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Abstract 
Radiocaesium (134Cs, 137Cs) is of environmental concern because of its 

incorporation into the food chain and prolonged emission of harmful radiation. Plants 

take up caesium via cation transporters which cannot discriminate between radioactive 

and stable caesium (133Cs). Around 80% of angiosperms live in symbiosis with 

arbuscular mycorrhizal (AM) fungi that deliver mineral nutrients to their hosts. 

Contrasting effects of AM fungi on caesium accumulation by plants have been reported. 

The ultimate aim of this thesis was to determine whether AM fungi reduced caesium 

accumulation in Medicago truncatula by down regulating the expression of plant genes 

encoding specific potassium transporters through improving potassium nutrition of their 

hosts.  

Accumulation of potassium and stable caesium by non mycorrhizal and 

mycorrhizal Medicago truncatula was studied, and the effects of caesium and AM fungi 

on plant gene expression were investigated. In these experiments, shoot potassium 

concentrations of non mycorrhizal and mycorrhizal plants were identical. However, in 

some experiments AM associations decreased shoot caesium concentrations. These 

observations were also true for five other plant species studied. Colonisation of 

Medicago truncatula with Glomus sp. influenced expression of some genes encoding 

cation transport proteins, but the expression profile did not suggest improved potassium 

nutrition. The presence of caesium also affected the expression of several putative cation 

transporters, but the consequences of these changes are unknown. A reduced 

colonisation rate of Medicago truncatula by Glomus intraradices was observed at 

caesium concentrations that exist in the rhizosphere.  

In conclusion, in these experiments, AM fungi did not improve plant potassium 

nutrition, and there was no evidence that AM fungi reduced caesium accumulation by 

down regulating expression of plant genes encoding potassium transporters. Although 

colonisation by AM fungi can reduce shoot caesium concentrations, this was not always 

observed. Thus, fungal inoculation cannot be relied upon to deliver crops with reduced 

radiocaesium concentrations. 
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Chapter 1:  

General Introduction 
 

1.1 CATION CHANNELS AND THE ACCUMULATION OF CAESIUM BY 

NON MYCORRHIZAL PLANTS 

This Section 1.1 is based on White, P.J., Wiesel, L. and Broadley, M.R. 

(2010) Cation channels and the uptake of radiocaesium by plants. In: Demidchik, V. 

and Maathuis, F. (eds) Ion Channels and Plant Stress Responses, Springer, 

Dordrecht, pp 47–67.  

 

1.1.1 Caesium 

Caesium (Cs) is an alkali metal element with chemical properties similar to 

rubidium (Rb) and potassium (K). It is found naturally as the stable isotope 133Cs, 

which may reach concentrations of 25 μg g-1 dry soil and low micromolar 

concentrations in the soil solution (White and Broadley, 2000). Caesium is not 

required by plants and, although Cs+ can perturb cellular biochemistry by competing 

with K+ (Cline and Hungate, 1960; Kordan, 1987; Sheahan et al., 1993; Hasegawa, 

1996; Hampton et al., 2004; Le Lay et al., 2006; Qi et al., 2008), it is rarely present at 

toxic concentrations in the natural environment (White and Broadley, 2000). 

However, two anthropogenic radioisotopes of Cs (134Cs and 137Cs) produced in 

nuclear reactors and thermonuclear explosions are of environmental concern (White 

and Broadley, 2000). These radioisotopes migrate rapidly in an aqueous 

environment, emit harmful β and γ radiation during their decay, have relatively long 

half-lives (2.06 and 30.17 years, respectively) and are rapidly incorporated into 

biological systems (White and Broadley, 2000). They enter the terrestrial food chain 

through plants, and their presence in foodstuffs impacts upon both health and 

commerce. 

Large areas in Europe (Figure 1.1) and worldwide were contaminated with 
137Cs fallout from the accident at the nuclear power plant in Chernobyl in 1986 

(Smith and Beresford, 2005). Agricultural land in Belarus, Russia and Ukraine is still 

contaminated by 137Cs originating from the Chernobyl accident (Smith et al., 2000; 

Beresford et al., 2001). Two strategies are available to return this land to safe 

agricultural production. The first is to cleanse the soil of radiocaesium. The second is 
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to grow crops that do not accumulate radiocaesium in their edible portions. Since Cs 

accumulation by plants is a heritable trait (Payne et al., 2004), plants with extreme 

phenotypes could be developed in breeding programmes. Growing plants with an 

increased ability to accumulate 137Cs accelerates the cleansing of contaminated soils 

(Entry et al., 1996; Dushenkov, 2003; White et al., 2003), whilst plants accumulating 

less 137Cs in their edible tissues can be used to develop ‘safer’ crops (White and 

Broadley, 2000; White et al., 2003, 2004). Cultivation of safer crops complements 

other agricultural countermeasures to reduce the radiation dose to populations 

inhabiting areas contaminated by 137Cs (Alexakhin, 1993; Beresford et al., 2001). A 

recent survey of over 130 potential countermeasures for managing land contaminated 

with radiocaesium suggested that selective crop breeding was one of only six 

strategies worthy of further exploration (http://www.strategy-ec.org.uk).  

 
Figure 1.1: Radioactive fallout of 137Cs in Europe after the accident at the nuclear 
power plant in Chernobyl in 1986 (with permission of Smith and Beresford, 2005). 
 

Plants acquire Cs from the soil solution. It is taken up by epidermal and 

cortical cells of the root as the monovalent cation, Cs+, which is transported 

symplastically, through the interconnected cytoplasms of root cells, across the root to 

the stele, where it is loaded into the xylem (White and Broadley, 2000; White et al., 

2004). Only about 20% of the Cs delivered to the shoot via the xylem is retained by 

the shoot, and most is returned to the root via the phloem for recirculation within the 
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plant (Buysse et al., 1995; Hampton, 2005). Thus, it is argued that the physiological 

processes impacting most on Cs accumulation by plants are the uptake of Cs from 

the rhizosphere and the delivery of Cs to the xylem (White and Broadley, 2000; 

Hampton et al., 2005). These processes are catalysed by transport proteins in the 

plasma membrane of root cells, and control of their activities are, therefore, 

fundamental to the development of safer crops for soils contaminated by 

radiocaesium. 

 

1.1.2 Historical studies 

It has long been known that the fluxes of monovalent cations across lipid 

membranes must be catalysed by transport proteins. Based upon the chemical 

similarity of Cs+, Rb+ and K+, the concentration-dependencies for their uptake, and 

competition between these cations for uptake by plant roots, researchers proposed 

that they shared the same uptake mechanisms: high affinity mechanisms at 

micromolar rhizosphere concentrations and low affinity mechanisms at millimolar 

rhizosphere concentrations (Collander, 1941; Epstein and Hagen, 1952; Menzel, 

1954; Menzel and Heald, 1955; Sutcliffe, 1957; Bange and Overstreet, 1960; 

Middleton et al., 1960; Handley and Overstreet, 1961; Shaw and Bell, 1989, 1991; 

Zhu et al., 1999; Zhu and Smolders, 2000). In addition, it was proposed that the high-

affinity mechanisms catalyzing Cs+ uptake were unconditionally energy-dependent, 

whereas the low affinity mechanisms catalyzing Cs+ uptake could occur through 

nonspecific cation channels utilizing the Cs+ electrochemical gradient alone (Bange 

and Overstreet, 1960; Shaw and Bell, 1989). However, molecular mechanisms of 

cation transport cannot be inferred solely from kinetic parameters: it is well known 

that inward-rectifying K+ channels catalyse K+ influx to plant cells from solutions 

with extremely low K+ concentrations, provided there is a supporting electrochemical 

gradient, and that H+/K+ cotransporters contribute to K+ influx to plant cells across a 

wide range of extracellular K+ concentrations (White and Broadley, 2000; Gierth and 

Mäser, 2007; Britto and Kronzucker, 2008; Karley and White, 2009). The uptake of 

Cs+ by plant roots is not only reduced by the presence of monovalent cations in the 

rhizosphere, with an apparent effectiveness of K+≥Rb+>NH4
+>Na+≥Li+ (Bange and 

Overstreet, 1960; Handley and Overstreet, 1961; Shaw and Bell, 1989; Hampton et 

al., 2004), but is also partially inhibited by millimolar concentrations of divalent 

cations, with an apparent effectiveness of Ba2+>Mg2+>Ca2+ (Bange and Overstreet, 
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1960; Handley and Overstreet, 1961; Resnik et al., 1969; Sze and Hodges, 1977; 

Smolders et al., 1997; Broadley et al., 2001; Hampton et al., 2004) and trivalent 

cations, such as La3+ and Gd3+ (Broadley et al., 2001; Hampton et al., 2004). 

 

1.1.3 Caesium transport proteins in root cells 

Several types of transport protein are able to catalyse Cs+ transport across the 

plasma membrane of root cells (Table 1.1). Inward-rectifying K+ channels (KIRCs), 

voltage insensitive cation channels (VICCs), voltage-dependent Ca2+ channels 

(HACCs and DACCs) and 'high-affinity' K+/H+ symporters (KUPs) can catalyse Cs+ 

influx to root cells, whilst outward-rectifying cation channels (KORCs and NORCs) 

can catalyse Cs+ efflux from root cells (White and Broadley, 2000; White et al., 

2004; Hampton et al., 2005; Qi et al., 2008). These transport proteins have 

contrasting abilities to discriminate between Cs+ and K+ and their relative abundance 

and activities vary with cell type, plant species and environmental conditions. It has, 

therefore, been postulated that differences in the complement of these transport 

proteins can account for the observations that both Cs+ uptake and shoot Cs/K 

quotients vary (i) with plant species and (ii) with plant K status (White and Broadley, 

2000; White et al., 2003, 2004; Hampton et al., 2005; Qi et al., 2008; Wiesel et al., 

2008). Since Cs is not an essential element, nor is toxic to plants at the concentrations 

found in the natural environment, it is unlikely that there has been any evolutionary 

pressure to select for protein structures that permit or exclude Cs+ transport. Thus, 

differences in the Cs/K selectivity of transport proteins are likely to have arisen 

serendipitously, as a consequence of the requirements for the transport of other, 

physiologically important, cations. 

Several K+ selective channels belonging to the 'Shaker' superfamily are present 

in the plasma membrane of Arabidopsis root cells (Table 1.1). These include the KIRCs 

AtAKT1, which appears to be the dominant K+ channel involved in K+ nutrition 

(Hirsch et al., 1998; Spalding et al., 1999; Broadley et al., 2001; Gierth et al., 2005; Xu 

et al., 2006), AtKC1/AtKAT3/AtAKT4, which appears to be a regulatory subunit for 

AtAKT1 (Reintanz et al., 2002; Pilot et al., 2003; Fizames et al., 2004), and (possibly) 

AtKAT1, and the KORCs AtSKOR, which is implicated in loading K+ into the xylem 

for transport to the shoot (Gaymard et al., 1998), and AtGORK, which is present in 

cells throughout the root, where it is thought to be involved in osmotic regulation and 

the maintenance of a negative cell membrane potential (Ivashikina et al., 2001; 
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Reintanz et al., 2002; Fizames et al., 2004). Orthologs of genes encoding these channels 

have been found in roots of all plant species studied to date (Zimmermann and Chérel, 

2005; Ashley et al., 2006; Gambale and Uozumi, 2006; Lebaudy et al., 2007). Although 

KIRCs are permeable to Cs+, they transport little Cs+ into root cells because increasing 

extracellular Cs+ reduces cation permeation through them (Wegner and Raschke, 1994; 

Maathuis and Sanders, 1995; White and Lemtiri-Chlieh, 1995; Bregante et al., 1997; 

White, 1997; White and Broadley, 2000). The KORCs are also permeable to Cs+ and 

are relatively insensitive to inhibition by extracellular Cs+ (Maathuis and Sanders, 1995; 

Roberts and Tester, 1995, 1997; White and Lemtiri-Chlieh, 1995; Vogelzang and Prins, 

1995; White, 1997; Gaymard et al., 1998), although there is evidence that KORCs are 

inhibited by cytoplasmic Cs+ in a voltage-dependent manner (Maathuis and Sanders, 

1995). 

Caesium-permeable VICCs in the plasma membrane of root cells have been 

characterized using a variety of electrophysiological techniques. These channels are a 

subset of the non-specific cation channels (NSCCs; Demidchik et al., 2002b; 

Demidchik and Maathuis, 2007). They were first observed as a ‘leak conductance’ in 

the plasma membrane of green algae (Yurin et al., 1991; Demidchik et al., 1997). Their 

counterparts in higher plants were initially characterized following incorporation of 

plasma membrane vesicles from rye roots into artificial planar lipid bilayers (White and 

Tester, 1992) and their presence was subsequently confirmed in protoplasts from rye 

roots (White and Lemtiri-Chlieh, 1995). Since then they have been observed in plasma 

membrane fractions from wheat roots (Davenport and Tester, 2000; White, 2005) and 

appear to be ubiquitous in protoplasts from plant roots (White, 1997, 1999; Roberts and 

Tester, 1997; Buschmann et al., 2000; Maathuis and Sanders, 2001; Demidchik and 

Tester, 2002; Demidchik et al., 2002a,b; Volkov and Amtmann, 2006; Demidchik and 

Maathuis, 2007). It is thought that VICCs are encoded by members of the cyclic-

nucleotide gated channel (CNGC) and glutamate receptor (GLR) gene families 

(White and Broadley, 2000; Davenport, 2002; Demidchik et al., 2002b; White et al., 

2002, 2004; Talke et al., 2003; Hampton et al., 2005; Demidchik and Maathuis, 2007; 

Kaplan et al., 2007; Roy et al., 2008), most of which are expressed in roots (Table 

1.1). Direct evidence that AtCNGCs and AtGLRs transport Cs+ is scarce. However, 

both AtCNGC2 and AtCNGC4 mediated cyclic-nucleotide-dependent Cs+ influx when 

expressed in oocytes (Leng et al., 2002; Balagué et al., 2003), the expression of 

AtCNGC10 in Escherichia coli LB650 (ΔtrkH, ΔtrkG) resulted in Cs toxicity (Li et al., 
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2005), and the addition of cAMP to inside-out membrane patches from protoplasts of 

Arabidopsis root cells reduced the activity of VICCs permeable to Cs+ (Maathuis and 

Sanders, 2001). Similarly, AtGLR3.4 mediated Cs+ influx when expressed in oocytes 

(Meyerhoff et al., 2005) and glutamate-activated, voltage-independent Cs+ currents 

sensitive to quinine, La3+ and Gd3+ have been recorded in protoplasts from Arabidopsis 

root cells (Demidchik et al., 2002b, 2004). This pharmacological profile is consistent 

with that of GLR-mediated phenomena in plants (White et al., 2002). 

Although NORCs transport Cs+ (Wegner and Raschke, 1994) they are unlikely 

to contribute significantly to Cs+ efflux across the plasma membrane, since they open 

only at extremely positive membrane potentials and unphysiologically high cytosolic 

Ca2+ concentrations (Wegner and Raschke, 1994; White, 1997; Wegner and De Boer, 

1997). Similarly, although DACCs are permeable to Cs+ (White, 2000, 2005; White et 

al., 2002), it is thought that the Ca2+ concentrations found in the rhizosphere will 

prevent Cs+ permeating these channels (White and Broadley, 2000). No genes encoding 

DACCs are known for certain. One candidate in some plant species appears to be TPC1 

(Hashimoto et al., 2005), although AtTPC1 is present in the tonoplast of Arabidopsis 

(Peiter et al., 2005; Ranf et al., 2008; Gradogna et al., 2009). Several HACCs have been 

recorded in the plasma membrane of root cells (White, 2000; Demidchik et al., 2002a, 

2007; White et al., 2002; Foreman et al., 2003; Miedema et al., 2008). The HACCs are 

thought to be encoded by members of the annexin gene family, all of which are 

expressed in roots (Clark et al., 2001; White et al., 2002; Mortimer et al., 2008). The 

permeability to Cs+ of neither HACCs nor annexins appears to have been confirmed. 

However, a Cs+-permeable, hyperpolarisation-activated NSCC activated by reactive 

oxygen species has been observed in the plasma membrane of protoplasts of 

Arabidopsis root cells (Demidchik et al., 2003). 

The 'high-affinity' K+/H+ symporters present in the plasma membrane of root 

cells are encoded by members of the KUP gene family (Table 1.1). These 

transporters augment K+ uptake by roots of K-starved plants (Zimmermann and 

Chérel, 2005; Amtmann et al., 2006; Gierth et al., 2005; Ashley et al., 2006; Rodríguez-

Navarro and Rubio, 2006; Gierth and Mäser, 2007; Grabov, 2007). In Arabidopsis, 

most genes encoding AtKUPs are expressed in roots, with AtHAK5 and, 

occasionally, AtKUP3 being induced by K starvation (Kim et al., 1998; Maathuis et 

al., 2003; Ahn et al., 2004; Armengaud et al., 2004; Hampton et al., 2004, 2005; Shin 

and Schachtman, 2004; Gierth et al., 2005; Zimmermann and Chérel, 2005; Qi et al., 



 7

2008). Although the membrane locations of most KUPs are unknown, it has been 

observed that AtHAK5 is present in the plasma membrane of root cells (Qi et al., 

2008). Plant KUPs are expected to transport Cs+, as do their homologues from fungi 

and bacteria (White and Broadley, 2000), but this has rarely been tested. However, 

the expression of a modified AtHAK5, with a leucine changed to a histidine at 

position 776, in a mutant yeast strain (CY162: Δtrk1,Δtrk2) with reduced K+ uptake 

allows it to accumulate both K+ and Cs+ (Rubio et al., 2000; Qi et al., 2008), and Cs 

uptake and accumulation by Arabidopsis parallels the expression of AtHAK5 

(Hampton et al., 2004; Qi et al., 2008). Similarly, heterologous expression of barley, 

rice or pepper orthologs of AtHAK5 (HvHAK1, OsHAK1, CaHAK1) promotes Cs+ 

uptake in yeast, and their expression in roots of K-starved plants is correlated with 

increased high-affinity Cs+ uptake (Santa-María et al., 1997; Rubio et al., 2000; 

Bañuelos et al., 2002; Martínez-Cordero et al., 2005). It has been shown recently, that 

AtKUP/HAK/KT9 expressed in a K transport-deficient mutant of E. coli mediated 

Cs+ uptake (Kobayashi et al., 2010). The ‘high-affinity’ K+/H+ symporters are 

characteristically inhibited by NH4
+ (Spalding et al., 1999; Santa-María et al., 2000; 

Bañuelos et al., 2002; Martínez-Cordero et al., 2005; Nieves-Cordones et al., 2007; 

Fulgenzi et al., 2008; Qi et al., 2008), and monovalent cations compete for transport 

sites (White and Broadley, 2000). 

Caesium influx to the vacuole is likely to be catalysed by cation/H+ antiporters, 

whereas Cs+ release from vacuoles probably occurs through Cs+-permeable cation 

channels. Members of the CPA cation/H+ antiporter family, which in Arabidopsis 

comprises eight AtNHX genes, 28 AtCHX genes, six AtKEA genes and two AtNHD 

genes resembling NhaD, are likely to catalyse Cs+ transport into vacuoles of root 

cells, although this has not been proven (Sze et al., 2004; Zimmermann and Chérel, 

2005; Ashley et al., 2006; Pardo et al., 2006; Gierth and Mäser, 2007). In 

Arabidopsis, AtNHX1, AtNHX2, AtNHX3, AtNHX4 and AtNHX5 have been 

located in the tonoplast of root cells (Aharon et al., 2003; Sze et al., 2004; Pardo et 

al., 2006), AtCHX17 is located in the endomembranes of epidermal and cortical cells 

of the mature root and its expression is upregulated by K-starvation (Cellier et al., 

2004; Sze et al., 2004; Pardo et al., 2006), AtCHX20 is located in endomembranes of 

the root cap (Padmanaban et al., 2007), and AtKEA1 is also expressed in roots (Sze et 

al., 2004). Indirect assays based on the ability of cations to dissipate a pH gradient 

held in liposomes containing AtNHX1, which is found in the tonoplast of root cells, 
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or LeNHX2, an ortholog of AtNHX5 that is present in Golgi and pre-vacuolar 

compartments of tomato roots, suggest that these proteins transport Cs+ but at lower 

rates than K+ (Venema et al., 2002, 2003).  

The electrical activities of several distinct Cs+-permeable cation channels 

have been recorded in vacuoles from root cells, of which the two most frequently 

observed are the tonoplast SV and FV channels (Lebaudy et al., 2007; Pottosin and 

Schönknecht, 2007). The gene encoding the Arabidopsis SV channel appears to be 

AtTPC1 (Peiter et al., 2005; Ranf et al., 2008; Gradogna et al., 2009), but an 

intracellular location of AtTPC1 orthologs is not observed in all plant species 

(Hashimoto et al., 2005). The SV channel has a significant permeability to Cs+ 

(White, 2000). The genetic identity of the FV channel is not yet known (Demidchik 

and Maathuis, 2007). It is possible that Cs+ fluxes across the tonoplast might be 

mediated by cation channels encoded by members of the tandem pore K+ channel 

(TPK/KCO) and Kir-like (KCO3) gene families (Véry and Sentenac, 2003; 

Zimmermann and Chérel, 2005; Lebaudy et al., 2007). In Arabidopsis, AtTPK1, 

AtTPK2, AtTPK3 (=AtKCO6), AtTPK5 and AtKCO3 are all expressed in roots and 

located at the tonoplast (Schönknecht et al., 2002; Zimmermann and Chérel, 2005; 

Voelker et al., 2006; Latz et al., 2007). However, AtTPK1 appears to encode a 

channel that has little permeability to Cs+ and resembles the K+-selective, VK 

channel (Bihler et al., 2005; Gobert et al., 2007; Latz et al., 2007; Lebaudy et al., 

2007). Intriguingly, some KUPs, such as OsHAK5, are also found in the tonoplast 

(Bañuelos et al., 2002), and it has been suggested that these cation/H+ symporters 

might catalyse the efflux of monovalent cations from the vacuole (Rodríguez-

Navarro and Rubio, 2006). 
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1.1.4 Molecular mechanisms for Cs uptake by roots of non mycorrhizal plants 

 

1.1.4.1 K-replete plants 

The kinetic parameters of proteins able to transport Cs+ across the plasma 

membrane have been incorporated into a theoretical model to predict their 

contributions to Cs+ influx to a stereotypical root cell (White and Broadley, 2000; 

Hampton et al., 2005). This model suggests that, under K-replete conditions, (i) Cs+ 

influx through KIRCs is negligible, (ii) VICCs mediate most (30 to 90%) Cs+ influx, 

with KUPs mediating the remainder, and (iii) KORCs load Cs+ into the xylem. These 

predictions have been tested using Arabidopsis. First, the pharmacology of Cs+ influx 

to roots of intact Arabidopsis was compared with that of transport proteins that could 

mediate Cs+ influx (White and Broadley, 2000; Broadley et al., 2001; Hampton et al., 

2004; Qi et al., 2008). Second, Cs accumulation by mutants lacking specific transport 

proteins was assayed, with the expectation that mutants lacking transport proteins 

mediating Cs+ influx to roots would have reduced Cs+ uptake and shoot Cs 

concentrations (Broadley et al., 2001; White et al., 2004; Hampton et al., 2005; Qi et 

al., 2008). Third, genetic loci impacting on Cs+ accumulation in K-replete plants 

were identified (Payne et al., 2004; Kanter et al., 2010). 

The prediction that VICCs catalyse significant Cs+ influx to root cells is 

supported by the observation that both VICCs and Cs+ uptake by roots of K-replete 

plants, are partially inhibited by submillimolar concentrations of Gd3+, La3+, Ba2+, 

Mg2+ and Ca2+, but not by tetraethylammonium (TEA+) or 10 μM Br-cAMP (White 

and Lemtiri-Chlieh, 1995; White, 1997, 1999; White and Broadley, 2000; Broadley et 

al., 2001; Demidchik et al., 2002a,b; Hampton et al., 2004, 2005; Volkov and 

Amtmann, 2006). The prediction, that Cs+ influx to root cells through KIRCs is 

negligible, is supported by the observations that both Cs+ influx to roots and shoot Cs 

concentrations of Arabidopsis lacking AtAKT1 are often greater that those of wild-

type plants (Broadley et al., 2001; White et al., 2004; Qi et al., 2008). Two 

explanations for the increased Cs uptake in akt1 mutants have been suggested: (a) 

that the expression of genes encoding Cs+-permeable transporters contributing to 

cellular K-homeostasis, such as AtHAK5, are upregulated in plants lacking AtAKT1, 

which is consistent with transcriptional analyses of akt1 mutants (Zimmerman and 

Chérel, 2005; Qi et al., 2008), and (b) that the loss of AtAKT1 results in a more 
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negative cell membrane potential and, thereby, increases the activity of other Cs+-

permeable transporters (White et al., 2004).  

Evidence that AtCNGCs underlie the VICC-mediated Cs+ influx to roots of K-

replete plants is based on measurements of Cs accumulation by Arabidopsis mutants 

lacking individual AtCNGCs. However, although some Arabidopsis mutants lacking 

AtCNGCs, such as cngc2, cngc3, cngc16, cngc19 and cngc20, have lower shoot Cs 

concentrations than wild-type plants, mutants lacking other AtCNGCs, such as 

cngc1, cngc9, cngc10 and cngc12, have greater shoot Cs concentrations than wild-

type plants (White et al., 2004; Hampton et al., 2005). Again, it has been suggested 

that increased Cs accumulation in Arabidopsis mutants lacking particular AtCNGCs 

is a consequence of functional compensation in gene expression (White et al., 2004; 

Hampton et al., 2005). Thus, the expression of genes encoding plasma membrane K+ 

transporters might be altered to compensate for the absence of AtCNGCs that 

contribute significantly to cellular K homeostasis and/or the expression of genes 

encoding Ca2+ transporters might be altered to compensate for the absence of 

AtCNGCs that contribute to cytoplasmic Ca2+-homeostasis or intracellular Ca2+ 

signalling (White et al., 2004; Hampton et al., 2005). This hypothesis is consistent 

with the upregulation of genes encoding AtKUPs in the cngc4 mutant (Hampton, 

2005), and the observation that a greater fraction of Cs+ influx to roots of cngc1 and 

cngc4 mutants is inhibited by extracellular NH4
+ than in wild-type plants (Hampton 

et al., 2005). Interestingly, only the lack of AtCNGC1 decreased shoot K 

concentration significantly, which may attest to functional compensation by other K+ 

transport proteins to maintain K+ homeostasis in mutants lacking other AtCNGCs, 

and shoot Ca concentration was not affected by the absence of any AtCNGC 

(Hampton et al., 2005). Arabidopsis mutants lacking AtHAK5 (hak5-1, hak5-2) or 

AtKUP4 (trh1), and Arabidopsis mutants with aberrant AtKUP2 activity (shy3.1), 

have lower shoot Cs concentrations than wild-type plants (White et al., 2004; Qi et 

al., 2008). This is consistent with the prediction that KUPs catalyse Cs+ influx to root 

cells. The prediction that Cs+ is delivered to the xylem by a KORC, AtSKOR, is 

supported by the observation that shoot Cs concentrations are generally reduced in 

the skor mutant (White et al., 2004). 

When the Ler x Col genetic mapping population of Arabidopsis was grown 

on agar containing subtoxic levels of Cs, four chromosomal loci (QTL) impacting on 

shoot Cs concentration were identified, accounting for >80% of the genetic 
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contribution to the trait variation (Payne et al., 2004). These QTL were located on 

Chromosomes I, II, IV and V. Significantly, the QTL on the top of Chromosomes I 

and V co-localised with QTL impacting shoot Cs concentration in the Ler x CVI 

genetic mapping population of Arabidopsis (Payne et al., 2004). A cursory glance at 

these chromosomal regions reveals the presence of genes encoding putative Cs+ 

transporters. For example, genes encoding a putative plasma membrane K+ channel 

(AtTPK4) on Chromosome I and a putative plasma membrane VICC (AtGLR3.1) on 

Chromosome II are found within a genomic region of 100,000 bp (c. 25 genes) on 

either side of the marker where a significant allelic effect on shoot Cs concentration 

was observed in the Ler x Col population (Payne et al., 2004). Using an F2 

population of the accessions Sorbo and Sq-1 from A. thaliana QTL impacting on 

shoot Cs concentration on chromosomes I and V were identified (Kanter et al., 

2010). Genes encoding putative Cs+ transport proteins (AtCHX16 on chromosome I 

and AtCNGC1 on chromosome V) lay within QTL peaks (Kanter et al., 2010). The 

alleles of AtCNGC1 of the accessions Sorbo and Sq-1 show polymorphism because 

they differ in five amino acids. Sequencing of the top ten accessions with high and 

low Cs+ concentrations revealed that six high accumulating accessions and one low 

accumulating accession had the high accumulator Sorbo-type CNGC1 allele (Kanter 

et al., 2010). The authors concluded that these results gave independent support for 

the involvement of CNGC1 in Cs+ accumulation but other genes must play important 

roles too (Kanter et al., 2010). 

 

1.1.4.2 K-starved plants 

The intrinsic cationic selectivity of KIRCs, KUPs and VICCs differs (Table 

1.1), and the fluxes of Cs+ and K+ that they catalyse are influenced uniquely by both the 

absolute and relative concentrations of these cations in the rhizosphere (White and 

Broadley, 2000). The expression of genes encoding these transporters is also affected 

differently by plant K status (Table 1.1). White et al. (2004) suggested that these 

phenomena could account for: (i) the lack of correlation between the shoot Cs:K ratio 

and the Cs+:K+ ratio in the soil solution when plants were grown in media with 

contrasting K+ concentrations (Cline and Hungate, 1960; Smolders et al., 1996a,b), (ii) 

differences in the relative uptake of Cs+ and K+ by plants of different K-status (e.g. Qi 

et al., 2008) and (iii) increased Cs+ uptake and accumulation by K-starved plants (e.g. 

Zhu and Smolders, 2000; Hampton et al., 2004; Qi et al., 2008). 
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In Arabidopsis, K-starvation, but not Cs-toxicity, increases the expression of 

AtHAK5, occasionally AtKUP3, and both AtGLR1.2 and AtGLR1.3 in roots (Kim et 

al., 1998; Maathuis et al., 2003; Ahn et al., 2004; Armengaud et al., 2004; Hampton 

et al., 2004, 2005; Shin and Schachtman, 2004; Gierth et al., 2005; Cao et al., 2008; 

Qi et al., 2008). Potassium starvation also reduces the expression of AtSKOR 

(Maathuis et al., 2003; Pilot et al., 2003), but rarely affects the expression of genes 

encoding KIRCs, CNGCs or TPK/KCOs in Arabidopsis roots (Maathuis et al., 2003; 

Pilot et al., 2003; Hampton et al., 2004, 2005; Shin and Schachtman, 2004; White et 

al., 2004; Zimmermann and Chérel, 2005). The increased expression of AtKUPs, and 

in particular AtHAK5, results in an increased capacity for Cs+ uptake, and changes in 

the pharmacology of Cs+ uptake by roots of K-starved plants (Hampton et al., 2004, 

2005; Qi et al., 2008). The fraction of Cs+ uptake inhibited by NH4
+ is greater in K-

starved Arabidopsis than in K-replete Arabidopsis, which is consistent with the 

pharmacology of KUPs (Bañuelos et al., 2002; Martínez-Cordero et al., 2005; 

Nieves-Cordones et al., 2007; Fulgenzi et al., 2008; Qi et al., 2008) and the 

hypothesis that AtKUPs mediate more Cs+ influx to roots of K-starved plants 

(Hampton et al., 2004, 2005; Qi et al., 2008). Thus, during K-starvation, K+ uptake 

by Arabidopsis roots changes from being dominated by AtAKT1 to being dominated 

by AtHAK5, whilst Cs+ uptake changes from being dominated by VICCs to being 

dominated by AtHAK5. This results not only in greater Cs accumulation, but also in 

a greater Cs/K quotient, in tissues of K-starved plants. 

 

1.2 ARBUSCULAR MYCORRHIZA AND THEIR INFLUENCE ON 

CAESIUM ACCUMULATION BY PLANTS 

 

1.2.1 Arbuscular mycorrhiza 

Arbuscular mycorrhiza (AM) is a symbiosis between a wide range of host 

plants and obligate symbiotic fungi. Arbuscular mycorrhiza is the most common 

form of mycorrhiza and is developed by members of most families of angiosperms 

and gymnosperms as well as sporophytes of Pteridophyta and Lycopodiophyta 

(Smith and Read, 2008). Some free-living gametophytes of Pteridophyta and of 

Marchantiophyta are also known to form AM symbioses (Bonfante and Genre, 2008; 

Smith and Read, 2008). Although AM are mainly found in herbaceous species they 

are also found in tree species. An analysis of mycorrhizal literature with data of 336 
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plant families revealed that AM occurs in 74% of all angiosperm species and 8% of 

the angiosperms belong to families that have both AM and non mycorrhizal species 

(Brundrett, 2009). Angiosperm families that contain mainly non mycorrhizal plants 

are Amaranthaceae, Brassicaceae, Capparaceae, Caryophyllaceae, Chenopodiaceae, 

Cyperaceae, Molluginaceae, Papaveraceae, Polygonaceae, Portulacaceae, Urticaceae 

and Zygophyllaceae (Smith and Read, 2008; Brundrett, 2009). Arbuscular 

mycorrhiza can be found in nearly all ecosystems including deserts and tropical 

rainforest (Strack et al., 2003; Smith and Read, 2008). The fungi forming AM belong 

to the monophyletic phylum of Glomeromycota and probably diverged from the 

same common ancestor as Ascomycota and Basidiomycota (Schüßler et al., 2001). 

Glomeromycota are haploid, asexual fungi that reproduce clonally (Harrison, 1999; 

Bonfante and Genre, 2008; Smith and Read, 2008). Anastomosis of coenocytic 

hyphae allows the exchange of nuclei, but has not been observed between different 

geographic isolates of the same species or between different species (Parniske, 2008; 

Smith and Read, 2008). Glomeromycota are multinucleate and contain between 700 

and 35000 nuclei per spore (Hosny et al., 1998). Around 150 Glomeromycota species 

have been described (Schüßler et al., 2001) but high variability in genetic 

composition within and between spores of a single fungal species exist (Harrison, 

1999; Smith and Read, 2008). Arbuscular mycorrhiza probably evolved around 400–

460 million years ago and played a crucial role in the colonisation of land by plants 

(Pirozynski and Malloch, 1975; Redecker et al., 2000). A wide range of plant and 

fungus combinations exist (Smith and Read, 2008). Klironomos (2000) tested several 

plant and fungal combinations for compatibility and concluded that AM fungi are not 

host specific. However, many fungal species cannot be successfully raised in pot 

cultures, possibly because the appropriate host plant species or environmental 

requirements have not been met (Smith and Read, 2008) and host preferences seem 

to play an important role in natural ecosystems (Parniske, 2008). 

Arbuscular mycorrhizal fungi can colonise roots via hyphae, via infected root 

fragments or via spores (Requena et al., 2007; Smith and Read, 2008). Infection via 

an existing symbiosis seems to be the main method of colonisation in most habitats 

(Smith and Read, 2008). However, infection via spores also occurs frequently. Under 

appropriate soil conditions of hydration and temperature, fungal spores germinate 

even if no host plant is present. Limited hyphal growth occurs for two to three weeks 

and several nuclei move into the developing hyphae. If no host root is found, hyphal 
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growth stops after two to four weeks and most of the cytoplasm of the hyphae 

including nuclei is retracted into the spore (Bécard et al., 2004; Requena et al., 2007; 

Smith and Read, 2008). It has been demonstrated that spores of Gigaspora gigantea 

can germinate up to nine times in the absence of a host plant (Koske, 1981). If a host 

plant is present increased hyphal growth occurs. The development of the AM 

symbiosis requires an exchange of signalling molecules between plant and fungus 

(Figure 1.2). Plant roots produce ‘branching factors’ that induce fungal genes 

involved in mitochondrial activity and branching of hyphae (Bécard et al., 2004; 

Parniske, 2008; Smith and Read, 2008). Some of these compounds have recently 

been identified as strigolactones (Besserer et al., 2006; Gianinazzi-Pearson et al., 

2006; Reinhardt, 2007; Requena et al., 2007; Parniske, 2008). These precolonisation 

events depend on plant phosphorus (P) status. Exudates from plants of low P status 

stimulate hyphal growth and branching whereas exudates from plants of high P status 

reduce stimulation of spore germination and hyphal growth (Vierheilig, 2004). 

Flavonoid levels have been proposed to be responsible for the different responses. At 

high P levels, alfalfa (Medicago sativa) accumulated medicarpin that has been 

reported to inhibit germination and hyphal growth (Guenuone et al., 2001; 

Vierheilig, 2004). As response to plant root exudates, the fungus produces Myc 

factors that trigger host gene expression (Bécard et al., 2004; Parniske, 2008). 

Certain elements of the signal transduction are common to both AM and rhizobial 

symbioses (Parniske, 2008; Smith and Read, 2008). Myc factors seem to be similar 

to Nod factors which are involved in the development of the rhizobial symbiosis in 

legumes (Imaizumi-Anraku et al., 2005; Gianinazzi-Pearson et al., 2006).  
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Figure 1.2: Model of early stages of the development of the arbuscular mycorrhizal 
symbiosis. The host root produces ‘branching factors’ [1] which trigger growth and 
branching of AM fungal hyphae. Fungal metabolism is activated [2] and the AM 
fungus produces Myc factors [3]. These factors lead to the activation of root gene 
expression necessary for the development of the symbiosis [4] (Bécard et al., 2004). 
Reproduced with permission © 2008 NRC Canada or its licensors. 
 

When a fungal hypha comes in contact with a host root an appressorium is 

formed (Smith and Read, 2008). Appressoria of AM fungi are inflated multinucleate 

structures which vary in shape and size depending on the fungal species (Giovannetti 

et al., 1993). Appressoria formation requires topographical and biochemical signals 

(Bécard et al., 2004) which lie within the epidermal cell wall (Harrison, 1999; Smith 

and Read, 2008). Appressoria are only formed on roots of host plants (Giovannetti et 

al., 1993; Harrison, 1997, 1999; Smith and Read, 2008). Arbuscular mycorrhizal 

fungi produce cell wall degrading enzymes, which might help penetrating the host 

cell wall (Harrison, 1999). After the formation of an appressorium by the fungus, the 

plant cell produces a prepenetration apparatus (PPA) due to chemical or mechanical 

stimulation (Genre et al., 2005; Bonfante and Genre, 2008). Nuclear migration is 

initiated from a position directly below the appressorium and the nucleus migrates 

across the epidermal cell creating a column of cytoplasm (Figure 1.3). The column 

defines the future path taken by the infection hyphae (Genre et al., 2005; Bonfante 

and Genre, 2008). Arbuscular mycorrhizal fungi generally colonise cortical cells but 

do not colonise the vascular system or root meristems (Smith and Read, 2008). 
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Figure 1.3: Model of the formation of a prepenetration apparatus (PPA) in a plant 
root. At contact of a fungal appressorium (hyphopodium) on a root cell, the cell 
forms a PPA by nuclear migration. The PPA is lined with endoplasmic reticulum 
cisternae and the fungal hypha follows the PPA column through the plant cell 
(Parniske, 2008). Reproduced with permission © 2008 Macmillan Publishers Ltd: 
NATURE REVIEWS Microbiology. 
 

Two main morphological growth patterns of AM occur, the Arum- and Paris-

type mycorrhiza (Harrison, 1999; Smith and Read, 2008). In the Arum-type of 

association, the fungus grows relatively rapidly by intercellular hyphae into the root 

cortex. In the root cortex, short side branches of the hyphae penetrate the plant cells 

and produce highly branched arbuscules (Smith and Read, 2008). In the Paris-type 

of association, the fungus colonises cortical cells by extensive development of 

intracellular coiled hyphae which sometimes develop arbuscule-like branches. The 

coiled hyphae spread directly from cell to cell and hardly any intercellular growth 

occurs (Smith and Read, 2008). The Arum-type has long been regarded as the most 

common type of association but recent studies have shown that the Paris-type is also 

very common (Smith and Read, 2008). However, most research has focused on 

Arum-type mycorrhiza. In the Arum-type of association, when a fungal hypha 

penetrates a cortical cell it branches heavily to form an arbuscule and the fungal cell 

wall becomes thinner (Bonfante and Peretto, 1995; Smith and Read, 2008). The 

plasma membranes of fungal and plant cells remain intact. The plant plasma 
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membrane invaginates and undergoes changes to become the periarbuscular 

membrane. Pumplin and Harrison (2009) used two marker protein fusions, MtPt4- 

green fluorescent protein (GFP) and GFP-MtBcp1, to investigate the protein 

composition of the periarbuscular membrane in Medicago truncatula roots. The 

protein MtPt4 is a mycorrhiza specific plant phosphate transporter (Harrison et al., 

2002) whereas MtBcp1 is a mycorrhiza specific predicted 

glycosylphosphatidylinositol-anchored blue copper-binding protein from plants 

(Valot et al., 2006). It was demonstrated that the MtPt4-GFP marker was expressed 

exclusively in the periarbuscular membrane around hyphal branches whereas the 

GFP-MtBcp1 marker was expressed in the plasma membrane of cortical cells 

containing arbuscules and in the periarbuscular membrane surrounding arbuscule 

trunks but not branches (Pumplin and Harrison, 2009). The expression pattern 

suggests that the modification to the periarbuscular membrane may not occur until 

the arbuscule develops branches (Pumplin and Harrison, 2009). The apoplastic space 

between fungal and plant cell is called the periarbuscular space. The periarbuscular 

space contains components of the primary plant cell wall, but these do not assemble 

(Harrison, 1997; Peterson and Massicotte, 2004; Parniske, 2008).  

