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Abstract.

Interest in coherent remote sensing systems has stimulated investigations in the

properties laser propagation through extended atmospheric turbulence. This thesis

investigates the statistics of phase, and phase related, observables using analytical and

computational techniques, together with experimental results.

The phase screen technique is used to simulate perturbations to the refractive index of

a medium through which the radiation propagates. Several different turbulence

models (Gaussian correlated noise, Kolmogorov turbulence, Tatarski and Von

Karman spectral models) are investigated, and their relative merits for describing

experimental conditions and descriptive statistical measures are compared and

contrasted.

The phase power spectrum is crucial to an understanding of the practical operation of

a coherent imaging system, and later part of the thesis is devoted to the investigation

of a LIDAR system in particular. Several turbulence regimes are investigated, from

an analytical treatment of a weakly turbulent, extended atmosphere, to large 3D

computations designed to simulate experimental arrangements. The 3D simulation

technique presented herein has been developed to allow for the investigation of

temporal statistics. New power law behaviours are found to appear in temporal

frequency spectra which differ from the -8/3 power law form that has been accepted

in much of the literature. Strongly turbulent regimes result in a -2 power law while

the use of a Gaussian beam profile in an extended medium gives a -11/3 power law

under weak turbulence conditions.
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1. Introduction

The propagation and interference of electromagnetic waves passing through the

atmosphere has long been a key area of research in the field of signals processing [1].

This research has principally been directed towards understanding the origins and size

of intensity scintillations in a beam [2, 3, 4, 24 and references therein], because many

communications and remote detection systems rely only on variations in the

amplitude of the wave to provide useful information [1, 5]. It is sometimes the case

though that phase information is required in addition to intensity fluctuations; this is

often true in communications systems where frequency demodulation is a principal

method for transmitting the signal. This is especially important when the radiation

source is coherent (i.e. a laser) [6, 26, 42 and 31] and the received phase can be

compared to the initially coherent wave front. The phase screen method is a

technique which is used to simulate coherent radiation propagation by using an

infinitesimally thin screen to model the effects of turbulence induced fluctuations into

the phase (but not the amplitude) of the radiation. Phase fluctuations introduced into

the field before propagation are intended to simulate the effect of temperature, and

thereby refractive index, fluctuations and motion of the air. The statistical properties

of the phase screens are used to characterise the type of turbulence being modelled.

Propagation of the field after interaction with the screen then allows intensity

fluctuations to build up through diffraction; focusing and caustics in the field arise

through propagation. The statistical properties of the intensity and phase statistics are

closely related to the statistics of the screen itself. The theoretical development of the

phase screen technique, as well as its analytical and numerical applications, will be

discussed in chapter 2.

The pioneers of the phase screen method [2, 3] were largely interested in the

calculation of intensity statistics for coherent waves passing through idealised phase-

changing screens. Indeed these statistics are still of current interest [8, 9]. These

studies used Gaussian complex processes to model atmospheric noise; they argue

further that this noise be characterised by a Gaussian auto-correlation function. An

important focus of these pioneering studies was radio-wave scintillations [2] and light

initiating from interstellar sources [48, 49, 10]. A interstellar source can be
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considered coherent because of the vast distances between an Earth-bound observer

and the stellar object. The calculation of the intensity scintillation curve ( Iσ , the

second moment of the intensity normalised by the square of the mean) for an idealised

Gaussian correlated phase screen in one dimension, obtained by Mercier [3], shows

how intensity fluctuations develop over different ranges of propagation. Mercier and

Bramley [11, 50] both used approximations to Helmholtz’s formula for wave

diffraction, they used simple perturbation theory to predict a form for the intensity

statistics in regimes characterised by weak turbulence (i.e. weak phase screens).

These results predict a reduction to Gaussian statistics with properties as investigated

by Rayleigh [12] and Rice [13] at large propagation distances.

Rice [13] investigated the properties of what has become known as the Rician field,

which is a field consisting of a constant phasor plus Gaussian noise. It shall be seen,

in chapter 3, that the Rician field forms a useful model for a propagated field in the

Fraunhofer zone, i.e. in the far field, under certain propagation conditions. The

constant phasor represents an unperturbed part of the plane wave while the Gaussian

process represents the part of the wave perturbed by propagation beyond the phase

screen.

Further work on the form of intensity scintillation curves by Jakeman and McWhirter

[4] investigated the effects of different kinds of ‘deep’ phase screens, i.e. strong

scattering, in one dimension. The statistical properties of the diffracted field are

characterised by the correlation properties of the screens. Several different

autocorrelation functions were considered; they showed the existence of a strong

focusing region (including a peak in the scintillation index such that 2>Iσ ) at

intermediate propagation distances and a saturated Gaussian speckle regime (where

the scintillation index 2=Iσ ) beyond that, in accordance with Mercier’s [3] results.

This is an important result which is used in benchmarking the numerical simulation

technique in chapter 2.

Attempts were made by Buckley [14] to derive a full probability distribution for the

complex electromagnetic field beyond an exponentially correlated phase screen. The

exponential correlation gives a fractal quality to the phase screens which can be seen
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in atmospheric propagations. This ‘ fractal’ quality manifests itself as a self-similar

appearance in the resulting intensity images (see figures 2.5 and 2.6). This approach

considered plane-wave illumination of a screen and resulted in the required

probability distribution being obtained from the solution to a Fokker-Plank equation

for the Fourier transform of the complex field. The results are analytically and

numerically formidable, and have not provided much insight into the problem.

Theoretical work that produces usable results is often restricted to simple perturbation

methods or an assumption of far field. It can be shown (section 2.1) that Maxwell’s

laws for the behaviour of electromagnetic field yield a wave equation describing the

propagation of E/M waves. Assuming short wavelengths the equation is reduced to a

simpler form:

( ) 0222 =+∇ UrnkU (1.1)

such that U is a scalar representing a component of the field. A perturbation method

can be used to solve equation (1.1). The Born approximation, ...210 UUUU ++= ,

where 1+>> ii UU , is used as a simple additive perturbation to the field. The Rytov

approximation, ( )Ψ= exp0UU where ...21 +Ψ+Ψ=Ψ and 1+Ψ>>Ψ ii , is a

multiplicative perturbation technique used on the phase. Both these approximations

require weak turbulence conditions. Under the Born approximation a system of

equations is obtained that can each be solved by the use of a Green’s function method,

i.e.

( ) ( ) ( ) ( )∫ −=
sall

mm sdsUsnsrGkrU 3
11

2 ,2 (1.2)

where ( )srG , is the free-space Green’s function. Second order moments are defined

under the Rytov approximation in terms of 1Ψ and 2Ψ :
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( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )LrLrrrE

LrLrrrE

LrLrrE

,,,

,,,

,
2

1
,

2111213

2111212

2
121

ΨΨ=

ΨΨ=

Ψ+Ψ=

∗ . (1.3)

From these one can form linear combinations which give all the moments of interest

in laser propagation problems [38].

A similar perturbation method can be applied to the amplitude and phase of the wave,

i.e. instead of applying perturbations to the field U, write ( )iSAU exp= and

approximate ...10 ++= SSS and χ+= 0loglog AA . This geometric optics

formulation is considered in more detail in section 2.2.3 where it is used to derive a

useful result. Ishimaru [72] also used this method to derive an important result for

phase spectra; this is considered in more detail in chapter 5.

In the light of this failure to obtain significant results for the statistics of a propagated

field in anything other than the simplest of cases, attention has shifted to numerical

simulation. The term ‘numerical simulation’ is understood to mean the stochastic

modelling of the wave propagation as opposed to numerical solution of the governing

equations. In an early paper on the numerical simulation of wave propagation through

phase screens, Buckley [57] discusses the theoretical basis behind the use of phase

screens and why one should expect good results from simulation. He provides

simulation results in the form of probability density functions, moments and power

spectra for the intensity. Whale [56] performs a similar analysis, looking at

anisotropic (i.e. where the correlation length is dependent upon the direction) screens.

He performs some simple calculations concluding that analytical results involving

strong levels of turbulence are difficult to produce and that the study of the intensity

scintillation index is important in investigating such regimes. A similarly complete

analysis of the theory behind wave propagation exists in a paper published by

Prokhorov et al. [42] where the paraxial approximation is discussed (section 2.1.2)

and the spreading and wander of a propagated beam considered.
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Simulations have been performed using one-dimensional screens (i.e. a two-

dimensional simulation) [16] and two-dimensional screens [8, 15 and many more]

(three-dimensional simulation). Macaskill and Ewart’s paper [19], comparing

forward difference methods and fast Fourier transform (FFT) methods for beam

propagation, provides a theoretical basis for the use of the FFT method in simulation.

Much work has also been directed at atmospheric turbulence and the development of

credible methods for simulating it [27, 28, and 29]. Ways that one can numerically

model this turbulence through the use of phase screens have been examined by

several authors [20, 23]. Lane, Glindemann and Dainty [20] considered the

simulation of a pure power law spectrum at small frequencies in an attempt to solve

difficulties in the discrete sampling of such spectra, these ideas shall be discussed in

greater detail in chapter 5. Frehlich [23] investigated the simulation of a Kolmogorov

spectrum1 for very strong propagation regimes, he used an extension of the method

presented by Lane et al. with the goal of introducing a new FFT algorithm.

The main thrust of investigation into intensity scintillations in recent years has

involved the use of faster and more powerful computers to make predictions about

results that do not yield to analytical treatment. There has also been greater

concentration on the use of two-dimensional screens (i.e. simulations that model a full

three-dimensional situation). Studies by Martin, Flatte and Gerber [8, 15, 27] have

investigated the possibility of using simulations in this way. These methods also

allow relatively quick and easy investigation of different types of phase screens and

beam profiles. One of the questions currently under debate in the literature is the

relative merits of using single and multiple phase screens. The single screen method

has been shown to be valid under certain conditions [62], while its validity has been

questioned under others [61] where the extended medium gives different results (see

section 4.2 for a more detailed discussion).

More recently, interest has focused on the intensity weighted phase statistic [16, 21],

an increasingly important measure in the field of laser communications. This interest

is a result of current research into the use of phase statistics. The development of

heterodyne detection systems (see chapter 5), where a local oscillator is used for

1 See section 2.2.2 for a description of the Kolmogorov theory of turbulence.
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comparison with a received signal, allows for the practical use of phase statistics in

remote detection systems. In this case the laser comes into its own; part of the power

of the coherent wave front can be diverted to setting up a frequency-shifted reference

signal in the lab to serve as a local oscillator. Systems using incoherent beams (direct

detection) are only able to measure intensity statistics.

The phase derivative and phase spectrum allow the use of phase statistics. Both these

methods are investigated in the chapters that follow. Chapters 4 and 5 look at the

numerical modelling of phase spectra. Work on the properties of phase statistics in

propagated laser beams has not been extensively developed since early work

performed by Clifford [30] and Ishimaru [70, 71, 72] in the 1970s. In those studies

the properties of the phase power spectrum were investigated for several beam

profiles in weak scattering regimes.

The focus of this thesis is a broad investigation of the properties of phase and phase

derivative statistics in coherent radiation propagation. Work is presented that

concentrates on computer simulation and analysis of phase and phase derivative

statistics.

1.1. An introduction to Gaussian noise.

The concept of Gaussian noise was alluded to first by Lord Rayleigh [12] in his

celebrated work of 1880. This work was carried out in response to the work of Verdet

[reference within 12] and looked at the expected resultant of a large number of

constant phasors with arbitrary phase. Upon consideration of the probability density

function, Rayleigh calculates that the pdf for the amplitude r in such a system will be

proportional to ( )2exp r− .

Noise in a system that arises as a result of such a large number of independent

scatterers was first noted after the advent of lasers as a coherent source of fixed-

wavelength light. Experimental work showed the existence of a granular or ‘speckle’

pattern present when the beam was reflected from an apparently smooth surface. This

noise is due to imperfections in the surface on a scale similar to the wavelength of the
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radiation. The need to describe the speckle pattern leads to a stochastic formulation

of light reflection, as an attempt to describe such a rough surface deterministically is

an impossibly complex task. It is the sum of many constructive and destructive

interferences from scattered waves from the surface that cause the speckle pattern.

Indeed one can show that the intensities of such a sum are distributed negative

exponentially while the phase is uniform over the range ]( πθ 2,0∈ .

Wherever a large number of noise sources act as random phasors, one might expect to

be able to characterise the noise as a Gaussian random process [64]. This arises from

the central limit theorem, which states that the resultant of a large number of

independent random processes, ( )txi , will have Gaussian statistics. I.e, a statistic

defined as ∑
=

=
N

i
ix

N
X

1

1
will have mean ixX = , variance NxiX

22 =σ and be

distributed normally such that

( ) ( )










 −
−=

2

2

2
exp

2

1

Xx

XX
XP

σπσ
. (1.4)

The resultant of multiple scatterings in an atmospheric layer can therefore be said to

constitute a complex circular Gaussian process ( ) ( )tiYtX + . These processes, ( )tX

and ( )tY , will have Gaussian statistics as noted above. These multiple scatterers, i.e.

the noise, are also characterised by an auto-correlation function ( ) ( ) ( )ττρ += tXtX

. Gaussian noise generated randomly (by a random number generator for example) is

characterised as ‘white’ , i.e. the autocorrelation function is uniformly zero. Noise

encountered in atmospheric propagation will not be white, it will have certain

statistical properties, several models for which have been proposed by several groups.

An overview of such models follows in the next chapter. One can impose an arbitrary

autocorrelation function for the purposes of analytical work, some popular models

include the Gaussian

( ) 







−

2

2

exp~
ξ
ττρ , (1.5)
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the exponential

( ) 







−

ξ
τ

τρ exp~ ,        (1.6)

and the truncated parabolic

( )















<−

otherwise0

1
~ 2

2

ξτ
ξ
τ

τρ . (1.7)

As well as determining the properties of the auto-correlation function for the circular

Gaussian process, one can derive several statistical properties of the process itself.

The joint pdf for X, Y, X& and Y& (where the dot represents a temporal derivative)

( ) ( ) ( )[ ]








+++−= 22
0

22
2

2020
2 2

1
exp

4

1
,,, YXbYXb

bbbb
YXYXP &&&&

π
(1.8)

can be determined from a consideration of the characteristic function and used to

determine the pdf for the intensity 22 YXI += and the phase derivative

( )XY1tan−=θ& . Note that 2
0 Xb = and 2

2 Xb &= . Assuming that the phase is

distributed uniformly one can show that

( )











−=

I

I

I
IP exp

1
(1.9)

and

( )
( ) 2

3
2212 θτ

τθ
&

&

c

cP
+

= . (1.10)
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where 20 bbc =τ . Thus the intensity has a negative exponential distribution (as

expected) while the phase derivative takes on a student-t distribution (equation 1.10)

and exhibits a -3 power law behaviour in its tails.

1.2. Introduction to the intensity-weighted phase derivatives.

The intensity-weighted phase derivative, θ&IJ = where the phase derivative is a

derivative in time, was proposed [16] as a statistic that can be used in the retrieval of

accurate frequency data in received, initially coherent radiation. This is especially

important in LIDAR (LIght Detection And Ranging) systems. The phase derivative is

a useful method for demodulating the frequency from the carrier wave in a LIDAR

system, as well as having applications in chemistry [17]. These laser ranging systems

will be discussed in detail in chapter 5. A received signal is written as

( ) ( ) ( )( )ifttitAtE += θexp , (1.11)

where ( )tA is the amplitude and ( )tθ a noise term introduced in to the system by the

action of stochastic process in the atmosphere. Frequency information f is retrieved

by taking the temporal derivative and averaging such that

θ&+= ffö . (1.12)

The noise introduced by this phase derivative term, θ& , is a zero-mean random process

and so a simple average should be sufficient to filter it out and leave only the

frequency information.
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Figure 1.1: This sample phasor shows the difficulty of measur ing the phase der ivative.

As the phasor approaches the or igin in the complex plane the phase der ivative increases

rapidly. The amplitude is close to zero at this point, thus amplitude weighting is used.

The problem in using this simple averaging is that the phase derivative is prone to

undergoing extremely large departures from zero when the phasor, representing the

received field in the complex plane, approaches the origin. The phase derivative can

be weighted with the amplitude in order to remove these large departures, see figure

1.1. While departures in θ& become large as the phasor approaches the origin, the

value of the amplitude approaches zero and so one is assured of using a weighting that

reduces fluctuations in the temporal derivative. It has been shown [16] that the most

efficient means of weighting the phase derivative - where ‘efficiency’ is defined in

terms of a minimisation of the variance of J - is by using the intensity. Thus the

intensity-weighted phase derivative produces a statistic with the same features as θ&

but without the same large, sudden deviations that cause problems in averaging. This

use of the intensity-weighted phase derivative is discussed in greater detail in [76]

with reference to a series of controlled experiments in which a thermal plume is used

to crudely simulate the effects of a strongly turbulent atmosphere. Figures presented

in the study show clearly how the intensity weighting improves the signal to noise

ratio (SNR) of the received beam. It is noted, however, that the use of intensity

weighting in a situation where the SNR is already high will not necessarily further

improve accuracy.

The properties of J have been studied in some detail in the case of a circular Gaussian

process [21]. Defining the field as iYXE += , where X and Y are independent

Gaussian processes, 22 YXI += and 





= −

X

Y

dt

d 1tanθ& results in XYYXJ && −= .
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From this definition one can write down the characteristic function of J and thus show

the probability density function to be

( )











−

I

J
JP cτ2

exp~ , (1.13)

where
2

0

b

b
c =τ is a parameter related to an amplitude correlation as defined above.

Consider the second moment of J,

XYYXXYYXJ &&&& 222222 −+= . (1.14)

noting now that as X and Y are independent Gaussian processes, 0== XYYX ,

while 22 YX && = , therefore

( ) 22222 XIXYXJ && =+= , (1.15)

such that in the case of a plane wave, 22 XJ &= . It is also clear from this that one

can write 





=

dt

dE
EJ *Im , this expression will be used in section 3.3.

In chapter 2 several of the results of Gaussian noise theory are used to benchmark the

computer simulation method. Chapter 3 considers the J statistic in the Rician field,

i.e. a field characterised by a constant phasor plus a Gaussian process. The pdf for J,

moments in the far field and the normalised second moment for all propagation

distances z are derived in this general case. Two-dimensional models for phase power

spectra simulations for plane waves are considered in chapter 4, while three-

dimensional beam simulations are investigated in chapter 5.
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2. Computer simulation method

The numerical simulation of coherent radiation propagation has become an

increasingly important area of research in recent years as refinements to models for

atmospheric turbulence become more difficult to treat analytically. Such refinements

to turbulence models are designed to account for atmospheric effects that have been

observed in experiment. When these models are defined in terms of spectral

components and the required Fourier transform (the auto-correlation, required in the

modelling of phase screens, function is defined as the Fourier transform of the

spectrum of the turbulence) does not exist in analytical terms – it can often be hard or

impossible to make progress with analytical work. Thus, the investigation of the

properties of complex turbulence models lies outside the realm of analytical work,

falling instead to numerical simulation. A large body of work on the statistics

resulting from propagation through mathematically simple turbulence exists in the

literature. It is possible to refine a numerical simulation technique by comparing

analysis with numerics before investigating turbulence models that cannot be treated

analytically. The computer simulation technique is therefore very important in this

field; stochastic simulations are used rather than attempting a deterministic solution to

the governing equations of wave propagation. This is done because the nature of

turbulence is inherently random, and many of the ways in which coherent radiation is

measured in experiment are statistical. It therefore makes sense to cast simulations in

a stochastic form, and use statistics in the interpretation of results.

In this chapter the phase screen method is introduced, this is a technique that models

atmospheric turbulence by the introduction of phase perturbations on to a coherent

wave front. The technique can be used in both numerical and analytical work, and

allows fluctuations in the amplitude of the beam to build up as the beam propagates.

The Kolmogorov theory of turbulence is also introduced, this model uses a method of

dimensional analysis to cast atmospheric turbulence in terms of a spectrum of

refractive index fluctuations. Several validations of the phase screen method are also

considered, using a comparison of numerical simulation results with analytical theory.



Temporal phase and amplitude statistics in coherent radiation

18

2.1. Underlying theory of wave propagation.

The numerical simulation technique involves the numerical propagation of a field

through atmospheric turbulence. In order to do this, a numerical discretisation of the

theory behind wave propagation is required. A model is also needed for the

turbulence itself. The behaviour of electromagnetic radiation is governed by

Maxwell’s field equations. The phase screen model, which attempts to simulate

turbulence through the use of a thin, phase-changing screen, is discussed in more

detail. A discretisation of the phase screen model is also considered.

2.1.1. The wave equation.

The behaviour of an electromagnetic field (E the electric field and B the magnetic

field) is described by Maxwell’s field equations

j
t

E

c
B

t

B
E

B

E

02

0

1

0.

.

µ

ε
ρ

+
∂
∂=×∇

∂
∂−=×∇

=∇

=∇

(2.1)

where j is a free current, ρ the free charge, µ0 and ε0 the permeability and permittivity

of magnetic and electric fields respectively. Manipulation of the third and first of the

above laws leads to a wave equation describing the propagation of an electric field in

a non-homogeneous medium:

( )
2

2
2 ln.

t

E
EE

∂
∂=∇∇+∇ ξµξ . (2.2)

Looking for solutions that vary sinusoidally in time (i.e. ( ) ( ) tierEtrE ω−= 0, ) allows

the reduction of equation (2.2) to
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( )( ) ( )ErnkrnEE 222 ln. =∇∇+∇ . (2.3)

Here the refractive index n2 = ξµ and k is the wave number (equal to the frequency of

the wave divided by its speed). This is the wave equation; it is used in the simulations

in this thesis that model the propagation of a coherent radiation source. As has

already been noted, the model will involve phase perturbations by a screen, the actual

propagation of the wave will be through a vacuum. It is possible to reduce this

equation yet further, assuming that the field is simply a propagating wave in space,

and that the refractive indices for electric and magnetic propagation are constants (n =

1 in a vacuum), the spatial and temporal evolution of this wave or packet of waves is

described simply by

022 =+∇ uku (2.4)

which is the standard Helmholtz equation [31] where u is the scalar field.

2.1.2. The paraxial approximation to (2.3) and solution.

The simulations presented in this thesis are concerned only with the propagation of

coherent radiation, therefore one can assume parallel propagation of the beam.

Simplification of the wave equation is therefore possible via the paraxial

approximation. This is done by assuming the propagation distance of the beam, z, is

always much greater than any beam spreading that occurs. Assuming that radiation is

in the optical or infrared range, it can been shown [82] that it is possible to neglect the

middle term of the wave equation (2.3)2. Assume now a form for E and redefine the

refractive index n in terms of the refractive index in free space plus a small

perturbation n1, i.e. ( )11 nn += . The form taken for E assumes a slow variation in the

z co-ordinate (where z is the direction of propagation), i.e.

