Shape analysis and statistical modelling in brain imagingTools Brignell, Christopher (2007) Shape analysis and statistical modelling in brain imaging. PhD thesis, University of Nottingham.
AbstractThis thesis considers the registration of shapes, estimation of shape variability and the statistical modelling of human brain magnetic resonance images (MRI). Current shape registration techniques, such as Procrustes analysis, superimpose shapes in order to make inferences regarding the mean shape and shape variability. We apply Procrustes analysis to a subset of the landmarks and give distributional results for the Euclidean distance of a shape from a template. Procrustes analysis is then generalised to minimise a Mahalanobis norm, with respect to a symmetric, positive denite matrix, and the weighted Procrustes estimators for scaling, rotation and translation obtained. This weighted registration criterion is shown, through a simulation study, to reduce the bias and error in maximum likelihood estimates of the mean shape and covariance matrix compared to isotropic Procrustes. A Bayesian Markov chain Monte Carlo algorithm is also presented and shown to be less sensitive to prior information.
Actions (Archive Staff Only)
|