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Abstract

Propagation of electromagnetic waves in three-dimensional (3D) space is studied

using the Transmission-Line Modelling (TLM) method. The theoretical founda-

tion, generalization and more advanced versions of the symmetrical condensed

node (SCN), a basic structure for 3D TLM modelling, are presented.

A unified approach to the derivation of TLM schemes capable of modelling non-

uniform anisotropic materials on an arbitrarily graded mesh is introduced. The

parameters and the scattering properties for a general symmetrical condensed node

(GSCN) constructed from link lines with arbitrary characteristic impedances and

up to six stubs are described.

For the first time in 3D TLM modelling it is shown that stubs can be removed

completely from the SCN, whilst still allowing general inhomogeneous problems

to be modelled. This development, described as the symmetrical super-condensed

node (SSCN), contributes significant reductions in memory storage and computer

run-time in TLM simulations.

In order to assess accuracy and numerical dispersion in the various TLM schemes

based on the GSCN, dispersion relations are studied. A general approach for the

analytical expansion of the general dispersion relation is introduced, enabling the

derivation of dispersion relations in algebraic form for all currently available nodes.

Based on the results obtained from the dispersion analysis, work aimed at con-

structing an optimal node is described. A class of adaptable symmetrical con-

densed nodes (ASCN) is derived, with superior propagation characteristics com-

pared to other known TLM nodes.



Acknowledgements

Firstly, I would like to thank my supervisors, Prof. Christos Christopoulos and

Dr. Trevor Benson for their help and support during the course of this work. I am

greatful for their continuous assistance and was particularly impressed with their

great ability to recognize situations when to direct me and when to let me go my

own way. I would also like to thank Dr. Jon Herring for help with ‘getting started’

with three-dimensional TLM and for numerous discussions on many aspects of the

topic. I am also in debt to my colleagues in the Numerical Modelling Group, who

have given helpful advice and much practical help during the project.

The work presented here was financially supported by the Engineering and Physi-

cal Science Research Council (EPSRC) which I acknowledge with gratitude. Sup-

port was also received from the National Physical Laboratory (NPL) in the United

Kingdom. The funds provided helped me to attend several scientific conferences

worldwide which proved to be of enormous benefit to my work. During these

events I had helpful discussions with other TLM researchers, in particular with

Prof. Wolfgang Hoefer, Dr. Fred German, Dr. Michael Krumpholz, Mr. David

Johns, Ms. Qi Zhang and Mr. Leonardo de Menezes, which I acknowledge with

great pleasure.

Finally, I wish to thank all my friends for their considerable encouragement, sup-

port and patience, especially during the write up stage of the work.

Many thanks to my parents for their continuous support and understanding.

* * *

Neizmerno hvala mojim roditeǉima na podrxci i razumevaǌu.



Contents

List of main symbols v

1 Introduction 1

1.1 Numerical modelling with TLM method 1
1.2 Objectives of the thesis 2
1.3 Outline of the thesis 3

I Theoretical Foundation 5

2 Unified formulation of TLM parameters 6

2.1 Introduction 6
2.2 Configuration of three-dimensional TLM nodes 7
2.3 General formulation of TLM parameters 11

2.3.1 Notation 11
2.3.2 Balanced and unbalanced nodes 12
2.3.3 General TLM constitutive relations 13
2.3.4 Compact notation 17
2.3.5 Modelling of losses 19

2.4 Derivation of existing TLM schemes 20
2.4.1 Stub-loaded nodes 20
2.4.2 Hybrid nodes 22
2.4.3 Two-dimensional nodes 25
2.4.4 Frequency-domain nodes 27

2.5 Conclusion 29

3 Scattering in symmetrical condensed nodes 30

3.1 Introduction 30
3.2 Inconsistency in equivalent network representations 31
3.3 Scattering in the general symmetrical condensed node 35

3.3.1 Scattering into link lines 35
3.3.2 Scattering into stubs 37
3.3.3 Derivation of equivalent total voltage 38

i



Contents ii

3.3.4 Derivation of equivalent total current 40
3.3.5 Scattering equations in compact notation 41
3.3.6 Scattering matrix of the GSCN 43

4 Derivation of the general SCN from Maxwell’s equations 47

4.1 Introduction 47
4.2 Mapping between voltage pulses and field components 48
4.3 Derivation of scattering equations by averaging of fields 52
4.4 Central differencing of Maxwell’s equations 56
4.5 Discussion 60

II Symmetrical Super-Condensed Node 62

5 Development of the TLM symmetrical super-condensed node 63

5.1 Introduction 63
5.2 Derivation of the SSCN for isotropic media 65

5.2.1 Link line parameters 65
5.2.2 Maximum time step 68
5.2.3 SSCN for a uniform mesh 71

5.3 Derivation of the SSCN for anisotropic media 72
5.3.1 Link line parameters 72
5.3.2 Maximum time step 74

5.4 Implementation of the SSCN in a TLM mesh 76
5.4.1 Scattering properties 76
5.4.2 Connection 76
5.4.3 External boundaries 78
5.4.4 Output 79
5.4.5 Excitation 80
5.4.6 Other features 81

5.5 Numerical examples 81
5.5.1 Isotropic materials on a uniform mesh 81
5.5.2 Isotropic materials on a graded mesh 83
5.5.3 Anisotropic materials on a graded mesh 85

5.6 Discussion 87

6 Efficient computational algorithms 88

6.1 Introduction 88
6.2 Storage of the scattering coefficients 89
6.3 Scattering in nodes with stubs 91

6.3.1 Unbalanced nodes 91



Contents iii

6.3.2 Balanced nodes 93
6.4 Scattering in the SSCN 94
6.5 Scattering in the 12-port SCN 97
6.6 Discussion 98

III Dispersion Analysis 101

7 Dispersion relations of symmetrical condensed nodes 102

7.1 Introduction 102
7.2 General dispersion relation for TLM 104
7.3 Dispersion relation of the 12-port SCN 106

7.3.1 Derivation using new scattering matrix formulation 106
7.3.2 Analysis of solutions 110

7.4 Analytical expansion of the general dispersion relation 114
7.4.1 Basic concepts 114
7.4.2 Symmetrical super-condensed node 119
7.4.3 Hybrid symmetrical condensed node 125
7.4.4 Stub-loaded symmetrical condensed node 132

7.5 Discussion 139

8 Quantitative analysis and validation of dispersion relations 140

8.1 Introduction 140
8.2 Relationships between eigenvalue and deterministic problems 142
8.3 Visualization of dispersion errors 146
8.4 Dispersion in uniform meshes 154

8.4.1 Propagation in 3D space 154
8.4.2 Propagation in coordinate and diagonal planes 158
8.4.3 Summary of results 164

8.5 Dispersion in graded meshes 166
8.6 Minimization and elimination of dispersion 173
8.7 Summary 177

IV Further Developments 178

9 Advanced nodes with improved dispersion characteristics 179

9.1 Introduction 179
9.2 SCN with matched line impedances (MSCN) 181

9.2.1 Derivation 181
9.2.2 Comparison of error trends in the MSCN and the SSCN 184

9.3 Adaptable symmetrical condensed nodes (ASCN) 186



Contents iv

9.3.1 Derivation 186
9.3.2 Dispersion characteristics 189

9.4 Numerical results 196
9.5 Conclusion 199

10 Discussion and conclusions 200

10.1 Introduction 200
10.2 Review of new developments described in the thesis 201

10.2.1 Theoretical foundation 201
10.2.2 Symmetrical super-condensed node 202
10.2.3 Dispersion analysis 203
10.2.4 Further developments 204

10.3 Suggestions for further research 205
10.4 Overall conclusions 206

References 207

Author’s publications 214



List of main symbols

a, b . . . n scattering coefficients

c speed of light

e base of natural logarithm

f frequency

i, j, k dummy indices

j
√−1

�k wave vector

k propagation constant

m number of coefficients

n time step prefix
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t̂ discrete time coordinate
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vl pulse velocity on line
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w weighting factor
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C capacitance

E electric field

G conductance

H magnetic field

I identity matrix

I current

L inductance
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P connection matrix

P,Q polynomials

Q electric charge
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S scattering matrix

Sn normalized scatt. matrix

V total voltage

V i incident voltage pulse

V r reflected voltage pulse
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Y addmitance matrix
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δf frequency error

δk propagation error

δk normalized error

δkmax + maximum positive error
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δkt total error range

ε dielectric permittivity

ε permittivity tensor

ε0 permittivity of free-space

εr relative permittivity
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List of main symbols vi

η phase shift

ηx, ηy, ηz mixed coordinates

θ phase shift

ϑ angle

λ wavelength

λ eigenvalue

µ magnetic permeability

µ permeability tensor

µ0 permeability of free-space

µr relative permeability

ξ phase shift

ξx, ξy, ξz mixed coordinates

ρ reflection coefficient

σe electric conductivity

σm magnetic conductivity

ϕ angle

χ phase shift
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ω angular frequency

∆t time step

∆tmax maximum time step
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∆l equivalent cubic cell

∆x,∆y,∆z node dimensions

Φ magnetic flux

∂ partial derivative

Additional symbols were used to clarify such quantities as link line and stub pa-

rameters, voltages and currents. These symbols are more precisely defined in

§ 2.3.1 and where they are used.

Dummy indices i, j, k are used for compact notation and should be replaced by

x, y, z, as explained further in the text.

The symbol ˆ is used to denote a normalized quantity.



Chapter 1 Introduction

1.1 Numerical modelling with TLM method

The study of electromagnetic problems involving the propagation of electromag-

netic waves and their interaction with structures such as antennas, microstrip

lines, conductive panels and material discontinuities can be achieved using an-

alytical techniques only in a few very limited and simplified cases. In order to

include the study of more complicated practical configurations, it is necessary

to resort to computer-based numerical techniques. Such techniques establish nu-

merical models of propagation and coupling which can be easily adapted to deal

with very general configurations. The fast development of computer technology

in recent decades provided the necessary hardware and software means for the

implementation and further enhancement of these modelling techniques.

Several numerical modelling methods for solving electromagnetic problems have

been developed, each possessing particular features advantageous to particular

types of problems [1, 2]. Methods can be classified in generic groups based on

the domain of the variable (time- or frequency-domain) and the domain of the

operator (differential or integral). Other approaches, such as the ray methods [3]

used at very high frequencies, and hybrid approaches involving more than one

method have also been developed.

In dealing with the most general material and conductor configurations at high

frequencies, differential time-domain techniques offer the most versatile simula-

tion tool. The foremost methods in this area are the finite-difference time-domain

(FDTD) method [4] and the transmission line modelling (TLM) method [5, 6].

There are many similarities between the two methods but the modelling phi-

losophy is different. Whereas in FDTD Maxwell’s equations are solved using a

differencing scheme, in TLM a scattering approach akin to Huygens principle

is implemented by replacing the space domain with a system of interconnected

transmission-lines. Such a model is based on the analogy between the voltage

variables of the transmission-lines and the field variables of the space.

1
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Since the publication of the pioneering article on the TLM method by P. B. Johns

and R. L. Beurle [7] in 1971, the method has been extensively studied and contin-

uously expanded by many researchers, growing up to a recognized, powerful and

versatile modelling technique indeed. Confirming its maturity, the First Interna-

tional Workshop on TLM took place in the University of Victoria, Canada, this

year (1995), gathering “the protagonist of TLM for a thorough assessment of the

state of the art, to explore the capabilities, applications, limitations and future

developments of TLM, and to evaluate its strengths and weaknesses with respect

to other modelling techniques” [8].

1.2 Objectives of the thesis

Ever since the original paper [7], a series of refinements to the TLM method were

proposed and successfully implemented. One of the structures receiving the most

attention in recent years is the symmetrical condensed node (SCN), developed

by P. B. Johns in 1987 [9], which marked a new phase in three-dimensional (3D)

TLM modelling. The TLM method based on symmetrical condensed nodes has

been studied, implemented and enhanced widely by academic and non-academic

research groups, resulting in a considerable amount of computer code developed by

these groups to facilitate electromagnetic simulations. A commercially available

3D TLM simulator ‘Micro-Stripes’ based exclusively on condensed TLM nodes has

been also developed by KCC [10].

Even though the symmetrical condensed node TLM schemes are established in

applications covering a wide range of electromagnetic field problems, there have

been very few (and only very recent) rigorous investigations about their theoreti-

cal foundation, numerical properties and the possibility of deriving new, more ef-

ficient, schemes based on the SCN. The availability of fast computer workstations

allowed many small and medium-size problems to be solved quickly, overriding

the need to derive better, optimal schemes and to implement more efficient algo-

rithms. However, in many areas of practical interest, for example electromagnetic

compatibility (EMC), even the most powerful computers are inadequate to the

task. This is why more research was considered necessary to give insight into the

theoretical foundations of the existing methods, their possible optimization and

the development of more advanced formulations.

This thesis aims to fill the gap between the well established application of the

TLM condensed node method and its theoretical foundations which have received

less attention. This investigation serves not only to theoretically establish the
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existing TLM condensed node schemes, but far more importantly, it offers a tool

for deriving new schemes with potentially better characteristics.

Another objective of this work is to achieve full characterization of the existing

and newly developed nodes. So far, the propagation properties of condensed nodes

obtained by solving dispersion relations were studied mainly qualitatively. Only

limited practical results are available on the numerical properties of the nodes with

stubs and altered link lines which are essential in modelling inhomogeneous media

using cells of arbitrary aspect ratio (graded mesh). The thesis aims to describe

quantitatively the impact of stub-loading and changing link line impedances on

the accuracy, thus offering a better insight into errors due to numerical dispersion

when modelling arbitrary configurations.

The combination of these two objectives, namely a) theoretical foundation and

b) characterization, opens up the possibility of further advances in the derivation

of optimal condensed nodes. Given the theoretical instrument to describe new

nodes and a systematic procedure to ‘measure’ their accuracy and performance,

the development of advanced nodes can be directed to achieve the most suitable

solution for a given problem. Some of the possible solutions are addressed in

this thesis, many others hitherto unexplored are limited only by a researchers

imagination.

1.3 Outline of the thesis

This thesis is divided into four parts.

Part One introduces a unified formulation for the calculation of TLM parameters

and the theoretical foundation of a general symmetrical condensed node (GSCN).

The first chapter of this part (Chapter 2) introduces general TLM constitutive

relations, which together with a time synchronism condition represent a basic sys-

tem of equations for deriving the parameters of TLM schemes. The six degrees

of freedom found in the definition of a time-domain TLM condensed node scheme

are used in the later chapters to derive novel nodes. Chapter 3 treats scattering

in symmetrical condensed nodes. A detailed derivation of the scattering equations

for very general nodes is presented, based on established physical principles. In

Chapter 4 a bijective one-to-one mapping between voltage pulses and field com-

ponents is introduced to enable the derivation of the scattering equations directly

from Maxwell’s equations by using central differencing and averaging – thus offer-

ing a rigorous theoretical foundation for any TLM node derivable from the general

symmetrical condensed node (GSCN).
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Part Two concentrates on the derivation of a stubless condensed node, referred

to as the symmetrical super-condensed node (SSCN). The first chapter of this

part (Chapter 5) describes the derivation and implementation of the SSCN for

modelling arbitrary materials on a variable (graded) mesh. Chapter 6 shows

efficient algorithms for implementation of the scattering procedure in the TLM

schemes based on the GSCN, with particular emphasis on the symmetrical super-

condensed node.

Part Three treats numerical dispersion in TLM symmetrical condensed node

schemes. The first chapter of this part (Chapter 7) gives the basic concepts in

deriving dispersion relations in algebraic form from the general dispersion relation

of eigenvalue form. Analytical expansion of this relation for the SSCN and other

available nodes for modelling arbitrary media with variable grading and arbitrary

time steps is presented. The following chapter (Chapter 8) presents a quantita-

tive analysis and comparison of the propagation error due to numerical dispersion

in different TLM schemes and shows possible ways of extracting the information

available from the dispersion relations.

In Part Four, the features of the GSCN and results of dispersion analysis are com-

bined in order to develop more advanced nodes. Chapter 9 introduces possible

node configurations with improved dispersion characteristics, namely a matched

impedance SCN (MSCN) and an adaptable SCN (ASCN) and compares their per-

formance to those of other more traditional nodes. Chapter 10 offers general

remarks on the results achieved in the development and characterization of novel

nodes, directions for further investigations and conclusions.
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Chapter 2 Unified formulation of TLM parameters

2.1 Introduction

The TLM method was originally developed as a two-dimensional (2D) method

based on transmission lines interconnected at shunt nodes [7]. Generalization of

the shunt node to allow modelling of inhomogeneous and lossy materials and the

development of another complementary 2D structure known as the series node

were described in [11, 12]. The combination of the 2D shunt and series nodes

into a three-dimensional (3D) structure led to the development of a 3D expanded

node [13]. The theory and applications of these schemes were reviewed in [14].

The topology of the TLM scheme with the expanded node is similar to that of the

finite difference time-domain (FDTD) scheme of Yee [15]. The advantage of the

TLM expanded node scheme over the FDTD method is that in TLM three of the

six field components are available at each scattering point, rather than one which

is case in FDTD modelling. However, this is offset by the use of twice as many

variables in TLM than in FDTD.

The main disadvantage of the TLM expanded node and the FDTD method is the

complicated topology of the computational cell [9]. The scattering points where

different field components are conveniently calculated are spatially separated and

they are not updated at the same time. This makes it difficult and liable to error to

model arbitrary mixed boundaries and interfaces between different materials [5].

The implementation of variable mesh grading is also not easy.

These difficulties with the TLM expanded node led to the development of a con-

densed node structure [16, 17], referred to as the asymmetrical condensed node

(ACN), having the advantage of performing the scattering operation at one point

of space. All of the field components can be also evaluated at one point in space

and at the same time. The boundary conditions can be applied at the node or

more elegantly halfway between nodes. As in the expanded node, however, an

asymmetry remains — depending upon the direction of approach, the first con-

6



2 Unified formulation of TLM parameters 7

nection in the node is either shunt or series. It means that boundaries viewed in

one direction have slightly different properties when viewed in another, especially

at high frequencies.

To overcome these difficulties, P. B. Johns developed a symmetrical condensed

node [9]. It retains the advantages of condensed scattering and of calculating all

field components at one point in space, making it easy to describe boundaries and

inhomogeneous media, but it eliminates the asymmetry and cumbersome arith-

metics experienced in the asymmetrical node. The detailed theory and applica-

tions of the SCN TLM can be found in [6] and it is also the topic of this thesis.

Developments in both 2D and 3D TLM schemes, based on varying the charac-

teristic impedance of link lines and introducing hybrid nodes [18, 19, 20], have

resulted in a more efficient implementation of the variable graded mesh and

a better modelling of general materials, compared to the original nodes. Re-

cently, frequency-domain (FD) TLM schemes for efficiently solving steady-state

field problems [21, 22] have been developed from similar principles.

This chapter presents a unified approach to the derivation of TLM node parameters

which can be used for all existing schemes. The rationale behind it is to unify all

these developments into a general formulation of TLM, in a manner which does

not only link existing methods, but also gives directions for further developments.

Using this unified approach, detailed derivation of the parameters for the 3D time-

domain schemes is performed, followed by the derivation of the parameters for the

2D TLM and the frequency-domain TLM schemes.

2.2 Configuration of three-dimensional TLM nodes

Figure 2.1 depicts a block of medium (cell) modelled by (a) expanded node, (b)

asymmetrical condensed node and (c) symmetrical condensed node. It can be seen

that three series circuits of transmission lines, residing on the cell’s boundaries in

the expanded node (Figure 2.1a) are moved towards the centre of the cell in the

condensed nodes (Figure 2.1b,c). The placement of the transmission lines in the

ACN can be considered to be at an infinitesimally close distance to the cell’s

centre, but not exactly at the centre. As a consequence of this, the shunt and

series connections are still separated in the ACN, allowing for an equivalent electric

circuit to be constructed for the purpose of deriving the scattering matrix [16], but

causing asymmetry of the node. By further moving the transmission lines directly

into the centre of the cell, the separate shunt and series connections merge into a
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a)  Expanded node

b)  Asymmetrical condensed 
            node (ACN)

c)  Symmetrical condensed
           node (SCN)

Figure 2.1 Three-dimensional TLM nodes
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single structure, defined as a 3D symmetrical condensed node, where the physical

connection of transmission-lines is undefined (shaded region on Figure 2.1c) and

for which a simple equivalent electric circuit no longer exists. In turn, symmetry is

established, allowing the identical modelling of the propagation of waves regardless

of their direction of incidence.

Another view of the evolution from the expanded to the condensed node is depicted

in Figure 2.2. Here, transmission lines are presented by single lines with the

polarisation in space determined by the direction of an arrow. The shunt and

series connections are represented by the spheres with dark and light shadings,

respectively. Six spheres can be noticed in the expanded node and in the ACN

from Figures 2.2a,b emphasizing the fact that shunt and series scattering points

are still distinguishable. They eventually merge into a single sphere in Figure 2.2c,

which can be regarded as a combination of shunt- and series-circuits into a new

‘super-network’, the symmetrical condensed node.

The advantage in the topology of condensed node modelling can be clearly seen

from Figures 2.1 and 2.2 as there exists a full correspondence between a single node

and a block of medium modelled by the node. In the expanded node, transmission-

lines are placed at the cell’s boundaries, therefore the physical parameters of the

lines are shared between adjacent cells. This means that it is necessary to introduce

an averaging of the parameters of the link lines and stubs at the discontinuities,

which is easily avoided in condensed schemes by placing discontinuities halfway

between nodes. Note however, that apart from the different topology, on average,

the identical number of link lines of the same length is used per cell in all three

cases.

In order to accommodate a graded mesh and local increase in electromagnetic

parameters, stubs can be loaded into the TLM nodes. In all cases, a maximum of

three open-circuit stubs (one for each direction) and three short-circuit stubs are

used to account for, respectively, extra capacitance and inductance [9, 13, 16]. The

losses can be modelled in a similar manner, by using matched stubs (see § 2.3.5).

A common approach for calculating node parameters in TLM schemes is based on

equating total capacitance and inductance contributed by the link and stub lines of

a TLM cell to the corresponding parameters of the block of modelled medium [6].

It is clear from the topology of the expanded and condensed nodes depicted in

Figures 2.1 and 2.2 that even though these are different geometrical structures,

they contain the same number of link lines and stubs per cell. Therefore, their

scattering and numerical characteristics, as well as the implementation in a TLM
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a)  Expanded node

b)  Asymmetrical condensed 
            node (ACN)

c)  Symmetrical condensed
           node (SCN)

shunt 

series 

Connections:

Figure 2.2 Another view of three-dimensional TLM nodes
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mesh differ, but their link line and stub parameters for a given medium and given

node dimensions must be identical.

The following derivation of the link and stub parameters of 3D TLM schemes

will be performed in respect to the configuration of SCN, but applies also for the

schemes based on the other two types of 3D nodes.

2.3 General formulation of TLM parameters

2.3.1 Notation

The basic notation of the voltage pulses and other physical quantities attributed

to a TLM node is introduced as follows.

Every voltage pulse attributed to the particular transmission-line can be regarded

as an incident (superscript i), reflected (superscript r) or total voltage (no su-

perscript). Total voltage is defined as sum of incident and reflected voltage

pulses: V = V i + V r. Similarly total current on a transmission line is defined

as I = (V i − V r)/Z where Z is the characteristic impedance of the line.

A voltage pulse on the negative side of the node (assuming the origin of coordinates

at the centre of the node) along an i-directed j-polarized transmission line is

denoted as Vinj, whereas a voltage on the positive side of the same line is given

as Vipj. Dummy indices i, j should be replaced by x, y, z, where i, j ∈ {x, y, z}
and i �= j. The notation of the twelve link line voltages of the SCN is depicted

in Figure 2.3. An identical indexing scheme can be used for the total currents on

transmission-lines.

Voltage pulses on the open and short-circuit stubs will be denoted as Voi and Vsi,

respectively, whereas the voltages on ‘electric’ and ‘magnetic’ matched stubs are

denoted as Vei and Vmi, respectively. The first subscript shows the type of the

stub. The second subscript i should be replaced by x, y or z depending on which

component of the field stubs are contributing to.

Additional notation is introduced for the parameters of each transmission line.

The distributed capacitance and inductance of an i-directed, j-polarized link line

is denoted by indices according to the direction and the polarization as Cij and

Lij. Similarly, the characteristic impedance and admittance of such a line are

referred to as Zij and Yij, where i, j ∈ {x, y, z} and i �= j.
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x

y

z

V

V

V

V

V

V

V

V

V

V

V

V

ypz

ypx

zny

znx

xpz

xpy

ynx

ynz

zpy

zpx

xnz

xny

Figure 2.3 Symmetrical condensed node (SCN)

The total capacitance of an open-circuit stub and the total inductance of a short-

circuit stub, contributing to the cell’s capacitance and inductance, respectively,

in the i direction, are denoted as Ci
o and Li

s. The characteristic admittance and

impedance of those stubs are given as Yoi and Zsi, respectively.

In some special cases, when parameters of link lines differ with respect to the

node centre, they will be indexed similarly as voltage pulses, with an extra n or p

subscript, depending on the position relative to the centre. For example Zxny is

the characteristic impedance of the x-directed y-polarized half link-line positioned

on the negative side of the node, and the corresponding total voltage and total

current on this line are Vxny and Ixny, respectively.

2.3.2 Balanced and unbalanced nodes

The link lines connected to a symmetrical condensed node may have up to twelve

different values of characteristic impedance — if we allow for the parameters of an

i-directed j-polarized link line to be different on different sides of the node. Such a

node will be referred to as an unbalanced node which, intuitively, is not very physi-



2 Unified formulation of TLM parameters 13

a) b)

1
Z

2
Z

1
Z

2
Z

node centre
discontinuity

1
Z

1
Z

1
Z

2
Z

boundary

x x+1 x x+1

balanced unbalanced
node centre

Figure 2.4 Unbalanced nodes a) in unbounded space b) at the boundary

cal for modelling wave propagation along continuous unbounded space, since there

are unnecessary reflections of voltage pulses on interfaces between the adjacent

nodes due to an impedance discontinuity, as shown in Figure 2.4a. Furthermore,

it is computationally inefficient to perform scattering at node boundaries as well as

at the node centre. Following this intuitive argument, which will be backed further

by evidence presented in later chapters, it is assumed that only balanced nodes,

satisfying the condition Zinj = Zipj = Zij , are suitable for describing propagation

through space.

However, an unbalanced node, with the link lines differing with respect to the

node centre, can be implemented at the edge of the modelling space for describing

infinitesimally adjustable boundaries [23], as shown in Figure 2.4b. Hence, unbal-

anced nodes will be included into the study when deriving the scattering properties

in Chapter 3, but only balanced nodes, with up to six arbitrary values of link line

impedances (one for each direction and polarization), will be considered for the

formulation of parameters of a general TLM scheme.

2.3.3 General TLM constitutive relations

A general system of equations used to derive parameters of TLM nodes is described

here. The definitions that follow refer to a cuboid cell of space with arbitrary

dimensions ∆x, ∆y, ∆z and material properties ε, µ defined as diagonal tensors

modelling symmetric anisotropic media:

ε =

⎡
⎢⎢⎣
εx 0 0

0 εy 0

0 0 εz

⎤
⎥⎥⎦ = ε0

⎡
⎢⎢⎣
εrx 0 0

0 εry 0

0 0 εrz

⎤
⎥⎥⎦ (2.1)

µ =

⎡
⎢⎢⎣
µx 0 0

0 µy 0

0 0 µz

⎤
⎥⎥⎦ = µ0

⎡
⎢⎢⎣
µrx 0 0

0 µry 0

0 0 µrz

⎤
⎥⎥⎦ (2.2)
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The total capacitance of the block of space can be calculated from the generalized

definition of capacitance:

C =
Q

V
=

∫
S
ε E · dS∫ −

+
E · dl

(2.3)

giving values for the three principal directions as [18]:

Cx
t = εx

∆y∆z
∆x

(2.4)

Cy
t = εy

∆z∆x
∆y

(2.5)

Cz
t = εz

∆x∆y
∆z

(2.6)

Similarly, the total inductance of the block of space can be calculated from:

L =
Φ
I

=

∫
S
µ H · dS∮
H · dl

(2.7)

giving values for the three principal directions as [18]:

Lx
t = µx

∆y∆z
∆x

(2.8)

Ly
t = µy

∆z∆x
∆y

(2.9)

Lz
t = µz

∆x∆y
∆z

(2.10)

Equations (2.4)–(2.6) and (2.8)–(2.10) can be expressed in a compact form as:

Ct = ε ∆ (2.11)

Lt = µ ∆ (2.12)

where vectors Ct, Lt and ∆ are defined as:

Ct =

⎡
⎢⎢⎣
Cx

t

Cy
t

Cz
t

⎤
⎥⎥⎦ Lt =

⎡
⎢⎢⎣
Lx

t

Ly
t

Lz
t

⎤
⎥⎥⎦ ∆ =

⎡
⎢⎢⎣

∆y∆z/∆x

∆z∆x/∆y

∆x∆y/∆z

⎤
⎥⎥⎦

Vectors �Ct, �Lt represent total capacitance and inductance of the modelled block

of medium which in TLM has to be supplied by the capacitance and inductance
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Figure 2.5 Modelling capacitance in the y-direction

of the link lines and stubs of a node. Equations (2.11) and (2.12) must hold for

any TLM node, constructed by an arbitrary combination of link lines and stubs,

and they are therefore referred to as the general TLM constitutive relations. Here

we examine the derivation of the parameters of 3D TLM nodes described in the

previous section, using the notation for the SCN introduced in § 2.3.1.

The total capacitance in, for example, the y-direction, modelled by a symmetrical

condensed node is illustrated in Figure 2.5. It can be seen from Figure 2.5 that

the cell’s total capacitance Cy
t in the y-direction is represented by the distributed

capacitance of two y-polarized transmission lines of length ∆x and ∆z and the

capacitance of an open-circuit stub. Thus, it follows that:

Cy
t = Cxy∆x+ Czy∆z + Cy

o (2.13)

The total inductance in, for example, the z-direction, modelled by a symmetrical

condensed node is illustrated in Figure 2.6. It can be seen from Figure 2.6 that

the cell’s total inductance Lz
t in the z-direction is represented by the distributed

inductance of two link lines of length ∆x and ∆y contributing to the z-component

of magnetic field, plus the inductance of a short-circuit stub. Thus, it follows that:

Lz
t = Lxy∆x+ Lyx∆y + Lz

s (2.14)
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Figure 2.6 Modelling inductance in the z-direction

Examining the other possible directions we can also write:

Cx
t = Czx∆z + Cyx∆y + Cx

o (2.15)

Cz
t = Cyz∆y + Cxz∆x+ Cz

o (2.16)

Lx
t = Lyz∆y + Lzy∆z + Lx

s (2.17)

Ly
t = Lzx∆z + Lxz∆x+ Ly

s (2.18)

Now, inserting expressions for the total cell’s capacitance and inductance con-

tributed by the link and stub lines of a TLM node, given by (2.13)–(2.18), into

the general TLM constitutive relations (2.11) and (2.12), it follows that:

Cyx ∆y + Czx ∆z + C x
o = εx

∆y∆z
∆x

(2.19)

Czy ∆z + Cxy ∆x + C y
o = εy

∆z∆x
∆y

(2.20)

Cxz ∆x + Cyz ∆y + C z
o = εz

∆x∆y
∆z

(2.21)

Lyz ∆y + Lzy ∆z + L x
s = µx

∆y∆z
∆x

(2.22)

Lzx ∆z + Lxz ∆x + L y
s = µy

∆z∆x
∆y

(2.23)

Lxy ∆x + Lyx ∆y + L z
s = µz

∆x∆y
∆z

(2.24)
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The six equations (2.19)–(2.24) represent the basis for the correct modelling of

the medium using a generally graded TLM mesh using anyone of the 3D nodes.

These equations contain eighteen parameters to be determined: six distributed

capacitances and six distributed inductances of link lines, in the form Cij and Lij ,

three total capacitances of the open-circuit stubs, Ci
o, and three total inductances

of the short-circuit stubs Li
s. Therefore, there are twelve degrees of freedom in the

determination of the parameters of link and stub lines in a 3D node.

In time-domain (TD) TLM schemes, time synchronism must be maintained in

the mesh, i.e. pulses must arrive at the centre of the nodes simultaneously, af-

ter a constant propagation delay, or time step, ∆t. The velocity of propagation

along, for example an x-directed y-polarized transmission line with the distributed

capacitance Cxy and inductance Lxy is determined by:

vxy =
1√

CxyLxy
(2.25)

On the other hand, pulses must travel the node distance ∆x in time ∆t, i.e.:

vxy =
∆x
∆t

(2.26)

Therefore, combining (2.25) with (2.26), the time synchronism is imposed for the

xy line as:

∆t = ∆x
√
CxyLxy (2.27)

Similarly we get this condition for other link lines as:

∆t = ∆x
√
CxzLxz (2.28)

∆t = ∆y
√
CyzLyz (2.29)

∆t = ∆y
√
CyxLyx (2.30)

∆t = ∆z
√
CzxLzx (2.31)

∆t = ∆z
√
CzyLzy (2.32)

With these six extra conditions, six degrees of freedom are still left in solving

equations (2.19)–(2.24). Based on this formulation and by applying additional

constraints, different versions of stub-loaded and hybrid 3D nodes can be derived.

2.3.4 Compact notation

The six general constitutive relations for the 3D nodes given by (2.19)–(2.24) and

the six time synchronism conditions given by (2.27)–(2.32) can be written in a

compact form by making use of dummy indices i, j, k.
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The six expressions (2.19)–(2.24) can be summarized as:

Cik∆i+ Cjk∆j + Ck
o = εk

∆i∆j
∆k

(2.33)

Lij∆i+ Lji∆j + Lk
s = µk

∆i∆j
∆k

(2.34)

where indices i, j, k can take all possible combinations of x, y, z without repetition,

or in strict mathematic notation: i, j, k ∈ {x, y, z} and i �= j, k. The six time

synchronism conditions (2.27)–(2.32) can be written as:

∆t = ∆i
√
CijLij (2.35)

where i, j ∈ {x, y, z} and i �= j.

This compact notation with dummy indices will be used throughout this thesis,

and the system of twelve equations determined by the generic formulae (2.33)–

(2.35) will be referred to as the general system of equations describing the param-

eters of a TLM time-domain scheme.

The system of equations (2.33)–(2.35) can be also rewritten in terms of the charac-

teristic impedances and admittances of the link lines and stubs. The characteristic

impedance and admittance of an i-directed j-polarized line are defined as:

Zij =
1
Yij

=

√
Lij

Cij
(2.36)

Combining the time synchronism condition (2.35) with expressions (2.36), the

characteristic impedance and admittance of link lines can be written as function

of the time step:

Zij =
Lij∆i
∆t

(2.37)

Yij =
Cij∆i

∆t
(2.38)

In stubs, pulses have to make a round trip during the time step ∆t, thus requiring

the effective transit time along the length of a stub to be equal to ∆t/2. Therefore,

the characteristic impedance of short-circuit stubs and the characteristic admit-

tance of open-circuit stubs are defined, respectively as [6]:

Zsk =
2Lk

s

∆t
(2.39)

Yok =
2Ck

o

∆t
(2.40)

where k ∈ {x, y, z}.
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Dividing the system of equations (2.33)–(2.34) by ∆t and using formulae (2.37)–

(2.40), we obtain:

Yik + Yjk +
Yok

2
= εk

∆i∆j
∆k∆t

(2.41)

Zij + Zji +
Zsk

2
= µk

∆i∆j
∆k∆t

(2.42)

The system of equations (2.41)–(2.42) effectively unifies the time synchronism con-

ditions (2.35) and the physical description of the model, based on the capacitances

and inductances, given by (2.33)–(2.34). It is expressed directly in terms of the

characteristics impedances and admittances of transmission-lines, the quantities

which describe scattering and propagation in a TLM mesh. The two systems of

equations, one described by (2.33)–(2.35) and another described by (2.41)–(2.42),

are equivalent and either can be used in the derivation of the link and stub pa-

rameters for time-domain TLM schemes.

2.3.5 Modelling of losses

Losses can be incorporated in a TLM model by introducing lossy stubs into the

scattering points [6]. The lossy stubs may be viewed as infinitely long, or equiv-

alently, as terminated (matched) by their own characteristic impedance. Hence,

they are often referred to as matched stubs. The matched stubs can be used to

model both the ‘electric’ and ‘magnetic’ losses. Effectively, shunt conductances

G can be introduced to the 2D shunt nodes to model electric conductivity σe,

whereas series resistance R can be introduced to the 2D series nodes to model

‘magnetic’ conductivity σm [24, 25]. In 3D modelling with the expanded node,

matched stubs, one per direction, are introduced at the shunt and series connec-

tions [13]. A similar procedure can be employed for the ACN, as the shunt and

series connections are still distinct. In the SCN, the presence of matched stubs is

incorporated directly into the scattering matrix [24, 25]. Matched stubs can be

viewed as coupling directly with appropriate field components.

Given the effective electric and ‘magnetic’ conductivities σek and σmk in the k

direction, lossy elements for the 3D time-domain TLM are defined as [24, 25]:

Gek = σek
∆i∆j
∆k

(2.43)

Rmk = σmk
∆i∆j
∆k

(2.44)

Lossy elements serve merely to model the dissipation of energy; they do not in-

terfere directly with the wave propagation velocity. Hence, the general system of
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equations used to determine parameters of link and stub lines, given by (2.33)–

(2.34) is not affected by the presence of matched stubs.

In frequency-domain TLM, losses are included directly into the TLM constitutive

relations by using complex parameters defined as [26]:

εk = ε′k − jσek

ω
(2.45)

µk = µ′k −
jσmk

ω
(2.46)

where ε′k, µ
′
k represent the real parts of the complex permittivity and permeability,

respectively. The losses can be modelled directly by lossy link lines, hence the

capacitance and inductance Cij and Lij in equations (2.33)–(2.34) are replaced

by terms Cij − jGij/ω and Lij − jRij/ω, respectively, where Gij , Rij are the

distributed shunt and series losses of the related link lines.

2.4 Derivation of existing TLM schemes

2.4.1 Stub-loaded nodes

As found in § 2.3.3, to solve the general system of equations for the TLM param-

eters, six additional constraints have to be imposed. In the case of the traditional

stub-loaded nodes [9, 13], these constraints are easily found in the requirement

that all six link lines have the same characteristic impedances equal to the intrin-

sic impedance of the background medium (usually free-space): Z0 =
√
µ0/ε0.

Therefore, six extra equations of the form Zij = Z0 (or equivalently Yij = Y0 =

1/Z0) are introduced into the system of equations (2.41)–(2.42), reducing it into:

2Y0 +
Yok

2
= εk

∆i∆j
∆k∆t

(2.47)

2Z0 +
Zsk

2
= µk

∆i∆j
∆k∆t

(2.48)

Since the impedance of the link lines is set by the background medium, the only

parameters to be determined are Yok and Zsk. These are found from (2.47)–(2.48)

as:

Yok = 2Y0

(
εrk

c∆t
∆i∆j
∆k

− 2
)

(2.49)

Zsk = 2Z0

(
µrk

c∆t
∆i∆j
∆k

− 2
)

(2.50)
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where c = 1/
√
µ0ε0, the wave velocity in the background medium (usually the

speed of light in free-space). Replacing dummy indices by x, y and z in equa-

tions (2.49)–(2.50) they produce expressions equivalent to those for the expanded

node and the SCN obtained in [6, 27, 28].

For stability, it is necessary to ensure that all stubs represent real positive com-

ponent values [6]. Hence, the maximum time-step for the node can be determined

from (2.49)–(2.50) by demanding that Yok and Zsk are non-negative, giving:

∆t ≤ εrk∆i∆j
2c∆k

(2.51)

∆t ≤ µrk∆i∆j
2c∆k

(2.52)

where i, j, k ∈ {x, y, z} and i �= j, k.

For a uniform mesh (∆i = ∆j = ∆k = ∆l) and air as the background medium

(εrk = µrk = 1), the maximum time step reduces to the well-known relation [9]:

∆tmax =
∆l
2c

(2.53)

When grading is introduced, for example by shrinking one node dimension, say

∆x, where ∆x < ∆y and ∆y = ∆z, the maximum time step is determined by:

∆tmax =
∆x
2c

(2.54)

i.e. it is related to the smallest node dimension ∆x. However, in another exam-

ple, by expanding one node dimension, say ∆x > ∆y and ∆y = ∆z = ∆l, the

maximum time step is determined by:

∆tmax =
∆l
2c

· ∆l
∆x

(2.55)

In other words, the time step is no longer related to the smallest node dimension,

in this case ∆l, but has to be further decreased by the factor ∆x/∆l which is in

fact the ratio between the largest and the smallest dimension of the node. The

implications of this are that, in a large problem where large ratios are used to

minimize storage, the resulting time-step may be very small, thus requiring long

computational runs. Benefits resulting from reductions in storage using a graded

mesh are diminished by the corresponding increases in run time.

It should be pointed out that in a complex mesh consisting of regions with dif-

ferent gradings (non-uniformly graded mesh), the maximum time step has to be

calculated for each region and the smallest one has to be used as the maximum

time step for the entire mesh.
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2.4.2 Hybrid nodes

The difficulties caused by the generally small time step in a graded mesh with stub-

loaded nodes can be overcome if the condition inherent in the SCN development

– that all link lines have the same characteristic impedance – is relaxed. The

idea was explored in [29] and implemented for the expanded node in [30]. Its

implementation for the SCN, referred to as the hybrid symmetrical condensed

node (HSCN) was described in [19, 31, 32].

The HSCN consists of link lines that model all required inductance at the node,

and hence short-circuit stubs are removed from the node. This is achieved by

allowing the link lines which model different components of the magnetic field to

have different values. The absence of short-circuit stubs sets three conditions in

the form:

Zsk = 0 (2.56)

where k ∈ {x, y, z}. The requirement that the impedances of the link lines mod-

elling the same magnetic field component are equal is given by another three

conditions in the form:

Zij = Zji (2.57)

for i, j ∈ {x, y, z} and i �= j. Inserting the conditions (2.56) and (2.57) into the

generic equation (2.42), we obtain the characteristic impedances of the link lines

as:

Zij = Zji =
µk∆i∆j
2∆k∆t

= Z0
µrk∆i∆j
2c∆t∆k

(2.58)

Three sets of link lines are described by this equation if i, j are replaced by x, y, z

and i �= j. For convenience, the characteristic admittances of link lines are also

written as:

Yij = Yji = Y0
2c∆t∆k
µrk∆i∆j

(2.59)

Inserting this into equation (2.41) by using an appropriate shifting of dummy

indices, the characteristic admittances of the open circuit stubs are obtained, after

simple algebra, as:

Yok = Y0

[
2εrk∆i∆j
c∆t∆k

− 4c∆t
∆k

(
∆i

µri∆j
+

∆j
µrj∆i

)]
(2.60)

Replacing dummy indices by x, y and z in equations (2.59)–(2.60) and taking an

isotropic medium (εrk = εr, µrk = µr), they produce expressions equivalent to

those obtained in [32].
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Recently, a complementary HSCN was described [20] in which all the required

capacitance is modelled by link lines and short-circuit stubs are used to make up

for the deficit in the inductance. The link lines contributing to the same electric

field component are set to have the same values of the characteristic impedance.