( ) [ ]ikzzyxEE exp,,= . (2.5)

2 Radiation scattered by large fluctuations in the refractive index is scattered at an angle no greater than
λ / l0 ~ 10-4 for optical and infra red light. Hence one can neglect the middle term in (2.3).



Temporal phase and amplitude statistics in coherent radiation

20

Substituting into equation (2.3), neglecting the
2

2

z

E

∂
∂

term3 and assuming

( ) 1
2

1 211 nn +≈+ results in the paraxial approximation to the wave equation:

022 2
1

2
2

2

2

2

=+







∂
∂+

∂
∂+

∂
∂

EnkE
xyz

E
ik . (2.6)

The z direction is the direction of propagation while the x and y co-ordinates are

perpendicular to the beam’s length. Equation (2.6) is the one that is used to simulate

wave propagation between phase screens. As the space between each screen is

assumed to be a vacuum, one can set 01 =n .

Two different methods for solving (2.6) numerically are suggested by Macaskill and

Ewert [19]: a finite difference formulation; and a fast Fourier transform method.

Although they present a method for making a finite difference solution manageable

and fast, they conclude that the preferred method to solve (2.6) is the fast Fourier

transform. They show that one can transform the electric field E into the Fourier

domain, solve the resulting differential equation and then transform back into the real

space domain to obtain

( ) ( )zE
k

i
z

zE
yx

yx ,,
2

,, 2

κκκκκ
−=

∂
∂

, (2.7)

which is the required result. Equation (2.7) is the form of equation (2.6) in Fourier

transform space, where ( )zE yx ,,κκ is the 2-dimensional Fourier transform of

( )zyxE ,, . xκ and yκ are the frequency space co-ordinates, where ( )222
yx κκκ += .

This is a simple linear ODE whose solution is easy to find. Given an initial condition

on z, i.e. z = z0 initially,

3 Because
z

E

z

E

∂
∂<<

∂
∂

2

2

under the assumption of slow variation in the z direction.
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( ) ( ) ( )






 −
−=

k

zz
izEzE yxyx 2

exp,,,, 0
2

0

κκκκκ . (2.8)

A simple inverse Fourier transform yields the field in real space. The computational

procedure required to simulate the propagation of a laser beam through free space is

clear. A fast Fourier transform method is used, first to transform the field data into its

spectral components ( )zE yx ,,κκ , then to Fourier invert back into the real space after

the propagation term,
( )








 −
−

k

zz
i

2
exp 0

2κ
, has been applied. The real space result

being the electric field at some observation plane located at z = L, i.e. ( )LyxE ,, .

2.2. The phase screen technique.

The discussion to this point has focused on the propagation of a wave or wave packet

through a vacuum. Indeed the presence of a vacuum is a crucial assumption in the

reduction of the wave equation to its paraxial form. The simulation of atmospheric

propagation requires the simulation of the medium through which the beam

propagates. This is done by the well-documented phase screen method, as introduced

in chapter 1.

A laser beam (i.e. a coherent radiation source) is characterised by its initial profile, the

‘phase screen’ [2, 3, 7, 8 and others] method is then employed to simulate the

extended medium (i.e. the Earth’s atmosphere) into which the beam propagates. The

phase screen method numerically represents the random medium as one or more

infinitesimally thin ‘screens’ transverse to the direction of propagation, each of which

imparts a phase shift onto the field. It is possible to calculate the field resultant from

such a propagation of the beam by several methods; two that are employed here are

the Huygens Fresnel integral for analytical treatment, and a fast Fourier transform

algorithm for numerical treatment as discussed above. These phase fluctuations result

in amplitude fluctuations that build up in the field as a result of the propagation. This

gives features such as focussing and caustics in the beam.
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Fig. 2.1: Diagrammatic representation of the phase screen method.

The phase screen is essentially a method of creating statistically-correlated phase

changes in a wave front. These phase fluctuations introduced into the beam’s path are

intended to simulate the effects of temperature (i.e. refractive index) fluctuations in

the atmosphere, as well as the motion of the air. This is very similar to the effect of a

sheet of misted glass, or a swimming pool, on the light reflecting off, or refracting

through, it. The variation in the refractive index of the material causes phase

fluctuations in the light.

The computer simulation of a phase screen involves the generation of an array of

pseudo-random complex Gaussian numbers, then filtering this data to include the

desired statistical properties. One achieves this by the application of a fast Fourier

transform algorithm, and an idealised filter function (which is a Fourier pair with the

auto-correlation function) that gives the screen the desired statistics. The specific

method, which employs the Weiner-Khintchine relations [18], employs a convolution

of the spectral components of the noise with those of the autocorrelation function.

After a subsequent inverse Fourier transform, the real and imaginary parts of the

resulting correlated noise constitute phase screens with the required statistical

properties.
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2.2.1. Statistics of the phase screens, Gaussian noise model.

Statistical correlation of a phase screen is required in order that it be considered a

valid model for atmospheric turbulence, an array of independent pseudo-random

numbers constituting white noise is not sufficient to be such a phase screen.

The simplest auto-correlation function for the phase screen data is the Gaussian.

Booker et al. argued in their seminal paper [2] on phase screen techniques that the

screen should have a Gaussian correlation as a result of the central limit theorem

applying to the build up of small-size turbulent eddies in the atmosphere. It has since

been shown that the Gaussian screen, although useful for analytical work, is not an

accurate model for atmospheric turbulence. It is, however, not a model that should be

ignored; its simplicity of use in analytical work makes it a useful tool for investigating

the validity of simulation. Indeed, it is with that goal in mind that it is employ it in

this thesis. The Gaussian auto-correlation function of the phase fluctuations φ is

defined, in real space, as

( ) ( ) ( )












 −
=−=

2

2

2
011 exp

ξ
φφφρφ

r
rrrr , (2.9)

where ( )rφ is the phase screen data, K an ensemble average and ξ the correlation

length. There is also a strength parameter φ0, which determines the mean square

value of the phase fluctuations introduced by the screen (also referred to as the

‘depth’ ). Figures 2.2 and 2.3 show examples of phase screens using Gaussian-

correlated data. As has already been noted, one can define the correlation properties

of the phase screen in terms of the spectral components of the noise such that

( ) ( ) ( )∫
∞

∞−

−Φ drikrr exp~ φφ ρκ . (2.10)

The spectral form of the auto-correlation function (2.9) is also a Gaussian, and

therefore can easily be defined in frequency space, in as opposed to real space.
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This definition of the auto-correlation function in real space will only be possible for

simple models. Other turbulence models may have to be defined solely by the power

spectrum ( )κφΦ in κ -space. Possible correlation models defined in real space have

been noted in chapter 1 (see equations (1.5), (1.6) and (1.7)). None of these are viable

models for real atmospheric turbulence; rather they are useful in the comparison of

simulation techniques against simple theory.

Figs 2.2 and 2.3: Gaussian phase screens in 1 and 2 dimensions respectively. In fig. 2.2,

the depth φφφφ0 = 10 while ξξξξ = 1000; in fig. 2.3 φφφφ0 = 10 and ξξξξ = 30.

The above figures show two examples of Gaussian-correlated phase screens. Note the

smooth contours on the screens, this is a characteristic feature of ‘ idealised’ noise.

2.2.2. The Kolmogorov theory of turbulence.

The Kolmogorov cascade theory of turbulence is based on certain assumptions about

the structure of a viscous fluid and the way that energy dissipates in it; the theory can
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be used to develop an auto-correlation function that is used to accurately model

atmospheric turbulence in a phase screen simulation. The main assumption under-

pinning Kolmogorov’s theory is that there exist certain outer (L0 which corresponds to

an inner scale ( )01~ LIκ in κ -space) and inner (l0 which corresponds to an outer

scale ( )01~ lOκ in κ -space) scales which characterise the size of turbulent eddies.

Energy is injected into the atmosphere at large scales by the action of the wind and

large-scale convection currents; this causes eddies to form in the atmosphere whose

sizes are characterised by the outer scale L0. Smaller eddies are formed via the

transfer of energy through the system; the smallest possible size for an eddy

corresponds to the inner scale l0. Once this scale is reached, the fluid moves into what

is known as the viscous dissipation regime; turbulent eddies remaining in the system

dissipate, and energy is lost as heat. The dissipation rate is assumed to be distributed

in a lognormal form, although this has been challenged by several researchers [41] as

the model disagrees with certain experimental results. Kolmogorov used dimensional

analysis to show that the structure function for wind velocities should have a

particular form [29, 31]. The structure function is defined as

( ) ( ) ( )[ ]2
2121, rxrxrrDx −= (2.11)

and is an important statistic in stochastic processes. Because the structure function is

independent of whether the process is stationary or not, it can be used to define

general properties about the process. Kolmogorov showed that ( )21, rrDv - the

structure function for the wind velocities in the atmosphere - has a 2/3 power law; i.e.

( ) 3

2
2RCRD v= , (2.12)

where Cv is the structure constant, and is related to the energy dissipation rate of the

fluid. The structure function is related to the power spectrum of the velocities via [36]

( ) ( ) ( ) dRRD
dR

d
R

dR

d

R

R
vv ∫

∞





=Φ

0

2
22

sin

4

1

κ
κ

κπ
κ (2.13)
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such that when equation (2.12) is applied the power spectrum follows a 311− power

law form in κ . Similar analyses exist for both temperature and refractive index

fluctuations in the atmosphere, each giving a 311− power law for the power

spectrum. Thus Kolmogorov proposed 311− power law spectrum as a form for the

spectral components of the refractive index fluctuations in the ‘ inertial subrange’ , (i.e.

being the range of κ between the outer and inner scales). Note here that the inner

scale, while forming a cut-off for short length behaviour in real space, corresponds to

a cut-off at high-frequencies behaviour in κ -space. Thus the upper limit of the

inertial subrange in frequency space corresponds to the lower range in real space, and

vice versa for the outer scale in real space.

The form for the Kolmogorov spectrum in three dimensions is

( ) OInn lL
C κκκκκ =<<<<==Φ

−

00

3

11
2 11

,033.0 (2.14)

where, as has been discussed, Iκ and Oκ define the inner and outer limits of the

inertial subrange and 2
nC is the structure constant for the refractive index in units of

m-2/3. Experimental data indicates that for the atmosphere the outer scale is of the

order of metres in size while the inner scale is of the order of millimetres or

centimetres depending on the specific turbulence conditions [31]. Regions of the

spectrum outside the inertial subrange must be sampled in order to discretely model

the turbulence. This problem has been addressed by several researchers. Tatarski

suggested an extension to the Kolmogorov model to extend it into the viscous

dissipation regime. The application of an arbitrary exponential factor effectively cuts

the spectrum off at high frequencies. One unfortunate property of the Kolmogorov

theory is that as the frequency approaches zero, the spectrum blows up to infinity.

Von Karman proposed a second adjustment to the spectrum which would account for

this. He suggested adding the inner scale to the frequency such that as κ approaches

zero, the spectrum approaches a value proportional to 3
11−

Iκ . The full modified Von

Karman spectrum is then
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( )
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O
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which is valid over all κ -space and can be used to model the Kolmogorov theory in a

phase screen. Further refinements to the Kolmogorov model in addition to those

above have been proposed in the light of additional experimental data concerning the

nature of atmospheric turbulence. Voitsekovich [39] performed an analysis of the

differences between various models for the outer scale, while experimental evidence

from Hill and Clifford [27], showing the possible presence of a ‘bump’ in the

spectrum at high wave numbers close to the outer scale (in κ -space), motivated

Andrews [31] to propose a modification to the Von Karman spectrum,
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In this ‘modified Von Karman spectrum’ the terms in the square brackets dominate at

high wave numbers and introduce the ‘bump’ into the spectrum.

Several different spectral models of turbulence will be considered in more detail in

the case of three-dimensional simulations in chapter 5.

2.2.3. The phase spectrum, ( )κκκκφφφφΦΦΦΦ .

The refractive index spectrum cannot be used immediately in the correlation of phase

screen data. This is because the phase screen process uses fluctuations in the phase of

the wave front to induce diffraction and focusing effects into the beam, whereas

Kolmogorov theory refers to refractive index fluctuations. Thus the refractive index

spectrum must be converted into a phase spectrum for use in phase screens.
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The relationship between the refractive index and the phase can be derived from a

simple geometric optics formulation. Starting from the Helmholtz equation (equation

(2.4)) and assuming that the solution is of the form φiAeU = , a system of two

equations can be derived [36]

( ) ( )rnk

A
222

2 0.log2

=∇

=∇∇+∇

φ
φφ

(2.17)

that describe the behaviour of the amplitude A and phase S. Assuming small

perturbations in A and S, such that 10 φφφ +≈ and ( ) ( ) χ+≈ 1loglog AA , the

refractive index fluctuations over the path of the beam and the phase changes are

related by the path integral

( ) ( )∫=
L

dzzyxnkLyx
0

,,,,φ (2.18)

where n is the refractive index, k the wave number for the propagation, L the total

propagation distance and φ the phase change along that path. From (2.18) the

refractive index spectrum can be related to the phase spectrum. To do this one writes

the correlation function, ( )yyxx ′−′− ,φρ , for the phase φ in terms of the correlation

function for the refractive index fluctuations ( )yyxxn ′−′− ,ρ

( ) ( ) ( )

( ) ( )

( )zzyyxxdzzdk

zyxnzyxndzzdk

yyxxyxyx

n

LL

LL

′−′−′−′=

′′′′=

′−′−=′′

∫∫

∫∫

,,

,,,,

,,,

00

2

00

2

ρ

ρφφ φ

.

Changing to sum and difference variables zzu ′−= and zzv ′+= , integrating out v

and taking the Fourier transform gives
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( ) ( ){ }

( ) ( ){ }yxn

L

L

yx

yxiuyxduydxdLk

ydxdyxiyx

κκρ

κκρφ

′′+′′−′′′′′′′′=

′′′′′′+′′−′′′′

∫∫∫

∫ ∫

−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

exp,,

exp,

2

(2.19)

where xxx ′′→′− and yyy ′′→′− . Using (2.19) gives

( ) ( )0,,2, 2
yxnyx Lk κκπκκφ Φ=Φ . (2.20)

This relationship can be used for the formulation of the statistics of the phase screens.

Applying this to the Von Karman spectrum for refractive index fluctuations in the

atmosphere, one can determine a two- dimensional form for ( )κφΦ which can be

used to build two-dimensional screens for use in three-dimensional simulations:

( )
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∞<<+=
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A one-dimensional form can now be calculated for the Von Karman spectrum for use

in two-dimensional simulations. Integrating out the yκ dependence [21] leaves

( )
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exp
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22 , (2.22)

which is valid where Oκ is large. This is a valid approximation as one can always

assume the turbulence has a small inner scale. Note that the phase spectrum has a -

8/3 power law in the inertial subrange (plotted in figure 2.4 below).

The range of values that are used to sample κ -space need to be defined such that the

fast Fourier algorithm performs properly. Given the particular coding used in these

simulations, the κ -space region over a range must be defined over an area which is a



Temporal phase and amplitude statistics in coherent radiation

30

multiple of { -π, π} . Defining the size (in a physical sense) of the beam as Lx by Ly

metres, the sample sizes used in the simulation in κ -space will be xx Ld πκ 2= and

yy Ld πκ 2= . Given that the number of samples taken is N, the range of values in κ

-space is { }NLNL ππ ,− .

Fig. 2.4, the Von Karman filter (2.22) function in 1 dimension with the iner tial subrange

indicated, note the -8/3 power law behaviour within that range.

This range of values sampled in κ -space places a natural limit on the inner and outer

scales that can be chosen for the simulation. The inner scale l0 can be no smaller than

the sample size, while the outer scale L0 can be no larger than the physical size of the

simulation. Note the way the spectrum flattens off at low and high frequencies, while

in the inertial subrange a -8/3 power law behaviour is present. This spectrum is

sampled numerically over κ -space and then transformed it into a real space

correlation function using an inverse fast Fourier transform algorithm.

These screens (figures 2.5 and 2.6 below) were obtained by filtering the same white

noise as was used in figures 2.2 and 2.3. A Von Karman filter was used rather than a

Gaussian auto-correlation function. Notice the extra ‘detail’ in the screens indicating

the existence of self-similar fractal behaviour in the pattern, a characteristic of

Kolmogorov turbulence.
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Figs 2.5 and 2.6: Phase screens character ised by a Von Karman filter .

The analytical form of the Fourier transform of equation (2.22) cannot be calculated,

and as a result a fast Fourier transform algorithm must be used. One can, however,

calculate the ‘depth’ of a phase screen filtered by such a Von Karman spectrum. The

‘depth’ , or strength, of a phase screen is determined by the mean square phase shift in

the screen; this corresponds to the value of the correlation function at x = y = 0 in real

space. For the Gaussian correlation function (equation 2.9), this value is φ0
2. For the

Von Karman autocorrelation function, this value is calculated by performing the

inverse Fourier transform of the spectrum at x = 0 (in the 1D case). The real space

correlation function is

( ) ( ) ( )∫
∞

∞−

Φ= κκκ
π

ρ φφ dxix exp
2

1
(2.23)

at x = 0, the screen depth is then

( ) ( )∫
∞

∞−

Φ= κκ
π

ρ φφ d
2

1
0 , (2.24)
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substituting the Von Karman phase fluctuation spectrum gives
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which can be expressed in terms of hypergeometric functions [32] as
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Hence, given values of Cn
2, L, Iκ and Oκ , one can determine the strength of the

phase screen.

2.3. The Simulation technique.

An algorithm for performing numerical simulations of wave propagation through

turbulence characterised by phase screens can now be written down:

• Numerically set up the coherent wave front to be propagated; the front can be

in 1 or 2 dimensions.

• Set up the desired auto-correlation function for the phase screens that will be

used in the simulation. This is done either in real space (Gaussian) or in κ-

space (Kolmogorov / Von Karman) as required.

• Set up the phase screen(s) using the Weiner-Khintchine method of correlating

pseudo-random complex Gaussian numbers. The phase screens need to be of

size greater than or equal to the wave front.

• The wave interacts with the phase screen; this occurs by the phase screen data

acting as a phase shift on the wave itself.
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• A Fourier transform algorithm is used to solve the wave equation (2.8) and

propagate the beam through a vacuum to the observation screen (or next phase

screen).

• Further phase screen interactions and propagation occur (extended medium,

i.e. multiple phase screens, case only).

• An inverse Fourier transform is performed at the observation screen the result

is the final propagated wave.

There are a number of further technical points which need to be discussed before

considering a validation of the simulation technique against published results. The

fast Fourier transform is a process that transforms a set of N data points into a second

set of data containing N elements. If one increases the size of the data set by M , then

the length of time taken for the fast Fourier transform process to finish increases by

( )MM log . The use of an ever-increasing number of data points in the phase screen

will lead to simulations that take a very long time to complete. It is perhaps

preferable to perform several realisations of smaller sized screens and wave fronts

rather than single large simulations in order to produce accurate statistics. Note that

this ( )MM log behaviour is still preferable to the increase in time that would occur if

one were to use a forward difference method for solving the wave equation, in that

case the a time increase would be an order no less than 2M [19].

These time considerations are very important when it comes to simulations in three-

dimensions; in these cases one can set up phase screens of the form NN 22 × in order

to preserve the efficiency of the fast Fourier transform algorithm. The difference in

time taken to perform a simulation using N = 8 and N = 9 is quite large, because there

are four times as many data points in the screen.

The second point is concerned with boundary conditions. This is an issue considered

by Ewert and Macaskill [19]; they concluded that one useful aspect of the fast Fourier

transform method is that it requires no boundary conditions to be arbitrarily set. This

is due to the periodic nature of the FFT process. Thus one edge of the screen is

wrapped around and connected to the opposite edge during the fast Fourier transform.

Although this saves the task of setting up arbitrary boundary conditions, it leaves a
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problem of aliasing. Aliasing occurs when a part of the beam diffracting off the

screen on one side of the simulation is brought back on to the screen on the far side of

the simulation. This only becomes a problem when an element of the beam has

diffracted so far off one side of the screen that it returns on the other side and

interferes with itself again. There are two main ways to keep this possible source of

error under control; use of ‘padding’ or restricting the propagation range of the

simulations.

‘Padding’ introduces a region of blank space around the beam profile, which gives the

beam some space to diffract into without returning to the far side of the simulation as

a result of the periodicity. Restricting the propagation range works by first calculating

the average distance over which propagation will have to occur for aliasing to happen;

then restricting propagation geometries to ranges less than that value. In this thesis a

system of padding is preferred, as this places fewer restrictions on the simulation.

The third matter, which applies mainly to Gaussian-profile beam propagations, is

beam spreading and wander. These phenomena occur as a result of diffraction and

interaction with the propagation medium. Generally, beam wander is a result of large

scale movements of air across the front of the beam, while spreading occurs due to

diffraction effects. Wander can be characterised by the variance of the displacement

of the beam from the initial centre. Churnside and Lataitis [47] discuss a geometric

derivation of the above statistic for a Gaussian beam propagating in weak

Kolmogorov type turbulence. They produce results valid for both collimated and

focused Gaussian beams, showing that the wander parameter depends on the initial

beam diameter and the path length.

Beam spreading and wander are matters discussed at length by Belmonte [7]. The

expression [52]
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gives the beam intensity radius W(z) at a propagation distance z, given an initial beam

radius W0. The
Skrz ,04 term here is approximately equal to the outer scale of the

turbulence spectrum, L0. Sr ,0 is the spherical wave coherence diameter, defined by

( )
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In a vacuum a beam is expected to undergo an angular spreading of order λ / W, such

that λ is the wavelength and W the beam diameter. The use of ‘padding’ around the

beams in simulations is therefore crucial, as it allows free space for spreading and

wander to occur without causing aliasing. Spreading and wander are discussed in

greater depth in chapter 5.

2.4. Simulation parameters.

In the numerical simulations presented in this thesis there are two different ways that

one can define the parameters used. One can either use real values in terms of

standard S.I. units, or values normalised to the sample size x∆ of the simulations.

The use of real values is important in the comparison of simulations to experimental

data or to theory cast in physical terms. The use of a mathematically idealised set of

parameters is useful for checking the simulation technique against simple theory.

The difference between these two methods of defining the parameters is most clear

when looking at the strength of the turbulence used. The level of the turbulence is

defined subtly differently in the case of the two most important turbulence models, the

Gaussian (2.9) and the Von Karman (2.22). In (2.9) the mean square phase shift,

defined by ( ) 2
0

2 φφ =r , is imposed on the wave front. This is the same regardless of

any other parameters such as the propagation distance or the wavelength. In the

derivation of (2.21) the refractive index structure parameter Cn
2 defines the level of

the turbulence. Equation (2.26) shows that the strength of the turbulence is dependent

on not only Cn
2, but on z, k and the inner and outer scales. Therefore, given a constant
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value for Cn
2, the effective ( )r2φ changes depending on several other factors. This

is indeed how beam propagation in the physical world works (i.e. a beam of a shorter

wavelength λ will experience a greater level of scintillation for a given Cn
2 and

propagation distance). The use of ( )r2φ is a simplification of reality; it is used in

simulations only as a means to relate work to simple analysis.

