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Abstract.

Interest in coherent remote sensing systems has stimulated investigations in the
properties laser propagation through extended atmospheric turbulence. This thesis
investigates the statistics of phase, and phase related, observables using analytical and

computational techniques, together with experimental results.

The phase screen technique is used to simulate perturbations to the refractive index of
a medium through which the radiation propagates. Severa different turbulence
models (Gaussian correlated noise, Kolmogorov turbulence, Tatarski and Von
Karman spectral models) are investigated, and their relative merits for describing
experimental conditions and descriptive statistical measures are compared and
contrasted.

The phase power spectrum is crucia to an understanding of the practical operation of
a coherent imaging system, and later part of the thesis is devoted to the investigation
of a LIDAR system in particular. Several turbulence regimes are investigated, from
an anaytica treatment of a weakly turbulent, extended atmosphere, to large 3D
computations designed to simulate experimental arrangements. The 3D simulation
technique presented herein has been developed to alow for the investigation of
temporal statistics. New power law behaviours are found to appear in temporal
frequency spectra which differ from the -8/3 power law form that has been accepted
in much of the literature. Strongly turbulent regimes result in a -2 power law while
the use of a Gaussian beam profile in an extended medium gives a -11/3 power law
under weak turbulence conditions.
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1. Introduction

The propagation and interference of electromagnetic waves passing through the
atmosphere has long been a key area of research in the field of signals processing [1].
This research has principally been directed towards understanding the origins and size
of intensity scintillationsin abeam [2, 3, 4, 24 and references therein], because many
communications and remote detection systems rely only on variations in the
amplitude of the wave to provide useful information [1, 5]. It is sometimes the case
though that phase information is required in addition to intensity fluctuations; thisis
often true in communications systems where frequency demodulation is a principal
method for transmitting the signal. This is especialy important when the radiation
source is coherent (i.e. a laser) [6, 26, 42 and 31] and the received phase can be
compared to the initially coherent wave front. The phase screen method is a
technique which is used to simulate coherent radiation propagation by using an
infinitessmally thin screen to model the effects of turbulence induced fluctuations into
the phase (but not the amplitude) of the radiation. Phase fluctuations introduced into
the field before propagation are intended to simulate the effect of temperature, and
thereby refractive index, fluctuations and motion of the air. The statistical properties
of the phase screens are used to characterise the type of turbulence being modelled.
Propagation of the field after interaction with the screen then alows intensity
fluctuations to build up through diffraction; focusing and caustics in the field arise
through propagation. The statistical properties of the intensity and phase statistics are
closely related to the statistics of the screen itself. The theoretical development of the
phase screen technique, as well as its analytical and numerical applications, will be
discussed in chapter 2.

The pioneers of the phase screen method [2, 3] were largely interested in the
calculation of intensity statistics for coherent waves passing through idealised phase-
changing screens. Indeed these statistics are till of current interest [8, 9]. These
studies used Gaussian complex processes to model atmospheric noise; they argue
further that this noise be characterised by a Gaussian auto-correlation function. An
important focus of these pioneering studies was radio-wave scintillations [2] and light

initiating from interstellar sources [48, 49, 10]. A interstellar source can be
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considered coherent because of the vast distances between an Earth-bound observer
and the stellar object. The calculation of the intensity scintillation curve (g, , the

second moment of the intensity normalised by the square of the mean) for an idealised
Gaussian correlated phase screen in one dimension, obtained by Mercier [3], shows
how intensity fluctuations develop over different ranges of propagation. Mercier and
Bramley [11, 50] both used approximations to Helmholtz’s formula for wave
diffraction, they used simple perturbation theory to predict a form for the intensity
statistics in regimes characterised by weak turbulence (i.e. weak phase screens).
These results predict a reduction to Gaussian statistics with properties as investigated
by Rayleigh [12] and Rice [13] at large propagation distances.

Rice [13] investigated the properties of what has become known as the Rician field,
which is afield consisting of a constant phasor plus Gaussian noise. It shall be seen,
in chapter 3, that the Rician field forms a useful model for a propagated field in the
Fraunhofer zone, i.e. in the far field, under certain propagation conditions. The
constant phasor represents an unperturbed part of the plane wave while the Gaussian
process represents the part of the wave perturbed by propagation beyond the phase

screen.

Further work on the form of intensity scintillation curves by Jakeman and McWhirter
[4] investigated the effects of different kinds of ‘deep’ phase screens, i.e. strong
scattering, in one dimension. The statistical properties of the diffracted field are
characterised by the correlation properties of the screens. Several different
autocorrelation functions were considered; they showed the existence of a strong
focusing region (including a peak in the scintillation index such that o, >2) at
intermediate propagation distances and a saturated Gaussian speckle regime (where
the scintillation index o, = 2) beyond that, in accordance with Mercier's [3] results.
This is an important result which is used in benchmarking the numerical simulation

technique in chapter 2.

Attempts were made by Buckley [14] to derive a full probability distribution for the
complex electromagnetic field beyond an exponentially correlated phase screen. The

exponential correlation gives a fractal quality to the phase screens which can be seen
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in atmospheric propagations. This ‘fractal’ quality manifests itself as a self-similar
appearance in the resulting intensity images (see figures 2.5 and 2.6). This approach
considered plane-wave illumination of a screen and resulted in the required
probability distribution being obtained from the solution to a Fokker-Plank equation
for the Fourier transform of the complex field. The results are analytically and
numerically formidable, and have not provided much insight into the problem.

Theoretical work that produces usable results is often restricted to simple perturbation
methods or an assumption of far field. It can be shown (section 2.1) that Maxwell’s
laws for the behaviour of electromagnetic field yield a wave equation describing the
propagation of E/M waves. Assuming short wavelengths the equation is reduced to a

simpler form:
02U +k?n?(r)u =0 (1.2)

such that U is a scalar representing a component of the field. A perturbation method
can be used to solve equation (1.1). The Born approximation, U =U, +U, +U,...,

where U, >>U ,,, is used as a simple additive perturbation to the field. The Rytov

approximation, U =U,exp(W) where W=W +W,+.. and ¥, >>¥ _, is a
multiplicative perturbation technique used on the phase. Both these approximations
require weak turbulence conditions. Under the Born approximation a system of
eguations is obtained that can each be solved by the use of a Green’ s function method,

i.e

Un()=2¢* [G(r,s) (5] s (S)d7s (12)

als

where G(r,s) is the free-space Green’s function. Second order moments are defined

under the Rytov approximation intermsof W, and W, :
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E,(r,r,) = (W (rn, L)W, L)) - (1.3)

From these one can form linear combinations which give all the moments of interest

in laser propagation problems[38].

A similar perturbation method can be applied to the amplitude and phase of the wave,
i.e. instead of applying perturbations to the field U, write U = Aexp(i S) and
approximate S=S,+S +.. and logA=logA,+ ). This geometric optics
formulation is considered in more detail in section 2.2.3 where it is used to derive a

useful result. Ishimaru [72] also used this method to derive an important result for

phase spectra; thisis considered in more detail in chapter 5.

In the light of this failure to obtain significant results for the statistics of a propagated
field in anything other than the simplest of cases, attention has shifted to numerical
simulation. The term ‘numerical simulation’ is understood to mean the stochastic
modelling of the wave propagation as opposed to numerical solution of the governing
equations. In an early paper on the numerical simulation of wave propagation through
phase screens, Buckley [57] discusses the theoretical basis behind the use of phase
screens and why one should expect good results from simulation. He provides
simulation results in the form of probability density functions, moments and power
spectra for the intensity. Whale [56] performs a similar analysis, looking at
anisotropic (i.e. where the correlation length is dependent upon the direction) screens.
He performs some simple calculations concluding that analytical results involving
strong levels of turbulence are difficult to produce and that the study of the intensity
scintillation index is important in investigating such regimes. A similarly complete
anaysis of the theory behind wave propagation exists in a paper published by
Prokhorov et al. [42] where the paraxia approximation is discussed (section 2.1.2)
and the spreading and wander of a propagated beam considered.
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Simulations have been performed using one-dimensional screens (i.e. a two-
dimensional simulation) [16] and two-dimensional screens [8, 15 and many more]
(three-dimensional simulation). Macaskill and Ewart’'s paper [19], comparing
forward difference methods and fast Fourier transform (FFT) methods for beam
propagation, provides a theoretical basis for the use of the FFT method in simulation.
Much work has also been directed at atmospheric turbulence and the development of
credible methods for simulating it [27, 28, and 29]. Ways that one can numerically
model this turbulence through the use of phase screens have been examined by
several authors [20, 23]. Lane, Glindemann and Dainty [20] considered the
simulation of a pure power law spectrum at small frequencies in an attempt to solve
difficulties in the discrete sampling of such spectra, these ideas shall be discussed in
greater detail in chapter 5. Frehlich [23] investigated the simulation of a Kolmogorov
spectrum’ for very strong propagation regimes, he used an extension of the method
presented by Lane et al. with the goal of introducing a new FFT algorithm.

The main thrust of investigation into intensity scintillations in recent years has
involved the use of faster and more powerful computers to make predictions about
results that do not yield to analytical treatment. There has also been greater
concentration on the use of two-dimensional screens (i.e. simulations that model afull
three-dimensional situation). Studies by Martin, Flatte and Gerber [8, 15, 27] have
investigated the possibility of using smulations in this way. These methods also
allow relatively quick and easy investigation of different types of phase screens and
beam profiles. One of the questions currently under debate in the literature is the
relative merits of using single and multiple phase screens. The single screen method
has been shown to be valid under certain conditions [62], while its validity has been
guestioned under others [61] where the extended medium gives different results (see

section 4.2 for amore detailed discussion).

More recently, interest has focused on the intensity weighted phase statistic [16, 21],
an increasingly important measure in the field of laser communications. This interest
is a result of current research into the use of phase statistics. The development of

heterodyne detection systems (see chapter 5), where a local oscillator is used for

! See section 2.2.2 for adescription of the Kolmogorov theory of turbulence.

10



Temporal phase and amplitude statistics in coherent radiation

comparison with a received signal, allows for the practical use of phase statistics in
remote detection systems. In this case the laser comes into its own; part of the power
of the coherent wave front can be diverted to setting up a frequency-shifted reference
signal in the lab to serve as alocal oscillator. Systems using incoherent beams (direct

detection) are only able to measure intensity statistics.

The phase derivative and phase spectrum allow the use of phase statistics. Both these
methods are investigated in the chapters that follow. Chapters 4 and 5 look at the
numerical modelling of phase spectra. Work on the properties of phase statistics in
propagated laser beams has not been extensively developed since early work
performed by Clifford [30] and Ishimaru [70, 71, 72] in the 1970s. In those studies
the properties of the phase power spectrum were investigated for several beam

profilesin weak scattering regimes.

The focus of this thesis is a broad investigation of the properties of phase and phase
derivative statistics in coherent radiation propagation. Work is presented that
concentrates on computer simulation and anaysis of phase and phase derivative
statistics.

1.1. Anintroduction to Gaussian noise.

The concept of Gaussian noise was aluded to first by Lord Rayleigh [12] in his
celebrated work of 1880. Thiswork was carried out in response to the work of Verdet
[reference within 12] and looked at the expected resultant of a large number of
constant phasors with arbitrary phase. Upon consideration of the probability density

function, Rayleigh calculates that the pdf for the amplitude r in such a system will be
proportional to exp(— r 2).

Noise in a system that arises as a result of such a large number of independent
scatterers was first noted after the advent of lasers as a coherent source of fixed-
wavelength light. Experimental work showed the existence of a granular or ‘ speckle
pattern present when the beam was reflected from an apparently smooth surface. This
noise is due to imperfections in the surface on a scale similar to the wavelength of the

11
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radiation. The need to describe the speckle pattern leads to a stochastic formulation
of light reflection, as an attempt to describe such a rough surface deterministicaly is
an impossibly complex task. It is the sum of many constructive and destructive
interferences from scattered waves from the surface that cause the speckle pattern.
Indeed one can show that the intensities of such a sum are distributed negative

exponentially while the phase is uniform over the range 6 [ (O, 272] :

Wherever alarge number of noise sources act as random phasors, one might expect to

be able to characterise the noise as a Gaussian random process [64]. This arises from

the central limit theorem, which states that the resultant of a large number of

independent random processes, x (t), will have Gaussian statistics. l.e, a statistic
N

defined as X :%in will have mean (X)=(x), variance o :<xi2>/N and be
i=1

distributed normally such that

1 (x)-xY
oo exp{— T} : (1.4)

The resultant of multiple scatterings in an atmospheric layer can therefore be said to

P(X)=

constitute a complex circular Gaussian process X (t)+iY(t). These processes, X(t)
and Y(t), will have Gaussian statistics as noted above. These multiple scatterers, i.e.
the noise, are also characterised by an auto-correlation function ()= (X (t)X(t + 7))

. Gaussian noise generated randomly (by a random number generator for example) is
characterised as ‘white’, i.e. the autocorrelation function is uniformly zero. Noise
encountered in atmospheric propagation will not be white, it will have certain
statistical properties, severa models for which have been proposed by several groups.
An overview of such models follows in the next chapter. One can impose an arbitrary
autocorrelation function for the purposes of analytical work, some popular models

include the Gaussian

cod -, 15
p() exp[ gﬂj (15)

12
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the exponential
~ 1.6
p(r) exp( ra (1.6)

and the truncated parabolic

T2
1—_
o) e L (L7)

0 otherwise

As well as determining the properties of the auto-correlation function for the circular

Gaussian process, one can derive several statistical properties of the process itself.

Thejoint pdf for X, Y, X and ¥ (where the dot represents atemporal derivative)

P(X,Y A W)= ﬂzbb { 5, = b, (x2+Y?)+b, (>&2+\&2]} (1.8)

can be determined from a consideration of the characteristic function and used to
determine the pdf for the intensity | =X?+Y? and the phase derivative
é=tan"*(Y/X). Notethat b, =(X*) and b, =(%*). Assuming that the phase is

distributed uniformly one can show that

S L _
=5l 0
and

P(é) = m : (1.10)

13
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where 7, = /b,/b, . Thus the intensity has a negative exponential distribution (as

expected) while the phase derivative takes on a student-t distribution (equation 1.10)

and exhibits a -3 power law behaviour in itstails.
1.2. Introduction to the intensity-weighted phase derivatives.

The intensity-weighted phase derivative, J = 1@ where the phase derivative is a
derivative in time, was proposed [16] as a statistic that can be used in the retrieval of
accurate frequency data in received, initially coherent radiation. This is especialy
important in LIDAR (LIght Detection And Ranging) systems. The phase derivativeis
a useful method for demodulating the frequency from the carrier wave in a LIDAR
system, as well as having applications in chemistry [17]. These laser ranging systems
will be discussed in detail in chapter 5. A received signal iswritten as

E()= At)exp6()+ift), (1.11)
where Alt) is the amplitude and 6(t) a noise term introduced in to the system by the

action of stochastic process in the atmosphere. Frequency information f is retrieved

by taking the temporal derivative and averaging such that
P=()+(d). (1.12)

The noise introduced by this phase derivative term, 8, is a zero-mean random process
and so a smple average should be sufficient to filter it out and leave only the

frequency information.

14
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e
Complex plane " Phasor E

™/

\f)

/
A

o - Re(E

Im(E)

Figure 1.1: Thissample phasor showsthe difficulty of measuring the phase derivative.
Asthe phasor approachesthe origin in the complex plane the phase derivative increases

rapidly. Theamplitudeiscloseto zero at this point, thus amplitude weighting is used.

The problem in using this simple averaging is that the phase derivative is prone to
undergoing extremely large departures from zero when the phasor, representing the
received field in the complex plane, approaches the origin. The phase derivative can

be weighted with the amplitude in order to remove these large departures, see figure

1.1. While departures in @ become large as the phasor approaches the origin, the
value of the amplitude approaches zero and so one is assured of using a weighting that
reduces fluctuations in the tempora derivative. It has been shown [16] that the most
efficient means of weighting the phase derivative - where ‘efficiency’ is defined in
terms of a minimisation of the variance of J - is by using the intensity. Thus the
intensity-weighted phase derivative produces a statistic with the same features as é
but without the same large, sudden deviations that cause problems in averaging. This
use of the intensity-weighted phase derivative is discussed in greater detail in [76]
with reference to a series of controlled experiments in which athermal plumeis used
to crudely simulate the effects of a strongly turbulent atmosphere. Figures presented
in the study show clearly how the intensity weighting improves the signa to noise
ratio (SNR) of the received beam. It is noted, however, that the use of intensity
weighting in a situation where the SNR is aready high will not necessarily further

improve accuracy.

The properties of J have been studied in some detail in the case of acircular Gaussian

process [21]. Defining the field as E= X +iY, where X and Y are independent

Gaussian processes, | = X% +Y? and éz%tan'{%j results in J = X¥-YX .

15
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From this definition one can write down the characteristic function of J and thus show
the probability density function to be

P()~ exp{—%'f'} : (1.13)

where 7, = % is a parameter related to an amplitude correlation as defined above.

2

Consider the second moment of J,
(37) = (X2 )+ (Y2 H?) =2 X¥)(Yk ). (1.14)

noting now that as X and Y are independent Gaussian processes, (X )(Y) =(XY) =0,

while <)&2> = <‘1&2> , therefore

(32) = (x2)+(y2) J&2) = (1){%2), (1.15)

such that in the case of a plane wave, <J 2> = <>& 2> . Itisalso clear from this that one

can write J = Im[E*‘l—ltEj, this expression will be used in section 3.3.

In chapter 2 severa of the results of Gaussian noise theory are used to benchmark the
computer simulation method. Chapter 3 considers the J statistic in the Rician field,
i.e. afield characterised by a constant phasor plus a Gaussian process. The pdf for J,
moments in the far field and the normalised second moment for al propagation
distances z are derived in this general case. Two-dimensional models for phase power
spectra simulations for plane waves are considered in chapter 4, while three-
dimensiona beam simulations are investigated in chapter 5.

16
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2. Computer simulation method

The numerical simulation of coherent radiation propagation has become an
increasingly important area of research in recent years as refinements to models for
atmospheric turbulence become more difficult to treat analytically. Such refinements
to turbulence models are designed to account for atmospheric effects that have been
observed in experiment. When these models are defined in terms of spectra
components and the required Fourier transform (the auto-correlation, required in the
modelling of phase screens, function is defined as the Fourier transform of the
spectrum of the turbulence) does not exist in analytical terms — it can often be hard or
impossible to make progress with analytical work. Thus, the investigation of the
properties of complex turbulence models lies outside the realm of analytical work,
falling instead to numerica simulation. A large body of work on the statistics
resulting from propagation through mathematically simple turbulence exists in the
literature. It is possible to refine a numerical simulation technique by comparing
analysis with numerics before investigating turbulence models that cannot be treated
anayticaly. The computer simulation technique is therefore very important in this
field; stochastic simulations are used rather than attempting a deterministic solution to
the governing equations of wave propagation. This is done because the nature of
turbulence is inherently random, and many of the ways in which coherent radiation is
measured in experiment are statistical. It therefore makes sense to cast smulationsin

astochastic form, and use statistics in the interpretation of results.

In this chapter the phase screen method is introduced, this is a technique that models
atmospheric turbulence by the introduction of phase perturbations on to a coherent
wave front. The technique can be used in both numerical and anaytical work, and
allows fluctuations in the amplitude of the beam to build up as the beam propagates.
The Kolmogorov theory of turbulence is also introduced, this model uses a method of
dimensiona analysis to cast atmospheric turbulence in terms of a spectrum of
refractive index fluctuations. Severa validations of the phase screen method are aso
considered, using a comparison of numerical simulation results with analytical theory.

17
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2.1. Underlying theory of wave propagation.

The numerical simulation technique involves the numerical propagation of a field
through atmospheric turbulence. In order to do this, a numerical discretisation of the
theory behind wave propagation is required. A modd is aso needed for the
turbulence itself. The behaviour of electromagnetic radiation is governed by
Maxwell’s field equations. The phase screen model, which attempts to simulate
turbulence through the use of a thin, phase-changing screen, is discussed in more

detail. A discretisation of the phase screen model is also considered.

2.1.1. The wave equation.

The behaviour of an electromagnetic field (E the éectric field and B the magnetic
field) is described by Maxwell’ s field equations

I

Im

I
© Mx

[
os)
I

(2.1)

O
X

Im
I

o |
¥|%

10E
c? ot

IO

xB= +:uoi

where | is afree current, p the free charge, o and & the permeability and permittivity
of magnetic and electric fields respectively. Manipulation of the third and first of the
above laws leads to a wave equation describing the propagation of an electric field in

a hon-homogeneous medium:

D?E+D(EDING)= fu%- (22)

Looking for solutions that vary sinusoidally in time (i.e. E([,t): E, ([)e‘”“) alows
the reduction of equation (2.2) to

18
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0?E+0(EDINN(r)) =k?n?(r)E. (2.3)

Here the refractive index n? = & and k is the wave number (equal to the frequency of

the wave divided by its speed). Thisisthe wave equation; it is used in the ssmulations
in this thesis that modd the propagation of a coherent radiation source. As has
already been noted, the model will involve phase perturbations by a screen, the actua
propagation of the wave will be through a vacuum. It is possible to reduce this
equation yet further, assuming that the field is ssmply a propagating wave in space,
and that the refractive indices for electric and magnetic propagation are constants (n =
1 in avacuum), the spatial and temporal evolution of this wave or packet of wavesis

described ssimply by

O%u+k*u=0 (2.4)
which is the standard Helmholtz equation [31] where u is the scalar field.

2.1.2. The paraxia approximation to (2.3) and solution.

The simulations presented in this thesis are concerned only with the propagation of
coherent radiation, therefore one can assume paralel propagation of the beam.
Simplification of the wave equation is therefore possible via the paraxia
approximation. This is done by assuming the propagation distance of the beam, z, is
always much greater than any beam spreading that occurs. Assuming that radiation is
in the optical or infrared range, it can been shown [82] that it is possible to neglect the
middle term of the wave equation (2.3)>. Assume now a form for E and redefine the
refractive index n in terms of the refractive index in free space plus a smal

perturbation ny, i.e. n=(L+n,). The form taken for E assumes aslow variation in the

z co-ordinate (where zis the direction of propagation), i.e.

E=E(xy, z)exp[i kz] (2.5

2 Radiation scattered by large fluctuations in the refractive index is scattered at an angle no greater than
411~ 10" for optical and infrared light. Hence one can neglect the middle termin (2.3).

19
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2

Substituting into equation (2.3), neglecting the term® and assuming

Z2

(1+n, ¥ =1+ 2n, resultsin the paraxial approximation to the wave equation:

2 2
2ikg—E+(% +:—2JE+2k2n12E:0. (2.6)
Z X

The z direction is the direction of propagation while the x and y co-ordinates are
perpendicular to the beam’s length. Equation (2.6) is the one that is used to ssimulate
wave propagation between phase screens. As the space between each screen is

assumed to be avacuum, onecanset n, = 0.

Two different methods for solving (2.6) numerically are suggested by Macaskill and
Ewert [19]: a finite difference formulation; and a fast Fourier transform method.
Although they present a method for making a finite difference solution manageable
and fast, they conclude that the preferred method to solve (2.6) is the fast Fourier
transform. They show that one can transform the eectric field E into the Fourier
domain, solve the resulting differential equation and then transform back into the real

space domain to obtain

OEQ(X,Ky,z): —iK—ZE

L ] 1 2-7
0z 2k oKy Z) @0

which is the required result. Equation (2.7) is the form of equation (2.6) in Fourier
transform space, where EQ(X,Ky, z) is the 2-dimensiond Fourier transform of
E(xy.z). «, and «, ae the frequency space co-ordinates, where x> = (2 +x2).

Thisisasimple linear ODE whose solution is easy to find. Given an initial condition

onzi.e z= zZinitialy,

0°E E
372 << 6_ under the assumption of slow variation in the z direction.
Z Z

3 Because

20



Temporal phase and amplitude statistics in coherent radiation

J— J— 2 —_—
E(KX,Ky, z) = E(Kx,Ky,ZO)eXp{—i%} (2.8)
A simple inverse Fourier transform yields the field in real space. The computational

procedure required to simulate the propagation of a laser beam through free space is
clear. A fast Fourier transform method is used, first to transform the field datainto its

Spectral components EQ(X,Ky, z), then to Fourier invert back into the real space after
. k*(z-2) .
the propagation term, ex _IT , has been applied. The real space result

being the electric field at some observation planelocated at z=1L, i.e. E(x, Y, L).

2.2. The phase screen technique.

The discussion to this point has focused on the propagation of a wave or wave packet
through a vacuum. Indeed the presence of a vacuum is a crucia assumption in the
reduction of the wave equation to its paraxial form. The simulation of atmospheric
propagation requires the simulation of the medium through which the beam
propagates. Thisis done by the well-documented phase screen method, as introduced
in chapter 1.

