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Abstract 
 

This thesis is primarily aimed at carrying out analysis of Energy Bags, reinforced fabric bags 

used for subsea compressed air energy storage.  Subsea compressed air energy storage is a 

completely new method of large-scale energy storage designed to be integrated with direct-

compression offshore wind turbines and wave energy converters.  Energy Bags are 

impermeable bags anchored to the seabed at significant depths (e.g. 500m) in which high 

pressure air, compressed by specially designed wind turbines and wave energy converters, is 

stored at pressures roughly equal to the hydrostatic pressure of the surrounding water.  

Energy Bags do not need to be particularly strong because most of the reaction to the 

pressure load is provided by the surrounding water, and high energy densities are available at 

such depths as 500m. 

 

 This thesis investigates the deformed shapes of Energy Bags and studies optimal 

designs.  Three analysis methods are developed which vary in their complexity, ease of use, 

and accuracy.  First, a system of coupled ordinary differential equations (ODEs) is derived 

which describes the deformed shape of an axisymmetric Energy Bag.  This model is later 

used in an optimisation study to find the shapes of bag which minimise the cost of materials 

(reinforcement, fabric, and ballast) per unit of energy stored.  Circumferential reinforcement, 

hanging masses from the inside of the bag (which it was hoped would lower the total cost) 

and fill level are all included as variables in the optimisation, and it is found that for 

reasonable materials costs an Energy Bag could cost less than £10,000/MWh when anchored 

at 500m.  This compares favourably with all other methods of large-scale energy storage.  

However, the bags used in the optimisation study have wide bases, which will require 

sealing against the seabed (unless water is to be allowed into the bags).  Problems are 

encountered when trying to use the ODE method to find the shapes of partially inflated bags, 

and it is generally not very easy to use. 

 

 Next, we carry out finite element analysis (FEA) of an axisymmetric Energy Bag 

using cable elements.  This is much more user-friendly and flexible than the ODE method.  

Partially inflated bag shapes are found, and pressure-volume curves are presented which 

show the almost isobaric performance of an Energy Bag.  It is found that material mass 

limits the extent to which the bag can be deflated before it becomes unstable.  The 

axisymmetric FEA is used to study bags with much more realistic circumferential 

reinforcement than the ODE method, and we also look at bags with an unsealed base, which 

allow water in through the base as they deflate. 
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 A three-dimensional FEA tool is presented which models an Energy Bag as a cable-

reinforced membrane using cable and membrane elements, and special measures had to be 

taken to deal with wrinkling.  We assume that the bag is rotationally symmetric, comprising 

a number of symmetric lobes.  The 3D FEA is used to find the stress distribution in the 

membrane of the bag, however a converged solution cannot always be found.  It is not 

certain why this is the case but it is anticipated that it is because deformed bags are not 

always rotationally symmetric.  The 3D FEA could also be used to model other membrane 

structures such as balloons, parachutes, roofs and sails, as well as nets. 

 

 The standard cutting patterns for lobes in lobed balloons are analysed, and a new 

cutting pattern known as the Constant Tension lobe is generated.  This is an extension of the 

Constant Radius lobe and takes into account the pressure gradient found in both air and 

water, minimising waste material.  The Constant Tension lobe is particularly appropriate for 

Energy Bags because of the large pressure gradient in water.  The Ultra High Performance 

Vessel architecture is also presented, upon which the design of the prototype Energy Bags is 

based.  The fabric structure of an Ultra High Performance Vessel comprises only two sheets 

of fabric (rather than many separate lobes welded together), and tendon shortening and 

“bellows” serve to ensure that there is no meridional stress in the fabric. 

 

 An analytical optimisation is used to show that the zero pressure bag that minimises 

cost of materials per unit of energy stored has equal costs of reinforcement and membrane.  

The axisymmetric FEA is also used to find the optimum bag size and maximum fill level for 

a bag which comes down to a single point at the base (as opposed to a wide base bag). 

 

 Finally, testing of two 1.8m diameter superpressure Energy Bags has been 

commenced during the course of this work, and the prototypes and test rig are documented in 

this thesis.  The prototypes were manufactured for us by Thin Red Line Aerospace Ltd., a 

Canadian manufacturer of deployable fabric structures for use in space.  They are being 

cycled back-to-back in order to prove the concept, assess the performance of an Energy Bag 

over time, and identify any problems that need to be addressed.  One of the bags had a few 

small leaks from the moment it was first inflated, but the other has remained airtight to date.  

It was found that if an Energy Bag is to be airtight, special attention must be paid to the 

welds at the seams and the sealing around the airline fittings. 
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Symbols 

 

 

Roman 

 

a,b,c Constants; Node position in deformed bag in x,y,z directions, respectively; 

Vectors forming sides 12, 13, and 23 of the deformed membrane element 

A Cross-sectional area of the cable element; Swept area of the deformed cable 

element; Area of the deformed membrane element 

Cba Cost of ballast 

Cbm Cost of bag materials 

Cmr Cost of meridional reinforcement 

Csu Cost of surface 

d Constant; Depth of the base of the bag 

D Elastic matrix; Diameter 

Dc’ Modified elastic matrix (for a wrinkling element, in the principal coordinate 

system) 

Dmax Maximum diameter of the bag 

Dmax
*
 Optimum diameter 

E Stored energy; Young’s modulus 

f Objective function; Force 

F Element force vector; Element load vector 

Fbh Differential pressure force acting across the upper bulkhead 

Fbuoyancy Buoyancy force 

Fdp Element differential pressure force vector 

Fsb Seabed resistance force 

g Standard gravity 

h Height; Height above the base of the bag 

I Moment of inertia 

Jr Jacobian of force residuals 

k Constant; Variable in equation for Fsb 

K Stiffness matrix 

Ke Elastic stiffness matrix 

Kg Geometric stiffness matrix 

L Meridional length; Length of element in deformed configuration 

L0 Length of element in undeformed configuration 

mbh Mass of the upper bulkhead 

M Molar mass 

n Number of tendons/lobes 

n̂  Unit normal to the element 

nw Downward force per unit of projected area onto the seabed 

p Differential pressure across the bag (= Pint - Pext) 

p0 Differential pressure at the base of the bag 

p̂  Unit parallel from node 2 to node 1 

P Pressure; Power 

r Ratio between storage pressure and atmospheric pressure; Local radius of the 

bag; Base radius; Distance from axis of rotation; Force residual 

r̂  Dimensionless force residual 

r1 Radius of curvature in the direction of maximum curvature 

r2 Radius of curvature in the direction of minimum curvature 

R Universal gas constant; Load stiffness matrix; Reuter’s matrix 

s Distance along the meridian from the top 

S Undeformed area of the membrane element 

t Thickness of the membrane element; Metric ton 
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T Total tension in all of the meridional cables; Absolute temperature; Tension in 

a cable element; Transformation matrix; Torque 

T1 Meridional tension per unit length in the direction of maximum principal 

curvature 

T2 Meridional tension per unit length in the direction of minimum principal 

curvature 

Tc Circumferential tension (per unit meridional length in Chapters 3, 5 and 7) 

Tm Meridional tension (per unit circumferential angle where noted) 

Tm,lo Meridional tension in the cable element below the current node 

Tm,up Meridional tension in the cable element above the current node 

u,v,w Nodal displacement in x,y,z directions, respectively 

u Vector of nodal displacements 

V Volume 

w Height of the bottom of the air pocket above the base of the bag 

wbh Weight of the upper bulkhead 

W Work 

Wadiab Work done in an adiabatic process 

Wisoth Work done in an isothermal process 

x,y,z Node position in undeformed bag in Cartesian coordinates 

z Height 

 

 

Greek 

 

 Angle between the normal to the meridian and the vertical; Penalty function 

 Angle between the base of the bag and the seabed 

 Strain scalar/vector (x,y,xy) 

’ Rotated strain vector 

 Load fraction 

 Heat capacity ratio; Displacement factor; Structural capacity 

 Very small multiplication factor used in cable element wrinkling; Small height 

above the seabed used in seabed resistance forces 

 Penalty parameter 

 Poisson’s ratio 

 Angle around the circumference of the bag 

p Angle between local coordinate system and principal stress coordinate system 

 Density; Mass distribution 

a Density of air 

w Density of water 

 Stress scalar/vector (x,y,xy) 

’ Rotated stress vector 

0 Prestress scalar/vector 

1,2 Maximum and minimum principal stresses, respectively 

c Compressive stress 

vM von Mises stress 

 Angular velocity 
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Chapter 1 
 

Introduction 
 

 

1.1 Fossil Fuels and their Drawbacks 
 

Energy demand has roughly doubled in the last 30 years, and is set to increase by a further 

50% in the next 25 years [1].  This rise in demand is driven by two key factors: a growing 

population and greater prosperity.  The International Energy Agency predicts that 70% of the 

increase in energy demand over the next 20 years will come from developing nations and 

that China, still considered a developing nation, will account for 30% of the overall increase. 

Today, humans exploit many different forms of energy, however fossil fuels (coal, 

oil, and natural gas) dominate the mix; they account for about four-fifths of total energy use, 

a share that has remained largely unchanged for around a century.  These fuels dominate 

because they are relatively cheap, abundant, and have high energy densities.  The various 

energy sources available tend to be suited to particular purposes, for example the transport 

sector relies almost exclusively on oil, while heating is largely fuelled by a mixture of oil, 

gas, wood, and coal.  For electricity generation, fossil fuels contribute about two-thirds of the 

energy use, with nuclear and hydro providing most of the rest, while renewable energy 

sources only provide around 2%. 

Fossil fuels, while having many benefits, have two main downsides: they are limited 

in supply, and because some of the by-products of fossil fuel combustion are greenhouse 

gases, they are the fundamental cause of global warming and ocean acidification.  

Greenhouse gases, such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), 

are gases found in the atmosphere which absorb and re-emit solar energy that has reflected 

from the surface of the Earth in a process called the greenhouse effect.  The greenhouse 

effect is essential for life on Earth as we know it: greenhouse gases have a large effect on the 

temperature of the Earth’s surface, and without them the global mean surface air temperature 

would be around -19°C, approximately 33°C lower than the actual mean temperature of 

14°C [2].  However, since the industrial revolution (1750
1
) the atmospheric concentration of 

                                                 
1
 The IPCC uses the year 1750 as the start of the industrial revolution. 
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the three major long-lived greenhouse gases has increased by an unprecedented level: CO2 

concentration has risen by about 36% (100ppm), N2O concentration has risen by about 18%, 

and CH4 concentration has risen by about 148% [3].  This is not in keeping with any 

previous change; in the 10,000 years before 1750, the atmospheric concentration of CO2 had 

been relatively stable between 260 and 280ppm [4].  Most worryingly, the growth rate of 

CO2 concentration has also increased substantially over the past 250 years: the first half of 

the 100ppm increase in CO2 concentration from 1750 was reached by 1970, taking 220 

years; the second half took place over the last 40 years [5].  Fossil fuel combustion (along 

with contributions from cement manufacture) is responsible for over 75% of the increase in 

atmospheric CO2 concentration since 1750 [6], and the IPCC claim that “it is extremely 

likely
2
 that humans have exerted a substantial warming influence on climate.” [7] 

Global mean surface temperatures rose over the period 1906–2005 by 0.74°C 

(0.56°C to 0.92°C) [8], and are predicted to rise by a further 1.1–6.4°C during the 21
st
 

century, depending on worldwide greenhouse gas emissions [9].  Global warming causes 

three major problems: sea level rise caused by the melting of the Antarctic and Greenland ice 

sheets, extreme weather patterns, and drought.  Unfortunately it is likely that the effects will 

be greater in poorer areas of the world, particularly the tropics and subtropics. 

Increased concentration of atmospheric CO2 also causes ocean acidification.  In the 

past, carbon released from weathered rocks on land has dissolved into the sea at such a slow 

rate that it is deposited and buried on the sea floor without a rise in ocean acidity.  However, 

anthropogenic emissions of CO2 dissolve into the ocean at a higher rate than the carbon can 

be deposited onto the seabed, increasing the hydrogen ion (H
+
) concentration in the ocean 

and so increasing its acidity.  It is estimated that H
+
 concentration has risen by 29% since the 

start of the industrial revolution, and could rise by a further 41% on pre-industrial levels by 

2050 [10].  It is anticipated that coral and other carbonate structures will be vulnerable to 

dissolution, and that it will become difficult for planktonic organisms, key components of the 

food chain, to form shells.  The impacts of ocean acidification will appear first in the 

Southern Ocean because cool water (such as that in the Southern Ocean) absorbs more CO2 

than warm water. 

The second problem with a dependence upon fossil fuels is their limited supply.  The 

US Energy Information Administration calculated that, at current extraction rates, world 

recoverable coal reserves (estimated at 929 billion short tons) would last 132 years [11].  

Taking an average annual growth in coal consumption of 2% into account [12], the reserves 

would be depleted in only 65 years.  At current consumption (84.34 million bbl/day, 2008 

est.), proved oil reserves (1.365 trillion bbl, 1
st
 Jan. 2009 est.) will last 44 years and proved 

                                                 
2
 The IPCC uses ‘extremely likely’ to represent a 95% confidence level or higher. 
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natural gas reserves (182.1 trillion m
3
), at current consumption (3.073 trillion m

3
/year), will 

last 59 years [13]. 

There are several measures that can be taken to combat global warming and these 

fall into the following broad categories: reducing or even stopping/reversing deforestation 

(rainforests are valuable carbon sinks); improving the efficiency of machinery, appliances, 

and buildings; implementing carbon capture and storage (CCS); and moving away from a 

dependence on fossil fuels by making use of renewable energy sources such as solar, wind, 

and hydro, and lower carbon energy sources such as nuclear power.  Improving efficiency 

and moving away from fossil fuels are also measures that would deal with the problem of 

limited fossil fuel reserves. 

Another issue which should not be ignored is that of energy security.  The uneven 

distribution of fossil fuels around the world means that some countries have much more 

power (in both senses of the word) than others.  79.6% of world crude oil reserves are 

located in the 12 OPEC Member Countries, 70.1% of the OPEC reserves being in the Middle 

East [14], and most of the recoverable coal reserves are located in the northern hemisphere.  

However, renewables are well distributed around the world and so by making use of their 

own natural renewable resources, countries can increase their resistance to political 

instability, accidents, natural disasters, and terrorist attacks. 

In efforts to lower our reliance upon fossil fuels, governments around the world are 

setting ambitious targets for generation from renewables sources.  The Kyoto Protocol, a 

protocol of the United Nations Framework Convention on Climate Change (UNFCCC), is an 

international treaty committing countries to stabilise atmospheric concentrations of 

greenhouse gases at a level that will prevent dangerous global warming.  It was adopted in 

December 1997 and entered into force in February 2005, and has so far been ratified by 188 

countries (though the USA is notable in having not ratified the treaty).  The Kyoto Protocol 

requires countries to reduce their greenhouse gas emissions through national measures and 

three market-based mechanisms that were set up (which include emissions trading), and 

places a heavier burden on developed countries, recognising that they are primarily 

responsible for the current high levels of greenhouse gases.  Specifically, the Kyoto Protocol 

requires the EU and the ratifying Annex I countries of the UNFCCC to reduce their 

collective greenhouse gas emissions by 5.2% from 1990 levels by 2012.  There are 40 Annex 

I countries including many members of the EU, Australia, Russia, Japan, and the USA. 

The EC has set a target of 20% of the EU’s energy to come from renewables by 

2020 (“20% by 2020”) [15], though the UK, lagging far behind other EU Member States, has 

a lower target of 15% of energy to be supplied by renewables by 2020.  This will require a 

seven-fold increase from 2008 levels, a higher increase than any other Member State, and 

will require around £100 billion of new investment, creating up to half a million jobs [16].  
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The UK is enforcing its target through the Renewables Obligation Order 2002 and 

Renewables Obligation Certificates (ROCs), placing an obligation on UK-licensed electricity 

suppliers to source an increasing proportion of their electricity from renewables sources.  

Suppliers that do not meet their required obligations are liable to pay charges equivalent to 

their deficit (at a set “buyout price” per ROC) into a fund which is distributed on a pro-rated 

basis to the suppliers that have met their obligations.  This is not only an effective method of 

ensuring that we meet the targets set for generation from renewables, but by distributing the 

fund to the companies that do meet their obligations, it also serves to incentivise generation 

from renewables above the required levels.  The buyout price is set each year, and has been 

set at £36.99 per ROC for the 2010-2011 compliance period.  It was £30 per ROC in the base 

year, 2002-2003, and was £37.19 per ROC in 2009-2010 [17].  The government intends that 

the Renewables Order will be in place until at least 31
st
 March 2037 [18]. 

Originally 1 ROC was awarded per MWh generated from renewables, no matter 

what generation technology was used, however since April 2009 the value of the ROC has 

been banded depending upon the generation type.  Offshore wind turbines installed between 

1
st
 April 2010 and 31

st
 March 2014 now receive 1 ROC per 0.5MWh generated, effectively 

doubling the value of offshore wind energy [19].  The Department of Energy and Climate 

Change (DECC), who have decided that offshore wind energy will need to be used to meet a 

large part of our 15% target for 2020, increased the value of offshore wind in the ROC 

banding after commissioning a study by Ernst & Young which suggested a value of 2-2.5 

ROCs per MWh [20]. 

Feed-in tariffs (and the Renewable Heat Incentive in the UK) are being used to 

incentivise renewables generation at smaller scales (all renewable electricity generating 

projects below 5MW are eligible for the UK’s Feed-In Tariffs programme).  In the UK’s 

scheme, which only went live on 1
st
 April 2010, a generation tariff is paid for every kWh of 

electricity produced from renewables; the generation tariff depends upon the technology and 

the system size, providing the highest payments to the most expensive technologies and the 

smallest systems [21].  The generation tariff received will last for the tariff lifetime (20 years 

for wind and hydro, 25 years for solar PV), and be adjusted annually for inflation.  An export 

tariff is also paid for surplus energy exported to the grid; the export tariff is independent of 

the technology and system size [22].  The export tariff currently stands at 3p/kWh and is also 

linked to inflation, but generators are free to opt-out of this fixed price and try to negotiate a 

better deal with an electricity supplier.  In the years before Smart Meters are widely used, the 

export level will be deemed to be 50% of the system power, but those who believe that they 

export significantly more than this can install export meters and be paid according to the 

metered export level. 
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1.2 Energy Storage and ICARES 

 

Energy demand fluctuates throughout each day, week (demand is higher during the working 

week than at weekends), and year (the demands of building-heating rise during the winter, 

and in hot countries the demands of air conditioning rise during the summer).  These 

fluctuations can all be seen in figure 1.1, which shows the energy demand in Great Britain 

over three weeks in January 2006 and three weeks in June 2006. 

 

 

 

Fig. 1.1  Electricity demand in Great Britain in kWh/day per person over three weeks 

in January 2006 and three weeks in June 2006 [23] 

 

Currently, power stations are split into three different classes depending on how they 

are used to meet daily fluctuations in demand.  From most efficient through to least efficient, 

these are: baseload, intermediate, and peaking plants.  Baseload power stations are used to 

meet baseload demand, the minimum power demand required by the power company’s 

customers (typically 35-40% of the maximum load during the year).  Coal-fired and nuclear 

power stations are used for this purpose, and are operated continuously since it is most 

economical to operate them at constant production levels.  Intermediate load-following 

power stations adjust their output as electricity demand fluctuates through the day, and 

include gas turbine, steam turbine, and hydroelectric power stations.  Peaking power stations 

are operated at periods of peak demand (a few hours a day at most) and include gas turbine 

and hydroelectric plants.  Baseload power stations are generally the most efficient of the 

three classes because they are run for so long, and peaking power stations are the least 

efficient because they are only operated for short periods. 

One of the good things about fossil fuels is that the power they provide is reliable – 

as long as the fuel is ready to be burned, useful energy is soon available.  However, many 

sources of renewable energy (including wind, solar, and wave power) are intermittent and 

rarely load-following [24], and so in a future where a large amount of our energy supply 
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comes from renewables, we will have to be able to deal with (perhaps unexpected) periods of 

low wind, wave, and solar power.  Even if we move from fossil fuels to being fully reliant on 

nuclear power, there will still be problems in meeting demand fluctuations because nuclear 

power stations are not usually designed to be quickly turned off and on: they tend to be kept 

on all the time, and the power they deliver can only be ramped up or down over a period of 

several hours. 

Essentially, wind power fluctuations can be split into two different classes: short-

term slews and long-term lulls [25].  Short-term changes (“slews”) happen quite regularly: in 

2007, the UK Government set out its plans to expand Britain’s offshore wind capacity to 

33GW by 2020 [26], and by scaling up a typical slew in the Republic of Ireland in 2007, 

MacKay calculates that if 33GW capacity is reached (delivering 10GW on average, about a 

quarter of the UK’s current average electricity usage), we can expect to have occasional slew 

rates of 3.7GW per hour.  This is equivalent to 4 nuclear power stations going from no power 

to full power in the space of an hour.  He also shows that every morning, between 6.30am 

and 8.30am, British electricity demand grows by about 6.5GW per hour.  Long-term lulls in 

wind power are less frequent, but must still be dealt with.  At the start of February 2007, the 

Republic of Ireland had a country-wide lull (total output less than 15% of total rated wind 

capacity) that lasted five days, and lulls of two or three days happen several times a year.  It 

should be noted that these lulls are country-wide and not just in a particular location.  

MacKay calculates that if we have a wind power capacity of 33GW delivering 10GW on 

average, the UK would need to replace or go without 1,200GWh of energy during a five day 

lull. 

One way of dealing with the intermittency problem brought on by renewables is to 

simply build more generating stations (e.g. more wind turbines) than are usually required, 

and if possible turn on and off the stations when necessary – wind turbines can be “turned 

off” by using brakes and feathering the blades.  However, on a large scale, building excess 

capacity is very uneconomical, and there are several other methods of dealing with 

intermittency in a sustainable manner: increased interconnection (e.g. a European super 

grid), utilisation of dependable renewables (e.g. hydroelectricity, biomass, and geothermal 

energy), demand management (e.g. smart-charging of the batteries of electric vehicles), and 

energy storage, which we concentrate on here.  We should also bear in mind that, in a future 

with high levels of wind and wave power capacity, there may be times when supply 

outweighs demand, particularly on windy nights, and it will be a waste to simply turn off the 

generators when the energy could be stored for use during periods of high demand and low 

supply. 

We should think about how much energy to store for each MW of installed wind 

capacity, so that during lulls in wind we can match the year-long average power of the 
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turbines with energy from storage.  For each MW of wind capacity, assuming the turbines 

have a typical load factor of 30% (which is good for both onshore and offshore wind turbines 

in the UK), the energy required from storage over a five-day lull is 

 

 30% × 1MW × (5 × 24h) = 36MWh. (1.1) 

 

So to match the average output of a large offshore wind turbine with a capacity of 5MW with 

energy from storage over a five-day lull, the required storage capacity is 

 

 36MWh/MW × 5MW = 180MWh. (1.2) 

 

Assuming that we might want to be able to store all of the energy being generated when the 

turbines are operating at peak power, or take energy from the store at the peak power rating 

of the turbines, both the input and output power capacity of the store must be equal to the 

total power capacity of the wind turbines attached to the store (so 5MW per large offshore 

wind turbine). 

 Even without any intermittent renewables in the system, energy storage can be used 

for load-levelling (as shown in figure 1.2).  In a load-levelled power supply system, power 

stations work at a constant output (approximately the mean power demand); during periods 

when demand is lower than the mean, the excess generated energy is put into storage, and 

during periods when the demand is higher than the mean, energy is removed from storage to 

supplement the constant output of the power stations.  With adequate storage capacities, the 

power system can effectively run at baseload all day and night, removing the need for costly 

intermediate and peaking power stations. 

 

 

 

Fig. 1.2  Typical daily load profile of Scottish Power and the load-levelling abilities 

of energy storage [27] 



1. Introduction  

8 

There are several different forms of energy storage, and they tend to be suited to 

particular applications.  In this work we are primarily concerned with large-scale 

rechargeable energy storage (also known as grid storage), of which there are currently two 

viable forms: pumped storage and compressed air energy storage.  In a pumped storage 

plant, water is pumped from a low-level reservoir into a high-level reservoir during periods 

of low demand (typically night-time) using cheap electricity, and then during periods of peak 

demand the water is allowed to flow back down into the lower reservoir, driving turbines 

which generate electricity.  Reversible pump-turbines are used, so the same machines can be 

used for both pumping and generating. 

Pumped storage is essentially a form of hydropower; hydropower is the most 

established renewable energy technology, accounting for about 20% of global electricity 

production [28].  It has the advantages of being able to continuously respond to changes in 

demand, being able to start very rapidly, and being confined to mountainous areas and so 

mostly hidden from view.  However, capital costs are high and payback periods long, as 

reservoirs and dams have to be built and large tunnels and caverns have to be cut through a 

mountain.  Also, the range of locations that are suitable for pumped storage is limited and 

while some countries (e.g. Norway and Sweden) have many such locations, others (e.g. the 

Netherlands) have very few.  It has been claimed that the Danes export almost all of their 

wind energy to neighbouring Norway and Sweden, who have hydroelectric facilities which 

they then turn down.  The Danes later buy back electricity at a higher price during periods of 

low supply and high demand, which the Norwegians and Swedes can supply using 

hydroelectricity and pumped storage [29]. 

In the UK there are currently four pumped storage plants: Dinorwig and Ffestiniog 

in North Wales, and Cruachan and Foyers in Scotland.  Details of these plants are given in 

table 1.1.  They amount to a total storage capacity of about 27GWh and a total power 

capacity of about 2.8GW.  Dinorwig, the largest plant in terms of both storage and power 

capacity, cost £0.4 billion in 1980 (about £1.3 billion in 2010 prices using the UK Retail 

Price Index (RPI) [30]), working out at a (2010) cost of approximately £143,000/MWh. 

 

Station Power (GW) Head (m) Volume (million m
3
) Energy stored (GWh) 

Ffestiniog 0.36 320-295 1.7 1.3 

Cruachan 0.40 365-334 11.3 10 

Foyers 0.30 178-172 13.6 6.3 

Dinorwig 1.80 542-494 6.7 9.1 

 

Table 1 .1 Pumped storage plants in the UK [31] 
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 Clearly, the maximum power of 2.8GW and the maximum storage capacity of 

30GWh are well short of the 10GW of power (on average, 33GW at peak wind) and 

1,200GWh of energy storage we may need in a future in which 10GW of our electricity is 

generated from wind energy.  There are more locations that could be used for pumped 

storage, but it is estimated that the UK’s maximum pumped storage capacity is around 

400GWh [32]. 

In a compressed air energy storage (CAES) plant (shown in figure 1.3), air is 

compressed to high pressures (e.g. 50-70 bar) during periods of low demand using a 

compressor powered by electricity from the grid, and stored in an underground cavern.  

When electricity is required from the CAES plant, the compressed air is released from the 

cavern and expanded to generate electricity, usually by using it in the combustion chamber 

of a gas turbine.  Ideally, the heat generated in the compression is removed from the air 

before the air enters the cavern and placed into thermal storage.  This heat energy can then 

be used later to heat the air leaving the cavern, so that the air is heated up to nearly the outlet 

temperature of the compressor.  By storing the thermal energy generated in compression, it 

may not be necessary to burn gas in the expansion stage.  There are currently only two large-

scale CAES plants in the world (Huntorf, Germany, and McIntosh, AL, USA), and in both of 

these the compressed air is stored underground in excavated salt domes.  Salt domes are 

large, naturally-formed underground domes of salt, and they are excavated by dissolving the 

salt in water in a process known as solution mining.  Salt domes are particularly suited to 

CAES as salt is self-sealing under pressure [33].  Other forms of compressed air stores that 

have been proposed include disused mines, caves, and aquifers.  It is of course possible to 

store compressed air in fabricated steel pressure vessels, however the cost of such a vessel 

makes it prohibitively expensive for large-scale CAES.  All of the underground storage 

solutions are limited in location and (apart from aquifer storage and stores with a shuttle 

pond) have fixed containment volumes, meaning that the pressure of the air in the store 

changes quite considerably depending upon the amount of energy contained. 
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Fig. 1.3  Schematic of a CAES plant with two-stage expansion and a heat recuperator 

[34] 

 

Professor Seamus Garvey (University of Nottingham, supervisor of this PhD) has 

proposed a new method of renewable energy generation and storage that makes use of 

proven technologies.  The idea, first conceived by Garvey in 2006, is known as the 

Integrated Compressed Air Renewable Energy System, or ICARES.  In an ICARES plant 

(shown in figure 1.4), renewable energy sources such as offshore wind, wave, and tidal 

power will be used to directly compress air to high pressures (e.g. 50-70 bar) rather than 

directly generate electricity, and the compressed air will either be sent immediately through 

an expander to generate electricity, or stored in large flexible bags (which we have termed 

ENERGY BAGS™) anchored to the seabed.  If the compressed air is being placed into storage, 

the heat generated in compression will be extracted from it before it is pumped into the store, 

and stored in a thermal energy store.  This stored heat can later be used to warm up the cool 

air entering the expander to almost the compressor outlet temperature.  The thermal energy 

store can be topped up using solar power – it has been shown that the marginal utilisation of 

every MWh of solar thermal input in an ICARES can be over 60%, up to the point where the 

solar thermal power input is equal to about 5% of the original mechanical power input [35]. 
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Fig. 1.4  Schematic of an ICARES plant, combining an integral compression wind 

turbine with an Energy Bag (early conception with hanging masses shown), floating thermal 

energy storage unit, and expander-generator 

 

The ICARES concept was envisaged following Garvey’s study of the scaling laws of 

conventional wind turbines.  Up until recently it has been the case that bigger is better for 

offshore wind turbines, because of the almost fixed overhead costs related to installation, 

planning, and maintenance, and because larger turbines access higher windspeeds.  However, 

it is anticipated that conventional designs will soon hit a ceiling in size, and scaling them up 

any further will raise the cost per unit power.  This is because for various parts of a wind 

turbine (including the generator in a direct drive machine), the cost per unit power is 

proportional to the blade diameter, even though the swept area (and so power) of a wind 

turbine is proportional to the square of the blade diameter.  The bulk of the cost of a 

generator (C) is dependent upon the torque it resists (T), so if we assume that generator cost 

is proportional to torque, the cost per unit power (P) is given by 

 

 C/P = aT/P (1.3) 

 

where a is a constant.  The torque per unit power is given by 

 

 T/P = 1/, (1.4) 
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where  is the angular velocity of the rotor.  Substituting equation (1.4) into equation (1.3), 

 

 C/P = a/. (1.5) 

 

As conventional design 3-blade wind turbines, no matter what size, typically have a tip speed 

ratio (ratio of blade tip speed to wind speed) of about 6 to 7, the angular velocity of the 

blades and so generator rotor is inversely proportional to the blade diameter D, and is given 

by 

 

 b/D (1.6) 

 

where b is a constant.  (This inverse relationship between blade diameter and angular 

velocity explains why a small wind turbine spins much faster than a large turbine in the same 

wind.)  Substituting equation (1.6) into equation (1.5), the cost per unit power is obtained in 

terms of blade diameter: 

 

 C/P = (a/b)D. (1.7) 

 

So increasing the size of direct drive wind turbines increases the generator cost per 

unit power.  In order to reduce the generator input torque, it is possible to design turbines 

with higher tip speed ratios, as offshore wind turbines do not have to meet the same noise 

limits as onshore turbines.  However, increasing the tip speed ratio lowers the efficiency, and 

there is a limit to how fast a 3-blade wind turbine can be made to run because in order to 

raise the tip speed it is necessary to increase the slenderness of the blades, reducing their load 

capacity.  Analysis of the cost of a gearbox is more complex but it is entirely feasible to 

suppose that the cost of a gearbox with a large speed-increase factor is also proportional to 

the input torque. 

Garvey then generated a novel concept for a wind turbine that would not be subject 

to the same scaling laws as conventional wind turbines.  An integral compression wind 

turbine (ICWT), two blades of which are shown in figure 1.5, would compress air directly, 

having tubes built into the blades with a single running mass inside each tube.  As the blades 

turn, the weight of the running masses will cause them to slide up and down inside the tubes, 

compressing air.  The compressed air could then be immediately expanded to generate 

electricity.  Garvey showed that, at large scales, an ICWT could be more economical than 

conventional direct-generating wind turbines.  It was then realised that if air is being 

compressed in the process of generating electricity, it would make sense to incorporate a 
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CAES plant to store surplus energy until required, and use the high water pressure at the 

bottom of the sea to provide most of the resistance, in which case a flexible bag (“Energy 

Bag”) anchored to the seabed could be used as the containment vessel.  Storing energy in this 

way could further lower the overall lifetime cost of the plant per unit output power.  Other 

offshore renewable energy converters could also be attached, including direct compression 

wave energy converters and tidal turbines. 

 

 

 

Fig. 1.5  Integral compression wind turbine concept (only 2 blades shown) 

 

The hydrostatic pressure at a depth of 500m is approximately 51bar, and so a 

flexible Energy Bag anchored at such a depth could be used to contain air at pressures 

roughly equal to those found in a conventional CAES plant (50-70bar) without excessive 

stresses in the materials: being flexible, the bag's shape would depend upon the amount of air 

in the bag, and the surrounding water would provide most of the resistance.  Also, because 

the shape and so volume of the bag can change, the pressure of the contained air would 

remain approximately constant, regardless of the amount of energy contained, allowing more 

efficient expansion machinery to be used than with a conventional fixed volume CAES 

plant.  Storing air in bags anchored 500m underwater at a pressure of 51bar (equal to the 

hydrostatic pressure outside the base of the bag), and conservatively assuming isothermal 

expansion, the energy density is 5.60kWh/m
3
, 3.43 times the energy density in the water in 

the 600m high upper reservoir at Dinorwig pumped storage plant of 1.64kWh/m
3
. 

As well as being used for subsea CAES, Energy Bags could also be used for natural 

gas storage.  This would not have the same risks as those surrounding the storage of natural 

gas in underground caverns; a proposal by Canatxx UK to store 1.2m tonnes of natural gas in 

salt caverns in Preesall, Lancashire, was rejected by Lancashire County Council in January 

2010 due to concerns the caverns could collapse [36].  These risks of collapse also apply to 

the storage of compressed air in underground caverns. 

Being out at sea and underwater, Energy Bags could not be considered as being an 

“eyesore” as they would be hidden from view.  There are many coasts around the world 
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where depths of 500m or more are within reasonable distance of the shore, particularly in the 

Mediterranean.  Unfortunately, the UK is surrounded by relatively shallow waters apart from 

off the west coast of Scotland and the north-west and south-west coasts of Ireland (see figure 

1.6, red line indicates the 500m threshold).  Currently shallow water wind turbines are 

located within a depth of 25m, and deep water wind turbines are located within a depth of 

50m; these zones are shown in yellow and pink on figure 1.6.  A number of companies are 

working on floating platforms for offshore wind turbines.  Floating wind turbines can be 

placed further out at sea than the current generation of turbines, in stronger winds with 

higher power density (proportional to the cube of the wind speed).  Companies working on 

floating wind turbines include Siemens Wind Power, who have built and installed Hywind, 

the world’s first large-scale floating wind turbine (2.3MW), Principle Power, with their 

WindFloat, and Floating Power Plant with their combined wind and wave power platform, 

Poseidon.  The Siemens Hywind has been installed in 220m deep water, 12km off the coast 

of Norway, for a two year test deployment.  Siemens have stated that Hywind is designed to 

be installed in waters between 120-700m deep [37]. 

As well as being located at sea, Energy Bags could also be located in deep lakes; 

Loch Morar, Britain’s deepest lake, is 310m deep.  In such cases, they could be attached to 

land-based versions of the offshore ICWTs that would supply the sea-based Energy Bags, or 

simply be attached to compressors powered by electricity from the grid (for grid storage). 

 



1. Introduction  

15 

 

 

Fig. 1.6  Plot of bathymetry and shallow water zones around the UK, red line added 

to indicate 500m depth threshold [38] 

 

The market for ICARES is potentially very large.  Wind energy sits at the forefront 

of the UK’s portfolio of renewable energy and, along with wave and tidal power, could be 

used to sustainably meet a large fraction of our future energy needs.  However in order to do 

so, great numbers of wind turbines must be built, and very large stores of energy will be 
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required to cost-effectively deal with short and long term changes in both supply and 

demand.  Though ICARES is based on well-understood engineering concepts, some aspects 

of the plan must still be investigated and prototype ICARES plants need to be built and 

tested. 

The work in this thesis is driven by the need to advance the Energy Bag concept.  In 

designing an Energy Bag, it is useful to be able to carry out computational modelling of the 

structure in order to find its deformed shape under hydrostatic loading and to find the 

stresses in the materials.  To the author’s knowledge, there is no analysis of underwater 

pressurised fabric structures to be found in the literature, so we look to the fields of 

ballooning and tensile structures for useful insight into fabric structure analysis, since an 

Energy Bag can effectively be treated as a static underwater tethered balloon. 

 

 

1.3 Fabric Structures 

 

Fabric structures relevant to Energy Bags include balloons, parachutes, underwater 

inflatables, and tensile structures (e.g. roofs). 

Balloons are particularly related to Energy Bags because they are totally flexible: it 

is desirable to ensure that Energy Bags are also totally flexible, so that their shape (and so 

volume) changes depending upon the amount of energy in the stored air and the pressure of 

the contained air always remains close to the hydrostatic pressure of the surrounding water.  

This is beneficial for two reasons: 1) the forces across the membrane will always be lower 

than if the structure gave any significant resistance to bending, and 2) the pressure of the air 

passing from the bag into the expander (when retrieving energy from storage) will be 

roughly constant no matter how much air is stored inside the bag, allowing more efficient 

turbomachinery to be used than if the storage volume was fixed. 

Underwater inflatables are also of particular interest.  They are primarily used for 

short-term lifting purposes, e.g. raising shipwrecks to the surface of the sea, and have more 

in common with Energy Bags than tensile structures and balloons because they are used to 

contain air underwater.  However, no technical literature has been found on underwater 

inflatables.  This is a marked difference from the field of ballooning, in which substantial 

analysis and experimental work has been carried out and documented over the years. 

As the name suggests, tensile structures are structures formed from elements in 

tension (such as membranes, cables, and beams), though they typically require some 

compression elements as support.  We are primarily interested in tensile membrane 
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structures, which are most often used for roofs, e.g. the Millennium Dome/O2 Arena in 

London, and the Olympiastadion in Munich (shown in figure 1.7). 

 

 

 

Fig. 1.7  The membrane roof on the Olympiastadion in Munich [39] 

 

The analysis of flexible fabric structures requires consideration of geometric 

nonlinearity, because of the large deflections and rotations that a flexible structure can 

undergo.  It is also necessary to account for membrane wrinkling and contact problems (e.g. 

an Energy Bag coming into contact with itself or the seabed). 

 

 

1.4 Aims and Scope 

 

The first goal of this PhD is to develop and present procedures for finding the deformed 

shapes of pressurised flexible fabric structures, driven by the need to be able to accurately 

model Energy Bags used for large-scale subsea compressed air energy storage.  To this end, 

three modelling procedures have been developed: (a) a system of four coupled ordinary 

differential equations that, when solved, gives the deformed shape of an inextensible 

axisymmetric membrane, given in Chapter 3; (b) finite element analysis used to model an 

extensible axisymmetric membrane using cable elements, given in Chapter 4; and (c) finite 

element analysis used to model a fully three-dimensional cable-reinforced membrane, using 

cable and membrane elements, given in Chapter 6.  These procedures may also be used to 

model the deformed shapes of other fabric structures, such as balloons, parachutes, roofs, 

airbags, sails, and solar sails, as well as cable structures such as nets and moorings. 
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The second goal is to present procedures for finding the optimum design of Energy 

Bag.  Typically, we seek to minimise the cost of the bags per unit of energy stored, while 

meeting maximum stress constraints.  Some variables that may be included in the 

optimisation are: size, lobe cutting pattern design, maximum differential pressure at the base 

(i.e. maximum fill level), and storage depth.  A simple analytical optimisation is used to find 

the optimum-sized axisymmetric natural shape bag and it is shown that for such a bag, the 

cost of surface and cost of meridional reinforcement should be equal.  It is found that for 

reasonable materials costs, bag materials can cost in the order of £1,000/MWh. 

 

Finally, the third goal of this PhD is to commence underwater testing of prototype 

Energy Bags.  There are several reasons for doing this: to prove that the concept of subsea 

compressed air energy storage is feasible and has merit, to gain an understanding of the real-

world behaviour of Energy Bags and identify problems that must be dealt with in future 

work, and to benchmark the analysis methods.  Two 1.8m diameter prototype bags based on 

a new modification to a well-tested scientific balloon design have been manufactured for us 

by a Canadian aerospace company and installed in a water tank in one of the university 

laboratories.  Cycling of these prototypes has commenced. 

 

 

1.5 Layout of the Thesis 

 

This thesis comprises nine chapters, and the contents of the following chapters are 

summarised here: 

 

Chapter 2 contains a Literature Review of recent work in the fields of energy 

storage, underwater inflatables, ballooning, and nonlinear finite element analysis.  Details of 

correspondence with several manufacturers of underwater inflatables are also given. 

 

Chapter 3 presents a method for Modelling Axisymmetric Structures Using 

Coupled Ordinary Differential Equations.  This is used to find the deformed shapes of 

various axisymmetric bags, including natural shape bags and bags incorporating 

circumferential stress and distributed hanging mass.  Partially inflated bags are also 

modelled, though some problems are encountered when trying to model highly deflated 

bags. 
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Chapter 4 presents Finite Element Analysis of Axisymmetric Structures, using 

extensible cable elements.  The deformed shapes of various axisymmetric bags are found 

including bags with circumferential restraint and bags which are unsealed at the base.  This 

method is much easier to use than the coupled ODEs method shown in Chapter 3, and can be 

used to model highly deflated bags. 

 

Chapter 5 looks at Lobed Fabric Structures, explaining common lobe cutting 

patterns that have been used in the past, the Ultra High Performance Vessel (UHPV) 

architecture developed by Thin Red Line Aerospace (and used in our prototype Energy Bags, 

manufactured by Thin Red Line), and the calculation of circumferential membrane stress.  A 

new lobe cutting pattern is developed which minimises the surface area of a lobe while 

meeting a maximum stress condition.  It has constant circumferential tension at all points 

along the lobe and so is known as a Constant Tension (CT) lobe.  A procedure for finding the 

CT lobe which minimises this constant tension is given. 

 

Chapter 6 presents Three-Dimensional Finite Element Analysis of cable-

reinforced fabric structures, using cable and membrane elements.  Special consideration is 

given to the wrinkling of both cable and membrane elements.  It is found that sometimes the 

solution procedure doesn’t converge when trying to use symmetry and model only half of a 

single lobe in an Energy Bag with all identical lobes. 

 

Chapter 7 contains the Optimisation that has been carried out.  A simple analytical 

optimisation is used to show that the optimum axisymmetric bag for minimising materials 

cost per unit of energy stored will have cost of surface equal to cost of meridional 

reinforcement.  The computational models are also used in optimisation routines, and a 

0.2GWh bag is specified. 

 

Chapter 8 details the Testing that is being carried out.  Two 1.8m diameter 

prototype Energy Bags, based on superpressure balloons, have been installed in a water tank 

in one of the university laboratories, and will be cycled many thousands of times. 

 

Chapter 9 contains Conclusions and Future Work, reflecting on the development 

of the ICARES and Energy Bag concepts over the course of the PhD, and looking ahead to 

potential future work such as extensions of the computational models and further testing. 
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Chapter 2 
 

Literature Review 
 

 

In carrying out work on subsea CAES, it is important to begin with a review of other energy 

storage technologies, finding out their good and bad points and understanding what purposes 

they are particularly suited to and why.  Obviously particular attention is paid to 

developments in conventional CAES.  We then move on to consider underwater inflatables, 

carry out a review of the shape analysis of balloons, and look at techniques in nonlinear 

finite element analysis. 

 

 

2.1 Energy Storage 

 

There are many different kinds of energy storage systems, some occurring in nature and 

others man-made.  A notable and very well-understood example of energy storage in nature 

is the storage of chemical energy in the fossilised remains of dead plants and animals – fossil 

fuels.   These are excavated from the earth and burned when necessary to provide heat and to 

drive vehicles and electric generators.  Fossil fuels have very high energy densities by both 

mass and volume which are yet to be matched by other energy storage methods (apart from 

by the energy density by mass of hydrogen) [40], however fossil fuels are non-rechargeable.  

We are really interested in rechargeable systems – stores of energy that can be charged using 

electricity. 

 Most energy storage systems require the useful energy to be converted from its 

initial form (often electrical) into another form which is more suitable for storage (such as 

chemical) and finally back into a useful form.  In each conversion there is a loss associated 

with the efficiency of the conversion process, and a comparison of several energy storage 

methods should take the full turnaround efficiency of the storage method into account.  

However, to investors, cost is often more important than turnaround efficiency, particularly 

lifetime cost per unit of energy stored and lifetime cost per unit power.  Which of these is 

more important depends upon the purpose of the storage scheme, and it should be noted that 
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for some storage technologies, the power and energy ratings are coupled.  Other factors of 

interest are the time taken to go from charging the energy store to discharging the store and 

vice-versa, the range of speeds with which the stored energy can be charged and discharged 

(power capacity), the energy density by both volume and mass, the accessibility of the 

storage (which can affect cost), and the rate at which energy is lost from the store to the 

environment.  These attributes all affect how useful the storage method is for a particular 

application. 

In the following sections we look at various energy storage methods and compare 

them based on the attributes described above. 

 

 

2.1.1 Compressed Air 

 

In a compressed air energy storage (CAES) plant, air is compressed to a high pressure and 

stored in a pressure vessel or underground cavity until the energy in the compressed air is 

required.  The air is then released from the store, driving a turbine or series of turbines which 

in turn drives a generator.  The heat generated in compression is removed from the 

compressed air before it is put into store, and this heat energy can be stored in a thermal 

energy store and later used to reheat the air leaving the store (or it can just be transferred to 

atmosphere as waste heat).  In a power plant with a standard gas turbine, approximately two-

thirds of the gas is used to compress the combustion air.  It therefore makes sense to use off-

peak electrical power to pre-compress the air, and later use the compressed air in the gas 

turbines when the turbines are producing electricity during peak hours.  In this way, three 

times the power is produced for the same fuel consumption. 
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Fig. 2.1  Planned CAES plant at Norton, Ohio [41] 

 

On a small scale, compressed gas can be stored in steel pressure vessels, but on a 

larger scale use of a steel pressure vessel is uneconomic and it makes much more sense to 

use features available in the environment.  To date, three different types of underground 

cavities have been seriously considered: excavated salt domes, cavities in rock formations 

(either natural or excavated), and aquifers.  Salt domes are particularly suitable because salt 

is self-sealing under pressure [42].  The availability of natural locations is limited and 

excavation can be costly, and the stability of any cavern to withstand cycling temperature 

and pressure must be fully tested and understood. 

 There are currently only two CAES plants in the world, one in Huntorf, Germany, 

and the other in McIntosh, Alabama, USA.  Excavated salt domes are used as the 

compressed air stores in both plants.  In table 2.1 it can be seen that a lower total amount of 

energy is required per unit output power at McIntosh, the more recently commissioned plant.  

This is because the McIntosh plant has a recuperator which utilises the waste heat in the 

turbine exhaust gases to preheat the compressed air entering the turbines.  In calculating the 

efficiency of a plant, care should be taken over the value of input energy, particularly the 

value placed upon gas.  The simplest method is to give gas the same value as electricity; in 

this case the efficiency of Huntorf (which requires 0.8kWh electricity and 1.6kWh gas for an 

output of 1kWh electricity) would be 1/(0.8 + 1.6) = 42%, and the efficiency of McIntosh 

would be 54%.  However, 1kWh of gas cannot simply be converted into 1kWh of electricity 

– if 1kWh of gas is used in a combined cycle gas turbine with a realistic efficiency of 55%, 
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only 0.55kWh electricity will be generated.  Using this 55% efficiency, the efficiency of 

Huntorf becomes 1/(0.8 + 55%×1.6) = 60%, and the efficiency of McIntosh becomes 75%. 

 

 Huntorf, Germany McIntosh, AL, USA 

Date of 

commission 
1978 1991 

Store 

Two cylindrical salt caverns, 

each with 150,000m
3
 at a depth 

of 600-800m (height 200m, 

diameter 30m) 

Salt cavern, 538,000m
3
 

at a depth of 450-750m 

Output 290MW over 2 hours 110MW over 26 hours 

Energy 

required for 1 

kWh electricity 

0.8kWh electricity, 1.6kWh gas 

(total 2.4kWh) 

0.69kWh electricity, 

1.17kWh gas (total 

1.86kWh) 

Pressure 

tolerance 
50-70bar 45-76bar 

Remarks World’s first CAES plant 
First CAES plant with 

recuperator 

 

Table 2.1 CAES plants in existence today [43] 

 

Due to its constant volume, the energy stored in an underground cavern is 

approximately linearly proportional to the pressure of the contained air.  Therefore the 

turbines have to deal with a wide range of pressures and so, being optimised for certain air 

pressures, aren’t always working at maximum efficiency.  Increased efficiency is expected 

from Iowa Stored Energy Park (ISEP), a CAES plant currently in development, because 

aquifer storage will be used.  The displacement of water in the aquifer results in regulation of 

air pressure because of the changing storage volume.  This effect can also be achieved in a 

cavern by connecting the bottom of the cavern to a water reservoir (known as a shuttle pond) 

located above the cavern.  Another CAES plant currently in development will be located at 

Norton, Ohio, USA (see figure 2.1), with an initial power capacity of 300MW and design 

plans to increase to 2,700MW over five years.  The compressed air will be stored in a 

disused limestone mine at pressures between 62bar and 114bar [44]. 

In an adiabatic compressed air energy storage (A-CAES) plant, the heat generated in 

compression is stored in a thermal energy store, instead of being vented to the atmosphere as 

waste heat as in a conventional (diabatic) CAES plant.  This stored thermal energy is later 

used to heat up the air passing from the store into the expander, so that no fuel needs to be 

burned.  An A-CAES plant operating without fuel burn would have no greenhouse gas 

emissions and so would not incur carbon emissions costs.  Improved efficiencies are possible 
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using A-CAES, though an A-CAES plant has a higher initial cost than a conventional CAES 

plant because of the need for a thermal energy store and heat exchanger.  As fuel and carbon 

emissions costs increase, A-CAES plants will become more attractive.  It should be noted 

that the performance of a heat store improves with its size – the rate at which heat leaks from 

the store is proportional to its surface area, and the capacity of the store is proportional to its 

volume, and the ratio of heat leakage to energy capacity is proportional to the ratio of surface 

area to volume, which is inversely proportional to any geometric dimension (e.g. diameter). 

  

  

 (a) (b) 

 

Fig. 2.2  Schematic circuit diagrams of: (a) A diabatic CAES process, and; (b) An 

adiabatic CAES process [45] 

 

The energy available in a compressed air store depends upon how the compressed air 

is expanded.  In this work we treat air as an ideal gas (the compressibility factor for air at 

300°K and 60bar is 0.9901 which is very close to 1, the compressibility factor of an ideal gas 

[46]).  We concern ourselves with two main thermodynamic processes: isothermal and 

adiabatic. 

An isothermal process is a change of a system during which the temperature remains 

constant.  Isothermal processes occur when the system is thermally connected to a constant-

temperature external reservoir, and when the change in the system is happening so slowly 

that the system continually maintains the same temperature as the external reservoir through 

heat exchange.  The ideal gas law tells us that the absolute pressure of an ideal gas is given 

by 

 

 
V

nRT
P  , (2.1) 

 

where V is the volume of the gas, n is the amount of substance, R is the universal gas 

constant, and T is the absolute temperature.  In an isothermal process, T remains constant and 
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so the numerator of equation (2.1) also remains constant.  As a result, for an isothermal 

process, 

 

 PV = constant. (2.2) 

 

Therefore in an isothermal process, the absolute pressure of an ideal gas is inversely 

proportional to its volume.  This relationship is known as Boyle’s Law. 

 The work done in the isothermal expansion from stored volume VA (with absolute 

pressure PA) to volume VB (with absolute pressure PB) is 
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As shown in equation (2.2), the product PV remains unchanged for an ideal gas undergoing 

an isothermal process, so BAAB PPVV   and 
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To calculate the energy available in a store of compressed air that is to be expanded 

isothermally, we let PA and VA be the pressure and volume of the air in the store and PB be 

the pressure of the expanded air (atmospheric pressure if all the available energy is taken out 

of the compressed air by the expansion machinery). 

An adiabatic process is a change of a system during which no energy enters or leaves 

the system through heat exchange.  A purely adiabatic process can only occur if the system is 

thermally insulated from the surroundings.  The word adiabatic comes from Greek words 

which literally mean impassable, in this case to heat transfer.  The pressure and volume of an 

ideal gas undergoing a reversible adiabatic process are related by 

 

 PV  constant, (2.5) 

 

where  is the adiabatic index of the gas, given by 
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. (2.6) 
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CP is the fluid’s specific heat capacity at constant pressure, CV is the specific heat capacity at 

constant volume, and  = 5/2 for a diatomic gas and  = 3/2 for a monatomic gas.  Air is 

essentially a diatomic gas, so we use  = 7/5. 

 In calculating the net work input in the adiabatic compression of air from 

atmospheric pressure PA to storage pressure PB, we must include the work associated with 

moving the air from the atmosphere into the compression volume (-PinVin) and discharging 

the high pressure air (PoutVout), causing the integration for work to become VdP , rather 

than PdV .  The energy available in the store, if the compressed air is preheated to the 

temperature it has after compression and then expanded adiabatically, is equal to the net 

work input in the compression. 

 From equation (2.5), 

 

 


AAVPPV  constant. (2.7) 

 

We can rearrange this to obtain the fluid volume as a function of pressure, 
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So in an adiabatic process, the net work done by the system is given by 
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Therefore treating air as an ideal gas, compressing r cubic metres of air adiabatically 

from atmospheric pressure (101.325kPa) up to r times atmospheric pressure demands a net 

work input of 
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The final absolute temperature of a gas undergoing an adiabatic process is given by 
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TT . (2.11) 

 

Once the heat has been taken out of the air, the volume of the r cubic metres 

compressed from atmospheric pressure up to r times atmospheric pressure will become 1m
3
.  

Therefore the work input found using equation (2.10) will be the energy density of the cool 

air in the store, assuming the heat energy that was taken out of the air during and after 

compression is all used to reheat the air before expansion. 

In practice, purely isothermal or adiabatic processes cannot occur because there is no 

such thing as a perfect conductor or insulator, but processes can be very close to purely 

isothermal or adiabatic, and we use the equations describing purely isothermal and adiabatic 

processes as means to calculate lower and upper bounds on the amount of energy available in 

a store of compressed air: isothermal expansion at atmospheric temperature is the lower 

bound, and adiabatic expansion from the temperature of the air after adiabatic compression 

(so leaving the expander at atmospheric temperature and pressure) is the upper bound.  How 

close a process is to being isothermal or adiabatic depends upon the thermal conductivity of 

the system boundary and the speed at which the process occurs: a very quick process, in 

which little heat is transferred between the system and its surroundings, may be considered 

adiabatic, and a very slow process, in which the system’s temperature remains constant, may 

be considered isothermal. 

Either of equations (2.4) or (2.10) can be used to gain an assessment of how much 

air is stored in an Energy Bag but they will provide different results.  We may rely on the 

fact that the stored air will be cool – it will lose its heat rapidly if it is not already cool when 

put into storage.  Thermodynamically, the optimum combination of compression and 

expansion processes would be isothermal compression, with all of the heat of compression 

being put into a thermal energy store, followed by adiabatic expansion, pre-heating the air 

with the stored thermal energy before expanding it adiabatically to atmospheric temperature 

and pressure.  As mentioned above, the worst expansion process would be isothermal 

expansion, assuming that the high pressure air is expanded in multiple stages with inter-stage 

reheats where the heat in this case can simply be drawn from ambient seawater.  In this case 

the compression process used is irrelevant because the heat taken out of the air, either during 

or after the compression process or through losing heat to the surrounding seawater after 

being put into store, is unused. 
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In both cases it is strictly correct to subtract the gravitational potential energy 

required to raise the air back to the sea surface, though this is very small in comparison with 

the stored energy.  Table 2.2 summarises the energy densities for a number of depths, having 

subtracted gravitational potential.  We have assumed that the air will be stored at an absolute 

pressure equal to the hydrostatic pressure at the given depth, given by 

 

 atmw PghP   , (2.12) 

 

where w is the density of seawater (approximately 1,025kg/m
3
), g is standard gravity, h is 

the depth below the surface of the sea, and Patm is the atmospheric pressure (101.325kPa).  

The gravitational potential energy is given by 

 

 VghW a , (2.13) 

 

where a is the density of the compressed air.  The density of an ideal gas compressed to 

absolute pressure P is 

 

 
RT

MP
 , (2.14) 

 

where the molar mass of air, Mair = 0.02897kg/mol, the universal gas constant, R = 

8.314472J/(K.mol), and T is the absolute temperature of the air. 