This HSCN is denoted as the Type II HSCN [20], whereas the previously examined

HSCN is referred to as the Type I HSCN.

Six additional constraints imposed on the general system of equations (2.41)–

(2.42) in this case are given as follows. The absence of open-circuit stubs sets

three conditions in the form:

Yok = 0 (2.61)

where k ∈ {x, y, z}. The requirements for the link line characteristic admittances

can be formulated by another three conditions of the form:

Yik = Yjk (2.62)

for i, j, k ∈ {x, y, z} and i �= j, k. Inserting the conditions (2.61) and (2.62) into

the generic equation (2.41), we obtain the characteristic admittances of the link

lines as:

Yik = Yjk =
εk∆i∆j
2∆k∆t

= Y0
εrk∆i∆j
2c∆t∆k

(2.63)

For convenience, the characteristic impedances of link lines are also written as:

Zik = Zjk = Z0
2c∆t∆k
εrk∆i∆j

(2.64)

Inserting this into equation (2.42) by using appropriate shifting of dummy indices,

the characteristic impedances of the short circuit stubs are obtained, after simple

algebra, as:

Zsk = Z0

[
2µrk∆i∆j
c∆t∆k

− 4c∆t
∆k

(
∆i
εri∆j

+
∆j
εrj∆i

)]
(2.65)

The definition of the link lines and stubs in the complementary Type II HSCN

can be also described by using the definition of the Type I HSCN given by (2.59)

and (2.60) and performing the following textual substitutions: Yij → Zik, Yok →
Zsk, Y0 → Z0, µ→ ε and ε→ µ [20].

The maximum time step for the HSCN can be determined in a similar way as for

the stub-loaded nodes, by demanding that parameters of stubs have non-negative
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values. For the Type I HSCN, for example, it is demanded from (2.60) that

Yok ≥ 0, resulting in the definition of the maximum time step given by:

∆t ≤ 1
2c

√
2εrk

1/[µrj(∆i)2] + 1/[µri(∆j)2]
(2.66)

where i, j, k ∈ {x, y, z} and i �= j, k.

For the medium with background properties (εrk = µri = µrj = 1) and with

grading introduced, for example, by expanding one node dimension, say ∆x > ∆y

and ∆y = ∆z, the maximum time step is determined by:

∆tmax =
∆y
2c

(2.67)

i.e. it is related to the smallest node dimension ∆y.

In another example, by shrinking one node dimension, say ∆x, where ∆x < ∆y

and ∆y = ∆z the maximum time step is determined by:

∆tmax =
1
2c

√
2

1/(∆x)2 + 1/(∆y)2
>

∆x
2c

(2.68)

This is always bigger than the time step related to the smallest node dimension,

now ∆x. In a limiting case when ∆x << ∆y we obtain:

∆tmax ≈ ∆x
√

2
2c

(2.69)

After analysing the inequality (2.66) for other possible cases, it is easily found that

for any type of grading, the maximum permissible time-step ∆tmax lies within the

limits:
∆l
2c

≤ ∆tmax <
∆l

√
2

2c
(2.70)

where ∆l is the smallest node dimension. If the time step related to the small-

est node dimension is defined by ∆t0 = ∆l/(2c), inequality (2.70) can also be

expressed as:

∆t0 ≤ ∆tmax < ∆t0
√

2 (2.71)

Practically this means, that in some cases the time step can be chosen to be up

to
√

2 times higher than one related to the smallest node dimension.

So, in comparison with the time step in stub-loaded nodes, the value of the time

step in hybrid nodes is higher and it is neither strictly dependent on the ratio of

the smallest to the biggest node dimension as in the stubbed SCN, nor has it to be

always related to the smallest node dimension. The latter fact has been overlooked
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Figure 2.7 2D TLM nodes. a) Shunt node, b) Series node

in some recent publications, for example in [20]. Even though stability is always

guaranteed when using the time step corresponding to the smallest node dimension

in the hybrid node, it is not the optimal solution, either computationally (longer

run-time) or from the point of accuracy (see Chapter 8).

2.4.3 Two-dimensional nodes

In many applications, one is only interested in studying propagation on a plane,

for which 2D TLM schemes [12] are more efficient than 3D ones. The two basic

structures in 2D TLM are shunt and series nodes, shown in Figure 2.7, each con-

sisting of only two link lines. The derivations that follow are for the shunt version

of the 2D TLM node. By virtue of the duality between electric and magnetic

fields, a similar analysis can be applied to the series node.

Consider the shunt node in Figure 2.7a where only y-polarized link lines exist.

On average, a total of three stubs can be added per node: one open-circuit stub

modelling capacitance in the y-direction, placed at the node centre, and two short-

circuit stubs modelling inductance in the x- and the z-directions, placed at the

interface between nodes [18].

The system of equations given by (2.41)–(2.42) reduces in the case of the 2D shunt

node depicted in Figure 2.7a to:

Yxy + Yzy +
Yoy

2
= εy

∆z∆x
∆y∆t

(2.72)

Zxy +
Zsz

2
= µz

∆x∆y
∆z∆t

(2.73)

Zzy +
Zsx

2
= µx

∆y∆z
∆x∆t

(2.74)
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Since Yxy = 1/Zxy and Yzy = 1/Zzy, there are five unknowns, namely Zxy, Zzy, Yoy,

Zsx and Zsz in the system of three equations given by (2.72)–(2.74). Hence, extra

requirements, similar to those explained already for 3D nodes, can be imposed.

Stub-loaded 2D node

The condition that characteristic impedances of link lines are the same can be

imposed on a 2D shunt-node as [7]:

Zxy = Zzy = Z0

√
2 =

√
2µ0

ε0

which after substituting in (2.72)–(2.74) gives the solution for the parameters of

stubs as:

Yoy = 2Y0

(
εry∆z∆x
c∆t∆y

−
√

2
)

(2.75)

Zsz = 2Z0

(
µrz∆x∆y
c∆t∆z

−
√

2
)

(2.76)

Zsx = 2Z0

(
µrx∆y∆z
c∆t∆x

−
√

2
)

(2.77)

These equations are identical to the expressions given in [18] for an isotropic

medium.

The maximum time step in this node can be determined by demanding that the

parameters of stubs are positive. Note that the third dimension of the block of

space, in this case ∆y, appears in the above solutions. It can have any value

and should be chosen in such a manner as to allow the highest possible value

of the time step. The main disadvantage of this node is that scattering occurs

at the interfaces between nodes, because of the presence of short-circuit stubs.

Further problems are experienced on the interface between two different media

or two different grading schemes, where an averaging of the material and grading

parameters has to be performed [18].

Hybrid 2D node

The existence of the short-circuit stubs on interfaces between two nodes in 2D stub-

loaded nodes can be avoided by using hybrid nodes [18]. The two extra conditions

(no short-circuit stubs) are now given as Zsx = Zsz = 0 and equations (2.72)–

(2.74) yield the following solutions for the admittance of the link lines and the
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open-circuit stub:

Yxy =
Y0

∆y
c∆t∆z
µrz∆x

(2.78)

Yzy =
Y0

∆y
c∆t∆x
µrx∆z

(2.79)

Yoy =
2Y0

∆y

[
εry∆x∆z
c∆t

− c∆t
(

∆z
µrz∆x

+
∆x

µrx∆z

)]
(2.80)

Note that the third dimension ∆y does not play any role in the scattering, since

all the admittances in the node can be normalized to Y0/∆y.

The maximum time step can be determined from (2.80) by demanding that the

admittance of stub is non-negative as:

∆tmax =
1
c

√
εry

1/[(∆x)2µrz] + 1/[(∆z)2µrx]
(2.81)

Distributed 2D node

If the 2D hybrid node operates on the maximum time step defined by (2.81), then

the open-circuit stub can be eliminated, as Yoy = 0. In this way, a 2D distributed

node without stubs is derived [33]. The price of eliminating stubs is paid by

having the time step in this node fixed by the material properties and the node

dimensions.

Since the TLM mesh in the time domain must operate with an identical time

step in all its parts, different grading of the mesh within the same material is not

possible with this node. Modelling of inhomogeneous materials can be achieved

only if the grading ratio is adjusted within different regions to accommodate the

same time step, as shown in [33]. The parameters of the distributed node described

by equations (2.78)–(2.79) and (2.81) reduce to those derived in [33] if one assumes

isotropic material and defines an equivalent mesh parameter as ∆l
√
εµ = ∆t

√
2.

2.4.4 Frequency-domain nodes

Time-domain TLM (TD-TLM) renders Maxwell’s equations discrete in both the

space and time domains. In frequency-domain TLM (FD-TLM), time-harmonic

variations are assumed and hence discretisation in space only is required [34]. As

a consequence the impulse synchronism condition imposed in the TD-TLM, given

by (2.35), is not applicable in the FD-TLM.
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The frequency-domain TLM algorithm can be based on any time-domain TLM

node, for example, the HSCN implemented in [22]. However, the less restrictive

requirements of FD-TLM (no time synchronism required) permits the modeller

to easily avoid the use of stubs. Here, two different FD-TLM schemes based

on condensed nodes without stubs are derived from the general system of equa-

tions (2.33)–(2.34).

FD-TLM node with matching line impedances

In FD-TLM, voltage phasors are multiplied by a complex exponential factor

exp(−jβij∆i), where the phase constant of an i-directed, j-polarized link line,

βij is given by:

βij = ω
√
LijCij (2.82)

Originally, the FD-TLM was developed with the condition that the characteristic

impedances of the link lines are the same and equal to the intrinsic impedance of

an isotropic medium [21], i.e. √
Lij

Cij
= Z =

√
µ

ε

and that the phase constants on each limb are the same for both polarizations,

i.e.

βij = βik

With these conditions, the system of equations (2.33)–(2.34) can be solved in

terms of the phase constants as:

βij = βik =
βm

2∆i
(Sj + Sk − Si) (2.83)

where the medium phase constant is defined as βm = ω
√
µε and Si = ∆j∆k/∆i.

The generalization of this node to include lossy media is given in [26, 34] and

the node parameters in this case can be obtained from equations (2.33)–(2.34)

after modifying them to include the parameters of a lossy medium, in the manner

explained in § 2.3.5.

FD-TLM node with matching phase constants

The condition that the phase constant on each line corresponds to that of the

modelled medium can be expressed by:

βij =
ω

2
√
εjµk
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Substituting this condition in equations (2.33)–(2.34) and using equation (2.82),

the characteristic impedances of link lines can be derived as:

Zij =
∆j
∆k

√
µk

εj
(2.84)

which is equivalent to the solutions given in [35, 36].

The modifications to this node to account for lossy media were shown in [36] and

can be derived from equations (2.33)–(2.34) by following the principles explained

in § 2.3.5.

2.5 Conclusion

In this chapter, a unified formulation for obtaining the link and stub parameters of

TLM nodes was presented and applied in the derivation of all currently available

nodes. It was shown that the general system of equations offers six degrees of

freedom in formulating time-domain TLM schemes, making it possible to derive

nodes with different combinations of stub and link line parameters. The general

system of equations defined here will be used later in this thesis as a starting point

for deriving new, more efficient nodes.



Chapter 3 Scattering in symmetrical condensed

nodes

3.1 Introduction

The scattering procedure represents the core of a TLM algorithm. At each time

step, pulses Vi incident at each node are scattered to produce reflected pulses Vr.

The incident and reflected pulses are connected through Vr = SVi where S is a

scattering matrix dependent on the topology of the node.

A useful feature of the 2D shunt and series nodes is the possibility to represent

a node by an equivalent electrical circuit. The scattering matrix for the node

can then be easily obtained by replacing transmission-lines and incident pulses

by Thevenin equivalent circuits [6]. This is also possible for the 3D nodes where

shunt and series circuit are spatially separated, namely in the expanded and the

asymmetrical condensed node [13, 16]. A simple equivalent lumped circuit for the

symmetrical condensed node cannot be constructed and therefore other methods

must be used for the derivation of the scattering properties.

The scattering matrix for the SCN was originally obtained from Maxwell’s equa-

tions using the concept of charge and energy conservation [9]. This method is

unwieldy as it depends on the solution of non-linear simultaneous equations and

it is not easy to appreciate the underlying physical conditions which have been

imposed. For a general condensed node with arbitrary characteristic impedance

of link lines, considered in this work, the original method of determining the scat-

tering properties becomes very complex for practical use.

A simple method for obtaining scattering equations for symmetrical condensed

nodes was proposed by Naylor and Ait-Saidi in [37]. Three equivalent voltages

(Vx, Vy, Vz) and three equivalent currents (Ix, Iy, Iz) were first obtained from the

‘equivalent’ shunt and series circuits. Voltage pulses reflected into link lines are

then calculated as a suitable combination of these quantities and an incident volt-

age from the opposite side of the line. The method is extremely simple and it

30
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satisfies scattering equations for the stub-loaded and hybrid nodes [37]. However,

the formulation of the method is empirical and the concept of equivalent shunt and

series circuits is inconsistent with the topology of the node. Furthermore, it fails

when determining the scattering in an unbalanced node proposed for modelling

continuously varying boundaries [23] where the characteristic impedances of link

lines can vary with respect to the node centre.

Herring and Christopoulos [38, 39] have proposed a method for obtaining the scat-

tering properties of a TLM node, which is based on the following four physical

principles: conservation of charge and magnetic flux and continuity of the electric

and magnetic fields. A linear system of equations can be constructed from these

principles whose solution leads to the empirical formulae introduced in [37], with-

out a need for using inconsistent equivalent circuits. However, in the case when

the impedances of link lines vary with respect to the node centre [23], it is not easy

to appreciate the conditions imposed for the continuity of electric and magnetic

fields.

An improved methodology for obtaining the scattering matrix of symmetrical con-

densed nodes by applying physical principles on the network of transmission-lines

is proposed here. Equivalent total voltages and equivalent total currents at the

centre of the node, corresponding to the appropriate electric and magnetic field

components, respectively, are defined by averaging total voltages and currents of

link lines using charge and magnetic flux balance conditions. By further exploiting

conservation of the charge and magnetic flux, scattering equations for a general

node are formulated in an elegant manner. This derivation takes into account the

possibility that the impedance of the link lines can be different with respect to

the node centre, in order to describe scattering in the unbalanced nodes needed

for modelling infinitesimally adjustable boundaries [23]. A complete scattering

formulation is presented for the first time in the literature, for a general sym-

metrical condensed node (GSCN) allowing for the possibility of 12 different link

line impedances, 3 open-circuit stubs, 3 short-circuit stubs and 3 electric-loss and

3 magnetic-loss matched stubs.

3.2 Inconsistency in equivalent network representations

In 2D TLM, scattering in a node can be easily determined from an equivalent

Thevenin circuit. Take, for example, a shunt connection of transmission lines

with different characteristic impedance, including an open-circuit stub with char-

acteristic admittance Yoy and a matched electric-loss stub represented by a shunt
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Figure 3.1 a) 2D TLM shunt node. b) Equivalent Thevenin circuit

conductance Gey, as depicted in Figure 3.1a.

Because of the physical connection of the transmission-lines, the total voltage V

on each transmission line at the centre of the node is the same and equal to Vy.

As the total voltage on a line is the sum of an incident and a reflected pulse,

V = V i + V r, the reflected voltage pulse in each line is simply calculated as:

V r = Vy − V i (3.1)

and the only problem to be solved is the calculation of Vy. This can be easily

done by replacing the transmission-lines with the equivalent Thevenin circuits,

each of which has an admittance equal to the characteristic admittance of the

corresponding line and a voltage source equal to 2V i [6]. The equivalent Thevenin

circuit for the shunt node is depicted in Figure 3.1b. The total voltage Vy is

calculated from there as:

Vy = 2
YxnyV

i
xny + YxpyV

i
xpy + YznyV

i
zny + YzpyV

i
zpy + YoyV

i
oy

Yxny + Yxpy + Yzny + Yzpy + Yoy +Gey
(3.2)

and can be used in (3.1) for the calculation of reflected voltages into link and

stub lines. The expression for total voltage Vy given by (3.2) can also be used to

calculate electric field component Ey. By using the analogy between electric field

components and voltage pulses on transmission-lines [6] it follows that:

Ey = − Vy

∆y
(3.3)

In 2D series nodes, transmission-lines with arbitrary characteristic impedances,

including a short-circuit stub with characteristic impedance Zsz and a matched

magnetic-loss stub represented by a series resistance Rmz, are connected as de-

picted in Figure 3.2a.
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Figure 3.2 a) 2D TLM series node. b) Equivalent Thevenin circuit

Because of the physical connection of transmission-lines, the current flowing on

each transmission line at the centre of the node is the same, and can be denoted

by Iz. As the total current on a transmission line is defined as I = (V i − V r)/Z,

and taking into account the polarities of incident voltage pulses, it follows that

I = ±Iz and the reflected voltage pulse in each line is computed as:

V r = V i ∓ ZIz (3.4)

where Z is the impedance of the appropriate transmission line. The computation of

Iz can be easily done by replacing the transmission-lines with equivalent Thevenin

circuits, as before. The equivalent Thevenin circuit for a complete series node is

depicted in Figure 3.2b. The total current Iz is calculated from there as:

Iz = 2
V i

xpy − V i
xny − V i

ypx + V i
ynx − V i

sz

Zxny + Zxpy + Zynx + Zypx + Zsz +Rmz
(3.5)

and can be used in (3.4) for the calculation of reflected voltages into link and

stub lines. The definition of Iz given by equation (3.5) can be also used for

the computation of the magnetic field component Hz. By exploiting the analogy

between magnetic field components and voltage pulses on transmission-lines [6] it

follows that:

Hz =
Iz
∆z

(3.6)

In a 3D symmetrical condensed node, the mapping between field components and

total voltages and currents in the centre of the node is identical to that occurring
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in the 2D nodes described by equations (3.3) and (3.6). However, as simple shunt

or series connections do not exist in the SCN, quantities such as, for example, Vy

and Iz, which are related to Ey and Hz, do not physically represent total voltage

or total current on transmission-lines. They are merely introduced as convenient

average quantities to facilitate computation of the related field components, and

will be referred to as equivalent total voltage and equivalent total current.

Naylor and Ait-Saidi [37] used the shunt network, similar to that depicted in Fig-

ure 3.1, to calculate the equivalent total voltage Vy in the stub-loaded symmetrical

condensed node. The value of the electric field calculated in this way agrees with

that originally obtained by Johns [9] and from this point of view, the decomposi-

tion of the condensed node to equivalent shunt and series networks can be justified.

However, contrary to the 2D model, the total voltage on an individual link line

of the 3D SCN is not identical to the equivalent total voltage, and subsequently,

the expression for calculating reflected voltage pulses (3.1) is not valid. It is easily

shown, for example, that in the SCN:

V r
xny �= Vy − V i

xny

because the calculation of the reflected voltage pulses must take into account other

transmission lines forming the series circuit [37].

A similar conclusion can be drawn when using the equivalent series network similar

to that shown in Figure 3.2 for computing Iz and subsequently Hz in the SCN.

Even though the value of Hz computed in this way is correct, the reflected voltages

do not obey equation (3.4).

Therefore, it is clear that the decomposition of the SCN into equivalent shunt

and series circuits leads to correct values of the computed field components, but

does not give correct values for the reflected voltage pulses. As a result of this

inconsistency, in the derivations of the scattering properties of the general SCN

which follow, the centre of the node will be treated as an undefined region in which

the link lines from adjacent nodes converge. Instead of adhoc equivalent circuits,

only established physical principles, i.e. charge and flux conservation and their

balance will be used in the derivation.

Note that the derivation of the scattering equations for balanced symmetrical

condensed nodes is also performed in Chapter 4 but from different principles —

by using central differencing and averaging of Maxwell’s equations.
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3.3 Scattering in the general symmetrical condensed node

3.3.1 Scattering into link lines

The total voltage on an individual transmission-line at a scattering point, e.g. the

node centre, is equal to the sum of the incident and reflected voltages on this

line. In the SCN, it can be easily shown that, for example, for an x-directed,

y-polarized line, the total voltages on link lines from different sides of the node

centre generally differ, e.g. Vxny �= Vxpy, as shown in Figure 3.3a. An equivalent

total voltage in the centre of the node Vy can be introduced as an average value

of Vxny and Vxpy. The averaging can be done by imposing charge balance on the

respective lines, as follows.

The total capacitance associated with one half of a link line may be obtained

from (2.38) and is Yline∆t/2. Using the definition of charge (Q = CV ) the sum

of total charges on the lines in Figure 3.3a lying on the left and right-hand side

of the centre is equal to (VxnyYxny + VxpyYxpy)∆t/2. From the requirement that

charge flow across the line must be continuous the total charge at the centre must

be Vy(Yxny + Yxpy)∆t/2. By equalizing the sum of charges on individual lines to

that in the centre of the node and solving for Vy it follows that:

Vy =
YxnyVxny + YxpyVxpy

Yxny + Yxpy
(3.7)

In the special case when Yxny = Yxpy, this equation simplifies to:

Vy =
Vxny + Vxpy

2
(3.8)

which is a simple averaging of the two total voltages on individual link lines.
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The total current on an individual transmission-line at a scattering point, e.g. the

node centre, can be defined as the difference between the incident and reflected

voltages on this line over the impedance Z of the line. Similarly, as for the equiv-

alent total voltage, an equivalent total current, for example Iz, can be introduced

by averaging Ixny and Ixpy, as shown in Figure 3.3b. The averaging can be done

by imposing magnetic flux balance on the lines, as follows.

The total inductance associated with one half of a link line may be obtained

from (2.37) and is Zline∆t/2. Using the definition for magnetic flux (Φ = LI) the

sum of total flux linkages on the lines shown in Figure 3.3b is equal to (IxpyZxpy −
IxnyZxny)∆t/2. From the requirement that magnetic flux across the line must be

continuous the total flux in the centre must be Iz(Zxny +Zxpy)∆t/2. By equalizing

the sum of flux linkages on individual lines (taking into account the appropriate

orientations of currents) to that in the centre of the node and solving for Iz it

follows that:

Iz =
ZxpyIxpy − ZxnyIxny

Zxny + Zxpy
(3.9)

In the special case when Zxny = Zxpy, this equation simplifies to:

Iz =
Ixpy − Ixny

2
(3.10)

which is simple averaging of the two total currents on the individual link lines,

taking into account their different orientations.

Expressing the total voltage in terms of the incident and reflected voltages and

using the equality
Y1

Y1 + Y2
=

Z2

Z1 + Z2

equations (3.7) and (3.9) can be rewritten as

Vy =
Zxpy

Zxny + Zxpy
(V i

xny + V r
xny) +

Zxny

Zxny + Zxpy
(V i

xpy + V r
xpy) (3.11)

Iz =
1

Zxny + Zxpy
(V i

xpy − V r
xpy) −

1
Zxny + Zxpy

(V i
xny − V r

xny) (3.12)

Multiplying equation (3.12) by Zxny, adding it to equation (3.11), and solving for

V r
xny we derive:

V r
xny = Vy + IzZxny +

Zxny − Zxpy

Zxny + Zxpy
V i

xny −
2Zxny

Zxny + Zxpy
V i

xpy (3.13)
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The reflected voltage pulse on the other side of the node centre, V r
xpy, can be

derived by multiplying equation (3.12) by Zxpy and subtracting it from equa-

tion (3.11). After solving for V r
xpy it follows that:

V r
xpy = Vy − IzZxpy +

Zxpy − Zxny

Zxny + Zxpy
V i

xpy −
2Zxpy

Zxny + Zxpy
V i

xny (3.14)

Scattering equations (3.13) and (3.14) can be rewritten as:

V r
xny = Vy + IzZxny − V i

xpy + hxy (3.15)

V r
xpy = Vy − IzZxpy − V i

xny + hxy (3.16)

where hxy is defined as:

hxy =
Zxny − Zxpy

Zxny + Zxpy

(
V i

xny − V i
xpy

)
(3.17)

Note that for a balanced node, with Zxny = Zxpy = Zxy, it follows that hxy = 0

and equations (3.15)–(3.16) reduce to:

V r
xny = Vy + IzZxy − V i

xpy (3.18)

V r
xpy = Vy − IzZxy − V i

xny (3.19)

The scattering equations (3.18) and (3.19) are in the form which was empirically

introduced by Naylor and Ait-Saidi [37].

To completely formulate the scattering equations given by (3.15) and (3.16), the

equivalent voltage Vy and equivalent current Iz must be expressed in terms of

incident voltages. Before this is done, the scattering into stubs will first be defined.

3.3.2 Scattering into stubs

Stubs are introduced in the condensed node to directly couple with the particular

component of the electric or magnetic field. Therefore, the total voltage on the

open-circuit and electric-loss stubs is by definition determined by the appropriate

electric field component, hence they are identical to the equivalent total voltage

in the centre of the node. For the Ey component, Voy = Vey = Vy, and reflected

voltages are simply determined as:

V r
oy = Vy − V i

oy (3.20)

V r
ey = Vy (3.21)
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Note that there is no incident pulse from the matched electric-loss stub.

Similarly, the total current flowing through the short-circuit and magnetic-loss

stubs is directly determined by the appropriate magnetic field component and

is identical to an equivalent total current. For historical reasons, i.e. to maintain

consistency with the original scattering matrix derived by Johns [9], the orientation

of incident voltages on the short-circuit and magnetic-loss stubs is chosen to be

opposite to the orientation of the total current. Therefore, for the Hz component,

Isz = Imz = −Iz, which expressed in terms of incident and reflected voltages gives:

V i
sz − V r

sz

Zsz
= −Iz

− V r
mz

Rmz
= −Iz

Solving for the reflected voltages gives:

V r
sz = V i

sz + IzZsz (3.22)

V r
mz = IzRmz (3.23)

Note that there is no incident voltage from the matched magnetic-loss stub.

3.3.3 Derivation of equivalent total voltage

The equivalent total voltage Vy can be derived by combining conditions for charge

balance and charge conservation for the transmission-lines coupling with Ey field

component, which are depicted in Figure 3.4a. To avoid inconsistencies in decom-

posing the GSCN into equivalent shunt and series circuits used in [37] the centre

of the node is treated as an undefined region.

Charge conservation applied to all lines contributing to Ey can be written as:

∆Qy =
∑
n

∆Qn,y = 0

Using the expression ∆Qn = In∆t this condition becomes equivalent to the Kirch-

hoff’s First Law: ∑
n

In,y = 0

where In,y are currents on the y-polarized lines. Current on a transmission line

can be represented in terms of incident and reflected voltage as I = Y (V i − V r).
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Figure 3.4 Transmission-lines of the GSCN coupling with a) Ey b) Hz field

components

Therefore, using the notation introduced in § 2.3.1, the charge conservation prin-

ciple applied to the y-direction can be written as:

Yxny(V i
xny − V r

xny) + Yxpy(V i
xpy − V r

xpy) +

Yzny(V i
zny − V r

zny) + Yzpy(V i
zpy − V r

zpy) +

Yoy(V i
oy − V r

oy) −GeyV
r
ey = 0 (3.24)

Note that the incident voltage from the matched (conductivity) stub is considered

zero. Equations for charge conservation similar to (3.24) can be written for each

of the other two coordinate directions.

Using the definition of equivalent total voltage given by (3.7), the voltage pulses

reflected to the x-directed y-polarized link lines can be expressed as:

YxnyV
r
xny + YxpyV

r
xpy = Vy(Yxny + Yxpy) − YxnyV

i
xny − YxpyV

i
xpy (3.25)

By virtue of symmetry, an equation similar to (3.25) can be written for the z-

directed y-polarized lines as:

YznyV
r
zny + YzpyV

r
zpy = Vy(Yzny + Yzpy) − YznyV

i
zny − YzpyV

i
zpy (3.26)

Inserting equations (3.25) and (3.26) into the charge conservation expression given

by (3.24) and making use of the expressions for stubs (3.20) and (3.21), we derive
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the equivalent total voltage Vy solely in terms of incident voltages as:

Vy = 2
YxnyV

i
xny + YxpyV

i
xpy + YznyV

i
zny + YzpyV

i
zpy + YoyV

i
oy

Yxny + Yxpy + Yzny + Yzpy + Yoy +Gey
(3.27)

Note that Vy may also be calculated from the Thevenin equivalent circuit obtained

from Figure 3.4a when the transmission-lines are connected in parallel. This circuit

is misleading, however, since it is inconsistent with the pulses scattered into the

link lines, as discussed in § 3.2.

3.3.4 Derivation of equivalent total current

The equivalent total current Iz can be derived by combining conditions for mag-

netic flux balance and conservation for the transmission-lines coupling with Hz

field component, which are depicted in Figure 3.4b.

For n lines crossing a closed surface, magnetic flux conservation in, for example,

the z-direction, can be written as:

∆Φz =
∑
n

∆Φn,z = 0

Using the expression ∆Φn = Vn∆t this condition becomes equivalent to the Kirch-

hoff’s Second Law: ∑
n

Vn,z = 0

where Vn,z are total voltages on the lines contributing to the magnetic field in the

z-direction. Total voltage on a transmission line can be represented in terms of

incident and reflected voltage as V = V i +V r. Therefore, taking into account the

orientation of the voltages on lines contributing to Hz (Figure 3.4b), the magnetic

flux conservation principle applied to the z-direction can be written as:

(V i
xpy +V r

xpy)−(V i
xny +V r

xny)+(V i
ynx +V r

ynx)−(V i
ypx +V r

ypx)−(V i
sz +V r

sz)−V r
mz = 0

(3.28)

Note that incident voltage from the matched (resistivity) stub is considered zero.

Equations for the flux conservation similar to (3.28) can also be written for the

other two coordinate directions.

Using the definition of equivalent total current given by (3.9), the voltage pulses

reflected to the x-directed y-polarized link lines can be expressed as:

V r
xpy − V r

xny = V i
xpy − V i

xny − Iz(Zxny + Zxpy) (3.29)
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By virtue of symmetry, an equation similar to (3.29) can be written for the y-

directed x-polarized lines as:

V r
ypx − V r

ynx = V i
ypx − V i

ynx + Iz(Zynx + Zypx) (3.30)

Inserting equations (3.29) and (3.30) into the magnetic flux conservation expres-

sion given by (3.28) and making use of the expression for stubs (3.22) and (3.23),

we derive the equivalent total current Iz solely in terms of incident voltages as:

Iz = 2
V i

xpy − V i
xny + V i

ynx − V i
ypx − V i

sz

Zxny + Zxpy + Zynx + Zypx + Zsz +Rmz
(3.31)

Note that Iz may also be calculated from the Thevenin equivalent circuit obtained

when the transmission-lines depicted in Figure 3.4b are connected in series. This

circuit is, however, inconsistent with the scattered pulses, as already indicated.

3.3.5 Scattering equations in compact notation

Using similar procedures to those explained in the previous subsection, the scat-

tering equations relating the voltage pulses on other link lines can be derived,

giving a complete set of equations as:

V r
xny = Vy + IzZxny − V i

xpy + hxy

V r
xpy = Vy − IzZxpy − V i

xny + hxy

V r
ynz = Vz + IxZynz − V i

ypz + hyz

V r
ypz = Vz − IxZypz − V i

ynz + hyz

V r
znx = Vx + IyZznx − V i

zpx + hzx

V r
zpx = Vx − IyZzpx − V i

znx + hzx

V r
zny = Vy − IxZzny − V i

zpy + hzy

V r
zpy = Vy + IxZzpy − V i

zny + hzy

V r
xnz = Vz − IyZxnz − V i

xpz + hxz

V r
xpz = Vz + IyZxpz − V i

xnz + hxz

V r
ynx = Vx − IzZynx − V i

ypx + hyx

V r
ypx = Vx + IzZypx − V i

ynx + hyx
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Using dummy indices i, j, k, these can be written in a compact notation as:

V r
inj = Vj ± IkZinj − V i

ipj + hij (3.32)

V r
ipj = Vj ∓ IkZipj − V i

inj + hij (3.33)

where the upper and lower signs apply, respectively, for indices (i, j, k) ∈ {(x, y, z),
(y, z, x), (z, x, y)} and (i, j, k) ∈ {(x, z, y), (y, x, z), (z, y, x)}.

The equivalent voltage in the i direction, Vi, can be written according to equa-

tion (3.27) as:

Vi = 2
YkniV

i
kni + YkpiV

i
kpi + YjniV

i
jni + YjpiV

i
jpi + YoiV

i
oi

Ykni + Ykpi + Yjni + Yjpi + Yoi +Gei
(3.34)

whereas the equivalent current contributing to the magnetic field in the i direction,

Ii, is given according to equation (3.31) by:

Ii = 2
V i

jpk − V i
jnk + V i

knj − V i
kpj − V i

si

Zjnk + Zjpk + Zknj + Zkpj + Zsi +Rmi
(3.35)

where (i, j, k) ∈ {(x, y, z), (y, z, x), (z, x, y)}. Factor hij is given according to

equation (3.17) as:

hij =
Zinj − Zipj

Zinj + Zipj

(
V i

inj − V i
ipj

)
(3.36)

The voltages reflected to stubs are given, according to equations (3.20)–(3.23) as:

V r
oi = Vi − V i

oi (3.37)

V r
si = IiZsi + V i

si (3.38)

V r
ei = Vi (3.39)

V r
mi = IiRmi (3.40)

where i ∈ {x, y, z}.

Therefore, in this way, the scattering properties of the most general condensed

node, with 12 different link line impedances and 12 different stubs is described in

a rather concise and simple form. This is to be compared with the complexity of

the original definition of the node with arbitrary link lines (without stubs) [23].

It should be pointed out that the derivation of the scattering equations was carried

out without explicitly enforcing the energy conservation condition — the basic
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concept used by Johns [9]. The requirement that energy is conserved in a non-

dissipative medium modelled by the GSCN, can be written as:

∑
n

Yn(V r
n )2 =

∑
n

Yn(V i
n)2 (3.41)

where the summation is carried out for all Yn and Vn, of each transmission line

(link and stub) connected into the node. By removing lossy elements from the

scattering equations (3.32)–(3.40), setting Gei = Rmi = 0, it can be proved by

direct substitution that reflected and incident voltages indeed satisfy the energy

conservation condition (3.41), even for unbalanced nodes with hij �= 0.

3.3.6 Scattering matrix of the GSCN

As far as computational efficiency is concerned, the scattering procedure could

be most efficiently implemented by first computing equivalent total voltages and

currents using equations (3.34) and (3.35) and, in case of unbalanced boundary

nodes, factors hij using equation (3.36). Subsequently, voltage reflected to the

link lines and stubs can be computed by making use of scattering equations (3.32)

and (3.33) for link lines and (3.37) and (3.38) for stubs. The efficient implemen-

tation of the scattering procedure for different nodes will be further discussed in

Chapter 6.

In order to study the numerical characteristics of different symmetrical condensed

node schemes, dispersion relations must be derived. The general dispersion rela-

tion for the symmetrical condensed node schemes was formulated in an implicit

form of an eigenvalue matrix equation [40] which involves the scattering matrix

of the node. Hence, in order to facilitate the dispersion analysis, the scattering

matrix for the general symmetrical condensed node needs also to be formulated.

Since the unbalanced nodes with 12 possible different link line impedances are

not used for modelling of general wave propagation in an unbounded space (apart

from boundaries), only balanced nodes, with Zinj = Zipj = Zij , are considered

in the dispersion analysis in Chapter 7. Therefore, only the scattering matrix for

balanced GSCN is formulated here.

Using the scattering equations (3.32)–(3.40) applied for the GSCN with hij = 0,

we obtain the scattering matrix given in Figure 3.5. The ordering of voltage pulses

within the matrix is carried out with respect to the original notation [9]. Because

there are no incident voltages from matched (lossy) stubs, the matrix S is written

as a 24 × 18 matrix rather than a full 24 × 24 square matrix with zero columns
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19 . . . 24. The elements of the scattering matrix S shown in Figure 3.5 are:

aij = Qj − bij − dij bij = QjĈkj

cij = Qj − bij + dij − 1 dij = PkL̂ij

fk = 2(1 − Pk − Uk) eij = bkj

gj = 2(1 −Qj −Wj) iij = dij

hj = gj − 1 jk = 1 − fk

kij = eij lj = gj

mk = 2Uk nk = −mk

(3.42)

with

Ĉkj =
Ykj

Yij + Ykj
=

Zij

Zij + Zkj
(3.43)

L̂ij =
Zij

Zij + Zji
(3.44)

Qj =

(
1 +

Yoj +Gej

2(Yij + Ykj)

)−1

(3.45)

Pk =

(
1 +

Zsk +Rmk

2(Zij + Zji)

)−1

(3.46)

Wj =
Gej

2(Yij + Ykj) + Yoj +Gej
(3.47)

Uk =
Rmk

2(Zij + Zji) + Zsk +Rmk
(3.48)

where indices i, j, k take all possible combinations of x, y, z.

The matrix S can be written in the following partitioned form, where each sub-

matrix represents one of the matrices outlined in Figure 3.5:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(12×12)
ln S(12×3)

os→ln S(12×3)
ss→ln

S(3×12)
ln→os S(3×3)

os 0(3×3)

S(3×12)
ln→ss 0(3×3) S(3×3)

ss

S(3×12)
ln→el S(3×3)

os→el 0(3×3)

S(3×12)
ln→ml 0(3×3) S(3×3)

ss→ml

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.49)

The indices ln, os, ss, el,ml, indicating the physical purpose of each submatrix,

stand for link line, open-circuit stub, short-circuit stub, electric loss and magnetic
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 ayx byx dyx 0 0 0 0 0 byx 0 −dyx cyx gx 0 0 0 0 iyx

2 bzx azx 0 0 0 dzx 0 0 czx −dzx 0 bzx gx 0 0 0 −izx 0

3 dxy 0 axy bxy 0 0 0 bxy 0 0 cxy −dxy 0 gy 0 0 0 −ixy

4 0 0 bzy azy dzy 0 −dzy czy 0 0 bzy 0 0 gy 0 izy 0 0

5 0 0 0 dyz ayz byz cyz −dyz 0 byz 0 0 0 0 gz −iyz 0 0

6 0 dxz 0 0 bxz axz bxz 0 −dxz cxz 0 0 0 0 gz 0 ixz 0

7 0 0 0 −dyz cyz byz ayz dyz 0 byz 0 0 0 0 gz iyz 0 0

8 0 0 bzy czy −dzy 0 dzy azy 0 0 bzy 0 0 gy 0 −izy 0 0

9 bzx czx 0 0 0 −dzx 0 0 azx dzx 0 bzx gx 0 0 0 izx 0

10 0 −dxz 0 0 bxz cxz bxz 0 dxz axz 0 0 0 0 gz 0 −ixz 0

11 −dxy 0 cxy bxy 0 0 0 bxy 0 0 axy dxy 0 gy 0 0 0 ixy

12 cyx byx −dyx 0 0 0 0 0 byx 0 dyx ayx gx 0 0 0 0 −iyx

13 eyx ezx 0 0 0 0 0 0 ezx 0 0 eyx hx 0 0 0 0 0

14 0 0 exy ezy 0 0 0 ezy 0 0 exy 0 0 hy 0 0 0 0

15 0 0 0 0 eyz exz eyz 0 0 exz 0 0 0 0 hz 0 0 0

16 0 0 0 fx −fx 0 fx −fx 0 0 0 0 0 0 0 jx 0 0

17 0 −fy 0 0 0 fy 0 0 fy −fy 0 0 0 0 0 0 jy 0

18 fz 0 −fz 0 0 0 0 0 0 0 fz −fz 0 0 0 0 0 jz

19 kyx kzx 0 0 0 0 0 0 kzx 0 0 kyx lx 0 0 0 0 0

20 0 0 kxy kzy 0 0 0 kzy 0 0 kxy 0 0 ly 0 0 0 0

21 0 0 0 0 kyz kxz kyz 0 0 kxz 0 0 0 0 lz 0 0 0

22 0 0 0 mx −mx 0 mx −mx 0 0 0 0 0 0 0 nx 0 0

23 0 −my 0 0 0 my 0 0 my −my 0 0 0 0 0 0 ny 0

24 mz 0 −mz 0 0 0 0 0 0 0 mz −mz 0 0 0 0 0 nz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3.5 Scattering matrix of the general symmetrical condensed node (GSCN).

(The first row and column are not part of the matrix. They give the port numbering

for convenience)

loss voltage ports, respectively. The superscripts of the submatrices define their

size. Some partitions can be removed from the matrix if stubs or lossy elements

are not used. For example, if short-circuit stubs and lossy elements are not used

in the node, all partitions with indices ss, el and ml can be removed from S giving

a 15 × 15 matrix.

By removing lossy elements from the node, setting Gej = 0 and Rmk = 0 in (3.45)–

(3.48) and eliminating rows 19 . . . 24 in the scattering matrix S, it can be shown

that the lossless GSCN conserves energy by confirming that ST YS = Y [41],

where Y is diagonal matrix with elements corresponding to the characteristic

admittances of link lines and stubs.

The matrix S has identical structure to the scattering matrix for the stub-loaded
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SCN [6]. By setting the characteristic impedances of link lines equal to the in-

trinsic impedance of the background medium, i.e. letting Zij = Z0, the elements

of the GSCN and the SCN scattering matrix become equal, as expected. If an

homogeneous lossless medium is modelled on a uniform mesh, then stubs and lossy

elements can be eliminated by setting Yoj = Zsk = Gej = Rmk = 0 in (3.45)–(3.48)

and the partition Sln of the matrix S becomes equal to the original 12-port SCN

matrix [9] with the elements aij = cij = 0 and bij = dij = 1/2.

Similarly, by setting Zij = Zji and Zsk = 0, for all combinations of indices i, j, k ∈
{x, y, z}, i �= j, k and eliminating partitions of S related to the short-circuit stubs,

the scattering matrix of the HSCN [19, 20] is derived. The scattering matrix for

the Type II HSCN [20] can be derived from S by setting Yij = Ykj, Yoj = 0 and

eliminating the partitions related to the open-circuit stubs.

Therefore, the scattering matrix of the GSCN unifies all the scattering matri-

ces of the existing stub-loaded and hybrid nodes, described so far in the litera-

ture [6, 9, 19, 20, 25]. It should be pointed out again, that although the scattering

can be expressed concisely in matrix notation, it is not appropriate, as far as com-

putational efficiency is concerned, to implement the scattering procedure in this

form. However, the scattering matrix of the GSCN, presented here, will be used

for dispersion analysis in Part Three of this thesis.



Chapter 4 Derivation of the general SCN from

Maxwell’s equations

4.1 Introduction

In previous chapters, parameters and scattering properties of a most general sym-

metrical condensed node were described. The derivation was performed taking

into account the analogy between field components and voltage pulses, inherent

for the TLM modelling, and hence is referred to as the derivation from the equiv-

alent network model. Scattering properties of the general node were formulated

by using physical principles applied to the propagation of pulses along a network

of transmission lines, thus indirectly relating them to the basic field propagation

principles described by Maxwell’s equations.

In this chapter, TLM method based on the general symmetrical condensed node

will be derived directly from Maxwell’s equations. The mathematical tool which

will be used is based on finite differencing and central averaging, similar to that

used in [42]. Based on this derivation, a direct correspondence between the general

condensed TLM scheme and the finite difference method will be established. So

far in the literature, a similar equivalence has been established for the case of

the basic 12-port SCN modelling free space on a uniform mesh [43] and for the

stub-loaded and hybrid SCN modelling general anisotropic media on a graded

mesh [42]. A field theoretical derivation of TLM from the method of moments for

the case of the basic 12-port SCN was also reported in [44].