A laser beam (i.e. acoherent radiation source) is characterised by itsinitial profile, the
‘phase screen’ [2, 3, 7, 8 and others] method is then employed to ssimulate the
extended medium (i.e. the Earth’s atmosphere) into which the beam propagates. The
phase screen method numerically represents the random medium as one or more
infinitessmally thin ‘screens’ transverse to the direction of propagation, each of which
imparts a phase shift onto the field. It is possible to calculate the field resultant from
such a propagation of the beam by several methods; two that are employed here are
the Huygens Fresnel integral for anaytical treatment, and a fast Fourier transform
algorithm for numerical treatment as discussed above. These phase fluctuations result
in amplitude fluctuations that build up in the field as aresult of the propagation. This
gives features such as focussing and caustics in the beam.
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Fig. 2.1 Diagrammatic representation of the phase screen method.

The phase screen is essentially a method of creating statistically-correlated phase
changesin awave front. These phase fluctuations introduced into the beam'’s path are
intended to simulate the effects of temperature (i.e. refractive index) fluctuations in
the atmosphere, as well as the motion of the air. Thisis very similar to the effect of a
sheet of misted glass, or a swimming pool, on the light reflecting off, or refracting
through, it. The variation in the refractive index of the material causes phase
fluctuationsin the light.

The computer simulation of a phase screen involves the generation of an array of
pseudo-random complex Gaussian numbers, then filtering this data to include the
desired statistical properties. One achieves this by the application of a fast Fourier
transform algorithm, and an idealised filter function (which is a Fourier pair with the
auto-correlation function) that gives the screen the desired statistics. The specific
method, which employs the Weiner-Khintchine relations [ 18], employs a convolution
of the spectral components of the noise with those of the autocorrelation function.
After a subsequent inverse Fourier transform, the real and imaginary parts of the
resulting correlated noise constitute phase screens with the required statistica
properties.
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2.2.1. Statistics of the phase screens, Gaussian noise model.

Statistical correlation of a phase screen is required in order that it be considered a
valid model for atmospheric turbulence, an array of independent pseudo-random

numbers constituting white noise is not sufficient to be such a phase screen.

The simplest auto-correlation function for the phase screen data is the Gaussian.
Booker et al. argued in their seminal paper [2] on phase screen techniques that the
screen should have a Gaussian correlation as a result of the central limit theorem
applying to the build up of small-size turbulent eddies in the atmosphere. It has since
been shown that the Gaussian screen, although useful for analytical work, is not an
accurate model for atmospheric turbulence. It is, however, not a model that should be
ignored; its simplicity of usein analytical work makes it a useful tool for investigating
the validity of smulation. Indeed, it is with that goal in mind that it is employ it in
this thesis. The Gaussian auto-correlation function of the phase fluctuations @ is

defined, in real space, as
p¢¢):<¢<r1)¢<rl—r)>=¢sexp{‘j¢—£'], 29

where ¢(r) is the phase screen data, <K> an ensemble average and ¢ the correation

length. There is also a strength parameter ¢, which determines the mean sguare
value of the phase fluctuations introduced by the screen (also referred to as the
‘depth’). Figures 2.2 and 2.3 show examples of phase screens using Gaussian-
correlated data. As has aready been noted, one can define the correlation properties

of the phase screen in terms of the spectral components of the noise such that

CD¢(K) ~ _Tp¢(r )exp(— ikr )dr . (2.10)

The spectral form of the auto-correlation function (2.9) is aso a Gaussian, and

therefore can easily be defined in frequency space, in as opposed to real space.
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This definition of the auto-correlation function in rea space will only be possible for
simple models. Other turbulence models may have to be defined solely by the power
spectrum @ (k) in « -space. Possible correlation models defined in real space have

been noted in chapter 1 (see equations (1.5), (1.6) and (1.7)). None of these are viable
models for real atmospheric turbulence; rather they are useful in the comparison of

simulation techniques against simple theory.

A5 " ) i i i i i i
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distance ACCIOSS SCreen, n

Gauss corwisled Phase screen

Figs2.2 and 2.3: Gaussian phase screensin 1 and 2 dimensionsrespectively. Infig. 2.2,
the depth @ = 10 while §=1000; in fig. 2.3 ¢ = 10 and = 30.

The above figures show two examples of Gaussian-correlated phase screens. Note the

smooth contours on the screens, thisis a characteristic feature of ‘idealised’ noise.

2.2.2. The Kolmogorov theory of turbulence.

The Kolmogorov cascade theory of turbulence is based on certain assumptions about

the structure of a viscous fluid and the way that energy dissipates in it; the theory can

24



Temporal phase and amplitude statistics in coherent radiation

be used to develop an auto-correlation function that is used to accurately model
atmospheric turbulence in a phase screen simulation. The main assumption under-
pinning Kolmogorov's theory is that there exist certain outer (Lo which corresponds to

an inner scale «, ~ (1/ LO) in « -space) and inner (Io which corresponds to an outer

scale ko ~ (1/1,) in « -space) scales which characterise the size of turbulent eddies.

Energy is injected into the atmosphere at large scales by the action of the wind and
large-scale convection currents; this causes eddies to form in the atmosphere whose
sizes are characterised by the outer scale Lo. Smaller eddies are formed via the
transfer of energy through the system; the smallest possible size for an eddy
corresponds to the inner scalelp. Once this scale is reached, the fluid movesinto what
is known as the viscous dissipation regime; turbulent eddies remaining in the system
dissipate, and energy is lost as heat. The dissipation rate is assumed to be distributed
in alognormal form, although this has been challenged by severa researchers [41] as
the model disagrees with certain experimenta results. Kolmogorov used dimensional
anaysis to show that the structure function for wind velocities should have a

particular form [29, 31]. The structure function is defined as
D, (i.,r2) = ([x(:.)- X )F) (211)

and is an important statistic in stochastic processes. Because the structure function is
independent of whether the process is stationary or not, it can be used to define

general properties about the process. Kolmogorov showed that D, (r,,r,) - the

structure function for the wind velocities in the atmosphere - has a 2/3 power law; i.e.

D(R)=C? Rg : (2.12)

where C, is the structure constant, and is related to the energy dissipation rate of the

fluid. The structure function isrelated to the power spectrum of the velocities via[36]

[

_ 1 Ssn(Re)d[_, d
qav(/()_4 772K2‘£ > E[R ﬁDV(R)}dR (2.13)

25



Temporal phase and amplitude statistics in coherent radiation

such that when equation (2.12) is applied the power spectrum follows a —11/3 power
law form in x. Similar analyses exist for both temperature and refractive index

fluctuations in the atmosphere, each giving a —-11/3 power law for the power
spectrum. Thus Kolmogorov proposed —11/3 power law spectrum as a form for the

spectral components of the refractive index fluctuations in the ‘inertial subrange’, (i.e.
being the range of x between the outer and inner scales). Note here that the inner
scale, while forming a cut-off for short length behaviour in real space, corresponds to
a cut-off at high-frequencies behaviour in « -space. Thus the upper limit of the
inertial subrange in frequency space corresponds to the lower range in rea space, and
vice versafor the outer scalein real space.

The form for the Kolmogorov spectrum in three dimensionsis

-11
@, (k)=0.033C%k ® ,k, = Li << K << li =K, (2.14)

0 0

where, as has been discussed, «, and «, define the inner and outer limits of the

inertiad subrange and C? is the structure constant for the refractive index in units of

m?®, Experimental data indicates that for the atmosphere the outer scale is of the

order of metres in size while the inner scale is of the order of millimetres or
centimetres depending on the specific turbulence conditions [31]. Regions of the
spectrum outside the inertial subrange must be sampled in order to discretely model
the turbulence. This problem has been addressed by severa researchers. Tatarski
suggested an extension to the Kolmogorov model to extend it into the viscous
dissipation regime. The application of an arbitrary exponential factor effectively cuts
the spectrum off at high frequencies. One unfortunate property of the Kolmogorov
theory is that as the frequency approaches zero, the spectrum blows up to infinity.
Von Karman proposed a second adjustment to the spectrum which would account for

this. He suggested adding the inner scale to the frequency such that as x approaches

zero, the spectrum approaches a value proportional to Kl_ %. The full modified Von

Karman spectrum is then
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2

_ 2
K
@, (k)=0.033C? ——2Z2 0<k < (2.15)

11’
2+KI2 6

whichisvalid over al « -space and can be used to model the Kolmogorov theory in a
phase screen. Further refinements to the Kolmogorov model in addition to those
above have been proposed in the light of additional experimental data concerning the
nature of atmospheric turbulence. Voitsekovich [39] performed an analysis of the
differences between various models for the outer scale, while experimental evidence
from Hill and Clifford [27], showing the possible presence of a ‘bump’ in the
spectrum at high wave numbers close to the outer scale (in « -space), motivated
Andrews [31] to propose a modification to the Von Karman spectrum,

2
7 exp(_’g ]
6 K
®, (k)= 0.033C; 1+1.802(Lj - 0.254(£) — "o Jock<o.  (216)
KO KO

b +x?)

In this ‘modified Von Karman spectrum’ the terms in the square brackets dominate at

high wave numbers and introduce the ‘bump’ into the spectrum.

Severa different spectral models of turbulence will be considered in more detail in
the case of three-dimensional simulationsin chapter 5.

2.2.3. The phase spectrum, ¢7¢(K).

The refractive index spectrum cannot be used immediately in the correlation of phase
screen data. Thisis because the phase screen process uses fluctuations in the phase of
the wave front to induce diffraction and focusing effects into the beam, whereas
Kolmogorov theory refers to refractive index fluctuations. Thus the refractive index

spectrum must be converted into a phase spectrum for use in phase screens.
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The relationship between the refractive index and the phase can be derived from a

simple geometric optics formulation. Starting from the Helmholtz equation (equation

(2.4)) and assuming that the solution is of the form U = Ae", a system of two

eguations can be derived [36]

0%p+20log Ad@=0

o (2.17)
Ogy =Kkn?(r)

that describe the behaviour of the amplitude A and phase S Assuming small
perturbations in A and S such that @=g¢ +¢g and log(A)=log(A )+ x. the

refractive index fluctuations over the path of the beam and the phase changes are
related by the path integral

qo(x, Y, L) = k_L[ n(x, Y, z)dz (2.18)

where n is the refractive index, k the wave number for the propagation, L the tota
propagation distance and ¢ the phase change along that path. From (2.18) the
refractive index spectrum can be related to the phase spectrum. To do this one writes

the correlation function, p,(x—X,y—y'), for the phase gin terms of the correlation

function for the refractive index fluctuations p, (x -X,y- y’)

(e )X ) = p, (X=X y - ')
= kzj‘dz'JL‘ dz{n(x, y,zn(x,y,z') .

:k2

Oty

L
dz’_[dz,on (x— X,y-vy,z- z’)
0

Changing to sum and difference variables u=z-27z" and v=1z+ 7', integrating out v
and taking the Fourier transform gives
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]i T'O(ﬂ (X"1 y")eXp{— i (X"Kx + y"Ky }jX"dy"

e (2.19)
=k’L J' dx” J'dy" J' dup, (X", y", u)exp{— i (x”/(X + y"/(y}
—o  —w  -L

where x-x' - x" and y—-y' - y". Using (2.19) gives
o, ., )= 2L (. K, ,0). (2.20)

This relationship can be used for the formulation of the statistics of the phase screens.
Applying this to the Von Karman spectrum for refractive index fluctuations in the

atmosphere, one can determine a two- dimensional form for ® w(/() which can be

used to build two-dimensional screens for use in three-dimensional simulations:

K*?

K

11

KZ2)e
K,

o, ..k, )= 0.207Lk202 ( K2 =KPHK?, 0<K K, <o.  (221)

A one-dimensional form can now be calculated for the Von Karman spectrum for use

in two-dimensiona simulations. Integrating out the «, dependence [21] leaves

2

2
exp[ j
K
®,(k,)=0.696Lk’C? ——2~, 0<k, <o, (2.22)

2 24’
Q(X+KI>

which is valid where «, islarge. Thisis avalid approximation as one can always

assume the turbulence has a small inner scale. Note that the phase spectrum has a -

8/3 power law in the inertial subrange (plotted in figure 2.4 below).

The range of values that are used to sample « -space need to be defined such that the
fast Fourier agorithm performs properly. Given the particular coding used in these

simulations, the « -space region over a range must be defined over an areawhich isa
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multiple of {-z, z}. Defining the size (in a physical sense) of the beam as Ly by Ly

metres, the sample sizes used in the simulation in « -space will be d«, =277/L, and
dx, =2m/L, . Given tha the number of samplestaken is N, the range of valuesin «

-spaceis {-7/N,7/N}.

Fig. 2.4,the Von Karman filter (2.22) function in 1 dimension with theinertial subrange

indicated, note the -8/3 power law behaviour within that range.

This range of values sampled in « -space places a natural limit on the inner and outer
scales that can be chosen for the simulation. The inner scale |o can be no smaller than
the sample size, while the outer scale Ly can be no larger than the physical size of the
simulation. Note the way the spectrum flattens off at low and high frequencies, while
in the inertial subrange a -8/3 power law behaviour is present. This spectrum is
sampled numerically over «-space and then transformed it into a rea space

correlation function using an inverse fast Fourier transform algorithm.

These screens (figures 2.5 and 2.6 below) were obtained by filtering the same white
noise as was used in figures 2.2 and 2.3. A Von Karman filter was used rather than a
Gaussian auto-correlation function. Notice the extra ‘detail’ in the screens indicating
the existence of self-similar fractal behaviour in the pattern, a characteristic of

Kolmogorov turbulence.
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Figs 2.5 and 2.6: Phase screens char acterised by a Von Karman filter.
The analytical form of the Fourier transform of equation (2.22) cannot be calculated,
and as aresult a fast Fourier transform algorithm must be used. One can, however,
calculate the *depth’ of a phase screen filtered by such a Von Karman spectrum. The
‘depth’, or strength, of a phase screen is determined by the mean square phase shift in
the screen; this corresponds to the value of the correlation functionat x =y =0in real
space. For the Gaussian correlation function (equation 2.9), this valueis @ For the
Von Karman autocorrelation function, this value is calculated by performing the
inverse Fourier transform of the spectrum at x = 0 (in the 1D case). The rea space

correlation function is

1% .
p, ()= I ®, (k Jexplixx)dx (2.23)
a x = 0, the screen depth is then

p,0)= %T T @, (k )k, (2.24)
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substituting the Von Karman phase fluctuation spectrum gives

_ 2
0.696Lk*C? ¢ eXp[ KZX]
p,(0)== n j ° /dk (2.25)

ar -wQ(X2+K,2)?

which can be expressed in terms of hypergeometric functions [32] as

2.24,F,
_ 0.696LKk2C?
21 K3

p,(0)=(e)

Hence, given vaues of C2 L, Kk, and k., one can determine the strength of the

phase screen.

2.3. The Simulation technique.

An algorithm for performing numerical simulations of wave propagation through

turbulence characterised by phase screens can now be written down:

Numerically set up the coherent wave front to be propagated; the front can be
in 1 or 2 dimensions.

Set up the desired auto-correlation function for the phase screens that will be
used in the simulation. This is done either in real space (Gaussian) or in -
space (Kolmogorov / Von Karman) as required.

Set up the phase screen(s) using the Weiner-K hintchine method of correlating
pseudo-random complex Gaussian numbers. The phase screens need to be of
size greater than or equal to the wave front.

The wave interacts with the phase screen; this occurs by the phase screen data

acting as a phase shift on the wave itself.
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e A Fourier transform agorithm is used to solve the wave equation (2.8) and
propagate the beam through a vacuum to the observation screen (or next phase
screen).

» Further phase screen interactions and propagation occur (extended medium,
i.e. multiple phase screens, case only).

* Aninverse Fourier transform is performed at the observation screen the result
isthe final propagated wave.

There are a number of further technical points which need to be discussed before
considering a vaidation of the simulation technique against published results. The
fast Fourier transform is a process that transforms a set of N data points into a second
set of data containing N elements. If one increases the size of the dataset by M , then
the length of time taken for the fast Fourier transform process to finish increases by
M Iog(M ) The use of an ever-increasing number of data points in the phase screen
will lead to simulations that take a very long time to complete. It is perhaps
preferable to perform several redlisations of smaller sized screens and wave fronts
rather than single large simulations in order to produce accurate statistics. Note that
this M log(M ) behaviour is still preferable to the increase in time that would occur if
one were to use a forward difference method for solving the wave equation, in that

case the atime increase would be an order no lessthan M ? [19].

These time considerations are very important when it comes to simulations in three-

dimensions; in these cases one can set up phase screens of the form 2" x 2V in order
to preserve the efficiency of the fast Fourier transform algorithm. The difference in
time taken to perform a simulation using N = 8 and N = 9 is quite large, because there
are four times as many data points in the screen.

The second point is concerned with boundary conditions. This is an issue considered
by Ewert and Macaskill [19]; they concluded that one useful aspect of the fast Fourier
transform method is that it requires no boundary conditions to be arbitrarily set. This
is due to the periodic nature of the FFT process. Thus one edge of the screen is
wrapped around and connected to the opposite edge during the fast Fourier transform.
Although this saves the task of setting up arbitrary boundary conditions, it leaves a
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problem of aliasing. Aliasing occurs when a part of the beam diffracting off the
screen on one side of the ssmulation is brought back on to the screen on the far side of
the simulation. This only becomes a problem when an element of the beam has
diffracted so far off one side of the screen that it returns on the other side and
interferes with itself again. There are two main ways to keep this possible source of
error under control; use of ‘padding’ or restricting the propagation range of the

simulations.

‘Padding’ introduces aregion of blank space around the beam profile, which gives the
beam some space to diffract into without returning to the far side of the simulation as
aresult of the periodicity. Restricting the propagation range works by first calculating
the average distance over which propagation will have to occur for aliasing to happen;
then restricting propagation geometries to ranges less than that value. In thisthesis a
system of padding is preferred, as this places fewer restrictions on the simulation.

The third matter, which applies mainly to Gaussian-profile beam propagations, is
beam spreading and wander. These phenomena occur as a result of diffraction and
interaction with the propagation medium. Generally, beam wander is aresult of large
scale movements of air across the front of the beam, while spreading occurs due to
diffraction effects. Wander can be characterised by the variance of the displacement
of the beam from the initial centre. Churnside and Lataitis [47] discuss a geometric
derivation of the above statistic for a Gaussian beam propagating in weak
Kolmogorov type turbulence. They produce results valid for both collimated and
focused Gaussian beams, showing that the wander parameter depends on the initial
beam diameter and the path length.

Beam spreading and wander are matters discussed at length by Belmonte [7]. The

expression [52]

W2(2)=W? {1+ [Zi] ] ¥ 2{ k‘:z } 2.27)
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gives the beam intensity radius W(z) at a propagation distance z, given an initial beam

radius Wo. The 4z/kr,; term here is approximately equal to the outer scale of the

turbulence spectrum, Lo. 1, 5 isthe spherical wave coherence diameter, defined by

5

i 5
ros =| 0,42k [ C2 (z(f)s dz| . (2.28)
0

In avacuum a beam is expected to undergo an angular spreading of order A / W, such
that /4 is the wavelength and W the beam diameter. The use of ‘padding’ around the
beams in simulations is therefore crucia, as it alows free space for spreading and
wander to occur without causing aliasing. Spreading and wander are discussed in
greater depth in chapter 5.

2.4. Simulation parameters.

In the numerical simulations presented in this thesis there are two different ways that
one can define the parameters used. One can either use rea values in terms of
standard S.I. units, or values normalised to the sample size Ax of the smulations.
The use of real values is important in the comparison of simulations to experimental
data or to theory cast in physical terms. The use of a mathematically idealised set of

parametersis useful for checking the simulation technique against ssmple theory.

The difference between these two methods of defining the parameters is most clear
when looking at the strength of the turbulence used. The level of the turbulence is
defined subtly differently in the case of the two most important turbulence models, the
Gaussian (2.9) and the Von Karman (2.22). In (2.9) the mean square phase shift,

defined by <qa2 (r )> = ¢, isimposed on the wave front. This s the same regardless of
any other parameters such as the propagation distance or the wavelength. In the
derivation of (2.21) the refractive index structure parameter C,° defines the level of

the turbulence. Equation (2.26) shows that the strength of the turbulence is dependent
on not only C,2, but on z, k and the inner and outer scales. Therefore, given a constant
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value for C.?, the effective <(p2 (r )> changes depending on severa other factors. This

is indeed how beam propagation in the physical world works (i.e. a beam of a shorter

wavelength 1 will experience a greater level of scintillation for a given C.? and
propagation distance). The use of <¢72 (r)> is a simplification of redlity; it is used in

simulations only as ameans to relate work to simple analysis.

Many simulations require the introduction motion into the medium. This is done by
moving the phase screens within the simulation. In this case a temporal co-ordinate
At is defined, such that the velocity of the screen is v =Ax/At. This will become
important, and will be discussed again at greater length, when looking at temporal
phase spectrain chapters 4 and 5.

2.5. Validation of the simulation technique.

The simulation technique is designed with the ultimate goal of modelling atmospheric
turbulence numerically to provide a basis from which one can test theory against
experimental data. As discussed above, the Kolmogorov theory of turbulence and
Von Karman spectrum provide a theoretical base on which to build our smulations; it
is useful though to test the simulation technique against ssmpler and more anaytically
accessible models for atmospheric turbulence, namely the Gaussian correl ation model
(equation (2.9)). There are several different statistics that can be used to interpret
simulation results, they are, as noted in chapter 1, the intensity I, the phase 6 and the
intensity-weighted phase derivative J. These simulations are used to justify the

validation of the simulation technique.

25.1. Regimes of propagation; Fresnel, focussing and Fraunhofer

regimes.

It is well known that 3 distinct regimes exist in the propagation of coherent laser
radiation; a Fresnel zone, a focussing regime and a Fraunhofer zone. In the Fresnel
zone diffraction has yet to cause features such as caustics. In the focussing regime the

formation of caustics and peaks in the field causes a maximum in the value of the
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scintillation index o, =(12)/(1)*. In the Fraunhofer zone the intensity statistics

approach a saturation limit and the o, approaches a constant. These regions are
investigated by looking at the probability density functions for three statistics, the
intensity |, the phase derivative 8§ and the intensity-weighted phase derivative J. The

pdf for the phase ¢ not considered as one expects to see to a uniform distribution for
sufficiently large turbulence. The propagation of a coherent radiation source® into

increasingly large propagation distances is considered.

One can model the pdf of the intensity fluctuations by a lognormal distribution.
Under the Rytov perturbation technique (as described in chapter 1), it can be shown
that the logarithm of the intensity in the far field under weak turbulence conditionsis

governed by a Gaussian distribution [24, 31]

) [ml' -2 X)j
p(l )= 2|UX—\/§TeX - 80)2( ) (2.29)

where )(:%In(l/lo), lo is the initial intensity of the beam a z = 0 and o is the

variance of y. This approximation is valid for weak propagation regimes, and so
should be valid in the Fresnel zone. In the far field regime the phase derivative is
described by a student - t distribution (equation (1.10)) as the field is characterised as
a Gaussian circular process. Thus a -3 power law is expected in the tail of the
probability distribution.

* Simulations in this chapter use a plane wave as a coherent radiation source.
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o)

Fig. 2.7, pdfsof I, é and J in the Fresnel zone, -In(q) = -2.

Figure 2.7 illustrates pdfs for the three statistics. A two-dimensional simulation

ké?
2L g6

this allows the same simulation to be performed for different values of k, L, { and @.

propagation is used with a normalised distance - In(q): -2 where q =

[4],

The simulations make use of a single Gaussian filtered (equation (2.9)) phase screen.
Phase derivative data is obtained from the propagated wave by calculating the phase
across the wave front, unwrapping and then taking the difference between each data
point and the next in order to create a spatial derivative that equates to the temporal
derivative. ‘Unwrapping the phase data involves removing any jumps in the data
from 2z to -2z (i.e. places where the phasor passes the positive real axis in the
complex plane), in order to smooth the phase derivative. Taking phase derivative
statistics in this way tacitly assumes that the phase screen is effectively moving across
the wave front at ‘unit speed’, i.e. one spatial unit per temporal unit. This alows one
to equate the spatial co-ordinate to the tempora one and find the time derivative of
the phase by taking the spatial one. Note, from fig. 2.7, that P(l) is centred on 1 as the
propagation of the beam into the near regime has had little effect on the intensity.
Note also that the pdfs for J and é (plotted in alog-linear format so as to make the

tails visible) are amost identical, this is expected as the intensity is almost uniformly

equal to 1 across the wave front and therefore J = 14 = 4.