  

Seabed 
depth 

(m) 

TB (°C) 
(assuming TA 

= 5°C) 

Absolute 
compressed 
air pressure 

(bar) 

Isothermal 
energy density 

(MJ/m
3
) 

Energy density 
with pre-expansion 

reheat (MJ/m
3
) 

50 190.1 6.04 1.075 1.407 

100 277.6 11.07 2.633 3.797 

200 389.3 21.12 6.364 10.215 

300 467.2 31.18 10.569 18.135 

400 528.8 41.23 15.079 27.178 

500 580.4 51.29 19.813 37.135 

600 625.2 61.34 24.720 47.873 

700 665.0 71.40 29.767 59.297 

800 701.0 81.46 34.933 71.337 

 

Table 2.2 Energy storage densities for Energy Bags at various depths 

 

 Only one piece of work has been found on subsea CAES.  Written by Richard J. 

Seymour, Head of the Ocean Engineering Research Group at the Scripps Institution of 
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Oceanography, University of California, San Diego, in 1997, Undersea Pumped Storage for 

Load Leveling [47] describes offshore CAES (or OCAES, as it is referred to in the paper), 

explaining the idea of storing compressed air in rigid tanks underwater.  The tanks are 

unsealed at the base and so allow seawater in and out, and when air is pumped into the tanks 

it displaces seawater.  Only one mention is made of using a flexible bladder, as a potential 

lining for the compressed air tank (which is shown in figure 2.3).  It is noted that if no 

bladder is employed, air can also be removed from the pipe without creating a vacuum in the 

pipe (which would subject it to large crushing loads) because water will fill the pipe in place 

of the air.  The paper discusses a 230MW OCAES system at Carlsbad, San Diego, which 

would have a 16km air pipe from the existing power plant on the coast at Carlsbad to 650m 

deep water.  The air pipeline would run along a submarine canyon, providing the shortest 

distance to deep water and ensuring that the pipeline is kept out of “active” water. 

 

 

 

Fig. 2.3  Ballasted Compressed Air Storage Concept generated by Seymour [48] 

 

The results of a research project by Anton Rowe (one of Seymour’s undergraduate 

project students) are summarised in [47]: a 230MW OCAES system, generating for 10 hours 

a day and storing air at 60atm, would require a volume that could be contained in a pipe 

3.6m in diameter and 12.8km in length.  To accommodate the necessary flow rate, the 

attached pipeline would require a diameter of about 1.2m.  It is estimated that a 230MW 

system operating for 10 hours per day would reduce the supply variation range in the San 

Diego area by about 40%.  Apparently Seymour was introduced to the OCAES idea by 

James Wight of San Diego Gas & Electric, and Seymour is currently working with an 

industrial team on a preliminary study funded by the federal government. 

 

 

 



2. Literature Review 

30 

2.1.2 Pumped Hydro 

 

In use since 1929 and the only commercially available means of storing energy until 1970 

[49], pumped storage sets a high standard for large-scale energy storage.  It achieves 

turnaround efficiencies of around 80% [50],[51], can be called upon rapidly due to the short 

start-up time for hydro turbines (1/2-3 minutes from shutdown or full reversal or 10-30 

seconds if kept on standby) [40] and loses little energy over time (only through evaporation).  

Berry estimates the cost of pumped storage at approximately £3,000/MWh [52], though costs 

of Dinorwig (Britain’s largest pumped hydro plant, built in 1984) work out at more like 

£50,000/MWh. 

 

 

 

Fig. 2.4  Overview of a pumped hydro facility at Raccoon Mountain, TN, USA [53] 

 

 Energy is stored in a pumped hydro plant as gravitational potential energy; during 

periods of high supply and low demand, excess energy is used to pump water from a lower 

reservoir up into a higher reservoir, where it is stored until periods of peak demand.  The 

water is then allowed to flow back down to the lower reservoir, driving a turbine and 

generator.  A reversible pump-turbine is often used, so the same machine is used for both 

pumping and generating.  The potential energy in a raised body of water of density  and 

volume V is given by 

 

 zVgW    (2.15) 

 

where z  is the difference in height between the upper and lower reservoirs.  Therefore to 

maximise the stored energy it is necessary to maximise the volume of water that can be 
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moved between the two reservoirs and the height of the upper reservoir above the lower 

reservoir. 

Generally pumped storage plants have energy storage capacities of several GWh, but 

Helms facility at Shaver Lake, California, part of a chain of large lakes at high altitudes in 

the Sierra National Forest between San Francisco and Las Vegas, has a very large storage 

capacity of 184GWh (with a power capacity of 1,206MW) [54].  Table 2.3 lists all the 

pumped hydro facilities in the world with power capacities of 1,000MW or greater.  Note 

that it is over 20 years since a large pumped hydro facility was built in the USA. 

 

 

 

Table 2.3 1,000 MW and larger pumped hydro installations worldwide [55] 

 

 The number of sites for pumped hydro schemes is limited by the availability of 

elevated natural or man-made upper reservoirs and nearby lower reservoirs into which the 

water can drain.  The environmental impact is usually confined to mountainous regions and 
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machinery and pipes are often located underground, so the visual impact of a pumped hydro 

scheme is minimal.  However, with the best locations for pumped hydro schemes often being 

remote, grid connection and construction are not straightforward [56].  If no natural elevated 

reservoirs are present, underground lower reservoirs may be used below surface level upper 

reservoirs (such as lakes or the sea).  The underground reservoirs may be natural or 

excavated cavities; if a cavity is excavated, the cost of the scheme scales approximately 

linearly with the storage capacity.  Recently, seawater has been used in a pumped storage 

plant near Okinawa, Japan, with the upper reservoir situated on high seaside cliffs and the 

sea below acting as the lower reservoir (figure 2.5).  Special measures were taken to prevent 

corrosion and the adhesion of marine organisms (e.g. barnacles) to the pumps, turbines and 

pipes [57]. 

 

 

 

Fig. 2.5  Pumped hydroelectric energy storage plant using seawater [57] 

 

 

2.1.3 Batteries 

 

Batteries comprise of one or more electrochemical cells, each cell consisting of an 

electrolyte (which can be solid, liquid or paste) and two electrodes: a positive anode and a 

negative cathode.  Electrochemical reactions at the electrodes occur during discharge, 

creating a flow of electrons through the external circuit.  Batteries fall into two broad 

categories: primary batteries, which irreversibly transform chemical energy to electrical 
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energy and so cannot be recharged (without manually replacing the components of the 

battery consumed by the chemical reaction); and secondary batteries, which are reversible 

and so can be recharged by applying an external voltage across the electrodes. Secondary 

batteries are of much more interest when looking at long-term storage technologies required 

to undergo thousands of charge/discharge cycles.  A number of different materials have been 

used for the electrolyte and electrodes.  Batteries suitable for utility scale battery storage 

include lead acid, nickel cadmium, sodium sulphur, sodium nickel chloride, and lithium ion 

[58]. 

 

 

2.1.4 Flow Batteries 

 

Flow batteries store and release energy using a reversible reaction between two electrolyte 

solutions separated by an ion permeable membrane.  The electrolytes are stored in separate 

tanks and pumped into a cell for energy transfer; ions are passed between the electrolytes, 

changing their ionic forms.  During recharge this process is reversed and the ionic form of 

the electrolyte reverts to the charged form.  Therefore the energy capacity and power 

capacity are essentially decoupled, giving designers the flexibility to increase either one with 

no effect on the other by simply increasing the volume of the solution or the size of the cell 

stack.  With no obvious limits on the scale, flow batteries have the potential to join pumped 

hydro and compressed air in the large-scale energy storage market.  Many different 

electrolyte couples have been proposed and current developments are focused on vanadium 

redox, sodium polysulphide/sodium bromide (Regenesys), and zinc/bromine [59]. 

  

 

 

Fig. 2.6  Overview of a flow battery [60] 
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Flow batteries typically have efficiencies of 75-80%, a charge/discharge ratio of 1/1, 

and are flexible in operation, especially with respect to discharge times which can range 

between several minutes and many hours [56].  Vanadium redox batteries, which have the 

ability to go from charge to discharge in 1ms, have been integrated into some wind farms for 

load-levelling purposes.  Cells last over 10,000 cycles, and the manufacturer Sumitomo 

Electric Industries recommends that the cell stack be replaced every 10 years.  The 

electrolytes have an indefinite life [59]. 

 Regenesys, a 120MWh sodium polysulphide/sodium bromide store with a maximum 

discharge rate of 15MW (so a minimum time for full charge/discharge of 8 hours), was 

installed at Little Barford, Cambridgeshire in the early 2000s.  The cost was estimated at 

£1,000/kW or £125/kWh [61].  However, after severe technical difficulties the funding was 

withdrawn in 2003; the project was subsequently discontinued. 

 

 

2.1.5 Flywheels 

 

Energy can be stored in a flywheel in the form of rotational motion, and has been done so in 

many applications (such as potters’ wheels) for hundreds of years.  The amount of kinetic 

energy stored in a flywheel depends upon both the moment of inertia of the flywheel (I) and 

its angular velocity ( ): 

 

 
2

2

1
IW  . (2.16) 

 

The moment of inertia is given by 

 

   dxrxI 2 , (2.17) 

 

where  x  is the mass distribution and r is the distance from the axis of rotation.  

Therefore it would appear that stored energy is maximised by maximising the angular 

velocity and the product of mass and distance from the centreline.  However, the finite 

strength of materials used in a flywheel limits the maximum amount of energy that can be 

stored.  Sorensen [40] shows that a constant stress disc with exponential cross-section is a 

very good shape to use to maximise energy density (by mass – flat discs are more volume 

efficient).  It is also necessary to maximise the ratio of tensile strength to material density, 

though the cost of doing so must be taken into account. 
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Fig. 2.7  Flywheel energy storage system [58] 

 

Frictional losses can be reduced by operating the flywheel in near vacuum and using 

magnetic bearings.  In principle, high strength, low density carbon-composite filaments 

would allow energy densities of about 3,000kJ/kg, though materials and manufacturing costs 

would be higher than those of conventional steel flywheels, which have energy densities of 

30-120kJ/kg [40].  With no thermodynamic process involved and so no limiting Carnot 

efficiency, the cycle efficiency of flywheels can be as high as 95%.  However, the efficiency 

of a 200 ton flywheel in storing energy over a full day is estimated at 45%, reducing further 

with time [62].  The issue of safety must be considered when rotating a very large, heavy 

disc at high speeds, so it is likely that flywheels will need to be housed inside special casings 

or underground. 

Low speed flywheels cost between £150k/MWh and £200k/MWh and high speed 

flywheels with higher energy densities cost as much as £17m/MWh, being in the early stages 

of development [59]. 

 

 

2.1.6 Superconductors (SMES) 

 

Initially proposed in 1969, superconducting magnetic energy storage (SMES) is the only 

technology known to store electrical energy directly in electric current.  Normally, when 
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current is passed through a wire, heat losses occur due to the resistance of the wire.  

However, a wire made from a superconducting material (such as lead, mercury, or 

vanadium) and kept in a superconducting state has virtually zero resistance.  So by charging 

a magnet with a superconducting coil (e.g. a solenoid) energy is stored in the magnetic field 

and the heat losses in the coil are practically zero.  The coil must be immersed in liquid 

helium contained in a vacuum-insulated cryostat in order to be kept at a temperature close to 

absolute zero and so in its superconducting state [56].  SMES has the advantage of high 

efficiency (typically >97%) and fast discharge rates (full discharge is possible within a few 

milliseconds if desired), but only for a short period of time.  SMES also has a high cycle life.  

As a result, SMES is ideal for providing power quality to large industrial customers.  Due to 

the high energy consumption of the refrigeration system, SMES is not suitable for daily 

cycling applications such as generation and transmission deferral [59]. 

The typical rating of a SMES system is 1-10MW with a storage time of seconds, but 

work is being carried out on larger systems with power capacities of 10-100MW and a 

storage time of minutes [58].  A 28MWh prototype SMES plant has been built in the USA 

by the Department of Defense for the purposes of rapidly releasing energy for anti-missile 

defense concepts [40].  SMES costs approximately £200/kW [59]. 

 

 

2.1.7 Hydrogen 

 

Much research into hydrogen storage is focused on mobile applications.  If hydrogen is to be 

used as fuel for vehicles then it is necessary to pressurise it or convert it into liquid or slush 

hydrogen, to increase the energy density by volume and so provide a reasonable driving 

range.  However, the mass of the tanks required to store compressed hydrogen reduces the 

efficiency of the vehicle and, because the boiling point of hydrogen is 20.28K (-252.87°C), 

liquid hydrogen requires cryogenic storage which introduces additional costs (for both the 

cooling machinery and the insulation on the storage tanks) and lowers the efficiency 

(because energy is required to cool the hydrogen).  Slush hydrogen, a mixture of solid and 

liquid hydrogen, is formed by further lowering the temperature of liquid hydrogen to near its 

melting point (14.01K), increasing the density by 15-20% relative to the density of liquid 

hydrogen. 

Hydrogen can also be stored in a hydrogen-containing compound such as a hydride.  

When the hydrogen is required, the storage material is caused to decompose, yielding the 

hydrogen gas.  However, the high temperatures and pressures that are required for hydride 

formation and hydrogen release present barriers to the commercial realisation of hydrides. 
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Hydrogen can be stored underground in caverns, excavated salt domes, disused 

mines, aquifers, and depleted oil and gas fields.  In Teesside, ICI has stored approximately 1 

million m
3
 of hydrogen gas in three salt caverns at about 400m depth for a number of years.  

According to Taylor et al [63], underground storage is the least expensive method of storing 

large quantities of gaseous hydrogen.  Indeed, underground hydrogen storage is about two 

orders of magnitude cheaper than tank storage when applied to volumes of several million 

m
3
 of hydrogen.  The highest capital investment is in depleted gas wells. 

In depleted gas wells the gas stored in a field is divided into active working gas and 

cushion gas, an inactive base gas that is not recoverable.  The ratio of working to cushion gas 

varies widely with a ratio greater than 2:1 generally being preferred.  As hydrogen is a 

relatively expensive commodity, the cost of the cushion gas is a very significant part of the 

capital charges for such large storage reservoirs.  However, as the cavern is repeatedly 

cycled, the initial cushion gas cost is amortised [64]. 

 

 

2.1.8 Thermal Energy Storage 

 

Heat can be used as an effective means of storing energy, and is particularly suited to use in 

solar thermal power plants.  Typically heat is transferred to a thermal storage medium during 

the day, and withdrawn for power generation at night or during overcast periods.  Various 

thermal storage media have been used or proposed, including pressurised steam, concrete, 

phase change materials, and liquids such as water, oil, and molten salt. 

Molten salt (60% sodium nitrate and 40% potassium nitrate) is used for heat storage 

at Andasol power station, Europe’s first commercial parabolic trough solar thermal power 

plant located in Andalusia, Spain.  The salt melts at ~220°C and is kept liquid at ~290°C in 

an insulated “cold” storage tank [65].  When heat is to be stored the molten salt is heated 

using the concentrated solar power to ~570°C, and then moved into an insulated hot storage 

tank.  When electricity is required from the store (e.g. during the evening or when the sky is 

overcast), the heat is used to create superheated steam for use in a conventional steam 

turbogenerator.  The heat reservoir consists of two cylindrical molten salt storage tanks (as in 

figure 2.8), each one 14m high and 36m diameter, giving enough storage capacity to 

continue providing full power for approximately 7.5 hours.  Solar Tres, another plant that is 

being built in Spain, will include sufficient molten salt storage to allow the plant to continue 

to output power throughout the night during the summer. 

For plants using molten salt storage, energy storage densities of approximately 

100kWh/m
3
 are common, and studies have shown that a two-tank storage system could have 
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an annual efficiency of about 99% [65].  Current research focuses on molten salts with a 

melting point below 100°C to avoid special treatment in order to prevent the salt from 

solidifying [66]. 

 

 

Fig. 2.8  A two-tank molten salt thermal energy storage system integrated into a solar 

thermal power plant [65] 

 

Instead of using two separate tanks to store the hot and cold thermal storage 

medium, it is possible to use a single tank in what is known as a thermocline.  Such a tank 

has the hot fluid at the top of the tank and the cold fluid at the bottom, with a thermocline in 

between.  Depending on the cost of the storage fluid, thermoclines can have substantially 

lower costs than two-tank storage systems, but it is necessary to maintain the thermocline 

within the tank. 

A pumped heat electricity storage system (shown in figure 2.9) is being developed 

by Isentropic Ltd., comprising two large heat storage containers (one hot and one cold) and a 

heat pump.  Electrical power is used to compress/expand air in the heat pump, which is then 

used to raise the temperature of the gravel in one of the containers to about 500°C and lower 

the temperature in the other container to about -160°C.  To obtain electricity from the store 

the cycle is reversed:  air is heated in the hot container and cooled in the cold container, and 

the temperature difference is used to drive the heat pump in reverse as a heat engine, 

generating electricity.  Isentropic claim that their system has a round trip efficiency of 72-

80%, and because gravel is such a cheap and readily available material, the cost can be kept 

down to around £34/kWh (about £6/kWh at scale) [67]. 
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Fig. 2.9  Pumped heat electricity storage plant designed by Isentropic Ltd. [67] 

 

It is also possible to store electrical energy using thermocouple batteries and Alkali 

Metal Thermal Electric Converters (AMTEC batteries).  Thermocouple batteries are based 

on the Seebeck effect (upon which thermocouples are based): in a closed circuit comprising 

two dissimilar metals, an electric potential is created between the two junction points when 

one junction is heated and the other is kept cool.  Thermocouple batteries are not very 

efficient and are only suitable for low power applications. 

Thermal energy storage can also be used to reduce the electricity consumption of 

building heating and air conditioning systems during times of peak demand by using cheap 

off-peak electricity to power a hot or cold storage system. 

 

 

2.2 Underwater Inflatables and Water Load Test Weights 

 

Underwater inflatables and water load test weights are fabric structures used for the 

application of load: underwater inflatables are used to raise objects off the seabed, reduce the 

draft of ships, and support pipelines, and water load test weights are used for the proof load 

testing of cranes and frames.  Both underwater inflatables and water load test weights share 

many similarities with Energy Bags, in that they are reinforced fabric structures designed to 

carry the same loads while separating water and air.  Underwater inflatables are also 

designed to withstand the marine environment.  No technical literature could be found on 

lifting bags or water load test weights, but much information could be found on company 

websites.  We also engaged in discussions with several manufacturers of underwater 

inflatables and water load test weights, and these discussions are documented in section 

2.2.3. 
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2.2.1 Lifting Bags 

 

Inflatable lifting bags are used for the lifting of wrecks, sunken ships and submarines, 

concrete pipes, and other items from the seabed to the surface, or for the short term support 

of an underwater item.  They have become popular for these uses because they are cheap, 

reusable, lightweight, and require relatively little storage space. 

Seaflex Ltd. are an Isle of Wight based manufacturer of marine air lift bags and 

water load test weights with over 15 years’ experience.  In one of their more interesting 

projects, they supplied (for hire) five of their open bottom 10t Series 063 air lift bags (a 5t 

version is shown in figure 2.10) to Industrikonsult which were used at a depth of 293m to lift 

the corner of a subsea oil production template in the Vigdis oil field while seabed 

stabilisation operations were undertaken [68].  The five bags, providing a total of 50t of lift, 

were attached to a single lifting point with a complex rigging arrangement.  The bags 

conform to IMCA D 016, an international standard for underwater air lift bags [69], and HSE 

regulations, and are fitted with a bottom operated dump valve.  It is believed that the dump 

valve is located on the top of the bag (the only place where air will remain even when the 

bag does not contain much air), and is bottom operated so that it may be operated by a diver 

or ROV (remotely operated vehicle) without the risk of being hit by the stream of air bubbles 

that are released. 

 

 

 

Fig. 2.10 5t air lift bag manufactured by Seaflex Ltd. [70] 

 

The Seaflex 5t air lift bag shown in figure 2.10 appears to have 8 straps attached 

between the single attachment ring and the open base of the bag, 8 or 16 corresponding 
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panels forming the sides of the bag, and a single top panel.  Seaflex air lift bags have RF 

(radio-frequency) welded seams, a unique ‘de-tangler’ for safe zero visibility rigging, high 

tensile polyester 3×3 Panama basecloth with UV stabilised PVC coating on both sides 

(1.650kg/m
2
), handling ladders, and a ¾” inflation valve.  In accordance with IMCA D 016 

they have a 5:1 safety factor.  Figure 2.11 shows a design drawing for Seaflex’s largest air 

lift bag, which provides 35t of lift.  Notably, the 9 webbing strops that serve as meridional 

reinforcement go over the top of the bag, effectively forming 18 strops and reducing the 

number of strop terminations by 50%.  They are 75mm wide [71] and retained at the top by a 

stainless steel crown flange. 

 

 

Fig. 2.11 Design drawing for a Seaflex 35t air lift bag [71] 
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 JW Automarine Ltd. of Norfolk have been designing and manufacturing inflatable 

lifting bags since 1972.  They make parachute type lifting bags with both open and closed 

bottoms, and with lifting capacities of up to 50t.  Their PR35 35t closed bottom parachute 

lifting bags were used to raise a North Korean submarine, as shown in figure 2.12.  As in 

figure 2.12, and as advertised on Seaflex and JW Automarine’s websites, closed bottom bags 

are used for lifting items to the surface, though IMCA D 016 clearly recommends that “only 

open bottom bags should be used where any form of ascent is planned or possible, such as 

vessel salvage or raising objects from the seabed.  Fully enclosed bags should not be used for 

this purpose.”  However, integrated pressure relief valves, with adequate flow rate, provide 

the necessary release of air as these bags rise to the surface.  Figure 2.13 shows the base of 

two of JW Automarine’s smaller closed bottom parachute type lifting bags. 

 

 

 

Fig. 2.12 35t closed bottom lifting bags used to raise a North Korean submarine [72] 

 

 

 

Fig. 2.13 View of the bottom of two small closed bottom lifting bags [73] 
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JW Automarine’s bags are manufactured from “high tenacity” Trevira™ polyester 

cloth with PVC coating, and have RF welded seams “for strength and integrity”.  The fabric 

has a temperature operating range of -40°C to 700°C [74].  Their larger lifting bags (3t and 

upwards) feature a load restraining harness of heavy duty polyester webbing which is 

fabricated into the skin of the bag, and their smaller bags have load restraints of heavy duty 

polyester webbing which are sewn and welded to the skin of the bag.  All of their lifting bags 

have a minimum safe working load ratio of 6:1. 

The technical specifications of JW Automarine’s range of totally enclosed parachute 

type lifting bags are given in table 2.4, and their relative sizes are shown in figure 2.14.  

These bags have a lanyard-operated large dump valve, a ¾” inlet valve, a ~75mm diameter 

2psi (0.138bar) overpressure relief valve at the base, and a 4” cap in the base plate that can 

be removed to form an open bottom bag.  The flow rate from the 2psi relief valve is quoted 

as being in excess of 80cfm (2.265m
3
/min).  In marine salvage operations, totally enclosed 

bags are useful because they do not dump air when tilted, which would lead to a reduction in 

buoyancy and present a risk of dropping the item back to the seabed, so they can be towed 

and located in fast currents while maintaining buoyancy.  The bags are also light enough to 

be easily transported and pack away very tightly; the largest bag in table 2.4, the 50t 

PR50TE, packs down to approximately 1.00×1.30m. 

 

Model Lift Capacity (t) Overall Height (m) Overall Dia. (m) Net Weight (kg) 

PR1TE 1 2.38 1.30 16.5 

PR1VTE 1.5 2.86 1.30 18.5 

PR2TE 2 3.02 1.40 22.0 

PR3TE 3 3.95 1.50 41.5 

PR4TE 4 4.00 1.75 45.0 

PR5TE 5 4.25 2.20 51.0 

PR10TE 10 4.85 2.76 98.5 

PR30TE 20 5.60 3.67 150 

PR35TE 35 6.46 4.16 250 

PR50TE 50 7.50 5.00 300 

 

Table 2.4 Technical specifications for JW Automarine’s range of totally enclosed 

parachute type inflatable lifting bags [75] 
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Fig. 2.14 Sizes of JW Automarine’s totally enclosed parachute type lifting bags [75] 

 

JW Automarine and Seaflex also manufacture totally enclosed cylindrical lifting 

bags (as shown in figure 2.15).  These are more suitable for use in shallow water than 

parachute type bags, because of their low profile, and are appropriate for pipe and cable float 

out.  They are also used to reduce the draft of vessels when launching or manoeuvring them 

in limited depth.  While the parachute type bags are all designed with a single attachment 

point at the base, the cylindrical bags must have several rigging points (9 in the case of JW 

Automarine’s largest – 50t – version, and 14 in the case of Seaflex’s largest – 35t – version 

[76]).  They have circumferential webbing, and it is advised that an I-beam be attached 

against the underside to ensure that they do not tilt towards one end during inflation.  Seaflex 

warn that their cylindrical bags should never be inclined by more than 5° to one side, and it 

is believed that this is because a tilt to one side will raise the tension in the webbing strops on 

the upper side. 
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Fig. 2.15 Totally enclosed cylindrical lifting bag [77] 

 

 A US-based company called Canflex Inc. manufactures tetrahedron-shaped lifting 

bags (figure 2.16) in both open and closed bottom variants.  However, the maximum lift 

capacity of their range of tetrahedron bags is only 500kg.  They also sell “balloon-shape” 

(parachute type) and cylindrical lifting bags; their cylindrical bags incorporate two drain 

valves with air tight caps on the bottom, allowing the bag to be easily drained if water should 

find its way inside.  All their bags feature a lift harness of high strength polyester webbing 

enclosed in pockets attached to the side of the bag.  Their largest (50t) parachute type bag is 

made of 1.086kg/m
2
 fabric coated to a total weight of 3.024kg/m

2
, with tensile strength of 

18,000N/5cm (meaning that a 5cm wide strip of the fabric can support a maximum tensile 

load of 18,000N).  However, the material thickness is not given.  The fabric density and 

tensile strength for all of the other bags they manufacture can be found at [78]. 

 

 

 

Fig. 2.16 Small tetrahedron lifting bag [78] 

 



2. Literature Review 

46 

Companies such as JW Automarine and Seaflex also manufacture other fabric 

structures such as water load test weights (used for proof load testing of lifting equipment, a 

mandatory requirement in many countries), mine recovery bags, ocean towable bladders, 

land-based liquid and helium storage tanks, seamarks (such as those used to mark out boat 

racing courses), fenders, and drogues (to provide drag for a towed yacht to ensure that it 

doesn’t overshoot – or crash into – the towing vessel when the towing vessel slows). 

 

 

2.2.2 Water Load Test Weights 

 

There is much similarity between a water load test weight and underwater lifting bags and 

open bottom Energy Bags with a similar design.  The loads in the bags and the loads that the 

bags exert on the object they are attached to are almost identical.  Ignoring material mass, the 

net weight per unit volume (in N/m
3
) of a water load test weight is given by  gatmw   , 

where w is the density of the water, atm is the density of the surrounding air and g is 

standard gravity, and the net buoyancy per unit volume (also in N/m
3
) of an underwater 

inflatable (be it lifting bag, Energy Bag, or any other device) is given by  gaw   , 

where a is the density of the compressed air.  The density of air increases with pressure 

because of the compressibility of air, and so the density of the compressed air in an 

underwater inflatable will always be greater than atm (because the pressure of the air in an 

underwater inflatable must be greater than or equal to the pressure of the water surrounding 

the top of the bag).  Therefore the weight per unit volume of a water load test weight will be 

very close to (but higher than) the buoyancy per unit volume of an underwater inflatable, the 

difference between the two values being proportional to the pressure of the air inside the 

underwater inflatable (and so depth). 

 Also, the differential pressure across a fully filled water load test weight differs with 

distance from the attachment in exactly the same way that the differential pressure across a 

fully inflated Energy Bag differs with distance from the attachment.  The differential 

pressure at a depth d below the water level in a water load test weight is given by gdw , 

and the differential pressure at a height h above the water level in an open bottom Energy 

Bag is given by ghw . 

Therefore water load testing of the strength of open bottom Energy Bags and their 

seabed attachments by simply hanging the Energy Bag in open air and filling it with water 

would be a conservative test.  The direction of the material mass relative to the applied load 

differs in water load test weights and underwater inflatables, but this difference serves to 
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reduce the net load on an underwater inflatable and its seabed attachment, and increase the 

net load on a water load test weight and its attachment, so increasing the conservatism of a 

water load test of an Energy Bag.  Of course there is a slight difference in the density of 

seawater and fresh water, but there is no reason why seawater (or man-made brine) could not 

be used in such a test. 

Figure 2.17 shows a water load test weight manufactured by Aberdeen-based Water 

Weights Ltd.  This bag clearly has lobing, reducing the hoop stress in the fabric (as 

explained in Chapter 5).  The bags are manufactured from individual panels which are 

welded together [79].  Water Weights manufacture bags up to 35t capacity, the specified 

dimensions [80] being very similar to those of the 35t lifting bags manufactured by Seaflex 

and JW Automarine.  Several water load test weights can be hung from the same rigging, as 

shown in figure 2.18.  These seven 35t bags were used in May 2010 to provide a total of 220t 

load in the proof load testing of the main crane aboard a rig involved in the installation of 

North Sea wind farms.  Note that four bags have been hung from the upper rigging point; 

Seaflex point out that their 35t lifting bags can be used in a three unit cluster to provide 100t 

buoyancy at a single point.  Water Weights use calibrated flowmeters to monitor the volume 

(and so mass) of water that has been pumped into their bags. 

 

 

 

Fig. 2.17 A large water load test weight [80] 
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Fig. 2.18 Seven 35t water load test weights configured in one set of four and one set 

of three [81] 

 

 Attaching several Energy Bags to a single rigging point may potentially lower costs 

of installation, however it would probably not be ideal because the bags would rub against 

each other as they inflated and deflated, and shock loads and undesirable inflation shapes and 

load patterns could occur as bags are inflated in amongst other inflated bags.  Water load test 

weights are only hung from the same rigging point to provide a larger load to a single point, 

and it is assumed that all the bags are filled simultaneously.  Also, the filling of water load 

test weights is an occasional procedure that is carefully monitored by trained engineers that 

are able to see the bags in person and move them or stop the filling if necessary.  Energy 

Bags will not be monitored in this way, and must be operated without direct supervision for 

long periods in harsh conditions.  Energy Bags could be stacked on top of each other but, for 

a given fill level, the higher bags would have lower energy densities than the lower bags 

because they would be in lower pressure water, and a stack of Energy Bags would be more 

affected by side loading from currents than a single bag, presenting a larger total area and 

protruding into faster currents closer to the surface. 

 It should be noted that almost all of the underwater inflatables used for non-military 

purposes are coloured yellow or orange.  This is because these colours are highly visible at 

sea, both at the surface and underwater.  We would be inclined to use these colours for 

Energy Bags to ensure that they are as visible as possible, in case they need to be located 

without GPS (for inspection, maintenance or removal). 
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2.2.3 Correspondence with Manufacturers 

 

In October 2010 I corresponded with Graham Brading at Seaflex, David Letts at Scholle 

Europe Ltd. (owners of JW Automarine) and Alan Milne at Water Weights, in order to find 

out information about the sizes of bags they manufacture, what size they think they could 

manufacture and what they believe limits the size (if anything), the design of the bags and 

what influences the design, and cost.  The information is summarised in table 2.5. 

 

  Seaflex JW Automarine Water Weights 

Contact Graham Brading David Letts Alan Milne 

Largest ever 
bag 

35t, working on 50t 50t 35t 

What limits size Hoop stress in fabric 
at largest diameter. 
Could look at higher 
strength fabric if 
necessary 

Physical weight to be 
handled by a diver 
(325kg for a 50t 
parachute-type bag).  
Also manhandling 
their end would create 
a problem in packing 

35t is largest that they 
can have proof load 
tested with safety 
factor of 6, as their 
test rig has a SWL of 
220t 

Cost to buy £6160 for 35t open 
base, £6660 for 35t 
closed base, £5830 
for 35t cylindrical bag 

£8345 for 50t closed 
base, £6395 for 35t 
closed base 

£13396 for 35t 

Closed 
parachute type 
bags? 

Are available Are available Could be 
manufactured 

Relief valve 
size and 
location 

2", top dead centre 75mm, not at the very 
base 

  

Inflation valve 
size and 
location 

3/4", top, off-centre Not top dead centre   

Extra 
comments 

Valve positions are 
flexible.  A partially 
inflated bag in current 
would probably suffer 
abrasion damage at 
the strop/canopy 
interface.  Not carried 
out long term testing 
because their 
equipment is normally 
used for recovering 
shipwrecks or laying 
oil pipelines, so the 
duration outside is not 
usually more than a 
month or so 

  All bags have a 
physically proven 
safety factor of 6 and 
are subjected to a 
proof load test of 2:1 
before entering 
service.  Bags are 
made up of individual 
panels which are 
welded together 

 

Table 2.5 Summary of the information obtained from three manufacturers of lifting 

bags and water load test weights 
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At 500m depth, and conservatively assuming isothermal expansion, a 35t closed 

base bag storing air at a pressure equal to 2psi above the hydrostatic pressure at the outside 

of the bag would store 706.85MJ, equivalent to 0.196MWh.  5.09 35t bags would be 

required to store 1MWh at this depth, and so the 35t Seaflex fully-enclosed air lift bag, 

costing £6,660, works out at £33,920/MWh (plus the cost of ballast).  Of course, this price 

would be much improved by using adiabatic expansion, i.e. heating the air before expansion 

using stored heat that was taken out of the air during compression. 

 Graham Brading at Seaflex pointed out that the hoop stress in the fabric at the largest 

diameter of the bag limits the size, however upon inspection of the design drawing (figure 

2.11), photographs emailed to me by Graham, and the photographs on Seaflex’s website, it 

was clear that Seaflex’s bags don’t have any circumferential lobes.  It is believed that these 

would greatly reduce the hoop stress in the fabric.  Interestingly, the bags manufactured by 

Water Weights are lobed, and Alan Milne at Water Weights didn’t mention hoop stress as a 

limiting factor, instead saying that their sizes are limited by the load capacity of the test rig 

used for the proof load testing. 

 Seaflex and Water Weights also hire bags by the day, and hire prices were obtained. 

 

 

2.3 Ballooning 

 

Before embarking on a short history of ballooning, it should be explained that there are 

essentially two different classes of balloon: the zero pressure (or zero-superpressure) balloon 

and the superpressure balloon.  A zero pressure balloon has zero differential pressure at the 

base when at flight altitude, and tends to be open at the base to ensure that the differential 

pressure doesn’t become greater than zero.  A modern hot air balloon is a zero pressure 

balloon because it has an open base to allow the air to be heated as necessary.  A 

superpressure balloon has greater than zero differential pressure at the base when at flight 

altitude, and must have a closed base otherwise lifting gas would escape until the differential 

pressure at the base becomes zero. 

 

 

2.3.1 Early Days of Ballooning 

 

The first untethered manned balloon flight took place in Paris on 21
st
 November 1783, by 

Jean-François Pilâtre de Rozier and the Marquis François Laurent d’Arlandes.  The flight 

lasted approximately 25 minutes and covered a distance of about 9km.  The balloon, shown 
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in figure 2.19, had been designed and built the previous year by the Montgolfier brothers and 

was a hot air balloon (or Montgolfière balloon as they are also known).  That first balloon 

was not remarkably different in style or design to the hot air balloons flown today, and the 

concept remains exactly the same: a lighter-than-air gas (air heated by a burner in a hot air 

balloon) enclosed within a balloon envelope has buoyancy because the contained gas is less 

dense than the surrounding air (the gravity-induced pressure gradient in the atmosphere 

determining that the direction of the buoyancy force is upwards), and if that buoyancy is 

greater than the mass of the balloon materials and payload, then the balloon will rise. 

 

 

Fig. 2.19 Model of the first manned balloon [82] 

 

There are two main types of balloon: the hot air (or Montgolfière) balloon and the 

gas balloon.  A gas balloon uses an unheated lighter-than-air gas (such as hydrogen or 

helium) as the lifting gas.  The first manned flight with a gas balloon took place on 11
th
 

December 1783, less than a month after the first hot air balloon flight, when French physicist 

Jacques Charles and his associate Nicolas Robert flew a hydrogen balloon for two hours, 

landing 44km away from their launch pad in Paris.  This balloon had a wicker gondola, 

stones in the gondola for ballast, an open base, and a valve at the top.  The balloon envelope 

was surrounded by a net which was attached to the gondola, and these various aspects of the 

design set the standard for many subsequent generations of balloons.  Hydrogen was used as 

the lifting gas in the early days but was later abandoned in favour of helium because of the 

dangers of using such a highly flammable gas. 

One of the pilots of the first manned hot air balloon flight, Jean-François Pilâtre de 

Rozier, quickly developed a hybrid balloon, or Rozière balloon, which contains a cell for hot 

air and a separate cell for an unheated lighter-than-air gas.  The advantage of a Rozière 

balloon is that the pilot has control over the buoyancy (and so altitude) without needing to 

carry as much fuel as in a hot air balloon.  On 15
th
 June 1785, Pilâtre de Rozier made the first 

flight in a Rozière balloon, attempting to cross the English Channel from France to England, 

but died when the balloon suddenly deflated and crashed in the Pas-de-Calais region of 
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northern France.  Today, Rozière balloons are primarily used for extremely long-duration 

flights, such as the first manned non-stop round-the-world flight completed by Bertrand 

Piccard and Brian Jones on 21
st
 March 1999 in the Breitling Orbiter 3 (shown in figure 2.20).  

Their flight lasted almost 20 days, and set records for time and distance that remain unbeaten 

by any type of manned balloon. 

 

 

 

Fig. 2.20 Breitling Orbiter 3, the first balloon to be flown non-stop around the world 

[83] 

 

In the years following the first balloon flights, balloons were used for military 

purposes, initially for observation, reconnaissance, and communication, and later on for 

bombing and to protect critical targets from low-level attacks (as barrage balloons).  In 1852 

the first engine-powered airship flight was made by Henri Giffard, covering a distance of 

27km in a steam-powered balloon. 

 

 

2.3.2 Scientific Ballooning and Superpressure Balloons 

 

Balloons have been used for scientific purposes since they were first flown.  Early 

balloonists carried thermometers and barometers with them to learn about the variation in 

atmospheric temperature and pressure with altitude.  They also collected air samples, 

experienced the effects of hypoxia (oxygen deprivation) on the human body, and determined 

the variation in the Earth’s magnetic field.  Unmanned balloon sondes were first flown in the 

early 1890s, carrying instruments to measure atmospheric temperature, pressure, and 

humidity at higher altitudes.  Later these were equipped with radio transmitters (radiosonde) 

to send the data back to Earth, and used to measure wind speed and direction (rawinsonde).  
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Nowadays many radiosondes and rawinsondes are flown every day around the world to 

gather the data required to accurately forecast the weather using numerical simulations. 

 Up until the 1930s, balloons had been fully inflated on the ground.  If a balloon is 

fully inflated on the ground, a lot of the lifting gas is ultimately wasted because it vents from 

the base of the balloon as the balloon rises into lower pressure air and the lifting gas 

expands.  In 1931 and 1932, the Swiss physicist Auguste Piccard (grandfather of Bertrand 

Piccard and inspiration for Professor Calculus in Hergé’s The Adventures of Tintin) 

performed manned flights to altitudes of 16km in a pressurised gondola and by using a 

balloon envelope with a fully inflated volume of five times the volume required to begin the 

ascent and only partially inflating the envelope on the ground (as shown in figure 2.21(b) 

and as in figure 2.22), he got round the problem of wasting gas.  Incidentally, in the mid-

1930s Piccard realised that a modification of his spherical balloon gondola could also be 

used for manned exploration of the deep ocean; the gondola was ultimately used on 

bathyscaphe FNRS-3 which descended to a depth of 4,050m in 1954. 

 

  

 

 (a) (b) 

 

Fig. 2.21 (a) Swiss physicist Auguste Piccard [84]; (b) one of Piccard’s balloons at 

launch [85] 

 

In the 1950s and 1960s, Winzen Research Inc., headed by the German-American 

aeronautical engineer Otto Winzen, made significant contributions to the design of high-

altitude balloons.  In order to fly balloons at very high altitudes, it is necessary to reduce the 

mass of the film as much as possible; Winzen’s balloons used very thin films of polyethylene 

resin, vastly reducing the weight in comparison with the rubber materials used previously.  
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The balloons were constructed from flat gores that were reinforced by load tapes (or 

tendons) at their boundaries.  Large curvature in the membrane between tendons meant that 

the differential pressure was carried with low film stresses, allowing such thin materials to be 

used.  These balloons, designed with General Mills Inc., were used in several US military 

(pre-NASA) projects including Helios and Skyhook (to study phenomena such as cosmic 

rays, plasma flow, micrometeorites, and sun spots), and Strato-Lab and Manhigh (to test 

equipment and life-support systems for space missions).  The Skyhook balloon is shown in 

figure 2.22. 

 

 

 

Fig. 2.22 A Skyhook balloon in ascent [86] 

 

In the 1960s, scientists decided to study air circulation patterns over long periods 

using balloons at constant altitude.  However, the zero pressure balloons used at the time 

were not capable of remaining at constant altitude for periods longer than a few days; during 

the diurnal (day-night) cycle, heating and cooling causes the gas inside a balloon to expand 

and contract.  As night turns to day and solar heating causes the gas to expand, a zero 

pressure balloon will vent gas and remain at constant altitude.  However, as day turns to 

night, the gas inside the balloon will contract and the balloon will reduce in volume, thus 

lowering the buoyancy and requiring ballast to be jettisoned.  The flight duration of a zero 

pressure balloon is therefore limited by the amount of ballast that can be jettisoned.  The 

more ballast carried, the longer the flight duration, but the larger the balloon must be in order 

to provide the necessary lift.  It was found that an overpressurised balloon maintains a 

roughly constant volume during the diurnal cycle, drastically reducing the amount of ballast 
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that must be carried for long duration flights.  Comparative diurnal flight paths of a 

superpressure balloon and a zero pressure balloon with inadequate diurnal ballasting are 

shown in figure 2.23. 

 

 

 

Fig. 2.23 Diurnal flight paths of super-pressure and zero-pressure balloons (with 

inadequate diurnal ballasting in the zero pressure balloon to maintain constant altitude) [87] 

 

In the mid-60s, Air Force Cambridge Research Laboratories (AFCRL) designed a 

balloon able to remain at high constant (density) altitudes for long periods (several months or 

even years).  The spherical Global Horizontal Sounding Technique (GHOST) balloons 

(shown in figure 2.24) were superpressure balloons manufactured from Mylar, a biaxially-

oriented polyethylene (boPET) film with high tensile strength, and reached altitudes of up to 

24km. 

 

 

 

Fig. 2.24 A GHOST superpressure balloon, mid-1960s [88] 
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 Since the 1960s, developments in balloon materials have allowed balloons to reach 

higher altitudes and carry heavier payloads.  Ultra-thin Linear Low Density Polyethylene 

(LLDPE) film (3.m thick) was used on a 60,000m
3
 Japanese-designed balloon that was 

launched to a record altitude of 53km in 2002 [89].  Though not as versatile as aeroplanes 

and rockets, balloons are still useful because they can remain aloft for long periods without 

using any energy apart from that which is required at launch.  A balloon costs considerably 

less than a satellite, and the scientific instruments flown can be retrieved and launched again.  

Nowadays long duration ballooning is often carried out in Antarctica, because the constant 

daylight in the Antarctic summer means no day-to-night temperature fluctuations on the 

balloon. 

The design shapes of scientific balloons are normally based on conditions at float.  

Since work at the University of Minnesota in the early 1950s [90], the term natural shape 

balloon has been used to describe axisymmetric balloon shapes with no circumferential 

stresses, so that all the stresses in the material are carried meridionally (also known as 

longitudinally).  The natural shape balloon has an infinitesimal amount of excess film in the 

circumferential direction. 

Before moving on we should introduce some notation for differential pressure across 

the envelope of a pressurised fabric structure.  We use p to denote the differential pressure 

across a balloon at a given height above the base, and p0 to denote the differential pressure at 

the base of the balloon.  Therefore p0 = 0 in a zero pressure balloon, and p0 > 0 in a 

superpressure balloon. 

The natural shape of a lobed superpressure balloon closely resembles that of a 

pumpkin, so superpressure natural shape balloons are also known as pumpkin balloons.  

Pumpkin balloons have been the subject of most of the recent developments in balloon 

design.  Since the mid-90s, NASA has been working on its Ultra Long Duration Balloon 

(ULDB) system to carry payloads of several tons at constant high altitudes (above 99% of 

the Earth’s atmosphere) for periods of up to 100 days, as a cheap alternative to certain types 

of low-Earth-orbit satellites.  Initially using spherical balloons similar to the GHOST 

balloons, NASA soon switched to pumpkin balloons (figure 2.25).  Pumpkin balloons have 

been flown at the edge of space at altitudes of 35km on missions lasting up to 100 days. 
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Fig. 2.25 A 27m diameter model Ultra Long Duration Balloon undergoing testing [91] 

 

 Typically, balloons are lobed so that the transverse curvature of the membrane is 

increased and the membrane stresses in the envelope are lower than those in a traditional, 

smoothly curved balloon (see the Young-Laplace equation, described later in this chapter, 

for the relationship between pressure, curvature, and tension).  Tendons along the cusps 

carry most of the buoyancy load and ensure that the bag shape is stable, with the lobes 

forming between the tendons.  The deformed shapes of balloons and stresses in the materials 

are generally found using numerical analysis, in the same way that tension structures are 

modelled [92],[93].  In finite element models of balloons, as in those of Energy Bags, it is 

necessary to include a load stiffness matrix that accounts for the changing pressure loads as 

the envelope deforms to its equilibrium shape [92]. 

Natural shape balloons are designed with the tendons following the natural shape, 

and often with the lobes subtending a constant angle or having constant radius of curvature.  

The “isotensoid” is the natural shape of a balloon subjected to uniform differential pressure 

(so with p0 equal to p at the top of the bag), and is more relevant to balloons than Energy 

Bags because the differential pressure across an Energy Bag varies with height more than the 

differential pressure across a balloon.  This is because the difference between the density of 

water and the density of air compressed to high pressures (e.g. 50bar) is much greater than 

the difference between the density of high altitude air and the density of helium, and 

differential pressure p at height h above the base is given by 

 

 p = p0 + (ext - int)gh. (2.18) 

 

For an Energy Bag underwater, p at 10m above the base is approximately 1bar greater than 

p0, but for a helium-filled balloon at float altitude, p at 10m above the base is much closer to 

p0.  In space, a zero gravity environment, there is no pressure gradient and so a pressurised 
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fabric structure in space would have uniform differential pressure across the fabric (and so 

zero buoyancy).  Fabric structures have actually been proposed for use as habitation modules 

attached to the International Space Station. 

 Extensive work on the natural shape of both zero pressure and superpressure 

balloons was carried out by Smalley [94] in the 1960s, who also looked at balloon shapes 

with nonzero circumferential stress and ascent shapes.  Smalley modelled a balloon as an 

axisymmetric inextensible membrane, and to get around the problem of regularly trying to 

solve coupled differential equations without a digital computer, presented tables of design 

factors.  Subsequently, Smalley used a digital computer to carry out the computation.  

Baginski and Winker [95] give a good exposition of the use of axisymmetric inextensible 

balloon models to generate various balloon shapes. 

The boundary conditions for a balloon are lower bulkhead radius, upper bulkhead 

radius, tension at the base (the vertical component of which must equal the payload), and 

tension at the top (the vertical component of which must equal the difference between the 

weight of the upper bulkhead and the differential pressure force on the bulkhead).  Often it is 

assumed that there are no bulkheads (i.e. the radii at the top and bottom are both zero and 

there is no mass acting at the top of the balloon), so the top of the membrane meets the 

centreline of the balloon at right-angles, as in the ascent shapes shown in figure 2.26.  Ascent 

shapes for balloons with sealed bases are found by reducing p0.  Numerical difficulties are 

encountered when looking at very large negative pressure differences, which Smalley [94] 

deals with by using a rope section for the lower part of the balloon and Baginski et al [96] 

deal with using a parallel shooting method, while using an ordinary shooting method to solve 

the model equations for the fully inflated balloon. 

 

 

Fig. 2.26 Ascent shapes of a natural shape balloon with a sealed base, found using the 

parallel shooting method [96] 
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Superpressure balloons were first studied by Taylor in 1919 [97] in his work on the 

shapes of parachutes.  He derived elliptic functions that describe parachute curves, and found 

that the curves extend to form an oval, the parachute curve being the upper part of the oval 

down to where the tangent to the curve has the same angle as the parachute cords.  This full 

oval is the isotensoid shape described earlier (also known as the Taylor surface), and Taylor 

found that the ratio of the minimum to the maximum diameter of the isotensoid is almost 

exactly 0.6.  Actual parachutes (figure 2.27) have a rather flatter shape to that of the 

isotensoid, and Taylor proposed that this is probably due to an increase in pressure difference 

between the inside and outside near the edge of the parachute.  Taylor also showed that the 

isotensoid shape does not depend upon the elasticity of the membrane material by making a 

model of a rubber balloon with strengthening in the form of meridional threads, and then 

comparing its shape with that of a linen balloon with similar meridional strengthening.  

Notably, the linen balloon is described as consisting of two flat, circular pieces of linen 

joined together at their edges; the pumpkin-shaped Energy Bag prototypes manufactured for 

us by Thin Red Line Aerospace (detailed later) are also made of two flat circular pieces of 

material joined together at their edges. 

 

 

 

Fig. 2.27 A military parachute, with a similar shape to that of the top half of a 

pumpkin balloon [98] 

 

Problems with the stability of pumpkin balloons have been encountered [92].  In 

1984, Julian Nott designed the first pumpkin balloon in an attempt to become the first person 

to circumnavigate the Earth in a balloon.  However, upon inflation it was found that the 64-

lobe balloon adopted an asymmetrical shape with clefts forming in the balloon even at low 

pressures, and it was not until 4 lobes were removed that the balloon’s shape became 

symmetrical (figure 2.28). 
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 (a) (b) (c) 

 

Fig. 2.28 Nott’s Endeavour superpressure balloon (a) 64 lobes; (b) 62 lobes; (c) 60 

lobes [99] 

 

Calladine [100] showed that the volume enclosed by a lobed pumpkin balloon whose 

lobe cross-sections subtend a constant angle (so-called constant angle (CA) balloons) 

increases – if the number of lobes and the bulge formed by the lobes are sufficiently large – 

for certain small-amplitude inextensional deformations of the balloon.  This lowers the 

potential energy of the balloon (ignoring strain energy, potential energy E ≈ -PV) and 

indicates the presence of the instability encountered by Nott.  Later Lennon and Pellegrino 

[101] showed that balloons with constant radius of curvature along the lobes (CR balloons) 

can also become unstable but are more stable than CA balloons, having higher buckling 

pressures.  They found that the volume enclosed by a CR balloon decreases for small 

amplitude deformations but increases for sufficiently large deformations.  They also looked 

at the dependence of the stability of a balloon on the size of the perturbation, the deformation 

mode, and the number of lobes in the structure. 

 Wakefield [102] carried out the first numerical simulations of the stability of 

pumpkin balloons, with Pagitz, Pellegrino, and James [92],[103] simplifying the 

computation of the buckling pressure by taking into account the symmetry of a pumpkin 

balloon and using closed form solutions for the symmetry transformation matrices.  Pagitz 

and Pellegrino [104] optimised the cutting patterns of pumpkin balloons so that their stability 

is maximised for a given stress constraint, showing that maximising the buckling pressure of 

a balloon is equivalent to minimising the surface area of the cutting pattern, resulting in a 

fully-stressed design.  Like Calladine, Pagitz and Pellegrino found that balloons with flatter 

lobes are more stable, and that the buckling pressure varies with an inverse power-law of the 

number of lobes [92]. 
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2.3.3 Wrinkling of Membranes 

 

Thin flexible membranes transmit loading via in-plane tension only.  Under uniaxial 

compression a membrane collapses in the direction of compression, and wrinkles appear 

perpendicular to the direction of compression.  The membrane retains its tensile load 

capacity in the direction perpendicular to the compression.  In this work we refer to this state 

as uniaxial wrinkling.  Under biaxial compression a membrane loses its ability to sustain 

tension in any direction, and we refer to a membrane in this state as undergoing biaxial 

wrinkling (or being slack). 

The elastic matrix of a membrane element in a taut stress state is given by 
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where E is the Young’s modulus of the material and  is its Poisson’s ratio.  In a wrinkling 

state, this matrix should be modified to reduce the stiffness of the material in the direction of 

wrinkling to near zero.  The simplest way of attempting to model wrinkling is to set any 

compressive principal stresses to zero, along with the associated stiffness matrix 

components.  However, poor convergence has been observed when trying to use this method 

[105]. 

The first finite element solution to incorporate wrinkling was the Iterative Materials 

Properties (IMP) model developed by Miller et al [106],[107].  For a wrinkling element, 

Miller et al modelled the strain in the direction of wrinkling by using a variable effective 

Poisson’s ratio for the element.  They used the “wrinkled” elastic matrix 
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where    21   yxP  and  21   xyQ ; xyyx  ,,  are the engineering 

components of plane strain; 21 ,  are the major and minor principal strains; and the 

directions 1 and 2 are parallel and perpendicular to the wrinkles, respectively.  Clearly this 

matrix depends upon the axis system used, because of the dependence of P and Q upon x , 
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y  and xy .  This is unlike the elastic matrix of a taut element (as shown in equation (2.19)), 

which is independent of the axis system used. 

 Adler [108] implemented the IMP model with a user-defined material subroutine in 

the ABAQUS commercial FEA software to find the deformed shapes of wrinkling balloons.  

However, it was found that the solution tended to diverge in the presence of many slack 

(biaxial wrinkling) regions.  The IMP subroutine calculates the principal stresses and strains 

using Dt in order to check if any elements are wrinkling, and then the stresses and strains are 

recalculated using Dw where appropriate. 

 Use of the correct wrinkling criterion is critical to accurately judge whether the 

membrane is taut, wrinkled or slack.  Several wrinkling criteria have been proposed, and are 

detailed here: 

 

1) Wrinkling criterion based on principal stresses: 

 

If 2 > 0, taut, 

If 2 ≤ 0 and 1 > 0, wrinkled, 

If 2 < 0 and 1 ≤ 0, slack. 

 

This criterion misjudges the idea of “slackness” and allows for positive strain because of 

Poisson’s ratio effects [109],[110].  Positive strain in a slack element could be problematic in 

a revised materials model (to model wrinkling). 

 

2) Wrinkling criterion based on principal strains: 

 

If 2 > 0, taut, 

If 2 ≤ 0 and 1 > 0, wrinkled, 

If 2 < 0 and 1 ≤ 0, slack. 

 

This criterion misjudges the idea of “tautness”; due to the effects of Poisson’s ratio it is 

possible to have negative minor principal strain while the minor principal stress is positive 

[106]. 
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3) Wrinkling criterion based on a combination of principal stresses and principal strains: 

 

If 2 > 0, taut, 

If 2 ≤ 0 and 1 > 0, wrinkled, 

If 1 ≤ 0, slack. 

 

This is the most accurate criterion of the three.  Though there could be times when both 

principal stresses are negative and the element is still not classed as slack, this would be 

because the major principal strain is positive. 

 

 The shape of wrinkles can be well approximated with a half sine wave in the 

longitudinal direction, with linearly-varying transverse wavelength in the transverse 

direction [111], and the bending stiffness of a membrane, although small, plays a key role in 

the shape and amplitude of wrinkles.  A phenomenon known as mode jumping, in which the 

membrane suddenly changes from one wrinkled shape to another, has been observed in 

experiments [111] and numerical simulations [105].  It has also been found that during load 

cycling, corresponding forward and reverse mode jumps (e.g. a jump between 8 and 9 

wrinkles and back again) occur at different displacements. 

In this work we will not concern ourselves with the shape and frequency 

(“waviness”) of any wrinkles that may arise, and so will not include any bending stiffness. 

 

 

2.3.4 The Young-Laplace Equation 
 

The Young-Laplace equation relates the pressure difference across the interface between two 

static fluids to the surface tension in the interface, and takes the form 
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where p is the differential pressure across the interface, T1 and T2 are the components of 

surface tension (per unit perpendicular length) in the directions of principal curvature, and r1 

and r2 are the principal radii of curvature.  At all points along the centreline of a symmetric 

lobe, the directions of principal curvature are perpendicular to the centreline and along the 

centreline (i.e. circumferential and meridional).  Therefore equation (2.21) can be rewritten 

as 
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where Tc and Tm are the circumferential and meridional tensions (per unit perpendicular 

length) and rc and rm are the circumferential and meridional radii of curvature. 

The Ultra High Performance Vessel (UHPV), described in Chapter 5, is a design of 

lobed inflatable that has no meridional tension because of tendon shortening and the 

inclusion of “bellows”.  Since Tm = 0 in a UHPV, the relationship between the differential 

pressure, circumferential tension and circumferential radius of curvature is very simple. 