The derivation presented here is valid for the balanced general symmetrical con-

densed node (GSCN). It unifies the formulations of previous stub-loaded and

hybrid nodes and provides a rigorous theoretical foundation for all new nodes

derivable from the GSCN.

47
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4.2 Mapping between voltage pulses and field components

In the TLM method both space and time are discretized. This can be used to

express continuous space coordinates (x, y, z) and the time coordinate t by discrete

ones, x̂, ŷ, ẑ and t̂, using the following transformations:

x = x̂∆x; y = ŷ∆y; y = ẑ∆z; (4.1)

t = t̂∆t (4.2)

where ∆x, ∆y and ∆z are the node dimensions in three directions and ∆t is the

time step. For a node located at the point (p, q, r), the discrete coordinates of its

boundaries can be viewed as shifted from the node centre by half of the appropriate

discrete coordinate unit, i.e. : (p ± 1
2 , q, r) for the x-direction, (p, q ± 1

2 , r) for the

y-direction and (p, q, r± 1
2) for the z-direction. The coordinates of the boundaries

and the centre of the node located at (p, q, r) can be denoted in shorthand notation

as:

(p± 1
2 , q, r) = (x±) (p, q ± 1

2 , r) = (y±)

(p, q, r ± 1
2) = (z±) (p, q, r) = (c)

The voltage pulses are considered as being incident to and scattered from the node

centre at the discrete time moments n− 1, n, n+ 1 . . . whereas they arrive at the

node boundaries at the time moments n− 1
2 , n+ 1

2 . . . .

Another fundamental property of TLM is that there exists a direct correspondence

between field components and equivalent voltages and currents on transmission

lines, which can be expressed through the following transformations [6]:

Ei =
−Vi

∆i
Hi =

Ii
∆i

(4.3)

where i ∈ {x, y, z}. Taking into account this mapping, it will be assumed in the

following derivations that Vi and Ii effectively represent electric and magnetic field

components in the i-direction, respectively.

In a general symmetrical condensed node, a total of eighteen voltage pulses travel-

ling along link lines and stubs is used to describe the wave propagating in general

media. Looking at the centre of a node, this means that the six field components

(Ex, Ey, Ez, Hx, Hy, Hz) available at a single point are described by eighteen volt-

age pulses. As the number of variables is different, a bijective one-to-one mapping

between voltage pulses and field components is not possible in the node centre,

as detailed in [44]. However, a bijective mapping is possible between the voltage
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Figure 4.1 Voltage pulses at the boundaries

pulses and field components sampled at the cell’s boundaries. This mapping was

referred to in [44] as cell boundary mapping and will be discussed here applied to

a more general case and with the sampling of field components at time moments

n± 1
2 , as in [42].

Take, for example, an x-directed y-polarized link line in a general case with dif-

ferent impedances with respect to the node centre, Zxny and Zxpy, as depicted in

Figure 4.1. At a discrete time moment n + 1
2 at the boundary (x−) we have a

voltage pulse reflected from the node at the time moment n, described as nV
r
xny

and a voltage pulse which will be incident on the node at the time moment n+ 1,

denoted as n+1V
i
xny.

The total voltage and total current on the boundary (x−) of the xy link line at

the time moment n+ 1
2 , which are equivalent to the field components Ey and Hz,

respectively, can be written as:

n+ 1
2
Vy(x−) = nV

r
xny + n+1V

i
xny (4.4)

n+ 1
2
Iz(x−) =

nV
r
xny − n+1V

i
xny

Zxny
(4.5)

Taking into account (4.3), it becomes obvious that a mapping is established be-

tween voltage pulses nV
r
xny and n+1V

i
xny on the one side and the field components

Ey and Hz on the other. This mapping involves the voltage pulses and charac-

teristic impedance belonging only to the one node, so it is clearly localized in

space as it does not depend on the physical parameters of the adjacent nodes.

The mapping is bijective since the reflected and incident voltage pulses can also

be expressed as combinations of the field components. It follows from (4.4)–(4.5),
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after simple algebraic manipulations, that:

2 · nVxny
r = n+ 1

2
Vy(x−) + n+ 1

2
Iz(x−)Zxny (4.6)

2 · n+1V
i
xny = n+ 1

2
Vy(x−) − n+ 1

2
Iz(x−)Zxny (4.7)

Similarly, by analysing voltage pulses at the boundary (x+), depicted in Figure 4.1,

it follows that:

n+ 1
2
Vy(x+) = nV

r
xpy + n+1V

i
xpy (4.8)

n+ 1
2
Iz(x+) =

−( nV
r
xpy − n+1V

i
xpy)

Zxpy
(4.9)

The voltage pulses can be expressed from (4.8)–(4.9) as combinations of the field

components:

2 · nV
r
xpy = n+ 1

2
Vy(x+) − n+ 1

2
Iz(x+)Zxpy (4.10)

2 · n+1V
i
xpy = n+ 1

2
Vy(x+) + n+ 1

2
Iz(x+)Zxpy (4.11)

Applying the same procedure to the other link lines a set of 24 equations, de-

scribing relationships between voltage pulses reflected and incident at a node and

wave field components at the boundaries, can be constructed. By introducing

mapping of dummy indices as (i, j, k) ∈ {(x, y, z), (y, z, x), (z, x, y)}, the full set

of equations, similar to (4.4)–(4.5) and (4.8)–(4.9), can be written in a compact

form as:

n+ 1
2
Vi(k−) = nV

r
kni + n+1V

i
kni

n+ 1
2
Vi(k+) = nV

r
kpi + n+1V

i
kpi

n+ 1
2
Vi(j−) = nV

r
jni + n+1V

i
jni

n+ 1
2
Vi(j+) = nV

r
jpi + n+1V

i
jpi

n+ 1
2
Ij(k−)Zkni = nV

r
kni − n+1V

i
kni

n+ 1
2
Ij(k+)Zkpi = −(nV r

kpi − n+1V
i
kpi)

n+ 1
2
Ik(j−)Zjni = −(nV r

jni − n+1V
i
jni)

n+ 1
2
Ik(j+)Zjpi = nV

r
jpi − n+1V

i
jpi (4.12)

Combining equations (4.12) in a similar manner to that used before, and shifting

time index of incident voltage pulses one step back in time (n + 1 → n), the
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voltages pulses incident to and reflected from the node at the time step n can be

expressed through the combination of the field components at the boundaries by:

2 · nV
i
kni = n− 1

2
Vi(k−) − n− 1

2
Ij(k−)Zkni

2 · nV
r
kni = n+ 1

2
Vi(k−) + n+ 1

2
Ij(k−)Zkni

2 · nV
i
kpi = n− 1

2
Vi(k+) + n− 1

2
Ij(k+)Zkpi

2 · nV
r
kpi = n+ 1

2
Vi(k+) − n+ 1

2
Ij(k+)Zkpi

2 · nV
i
jni = n− 1

2
Vi(j−) + n− 1

2
Ik(j−)Zjni

2 · nV
r
jni = n+ 1

2
Vi(j−) − n+ 1

2
Ik(j−)Zjni

2 · nV
i
jpi = n− 1

2
Vi(j+) − n− 1

2
Ik(j+)Zjpi

2 · nV
r
jpi = n+ 1

2
Vi(j+) + n+ 1

2
Ik(j+)Zjpi (4.13)

In this way, a full bijective mapping is established between the link line voltage

pulses, incident and reflected at the node at the time moment n, and field compo-

nents at the boundaries, sampled at the time moments n± 1
2 . In order to facilitate

the derivation of the GSCN TLM from Maxwell’s equations by using central differ-

encing and averaging in a manner similar to that performed in [42], we also need

to express voltage pulses incident to and reflected from the stubs in terms of field

components taken at the time moments n+ 1
2 and n− 1

2 . As the directions of the

stub transmission-lines are not defined in space (apart from their polarization),

we assume that all field components related to stubs, sampled at n± 1
2 , are taken

at unknown positions denoted as (u).

For open-circuit stubs, the total current at the end of the stub, taken at the time

moment n+ 1
2 must be zero, therefore

nV
r
oi = n+1V

i
oi (4.14)

where i ∈ {x, y, z}. At the same moment, the total voltage at the open-circuit

stub, equivalent to the electric field in the i-direction, is given by

n+ 1
2
Vi(u) = nV

r
oi + n+1V

i
oi (4.15)

Combining (4.14) and (4.15) voltage pulses can be expressed in terms of the electric

field components taken at time moment n± 1
2 as:

2 · nV
r
oi = n+ 1

2
Vi(u)

2 · nV
i
oi = n− 1

2
Vi(u) (4.16)
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For short-circuit stubs, the total voltage at the end of the stub, taken at the time

moment n+ 1
2 must be zero, therefore

nV
r
si = − n+1V

i
si (4.17)

where i ∈ {x, y, z}. At the same moment, the total current at the short-circuit

stub, equivalent to the magnetic field in the i-direction, is given by

n+ 1
2
Ii(u) = nV

r
si − n+1V

i
si

Zsi
(4.18)

Combining (4.17) and (4.18) voltage pulses can be expressed in terms of the mag-

netic field components taken at n± 1
2 as:

2 · nV
r
si = n+ 1

2
Ii(u)Zsi

2 · nV
i
si = − n− 1

2
Ii(u)Zsi (4.19)

Through equations (4.13), (4.16) and (4.19), all voltage pulses, incident to and

reflected from the node centre, at the time moment n, have been expressed in

terms of field components taken at boundaries at the time moments n± 1
2 .

4.3 Derivation of scattering equations by averaging of fields

The scattering equations for the GSCN are derived in § 3.3.1 by averaging total

voltages and currents on individual link lines, in the distance infinitesimally close

to the node centre at a single moment in time coinciding with the scattering in

the node. Here, as we have established a mapping between the voltage pulses at

the node and field components at the boundaries, the scattering equations will be

derived after averaging the boundary field components to obtain field components

in the centre of the node. Since Maxwell’s equations describe wave propagation in

space and time, averaging must be done by using a mixed space-time coordinate

system [42] defined by:

ξk = k̂ + t̂; ηk = k̂ − t̂

for k ∈ {x, y, z}.

Take for example an x-directed y-polarized link line, which models Ey and Hz field

components, depicted in Figure 4.2. In order to derive the voltage pulse reflected

to the half of the link line denoted by xny, one should average field components

Ey and Hz taken from the boundaries (x+) and (x−). From equation (4.6), it can

be seen that nV
r
xny is described by the sum of n+ 1

2
Vy(x−) and n+ 1

2
Iz(x−)Zxny.
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Figure 4.2 Voltage pulses and fields involved in the derivation of V r
xny

As the offsets in the space and time coordinates have different signs, i.e. (x−)

corresponds to time moment n+ 1
2 , the averaging needed to calculate V r

xny must

be done with respect to the mixed coordinate ηx = x̂− t̂.

When modelling propagation through a continuous homogeneous block of space

(cell), represented by a TLM node with its centre corresponding to the geometrical

centre of the modelled cuboid cell, the only averaging of the fields, which has a

clear physical interpretation, is a simple centred averaging. If this averaging is

carried out with respect to the mixed space-time coordinate ηx then it follows

that:

nVy(c) =
n− 1

2
Vy(x+) + n+ 1

2
Vy(x−)

2
(4.20)

nIz(c) =
n− 1

2
Iz(x+) + n+ 1

2
Iz(x−)

2
(4.21)

Equations (4.20) and (4.21) have a physical interpretation that field components in

the centre of the node are calculated as an arithmetic mean of the field components

on the one side of the link line sampled before the scattering (time moment n− 1
2 ,

position x+), and the field components on the other side of link line sampled after

the scattering (time moment n + 1
2 , position x−). The characteristic impedance

of the link lines are not taken into account here, as they are not directly related

to the field values.

Multiplying (4.21) by Zxny and adding it to (4.20), then expressing the field com-
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ponents at the boundaries by making use of the mappings (4.12), and finally

solving for V r
xny we obtain:

nV
r
xny = nVy(c)+ nIz(c)Zxny − nV

i
xpy

Zxny + Zxpy

2Zxpy
+ n−1V

r
xpy

Zxny − Zxpy

2Zxpy
(4.22)

Because of the appearance of n−1V
r
xpy, this result suggests that the TLM method

is not an one-step finite difference method. However, when imposing the condition

for balanced nodes, Zxny = Zxpy = Zxy, the expression (4.22) simplifies to:

nV
r
xny = nVy(c) + nIz(c)Zxy − nV

i
xpy (4.23)

which is equivalent to (3.18) derived in Chapter 3.

The conclusion which can be drawn here is that only the scattering equations

for balanced nodes are derived properly in this way and that unbalanced nodes

may not model wave propagation correctly. This is in agreement with the intuitive

assumptions made in § 2.3.2 that only balanced nodes should be used for modelling

of waves in general unbounded media1. However, this does not diminish the

validity of unbalanced nodes for modelling adjustable boundaries [23], since in

this case, the node boundaries are placed at different distances from the node

centre, i.e. the node centre does not correspond to the geometrical cell’s centre —

therefore, the simple centred averaging given by (4.20) and (4.21) is not applicable

to the derivation of the scattering equations for such nodes.

In order to derive scattering equation for calculating V r
xpy, a similar procedure to

that used for the derivation of V r
xny can be applied. From equation (4.10), it can be

seen that nV
r
xpy is described by the difference of n+ 1

2
Vy(x+) and n+ 1

2
Iz(x+)Zxpy.

As the offsets in the space and time coordinates have equal signs, i.e. (x+) corre-

sponds to n+ 1
2 , the averaging needed to calculate V r

xpy must be done with respect

to the mixed coordinate ξx = x̂+ t̂. Hence, the averaging of the appropriate field

component can be written as:

nVy(c) =
n− 1

2
Vy(x−) + n+ 1

2
Vy(x+)

2
(4.24)

nIz(c) =
n− 1

2
Iz(x−) + n+ 1

2
Iz(x+)

2
(4.25)

1Several numerical experiments were undertaken to test these findings, and the results have

confirmed the assumptions. TLM simulations performed on the mesh of unbalanced nodes whose

parameters were chosen to satisfy general TLM constitutive relations (2.11) and (2.12), failed to

provide proper solution for the wave propagation in a 3D homogeneous resonator.
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By applying a similar procedure to that used before, and using the condition for

balanced nodes, Zxny = Zxpy = Zxy, we obtain:

nV
r
xpy = nVy(c) − nIz(c)Zxy − nV

i
xny (4.26)

which is equivalent to (3.19) derived in Chapter 3.

By using similar methodology, the pulses reflected to other link lines can be also

derived. Complete scattering equations for the link lines, can be written in the

compact form, by introducing indices (i, j, k) ∈ {(x, y, z), (y, z, x), (z, x, y)}, as:

V r
inj = Vj + IkZij − V i

ipj

V r
ipj = Vj − IkZij − V i

inj

V r
knj = Vj − IiZkj − V i

kpj

V r
kpj = Vj + IiZkj − V i

knj (4.27)

where the time index n and space coordinate (c) are omitted.

It remains to derive scattering equations for stubs. As the voltage pulses in stubs

do not propagate in space, only averaging with respect to the time coordinate

needs to be performed. For the electric field associated with open-circuit stubs

and the magnetic field associated with short-circuit stubs, it follows, respectively,

that:

nVi(c) =
n− 1

2
Vi(u) + n+ 1

2
Vi(u)

2
(4.28)

nIi(c) =
n− 1

2
Ii(u) + n+ 1

2
Ii(u)

2
(4.29)

Combining the definitions of voltage pulses reflected and incident to stubs given

by (4.16) and (4.19), with (4.28) and (4.29), respectively, we obtain:

nV
r
oi = nVi(c) − nV

i
oi (4.30)

nV
r
si = nIi(c)Zsi + nV

i
si (4.31)

which are equivalent to (3.37) and (3.38) derived in Chapter 3.

The next step in order to fully describe scattering in the GSCN will be the formu-

lation of Vk(c) and Ik(c) in terms of incident voltages. This will be presented in the

following section, by performing the central differencing of Maxwell’s equations.
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4.4 Central differencing of Maxwell’s equations

Maxwell’s equations, written in the Cartesian coordinate system, are given as:

ε0εrx
∂Ex

∂t
=

∂Hz

∂y
− ∂Hy

∂z
− σexEx

ε0εry
∂Ey

∂t
=

∂Hx

∂z
− ∂Hz

∂x
− σeyEy

ε0εrz
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− σezEz

µ0µrx
∂Hx

∂t
=

∂Ey

∂z
− ∂Ez

∂y
− σmxHx

µ0µry
∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z
− σmyHy

µ0µrz
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
− σmzHz (4.32)

where εri and µri are, respectively, the relative permittivity and permeability, and

σei and σmi are, respectively, the equivalent electric and magnetic conductivities

in the i-direction.

By introducing a mapping of indices given by:

(i, j, k) ∈ {(x, y, z), (y, z, x), (z, x, y)} (4.33)

the six equations contained in (4.32) can be rewritten in a compact form as:

ε0εri
∂Ei

∂t
=

∂Hk

∂j
− ∂Hj

∂k
− σeiEi

µ0µri
∂Hi

∂t
=

∂Ej

∂k
− ∂Ek

∂j
− σmiHi (4.34)

The mapping given by (4.33) will be used throughout this section. It allows

the rotation of dummy indices i, j, k in an arbitrary expression F , making the

expressions F (i, j, k), F (j, k, i) and F (k, i, j) equivalent.

After performing the coordinate transformations (4.1) and (4.2) which discretize

space and time, and field transformations (4.3) which establish the analogy of the

field components Ei and Hi with the equivalent total voltages Vi and currents Ii,

Maxwell’s equations (4.34) can be rewritten as:

ε0εri
∆j∆k
∆i∆t

∂Vi

∂t̂
=

∂Ij

∂k̂
− ∂Ik

∂ĵ
− σei

∆j∆k
∆i

Vi

µ0µri
∆j∆k
∆i∆t

∂Ii

∂t̂
=

∂Vk

∂ĵ
− ∂Vj

∂k̂
− σmi

∆j∆k
∆i

Ii (4.35)
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By making further use of the TLM general constitutive relations (2.41)–(2.42) and

the definitions of lossy elements (2.43)–(2.44), Maxwell’s equations (4.35) can be

rewritten as: (
Yki + Yji +

Yoi

2

)
∂Vi

∂t̂
=

∂Ij

∂k̂
− ∂Ik

∂ĵ
−GeiVi

(
Zjk + Zkj +

Zsi

2

)
∂Ii

∂t̂
=

∂Vk

∂ĵ
− ∂Vj

∂k̂
−RmiIi (4.36)

In this formulation Maxwell’s equations are written in terms of the parameters

of the transmission-lines (Z, Y , R, G) and equivalent voltages V and currents I,

corresponding to the electric and magnetic field components E and H, respec-

tively. The electromagnetic properties of the medium (µ, ε, σe, σm), the node

dimensions (∆x, ∆y and ∆z) and the time step ∆t are not directly involved in

equations (4.36). This formulation therefore offers a great degree of generality: as

long as the constitutive relations (2.41) and (2.42) are satisfied, equations (4.36)

are valid for a general condensed node with an arbitrary number of stubs and

arbitrary link line impedances, modelling an arbitrary medium on an arbitrarily

graded mesh with an arbitrary time step. Both the traditional stub-loaded SCN [9]

and hybrid nodes [19, 20] are therefore included in this formulation.

Maxwell’s equations (4.36) can be further manipulated by making use of the mixed

space-time coordinates defined, as before, by:

ξk = k̂ + t̂; ηk = k̂ − t̂ (4.37)

for k ∈ {x, y, z}. Using the rules for differential calculus, it can be shown that:

∂a

∂x
+
∂b

∂y
=

1
2
∂(a+ b)
∂(x+ y)

+
1
2
∂(a− b)
∂(x− y)

Applying this rule and introducing mixed coordinates (4.37), Maxwell’s equa-

tions (4.36) can be rewritten as:

Yki

2

(
∂(Vi − IjZki)

∂ξk
− ∂(Vi + IjZki)

∂ηk

)
+

Yji

2

(
∂(Vi + IkZji)

∂ξj
− ∂(Vi − IkZji)

∂ηj

)

+
Yoi

2
∂Vi

∂t̂
+GeiVi = 0

−1
2

(
∂(Vk − IiZjk)

∂ξj
+
∂(Vk + IiZjk)

∂ηj

)
+

1
2

(
∂(Vj + IiZkj)

∂ξk
+
∂(Vj − IiZkj)

∂ηk

)

+
Zsi

2
∂Ii

∂t̂
+RmiIi = 0 (4.38)
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A set of finite difference equations can be obtained from the differential Maxwell’s

equations (4.38) by applying central-differencing at the point (n, p, q, r) [42], where

n is a time and p, q, r are space coordinates The space coordinates of the cell’s

boundaries and the cell’s centre are referred to, as before, by:

(p± 1
2 , q, r) = (x±) (p, q ± 1

2 , r) = (y±)

(p, q, r ± 1
2) = (z±) (p, q, r) = (c)

The terms associated with the mixed coordinates ξk are differenced as, for example:

∂(Vi − IjZki)
∂ξk

= [n+ 1
2
Vi(k+) − n+ 1

2
Ij(k+)Zki]

−[n− 1
2
Vi(k−) − n− 1

2
Ij(k−)Zki]

whereas terms associated with ηk are differenced as, for example:

∂(Vi + IjZki)
∂ηk

= [n− 1
2
Vi(k+) + n− 1

2
Ij(k+)Zki]

−[n+ 1
2
Vi(k−) + n+ 1

2
Ij(k−)Zki]

The terms associated with the time coordinate t̂ are differenced as, for example:

∂Vi

∂t̂
= n+ 1

2
Vi(u) − n− 1

2
Vi(u)

where (u) denotes unknown space locations.

The set of difference equations obtained in this way from (4.38) contains electric

and magnetic field terms, Vi and Ii, sampled at time moments n± 1
2 . It is possible

now to substitute variable transformations defined by generic equations (4.13),

(4.16) and (4.19) into the difference equations obtained from (4.38), to derive:

Yki · (nV i
kni + nV

i
kpi) + Yji · (nV i

jni + nV
i
jpi) + Yoi · nV

i
oi =

Yki · (nV r
kni + nV

r
kpi) + Yji · (nV r

jni + nV
r
jpi) + Yoi · nV

r
oi +Gei · nVi(c)

(4.39)

−(nV i
jnk − nV

i
jpk − nV

i
knj + nV

i
kpj + nV

i
si) =

nV
r
jnk − nV

r
jpk − nV

r
knj + nV

r
kpj + nV

r
si +Rmi · nIi(c) (4.40)

Comparing these two equations with the equations for charge and flux conserva-

tion described in Chapter 3 by (3.24) and (3.28), by replacing (i, j, k) with (y, z, x)

and (z, x, y) respectively, it can be seen that they are fully equivalent in the case of
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balanced nodes. Therefore, by differencing Maxwell’s equations and applying ap-

propriate variable transformation, we arrived at the same fundamental laws which

were used for the derivation of scattering equations based on the transmission-line

theory and equivalent network model in Chapter 3.

Another set of finite difference equations can be obtained from Maxwell’s equa-

tions (4.36) by using central differencing at the point (n+ 1/2, p, q, r):
(
Yki + Yji +

Yoi

2

)
[n+1Vi(c) − nVi(c)] =

[
n+ 1

2
Ij(k+) − n+ 1

2
Ij(k−)

]
−
[
n+ 1

2
Ik(j+) − n+ 1

2
Ik(j−)

]
−Gei · n+ 1

2
Vi(c)

(
Zjk + Zkj +

Zsi

2

)
[n+1Ii(c) −n Ii(c)] =

[
n+ 1

2
Vk(j+) − n+ 1

2
Vk(j−)

]
−
[
n+ 1

2
Vj(k+) − n+ 1

2
Vj(k−)

]
−Rmi · n+ 1

2
Ii(c)

(4.41)

The field terms n+ 1
2
Vi(c) and n+ 1

2
Ii(c) can be approximated using central averaging

with respect to t̂:

2 · n+ 1
2
Ai(c) ≈ nAi(c) + n+1Ai(c) A ∈ {V, I} (4.42)

The remaining field terms sampled at the time moment n+ 1
2 can be substituted

using variable transformations (4.12). Applying these two steps to equations (4.41)

and taking into account equalities (4.14) and (4.17), the following expressions are

derived:(
Yki + Yji +

Yoi +Gei

2

)
[n+1Vi(c) −n Vi(c)] =

Yki · (n+1V
i
kni + n+1V

i
kpi) + Yji · (n+1V

i
jni + n+1V

i
jpi) + Yoi · n+1V

i
oi

−
[
Yki · (nV r

kni + nV
r
kpi) + Yji · (nV r

jni + nV
r
jpi) + Yoi · nV

r
oi +Gei · nVi(c)

]
(4.43)(

Zjk + Zkj +
Zsi +Rmi

2

)
[n+1Ii(c) −n Ii(c)] =

−
[
nV

r
jnk − nV

r
jpk − nV

r
knj + nV

r
kpj + nV

r
si +Rmi · nIi(c)

]

−
[
n+1V

i
jnk − n+1V

i
jpk − n+1V

i
knj + n+1V

i
kpj + n+1V

i
si

]
(4.44)
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Finally, substituting (4.39)–(4.40) into (4.43)–(4.44) we obtain:

nVi(c) = 2
Yki · ( nV

i
kni + nV

i
kpi) + Yji · ( nV

i
jni + nV

i
jpi) + Yoi · nV

i
oi

2 (Yki + Yji) + Yoi +Gei

(4.45)

nIi(c) =
2( nV

i
jpk − nV

i
jnk + nV

i
knj − nV

i
kpj − nV

i
si)

2(Zjk + Zkj) + Zsi +Rmi
(4.46)

which are, for the case of a balanced node, equivalent to the expressions (3.34)

and (3.35) derived in Chapter 3 using the network model.

4.5 Discussion

A full equivalence between the TLM method with general symmetrical condensed

nodes and a finite-difference model of Maxwell’s equations was established through

the derivation performed in this chapter. By comparing this derivation with the

one performed in Chapter 3, it becomes obvious that the GSCN TLM method

can be considered as either a physical model of the transmission line network

(based on Huygen’s principle) or a mathematical model of the finite difference

method (based on Maxwell’s equations), depending on which concept one feels

more comfortable with [42].

It must be noted that this equivalence is valid only for balanced nodes, since the

scattering equations derived by using the two different approaches are identical in

this case. On the other hand, the central averaging applied to unbalanced nodes

do not yield the solution of the scattering equations derived from the equivalent

network model in Chapter 3. This means that, even though the scattering equa-

tions obtained there satisfy the energy conservation, they may not model properly

propagation of waves in general media, as it was intuitively predicted in Chapter 2.

Results from several numerical experiments (not included here) confirmed these

conclusions.

However, the results obtained in [23] where unbalanced nodes were used to allow

placement of infinitesimally adjustable boundaries, suggest that these nodes can

be used for such applications. It is important to note, that when unbalanced

nodes are used for modelling varying boundaries, the physical length of their arms

differs with respect to the node centre, and therefore a simple centred averaging,

as used in this chapter, is inappropriate. Further investigation is needed to find

if an appropriate averaging can be applied for unbalanced nodes placed out of

the boundaries, such that correct modelling of fields can be obtained. Physical
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intuition and failure to implement successfully such a model as a general simulation

tool so far, suggest that unbalanced nodes should only be applied in modelling

special features such as boundaries, discontinuities in medium parameters, thin

conductors, etc.

Another important issue examined in this chapter was the mapping between field

components and voltage pulses. Following the derivation performed here, it is

shown that in the GSCN TLM, all field components can be obtained from the

centre of a cell at the time moments n− 1, n, n+ 1, . . . , using equations (4.45)–

(4.46) and the transformation (4.3). In addition, fields can be obtained at the cell’s

boundaries at the time moments n− 1
2 , n+ 1

2 , . . . , by exploiting equations (4.12).

Therefore, output and the excitation in the GSCN can be taken/applied both at

the cell’s centre and at the cell’s boundaries.

The accuracy of the general condensed node TLM scheme can be also assessed

from the derivations performed in this chapter. The errors introduced during the

derivation of the scattering equations (4.27) and field expressions (4.45)–(4.46) are

only associated with the central differencing and central averaging. Both of them

have 2nd order accuracy. Since the derivations were carried out for a generally

graded mesh, it can be concluded that the GSCN TLM method always has 2nd

order accuracy regardless of the grading of the mesh. This property gives the TLM

method certain advantages in applications where graded meshes are required [42].

The full equivalence established between the GSCN TLM and Maxwell’s equations

offers a rigorous theoretical foundation to all nodes contained in the formulation

of the GSCN. Furthermore, it opens up the prospect of developing new nodes

with hitherto unexplored combinations of link and stub parameters which can

potentially offer more efficient use of computational resources (memory and run-

time) or/and improve the dispersion characteristics of the method. This will be

further explored in the rest of the thesis.
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Symmetrical Super-Condensed

Node
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Chapter 5 Development of the TLM symmetrical

super-condensed node

5.1 Introduction

The general system of equations describing the parameters of a TLM time-domain

scheme, introduced in Chapter 2, suggested the existence of six degrees of freedom

in the formulation of link and stub parameters of a particular three-dimensional

TLM node. For convenience, this system of equations is written again using the

compact notation with dummy indices i, j, k ∈ {x, y, z}, i �= j, k:

Cik∆i+ Cjk∆j + Ck
o = εk

∆i∆j
∆k

(5.1)

Lij∆i+ Lji∆j + Lk
s = µk

∆i∆j
∆k

(5.2)

∆t = ∆i
√
CijLij (5.3)

The three equations contained in (5.1), the three equations contained in (5.2)

and the six equations contained in (5.3), describe basic relationships between

the material properties ε, µ, node dimensions ∆x, ∆y, ∆z and time step ∆t on

the one side, and parameters of transmission-lines expressed through the link line

distributed capacitances and inductances, Cij and Lij , and stub total capacitances

and inductances Ck
o and Lk

s , on the other. In total, eighteen transmission-line

variables are defined by twelve equations given by (5.1)–(5.3), thus leaving six

degrees of freedom in determining parameters of a particular TLM node.

Traditionally, in the original TLM schemes [9, 13], the characteristic impedance

of link lines is kept constant and equal to Z0, the intrinsic impedance of the

background medium. This was imposed intuitively, in order to follow the anal-

ogy between the waves propagating in space and voltage pulses propagating along

transmission-lines. Six additional conditions in the form
√
Lij/Cij = Z0 are there-

fore imposed on the general system of equations (5.1)–(5.3). As a result of this,
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stubs must be added in the node in order to model non-uniform media with lo-

cal increase in dielectric permittivity ε or magnetic permeability µ and to allow

for a graded mesh with nodes of arbitrary aspect ratio (∆x �= ∆y �= ∆z). The

calculation of the parameters of the stub-loaded node was shown in § 2.4.1.

The disadvantage of the traditional stub-loaded node is that the memory require-

ments are increased by up to 50% compared to the basic 12-port node, to store

voltage pulses from six stubs. The scattering algorithm is also more complicated,

thus increasing the computer processor (CPU) run-time. Also, a severe limitation

is imposed on the maximum time step used on a graded mesh. It was shown in

§ 2.4.1 that the time step in the stub-loaded nodes is in some cases dependent

on the ratio of the smallest to the largest node dimension, requiring the whole

simulation process to run for a prohibitively large number of iterations in order

to make up for the small time step.

The severe restrictions in time step imposed in the stub-loaded nodes were over-

come in the hybrid symmetrical condensed nodes (HSCN) [19], by allowing for

different link line characteristic impedances in a node. The six conditions im-

posed on the general system of equations and the derivation of the stub and link

line parameters were discussed in § 2.4.2. Since the HSCN uses either open-circuit

(Type I [19]) or short-circuit stubs (Type II [20]), the memory requirement is re-

duced by three stub locations, making the method more computationally efficient.

By studying the general system of equations (5.1)–(5.3), it appears that stubs

might be removed all together. Indeed, six additional constraints in the form

Ck
o = 0 k ∈ {x, y, z} (5.4)

Lk
s = 0 k ∈ {x, y, z} (5.5)

imposed on equations (5.1)–(5.2) will eliminate stub parameters from the general

system of equations, thus leaving only 12 distributed capacitances and inductances

of link lines to be solved from the system of 12 non-linear equations (5.1)–(5.3).

If such a system can provide physical solutions, it would mean that general non-

uniform media can be modelled on a graded mesh with nodes without stubs. The

savings in memory storage for such a method would be substantial compared to

the nodes with stubs, and the scattering algorithm might be simplified due to

reduced number of voltage pulses involved. In the following sections, it will be

shown that a solution of (5.1)–(5.3) for the node without stubs does indeed exist.

The new stubless node will be referred to as the symmetrical super-condensed

node (SSCN) to reflect the fact that stubs are totally removed from the node.
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For methodological reasons, due to the complexity involved with anisotropic ma-

terials, the derivation of the SSCN parameters that follows will be performed

separately for isotropic and anisotropic media. Both derivations will assume TLM

nodes with arbitrary aspect ratio (graded mesh).

5.2 Derivation of the SSCN for isotropic media

5.2.1 Link line parameters

Imposing the six additional constraints to remove stubs, given by (5.4)–(5.5), on

the system of equations (5.1)–(5.2), and assuming an isotropic medium (εk = ε,

µk = µ), the TLM constitutive relations for the SSCN can be written as:

Cik∆i+ Cjk∆j = ε
∆i∆j
∆k

(5.6)

Lij∆i+ Lji∆j = µ
∆i∆j
∆k

(5.7)

The time synchronism condition given by (5.3) remains unchanged. Since the

system of equations formed by (5.6)–(5.7) and (5.3) is non-linear, certain alge-

braic manipulations are needed to facilitate its solution. In order to express (5.6)

and (5.7) in a more elegant form, normalized parameters for the link lines are

introduced as follows.

For a plane electromagnetic wave propagating in the i-direction with tangential

field components Ej and Hk, the total capacitance of the block of medium, Ct
j ,

and its total inductance Lt
k are given from (2.3) and (2.7) as:

Ct
j = ε

∆i∆k
∆j

Lt
k = µ

∆i∆j
∆k

It is convenient to normalize the parameters of the link line to those of the block

of medium, so the normalized distributed capacitance Ĉij and the normalized

distributed inductance L̂ij of the i-directed j-polarized link line are defined, re-

spectively, as:

Ĉij =
Cij∆i
Ct

j

=
Cij

ε

∆j
∆k

(5.8)

L̂ij =
Lij∆i
Lt

k

=
Lij

µ

∆k
∆j

(5.9)

An equivalent cubic cell parameter, ∆l, is also introduced, which actually repre-

sents the dimension of a cubic cell having the same propagation delay ∆t as an
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arbitrarily graded TLM cell [33]. The velocity v of a pulse propagating along a

transmission line in the basic 12-port SCN is twice the plane wave velocity in the

medium with properties ε, µ [9] and is given by:

v =
∆l
∆t

=
2√
εµ

Thus, ∆l is given by:

∆l =
2∆t√
εµ

(5.10)

Multiplying (5.6) by ∆k/(ε∆i∆j) and using (5.8) we obtain:

Ĉik + Ĉjk = 1 (5.11)

Multiplying (5.7) by ∆k/(µ∆i∆j) and using (5.9) we obtain:

L̂ij + L̂ji = 1 (5.12)

Using (5.8), (5.9) and (5.10), the time synchronism condition (5.3) can also be

rewritten in terms of the equivalent cubic cell and normalized link line parameters

as:

∆l = 2∆i
√
ĈijL̂ij (5.13)

A system of 12 equations (5.11)–(5.13) for 12 unknown variables Ĉij and L̂ij

can now be solved. Taking L̂ij from (5.13) for all possible combinations of i, j ∈
{x, y, z} and substituting in (5.12) three equations in the generic form are obtained:

(∆l)2

4Ĉij(∆i)2
+

(∆l)2

4Ĉji(∆j)2
= 1 (5.14)

Substituting Ĉji in (5.14) using an instance of (5.11) and dividing (5.14) by (∆l)2/4

we obtain:
1

Ĉij(∆i)2
+

1
(1 − Ĉki)(∆j)2

=
4

(∆l)2
(5.15)

Substituting triplets (i, j, k) in (5.15) with (x, y, z), (y, z, x) and (z, x, y) respec-

tively, a system of three equations with three unknowns Ĉxy, Ĉyz, Ĉzx is obtained:

1
Ĉxy(∆x)2

+
1

(1 − Ĉzx)(∆y)2
=

4
(∆l)2

(5.16)

1
Ĉyz(∆y)2

+
1

(1 − Ĉxy)(∆z)2
=

4
(∆l)2

(5.17)

1
Ĉzx(∆z)2

+
1

(1 − Ĉyz)(∆x)2
=

4
(∆l)2

(5.18)
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This system gives a solution for Ĉxy, Ĉyz, Ĉzx in the form:

Ĉij =
2(∆j)2(∆k)2 +B

2(∆i)2(∆k)2[(2∆j/∆l)2 − 1]
(5.19)

where

B = A±
√
A2 − (∆x∆y∆z∆l)2 (5.20)

with

A = (∆x∆y∆z)2
(

4
(∆l)2

− 1
(∆x)2

− 1
(∆y)2

− 1
(∆z)2

)
(5.21)

The other three normalized capacitances, namely Ĉxz, Ĉyx and Ĉzy, can be found

using (5.11). Note from (5.20) that there are two sets of solutions for the link

line parameters of the SSCN. Both solutions are physical and either can be used

in the definition of the SSCN within the frequency band of interest. This will be

confirmed in Chapter 8 after performing dispersion analysis of the SSCN.

Finally, the characteristic impedance Zij can be expressed in terms of Ĉij by

making use of (5.8), (5.9) and (5.13):

Zij =
1
Yij

=

√
Lij

Cij
=

∆j
∆i∆k

· ∆l
2Ĉij

√
µ

ε
(5.22)

In this way, the characteristic impedances of six link lines, Zij , are found for the

SSCN modelling an isotropic medium in a mesh containing nodes with arbitrary

aspect ratio.

For the benefit of later derivations the system of equations (5.11)–(5.13) is also

solved directly in terms of L̂ij. Taking Ĉij from (5.13) for all possible combinations

of i, j ∈ {x, y, z} and substituting in (5.11) three equations are obtained in the

generic form:
(∆l)2

4L̂ik(∆i)2
+

(∆l)2

4L̂jk(∆j)2
= 1 (5.23)

Substituting L̂jk in (5.23) using an instance of (5.12) and dividing (5.23) by

(∆l)2/4 we obtain:

1
L̂ik(∆i)2

+
1

(1 − L̂kj)(∆j)2
=

4
(∆l)2

(5.24)

The system of equations (5.24) has a similar form to (5.15). Moreover, if we

introduce the mapping Ĉij ↔ L̂ik for all possible combinations of i, j, k ∈ {x, y, z}
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the two systems of equations become equivalent, which leads to an interesting

relation for the SSCN modelling an isotropic medium:

Ĉij = L̂ik (5.25)

The characteristic impedance Zij can be also expressed in terms of L̂ij by making

use of (5.8), (5.9) and (5.13) as:

Zij =

√
Lij

Cij
=

∆i∆j
∆k

· 2L̂ij

∆l

√
µ

ε
(5.26)

The following interesting relationships can be derived by making use of (5.22) and

(5.11):
Yij

Yij + Ykj
=

Ĉij

Ĉij + Ĉkj

= Ĉij (5.27)

or using (5.26) and (5.12):

Zij

Zij + Zji
=

L̂ij

L̂ij + L̂ji

= L̂ij (5.28)

These expressions can be used for the optimization of scattering procedure in the

lossless SSCN, as will be shown in Chapter 6.

5.2.2 Maximum time step

So far, the parameters of the link lines have been obtained in terms of the linear

dimensions of a node and the properties of the medium, but the time step, or

propagation delay, ∆t, and accordingly the equivalent cubic cell parameter ∆l,

which was used in (5.19), have not been determined yet.

Examining the solution for Ĉij described by (5.19)–(5.21) and demanding that

it is a real and positive number, (because the characteristic impedance of a link

line must be real and positive when modelling passive media [6]), the following

condition is imposed:

A ≥ ∆x∆y∆z∆l

After substituting A using (5.21) and some algebraic manipulations, a cubic in-

equality in terms of ∆l can be constructed as:

∆x∆y∆z
(

4
(∆l)2

− 1
(∆x)2

− 1
(∆y)2

− 1
(∆z)2

)
− ∆l ≥ 0 (5.29)
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After performing substitutions given by:

a =
1

∆x
b =

1
∆y

c =
1

∆z
h =

2
∆l

into (5.29) and simple algebraic manipulations, a cubic inequality in terms of h is

obtained as:

h3 − (a2 + b2 + c2)h− 2abc ≥ 0

Since the quadratic term h2 is missing, this inequality can be solved using the

procedure for finding roots of a reduced cubic equation [45], described in a general

form:

h3 + Ch+D = 0

where in our case C = −(a2 + b2 + c2) and D = −2abc. The solution of a reduced

cubic equation can be expressed in a trigonometric form if all of its roots are real.

This property is satisfied if [45]:

D2 + 4
C3

27
≤ 0

which in our case, after replacing C and D, gives after some manipulation:

3
√
a2b2c2 ≤ a2 + b2 + c2

3

This inequality is always satisfied because of the fact that the geometric mean is

never bigger than the arithmetic mean.

Following the procedure for solving a reduced cubic equation with real roots [45]

and using previous substitutions, the physical solution of (5.29) for ∆l is obtained

as:

∆l ≤ ∆lmax =
2

E cos
[
1
3

arccos
(
F

E3

)] (5.30)

where

E =

√
4
3

(
1

(∆x)2
+

1
(∆y)2

+
1

(∆z)2

)
F =

8
∆x∆y∆z

The maximum time step is then calculated using (5.10) as:

∆tmax =
∆lmax

√
εµ

2
(5.31)

Using similar expressions for the maximum time steps for the stub-loaded and

hybrid nodes, derived earlier in § 2.4.1 and § 2.4.2, a comparison of the maximum
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Figure 5.1 Maximum time step for different nodes

permissible time step in graded meshes for three different nodes, namely the stub-

loaded SCN [9], the HSCN [19] and the SSCN, is made in Figure 5.1. The node

spacing in the y- and z-directions is fixed at ∆y = ∆z = ∆l0, while ∆x varies

from 0.1∆l0 to 10∆l0. The maximum time step ∆tmax is given relative to the time

step ∆t0 used in a uniform mesh with node spacing ∆l0, i.e. ∆t0 = ∆l0/(2c). The

horizontal axis is plotted of a logarithmic scale.

It is clear from Figure 5.1 that the time step allowed in the SSCN, when either

shrinking (∆x/∆l0 < 1) or expanding (∆x/∆l0 > 1) the node along one dimen-

sion, is consistently higher than for the HSCN and the stub-loaded SCN. This

means that in addition to the reduced memory storage of the TLM SSCN due to

the absence of stubs, simulations can be also completed faster due to the larger

allowed time step in a graded TLM mesh.