38



Temporal phase and amplitude statistics in coherent radiation

! |
{ 1
v| | I.
El | f
a* | M
il e
.I.I' 5 n
o Fhk

|

I

|

| 2
|
|

|

s

Figure 2.8, pdfsof I, @ and J in the focuss ng regime, -In(q) = 0.

Figure 2.8 gives the equivalent pdfs as figs 2.7 for a plane wave propagated into the

focussing regime. In terms of the normalised propagation parameter g, this amounts
to setting —In(q) = 0. Note now a discernable difference between the plots for the ¢

and J; thereisless ‘noise’ inthetail of the plot for J, an indication of the * smoothing’
effect that the weighting is intended to have on the phase derivative. The exact fit
seen between the simulations and theory in the pdf for | infig. 2.7 isno present in fig.
2.8. This is a clear indication that the propagation regime has moved beyond the
Fresnel zone, and that the Rytov assumptions are no longer valid in the focussing

regime.

Figure 2.9, pdfsof I, @ and J in the Fraunhofer zone, -In(q) = 4.
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Figure 2.9 shows that the pdf for the intensity has become a negative exponential; this
is because the field is in the Fraunhofer zone and consistent with Gaussian noise
theory. Itis clear also that the log nhorma model does not match the simulation data

in this regime. The pdf for J has taken on a exp(—|J|) form (equation (1.13)).

Chapter 3 will look at the form of the pdf of J in the more genera case of the Rician
field.

logfiog plot for the pdf of the phase derwative

fog(d.# )t

Figure 2.10, log/log plot for the pdf of d in fig. 8, the-3 power law tail isclear.

Figure 2.10 gives alog / log plot of the pdf of d,a-3 power law in the tail of the
distribution can be seen as predicted in equation (1.10). Three basic regimes of the
propagation are clearly present in the smulations. Consider now a validation against

the scintillation index.

2.5.2. Scintillation index: curves for Gaussian correlated phase screens.

The form of the scintillation index o, curve for a ‘degp’ screen was calculated by

Jakeman and McWhirter [4] for severa different forms of correlated phase screen.
The scintillation index plot shows the differing regions of propagation. Figure 2.11
gives the scintillation indices for four different strengths of phase screen (all deep, i.e.

@ > 1) using single Gaussian correlated phase screens similar to those used in the

smulations in section 2.5.1. The Fresnel zone is characterised by avalue of g, =1,

while the saturation regime has o, = 2.
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The focussing regime is characterised by a peak in o, for strong turbulence
propagations. In the case of weak turbulence, there is no focussing regime, and the

saturation regime doesn’t correspond to Gaussian statistics in the intensity, rather o,

approachesavaue of 2 - exp(— 24002) as calculated by Mercier [3].

2
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Fig. 2.11,; scintillation index curvesfor plane waves propagated through deep, Gaussian-
correlated, corrugated phase screen. Solid linesindicate theory [4] symbolsare

numerical smulation.

One can calculate a form for the scintillation index curve for a weak screen using a
simple Huygens-Fresnel integral approach, similar to that used in [4]. This can then
be used to test weak turbulence simulations. The calculation in 1 dimension using a
Gaussian correlated phase screen begins with the definition of the eectric field E

propagated in one dimension beyond a phase screen ¢(x) to adistance L as

E(L)= \/% Iodxexp{% X2 +i go(x)} : (2.30)

where k is the same as defined above and x a dummy integration variable in the plane

of the phase screen. The second moment of the intensity is
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2 4

(%)= (€)= 5 ) IN&ea pbe ol

—00 |1 =

K<eX|O(i [¢’(X1)_ 4”()(2 )+ (D(Xs)_ 4”()(4 j)>

where x; are the integration variables. Now employ a well-known sum and difference
co-ordinate change [3, 4, 16, 21]

=5 (6 =%+ 6 %)
V.= (%)= -x.) o
Vo= 26 %)+ G+ x,) |

yo =5 (6 + )66 +x,)

and the fact that for a Gaussian variable A one can write (exp(A)) = exp(— %<A2>j ,

togive

(1%) =—(%T T : dy, exp(%[yly3 + y2y4]ij

o 2.33)
Kexp{_ 42 - oy, +v,)- oy, - vi)- p(y: - v, )}}

L= oy, + v, )+ oy, + v )+ p(y, - v2)

where ,o(x) is the correlation function. Theintegral of equation (2.33) over y, gives

adeltafunctionin y,, theresulting integral in y, then gives

ke " 2-2p(y,)-2p(y.)+K
(1%)= o L dy,dy, exp[f y2y4jexp{‘ % [K+ Pz +¥,)+ Py, - yz)ﬂ e

which can now be solved by assuming a Gaussian form (2.9) for the auto-correlation

functions p(x) and a wesk phase screen (e @° < 1) such that
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exp(—qogF(t))zl—qogF(t). Integrating over y, and Yy, is now a matter of

calculating Gaussian integrals, resulting in the final expression

(17)=2¢¢ +1-2¢8 co{;arctan{k‘l;z D [1{;;]2}1 . (2.35)

This expression is now used to test the one-dimensional simulation technique in weak

turbulence conditions.
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Figs2.12 (@ =0.1) and 2.13 (g = 0.25), showing the scintillation index for weak phase

SCreen propagations.

Figures 2.12 and 2.13 show that the simulation results agree reasonably well with the
theoretical calculation (equation (2.35)). Note the existence of a large amount of
noise in the scintillation index for large propagation distances g despite the use of
1000 redlisations in an attempt to reduce error. This kind of noise has been found to

occur regularly in weak turbulence simulations; this issue is discussed in more detail
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in the next chapter. Note that the saturation (i.e. far field) value of the scintillation

index correspondsto Mercier’svaue of 2- exp(— 24002) in each case.

2.5.3. Second order intensity weighted phase derivative statistics using a

Gaussian correlated phase screen.

As aready discussed, the intensity-weighted phase derivative is an important statistic
in coherent radiation propagation. The second moment of this statistic <J2> is a
measure of the level of scintillation in the beam in a similar way to the scintillation

index. Theory which predicts the form for the second moment of J in a strongly
turbulent regime is developed in [16]. The statistic is normalised, such that

<J 2>/<J 2>Z:0 . In the case of plane wave propagation thisis a valid normalisation as
the intensity-weighted phase derivative at the screen (i.e. at z=0) isequal to the phase
derivative. This normalisation isin contrast to the normalised second moment of the
intensity statistic (i.e. the scintillation index), which is normalised by the square of the
first moment. Such normalisation would be inappropriate for the J statistic, asits odd

moments are all zero (see section 3.1.2).

The J statistic is calculated from simulation data by retrieving the phase derivative as
discussed in section 2.5.1 and weighting it with the appropriate intensity value;
normalisation of the second moment of the J statistic occurs by cal culating the second

moment of the phase derivative of the phase screen itself. It is clear that one expects

to see <J2>/<J2>z:0 =1 for —In(g)<<1 (i.e. short propagation distances), and one

can show (below) that (3°) / (3%) =05 for longer distances as the propagation

enters the saturation regime.

For a plane wave, assume that initially the intensity is unity; thus J is exactly equal to
2
the phase derivative ¢, therefore <J 2>Z:O = <§92> = —;—Z@(O)go(t)}t:o. For a Gaussian

variable (i.e. in the far field where there is a Gaussian saturation regime),
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(32)=(%?) = —;X—ZZ<X(O)X x),, = —%(;9X—22<E(O)E(x)>xz0 [21]° one can now

calculate the correlation function of the electric field E in the far field using the
Huygens Fresnel technique in terms of the phase fluctuation @ The correlation
function for the electric field is

(B ()= 25 [eo| 2o -+ ) fexplot)- e Dyerae'. (230

2z

Using the fact that (exp(A)) = exp(—%<A2>j and transforming to sum and difference

co-ordinates, r =g+ pand r' =q- p, gives

from which the integral over g givesadeltafunction,

(EOE* () = e - (10~ }) oo -7
- e - 3(10)- 0T |

(2.37)

The second moment of the J statistic can now be written in terms of this expression

<J2>_ Ea_zexpk(ﬂ(o)fﬂ(x» < >1
=0
:%<J2>Z:O

0 (%)/(9%) . =¥2

® X isdefined in section 1.1 asthe real part of thefield such that E = X +iY. Also see equation (1.15).
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Figure 2.14 gives four plots of the normalised second moment of the J statistic for the
same four phase screen depths as used in figure 2.11. The normalised distance
parameter g is used. The statistic is looked at over a range of propagation distances
and for severa different turbulence strengths. Notice a peak in the statistics in the
focussing regime, the saturation of the statistic to a value of %2 in the Fraunhofer zone
as predicted above and the initial value at unity in the Fresnel zone. The theoretical
curves given in figure 2.14 seem to be dlightly over-estimating the values of the
statistic calculated by simulation; this is a minor artefact though, which has been
noted in other simulation results [16].
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Fig. 2.14, the second moment of the J statistic for a deep, one-dimensional, Gaussian
correlated single phase screen; simulation is symboals, theory [16, 21] isthelines.

The two sets of scintillation curves, for o, and <J2>/<J2>FO, presented in this

section form a strong validation for the simulation technique. Three distinct regions
of propagation exist in the statistics, the statistics also converge to their saturation
values in the far field. The focusing regime is an area for which little theory exists
and the match between simulation and theory here shows that numerical simulation

techniques may be the best way to investigate this region.
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2.6. Conclusions.

This chapter has looked at the theoretical development of the phase screen technique
as a method for the numerical simulation of coherent radiation propagation. The
phase screen method has allowed for the modelling of phase fluctuations incurred by
a propagating beam (due to refractive index fluctuations and wind shearing) as a thin
phase-changing screen. The phase fluctuations are imposed on the beam at the start
of the propagation path and at locations along the path where screens are located.
Although a forward difference method solution is possible for the paraxia wave
equation (equation (2.6)), a fast Fourier transform method is superior in speed and
easier to code. The Kolmogorov theory of turbulence was also considered, including
the theoretical background to the underlying assumptions and development of the
power spectrum for use in correlating a complex circular Gaussian process for use in
phase screens. It is clear that the Kolmogorov theory of turbulence is only the first
step on the path to finding a viable method for modelling atmospheric turbulence,
several developments to the theory have been aluded to, namely the Tatarski and Von
Karman spectra modifications which include scale effects (abeit in an arbitrary

manner).

The practicalities of performing numerical simulations have also been considered,
such as simulation parameters other technicalities like ‘padding’ to allow for beam
spreading and aliasing. Two different methods for determining the strength of the
turbulence in the simulation were considered. The difference between defining the
phase perturbation to be applied to the wave and defining the refractive index
structure parameter C,2 isimportant and a distinction between these two will continue

to be made throughout the thesis.

In addition to developing the simulation technique, several validations of it have also
been made. Numerical data was matched to several simple analytical calculations,
with good results. Three distinct zones were found to be present in the propagation
geometry, applicable results were matched to the appropriate probability density
functions in each region. Further to these numerical results, simple anaysis has been
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used to provide a justification for the asymptotic behaviour of the normalised second
moment of the J statistic and the Huygens Fresnel principle was used to derive the

form for the scintillation index in aweak corrugated phase screen problem.

With these techniques, and appropriate validation of these techniques, at our disposal,
they can be used to model wave propagations in more complex situations. The next
chapter will provide an investigation of the properties of the J statistic in the case of a
constant phasor plus a Gaussian field (this is known as the Rician field). A

combination of analysis and numerical techniques will be used.

48



Temporal phase and amplitude statistics in coherent radiation

3. The Intensity-weighted phase derivative in aRician field.

A Rician field is characterised as a coherent signal in the presence of noise whose
statistics are described by a circular Gaussian process. One can model afield that has
been propagated into the Fraunhofer zone as being Rician in nature; identifying the
constant part of the field with the unperturbed wave components and the Gaussian
with the diffracted wave. The properties of the phase, phase derivative and intensity
weighted phase derivative in such a field are considered in this chapter. Thisis a

subject that has received little attention in the literature.

Jakeman et a [16] considered the properties of the J statistic in a Gaussian process,
they calculated the probability density function and normalised second moment under
strong turbulence conditions. In this chapter the Rician process is considered, which
isamore general case. The circular Gaussian process is a subset of the Rician field,
and for strong levels of turbulence one expects to recover Gaussian statistics. The
properties of J in a Rician field are investigated, in doing this Rice's work of 1943
[13] is extended to include a phase screen formulation. The autocorrelation function
of the phase derivative in a Rician field is also looked at; which, being the Fourier
transform of the power spectrum, is a useful measure in systems that use phase
derivative statistics. Finally, in this chapter, the profile for the normalised second
moment of the J statistic is derived under weak turbulence conditions.

Care is taken to compare and contrast results with numerical ssimulations. Two-
dimensiona ssimulations are used and restricted to plane wave propagation. Phase
derivative statistics are obtained by equating the phase difference in the spatial

domain with the derivative in the temporal domain.

The chapter commences with a derivation of the joint pdf for the amplitude A and the
intensity-weighted phase derivative J. Rice [13] showed that the joint probability

distribution for the amplitude A and phase derivative @, of Gaussian noise coherently

added to a constant phasor, is
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R A Pt

where, following the notation of Rice, Q is the amplitude of the constant phasor, by

the variance of the total field b, the derivative of the correlation function of the tota
field and |, the modified Bessel function of the first kind. The intensity weighted

phase derivativeis J = 18 = A%@ (section 1.2), and so equation (3.1) can be rewritten

interms of Aand J:
P(a.3)=P(ad)x|3,,| (32)

where the Jacobian

0A O0A A
m .l b 2.2
Pul=l56 987 |-2a %)= (33)
0A 0J AP A
2 2 2
:>P(A’J):i 2_”-'0 & ex —1 i+ Jz —Q_ . (34)
m, | b, °| b, 2\ b, A%, 2b,

3.1. Statistical properties of Jin aRician field.

In this section several results that characterise the J statistic in a Rician field will be
derived, namely the pdf of J and the moments of the statistic. The results are in terms
of phase screen parameters, alowing quantitative matching between simulation and

theory.

3.1.1 The pdf of the intensity-weighted phase derivativein aRician field.

The marginal distribution for J is obtained by integration the joint distribution (3.4)

over all amplitudes
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e - 422 e o

This can be evaluated by noting that [32]

00

B X2n
lo(x)= Z(; e (3.6)
and integrating term by term
1 [2 27 "
()= [Fexp -2 5 Q] xk
0, \| b, 2b, |55 1\ 2b,
(3.7)

The following integral:

1
© ~~(1+2n) ~Las2n)
2 2 2 4
J.AZ”ex _1 i+‘]2_ dA=K |, gL b_22 ! (3.8)
) 2\ b, A, w2 \byb, by J

where K; is the modified Bessel function of the second kind of order i, and enables the

pdf of JinaRician field to be written as

To test computer simulation with theory, the parameters appearing in equation (3.9)
must be expressed in terms of quantities appearing in phase screen models. The phase
screen parameters are the mean sguared phase shift imparted by the screen ¢, and the
correlation length of the screen & The three parameters characterising the Rician

field are Q, by and by, which can be written as
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Q= ‘<E+> = exp{—%} (3.10)
b, =Var(ReE* )= ;(1 expl- ) (3.11)
b, :—%;—22<E(O)E*(t)>t:0 ﬁ—(exp[ Z0- o)), (3.12)

(3.20) and (3.11) are derived by Jakeman and McWhirter [4]. Equation (3.12) follows
from the Huygens Fresnel integral

E(r,.2)= |§ iexp(i Ar ))exp(%(r - ro)zjdzr , (3.13)

where the number of integrals performed is explicit from the integration variables.
The correlation function of thefield is

(EE'*) = ]iexp i[or)-elr')) exp(—[r -1, r(;)z]jdzrdzr
= ]i ( (1-ofr-r' exp(—[r—r (r'—rg Udzrdzr
= e Jeol bl pos{ v rll= 0+ ) o
= (EE'*) = expl- ¢ (1- p(r, - 1)) (3.14)

where u=r+r’ and v=r+r' are sum and difference co-ordinates. The result
(expliglr) - Ar')])) = expl- 21— p(r - 1)) is obtained by assuming the phase

difference is a Gaussian variable, together with the well-known result of Gaussian

noise theory, <exp(iA)> = exp(—%<A2 >) . To proceed further one must assume aform
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for the autocorrelation function that characterises the phase screen. Assuming a

%

Gaussian correlation function (equation (2.9)) for the phase screen gives b, = -
A numerical evauation of the first 50 terms in the sum contained in equation (2.9)
provides an adequate estimation for P(J) as the sum converges rapidly. The

distribution can be plotted in terms of dimensionless variables by using

N& 2>P(J/J<J 2>) in this way one can look at several regimes on one plot. Figure

3.1 gives two plots of equation (3.9), the bold line refersto ¢ = 0.5 (weak turbulence)
whilethe thin linerefersto ¢ = 100 (strong turbulence). Both plots use ¢ = 1000.

-4 -z 4 4

Fig. 3.1: Two pdf plotsfor P(J).
Figures 3.2 and 3.3 display the same graphs as in figure 1 on log / linear scales in

order to make the structure of the tails visible. Numerical simulation is compared to

theory.

53



Temporal phase and amplitude statistics in coherent radiation

log / lin plot of the pdf of the J statistic.
¢=05, £=1000.

—— simulation
= theory

P(J)sqrt(<J %)

0.014

Jisqri(<J>)

Fig. 3.2: pdf of the J statistic (ssmulation and theory) for g=0.5and = 1000.

log / lin plot of the pdf of the J statistic.
4 =100, /= 1000.

—— simulation
«  theory

P()'sqri(<J *>)

& 4 i

Jsqri{<J’>)

Fig. 3.3: pdf of the J statistic (smulation and theory) for g = 100 and &= 1000.

There is a good match between simulation and theory in figure 3.3. The behaviour in
the tails in figure 3.3 is consistent with an exponential form; P(J)~ exp(—|J|) (thisis
expected from Gaussian noise theory, see equation 1.13). Despite matching for J < 2
, there is a difference between theory and simulation in the tails of figure 3.2. Itis
surmised that this is due to statistical measures failing to converge when performing

simulations of weak turbulence in the Fraunhofer zone. Such problems were seen in

section 2.5.2 and will be looked at in more detail in later sections.
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3.1.2. Caculation of the characteristic function for the J statistic in the
Rician field.

The characteristic function is an important tool in statistics. It is defined as the
Fourier transform of the probability density function, from it the moments of the
distribution can be easily obtained. For Jin aRician field one cannot directly perform
the Fourier transform of the pdf given in equation (3.9), one can obtain the

characteristic function directly from the joint pdf for A and ] 3.1). The

characteristic function is

C, (u) = (exp(iud)) = <exp(i qué)> = TdAT expliuaé)p(A, 8)dé (3.15)

=00

= C,(u)= exp(— %} T A?| 0['2—?} exp{— zi;}dAIocos(qué)exp{— A?Zi—:}dé

—00

o Q7 a [ AQ _ e[ 1 U,
_exp[ Zbo}/zbzn_jmmo( b jexp{ A(2b0+ , ]}dA

2 2
I SR G o P e 1
1+u’b,b, 2b, 2b, | 1+ u’b,b,

resultingin

_ 1 -Q%u’b,
C,(u)= L+ uzbzbo)eXp(Z(1+ uzbzbo)] (3.16)

such that (3.16) and (3.9) constitute a Fourier pair. The characteristic function is used
to calculate the moments of the J statistic in the following way:

C, (u) = (exp(iud)) = <1+ iuJ —”—2232 +> :1+iu<J>—u7<J2> ¥ (3.17)
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Note from (3.16) that the characteristic function is a function of u?, thus all odd
moments are zero, this is also seen from the fact that the distribution of J is

symmetric. The 2" and 4™ order moments of the J statistic are

> 0 Q°
<‘] > = _WCJ (U)o = 2b0b2(1+2—bo] (3.18)
and

4 64 2|2 ? !
(9)= 357 Ca U)o = 24075 (1+b—0+%} (319)

It is possible to express the characteristic function for J in terms of the Laguerre
polynomials, thus allowing for a general expression for the n'™ moment to be obtained

The Laguerre polynomials are defined in terms of the generating function [32]

1 < e
Eexp(z—x_zlj =31, (02" (3:20)

2
|dentifying z = -u®b,b,and x = —g— obtains egquation (3.16),

C,(u)=> Ln(— EJ(_ ubyb, ), (3.21)

the characteristic function. This expression can be exploited to find the moments of J
in similar terms. The odd moments of J are known to be zero since equation (3.9) is

an even function, hence consider the 2n™ moment only:

(377} = 2ni(oyb, )" L{—S—;] . (3.22)
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The normalised forth moment, <J4>/<J2>2, can be used, in addition to the

normalisation used by Jakeman et a in [16], eg. <J2>/<J2>Z:0 , as a measure of the

scintillation in the field. This moment may result in improved statisticsif illumination

is by anything other than a plane wave. The form of the normalised forth moment of

the J statisticis

-1-g
b, 8
o e

b, 4b?

which, using phase screen parameters, is

Mormalized fourth moment of the J statistic.

HH

Fora screen of depth g 0= 0.5 we should

see & saturation value of <J®s(=s%%) =42

35+

3 1 1 1 1 1 1 1 1 1
0 02 04 0B 08B 1 1.2 1.4 16 18 2
Phase screen depth ¢ a

Fig. 3.4. Normalised fourth moment of the J statistic.

(3.23)

(3.24)
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Equation (3.24) is plotted in figure 3.4 (above) as afunction of the mean square phase
shift @. The plot gives, as function of screen strength, the value to which the
normalised forth moment will saturate in the Fraunhofer zone. The saturation valueis
close to 3 for aweak screen and tends to 6 for a strong screen. As the strength of the
phase screens increase, the statistics of the propagation problem tend towards
Gaussian saturation. Figure 3.4 indicates the expected saturation value for a phase
screen of strength ¢ = 0.5.

3.1.3. Comparison of theory with phase screen simulation.

Simulations in this section use a simple two-dimensional propagation agorithm

(intorduced in chapter 2) to investigate the properties of the J statistic. In order to do
. . 4 2 2 2 2 i
this, the normalised moments (J >/<J > and (J >/<J ) are considered. The

simulations use 1000 realisations at each propagation distance (to improve statistical
accuracy), each phase screen is sampled by 2 points, £ = 1000. Firstly, weak

turbulence is considered.

Normalised <> statistic
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Figs 3.5 (second moment) and 3.6 (forth moment); moments of the J statistic for g=0.5.

Figures 3.5 and 3.6 show the results of a set of simulations carried out using a
Gaussian correlated screen with ¢ = 0.5, the two normalised moments of J have been
calculated for arange of propagation distances. The dimensionless length parameter,
q= ke”
22;00\/6

two moments in the Fraunhofer zone (—In(q)24), in figure 3.5 the normalised

(defined in section 2.5), isused. One can see the saturation value of the

second moment tends to %2 while in figure 3.6 the normalised fourth moment tends to

avalue between 4 and 4.5. This result corroborates the prediction made by equation

(3.24) regarding the saturation value of <J 4>/<J 2>2 :

The scatter present in both figuresis due to weak screen simulations tending to have a
greater spread on their statistics than deep screen equivalents. Note also that in using
higher order statistics oneis likely to see much more scatter in the data. A second set
of simulations with ¢ = 10 are shown in figures 3.7 and 3.8. These simulations give
avery different picture, the saturation value is 6 for the fourth moment and Y% for the

second moment.
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Figs 3.7 (second moment) and 3.8 (forth moment); normalised moments of J for ¢ = 10.

The existence of peaksin the curves, in contrast to a steady increase in figures 3.5 and
3.6, indicate the presence of a focussing regime as would be expected for a higher g.
Note also how, in comparison to figures 3.5 and 3.6, there is much less scatter in the
statistics. This is an indication of the improved convergence of statistics in

simulations that use stronger turbulence as opposed to weak turbulence.

3.1.4. Conclusions.

The properties of the intensity-weighted phase derivative in a Rician field have been
investigated. The probability density and characteristic functions for J under such
conditions have been derived and compared to appropriate computer ssimulations. In
the Fraunhofer zone simulation results accurately match the predictions made by
analytical calculations. Problems relating to the convergence of statistics under weak

turbulence conditions have al so been noted.

3.2. The correlation function of the phase derivativein aRician field.
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Use of the phase derivative as a measurement tool in coherent radiation systems has
been considered by several authors in different fields of expertise [4, 16, 21, 13, 30,
65, 66]. One of the most important measures in an stochastic system is the power
spectrum. The power spectrum of a stochastic process is defined [36] as the Fourier

transform of the correlation function of that process; therefore it isinstructive to study

the correlation function of the phase derivative &9 under various turbulence

conditions. In this section the properties of the correlation function of <§9 are

considered in the case of aRician field.
3.2.1. Analysis.