 

 

2.4 Techniques in Nonlinear Finite Element Analysis 

 

Finite element analysis (FEA) is used in two of the shape analysis tools presented in this 

thesis, however analysis of the deformed shape of an Energy Bag is a geometrically 

nonlinear problem.  There are two main reasons for this nonlinearity: 1) the nodes in an FE 

model of a cable-reinforced fabric bag are likely to undergo large deflections because the 

bending stiffness in cables and membranes is negligible in comparison with the elastic 

modulus of the material, and 2) pressure loading requires follower loads because the force of 

pressure always acts normal to the surface.  Here we detail the three standard techniques 

used in the solution of a geometrically nonlinear problem: the Newton-Raphson solution 

procedure, load incrementation, and displacement incrementation.  We also look at ways of 

dealing with boundary nonlinearity, when the structure comes into contact with itself or 

other structures. 

 

 

2.4.1 The Newton-Raphson Method 

 

The Newton-Raphson method, also known simply as Newton’s Method, is a well-known 

root-finding algorithm and one of the most powerful techniques available for solving 

nonlinear problems.  It is first in the class of Householder’s methods, requiring only 

knowledge of the value of the function and its first derivative, and is succeeded by Halley’s 

method which also requires knowledge of the second derivative.  The Newton-Raphson 

method is an iterative procedure which generates successively closer approximations of the 

root. 
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 Given a function f(x) = 0 and its derivative f’(x), we begin with an approximation of 

the root, xn.  If the function is reasonably well-behaved, a better approximation of the root is 

found by following the tangent to the curve at (xn, f(xn)) down to the place where the tangent 

line intersects the x-axis, (xn+1, 0).  xn+1 is found using 
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1 . (2.23) 

 

This process is repeated until convergence has occurred.  Figure 2.29 shows 2 iterations of 

the Newton-Raphson method. 

 

 

 

Fig. 2.29 2 iterations of the Newton-Raphson method [112] 

 

The Newton-Raphson method can be used to solve systems of equations, and it is 

used in this way in finite element analysis.  Given a vector (un) of an approximation of the 

solution to the set of equations f(u) = 0, a new vector which should be a closer approximation 

of the solution is given by 
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  , (2.24) 

 

where Jf(un) is the Jacobian of f(un) – a matrix of partial derivatives of f(un).  If the structure 

has k nodes, each with 3 degrees of freedom, then the vector u has the form 
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 Tkzxzyx uuuuuu ...2111 , (2.25) 

 

and the Jacobian Jf(u) is given by 
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In the FEA models presented in this thesis, the Jacobian is calculated analytically 

(see the derivations of the stiffness matrices and load stiffness matrices).  This leads to more 

accurate values for the partial derivatives than if numerical differentiation of the force and 

load vectors were used.  We seek the vector of displacements (u) at which the force residuals 

are zero, where the vector of force residuals (r) is the difference between the vector of 

applied loads (fapp, e.g. from differential pressure and material mass) and the vector of 

internal reaction forces (freac, e.g. from tension in the structure), given by 

 

 appreac ffr  . (2.27) 

 

So we seek the root of the equilibrium equation, r(u) = 0. 

There are a few difficulties with Newton-Raphson’s method that must be 

understood.  There are some circumstances in which the method may fail to converge: 

 

 If the initial approximation of the root (x0) is too far from the root. 

 If the derivative of the function is discontinuous. 

 If the derivative of the function is close to zero in any part of the function that is 

encountered during the iterations (so particularly near the root). 
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All of these issues had to be considered when developing the finite element analysis tools. 

 There is a slightly different version of the Newton-Raphson method known as the 

modified Newton-Raphson method.  In the standard Newton-Raphson method, the gradient 

of the tangent to the function (f’(x) or Jf(x)) is calculated for each iteration, however in the 

modified Newton-Raphson method the gradient is updated after several iterations.  This 

usually requires more iterations to find the solution, but it has the benefit of being less 

computationally expensive per iteration (on average). 

 

 

2.4.2 Load Incrementation 

 

It is possible to improve the chance of finding a solution using the Newton-Raphson method 

by utilising a load incrementation procedure [113].  Instead of immediately applying the full 

load, a load incrementation procedure works by only applying a fraction of full load, and 

finding the root for this load.  The load fraction () is then increased, and the converged 

solution for the previous load fraction is used as the initial approximation of the root with the 

new load fraction.  The load fraction is repeatedly increased in this way until full load is 

applied (which is when  = 1).  Incorporating a load fraction, equation (2.27) becomes 

 

 appreac ffr  . (2.28) 

 

The load fraction must also be included in the Jacobian of the force residuals. 

This procedure works on the idea that the initial approximation of the root will be 

closer to the solution for a small fraction of full load than it is to the solution for full load.  A 

new load fraction can be chosen by assessing a prospective load fraction’s effects on 

displacements, rotations, or the stress-state after a small number of iterations with the new 

load fraction (perhaps even after just one iteration). 

 

 

2.4.3 Displacement Control 

 

In some cases the chances of finding a converged solution can be improved by only using a 

fraction () of the node displacements calculated using the Newton-Raphson method.  So 

equation (2.23) becomes 

 



2. Literature Review 

68 

 
 
 n

n
nn

xf

xf
xx


 1 . (2.29) 

 

The displacement fraction used in each iteration can be calculated to limit the maximum 

displacement to a fraction of some geometrical dimension (e.g. the undeformed meridional 

length of the Energy Bag).  Introducing a displacement fraction in this way slows down the 

rate of convergence, but in some cases it is necessary in order to find a solution. 

 

 

2.4.4 Boundary Nonlinearity 

 

Boundary nonlinearity is encountered when the structure being studied comes into contact 

with itself or another structure.  The other structure can be modelled as an elastic body; 

however, care should be taken not to introduce a discontinuity into the gradient of the force-

displacement curve which can cause problems with the convergence of the solution 

procedure.  Spyrakos and Raftoyiannis [114] note that if nonlinear springs are used to model 

contact problems, their stiffnesses should be chosen with care in order to simulate nonlinear 

behaviour without causing numerical instability.  They also point out that in contact 

problems, a refined mesh should be used in the region of contact, because high stresses and 

strains can develop in the area of contact and because of the need to closely monitor the size 

of the contact area for accurate stress analysis. 

 Wrinkling elements also introduce boundary nonlinearity – they have standard stress 

and strain characteristics when fully stressed, but they have very little stiffness in 

compression.  In all cases of rapidly increasing or reducing the stiffness of an element to 

simulate contact or wrinkling, it is best if the change is implemented in such a way that the 

stress-strain curve and its derivative (the element stiffness) remain continuous. 

 

 

2.5 Notes on the Design of Energy Bags 

 

Unlike balloons, tensile structures, and underwater inflatables, which can all be maintained 

and inspected both in and out of service without too much difficulty, an Energy Bag must be 

designed with consideration of the substantial depth at which it will operate – divers cannot 

go down to such depths and ROVs must be used for installation and all other work.  An 

Energy Bag must work as intended over the course of its life, with relatively few inspections 
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and little to no maintenance.  Consideration must be given to the effects of saltwater and 

sand on the life of the bag materials (which may be limited by increasing permeability). 

 While the lifting bag guidelines IMCA D 016 may not apply to Energy Bags 

(because they are not used for lifting and will be designed to remain in place), they are still 

very useful and shall be consulted regularly.  Section 7.2 of IMCA D 016 details snatch 

loading that can occur in underwater lifting bags.  7.2(a) warns of snatch loads induced 

“when the bag is used in water depths shallow enough for wave action to cause snatching 

and rapid changes in the dynamic loading.”  Wave loading should not affect Energy Bags 

anchored at substantial depth, but should be considered for bags anchored at shallow depths 

(particularly near-shore prototypes).  7.2(c) warns of snatch loads induced “when the lift bag 

is incorrectly rigged”, which should also be considered for Energy Bags. 

 Balloons are designed with material mass in mind, with the aim of maximising net 

buoyancy.  However, material mass will not be an issue for Energy Bags because all it will 

do is slightly reduce the required ballast and required strength of anchorage.  Long duration 

balloons are also designed to maintain their volume (and so buoyancy) throughout the 

day/night cycle, and modern scientific balloons are overpressurised at the base for this 

reason.  Again, the day/night cycle and maintenance of buoyancy will not be an issue for 

Energy Bags, because the seawater temperature at depths such as 500m is not greatly 

affected by the day/night cycle, and because maintaining maximum buoyancy at all times is 

not a requirement of an Energy Bag.  Because they need not be overpressurised at the base, it 

may be the case that Energy Bags are not affected by the stability problems that have 

confronted the designers of pumpkin balloons.  Lifetime cost is the main focus of Energy 

Bag design, but cost does not seem to be such an issue for balloon designers, who have large 

research budgets and are driven by the need to minimise the mass of the balloon materials. 

 An Energy Bag must not dump air from the base if it is tilted because of currents 

(because dumping air reduces the amount of stored energy), therefore it makes sense to use a 

fully enclosed bag (even if the bag is designed with maximum p0 less than or equal to zero) 

or to make sure that, at full inflation, the water level inside an open base bag is high enough 

to always remain inside the bag even with some tilting.  If the bag is fully enclosed, adequate 

pressure relief valves should be incorporated into the base to ensure that the pressure of the 

contained air never exceeds the design value.  Obviously these must be tested and set before 

installation. 

JW Automarine point out that their lifting bags can be tested by hanging them upside 

down from a gantry or crane and filling them with water.  We could test open bottom or zero 

pressure fully enclosed bags in this way.  This would be a conservative test because in the 

test, the bag mass would act in the same direction as the loading, whereas underwater it 

would act in the opposite direction. 
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It should be noted here that a subsea CAES plant using Energy Bags should not 

necessarily just comprise a single bag – a number of bags could be located near to each other 

and attached by pipelines to a manifold, which in turn is connected by pipeline to the 

compression/expansion machinery.  Using a larger number of smaller bags may be 

advantageous in case a bag were to fail (in which case only a small amount of storage 

capacity is lost), and the ballast for smaller bags may be easier to transport and install. 

We will use static modelling of an Energy Bag, because it is anticipated that 

dynamic loading will be insignificant: the bags will be inflated and deflated slowly, and the 

currents at 500m depth are not very fast and do not rapidly change direction. 
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Chapter 3 
 

Modelling Axisymmetric Structures Using 

Coupled Ordinary Differential Equations 
 

 

If it is assumed that an Energy Bag is axisymmetric and inextensible, it is possible to derive 

a system of coupled ordinary differential equations (ODEs) that, when solved, describe the 

deformed shape of the bag.  This is presented here, including meridional, circumferential, 

and vertical loading.  Vertical loading is necessary to model self-weight and mass hanging 

from the inside of the bag, which it is believed will reduce the required amount of 

reinforcement material and may lower the cost of the bag (per unit of energy stored).  The 

ODEs are solved using one of the in-built functions in Matlab, ode45.  Deformed balloon 

shapes have been found in the past using the method adopted in this chapter (see [96] and 

[115]) but this work represents the first time the method has been used to find the deformed 

shapes of Energy Bags. 

 

 

3.1 Derivation of the Coupled Ordinary Differential 

Equations 

 

Figure 3.1 shows an infinitesimal patch of membrane of length s2 resisting differential 

pressure, p, across the membrane, which gives rise to a differential pressure force, F, acting 

normal to the centre of the patch.  The patch covers a circumferential angle of 2 , and this 

curvature leads to circumferential tension in the membrane of Tc.  The normal to the patch is 

at an angle   to the vertical, and the patch has meridional curvature such that the tangent to 

each end of the patch is at an angle   to the tangent to the centre of the patch.  This 

curvature leads to meridional stress in the patch of Tm at the centre, mm TT   at the upper 

end and mm TT   at the lower end.  The local radius of the bag is r at the centre of the 

patch, rr   at the upper end and rr   at the lower end.  Finally, the centre of the patch 

is at a distance s along the membrane from the top of the bag. 
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 Here, the circumferential tension cT  is in force per unit meridional length of 

membrane (N/m) and the hanging load nw is in force per unit of projected area onto the 

seabed (N/m
2
).  Self-weight of the bag (w) is in force per unit of surface area (N/m

2
), and the 

surface area of the patch is Ap.  The meridional tension Tm is force per unit circumferential 

angle (N/rad). 

 

Fig. 3.1  Section view of a patch of membrane subjected to a differential pressure 

force F 

 

The change in radius r with distance s along the membrane is easily derived. 

 

 cos
ds

dr
 (3.1) 

 

The change in height is found in the same way. 

 

 sin
ds

dh
 (3.2) 

 

Subjected to a differential pressure p between inside and outside (derived later on), the 

applied force on the patch is 

 

 ppAF  , (3.3) 

 

s 

r 

r – r 

r + r 

F 

+ 

–  
 

(Tm+ ΔTm).2 

(Tm - ΔTm).2 

 
 

 

nw.r.2Δθ.2Δs.cos(α) 
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where the area of the patch is given by 

 

 srAp  22  . (3.4) 

 

Therefore the differential pressure force on the patch is 

 

 sprF  22  . (3.5) 

 

For force equilibrium this must be equal to the sum of reaction forces in the opposite 

direction: 

 

    sinsin22sin2  sTTTTT cmmmm  

  cos22coscos22 swrsrnw  . (3.6) 

 

So the force balance in the direction of the normal, after small angle approximations, is 

 

  sin222222  sTTspr cm  

                                     cos22cos srwnw  . (3.7) 

 

Rearranging for   and dividing through by T4 , 

 

 
 

s
T

rwnTpr

m

wc 






coscossin

. (3.8) 

 

Taking the limit as s  goes to zero gives 

 

 
 

m

wc

T

rwnTpr

ds

d  coscossin 
 . (3.9) 

 

Balancing forces in the direction of the tangent to the centre of the patch moving from top to 

bottom, 

  

    sin22sincos22cos2 swrsrnTT wmm   

                                  cossin22cos2  sTTT cmm . (3.10) 
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Taking small angle approximations, dividing through by 4 , and rearranging for mT , 

 

    sincoscos rwnTsT wcm  . (3.11) 

 

Taking the limit as s  goes to zero, 

 

    sincoscos rwnT
ds

dT
wc

m  . (3.12) 

 

Equations (3.1), (3.2), (3.9), and (3.12) are the coupled ODEs that are solved to find the 

shape of the inflated bag.  This shape depends upon the initial values r(0), h(0), (0), and 

Tm(0), respectively the radius of the upper bulkhead, the height of the top of the bag above 

the seabed, the angle at which the meridian leaves the upper bulkhead, and the meridional 

tension at the top of the meridian (per unit circumferential angle). 

 

 

3.2 Solving the Ordinary Differential Equations 

 

The shape of the bag’s cross-section is found by solving equations (3.1), (3.2), (3.9), and 

(3.12).  This is carried out numerically, as an initial value problem or as a boundary value 

problem if the base radius of the bag is to be prescribed.  r(0), h(0), (0), and Tm(0) must be 

set before using the solver.  The radius at the top of the bag (r(0)) just depends upon the 

radius of the upper bulkhead.  The height of the top of the bag above the seabed (h(0)) and 

the meridional tension at the top of the bag (Tm(0)) must be varied by the user (or the root 

finder used for the shooting method – described later) until the base radius/meridional 

length/bag volume are as desired.  The angle at which the meridians leave the upper 

bulkhead ((0)) depends upon the mass and radius of the bulkhead (mbh and r(0) 

respectively).  The difference between the weight of the bulkhead (wbh) and the differential 

pressure force acting on the bulkhead (Fbh) is 

 

  20rpgmFw bhbhbh  . (3.13) 

 

This must be balanced by tension in the meridians, so the meridians must leave the bulkhead 

at an angle 
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 . (3.14) 

 

The differential pressure at height h above the base of the bag is given by 

 

  ghpp aw   0 , (3.15) 

 

where p0 is the differential pressure at the base of the bag.  The density of seawater (w) is 

approximately 1,025kg/m
3
, and the density of compressed air at absolute pressure P can be 

calculated using the equation of state for an ideal gas, 

 

 
RT

MP
 , (3.16) 

 

where the molar mass of air, Mair = 0.02897kg/mol, the universal gas constant, R = 

8.314472J/(K.mol), and T is the absolute temperature of the air.  In this thesis it is assumed 

that the air will be stored at the same temperature as the surrounding seawater 

(approximately 5°C), with all heat generated in the compression being taken out of the air 

before it enters the bag and ideally stored in thermal energy stores.  The absolute pressure of 

the compressed air is given by 

 

 atmw PgdpP  0 , (3.17) 

 

where d is the depth of the base of the bag and Patm is atmospheric pressure (101.325kPa).  

Interestingly, the net buoyancy per unit volume of contained air (given by  gaw   ) 

scales linearly with the depth at which the bag is anchored, net buoyancy reducing as depth 

increases because of the much higher compressibility of air than water. 

 The differential equations presented above have been derived by starting from the 

top of the bag, but it is also possible to start from the bottom [95],[115].  Both approaches 

involve some difficulties: if starting from the top, it is necessary to use a shooting method in 

order to set a meridional length and base radius, and if starting from the bottom, a shooting 

method is required in order to set a meridional length, upper bulkhead mass, and upper 

bulkhead radius.  We chose to start from the top of the bag because there are fewer variables 
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that need to be set using the shooting method, for which Matlab’s in-built root finder was 

used. 

 

 

3.3 Use of the Model 

 

Figure 3.2 shows the natural shape (so purely meridional loading) that a prototype Energy 

Bag with meridional length L = 2.36m will take when the base is anchored in water at a 

depth of 2.4m and subjected to a nominal overpressure at the base of p0 = 100kPa (1bar).  

Note that the effect of depth on the shape of an Energy Bag with a given p0 is small and is 

only a result of changes to the density of the contained air. 
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Fig. 3.2  Prototype bag with L = 2.36m and p0 = 100kPa 

 

Clearly a highly pressurised natural shape Energy Bag has the pumpkin shape of a 

superpressure balloon.  The greater pressure gradient of water than atmospheric air means 

that the buoyancy of an Energy Bag is greater than that of a balloon with the same volume, 

but it has no effect on the shape because of the lack of bending stiffness in both balloons and 

Energy Bags. 
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Introducing a nominal circumferential tension of c = 20,000N per metre of meridian 

raises the centre of the bag, lowering the meridional curvature.  The meridional curvature is 

reduced because some of the pressure load is being carried circumferentially, lowering the 

meridional stress.  This bag is shown in figure 3.3, with the bag with c = 0N/m (from figure 

3.2) shown with a dashed line for comparison. 
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Fig. 3.3  Solid line – c = 20,000N/m; Dashed line – c = 0N/m 

 

Bags with wide bases – r(L) > 0 – can also be modelled.  A natural shape bag with 

base radius of just over 5m is shown in figure 3.4.  It stores 289m
3
 of air, and is anchored at 

a depth of 500m.  The differential pressure at the base of the bag is zero, and so the absolute 

pressure of the contained air is 51.28bar, equating to 1.62MWh of energy (assuming 

isothermal expansion at 5°C).  Being a natural shape bag with zero differential pressure at 

the base, this type of bag is known as a zero pressure natural shape (ZPNS) bag. 

 



3. Modelling Axisymmetric Structures Using Coupled ODEs 

78 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

Radius, r (in m)

H
e
ig

h
t,

 h
 (

in
 m

)

 

Fig. 3.4 ZPNS bag with nonzero base radius 

 

This approach is later used to find the size of ZPNS Energy Bag which minimises 

the cost of materials per unit of energy stored, and to look at the effects of circumferential 

loading, hanging masses and nonzero differential pressure at the base, as also presented in 

[116].  However it is quite hard to use this approach as a root finder must be used to set L 

and r(L), and looping can occur, especially when trying to find the shapes of highly deflated 

bags.  By way of example, figure 3.5 shows two failed attempts to find the shape of a bag 

with r(L) = 0m, h(0) = 2m, and p0 = -gh(0)/2 (so the level of zero differential pressure 

would be halfway up the bag).  In figure 3.5(a), the initial guess at Tm(0) was 10,000N/rad.  

The resulting solution shows substantial looping, and the cross-section of the bag meets the 

centreline beneath the seabed.  In figure 3.5(b), Tm(0) was initially set to be equal to the 

tension in the meridian of a sphere
3
 with volume of Vsp, given by Vspb/2, where Vsp was 

chosen to be 1.6m
3
 in this case and b = g(w - a) (w is the density of the water and a is the 

density of the contained air).  This makes sense because the net buoyancy force in an object 

with volume V is given by Vb, and it is necessary to divide this force by 2 in order to obtain 

the meridional tension per unit circumferential angle.  The looping in 3.5(b) is much less 

dramatic than in 3.5(a) because the initial guess at Tm(0) was more accurate.  Figure 3.6 

shows the realistic solution, obtained with an initial guess at Tm(0) of 1,300N/rad.  In this 

case the actual value of Tm(0) is 1,358N/rad, lower than both the guesses in figure 3.5.  

However, using a very small guess at Tm(0) does not help; guesses at Tm(0) of 2N/rad and 

1,000N/rad both give the same result as the initial guess of 2,404N/rad (as shown in figure 

3.5(b)). 

 

                                                 
3
 It should be noted that an actual sphere is not possible if the anchoring is at the very bottom of the 

bag, because the vertical component of tension in the base of the bag would be zero, so the anchor 

would be providing no reaction to the buoyancy force. 
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Fig. 3.5  Attempts to find the shape of a bag with zero base radius, 2m height, and p0 

= -gh(0)/2, with initial guess at the meridional tension in (a) of Tm(0) = 10,000N/rad, and 

initial guess in (b) of Tm(0) = 2,404N/rad 
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Fig. 3.6  The realistic solution is obtained if the initial guess at Tm(0) is 1,300N/rad.  

Actual value of Tm(0) is 1,358N/rad 

 

In summary, the axisymmetric ODE method is not very easy to use because of the 

requirement to use a shooting method if we want to set one or both of the meridional length 

or base radius, and because of the looping problems.  An accurate initial guess at the 
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meridional tension at the top of the bag, Tm(0), is crucial to avoiding looping in the solution, 

and it is not clear if there is a better method of making an accurate initial guess at Tm(0) than 

that used in figure 3.5(b) without resorting to trial and error.  Penalty functions were used to 

keep clear of looping in an optimisation study carried out using this method, presented in 

Chapter 7.  It was decided that a more user-friendly and robust method of analysing 

axisymmetric bag shapes was required, and finite element analysis was employed for this 

purpose. 
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Chapter 4 
 

Finite Element Analysis of Axisymmetric 

Structures 
 

 

As realistic solutions to the ordinary differential equations presented in Chapter 3 are not 

easy to find when trying to study the shapes of highly deflated bags (which have p0 < 0), and 

because the method is generally hard to work with, a different method of finding the 

deformed shapes of Energy Bags is required.  Finite element analysis (FEA) is used, and we 

begin with FEA of axisymmetric structures.  A single tendon in a bag of n tendons is 

modelled using cable elements, one-dimensional elements with no bending stiffness between 

them (though bending stiffness may be introduced).  Special consideration must be given to 

the stiffness of a cable undergoing compression, as cables have very little stiffness in 

compression.  No axisymmetric FEA of inflatable structures (balloons, lifting bags, etc.) was 

found in the literature, so it is believed that the work in this chapter is original. 

 

 

4.1 The Cable Element 

 

A cable element is a simple type of finite element used to model cables that comprises of two 

nodes, one at each end of the element.  Because cables have very little bending stiffness they 

can undergo large displacements, and so the force vector and stiffness matrix of a cable 

element are geometrically nonlinear.  Bending stiffness can be introduced between cable 

elements if desired, and this is shown in this chapter.  In the axisymmetric FEA presented 

here, the elements are confined to a single plane and so only have 4 degrees of freedom, but 

cable elements are used in the 3D FE in Chapter 6 so we just give the derivation for an 

element in three-dimensional space here (so with 6 degrees of freedom), and do not need to 

include it in Chapter 6.  It is fairly straightforward to modify the force vector and stiffness 

matrix of a 6-dof element in order to obtain the force vector and stiffness matrix of a 4-dof 

element confined to a single plane. 
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4.1.1 Force Vector 

 

The undeformed and deformed configurations of a cable element are shown in figure 4.1, the 

nodes of the element in the deformed configuration having been displaced by u1,v1,w1 and 

u2,v2,w2.  As mentioned above, though in the axisymmetric model each 2-node cable element 

has only 4 degrees of freedom, what follows is the more general derivation of the force 

vector and stiffness matrix of a 2-node cable element with 6 degrees of freedom.  This can be 

reduced for a cable element with 4 degrees of freedom by setting z1, z2, w1, and w2 to zero 

and removing the corresponding rows of the strain vector  and the unit parallel vector p̂ , 

and the corresponding rows and columns of the stiffness matrix K. 

 

 

Fig. 4.1  Undeformed and deformed configurations of a cable element 

 

The strains in a cable element are uniaxial and uniform, and the engineering strain is 

 

 
0

0

L

LL 
  (4.1) 

 

where L, the deformed length of the element, and L0, the undeformed length, are given by 
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210 zyxL  . (4.2) 

 

Note that, for example, x21 = x2 – x1.  The stress and tension in an element are found using 

the Young’s modulus of the cable material, E, and the cross-sectional area of the cable, A. 
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where 0 is the prestress in the element. 

To find the element internal force vector F it is necessary to multiply T by the unit 

parallel to the deformed element, which can be expressed as 

 

  Tzyxzyx aaaaaa
L

p 
1

ˆ . (4.4) 

 

Note that a is the vector from node 1 to node 2, so ax = x21 + u21, ay = y21 + v21, and az = z21 + 

w21.  Hence the element internal force vector becomes 

 

   pAF ˆ  

  pEA ˆ
0  . (4.5) 

 

 

4.1.2 Stiffness Matrix 

 

The element stiffness matrix, K, is obtained by differentiating the force vector with respect to 

the nodal displacements, u, and can be broken down into the sum of two matrices, the elastic 

stiffness matrix, Ke, and the geometric stiffness matrix, Kg. 
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                                                         ge KK   (4.6) 

 

Differentiating the strain gives 
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 (4.7) 

 

where 
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                 zyxzyx aaaaaa
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Differentiating the unit parallel gives 
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  (4.9) 

 

So the elastic and geometric stiffness matrices can be written as 
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  (4.11) 

 

Note that both of these matrices are symmetric and nonlinear, and so the element stiffness 

matrix will also be symmetric and nonlinear.  In the Matlab code, the accuracy of the 

stiffness matrices (including circumferential stiffness and load stiffness, described later) have 

been checked by comparing them with the results of numerical differentiation of the vector 

of meridional force/circumferential force/load. 
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4.1.3 Wrinkling 

 

As cables have little stiffness in compression, the stiffness of a cable element in compression 

( < 0) would ideally be set to zero, however this can be problematic because of the 

discontinuity introduced into the stress-strain curve.  To ensure that the first derivative of the 

stress-strain curve is continuous at  = 0, the arctan function is used to continuously reduce 

the stress in a wrinkling element towards a very small negative value.  The derivation of the 

modified compressive stress (c) in an element undergoing compression follows.  It should 

be noted that the derived equation for modified compressive stress will only be used when  

< 0, and the normal stress-strain relationship ( = E + 0) will be used in the tensile 

(unwrinkled) region. 

 We begin with the equation 

 

 















 

E
bc

01tan


 . (4.12) 

 

If b is a very large number then as  approaches -1, c will approach –/2 (the asymptote).  

This asymptote can be modified to a very small fraction () of the Young’s modulus of the 

cable by premultiplying by a, given by 

 

 


E
a

2
 , (4.13) 

 

where  is a very small number.  Therefore we now have 
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01tan


 . (4.14) 

 

It is good to ensure that the gradient of the stress-strain curve is continuous at all points.  

Therefore b needs to be chosen so that the gradient is continuous at the transition between 

the tensile and compressive regions (i.e. at  = 0).  Differentiating equation (4.14) with 

respect to strain, 
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 = 0 at the transition between the tensile and compressive regions, and so  + 0/E = 0 at 

this point.  The gradient of the stress-strain curve needs to equal E at the transition, so setting 

equation (4.15) equal to E and letting  + 0/E = 0, 

 

 Eab  . (4.16) 

 

Rearranging for b, 

 

 
a

E
b  . (4.17) 

 

At the beginning of this section it was highlighted that b should be a very large number, so 

we should now check that it is.  Substituting equation (4.13) into (4.17) we obtain 

 

 




2
b . (4.18) 

 

Since  is a very small number then b will be a very large number. 

To summarise, the stress in an element undergoing compression is set to 
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where 

 

 


E
a

2
  and 

a

E
b   (4.20) 

 

and  is a very small positive value (e.g. 1×10
-6

).  This means that if 0 = 0, c ≈ -E when  

= -1 (-1 being the smallest value that engineering strain can take).  Note that if 0 ≠ 0, the 

stress-strain curve will still be continuous at  = 0, and if 0 > E, the element will not go into 

compression even if  = -1.  Figure 4.2 shows the stress-strain relationship for a cable with   
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E = 200GPa and 0 = 0 at the transition between tension and compression, with  = 1×10
-6

.  

In this case, c ≈ -2×10
5
Pa when  = -1, meaning that a cable of diameter 20mm will support 

a maximum compressive force of 62.8N, equal to the tensile force when  = 0.001. 
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Fig. 4.2  Plot of stress against strain with E = 200GPa and 0 = 0 

 

Differentiating c  with respect to nodal displacements and premultiplying by pAˆ  

gives the elastic stiffness of an element in compression. 
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The geometric stiffness of an element in compression need only be changed by replacing  

with c, and the symmetry of the element stiffness matrix remains. 

It should be noted that wrinkling elements are not generally found in commercially-

available FEA packages. 

 

 

4.2 Circumferential Reinforcement 

 

It is fairly straightforward to include circumferential reinforcement at each node on the 

meridian, and it is necessary to do so in order to model anything other than natural shape 

bags.  Each circumferential element is treated as a single cable that wraps round the full 

perimeter of the bag.  The force vector and stiffness matrix for circumferential elements are 

derived here. 

 

 

4.2.1 Force Vector 

 

A cross-section of the bag (so looking along the axis of axisymmetry) is shown in figure 4.3. 

 

 

Fig. 4.3  Cross-section of the bag looking along the axis of axisymmetry 

 

Looking at a small section of the circumference which covers an angle , the force required 

to react the circumferential tension is given by 
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Over the full circumference, 
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Taking small angle approximations, 
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So the vector of force due to circumferential tension at the current node is 
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where the circumferential tension is given by 

 

 ccc AT   

  0,cccc EA   . (4.26) 

 

Ac and Ec are the cross-sectional area and Young’s modulus of the circumferential cable, and 

c and c,0 are the stress and prestress in the cable.  The circumferential strain is given by 
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Lc is the circumference of the deformed bag at the current node and Lc,0 is the circumference 

of the undeformed bag at the current node.  So the force vector becomes 
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If c ≤ 0, the cable must be treated as a wrinkling element.  As with the meridional 

elements, the stress is smoothly reduced to a very small amount. 
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where 
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As before,  is a very small value. 

 

 

4.2.2 Stiffness Matrix 

 

The stiffness matrix of a circumferential cable element is given by 
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If c ≤ 0, 
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4.3 Bending 

 

Although cables typically have very little bending stiffness and so by definition the bending 

stiffness in a cable element is zero, it is still useful to be able to give the cables some bending 

stiffness.  There are two main reasons for doing this: to improve the accuracy of the model, 

and to be able to treat the bag as a shell so that the deformed shape will always be very close 

to the undeformed shape.  We are really interested in the second of these two reasons, 

because it is necessary to ensure that an initial solution can be found, and the closer the 

initial solution is to the starting configuration, the higher the chances of finding the initial 

solution.  The bending stiffness can then be gradually reduced to zero, updating the 

deformed shape with each step. 

 

 

4.3.1 Force Vector 

 

The bending moment M is proportional to the change in angle between two elements, and is 

given by 

 

    kM  (4.33) 

 

where k is the bending stiffness of the cable,  is the angle between the two elements in the 

deformed configuration, and  is the angle between the two elements in the undeformed 

configuration.  The bending moment is also the product of the bending force and the distance 

between the force and the joint, 

 

 LFM b . (4.34) 

 

We set these two equations to be equal and rearrange to obtain the bending force, 
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Fig. 4.4  Deformed configurations of three elements with bending stiffness between 

them 

 

The element bending force vector is given by 
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where 
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n̂  is the unit normal to the element, given later in equation (4.45).  The subscript 1 indicates 

that the angle is on the side of the element closest to the top of the bag (e.g. for element 12 in 

figure 4.4, this is the angle between 01 and 12), and the subscript 2 indicates that the angle is 

on the side of the element closest to the bottom of the bag (e.g. for element 12 this is the 

L01 
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L23 
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angle between 12 and 23).  L01,0 is the undeformed length of element 01, and so on.  The 

bending force vector must be added to the force vector. 

 

 

4.3.2 Stiffness Matrix 

 

The element bending stiffness matrix must take into account the changes in bending force at 

each end of the element with respect to the displacements of both nodes on the element and 

all neighbouring nodes.  In this axisymmetric model, the element bending stiffness matrix for 

the elements at the top and bottom of the bag has 6 columns (because these elements have 

only one neighbouring node, e.g. node 2 is the only neighbouring node to element 01 in 

figure 4.4), but has 8 columns for all the other elements in between (because internal 

elements have two neighbouring nodes – nodes 0 and 3 for element 12 in figure 4.4).  

Assuming that k1 and k2 are independent of θ1 and θ2, 
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where, for all elements other than the top and bottom elements, 

 

   
      












































 








00000101

11

1

1

01

01

2

01

0011
2

01

0011

1

Lu

L

L
uxux

L

uxux
u

  

   
      












































 


 00010100
11

1

1

12

12

2

12

1122
2

12

1122

Lu

L

L
uxux

L

uxux

, 

  (4.42) 

   
      












































 








00010100

11

1

1

12

12

2

12

1122
2

12

1122

2

Lu

L

L
uxux

L

uxux
u

  

   
      












































 


 01010000
11

1

1

23

23

2

23

2233
2

23

2233

Lu

L

L
uxux

L

uxux

. 

  (4.43) 



4. FEA of Axisymmetric Structures 

94 

 

θ1, α1, and u 1  for the first element and θ2, α2, and u 2  for the last element must be 

given special consideration, as must un  ˆ  and uL  .  The bending stiffness matrix must 

be added to the stiffness matrix. 

 

 

4.4 Loading 

 

We calculate the magnitude of the differential pressure load on each element in an 

axisymmetric bag by multiplying the differential pressure at the centre of the element by the 

swept area of the element, ensuring that we take the number of meridional reinforcing cables 

(henceforth known as tendons) n into account by only sweeping through 2/n radians.  The 

differential pressure load is multiplied by the unit normal to the element (in the plane defined 

by the element and axis of axisymmetry) to obtain the differential pressure force vector at 

each node on the element.  The element load vector is formed from the sum of the element 

differential pressure force vector and the element mass vector. 

 

 

4.4.1 Load Vector 

 

Figure 4.5 shows the coordinate system used in this chapter; the axis of axisymmetry is 

aligned with gravity (so perpendicular to a flat seabed), the origin of the global coordinate 

system is located at the centre of the base of the bag, x and u are in the radial direction, and y 

and v are aligned with the axis of axisymmetry. 

 

 

Fig. 4.5  Coordinate system for an axisymmetric bag 

x, u 

y, v 
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The vector of differential pressure force on a single element in an axisymmetric bag of n 

tendons is the product of the differential pressure at the centre of the element, p, the swept 

area of the element, A, and the unit normal to the element, n̂ .  The element differential 

pressure force vector is given by 

 

 npAFdp
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2

1
  (4.44) 

 

where the unit normal is 
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the swept area of a single tendon in a bag of n tendons is 
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and the differential pressure at the centre of the element is 

 

    22110
2

1
vyvygpp aw   . (4.47) 

 

The density of seawater is approximately 1,025kg/m
3
 and the density of the contained air is 

calculated using the equation of state for an ideal gas (as in equation (3.16)).  So the element 

differential pressure vector may be written as 

 

   Txyxydp aaaauxux
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p
F  2211

2


. (4.48) 

 

It is also possible to include the mass of the bag materials as the mass acts vertically 

downwards, so in the plane of the element and axis of axisymmetry.  For an element with 

mass m, the element load vector is then calculated using 
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  Tdp mgFF 5.005.00  . (4.49) 

 

m must take into account the mass of the membrane and tendons, and can be calculated using 

 

     ttm ALtLxxm  00215.02   

   ttm ALtLxx  0021  , (4.50) 

 

where t and ρm are the thickness and density of the membrane, and At and ρt are the cross-

sectional area and density of the tendon. 

 It is quite straightforward to include the mass of bulkheads, so much so that it need 

not be described here except to say that care should be taken to ensure that the weight of the 

bulkhead is divided by n, where n is the number of tendons, before being added to the load 

vector of the node on the edge of the bulkhead. 

 

 

4.4.2 Load Stiffness Matrix 

 

The element load stiffness matrix, R, is found by differentiating the load vector with respect 

to the nodal displacements. 
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Note that the mass of materials (the membrane, tendons, and bulkheads) are unchanged 

under deformation, and always point vertically downwards, so have no effect on the load 

stiffness matrix.  Differentiating the differential pressure at the centre of the element and the 

swept area of the element gives 

 

    1010
2

1
g

u

p
aw  




, (4.52) 

 

      yxyx aaaa
L

uxux
nn

L

u

A




 1
0101 2211


. (4.53) 



4. FEA of Axisymmetric Structures 

97 

 

Differentiating the unit normal gives 

 

    





















































yxyx

T

xyxy aaaa
L

aaaaL
Lu

n 1

0101

1010

0101

1010

1ˆ
2

 

           































yxzyyxzy

zxyxzxyx

yxzyyxzy

zxyxzxyx

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

L
2222

2222

2222

2222

3

1
. (4.54) 

 

Like the element stiffness matrix, the element load stiffness matrix is nonlinear. 

 

 

4.5 Solving the Equilibrium Equation 

 

Due to the large displacements and rotations that an Energy Bag can undergo, the force 

equilibrium equation is geometrically nonlinear and is solved using the Newton-Raphson 

method.  A new set of node positions which should be closer to the solution is calculated 

using 

 

    iloadireaciiii ffRKuu ,,

1

1 


 . (4.55) 

 

Following the convention of section 2.4.1, the difference between the force vector (freac) and 

load vector (fload) is the vector of force residuals 

 

 loadreac ffr  , (4.56) 

 

and the difference between the stiffness matrix (K) and the load stiffness matrix (R) is the 

Jacobian of the force residuals 

 

 RKJ r  . (4.57) 
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To ensure that convergence occurs, it is necessary to start with an initial 

configuration that is not too far from a solution.  Finding the deformed shape of a fully 

inflated bag with circumferential reinforcement usually presents no problems because the 

shape of the fully inflated bag is often very similar to the undeformed configuration of the 

bag.  (Note that “fully inflated” effectively means that the bag volume cannot be further 

increased without significantly straining the materials.  With a sealed natural shape bag, fully 

inflated means a bag with a high overpressure at the base, so with p0 >> 0.)  However, trying 

to find the shapes of partially inflated bags, which can be quite different to that of the 

undeformed bag, can be problematic if trying to start with the undeformed bag shape and go 

straight to the target pressure.  Trying to find the deformed shapes of bags with no 

circumferential reinforcement (i.e. natural shape bags) can also be hard because there is no 

obvious starting configuration. 

To overcome these problems, in all circumstances we begin by finding the solution 

for an overpressurised bag while using the load incrementation procedure described in 

section 2.4.2.  The load fraction () is updated each time by searching for a load fraction 

which, after one iteration of the Newton-Raphson method, gives a maximum change in angle 

between all adjacent elements of just less than a certain value (e.g. 3°).  We also start off 

with some prestress in the elements (because Jr is singular without prestress) and then 

remove the prestress after one iteration.  Interestingly, the deformed shape found with a very 

small fraction of full load is very close to that found with full load.  This can be seen in 

figure 4.6, but note that going from a load fraction of  = 5.2429×10
-5

 straight to full load ( 

= 1) does not work, even though the deformed shapes at these load fractions are almost 

identical.  It is still necessary to step through the load fractions using the maximum change in 

angle method described above. 
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Fig. 4.6  Natural shape bag with p0 = 0.2373bar.  Dashed line:  = 5.×
-5

. Solid 

line:  = 1 

 

Once full load has been applied (i.e. once  = 1), the internal pressure is then 

reduced to the target pressure in small steps, updating the deformed shape of the bag at each 

step.  One approach to finding the deformed shapes of underpressurised bags without 

needing to begin with an overpressurised bag would be to include bending stiffness between 

the elements, so effectively modelling the bag as a shell, and then gradually reduce this 

stiffness to zero.  If bending stiffness is included then load incrementation may become 

redundant. 

When finding natural shapes, we start with the undeformed configuration being that 

of the meridian lying on the arc of a circle (assuming that the meridional length and base 

radius have been specified), as shown later in figure 4.8(a).  This is done because the 

deformed shape of an overpressurised natural shape bag is relatively similar to an arc of a 

circle. 
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4.5.1 Constraints Matrix 

 

The force vector, load vector, stiffness matrix and load stiffness matrix must be constrained 

before being used in the Newton-Raphson method.  This can be accomplished by simply 

removing rows and columns of the vectors and matrices that correspond to forces and 

displacements in the constrained degrees of freedom.  However, it is not so straightforward 

to constrain nodes in directions other than x, y, and z, and so a constraints matrix is used.  

Although in this axisymmetric FE model we only need to constrain nodes in the x and y 

directions (e.g. keeping the bottom node stationary by constraining it in x and y and only 

allowing the top node to move vertically by constraining it in x), the three-dimensional FE 

described later on is not so simple and we may wish to do things such as constrain some 

nodes to remain on a plane that does not coincide with any of x-y, y-z, or z-x.  We call the 

constraints matrix T and use it to transform the force vectors and stiffness matrices as 

follows: 

 

 TFF   (4.58) 

 

 
TTKTK   (4.59) 

 

T is formed using another matrix C, which is used to define the constraints.  In this 

two-dimensional model, C has two columns, and the number of rows is equal to the number 

of degrees of freedom in the unconstrained model (so twice the number of nodes).  C is a set 

of vertically concatenated × matrices, one for each node.  T is formed by putting the 

submatrices comprising C into the appropriate places in a sparse matrix.  It is necessary to 

remove rows of T that contain all zeros otherwise the constrained stiffness matrix and 

constrained load stiffness matrix would be singular. 

As an example of how to form C, consider the three-noded meridian shown in figure 

4.7, with top node constrained in x and bottom node constrained in x and y. 

 

Fig. 4.7  Three-noded meridian 
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In this case, C should be 
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So once C has been rearranged to form T, rows 1, 5, and 6 of T must be removed as they will 

contain all zeros.  In this case the resulting constraints matrix is 
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T . (4.61) 

 

Using T as shown in equations (4.58) and (4.59), the elements of the force residuals 

vector (freac – fload) and residuals stiffness matrix (K – R) corresponding to the constrained 

degrees of freedom (x1, x3, and y3) are removed.  Nodes can be constrained in other directions 

that do not coincide with x or y by making use of rotation matrices.  Including the constraints 

matrix, equation (4.55) becomes 

 

     iloadireac

T

ii
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ii ffTTRKTTuu ,,

1
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 . (4.62) 

 

Note that the first instance of T
T
 in this equation is necessary to include the constrained 

degrees of freedom in the calculated displacements. 

 

 

4.5.2 Seabed Resistance Forces 

 

When finding partially-inflated shapes of a bag with a wide sealed base, it is necessary to 

ensure that the nodes do not cross into the seabed, and this is accomplished by adding a 

vector of vertical resistance forces to the load vector.  Resistance inversely proportional to 

the distance of the node from the seabed is appropriate, and so a suitable element seabed 

resistance vector for a 2-node element with 4 degrees of freedom is 
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where k is a value such that  vyk   is equal to the differential pressure force at a small 

height,  , above the seabed when  vy .  The appropriate form for k is thus 

 

  Apk  , (4.64) 

 

where A is the swept area of the element, as given in equation (4.46). 

Note that the seabed resistance force on a node under the seabed will be vertically 

downwards.  However, this is not a problem because in each iteration of the Newton-

Raphson solver, the deformed node positions are checked to ensure that they have not 

crossed into the seabed, and if they have then the displacement vector is multiplied by a 

suitable fraction so that the nodes no longer cross into the seabed.  Of course, the seabed 

resistance forces must also be included in the load stiffness matrix, and this is accomplished 

by adding the seabed resistance stiffness matrix to the load stiffness matrix.  The element 

seabed resistance stiffness matrix used here is given by 
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  (4.65) 

 

where 
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sbF  and uFsb   are added to the element load vector and element load stiffness matrix 

respectively, and multiplied by the load fraction along with the other loads and load 

stiffnesses. 

Seabed resistance forces should only be introduced when necessary, as they can have 

an effect on the shape of sections of the membrane that are only subjected to low forces.  
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This is described in more detail in section 4.6.3.  If the mass of the bag materials is being 

ignored, seabed resistance forces need only be introduced if p0 < 0 and the base of the bag 

has nonzero radius (r > 0) – only in such instances could the base of such a bag be forced 

against the seabed.  However, a heavy bag could be forced against the seabed even with p0 > 

0 and r = 0, so care should be taken with when seabed resistance forces are introduced. 

A simpler approach to resistance forces is to allow nodes to pass into the seabed and 

treat the seabed as an elastic body with stiffness ksb.  This method has been successfully used 

(with damping) to simulate bottom interaction in various dynamic models of ocean cable 

structures [117],[118].  Fsb is just a vertical force and can be calculated for each node (rather 

than for each element).  The simplest seabed resistance force used in this way is 

 

 ykF sbsb   if 0y  

 0sbF  if 0y . (4.67) 

 

However, the derivative of the vertical load vector would not be continuous at y = 0 (the 

seabed), so a modified approach which is continuous at the seabed would be 

 

 
2ykF sbsb   if 0y  

 0sbF  if 0y . (4.68) 

 

Unfortunately, neither of equations (4.67) or (4.68) can be used to successfully find 

the shapes of highly deflated bags, having tried a variety of stiffnesses.  We also tried fixing 

nodes with y < 0 to the seabed using the constraints matrix – in this way, if y < 0 then we set 

y = 0 and remove the appropriate row of the constraints matrix.  However, this approach 

does not work because at the pressure level where the first node becomes anchored to the 

seabed, the bag becomes unstable and will not solve, and gradually all of the nodes become 

anchored to the seabed.  This also happens when seabed-crossing nodes are constrained in x 

as well as y.  Not too much time was invested in trying to solve this problem because we do 

not consider the need to find accurate highly deflated shapes to be great enough; the 

maximum stresses in the tendons will occur when the bag is highly inflated.  In any case, a 

bag with a wide base would probably not be an ideal design because deployment would not 

be straightforward, the anchors (e.g. ballast or piles) would need to withstand sideways loads 

as well as vertical loads (especially when partially inflated), and if it were to be sealed at the 

base then it would require a large plate at the base or a rigid hoop at the base with reinforced 

fabric across the hoop. 
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4.5.3 Convergence Criteria 

 

After each iteration of the Newton-Raphson method, the force residuals and nodal 

displacements must be compared with some criteria to determine whether a solution has been 

reached.  The maximum absolute value of all the components of the constrained force 

residuals is compared with some small value, the maximum absolute value of the constrained 

dimensionless residuals (explained further on) is compared with another small value, and the 

maximum absolute value of the nodal displacements is compared with another small value 

(which can be a small fraction of some dimension of the undeformed bag, e.g. the meridional 

length of the undeformed tendon).  The convergence criteria are met when either both of the 

residuals criteria are met or when the displacement criterion is met. 

The dimensionless residual ( r̂ ) at each node is calculated by taking the magnitude 

of the force residual (r) at the node and dividing it by the sum of the absolute values of the 

cable tensions and seabed resistance force at the node.  For each node, 

 

 loadreac FFr   (4.69) 

 

 
sbclomupm FTTT

r
r




,,

ˆ . (4.70) 

 

Tm,up is the tension in the meridional cable above the node, Tm,lo is the tension in the 

meridional cable below the node, Tc is the circumferential tension at the node and Fsb is the 

seabed force at the node.  The vectors of force residuals and dimensionless force residuals 

are formed and the constraints matrix is used to remove the elements of the vectors that 

correspond to constrained displacements.  The maximum absolute value of all the 

constrained force residuals is found, along with the maximum absolute value of all the 

constrained dimensionless force residuals, and these are compared with the residuals criteria. 

We also keep track of the number of iterations that have been performed for a given 

load fraction, and stop the solution process if this iteration count gets too high.  This causes 

the program to stop trying to find a solution when one can’t be found, though in such 

instances it may be that before this maximum number of iterations is reached, the nodes 

work themselves into positions whereby the residual stiffness matrix becomes singular – 

Matlab automatically stops the code from running and presents an error message when this 

happens. 

 

 



4. FEA of Axisymmetric Structures 

105 

4.6 Results 

 

In all of the following examples, the bottom node of the bag is constrained so that it cannot 

move in any direction (as if fixed to the seabed), and the top node is constrained so that it 

can only move in the y-direction (so vertically up and down). 

 

 

4.6.1 Natural Shape Energy Bags 

 

Figure 4.8 shows the starting configuration and deformed shape of an overpressurised single 

point of anchorage (SPA) natural shape bag with meridional length L = 2.36m and 

differential pressure at base of p0 = 100kPa.  For reference, the prototype bag has 36 tendons, 

and in the work presented here, each is given E = 200GPa and A = 3.142x10
-4

m
2
.  The bag is 

able to deform so much from the starting configuration because there is no circumferential 

reinforcement in a natural shape bag – natural shape bags are designed so that at all stages of 

inflation there is no part of the fabric where there is a shortage of length in the 

circumferential direction.  Therefore no circumferential stiffness is included in the model.  

No material mass or bulkheads have been included.  The bag clearly takes on the pumpkin 

shape of superpressure natural shape balloons, as seen in the literature review. 
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Fig. 4.8  Modelling a natural shape bag with L = 2.36m, (a) Starting configuration; 

(b) Deformed configuration with p0 = 100kPa 

 

Figure 4.9 shows partially inflated shapes of the massless bag shown in figure 4.8, 

with p0 ranging between 20kPa and -20kPa in 10kPa increments.  The shape with p0 = 0Pa is 



4. FEA of Axisymmetric Structures 

106 

the ZPNS for this bag, and is very similar to the shape of hot air balloons.  The lower portion 

of the most deflated bag has what is known as a “rope section” – the bag has collapsed in 

against itself due to the large negative p in this section.  Note that because the load is only 

carried meridionally, the point of inflexion in the meridian is at the level of zero differential 

pressure (as is to be expected from the Young-Laplace equation).  This can be seen by 

looking at the three most deflated shapes; the level of zero differential pressure for the ZPNS 

is at the seabed (h = 0m) and at h = 0.995m and h = 1.989m for the other two shapes.  These 

levels were calculated using g = 9.81m/s
2
 and w = 1,025kg/m

3
, but if we were to use g = 

10m/s
2
 and w = 1,000kg/m

3
 then these levels would be at 0m, 1m, and 2m.  It is anticipated 

that the air hose connection would need to be located at the top of an Energy Bag whose 

sides meet during deflation, otherwise the air may not escape after the sides of the bag meet. 
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Fig. 4.9  Partially inflated shapes of a natural shape bag from p0 = 20kPa to p0 = -

20kPa in 10kPa increments 

 

The pressure-volume (PV) curve for this bag when the base of the bag is anchored at 

a depth of 2.4m is shown in figure 4.10.  The effect of water level rise due to displacement of 

water is not included – it may have a noticeable effect on the PV curve for this prototype 

p0 = 0Pa 
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when it is being tested in a small tank, but the effect when the bag is anchored in a larger 

body of water, such as the sea, will be negligible. 
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Fig. 4.10 Pressure-volume curve for the prototype bag anchored at 2.4m depth, 

inflated up to p0 = 100kPa.  Dashed line indicates hydrostatic pressure at 2.4m depth (the 

base of the bag) 

 

The pressure at V = 0m
3
 is marked on figure 4.10 as a dot (at P = 

41004.0  Pa), and 

is the gauge pressure of the air at which the level of zero differential pressure (p = 0Pa) is at 

the top of the fully deflated bag, or simply the hydrostatic pressure at the depth of the top of 

the fully deflated bag.  As the base radius and upper bulkhead radius are set to zero, this is 

the pressure at which p = 0Pa is at h = L = 2.36m, and is given by 

 

  hdepthgP w    

  36.240.281.91025   

                                                  
41004.0  Pa. (4.71) 

 

It should be noted that if material mass were included, this level would not be reached 

because there will come a point where the volume and so buoyancy will be less than the 
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mass of the materials, and the bag will drop towards the seabed.  It will not be possible to 

find any further solutions when this happens, and in any case it is not necessary to find any 

because of the low stresses in a highly deflated bag. 

The PV curve is clearly quite shallow up to approximately 1.9m
3
.  This is because of 

the ability of a flexible fabric structure to deform and change its volume, allowing more 

efficient turbomachinery to be used than with a fixed volume CAES scheme.  Evidently 

when the bag is nearly full, the volume doesn’t increase with pressure as it does at lower 

pressures, as at these high pressures the pumpkin shape has been reached and the only 

possible further increase in volume is by extension of the tendons. 

 We now introduce material mass.  Each of the 36 tendons has a diameter of 20mm, 

and is given the density of steel (approximately 7,800kg/m
3
).  The membrane material is 

1mm thick and made of rubber with density of 1,522kg/m
3
.  When looking at the strains in 

the partially-inflated shapes of bags with material mass, it was found that the highly deflated 

bag had negative strains at the very base – the elements had begun to go into compression 

and were being supported by the very small compressive stiffness that they are given in the 

wrinkling model.  This occurs because the bottom of the bag sees the weight of the whole 

bag, and the buoyancy force has been reduced to such an extent that it is less than the weight 

of the whole bag.  In reality the bag will drop slightly until enough of the bottom of the bag 

is resting against the seabed.  Note that as the bag drops, it moves into an area of higher 

pressure, and so the contained air will be compressed even more (becoming slightly heavier) 

but the volume and net buoyancy of the bag will reduce.  This can be viewed as a good thing 

because it will serve to flatten the PV curve at the lower volumes, however it may not be 

desirable for the bag to drop in case it rubs or catches against the ballast and seabed.  A float 

could always be attached to the upper bulkhead to ensure that it never drops to the seabed, or 

the air control system could be designed so that the volume of air in the bag never gets so 

low that the bag will drop. 

Figure 4.11 shows the shape of the bag just before it will start to drop, and the 

distribution of strain in the tendon.  The phenomenon of the bag slowly dropping towards the 

seabed as it empties is also encountered with helium-filled Mylar celebration balloons; as 

they leak helium into the environment their buoyancy decreases, and after a few days they 

begin to very gradually drop towards the floor.  The FEA code was modified to check if any 

meridional elements go into compression as p0 is reduced, and to stop reducing p0 if so.  We 

assume that the lower bulkhead is fixed in place – in reality it may be attached by cable to 

the ballast/anchor, in which case the whole bag may drop towards the seabed before the 

strain at the bottom of the tendons becomes zero. 
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Fig. 4.11 (a) The shape of a deflating ZPNS bag with material mass just before it 

starts to drop towards the seabed. (b) Distribution of strain in the tendon 

 

We have found that the shape of a ZPNS bag is independent of the depth at which it 

is anchored.  Therefore anchoring the bag at greater depths has very little effect on the shape 

of the PV curve, simply translating the curve up to greater pressures.  The density of the 

stored air is increased but not by such a large amount that there is a noticeable effect on the 

shape of the curve, and a plot of p0 against V for the bag at both 2.4m depth and 240m depth 

on the same axes is not worth showing as the curves are so similar that there is no way to 

distinguish between the two.  Similarly, for a given p0, depth has little effect on the loading 

on the tendons, meaning that the cost of bag materials is independent of the depth at which 

the bag is located. 

While discussing the effects of anchorage depth, it should be noted that in shallow 

water the bag deflates slightly further before beginning to drop to the seabed than the same 

bag (with the same material mass) in deeper water.  This is because for a given volume, the 

density of the contained air in the deep water bag will be higher, and so the mass of the air 

will be greater.  For the bag shown in figure 4.11, in 2.4m deep water it can deflate to -

p0/wg(L-r) = 0.6326 before starting to drop, but in 500m deep water it only deflates to -

p0/wg(L-r) = 0.5864 before it starts to drop. 
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Using this FE model, we can show that for any given ratio of p0/L, the natural shape 

is independent of the size of the bag, assuming small strains.  This can be shown by setting a 

value of p0/L, and then plotting the normalised natural shapes found with various values of L 

on the same axes.  Figure 4.12 shows normalised plots (to give bag height = 1m in each case) 

of the natural shape with gLp w0  for bags with L = 1m (solid line) and L = 100m 

(dashed line).  In each case, the Young’s modulus of the tendon is multiplied by L
3
, so that 

all the bags have the same ratio of cable stiffness to buoyancy.  (Note that the buoyancy 

force is proportional to bag volume V, which is proportional to L
3
.) 
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Fig. 4.12 Normalised plots of natural shape bag with L = 1m (solid line) and L = 

100m (dashed line), gLp w0  

 

Clearly the two curves are so close that there is no visible difference between the two.  