It should be pointed out that in an actual implementation of the SSCN on a TLM

mesh containing layers with different material properties and variable gradings, the

time step in the mesh must be chosen as the smallest of all maximum permissible

time steps calculated for each separate unique node region using formulae (5.30)

and (5.31). The term unique node region is defined as the region of TLM nodes

describing the same material properties (ε, µ, σ) on a part of the mesh where the

cells are of the same linear dimensions (∆x,∆y,∆z).
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5.2.3 SSCN for a uniform mesh

The expressions for the parameters of link lines, derived in § 5.2.1 for the case of

a TLM mesh with nodes of arbitrary aspect ratio, are considerably simplified if a

regular uniform mesh is assumed with:

∆x = ∆y = ∆z = ∆l0 (5.32)

The time step ∆t is related to the node dimension ∆l0 through the parameters of

the background medium (ε0, µ0) as [9]:

∆l0 =
2∆t√
ε0µ0

The ratio of ∆l0 over the equivalent cubic cell parameter ∆l is obtained by making

use of (5.10) as:
∆l0
∆l

=
√
εrµr (5.33)

Substituting (5.32) into the solution (5.19) and making use of (5.33) the normalized

capacitances Ĉxy, Ĉyz and Ĉzx are derived after some algebraic manipulations as:

Ĉxy = Ĉyz = Ĉzx = Ĉp =
1 ±

√
1 − 1

εrµr

2
(5.34)

Another three normalized capacitances, Ĉzy, Ĉxz and Ĉyx, are derived by combin-

ing (5.34) with (5.11) as:

Ĉzy = Ĉxz = Ĉyx = Ĉn = 1 − Ĉp =
1 ∓

√
1 − 1

εrµr

2
(5.35)

Subsequently, the characteristic impedances of the link lines are derived by sub-

stituting (5.32)–(5.35) into (5.22) as:

Zxy = Zyz = Zzx = Zp =
(√

εrµr ∓
√
εrµr − 1

) √µ

ε
(5.36)

Zzy = Zxz = Zyx = Zn =
(√

εrµr ±
√
εrµr − 1

) √µ

ε
(5.37)

The characteristic impedances Zp and Zn can be rewritten in a more elegant form

as:

Zp =
Z

A1
Zn = Z A1 (5.38)
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by introducing

A1 =
√
εrµr ±

√
εrµr − 1

and the intrinsic impedance of the modelled medium (µ, ε) as

Z =
√
µ

ε

The derivation performed here shows that only two different impedances of link

lines, Zp and Zn, are necessary for modelling materials with non-background prop-

erties using the SSCN on a uniform TLM mesh. It is easily confirmed that in

the case of a background medium (εr = µr = 1) it follows that A1 = 1 and

Z = Z0 =
√
µ0/ε0 and therefore Zn = Zp = Z0, or in other words, the SSCN

simplifies to the basic 12-port node.

5.3 Derivation of the SSCN for anisotropic media

5.3.1 Link line parameters

The derivation of the SSCN for anisotropic materials requires more effort because

a more complicated system of equations needs to be solved. The procedure is,

however, similar to that used for the SSCN in isotropic media.

Imposing the six additional constraints for removing stubs, given by (5.4)–(5.5),

to the general system of equations (5.1)–(5.2), the TLM constitutive relations for

the SSCN in an anisotropic medium can be written as:

Cik∆i+Cjk∆j = εk
∆i∆j
∆k

(5.39)

Lij∆i+ Lji∆j = µk
∆i∆j
∆k

(5.40)

By introducing normalized quantities as:

Ĉij =
Cij

εj

∆j
∆k

(5.41)

L̂ij =
Lij

µk

∆k
∆j

(5.42)

equations (5.39) and (5.40) are rewritten as:

Ĉik + Ĉjk = 1 (5.43)

L̂ij + L̂ji = 1 (5.44)
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Using the definitions (5.41)–(5.42) and the time synchronism condition (5.3), the

product of L̂ij and Ĉij , denoted by rij, can be expressed in terms of the time step,

node dimensions and material properties as:

rij = ĈijL̂ij =
CijLij

εjµk
=
(

∆t
∆i

)2 1
εjµk

(5.45)

By inserting

L̂ij =
rij

Ĉij

L̂ji =
rji

Ĉji

into equation (5.44) and using an instance of the generic equation (5.43), we

obtain:
rij

Ĉij

+
rji

1 − Ĉki

= 1 (5.46)

Substituting triplets (i, j, k) in (5.46) with (x, y, z), (y, z, x) and (z, x, y), a system

of three equations with three unknowns Ĉxy, Ĉyz and Ĉzx is obtained as:

rxy

Ĉxy

+
ryx

1 − Ĉzx

= 1 (5.47)

ryz

Ĉyz

+
rzy

1 − Ĉxy

= 1 (5.48)

rzx

Ĉzx

+
rxz

1 − Ĉyz

= 1 (5.49)

This system gives a solution for Ĉxy, Ĉyz, Ĉzx in the form:

Ĉij =
2 rij(1 − rjk − rki − rik) +B

2 (1 − rjk − rki − rji − rik + rjkrki + rjirik + rjirjk)
(5.50)

where

B = A±
√
A [A− (

√
rxyryzrzx +

√
rxzryxrzy)2] (5.51)

with

A = 1−
∑
p,q

rpq +
∑
p,q,s

rpqrps +
∑
p,q,s

rpqrqs p, q, s ∈ {x, y, z} ∧ p �= q �= s

(5.52)

The remaining three normalized capacitances, namely Ĉxz, Ĉyx and Ĉzy, can be

found using (5.43). Note from (5.50) that, as before, there are two sets of solutions

and either can be used in the definition of the SSCN.

Finally, the characteristic impedance Zij can be expressed in terms of Ĉij by

making use of (5.41), (5.42) and (5.45) as:

Zij =

√
Lij

Cij
=

∆j∆t
∆i∆k εjĈij

(5.53)
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Note that, as with the isotropic case, the derivation can be also done by solving

the general system of equations in terms of L̂ij. The relationships between the

normalized distributed parameters and ratios of characteristic impedances and

admittances given for the isotropic SSCN by expressions (5.27) and (5.28) are

valid for the anisotropic case, too.

However, it can be easily confirmed that in the anisotropic case the identity (5.25),

i.e. Ĉij = L̂ik, does not hold. Also, contrary to the isotropic SSCN, the solution

given by (5.50)–(5.52) do not simplify for the case of a uniform TLM mesh.

5.3.2 Maximum time step

Examining the solution for Ĉij described by (5.50)–(5.52) and demanding, as

before, that it is a real and positive number, the following condition is imposed

A− (
√
rxyryzrzx +

√
rxzryxrzy)2 ≥ 0 (5.54)

After substituting A and rij, using (5.52) and (5.45), into (5.54), this becomes a

cubic inequality in (∆t)2. By further introducing:

pij =
1

(∆i)2εjµk
h =

1
(∆t)2

rij =
pij

h

the solutions of (5.54) can be sought as roots of a cubic equation in terms of h,

given by:

h3 + bh2 + ch+ d = 0 (5.55)

where

b = −
∑
q,r

pqr q, r ∈ {x, y, z} ∧ q �= r

c =
∑
q,r,s

pqrpqs +
∑
q,r,s

pqrprs q, r, s ∈ {x, y, z} ∧ q �= r, s

d = −(
√
pxypyzpzx +

√
pxzpyxpzy)2 (5.56)

After introducing the following substitutions [45]:

h = g − b

3
C = c− b2

3
D = d− bc

3
+

2b3

27
(5.57)

equation (5.55) simplifies to a reduced cubic equation in terms of g:

g3 + Cg +D = 0 (5.58)
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Figure 5.2 Ratio of maximum time steps in the SSCN and HSCN when modelling

uniaxial anisotropic dielectric media

As in case of the isotropic SSCN, by following the procedure for solving reduced

cubic equation with real roots [45] and using previous substitutions, the physical

solution of (5.54) for ∆t is obtained as:

∆t ≤ ∆tmax =

√√√√√ 1

E cos
[
1
3

arccos
(
F

E3

)]
− b

3

(5.59)

where

E =
√
−4C/3 F = −4D

and b, C and D are defined by (5.56) and (5.57).

In order to compare the values of maximum time step in the SSCN to that of the

HSCN [32], an example of modelling uniaxial anisotropic dielectrics on a uniform

mesh is presented. Uniaxial dielectric materials have their electric properties de-

scribed by a diagonal tensor, with equal dielectric constants along the two of the

principal axis, for example, εx = εy �= εz [46]. In this case, the x- and y-axes are

called ordinary axes and the z-axis is the extraordinary or optic axis. Using the

expressions (5.59) and (2.66), the ratio of ∆tmax for the SSCN over ∆tmax for the

HSCN is calculated and plotted in Figure 5.2.
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Two cases are considered, for a dielectric permittivity along the optical axis be-

ing: a) smaller (plotted by solid line) and b) bigger (plotted by broken line) in

comparison to that along ordinary axes. It can be seen from Figure 5.2 that in

both cases, the time step allowed in the SSCN is higher than for the HSCN.

5.4 Implementation of the SSCN in a TLM mesh

5.4.1 Scattering properties

The scattering properties for the symmetrical super-condensed node can be easily

derived from the scattering equations of a general node described in Chapter 3.

By substituting conditions for balanced nodes, Zinj = Zipj = Zij and hij = 0, into

the general equations (3.32)–(3.33), we obtain:

V r
inj = Vj ± IkZij − V i

ipj (5.60)

V r
ipj = Vj ∓ IkZij − V i

inj (5.61)

where the upper and lower signs apply, respectively, for indices (i, j, k) ∈ {(x, y, z),
(y, z, x), (z, x, y)} and (i, j, k) ∈ {(x, z, y), (y, x, z), (z, y, x)}. By removing stub

values from equations (3.34) and (3.35) and shifting dummy indices, the equivalent

total voltage Vj and the equivalent total current Ik are derived as:

Vj = 2
Yij(V i

inj + V i
ipj) + Ykj(V i

knj + V i
kpj)

2Yij + 2Ykj +Gej
(5.62)

Ik = 2
V i

ipj − V i
inj + V i

jni − V i
jpi

2Zij + 2Zji +Rmk
(5.63)

The scattering procedure for the SSCN is therefore completely described by 12

equations obtainable from (5.60)–(5.61) and the definitions of equivalent voltages

and currents given by (5.62)–(5.63). Efficient implementations of the scattering

procedure for the SSCN and other nodes derivable from the GSCN will be further

discussed in Chapter 6.

5.4.2 Connection

Inside a unique node region, the transfer of voltage pulses, called ‘connection’,

proceeds as in a traditional TLM mesh [6] constructed using nodes of constant

link line characteristic impedance. It is accomplished by simply swapping the

pulses between adjacent ports of two neighbouring nodes. This is valid for the
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Figure 5.3 Connection at the interface between two unique node regions

SSCN since the characteristic impedance of a link line is the same on either side

of the node centre, i.e. the SSCN is a balanced node.

Care must be taken at the interface between two different node regions where

the characteristic impedance changes. A simple two-port junction, depicted in

Figure 5.3 by an equivalent Thevenin circuit, must be modelled to calculate ap-

propriate reflected and transmitted voltage pulses. The superscript i for voltage

pulses means that they are incident to the interface (not to the node centre).

A common approach for implementing this algorithm is to first calculate the total

voltage at the interface, Vtotal, as:

Vtotal =
2YLV

i
L + 2YRV

i
R

YL + YR
(5.64)

Subsequently, the reflected voltages on the left and right-hand side, V r
L and V r

R

respectively, can be calculated by:

V r
L = Vtotal − V i

L (5.65)

V r
R = Vtotal − V i

R (5.66)

Note that this procedure requires storage of at least two coefficients per interface

per polarization, namely 2YL/(YL + YR) and 2YR/(YL + YR). A computation of

Vtotal requires at least two multiplicative (MUL) operations.

A more efficient implementation becomes evident after some algebraic manipula-

tions with equations (5.64)–(5.66) which result in the following expressions:

V r
L =

YL − YR

YL + YR
(V i

L − V i
R) + V i

R (5.67)

V r
R =

YL − YR

YL + YR
(V i

L − V i
R) + V i

L (5.68)
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In this new form only one MUL operation is required and only one coefficient

(YL −YR)/(YL +YR) needs to be stored per polarization per interface to calculate

both reflected voltages.

5.4.3 External boundaries

External boundaries of arbitrary reflection coefficient ρw are modelled in TLM by

terminating the link lines at the edge of the problem space with an appropriate

load [39]. If the characteristic impedance of a link line differs from the intrinsic

impedance of medium, the equivalent link line reflection coefficient, ρij , generally

differs from ρw.

For a plane electromagnetic wave propagating in the i-direction with tangential

field components Ej and Hk, the total capacitance of the block of medium, Ct
j ,

and the total inductance Lt
k are given from (2.3) and (2.7) as:

Ct
j = εj

∆i∆k
∆j

Lt
k = µk

∆i∆j
∆k

The intrinsic impedance of the medium seen by such a wave is defined by:

Zm
ij =

√√√√Lt
k

Ct
j

=
√
µk

εj

∆j
∆k

and the resistance needed to terminate it in order to give reflection coefficient ρw

can be calculated from

R = Zm
ij

1 + ρw

1 − ρw

since:

ρw =
R− Zm

ij

R+ Zm
ij

The link line reflection coefficient, ρij , is then found by terminating the link line,

of characteristic impedance Zij, with this same resistance:

ρij =
R− Zij

R+ Zij
=

(1 + ρw) − Ẑij(1 − ρw)
(1 + ρw) + Ẑij(1 − ρw)

(5.69)

where a normalized characteristic impedance is introduced as Ẑij = Zij/Z
m
ij .

If the external boundary represents an electric wall, ρw = −1, than it follows

from (5.69) that ρij = −1. Similarly, for a magnetic wall, ρw = 1, and from (5.69)

it follows that ρij = 1. Therefore, when modelling electric or magnetic walls, we

have ρw = ρij .
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Figure 5.4 Thevenin circuit for computing output values on link lines

If an absorbing boundary is modelled, with ρw = 0, then it follows from (5.69)

that:

ρij =
1 − Ẑij

1 + Ẑij

�= 0

5.4.4 Output

Information on electric and magnetic field components can be extracted from an

SSCN TLM mesh through appropriate values of equivalent voltages and currents

using the formulae:

Ej = − Vj

∆j
Hk =

Ik
∆k

Field values at a node can be readily obtained using formulae which define equiv-

alent voltages (5.62) and equivalent currents (5.63) already used in the scattering

procedure.

In obtaining the output on link lines, the different characteristic impedances on

interfaces between two node regions must be taken into account. Equivalent volt-

ages and currents are found by solving the equivalent Thevenin circuit shown in

Figure 5.4 as:

Vj =
2 [Vij(i)Yij(i) + Vij(i+ 1)Yij(i+ 1)]

Yij(i) + Yij(i+ 1)
(5.70)

Ik =
2 [Vij(i+ 1) − Vij(i)]
Zij(i) + Zij(i+ 1)

(5.71)

If the output is required on a link line completely inside the unique node region,

i.e. Zij(i) = Zij(i+ 1), formulae (5.70) and (5.71) are simplified to:

Vj = Vij(i) + Vij(i+ 1) (5.72)
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Ik =
Vij(i+ 1) − Vij(i)

Zij
(5.73)

which can be also derived from the cell boundary mapping introduced in Chapter 4

by equations (4.12).

5.4.5 Excitation

If the excitation of a TLM mesh is specified in terms of field components, then

the appropriate incident voltage pulses required to start the simulation must be

injected into the mesh. When exciting a particular field component, care must be

taken not to excite others. This can be accomplished if the electric charge and

the magnetic flux are applied symmetrically with respect to the node centre.

In exciting the electric field component Ej, pulses must be injected into the mesh

to give an equivalent voltage Vj = −Ej∆j. From equation (5.62) and the charge

symmetry conditions, the following ports need to be excited:

V i
inj = V i

ipj =
Vj

8
· 2Yij + 2Ykj +Gej

Yij
(5.74)

V i
knj = V i

kpj =
Vj

8
· 2Yij + 2Ykj +Gej

Ykj
(5.75)

From (5.62) and (5.63) it can be confirmed that all other equivalent voltages and

currents are zero, therefore only the desired field component is excited. For the

SSCN modelling a lossless medium (Gej = 0), after using (5.27), the expres-

sions (5.74)–(5.75) simplify to:

V i
inj = V i

ipj =
Vj

4Ĉij

V i
knj = V i

kpj =
Vj

4Ĉkj

Similarly, for exciting the magnetic field component Hk, pulses must be injected

into the mesh to give an equivalent current Ik = Hk∆k. Applying symmetry

conditions for the magnetic flux and using (5.63), it can be easily shown that the

following voltage pulses need to be injected:

Vipj = −Vinj = Vjni = −Vjpi =
Ik
8

· (2Zij + 2Zji +Rmk) (5.76)

For the SSCN modelling lossless medium (Rmk = 0), after using (5.28), the ex-

pression (5.76) simplifies to:

Vipj = −Vinj = Vjni = −Vjpi =
IkZij

4L̂ij

=
IkZji

4L̂ji
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For exciting field components on a link line, formulae (5.70) and (5.71) with con-

ditions Ik = 0 and Vj = 0 respectively, can be used to obtain the values of voltages

for the electric field Ej excitation as:

Vij(i) = Vij(i+ 1) =
Vj

2
(5.77)

and the magnetic field Hk excitation as:

Vij(i) = −IkZij(i)
2

(5.78)

Vij(i+ 1) =
IkZij(i+ 1)

2
(5.79)

5.4.6 Other features

A number of other features, e.g. internal boundaries, thin features (wires, films,

apertures), voltage and current sources, etc., can be implemented in a TLM mesh

based on the SSCN. Procedures similar to the ones normally used in the TLM

mesh with traditional SCN [6] can also be used in the mesh based on the SSCN.

Attention must be paid to the fact that the characteristic impedances of link lines

in SSCN TLM are different in different node regions. This should be dealt with

in the implementation in a manner similar to the one used in the definition of

outputs and excitation in the SSCN TLM mesh, described earlier in this section.

5.5 Numerical examples

To validate the proposed TLM SSCN algorithm, a series of numerical simulations

was performed. The examples presented here are classified into three groups:

• modelling isotropic materials on a uniform mesh

• modelling isotropic materials on a graded mesh

• modelling anisotropic materials on a graded mesh

5.5.1 Isotropic materials on a uniform mesh

To test the new SSCN, a homogeneous problem is first modelled, an 1m3 air-filled

cavity with perfect electric walls. The modelling of this problem normally can be

accomplished using the basic 12-port symmetrical condensed node. However, to

test the nodes capable of modelling materials different from the background, such

as the SSCN, we can, for example, introduce a hypothetical background medium

εr0 = 0.5 and model the air as a medium with non-background electromagnetic
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Figure 5.5 Frequency response in inhomogeneous cavity

properties. Separate simulations with both the 12-port SCN and the SSCN were

performed using the node spacing of ∆l = 5cm and first two cavity resonances were

computed. The results obtained using the two methods are reported in Table 5.1.

Analytical 12-port SCN New SSCN

TE110 [MHz] 212.0 211.9 211.7

TE210 [MHz] 335.2 334.9 334.0

Table 5.1 Cavity resonances using different methods

It can be seen from Table 5.1 that results obtained using the SSCN agree well

with those obtained analytically and with the 12-port SCN, thus confirming that

propagation of electromagnetic waves through a homogeneous medium can be

modelled accurately without introducing stubs.

The next step is to model an inhomogeneous problem, to test the implementation

of the connection procedure on the interface between two different materials. An

air cavity, half filled with a medium of properties εr = µr = 2, was chosen.

Figure 5.5 shows the first two resonances calculated for such a cavity, comparing

the results for the stub-loaded SCN and the SSCN. It can be seen from Figure 5.5
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Figure 5.6 Resonator loaded with dielectric layers of εr=4 (a=7.112mm)

that the results agree well, therefore, the SSCN was successfully implemented for

modelling inhomogeneous problems on a uniform mesh.

5.5.2 Isotropic materials on a graded mesh

To validate the proposed TLM SSCN algorithm for the case of a graded mesh,

a canonical resonator loaded with dielectric was modelled, as illustrated in Fig-

ure 5.6. Dielectric layers with relative permittivity εr = 4 were placed at the

top and bottom of the cavity which was otherwise filled with air (εr0 = 1). The

dimension a of the resonator was a = 7.112mm.

The benchmark resonant frequency for the TE110 mode, obtained by using two

different TLM methods on a very fine uniform mesh, namely the stub-loaded SCN

and the SSCN, is f0 = 16.595GHz. Using the SSCN TLM method on a fine

uniform mesh of 400 × 40 × 1 cells a resonant frequency f = 16.584GHz was

obtained, which is 0.07% lower value than f0. Note that appropriate excitation

and short-circuit boundary conditions were used to reduce the number of cells

in the z-direction, since for this particular mode there is no propagation in the

z-direction.

A coarse uniform mesh with 40 × 4 × 1 cells was then used, part of which is

illustrated in Figure 5.7a. A resonant frequency of 15.480GHz was obtained, un-

derestimating f0 by 6.72%. This inaccuracy occurred mainly because only one

node per dielectric layer was used in the y-direction. The time step used in this

simulation was ∆t0 = 2.965ps.
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Figure 5.7 Schematic of different gradings of the TLM mesh

Retaining the same number of cells, by increasing the node dimension in the x-

direction by a factor of 2 and decreasing it by the same factor in the y-direction,

as illustrated in Figure 5.7b, a uniformly graded mesh of 20× 8× 1 cells was used

and the resonant frequency obtained was 16.322 GHz, i.e. 1.65% below the correct

one. The time step was slightly decreased (0.899∆t0), but the number of cells and

memory requirements remained the same and a more accurate result was achieved

than in the case of the cubic cell mesh.

A further increase in aspect ratio, illustrated in Figure 5.7c, produced a mesh

of 10 × 16 × 1 cells and the simulated resonant frequency of 16.530GHz was just

0.39% below the correct one. However, even though the same number of cells was

used, the time step was decreased to 0.491∆t0.

So far, only uniformly graded meshes were used to achieve the improvement in the

modelled resonant frequency. Consider now a grading case when the grading in

the y-direction within the dielectric is higher than in the region of free space. Since

the propagation velocity in the dielectric is
√
εr = 2 times lower than in free space,

that part of the mesh was graded with twice as many cells. However, to maintain

a reasonable number of cells, node spacing was increased in the free-space region,

thus forming a mesh of 10 × 12 × 1 cells, part of which is shown in Figure 5.7d.

The number of cells for this mesh was 25% lower then in the previous case, the

allowable time step was almost twice as high, namely 0.938∆t0, and the modelled

frequency obtained was f = 16.584GHz. Accuracy in this case was the same as

that achieved with a fine uniform mesh (400 × 40× 1 cells). However the number

of TLM cells used in the non-uniformly graded SSCN mesh was over hundred
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times smaller and the time step was almost 10 times higher than in the uniform

case. By increasing the resolution of the non-uniformly graded SSCN mesh, by a

factor of 2, i.e. using 20×24×1 cells, a resonant frequency of f = 16.594GHz was

obtained, which is an accuracy of better than 10−4.

The results obtained for the different mesh configurations are summarized in Ta-

ble 5.2.

Mesh Freq.[GHz] Error [%] Time-step per ∆t0

U: 400 × 40 16.584 0.07 0.100

U: 40 × 4 15.480 6.72 1.000

G: 20 × 8 16.322 1.65 0.899

G: 12 × 12 16.476 0.72 0.645

G: 10 × 16 16.530 0.39 0.491

N: 10 × 12 16.584 0.07 0.938

N: 20 × 24 16.594 0.01 0.469

U – uniform mesh, G – uniformly graded mesh, N – nonuniformly graded mesh

Table 5.2 Calculation of TE110 frequency for different grading cases

It is clear from Table 5.2 that a uniformly graded mesh offers better results with

less memory requirements than a uniform mesh, but that a non-uniformly graded

mesh chosen in an appropriate manner shows even better characteristics.

5.5.3 Anisotropic materials on a graded mesh

To validate the formulation of the 12-port super-condensed node for anisotropic

media, edge coupled microstrip lines on an anisotropic sapphire substrate were

modelled. The geometry of the modelled structure and axial components of the

dielectric constant of sapphire are shown in Figure 5.8a.

In order to facilitate an efficient computation, non-uniform grading of the mesh

in the transverse plane was used, as depicted in Figure 5.8b. Symmetry was

exploited by introducing a magnetic wall in the centre of the structure, as shown

in Figure 5.8b.

Odd and even mode dispersion characteristics obtained from TLM simulations

using the SSCN are plotted in Figure 5.8c. They are found to be in excellent

agreement with the results obtained using other analytical and numerical tech-

niques, presented in [47, 48].
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of grading c) Dispersion characteristics



5 Development of the TLM symmetrical super-condensed node 87

5.6 Discussion

A substantial development to the TLM method was described in this chapter. Us-

ing the general system of equations for calculating the parameters of TLM schemes,

established in Chapter 2, and the scattering formulation of the general symmetri-

cal condensed node, derived in Chapters 3 and 4, a node without stubs, referred to

as the symmetrical super-condensed node (SSCN), capable of modelling general

non-uniform problems, was developed. The parameters and scattering properties

of this node, its implementation including the maximum permissible time step,

connection, boundaries, excitation and output, were described. The use of nor-

malized quantities introduced in this chapter enhanced physical understanding

and simplified the derivation of the SSCN.

Because stubs are removed from the node, the SSCN requires fewer memory lo-

cations than the stub-loaded or the hybrid nodes. It was also shown that the

maximum permissible time step in the SSCN is generally higher from that found

in the previous nodes. The numerical results presented for modelling different

isotropic and anisotropic problems confirmed the proposed implementation proce-

dures for the SSCN TLM method and showed its high versatility.

From the discussion in Chapter 2 on the topology of the three basic nodal struc-

tures used in 3D TLM, namely the expanded node, the asymmetrical condensed

node and the symmetrical condensed node, it follows that the formulation of pa-

rameters of the link lines and the maximum time step derived here is valid also for

equivalent stubless nodes based on the other two types of 3D nodes. For example,

it can be shown that the link line parameters of a distributed expanded node de-

scribed in [49] are equivalent to those of the SSCN derived here, if a homogeneous

medium with background properties and an appropriate time step is assumed.

Following the equivalency between the parameters of the three basic nodal struc-

tures, it appears that a stubless expanded node can be developed to accommodate

inhomogeneous problems and arbitrary non-uniform grading of the mesh, as well.

However, difficulties in implementing such a node may be experienced because of

the node’s non-condensed topology, i.e. because the parameters of link lines are

shared between adjacent cells (see Figure 2.1) and, hence, an averaging of cell’s

parameters at interfaces will have to be performed [18].



Chapter 6 Efficient computational algorithms

6.1 Introduction

In the efficient computer implementation of a numerical method, the main objec-

tives are to achieve minimization of memory storage and computer (CPU) run-

time, so that problems can be modelled in fine detail and with a reasonable speed.

In time-domain methods it is also of great importance that the time step can be

chosen sufficiently high as to allow a faster completion of the simulation process.

The total memory requirement is dependent on the number of variables stored per

a discretized space cell. In the TLM method, this discretized cell is represented

by a TLM node. The number of variables that is required to store per TLM node

in order to run a TLM simulation is dependent on the number of voltage pulses

incident on the node. The number of incident voltage pulses is further dependent

on the number of transmission lines connected at the node centre.

In 3D TLM, the nodes are constructed by 12 link lines and up to 6 open- and short-

circuit stubs, as detailed in previous chapters. The link lines must be present in

all nodal configurations in order to facilitate connections between adjacent nodes.

Stubs are introduced into the node to allow modelling of non-uniform materials

and the use of a graded mesh with cells of arbitrary aspect ratio.

It has been demonstrated in Chapter 5 that a symmetrical super-condensed node

can be constructed which allows modelling of inhomogeneous media on a graded

mesh exclusively using link lines. Thus, due to the absence of stubs, the memory

storage requirements can be greatly reduced compared to the traditional stub-

loaded and hybrid nodes. The number of voltage pulses incident on the node centre

in three different nodal configurations capable of modelling general problems are

summarized in Table 6.1.

Having reduced the memory requirements in the TLM by introducing an all-link

line symmetrical super-condensed node, the possibility of optimizing CPU run-

88
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Stub-loaded SCN Hybrid SCN 12-port SSCN

Number of pulses 18 15 12

Relative storage 1.00 0.83 0.66

Table 6.1 Number of incident voltage pulses per node and the memory require-

ments relative to the stub-loaded node

time of TLM calculations will now be investigated. The maximum permissible time

step in available nodes has been already determined and compared in Chapter 5

where it was found that the SSCN generally offers a higher time step with graded

meshes and anisotropic problems than the stub-loaded and hybrid nodes.

In optimizing the TLM calculations, special attention must be paid in coding the

procedures which are related to all nodes in the mesh. These are the scattering

and connection procedures.

The connection process in TLM is fairly inexpensive in terms of run-time: it

is, in the majority of cases, just a simple swapping of pulses between adjacent

nodes. In cases where link line impedances vary (HSCN, SSCN, GSCN), a reflec-

tion/transmission process needs to be modelled at interfaces between distinct node

regions. An efficient implementation of this algorithm was shown in § 5.4.2. How-

ever, this process occurs only in a limited number of node interfaces and therefore

does not represent a big factor to the overall efficiency.

A far more computationally demanding operation is the scattering procedure and

it is of a great importance to optimize it as far as possible. The rest of this chapter

will be completely devoted to discussion of efficient implementations of the scat-

tering procedure in the nodes derivable from the general symmetrical condensed

node (GSCN).

6.2 Storage of the scattering coefficients

In every condensed node, apart from the 12-port SCN, the scattering coefficients

are dependent on the characteristic impedances of link lines and stubs, and through

them on the material properties and node aspect ratios. If a lossy medium is mod-

elled, they are also dependent on the values of lossy elements expressed through

shunt conductances and series resistances. Therefore, it is necessary to store ap-

propriate node parameters in order to describe scattering in different parts of a

TLM mesh.
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Figure 6.1 Storage of parameters of the TLM nodes

The storage of the scattering parameters on a per node basis would be compu-

tationally unacceptable, since the memory requirements would dramatically in-

crease. Thus, a possible solution is to store scattering coefficients on a per unique

node region basis and to assign an identifier to every node in the mesh pointing

to the related node region [39]. A separate list of the node regions can than be

maintained, as for example depicted in Figure 6.1. Note that the unique node re-

gion is defined as the region of TLM nodes describing the same material properties

(ε, µ, σ) on a part of the mesh where the cells are of the same linear dimensions

(∆x,∆y,∆z).

The example presented in Figure 6.1 shows a possible grading of an inhomogeneous

problem with three different media and a number of different aspect ratios of the

nodes. A total of seven unique node regions can be identified in the figure. The

parameters of these node regions are stored in a separate list and every node has

a pointer to the list. The organization of the node parameters in this way means

that only storage for incident/reflected voltages and a (byte) identifier is required

on a per node basis, thus making significant savings in memory since the number of

distinct node regions is usually much smaller than the number of nodes — in this

example there are 198 nodes and 7 node regions. In the following derivations of the

most efficient scattering algorithms it is assumed that the scattering coefficients

are stored on a per unique node region basis.

Even though a node region can be completely described by the characteristic

impedances of link lines and stubs, it makes sense from the computational view-

point to calculate and store the appropriate scattering coefficients. The calculation
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of the coefficients should be done in the preprocessing stage in order to avoid the

recalculation at every time step. It is important to store the coefficients in the

form which will require the least computational effort in the main time stepping

process.

In most modern computers performing floating point arithmetic, additive (ADD)

and subtractive (SUB) operations are executed faster than multiplications (MUL)

and especially divisions (DIV). For this reason it is appropriate to reduce MUL

operations as far as possible and not to use divisions at all. By appropriate storing

of scattering coefficients, divisions can be completely avoided, while multiplications

can be reduced, as will be shown in the following sections.

Initially, the scattering procedure for the SCN was described by the scattering

matrix [9]. The implementation of scattering by using directly the elements of

the matrix would be inefficient due to a large number of zeros in the matrix.

Improvements to the scattering algorithm were first proposed by Tong and Fu-

jino [50], however, the most efficient approach appears to be one based on the

scattering equations introduced by Naylor and Ait-Saidi [37]. Efficient scattering

algorithms, based on the similar equations but generalized for the treatment of

arbitrary unbalanced and balanced nodes as described in Part One of this thesis,

will be examined here.

6.3 Scattering in nodes with stubs

In this section, scattering algorithms for general nodes, as well as for the available

stub-loaded and hybrid nodes are described.

6.3.1 Unbalanced nodes

The scattering process for a most general unbalanced node, with 12 different link

line characteristic impedances and up to 6 stubs and 6 lossy elements was described

in Chapter 3 by:

Scattering into link lines:

V r
inj = Vj ± IkZinj − V i

ipj + hij (6.1)

V r
ipj = Vj ∓ IkZipj − V i

inj + hij (6.2)

where the upper and lower signs apply, respectively, for indices (i, j, k) ∈ {(x, y, z),
(y, z, x), (z, x, y)} and (i, j, k) ∈ {(x, z, y), (y, x, z), (z, y, x)}.
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Scattering into stubs:

V r
oi = Vi − V i

oi (6.3)

V r
si = IiZsi + V i

si (6.4)

where i ∈ {x, y, z}.

Definitions for Vj , Ik and hij :

Vj = 2
YinjV

i
inj + YipjV

i
ipj + YknjV

i
knj + YkpjV

i
kpj + YojV

i
oj

Yinj + Yipj + Yknj + Ykpj + Yoj +Gej
(6.5)

Ik = 2
V i

ipj − V i
inj + V i

jni − V i
jpi − V i

sk

Zinj + Zipj + Zjni + Zjpi + Zsk +Rmk
(6.6)

hij =
Zinj − Zipj

Zinj + Zipj

(
V i

inj − V i
ipj

)
(6.7)

where (i, j, k) ∈ {(x, y, z), (y, z, x), (z, x, y)}.

In the implementation of the scattering procedure described by the above relations,

it is most efficient to calculate first terms related to the equivalent voltages and

currents, e.g. Vj , IkZinj and the coefficients hij .

To compute three equivalent voltages Vx, Vy and Vz using (6.5), 15 MUL and 12

ADD operations are required, provided that 15 coefficients of the form

2Yinj

Yinj + Yipj + Yknj + Ykpj + Yoj +Gej

are stored per unique node region.

For calculating 12 possible terms IkZinj and IkZipj and three terms IiZsi, by

making use of equation (6.6), 15 MUL and 12 ADD/SUB operations are required,

with another 15 coefficients stored in the form:

2Zinj

Zinj + Zipj + Zjni + Zjpi + Zsk +Rmk

To compute six possible terms hij using (6.7), 6 MUL are needed and 6 coefficients

in form (Zinj − Zipj)/(Zinj + Zipj) must be stored. This step assumes that dif-

ferences V i
inj − V i

ipj have already been computed while calculating the equivalent

currents.

The scattering procedure is accomplished by performing an additional 6 ADD for

the summation of Vj and hij , followed by the remaining 24 ADD/SUB operations
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required in equations (6.1)–(6.2) and 6 ADD/SUB in equations (6.3)–(6.4). This

gives a total of 60 ADD/SUB and 36 MUL operations per node per time step

for the scattering in the unbalanced general node, provided that 36 scattering

coefficients are stored per node region.

This algorithm applies for a very general case when twelve different link line

impedances, six stubs and six lossy elements are present in a node. Since this

node is unbalanced, it should be used only for modelling boundaries [23] and not

throughout the mesh. Thus, the complexity of the scattering procedure of such a

node will not have a significant effect on the overall efficiency.

6.3.2 Balanced nodes

By applying conditions for balanced nodes, Zinj = Zipj = Zij and hij = 0, the

implementation of the scattering procedure described by equations (6.1)–(6.7)

becomes more efficient.

To compute three node voltages Vx, Vy and Vz using (6.5), 9 MUL and 12 ADD

operations are required, provided that nine coefficients of the form

2Yij

2(Yij + Ykj) + Yoj +Gej

are stored per unique node region.

For calculating six possible terms IkZij and three terms IiZsi, 9 MUL and 12

ADD/SUB operations are required, with another nine coefficients stored in the

form:
2Zij

2(Zij + Zji) + Zsk +Rmk

The scattering procedure is accomplished by performing additional 24 ADD and

SUB operations in equations (6.1)–(6.2), assuming that hij = 0, and 6 ADD/SUB

in equations (6.3)–(6.4). This gives a total of 54 ADD/SUB and 18 MUL opera-

tions per node per time step for the scattering in the balanced GSCN, provided

that 18 scattering coefficients are stored per node region.

This algorithm applies for a general case when six different link line impedances,

six stubs and six lossy elements are present in a variable graded mesh modelling in-

homogeneous, anisotropic problems. In the TLM nodes derivable from the GSCN,

extra restrictions related to link and stub parameters are applied, as discussed in

Chapter 2, so that the scattering can be simplified to some extent.



6 Efficient computational algorithms 94

In the stub-loaded SCN, the characteristic impedance of link lines is constant and

equal to that of the background medium, Z0. Equations (6.1)–(6.6) simplify and

the complete procedure can be implemented with 54 ADD/SUB and 12 MUL

operations [39], with the storage of up to 12 scattering coefficients. When using a

uniform mesh to model dielectric or magnetic materials, with only one type of stub,

the requirements are reduced to 48 ADD/SUB and 9 MUL operations. Similar

analysis can be applied to the hybrid node (HSCN) to find that 48 ADD/SUB

and 12 MUL operations are required with 12 coefficients stored per node region.

6.4 Scattering in the SSCN

The scattering for the super-condensed node (SSCN) was described in Chapter 5

by equations (5.60)–(5.63). From there, it can be easily found that in the SSCN

with both electric and magnetic losses, 42 ADD/SUB and 12 MUL operations are

required for the scattering procedure, provided that 12 scattering coefficients are

stored. However, in the case with no losses, a significantly more efficient algorithm

can be implemented, requiring only 6 MUL and 48 ADD/SUB operations. A

description of this algorithm follows.

Following equations (5.60)–(5.63), the scattering procedure in the lossless TLM

symmetrical super-condensed node (SSCN) can be written as:

V r
inj = Vj + I

(ij)
k Zij − V i

ipj (6.8)

V r
ipj = Vj − I

(ij)
k Zij − V i

inj (6.9)

where the equivalent voltage Vj is:

Vj =
Yij

Yij + Ykj
(V i

inj + V i
ipj) +

Ykj

Yij + Ykj
(V i

knj + V i
kpj) (6.10)

and the equivalent loop current I(ij)
k is:

I
(ij)
k =

V i
ipj − V i

inj + V i
jni − V i

jpi

Zij + Zji
(6.11)

Indices i, j, k take all possible combinations of x, y, z, i.e. (i, j, k) ∈ {(x, y, z),
(y, z, x), (z, x, y), (y, x, z), (z, y, x), (x, z, y)}, giving a set of 12 scattering equations

which completely describe the scattering in the SSCN.

Note that mapping of indices allowed here is slightly different to that used in

equations (5.60)–(5.63), as an equivalent loop current I(ij)
k is introduced in order
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to allow for an optimized scattering algorithm. Generally I
(ij)
k = ±Ik, which is

dependent on the order of indices i, j, i.e. I
(ij)
k = −I(ji)

k .

In the implementation of the scattering procedure described by equations (6.8)–

(6.11), it is useful first to calculate terms of equations (6.8)–(6.9) related to the

equivalent voltages and currents, Vj and I(ij)
k Zij

Three voltages Vx, Vy and Vz can be calculated from (6.10). Let us recall from

equation (5.27) that normalized capacitances can be expressed in a generic form

as:

Ĉij =
Yij

Yij + Ykj
(6.12)

for i, j ∈ {x, y, z}. Note from (6.12) that:

Ĉkj = 1 − Ĉij (6.13)

Let us also introduce sums of incident voltages on the link lines with identical

directions and polarizations as:

Visj = V i
ipj + V i

inj (6.14)

Substituting equations (6.12)–(6.14) into (6.10) gives:

Vj = ĈijVisj + ĈkjVksj

= ĈijVisj + (1 − Ĉij)Vksj

and finally:

Vj = Ĉij(Visj − Vksj) + Vksj (6.15)

It is enough to map indices (i, j, k) to {(x, y, z), (y, z, x), (z, x, y)} and to obtain all

three nodal voltages Vx, Vy and Vz from (6.15). The most efficient procedure is first

to calculate the sums of voltages on the same link line using (6.14), for which a total

of six ADD operations are performed. Then, three SUB operations are needed to

calculate Visj − Vksj, three MUL operations are needed for Ĉij(Visj − Vksj) and

finally three ADD operations are needed for adding Vksj to the partial results

obtained. Therefore, a total of 12 ADD/SUB and 3 MUL operations are needed

to obtain the three nodal voltages Vx, Vy and Vz. For this case, the storage of

three scattering coefficients, Ĉxy, Ĉyz and Ĉzx is required.

For the calculations of terms I(ij)
k Zij we recall from equation (5.28) that the nor-

malized inductances can be expressed in a generic form as:

L̂ij =
Zij

Zij + Zji
(6.16)
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for i, j ∈ {x, y, z}. Note from (6.16) that:

L̂ji = 1 − L̂ij (6.17)

Let us also introduce a combination of voltages contributing to the magnetic field

in the k direction as:

V
(ij)
k = V i

ipj − V i
inj + V i

jni − V i
jpi (6.18)

Note from (6.18) that:

V
(ji)
k = −V (ij)

k (6.19)

Substituting equations (6.16)–(6.18) into (6.11) gives:

I
(ij)
k Zij = L̂ijV

(ij)
k (6.20)

By swapping indices i, j in (6.20), and taking into account (6.17) and (6.19) it is

found that:

I
(ji)
k Zji = L̂jiV

(ji)
k

= (1 − L̂ij)(−V (ij)
k )

and finally:

I
(ji)
k Zji = I

(ij)
k Zij − V

(ij)
k (6.21)

By introducing mappings for indices (i, j, k) to {(x, y, z), (y, z, x), (z, x, y)} all

terms I(ij)
k Zij and I

(ji)
k Zji can be calculated by making use of equations (6.20)

and (6.21). The most efficient procedure is first to calculate terms V
(ij)
k us-

ing (6.18), for which a total of nine ADD/SUB operations are performed. Then,

three MUL operations are needed for L̂ijV
(ij)
k in (6.20) and finally three SUB

operations are needed for obtaining terms I(ji)
k Zji using equation (6.21). There-

fore, a total of 12 ADD/SUB and 3 MUL operations are needed to obtain terms

I
(yz)
x Zyz, I

(zy)
x Zzy, I

(zx)
y Zzx, I

(xz)
y Zxz, I

(xy)
z Zxy and I(yx)

z Zyx. The three scattering

coefficients, namely L̂xy, L̂yz and L̂zx need to be stored.

Finally, to accomplish the scattering procedure the 24 additional ADD/SUB op-

erations required in equations (6.8)–(6.9) need to be performed. This gives a total

of 48 ADD/SUB and 6 MUL operations per node per time step for the scattering

in the SSCN, provided that six scattering coefficients are stored.

It is interesting to note that in case of modelling isotropic media, the relation-

ship (5.25) applies:

L̂ij = Ĉik
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which can be used to further optimize the number of stored scattering coefficients.