Rice [13] derived an expression for the correlation function Q(r) of the phase

derivativein aRician field

_g’-99 g?
Q(r)= 2gz N ogt Ve (3.25)

where g(r) is the correlation function of the real (or imaginary) part of the field,

primes indicate a derivation with respect to time and y; and y, (see equations (3.29)
and (3.30) respectively) are defined in terms of the properties of the field and are also

functions of 7. These results are now adapted to include aformulation based on phase

screen parameters. g(7) is defined slightly differently than the correlation function
given in equation (3.12) because g(r) isthe correlation function of the real part of the
field X(r), rather than the total field E(r). Therefore

(3.26)
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Assuming a Gaussian form for the autocorrelation function (equation 2.9); the

expression for Q(r) becomes

2 (LT o~ Ty B e -2

Q(r)—?{z {Zjexp( g(szl g(zr exp( Iz ]yz} (3.27)
52 U _ ~rfr) = 1_ 12 _ 12 _ 12 _ 12

:>—2¢02 Q[EJ—Q(T)—(Z T ]exp( T )yl AT exp( 21 )y2 (3.28)

when written in terms of anormalised correlation timer' = 7/¢ .

Rice definesy; and y, in terms of two variables p and k

. : -k . -k
y, = exp[—gj{ Ei [E} - ZE{ p( ” )} + E{ E((L k))}} (3.29)
o= Py o102 el )1 e 120 (330
where
-2 - 1%;&@ | @)
Kk = gé:) - eXp(_ qf()z_)(eexx&lfﬂgggrﬂ_l) - p(exp[%Zp(T)] _1) (3.32)

when defined in terms of the phase screen parameters. The exponential integral
Ei(x) = I e'/tdt. The integrand has a singularity at t = 0, so Cauchy’s principa

value theorem [22] isrequired to evaluate the integral for x > 0. Doing this allows for
the numerical evaluation of Q'(z'). Figures 3.9 and 3.10 give Q'(r') for two weak

phase screen cases.
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-0.221 L

Fig. 3.9: Correlation function Q'(t') for ¢=0.1.

Fig. 3.10. Correlation function Q'(t') for g=0.5.

The correlation function is plotted with respect to 7'. As the strength of the
turbulence increases, the centre of the correlation function tends to a cusp, indicating

possible fractal-like behaviour (section 3.2.3) in the phase derivative. Consider now

Q'(r') for stronger levels of turbulence, figure 3.11 shows the correlation function for

@ =15.
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Fig. 3.11: Correlation function Q'(t') for g= 1.5.

As @ increases, a cusp appears to be visibleat 7' =0. Thereis weak correlation for
very weak screens while the correlation function, at 7' = 0, continues to increase into
a cusp-like feature as the strength of the phase screens increases. One eventually
reaches a value of ¢ where the numerical evaluation of Ei(x) becomes problematic.
In order to investigate this region it is necessary to find a large ¢ expansion for
Q'(r').

3.2.2. Investigation of Q'(t') for large ¢.

Consider first the behaviour of k and p (as given by equations (3.29) and (3.30)) for
large @. Both p and k tend to O for large values of @, note, however, that for 7' =0,
k=1 for all values of ¢. Q'(’C') can be simplified by using a series expansion for the

exponentia integral

oo texplt) L L o) S X
EI(X)__J;—t dt—C+2In(x )+n2:;‘n.n!

n

(3.33)

where Euler's constant C=0.577. Now expand equation (3.29) using equation
(3.33), thisgives
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D] (Y e
_2p(t-k)_p*(-k)’, plt-k), p*(A-k)’
k k? k(1+k) 4k?(1+K)

exp( ]{ n(L-k)-In(1+K)+ E 4‘:(22 .

2p(t-p) _p*(-p) , plt-k), p*@-K)’ J

k k? pll+k) 4p?(L+k)?

recallingthat p= O for al ¢ >> 1, thisexpression reducesto Rice' s result [13]
y, = —exp[ jln[(l K)a+K] = -Infi-k?]. (3.36)

One can show that y, — O for al @ >> 1 (Appendix C). Therefore a modified

expression for Q'(r') is
Q'(r')= —[1 - r’zjexp(— r'?)infL-k?) (3.37)

which is valid for al 7' such that ¢ >> 1 and that the autocorrelation function

characterising the screen is smooth.

This expression can be plotted for al values of @ > 1 without using Cauchy’s
principal value theorem. Figure 3.12 (below) gives plotsfor ¢g=2and ¢ =5. As @
increases a peak is maintained at the origin, but the spread of the function decreases
with increasing ¢@. The plots for each turbulence strength have similar shapes, the

plot for =2 tailsoff tozeroat 7' =1/2, whiletheplot for ¢ =5doesso at 7' =1/4
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1

Fig. 3.12: ©'(t') thicker lineisfor g =5, thinner lineisfor g = 2.

Figure 3.13 gives a plot for ¢ = 100; once again the correlation function appears to
come to asingle cusp at 7 = 0. Although Q’(r') approaches a constant value for
increasing ¢, the value of the correlation function Q(x') = 2%029’(1') is increasing

with higher screen depths.

atT'y

-0.01 -0.005 0.005 o.0Z

Fig. 3.13: Correlation function Q'(t') for ¢ = 100.
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3.2.3. Limitfor Q'(r') as r' - 0 for large .

A simple expansion for Q’(r’) can be derived for 7 =0 and large . Assuming small

7' one can write the parameter k (equation 3.32) as

=17T°% _eXp(_%z)'ﬂ—r’quj (3.39)

whichisvalidif g islarge. Using thisexpressionin Q'(x') (equation (3.37)) gives
Q’(r’)z(—%—r”‘ +gr'zjln(2¢1§r'2—gojr’4), (3.39)
which on taking the limit 7' — O gives

] ] 1 2 ]
Q)= —Eln(z%zr )= —In(\/§|¢or |) (3.40)

which shows that the correlation function has alogarithmic singularity at the origin.
3.2.4. Numerical simulation of Q'(z’).

Numerical simulation is used to test the above results. These simulations were
performed using phase screens with a Gaussian correlation function, with correlation
length £ = 1000. The correlation function for the phase derivative is calculated by

taking the fast Fourier transform of the phase derivative power spectrum

T expli ax)H (x)é(x)dlx

—00

Q'(r)= Texp(— i ax){

—00

}dw. (3.41)

Where #(x) is the phase derivative data, x a spatial co-ordinate on the phase front,
a phase space co-ordinate and H(x) the Hanning window (see figure 3.14 below).
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The phase derivative is found by taking the phase difference across the propagated
wave front. A windowing technique is used in order to smooth the power spectrum
before calculating Q'(r'). Windowing is an important technique in the calculation of
power spectra, the data in a sample is multiplied by the windowing function, thus
forcing the data at the edges of the sample to zero. It is atechnique that will be used
in chapters 4 and 5.

The Hanning Window

\

i i i i i i i Y
1] 1000 2000 3000 4000 5000 BOOO 7000 BODO 2000

Figure 3.14: TheHanning window.

H (x) = cos{n(x - X/2)/X), where X is the number of samplesand x(0, X), isthe
Hanning window. The window removes discontinuities in the data at the edges of the
sample. This process results in a much smoother spectrum which shows detailed
structure more clearly. The use of windowing will incur a loss of power in the
spectrum as the absolute values of the data are diminished, the clarity of features in
the spectrum are improved though as the relative changes in the data remain

unchanged.
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Comelation function for the phase demvative
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Figs 3.15 (simulation) and 3.16 (theory): Correlation functionsfor ¢ = 0.1.
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Figs 3.17 (smulation) and 3.18 (theory): Correlation functionsfor g = 0.5.

Figures 3.15 through 3.18 indicate a discrepancy of severa orders of magnitude
between simulation and theory, although there are some qualitative similarities.
Possible explanations for these inconsistencies include the effect of the Hanning
window, normalisation of the fast Fourier transform algorithm or the usual problems

of statistical convergence encountered when performing simulations under conditions

of weak turbulence.
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Figs 3.19 (smulation) and 3.20 (theory): Correlation functionsfor ¢ = 1.5.

Figures 3.19 and 3.20, for a stronger level of turbulence, give a better match between
simulation and theory. Figure 3.21 (below) shows the simulation results for still
stronger levels of turbulence, ¢ =2 and @ = 5. The simulations compare favourably

with the theory in figure 3.12.

Comelation function for the phase demvative

n function 2 Tr )
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-

1 - L
-1 05 a
Mormalised correlation length '

Fig. 3.21 Correlation functionsfor g =2 and 5 (simulation).

Note especialy the two talls and the value at which the two plots become

indistinguishable. The function has reached a value of 0 a 7' =1/2 for g = 2 and
r'=1/4 for @ =5.

3.2.5. Concluding remarks.

The correlation function for the phase derivative has been derived for a Gaussian
phase screen under both weak and strong turbulence conditions. Computer simulation
has provided evidence for the accuracy of the work in the strong turbulence regime.
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Difficulties have been encountered in obtaining numerical corroboration of the theory
in the case of weak turbulence, complications concerning the convergence of statistics
in such regimes have already been reported in section 3.1. The strong turbulence
result (equations (3.37)) has proved the most successful, it accurately predicts the
behaviour of the tails of the correlation function in both quantitative and qualitative

terms.

The presence (equation (3.40)) of a logarithmic singularity in the auto-correlation
function Q’(r’) implies a similar singularity in the structure function for the phase
derivative, something which is adirect consequence of a“‘marginal’ fractal [83]. Such
fractals occur when the structure function of a random process g is given by

D, (r) ~ar” such that 0<v <2 and v =2 corresponds to deterministic (ballistic)

motion. Inthecasethat v =2-0 where d - 0, the structure function has the form

D, () ~1-4In(r) and the auto-correlation function will therefore have a logarithmic

singularity. This is interesting because the result is at the boundary between two
distinctly different phases in the behaviour of g. Aswell as this fractal behaviour in
the structure function, the probability distribution for the increments is at the margin
of the class of scale invariant distributions. The Rician field recovers Gaussian

statistics in the case of large ¢ such that P(&) follows a student-t (equation 1.10), a

distribution with a cubic power law tail. This marginal distribution indicates fractal
behaviour in the increments of the phase derivative.

Thus it has been shown that the phase derivative for a Rician field exhibits marginal
behaviour (i.e. statistics that arise on the boundary between two phases of behaviour
yet in neither) in two senses, that of the increments and the structure function. Thisis
an interesting result as marginal behaviour has previously been found exclusively in

either the increments or the structure function of a process g, not both.

3.3. Calculation of the second moment of J for a plane wave propagating

through a single weak corrugated phase screen.
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Hitherto in this chapter, work has been restricted to the phase derivative as modelled
by a Rician field in the saturation regime. Consider now the J statistic at any

propagation distance. Jakeman et al [16] found an expression for <JZ> / <J2>Z:O in

the case of strong turbulence. The significance of <J2>/<JZ> as a statistic in

measuring scintillation levels has been discussed in section 2.5.3. This section of the
thesis provides a derivation of <J 2>/<J 2>Z:O in the case of weak turbulence at any
propagation distance z. It has been shown (section 2.5.3) that <J 2>/<JZ>Z:0 -~ 12in

the Fraunhofer zone (saturation regime), this derivation relied on the assumption that
the field is described by a Gaussian circular process. The derivation that follows
assumes weak turbulence, and therefore extends the work in section 2.5.3 to include
the Rician field.

3.3.1. Normalised second moment of J for al z
Consider a plane wave interacting with and propagating beyond a one-dimensional

phase screen located at z= 0. The one-dimensional propagated field, at z, is given by
the Huygens Fresnel integral

E(x,z) = i\/gﬂ Ioexp(lz—l;(x —s)’ +i w(s))ds, (3.42)

where sis an integration variable over the spatial domain, ¢(s) the phase screen and k

the wave number. Performing a co-ordinate transformation, s - s+ ut whereuisthe
speed of the phase screen across the wave front, and introducing a time co-ordinate t
allows Jto beis expressed as (see section 1.2)

J= Im(E*a—Ej.
ot

Substituting equation (3.42) yields
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uk? ¢

175 _[dslds X—s, +Ut)x

XCOS{%(‘(X_% +ut)’ +(x-s, +ut)2)—¢(31 +ut) + ¢fs, +ut)}.

Setting x = 0, vaid for a plane wave, and performing a co-ordinate transform,

S » s—ut,gives

J_

o [asdss cosl 15+ ) ofs) - ofs ).

From this one can write the second moment of J as

(9%) ) T o] 70 57)-ohs) oot )}
xcos{ s+, }>|‘lds

where now there are 4 integration variables labelled s. This expression can be

(3.43)

simplified

(9%) _w{szs <°°5{— 87+ =87 +5”)-dls) + ls,) - dls)+ ols, }>K
K+s,s <cos{— s2+s,”+s” -5, ) As )+ ds,)+ds,)-ds, }>}|i|ds

1=1

<J2>~ReT{szs4exp{i(s22—sf—s:+s4 e, -ifs)- o)« s+
K+szs4exp{ -s’+s’-s, )} exp[ igds)+ids,)+igs,) |¢(s4 }l_llds
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where the multiplier (uk2 / 2722)2 has been dropped and the ensemble averages are

restricted to phase screen terms. Employing the well known result of Gaussian noise
theory, (exp(iA)) =exp(—%<A2>j, averaging over the phase screen elements and
integrating out two of the of the integration variables resultsin [21]

2l

oy
X COSB xy} eXp[— w#{2-2p(x)-2p(y)+ p(x+ y)+ p(x - y)}]

(3.44)

where p(x) is the correlation function of the screen. The integration is completed in
[21] for a deep phase screen (@ >> 1) by assuming a Gaussian form for the
correlation function and the use of ‘function modelling’. Assuming weak turbulence

(@ << 1) dlowsfor an expansion of exponential in equation (3.44),

! To S [T )

oy

)=-2 e

(3.45)
X co{ }[1 2 2,0 2,0(y) + ,O(X + Y) + /O(X - Y)}]

Assuming a Gaussian correlation function for ,o(x) (equation (2.9)) and noting a

symmetry between x and y yields

<J2>:—2iz(2k;u] {822 % Td d}{aa’i( )]Co{kxy}h(x,y%K

K +2 jm dxdyx? cos[g xy} h(x, y)}

(3.46)

where h(x,y) =1-g?{2-2p(x)-2p(y) + p(x+ y)+ p(x- y)}. Performing each of

the integrations gives the desired result, see appendix B for the full expression.
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Performing a Taylor expansion of equation (Bl) about z =

0 dlows for a

normalisation of the moment;

S

-
&

(3.47)

Equation (B1) is plotted in figure 3.22 using the normalisation in equation (3.47)

several phase screen strengths are shown. The statistic is unity in the Fresnel zone

while saturating to %2 in the Fraunhofer zone. This, of course, is the same limiting

behaviour as for strong turbulence — see figure 2.11. There is no focussing regime

corresponding to a maximum in <J 2>/<J 2>

. Thisis similar to what has been seen

z=0

in intensity scintillation statistics for weak turbulence (see section 2.5.2).

z=0

< Pefe)s
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0.6 —
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Propagation distance. -In(q)

Fig. 3.22. Thenormalised second moment of the J statistic for a plane wave propagating

through aweak phase-changing screen.

3.3.2. Computer ssimulation.
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Numerical simulations were performed using a plane wave sampled by 2** points.

Constants used in the smulations were & = 1000, k = 500 and u = 1. Plots were

produced showing <J 2> / <J 2>Z:O for a range of propagation distances and a range of

screens strengths. 300 realisations were used at each propagation distance in order to
improve statistical accuracy. Figures 3.23 and 3.24 (below) indicate the comparison
between theory and simulation for two weak screen propagations, @ = 0.5 and @ =
0.25. The theory dlightly over-estimates the statistic in figure 3.23 at intermediate

propagation distances while figure 3.24 indicates good correlation between theory and

simulation.
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Figures 3.23 (@ = 0.5) and 3.24 (@ = 0.25), theory and simulation.
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Fig. 3.25, simulation and theory (g = 0.1).

Figure 3.25 indicates the ¢, = 0.1 case, there is good correlation between theory and
simulation until the propagation approaches — In(q) = 0. Thelack of convergence to

saturated statistics under weak turbulence conditions is a phenomenon that has been
discussed aready in this chapter.

3.3.3. Conclusions.

An expression for the normalised second moment of the J statistic has been derived
for all propagation distances z. Assumptions included the use of a Gaussian phase
screen, weak turbulence and the Huygens Fresnel integral of wave diffraction. The

far field behaviour of the moment in a Rician field equates to the behaviour of the

statistic in a Gaussian circular process, i.e. <J2> / <J2> _, Salurates to %2 Computer

simulation corroborates the analysis and once again shows evidence that statistics,

under weak turbulence conditions, do not easily converge.

3.4. Conclusions.

This chapter has concentrated on phase derivative statistics in a Rician field. The
Gaussian circular process is a subset of the Rician process, and plane wave
propagating into the Fraunhofer zone can be modelled by such a process. Severa

properties of J have been derived for the Rician field, including the characteristic
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function, probability density function and n™ moment in the far field. The derivation
of the normalised second moment of J for al z has shown that the behaviour of that

moment in the far field isidentical to that of the Gaussian saturation regime.

The phase derivative was aso considered and a derivation of the correlation function
for & performed. Simulated wave propagation showed good qudlitative and

guantitative agreement at strong levels of turbulence. Weakly turbulent simulations
produced results which are more difficult to interpret due to high levels of spread in
the statistics. It appears that even taking a large number of realisations fails to
account for these problems. Given the discovery of doubly marginal behaviour in the
phase derivative in aRician field it may be possible to explain such problemsin terms
of the variances of such marginal distributions. The variance of such distributions
does not exist due to the behaviour of the tails, thus the attempts presented in this
chapter to measure the variance of the J statistic, a function of the phase derivative,
may be inherently flawed. It may be impossible, using current algorithms and under
conditions of weak turbulence, to perform numerical simulations of the 4™ or higher

moments that converge to accurate statistics (see figures 3.6 and 3.8).
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4. Phase Power Spectra, two-dimensional models.

The most crucia difference between a remote detection system using coherent
radiation and one using direct detection is the availability of usable phase data. The
retention of a ‘beat’ frequency at the transmission equipment allows an operator to
detect frequency modulations in the received signal. Such modulations come in the
form of vibrations and absorptions / emissions in the intervening medium and
reflecting surfaces. One can look at the frequency datain the phase by looking at the
spectral components of that phase via the power spectrum. The phase power

spectrum S, (a)) is defined (in terms of a frequency parameter w) as the square of the

absol ute value of the Fourier transform of the phased(x),

s, (@) =[6e] = Io@(x)exp(—ia)()dxr. @1)

The study of the phase power spectrum (PPS) is crucia in the field of LIDAR
technology [68] because the spectrum enables one to obtain data about the frequency
information present in a retro-reflected beam. While applications of LIDAR
technology such as range finding, chemical composition and Doppler LIDARS [53,
54] make use of scattering and red shifting, any application to vibrometry requires an
understanding of the frequency spectrum.

Given these practical usages, an understanding of Se(a)) in various turbulence
regimes and under severa turbulence models is desirable. The spectra form of
S, (a)) relies heavily on the statistical properties of the atmosphere. In the case of a

Kolmogorov turbulence a -8/3 power law behaviour is expected in the spectrum, this
isin addition to any artefacts due to vibrations in the reflecting surface.

Anaytica work and numerical simulations are presented in this chapter which
investigate an idedlised case; a 2 dimensional propagation problem using simple 1
dimensiona corrugated phase screens. The objective is to test computer simulation

against simple theory and thus form a benchmark for more complex problems
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undertaken in the next chapter. A simple Rytov (i.e. small perturbations in the phase
introduced at the start of the propagation) propagation problem is considered; then, by
the use of multiple 1 dimensional phase screens, an extended medium problem is

investigated. The chapter ends with numerical simulations of S,(w) in strongly

turbulent media in single screen and extended medium (i.e. multiple screens) cases, in

these cases there are no theoretical results available.
4.1. PPSfor propagation through a single, weak, corrugated phase screen.

One can derive a simple expression, in terms of both analysis and numerica

computation, for the phase power spectrum Sg(a)) in terms of the equivaent
spectrum for the phase screen S¢(a)); this is then compared with numerical

simulation.
4.1.1 Analysis.

S, (a)) is caculated for propagation through a single, weak phase screen in terms of
the phase spectrum of the initial field. For a plane wave passing through a phase
screen ¢(r,t), the Huygens Fresnel integral givesthe field E( r, t) at a distance z from

the screen [31],
“ |k|r -r | ) N\ap
LS J' exp(ir',t))dr (4.2

where k is the wave number, r a spatial co-ordinate in 2 dimensions at the observation
screen, t the temporal co-ordinate and r' the integral variable over the initia wave
profile at the phase screen. Given aweak phase screen (i.e. @< 1), the approximation,

explig)=1+ig¢ , holds. Equation (4.2) is reduced to

K < —ik|r—r’|2
27

](o(r',t)dzr' . (4.3)
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The phase perturbation 6 of the scattered wave front will also be small, writing
6 = arg(E(r, z)) = Im(E(r, 2)) gives

o(r,t) —Im[ Tex[ |k|r—r| ]go( ,t)dzr}

such that

—00

o) = Jei {k“‘r' ]qa(r W 44

The distance parameter r is written in terms of x and y co-ordinates such that x and y
are defined on orthogonal axes. Consider now a 1 dimensional phase screen such that
thefield istrandationally invariant, i.e. sety=0to give

|r —r'|2 = X2 + y2 +X'2 + y'2 - 2xx' _2yy' = y'2 +(X_X’)2’ (45)

which can be used as an expansion in (4.4). Thisresultsin

(4.6)

O(x,t) = % %T J'{s n(@} + co{%ﬂgp(xzt)dx' . (4.7)
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Given the screen moves at a speed v across the wave front, the phase screen ¢(x’,t)

can be replaced by ¢(x’ + vt). This uses the Taylor ‘frozen-in’ turbulence hypothesis

(see aso section 3.3.1), meaning that the turbulence is assumed not to change during
the wave propagation save for the motion due to wind. Performing the transformation
X' +vt » X" yields

oLl e

Now multiply the integrand in equation (4.8) by e'“", integrate over t and take the

square of the absolute value to give S, (a)) The wave front develops over a single

point at x = 0. There are two frequency space parameters w; and wy, such that
w, =w, /v, aising from the temporal and a spatia variables. The phase power

spectrum in 1 dimension is therefore

2

(—ict)dt

T e

Kg(X")exp(=iw,x" +iw,x")exp(-iat)dtdx’|”
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resultingin

S, (@)= S“’ZE/C‘; ) [1+ co{ Zk‘\‘/’; D =5 (zwt ) [1+ co{ Zk"\f; H (4.9)

where Sw(a)) is the phase power spectrum of the phase screen. The spatial power

spectrum of the phase screen itself has been related to the temporal spectrum of the
propagated field. The result indicates that the spectrum for the propagated wave,

S,(w), is merely the spectrum for the screen, S,(w), with amultiplicative oscillatory

behaviour dependant on the propagation distance and wave number of the beam. For

low frequencies, i.e. smal w;, S,(w) tends to S,(«w;), while the oscillatory

behaviour therefore increases for kaw? >> z.

4.1.2. Computer Simulation.

The following numerical simulations look at the model investigated in section 4.1.1,
using 1 dimensiona phase screens under weak turbulences conditions. The theory of
4.1.1. is strongly dependent on the specific statistics of the phase screens as the

resulting expression S,(c,) isin terms of S¢(a)), the theory should be valid for any

spectral model of atmospheric turbulence. The Von Karman correlation model of the

form (see figure 1 below)

— K2
K
@k, )=0.348k*C’L—— 2 (4.10)
2

isused in these smulations. This model has low and high frequency filters built into
it based on the inner («, =27/1,) and outer (k. = 277/L,) scales (see section 2.2.2
for a detailed overview of the Kolmogorov theory of turbulence). A -8/3 power law

behaviour is expected in the inertial subrange (k, <k <k, ) of the spectrum. The
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sizes of the scales used in these simulations are lp = 50cm and Lo = 0.2cm.  An
averaging over 100 realisationsis used in order to improve statistics.

In each simulation, the total length of the phase screen used is 1m, sampled by 2
points. The wind speed v = 2ms*, meaning that the total tempora length of the
simulation, T, is half a second. Therefore the smallest frequency measurable by the

simulation is 1/T =2Hz, while the largest measurable frequency is 2°/2T = 8192Hz.