The plant cell containing arbuscules undergoes several modifications. The 

vacuole decreases in size and becomes fragmented, the cytoplasm increases in 

volume, cell organelles proliferate, and the nucleus migrates to the centre of the cell 

and increases in size (Alexander et al., 1989; Smith and Smith, 1990; Gianinazzi-

Pearson, 1996; Harrison, 1997, 1999; Strack et al., 2003; Reinhardt, 2007; Smith and 

Read, 2008). The increase in nucleus size is associated with an increase in the 

amount of decondensed chromatin, which indicates greater transcriptional activity 

(Gianinazzi-Pearson, 1996; Smith and Read, 2008). It has recently been shown that 

cells containing young arbuscules contain not only vacuole fragments but also a large 

continuous vacuole that is invaginated during arbuscule development (Pumplin and 

Harrison, 2009). Furthermore, extensive remodelling of the microtubule cytoskeleton 

during arbuscule development occurs (Harrison, 1999; Blancaflor et al., 2001). The 

cortical cells adjacent to those containing arbuscules also reorganise their 

microtubules, suggesting that cortical cells might initiate modification of their 

cytoskeleton before fungal penetration (Blancaflor et al., 2001). Plant and fungal 

membranes associated with young arbuscules show increased ATPase activity (Smith 

and Smith, 1990; Gianinazzi-Pearson et al., 1991; Harrison, 1999) and changes in 
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gene expression that are described in Chapter 6 of this thesis. The lifetime of an 

arbuscule is around seven days in many plant species (Parniske, 2008; Smith and 

Read, 2008). The reason is unknown but it has been suggested that the lifetime of an 

arbuscule depends on the ability to deliver P, and possibly other nutrients, to the 

plant cell (Parniske, 2008). In mature mycorrhiza, AM fungi sometimes develop 

vesicles that are presumed to act as storage organs (Smith and Read, 2008). After 

successful colonisation, the AM fungus starts to produce extraradical mycelium. This 

mycelium explores the soil in search of nutrients and other plant hosts for 

colonisation. The extraradical mycelium of AM fungi also produces spores (Dodd, 

1994; Harrison, 1999; Bago, 2000; Requena et al., 2007; Smith and Read, 2008). 

To date, most plant mutants unable to form AM are legumes. Arbuscular 

mycorrhiza defective mutants have been identified in Pisum sativum, Vicia faba, 

Medicago truncatula, M. sativa, Lotus japonicus, Glycine max and Phaseolus 

vulgaris (Smith and Read, 2008). These AM defective mutants have been classified 

in two groups. In myc-1 (or pen-) mutants fungal appressorium formation is blocked 

at an early stage and the root epidermis is not penetrated (Duc et al., 1989; Gollotte 

et al., 1993; David-Schwartz et al., 2001; Smith and Read, 2008). In peas, the myc-1 

mutation occurs from a single gene mutation and results in cell wall modifications 

with deposition of β-1,3-glucans underneath the appressoria (Golotte et al., 1993). In 

myc-2 (or ard-) mutants root penetration and growth of intercellular hyphae occurs 

but the mycorrhizal development is stopped before arbuscule formation (Gianinazzi-

Pearson, 1996; David-Schwartz et al., 2001; Smith and Read, 2008). A myc- mutant 

of tomato has been described which can be infected via extraradical hyphae from a 

symbiosis with a wild-type tomato and develop arbuscules, but cannot be infected by 

fungal spores (David-Schwartz et al., 2001). 

 

1.2.2 Functions of the arbuscular mycorrhizal symbiosis 

Extraradical hyphae of AM fungi are not able to absorb hexoses from the soil 

(Bago et al., 2002) and, as obligate symbionts, the fitness of AM fungi depends 

entirely on carbon (C) supplied by their plant hosts (Jakobsen et al., 2002; Smith and 

Read, 2008). Up to 4–20% of photosynthetically synthesised C is delivered by plants 

to their fungal partner (Jakobsen et al., 2002; Parniske et al., 2008; Smith and Read, 

2008). The intraradical mycelium takes up glucose or fructose and the fungus rapidly 

converts these to trehalose and glycogen. Storage lipids are also synthesised within 
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the intraradical mycelium, and these lipids and smaller amounts of glycogen are 

transported to the extraradical mycelium of the fungus (Bago et al., 2000, 2002; 

Pfeffer et al., 2001). The specific location of hexose uptake by the fungus is not yet 

clear. Uptake could occur from the periarbuscular space or via the intercellular 

hyphae, where hexoses would be taken up from the apoplast (Fitter, 2006; Smith and 

Read, 2008). Uptake into fungal cells could be passive, following a concentration 

gradient developed by the rapid conversion of hexoses by the fungus, or active, 

mediated by proton gradients created by H+-ATPases (Ferrol et al., 2002; Smith and 

Read, 2008).  

In return for the C supply, the fungi deliver nutrients, especially phosphorus 

(P), to their plant hosts. Inorganic P (Pi, consists of H2PO4
- and HPO4

2- ions) in soil is 

often poorly available for plants (Smith and Read, 2008; White and Hammond, 

2008) and direct uptake of Pi by roots leads to a Pi depletion zone around roots 

(Bucher, 2007; Smith and Read, 2008). The extraradical hyphae of AM fungi are 

able to grow beyond the Pi depletion zone and access Pi that is unavailable to plant 

roots (Jakobsen et al., 1994). Phosphorus is taken up in the form of Pi by AM fungi 

and Pi is incorporated into the cytosolic Pi pool which is kept at a constant 

concentration to maintain various cell functions (Ezawa et al., 2002). If sufficient Pi 

is available, it is converted into polyphosphate (polyP, a linear polymer of variable 

numbers of Pi residues, linked by high energy phosphoanhydride bonds) and both Pi 

and polyP are stored in vacuoles (Ezawa et al., 2002; Smith and Read, 2008). PolyP 

seems to be transported by the tubular vacuolar system to the intraradical mycelium 

(Nielsen et al., 2002; Uetake et al., 2002; Viereck et al., 2004; Smith and Read, 

2008). Within the intraradical mycelium polyP is hydrolysed and Pi is released into 

the periarbuscular space (Viereck et al., 2004; Javot et al., 2007). Plant transporters 

are responsible for Pi uptake from the periarbuscular space (see Chapter 3 of this 

thesis; Smith and Read, 2008).  

The AM fungi also deliver nitrogen to their plant hosts. It was demonstrated 

that Glomus intraradices can take up nitrate (NO3
-) and ammonium (NH4

+) but 

seems to prefer NH4
+ over NO3

- (Johansen et al., 1992). The uptake of organic 

nitrogen in the form of 15N-glycine and 15N-glutamic acid by Glomus mosseae has 

also been shown (Hawkins et al., 2000). Nitrogen compounds are used to synthesise 

arginine in the extraradical mycelium of the AM fungi, which is then transported to 

the intraradical mycelium probably in fungal vacuoles (Jin et al., 2005; Cruz et al., 
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2007). In the intraradical mycelium arginine is broken down to NH4
+ which is then 

released into the periarbuscular space and taken up by the plant hosts (Jin et al., 

2005; Cruz et al., 2007). However, the transfer of N by AM fungi does not 

necessarily lead to greater plant growth (Johansen et al., 1992; Hawkins et al., 2000).  

The AM fungi seem to play a minor role in the acquisition of other major 

nutrients, such as K, but it has been shown that AM fungi can deliver K to their host 

plants. Since accumulation of K can be influenced by ammonium, nitrate and sodium 

as well as by the synthesis of polyphosphates, Smith and Read (2008) suggested that 

these factors must be taken into account when studying K uptake by AM fungi and 

its transport to plants. Micronutrients such as zinc and copper have also been shown 

to be delivered by AM fungi (Smith and Read, 2008).  

Apart from their major role in nutrient transfer, AM fungi provide several 

more benefits to their plant hosts. Arbuscular mycorrhizal fungi can improve the 

drought tolerance of plants (Augé, 2001). Although there is no clear evidence of 

water transport by hyphae, AM fungi typically increase the water use efficiency of 

plants (for review see Augé, 2001). Mycorrhizal plants often show not only increased 

plant size and improved nutritional status but also greater root growth, less wilting, 

increased soil water extraction and a quicker recovery under drought stress (Augé, 

2001; Al-Karaki et al., 2004; Khalvati et al., 2005).  

Arbuscular mycorrhizal fungi have the ability to protect plants from heavy 

metals (HM) by binding HM and reducing the uptake of HM into plants (Joner et al., 

2000; Hildebrandt et al., 2007). Maximum sorption of Cd from solution by Glomus 

mosseae was achieved after 30 min with no additional sorption during six hours of 

incubation indicating non-metabolic binding of Cd to cell walls (Joner et al., 2000). 

It has been demonstrated that AM fungi increase P and K concentrations in plant 

tissues, whilst reducing concentrations of Cd, Cr, Mn, Cu, Mo, Fe and Ni (Vivas et 

al., 2005). Indigenous fungi were more efficient than an introduced fungus in doing 

this (Vivas et al., 2005). Glomalin, a glycoprotein produced by AM fungi, has been 

shown to bind HM (González-Chávez et al., 2004). Due to their potential to 

accumulate HM and decrease HM uptake by plants, AM fungi have been suggested 

to be beneficial for revegetation and for phytoremediation of HM contaminated soils 

(Gaur and Adholeya, 2004; Göhre and Paszkowski, 2006; Turnau et al., 2008).  

Arbuscular mycorrhizal fungi can also protect plants from soil-borne 

pathogens, especially fungi, and can alter host plant susceptibility to insect 
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herbivores (Harrier and Watson, 2003; Whipps, 2004; Gosling et al., 2006). The 

fungi also interact with other soil microorganisms. Mycorrhiza-helper bacteria 

promote AM symbioses by stimulating hyphal growth or by producing compounds 

that enhance the production of plant root exudates thereby indirectly enhancing 

mycorrhizal formation (Barea et al., 2005). Furthermore, AM fungi interact with 

nitrogen fixing bacteria and plant growth promoting bacteria benefiting host plant 

development and nutrition (Harrier and Watson, 2003; Barea et al., 2005; Gosling et 

al., 2006). 

Extraradical hyphae of AM fungi improve soil structure by helping to bind 

soil particles together into stable microaggregates (Miller and Jastrow, 2000; Harrier 

and Watson, 2003; Barea et al., 2005; Bedini et al., 2009). Glomalin is a very stable 

hydrophobic glycoprotein and has been shown to play an important role in stabilising 

soil aggregates and thereby counteracting soil erosion (Miller and Jastrow, 2000; 

Morgan et al., 2005; Bedini et al., 2009). Arbuscular mycorrhizal fungi show high 

functional diversity, and plant growth responses to AM fungi vary widely from 

parasitic to mutualistic (Klironomos, 2003; Jones and Smith, 2004). Klironomos 

(2000) tested several plant and fungi combinations and concluded that AM fungi are 

functionally variable because the fungi had different abilities to improve P uptake or 

to protect the plant against fungal pathogens. Munkvold et al. (2004) showed that 

different Glomus species, and even different isolates of the same species, led to 

differences in shoot dry weights and P content of cucumber plants. The influence of 

AM fungi on the expression of phosphate transporters in plants also varies with 

fungal strain (Burleigh et al., 2002). 

 

1.2.3 Caesium accumulation by mycorrhizal plants 

Because of the role of AM fungi in plant nutrition, it has been suggested that 

they might affect Cs accumulation by plants (Entry et al., 1996). It has been 

demonstrated that AM fungi were able to take up and transport radiocaesium to host 

plants when only the fungi had access to the Cs supply (Declerck et al., 2003; Dupré 

de Boulois et al., 2006). Dupré de Boulois et al. (2006) used an in vitro system where 
134Cs was supplied to the fungal hyphae and showed that 10% of the Cs that was 

taken up by the fungal hyphae was transported to shoots of Medicago truncatula. It 

could be shown that AM fungi can transfer Cs from one plant to another when two 

plants were connected via hyphae of their AM fungal partners (Meding and Zasoski, 
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2008; Gyuricza et al., 2010c). However, Joner et al. (2004) conducted three 

experiments demonstrating that the contribution of AM fungi to transfer of 

radiocaesium from soil to plants was not significant. Joner et al. (2004) used three 

different growth systems where only the fungi had access to the Cs supply. Trifolium 

subterraneum was grown in association with Glomus mosseae BEG 69, Zea mays 

was grown in association with Glomus intraradices BEG 157 and Medicago 

truncatula was grown in association with Glomus intraradices BEG 87 in different 

soil mixtures contaminated with 137Cs or 134Cs (Joner et al., 2004). In all three cases 

the amounts of Cs transported by the AM fungi to their plant hosts were minimal and 

concentrations of Cs in shoots of mycorrhizal plants were not significantly different 

from non mycorrhizal plants (Joner et al., 2004).  

Under field conditions in radiocaesium contaminated areas, not only the 

fungal hyphae but also the plant roots are in contact with the radionuclide. Several 

studies have investigated the influence of AM fungi on Cs accumulation by plants 

(Rogers and Williams, 1986; Dighton and Terry, 1996; Entry et al., 1999; Berreck 

and Haselwandter, 2001; Joner et al., 2004; Rosén et al., 2005; Dubchak et al., 2010; 

Gyuricza et al., 2010b). In these studies, both plant roots and fungal hyphae had 

access to the Cs supply. The influence of AM fungi on Cs concentrations in shoots of 

plants was not consistent (Table 1.2). The inconsistent effects of AM fungi on Cs 

accumulation by their plant symbionts might be explained by a number of factors. 

First, the availability of Cs to organisms depends on the physical and chemical 

properties of the substrate (Entry et al., 1996). Second, both plant and fungal species 

differ in their ability to access different soil Cs pools (Berreck and Haselwandter, 

2001) and plant species differ in their ability to accumulate Cs (see Chapter 2; 

Andersen, 1967; Broadley et al., 1999a). Third, the accumulation of Cs by organisms 

depends on the concentrations of K and Cs in the substrate (Buysse et al., 1996; 

Berreck and Haselwandter, 2001). The experiments listed in Table 1.2 were 

performed using different growth substrates, such as soil (Rogers and Williams, 

1986; Entry et al., 1999; Rosén et al., 2005), sand or sand-sandy loam soil (Berreck 

and Haselwandter, 2001; Joner et al., 2004; Dubchak et al., 2010) or solidified 

growth medium (Gyuricza et al., 2010b). Furthermore, plant and fungal species 

differed, as did the concentrations of K and Cs in the substrate. Another factor that 

could have influenced the results obtained in the studies listed in Table 1.2 is the 

difference in growth periods. The organisms were in contact with Cs for one week 
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(Gyuricza et al., 2010b), four weeks (Joner et al., 2004), or for longer than 16 weeks 

(Entry et al., 1999; Rosén et al., 2005).  

 

Table 1.2: Effects of arbuscular mycorrhizal fungi on Cs accumulation in plant 
shoots. In these studies different plant and fungal species were used, and both plant 
roots and fungal hyphae had access to the Cs supply.  
 
Influence Plant species Fungal species Reference 

decrease Agrostis tenuis Glomus mosseae Berreck and Haselwandter (2001) 
decrease Trifolium repens Soil fungi Dighton and Terry (1996) 
increase Helianthus annuus G. intraradices Dubchak et al. (2010) 

increase Paspalum notatum G. mosseae / G. 
intraradices Entry et al. (1999) 

increase Sorghum halepense G. mosseae / G. 
intraradices Entry et al. (1999) 

increase Panicum virgatum G. mosseae / G. 
intraradices Entry et al. (1999) 

decrease Medicago truncatula G. intraradices Gyuricza et al. (2010b) 
no effect Medicago truncatula G. intraradices Joner et al. (2004) 
increase Melilotus officinalis Glomus species Rogers and Williams (1986) 
no effect Sorghum sudanense Glomus species Rogers and Williams (1986) 
increase Allium porrum Soil fungi Rosén et al. (2005) 
no effect Lolium perenne Soil fungi Rosén et al. (2005) 

 

1.2.4 Arbuscular mycorrhiza in agriculture 

Since many crop plants are mycorrhizal, the potential benefit of AM fungi in 

agriculture has been of widespread interest (Hamel, 1996; Harrier and Watson, 2003; 

Plenchette et al., 2005; Gosling et al., 2006; Smith and Read, 2008; Facelli et al., 

2009). Several agricultural practices in intensive farming, such as fertilisation with P, 

tillage and the application of biocides, have negative effects on the survival of AM 

fungi (Hamel, 1996; Harrier and Watson, 2003; Plenchette et al., 2005; Gosling et 

al., 2006). Therefore, many studies have compared survival of AM, and benefits of 

AM fungi to crop plants, in intensive and low-input farming. High P concentrations 

in soil due to fertilisation lead to lower colonisation rates by AM fungi and lower 

spore numbers (Mäder et al., 2000; Galvez et al., 2001; Harrier and Watson, 2003; 

Kahiluoto et al., 2009). Reduced P fertilisation in low-input farming not only 

promotes survival and growth of AM fungi but also reduces the loss of P to the 

environment (Grant et al., 2005; Kahiluoto et al., 2009). Tillage reduces the survival 

of hyphae, and deep ploughing leads to a transport of spores and infected root 
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fragments to deeper soil layers (McGonigle and Miller, 2000; Kabir, 2005). Plants 

grown in undisturbed soil had higher P concentrations in their shoots than plants 

grown in disturbed soil (McGonigle and Miller, 2000), and spore densities in low-

input systems decreased with soil depths (Oehl et al., 2005). Modern crop varieties 

have been bred for high yields under optimal mineral fertilisation and might 

therefore have become less dependent on AM fungi for their nutrition (Ryan and 

Graham, 2002; Harrier and Watson, 2003; Smith and Read, 2008). The influence of 

non mycorrhizal crops grown prior to mycorrhizal crops on AM formation is very 

complex and does not necessarily influence colonisation rate or yield (Sorensen et 

al., 2005; Vestberg et al., 2005). Despite these adverse influences, AM fungi are still 

able to increase the uptake of essential micronutrients such as zinc, to influence other 

soil biota, and to lead to improved soil structure in agricultural systems 

(Bethlenfalvay and Schüepp, 1994; Ryan and Graham, 2002; Smith and Read, 2008; 

Facelli et al., 2009).  

The influence of agricultural practices on AM fungal diversity has also been 

studied. Spore abundance and species diversity assessed with molecular methods 

showed higher diversity of AM fungi in natural ecosystems and low-input farming 

than in intensive farming (Helgason et al., 1998; Jansa et al., 2002; Oehl et al., 2004, 

2005, 2010; Hijri et al., 2006; Alguacil et al., 2008). Species of the genus Glomus 

seem to be generalists because they are dominant in agricultural soils whereas 

species of the genera Acaulospora and Scutellospora are more abundant in organic 

farming systems and natural ecosystems (Helgason et al., 1998; Jansa et al., 2002; 

Oehl et al., 2004, 2005, 2010; Hijri et al., 2006; Alguacil et al., 2008). However, 

some agricultural soils show high AM fungal diversity and low-input management 

and crop rotation have the potential to preserve AM fungal diversity over the long 

term (Hijri et al., 2006).  

Arbuscular mycorrhizal fungi show differences in their ability to promote 

growth and increase nutrient content of their host plants (Hamel, 1996). Therefore, 

the potential of different AM inocula in agriculture has been studied. Inoculation of 

crop plants with AM fungi can improve mycorrhizal development and reduce the 

requirement for P, but the positive influence depends on inoculum type and P status 

of the soil and does not necessarily lead to improved plant growth (Gazey et al., 

2004; Sorensen et al., 2008). The amount of colonisation of plants by the fungal 

species of the inoculum also depends greatly on the abundance and infectivity of 
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indigenous fungi (Abbott and Robson, 1982; Abbott et al., 1983; Plenchette et al., 

2005). Furthermore, large scale production of AM inocula is difficult and the inocula 

must (1) provide a cocktail of different species that are adapted to different soils, (2) 

have positive effects on plant health, (3) be free of pathogens and agents that could 

negatively influence AM development and (4) have a significant shelf life under 

realistic storage conditions (Marx et al., 2002; Gianinazzi and Vosátka, 2004).  

 

1.3 AIMS  

The overarching aim of the thesis was to obtain a better understanding of the 

influence of arbuscular mycorrhiza on caesium accumulation by plants. The model 

plant Medicago truncatula was grown in symbiosis with Glomus sp. under in vitro 

conditions for most of the experiments performed in this thesis. However, a 

glasshouse experiment was also conducted in which several plant species were 

grown in soil. The aim of this glasshouse experiment was to determine whether 

conclusions from in vitro experiments were consistent with those obtained from 

experiments performed under semi natural conditions. Six different plant species 

(Hordeum vulgare, Beta vulgaris, Brassica napus, Medicago truncatula, Solanum 

tuberosum and Helianthus annuus) were grown in non sterile and sterile soil, and 

caesium concentrations in tissues of mycorrhizal and non mycorrhizal plants were 

measured (Chapter 2). Two hypotheses were tested (1) that plant species show 

genetic variation in caesium accumulation and (2) that arbuscular mycorrhiza reduce 

caesium accumulation in plants. For the in vitro experiments, growth conditions to 

achieve mycorrhizal Medicago truncatula plants were first optimised (Chapter 3). 

Phosphorus concentrations in the media and light intensity were key factors 

influencing mycorrhizal colonisation. Caesium toxicity to Medicago truncatula 

plants was also investigated to determine non toxic caesium concentrations for 

further experiments (Chapter 4). Subsequently, mycorrhizal and non mycorrhizal 

Medicago truncatula plants were grown in the presence or absence of caesium to test 

the hypothesis that arbuscular mycorrhizal fungi reduce caesium accumulation in this 

plant species (Chapter 5). Finally, differences in gene expression in Medicago 

truncatula tissues in response to caesium and to arbuscular mycorrhiza were 

determined using micro arrays (Chapter 6).  
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Chapter 2  

Differences in caesium accumulation among plant species and the 

influence of mycorrhiza on plant caesium accumulation 
 

2.1 INTRODUCTION 

There is considerable variation among plant species in their ability to take up 

caesium (Cs) and accumulate it in their shoots (e.g. Andersen, 1967; Evans and 

Dekker, 1968; Buysse et al., 1996; Broadley and Willey, 1997; Gouthu et al., 1997; 

Broadley et al., 1999a,b; Fuhrmann et al., 2003; White et al., 2003; Willey et al., 

2005; Willey and Tang, 2006; Cook et al., 2007, 2009; Wasserman et al., 2008; Choi 

et al., 2009; Waegeneers et al., 2009). In general, among the angiosperms, monocot 

species (e.g. Liliales, Poales) have lower shoot Cs concentrations than species from 

the eudicot orders Asterales, Brassicales and Caryophyllales (Broadley et al., 1999a; 

White et al., 2003; Willey et al., 2005). This suggests that the abundance or kinetics 

of Cs-transport proteins differ between plant species. In addition, the Cs/K ratios in 

shoots of different plant species grown under identical conditions vary widely 

(Andersen, 1967; White et al., 2004). Since different transport proteins have 

contrasting abilities to discriminate between Cs+ and K+ (Figure 2.1), these varying 

shoot Cs/K ratios suggest that a different complement of transport proteins is present 

in different plant species (White et al., 2004; Hampton et al., 2005; Wiesel et al., 

2008). Shoot Cs concentrations and shoot Cs/K ratios were positively linearly 

correlated among plant species, suggesting that shoot Cs concentrations vary 

independently from shoot K concentrations (Figure 2.2). A plausible explanation for 

this observation is that all plants express constitutively an essential, selective K+ 

transporter, such as the inward-rectifying K+ channel (KIRC) AKT1, but differ in 

their complement of proteins catalysing the non specific uptake (or efflux) of Cs+ and 

K+, such as cyclic nucleotide gated channels (CNGCs, belonging to the family of 

voltage insensitive cation channels (VICCs)) or K+/H+ symporters (KUPs) (White et 

al., 2010). Thus, plants with higher shoot Cs concentrations and shoot Cs/K ratios are 

likely to have higher CNGC:AKT1 and/or KUP:AKT1 expression ratios than plants 

with lower shoot Cs concentrations and shoot Cs/K ratios. 
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Figure 2.1: Cation transport proteins that contribute to Cs+ movement across the 
plasma membrane (White and Broadley, 2000; Hampton et al., 2005). Inward 
rectifying K+ channels (KIRCs), voltage insensitive cation channels (VICCs), K+/H+ 
symporters (KUPs) and voltage dependent Ca2+ channels (DACCs and HACCs) 
facilitate Cs+ influx into root cells, and outward rectifying K+ channels (KORCs and 
NORCs) facilitate Cs+ efflux to the xylem.   
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Figure 2.2: Relationship between Cs concentrations and Cs/K ratios in shoots of 44 
plant species grown on fertilised soil contaminated with 10 µCi carrier-free 137Cs 
(Andersen, 1967). Data for Poaceae (filled circles) and eudicots (open circles) 
species are shown. 
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Due to chemically similarities between K and Cs external K supply 

influences Cs uptake by plants. Fertilisation with K decreases Cs accumulation (Belli 

and Sansone, 1995; Ciuffo et al., 2003; Soudek et al., 2004). Furthermore, the 

greatest differences in Cs accumulation by different plant species occur at the lowest 

external K supply (Buysse et al., 1996). Waegeneers et al. (2001) investigated Cs 

uptake by five plant species on soils that differed in exchangeable K and Cs 

concentrations. They concluded that “High radiocaesium uptake occurs: i) if the 

plant species have a high intrinsic Cs uptake rate at low K concentrations, ii) if the 

species have a high biomass production, resulting in a large depletion of K in the 

bulk soil solution, iii) if the species have a high K uptake rate per unit root surface, 

resulting in a high rhizospheric K depletion”.  

The bioavailability of Cs strongly depends on soil characteristics (Ehlken and 

Kirchner, 2002). Caesium occurs in simple ionic form in soils and it does not 

undergo changes through redox reactions or complexation (Livens and Rimmer, 

1988). However, Cs is strongly bound to clay particles (Coughtrey and Thorne, 

1983) and the sorption of Cs to clay particles is affected by the mineralogy of clay 

minerals (Livens and Rimmer, 1988). Caesium is mobilised from soil sorption sites 

by ammonium (NH4
+) and NH4

+ is a more important mobiliser than K (Konopleva et 

al., 2009). Furthermore, rhizosphere processes influence the bioavailability of Cs. 

Uptake of K by plants from soil leads to potassium depletion in the rhizosphere. 

Reduced availability of K in the rhizosphere increases Cs uptake by plants, and plant 

roots and clay minerals act as competitive sinks for Cs in the rhizosphere (Delvaux et 

al., 2000). 

Micro organisms in the rhizosphere, especially arbuscular mycorrhizal (AM) 

fungi, influence mineral acquisition by plants. Because of the role of AM fungi in 

plant nutrition, it has been suggested that they might affect Cs uptake by plants 

(Entry et al., 1996). However, there is no consistent information about the influence 

of mycorrhiza on Cs accumulation by plants (Table 1.2). Mycorrhizal associations 

could influence plant Cs accumulation directly, by altering the expression of genes 

encoding K-transporters, and/or indirectly by improving plant nutritional status. 

Although the role of AM fungi in K transport is not clear yet, it has been suggested 

that, under acidic soil conditions, AM fungi can improve K accumulation of plants 

(Clark and Zeto, 2000). An improved K status of the plants would lead to a decrease 

in Cs accumulation (Hampton et al., 2004). 
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2.1.1 Aims  

The aim of this chapter was to investigate differences in Cs concentrations in 

roots and shoots of different plant species. Six species belonging to different plant 

families were chosen. A member of the Poaceae representing low accumulating 

Poales, a member of the Brassicaceae representing non mycorrhizal Brassicales, a 

member of the Chenopodiaceae representing high accumulating Caryophyllales and 

three additional eudicot species were selected. All species were arable crop plants 

because Cs enters the human food chain via plants. To assess any differences in Cs 

accumulation due to AM fungi, both mycorrhizal and non mycorrhizal plants were 

studied.  

 

2.2 MATERIAL AND METHODS 

 

2.2.1 Soil treatments 

Caesium accumulation by different plant species, and the influence of 

mycorrhiza on this, was investigated in a pot experiment. Soil was taken from the 

Lower Pilmore field (56°27′08″N, 3°04′45″W), SCRI, Dundee, UK at the end of July 

2008. It was a sandy, brown forest soil which had not been fertilised since 1996 

(Bennett, J., personal communication). Grass had grown on the field for the previous 

three years. The soil was sampled to a depth of 10 cm and therefore represented 

rhizosphere soil. The soil was sieved to 4 mm and half of it was gamma-sterilised 

with a minimum dose of 25 kGy (Isotron plc., Swindon, UK). Four different 

treatments were applied. Non sterile and sterile soils without mycorrhizal inoculum, 

and non sterile and sterile soils with the addition of 10 g mycorrhizal inoculum 

(rootgrowTM, friendly mycorrhizal fungi, Plantworks Ltd, Kent, UK). The pots 

containing 1 kg of soil each were watered before fertilisation with 80 kg ha-1 KNO3 

following the recommendations of RB209 (DEFRA, 2000) to avoid K and N 

limitations for plant growth. It was assumed that micronutrients were sufficient and 

the soil was not fertilised with P to allow for mycorrhizal colonisation of plants. 

Furthermore, 3 mg CsCl per kg soil were added. Therefore, each pot received 10 ml 

solution containing 115.2 mg KNO3 and 3 mg CsCl. 
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2.2.2 Plant material and growth conditions 

Seven plant species were grown: barley (Hordeum vulgare var. Optic; SCRI), 

beetroot (Beta vulgaris, Globe 2; Sutton Seeds, Paignton, UK), Brassica napus 

(SCRI), Medicago truncatula var. truncatula Jemalong A17 (SARDI, Genetic 

Resource Centre, Australia), onion (Allium cepa, Alisa Craig; Sutton Seeds, 

Paignton, UK), potato (Solanum tuberosum var. King Edward; SCRI) and sunflower 

(Helianthus annuus, Irish Eyes; Sutton Seeds, Paignton, UK). For barley, beetroot, 

Brassica, Medicago, onion and sunflower seeds were placed directly in pots and 

potato was grown from tubers. Each pot contained one plant. Ten replicates of each 

plant were grown for each treatment and five replicates of each treated soil without 

plants were maintained. The pots were set using a randomised block design (GenStat, 

10th edition, VSN International Ltd, Hemel Hempstead, UK). All pots were watered 

to weight with distilled water twice a week. The plants were grown in a glasshouse 

under daylight conditions (September–October 2008) without additional light supply 

and the temperature was maintained for twelve hours at 20°C and twelve hours at 

15°C. After six weeks plant roots and shoots, and for potatoes newly developed 

tubers, were harvested, the fresh weights were measured and the material was frozen 

in liquid N2 and stored at -80°C. Due to a very small biomass of all onion plants this 

species was excluded from further analysis. 

 

2.2.3 Determination of mycorrhizal infection 

 

2.2.3.1 Morphological analysis 

Three plants of each species were used to determine mycorrhizal colonisation 

rates. Therefore, roots were harvested and stored in 70% ethanol (EtOH). The root 

samples were cut into 1 cm long pieces and were stained using an ink and vinegar 

technique (Vierheilig et al., 1998). The roots were cleared by boiling in 2.5% 

(wt/vol) KOH for 5 min for potato and sunflower roots, and for 3 min for the other 

root samples. After washing the roots in tap water the roots were stained by boiling 

for 5 min in a 5% ink-acetic acid solution. Black Shaeffer ink (Shaeffer, Ft. Madison, 

Iowa) was used. The stained roots were observed for mycorrhizal infection using an 

Axioplan 2 microscope (Carl Zeiss Ltd, Welwyn Garden City, UK). Photographs 

were taken using an Axiocam HRc camera (Carl Zeiss Ltd, Welwyn Garden City, 

UK).  
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To determine the percentage of mycorrhizal colonisation 200 intersections 

per root sample were checked for the presence or absence of arbuscules, vesicles, 

hyphae or spores. The percentage of mycorrhizal colonisation (% myc) was 

calculated (Equation 2.1). 

% myc = number of colonised intersections / total number of intersections * 100

 [eq. 2.1] 

 

2.2.3.2 Molecular analysis 

Genomic deoxyribonucleic acid (DNA) from roots of barley, beetroot, 

Brassica, Medicago, potato and sunflower plants was extracted with the NucleoSpin 

96 Plant Kit (Macherey-Nagel, Düren, Germany) according to the manufacturer's 

instructions. Root materials were freeze dried (Alpha 1-2 LD plus, SciQuip Ltd., 

Shropshire, UK) and up to 20 mg of freeze dried roots were milled using acid 

washed steel balls (TissueLyser II, Qiagen Ltd., Crawley, UK). Afterwards, 700 μl 

extraction buffer were added. The samples were incubated at 56°C for 30 min and 

subsequently centrifuged at 6000 g for 20 min (4K15C, Sigma Aldrich, St. Louis, 

MO, USA). The supernatant was mixed with 375 μl lysis buffer plus 250 μl ethanol 

and transferred to a binding plate. A spin at 6000 g was followed by adding 500 μl 

wash buffer (CW) to each well. After another spin the flow through was discarded 

and 900 μl wash buffer (C5) was added. The samples were centrifuged at 6000 g for 

up to 15 min to remove all residues of the wash buffer. The DNA was eluted using 

150 μl of pre-warmed elution buffer and stored at -80°C.  

To determine if mycorrhizal DNA was present in the root samples a 

Polymerase Chain Reaction (PCR) using mycorrhiza specific AML primers (AML1: 

ATCAACTTTCGATGGTAGGATAGA; AML2: GAACCCAAACACTTTGGTTTCC; 

Lee et al., 2008) was performed. These primers result in the amplification of a region 

in the SSU rRNA gene of Glomeromycota of approximately 800 bp. The reaction 

solution contained 1.5 μl 10x HiFi buffer (Invitrogen Ltd., Paisley, UK), 0.6 μl of 

both 10 pmol AML1 and AML2 (VH bio Limited, Gateshead, UK), 0.6 μl of MgSO4 

(Invitrogen Ltd., Paisley, UK), 0.3 μl of 12.5 mM dNTP’s (Promega, Southampton, 

UK), 0.3 μl of BSA (20 mg ml-1; Roche Products Limited, Welwyn Garden City, 

UK) and 0.06 μl of Platinum® Taq DNA Polymerase High Fidelity (Invitrogen Ltd., 

Paisley, UK) for 2 μl of template DNA. After activation of the Platinum Taq at 94°C 

the DNA was amplified with 30 cycles of 94°C for 30 sec, 58°C for 40 sec and 68°C 
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for 55 sec. PCR products were separated on a 1% agarose gel and the amplified DNA 

stained using SYBR® Safe DNA gel stain (Invitrogen Ltd., Paisley, UK). A 1 kb 

DNA ladder (Promega, Southampton, UK) was run on the gel to give an estimate of 

product sizes.  

 

2.2.4 Soil characterisation 

Several soil characteristics were analysed. Before the start of the experiment 

untreated soil was collected and at harvest soil samples from each pot were taken and 

stored at 4°C. To resolve the organic matter (OM) content of the soil, soil that had 

been oven dried at 70°C over night was weighed and then incubated at 500°C over 

night. The amount of OM was defined as the amount of dried soil minus the amount 

of soil after combustion at 500°C. The pH of the soil solution was measured by 

adding 20 ml of 0.01 M CaCl2 to 10 g of fresh soil. The samples were stirred and the 

pH measured using a pH meter (MP230, Mettler-Toledo Ltd., Leicester, UK). In 

order to measure nitrogen components and dissolved organic carbon (DOC) KCl 

extraction was carried out. For the extraction 40 ml of 1 M KCl were added to 10 g 

of fresh soil and mixed for 1 h. The solution was cleared using Whatman filter paper 

(diameter 125 mm, pore size 11 μm; VWR International Ltd., Poole, UK). The 

elemental analysis was undertaken using a Skalar SANplus Segmented Flow 

analyser (Skalar Analytical B.V., Breda, The Netherlands). A description of the 

procedure was provided by the company. To measure the amount of DOC in the soil 

extracts, the samples were acidified and then purged with a nitrogen gas stream to 

remove inorganic carbon (Menzel and Vaccaro, 1964). Buffered persulfate and 

hydroxylamine were added and the samples were irradiated in an UV destructor. The 

generated carbon dioxide diffused through a silicone membrane. A weakly buffered 

phenolphthalein indicator solution was used as the recipient stream, and the colour 

intensity of this solution decreased proportionally to the change in pH caused by the 

absorbed carbon dioxide gas. The colour intensity was measured at 550 nm by a 

photometric detector. To determine the amounts of nitrate (NO3
-) and nitrite (NO2

-) 

the sample was passed through a column containing granulated copper-cadmium to 

reduce the NO3
- to NO2

- (Bundy and Meisinger, 1994). The NO2
- was measured by 

diazotizing with sulphanilamide and coupling with α-naphthylethylenediamine 

dihydrochloride to form a highly coloured azo dye which was measured at 540 nm. 

For determination of ammonium (NH4
+) the element was chlorinated to 
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monochloramine which reacts with salicylate to form 5-aminosalicylate (Bundy and 

Meisinger, 1994). After oxidation and oxidative coupling a green coloured complex 

was formed and its absorption was measured at 660 nm. Carbon and nitrogen 

concentrations were determined using a CE-440 Elemental Analyzer (Exeter 

Analytical (UK) Ltd, Coventry, UK). A description of the method (CE-440 Theory 

of Operation) was provided by the company. For each sample 5 mg of soil were 

weighed out and put in tin capsules. The combustion of the soil occurred in pure 

oxygen at a temperature of 975°C. Helium was used to carry the combustion 

products through the analytical system, as well as for purging the system. The 

products of combustion were passed over reagents to assure complete oxidation and 

complete removal of undesirable by-products. In the reduction tube, oxides of 

nitrogen were converted to molecular nitrogen and residual oxygen was removed. 

The sample was then released into the thermal conductivity detector. Carbon dioxide 

was removed from the sample for measurement of the carbon content. The remaining 

gas now only consisted of helium and nitrogen. By comparison with pure helium the 

nitrogen concentration was determined. Acetanilide was used as conditioner and 

standard. It consists of 71.09% carbon, 6.71% hydrogen, 10.36% nitrogen and 

11.84% oxygen. Benzoic acid was also used as a standard. 

 

2.2.5 Determination of elemental concentrations 

For determining total element concentrations in roots and shoots, plant 

material was oven dried at 40–50°C for several days. For determining total element 

concentrations in soil, the soil was oven dried at 70°C for 24 h. Following drying the 

material was milled using acid washed steel balls with a bead beater (TissueLyser II, 

Qiagen Ltd., Crawley, UK).  

 

2.2.5.1 Microwave digestion 

Prior to digestion, up to 50 mg of milled material was weighed out and placed 

in microwave digester tubes (50 ml; MARS, CEM Corporation, Matthews, NC, 

USA). Three milliliters of concentrated nitric acid (Aristar, VWR International Ltd., 

Poole, UK) were added to plant or soil powder and the samples left to digest in a 

fume hood for 15 min. Standards (1573a tomato leaves, National Institute of 

Standards and Technology (NIST), Gaithersburg, MD, USA) were also processed to 

test the quality of the digestion and nitric acid was included as a blank sample to take 
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through the entire extraction procedure. The samples were placed in a microwave 

(MARS, CEM Corporation, Matthews, NC, USA) and digested using the STD-NO3 

Digest programme (Table 2.1). After heating the samples up in steps to 180°C this 

temperature was held for 20 min to allow the complete digestion of the material. 

After a cooling step of 20 min the tubes were carefully opened in a fume hood and 

nitrogen oxide fumes were allowed to vent for at least 20 min. One milliliter of 30% 

hydrogen peroxide solution (Aristar, VWR International Ltd., Poole, UK) was added 

to each sample and the samples left to digest in a fume hood for 15 min. 

Subsequently, the samples were placed in the microwave again and cleared using the 

STD-NO3 Digest programme as described above (Table 2.1). Finally, Milli-Q water 

(Millipore (U.K.) Ltd., Watford, UK) was added to a final volume of 50 ml.  

 

Table 2.1: STD-NO3 Digest programme for microwave acid digestion of plant and 
soil materials. 
 

Ramp Time (min) Temperature (°C) Hold Time (min) 

3 100 2 
1 120 1 

3 160 2 
2 180 20 

 

2.2.5.2 Inductively Coupled Plasma Mass Spectrometry 

Elemental concentrations in plant tissues were determined using Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS, ELAN DRC-e, PerkinElmerSCIEX, 

Massachusetts, USA). The instrument was fitted with ELAN software 

(PerkinElmerSCIEX, Massachusetts, USA). The digested plant or soil samples and 

nitric acid blanks were placed in the ICP-MS. For calibration, cation and anion 

standards were included. The concentrations for each ion in the standard stock 

solutions are listed in Table 2.2. Traditionally, element concentrations in plant tissues 

are reported in mg g-1. Hence, the element concentrations in the standards are 

provided in mg l-1 to enable calibration. 
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Table 2.2: Element concentrations in cation (K, Mg, Na, Ca, Cs, Mn, Zn, Fe, Cu, Ni) 
and anion (P, Cl, S, Se) standard stock solutions.  
 
Element Salt mg l-1 in stock 
K KNO3 8000 
Mg Mg(NO3)2 4000 
Na NaNO3 200 
Ca Ca(NO3)2 4H2O 4000 
Cs CsNO3 0.001 
Mn Mn(NO3)2 4H2O 0.004 
Zn ZnCl2 0.004 
Fe FeCl3 6H2O 0.02 
Cu CuCl2 20 
Ni NiCl2 20 
P KH2PO4 1200 
Cl KCl 4000 
S K2SO4 3000 
Se Na2SeO4 200 

 

In each run 1/200, 1/1000 and 1/2000 dilutions of the standard stock solutions 

were included. The standard with the lowest concentration was measured first. These 

standards were used to create calibration curves for each element. Figure 2.3 gives an 

example of a calibration curve for Cs. 
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Figure 2.3: Calibration curve for Cs. Intensity values are plotted against Cs 
concentrations [ppb] in 1/200, 1/1000 and 1/2000 dilutions of the standard stock 
solution. 
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A description of the ICP-MS technique (The 30-Minute Guide to ICP-MS) 

was provided by PerkinElmerSCIEX. Briefly, liquid samples are converted into very 

small droplets by a nebuliser. These droplets are then injected into the plasma that is 

generated by passing argon through a series of concentric quartz tubes. The plasma 

ionises the elements in the droplets. An ion lens focuses the ions into the quadrupole 

region where a mass spectrometer separates ions from each other by their mass-to-

charge ratio. A detector counts the ions. Subsequently, the software converts the 

counts for each ion to ppm or ppb values according to the standard curves. For 

analysis, the volume of the sample and the dry weight (DW) were used to calculate 

the amount of each ion in mg g-1 DW. All element concentrations were calibrated to 

the NIST tomato leaves standard (TLS). These calibrations provided the analytical 

error for each run. The actual readings for the TLS samples were used to determine 

the decrease in element concentrations in each step of the run. Using the 

concentration of each element in the TLS provided by NIST the recovery of the 

element concentrations was calculated. The decrease in element concentrations in 

each step of the run and the recovery of the element concentrations provided the 

basis for the drift correction in each run.  

 

2.2.6 Statistical analysis 

For comparison of soil characteristics in differently treated soils and of 

element concentrations in plant tissues and soil samples a general analysis of 

variance (ANOVA) was performed using GenStat (12th Edition, VSN International, 

Hemel Hempstead, UK). The values of the element concentrations in plant tissues 

obtained by ICP-MS were log transformed to the base 10 to meet the ANOVA 

premises. 