By using this identity, equation (6.20) can be rewritten as:

I
(ij)
k Zij = ĈikV

(ij)
k (6.22)

By introducing mappings for indices (i, j, k) to {(x, z, y), (y, x, z), (z, y, x)} all

terms I(ij)
k Zij and I

(ji)
k Zji can be calculated by making use of equations (6.22)

and (6.21). Note that the three scattering coefficients appearing in (6.22), namely

Ĉxy, Ĉyz and Ĉzx, have already been used for the computation of equivalent volt-

ages. Therefore, in an isotropic case, only three scattering coefficients need to be

stored. Furthermore, when modelling isotropic media on a uniform mesh it follows

from (5.34) that:

Ĉxy = Ĉyz = Ĉzx

Hence, in the case of a uniform mesh, only one scattering coefficient is sufficient

to efficiently perform the complete scattering process in the SSCN.

6.5 Scattering in the 12-port SCN

When modelling regions with background parameters on a uniform mesh, all con-

densed nodes simplify to the basic 12-port SCN and for this part of the mesh

further gains in the computational efficiency can be made by implementing a

separate procedure. By substituting, for example, Zij = 1/Yij = Z0 in equa-

tions (6.8)–(6.11) for all possible combinations of i, j ∈ {x, y, z} the scattering

equations in the case of basic 12-port SCN can be rewritten as:

V r
inj =

1
2
(V i

knj + V i
kpj + V i

jni − V i
jpi) (6.23)

V r
ipj =

1
2
(V i

knj + V i
kpj + V i

jpi − V i
jni) (6.24)

The implementation of the complete scattering procedure in this form will require

at least 12 multiplications by 1/2. This can be however improved, as follows.

Introducing partial sums and differences as

Visj = V i
inj + V i

ipj

Vidj = V i
inj − V i

ipj

and using the identity
1
2

(a− b) =
1
2

(a+ b) − b
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equations (6.23)–(6.24) can be rewritten as:

V r
inj =

1
2
(Vksj + Vjdi) (6.25)

V r
ipj =

1
2
(Vksj − Vjdi) = V r

inj − Vjdi (6.26)

Therefore, after calculating partial sums Visj and partial differences Vidj , which

takes 6 ADD and 6 SUB operations, reflected voltages V r
inj can be computed

from (6.25) by performing additional 6 ADD and 6 MUL by 0.5. These reflected

voltages can be subsequently used in the computation of V r
ipj through (6.26) re-

quiring only additional 6 SUB operations.

Therefore, in this way, the scattering procedure for the 12-port node is accom-

plished with only 24 ADD/SUB operations and 6 MUL by a constant (1/2), with

no need to store coefficients.

6.6 Discussion

A comparison of computational requirements of different TLM nodes is made in

Tables 6.2–6.4.

unbalanced GSCN balanced GSCN

ADD/SUB oper. 60 54

MUL operations 36 18

stored coefficients 36 18

incident voltages 18 18

Table 6.2 Comparison in the computational efficiency of balanced and unbalanced

general symmetrical condensed nodes

GSCN stub.SCN HSCN SSCN

ADD/SUB oper. 54 54 48 42

MUL operations 18 12 12 12

stored coefficients 18 12 12 12

incident voltages 18 18 15 12

Table 6.3 Comparison in the computational efficiency of various balanced nodes

modelling lossy general anisotropic media
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stub.SCN HSCN SSCN 12-port SCN

Operations per node per time step

ADD/SUB 54 48 48 24

MUL 12 12 6 6

Number of scattering coefficients to store

anisotropic media – any mesh 12 9 6 N/A

isotropic media – graded mesh 12 9 3 N/A

isotropic media – uniform mesh 4 2 1 0

Table 6.4 Comparison in the computational efficiency of various balanced nodes

modelling lossless media

It can be seen from Table 6.2 that balanced nodes are significantly more efficient

than the unbalanced ones. The number of multiplicative operations (MUL), which

are the most computationally demanding, is twice as higher in the unbalanced

nodes. However, following the discussion given in Chapter 4 that the unbalanced

nodes should not be used for the general modelling of the wave propagation in

unbounded space, the complexity of their scattering algorithm does not pose a

particular problem. Their possible use in modelling adjustable boundaries does

not significantly decrease overall efficiency since the number of boundary nodes is

much smaller than the total number of nodes.

It can be seen from Table 6.3 that the nodes derivable from the balanced GSCN,

namely the stub-loaded SCN, the HSCN and the SSCN can be implemented more

efficiently than the GSCN. For modelling general lossy anisotropic media on a vari-

able graded mesh, the number of MUL operations is the same in all three practical

nodal structures (12), while the number of ADD/SUB operations decreases with

the number of incident voltages.

However, a real improvement in efficiency when modelling the lossless media with

the SSCN can be noticed from Table 6.4. Here, the number of MUL operations for

modelling any anisotropic lossless medium on a graded mesh is decreased to only 6.

In fact, this number of MUL operations is the best that one can achieve, even when

using the basic 12-port SCN which is only capable of modelling a homogeneous

medium with background properties. It can be also seen from Table 6.4, that

the number of scattering coefficients required to be stored per node region is

significantly reduced for the case of the SSCN.
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After carefully examining the computational aspects of the available symmetrical

condensed nodes some conclusions can be drawn. It is obvious from the above

discussions that the removal of stubs from the general node, through the SSCN,

resulted in the development of a computationally efficient method with significant

savings in memory storage, improvements in the CPU run-time performance and

the possibility of using a higher time-step.

One more aspect remains to be examined – the numerical dispersion of the avail-

able methods, or in other words, their accuracy. The impact of introducing stubs

and altering link lines on the accuracy of the TLM method when modelling general

media and using a graded mesh must now be investigated. This will give a bet-

ter insight into the dispersion behaviour of different nodes and point to potential

developments of more improved nodal structures.

The dispersion characteristics of the traditional and the newly developed sym-

metrical condensed nodes will be the topic of the following, Part Three of the

thesis.
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Dispersion Analysis
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Chapter 7 Dispersion relations of symmetrical

condensed nodes

7.1 Introduction

As a result of the process of space discretization in modelling electromagnetic

problems, variation in the wave propagation velocity with frequency occurs in all

numerical schemes, even in cases where the numerical method is intended to sim-

ulate non-dispersive media. This phenomenon is usually described as numerical

dispersion. Although errors introduced due to the numerical dispersion are gen-

erally small they nevertheless become unacceptable in certain applications such

as, for example, narrow-band microwave circuits where small numerical frequency

shifts can make the interpretation of results difficult. Similarly, if propagation

over several wavelengths is simulated, unacceptable numerical phase shifts may

occur.

To allow the study of the numerical dispersion in different modelling methods,

the dispersion relation for a particular scheme must be obtained. In general,

this dispersion relation describes the functional relationship between the angular

frequency ω and the wave, or propagation vector, �k. The dispersion relation of

Maxwell’s equations in an isotropic non-dispersive medium with electromagnetic

parameters ε, µ is [46]:

k2 = εµω2 (7.1)

where the amplitude of the propagation vector, denoted by k and also referred to

as the propagation constant or wave number, is defined by

k =
√
k2

x + k2
y + k2

z (7.2)

where kx, ky and kz are Cartesian components of the vector �k.

The phase velocity vp and the group velocity vg are defined as [46]:

vp =
ω

k
vg =

(
∂k

∂ω

)−1

(7.3)
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It follows from the dispersion relation (7.1) that the group and phase velocities

in non-dispersive media are equal. They are independent of frequency and deter-

mined only by the properties of the medium:

vp = vg = v =
1√
εµ

The dispersion characteristics k = F (ω) for such media are straight lines with a

slope of 1/v=
√
εµ and they will be referred further in the text as linear dispersion

characteristics.

It is shown in this chapter that in TLM, as in other discrete numerical schemes,

the modelled group and phase velocities follow the physical velocities closely only

within a low-frequency band or, equivalently, for sufficiently fine spatial discretiza-

tion. At higher frequencies the numerical dispersion increases, thus causing a devi-

ation in the modelled wave velocities. In general, for numerical schemes modelling

non-dispersive media, one can write:

∂k

∂ω
�= const

but

lim
ω→0

∂k

∂ω
=
k

ω
= const =

√
εµ

The original analysis of the dispersion characteristics of the TLM mesh can be

found in [51]. A limitation of this analysis procedure is that an equivalent circuit

model of TLM node is required. As a practical equivalent circuit model for the

3D symmetrical condensed node does not exist, its dispersion relation cannot be

derived by this procedure, except for special cases such as propagation along the

axis and diagonal directions [5].

An extensive study in formulating a general dispersion relation for the SCN TLM

mesh was pursued by Nielsen and Hoefer, which was reported in a series of pub-

lications [40, 52, 53, 54, 55]. In these references, the general dispersion relation,

based on the application of Floquet’s theorem, was formulated for the basic 12-

port SCN. It was given in an implicit matrix form which can be solved numerically

to study the dispersion characteristics of the SCN. An investigation of the spurious

modes supported by the condensed node meshes was also carried out.

This work was followed up by other authors who extended the definition of the gen-

eral dispersion relation to include nodes with stubs, different link line impedances

and arbitrary aspect ratios [56, 57, 58, 59]. Dispersion in lossy media was also
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investigated [60]. Most of these results were computed numerically due to the com-

plexity of obtaining closed-form solutions for the general dispersion relation. They

were computed either for propagation on a coordinate plane, or along particular

directions. The closed algebraic solution describing completely the propagation in

all directions was recently obtained for the 12-port SCN [61, 62]. An analytical

study of the dispersion in anisotropic media modelled by TLM condensed nodes

was also performed for propagation along axes and diagonal directions [63].

In this chapter, dispersion relations in algebraic forms for propagation in arbitrary

directions will be derived for the stub-loaded SCN, the HSCN and the SSCN and

their solutions will be explored. The analytical expansion of the general TLM

dispersion relation is important as it enables, for the first time, a comprehensive

mathematical analysis and comparisons of the dispersion behaviour of different

nodes. This facilitates a thorough assessment of their accuracy in modelling EM

problems, pursued in Chapter 8. It also offers an insight into the dispersion error

trends for different nodal structures, which can be used in the development of new,

more accurate TLM nodes, pursued in Chapter 9.

7.2 General dispersion relation for TLM

The general TLM dispersion relation for time-domain schemes can be written in

matrix form as [62]:

det(PS − ejθI) = 0 (7.4)

where θ is the phase shift along the constituent transmission lines, defined by

θ = ω∆t, I is the identity matrix, S is the scattering matrix of the node, while

P is a connection matrix. These parameters will be described in detail for time-

domain TLM nodes modelling lossless media with arbitrary ε and µ on a graded

mesh.

The phase shift θ can, in the case of a uniform mesh, be written in terms of the

propagation constant along the constituent transmission lines, kl = ω/vl, where

vl is a voltage pulse velocity on the line, and the node spacing ∆l = vl∆t as:

θ = ω∆t = klvl∆t = kl∆l

This last definition was used in the original work by Nielsen and Hoefer [52]. In the

graded mesh, the node spacing and the velocity of propagation on the individual

link lines differ, and in this case kl and ∆l can be regarded, respectively, as an

equivalent propagation constant and an equivalent cubic cell parameter [49].
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The scattering matrix S, valid for a balanced general symmetrical condensed node,

was derived in Chapter 3 and was shown in Figure 3.5. For the dispersion analysis

of various nodes derivable from the GSCN, the scattering matrix with no losses is

used, therefore rows 19–24 are removed from the matrix.

The connection matrix P represent Floquet’s theorem, relating the voltage pulses

at one node to the voltage pulses at neighbouring nodes along the periodic network

of transmission lines. It contains the Cartesian components of the propagation

vector �k = (kx, ky, kz) describing phase shifts along the three coordinate directions.

The elements of P are zero, except [57]:

P3,11 = P6,10 = ejkx∆x

P1,12 = P5,7 = ejky∆y

P2,9 = P4,8 = ejkz∆z

P10,6 = P11,3 = e−jkx∆x

P7,5 = P12,1 = e−jky∆y

P8,4 = P9,2 = e−jkz∆z

P13,13 = P14,14 = P15,15 = 1

P16,16 = P17,17 = P18,18 = −1 (7.5)

Note that in the node without open-circuit stubs and/or without short-circuit

stubs, rows and columns 13–15 and/or 16–18, respectively, are removed from the

matrix P.

The general dispersion relation (7.4) is therefore defined as an implicit function of

the angular frequency ω (through θ) and the propagation vector �k (through P).

In addition, the relation (7.4) is function of the time step, mesh grading and

material properties (through the definition of the parameters of S). Therefore,

nodes with different scattering matrices will have different dispersion relations

and hence different numerical properties.

Relation (7.4) can be solved as an eigenvalue problem, because the left-hand side

of (7.4) represents the characteristic polynomial of the matrix PS in terms of ejθ.

Finding the analytical solutions to the general relation (7.4) is a complex algebraic

process and will be described in the following sections. Before this is done, it will

be proved that the dispersion analysis performed using the scattering matrix for

balanced nodes, shown in Figure 3.5, is fully equivalent to the dispersion analysis
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performed using a scattering matrix normalized in terms of power amplitudes,

used in [63].

The need to normalize the scattering matrix is due to the reason that in a gen-

eral SCN, unlike the basic 12-port SCN, the scattering matrix is not unitary,

i.e. ST S �= I. The equivalent condition in this case is described by [6]:

STYS = Y

where Y is a diagonal matrix consisting of the characteristic admittance of link

and stub lines. By multiplying both sides of this equation with Y− 1
2 on the left

and right-hand side, we obtain:

(Y− 1
2 STY

1
2 )(Y

1
2SY− 1

2 ) = I

and after introducing a normalized scattering matrix as Sn = Y
1
2 SY− 1

2 we write:

ST
nSn = I

which shows that Sn is a unitary matrix. Normalized in terms of power amplitudes,

the matrix Sn in fact directly obeys the energy conservation law.

The normalized matrix Sn was used in the dispersion analysis in [63], while original

matrix S was used, for example, in [57, 58]. We will now prove formally, that as

far as the dispersion analysis is concerned, these two approaches are equivalent.

First, it can be easily confirmed that for a balanced node, with Yinj = Yipj, the

matrices P and Y
1
2 commute, i.e. PY

1
2 = Y

1
2P. Using this property and the

definition of Sn we can write:

PSn = PY
1
2 SY− 1

2 = Y
1
2PSY− 1

2

Since Y
1
2 is non-singular, the matrix PSn is called the transform of the matrix PS

by the matrix Y− 1
2 [64]. Matrices PSn and PS are also called similar matrices. A

property for similar matrices is that they have identical eigenvalues [64]. Therefore,

it follows that the solutions to the general dispersion relation (7.4) are identical

for both representations of the scattering matrix.

7.3 Dispersion relation of the 12-port SCN

7.3.1 Derivation using new scattering matrix formulation

The analytical expansion of the general dispersion relation from the implicit form

given by (7.4) requires considerable algebraic effort as finding the eigenvalues of
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a matrix of 12th and higher orders, analytically, is not an easy task. The original

investigations of the dispersion behaviour of the SCN were carried out mainly

numerically [52, 54] and only very recently was the closed-form dispersion relation

for the 12-port SCN derived [62]. Here, an interesting approach for deriving the

dispersion relation of the 12-port SCN is presented, based on a new formulation

of the scattering matrix. A systematic procedure of deriving dispersion relations

algebraically for other available nodes will be presented in the next section.

Since the basic 12-port SCN allows only modelling of a homogeneous lossless

medium on a uniform mesh, its scattering matrix can be obtained by removing

stubs and lossy elements from the GSCN scattering matrix (shown in Figure 3.5)

and setting Zij = Z0. The top 12 × 12 partition of this matrix then becomes

the original 12-port SCN matrix [9] with the elements aij = cij = 0 and bij =

dij = 1/2. The order of the twelve node ports in this matrix is arranged in an

apparently arbitrary manner which does not allow partitioning and expressing in

a compact form. Although recently more systematic re-numbering schemes were

proposed [44, 65], they do not offer an easier analytical solution to the general

dispersion relation.

In the approach presented here, the node ports in the scattering matrix are rear-

ranged so as to allow its partitioning with 6× 6 zero blocks on the main diagonal.

Voltage ports are ordered according to their direction and polarization indices,

using cyclic permutations of indices, i.e. xy, yz and zx for the first six locations,

and xz, yx and zy for the rest. A similar right-hand rule technique was used in

the numbering scheme presented in [65].

The order of node ports for the new matrix representation is given in Table 7.1.

The original scheme numbering is given in the third column for reference. Re-

arranging the rows and columns of the original scattering matrix according to

Table 7.1 yields a new matrix with 6 × 6 blocks as:

S =

⎡
⎣ 0(6×6) S0

ST
0 0(6×6)

⎤
⎦ (7.6)

where

S0 =

⎡
⎣ S1 S2

S2 S1

⎤
⎦ (7.7)

with

S1 =
1
2

⎡
⎢⎢⎣

0 1 1

1 0 1

1 1 0

⎤
⎥⎥⎦ S2 =

1
2

⎡
⎢⎢⎣

0 −1 1

1 0 −1

−1 1 0

⎤
⎥⎥⎦ (7.8)
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New row/column Voltage Original port

position index notation [9]

1 xny 3

2 ynz 5

3 znx 2

4 xpy 11

5 ypz 7

6 zpx 9

7 xnz 6

8 ynx 1

9 zny 4

10 xpz 10

11 ypx 12

12 zpy 8

Table 7.1 Order of node ports in the reorganized scattering matrix

As a result of the transformation applied to matrix S, matrix P needs also to be

reorganized to reflect the new order of node ports. Moreover, the new form of the

matrix P is compact and can be written as:

P =

⎡
⎣ P0 0(6×6)

0(6×6) P0

⎤
⎦ (7.9)

where

P0 =

⎡
⎣ 0(3×3) P1

P∗
1 0(3×3)

⎤
⎦ (7.10)

with

P1 =

⎡
⎢⎢⎣
X 0 0

0 Y 0

0 0 Z

⎤
⎥⎥⎦ (7.11)

and

X = ejkx∆x Y = ejky∆y Z = ejkz∆z

P∗
1 stands for the Hermitian transpose of P1 [64].

Solutions to the general dispersion relation (7.4) applied to the basic 12-port node

can be found by finding eigenvalues λi = exp(jθi) = exp(jωi∆t) of the matrix PS
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which is of order 12 × 12. The eigenvalue equation (7.4) can be written in the

form:

PS �Xi = λi
�Xi (7.12)

Using the partitioned forms of the matrix S given by (7.6) and the matrix P given

by (7.9) and by partitioning the eigenvector �Xi = [X1iX2i]T we can write (7.12)

in the form: ⎡
⎣ 0(6×6) P0S0

P0ST
0 0(6×6)

⎤
⎦
⎡
⎣ X1i

X2i

⎤
⎦ = λi

⎡
⎣ X1i

X2i

⎤
⎦ (7.13)

which leads to a system of two matrix equations:

P0S0
�X2i = λi

�X1i (7.14)

P0ST
0
�X1i = λi

�X2i (7.15)

Combining these two equations by eliminating �X2i we obtain:

P0S0P0ST
0
�X1i = (λi)2 �X1i (7.16)

This equation has the form of an eigenvalue equation for a 6 × 6 matrix given by

S′ = P0S0P0ST
0 with eigenvectors �X1i and eigenvalues ψi = (λi)2 = exp(j2θi),

thus requiring:

det(S′ − ψiI) = 0 (7.17)

Therefore, by solving the eigenvalue equation (7.17) of 6th order for ψi we can

obtain the eigenvalues λi of the 12 × 12 matrix PS as λi = ±√
ψi.

Having reduced the size of the eigenvalue problem (7.4) involving 12×12 matrices

to the equivalent one (7.17) with 6×6 matrices, its analytical solution is relatively

simple. The six eigenvalues ψi of the matrix S′ can be found from (7.17) as:

ψ1 = ψ2 = 1 (7.18)

ψ3 = ψ4 = C1 +
√
C2

1 − 1 (7.19)

ψ5 = ψ6 = C1 −
√
C2

1 − 1 (7.20)

where

C1 =
cos(χ) cos(η) + cos(η) cos(ξ) + cos(ξ) cos(χ) − 1

2
(7.21)

with χ = kx∆l, η = ky∆l and ξ = kz∆l. Note that the calculations were performed

for a uniform mesh (∆x = ∆y = ∆z = ∆l).

From (7.18) we can calculate four eigenvalues λ1,2 = 1 and λ3,4 = −1. Since λ = 1

implies ω = 0 and λ = −1 implies ω∆t = π, the eigenvalues λ1,2 correspond to
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the electrostatic and magnetostatic solutions, whereas λ3,4 correspond to unphys-

ical solutions oscillating with the frequency f = 1/(2∆t) [62]. It can be readily

confirmed that ψ3 = ψ−1
5 , hence expressions (7.19) and (7.20) represent solutions

for waves propagating in positive and negative directions, respectively.

Grouping the reciprocal solutions as:

ψ3 + ψ5 = ej2θ + e−j2θ = 2cos(2θ)

we obtain from (7.19) and (7.20):

2 cos(2θ) = 2C1

which after using the indentity:

cos(2θ) = 2 cos2(θ) − 1

and substituting for C1 and θ gives:

4 cos2(ω∆t) = cos(χ) cos(η) + cos(η) cos(ξ) + cos(ξ) cos(χ) + 1 (7.22)

This formula has also been derived in [62].

7.3.2 Analysis of solutions

The dispersion relation (7.22) can be now compared to the dispersion relation

of Maxwell’s equations given by (7.1). By applying the approximation cos(x) ≈
1−x2/2 for small arguments in the case when the temporal frequency approaches

zero, i.e. ω → 0, and for small wave numbers k → 0, the dispersion relation (7.22)

yields: (
2ω∆t
∆l

)2

= k2
x + k2

y + k2
z (7.23)

which is equivalent to the dispersion relation (7.1) of a wave equation with prop-

agation velocity v = ∆l/(2∆t).

Dispersion relation (7.22) has other solutions which do not correspond to the

linear dispersion relation of Maxwell’s equations. The ambiguity arises from the

fact that cosines factors in (7.22) always appear in products and therefore, using

the identity cos(π ± x) = − cos(x), it follows that:

cos2(ω∆t) = cos2(π ± ω∆t) (7.24)

or, for example,

cos(χ) cos(η) = cos(π ± χ) cos(π ± η) (7.25)
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This shows that every solution to (7.22) which is valid for a particular ω and

a wave vector (kx, ky , kz) will also be valid for frequencies π/∆t ± ω and wave

vectors (π/∆l ± kx, π/∆l ± ky, π/∆l ± kz). Using (7.24) it can be seen that for

every low-frequency solution (0 ≤ ω∆t ≤ π/2) obtained from (7.22) as:

ω∆t = arccos
(

1
2

√
cos(χ) cos(η) + cos(η) cos(ξ) + cos(ξ) cos(χ) + 1

)
(7.26)

there exists another high-frequency solution (π/2 ≤ ω∆t ≤ π) given by:

ω∆t = π − arccos
(

1
2

√
cos(χ) cos(η) + cos(η) cos(ξ) + cos(ξ) cos(χ) + 1

)
(7.27)

Furthermore, by taking into account (7.25) it follows that for each of the two solu-

tions (7.26) and (7.27) corresponding to, say, low wave numbers (kx, ky, kz), there

are solutions in identical form but corresponding to high wave numbers (π/∆l ±
kx, π/∆l ± ky, π/∆l ± kz), as originally found by Nielsen [54].

The low-frequency solutions (7.26) with low wave numbers (kx, ky, kz) are physical

propagating solution corresponding to Maxwell’s equations. The high-frequency

solutions (7.27) with both low and high wave numbers are referred to as unphysical

solutions (after Krumpholz [66]) or high-frequency spurious solution (after Nielsen

and Hoefer [40]) and can be easily suppressed by temporal low-pass filtering or

using an excitation with a frequency spectrum sufficiently below ω = π/∆t.

The most troublesome spurious solutions are those given by (7.26) corresponding

to high wave numbers. When ω → 0, these solutions have an identical dispersion

relation to the physical solutions, given by (7.23). The modes with high spatial

frequency (that is with high wave numbers) are not easily excited, but they can

sometimes occur, for example, generated by an isolated source. Instead of normally

being attenuated quickly with distance away from the source, these modes can in

a TLM simulation be represented by spurious solutions and propagate without

loss with the same speed as physical ones [40, 54]. These spurious modes cannot

easily be suppressed, although some investigations into their suppression have been

recently reported [67, 68, 69].

Perhaps the best way to illustrate different solutions to the dispersion relation of

the SCN is to plot the dispersion diagrams for the propagation along the main

space diagonal, that is for kx = ky = kz. In this case, assuming the velocity of

propagation v = ∆l/(2∆t), the linear dispersion relation (7.1) becomes:

ω =
∆l
2∆t

kx

√
3
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Figure 7.1 Propagating solutions of the SCN dispersion relation compared to the

solution of linear dispersion relation for kx = ky = kz

while the SCN dispersion relation (7.22) yields:

4 cos2(ω∆t) = 3 cos2(kx∆l) + 1

Figure 7.1 show solutions to the linear dispersion relation and the SCN disper-

sion relation in this case. The high-frequency solutions for the SCN dispersion

relation, plotted using a broken line in Figure 7.1, complement low-frequency

solutions plotted using a solid line. Only the low frequency solutions with low

wave numbers (that is kx∆l < π/2) follows the linear dispersion relation and they

correspond to physical propagating modes of a TLM mesh. The low-frequency

solutions with high wave numbers, appearing on the bottom right-hand corner of

the plot, represent spurious (parasitic) propagating modes of a TLM mesh [55].

By applying a low-pass temporal filter well below ω = π/∆t, the high frequency

spurious solutions can be eliminated, but low-frequency modes with high wave

numbers (around kx = π/∆l) will, if excited, propagate together with physical

modes, as can be seen from Figure 7.1.

The low-frequency spurious solutions also appear for directions of propagation

different from the main space diagonal. Figure 7.2 shows solutions to the linear
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Figure 7.2 Propagating solutions of the SCN dispersion relation for wave vectors

(ka,
ka

2
,
ka

2
) or wave vectors (

π

∆l
− ka,

π

∆l
− ka

2
,
π

∆l
− ka

2
)

dispersion relation and the SCN dispersion relation for propagation with either a

wave vector (ka, ka/2, ka/2) or a wave vector (π/∆l−ka, π/∆l−ka/2, π/∆l−ka/2).

Both the wave vectors, with low and high wave numbers, have the same disper-

sion relation and contribute to the identical low- and high-frequency propagation

solutions, leading therefore to the appearance of low-frequency spurious solutions

with high wave numbers.

It should be noted that the propagation velocities of both low and high frequency

solutions when �k approaches (0, 0, 0) or (π/∆l, π/∆l, π/∆l) have identical absolute

values. This can be seen from Figure 7.1, for example, by observing the gradients

of curves approaching corners of the plot. This can be also derived analytically

from the SCN dispersion relation (7.22) using differential calculus. By expressing

the Cartesian components of �k through a parameter r, such that k → 0 when

r → 0, i.e.

kx = k̂xr ky = k̂yr kz = k̂zr

and differentiating low- and high-frequency solutions given by equations (7.26)

and (7.27), the propagation velocity for wave vectors approaching zero can be
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derived as:

v = lim
k→0

∂ω

∂k
= lim

r→0

∂ω

∂r

∂r

∂k
= ± ∆l

2∆t
where the upper and lower sign apply to solutions (7.26) and (7.27) respectively.

Also, since the propagating modes with high wave numbers have dispersion rela-

tions identical to the corresponding physical modes with low wave numbers, due

to the identity (7.25), it follows that physical and spurious modes propagate with

the same velocity (in absolute value).

The accuracy of the TLM scheme with the SCN, for physical propagating modes,

can be roughly estimated from, for example, Figure 7.1, where it can be seen that

the discrepancy between the linear dispersion relation and the SCN dispersion

relation is almost indistinguishable for kx∆l < π/4 which is equivalent to ∆l/λ =√
3/8 ≈ 0.21, i.e. for a discretization of five nodes per wavelength. It should be

pointed out that for axial propagation, for example when ky = kz = 0 and kx = k,

the dispersion relation (7.22) simplifies to:

cos2(ω∆t) = cos2
(
k∆l
2

)
(7.28)

which means that in this case physical modes propagate with velocity ∆l/(2∆t)

at all frequencies, hence without dispersion, as noticed by Johns [9]. A more

detailed quantitative analysis of numerical dispersion and the accuracy of different

condensed node schemes will be presented in Chapter 8.

7.4 Analytical expansion of the general dispersion relation

The new numbering scheme introduced in the previous section allowed the re-

duction of the eigenvalue problem in the 12-port SCN. This approach, however,

cannot be used for the algebraic derivation of dispersion relations for other avail-

able condensed nodes, as an appropriate partitioning of the full GSCN matrix

cannot be achieved successfully. We therefore resort to a new methodology, which

is explained in this section.

7.4.1 Basic concepts

The general TLM dispersion relation (7.4) can be solved as an eigenvalue problem.

The left-hand side of (7.4) represents the characteristic polynomial of the matrix

PS, where λ = exp (jθ) are its characteristic values (or eigenvalues). By formu-

lating this N -th order polynomial in a normal form with coefficients Ci, i=1...N , we
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can write (7.4) as:

P(N)(λ) = λN +
N∑

i=1

Ciλ
N−i = 0 (7.29)

where N is equal to the number of node ports.

The analytical expansion of the general dispersion relation (7.4) can be accom-

plished by finding the N coefficients Ci, i=1...N of the characteristic polynomial

P(N)(λ). In a general case, analytical determination of the coefficients of a char-

acteristic polynomial of a matrix of high order (e.g. N = 12, 15, 18) is a lengthy

algebraic process, which requires matrix diagonalization.

However, the size of the problem can be reduced if some of the roots of the

characteristic polynomial are known a priori. For example, in the derivation of

the dispersion relation for the 12-port SCN, performed in previous section and

in [62], it was found that two of the eigenvalues are λ = 1 and two are λ = −1,

representing respectively, non-propagating static solutions and solutions oscillating

at a high frequency. It was also found that propagating eigenvectors of the SCN

are repeated twice (degenerate solutions).

For a general symmetrical condensed node, assuming the presence of h non-

propagating solutions, l high-frequency oscillating solutions and r possible de-

generacies of propagating solutions, equation (7.29) can be written as:

P(N)(λ) = (λ− 1)h(λ+ 1)l(Q(n)(λ))r = 0 (7.30)

where n = (N − h− l)/r, the order of the polynomial Q(n)(λ).

Roots of the polynomial Q(n)(λ) are also roots of P(N)(λ) and they describe the

propagation solutions to the dispersion relation (7.30). Equation (7.30) can be

simplified to:

Q(n)(λ) = λn +
n∑

i=1

Biλ
n−i = 0 (7.31)

where Bi, i=1...n are coefficients to be determined.

In the previous section it was shown that propagation solutions appear in recip-

rocal pairs (λ, λ−1). This is due to symmetry, as they correspond to eigenvectors

describing wave propagation in positive and negative directions. As a result of

this, it follows that the order of Q(n)(λ), n, is an even number and it can be

easily shown that the coefficients of Q(n)(λ) must be symmetrical, i.e. Bi = Bn−i

and Bn=1. Therefore, only m = n/2 coefficients Bi need to be determined to

completely describe the dispersion relation (7.31).
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Dividing equation (7.31) by 2λm (where m = n/2), and substituting Bn = 1,

Bn−i = Bi and λi + λ−i = 2cos(iθ) for i = 1...m (note that λ = ejθ), it simplifies

to:

cos(mθ) +
m−1∑
i=1

Bi cos [(m− i)θ] +
Bm

2
= 0 (7.32)

Expression (7.32) is a general algebraic form of the dispersion relation for propa-

gating solutions. By raising the polynomial Q(n)(λ) to the power of r and multi-

plying by (λ−1)h(λ+1)l, the coefficients Bi can be related to the coefficients Ci of

the polynomial P(N)(λ). Since only m coefficients Bi are unknown, it is sufficient

to obtain the first m coefficients Ci of the characteristic polynomial P(N)(λ) to

derive the dispersion relation (7.32).

A conventional method for obtaining coefficients of the characteristic polynomial

consists of matrix diagonalization using Gaussian elimination or a similar tech-

nique. Using this method, all coefficients of the characteristic polynomial are

computed simultaneously and we cannot derive only the first m coefficients, hence

we cannot benefit from our a priori knowledge on the structure of the character-

istic polynomial. Therefore, a method which allows separate computation of the

coefficients should be used.

An efficient method for the computation of leading coefficients of the characteristic

polynomial is the method of Faddeev [70]. Here, the coefficients Ci are simply

obtained by computing sums of diagonal elements of appropriate matrices and

using an iterative procedure consisting of matrix additions and multiplications [70].

The algorithm can be described in a pseudo-code as:

Algorithm 1 (Faddeev Method)

A := PS;

for i := 1 to N

begin

Ci := −(
N∑

j=1

Aj,j)/i;

A := PS (A + CiI)

end;

This method has the advantage over conventional diagonalization methods that

it can be terminated when the desired number of coefficients is computed. As
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indicated before, only m iterations are needed to obtain the coefficients needed

for the relation (7.32).

In order to establish the relationships between the coefficients Bi of the polyno-

mial Q(n)(λ) and the coefficients Ci of the polynomial P(N)(λ), parameters h, l, r

and n, appearing in (7.30), must be known. A particular case can be considered,

by setting fixed, arbitrary numerical values for the propagation vector compo-

nents kx, ky , kz, material properties and node spacings, so as to obtain numerical

matrices P and S. Then, numerical values for all (N) coefficients Ci can be ob-

tained using for example, the Faddeev method. After obtaining the coefficients of

P(N)(λ) for this particular case, the roots can be found numerically and solutions

of the form λ = ±1 and possible degeneracies can be identified.

The complete procedure of an analytical expansion of the general TLM dispersion

relation is demonstrated for the example of the 12-port SCN. Using fixed numerical

values for kx, ky, kz and ∆l, we find two solutions λ = 1, two solutions λ = −1

and that all remaining numerical solutions are degenerate. Therefore h = 2, l = 2,

r = 2 and n = (12 − h− l)/r = 4 and we write (7.30) as:

P(12)(λ) = (λ− 1)2(λ+ 1)2(Q(4)(λ))2 = 0 (7.33)

Since m = n/2 = 2, only the first two coefficients of the polynomial P(12)(λ) need

to be calculated. Using the Faddeev method, now applied to the matrices P and

S in analytical forms, coefficients C1 and C2 are obtained as

C1 = 0 C2 = −2Σ (7.34)

where

Σ = cos(χ) cos(η) + cos(η) cos(ξ) + cos(ξ) cos(χ) (7.35)

with χ = kx∆l, η = ky∆l and ξ = kz∆l. Relationships between C1, C2 and B1, B2

are found by expanding P(12)(λ) from equation (7.33):

C1 = 2B1 C2 = B2
1 + 2B2 − 2 (7.36)

which leads to

B1 = 0 B2 = 1 − Σ

By inserting B1, B2 and m = 2 into (7.32) and expanding cosines of multiple

angles the dispersion relation for the SCN is obtained as:

cos2(θ) =
Σ + 1

4
(7.37)
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which is identical to the relation (7.22) derived in the previous section.

This procedure can also be applied to derive the dispersion relation for other nodes.

Parameters h, l, r, n of the characteristic polynomial in equation (7.30) and hence

the required number of coefficients, m, differ in each case. These parameters have

been obtained for presently available nodes and are shown in Table 7.2. Note that

the analysis of the stub-loaded SCN is separated into three different cases.

Node Case N h l r n m

SCN — 12 2 2 2 4 2

SSCN all 12 2 2 2 4 2

HSCN all 15 2 3 1 10 5

Stub- 1 15 2 3 1 10 5

loaded 2 18 2 0 2 8 4

SCN 3 18 2 0 1 16 8

Case 1: uniform mesh: εr > 1, µr = 1 or µr > 1, εr = 1
Case 2: uniform or graded mesh: εr = µr

Case 3: uniform or graded mesh: εr �= µr.

Table 7.2 Parameters of the characteristic polynomial

It can be seen from Table 7.2 that the structure of the characteristic polynomial

for the SSCN is the same as for the SCN, thus requiring only two coefficients

to be determined. The most demanding is the analysis of the stub-loaded SCN

in a general case (Case 3). It should be pointed out that in all nodes for all

cases h = 2, i.e. the two non-propagating solutions λ = 1, corresponding to the

electrostatic and magnetostatic case, always exist. Also, the propagation solutions

are degenerate (r = 2) in the SCN, the SSCN and the stub-loaded SCN in Case

2, which greatly reduces the required number of coefficients in these cases.

The analytical expansion of the general dispersion relation (7.4) will be applied in

the following subsections to these different condensed nodes modelling isotropic

media on a uniform and a graded mesh. The methodology described above and

the parameters in Table 7.2 will be used.
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7.4.2 Symmetrical super-condensed node

It can be seen from Table 7.2 that the parameters of the characteristic polyno-

mial for the SSCN are the same as for the 12-port SCN. Hence, the relationships

between B1, B2 and C1, C2 are given by equation (7.36). Here, separate analyses

are performed for uniform and graded meshes, modelling isotropic media with

arbitrary εr, µr.

The scattering matrix for the isotropic lossless SSCN is derived from the GSCN

scattering matrix (shown in Figure 3.5) by eliminating row/columns 13 . . . 24

and setting Yoj = Zsk = Gej = Rmk = 0 in equations (3.45)–(3.48). The top

12 × 12 submatrix Sln defined by equation (3.49) becomes the scattering matrix

of the SSCN. The scattering coefficients of this matrix can be found from expres-

sions (3.42)–(3.48) and are:

aij = 1 − bij − dij bij = Ĉkj

cij = dij − bij dij = L̂ij = Ĉik

(7.38)

where the expressions for normalized capacitances Ĉij can be found in § 5.2.1.

Using the properties of the SSCN for the uniform mesh, derived in § 5.2.3, namely

Cxy = Cyz = Czx = Cp = 1 − Cn and Cxz = Cyx = Czy = Cn, the scattering

coefficients (7.38) can be expressed in this case through a single parameter q as:

ap,n = ±(1 − 2q) bp = dp = q

cp,n = 0 bn = dn = 1 − q
(7.39)

where

q = Cn =
1 ∓

√
1 − 1

εrµr

2
(7.40)

The first and second subscripts in (7.39) correspond to the upper and lower sign,

respectively. Subscript p corresponds to lines xy, yz and zx, while subscript n

corresponds to lines xz, yx and zy. Note from the definition of q given by (7.40)

that two sets of coefficients can be chosen. When εr = µr = 1, then q = 1/2

and the coefficients in (7.39) reduce to those of the basic 12-port SCN, namely

a = c = 0 and b = d = 1/2.

Applying the Faddeev method on the matrix PS for the uniform mesh SSCN

with node spacing ∆l, the leading two coefficients of the characteristic polynomial

P(12)(λ) can be obtained as:

C1 = 0 C2 = 8(q − q2)(3 − Σ) − 6
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where Σ is defined in the previous subsection by (7.35). Using the relation-

ships (7.36) the coefficients required for the dispersion relation are obtained as:

B1 = 0 B2 = 4(q − q2)(3 − Σ) − 2 (7.41)

It can be readily shown from (7.40) that

4(q − q2) =
1

εrµr

which is independent of the sign chosen for the definition of q in (7.40). By

inserting B1, B2 and m = 2 into (7.32), taking into account the above expression,

then substituting Σ from (7.35) and applying simple manipulations with basic

trigonometric identities, the dispersion relation for the SSCN (uniform mesh) can

be derived as:

4εrµr sin2(ω∆t) = 3 − cos(χ) cos(η) − cos(η) cos(ξ) − cos(ξ) cos(χ) (7.42)

The dispersion relation for the SSCN is therefore dependent on the material prop-

erties εr, µr but not on the sign chosen in the definitions of the SSCN’s scattering

parameters (eqn. 7.40). For the special case εr = µr = 1 equation (7.42) simplifies

to the dispersion relation for the 12-port node (7.37) obtained earlier.

By approximating cosine and sine terms in (7.42) for small ω and small �k using

sin(x) ≈ x and cos(x) ≈ 1 − x2/2, we derive

(2
√
εrµrω∆t
∆l

)2

= k2
x + k2

y + k2
z (7.43)

which is equivalent to the dispersion relation (7.1) of a wave equation with prop-

agation velocity v = ∆l/(2
√
εrµr∆t).

Similarly as in the case of the dispersion relation of the SCN, there are different

combinations of solutions with low/high temporal frequencies (ω) and low/high

wave numbers (k). It follows from (7.42), since sin2(ω∆t) = sin2(π − ω∆t) and,

for example, cos(χ) cos(η) = cos(π − χ) cos(π − η), that for any given tempo-

ral frequency ω, propagation vectors (kx, ky, kz) which satisfy the dispersion rela-

tion (7.42) are complemented by propagation vectors (π/∆l−kx, π/∆l−ky, π/∆l−
kz), as discussed earlier.

Figure 7.3 shows the propagating solutions of the dispersion relation (7.42) for

εrµr = 2 and the linear dispersion relation for the velocity of v = ∆l/(2
√
εrµr∆t)

and propagation direction determined by kx = ky = kz . Unphysical high-frequency
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Figure 7.3 Propagating solutions of the SSCN dispersion relation for uniform

mesh and εrµr = 2 (kx = ky = kz)

and spurious low-frequency solutions can be identified as in the case for the SCN

depicted earlier in Figure 7.1. The velocities of physical and unphysical solutions

are identical, since by using the same procedure described earlier for the SCN, it

can be shown from (7.42) that:

|v| =
∣∣∣∣ limk→0

∂ω

∂k

∣∣∣∣ = ∆l
2
√
εrµr∆t

When using the SSCN on a graded mesh, the scattering matrix can be expressed

in terms of three normalized capacitances, for example Ĉxz, Ĉyx and Ĉzy, as the

remaining three can be found using Ĉij = 1 − Ĉkj. Scattering coefficients are

described by (7.38) whereas definitions for normalized capacitances can be found

in § 5.2.1.

Using the Faddeev method to compute C1 and C2 and by applying relation-

ships (7.36) we obtain:

B1 = 2 [cos(χ)(qy − qz) + cos(η)(qz − qx) + cos(ξ)(qx − qy)]

B2 = 4 [sx(cos(η) cos(ξ) − 1) + sy(cos(ξ) cos(χ) − 1)

+sz(cos(χ) cos(η) − 1)] − 2 (7.44)
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where

si = s0 − 2qjqk − qi (i, j, k) ∈ {(x, y, z), (y, z, x), (z, x, y)}

with

s0 = qxqy + qyqz + qzqx

and qx = Ĉyx, qy = Ĉzy and qz = Ĉxz. Note that now χ = kx∆x, η = ky∆y and

ξ = kz∆z.

Subsequently, the dispersion relation for the SSCN (graded mesh) is written as:

cos(2θ) +B1 cos(θ) +
B2

2
= 0 (7.45)

where B1 and B2 are defined by (7.44). In the special case when ∆x = ∆y = ∆z =

∆l it follows that qx = qy = qz = q, the coefficients B1 and B2 simplify to those

obtained for the uniform mesh given by (7.41) and the dispersion relation (7.45)

becomes equivalent to the relation (7.42).