For each simulation (i.e. for each set of parameters modelled) S,(w), S,(w) and

equation (2.9) are plotted. The frequency parameters, w, given in the spectral plots
(figures4.1t0 4.9) are dl in Hz.

Phasse Power Spactrum (scraen)

Inertial Subrange

873 power law ling - T \

Phase power spectrum 59 (o )

QOuter Scale Inner Scale \‘
FERA

10 o' iy ik 10°
frequency @

Figure4.1, showing theinertial subrange, theinner and the outer scalesin the spectrum.
Theinertial subrange was approximately two decadesin length. Arbitrary unitson the

vertical axis.

In addition to these considerations, a 100Hz sinusoidal signal has been included in the
wave before propagation in order that one might see how this signal appears in the
spectral output. The strength of this signal is of the same order as the noise
introduced by the phase screens. The ability to recover such signals (albeit with much
more complicated frequency components) is the ultimate aim of the LIDAR

technology that uses temporal frequency spectralike this.
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Figs4.2 and 4.3; refractiveindex structure constant C,2 = 10%°m??3, wavelength 4 = 1um,

propagation distance L = 100m, mean squar e phase shift <g”> =~ 0.001.

The most important feature in figures 4.2 and 4.3 is the existence of two regions, one
a low frequencies where the spectrum of the propagated wave is equivalent to the
screen spectrum (figure 4.1), and a second at high frequencies where an oscillatory
behaviour can be seen in the spectrum. Note aso that the spectrum follows a -8/3
power law in the inertial subrange as expected. The ‘transition frequency’ between
these two regimes arises from a calculation performed by Clifford in [30], see section

4.2.1, in which two distinct regions, separated by a frequency o such that
Q =% 27l =1, are defined where S, () behaves quantitatively differently. This
v

transition frequency provides a very accurate prediction of the distinction between the
two regimes in the numerical output. The theory (equation (2.9)) is much less
accurate, indicating that the oscillatory behaviour should begin at almost 1000Hz
rather than 70Hz.
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Figures4.4 and 4.5; C,> = 10"*m?3 1 = 1uym, L = 500m, <@*> = 0.01.
In figure 4.5 Clifford’s transition frequency is successful in predicting the behaviour
of the spectrum, again the theory developed in 4.1.1 (figure 4.4) is much less accurate.
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Figs4.6 and 4.7; C,>=10"m?3 4 = 1uym, L = 7500m, <g>> = 0.01.

In figures 4.6 and 4.7 the transition frequency is at 9Hz. The oscillatory behaviour is
only just visible in figure 4.7; in comparison to figures 4.3 and 4.5 the behaviour is
not as pronounced. Once again the theoretical prediction (figure 6) incorrectly

predicts the transition frequency. Figures 4.8 and 4.9 look at a propagation geometry
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using a much shorter wavelength and weaker turbulence. Once again the Clifford
transition frequency provides an accurate prediction for the change in the behaviour of
the spectrum while the Rytov calculation has over estimated the transition frequency

by an order of magnitude.
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Figures4.8 and 4.9; C,> = 10"%m?3 2 = 0.01um, L = 500m, <@*> = 0.7.

4.1.3. Conclusions.

In this section, computer simulation techniques have been used to model S, (w) for a

corrugated, 1 dimensional, weak phase screen in the case of a plane wave. Simple
Rytov theory qualitatively predicts the existence of oscillatory behaviour in the phase
spectrum in the high frequency regime. This same theory failsin its prediction of the
exact frequency at which the oscillatory behaviour begins to dominate, but a more
rigorous derivation by Clifford (section 4.2.1) allows for the calculation of a

‘transition frequency’ which accurately predicts the same. Simple Rytov theory,
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although correctly predicting the existence of an oscillatory regime for high
frequencies, contains too many simplifications and assumptions to alow for an

accurate prediction of the behaviour of the spectrum. S, (w) has a -8/3 power law

form in theinertial subrange due to the Von Karman spectrum, as expected.

In these simulations the propagated field aways remained in an ‘ unsaturated' ® regime.
Thus, athough not specifically stated above, the statistics of the intensity were aways
approximated by the log-normal distribution (equation (2.28)). For stronger
turbulence levels the propagated field will give negative exponentia statistics for the

intensity at similar propagation distances.

4.2. PPS for propagation through an extended medium; multiple, weak,

corrugated phase screens.

Since the proposa of the phase screen technique [2] as a method for modelling
scattering caused by aturbulent layer, much research has focussed on investigating its
validity in approximating an extended region of a turbulent medium. Bramley [62]
showed that the phase screen approximation works well for single scattering in the
ionosphere. Thiswork was extended when it was shown that the phase screen method
is valid as an approximation for describing a medium that fluctuates along the entire
path of the beam [63]. One can show (section 2.2.3), using a geometric optics
formulation, that the phase shift on a propagated wave is proportional to the path

L

integral over the refractive index fluctuations such that 6(x,y,L)=k[n(x,y, z)dz.

0
Showing that one can impose the entire phase fluctuation 6 at the start of the

propagation path was an important validation for the phase screen technique .

Booker et a [61] tested this assertion using a numerical solution to the fourth moment
equation for a propagated wave front. They used a forward difference method to
solve the resulting non-linear PDE, claiming that small discrepancies in results

between phase screen and extended medium formulations were insignificant, and that

€ ‘Unsaturated’ is understood to mean that significant diffraction effects have not yet had time to
develop.
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the methods were essentially giving the same results. Nevertheless some differences
are present, and it has been unclear until now how significant these will be for phase

spectra calculations.

In their 1988 study of intensity statistics in an extended medium, Martin and Flatté
modelled the extended medium using a sequence of 2D phase screens [15]. They
chose to alow the beam to propagate between the screens, acquiring additional phase
shifts at each one rather imposing the entire phase shift at the start of the propagation
path. They imposed a set of conditions that maintained weak propagation between
each screen, insisting that there were sufficient screens such that less than 10% of the
total scintillation occurred between each screen. This idea was used again in a

subsequent paper by the same authors [8], and extended by others [25] to use as a

7 11
condition on the weak-fluctuation irradiance variance B; =1.23C°k6L® (4.11).

Belmonte [7] used 20 phase screens in modelling an extended medium. This, in
similar fashion to the Flatté / Martin condition, appears to be a rather arbitrary
decision, based more on an intuitive grasp of how an extended medium should behave

rather than any rigorous derivation.

Modelling an extended medium by multiple phase screens has bridged the gap
between the computational benefits of the phase screen method and the improved
accuracy of the extended medium. One can generate ns screens just as easily as a
single screen; the propagation of the wave between each screen instead of across the
entire path length in vacuum is a very easy modification to introduce into acode. The

strength of the fluctuations imposed by each of these screens can be determined in

two ways. Either each phase screen is given a phase shift’ of @ / \/n_ in order to

S

represent atotal shift of ¢, or one can use a Kolmogorov filter, for example (4.10), to
filter the data in each screen with the total propagation length L replaced by the

propagation length between each screen L/n, .

” Note that the ‘phase shift’ imposed on a screen is understood to the mean < g@>>, defined by the
second moment of the phase shift imposed upon the beam. It is convenient for the purposes of this

thesisthat ¢ = <¢§ > isreferred to asthe ‘strength’ or ‘depth’ of the phase screen in question. This

is used in the definition of the Gaussian correlation function (eguation (2.9)) and can be inferred from
the constants in the Von Karman spectrum (equation (2.25)).
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4.2.1. An overview of Clifford’ s extended medium theory.

In his work of 1971 on the nature of phase power spectra for spherical waves
propagating through extended media, Clifford [30] builds on the work of Tatarski [36]
and Lawrence and Strohbehn [34]. Since his work, there has been only limited
interest [73, 74 plus references in chapter 5] in phase and phase derivative power
spectrain the open literature, athough the intensity spectrum is the measure of choice
for Martin, Flatte and Gerber [15, 25]. Clifford uses the Kolmogorov pure power law
spectrum (equation (2.13)) and assumes weak turbulence. These conditions are
compatible with simulations which employ the Von Karman modified spectrum. This
theory is used to benchmark extended medium simulations.

Clifford calculates the power spectrum for the phase and the log amplitude of
spherical and plane waves propagating through a weak scattering medium (i.e. such

that<%2> <1). This is obtained via the correlation function R (r), which is the
Fourier transform of the power spectrum S, (w) for some function or stochastic

processg. i.e.

S, (w)= 4T dr cos(2mmr )R, (7). (4.12)

g
0

Lee and Harp [33] calculated the form of the correlation function for the phase 6 for a
weakly scattering geometry to be

R,(r)= 2n2k2:[ dZIK ®, («)J, (zw(){1+ Co{%]}dk , (4.13)

where J,(x) is a zero order Bessel function, « the frequency space co-ordinate, v a
characteristic velocity, ®, (k) the spectrum of refractive index fluctuations, L the

total propagation distance and k the wave number.
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Writing down the phase power spectrum and integrating out the 7 variable gives (in

the case of a spherical wave)
S, (w) = 8ﬂ2k2JL' dzT KD, (K)[(KV)2 - (an)z]_% {1+ CO{#]}dK , (4.14)

which can be evaluated by assuming a pure power law Kolmogorov spectrum for the
refractive index fluctuations (equation (2.13)). This results in the following

expression for the phase power spectrum in terms of a normalised frequency variable

Q defined by Q = % J27iL -
V

2 7 8 5 3
S,(w) = 2.19k3L3vC?Q 3 Re{1+2F2£l—g;§,—
K+ir(_i‘] @) (117 0?

11 ( 3 4 )+ 126" 4

where F; and ,F, are hypergeometric functions [32]; from this, high and low
frequency behaviour can be determined. Clifford obtained asymptotic forms for the
above expression for both plane and spherical wave in both a low frequency (which
one can also show using a geometric optics formulation, see appendix A) and a high

frequency region as follows;

2 7 8
3

Q<<1= S,(w)=4.38k*L3v'C2Q 2,

2 7

8
Q>>1= S,(w)=2.19k3L3v*CQ 3.

These approximations indicate that the only difference in the spectrum between low
and high frequency behaviours is a factor of %, with a transition frequency, wc,
occurring at Q@ ~ 1. Thus Clifford’'s calculation indicates the existence of

quantitatively different behaviour in S,(w) for given regimes in the frequency

domain. This prediction corresponds to the transition frequencies used in figures 4.2
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to 4.9 in section 4.1.2. In the extended medium simulations this qualitative difference
is expected to manifest in the form predicted by Clifford's calculation, in the smpler
single screen simulations the transition manifests itself in the appearance of

oscillatory behaviour.

Thus although the simple Rytov calculation failed to predict the frequency at which
this transition takes place, the same calculation is correct in its prediction of the
qualitative behaviour change of the temporal frequency spectrum® under those
conditions. Clifford’s more rigorous calculation is required to give greater accuracy
in predicting the behaviour of the spectrum with regard to the transition between

regimes.
4.2.2. Simulation of an extended medium with weak turbulence.

The simulation of an extended region of weak turbulence using multiple phase screens
is directly analogous to Clifford’s theory. To perform similar simulations to those in

4.1 with multiple screens, the single screen of depth ¢ is replaced by ns screens each
with depth @, //n, ; the m™ screen is located at a distance L(m-1)/n, from the first

phase screen such that the total propagation distance is equal to L. The beam interacts
with the first screen, is Fourier decomposed into its spectral components for
propagation to the second screen, then converted back into real space components for
interaction with that screen (as per the simulation technique described in section 2.3).
The beam progresses through each of the ns screens before the scattered field is

reconstructed at the observation planez= L.

Each phase screen is of the same strength and has identical correlation properties.

The Von Karman spectrum,

—Kf

L exp K2
d(k,)=0.348k*C> ————'_ ~ 4.16
(Kx) n ns (K2 +K§)% ( )

8 The terms * Phase power spectrum’ and ‘ Temporal frequency spectrum’ are virtually interchangeable
in the study of temporal phase statistics.
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is used as the spectrum of phase fluctuations. This spectrum has a mgor advantage
over the pure power law in that it is much easier to sample numerically [20] dueto the
frequency cut-offs which remove a divergence a& « =0. Alternative sampling
techniques that will allow the modelling of a pure power law are discussed in the next
chapter. The individual screens must remain statistically independent; to this end the
screens are never physically closer than one correlation length. In this case the

screens must be no closer together than the outer scale; L, = 277/, .

The Flatté / Gerber limit for the number of screens in an extended medium simulation

can be used to ensure that enough screens are used. The number of screens used in an

extended medium simulation, ns, should satisfy n, > (10&’02 )%1, where ,802 (equation
(4.11)) is the weak-fluctuation irradiance variance in the case of a zero inner scale

[25]. Although these simulations include an inner scale, this limit provides a useful

indicator for the number of screens to use.
4.2.3. Results of simulations.

Section 4.1.2 looked at a number of simulation regimes for a single weak phase
screen.  Extended medium simulations are now performed for a similar set of
parameters. These simulations make use of 20 independent phase screens (well
within the Flatté / Gerber [25] limit), each with Von Karman (4.16) filtered phase data
as discussed above. The ratio between S,(w) (at the observation plane) and S, (w)

(at the screen) is considered; this helps reveal detailed structure in the statistics. This
ratio is expected to be unity in the low frequency regime, becoming %2 in a high
frequency region separated by the now-familiar transition frequency at Q ~ 1. 100
realisations were used in each plot in order to smooth the statistics.
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Figures4.10and 4.11: C,> = 10°m™?* 1 = 1uym, L = 100m, <g>> = 0.001.

Figure 4.10 shows the two power spectra on the same plot, the spectra are
indistinguishable at frequencies lower than w: while for @ > w there is a clear
separation. Figure 4.11 gives the ratio between the spectra. The ratio oscillates
noisily around ¥z (the horizontal line in the plot) before returning to 1 after reaching
the high frequency cut-off defined by the inner scale. Note that the frequency domain
contained outside of inner scale is outside of the regime considered by Clifford’'s
calculation and so cannot be expected to follow the law.

This second set of ssimulations (figures 4.12 and 4.13 below) use the same parameters
as are used figures 4.4 and 4.5, the transition frequency w. signals a change to the
behaviour predicted by Clifford’s theory rather than the oscillatory behaviour seen for
asingle screen. Thereisalot of ‘noise’ in these calculated ratios (figures 4.11, 4.13,
4.15 and 4.17), this can be accounted for by the fact that very small numbers are used
in the ratios and that propagations problems using weak turbulence often fail to

convergeto alimit.
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Figures4.12and 4.13: C,>=10"°m?3 4 = 1um, L = 500m, <g*> = 0.01.
Figs 4.14 and 4.15 show two more results using different propagation parameters.

Once again the transition frequency indicates a shift in the behaviour for the temporal
phase spectrum, this simulation uses the same parameters asfigs 4.6 and 4.7.
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Figures4.14and 4.15: C,> = 107"m™?2 1 = 0.1um, L = 7500m, <@>> ~ 0.01.

Figures 4.16 and 4.17 (below), using the same parameters as in figures 4.8 and 4.9,
show the transition frequency again predicting the quantitative change in the phase
power spectrum. In theinertial subrange the ratio of S, (w) at the observation screen

to S¢(w) is approximately Y2, for frequencies beyond the transition frequency wc.

Above the high-frequency cut-off the theory breaks down. This is not a concern as
Clifford s theory isvalid in the case of a pure power law Kolmogorov spectrum, or in

theinertial subrange.
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Figures4.16 and 4.17: C,>=10"m?3 4 = 0.01uym, L = 500m, <@~ 0.7.
4.2.4. Conclusions.

This section has looked at the behaviour of the phase power spectrum in a two-
dimensional propagation problem for weak turbulence (<@>> < 1). Important
similarities and differences have been noted in both quantitative and qualitative terms
between single screen and extended medium simulation. There exists a transition
frequency, in agreement with Clifford’'s theory (at 2 ~ 1), in the phase power
spectrum plot below which the spectrum in the far field is indistinguishable from that
at short propagation paths and above which a certain structure exists. This transition
exists in both the single screen and extended medium cases. It is conjectured that the
structure observed in the case of a single screen is somewhat ‘washed out’ in the case

of multiple phase screens.

The use of a single screen introduces a seemingly artificial oscillatory structure into

S, (a)) that may not be present in experimental data. One can conclude (in contrast to

the Booker et a study of 1985 [61]) that, in the study of temporal frequency spectra,
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results arising from the use of the single screen and extended medium simulation
methods differ significantly. Therefore any numerical modelling should be performed
using an extended medium in order to ensure accurate qualitative behaviour in the

resulting spectrum.

4.3. Propagation problems using stronger turbulence levelsin 2D.

Theory pertaining to the statistics of coherent radiation in strong turbulence (i.e.

<¢§> >>1) is not as widely developed as for weak turbulence. Severa different

theoretical distributions for the intensity, notably short (log normal) and far (negative
exponential) propagation distances, have been proposed The search for a model for
the intensity that is valid across the focussing and saturation regimes is discussed in
various papers. Phillips and Andrews [59] developed a model based on a field
perturbed by ‘specular’ and ‘diffuse’ components that obey a distribution behaving
like a negative exponential or alog-normal in different regimes. Churnside and Hill
[58] used asimilar approach while Jakeman and Pusey [60] developed atheory of ‘K-
distributions’ based on the assumption that the field is perturbed by a fluctuating sum
of N independent scatterers where N is distributed by a binomial. Hill and Clifford
[46] also proposed a theory of intensity saturation in strong turbulence. Numerical
simulations [25] and experiment [55] have proved crucia in the investigation of such
statistics. Simulations performed by Flatté and Gerber showed that the intensity
spectrum of strong turbulence was qualitatively, but not quantitatively, accurate [25].
Although several groups have had partia successes in investigating intensity
fluctuations, there is much less work on phase statistics and the phase power spectrum
in strong turbulence. Some progress was made in the realm of phase statistics by
Jakeman et a [16] in their study of the intensity-weighted phase derivative, J. They
calculated the form of the normalised second moment of J under strongly turbulent
conditions (indeed their result was used to benchmark phase screen simulations in

section 2.5.3) and used numerical simulation similar to those presented here.
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This section reports on numerical simulations that 1ook at the phase power spectrum
in strongly turbulent regimes. All simulations are restricted to 2 dimensions, thus
one-dimensional phase screens are used. Propagation problems considered use
‘intermediate’ and ‘strong’ turbulence levels at similar propagation ranges to those
used in the previous sections. Differences between the extended medium and the
single phase screen method are contrasted. Once again the dimensionless q (section
2.5.1) parameter is used to characterise the propagation distance and other parameters
in the ssimulation. This is done to control the propagation regime of the ssimulation
while at the same time restricting the simulations to strong turbulence. Therefore one
can define a mean square phase shift < @”> and a propagation regime® -In(q) before

adjusting the other parameters to ensure that these conditions are maintained.

4.3.1 PPS for propagation through a single, strongly turbulent, corrugated

phase screen.

Simulations were performed using comparable parameters to those used in section
4.1.2. Two levelsof ‘strong’ turbulence were used, firstly ¢ = 10 and then ¢ = 100.
Very little structure was observed in S, (a)) when the beam propagated to distances
close to the screen. Thus, unlike in 4.1.2, the focussing and far field (Fraunhofer
zone) regimes are probed. The propagation distances are described in terms of the
parameter g (defined in section 2.5) so as to more easily relate the propagation
problem to either the near, focussing or saturation regimes. A Von Karman spectrum
is aso used. All parameters are normalised to the step sizes used in the computer

program, while the turbulence level is normalised to the mean square phase shift ¢.

® See chapter 2 for adiscussion of the relationship between q and the propagation regimes.
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Figure 4.18, the phase power spectrum of a single, corrugated phase screen using @ =
10. Notethe-8/3 power law dependencein theinertial subrange and the high / low

frequency cut-offs.

Figure 4.18 shows the phase power spectrum for a ‘deep’ phase screen. It is against
this that one can compare the spectra of the propagated fields in a similar manner to
previous sections. Although no theory exists it is still instructive to look at the
structure of the spectrum, especialy in the high frequency region. The phase power
spectra are plotted alongside a histogram equivalent to the pdf of the intensities for
each propagation. A log-normal curve (equation (2.28)) is plotted over the intensity
pdf for comparison with theory, the curve is expected to be a good fit in the Fresnel

and focussing zones with some divergence for far-field propagation.
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Figs4.21and 4.22, -In(q) = -6, the Fresnel zone, some structure at high frequencies.

Figures 4.19 and 4.20 give results of propagations into a very short propagation
distance; as can be seen from the pdf plot of the intensity. Figure 4.20 is amost
identical to figure 4.18. Figures 4.21 and 4.22 show some structure that has hitherto
not been observed. The log normal distribution fits the data in figure 4.21 while
giving high frequency behaviour similar to the oscillatory pattern seen in the weak

turbulence propagationsin section 4.1.2. This pattern is not as well-devel oped.
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Figures4.23and 4.24, -In(q) = -4, the focussing regime.

Figures 4.23 and 4.24 show the focussing regime, the log-normal model is no longer
as accurate a model for the intensity statistics as in figures 4.19 and 4.21. Thereisa
large change in the phase power spectrum in the high frequency region in figure 4.24.
The existence of the high frequency cut-off, normally present due to the inner scale,

has been swamped by the strength of the turbulence.
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Figures4.25 and 4.26, -In(q) = -2, the Fraunhofer zone, spectrum maintains the -8/3

power law line over thefull range of frequencies.

Figure 4.26 indicates that the -8/3 power law line, which is associated with the
Kolmogorov theory of turbulence, is now dominating over the entire range of
frequencies. Any oscillatory behaviour remaining in figure 4.24 has been totally
eliminated. Figure 4.25 also confirms negative exponential statistics in the intensity,

i.e. this propagation regime is giving a Gaussian saturation.
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Fig. 4.27, the phase power spectrum of a single, corrugated phase screen using @ = 100.
Notethe -8/3 power law dependence and the high / low frequency cut-offs.
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Attention is now turned to simulations using stronger screens of ¢ = 100. The

spectrum for the such screens (see figure 4.27) is several orders of magnitude larger

than the equivalent intermediate turbulence spectrum due to the higher level of

turbulence.

The high-frequency cut-off, despite still being visible, is not as

pronounced as before (figure 4.18). Here the spectrum at high frequencies decreases

by about 5 orders of magnitude with respect to the low frequencies, while for weaker

turbulence the drop was closer to 10 orders of magnitude (seefigure 4.1).
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Figures4.30and 4.31, the spectrum in the focussing regime (-In(q) = -4).

Figures 4.28 through to 4.31 show the phase power spectrain the Fresnel zone and the
focussing regime. The spectrum in figure 4.29 is equivalent to that given in figure
4.27, inferring therefore that very little scintillation or diffraction effects have
occurred in the beam. The log normal model for the pdf of the intensity is no longer a
good fit now that a strongly turbulent regime is being considered, this has been noted
by several other researchers [58, 59]. The most interesting artefact appears in figure
31, which contains a change from the usual -8/3 power law behaviour in the spectrum

to an apparent -2 power law behaviour in the high frequency regime.
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Figures4.32and 4.33, the spectrum in the Fraunhofer regime (-In(q) = -2).

Figure 4.33 differs from figure 4.31 in that the transition from -8/3 to -2 power law
occurs at alower frequency. This is significant as the -2 power law regime extends
into the inertial subrange of the spectrum, whereas in figure 4.31 it only appears
outside the high frequency cut-off. Note the intensity statistics in figures 4.32 and
4.34 indicate a Gaussian saturation regime.
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Figures4.34and 4.35, the spectrum in the Fraunhofer regime (-In(qg) = 0).

Figure 4.35 indicates even stronger evidence that the -2 power law feature is a
significant artefact, here the entire spectrum is now dominated by this behaviour. Itis
postulated, based on the evidence presented here, that a coherent wave front which
propagates into the far field and experiences strong turbulence will have a phase
power spectrum which exhibits, at least in certain regimes, a-2 power law behaviour.
It is further postulated that propagating a beam over longer distances will cause the -2
power law to be observed over a greater range of frequencies. This assertion will be
revisited in more detail in chapter 5.

This behaviour could be the result of aliasing occurring in the simulation process
(section 2.3). Although ‘padding’ space has been left for the beam to diffract into, it
is possible that aiasing is occurring regardless. An approximation for the level of
aliasing that one can expect in a 1 dimensiona phase screen simulation is derived in
[21], a Gaussian correlation function is used with correlation length & and depth .
The minimum length of screen required to avoid aliasing effects (i.e. such that one

element of the screen doesn’t interact with itself by diffracting through the periodicity
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) aLV2

of the Fourier transform) is D(L =———. Using a Von Karman filter function

k¢
requires that this formula be multiplied by a factor of 4; this takes into account the
fact that the rate of change of the phase across the screen is estimated to be 16 times
as high (in an RMS sense) in a Von Karman screen as in a Gaussian one.  Choosing
the strongest propagation geometry used (i.e. figures 4.34 and 4.35), and
approximating the correlation length ¢ to the outer scale Lo, gives ¢ = 100 and
L=10". This gives a minimum screen length of approximately 800 units'®. Given
that screens used are of size 22 (i.e. 8192) points in length, one can conclude that no

aliasing effects are being observed.