Many simulations require the introduction motion into the medium. This is done by

moving the phase screens within the simulation. In this case a temporal co-ordinate

t∆ is defined, such that the velocity of the screen is txv ∆∆= . This will become

important, and will be discussed again at greater length, when looking at temporal

phase spectra in chapters 4 and 5.

2.5. Validation of the simulation technique.

The simulation technique is designed with the ultimate goal of modelling atmospheric

turbulence numerically to provide a basis from which one can test theory against

experimental data. As discussed above, the Kolmogorov theory of turbulence and

Von Karman spectrum provide a theoretical base on which to build our simulations; it

is useful though to test the simulation technique against simpler and more analytically

accessible models for atmospheric turbulence, namely the Gaussian correlation model

(equation (2.9)). There are several different statistics that can be used to interpret

simulation results, they are, as noted in chapter 1, the intensity I, the phase θ and the

intensity-weighted phase derivative J. These simulations are used to justify the

validation of the simulation technique.

2.5.1. Regimes of propagation; Fresnel, focussing and Fraunhofer

regimes.

It is well known that 3 distinct regimes exist in the propagation of coherent laser

radiation; a Fresnel zone, a focussing regime and a Fraunhofer zone. In the Fresnel

zone diffraction has yet to cause features such as caustics. In the focussing regime the

formation of caustics and peaks in the field causes a maximum in the value of the
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scintillation index
22 III =σ . In the Fraunhofer zone the intensity statistics

approach a saturation limit and the Iσ approaches a constant. These regions are

investigated by looking at the probability density functions for three statistics, the

intensity I, the phase derivative θ& and the intensity-weighted phase derivative J. The

pdf for the phase θ not considered as one expects to see to a uniform distribution for

sufficiently large turbulence. The propagation of a coherent radiation source4 into

increasingly large propagation distances is considered.

One can model the pdf of the intensity fluctuations by a lognormal distribution.

Under the Rytov perturbation technique (as described in chapter 1), it can be shown

that the logarithm of the intensity in the far field under weak turbulence conditions is

governed by a Gaussian distribution [24, 31]
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where ( )0ln
2

1
II=χ , I0 is the initial intensity of the beam at z = 0 and 2

χσ is the

variance of χ. This approximation is valid for weak propagation regimes, and so

should be valid in the Fresnel zone. In the far field regime the phase derivative is

described by a student - t distribution (equation (1.10)) as the field is characterised as

a Gaussian circular process. Thus a -3 power law is expected in the tail of the

probability distribution.

4 Simulations in this chapter use a plane wave as a coherent radiation source.
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Figure 2.8, pdfs of I , θ& and J in the focussing regime, -ln(q) = 0.

Figure 2.8 gives the equivalent pdfs as figs 2.7 for a plane wave propagated into the

focussing regime. In terms of the normalised propagation parameter q, this amounts

to setting ( ) 0ln =− q . Note now a discernable difference between the plots for the φ&

and J; there is less ‘noise’ in the tail of the plot for J, an indication of the ‘smoothing’

effect that the weighting is intended to have on the phase derivative. The exact fit

seen between the simulations and theory in the pdf for I in fig. 2.7 is no present in fig.

2.8. This is a clear indication that the propagation regime has moved beyond the

Fresnel zone, and that the Rytov assumptions are no longer valid in the focussing

regime.

Figure 2.9, pdfs of I , θ& and J in the Fraunhofer zone, -ln(q) = 4.
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Figure 2.9 shows that the pdf for the intensity has become a negative exponential; this

is because the field is in the Fraunhofer zone and consistent with Gaussian noise

theory. It is clear also that the log normal model does not match the simulation data

in this regime. The pdf for J has taken on a ( )J−exp form (equation (1.13)).

Chapter 3 will look at the form of the pdf of J in the more general case of the Rician

field.

Figure 2.10, log/log plot for the pdf of θ& in fig. 8, the -3 power law tail is clear .

Figure 2.10 gives a log / log plot of the pdf of θ& , a -3 power law in the tail of the

distribution can be seen as predicted in equation (1.10). Three basic regimes of the

propagation are clearly present in the simulations. Consider now a validation against

the scintillation index.

2.5.2. Scintillation index: curves for Gaussian correlated phase screens.

The form of the scintillation index Iσ curve for a ‘deep’ screen was calculated by

Jakeman and McWhirter [4] for several different forms of correlated phase screen.

The scintillation index plot shows the differing regions of propagation. Figure 2.11

gives the scintillation indices for four different strengths of phase screen (all deep, i.e.

φ0 > 1) using single Gaussian correlated phase screens similar to those used in the

simulations in section 2.5.1. The Fresnel zone is characterised by a value of 1≈Iσ ,

while the saturation regime has 2=Iσ .
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The focussing regime is characterised by a peak in Iσ for strong turbulence

propagations. In the case of weak turbulence, there is no focussing regime, and the

saturation regime doesn’ t correspond to Gaussian statistics in the intensity, rather Iσ

approaches a value of ( )2
02exp2 φ−− as calculated by Mercier [3].

Fig. 2.11; scintillation index curves for plane waves propagated through deep, Gaussian-

correlated, cor rugated phase screen. Solid lines indicate theory [4] symbols are

numerical simulation.

One can calculate a form for the scintillation index curve for a weak screen using a

simple Huygens-Fresnel integral approach, similar to that used in [4]. This can then

be used to test weak turbulence simulations. The calculation in 1 dimension using a

Gaussian correlated phase screen begins with the definition of the electric field E

propagated in one dimension beyond a phase screen φ(x) to a distance L as

( ) ( )∫
∞

∞− 





 += xix

L

ik
dx

L

k
LE φ

π
2

2
exp

2
, (2.30)

where k is the same as defined above and x a dummy integration variable in the plane

of the phase screen. The second moment of the intensity is
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where xi are the integration variables. Now employ a well-known sum and difference

co-ordinate change [3, 4, 16, 21]
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and the fact that for a Gaussian variable A one can write ( ) 
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where ( )xρ is the correlation function. The integral of equation (2.33) over 3y gives

a delta function in 1y , the resulting integral in 1y then gives
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which can now be solved by assuming a Gaussian form (2.9) for the auto-correlation

functions ( )xρ and a weak phase screen (i.e. φ0
2 < 1) such that
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in the next chapter. Note that the saturation (i.e. far field) value of the scintillation

index corresponds to Mercier’s value of ( )2
02exp2 φ−− in each case.

2.5.3. Second order intensity weighted phase derivative statistics using a

Gaussian correlated phase screen.

As already discussed, the intensity-weighted phase derivative is an important statistic

in coherent radiation propagation. The second moment of this statistic 2J is a

measure of the level of scintillation in the beam in a similar way to the scintillation

index. Theory which predicts the form for the second moment of J in a strongly

turbulent regime is developed in [16]. The statistic is normalised, such that

0

22

=z
JJ . In the case of plane wave propagation this is a valid normalisation as

the intensity-weighted phase derivative at the screen (i.e. at z = 0) is equal to the phase

derivative. This normalisation is in contrast to the normalised second moment of the

intensity statistic (i.e. the scintillation index), which is normalised by the square of the

first moment. Such normalisation would be inappropriate for the J statistic, as its odd

moments are all zero (see section 3.1.2).

The J statistic is calculated from simulation data by retrieving the phase derivative as

discussed in section 2.5.1 and weighting it with the appropriate intensity value;

normalisation of the second moment of the J statistic occurs by calculating the second

moment of the phase derivative of the phase screen itself. It is clear that one expects

to see 1
0

22 =
=z

JJ for ( ) 1ln <<− q (i.e. short propagation distances), and one

can show (below) that 5.0
0

22 =
=z

JJ for longer distances as the propagation

enters the saturation regime.

For a plane wave, assume that initially the intensity is unity; thus J is exactly equal to

the phase derivative φ& , therefore ( ) ( )
02

2
2

0

2 0
== ∂

∂−==
tz

t
t

J φφφ& . For a Gaussian

variable (i.e. in the far field where there is a Gaussian saturation regime),
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calculate the correlation function of the electric field E in the far field using the

Huygens Fresnel technique in terms of the phase fluctuation φ. The correlation

function for the electric field is

( ) ( )
( )

( ) ( ) ( )( )∫
∞

∞−

′′−



 +′−= rdrdrrxrr

z

ik

z
xEE 2222

2
exp

2
exp

1
*0 φφ

λ
. (2.36)

Using the fact that ( ) 

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1
expexp AiA and transforming to sum and difference

co-ordinates, pqr += and pqr −=′ , gives
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from which the integral over q gives a delta function,
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The second moment of the J statistic can now be written in terms of this expression
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5 X is defined in section 1.1 as the real part of the field such that E = X + iY. Also see equation (1.15).
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Figure 2.14 gives four plots of the normalised second moment of the J statistic for the

same four phase screen depths as used in figure 2.11. The normalised distance

parameter q is used. The statistic is looked at over a range of propagation distances

and for several different turbulence strengths. Notice a peak in the statistics in the

focussing regime, the saturation of the statistic to a value of ½ in the Fraunhofer zone

as predicted above and the initial value at unity in the Fresnel zone. The theoretical

curves given in figure 2.14 seem to be slightly over-estimating the values of the

statistic calculated by simulation; this is a minor artefact though, which has been

noted in other simulation results [16].

Fig. 2.14, the second moment of the J statistic for a deep, one-dimensional, Gaussian

correlated single phase screen; simulation is symbols, theory [16, 21] is the lines.

The two sets of scintillation curves, for Iσ and
0

22

=z
JJ , presented in this

section form a strong validation for the simulation technique. Three distinct regions

of propagation exist in the statistics, the statistics also converge to their saturation

values in the far field. The focusing regime is an area for which little theory exists

and the match between simulation and theory here shows that numerical simulation

techniques may be the best way to investigate this region.
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2.6. Conclusions.

This chapter has looked at the theoretical development of the phase screen technique

as a method for the numerical simulation of coherent radiation propagation. The

phase screen method has allowed for the modelling of phase fluctuations incurred by

a propagating beam (due to refractive index fluctuations and wind shearing) as a thin

phase-changing screen. The phase fluctuations are imposed on the beam at the start

of the propagation path and at locations along the path where screens are located.

Although a forward difference method solution is possible for the paraxial wave

equation (equation (2.6)), a fast Fourier transform method is superior in speed and

easier to code. The Kolmogorov theory of turbulence was also considered, including

the theoretical background to the underlying assumptions and development of the

power spectrum for use in correlating a complex circular Gaussian process for use in

phase screens. It is clear that the Kolmogorov theory of turbulence is only the first

step on the path to finding a viable method for modelling atmospheric turbulence,

several developments to the theory have been alluded to, namely the Tatarski and Von

Karman spectra modifications which include scale effects (albeit in an arbitrary

manner).

The practicalities of performing numerical simulations have also been considered,

such as simulation parameters other technicalities like ‘padding’ to allow for beam

spreading and aliasing. Two different methods for determining the strength of the

turbulence in the simulation were considered. The difference between defining the

phase perturbation to be applied to the wave and defining the refractive index

structure parameter Cn
2 is important and a distinction between these two will continue

to be made throughout the thesis.

In addition to developing the simulation technique, several validations of it have also

been made. Numerical data was matched to several simple analytical calculations,

with good results. Three distinct zones were found to be present in the propagation

geometry, applicable results were matched to the appropriate probability density

functions in each region. Further to these numerical results, simple analysis has been
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used to provide a justification for the asymptotic behaviour of the normalised second

moment of the J statistic and the Huygens Fresnel principle was used to derive the

form for the scintillation index in a weak corrugated phase screen problem.

With these techniques, and appropriate validation of these techniques, at our disposal,

they can be used to model wave propagations in more complex situations. The next

chapter will provide an investigation of the properties of the J statistic in the case of a

constant phasor plus a Gaussian field (this is known as the Rician field). A

combination of analysis and numerical techniques will be used.
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3. The Intensity-weighted phase derivative in a Rician field.

A Rician field is characterised as a coherent signal in the presence of noise whose

statistics are described by a circular Gaussian process. One can model a field that has

been propagated into the Fraunhofer zone as being Rician in nature; identifying the

constant part of the field with the unperturbed wave components and the Gaussian

with the diffracted wave. The properties of the phase, phase derivative and intensity

weighted phase derivative in such a field are considered in this chapter. This is a

subject that has received little attention in the literature.

Jakeman et al [16] considered the properties of the J statistic in a Gaussian process,

they calculated the probability density function and normalised second moment under

strong turbulence conditions. In this chapter the Rician process is considered, which

is a more general case. The circular Gaussian process is a subset of the Rician field,

and for strong levels of turbulence one expects to recover Gaussian statistics. The

properties of J in a Rician field are investigated, in doing this Rice’s work of 1943

[13] is extended to include a phase screen formulation. The autocorrelation function

of the phase derivative in a Rician field is also looked at; which, being the Fourier

transform of the power spectrum, is a useful measure in systems that use phase

derivative statistics. Finally, in this chapter, the profile for the normalised second

moment of the J statistic is derived under weak turbulence conditions.

Care is taken to compare and contrast results with numerical simulations. Two-

dimensional simulations are used and restricted to plane wave propagation. Phase

derivative statistics are obtained by equating the phase difference in the spatial

domain with the derivative in the temporal domain.

The chapter commences with a derivation of the joint pdf for the amplitude A and the

intensity-weighted phase derivative J. Rice [13] showed that the joint probability

distribution for the amplitude A and phase derivative θ& , of Gaussian noise coherently

added to a constant phasor, is
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where, following the notation of Rice, Q is the amplitude of the constant phasor, b0

the variance of the total field b2 the derivative of the correlation function of the total

field and 0I the modified Bessel function of the first kind. The intensity weighted

phase derivative is θθ && 2AIJ == (section 1.2), and so equation (3.1) can be rewritten

in terms of A and J:
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3.1. Statistical properties of J in a Rician field.

In this section several results that characterise the J statistic in a Rician field will be

derived, namely the pdf of J and the moments of the statistic. The results are in terms

of phase screen parameters, allowing quantitative matching between simulation and

theory.

3.1.1 The pdf of the intensity-weighted phase derivative in a Rician field.

The marginal distribution for J is obtained by integration the joint distribution (3.4)

over all amplitudes
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This can be evaluated by noting that [32]
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The following integral:
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where Ki is the modified Bessel function of the second kind of order i, and enables the

pdf of J in a Rician field to be written as
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To test computer simulation with theory, the parameters appearing in equation (3.9)

must be expressed in terms of quantities appearing in phase screen models. The phase

screen parameters are the mean squared phase shift imparted by the screen φ0, and the

correlation length of the screen ξ. The three parameters characterising the Rician

field are Q, b0 and b2, which can be written as
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(3.10) and (3.11) are derived by Jakeman and McWhirter [4]. Equation (3.12) follows

from the Huygens Fresnel integral
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where the number of integrals performed is explicit from the integration variables.

The correlation function of the field is
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where rru ′+= and rrv ′+= are sum and difference co-ordinates. The result

( ) ( )[ ]( ) ( )( )( )rrrri ′−−−=′− ρφφφ 1expexp 2
0 is obtained by assuming the phase

difference is a Gaussian variable, together with the well-known result of Gaussian

noise theory, ( ) 





−= 2

2

1
expexp AiA . To proceed further one must assume a form
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for the autocorrelation function that characterises the phase screen. Assuming a

Gaussian correlation function (equation (2.9)) for the phase screen gives
2

2
0

2 ξ
φ

=b .

A numerical evaluation of the first 50 terms in the sum contained in equation (2.9)

provides an adequate estimation for ( )JP as the sum converges rapidly. The

distribution can be plotted in terms of dimensionless variables by using






 22 JJPJ , in this way one can look at several regimes on one plot. Figure

3.1 gives two plots of equation (3.9), the bold line refers to φ0 = 0.5 (weak turbulence)

while the thin line refers to φ0 = 100 (strong turbulence). Both plots use ξ = 1000.

Fig. 3.1: Two pdf plots for P(J). 

 

Figures 3.2 and 3.3 display the same graphs as in figure 1 on log / linear scales in

order to make the structure of the tails visible. Numerical simulation is compared to

theory.



Temporal phase and amplitude

Fig. 3.2: pdf of the J s

Fig. 3.3: pdf of the J s

There is a good match betw

the tails in figure 3.3 is co

expected from Gaussian no

, there is a difference betw

surmised that this is due t

simulations of weak turbu

section 2.5.2 and will be lo

statistics in coherent radiation

statistic (simulation and theory) for φφφφ0 = 0.5 and

tatistic (simulation and theory) for φφφφ0 = 100 an

ween simulation and theory in figure 3.3. Th

onsistent with an exponential form; ( )JP ex~

oise theory, see equation 1.13). Despite matc

ween theory and simulation in the tails of fi

to statistical measures failing to converge wh

ulence in the Fraunhofer zone. Such problem

ooked at in more detail in later sections.

54

d ξξξξ = 1000.

nd ξξξξ = 1000.

he behaviour in

( )J−xp (this is

ching for 2≤J

igure 3.2. It is

hen performing

ms were seen in



Temporal phase and amplitude statistics in coherent radiation

55

3.1.2. Calculation of the characteristic function for the J statistic in the

Rician field.

The characteristic function is an important tool in statistics. It is defined as the

Fourier transform of the probability density function, from it the moments of the

distribution can be easily obtained. For J in a Rician field one cannot directly perform

the Fourier transform of the pdf given in equation (3.9), one can obtain the

characteristic function directly from the joint pdf for A and θ& (3.1). The

characteristic function is
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such that (3.16) and (3.9) constitute a Fourier pair. The characteristic function is used

to calculate the moments of the J statistic in the following way:
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Note from (3.16) that the characteristic function is a function of u2, thus all odd

moments are zero, this is also seen from the fact that the distribution of J is

symmetric. The 2nd and 4th order moments of the J statistic are
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It is possible to express the characteristic function for J in terms of the Laguerre

polynomials, thus allowing for a general expression for the nth moment to be obtained

The Laguerre polynomials are defined in terms of the generating function [32]
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Identifying 20
2 bbuz −= and

0

2

2b

Q
x −= obtains equation (3.16),

( ) ( )∑
∞

=

−







−=

0
20

2

0

2

2n

n

nJ bbu
b

Q
LuC , (3.21)

the characteristic function. This expression can be exploited to find the moments of J

in similar terms. The odd moments of J are known to be zero since equation (3.9) is

an even function, hence consider the 2nth moment only:
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The normalised forth moment,
224 JJ , can be used, in addition to the

normalisation used by Jakeman et al in [16], e.g.
0

22

=z
JJ , as a measure of the

scintillation in the field. This moment may result in improved statistics if illumination

is by anything other than a plane wave. The form of the normalised forth moment of

the J statistic is
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which, using phase screen parameters, is
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Fig. 3.4. Normalised fourth moment of the J statistic.
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Equation (3.24) is plotted in figure 3.4 (above) as a function of the mean square phase

shift φ0. The plot gives, as function of screen strength, the value to which the

normalised forth moment will saturate in the Fraunhofer zone. The saturation value is

close to 3 for a weak screen and tends to 6 for a strong screen. As the strength of the

phase screens increase, the statistics of the propagation problem tend towards

Gaussian saturation. Figure 3.4 indicates the expected saturation value for a phase

screen of strength φ0 = 0.5.

3.1.3. Comparison of theory with phase screen simulation.

Simulations in this section use a simple two-dimensional propagation algorithm

(intorduced in chapter 2) to investigate the properties of the J statistic. In order to do

this, the normalised moments
224 JJ and

0

22

=z
JJ are considered. The

simulations use 1000 realisations at each propagation distance (to improve statistical

accuracy), each phase screen is sampled by 214 points, ξ = 1000. Firstly, weak

turbulence is considered.
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Figs 3.5 (second moment) and 3.6 (for th moment); moments of the J statistic for φφφφ0 = 0.5.

Figures 3.5 and 3.6 show the results of a set of simulations carried out using a

Gaussian correlated screen with φ0 = 0.5, the two normalised moments of J have been

calculated for a range of propagation distances. The dimensionless length parameter,

62 0

2

φ
ξ

z

k
q = (defined in section 2.5), is used. One can see the saturation value of the

two moments in the Fraunhofer zone ( ( ) 4ln ≥− q ), in figure 3.5 the normalised

second moment tends to ½ while in figure 3.6 the normalised fourth moment tends to

a value between 4 and 4.5. This result corroborates the prediction made by equation

(3.24) regarding the saturation value of
224 JJ .

The scatter present in both figures is due to weak screen simulations tending to have a

greater spread on their statistics than deep screen equivalents. Note also that in using

higher order statistics one is likely to see much more scatter in the data. A second set

of simulations with φ0 = 10 are shown in figures 3.7 and 3.8. These simulations give

a very different picture, the saturation value is 6 for the fourth moment and ½ for the

second moment.
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Figs 3.7 (second moment) and 3.8 (for th moment); normalised moments of J for φφφφ0 = 10.

The existence of peaks in the curves, in contrast to a steady increase in figures 3.5 and

3.6, indicate the presence of a focussing regime as would be expected for a higher φ0.

Note also how, in comparison to figures 3.5 and 3.6, there is much less scatter in the

statistics. This is an indication of the improved convergence of statistics in

simulations that use stronger turbulence as opposed to weak turbulence.

3.1.4. Conclusions.

The properties of the intensity-weighted phase derivative in a Rician field have been

investigated. The probability density and characteristic functions for J under such

conditions have been derived and compared to appropriate computer simulations. In

the Fraunhofer zone simulation results accurately match the predictions made by

analytical calculations. Problems relating to the convergence of statistics under weak

turbulence conditions have also been noted.

3.2. The correlation function of the phase derivative in a Rician field.
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Use of the phase derivative as a measurement tool in coherent radiation systems has

been considered by several authors in different fields of expertise [4, 16, 21, 13, 30,

65, 66]. One of the most important measures in an stochastic system is the power

spectrum. The power spectrum of a stochastic process is defined [36] as the Fourier

transform of the correlation function of that process; therefore it is instructive to study

the correlation function of the phase derivative φ& under various turbulence

conditions. In this section the properties of the correlation function of φ& are

considered in the case of a Rician field.