Figure 4.13 shows normalised plots of the same two bags, this time with gLp w6.00  .  

The dashed red line indicates the level at which p = 0.  The differences between the two 

shapes are greater than with gLp w0 , but they are still so close that it is hard to see the 

dashed black line. 
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Fig. 4.13 Normalised plots of a partially deflated natural bag with L = 1m (solid black 

line) and L = 100m (dashed black line), gLp w6.00  .  Dashed red line indicates level 

at which p = 0 

 

We have also found that PV curves for larger bags are stretched relative to smaller 

bags in both the x and y directions, because larger bags have larger pressure and volume 

ranges.  However, the shape of the normalised PV curve is independent of the size of the 

bag; this is to be expected given that we have just shown that the shape of the bag is 

independent of its size.  The fact that there is a larger range of contained air pressures for 

larger bags makes using a small number of large bags slightly less attractive than using a 

large number of smaller bags because the more constant the pressure of the air entering the 

turbomachinery, the more efficient the turbomachinery will be.  However, it may be that cost 

per unit storage capacity of the bag will have a greater impact on the optimum size than the 

efficiency of the turbomachinery, and future work could investigate this tradeoff. 

 

 

4.6.2 Energy Bags with Circumferential Reinforcement 

 

Figure 4.14 shows the stages of inflation of a 1.5632m diameter sphere (so having a fully-

inflated volume of 2m
3
) with meridional length L = 2.4554m, with 36 tendons and 49 

circumferential cables (evenly spaced along the meridian), all with Young’s modulus of 

200GPa and cross-sectional area of 3.142×10
-4

m
2
.  Again, we assume that the bag is 

anchored at a depth of 2.4m – this depth is just less than L, so it would not be possible to 

fully deflate this bag without exposing some of the top. 
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Fig. 4.14 Partially inflated shapes of a sphere from p0 = 20kPa to p0 = -20kPa in 

10kPa increments 

 

The shapes of the partially-inflated spherical bag clearly look quite similar to those of a 

partially-inflated natural shape bag; compare figure 4.14 with figure 4.9.  However, the top 

of the partially-inflated spherical bag is not as flat as the top of the partially-inflated natural 

shape bag, because the spherical bag’s circumferential restraint is active at the top of the bag 

at all fill levels.  The lower parts of a spherical bag become stressed circumferentially as the 

bag is inflated. 

Figure 4.15 shows the stages of inflation of a vertical cylinder capped with a 

hemisphere at each end.  The undeformed cylinder has a diameter of 2m and total height 

(including endcaps) of 7m.  It has 36 tendons and 29 circumferential cables (all with E = 

200GPa and A = 3.142x10
-4

m
2
), and is anchored at 500m depth. 
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Fig. 4.15 Partially inflated shapes of a cylinder with hemispherical caps from p0 = 

50kPa to p0 = -60kPa in 27.5kPa increments 

 

For a large part of the deflation, the top section of the deflating cylinder maintains its full 

diameter.  The lower sections of the bag collapse in as the internal pressure is reduced, and 

circumferential wrinkling occurs in these sections as they take on the natural shape.  Again, 

the most deflated shape shown has the classic bubble and rope section. 

 

 

4.6.3 Wide Base Natural Shape Energy Bags 

 

This section looks at the shape of a natural shape bag with a wide base.  The shapes shown 

are only valid if the bag is sealed against the seabed.  If the bag is not sealed at the base, any 

overpressure at the base (p0 > 0) will cause air to leak from the base of the bag and rise to the 

surface in bubbles until p0 = 0, and any underpressure at the base will allow water to leak 

into the base of the bag, compressing the air trapped inside.  Such an unsealed bag could still 

be useful if the air hose connection is located at the top of the bag, and is discussed further 

on in section 4.6.4. 

 Figure 4.16 shows partially inflated shapes for a bag with L = 2.36m and base radius 

r = 0.472m (= L/5), from p0 = 5kPa down to p0 = -15kPa in 5kPa increments.  As expected, 

the base of the bag is pressed against the seabed when p0 is low.  The PV curve for this bag 

is shown in figure 4.17.  The curve is flatter than that for a SPA bag because the collapsing 
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in of the lower parts of the bag against the seabed means that the bag remains quite close to 

the seabed at all times. 
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Fig. 4.16 Partially inflated shapes of a wide base natural shape bag from p0 = 5kPa to 

p0 = -15kPa in 5kPa increments 
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Fig. 4.17 Pressure-volume curve for the bag shown in figure 4.16, anchored at 2.4m 

depth, inflated up to p0 = 100kPa 
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4.6.4 Energy Bags with an Unsealed Base 

 

A bag that is not sealed at the base will allow water into the lower part of the bag as it 

deflates, with a pocket of air trapped above.  For static equilibrium, this air must have a 

pressure that is equal to the hydrostatic pressure at the bottom of the air pocket, so the 

differential pressure across the membrane at the bottom of the air pocket will be zero (see 

figure 4.18).  The differential pressure across the membrane below the air pocket must also 

be zero.  If the water level inside the bag is at a height h = w above the base of the bag, then 

 

 0wp  (4.72) 

 

and the gauge pressure of the air is given by 

 

  wdgP wa   , (4.73) 

 

where d is the depth of the base of the bag.  If the gauge pressure of the air inside the pocket 

is known, the water level inside the bag can be calculated by rearranging to get 

 

 
g

P
dw

w

a


 . (4.74) 

 

 

 

Fig. 4.18 Wide base unsealed bag with plot of height above base against 

differential pressure across the membrane 

 

If the bags shown in figures 4.9 and 4.14 – 4.16 are open at the base, the deformed 

shapes are as shown in figures 4.19 – 4.22.  Note that to find the starting (so most highly 

pressurised) solution for the bag shown in figure 4.19, we cannot start with a small load 

fraction and so must start with a high load fraction (e.g. 1), and prestress is not required.  

However, the opposite is true for the bag shown in figure 4.22, where in order to find the 

h 

p 

air 

water 
w 
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starting solution we have to start with a small load fraction and must include prestress in the 

meridional elements. 

The unsealed bags shown in figures 4.19 – 4.22 have almost exactly the same shape 

as inverted water load test weights (detailed in section 2.2.2) would have if made with the 

same initial shape.  In each case the water level would be at the level of the red dashed line.  

The only differences between the shape are because of: the direction of the material weight 

relative to the direction of the weight of contained water/buoyancy of contained air (though 

the plots shown here are for massless bags), and the added mass of the compressed air.  

Modifying the FE code to account for these differences and more accurately model water 

load test weights would take very little effort. 
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Fig. 4.19 Partially inflated shapes of a natural shape bag with unsealed base; red 

dashed line indicates water level inside the bag 
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Fig. 4.20 Partially inflated shapes of a spherical bag with unsealed base; red dashed 

line indicates water level inside the bag 
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Fig. 4.21 Partially inflated shapes of a cylindrical bag with hemispherical caps and 

unsealed base; red dashed line indicates water level inside the bag 
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Fig. 4.22 Partially inflated shapes of a wide base natural shape bag with unsealed 

base; red dashed line indicates water level inside the bag 

 

 As expected from the Young-Laplace equation, the sections of the bag that are 

below the air pocket are straight because they have no differential pressure force across them 

(bearing in mind that these sections are wrinkled circumferentially and so Tc = 0).  It is 

necessary to ensure that seabed resistance forces are not included when modelling an 

unsealed bag, as they cause these sections to have a curved profile rather than straight.  Note 

that including membrane and/or tendon mass will cause these sections to sag slightly 

anyway.  Again, there will come a point during deflation where material mass causes the bag 

to drop towards the seabed.  The air connection should be located at the top of a bag with an 

unsealed base, so that all of the air (and so stored energy) is vented before the hose becomes 

blocked with water.  It may be worth attaching a float to the top of an unsealed Energy Bag 

with buoyancy at least equal to the mass of the empty bag and the attached hose, to ensure 
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that the deflating bag doesn’t drop towards the seabed and allow water into the hose before 

all of the air has left the bag (as well as for the reasons mentioned in section 4.6.1). 

 Figure 4.23 shows a comparison of the PV curves for massless SPA natural shape 

bags with sealed base and unsealed base.  The two curves are very similar, but it can be seen 

that at lower pressures, the bag with sealed base has a slightly lower volume than the bag 

with unsealed base for a given contained air pressure.  This is because the sealed bag 

collapses in on itself. 
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Fig. 4.23 PV curves for massless SPA natural shape bags with L = 2.36m: solid line – 

unsealed base, dashed line – sealed base 
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Chapter 5 
 

Lobed Fabric Structures 
 

 

Lobing in fabric structures is used to lower the membrane stresses, because we know from 

the Young-Laplace equation that stress is inversely proportional to the curvature of the 

membrane.  Lobed structures can be assembled by welding lobes together at the seams 

(using a technique such as RF welding) and incorporating a stiff tendon along the boundaries 

between lobes.  In manufacturing a rotationally symmetric balloon or Energy Bag, a simpler 

approach is to simply use two identical sheets of fabric (e.g. circles) welded together at the 

edges, incorporating stiff tendons enclosed in pockets.  The tendons are shortened to form 

lobes (otherwise the only lobing would be due to stretching of the membrane); if they are 

shortened until no meridional stress is carried in the fabric then all of the meridional loads 

are carried in the tendons.  In this way, only circumferential stresses are carried in the 

membrane, and the high curvature of the lobes in the circumferential direction ensures that 

these stresses are not very high.  A good description of lobes is given in [119]. 

 

 

5.1 Constant Angle and Constant Radius Lobes 

 

Pagitz [120] shows that in lobed balloons with large numbers of lobes (e.g. 200), the cross-

sections of the lobes are essentially circular arcs (as in figure 5.1), and lobes are typically 

designed to have one of two different types of cross-section: constant angle (CA) and 

constant radius (CR).  As the names suggest, a constant angle lobe subtends a constant angle 

at all points along the meridian, and a constant radius lobe has a constant radius at all points 

along the meridian.  In figure 5.1,  is the subtended angle (constant in a CA lobe), rl is the 

lobe radius (constant in a CR lobe), rb is the bag radius (measured from the centreline of the 

bag to the tendon, in the horizontal plane), w is the arc length of the lobe (or width of the 

lobe cutting pattern), and W is the width of the lobe in the deformed configuration.  The arc 

length of the lobe (w) is required to set up the model, so we calculate w for a CA lobe and 

then for a CR lobe. 
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Fig. 5.1  Cross-section of a lobe (in the horizontal plane) 

 

If the subtended angle of a lobe is given by , then the local width of the lobe 

cutting pattern at a distance s along the centre of the lobe from the base is given by 

 

      srssw l . (5.1) 

 

For a CA lobe, we set  and must derive an expression for the lobe radius rl(s).  We know 

that 

 

  
 
 sr

sW

l

2
2sin   (5.2) 

 

and rearrange for the lobe radius, 

 

  
 
 2sin2 

sW
srl  . (5.3) 

 

The lobe width in the deformed configuration, W, is given by 

 

      nsrsW b sin2 , (5.4) 

 

so the radius of a CA lobe is 
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 2sin

sin



 nsr
sr b

l   (5.5) 

 

and the cutting pattern width of a CA lobe is 

 

  
   

 2sin

sin






nsr
sw b . (5.6) 

 

For a CR lobe we set rl and must derive an expression for the subtended angle, (s).  

Rearranging equation (5.5) we obtain the subtended angle for a CR lobe, 
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Therefore the cutting pattern width of a CR lobe is 
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. (5.8) 

 

The cutting patterns of both CA and CR lobes depend upon the tendon profile. 

 

 

5.2 Ultra High Performance Vessel Architecture 

 

Two 1.8m diameter prototype Energy Bags were manufactured for us by Thin Red Line 

Aerospace Ltd. (TRL), a Canadian company that manufactures deployable fabric structures 

for use in space.  The design of the prototype Energy Bags is based on TRL’s rotationally 

symmetric lobed habitation structures and balloons which have their “Ultra High 

Performance Vessel” (UHPV) architecture.  A UHPV is essentially a pumpkin balloon 

formed from two circles of fabric welded together at the edges, with meridional tendons 

running through sleeves attached to the surface of the fabric.  Two circles of fabric joined at 

the edges must form a natural shape bag because the radii of the fabric at all points must 

reduce as the natural shape is formed, no matter how inflated the bag is (assuming realistic 

levels of meridional strain).  This reduction in radius causes circumferential wrinkling 

(meridional wrinkles), as there is excess fabric around the circumference. 



5. Lobed Fabric Structures 

122 

 

 

 

Fig. 5.2  A UHPV formed from two circles of fabric must have circumferential 

wrinkling at all points when inflated, thus forming a natural shape bag [121] 

 

In a UHPV, the tendons are shortened relative to the fabric along which they run in 

order that this excess fabric in the circumferential direction is gathered up.  With increased 

tendon shortening, the meridional stress in the fabric is reduced, and in a UHPV the tendons 

are shortened to such an extent that all meridional stress is removed from the fabric.  

Consequently the fabric only carries circumferential stress, the load path is deterministic, and 

the small radius in the circumferential direction (relative to the radius of the fabric in the 

meridional direction) ensures that the stresses in the fabric are low.  “Bellows”, essentially 

just extra fabric folded up, can also be included around the equator to ensure that there is no 

meridional stress in the fabric.  Bellows can be formed by just making the fabric circles 

larger than necessary and putting a circumferential fold around the edge before attaching the 

tendons. 

The fabric of a UHPV can be laid completely flat on the ground even after the 

circles of fabric have been welded together (though they cannot be laid flat after shortened 

tendons have been included, as seen in figure 5.3).  This is because the edges of the flat 

“lobes” are straight (figure 5.4), and differs from a vessel with separate, tailored lobes (e.g. 

CA, CR, and CT lobes), which have curved lobe edges.  Deflated vessels with curved lobe 

edges cannot be laid flat on the ground without folding the excess fabric between each lobe.  

Tendon 

Meridional wrinkles 

Fabric circles 
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UHPVs require no more than two pieces of fabric – an upper circle and a lower circle – but 

in larger bags each of these circles may have to comprise several pieces of fabric (if the 

diameter of the circle is larger than the width of the manufactured roll of fabric).  Also, using 

several pieces of fabric to form each circle is likely to lower the amount of wasted fabric and 

allows the fabric to be aligned so that the highest stresses are carried in the strongest 

direction.  (Fabric is generally weaved with fibres lying in two perpendicular directions, 

warp and fill.  The direction at an angle of 45° between the warp and fill directions is known 

as the bias.  Usually the warp direction is the strongest, then bias, then fill.) 

 

 

 

Fig. 5.3  A prototype Energy Bag with the UHPV architecture laid out on the ground.  

Wrinkling due to tendon shortening is visible 

 

 

 

Fig. 5.4  Top view of a deflated UHPV laid flat, showing 4 “lobes”.  Note the flat 

edges of the “lobes”.  TRL’s UHPV has circular sheets as shown here, but the sheets could 

take any other shape, as in figure 5.5 
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 One of the advantages of UHPVs is that they are very simple to manufacture.  It is 

shown later on that the stresses in the fabric of a pressurised lobed Energy Bag or balloon are 

inversely proportional to the number of lobes in the structure.  A large number of lobes is not 

a problem for a UHPV, which requires no more than one weld, but if a bag or balloon is 

formed from separate lobes that require welding at the seams, the number of welds is equal 

to the number of lobes.  Another advantage to having a low number of seams is that the 

chance of seam failure (which causes leaking and can lead to total failure of the bag) is 

reduced. 

 One of the disadvantages of UHPVs is that, because they may simply be formed 

from two sheets of fabric welded together along the perimeters, the edges of the “lobes” 

must be straight, and cannot be tailored to minimise stresses or improve stability as they 

could if the lobes were all separate pieces of fabric (though they could feasibly be shaped by 

pinching parts of the fabric and welding/sewing the pinch in place).  The pieces of fabric 

forming a UHPV do not necessarily have to be circular, nor do they even have to be 

rotationally symmetric, but a rotationally symmetric pattern might be beneficial (as in figure 

5.5).  However, such a pattern may well be harder to cut than circles.  The tendons may also 

be shortened by any desired amount. 

 

 

 

Fig. 5.5  The two sheets of fabric that form a UHPV may take any desired shape.  

The four lobes shown here have rotational symmetry 

 

 Thin Red Line have proposed using their UHPVs for space habitation, in which case 

straight sides may be included between the upper half of the vessel and the lower half (as 

shown in figure 5.6). 
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Fig. 5.6  A proposed space habitation vessel using the UHPV architecture, designed 

to be attached to the International Space Station 

 

 

5.3 Membrane Stresses 

 

If the meridional membrane stress has been removed using tendon shortening then the 

circumferential tension in a lobe (per unit meridional length) depends upon the local radius 

of curvature rl, and is expressed as 

 

      spsrsT lc  . (5.9) 

 

Supposing that we desire to minimise the circumferential stress at all points in a lobe, then at 

all points the lobe’s circumferential curvature should be as large as possible.  In order to 

maximise this curvature, the lobe’s radius should be as small as possible, and assuming a 

circular cross-section, such a lobe would be a CA lobe with constant subtended angle of  

radians, as shown in figure 5.7. 
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Fig. 5.7  Cross-section of a lobe which subtends radians 

 

For the bag in figure 5.7, the local lobe radius is given by 

 

      nsrsr bl sin . (5.10) 

 

 However, a CA lobe will have lower radii at the top and bottom of the bag than at 

the middle, and so the circumferential tension at the top and bottom of the bag will be lower 

than the circumferential tension at the middle.  Assuming that the strength and thickness of 

the membrane used in an Energy Bag will be constant at all points in the bag, it is 

unnecessary to minimise the tension at the top and bottom of the lobe when the material 

must be strong enough to withstand the maximum tension (encountered slightly above the 

middle of the lobe) anyway.  Balloon designers often use CR lobes – this is likely to be 

because designers of superpressure balloons often assume a uniform differential pressure at 

all heights in the balloon, in which case a constant lobe radius will give constant 

circumferential tension.  As expected, CR lobes have smaller widths than CA lobes (see 

figure 5.8), and CR lobes are more uniformly stressed (figure 5.9). 
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Fig. 5.8  Constant angle (CA) and constant radius (CR) lobe cutting patterns (with 

equal width at the equator) for a pumpkin balloon [92].   is the dimensionless distance 

along the lobe from the equator ( = 0) to the top ( = 1) and bottom ( = -1).  W() is the 

lobe width at  and W0 is the lobe width at the equator 

 

 

 

 

Fig. 5.9  Major and minor principal stresses for a CA and CR lobe in a 10m diameter 

balloon with 145 lobes, plotted on undeformed lobe cutting pattern (width magnified 5 

times) [92] 

 

In the next section, we introduce the constant tension lobe, a new type of lobe 

cutting pattern with a smaller area than both CA and CR lobes.  If for now we proceed with 

the idea of using a CA lobe with subtended angle  =  rads (giving a lower bound on the 

circumferential tension at all points a lobe), we arrive at an interesting result.  The following 
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equation, found by substituting equation (5.10) into equation (5.9), gives the circumferential 

tension per unit meridional length in such a lobe, 

 

  nprT bc sin . (5.11) 

 

Taking small angle approximations for a vessel with a large number of lobes, equation (5.10) 

becomes 

 

 
n

r
r b

l


 . (5.12) 

 

To manufacture larger balloons or Energy Bags, the number of tendons is increased.  The 

buoyancy force, and so total tension in the tendons, is proportional to the bag radius cubed, 

 

 
3

, btott rT  . (5.13) 

 

The tension in each tendon is given by 

 

 
n

r
T b

t

3

 . (5.14) 

 

If n is proportional to the bag radius rb then the tension in each tendon is proportional to the 

bag radius squared, 
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If the cross-sectional diameter of each tendon is kept proportional to bag radius, then the 

stress in each tendon is independent of the bag radius, 
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Therefore the number of tendons can be kept proportional to the bag radius without an 

increase in tendon stress, as long as the cross-sectional diameter of each tendon is also kept 
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proportional to the bag radius.  Looking back at equation (5.12), we can see that if the 

number of tendons is proportional to the bag radius, the local lobe radius is independent of 

the size of the bag.  Looking further back to equation (5.9), we then see that if the differential 

pressure p remains unchanged with bag size (as is roughly the case for superpressure 

balloons), the circumferential tension is also independent of the size of the bag.  This differs 

from unlobed vessels and is the reason why the addition of lobes dramatically increases the 

pressure resistance of large balloons.  It is interesting to now think back to the reason 

Graham Brading gave for why Seaflex don’t make underwater lifting bags with lifting 

capacity any greater than 35t (in section 2.2.3), bearing in mind that Seaflex’s lifting bags 

don’t have any lobing: “The hoop stress in the fabric at the largest diameter of the bag limits 

the size. We could look at higher tensile strength fabric if needs be.” 

For an Energy Bag, p (at a given height in the bag as a fraction of the bag’s 

meridional length) is proportional to the size of the bag, so the circumferential tension is 

proportional to the bag’s size.  The circumferential tension in an Energy Bag can therefore 

be made independent of the size of the bag if we make the number of tendons proportional to 

the bag radius squared (in which case the cross-sectional area of the tendons need only be 

proportional to the bag radius). 

Unfortunately, superpressure balloons can have problems with stability, and it has 

been shown that the buckling pressure of a superpressure balloon reduces as the number of 

lobes and the subtended angle of each lobe increase.  Therefore it may be worthwhile to 

assess the stability of Energy Bags and seek the lobe cutting pattern that minimises 

membrane stress while the bag remains stable.  Of course, stability may only be an issue if 

Energy Bags are designed to be overpressurised, and so the stability of less highly 

pressurised (e.g. zero pressure) bags should also be investigated. 

 

 

5.4 The Constant Tension Lobe 

 

Balloon designers often neglect the pressure gradient and assume a uniform differential 

pressure across the balloon at all heights.  However, it is not strictly correct to assume a 

uniform differential pressure across an inflated vessel, particularly underwater where the 

pressure gradient is much higher than that in air, so we now propose a new lobe cutting 

pattern that takes the pressure gradient into account, known as the constant tension (CT) 

lobe.  Such a lobe will have constant circumferential tension at all points in the lobe (equal to 

the maximum circumferential tension encountered in a CA lobe with constant subtended 

angle of  rads) and because p depends upon the height within the bag, neither  nor rl will 
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be constant.  A CT lobe cutting pattern will minimise the width of the lobe while meeting the 

maximum stress condition, so minimising the area of the lobe cutting pattern.  This has two 

advantages over other lobe designs: 1) the cost of the lobe will be as low as possible, and 2) 

the bag stability will be increased (it has been shown that the stability of a superpressure 

balloon is maximised by minimising the cutting pattern area [104]).  The top of a CT lobe 

will be slightly wider than the top of a CR lobe (because p is maximum at the top of the bag), 

and the bottom of a CT lobe will be slightly thinner than the bottom of a CR lobe (because p 

is minimum at the bottom of the bag, see figure 5.15 for confirmation). 

 The procedure for generating a CT cutting pattern is as follows: 

 

1. Start with a CA lobe with  =  rads (so minimising Tc at all points along the lobe) and 

find the maximum value of Tc(s) (which we now call Tc,max).  It is anticipated that this 

will be located at a point slightly above the maximum radius of the bag. 

2. Calculate the lobe radius at every other point along the lobe using rl(s) = Tc,max/p(s). 

3. Calculate the subtended angle s at all points using the local lobe radius (rl(s) from 

step 2) and equation (5.7). 

4. Calculate the cutting pattern width w(s) at all points using rl(s) from step 2, (s) from 

step 3, and equation (5.1). 

 

The CT lobe cutting pattern for a massless ZPNS bag with L = 1m and 36 lobes is 

shown in figure 5.10.  Interestingly the lobe edges of a CT lobe are very straight, with slight 

curvature at the point of maximum width.  The point of maximum width is slightly above the 

point on the lobe at which the bag has maximum diameter, as anticipated.  The point on the 

lobe at which the bag has maximum diameter depends upon the maximum fill level of the 

bag; for a massless bag this point will always be above halfway up the lobe and will be 

closest to halfway up the lobe when the maximum fill level is high (because a massless bag 

only has a symmetrical shape if the differential pressure is infinite).  Figure 5.11 shows a 

cross-section of the ZPNS bag with a dashed line to indicate the level of maximum lobe 

width for the CT lobe. 
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Fig. 5.10 CT lobe cutting pattern for a massless ZPNS bag with 36 lobes and L = 1m 

(shown in figure 5.11) 
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Fig. 5.11 Massless ZPNS bag with dashed line indicating the level at which the CT 

lobe cutting pattern width is maximum 

 

 It should be noted that the CT lobe cutting pattern with max =  rads is not 

necessarily the lobe cutting pattern of lowest cost, because in order to minimise the 

maximum tension, lobes with large bulges are used, which require lots of material.  If we 

assume that cost of surface is proportional to the product of total cutting pattern width and 

circumferential tension, then the cost of surface is 
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 wnTC csu  . (5.17) 

 

Using equations (5.17), (5.9), (5.5), and (5.6), we obtain 

 

   
 2sin

sin
2

2




 nrpnC bsu  . (5.18) 

 

For a sufficiently large number of lobes, nCsu 1 .  Differentiating equation (5.18) with 

respect to  and setting equal to zero, we can obtain the optimum subtended angle in a 

particular element. 

 

 0





suC

 (5.19) 

 

  2tan    (5.20) 

 

 3309.2 rads (5.21) 

 

So the subtended angle that minimises cost of surface in a particular element is 

2.3309rads, or 133.5°.  It should be noted that this calculation ignores the effect of the size of 

the lobe’s bulge on the enclosed volume of the bag (and so the amount of stored energy).  

However, it has been found that taking the enclosed volume of the bag into account has very 

little effect on the optimum lobe angle; figure 5.12 shows a plot of Csu/A, where A is the total 

enclosed area of the lobe (which is proportional to the amount of stored energy), for n = 36, 

rb = 0.9m, and p = 49810Pa.  The subtended angle  spans the range 2/n (so giving a 

circular bag cross-section) to  + 2/n (the largest lobe bulge possible), and clearly there is a 

marked drop in surface cost per unit of energy stored as lobing is introduced.  The minimum 

is at  = 2.3rads, very close to the optimum angle calculated without taking the effect of the 

lobe bulge on the amount of stored energy into account.  The number of lobes, bag radius, 

and differential pressure have very little effect on the shape of the curve. 
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Fig. 5.12 Plot of cost of surface per unit of contained area (which is proportional to 

the amount of stored energy) against the lobe angle.  n = 36, rb = 0.9m, and p = 49,810Pa. 

 

As mentioned before, the fabric used for the lobe will have constant thickness and so 

in order to maximise material utilisation and minimise the cutting pattern area, the 

circumferential tension should be constant throughout the lobe.  A constant angle lobe does 

not have constant tension.  Setting the constant tension to the maximum tension found with  

= 2.3309rads does not necessarily give the optimum cutting pattern either; the optimum 

cutting pattern should be found using an optimisation routine.  For a ZPNS bag with L = 

2.36m and 36 lobes it was found that the optimum CT lobe has maximum subtended angle of 

 = 2.9615rads, or 170°. 

Figure 5.13 shows CT lobe cutting patterns for a superpressure bag with L = 1m, p0 

= 1bar, and 36 lobes.  Figure 5.13(a) shows the cutting pattern for a lobe with constant 

tension equal to the maximum tension found with  =  rads, and figure 5.13(b) shows the 

cutting pattern for a lobe with constant tension equal to the maximum tension found with  = 

2.3309rads.  Clearly the larger the maximum subtended angle, the straighter the edges of the 

CT lobe cutting pattern. 
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Fig. 5.13 CT lobe cutting patterns for a superpressure bag with L = 1m, p0 = 1bar, and 

36 lobes (a) constant tension equal to the maximum tension found with  =  rads, (b) 

constant tension equal to the maximum tension found with  =2.3309rads 

 

 In figure 5.14 we compare the CT lobe cutting pattern from figure 5.13(a) with a CA 

lobe cutting pattern for a lobe with constant angle of  =  rads.  This shows that the CT 

lobe has equal width to the CA lobe at the point where the tension in the CA lobe is at a 

maximum, and is thinner than the CA lobe at all other points. 
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Fig. 5.14 Solid line: CT lobe cutting pattern from figure 5.13(a).  Dashed line: CA 

cutting pattern for bag with constant angle of  =  rads 

 

 A CR lobe with lobe radius rl equal to the smallest possible radius (half the straight-

line distance between tendons at the point at which the bag has its largest radius, i.e. 



5. Lobed Fabric Structures 

135 

 Wrl max5.0 ) has very similar shape to the CT lobe cutting pattern from figure 5.13(a) 

and figure 5.14.  Figure 5.15 shows a plot of the relative differences in width between the CT 

lobe cutting pattern and the CR lobe cutting pattern.  We see that the CT lobe is thinner than 

the CR lobe beneath the equator of the bag, and the CT lobe is wider than the CR lobe above 

the equator of the bag.  The overall area of a CT lobe is slightly less than that of a CR lobe 

with maximum tension equal to the constant tension in the CT lobe. 
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Fig. 5.15 Relative differences (in %) between the lobe width of a CT lobe and CR 

lobe for a bag with L = 1m, p0 = 1bar, and 36 lobes 
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Chapter 6 
 

Three-Dimensional Finite Element Analysis 
 

 

In this chapter a three-dimensional finite element analysis of a cable reinforced membrane is 

presented, using membrane and cable elements.  The cable element force vector and stiffness 

matrix have been derived previously in sections 4.1.1 and 4.1.2 respectively, and cable 

wrinkling was handled in section 4.1.3. 

 

 

6.1 The Membrane Element 

 

Membrane elements are two-dimensional elements which have no bending stiffness and so 

can only carry in-plane forces.  They model solids of a specified (small) thickness which 

exhibit no stress normal to the thickness, and the constitutive relations are modified to ensure 

that this normal stress is zero. 

 

 

6.1.1 Force Vector 

 

The following derivations of the membrane element force vector and stiffness matrix are 

taken from [93] and [120], and given here for completeness.  The element is derived in a 

local coordinate system, shown in figure 6.1, with the x-axis aligned along side 12 and the 

origin located such that the y-axis passes through node 3. 
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Fig. 6.1  A 3-node, 9 degree of freedom triangular element 

 

The displacement at any point on the element is given by 

 

 yxu 321   , 

 

 yxv 654   , 

 

 yxw 987   . (6.1) 

 

Converting from the   coefficients to the nine nodal displacements 

 

  Twvuwvuwvuu 333222111  (6.2) 

 

and solving for   by evaluating the displacements at each of the three nodes, we have the 

element shape functions, 

 

         333322221111, uycxbauycxbauycxbayxu  , 

 

         333322221111, vycxbavycxbavycxbayxv  , 

 

         333322221111, wycxbawycxbawycxbayxw  , (6.3) 

 

where 

 

y 

3 

2 1 

x 
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   Syxyxa 223321  ,   Syyb 2321  ,   Sxxc 2231  , 

 

   Syxyxa 231132  ,   Syyb 2132  ,   Sxxc 2312  , 

 

   Syxyxa 212213  ,   Syyb 2213  ,   Sxxc 2123  . (6.4) 

 

S is the undeformed area of the element. 

The nonlinear displacement-strain relations in a two-dimensional element are given 

by 
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Writing the strain vector in matrix form, 
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  Tywyvyuxwxvxu  . (6.9) 

 

The matrices A and   can be formed using 
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 Gu , (6.11) 

 

where 
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A set of virtual displacements u  gives rise to virtual strains of 

 

   uAGB   0 . (6.15) 

 

The stress vector is found using the constitutive relations for linear elastic plane stress 

analysis, 

 

 0  D  (6.16) 

 

where 0  is the initial stress vector (prestress) and D is the elastic matrix, defined as 
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where E and   are the Young’s modulus and Poisson’s ratio of the material, respectively. 

 Using the principle of virtual work, the work done on a deformable body by a set of 

virtual displacements u  is given by 

 

  V

T dVW   (6.18) 

 

where V is the volume of the body.  Substituting equations (6.15)-(6.16) into equation (6.18) 

and eliminating 
Tu  gives the element force vector, 
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Integrating over the volume of the element is equivalent to multiplying by its volume 

because the interpolating polynomial is linear, and so for the element force vector we have 
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where t and S are the thickness and undeformed area of the element, respectively. 

 

 

6.1.2 Stiffness Matrix 

 

Differentiating F with respect to u to obtain the element stiffness matrix, 
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The elastic and geometric stiffness matrices are given by 
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where 
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The element force vector and stiffness matrix must be rotated from the local coordinate 

system into the global coordinate system using standard transformation matrices, details of 

which can be found in many FEA textbooks including [122]. 

 

 

6.1.3 Wrinkling 

 

A membrane is unable to sustain load in compression, and so a membrane element under 

compression must be given very low stiffness in the direction of compression.  This can be 

accomplished by modifying the elastic matrix, D.  It is necessary to begin with a description 

of coordinate transformations for stresses and strains, and then move onto the definition of 

the modified elastic matrix for a wrinkling element, and how this is used to form the element 
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force vector and element stiffness matrix.  A new method of smoothly transitioning between 

the taut, uniaxial wrinkling and biaxial wrinkling stress states is derived in this work. 

The stress vector can be transformed from one coordinate system to another 

coordinate system rotated about the z-axis through an angle , using 

 

  T , (6.25) 
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and cosc  and sins .  To rotate the strains (or virtual strains) in this way we must 

use 

 

  1 RTR  (6.27) 

 

where the Reuter’s matrix 
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The principal stresses are initially found by simply rotating the stress vector as in equation 

(6.25), with 
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However, the principal stresses in a wrinkling element must be recalculated using 
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where 


cD  is the modified elastic matrix, given by 
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Remember that, in a taut element ( 02  ), we set 
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For an element in uniaxial wrinkling ( 01   and 02  ), we smoothly reduce b to zero 

and c and d to a small value ( ) using the cos function.  For an element in biaxial wrinkling 

( 01  ), we also smoothly reduce a to   using the cos function. 

Using equations (6.18), (6.25), (6.27), and (6.30), and again eliminating 
Tu , we get 

the element force vector in local coordinates, 
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Note that the strains and virtual strains are unchanged.  Differentiating F with respect to the 

nodal displacements gives 
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In finding Ke it is necessary to differentiate R, R
-1

, T, T
-1

, and 


cD  with respect to u.  This is 

possible without too much difficulty, but the workings are not displayed here due to their 

length. 

 

 

6.2 Loading 

 

The load on the elements is a combination of differential pressure, material mass, and 

resistance forces to stop nodes from crossing into the seabed and the bulkheads.  The 

following sections contain derivations of the differential pressure force vector, the material 

mass force vectors, and the corresponding load stiffnesses. 

 

 

6.2.1 Load Vector 

 

The differential pressure force vector on the deformed element is calculated in the global 

coordinate system using the differential pressure at the centroid of the element.  The 

deformed element is shown in figure 6.2, with the axes of the global coordinate system being 

x,y,z.  The z-axis is perpendicular to a flat seabed. 
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Fig. 6.2  A 3-node, 9 degree of freedom triangular element 

 

First, the three sides of the deformed element are defined as vectors, 

 

  Twzvyuxa 212121212121  , 

 

  Twzvyuxb 313131313131  , 

 

  Twzvyuxc 323232323232  . (6.35) 

 

As before, 1221 xxx  , etc.  Note that in calculating the differential pressure force across 

an element, the ordering of the nodes is important.  In this derivation, the nodes are ordered 

anticlockwise when viewed from the outside of the bag, so that the vector ba  (and so the 

unit normal to the element, n̂ ) is directed outside the bag. 

The vector of differential pressure force on the element is given by 

 

 npAFdp
ˆ

3

1
 , (6.36) 

 

where the unit normal to and area of the deformed element are 

 

       TTTT
bababa

ba
n 




1
ˆ  (6.37) 

 

and 

z 

y 

x2+u2,y2+v2,z2+w2 

x3+u3,y3+v3,z3+w

3 

x1+u1,y1+v1,z1+w1 

x 
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2
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A


 , (6.38) 

 

and the differential pressure at the centroid of the deformed element is 

 

    3322110
3

1
wzwzwzgpp aw   . (6.39) 

 

The density of seawater is approximately 1,025kg/m
3
 and the density of the contained air is 

calculated using equation (3.16). 

Substituting equations (6.37) and (6.38) into equation (6.36) and cancelling ba , 

the element differential pressure force vector becomes 

 

       TTTT

dp bababapF 
6

1
, (6.40) 

 

where 

 

  Txyyxzxxzyzzy bababababababa  . (6.41) 

 

The membrane mass element force vector is given by 

 

  Tmm tSF 100100100
3

1
  (6.42) 

 

where ρm is the density of the membrane material, and t and S are the thickness and area of 

the undeformed membrane element, respectively.  The mass of cables can be included using 

 

  Tccc LAF 100100100
2

1
0  (6.43) 

 

where ρc is the density of the cable material, and Ac and L0 are the cross-sectional area and 

length of the undeformed cable element, respectively.  The material mass element force 

vectors must be added to the element differential pressure force vector to obtain the element 

load vector. 
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6.2.2 Load Stiffness Matrix 

 

The cable mass and membrane mass force vectors have no dependence upon nodal 

displacements, and so have zero load stiffness.  We differentiate the element differential 

pressure force vector with respect to nodal displacement to obtain the element load stiffness 

matrix, 

 

 
u

F
R




  

 


















u

nA
p

u

p
nA

ˆ
ˆ

3

1
. (6.44) 

 

Differentiating the differential pressure at the centroid of the element gives 

 

    100100100
3

1
g

u

p
aw  




. (6.45) 

 

Differentiating the product of element area and unit normal to the element gives 
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where the differentiated cross product of a and b is 
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The differentiated components of the cross product are given by 
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   000 xyxyxy

z aabbcc
u

ba





. (6.48) 

 

 

6.3 Solving the Equilibrium Equation 

 

As with the axisymmetric FEA, the force equilibrium equation is solved using the Newton-

Raphson method, described in sections 2.4 and 4.5, and the structure is constrained with the 

use of a constraints matrix, described in section 4.5.1.  If the bag is rotationally symmetric 

with n identical lobes, and each lobe is symmetric about the plane cutting the lobe in half and 

containing the central axis of the bag, it is only necessary to model half of a single lobe; this 

is generally the case with balloons.  When modelling the lobes of such a bag, an initial bag 

configuration may be found using the axisymmetric FEA.  Balloon designers also take into 

account the symmetry of pumpkin balloons about the equator; however, Energy Bags will 

not necessarily be designed to be overpressurised in the way that pumpkin balloons are, and 

so will not be symmetrical in the same way. 

 It has been found that if displacement control is used then load incrementation is not 

required.  The displacement factor used in this work is calculated to ensure that node 

displacements are never greater than a certain fraction (in this case 1/100
th
) of the distance of 

the furthest node from the origin.  So the displacement factor is given by 

 

    nn uu  max100max     if     100maxmax nuu  , 

1                        if     100maxmax nuu  , (6.49) 

 

where 

 

     n

T

nr

T uTrTuTJTu
1

  (6.50) 

 

are the node displacements originally calculated by the Newton-Raphson method 

( uuu nn 1 ), nu  is the vector of the magnitudes of these displacements, and nu  is 

the vector of the distance of each node from the origin. 
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6.4 Results 

 

First we tried to use the 3D FEA to model Energy Bags with the UHPV architecture, 

described in Chapter 5, taking advantage of the lobed bag’s rotational symmetry (and the 

symmetry of each lobe) by only modelling half of one lobe.  In particular, we tried to model 

the 1.8m prototype bags that have been installed in a water tank housed in one of the 

university’s laboratories, in order to find the stresses in the tendons and bladder and assess 

their stability.  These bags are described in more detail in Chapter 8, and the details of the 

bags are given in table 6.1.  It should be noted that the tendons are shortened relative to the 

length of bladder along which they run by 3.86%, so as to ensure that the fabric isn’t 

subjected to stresses in the meridional direction.  Cables with the same cross-section and 

Young’s modulus as the tendons were included around the top and bottom of the lobe, to 

ensure that the lobes remain quite flat at the top and bottom.  It would be more accurate to 

use a constraints matrix to ensure that all nodes along the top and bottom of the lobe move as 

one (as if clamped into the bulkheads) but the form of such a constraints matrix was not 

obvious, and including stiff cables around the top and bottom serves the same purpose. 

 

Diameter 1.8 m 

Volume (excluding lobes) 2.002 m
3
 

Number of tendons 36 

Safety factor 5 

Meridional length (pole to pole) 2.36 m 

Bulkhead material Aluminium 

Bulkhead diameter 0.19686 m 

Bulkhead mass 5.502 kg 

Tendon material Spectra
®
-Nylon 

Tendon width 13.5 mm 

Tendon thickness 2.8 mm 

Tendon Young’s modulus 2.34 GPa 

Tendon density 1,400 kg/m
3
 

Tendon failure stress 374 MPa 

Carrier material 
420d polyurethane 

coated Nylon 

Carrier thickness 0.4089 mm 

Carrier Young’s modulus 
(fill direction) 

0.29364 GPa 

Carrier Poisson's ratio ~0.4 

Carrier density 1,440 kg/m
3
 

Minimum carrier failure stress 
(fill direction) 

86 MPa 

 

Table 6.1 Specifications of the 1.8m diameter prototype 

 

It was found that it is only possible to obtain converged solutions (where the 

maximum dimensionless force residual drops to less than 1×10
-9

) for bags inflated to 
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pressures higher than a certain threshold.  This threshold, to the nearest 10kPa (0.1bar), is p0 

= 90kPa.  At a range of pressures below p0 = 90kPa (80kPa down to 40kPa inclusive, to the 

nearest 10kPa) the solution routine converges to an extent that the maximum node 

displacement becomes less than a certain amount (0.01% of the meridional length of the bag, 

so 0.236mm in this case), but the force residuals don’t fully converge.  (In many parts of the 

bag the force residuals become very small but towards the bottom of the bag the force 

residuals do not converge.)  In this pressure range, the maximum dimensionless force 

residual is observed to end up jumping between two different values, rather than dropping 

continuously as it would if the solution routine was fully converging. 

Once full inflation has been achieved, we calculate the von Mises stress (vM) in 

each membrane element.  For taut elements (i.e. no wrinkling), this is calculated in the usual 

way.  If the continuous elastic matrix approach is being used, the von Mises stress for a 

wrinkling element must be handled carefully.  For elements that are undergoing uniaxial 

wrinkling, we set the von Mises stress to be equal to the maximum principal stress (the 

maximum stress in such an element), and for elements that are undergoing biaxial wrinkling 

(i.e. slack), we set the von Mises stress to be zero. 

 

21

2

2

2

1  vM  if 02  (no wrinkling) 

1 vM  if 01   and 02   (uniaxial wrinkling) 

0vM  if 01  (biaxial wrinkling) (6.51) 

 

The lobe cutting pattern with von Mises stresses for the bag at p0 = 100kPa and p0 = 

40kPa is shown in figure 6.3.  Slight gaps can be seen between the top and bottom halves of 

the lobe, as is to be expected for a UHPV lobe.  An oblique view of the full bag with p0 = 

40kPa is shown in figure 6.4. 

 



6. Three-Dimensional FEA 

151 

-0.1 00.1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

 

 

-0.1 00.1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

 

 

0

2

4

6

8

10

12

14

16

18
x 10

6

0

0.5

1

1.5

2

2.5

x 10
7

 

 (a) (b) 

 

Fig. 6.3  Lobe cutting pattern for the 1.8m diameter prototype bag with von Mises 

membrane stresses, (a) p0 = 100kPa, (b) p0 = 40kPa 

 

 

 

Fig. 6.4  Oblique view of the full 1.8m diameter prototype bag with p0 = 40kPa, 

showing von Mises membrane stresses.  Half of a single lobe was modelled and this image 

was formed by mirroring the deformed half-lobe and then repeating the resulting lobe 
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 The maximum von Mises stress for the bag with p0 = 40kPa is 18.20MPa, slightly 

higher than the allowable bladder stress of 86/5 = 17.2MPa (dividing the minimum bladder 

failure stress of 86MPa by the safety factor of 5).  As noted above, the maximum node 

displacements do not settle to an acceptable level for pressures below about p0 = 40kPa, 

however colour plots of the residuals and displacements show the slightly larger residuals 

and displacements to be found towards the bottom of the bag, and for a range of pressures 

below p0 = 40kPa, the force residuals and node displacements reach acceptable levels in all 

other parts of the bag (most importantly around the areas of maximum stress).  If the bag is 

only inflated to p0 = 35kPa, the maximum von Mises stress is 17.27MPa, and with p0 = 

34kPa this reduces to 17.09MPa.  At p0 = 34kPa, the maximum tendon stress is 36.40MPa.  

With a safety factor of 5, the tendon failure stress of 374MPa reduces to an allowable tendon 

stress of 74.8MPa, so the tendon stress is also within acceptable levels. 

In light of this work, for the 1.8m diameter prototype we would recommend a 

maximum differential pressure at the base of p0 = 34kPa (0.34bar).  In the tank-based Energy 

Bag testing, the base of the bag is beneath no less than 2m of fresh water, so the maximum 

gauge pressure of the contained air should be 1,000×9.81×2 + 34×10
3
 = 53.62kPa 

(0.5362bar). 

We now give an example of how tendon shortening reduces membrane stress while 

increasing tendon stress.  With increased tendon shortening (4.86% rather than 3.86%), and 

p0 = 40kPa, the maximum membrane stress reduces from 18.20MPa to 16.24MPa (now 

lower than the allowable bladder stress), and the maximum tendon stress rises from 

40.40MPa to 42.42MPa (still lower than the allowable tendon stress). 

It should be noted that in this work it has been assumed that the membrane is 

attached to the tendons, whereas in reality the membrane will be able to slide against the 

tendons (though frictional forces will provide some resistance to this sliding). 

As well as not being able to successfully model less pressurised bags (as detailed 

above), we also have problems trying to model bags with increased or decreased tendon 

shortening.  Figure 6.5 shows a side view of a single lobe after a randomly chosen iteration 

during the attempted solution for a lobe whose tendons are 6% shorter than the fabric along 

which they run.  The nodes at the top and bottom of the bag do not settle into positions (as 

can be seen in the figure) and the force residuals do not reduce in these areas. 
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Fig. 6.5  Side view of a single lobe during the attempted solution for p0 = 100kPa 

with 6% tendon shortening 

 

It is anticipated that areas of wrinkling membrane mean that sometimes the 

deformed bag does not have n-fold rotational symmetry for certain fill levels, and the fact 

that it is not possible to find a converged solution while only modelling a single lobe (or half 

of a single lobe as we have been doing) serves to back up this belief.  Part of the reason for 

this belief is the fact that with some bags, deformed solutions with n-fold rotational 

symmetry can only be found if the bag is highly pressurised or if the bag has low membrane 

stiffness, i.e. if the bag has reduced levels of wrinkling.  In tank testing of prototype bags 

(described in Chapter 8) we find substantial wrinkling at the bottom of partially inflated 

bags, and the n-fold rotational symmetry is no longer present.  In future we plan to model 

full bags (rather than simply half of a single lobe) to see if converged solutions can be found.  

The possibility of rounding error and cancellation error being the cause of the problem will 

also be assessed. 

We now show another example of a deformed solution that can be found when only 

modelling half of a single lobe.  Figures 6.6 and 6.7 show the undeformed and deformed 

configurations of a single lobe in a wide-based bag with 36 lobes, at a depth of 500m and 

subjected to p0 = 10kPa.  The membrane has thickness t = 1mm and is made of rubber, so has 

a low Young’s modulus of E = 50MPa and a Poisson’s ratio of ν = 0.4.  There is meridional 

reinforcement along the lobe edge of 10mm diameter steel cable (E = 200GPa), and cable 
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and element mass is included: we use ρsteel = 7,800kg/m
3
, and ρrubber = 1,522kg/m

3
.  The bag 

has a base radius of 1m.  Looking at the undeformed lobe in figure 6.6 it should be clear that 

the bag could not be laid flat on the ground after all the lobes have been welded together 

without significant circumferential wrinkling towards the centre of the bag. 
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Fig. 6.6  Undeformed lobe 
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Fig. 6.7  Lobe of figure 6.6 subjected to p0 = 10kPa 

 

Interestingly, the mass of the concentration of cables causes the top of the bag 

subjected to p0 = 10kPa to hang down slightly.  This is better illustrated in figure 6.8, a cross-
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sectional view of a lobe with a slightly lower base pressure difference of p0 = 7kPa.  Note 

that to reach this low pressure, it was necessary to start with large overpressure (e.g. 1MPa as 

shown in figure 6.9) and then gradually reduce the pressure in stages. 
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Fig. 6.8  Cross-sectional view of lobe with p0 = 7kPa 
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Fig. 6.9  Lobe of figure 6.6 subjected to p0 = 1MPa 

 

Figure 6.10 shows the same lobe with p0 = 2.65kPa – at this low pressure, the centre 

of the bag is about to meet the seabed.  No bulkhead mass has been included so it is simply 

the mass of the concentration of 36 10mm diameter steel cables and 1mm thick rubber 

membrane that is causing the centre of the bag to hang so low.  It is not possible to find a 

meaningful solution for much lower air pressures without the use of seabed resistance forces. 
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Fig. 6.10 Cross-sectional view of lobe with p0 = 2.65kPa 



 

  156 

 
 

 

 

 

 

Chapter 7 
 

Optimisation 
 

 

In this chapter, the analysis methods presented in the previous chapters are used in 

optimisation routines to minimise the cost of an Energy Bag per unit of energy stored.  In 

section 7.1, we begin with a simple analytical optimisation of an axisymmetric natural shape 

bag.  Section 7.2 presents a study of the optimum maximum fill level using the axisymmetric 

FEA, and section 7.3 presents a numerical optimisation using the axisymmetric inextensible 

model derived in Chapter 3.  It should be noted that within this chapter we make the 

assumption that contained air will be expanded to atmospheric temperature and pressure and 

that the expansion process will be isothermal.  This is a conservative approach because 

isothermal expansion at atmospheric temperature is the least efficient expansion process. 

Essentially the energy available in a store of compressed air is the product of 

pressure and volume, and the most conservative calculation of the energy available would be 

the product of the maximum change in bag volume (so just the fully inflated volume if the 

bag may be emptied completely) and the minimum possible air pressure within the store.  

This minimum possible air pressure is the hydrostatic pressure at the greatest height above 

the seabed that the top of the bag will reach.  A bag with mass will drop towards the seabed, 

and the greatest height that the top will reach is dependent upon the total mass of the bag.  

However, a massless bag will not drop to the seabed, and if such a bag is sealed at the base 

and has meridional length L, lower bulkhead radius rlo, and upper bulkhead radius rup, then 

the height of the top of the empty bag above the seabed is given by 

 

  
uplo rrLh  . (7.1) 

 

The absolute hydrostatic pressure at a height h above the seabed is given by 

 

   atmw PhdgP   , (7.2) 
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where Patm is atmospheric pressure and d is the depth of the base of the bag.  Therefore the 

minimum possible absolute air pressure in a bag is 

 

   
atmuplow PrrLdgP   . (7.3) 

 

We should also explain a simplification made in calculating the cost of materials.  

For simplicity, in this chapter we assume that the cost of carrying a force over a certain 

distance is proportional to the force-distance product, which we call structural capacity ( ).  

An explanation of this simplification follows. 

Cost of materials is generally proportional to the product of volume of material 

required (Vreqd) and price of the material (per unit of volume). 

 

 Cost   price.Vreqd (7.4) 

 

Vreqd is the distance over which the force is transmitted (x) multiplied by the required 

cross-sectional area of the material (Areqd), and Areqd is the force transmitted (F) divided by 

the material’s yield stress ( y ) upon the factor of safety (FoS). 

 

 Cost   price.xAreqd = price
y

FoSxF



.
 (7.5) 

 

Assuming that the price of the material scales linearly with yield stress, then 

 

 Cost   xF  (= ). (7.6) 

  

 

7.1 Analytical Cost Minimisation of a Natural Shape Bag 

 

By considering the three components of materials cost for an axisymmetric natural shape 

Energy Bag (ballast, meridional reinforcement, and surface costs) and the energy stored, and 

then carrying out a simple optimisation, it is possible to find the bag diameter that minimises 

the cost of bag materials per unit of energy stored. 

The volume, and so buoyancy, of a natural shape Energy Bag is proportional to any 

geometric dimension (e.g. maximum diameter, Dmax) cubed. 
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3

maxbuoyancy DF   (7.7) 

 

The cost of ballast (to hold the bag to the seabed) depends upon the mass of ballast required 

(and so upon the buoyancy of the bag), and so the cost of ballast (Cba) must be proportional 

to Dmax
3
. 

 

 
3

maxDCba   (7.8) 

 

In considering the cost of meridional reinforcement it is first necessary to show that, 

for a natural shape bag subjected to a given differential pressure at the base, the angle 

between the seabed and the base of the bag is independent of the bag’s size.  This has been 

effectively shown in Chapter 4 by demonstrating that the natural shape is independent of the 

size of the bag, but further proof is given here.  The solid line in figure 7.1 is a plot of the 

angle  between the base of a zero pressure natural shape (ZPNS) bag with base radius r0 = 0 

(found using the axisymmetric FE model) and the seabed, against the meridional length of 

the bag, L.  The angle of 40° between the seabed and the base of the bag is equal to that 

found in [115].  The dashed line is a plot for a ZPNS bag with base radius r0 = L/2.  The 

meridional length of the bag clearly has no effect on  in either case, which is important 

because it means that the tension in the meridian scales linearly with the volume of the bag.  

This is clear when looking at the following equation relating tension in the meridian to the 

buoyancy of the bag and . 

 

 
sin

buoyancyF
T   (7.9) 

 

Note that the cross-sectional area of the meridian has been scaled with L
3
 (so scaled 

with the volume of the bag) to ensure that the strains do not become too great.  If the cross-

sectional area is not scaled up in this way then the lines in figure 7.1 would remain straight 

up to a point and then curve downwards – this is because the strains become very large if the 

reinforcement is not scaled up, and the stresses at the point where the line begins to curve are 

already greater than the yield stress of mild steel (250MPa).  Figure 7.2 shows a ZPNS bag 

with h(0) = 2m and another ZPNS bag with h(0) = 10m – both bags clearly have the same 

shape. 
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Fig. 7.1  Plot of  against L for a ZPNS bag. Solid line – base radius, r0 = 0m; Dashed 

line – r0 = L/2 
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Fig. 7.2  Plot of two natural shape bags with p0 = 0Pa; both bags have the same shape 
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As the meridians of a ZPNS bag always leave the seabed at the same angle (assuming the 

strains are reasonable), the tension in a meridian is also proportional to Dmax
3
. 

 

 
3

maxDT   (7.10) 

 

In this case, the tension is constant over the length of the meridian because there is no 

circumferential stress or hanging mass.  The meridians each have length L, which is 

proportional to Dmax, and so the force-distance product in the meridians, and therefore cost of 

meridional reinforcement (Cmr), is proportional to Dmax
4
. 

  

 
4

maxDTLCmr   (7.11) 

 

This can be seen in figure 7.3: in this case, the constant of proportionality is 2.577. 
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Fig. 7.3  Plot of cost of meridional reinforcement against maxD . Solid line – Cmr = 

2.577Dmax
4
; Crosses – costs found using FE model 
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The surface area and so cost of surface (Csu) is approximately proportional to Dmax
2
. 

 

 
2

maxDA  (7.12) 

 

 
2

maxDCsu   (7.13) 

 

The cost of bag materials (Cbm) is equal to the sum of the costs of reinforcement, surface, and 

ballast, where 

 

 
4

maxaDCmr  , 
2

maxbDCsu  , and 
3

maxcDCba  , (7.14) 

 

and a, b, and c are constants.  Therefore we write 

 

                                           basumrbm CCCC    

 
3

max

2

max

4

max cDbDaD   (7.15) 

 

We are trying to minimise the cost per unit of energy stored (which is proportional to 

volume), where the amount of energy stored is given by 

 

 
3

maxkDE  , (7.16) 

 

and k is a constant.  Therefore it is necessary to minimise 

 

 
3

max

3

max

2

max

4

max

kD

cDbDaD

E

Cbm 
 , (7.17) 

 

which, after simplification, is equivalent to minimising 

 

 









 c

D

b
aD

kE

Cbm

max

max

1
. (7.18) 

 

To find the bag diameter that minimises this, it must be differentiated with respect to Dmax 

and set equal to zero, giving 
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 0
1

2

max

















D

b
a

k
. (7.19) 

 

Rearranging for the optimum bag diameter we obtain 

 

 
a

b
D *

max . (7.20) 

 

Note that the asterisk indicates an optimum value.  Substituting this into equation (7.14) 

gives equal values for optimum cost of reinforcement and optimum cost of surface. 

 

 
*

mrC  = 
*

suC  = 
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The optimum cost of ballast is given by 
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a

b
cCba . (7.22) 

 

It should be noted that this simple optimisation did not include costs for manufacture, 

transport, and installation, which are likely to increase the optimum bag diameter.  On the 

other hand, considering the vulnerability to being holed motivates the designer to 

contemplate using more bags of a smaller diameter. 