 

2.3 RESULTS 

 

2.3.1 Definitions 

Field sampled soil that was characterised before the start of the experiment is 

referred to as untreated soil. The soils that were used in the experiment were all 

fertilised with KNO3 and sampled at harvest, six weeks after the start of the 

experiment. The term used to describe these four soils is treated soils. Two of the 

treated soils were sterilised and these soils are referred to as sterile soils and the other 
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two soils are referred to as non sterile soils. Two soils had a mycorrhizal inoculum 

added and are referred to as inoculated soils and the other two soils are referred to as 

uninoculated soils. 

 

2.3.2 Soil characterisation 

Soil characteristics of untreated soil and of treated soils were determined. 

Organic matter (OM) content, pH, the amounts of dissolved organic carbon (DOC), 

nitrate (NO3
-) and nitrite (NO2

-), ammonium (NH4
+), and the ratio of total carbon and 

total nitrogen (C/N) were obtained (Table 2.3).  

 

Table 2.3: Soil characteristics of untreated soil taken before the start of the 
experiment and of treated soils taken at harvest in the absence of plants. Mean values 
and 95% confidence intervals of pH, DOC, NO3-NO2

-, NH4
+, C/N ratios and OM 

content are shown (n = 5 (pH, DOC, NO3-NO2
-, NH4

+); n = 3 (C/N, OM)). 
 

Untreated Non Sterile Sterile 
   Inoculated Uninoculated Inoculated Uninoculated

5.02 4.94 4.88 5.21 5.42 pH 
± 0.04 ± 0.05 ± 0.06 ± 0.21 ± 0.13 
224.78 34.29 41.85 66.36 83.30 DOC  

[μg g-1] ± 26.59 ± 5.66 ± 5.74 ± 13.59 ± 18.30 
2.47 60.16 64.07 41.12 12.95 NO3-NO2

-  
[μg g-1] ± 0.90 ± 10.40 ± 5.60 ± 14.61 ± 10.52 

35.95 5.38 7.66 63.19 93.92 NH4
+  

[μg g-1] ± 6.34 ± 1.37 ± 5.77 ± 37.21 ± 22.87 
17.58 17.65 17.99 17.67 17.73 C/N 
± 1.14 ± 0.35 ± 0.67 ± 0.46 ± 0.65 
13.02 11.50 11.67 10.93 11.05 OM  

[g 100 g-1] ± 0.29 ± 0.41 ± 0.32 ± 0.23 ± 0.65 
 

The pH of sterile soils was significantly higher than of non sterile soils (Table 

2.3; General analysis of variance, F1,24 = 46.35, p <0.001). The amount of DOC 

decreased significantly in treated soils in comparison with untreated soil (General 

analysis of variance, F1,23 = 410.04, p <0.001) but remained significantly higher in 

sterile soils than in non sterile soils (General analysis of variance, F1,23 = 24.45, 

p <0.001). The amount of NO3-NO2
- increased significantly in treated soils in 

comparison with untreated soil (General analysis of variance, F1,23 = 55.76, p <0.001) 

and was even higher in non sterile than in sterile soils (General analysis of variance, 

F1,23 = 48.36, p <0.001). The addition of the mycorrhizal inoculum increased the 
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amount of NO3-NO2
- in sterile soils whereas the amount of NO3-NO2

- remained 

unaffected by the inoculum in non sterile soils (General analysis of variance, 

F1,23 = 10.11, p = 0.005). The highest amounts of NH4
+ occurred in sterile soils and 

non sterile soils had even lower amounts of NH4
+ than untreated soil (General 

analysis of variance, F1,23 = 48.13, p <0.001). The C/N ratios were not affected by 

any of the soil treatments. The OM content decreased in treated soils in comparison 

with untreated soil (General analysis of variance, F1,14 = 91.98, p <0.001) but 

remained higher in non sterile soils than in sterile soils (General analysis of variance, 

F1,14 = 13.46, p = 0.004). 

Furthermore, element concentrations of caesium (Cs), potassium (K), 

phosphorus (P), calcium (Ca) and magnesium (Mg) in untreated and treated soils in 

the absence of plants (Table 2.4 A) and in treated soils in the presence of potato or 

sunflower plants (Table 2.4 B) were determined. 

The Cs concentrations of untreated soil were significantly lower than in 

treated soils (Table 2.4; General analysis of variance, F3,38 = 3.35, p = 0.034). 

Treated soils in the presence of potato or sunflower plants had significantly lower K 

concentrations than treated soils in the absence of plants (General analysis of 

variance, F3,38 = 3.61, p = 0.026). The P concentrations were highest in treated soils 

in the absence of plants (General analysis of variance, F3,38 = 24.34, p < 0.001). 

Inoculated soils had significantly higher Ca concentrations than uninoculated soils 

(General analysis of variance, F3,38 = 13.52, p <0.001) and treated soils in the 

presence of plants had significantly lower Ca concentrations than in the absence of 

plants (General analysis of variance, F3,38 = 3.81, p = 0.022). The Mg concentrations 

in soils were not affected by any treatment.  
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Table 2.4: Concentrations of Cs, K, P, Ca and Mg in soil samples of untreated soil 
taken before the start of the experiment and of treated soils taken at harvest in the 
absence of plants (A) and in treated soils taken at harvest in the presence of potato 
and sunflower plants (B). Mean values and 95% confidence intervals (n = 3).  
 

 A Untreated Non Sterile Sterile 
    Inoculated Uninoculated Inoculated Uninoculated

0.003 0.006 0.006 0.007 0.007 Cs [mg g-1 DW] 
± 0.000 ± 0.002 ± 0.001 ± 0.004 ± 0.005 
2.144 2.269 2.119 2.495 2.205 K [mg g-1 DW] 

± 0.507 ± 0.413 ± 0.405 ± 0.389 ± 0.294 
1.910 2.204 2.408 2.446 2.105 P [mg g-1 DW] 

± 0.151 ± 0.176 ± 0.051 ± 0.012 ± 0.061 
2.982 3.437 3.136 3.738 3.002 Ca [mg g-1 DW] 

± 0.213 ± 0.254 ± 0.060 ± 0.535 ± 0.208 
5.579 5.691 5.816 5.620 5.886 Mg [mg g-1 DW] 

± 0.632 ± 0.328 ± 0.289 ± 0.103 ± 0.214 
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2.3.3 Plant status 

Six different plant species were grown on soils containing Cs to determine 

phylogenetic differences in Cs accumulation. 

 

2.3.3.1 Plant growth 

After five weeks of growth, pictures of plants from each species were taken 

(Figure 2.4).  

 

 

Figure 2.4: Five-week old (A) barley, (B) beetroot, (C) Brassica, (D) Medicago, (E) 
potato and (F) sunflower plants. All plants were grown in 12 cm by 12 cm pots. 

 

The plants were harvested after a growth duration of six weeks and fresh 

weights (FWs) of roots and shoots were determined (Table 2.5). The plant materials 

were oven dried and dry weights (DWs) of roots and shoots were determined (Table 

2.6). 
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Table 2.5: Fresh weights of barley, beetroot, Brassica, Medicago, potato and 
sunflower roots and shoots grown on non sterile or sterile soils with or without the 
addition of a mycorrhizal inoculum. Mean values and 95 % confidence intervals 
(n = 7).  
 
Plant Tissue Non Sterile Sterile 
    Inoculated Uninoculated Inoculated Uninoculated 
    Fresh weights [g] 

1.490 0.906 1.208 1.230 Barley Root 
± 0.471 ± 0.268 ± 0.232 ± 0.137 
0.645 0.598 0.527 0.326 Beetroot Root 

± 0.215 ± 0.154 ± 0.165 ± 0.160 
1.290 0.806 0.603 0.684 Brassica Root 

± 0.285 ± 0.096 ± 0.283 ± 0.387 
0.213 0.260 0.244 0.283 Medicago Root 

± 0.083 ± 0.053 ± 0.141 ± 0.278 
19.034 15.364 13.324 16.562 Potato Root 
± 2.640 ± 6.016 ± 3.385 ± 3.774 
1.475 1.797 2.350 2.600 Sunflower Root 

± 0.651 ± 0.197 ± 1.100 ± 0.864 
12.810 10.346 13.560 12.895 Barley Shoot 
± 0.262 ± 2.144 ± 2.065 ± 5.106 
10.180 9.724 7.827 4.856 Beetroot Shoot 
± 3.440 ± 3.041 ± 2.303 ± 2.332 
18.755 17.430 14.465 15.570 Brassica Shoot 
± 2.703 ± 1.926 ± 4.984 ± 2.910 
2.503 2.843 1.778 1.080 Medicago Shoot 

± 1.012 ± 0.496 ± 1.130 ± 1.314 
47.618 50.282 55.790 58.930 Potato Shoot 
± 3.005 ± 4.071 ± 4.423 ± 3.990 
6.665 8.085 10.390 9.632 Sunflower Shoot 

± 2.434 ± 1.394 ± 4.132 ± 2.207 
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Table 2.6: Dry weights of barley, beetroot, Brassica, Medicago, potato and 
sunflower roots and shoots grown on non sterile or sterile soils with or without the 
addition of a mycorrhizal inoculum. Mean values and 95 % confidence intervals 
(n = 7).  
 
Plant Tissue Non Sterile Sterile 
    Inoculated Uninoculated Inoculated Uninoculated 
    Dry weights [g] 

0.101 0.044 0.056 0.068 Barley Root 
± 0.060 ± 0.018 ± 0.016 ± 0.005 
0.030 0.033 0.028 0.014 Beetroot Root 

± 0.018 ± 0.021 ± 0.018 ± 0.010 
0.053 0.036 0.033 0.037 Brassica Root 

± 0.019 ± 0.009 ± 0.015 ± 0.013 
0.014 0.009 0.009 0.027 Medicago Root 

± 0.012 ± 0.006 ± 0.007 ± 0.023 
1.384 1.401 0.960 0.961 Potato Root 

± 0.289 ± 0.323 ± 0.534 ± 0.238 
0.062 0.061 0.061 0.077 Sunflower Root 

± 0.035 ± 0.012 ± 0.023 ± 0.028 
0.402 0.357 0.473 0.414 Barley Shoot 

± 0.101 ± 0.079 ± 0.084 ± 0.282 
0.280 0.257 0.255 0.094 Beetroot Shoot 

± 0.149 ± 0.097 ± 0.105 ± 0.060 
0.772 0.583 0.509 0.584 Brassica Shoot 

± 0.201 ± 0.091 ± 0.259 ± 0.166 
0.187 0.206 0.107 0.104 Medicago Shoot 

± 0.078 ± 0.039 ± 0.077 ± 0.144 
2.875 3.220 3.466 3.661 Potato Shoot 

± 0.362 ± 0.534 ± 0.450 ± 0.469 
0.312 0.335 0.347 0.317 Sunflower Shoot 

± 0.125 ± 0.136 ± 0.146 ± 0.105 
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For statistical analysis the FWs and DWs of roots were log transformed to the 

base 10 to meet the ANOVA premises. The FWs of roots of the different plant 

species were significantly different from each other (Table 2.5; General analysis of 

variance, F5,119 = 212.52, p <0.001). Medicago roots were lightest, followed by 

beetroot, Brassica, barley and sunflower roots, and potato roots were heaviest. The 

FWs of shoots of the different plant species were significantly different from each 

other (General analysis of variance, F5,120 = 865.16, p <0.001). Medicago shoots 

were lightest, followed by beetroot, sunflower, barley and Brassica shoots, and 

potato shoots were heaviest. 

Fresh weights of roots and shoots were generally unaffected by any of the soil 

treatments. However, Brassica and beetroot roots from sterile soils had lower FWs 

than roots from non sterile soils (General analysis of variance, F5,119 = 3.63, 

p = 0.005). Furthermore, Brassica and beetroot shoots from sterile soils had lower 

FWs than shoots from non sterile soils whereas the FWs of potato shoots from sterile 

soils were higher than the FWs of potato shoots from non sterile soils (General 

analysis of variance, F5,120 = 13.03, p <0.001).  

The DWs of roots of the different plant species were significantly different 

from each other (Table 2.6; General analysis of variance, F5,119 = 131.03, p <0.001). 

The DWs of shoots of the different plant species were also significantly different 

from each other (General analysis of variance, F5,120 = 646.41, p <0.001). However, 

DWs of roots and shoots were generally unaffected by any of the soil treatments with 

the exception of potato shoots that had higher DWs on sterile soils than on non sterile 

soils (General analysis of variance, F5,120 = 6.36, p <0.001). 

Since DWs and FWs of all plant species were generally unaffected by any of 

the soil treatments (Tables 2.5 and 2.6) the values of DW or FW of each plant 

species from all four soil treatments were combined to calculate DW to FW ratios 

(Table 2.7). The plant species showed significant differences in the DW of roots to 

FW of roots ratios (Table 2.7; General analysis of variance, F5,119 = 6.24, p <0.001) 

and in the DW of shoots to FW of shoots ratios (Table 2.7; General analysis of 

variance, F5,119 = 99.19, p <0.001). The plant species also differed in their root to 

shoot ratios of FW (Table 2.7; General analysis of variance, F5,119 = 100.85, 

p <0.001). However, the FWs of roots are only approximate values because roots got 

lost during the harvest process.  
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Table 2.7: Dry weight to FW ratios of roots and shoots of barley, beetroot, Brassica, 
Medicago, potato and sunflower plants, and FW of roots to FW of shoots ratios of 
barley, beetroot, Brassica, Medicago, potato and sunflower plants. Mean values and 
95 % confidence intervals (n = 7).  
 
Plant DWroots/FWroots DWshoots/FWshoots FWroots/FWshoots 

0.053 0.034 0.097 Barley 
± 0.008 ± 0.002 ± 0.012 
0.046 0.026 0.067 Beetroot 

± 0.009 ± 0.004 ± 0.008 
0.062 0.036 0.047 Brassica 

± 0.026 ± 0.004 ± 0.008 
0.054 0.072 0.145 Medicago 

± 0.021 ± 0.009 ± 0.047 
0.076 0.062 0.305 Potato 

± 0.013 ± 0.003 ± 0.042 
0.033 0.037 0.230 Sunflower 

± 0.004 ± 0.005 ± 0.022 
 

2.3.3.2 Mycorrhizal colonisation 

Plant roots were stained to visualise mycorrhizal structures. Arbuscules in a 

sunflower root cell (A) and in a potato root cell (B, Figure 2.5) are shown.  

 

Figure 2.5: Arbuscules in a sunflower root cell (A, magnified 63 times) and in a 
potato root cell (B, magnified 20 times).  
 

It was not possible to determine the percentage of mycorrhizal infection. 

Firstly, the staining failed for some root pieces. Secondly, large bits of the roots were 

too thick to be able to clearly decide if root cells were colonised. Thirdly, some roots 

were too dark to identify mycorrhizal structures. All the mycorrhizal structures that 
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could be identified clearly occurred in root cells of plants that had been grown on 

non sterile soils.  

To clarify the mycorrhizal status of the plants, DNA was extracted from plant 

roots. The DNA was used to amplify a region of 800 bp of the small subunit 

ribosomal ribonucleic acid (SSU rRNA) gene (Lee et al., 2008) which is specific for 

Glomeromycota. The amplification was successful in roots of barley, Medicago, 

potato and sunflower plants which had been grown on non sterile soils with or 

without the addition of the mycorrhizal inoculum. None of the plants which had been 

grown on sterile soils, even if the mycorrhizal inoculum was applied, were 

mycorrhizal. Brassica and beetroot plants were generally non mycorrhizal. Figure 

2.6 shows a gel image of PCR products amplified from potato roots.  

 

 

Figure 2.6: Gel image of amplified SSU rRNA gene fragments in potato roots. Lane 
1 shows a 1 kb ladder. Lanes 2 to 6 show amplified products in roots that had been 
grown on inoculated, non sterile soils. Lanes 7 to 11 show amplified products in 
roots that had been grown on uninoculated, non sterile soils. Lanes 12 to 16 were 
loaded with PCR products from roots of plants that had been grown on inoculated, 
sterile soils. Lanes 12 to 16 were loaded with PCR products from roots of plants that 
had been grown on uninoculated, sterile soils. 
 

2.3.4 Element concentrations in plant tissues 

Concentrations of several elements were determined in roots and shoots of 

the six different plant species. 

Caesium (Cs) concentrations in plant roots and shoots were investigated to 

determine the influence of mycorrhizal infection or sterilisation of soil on Cs 

accumulation (Table 2.8). Because Cs is transported by potassium (K) transporters 

the K concentrations in plant roots and shoots were measured (Table 2.9). Since 

phosphorus (P) is transported by mycorrhizal fungi to plants the P concentrations in 
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plant roots and shoots were measured (Table 2.10). Calcium (Ca) and magnesium 

(Mg) could influence Cs uptake. Therefore, the Ca (Table 2.11) and Mg (Table 2.12) 

concentrations in plant roots and shoots were measured. 

 
Table 2.8: Caesium concentrations in roots and shoots of barley, beetroot, Brassica, 
Medicago, potato and sunflower plants grown on non sterile or sterile soils with or 
without the addition of a mycorrhizal inoculum. Mean values and 95 % confidence 
intervals (n = 7). 
 
Plant Tissue Non Sterile Sterile 
    Inoculated Uninoculated Inoculated Uninoculated 
    Cs concentrations [μg g-1 DW] 

5.293 6.643 4.807 8.195 Barley Root 
± 4.226 ± 3.216 ± 2.128 ± 0.292 
5.030 5.654 5.392 7.367 Beetroot Root 

± 1.929 ± 2.577 ± 2.861 ± 0.967 
5.159 4.107 4.536 4.455 Brassica Root 

± 2.628 ± 1.819 ± 1.773 ± 2.747 
10.246 7.480 5.269 3.191 Medicago Root 

± 12.217 ± 1.626 ± 3.786 ± 0.903 
0.002 0.002 0.001 0.002 Potato Root 

± 0.001 ± 0.000 ± 0.000 ± 0.000 
10.146 9.635 6.519 10.801 Sunflower Root 
± 4.740 ± 3.222 ± 2.392 ± 3.486 
1.798 2.967 2.987 3.891 Barley Shoot 

± 0.416 ± 0.684 ± 0.430 ± 2.066 
2.094 1.992 2.177 3.008 Beetroot Shoot 

± 1.775 ± 1.249 ± 0.902 ± 1.281 
2.260 3.517 4.296 5.132 Brassica Shoot 

± 1.035 ± 1.043 ± 1.760 ± 0.938 
0.726 2.074 1.029 4.779 Medicago Shoot 

± 0.216 ± 1.564 ± 0.270 ± 1.849 
0.001 0.001 0.001 0.001 Potato Shoot 

± 0.000 ± 0.000 ± 0.000 ± 0.000 
1.643 3.162 2.307 4.760 Sunflower Shoot 

± 0.731 ± 0.908 ± 0.343 ± 0.857 
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Table 2.9: Potassium concentrations in roots and shoots of barley, beetroot, Brassica, 
Medicago, potato and sunflower plants grown on non sterile or sterile soils with or 
without the addition of a mycorrhizal inoculum. Mean values and 95 % confidence 
intervals (n = 7). 
 
Plant Tissue Non Sterile Sterile 
    Inoculated Uninoculated Inoculated Uninoculated 
    K concentrations [mg g-1 DW] 

25.310 28.741 19.143 16.242 Barley Root 
± 4.311 ± 1.665 ± 3.793 ± 6.016 
70.398 66.601 55.216 65.183 Beetroot Root 

± 11.528 ± 6.958 ± 20.157 ± 26.559 
36.047 32.718 21.449 31.850 Brassica Root 
± 6.746 ± 3.583 ± 11.325 ± 4.136 
31.005 36.091 24.546 24.227 Medicago Root 
± 8.534 ± 12.133 ± 7.308 ± 13.328 
4.566 4.410 4.194 4.453 Potato Root 

± 1.131 ± 1.670 ± 0.590 ± 0.741 
49.849 51.742 59.423 38.603 Sunflower Root 
± 9.957 ± 11.373 ± 4.673 ± 14.754 
95.384 90.607 86.961 88.993 Barley Shoot 

± 13.921 ± 7.754 ± 8.273 ± 5.371 
74.429 66.902 73.465 58.664 Beetroot Shoot 
± 8.379 ± 13.676 ± 10.728 ± 15.166 
57.951 56.253 61.870 52.935 Brassica Shoot 
± 8.112 ± 11.339 ± 10.648 ± 6.874 
55.120 56.976 54.167 51.709 Medicago Shoot 
± 3.653 ± 4.734 ± 3.555 ± 9.330 
9.885 10.282 10.071 10.556 Potato Shoot 

± 1.432 ± 1.662 ± 0.590 ± 1.045 
56.920 52.014 51.461 50.860 Sunflower Shoot 
± 2.873 ± 5.034 ± 4.541 ± 6.650 
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Table 2.10: Phosphorus concentrations in roots and shoots of barley, beetroot, 
Brassica, Medicago, potato and sunflower plants grown on non sterile or sterile soils 
with or without the addition of a mycorrhizal inoculum. Mean values and 95 % 
confidence intervals (n = 7). 
 
Plant Tissue Non Sterile Sterile 
    Inoculated Uninoculated Inoculated Uninoculated 
    P concentrations [mg g-1 DW] 

2.824 3.132 3.167 2.970 Barley Root 
± 0.337 ± 0.205 ± 0.239 ± 0.153 
4.054 4.390 4.924 4.618 Beetroot Root 

± 0.472 ± 0.872 ± 1.260 ± 1.058 
5.805 4.935 4.296 4.279 Brassica Root 

± 0.769 ± 0.521 ± 1.177 ± 0.999 
3.662 4.303 3.517 3.895 Medicago Root 

± 0.981 ± 1.956 ± 0.749 ± 1.188 
3.204 2.972 3.421 4.224 Potato Root 

± 0.451 ± 0.646 ± 0.430 ± 0.566 
3.544 3.504 7.007 5.178 Sunflower Root 

± 0.328 ± 0.201 ± 0.305 ± 1.018 
7.096 7.171 9.226 9.577 Barley Shoot 

± 1.319 ± 0.896 ± 1.511 ± 2.567 
3.792 3.850 4.814 3.773 Beetroot Shoot 

± 0.488 ± 0.399 ± 1.340 ± 0.431 
5.961 6.598 7.453 7.090 Brassica Shoot 

± 1.161 ± 1.486 ± 1.500 ± 1.698 
3.566 4.492 6.366 5.634 Medicago Shoot 

± 0.247 ± 0.215 ± 1.522 ± 1.809 
3.320 3.639 3.696 4.296 Potato Shoot 

± 0.682 ± 0.313 ± 0.501 ± 0.744 
6.052 6.400 7.195 7.741 Sunflower Shoot 

± 0.967 ± 0.735 ± 1.197 ± 0.486 
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Table 2.11: Calcium concentrations in roots and shoots of barley, beetroot, Brassica, 
Medicago, potato and sunflower plants grown on non sterile or sterile soils with or 
without the addition of a mycorrhizal inoculum. Mean values and 95 % confidence 
intervals (n = 7). 
 
Plant Tissue Non Sterile Sterile 
    Inoculated Uninoculated Inoculated Uninoculated 
    Ca concentrations [mg g-1 DW] 

5.122 3.761 4.282 2.542 Barley Root 
± 2.181 ± 1.227 ± 2.137 ± 0.418 
3.592 3.275 3.196 2.719 Beetroot Root 

± 0.545 ± 0.347 ± 1.446 ± 1.024 
7.642 4.840 3.047 3.550 Brassica Root 

± 2.272 ± 1.173 ± 0.985 ± 1.019 
5.849 6.064 4.137 4.950 Medicago Root 

± 0.828 ± 1.477 ± 1.849 ± 1.280 
1.631 1.392 1.468 1.348 Potato Root 

± 0.231 ± 0.327 ± 0.344 ± 0.207 
7.761 6.466 5.878 4.905 Sunflower Root 

± 1.514 ± 1.059 ± 1.065 ± 0.732 
12.335 12.296 7.397 7.154 Barley Shoot 
± 1.740 ± 1.616 ± 0.775 ± 3.571 
16.172 16.180 10.464 9.107 Beetroot Shoot 
± 1.087 ± 2.463 ± 1.403 ± 1.728 
23.816 25.444 16.019 14.448 Brassica Shoot 
± 3.562 ± 2.637 ± 4.484 ± 0.722 
25.920 22.204 21.225 18.119 Medicago Shoot 
± 1.993 ± 1.018 ± 2.439 ± 6.682 
2.103 2.044 2.418 2.264 Potato Shoot 

± 0.112 ± 0.273 ± 0.131 ± 0.311 
32.723 35.708 25.357 21.964 Sunflower Shoot 
± 3.226 ± 3.170 ± 6.412 ± 5.383 
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Table 2.12: Magnesium concentrations in roots and shoots of barley, beetroot, 
Brassica, Medicago, potato and sunflower plants grown on non sterile or sterile soils 
with or without the addition of a mycorrhizal inoculum. Mean values and 95 % 
confidence intervals (n = 7). 
 
Plant Tissue Non Sterile Sterile 
    Inoculated Uninoculated Inoculated Uninoculated 
    Mg concentrations [mg g-1 DW] 

3.173 3.245 2.544 2.644 Barley Root 
± 0.658 ± 0.852 ± 0.652 ± 0.004 
3.981 3.472 3.039 3.124 Beetroot Root 

± 0.671 ± 0.546 ± 0.825 ± 0.480 
2.635 1.798 2.413 2.002 Brassica Root 

± 0.510 ± 0.395 ± 0.314 ± 0.571 
3.368 3.511 3.005 3.276 Medicago Root 

± 0.771 ± 1.343 ± 0.836 ± 1.852 
3.370 3.326 3.241 3.095 Potato Root 

± 0.273 ± 0.379 ± 0.323 ± 0.327 
3.826 3.280 3.162 3.337 Sunflower Root 

± 0.662 ± 0.191 ± 0.217 ± 0.429 
3.574 3.255 2.152 2.142 Barley Shoot 

± 0.561 ± 0.371 ± 0.205 ± 0.326 
6.605 7.029 4.047 3.501 Beetroot Shoot 

± 2.588 ± 1.962 ± 1.543 ± 0.640 
3.407 3.643 2.492 2.206 Brassica Shoot 

± 0.450 ± 0.398 ± 0.273 ± 0.168 
3.443 3.187 3.034 2.624 Medicago Shoot 

± 0.266 ± 0.028 ± 0.543 ± 0.298 
2.482 2.623 2.341 2.273 Potato Shoot 

± 0.267 ± 0.563 ± 0.214 ± 0.377 
6.101 5.645 4.714 3.890 Sunflower Shoot 

± 0.549 ± 0.847 ± 0.666 ± 0.659 
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For statistical analysis element concentrations in roots and shoots were log 

transformed to the base 10 to meet the ANOVA premises.  

The Cs concentrations in roots of the different plant species differed 

significantly (Table 2.8; General analysis of variance, F5,113 = 864.81, p <0.001). 

Potato plants had significantly lower Cs concentrations in roots than the other five 

species and sunflower plants had significantly higher Cs concentrations in roots than 

the other five species. The Cs concentrations in roots of barley, beetroot, Brassica 

and Medicago plants did not differ significantly. None of the soil treatments 

influenced Cs concentrations in roots. The Cs concentrations in shoots of the 

different plant species differed significantly (Table 2.8; General analysis of variance, 

F5,118 = 1434.24, p <0.001). Potato plants had significantly lower Cs concentrations 

in shoots than the other five species. Caesium concentrations in shoots increased in 

the order of Medicago, beetroot, sunflower, barley and Brassica plants. Generally, 

plants that had been grown on non sterile soils had significantly lower Cs 

concentrations in their shoots than plants that had been grown on sterile soils 

(General analysis of variance, F1,118 = 30.90, p <0.001). In addition, the application 

of the mycorrhizal inoculum lowered the Cs concentrations in shoots (General 

analysis of variance, F1,118 = 40.76, p <0.001). Medicago and sunflower plants were 

driving this effect because they showed much lower Cs concentrations in shoots 

when grown on inoculated soils than on uninoculated soils. Newly developed tubers 

from potato plants did not accumulate Cs.  

Potassium concentrations in roots differed significantly between plant species 

(Table 2.9; General analysis of variance, F5,119 = 172.93, p <0.001). Potato plants had 

the lowest K concentrations in roots followed by barley, Medicago, Brassica and 

sunflower plants with beetroot having the highest K concentrations in roots. 

Generally, plants grown on non sterile soils had higher K concentrations in their 

roots than plants grown on sterile soils (General analysis of variance, F1,119 = 19.45, 

p <0.001). Potassium concentrations in shoots differed significantly between plant 

species (Table 2.9; General analysis of variance, F5,120 = 750.53, p <0.001). Potato 

plants had significantly lower K concentrations in shoots than the other five species 

which showed more similar K concentrations in their shoots. Plants grown on 

inoculated soils had higher K concentrations in their shoots than those from 

uninoculated soils (General analysis of variance, F5,120 = 4.03, p = 0.048). 
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Tissue K to Cs ratios differed between plant species. There was no 

relationship between K and Cs concentrations in roots (Figure 2.7) or shoots (Figure 

2.8) of the different plant species. 

The P concentrations in roots of the different plant species differed 

significantly (Table 2.10; General analysis of variance, F5,117 = 19.79, p <0.001). 

Phosphorus concentrations in barley roots were lowest and P concentrations in 

sunflower and Brassica roots were highest. Generally, plants grown on non sterile 

soils had lower P concentrations in their roots than plants grown on sterile soils 

(General analysis of variance, F1,117 = 9.10, p = 0.003). The influence of sterilisation 

on P concentrations in roots was plant species dependent because barley, potato and 

sunflower roots contained less P on non sterile soils whereas Brassica roots 

contained more P on non sterile soils and beetroot and Medicago roots did not show 

differences (General analysis of variance, F5,117 = 10.63, p <0.001). The P 

concentrations in shoots of the different plant species differed significantly (Table 

2.10; General analysis of variance, F5,120 = 80.97, p <0.001). The lowest P 

concentrations occurred in potato and beetroot shoots and the highest P 

concentrations occurred in barley shoots. The P concentrations in shoots of plants 

grown on non sterile soils were lower than in shoots of plants grown on sterile soils 

(General analysis of variance, F5,120 = 42.45, p <0.001).  

The Ca concentrations in roots of the different plant species were 

significantly different from each other (Table 2.11; General analysis of variance, 

F5,118 = 60.98, p <0.001). Potato plants had very low Ca concentrations in their roots 

and Medicago and sunflower plants had the highest Ca concentrations in their roots. 

Generally, plants grown on non sterile soils had significantly higher Ca 

concentrations in roots than plants grown on sterile soils (General analysis of 

variance, F1,118 = 36.20, p <0.001). The addition of the mycorrhizal inoculum 

increased the Ca concentrations in roots (General analysis of variance, F1,118 = 4.17, 

p = 0.044) of all plant species except for Medicago. The Ca concentrations in shoots 

of the different plant species were significantly different from each other (Table 2.11; 

General analysis of variance, F5,120 = 656.66, p <0.001). Like in their roots, potato 

plants had low Ca concentrations in shoots and sunflower plants had high Ca 

concentrations in shoots. Generally, plants grown on non sterile soils had 

significantly higher Ca concentrations in shoots than plants grown on sterile soils 

(General analysis of variance, F1,120 = 136.32, p <0.001). The only exception was 
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potato which did not differ in shoot Ca concentrations when grown on sterile or non 

sterile soils.  

The Mg concentrations in roots of the different plant species were 

significantly different (Table 2.12; General analysis of variance, F5,118 = 11.87, 

p <0.001). The lowest Mg concentrations in roots occurred in Brassica plants and the 

highest in sunflower plants. Roots of all plant species contained more Mg when 

grown on non sterile soils than on sterile soils (Table 2.12; General analysis of 

variance, F1,118 = 8.03, p = 0.006). The Mg concentrations in shoots of the different 

plant species were significantly different (Table 2.12; General analysis of variance, 

F5,118 = 54.57, p <0.001). In shoots, the Mg concentrations were lowest in potato 

plants and highest in sunflower plants. Generally, plants that had been grown on non 

sterile soils had higher Mg concentrations in shoots than plants that had been grown 

on sterile soils (General analysis of variance, F1,118 = 100.07, p <0.001). Exceptions 

were Mg concentrations in Medicago and potato shoots which did not differ 

dependent on soil sterilisation (General analysis of variance, F5,118 = 4.98, p <0.001).  
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Figure 2.7: Caesium concentrations in roots versus K concentrations in roots of 
barley, beetroot, Brassica, Medicago, potato and sunflower plants grown on non 
sterile or sterile soils with or without the addition on a mycorrhizal inoculum. Data 
show mean values and 95% confidence intervals (Tables 2.8 and 2.9).  
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Figure 2.8: Caesium concentrations in shoots versus K concentrations in shoots of 
barley, beetroot, Brassica, Medicago, potato and sunflower plants grown on non 
sterile or sterile soils with or without the addition on a mycorrhizal inoculum. Data 
show mean values and 95% confidence intervals (Tables 2.8 and 2.9).  
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2.4 DISCUSSION 

 

2.4.1 Soil characteristics were influenced by sterilisation, mycorrhizal inoculum 

and plant growth 

Gamma-irradiation is a reliable method for soil sterilisation that causes only 

minimal alteration of physical properties of soil and leaves no chemical 

contamination (McLaren, 1969; McNamara et al., 2003). However, the process does 

have some effects on soil chemical properties. Gamma-sterilisation at 25 kGy kills 

all fungi and most, but not all, of the bacteria in soil (Ramsay and Bawden, 1983; 

McNamara et al., 2003).  

The untreated soil was very dry at sampling and had not been fertilised since 

1996 (Bennett, J., personal communication). The addition of KNO3 as fertiliser 

increased the concentration of NO3 in treated soils (Table 2.3). The amounts of 

dissolved organic carbon (DOC) and organic matter (OM) decreased in treated soils 

in comparison to untreated soil (Table 2.3). Since the treated soils were fertilised and 

watered during the experiment the growth rate of micro organisms might have 

increased and thereby the micro organisms might have taken up carbon or decayed 

OM. The amounts of OM remained higher in non sterile soils than in sterile soils but 

the amount of DOC was higher in sterile than in non sterile soils (Table 2.3). This 

could be due to destruction of OM and thereby release of DOC by gamma-

sterilisation (Berns et al., 2008). Furthermore, DOC is readily utilised as a substrate 

by micro organisms (Marschner and Bredow, 2002). Therefore, a higher microbial 

activity in non sterile soils could have led to a lower amount of DOC in non sterile 

soils than in sterile soils. The process of gamma-sterilisation releases NH4
+ from 

soils (Salonius et al., 1967; McLaren, 1969) but reduces the concentration of NO3
- 

(Ramsay and Bawden, 1983; McNamara et al., 2003). These effects of sterilisation 

also occurred in the experiment performed here (Table 2.3). Additionally, the 

gamma-sterilisation increased the pH of the soils (Table 2.3). However, reports on 

the effect of sterilisation on pH are not consistent (McNamara et al., 2003). The 

concentration of NH4
+ in non sterile soils was lower than in untreated soil (Table 2.3) 

which could be explained by uptake of NH4
+ by micro organisms. The addition of the 

mycorrhizal inoculum increased the concentration of NO3
- in sterile soils but had no 

effect in non sterile soils (Table 2.3). The total amounts of nitrogen, i.e. the sum of 

the concentrations of NO3
- and NH4

+, were the same in uninoculated, sterile soils and 
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in inoculated, sterile soils. In the process of nitrification, NH4
+ is converted in NO3

- 

by bacteria (Prosser, 1989). Therefore, the mycorrhizal inoculum might have 

contained nitrifying bacteria which then converted NH4
+ to NO3

- and thereby led to 

an increase of NO3
- in inoculated, sterile soils.  

The addition of CsCl to soil before the start of the experiment resulted in an 

increase of the Cs concentrations in treated soils (Table 2.4). Since the total plant 

uptake was less than 1% of the total available Cs, plant growth did not cause Cs 

concentrations to decrease in treated soils (Table 2.4). Neither sterilisation nor the 

addition of the mycorrhizal inoculum affected K or P concentrations in treated soils 

but plant growth reduced the concentrations of these elements in soils due to their 

uptake (Table 2.4). The addition of the mycorrhizal inoculum increased the Ca 

concentrations in inoculated soils (Table 2.4). Nevertheless, plants took up 

significant amounts of Ca and decreased the Ca concentration in soils with plants 

(Table 2.4).  

Soil characteristics influence Cs sorption to soil particles and Cs uptake by 

plants. Rhodes (1957) showed that the adsorption of 137Cs by calcareous soil from 

nutrient solutions was not affected by varying the pH between 4 and 10. Reports on 

the effect of pH on Cs uptake by plants are not consistent. Heredia et al. (2002) 

showed that pH in the range of 6.5 to 9 did not influence Cs uptake by the liverwort 

Riccia fluitans from nutrient solutions under K sufficient conditions. In contrast, 

Drissner et al. (1998) demonstrated higher transfer factors of Cs to fern (Dryopteris 

carthusiana) from forest soils with low pH. However, the pH of the forest soils was 

dependent on the kind of humus deposit and thickness of humus layer (Drissner et 

al., 1998). The authors concluded that the effect of pH and humus layer on transfer 

factors of Cs to fern could not be evaluated independently (Drissner et al., 1998). The 

higher concentrations of NH4
+ in sterile soils than in non sterile soils (Table 2.3) 

could result in higher Cs accumulation by plants because NH4
+ mobilises Cs from 

soil sorption sites (Konopleva et al., 2009). Caesium binds strongly to clay minerals 

(Coughtrey and Thorne, 1983; Livens and Rimmer, 1988) and the influence of OM 

on Cs uptake or sorption is thought to be minimal (Staunton and Levacic, 1999; 

Chibowski and Zygmunt, 2002) and only of importance in soil with an OM content 

above 95% (Rigol et al., 2002). 
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2.4.2 Growth differences and mycorrhizal colonisation of the different species 

The six plant species barley, beetroot, Brassica, Medicago, potato and 

sunflower showed differences in fresh weights (FWs) of roots and in FWs of shoots. 

Potato roots and shoots were heaviest and Medicago roots and shoots were lightest 

(Table 2.5). Generally, the FWs of roots and shoots were unaffected by soil 

sterilisation or application of the mycorrhizal inoculum, but plant specific 

interactions with soil treatments occurred (Table 2.5). The dry weights (DWs) of 

roots and shoots of the six plants species were also not affected by any of the soil 

treatments (Table 2.6). The plant species differed in their root to shoot FW ratios 

(Table 2.7). Brassica and beetroot plants had the lowest root to shoot FW ratios and 

potato had the highest. The lower the ratio the less root is available to supply shoots 

with water and minerals. Difficulties in harvesting fine roots of Brassica and beetroot 

plants could have resulted in the low ratios for these species observed in the 

experiment performed here (Table 2.7).  

The plants were examined for their mycorrhizal status. Successful 

colonisation occurred in plants growing on non sterile soils, except for Brassica and 

beetroot plants. Brassica napus belongs to the Brassicaceae which are generally non 

mycorrhizal (Tester et al., 1987; Brundrett, 2009). Beta vulgaris belongs to the 

Chenopodiaceae, whose members are also predominantly non mycorrhizal (Tester et 

al., 1987; Brundrett, 2009). None of the plants that had been grown on sterile soils 

were colonised. This shows that gamma-sterilisation was effective in elimination of 

arbuscular mycorrhizal (AM) fungi from soil which is consistent with literature 

(Ramsay and Bawden, 1983; McNamara et al., 2003). The application of the 

commercially available inoculum of mycorrhizal fungi did not result in mycorrhizal 

infection in any of the plant species. Gamma-sterilisation increases the concentration 

of exchangeable P in soil (McNamara et al., 2003). The concentrations of P in sterile 

soils might have prevented mycorrhizal colonisation of plant roots because the 

development of the symbiosis is sensitive to high P concentrations in soil (Thomson 

et al., 1986; Braunberger et al., 1991). Another reason for the lack of mycorrhizal 

colonisation of plants grown on inoculated, sterile soil could be that the inoculum did 

not contain any live AM fungal hyphae or spores. 
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2.4.3 Soil treatments and plant phylogeny influenced mineral accumulation of 

plants 

Caesium was accumulated by all plant species over the growth duration of six 

weeks (Table 2.8). Generally, roots contained more Cs than shoots, which is in 

agreement with some other publications (Belli and Sansone, 1995; Waegeneers et al., 

2001; Staunton et al., 2003). It is important to keep in mind that Cs concentrations 

measured in roots might be high due to soil contamination. Cook et al. (2007) 

demonstrated that, although roots were washed with distilled water after harvest, 

most of the measured Cs came from soil residues. They stated that many transfer 

factors for Cs obtained in plants sampled from natural sites are too high because soil 

contamination is not taken into account. 

The plant species investigated here differed in their Cs accumulation (Table 

2.8). Broadley et al. (1999a) reviewed Cs accumulation by different plant species and 

stated that dicots generally accumulated more Cs than monocots and that the highest 

Cs accumulations were found in Caryophyllales. Field experiments were excluded 

from the study because the authors stated that additional factors like foliar uptake 

could influence the data obtained for Cs accumulation (Broadley et al., 1999a). 

Furthermore, the meta-analysis contains data from long term accumulation 

experiments (e.g. Andersen, 1967) as well as short term exposure experiments (e.g. 

Broadley and Willey, 1997). Soil conditions can influence Cs accumulation by plants 

greatly (Andersen, 1967; Skarlou et al., 1996; Waegeneers et al., 2009) and plant 

specific interactions with soil type occur. It is therefore not surprising that there is no 

correlation (Figure 2.9) between shoot Cs concentrations in plant species measured 

here (Table 2.8) and relative Cs concentrations in shoots of plant species described 

by Broadley et al. (1999a). There is also no correlation (Figure 2.10) between Cs 

concentrations in shoots of the plant species measured in the experiment described 

here (Table 2.8) and Cs concentrations in plant shoots measured by Andersen (1967). 

Andersen (1967) investigated long term Cs accumulation by 44 plant species in pot 

experiments. The plants were grown on fertilised agricultural soil that was 

contaminated with 137Cs.  