3.2.1. Analysis.

Rice [13] derived an expression for the correlation function ( )τΩ of the phase

derivative in a Rician field
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where ( )τg is the correlation function of the real (or imaginary) part of the field,

primes indicate a derivation with respect to time and y1 and y2 (see equations (3.29)

and (3.30) respectively) are defined in terms of the properties of the field and are also

functions of τ. These results are now adapted to include a formulation based on phase

screen parameters. ( )τg is defined slightly differently than the correlation function

given in equation (3.12) because ( )τg is the correlation function of the real part of the

field ( )τX , rather than the total field ( )τE . Therefore
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Assuming a Gaussian form for the autocorrelation function (equation 2.9); the

expression for ( )τΩ becomes
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when written in terms of a normalised correlation time ξττ =′ .

Rice defines y1 and y2 in terms of two variables p and k
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when defined in terms of the phase screen parameters. The exponential integral

( ) ∫
∞−

=
x

t dttexEi . The integrand has a singularity at t = 0, so Cauchy’s principal

value theorem [22] is required to evaluate the integral for x > 0. Doing this allows for

the numerical evaluation of ( )τ ′Ω′ . Figures 3.9 and 3.10 give ( )τ ′Ω′ for two weak

phase screen cases.
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Fig. 3.9: Correlation function ( )τΩ ′′ for φφφφ0 = 0.1.

Fig. 3.10: Correlation function ( )τΩ ′′ for φφφφ0 = 0.5.

The correlation function is plotted with respect to τ ′ . As the strength of the

turbulence increases, the centre of the correlation function tends to a cusp, indicating

possible fractal-like behaviour (section 3.2.3) in the phase derivative. Consider now

( )τ ′Ω′ for stronger levels of turbulence, figure 3.11 shows the correlation function for

5.10 =φ .
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Fig. 3.11: Correlation function ( )τΩ ′′ for φφφφ0 = 1.5.

As φ0 increases, a cusp appears to be visible at 0=′τ . There is weak correlation for

very weak screens while the correlation function, at 0=′τ , continues to increase into

a cusp-like feature as the strength of the phase screens increases. One eventually

reaches a value of φ0 where the numerical evaluation of Ei(x) becomes problematic.

In order to investigate this region it is necessary to find a large φ0 expansion for

( )τΩ ′′ .

3.2.2. Investigation of ( )τΩ ′′ for large φ0.

Consider first the behaviour of k and p (as given by equations (3.29) and (3.30)) for

large φ0. Both p and k tend to 0 for large values of φ0, note, however, that for 0=′τ ,

k = 1 for all values of φ0. ( )τΩ ′′ can be simplified by using a series expansion for the

exponential integral

( ) ( ) ( ) ∑∫
∞

=∞−

++==
1

2

!.
ln

2

1exp

n

nx

nn

x
xCdt

t

t
xEi (3.33)

where Euler’s constant 0.577C ≈ . Now expand equation (3.29) using equation

(3.33), this gives
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recalling that p = 0 for all φ0 >> 1 , this expression reduces to Rice’s result [13]

( )( )[ ] [ ]2
1 1ln11lnexp kkk

k

p
y −−≈+−






−−= . (3.36)

One can show that 02 →y for all φ0 >> 1 (Appendix C). Therefore a modified

expression for ( )τ ′Ω′ is

( ) ( ) ( )222 1lnexp
2

1
k−′−






 ′−−=′Ω′ τττ (3.37)

which is valid for all τ ′ such that φ0 >> 1 and that the autocorrelation function

characterising the screen is smooth.

This expression can be plotted for all values of φ0 > 1 without using Cauchy’s

principal value theorem. Figure 3.12 (below) gives plots for φ0 = 2 and φ0 = 5. As φ0

increases a peak is maintained at the origin, but the spread of the function decreases

with increasing φ0. The plots for each turbulence strength have similar shapes, the

plot for φ0 = 2 tails off to zero at 21≈′τ , while the plot for φ0 = 5 does so at 41≈′τ

.
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Fig. 3.12: ( )τΩ ′′ thicker line is for φφφφ0 = 5, thinner line is for φφφφ0 = 2.

Figure 3.13 gives a plot for φ0 = 100; once again the correlation function appears to

come to a single cusp at τ’ = 0. Although ( )τ ′Ω′ approaches a constant value for

increasing φ0, the value of the correlation function ( ) ( )τΩ
2

τΩ
2

2
0 ′′=′

ξ
φ

is increasing

with higher screen depths.

Fig. 3.13: Correlation function ( )τΩ ′′ for φφφφ0 = 100.
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3.2.3. Limit for ( )τ ′Ω′ as 0→′τ for large φ0.

A simple expansion for ( )τ ′Ω′ can be derived for 0≈τ and large φ0. Assuming small

τ ′ one can write the parameter k (equation 3.32) as

( )
( )

2
0

2
2
0

2
0

2
0

2

1
exp1

exp1 φτ
φ

φφτ ′−≈
−−

−−′−
≈k (3.38)

which is valid if φ0 is large. Using this expression in ( )τΩ ′′ (equation (3.37)) gives

( ) ( )44
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22
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24 2ln
2

3

2

1τΩ τφτφττ ′−′





 ′+′−−≈′′ , (3.39)

which on taking the limit 0→′τ gives

( ) ( ) ( )τφτφ ′−=−≈′′ 0
22

0 2ln2ln
2

1τΩ (3.40)

which shows that the correlation function has a logarithmic singularity at the origin.

3.2.4. Numerical simulation of ( )τ ′Ω′ .

Numerical simulation is used to test the above results. These simulations were

performed using phase screens with a Gaussian correlation function, with correlation

length ξ = 1000. The correlation function for the phase derivative is calculated by

taking the fast Fourier transform of the phase derivative power spectrum

( ) ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞− 











−=′Ω′ ωφωωτ ddxxxHxixi

2

expexp & . (3.41)

Where ( )xφ& is the phase derivative data, x a spatial co-ordinate on the phase front, ω

a phase space co-ordinate and ( )xH the Hanning window (see figure 3.14 below).
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The phase derivative is found by taking the phase difference across the propagated

wave front. A windowing technique is used in order to smooth the power spectrum

before calculating ( )τ ′Ω′ . Windowing is an important technique in the calculation of

power spectra, the data in a sample is multiplied by the windowing function, thus

forcing the data at the edges of the sample to zero. It is a technique that will be used

in chapters 4 and 5.

Figure 3.14: The Hanning window.

( ) ( )( )XXxxH 2cos −= π , where X is the number of samples and ( )Xx ,0∈ , is the

Hanning window. The window removes discontinuities in the data at the edges of the

sample. This process results in a much smoother spectrum which shows detailed

structure more clearly. The use of windowing will incur a loss of power in the

spectrum as the absolute values of the data are diminished, the clarity of features in

the spectrum are improved though as the relative changes in the data remain

unchanged.
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Figs 3.15 (simulation) and 3.16 (theory): Correlation functions for φφφφ0 = 0.1.

Figs 3.17 (simulation) and 3.18 (theory): Correlation functions for φφφφ0 = 0.5.

Figures 3.15 through 3.18 indicate a discrepancy of several orders of magnitude

between simulation and theory, although there are some qualitative similarities.

Possible explanations for these inconsistencies include the effect of the Hanning

window, normalisation of the fast Fourier transform algorithm or the usual problems

of statistical convergence encountered when performing simulations under conditions

of weak turbulence.
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Figs 3.19 (simulation) and 3.20 (theory): Correlation functions for φφφφ0 = 1.5.

Figures 3.19 and 3.20, for a stronger level of turbulence, give a better match between

simulation and theory. Figure 3.21 (below) shows the simulation results for still

stronger levels of turbulence, φ0 = 2 and φ0 = 5. The simulations compare favourably

with the theory in figure 3.12.

Fig. 3.21: Correlation functions for φφφφ0 = 2 and 5 (simulation).

Note especially the two tails and the value at which the two plots become

indistinguishable. The function has reached a value of 0 at 21≈′τ for φ0 = 2 and

41≈′τ for φ0 = 5.

3.2.5. Concluding remarks.

The correlation function for the phase derivative has been derived for a Gaussian

phase screen under both weak and strong turbulence conditions. Computer simulation

has provided evidence for the accuracy of the work in the strong turbulence regime.
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Difficulties have been encountered in obtaining numerical corroboration of the theory

in the case of weak turbulence, complications concerning the convergence of statistics

in such regimes have already been reported in section 3.1. The strong turbulence

result (equations (3.37)) has proved the most successful, it accurately predicts the

behaviour of the tails of the correlation function in both quantitative and qualitative

terms.

The presence (equation (3.40)) of a logarithmic singularity in the auto-correlation

function ( )τ ′Ω′ implies a similar singularity in the structure function for the phase

derivative, something which is a direct consequence of a ‘marginal’ fractal [83]. Such

fractals occur when the structure function of a random process g is given by

( ) νττ aDg ~ such that 20 <<ν and 2=ν corresponds to deterministic (ballistic)

motion. In the case that δν −= 2 where 0→δ , the structure function has the form

( ) ( )τδτ ln1~ −gD and the auto-correlation function will therefore have a logarithmic

singularity. This is interesting because the result is at the boundary between two

distinctly different phases in the behaviour of g. As well as this fractal behaviour in

the structure function, the probability distribution for the increments is at the margin

of the class of scale invariant distributions. The Rician field recovers Gaussian

statistics in the case of large φ0 such that ( )φ&P follows a student-t (equation 1.10), a

distribution with a cubic power law tail. This marginal distribution indicates fractal

behaviour in the increments of the phase derivative.

Thus it has been shown that the phase derivative for a Rician field exhibits marginal

behaviour (i.e. statistics that arise on the boundary between two phases of behaviour

yet in neither) in two senses, that of the increments and the structure function. This is

an interesting result as marginal behaviour has previously been found exclusively in

either the increments or the structure function of a process g, not both.

3.3. Calculation of the second moment of J for a plane wave propagating

through a single weak corrugated phase screen.
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Hitherto in this chapter, work has been restricted to the phase derivative as modelled

by a Rician field in the saturation regime. Consider now the J statistic at any

propagation distance. Jakeman et al [16] found an expression for
0

22

=z
JJ in

the case of strong turbulence. The significance of
0

22

=z
JJ as a statistic in

measuring scintillation levels has been discussed in section 2.5.3. This section of the

thesis provides a derivation of
0

22

=z
JJ in the case of weak turbulence at any

propagation distance z. It has been shown (section 2.5.3) that 21
0

22 →
=z

JJ in

the Fraunhofer zone (saturation regime), this derivation relied on the assumption that

the field is described by a Gaussian circular process. The derivation that follows

assumes weak turbulence, and therefore extends the work in section 2.5.3 to include

the Rician field.

3.3.1. Normalised second moment of J for all z.

Consider a plane wave interacting with and propagating beyond a one-dimensional

phase screen located at z = 0. The one-dimensional propagated field, at z , is given by

the Huygens Fresnel integral

( ) ( ) ( ) dssisx
z
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k
izxE ∫

∞

∞−







 +−= φ

π
2

2
exp

2
, , (3.42)

where s is an integration variable over the spatial domain, ( )sφ the phase screen and k

the wave number. Performing a co-ordinate transformation, utss +→ where u is the

speed of the phase screen across the wave front, and introducing a time co-ordinate t

allows J to be is expressed as (see section 1.2)









∂
∂=

t

E
EJ *Im .

Substituting equation (3.42) yields
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Setting x = 0, valid for a plane wave, and performing a co-ordinate transform,

utss −→ , gives
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From this one can write the second moment of J as
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where now there are 4 integration variables labelled si. This expression can be

simplified
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where the multiplier ( )222 2 zuk π has been dropped and the ensemble averages are

restricted to phase screen terms. Employing the well known result of Gaussian noise

theory, ( ) 





−= 2

2

1
expexp AiA , averaging over the phase screen elements and

integrating out two of the of the integration variables results in [21]
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where ( )xρ is the correlation function of the screen. The integration is completed in

[21] for a deep phase screen (φ0 >> 1) by assuming a Gaussian form for the

correlation function and the use of ‘ function modelling’ . Assuming weak turbulence

(φ0 << 1) allows for an expansion of exponential in equation (3.44),
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Assuming a Gaussian correlation function for ( )xρ (equation (2.9)) and noting a

symmetry between x and y yields
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where ( ) ( ) ( ) ( ) ( ){ }yxyxyxyxh −+++−−−= ρρρρφ 2221, 2
0 . Performing each of

the integrations gives the desired result, see appendix B for the full expression.
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function, probability density function and nth moment in the far field. The derivation

of the normalised second moment of J for all z has shown that the behaviour of that

moment in the far field is identical to that of the Gaussian saturation regime.

The phase derivative was also considered and a derivation of the correlation function

for φ& performed. Simulated wave propagation showed good qualitative and

quantitative agreement at strong levels of turbulence. Weakly turbulent simulations

produced results which are more difficult to interpret due to high levels of spread in

the statistics. It appears that even taking a large number of realisations fails to

account for these problems. Given the discovery of doubly marginal behaviour in the

phase derivative in a Rician field it may be possible to explain such problems in terms

of the variances of such marginal distributions. The variance of such distributions

does not exist due to the behaviour of the tails, thus the attempts presented in this

chapter to measure the variance of the J statistic, a function of the phase derivative,

may be inherently flawed. It may be impossible, using current algorithms and under

conditions of weak turbulence, to perform numerical simulations of the 4th or higher

moments that converge to accurate statistics (see figures 3.6 and 3.8).
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4. Phase Power Spectra, two-dimensional models.

The most crucial difference between a remote detection system using coherent

radiation and one using direct detection is the availability of usable phase data. The

retention of a ‘beat’ frequency at the transmission equipment allows an operator to

detect frequency modulations in the received signal. Such modulations come in the

form of vibrations and absorptions / emissions in the intervening medium and

reflecting surfaces. One can look at the frequency data in the phase by looking at the

spectral components of that phase via the power spectrum. The phase power

spectrum ( )ωθS is defined (in terms of a frequency parameter ω) as the square of the

absolute value of the Fourier transform of the phase ( )xθ ,

( ) ( ) ( ) ( )
2

2

expˆ ∫
∞

∞−

−== dxxixS ωθωθωθ . (4.1)

The study of the phase power spectrum (PPS) is crucial in the field of LIDAR

technology [68] because the spectrum enables one to obtain data about the frequency

information present in a retro-reflected beam. While applications of LIDAR

technology such as range finding, chemical composition and Doppler LIDARs [53,

54] make use of scattering and red shifting, any application to vibrometry requires an

understanding of the frequency spectrum.

Given these practical usages, an understanding of ( )ωθS in various turbulence

regimes and under several turbulence models is desirable. The spectral form of

( )ωθS relies heavily on the statistical properties of the atmosphere. In the case of a

Kolmogorov turbulence a -8/3 power law behaviour is expected in the spectrum, this

is in addition to any artefacts due to vibrations in the reflecting surface.

Analytical work and numerical simulations are presented in this chapter which

investigate an idealised case; a 2 dimensional propagation problem using simple 1

dimensional corrugated phase screens. The objective is to test computer simulation

against simple theory and thus form a benchmark for more complex problems
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undertaken in the next chapter. A simple Rytov (i.e. small perturbations in the phase

introduced at the start of the propagation) propagation problem is considered; then, by

the use of multiple 1 dimensional phase screens, an extended medium problem is

investigated. The chapter ends with numerical simulations of ( )ωθS in strongly

turbulent media in single screen and extended medium (i.e. multiple screens) cases, in

these cases there are no theoretical results available.

4.1. PPS for propagation through a single, weak, corrugated phase screen.

One can derive a simple expression, in terms of both analysis and numerical

computation, for the phase power spectrum ( )ωθS in terms of the equivalent

spectrum for the phase screen ( )ωφS ; this is then compared with numerical

simulation.

4.1.1 Analysis.

( )ωθS is calculated for propagation through a single, weak phase screen in terms of

the phase spectrum of the initial field. For a plane wave passing through a phase

screen ( )tr ,φ , the Huygens Fresnel integral gives the field E( r, t) at a distance z from

the screen [31],

( ) ( )( )∫
∞

∞−

′′












 ′−−
= rdtri

z

rrik

z

ik
trE 2

2

,exp
2

exp
2

, φ
π

(4.2)

where k is the wave number, r a spatial co-ordinate in 2 dimensions at the observation

screen, t the temporal co-ordinate and r ′ the integral variable over the initial wave

profile at the phase screen. Given a weak phase screen (i.e. φ< 1), the approximation,

( ) φφ ii +≈ 1exp , holds. Equation (4.2) is reduced to

( ) ( )∫
∞

∞−

′′












 ′−−
−= rdtr

z

rrik

z

k
trE 2

2

,
2

exp
2

1, φ
π

. (4.3)
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The phase perturbation θ of the scattered wave front will also be small, writing

( )( ) ( )( )zrEzrE ,Im,arg ≈=θ gives

( ) ( )
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
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such that
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The distance parameter r is written in terms of x and y co-ordinates such that x and y

are defined on orthogonal axes. Consider now a 1 dimensional phase screen such that

the field is translationally invariant, i.e. set y = 0 to give

( )2222222
22 xxyyyxxyxyxrr ′−+′=′−′−′+′++=′− , (4.5)

which can be used as an expansion in (4.4). This results in
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(4.6)

from which one can integrate out the terms containing y′ , leaving

( ) ( ) ( ) ( )∫
∞
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
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
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
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22

φ
π

θ . (4.7)
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Given the screen moves at a speed v across the wave front, the phase screen ( )tx ,′φ

can be replaced by ( )vtx +′φ . This uses the Taylor ‘ frozen-in’ turbulence hypothesis

(see also section 3.3.1), meaning that the turbulence is assumed not to change during

the wave propagation save for the motion due to wind. Performing the transformation

xvtx ′′→+′ yields

( ) ( ) ( ) ( )∫
∞

∞−
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
















 +′′−+






 +′′−= xdx
z

vtxxk

z

vtxxk

z

k
tx φ

π
θ

2
cos

2
sin

2

1
,

22

. (4.8)

Now multiply the integrand in equation (4.8) by ti te ω− , integrate over t and take the

square of the absolute value to give ( )ωθS . The wave front develops over a single

point at x = 0. There are two frequency space parameters ωt and ωx, such that

vtx ωω = , arising from the temporal and a spatial variables. The phase power

spectrum in 1 dimension is therefore
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resulting in

( ) ( ) ( )




















+=




















+=

2

2

2

2

2
cos1

2
cos1

2 kv

zS

kv

z

v

S
S tttx

t

ωωωω
ω φφ

θ (4.9)

where ( )ωφS is the phase power spectrum of the phase screen. The spatial power

spectrum of the phase screen itself has been related to the temporal spectrum of the

propagated field. The result indicates that the spectrum for the propagated wave,

( )ωφS , is merely the spectrum for the screen, ( )ωφS , with a multiplicative oscillatory

behaviour dependant on the propagation distance and wave number of the beam. For

low frequencies, i.e. small ωt, ( )tS ωθ tends to ( )tS ωφ , while the oscillatory

behaviour therefore increases for zk t >>2ω .

4.1.2. Computer Simulation.

The following numerical simulations look at the model investigated in section 4.1.1,

using 1 dimensional phase screens under weak turbulences conditions. The theory of

4.1.1. is strongly dependent on the specific statistics of the phase screens as the

resulting expression ( )tS ωθ is in terms of ( )ωφS , the theory should be valid for any

spectral model of atmospheric turbulence. The Von Karman correlation model of the

form (see figure 1 below)

( )
( ) 3

4
22

2

2

22

exp

348.0
ox

I

x

nx LCk
κκ

κ
κ

κ
+








 −

=Φ (4.10)

is used in these simulations. This model has low and high frequency filters built into

it based on the inner ( )02 lI πκ = and outer ( )02 LO πκ = scales (see section 2.2.2

for a detailed overview of the Kolmogorov theory of turbulence). A -8/3 power law

behaviour is expected in the inertial subrange ( )IO κκκ << of the spectrum. The
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sizes of the scales used in these simulations are l0 = 50cm and L0 = 0.2cm. An

averaging over 100 realisations is used in order to improve statistics.

In each simulation, the total length of the phase screen used is 1m, sampled by 213

points. The wind speed v = 2ms-1, meaning that the total temporal length of the

simulation, T, is half a second. Therefore the smallest frequency measurable by the

simulation is =T1 2Hz, while the largest measurable frequency is =T2213 8192Hz.

For each simulation (i.e. for each set of parameters modelled) ( )tS ωθ , ( )ωφS and

equation (2.9) are plotted. The frequency parameters, ω, given in the spectral plots

(figures 4.1 to 4.9) are all in Hz.

Figure 4.1, showing the iner tial subrange, the inner and the outer scales in the spectrum.

The inertial subrange was approximately two decades in length. Arbitrary units on the

ver tical axis.

In addition to these considerations, a 100Hz sinusoidal signal has been included in the

wave before propagation in order that one might see how this signal appears in the

spectral output. The strength of this signal is of the same order as the noise

introduced by the phase screens. The ability to recover such signals (albeit with much

more complicated frequency components) is the ultimate aim of the LIDAR

technology that uses temporal frequency spectra like this.
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Figs 4.2 and 4.3; refractive index structure constant Cn
2 = 10-16m-2/3, wavelength λ = 1µm,

propagation distance L = 100m, mean square phase shift <φφφφ0
2> ≈ 0.001.

The most important feature in figures 4.2 and 4.3 is the existence of two regions, one

at low frequencies where the spectrum of the propagated wave is equivalent to the

screen spectrum (figure 4.1), and a second at high frequencies where an oscillatory

behaviour can be seen in the spectrum. Note also that the spectrum follows a -8/3

power law in the inertial subrange as expected. The ‘ transition frequency’ between

these two regimes arises from a calculation performed by Clifford in [30], see section

4.2.1, in which two distinct regions, separated by a frequency ω such that

12 ≈=Ω L
v

πλω
, are defined where ( )ωθS behaves quantitatively differently. This

transition frequency provides a very accurate prediction of the distinction between the

two regimes in the numerical output. The theory (equation (2.9)) is much less

accurate, indicating that the oscillatory behaviour should begin at almost 1000Hz

rather than 70Hz.
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Figures 4.4 and 4.5; Cn
2 = 10-16m-2/3, λ = 1µm, L = 500m, <φφφφ0

2> ≈ 0.01.

In figure 4.5 Clifford’s transition frequency is successful in predicting the behaviour

of the spectrum, again the theory developed in 4.1.1 (figure 4.4) is much less accurate.

Figs 4.6 and 4.7; Cn
2 = 10-17m-2/3, λ = 1µm, L = 7500m, <φφφφ0

2> ≈ 0.01.

In figures 4.6 and 4.7 the transition frequency is at 9Hz. The oscillatory behaviour is

only just visible in figure 4.7; in comparison to figures 4.3 and 4.5 the behaviour is

not as pronounced. Once again the theoretical prediction (figure 6) incorrectly

predicts the transition frequency. Figures 4.8 and 4.9 look at a propagation geometry
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using a much shorter wavelength and weaker turbulence. Once again the Clifford

transition frequency provides an accurate prediction for the change in the behaviour of

the spectrum while the Rytov calculation has over estimated the transition frequency

by an order of magnitude.