It should be pointed out that two sets of the link line parameters of the graded

SSCN are possible, except when it operates on its maximum time-step (see §5.2.1
and §5.2.2) and each of them contributes to different coefficients B1 and B2 ap-

pearing in the dispersion relation (7.45). By approximating cosine factors in (7.45)

for small ω and small �k using cos(x) ≈ 1 − x2/2, both sets of SSCN parameters

yield: (
2ω∆t
∆l

)2

= k2
x + k2

y + k2
z (7.46)

Taking into account that the equivalent cubic cell parameter ∆l used in the deriva-

tion of the SSCN was defined by ∆l = 2∆t/
√
εµ, equation (7.46) becomes identical

to the linear dispersion relation (7.1) with a propagation velocity v = 1/
√
εµ, thus

confirming the validity of the graded SSCN for modelling an isotropic medium.

By expanding multiple angles and solving for cos(ω∆t), two solutions of (7.45),

corresponding to low and high frequencies, respectively ω1 and ω2, are obtained

as:

cos(ω1∆t) =
−B1 +

√
B2

1 − 4B2 + 8

4
(7.47)

cos(ω2∆t) =
−B1 −

√
B2

1 − 4B2 + 8

4
(7.48)

The two solutions are illustrated in Figure 7.4 for the case when ∆x = ∆y = 2∆z,

for the maximum time step and for wave vectors with kx = ky = kz. It can be seen
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Figure 7.4 Propagating solutions of the SSCN dispersion relation for graded mesh

with ∆x = ∆y = 2∆z and kx = ky = kz

that the gradients of the low and high frequency dispersion characteristics of the

graded SSCN are different, i.e. the physical and unphysical modes have different

velocities. This can be also confirmed analytically, by finding the derivatives of

the two solutions when k → 0. It follows from (7.47) that:

v = lim
k→0

∂ω1

∂k
=

∆l
2∆t

(7.49)

but a similar procedure for obtaining the propagation velocity for solutions corre-

sponding to ω2 given by (7.48) does not yield a simple expression in the general

case.

Investigating the form of the dispersion relation (7.45) it can be seen that the

existence of the term B1 cos(ω∆t) disallows, in the general case, the appearance

of complementary x and π − x solution pairs found in the SCN and the SSCN

for the uniform mesh. This means that propagation modes given by low wave

numbers (kx, ky, kz) will not have identical dispersion properties as modes with

high wave numbers (π/∆x− kx, π/∆y − ky, π/∆z − kz).

However, propagating modes with low frequencies and high wave numbers exist.

Analysing temporal and spatial cosine factors in the dispersion relation (7.45) it
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Figure 7.5 Solutions of the SSCN dispersion relation for graded mesh with ∆x =

∆y = 2∆z for low wave numbers (ka, ka, ka) and high wave numbers (π/∆x −
ka, π/∆y − ka, π/∆z − ka)

can be shown, using, for example, the indentity

cos(π − ω∆t) cos(χ) = cos(ω∆t) cos(π ± χ) (7.50)

and identities given by (7.24) and (7.25), that if the dispersion relation has solu-

tions for a high frequency π/∆t−ω and low wave numbers (kx, ky, kz) it will have

identical solution for a low frequency ω and high wave numbers (π/∆x±kx, π/∆y±
ky, π/∆z±kz). It is shown by plotting the solutions (7.47) and (7.48) in Figure 7.4,

that high frequency solutions for low wave numbers exist. It therefore follows that

complementary solutions with low frequency and high wave numbers also exist.

As an example, dispersion characteristics, for propagation along the main space

diagonal, for solutions with low wave numbers (ka, ka, ka) and high wave numbers

(π/∆x− ka, π/∆y − ka, π/∆z − ka), are shown in Figure 7.5 for a grading set at

∆x = ∆y = 2∆z and maximum time step. It can be seen that the magnitude

of the gradient of the curve corresponding to high frequency and low wave num-

bers solutions is identical to that corresponding to low frequency and high wave

numbers solutions, and vice versa.
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A more detailed quantitative analysis of the dispersion relations of the SSCN is

presented in Chapter 8.

7.4.3 Hybrid symmetrical condensed node

The analytical expansion of the dispersion relation for the hybrid node (HSCN)

is more complex; as can be seen from Table 7.2 no degenerate solutions exist and

m = 5 coefficients must be determined. Here, separate analyses are performed for

uniform and graded meshes, modelling isotropic media with arbitrary εr, µr. In

both cases, the characteristic polynomial has the structure:

P(15)(λ) = (λ− 1)2(λ+ 1)3Q(10)(λ) (7.51)

The relationships between the five leading coefficients Bi of the polynomial Q(10)(λ)

and Ci of P(15)(λ) can be found after expanding (7.51) and they are:

B1 = C1 − 1

B2 = C2 −B1 + 2

B3 = C3 + 2B1 −B2 + 2

B4 = C4 + 2B1 + 2B2 −B3 − 1

B5 = C5 −B1 + 2B2 + 2B3 −B4 − 1

(7.52)

The scattering matrix for the lossless HSCN can be derived from the GSCN scat-

tering matrix as explained in § 3.3.6. It was shown in [60] that the dispersion

characteristics of the Type I HSCN and Type II HSCN are complementary, hence

the derivation here will be performed only for the Type I formulation [19].

When using a uniform mesh, the scattering coefficients of the Type I HSCN are

found from expressions (3.42)–(3.48) and definitions (2.59)–(2.60) as

a = c =
1 − εrµr

2εrµr
b = e =

1
2εrµr

d =
1
2

g =
2(εrµr − 1)

εrµr

h = g − 1 =
εrµr − 2
εrµr

(7.53)

It can be seen that the scattering coefficients are functions of the product εrµr and

not separate functions of εr and µr. This result is somewhat surprising, bearing in

mind that the definitions of the characteristic admittances of link lines and stubs

in the HSCN, given by (2.59) and (2.60), do not contain products εrµr. Having the
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scattering coefficients formulated in such a manner is desirable since it means that

solutions to the dispersion relation will be identical for εrµr = const regardless

of the ratio εr/µr. It is indicated in Table (7.2) that this is not case with the

stub-loaded SCN, which will be further discussed in the following subsection.

To facilitate manipulation of the scattering coefficients, it is convenient to remove

the variable εrµr appearing in the denominators of the rational expressions in

definitions (7.53). By introducing a parameter p defined by

p = 1 − 1
εrµr

(7.54)

the scattering coefficients for the cubic HSCN simplify to:

a = c = −p
2

b = e =
1 − p

2

d =
1
2

g = 2p

h = 2p− 1

(7.55)

The five coefficients Bi required for the dispersion relation (7.32) can be computed

as before by using the Faddeev method and relationships (7.52) to give:

B1 = 2 (p s1 + 1)

B2 = p2(s4 + 3s2) + 2p (s2 + 2s1) − 2s2 − 4s1 − 3

B3 = p3(s5 + 2s3) + 2p2(s5 + s4 + 6s3 + 3s2)

−2p (s5 + 2s4 + 6s3 + 4s2) − 4 (s2 + 2s1 + 2)

B4 = 2p3(3s7 + s6 + s5 + 2s3) − p2(4s7 + s6 + 2s5 − 3s4 − 5s2)

−2p (2s7 + s6 + 4s5 + 4s4 + 12s3 + 9s2 + 2s1)

+2s7 + s6 + 4s5 + 4s4 + 12s3 + 10s2 + 4s1 + 2

B5 = 2p3(3s8 + 4s7 + s5 + 6s3)

−2p2(6s8 + 12s7 + s6 − 2s4 + 12s3 − 2s2)

+2p (3s8 + 6s7 − 2s5 − 4s4 − 8s2 − 2s1)

+2 (2s7 + s6 + 4s5 + 4s4 + 12s3 + 12s2 + 8s1 + 6) (7.56)

where
s1 = cx + cy + cz s5 = s1s2 − 3s3
s2 = cxcy + cycz + czcx s6 = s22 − 2s1s3
s3 = cxcycz s7 = s1 s3

s4 = s21 − 2s2 s8 = s2 s3

(7.57)
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with cx = cos(χ) − 1, cy = cos(η) − 1 and cz = cos(ξ) − 1.

The dispersion relation for the HSCN (uniform mesh) can be written as:

cos(5θ) +B1 cos(4θ) +B2 cos(3θ) +B3 cos(2θ) +B4 cos(θ) +
B5

2
= 0 (7.58)

where B1. . .B5 are defined by (7.56). By performing a similar analysis for the

Type II HSCN the same coefficients B1 . . . B5 are found in this case too.

By expanding cosines of multiple angles, the dispersion relation for the HSCN

becomes a polynomial of 5th order in cos(ω∆t). This means that a full analytical

analysis of the propagating solutions cannot be performed as in the case of the

SCN and the SSCN. Here, analyses are given for particular propagation directions,

namely along a coordinate plane diagonal [1,1,0] defined by ky = kx and kz = 0

and along main space diagonal [1,1,1] defined by ky = kz = kx.

For propagation along the direction [1,1,0], the dispersion relation (7.58) can be

factorized and split into four relations given by:

2 cos(ω∆t) + cos(χ) + 1 = 0 (7.59)

2 cos(ω∆t) + cos(χ)(p + 1) − p+ 1 = 0 (7.60)

2 cos(ω∆t) + cos(χ)(p − 1) − p− 1 = 0 (7.61)

2 cos2(ω∆t) + (2p − 1)(cos(χ) − 1) cos(ω∆t) − cos(χ) − 1 = 0 (7.62)

The first two of these relations contribute to the unphysical solutions propagating

at a high-frequency. The relation (7.61) describes a physical solution, propagating

with the correct velocity at low frequencies:

v =
(

lim
ω→0

∂k

∂ω

)−1

=
∆l

2
√
εrµr∆t

(7.63)

There are two possible solutions to the relation (7.62). One is unphysical, whereas

the other corresponds to modes propagating with the low-frequency velocity given

by (7.63). Therefore, two low-frequency propagating solutions, both physical,

are described by equations (7.61) and (7.62). Although not immediately clear at

this stage, this phenomenon has the interpretation that two different orthogonal

polarizations of the electric field propagate in a TLM mesh based on the HSCN

(and also the stub-loaded SCN) with different dispersion characteristics [60]. This

ambiguity, called mesh anisotropy [60], arises from the fact that only one type

of stub, either open- or short-circuit, is used in the HSCN, and because of this
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Figure 7.6 Solutions of the HSCN dispersion relation for wave vectors (kx, kx, 0)

and εrµr = 2

the overall coupling of stub and link lines with the electric and magnetic field is

asymmetrical. The mesh anisotropy will be further investigated and quantified in

the following chapter.

Five possible solutions to the dispersion relations (7.59)–(7.62) are plotted in Fig-

ure 7.6 for the case when εrµr = 2. The physical solutions corresponding to (7.61)

and (7.62) are plotted with broken and solid lines, respectively, whereas the three

unphysical solutions are plotted by dotted lines. It is interesting to note that in

this particular case, when εrµr = 2, one of the physical solutions, given by (7.62)

corresponds exactly to the linear dispersion relation. This can be confirmed by

analysing equation (7.62) after substituting for p = 1 − 1/(εrµr) = 1/2.

The existence of low-frequency propagating solutions with high wave numbers

(spurious modes) can be studied for a complementary propagation direction de-

fined by a wave vector (π/∆l − ka, π/∆l − ka, π/∆l). Factorizing the dispersion

relation (7.58) as before, analytical expressions for the five solutions can be found,

two of them yielding a low-frequency propagation velocity:

v =
(

lim
ω→0

∂k

∂ω

)−1

=
∆l
2∆t

(7.64)
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Figure 7.7 Solutions of the HSCN dispersion relation for wave vectors (π/∆l −
ka, π/∆l − ka, π/∆l) and εrµr = 2

This means that, in this case, spurious modes in the HSCN propagate with the

velocity of free space, different from the velocity of modelled medium. Five possible

solutions for these wave numbers are plotted in Figure 7.7.

For propagation along the direction [1,1,1], by imposing kx = ky = kz, the

dispersion relation (7.58) simplifies to:(
4 cos2(θ) + 4p (cos(χ) − 1) cos(θ) + (p− 1)(3 cos2(χ) + 1) − 4p cos(χ)

)2

(p cos(θ) + cos(χ) − p+ 1) = 0 (7.65)

By analysing propagating solutions as before, it can be found that the two physical

solutions, representing orthogonal wave polarizations, are degenerate for propaga-

tion along the main space diagonal [1,1,1]. This is a consequence of the square

term in (7.65).

The low-frequency solutions of the dispersion relation (7.65) are plotted in Fig-

ure 7.8 for εrµr = 1, 2, 4. It can be seen from the gradients of curves approaching

corners of the plot that physical modes (with low wave numbers) in different media

propagate with different velocities, as expected, whilst the spurious modes (with

high wave numbers) propagate in all cases with the same, free-space, velocity.
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Figure 7.8 HSCN dispersion characteristics for low-frequency propagating modes

along the main space diagonal [1,1,1]

Finally, it should be pointed out that for axial propagation, for example along the

[1,0,0] direction, the dispersion relation (7.58) simplifies to:

4 (cos(χ) + 1)
(
2 cos2(θ) + p cos(θ)(cos(χ) − 1) − cos(χ) − 1

)2
(7.66)

It produces, as in the case for [1,1,1] propagation, degenerate dispersion char-

acteristics for both orthogonal wave polarizations. Also, for p = 0, that is for

εrµr = 1, it can be found that physical modes propagate along the axes without

dispersion, as expected, since the HSCN simplifies to the SCN in this case. Dis-

persion characteristics of the HSCN for other propagating directions and different

material properties will be further explored in Chapter 8.

When using the HSCN on a graded mesh, the scattering matrix can be expressed

in terms of three parameters px, py and pz as:

aij = cij = −pi

2
bij = ekj =

1 − pk

2

dij =
1
2

gi = pj + pk

hi = pj + pk − 1

(7.67)
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where px, py and pz are described as:

pi = 1 − 1
εrµr

(
2c∆t
∆i

)2

(7.68)

with i, j, k ∈ {x, y, z} and c = 1/
√
ε0µ0.

The coefficients B1. . .B5 for the graded HSCN dispersion relation can be obtained

by the Faddeev method and using relationships (7.52) as:

B1 = 2 (u1 + 1)

B2 = −2s2 + s1 (u1 − 4) + u4 + 3u2 + 4u1 − v1 − 3

B3 = −2s2 (u1 + 2) + s1 (u4 + u2 − 4u1 − 8)

u5 + 2u4 + 2u3 + 6u2 − 2v2 + 3v3 − v4 − 8

B4 = 2s7 + s6 − s5 (u1 − 4) − s4 (2u1 − 4) − s3(2u1 − 12)

−s2(2u2 + 6u1 − 10) − s1 (2u2 + 9u1 − 4) + 2u5 + 3u4

+4u3 + 5u2 − 4u1 + v1 − 2v2 + 2v3 (1 + u1)

+2v5 + v6 + v7 + v8 − v9 + v10 + 2

B5 = 2 [s7 (u1 + 2) + s6 + 4s5 + 4s4 + 2s3 (u1 − u2 + 6)

+s2 (u3 − 4u2 − 2u1 + 12) + s1 (u4 + u3 − u2 − 4u1 + 8)

+u5 + 2u4 + 6u3 + 2u2 − 2u1 − v1s3 + 2v2 + v3(u1 − 3)

−v4 − 3v7 + 3v8 − v9 + v11 + 6] + v12 (7.69)

where

u1 = dx + dy + dz u4 = u2
1 − 2u2

u2 = dxdy + dydz + dzdx u5 = u1u2 − 3u3

u3 = dxdydz

(7.70)

and

v1 = cxdx + cydy + czdz

v2 = cxcydz + cyczdx + czcxdy

v3 = cxdydz + cydzdx + czdxdy

v4 = d2
xcx + d2

ycy + d2
zcz

v5 = dxc
2
x + dyc

2
y + dzc

2
z

v6 = c2xdx(cy + cz) + c2ydy(cz + cx) + c2zdz(cx + cy)

v7 = c2xdydz + c2ydzdx + c2zdxdy
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v8 = cxcydxdy + cyczdydz + czcxdzdx

v9 = cxcyd
2
z + cyczd

2
x + czcxd

2
y

v10 = cxdx(d2
y + d2

z) + cydy(d2
z + d2

x) + czdz(d2
x + d2

y)

v11 = c2xc
2
ydz + c2yc

2
zdx + c2zc

2
xdy

v12 = (cx + cy)(d2
z(−cxcy + dxcy + cxdy) + 4dzcxcy − 3dxdyc

2
z) +

(cy + cz)(d2
x(−cycz + dycz + cydz) + 4dxcycz − 3dydzc

2
x) +

(cz + cx)(d2
y(−czcx + dzcx + czdx) + 4dyczcx − 3dzdxc

2
y) (7.71)

with terms s1 . . . s8 defined by (7.57) and

cx = cos(χ) − 1 cy = cos(η) − 1 cz = cos(ξ) − 1

dx = pxcx dy = pycy dz = pzcz

The dispersion relation for the HSCN (graded mesh) is given by (7.58) with

B1. . .B5 defined by (7.69). Similar analysis of the physical and unphysical so-

lutions can be performed as in the case of the uniform mesh. It is interesting to

note that for axial propagation the dispersion relation for the graded mesh simpli-

fies to the same form derived for the uniform mesh and given by (7.66), but with

the factor px (for [1,0,0] direction) instead of p. In order to achieve dispersionless

propagation along the x-axis using the graded HSCN, it is required that px is

equal to zero. From the definition of px given by (7.68) it follows, for the example

of free-space, that for dispersionless propagation, the time step has to be chosen

as ∆t = ∆x/(2c), which explains the simulation results obtained in [19].

7.4.4 Stub-loaded symmetrical condensed node

It can be seen from Table 7.2 that in a general case, the analytical expansion of

the dispersion relation for the stub-loaded SCN requires determination of eight

coefficients. Due to this complexity, two simpler cases will be first considered:

Case 1 corresponding to modelling only dielectric (εr > 1, µr = 1) or only mag-

netic (µr > 1, εr = 1) materials on a uniform mesh; and Case 2 corresponding to

modelling materials with µr = εr on a uniform or a graded mesh.

Case 1: (εr > 1, µr = 1) or (µr > 1, εr = 1)

When modelling a local increase in the dielectric constant, only open-circuit stubs

are required in the stub-loaded node [9]. Similarly, for modelling an increase in the

magnetic permeability, only short-circuit stubs are required. In either case, the
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scattering matrix for the stub-loaded SCN (the lossless case) will have only N = 15

rows and columns. By using the definitions of the parameters for the stub-loaded

SCN derived in § 2.4.1 and the GSCN scattering coefficients expressed by (3.42)–

(3.48), we derive the scattering coefficients for the stub-loaded node modelling a

dielectric with relative permittivity εr on a uniform mesh as:

a = c =
1 − εr
2εr

b = e =
1

2εr

d =
1
2

g =
2(εr − 1)

εr

h = g − 1 =
εr − 2
εr

(7.72)

Comparing the definition (7.72) with that for the HSCN given by (7.53) we can

see that they are identical when µr = 1 in (7.53). This is expected, as the Type

I HSCN and the stub-loaded SCN are identical when modelling a dielectric on

a uniform mesh. Following this analogy, it becomes obvious that the dispersion

relation for the stub-loaded SCN in Case 1 is the same as that derived for the

HSCN (uniform mesh), given by (7.58), provided that the coefficients B1. . .B5

are defined by (7.56) when µr = 1.

Performing a similar analysis for the case when modelling magnetic materials, we

find that the scattering matrix of the stub-loaded SCN and the HSCN Type II

are the same and therefore their dispersion characteristics are identical. Since the

analytical form of the dispersion relation for the Type II and Type I HSCN is

identical, it follows that the dispersion relation for the stub-loaded SCN in this

case is given by (7.58), provided that coefficients B1. . .B5 are defined by (7.56)

when εr = 1.

Since the dispersion relations for the stub-loaded node in Case 1 are equivalent

to that of the HSCN, the mesh anisotropy experienced in the HSCN (i.e. the

existence of different solutions for two orthogonal wave polarizations) is found in

the stub-loaded SCN in Case 1, too.

Case 2: (µr = εr)

When using the stub-loaded SCN for modelling any material with εr = µr on

either a uniform or a graded mesh, the structure of the characteristic polynomial

is somewhat simplified, as the propagating solutions appear in degenerate pairs.

The characteristic polynomial has the structure:

P(18)(λ) = (λ− 1)2(Q(8)(λ))2 (7.73)
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and only m = 8/2 = 4 coefficients need to be calculated. The relationships be-

tween the four leading coefficients Bi of the polynomial Q(8)(λ) and Ci of P(18)(λ)

can be found after expanding (7.73) and they are:

B1 =
C1

2
+ 1

B2 =
C2 −B2

1 + 4B1 − 1
2

B3 =
C3

2
+B2

1 −B1B2 −B1 + 2B2

B4 =
C4 −B2

1 + 4B1B2 − 2B1B3 −B2
2 − 2B2 + 4B3

2

(7.74)

When using a uniform mesh, the scattering coefficients of the stub-loaded SCN in

Case 2 are found from expressions (3.42)–(3.48) and definitions (2.49)–(2.50) as:

a = 0 b = e = d = i =
1 − r

2

c = −r f = g = 2r

h = 2r − 1 j = 1 − 2r

(7.75)

where

r = 1 − 1
εr

= 1 − 1
µr

= 1 − 1√
εrµr

The four coefficients Bi required for the dispersion relation (7.32) can be computed

as before by using the Faddeev method and relationships (7.74) to give:

B1 = 2 (r s1 + 2)

B2 = r2 (3s2 − 2s1) + 2r (s2 + 4s1) − s2 − 2s1 + 4

B3 = 2r3 (s3 − 2s2) + 4r2 (3s3 + s2 − 2s1)

+2r (−3s3 + 2s2 + 7s1) − 4 (s2 + 2s1 + 1)

B4 = 4r3 (−7s3 − 2s2) + 2r2 (12s3 + s2 − 6s1)

+4r (−3s3 + s2 + 4s1) − 2 (3s2 + 6s1 + 5) (7.76)

where s1, s2 and s3 are defined by (7.57).

The dispersion relation for the stub-loaded SCN in Case 2 (uniform mesh) can be

written as:

cos(4θ) +B1 cos(3θ) +B2 cos(2θ) +B3 cos(θ) +
B4

2
= 0 (7.77)
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where B1. . .B4 are defined by (7.76).

When using the stub-loaded SCN in Case 2 on a graded mesh, the scattering

matrix can be expressed in terms of three parameters rx, ry and rz as:

aij =
rk − rj

2
bij = eij =

1 − rj
2

cij = −rj + rk
2

dij = iij =
1 − rk

2

fj = gj = 2rj hj = −jj = 2rj − 1

(7.78)

where rx, ry and rz are described as:

ri = 1 − 2c∆t∆i
∆j∆k

√
εrµr

(7.79)

with i, j, k ∈ {x, y, z} and c = 1/
√
ε0µ0.

The coefficients B1. . .B4 for the graded stub-loaded SCN dispersion relation in

Case 2 can be obtained by the Faddeev method and using relationships (7.74) as:

B1 = s1u1 − u1 + 4

B2 = s2 (u2 − 1) + 2s1 (2u1 − 1) + 4 + 2v2 − 4v1 − 2v3

B3 = 2s3 (u3 + 2u2 − u1) − 4s2 (u3 + 1) + s1 (7u1 − 8)

+4 (v8 + v2) − 7v1 − 8v3 − 4

B4 = 4s3 (−7u3 + 2u2 − u1) − 2s2 (4u3 + u2 + 3) + 4s1 (2u1 − 3)

+8v8 + 4v2 − 8v1 − 12v3 − 10 (7.80)

where s1, s2, s3, u1, u2, u3, v1, v3 and v8 are defined by (7.57), (7.70) and (7.71)

with dx = rx, dy = ry and dz = rz.

The dispersion relation for the Case 2 stub-loaded SCN (graded mesh) is given

by (7.77) with B1. . .B4 defined by (7.80).

Analyses of the dispersion relations can be performed in a similar manner as before

and physical and unphysical propagation modes can be studied for particular

directions of propagation. However, the most interesting result in this case is the

absence of mesh anisotropy, like in the 12-port SCN and the SSCN and unlike the

HSCN and the stub-loaded SCN in Case 1. This can be explained by the fact that

in Case 2, the introduced open- and short-circuit stubs model the same amount

of additional capacitance and inductance, thus securing a symmetrical coupling

with electric and magnetic fields. This will be further exploited in Chapter 9 for

deriving new stub-loaded nodes with advantageous dispersion characteristics.
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Case 3: (εr �= µr)

The dispersion relation for the stub-loaded SCN in the general case when εr �= µr

contains eight coefficients Bi. The complexity of the derivation is due to a feature

of the stub-loaded SCN that its scattering coefficients are dependent separately on

εr and µr, rather then on their product, εrµr, which is the case in the SSCN and the

HSCN. As the efficiency of the stub-loaded SCN for a graded mesh is in any case

degraded by the unfavourable time-step, the derivation of the dispersion relation

for Case 3 will be presented here only for the uniform mesh and for propagation in

planes which will be analysed in the next chapter, namely for a coordinate plane

defined by kz = 0 (subcase a), and a diagonal plane where kx = ky (subcase b).

The scattering matrix in Case 3 can be expressed in terms of two parameters, re
and rm as:

a =
rm − re

2
b = e =

1 − re
2

c = −rm + re
2

d = i =
1 − rm

2

f = 2rm h = 2re − 1

g = 2re j = 1 − 2rm

(7.81)

where re and rm are defined by:

re = 1 − 1
εr

rm = 1 − 1
µr

(7.82)

By using a similar procedure to that used before, eight coefficients of the polyno-

mial Q(16)(λ) can be obtained. For propagation along a coordinate plane, defined

by kz = 0, this polynomial factorizes as:

Q(16)(λ) = (λ+ 1)2R(6)
1 (λ)R(6)

2 (λ) (7.83)

The coefficients of the polynomial R(6)
1 (λ) can be obtained as:

B1 = s1 (re + rm) + 2 (7.84)

B2 = 2rerm (s2 − s1) + 2re (s1 + s2) + r2ms2 + 2rms1 − 2s1 − s2 − 1

B3 = 2 (−2rer2ms2 − 2rerm (s1 + s2) + res1 + r2ms2 + rms1 − 2s1 − s2 − 2)

where s1 and s2 are defined as before (eqn. 7.57), but with kz=0. The coefficients

of the polynomial R(6)
2 (λ) are identical to (7.84) provided that re and rm swap
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places. The dispersion relation for the stub-loaded SCN in Case 3a can be written

as:

cos(3θ) +B1 cos(2θ) +B2 cos(θ) +
B3

2
= 0 (7.85)

where B1. . .B3 are defined by (7.84). A complementary dispersion relation, cor-

responding to another orthogonal polarization, can be derived by swapping re and

rm.

For propagation along a diagonal, defined by kx = ky, the polynomial Q(16)(λ)

factorizes as:

Q(16)(λ) = R(8)
1 (λ)R(8)

2 (λ) (7.86)

The coefficients of the polynomial R(8)
1 (λ) can be obtained as:

B1 = re (cx + cz) + rm (3cx + cz) + 4

B2 = rerm (c2x + 4cxcz − 4cx − 2cz) + (re + rm) (c2x + 2cxcz + 6cx + 4cz)

+2r2mcx (cx + cz) + 4rmcx − c2x − 2cxcz − 4cx − 2cz + 4

B3 = 2rer2mcx (cxcz − 2cx − 4cz) + 2rerm (3c2xcz − 8cx − 4cz)

+re (4c2x + 8cxcz + 15cx + 7cz) + 2r2mcx (3cxcz + 2cx + 4cz)

+rm (−6c2xcz + 13cx + 7cz) + 4 (−c2x − 2cxcz − 4cx − 2cz − 1)

B4 = 4rer2mcx (−7cxcz − 2cx − 4cz) + 2rerm (6c2xcz − c2x

−4cxcz − 12cx − 6cz) + 2re (3c2x + 6cxcz + 10cx + 4cz)

+4r2mcx (3cxcz + cx + 3cz) + 2rm (−6c2xcz − c2x − 2cxcz

+6cx + 4cz) + 2 (−3c2x − 6cxcz − 12cx − 6cz − 5) (7.87)

where cx = cos(kx∆l) − 1 and cz = cos(kz∆l) − 1. The coefficients of the poly-

nomial R(8)
2 (λ) are identical to (7.87) provided that re and rm are swapped. The

dispersion relation for the stub-loaded SCN in Case 3b is given by (7.77) with

B1. . .B4 defined by (7.87). A complementary dispersion relation can be derived

by swapping re and rm.

Mesh anisotropy exists in Case 3, as in Case 1, due to unequal proportions of

extra capacitance modelled by open-circuit stubs and extra inductance modelled

by short-circuit stubs. Hence asymmetrical coupling with electric and magnetic

fields occurs for different wave polarizations.

In order to show the existence of different dispersion characteristics for the stub-

loaded SCN when εrµr = const but εr/µr varies, the physical solutions to the
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Figure 7.9 Stub-loaded SCN dispersion characteristics along direction [1,1,0]

dispersion relations derived in this subsection for different cases are plotted in

Figure 7.9 for εrµr = 81 and different values of εr, for propagation in the direction

[1,1,0]. It can be seen that two curves exist when εr �= µr, related to the two

different wave polarizations [58, 60]. However, it can also be seen that all curves

approach the linear dispersion curve for frequencies and wave numbers approaching

zero. Note that for k∆l ≤ 0.2π, that is when the spatial discretization does

not exceed ten nodes per wavelength, the deviations from the linear dispersion

characteristics are practically unobservable in Figure 7.9.

It should be pointed out after analysing the dispersion relations derived for the

stub-loaded node, that if mesh anisotropy exists, then two dispersion curves cal-

culated when εr = a, µr = b coincide with curves calculated for εr = b, µr = a.

Intuitively, based on the principle of duality in electromagnetics, one can conclude

that the dispersion characteristics for complementary values of εr and µr would

complement each other; that is the dispersion characteristics for horizontal elec-

tric field polarization and εr = a, µr = b should be the same as the dispersion

characteristics for vertical electric field polarization and εr = b, µr = a, and vice

versa. This was suggested in [58, 60] and will be further checked by performing

numerical simulations in Chapter 8.
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7.5 Discussion

Using a systematic algebraic procedure, analytical expansion of the general TLM

dispersion relation was made possible for different symmetrical condensed nodes

capable of modelling media with arbitrary electromagnetic parameters. Simple

closed-form algebraic expressions were obtained for the SCN and the SSCN. For

other nodes (the stub-loaded SCN and the HSCN), the general matrix-form dis-

persion relation (7.4) was expanded into forms of implicit polynomial equations.

Since these polynomials are of 5th to up to 8th order in cos(ω∆t), closed form

solutions in the form ω = F (k) are not possible.

However, the dispersion relations derived here in algebraic forms are either linear

or quadratic expressions in terms of cos(kx∆x), cos(ky∆y) or cos(kz∆z). A closed

form solution in the form k = F−1(ω) is not yet possible, since the cosine factors

contain Cartesian components but not the amplitude of the wave vector �k. How-

ever, for a given excitation frequency ω (0 < ω∆t < π/2), and two wave vector

components, say ky and kz, the third, unknown component kx, and therefore the

wave vector �k can be computed exactly from the dispersion relations, by solving a

linear or quadratic equation analytically in terms of cos(kx∆x), hence a numerical

solver is not needed.

It may appear that the analytical forms of the dispersion relations obtained here for

the HSCN and the stub-loaded SCN are too complicated and that a manipulation

with such lengthy expressions may be less efficient than numerically solving the

general dispersion relation in the matrix form (7.4). However, in cases when there

are two physical solutions close to each other, the numerical solution is not always

easy [60] or accurate [57]. The separation of the two, usually very close, physical

solutions requires, in a numerical solver, high precision arithmetic and is very sen-

sitive to the initial (approximate) values needed to start the computation. It will

be shown in the next chapter that using the algebraic form of dispersion relations

derived here, this problem is not experienced. Of course, modern computer-based

symbolic algebra packages, such as Maple or Mathematica could be used to assist

the handling and analytical solution of lengthy algebraic expressions.

In this chapter, a mathematical analysis of the dispersion relations was pursued,

including the characterization of physical and spurious solutions. Further dis-

cussion on the physical solutions will be provided in the following chapter, after

performing a detailed quantitative analysis.



Chapter 8 Quantitative analysis and validation of

dispersion relations

8.1 Introduction

In the previous chapter, the dispersion relations for the currently available TLM

condensed nodes were derived in implicit polynomial forms and, where possible,

explicit closed forms, from the general TLM dispersion relation (7.4) given in

an eigenvalue matrix form. In addition to the solutions converging to the linear

dispersion characteristics of the wave equation, additional unphysical solutions

were also identified. While mainly a qualitative analysis of different solutions was

performed in the previous chapter, in this chapter the quantitative analysis and

validation of the physical solutions to the TLM dispersion relations, i.e. those

which converge to solutions of Maxwell’s equation, is pursued.

The analysis in the previous chapter was performed for a continuous frequency

range, and for propagation vectors with small as well as with high wave numbers.

Here, an analysis is performed when the frequency or the wave vector are set to

a fixed value which is of practical interest, usually corresponding to a benchmark

discretization of ten nodes per wavelength, i.e. ∆l/λ = 0.1, while other input

parameters, such as direction of propagation, material properties, aspect ratio of

cells and time step are altered. This analysis makes possible a comparison of the

accuracy of different nodal structures, thus allowing the modeller to gain more

insight into the suitability of available TLM condensed node schemes in solving a

particular problem accurately and efficiently.

The deviation in the wave velocity from its theoretical value due to numerical

dispersion can be studied in two ways [56]. In deterministic problems, a wave of

particular frequency f0 is excited in the model, and it propagates with a wave-

length λ, different from the theoretical value λ0 = v/f0. The deviation of the

wave velocity can be analysed through the deviation of the wavelength λ from

λ0. The difference between the amplitude of the modelled propagation vector �k,

140
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given by k = 2π/λ and the theoretical medium propagation constant defined by

km = 2πf0
√
εµ can be also studied in this way.

In eigenvalue problems, the wavelength λ0 is forced to the correct value by the

boundary conditions and therefore the modelled frequency f differs from the the-

oretical one f0 = v/λ0. In this way, the deviation in the wave velocity can be

studied through the deviation in frequency. The difference between the amplitude

of the modelled propagation vector �k, computed now as k = 2πf
√
εµ, and the

theoretical medium propagation constant defined by km = 2π/λ0 can again be

studied in this way.

By analysing the algebraic expressions of the dispersion relations derived in the

previous chapter it should be noticed that the coefficients Bi, appearing in the

dispersion relations, contain factors cos(kx∆x), cos(ky∆y) and cos(kz∆z) and

their squares, hence the dispersion relations are polynomials in cos(ki∆i) of at

most 2nd order. For deterministic problems, where the frequency excitation f0 is

fixed, this means that solutions to the wave vector components (kx, ky, kz) can

always be found analytically from the dispersion relations.

This is not the case when analysing dispersion relations in eigenvalue problems, as

after expanding cosines of multiple angles, they become polynomials in cos(θ) of

up to 8th order, where the order of the polynomial is determined by the coefficient

m defined in the previous chapter. This means, that for a chosen wave vector �k,

the modelled frequency f (note that θ = 2πf∆t) cannot be obtained analytically

in all cases since the closed-form solution of a polynomial with order m > 4 cannot

be guaranteed. In fact, for most practical cases, only roots of linear and quadratic

polynomials (m = 2) can be found in simple closed forms, whilst equations of

a higher order are most efficiently solved numerically. Following this reasoning,

it appears that the analysis of the dispersion relations can be more efficiently

performed using the deterministic approach.

On the other hand TLM simulations of deterministic problems, which assume the

wave propagating over several wavelengths in unbounded media, are difficult to

perform without introducing additional errors due to the modelling of absorbing

boundaries [71], which is necessary in this case. In contrast to this, the eigen-

value problems are easier to model with TLM method, as they are associated

with propagation in resonators bounded by appropriate electric and magnetic

walls. Numerical simulations of the wave propagation in resonators can be car-

ried out ‘exactly’, i.e. the only error introduced into the calculations would be

due to numerical dispersion (and not due to imperfect modelling of the absorbing
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boundaries). The eigenvalue approach is therefore more convenient from the val-

idation point of view, since the frequency error obtained from TLM simulations

can be compared to the error predicted by the dispersion relation. In the following

section, it will be shown how the two approaches can be combined, in order to

facilitate an efficient validation of the TLM dispersion relations.

8.2 Relationships between eigenvalue and deterministic problems

In the 3D TLM method, the velocity of voltage pulses travelling along constituent

transmission lines, vl, is twice the velocity of waves propagating in the medium

with background parameters ε0, µ0 and is given by:

vl = 2c =
2√
ε0µ0

In a non-dispersive isotropic medium with parameters εr, µr waves propagate with

speed

vm =
1√
εµ

=
c√
εrµr

and therefore it follows that:

vm =
vl

2
√
εrµr

The medium propagation constant is determined from the dispersion relation of

Maxwell’s equations (7.1) as:

km =
ω0

vm

Following the above definitions, the anticipated phase shift θ0 along the constituent

TLM lines would be:

θ0 = ω0∆t = kmvm∆t = km
vl∆t

2
√
εrµr

= km
∆l

2
√
εrµr

(8.1)

Factor km∆l appearing in the formulation of θ0 describes the level of spatial dis-

cretization, as by definition it follows that:

km∆l = 2π
∆l
λ0

In numerical schemes, the discretization is usually set at a minimum of ten nodes

per wavelength, that is ∆l/λ0 = 0.1. For this value it follows that km = 0.2π.

In deterministic problems, the initial value of phase shift θ0 can be chosen accord-

ing to equation (8.1) to satisfy a desirable discretization level, set through km∆l.

The amplitude of the modelled propagation vector, k = (k2
x +k2

y +k2
z)−1/2, can be
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computed from the dispersion relation, for different propagation directions, and

compared to the chosen propagation constant km. A quantitative measure of the

dispersion can be introduced through a relative propagation error as:

δk′ =
k − km

km
(8.2)

In eigenvalue problems the theoretical value of the phase shift, denoted by θ0 is

obtained again from (8.1) for a certain km∆l. However, the numerical phase shift

θ is computed from the dispersion relation, for different values of kx, ky, kz, where

(k2
x + k2

y + k2
z)

−1/2 = km and can be compared to θ0. Therefore, another measure

of the dispersion can be introduced through a relative frequency error as:

δf =
f − f0

f0
=
ω − ω0

ω0
=
θ − θ0
θ0

(8.3)

It would be convenient to somehow relate the propagation error defined by (8.2)

to the frequency error defined by (8.3) so as to allow validation of the dispersion

relations using the deterministic approach in solving the dispersion relation and

the eigenvalue approach in obtaining results from numerical simulations. This

can be achieved by making use of the fact that TLM is accurate to second or-

der [42, 58] which was also confirmed in Chapter 4 where the GSCN was derived

from Maxwell’s equation using the central differencing and averaging, two approx-

imation techniques which each have 2nd order accuracy. The second order accu-

racy of TLM suggests that the relative deviations at different spatial discretization

levels are related by [58]:
δk2

δk1
=
(

∆l/λ2

∆l/λ1

)2

(8.4)

The errors associated with the deterministic and eigenvalue problems are depicted

in Figure 8.1. The propagation vector is plotted for the example of propagation

in the coordinate plane xy. Solid lines correspond to the dispersion relation of

Maxwell’s equations and broken lines correspond to the dispersion relation of the

SCN.

In the deterministic problems, with a fixed excitation frequency ω0, the amplitude

k of propagation vector �k is computed from the dispersion relation for an angle

of propagation and is generally different from the correct physical value km, as

shown in Figure 8.1. The relative error between the two values is denoted by

δk′ and is defined by (8.2). In order to obtain an amplitude of the propagation

vector, for the same angle, identical to km, from the dispersion relation of the SCN,
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=
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Figure 8.1 Errors associated with deterministic and eigenvalue problems

the excitation frequency has to be decreased from ω0 to ω. The new frequency ω

corresponds, according to the dispersion relation of Maxwell’s equation, to another

propagation vector �k1. Determination of ω is, in fact, an eigenvalue problem, where

the propagation constant km is chosen a priori. If the wave velocity in the medium

is vm, then km = ω0/vm and k1 = ω/vm, and a relative error can be defined as:

δk =
km − k1

k1
=
ω0 − ω

ω
(8.5)

which is illustrated in Figure 8.1.

The original relative error δk′ corresponds to k = 2π/λ and therefore to the

discretization level of ∆l/λ, whereas the relative error δk corresponds to km =

2π/λ0 and therefore to ∆l/λ0. Taking into account the second order accuracy of

TLM expressed by equation (8.4) and using equation (8.2), it follows that:

δk = δk′
(

∆l/λ0

∆l/λ

)2

= δk′
(
km

k

)2

=
k − km

km

(
km

k

)2

(8.6)

Formula (8.6) shows how a new normalized propagation error δk can be computed

from the dispersion relations using a deterministic approach. The same error can

be computed from an eigenvalue approach by exploiting equations (8.5) and (8.1)

as:

δk =
θ0 − θ

θ
=

km∆l
2θ

√
εrµr

− 1 (8.7)
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Finally, this error can be computed by obtaining resonant frequencies of homoge-

neous resonators by performing numerical simulation as:

δk =
f0 − f

f
(8.8)

Because δk can be accurately obtained theoretically as well as from numerical

simulations, the results from the dispersion relations and numerical simulations

in the following analysis will be compared by calculating δk. In order to validate

dispersion relations, results obtained from numerical calculations for an arbitrary

node spacing may need to be further normalized to a benchmark discretization

level of ∆l/λ = 0.1, by making use of (8.4) as:

δk = δk

(
0.1

∆l/λ

)2

(8.9)

The normalized propagation error δk can be computed directly from the dispersion

relations by choosing km∆l = 0.2π and using (8.6) or (8.7).

It should be noted that a relationship between δk and δf can be found from (8.3)

and (8.5) as:

(1 + δk)(1 + δf) = 1 (8.10)

This equation shows that the two relative errors, δk and δf must have opposite sign

and approximately the same absolute value (for small values). This is important

to notice in order to make comparisons between results obtained in this chapter

in terms of δk and results obtained in [56, 58] in terms of δf . Equations (8.8)

and (8.10) show that δk has a physical interpretation as an underestimation of a

modelled frequency due to the numerical dispersion.

Deviation in the wave velocity due to dispersion is generally anisotropic, i.e. it

is dependent on the direction of propagation. Bearing this in mind, the relative

error δk will be investigated for different angles of propagation ϕ, ϑ defined as

ϕ = arccos(kz/k) and ϑ = arctan(ky/kx) and illustrated in Figure 8.2. Note that

the relative error δk is, in fact, the magnitude of an error vector �δk which have

spherical coordinates (δk, ϕ, ϑ).