 

 



 62

Shoot Cs concentration [µg g-1 DW]

0 1 2 3 4 5 6 7

Sh
oo

t C
s c

on
ce

nt
ra

tio
n 

[r
el

at
iv

e]

0

10

20

30
Barley
Beetroot
Brassica
Medicago
Potato
Sunflower

 

Figure 2.9: Caesium concentrations in shoots of the different plant species are not 
correlated with relative Cs concentrations given for the same species by Broadley et 
al. (1999a). Data show mean values and 95% confidence intervals (Table 2.8). 
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Figure 2.10: Caesium concentrations in shoots of the different plant species are not 
correlated with shoot Cs concentrations [μg g-1 DW] observed for the same species 
by Andersen (1967). Data show mean values and 95% confidence intervals (Table 
2.8). 
 

 

 



 63

Andersen (1967) concluded that root crops tended to accumulate most Cs in 

their shoots but that no botanical group could be characterised by extremely high or 

low Cs concentrations. This is in agreement with Choi et al. (2009) who measured 

long term Cs accumulation by five plant species. Choi et al. (2009) demonstrated that 

tissue Cs concentrations varied during plant development in all plant species and 

therefore a conclusion about phylogenetic differences in Cs accumulation by plant 

species was not possible. Vegetables grown in private gardens in Bulgaria did not 

show any significant differences in tissue Cs concentrations at all (Djingova and 

Kuleff, 2002) and Cs concentrations in shoots of wild plants were generally very 

variable within plant families (Cook et al., 2007). 

In many studies, monocot species accumulated less Cs in their shoots than 

dicot species (reviewed by Broadley et al., 1999a). However, in the experiment 

reported here, barley did not show the lowest root or shoot Cs concentrations (Table 

2.8). Other researchers have shown that grass species had higher Cs concentrations in 

their shoots than dicot species grown under the same conditions (Belli and Sansone, 

1995; Gouthu et al., 1997). Although beetroot belongs to the order of Caryophyllales, 

whose members had been shown to accumulate high concentrations of Cs in their 

shoots (Evans and Dekker, 1967; Gouthu et al., 1997; Broadley et al., 1999a), 

beetroot did not show the highest shoot Cs concentrations in the experiment reported 

here (Table 2.8). Tang and Willey (2003) investigated Cs accumulation by four 

Asteraceae species and two varieties of Beta vulgaris and measured higher Cs 

concentrations in shoots of the Asteraceae species. Potatoes had very low tissue Cs 

concentrations in the experiment presented here (Table 2.8). The Cs concentrations 

in potato roots and shoots were around 0.001 µg g-1 DW which is considerably less 

than reported for potato in other experiments (Andersen, 1967; Broadley et al., 

1999a). However, potatoes accumulated Cs concentrations of 0.004–0.13 µg g-1 DW 

in their tubers from soil which contained 1–11 mg Cs per kg soil (Tsukada and 

Nakamura, 1999). This is a considerably lower concentration than found in any of 

the other plant species investigated in the experiment described here (Table 2.8). 

Additionally, the K concentrations found in potatoes were also very low at around 

10 mg g-1 DW (around 1% DW) in shoots (Table 2.9). The critical value of K for 

plants is around 0.5–2% DW (Leigh and Wyn Jones, 1984; White and Karley, 2010). 

However, Tsukada and Nakamura (1999) found concentrations of K in tubers of 

potatoes of around 20 mg g-1 DW. While these are higher K concentrations than in 
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potatoes investigated in the experiment presented here (Table 2.9) the concentrations 

are still lower than in any other species investigated here which contained more than 

50 mg g-1 DW of K (Table 2.9).  

Furthermore, differences in Cs uptake by plant species are also dependent on 

K supply. It was demonstrated that the ranking of species for accumulation of Cs 

changes with changing K supply (Buysse et al., 1996). Nevertheless, there was no 

constant Cs to K ratio in roots or shoots for any of the plant species (Figures 2.10 and 

2.11). This is in agreement with other publications which stated that there is no 

relationship between Cs and K concentrations in shoots (Andersen, 1967; Evans and 

Dekker, 1967; Buysse et al., 1996). Potassium concentrations in shoots measured in 

this experiment were correlated with K concentrations obtained by Andersen (1967). 

Figure 2.11 shows the relationship.  
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Figure 2.11: Potassium concentrations in shoots of the different plant species are 
correlated (Pearson correlation, r = 0.84, p <0.001, d.f. = 24) with K concentrations 
[mg g-1 DW] observed for the same species by Andersen (1967). Data show mean 
values and 95% confidence intervals (Table 2.9). 
 

If sufficient K is available plant species maintain their tissue K concentrations 

in a specific range. Generally, K sufficient plants contain between 2–10% DW K 

(Leigh and Wyn Jones, 1984; Ashley et al., 2006; White and Karley, 2010) and 

except for potato this was the case for the plants investigated in the experiment 

described here (Table 2.9). By contrast, Cs accumulation is dependent on soil 

properties and plant–soil interactions and because Cs is non essential for plants 
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(White and Broadley, 2000) it is not maintained at a specific concentration by plants. 

In conclusion, Cs does not behave as analogue of K.  

The concentrations of Cs in shoots from plants grown on non sterile soils 

were lower than from plants grown on sterile soils (Table 2.8). Furthermore, the 

concentrations of K in roots were higher on non sterile soils than on sterile soils 

(Table 2.9). In acidic soils K acquisition can be enhanced by AM fungi but the effect 

depends on the fungal strain (Clark and Zeto, 2000). Although reports of the 

influence of AM fungi on Cs uptake by plants are not consistent (Table 1.2) it has 

been hypothesised that if AM fungi led to improved K status of plants then the 

uptake of Cs would decrease due to changes in the expression of genes encoding K 

transporters (Wiesel et al., 2008; White et al., 2010). Plants that were grown on non 

sterile soils were mycorrhizal whereas plants grown on sterile soils were non 

mycorrhizal. One explanation for decreased Cs accumulation in shoots of plants 

grown on non sterile soils could be that AM fungi decreased Cs accumulation in 

plant shoots. However, gamma-sterilisation of soil changes the chemical properties 

of soil and releases NH4
+ (McLaren, 1969). Higher concentrations of NH4

+ in sterile 

soils than in non sterile soils (Table 2.3) could have lead to the mobilisation of Cs 

from soil sorption sites (Konopleva et al., 2009). A greater availability of Cs to plants 

in sterile soils could have lead to higher concentrations of Cs in plant shoots grown 

on sterile soils than on non sterile soils. It therefore remains uncertain whether 

gamma-sterilisation of soil led to greater Cs accumulation by plants or if AM fungi 

decreased Cs accumulation by plants. 

The addition of the mycorrhizal inoculum decreased Cs uptake (Table 2.8). 

The inoculum contained Ca (Table 2.4) and Ca inhibits Cs uptake under K-replete 

conditions (White and Broadley, 2000; Hampton et al., 2005). Under K-replete 

conditions Cs is transported by voltage insensitive cation channels (White and 

Broadley, 2000; Hampton et al., 2005) which are blocked by Ca. The Ca dependent 

uptake of Cs was also demonstrated in the liverwort Riccia fluitans which showed 

decreasing Cs accumulation due to increasing Ca supply under K-replete conditions 

(Heredia et al., 2002). In accordance with the decrease in Cs uptake an increase in K 

uptake occurred due to the addition of the mycorrhizal inoculum (Table 2.9). Due to 

the inhibition of voltage insensitive cation channels by Ca the transport of K via 

K+/H+ symporters might have been stimulated leading to higher K concentrations in 

shoots (Qi et al., 2008).  



 66

Potassium concentrations are related to water contents of plants because K 

has an important osmotic function in plants (Leigh and Wyn Jones, 1984). Broadley 

et al. (2004) reported that shoot K concentrations were positively related to shoot 

FW/DW ratios in several plant species. Plants investigated in the experiment 

presented here also showed a weak correlation between shoot K concentrations and 

FW/DW ratios of shoots (Pearson correlation, r = 0.43, p = 0.0355, d.f. = 24). 

Phosphorus (P) concentrations in roots and shoots were higher in sterile soils 

than in non sterile soils (Table 2.10) because gamma-sterilisation increases the 

concentration of exchangeable P in soil (McLaren, 1969; McNamara et al., 2003). 

Critical concentrations of P in plants are around 0.3–0.5% DW (Marschner, 1995) 

but these values are highly species dependent (Broadley et al., 2004; White and 

Hammond, 2008). In the experiment conducted, all plants had P concentrations of 

above 0.3% DW (Table 2.10) and were therefore sufficient in P. One of the key 

functions of arbuscular mycorrhizal fungi is the supply of P to their host plants and 

high availability of P to plants can be disadvantageous for mycorrhizal colonisation 

(Smith and Read, 2008). However, it has been shown that total P concentrations in 

shoots are not always correlated with the contribution of AM fungi to plant P uptake 

(Smith et al., 2003, 2004). Flax (Linum usitatissimum), medic (Medicago truncatula) 

and tomato (Lycopersicon esculentum) had been grown in association with different 

species of Glomus on soils with limited P (Smith et al., 2003). A part of the soil that 

was only accessible to fungal hyphae was labelled with 33P. Therefore, labelled P 

could only reach plants via hyphae of AM fungi (mycorrhizal pathway) whereas both 

roots and AM fungi could take up unlabeled P. Accumulation of P in mycorrhizal 

and non mycorrhizal plants was measured and the results showed that the 

mycorrhizal pathway can be exclusively responsible for plant P uptake (Smith et al., 

2003). However, the contribution of the mycorrhizal P uptake pathway to total P 

uptake by plants varies with plant and fungal species (Smith et al., 2003, 2004). 

Phosphorus concentrations in shoots were not correlated to the percentage of P that 

was delivered via the mycorrhizal pathway (Smith et al., 2003, 2004). Therefore, it is 

possible that the plant species investigated here received P from their fungal partners 

although the percentage of mycorrhizal colonisation could not be determined and 

shoot P concentrations were higher in non mycorrhizal than in mycorrhizal plants 

(Table 2.10). 
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Magnesium (Mg) and calcium (Ca) concentrations in shoots differed among 

different species (Tables 2.11 and 2.12). The lowest Mg and Ca concentrations 

occurred in potato and barley plants and the highest Mg and Ca concentrations were 

measured in sunflower plants. Positive correlations between Mg and Ca 

concentrations in shoots across species have been reported (Broadley et al., 2004). 

Broadley et al. (2004) concluded that general correlations in Mg/Ca concentrations 

are likely due to chemical similarities between these elements and the resulting lack 

of selectivity during uptake. Shoot Mg/Ca ratios were correlated in the six plants 

species investigated here (Figure 2.12).  
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Figure 2.12: Magnesium concentrations in shoots of the different plant species are 
correlated with Ca concentrations in shoots (Pearson correlation, r = 0.56, 
p = 0.0047, d.f. = 24). Data show mean values and 95% confidence intervals (Tables 
2.11 and 2.12). 
 

Barley, as a member of the Poaceae, had low Mg and Ca concentrations in 

shoots (Figure 2.12), which has been ascribed to the lower pectin concentration in 

cell walls of monocots (White and Broadley, 2003). Sunflower shoots had slightly 

higher Mg and Ca concentrations (Figure 2.12) which is in agreement with Broadley 

et al. (2004). Beetroot, as a member of the order Caryophyllales, had high Mg 

concentrations in shoots but the Ca concentrations were similar to the other plant 

species (Figure 2.12). Since Caryophyllales are adapted to mineral rich soils it has 
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been hypothesised that this is the reason for high Mg accumulation (Broadley et al., 

2004). Potatoes had unusually low Ca concentrations in their shoots and roots in the 

experiment reported here (Figure 2.12). Both Mg and Ca concentrations were higher 

in plants that had been grown on non sterile soils than in plants that had been grown 

on sterile soils (Tables 2.11 and 2.12). The amounts of these ions did not differ in 

sterile or non sterile soils (Table 2.4). One explanation for higher Mg and Ca 

concentrations in shoots of mycorrhizal plants could be that AM fungi transported 

these elements to their host plants. Clark and Zeto (2000) reviewed mineral 

acquisition by AM plants and reported that AM fungi can enhance Mg and Ca 

concentrations in plants mainly on acidic soils. Alternatively, the availability of these 

elements to plants was altered by the sterilisation process. In agreement with higher 

Ca concentrations in soils due to the application of the mycorrhizal inoculum, plants 

that had been grown on inoculated soils had higher Ca concentrations than ones that 

had been grown on uninoculated soils (Table 2.11). In conclusion, soil treatments 

and plant phylogeny influenced mineral acquisition by plants.  

 

2.5 CONCLUSIONS 

• Beta vulgaris and Brassica napus plants were non mycorrhizal 

• Helianthus annuus, Hordeum vulgare, Medicago truncatula and Solanum 

tuberosum plants were colonised by AM fungi in non sterile soils but not in 

sterile soils irrespective of the addition of the mycorrhizal inoculum 

• Caesium concentrations in roots and shoots were dependent on plant species  

• Caesium concentrations in plant shoots observed in the experiment reported 

here were not correlated with published data of shoot Cs concentrations in the 

same plant species 

• Potassium concentrations in plant shoots observed in the experiment reported 

here were correlated with published data by Andersen (1967) of K 

concentrations in shoots of the same plant species 

• The Cs to K ratios were not constant for the different plant species 

• Caesium concentrations in shoots were lower in plants grown on non sterile 

soils than in plants grown on sterile soils. Therefore, Cs accumulation by 

plants was either increased because of higher availability of Cs to plants due 

to gamma-sterilisation of soil or decreased due to colonisation with AM fungi 
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• Calcium in the mycorrhizal inoculum decreased Cs concentrations in plant 

shoots 

• Magnesium concentrations in plant shoots were correlated to calcium 

concentrations in plant shoots 
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Chapter 3:  

Optimisation of growth conditions for Medicago truncatula under in 

vitro conditions to achieve mycorrhizal infection with Glomus sp. 
 

3.1 INTRODUCTION 

 

3.1.1 Medicago truncatula 

Medicago truncatula Gaertn. belongs to the Fabaceae, colloquially known as 

legumes. Fabaceae have more than 650 genera and 18,000 species (Doyle, 1994; 

Young et al., 2003) and are the third largest family of angiosperms (Doyle, 1994). 

They are one of the most important agricultural taxa worldwide and present a major 

source of protein for humans and animals (Cook, 1999). Due to rhizobial symbioses 

legumes are able to fix atmospheric nitrogen and therefore provide nitrogen for plant 

growth and soil improvement (Cook, 1999; Rose, 2008). Within the Fabaceae, M. 

truncatula is part of the subfamily Papilionoideae and the genus Medicago that 

contains 83 species (Small and Jomphe, 1988; Young et al., 2003). Medicago 

truncatula is an annual plant of Mediterranean origins (Small and Jomphe, 1988; 

Barker et al., 1990) and is well adapted to semi-arid conditions.  

In 1990, Barker et al. proposed M. truncatula as a model plant for legumes. 

Within the Fabaceae, Medicago sativa is a forage crop of importance worldwide 

(Barker et al., 1990) but it is tetraploid with a genome of 800–900 million base pairs 

(bp). The advantage of M. truncatula is that it has a small, diploid genome (2n = 16) 

of around 500 million bp (Cook, 1999), which is roughly three to four times larger 

than the genome of Arabidopsis thaliana (Penmetsa and Cook, 2000). Furthermore, 

M. truncatula is self-fertilising, has efficient seed production and a rapid generation 

time (Cook, 1999). There exists considerable genetic variability within the species 

(Oldroyd and Geurts, 2001) but due to the self-fertilising character each ecotype is 

relatively homogeneous from the genetic point of view (Barker et al., 1990). The 

cultivar Jemalong is a commercial variety of M. truncatula which has been widely 

used in research. The genotype A17 is a single-seed descendent line from the cultivar 

Jemalong and is the reference genotype selected for sequencing of the genome 

(Kamphuis et al., 2007). A more detailed description of the genome of M. truncatula 

can be found in Chapter 6. Regeneration of plants is a requirement for transformation 
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(Rose, 2008). The genotype Jemalong 2HA is highly regenerable (Rose et al., 1999) 

and is able to be transformed by Agrobacterium tumefaciens and to regenerate via 

somatic embryogenesis (Chabaud et al., 1996).  

Medicago truncatula forms symbioses with mycorrhizal fungi and with 

rhizobia which makes it an excellent model for studies of these interaction, allowing 

direct comparisons between mycorrhizal and rhizobial symbioses (Cook, 1999; 

Oldroyd and Geurts, 2001).  

 

3.1.2 Phosphorus transporters in Medicago truncatula  

Phosphorus (P) is an essential element for plant growth and development 

(Marschner, 1995; Chiou et al., 2001; White and Hammond, 2008). Plants absorb P 

as inorganic orthophosphate (Pi) from the soil solution (Hammond et al., 2004; 

Bucher, 2007; White and Hammond, 2008). The Pi concentration in soil solution can 

be as low as 1 μM (Versaw et al., 2002), because most of the P in soil exists in 

complex, insoluble, organic or inorganic forms and can therefore not be acquired by 

plants directly (White and Hammond, 2008). Hence, P is one of the most unavailable 

and inaccessible macronutrients in the soil and frequently limits plant growth (Chiou 

et al., 2001; Vance et al., 2003; Hammond et al., 2004). Plants developed strategies 

to increase P mobilisation which include secretion of phosphatases, organic acids and 

protons, enhanced root growth and changes in root architecture (Chiou et al., 2001; 

Versaw et al., 2002; Bucher, 2007; White and Hammond, 2008). In M. truncatula, 

root hair development occurred closer to the root tip and the length of root hairs 

increased under P-deficient conditions in comparison with nutrient sufficient plants 

(Bucciarelli et al., 2006). 

Since the concentration of cytoplasmic Pi in roots is higher than the Pi 

concentration in soil, Pi uptake occurs against a large concentration gradient (Mudge 

et al., 2002). Proton-coupled Pi symporters transport Pi across the plasma membrane. 

Therefore, the driving force for Pi uptake is the H+-gradient across the plasma 

membrane generated by H+-ATPases (Bucher et al., 2001; Smith, F.W. et al., 2003). 

Plants contain two families of H+-coupled Pi transporters, Pht1 and Pht2 (Bucher et 

al., 2001; Bucher, 2007). Members of the Pht1 family are mainly high-affinity 

transporters which are thought to be responsible for the soil-to-plant transfer of P 

(Bucher et al., 2001; Mudge et al., 2002; Shin et al., 2004), whereas members of the 
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Pht2 family are mainly low-affinity transporters which are thought to be responsible 

for the root-to-shoot transfer of P (Bucher et al., 2001; Mudge et al., 2002). 

Medicago truncatula possesses both high and low affinity systems for P 

uptake. Two high affinity transporters MtPt1 and MtPt2 have been characterised in 

M. truncatula (Liu et al., 1998; Chiou et al., 2001). These transporters share 91.6% 

sequence identity and 98% protein identity. They are integral membrane proteins 

with 12 membrane-spanning domains and show high transcript levels under low P 

conditions. Both MtPt1 and MtPt2 are exclusively expressed in roots and their 

expression is induced in response to phosphate deprivation (Liu et al., 1998). 

However, the transcript level of MtPt2 is more responsive to P deprivation than the 

transcript level of MtPt1 (Liu et al., 1998). Western blot analysis revealed that the 

abundance of the MtPt1 protein mirrors the gene expression (Chiou et al., 2001) 

supporting the hypothesis that the phosphate starvation induced expression of the 

MtPt1 gene is at least partly controlled at the transcriptional level. Fusion of a green 

fluorescent protein (GFP) gene to the MtPt1 gene demonstrated that MtPt1 is located 

in the plasma membrane (Chiou et al., 2001). Furthermore, in situ hybridisation and 

immunolocalisation of MtPt1 showed that the transporter is specific to epidermal 

cells and root hairs (Chiou et al., 2001).  

 

3.1.3 Phosphorus transporters in mycorrhizal Medicago truncatula plants 

Many plants have developed another strategy to increase P uptake, a 

symbiotic association between fungi and plants called arbuscular mycorrhiza (AM). 

Fossil spores from the Ordovician which resemble spores of modern Glomus species 

(Redecker et al., 2000) and spores and vesicle like structures in early land plants 

from the Rhynie Chert in Scotland (Pirozynski and Malloch, 1975) suggest that an 

early form of the AM symbiosis evolved 450 million years ago and that the 

symbiosis was required for the colonisation of land by plants (Pirozynski and 

Malloch, 1975; Simon et al., 1993; Redecker et al., 2000; Schüßler et al., 2001; 

Bonfante and Genre, 2008). Within the symbiosis the fungi transport P to their host 

plants and gain carbohydrates in return (Harrison, 1997; Smith and Read, 2008). The 

acquisition of P from soil by AM fungi is significant because fungal hyphae can 

grow beyond the P depletion zone of host roots (Smith and Read, 2008). In some 

cases, AM colonisation can result in complete inactivation of the direct Pi uptake 

pathway via root hairs and epidermis and uptake of Pi then occurs solely via the 
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mycorrhizal pathway (Smith et al., 2003, 2004). Like plants, AM fungi have a low 

and a high affinity system for Pi uptake (Versaw et al., 2002). Within the fungal 

hyphae P is transported as polyphosphates. These are hydrolysed in arbuscules and Pi 

is transferred to the periarbuscular space (Javot et al., 2007). Plant transporters are 

responsible for the Pi uptake from the periarbuscular space (Karandashov and 

Bucher, 2005; Bucher, 2007). In M. truncatula a Pi transporter from the Pht1 family 

of plant Pi transporters MtPt4 has been characterised (Harrison et al., 2002). The 

sequence of MtPt4 is significantly different from other plant Pi transporters and the 

M. truncatula genome does not contain other closely related sequences. The MtPt4 

gene encodes a low affinity phosphate transporter that is exclusively expressed in 

mycorrhizal roots. Western blot analysis demonstrated increasing levels of MtPt4 

with increasing colonisation of roots with AM fungi and antibody staining confirmed 

that MtPt4 is located in the periarbuscular membrane (Harrison et al., 2002). 

Antibody staining suggested that the abundance of MtPt4 is coordinated with the life 

of arbuscules because the staining was strongest in mature arbuscules, decreased in 

degenerating arbuscules and was not detectable in young arbuscules (Harrison et al., 

2002). Expressed in yeast, MtPt4 showed maximum activity at pH4 (Harrison et al., 

2002) which is consistent with the acidic pH of the periarbuscular space 

(Guttenberger, 2000). Shoot P concentrations of M. truncatula RNAi lines lacking 

MtPt4 were not increased due to mycorrhizal colonisation in contrast to shoot P 

concentrations in wild type plants. This demonstrated that MtPt4 is responsible for Pi 

uptake in mycorrhizal roots of M. truncatula (Javot et al., 2007). Colonisation rates 

of RNAi lines lacking MtPt4 were significantly lower than of wild type plants. The 

loss of MtPt4 affected the development of the AM fungus Glomus versiforme within 

the root cells and the fungus did not develop extraradical hyphae (Javot et al., 2007). 

The absence of MtPt4 results in a block in Pi transfer from the arbuscule to the 

cortical cell which leads to premature death of arbuscules. The symbiosis is unable to 

develop further (Javot et al., 2007). These findings demonstrate that MtPt4 is 

responsible for Pi uptake in mycorrhizal roots which is in agreement with a down 

regulation of the expression of MtPt1 and MtPt2 during mycorrhizal colonisation 

(Liu et al., 1998; Versaw et al., 2002).  
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3.1.4 Phosphorus availability influences mycorrhizal colonisation 

In general, the amount of mycorrhizal colonisation decreases when nutrients 

are in high abundance (Parniske, 2008). In particular, increasing P availability and 

plant P status decrease colonisation of plant roots by AM fungi (Thomson et al., 

1986; Braunberger et al., 1991). The whole development of the symbiosis, in 

particular intraradical development of the fungus in the root cortex is reduced at high 

P supply (Javot et al., 2007). In addition, the growth of extraradical hyphae is 

reduced (Thomson et al., 1986). It was suggested that the lifespan of arbuscules is 

influenced by their ability to deliver Pi and probably other nutrients (Parniske, 2008). 

Plants appear to have the opportunity to maintain efficient arbuscules and to remove 

inefficient arbuscules by their early degradation. 

 

3.1.5 Aim 

The aim of this chapter was to determine the growth conditions required for 

successful colonisation of M. truncatula roots with Glomus sp. under in vitro 

conditions. Therefore, plants and fungi were grown in association on media 

containing different concentrations of P. The presence of mycorrhizal infection was 

judged by hyphal growth within the medium and by the development of new fungal 

spores. 

 

3.2 MATERIAL AND METHODS 

 

3.2.1 Organisms 

Medicago truncatula Gaertn. var. truncatula Jemalong A17 was chosen as 

the experimental plant. The seeds were obtained from the South Australian Research 

and Development Institute (SARDI), Genetic Resource Centre, Australia.  

The arbuscular mycorrhizal fungus Glomus sp. MUCL 43195 was used. The 

strain was obtained from the Glomeromycota In Vitro Collection (GINCO), Louvain-

la-Neuve, Belgium. This strain was collected in Ontario, Canada, from indigenous 

soil in a sand dune habitat from the host plant Ammophila breviligulata (Dalpé et al., 

1992).  
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3.2.2 Arbuscular Mycorrhizal–Plant (AM-P) in vitro culture system 

The Arbuscular Mycorrhizal–Plant (AM-P) in vitro culture system was first 

described by Dupré de Boulois et al. (2006). The culture system consists of two 

compartments: a shoot compartment where the plant shoots grow in a centrifuge tube 

and a root compartment where the plant roots and the fungal hyphae grow in a Petri 

dish (Figure 3.1). The system was built by making a hole of 5 mm diameter in the lid 

of a sealed Petri dish (Sterilin Limited, Caerphilly, UK) and by cutting the bottom of 

a centrifuge tube (Sarstedt Aktiengesellschaft and Co., Nümbrecht, Germany) at a 

slight angle. A hole of 10 mm diameter was made in the lid of the centrifuge tube. 

The centrifuge tube was glued on to the Petri dish with hot melting glue (Bosch 

11 x 200 mm, Metabowerke GmbH, Nürtingen, Germany) and an adhesive 

microfiltration disc (Tissue Quick Plant Laboratory, New Milton, UK) was placed 

over the hole in the lid of the centrifuge tube to allow gas exchange. The systems 

were then gamma-sterilised with a radiation dose of 25 kGy (Isotron plc, Swindon, 

UK).  

 
Figure 3.1: Arbuscular Mycorrhizal–Plant (AM-P) in vitro culture system to grow 
Medicago truncatula. Figure drawn by Ian Pitkethly, SCRI. 
 

3.2.3 Media composition 

Different growth media were used to grow Medicago truncatula in the AM-P 

in vitro culture system. One medium was modified Strullu-Romand (MSR) medium 

(Declerck et al., 1998, modified from Strullu and Romand, 1986; Table 3.1). The pH 

of the MSR medium was adjusted to 5.5 with NaOH and the MSR medium was 

solidified using 3 g l-1 Phytagel (Sigma Aldrich, St. Louis, MO, USA). Element 

analysis of Phytagel using ICP-MS showed that Phytagel contained 38 μM P which 

increased the absolute concentration of P in solidified MSR medium to 68 μM.  

Tube with Medicago truncatula shoot 
(shoot compartment) 

Petri dish with Medicago truncatula roots 
(root compartment) and fungal hyphae 

Lid with filter1 cm 
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Table 3.1: Element composition of modified Strullu-Romand (MSR) medium. 
component mM 
KNO3 0.752 
KCl 0.872 
KH2PO4 0.030 
Ca(NO3)2 . 4H2O 1.520 
MgSO4 . 7H2O 2.998 
NaFeEDTA 0.020 
  μM 
H3BO3 29.920 
ZnSO4 . 7H2O 0.974 
CuSO4 . 5H2O 0.961 
Na2MoO4 . 2H2O 0.009 
MnSO4 . H2O 11.005 
(NH4)6Mo7O24 . 4H2O 0.028 

 

Furthermore, variations of modified Hoagland’s medium (Hoagland and 

Arnon, 1938) were used. Two different K concentrations of 1 and 5 mM were 

combined with three different P concentrations of 10, 20 and 50 μM. The increased 

cation concentration in the medium containing 5 mM K was counterbalanced by 

reducing the Ca concentration from 9 mM to 5 mM. The basal medium was called 

MH (1K, 20P) and the element concentrations are given in Table 3.2. A summary of 

the MH media with different K, P and Ca concentrations is given in Table 3.3. The 

pH of the MH media was adjusted to 5.5 with NaOH and the MH media were 

solidified using 6 g l-1 agar because agar does not contain P (A1296, Sigma Aldrich, 

St. Louis, MO, USA).  

 
Table 3.2: Element composition of modified Hoagland’s (MH (1K, 20P)) medium. 
component mM 
KNO3 1 
Ca(NO3)2 . 4H2O 9 
MgSO4 . 7H2O 2 
NH4NO3 1 
NaFeEDTA 0.02 
  μM 
H3BO3 46.00 
ZnSO4 . 7H2O 0.77 
CuSO4 . 5H2O 0.32 
Na2MoO4 . 2H2O 0.50 
H3PO4 20.00 
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Table 3.3: Overview about the different MH media with K, P and Ca concentrations. 
The accompanying anion to adjust K and Ca concentrations was NO3

-. 
MH 1K, 10P 1K, 20P 1K, 50P 5K, 10P 5K, 20P 5K, 50P 
K [mM] 1 1 1 5 5 5 
P [μM] 10 20 50 10 20 50 
Ca [mM] 9 9 9 5 5 5 

 

3.2.4 Cultivation of Glomus sp. on modified carrot roots 

Since AM fungi are obligate symbionts they cannot be cultivated without a 

host plant (Chabaud et al., 2006). To obtain fungal spores to inoculate experimental 

plants, Glomus sp. was cultivated on modified carrot (Daucus carota L.) roots. These 

roots have a remarkable growth potential due to the transfer of root-inducing (Ri) 

plasmid genes of Agrobacterium rhizogenes to the plant (Mugnier and Mosse, 1987). 

This hairy root line was established by Bécard and Fortin (1988) and has become the 

most widespread host for monoxenic cultivation of AM fungi (Cranenbrouck et al., 

2005).  

The procedure for cultivating modified carrot roots is described in 

Cranenbrouck et al. (2005). Straight, white root apices were placed in sterile Petri 

plates containing MSR medium (Table 3.1). Since the roots were non autotrophic, 

29.21 mM sucrose (Sigma Aldrich, St. Louis, MO, USA) and 1.88 μM calcium 

panthothenate, 0.004 μM biotin, 8.1 μM nicotinic acid, 4.38 μM pyridoxine, 2.96 μM 

thiamine, 0.29 μM cyanocobalamine (Sigma Aldrich, St. Louis, MO, USA) were 

added to the MSR medium. The apices were cut from three-week old roots and 

transferred to fresh plates. Two roots orientated in opposite directions were placed in 

each plate and the apices were pushed gently into the medium with sterile forceps 

(Figure 3.2). The Petri plates were sealed with Parafilm (Sigma Aldrich, St. Louis, 

MO, USA) and incubated at 27°C in darkness. Because the roots have negative 

geotropism the plates were stored in an inverted position to enable root growth 

within the medium. The procedure was repeated every three weeks to have a 

continuous culture of modified carrot roots.  
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Figure 3.2: Picture of modified carrot roots grown on MSR medium with sucrose and 
vitamins. Two carrot roots are shown which had been transferred to the medium 
three days previously. 
 

The carrot roots were used for the cultivation of Glomus sp. The procedure 

for cultivating AM fungi on modified carrot roots is described in Cranenbrouck et al. 

(2005). One half of a split Petri dish was filled with MSR medium up to the height of 

the separating wall. The other half of the plate was filled with MSR medium 

containing sucrose and vitamins such that the medium formed a bulb (Figure 3.3). 

The side with MSR medium containing sucrose and vitamins served as the root 

compartment, where root and hyphal growth took place. The side with MSR medium 

served as the hyphal compartment, where only hyphal growth occurred. 

A two-week old carrot root of 7–8 cm length was placed on the MSR medium 

with sucrose and vitamins and the apex was pushed gently into the medium. Glomus 

spores were extracted from older culture plates for inoculation of the carrot roots. 

Therefore, a piece of medium containing spores was cut out with a sterile scalpel and 

placed into an empty Petri dish. The gel was cut into small pieces and a citrate buffer 

containing 1.8 mM citric acid and 8.2 mM sodium citrate was added to dissolve the 

agar. The buffer was added to the gel by sterile filtration (Acrodisc Syringe Filter, 

25 mm, 0.2 μm Supor membrane, Pall Corporation, Ann Arbor, MI, USA). After 

dissolution of the gel the spores were collected with a pipette (20–200 μl, Eppendorf 

UK Limited, Cambridge, UK) under a binocular microscope and then transferred to 

sterile distilled water. Afterwards, around 70–100 spores were placed on to the carrot 

root. The plates were incubated at 27°C in darkness in an inverted position. When 

successful infection took place the fungal hyphae crossed the wall and grew into the 

MSR medium because the fungus preferred sugar free medium for growth of 

extraradical mycelium. Root growth was repressed in the hyphal compartment by 
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cutting the root tips which crossed the wall. After a couple of months the fungus 

produced new spores (Figure 3.4). 

 

 
Figure 3.3: Split Petri dish with MSR medium containing sucrose and vitamins as the 
root compartment on one side and MSR medium as the hyphal compartment on the 
other side. 
 

 
Figure 3.4: Picture of colonised modified carrot roots and newly developed Glomus 
sp. spores. The spores are formed on the extraradical mycelium of Glomus sp. that 
grows in the hyphal compartment (Figure 3.3). 
 

3.2.5 Experimental setup 

Medicago truncatula was grown under in vitro conditions with or without the 

symbiont Glomus sp. To sterilise the Medicago seeds they were washed with sodium 

hypochlorite solution (VWR International Ltd., Poole, UK) for 12 min followed by 

several washing steps with sterilised distilled water. The seeds were then placed on 

media under sterile conditions using sterile forceps. Seed germination occurred at 

27°C in darkness. Four days later plates containing the seedlings were transferred to 

a growth cabinet held at 22°C with 16 h light and 8 h darkness and the seedlings 

were allowed to develop for three days. Seedlings whose roots had been growing 

inside the media, whose roots were at least 3–5 cm long and which had dark green 

cotyledons were chosen for the experiments.  

The seedlings were placed into AM-P in vitro culture systems such that the 

shoots could develop in the shoot compartment and the roots would grow on medium 

MSR medium with sucrose and 
vitamins (root compartment) 

MSR medium 
(hyphal compartment) 
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in the root compartment (Figure 3.1). Therefore the in vitro system was opened in a 

laminar flow cabinet and a Petri dish filled with medium was placed under the lid. 

Using sterile forceps the shoot of a plant seedling was pushed carefully through the 

hole in the lid of the Petri dish into the centrifuge tube. The root was placed on the 

medium and the apex was pushed gently into the medium. For the mycorrhizal plants 

at least 50 Glomus spores per plant were added to the roots using a pipette. The 

systems were sealed with Parafilm. 

 

3.2.5.1 Growth of Medicago truncatula plants on MSR medium 

Medicago truncatula plants were grown on MSR medium (Table 3.1). Half of 

the plants were inoculated with Glomus sp. spores and the remaining plants were 

used as non mycorrhizal controls. The plants were grown for six weeks in a growth 

cabinet with a photoperiod of 16 h light and 8 h darkness and a constant temperature 

of 22°C. The light intensity was between 125 and 200 μmol m-2 s-1. The experiment 

was performed four times with more than ten replicates in each treatment. 

 

3.2.5.2 Growth of Medicago truncatula plants on MH media 

Medicago truncatula plants were grown on MH media (Tables 3.2, 3.3). On 

MH (1K, 20P) 12 plants were grown as non mycorrhizal controls and 18 plants were 

inoculated with Glomus sp. spores. On MH (1K, 10P) and MH (1K, 50P) 18 plants 

were grown as non mycorrhizal controls and 12 plants were inoculated with Glomus 

sp. spores. On MH (5K, 10P) and MH (5K, 20P) 8 plants were grown as non 

mycorrhizal controls and 12 plants were inoculated with Glomus sp. spores. On MH 

(5K, 50P) 15 plants were grown as non mycorrhizal controls and 5 plants were 

inoculated with Glomus sp. spores. The plants were grown in a growth cabinet with a 

photoperiod of 16 h light and 8 h darkness and a constant temperature of 22°C. The 

light intensity for plants grown on MH media containing 1 mM K was around 

350 μmol m-2 s-1. The light intensity for plants grown on MH media containing 

5 mM K was around 125 μmol m-2 s-1. The reason for the different light intensities 

was that only one growth cabinet fitted with light bulbs with a capacity of 

350 μmol m-2 s-1 was available. One uninoculated plant of each treatment was 

harvested after six weeks. All survived uninoculated plants and plants inoculated 

with Glomus sp. were harvested after nine weeks. Shoots were separated from roots 

and the roots were gently pulled out of the solidified medium and washed in sterile 
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distilled water. Shoots of all replicates and roots of all replicates were combined for 

each treatment and oven dried at 40–50°C for several days. 

 

3.2.6 Investigation of mycorrhizal colonisation 

The presence of extraradical mycelium and fungal spores was determined six, 

seven, eight and nine weeks after inoculation using a binocular microscope 

(Olympus UK Ltd., Watford, UK). Because arbuscular mycorrhiza is an obligate 

symbiosis (Smith and Read, 2008) the fungi can only develop new spores when 

mycorrhizal colonisation is successful. Plants were determined as mycorrhizal when 

newly produced spores were present.  

 

3.2.7 Determining of elemental concentrations 

Element concentrations were determined in plant roots and shoots using ICP-

MS as described in Section 2.2.5. The measurements were undertaken without any 

tomato leaves standards. Therefore, no drift correction was performed.   

 

3.3 RESULTS 

 

3.3.1 No mycorrhizal infection of Medicago truncatula on MSR medium 

Medicago truncatula was grown in the presence or absence of Glomus sp. on 

MSR medium. The experiment was performed four times with more than ten 

replicates in each treatment. After six weeks the plant roots were observed for 

mycorrhizal colonisation using a binocular microscope. Although plant growth was 

successful no mycorrhizal infection occurred. No hyphal growth within the medium 

or development of new spores could be detected. Some spores of Glomus sp. 

germinated but hyphal growth was not directed towards the plant roots.  

 

3.3.2 Mycorrhizal infection of Medicago truncatula on MH media 

Medicago truncatula was grown in the presence or absence of Glomus sp. on 

MH media. Mycorrhizal infection was investigated six, seven, eight and nine weeks 

after inoculation. All plants grown on MH (1K, 10P) and MH (1K, 20P) media 

showed branching hyphae and development of new spores after eight weeks but the 

amounts of hyphae and spores were not quantified. More spores had been produced 

after nine weeks. Two plants grown on MH (1K, 50P) medium showed hyphal 
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branching after nine weeks of growth but no development of new spores. The 

remaining plants grown on MH (1K, 50P) medium did not shown signs of 

mycorrhizal infection. None of the plants grown on MH media containing 5 mM K 

showed mycorrhizal infection irrespective of the P concentration in the media.  

 

3.3.3 Phosphorus concentrations in Medicago truncatula on MH media 

Phosphorus concentrations in roots and shoots of six-week old uninoculated 

M. truncatula plants grown on MH (1K, 10P), MH (1K, 20P), MH (1K, 50P), MH 

(5K, 10P), MH (5K, 20P) and MH (5K, 50P) media are shown in Figure 3.5.  

The amount of K in the media did not seem to have an effect on P 

concentrations in shoots of M. truncatula plants. Since only one plant was 

investigated for each treatment no conclusion could be drawn whether external K 

supply affected P concentrations in roots of plants grown with an external P supply 

of 50 μM P. Plants grown on media with 50 μM P had higher P concentrations in 

their shoots than plants grown on media with 10 or 20 μM P. 

Phosphorus concentrations in roots and shoots of nine-week old inoculated 

and uninoculated M. truncatula plants grown on MH (1K, 10P), MH (1K, 20P) and 

MH (1K, 50P) are shown in Figure 3.6. Mycorrhizal infection seemed to increase the 

P concentrations in plants grown on media with 10 μM P. No increase in P 

concentrations in shoots seemed to occur due to mycorrhizal colonisation in plants 

grown on media with 20 μM P. None of the plants grown on media with 50 μM P 

were colonised by Glomus sp.  
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Figure 3.5: Phosphorus concentrations [mg g-1 DW] in roots and shoots of six-week 
old Medicago truncatula plants (n = 1) grown on MH (1K, 10P), MH (1K, 20P), MH 
(1K, 50P), MH (5K, 10P), MH (5K, 20P) and MH (5K, 50P) media.  
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Figure 3.6: Phosphorus concentrations [mg g-1 DW] in roots and shoots (n = 1) of 
nine-week old inoculated and uninoculated Medicago truncatula plants grown on 
MH (1K, 10P), MH (1K, 20P) and MH (1K, 50P). Inoculated plants grown on MH 
(1K, 10P) and MH (1K, 20P) were mycorrhizal whereas inoculated plants grown on 
MH (1K, 50P) were not infected by Glomus sp. 
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3.4 DISCUSSION 

An Arbuscular Mycorrhizal–Plant (AM-P) in vitro culture system to grow 

mycorrhizal Medicago truncatula plants for investigating ion transport by 

mycorrhizal fungi and accumulation by plants was developed by Dupré de Boulois et 

al. (2006). The in vitro system with MSR medium as growth medium (Declerck et 

al., 1998) was successfully applied to study transport of radiocaesium by mycorrhizal 

fungi to their host plant M. truncatula (Dupré de Boulois et al., 2006) and to 

investigate the influence of potassium (K) and phosphorus (P) on radiocaesium 

transport (Gyuricza et al., 2010a). Nevertheless, when M. truncatula was grown on 

MSR medium in association with Glomus sp. in the experiment presented here no 

mycorrhizal colonisation occurred although the plants grew well. The total P 

concentration in solidified MSR medium was 68 μM. Furthermore, when M. 

truncatula was grown on MH (1K, 50P) medium with a total concentration of 50 μM 

P no mycorrhizal infection occurred. Successful mycorrhizal colonisation of plants 

depends on several factors. One of the key factors is the availability of P. Since 

improved P uptake is the main benefit of the AM symbiosis (Parniske, 2008; Smith 

and Read, 2008) high P availability to plants influences colonisation with AM fungi 

(Thomson et al., 1986; Braunberger et al., 1991). The percentage of root length 

colonised by AM fungi of maize (Zea mays) and Trifolium subterraneum plants was 

reduced when the plants were supplied with high external P concentrations 

(Thomson et al., 1986; Braunberger et al., 1991). No depletion of P was detected in 

the hyphal compartment by external hyphae of G. intraradices when mycorrhizal 

roots were supplied with high concentrations of P (Versaw et al., 2002). However, 

since roots and hyphae had access to the high P supply in the root compartment the 

hyphae growing in the root compartment could have transported P to their hosts. 