 

 

7.2 Optimisation of a SPA Natural Shape Bag 

 

The cost of a bag will depend upon its maximum fill level and the meridional length of the 

bag.  In this study we use the axisymmetric FEA, and look at each component of cost in turn.  

We begin by removing the cost of ballast and surface material from the equation so that we 

can concentrate on how the cost of required reinforcement varies with size and maximum fill 

level.  In this study the bag is assumed to be sealed at the base, bag mass is not taken into 

account and bulkheads are not included. 
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7.2.1 Meridional Reinforcement 

 

For a bag with meridional length L, and assuming isothermal expansion, the ratio of 

reinforcement cost to stored energy is given by 

 

 
 atm

mr

PPPV

TL

E

C

ln
  (7.23) 

 

The total tension, T, in the tendons of a natural shape bag is given by 

 

 
sin

buoyancyF
T  , (7.24) 

 

where  is the angle between the seabed and the tendon at the base of the bag.  The 

buoyancy force is given by 

 

  gVF awbuoyancy   , (7.25) 

 

so (7.23) can be rewritten as 

 

 
 
  



sinln atm

awmr

PPP

L

E

C 
 . (7.26) 

 

Note that g has been removed because it is a constant. 

 A surface plot of the function given in equation (7.26) against gLp w0  

(dimensionless fill level) and L for a bag anchored at 500m depth is shown in figure 7.4.  We 

see that in order to minimise cost of meridional reinforcement per unit of energy stored, 

Energy Bags should be small and underpressurised at the base (for the bag with L = 1m the 

optimum maximum fill level is gLp w0  = 0.54).  Essentially, cost of meridional 

reinforcement per unit of energy stored increases with the amount of energy stored inside a 

bag. 
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Fig. 7.4  Surface plot of a function proportional to cost of meridional reinforcement 

against meridional length and maximum fill level 

 

Plots of the function given in equation (7.26) against p0 for bags with particular 

meridional lengths at various depths will show the effects of depth on the optimum fill level 

in a natural shape bag.  Figures 7.5 and 7.6 show this plot for two bags with L = 2.36m and r 

= 0m (figure 7.5: bag anchored at 500m depth; figure 7.6: bag anchored at 2.4m depth).  

Figure 7.7 shows the shape of the bags at the optimum fill levels. 
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Fig. 7.5  Plot of a function proportional to cost of meridional reinforcement per unit 

energy stored against differential pressure across the base of the bag at full inflation.  Bag 

anchored at 500m depth 
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Fig. 7.6  Same plot as figure 7.5 but for a bag anchored at 2.4m depth 
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Fig. 7.7  Plot of the shape of the bags at the maximum fill level that minimises cost of 

meridional reinforcement per unit of energy stored.  Solid line: bag anchored at 500m depth.  

Dashed line: bag anchored at 2.4m depth 
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 Clearly the cost of meridional reinforcement in both bags is minimised by 

underpressurising the base.  However in practice, the costs of installation and manufacture 

must be taken into account, and these may act to increase the optimum fill level, so reducing 

the number of bags required for a plant with given storage capacity (assuming that the cost 

of manufacturing and installing a bag are fairly independent of the maximum fill level of the 

bag).  Costs of manufacture and installation depend upon the scale of the operation, as 

material costs do to an extent, but they are not as easy to obtain as materials costs so we 

press on with a study of the materials costs.  It should also be noted that the effects of 

currents on the stresses in the fully inflated bag may also influence the optimum maximum 

fill level. 

Though it can’t be seen without zooming in, there is a minimum cost for the bag 

anchored at 500m depth, at p0 = -1.2×10
4
Pa (or a fill level of -p0/wg(L-r) = 0.51).  The 

optimum bag at this depth meets the seabed at a very sharp angle (almost 90°), minimising 

the tension in the tendons per unit volume (see equation (7.24)).  Clearly, further reducing 

the maximum fill level hardly increases the cost of meridional reinforcement at all.  The 

optimum bag at 2.4m depth enters the seabed at a shallower angle.  This is because the 

relative change in stored energy resulting from a change in fill level is much greater at 

shallow depths than at greater depths, so the increase in tension in the tendons is offset by 

the increase in stored energy.  From here on we will concentrate on the analysis of a bag 

anchored at 500m depth. 

 

 

7.2.2 Ballast 

 

We now look at the cost of ballast.  The volume of ballast required is directly proportional to 

the volume of the bag, V.  Therefore for a bag with a given meridional length, and assuming 

isothermal expansion, the ratio of ballast cost to stored energy is given by 

 

 
 atm

ba

PPPV

V

E

C

ln
 , (7.27) 

 

so 
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Clearly this ratio is independent of the shape of the bag.  A plot of the ratio against the 

absolute pressure of the contained air is shown in figure 7.8. 
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Fig. 7.8  Plot of a function proportional to the cost of ballast per unit of energy stored 

against absolute pressure of contained air 

 

So the best option for minimising cost of ballast per unit of energy stored is to 

increase the maximum fill level, i.e. increase p0,max for a bag at a given depth.  Whether it is 

worth increasing the maximum fill level in order to reduce the cost of ballast per unit of 

energy stored will ultimately depend upon the effects of maximum fill level on the costs of 

meridional reinforcement and membrane. 

 

 

7.2.3 Surface 

 

Finally we look at the cost of surface material.  First we should note that while bags with 

separate lobes can be tailored to provide the optimum lobe shape, cutting separate lobes for 

such bags may in fact require more material usage (including waste) than a bag comprising a 

fewer number of separate pieces of fabric (e.g. one piece for more than one lobe, or even just 

two circles of fabric forming the bag as in the prototypes).  The total material required 

depends upon the width and length of the roll of fabric that is used, but for now we assume 

that no material is wasted. 

In Chapter 5 we showed how to generate a constant tension (CT) lobe cutting pattern 

that has the minimum possible circumferential tension in the lobe, and has constant 
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circumferential tension at all points along the lobe so making the best use of materials.  We 

assume that the cost of surface material is proportional to the product of maximum 

circumferential tension and the distance along which the tension is transmitted (x), integrated 

along the lobe.  In the axisymmetric FE model, the circumferential lobe tension in an 

element is given by TcL, where Tc is the circumferential tension per unit meridional length 

and L is the length of the element.  Therefore 

 

   xLTC csu max . (7.29) 

 

The distance along which the circumferential tension is transmitted is given by wn, where w 

is the width of the lobe cutting pattern (as shown in figure 5.1 and given in equation (5.1)).  

w and Tc are found for CT lobes of various meridional lengths and maximum fill levels using 

the procedure given in Chapter 5, and the function proportional to Csu (per unit of energy 

stored) is plotted against gLp w0 and L in figure 7.9.  (Note that the axes are the other 

way round relative to those in figure 7.4.)  Importantly, the number of lobes is kept 

proportional to the maximum radius of the bag at each fill level. 
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Fig. 7.9  Plot of a function proportional to cost of surface per unit of energy stored 

against meridional length and maximum fill level for a bag at 500m depth 
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We see that if the number of lobes is kept proportional to the maximum radius of the 

bag, the bag (with CT lobes) that minimises cost of surface is underpressurised at the base 

and is as small as possible.  Though the lowest surface cost is obtained by making the bag 

small, there is little difference in surface cost between a small bag and a large bag.  The 

maximum fill level has much more of an effect on cost, and the lowest surface cost is 

obtained by designing the bag such that maximum contained air pressure is equal to the 

surrounding water pressure at a height of 0.35L above the seabed (assuming no bulkheads). 

From Chapter 5, we know that circumferential tension (per unit meridional length) in 

a CA lobe with subtended angle of  rads is given by 

 

  nprT bc sin  (7.30) 

 

where rb is the local bag radius, p is the local differential pressure, and n is the number of 

lobes.  We also know that the circumferential tension in an Energy Bag can be made 

independent of the size of the bag if we make the number of tendons proportional to the bag 

radius squared.  It should be noted that changing the number of tendons will have little effect 

on the cost of meridional reinforcement, which is simply proportional to the bag volume and 

the angle at which the tendons leave the seabed. 

Again, the cost of surface material is proportional to the product of maximum 

circumferential tension and distance along which the tension is transmitted (x).  For an 

element in the axisymmetric FE model, the circumferential lobe tension is given by TcL, 

where Tc is the circumferential tension per unit meridional length and L is the length of the 

element.  So 

 

   xLTC csu max . (7.31) 

 

For the lobe with the lowest possible circumferential tension (a constant angle lobe 

with constant subtended angle of  radians), Tc is given in equation (7.30) and the cutting 

pattern width is given by 

 

  nrw b  sin . (7.32) 

 

Therefore 

 

     npLrLT bc sinmaxmax  , (7.33) 
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  nnrwnx b  sin . (7.34) 

 

The cost of surface is given by 

 

        bbcsu rpLrnnxLTC maxsinmax 2  . (7.35) 

 

For a large number of lobes we can take small angle approximations, and see that, for a bag 

with a given size and fill level (i.e. if rb and p at any given height in the bag are constant and 

independent of n), the cost of surface is almost exactly inversely proportional to the number 

of lobes; a plot of  nn  2sin  against n is shown in figure 7.10. 
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Fig. 7.10 Plot of a function proportional to cost of surface against the number of lobes 

for a bag with a given size and fill level 

  

 

7.2.4 Summary 

 

To summarise, we have found that the costs (per unit of energy stored) of meridional 

reinforcement (tendons) and surface material (in constant tension lobes and assuming no 

wastage of material) in a sealed Energy Bag are reduced if the maximum pressure of the 

contained air is less than the hydrostatic pressure at the base of the bag, i.e. if the bag is 

underpressurised at the base (p0 < 0).  For a bag anchored at 500m depth, the cost of 

meridional reinforcement is minimised if the maximum pressure of the contained air is equal 
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to the hydrostatic pressure at a height of approximately 0.5L above the seabed (where L is 

the meridional length of the bag), and the cost of surface material is minimised if the 

maximum pressure of the contained air is equal to the hydrostatic pressure at a height of 

approximately 0.35L above the seabed.  However, the cost of ballast per unit of energy 

stored is increased as the stored air pressure is reduced.  We have also found that, for a bag 

with a given size and fill level, the cost of surface is inversely proportional to the number of 

lobes in the bag, while the costs of meridional reinforcement and ballast remain 

approximately independent of the number of lobes. 

 We should also remember that the pressure-volume characteristic of the store will 

affect the cost of the expansion machinery.  In Chapter 4 we found that the PV curve for an 

axisymmetric SPA natural shape bag remains relatively flat up to a small overpressure and 

then becomes much steeper with increased volume (see figures 4.10 and 4.17), indicating 

another advantage to limiting the maximum contained air pressure to around the hydrostatic 

pressure at the base of the bag: more efficient expansion machinery can be used because the 

air in the bag remains at a reasonably constant pressure at all fill levels. 

 Therefore, the optimum single point of anchorage natural shape bag should have as 

many lobes as possible, and if costs for manufacture and installation are not taken into 

account and the bag has a sealed base, the optimum bag should be designed to have a 

maximum contained air pressure equal to the hydrostatic pressure at a height somewhere 

between about 0.35L and 0.54L above the seabed.  Bag cost would be further reduced by 

making the bag as small as possible.  However, the optimum size and maximum fill level 

depend upon the relative prices of surface, meridional reinforcement, ballast and 

manufacture and installation.  The costs of manufacture and installation will cause the 

optimum size of the bag to be greater than zero. 

Since balloon designers have found that the buckling pressure of superpressure 

pumpkin balloons decreases as the number of lobes and the bulge formed by the lobes are 

increased, in the future we should check if Energy Bag designs could also be unstable.  

Unfortunately, increasing the number of lobes and the bulge formed by the lobes are both 

methods of decreasing the circumferential stress in the fabric. 
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7.3 Optimisation of a Wide Base Natural Shape Bag 

 

In this section we carry out an optimisation of natural shape bags that may have wide bases.  

The axisymmetric ODEs method presented in Chapter 3 is used (because the optimisation 

was carried out before the axisymmetric FE method was developed), and some extra coupled 

ODEs are derived that must be solved to calculate costs and the amount of energy stored.  

Circumferential reinforcement and distributed hanging masses are included, as are the effects 

of setting a maximum fill level. 

 

 

7.3.1 Description of the Method 

 

We seek to minimise the objective function,   xf cost of a bag/stored energy, subject to 

inequality and equality constraints of the form   0xg  and   0xh .  While the total cost 

of a bag will depend upon the cost of manufacture and deployment, these costs are not taken 

into account in this study; only the cost of materials is included.  As before, this cost is 

broken down into the sum of the cost of reinforcement, the cost of surface, and the cost of 

ballast.  To calculate these costs in the ODEs method, it is necessary to derive some extra 

quantities.  The volume of air contained (V) is required because the stored energy in the bag 

depends upon V.  As justified at the start of this chapter, for simplicity we assume that the 

cost of carrying a force over a certain distance is proportional to the force-distance product, 

which we call structural capacity ( ).  The cost of the bag materials depends upon the 

surface area (A), and the required structural capacities (meridional, circumferential, and 

vertical).  These are found by simultaneously solving five more differential equations 

alongside (3.1), (3.2), (3.9), (3.12), and taking the final values. 
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2  (7.39) 
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d
  (7.40) 

 

In equation (7.40), the structural capacity in the vertical direction (w) has been 

divided by 2: this is done because, in suspending a series of masses evenly along a cable 

hanging between the membrane and the base of the bag, it is possible to use weaker/thinner 

(and so cheaper) cable lower down in the series of masses, and the average tension in the 

cable is only half the tension at the very top of the cable (assuming an equal distribution of 

mass along the cable). 

Equations (3.1), (3.2), (3.9), (3.12), and (7.36)-(7.40) are integrated numerically, in this case 

as an initial value problem.  We always set V(0), A(0), m(0), c(0) and w(0) to zero (0 in 

brackets indicating an initial value at the top of the bag).  An upper bulkhead at the top of the 

bag requires nonzero r(0) (to represent the radius of the bulkhead) and nonzero (0) (so the 

weight of the bulkhead is reacted by the tension in the meridian), but no bulkheads are used 

here and so r(0) and (0) are also set to zero.  Once again, the average density of seawater, 

w = 1,025kg/m
3
, and the density of the compressed air is calculated using the equation of 

state for an ideal gas, as shown in equation (3.16). 

The cost of reinforcement is the sum of each of the meridional, circumferential, and 

vertical structural capacities multiplied by the price per unit structural capacity of each.  The 

cost of surface is the surface area multiplied by the price of surface per unit area.  The cost of 

ballast is equal to the mass of ballast required multiplied by the price of ballast per unit mass 

(pbal).  The mass of ballast required is given by the product of required ballast volume (Vbal) 

and the density of the ballast material (bal), so 

 

 balbalbalbal VpC  . (7.41) 

 

If we ignore the mass of the surface and reinforcements, the required ballast volume is found 

by balancing the net buoyancy of the bag, given by 

 

   bagaw gV   (7.42) 

 

and the difference between the weight of the ballast and the buoyancy of the ballast, given by 
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   balwbal gV  . (7.43) 

 

Setting these equal, rearranging for Vbal and cancelling g, we obtain 

 

 
 

wbal

aw
bagbal VV








 . (7.44) 

 

This is substituted into (7.41) to find the cost of ballast. 

The energy available in the compressed air store depends upon how the compressed 

air is expanded.  It is conservatively assumed that the air is an ideal gas and will be expanded 

isothermally.  The work done in the isothermal expansion from stored volume VA (with 

absolute pressure PA) to volume VB (with absolute pressure PB – in our case, atmospheric 

pressure) is 
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For an ideal gas, the product PV remains unchanged in an isothermal process, so 
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Exterior penalty functions [123] are used to transform the constrained problem into a 

single unconstrained problem.  In order to minimise  xf  subject to the constraints 

  0xg i  for li ,...,1  and   0xhi  for mi ,...,1 , we minimise the auxiliary function 

   xxf  , where  is a large positive penalty parameter and   is a penalty function 

that is zero for feasible points and increasingly positive for increasingly infeasible points.  A 

suitable form for   is 
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By squaring both terms, differentiability is ensured at both   0xg  and   0xh .  

It is possible to get arbitrarily close to a minimum of  xf  by minimising the auxiliary 

function for a sufficiently large .  In this work an upward turn of the meridian and 

compressive stresses are both penalised, and in future a maximum stress constraint could 

also be imposed using penalty functions.  As explained in Chapter 3, an upward turn of the 

meridian leads to undesired looping and very often to a solution which does not reach the 

seabed (i.e. does not reach h = 0). 

For a given p0, energy density increases with depth while the forces on the bag (and 

so materials costs) remain almost unchanged.  Therefore the objective function (materials 

costs only) will decrease with depth.  It would be hard to put costs to the extra problems that 

installing bags at great depths would bring (e.g. installation and piping) without further 

research, so the effect of depth is not studied here. 

The objective function is minimised over h(0), V, c, nw, and p0 using a tiered line 

search.  This is a multidimensional optimisation procedure in which a local stationary point 

is found by simply tiering line searches, so minimising a series of minima.  As an example, 

in minimising the objective function  21, xxf , we would perform a line search in 1x  for a 

set value of 2x  to find the minimising 1x  (call this minimising value 1x ) for the certain 2x .  

21,xx  is found by performing a line search adjusting 2x  (and finding 1x  for each value of 

2x  tried) until the minimum of  21, xxf  is found.  21,xx  is then a local minimum of 

 21, xxf .  To minimise for more variables, another tier of the same procedure is added.  

Though the bag volume cannot be set directly, the meridional stress at the top of the bag 

(Tm(0)) which gives a shape that encloses a certain required volume can be found using a 

root finding algorithm.  All of the one-dimensional line searches are carried out using 

Brent’s method: a combination of the golden section search and parabolic interpolation 

[124].  Other multidimensional search procedures which could be used include Rosenbrock’s 

method and methods that use derivatives in determining the search direction, such as the 

method of steepest descent and the method of feasible directions [125], as used by Pagitz and 

Pellegrino in their cutting pattern optimisation of lobed superpressure pumpkin balloons 

[104]. 

 

 

7.3.2 Results 

 

In the following analyses, all of the meridional, circumferential, and vertical (hanging cable) 

stresses are carried through steel at its yield strength (250MPa), with an estimate at the cost 
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of steel of £0.5/kg.  The cost of surface is estimated at £2/m
2
 and the cost of ballast estimated 

at £4 per ton of net weight (after subtracting the ballast’s buoyancy).  Of course all of the 

optimum shapes are sensitive to these costs.  The optima are all found for a depth of 500m. 

 

 

Zero Pressure Natural Shape 

 

An optimum ZPNS bag was found and is shown in figure 7.11.  It stores 289m
3
 of air 

compressed to an absolute pressure of 51.28bar, which is 1.62MWh of energy.  The value of 

the objective function at this optimum is £1,104/MWh.  As mentioned before, this figure 

only accounts for the costs of reinforcement, surface, and ballast materials. 
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Fig. 7.11 Optimum zero pressure natural shape bag at 500m depth 

 

It is interesting to note that the optimum ZPNS bag has quite a wide base radius.  

This is because the differential pressure at the top of a wide, low bag is not as great as it 

would be at the top of a taller bag with the same p0.  The sides of the bag meet the seabed at 

angles close to 90° because, as shown in equation (7.24), the smallest possible meridional 

tension for a given stored volume is that which gives an entry angle of 90° (assuming no 

ballast mass hangs from the inside of the bag and no component of the bag materials has 

mass).  At angles away from 90°, larger meridional tension is necessary to balance the 

buoyancy force. 
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Zero Pressure, Nonzero Circumferential Stress and Hanging Ballast 

 

The effects of constant nonzero circumferential stress and constant nonzero hanging ballast 

on a zero pressure bag are now included in the optimisation, and the optimum bag is shown 

in figure 7.12.  This has zero circumferential stress and hanging ballast of 32kN/m
2
, and 

costs £962/MWh; a 13% reduction in cost when compared to the ZPNS bag with no hanging 

masses.  It stores 1,314m
3
 of air compressed to an absolute pressure of 51.28bar, which is 

7.36MWh of energy.  The inclusion of positive circumferential stress increases the value of 

the objective function and so as compressive circumferential stress is not an option, the 

optimum circumferential stress is zero. 
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Fig. 7.12 Optimum zero pressure bag with nonzero hanging mass at 500m depth 

 

It is clear that the inclusion of hanging masses has led to an optimum bag shape 

which has a greater stored volume and lower profile than the ZPNS bag.  Hanging mass 

counteracts the differential pressure force, particularly in horizontal sections (low  ) like at 

the top of the bag, and so the required net restoring force is reduced. This net restoring force 

is balanced by curvature of the membrane, and so the required curvature is reduced, and the 

bag can be wider and store more energy for a given centre height (and so given maximum 

differential pressure).  However, it should be noted that the model does not yet account for 

the volume taken up by the hanging masses.  Once again the sides of the bag meet the seabed 

at approximately right-angles.  It is anticipated that hanging masses will flatten the PV curve, 

allowing more efficient turbomachinery to be used. 

 

 

Nonzero Pressure, Nonzero Circumferential Stress and Hanging Ballast 

 

Now the effect of nonzero p0 in a sealed base bag is included.  If the base of the bag is 

sealed, differential pressure at the base may be positive (like a superpressure balloon) or 

negative (subpressure), though subpressure balloons have only been considered when 
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studying partial inflation and ascent shapes [96],[126].  The optimum bag is shown in figure 

7.13.  This is a subpressure bag with p0 = -32kPa, zero circumferential stress, and hanging 

ballast of 10kN/m
2
, and costs £907 per MWh.  It stores 2,249m

3
 of air compressed to an 

absolute pressure of 50.96bar, which is 12.52MWh of energy. 
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Fig. 7.13 Optimum nonzero pressure bag with nonzero hanging mass at 500m depth 

 

With the inclusion of nonzero differential pressure at base, the base of the optimum 

bag no longer meets the seabed at right angles because it must take on negative curvature at 

the base to balance the negative pressure gradient whilst maintaining a fairly low centre 

height (and so maximum differential pressure). 

 

 

7.4 Specification for a 0.2GWh Energy Bag 

 

Assuming isothermal expansion, the volume required to store 0.2GWh of energy can be 

found by rearranging 

 

  atmPPPVE ln  (7.48) 

 

to get 

 

 
 atmPPP

E
V

ln
 , (7.49) 
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where E is the energy stored, Patm is atmospheric pressure (101.325kPa), and P is the 

absolute pressure of the compressed gas, given by 

 

 P = p0 + wgd + Patm (7.50) 

 

where p0 is the differential pressure at the base of the bag, w is the density of the 

surrounding seawater (1,025kg/m
3
), g is standard gravity (9.81m/s

2
), and d is the depth of the 

base of the bag.  We will assume that the bag is anchored at 500m depth (so d = 500m) and 

has a maximum of zero differential pressure at the base (so p0 = 0Pa when fully inflated).  

Using equations (7.49) and (7.50), we calculate that the maximum volume of air required to 

store 0.2GWh of energy in a zero pressure bag anchored at 500m depth is 35,705m
3
 

(required volume would be less if some heat storage were incorporated). 

From earlier work, we know that the angle  between the base of a zero pressure 

natural shape (ZPNS) bag and the seabed is approximately 40°.  Using equations (7.24), 

(7.25), (3.16) and (3.17), we can calculate the total tension in the meridians of a 35,705m
3
 

ZPNS bag. 
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 = 5.235×10
8
N  (7.51) 

 

The required tendon diameters (assuming the tendon is steel with y = 400MPa and Factor of 

Safety = 2) for ZPNS bags with various numbers of tendons are given in table 7.1. 

 

Number of tendons Diameter (in mm) 

100 182.6 

200 129.1 

300 105.4 

400 91.28 

500 81.64 

 

Table 7.1 Required tendon diameter for various numbers of tendons (tendons stressed 

at 200MPa) 

 

The ZPNS bag that will store 0.2GWh of energy is found using the axisymmetric 

FEA, and shown in figure 7.14.  The mass of steel tendons ( = 7,800kg/m
3
) is 1,304 tons, 
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almost 4% of the total required ballast mass, and the mass of membrane (assuming 1mm 

thick material with density of rubber,  = 1,522kg/m
3
) is 1.3 tons (assuming no excess 

material is included for lobing or further inflation) – approximately 1/1,000
th
 of the total 

mass of the tendons.  Excess membrane material would be included for lobes, but as 

membrane mass/cost is such a small proportion of the total bag cost, this is not included 

here. 
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Fig. 7.14 Cross-section of a 0.2GWh ZPNS Energy Bag 

 

This bag has a meridional length of 64m and lower bulkhead radius of 1.3m – this 

bulkhead radius was chosen by scaling up the size of the lower bulkhead used in the 1.8m 

diameter prototypes.  It is 41.3m tall at full inflation with a maximum diameter of 43m.  In 

calculating the costs of the different components of the bag, we assume the following prices: 

 

 Membrane material costs £10/m
2
 

 Meridional reinforcement costs £2/kg (steel stressed at 200MPa with  = 

7,800kg/m
3
) 

 Extra ballast costs £40 per ton. 
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Clearly these prices are higher than those used in section 7.3, and were initial prices 

suggested by Maxim De Jong of Thin Red Line Aerospace.  The materials costs break down 

as follows: 

 

 Membrane - £53,300 

 Reinforcement - £2.36m 

 Extra ballast - £1.37m 

 

 Total materials cost - £3.78m. 

The total cost of materials per unit of energy stored is approximately £18,900/MWh.  

Note that the cost of meridional reinforcement is approximately 44 times the cost of surface, 

but it has been found in section 7.1 that the optimum-sized bag will have cost of surface 

equal to cost of meridional reinforcement.  That previous work neglected the mass of 

membrane and tendons but it remains quite valid because it has been found that in single 

point of anchorage bags (as this bag almost is), material mass does not have a significant 

effect on the bag’s shape (see figure 7.15) or the cost of ballast mass (~4% reduction). 
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Fig. 7.15 Effect of material mass on the shape of a 0.2GWh ZPNS Energy Bag.  Solid 

line: with material mass; Dashed line: without material mass 
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Chapter 8 

 

Testing 
 

 

We contracted Thin Red Line Aerospace Ltd (TRL), a Canadian company that specialises in 

the design and manufacture of deployable fabric structures for use in space, to design and 

build three Energy Bag prototypes for underwater testing.  Two of these bags are 1.8m 

diameter (designated ~1/10
th
 scale) when fully inflated, and the other is 5m diameter (~1/4

th
 

scale).  The bags have the design of pumpkin balloons but, being used to contain air 

underwater, these bags are stronger than pumpkin balloons which are traditionally made 

from linear low-density polyethylene (LLDPE).  The two 1.8m bags have been rigged for 

testing in a tank which was built at the university and installed in the university laboratories.  

Each of the 1.8m bags has a quoted volume of 2.002m
3
 when fully inflated, not including the 

volume of the lobes.  The 5m bag will soon be tested at sea, and has a volume (excluding 

lobes) of 39.850m
3
.  All of the bags have been designed by TRL with a safety factor of at 

least 5 and with testing in mind; the bulkheads have multiple ports for sensors and 

pneumatics and have external threaded attachments for axial compression test equipment.  

TRL based the prototypes on their Ultra High Performance Vessel (UHPV) architecture. 

For a given fill level, the forces in the bag and anchorage for an Energy Bag 

anchored in shallow waters are almost identical to those in the bag and anchorage for a bag 

anchored in much deeper waters.  In fact in some ways, testing in calm shallow waters is 

more conservative than testing in deep waters, because in deep water the air is at a higher 

pressure than the air in the bag in shallow water, and so is denser.  This means that the net 

buoyancy of a bag in deeper waters is less than the net buoyancy of the same bag at the same 

fill level in shallow waters.  (Testing in water with waves is a different matter.) 

It was found that one of the bags leaked around the seams at the top and sides of the 

bag, while the other bag has remained sealed to date.  It was decided that in future the airline 

fitting should be attached to the top of an Energy Bag, because if water leaks into a bag its 

weight causes it to rest at the bottom of the bag, and to run into an airline fitted at the 

bottom.  It then blocks the passage of air out of the bag, rendering the bag useless.  A bag 

with an airline attached to the top will remain useful even if the bag is completely open at the 

base. 
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8.1 Design of the 1/10
th

 Scale Prototypes 

 

The ~1/10
th
 scale prototypes, shown in figure 8.1, are adapted from the design of lobed 

superpressure pumpkin balloons used for long duration ballooning.  The main differences 

between the prototypes and pumpkin balloons are: the prototypes have thicker membranes 

(because of the higher differential pressure across an underwater Energy Bag than across a 

balloon of equivalent size and because Energy Bag material mass is not an issue), and the 

prototypes have three layers of membrane (an airtight internal bladder/carrier made of 

polyurethane coated Nylon, and two layers of Nylon external envelopes) whereas a balloon 

typically only has one layer of film.  The internal bladder also forms the pressure restraint 

shell which carries the local pressure load, while the external envelopes are neither airtight or 

load carrying, and are simply used to locate the tendons. 

  

 

 

Fig. 8.1  The two 1/10
th
 scale prototypes undergoing a test inflation before 

installation in the tank 

 

The bag design is based on that of TRL’s Ultra High Performance Vessel (UHPV).  

As explained in Chapter 5, the UHPV design differs from that of conventional superpressure 

balloons in that a UHPV is simply formed of two circles of fabric welded along their 

common edge, rather than being formed from n separate pieces of fabric, one for each lobe 

(where n is the number of lobes in the bag).  Simply requiring two circles of fabric greatly 

reduces the complexity of manufacture: complex cutting patterns need not be followed, and 
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only one weld is required, rather than n welds as with a conventional balloon.  Reducing the 

number of seams also lowers the chances of defects (and so leaks) during manufacture. 

 The specifications for the bag are given in table 8.1.  There are 36 Spectra
®
-Nylon 

tendons, which are contained in sleeves and are approximately 4% shorter than the fabric 

along which they run.  As previously explained, this shortening is required to ensure that the 

fabric forming the lobes does not carry meridional stresses, and so all the membrane stress is 

transmitted circumferentially.  The circumferential curvature is much higher than the 

meridional curvature, so transmitting the membrane stresses circumferentially allows for 

weaker materials to be used compared with transmitting the stresses meridionally.  However, 

the effective lobe cutting pattern of a lobe in a UHPV is set and can only be adjusted through 

shortening of the tendons, whereas the cutting pattern of lobes in a conventional bag can be 

set freely.  The wrinkling in the deflated bag caused by the tendon shortening can be seen in 

figure 8.2. 

 

 

 

Fig. 8.2  One of the deflated 1/10
th
 scale prototypes laid flat 

 

The upper and lower bulkheads are identical, manufactured of aluminium, and have 

a radius of 98mm.  The bags are designed to be 1.8m in diameter (at the widest point, i.e. at 

the centre of a lobe) when symmetrical (so if the differential pressure could be infinite).  In 

reality a symmetrical bag is not possible because of buoyancy, so the bag diameter will never 

quite be 1.8m and tends to 1.8m as the differential pressure tends to infinity.  The fully 

inflated volume, excluding lobes, is 2.002m
3
, and the bags were designed with a safety factor 

of 5.  The meridional length of the bag (distance along the centre of a lobe from the top dead 
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centre of the bag to the bottom dead centre) is 2.36m.  The total mass of materials in each 

bag is 12.10kg. 

 

Diameter 1.8 m 

Volume (excluding lobes) 2.002 m
3
 

Number of tendons 36 

Safety factor 5 

Meridional length (pole to pole) 2.36 m 

Bulkhead material Aluminium 

Bulkhead diameter 0.19686 m 

Bulkhead mass 5.502 kg 

Tendon material Spectra
®
-Nylon 

Tendon width 13.5 mm 

Tendon thickness 2.8 mm 

Tendon Young’s modulus 2.34 GPa 

Tendon density 1,400 kg/m
3
 

Tendon failure stress 374 MPa 

Carrier material 
420d polyurethane 

coated Nylon 

Carrier thickness 0.4089 mm 

Carrier Young’s modulus 
(fill direction) 

0.29364 GPa 

Carrier Poisson's ratio ~0.4 

Carrier density 1,440 kg/m
3
 

Minimum carrier failure stress 
(fill direction) 

86 MPa 

 

Table 8.1 Specifications of the 1.8m diameter prototype 

 

The bulkheads are sealed against the bladder by compressing the bladder between 

two parts of the bulkhead (“clamp ring” and “pressure plate”).  The clamp ring and pressure 

plate are bolted together with the bladder between them acting as a gasket.  A top view of the 

inflated prototype (in air rather than water) is shown in figure 8.3(a), along with a top view 

of the same bag modelled using the 3D FEA tool presented in Chapter 6 (with a differential 

pressure at the base of p0 = 0.4bar – the internal pressure used in figure 8.3(a) is unknown).  

Note that the hole in the FE model is smaller than the bulkhead seen on the prototype, but the 

hole is the correct size – the top plate of the bulkhead is wider than the clamp ring, against 

which the tendons terminate. 

Thin Red Line specified the design burst pressure for the prototype as 21.2psi 

(1.46bar) overpressure, which they reduce to an allowable overpressure of 4.2psi (0.29bar) 

after including a safety factor of 5.  Using the 3D FE and the materials properties supplied by 

TRL (and given in table 8.1), we calculated that the maximum allowable pressure, after 

including a safety factor of 5, should be 0.34bar.  Clearly, Thin Red Line’s allowable 

overpressure has been calculated by simply dividing the design burst pressure by the safety 

factor, however this is not best practice; the safety factor should be used with the failure 
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stresses of the materials to obtain maximum allowable stresses.  Using the 3D FEA it has 

been found that the differential pressure at the base of the bag (p0) is not directly proportional 

to the maximum von Mises stress in the fabric, or to the maximum stress in the tendons.  As 

an example, the p0 = 0.34bar allowable pressure calculated using the 3D FEA tool gives a 

membrane stress equal to the failure stress of the membrane divided by the safety factor (the 

membrane would fail before the tendons if no bellows are included and the bag were being 

pressurised to destruction).  However, multiplying this 0.34bar by the safety factor of 5 to 

obtain p0 = 1.7bar and then using the 3D FEA tool again, we find that the maximum 

membrane stress has only increased by a factor of approximately 2.46 (so remaining less 

than half the failure stress) and the maximum tendon stress has only increased by a factor of 

approximately 4.10. 

 

 

 

 (a) (b) 

 

Fig. 8.3  (a) End view of one of the inflated 1/10
th
 scale prototypes; (b) End view of 

the bag modelled using the 3D FEA, underwater with p0 = 40kPa 

 

 

8.2 Installation and Control of the 1/10
th

 Scale Prototypes 

 

The tank in which the bags were installed was designed and manufactured at the university, 

and can be seen from above in figure 8.4.  It is 3.6m long, 1.8m across, and 2.4m high, and 

comprises a frame of welded steel box-section, 25mm thick transparent acrylic walls sealed 

against the frame, and a steel exoskeleton welded to the frame.  The exoskeleton comprises 

two horizontal crossbars and two vertical restraining bars against each sheet of acrylic, of 
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which there are 6: one at each end and two along each side.  The vertical restraining bars are 

pressed up against the acrylic walls by means of bolts threaded through the crossbars.  The 

exoskeleton can also be seen later in figure 8.6.  The bags are attached to eyebolts screwed 

into the base of the tank.  The anchor rigging, shown in figure 8.5, comprises two Vectran
®
 

anchor straps attached to bridge anchors bolted against the lower bulkhead, and to an anchor 

link which attaches to the eyebolt. 

 

 

 

Fig. 8.4  Top view of the two 1/10
th
 scale prototypes installed in the tank 

 

 

 

Fig. 8.5  Anchor rigging at the base of the bag 
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 Initially there were several leaks in the sealing between the acrylic walls and the 

steel frame, so some resealing was necessary.  After resealing it was found that the tank still 

leaked slightly during the filling process, but the leaking stopped by the time the tank was 

completely full of water. 

Figure 8.6 shows the two bags partially inflated underwater with p0 ≈ 0.  Clearly 

their shapes are very similar to that found for a ZPNS bag using the models presented earlier 

in this thesis. 

 

 

 

Fig. 8.6  The two 1/10
th
 scale prototype Energy Bags partially inflated underwater, 

with p0 ≈ 0 

 

 The valve layout is shown in figure 8.7.  The compressor is designated C and the 

two bags designated B1 and B2.  The four 3/2 valves (V1-V4) can provide every flow path 

that may be desired.  These are: single inflation of either bag (from atmosphere), single 

deflation of either bag (to atmosphere), dual inflation (from atmosphere), dual deflation (to 

atmosphere), and cycling in either direction.  Initially a 4/2 valve was going to be used in 

place of valves V1 and V2, but this would not have provided the ability to dual 

inflate/deflate and was not as straightforward to source as two more 3/2 valves.  Two 

pressure transducers (Druck PMP1400, 0-1bar) and two pressure relief valves were also 

included, one of each being attached into the airline connecting to each bag, as close to the 

bags as possible (without being in the water).  The pressure transducers provide feedback to 

the control system (to control switching to a different mode) and the pressure relief valves 

ensure that the bags do not get over-inflated if there is a problem with the control system.  
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The compressor was also specifically chosen so that its pressure capacity is not higher than 

the maximum pressure of the bags, in case of a problem with the air control system.  As a 

further level of security, valves V3 and V4 were fitted so that in their de-energised states 

they are venting to/taking from atmosphere (in case the power supply to the valves fails 

while power continues to be supplied to the compressor). 

 

 

 

Fig. 8.7  Schematic of the air control system for cycling the 1/10
th
 scale Energy Bag 

prototypes 

 

 The valves and pressure transducers are powered by a Calex power supply unit 

(32024E/10) providing a 24V DC output, and are connected to a Measurement Computing 

USB data acquisition (DAQ) board (USB-1408FS) which is connected to a PC running 

control code written using the data acquisition toolbox in Matlab.  Relays are used to switch 

on or off the 24V supply to the valves.  There are four relays in all, one in series with each 

valve, and the relays are triggered using the 5V output signal from the DAQ board. 

The bags are being cycled, so as one bag inflates the other deflates, and air is sent 

from the deflating bag to the other using the compressor.  This ensures a fast flow of air and 

doesn’t waste energy in the same way that repeatedly transferring air between the bags and 

the atmosphere would do.  The control code splits into two distinct sections: one that should 

V1 V2 

V3 

V4 

C 

B1 B2 
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be run at the start of the day, which gets one bag to the specified upper pressure level and 

gets the other bag to the specified lower pressure level, and one that is run to carry out 

cycling.  The cycling code includes measures to ensure that at the end of each half-cycle, one 

bag is at the upper pressure level and the other bag is at the lower pressure level, and air is 

transferred between the bags and atmosphere when necessary to ensure that this is the case 

(e.g. to compensate for leakage). 

 Initially air hose with 8mm ID (internal diameter) was used in all places, but it was 

found that the compressor cut out during inflation because it was overheating.  The hose 

connecting valves V1 and V2 to the bags was replaced with hose with 19mm ID, and the 

compressor stopped cutting out. 

 The hose was initially connected to the bottom of each bag, but it was found that the 

black bag leaked slightly.  This meant that a pool of water formed at the bottom of the bag, 

and entered the air hose.  As a result, it was not possible to suck air out of the bag because 

water was sucked into the compressor and it cut out.  Also, once a substantial amount of 

water had entered the hose it was not even possible to simply open the hose to the 

atmosphere and let the contained air pressure drive the water out – nothing moved because 

the water in the hose was trapping the air inside the bag.  We came up with two ways of 

dealing with this problem: install a water trap, or attach the hose to the top of the bag.  We 

decided to attach the hose to the top of the bag, but there is still the problem that water may 

enter the bag, and then remain at the bottom, slowly filling the bag with water.  Some kind of 

water relief valve would be required to let water out of the bottom, otherwise the bag could 

be left open at the bottom, however an open bottom bag could not be overpressurised at the 

base. 

 The leaks in the black bag were evident because of streams of very small bubbles 

rising from various points in the inflated bag.  These were at the seam around the equator of 

the bag (where the two circles of bladder material are welded together), and near the top of 

the bag.  It can be seen on figure 8.3(a) that there is another section of material at the top of 

the bag, so we believe that the upper leak was coming from the seal between this section of 

material and the upper circle of bladder. 

 While the hose was connected to the bottom of the bag it was found that it was prone 

to kinking at the point of maximum curvature (just near the attachment to the bag).  This 

could also trap air inside the bag, so we learned that large curvature of a flexible hose should 

be avoided for this reason.  Instead, rigid fittings (e.g. L-fittings) should be used, or the hose 

should be reinforced where it curves (e.g. with spiral hose reinforcement). 
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8.3 Performance of the 1/10
th

 Scale Prototypes 

 

Testing of the 1/10
th
 scale prototypes has only recently commenced but the bags have been 

performing as expected.  Substantial wrinkling is visible at the bottom of the bags when they 

are partially inflated; the bag loses its rotational symmetry, potentially explaining why the 

shape of a partially inflated bag cannot be found using symmetry adapted 3D FEA. 

 The tank testing of the two 1.8m prototypes serves two main purposes: 1) Proof of 

concept, showing that air can be stored underwater in low-cost bags for extended periods of 

time without leakage, and; 2) To expose and deal with problems before the larger prototypes 

are installed at sea.  The deformed shapes of the bags are not easy to measure because they 

are so large and located underwater.  Photogrammetry was considered but it was decided that 

refraction caused by the acrylic walls and water would make accurate measurements difficult 

to achieve.  If photogrammetry were to be used then it would be best if there was a scale (i.e. 

a grid) marked on a thin sheet of clear polyethylene hanging inside the tank, as close to the 

bag as possible, so that the scale is also refracted by the acrylic wall and some of the water. 

 We also generated a concept for a device used to measure the tension in the tendons.  

This would take the form of a three-pronged fork – the two outer prongs would be fixed to a 

bar held by the user and touched against the tendon, while the third prong (located midway 

between the two fixed prongs) would be used to apply a certain deflection to the tendon (e.g. 

a few millimetres) while the force required to give this deflection is measured by means of a 

spring with known stiffness.  The deflection and force required could then be used to 

calculate the tension in the tendon.  This device could also be used to measure the curvature 

of the tendon.  However, the downside to using such a device is that it would have to be 

operated underwater and would require the user to either lean over the side of the tank (so 

the user’s reach would limit the depth to which measurements can be taken), or put on a 

wetsuit and underwater breathing apparatus and climb into the tank! 

 

 

8.4 Plans for the 1/4
th

 Scale Prototypes 

 

One 5m diameter (~1/4
th
 scale) prototype has been manufactured for us by TRL and will 

soon be installed at sea, in reasonably sheltered and shallow waters.  It will be attached to a 

buoy-mounted compressor, and cycled (i.e. it will be filled by the compressor, then once full 

it will automatically dump the air to the environment and filling will recommence).  The 5m 

prototype has a very similar design to the 1.8m prototypes, based on TRL’s UHPV 

architecture.  It will have a fully inflated volume (excluding lobes) of 39.850m
3
 and a total 
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mass of 75.4kg.  It will have 48 tendons and in some ways will be simpler than the 1.8m 

prototypes, having no bulkheads and only one layer of fabric – exactly the same material that 

is used as the bladder in the 1.8m prototypes, with the same thickness, Young’s modulus, 

and strength.  The 1.125in wide tendons in the 5m prototype are larger than the 9/16in 

tendons used in the 1.8m prototype, and are made of Vectran
®
 rather than Spectra

®
-Nylon.  

The specification for the 5m prototypes is given in table 8.2. 

 

Diameter 5 m 

Volume (excluding lobes) 39.850 m
3
 

Number of tendons 48 

Safety factor 6 

Meridional length (pole to pole) 6.87 m 

Tendon material Vectran
®
 

Tendon width 28.6 mm 

Tendon thickness 2.6 mm 

Tendon Young’s modulus 10.95 GPa 

Tendon density 1,400 kg/m
3
 

Tendon failure stress 808 MPa 

Carrier material 
420d polyurethane 

coated Nylon 

Carrier thickness 0.4089 mm 

Carrier Young’s modulus 
(fill direction) 

0.29364 GPa 

Carrier Poisson's ratio ~0.4 

Carrier density 1,440 kg/m
3
 

Minimum carrier failure stress 
(fill direction) 

86 MPa 

 

Table 8.2 Specifications of the 5m diameter prototype 

 

 A flow control valve will be used to switch between sending air from the compressor 

to the bag and sending air from the bag to atmosphere, and will be switched using a pressure 

switch with adjustable hysteresis/deadband. 
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Chapter 9 
 

Conclusions and Future Work 
 

 

9.1 Contributions of Present Research 
 

In this thesis three computational fabric structure analysis tools have been presented, two of 

which are used to model axisymmetric structures and the third of which is used to model a 

full cable-reinforced membrane.  The work was focused on the design of Energy Bags, 

inflatable fabric structures that will be anchored to the seabed and used for subsea 

compressed air energy storage.  In the first of the two procedures used to model 

axisymmetric bags, the membrane is assumed to be inextensible and a system of four 

coupled ordinary differential equations is derived and then integrated numerically to find a 

solution.  Because of the need to set boundary values and difficulties in finding the shapes of 

partially inflated bags, the second axisymmetric procedure was created.  This is a finite 

element model of a single extensible meridional reinforcing cable (“meridian”) using cable 

elements, and it proved to be much easier to use.  Seabed resistance forces were included 

when using this procedure to look at the shapes of partially inflated bags with wide sealed 

bases, as without them the meridian would just be forced below the seabed. 

Finally, three-dimensional finite element analysis has been used to model a full 

cable-reinforced membrane.  It is necessary to take membrane wrinkling into account, and so 

a membrane element’s elastic matrix is appropriately modified if the element undergoes 

uniaxial or biaxial wrinkling.  It was hoped that the rotational symmetry of balloons and 

lobed Energy Bags would allow the size of the model to be reduced, by only modelling half 

of one lobe.  However, it was found that converged solutions for some bags which take 

symmetry into account could only be reached if the bag was heavily pressurised, or if the 

membrane stiffness is not very high.  In future, full Energy Bags will be modelled using the 

3D FEA and it is hoped that converged solutions will be found. 

A new lobe cutting pattern has been generated which minimises the maximum 

circumferential tension in a lobe of an Energy Bag which has had all meridional lobe stresses 

removed (by means of tendon shortening or a bellows arrangement providing excess fabric 

in the meridional direction).  This cutting pattern has constant circumferential tension at all 
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points along the lobe, and so is known as a Constant Tension (CT) lobe.  A CT lobe has the 

smallest possible area that a lobe may have if the maximum circumferential tension is also 

being minimised.  As well as reducing material usage (and so cost), it is also anticipated that 

the CT lobe will increase the stability of balloons and Energy Bags; it was shown in [104] 

that maximising the stability of a balloon is equivalent to minimising the area of the lobe 

cutting pattern. 

By examining scaling laws, it has been shown that in order to minimise the cost of 

materials per unit of energy stored for an axisymmetric, natural shape bag, the cost of 

reinforcement should be equal to the cost of surface, and the bag diameter which 

accomplishes this has been found in terms of the price of reinforcement materials and the 

price of surface materials.  This optimisation and the three analysis tools presented in this 

thesis have been documented in a paper which has been published in Proceedings of the 

IMechE, Part C: Journal of Mechanical Engineering Science [127]. 

The optimum shape (minimising cost of materials per unit of energy stored) of an 

inextensible, axisymmetric bag which may have nonzero base radius has been found using 

tiered line searches, Brent’s method, and penalty functions to solve the constrained 

multidimensional optimisation problem.  The optimum axisymmetric Energy Bag only has 

stresses in the meridional direction (so zero circumferential stress), a wide base radius, 

masses hanging from the inside, and is underpressurised at the base.  At 500m depth it costs 

less than £1,000/MWh, though estimated costs have so far only been attributed to materials.  

This cost is much less than the costs of all other competing large-scale energy storage 

technologies – modern pumped hydro plants, for example, cost at least £50,000/MWh, and 

Dinorwig pumped hydro plant in North Wales cost over £140,000/MWh (in 2010 prices) 

when it was constructed in 1980.  This work was presented at the IoP’s 7
th
 International 

Conference on Modern Practice in Stress and Vibration Analysis in Cambridge, UK, in 

September 2009, and an accompanying paper was published in the conference proceedings 

[116]. 

Investigations were carried out into the effects of bag size and maximum fill level on 

the three components of materials costs (reinforcement, surface, and ballast) for an enclosed 

bag with a single point of anchorage, using the axisymmetric FE model.  It was found that 

costs (per unit of energy stored, assuming isothermal expansion) of meridional reinforcement 

and surface materials are minimised by making the bag as small as possible, while bag size 

has no effect on the cost of ballast per unit of energy stored.  For a bag anchored at 

significant depth (e.g. 500m), costs of meridional reinforcement are minimised by 

underpressurising the base of the bag.  The effect of maximum fill level on the cost of 

surface materials depends upon the type of bag being used; if each lobe in the bag is a 

separate panel (so that the flat lobe cutting patterns can take any shape that the designer 
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wishes) then the optimum bag in terms of surface materials is underpressurised at the base, 

and the lobe cutting patterns should be designed appropriately.  However, if the bag is 

formed from two circles of fabric (as the prototype bags are) then the bag should be as 

pressurised as possible.  This also minimises ballast costs. 

A specification for a 0.2GWh Energy Bag has been drawn up.  If this is to be 

anchored at 500m depth and filled to a maximum differential pressure at the base of zero, 

and if the air contained will be expanded isothermally (quite a conservative approach), the 

volume of the bag must be 35,705m
3
.  Such a bag has a height of 41.3m, and an estimated 

cost of materials (including ballast mass) of £3.89m, working out at a cost of £19,400/MWh.  

Meridional reinforcement costs (£2.5m) make up the largest component of the total cost 

(64%).  Membrane only accounts for about 1.4% of the total cost and the rest (34.6%) is the 

cost of ballast. 

Two 1.8m diameter prototype Energy Bags have been manufactured for us by Thin 

Red Line Aerospace Ltd.  They have been installed in a tank on campus and testing has 

commenced – they will be cycled over 1,000 times, acting as a proof of concept and 

informing us about the problems that must be overcome. 

It has been found that it is best to always locate airline fittings at the top of a bag, 

even if the bag is sealed at the base, just in case the sealing fails – water entering the bag will 

naturally sit at the base, and could be evacuated from the base of a sealed bag through a 

valve located at the base.  The airline fittings on the test bags were at the base and, when one 

of the bags leaked during the testing, it was found that the water ran down into the pipe (and 

up part of the pipe that came out of the top of the tank) and blocked the air from escaping 

when the pipe was opened to the atmosphere.  If the hose is attached to the top of the bag, air 

can still escape if there is water in the bag, and so a sealed bag remains useful even if there is 

a leak (as long as there is some means of removing the water from the bottom of the bag, e.g. 

a valve in the base).  However, it may be the case that at more substantial depths (the test 

bags were only in 2.4m of water) the pressure of the air in the bag would have forced the 

water out of the bottom.  It may be the case that we want to suck leaked water out of the bag 

by creating a vacuum in the pipe – this would only be possible if the pipe were attached to 

the base of the bag, where the water rests. 

Finally, water ingress would not be an issue if the bag is open-bottomed and the 

airline is attached to the top.  An open-bottomed bag could not be overpressurised, but this 

may not be a problem as it has been shown in this thesis that the cost per unit energy stored 

of meridional reinforcement increases as pressurisation increases, as does the cost per unit 

energy stored of fabric in a bag with separate lobes.  Also, an open bottom brings with it an 

important safety feature: the bag will automatically vent air from the base when the pressure 

of the contained air tries to rise above the hydrostatic pressure of the water outside the base, 
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so the bag cannot be damaged through overpressurisation (as long as the size of the hole in 

the base is not so small that air is being pumped in at a higher rate than it can vent through 

the hole). 

 

 

9.2 Future Work 

 

During the course of this work, a number of future areas of research were envisaged.  In 

terms of developing the analysis tools, it is important to be able to 

 

 Try to model a full Energy Bag using the 3D FEA, rather than just half of a single 

lobe. 

 

It will also be wise to 

 

 Carry out benchmarking of the 3D FEA tool by creating some simple physical 

models of inflated cable-reinforced envelopes and comparing the stresses in the 

models with the stresses found using the 3D FEA. 

 

In reality the tendons of an Energy Bag will be located in sleeves on the fabric, and not 

attached to the fabric.  Also, bellows are included in a UHPV to ensure that there is no 

meridional stress in the fabric.  Therefore we will 

 

 Extend the 3D FEA so that the tendons are separate from the fabric but constrained 

to lie along the seams between lobes (as if free to slide in sleeves), include friction 

between the tendons and fabric, and include bellows around the equator. 

 

Fabric is often manufactured with different strengths and stiffnesses in the warp and fill 

directions, and so it would be useful to 

 

 Extend the 3D FEA to be able to set different stiffnesses for the warp and fill 

directions. 

 

Problems with stability have been encountered with superpressure pumpkin balloons, so the 

3D FEA tool should also be used to 
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 Check the stability of Energy Bags, particularly those designed to have a maximum 

of zero differential pressure at the base (e.g. open-bottomed bags). 

 

It would also be useful to use the 3D FEA tool to 

 

 Study the effects of current on the shape of a bag, the stresses within the materials, 

and the stability of the ballast. 

 

If it were decided to manufacture Energy Bags with separate lobes (rather than a small 

number of separate sheets, e.g. just two circles of fabric as in the prototypes), it would be 

important to 

 

 Carry out lobe cutting pattern optimisation using the 3D FEA tool and insights 

gained from analytical considerations in this thesis (e.g. the Constant Tension lobe). 

 

It would be advisable to couple cutting pattern optimisation with a study of stability, to 

ensure that the bag formed using the optimum lobe cutting pattern is stable when fully 

inflated. 

 There are also a number of other areas that should be investigated.  The materials 

used in an Energy Bag will be critical to its life, so it is necessary to 

 

 Test sample Energy Bag materials, focusing on their fatigue life, ability to remain 

airtight, and resistance to corrosion and the marine environment (seawater, sand, and 

marine life such as barnacles). 

 

Some of these issues will also be studied when we 

 

 Carry out sea-based testing of a larger 5m diameter prototype that will be 

automatically filled then emptied many times over the course of several months. 

 

A 5m diameter prototype has already been manufactured for us for this very purpose by Thin 

Red Line Aerospace, the company that we contracted to manufacture the 1.8m diameter 

prototypes.  Finally, before moving onto larger scales and commercialisation it will be 

necessary to 
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 Carry out a wider reliability and risk assessment, including generating appropriate 

safety factors and understanding the consequences of sudden failure of an Energy 

Bag on marine life, boats on the surface, and any bags attached to the same 

pipeline/manifold.  Also carry out fatigue calculations and lifetime assessment. 

 

 

9.3 Future of ICARES 

 

Over the course of this research, Energy Bags have progressed from concept to prototype 

and been shown to be cheaper than all other forms of large-scale energy storage.  The 

analysis tools presented in this thesis have been useful in understanding the deformed shapes 

of Energy Bags, and will allow us to be sure of required dimensions and materials strengths 

when designing bags in future. 

In the very near future, a 5m diameter prototype will be installed at sea and attached 

to a buoy-mounted compressor.  This will be tested for several months and then removed for 

inspection.  The 5m diameter bag has been manufactured for us by Thin Red Line 

Aerospace; this is based on Thin Red Line’s Ultra High Performance Vessel architecture 

(very much like the shape of a pumpkin balloon), and is very similar in design to the 1.8m 

diameter prototypes (also manufactured by Thin Red Line).  Along with building the scale of 

the prototypes, creating procedures for deployment of the bag and ballast in deep sea, and 

addressing the future areas of Energy Bag research detailed above, it may now be useful to 

work on progressing integral compression wind turbines and wave energy converters, 

thermal energy storage and heat exchangers, and to look at options for siting the thermal 

energy stores, heat exchangers, and expander-generators at sea. 

 It should be remembered that even in the event that integral compression renewable 

energy harvesters do not come to commercial reality, there is still a future for Energy Bags 

as a low-cost means of storing large amounts of electricity from the grid.  However, ICARES 

is a promising technology which has emerged as a natural consequence of two major current 

considerations taken together: large-scale energy storage and the need to achieve substantial 

cost reduction in offshore wind turbines.  The potential market for ICARES is extremely 

large and, if it is successfully commercialised, ICARES could deal with both of these issues 

while providing significant benefits to investors and the local population and kick-starting a 

renewable energy industry in the UK and Ireland. 
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A. Matlab Code for Axisymmetric ODE Method 
 

 
function [opt_fun,Y,T,costs] = 

optim_vol(reqd_vol,p_zero,sigma_c,sigma_w) 
% Finds the centre height that will give an optimum bag of volume 

given by reqd_vol. 

  
[z_zero,opt_fun,exitflag] = fminbnd(@(z_zero) 

optim_height(z_zero,reqd_vol,p_zero,sigma_c,sigma_w),0*(reqd_vol/pi)

^(1/3),5*(reqd_vol/pi)^(1/3)); 
[opt_fun,Y,T,costs] = 

optim_height(z_zero,reqd_vol,p_zero,sigma_c,sigma_w); 
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function [opt_fun,Y,T,costs] = 

optim_height(z_zero,reqd_vol,p_zero,sigma_c,sigma_w) 
% Finds the meridional stress that gives a bag with the volume 

specified in 
% reqd_vol.  Used in a line search to find the optimum centre 

height. 