In the following sections, possible ways of visualizing dispersion errors in three-

dimensional space and of extracting information of interest, will be presented, fol-

lowed by systematic comparisons of the dispersion errors in available symmetrical

condensed nodes when modelling arbitrary electromagnetic properties of media.
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Figure 8.2 Components of the propagation vector

8.3 Visualization of dispersion errors

By using the dispersion relations for different condensed nodes, derived in the

previous chapter, analyses of physical solutions and calculation of δk can be per-

formed by using either a deterministic or an eigenvalue approach. As discussed

before, if only analytical tools are used, the eigenvalue approach can be applied

for a general direction of propagation only in the case of the 12-port SCN and the

SSCN, while for the other cases the deterministic approach must be used.

When using the eigenvalue approach, the mesh discretization is set by choosing

an appropriate km∆l, while the components of the theoretical propagation vector

are calculated for different angles (see Figure 8.2) as:

kx = km sin(ϕ) cos(ϑ)

ky = km sin(ϕ) sin(ϑ)

kz = km cos(ϕ)

so that a modelled phase shift θ = ω∆t can be obtained analytically using disper-

sion relations obtained in the previous chapter. A modelled value of the propaga-

tion constant can be then calculated as

k = ω
√
εµ =

2ω∆t
√
εrµr

∆l
=

2θ
√
εrµr

∆l

and compared to the initially chosen km.
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Using this procedure for the SCN dispersion relation, a normalized wave vector
�k/km has been obtained for different angles of propagation in 3D space and plotted

as a parametric plot in Figure 8.3, in which the distance from the coordinate origin

corresponds to the amplitude of the normalized wave vector in the particular

direction. Typical discretization values chosen are km∆l = 0.2π and km∆l = π,

corresponding, respectively, to the benchmark discretization ratio of ∆l/λ = 0.1

and to the coarsest possible discretization where only two nodes per wavelength

are used.

Since electromagnetic waves in an isotropic medium propagate with the same am-

plitude of the wave vector in all directions, the parametric plot should describe

a perfect sphere. It can be seen from Figure 8.3 that for a sufficiently fine dis-

cretization, km∆l = 0.2π, the wave vector calculated from the SCN dispersion

relation do indeed describe a spherical dispersion surface, but this sphere becomes

distorted at higher frequencies, as can be seen for the case when km∆l = π.

A more convenient way of looking at this distorsion is to measure the deviation

from a perfect sphere. The percentage error δk, defined in the previous section and

computed here by using equation (8.7), is plotted in Figure 8.4, as a parametric

surface whose distance from the coordinate origin corresponds to the magnitude

of the error in the particular direction. In the case of the SCN, where axial prop-

agation is dispersionless (see eqn. 7.28), the plot represents a three dimensional

shape with nulls along the axes and lobes on main diagonals. Note that even for

very coarse discretization of km∆l = π the error along principal axes is zero.

Similar plots can be obtained for the SSCN modelling media with arbitrary elec-

tromagnetic parameters. For example, the parametric plot of the percentage error

in the SSCN where εrµr = 2 is shown in Figure 8.5. It indicates that dispersion for

axial propagation exists, unlike the case of the 12-port SCN modelling free-space,

shown in Figure 8.4, where the propagation error along axes was zero.

From the plots shown in Figures 8.3–8.5 it can be seen that an axial symmetry

exist, which is expected since the TLM method models propagation in positive

and negative directions equally. By exploiting this fact, we can consider only one

octant of 3D space, for example, for x, y, z > 0. The percentage error shown in

Figure 8.4 can be, for example, plotted as a projection of the first octant onto the

xz-plane, as shown in Figure 8.6 for km∆l = 0.2π.

The inner curve (lobe) of the parametric plot from Figure 8.6 represents a tra-

jectory of the error vector for propagation in a coordinate plane, while the outer
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Figure 8.3 Parametric plot of the normalized wave vector �k/km in SCN mesh

for km∆l = 0.2π (top) and km∆l = π (bottom)
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Figure 8.4 Parametric plot of the percentage propagation error δk in SCN mesh

for km∆l = 0.2π (top) and km∆l = π (bottom)
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Figure 8.5 Parametric plot of the percentage propagation error δk in SSCN mesh

for km∆l = 0.2π and εrµr = 2

lobe contains information about the error along main and coordinate diagonals.

From this plot we can also notice a symmetry with respect to the diagonal, since,

for the uniform mesh (∆x = ∆y = ∆z) the propagation characteristics should

be invariant with respect to the order of coordinates determining the propagation

direction. This means, for example, that dispersion characteristics for propaga-

tion directions [1,2,0] and [2,1,0] are equal when modelling isotropic media on

a uniform mesh. This is not the case, however, in cuboid nodes with arbitrary

aspect ratio (∆x �= ∆y �= ∆z) which will be shown later in this chapter.

Parametric plots of the wave vectors and percentage errors in Figures 8.3–8.6

provide valuable physical insight into the spatial distribution of propagation errors

due to dispersion, however more quantitative data can be extracted by presenting

the percentage error as an explicit function of the two spherical coordinates ϕ and

ϑ, but plotted in the Cartesian coordinate system. For example, the propagation

error in the SCN for ∆l/λ = 0.1 is illustrated in Figure 8.7 using contour and

surface plots. The contour plot shows this error for angles 0 ≤ ϕ, ϑ ≤ 90◦, which

correspond to the first octant of a 3D coordinate system. Positions of main axial

and diagonal propagation directions are indicated in the contour plot of Figure 8.7,
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Figure 8.6 Projection of the first octant of SCN percentage error onto the xz-

plane, for km∆l = 0.2π

from which can be seen that maximum error occurs for propagation along the main

space diagonal [1,1,1].

Because of the symmetry experienced in the uniform mesh, δk is shown in the

surface plot of Figure 8.7 only for angles 0 ≤ ϑ ≤ 45◦. A cross-section of the

surface plot for ϑ = 0 gives the information on the propagation errors along a

coordinate plane, in this case y = 0, and contains directions [u,0,v], where u,v

are integers. A cross-section for ϑ = 45◦ gives these errors for propagation along

a diagonal plane, in this case x = y, and contains directions [u,u,v].

Figure 8.8 shows the propagation errors in the TLM mesh using the 12-port SCN,

along these two planes, for different levels of discretization. It can be seen from

Figure 8.8 that by using a coarser mesh, or equivalently by decreasing the wave-

length, the propagation error increases superlinearly, as a function of second order,

thus confirming that the TLM method is second order accurate. For example, it

can be seen that propagation errors for a discretization ∆l/λ = 0.2 are around four

times higher than for the discretization ∆l/λ = 0.1, for all propagating directions.
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Figure 8.7 Percentage propagation error in SCN for ∆l/λ = 0.1
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Figure 8.8 Percentage propagation error in the SCN along a coordinate and a

diagonal plane, for different discretization levels
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8.4 Dispersion in uniform meshes

In this section the deterministic approach is used to compare propagation errors in

uniform TLM meshes modelling media with arbitrary ε, µ with different available

nodes (stub-loaded SCN, HSCN, SSCN). The phase shift θ, and two of the com-

ponents of the propagation vector are chosen initially, while the third component

of the propagation vector is computed from the algebraic form dispersion relations

derived in the previous chapter. It should be pointed out that in this case, the

exact angle of the propagation direction is not known before determining the re-

maining component of the modelled wave vector. This means that along with the

calculation of the propagation error and its normalization using equation (8.6),

the propagation angles are also calculated and stored to facilitate accurate plots

of error diagrams.

The initial value of θ will be chosen in all calculations performed in this section

according to equation (8.1) for km∆l = 0.2π, which is equivalent to a discretization

of 10 nodes per wavelength. Accordingly, the propagation error for this case will

be denoted as δk.

In order to validate results obtained from the dispersion relations, simulations

of resonant frequencies in homogeneous cubic resonators will be performed [58].

The propagation error will be computed from modelled and theoretical frequencies

using equation (8.8) and normalized to δk using equation (8.9). Numerical data

obtained from simulations will be represented in the error diagrams shown in this

section by diamond symbols.

Using the dispersion relation obtained in the previous chapter, the propagation

errors in all directions can be obtained and plotted for the SSCN, the HSCN and

the stub-loaded SCN in Cases 1 and 2. The propagation errors for propagation

along the coordinate planes, denoted as subcase (a), and along the diagonal planes,

denoted as subcase (b), can be performed for all available nodes, including the

stub-loaded SCN in Case 3. (Cases 1, 2 and 3 are explained in Table 7.2.)

8.4.1 Propagation in 3D space

The analysis starts with plotting propagation errors using three-dimensional sur-

face plots, for the example of modelling a material with εrµr=8. The error dia-

grams for different condensed nodes are shown in Figures 8.9–8.11.

As already found in the previous chapter, the TLM mesh with the HSCN and

the stub-loaded SCN in Case 1 produces two physical solutions, corresponding to
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Figure 8.9 Two solutions for percentage propagation error in the HSCN and the

stub-loaded SCN in Case 1, for εrµr = 8, with an interpretation given in Table 8.1
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Figure 8.10 Percentage propagation error in the stub-loaded SCN in Case 2 for

εrµr = 8

Figure 8.11 Percentage propagation error in the SSCN for εrµr = 8
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the two orthogonal wave polarizations. In the case of propagation in a coordi-

nate plane, for example xy-plane, these solutions have physical interpretation of

the modes containing either the field components Ez,Hx,Hy or Hz, Ex, Ey [58].

Further in the text, the former modes are referred to as transverse electric, or TE

modes, whereas the latter are referred to as transverse magnetic, or TM modes.

For propagation along arbitrary directions in 3D space, a clear interpretation of

these modes is difficult to present. For this reason, the two orthogonal solutions

of the dispersion relations in an arbitrary direction will be associated to the corre-

sponding modes obtained for propagation in a coordinate plane and, for brevity,

will be referred to as TE and TM modes.

Analytically, it is not possible to determine which solution correspond to which

particular mode. However, by computing errors from TLM simulations modelling

wave propagation in a coordinate plane, the solutions plotted in Figures 8.9a,b

can be identified with the corresponding TE and TM modes as summarized in

Table 8.1.

Case/Mode TE TM

Stub-loaded SCN for εr = 8, µr = 1 8.9b 8.9a

Stub-loaded SCN for εr = 1, µr = 8 8.9a 8.9b

HSCN Type I, εrµr = 8 8.9b 8.9a

HSCN Type II, εrµr = 8 8.9a 8.9b

Table 8.1 Interpretation of errors plotted in Figures 8.9a,b

Apart from the two different solutions encountered in the HSCN and the stub-

loaded SCN in Case 1, Figure 8.9 also shows the coexistence of positive and neg-

ative propagation errors for different angles of propagation, a condition which is

described as bilateral dispersion in [58].

From Figure 8.10 it can be seen that in the stub-loaded SCN in Case 2 (εr = µr),

the absolute values of the errors are generally higher than in the Case 1 and in

the HSCN. However, the difference between a maximum and a minimum error,

taken for all possible directions, is approximately the same in both cases (around

1.5%). The error surface δk(ϑ,ϕ) in Case 2 is shifted towards negative values, but

its shape is similar to that of the 12-port SCN modelling free-space, plotted in

Figure 8.7.

Finally, Figure 8.11 shows that propagation errors are positive in the SSCN and
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they are higher than in the previous cases. However, the difference between the

minimum and maximum error is smaller then in the previous cases (around 0.6%,

similar to the 12-port SCN). The error surface δk(ϑ,ϕ) is now shifted towards pos-

itive values, but its shape is almost identical to that of the 12-port SCN modelling

free-space, plotted in Figure 8.7.

8.4.2 Propagation in coordinate and diagonal planes

As indicated before, the cross-section of the surface plots in Figures 8.9–8.11 for

ϑ = 0 gives information on the propagation errors along a coordinate plane, in

this case y = 0, containing directions [u,0,v]. Cross-section for ϑ = 45◦ gives

these errors for propagation along a diagonal plane, in this case x = y, containing

directions [u,u,v]. Since these two planes contain most of the directions of practi-

cal interest, such as for example [1,0,0], [1,1,0] , [1,1,1], [1,0,2], and [1,1,2], for

which equivalent resonant frequencies can be easily simulated in cubic resonators,

they will be given particular consideration here.

The analysis that follows is performed for the benchmark discretization of ∆l/λ =

0.1. The propagation error δk is given in percentages. The results for the two

orthogonal solutions occurring in the HSCN and the stub-loaded SCN in Case 1

are interpreted with respect to the stub-loaded SCN modelling dielectric materials

(µr = 1) or equivalently with respect to the Type I HSCN modelling any ratio

of εr/µr. The complementary interpretation of these solutions applies for the

stub-loaded SCN when εr = 1 and for the Type II HSCN. The error diagrams for

propagation along the coordinate and diagonal planes are shown in Figures 8.12–

8.15 on pages 160–163 for different condensed nodes.

Figure 8.12(a) shows the propagation error δk in the stub-loaded SCN in Case 1

and the HSCN for propagation along the coordinate plane y = 0. Figure 8.12(b)

shows the propagation error in the same nodes for propagation along the diagonal

plane x = y. The upper and lower sets of curves in Figures 8.12(a),(b) correspond

to the two orthogonal wave polarizations described earlier as TM and TE modes,

respectively. Both parts of Figure 8.12 show the coexistence of positive and nega-

tive propagation errors, described as bilateral dispersion in [58]. They show that

dispersion solutions at a given frequency converge as εrµr → ∞ and that the max-

imum positive propagation error occurs for a direction [1,0,1] (the diagonal in a

coordinate plane), whereas the maximum negative error occurs for axial propaga-

tion. The two sets of curves representing orthogonal solutions of (7.58) converge

for axial propagation (Fig. 8.12(a)) and propagation along the main space diago-
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nal (Fig. 8.12(b)). Note from Figures 8.12(a),(b) that the error δk for TM modes

in directions [1,0,2] and [1,1,2] as well as for both modes in direction [1,1,1] is

virtually independent of εr, µr.

Figures 8.13(a),(b) show the propagation error in the stub-loaded SCN Case 2, for

propagation along the coordinate and the diagonal planes, respectively. They show

that this error is significantly higher than in Case 1 and in the HSCN, and that

the highest error occurs for axial propagation. The solutions at a given frequency

converge when εrµr → ∞ but at a slower rate than in the previous case. The

propagation error is bilateral for smaller εrµr and negative for higher εrµr.

Figures 8.14(a),(b) show the propagation error in the stub-loaded SCN Case 3,

for propagation along the coordinate and the diagonal planes, respectively, for

εrµr = const = 8. Note that the three curves corresponding to values εr, µr ≥ 2

are very close, indicating that the propagation error for Case 3 for higher values of

εr, µr is similar to that in Case 2, unless εr → 1 or µr → 1 when Case 3 converges

to Case 1. As in Case 1, swapping values of εr and µr swaps dispersion solutions

for TE and TM modes.

Finally, Figures 8.15(a),(b) show the propagation error in the SSCN, for the

same propagation planes as in the previous figures. It can be seen from Fig-

ures 8.15(a),(b) that the propagation error for the SSCN is always positive, for all

propagation directions and for all materials, hence it is referred to as unilateral

dispersion, to distinguish from the bilateral dispersion experienced in the stub-

loaded SCN and the HSCN. Note that here the highest error occurs on the main

space diagonal, as in the case of the 12-port SCN modelling free-space. Note also

that curves for different εrµr are uniformly shifted which means that the range

of propagation error, that is the difference between the maximum and minimum

error considering all directions, is constant within an individual medium. The

equal shifting of curves in the plots from Figure 8.15 also suggests that a surface

δk(ϑ,ϕ), plotted earlier for the example of εrµr = 8 on Figure 8.11, will have the

same shape as the related surface for the 12-port SCN, for any value of εrµr.

Numerical results obtained by performing TLM simulations of homogeneous cubic

resonators are marked with diamond symbols and plotted in Figures 8.12–8.15(a)

for directions [0,0,1], [1,0,2],[1,0,1],[2,0,1],[1,0,0] and in Figures 8.12–8.15(b)

for directions [0,0,1], [1,1,2], [1,1,1],[1,1,0]. They are found to be in excellent

agreement with the analytical plots. Spurious propagating solutions described in

the previous chapter do not show a significant impact on the results obtained from

these simulations.
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−−−−− εrµr = 1 −−− εrµr = 4

· · · · · · · εrµr = 2 − · − · εrµr → ∞

Figure 8.12 Percentage propagation error in the HSCN and the stub-loaded SCN,

Case 1
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−−−−− εrµr = 1 − · − · εrµr = 8

· · · · · · · εrµr = 2 − · · · − εrµr = 16

−−− εrµr = 4 −−−− εrµr → ∞

Figure 8.13 Percentage propagation error in stub-loaded SCN, Case 2
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−−− εr = µr =
√

8

Figure 8.14 Percentage propagation error in stub-loaded SCN, Case 3
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−−−−− εrµr = 1 − · − · εrµr = 8

· · · · · · · εrµr = 2 − · · · − εrµr = 16

−−− εrµr = 4 −−−− εrµr → ∞

Figure 8.15 Percentage propagation error in the SSCN
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Node SCN Stub-loaded SCN HSCN SSCN
Case 1 Case 2 Case 3

Error independ. of wave polarization Yes No Yes No No Yes
Error independ. of medium impedance Yes No Yes No Yes Yes
Unilateral propagation error Yes No No No No Yes

Max. positive error δkmax+ (%) 0.57 0.83 0.57 0.83 0.83 2.22
Max. negative error δkmax− (%) 0.00 0.79 3.26 3.26 0.79 0.00
Error range, δkt = δkmax+ + δkmax− 0.57 1.62 3.83 4.09 1.62 2.22
Storage N (node ports) 12 15 18 18 15 12
Normalized error range, δkt,18 (%) 0.44 1.43 3.83 4.09 1.43 1.69

MUL operations per node, M 6 9 12 12 12 6
ADD/SUB operations per node 24 48 54 54 48 48

Theoretical performance index Pt 12.39 3.18 1.07 1.00 2.38 3.23

Same line and medium impedances Yes No Yes No No No
Simple connection procedure Yes Yes Yes Yes No No

Table 8.2 Numerical characteristics of various TLM condensed node schemes

for uniform mesh

8.4.3 Summary of results

A summary of the numerical characteristics of the existing condensed nodes for

modelling isotropic media on a uniform mesh is shown in Table 8.2. The properties

of the 12-port SCN are also shown for reference, although this node cannot model

inhomogeneous configurations.

The first set of rows of Table 8.2 concerns the nature of the dispersion. In TLM,

errors due to dispersion depend normally on the discretization (∆l/λ), wave ve-

locity in media (1/
√
εµ) and direction of propagation (ϑ,ϕ). However, the two

orthogonal solutions of the dispersion relation for the stub-loaded SCN and the

HSCN reveal that dispersion for these nodes is further dependent on the wave

polarization. This can have the effect of splitting degenerate modes, which oth-

erwise would have the same resonant frequencies, and changing the polarization

of propagating waves, as shown in [56]. The dispersion in the stub-loaded SCN is

also function of the medium impedance, i.e. it depends on µr/εr for µrεr = const.

Both the stub-loaded SCN and the HSCN experience bilateral dispersion [58]. In

contrast, the nature of the dispersion errors in the SSCN is identical to that of

the basic SCN, i.e. dispersion is independent of the wave polarization and of the

medium impedance (for µrεr = const) and the propagation error is unilateral.

These are regarded as advantageous features of the SSCN.
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The second set of rows of Table 8.2 shows maximum propagation errors calculated

for the discretization of ∆l/λ = 0.1, assuming all propagation angles and all media

with properties 1 ≤ εrµr < ∞. Table 8.2 shows that the total error range δkt,

defined as the sum of the maximum positive error δkmax + and the maximum

negative error δkmax−, is the highest in the stub-loaded SCN in Cases 2 and 3 and

smallest in the HSCN.

In order to compare further the performance of various nodes, the error range δkt

should be combined with the memory storage expressed by number of node ports,

N , to produce a figure of merit. Assuming that the total available memory is Nt,

and if the two different nodal structures contain N1 and N2 node ports, where say

N1 < N2, it follows that total number of nodes which can be used in the mesh

for the two cases is, respectively, n1 = Nt/N1 and n2 = Nt/N2. It follows further

that, assuming a three dimensional cubic mesh, the node spacing for the first node

type can be chosen to be smaller by a factor A = (n2/n1)1/3 = (N1/N2)1/3 than

for the second node type, thus effectively increasing the accuracy by a factor A2 in

the mesh formed using the first type of nodes (assuming second order accuracy).

Choosing N2 = 18, a normalized error range can be defined, according to the

above reasoning as:

δkt,18 = δkt

(
N

18

)2/3

(8.11)

Effectively, δkt,18 represents the error range for each node assuming the same total

storage and it can be seen from Table 8.2 that it is smallest for the HSCN.

As discussed in Chapter 6, run-time depends critically on the number of multi-

plicative operations (MUL) per node per time step, designated here by the letter

M . Assuming that the total number of available memory locations is Nt then the

total number of MUL operations per time step in the whole mesh is Mt = MNt/N .

Since an increase in Mt and an increase in δkt,18 both degrade the overall com-

putational efficiency in the same way, a product of these two values should be

computed to relate the propagation error, storage requirements and run-time re-

quirements in a single number. By calculating the inverse of δkt,18Mt normalized

to the smallest value, that is for the stub-loaded SCN in Case 3, a theoretical

performance index Pt may be introduced and computed for different nodes, which

is shown in Table 8.2. Index Pt suggests that the SSCN is the superior node for

modelling general cases.

Further consideration should be given to dispersive effects at interfaces between

nodes modelling different materials. Preliminary studies, presented in the follow-

ing chapter, and also results reported in [56, 58] indicate that these effects indeed
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exist but may not be significant, however a more thorough study is necessary to

describe these effects analytically. It should be noticed from Table 8.2 that, apart

from the basic 12-port SCN, only in the stub-loaded SCN Case 2, does the charac-

teristic impedance of link lines equal the intrinsic impedance of medium. As will

be shown in Chapter 9, this feature is important in minimizing dispersive effects

at interfaces.

In general, the optimum TLM scheme for uniform mesh is problem dependent.

Data in Table 8.2 offer guidance as to what may be achievable in each case. To

summarize this information further, it appears that when modelling dielectric

materials (Case 1), the stub-loaded SCN and the HSCN are the most accurate

and are reasonably computationally efficient, but degenerate propagation modes

are likely to be split. For the general case (εr, µr> 1), the HSCN offers the best

accuracy, but the higher efficiency and the identical dispersion for orthogonal wave

polarizations arguably makes the SSCN a better choice.

8.5 Dispersion in graded meshes

Dispersion relations of the presently available nodes for graded meshes can be

studied in a similar way as in the case of the uniform mesh. However, there is a

greater range of input parameters, hence, apart from studying propagation error as

a function of the material properties, it can be, in the case of a graded mesh, stud-

ied as function of node aspect ratio and time step. Since a big disadvantage of the

graded stub-loaded SCN is that the allowable time step is generally prohibitively

small, for practical reasons the analysis presented in this section considers only

the HSCN and the SSCN.

The same methodologies used in the analysis of the uniform mesh are used here

with some minor differences in the interpretation of the node spacing ∆l. Since

the node spacing in a graded node differs in the three principal directions, ∆l

will be regarded as an equivalent cubic cell parameter, related to the time step

as ∆l = 2c∆t, where c is the wave velocity in the background medium. Also, the

discretization level described earlier by km∆l has now to be described with respect

to a particular node dimension, for example, km∆x.

The analysis starts with the investigation of the spatial distribution of propaga-

tion error as a function of angles ϑ and ϕ described in Figure 8.2. It should be

pointed out that spherical coordinates (ϕ, ϑ) = (90◦, 0◦) describes propagation

along the x-axis, (ϕ, ϑ) = (90◦, 90◦) describes propagation along the y-axis, and
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Figure 8.16 Percentage propagation error in a cubic SCN for km∆x = 0.2π
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Figure 8.17 Percentage propagation error in the SSCN with grading set at ∆x =

2∆y = ∆z (for km∆x = 0.2π)

ϕ = 0◦ describes propagation along the z-axis. Accordingly, ϕ = 90◦ describes

propagation in the xy coordinate plane, whereas ϑ = 0◦ describes propagation in

the xz coordinate plane.

Figures 8.16–8.18 show the percentage error in a uniform mesh with the SCN, and

in graded meshes with the SSCN and the HSCN of aspect ratio ∆x = 2∆y = ∆z,

each for the discretization level of km∆x = 0.2π, i.e. for 10 ∆x node spacings
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Figure 8.18 Percentage propagation error in the HSCN for two different polar-

izations with grading set at ∆x = 2∆y = ∆z (for km∆x = 0.2π)

per wavelength. The time step for graded nodes is chosen to be the maximum

permissible, in this case ∆t = 1.46∆t0 for the SSCN and ∆t = 1.26∆t0 for the

HSCN, where ∆t0 = ∆y/(2c) corresponds to the time step of a cubic node with

node spacing ∆y. Note that two solutions for the HSCN are plotted in Figure 8.18.

Comparing the plots in Figures 8.16–8.18, it can be seen that the symmetry found

in the cubic SCN with respect to the plane ϑ = 45◦ (Figure 8.16) is removed

when grading is introduced (Figures 8.17–8.18). This means that contrary to the
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analysis performed for the uniform mesh, where it was sufficient to study the error

distribution for angles 0◦ ≤ ϑ ≤ 45◦ and 0◦ ≤ ϕ ≤ 90◦, the full analysis in the

case of a graded mesh requires a study for 0◦ ≤ ϑ,ϕ ≤ 90◦.

Observing in Figures 8.17–8.18 the two cross-sections corresponding to the xy and

xz planes (ϕ = 90◦ and ϑ = 0◦, respectively), it can be seen that, contrary to

the cubic SCN, in the cuboid nodes the error distribution in the xy plane differs

from that in the xz plane, due to the grading introduced. Also, it can be observed

from Figures 8.17–8.18 that in both graded nodes the error is smallest for the

propagation directions with small angles to the y-axis, that is for ϕ, ϑ → 90◦.
This shows that the most accurate modelling is achieved for a wave propagating

along the direction corresponding to the smallest node dimension, in this case ∆y,

as expected.

Further analyses of the dispersion in graded meshes can be done by studying

errors for the propagation along a coordinate plane, namely z = 0 (or equivalently

ϕ = 90◦). Figure 8.19 shows the percentage propagation error δk in the HSCN

operating on different time steps with grading set at ∆x = 2∆y = ∆z, calculated

for the spatial discretization of ∆x/λ = 0.1. Three pairs of curves are plotted, for

∆t = ∆tmax = 1.26∆t0, ∆t = ∆t0 and ∆t → 0. The upper and lower curves of

each pair represent the solutions for different wave polarizations, as indicated in

the figure.

To verify that the curves in Figure 8.19 reliably describe the dispersion relation

of the HSCN, a number of simulations is performed using the graded HSCN TLM

mesh in a cubic resonator, as earlier described. The normalized propagation error

δk, computed from the results of TLM simulations for the resonant modes [100],

[210], [110], [120] and [010], is plotted in Figure 8.19 by diamonds for ∆t =

∆tmax and by boxes for ∆t = ∆t0. It is obvious from Figure 8.19 that the errors

δk obtained from the simulations exactly coincide with those predicted by the

dispersion relation.

An important detail which can be noticed from Figure 8.19 is that propagation

error depends on the time step and that the total error range is the smallest when

using the maximum time step ∆tmax. This is expected, from the following intuitive

reasoning. Considering a uniform mesh, the maximum time step of a (cubic)

node modelling material εµ is ∆tmax = ∆l
√
εµ/2. However, when modelling

inhomogeneous problems in time-domain TLM, the node must operate at the

time step imposed by the background parameters ε0, µ0. Hence, the node in the

medium with parameters ε0εr, µ0µr operates on a time step ∆l
√
ε0µ0/2 which is
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Figure 8.19 Percentage propagation error in the HSCN for grading set at ∆x =

2∆y = ∆z

equal to ∆tmax/
√
εrµr. The increase in εrµr can be therefore interpreted as a

decrease in time step. As shown in the analysis of the dispersion relations for the

uniform mesh, the propagation error is increased in all types of condensed nodes

when modelling materials with higher εrµr, hence, this can be now applied to the

case of graded mesh as well, to explain the behaviour of errors when decreasing

the time step.

Further interesting details can be observed from Figure 8.19. For propagation

along the y-axis or at small angles to it, i.e. when ϕ → 90◦, better dispersion

properties are observed if ∆t0 is used instead of ∆tmax. From the discussion

on the analytical solution of the dispersion relation for graded HSCN in case of

propagation along an axis, given in the previous chapter, it follows in fact that the

propagation along, say y-axis, will be dispersionless if the HSCN operates on the

time step ∆y/(2c), or ∆t0 in this case. This also confirms the numerical results

obtained in [19].

It can be noted from Figure 8.19 that, for a given time step, four different prop-

agation errors, and hence four different resonant frequencies, are obtained for

the modes [120] and [210] with the two different field polarizations. Because

of the asymmetrical grading, dispersion is different for these four cases, hence
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Figure 8.20 Percentage propagation error in the HSCN for grading set at ∆x =

10∆y = ∆z

the resonant frequencies are not degenerate as expected for a homogeneous cubic

resonator.

A similar set of curves to those plotted in Figure 8.19 is shown in Figure 8.20

for a HSCN with grading set at ∆x = 10∆y = ∆z. Note that in this case

∆tmax ≈ 1.41∆t0. Figure 8.20 shows that for a high aspect ratio, in this case

∆x/∆y = 10, propagation errors are not very dependent on the time step chosen.

Therefore, in such cases any time step can be used with no loss in accuracy, however

it should be as high as possible to allow faster completion of a TLM simulation.

The propagation error in a graded TLM mesh with the SSCN of aspect ratio

∆x = 2∆y = ∆z is studied in Figure 8.21 for different values of time step and

propagation along coordinate plane z = 0 (ϕ = 90◦). Note that two sets of

parameters are possible for a graded SSCN, hence two error curves appear in

Figure 8.21 for ∆t �= ∆tmax. It should be noted, however, that the nature of these

two solutions is different from those in the HSCN. In the HSCN, two physical

solutions of the dispersion relation correspond to different wave polarization. In

contrast, the dispersion relation of the SSCN always produces only one physical

solution, but the characteristic impedances of link lines in the SSCN can be chosen

in two different ways if the time step is smaller than the maximum permissible one.
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Figure 8.21 Percentage propagation error in the SSCN for grading set at ∆x =

2∆y = ∆z

In fact, a choice between the two sets of parameters can be made with respect to

the dispersion characteristics, in order to allow a more accurate TLM simulation

of a particular problem.

Solutions to the dispersion relation of the graded SSCN plotted in Figure 8.21

in terms of δk are validated as before, by performing numerical simulations in

homogeneous resonators, and results agree well. It can be seen from Figure 8.21

that when decreasing the time step, the propagation error generally increases, as

in the case of the HSCN. Note, however, that the margin of errors in the SSCN

is higher and more sensitive on changes in the time step than found in the HSCN

and shown in Figure 8.19.

A particularly interesting behaviour is found in the SSCN when the time step

is just slightly decreased to a value of 0.97∆tmax. In this case, the solutions

to the SSCN dispersion relation (for the one set of link line impedances values)

produces a flat error curve. This feature, which is not found in the other available

nodes, actually means that errors due to dispersion are the same for all angles of

propagation in, for this case, the xy plane. This effect will be further explored in

the next section to find possible ways of minimizing and eliminating dispersion in

TLM simulations.
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8.6 Minimization and elimination of dispersion

It has been shown thus far that the dispersion characteristics of a graded TLM

condensed node are dependent on the aspect ratio of the node, the time step

and the direction of propagation. It will now be shown how the results from the

previous analyses can be used in minimizing and eliminating dispersion in the

propagation directions of interest.

It follows from Figures 8.17–8.21 that the propagation error is minimal along

an axis corresponding to the smallest dimensions of the node and along direc-

tions close to it. Hence, the most accurate modelling of wave propagation can

be achieved if the aspect ratio of the node is commensurate with the ratio of the

wave numbers in the three axial directions. This conclusion is generally valid for

other TLM schemes as was shown in [49] for a ‘distributed node’, which is the

counterpart of the SSCN in the expanded node schemes.

Similar results were presented for the SSCN in Chapter 5, when it was shown that

modelling of a resonator loaded with dielectric layers is most accurately achieved

by adjusting the node aspect ratios to correspond with the direction of wave

propagation (Figures 5.6–5.7 and Table 5.2). An intuitive step performed in this

example was the use of non-uniform grading in different dielectric layers, to reflect

the fact that propagation velocities are different in the different regions. Partic-

ular attention is drawn here to the cases of grading depicted in Figures 5.7(c)

and (d). In the first case, a uniform grading was used throughout the resonator

(Figure 5.7(c)). The time step imposed in the mesh was the one corresponding

to the free-space layer and it was, according to Table 5.2, ∆t = 0.491∆t0. The

maximum time step for the nodes belonging to the dielectric layer with εr = 4

was twice this, namely ∆tε = 0.982∆t0, since
√
εr = 2, but this part of the mesh

had to operate on a lower time step to ensure time synchronism. As shown in

the previous section, decreasing the time step for a node increases the propaga-

tion error, so the deviation in the resonant frequency for the example studied was

mainly due to a disparity in the maximum allowable time steps of the two layers.

When a non-uniform grading is introduced, as illustrated in Figure 5.7(d), the

maximum time step for the free-space region was increased to ∆t = 0.938∆t0,

becoming very close to the maximum time step for the dielectric regions ∆tε which

remained the same as in the previous case. The ratio between the maximum time

steps in two regions was now 0.96, hence the accuracy was significantly improved,

as was shown in Table 5.2, with the additional benefits of an increased time step

and decreased number of cells.
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Adjusting of the node aspect ratio in different dielectric layers to achieve com-

mensurating time steps and hence better accuracy, can be called ‘smart grading’.

This approach was, in fact, fundamental in the derivation of 2D and 3D nodes

proposed in [33, 72], where the time step was set for one dielectric region and

the grading of other regions was chosen to ensure time synchronism. The results

achieved in modelling planar structures with these nodes [73] confirm the high

accuracy predicted by the dispersion analysis performed in this chapter.

The way of improving accuracy, discussed so far, was based on the a priori setting

of the parameters of the mesh to favour propagation directions of interest. Now,

a posteriori minimization and even total elimination of dispersion effects will be

explored, by using ‘flattening of dispersion’. It was already indicated in Figure 8.21

that for a particular combination of grading and time step, the error curve may

become flat, in other words, the relative propagation error can be made equal at

all angles for propagation in a particular plane. A similar effect, but assuming

that the time step is always the maximum one, can be seen from the following

example.

Assume that we are mainly interested in accurate modelling of waves propagating

in a coordinate plane, e.g. xy. In this case, the dimension ∆z is of no particular

importance and hence can be varied to achieve a ‘good’ dispersion characteristic.

Figure 8.22 shows error curves in the xy-plane, for different values of ∆z when

∆y = ∆x. A flat error curve can be obtained for ∆z =
√

3∆x, hence the error at

the coordinate diagonal (ϑ = 45◦) is reduced from 0.42% in case of cubic node to

0.28% in case of the graded one. The permissible time step in the graded mesh is

15% greater than the one with the cubic nodes and the number of cells is reduced

by a factor 1/
√

3. Furthermore, because the numerical errors are uniform in all

directions, they can be easily eliminated, for example, when calculating resonant

[NxNy0z] frequencies in a cubic resonator, by using the formula:

f0 = f

(
1 + δk

(
∆x/λ
0.1

)2
)

which can be derived by combining equations (8.8) and (8.9). Here f and f0 are

simulated and corrected frequency values, respectively, δk is the relative propa-

gation error obtained for the discretization ∆x/λ = 0.1 (δk = δk = 0.28% in the

previous example) and λ is the wavelength of the resonant mode [NxNy0z], which

can be calculated as:

λ =
2D√

N2
x +N2

y +N2
z
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Figure 8.22 Percentage propagation error in the SSCN for different gradings and

∆x/λ = 0.1

whereD is the linear dimension of the cubic resonator, Nx and Ny are the numbers

of half wavelengths in the x and y directions, respectively, and Nz = 0.

This approach was tested by performing numerical simulation of the propagation

within a cubic resonator, for a range of propagation modes [NxNy0z], namely

[100], [010], [110], [120], [210], [220], [130] and [310]. For the chosen cell

dimension of ∆x/D = 0.1, which yields discretization factors ∆x/λ ranging from

0.05 for the [100] mode to ≈ 0.16 for the [310] mode, the relative deviation of

the corrected frequency f0 from the analytical one was always smaller than 10−4.

It is interesting to observe the distribution of errors in other directions for the

SSCN graded as in the previous example. Figure 8.23 depicts the magnitude of

the percentage propagation error in 3D space using surface and parametric plots.

As expected, the propagation error for angles ϕ → 0◦, that is along and close

to the z-axis, is rather high, but only errors for ϕ → 90◦ were of interest here.

From the surface plot of Figure 8.23 it can be seen that, for a given ϕ, the error

is almost independent of ϑ, i.e. of the angles between x and y axes. This can be

also seen in the parametric plot of Figure 8.23 through the existence of concentric

circles around the z-axis. The constant value of δk for a given ϕ, may facilitate a

minimization and elimination of dispersion in the propagating planes other than
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Figure 8.23 Surface and parametric plot of the propagation error (absolute value)

in a graded SSCN for ∆y = ∆x, ∆z = 1.73∆x and ∆x/λ = 0.1

coordinate ones (defined by ϕ = const �= 0◦), using a similar a posteriori correction

procedure as before.
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8.7 Summary

Physical solutions of the dispersion relations derived in Chapter 7 were further

explored in this chapter. Efficient ways of studying and visualizing dispersion

errors were presented and a detailed quantitative analysis of the results was per-

formed. The dispersion errors were studied for uniform and graded meshes formed

by presently available condensed nodes and the results were systematically com-

pared and analysed. The analytical results obtained by solving dispersion relations

were validated by modelling resonant frequencies in homogeneous cubic resonators.

Possible ways of minimizing dispersion errors by selection of the node aspect ratio

and time step were also explored.

The dispersion analysis presented in these last two chapters can be combined with

the theoretical foundation of the general symmetrical condensed node, described

in the first part of the thesis, in order to explore possibilities of deriving new,

optimized TLM schemes. Given the theoretical instrument to describe new nodes

(Part One) and the systematic procedures to quantify their accuracy and perfor-

mance (Part Three), in the final part of this thesis some of the several further

advanced node developments will be presented.



Part IV

Further Developments
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Chapter 9 Advanced nodes with improved dispersion

characteristics

9.1 Introduction

The main objective in the derivation of the SSCN performed in Chapter 5 was

to reduce storage requirements by eliminating the need for stubs. An additional

benefit of this, as it was revealed in Chapter 6, was a higher efficiency in terms

of CPU run-time, compared to the previous nodes. In this chapter, however,

the main goal will be to derive new nodes which will have more advantageous

dispersion properties, and hence, improved numerical accuracy. The theoretical

foundation of the general symmetrical condensed node (GSCN), established in

Part One, will be used in the derivation of new nodes.

The dispersion analysis performed in Part Three has shown that the alterations

made to the basic 12-port SCN, in terms of adding stubs and varying the charac-

teristic impedance of link lines, caused different effects in the dispersion charac-

teristics, depending on how these alterations were done.

In the conventional stub-loaded SCN, where open- and short-circuit stubs were

added whilst the characteristic impedance of link lines was kept equal to the intrin-

sic impedance of the background medium, several features in the solution of the

dispersion relation were noticed. In the general case, when εr �= µr, two physical

solutions were obtained, corresponding to the two orthogonal wave polarizations.

Also, it has been demonstrated that dispersion in a medium with constant εrµr de-

pends on its intrinsic impedance, i.e. on the factor µr/εr. Both types of behaviour

are in contrast to the linear dispersion characteristics of Maxwell’s equations and

represent numerical errors. In addition, in comparison to the basic 12-port SCN,

bilateral dispersion (errors with both positive and negative values) was introduced

and the total error range was increased.

In the case of the hybrid SCN (HSCN), where only one type of stub is used while

allowing for different link line impedances, the dispersion analysis has shown that

179
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the propagation error is independent of the medium intrinsic impedance for a

constant value of εrµr. Also the error range is smaller than in the case of the

stub-loaded SCN. However, bilateral dispersion and the ambiguity of the two

physical solutions remain.

The dispersion analysis of the stubless, super-condensed node (SSCN), where all

required adjustments were done through changing of the characteristic impedances

of link lines, showed that in this node the dispersion is unilateral and indepen-

dent of both the wave polarization and the intrinsic impedance of the medium.

However, the range of propagation errors in the SSCN is higher than in the HSCN.

The dispersion analysis of the presently available nodes showed different error

trends when introducing stubs and when altering link lines. From the error dia-

grams of the stubless SSCN it can be seen that the relative propagation error δk

increases in the positive direction with increasing εrµr (or equivalently decreasing

time step). A contrasting behaviour can be noticed in the case of the stub-loaded

SCN (especially in Cases 2 and 3) where the errors are extended mainly to neg-

ative values. In the HSCN, where both stubs and altered link lines were used,

errors are bilateral, but close to zero.

Intuitively, it is reasonable to expect that an improvement in the accuracy and

dispersion behaviour of presently available nodes can be achieved by carefully

combining the effects caused by stub loading and changing the impedances of

the link lines in the node. However, the dependence on the ratio µr/εr found in

the stub-loaded SCN makes it difficult to interpret error trends in this node. In

order to eliminate this undesirable feature of the stub-loaded SCN, a new stub-

loaded node, maintaining a constant link line impedance, but equal to the intrinsic

impedance of modelled medium rather than to the impedance of the background

medium, will be first developed. This node will be referred to as the matched

impedance SCN (MSCN).

Comparison of the dispersion characteristics of the MSCN to those of the SSCN

will, later in this chapter, lead to the development of a new family of nodes with im-

proved accuracy, referred to as adaptable symmetrical condensed nodes (ASCN).

Due to the increased complexity, caused by the great variety of combinations of

link lines and stubs possible in the definition of a new node, only nodes for the

uniform mesh will be developed. It is, however, hoped that the methodology used

here will allow future development of similar advanced nodes for a graded mesh.
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9.2 SCN with matched line impedances (MSCN)

9.2.1 Derivation

From the dispersion analysis of the stub-loaded SCN, performed in the previous

chapter, it can be seen that the two physical solutions of the dispersion relation

become identical only in the case when εr = µr. The intrinsic impedance of the

medium Z equals in this case the characteristic impedance of the link lines Z0,

since it follows that:

Z =
√
µ

ε
=
√
µrµ0

εrε0
=
√
µ0

ε0
= Z0

This observation suggests that one may expect that the dispersion characteristics

of a node having link lines whose characteristic impedance is equal to the intrinsic

impedance of the modelled medium will be similar to those of the stub-loaded SCN

when εr = µr. The parameters of such a node can be derived from the general

TLM constitutive relations described in Chapter 2, as follows.