Furthermore, P is transported bidirectional in external hyphae which could be one of 

the reasons that no P depletion was detected in the hyphal compartment. Therefore, 

the experiment conducted by Versaw et al. (2002) does not necessarily lead to the 

conclusion that mycorrhiza do not transport P to their host plants when P supply is 

high. When M. truncatula was grown on MH (1K, 10P) and MH (1K, 20P) media, 

with lower P concentrations of 10 μM and 20 μM P respectively, the plants were 

successfully infected with Glomus sp.  

By contrast, the AM symbiosis was not developed when M. truncatula was 

grown on MH media containing 5 mM K even when the P concentration was low 
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(MH (5K, 10P) and MH (5K, 20P)). There could be at least two reasons for this. 

First, the AM association might be restricted by high K availability. Second, plants 

on MH media containing 5 mM K were grown under a light intensity of around 

125 μmol m-2 s-1 whereas plants on MH media containing 1 mM K were grown under 

a light intensity of around 350 μmol m-2 s-1. It seemed that increasing the K 

concentrations in the media did not influence the P concentrations in roots and shoots 

of non mycorrhizal M. truncatula plants (Figure 3.5). Additionally, increasing K 

supply did not alter mycorrhizal colonisation rate of M. truncatula (Gyuricza et al., 

2010a). Therefore a negative influence on mycorrhizal colonisation due to increased 

K supply seems unlikely. In an established symbiosis plants deliver carbohydrates to 

the fungal partners (Harrison, 1997; Smith and Read, 2008) and thus, functioning of 

the mycorrhizal symbiosis is dependent on photosynthetic activity of the host plants 

(Azcón-Aguilar and Bago, 1994). Fungi need energy to take up nutrients from soil. 

Therefore, the more effective the fungus is in nutrient uptake, the higher becomes the 

demand for carbohydrates (Azcón-Aguilar and Bago, 1994). Thus, a reduction in 

root carbohydrate availability leads to reduced mycorrhizal functioning. Bücking and 

Shachar-Hill (2005) supplied carbohydrates to mycorrhizal modified carrot roots and 

showed that the carbon supply promoted fungal development and resulted in 

increased P uptake by the fungus and increased transfer of P to the roots. A few 

publications exist that report the influence of different light intensities on 

mycorrhizal infection and functioning (Hayman, 1974; Tester et al., 1986; Son and 

Smith, 1988; Smith and Gianinazzi-Pearson, 1990). The development of arbuscules 

in mycorrhizal roots of onion plants (Allium cepa) did not differ when plants were 

grown under light intensities of 190 or 410 μmol m-2 s-1 irrespective of P supply 

(Smith and Gianinazzi-Pearson, 1990). By contrast, when grown at low P supply the 

fraction of root length infected in mycorrhizal onion plants (Son and Smith, 1988) 

and in mycorrhizal Trifolium plants (Tester et al., 1986) was lower at low irradiance 

of 250 or 100 μmol m-2 s-1, respectively, than at high irradiance of 600 or 

450 μmol m-2 s-1, respectively, due to a lower rate of formation of entry points from 

the fungus. Although mycorrhizal colonisation was never suppressed due to low 

irradiance (Hayman, 1974; Tester et al., 1986; Son and Smith, 1988; Smith and 

Gianinazzi-Pearson, 1990), low light intensities during the growth period of M. 

truncatula in the experiment reported here, in combination with other, unknown 

factors, might have inhibited mycorrhizal colonisation. Judging mycorrhizal 
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colonisation by the development of new spores, no conclusion can be drawn about 

the formation of arbuscules within the roots. Light conditions commonly observed in 

natural habitats of M. truncatula are up to 1500 μmol m-2 s-1 and, to avoid carbon 

limitations, M. truncatula needs light intensities above 300 μmol m-2 s-1 (Barker et 

al., 2006). If the plants grown on MH media containing 5 mM K under a light 

intensity of around 125 μmol m-2 s-1 experienced carbon limitation this could have 

had an influence on mycorrhizal colonisation due to a shortage of photosynthetic 

products.  

Based on these observations it was decided to perform all subsequent 

experiments involving mycorrhizal M. truncatula plants on MH media containing 

20 μM P in a growth cabinet with a light intensity of around 350 μmol m-2 s-1. The 

reason to use MH media containing 20 μM P instead of MH media containing 10 μM 

P was that mycorrhizal colonisation increased P concentrations in plants grown on 

MH media containing 10 μM P (Figure 3.6). However, mycorrhizal colonisation did 

not seem to affect P concentrations in shoots of plants grown on MH media 

containing 20 μM P (Figure 3.6). For subsequent experiments an influence of AM 

fungi on P concentrations in M. truncatula plants was not desired. 

Finally, the process of root-colonisation by the fungus involves complex 

interactions between fungal hyphae and plant root cells (Harrison and Dixon, 1993; 

Bonfante and Perotto, 1995). Several plant and fungal genes and signal molecules are 

involved in the process (for review see Parniske, 2008). No general conclusion can 

be drawn on how long it takes for the symbiosis to develop since many factors 

influence the process. Therefore, based on the observation that spore production of 

Glomus sp. began after eight weeks of growth under in vitro conditions it was 

decided to grow the plants for nine weeks in subsequent experiments to allow 

sufficient time for the symbiosis of M. truncatula with Glomus sp. to develop.  

 

3.5 CONCLUSIONS 

• Mycorrhizal colonisation of Medicago truncatula roots under in vitro 

conditions requires low external P supply and sufficient light intensities 

• Experimental conditions to study mycorrhizal infection of M. truncatula 

plants were adequate with plant growth on MH medium containing 20 μM P 

in a growth cabinet with a light intensity of around 350 μmol m-2 s-1 and a 

growth duration of nine weeks 
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Chapter 4 

Caesium toxicity in Medicago truncatula 
 

4.1 INTRODUCTION 

 

4.1.1 Caesium in the environment 

Caesium is an alkali metal and is the most electropositive and active of all 

metals (Avery, 1995). The only stable isotope is 133Cs and its mineral source is 

pollucite (Davis, 1963; Coughtrey and Thorne, 1983). Caesium occurs in soil as a 

monovalent cation and is retained in the upper soil layers because it is strongly 

adsorbed to clay minerals (Davis, 1963; Coughtrey and Thorne, 1983). Soils contain 

between 0.3 and 25 µg Cs g-1 which is non toxic to plants (Davis, 1963; Coughtrey 

and Thorne, 1983; Avery, 1995; White and Broadley, 2000). However, human 

activities, such as accidents at nuclear power plants and radioactive fallout from 

nuclear weapons tests, have led to radiocaesium contaminations of soil worldwide. 

The two most common radionuclides of Cs are 134Cs and 137Cs (U.S. Environmental 

Protection Agency). Although their concentrations in soil are six orders of 

magnitudes lower than of 133Cs, these isotopes are of environmental concern because 

of their long half-lives (134Cs = 2.06 years, 137Cs = 30.17 years) and the emission of 

harmful β and γ radiation during decay (White and Broadley, 2000). Radiocaesium 

enters the food chain through vegetation and therefore has an impact on human 

health. 

 

4.1.2 Uptake and transport of caesium in plants 

Caesium is chemically similar to K. The ionic radii of K and Cs are 133 and 

165 pm respectively and are sufficiently similar that K+ transport proteins are mainly 

responsible for Cs+ uptake by plants (Avery, 1995; White and Broadley, 2000). Early 

studies on uptake and accumulation of Cs by plants showed that the uptake of Cs 

depends on the availability of K (reviewed by Davis, 1963; Coughtrey and Thorne, 

1983). If K is available the uptake of Cs is low but reduced K availability increases 

Cs uptake.  

Based on studies investigating Cs uptake from nutrient solutions, White and 

Broadley (2000) modelled mechanisms of Cs uptake by plants under K-replete 
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conditions. They proposed that, independent of the external Cs concentration, most 

of the influx of Cs+ into root cells is maintained by voltage insensitive cation 

channels (VICCs). Furthermore, K+/H+ symporters (KUPs) also transport Cs+ into 

root cells and outward rectifying K channels (KORCs) are responsible for loading 

Cs+ into the xylem (Figure 2.1; White and Broadley, 2000). The expression of genes 

encoding these transporters is dependent on the K status of plants. Potassium 

starvation increases the expression of K+/H+ symporters in plants (Hampton et al., 

2004, 2005). Therefore, under K-deficient conditions, more Cs+ is transported by 

K+/H+ symporters and the concentration of Cs in plant shoots increases (Hampton et 

al., 2004, 2005). 

Several studies showed close correlations between plant 133Cs and plant 137Cs 

concentrations (Coughtrey and Thorne, 1983; Tsukada and Hasegawa, 2002; 

Tsukada et al., 2002; Salt et al., 2004; Soudek et al., 2006). Furthermore, it was 

demonstrated that the distribution of 133Cs in polished rice was similar to the 

distribution of 137Cs (Tsukada et al., 2002). Since plants do not appear to 

discriminate between 133Cs and 137Cs, 133Cs can be used to predict behaviour of 137Cs 

in the environment (Tsukada et al., 2002; Salt et al., 2004; Uchida et al., 2009). 

Based on these observations it was decided to use 133Cs to investigate Cs 

accumulation of Medicago truncatula. 

 

4.1.3 Aim 

The aim of this chapter was to determine non toxic Cs concentrations for 

growth of Medicago truncatula under K-deficient and K-replete conditions. 

Therefore, M. truncatula was grown under in vitro conditions on a complete nutrient 

medium containing either 1.65 or 21.65 mM K. The plants were supplied with 

increasing concentrations of CsCl and the effects of Cs on plant growth and mineral 

composition of plants were investigated.  

 

4.2 MATERIAL AND METHODS 

 

4.2.1 Organisms 

Medicago truncatula Gaertn. var. truncatula Jemalong A17 was chosen as 

the experimental plant. The seeds were obtained from the South Australian Research 

and Development Institute (SARDI), Genetic Resource Centre, Australia.  
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4.2.2 Growth conditions 

The non mycorrhizal plants were grown in the Arbuscular Mycorrhizal–Plant 

(AM-P) in vitro culture system (Sections 3.2.2 and 3.2.5). The plants were grown on 

MSR medium (Table 3.1) with a concentration of 1.65 mM K. Additionally, plants 

were grown on MSR medium with an addition of 20 mM KCl (MSR+K medium) 

resulting in a total K concentration of 21.65 mM.  

To investigate Cs toxicity the plants were supplied with increasing 

concentrations of CsCl. Plants which were grown on MSR medium containing 

1.65 mM K were supplied with 0, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.15, 0.3, 1 

and 3 mM of CsCl. Plants which were grown on MSR+K medium containing 

21.65 mM K were supplied with 0, 0.003, 0.01, 0.03, 0.1, 0.15, 0.3, 1, 1.5 and 3 mM 

of CsCl. Six plants were grown for each treatment. The plants were grown for six 

weeks in a growth cabinet with a photoperiod of 16 h light and 8 h darkness and a 

constant temperature of 22°C. The light intensity was between 125 and 

200 μmol m-2 s-1. Plant height was measured from the cotyledons to the tip of the 

highest leaf. 

 

4.2.3 Determining of elemental concentrations 

Element concentrations were determined in plant roots and shoots using ICP-

MS, as described in Section 2.2.5. The measurements were undertaken without any 

tomato leaves standards. Therefore, no drift correction was performed.   

 

4.2.4 Statistical analysis 

For determination of the influence of increasing external Cs supply on plant 

growth and mineral composition in plant tissues regression analyses were performed 

using GenStat (12th Edition, VSN International, Hemel Hempstead, UK). For some 

analyses the values of the external Cs concentration were log transformed to the base 

10 to fit generalised logistic and exponential models. To investigate the effect of 

external Cs supply on plant growth a generalised logistic curve was fitted with the 

equation  

y = α + γ / (1 + τ × exp(-β × (x - μ)))1/τ + ε  

The parameters α and γ define the asymptotes, τ is a power-law parameter, β is the 

slope parameter and μ is the point of inflexion for the explanatory variable. To 
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investigate the effect of external Cs supply on the concentrations of Ca, K and Mg in 

plants exponential curves were fitted with the equation  

y = α + β × ρx + ε 

The parameter α defines the asymptote, β gives the range of the curve between the 

value at x equals zero and the asymptote and ρ shows the rate of exponential 

decrease. To investigate the effect of external Cs supply on the concentration of Cs in 

plants linear regression was performed with the equation 

y = α × x 

The parameter α defines the slope of the line. A linear regression was performed 

because Cs accumulation in plant tissues was measured after six weeks of growth 

and toxic external Cs concentrations were excluded from the analysis. 

 

4.3 RESULTS 

 

4.3.1 Plant growth 

Medicago truncatula was grown in the Arbuscular Mycorrhizal–Plant 

(AM-P) in vitro culture system for six weeks (Figure 4.1). Potassium concentrations 

in the medium were either 1.65 mM (MSR) or 21.65 mM (MSR+K). The different K 

concentrations in the media led to differences in K concentration and K content of 

the plants when Cs supply was low (Figure 4.2). Plants which had been grown on 

MSR medium with the lower K concentration of 1.65 mM had a nearly constant K 

content in their leaves independent of leaf mass (Figure 4.2A) but the leaf K 

concentration decreased with increasing leaf mass (Figure 4.2B). By contrast, plants 

which had been grown on MSR+K medium with the higher K concentration of 

21.65 mM had increasing K contents in their leaves with increasing leaf mass 

(Figure 4.2A) but the leaf K concentration remained constant independent of leaf 

mass (Figure 4.2B). 
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Figure 4.1: Six-week old Medicago truncatula plant on MSR medium in an AM-P in 
vitro culture system. 
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Figure 4.2: Potassium content (A) and K concentration (B) in leaves of single 
Medicago truncatula plants in relation to fresh leaf mass of plants which had been 
grown on MSR medium (grey) or MSR+K medium (black). Only plants which had 
been grown on medium with Cs concentrations ≤0.1 mM were included. The 
relationships between leaf K concentrations or K content versus leaf mass were fitted 
to the equation for straight lines. 
 

For the Cs toxicity experiments the Cs concentrations in the MSR and 

MSR+K media varied between 0.0001 and 3 mM. High external Cs supply inhibited 

growth of M. truncatula and also affected the health of the plants (Figure 4.3), at 

both K concentrations of 1.65 and 21.65 mM. Figure 4.4 shows a M. truncatula plant 

under Cs toxicity. Shoot and root growth was suppressed and most of the leaves 

showed necrosis.  
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Figure 4.3: Medicago truncatula plants on MSR medium containing 0.15 mM, 
0.3 mM, 1 mM or 3 mM CsCl. Increasing Cs concentrations inhibited plant growth 
and led to the death of plants at Cs concentrations of ≥1 mM.  
 

 

Figure 4.4: Medicago truncatula plant on MSR+K medium containing 1 mM CsCl. 
Shoot and root growth was inhibited and the leaves showed necrosis due to Cs 
toxicity. 

 

The inhibitory effect of increasing concentrations of external Cs supply on 

plant growth was dependent on the external K supply. The relationship between plant 

height and external Cs concentration fitted the equation of generalised logistic curves 

(Table 4.1). Plant height decreased with increasing Cs supply (Figure 4.5) and plants 

that were grown on MSR medium were more sensitive to Cs toxicity than plants that 

were grown on MSR+K medium. Plant height decreased as the external Cs 

0.15 mM Cs 0.3 mM Cs 1 mM Cs 3 mM Cs
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concentration increased above 0.15 mM in the presence of 1.65 mM K, or above 

0.3 mM in the presence of 21.65 mM K. Furthermore, plants died at an external Cs 

concentration of 1 mM in the presence of 1.65 mM K, or at 3 mM in the presence of 

21.65 mM K.  
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Figure 4.5: Plant height in relation to external Cs concentrations for plants with an 
external K supply of 1.65 mM (grey) or 21.65 mM (black). Data show mean values 
and 95% confidence intervals (n = 6). The relationship between plant heights versus 
external Cs supply was fitted to generalised logistic curves. The parameters for these 
equations are given in Table 4.1.  
 

Table 4.1: Parameters for the regression lines in Figure 4.5. The relationship between 
plant height [cm] and external Cs supply [mM] was fitted to generalised logistic 
curves: y = α + γ / (1 + τ × exp(-β × (x - μ)))1/τ + ε. 
Relationship Parameter Estimate 

β -11.01 
μ -0.58 
τ 1.91 
γ 12.24 

Plant height versus 
external [Cs] at  
1.65 mM [K] 

α -0.22 
β -69.70 
μ -0.51 
τ 19.00 
γ 12.00 

Plant height versus 
external [Cs] at 
21.65 mM [K] 

α -0.18 
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4.3.2 Caesium accumulation in Medicago truncatula plants dependent on K 

status 

Caesium concentrations in roots and shoots increased with increasing external 

Cs supply. Generally, Cs concentrations in shoots were higher than in roots. Caesium 

concentrations in shoots were higher when plants were grown on medium containing 

1.65 mM K than when plants were grown on medium containing 21.65 mM K at the 

same Cs supply and the rate of increase in Cs shoot concentrations with external Cs 

supply differed significantly between plants on 1.65 mM K medium and plants on 

21.65 mM K medium (p <0.001; Figure 4.6). Therefore, higher external K supply 

reduced the accumulation of Cs in shoots.  

In contrast to shoot Cs concentrations, root Cs concentrations were lower 

when plants were grown at 1.65 mM K than when plants were grown at 21.65 mM K 

at the same Cs supply and the rate of increase in Cs root concentrations with external 

Cs supply differed significantly between plants on 1.65 mM K medium and plants on 

21.65 mM K medium (p <0.001; Figure 4.6). 
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Figure 4.6: Caesium concentrations in shoots in relation to external Cs supply for 
plants with an external K supply of 1.65 mM (grey) or 21.65 mM (black). Data show 
mean values and 95% confidence intervals (n = 6). The relationships between shoot 
Cs concentrations versus external Cs supply were fitted to the equation for straight 
lines.  
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Figure 4.7: Caesium concentrations in roots in relation to external Cs supply for 
plants with an external K supply of 1.65 mM (grey) or 21.65 mM (black). Data show 
mean values and 95% confidence intervals (n = 6). The relationships between root Cs 
concentrations versus external Cs supply were fitted to the equation for straight lines.  
 

4.3.3 Mineral accumulation in Medicago truncatula plants dependent on K and 

Cs status 

Potassium concentrations in roots and shoots decreased with increasing 

external Cs supply. The relationships between K concentrations in shoots and 

external Cs concentrations fitted the equation of negative exponential curves 

(Table 4.2). Generally, plants which were grown on MSR+K medium with a K 

concentration of 21.65 mM had higher K concentrations in shoots than plants which 

were grown on MSR medium with a K concentration of 1.65 mM (Figure 4.8). 

However, the rate of change of K concentrations in shoots in relation to external Cs 

supply did not differ significantly in dependence on external K supply (Parameter β 

in Table 4.2).  

Calcium and magnesium concentrations in shoots decreased with increasing 

external Cs supply. The relationships between Ca or Mg concentrations in shoots and 

external Cs concentration fitted the equations of negative exponential curves 

(Table 4.2). Under low external Cs supply plants which were grown on MSR+K 

medium with a K concentration of 21.65 mM had lower Ca and Mg concentrations in 

shoots than plants which were grown on MSR medium with a K concentration of 

1.65 mM (Figures 4.9 and 4.10). The rates of change of Ca and Mg concentrations in 
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shoots in relation to external Cs supply differed significantly (p <0.001) in 

dependence on external K supply (Parameters β in Table 4.2).  
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Figure 4.8: Potassium concentrations in shoots in relation to external Cs supply for 
plants with an external K supply of 1.65 mM (gr3y) or 21.65 mM (black). Data show 
mean values and 95% confidence intervals (n = 6). The relationships between shoot 
K concentrations versus external Cs supply were fitted to exponential curves. The 
parameters for these equations are given in Table 4.2. 
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Figure 4.9: Calcium concentrations in shoots in relation to external Cs supply for 
plants with an external K supply of 1.65 mM (grey) or 21.65 mM (black). Data show 
mean values and 95% confidence intervals (n = 6). The relationships between shoot 
Ca concentrations versus external Cs supply were fitted to exponential curves. The 
parameters for these equations are given in Table 4.2. 
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Figure 4.10: Magnesium concentrations in shoots in relation to external Cs supply for 
plants with an external K supply of 1.65 mM (grey) or 21.65 mM (black). Data show 
mean values and 95% confidence intervals (n = 6). The relationships between shoot 
Mg concentrations versus external Cs supply were fitted to exponential curves. The 
parameters for these equations are given in Table 4.2. 
 
Table 4.2: Parameters for the regression lines in Figures 4.8, 4.9 and 4.10. The 
relationships between [K]shoot [mg g-1 DW] (Figure 4.8), [Ca]shoot [mg g-1 DW] 
(Figure 4.9) and [Mg]shoot [mg g-1 DW] (Figure 4.10) with external Cs supply [mM] 
were fitted to exponential curves: y = α + β × ρx + ε . 
Relationship Parameter Estimate 

α  59.65 
β -38.72 

[K]shoot versus external 
[Cs] at 1.65 mM [K] 

ρ 3.04 
α  85.65 
β -38.72 

[K]shoot versus external 
[Cs] at 21.65 mM [K] 

ρ 3.04 
α  13.13 
β -9.67 

[Ca]shoot versus external 
[Cs] at 1.65 mM [K] 

ρ 2.44 
α  6.51 
β -1.99 

[Ca]shoot versus external 
[Cs] at 21.65 mM [K] 

ρ 2.44 
α  35.98 
β -22.34 

[Mg]shoot versus external 
[Cs] at 1.65 mM [K] 

ρ 4.69 
α  19.12 
β -3.44 

[Mg]shoot versus external 
[Cs] at 21.65 mM [K] 

ρ 4.69 
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There was no relationship between fresh weights (FWs) of shoots and shoot 

Cs concentrations for plants grown with either 1.65 or 21.65 mM external K supply 

(Figure 4.11). However, shoot FW was inversely related to Csshoot:Kshoot ratios for 

both plants grown with 1.65 or 21.65 mM external K supply (Figure 4.12). 
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Figure 4.11: Fresh weights of shoots in relation to shoot Cs concentrations for plants 
with an external K supply of 1.65 mM (grey) or 21.65 mM (black). Data show mean 
values and 95% confidence intervals (n = 6). 
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Figure 4.12: Fresh weights of shoots in relation to Csshoot:Kshoot ratios for plants with 
an external K supply of 1.65 mM (grey) or 21.65 mM (black). Data show mean 
values and 95% confidence intervals (n = 6). The relationships between FWs versus 
Csshoot:Kshoot ratios were fitted to the equation for straight lines. 
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4.4 DISCUSSION 

High concentrations of Cs are toxic for plants (Hampton et al., 2004; Isaure et 

al., 2006). Toxicity symptoms include reduced shoot and root growth and necrosis of 

plant tissues (White and Broadley, 2000). In Arabidopsis thaliana, 1 mM Cs stress 

reduced the concentrations of chlorophyll a and b in cells which had been grown in 

medium without any K salts (Le Lay et al., 2006). Furthermore, synchrotron-based 

X-ray fluorescence microscopy suggested that Cs was located in chloroplasts (Le 

Lay et al., 2006). In this study, caesium toxicity induced necrosis of leaves in 

Medicago truncatula (Figure 4.4). Additionally, plant height decreased at Cs 

concentrations higher than 0.15 mM Cs in the presence of 1.65 mM K in the medium 

and at Cs concentrations higher than 0.3 mM Cs in the presence of 21.65 mM K in 

the medium (Figure 4.5). Caesium concentrations of 1 and 3 mM caused death of 

plants which had been grown in the presence of 1.65 and 21.65 mM K, respectively. 

However, soils contain between 0.3 and 25 μg Cs g-1 (Davis, 1963; Coughtrey and 

Thorne, 1983) and the concentration of K in most soil solutions lies between 0.1 and 

1 mM (White and Karley, 2010). Therefore, Cs is not toxic to plants in natural 

environments.  

Medicago truncatula accumulated Cs in roots and shoots. Generally, Cs 

concentrations in shoots were higher than in roots. The accumulation of Cs was 

dependent on the external Cs and K supply. Concentrations of Cs in plant shoots 

increased linearly with increasing Cs supply at both external K concentrations 

(Figure 4.6). Sacchi et al. (1997) measured Cs+ influx into roots after 30 min of 

exposure to Cs, resulting in a non linear relationship of Cs+ influx and external Cs 

concentrations >0.1 mM. However, Cs concentrations in plant tissues in the 

experiment reported here were determined after six weeks of growth leading to a 

linear relationship of Cs concentrations in plants and external Cs supply (Figure 4.6). 

Increasing K availability in the medium decreased Cs concentrations in 

shoots (Figure 4.6). This is in agreement with other studies which showed that 

increasing K availability decreases Cs accumulation in plant shoots (Nishita et al., 

1962; Davis, 1963; Smolders et al., 1996; Zhu et al., 2000, 2002; Tsukada and 

Hasegawa, 2002; Hampton et al., 2004; Le Lay et al., 2006). By contrast, Cs 

concentrations in roots of plants which had been grown in the presence of 21.65 mM 

K were higher than Cs concentrations in roots of plants which had been grown in the 

presence of 1.65 mM K. Potassium availability influenced Cs concentrations in roots 
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differently than Cs concentrations in shoots. Hence, Csroot:Csshoot ratios varied in 

dependence of K availability with increasing external Cs supply. Increasing external 

Cs supply increased the Csroot:Csshoot ratio in the presence of 21.65 mM K but 

decreased the Csroot:Csshoot ratio in the presence of 1.65 mM K. The Kroot:Kshoot ratios 

in the presence of 1.65 or 21.65 mM K changed in the same way in relation to 

increasing Cs supply as did the Csroot:Csshoot ratios in the presence of 1.65 or 

21.65 mM K (Figure 4.13). Outward-rectifying K channels (KORCs) are permeable 

to Cs and have been proposed to be responsible for loading Cs into the xylem (White 

and Broadley, 2000). At high K availability relatively more K and Cs were stored in 

roots than in shoots with increasing Cs supply (Figure 4.13). A possible explanation 

could be that the root cells sensed K starvation due to increased competition for 

uptake between K+ and Cs+ with increasing Cs supply. It has been demonstrated that 

K starvation reduced the expression of KORCs and thereby K efflux to shoots 

(Hampton et al., 2005; Liu et al., 2006). A reduced expression of KORCs would lead 

to reduced transport of K and Cs to shoots and therefore relatively more K and Cs 

would remain in roots (Figure 4.13). By contrast, at reduced K availability more 

transport of K and Cs from roots to shoots occurred with increasing Cs supply 

(Figure 4.13). Due to the low availability of external K the expression of genes 

encoding KORCs (Hampton et al., 2005; Liu et al., 2006) was possibly already low 

independent of the external Cs supply. However, it has been demonstrated that most 

of the Cs that is delivered to shoots is returned to the roots via the phloem (Buysse et 

al., 1996; Hampton, 2005). Therefore, it seems possible that with increasing Cs 

supply the transport of Cs, and possibly K, via the phloem was inhibited or changed 

leading to relatively higher concentrations of K and Cs in shoots (Figure 4.13). 

Nevertheless, since Cs concentrations in shoots were higher than Cs concentrations 

in roots (Figures 4.6 and 4.7) the total Cs accumulation was lower in plants that had 

been grown under high K supply than in plants that had been grown under low K 

supply. 
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Figure 4.13: Csroot:Csshoot ratios in relation to external Cs supply for plants with an 
external K supply of 1.65 mM (grey) or 21.65 mM (black) and Kroot:Kshoot ratios in 
relation to external Cs supply for plants with an external K supply of 1.65 mM (light 
green) or 21.65 mM (dark green). The relationships between the root to shoot ratios 
versus external Cs supply were fitted to the equation for straight lines. 
 

Hampton et al. (2004) formulated three hypotheses to explain Cs toxicity in 

A. thaliana. These were [1] caesium inhibits K uptake and causes K starvation, [2] 

caesium concentrations in shoots are toxic per se, and [3] caesium competes with K  

for essential biochemical functions and, therefore, Cs toxicity is related to the 

Csshoot:Kshoot ratio. In the experiment presented here, increasing external Cs supply 

decreased K concentrations in shoots of M. truncatula (Figure 4.8) and therefore 

might have caused K starvation. Decrease in K concentrations in tissues due to 

increasing external Cs supply was shown in previous studies (Hampton et al., 2004; 

Le Lay et al., 2006). Nevertheless, it had been concluded that Cs toxicity was 

unlikely to be caused by K starvation alone because K-starved and Cs-intoxicated 

plants showed different transcriptional profiles (Hampton et al., 2004). Since there 

was no relationship between the FW of M. truncatula shoots and concentrations of 

Cs in shoots (Figure 4.11), Cs toxicity was not related to the Cs concentration in 

shoots per se which is in agreement with results obtained by Hampton et al. (2004). 
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However, shoot FW was inversely related to Csshoot:Kshoot ratios in both plants which 

had been grown in the presence of 1.65 or 21.65 mM K (Figure 4.12). This suggests 

that Cs toxicity was related to the Csshoot:Kshoot ratio. Due to the chemical similarity 

between K and Cs, Cs can replace intracellular K but Cs cannot substitute for K in 

metabolism (Davis, 1963; Avery, 1995). Isaure et al. (2006) used ion beam micro-

chemical imaging to demonstrate that Cs distribution in A. thaliana was similar to K 

distribution and therefore, the cations could compete for binding sites. Thus, Cs 

toxicity to plants depends on Cs/K ratios in the substrate and the resulting Cs/K 

ratios in plant tissues rather than on the total external Cs (Davis, 1963; Avery, 1995; 

Hampton et al., 2004). 

Potassium has vital functions in the cytoplasm of cells which include enzyme 

activation, stabilisation of protein synthesis, and maintenance of cytoplasmic pH 

homeostasis and is also important for the osmotic potential of cells (Leigh and Wyn 

Jones, 1984; Amtmann et al., 2006; White and Karley, 2010). If the availability of K 

is low, other cations such as sodium (Na), Mg and Ca can substitute for K in the 

vacuole of plants (Leigh and Wyn Jones, 1984). Therefore, plants with low K 

concentrations in their shoots contain high Na, Mg and Ca concentrations if these 

cations are available (Popp and Kinzel, 1981; Smith et al., 1982; Leigh and Wyn 

Jones, 1984). This effect also occurred in M. truncatula plants, because plants that 

had been grown in the presence of 1.65 mM K had higher Ca and Mg concentrations 

in shoots than plants that had been grown in the presence of 21.65 mM K (Figures 

4.9 and 4.10). Nevertheless, increasing external Cs supply decreased Ca and Mg 

concentrations in shoots of M. truncatula. This decrease was most obvious in plants 

that had been grown in the presence of 1.65 mM K and therefore had high Cs 

concentrations in their shoots. Root cells contain two types of depolarisation-

activated Ca channels, maxi cation channels and voltage dependent cation channels. 

Both are permeable to a wide variety of monovalent and divalent cations including 

Mg and Cs (White, 1998). These channels are unlikely to transport Cs under typical 

ionic conditions in soil (White and Broadley, 2000) but the Cs concentrations in the 

experiment presented here were much higher than under normal circumstances in 

soil. Therefore, at high external Cs supply the depolarisation-activated Ca channels 

could transport Cs into root cells and thereby reduce Ca and Mg uptake due to 

biochemical competition.  
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Results obtained in this chapter were used to determine external Cs 

concentrations for Cs accumulation studies of mycorrhizal and non mycorrhizal M. 

truncatula plants. The external Cs concentrations needed to be high enough to be 

detectable in plant tissues using ICP-MS but should not be toxic to plants. Caesium 

toxicity was dependent on external K supply. It was therefore decided to use, in 

subsequent experiments, an external Cs supply of 0.1 mM for plants grown in the 

presence of 1.65 mM K and an external Cs supply of 0.15 mM for plants grown in 

the presence of 21.65 mM K. 

 

4.5 CONCLUSIONS 

• Caesium is toxic to Medicago truncatula with 1 or 3 mM Cs supply causing 

death of plants when K supply was low or high, respectively 

• High external K supply decreased Cs concentrations in shoots and, to an 

extent, protects the plants against Cs toxicity 

• Increasing external Cs supply decreased K concentrations in shoots and 

therefore might cause K starvation 

• Caesium toxicity was related to the Csshoot:Kshoot ratio and therefore might 

occur due to biochemical competition between Cs and K 

• Experimental conditions to study Cs accumulation by M. truncatula plants in 

subsequent experiments were defined as an external Cs supply of 0.1 mM for 

plants grown in the presence of 1.65 mM K and an external Cs supply of 

0.15 mM for plants grown in the presence of 21.65 mM K 
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Chapter 5  

The influence of arbuscular mycorrhizal fungi on caesium 

accumulation by Medicago truncatula 
 

5.1 INTRODUCTION 

 

5.1.1 Phytoremediation and ‘safer’ crop 

Radiocaesium contamination of the environment has been caused by global 

fallout from nuclear weapon testing, discharge from nuclear power plants, waste 

disposal and accidents at nuclear installations. The accident at the nuclear power 

plant in Chernobyl in 1986 released 0.085×1018 becquerel (Bq) of 137Cs into the 

environment (IAEA, 2006) and large areas (150,000 km2) in Russia, Belarus and 

Ukraine had 137Cs contamination densities above 37 kBq m-2 (Fesenko et al., 2007; 

Jacob et al., 2009). Soils around nuclear facilities are also contaminated with 137Cs 

due to routine release of radionuclides during nuclear energy production (Lasat et al., 

1998; Zhu and Shaw, 2000; Willey et al., 2001; Watt et al., 2002).  

Conventional engineering-based methods to clean up radionuclide 

contaminated soils are based on treatments with dispersing and chelating chemicals 

(Entry et al., 1996, 1997). These methods require the removal and transport of 

contaminated soil, which is very costly and time consuming and may result in 

additional dispersal of pollutants (Entry et al., 1996, 1997). Furthermore, the heavy 

equipment used to remove contaminated soil from the sites leads to soil compaction 

affecting bulk density, porosity and water holding capacity of the soil. The chemicals 

used to remove the radionuclides from the soil also alter mineral nutrient availability 

and harm microorganisms. Therefore, after the soil is replaced, the establishment of 

plants can be challenging (Entry et al., 1996, 1997).  

Phytoremediation, the use of plants to remove pollutants from contaminated 

soil, provides an alternative to conventional remediation strategies. Dushenkov 

(2003) defined four methods of phytoremediation: “(a) phytoextraction, in which 

high biomass radionuclide-accumulating plants and appropriate soil amendments are 

used to transport and concentrate radionuclides from the soil into the above-ground 

shoots, which are harvested with conventional agricultural methods, (b) 

rhizofiltration, in which plant roots are used to precipitate and concentrate 
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radionuclides from polluted effluents, (c) phytovolatilisation, in which plants extract 

volatile radionuclides from soil and volatilise them from the foliage and (d) 

phytostabilisation, in which plants stabilise radionuclides in soils, thus rendering 

them harmless.” Phytoremediation is cheaper than engineering-based methods and 

potentially more sustainable since it is carried out in situ and reduces greatly negative 

influences on soil properties and microorganisms (Entry et al., 1996, 1997; Pilon-

Smits, 2005). However, there are also limitations to phytoremediation. The rooting 

depths of plants limits successful phytoremediation to upper soil layers and 

pollutants have to be phytoavailable (Pilon-Smits, 2005). Depending on the pollutant 

itself, and the extent of contamination, phytoremediation might take several decades 

and might not be feasible.  

Many areas that were affected by the Chernobyl accident contained 

agricultural land (Fesenko et al., 2007; Jacob et al., 2009). Most regions had sandy or 

peaty soils where uptake of 137Cs by plants is high (Fesenko et al., 2007). Therefore, 

countermeasures had to be applied to reduce 137Cs accumulation by plants and 

transfer of 137Cs to humans via the food chain. In the first ten years after the accident 

in Chernobyl, soil based countermeasures such as deep ploughing and fertilisation 

with N:P:K fertilisers were undertaken (Fesenko et al., 2007). Fesenko et al. (2007) 

reported that deep ploughing led to a 8–16 fold decrease and the application of 

N:P:K fertilisers to a 1.5–3 fold decrease in 137Cs concentrations in plants. Field sites 

in Russia, Belarus and Ukraine were chosen to test the efficiency of different soil 

based countermeasures to reduce 137Cs accumulation by plants (Vidal et al., 2001; 

Camps et al., 2004). Deep ploughing, the application of N:P:K fertilisers and 

reseeding with three grass species (Phleum pratense, Bromus inermis and Festuca 

pratensis) reduced the transfer of 137Cs to vegetation (Vidal et al., 2001; Camps et 

al., 2004). However, it was concluded that a complete characterisation of the soil 

properties is necessary to decide on the right agricultural countermeasure because, 

for example, the effect of ploughing depends on the heterogeneity of soils (Vidal et 

al., 2001; Camps et al., 2004). Nisbet et al. (1993) reviewed data from field 

experiments in Belarus and Ukraine as well as from small scale experiments 

conducted under controlled conditions and concluded that the success of K 

fertilisation in reducing Cs transfer to plants depends on the K availability in soil and 

the replacement of Cs from soil sorption sites by K.  
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Plants show significant natural genetic variation for Cs accumulation (see 

Chapter 2). Differences also occur between varieties of the same species (White et 

al., 2003; Willey, 2005). This offers the opportunity to select or breed ‘safer’ crop 

cultivars that accumulate less Cs (White et al., 2003; Hampton et al., 2005; Willey, 

2005). However, the expression of genes encoding Cs transport proteins depends on 

the K status of plants and due to differences in K fertilisation techniques different 

crop varieties would be needed for different agricultural areas (Hampton et al., 

2005). 

 

5.1.2 The role of arbuscular mycorrhizal fungi in Cs accumulation by plants 

Since arbuscular mycorrhizal (AM) fungi deliver nutrients to their host plants 

it was suggested that the role of AM fungi in radionuclide uptake should be 

investigated (Entry et al., 1996; Zhu and Shaw, 2000). Based on the low mobility of 
137Cs in soil and its low concentration in the soil solution Entry et al. (1996) 

proposed that mycorrhizal infection of roots should enhance Cs uptake. However, 

Entry et al. (1996) suggested that not all mycorrhizal fungi will be equally effective 

in transporting Cs to plants and that specific plant and fungi associations should be 

tested. Zhu and Shaw (2000) suggested that knowledge about the role of mycorrhiza 

in radionuclide uptake should be used to improve the design of agricultural 

countermeasures and phytoremediation strategies.  

Studies on the influence of mycorrhiza on Cs accumulation by plants are not 

consistent (Table 1.2). As outlined in Chapter 1 of this thesis, there are several 

reasons which could have led to different results. In particular, the plant and fungus 

species, and concentrations of K and Cs in the growth media can greatly influence Cs 

accumulation of plants. The expression of genes encoding plant transport proteins 

can be altered in the AM symbiosis. It is possible for AM fungi to influence Cs 

uptake, and Cs redistribution within the plant, by altering the expression of plant 

genes encoding voltage insensitive cation channels (VICCs), K+/H+ symporters 

(KUPs) and outward rectifying K+ channels (KORKs). It has been hypothesised that 

if AM fungi contribute to improved plant K status, then the complement of K 

transporters in roots of mycorrhizal plants would reflect that of K-replete plants 

(Wiesel et al., 2008; White et al., 2010). This implies that Cs uptake by roots of 

mycorrhizal plants would occur mainly through VICCs and that associations with 

AM fungi would reduce the accumulation of Cs by plants in K-limited environments.  
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Another factor that could influence the effect of AM fungi on Cs 

accumulation by plants is the rhizosphere Cs concentration. Most of the authors 

listed in Table 1.2 used radioactive 137Cs for their experiments (Rogers and Williams, 

1986; Dighton and Terry, 1996; Entry et al., 1999; Rosén et al., 2005). Joner et al. 

(2004), Dubchak et al. (2010) and Gyuricza et al. (2010b) used radioactive 134Cs for 

their experiments. Berreck and Haselwandter (2001) used stable 133Cs for their 

experiments. In the experiments reported in this thesis stable 133Cs was used. When 

radioactive Cs isotopes are used total Cs concentrations applied are considerably 

lower than when stable Cs is used.  

This thesis was part of a European project, called MYCOREMED (“Role of 

arbuscular mycorrhizal fungi on the accumulation of radiocaesium by plants”). Early 

results obtained for this thesis suggested that AM fungi did not influence Cs 

accumulation in Medicago truncatula when supplied with high concentrations of 

stable 133Cs. By contrast, early results obtained by V. Gyuricza (Gyuricza et al., 

2010b), who was also a PhD student of the MYCOREMED project, suggested that 

AM fungi decreased Cs accumulation in M. truncatula when supplied with low 

concentrations of carrier-free radioactive 134Cs. In both projects, M. truncatula var. 

truncatula Jemalong A17 was grown in the Arbuscular Mycorrhizal–Plant in vitro 

culture system. Whereas in the thesis presented here, Glomus sp. MUCL 43195 was 

used, Gyuricza et al. (2010b) used Glomus intraradices MUCL 43194. Different 

growth media were used as well but the most obvious difference between the 

experiments of Gyuricza et al. (2010b) and the experiments presented in this thesis 

was that Gyuricza et al. (2010b) supplied low concentrations of Cs whereas here high 

concentrations of Cs were used. Based on these observations, it was hypothesised 

that at low external Cs supply AM fungi could reduce the transport of Cs to plants 

due to storage of Cs in their hyphae, but that at high external Cs supply AM fungi do 

not affect the transport of Cs to plants possibly due to the increased uptake of Cs by 

plant roots themselves. 

 

5.1.3 Aims 

The first aim of this chapter was to determine K-deficient conditions for 

Medicago truncatula. The plants were grown under in vitro conditions on complete 

nutrient media containing 0.2, 1, 5 or 25 mM K and K concentrations in roots and 

shoots were determined.  
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The second aim of the chapter was to test the hypothesis that AM fungi 

reduce Cs accumulation by plants under K-deficient conditions. Therefore, non 

mycorrhizal and mycorrhizal M. truncatula plants were grown under in vitro 

conditions on a complete nutrient medium containing 1 mM K without or with the 

addition of 0.05 mM Cs. Element concentrations in tissues of non mycorrhizal and 

mycorrhizal plants were investigated.  