Figures 4.8 and 4.9; Cn
2 = 10-18m-2/3, λ = 0.01µm, L = 500m, <φφφφ0

2> ≈ 0.7.

4.1.3. Conclusions.

In this section, computer simulation techniques have been used to model ( )ωθS for a

corrugated, 1 dimensional, weak phase screen in the case of a plane wave. Simple

Rytov theory qualitatively predicts the existence of oscillatory behaviour in the phase

spectrum in the high frequency regime. This same theory fails in its prediction of the

exact frequency at which the oscillatory behaviour begins to dominate, but a more

rigorous derivation by Clifford (section 4.2.1) allows for the calculation of a

‘ transition frequency’ which accurately predicts the same. Simple Rytov theory,
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although correctly predicting the existence of an oscillatory regime for high

frequencies, contains too many simplifications and assumptions to allow for an

accurate prediction of the behaviour of the spectrum. ( )ωθS has a -8/3 power law

form in the inertial subrange due to the Von Karman spectrum, as expected.

In these simulations the propagated field always remained in an ‘unsaturated’ 6 regime.

Thus, although not specifically stated above, the statistics of the intensity were always

approximated by the log-normal distribution (equation (2.28)). For stronger

turbulence levels the propagated field will give negative exponential statistics for the

intensity at similar propagation distances.

4.2. PPS for propagation through an extended medium; multiple, weak,

corrugated phase screens. 

 

Since the proposal of the phase screen technique [2] as a method for modelling

scattering caused by a turbulent layer, much research has focussed on investigating its

validity in approximating an extended region of a turbulent medium. Bramley [62]

showed that the phase screen approximation works well for single scattering in the

ionosphere. This work was extended when it was shown that the phase screen method

is valid as an approximation for describing a medium that fluctuates along the entire

path of the beam [63]. One can show (section 2.2.3), using a geometric optics

formulation, that the phase shift on a propagated wave is proportional to the path

integral over the refractive index fluctuations such that ( ) ( )∫=
L

dzzyxnkLyx
0

,,,,θ .

Showing that one can impose the entire phase fluctuation θ at the start of the

propagation path was an important validation for the phase screen technique .

Booker et al [61] tested this assertion using a numerical solution to the fourth moment

equation for a propagated wave front. They used a forward difference method to

solve the resulting non-linear PDE, claiming that small discrepancies in results

between phase screen and extended medium formulations were insignificant, and that

6 ‘Unsaturated’ is understood to mean that significant diffraction effects have not yet had time to
develop.
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the methods were essentially giving the same results. Nevertheless some differences

are present, and it has been unclear until now how significant these will be for phase

spectra calculations.

In their 1988 study of intensity statistics in an extended medium, Martin and Flatté

modelled the extended medium using a sequence of 2D phase screens [15]. They

chose to allow the beam to propagate between the screens, acquiring additional phase

shifts at each one rather imposing the entire phase shift at the start of the propagation

path. They imposed a set of conditions that maintained weak propagation between

each screen, insisting that there were sufficient screens such that less than 10% of the

total scintillation occurred between each screen. This idea was used again in a

subsequent paper by the same authors [8], and extended by others [25] to use as a

condition on the weak-fluctuation irradiance variance 6

11

6

7
22

0 23.1 LkCn=β (4.11).

Belmonte [7] used 20 phase screens in modelling an extended medium. This, in

similar fashion to the Flatté / Martin condition, appears to be a rather arbitrary

decision, based more on an intuitive grasp of how an extended medium should behave

rather than any rigorous derivation.

Modelling an extended medium by multiple phase screens has bridged the gap

between the computational benefits of the phase screen method and the improved

accuracy of the extended medium. One can generate ns screens just as easily as a

single screen; the propagation of the wave between each screen instead of across the

entire path length in vacuum is a very easy modification to introduce into a code. The

strength of the fluctuations imposed by each of these screens can be determined in

two ways. Either each phase screen is given a phase shift7 of sn0φ in order to

represent a total shift of φ0, or one can use a Kolmogorov filter, for example (4.10), to

filter the data in each screen with the total propagation length L replaced by the

propagation length between each screen snL .

7 Note that the ‘phase shift’ imposed on a screen is understood to the mean <φ0
2> , defined by the

second moment of the phase shift imposed upon the beam. It is convenient for the purposes of this

thesis that 2
00 φφ = is referred to as the ‘strength’ or ‘depth’ of the phase screen in question. This

is used in the definition of the Gaussian correlation function (equation (2.9)) and can be inferred from
the constants in the Von Karman spectrum (equation (2.25)).
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4.2.1. An overview of Clifford’s extended medium theory.

In his work of 1971 on the nature of phase power spectra for spherical waves

propagating through extended media, Clifford [30] builds on the work of Tatarski [36]

and Lawrence and Strohbehn [34]. Since his work, there has been only limited

interest [73, 74 plus references in chapter 5] in phase and phase derivative power

spectra in the open literature, although the intensity spectrum is the measure of choice

for Martin, Flatte and Gerber [15, 25]. Clifford uses the Kolmogorov pure power law

spectrum (equation (2.13)) and assumes weak turbulence. These conditions are

compatible with simulations which employ the Von Karman modified spectrum. This

theory is used to benchmark extended medium simulations.

Clifford calculates the power spectrum for the phase and the log amplitude of

spherical and plane waves propagating through a weak scattering medium (i.e. such

that 12
0 <φ ). This is obtained via the correlation function ( )τgR , which is the

Fourier transform of the power spectrum ( )ωgS for some function or stochastic

process g. i.e.

( ) ( ) ( )∫
∞

=
0

2cos4 τπωττω gg RdS . (4.12)

Lee and Harp [33] calculated the form of the correlation function for the phase θ for a

weakly scattering geometry to be

( ) ( ) ( ) ( )
∫∫
∞



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
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


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22 cos12 κκκτκκπτθ d
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zLz
vJdzkR n

L

, (4.13)

where ( )xJ0 is a zero order Bessel function, κ the frequency space co-ordinate, v a

characteristic velocity, ( )κnΦ the spectrum of refractive index fluctuations, L the

total propagation distance and k the wave number.
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Writing down the phase power spectrum and integrating out the τ variable gives (in

the case of a spherical wave)

( ) ( ) ( ) ( )[ ] ( )
∫∫
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which can be evaluated by assuming a pure power law Kolmogorov spectrum for the

refractive index fluctuations (equation (2.13)). This results in the following

expression for the phase power spectrum in terms of a normalised frequency variable

Ω defined by L
v

πλω
2=Ω :
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where 1F1 and 2F2 are hypergeometric functions [32]; from this, high and low

frequency behaviour can be determined. Clifford obtained asymptotic forms for the

above expression for both plane and spherical wave in both a low frequency (which

one can also show using a geometric optics formulation, see appendix A) and a high

frequency region as follows;

( ) 3

8
213

7

3

2

38.41
−− Ω≈⇒<<Ω nCvLkS ωθ ,

( ) 3

8
213

7

3

2

19.21
−− Ω≈⇒>>Ω nCvLkS ωθ .

These approximations indicate that the only difference in the spectrum between low

and high frequency behaviours is a factor of ½, with a transition frequency, ωc,

occurring at Ω ~ 1. Thus Clifford’s calculation indicates the existence of

quantitatively different behaviour in ( )ωθS for given regimes in the frequency

domain. This prediction corresponds to the transition frequencies used in figures 4.2
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to 4.9 in section 4.1.2. In the extended medium simulations this qualitative difference

is expected to manifest in the form predicted by Clifford’s calculation, in the simpler

single screen simulations the transition manifests itself in the appearance of

oscillatory behaviour.

Thus although the simple Rytov calculation failed to predict the frequency at which

this transition takes place, the same calculation is correct in its prediction of the

qualitative behaviour change of the temporal frequency spectrum8 under those

conditions. Clifford’s more rigorous calculation is required to give greater accuracy

in predicting the behaviour of the spectrum with regard to the transition between

regimes.

4.2.2. Simulation of an extended medium with weak turbulence.

The simulation of an extended region of weak turbulence using multiple phase screens

is directly analogous to Clifford’s theory. To perform similar simulations to those in

4.1 with multiple screens, the single screen of depth φ0 is replaced by ns screens each

with depth sn0φ ; the mth screen is located at a distance ( ) snmL 1− from the first

phase screen such that the total propagation distance is equal to L. The beam interacts

with the first screen, is Fourier decomposed into its spectral components for

propagation to the second screen, then converted back into real space components for

interaction with that screen (as per the simulation technique described in section 2.3).

The beam progresses through each of the ns screens before the scattered field is

reconstructed at the observation plane z = L.

Each phase screen is of the same strength and has identical correlation properties.

The Von Karman spectrum,
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8 The terms ‘Phase power spectrum’ and ‘Temporal frequency spectrum’ are virtually interchangeable
in the study of temporal phase statistics.
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is used as the spectrum of phase fluctuations. This spectrum has a major advantage

over the pure power law in that it is much easier to sample numerically [20] due to the

frequency cut-offs which remove a divergence at 0=κ . Alternative sampling

techniques that will allow the modelling of a pure power law are discussed in the next

chapter. The individual screens must remain statistically independent; to this end the

screens are never physically closer than one correlation length. In this case the

screens must be no closer together than the outer scale; 00 2 κπ=L .

The Flatté / Gerber limit for the number of screens in an extended medium simulation

can be used to ensure that enough screens are used. The number of screens used in an

extended medium simulation, ns, should satisfy ( ) 11
6

2
010β>sn , where β0

2 (equation

(4.11)) is the weak-fluctuation irradiance variance in the case of a zero inner scale

[25]. Although these simulations include an inner scale, this limit provides a useful

indicator for the number of screens to use.

4.2.3. Results of simulations. 

 

Section 4.1.2 looked at a number of simulation regimes for a single weak phase

screen. Extended medium simulations are now performed for a similar set of

parameters. These simulations make use of 20 independent phase screens (well

within the Flatté / Gerber [25] limit), each with Von Karman (4.16) filtered phase data

as discussed above. The ratio between ( )ωθS (at the observation plane) and ( )ωφS

(at the screen) is considered; this helps reveal detailed structure in the statistics. This

ratio is expected to be unity in the low frequency regime, becoming ½ in a high

frequency region separated by the now-familiar transition frequency at Ω ~ 1. 100

realisations were used in each plot in order to smooth the statistics.



Temporal phase and amplitude statistics in coherent radiation

94

Figures 4.10 and 4.11: Cn
2 = 10-16m-2/3, λ = 1µm, L = 100m, <φφφφ0

2> ≈ 0.001.

Figure 4.10 shows the two power spectra on the same plot, the spectra are

indistinguishable at frequencies lower than ωc while for ω > ωc there is a clear

separation. Figure 4.11 gives the ratio between the spectra. The ratio oscillates

noisily around ½ (the horizontal line in the plot) before returning to 1 after reaching

the high frequency cut-off defined by the inner scale. Note that the frequency domain

contained outside of inner scale is outside of the regime considered by Clifford’s

calculation and so cannot be expected to follow the law.

This second set of simulations (figures 4.12 and 4.13 below) use the same parameters

as are used figures 4.4 and 4.5, the transition frequency ωc signals a change to the

behaviour predicted by Clifford’s theory rather than the oscillatory behaviour seen for

a single screen. There is a lot of ‘noise’ in these calculated ratios (figures 4.11, 4.13,

4.15 and 4.17), this can be accounted for by the fact that very small numbers are used

in the ratios and that propagations problems using weak turbulence often fail to

converge to a limit.
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Figures 4.12 and 4.13: Cn
2 = 10-16m-2/3, λ = 1µm, L = 500m, <φφφφ0

2> ≈ 0.01.

Figs 4.14 and 4.15 show two more results using different propagation parameters.

Once again the transition frequency indicates a shift in the behaviour for the temporal

phase spectrum, this simulation uses the same parameters as figs 4.6 and 4.7.
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Figures 4.14 and 4.15: Cn
2 = 10-17m-2/3, λ = 0.1µm, L = 7500m, <φφφφ0

2> ≈ 0.01.

Figures 4.16 and 4.17 (below), using the same parameters as in figures 4.8 and 4.9,

show the transition frequency again predicting the quantitative change in the phase

power spectrum. In the inertial subrange the ratio of ( )ωθS at the observation screen

to ( )ωφS is approximately ½, for frequencies beyond the transition frequency ωc.

Above the high-frequency cut-off the theory breaks down. This is not a concern as

Clifford’s theory is valid in the case of a pure power law Kolmogorov spectrum, or in

the inertial subrange.
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Figures 4.16 and 4.17: Cn
2 = 10-18m-2/3, λ = 0.01µm, L = 500m, <φφφφ0

2> ≈ 0.7.

4.2.4. Conclusions.

This section has looked at the behaviour of the phase power spectrum in a two-

dimensional propagation problem for weak turbulence (<φ0
2> < 1). Important

similarities and differences have been noted in both quantitative and qualitative terms

between single screen and extended medium simulation. There exists a transition

frequency, in agreement with Clifford’s theory (at Ω ~ 1), in the phase power

spectrum plot below which the spectrum in the far field is indistinguishable from that

at short propagation paths and above which a certain structure exists. This transition

exists in both the single screen and extended medium cases. It is conjectured that the

structure observed in the case of a single screen is somewhat ‘washed out’ in the case

of multiple phase screens.

The use of a single screen introduces a seemingly artificial oscillatory structure into

( )ωθS that may not be present in experimental data. One can conclude (in contrast to

the Booker et al study of 1985 [61]) that, in the study of temporal frequency spectra,
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results arising from the use of the single screen and extended medium simulation

methods differ significantly. Therefore any numerical modelling should be performed

using an extended medium in order to ensure accurate qualitative behaviour in the

resulting spectrum.

4.3. Propagation problems using stronger turbulence levels in 2D.

Theory pertaining to the statistics of coherent radiation in strong turbulence (i.e.

12
0 >>φ ) is not as widely developed as for weak turbulence. Several different

theoretical distributions for the intensity, notably short (log normal) and far (negative

exponential) propagation distances, have been proposed The search for a model for

the intensity that is valid across the focussing and saturation regimes is discussed in

various papers. Phillips and Andrews [59] developed a model based on a field

perturbed by ‘specular’ and ‘diffuse’ components that obey a distribution behaving

like a negative exponential or a log-normal in different regimes. Churnside and Hill

[58] used a similar approach while Jakeman and Pusey [60] developed a theory of ‘K-

distributions’ based on the assumption that the field is perturbed by a fluctuating sum

of N independent scatterers where N is distributed by a binomial. Hill and Clifford

[46] also proposed a theory of intensity saturation in strong turbulence. Numerical

simulations [25] and experiment [55] have proved crucial in the investigation of such

statistics. Simulations performed by Flatté and Gerber showed that the intensity

spectrum of strong turbulence was qualitatively, but not quantitatively, accurate [25].

Although several groups have had partial successes in investigating intensity

fluctuations, there is much less work on phase statistics and the phase power spectrum

in strong turbulence. Some progress was made in the realm of phase statistics by

Jakeman et al [16] in their study of the intensity-weighted phase derivative, J. They

calculated the form of the normalised second moment of J under strongly turbulent

conditions (indeed their result was used to benchmark phase screen simulations in

section 2.5.3) and used numerical simulation similar to those presented here.
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This section reports on numerical simulations that look at the phase power spectrum

in strongly turbulent regimes. All simulations are restricted to 2 dimensions, thus

one-dimensional phase screens are used. Propagation problems considered use

‘ intermediate’ and ‘strong’ turbulence levels at similar propagation ranges to those

used in the previous sections. Differences between the extended medium and the

single phase screen method are contrasted. Once again the dimensionless q (section

2.5.1) parameter is used to characterise the propagation distance and other parameters

in the simulation. This is done to control the propagation regime of the simulation

while at the same time restricting the simulations to strong turbulence. Therefore one

can define a mean square phase shift <φ0
2> and a propagation regime9 –ln(q) before

adjusting the other parameters to ensure that these conditions are maintained.

4.3.1 PPS for propagation through a single, strongly turbulent, corrugated

phase screen.

Simulations were performed using comparable parameters to those used in section

4.1.2. Two levels of ‘strong’ turbulence were used, firstly φ0 = 10 and then φ0 = 100.

Very little structure was observed in ( )ωθS when the beam propagated to distances

close to the screen. Thus, unlike in 4.1.2, the focussing and far field (Fraunhofer

zone) regimes are probed. The propagation distances are described in terms of the

parameter q (defined in section 2.5) so as to more easily relate the propagation

problem to either the near, focussing or saturation regimes. A Von Karman spectrum

is also used. All parameters are normalised to the step sizes used in the computer

program, while the turbulence level is normalised to the mean square phase shift φ0.

9 See chapter 2 for a discussion of the relationship between q and the propagation regimes.
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Figure 4.18, the phase power spectrum of a single, cor rugated phase screen using φφφφ0 =

10. Note the -8/3 power law dependence in the inertial subrange and the high / low

frequency cut-offs.

Figure 4.18 shows the phase power spectrum for a ‘deep’ phase screen. It is against

this that one can compare the spectra of the propagated fields in a similar manner to

previous sections. Although no theory exists it is still instructive to look at the

structure of the spectrum, especially in the high frequency region. The phase power

spectra are plotted alongside a histogram equivalent to the pdf of the intensities for

each propagation. A log-normal curve (equation (2.28)) is plotted over the intensity

pdf for comparison with theory, the curve is expected to be a good fit in the Fresnel

and focussing zones with some divergence for far-field propagation.
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Figures 4.19 and 4.20, -ln(q) = -8, the Fresnel zone, no structure to be seen at high

frequencies. Note that the initial beam was a planewave of unit intensity.
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Figs 4.21 and 4.22, -ln(q) = -6, theFresnel zone, some structure at high frequencies.

Figures 4.19 and 4.20 give results of propagations into a very short propagation

distance; as can be seen from the pdf plot of the intensity. Figure 4.20 is almost

identical to figure 4.18. Figures 4.21 and 4.22 show some structure that has hitherto

not been observed. The log normal distribution fits the data in figure 4.21 while

giving high frequency behaviour similar to the oscillatory pattern seen in the weak

turbulence propagations in section 4.1.2. This pattern is not as well-developed.

Figures 4.23 and 4.24, -ln(q) = -4, the focussing regime.

Figures 4.23 and 4.24 show the focussing regime, the log-normal model is no longer

as accurate a model for the intensity statistics as in figures 4.19 and 4.21. There is a

large change in the phase power spectrum in the high frequency region in figure 4.24.

The existence of the high frequency cut-off, normally present due to the inner scale,

has been swamped by the strength of the turbulence.
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Figures 4.25 and 4.26, -ln(q) = -2, the Fraunhofer zone, spectrum maintains the -8/3

power law line over the full range of frequencies.

Figure 4.26 indicates that the -8/3 power law line, which is associated with the

Kolmogorov theory of turbulence, is now dominating over the entire range of

frequencies. Any oscillatory behaviour remaining in figure 4.24 has been totally

eliminated. Figure 4.25 also confirms negative exponential statistics in the intensity,

i.e. this propagation regime is giving a Gaussian saturation.

Fig. 4.27, the phase power spectrum of a single, corrugated phase screen using φφφφ0 = 100.

Note the -8/3 power law dependence and the high / low frequency cut-offs.
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Attention is now turned to simulations using stronger screens of φ0 = 100. The

spectrum for the such screens (see figure 4.27) is several orders of magnitude larger

than the equivalent intermediate turbulence spectrum due to the higher level of

turbulence. The high-frequency cut-off, despite still being visible, is not as

pronounced as before (figure 4.18). Here the spectrum at high frequencies decreases

by about 5 orders of magnitude with respect to the low frequencies, while for weaker

turbulence the drop was closer to 10 orders of magnitude (see figure 4.1).

Figures 4.28 and 4.29, the spectrum in the Fresnel zone (-ln(q) = -6).
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Figures 4.30 and 4.31, the spectrum in the focussing regime (-ln(q) = -4).

Figures 4.28 through to 4.31 show the phase power spectra in the Fresnel zone and the

focussing regime. The spectrum in figure 4.29 is equivalent to that given in figure

4.27, inferring therefore that very little scintillation or diffraction effects have

occurred in the beam. The log normal model for the pdf of the intensity is no longer a

good fit now that a strongly turbulent regime is being considered, this has been noted

by several other researchers [58, 59]. The most interesting artefact appears in figure

31, which contains a change from the usual -8/3 power law behaviour in the spectrum

to an apparent -2 power law behaviour in the high frequency regime.
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Figures 4.32 and 4.33, the spectrum in the Fraunhofer regime (-ln(q) = -2).

Figure 4.33 differs from figure 4.31 in that the transition from -8/3 to -2 power law

occurs at a lower frequency. This is significant as the -2 power law regime extends

into the inertial subrange of the spectrum, whereas in figure 4.31 it only appears

outside the high frequency cut-off. Note the intensity statistics in figures 4.32 and

4.34 indicate a Gaussian saturation regime.
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Figures 4.34 and 4.35, the spectrum in the Fraunhofer regime (-ln(q) = 0).

Figure 4.35 indicates even stronger evidence that the -2 power law feature is a

significant artefact, here the entire spectrum is now dominated by this behaviour. It is

postulated, based on the evidence presented here, that a coherent wave front which

propagates into the far field and experiences strong turbulence will have a phase

power spectrum which exhibits, at least in certain regimes, a -2 power law behaviour.

It is further postulated that propagating a beam over longer distances will cause the -2

power law to be observed over a greater range of frequencies. This assertion will be

revisited in more detail in chapter 5.

This behaviour could be the result of aliasing occurring in the simulation process

(section 2.3). Although ‘padding’ space has been left for the beam to diffract into, it

is possible that aliasing is occurring regardless. An approximation for the level of

aliasing that one can expect in a 1 dimensional phase screen simulation is derived in

[21], a Gaussian correlation function is used with correlation length ξ and depth φ0.

The minimum length of screen required to avoid aliasing effects (i.e. such that one

element of the screen doesn’ t interact with itself by diffracting through the periodicity
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of the Fourier transform) is ( )
ξ

φ
k

L
LD

20= . Using a Von Karman filter function

requires that this formula be multiplied by a factor of 4; this takes into account the

fact that the rate of change of the phase across the screen is estimated to be 16 times

as high (in an RMS sense) in a Von Karman screen as in a Gaussian one. Choosing

the strongest propagation geometry used (i.e. figures 4.34 and 4.35), and

approximating the correlation length ξ to the outer scale L0, gives φ0 = 100 and

710≈L . This gives a minimum screen length of approximately 800 units10. Given

that screens used are of size 213 (i.e. 8192) points in length, one can conclude that no

aliasing effects are being observed.