  
% Set constants. 
g = 9.81; 
M_molar_mass = 28.97e-3; 
R_gas_const = 8.314472; 

  
% Set gas temperature and depth of bag's base. 
temp_gas = 273.15 + 5; 
depth = 500; 

  
% Set seawater density and calculate gas density. 
rho_water = 1025; 
rho_gas = M_molar_mass*(p_zero + rho_water*g*depth + 

1e5)/(R_gas_const*temp_gas); 

  
% Calculate buoyancy, b. 
b = g*(rho_water - rho_gas); 

  
% Guess at a close value of meridional stress. 
T_guess = reqd_vol*b/(2*pi); 

  
% Find the tension that gives the required volume with a bag of the 
% required height in the centre. 
T = fzero(@(T) 

run_baggy_odes(T,z_zero,reqd_vol,b,sigma_c,sigma_w,p_zero,rho_water,

g,depth),T_guess); 

  
% Find the value of the optimisation function, the shape data, and 

the cost 
% breakdown for the bag with the required volume and centre height. 
[V_residual,opt_fun,Y,costs] = 

run_baggy_odes(T,z_zero,reqd_vol,b,sigma_c,sigma_w,p_zero,rho_water,

g,depth); 
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function [V_residual,opt_fun,Y,costs] = 

run_baggy_odes(T_zero,z_zero,... 
    reqd_vol,b,sigma_c,sigma_w,p_zero,rho_water,g,depth) 
% Sets the intial conditions and runs the ODE solver.  Used in a 

root 
% finder to find the meridional stress that gives a bag of the 

required 
% volume. 

  
% Set the initial conditions for the ODEs. 
alpha_zero = (0/180)*pi; 
r_zero = 0; 
A_zero = 0; 
V_zero = 0; 
Strength_merid_zero = 0; 
Strength_circum_zero = 0; 
Strength_ballast_zero = 0; 
Total_hanging_force_zero = 0; 

  
% Form the vector of initial conditions. 
init_conds = [alpha_zero,z_zero,r_zero,A_zero,V_zero,T_zero,... 
    

Strength_merid_zero,Strength_circum_zero,Strength_ballast_zero,... 
    Total_hanging_force_zero]; 

  
% Set the range of values for s. 
s_span = [0 100]; 

  
% Increase the number of steps in the integration. 
options = odeset('Refine',50,'Events',@events); 

  
% Use ode45 to solve the ODEs over s_span or until a terminating 

event 
% function is reached. 
[s,Y,SE,YE,IE] = ode45(@(s,inp) 

baggy_odes(s,inp,b,p_zero,sigma_c,... 
    sigma_w,T_zero),s_span,init_conds,options); 

  
% Calculate the difference between the volume enclosed and reqd_vol. 
V = Y(end,5); 
V_residual = V - reqd_vol; 

  
% Set yield stress of reinforcement, cost of reinforcement per kg, 

and  
% density of reinforcement, and calculate the cost of reinforcement 

per 
% m^3. 
yield_s = 250e6; 
cost_reinf_per_kg = 0.5; 
density_reinf = 7800; 
cost_reinf_per_mcub = cost_reinf_per_kg*density_reinf; 

  
% Calculate the cost of meridional reinforcement. 
cost_reinf_merid = Y(end,7)*cost_reinf_per_mcub/yield_s; % Seamus's 

price 

  
% Calculate the cost of circumferential reinforcement. 
cost_reinf_circum = Y(end,8)*cost_reinf_per_mcub/yield_s; 
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% Calculate the total cost of meridional and circumferential 

reinforcement. 
cost_reinf = cost_reinf_merid + cost_reinf_circum; 

  
% Set the cost of surface per m^2. 
%cost_surface_per_msq = 2; % Seamus's price 
cost_surface_per_msq = 4; % Seamus's new price (May 09) 
%cost_surface_per_msq = 27.5*0.64; % Maxim's price 

  
% Calculate the cost of surface. 
cost_surface = cost_surface_per_msq*Y(end,4); 

  
% Set the cost of ballast per ton. 
%cost_ballast_per_ton = 4; % Seamus's price 
cost_ballast_per_ton = 20; % Seamus's new price (May 09) 

  
% Calculate the cost of ballast mass. 
cost_ballast_mass = cost_ballast_per_ton*b*V/(g*1000); 

  
% Calculate the cost of vertical cables. 
cost_vert_cables = 0.5*Y(end,9)*cost_reinf_per_mcub/yield_s; 

  
% Calculate the total cost of ballast. 
cost_ballast = cost_ballast_mass + cost_vert_cables; 

  
% Form the vector of costs. 
costs = [cost_reinf cost_surface cost_ballast]; 

  
% Calculate the cost of stored energy in million £ per GWh. 
cost_per_en_stored = (cost_reinf + cost_surface + cost_ballast)/... 
    ((1/(3600*1e3))*Y(end,5)*(p_zero + rho_water*g*depth + 1e5)*... 
    log((p_zero + rho_water*g*depth + 1e5)/1e5)); 

  
% Set the optimisation function to the cost of stored energy. 
opt_fun = cost_per_en_stored; 

  

  

  
pen_factor = 1e6; 

  
% Penalise an upward turn of the meridian. 
opt_fun = opt_fun + pen_factor*max(0,max(diff(Y(:,2)))); 
if max(diff(Y(:,2))) > 0 
    %disp('Upward turn of the meridian') 
end 

  
% Penalise a compressive meridional stress. 
opt_fun = opt_fun + pen_factor*max(0,-min(Y(:,6))); 
if -min(Y(:,6)) > 0 
    %disp('Compressive meridional stress') 
end 

  
% Penalise a compressive circumferential stress. 
opt_fun = opt_fun + pen_factor*max(0,-sigma_c); 
if -sigma_c > 0 
    %disp('Compressive circumferential stress') 
end 
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% Penalise a compressive vertical stress. 
opt_fun = opt_fun + pen_factor*max(0,-sigma_w); 
if -sigma_w > 0 
    %disp('Compressive vertical stress') 
end 

  
% Penalise compressive vertical stress in bag. 
opt_fun = opt_fun + pen_factor*max(0,sigma_w*(max(Y(:,1))-pi/2)); 
if sigma_w*(max(Y(:,1))-pi/2) > 0 
    %disp('Compressive vertical stress in bag') 
end 

  
% Penalise more hanging mass than total ballast required. 
opt_fun = opt_fun + pen_factor*max(0,Y(end,10)-b*V); 
if Y(end,10)-b*V > 0 
    %disp('More hanging ballast than total ballast required') 
end 

  
% Penalise a negative depth. 
opt_fun = opt_fun + pen_factor*max(0,-depth); 
if -depth > 0 
    %disp('Depth is negative') 
end 

  
% Penalise a negative centre height. 
opt_fun = opt_fun + pen_factor*max(0,-z_zero); 
if -z_zero > 0 
    %disp('Centre height is negative') 
end 

  
% Penalise a crossing of the centreline. 
opt_fun = opt_fun + pen_factor*max(0,-min(Y(:,3))); 
if -min(Y(:,3)) > 0 
    %disp('Crossing of the centreline') 
end 

  
%{ 
% Make a single point bag. 
opt_fun = opt_fun + pen_factor*abs(Y(end,2)); 
if abs(Y(end,2)) > 0 
    %disp('No single point at the seabed') 
end 
%} 

  

  

  
function [value,isterminal,direction] = events(t,y) 
% Locate the time when height passes through zero in a decreasing 

direction 
% and stop integration. 

  
value = y(2);     % detect height = 0 
isterminal = 1;   % stop the integration 
direction = -1;   % negative direction 

  

  
value(2) = y(3);     % detect radius = 0 
isterminal(2) = 1;   % stop the integration 
direction(2) = -1;   % negative direction 
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function outp = baggy_odes(t,inp,b,p_zero,sigma_c,sigma_w,T_zero) 
% Sets the ODEs.  Used in an ODE solver to find bag shapes. 

  
alpha = inp(1); 
z = inp(2); 
r = inp(3); 
T = inp(6); 

  
% Calculate the differential pressure, p, at the current height, z. 
p = b*z + p_zero; 

  
% Calculate the values of the differentials. 
dalpha = (r*p - sigma_c*sin(alpha) - sigma_w*r*(cos(alpha))^2)/T; 
dz = -sin(alpha); 
dr = cos(alpha); 
dA = 2*pi*abs(r); 
dV = 2*pi*r*z*cos(alpha); 
dT = sigma_c*cos(alpha) - sigma_w*r*cos(alpha)*sin(alpha); 
dStrength_merid = 2*pi*T; 
dStrength_circum = 2*pi*r*sigma_c; 
dStrength_ballast = pi*r*z*cos(alpha)*sigma_w; 
dTotal_hanging_force = 2*pi*r*cos(alpha)*sigma_w; 

  
% Form the vector of outputs. 
outp = [dalpha;dz;dr;dA;dV;dT;dStrength_merid;dStrength_circum;... 
    dStrength_ballast;dTotal_hanging_force]; 
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B. Matlab Code for Axisymmetric FEA 
 

 
clear 

  
global g 
g = 9.81; % g. 
rho_water = 1025; % Density of surrounding water. 

  
prompt = {'Enter meridional length (m):','Enter base radius 

(m):',... 
    'Enter number of tendons:','Enter depth of base (m):',... 
    'Enter final level of p = 0, as a fraction of the collapsed bag 

height:',... 
    'Enter ballast density (kg/m^3):','Unsealed base? (1 = Unsealed, 

0 = Sealed):'}; 
dlg_title = 'Input for bag details'; 
num_lines = 1; 
def = {'2.36','0','36','500','0.75','5100','0'}; 
answer = inputdlg(prompt,dlg_title,num_lines,def); 

  
L = str2num(answer{1}); 
r = str2num(answer{2}); 
num_meridians = str2num(answer{3}); 
depth = str2num(answer{4}); 
p_fac = str2num(answer{5}); 
rho_ball = str2num(answer{6}); 
us_flag = str2num(answer{7}); 

  
prompt = {'Enter number of meridional elements:','Enter stiffness of 

meridional elements (GPa):',... 
    'Enter stiffness of circumferential elements (GPa):',... 
    'Enter diameter of meridional elements (m):',... 
    'Enter diameter of circumferential elements (m):',... 
    'Enter membrane thickness (m):',... 
    'Enter density of meridional elements (kg/m^3):','Enter density 

of membrane (kg/m^3):'}; 
dlg_title = 'Input for bag details'; 
num_lines = 1; 
def = {'50','200','0','0.02','0.02','0.001','7800','1522'}; 
answer = inputdlg(prompt,dlg_title,num_lines,def); 

  
num_links = str2num(answer{1}); 
Em = str2num(answer{2})*1e9*ones(num_links,1); 
Ec = str2num(answer{3})*1e9*ones(num_links+1,1); 
Am = str2num(answer{4})^2*(pi/4)*ones(num_links,1); 
Ac = str2num(answer{5})^2*(pi/4)*ones(num_links+1,1); 
t = str2num(answer{6}); 
rho_ten = str2num(answer{7}); 
rho_mem = str2num(answer{8}); 

  
init_node_posns = gen_circle(r,L,num_links); % Create a circular 

arc. 
stress_pre = 1000*ones(num_links,1); % Set prestresses. 
k = 0; % Set bending stiffness between meridional elements. 
p_zero_min = p_fac*(-rho_water*g*(L-r)); % Set the final value for 

p0. 

  
% Find the shape of the pressurised bag. 



Appendix B 

 

220 

[node_posns,pv_register,node_posns_register,alpha_register,C_su_regi

ster] = 

main(num_links,L,r,stress_pre,Em,Am,Ec,Ac,num_meridians,depth,rho_wa

ter,p_zero_min,init_node_posns,k,rho_ten,rho_mem,t,rho_ball,us_flag)

; 

  
% Plot the cross-section of the pressurised bag. 
plot(node_posns(:,1),node_posns(:,2),'k','LineWidth',2) 
hold on 
plot(-node_posns(:,1),node_posns(:,2),'k','LineWidth',2) 
xlabel('Radius, r (in m)') 
ylabel('Height, h (in m)') 
axis equal; v = axis; v = 1.1*v; axis(v) 
grid on 
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function 

[node_posns,pv_register,node_posns_register,alpha_register,C_su_regi

ster] = 

main(num_links,L,r,stress_pre,Em,Am,Ec,Ac,num_meridians,depth,rho_wa

ter,p_zero_min,init_node_posns,k,rho_ten,rho_mem,t,rho_ball,us_flag,

alp) 
% In this program, three variables may be incremented/decremented to 

find a 
% solution: load fraction, prestress, and base pressure difference. 
% Due to the lack of stiffness in bending, even a very small initial 
% load fraction can deform the structure quite considerably, and 
% typically the structure then deforms very little from this initial  
% deformed shape as the load fraction is increased, due to high 

cable 
% stiffness. 

  
global g % Declare the global variables. 

  
node_posns = init_node_posns; % Set current node positions. 

  
% Calculate the angles between the elements. 
link_lengths = ((init_node_posns(2:end,1)-init_node_posns(1:end-

1,1)).^2 + (init_node_posns(2:end,2)-init_node_posns(1:end-

1,2)).^2).^0.5; 
alpha = acos((init_node_posns(2:end,1) - init_node_posns(1:end-

1,1))./link_lengths); 
alpha = [pi/2 - alpha(1,1);alpha(1:end-1,1) + pi - 

alpha(2:end,1);alpha(end,1)]; 

  
% Constraints matrix for a meridian with a top node only allowed to 

move 
% vertically and bottom node held in place. 
constraints_mat = sparse(size(node_posns,1)*2,size(node_posns,1)*2-

3); 
constraints_mat(2:end-2,:) = speye(2*size(node_posns,1)-3); 

  
original_link_lengths = Em.*((init_node_posns(2:end,1)-

init_node_posns(1:end-1,1)).^2 + (init_node_posns(2:end,2)-

init_node_posns(1:end-1,2)).^2).^0.5./(stress_pre + Em); 

  
R = init_node_posns(:,1); % Set the initial circumferential radii. 

  
E_comp = 1e-6.*Em; % Set Young's modulus of links in compression. 

  
% Assemble matrices of material properties. 
mat_props_m = [stress_pre,Em,E_comp,Am]; 
mat_props_c = [Ec,Ac]; 

  
vol_ten = Am.*original_link_lengths; % Volume of meridional 

elements. 
vol_mem = original_link_lengths.*(init_node_posns(1:end-

1,1)+init_node_posns(2:end,1))/(2*num_meridians).*t; % Volume of 

membrane section associated with each meridional element. 
w_ten = rho_ten.*vol_ten*g; % Weight of meridional elements. 
w_mem = rho_mem.*vol_mem*g; % Weight of membrane section associated 

with each meridional element. 

  
p_zero = rho_water*g*(L-r); % Initial differential pressure at base 

(set to be high). 
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conv_crit = 1e-7; % Force residual convergence criterion. 
disp_crit = 1e-3*sum(original_link_lengths); % Displacement 

convergence criterion. 

  

  
%---------------------------------------------- 
% Find deformed shape. 

  
% Set initial fraction of full load to a very small value and then 

find the 
% load fraction that gives a max. change in angle from the current 

set of  
% element orientations to the new set of less than a certain amount 

(e.g. 1 
% degree). 
init_load_fraction = 1e-11; 
load_fraction = 

find_load_frac(node_posns,p_zero,init_load_fraction,num_meridians,or

iginal_link_lengths,mat_props_m,constraints_mat,depth,rho_water,R,ma

t_props_c,alpha,k,w_ten,w_mem,us_flag); 

  
% Loop to find equilibrium positions for increasing load fractions. 
while load_fraction < 1 
    % Display the current load fraction. 
    disp('Load fraction = '); disp(load_fraction) 

  
    % Find the equilibrium positions for the current load fraction. 
    node_posns = 

find_eqlbrm_posns(node_posns,constraints_mat,original_link_lengths,p

_zero,mat_props_m,load_fraction,conv_crit,num_meridians,depth,rho_wa

ter,R,mat_props_c,disp_crit,alpha,k,w_ten,w_mem,us_flag); 

  
    % Increase the load fraction. 
    load_fraction = 

find_load_frac(node_posns,p_zero,load_fraction,num_meridians,origina

l_link_lengths,mat_props_m,constraints_mat,depth,rho_water,R,mat_pro

ps_c,alpha,k,w_ten,w_mem,us_flag); 
end 

  
load_fraction = 1; % Full load. 

  
% Display the current load fraction. 
disp('Load fraction = '); disp(load_fraction) 

  
% Find the equilibrium positions with full load. 
node_posns = 

find_eqlbrm_posns(node_posns,constraints_mat,original_link_lengths,p

_zero,mat_props_m,load_fraction,conv_crit,num_meridians,depth,rho_wa

ter,R,mat_props_c,disp_crit,alpha,k,w_ten,w_mem,us_flag); 

  

  

  
% Ensure that the final force residuals are correct by setting the 
% displacement criterion to be very small. 
disp_crit = 1e-9*sum(original_link_lengths); 

  
% Find equilibrium positions. 
node_posns = 

find_eqlbrm_posns(node_posns,constraints_mat,original_link_lengths,p
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_zero,mat_props_m,load_fraction,conv_crit,num_meridians,depth,rho_wa

ter,R,mat_props_c,disp_crit,alpha,k,w_ten,w_mem,us_flag); 

  

  
%---------------------------------------------- 
% This section can be used to find final equilibrium positions with 

zero 
% prestress. 

  
stress_pre = 0*ones(num_links,1); % Set prestresses to zero. 

  
% Calculate original element lengths. 
original_link_lengths = Em.*((init_node_posns(2:end,1)-

init_node_posns(1:end-1,1)).^2 + (init_node_posns(2:end,2)-

init_node_posns(1:end-1,2)).^2).^0.5./(stress_pre + Em); 

  
% Assemble matrix of revised meridian material properties. 
mat_props_m = [stress_pre,Em,E_comp,Am]; 

  
% Find equilibrium positions. 
node_posns = 

find_eqlbrm_posns(node_posns,constraints_mat,original_link_lengths,p

_zero,mat_props_m,load_fraction,conv_crit,num_meridians,depth,rho_wa

ter,R,mat_props_c,disp_crit,alpha,k,w_ten,w_mem,us_flag); 

  
% Set price of materials. 
p_surf = 4; % Surface per m^2. 
p_ball = 20/1000; % Ballast per kg. 
p_reinf_kg = 2; % Reinforcement per kg. 
sig_y = 400e6; % Yield stress of the reinforcement. 
FoS = 2; % Factor of safety for the reinforcement. 
p_reinf_Nm = (rho_ten*p_reinf_kg)/(sig_y/FoS); 

  
% Calculate the materials cost per unit of stored energy (in £/MWh). 
[obj,cost_mat,energy_Wh] = 

obj_func(node_posns,num_meridians,L,p_zero,original_link_lengths,mat

_props_m,p_reinf_Nm,p_surf,p_ball,depth,rho_water,R,mat_props_c,alph

a,k,rho_ball); 

  

  
%---------------------------------------------- 
% This section can be used to find deformed shapes for decreasing 

base 
% pressure differences. 

  
% Initialise data collection matrices. 
pv_register = zeros(0,3); 
node_posns_register = node_posns; 
sv_register = zeros(0,2); 
alpha_register = zeros(0,1); 
C_su_register = zeros(0,2); 

  
p_zero_max = p_zero; % Set the current p_zero to be the initial 

p_zero. 
p_zero_vec = linspace(p_zero_max,p_zero_min,401); 
i = 1; 

  
% Loop to find equilibrium positions for decreasing base pressure 
% difference. 
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exitflag = 0; 
while (i <= size(p_zero_vec,2)) && (exitflag == 0) 

  
    p_zero = p_zero_vec(i); 

  
    % Find the equilibrium positions for the current load fraction. 
    [node_posns,constraints_mat] = 

find_eqlbrm_posns(node_posns,constraints_mat,original_link_lengths,p

_zero,mat_props_m,load_fraction,conv_crit,num_meridians,depth,rho_wa

ter,R,mat_props_c,disp_crit,alpha,k,w_ten,w_mem,us_flag); 

  
    link_lengths = sqrt(diff(node_posns(:,1)).^2 + 

diff(node_posns(:,2)).^2); 
    strains = (link_lengths-

original_link_lengths)./original_link_lengths; 
    stress = Em.*strains + stress_pre; 

  
    if min(stress) <= 0 
        exitflag = 1; % Prepare to exit loop. 
    else 
        % Plot the shape found for current base pressure difference. 
        figure(1) 
        %hold on 
        plot(node_posns(:,1),node_posns(:,2),'k','LineWidth',2) 
        hold on 
        plot(-node_posns(:,1),node_posns(:,2),'k','LineWidth',2) 
        %plot([-1000;1000],(-p_zero/(rho_water*g))*ones(2,1),'r-.') 
        hold off 
        axis equal 
        ymax = (r^2+L^2)^0.5; 
        %axis([-0.75*ymax,0.75*ymax,0,1.5*ymax]) 
        axis([-ymax,ymax,0,ymax]) 
        grid on 
        xlabel('Radius, r (in m)') 
        ylabel('Height, h (in m)') 
        pause(0.001) 

  
        %mov(i+1) = getframe(gcf); % Capture a movie frame. 

  
        % Volume of air contained in the bag. 
        vol = sum(0.5*(node_posns(2:end,2) + node_posns(1:end-

1,2)).*(node_posns(2:end,1) - node_posns(1:end-

1,1))*2*pi*0.5.*(node_posns(2:end,1) + node_posns(1:end-1,1))); 

  
        % Absolute pressure of the contained air. 
        p_int = rho_water*g*depth + p_zero + 101.325e3; 

         
        if us_flag == 1 && p_zero < 0 
            vol = 0; 
            j = 2; 
            while (node_posns(j,2) > depth - (p_int-

101.325e3)/(rho_water*g)) 
                vol = vol + (node_posns(j-1,2)-

node_posns(j,2))*pi*(0.5*(node_posns(j,1)+node_posns(j-

1,1)))^2*sign(0.5*(node_posns(j,1)+node_posns(j-1,1))); 
                j = j+1; 
            end 

             
            % Interpolate the final element. 
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            vol = vol + ((node_posns(j-1,2) - (depth - (p_int-

101.325e3)/(rho_water*g)))/(node_posns(j-1,2)-

node_posns(j,2)))*(node_posns(j-1,2)-

node_posns(j,2))*pi*(0.5*(node_posns(j,1)+node_posns(j-

1,1)))^2*sign(0.5*(node_posns(j,1)+node_posns(j-1,1))); 
        end 

         
        % Add to the pressure-volume register. 
        pv_register = 

[pv_register;vol,p_int,2*max(node_posns(:,1))]; 
        node_posns_register = [node_posns_register,node_posns(:,1)]; 
        alpha_register = [alpha_register;atan((node_posns(end-1,2)-

node_posns(end,2))/(node_posns(end-1,1)-node_posns(end,1)))]; 

         
        i = i+1; % Update counter. 
    end 
end 

  
% Make sure p_zero is for the last pressure above the wrinkling. 
if exitflag == 1 
    disp('Negative stress encountered at next pressure.') 

  
    % Find the equilibrium positions for the previous pressure. 
    p_zero = p_zero_vec(i-1); 
    [node_posns,constraints_mat] = 

find_eqlbrm_posns(node_posns,constraints_mat,original_link_lengths,p

_zero,mat_props_m,load_fraction,conv_crit,num_meridians,depth,rho_wa

ter,R,mat_props_c,disp_crit,alpha,k,w_ten,w_mem,us_flag); 
end 
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function [node_posns] = gen_circle(r,L,num_links) 
% Generates num_links+1 nodes on a circle with base radius r and 

meridional 
% length L. 

  
% Check the number of links is at least one. 
if num_links < 1 
    error('Number of links must be greater than or equal to one') 
end 

  
% Check that r >= 0. 
if r < 0 
    error('Base radius must be greater than or equal to zero') 
end 

  
% Check that L > 0. 
if L <= 0 
    error('Meridional length must be greater than zero') 
end 

  
% Check the number of links is an integer. 
if num_links - floor(num_links) > 0 
    error('Number of links must be an integer') 
end 

  
% Check the meridional length is greater than the base radius. 
if L <= r 
    error('Meridional length cannot be less than the base radius') 
end 

  
% Calculate the angle subtended by a circular meridian and the 

radius of 
% the meridian. 
if r == 0 
    alpha = 0; 
    merid_ang = pi; 
    R = L/pi; 
else 
    f = @(alpha)alpha - pi + L*sin(alpha)/r; 
    alpha = fzero(f,[0,pi]); 
    merid_ang = pi - alpha; 
    R = r/sin(alpha); 
end 

  
% Create nodes along a circular meridian. 
theta = (0:merid_ang/num_links:merid_ang)'; 
x = R*sin(theta); 
y = R*cos(theta) + R*cos(alpha); 

  
node_posns = [x,y]; 
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function [load_frac_new] = 

find_load_frac(node_posns,p_zero,load_frac,num_meridians,original_li

nk_lengths,mat_props,constraints_mat,depth,rho_water,R,mat_props_c,a

lpha,k,w_ten,w_mem,us_flag) 
% Finds a new, increased load fraction that gives a maximum change 

in angle 
% of the elements just less than the specified angle criterion after 

a 
% single iteration of the Newton-Raphson method. 

  
% Set the angle criterion (currently at 3 degrees). 
ang_crit = (1/180)*pi; 

  
% Begin with a new load fraction of twice the old one (when a = 1). 
a = 1; 
load_frac_new = (1 + a)*load_frac; 

  
% Find the new node positions with the old load fraction. 
posns1 = 

find_new_posns(node_posns,p_zero,load_frac,num_meridians,original_li

nk_lengths,mat_props,constraints_mat,depth,rho_water,R,mat_props_c,a

lpha,k,w_ten,w_mem,us_flag); 

  
% Find the new node positions with the new load fraction. 
posns2 = 

find_new_posns(node_posns,p_zero,load_frac_new,num_meridians,origina

l_link_lengths,mat_props,constraints_mat,depth,rho_water,R,mat_props

_c,alpha,k,w_ten,w_mem,us_flag); 

  
% Calculate the difference in angle between the two sets of 

positions. 
angle_diff = atan((posns2(1:end-1,2) - 

posns2(2:end,2))./(posns2(2:end,1) - posns2(1:end-1,1)))... 
    - atan((posns1(1:end-1,2) - posns1(2:end,2))./(posns1(2:end,1) - 

posns1(1:end-1,1))); 

  
% If the maximum change in angle is greater than the angle 

criterion. 
if max(abs(angle_diff)) > ang_crit 
    % Decrease the load fraction until the max. change in angle is 

lower 
    % than the criterion. 
    while max(abs(angle_diff)) > ang_crit 
        % Decrease the load fraction. 
        a = 0.5*a; 
        load_frac_new = (1 + a)*load_frac; 

         
        % Find the new node positions with the new load fraction. 
        posns2 = 

find_new_posns(node_posns,p_zero,load_frac_new,num_meridians,origina

l_link_lengths,mat_props,constraints_mat,depth,rho_water,R,mat_props

_c,alpha,k,w_ten,w_mem,us_flag); 

         
        % Calculate the difference in angle between the two sets of 
        % positions. 
        angle_diff = atan((posns2(1:end-1,2) - 

posns2(2:end,2))./(posns2(2:end,1) - posns2(1:end-1,1)))... 
            - atan((posns1(1:end-1,2) - 

posns1(2:end,2))./(posns1(2:end,1) - posns1(1:end-1,1))); 
    end 
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% If the maximum change in angle is less than or equal to the angle 
% criterion. 
else 
    % Increase the load fraction until the max. change in angle is 

greater 
    % than the criterion. 
    while max(abs(angle_diff)) <= ang_crit 
        % Increase the load fraction. 
        a = 2*a; 
        load_frac_new = (1 + a)*load_frac; 

         
        % Find the new node positions with the new load fraction. 
        posns2 = 

find_new_posns(node_posns,p_zero,load_frac_new,num_meridians,origina

l_link_lengths,mat_props,constraints_mat,depth,rho_water,R,mat_props

_c,alpha,k,w_ten,w_mem,us_flag); 

         
        % Calculate the difference in angle between the two sets of 
        % positions. 
        angle_diff = atan((posns2(1:end-1,2) - 

posns2(2:end,2))./(posns2(2:end,1) - posns2(1:end-1,1)))... 
            - atan((posns1(1:end-1,2) - 

posns1(2:end,2))./(posns1(2:end,1) - posns1(1:end-1,1))); 
    end 

     
    % Go back to the last load fraction that gave a max. change in 

angle 
    % lower than the criterion. 
    a = 0.5*a; 
    load_frac_new = (1 + a)*load_frac; 
end 
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function [node_posns] = 

find_new_posns(node_posns,p_zero,load_fraction,num_meridians,origina

l_link_lengths,mat_props_m,constraints_mat,depth,rho_water,R,mat_pro

ps_c,alpha,k,w_ten,w_mem,us_flag) 
% Finds a new set of node positions using the Newton-Raphson method. 

  
% Find differential pressure forces. 
[F_dp,link_lengths,F_seabed] = 

find_F_dp(node_posns,p_zero,load_fraction,num_meridians,depth,rho_wa

ter,w_ten,w_mem,us_flag); 

  
% Find reaction forces. 
[F_reac,T,Tc,Fb_tot] = 

find_F_reac(link_lengths,original_link_lengths,mat_props_m,node_posn

s,R,mat_props_c,alpha,k); 

  
% Find the force residuals. 
residuals = F_dp - F_reac; 
residuals_vec = reshape(residuals',[],1); 
residuals_vec_short = constraints_mat'*residuals_vec; 

  
% Find dimensionless residuals by dividing by the sum of the 

tensions at 
% each node. 
%     dimless_residuals = 

reshape((residuals./[([T(1:end);0]+[0;T(1:end)]),([T(1:end);0]+[0;T(

1:end)])])',[],1); 
%     dimless_residuals_short = constraints_mat'*dimless_residuals; 

  
% Find a new set of node positions and the nodal displacement vector 
% by carrying out a single iteration of the Newton-Raphson solution 
% method. 
[node_posns,disps] = NR_iteration(node_posns,link_lengths,... 
    

load_fraction,mat_props_m,original_link_lengths,constraints_mat,... 
    

residuals_vec_short,num_meridians,p_zero,rho_water,R,mat_props_c,alp

ha,k,depth,us_flag); 
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function [node_posns,constraints_mat] = 

find_eqlbrm_posns(node_posns,constraints_mat,original_link_lengths,p

_zero,mat_props_m,load_fraction,conv_crit,num_meridians,depth,rho_wa

ter,R,mat_props_c,disp_crit,alpha,k,w_ten,w_mem,us_flag) 
% Finds the equilibrium position of the structure. 

  
% Find differential pressure forces. 
[F_dp,link_lengths,F_seabed] = 

find_F_dp(node_posns,p_zero,load_fraction,num_meridians,depth,rho_wa

ter,w_ten,w_mem,us_flag); 

  
% Find reaction forces. 
[F_reac,T,Tc,Fb_tot] = 

find_F_reac(link_lengths,original_link_lengths,mat_props_m,node_posn

s,R,mat_props_c,alpha,k); 

  
%---------------------------------------------- 
% Find the force residuals. 
residuals = F_dp - F_reac; 
residuals_vec = reshape(residuals',[],1); 
residuals_vec_short = constraints_mat'*residuals_vec; 

  
% Find dimensionless residuals by dividing by the sum of the 

tensions at 
% each node - TAKE ABSOLUTE VALUES!!!!! 
dimless_residuals = 

reshape((residuals./[([T(1:end);0]+[0;T(1:end)]+Tc+F_seabed+Fb_tot),

([T(1:end);0]+[0;T(1:end)]+Tc+F_seabed+Fb_tot)])',[],1); 
dimless_residuals_short = constraints_mat'*dimless_residuals; 

  
% Initially set the nodal displacement vector to be a very large 

scalar. 
disps = 1e6*sum(original_link_lengths); 

  
%---------------------------------------------- 
% Loop to find new node positions. 
while ((max(abs(residuals_vec_short)) >= 1) | 

(max(abs(dimless_residuals_short)) >= conv_crit)) & (max(abs(disps)) 

> disp_crit) 
%blah = 0; while blah == 0 
    % Find a new set of node positions and the nodal displacement 

vector 
    % by carrying out a single iteration of the Newton-Raphson 

solution 
    % method. 
    [node_posns,disps] = NR_iteration(node_posns,link_lengths,... 
        

load_fraction,mat_props_m,original_link_lengths,constraints_mat,... 
        

residuals_vec_short,num_meridians,p_zero,rho_water,R,mat_props_c,alp

ha,k,depth,us_flag); 
    %{ 
    % Constrain nodes against the seabed if necessary. 
    for i = 1:size(node_posns,1)-1 
        if node_posns(i,2) < 0 && node_posns(i+1,2) == 0 
            node_posns(i,2) = 0; % Move node to the seabed. 
            %constraints_mat(:,2*i-2:2*i-1) = []; % Constrain in y 

and x. 
            constraints_mat(:,2*i-1) = []; % Constrain in y. 
            %keyboard 
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        end 
    end 
    %} 
    % Find differential pressure forces. 
    [F_dp,link_lengths,F_seabed] = 

find_F_dp(node_posns,p_zero,load_fraction,num_meridians,depth,rho_wa

ter,w_ten,w_mem,us_flag); 

     
    % Find reaction forces. 
    [F_reac,T,Tc,Fb_tot] = 

find_F_reac(link_lengths,original_link_lengths,mat_props_m,node_posn

s,R,mat_props_c,alpha,k); 

  
    % Find the force residuals. 
    residuals = F_dp - F_reac; 
    residuals_vec = reshape(residuals',[],1); 
    residuals_vec_short = constraints_mat'*residuals_vec; 

  
    % Find dimensionless residuals by dividing by the sum of the 

tensions at 
    % each node. 
    dimless_residuals = 

reshape((residuals./[([T(1:end);0]+[0;T(1:end)]+Tc+F_seabed+Fb_tot),

([T(1:end);0]+[0;T(1:end)]+Tc+F_seabed+Fb_tot)])',[],1); 
    dimless_residuals_short = constraints_mat'*dimless_residuals; 
end 
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function [F_dp,link_lengths,Fsb_glo] = 

find_F_dp(node_posns,p_zero,load_fraction,num_meridians,depth,rho_wa

ter,w_ten,w_mem,us_flag) 
% Find pressure difference forces. 

  
% Declare the global variables. 
global g 

  
F_dp = zeros(2*size(node_posns,1),1); 
Fsb_glo = zeros(size(node_posns,1),1); 

  
% Find link lengths. 
link_lengths = ((node_posns(2:end,1)-node_posns(1:end-1,1)).^2 + 

(node_posns(2:end,2)-node_posns(1:end-1,2)).^2).^0.5; 

  
for i = 1:size(link_lengths,1) 

     
    % Assign names to element node positions and length. 
    x1 = node_posns(i,1); 
    y1 = node_posns(i,2); 
    x2 = node_posns(i+1,1); 
    y2 = node_posns(i+1,2); 
    l = link_lengths(i,1); 

     
    % Find density of contained air stored at T degrees Kelvin. 
    p_int = rho_water*g*depth + 1e5 + p_zero; 
    M_air = 0.02897; 
    R = 8.314472; 
    T = 5 + 273.15; 
    rho_air = p_int*M_air/(R*T); 

     
    % Unit normal. 
    n = (1/l)*[y1-y2;x2-x1]; 

  
    % Differential pressure at centroid. 
    p = p_zero + (rho_water-rho_air)*g*0.5*(y1+y2); 

     
    if us_flag == 1 
        % Set any negative p to zero, for open base. 
        p = max(p,0); 
    end 

     
    % Set dp to p0 if centroid is below the seabed. 
%     if 0.5*(y1+y2) < 0 
%         p = p_zero; 
%     end 

     
    % Swept area. 
    Asw = pi*(x1+x2)*l/num_meridians; 

  
    % Element load vector. 
    F = 0.5*[n;n]*p*Asw + [0;-w_ten(i,1)/2;0;-w_ten(i,1)/2] + [0;-

w_mem(i,1)/2;0;-w_mem(i,1)/2]; 

     
    % Add the element load vector to the global load vector. 
    F_dp(2*(i-1)+1:2*(i-1)+4,1) = F_dp(2*(i-1)+1:2*(i-1)+4,1) + F; 

     
%     % Add the seabed forces. 
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%     k = -0.001*(p_zero+(rho_water-rho_air)*g*0.001)*0.5*Asw; 
%      
%     % Set the seabed force on the last node to zero. 
%     if i == size(link_lengths,1) 
%         Fsb = k*[0;1/y1;0;0]; 
%     % All other nodes. 
%     else 
%         Fsb = k*[0;1/y1;0;1/y2]; 
%     end 
%      
%     Fsb_glo(2*(i-1)+1:2*(i-1)+4,1) = Fsb_glo(2*(i-1)+1:2*(i-

1)+4,1) + Fsb; 
    %F_dp(2*(i-1)+1:2*(i-1)+4,1) = F_dp(2*(i-1)+1:2*(i-1)+4,1) + 

Fsb; 

     
end 

  
k_ce = 0; % TEMPORARY - MOVE TO RUN_MAIN OR MAIN!!! 
Fce = zeros(size(node_posns,1),1); 
for i = 1:size(node_posns,1) 
    if node_posns(i,1) < 0 
        Fce(i,1) = k_ce*(node_posns(i,1)^2); % Calculate central 

reaction. 
    end 
end 
F_dp(1:2:end-1,1) = F_dp(1:2:end-1,1) + Fce; % Add seabed forces. 

  
% Add seabed force proportional to the depth of the node below the 

seabed. 
k_sb = 1e9; % TEMPORARY - MOVE TO RUN_MAIN OR MAIN!!! 
for i = 1:size(node_posns,1) 
    if node_posns(i,2) < 0 
        Fsb_glo(i,1) = k_sb*(node_posns(i,2)^2); % Calculate seabed 

force. 

         
%         % Make sure the seabed force isn't greater than the 

downward load. 
%         if Fsb_glo(i,1) > -F_dp(2*(i-1)+2,1) 
%             Fsb_glo(i,1) = -F_dp(2*(i-1)+2,1); 
%         end 
    end 
end 
F_dp(2:2:end,1) = F_dp(2:2:end,1) + Fsb_glo; % Add seabed forces. 

  

  
% Multiply by the load fraction. 
F_dp = F_dp*load_fraction; 

  
% Reshape into a matrix. 
F_dp = reshape(F_dp,2,[])'; 
% Fsb_glo = Fsb_glo(2:2:end,1); 
% Fsb_glo = zeros(size(node_posns,1),1); 

  
%{ 
% Add a vertically upwards force to each node inversely proportional 

to the 
% distance of the node from the seabed. 
%k = 0.001*(p_zero + g*(rho_water - 

rho_air)*0.001)*0.5*([swept_areas(:,1);0] + [0;swept_areas(:,1)]); 
%F_seabed = load_fraction*k(1:end-1,:)./abs(node_posns(1:end-1,2)); 
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k = -0.001*(p_zero + g*(rho_water - 

rho_air)*0.001)*0.5*([swept_areas(:,1);0] + [0;swept_areas(:,1)]); 
F_seabed = load_fraction*k(1:end-1,:)./node_posns(1:end-1,2); 
F_seabed = [F_seabed;0]; 
%F_seabed = zeros(size(F_seabed,1)+1,1); 
F_dp(:,2) = F_dp(:,2) + F_seabed; 
%} 

  
% Add the mass of the top bulkhead. 
%F_dp(1,2) = F_dp(1,2) - load_fraction*m_upp*g/num_meridians; 

  
% Add the mass of the bottom bulkhead. 
%F_dp(end,2) = F_dp(end,2) - m_low*g/num_meridians; 
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function [F_reac,Tm,Tc,Fb_tot] = 

find_F_reac(link_lengths,original_link_lengths,mat_props_m,node_posn

s,R,mat_props_c,alpha,k); 
% Find reaction forces. 

  
% Calculate cable strains. 
strains = (link_lengths-

original_link_lengths)./original_link_lengths; 

  
% Unpack the material properties matrix. 
stress_pre = mat_props_m(:,1); 
E = mat_props_m(:,2); 
E_comp = mat_props_m(:,3); 
A = mat_props_m(:,4); 

  
stress = E.*strains + stress_pre; 

  
% Initialise the Jacobian as an empty sparse matrix. 
F_reac = zeros(2*(size(link_lengths,1)+1),1); 
Tm = zeros(size(link_lengths,1),1); 

  
for i = 1:size(link_lengths,1) 
    x1 = node_posns(i,1); 
    y1 = node_posns(i,2); 
    x2 = node_posns(i+1,1); 
    y2 = node_posns(i+1,2); 
    l = link_lengths(i,1); 
    L = original_link_lengths(i,1); 

     
    dl_du = (1/l)*((x1-x2)*[1 0 -1 0] + (y1-y2)*[0 1 0 -1]); 
    dstrain_du = (1/L)*dl_du; 

     
    if stress(i,1) >= 0 
        Tm(i,1) = A(i,1)*stress(i,1); 
    else 
        limit = -1e-6*E(i,1); 

  
        a = limit/(-pi/2); 
        b = E(i,1)/a; 

  
        % Sets b to zero if E = 0. 
        if E(i,1) == 0 
            b = 0; 
        end 

         
        Tm(i,1) = A(i,1)*a*atan(b*strains(i,1)); 
    end 

     
    p = (1/l)*[x1-x2;y1-y2;x2-x1;y2-y1]; 

     
    F = Tm(i,1)*p; 

     
    F_reac((i-1)*2+1:(i-1)*2+4,1) = F_reac((i-1)*2+1:(i-1)*2+4,1) + 

F; 
end 

  
F_reac = reshape(F_reac,2,[])'; 
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% ONLY HERE TO SATISFY OUTPUT ARGUMENT LIST. 
% Find the unit vector parallel to each link from node 2 to node 1. 
unit_parallels = [(node_posns(1:end-1,1)-

node_posns(2:end,1))./link_lengths,... 
    (node_posns(1:end-1,2)-node_posns(2:end,2))./link_lengths]; 

  

  
%--------------------------------------------------------------- 
% Circumferential forces. 
% Unpack the circumferential material properties matrix. 
Ec = mat_props_c(:,1); 
Ac = mat_props_c(:,2); 

  
% Initialise the circumferential force vector as zeros. 
Fc = zeros(size(Ec,1),1); 
Tc = zeros(size(Ec,1),1); 

  
% Use a small fraction of the Young's modulus if the circumferential 

force 
% is negative. 
for i = 1:size(Fc,1) 
    if R(i,1) == 0 
        Tc(i,1) = 0; 
        Fc(i,1) = 0; 
    else 
        if node_posns(i,1) > R(i,1) 
            Tc(i,1) = Ec(i,1)*Ac(i,1)*(node_posns(i,1)-

R(i,1))/R(i,1); 
            Fc(i,1) = 2*pi*Tc(i,1); 
        else 
            %Tc(i,1) = 0; 
            %Fc(i,1) = 2*pi*Tc(i,1); 

             
            limit = -1e-12*Ec(i,1); 

  
            a = limit/(-pi/2); 
            b = Ec(i,1)/a; 

  
            % Sets b to zero if Ec = 0. 
            if Ec(i,1) == 0 
                b = 0; 
            end 

  
            Tc(i,1) = Ac(i,1).*a*atan(b*(node_posns(i,1)-

R(i,1))/R(i,1)); 
            Fc(i,1) = 2*pi*Tc(i,1); 
        end 
    end 
end 

  
% Add the circumferential forces to the nodal reaction force matrix. 
F_reac = F_reac + [Fc,zeros(size(Fc,1),1)]; 

  

  
%--------------------------------------------------------------- 
% Bending forces. 

  
% Initialise the matrix of bending forces and vector of sum of 

absolute 



Appendix B 

 

237 

% values of bending forces as zeros. 
%Fb = zeros(size(node_posns,1),2); 
Fb_tot = zeros(size(node_posns,1),1); 
%{ 
for i = 1:size(link_lengths,1) 
    % Deal with the first element. 
    if i == 1 
        % Assign names to the node positions. 
        x1 = node_posns(i,1); 
        y1 = node_posns(i,2); 
        x2 = node_posns(i+1,1); 
        y2 = node_posns(i+1,2); 
        x3 = node_posns(i+2,1); 
        y3 = node_posns(i+2,2); 

         
        % Calculate the angle between the element and the vertical 
        % (downwards) and the angle between the element and the next 
        % element. 
        %theta1 = pi/2 - acos((x2 - x1)/link_lengths(i,1)); 
        %theta2 = acos((x2 - x1)/link_lengths(i,1)) + pi - acos((x3 

- x2)/link_lengths(i+1,1)); 
        theta1 = pi/2 - sign(y1-y2)*acos((x2 - 

x1)/link_lengths(i,1)); 
        theta2 = sign(y1-y2)*acos((x2 - x1)/link_lengths(i,1)) + pi 

- sign(y2-y3)*acos((x3 - x2)/link_lengths(i+1,1)); 

  
    % Deal with the last element. 
    elseif i == size(link_lengths,1) 
        % Assign names to the node positions. 
        x0 = node_posns(i-1,1); 
        y0 = node_posns(i-1,2); 
        x1 = node_posns(i,1); 
        y1 = node_posns(i,2); 
        x2 = node_posns(i+1,1); 
        y2 = node_posns(i+1,2); 

  
        % Calculate the angle between the element and the previous 

element 
        % and the angle between the element and the horizontal. 
        %theta1 = acos((x1 - x0)/link_lengths(i-1,1)) + pi - 

acos((x2 - x1)/link_lengths(i,1)); 
        %theta2 = acos((x2 - x1)/link_lengths(i,1)); 
        theta1 = sign(y0-y1)*acos((x1 - x0)/link_lengths(i-1,1)) + 

pi - sign(y1-y2)*acos((x2 - x1)/link_lengths(i,1)); 
        theta2 = sign(y1-y2)*acos((x2 - x1)/link_lengths(i,1)); 

  
    % Deal with all other elements. 
    else 
        % Assign names to the node positions. 
        x0 = node_posns(i-1,1); 
        y0 = node_posns(i-1,2); 
        x1 = node_posns(i,1); 
        y1 = node_posns(i,2); 
        x2 = node_posns(i+1,1); 
        y2 = node_posns(i+1,2); 
        x3 = node_posns(i+2,1); 
        y3 = node_posns(i+2,2); 

  
        % Calculate the angles between the element and the previous 

and 
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        % next elements. 
        %theta1 = acos((x1 - x0)/link_lengths(i-1,1)) + pi - 

acos((x2 - x1)/link_lengths(i,1)); 
        %theta2 = acos((x2 - x1)/link_lengths(i,1)) + pi - acos((x3 

- x2)/link_lengths(i+1,1)); 
        theta1 = sign(y0-y1)*acos((x1 - x0)/link_lengths(i-1,1)) + 

pi - sign(y1-y2)*acos((x2 - x1)/link_lengths(i,1)); 
        theta2 = sign(y1-y2)*acos((x2 - x1)/link_lengths(i,1)) + pi 

- sign(y2-y3)*acos((x3 - x2)/link_lengths(i+1,1)); 
    end 

     
    alpha1 = alpha(i,1); 
    alpha2 = alpha(i+1,1); 

     
    % Calculate the bending force required at each end of the 

element. 
    F1 = k*(alpha2 - theta2)/link_lengths(i,1); 
    F2 = k*(alpha1 - theta1)/link_lengths(i,1); 

     
    % Add the element bending force to the bending force matrix. 
    Fb(i,1) = Fb(i,1) - F1*(y1 - y2)/link_lengths(i,1); 
    Fb(i,2) = Fb(i,2) - F1*(x2 - x1)/link_lengths(i,1); 

     
    Fb(i+1,1) = Fb(i+1,1) - F2*(y1 - y2)/link_lengths(i,1); 
    Fb(i+1,2) = Fb(i+1,2) - F2*(x2 - x1)/link_lengths(i,1); 

     
    Fb_tot(i,1) = Fb_tot(i,1) + abs(F1); 
    Fb_tot(i+1,1) = Fb_tot(i+1,1) + abs(F2); 
end 

  
% Add the bending force matrix to the reaction force matrix. 
F_reac = F_reac + Fb; 
%} 

  

  
% Reshape the matrix of nodal reaction forces into a vector of the 

form 
% Fx1;Fy1;Fx2;Fy2;... 
F_reac_vec = reshape(F_reac',[],1); 
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function [node_posns,disps] = 

NR_iteration(node_posns,link_lengths,... 
        

load_fraction,mat_props,original_link_lengths,constraints_mat,... 
        

residuals_vec_short,num_meridians,p_zero,rho_water,R,mat_props_c,alp

ha,k,depth,us_flag); 
% Carries out a single iteration of the Newton-Raphson solution 

method. 

  
% Find the Jacobian of the differential pressure forces. 
J_F_dp = find_J_F_dp(node_posns,link_lengths,... 
    load_fraction,num_meridians,p_zero,rho_water,depth,us_flag); 

  
% Find the Jacobian of the reaction forces. 
J_F_reac = find_J_F_reac(mat_props,node_posns,link_lengths,... 
    original_link_lengths,R,mat_props_c,alpha,k); 

  
% Find the Jacobian of the force residuals. 
J_resid = J_F_dp - J_F_reac; 

  
% Constrain the Jacobian of the residuals. 
J_resid_constr = constraints_mat'*(J_resid)*constraints_mat; 

  
% Find the displacement factor (less than or equal to 1) that 

ensures that 
% nodes don't move into the seabed. 
node_disps = reshape(constraints_mat*(J_resid_constr\(-

residuals_vec_short)),2,[])'; 

  
disp_factor = 1; 

  
% while min(node_posns(:,2) + disp_factor*node_disps(:,2)) < 0 
%    disp_factor = disp_factor/2; 
% end 
%disp(disp_factor) 

  
disps = disp_factor*reshape(constraints_mat*(J_resid_constr\(-

residuals_vec_short)),2,[])'; 

  
% Update the node positions using the Newton-Raphson method. 
node_posns = node_posns + disps; 
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function J_F_dp = find_J_F_dp(node_posns,link_lengths,... 
    pres_fraction,num_meridians,p_zero,rho_water,depth,us_flag) 
% Finds the Jacobian of the differential pressure forces. 

  
% Declare the global variables. 
global g 

  
J_F_dp = sparse(2*size(node_posns,1),2*size(node_posns,1)); 

  
for i = 1:size(link_lengths,1) 

     
    % Assign names to element node positions and length. 
    x1 = node_posns(i,1); 
    y1 = node_posns(i,2); 
    x2 = node_posns(i+1,1); 
    y2 = node_posns(i+1,2); 
    l = link_lengths(i,1); 

  
    % Find density of contained air stored at T degrees Kelvin. 
    p_int = rho_water*g*depth + 1e5 + p_zero; 
    M_air = 0.02897; 
    R = 8.314472; 
    T = 5 + 273.15; 
    rho_air = p_int*M_air/(R*T); 

     
    % Element length. 
    dl_du = (1/l)*((x2-x1)*[-1 0 1 0] + (y2-y1)*[0 -1 0 1]); 

     
    % Unit normal. 
    n = (1/l)*[y1-y2;x2-x1]; 
    dn_du = [y1-y2;x2-x1]*(-1/l^2)*dl_du + (1/l)*[0 1 0 -1;-1 0 1 

0]; 

     
    % Differential pressure at centroid. 
    p = p_zero + (rho_water-rho_air)*g*0.5*(y1+y2); 
    dp_du = (rho_water-rho_air)*g*0.5*[0 1 0 1]; 

     
    if us_flag == 1 
        % Set any negative p to zero, for open base. 
        p = max(p,0); 

         
        if p == 0 
            dp_du = [0 0 0 0]; 
        end 
    end 

     
%     % Set dp to p0 if centroid is below seabed. 
%     if 0.5*(y1+y2) < 0 
%         p = p_zero; 
%         dp_du = zeros(1,4); 
%     end 

     
    % Swept area. 
    Asw = pi*(x1+x2)*l/num_meridians; 
    dAsw_du = (pi*(x1+x2)*dl_du + pi*l*[1 0 1 0])/num_meridians; 

  
    % Element load stiffness matrix. 
    dF_du = 0.5*p*Asw*[dn_du;dn_du] + 0.5*[n;n]*Asw*dp_du + 

0.5*[n;n]*p*dAsw_du; 
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    % Add the element load stiffness matrix to the global load 

stiffness 
    % matrix. 
    J_F_dp(2*(i-1)+1:2*(i+1),2*(i-1)+1:2*(i+1)) = ... 
        J_F_dp(2*(i-1)+1:2*(i+1),2*(i-1)+1:2*(i+1)) + dF_du; 

     
    % Include effect of upwards force on nodes to keep them from 

crossing into 
    % the seabed. 
    k = -0.001*(p_zero+(rho_water-rho_air)*g*0.001)*0.5*Asw; 
    dk_du = -0.001*(p_zero+(rho_water-rho_air)*g*0.001)*0.5*dAsw_du; 

     
    % Set change in force at last node to zero. 
    if i == size(link_lengths,1) 
        dFsb_du = k*[0 0 0 0;0 -1/y1^2 0 0;0 0 0 0;0 0 0 0]... 
            + [0;1/y1;0;0]*dk_du; 
    % All other nodes. 
    else 
        dFsb_du = k*[0 0 0 0;0 -1/y1^2 0 0;0 0 0 0;0 0 0 -1/y2^2]... 
            + [0;1/y1;0;1/y2]*dk_du; 
    end 

  
%     J_F_dp(2*(i-1)+1:2*(i+1),2*(i-1)+1:2*(i+1)) = ... 
%         J_F_dp(2*(i-1)+1:2*(i+1),2*(i-1)+1:2*(i+1)) + dFsb_du; 

     
end 

  
% Add stiffness of bag (if meeting in the middle). 
k_ce = 0; % TEMPORARY - MOVE TO RUN_MAIN OR MAIN!!! 
for i = 1:size(node_posns,1) 
    if node_posns(i,1) < 0 
        J_F_dp(2*(i-1)+1,2*(i-1)+1) = J_F_dp(2*(i-1)+1,2*(i-1)+1) + 

k_ce*2*node_posns(i,1); % Calculate central reaction. 
    end 
end 

  
% Add stiffness of seabed to nodes currently below the seabed. 
k_sb = 1e9; % TEMPORARY!!! MOVE TO MAIN OR RUN_MAIN. 
for i = 1:size(node_posns,1) 
    if node_posns(i,2) < 0 
        J_F_dp(2*(i-1)+2,2*(i-1)+2) = J_F_dp(2*(i-1)+2,2*(i-1)+2) + 

k_sb*2*node_posns(i,2); 
    end 
end 

  
% Multiply by the load fraction. 
J_F_dp = J_F_dp*pres_fraction; 
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function J_F_reac = 

find_J_F_reac(mat_props,node_posns,link_lengths,... 
    original_link_lengths,R,mat_props_c,alpha,k) 
% Finds the Jacobian of the reaction forces. 