4.3.2. PPS for propagation through an extended medium, strong

turbulence.

The use of extended media is important in retaining accurate qualitative behaviour in
phase spectrum simulations. Differences have been seen in the use of a single and
multiple screens. In section 4.3.1 a single strong screen was used, and oscillatory
patterns in the high frequency range were found for ¢ = 10. The extended medium s
now considered for these strongly turbulent situations. This structure is expected to

be ‘washed out’ in asimilar way to the effects seen for weak turbulence.

The following simulations were performed in much the same way as those described
in section 4.2.3. The way that one cal cul ates the number of phase screens to be used
is different. The weak-fluctuation irradiance variance no longer applies as it relies on

a weak turbulence assumption, it is still possible, however, to satisfy Martin and
Flatté's condition, o? (a'z) <1.1, on the percentage of the total scintillation occurring
between each screen. In section 4.3.1 it was shown that, in this strongly turbul ent
propagation problem, the far field begins at approximately —In(q) >-1. Itiswdl-

known that the scintillation index, o?, of the beam saturates at 2 in the Fraunhofer

regime, and so to retain an inter-screen distance 6z such that g?(dz)<1.1 one must

19 Note that the ‘units’ here are the sampling lengths of the phase screen. Thisis because, unlikein the
simulations discussed in section 4.2, the distances in these simulations are normalised to the sample
length of the screen Ax rather than standard S.1. units.
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Thus if the propagation range is restricted to no more than

use -In(g)=-6.
Thus maintaining 200

~In(g)=-1, the required condition is that L/, =150.
independent phase screens will satisfy the Martin / Flatté condition for al propagation
problems of strong turbulence. Note that this will satisfy the separation condition on

the screensif 2006 < L, where £isthe correlation length of the phase screens.

The results shown in the figures below were achieved by performing simulations that
used 200 independent phase screens with the total mean sgquare phase shift ¢ = 10.
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Figures4.36 and 4.37, -In(q) = -6, the Fresnel zone, notethe contrast between figure 4.37
and figure 4.22.
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Figures4.38 and 4.39, -In(q) = -4, the focussing regime, note the contrast between Fig

4.39 and Fig 4.24 with regar ds to the high frequency oscillations.

The most important result here is a confirmation of the conclusions drawn in 4.2.4 in

which the use of an extended medium was seen to eliminate unphysical oscillationsin

the spectrum in the high frequency regime. Figures 4.36 and 4.38 show that the
intensity statistics are log norma while figures 4.37 and 4.39 show no evidence of

oscillatory behaviour.

The -2 power law behaviour remains an artefact in these

extended medium simulations. Comparing figures 4.41 and 4.43 (below) to figures

4.31 and 4.33 respectively shows very similar behaviour, the -2 power law behaviour

is begins to dominate over the range of frequency values as the propagation distance

increases.
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present in the high frequency region.
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Figures4.42and 4.43, -In(q) = 0, the Fraunhofer zone. -2 power law dominates. Fig 4.42

shows a Gaussian satur ation regime.

Multiple and single phase screen simulations differ significantly in temporal spectra
produced. It should aso be possible to see this in 3D models, while the power law

behaviours found should be observable in experimenta data.
4.4. Conclusions.

This chapter has introduced and investigated a very important areain remote detection

and LIDAR systems, namely the study of S,(w). Simulations were restricted to

plane wave propagations in two-dimensions using one-dimension phase screens.

Simple weak turbulence models were considered first, some theoretical results exist in
this case. Numerical simulations were used to compare the phase power spectrum in
the scattered far field with that of the screen, qualitative evidence was found to back
up the validity of the simulation technique. Extended medium simulations were aso
performed using multiple phase screens, equally-spaced, having equal mean sguare
phase shift values and obeying the Martin / Flatté limit for inter-screen scintillation.
These numerical experiments compared favourably with the work of Lee & Harp as
well as Clifford. These caculations alow the inference that a single screen may

introduce unphysical artefacts into the high-frequency regime of the spectrum.

The modelling of the phase power spectrum for strong and intermediatly turbulent
layers was considered. No theoretical results exist that are applicable to such
problems; thus numerical modelling must be used. The phase power spectrum for a
strongly turbulent propagation in the Fresnel zone behaves in much the same way as a
weakly turbulent case, in that the spectrum of the propagated field is almost
equivalent to that of the screen. Indeed it is through this property that
experimentalists study the structure of the spectral components of atmospheric
turbulence as shall be seen in the following chapter. The basic -8/3 power law
observed is a direct result of the Kolmogorov turbulence model used in filtering the

phase screens. The high and low frequency cut-offs are arbitrary, the relationship
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between the real atmosphere and the phase spectrum will be dealt with in the next
chapter.

There are severa important conclusions to be drawn from these two-dimensional
simulations using strong turbulence. Thefirst is that the magnitude of the spectrum is
much larger when strong turbulent is present; this is perhaps to be expected, but is a
good indicator as to the level of turbulence present in the atmosphere. Clearly it is
harder to measure a weak signal under strong turbulence conditions. The second is
seen in the way the spectrum changes to have a -2 power law at high frequencies.
This artefact was visible to different degrees for al simulations apart from those at
short propagation ranges. The -2 power law begins to dominate the spectrum at lower
frequencies as the propagation range increases, this is a similar pattern to the
transition frequencies noted in Clifford's theory in section 4.2.2. Aliasing, as a cause
of this effect, has been ruled out. The significance of the shift in power law behaviour
is currently unknown.
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5: 3D simulation techniques and applicationsto LIDAR.

The applications of coherent radiation systems are varied and widespread, ever since
the first ruby lasers were developed there have been many proposed uses for such
systems [6, 53]. A general LIDAR system consists of a set of output optics,
containing a lens and filters, and at least one receiving device such as a photo-
detection unit. The best laser for use in a system designed to operate in the
atmosphere needs to take into account severa factors; safety, bandwidth, wavelength
and power levels being examples. The development of lasers has allowed the
development of remote detection systems that have similar characteristics to radar
systems, using very short and powerful pulses' that allow for such applications as
ranging and absorption detection. It is essential that a LIDAR uses a laser with a
narrow bandwidth and with acceptable levels of power and beam spread in order to
maintain safety in the surrounding environment. A LIDAR system uses a small
amount of its output power to create a frequency-shifted beat signa with which the
received radiation can be compared. Upon the photo-detection of a returned signal,
the local oscillator is mixed with the frequency of the received field. This heterodyne
technique allows the frequency spectrum of the received field to be detected. The
receiver opticsin aL LIDAR system can be situated in a different (bi-static) location or
share an aperture with the transmission optics (mono-static). Due to the necessity of
using of alocal beat signal to detect frequency information, the mono-static system is
most commonly used. The receiving optics in a mono-static system are on the axis of
the propagated beam, consequently one expects to see noise due to back-scattering
from the medium immediately in front of the apparatus. A bi-axial system (which
uses areceiving plane away from the transmission optics) can be used to correct this.

Different applications of LIDAR systems use different scattering effects in the
atmosphere. Resonance scattering (absorption and emission of laser radiation) is used
in the detection of trace elements in the upper atmosphere. Raman scattering (where
the emission of laser energy is accompanied by a corresponding change in frequency)
has an extremely small scattering cross section and can be used in absorption /

detection systems when the density of atmospheric aerosolsislikely to be high.

" Although LIDAR systems often use continuous detection.
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The use of lasers in LIDAR systems is crucialy different their use in differentia
absorption (DIAL) systems in that all atmospheric events effect the system as noise,
frequency shifts, that might be imparted on the beam by the target or sensing
equipment, are of interest. The greatest source of noise present in any LIDAR system
is scattered solar radiation. Using a narrow bandwidth and adjusting the receiving
optics such that they detect only a very narrow band around the laser wavelength, the
LIDAR system eliminates this source of noise. The sources of noise modelled by the
phase screen are those which have the most profound impact on the laser propagation;
refractive index fluctuations, air currents, thermal flows and temperature gradients are

al included in the Kolmogorov theory of turbulence. The familiar —11/3 power law

in the three-dimensional spectrum of such fluctuations applies to each of these noise

sources (see section 2.2.2).

The simulation of laser beam propagation using numerical techniques is intrinsically
linked to experimentation with real systems in the physical world. It is therefore
important to link these simulations to LIDAR systems. In this chapter the use of
three-dimensional simulations is introduced to ‘experiment numerically’ with the
LIDAR system. Physical values are used in these simulations while the use of
dimensionless parameters is completely abandoned. Gaussian profile beams will be
used in addition to plane waves, beam-spreading and wander phenomena will be
considered. These numerical studies also alow an investigation of the long-standing
problem of finding an accurate turbulence model to represent the real atmosphere by
comparing and contrasting the models to experimental data. Experiments results,
performed using LIDAR equipment, are presented at the end of the chapter and

compared with numerical simulation.

5.1. Contrasting simulation techniques in two and three dimensions.

Three-dimensional simulations are carried out in the same way as those in two
dimensions (section 2.4). Here, a three-dimensional grid of Gaussian random
numbers is defined and filtered using the Wiener-Khintchine technique as discussed

previously. The main differences are in the use of screens containing many more

points (2’ x 2’in the sample plots that follow in section 5.2) and a requirement of a
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much more subtle interpretation of the ‘moving’ screen. One cannot simply equate
the spatial and temporal co-ordinates in the 3-dimensional case as has been done
previously. This is because it is possible to move the screens in more than one
direction. Therefore phase derivative statistics cannot be calculated by taking a

simple difference in the phase across the wave-front in the far field.

Instead, the phase derivative is calculated by moving the phase screens within the
simulation itself, i.e. transposing the matrices representing the phase screens at each
time step. The beam is alowed to propagate at each time step before moving the
screens (transposing the matrices) once more.  After each transposition and
propagation, i.e. at each time step, the data is recorded in the far field. In thisway a
data set is built up containing the tempora evolution of the beam in the far field.
From this it is easy to find the required statistics such as intensity moments or
temporal phase spectra. This technique lends itself to extended medium simulations,
as each screen can be moved independently between each time step if needed. In the
simulations that follow, all screens move in the same direction at a constant speed v.
It would be a simple matter though, in a future study perhaps, to use a more complex
model for the motion of the air by allowing the screens to move according to some

distribution of velocities v(x). Any number of screens can be used in this model,

limited only by the memory available and the outer scale length of the turbulence.

Three-dimensional simulations naturally use more memory than two-dimensional
ones. While the simulations performed in chapter 2 made use of 2 pointsin a screen
and produce accurate statistics, each screen used in section 5.2 is an array of size
27 x27. This still amounts to 2** data points in the simulation. Chapter 4 considered
3 decades of information (i.e. 2" data points) in the temporal phase spectrum of a
two-dimensional simulation. In three-dimensional simulations of size 2’ x2', using
the same number of data points, only 2 decades of information (i.e. 2" data points) are
available. To make use of three-dimensional simulations that would give 3 decades of
information one would have to use 2 x 2" ( = 268 million !) points; a quantity of
data which, given the number of fast Fourier transforms that need to be performed,
would take an almost unfeasibly long time to process. Solutions to these practical
problems in the simulation of phase spectra are discussed in section (5.4).
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5.2. Three dimensional simulations, plane waves and extended media.

Now consider some simple 3-dimensional simulations that make use of plane waves

and extended media modelled by multiple phase screens.

Figs 5.1 (below) indicate the changing intensity profile (lighter areas represent greater
intensity in the beam, darker areas indicate that the intensity is approaching zero) for a
plane wave propagated through 5 independent phase screens with a simple three-

dimensiona Gaussian correlation function

p(1) = exv[ _J,Lz' } - (5.1)

Each screen has an individua depth of <@ = 1 and correlation length & = 10,

giving a total root mean square phase shift for all 5 screens of V5. The first row
image shows the intensity in a Fresnel zone close to the first phase screen, the middle
row indicates the focussing regime and the bottom row shows the Gaussian saturation
regime. The range of propagation increases from left to right in each row, with the
top-left image giving the propagation closest to the first screen while the bottom-right

image gives the propagation range furthest from the initial screen.
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Figures 5.1, a sequence of images showing theresultant intensity of a three-dimensional

propagation through an extended medium propagation at increasing distances.

Figs 5.2 show the pdfs of the intensity for the above regions, characteristics that were

present in the simulations performed in section 2.6.1 are also visible here.
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Figures5.2, log-linear plotsfor theintensity pdf for thetop-left, centre-middle and
bottom-right imagesin figs 1 respectively.

One can clearly see the regimes of propagation in the figures above, the top left figure
in figure 5.1 is in the Fresnel zone and as such shows very little departure from the
intensity near the last screen. The central row of figures show the focussing regime,

the features in the plot include bright ridges (caustics) which are reminiscent of the
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patterns of light seen at the bottom of a pool of water. The Gaussian saturation
regime (Fraunhofer zone) becomes apparent in the bottom row, indeed this is clear
from looking at the probability density functions for the intensity in figures 5.2. The

negative exponential curve being an important indication of the saturation regime.

Figs 5.3 demonstrate the same as figs 5.1, here a Von Karman spectrum (equation
2.14) isused to filter the phase screen data.

Figs 5.3, same asfigs 5.1 but using phase screensfiltered with a Von Karman function.

Note the focussing and caustics, but they are lesswell-defined than in figs 5.1.

Here, 5 Von Karman phase screens were used, each with normalised mean square
phase shifts of <¢J§> =1 and inner and outer scales such that «, /k, =50. Itisclear
that figures 5.3 exhibit patterns similar to those created by the Gaussian correlated
phase screens in figures 5.1, the caustics in the focussing regime are less well-defined
though. Thisis due to the nature of the VVon Karman screens which contain fine detail

and asdf-similar behaviour.
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5.3. Beams solutions to the paraxial equation.

The previous section examined plane wave propagation through multiple phase
screens.  These simulations are useful for investigating the propagation regimes and
testing some simple theories. The goal isto compare simulation to experiment, and as
such beam profiles (as used in LIDAR systems) should be considered over and above
plane waves. Whereas the plane and spherical waves used in anaysis are idealised
cases, the Gaussian beam is a more redlistic model. The Gaussian beam arises as a
solution to the paraxia equation of wave propagation (equation 2.6). The Gaussian
beam solution can, however, be factored into a set of basis functions known as the

Hermite polynomials. The Hermite polynomias Hm(x) are solutions to the

differential equation
q

The solution to the paraxial equation, U, can then be expressed as

U.n(xy.2)~ H""(V;//E()Z()JH”[ 2y ]ex —VXT;—VyT;]x{phase factorg  (5.3)

X

where U =% »'U . and the properties of the beam are different in the two

transverse directions x and y such that W, y is the width (i.e. the 1 / e power point) of
the beam in the appropriate direction.

A LIDAR system makes use of a Gaussian beam in order to concentrate the power of

the laser in a central region, the Gaussian beam is so called because the field at the

2
0

(2 2
point of emission has a Gaussian shape, E(x,y)= Aexp[%} (fig 5.4), in the

case of the lowest order solutionn =m=0. The beam isinitially collimated, so there

are no phase factors present until interaction with a phase screen.
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Fig. 5.4: A Gaussian beam with W, = 20cm, the size of the apertureis 1m.

Beam spreading is a phenomenon associated with diffraction. A beam propagating in
free space will experience alevel of spreading characterised by the angular spreading
of the beam. This angleis of order 1 / (2Wp), where 4 is the wavelength and W the
initial radius of the beam. The level of spreading will increase with the addition of

further phase factors and these in turn will increase with greater levels of turbulence.

A beam will naturally tend to diverge without focussing, a focussing parameter f, can
be included in order to represent the effects of a lens being applied to the beam upon

o2 4 2 2 .2
emission such that E(x, y):Aexp((X—zy)Jexp[—ik(x—Jrzy)J. A vaue of
W, 2f;

f7 = o refersto acollimated beam (fig. 5.5), as used in these simulations.

Width Wﬂ

Fig. 5.5; a collimated Gaussian beam geometry. Thefocal point isat infinity, beam

spreading occur s as the beam propagates.
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5.3.1. Beam spreading and wander.

As noted above, spreading is a natural consegquence of beam propagation, even in a
vacuum, which increases in effect with the introduction of a strongly turbulent
medium. Such a medium also causes wander as a result of the motion of eddies
across the wave front. Theoretical analyses of spreading and wander phenomena have
led to a number of results which can be tested using the 3-dimenional beam
propagation algorithm. Yura[52, 67] and others calculated expressions for the beam
spread in both ‘long’ and ‘short’ terms. The long term (LT) beam spreading includes
the effects of beam wander while the short term (ST) spread considers spreading of
the beam around the instantaneous beam centre, i.e. the effects of wander are
removed.

The beam width W(z) is the sum of the free space width and the turbulence induced

beam spread. It can be shown that thisis[52]

+— (5.9

z 2+ z° 872
kW k*p¢

where W is the initial beam radius, f; the focal length and po the spherical wave

coherence diameter given by

L % B
po{omk2 j cg(z)(a dz} . (5.5)

2

In the case of a collimated wave, and upon defining z, = ﬂ‘;\/" ,

W2 (z) =W?2 [1{5} } 2[%} (5.6)
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This result is the LT beam radius, referred to henceforth as W2 (z). Yura[52] dso
looked at the short term radius W2 (z), he defined the spherical wave coherence

diameter for the short term radius in terms of the above po, such that

1

ST LT 1 IO(IJ_T 3
pO = pO +0.37] m . (57)

0

Using this it is possible to perform the same analysis as for the long term spread and

arrive a an expression for the short term spread

2 2 u 2
WSZT(Z):WO{1+(£J }2(&] [1—0.2 &] } . (5.8)
ZO pr WO

5.3.2. Numerical ssimulations, spreading and wander.

Numerical simulation is used to test the validity of equations (5.6) and (5.8). The
simulation algorithm used here and throughout this chapter makes use of physical
values rather than dimensionless parameters. Thus al simulations in this section use
phase screens of 1m? sampled by 28 points, Gaussian TEMg, beams with a radius of
Wo = 7cm and Von Karman filtered Gaussian random noise where the ratio of the
inner to the outer scale is 50. Belmonte [7] performed a similar analysis to what
follows, therefore similar values for the wavelength and the refractive index structure
parameter are used. Single phase screens are used, as opposed to Belmonte's use of

an extended medium modelled by 20 screens, to model the turbulent atmosphere.

Data was taken on the beam spreading and wander for several propagation conditions

over arange of propagation distances.
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Figures 5.6 and 5.7: Theinitial Gaussian beam and the same beam at 100 metres

(C.2=10"2m™?3j.e. very strong turbulence, 4 = 10°m).

The beam wander £ is calculated by taking a ssmple sum over the intensity datain the

propagated beam
> oEE"
_alp
ﬁ(z)——Z == (5.9)
al p

where E is the electric field and p is the radial distance of a point in the screen from
thecentre. l.e. p®> =x*+y?, x=y=0isat theinitial beam centre. The width of the
beam is calculated by averaging over the intensity profiles of several hundred sample
beams and interpolating a best-fit quartic curve to the resulting profile. It is then
possible to extract the point a which the intensity fals to the 1 / e value. The
algorithm used to perform these tasks makes use of the polynomial interpolation
package in Matlab v. 6.1.
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Averaging over severa hundred redlisations allows for a smoothing of the statistics
obtained. Figures 5.6 through to 5.9 show sample beam propagations that are used in
the following simulations, the spreading of the beam at large propagation distances is
clearly visible. Less obvious, perhaps, is the beam wander, although in figures 5.8
and 5.9 one can see the that brightest spot in the beam (i.e. the greatest concentration
of power) isno longer located at the centre of the image.

Figures5.8 and 5.9; The Gaussian beam (fig 7) propagated to 500m and 1.5km
(C2=10"2m™?3 1 =10°m).

Figures 5.10 and 5.11 show the beam spreading for two different strengths of

turbulence. Note first that the spreading in the beam requires a greater distance to

develop in weaker turbulence.
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Figs5.10 (C,?= 10", strong turbulence) and 5.11 (C,>= 10™, medium turbulence).

The simulation data in figures 5.10 and 5.11 is represented by symbols, theory
(equation 5.6) isthe unbroken line. There is a good match between theory and data.

Figures 5.12 and 5.13 (below) show the beam wander results for the same simulations
athose described above. The theoretical curves for the wander are developed in [7] as
the difference between the long term and short term beam spread. Here there is some

discrepancy between simulation and theory.
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Figs5.12 (C,?= 10", strong turbulence) and 5.13 (C,>= 10™, medium turbulence).

There exists some divergence in the Fraunhofer regime between theory and
simulation. This can be explained by noting that in the far field the beam no longer
has a Gaussian shape; therefore one cannot expect the theory (which is reliant on the
fact that the beam is a Gaussian) to be accurate in that regime. Note also that the
theory uses a pure power law Kolmogorov spectrum, which fails to model the effects
of the large eddies caused by the presence of an outer scale. The motion of large
eddies across the wave front has an important effect on the beam wander, the
inclusion of an outer scale in the turbulence model is causing discrepancies between

theory and simulation at large propagation distances.
5.4. Tempora phase statistics in 3-dimensional simulations.

The beam spread and wander statistics examined in section 5.3 are spatial statistics.
To examine temporal statistics a temporal variation must be included in the model as
discussed in chapter 4. In three dimensions this is done by transposing the phase

screens and alowing the beam to propagate to the observation screen at each
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transposition. Thus a complete picture of the evolution of the beam is built up as the
turbulence develops, in this way the ‘frozen-in’ turbulence present in the phase
screens is used to represent a block of turbulence moving across the wave front. The

screens move at avelocity v.

5.4.1. Use of rectangular screensin temporal phase statistics.

Section 5.1 included a discussion of the memory considerations involved in
performing three-dimensional simulations. This becomes a greater drain on computer
resources when setting the screens in motion. These memory problems can be
addressed by using phase screens which are elongated in the direction of motion. A
typical example involves an aperture of 2°x2® sampling points with a screen of
2% x10x2® sampling points such that there are 10x2® points in the direction of
motion. Thiswill result in 3 decades of information in a spectral plot without having

to perform a simulation that uses a series of 2" x 2'* screens.

The use of rectangular phase screens presents a neat solution to these memory
problems. The use of sgquare phase screens of size 2" by 2" can abandoned in favour
of the use of rectangular screens of size 2" by m2" if the following conditions hold**:

» Theaperturesizeis 2" by 2".

« Any 2" by 2" segment of the rectangular screen has the same statistics as a 2"
by 2" screen produced by method detailed in section 2.3.

» Thefrozen-in turbulence only movesin one direction, i.e. along the y-direction
of the rectangular screen.

* The number of samples in the tempora evolution of the propagated field is

equal to (m-1)2".

2 The length of size 2" isthe ‘X’ direction, the side of length m2"isthe ‘y’ direction
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Figure 5.14 (below) gives asimple pictorial representation of the simulation technique

using rectangular phase screens.

Propagated fisld

Phase screans in motion

/ Gaussian bearn at aperiure

Fig. 5.14. Threerectangular phase screens passin front of the Gaussian beam wave

front producing a perturbed field. The screens move from left to right.

One can see the aperture (size 2" by 2" and the screens of size 2" by m2" passing
through the propagating field. Multiple phase screens are used, just as in two-
dimensions, to model an extended medium. The simulation process for a three-
dimensiona model simulating an extended medium using multiple rectangular

screens is then as follows:

* Generate an array of pseudo-random Gaussian random numbers of size
2" xm2" (onefor each required phase screen).

» Usean appropriate filter to give the screens the correct statistics.

* Setupthebeamina 2" x2" aperture.

» The beam propagates through a 2" by 2" segment a one edge of the
rectangular screens. Record the propagated field at the observation screen.

» Transpose each of the phase screens one step in they axis.

» Perform the next propagation and record the field data.

» Cyclethrough the previous 2 steps until reaching the far end of the rectangular

phase screens (i.e. (m-1)2" times).
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* Theresulting data set gives the field’s temporal evolution over (m—1)2n time
steps.
Using this simulation technique allows for the investigation of tempora phase

statistics, given an assumption of frozen-in turbulence.
5.5. An dternative to the Kolmogorov pure power law; subharmonics.