4.3.2. PPS for propagation through an extended medium, strong

turbulence.

The use of extended media is important in retaining accurate qualitative behaviour in

phase spectrum simulations. Differences have been seen in the use of a single and

multiple screens. In section 4.3.1 a single strong screen was used, and oscillatory

patterns in the high frequency range were found for φ0 = 10. The extended medium is

now considered for these strongly turbulent situations. This structure is expected to

be ‘washed out’ in a similar way to the effects seen for weak turbulence.

The following simulations were performed in much the same way as those described

in section 4.2.3. The way that one calculates the number of phase screens to be used

is different. The weak-fluctuation irradiance variance no longer applies as it relies on

a weak turbulence assumption, it is still possible, however, to satisfy Martin and

Flatté’s condition, ( ) 1.12 ≤zI δσ , on the percentage of the total scintillation occurring

between each screen. In section 4.3.1 it was shown that, in this strongly turbulent

propagation problem, the far field begins at approximately ( ) 1ln −≥− q . It is well-

known that the scintillation index, 2
Iσ , of the beam saturates at 2 in the Fraunhofer

regime, and so to retain an inter-screen distance δz such that ( ) 1.12 ≤zI δσ one must

10 Note that the ‘units’ here are the sampling lengths of the phase screen. This is because, unlike in the
simulations discussed in section 4.2, the distances in these simulations are normalised to the sample
length of the screen∆x rather than standard S.I. units.
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use ( ) 6ln −≈− q . Thus if the propagation range is restricted to no more than

( ) 1ln −=− q , the required condition is that 150=zL δ . Thus maintaining 200

independent phase screens will satisfy the Martin / Flatté condition for all propagation

problems of strong turbulence. Note that this will satisfy the separation condition on

the screens if L<ξ200 , where ξ is the correlation length of the phase screens.

The results shown in the figures below were achieved by performing simulations that

used 200 independent phase screens with the total mean square phase shift φ0 = 10.

Figures 4.36 and 4.37, -ln(q) = -6, the Fresnel zone, note the contrast between figure 4.37

and figure 4.22.
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Figures 4.38 and 4.39, -ln(q) = -4, the focussing regime, note the contrast between Fig

4.39 and Fig 4.24 with regards to the high frequency oscillations.

The most important result here is a confirmation of the conclusions drawn in 4.2.4 in

which the use of an extended medium was seen to eliminate unphysical oscillations in

the spectrum in the high frequency regime. Figures 4.36 and 4.38 show that the

intensity statistics are log normal while figures 4.37 and 4.39 show no evidence of

oscillatory behaviour. The -2 power law behaviour remains an artefact in these

extended medium simulations. Comparing figures 4.41 and 4.43 (below) to figures

4.31 and 4.33 respectively shows very similar behaviour, the -2 power law behaviour

is begins to dominate over the range of frequency values as the propagation distance

increases.
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Figures 4.40 and 4.41; -ln(q) = -2, the focussing regime. -2 power law line behaviour is

present in the high frequency region.



Temporal phase and amplitude statistics in coherent radiation

112

Figures 4.42 and 4.43, -ln(q) = 0, the Fraunhofer zone. -2 power law dominates. Fig 4.42

shows a Gaussian saturation regime.

Multiple and single phase screen simulations differ significantly in temporal spectra

produced. It should also be possible to see this in 3D models, while the power law

behaviours found should be observable in experimental data.

4.4. Conclusions.

This chapter has introduced and investigated a very important area in remote detection

and LIDAR systems, namely the study of ( )ωθS . Simulations were restricted to

plane wave propagations in two-dimensions using one-dimension phase screens.

Simple weak turbulence models were considered first, some theoretical results exist in

this case. Numerical simulations were used to compare the phase power spectrum in

the scattered far field with that of the screen, qualitative evidence was found to back

up the validity of the simulation technique. Extended medium simulations were also

performed using multiple phase screens, equally-spaced, having equal mean square

phase shift values and obeying the Martin / Flatté limit for inter-screen scintillation.

These numerical experiments compared favourably with the work of Lee & Harp as

well as Clifford. These calculations allow the inference that a single screen may

introduce unphysical artefacts into the high-frequency regime of the spectrum.

The modelling of the phase power spectrum for strong and intermediatly turbulent

layers was considered. No theoretical results exist that are applicable to such

problems; thus numerical modelling must be used. The phase power spectrum for a

strongly turbulent propagation in the Fresnel zone behaves in much the same way as a

weakly turbulent case, in that the spectrum of the propagated field is almost

equivalent to that of the screen. Indeed it is through this property that

experimentalists study the structure of the spectral components of atmospheric

turbulence as shall be seen in the following chapter. The basic -8/3 power law

observed is a direct result of the Kolmogorov turbulence model used in filtering the

phase screens. The high and low frequency cut-offs are arbitrary, the relationship



Temporal phase and amplitude statistics in coherent radiation

113

between the real atmosphere and the phase spectrum will be dealt with in the next

chapter.

There are several important conclusions to be drawn from these two-dimensional

simulations using strong turbulence. The first is that the magnitude of the spectrum is

much larger when strong turbulent is present; this is perhaps to be expected, but is a

good indicator as to the level of turbulence present in the atmosphere. Clearly it is

harder to measure a weak signal under strong turbulence conditions. The second is

seen in the way the spectrum changes to have a -2 power law at high frequencies.

This artefact was visible to different degrees for all simulations apart from those at

short propagation ranges. The -2 power law begins to dominate the spectrum at lower

frequencies as the propagation range increases, this is a similar pattern to the

transition frequencies noted in Clifford’s theory in section 4.2.2. Aliasing, as a cause

of this effect, has been ruled out. The significance of the shift in power law behaviour

is currently unknown.
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5: 3D simulation techniques and applications to LIDAR.

The applications of coherent radiation systems are varied and widespread, ever since

the first ruby lasers were developed there have been many proposed uses for such

systems [6, 53]. A general LIDAR system consists of a set of output optics,

containing a lens and filters, and at least one receiving device such as a photo-

detection unit. The best laser for use in a system designed to operate in the

atmosphere needs to take into account several factors; safety, bandwidth, wavelength

and power levels being examples. The development of lasers has allowed the

development of remote detection systems that have similar characteristics to radar

systems, using very short and powerful pulses11 that allow for such applications as

ranging and absorption detection. It is essential that a LIDAR uses a laser with a

narrow bandwidth and with acceptable levels of power and beam spread in order to

maintain safety in the surrounding environment. A LIDAR system uses a small

amount of its output power to create a frequency-shifted beat signal with which the

received radiation can be compared. Upon the photo-detection of a returned signal,

the local oscillator is mixed with the frequency of the received field. This heterodyne

technique allows the frequency spectrum of the received field to be detected. The

receiver optics in a LIDAR system can be situated in a different (bi-static) location or

share an aperture with the transmission optics (mono-static). Due to the necessity of

using of a local beat signal to detect frequency information, the mono-static system is

most commonly used. The receiving optics in a mono-static system are on the axis of

the propagated beam, consequently one expects to see noise due to back-scattering

from the medium immediately in front of the apparatus. A bi-axial system (which

uses a receiving plane away from the transmission optics) can be used to correct this.

Different applications of LIDAR systems use different scattering effects in the

atmosphere. Resonance scattering (absorption and emission of laser radiation) is used

in the detection of trace elements in the upper atmosphere. Raman scattering (where

the emission of laser energy is accompanied by a corresponding change in frequency)

has an extremely small scattering cross section and can be used in absorption /

detection systems when the density of atmospheric aerosols is likely to be high.

11 Although LIDAR systems often use continuous detection.
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The use of lasers in LIDAR systems is crucially different their use in differential

absorption (DIAL) systems in that all atmospheric events effect the system as noise,

frequency shifts, that might be imparted on the beam by the target or sensing

equipment, are of interest. The greatest source of noise present in any LIDAR system

is scattered solar radiation. Using a narrow bandwidth and adjusting the receiving

optics such that they detect only a very narrow band around the laser wavelength, the

LIDAR system eliminates this source of noise. The sources of noise modelled by the

phase screen are those which have the most profound impact on the laser propagation;

refractive index fluctuations, air currents, thermal flows and temperature gradients are

all included in the Kolmogorov theory of turbulence. The familiar 311− power law

in the three-dimensional spectrum of such fluctuations applies to each of these noise

sources (see section 2.2.2).

The simulation of laser beam propagation using numerical techniques is intrinsically

linked to experimentation with real systems in the physical world. It is therefore

important to link these simulations to LIDAR systems. In this chapter the use of

three-dimensional simulations is introduced to ‘experiment numerically’ with the

LIDAR system. Physical values are used in these simulations while the use of

dimensionless parameters is completely abandoned. Gaussian profile beams will be

used in addition to plane waves; beam-spreading and wander phenomena will be

considered. These numerical studies also allow an investigation of the long-standing

problem of finding an accurate turbulence model to represent the real atmosphere by

comparing and contrasting the models to experimental data. Experiments results,

performed using LIDAR equipment, are presented at the end of the chapter and

compared with numerical simulation.

5.1. Contrasting simulation techniques in two and three dimensions.

Three-dimensional simulations are carried out in the same way as those in two

dimensions (section 2.4). Here, a three-dimensional grid of Gaussian random

numbers is defined and filtered using the Wiener-Khintchine technique as discussed

previously. The main differences are in the use of screens containing many more

points ( 77 22 × in the sample plots that follow in section 5.2) and a requirement of a
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much more subtle interpretation of the ‘moving’ screen. One cannot simply equate

the spatial and temporal co-ordinates in the 3-dimensional case as has been done

previously. This is because it is possible to move the screens in more than one

direction. Therefore phase derivative statistics cannot be calculated by taking a

simple difference in the phase across the wave-front in the far field.

Instead, the phase derivative is calculated by moving the phase screens within the

simulation itself, i.e. transposing the matrices representing the phase screens at each

time step. The beam is allowed to propagate at each time step before moving the

screens (transposing the matrices) once more. After each transposition and

propagation, i.e. at each time step, the data is recorded in the far field. In this way a

data set is built up containing the temporal evolution of the beam in the far field.

From this it is easy to find the required statistics such as intensity moments or

temporal phase spectra. This technique lends itself to extended medium simulations,

as each screen can be moved independently between each time step if needed. In the

simulations that follow, all screens move in the same direction at a constant speed v.

It would be a simple matter though, in a future study perhaps, to use a more complex

model for the motion of the air by allowing the screens to move according to some

distribution of velocities ( )xv . Any number of screens can be used in this model,

limited only by the memory available and the outer scale length of the turbulence.

Three-dimensional simulations naturally use more memory than two-dimensional

ones. While the simulations performed in chapter 2 made use of 214 points in a screen

and produce accurate statistics, each screen used in section 5.2 is an array of size

77 22 × . This still amounts to 214 data points in the simulation. Chapter 4 considered

3 decades of information (i.e. 214 data points) in the temporal phase spectrum of a

two-dimensional simulation. In three-dimensional simulations of size 77 22 × , using

the same number of data points, only 2 decades of information (i.e. 27 data points) are

available. To make use of three-dimensional simulations that would give 3 decades of

information one would have to use 1414 22 × ( = 268 million !) points; a quantity of

data which, given the number of fast Fourier transforms that need to be performed,

would take an almost unfeasibly long time to process. Solutions to these practical

problems in the simulation of phase spectra are discussed in section (5.4).
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5.2. Three dimensional simulations, plane waves and extended media. 

 

Now consider some simple 3-dimensional simulations that make use of plane waves

and extended media modelled by multiple phase screens.

Figs 5.1 (below) indicate the changing intensity profile (lighter areas represent greater

intensity in the beam, darker areas indicate that the intensity is approaching zero) for a

plane wave propagated through 5 independent phase screens with a simple three-

dimensional Gaussian correlation function
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Each screen has an individual depth of <φ0
2> = 1 and correlation length ξ = 10,

giving a total root mean square phase shift for all 5 screens of 5 . The first row

image shows the intensity in a Fresnel zone close to the first phase screen, the middle

row indicates the focussing regime and the bottom row shows the Gaussian saturation

regime. The range of propagation increases from left to right in each row, with the

top-left image giving the propagation closest to the first screen while the bottom-right

image gives the propagation range furthest from the initial screen.
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Figures 5.1, a sequence of images showing the resultant intensity of a three-dimensional

propagation through an extended medium propagation at increasing distances.

Figs 5.2 show the pdfs of the intensity for the above regions, characteristics that were

present in the simulations performed in section 2.6.1 are also visible here.

Figures 5.2, log-linear plots for the intensity pdf for the top-left, centre-middle and

bottom-r ight images in figs 1 respectively.

One can clearly see the regimes of propagation in the figures above, the top left figure

in figure 5.1 is in the Fresnel zone and as such shows very little departure from the

intensity near the last screen. The central row of figures show the focussing regime,

the features in the plot include bright ridges (caustics) which are reminiscent of the
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patterns of light seen at the bottom of a pool of water. The Gaussian saturation

regime (Fraunhofer zone) becomes apparent in the bottom row, indeed this is clear

from looking at the probability density functions for the intensity in figures 5.2. The

negative exponential curve being an important indication of the saturation regime.

Figs 5.3 demonstrate the same as figs 5.1, here a Von Karman spectrum (equation

2.14) is used to filter the phase screen data.

Figs 5.3, same as figs 5.1 but using phase screens filtered with a Von Karman function.

Note the focussing and caustics, but they are less well-defined than in figs 5.1.

Here, 5 Von Karman phase screens were used, each with normalised mean square

phase shifts of 12
0 =φ and inner and outer scales such that 50=OI κκ . It is clear

that figures 5.3 exhibit patterns similar to those created by the Gaussian correlated

phase screens in figures 5.1, the caustics in the focussing regime are less well-defined

though. This is due to the nature of the Von Karman screens which contain fine detail

and a self-similar behaviour.
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5.3. Beams solutions to the paraxial equation.

The previous section examined plane wave propagation through multiple phase

screens. These simulations are useful for investigating the propagation regimes and

testing some simple theories. The goal is to compare simulation to experiment, and as

such beam profiles (as used in LIDAR systems) should be considered over and above

plane waves. Whereas the plane and spherical waves used in analysis are idealised

cases, the Gaussian beam is a more realistic model. The Gaussian beam arises as a

solution to the paraxial equation of wave propagation (equation 2.6). The Gaussian

beam solution can, however, be factored into a set of basis functions known as the

Hermite polynomials. The Hermite polynomials ( )xH m are solutions to the

differential equation

...,,2,1,0,022 ==+′
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The solution to the paraxial equation, U, can then be expressed as
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where ∑∑=
m n

mnUU and the properties of the beam are different in the two

transverse directions x and y such that Wx, y is the width (i.e. the 1 / e power point) of

the beam in the appropriate direction.

A LIDAR system makes use of a Gaussian beam in order to concentrate the power of

the laser in a central region, the Gaussian beam is so called because the field at the

point of emission has a Gaussian shape, ( ) ( )







 +−=
2

0

22

exp,
W

yx
AyxE (fig 5.4), in the

case of the lowest order solution n = m = 0. The beam is initially collimated, so there

are no phase factors present until interaction with a phase screen.
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Fig. 5.4: A Gaussian beam with W0 = 20cm, the size of the aper ture is 1m.

Beam spreading is a phenomenon associated with diffraction. A beam propagating in

free space will experience a level of spreading characterised by the angular spreading

of the beam. This angle is of order λ / (2W0), where λ is the wavelength and W0 the

initial radius of the beam. The level of spreading will increase with the addition of

further phase factors and these in turn will increase with greater levels of turbulence.

A beam will naturally tend to diverge without focussing, a focussing parameter f0 can

be included in order to represent the effects of a lens being applied to the beam upon

emission such that ( ) ( ) ( )






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W

yx
AyxE . A value of

∞=2
0f refers to a collimated beam (fig. 5.5), as used in these simulations.

Fig. 5.5; a collimated Gaussian beam geometry. The focal point is at infinity, beam

spreading occurs as the beam propagates.



Temporal phase and amplitude statistics in coherent radiation

122

5.3.1. Beam spreading and wander.

As noted above, spreading is a natural consequence of beam propagation, even in a

vacuum, which increases in effect with the introduction of a strongly turbulent

medium. Such a medium also causes wander as a result of the motion of eddies

across the wave front. Theoretical analyses of spreading and wander phenomena have

led to a number of results which can be tested using the 3-dimenional beam

propagation algorithm. Yura [52, 67] and others calculated expressions for the beam

spread in both ‘ long’ and ‘short’ terms. The long term (LT) beam spreading includes

the effects of beam wander while the short term (ST) spread considers spreading of

the beam around the instantaneous beam centre, i.e. the effects of wander are

removed.

The beam width ( )zW is the sum of the free space width and the turbulence induced

beam spread. It can be shown that this is [52]
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where W0 is the initial beam radius, 2
0f the focal length and ρ0 the spherical wave

coherence diameter given by
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In the case of a collimated wave, and upon defining
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This result is the LT beam radius, referred to henceforth as ( )zWLT
2 . Yura [52] also

looked at the short term radius ( )zWST
2 , he defined the spherical wave coherence

diameter for the short term radius in terms of the aboveρ0, such that

























+=

3

1

0

0
00 4

37.01
W

LT
LTST ρρρ . (5.7)

Using this it is possible to perform the same analysis as for the long term spread and

arrive at an expression for the short term spread
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5.3.2. Numerical simulations, spreading and wander.

Numerical simulation is used to test the validity of equations (5.6) and (5.8). The

simulation algorithm used here and throughout this chapter makes use of physical

values rather than dimensionless parameters. Thus all simulations in this section use

phase screens of 1m2 sampled by 28 points, Gaussian TEM00 beams with a radius of

W0 = 7cm and Von Karman filtered Gaussian random noise where the ratio of the

inner to the outer scale is 50. Belmonte [7] performed a similar analysis to what

follows, therefore similar values for the wavelength and the refractive index structure

parameter are used. Single phase screens are used, as opposed to Belmonte’s use of

an extended medium modelled by 20 screens, to model the turbulent atmosphere.

Data was taken on the beam spreading and wander for several propagation conditions

over a range of propagation distances.
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Figures 5.6 and 5.7: The initial Gaussian beam and the same beam at 100 metres

(Cn
2 = 10-12 m-2/3 i.e. very strong turbulence, λ = 10-6m). 

 

The beam wander β is calculated by taking a simple sum over the intensity data in the

propagated beam

( )
∑

∑
∗

∗

=

ρ

ρ
ρ

β

all

all

EE

EE

z , (5.9)

where E is the electric field and ρ is the radial distance of a point in the screen from

the centre. I.e. 222 yx +=ρ , x = y = 0 is at the initial beam centre. The width of the

beam is calculated by averaging over the intensity profiles of several hundred sample

beams and interpolating a best-fit quartic curve to the resulting profile. It is then

possible to extract the point at which the intensity falls to the 1 / e value. The

algorithm used to perform these tasks makes use of the polynomial interpolation

package in Matlab v. 6.1.
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Averaging over several hundred realisations allows for a smoothing of the statistics

obtained. Figures 5.6 through to 5.9 show sample beam propagations that are used in

the following simulations, the spreading of the beam at large propagation distances is

clearly visible. Less obvious, perhaps, is the beam wander, although in figures 5.8

and 5.9 one can see the that brightest spot in the beam (i.e. the greatest concentration

of power) is no longer located at the centre of the image.

Figures 5.8 and 5.9; The Gaussian beam (fig 7) propagated to 500m and 1.5km

(Cn
2 = 10-12 m-2/3, λ = 10-6m). 

 

Figures 5.10 and 5.11 show the beam spreading for two different strengths of

turbulence. Note first that the spreading in the beam requires a greater distance to

develop in weaker turbulence.
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Figs 5.10 (Cn
2 = 10-12, strong turbulence) and 5.11 (Cn

2 = 10-14, medium turbulence).

The simulation data in figures 5.10 and 5.11 is represented by symbols, theory

(equation 5.6) is the unbroken line. There is a good match between theory and data.

Figures 5.12 and 5.13 (below) show the beam wander results for the same simulations

a those described above. The theoretical curves for the wander are developed in [7] as

the difference between the long term and short term beam spread. Here there is some

discrepancy between simulation and theory.
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Figs 5.12 (Cn
2 = 10-12, strong turbulence) and 5.13 (Cn

2 = 10-14, medium turbulence).

There exists some divergence in the Fraunhofer regime between theory and

simulation. This can be explained by noting that in the far field the beam no longer

has a Gaussian shape; therefore one cannot expect the theory (which is reliant on the

fact that the beam is a Gaussian) to be accurate in that regime. Note also that the

theory uses a pure power law Kolmogorov spectrum, which fails to model the effects

of the large eddies caused by the presence of an outer scale. The motion of large

eddies across the wave front has an important effect on the beam wander, the

inclusion of an outer scale in the turbulence model is causing discrepancies between

theory and simulation at large propagation distances.

5.4. Temporal phase statistics in 3-dimensional simulations.

The beam spread and wander statistics examined in section 5.3 are spatial statistics.

To examine temporal statistics a temporal variation must be included in the model as

discussed in chapter 4. In three dimensions this is done by transposing the phase

screens and allowing the beam to propagate to the observation screen at each
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transposition. Thus a complete picture of the evolution of the beam is built up as the

turbulence develops, in this way the ‘ frozen-in’ turbulence present in the phase

screens is used to represent a block of turbulence moving across the wave front. The

screens move at a velocity v.

5.4.1. Use of rectangular screens in temporal phase statistics.

Section 5.1 included a discussion of the memory considerations involved in

performing three-dimensional simulations. This becomes a greater drain on computer

resources when setting the screens in motion. These memory problems can be

addressed by using phase screens which are elongated in the direction of motion. A

typical example involves an aperture of 88 22 × sampling points with a screen of

88 2102 ×× sampling points such that there are 8210× points in the direction of

motion. This will result in 3 decades of information in a spectral plot without having

to perform a simulation that uses a series of 1414 22 × screens.

The use of rectangular phase screens presents a neat solution to these memory

problems. The use of square phase screens of size 2n by 2n can abandoned in favour

of the use of rectangular screens of size 2n by m2n if the following conditions hold12:

• The aperture size is 2n by 2n.

• Any 2n by 2n segment of the rectangular screen has the same statistics as a 2n

by 2n screen produced by method detailed in section 2.3.

• The frozen-in turbulence only moves in one direction, i.e. along the y-direction

of the rectangular screen.

• The number of samples in the temporal evolution of the propagated field is

equal to ( ) nm 21− .

12 The length of size 2n is the ‘x’ direction, the side of length m2n is the ‘y’ direction
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Figure 5.14 (below) gives a simple pictorial representation of the simulation technique

using rectangular phase screens.

Fig. 5.14. Three rectangular phase screens pass in front of the Gaussian beam wave

front producing a per turbed field. The screens move from left to r ight.