The third aim of the chapter was to investigate whether the influence of AM 

fungi on Cs accumulation by plants is determined by external Cs supply. Medicago 

truncatula was grown in pots containing a fertilised sand:clay mixture without or 

with Glomus intraradices. Different concentrations of stable and radioactive Cs were 

applied to the sand:clay mixture. Concentrations of 134Cs in plant tissues were 

measured. In addition, the influence of external Cs supply on mycorrhizal 

colonisation of M. truncatula was determined. 

 

5.2 MATERIAL AND METHODS 

 

5.2.1 The effects of potassium supply on growth of Medicago truncatula plants 

(Experiment A) 

 

5.2.1.1 Organisms 

Medicago truncatula Gaertn. var. truncatula Jemalong A17 was chosen as 

the experimental plant. The seeds were obtained from the South Australian Research 

and Development Institute (SARDI), Genetic Resource Centre, Australia.  

 

5.2.1.2 Growth conditions 

The non mycorrhizal plants were grown in the Arbuscular Mycorrhizal–Plant 

(AM-P) in vitro culture system as described in Sections 3.2.2 and 3.2.5. The plants 

were grown on variations of the modified Hoagland’s (MH) medium containing 

1 mM K (Table 3.2). First, the K concentration was reduced to a concentration of 

0.2 mM K by increasing the Ca concentration to 9.8 mM. The accompanying anion 

was NO3
-. Second, the K concentration was increased to a concentration of 5 mM K 

and the Ca concentration was reduced to 5 mM. The accompanying anion was NO3
-. 

Third, the K concentration was increased to a concentration of 25 mM K and the Ca 

concentration was reduced to 5 mM. The accompanying anions were NO3
- and Cl-. 
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The pH of the MH media was adjusted to 5.5 with NaOH and the MH media were 

solidified using 6 g l-1 agar (A1296, Sigma Aldrich, St. Louis, MO, USA). 

Eight plants per K treatment were grown for nine weeks in a growth cabinet 

with a photoperiod of 16 h light and 8 h darkness at a constant temperature of 22°C. 

The light intensity was approximately 350 μmol m-2 s-1. Potassium concentrations in 

plant roots and shoots were determined using ICP-MS as described in Section 2.2.5. 

 

5.2.1.3 Statistical analysis 

To investigate whether increasing external K supply had an influence on plant 

fresh weights a general analysis of variance was performed using GenStat (12th 

Edition, VSN International, Hemel Hempstead, UK). 

To investigate the effect of external K supply on the concentration of K in 

plant roots and shoots regression analyses were performed using GenStat. 

Exponential curves were fitted to the equation  

y = α + β × ρx + ε.  

 

5.2.2 Caesium accumulation by non mycorrhizal and mycorrhizal Medicago 

truncatula plants (Experiment B) 

 

5.2.2.1 Organisms 

Medicago truncatula Gaertn. var. truncatula Jemalong A17 was chosen as 

the experimental plant. The seeds were obtained from the South Australian Research 

and Development Institute (SARDI), Genetic Resource Centre, Australia.  

The arbuscular mycorrhizal fungus Glomus sp. MUCL 43195 was used. The 

strain was obtained from the Glomeromycota In Vitro Collection (GINCO), Louvain-

la-Neuve, Belgium. 

 

5.2.2.2 Growth conditions 

The non mycorrhizal and mycorrhizal plants were grown in the Arbuscular 

Mycorrhizal–Plant (AM-P) in vitro culture system as described in Sections 3.2.2 and 

3.2.5. The plants were grown on modified Hoagland’s (MH) medium containing 

1 mM K (Table 3.2) without or with the addition of 0.05 mM CsCl. The 

concentration of Cs was based on observations obtained in Chapter 4. The 

concentration of Cs in modified Strullu-Romand (MSR) medium containing 



 110

1.65 mM K (Table 3.1) that was non toxic for M. truncatula was 0.1 mM Cs (see 

Chapter 4). Therefore, it was concluded that a concentration of 0.05 mM Cs in MH 

medium containing 1 mM K would be non toxic for M. truncatula. The plants were 

grown in a growth cabinet with a photoperiod of 16 h light and 8 h darkness at a 

constant temperature of 22°C. The light intensity was around 350 μmol m-2 s-1. The 

plants were harvested after nine weeks. The experiment was repeated four times 

referred to as Experiments 1, 2, 3 and 4. Three plants were combined for each sample 

to obtain enough plant material for analyses. In Experiment 1, four non mycorrhizal 

and four mycorrhizal plant samples grown in the absence of Cs and three non 

mycorrhizal and three mycorrhizal plant samples grown in the presence of Cs were 

harvested. In Experiment 2, six non mycorrhizal and two mycorrhizal plant samples 

grown in the absence of Cs and four non mycorrhizal and two mycorrhizal plant 

samples grown in the presence of Cs were harvested. In Experiment 3, five non 

mycorrhizal and five mycorrhizal plant samples grown in the absence of Cs and four 

non mycorrhizal and four mycorrhizal plant samples grown in the presence of Cs 

were harvested. In Experiment 4, three non mycorrhizal and three mycorrhizal plant 

samples grown in the absence of Cs and three non mycorrhizal and three mycorrhizal 

plant samples grown in the presence of Cs were harvested. Half of the harvested 

plant roots and shoots were frozen in liquid N2 whilst the other half was oven dried at 

40–50°C for several days. The dried roots and shoots were used to determine element 

concentrations in plant tissues using ICP-MS as described in Section 2.2.5.  

 

5.2.2.3 Determination of mycorrhizal infection 

At harvest, all inoculated plants were examined for mycorrhizal colonisation 

using a binocular microscope (Olympus UK Ltd., Watford, UK). When the AM 

fungus had produced new spores the plants were classified as mycorrhizal and only 

those were used for further investigations. From Experiments 2, 3 and 4 some 

mycorrhizal plants that had been grown without or with Cs in the media were stained 

using an ink and vinegar technique (Vierheilig et al., 1998) to determine the 

mycorrhizal colonisation rate as described in Section 2.2.3.1. Roots from Experiment 

2 were cleared by boiling in 2.5% KOH for three minutes. The staining failed in 

Experiment 2. Therefore, roots from Experiments 3 and 4 were cleared in 10% KOH 

for 24 h at 40ºC. To determine the percentage of mycorrhizal colonisation, 200 

intersections per root sample were checked for the presence or absence of arbuscules, 
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vesicles, hyphae and spores. The percentage of mycorrhizal colonisation (% myc) 

was calculated from these data (Equation 2.1). 

 

5.2.2.4 Statistical analysis 

To determine the influence of AM fungi and of Cs supply on element 

concentrations in plant tissues an analysis of multiple experiments using the method 

of residual maximum likelihood (REML) was performed using GenStat. The analysis 

allows the investigation of treatment effects by excluding between experiment 

effects. 

 

5.2.3 The effects of caesium supply on caesium accumulation by non 

mycorrhizal and mycorrhizal Medicago truncatula plants (Experiment C) 

The experiment was conducted in collaboration with Sergiy Dubchak and 

Prof. Katarzyna Turnau at the Jagiellonian University, Krakow, Poland. 

 

5.2.3.1 Organisms 

Medicago truncatula Gaertn. var. truncatula Jemalong A17 was chosen as 

the experimental plant. The seeds were obtained from the South Australian Research 

and Development Institute (SARDI), Genetic Resource Centre, Australia.  

An inoculum containing root fragments and Glomus intraradices spores 

(strain BIO, obtained from BIORIZE, Dijon, France) from pot cultures maintained at 

the Jagiellonian University, Krakow, Poland was used.  

 

5.2.3.2 Growth conditions 

The plants were grown in pots containing 0.64 kg of a mixture of sterilised 

sand and clay (3:1 v/v or w/w). For sterilisation the substrate was heated to 100ºC for 

1 h. The procedure was repeated three times at 24 h intervals. Before the start of the 

experiment the substrate was fertilised with 22.5 g rock phosphate and 64 mg KNO3 

per pot.  

Caesium was added in the form of Cs2CO3 and as a 134CsCl water solution 

with an initial activity of 1 MBq 10 ml-1 (Institute of Atomic Energy POLATOM, 

Otwock-Świerk, Poland). The 134Cs source was diluted in deionised water to achieve 

a concentration of 1000 Bq l-1 and its pH was adjusted to 6.5 with 10% KOH. Five 

different concentrations of stable 133Cs and of radioactive 134Cs were applied (Table 
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5.1). Stable 133Cs was used to alter external Cs supply whereas radioactive 134Cs was 

used as a tracer to measure low concentrations of Cs in plant tissues. 

 

Table 5.1: Activity concentrations of 134Cs and concentrations of 133Cs per pot 
containing 0.64 kg substrate. Two plants per pot were maintained. 
 A B C D E 
134Cs [Bq] 3125 6500 12500 25000 50000 
133Cs [μg] 0.1 0.4 2 10 50 

 

The total Cs concentrations applied in the different treatments were as followed: 

Treatment A: 0.00015625 µg Cs g-1 substrate 

Treatment B: 0.000625 µg Cs g-1 substrate 

Treatment C: 0.003125 µg Cs g-1 substrate 

Treatment D: 0.015625 µg Cs g-1 substrate 

Treatment E: 0.078125 µg Cs g-1 substrate 

 

Three pots containing two non mycorrhizal plants each, and three pots 

containing two mycorrhizal plants each, were maintained for each of the five Cs 

treatments. The pots were kept in Sun bags (Sigma Aldrich, St. Louis, MO, USA) 

and plants were grown for ten weeks in a growth chamber with a photoperiod of 12 h 

light and 12 h darkness, at 47% humidity and a constant temperature of 21°C. The 

plants were watered with sterilised distilled water and fertilised once a week with 

Long Ashton solution (Hewitt, 1966). At harvest, fresh weights of shoots and roots 

were determined. The shoots of the two plants per pot were combined for γ-

spectrometry measurements. The root of one plant per pot was used for γ-

spectrometry measurements and the root of the second plant was used to determine 

mycorrhizal colonisation rate.  

 

5.2.3.3 Gamma-spectrometry measurements 

The activity of 134Cs in roots and shoots of M. truncatula was determined 

using a gamma-spectrometer with a semiconductor p-type coaxial HP-Ge detector 

with a relative efficiency of 15% and a resolution of 2.5 keV at 1.33 MeV, shielded 

by 10 cm of lead with an inner lining of 2 mm Cd and 18 mm Cu. Roots and shoots 

were oven dried at 40ºC for 26 h. The plant tissues were cut with scissors and 

homogenised. Plant materials were transferred to plastic vessels with the same 
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surface area and covered with 5–10 ml of deionised water and 100% EtOH (1/1, v/v) 

containing sucrose. The samples were dried completely in an oven at 50ºC. 

The activity concentration (A) of 134Cs was derived as averaged value from 

its two most intensive gamma-lines (Eγ1 = 604.6 keV and Eγ2 = 795.8 keV, 

respectively). The 134Cs activity concentration for each of those gamma-emission 

lines was evaluated according to the equation (Equation 5.1; Dubchak et al., 2010): 

[ ]
m

A
)N -  (N

)N - (N 
kgBqA ref

refb0

sampleb01- ⋅=⋅     [eq. 5.1], 

whereby 

N0 – count rate in corresponding peak of radionuclide (counts per second – 

cps); 

 Nb – background count rate (cps); 

 Aref – activity of reference source; 

 m – mass of sample (kg). 

 

5.2.3.4 Determination of mycorrhizal colonisation 

To determine mycorrhizal colonisation rates, roots of M. truncatula were 

prepared according to the modified method of Phillips and Hayman (1970). The roots 

were washed with tap water and cleared in 10% KOH at room temperature (RT) for 

22 h. After washing the roots in tap water to remove KOH, 5% lactic acid was added 

and the roots were acidified at RT for 1 h. Subsequently, the roots were transferred to 

a staining solution containing 0.05% aniline blue and concentrated (80%) lactic acid. 

The roots were stained at RT for 20 h. The roots were cut into 1 cm long pieces and 

15 randomly chosen, young root pieces per plant were aligned on a microscope slide. 

The stained roots were observed for mycorrhizal infection using a Nikon microscope 

(Nikon eclipse E800, Nikon Instruments Europe B.V., Amstelveen, The 

Netherlands). The frequency of mycorrhiza in the root system (F%), intensity of 

mycorrhizal colonisation in the whole root system (M%), intensity of mycorrhizal 

colonisation in mycorrhizal parts of the root (m%), arbuscule abundance in the whole 

root system (A%) and arbuscule abundance in mycorrhizal parts of the root (a%) 

(Trouvelot et al., 1986) were determined using Mikoryza (Version 1.1 Beta 2001, 

Dariusz Orlowski, Jagiellonian University, Krakow, Poland). Photographs were 
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taken using a Nikon Digital camera (Nikon Digital Sight DS-L1, Nikon Instruments 

Europe B.V., Amstelveen, The Netherlands).  

 

5.2.3.5 Statistical analysis 

To investigate whether Cs supply and mycorrhizal infection influenced plant 

fresh weights and concentrations of Cs in plant tissues, general analyses of variance 

were performed using GenStat. Caesium concentrations in shoots were log 

transformed to the base 10 to meet the ANOVA premises. To investigate whether 

increasing Cs concentrations in the substrate had an influence on mycorrhizal 

colonisation of roots a general analysis of variance was performed using GenStat. 

Significant differences between average values were determined using Fisher’s 

protected least significant difference test using GenStat. 

 

5.3 RESULTS 

 

5.3.1 The effects of potassium supply on growth of Medicago truncatula plants 

(Experiment A) 

Medicago truncatula was grown on MH media containing different 

concentrations of K. Generally, the fresh weights (FWs) of roots were higher than the 

FWs of shoots (General analysis of variance, F1,63 = 164.27, p <0.001; Figure 5.1). 

The FWs of roots were not affected by increasing concentrations of K in the media 

(Figure 5.1). However, the FWs of shoots increased over the range of 0.2 to 5 mM 

external K supply (General analysis of variance, F3,63 = 2.77, p = 0.05; Figure 5.1). 
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Figure 5.1: Fresh weights of roots and shoots of Medicago truncatula grown on MH 
media containing 0.2, 1, 5 or 25 mM K. Data show mean values and 95% confidence 
intervals (n = 8). 
 

Increasing K concentrations in the media led to increasing concentrations of K in 

plant roots and shoots (Figure 5.2). The relationship between K concentrations in 

plant tissues and external K concentration followed the equation of exponential 

curves (Table 5.2). The concentration of K in roots was higher than the concentration 

of K in shoots at high external K supply (Parameter α in Table 5.2). At low external 

K supply concentrations of K in roots and shoots did not differ (Figure 5.2). 
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Figure 5.2: The effect of K supply on K concentrations in roots and shoots of 
Medicago truncatula. Data show mean values and 95% confidence intervals (n = 8). 
The relationships between external K supply and tissue K concentrations were fitted 
to exponential curves. The parameters for these equations are given in Table 5.2. 
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Table 5.2: Parameters for the regression lines in Figure 5.2. The relationships 
between [K]root and [K]shoot with external K supply were fitted to exponential curves:  
y = α + β × ρx + ε  
Relationship Parameter Estimate 

α  80.78 
β -80.71 

[K]root versus 
external [K] 

ρ 0.86 
α  55.79 
β -52.41 

[K]shoot versus 
external [K] 

ρ 0.86 
 

5.3.2 Caesium accumulation by non mycorrhizal and mycorrhizal Medicago 

truncatula plants (Experiment B) 

 

5.3.2.1 Plant growth 

Medicago truncatula was grown in an in vitro system on MH medium 

containing 1 mM K without or with the addition of 0.05 mM Cs. Non mycorrhizal 

plants and mycorrhizal plants colonised by Glomus sp. were grown. The plants were 

harvested after nine weeks and fresh weights (FWs) of roots and shoots were 

determined (Figure 5.3).  

Although, in the four experiments performed, the plants were grown under 

identical conditions in a growth cabinet, the FWs of roots differed significantly 

between experiments (REML variance component analysis, F3 = 20.85, p <0.001; 

Figure 5.3). However, roots that had been grown in the absence of Cs were 

significantly heavier than roots that had been grown in the presence of Cs (REML 

variance component analysis, F1 = 18.39, p <0.001; Table 5.3). Colonisation with 

Glomus sp. did not influence the FWs of roots, regardless if Cs was added to the 

medium or not. The FWs of shoots also differed significantly between experiments 

(REML variance component analysis, F3 = 31.39, p <0.001; Figure 5.3). Neither the 

presence of Cs in the medium nor colonisation with Glomus sp. influenced the FWs 

of shoots. 
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Figure 5.3: Fresh weights of Medicago truncatula roots and shoots. Plants had been 
grown on MH medium without or with the addition of Cs. Fresh weights of non 
mycorrhizal (blue) and mycorrhizal (red) plants from Experiments (exp) 1, 2, 3 and 
4. Data show mean values and 95% confidence intervals (n = 2–6). 
 
Table 5.3: Fresh weights of Medicago truncatula roots grown on MH medium 
without or with the addition of Cs. Predicted means and standard error of differences 
from an analysis of multiple experiments using the method of residual maximum 
likelihood. 

 Without caesium With caesium 
0.803 0.730 Root FW [g] 

± 0.026 
 

5.3.2.2 Mycorrhizal colonisation 

Before harvest, all plants that had been inoculated with Glomus sp. were 

investigated for their mycorrhizal status. Plants were determined as mycorrhizal 

when newly produced spores were present. Figure 5.4 shows new spores produced 

by Glomus sp. in association with M. truncatula. The average colonisation rate of M. 

truncatula plants that had been grown in the absence of Cs in the medium was 

12.3%, whereas the average colonisation rate of M. truncatula plants that had been 

grown in the presence of Cs in the medium was 9.8%. Figure 5.5 shows arbuscules in 

root cells of M. truncatula plants. Only plants that could be identified clearly as 

mycorrhizal were used for investigations of element concentrations in plant tissues. 
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Figure 5.4: Glomus sp. spores developed in symbiosis with Medicago truncatula 
grown on MH medium (A) and on MH medium containing 0.05 mM Cs (B). 
 

 

Figure 5.5: Arbuscules and hyphae of Glomus sp. in roots of Medicago truncatula 
plants grown on MH medium (A) and on MH medium containing 0.05 mM Cs (B). 
 
 
5.3.2.3 Element concentrations in Medicago truncatula plants 

It was hypothesised that mycorrhizal colonisation would increase K 

concentrations in plant tissues and thereby reduce Cs concentrations in plants. To test 

this hypothesis, K concentrations (Figure 5.6) and Cs concentrations (Figure 5.7) in 

roots and shoots of non mycorrhizal and mycorrhizal M. truncatula plants were 

determined. Since AM fungi transport P to their host plants, P concentrations in roots 

and shoots of non mycorrhizal and mycorrhizal M. truncatula plants were also 

determined (Figure 5.8). To allow comparisons of the influence of AM fungi on 

mineral accumulation by plants under in vitro conditions and when grown in soil, Ca 

concentrations (Figure 5.9) and Mg concentrations (Figure 5.10) in roots and shoots 

of non mycorrhizal and mycorrhizal M. truncatula plants were also determined. 
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Potassium concentrations in roots differed significantly between experiments 

(REML variance component analysis, F3 = 25.51, p <0.001; Figure 5.6). Plants that 

had been grown in the absence of Cs had lower K concentrations in roots than plants 

that had been grown in the presence of Cs (REML variance component analysis, 

F1 = 30.18, p <0.001; Table 5.4). However, mycorrhizal colonisation did not 

influence K concentrations in roots. Potassium concentrations in shoots also differed 

significantly between experiments (REML variance component analysis, F3 = 10.36, 

p <0.001; Figure 5.6). Neither the presence of Cs in the medium nor mycorrhizal 

colonisation influenced K concentrations in shoots.  

Caesium concentrations in roots differed greatly between experiments 

(REML variance component analysis, F3 = 197.23, p <0.001; Figure 5.7). The 

influence of mycorrhizal colonisation on Cs concentrations in roots depended on the 

experiment (REML variance component analysis, F3 = 12.32, p <0.001; Figure 5.7). 

In Experiment 1, mycorrhizal colonisation reduced Cs concentrations in roots 

whereas in Experiment 2, mycorrhizal colonisation increased Cs concentrations in 

roots. In Experiments 3 and 4, mycorrhizal colonisation did not influence Cs 

concentrations in roots. Caesium concentrations in shoots also differed between 

experiments (REML variance component analysis, F3 = 258.32, p <0.001; Figure 

5.7). Excluding the effect of experiments using a REML analysis, it was observed 

that mycorrhizal colonisation reduced Cs concentrations in shoots (REML variance 

component analysis, F1 = 7.67, p = 0.021; Table 5.5). 

The concentrations of P in roots differed between experiments (REML 

variance component analysis, F3 = 38.44, p <0.001; Figure 5.8). The presence of Cs 

in the medium increased P concentrations in roots (REML variance component 

analysis, F1 = 11.59, p = 0.002; Table 5.4) but mycorrhizal colonisation did not 

influence P concentrations in roots. The concentrations of P in shoots also differed 

between experiments (REML variance component analysis, F3 = 14.19, p <0.001; 

Figure 5.8). The presence of Cs in the medium did not influence P concentrations in 

shoots but mycorrhizal colonisation increased P concentrations in shoots (REML 

variance component analysis, F1 = 4.41, p = 0.042; Table 5.5). 

The concentrations of Ca in roots differed between experiments (REML 

variance component analysis, F3 = 12.76, p <0.001; Figure 5.9). Neither the presence 

of Cs in the medium nor mycorrhizal colonisation influenced Ca concentrations in 

roots. The concentrations of Ca in shoots also differed between experiments (REML 
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variance component analysis, F3 = 5.14, p = 0.010; Figure 5.9). The presence of Cs 

in the medium did not influence Ca concentrations in shoots, but non mycorrhizal 

plants had higher Ca concentrations in their shoots than mycorrhizal plants (REML 

variance component analysis, F1 = 9.00, p = 0.005; Table 5.5). 

The concentrations of Mg in roots differed between experiments (REML 

variance component analysis, F3 = 22.71, p <0.001; Figure 5.10). Plants that had 

been grown on medium without Cs had higher concentrations of Mg in their roots 

than plants that had been grown with Cs in the medium (REML variance component 

analysis, F1 = 94.67, p <0.001; Table 5.4). Furthermore, non mycorrhizal plants had 

higher Mg concentrations in their roots than mycorrhizal plants (REML variance 

component analysis, F1 = 6.31, p = 0.019; Table 5.5). The concentrations of Mg in 

shoots also differed between experiments (REML variance component analysis, 

F3 = 4.21, p = 0.021; Figure 5.10). Plants that had been grown without Cs in the 

medium had lower Mg concentrations in their shoots than plants that had been grown 

with Cs in the medium (REML variance component analysis, F1 = 22.20, p <0.001; 

Table 5.4). In Experiment 1, non mycorrhizal plants had lower Mg concentration in 

their shoots than mycorrhizal plants (REML variance component analysis, F3 = 3.53, 

p = 0.037; Figure 5.10) whereas in Experiments 2, 3 and 4 mycorrhizal colonisation 

did not influence Mg concentrations in shoots. 
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Figure 5.6: Potassium concentrations in Medicago truncatula roots and shoots. Plants 
were grown on MH medium without or with the addition of Cs. Potassium 
concentrations of non mycorrhizal (blue) and mycorrhizal (red) plants from 
Experiments (exp) 1, 2, 3 and 4. Data show mean values and 95% confidence 
intervals (n = 2–6). 
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Figure 5.7: Caesium concentrations in Medicago truncatula roots and shoots. Plants 
were grown on MH medium without or with the addition of Cs. Caesium 
concentrations of non mycorrhizal (blue) and mycorrhizal (red) plants from 
Experiments (exp) 1, 2, 3 and 4. Data show mean values and 95% confidence 
intervals (n = 2–6). 
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Figure 5.8: Phosphorus concentrations in Medicago truncatula roots and shoots. 
Plants were grown on MH medium without or with the addition of Cs. Phosphorus 
concentrations of non mycorrhizal (blue) and mycorrhizal (red) plants from 
Experiments (exp) 1, 2, 3 and 4. Data show mean values and 95% confidence 
intervals (n = 2–6). 
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Figure 5.9: Calcium concentrations in Medicago truncatula roots and shoots. Plants 
were grown on MH medium without or with the addition of Cs. Calcium 
concentrations of non mycorrhizal (blue) and mycorrhizal (red) plants from 
Experiments (exp) 1, 2, 3 and 4. Data show mean values and 95% confidence 
intervals (n = 2–6). 
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Figure 5.10: Magnesium concentrations in Medicago truncatula roots and shoots. 
Plants were grown on MH medium without or with the addition of Cs. Magnesium 
concentrations of non mycorrhizal (blue) and mycorrhizal (red) plants from 
Experiments (exp) 1, 2, 3 and 4. Data show mean values and 95% confidence 
intervals (n = 2–6). 
 

Table 5.4: Concentrations of K, Mg and P in roots and concentrations of Mg in 
shoots of Medicago truncatula plants grown on MH medium without or with the 
addition of Cs. Predicted means and standard error of differences from an analysis of 
multiple experiments using the method of residual maximum likelihood. 
Element concentration Tissue Without caesium With caesium 

14.1 18.6 K [mg g-1 DW] roots 
± 1.173 

9.568 6.754 Mg [mg g-1 DW] roots 
± 0.3974 

0.6324 0.7103 P [mg g-1 DW] roots 
± 0.02561 

5.26 5.665 Mg [mg g-1 DW] shoots 
± 0.1852 
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Table 5.5: Concentrations of Mg in roots and concentrations of Ca, Cs and P in 
shoots of non mycorrhizal or mycorrhizal Medicago truncatula plants. Predicted 
means and standard error of differences from an analysis of multiple experiments 
using the method of residual maximum likelihood. 
Element concentration Tissue Non mycorrhizal Mycorrhizal 

8.551 7.771 Mg [mg g-1 DW] roots 
± 0.3974 

31.15 28.53 Ca [mg g-1 DW] shoots 
± 1.264 

1107 1094 Cs [ug g-1 DW] shoots 
± 78.39 

0.5741 0.5978 P [mg g-1 DW] shoots 
± 0.02891 

 

5.3.3 The effects of caesium supply on caesium accumulation of non mycorrhizal 

and mycorrhizal Medicago truncatula plants (Experiment C) 

 

5.3.3.1 Plant growth and accumulation of caesium 

Medicago truncatula was grown without or with an inoculum containing 

Glomus intraradices in a sand:clay mixture with the addition of 0.1, 0.4, 2, 10 or 

50 µg Cs per pot (Figure 5.11).  

The FWs of roots were not influenced by the different concentrations of Cs in 

the substrate but non mycorrhizal roots were significantly heavier than mycorrhizal 

roots (General analysis of variance, F1,29 = 17.78, p <0.001; Figure 5.12). The FWs 

of shoots were not influenced by supply of Cs or by mycorrhizal colonisation (Figure 

5.13). 

Concentrations of Cs in roots increased with higher supply of Cs to the 

substrate (General analysis of variance, F4,29 = 211.70, p <0.001; Figure 5.14) but 

mycorrhizal colonisation did not influence Cs concentrations in roots. Concentrations 

of Cs in shoots also increased with higher supply of Cs to the substrate (General 

analysis of variance, F4,29 = 84.98, p <0.001; Figure 5.15). The concentrations of 
133Cs and 134Cs in the substrate were not increased in the same order of magnitude. 

Proportionally higher concentrations of 133Cs in comparison to 134Cs at high total Cs 

supply lead to a dilution of 134Cs. Due to the dilution effect differences in 134Cs 

concentrations in tissues of M. truncatula at different external Cs supply might be 

underestimated. The influence of mycorrhizal colonisation on Cs concentrations in 

shoots was dependent on Cs supply. At a Cs supply of 0.1 µg per pot mycorrhizal 
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colonisation increased Cs concentrations in shoots whereas at a Cs supply of 0.4 µg 

per pot mycorrhizal colonisation decreased Cs concentrations in shoots. At higher 

concentrations of external Cs supply of 2–50 µg per pot mycorrhizal colonisation did 

not influence Cs concentrations in shoots (General analysis of variance, F4,29 = 4.85, 

p = 0.007; Figure 5.15).  

 

 
Figure 5.11: Ten-week old Medicago truncatula plants grown on a sand:clay mixture 
with different concentrations of Cs. Plants were grown with the addition of 0.1 µg 
(A), 0.4 µg (B), 2 µg (C), 10 µg (D) and 50 µg (E) Cs per pot. The three rows in the 
front of the picture are non mycorrhizal plants (NM) and the three rows in the back 
of the picture are mycorrhizal plants (M).  
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Figure 5.12: The effect of Cs supply on fresh weights of non mycorrhizal (blue) and 
mycorrhizal (red) Medicago truncatula roots grown on a sand:clay mixture. Data 
show mean values and 95% confidence intervals (n = 3). 
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Figure 5.13: The effect of Cs supply on fresh weights of non mycorrhizal (blue) and 
mycorrhizal (red) Medicago truncatula shoots grown on a sand:clay mixture. Data 
show mean values and 95% confidence intervals (n = 3). 
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Figure 5.14: The effect of Cs supply on 134Cs activity concentrations in non 
mycorrhizal (blue) and mycorrhizal (red) Medicago truncatula roots grown on a 
sand:clay mixture. Data show mean values and 95% confidence intervals (n = 3). 
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Figure 5.15: The effect of Cs supply on 134Cs activity concentrations in non 
mycorrhizal (blue) and mycorrhizal (red) Medicago truncatula shoots grown on a 
sand:clay mixture. Data show mean values and 95% confidence intervals (n = 3). 
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5.3.3.2 Mycorrhizal colonisation influenced by external caesium supply 

The frequency of mycorrhiza in the root system (F%), intensity of 

mycorrhizal colonisation in the whole root system (M%), intensity of mycorrhizal 

colonisation in mycorrhizal parts of the root (m%), arbuscule abundance in the whole 

root system (A%) and arbuscule abundance in mycorrhizal parts of the root (a%) 

were determined for M. truncatula that had been grown in a sand:clay mixture with 

different concentrations of Cs (Table 5.6). 

With higher external Cs supply all mycorrhizal parameters in M. truncatula 

roots decreased. The frequency of mycorrhiza in the root system (F%) was between 

60% and 78% when external Cs supply was low but decreased significantly when 

external Cs supply was high (General analysis of variance, F4,14 = 11.76, p <0.001; 

Table 5.6). The intensity of mycorrhizal colonisation in the whole root system (M%) 

decreased significantly with higher Cs supply (General analysis of variance, 

F4,14 = 7.04, p = 0.006; Table 5.6) and the intensity of mycorrhizal colonisation in 

mycorrhizal parts of the root (m%) decreased as well (General analysis of variance, 

F4,14 = 9.79, p = 0.002; Table 5.6). The arbuscule abundance of the whole root 

system (A%) decreased from 22% at an external Cs supply of 0.1 µg per pot to less 

than 1% at an external Cs supply of 50 µg per pot (General analysis of variance, 

F4,14 = 3.59, p = 0.046; Table 5.6). The arbuscule abundance in mycorrhizal parts of 

the root decreased from 78% at an external Cs supply of 0.1 µg per pot to 26% at an 

external Cs supply of 50 µg per pot (General analysis of variance, F4,14 = 4.20, 

p = 0.030; Table 5.6). 

Figure 5.16 shows arbuscules in roots of M. truncatula. It seemed that, at 

high external Cs supply of 10 and 50 µg per pot, the abundance of hyphae growing 

on the root surface and the formation of vesicles within the root increased. However, 

the entry points of the fungus into root cells and the abundance of arbuscules seemed 

to decrease throughout the root when external Cs supply was high.  
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Table 5.6: Mycorrhizal parameters for roots of Medicago truncatula inoculated with 
Glomus intraradices grown in a sand:clay mixture containing 0.1, 0.4, 2, 10 or 50 µg 
Cs per pot. Frequency of mycorrhiza in the root system (F%), intensity of 
mycorrhizal colonisation in the whole root system (M%), intensity of mycorrhizal 
colonisation in mycorrhizal parts of the root (m%), arbuscule abundance in the whole 
root system (A%) and arbuscule abundance in mycorrhizal parts of the root (a%). 
Data show mean values and 95% confidence intervals. Letters beside the values 
show significant differences (Fisher’s protected least significant difference test). 
Cs supply F% M% m% A% a% 

59.21 bc 27.46 c 45.53 c 22.96 c 78.46 b 0.1 µg per pot 
± 19.51 ± 12.43 ± 11.22 ± 16.81 ± 22.83 
77.78 c 26.55 c 34.10 bc 20.00 bc 74.09 b 0.4 µg per pot 
± 4.36 ± 5.01 ± 6.50 ± 7.71 ± 14.60 

68.89 bc 20.11 bc 29.33 b 14.27 abc 67.20 b 2 µg per pot 
± 15.71 ± 5.39 ± 6.05 ± 9.66 ± 24.40 
51.11 b 12.33 ab 24.02 ab 6.92 ab 56.11 ab 10 µg per pot 
± 4.35 ± 3.64 ± 6.92 ± 2.59 ± 11.83 
22.22 a 3.16 a 14.42 a 0.98 a 26.04 a 50 µg per pot 
± 8.72 ± 1.17 ± 3.15 ± 1.18 ± 23.28 
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Figure 5.16: Mycorrhizal structures in root cells of Medicago truncatula plants 
grown in the presence of 0.1 μg Cs (A), 0.4 μg Cs (B), 2 μg Cs (C), 10 μg Cs (D) or 
50 μg Cs (E, F) per pot. Mycorrhizal colonisation and abundance of arbuscules was 
high when the supply of Cs was low. However, at high supply of Cs the abundance 
of arbuscules decreased whereas the abundance of hyphae and vesicles seemed to 
increase. 
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5.4. DISCUSSION 

 

5.4.1 Increasing external potassium supply led to increasing concentrations of K 

in plant roots and shoots (Experiment A) 

The critical value of K for plants is around 5–20 mg g-1 DW (Leigh and Wyn 

Jones, 1984; White and Karley, 2010). Potassium concentrations in roots and shoots 

of M. truncatula plants that had been grown in the presence of 0.2 and 1 mM K in 

the medium had tissue K concentrations lower than 20 mg g-1 DW (Figure 5.1). 

Additionally, older leaves of M. truncatula plants died after a few weeks when plants 

had been grown in the presence of 0.2 and 1 mM K. Since K is readily redistributed 

within the plant via the phloem from mature to developing tissues, leaves of K-

deficient plants have a shorter lifetime than of K-replete plants (White and Karley, 

2010). Furthermore, K-deficient plants grow slower than K-replete plants and shoots 

are more susceptible to K-deficiency than roots (White and Karley, 2010). The FWs 

of shoots increased over the range of 0.2 to 5 mM external K supply (Figure 5.1). 

The aim of this experiment was to determine K-deficient conditions for M. 

truncatula. Since shoot K concentrations were lower than 20 mg g-1 DW when plants 

had been grown on medium containing 1 mM K the plants were K-deficient.  

 

5.4.2 Arbuscular mycorrhizal fungi and Cs accumulation by Medicago 

truncatula plants 

 

5.4.2.1 The influence of arbuscular mycorrhizal fungi on Cs concentrations in K-

deficient Medicago truncatula plants (Experiment B) 

To test the hypothesis that AM fungi reduce Cs accumulation by plants under 

K-deficient conditions, M. truncatula was grown in the absence or presence of 

Glomus sp. on media containing 1 mM K without or with the addition of 0.05 mM 

Cs. Four experiment replicates (Experiments 1, 2, 3 and 4) were performed under 

identical conditions in a growth cabinet. However, the FWs of both roots and shoots 

and the element concentrations in plant tissues varied significantly between 

experiments. There was no obvious reason for these differences.  

Plants that had been grown without Cs in the medium had higher FWs of 

roots than plants that had been grown with the addition of 0.05 mM Cs (Table 5.3). It 

was previously observed that a Cs:K ratio in the medium of 1:20 is non toxic for M. 
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truncatula (see Chapter 4). However, different types of media with different 

solidifying agents were used in the experiments of Chapters 4 and 5 and a slightly 

toxic effect of Cs might have occurred. Furthermore, the average colonisation rate of 

M. truncatula plants that had been grown in the absence of Cs was 12.3%, whereas 

the average colonisation rate of M. truncatula plants that had been grown in the 

presence of Cs was 9.8%. However, these rates are based on a small number of 

plants and are not necessarily representative for all plants used in the experiments, 

especially since none of the plants investigated for mycorrhizal colonisation were 

sampled from Experiments 1 or 2. Colonisation rates of around 10% are low because 

roots of M. truncatula are frequently colonised to more than 50% by Glomus species 

after a growth period of more than four weeks (Burleigh and Harrison, 1998; Joner et 

al., 2004; Gyuricza et al., 2010b). However, a low colonisation rate does not 

automatically mean that the nutrient transfer via the fungus is low as well. Several 

authors did not find any relationship between the percentage of AM colonisation 

with shoot P concentrations or plant growth (Jensen, 1982; Sanders and Fitter, 1992; 

Klironomos, 2000; Jakobsen et al., 2001; Smith et al., 2004). Therefore, element 

transfer including K and Cs by Glomus sp. to M. truncatula might still have occurred 

although the colonisation rates were around 10%. 

The concentrations of K and P in roots were higher when plants were grown 

with Cs than when plants were grown without Cs (Table 5.7). Since all plants were 

K-deficient, genes encoding K+/H+ symporters (KUPs) were probably expressed 

independent of the presence of Cs (Hampton et al., 2004; 2005; Amtmann et al., 

2006). Since the expression of genes encoding outward rectifying K+ channels 

(KORCs) is low when plants are K-starved (Hampton et al., 2005; Liu et al., 2006) 

the transport of K from roots to shoots is limited leading to higher concentrations of 

K in roots. Caesium availability might have enhanced the K-deficiency of plants due 

to biochemical competition resulting in higher K concentrations in roots in the 

presence of Cs than in the absence of Cs. So far, no processes are known that link P 

and Cs transport. Therefore, the increase of P concentrations in roots in the presence 

of Cs cannot be explained. When Cs was present Mg concentrations decreased in 

roots but increased in shoots (Table 5.7) which means that the transfer of Mg from 

roots to shoots seemed to be increased due to the presence of Cs. This is in contrast 

to results obtained in Chapter 4 where increasing supply of Cs led to decreasing 

concentrations of Mg in shoots (Figure 4.10). 
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Colonisation of roots with Glomus sp. led to an increase in P concentrations 

of shoots (Table 5.7). Since transport of P is one of the major functions of the AM 

symbiosis even when P is not limiting for plants (Smith and Read, 2008) the increase 

in P concentrations in shoots is not surprising. Concentrations of Ca in shoots and of 

Mg in roots were lower in mycorrhizal than in non mycorrhizal plants (Table 5.7). 

Schultz et al. (2010) showed that Mg concentrations in roots of mycorrhizal M. 

truncatula cv. F83005 were lower than in non mycorrhizal roots but Mg 

concentrations in roots of mycorrhizal and non mycorrhizal M. truncatula cv. A17 

did not differ. Lower concentrations of Ca in shoots and Mg in roots of M. truncatula 

(Table 5.7) are in contrast to results obtained in Chapter 2 where it was shown that 

mycorrhizal colonisation increased concentrations of Ca and Mg in plant tissues 

(Table 2.11 and 2.12). Although the influence of AM fungi on Ca and Mg is not 

clear, it has been reported previously that AM fungi can enhance Ca and Mg 

concentrations in plants mainly on acidic soils (Clark and Zeto, 2000). Berreck and 

Haselwandter (2001) showed increased concentrations of Ca in mycorrhizal roots in 

comparison to non mycorrhizal roots when K was supplied at 66.3 μg K g-1 substrate 

but Mg concentrations in roots were not affected by AM colonisation. It is possible 

that AM fungi and plants competed for Ca and Mg uptake and therefore colonisation 

with AM fungi reduced Ca and Mg concentrations in shoots and roots, respectively 

(Table 5.7). Concentrations of K in plant tissues were not influenced by AM fungi 

(Table 5.7).  

 

Table 5.7: Effects of Cs supply and of mycorrhizal colonisation by Glomus sp. on 
concentrations of Ca, K, Mg and P in roots and shoots of Medicago truncatula. 
Element Roots Shoots 
  Caesium Mycorrhiza Caesium Mycorrhiza
Ca no effect no effect no effect decrease 
K increase no effect no effect no effect 
Mg decrease decrease increase no effect 
P increase no effect no effect increase 

 

Generally, Cs concentrations in roots were higher than in shoots (Figure 5.7). 

This is in agreement with Gyuricza et al. (2010b) who showed higher concentrations 

of 134Cs in roots of M. truncatula than in shoots. However, all other publications 

investigating the influence of AM fungi on Cs accumulation by plants have shown 
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higher concentrations of Cs in shoots than in roots (Dighton and Terry, 1996; Entry 

et al., 1999; Berreck and Haselwandter, 2001; Joner et al., 2004).  

Concentrations of Cs in tissues of M. truncatula plants differed greatly 

between experiments (Figure 5.7). Tissue Cs concentrations in Experiments 1 and 2 

were around three times higher than in Experiments 3 and 4, although all plants had 

been supplied with 0.05 mM Cs. The accumulation of Cs differs between plant 

species and is dependent on K and Cs availability in the growth medium (Andersen, 

1967; Buysse et al., 1996; Broadley et al., 1999a; Berreck and Haselwandter, 2001). 

Neither K or Cs concentrations in the growth medium, nor plant species differed 

between experiments. Hence, there is no obvious explanation for the differences in 

tissue Cs concentrations. 

The effect of mycorrhizal colonisation on Cs concentrations in roots of M. 

truncatula depended on the experiment (Figure 5.7). In Experiment 1, mycorrhizal 

colonisation reduced Cs concentrations in roots. Berreck and Haselwandter (2001) 

showed a decrease in Cs concentrations in mycorrhizal roots of Agrostis tenuis 

(colonial bentgrass) after four and six weeks of growth when K was supplied at 

66.3 μg K g-1 substrate but no influence of AM fungi on Cs concentrations in roots 

was detected after eight and ten weeks of growth. When A. tenuis was additionally 

supplied with 196 µg K g-1 substrate, AM fungi did not influence Cs concentrations 

in roots at any harvest time (Berreck and Haselwandter, 2001). In Experiment 2, 

mycorrhizal colonisation increased Cs concentrations in roots (Figures 5.7). 