  
% Unpack the material properties matrix. 
stress_pre = mat_props(:,1); 
E = mat_props(:,2); 
E_comp = mat_props(:,3); 
A = mat_props(:,4); 

  
% Calculate cable strains. 
strains = (link_lengths-

original_link_lengths)./original_link_lengths; 

  
% Calculate the stress vector. 
stress = E.*strains + stress_pre; 

  
% Initialise the Jacobian as an empty sparse matrix. 
J_F_reac = 

sparse(2*(size(link_lengths,1)+1),2*(size(link_lengths,1)+1)); 

  
for i = 1:size(link_lengths,1) 
    x1 = node_posns(i,1); 
    y1 = node_posns(i,2); 
    x2 = node_posns(i+1,1); 
    y2 = node_posns(i+1,2); 
    l = link_lengths(i,1); 
    L = original_link_lengths(i,1); 

     
    dl_du = (1/l)*((x1-x2)*[1 0 -1 0] + (y1-y2)*[0 1 0 -1]); 
    dstrain_du = (1/L)*dl_du; 

     
    if stress(i,1) >= 0 
        T = A(i,1)*stress(i,1); 
        dstress_du = E(i,1)*dstrain_du; 
        dT_du = A(i,1)*dstress_du; 
    else 
        limit = -1e-6*E(i,1); 

  
        a = limit/(-pi/2); 
        b = E(i,1)/a; 

  
        % Sets b to zero if E = 0. 
        if E(i,1) == 0 
            b = 0; 
        end 

         
        T = A(i,1)*a*atan(b*strains(i,1)); 
        dT_du = (A(i,1)*a*b/(1+(b*strains(i,1))^2))*dstrain_du; 
    end 

     
    p = (1/l)*[x1-x2;y1-y2;x2-x1;y2-y1]; 
    dp_du = (1/l)*[1 0 -1 0;0 1 0 -1;-1 0 1 0;0 -1 0 1]... 
        + [x1-x2;y1-y2;x2-x1;y2-y1]*(-1/l^2)*dl_du; 

  
    dF_du = p*dT_du + T*dp_du; 

     
    J_F_reac((i-1)*2+1:(i-1)*2+4,(i-1)*2+1:(i-1)*2+4) = ... 
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        J_F_reac((i-1)*2+1:(i-1)*2+4,(i-1)*2+1:(i-1)*2+4) + dF_du; 
end 

  

  

  
% CIRCUMFERENTIAL STRESS 

  
% Unpack the circumferential material properties matrix. 
Ec = mat_props_c(:,1); 
Ac = mat_props_c(:,2); 

  
% Initialise the circumferential force vector as zeros. 
dFc_dx = zeros(size(Ec,1),1); 

  
% Use a small fraction of the Young's modulus if the circumferential 

force 
% is negative. 
for i = 1:size(dFc_dx,1) 
    if R(i,1) == 0 
        dFc_dx(i,1) = 0; 
    else 
        if node_posns(i,1) > R(i,1) 
            dFc_dx(i,1) = 2*pi*Ec(i,1)*Ac(i,1)/R(i,1); 
        else 
            %dFc_dx(i,1) = 0; 

             
            limit = -1e-12*Ec(i,1); 

  
            a = limit/(-pi/2); 
            b = Ec(i,1)/a; 

  
            % Sets b to zero if Ec = 0. 
            if Ec(i,1) == 0 
                b = 0; 
            end 

  
            dstrains_dx = 1/R(i,1); 
            dFc_dx(i,1) = 

2*pi*b*dstrains_dx*Ac(i,1)*a/(1+(b*(node_posns(i,1)-

R(i,1))/R(i,1))^2); 
        end 
    end 
end 

  
% Differentiate the vertical component of circumferential force. 
% dFc_dy = zeros(size(dFc_dx,1),1); 

  
% Add the differentiated circumferential forces to the stiffness 

matrix. 
for i = 1:2:size(J_F_reac,1) 
    J_F_reac(i,i) = J_F_reac(i,i) + dFc_dx(1+(i-1)/2,1); 
end 

  
% for i = 2:2:size(J_F_reac,1) 
%     J_F_reac(i,i) = J_F_reac(i,i) + dFc_dy(i/2,1); 
% end 
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%{ 
% BENDING 
for i = 1:size(link_lengths,1) 
    % Assign names to the bending stiffness at each end of the 

element. 
    k1 = k; 
    k2 = k; 

  
    % Assign names to the undeformed angles between the element and 

the 
    % previous and next elements. 
    alpha1 = alpha(i,1); 
    alpha2 = alpha(i+1,1); 

     
    % Deal with the first element. 
    if i == 1 
        % Assign names to the node positions. 
        x1 = node_posns(i,1); 
        y1 = node_posns(i,2); 
        x2 = node_posns(i+1,1); 
        y2 = node_posns(i+1,2); 
        x3 = node_posns(i+2,1); 
        y3 = node_posns(i+2,2); 

         
        % Assign names to the element lengths. 
        l = link_lengths(i,1); 
        l2 = link_lengths(i+1,1); 

  
        % Differentiate the element lengths. 
        dl_du = (1/l)*((x2-x1)*[-1 0 1 0 0 0] + (y2-y1)*[0 -1 0 1 0 

0]); 
        dl2_du = (1/l2)*((x3-x2)*[0 0 -1 0 1 0] + (y3-y2)*[0 0 0 -1 

0 1]); 

  
        % Calculate theta, the angles between the element and the 

previous 
        % and next elements. 
        %theta1 = pi/2 - acos((x2 - x1)/l); 
        %theta2 = acos((x2 - x1)/l) + pi - acos((x3 - x2)/l2); 
        theta1 = pi/2 - sign(y1-y2)*acos((x2 - x1)/l); 
        theta2 = sign(y1-y2)*acos((x2 - x1)/l) + pi - sign(y2-

y3)*acos((x3 - x2)/l2); 

         
        % Differentiate theta. 
        %dtheta1_du = (1/sqrt(1-((x2-x1)/l)^2))*((x2-x1)*(-

1/l^2)*dl_du + (1/l)*[-1 0 1 0 0 0]); 

  
        %dtheta2_du = (-1/sqrt(1-((x2-x1)/l)^2))*((x2-x1)*(-

1/l^2)*dl_du + (1/l)*[-1 0 1 0 0 0])... 
        %    + (1/sqrt(1-((x3-x2)/l2)^2))*((x3-x2)*(-1/l2^2)*dl2_du 

+ (1/l2)*[0 0 -1 0 1 0]); 

  
        dtheta1_du = sign(y1-y2)*(1/sqrt(1-((x2-x1)/l)^2))*((x2-

x1)*(-1/l^2)*dl_du + (1/l)*[-1 0 1 0 0 0]); 

         
        dtheta2_du = sign(y1-y2)*(-1/sqrt(1-((x2-x1)/l)^2))*((x2-

x1)*(-1/l^2)*dl_du + (1/l)*[-1 0 1 0 0 0])... 
            + sign(y2-y3)*(1/sqrt(1-((x3-x2)/l2)^2))*((x3-x2)*(-

1/l2^2)*dl2_du + (1/l2)*[0 0 -1 0 1 0]); 
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        % Find the unit normal to the element. 
        n = (1/l)*[y1-y2;x2-x1]; 

  
        % Differentiate the unit normal with respect to the node 

positions. 
        dn_du = [y1-y2;x2-x1]*(-1/l^2)*dl_du + (1/l)*[0 1 0 -1 0 0;-

1 0 1 0 0 0]; 

  
        % Differentiate the bending force vector. 
        dFb_du = (1/l)*[k2*(theta2 - alpha2)*dn_du;k1*(theta1 - 

alpha1)*dn_du]... 
            + [n*k2*(theta2 - alpha2);n*k1*(theta1 - alpha1)]*(-

1/l^2)*dl_du... 
            + (1/l)*[n*k2*dtheta2_du;n*k1*dtheta1_du]; 

  
        % Add the differentiated bending forces to the stiffness 

matrix. 
        J_F_reac(2*(i-1)+1:2*(i-1)+4,2*(i-1)+1:2*(i-1)+6) = 

J_F_reac(2*(i-1)+1:2*(i-1)+4,2*(i-1)+1:2*(i-1)+6) + dFb_du; 

     
    % Deal with the last element. 
    elseif i == size(link_lengths,1) 
        % Assign names to the node positions. 
        x0 = node_posns(i-1,1); 
        y0 = node_posns(i-1,2); 
        x1 = node_posns(i,1); 
        y1 = node_posns(i,2); 
        x2 = node_posns(i+1,1); 
        y2 = node_posns(i+1,2); 

         
        % Assign names to the element lengths. 
        l0 = link_lengths(i-1,1); 
        l = link_lengths(i,1); 

  
        % Differentiate the element lengths. 
        dl_du = (1/l)*((x2-x1)*[0 0 -1 0 1 0] + (y2-y1)*[0 0 0 -1 0 

1]); 
        dl0_du = (1/l0)*((x1-x0)*[-1 0 1 0 0 0] + (y1-y0)*[0 -1 0 1 

0 0]); 

  
        % Calculate theta, the angles between the element and the 

previous 
        % and next elements. 
        %theta1 = acos((x1 - x0)/l0) + pi - acos((x2 - x1)/l); 
        %theta2 = acos((x2 - x1)/l); 

         
        theta1 = sign(y0-y1)*acos((x1 - x0)/l0) + pi - sign(y1-

y2)*acos((x2 - x1)/l); 
        theta2 = sign(y1-y2)*acos((x2 - x1)/l); 

  
        % Differentiate theta. 
        %dtheta1_du = (-1/sqrt(1-((x1-x0)/l0)^2))*((x1-x0)*(-

1/l0^2)*dl0_du + (1/l0)*[-1 0 1 0 0 0])... 
        %    + (1/sqrt(1-((x2-x1)/l)^2))*((x2-x1)*(-1/l^2)*dl_du + 

(1/l)*[0 0 -1 0 1 0]); 

  
        %dtheta2_du = (-1/sqrt(1-((x2-x1)/l)^2))*((x2-x1)*(-

1/l^2)*dl_du + (1/l)*[0 0 -1 0 1 0]); 
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        dtheta1_du = sign(y0-y1)*(-1/sqrt(1-((x1-x0)/l0)^2))*((x1-

x0)*(-1/l0^2)*dl0_du + (1/l0)*[-1 0 1 0 0 0])... 
            + sign(y1-y2)*(1/sqrt(1-((x2-x1)/l)^2))*((x2-x1)*(-

1/l^2)*dl_du + (1/l)*[0 0 -1 0 1 0]); 

  
        dtheta2_du = sign(y1-y2)*(-1/sqrt(1-((x2-x1)/l)^2))*((x2-

x1)*(-1/l^2)*dl_du + (1/l)*[0 0 -1 0 1 0]); 

  
        % Find the unit normal to the element. 
        n = (1/l)*[y1-y2;x2-x1]; 

  
        % Differentiate the unit normal with respect to the node 

positions. 
        dn_du = [y1-y2;x2-x1]*(-1/l^2)*dl_du + (1/l)*[0 0 0 1 0 -1;0 

0 -1 0 1 0]; 

  
        % Differentiate the bending force vector. 
        dFb_du = (1/l)*[k2*(theta2 - alpha2)*dn_du;k1*(theta1 - 

alpha1)*dn_du]... 
            + [n*k2*(theta2 - alpha2);n*k1*(theta1 - alpha1)]*(-

1/l^2)*dl_du... 
            + (1/l)*[n*k2*dtheta2_du;n*k1*dtheta1_du]; 

         
        % Add the differentiated bending forces to the stiffness 

matrix. 
        J_F_reac(2*(i-1)+1:2*(i-1)+4,2*(i-1)-1:2*(i-1)+4) = 

J_F_reac(2*(i-1)+1:2*(i-1)+4,2*(i-1)-1:2*(i-1)+4) + dFb_du; 

     
    % Deal with all other elements. 
    else 
        % Assign names to the node positions. 
        x0 = node_posns(i-1,1); 
        y0 = node_posns(i-1,2); 
        x1 = node_posns(i,1); 
        y1 = node_posns(i,2); 
        x2 = node_posns(i+1,1); 
        y2 = node_posns(i+1,2); 
        x3 = node_posns(i+2,1); 
        y3 = node_posns(i+2,2); 

         
        % Assign names to the element lengths. 
        l0 = link_lengths(i-1,1); 
        l = link_lengths(i,1); 
        l2 = link_lengths(i+1,1); 

  
        % Differentiate the element lengths. 
        dl_du = (1/l)*((x2-x1)*[0 0 -1 0 1 0 0 0] + (y2-y1)*[0 0 0 -

1 0 1 0 0]); 
        dl0_du = (1/l0)*((x1-x0)*[-1 0 1 0 0 0 0 0] + (y1-y0)*[0 -1 

0 1 0 0 0 0]); 
        dl2_du = (1/l2)*((x3-x2)*[0 0 0 0 -1 0 1 0] + (y3-y2)*[0 0 0 

0 0 -1 0 1]); 

  
        % Calculate theta, the angles between the element and the 

previous 
        % and next elements. 
        %theta1 = acos((x1 - x0)/l0) + pi - acos((x2 - x1)/l); 
        %theta2 = acos((x2 - x1)/l) + pi - acos((x3 - x2)/l2); 
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        theta1 = sign(y0-y1)*acos((x1 - x0)/l0) + pi - sign(y1-

y2)*acos((x2 - x1)/l); 
        theta2 = sign(y1-y2)*acos((x2 - x1)/l) + pi - sign(y2-

y3)*acos((x3 - x2)/l2); 

  
        % Differentiate theta. 
        %dtheta1_du = (-1/sqrt(1-((x1-x0)/l0)^2))*((x1-x0)*(-

1/l0^2)*dl0_du + (1/l0)*[-1 0 1 0 0 0 0 0])... 
        %    + (1/sqrt(1-((x2-x1)/l)^2))*((x2-x1)*(-1/l^2)*dl_du + 

(1/l)*[0 0 -1 0 1 0 0 0]); 

  
        %dtheta2_du = (-1/sqrt(1-((x2-x1)/l)^2))*((x2-x1)*(-

1/l^2)*dl_du + (1/l)*[0 0 -1 0 1 0 0 0])... 
        %    + (1/sqrt(1-((x3-x2)/l2)^2))*((x3-x2)*(-1/l2^2)*dl2_du 

+ (1/l2)*[0 0 0 0 -1 0 1 0]); 

  
        dtheta1_du = sign(y0-y1)*(-1/sqrt(1-((x1-x0)/l0)^2))*((x1-

x0)*(-1/l0^2)*dl0_du + (1/l0)*[-1 0 1 0 0 0 0 0])... 
            + sign(y1-y2)*(1/sqrt(1-((x2-x1)/l)^2))*((x2-x1)*(-

1/l^2)*dl_du + (1/l)*[0 0 -1 0 1 0 0 0]); 

  
        dtheta2_du = sign(y1-y2)*(-1/sqrt(1-((x2-x1)/l)^2))*((x2-

x1)*(-1/l^2)*dl_du + (1/l)*[0 0 -1 0 1 0 0 0])... 
            + sign(y2-y3)*(1/sqrt(1-((x3-x2)/l2)^2))*((x3-x2)*(-

1/l2^2)*dl2_du + (1/l2)*[0 0 0 0 -1 0 1 0]); 

             
        % Find the unit normal to the element. 
        n = (1/l)*[y1-y2;x2-x1]; 

  
        % Differentiate the unit normal with respect to the node 

positions. 
        dn_du = [y1-y2;x2-x1]*(-1/l^2)*dl_du + (1/l)*[0 0 0 1 0 -1 0 

0;0 0 -1 0 1 0 0 0]; 

  
        % Differentiate the bending force vector. 
        dFb_du = (1/l)*[k2*(theta2 - alpha2)*dn_du;k1*(theta1 - 

alpha1)*dn_du]... 
            + [n*k2*(theta2 - alpha2);n*k1*(theta1 - alpha1)]*(-

1/l^2)*dl_du... 
            + (1/l)*[n*k2*dtheta2_du;n*k1*dtheta1_du]; 

  
        % Add the differentiated bending forces to the stiffness 

matrix. 
        J_F_reac(2*(i-1)+1:2*(i-1)+4,2*(i-1)-1:2*(i-1)+6) = 

J_F_reac(2*(i-1)+1:2*(i-1)+4,2*(i-1)-1:2*(i-1)+6) + dFb_du; 
    end 
end 
%} 
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function [obj,cost_mat,energy_Wh,c_reinf] = 

obj_func(node_posns,num_meridians,L,p_zero,original_link_lengths,mat

_props_m,p_reinf_Nm,p_surf,p_ball,depth,rho_water,R,mat_props_c,alph

a,k,rho_ball) 
% Finds the value of the objective function. 

  
% Declare the global variables. 
global g 

  
% STORED ENERGY 

  
% Find link lengths. 
link_lengths = ((node_posns(2:end,1)-node_posns(1:end-1,1)).^2 + 

(node_posns(2:end,2)-node_posns(1:end-1,2)).^2).^0.5; 

  
% Find positions of link centrepoints. 
centres = 0.5*(node_posns(2:end,:)+node_posns(1:end-1,:)); 

  
% Find enclosed volume. 
Vbag = sum(2*pi*centres(:,1).*centres(:,2).*(node_posns(2:end,1)-

node_posns(1:end-1,1))); 

  
% Calculate the contained air pressure (absolute). 
p_air = p_zero + rho_water*g*depth + 1e5; 

  
% Calculate the stored energy in Joules and Wh, assuming isothermal 
% expansion to atmospheric pressure. 
energy_J = Vbag*p_air*log(p_air/1e5); 
energy_Wh = energy_J/3600; 

  
% MATERIAL COST 

  
% Find surface area and cost of surface material - deformed lengths 

are 
% used because the surface material should not stretch before the 
% reinforcements do. 
A_surf = 2*pi*centres(:,1)'*link_lengths; 
c_surf = A_surf*p_surf; 

  
% Find mass of ballast required and cost of ballast. 
M_air = 0.02897; 
R_const = 8.314472; 
T_K = 5 + 273.15; 
rho_air = p_air*M_air/(R_const*T_K); 
V_ball = (rho_water-rho_air)*Vbag/(rho_ball-rho_water); 
m_ball = rho_ball*V_ball; 
c_ball = m_ball*p_ball; 

  
% Find cost of structural reinforcement. 
[F_reac,Tm,Tc,Fb_tot] = 

find_F_reac(link_lengths,original_link_lengths,mat_props_m,node_posn

s,R,mat_props_c,alpha,k); 
Fd = sum(Tm.*link_lengths)*num_meridians + 

sum(2*pi*node_posns(:,1).*Tc); 
c_reinf = Fd*p_reinf_Nm; 

  
% Sum the costs to find the total cost of materials. 
cost_mat = c_reinf + c_surf + c_ball; 
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% OBJECTIVE FUNCTION 

  
% Calculate the objective function value, cost of bag materials per 

unit of 
% energy stored, in £/MWh. 
obj = (cost_mat)/(energy_Wh/1e6); 
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C. Matlab Code for 3D FEA 
 

 
clear 

  
% Declare the global variables. 
global depth T M rho_ext p0; 
global R g p_int; 

  
M = 0.02897; % Molar mass of stored gas. 
R = 8.314472; % Universal gas constant. 
rho_ext = 1025; % Density of external fluid. 
g = 9.81; % Standard gravity. 

  
prompt = {'Meridional length (m):' 
    'Lower bulkhead radius (m):' 
    'Upper bulkhead radius (m):' 
    'Upper bulkhead mass (kg):' 
    'Number of tendons:' 
    'Depth of base (m):' 
    'Differential pressure at base (Pa):' 
    'Stored air temperature (C):'}; 
dlg_title = 'Input for bag details'; 
num_lines = 1; 
def = {'2.1628','0.09843','0.09843','5.502','36','500','1e5','5'}; % 

1.8m prototype defaults 
%def = {'6.5556','0','0','0','48','500','2.78e5','5'}; % 5m 

prototype defaults 
answer = inputdlg(prompt,dlg_title,num_lines,def); 

  
L_m = str2num(answer{1}); 
r_lo = str2num(answer{2}); 
r_up = str2num(answer{3}); 
m_bh = str2num(answer{4}); 
no_of_lobes = str2num(answer{5}); 
depth = str2num(answer{6}); 
p0 = str2num(answer{7}); 
T = 273.15 + str2num(answer{7}); 

  
prompt = {'Stiffness of tendons (GPa):' 
    'Tendon diameter (mm):' 
    'Tendon density (kg/m^3):' 
    'Tendon shortening percentage:' 
    'Siffness of membrane (GPa):' 
    'Poissons ratio of membrane:' 
    'Membrane thickness (mm):' 
    'Membrane density (kg/m^3):' 
    'Round (0) or straight (1) lobe ends:'}; 
dlg_title = 'Input for material details'; 
num_lines = 1; 
def = 

{'2.5532','7','1400','96.46','0.29367','0.4','0.4089','1440','0'}; % 

1.8m prototype defaults 
%def = 

{'0.38936','9.7','1400','96.46','0.29367','0.4','0.4089','1440','0'}

; % 5m prototype defaults (Tendon strength : 808MPa) 
answer = inputdlg(prompt,dlg_title,num_lines,def); 

  
E_ten = 1e9*str2num(answer{1}); 
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D_ten = 1e-3*str2num(answer{2}); 
rho_ten = str2num(answer{3}); 
fac = 1e-2*str2num(answer{4}); 
E_mem = 1e9*str2num(answer{5}); 
poi = str2num(answer{6}); 
t = 1e-3*str2num(answer{7}); 
rho_mem = str2num(answer{8}); 
str_ends = str2num(answer{9}); 

  

  
prompt = {'Number of meridional nodes in a lobe' 
    'Number of circumferential nodes in a half-lobe'}; 
dlg_title = 'Input for mesh details:'; 
num_lines = 1; 
def = {'24','8'}; 
answer = inputdlg(prompt,dlg_title,num_lines,def); 
nn_m = str2num(answer{1}); 
no_of_radii = str2num(answer{2}); 

  

  

  
% start_p = [0.01,0.5]; 
% end_p = [1,0]; 
% int_points = zeros(nn_m,2); 
% for i = 1:nn_m 
%     int_points(i,:) = start_p + i*(end_p-start_p)/(nn_m+1); 
% end 
% line_definition = [start_p;int_points;end_p]; 

  

  
h0 = 0; 
start_p = [r_up,h0]; 
end_p = [r_up+(L_m/2)*cos(asin(h0/L_m)),h0/2]; 
int_points = zeros(nn_m,2); 
for i = 1:nn_m 
    int_points(i,:) = start_p + i*(end_p-start_p)/(nn_m+1); 
end 
line_definition = [start_p;int_points;end_p]; 

  
% Add the lower half of the meridian. 
int_points = zeros(nn_m,2); 
for i = 1:nn_m 
    int_points(i,:) = end_p + i*([r_lo,0]-end_p)/(nn_m+1); 
end 
line_definition = [line_definition;int_points;[r_lo,0]]; 

  
node_posns = line_definition; 

  

  
[q0,e_ind,f_ind,num_ax_links,num_circ_links,num_dia_links] = ... 
        

flat_half_lobe_gen(node_posns,no_of_lobes,no_of_radii,str_ends); 

  
% Generate the constraints matrix. 
constraints_mat = gen_T(no_of_radii,line_definition,no_of_lobes,q0); 

  
% if r_up == 0 
%     [q0,e_ind,f_ind,num_ax_links,num_circ_links,num_dia_links] = 

... 
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%         

flat_half_lobe_gen(node_posns,no_of_lobes,no_of_radii,str_ends); 
%      
%     centre = [0;0;line_definition(1,2)]; 
%     line_definition(1,:) = []; 
%      
%     % Generate the constraints matrix. 
%     constraints_mat = 

T_constrain_end_and_lobe_edge_nodes(no_of_radii,line_definition,no_o

f_lobes); 
% elseif r_up > 0 
%     [q0,e_ind,f_ind,num_ax_links,num_circ_links,num_dia_links] = 

... 
%         

flat_half_lobe_gen_upp_bh(node_posns,no_of_lobes,no_of_radii); 
%      
%     % Generate the constraints matrix. 
%     [constraints_mat,Tee_unf] = 

T_upp_bh(no_of_radii,line_definition,no_of_lobes); 
% else 
%     error('Upper radius cannot be negative.') 
% end 

  
% Let all faces be membrane elements. 
mem_ind = f_ind; 

  
% Set the current node positions (q) to the initial node positions 

(q0). 
q = q0; 

  

  
%h0 = (L_m+r_up+r_lo)/2; 
h0 = 0.001; 
start_p = [r_up,h0]; 
end_p = [r_up+(L_m/2)*cos(asin(h0/L_m)),h0/2]; 
int_points = zeros(nn_m,2); 
for i = 1:nn_m 
    int_points(i,:) = start_p + i*(end_p-start_p)/(nn_m+1); 
end 
line_definition = [start_p;int_points;end_p]; 

  
% Add the lower half of the meridian. 
int_points = zeros(nn_m,2); 
for i = 1:nn_m 
    int_points(i,:) = end_p + i*([r_lo,0]-end_p)/(nn_m+1); 
end 
line_definition = [line_definition;int_points;[r_lo,0]]; 

  
node_posns = line_definition; 

  

  
[q,e_ind,f_ind,num_ax_links,num_circ_links,num_dia_links] = ... 
        

flat_half_lobe_gen(node_posns,no_of_lobes,no_of_radii,str_ends); 

  
% if r_up == 0 && r_lo == 0 
%     [q,e_ind,f_ind,num_ax_links,num_circ_links,num_dia_links] = 

... 
%         flat_half_lobe_gen(node_posns,no_of_lobes,no_of_radii); 
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% elseif r_up > 0 && r_lo == 0 
%     [q,e_ind,f_ind,num_ax_links,num_circ_links,num_dia_links] = 

... 
%         

flat_half_lobe_gen_upp_bh(node_posns,no_of_lobes,no_of_radii); 
% elseif r_up == 0 && r_lo > 0 
%     [q,e_ind,f_ind,num_ax_links,num_circ_links,num_dia_links] = 

... 
%         

flat_half_lobe_gen_low_bh(node_posns,no_of_lobes,no_of_radii); 
% elseif r_up > 0 && r_lo > 0 
%     [q,e_ind,f_ind,num_ax_links,num_circ_links,num_dia_links] = 

... 
%         

flat_half_lobe_gen_2_bh(node_posns,no_of_lobes,no_of_radii); 
% else 
%     error('A bulkhead radius cannot be negative.') 
% end 

  
% Calculate the internal fluid (gauge) pressure. 
p_int = (p0 + rho_ext*g*depth)*ones(size(f_ind,1),1); 

  
% Plot a full lobe in the undeformed configuration. 
posns = q0; 
trisurf(f_ind,posns(:,2),posns(:,3),posns(:,4)) 
hold on 
trisurf(f_ind,posns(:,2),-posns(:,3),posns(:,4)) 
hold off 
axis equal 

  
pause(0.0001) 

  
% Set prestress, Young's Modulus (E), and diameter (d) of axial 

links. 
stress_pre_ax = 0*ones(num_ax_links,1); 

  
% Upper and lower bulkhead. 
if r_up > 0 && r_lo > 0 
    E_ax = [zeros((no_of_radii-1)*(size(line_definition,1)-

1),1);E_ten*ones(size(line_definition,1)-1,1)]; 
    d_ax = [zeros((no_of_radii-1)*(size(line_definition,1)-

1),1);D_ten*ones(size(line_definition,1)-1,1)]; 

  
% No bulkhead. 
elseif r_up == 0 && r_lo == 0 
    E_ax = [zeros((no_of_radii-1)*(size(line_definition,1)-

3),1);E_ten*ones((size(line_definition,1)-3),1);zeros(no_of_radii-

1,1);E_ten;zeros(no_of_radii-1,1);E_ten]; 
    d_ax = [zeros((no_of_radii-1)*(size(line_definition,1)-

3),1);D_ten*ones((size(line_definition,1)-3),1);zeros(no_of_radii-

1,1);D_ten;zeros(no_of_radii-1,1);D_ten]; 

  
% Just one bulkhead. 
elseif (r_up == 0 && r_lo > 0) || (r_up > 0 && r_lo == 0) 
    E_ax = [zeros((no_of_radii-1)*(size(line_definition,1)-

2),1);E_ten*ones((size(line_definition,1)-2),1);zeros(no_of_radii-

1,1);E_ten]; 
    d_ax = [zeros((no_of_radii-1)*(size(line_definition,1)-

2),1);D_ten*ones((size(line_definition,1)-2),1);zeros(no_of_radii-

1,1);D_ten]; 
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end 

  
% Set prestress, E, and d of circumferential links. 
stress_pre_circ = 0*ones(num_circ_links,1); 
E_circ = 0*ones(num_circ_links,1); 
d_circ = 0*ones(num_circ_links,1); 
if r_up > 0 
    for i = 1:size(line_definition,1):(no_of_radii-

1)*size(line_definition,1) 
        E_circ(i,1) = E_ten; % Model a cable running along the top 

edge of the lobe. 
        d_circ(i,1) = D_ten; 
    end 
end 
if r_lo > 0 
    for i = 

size(line_definition,1):size(line_definition,1):(no_of_radii-

1)*size(line_definition,1) 
        E_circ(i,1) = E_ten; % Model a cable running along the 

bottom edge of the lobe. 
        d_circ(i,1) = D_ten; 
    end 
end 
%d_circ = D_ten*ones(num_circ_links,1); 

  
% Set prestress, E, and d of diagonal links. 
stress_pre_dia = 0*ones(num_dia_links,1); 
E_dia = 0*ones(num_dia_links,1); 
d_dia = zeros(num_dia_links,1); 
%d_dia = D_ten*ones(num_dia_links,1); 

  
% Concatenate prestress, E, and d for all the links. 
stress_pre = [stress_pre_ax;stress_pre_circ;stress_pre_dia]; 
E = [E_ax;E_circ;E_dia]; 
d = [d_ax;d_circ;d_dia]; 

  
% Calculate cross-sectional areas of links. 
A = pi.*(d./2).^2; 

  
% Set Young's Modulus of links in compression. 
E_comp = 1e-6*E; 

  
% Initialise L as an empty matrix. 
L = zeros(size(e_ind,1),1); 

  
% Find the original length (L) of each cable. 
for i = 1:size(e_ind,1) 
    % Assign node 1 to q1. 
    q1 = q0(e_ind(i,1),2:4); 

     
    % Assign node 2 to q2. 
    q2 = q0(e_ind(i,2),2:4); 

  
    % Calculate the length of each cable. 
    L(i,1) = norm(q1-q2); 
end 

  
% Shorten cables as appropriate. 
fac = (fac*(L_m+r_up+r_lo)-(r_up+r_lo))/L_m; 
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%fac = (0.90*(L_m+r_up+r_lo)-(r_up+r_lo))/L_m; 

  
if r_up > 0 && r_lo > 0 
    top = (no_of_radii-1)*(size(line_definition,1)-1)+1; 
    bot = no_of_radii*(size(line_definition,1)-1); 
    L(top:bot,1) = fac*L(top:bot,1); 
elseif r_up == 0 && r_lo == 0 
    top = (no_of_radii-1)*(size(line_definition,1)-3)+1; 
    bot = no_of_radii*(size(line_definition,1)-3); 
    L(top:bot,1) = fac*L(top:bot,1); 
    L(bot+no_of_radii,1) = fac*L(bot+no_of_radii,1); 
    L(bot+2*no_of_radii,1) = fac*L(bot+2*no_of_radii,1); 
elseif (r_up > 0 && r_lo == 0) || (r_up == 0 && r_lo > 0) 
    top = (no_of_radii-1)*(size(line_definition,1)-2)+1; 
    bot = no_of_radii*(size(line_definition,1)-2); 
    L(top:bot,1) = fac*L(top:bot,1); 
    L(bot+no_of_radii,1) = fac*L(bot+no_of_radii,1); 
end 

  
% Set the thickness of the membrane elements. 
t = t*ones(size(mem_ind,1),1); 

  
% Set the Young's Modulus of the membrane elements. 
%E_mem = 0.05e9*ones(size(mem_ind,1),1); % Rubber 
E_mem = E_mem*ones(size(mem_ind,1),1); % UHPV material 

  
% Set the Poisson's Ratio of the membrane elements. 
poi = poi*ones(size(mem_ind,1),1); % Rubber, UHPV material not yet 

known 

  
% Set the prestress in the membrane elements. 
stress_pre_mem = 

[1*ones(size(mem_ind,1),1),0*ones(size(mem_ind,1),2)]; 

  
% Calculate the areas of the membrane elements. 
S = zeros(size(mem_ind,1),1); 
for i = 1:size(mem_ind,1) 
    a = q0(mem_ind(i,2),2:4)' - q0(mem_ind(i,1),2:4)'; 
    b = q0(mem_ind(i,3),2:4)' - q0(mem_ind(i,1),2:4)'; 
    S(i,1) = 0.5*norm(cross(a,b)); 
end 

  
% Calculate the mass of the cable and membrane elements. 
cab_mass = rho_ten.*A.*L; 
mem_mass = rho_mem.*S.*t; 

  
% Form the matrix of cable properties. 
mat_props = [L,E,E_comp,A,stress_pre]; 

  

  
%-------------------------------------------------------------------

-- 
% SOLVE 

  
% Set the convergence criterion. 
conv_crit = 1e-6; 

  
% Set the load fraction to 1 (full load) and solve. 
load_frac = 1; 
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q = 

find_eqlbrm_posns(q,f_ind,e_ind,mat_props,load_frac,constraints_mat,

conv_crit,mem_ind,cab_mass,mem_mass,E_mem,poi,stress_pre_mem,t,q0,Te

e_unf,m_bh,line_definition,no_of_lobes,no_of_radii); 

  
% Set the prestress in the membrane elements to zero. 
stress_pre_mem = zeros(size(mem_ind,1),3); 

  

  

  
%-------------------------------------------------------------------

-- 
% GENERATE PLOTS 

  
% Surface plot a full lobe (and show Von-Mises stresses if correct 

code is used). 
posns = q; 
[~,~,~,~,~,stress_prin] = 

find_F_reac(q,e_ind,mat_props,mem_ind,E_mem,poi,stress_pre_mem,t,q0)

; 
stress_vm = zeros(size(stress_prin,1),1); 
for i = 1:size(stress_prin,1) 
    if (stress_prin(i,2) <= 0) && (stress_prin(i,1) > 0) % Uniaxial 

wrinkling. 
        stress_vm(i,1) = stress_prin(i,1); 
    elseif stress_prin(i,1) <= 0 % Biaxial wrinkling. 
        stress_vm(i,1) = 0; 
    else % No wrinkling. 
        stress_vm(i,1) = (stress_prin(i,1)^2-

stress_prin(i,1)*stress_prin(i,2)+stress_prin(i,2)^2)^0.5; 
    end 
end 
trisurf(f_ind,posns(:,2),posns(:,3),posns(:,4),stress_vm(:,1))%,'Edg

eColor','none') 
%trisurf(f_ind,posns(:,2),posns(:,3),posns(:,4),'EdgeColor','none') 
hold on 
trisurf(f_ind,posns(:,2),-

posns(:,3),posns(:,4),stress_vm(:,1))%,'EdgeColor','none') 
%trisurf(f_ind,posns(:,2),-posns(:,3),posns(:,4),'EdgeColor','none') 
hold off 
axis equal 
view(30,30) 
colorbar 
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function [undeformed_node_posns,links_indices,patches_indices,... 
    num_ax_links,num_circ_links,num_dia_links]... 
    = 

flat_half_lobe_gen(node_posns,no_of_lobes,no_of_radii,str_ends) 

  
meridian = node_posns; 
line_definition = node_posns; 
x = meridian(:,1); 
z = meridian(:,2); 

  
% Calculate alpha, the angle subtended by one set of meridional 

nodes. 
alpha = (pi/no_of_lobes)/(no_of_radii-1); 

  
% Create the list of undeformed node positions. 
undeformed_node_posns = zeros(0,4); 

  
r_up = meridian(1,1); 
r_lo = meridian(end,1); 

  
% Set the upper node coordinates if there's no upper bulkhead. 
if r_up == 0 
    up = [1000,0,0,z(1)]; 
end 

  
% Set the lower node coordinates if there's no lower bulkhead. 
if r_lo == 0 
    lo = [9999,0,0,z(end)]; 
end 

  
% Upper and lower bulkheads. 
if r_up > 0 && r_lo > 0 
    for i = 0:no_of_radii-1 
        if str_ends == 0 
            top = 

[1000*(i+1)+1,x(1)*cos(i*alpha),x(1)*sin(i*alpha),z(1)]; 
            bottom = 

[1000*(i+1)+size(meridian,1),x(end)*cos(i*alpha),x(end)*sin(i*alpha)

,z(end)]; 
            undeformed_node_posns = 

[undeformed_node_posns;top;1000*(i+1)+(2:size(meridian,1)-

1)',x(2:end-1)*cos(i*alpha),x(2:end-1)*sin(i*alpha),z(2:end-

1);bottom]; % Curved end 
        else 
            top = [1000*(i+1)+1,x(1),x(1)*tan(i*alpha),z(1)]; 
            bottom = 

[1000*(i+1)+size(meridian,1),x(end),x(end)*tan(i*alpha),z(end)]; 
            undeformed_node_posns = 

[undeformed_node_posns;top;1000*(i+1)+(2:size(meridian,1)-

1)',x(2:end-1),x(2:end-1)*tan(i*alpha),z(2:end-1);bottom]; % 

Straight end 
        end 
    end 

     
% No bulkheads. 
elseif r_up == 0 && r_lo == 0 
    for i = 0:no_of_radii-1 
        undeformed_node_posns = 

[undeformed_node_posns;1000*(i+1)+(1:size(meridian,1)-2)',x(2:end-

1)*cos(i*alpha),x(2:end-1)*sin(i*alpha),z(2:end-1)]; 
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    end 

     
    undeformed_node_posns = [undeformed_node_posns;up;lo]; 

  
% Upper bulkhead only. 
elseif r_up > 0 && r_lo == 0 
    for i = 0:no_of_radii-1 
        if str_ends == 0 
            top = 

[1000*(i+1)+1,x(1)*cos(i*alpha),x(1)*sin(i*alpha),z(1)]; 
            undeformed_node_posns = 

[undeformed_node_posns;top;1000*(i+1)+(2:size(meridian,1)-

1)',x(2:end-1)*cos(i*alpha),x(2:end-1)*sin(i*alpha),z(2:end-1)]; % 

Curved end 
        else 
            top = [1000*(i+1)+1,x(1),x(1)*tan(i*alpha),z(1)]; 
            undeformed_node_posns = 

[undeformed_node_posns;top;1000*(i+1)+(2:size(meridian,1)-

1)',x(2:end-1),x(2:end-1)*tan(i*alpha),z(2:end-1)]; % Straight end 
        end 
    end 

     
    undeformed_node_posns = [undeformed_node_posns;lo]; 

     
% Lower bulkhead only. 
elseif r_up == 0 && r_lo > 0 
    for i = 0:no_of_radii-1         
        if str_ends == 0 
            bottom = [1000*(i+1)+size(meridian,1)-

1,x(end)*cos(i*alpha),x(end)*sin(i*alpha),z(end)]; 
            undeformed_node_posns = 

[undeformed_node_posns;1000*(i+1)+(1:size(meridian,1)-2)',x(2:end-

1)*cos(i*alpha),x(2:end-1)*sin(i*alpha),z(2:end-1);bottom]; % Curved 

end 
        else 
            bottom = [1000*(i+1)+size(meridian,1)-

1,x(end),x(end)*tan(i*alpha),z(end)]; 
            undeformed_node_posns = 

[undeformed_node_posns;1000*(i+1)+(1:size(meridian,1)-2)',x(2:end-

1),x(2:end-1)*tan(i*alpha),z(2:end-1);bottom]; % Straight end 
        end 
    end 

     
    undeformed_node_posns = [undeformed_node_posns;up]; 

  
% Error message if a bulkhead radius is negative. 
else 
    error('Bulkhead radii cannot be negative.') 
end 

  
% Create the mesh. 
[links_indices,patches_indices,num_ax_links,num_circ_links,num_dia_l

inks] = 

create_lobe_mesh(no_of_radii,line_definition,no_of_lobes,r_up,r_lo,u

ndeformed_node_posns); 
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function 

[links_indices,patches_indices,num_ax_links,num_circ_links,num_dia_l

inks] = 

create_lobe_mesh(no_of_radii,line_definition,no_of_lobes,r_up,r_lo,u

ndeformed_node_posns) 

  

  
if r_up == 0 
    line_definition(1,:) = []; 
end 
if r_lo == 0 
    line_definition(end,:) = []; 
end 

  

  
%  LINKS 

  
% Create axial links. 
ax_node_1 = zeros(0,1); 
ax_node_2 = zeros(0,1); 
for i = 1:no_of_radii 
    ax_node_1 = [ax_node_1;ones(size(line_definition,1)-1,1)*(i-

1)*size(line_definition,1) + (1:size(line_definition,1)-1)']; 
    ax_node_2 = [ax_node_2;ones(size(line_definition,1)-1,1)*(i-

1)*size(line_definition,1) + (2:size(line_definition,1))']; 
end 

  
% Axial links connecting to the centre (node_1 here). 
if r_up == 0 && r_lo == 0 
    ax_node_1 = 

[ax_node_1;ones(no_of_radii,1)*(size(undeformed_node_posns,1)-1)]; 
    ax_node_2 = 

[ax_node_2;(1:size(line_definition,1):no_of_radii*size(line_definiti

on,1))']; 

     
    ax_node_1 = 

[ax_node_1;ones(no_of_radii,1)*(size(undeformed_node_posns,1))]; 
    ax_node_2 = 

[ax_node_2;(size(line_definition,1):size(line_definition,1):no_of_ra

dii*size(line_definition,1))']; 
end 
if r_up == 0 && r_lo > 0 
    ax_node_1 = 

[ax_node_1;ones(no_of_radii,1)*size(undeformed_node_posns,1)]; 
    ax_node_2 = 

[ax_node_2;(1:size(line_definition,1):no_of_radii*size(line_definiti

on,1))']; 
end 
if r_up > 0 && r_lo == 0 
    ax_node_1 = 

[ax_node_1;ones(no_of_radii,1)*(size(undeformed_node_posns,1))]; 
    ax_node_2 = 

[ax_node_2;(size(line_definition,1):size(line_definition,1):no_of_ra

dii*size(line_definition,1))']; 
end 

  
ax_nodes = [ax_node_1,ax_node_2]; 
num_ax_links = size(ax_nodes,1); 
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% Create circumferential links. 
circ_node_1 = zeros(0,1); 
circ_node_2 = zeros(0,1); 
for i = 1:no_of_radii-1 
    circ_node_1 = [circ_node_1;(1+(i-

1)*size(line_definition,1):i*size(line_definition,1))']; 
    circ_node_2 = 

[circ_node_2;(1+i*size(line_definition,1):(i+1)*size(line_definition

,1))']; 
end 

  
circ_nodes = [circ_node_1,circ_node_2]; 
num_circ_links = size(circ_nodes,1); 

  

  
% Create diagonal links (i.e. triangulate the quads). 
dia_node_1 = zeros(0,1); 
dia_node_2 = zeros(0,1); 
for i = 1:2:no_of_radii-1 
    for j = 1:2:size(line_definition,1)-1 
        dia_node_1 = [dia_node_1;j+(i-1)*size(line_definition,1)]; 
        dia_node_2 = [dia_node_2;(j+1)+i*size(line_definition,1)]; 
    end 

     
    for j = 2:2:size(line_definition,1)-1 
        dia_node_1 = [dia_node_1;j+i*size(line_definition,1)]; 
        dia_node_2 = [dia_node_2;(j+1)+(i-

1)*size(line_definition,1)]; 
    end     
end 

  
for i = 2:2:no_of_radii-1 
    for j = 2:2:size(line_definition,1)-1 
        dia_node_1 = [dia_node_1;j+(i-1)*size(line_definition,1)]; 
        dia_node_2 = [dia_node_2;(j+1)+i*size(line_definition,1)]; 
    end 

     
    for j = 1:2:size(line_definition,1)-1 
        dia_node_1 = [dia_node_1;j+i*size(line_definition,1)]; 
        dia_node_2 = [dia_node_2;(j+1)+(i-

1)*size(line_definition,1)]; 
    end     
end 

  
dia_nodes = [dia_node_1,dia_node_2]; 
num_dia_links = size(dia_nodes,1); 

  
links_indices = [ax_nodes;circ_nodes;dia_nodes]; 

  

  

  
% PATCHES 

  
patches_node_1 = zeros(0,1); 
patches_node_2 = zeros(0,1); 
patches_node_3 = zeros(0,1); 
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for i = 1:2:no_of_radii-1 
    for j = 1:2:size(line_definition,1)-1 
        patches_node_1 = [patches_node_1;j+(i-

1)*size(line_definition,1)]; 
        patches_node_2 = [patches_node_2;(j+1)+(i-

1)*size(line_definition,1)]; 
        patches_node_3 = 

[patches_node_3;(j+1)+i*size(line_definition,1)]; 

         
        patches_node_1 = [patches_node_1;j+(i-

1)*size(line_definition,1)]; 
        patches_node_2 = 

[patches_node_2;(j+1)+i*size(line_definition,1)]; 
        patches_node_3 = 

[patches_node_3;j+i*size(line_definition,1)]; 
    end 

     
    for j = 2:2:size(line_definition,1)-1 
        patches_node_1 = 

[patches_node_1;j+i*size(line_definition,1)]; 
        patches_node_2 = [patches_node_2;j+(i-

1)*size(line_definition,1)]; 
        patches_node_3 = [patches_node_3;(j+1)+(i-

1)*size(line_definition,1)]; 

         
        patches_node_1 = 

[patches_node_1;j+i*size(line_definition,1)]; 
        patches_node_2 = [patches_node_2;(j+1)+(i-

1)*size(line_definition,1)]; 
        patches_node_3 = 

[patches_node_3;(j+1)+i*size(line_definition,1)]; 
    end     
end 

  
for i = 2:2:no_of_radii-1 
    for j = 2:2:size(line_definition,1)-1 
        patches_node_1 = [patches_node_1;j+(i-

1)*size(line_definition,1)]; 
        patches_node_2 = [patches_node_2;(j+1)+(i-

1)*size(line_definition,1)]; 
        patches_node_3 = 

[patches_node_3;(j+1)+i*size(line_definition,1)]; 

         
        patches_node_1 = [patches_node_1;j+(i-

1)*size(line_definition,1)]; 
        patches_node_2 = 

[patches_node_2;(j+1)+i*size(line_definition,1)]; 
        patches_node_3 = 

[patches_node_3;j+i*size(line_definition,1)]; 

         
    end 

     
    for j = 1:2:size(line_definition,1)-1 
        patches_node_1 = 

[patches_node_1;j+i*size(line_definition,1)]; 
        patches_node_2 = [patches_node_2;j+(i-

1)*size(line_definition,1)]; 
        patches_node_3 = [patches_node_3;(j+1)+(i-

1)*size(line_definition,1)]; 
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        patches_node_1 = 

[patches_node_1;j+i*size(line_definition,1)]; 
        patches_node_2 = [patches_node_2;(j+1)+(i-

1)*size(line_definition,1)]; 
        patches_node_3 = 

[patches_node_3;(j+1)+i*size(line_definition,1)]; 
    end     
end 

  
% Central patches at the top and bottom of the bag. 
if r_up == 0 && r_lo == 0 
    % Top. 
    patches_node_1 = [patches_node_1;ones(no_of_radii-

1,1)*(size(undeformed_node_posns,1)-1)]; 
    patches_node_2 = 

[patches_node_2;(1:size(line_definition,1):(no_of_radii-

1)*size(line_definition,1))']; 
    patches_node_3 = 

[patches_node_3;(1+size(line_definition,1):size(line_definition,1):n

o_of_radii*size(line_definition,1))']; 

     
    % Bottom. 
    patches_node_1 = [patches_node_1;ones(no_of_radii-

1,1)*size(undeformed_node_posns,1)]; 
    patches_node_2 = 

[patches_node_2;(2*size(line_definition,1):size(line_definition,1):n

o_of_radii*size(line_definition,1))']; 
    patches_node_3 = 

[patches_node_3;(size(line_definition,1):size(line_definition,1):(no

_of_radii-1)*size(line_definition,1))']; 
end 

  
% Central patches at the top of the bag. 
if r_up == 0 && r_lo > 0 
    patches_node_1 = [patches_node_1;ones(no_of_radii-

1,1)*(size(undeformed_node_posns,1))]; 
    patches_node_2 = 

[patches_node_2;(1:size(line_definition,1):(no_of_radii-

1)*size(line_definition,1))']; 
    patches_node_3 = 

[patches_node_3;(1+size(line_definition,1):size(line_definition,1):n

o_of_radii*size(line_definition,1))']; 
end 

  
% Central patches at the bottom of the bag. 
if r_up > 0 && r_lo == 0 
    patches_node_1 = [patches_node_1;ones(no_of_radii-

1,1)*size(undeformed_node_posns,1)]; 
    patches_node_2 = 

[patches_node_2;(2*size(line_definition,1):size(line_definition,1):n

o_of_radii*size(line_definition,1))']; 
    patches_node_3 = 

[patches_node_3;(size(line_definition,1):size(line_definition,1):(no

_of_radii-1)*size(line_definition,1))']; 
end 

  
patches_indices = [patches_node_1,patches_node_2,patches_node_3]; 
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function [Tee] = 

gen_T(no_of_radii,line_definition,no_of_lobes,undeformed_node_posns) 

  
% Initialise C as a matrix of zeros. 
C = zeros(3*size(undeformed_node_posns,1),3); 

  
% Calculate the angle subtended by half of one lobe. 
theta = pi/no_of_lobes; 

  
r_up = line_definition(1,1); 
r_lo = line_definition(end,1); 

  
% 2 bulkheads. 
if r_up > 0 && r_lo > 0 
    % Allow movement of nodes on x-axis in x and z. 
    C(4:3:3*size(line_definition,1)-5,1) = 1; % Allow movement in x. 
    C(3:3:3*size(line_definition,1)-3,3) = 1; % Allow movement in z. 

  
    % Only allow movement of nodes on upper bulkhead in z. 
    C(3:3*size(line_definition,1):3*(no_of_radii-

1)*size(line_definition,1)+3,3) = 1; 

     
    % Allow movement of all interior nodes in x, y, and z. 
    for i = 2:no_of_radii-1 
        C(3*(i-

1)*size(line_definition,1)+4:3:3*i*size(line_definition,1)-5,1) = 1; 
        C(3*(i-

1)*size(line_definition,1)+5:3:3*i*size(line_definition,1)-4,2) = 1; 
        C(3*(i-

1)*size(line_definition,1)+6:3:3*i*size(line_definition,1)-3,3) = 1; 
    end 

         
    % Allow in-plane movement of nodes on tendon apart from top and 
    % bottom nodes. 
    C(3*(no_of_radii-

1)*size(line_definition,1)+4:3:3*no_of_radii*size(line_definition,1)

-5,1) = cos(theta); 
    C(3*(no_of_radii-

1)*size(line_definition,1)+4:3:3*no_of_radii*size(line_definition,1)

-5,2) = sin(theta); 
    C(3*(no_of_radii-

1)*size(line_definition,1)+6:3:3*no_of_radii*size(line_definition,1)

-3,3) = 1; 

     
% No bulkheads. 
elseif r_up == 0 && r_lo == 0 
    % Allow movement of top node in z. 
    C(end-3,3) = 1; 

     
    line_definition(1,:) = []; 
    line_definition(end,:) = []; 

         
    % Allow movement of nodes on x-axis in x and z. 
    C(1:3:3*size(line_definition,1)-2,1) = 1; % Allow movement in x. 
    C(3:3:3*size(line_definition,1),3) = 1; % Allow movement in z. 

  
    % Allow movement of all interior nodes in x, y, and z. 
    for i = 2:no_of_radii-1 
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        C(3*(i-

1)*size(line_definition,1)+1:3:3*i*size(line_definition,1)-2,1) = 1; 
        C(3*(i-

1)*size(line_definition,1)+2:3:3*i*size(line_definition,1)-1,2) = 1; 
        C(3*(i-

1)*size(line_definition,1)+3:3:3*i*size(line_definition,1),3) = 1; 
    end 

     
    % Allow in-plane movement of nodes on tendon apart from top and 
    % bottom nodes. 
    C(3*(no_of_radii-

1)*size(line_definition,1)+1:3:3*no_of_radii*size(line_definition,1)

-2,1) = cos(theta); 
    C(3*(no_of_radii-

1)*size(line_definition,1)+1:3:3*no_of_radii*size(line_definition,1)

-2,2) = sin(theta); 
    C(3*(no_of_radii-

1)*size(line_definition,1)+3:3:3*no_of_radii*size(line_definition,1)

,3) = 1; 

     
% Only a lower bulkhead. 
elseif r_up == 0 && r_lo > 0 
    % Allow movement of top node in z. 
    C(end,3) = 1; 

     
    % Remove the top node from line_definition. 
    line_definition(1,:) = []; 

     
    % Allow movement of nodes on x-axis in x and z. 
    C(1:3:3*size(line_definition,1)-5,1) = 1; % Allow movement in x. 
    C(3:3:3*size(line_definition,1)-3,3) = 1; % Allow movement in z. 

  
    % Allow movement of all interior nodes in x, y, and z. 
    for i = 2:no_of_radii-1 
        C(3*(i-

1)*size(line_definition,1)+1:3:3*i*size(line_definition,1)-5,1) = 1; 
        C(3*(i-

1)*size(line_definition,1)+2:3:3*i*size(line_definition,1)-4,2) = 1; 
        C(3*(i-

1)*size(line_definition,1)+3:3:3*i*size(line_definition,1)-3,3) = 1; 
    end 

         
    % Allow in-plane movement of nodes on tendon apart from bottom 

node. 
    C(3*(no_of_radii-

1)*size(line_definition,1)+1:3:3*no_of_radii*size(line_definition,1)

-5,1) = cos(theta); 
    C(3*(no_of_radii-

1)*size(line_definition,1)+1:3:3*no_of_radii*size(line_definition,1)

-5,2) = sin(theta); 
    C(3*(no_of_radii-

1)*size(line_definition,1)+3:3:3*no_of_radii*size(line_definition,1)

-3,3) = 1; 

  
% Only an upper bulkhead. 
elseif r_up > 0 && r_lo == 0 
    % Remove the bottom node from line_definition. 
    line_definition(end,:) = []; 

     
    % Allow movement of nodes on x-axis in x and z. 
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    C(4:3:3*size(line_definition,1)-2,1) = 1; % Allow movement in x. 
    C(3:3:3*size(line_definition,1),3) = 1; % Allow movement in z. 

     
    % Only allow movement of nodes on upper bulkhead in z. 
    C(3:3*size(line_definition,1):3*(no_of_radii-

1)*size(line_definition,1)+3,3) = 1; 

     
    % Allow movement of all interior nodes in x, y, and z. 
    for i = 2:no_of_radii-1 
        C(3*(i-

1)*size(line_definition,1)+4:3:3*i*size(line_definition,1)-2,1) = 1; 
        C(3*(i-

1)*size(line_definition,1)+5:3:3*i*size(line_definition,1)-1,2) = 1; 
        C(3*(i-

1)*size(line_definition,1)+6:3:3*i*size(line_definition,1),3) = 1; 
    end 

     
    % Allow in-plane movement of nodes on tendon apart from top 

node. 
    C(3*(no_of_radii-

1)*size(line_definition,1)+4:3:3*no_of_radii*size(line_definition,1)

-2,1) = cos(theta); 
    C(3*(no_of_radii-

1)*size(line_definition,1)+4:3:3*no_of_radii*size(line_definition,1)

-2,2) = sin(theta); 
    C(3*(no_of_radii-

1)*size(line_definition,1)+6:3:3*no_of_radii*size(line_definition,1)

,3) = 1; 
end 

  

  

  
% Form the constraints matrix Tee. 
Tee = sparse(size(C,1),size(C,1)); 

  
for i = 1:size(undeformed_node_posns,1) 
    Tee(3*(i-1)+1:3*(i-1)+3,3*(i-1)+1:3*(i-1)+3) = C(3*(i-1)+1:3*(i-

1)+3,:); 
end 

  
% Remove rows of zeros. 
for i = size(Tee,1):-1:1 
    if max(abs(Tee(i,:))) == 0 
        Tee(i,:) = []; 
    end 
end 

  
Tee = Tee'; 
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function [q] = 

find_eqlbrm_posns(q,f_ind,e_ind,mat_props,load_frac,constraints_mat,

conv_crit,mem_ind,cab_mass,mem_mass,E_mem,poi,stress_pre_mem,t,q0,Te

e_unf,m_bh,line_definition,no_of_lobes,no_of_radii) 
% Find the equilibrium positions. 

  
%-------------------------------------------------------------------

-- 
% FIND FORCE VECTORS AND CALCULATE RESIDUALS AND DIMENSIONLESS 

RESIDUALS. 

  
% Find the applied forces. 
[F_app,p,rho_int] = 

find_F_app(q,f_ind,e_ind,mem_ind,cab_mass,mem_mass,m_bh,no_of_lobes,

no_of_radii,line_definition); 

  
% Find the reaction forces. 
[F_reac,sum_T,l,stress_cab,strain_cab] = 

find_F_reac_cont(q,e_ind,mat_props,mem_ind,E_mem,poi,stress_pre_mem,

t,q0); 

  
% Calculate the force residuals. 
r = load_frac*F_app - F_reac; 

  
% Make the residuals dimensionless. 
r_nd = r./(1+[sum_T,sum_T,sum_T]); 

  
% Vectorise and constrain r. 
r_vec_constr = constraints_mat'*reshape(r',[],1); 

  
% Vectorise and constrain r_nd. 
r_nd_vec_constr = constraints_mat'*reshape(r_nd',[],1); 

  

  
%-------------------------------------------------------------------

-- 
% RUN SOLVER IF NECESSARY - FIND JACOBIAN OF RESIDUALS AND UPDATE 

THE NODE 
% POSITIONS. 

  
% Initially set disps to be a very large number. 
sum_L = sum(mat_props(1:size(line_definition,1)-1,1)); 
disps = 1e6*sum_L; 
loop_count = 0; 

  
% Until either both the maximum residual and max dimensionless 

residual are 
% below their criteria, or the max displacement is below a 

criterion, carry 
% on with solution routine. 
while ((max(abs(r_nd_vec_constr)) > conv_crit) || 

(max(abs(r_vec_constr)) > 1)) && (max(max(abs(disps))) > 1e-4*sum_L) 

     
    loop_count = loop_count + 1; 

     
    if loop_count == 2 
            stress_pre_mem = zeros(size(mem_ind,1),3); 
    end 
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    if loop_count == 1 
        % Carry out one iteration of the solver. 
        [q,disps] = 

NR_iter_cont(q,f_ind,e_ind,mat_props,p,l,stress_cab,r_vec_constr,loa

d_frac,constraints_mat,rho_int,strain_cab,mem_ind,E_mem,poi,stress_p

re_mem,t,q0); 
    else 
        % Carry out one iteration of the solver. 
        [q,disps] = 

NR_iter(q,f_ind,e_ind,mat_props,p,l,stress_cab,r_vec_constr,load_fra

c,constraints_mat,rho_int,strain_cab,mem_ind,E_mem,poi,stress_pre_me

m,t,q0); 
    end 

     
    %---------------------------------------------------------------

------ 
    % FIND FORCE VECTORS AND CALCULATE RESIDUALS AND DIMENSIONLESS 

RESIDUALS. 