One can see the aperture (size 2n by 2n) and the screens of size 2n by m2n passing

through the propagating field. Multiple phase screens are used, just as in two-

dimensions, to model an extended medium. The simulation process for a three-

dimensional model simulating an extended medium using multiple rectangular

screens is then as follows:

• Generate an array of pseudo-random Gaussian random numbers of size

nn m22 × (one for each required phase screen).

• Use an appropriate filter to give the screens the correct statistics.

• Set up the beam in a nn 22 × aperture.

• The beam propagates through a 2n by 2n segment at one edge of the

rectangular screens. Record the propagated field at the observation screen.

• Transpose each of the phase screens one step in the y axis.

• Perform the next propagation and record the field data.

• Cycle through the previous 2 steps until reaching the far end of the rectangular

phase screens (i.e. ( ) nm 21− times).
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• The resulting data set gives the field’s temporal evolution over ( ) nm 21− time

steps.

Using this simulation technique allows for the investigation of temporal phase

statistics, given an assumption of frozen-in turbulence.

5.5. An alternative to the Kolmogorov pure power law; subharmonics.

Before proceeding to some simulation results using rectangular screens, it is

instructive to note some interesting characteristics about these screens. Firstly, the

overall phase change from one side of the screen to the other (along the length, y) can

be very large. Secondly, phase fluctuations that occur over the entire y axis of the

screen must be modelled, rather than being restricted to those bounded by the x axis.

This is important because fluctuations over very long ranges are possible and their

inclusion in the simulations are crucial to the validity of statistics.

Hitherto the Von Karman spectrum has been used as a filter for the phase screens

when modelling Kolmogorov turbulence. This model has the advantage that it

imposes high and low frequency cut-offs to the spectrum which attempt to model the

effects of the outer and inner scales. The disadvantage is that the locations of such

cut-offs are arbitrary and suppress spectral information at very low and very high

frequencies. This removal of low frequency components from the spectrum prevents

large scale features in the turbulence, i.e. fluctuations occurring over the entire y axis,

from being modelled accurately. A method of including such fluctuations in

rectangular screens is required.
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Figs 5.15 and 5.16, showing phase power spectra averaged over the two different sides of

a rectangular phase screen.

Consider figures 5.15 and 5.16, which illustrate the problem. A rectangular phase

screen of size 88 2.1002 × was created using a Von Karman (equation 2.14) filter with

outer and inner scales. Comparing the phase spectrum of the screen along the x axis

(fig. 5.15) with the same spectrum in the y axis (fig. 5.16) indicates how low

frequencies are being suppressed. This loss of power at low frequencies represents an

absence of any long range fluctuations in the y direction of the phase screen.

A theory which allows for the accurate sampling of low frequencies in the

Kolmogorov spectrum was proposed in [20], developed further in [23] while being

used in [37] . It is impossible to sample a pure power law Kolmogorov spectrum, i.e.

( ) 3
11

~
−Φ κκn , to arbitrarily low frequency space values13 because the spectrum

diverges as κ tends to 0. The use of ‘subharmonics’ in the sampling of the spectrum

13 The sampling of low frequencies is essential for long range fluctuations to be modelled in the phase
screen. The sample size used in the grid puts a natural limit on the length of fluctuations that can be
observed in the screen. In order to accurately sample ‘ long’ phase screens it is necessary to include
these low frequencies.
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is proposed [20] as a method of avoiding this problem. The technique is so named

because it involves splitting the sample located at 0=κ (i.e. the point at which

( ) ∞→Φ κn ) into a number of smaller samples as indicated in figure 5.17.

Figure 5.17. Showing the two-dimensional sampling gr id close to κ = 0.

The large central square in figure 5.17 represents the sample for 0=κ in the two-

dimensional grid from which the Kolmogorov spectrum is sampled. To the left and

right are the first non-zero samples; given that there are N samples in the grid these

are multiples of Nπ2± . Note that Nπ2± is used in an idealised dimensionless

case where the total frequency domain is ( )ππκ ,−∈ . In a physically realistic

simulation, the frequency domain is ( )LNLN ππκ ,−∈ such that the sampling

interval is Lπ2 where L is the length of the phase screen. Returning to figure 5.17,

the central sample at 0=κ has been divided into 9 smaller squares, each of which

has side N32π . The most central square is still located at 0=κ . It is possible to

include further levels of subharmonics by continuing to divide the central square into

smaller and smaller segments, the second level of subharmonics is shown within the

central square of figure 5.17. The size of the pth level of harmonic will be Np32π .

Thus it is possible to sample the element in the grid that would otherwise give an

infinite value for ( )κnΦ . Of course one cannot sample these harmonics infinitely,

and eventually a central square will be left at 0=κ (albeit representing a very small

sample space) which can be set to ( ) 0=Φ κn . Doing this will allow the inclusion of
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longer range and lower frequency fluctuations into the phase screens, thus eliminating

the loss of information seen in figure 5.16.

An alternative algorithm, for the calculation of the subharmonic contribution φsub to

the phase screens, has been proposed to cope with the modified sampling technique

[23]. The standard fast Fourier transform algorithm assumes that the sampling

interval is constant; the new algorithm weights the subharmonic samples based on the

size of each sample. The proposed fast Fourier transform algorithm is
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where x∆ and y∆ are the sampling widths in the x and y directions, Lx and Ly are the

lengths of the screen in the x and y directions. ( )yx nnp ,,φ are random complex

Gaussian processes that have been given the correct autocorrelation properties, NSH

refers to the number of subharmonics that will be taken while nx and ny are references

to the 3 by 3 grid on which the subharmonics are sampled. The greater the value of

NSH, the more accurate the statistics will be, but the longer the simulation will take.

The remaining samples in ( )LNLN ππκ ,−∈ , excluding 0=κ , are used to

calculate a phase screen φscreen in the normal way. The resulting subharmonic screen

is simply the sum φsub + φscreen.
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Figures 5.18 and 5.19. A Kolmogorov phase screen and associated structure function,

symbols indicate simulation, solid line is theory [23].

Figure 5.18 shows a Kolmogorov phase screen produced in the normal way with

( ) 3
11

~
−

Φ κκn , i.e. with the central 0=κ sample set to zero to avoid an infinity.

Note that the screen is periodic, this is clear as the structure function (figure 5.19)

returns to zero as the separation distance approaches the size of the screen. This is

due to the periodic nature of the fast Fourier transform methods used to produce the

screen.

Consider figure 5.20 (below). The phase screen in figure 5.20 clearly has non-

periodic behaviour. The structure function (figure 5.21) shows a 5/3 power law

behaviour for all separation distances x. The phase screen in figure 5.20 therefore

contains long range phase fluctuations; this is in stark contrast to the phase screen in

figure 5.18 where all fluctuations are contained within the confines of the periodicity

of the screen.
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Figures 5.20 and 5.21. A Kolmogorov phase screen produced using the subharmonics

algor ithm, structure function (equation 2.10) is also displayed.

These are the properties which are required in rectangular screens. More accurate

statistics are expected for low frequencies when using the subharmonic screen

generation.

Figure 5.22. The phase power spectrum along the y axis of a phase screen using

88 10.22 × points.
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The sample phase power spectrum shown in figure 5.22 indicates that the additional

low frequencies have been added to the phase screen. Comparison with figure 5.17

shows a marked difference in the low frequency behaviour of this spectrum, the

subharmonic algorithm has successfully corrected for the loss of power at low

frequencies associated with a Von Karman spectrum.

5.6. Temporal phase spectra, analysis.

5.6.1. Beam analysis.

In a series of papers written in the late 1960’s [35, 69, 70, 71 and 72], Ishimaru

performed an analysis of the temporal properties of a focussed beam propagating

through atmospheric turbulence. He argued that beams are much more useful than

plane or spherical waves for probing atmospheric characteristics because one can

adjust the focussing and aperture size easily. His analysis begins with an assumption

of weak turbulence (i.e. ( ) ( )trntrn ,1, 1+= where n1 << 1) and that the refractive

index fluctuations obey the Taylor frozen-in hypothesis (i.e. ( ) ( )0,, 11 vtrntrn −= )

where v is the average wind velocity. Application of the Rytov approximation (see

equations (1.1) to (1.3))expresses the propagated field in terms of a phase fluctuation
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where the initial field U0 and the final field U are related by

( ) ( ) ( ){ }trrUtrU ,exp, 10 Ψ= . (5.12)

One can write Ψ1 in terms of its real (χ, the log-amplitude) and imaginary (S, the

phase) parts and derive certain statistical quantities. The interesting result concerns

the temporal correlation function for the log amplitudeχ,
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where LkA 222π= , kLq Κ= , Lzz =′ and LkV=0ω , z is the direction of

propagation, L the total propagation distance, k the wave number and it is assumed

that the initial field U0 is a Gaussian. Re-working Ishimaru’s calculation to obtain the

phase (S) equivalent to equation (5.13) and taking the cosine transform (see section

4.2.1) gives an integral expression for the temporal spectrum of the phase, i.e.
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where δ1 and δ2 arise from the beam parameters [72]. Notice that this can be reduced

to the form given by Tatarski [36] by setting δ1 = δ2 = 0 (plane wave). An analytical

solution to this equation for arbitrary δ1,2 appears to be impossible to calculate. One

can proceed by integrating numerically after choosing an appropriate form for the

spectrum of refractive index fluctuations ( ( ) 3
112~

−Φ κκ nn C the pure power law

Kolmogorov or ( ) ( )223
112 exp~ Inn C κκκκ −Φ −

the Tatarski spectra14) and values for

the beam parameters δ1 and δ2.

8

14 Fante and Frehlich [44 and 45] discussion the importance of the inner scale κI and its effect on
intensity statistics under strong turbulence conditions. Several papers [40 and 43] also discuss
experimental methods used to measure the inner scale using log-intensity variances.
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Figure 5.23: The theoretical curve is a numerical integration of equation 5.14 using δ1 =

0.04 and δ2 = 0.2 (collimated beam) for a pure power law Kolmogorov spectrum.

The crucial feature in figure 5.23 is the power law behaviour of the power spectrum, a

311− law occurs as opposed to the 38− power law predicted in the case of a plane

or spherical wave (see section 4.2.1). This can also be seen in figure 5.24 (below) for

a Tatarski spectrum.

Figure 5.24: as figure 5.23 but using Tatarski refractive index spectrum.

Figure 5.24 shows the high frequency cut off imposed by the Tatarski spectrum as

well as a 311− power law behaviour in the inertial subrange. The conclusion is that,

for a Gaussian beam (under conditions where a Rytov approximation is valid), a

311− power law behaviour is expected in the phase / log amplitude power spectra

rather than a 38− behaviour (as one would expect for plane or spherical waves [36]).

5.6.2. Spherical wave analysis.

Clifford [30] calculated the phase power spectrum for a plane wave propagating

through a weakly turbulent layer characterised by a pure power law Kolmogorov

spectrum. This calculation can be performed again using a Tatarski spectrum in order

to find a spherical wave limit to Ishimaru’s result (equation 5.14). It is important to
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find out whether the 311− behaviour seen in figures 5.23 and 5.24 is solely a result

of the presence of a beam or the a result of the use of a Tatarski spectrum.

The pure power law Kolmogorov spectrum used by Clifford is

( ) 3
112033.0

−
=Φ κκ nn C , (5.15)

including Tatarski’s inner scale modification obtains

( ) { }223
112 exp033.0 Inn C κκκκ −=Φ

−
(5.16)

where Iκ is the inner scale equal to 02 lπ . Incorporating this spectrum into

Clifford’s calculation (equation 12 in [30]) gives
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This integral is completed by first splitting it the sum of two parts
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where 1F1 is a hypergeometric function [75]; thesecond integral can be written as
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Integration over σ gives
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where15 ( )1
4

2
2

−Ω−= uz . This integral differs from those calculated by Clifford in

appendix A of [30] because of the inclusion of the inner scale term Sm
2 in the

hypergeometric functions. Noting a property of the hypergeometric functions:
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the subsequent integral over u can be written as an integral in z:
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15 z is not the propagation distance here, rather a normalised frequency parameter defined in Clifford’s
work [30]. The propagation distance information is contained in u.
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where
4

2Ω=t . There are two different class of integral here, setting ( ) ixizSm →−− 2

gives
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These integrals are the same as the ones obtained by Clifford [30] (apart from some

additional constants introduced by the shift in the integration limits and different

hypergeometric coefficients). Therefore, given that the integration of equation (5.18)

resulted in a 38− power law, the power law behaviour of

( ) ( ) ( )fWfWfW SSS
2
,

1
,, χχχ += , i.e. 38− , in the inertial subrange will be unchanged

from Clifford’s result. There is a fundamental difference between the phase spectrum

resulting from a Gaussian beam and that resulting from a plane or spherical wave.

This fundamental difference is causing the power law behaviour seen in figures 5.23

and 5.24.

5.7. Simulation results.

A series of numerical simulations are presented that use the techniques discussed

above. Multiple phase screens in two dimensions are used to model three-

dimensional propagation problems. Screens are set in motion across the plane of

propagation at speed v, the aperture is defined of size nn× while the phase screens

used are of size mnn× . Several propagation geometries are simulated, the temporal

phase spectra produced are then analysed.

5.7.1. Plane waves, pure power law spectra.

Parameters used in these simulations are λ = 1µm and v = 2ms-1. The observation

screen is located at L = 10km, thus the observed wave is expected to be in the far
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field. The size of the aperture is 40cm while the plane wave is 20cm by 20cm. These

simulations use 20 phase screens of size mnn× where n = 28 and m = 5.

Figures 5.25 and 5.26. Weak turbulence, note the -8/3 power law behaviour across the

entire range of frequencies.
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Figures 5.27 and 5.28. Intermediate and strong turbulence. Figure 5.28 shows a

familiar increase in the power law for high frequencies.

Note that, contrary to previous simulations using Von Karman spectra, there is no

high-frequency cut-off in the spectrum resulting from the lack of an inner scale filter

in the pure power law Kolmogorov spectrum. All four figures show no flattening of

at low frequencies, a result of the subharmonic algorithm. Each figure, except figure

5.28, displays a clear 38− power law with the absolute value of the spectra

increasing with stronger turbulence. Figure 5.28, Cn
2 = 10-14, shows a departure from

the 38− law at high frequencies. This has been seen in the two-dimensional

simulations of section 4.3 and will be encountered again in the following sections.

5.7.2. Plane waves, Tatarski spectra.

The following simulation results were performed using a Tatarski spectrum (equation

5.15) to filter the phase screen data. Identical parameters were used in these

simulations as in section 5.7.1.
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Figures 5.29 and 5.30. Weak propagation regimes are shown, note the -8/3 power law

behaviour in the inertial subrange.
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Figures 5.31 and 5.32. Intermediate and strong propagation regimes. Note a -8/3 power

law regimes and a higher power law behaviour at higher frequencies.

Figures 5.29 and 5.30 clearly indicate a roll off in the spectrum at high frequencies,

this is expected as the Tatarski spectrum includes a filter at the inner scale. Note that

this roll off in the spectrum disappears in the strong turbulence cases (figures 5.31 and

5.32) and a departure from the 38− power law is seen at high frequencies. Once

again all figures clearly show no cut-off at low frequencies as expected from the

subharmonic filtering technique.

5.7.3. Gaussian Beams, pure power law spectrum.

Now consider Gaussian beams in an extended medium with statistics governed by the

pure power law Kolmogorov spectrum (5.14). An aperture of size 40cm is used as

well as a TEM00 Gaussian beam with parameters W0 = 7cm and f0 = ∞. 20

independent phase screens are used with the following parameters: λ = 1µm, l0 =

5mm, L0 = 30cm, , v = 2ms-1, n = 28, m = 5 and z = 4km.

It has been shown (figures 5.23 and 5.24 and [72]) that a 311− power law is

expected under conditions of weak turbulence. For each propagation geometry a

sample beam and the phase power spectrum is considered.
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Figures 5.33 and 5.34, Cn
2 = 10-17m-2/3. The phase power spectrum follows a -11/3 power

law.
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Figs 5.35 and 5.36, Cn
2 = 10-15m-2/3. The phase power spectrum follows a -11/3 power law

at low frequencies before adjusting to a -8/3 behaviour as the frequency ω increases.

Figs 5.37 and 5.38, Cn
2 = 10-13m-2/3. Under this strong propagation condition, there is

evidence of wander in the beam and the phase power spectrum reaching a -2 power law.

Sample images of the propagated field are shown in each case. Figures 5.33 and 5.34

show a weak propagation region, and indeed the 311− power law regime is present.

Moving into an intermediate regime (figures 5.35 and 5.36) the picture is less clear,

there are two distinct regions; a low frequency one with a 311− power law, and a

higher frequency regime where there is evidence of a 38− power law. In the case of

a much higher level of turbulence (figures 5.37 and 5.38), there is a -2 power law at

high frequencies. Figure 5.37 shows the extent of the spreading and wander in the

beam under such conditions, it is clear that this is the far field.

5.7.4. Beam waves, Tatarski spectrum.

These simulations use the same conditions as those in section 5.7.3, in addition the

phase screens have the statistical properties of a Tatarski spectrum (5.15). Figures
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5.39 and 5.40 confirm Ishimaru’s prediction concerning the 311− power law

behaviour under weak turbulence conditions. Now contrast figures 5.41 and 5.42

(below) with figures 5.35 and 5.36 (above). In figure 5.42 the phase power spectrum

does not undergo a transition to a 38− power law at high frequencies, in contrast to

the spectrum in figure 5.36. The behaviour is likely due to the use of a Tatarski

spectrum (introducing a high frequency cut-off) as opposed to a pure power law.

Figures 5.39 and 5.40, Cn
2 = 10-16m-2/3. The phase power spectrum follows a -11/3 power

law and has a slight drop-off at high frequencies.
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Figures 5.41 and 5.42, Cn
2 = 10-15m-2/3. The phase power spectrum follows a -8/3 power

law, this is similar to what was seen in figure 37.
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Figures 5.43 and 5.44, Cn
2 = 10-13m-2/3. The phase power spectrum follows a -2 power law

at high frequencies.

Figures 5.43 and 5.44 show the result of a strongly turbulent propagation geometry.

Once more, a -2 power law is observed in the power spectrum (figure 5.44) at high

frequencies.

5.7.5. Gaussian beams in a single phase screen limit.

Hitherto in this chapter, simulations have made exclusive use of extended media

modelled by multiple phase screens as discussed earlier. It is interesting to look for a

physical interpretation of the presence of the 311− power law behaviour in the

temporal frequency spectra of propagated beams. The most interesting aspect of this

behaviour is that it seems to be that it is restricted to a Gaussian beam and is

independent of the form of the spectrum of refractive index fluctuations. The work of

Ishimaru and Clifford has been expanded to show that they both correspond to

different limits of the same effect (section 5.6). Consider now a physical explanation

for the differences, and a reason why this behaviour disappears in the case of plane or

spherical waves.

Consider a simple Huygens Fresnel formulation for wave propagation similar to that

used in section 4.1.1. The electric field is
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where a TEM00 Gaussian beam of width W0 has been included, other symbols are

defined in section 4.1.1. Consider the small ( )r ′φ limit
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where the first integral is independent of time and therefore becomes a δ-function

when taking the temporal Fourier transform. Considering the second integral, one can

make a co-ordinate substitution (equation 4.5) and simplify by assuming that the

screen and beam are 1-dimensional (in x) while measuring the field at the centre of

the beam where x = 0; this gives
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Now transform to temporal co-ordinates and take the Fourier transform to give the

power spectrum of the field. Proceeding in a similar vein to section 4.1.1 gives
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where v is the speed of the motion of the phase screen across the wave front. Now

perform a co-ordinate transform xvtx ′′→+′ , giving
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where ( )tE ωˆ is the Fourier transform of the field. Integrating gives

( ) ( ) ( )
























 +

−

+

−=

2
2

2

2

1

2
4

exp
1

2

ˆ
2

1ˆ

wz

ik
v

wz

ikz

ki
E t

tt

ωπωφ
π

ω (5.27)

where ( )tωφ̂ is the Fourier transform of the phase screen. Consider now the power

spectrum of the field in two different limits of the width of the beam, a Fraunhofer

limit and a limit in which the curvature of the beam is important.
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Case I, 1
2

>>
kw

z
.

This limit implies a far field regime, i.e. the propagation distance z is very large. In

this regime the width of the beam is much smaller than the Fresnel zone, meaning that

the field is comparable to a point source. In the far field a spherical wave emanating

from a point source resembles a plane wave. Calculating the power spectrum of the

field in this limit gives
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At large frequenciesωt the spectrum of the field will be proportional to the spectrum

of the phase screen, modified by a term depending on the propagation parameters z, k

and W.

Case II, 1
2

<<
kw

z

Here the beam width is larger than the Fresnel zone. Turbulence passing into and out

of the beam will produce an effect in the power spectrum in the far field, this in

addition to the turbulence passing through the beam. Using this limit gives
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where in contrast to (5.28) the z-dependence of the spectrum is contained within the

exponential term.

Case II describes the Gaussian beam simulations performed in sections 5.7.3 and

5.7.4. Consider if the condition stipulated in Case II were to hold along the entire

length of the beam, equation (5.29) can then be integrated over z (i.e. considering an

extended medium rather than a single screen approx), such that
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where the error function is defined by ( ) ( )∫ −=
x

dttxerf
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2exp
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. The error function

can be approximated to unity if 1≈x , given that Case II assumed 1
2

<<
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z
, large

frequencies are required for this condition to hold. In this regime one can write
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Compare this result to equation (4.9) which showed how the power spectrum in the

far field is modified by an oscillatory term in the frequency ω. Here the far field

spectrum proportional to the phase screen spectrum multiplied by 1−ω . Thus, given

that the spectrum of the phase screen data will have a 38− power law behaviour, it

follows that the propagated field will have a spectrum with a 311− power law.

Figure 5.45. The phase power spectrum using the same parameters as figure 5.34 and a

single phase screen instead of an extended medium.
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The important thing to note in the derivation of equation (5.31) is that it requires an

extended medium. Enforcing this condition assured that the result cannot hold in the

case of a single phase screen. Thus one expects the 38− power law to hold in the

case of a single phase screen, even when using a Gaussian beam (see figure 5.45

above).

Figure 5.45 shows a phase power spectrum plot taken from a simulation that used the

same parameters as the simulation given in figure 5.34, the only difference being the

use of a single phase screen rather than multiple phase screens to represent a turbulent

layer. Note the appearance of a 38− power law behaviour modified by an

oscillatory term, this is similar to what has been seen in the two-dimensional case

(section 4.1.2). Therefore the presence of a 311− power law behaviour in the power

spectrum is not only a feature of a beam (in contrast to a plane or spherical wave) but

also a feature of an extended medium in contrast to a single phase screen (see figures

2.2 through to 2.9).