Before proceeding to some simulation results using rectangular screens, it is
instructive to note some interesting characteristics about these screens. Firstly, the
overall phase change from one side of the screen to the other (along the length, y) can
be very large. Secondly, phase fluctuations that occur over the entire y axis of the
screen must be modelled, rather than being restricted to those bounded by the x axis.
This is important because fluctuations over very long ranges are possible and their
inclusion in the simulations are crucia to the validity of statistics.

Hitherto the Von Karman spectrum has been used as a filter for the phase screens
when modelling Kolmogorov turbulence. This model has the advantage that it
imposes high and low frequency cut-offs to the spectrum which attempt to mode! the
effects of the outer and inner scales. The disadvantage is that the locations of such
cut-offs are arbitrary and suppress spectral information at very low and very high
frequencies. Thisremoval of low frequency components from the spectrum prevents
large scale features in the turbulence, i.e. fluctuations occurring over the entire y axis,
from being modelled accurately. A method of including such fluctuations in

rectangular screensis required.
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Figs 5.15 and 5.16, showing phase power spectra aver aged over the two different sides of

arectangular phase screen.

Consider figures 5.15 and 5.16, which illustrate the problem. A rectangular phase

screen of size 2° x100.2° was created using a Von Karman (equation 2.14) filter with
outer and inner scales. Comparing the phase spectrum of the screen aong the x axis
(fig. 5.15) with the same spectrum in the y axis (fig. 5.16) indicates how low
frequencies are being suppressed. This loss of power at low frequencies represents an

absence of any long range fluctuations in the y direction of the phase screen.

A theory which alows for the accurate sampling of low frequencies in the
Kolmogorov spectrum was proposed in [20], developed further in [23] while being
used in[37] . Itisimpossible to sample a pure power law Kolmogorov spectrum, i.e.
(Dn(K)'“K_l%, to arbitrarily low frequency space values™ because the spectrum

divergesas k tendsto 0. The use of ‘subharmonics’ in the sampling of the spectrum

3 The sampling of low frequencies is essential for long range fluctuations to be modelled in the phase
screen. The sample size used in the grid puts a natura limit on the length of fluctuations that can be
observed in the screen. In order to accurately sample ‘long’ phase screens it is necessary to include
these low freguencies.
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is proposed [20] as a method of avoiding this problem. The technique is so named
because it involves splitting the sample located a « =0 (i.e. the point a which

d)n(/() - 00) into anumber of smaller samples asindicated in figure 5.17.

=-2ni N f pe=0 =2l N
pe=-2nf 3N po=dnf 3N

Figure5.17. Showing thetwo-dimensional sampling grid closeto x = 0.

The large central square in figure 5.17 represents the sample for « =0 in the two-
dimensional grid from which the Kolmogorov spectrum is sampled. To the left and
right are the first non-zero samples; given that there are N samples in the grid these
are multiples of +27/N. Note that +27/N is used in an idealised dimensionless
case where the total frequency domain is KD(—n,n). In a physically redistic
simulation, the frequency domain is & O(-7N/L,7N/L) such that the sampling
interval is 271/L where L is the length of the phase screen. Returning to figure 5.17,
the central sample at « =0 has been divided into 9 smaller squares, each of which
has side 27/3N. The most central square is still located at « =0. It is possible to

include further levels of subharmonics by continuing to divide the central square into

smaller and smaller segments, the second level of subharmonics is shown within the
central square of figure 5.17. The size of the p™ level of harmonic will be 271/3°N .
Thus it is possible to sample the element in the grid that would otherwise give an
infinite value for ® («). Of course one cannot sample these harmonics infinitely,
and eventually a central square will be left at « =0 (albeit representing a very small

sample space) which can be set to @ (k) =0. Doing thiswill alow the inclusion of
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longer range and lower frequency fluctuations into the phase screens, thus eliminating

the loss of information seen in figure 5.16.

An aternative algorithm, for the calculation of the subharmonic contribution ¢, to
the phase screens, has been proposed to cope with the modified sampling technique
[23]. The standard fast Fourier transform algorithm assumes that the sampling
interval is constant; the new al gorithm weights the subharmonic samples based on the

size of each sample. The proposed fast Fourier transform algorithm is

z
2

P (iAx,18y) =D > ¢(p,nx,ny)e><p{ (5.10)

n=-1 ny=—1

27in, j 271'nyl
X + ,
3°L, 3P L,

©
I
=

where Ax and Ay are the sampling widths in the x and y directions, Ly and Ly are the

lengths of the screen in the x and y directions. @ (p, nX,ny) are random complex

Gaussian processes that have been given the correct autocorrelation properties, Ngy
refers to the number of subharmonics that will be taken while n, and ny are references
to the 3 by 3 grid on which the subharmonics are sampled. The greater the value of

Ns+, the more accurate the statistics will be, but the longer the ssimulation will take.
The remaining samples in « O(-7N/L,7N/L), excluding « =0, are used to
calculate a phase screen @qreen in the normal way. The resulting subharmonic screen

issimply the sum @ + @creen
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Figures5.18and 5.19. A Kolmogorov phase screen and associated structure function,

symbolsindicate smulation, solid lineistheory [23].

Figure 5.18 shows a Kolmogorov phase screen produced in the normal way with

® (k)~x 72, i.e. with the central k =0 sample set to zero to avoid an infinity.

Note that the screen is periodic, this is clear as the structure function (figure 5.19)
returns to zero as the separation distance approaches the size of the screen. Thisis
due to the periodic nature of the fast Fourier transform methods used to produce the

screen.

Consider figure 5.20 (below). The phase screen in figure 5.20 clearly has non-
periodic behaviour. The structure function (figure 5.21) shows a 5/3 power law
behaviour for al separation distances x. The phase screen in figure 5.20 therefore
contains long range phase fluctuations; thisis in stark contrast to the phase screen in
figure 5.18 where all fluctuations are contained within the confines of the periodicity

of the screen.
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Figures5.20 and 5.21. A Kolmogorov phase screen produced using the subhar monics

algorithm, structure function (equation 2.10) is also displayed.

These are the properties which are required in rectangular screens. More accurate

statistics are expected for low frequencies when using the subharmonic screen

generation.

Figure5.22.

Phase power spectrum, subharmonic screens.
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The sample phase power spectrum shown in figure 5.22 indicates that the additional
low frequencies have been added to the phase screen. Comparison with figure 5.17
shows a marked difference in the low frequency behaviour of this spectrum, the
subharmonic algorithm has successfully corrected for the loss of power at low
frequencies associated with aVVon Karman spectrum.

5.6. Temporal phase spectra, anaysis.

5.6.1. Beam analysis.

In a series of papers written in the late 1960's [35, 69, 70, 71 and 72], Ishimaru
performed an anaysis of the tempora properties of a focussed beam propagating
through atmospheric turbulence. He argued that beams are much more useful than
plane or spherical waves for probing atmospheric characteristics because one can
adjust the focussing and aperture size easily. His analysis begins with an assumption
of weak turbulence (i.e. n(r,t)=1+n,(r,t) where n; << 1) and that the refractive
index fluctuations obey the Taylor frozen-in hypothesis (i.e. nl(r,t) = nl(r —vt,O))

where v is the average wind velocity. Application of the Rytov approximation (see

equations (1.1) to (1.3))expresses the propagated field in terms of a phase fluctuation

2 k —r!
Wl(r,t):znuk o J"nl(r',tbo(r')WdV' (5.11)

wheretheinitial field Up and thefina field U are related by
U(r,t)=U,(r)exp{w,(r.t}}. (5.12)

One can write ¥ in terms of its rea (x, the log-amplitude) and imaginary (S the
phase) parts and derive certain statistical quantities. The interesting result concerns
the temporal correlation function for the log amplitude y,
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1-0,X)

B, (r)= ATKdKjdz’Jo(qwor)sin{Z'qz( 5 }(Dn(K)exp[— 5,7 (5.13)

where A=22k?L, q=K./L/k, Z=2z/L and w, =V,/k/L, z s the direction of
propagation, L the total propagation distance, k the wave number and it is assumed
that theinitial field Up is a Gaussian. Re-working Ishimaru’s calculation to obtain the
phase (S equivalent to equation (5.13) and taking the cosine transform (see section
4.2.1) gives an integral expression for the temporal spectrum of the phase, i.e.

Zq? (1 - 51X')
2

W, (w) = 87K quqjdz’ @, (K) cos{

Wy, 0 \/QZWS -’

}exp[— 0, z’zqz] (5.14)

where d; and J, arise from the beam parameters [72]. Notice that this can be reduced
to the form given by Tatarski [36] by setting J; = > = 0 (plane wave). An anaytical
solution to this equation for arbitrary ¢, , appears to be impossible to calculate. One

can proceed by integrating numerically after choosing an appropriate form for the

spectrum of refractive index fluctuations (CDn(/()~CnZK_% the pure power law

Kolmogorov or ®, (k)~C2x exp(-«2/k?) the Tatarski spectra®) and values for

the beam parameters d; and o.

Colimated Gaussian beam, no inner scale

-1173 power law line
-

Momalised phase power specirum
=
o
2
i
g
a
=
-

14 Fante and Frehlich [44 and 45] discussion the importance of the inner scale x; and its effect on
intensity statistics under strong turbulence conditions. Several papers [40 and 43] also discuss
experimental methods used to measure the inner scale using log-intensity variances.
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Figure5.23: Thetheoretical curveisanumerical integration of equation 5.14 using é; =

0.04 and 4, = 0.2 (collimated beam) for a pure power law Kolmogor ov spectrum.

The crucial featurein figure 5.23 is the power law behaviour of the power spectrum, a
—11/3 law occurs as opposed to the —8/3 power law predicted in the case of a plane

or spherical wave (see section 4.2.1). This can also be seen in figure 5.24 (below) for
a Tatarski spectrum.
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Figure5.24: asfigure 5.23 but using Tatar ski refractive index spectrum.

Figure 5.24 shows the high frequency cut off imposed by the Tatarski spectrum as
well asa —11/3 power law behaviour in theinertial subrange. The conclusion isthat,
for a Gaussian beam (under conditions where a Rytov approximation is valid), a

—11/3 power law behaviour is expected in the phase / log amplitude power spectra

rather than a —8/3 behaviour (as one would expect for plane or spherical waves [36]).

5.6.2. Spherical wave analysis.

Clifford [30] calculated the phase power spectrum for a plane wave propagating
through a weakly turbulent layer characterised by a pure power law Kolmogorov
spectrum. This calculation can be performed again using a Tatarski spectrum in order
to find a spherical wave limit to Ishimaru’'s result (equation 5.14). It is important to
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find out whether the —11/3 behaviour seen in figures 5.23 and 5.24 is solely a result

of the presence of abeam or the aresult of the use of a Tatarski spectrum.

The pure power law Kolmogorov spectrum used by Clifford is
®_(k)=0.033C2 73, (5.15)
including Tatarski’ s inner scale modification obtains

®, (k)= 0033Ck 72 expf-x2/x?} (5.16)

where «, is the inner scale equal to 277/l,. Incorporating this spectrum into

Clifford’s calculation (equation 12 in [30]) gives

1

I I 7 *do {mco{-%z(ml)(l-uz)]}exp(—s;a) (5.17)

O’+1y

2
where S -ﬂ, Q :i 2L uti_z , o+1= L , Z the propagation
K, \Y 2 L 27f
distance, L the distance to the observation plane, k the wave number, f the frequency

parameter and A = 0.13277%k 3L/3C 2y exp(— (2r£ )/ K,Z).

This integral is completed by first splitting it the sum of two parts
W, o(f)=W,s(f)+W?2s(f). Thefirst of theseintegrals has no u-dependence,

X

L e\ amf . F 0 2do w2
W (f)= AQ !d {(ﬁ 3 exp(- S20)
1 (5.18)
:AQ_g \/;r(:; (EE SZ) S%r(_ljlpl(g’iSZJ
2r(11j 2'37") " 3 6'3 "
6
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where 1F; is ahypergeometric function [ 75]; the second integral can be written as

1
81 ° 2
W2(f)= AQ? [duR j”zda

mex |f‘21 (0+1)(1 u )Jexp(—sria) . (5.19)

Integration over ¢ gives

) Zr(llj 312’3
6 (5.20)

Kzr[—i)r[l—l)(srﬁ —iz)%lFl(l—l,f, s —izj}
3) |6 6'3

where®™ z= —QT(u2 - ) This integral differs from those calculated by Clifford in

W2 (1) = A s [au &2 {\/Erﬁlﬁ(ig,si —izj+K

appendix A of [30] because of the inclusion of the inner scale term S,2 in the

hypergeometric functions. Noting a property of the hypergeometric functions:

.F.(a,b,x)=,F,(b-a,b,~x)
= exp(— z),F,(a,b,S2 + iz): exp(— St - iz)l Fl(a, b, S? + iz)exp(Sri)
= eXp(Sri )1 Fy (b -4 b,—(Sri + iZ))

the subsequent integral over u can be written as an integral in z

. \/m'(lj

W2 ()~ [t72(t-2) Ptz ——> -
11

° ZF( 6] (5.21)

1> zis not the propagation distance here, rather a normalised frequency parameter defined in Clifford’s
work [30]. The propagation distance information is contained in u.
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2
where t = QT There are two different class of integral here, setting — (S,f1 - iz) - ix

gives

iS2+t
W)= ] i S 2
iSh

(5.22)

K+t_}/2ismj+t (t +iS? - x)_}/2 (- ix)%lFl(—

isq

wIN
wiN

,ixjdx

These integrals are the same as the ones obtained by Clifford [30] (apart from some
additional constants introduced by the shift in the integration limits and different
hypergeometric coefficients). Therefore, given that the integration of equation (5.18)

resulted in a -83 power law, the power law behaviour of

w

L s(F)=Wi(f)+W?(f), i.e. —8/3, in the inertial subrange will be unchanged
from Clifford’ s result. Thereis afundamental difference between the phase spectrum
resulting from a Gaussian beam and that resulting from a plane or spherica wave.
This fundamental difference is causing the power law behaviour seen in figures 5.23

and 5.24.

5.7. Simulation results.

A series of numerical simulations are presented that use the techniques discussed
above. Multiple phase screens in two dimensions are used to moded three-
dimensiona propagation problems. Screens are set in motion across the plane of
propagation at speed v, the aperture is defined of size nxn while the phase screens
used are of size nxmn. Several propagation geometries are simulated, the temporal

phase spectra produced are then anal ysed.
5.7.1. Plane waves, pure power law spectra.

Parameters used in these simulations are 4 = 1um and v = 2ms™®. The observation

screen is located at L = 10km, thus the observed wave is expected to be in the far
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field. The size of the aperture is 40cm while the plane wave is 20cm by 20cm. These

simulations use 20 phase screens of size nx mn wheren = 2® and m=5.

Figures5.25and 5.26.

Phase power spectrum, Kolmaogaroy screens
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*hase powar spectrum
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Figures5.27and 5.28. Intermediate and strong turbulence. Figure5.28 showsa

familiar increasein the power law for high frequencies.

Note that, contrary to previous simulations using Von Karman spectra, there is no
high-frequency cut-off in the spectrum resulting from the lack of an inner scale filter
in the pure power law Kolmogorov spectrum. All four figures show no flattening of
at low frequencies, a result of the subharmonic algorithm. Each figure, except figure
5.28, displays a clear —8/3 power law with the absolute value of the spectra
increasing with stronger turbulence. Figure 5.28, C,? = 10™*, shows a departure from
the —8/3 law at high frequencies. This has been seen in the two-dimensional

simulations of section 4.3 and will be encountered again in the following sections.
5.7.2. Plane waves, Tatarski spectra.
The following simulation results were performed using a Tatarski spectrum (equation

5.15) to filter the phase screen data Identical parameters were used in these

simulations asin section 5.7.1.
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Figures5.31 and 5.32. Intermediate and strong propagation regimes. Note a-8/3 power

law regimes and a higher power law behaviour at higher frequencies.

Figures 5.29 and 5.30 clearly indicate a roll off in the spectrum at high frequencies,
thisis expected as the Tatarski spectrum includes afilter at the inner scale. Note that
thisroll off in the spectrum disappears in the strong turbulence cases (figures 5.31 and
5.32) and a departure from the —8/3 power law is seen at high frequencies. Once

again all figures clearly show no cut-off at low frequencies as expected from the
subharmonic filtering technique.

5.7.3. Gaussian Beams, pure power law spectrum.

Now consider Gaussian beams in an extended medium with statistics governed by the
pure power law Kolmogorov spectrum (5.14). An aperture of size 40cm is used as
well as a TEMgy Gaussian beam with parameters Wp = 7cm and fo = «. 20
independent phase screens are used with the following parameters: 2 = 1um, lg =

5mm, Lo =30cm, , v=2ms?!, n=2% m=5and z=4km.
It has been shown (figures 5.23 and 5.24 and [72]) that a —11/3 power law is

expected under conditions of weak turbulence. For each propagation geometry a
sample beam and the phase power spectrum is considered.
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Figs5.35and 5.36, C,2 = 10°m™2, The phase power spectrum follows a-11/3 power law
at low frequencies befor e adjusting to a-8/3 behaviour asthe frequency w increases.

Propagated besm profile

B3 powat law ling =
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Freguency

Figs5.37 and 5.38, C,*> = 10®*m™3. Under this strong propagation condition, thereis

evidence of wander in the beam and the phase power spectrum reaching a-2 power law.

Sample images of the propagated field are shown in each case. Figures 5.33 and 5.34
show a weak propagation region, and indeed the —11/3 power law regime is present.
Moving into an intermediate regime (figures 5.35 and 5.36) the picture is less clear,
there are two distinct regions; a low frequency one with a —11/3 power law, and a
higher frequency regime where there is evidence of a —8/3 power law. In the case of

a much higher level of turbulence (figures 5.37 and 5.38), there is a-2 power law at
high frequencies. Figure 5.37 shows the extent of the spreading and wander in the

beam under such conditions, it is clear that thisis the far field.

5.7.4. Beam waves, Tatarski spectrum.

These simulations use the same conditions as those in section 5.7.3, in addition the

phase screens have the statistical properties of a Tatarski spectrum (5.15). Figures
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5.39 and 5.40 confirm Ishimaru’s prediction concerning the -11/3 power law
behaviour under weak turbulence conditions. Now contrast figures 5.41 and 5.42
(below) with figures 5.35 and 5.36 (above). In figure 5.42 the phase power spectrum
does not undergo a transition to a —8/3 power law at high frequencies, in contrast to
the spectrum in figure 5.36. The behaviour is likely due to the use of a Tatarski

spectrum (introducing a high frequency cut-off) as opposed to a pure power law.
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Figures5.39 and 5.40, C,”> = 10"*m™?3. The phase power spectrum follows a -11/3 power

law and has a dight drop-off at high frequencies.
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Figures5.43 and 5.44, C,%> = 10*m™?>. The phase power spectrum follows a -2 power law

at high frequencies.

Figures 5.43 and 5.44 show the result of a strongly turbulent propagation geometry.
Once more, a -2 power law is observed in the power spectrum (figure 5.44) at high

frequencies.
5.7.5. Gaussian beams in a single phase screen limit.

Hitherto in this chapter, simulations have made exclusive use of extended media
modelled by multiple phase screens as discussed earlier. It isinteresting to look for a
physica interpretation of the presence of the —11/3 power law behaviour in the
temporal frequency spectra of propagated beams. The most interesting aspect of this
behaviour is that it seems to be that it is restricted to a Gaussian beam and is
independent of the form of the spectrum of refractive index fluctuations. The work of
Ishimaru and Clifford has been expanded to show that they both correspond to
different limits of the same effect (section 5.6). Consider now a physical explanation
for the differences, and a reason why this behaviour disappears in the case of plane or

spherical waves.

Consider a simple Huygens Fresnel formulation for wave propagation similar to that
used in section 4.1.1. Theelectricfieldis

_[ —|k|r —r| J xp[—\;v;zz]exp(i(p(r',t))dzr' (5.24)

0

where a TEMy Gaussian beam of width Wy has been included, other symbols are

defined in section 4.1.1. Consider the small ¢(r') limit

E(r,t):%{iexp[ |k|r22—r| e }dzr'ﬂjmexp[ |k|r2;r| }(l(f ) }

150




Temporal phase and amplitude statistics in coherent radiation

where the first integral is independent of time and therefore becomes a J-function
when taking the temporal Fourier transform. Considering the second integral, one can
make a co-ordinate substitution (equation 4.5) and simplify by assuming that the
screen and beam are 1-dimensional (in x) while measuring the field at the centre of

the beam where x = O; this gives

E(x=0)= (1—;')\/5 Texp(%kzz - \;(V;Z}o(x')dx' . (5.25)

Now transform to tempora co-ordinates and take the Fourier transform to give the

power spectrum of thefield. Proceeding in asimilar vein to section 4.1.1 gives

o0 12

__[)E(t)exp(— ct)dt = (l;zi)\/%idxidt exp(%k:z - \;(? —i wt](p(x +wvt)  (5.26)

where v is the speed of the motion of the phase screen across the wave front. Now

perform a co-ordinate transform x' +vt — X", giving

2 2z W?2

) :ug{ymm« L exp(‘ik(X" (¢ ‘“)ZjK

Kexp(-ilat - w,x])}

where é(a)t) isthe Fourier transform of the field. Integrating gives

E(w,) Jl—;”@ﬂ@%exp —a” (5.27)
Ty

2D
2z wW? 2z W

where é(wt) is the Fourier transform of the phase screen. Consider now the power

spectrum of the field in two different limits of the width of the beam, a Fraunhofer
l[imit and alimit in which the curvature of the beam isimportant.
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Casel,é»l.

This limit implies a far field regime, i.e. the propagation distance z is very large. In
this regime the width of the beam is much smaller than the Fresnel zone, meaning that
the field is comparable to a point source. In the far field a spherical wave emanating
from a point source resembles a plane wave. Calculating the power spectrum of the

field in thislimit gives

E(w) Ae)

Se(w)=

2 kw?
27

2 2,.2
exp(— WZV“j j (5.28)

At large frequencies w; the spectrum of the field will be proportional to the spectrum
of the phase screen, modified by aterm depending on the propagation parameters z, k
and W.

Case ll, <1

2

Here the beam width is larger than the Fresnel zone. Turbulence passing into and out
of the beam will produce an effect in the power spectrum in the far field, this in

addition to the turbulence passing through the beam. Using this limit gives

2 2°af

where in contrast to (5.28) the z-dependence of the spectrum is contained within the

exponential term.

Case |l describes the Gaussian beam simulations performed in sections 5.7.3 and
5.7.4. Consider if the condition stipulated in Case |l were to hold along the entire
length of the beam, equation (5.29) can then be integrated over z (i.e. considering an
extended medium rather than a single screen approx), such that
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qb(w)rexp( = ZJ = ¢() \f"k"v (waj (5.30)

5:()=

where the error function is defined by erf (x .[ exp( )dt . The error function

frequencies are required for this condition to hold. In thisregime one can write

rrvkw

Se (@) =@

~ ldw ){ (5.31)

Compare this result to equation (4.9) which showed how the power spectrum in the

far field is modified by an oscillatory term in the frequency . Here the far field
spectrum proportional to the phase screen spectrum multiplied by w™. Thus, given

that the spectrum of the phase screen data will have a —8/3 power law behaviour, it

follows that the propagated field will have a spectrum with a —11/3 power law.
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Figure5.45. The phase power spectrum using the same parametersasfigure5.34 and a
single phase screen instead of an extended medium.
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The important thing to note in the derivation of equation (5.31) is that it requires an

extended medium. Enforcing this condition assured that the result cannot hold in the
case of a single phase screen. Thus one expects the —8/3 power law to hold in the

case of a single phase screen, even when using a Gaussian beam (see figure 5.45
above).

Figure 5.45 shows a phase power spectrum plot taken from a simulation that used the
same parameters as the simulation given in figure 5.34, the only difference being the
use of a single phase screen rather than multiple phase screens to represent a turbulent
layer. Note the appearance of a —8/3 power law behaviour modified by an
oscillatory term, this is similar to what has been seen in the two-dimensional case
(section 4.1.2). Therefore the presence of a —11/3 power law behaviour in the power

spectrum is not only a feature of a beam (in contrast to a plane or spherical wave) but
also afeature of an extended medium in contrast to a single phase screen (see figures
2.2 through to 2.9).

5.8. Experimental Results.

Modern experimental techniques allow the investigation of the structure of
atmospheric turbulence by looking at the phase properties of areceived laser beam. A
heterodyne detection system can investigate the phase fluctuations of the received
wave front. Heterodyne means the mixing of 2 frequencies to produce an
intermediate frequency. A heterodyne detector in aLIDAR system looks at areturned
signal in which the phase contains a frequency shift based on the frequency of the
output signal and that of any vibrations on the reflecting surface. The heterodyne
system interprets received electromagnetic radiation and alows an operator to record
the phase fluctuations straight on to an appropriately set-up computer. The laboratory
apparatus keeps a ‘beat’ signal so that the demodulation process can retrieve the
frequency information imparted by the reflecting surface and intervening turbulence.
Any and all phase fluctuations in the apparatus, as well as those in the atmosphere and
the target of interest, will effect the phase retrieved from the received field. It is
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possible to eliminate such effects within the equipment as they occur on a very slow
time scale in comparison with phase shifts imposed by turbulence.