  
    % Find the applied forces. 
    [F_app,p,rho_int] = 

find_F_app(q,f_ind,e_ind,mem_ind,cab_mass,mem_mass,m_bh,no_of_lobes,

no_of_radii,line_definition); 

  
    % Find the reaction forces. 
    [F_reac,sum_T,l,stress_cab,strain_cab] = 

find_F_reac(q,e_ind,mat_props,mem_ind,E_mem,poi,stress_pre_mem,t,q0)

; 
%     [F_reac,sum_T,l,stress_cab,strain_cab] = 

find_F_reac_cont(q,e_ind,mat_props,mem_ind,E_mem,poi,stress_pre_mem,

t,q0); 

     
    % Calculate the force residuals. 
    r = load_frac*F_app - F_reac; 

  
    % Make the residuals dimensionless. 
    r_nd = r./(1+[sum_T,sum_T,sum_T]); 

  
    % Vectorise and constrain r. 
    r_vec_constr = constraints_mat'*reshape(r',[],1); 

  
    % Vectorise and constrain r_nd. 
    r_nd_vec_constr = constraints_mat'*reshape(r_nd',[],1); 

     
    disp(max(abs(r_nd_vec_constr))) 

     
    % Let posns = q, to plot the current node positions. 
    posns = q; 

  
    % Surface plot a full lobe. 
    trisurf(f_ind,posns(:,2),posns(:,3),posns(:,4))%,r_avg) 
    hold on 
    trisurf(f_ind,posns(:,2),-posns(:,3),posns(:,4))%,r_avg) 
    hold off 
    axis equal 
    v = axis; 
    v(1) = 0; 
    axis(v) 
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    %colorbar 

     
    pause(0.0001) 
end 
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function [F_app,p,rho_int] = 

find_F_app(q,f_ind,e_ind,mem_ind,cab_mass,mem_mass,m_bh,no_of_lobes,

no_of_radii,line_definition) 
% Finds the applied forces. 

  
% Declare the global variables. 
global T M rho_ext R g p0 p_int; 

  
% Find the centroid of each face. 
centroids = zeros(0,3); 
for i = 1:size(f_ind,1) 
    centroids(i,1) = 

mean([q(f_ind(i,1),2),q(f_ind(i,2),2),q(f_ind(i,3),2)]); 
    centroids(i,2) = 

mean([q(f_ind(i,1),3),q(f_ind(i,2),3),q(f_ind(i,3),3)]); 
    centroids(i,3) = 

mean([q(f_ind(i,1),4),q(f_ind(i,2),4),q(f_ind(i,3),4)]); 
end 

  
% Calculate the density of the fluid inside the bag/balloon. 
rho_int = p_int(1,1)*M/(R*T); 

  
% Calculate the differential pressure at each centroid. 
p = p0 + (rho_ext - rho_int)*g.*centroids(:,3); 

  
% Initialise Sn (the product of area and unit normal for each 

element) as 
% an empty matrix. 
Sn = zeros(size(f_ind,1),3); 

  
% Find the area and unit normal of each element. 
for i = 1:size(f_ind,1) 
    % Find vector along side B (n2 - n1). 
    Bx = q(f_ind(i,2),2) - q(f_ind(i,1),2); 
    By = q(f_ind(i,2),3) - q(f_ind(i,1),3); 
    Bz = q(f_ind(i,2),4) - q(f_ind(i,1),4); 
    B = [Bx,By,Bz]; 

  
    % Find vector along side A (n3 - n1). 
    Ax = q(f_ind(i,3),2) - q(f_ind(i,1),2); 
    Ay = q(f_ind(i,3),3) - q(f_ind(i,1),3); 
    Az = q(f_ind(i,3),4) - q(f_ind(i,1),4); 
    A = [Ax,Ay,Az]; 

  
    % Calculate the product of the area and unit normal of the 

element. 
    Sn(i,1:3) = cross(B,A)/2; 
end 

  
% Calculate the force on each element. 
F_el = [p,p,p].*Sn; 

  
% Calculate the force at each node on each element. 
F_n = F_el/3; 

  
% Sum the applied forces at each node. 
F_app = zeros(size(q,1),3); 
for i = 1:size(F_n,1) 
    F_app(f_ind(i,1),1) = F_app(f_ind(i,1),1) + F_n(i,1); 
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    F_app(f_ind(i,2),1) = F_app(f_ind(i,2),1) + F_n(i,1); 
    F_app(f_ind(i,3),1) = F_app(f_ind(i,3),1) + F_n(i,1); 

     
    F_app(f_ind(i,1),2) = F_app(f_ind(i,1),2) + F_n(i,2); 
    F_app(f_ind(i,2),2) = F_app(f_ind(i,2),2) + F_n(i,2); 
    F_app(f_ind(i,3),2) = F_app(f_ind(i,3),2) + F_n(i,2); 

     
    F_app(f_ind(i,1),3) = F_app(f_ind(i,1),3) + F_n(i,3); 
    F_app(f_ind(i,2),3) = F_app(f_ind(i,2),3) + F_n(i,3); 
    F_app(f_ind(i,3),3) = F_app(f_ind(i,3),3) + F_n(i,3); 
end 

  
% Include weight of cable elements. 
for i = 1:size(e_ind,1) 
    F_app(e_ind(i,1),3) = F_app(e_ind(i,1),3) - 0.5*g*cab_mass(i,1); 
    F_app(e_ind(i,2),3) = F_app(e_ind(i,2),3) - 0.5*g*cab_mass(i,1); 
end 

  
% Include weight of membrane elements. 
for i = 1:size(mem_ind,1) 
    F_app(mem_ind(i,1),3) = F_app(mem_ind(i,1),3) - 

(1/3)*g*mem_mass(i,1); 
    F_app(mem_ind(i,2),3) = F_app(mem_ind(i,2),3) - 

(1/3)*g*mem_mass(i,1); 
    F_app(mem_ind(i,3),3) = F_app(mem_ind(i,3),3) - 

(1/3)*g*mem_mass(i,1); 
end 

  
% Include weight of the bulkhead. 
for i = 1:size(line_definition,1):1+(no_of_radii-

1)*size(line_definition,1) 
    if i == 1 
        F_app(i,3) = F_app(i,3) - 

0.5*g*m_bh/(no_of_lobes*2*(no_of_radii - 1)); 
    elseif i == 1+(no_of_radii-1)*size(line_definition,1) 
        F_app(i,3) = F_app(i,3) - 

0.5*g*m_bh/(no_of_lobes*2*(no_of_radii - 1)); 
    else 
        F_app(i,3) = F_app(i,3) - g*m_bh/(no_of_lobes*2*(no_of_radii 

- 1)); 
    end 
end 
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function [F_reac,sum_T,l,stress_cab,strain_cab,stress_prin_reg] = 

find_F_reac(q,e_ind,mat_props,mem_ind,E_mem,poi,stress_pre_mem,t,q0) 
% Finds the reaction forces. 

  
% Split the matrix of material properties into its constituent 

parts. 
L = mat_props(:,1); 
E = mat_props(:,2); 
E_comp = mat_props(:,3); 
A = mat_props(:,4); 
stress_pre = mat_props(:,5); 

  
% Initialise l and unit_par_to_1 as empty matrices. 
l = zeros(size(e_ind,1),1); 
unit_par_to_1 = zeros(size(e_ind,1),3); 

  
% Find the length of each cable and the unit parallel of each cable. 
for i = 1:size(e_ind,1) 
    % Assign node 1 to q1. 
    q1 = q(e_ind(i,1),2:4); 

     
    % Assign node 2 to q2. 
    q2 = q(e_ind(i,2),2:4); 

  
    q2_to_q1 = q1-q2; 

     
    % Calculate the length of each cable. 
    l(i,1) = norm(q2_to_q1); 

     
    % Calculate the unit parallel to each cable in the direction of 

node 1. 
    unit_par_to_1(i,:) = q2_to_q1./[l(i,1),l(i,1),l(i,1)]; 
end 

  
% Calculate the strain in each cable. 
strain_cab = (l-L)./L; 

  
% Calculate the stress in each cable. 
stress_cab = E.*strain_cab + stress_pre; 

  
% Calculate the stress in any compressed cables / set stress equal 

to zero 
% in compressed cables. 
for i = 1:size(stress_cab,1) 
    if stress_cab(i,1) < 0 
        stress_cab(i,1) = 0; 
    end 
end 

  
% Calculate the tension in each cable. 
T = stress_cab.*A; 

  
% Calculate the force at each node on each cable. 
nodal_force_1 = unit_par_to_1.*[T,T,T]; 
nodal_force_2 = -nodal_force_1; 

  
% Initialise F_reac and sum_T as empty matrices. 
F_reac = zeros(size(q,1),3); 
sum_T = zeros(size(q,1),1); 
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% Sum the nodal forces and tension at each node. 
for i = 1:size(e_ind,1) 
    F_reac(e_ind(i,1),:) = F_reac(e_ind(i,1),:) + 

nodal_force_1(i,:); 
    F_reac(e_ind(i,2),:) = F_reac(e_ind(i,2),:) + 

nodal_force_2(i,:); 

     
    sum_T(e_ind(i,1),1) = sum_T(e_ind(i,1),1) + abs(T(i,1)); 
    sum_T(e_ind(i,2),1) = sum_T(e_ind(i,2),1) + abs(T(i,1)); 
end 

  
stress_reg = zeros(size(mem_ind,1),3); 
stress_prin_reg = zeros(size(mem_ind,1),3); 

  
for i = 1:size(mem_ind,1) 
    % Form the rotation matrix R. 
    a = q0(mem_ind(i,2),2:4)' - q0(mem_ind(i,1),2:4)'; 
    b = q0(mem_ind(i,3),2:4)' - q0(mem_ind(i,1),2:4)'; 
    axb = cross(a,b); 

     
    R = [a/norm(a),cross(axb/norm(axb),a/norm(a)),axb/norm(axb)]; 

     
    % Set u using the nodal displacements. 
    disps = q(:,2:4) - q0(:,2:4); 
    u = 

[R,zeros(3,3),zeros(3,3);zeros(3,3),R,zeros(3,3);zeros(3,3),zeros(3,

3),R]'... 
        

*[disps(mem_ind(i,1),:)';disps(mem_ind(i,2),:)';disps(mem_ind(i,3),:

)']; 

  
    % Find the local node coordinates with origin at node 1. 
    q_loc1 = R'*(q0(mem_ind(i,1),2:4)' - q0(mem_ind(i,1),2:4)'); 
    q_loc2 = R'*(q0(mem_ind(i,2),2:4)' - q0(mem_ind(i,1),2:4)'); 
    q_loc3 = R'*(q0(mem_ind(i,3),2:4)' - q0(mem_ind(i,1),2:4)'); 

  
    % Move the local origin to the point on side a where a line  
    % perpendicular to a will pass through node 3. 
    q_loc1 = q_loc1 - [q_loc3(1,1);0;0]; 
    q_loc2 = q_loc2 - [q_loc3(1,1);0;0]; 
    q_loc3 = q_loc3 - [q_loc3(1,1);0;0]; 

  
    % Assign names to 3 components of local node coordinates. 
    x1 = q_loc1(1,1); y1 = q_loc1(2,1); %z1 = q_loc1(3,1); 
    x2 = q_loc2(1,1); y2 = q_loc2(2,1); %z2 = q_loc2(3,1); 
    x3 = q_loc3(1,1); y3 = q_loc3(2,1); %z3 = q_loc3(3,1); 

     
    % Find the area of the element. 
    S = 0.5*norm(axb); 

  
    % Double the area of the element. 
    twoS = 2*S; 

  
    % Find the coefficients of the shape functions. 
    %a1 = (x2*y3-x3*y2)/twoS; 
    b1 = (y2-y3)/twoS; 
    c1 = -(x2-x3)/twoS; 
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    %a2 = (x3*y1-x1*y3)/twoS; 
    b2 = (y3-y1)/twoS; 
    c2 = -(x3-x1)/twoS; 

  
    %a3 = (x1*y2-x2*y1)/twoS; 
    b3 = (y1-y2)/twoS; 
    c3 = -(x1-x2)/twoS; 

  
    % Calculate the matrix of linear derivative coefficients. 
    B0 = [b1 0  0  b2 0  0  b3 0  0; 
          0  c1 0  0  c2 0  0  c3 0; 
          c1 b1 0  c2 b2 0  c3 b3 0]; 

  
    % Find G, theta, and A, to form matrix of nonlinear derivative 
    % coefficients. 
    P = [b1 0  0  b2 0  0  b3 0  0; 
         0  b1 0  0  b2 0  0  b3 0; 
         0  0  b1 0  0  b2 0  0  b3]; 

  
    Q = [c1 0  0  c2 0  0  c3 0  0; 
         0  c1 0  0  c2 0  0  c3 0; 
         0  0  c1 0  0  c2 0  0  c3]; 

  
    Pu = P*u; 
    Qu = Q*u; 

  
    A = [Pu'        zeros(1,3); 
         zeros(1,3) Qu'; 
         Qu'        Pu']; 

  
    G = [P;Q]; 

  
    theta = [Pu;Qu]; 

     
    % Calculate the strain in the element. 
    strain = B0*u + 0.5*A*theta; 

  
    % Create the elastic matrix for the element in plane stress. 
    D = (E_mem(i,1)/(1-poi(i,1)^2))*[1   poi(i,1) 0; 
                                     poi(i,1) 1   0; 
                                     0   0   (1-poi(i,1))/2]; 

  
    % Calculate the stress in the element. 
    stress = D*strain + R'*stress_pre_mem(i,:)'; 
    % STRESS_PRE_MEM SHOULD BE ROTATED TO LOCAL!!! 
pre_loc = R'*stress_pre_mem(i,:)'; 
    % Calculate the principal stresses and strains. 
    prin_max = 0.5*(stress(1,1) + stress(2,1)) + ((0.5*(stress(1,1) 

- stress(2,1)))^2 + stress(3,1)^2)^(0.5); 
    prin_min = 0.5*(stress(1,1) + stress(2,1)) - ((0.5*(stress(1,1) 

- stress(2,1)))^2 + stress(3,1)^2)^(0.5); 

  
    prin_max_pre = 0.5*(stress_pre_mem(i,1) + stress_pre_mem(i,2)) + 

((0.5*(stress_pre_mem(i,1) - stress_pre_mem(i,2)))^2 + 

stress_pre_mem(i,3)^2)^(0.5); 
    prin_min_pre = 0.5*(stress_pre_mem(i,1) + stress_pre_mem(i,2)) - 

((0.5*(stress_pre_mem(i,1) - stress_pre_mem(i,2)))^2 + 

stress_pre_mem(i,3)^2)^(0.5); 
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    prin_strain_max = 0.5*(strain(1,1) + strain(2,1)) + 

((0.5*(strain(1,1) - strain(2,1)))^2 + strain(3,1)^2)^(0.5); 
    prin_strain_min = 0.5*(strain(1,1) + strain(2,1)) - 

((0.5*(strain(1,1) - strain(2,1)))^2 + strain(3,1)^2)^(0.5); 

  
    % Calculate the angle between the principal coordinates and 

local 
    % coordinates. 
    prin_theta = 0.5*atan(2*stress(3,1)/(stress(1,1)-stress(2,1))); 
    tan2theta = 2*stress(3,1)/(stress(1,1)-stress(2,1)); 

  
    % Create Reuter's matrix and the pseudo-vector matrix form of 

the 
    % rotation matrix. 
    Reut = [1,0,0;0,1,0;0,0,2]; 
    c = cos(prin_theta); 
    s = sin(prin_theta); 
    T = [c^2,s^2,2*s*c;s^2,c^2,-2*s*c;-s*c,s*c,c^2-s^2]; 

     
    % No wrinkling. 
    if prin_min > 0 
        % Calculate the reaction force at each node on the element. 
        F_mem_loc = t(i,1)*S*(B0+A*G)'*stress; 

         
        stress_reg(i,:) = stress'; 
        stress_prin_reg(i,:) = [prin_max,prin_min,0]; 

  
    % Wrinkling. 
    else 
        b = 1e-6*E_mem(i,1); % THESE MUST BE THE SAME IN THIS AND K! 

         
        if prin_strain_max > 0 
            % Changing Poisson's ratio method. 
            P = (strain(1)-strain(2))/(prin_strain_max-

prin_strain_min); 
            Q = strain(3)/(prin_strain_max-prin_strain_min); 

             
            D = (E_mem(i,1)/4)*[2*(1+P) 0 Q; 
                                     0 2*(1-P) Q; 
                                     Q Q 1]; 
        else 
            D = [0 0 0; 
                 0 0 0; 
                 0 0 0]; 
        end 

         
        % Calculate the stress in the element. 
        stress = D*strain + R'*stress_pre_mem(i,:)'; 

         
        % Recalculate principal stresses and store in stress_reg. 
        prin_max = 0.5*(stress(1,1) + stress(2,1)) + 

((0.5*(stress(1,1) - stress(2,1)))^2 + stress(3,1)^2)^0.5; 
        prin_min = 0.5*(stress(1,1) + stress(2,1)) - 

((0.5*(stress(1,1) - stress(2,1)))^2 + stress(3,1)^2)^0.5; 
        stress_prin_reg(i,:) = [prin_max,prin_min,0]; 

         
        % Calculate the reaction force at each node on the element. 
        F_mem_loc = t(i,1)*S*(B0+A*G)'*stress; 
    end 
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    % Rotate the reaction forces into the global coordinate system. 
    F_mem = 

[R,zeros(3,3),zeros(3,3);zeros(3,3),R,zeros(3,3);zeros(3,3),zeros(3,

3),R]*F_mem_loc; 

  
    % Add membrane reaction forces to the cable reaction forces. 
    F_reac(mem_ind(i,1),:) = F_reac(mem_ind(i,1),:) + F_mem(1:3,1)'; 
    F_reac(mem_ind(i,2),:) = F_reac(mem_ind(i,2),:) + F_mem(4:6,1)'; 
    F_reac(mem_ind(i,3),:) = F_reac(mem_ind(i,3),:) + F_mem(7:9,1)'; 

  
    % Add magnitudes of membrane reaction forces to sum_T. 
    sum_T(mem_ind(i,1),1) = sum_T(mem_ind(i,1),1) + 

norm(F_mem(1:3,1)); 
    sum_T(mem_ind(i,2),1) = sum_T(mem_ind(i,2),1) + 

norm(F_mem(4:6,1)); 
    sum_T(mem_ind(i,3),1) = sum_T(mem_ind(i,3),1) + 

norm(F_mem(7:9,1)); 
end 
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function [q,disps_mod] = 

NR_iter(q,f_ind,e_ind,mat_props,p,l,stress_cab,r_vec_constr,load_fra

c,constraints_mat,rho_int,strain_cab,mem_ind,E_mem,poi,stress_pre_me

m,t,q0) 
% Carries out one iteration of the Newton-Raphson solver. 

  
% Find the Jacobian of the applied forces. 
J_F_app = find_J_F_app(q,f_ind,p,rho_int); 

  
% Find the Jacobian of the reaction forces. 
J_F_reac = 

find_J_F_reac(q,e_ind,mat_props,l,stress_cab,strain_cab,mem_ind,E_me

m,poi,stress_pre_mem,t,q0); 

  
% Calculate the Jacobian of the force residuals. 
J_r = load_frac*J_F_app - J_F_reac; 

  
% Constrain the Jacobian of the force residuals. 
J_r_constr = constraints_mat'*J_r*constraints_mat; 

  
% Calculate a set of nodal displacements using the Newton-Raphson 

method. 
disps = reshape(constraints_mat*(J_r_constr\(-r_vec_constr)),3,[])'; 

  
% Multiply the displacement vector by a certain fraction in order to 

limit 
% the maximum displacements. 
if max(sqrt(disps(:,1).^2 + disps(:,2).^2 + disps(:,3).^2)) > 1e-

2*max(sqrt(q(:,2).^2 + q(:,3).^2 + q(:,4).^2)) 
    disps_mod = disps*1e-2*max(sqrt(q(:,2).^2 + q(:,3).^2 + 

q(:,4).^2))/max(sqrt(disps(:,1).^2 + disps(:,2).^2 + 

disps(:,3).^2)); 
else 
    disps_mod = disps; 
end 

  
% Update the node positions. 
q(:,2:4) = q(:,2:4) + disps_mod; 
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function J_F_app = find_J_F_app(q,f_ind,p,rho_int) 
% Finds the Jacobian of the applied forces. 

  
% Declare the global variables. 
global rho_ext g; 

  
% Initialise J_F_app as an empty matrix. 
J_F_app = sparse(3*size(q,1),3*size(q,1)); 

  
% Calculate dp_dq outside the loop as it is the same for every 

element. 
dp_dq = (1/3)*(rho_ext - rho_int)*g*[0 0 1 0 0 1 0 0 1]; 

  
% Calculate the element Jacobian for each element and add to the 

full 
% Jacobian. 
for i = 1:size(f_ind,1) 
    % Assign the node positions. 
    x1 = q(f_ind(i,1),2); 
    y1 = q(f_ind(i,1),3); 
    z1 = q(f_ind(i,1),4); 

  
    x2 = q(f_ind(i,2),2); 
    y2 = q(f_ind(i,2),3); 
    z2 = q(f_ind(i,2),4); 

  
    x3 = q(f_ind(i,3),2); 
    y3 = q(f_ind(i,3),3); 
    z3 = q(f_ind(i,3),4); 

  
    % Calculate the cross product of two sides of the element and 

use this 
    % to calculate the product of the element's area and unit 

normal. 
    a = [x2-x1;y2-y1;z2-z1]; 
    b = [x3-x1;y3-y1;z3-z1]; 
    axb = cross(a,b); 

  
    Sn = 0.5*[axb;axb;axb]; 

     
    % Differentiate the cross product with respect to position of 

each 
    % node, finding the components in x, y, and z. 
    daxb_x = [0 z2-z3 y3-y2 0 z3-z1 y1-y3 0 z1-z2 y2-y1]; 

  
    daxb_y = [z3-z2 0 x2-x3 z1-z3 0 x3-x1 z2-z1 0 x1-x2]; 

  
    daxb_z = [y2-y3 x3-x2 0 y3-y1 x1-x3 0 y1-y2 x2-x1 0]; 

  
    % Form the matrix of differentiated area-unit normal products 

with 
    % respect to position of each node. 
    dSn = 

0.5*[daxb_x;daxb_y;daxb_z;daxb_x;daxb_y;daxb_z;daxb_x;daxb_y;... 
        daxb_z]; 

  
    % Form the element Jacobian. 
    dFe = (1/3)*(p(i,1)*dSn + Sn*dp_dq); 
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    % Add the element Jacobian to the system Jacobian. 
    % Add to dF1_dq1. 
    J_F_app(3*f_ind(i,1)-2:3*f_ind(i,1),3*f_ind(i,1)-2:3*f_ind(i,1)) 

= ... 
        J_F_app(3*f_ind(i,1)-2:3*f_ind(i,1),3*f_ind(i,1)-

2:3*f_ind(i,1))... 
        + dFe(1:3,1:3); 

     
    % Add to dF1_dq2. 
    J_F_app(3*f_ind(i,1)-2:3*f_ind(i,1),3*f_ind(i,2)-2:3*f_ind(i,2)) 

= ... 
        J_F_app(3*f_ind(i,1)-2:3*f_ind(i,1),3*f_ind(i,2)-

2:3*f_ind(i,2))... 
        + dFe(1:3,4:6); 

     
    % Add to dF1_dq3. 
    J_F_app(3*f_ind(i,1)-2:3*f_ind(i,1),3*f_ind(i,3)-2:3*f_ind(i,3)) 

= ... 
        J_F_app(3*f_ind(i,1)-2:3*f_ind(i,1),3*f_ind(i,3)-

2:3*f_ind(i,3))... 
        + dFe(1:3,7:9); 

     

     
    % Add to dF2_dq1. 
    J_F_app(3*f_ind(i,2)-2:3*f_ind(i,2),3*f_ind(i,1)-2:3*f_ind(i,1)) 

= ... 
        J_F_app(3*f_ind(i,2)-2:3*f_ind(i,2),3*f_ind(i,1)-

2:3*f_ind(i,1))... 
        + dFe(4:6,1:3); 

     
    % Add to dF2_dq2. 
    J_F_app(3*f_ind(i,2)-2:3*f_ind(i,2),3*f_ind(i,2)-2:3*f_ind(i,2)) 

= ... 
        J_F_app(3*f_ind(i,2)-2:3*f_ind(i,2),3*f_ind(i,2)-

2:3*f_ind(i,2))... 
        + dFe(4:6,4:6); 

     
    % Add to dF2_dq3. 
    J_F_app(3*f_ind(i,2)-2:3*f_ind(i,2),3*f_ind(i,3)-2:3*f_ind(i,3)) 

= ... 
        J_F_app(3*f_ind(i,2)-2:3*f_ind(i,2),3*f_ind(i,3)-

2:3*f_ind(i,3))... 
        + dFe(4:6,7:9); 

     

     
    % Add to dF3_dq1. 
    J_F_app(3*f_ind(i,3)-2:3*f_ind(i,3),3*f_ind(i,1)-2:3*f_ind(i,1)) 

= ... 
        J_F_app(3*f_ind(i,3)-2:3*f_ind(i,3),3*f_ind(i,1)-

2:3*f_ind(i,1))... 
        + dFe(7:9,1:3); 

     
    % Add to dF3_dq2. 
    J_F_app(3*f_ind(i,3)-2:3*f_ind(i,3),3*f_ind(i,2)-2:3*f_ind(i,2)) 

= ... 
        J_F_app(3*f_ind(i,3)-2:3*f_ind(i,3),3*f_ind(i,2)-

2:3*f_ind(i,2))... 
        + dFe(7:9,4:6); 
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    % Add to dF3_dq3. 
    J_F_app(3*f_ind(i,3)-2:3*f_ind(i,3),3*f_ind(i,3)-2:3*f_ind(i,3)) 

= ... 
        J_F_app(3*f_ind(i,3)-2:3*f_ind(i,3),3*f_ind(i,3)-

2:3*f_ind(i,3))... 
        + dFe(7:9,7:9); 
end 
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function [J_F_reac,stress,dstress_du] = 

find_J_F_reac(q,e_ind,mat_props,l,stress,strain,mem_ind,E_mem,poi,st

ress_pre_mem,t,q0) 
% Finds the Jacobian of the reaction forces. 

  
% Split the matrix of material properties into its constituent 

parts. 
L = mat_props(:,1); 
E = mat_props(:,2); 
E_comp = mat_props(:,3); 
A = mat_props(:,4); 
stress_pre = mat_props(:,5); 

  
% Initialise J_F_reac as an empty matrix. 
J_F_reac = sparse(3*size(q,1),3*size(q,1)); 

  
% Calculate the element Jacobian for each cable element and add it 
% to the full Jacobian. 
for i = 1:size(e_ind,1) 
    % Assign the node positions for the two nodes on edge i. 
    x1 = q(e_ind(i,1),2); 
    y1 = q(e_ind(i,1),3); 
    z1 = q(e_ind(i,1),4); 

  
    x2 = q(e_ind(i,2),2); 
    y2 = q(e_ind(i,2),3); 
    z2 = q(e_ind(i,2),4); 

  
    % Calculate the directional cosines of the rotation from local 
    % coordinates to global coordinates. 
    lx = (x2 - x1)/l(i,1); 
    mx = (y2 - y1)/l(i,1); 
    nx = (z2 - z1)/l(i,1); 

  
    % Form part of the element Jacobian. 
    k = [lx^2 lx*mx lx*nx; 
         lx*mx mx^2 mx*nx; 
         lx*nx mx*nx nx^2]; 

     
    % Form another part of the element Jacobian. 
    C = [mx^2+nx^2 -lx*mx -lx*nx;-mx*lx lx^2+nx^2 -mx*nx;-nx*lx -

nx*mx lx^2+mx^2]; 

     
    % Form the elastic part of the full element Jacobian in global 
    % coordinates. 
    if stress(i,1) > 0 
        ke = (E(i,1)*A(i,1)/L(i,1))*[k -k;-k k]; 
    else 
        ke = zeros(6,6); 
    end 

     
    % Add the geometric part to the full element Jacobian in global 
    % coordinates. 
    ke = ke + (A(i,1)*stress(i,1)/l(i,1))*[C -C;-C C]; 

     
    % Add to dF1_dq1. 
    J_F_reac(3*e_ind(i,1)-2:3*e_ind(i,1),3*e_ind(i,1)-

2:3*e_ind(i,1)) = ... 
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        J_F_reac(3*e_ind(i,1)-2:3*e_ind(i,1),3*e_ind(i,1)-

2:3*e_ind(i,1)) + ... 
        ke(1:3,1:3); 

     
    % Add to dF1_dq2. 
    J_F_reac(3*e_ind(i,1)-2:3*e_ind(i,1),3*e_ind(i,2)-

2:3*e_ind(i,2)) = ... 
        J_F_reac(3*e_ind(i,1)-2:3*e_ind(i,1),3*e_ind(i,2)-

2:3*e_ind(i,2)) + ... 
        ke(1:3,4:6); 

     
    % Add to dF2_dq1. 
    J_F_reac(3*e_ind(i,2)-2:3*e_ind(i,2),3*e_ind(i,1)-

2:3*e_ind(i,1)) = ... 
        J_F_reac(3*e_ind(i,2)-2:3*e_ind(i,2),3*e_ind(i,1)-

2:3*e_ind(i,1)) + ... 
        ke(4:6,1:3); 

     
    % Add to dF2_dq2. 
    J_F_reac(3*e_ind(i,2)-2:3*e_ind(i,2),3*e_ind(i,2)-

2:3*e_ind(i,2)) = ... 
        J_F_reac(3*e_ind(i,2)-2:3*e_ind(i,2),3*e_ind(i,2)-

2:3*e_ind(i,2)) + ... 
        ke(4:6,4:6); 
end 

  

  
for i = 1:size(mem_ind,1) 
    % Form the rotation matrix R. 
    a = q0(mem_ind(i,2),2:4)' - q0(mem_ind(i,1),2:4)'; 
    b = q0(mem_ind(i,3),2:4)' - q0(mem_ind(i,1),2:4)'; 
    axb = cross(a,b); 

     
    R = [a/norm(a),cross(axb/norm(axb),a/norm(a)),axb/norm(axb)]; 

     
    % Set u using the nodal displacements. 
    disps = q(:,2:4) - q0(:,2:4); 
    u = 

[R,zeros(3,3),zeros(3,3);zeros(3,3),R,zeros(3,3);zeros(3,3),zeros(3,

3),R]'... 
        

*[disps(mem_ind(i,1),:)';disps(mem_ind(i,2),:)';disps(mem_ind(i,3),:

)']; 

  
    % Find the local node coordinates with origin at node 1. 
    q_loc1 = R'*(q0(mem_ind(i,1),2:4)' - q0(mem_ind(i,1),2:4)'); 
    q_loc2 = R'*(q0(mem_ind(i,2),2:4)' - q0(mem_ind(i,1),2:4)'); 
    q_loc3 = R'*(q0(mem_ind(i,3),2:4)' - q0(mem_ind(i,1),2:4)'); 

  
    % Move the local origin to the point on side a where a line  
    % perpendicular to a will pass through node 3. 
    q_loc1 = q_loc1 - [q_loc3(1,1);0;0]; 
    q_loc2 = q_loc2 - [q_loc3(1,1);0;0]; 
    q_loc3 = q_loc3 - [q_loc3(1,1);0;0]; 

  
    % Assign names to 3 components of local node coordinates. 
    x1 = q_loc1(1,1); y1 = q_loc1(2,1); %z1 = q_loc1(3,1); 
    x2 = q_loc2(1,1); y2 = q_loc2(2,1); %z2 = q_loc2(3,1); 
    x3 = q_loc3(1,1); y3 = q_loc3(2,1); %z3 = q_loc3(3,1); 
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    % Find the area of the element. 
    S = 0.5*norm(axb); 

  
    % Double the area of the element. 
    twoS = 2*S; 

  
    % Find the coefficients of the shape functions. 
    %a1 = (x2*y3-x3*y2)/twoS; 
    b1 = (y2-y3)/twoS; 
    c1 = -(x2-x3)/twoS; 

  
    %a2 = (x3*y1-x1*y3)/twoS; 
    b2 = (y3-y1)/twoS; 
    c2 = -(x3-x1)/twoS; 

  
    %a3 = (x1*y2-x2*y1)/twoS; 
    b3 = (y1-y2)/twoS; 
    c3 = -(x1-x2)/twoS; 

  
    % Calculate the matrix of linear derivative coefficients. 
    B0 = [b1 0  0  b2 0  0  b3 0  0; 
          0  c1 0  0  c2 0  0  c3 0; 
          c1 b1 0  c2 b2 0  c3 b3 0]; 

  
    % Find G, theta, and A, to form matrix of nonlinear derivative 
    % coefficients. 
    P = [b1 0  0  b2 0  0  b3 0  0; 
         0  b1 0  0  b2 0  0  b3 0; 
         0  0  b1 0  0  b2 0  0  b3]; 

  
    Q = [c1 0  0  c2 0  0  c3 0  0; 
         0  c1 0  0  c2 0  0  c3 0; 
         0  0  c1 0  0  c2 0  0  c3]; 

  
    Pu = P*u; 
    Qu = Q*u; 

  
    A = [Pu'        zeros(1,3); 
         zeros(1,3) Qu'; 
         Qu'        Pu']; 

  
    G = [P;Q]; 

  
    theta = [Pu;Qu]; 

     
    % Calculate the strain in the element. 
    strain = B0*u + 0.5*A*theta; 

  
    % Create the elastic matrix for the element in plane stress. 
    D = (E_mem(i,1)/(1-poi(i,1)^2))*[1   poi(i,1) 0; 
                                     poi(i,1) 1   0; 
                                     0   0   (1-poi(i,1))/2]; 

  
    % Calculate the stress in the element. 
    stress = D*strain + R'*stress_pre_mem(i,:)'; 

     
    % Calculate the principal stresses and strains. 
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    prin_max = 0.5*(stress(1,1) + stress(2,1)) + ((0.5*(stress(1,1) 

- stress(2,1)))^2 + stress(3,1)^2)^(0.5); 
    prin_min = 0.5*(stress(1,1) + stress(2,1)) - ((0.5*(stress(1,1) 

- stress(2,1)))^2 + stress(3,1)^2)^(0.5); 

  
    prin_max_pre = 0.5*(stress_pre_mem(i,1) + stress_pre_mem(i,2)) + 

((0.5*(stress_pre_mem(i,1) - stress_pre_mem(i,2)))^2 + 

stress_pre_mem(i,3)^2)^(0.5); 
    prin_min_pre = 0.5*(stress_pre_mem(i,1) + stress_pre_mem(i,2)) - 

((0.5*(stress_pre_mem(i,1) - stress_pre_mem(i,2)))^2 + 

stress_pre_mem(i,3)^2)^(0.5); 

  
    prin_strain_max = 0.5*(strain(1,1) + strain(2,1)) + 

((0.5*(strain(1,1) - strain(2,1)))^2 + strain(3,1)^2)^(0.5); 
    prin_strain_min = 0.5*(strain(1,1) + strain(2,1)) - 

((0.5*(strain(1,1) - strain(2,1)))^2 + strain(3,1)^2)^(0.5); 

  
    % Calculate the angle between the principal coordinates and 

local 
    % coordinates. 
    prin_theta = 0.5*atan(2*stress(3,1)/(stress(1,1)-stress(2,1))); 

  
    % Create Reuter's matrix and the pseudo-vector matrix form of 

the 
    % rotation matrix. 
    Reut = [1,0,0;0,1,0;0,0,2]; 
    c = cos(prin_theta); 
    s = sin(prin_theta); 
    T = [c^2,s^2,2*s*c;s^2,c^2,-2*s*c;-s*c,s*c,c^2-s^2]; 

     
    % No wrinkling. 
    if prin_min > 0 
        % Form a matrix of stresses. 
        M = [stress(1,1) 0 0 stress(3,1) 0 0; 
             0 stress(1,1) 0 0 stress(3,1) 0; 
             0 0 stress(1,1) 0 0 stress(3,1); 
             stress(3,1) 0 0 stress(2,1) 0 0; 
             0 stress(3,1) 0 0 stress(2,1) 0; 
             0 0 stress(3,1) 0 0 stress(2,1)]; 

         
        % Calculate the elastic and geometric element stiffness 

matrices. 
        Ke = t(i,1)*S*(B0 + A*G)'*D*(B0 + A*G); 
        Kg = t(i,1)*S*G'*M*G; 
        dstress_du = D*(B0 + A*G); 

  
        % Form the full element stiffness matrix. 
        Kloc = Ke + Kg; 

     
    % Wrinkling. 
    else 
        % Differentiate tan(2*theta) wrt u. 
        dstress_du = D*(B0 + A*G); 
        dtan_2theta_du = (2*(stress(1,1)-

stress(2,1))*dstress_du(3,:) - 2*stress(3,1)*(dstress_du(1,:)-

dstress_du(2,:)))/(stress(1,1)-stress(2,1))^2; 

  
        % Differentiate theta wrt u. 
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        dtheta_du = (1/(2*(1+(2*stress(3,1)/(stress(1,1)-

stress(2,1)))^2)))*dtan_2theta_du; 

  
        % Differentiate the matrix T wrt u. 
        dT_dtheta = [-2*c*s,2*c*s,2*(c^2-s^2);2*c*s,-2*c*s,2*(s^2-

c^2);s^2-c^2,c^2-s^2,-4*c*s]; 
        dT_du1 = dT_dtheta*dtheta_du(1,1); 
        dT_dv1 = dT_dtheta*dtheta_du(1,2); 
        dT_dw1 = dT_dtheta*dtheta_du(1,3); 
        dT_du2 = dT_dtheta*dtheta_du(1,4); 
        dT_dv2 = dT_dtheta*dtheta_du(1,5); 
        dT_dw2 = dT_dtheta*dtheta_du(1,6); 
        dT_du3 = dT_dtheta*dtheta_du(1,7); 
        dT_dv3 = dT_dtheta*dtheta_du(1,8); 
        dT_dw3 = dT_dtheta*dtheta_du(1,9); 

         
        % Initialise the dD matrices. 
        dD_du1 = zeros(3,3); 
        dD_dv1 = zeros(3,3); 
        dD_dw1 = zeros(3,3); 
        dD_du2 = zeros(3,3); 
        dD_dv2 = zeros(3,3); 
        dD_dw2 = zeros(3,3); 
        dD_du3 = zeros(3,3); 
        dD_dv3 = zeros(3,3); 
        dD_dw3 = zeros(3,3); 

         
        % Uniaxial. 
        if prin_strain_max > 0 
            % Changing Poisson's ratio method. 
            P = (strain(1)-strain(2))/(prin_strain_max-

prin_strain_min); 
            Q = strain(3)/(prin_strain_max-prin_strain_min); 

             
            D = (E_mem(i,1)/4)*[2*(1+P) 0 Q; 
                                0 2*(1-P) Q; 
                                Q Q 1]; 

             
            dstrain_du = B0 + A*G; 

             
            dprin_strain_du = T*dstrain_du + 

[dT_du1*strain,dT_dv1*strain,... 
                

dT_dw1*strain,dT_du2*strain,dT_dv2*strain,dT_dw2*strain,... 
                dT_du3*strain,dT_dv3*strain,dT_dw3*strain]; 

  
            dP_du = ((prin_strain_max - 

prin_strain_min)*(dstrain_du(1,:) - dstrain_du(2,:)) - (strain(1,1) 

- strain(2,1))*(dprin_strain_du(1,:) - 

dprin_strain_du(2,:)))/(prin_strain_max - prin_strain_min)^2; 
            dQ_du = ((prin_strain_max - 

prin_strain_min)*dstrain_du(3,:) - strain(3,1)*(dprin_strain_du(1,:) 

- dprin_strain_du(2,:)))/(prin_strain_max - prin_strain_min)^2; 

             
            dD_du1 = (E_mem(i,1)/4)*[2*dP_du(1,1) 0 dQ_du(1,1) 
                                          0 -2*dP_du(1,1) dQ_du(1,1) 
                                          dQ_du(1,1) dQ_du(1,1) 0]; 

             
            dD_dv1 = (E_mem(i,1)/4)*[2*dP_du(1,2) 0 dQ_du(1,2) 
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                                          0 -2*dP_du(1,2) dQ_du(1,2) 
                                          dQ_du(1,2) dQ_du(1,2) 0]; 

  
            dD_dw1 = (E_mem(i,1)/4)*[2*dP_du(1,3) 0 dQ_du(1,3) 
                                          0 -2*dP_du(1,3) dQ_du(1,3) 
                                          dQ_du(1,3) dQ_du(1,3) 0]; 

                                       
            dD_du2 = (E_mem(i,1)/4)*[2*dP_du(1,4) 0 dQ_du(1,4) 
                                          0 -2*dP_du(1,4) dQ_du(1,4) 
                                          dQ_du(1,4) dQ_du(1,4) 0]; 

             
            dD_dv2 = (E_mem(i,1)/4)*[2*dP_du(1,5) 0 dQ_du(1,5) 
                                          0 -2*dP_du(1,5) dQ_du(1,5) 
                                          dQ_du(1,5) dQ_du(1,5) 0]; 

  
            dD_dw2 = (E_mem(i,1)/4)*[2*dP_du(1,6) 0 dQ_du(1,6) 
                                          0 -2*dP_du(1,6) dQ_du(1,6) 
                                          dQ_du(1,6) dQ_du(1,6) 0]; 

                                       
            dD_du3 = (E_mem(i,1)/4)*[2*dP_du(1,7) 0 dQ_du(1,7) 
                                          0 -2*dP_du(1,7) dQ_du(1,7) 
                                          dQ_du(1,7) dQ_du(1,7) 0]; 

             
            dD_dv3 = (E_mem(i,1)/4)*[2*dP_du(1,8) 0 dQ_du(1,8) 
                                          0 -2*dP_du(1,8) dQ_du(1,8) 
                                          dQ_du(1,8) dQ_du(1,8) 0]; 

  
            dD_dw3 = (E_mem(i,1)/4)*[2*dP_du(1,9) 0 dQ_du(1,9) 
                                          0 -2*dP_du(1,9) dQ_du(1,9) 
                                          dQ_du(1,9) dQ_du(1,9) 0]; 
        % Biaxial. 
        else 
            b = 1e-6*E_mem(i,1); % THESE MUST BE THE SAME IN THIS 

AND K! 

             
            D = [0 0 0; 
                 0 0 0; 
                 0 0 0]; 

             
        end 

  
        % Calculate the product of dD_du and strain. 
        dD_du_strain = 

[dD_du1*strain,dD_dv1*strain,dD_dw1*strain,... 
            dD_du2*strain,dD_dv2*strain,dD_dw2*strain,... 
            dD_du3*strain,dD_dv3*strain,dD_dw3*strain]; 

         
        % Form the local element elastic stiffness matrix. 
        Ke = t(i,1)*S*(B0 + A*G)'*(dD_du_strain + D*(B0 + A*G)); 

         
        % Calculate the stresses using the new elastic matrix. 
        stress = D*strain + R'*stress_pre_mem(i,:)'; 

  
        % Form a matrix of stresses. 
        M = [stress(1,1) 0 0 stress(3,1) 0 0; 
             0 stress(1,1) 0 0 stress(3,1) 0; 
             0 0 stress(1,1) 0 0 stress(3,1); 
             stress(3,1) 0 0 stress(2,1) 0 0; 
             0 stress(3,1) 0 0 stress(2,1) 0; 
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             0 0 stress(3,1) 0 0 stress(2,1)]; 

         
        % Calculate the local element geometric stiffness matrices. 
        Kg = t(i,1)*S*G'*M*G; 

  
        % Form the full element stiffness matrix. 
        Kloc = Ke + Kg; 
    end 

     

     
    % Rotate the element stiffness matrix into the global coordinate 
    % system. 
    K = 

[R,zeros(3,3),zeros(3,3);zeros(3,3),R,zeros(3,3);zeros(3,3),zeros(3,

3),R]*Kloc... 
        

*[R,zeros(3,3),zeros(3,3);zeros(3,3),R,zeros(3,3);zeros(3,3),zeros(3

,3),R]'; 

  

  
    % Add to dF1_dq1. 
    J_F_reac(3*mem_ind(i,1)-2:3*mem_ind(i,1),3*mem_ind(i,1)-

2:3*mem_ind(i,1)) = ... 
        J_F_reac(3*mem_ind(i,1)-2:3*mem_ind(i,1),3*mem_ind(i,1)-

2:3*mem_ind(i,1)) + ... 
        K(1:3,1:3); 

     
    % Add to dF1_dq2. 
    J_F_reac(3*mem_ind(i,1)-2:3*mem_ind(i,1),3*mem_ind(i,2)-

2:3*mem_ind(i,2)) = ... 
        J_F_reac(3*mem_ind(i,1)-2:3*mem_ind(i,1),3*mem_ind(i,2)-

2:3*mem_ind(i,2)) + ... 
        K(1:3,4:6); 

  
    % Add to dF1_dq3. 
    J_F_reac(3*mem_ind(i,1)-2:3*mem_ind(i,1),3*mem_ind(i,3)-

2:3*mem_ind(i,3)) = ... 
        J_F_reac(3*mem_ind(i,1)-2:3*mem_ind(i,1),3*mem_ind(i,3)-

2:3*mem_ind(i,3)) + ... 
        K(1:3,7:9); 

     

  
    % Add to dF2_dq1. 
    J_F_reac(3*mem_ind(i,2)-2:3*mem_ind(i,2),3*mem_ind(i,1)-

2:3*mem_ind(i,1)) = ... 
        J_F_reac(3*mem_ind(i,2)-2:3*mem_ind(i,2),3*mem_ind(i,1)-

2:3*mem_ind(i,1)) + ... 
        K(4:6,1:3); 

     
    % Add to dF2_dq2. 
    J_F_reac(3*mem_ind(i,2)-2:3*mem_ind(i,2),3*mem_ind(i,2)-

2:3*mem_ind(i,2)) = ... 
        J_F_reac(3*mem_ind(i,2)-2:3*mem_ind(i,2),3*mem_ind(i,2)-

2:3*mem_ind(i,2)) + ... 
        K(4:6,4:6); 

  
    % Add to dF2_dq3. 
    J_F_reac(3*mem_ind(i,2)-2:3*mem_ind(i,2),3*mem_ind(i,3)-

2:3*mem_ind(i,3)) = ... 
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        J_F_reac(3*mem_ind(i,2)-2:3*mem_ind(i,2),3*mem_ind(i,3)-

2:3*mem_ind(i,3)) + ... 
        K(4:6,7:9); 

  

  
    % Add to dF3_dq1. 
    J_F_reac(3*mem_ind(i,3)-2:3*mem_ind(i,3),3*mem_ind(i,1)-

2:3*mem_ind(i,1)) = ... 
        J_F_reac(3*mem_ind(i,3)-2:3*mem_ind(i,3),3*mem_ind(i,1)-

2:3*mem_ind(i,1)) + ... 
        K(7:9,1:3); 

     
    % Add to dF3_dq2. 
    J_F_reac(3*mem_ind(i,3)-2:3*mem_ind(i,3),3*mem_ind(i,2)-

2:3*mem_ind(i,2)) = ... 
        J_F_reac(3*mem_ind(i,3)-2:3*mem_ind(i,3),3*mem_ind(i,2)-

2:3*mem_ind(i,2)) + ... 
        K(7:9,4:6); 

  
    % Add to dF3_dq3. 
    J_F_reac(3*mem_ind(i,3)-2:3*mem_ind(i,3),3*mem_ind(i,3)-

2:3*mem_ind(i,3)) = ... 
        J_F_reac(3*mem_ind(i,3)-2:3*mem_ind(i,3),3*mem_ind(i,3)-

2:3*mem_ind(i,3)) + ... 
        K(7:9,7:9); 
end 



Appendix D 

 

288 

D. Matlab Code for Valve Control 
 

 
function tank_valve_control 
% AT ALL POINTS, INCLUDE CHECKS FOR DANGEROUSLY HIGH/LOW PRESSURES 

AND USE 
% FLAGS AND BREAK STATEMENTS IF NECESSARY TO MOVE TO A SAFE STATE 

AND SEND 
% EMAIL ALERTS (IF POSSIBLE). 

  
% Set the upper and lower pressure thresholds (p_hi and p_lo) and 

calculate 
% upper and lower starting pressures (p_start_hi and p_start_lo). 
p_hi = 0.35e5; 
p_lo = 0.1e5; 
p_start_hi = p_hi - (p_hi - p_lo)/10; 
p_start_lo = p_lo + (p_hi - p_lo)/10; 

  
dio = digitalio('mcc','0'); % Create digital i/o object 
addline(dio,0:3, 0,'out');  % Add 4 do lines, one for each valve. 

  
ai = analoginput('mcc','0'); % Create analog input object. 
addchannel(ai,0:1); % Add 2 ai channels, one for each pressure 

transducer. 

  

  

  
% START OF DAY: 
% (run this before commencing cycling) 

  
disp('Commencing start routine') 

  
p_reg = zeros(0,2); 
hold on 

  
tic 

  
% Get first pressure sample. 
[pL,pR] = readP(ai); 

  
% Check if the left bag has a lower pressure than the right bag. 
if pL < pR 
    disp('Start: right is fuller than left') 

     
    if pL < p_start_lo 
        % Fill left until above p_start_lo. 
        [T,dispStr] = setValves('a_to_L'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pL < p_start_lo 
            [pL,pR] = readP(ai); 
%             T = toc; 
%             if rem(fix(T),10) == 0 
%                 p_reg = [p_reg;pL,pR]; 
%                 plot(fix(T),p_reg(end,1),'.r'); 

plot(fix(T),p_reg(end,2),'.k'); drawnow 
%             end 
        end 
    else 
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        % Empty left until less than or equal to p_start_lo. 
        [T,dispStr] = setValves('L_to_a'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pL >= p_start_lo 
            [pL,pR] = readP(ai); 
        end 
    end 

     
    if pR < p_start_hi 
        % Fill right until above p_start_hi. 
        [T,dispStr] = setValves('a_to_R'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pR < p_start_hi 
            [pL,pR] = readP(ai); 
        end 
    else 
        % Empty right until less than or equal to p_start_hi. 
        [T,dispStr] = setValves('R_to_a'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pR >= p_start_hi 
            [pL,pR] = readP(ai); 
        end 
    end 
else 
    disp('Start: left is fuller than right') 

     
    if pL < p_start_hi 
        % Fill left until above p_start_hi. 
        [T,dispStr] = setValves('a_to_L'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pL < p_start_hi 
            [pL,pR] = readP(ai); 
        end 
    else 
        % Empty left until less than or equal to p_start_hi. 
        [T,dispStr] = setValves('L_to_a'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pL >= p_start_hi 
            [pL,pR] = readP(ai); 
        end 
    end 

     
    if pR < p_start_lo 
        % Fill right until above p_start_lo. 
        [T,dispStr] = setValves('a_to_R'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pR < p_start_lo 
            [pL,pR] = readP(ai); 
        end 
    else 
        % Empty right until less than or equal to p_start_lo. 
        [T,dispStr] = setValves('R_to_a'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pR >= p_start_lo 
            [pL,pR] = readP(ai); 
        end 
    end 
end 

  
% Set the valves to idle (no air being pumped to/from either bag). 
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setValves('idle') 

  
T_start = toc; 
T = fix(clock); hour = num2str(T(4)); min = num2str(T(5)); 
disp('Start routine complete') 
disp('Start routine took (in m,s):') 
disp([floor(T_start/60),round(rem(T_start,60))]) 

  

  

  
% BEGIN CYCLING: 
% (only works properly if start routine has recently been completed) 

  
T = fix(clock); hour = num2str(T(4)); min = num2str(T(5)); 
disp('Commencing cycle routine') 

  
cycle_count = 0; 
break_loop = 0; 
while break_loop == 0 

     
    tic 

     
    [pL,pR] = readP(ai); 

     
    if pL < pR 
        % Send right to left until either threshold is reached. 
        [T,dispStr] = setValves('R_to_L'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pR > p_lo && pL < p_hi 
            [pL,pR] = readP(ai); 
        end 

         
        % Ensure the bag that did not cross the threshold is 
        % inflated/deflated (using atm.) until it does. 
        if pR <= p_lo 
            [T,dispStr] = setValves('a_to_L'); % Continue to fill 

left bag from atm. 
            disp([T{1} ':' T{2} ' ' dispStr]) 
            while pL < p_hi 
                [pL,pR] = readP(ai); 
            end 
        else 
            [T,dispStr] = setValves('R_to_a'); % Continue to empty 

right bag to atm. 
            disp([T{1} ':' T{2} ' ' dispStr]) 
            while pR > p_lo 
                [pL,pR] = readP(ai); 
            end 
        end 
    else 
        % Send left to right until either threshold is reached. 
        [T,dispStr] = setValves('L_to_R'); 
        disp([T{1} ':' T{2} ' ' dispStr]) 
        while pR < p_hi && pL > p_lo 
            [pL,pR] = readP(ai); 
        end 

         
        % Ensure the bag that did not cross the threshold is 
        % inflated/deflated (using atm.) until it does. 
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        if pL <= p_lo 
            [T,dispStr] = setValves('a_to_R'); % Continue to fill 

right bag from atm. 
            disp([T{1} ':' T{2} ' ' dispStr]) 
            while pR < p_hi 
                [pL,pR] = readP(ai); 
            end 
        else 
            [T,dispStr] = setValves('L_to_a'); % Continue to empty 

left bag to atm. 
            disp([T{1} ':' T{2} ' ' dispStr]) 
            while pL > p_lo 
                [pL,pR] = readP(ai); 
            end 
        end 
    end 

     
    % Set the valves to idle (no air being pumped to/from either 

bag). 
    setValves('idle') 

     
    T_cyc = toc; 
    cycle_count = cycle_count + 0.5; 
    T = fix(clock); hour = num2str(T(4)); min = num2str(T(5)); 
    disp('Cycle: completed cycles:') 
    disp(cycle_count) 

     
    disp('Cycle: last inflation took (in m,s):') 
    disp([floor(T_cyc/60),round(rem(T_cyc,60))]) 

     
    % Check any stop conditions and set break_loop = 1 if any are 

met, then 
    % send email using the following (making sure the lines of code 

are not 
    % in a loop!!!) 
%     setpref('Internet','E_mail','eaxajp@nottingham.ac.uk') 
%     

setpref('Internet','SMTP_Server','EXCHANGE1.ad.nottingham.ac.uk') 
%     setpref('Internet','SMTP_Username','eaxajp@nottingham.ac.uk') 
%     setpref('Internet','SMTP_Password','ENTER PASSWORD HERE') 
%     

sendmail({'andrewpimm@gmail.com','eaxajp@nottingham.ac.uk'},'Thresho

ld reached') 
end 

  
T = fix(clock); hour = num2str(T(4)); min = num2str(T(5)); 
disp('End of cycling') 

  
% Set the valves to idle (no air being pumped to/from either bag). 
setValves('idle') 

  
delete(dio) 
delete(ai) 
clear dio ai 

  

  
function dispTime 
T = fix(clock); 
hour = num2str(T(4)); min = num2str(T(5)); sec = num2str(T(6)); 
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disp([hour ':' min ':' sec ' Blah blah']) 

  
function [pL,pR] = readP(ai) 
    sample = getsample(ai); pL = 1e5*sample(1)/5; pR = 

1e5*sample(2)/5; 

     
function [T,dispStr] = setValves(vMode) 
% Set the valves to positions specified in vMode. 

     
    switch vMode 
        case 'idle' 
            lineSet = [0,0,0,0]; 
            dispStr = 'idle'; 
        case 'a_to_L' 
            lineSet = [0,1,0,0]; 
            dispStr = 'filling left from atm.'; 
        case 'a_to_R' 
            lineSet = [0,1,1,1]; 
            dispStr = 'filling right from atm.'; 
        case 'a_to_both' 
            lineSet = [0,1,0,1]; 
            dispStr = 'filling both from atm.'; 
        case 'L_to_a' 
            lineSet = [1,0,0,0]; 
            dispStr = 'emptying left to atm.'; 
        case 'R_to_a' 
            lineSet = [1,0,1,1]; 
            dispStr = 'emptying right to atm.'; 
        case 'both_to_a' 
            lineSet = [1,0,1,0]; 
            dispStr = 'emptying both to atm.'; 
        case 'L_to_R' 
            lineSet = [1,1,0,0]; 
            dispStr = 'filling right from left'; 
        case 'R_to_L' 
            lineSet = [1,1,1,1]; 
            dispStr = 'filling left from right'; 
        otherwise 
            putvalue(dio.Line(1:4),[0,0,0,0]) 
            error('Valve setting string not recognised.  Set to 

idle.') 
    end 

  
    T = fix(clock); hour = num2str(T(4)); min = num2str(T(5)); 
    T = {hour,min}; 
    putvalue(dio.Line(1:4),lineSet) 

 