5.8. Experimental Results.

Modern experimental techniques allow the investigation of the structure of

atmospheric turbulence by looking at the phase properties of a received laser beam. A

heterodyne detection system can investigate the phase fluctuations of the received

wave front. Heterodyne means the mixing of 2 frequencies to produce an

intermediate frequency. A heterodyne detector in a LIDAR system looks at a returned

signal in which the phase contains a frequency shift based on the frequency of the

output signal and that of any vibrations on the reflecting surface. The heterodyne

system interprets received electromagnetic radiation and allows an operator to record

the phase fluctuations straight on to an appropriately set-up computer. The laboratory

apparatus keeps a ‘beat’ signal so that the demodulation process can retrieve the

frequency information imparted by the reflecting surface and intervening turbulence.

Any and all phase fluctuations in the apparatus, as well as those in the atmosphere and

the target of interest, will effect the phase retrieved from the received field. It is
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possible to eliminate such effects within the equipment as they occur on a very slow

time scale in comparison with phase shifts imposed by turbulence.

It is only in recent times that accurate methods for measuring the received phase have

been developed in the laboratory, therefore much of the theoretical work performed in

the 1960s and 70s by Clifford and Ishimaru on the properties of the temporal

frequency spectrum and other phase-related statistics has, until now, been buried in

the literature for want of a practical application. Experimental work performed at the

time of these analyses [51] were often restricted to the measurement of spatial phase

differences between two receivers.

The work performed for this thesis has been done in collaboration with researchers at

the department of optronics at Qinetiq. Their group has published several studies in

which they have investigated the properties of phase fluctuations imparted on a beam

by turbulence. A study in which a heater was used to simulate turbulence [76]

investigated the structure function of the turbulence and the properties of the far field.

Another study, which used an 80m outdoor single pass for a laser beam [77], looked

at the properties of the phase difference (in spatial terms) and the phase derivative (in

temporal terms). They report on the phase difference power spectra in which they

note a familiar -8/3 power law behaviour as well as an unexplained -11/3 power law

behaviour at high frequencies. It is interesting to look at these experimental results in

the light of simulations performed in section 5.7.

Data is reported on that was taken on two specific dates over the winter months of

2003. On the 23rd of January strong turbulence was encountered, on the 10th of

February the turbulence was much weaker. The experimental set up involved the use

of a 1.55micron laser emitted from the laboratory window and propagating to a corner

cube reflector mounted on a site atop a hill some 17.5km distant, thus the experiment

constituted a 35km double pass. The reflected beam was then collected by a pair of

probes, thus 2 channels of data were received for each double pass.

5.8.1. Intermediate / weak turbulence, 10th February 2003.
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Data collected on the 10th of February 2003 shows signs of weak / intermediate

turbulence, a sample phasor of this data is given in figure 5.46 below. By looking at

the phase / log amplitude power spectrum and making some simple assumptions about

the inner (~ 1mm) and outer scales (~ 1m) of the turbulence, one can approximate the

strength of the refractive index structure constant to 3
216103

−−× m [31]. This level of

turbulence is consistent with the above assertion of weak turbulence. Meteorological

surveys indicate that the average wind speed on this day was v = 2.2 ms-1. The

scintillation indices were calculated as 1.9379 and 2.5865 for the two channels.

Fig. 5.46, sample phasor of one channel. Real and Imaginary par ts of the field shown.

Fig. 5.47, the probability density function for the intensity of the data from 1 channel.

Figure 5.47 gives a log / linear plot of probability density function of the intensity, a

log-normal curve (equation 2.28) has been fitted to the experimental data. The shape

of the pdf of the phase derivative in figure 5.48 (below) is consistent with figure 2.7.

Both these figures are consistent with the fact that weak turbulence was present on the

10th of February.
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Figure 5.48, the probability density function of the phase der ivative.

Figures 5.47 and 5.48 are exactly what one might expect from weak turbulence. One

can look at information contained within the phase by calculating the power spectrum

of the phase derivative. A comparison of the spectra produced by using the phase

derivative and the J statistic show the effects of smoothing produced by intensity

weighting that have been predicted [16, 76].

Figure 5.49, compar ison between the phase der ivative spectrum and the J spectrum.
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Figure 5.49 indicates a smoothing of noise sources at high frequencies, i.e. the noise

floor in the spectrum is lower and effects at high frequencies will be easier to detect.

It is clear also from figure 5.49 that there are no high frequency artefacts in the data

while several spikes are prominent in the frequency domain below 1kHz.

5.8.2. Strong turbulence, 23rd January 2003.

Data collected on this date show evidence of strong turbulence, figure 5.50 indicates a

sample phasor of the data obtained on the 23rd of January 2003.

Fig 5.50: Strong turbulence indicated by the ‘ filling in’ of the gap in the phasor ’s centre.

The level of the scintillation index was very high on this day, calculated values were

17.5943 and 13.3127 for the two channels. Several explanations for this level of

scintillation have been suggested, one involves a possible misalignment in the optical

receiving equipment. A second is that the experiment was performed at a height

above ground (10m) such that turbulent layers between the ground and higher levels

of the atmosphere were causing effects as yet unaccounted for. It is also possible that

a double pass geometry through very strong turbulence caused such high scintillation

levels. Figures 5.51 and 5.52 indicate log / log and log / linear plots the pdf of the

intensity. Theoretical K – distributions are plotted alongside the pdfs; the K –

distribution was proposed by Jakeman and Pusey [60, 79] as a model for intensity

fluctuations in many different turbulent systems including thermal plumes [80] and

sea echoes [60]. The intensity under a K-distribution is described by
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where Kn is a modified Bessel function of the second kind and b and ν are related to

the moments of the intensity [79].

Figures 5.51 and 5.52, log / linear plots of I and I 1/2 against P(I ). 

 

Figure 5.51 shows good agreement between experiment and theory, looking at the

tails of the distribution in figure 5.52 one can see a straight line when plotting against

I , this is the behaviour expected of the K – distribution for large I.
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Figure 5.53 a log / linear plot of the phase der ivative.

In figure 5.53 the pdf of the phase derivative is approximated reasonably well by a

student - t distribution (equation 1.10). This is a characteristic of Gaussian statistics.

Figures 5.51 and 5.52 show that the statistics are not Gaussian, it is well known [76]

that the student - t behaviour in the phase derivative is not restricted to a Gaussian

process. It is possible that a regime corresponding to K – distributed noise also yields

student - t statistics in φ& .

The most interesting result arising from the stronger turbulence is a comparison

between the phase derivative spectra given in figure 5.54 (below). The noise floor for

the intensity weighted phase derivative is much lower than that of the un-weighted

statistic. This is what was expected. Frequency information that would be swamped

under strong turbulence will be visible when using intensity weighting, this

corroborates what was seen in [76].

Note a strong spike in the spectrum at approximately 100Hz, this indicates a feature in

the frequency data which will be visible in spectra presented in the next section.
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Fig. 5.54, comparison between the spectra of the phase der ivative and the intensity

weighted phase der ivative.

5.8.3. Phase power spectra.

The received laser beam was sampled at a rate of 8000 samples per second. The

January data set contains 6103× points while the February data set contains

approximately 7101× points. Using the sampling rate one can calculate the phase

power spectrum and look at the distribution of the power across the frequencies in the

beam. A Hanning window (figure 3.14) is used to remove spurious high frequency

elements while a linear interpolation method was used to reduce the effects of

problems associated with the heating of the laboratory equipment.

Figure 5.55 shows the phase power spectrum for the data collected under strong

turbulence. Note a 38− power law behaviour in the spectrum across the majority of

the frequencies incorporating a very small -2 power law tail at high frequencies. The

strength of the turbulence has smoothed out a lot of noise which is often seen in the
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spectrum. The spike at 100Hz is attributed to vibrations present in the laboratory

equipment. This was present in all simulations and was probably the result of some

systematic influence on the LIDAR equipment in the laboratory.

Fig. 5.55, The phase power spectrum for the January (stronger turbulence) data set.

Figure 5.56 (below) shows the phase power spectrum calculated for the weaker

turbulence. Here it is possible to see more noise in the spectrum, this is manifested in

the presence of many more spikes in the data than in figure 5.55. This shows how

various vibrations and frequencies in the equipment and reflecting surface are being

picked up by the beam and transferred into the receiving devices. This is the essence

of LIDAR.

Fig. 5.56, the phase power spectrum for the February (weaker turbulence) data set.
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Crucially one can see the appearance of a -11/3 power law behaviour in the high

frequency regime of the spectrum, this corresponds to the computer simulation results

of beam propagations under weak turbulence conditions (section 5.7.4, and below in

section 5.8.4). A peak in the phase power spectrum remains in the first couple of

points in the plot, this is despite the removal of spurious low frequency heating effects

from the data.

5.8.4. Conclusions.

The data collected and analysed in this section have given a number of useful insights

into the challenges facing numerical simulation of beam propagation. Data was

collected on a day when weak turbulence was expected, plots of the pdf of the

intensity (figure 5.47) phase derivative (figure 5.48) clearly indicate a weak

turbulence regime, as indeed does the limited impact of the intensity weighting on the

phase derivative spectrum (figure 5.49). It has been suggested, however, that a slight

mis-alignment in the receiver optics may cast some doubt over the validity of the pdf

plots

The second set of data concerned much stronger levels of turbulence; an attempt to

estimate the strength of the turbulence by calculating 2
Iσ has given unusually high

values. The plot for the pdf of the phase derivative (figure 5.53) gives a good match

to a student - t distribution while the plots of the pdf for the intensity (figures 5.51 and

5.52) show a correlation with a K – distribution (equation 5.32).

Both phase power spectra (figures 5.55 and 5.56) show evidence of a 38− power

law over a range of frequencies. Figure 5.56 shows a tendency to a 311− power law

at approximately 300 or 400 Hz. There is also a clear shift at about 30Hz which could

be due to Clifford’s ‘½’ (section 4.2.1), although 4≈cω Hz based on the parameter

values used in the experiment. Note also the presence of a large amount of power at

low frequencies; something which, as already noted, is absent in the Von Karman

model for atmospheric turbulence. One can conclude that any model using long

rectangular phase screens to simulate temporal variation in frozen-in turbulence,

without using the subharmonic technique, will be inaccurate at low frequencies. The
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subharmonic fast Fourier transform technique replaces (or ‘ fills in’ ) these lost low

frequency components.

The phase power spectrum calculated for the weak turbulence (figure 5.56) can be

compared with results from section 5.7.4, in which a Tatarski spectrum was used

correcting for low frequencies with the subharmonic technique. Figures 5.42 and 5.44

give spectra using parameters very similar to those found on the day of the experiment

(albeit over a shorter distance). Note figure 5.43 in particular and the behaviour of the

power law regimes in the plot; the 38− power law becomes a 311− law at high

frequencies while still retaining a lot of power at low frequencies. The equivalent

simulation for a pure power law Kolmogorov (figure 5.36) shows the spectrum

returning to a 38− power law at high frequencies. The experimental evidence

presented here leads to the conclusion that the Tatarski spectrum plus a subharmonic

addition at low frequencies provides a reasonably accurate description of the

atmospheric turbulence on that day. It seems unlikely that any further detail can be

wrung out of the experiment data with regard to the atmospheric structure. There is

simply too much acoustic noise at high frequencies.

Considering the strong turbulence; the experimental evidence shows the possibility of

a -2 power law at very high frequencies. The spectrum, however, bears little

resemblance to any of the strongly turbulent simulations in section 5.7. This could be

due to a possible misalignment of equipment or the presence of an as-yet unknown

atmospheric effect.

5.9. Conclusions to chapter 5.

This chapter has provided a wide ranging review and investigation into the role of

temporal phase statistics in coherent imaging systems. The use of Gaussian beams in

such systems was considered, a number of numerical simulation techniques were

developed. The use of rectangular screens (section 5.4) provides a novel method of

simulating motion of frozen-in turbulence in an extended medium or a single screen

approximation. A natural limitation on these screens has been successfully corrected
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for by using an alternative fast Fourier transform algorithm to introduce missing low

frequency components into the phase screen data (section 5.5).

Section 5.3.2 looked at spreading and wander in 3 dimensional beam simulations.

The single screen limit was shown to be appropriate for modelling the spreading and

wander of a Gaussian beam. The importance of the outer scale on beam wander was

also verified.

The most interesting results in this chapter concern the temporal frequency spectrum.

The theoretical developments of both Clifford and Ishimaru have been compared and

contrasted. Each theory was shown to apply in an extended medium while a single

screen approximation is inadequate. It has been shown, by considering Clifford’s

calculation (section 5.6.2) with a Tatarski spectrum, that a 311− power law in the

temporal frequency spectrum arises from the use of a Gaussian beam rather than a

Tatarski spectrum. It was initially thought that the 311− power law may in fact be a

facet of the inner scale cut-off introduced into the Tatarski spectrum. The plane and

beam solutions to the paraxial approximation differ fundamentally in their temporal

frequency statistics regardless of the form of the spectrum of refractive index

fluctuations. Simulation results in sections 5.7.2 and 5.7.4 agree with this assertion in

that both show results of simulations using Tatarski spectra, only the beam wave

simulations give a 311− power law, plane waves result in a 38− power law.

Results of simulations using a Gaussian beam under differing turbulence models

(sections 5.7.3 and 5.7.4), all give a 311− power law under weak turbulence

conditions.

Results in section 5.8 led to the conclusion that a Tatarski spectrum with a

subharmonic correction is the best model for atmospheric turbulence when one

expects the turbulence to be weak. Simulation results using strong turbulence are

more difficult to interpret in the light of the experimental evidence. Several

simulations (sections 5.7 and 4.3) have indicated the possibility of a -2 power law in

the phase power spectrum under strong turbulence condition. Given that there are no

theoretical results with which to compare simulations, and that the experimental data
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shows only minor evidence of -2 power law behaviour at high frequencies, the

possibility of aliasing effects needs to be addressed.

Consider a simple calculation involving beam wander. Belmonte [7] gives the beam

wander β of a Gaussian beam as the difference between the long and short term beam

width (see section 5.3.1). Assuming a Kolmogorov pure power law allows for an

approximation for wander to be written as
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where each of the terms above is as defined in section 5.3. It is known that aliasing

will occur if a part of the beam is diffracted to such an extent that it exits the edge of

the simulation and (due to the periodic nature of the fast Fourier transform algorithm)

re-enters the simulation to interfere with itself again. One might expect this to happen

if the beam wander is of the order of the aperture width. In all simulations in section

5.7, a beam of width 7cm and an aperture of width 40cm were used. Restricting the

wander of the beam to be less than 40cm, allows a condition
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to be defined which must be met such that aliasing will not occur. Applying (5.34) to

the most strongly turbulent simulations in sections 5.7.3 and 5.7.4 (i.e. λ = 1µm, z =

4km, Cn
2 = 10-13m-2/3) shows that all simulations are well within this limit16.

Therefore is should be possible to rule aliasing out as a causal factor for the -2 power

law behaviour.

At present it is unclear if such power law behaviour might become apparent in

experiments that use higher levels of turbulence, or indeed if there exists some

fundamental shift in the behaviour of temporal statistics under strong turbulence that

16 Specifically, using the constants given, equation (5.34) yields 0.5 > 0.0868.
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is unaccounted for in current theories of atmospheric turbulence. Further experiment

is required in order to resolve such differences.



Temporal phase and amplitude statistics in coherent radiation

168

6: Conclusions.

This thesis has looked at analytical, numerical and experimental methods for

modelling coherent imaging systems, including LIDAR and remote sensing devices

that employ coherent radiation sources. Although both amplitude and intensity

statistics have been looked at, the work has concentrated upon phase and phase

derivative statistics. This has been motivated by modern heterodyne detection

techniques which allow for the accurate collection of temporal phase data in coherent

imaging. In comparison to the quantity of material in the literature on amplitude

statistics, there is comparatively little on temporal phase statistics. A number of

numerical techniques for the simulation of temporal statistics in wave propagation

problems have been designed and developed in this thesis. Results of simulations

have compared favourably with experiment and theory.

This thesis has provided an overview and validation of the numerical simulation

process by building on previous work and looking at different statistical measures

(including moments and probability density functions) in different propagation

regimes. A major development in this thesis has been the use of phase screens to

allow the simulation of temporal motion in Taylor’s frozen-in turbulence hypothesis.

The problems of temporal variation in three-dimensional simulations were addressed

in sections 5.4 and 5.5 rectangular phase screens were used with low frequency

information being supplemented by a subharmonic technique. These phase screens

were then used in the simulation of plane and beam wave propagation.

In chapter 3 the properties of the phase derivative and related measures in weak

turbulence were investigated by modelling the field in the Fraunhofer zone as a Rician

process. This was shown to be a successful model in the case of a plane wave by

looking at a comparison between simulation and theory. Expressions were derived,

based on this model, for the correlation function of the phase derivative and the

normalised second moment of J (sections 3.2 and 3.3 respectively). A relationship

has also been found between the behaviour of φ& and marginal fractal distributions.
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A new development has been the use of multiple phase screens to represent a

temporally varying extended medium. The single phase screen approximation is

unrealistic when considering temporal statistics, as phase fluctuations occur

throughout the length of the propagation path as the beam evolves rather than being

imposed before any diffraction / refraction effects. Experimental work has shown that

amplitude statistics under strong atmospheric conditions (section 5.8.2) differ from

what was predicted under simple phase screen assumptions (section 2.5.1). Under

real turbulence a K-distribution is a better approximation to the intensity statistics than

the negative exponential saturation regime predicted in the case of a simple Gaussian

correlated random process. Notable differences between the single screen

approximation and experiment occur when one looks at the differences between the

spectral representations of various statistics. Section 4.1 showed how the use of a

single phase screen resulted in an oscillatory behaviour in the phase power spectrum;

work in chapter 5 has shown that this is un-physical. In addition, the power law

behaviour seen in the case of a Gaussian beam (section 5.6) is only present in the case

of an extended medium, and disappears when one uses a single screen approximation.

Various models of atmospheric turbulence have been compared and contrasted. It

was shown that the Van Karman model puts unnecessary restrictions on the outer

scale of the turbulence (section 5.5) while the pure power law Kolmogorov model

does not adequately sample frequencies outside the inertial subrange (section 2.2).

The Tatarski spectrum (equation 5.16) provides the best model, for the purposes of

simulating power spectra, in that it includes an inner scale cut-off while the absence

of low frequency power can be accounted for by the use of additional subharmonics

(section 5.8.4). Andrews [81] has suggested an alternative form for the refractive

index spectrum based on Clifford and Hill’s [27] evidence of a ‘bump’ at high

frequencies. It would not be difficult to investigate this in a future study.

These simulations have agreed strongly with the assertion of several theoretical and

experimental studies, which suggest that the phase power spectrum should exhibit a

38− power law in the inertial subrange of frequencies. They also agree with

Ishimaru’s calculation [71, 72] on the differences between plane and beam waves in

the spectral form of the phase / log amplitude obtained. It is not the case that
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Ishimaru used a Tatarski spectrum (as opposed to a pure power law) in his calculation

that results in a 311− power law; rather, the fact that a Gaussian beam was used

rather than a plane or spherical wave (section 5.6). The appearance of an unexplained

-2 power law in the phase power spectrum has been noted at high frequencies when

using strong levels of turbulence. This is visible only in a limited form in

experimental data although it is prominent in many simulations. It has been

postulated that this result is not the effect of aliasing or some equivalent problem due

to the periodic nature of the fast Fourier transform process, and therefore that it is a

genuine artefact of very strong turbulence conditions.

There are several avenues for further work in this field. More work is required on the

effect of strong turbulence on coherent radiation; an explanation for the discovery of a

-2 power law in the phase power spectrum under such conditions is strongly desirable

so that one might understand the physical processes causing it. There are further

applications of the work in coherent imaging; LIDAR systems of the type used in the

experiments operate on the principle of a double pass of a coherent beam which has

been reflected from a vibrating surface. Similar numerical simulation work to that

presented here could be performed for a double pass through frozen-in turbulence

with a receiver at the same location as the emitter. It has been shown (section 4.1.2)

that one can demodulate a single constant frequency offset from the phase power

spectrum and it should be possible to demodulate a more general signal using the

same technique in addition to intensity-weighting. This is important in the recovery

of a range of frequencies from a vibrating target.
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Appendix A. 

 

The phase power spectrum, ( )ωφS , is defined as being the Fourier transform of the

correlation function ( )ρφB , where ω is a frequency and ρ a length parameter

representing the distance between two points in the observation screen. The

relationship between these quantities was formalised by Tatarski [36], giving

( ) [ ] ( )∫
∞

=
0

2cos4 ρρπωρω φφ dBS . (A1)

We proceed in a similar vein to Clifford [30] and Lee and Harp [33], who calculated

the phase power spectrum via ( )ρφB , except that we employ a geometric optics

formulation to provide the expression for the correlation function. The geometric

optics formulation of wave propagation (for a field ( )zyxu ,, ) ignores diffraction by

making the simplifying assumption that the wavelength of the beam is much shorter

than the inner scale of the turbulence, thus allowing a simplification of the wave

equation (equation (2.3)) to

(A2)

( ) 0222 =+∇ urnku

where u is any one of the three spatial components of the field, n is the refractive

index and k is the wave number. Now assume ( )φiAu exp= and perform

perturbation theory on the amplitude A and phase φ. Tatarski [36] shows that one can

develop an expression for the spectral density ( )0,κφF of the structure function

( )ρφD of the phase φ. The use of a pure power law Kolmogorov spectrum for the

fluctuations of the refractive index (equation (2.14)) allows one to obtain

( ) 3

11
2221.00,

−

= κκφ nLCkF .

( )0,κφF is related to the correlation function ( )ρφB by
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where J0 is the Bessel function of the first kind, order 0.

Thus the phase power spectrum is 
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and integrating over ρ gives
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The lower limit of the integration here gives a singularity, changing the lower limit

from 0 to πω2 (Clifford [30]) allows integration over κ, this gives
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after we have converted into Clifford’s frequency notation Lπλω 2=Ω .

This is the low frequency limit of Clifford’s result (section 4.2.1), as required.
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Appendix B.

The integration of (3.46) results in
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where zka 2ξ= , ( ) 244 aaaf += and the two functions F1 (equation B2) and F2

(equation B3) are defined by
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Appendix C. 

 

We require a large φ0 expansion of y2 (equation 3.30). We need only consider the

situation where 0≈′τ , as when 0>′τ , both k and p tend to 0 and the fact that y2

tends to 0 quickly follows. First re-write p (equation 3.31) and k (equation 3.32) by

assuming a Gaussian correlation function

( ) ( )2exp ττρ ′−=

and φ0 >> 1, this results in

( ) 0exp 2
0 ≈−= φp ,
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2
2
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where we have assumed 1<<′τ . Now substituting these expressions into equation

(3.30) and taking φ0 >> 1 gives
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