It isonly in recent times that accurate methods for measuring the received phase have
been developed in the laboratory, therefore much of the theoretical work performed in
the 1960s and 70s by Clifford and Ishimaru on the properties of the tempora
frequency spectrum and other phase-related statistics has, until now, been buried in
the literature for want of a practical application. Experimental work performed at the
time of these analyses [51] were often restricted to the measurement of spatial phase
differences between two receivers.

The work performed for this thesis has been done in collaboration with researchers at
the department of optronics at Qinetiq. Their group has published several studiesin
which they have investigated the properties of phase fluctuations imparted on a beam
by turbulence. A study in which a heater was used to simulate turbulence [76]
investigated the structure function of the turbulence and the properties of the far field.
Another study, which used an 80m outdoor single pass for a laser beam [77], |ooked
at the properties of the phase difference (in spatial terms) and the phase derivative (in
temporal terms). They report on the phase difference power spectra in which they
note a familiar -8/3 power law behaviour as well as an unexplained -11/3 power law
behaviour at high frequencies. It isinteresting to look at these experimental resultsin
the light of simulations performed in section 5.7.

Data is reported on that was taken on two specific dates over the winter months of
2003. On the 23" of January strong turbulence was encountered, on the 10" of
February the turbulence was much weaker. The experimental set up involved the use
of a 1.55micron laser emitted from the laboratory window and propagating to a corner
cube reflector mounted on a site atop a hill some 17.5km distant, thus the experiment
constituted a 35km double pass. The reflected beam was then collected by a pair of
probes, thus 2 channels of data were received for each double pass.

5.8.1. Intermediate / weak turbulence, 10" February 2003.
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Data collected on the 10" of February 2003 shows signs of weak / intermediate
turbulence, a sample phasor of this datais given in figure 5.46 below. By looking at
the phase / log amplitude power spectrum and making some simple assumptions about

the inner (~ 1mm) and outer scales (~ 1m) of the turbulence, one can approximate the

strength of the refractive index structure constant to 3x107° m_% [31]. Thislevel of
turbulence is consistent with the above assertion of weak turbulence. Meteorological
surveys indicate that the average wind speed on this day was v = 2.2 ms®. The
scintillation indices were calculated as 1.9379 and 2.5865 for the two channels.

Fig. 5.46, sample phasor of one channel. Real and Imaginary partsof thefield shown.
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Fig. 5.47, the probability density function for the intensity of the data from 1 channel.

Figure 5.47 gives alog / linear plot of probability density function of the intensity, a
log-normal curve (equation 2.28) has been fitted to the experimental data. The shape
of the pdf of the phase derivative in figure 5.48 (below) is consistent with figure 2.7.
Both these figures are consistent with the fact that weak turbulence was present on the

10" of February.
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Figure5.48, the probability density function of the phase derivative.

Figures 5.47 and 5.48 are exactly what one might expect from weak turbulence. One
can look at information contained within the phase by calculating the power spectrum
of the phase derivative. A comparison of the spectra produced by using the phase
derivative and the J statistic show the effects of smoothing produced by intensity
weighting that have been predicted [16, 76].

Intensity weighted phase derivative comparison, channel 1.
1D T T T T T T T

Phase derivative specetrum,

Spectrum {arhitrary units)
=]

1 D-s | / et el

Intensity weighted phase derivative spectrum:
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0 a0a 1000 1500 2000 2800 3000 3500 4000
Frequency, Hz

Figure 5.49, comparison between the phase derivative spectrum and the J spectrum.
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Figure 5.49 indicates a smoothing of noise sources at high frequencies, i.e. the noise
floor in the spectrum is lower and effects at high frequencies will be easier to detect.
It is clear also from figure 5.49 that there are no high frequency artefacts in the data

while several spikes are prominent in the frequency domain below 1kHz.
5.8.2. Strong turbulence, 23" January 2003.

Data collected on this date show evidence of strong turbulence, figure 5.50 indicates a
sample phasor of the data obtained on the 23" of January 2003.

Fig 5.50: Strong turbulenceindicated by the ‘fillingin’ of the gap in the phasor’s centre.

The level of the scintillation index was very high on this day, calculated values were
17.5943 and 13.3127 for the two channels. Several explanations for this level of
scintillation have been suggested, one involves a possible misalignment in the optical
recelving equipment. A second is that the experiment was performed at a height
above ground (10m) such that turbulent layers between the ground and higher levels
of the atmosphere were causing effects as yet unaccounted for. It is also possible that
a double pass geometry through very strong turbulence caused such high scintillation
levels. Figures 5.51 and 5.52 indicate log / log and log / linear plots the pdf of the
intensity. Theoreticadl K — distributions are plotted alongside the pdfs; the K —
distribution was proposed by Jakeman and Pusey [60, 79] as a model for intensity
fluctuations in many different turbulent systems including thermal plumes [80] and
sea echoes [60]. Theintensity under a K-distribution is described by

158



Temporal phase and amplitude statistics in coherent radiation

p(1)=—0P (%J K, (V) (5.32)

where K, is a modified Bessel function of the second kind and b and v are related to

the moments of the intensity [79].
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Figures5.51 and 5.52, log/ linear plotsof | and |2 against P(l).

Figure 5.51 shows good agreement between experiment and theory, looking at the

tails of the distribution in figure 5.52 one can see a straight line when plotting against

J1', thisis the behaviour expected of the K —distribution for large .
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phase denvative pdf for the January data set, strong turbulence
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Figure5.53 alog/ linear plot of the phase derivative.

In figure 5.53 the pdf of the phase derivative is approximated reasonably well by a
student - t distribution (equation 1.10). Thisis a characteristic of Gaussian statistics.
Figures 5.51 and 5.52 show that the statistics are not Gaussian, it is well known [76]
that the student - t behaviour in the phase derivative is not restricted to a Gaussian
process. It is possible that a regime corresponding to K — distributed noise also yields

student - t statisticsin é.

The most interesting result arising from the stronger turbulence is a comparison
between the phase derivative spectra given in figure 5.54 (below). The noise floor for
the intensity weighted phase derivative is much lower than that of the un-weighted
statistic. Thisis what was expected. Frequency information that would be swamped
under strong turbulence will be visible when using intensity weighting, this

corroborates what was seen in [76].

Note a strong spike in the spectrum at approximately 100Hz, thisindicates afeaturein

the frequency data which will be visible in spectra presented in the next section.
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Intensity weighted phase derivative comparison, channel 1.
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Fig. 5.54, comparison between the spectra of the phase derivative and theintensity

weighted phase derivative.

5.8.3. Phase power spectra.

The received laser beam was sampled at a rate of 8000 samples per second. The
January data set contains 3x10° points while the February data set contains
approximately 1x10” points. Using the sampling rate one can calculate the phase
power spectrum and look at the distribution of the power across the frequenciesin the
beam. A Hanning window (figure 3.14) is used to remove spurious high frequency
elements while a linear interpolation method was used to reduce the effects of
problems associated with the heating of the laboratory equipment.

Figure 5.55 shows the phase power spectrum for the data collected under strong
turbulence. Note a —8/3 power law behaviour in the spectrum across the majority of

the frequencies incorporating a very small -2 power law tail at high frequencies. The

strength of the turbulence has smoothed out a lot of noise which is often seen in the
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spectrum. The spike at 100Hz is attributed to vibrations present in the laboratory

equipment. This was present in al simulations and was probably the result of some

systematic influence on the LIDAR equipment in the laboratory.

Channel 1

Phase power spectrum, arbitrary units.

-2 power law line.

843 power law line.

10° 10 10

Frequency, Hz,

Fig. 5.55, The phase power spectrum for the January (stronger turbulence) data set.

Figure 5.56 (below) shows the phase power spectrum calculated for the weaker

turbulence. Hereit is possible to see more noise in the spectrum, this is manifested in

the presence of many more spikes in the data than in figure 5.55. This shows how

various vibrations and frequencies in the equipment and reflecting surface are being

picked up by the beam and transferred into the receiving devices. Thisis the essence

of LIDAR.
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Fig. 5.56, the phase power spectrum for the February (weaker turbulence) data set.
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Crucially one can see the appearance of a -11/3 power law behaviour in the high
frequency regime of the spectrum, this corresponds to the computer simulation results
of beam propagations under weak turbulence conditions (section 5.7.4, and below in
section 5.8.4). A peak in the phase power spectrum remains in the first couple of
points in the plot, thisis despite the removal of spurious low frequency heating effects
from the data.

5.8.4. Conclusions.

The data collected and analysed in this section have given a number of useful insights
into the challenges facing numerica simulation of beam propagation. Data was
collected on a day when weak turbulence was expected, plots of the pdf of the
intensity (figure 5.47) phase derivative (figure 5.48) clearly indicate a weak
turbulence regime, as indeed does the limited impact of the intensity weighting on the
phase derivative spectrum (figure 5.49). It has been suggested, however, that a slight
mis-alignment in the receiver optics may cast some doubt over the validity of the pdf
plots

The second set of data concerned much stronger levels of turbulence; an attempt to
estimate the strength of the turbulence by calculating ¢ has given unusualy high
values. The plot for the pdf of the phase derivative (figure 5.53) gives a good match

to a student - t distribution while the plots of the pdf for the intensity (figures 5.51 and
5.52) show acorrelation with aK — distribution (equation 5.32).

Both phase power spectra (figures 5.55 and 5.56) show evidence of a —8/3 power
law over arange of frequencies. Figure 5.56 shows atendency to a —11/3 power law
at approximately 300 or 400 Hz. Thereisaso aclear shift at about 30Hz which could
be due to Clifford’s ‘%2 (section 4.2.1), athough w, = 4Hz based on the parameter
values used in the experiment. Note also the presence of alarge amount of power at
low frequencies, something which, as already noted, is absent in the Von Karman
model for atmospheric turbulence. One can conclude that any model using long
rectangular phase screens to simulate tempora variation in frozen-in turbulence,

without using the subharmonic technique, will be inaccurate at low frequencies. The
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subharmonic fast Fourier transform technique replaces (or ‘fills in’) these lost low
frequency components.

The phase power spectrum calculated for the weak turbulence (figure 5.56) can be
compared with results from section 5.7.4, in which a Tatarski spectrum was used
correcting for low frequencies with the subharmonic technique. Figures 5.42 and 5.44
give spectrausing parameters very similar to those found on the day of the experiment
(albeit over ashorter distance). Note figure 5.43 in particular and the behaviour of the

power law regimes in the plot; the —8/3 power law becomes a -11/3 law at high
frequencies while still retaining a lot of power at low frequencies. The equivaent
simulation for a pure power law Kolmogorov (figure 5.36) shows the spectrum
returning to a —8/3 power law at high frequencies. The experimental evidence

presented here leads to the conclusion that the Tatarski spectrum plus a subharmonic
addition at low frequencies provides a reasonably accurate description of the
atmospheric turbulence on that day. It seems unlikely that any further detail can be
wrung out of the experiment data with regard to the atmospheric structure. Thereis
simply too much acoustic noise at high frequencies.

Considering the strong turbulence; the experimental evidence shows the possibility of
a -2 power law at very high frequencies. The spectrum, however, bears little
resemblance to any of the strongly turbulent simulationsin section 5.7. This could be
due to a possible misalignment of equipment or the presence of an as-yet unknown

atmospheric effect.

5.9. Conclusions to chapter 5.

This chapter has provided a wide ranging review and investigation into the role of
temporal phase statistics in coherent imaging systems. The use of Gaussian beams in
such systems was considered, a number of numerical simulation techniques were
developed. The use of rectangular screens (section 5.4) provides a novel method of
simulating motion of frozen-in turbulence in an extended medium or a single screen

approximation. A natural limitation on these screens has been successfully corrected
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for by using an aternative fast Fourier transform agorithm to introduce missing low
frequency components into the phase screen data (section 5.5).

Section 5.3.2 looked at spreading and wander in 3 dimensional beam smulations.
The single screen limit was shown to be appropriate for modelling the spreading and
wander of a Gaussian beam. The importance of the outer scale on beam wander was
also verified.

The most interesting results in this chapter concern the temporal frequency spectrum.
The theoretical developments of both Clifford and Ishimaru have been compared and
contrasted. Each theory was shown to apply in an extended medium while a single
screen approximation is inadequate. It has been shown, by considering Clifford’s
calculation (section 5.6.2) with a Tatarski spectrum, that a —11/3 power law in the
temporal frequency spectrum arises from the use of a Gaussian beam rather than a

Tatarski spectrum. It was initialy thought that the —11/3 power law may in fact be a
facet of the inner scale cut-off introduced into the Tatarski spectrum. The plane and

beam solutions to the paraxia approximation differ fundamentally in their temporal
frequency statistics regardiess of the form of the spectrum of refractive index
fluctuations. Simulation resultsin sections 5.7.2 and 5.7.4 agree with this assertion in
that both show results of simulations using Tatarski spectra, only the beam wave
simulations give a -11/3 power law, plane waves result in a —8/3 power law.
Results of simulations using a Gaussian beam under differing turbulence models

(sections 5.7.3 and 5.7.4), dl give a —11/3 power law under weak turbulence

conditions.

Results in section 5.8 led to the conclusion that a Tatarski spectrum with a
subharmonic correction is the best model for atmospheric turbulence when one
expects the turbulence to be weak. Simulation results using strong turbulence are
more difficult to interpret in the light of the experimental evidence. Severa
simulations (sections 5.7 and 4.3) have indicated the possibility of a-2 power law in
the phase power spectrum under strong turbulence condition. Given that there are no

theoretical results with which to compare simulations, and that the experimental data
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shows only minor evidence of -2 power law behaviour at high frequencies, the
possibility of aliasing effects needs to be addressed.

Consider a simple calculation involving beam wander. Belmonte [7] gives the beam
wander f of a Gaussian beam as the difference between the long and short term beam
width (see section 5.3.1). Assuming a Kolmogorov pure power law alows for an

approximation for wander to be written as

b %)%
_ 2z Po | _ 2| Po
L= ko, {0.5 VTO] 0.26 {WOJ } , (5.33)

where each of the terms above is as defined in section 5.3. It is known that aiasing
will occur if a part of the beam is diffracted to such an extent that it exits the edge of
the simulation and (due to the periodic nature of the fast Fourier transform algorithm)
re-enters the simulation to interfere with itself again. One might expect this to happen
if the beam wander is of the order of the aperture width. In all simulations in section
5.7, abeam of width 7cm and an aperture of width 40cm were used. Restricting the

wander of the beam to be less than 40cm, allows a condition

052 (cz)? 2" {1.26 —057(cz) K s z%}y2 (5.34)

to be defined which must be met such that aliasing will not occur. Applying (5.34) to
the most strongly turbulent simulations in sections 5.7.3 and 5.7.4 (i.e. 2 = 1um, z =
4km, C,2 = 10m?®) shows that all simulations are well within this limit'.
Therefore is should be possible to rule aliasing out as a causal factor for the -2 power

|aw behaviour.

At present it is unclear if such power law behaviour might become apparent in
experiments that use higher levels of turbulence, or indeed if there exists some

fundamental shift in the behaviour of temporal statistics under strong turbulence that

16 Specifically, using the constants given, equation (5.34) yields 0.5 > 0.0868.
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is unaccounted for in current theories of atmospheric turbulence. Further experiment
isrequired in order to resolve such differences.
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6: Conclusions.

This thesis has looked at analytical, numerical and experimental methods for
modelling coherent imaging systems, including LIDAR and remote sensing devices
that employ coherent radiation sources. Although both amplitude and intensity
statistics have been looked at, the work has concentrated upon phase and phase
derivative statistics. This has been motivated by modern heterodyne detection
techniques which allow for the accurate collection of temporal phase datain coherent
imaging. In comparison to the quantity of material in the literature on amplitude
statistics, there is comparatively little on temporal phase statistics. A number of
numerical techniques for the simulation of temporal statistics in wave propagation
problems have been designed and developed in this thesis. Results of smulations

have compared favourably with experiment and theory.

This thesis has provided an overview and validation of the numerical ssimulation
process by building on previous work and looking at different statistical measures
(including moments and probability density functions) in different propagation
regimes. A major development in this thesis has been the use of phase screens to
allow the simulation of tempora motion in Taylor’s frozen-in turbulence hypothesis.
The problems of temporal variation in three-dimensional simulations were addressed
in sections 5.4 and 5.5 rectangular phase screens were used with low frequency
information being supplemented by a subharmonic technique. These phase screens

were then used in the simulation of plane and beam wave propagation.

In chapter 3 the properties of the phase derivative and related measures in weak
turbulence were investigated by modelling the field in the Fraunhofer zone as a Rician
process. This was shown to be a successful model in the case of a plane wave by
looking at a comparison between simulation and theory. Expressions were derived,
based on this model, for the correlation function of the phase derivative and the

normalised second moment of J (sections 3.2 and 3.3 respectively). A relationship

has also been found between the behaviour of &9 and marginal fractal distributions.
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A new development has been the use of multiple phase screens to represent a
temporally varying extended medium. The single phase screen approximation is
unrealistic when considering tempora statistics, as phase fluctuations occur
throughout the length of the propagation path as the beam evolves rather than being
imposed before any diffraction / refraction effects. Experimental work has shown that
amplitude statistics under strong atmospheric conditions (section 5.8.2) differ from
what was predicted under simple phase screen assumptions (section 2.5.1). Under
real turbulence a K-distribution is a better approximation to the intensity statistics than
the negative exponential saturation regime predicted in the case of a ssmple Gaussian
correlated random process.  Notable differences between the single screen
approximation and experiment occur when one looks at the differences between the
spectral representations of various statistics. Section 4.1 showed how the use of a
single phase screen resulted in an oscillatory behaviour in the phase power spectrum;
work in chapter 5 has shown that this is un-physical. In addition, the power law
behaviour seen in the case of a Gaussian beam (section 5.6) is only present in the case

of an extended medium, and disappears when one uses a single screen approximation.

Various models of atmospheric turbulence have been compared and contrasted. It
was shown that the Van Karman model puts unnecessary restrictions on the outer
scale of the turbulence (section 5.5) while the pure power law Kolmogorov model
does not adequately sample frequencies outside the inertial subrange (section 2.2).
The Tatarski spectrum (equation 5.16) provides the best model, for the purposes of
simulating power spectra, in that it includes an inner scale cut-off while the absence
of low frequency power can be accounted for by the use of additional subharmonics
(section 5.8.4). Andrews [81] has suggested an aternative form for the refractive
index spectrum based on Clifford and Hill’s [27] evidence of a ‘bump’ a high

frequencies. It would not be difficult to investigate thisin afuture study.

These simulations have agreed strongly with the assertion of several theoretical and
experimental studies, which suggest that the phase power spectrum should exhibit a
—-8/3 power law in the inertial subrange of frequencies. They aso agree with

Ishimaru’s calculation [71, 72] on the differences between plane and beam waves in

the spectral form of the phase / log amplitude obtained. It is not the case that
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Ishimaru used a Tatarski spectrum (as opposed to a pure power law) in his calculation
that results in a —11/3 power law; rather, the fact that a Gaussian beam was used

rather than a plane or spherical wave (section 5.6). The appearance of an unexplained
-2 power law in the phase power spectrum has been noted at high frequencies when
using strong levels of turbulence. This is visible only in a limited form in
experimental data although it is prominent in many simulations. It has been
postulated that this result is not the effect of aliasing or some equivaent problem due
to the periodic nature of the fast Fourier transform process, and therefore that it is a

genuine artefact of very strong turbulence conditions.

There are severa avenues for further work in thisfield. More work is required on the
effect of strong turbulence on coherent radiation; an explanation for the discovery of a
-2 power law in the phase power spectrum under such conditionsis strongly desirable
so that one might understand the physical processes causing it. There are further
applications of the work in coherent imaging; LIDAR systems of the type used in the
experiments operate on the principle of a double pass of a coherent beam which has
been reflected from a vibrating surface. Similar numerical ssimulation work to that
presented here could be performed for a double pass through frozen-in turbulence
with areceiver at the same location as the emitter. It has been shown (section 4.1.2)
that one can demodulate a single constant frequency offset from the phase power
spectrum and it should be possible to demodulate a more general signa using the
same technique in addition to intensity-weighting. This is important in the recovery

of arange of frequencies from avibrating target.
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Appendix A.

The phase power spectrum, Sq,(a)), is defined as being the Fourier transform of the
correlation function Bw(,o), where o is a frequency and p a length parameter

representing the distance between two points in the observation screen. The

rel ationship between these quantities was formalised by Tatarski [36], giving
S,(w) = 4] cof27mp]B, (0)do (A1)
0

We proceed in a similar vein to Clifford [30] and Lee and Harp [33], who calculated
the phase power spectrum via Bq,(,o), except that we employ a geometric optics
formulation to provide the expression for the correlation function. The geometric
optics formulation of wave propagation (for a field u(x, Y, z)) ignores diffraction by

making the simplifying assumption that the wavelength of the beam is much shorter
than the inner scale of the turbulence, thus alowing a simplification of the wave
equation (equation (2.3)) to

(A2)
D2u+k?n?(rju=0

where u is any one of the three spatial components of the field, n is the refractive

index and k is the wave number. Now assume u:Aexp(iqo) and perform
perturbation theory on the amplitude A and phase @ Tatarski [36] shows that one can

develop an expression for the spectral density Fq,(/(,O) of the structure function
Da(p) of the phase @ The use of a pure power law Kolmogorov spectrum for the

fluctuations of the refractive index (equation (2.14)) allows one to obtain

-11

F,(k,0)=0.21k’LCk 3 .

F,(k,0) isrelated to the correlation function B, (o) by
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B,(0)= 271? Jo(k0)F ,(k O)kdk (A3)

where Jp isthe Bessel function of thefirst kind, order O.

Thus the phase power spectrum is

[

S, (w) =5.28k* LCfJ‘K;SdKJ‘ J,(kp)cod2rmp]B, (0)do (A4)

[

and integrating over p gives

-8
® 3
s,(w)=5.28LC? | | ’[( ])1 dk . (A5)
o |\k?-[2md|? 2

The lower limit of the integration here gives a singularity, changing the lower limit

fromOto 2@ (Clifford [30]) alows integration over «, this gives

ﬁ r(%) & -8 72 -8

S (w) =5.28Lk*C? 2/mw) s =0.033Lk2C2w?3 = 4.43L3k3C2Q 3,
(w) " ﬂl%)( )s ; 2

(4

after we have converted into Clifford’' s frequency notation Q = cwV277L .

Thisisthe low frequency limit of Clifford s result (section 4.2.1), as required.
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Appendix B.
The integration of (3.46) resultsin
AT o e (o) 1<
k¢
o —ku? 205 F,(a) + 8(”52 ; 4 11 BY
<‘]>_ 87z 472 11 Ei_l_kf 4 K2E2)2
K+ Z 7 & z? (2+ 2 J
K2 & y4
A
+8¢1§cos(2tan (f(a))j_ 47
(6+a2)+16a2)c X |

where a=ké&2/z, f(a)=4a/4+a? and the two functions F; (equation B2) and F
(equation B3) are defined by

F.(a)= —{m cos{% tan ™ (f (a))j +(a-a? )cos(g tan™(f (a))j -K

3

aasif St (1a) | o+ a2 1(a) )

and

N i et il 6 i 6]

3
a3(1+ 1(2)4
a
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Appendix C.

We require a large g expansion of y, (equation 3.30). We need only consider the
situation where 7' =0, as when 7' >0, both k and p tend to 0 and the fact that y-
tends to O quickly follows. First re-write p (equation 3.31) and k (equation 3.32) by

assuming a Gaussian correlation function

plr) = expl-177)

and ¢ >> 1, thisresultsin

p=expl-¢#)=0,
~1—r’2¢§—exp(—¢02): _ 2

T edlw)  C %
and

p_ )
” ex(qazll 7)1 pl-gth-r7)

where we have assumed 7' <<1. Now substituting these expressions into equation

(3.30) and taking ¢ >> 1 gives

y, = —exp(— (05[1— r’z])ln(l— kz)—1+ ﬁexp(— exp(— ¢§))— K

)

T,ZZ% expl- exp(- 2 ))- (,2% )exp( expl- 1+ r’zqf})

2 2
=-1+ E -1|=0.
y2 T'2¢02 [TIZ% )

y, =0-1+
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