The system of equations (2.41)–(2.42) with the condition Zij = Z (or equivalently

Yij = Y = 1/Z) reduces in the case of a uniform mesh (∆x = ∆y = ∆z = ∆l)

and an isotropic medium to:

2Y +
Yo

2
= ε

∆l
∆t

(9.1)

2Z +
Zs

2
= µ

∆l
∆t

(9.2)

The characteristic admittance of open-circuit stubs and the impedance of short-

circuit stubs, Yo and Zs respectively, are obtained from (9.1) and (9.2) as:

Yo = 2Y
(

∆l
∆t

√
εµ− 2

)
(9.3)

Zs = 2Z
(

∆l
∆t

√
εµ− 2

)
(9.4)

Assuming that the velocity of pulses on the transmission lines is imposed by the

parameters of the background medium as [9]:

∆l
∆t

=
2√
ε0µ0

(9.5)

equations (9.3)–(9.4) simplify to:

Yo = 4Y (
√
εrµr − 1) (9.6)

Zs = 4Z(
√
εrµr − 1) (9.7)
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Normalizing the values of Yo and Zs to those of the link lines (Y , Z) we obtain:

Ŷo = Ẑs = 4(
√
εrµr − 1) (9.8)

The scattering matrix for the MSCN can be easily derived from the GSCN scatter-

ing matrix shown in Figure 3.5 by using the definitions of the scattering coefficients

given by (3.42)–(3.48), taking into account that Zij = Z and the definitions of stub

parameters given by (9.6)–(9.7). In the case of a lossless medium (Gej = Rmk = 0)

the scattering coefficients are found as:

a = 0 b = d = e = i =
q

2

c = q − 1 f = g = 2 (1 − q)

h = 1 − 2q j = 2q − 1

(9.9)

where q = 1/
√
εrµr and the notation of Figure 3.5 is used.

By inspecting the definition of the scattering coefficients for the stub-loaded SCN

in Case 2, given by equation (7.75), and the scattering coefficients of the MSCN,

given by equation (9.9), they are found to be identical. This is expected, as

the MSCN and the stub-loaded SCN are identical in the case when εr = µr.

Note, however, that for a given εrµr = const, equation (7.75) defines scattering

coefficients in the stub-loaded SCN only when εr = µr, whereas equation (9.9)

defines scattering coefficients in the MSCN for any ratio of εr/µr. Accordingly,

the dispersion characteristics of the MSCN, in contrast to those of the stub-loaded

SCN, will be independent of the ratio εr/µr for εrµr = const. Furthermore, the

dispersion relation of the MSCN will have the identical functional form as the

dispersion relation of the stub-loaded SCN in Case 2, given by (7.77), yielding the

same physical solution for the two orthogonal wave polarizations.

The dispersion characteristics of the MSCN are therefore advantageous compared

to the stub-loaded SCN because of: a) the independence on the wave impedance

(i.e. the factor µr/εr) for εrµr = const and b) the existence of a unique prop-

agating solution for any ratio µr/εr. A disadvantage of the MSCN dispersion

characteristics is a high error margin. Namely, the error range in the stub-loaded

SCN is the highest in Case 2 and following the equivalence between the dispersion

relations of the MSCN and the Case 2 stub-loaded SCN, it follows that the total

error range in the MSCN will never be smaller than for the stub-loaded SCN,

especially when a dielectric (µr = 1) or magnetic (εr = 1) material is modelled

(Case 1 SCN).
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However, when modelling inhomogeneous media, the errors due to dispersion are

found to be smaller in the MSCN than predicted from the dispersion analysis

for homogeneous problems, as it will be shown later in this chapter. This be-

haviour can be attributed to the fact that the impedance of link lines always

matches the impedance of the modelled medium in the MSCN. Accordingly, the

scattering of voltage pulses occurring at the interface between two materials is

directly equivalent to the scattering of waves on the boundaries between different

media. In the conventional stub-loaded SCN, the voltage pulses pass the inter-

face without ‘seeing’ the boundary at all, while in the HSCN and the SSCN, a

reflection/transmission process occurs due to different values of the link line char-

acteristic impedances which do not generally match the intrinsic impedances of

the modelled media.

From the computational point of view, the MSCN is clearly as demanding as the

stub-loaded SCN. In cases when only dielectric or only magnetic materials are

modelled, where the stub-loaded SCN normally uses only one type of stub, the

MSCN is more demanding since it always uses both types of stubs. It appears

that a symmetrical use of both types of stubs in the MSCN, expressed through

equation (9.8), is a price which must be paid in order to retain identical dispersion

characteristics for the two wave polarizations.

There are, however, some cases when the MSCN is more efficient than the stub-

loaded SCN. Consider for example the case when modelling two regions with

εrµr = const, say: region (1) with εr = 2, µr = 2 and region (2) with εr =

4, µr = 1. In the conventional stub-loaded SCN, the parameters for the link lines

have to be chosen to model free-space and open- and short-circuit stubs need to

be introduced in region (1), and open-circuit stubs in region (2). Alternatively,

link lines can be chosen to model a hypothetical background medium of εr =

2, µr = 1, thus introducing short-circuit stubs in region (1) and open-circuit

stubs in region (2). It can be shown by analysing equations (9.6)–(9.7) that in

the new MSCN, since εrµr = const in the two regions, stubs are not needed at

all. To summarize, in the conventional SCN the background parameters must be

chosen as (min(εr),min(µr)), where min(εr) and min(µr) are the minimum values

in all regions, thus imposing in some situations, as shown in the previous example,

that stub-loading must be used in the whole mesh. In the MSCN, the background

parameters can be chosen as min(εrµr) which means that one part of the mesh

will be always stub-free, while in some particular situations, as in the previous

example, the whole mesh can be stub-free.
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Due to the impedance matching condition, the connection between neighbouring

nodes on different sides of a material interface must be modelled as for the HSCN

and the SSCN, as explained in Chapter 6. The extra amount of calculations

needed in this case can be justified, however, since the reflections on the interface

are in accordance with problem requirements. Finally, the matching impedance

condition simplifies the implementation of external boundaries in TLM based on

the MSCN, since the line reflection coefficients will always be equal to the medium

reflection coefficients [39].

9.2.2 Comparison of error trends in the MSCN and the SSCN

Having eliminated the presence of the two orthogonal solutions of the dispersion

relation and their dependence on the wave impedance in the conventional stub-

loaded SCN, by developing a new stub-loaded node with the matching impedance

condition (MSCN), it is now possible to investigate more closely the effects of stub-

loading and link line impedance changing on the numerical accuracy of a general

condensed node TLM scheme. It appears most useful to compare the dispersion

characteristics of the SSCN and the MSCN, since the former uses exclusively the

altering of link lines to model local changes in the material properties, while the

later always uses stubs.

Figure 9.1 shows, in the same manner as in Chapter 8, the percentage propagation

errors in the SSCN and the MSCN for propagation in a coordinate and a diagonal

plane, for the discretization of ∆l/λ = 0.1. It can be clearly seen from the plots

in Figure 9.1 that, with an increase in εrµr the propagation error is shifted in

the positive direction for the SSCN but in the negative direction for the MSCN.

Similar observations can be made from Figure 9.2 which shows the propagation

error in the two nodes as a function of material properties.

The error trends observed from Figures 9.1 and 9.2 suggest that if a part of the

excess material properties is modelled through stubs, as in the MSCN, and a part

through varying the characteristic impedances of link lines, as in the SSCN, one

may expect that the propagation error in such a combined node might average

out, i.e. the error may be small and fluctuate around zero. This possibility is

explored in the following section.
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Figure 9.1 Comparison of the percentage propagation error in the MSCN and

the SSCN in different propagation planes for εrµr ∈ {1, 2, 4, 8, 16} and ∆l/λ = 0.1
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Figure 9.2 The percentage propagation error in the MSCN and the SSCN, as a

function of material properties, for the three principal directions and ∆l/λ = 0.1

9.3 Adaptable symmetrical condensed nodes (ASCN)

9.3.1 Derivation

The TLM constitutive relation for the case when two different link lines (as in the

SSCN for uniform mesh) and open and short-circuit stubs (as in the MSCN) are

introduced in the node, can be written from equations (2.41)–(2.42) for modelling

an isotropic medium with parameters ε = εrε0 and µ = µrµ0 as:

Yn + Yp +
Yo

2
= ε

∆l
∆t

(9.10)

Zn + Zp +
Zs

2
= µ

∆l
∆t

(9.11)

where Yn = 1/Zn, Yp = 1/Zp. The characteristic impedances of link lines are

denoted, in accordance with the SSCN formulation, as

Zxy = Zyz = Zzx = Zp

Zxz = Zyx = Zzy = Zn

The system of two equations (9.10)–(9.11) contains four unknowns, namely, Zn,

Zp, Yo and Zs. Additional conditions required for its solution can be imposed by
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introducing weighting parameters which describe the proportion of the medium

parameters (ε, µ) modelled separately by link lines and by stubs. Let the link lines

model a proportion of the medium parameters denoted by ε1, µ1 and described

by:

ε1 = we ε (9.12)

µ1 = wm µ (9.13)

where we and wm are arbitrary ‘weighting’ coefficients, non-negative numbers not

bigger than unity. Since the parameters ε1, µ1 are modelled only by link lines, the

general TLM equations (2.41)–(2.42) applied to this ‘share’ of the medium can be

written as:

Yn + Yp = ε1
∆l
∆t

(9.14)

Zn + Zp = µ1
∆l
∆t

(9.15)

Solving this system of two equations and using equation (9.5), the characteristic

impedances of the link lines are obtained as:

Zn = Z1A Zp = Z1/A (9.16)

where

Z1 = Z0

√
µr1

εr1
(9.17)

A =
√
εr1µr1 +

√
εr1µr1 − 1 (9.18)

On the other hand, by inserting equations (9.14) and (9.15) respectively in (9.10)

and (9.11), and using equations (9.5) and (9.12)–(9.13), the parameters of stubs

can be easily obtained as:

Yo = 4Y
√
εrµr(1 − we) (9.19)

Zs = 4Z
√
εrµr(1 − wm) (9.20)

where Z = 1/Y =
√
µ/ε.

At this stage two options are open. By choosing we and wm independently, the

parameters of open and short-circuit stubs will not be symmetrical, and, as in the

case of the stub-loaded SCN and the HSCN, this node will exhibit the ambiguity

of producing different solutions to the dispersion relation for the two orthogonal

wave polarizations. Alternatively, by choosing we = wm = w and normalizing to
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the values Y,Z we obtain, as in the derivation of the MSCN, that the normalized

open-circuit stub admittance and short-circuit stub impedance are identical, i.e.:

Ŷo = Ẑs = 4
√
εrµr(1 − w) (9.21)

Note that in this case:

Z1 = Z0

√
µr

εr
= Z (9.22)

A = w
√
εrµr +

√
w2εrµr − 1 (9.23)

This node is in fact a combination of the SSCN and the MSCN and intuitively it

can be expected that this will ensure the same solution to the dispersion relation

irrespective of wave polarization.

The relations (9.21)–(9.23) suggest that if w = 1, then Ŷo = Ẑs = 0, i.e. the

stubs disappear and the node reduces the SSCN. On the other side, by choosing

w = 1/
√
εrµr, then A = 1 and Zn = Zp = Z, therefore the node reduces to the

MSCN. One may expect that for 1/
√
εrµr < w < 1, the node behaviour will fall

between that of the SSCN and the MSCN.

In this way, a whole class of nodes, referred to as adaptable symmetrical condensed

nodes (ASCN) has been derived, whose scattering and dispersion characteristics

can be customized (adapted) through a weighting factor w. Note that the SSCN

and the MSCN are special cases of the ASCN for particular values of w, as shown

above.

The scattering matrix of the ASCN can be derived from the scattering matrix of

the GSCN given in Figure 3.5 and through equations (3.42)–(3.48), by using the

definitions of the link and stub impedances and admittances derived above. The

scattering coefficients for the ASCN modelling a lossless medium can be obtained

as:

ap,n = ±wu bn,p = dn,p = ep,n = in,p =
w

2
(1 ± u)

cp,n = w − 1 f = g = 2(1 − w)

h = 1 − 2w j = 2w − 1

(9.24)

where u =
√

1 − 1/(w2εrµr). The first and second subscripts in (9.24) correspond

to the upper and lower sign, respectively. Subscript p corresponds to lines xy, yz

and zx, while subscript n corresponds to lines xz, yx and zy. The coefficients

in (9.24) reduce to those of the MSCN given by (9.9) when w = 1/
√
εrµr. It can
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be noticed from (9.24) that the scattering coefficients of the ASCN are functions

of εrµr if w is a function of εrµr, which guarantees that the dispersion relation

will be independent of εr/µr for εrµr = const. The particular choice of w can be

made in a manner to optimize the propagation characteristics of the ASCN, as

shown in the following subsection.

9.3.2 Dispersion characteristics

Following the strategy for the analytical expansion of the general TLM dispersion

relation explained in Chapter 7, the functional form of the characteristic polyno-

mial of the ASCN was found to be identical to that of the MSCN (or equivalently

the stub-loaded SCN in Case 2) and the dispersion relation for the ASCN was

derived by using the Faddeev method as:

cos(4θ) +B1 cos 3θ +B2 cos 2θ +B3 cos θ +
B4

2
= 0 (9.25)

where θ = ω∆t and:

B1 = 2s1 (1 − w) + 4

B2 = w2u2 (2s1 + s2) + w2 (3s2 − 2s1) − 4w (s1 + 2s2) + 4 (s1 + s2 + 1)

B3 = −2w3u2 (3s3 + 2s2) − 2w3 (s3 − 2s2) + 2w2u2 (3s3 + 4s2 + 4s1)

+2w2 (9s3 − 4s2 − 4s1) − 2w (12s3 − s1) + 2 (4s3 − s1 − 2)

B4 = −4w3u2 (3s3 + 2s2) + 4w3 (7s3 + 2s2) + 2w2u2 (6s3 + 7s2 + 6s1)

−2w2 (30s3 + 11s2 + 6s1) + 8w (6s3 + 2s2 + s1)

−2 (8s3 + 4s2 + 4s1 + 5) (9.26)

with

s1 = cx + cy + cz

s2 = cxcy + cycz + czcx

s3 = cxcycz

and cx = cos(kx∆l) − 1, cy = cos(ky∆l) − 1 and cz = cos(kz∆l) − 1.

The dispersion relation for the ASCN given by (9.25) is obtained as function of a

coefficient w, 1/
√
εrµr ≤ w ≤ 1, where w describes how close the ASCN definition

is to the SSCN or MSCN, as previously discussed. In order to compensate errors

experienced in the SSCN and MSCN, a suitable factor w can be chosen as the
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mean between the value of 1/
√
εrµr, which corresponds to the MSCN definition,

and unity, corresponding to the SSCN definition. For example, the arithmetic and

geometric means of these values are:

wa =

1√
εrµr

+ 1

2
=

√
εrµr + 1
2
√
εrµr

and

wg =

√
1√
εrµr

· 1 =
1

4
√
εrµr

respectively.

In order to compare propagation characteristics of the ASCN with different val-

ues of w, the propagation errors for the three principal directions are obtained

from (9.25) for the values of w = wa and w = wg and plotted in Figure 9.3. By

comparing the propagation errors of the ASCN plotted in Figure 9.3 to those of

the SSCN and the MSCN plotted in Figure 9.2, it can be seen that the error in

the ASCN is indeed contained between the errors in the MSCN and the SSCN. It

can be also seen from Figure 9.3 that the error range in the ASCN with w = wa

is significantly smaller than in the SSCN and MSCN, plotted in Figure 9.2.

It can be noticed from Figure 9.3 that the propagation errors in the ASCN are

not monotonic functions of εrµr as in the case of the SSCN and the MSCN, where

we have, respectively, monotonically increasing and monotonically decreasing δk

with increasing of εrµr, as can be seen from Figure 9.2. In the case of the ASCN,

these functions show increase up to the certain values of εrµr, after which they

decrease. Another feature of the propagation error in the ASCN with w = wa

and w = wg is that errors are both positive and negative, i.e. the dispersion is

bilateral. This is not the case with the propagation errors in the SSCN.

Obviously, a more detailed mathematical analysis on the behaviour of propagation

error in the ASCN should be pursued to find an optimal weighting factor. However,

it will be shown below how a weighting factor can be obtained to produce unilateral

dispersion.

From Figure 9.3 it can be seen that the lowest values of positive errors and negative

errors occur for the propagation along the axial direction (i.e. [1,0,0]). It appears

that the propagation error in other directions will always be positive, if the error

along the axial direction is non-negative. Hence, let us impose a condition that

the error along the axial direction is zero for any value of εrµr. By inserting



9 Advanced nodes with improved dispersion characteristics 191

Figure 9.3 Percentage propagation errors in the ASCN for two different weighting

factors wa (broken lines) and wg (solid lines) and for ∆l/λ = 0.1

kx∆l = 2θ
√
εrµr and ky = kz = 0 in (9.25) and solving it for w, it is found that:

w =
cos(θ) + cos(2θ

√
εrµr)

cos(2θ
√
εrµr) − 1

+
1

2εrµr(1 − cos(θ))
(9.27)

It can be seen from (9.27) that the solution for w is, of course, dependent on

θ = ω∆t, i.e. on the frequency. Since dispersion is investigated here at a relatively

low frequency, the limit of (9.27) can be sought when θ → 0, leading to a somewhat

surprisingly simple and elegant result for w given by:

w = wu =
1 + 2εrµr

3εrµr
(9.28)

where subscript u denotes ‘unilateral’ dispersion.

The percentage error for the ASCN with the weighting factor wu is plotted in

Figure 9.4 (solid lines) and compared to that with w = wa (broken lines). Indeed,

it is clear from Figure 9.4 that the propagation error for all three principal direc-

tions and for any value of εrµr is positive and hence unilateral. Note also that

the error for axial propagation [1,0,0] is virtually zero. Finally, the propagation

errors in the three directions are monotonic functions of εrµr although this was

not a condition explicitly enforced in the derivation of wu.
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Figure 9.4 Percentage propagation errors in the ASCN for two different weighting

factors wa (broken lines) and wu (solid lines) and for ∆l/λ = 0.1

The ASCN with the weighting factor wu which produces unilateral dispersion

is only one example of an ‘optimized’ node. Note that the dispersion analysis

applied here is valid for homogeneous problems, therefore, bilateral dispersion may

be introduced in modelling inhomogeneous problems due to spurious reflections

on the boundaries between different materials, as will be shown in the following

section. More investigations should be pursued to derive other ‘optimal’ weighting

factors. In this chapter, however, further analysis of the ASCN will be performed

using the weighting factor w = wu defined by (9.28).

The normalized propagation error δk in the ASCN is shown in Figure 9.5 using

similar plots to those used previously in the analyses of other nodes. Comparing

the plots from Figure 9.5 to those presented in Chapter 8, it can be seen that the

total error range in the ASCN is smaller than in the previous nodes and that the

dispersion is always unilateral.

Further comparisons of the propagation error in the ASCN to those errors in the

MSCN and the SSCN are made in Figure 9.6. From the plots in Figure 9.6 it

is clear that the error range for the ASCN is substantially smaller than for all

previous nodes.
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Figure 9.5 Percentage propagation errors in the ASCN (w = wu and ∆l/λ = 0.1)
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Figure 9.6 Comparison of propagation errors in the ASCN (solid lines), the

SSCN (dotted lines) and the MSCN (broken lines) for εrµr ∈ {2, 4, 8, 16} and

∆l/λ = 0.1. The direction of the increase in εrµr is denoted by arrows
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The propagation characteristics of the ASCN are therefore found to be more ad-

vantageous than those of all previous nodes. In addition to the existence of the

same propagation solution for any ratio µr/εr and the independence of the wave

impedance for εrµr = const, already found in the SSCN and the MSCN, this node

produces unilateral dispersion (found only in the SSCN) and has an error range

less than half that of the SSCN and the MSCN. The cost of this superior propaga-

tion behaviour of the ASCN is the presence of six stubs and a more complicated

scattering procedure.

Numerical characteristics of the ASCN can be further compared to those of other

nodes by using the figures of merit introduced in Chapter 8 and summarized for

other nodes in Table 8.2. Note that, due to an equivalence between the MSCN

and the stub-loaded SCN in Case 2, the characteristics of the MSCN can be taken

as identical to those presented in Table 8.2 for the stub-loaded SCN in Case 2.

The maximum normalized propagation error in the ASCN, obtained for a very high

εrµr = 200, is found to be 1.11%. Since the dispersion in the ASCN is unilateral,

this number actually represents the total error range δkt, as defined earlier in

Chapter 8. It can be seen from Table 8.2, that the corresponding error ranges for

the HSCN and the SSCN are 1.62% and 2.22%. Considering that the ASCN uses

N = 18 node ports, the factor δkt,18 which relates the accuracy with the memory

requirements, defined by (8.11), is in case of the ASCN δkt = δkt,18 = 1.11, which

is still better than the factors for the SSCN and the HSCN which are found from

Table 8.2 as δkt,18 = 1.69% for the SSCN and δkt,18 = 1.43% for the HSCN. This

shows that even though the ASCN uses 18 locations per node, its performance,

taking into account both storage and accuracy, is still better than nodes with fewer

stubs.

However, the scattering procedure in the ASCN demands 18 multiplicative (MUL)

and 54 additive (ADD) operations per node per time step, which is higher than

in the HSCN and the SSCN where respectively 12 and 6 MUL operations and 48

ADD operations are required. Accordingly, the theoretical performance index Pt

appearing in Table 8.2 was found to be Pt = 2.45 for the ASCN, which puts the

ASCN before the HSCN (Pt = 2.38) but behind the SSCN (Pt = 3.23). This is

merely due to the fact that in the ASCN as many as 3 times more MUL operations

per node are required than in the SSCN.

All these quantitative factors should be, however, used with caution, as they are

obtained in an ideal case, assuming a homogeneous mesh filled with the same type

of nodes, which is rare in practical problems. In view of the ever increasing num-
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ber of available TLM nodes, these factors do never-the-less provide a preliminary

guidance of what can be expected from each scheme. However, a definitive com-

parison of different schemes can only be achieved by performing TLM simulations

of practical problems.

9.4 Numerical results

The dispersion relations for the TLM nodes investigated in this thesis apply for

an infinite space with a homogeneous medium. By using a simulation procedure

explained before for other nodes, the solution to the dispersion relation for the

newly derived ASCN given by (9.25) and the curves plotted in Figures 9.4 and 9.5

can be verified for the example of homogeneous cubic resonators filled with dif-

ferent media. However, in real problems, nodes with stubs and varied link line

impedance are used in order to model local increases in the medium parameters,

i.e. for modelling inhomogeneous problems. Hence, further investigation is needed

to quantify dispersion behaviour in these cases.

The interface between two materials is modelled differently by the various con-

densed node schemes. In the stub-loaded SCN TLM mesh, where the link line

impedance is constant irrespective of the medium, pulses pass the interface with-

out an immediate reflection, which contradicts conventional wave propagation,

where a reflection does occur at the interface between different materials. In other

nodes, where the impedance of link lines generally differs at the interface discon-

tinuity, a two port junction is used to model reflection and transmission of pulses,

thus introducing spurious reflections. In the case of the MSCN, where the link

line impedances are always matched to the intrinsic impedance of medium, it is

expected that scattering at the interface describes more accurately the physical

condition.

A full investigation into the effect of interface discontinuities in the TLM method

has not yet been described in the literature. However, these effects have been

investigated empirically [58] by studying frequency errors in inhomogeneous res-

onators. A similar approach is used here in order to test the performance of

different nodes and to estimate the influence of spurious reflections on propaga-

tion behaviour. The two square resonators depicted in Figure 9.7, partly filled

with a medium with materials parameters: Case 1) εr = 4, µr = 1 and Case 2)

εr = µr = 2 are studied in the simulations. Note that the stub-loaded SCN and

the HSCN are identical in Case 1, while the stub-loaded SCN and the MSCN are

identical in Case 2.
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50 50 5020 30

air air medium  medium a) b) air

Figure 9.7 Schematic of inhomogeneous resonators (dimensions are in mm)

The resonant frequencies of TE modes 10, 20, 30, 11, 21 and 31 are calculated

for each case using TLM simulations with different nodes on a mesh with node

spacing ∆l = 1cm. The relative propagation error normalized to the benchmark

discretization of ∆l/λ = 0.1 is calculated using (8.8) and (8.9) as:

δk =
(f0 − f)

f

(
0.1

∆l/λ

)2

=
(f0 − f)

f

(
0.1c

∆lf0
√
εrµr

)2

(9.29)

where f is the modelled frequency, c is speed of light and f0 is the reference

frequency obtained by performing calculations on a very fine mesh. Note that the

normalization is done with respect to the wavelength in the material. The results

for the two resonators are presented in Tables 9.1 and 9.2.

It can be seen from Tables 9.1 and 9.2 that generally, the ASCN and the HSCN are

the most accurate of all nodes, as predicted from the dispersion analysis. However

some discrepancies can be noted, most probably due to the spurious reflections at

the interfaces. The spurious reflections can be studied by comparing the results

for resonator b (with two interfaces medium-air) with the results for resonator a.

In all nodes the accuracy in modelling the two resonators differs greatly, expect

in the MSCN where accuracy is generally the same (most noticeable in Case 2).

This indicates that in problems with multiple interfaces the MSCN might provide

greater accuracy. In the SSCN, the propagation error for resonator b is always

shifted in the positive direction compared to that for resonator a. In the ASCN,

it is shifted mainly in the negative direction. Note that for the ASCN, the errors

for the mode 10 are negative, which is not expected from the dispersion relation

for uniform problems, but was probably introduced due to spurious reflections at

interfaces. The positive error in the ASCN for the mode 20 in resonator a becomes
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TE mode → 10 20 30 11 21 31

Case 1: εr = 4, µr = 1

f0 [GHz] → 0.9116 2.0863 2.9980 1.2523 2.3176 3.2314

SCN & HSCN -0.22 -0.55 -0.25 +0.03 -0.35 -0.20
MSCN δk -0.90 -0.90 -0.58 -0.15 -0.63 -0.40
SSCN [%] +1.48 +0.75 +0.64 +1.77 +1.11 +0.62
ASCN -0.34 +0.19 +0.05 +0.32 +0.31 +0.22

Case 2: εr = 2, µr = 2

f0 [GHz] → 0.9993 1.9987 2.9980 1.3476 2.2845 3.1883

SCN & MSCN -0.82 -0.80 -0.78 -0.19 -0.50 -0.57
HSCN δk -0.11 -0.53 -0.35 +0.03 -0.29 -0.28
SSCN [%] +1.46 +0.57 +0.86 +1.73 +0.92 +0.80
ASCN -0.38 +0.23 +0.07 +0.25 +0.31 +0.24

Table 9.1 Normalized percentage propagation error in resonator (a)

TE mode → 10 20 30 11 21 31

Case 1: εr = 4, µr = 1

f0 [GHz] → 0.8066 1.8316 2.9980 1.1346 2.0305 3.1452

SCN & HSCN +0.28 -0.21 -0.43 +0.25 -0.05 -0.33
MSCN δk -0.74 -0.91 -0.93 +0.02 -0.50 -0.75
SSCN [%] +2.22 +1.49 +1.11 +2.14 +1.68 +1.27
ASCN -1.00 -0.33 +0.08 +0.14 -0.01 +0.17

Case 2: εr = 2, µr = 2

f0 [GHz] → 0.9993 1.9987 2.9980 1.2868 2.2094 3.1778

SCN & MSCN -0.83 -0.80 -0.78 -0.09 -0.48 -0.61
HSCN δk +0.07 -0.14 -0.36 +0.18 -0.01 -0.25
SSCN [%] +2.00 +1.42 +0.97 +2.04 +1.62 +1.14
ASCN -0.81 -0.34 +0.07 +0.13 -0.08 +0.14

Table 9.2 Normalized percentage propagation error in resonator (b)

negative in resonator b, which can be explained by the presence of the additional

interface in resonator a.

The dependence of the error on the wave impedance for constant εrµr, predicted

for the stub-loaded SCN, can be observed by comparing results obtained for dif-

ferent filling materials in Cases 1 and 2. It is evident from Tables 9.1 and 9.2 that

in all other nodes, the errors in the two cases do not differ significantly, which is

in agreement with the theory (Chapter 8). It is also interesting to note that for



9 Advanced nodes with improved dispersion characteristics 199

different propagation modes in the axial direction (10, 20, 30) all nodes, except

perhaps the MSCN, exhibit significant variations in errors. Clearly, this requires

further investigation but it would appear from these preliminary results that the

lower order modes are influenced more by the spurious reflections at interfaces. It

is evident from Tables 9.1 and 9.2 that in the SSCN and the ASCN, the normalized

propagation errors for the 30 mode are generally smaller than for the 10 mode.

9.5 Conclusion

In this chapter, new TLM condensed nodes with improved dispersion charac-

teristics were developed from the unified formulation of the general symmetrical

condensed node. The derivation of the link line and stub parameters, the scatter-

ing properties, implementation issues and the full propagation analysis for these

nodes were described in detail. The new adaptable SCN (ASCN) is unique in the

sense that its dispersion behaviour can be controlled by a weighting factor.

A comparative study of the new and previously developed TLM condensed nodes

for the uniform mesh was performed by calculating the normalized propagation

errors in inhomogeneous resonators with different geometry and filling materials.

Generally, it was found that the HSCN and the ASCN exhibit the best accuracy.

The influence of spurious reflections occurring at the interfaces between materials

was studied, and it was found that the node with a matched impedance condition

(MSCN) is the least affected. It was also noticed in modelling inhomogeneous

problems that, for the configurations studied, the normalized frequency errors in

a given direction are generally smaller for the higher harmonics, especially in the

SSCN and the ASCN. Some irregularities in the results obtained were observed

and these need further investigation.

In general, the study conducted in this chapter has shown that a combination of

link and stub parameters in the condensed nodes leads to an improved accuracy,

because the individual contributions to the propagation error by stubs and link

lines are in opposition. It is noticeable, that the two nodes which use both stubs

and different link link impedances, namely the HSCN and the ASCN, show the

best accuracy. The weighting factor used in the present implementation of the

ASCN was chosen to secure unilateral dispersion in the case of propagation in a

homogeneous medium. However, bilateral dispersion in modelling inhomogeneous

media was caused by spurious reflection at interfaces. Hence, a future study may

be able to determine an optimal weighting factor for modelling inhomogeneous

problems.



Chapter 10 Discussion and conclusions

10.1 Introduction

The objectives of this thesis were to theoretically establish the existing formula-

tions of the TLM method and to explore possibilities for the development of new,

advanced nodes for modelling general non-uniform media in three-dimensional

(3D) space. Due to its suitability for efficient modelling of wave propagation in

3D space, the symmetrical condensed node (SCN) [9] was chosen as the starting

point for new developments.

The SCN contains six interconnected transmission lines with the same character-

istic impedance. The twelve voltage pulses travelling on these lines represent, by

an established analogy, the field components propagating in 3D space. The basic

version of the SCN can be applied for modelling only homogeneous materials on

a uniform mesh, while its modification is necessary to allow for the modelling of

general inhomogeneous problems and for using cells with arbitrary aspect ratios,

i.e. a graded mesh.

The modifications which can be applied to the 12-port SCN are stub-loading and

changing of the link line characteristic impedances. Originally, it was proposed by

Johns [9] that link lines should have a constant characteristic impedance equal to

the intrinsic impedance of the background medium in the whole mesh, in order to

ensure time synchronism, whilst open- and short-circuit stubs could be added to

make up for any local increase in the dielectric permeability and magnetic permit-

tivity. This approach is sound and intuitively satisfying. However, the stub-loaded

SCN uses six extra memory locations in order to store voltage pulses associated

with stubs, thus becoming considerably less efficient compared to the basic 12-

port version. The scattering procedure for this node is also more complicated and

requires more arithmetic operations than the 12-port version [38]. Probably the

biggest drawback of the stub-loaded SCN is that the maximum time step which

is allowed in a graded mesh is in some cases prohibitively small [6]. The time step

200
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is, in fact, dependent on the ratio of the biggest to the smallest node dimension.

Hence when highly asymmetric grading is introduced into the mesh, a TLM sim-

ulation may need to run for a very large number of time steps in order to make

up for their small values.

To overcome these problems, Scaramuzza and Lowery [19, 32] have developed a

hybrid version of the SCN (HSCN), where the condition for the equal link line

impedances was relaxed. In this development, only open circuit stubs were used

and three sets of the characteristic link line impedances were allowed. Since there

are only three stubs, this node is computationally more efficient compared to

the traditional stub-loaded SCN, but far more importantly, this node can oper-

ate in graded meshes at a considerable higher time step than the stub-loaded

node [31, 32]. A complementary version of the HSCN, with short-circuit stubs

only, but otherwise similar characteristics, was also recently developed and imple-

mented [20].

Obviously, the successful development and implementation of the HSCN have

opened several questions: Whether stubs can be removed from the node all to-

gether? What would be the efficiency and propagation characteristics of such a

node? Could it be possible to develop other nodes with different combinations of

stubs and link lines? Could the TLM method with these new nodes be derived

directly from an established field theory? In order to answer these questions,

a systematic approach was adopted and described in this thesis, as summarized

below.

10.2 Review of new developments described in the thesis

10.2.1 Theoretical foundation

By studying the development of the existing TLM nodes, it was noticed that

the most common approach to the calculation of the node parameters is based

on equalizing the total capacitance and inductance contributed by the link lines

and stubs to that of the block of modelled medium [6]. This approach was gen-

eralized in Chapter 2 through the general TLM constitutive relations which de-

fine parameters of a TLM node with arbitrary configuration, modelling general

anisotropic media. It was shown that this formulation is valid for all the existing

3D time-domain nodes, as well as for the two-dimensional and frequency-domain

nodes. The unified formulation of the TLM parameters for a three-dimensional

time-domain scheme contains six degrees of freedoms, hence additional constraints
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must be imposed to derive a particular scheme. These requirements were clearly

identified in Chapter 2 for the existing stub-loaded and hybrid nodes. Another

interesting conclusion drawn from Chapter 2 was that the parameters of link lines

and stubs must be identical for any of the three basic structure used in 3D TLM

modelling, namely the expanded node, the asymmetrical condensed node and the

symmetrical condensed node. This means that the calculation of parameters per-

formed for one structure can be readily used for others, with minor alterations in

modelling boundaries and material interfaces.

In order to derive a TLM node, apart from the calculation of its link and stub

parameters, its scattering properties must also be determined. The scattering for

the SCN cannot be determined from an equivalent electric circuit, hence the im-

position of unitary conditions on the scattering matrix was traditionally used [9].

To avoid the complexity of such a derivation, an elegant approach, based on es-

tablished physical principles, was presented in Chapter 3. This approach allows

a simple formulation of scattering for a very general condensed node with up to

twelve different characteristic impedance of link lines and up to twelve stubs and

lossy elements.

In Chapter 4, a bijective one-to-one mapping between field components and volt-

age pulses was introduced to derive the GSCN directly from Maxwell’s equations

by using central differencing and central averaging. In this way, a direct corre-

spondence between the TLM method based on the GSCN and a finite-difference

scheme was established, thus offering a rigorous theoretical foundation for any

new TLM node derivable from the GSCN. Also, by analysing the approximations

used in the derivation of the GSCN it was found that TLM based on the GSCN

is second order accurate, regardless of the modelled medium and mesh grading.

10.2.2 Symmetrical super-condensed node

A theoretical foundation of the general symmetrical condensed node established in

Part One, provided all the necessary conditions for the development of a stubless

node in Chapter 5, referred to as the symmetrical super-condensed node. The

detailed derivation of the parameters of this node for isotropic as well as anisotropic

media was performed in Chapter 5, together with a complete description of the

implementation procedure. Apart from the reduced memory storage, it was shown

that the SSCN allows for a higher time step in graded meshes and with anisotropic

media, compared to the previous nodes. The numerical examples presented in

Chapter 5 demonstrated the validity and versatility of the new node and showed
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possible ways of ‘smart grading’ in order to achieve more accurate results.

In order to assess computational features of the new SSCN, the efficient imple-

mentation of scattering procedure was discussed in Chapter 6. The optimal al-

gorithms for general nodes, as well as the stub-loaded and the hybrid nodes were

first described, followed by a detailed explanation of the scattering procedure in

the SSCN. It was shown that only six multiplicative operations per node per time

step are required in the SSCN modelling arbitrary lossless media, which is half

the number required for the stub-loaded or the hybrid nodes. A new efficient scat-

tering algorithm for the 12-port SCN was also described, which requires only 6

multiplicative and 24 additive and subtractive operations per node per time step.

10.2.3 Dispersion analysis

Since it had been shown in Part Two that the SSCN exhibits superior computa-

tional characteristics compared to the previous nodes, in terms of memory storage,

computer run-time and allowable maximum time step, a further study was under-

taken to determine its propagation properties. A difficulty encountered at this

stage was that a comprehensive dispersion analysis for previous nodes was not

available, hence a detailed study of the TLM general dispersion relation was first

undertaken.

An analytical expansion of the general dispersion relation was performed in Chap-

ter 7 in order to facilitate the study of available condensed nodes. The derivation

of the algebraic form dispersion relations proved to be a complex mathematical

process and closed-form solutions were only possible in the case of the 12-port

SCN and the SSCN. However, the implicit polynomial forms of the dispersion re-

lations for the stub-loaded SCN and the HSCN, derived in Chapter 7, were found

to be sufficient for an exact analytical study of propagation errors performed in

Chapter 8.

The dispersion analysis performed in Chapter 7 showed that in all nodes, in addi-

tion to the physical solution of the dispersion, there are also unphysical solutions

which do not converge to the linear dispersion relations of Maxwell’s equations.

The high-frequency unphysical solutions can be eliminated by applying appropri-

ate low-pass filtering, but there are also low-frequency unphysical solutions with

high wave numbers which, if excited, propagate together with physical solutions.

However, simulation results from modelling homogeneous resonators, presented

in Chapter 8, showed excellent agreement with those predicted from the physical
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solutions, thus indicating that most of the spurious modes are evanescent and do

not influence the field solution significantly [54].

A quantitative analysis of the physical solutions was performed for the presently

available nodes in Chapter 8. The errors for propagation in arbitrary directions

were calculated for a benchmark discretization ratio of ∆l/λ = 0.1 and visualized

in three-dimensional space. A systematic comparison of numerical errors in dif-

ferent schemes was performed for uniform and graded meshes. It was found that

the HSCN and the stub-loaded SCN exhibit two solutions for different orthogonal

wave polarizations, which is at variance with the solutions of Maxwell’s equations.

In addition, dispersion in the stub-loaded SCN is further dependent on the ratio

εr/µr for a constant εrµr and both nodes show bilateral dispersion. These features

were not found in the SSCN, which behaves, in terms of dispersion characteris-

tics, similarly to the 12-port SCN: it produces the same solution for the two wave

polarizations, the dispersion is unilateral and independent of the wave impedance.

However, the range of propagation errors in the SSCN is higher than in the HSCN

and from that viewpoint, the HSCN is more accurate. Various figures of merits

were introduced in Chapter 8 to relate the memory and run-time requirement

with accuracy, which showed that, in general, an optimal TLM scheme is problem

dependent. The results obtained in this chapter were further explored to find

ways for minimizing and eliminating dispersion errors. It was demonstrated that

this can be achieved by using ‘smart grading’ and ‘flattening of dispersion’. The

error trends noticed in this chapter were exploited in the final part of the thesis

to derive new, optimized nodes.

10.2.4 Further developments

The possibility of deriving new nodes with a combination of the link and stub pa-

rameters which would exhibit improved dispersion characteristics was explored in

Chapter 9. The theoretical foundation of the GSCN from Part One was combined

with the results of dispersion analysis from Part Three to provide the means for

the development of new, optimized nodes.

First, a matched impedance SCN (MSCN) node, similar to the traditional stub-

loaded SCN, was derived, but with dispersion characteristics independent of wave

polarization and wave impedance. The error trends in the MSCN were further

compared to those in the SSCN to conclude that errors caused by stub-loading in

the MSCN are in opposition to errors caused by altering link line impedances in

the SSCN. This was used to formulate a new class of condensed nodes, referred
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to as the adaptable condensed nodes (ASCN), whose dispersion behaviour was

between those of the SSCN and the MSCN. The special feature of the ASCN is

that a weighting factor appears in its formulation, which can be used to customize

(adapt) the dispersion characteristics of the node. Several forms of the weighting

factors were explored, and one which ensures unilateral dispersion was chosen

for further study. Numerical simulations of inhomogeneous cubic resonators were

performed to compare the performances of the new and previously derived nodes.

Some irregularities were noticed due to spurious reflection present at material

interfaces, which were not accounted for in the traditional dispersion analysis.

Generally, it was found that the nodes which use a combination of link and stub

parameters, namely the HSCN and the ASCN, offer the best accuracy, as predicted

by the dispersion analysis.

10.3 Suggestions for further research

Suggestions for further research can be summarized as follows:

• Optimization of the TLM method should be primary task for a further study.

Clearly, the analytical tools established in this thesis for the developments

and characterization of new nodes could be further exploited. A problem-

dependent, ‘smart’ TLM node, with adjustable propagation characteristics,

could be developed, but more investigations are needed to quantify spurious

reflections on material interfaces.

• The results from the dispersion analysis showed that errors are minimized if

all nodes in the mesh operates at their maximum time step, hence, a ‘smart

grading’ can reduce dispersion effects greatly. Since grading in traditional

TLM meshes is structured, i.e. connectivity between the cells is preserved,

more emphasis could be placed on the implementation of the available nodes

in multiple grid meshes [74].

• Several separate techniques, developed for modelling fine features in TLM,

such as thin conducting elements (wires, panels, slots) [75, 76], which are

necessary in many studies, for example, in electromagnetic compatibility

(EMC) [77], could also be included in the implementation of new nodes.

• The unified formulation of TLM nodes, presented in Chapter 2, should be

generalized further to accommodate modelling of the anisotropic media de-

scribed by non-diagonal tensors. Also, the unified formulation should be

verified by applying it to the recently derived new FD-TLM nodes [78].
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• The unbalanced nodes, with differing link line characteristic impedance with

respect to the node centre, should be investigated more closely. Thus far,

a proper derivation of these nodes directly from Maxwell’s equations has

not been possible, indicating that they could be used only to model special

features [23].

• More investigation is needed into spurious modes supported by the TLM

condensed node meshes. At this stage, it is not clear to which extent they

influence overall accuracy of physical solutions. Contradicting results can be

found in recent publications [79, 80] and this should be clearly explained in

a further study.

10.4 Overall conclusions

The main original contributions from this thesis may be summarized as follows:

• The TLM method based on the SCN was generalized to allow for link lines

with different characteristic impedances and up to six stubs. A formula-

tion for calculating the parameters of a general symmetrical condensed node

(GSCN) was presented. The scattering properties of the general node were

derived both from an equivalent network model and directly from Maxwell’s

equations, thus establishing a rigorous theoretical foundation for all nodes

derivable from the GSCN. A unified formulation of parameter calculations

for other TLM schemes was also described.

• Novel nodes were derived from the formulation of the GSCN, namely, the

symmetrical super-condensed node (SSCN), the matched impedance SCN

(MSCN) and the adaptable SCN (ASCN). The implementation and numer-

ical characteristics of these nodes were described in detail. It was shown

that these nodes possess advantageous computational and/or propagation

properties compared to traditional nodes.

• A detailed mathematical analysis of the general TLM dispersion relation was

pursued. Algebraic forms of the dispersion relations for the previously and

newly developed nodes were derived using a systematic approach. A detailed

comparison of the propagation errors of the presently available nodes was

performed, including an extensive study of the impact on accuracy of stub-

loading, changing of link line impedances, time step and mesh grading.

To conclude, the development and characterization of advanced nodes for the TLM

method was successfully completed.
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