke. Hidden complexity in the mechanical properties of titin. Nature, 422

(2003): 446–9.

[189] R. Elber. A milestoning study of the kinetics of an allosteric transition: atomically

detailed simulations of deoxy Scapharca hemoglobin. Biophys J, 92 (2007): L85–

L87.

[190] R. Merkel, P. Nassoy, A. Leung, K. Ritchie and E. Evans. Energy landscapes of

receptor-ligand bonds explored with dynamic force spectroscopy. Nature, 397

(1999): 50–53.

[191] D. Passerone and M. Parrinello. Action-derived molecular dynamics in the study

of rare events. Phys Rev Lett, 87 (2001): 108,302.

[192] R. Elber and M. Karplus. Multiple conformational states of proteins: a molecular

dynamics analysis of myoglobin. Science, 235 (1987): 318–321.

[193] R. Olender and R. Elber. Calculation of classical trajectories with a very large time

step: Formalism and numerical examples. J. Chem. Phys., 105 (1996): 9299–9315.

[194] I.-H. Lee, J. Lee and S. Lee. Kinetic energy control in action-derived molecular

dynamics simulations. Physical Review, 68 (2003): 064,303.

[195] R. Crehuet and M. J. Field. Comment on "Action-derived molecular dynamics in

the study of rare events". Phys Rev Lett, 90 (2003): 089,801; author reply 089,802.

156


	Abstract
	Acknowledgements
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Protein Folding and Aggregation
	1.1.1 Motivation for Understanding Protein Folding
	1.1.2 Protein Folding Theories
	1.1.3 Protein Misfolding and Aggregation

	1.2 Computer Simulations
	1.2.1 Background to Molecular Dynamics Simulations
	1.2.2 The Problems Faced
	1.2.3 Coarse-Grain Models

	1.3 Forced Protein Unfolding
	1.3.1 Experimental Techniques
	1.3.2 Molecular Dynamics Simulations of Protein Unfolding

	1.4 Aims and Objectives

	2 LaMP - A Lattice Model of Proteins
	2.1 Origins of the Model and Minor Developments
	2.1.1 PDB2Lattice
	2.1.2 Lattice Search
	2.1.3 Development

	2.2 Force Field Development
	2.2.1 Existing Terms
	2.2.2 Hydrogen Bonding

	2.3 Forced Protein Unfolding
	2.3.1 Methods
	2.3.2 Results
	2.3.3 Conclusions


	3 Forced Protein Unfolding
	3.1 Titin I27
	3.2 Milestoning
	3.2.1 Milestoning Theory

	3.3 Explicit Solvent Milestoning
	3.3.1 Initial Simulations
	3.3.2 Explicit Solvent Milestoning

	3.4 Conclusions

	4 Least Action Dynamics
	4.1 Background
	4.1.1 Principle of Least Action
	4.1.2 Action--Derived Molecular Dynamics

	4.2 Action-Derived Lattice Dynamics
	4.2.1 Introduction
	4.2.2 Validation
	4.2.3 Forced Unfolding of Titin I27


	5 Conclusions
	5.1 LaMP - A Lattice Model of Protein Folding
	5.2 Explicit Solvent Milestoning
	5.3 Least--Action Lattice Dynamics

	References