Mycorrhizal colonisation also increased P concentrations in roots in the presence of 

Cs in Experiment 2 (Figure 5.8). It has been suggested that K+ is a balancing cation 

for P anions in AM hyphae (Ryan et al., 2003, 2007) and that K might be transported 

by AM fungi in association with polyphosphates (Smith and Read, 2008). Gyuricza 

et al. (2010a) studied the influence of K and P availability on uptake and transport of 
134Cs by AM fungi. Medicago truncatula was grown in symbiosis with Glomus 

intraradices in a split in vitro system where the extraradical hyphae grew in a 

separate compartment than the mycorrhizal roots (Gyuricza et al., 2010a). The 

authors supplied 134Cs and varying concentrations of K and P to the extraradical 

hyphae of G. intraradices but the plant roots did not have access to 134Cs. Gyuricza 

et al. (2010a) demonstrated that increasing P availability led to increased uptake of 
134Cs by AM fungi and subsequent transport to M. truncatula. Gyuricza et al. (2010a) 

speculated that the increased P availability to AM fungi led to an increase in P 
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transport and accompanied an increase in K and Cs transport to plants. No effect of 

AM fungi on Cs concentrations in roots was detected in Experiments 3 and 4 (Figure 

5.7) which is in agreement with other publications (Entry et al., 1999; Joner et al., 

2004; Gyuricza et al., 2010b). An analysis of multiple experiments using REML 

methods showed that Cs concentrations in shoots of mycorrhizal plants were 

generally slightly lower than those of non mycorrhizal plants (Table 5.5). The 

biological relevance of the statistically significant decrease of Cs concentrations in 

shoots of mycorrhizal plants has to be treated with caution since the average 

concentrations of Cs in non mycorrhizal and mycorrhizal plants were very similar 

(Table 5.5). Gyuricza et al. (2010b) observed a decrease in shoot Cs concentrations 

in M. truncatula due to mycorrhizal colonisation independent of external K supply. 

Furthermore, a decrease in shoot Cs concentration was also observed in mycorrhizal 

Agrostis tenuis at 66.3 μg K g-1 substrate during the first eight weeks of growth 

(Berreck and Haselwandter, 2001). Conversely, other studies have reported that AM 

fungi do not influence shoot Cs concentrations in the grass species Sorghum 

sudanense and Lolium perenne or in Medicago truncatula (Rogers and Williams, 

1986; Joner et al., 2004; Rosén et al., 2005) or even increase shoot Cs concentrations 

(Entry et al., 1999; Rosén et al., 2005; Dubchak et al., 2010). However, the 

differences in shoot Cs concentrations between non mycorrhizal and mycorrhizal M. 

truncatula plants were small (Figure 5.7). Furthermore, the addition of AM fungal 

inocula to soil might not lead to higher colonisation rates of host plants (Entry et al., 

1999). Therefore, the use of arbuscular mycorrhiza to grow ‘safer’ crop might be 

ineffective. A similar conclusion had also been drawn by Entry et al. (1999) and 

Rosén et al. (2005) who concluded that the use of AM fungi in phytoremediation 

might be ineffective. 

  

5.4.2.2 Arbuscular mycorrhizal fungi did not influence Cs concentrations in 

Medicago truncatula plants supplied with different concentrations of Cs (Experiment 

C) 

To test the hypothesis that AM fungi reduce Cs concentrations in plants at 

low external Cs supply but that AM fungi do not affect Cs concentrations in plants at 

high external Cs supply M. truncatula was grown in association with Glomus 

intraradices in fertilised sand:clay mixtures containing different concentrations of 

stable and radioactive Cs. 
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The FWs of roots and shoots were not influenced by different supplies of Cs. 

Since the highest concentration of total Cs applied was 0.078 µg g-1 substrate and the 

plants were K-replete, Cs was not toxic to M. truncatula (see Chapter 4; White and 

Broadley, 2000; Hampton et al., 2004). The FWs of shoots were not influenced by 

mycorrhizal colonisation but non mycorrhizal roots were heavier than mycorrhizal 

roots (Figure 5.12). Some plants allocate a lower proportion of total plant weight to 

roots when colonised by AM fungi (Smith and Read, 2008). Non mycorrhizal 

Agrostis tenuis roots had higher DWs than mycorrhizal roots when grown at high K 

supply (Berreck and Haselwandter, 2001). Mycorrhizal colonisation increased the 

DWs of M. truncatula plants (Joner et al., 2004) or had no influence on root or shoot 

DWs of M. truncatula (Gyuricza et al., 2010b).  

Concentrations of 134Cs increased in roots (Figure 5.14) and shoots (Figure 

5.15) with increasing Cs supply. This is in agreement with results obtained in 

Chapter 4. The colonisation with Glomus intraradices did not influence 134Cs 

concentrations in roots at any external Cs supply (Figure 5.14). However, the effect 

of mycorrhizal colonisation on 134Cs concentrations in shoots was dependent on 

external Cs supply (Figure 5.15). Mycorrhizal colonisation increased 134Cs 

concentrations in shoots at an external Cs supply of 0.0002 µg g-1 but decreased 
134Cs concentrations in shoots at an external Cs supply of 0.0006 µg g-1. These 

results do not lead to a definite conclusion about the influence of AM fungi on Cs 

accumulation in plants at low external Cs supply. At higher external Cs supply, AM 

fungi did not influence 134Cs concentrations in shoots of M. truncatula (Figure 5.15). 

The higher Cs concentrations applied in the experiment of 0.003 µg g-1 to 

0.078 µg g-1 were still lower than natural occurring Cs concentrations in soil of 0.3 to 

25 µg g-1 (Davis, 1963; Coughtrey and Thorne, 1983; White and Broadley, 2000). It 

is therefore concluded that AM fungi probably do not influence Cs accumulation in 

plants under natural conditions in soil. It had been proposed that AM fungi should be 

considered in agricultural countermeasures and phytoremediation strategies for 

radiocaesium contaminated areas (Entry et al., 1996; Zhu and Shaw, 2000). Another 

strategy proposed for contaminated agricultural land is the cultivation of ‘safer’ crop 

plants that do not accumulate Cs (White et al., 2003; Hampton et al., 2005; Willey, 

2005) and many agricultural plants are colonised by AM fungi (Smith and Read, 

2008). However, results obtained in this thesis suggest that the influence of AM 

fungi in relation to phytoremediation or ‘safer’ crop plants is negligible. 
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5.4.3 High external Cs supply reduced mycorrhizal colonisation in Medicago 

truncatula (Experiment C) 

The application of high concentrations of Cs led to a decrease in mycorrhizal 

colonisation of M. truncatula (Table 5.6). When external Cs supply was low more 

than 60% of the root system was colonised after ten weeks of growth. This is in 

agreement with colonisation rates in M. truncatula obtained by Joner et al. (2004) 

and Gyuricza et al. (2010b). However, at an external Cs supply of 50 µg per pot only 

22% of the root system was colonised (Table 5.6). More importantly, the abundance 

of arbuscules in the whole root system decreased significantly with increasing Cs 

supply. In M. truncatula, arbuscules are initially formed in the cortical cell layers 

closest to the vascular tissue (Gianinazzi-Pearson et al., 2006). This also seemed to 

be the case for the few arbuscules that were formed in roots exposed to high 

concentrations of Cs (Figure 5.16). Furthermore, it seemed that the abundance of 

hyphae and vesicles was increased but the entry points of the fungus into root cells 

were decreased when Cs supply was high (Figure 5.16). In the root parts where 

arbuscule development occurred, several neighbouring cells also contained 

arbuscules (Figure 5.16). These observations might suggest that the initiation of the 

symbiosis was affected by Cs. Seven plant genes that are required for the 

development of AM and rhizobial symbioses have been identified in legumes 

(Bécard et al., 2004; Parniske, 2008; Smith and Read, 2008). Two of these genes, 

CASTOR and POLLUX characterised in Lotus japonicus, are involved in Nod-factor 

induced calcium spiking (Imaizumi-Anraku et al., 2005; Miwa et al., 2006; 

Charpentier et al., 2008). In M. truncatula, the POLLUX ortholog DMI1 (does not 

make infections) is also involved in calcium spiking (Ané et al., 2004; Parniske et al., 

2008) and mutants lacking CASTOR, POLLUX or DMI1 do not develop AM and 

rhizobial symbioses (Ané et al., 2004; Imaizumi-Anraku et al., 2005). CASTOR and 

POLLUX are potassium-permeable cation channels (Charpentier et al., 2008). It has 

been proposed that these proteins act as counter-ion channels that compensate for the 

rapid charge imbalance produced during the calcium spiking response in root cells 

(Imaizumi-Anraku et al., 2005; Charpentier et al., 2008; Parniske, 2008). So far, no 

information exists about the influence of Cs on the development of the AM or 

rhizobial symbioses. It can only be speculated that Cs might interfere with the 

transport of K+ by CASTOR and POLLUX leading to disruptions in the calcium 

spiking response. However, since many molecules involved in the development of 
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the AM symbiosis are still unknown many possibilities exist how Cs could interfere 

with AM development.  

 

5.5 CONCLUSIONS 

• Medicago truncatula plants were K-deficient when grown on media 

containing 1 mM K under in vitro conditions 

• Roots of M. truncatula were colonised by Glomus sp. to 12% in the absence 

of Cs and to 10% in the presence of Cs after nine weeks of growth under in 

vitro conditions  

• Plant fresh weights and element concentrations in plant tissues of M. 

truncatula varied significantly between identical experiments under in vitro 

conditions 

• Concentrations of K in tissues of K-deficient M. truncatula plants were not 

influenced by AM fungi under in vitro conditions  

• Arbuscular mycorrhizal fungi did not influence Cs concentrations in roots but 

decreased Cs concentrations in shoots of K-deficient M. truncatula plants 

under in vitro conditions  

• Arbuscular mycorrhizal fungi did not influence Cs accumulation in K-replete 

M. truncatula plants supplied with different concentrations of Cs in sand:clay 

mixtures 

• High concentrations of Cs led to a decrease in mycorrhizal colonisation of M. 

truncatula grown in a sand:clay mixture    
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Chapter 6 

Gene expression in Medicago truncatula in response to caesium and 

arbuscular mycorrhiza 
 

6.1 INTRODUCTION 

 

6.1.1 Genome of Medicago truncatula 

Medicago truncatula has been chosen as a model plant for legumes because 

of its small diploid genome and its susceptibility to transformation and regeneration 

(Barker et al., 1990; Rose, 2008). Furthermore, M. truncatula is efficiently nodulated 

by Sinorhizobium meliloti, whose genome has been sequenced (Galibert et al., 2001), 

and forms arbuscular mycorrhiza. This makes M. truncatula a good model to study 

these symbioses (Frugoli and Harris, 2001; Rose, 2008). The M. truncatula genome 

shows high levels of macro- and microsynteny to other legumes such as Medicago 

sativa, pea (Pisum sativum) and Lotus japonicus (Bell et al., 2001; Frugoli and 

Harris, 2001; Oldroyd and Geurts, 2001; Young et al., 2005; Cannon et al., 2006). 

The genomes of M. truncatula (http://www.medicago.org/genome/) and L. japonicus 

(http://www.kazusa.or.jp/lotus/) are being sequenced and it has been predicted that 

more than 75% of the M. truncatula and L. japonicus genespaces are conserved 

(Young et al., 2005). For sequencing the genome of M. truncatula a map-anchored 

bacterial artificial chromosome (BAC) sequencing strategy was selected because the 

genome is organised into distinct gene-rich euchromatin separate from repeat-rich 

pericentromeric regions (http://www.medicago.org/genome/; Cannon et al., 2005). 

The sequencing process started in 2002 and in March 2009 the M. truncatula genome 

assembly version 3.0 (Mt3.0) was released (http://www.medicago.org/genome/). So 

far, 3143 BACs have been sequenced (http://www.medicago.org/genome/; accessed 

28 July 2010) and 268712 expressed sequence tags (ESTs) are available on the Gene 

Index Project database (http://compbio.dfci.harvard.edu/tgi/plant.html; accessed 28 

July 2010). The annotation of the M. truncatula genes is coordinated by the 

International Medicago Genome Annotation Group (IMGAG; 

http://www.medicago.org/genome/IMGAG/). In 2005, Affymetrix GeneChip® 

Medicago genome arrays became available to monitor gene expression in Medicago 

truncatula, Medicago sativa, and their symbiont Sinorhizobium meliloti 



 140

(http://www.affymetrix.com/estore/). The array contains 32,167 M. truncatula EST 

based probe-sets (sequence information from The Institute for Genomic Research 

(TIGR)), 18,733 M. truncatula gene prediction based probe-sets (gene predictions 

from IMGAG), 1,896 M. sativa EST based probe-sets, and 8,305 S. meliloti gene 

prediction based probe-sets. To analyse the Medicago transcriptome the Medicago 

truncatula Gene Expression Atlas (MtGEA) web server was developed (Benedito et 

al., 2008; He et al., 2009). The current version of the web server (MtGEA v2) holds 

information from 156 Affymetrix GeneChips from 64 different experiments 

(http://mtgea.noble.org/v2/). The availability of genomic tools for the model legume 

M. truncatula offers the transfer of information to important crop species (Ané et al. 

2008; Young and Udvardi, 2009). 

 

6.1.2 Caesium induced changes in plant gene expression 

Caesium is chemically similar to K and hence, Cs in the rhizosphere can 

change the K status of plants (White and Broadley, 2000; Hampton et al., 2004). 

Furthermore, high concentrations of Cs are toxic to plants (see Chapter 4; Hampton 

et al., 2004). These effects have implications for plant gene expression. Sahr et al. 

(2005a) investigated gene expression in Arabidopsis thaliana exposed to non toxic 

concentrations of 133Cs. The gene expression in roots of five-week old plants that had 

been grown in the presence of 2 mM K and up to 150 µM Cs was investigated using 

suppression subtractive hybridization and reverse transcription–polymerase chain 

reaction (Sahr et al., 2005a). Genes involved in defence, stress response and 

detoxification were up regulated in roots in the presence of Cs as well as genes 

involved in transport and cellular metabolism. The authors concluded that Cs can be 

classified as an abiotic oxidative stress factor and that changes in gene expression 

could also be related to decreased internal K concentrations (Sahr et al., 2005a). A 

proteomic study of sucrose-fed photosynthetic A. thaliana suspension cells grown on 

medium without any K salts and submitted to a 1 mM Cs stress for 24 h also showed 

up regulation of antioxidant proteins and proteins involved in transport (Le Lay et al., 

2006). Proteins involved in amino-acid, nitrogen, sulphur and glutathione 

metabolism, and glycolysis and gluconeogenesis were also up regulated but the 

strongest effect of Cs stress was the up regulation of proteases (Le Lay et al., 2006). 

To differentiate between changes in gene expression due to K starvation or Cs 

intoxication, Hampton et al. (2004) investigated the gene expression of 21 day old A. 
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thaliana grown on K-replete medium with 2 mM K, on K-deficient medium with 

0.5 mM K and on medium containing 2 mM K and 2 mM Cs. Potassium starvation 

resulted in changes in gene expression of defence response genes and transcription 

factors in roots and shoots but also in up regulation of transport proteins, including 

the K+/H+ symporter AtHAK5 (Hampton et al., 2004). Several genes that showed 

differential expression due to K starvation were also affected by Cs intoxication, 

showing that the transcriptional responses to K starvation and Cs intoxication are not 

independent of each other (Hampton et al., 2004). Nevertheless, the gene expression 

profile of Cs intoxicated plants showed distinct differences to the profile of K-

starved plants. Several K transport proteins in roots and shoots were up regulated in 

Cs intoxicated plants (Hampton et al., 2004). In Escherichia coli, the expression of 

the kdp operon that encodes for a high affinity K+ uptake system was induced due to 

exposure to Cs (Jung et al., 2001). The response in gene expression to radioactive 
134Cs differs from the response to stable 133Cs (Sahr et al., 2005b). Low 

concentrations of 134Cs (30 Bq cm-3) in the presence of 0.7 mM K up regulated the 

expression of 36 genes mainly involved in defence, stress response and 

detoxification, and in cell growth, division and development in five-week old A. 

thaliana roots (Sahr et al., 2005b). Only five of the 36 genes were also up regulated 

in A. thaliana exposed to 133Cs (Sahr et al., 2005a,b). 

 

6.1.3 Arbuscular mycorrhiza induced changes in plant gene expression 

Several plant genes are required for the development of the AM symbiosis 

and many of these genes are also needed for the development of the rhizobial 

symbiosis (Parniske, 2008). In legumes, seven genes involved in the development of 

both symbioses have been identified so far (Kistner et al., 2005; Parniske, 2008). The 

gene DMI2 (does not make infections) from Medicago truncatula encodes a putative 

leucine-rich-repeat receptor kinase that seems to recognise extracellular signals from 

the symbiotic partners (Parniske, 2004, 2008). The M. truncatula gene DMI3 

encodes a putative calcium or calmodulin-dependent protein kinase (Parniske, 2004). 

The proteins DMI2 and DMI3 are essential for the induction of the pre-penetration 

apparatus (PPA). Recently, Siciliano et al. (2007) created a PPA-targeted 

suppressive-subtractive cDNA library using transformed root cultures of M. 

truncatula. Eleven genes were identified that showed increased transcription levels in 

inoculated roots at the time of appressorium development or 48 h later, including the 
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genes Expansin-related protein 1 precursor (Exp-like) and Nodulin-like protein 

(Nod-like) (Siciliano et al., 2007). It has been suggested that DMI3 up regulates the 

expression of plant genes such as Exp-like and Nod-like but suppresses the 

expression of basal defence related genes like Avr9/Cf-9 rapidly elicited protein 264 

(Siciliano et al., 2007). Other genes required for AM development in legumes are 

IPD3, coding an unknown protein whose mutants are impaired in the infection 

process, and two cation channels involved in Nod factor induced calcium spiking, 

CASTOR and POLLUX from Lotus japonicus (Kistner et al., 2005; Parniske, 2008). 

The ortholog of CASTOR is unknown in M. truncatula and the ortholog of POLLUX 

is called DMI1. In L. japonicus, two genes encoding putative nuclear pore 

components (NUP85 and NUP133) have been identified and it has been speculated 

that they might be involved in transporting CASTOR and POLLUX to the inner 

nuclear envelope (Parniske, 2008). Zhang et al. (2010) identified two genes that are 

necessary for the development of the AM symbiosis but not for the rhizobial 

symbiosis in M. truncatula. The genes stunted arbuscule (STR) and STR2 seem to 

encode half-size ATP-binding cassette (ABC) transporters of a subfamily (ABCG; 

Zhang et al., 2010). Both proteins are located in the periarbuscular membrane and 

since half-transporters are predicted to act as dimers, STR and STR2 might act as 

heterodimers. Potential orthologs of STR and STR2 have been found in many 

angiosperms but not in Arabidopsis which is a non mycorrhizal plant (Zhang et al., 

2010). 

Several changes in plant gene expression also occur during the establishment 

of AM symbioses and in mature mycorrhiza in comparison to non mycorrhizal 

plants. Many researchers have used the model plant M. truncatula in symbiosis with 

different Glomeromycota species to investigate changes in gene expression induced 

by mycorrhiza. Generally, genes involved in signal transduction, transport, cell 

structure, primary and secondary metabolism, protein binding, and plant defence 

show differences in expression in mycorrhizal plants (Frenzel et al., 2005; Hohnjec 

et al., 2005; Liu et al., 2007; Gomez et al., 2009). Furthermore, Liu et al. (2007) 

showed that genes implicated in hydrolytic activity, enzyme activity and structural 

molecular activity were over represented in mycorrhizal roots whereas genes 

implicated in transcriptional regulation were over represented in shoots of 

mycorrhizal M. truncatula plants.  
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Some of the mycorrhiza related genes have been characterised in more detail. 

For example, a blue copper binding protein (MtBcp1) expressed in cells containing 

arbuscules and in neighbouring cortical cells is probably involved in electron transfer 

(Hohnjec et al., 2005). A cellulase (MtCel1) probably responsible for cell wall 

modifications (Liu et al., 2003) and a class III chitinase (MtChit3-3; Elfstrand et al., 

2005) are expressed in cells containing arbuscules. A glutathione-S-transferase 

(MtGst1) probably involved in stress responses is expressed in mycorrhizal root 

tissue (Wulf et al., 2003). Two lectins (MtLec5 and MtLec7) exclusively expressed 

in cells containing arbuscules have been proposed to bind to carbohydrates exposed 

to fungal cell wall surfaces or to act as storage of organic nitrogen (Frenzel et al., 

2005). Vapyrin, a cytosolic protein in root cells of M. truncatula has been suggested 

to be involved in cellular remodeling processes necessary for colonisation by AM 

fungi (Pumplin et al., 2010) and phosphate uptake from the periarbuscular space is 

mediated by an arbuscule specific phosphate transporter (MtPt4; Harrison et al., 

2002). A transcriptional analysis of M. truncatula transporters revealed that in 

addition to MtPT4, at least three peptide transporters, two putative ATP/ADP 

carriers, an ATPase (Mtha1; Krajinski et al., 2002), four ABC transporters, four plant 

defensins and three aquaporins were up regulated in four-week old roots colonised 

by Glomus intraradices (Benedito et al., 2010). 

Mycorrhiza activated genes show either cell autonomous expression, because 

they are only expressed in cells containing arbuscules, or cell non autonomous 

expression, because they are expressed in cells of the colonised region of the root 

(Harrison, 2005). Two distinct temporal expression patterns were defined by Liu et 

al. (2003): (1) genes that show increased expression during the initial contact 

between the symbionts but decreasing expression during the establishment of the 

symbiosis, which seemed to be mainly involved in stress and defence response and 

(2) genes that show sustained increase in expression in mycorrhizal roots, many of 

which are involved in signal transduction. 

Some of the mycorrhiza related genes are activated in response to different 

fungal species of the Glomeromycota whereas other genes are targeted by specific 

fungal species (Liu et al., 2007; Grunwald et al., 2009). Massoumou et al. (2007) 

compared the influence of seven different fungal species on the expression of 14 AM 

specific M. truncatula genes and showed that ten of the genes were activated by all 

fungal species and the remainder of the genes were activated by at least two fungi. 
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Feddermann et al. (2008) investigated the distinct expression patterns of ten M. 

truncatula genes in response to G. mosseae, G. intraradices and Scutellospora 

castanea. The Glomus species belong to the Arum-type of mycorrhiza whereas S. 

castanea belongs to the Gigasporaceae and forms Paris-type mycorrhiza. Four of the 

genes were activated by all three fungi but six genes only responded to S. castanea 

(Feddermann et al., 2008). The authors suggested that the differences in gene 

expression might be related to the distinctive colonisation pattern (Feddermann et al., 

2008). Not all of the genes whose gene expression is influenced by AM fungi 

respond exclusively to mycorrhiza. Seventy five genes corresponding to a range of 

functional classes were differentially expressed in M. truncatula roots in symbiosis 

with G. intraradices and with Sinorhizobium meliloti (Manthey et al., 2004). The 

beneficial rhizobacterium Pseudomonas fluorescens also influenced genes in M. 

truncatula that responded to G. mosseae and to S. meliloti (Sanchez et al., 2004). 

Gene expression analysis of twelve mycorrhiza upregulated M. truncatula genes 

showed that root colonisation with P. fluorescens activated seven of the twelve plant 

genes and nodulation with S. meliloti activated three of the twelve plant genes 

(Sanchez et al., 2004). For example, the expression of a gene encoding a nodulin 26-

like aquaporin was up regulated by all three microorganisms (Sanchez et al., 2004). 

Cell wall related genes and transcription factors that were up regulated in 

mycorrhizal roots were down regulated in M. truncatula leaves infected with a 

pathogen Pseudomonas syringae (Bozsó et al., 2009).  

 

6.1.4 Aim 

The aim of this chapter was to investigate changes in plant gene expression in 

relation to Cs supply and to arbuscular mycorrhiza. Non mycorrhizal and 

mycorrhizal plants were grown under in vitro conditions on a complete nutrient 

medium containing 1 mM K without or with the addition of 0.05 mM Cs and 

Affymetrix GeneChip® Medicago genome arrays were used to examine gene 

expression in M. truncatula roots and shoots under these conditions. 
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6.2 MATERIAL AND METHODS 

 

6.2.1 Organisms and growth conditions 

Medicago truncatula Gaertn. var. truncatula Jemalong A17 and the 

arbuscular mycorrhizal fungus Glomus sp. MUCL 43195 were used and the growth 

conditions are described in Section 5.2.2. The same plant material that was used in 

Section 5.2.2 to determine element concentrations in plant tissues was used in the 

Chapter presented here. Root and shoot material of non mycorrhizal and mycorrhizal 

plants that had been grown without or with Cs in the medium had been frozen in 

liquid N2 and stored at -80°C. Root and shoot material from Experiments 1 and 2 

were used for gene expression analysis. Plant materials from each treatment in 

Experiments 1 and 2, respectively, were combined for the extraction of total RNA to 

achieve high concentrations of RNA necessary for gene expression analysis. For 

each treatment (non mycorrhizal and mycorrhizal, absence and presence of Cs), one 

root and one shoot RNA sample were obtained for Experiment 1 and 2, respectively, 

which lead to a total of eight root and eight shoot samples. 

 

6.2.2 Ribonucleic acid (RNA) extraction  

Total RNA of plant roots was extracted using TRIzol Reagent (Invitrogen 

Ltd., Paisley, UK). The tissues were pulverised in liquid nitrogen and 1 ml of TRIzol 

Reagent was added to 100 mg of tissue. Following incubation of the homogenised 

sample for 5 min at RT, 0.2 ml of chloroform was added. After mixing thoroughly 

and incubating for 5 min at RT, the samples were centrifuged at 9000 g for 15 min at 

4°C (1-15K, Sigma Aldrich, St. Louis, MO, USA). The aqueous phase was mixed 

with 0.2 ml of chloroform and again centrifuged at 9000 g for 15 min at 4°C. The 

RNA was precipitated from the aqueous phase by mixing with 0.25 ml isopropanol 

and 0.25 ml 0.8 M sodium citrate, 1.2 M NaCl. After mixing and incubating for 

30 min at RT the samples were centrifuged at 13000 g for 20 min at 4°C. The 

supernatant was removed and the RNA pellet was washed with 1 ml of 75% ethanol. 

At the end, the RNA was air-dried and dissolved in RNase-free water by mixing and 

incubating at 55°C.  

Following extraction the RNA from root samples was further purified using a 

phenol-chloroform step. The sample volume was adjusted to 100 μl with RNase-free 

water and 100 μl of a phenol/chloroform mixture (1:1, pH 4.3) was added. The 
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samples were incubated on ice for 5 min and subsequently centrifuged at 9000 g for 

5 min at 4°C. The RNA was precipitated from the aqueous phase by mixing with 

10 μl 3 M sodium acetate (pH 5.5) and 0.25 ml 100% ethanol. After mixing and 

incubating for 1 h at -20°C the samples were centrifuged at 18000 g for 20 min at 

4°C. The supernatant was removed and the RNA pellet was washed with 1 ml of 

80% ethanol. At the end, the RNA was air-dried and dissolved in RNase-free water 

by mixing and incubating at 55°C.  

The RNA from shoot samples was extracted using the RNeasy Mini Kit 

(Qiagen Ltd., Crawley, UK) according to the manufacturer’s instructions. The tissues 

were pulverised in liquid nitrogen and added to 450 μl of a buffer containing 4.5 μl 

β-mercaptoethanol. The samples were vortexed and incubated at 56°C for 1 min. The 

lysate was homogenised with a QIAshredder spin column. The supernatant of the 

flow through was mixed with 220 μl 100% ethanol, transferred to an RNeasy Mini 

spin column and centrifuged at 9000 g for 15 s. This was followed by an on-column 

DNase I digestion. After two wash steps the RNA was eluted with RNase-free water. 

Extraction of RNA from roots using the RNeasy Mini Kit failed and therefore two 

different methods were used for the extraction of total RNA from roots and shoots. 

The quality and quantity of the RNA was tested using a NanoDrop 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA). 

 

6.2.3 Affymetrix GeneChip® Medicago genome array hybridisation 

Quality control of the RNA, cDNA synthesis and hybridisation of the 

Affymetrix GeneChip® Medicago genome array was carried out by NASC's 

International Affymetrix Service (The European Arabidopsis Stock Centre, 

University of Nottingham, Loughborough, UK).  

The quality of the RNA was assessed using the Agilent 2100 bioanalyzer 

(Agilent Technologies UK Limited, Stockport, UK) which is an automated bio-

analytical device using microfluidics technology that provides electrophoretic 

separations (Schroeder et al., 2006). Profiles generated on the Agilent 2100 

bioanalyzer give information about RNA concentration and RNA integrity (RNA 

Integrity Number (RIN) – Standardization of RNA Quality Control, Agilent 

Technologies). In addition, quality and quantity of the RNA was tested using a 

NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA). 
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Labelling and hybridisation steps were performed as recommended by 

Affymetrix, Inc. The labelling was performed with the GeneChip® IVT Labeling Kit 

(GeneChip® Expression 3’-Amplification Reagents for IVT Labeling, Affymetrix, 

Inc., Santa Clara, CA, USA) and the array hydridisation was performed as described 

in the Affymetrix Genechip® Expression Analysis Technical Manual (Affymetrix 

Genechip® Expression Analysis Technical Manual, Affymetrix, Inc., Santa Clara, 

CA, USA). Two microlitres of 50 µM T7-Oligo(dT) Primer was added to 1 μg of 

total RNA, along with 2 µl of Poly-A RNA controls, during reverse transcription, 

generating cDNA containing the T7 promoter sequence. After cleanup of the cDNA 

the GeneChip® IVT Labeling Kit was used to produce amplified and biotinylated 

targets to hybridise on the Affymetrix GeneChip® Medicago genome array. The 

biotinylated cRNA was mixed with 10x IVT Labeling Buffer, IVT Labeling NTP 

Mix and IVT Labeling Enzyme mix and incubated at 37°C for 16 h. The labeled 

cRNA was cleaned up using IVT cRNA Cleanup Spin Columns and subsequently 

fragmented to 35–200 nt fragments by metal-induced hydrolysis. Fifteen micrograms 

of fragmented cRNA were mixed with 5 μl of 3 nM Control Oligonucleotide B2, 

15 μl of 20X Eukaryotic Hybridization Controls (bioB, bioC, bioD, cre), 3 μl of 

10 mg ml-1 Herring Sperm DNA, 3 μl of 50 mg ml-1 BSA, 150 μl of 2X 

Hybridization Buffer, 30 μl of DMSO and made up to a final volume of 300 μl with 

H2O. The hybridisation cocktail was added to the Affymetrix GeneChip® Medicago 

genome array and hybridised for 16 h in an Affymetrix GeneChip® Hybridization 

oven 640 (Affymetrix, Inc., Santa Clara, CA, USA) at 45°C. After hybridisation the 

array was washed and subsequently stained in an automated station with Streptavidin 

Phycoerythrin Stain Solution and Antibody Solution containing 0.5 mg ml-1 

biotinylated antibody. Finally, the array was scanned using an Affymetrix 

GeneChip® Scanner 3000 (Affymetrix, Inc., Santa Clara, CA, USA) using standard 

settings. 

 

6.2.4 Annotation of Medicago genes 

The annotations of the genes on the Affymetrix GeneChip® Medicago 

genome array were obtained from the Medicago truncatula Gene Expression Atlas 

(MtGEA) (http://mtgea.noble.org/v2/). Furthermore, an updated annotation was 

added to the Medicago genome model in GeneSpring, based on Arabidopsis thaliana 

annotation. The annotation was based on basic local alignment search tool (BLAST) 
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alignment (Altschul et al., 1990). For the local translated BLAST alignment, a 

database was created of all peptide sequences from the Arabidopsis TAIR 6 genome 

release (www.arabidopsis.org), using the 'formatdb' command. Target sequences 

used to design the Affymetrix GeneChip® Medicago probe sets were downloaded 

from Affymetrix (www.affymetrix.com/estore/). A translated BLAST alignment 

(v2.2.16; Altschul et al., 1990) identified the most similar Arabidopsis coding 

sequence to individual Medicago target sequences, using the 'blastall' command. A 

threshold of e-value <0.0001 was defined for reliable similarities between Medicago 

and Arabidopsis coding sequences. 

 

6.2.5 Analysis of Medicago transcriptome data 

Non-scaled RNA CEL files containing the raw signal intensity values for 

each probe on the array were generated from the scanned image of the GeneChip® 

array. Each RNA CEL file contained signal intensity values for 11 perfect match 

(PM) probes and 11 mismatch (MM) probes within each probe-set for each of the 

61,101 probe-sets on the array. RNA CEL files (roots and shoots) were imported 

using the RMA pre-processor in GeneSpring GX and globally normalised before 

further analysis. The analysis of the microarray data using GeneSpring GX (Version 

7.3, Agilent Technologies UK Ltd., South Queensferry, UK) was performed in 

collaboration with Dr Pete Hedley, SCRI, UK. Data were viewed initially using the 

‘Condition Tree’ clustering program in GeneSpring GX. Shoot and root data 

separated at the first division and were subsequently analysed separately. Per-gene 

normalisations were applied whereby the signal intensity of each probe-set was 

normalised to the median value of the probe-set across all samples. The raw signal 

intensity values were filtered to an intensity value of at least 50 in at least two of the 

eight samples (to match the number of biological replicates per sample). The 

normalised data were filtered on expression levels removing all genes with fold-

changes between 0.7 and 1.3, compared to the median measurements. For statistical 

analysis the two replicates for each treatment were combined. Probe-sets with 

differential hybridisation intensities between treatment type (i.e. without or with Cs) 

and growth conditions (i.e. non mycorrhizal or mycorrhizal), were identified 

subsequently using a two-way ANOVA, with a model of treatment type (i.e. without 

or with Cs), growth conditions (i.e. non mycorrhizal or mycorrhizal) and an 
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interaction term. The cutoff for the two-way ANOVA was p-value <0.05 with no 

multiple testing correction. 

 

6.2.6 AMIGO 

The Gene Ontology (GO) website (http://www.geneontology.org; The Gene 

Ontology Consortium, 2000) provides ontologies to describe predicted gene 

characteristics in a species-independent manner. Information about biological 

processes, molecular function and cellular component for genes are provided. To 

investigate if any groups of genes were overrepresented in the lists of differentially 

expressed genes in response to Cs or mycorrhizal symbiosis in comparison to the 

whole genome, the GO Term Enrichment tool of AmiGO (version 1.7; 

http://amigo.geneontology.org/cgi-bin/amigo/term_enrichment; Carbon et al., 2009) 

was used. The Arabidopsis homologs of the M. truncatula genes that were influenced 

by Cs or AM (threshold of e-value <0.0001) were compared against the whole 

genome of Arabidopsis (database filter TAIR) with a maximum p-value of 0.01 and a 

minimum number of one gene product. 
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6.3 RESULTS 

 

6.3.1 Quality control of extracted RNA 

Non mycorrhizal and mycorrhizal Medicago truncatula plants were grown 

under K-deficient conditions without or with Cs in the medium. Total RNA was 

extracted from roots and shoots. The quality of the extracted RNA was assessed 

using the Agilent 2100 bioanalyzer. Clear peaks of 18S and 28S ribosomal RNA are 

visible in non degraded, high quality RNA. Figure 6.1 shows an electropherogram of 

RNA that was extracted from mycorrhizal M. truncatula roots that had been grown 

with Cs in the medium.  
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Figure 6.1: Electropherogram of total RNA extracted from mycorrhizal Medicago 
truncatula roots that had been grown with Cs in the medium. Clear peaks of 
ribosomal 18S and 28S RNA indicate intact RNA. 
 

6.3.2 Quality control analysis of Affymetrix GeneChip® Medicago genome array 

hybridisation 

The RNA was labeled and for each treatment two biological replicates (one 

replicate from Experiment 1 and the other replicate from Experiment 2) for roots and 

shoots were hybridised to Affymetrix GeneChip® Medicago genome arrays. The 

arrays contain 61,101 probe sets, 50,900 of these originate from M. truncatula. 

Observation of the Condition Tree in GeneSpring revealed that root and shoot data 

separated at the first division (Figure 6.2). Consequently, root and shoot samples 

were analysed separately.  
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Roots Shoots
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Figure 6.2: Separation of root (red) and shoot (yellow) data in the first division of a 
‘Condition Tree’ clustering program in GeneSpring. 
 

The raw data were filtered to an intensity value of at least 50 in at least two of 

the eight samples. In roots, 22,250 probe sets passed the filtering step and in shoots 

22,324 probe sets were left after the filtering step. The overlap between the gene lists 

from the two tissues, as defined by a Venn diagram, was 19,730 probe sets. 

Subsequently, the filtered and normalised data were filtered on expression levels 

removing all genes with constitutive expression levels between 0.7 and 1.3. In roots, 

12,106 probe sets showed differential expression levels in at least one of the samples 

and in shoots, 15,255 probe sets were left after the filtering step. These gene lists had 

an overlap of 7,755 probe sets. Subsequent discussion of data will refer to probe sets 

as ‘genes’. 
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6.3.3 Differentially expressed genes in roots and shoots of Medicago truncatula 

due to Cs or arbuscular mycorrhiza 

A two-way ANOVA, with a model of treatment type (i.e. without or with Cs), 

of growth conditions (i.e. non mycorrhizal or mycorrhizal) and an interaction term, 

without any multiple testing correction, was used to identify genes in roots and 

shoots of M. truncatula which were differentially expressed due to Cs or arbuscular 

mycorrhiza. In roots, the expression of 201 M. truncatula and 9 M. sativa genes was 

influenced by the presence of Cs in the medium (Table S1, Appendix). The 

expression of 275 M. truncatula and 19 M. sativa genes differed between non 

mycorrhizal and mycorrhizal roots (Table S2, Appendix). The expression of 85 M. 

truncatula and 7 M. sativa genes in roots was influenced by both the presence of Cs 

in the medium and the presence of the mycorrhizal symbiosis (Table S3, Appendix). 

AmiGO was used to find biological processes, molecular functions and cellular 

components of genes that were significantly overrepresented in the lists of M. 

truncatula genes that were differentially expressed in response to Cs or arbuscular 

mycorrhiza. For the analysis the A. thaliana orthologs of the M. truncatula genes 

were compared against the whole genome of A. thaliana. The whole genome of A. 

thaliana was used because the Affymetrix GeneChip® Medicago genome array 

contains probes for the major part of the Medicago genome. Based on the analysis 

using the A. thaliana genome, genes involved in secondary metabolic processes (11 

genes, 7.6%) and cellular lipid metabolic processes (11 genes, 7.6%), especially 

isoprenoid metabolic processes (9 genes, 6.2%) including isoprenoid biosynthetic 

processes (7 genes, 4.8%) and terpenoid metabolic processes (7 genes, 4.8%; Table 

S7, Appendix), were overrepresented in M. truncatula roots that had been grown 

with Cs in the medium. Furthermore, genes involved in oxygen binding (related to 

cytochrome P450 activity; 10 genes, 6.9%), oxidoreductase activity (25 genes, 

17.2%), glucuronosyltransferase activity (3 genes, 2.1%), electron carrier activity (11 

genes, 7.6%) and iron ion binding (10 genes, 6.9%; Table S7, Appendix) were 

overrepresented. By contrast, no biological processes or molecular functions were 

overrepresented in mycorrhizal roots.  

In shoots, the expression of 83 M. truncatula and 5 M. sativa genes was 

influenced by the presence of Cs in the medium (Table S4, Appendix). The 

expression of 371 M. truncatula and 25 M. sativa genes differed in shoots of non 

mycorrhizal and mycorrhizal plants (Table S5, Appendix). The expression of 189 M. 
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truncatula and 15 M. sativa genes in shoots was influenced by both the presence of 

Cs in the medium and the presence of the mycorrhizal symbiosis (Table S6, 

Appendix). According to AmiGO, in shoots of plants that had been grown with Cs in 

the medium, genes involved in catalytic activity (34 genes, 54%), especially 

oxidoreductase activity (16 genes, 25.4%; Table S8, Appendix) were 

overrepresented. Shoots of mycorrhizal plants showed overrepresentation of genes 

related to catalytic activity (108 genes, 40.3%), especially peroxiredoxin activity (3 

genes, 1.1%) and of genes located in the chloroplast (74 genes, 27.6%; Table S9, 

Appendix).  

 

6.3.4 Expression of genes in roots and shoots of Medicago truncatula related to 

Cs transport 

Caesium is transported by cation channels and proton-coupled cation 

transporters (see Chapter 1; White and Broadley, 2000). To investigate if Cs in the 

medium affected the expression of genes encoding cation transport proteins in M. 

truncatula, a list of genes encoding cation transport proteins was created using The 

Arabidopsis Information Resource (TAIR; www.arabidopsis.org, accessed 23 June 

2010). The list included all members of the Arabidopsis gene families of K+ 

channels, K+/H+ symporters, cyclic-nucleotide gated channels, glutamate receptors 

and cation/H+ antiporters (see Chapter 1; White and Karley, 2010). Using the 

updated annotation list for the M. truncatula genes on the Affymetrix GeneChip® 

Medicago genome array based on Arabidopsis annotations, all M. truncatula 

orthologs to the Arabidopsis cation transport proteins were listed. These genes were 

checked for their annotations in the Medicago truncatula Gene Expression Atlas 

(MtGEA, http://mtgea.noble.org/v2/). The expression levels of all genes whose 

MtGEA annotations were related to cation transport were identified (Figures 6.3, 6.4, 

6.5, 6.6; Table 6.1, 6.2). It has to be noted that the membrane locations and the 

mechanisms of the cation transport proteins in M. truncatula are not known. 

Four of the genes related to cation transport were significantly differentially 

expressed in response to the presence of Cs in the medium or mycorrhizal symbiosis. 

A putative Na+ transporter orthologous to AtHKT1 (probe set Mtr.34734.1.S1_at; 

Figure 6.3; Munns and Tester, 2008) was down regulated in roots of M. truncatula 

when Cs was present and also in mycorrhizal roots (p <0.05). A putative glutamate 

receptor cation channel orthologous to AtGLR2.1 (probe set Mtr.6324.1.S1_at; 
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Figure 6.4; Davenport, 2002) and a putative K+ channel orthologous to AtAKT1 

(probe set Mtr.51989.1.S1_s_at; Figure 6.5; Lagarde et al., 1996) were down 

regulated in shoots of M. truncatula in the presence of Cs (p <0.05). A putative 

Na+/H+ exchanger orthologous to AtCHX19 (probe set Mtr.17230.1.S1_at; Figure 

6.6; Sze et al., 2004) was down regulated in shoots in the presence of Cs and was 

also influenced by an interaction of Cs and mycorrhiza (p <0.05). 
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Figure 6.3: Raw intensity values of a putative Na+ transporter orthologous to AtHKT1 
(probe set Mtr.34734.1.S1_at) in mycorrhizal and non mycorrhizal Medicago 
truncatula roots that had been grown with or without Cs in the medium. The 
expression of the gene was down regulated in mycorrhizal roots and in roots of 
plants that had been grown with Cs in the medium. 
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Figure 6.4: Raw intensity values of a putative glutamate receptor cation channel 
orthologous to AtGLR2.1 (probe set Mtr.6324.1.S1_at) in mycorrhizal and non 
mycorrhizal Medicago truncatula shoots that had been grown with or without Cs in 
the medium. The expression of the gene was down regulated in shoots of plants that 
had been grown with Cs in the medium. 
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Figure 6.5: Raw intensity values of a putative K+ channel orthologous to AtAKT1 
(probe set Mtr.51989.1.S1_at) in mycorrhizal and non mycorrhizal Medicago 
truncatula shoots that had been grown with or without Cs in the medium. The 
expression of the gene was down regulated in shoots of plants that had been grown 
with Cs in the medium. 
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Figure 6.6: Raw intensity values of a putative Na+/H+ exchanger orthologous to 
AtCHX19 (probe set Mtr.17230.1.S1_at) in mycorrhizal and non mycorrhizal 
Medicago truncatula shoots that had been grown with or without Cs in the medium. 
The expression of the gene was down regulated in shoots of plants that had been 
grown with Cs in the medium. 
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Generally, the intensity values for most probe sets for these selected genes 

were low and several target genes did not pass the quality control analysis (Section 

6.3.2). Furthermore, only two replicates per treatment were processed meaning that 

an exhaustive statistical analysis was limited. Therefore, normalised raw expression 

values of all the selected target genes were compared between the different 

treatments. It is noted that without clear statistical evidence, the following 

observations are speculative. Some genes encoding putative Cs transport proteins 

appeared to be influenced by the presence of Cs in the medium or by the arbuscular 

mycorrhizal symbiosis (Table 6.1). In roots, none of the target genes appeared to be 

up regulated in the presence of Cs, but six genes showed lower raw expression values 

in roots that had been grown with Cs than in roots that had been grown without Cs. 

Four of these genes were putative K+/H+ symporters (KUPs; an ortholog to 

AtKUP10, probe set Mtr.41449.1.S1_ at; an ortholog to AtKUP11, probe set 

Mtr.3419.1.S1_at; two orthologs to AtHAK5, probe sets Mtr.1577.1.S1_s_at and 

Mtr.40509.1.S1_at). In mycorrhizal roots, three genes appeared to be up regulated, 

two of these genes were putative voltage insensitive cation channels (VICCs; an 

ortholog to cyclic-nucleotide gated channel 1 (AtCNGC1), probe set 

Mtr.13824.1.S1_at; an ortholog to AtCNGC20, probe set Mtr.7630.1.S1_at). Six 

genes seemed to be down regulated in mycorrhizal roots. Three of these genes were 

putative VICCs (an ortholog to AtCNGC6, probe set Mtr.17109.1.S1_s_at; an 

ortholog to AtCNGC17, probe set Mtr.39382.1.S1_at; an ortholog to glutamate 

receptor 3 (AtGLR3.3), probe set Mtr.25331.1.S1_at) and two of these genes were 

putative KUPs (an ortholog to AtKUP3, probe set Mtr.33886.1.S1_at; an ortholog to 

AtKUP4, probe set Mtr.39674.1.S1_at). In shoots, two genes appeared to be up 

regulated in the presence of Cs (an ortholog to AtKUP10, probe set 

Mtr.41449.1.S1_at; an ortholog to AtGLR3.4, probe set Mtr.4374.1.S1_at). Six genes 

appeared to be down regulated in the presence of Cs. Four of the genes that appeared 

to be down regulated were involved in calcium transport. Five genes appeared to be 

up regulated in shoots of mycorrhizal plants. Three of these genes were putative 

VICCs (an ortholog to AtCNGC1, probe set Mtr.33833.1.S1_at; an ortholog to 

AtCNGC6, probe set Mtr.17109.1.S1_s_at; an ortholog to AtCNGC19, probe set 

Mtr.31814.1.S1_at). Four genes appeared to be down regulated in shoots of 

mycorrhizal plants. Three of these genes were putative KUPs (an ortholog to 

AtKUP2, probe set Mtr.10999.1.S1_at; an ortholog to AtKUP6, probe set 
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Mtr.9837.1.S1_at; an ortholog to AtKUP11, probe set Mtr.3419.1.S1_at) and one was 

a putative VICC (an ortholog to AtCNGC2, probe set Mtr.38460.1.S1_at).  

All other genes related to cation transport did not seem to be influenced by 

the presence of Cs in the medium or by the mycorrhizal symbiosis (Table 6.2). 
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6.3.5 Expression of genes in roots of Medicago truncatula related to arbuscular 

mycorrhiza 

Some plant genes are exclusively expressed in arbuscular mycorrhizal roots 

(Wulf et al., 2003; Hohnjec et al., 2006; Krajinski and Frenzel, 2007; Liu et al., 

2007; Massoumou et al., 2007; Benedito et al., 2010). Therefore, a list of 

mycorrhizal M. truncatula genes was created. All genes on the list show mycorrhizal 

specific or at least a much stronger expression in mycorrhizal than in non 

mycorrhizal roots in accordance to the Medicago truncatula Gene Expression Atlas 

(MtGEA, http://mtgea.noble.org/v2/). Out of the 38 genes of interest, only two genes 

showed statistically significant mycorrhiza induced expression (p <0.05) in the 

experiments described here. These were a protease inhibitor (probe set 

Mtr.35511.1.S1_at; Figure 6.7; Hohnjec et al., 2005) and a serine carboxypeptidase 

MtScp1 (probe set Mtr.40285.1.S1_at; Figure 6.8; Liu et al., 2003).  
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Figure 6.7: Raw intensity values of a protease inhibitor (probe set 
Mtr.35511.1.S1_at) in mycorrhizal and non mycorrhizal Medicago truncatula roots 
that had been grown with or without Cs in the medium. The expression of the gene 
was significantly up regulated in mycorrhizal roots. 
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Figure 6.8: Raw intensity values of a serine carboxypeptidase MtScp1 (probe set 
Mtr.40285.1.S1_at) in mycorrhizal and non mycorrhizal Medicago truncatula roots 
that had been grown with or without Cs in the medium. The expression of the gene 
was significantly up regulated in mycorrhizal roots. 
 

However, as explained above the intensity values were generally low and the 

low replication limited exhaustive statistical analysis. It appeared that an additional 

seven genes showed higher expression in mycorrhizal roots of M. truncatula than in 

non mycorrhizal ones (Table 6.3). These genes include some of the arbuscule-related 

AM marker genes in the model legume M. truncatula as described by Hohnjec et al. 

(2006). A germin-like protein MtGlp1 (probe set Mtr.12500.1.S1_at), a blue copper 

binding protein MtBcp1 (probe set Mtr.15627.1.S1_s_at), a glutathione-S-transferase 

MtGst1 (probe set Mtr.15957.1.S1_at), a β-tubulin MtTubb1 (probe set 

Mtr.17272.1.S1_at) and a phosphate transporter MtPt4 (probe set Mtr.43062.1.S1_at) 

appeared to have greater expression in mycorrhizal roots (Table 6.3). The other 

mycorrhizal M. truncatula genes did not seem to be induced in mycorrhizal roots 

studied in this thesis (Table 6.4). 
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6.4 DISCUSSION 

 

6.4.1 Gene expression in Medicago truncatula is influenced by the presence of 

caesium and by arbuscular mycorrhizal fungi 

Gene expression in roots and shoots of M. truncatula was investigated using 

Affymetrix GeneChip® Medicago genome arrays. Non mycorrhizal and mycorrhizal 

plants were grown with or without Cs in the medium. Genes expressed in roots and 

shoots differed greatly and consequently, root and shoot data were analysed 

separately (Figure 6.2). Out of the 50,900 M. truncatula and 1,896 M. sativa genes 

represented on the Affymetrix GeneChip® Medicago genome array, 201 M. 

truncatula and 9 M. sativa genes in roots were significantly influenced by Cs (Table 

S1, Appendix). Genes involved in secondary and lipid metabolism were 

overrepresented in these lists in comparison to the whole genome (Table S7, 

Appendix). In particular, genes of the isoprenoid metabolism including terpenoid 

metabolism were overrepresented. Isoprenoids are compounds built up of simple or 

multiple C5 units and the isoprenoid pathway has been highly conserved throughout 

evolution of plants (Bouvier et al., 2005). Many isoprenoids are synthesised in 

plastids and mitochondria, and they are involved in many aspects of the plant life 

cycle, i.e. photosynthesis, regulation of gene expression, constituents of membranes, 

vitamins and antioxidants (Holstein and Hohl, 2004; Bouvier et al., 2005). 

Terpenoids function as phytoalexins in plant–insect, plant–pathogen and plant–plant 

interactions (Cheng et al., 2007). Genes involved in glucuronosyltransferase activity 

and oxidoreductase activity were also overrepresented in the genes affected by Cs 

(Table S7, Appendix). UDP glycosyltransferases glycosylate a broad spectrum of 

substrates, including plant hormones and all major classes of plant secondary 

metabolites (Ross et al., 2001). Reactive oxygen species act as signaling molecules to 

control processes such as programmed cell death, abiotic stress responses and 

pathogen defence (Mittler, 2002; Apel and Hirt, 2004). The production of reactive 

oxygen species can be caused by several stresses including radiation, heavy metals 

and nutrient deprivation (Mittler, 2002). In shoots, 83 M. truncatula and 5 M. sativa 

genes were significantly influenced by Cs (Table S4, Appendix). As in roots, genes 

involved in oxidoreductase activity were overrepresented (Table S8, Appendix). 

Caesium might have caused oxidative stress in M. truncatula with consequent effects 
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on secondary metabolism, which is in agreement with the induction of oxidative 

stress by Cs in A. thaliana (Sahr et al., 2005a).  

Arbuscular mycorrhiza significantly influenced the expression of 275 M. 

truncatula and 19 M. sativa genes in roots but these did not group into any processes 

(Table S2, Appendix). In shoots, 371 M. truncatula and 25 M. sativa genes were 

significantly influenced by arbuscular mycorrhiza (Table S5, Appendix). Many of 

these gene products were located in chloroplasts (Table S9, Appendix). It has been 

shown that AM plants can have improved photosynthetic rates in comparison to non 

mycorrhizal plants (Augé, 2001; Smith and Read, 2008). One of the genes down 

regulated in shoots of mycorrhizal M. truncatula plants was the small subunit of 

ribulose bisphosphate carboxylase/oxygenase (Rubisco; probe set 

Mtr.19517.1.S1_at; Table S5, Appendix). The down regulation of the small subunit 

of Rubisco due to AM fungi had also been observed by Liu et al. (2007). Except for 

genes related to peroxiredoxin activity in shoots the genes influenced by AM fungi 

could not be grouped to molecular functions. It suggests that AM fungi influence a 

wide range of genes with different functions. This effect might be explained by the 

fact that AM fungi not only influence plant nutrition but can have a variety of effects 

on plants including improved resistance against plant pathogens or heavy metals (see 

Chapter 1; van der Heijden and Sanders, 2002). 

 

6.4.2 Gene expression of caesium transport proteins in Medicago truncatula  

A list of cation transport proteins of M. truncatula that might be involved in 

Cs+ transport was created. A putative Na+ transporter orthologous to AtHKT1 (probe 

set Mtr.34734.1.S1_at) was significantly down regulated in roots of M. truncatula 

when Cs was present and also in mycorrhizal roots (Figure 6.3). In roots of 

Arabidopsis thaliana, AtHKT1 is thought to be involved in the recovery of Na+ from 

the xylem before it reaches the shoot (Munns and Tester, 2008). The Na+ transporter 

AtHKT1 is not involved in K+ transport (Davenport et al., 2007) and it is not known 

if Cs+ is transported by AtHKT1. Caesium might have interfered with Na+ transport 

by the M. truncatula ortholog of AtHKT1 and influenced its expression. Since AM 

fungi play a major role in nutrient transport (Smith and Read, 2008) and influence 

the expression of various transport proteins (Benedito et al., 2010) they could also 

have an effect on the expression of MtHKT1. The presence of Cs in the medium 

down regulated the expression of a putative glutamate receptor cation channel 
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orthologous to AtGLR2.1 (probe set Mtr.6324.1.S1_at; Figure 6.4), a putative K+ 

channel orthologous to AtAKT1 (probe set Mtr.51989.1.S1_s_at; Figure 6.5) and a 

putative Na+/H+ exchanger orthologous to AtCHX19 (probe set Mtr.17230.1.S1_at; 

Figure 6.6) in shoots of M. truncatula. Glutamate receptors in plants function as non-

selective ion channels but are also involved in responses to abiotic stresses, and 

GLR2.1 is expressed throughout the plant (Davenport, 2002; Dietrich et al., 2010). 

Caesium might have influenced the expression of GLR2.1 either as an abiotic stress 

or by affecting transport processes. The A. thaliana voltage gated K+ channel 

AtAKT1 is mainly, but not exclusively, expressed in root cells (Lagarde et al., 1996; 

Ward et al., 2009) and is probably the dominant K+ channel involved in K nutrition 

(Broadley et al., 2001). According to the MtGEA, the M. truncatula ortholog (probe 

set Mtr.51989.1.S1_s_at) is also mainly expressed in roots. Furthermore, AtAKT1 is 

probably not involved in Cs+ transport (Broadley et al., 2001) and the expression of 

AtAKT1 is not influenced by K+ (Lagarde et al., 1996; White et al., 2010). The 

expression values of the ortholog to AKT1 in M. truncatula shoots were very low 

(Figure 6.5) and the down regulation due to Cs might be an artefact due to the low 

replication. The putative Na+/H+ exchanger AtCHX19 is mainly expressed in pollen 

and has been suggested to be involved in the regulation of potassium homeostasis in 

the course of pollen development (Sze et al., 2004; Gierth and Mäser, 2007). Other 

members of the Arabidopsis CHX family have been shown to be expressed in root 

cells (Sze et al., 2004) and they have been suggested to be involved in Cs+ transport 

into vacuoles (White et al., 2010).  

The expression of 15 additional cation transport proteins in roots and 17 

additional cation transport proteins in shoots of M. truncatula seemed to be 

influenced by the presence of Cs or colonisation with Glomus sp. although the 

differences in expression levels were not significant (Table 6.1). None of these genes 

showed higher expression levels in roots when Cs was present. However, Hampton 

et al. (2004) observed up regulation of two AtGLRs in roots of Cs-intoxicated A. 

thaliana plants. In M. truncatula, Cs seemed to down regulate the expression of four 

putative KUPs, including two orthologs of AtHAK5 (Table 6.1). Sahr et al. (2005a) 

also showed that AtHAK5 was down regulated in A. thaliana roots exposed to Cs 

using suppression subtractive hybridisation although the result was not verified with 

quantitative PCR. By contrast, Hampton et al. (2004) did not see any effect of Cs on 

the expression of AtHAK5 in roots of A. thaliana. In shoots, orthologs to AtKUP10 
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and AtGLR3.4 seemed to be up regulated by Cs in M. truncatula (Table 6.1). An up 

regulation of AtKUP6 and AtGLR1.3 as well as five AtCNGCs was observed in 

response to Cs intoxication in shoots of A. thaliana (Hampton et al., 2004).  

Arbuscular mycorrhiza seemed to up regulate the expression of two putative 

VICCs and to down regulate the expression of three putative VICCs and two putative 

KUPs in roots. Furthermore, arbuscular mycorrhizal seemed to up regulate the 

expression of three putative VICCs and to down regulate the expression of one 

putative VICC and three putative KUPs in shoots of M. truncatula (Table 6.1). Up 

regulation of putative VICCs in M. truncatula (an ortholog to AtCNGC1; Liu et al., 

2007 and an ortholog to AtCNGC20; Siciliano et al., 2007) due to AM fungi has been 

reported previously. In addition, Hohnjec et al. (2005) showed that arbuscular 

mycorrhiza influenced the expression of two putative KUPs in M. truncatula. The 

analysis of changes in the expression of transport proteins in M. truncatula due to 

AM fungi showed up and down regulation of several putative KUPs in roots 

(Benedito et al., 2010).  

 

6.4.3 Arbuscular mycorrhiza induced the expression of genes in roots of 

Medicago truncatula  

A list of M. truncatula genes was created that had previously been shown to 

be induced by arbuscular mycorrhiza (Hohnjec et al., 2006; Liu et al., 2007; 

Massoumou et al., 2007; Benedito et al., 2010). Two genes showed significantly 

higher expression in mycorrhizal than in non mycorrhizal roots of M. truncatula 

(Figure 6.7; 6.8). The protease inhibitor (probe set Mtr.35511.1.S1_at) has been 

reported to be involved in protein degradation and plant defence (Hohnjec et al., 

2005). It was suggested that the protein might be involved in fine-tuning protease 

activity during arbuscule degradation or in plant defence response to the presence of 

intraradical hyphae (Hohnjec et al., 2005). The induction of plant genes involved in 

plant defence has been reported in response to colonisation by AM fungi (Journet et 

al., 2002; Hohnjec et al., 2005; Küster et al., 2007; Liu et al., 2007). The serine 

carboxypeptidase MtScp1 (probe set Mtr.40285.1.S1_at) has been shown to be 

induced by arbuscular mycorrhiza and is expressed in cortical cells containing 

arbuscules and in adjacent cells (Liu et al., 2003). It was suggested that MtScp1 

might be involved in signalling processes during AM establishment (Liu et al., 2003) 

or in AM specific protein translocation to subcellular compartments (Hohnjec et al., 
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2005). The expression of MtScp1 was induced in response to Glomus intraradices, 

Gigaspora gigantea and Glomus versiforme (Liu et al., 2007). Seven additional 

genes seemed to be induced by colonisation with Glomus sp. in M. truncatula roots 

although the differences in expression levels were not significant (Table 6.3). The 

expression of specific tissue protein 2 (probe set Mtr.10562.1.S1_at) was induced by 

colonisation with G. intraradices, Gi. gigantea and G. versiforme (Liu et al., 2007). 

An ATP binding cassette transporter (probe set Mtr.46524.1.S1_at) was 42 times up 

regulated in mycorrhizal roots in comparison to non mycorrhizal roots (Benedito et 

al., 2010). ATP binding cassette transporters use ATP to transport diverse solutes, 

but it cannot be predicted if these proteins import or export substrates or which 

solutes are transported (Benedito et al., 2010). The remaining five genes belong to 

the arbuscule related AM marker genes in M. truncatula (Hohnjec et al., 2006). The 

germin-like protein MtGlp1 (probe set Mtr.12500.1.S1_at) has been proposed to 

function as an oxalate oxidase (Hohnjec et al., 2006) and the blue copper binding 

protein MtBcp1 (probe set Mtr.15627.1.S1_s_at) is involved in electron transfer 

(Hohnjec et al., 2005). A glutathione-S-transferase MtGst1 (probe set 

Mtr.15957.1.S1_at) is probably involved in stress response in mycorrhizal root tissue 

(Wulf et al., 2003). A β-tubulin MtTubb1 (probe set Mtr.17272.1.S1_at), which is a 

major component of microtubules, is also induced by AM fungi (Manthey et al., 

2004). Increased levels of β-tubulin occur due to the rearrangement of microtubules 

in cortical cells colonised by AM fungi (Manthey et al., 2004). The phosphate 

transporter MtPt4 (probe set Mtr.43062.1.S1_at) is essential for P uptake in 

mycorrhizal roots (Harrison et al., 2002; Javot et al., 2007). There are at least three 

possible reasons why the expression levels of these AM induced genes were not 

significantly different in mycorrhizal and non mycorrhizal roots of M. truncatula 

(Table 6.3). First, RNA was extracted from the whole root system. Due to non 

colonised regions of the root, RNA extraction from the whole root system could 

result in a dilution of mycorrhiza specific signals (Manthey et al., 2004). Second, the 

RNA was extracted from two independent experiments, but in these experiments the 

colonisation rate could not be determined (see Chapter 5). A low colonisation rate or 

differences in colonisation rates between the experiments could have led to the non 

significant differences in expression. Third, the intensity values of the two 

microarray replicates were diverse for many probes and the low replication 

confounded the statistical analysis. 
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6.5 CONCLUSIONS 

• Gene expression in roots and shoots of Medicago truncatula differed 

• Caesium induced changes in gene expression were related to secondary 

metabolism 

• The presence of caesium significantly down regulated genes encoding three 

putative Cs+ transporters in shoots (orthologs to AtGLR2.1, AtAKT1, 

AtCHX19) and might down regulate the expression of four putative KUPs 

(two orthologs to AtHAK5, and orthologs to AtKUP10, AtKUP11) in roots 

• Arbuscular mycorrhiza influenced the expression of a wide range of genes in 

both roots and shoots 

• Arbuscular mycorrhiza seemed to influence the expression of genes encoding 

a variety of putative VICCs and putative KUPs in roots or shoots 

• Arbuscular mycorrhiza significantly induced the expression of arbuscule 

related genes (a protease inhibitor and MtScp1) and might have induced the 

expression of seven additional arbuscule related genes (specific tissue protein 

2, ABC transporter, MtGlp1, MtBcp1, MtGst1, MtTubb1, MtPt4) in roots 
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Chapter 7 

General summary and discussion 
 

7.1 AIMS AND OBJECTIVES 

Radiocaesium contamination of the environment has been caused by global 

fallout from nuclear weapon testing, discharge from nuclear power plants, waste 

disposal and accidents at nuclear installations. Radiocaesium contamination of 

agricultural land still exists across Belarus, Russia and Ukraine due to the accident at 

the nuclear power plant in Chernobyl in 1986 (Smith et al., 2000; Beresford et al., 

2001). Two anthropogenic radioisotopes of Cs (134Cs and 137Cs) are of environmental 

concern due to their relatively long half-lives (2.06 and 30.17 years, respectively) 

and the emission of harmful β and γ radiation during decay (White and Broadley, 

2000). Radiocaesium enters the food chain through soil to plant transfer and thereby 

impacts on human health (Gillet et al., 2001; White and Broadley, 2000). Most crop 

species develop symbioses with arbuscular mycorrhizal (AM) fungi, with the 

exception of a few from non mycorrhizal plant families such as the Brassicaceae 

(Gosling et al., 2006). Arbuscular mycorrhizal fungi deliver mineral nutrients to their 

plant hosts (Smith and Read, 2008) and could therefore influence the transfer of 

radiocaesium from soil to plants (Entry et al., 1996). The effects of arbuscular 

mycorrhiza on caesium accumulation by plants are variable (see Chapter 1; White et 

al., 2010). Decreased, increased and similar shoot Cs concentrations of mycorrhizal 

plants compared to non mycorrhizal plants have been reported (e.g. Joner et al., 

2004; Dubchak et al., 2010; Gyuricza et al., 2010b). If arbuscular mycorrhiza 

increase Cs accumulation by plants they could assist phytoremediation, the removal 

of radionuclides from soil by plants (Pilon-Smits, 2005). If arbuscular mycorrhiza 

decrease Cs accumulation by plants they could be used to grow ‘safer’ crop plants 

that accumulate less Cs in their edible tissues (Payne et al., 2004; Hampton et al, 

2005). Due to the chemical similarity between Cs and K, K+ transport proteins play a 

major role in Cs+ uptake by plants (White et al., 2010). Under K-replete conditions, 

voltage-insensitive cation channels (VICCs) are mainly responsible for Cs+ uptake 

and under K-deficient conditions K+/H+ symporters (KUPs) are the dominant 

pathway of Cs+ uptake (White et al., 2010). The up regulation of genes encoding 
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KUPs under K-deficient conditions leads to greater Cs accumulation than under K-

replete conditions (Hampton et al., 2004; Qi et al., 2008). 

The aim of this thesis was to gain a better understanding of the influence of 

arbuscular mycorrhiza on Cs accumulation by plants. It was hypothesised that AM 

fungi improve the K status of plants. Therefore, AM fungi would reduce the 

abundance of KUPs and Cs uptake by mycorrhizal roots would occur mainly through 

VICCs. As a result, AM fungi would decrease the accumulation of Cs by plants. 

These hypotheses were tested by comparing Cs accumulation in mycorrhizal and non 

mycorrhizal plants. The expression of putative Cs+ transport proteins, including 

VICCs and KUPs, was investigated in mycorrhizal and non mycorrhizal Medicago 

truncatula plants.  

 

7.2 ARBUSCULAR MYCORRHIZA AND CAESIUM ACCUMULATION BY 

PLANTS 

The Arbuscular Mycorrhizal–Plant (AM-P) in vitro culture system (Dupré de 

Boulois et al., 2006) was used to investigate the influence of Glomus sp. on Cs 

accumulation by M. truncatula. By using an in vitro system any potential changes in 

Cs accumulation would be related to colonisation by Glomus sp. since no rhizobia or 

any other microorganisms were present. To achieve mycorrhizal M. truncatula plants 

in the in vitro system the growth conditions had to be optimised (Chapter 3). 

Although M. truncatula has been successfully colonised by Glomus sp. on modified 

Strullu-Romand (MSR) medium (Declerck et al., 1998, modified from Strullu and 

Romand, 1986) in the in vitro system (Dupré de Boulois et al., 2006) no colonisation 

on MSR medium could be achieved in work undertaken for this thesis. Several 

factors influence the development of arbuscular mycorrhiza. The most prominent is 

probably the availability of P, since a major benefit of the symbiosis is improved P 

nutrition (Smith and Read, 2008). High availability of P can impede fungal 

colonisation (Thomson et al., 1986; Braunberger et al., 1991) and it was therefore 

decided to use modified Hoagland’s medium (Hoagland and Arnon, 1938) with a 

reduced P concentration of 20 μM to facilitate AM development. Secondly, carbon 

allocation to the fungal symbiont is dependent on the photosynthetic activity of the 

host plants (Azcón-Aguilar and Bago, 1994). Hence, low light intensity can reduce 

colonisation by AM fungi (Hayman, 1974; Tester et al., 1986; Son and Smith, 1988; 

Smith and Gianinazzi-Pearson, 1990). Low phosphorus availability and high light 
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intensity were found to be important for successful colonisation of M. truncatula by 

Glomus sp. in the in vitro system (Chapter 3).  

Caesium accumulation can be toxic to plants and reduce plant growth 

(Hampton et al., 2004; Isaure et al., 2006). To avoid changes in plant development 

due to Cs toxicity, it was decided to investigate the influence of Glomus sp. on Cs 

accumulation by M. truncatula under non toxic conditions. Otherwise a comparison 

between plants that had been grown in the absence of Cs and plants that had been 

grown in the presence of Cs would have been difficult. Therefore, Cs toxicity in M. 

truncatula was studied (Chapter 4). The plants were grown under K-deficient 

(1.65 mM K) or K-replete (21.65 mM K) conditions with different concentrations of 

Cs. High concentrations of Cs above 0.15 mM in the presence of 1.65 mM K in the 

medium and above 0.3 mM Cs in the presence of 21.65 mM K in the medium led to 

decreased plant height and finally death of the plants (Section 4.3.1). Higher 

tolerance to Cs availability in the rhizosphere of K-replete plants in comparison to K-

deficient plants was also observed in Arabidopsis thaliana (Hampton et al., 2004). 

The availability of K in the medium also influenced Cs accumulation. Potassium-

replete plants had lower Cs concentrations in their shoots at the same external Cs 

supply than K-deficient plants (Section 4.3.2). That increasing K availability 

decreases Cs accumulation in plant shoots has been shown in several previous 

studies (Davis, 1963; Smolders et al., 1996a,b; Zhu et al., 2000, 2002; Tsukada and 

Hasegawa, 2002; Hampton et al., 2004; Le Lay et al., 2006). Increasing Cs 

concentrations in the medium decreased K concentrations in plant shoots (Section 

4.3.3), which is also in agreement with previous studies (Hampton et al., 2004; Le 

Lay et al., 2006). Shoot fresh weight was inversely related to the Csshoot:Kshoot ratio in 

both K-deficient and K-replete plants, which suggests that Cs toxicity was related to 

the Csshoot:Kshoot ratio (Section 4.3.3). This relationship was also observed by 

Hampton et al. (2004), who suggested that toxicity occurs because Cs competes with 

K for a biochemical function.  

Medicago truncatula was grown in the presence of Glomus intraradices at 

different Cs concentrations in the medium (Section 5.3.3.2). Mycorrhizal 

colonisation rate and arbuscule abundance decreased at high external Cs supply 

(Table 5.6). In parts of the roots where arbuscule development occurred in the 

presence of high Cs concentrations several adjacent cells contained arbuscules. 

Furthermore, it seemed that the abundance of hyphae growing on the root surface 
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and the formation of fungal storage vesicles within the root were increased when Cs 

supply was high (Figure 5.16). These findings suggest that the initiation of the 

symbiosis is sensitive to Cs. To the best of my knowledge, this is the first time that 

an inhibition of arbuscular mycorrhiza formation by Cs has been shown. 

Three experiments were performed to investigate the influence of arbuscular 

mycorrhiza on caesium accumulation by plants (Chapters 2 and 5). As mentioned 

above the hypothesis was tested that AM fungi increase K concentrations in plants 

and thereby reduce Cs concentrations.  

For the first experiment, M. truncatula was grown under K-deficient 

conditions (Section 5.3.1) in symbiosis with Glomus sp. with an external Cs supply 

of 0.05 mM in an in vitro system (Section 5.3.2). The mycorrhizal colonisation rate 

was around 10% and was slightly lower in plants that had been grown with Cs in the 

medium than in plants that had been grown without Cs in the medium (Section 

5.3.2.2). Fresh weights of mycorrhizal and non mycorrhizal plants did not differ and 

therefore any potential changes in tissue element concentrations were not related to 

differences in biomass. Potassium concentrations in non mycorrhizal plants did not 

differ from K concentrations in mycorrhizal plants (Section 5.3.2.3). 

For the second experiment, six different plant species (Hordeum vulgare, 

Beta vulgaris, Brassica napus, Medicago truncatula, Solanum tuberosum and 

Helianthus annuus) were grown in fertilised non sterile and sterile soil with a Cs 

supply of 3 mg kg-1 soil. The plants that had been grown in non sterile soil were 

colonised by soil arbuscular mycorrhizal fungi (with the exception of the non 

mycorrhizal species Beta vulgaris and Brassica napus) but the colonisation rates 

could not be determined. All plants that had been grown in sterile soil were non 

mycorrhizal (Section 2.3.3.2). Potassium concentrations in roots were higher in 

mycorrhizal than in non mycorrhizal plants but it could not be determined whether 

the K was stored in mycorrhizal structures or had been delivered to the plant. Shoot 

K concentrations did not differ between mycorrhizal and non mycorrhizal plants 

(Section 2.3.4). These results suggest that AM fungi do not influence K 

concentrations in plants. It has previously been observed that mycorrhizal plants 

have lower (Kothari et al., 1990) or higher (Clark and Zeto, 2000) shoot K 

concentrations than non mycorrhizal plants. The reasons for these contrasting results 

are unknown. 
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When M. truncatula was grown under in vitro conditions, Cs accumulation in 

both non mycorrhizal and mycorrhizal plants varied significantly between 

experiments (Section 5.3.2.3). This might indicate that Cs accumulation is highly 

sensitive to environmental factors and thus, results obtained using in vitro systems 

might differ from these obtained under field conditions. Generally, Cs concentrations 

in shoots of mycorrhizal plants were slightly lower than in shoots of non mycorrhizal 

plants, but Cs concentrations in roots did not differ between mycorrhizal and non 

mycorrhizal plants (Section 5.3.2.3). The same observations were made when the 

plants were grown in non sterile or sterile soil. Generally, Cs concentrations in shoots 

of mycorrhizal plants were lower than in shoots of non mycorrhizal plants, and Cs 

concentrations in roots did not differ (Section 2.3.4).  

The third experiment was performed to investigate whether external Cs 

supply influences the effect of AM fungi on Cs accumulation by plants. Medicago 

truncatula was grown in symbiosis with Glomus intraradices under K-replete 

conditions with different external Cs supplies (Section 5.3.3). Caesium 

concentrations in roots did not differ between mycorrhizal or non mycorrhizal plants 

independent of the external Cs supply. In shoots of mycorrhizal plants Cs 

concentrations were increased at the lowest Cs supply, decreased at the second 

lowest Cs supply and similar at the three highest Cs supplies in comparison to non 

mycorrhizal plants (Section 5.3.3).  

The results of the three different experiments (Chapters 2 and 5) show that Cs 

concentrations in roots are not influenced by AM fungi, but their influence on Cs 

concentrations in shoots is variable. Previously, it has been observed that arbuscular 

mycorrhiza decrease Cs concentrations in shoots (Dighton and Terry, 1996; Berreck 

and Haselwandter, 2001; Gyuricza et al., 2010b), increase Cs concentrations in 

shoots (Rogers and Williams, 1986; Entry et al., 1999; Rosén et al., 2005; Dubchak 

et al., 2010) or have no effect on Cs concentrations in shoots (Rogers and Williams, 

1986; Joner et al., 2004; Rosén et al., 2005).  

Caesium accumulation differs between plant species (Chapter 2; Andersen, 

1967; Broadley et al., 1999a). Caesium concentrations in plant shoots measured in 

the experiment in the thesis presented here did not correlate with Cs concentrations 

in shoots measured by Andersen (1967) or reviewed by Broadley et al. (1999a). This 

again demonstrates that the accumulation of Cs is highly environmentally dependent. 

Caesium accumulation by plants is determined by soil type, Cs and K concentrations 
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in soil and plant species specific interactions with soil type are also likely to occur 

(Andersen, 1967; Hampton et al., 2004; Le Lay et al., 2006; Waegeneers et al., 

2009). In experiments investigating the influence of AM fungi on Cs accumulation 

by plants, stable Cs and radioactive Cs have been used (e.g. Berreck and 

Haselwandter, 2001; Joner et al., 2004). The accumulation of stable Cs and 

radioactive Cs has been shown to be correlated in various plant species (Salt et al., 

2004; Yoshida et al., 2004; Soudek et al., 2006). It is therefore unlikely that 

differences in the influence of AM fungi on Cs accumulation by plants are related to 

the Cs isotope used in experiments. 

It seems likely that plant and fungal species, plant/symbiosis age and 

availability of Cs and K determine the influence of AM fungi on Cs accumulation by 

plants. Under field conditions, legumes are also colonised by rhizobia. Douka and 

Xenoulis (1991) showed that Cs concentration in nodulated Medicago sativa were 

lower than in ryegrass and the authors suggested that the rhizobial symbiosis might 

lower Cs accumulation. However, Cs accumulation varies greatly between plant 

species (Broadley et al., 1999a) therefore it remains unclear if rhizobia influence Cs 

accumulation by plants. It has been proposed that AM fungi could be used for 

phytoremediation purposes or for growth of ‘safer’ crop plants that accumulate less 

Cs (Entry et al., 1996; Dubchak et al., 2010; Gyuricza et al., 2010b). However, Entry 

et al. (1996) pointed out that it cannot be controlled which fungus colonises plants 

under field conditions. Most of the experiments investigating the effect of AM fungi 

on Cs accumulation by plants have used Glomus species (Table 1.2) but under field 

conditions plants are colonised by a spectrum of Glomeromycota (Oehl et al., 2010). 

Arbuscular mycorrhiza have varying effects on Cs concentrations in plant shoots 

(Table 1.2) probably dependent on plant and fungal species, soil type and other 

potential factors. Therefore, the use of arbuscular mycorrhiza to improve 

phytoremediation or to cultivate ‘safer’ crop plants does not seem feasible. 

 

7.3 GENE EXPRESSION IN MEDICAGO TRUNCATULA IN RESPONSE TO 

CAESIUM AND ARBUSCULAR MYCORRHIZA 

Gene expression in roots and shoots of M. truncatula changed in response to 

Cs in the rhizosphere and to colonisation by arbuscular mycorrhizal fungi (Chapter 

6). Caesium seemed to influence the expression of genes that are involved in 

oxidative stress with influence on secondary metabolism (Section 6.3.3) which is in 
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agreement with Sahr et al. (2005a) who showed that 133Cs induced oxidative stress in 

A. thaliana. It must be noted that the analysis performed in this thesis was based on 

A. thaliana orthologs of the M. truncatula genes that responded to Cs. The orthologs 

were compared against the whole genome of A. thaliana on the assumption that the 

genomes of M. truncatula and A. thaliana are similar enough to allow the 

determination of overrepresented biological processes. A similar approach was 

applied by Widodo et al. (2010) where the authors used a Basic Local Alignment 

Search Tool (BLAST) to identify A. thaliana orthologs of rice (Oryza sativa) genes 

to determine gene categories involved in Zn acquisition and transport. 

Caesium influenced the expression of putative Cs+ transport proteins (Section 

6.3.4); a putative glutamate receptor cation channel orthologous to AtGLR2.1, a 

putative K+ channel orthologous to AtAKT1 and a putative Na+/H+ exchanger 

orthologous to AtCHX19 were significantly down regulated in shoots of M. 

truncatula in response to Cs. Changes in gene expression of putative Cs+ transport 

proteins due to the presence of Cs was previously shown by Hampton et al. (2004) 

and Sahr et al. (2005a) in A. thaliana. These changes are very likely to be influenced 

by K status of the plants and the concentration of Cs in the rhizosphere. Hampton et 

al. (2004) and Sahr et al. (2005a) exposed K-replete plants to Cs whereas the M. 

truncatula plants exposed to Cs in this thesis were K-deficient. Non toxic Cs 

concentrations were used in this thesis and by Sahr et al. (2005a), whereas Hampton 

et al. (2004) used toxic concentrations of Cs. The transcriptional responses to K 

starvation and Cs intoxication are not independent of each other, but show distinct 

differences (Hampton et al., 2004). Differences in K status and Cs concentrations 

might explain why the expressions of genes encoding different putative Cs+ transport 

proteins were affected in response to Cs in different studies (Chapter 6; Hampton et 

al., 2004; Sahr et al., 2005a). 

Arbuscular mycorrhiza influenced gene expression in roots and shoots of M. 

truncatula. That arbuscular mycorrhiza not only influence gene expression in roots 

but also in shoots has also been shown by Liu et al. (2007). The expression of two 

arbuscule related marker genes of M. truncatula (Hohnjec et al., 2006), of a protease 

inhibitor probably involved in protein degradation and plant defence (Hohnjec et al., 

2005) and of the serine carboxypeptidase MtScp1 probably involved in signalling 

processes during AM establishment (Liu et al., 2003), were significantly induced in 

mycorrhizal roots (Section 6.3.5). Several other genes in roots and shoots responded 
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to arbuscular mycorrhiza in their expression but these could not be classified into 

functional groups (Section 6.3.3). The use of microarray technology revealed that 

AM fungi influence the expression of genes in roots involved in various processes, 

such as signal transduction, transport, cell structure, primary and secondary 

metabolism, protein binding, and plant defence (Hohnjec et al., 2005; Liu et al., 

2007; Gomez et al., 2009; Benedito et al., 2010). Formation of arbuscular mycorrhiza 

caused genes located in the chloroplast to change their expression in shoots (Section 

6.3.3). This might suggest that AM fungi influence plant photosynthesis (Augé, 

2001; Smith and Read, 2008; Dubchak et al., 2010). The expression of some genes 

encoding putative Cs+ transport proteins (mainly voltage insensitive cation channels 

(VICCs) and K+/H+ symporters (KUPs)) changed in response to arbuscular 

mycorrhiza (Section 6.3.3). Changes in expression of putative VICCs and KUPs in 

M. truncatula due to AM fungi has been shown previously (Hohnjec et al., 2005; Liu 

et al., 2007; Siciliano et al., 2007; Benedito et al., 2010). Since changes in gene 

expression of putative VICCs and KUPs occurred in roots and shoots, and genes 

were up and down regulated, no prediction can be made if, or in which way, AM 

fungi might influence K or Cs accumulation by plants. 

 

7.4 AREAS FOR FUTURE RESEARCH 

Caesium accumulation is influenced by the K status of plants (White et al., 

2010). To find explanations for the varying effects of AM fungi on Cs accumulation 

by plants, the role of arbuscular mycorrhiza in K nutrition of plants, which is not 

clear yet (Smith and Read, 2008), needs to be better understood. It is known that K+ 

transport proteins also mediate Cs+ transport (White and Broadley, 2000) but in 

which way the abundance or activity of these proteins is influenced by the presence 

of Cs or by arbuscular mycorrhizal fungi is unknown. The expression of genes 

encoding VICCs and KUPs can change when Cs is present but no consistent 

conclusions can yet be drawn (Chapter 6; Hampton et al., 2004; Sahr et al., 2005a). 

For example, the expression of AtHAK5 and its orthologs in M. truncatula were 

down regulated in the presence of Cs in some studies (Chapter 6; Sahr et al., 2005a) 

but the expression of AtHAK5 was not affected by Cs in others (Hampton et al., 

2004). It has also been shown that AM fungi can change the expression of VICCs 

and KUPs (Chapter 6; Benedito et al., 2010) but no general pattern has been 

revealed. Investigating the expression of K+ transport proteins in response to AM 
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fungi in different plant species might give insight into the different effects of AM 

fungi on Cs accumulation. It would be important to study the effect of several AM 

fungal species on the expression of K+ transport proteins since plant gene expression 

can respond differently to different fungal strains (Feddermann et al., 2008). 

Furthermore, not much is known about fungal gene expression in arbuscular 

mycorrhiza. Proteomic studies of the extraradical mycelium of Glomus intraradices 

and of fungal proteins expressed in mycorrhizal roots of M. truncatula did not 

identify any fungal proteins related to ion transport (Recorbet et al., 2009, 2010). The 

identification of AM fungal proteins involved in K+ or Cs+ transport could be a 

direction of future work. Proteins present in the extra- and intraradical mycelia of 

AM fungi could be extracted and their sequences compared to protein databases. 

Plant genes encoding putative K+ or Cs+ transport proteins could be used to search 

for AM fungal orthologs and the expression of these fungal genes could be 

investigated in the presence or absence of Cs. The investigation of the expression of 

fungal transport proteins in symbiosis might help to predict transport of K+ or Cs+ to 

plant root cells.  

Caesium accumulation varies between and within plant species (Chapter 2; 

Broadley et al., 1999a; Payne et al., 2004). One possible strategy to identify ‘safer’ 

crop plants could be to grow various crop cultivars under field conditions and to 

measure differences in tissue Cs concentrations. Plants should be grown in 

agricultural soil contaminated with Cs in symbiosis with indigenous fungi. Fungal 

strains isolated from heavy metal contaminated sites were most effective in 

phytoremediation suggesting that these fungi were adapted to heavy metal 

contamination (Orłowska et al., 2005; Göhre and Paszkowski, 2006). It seems 

therefore possible, that AM fungi could also adapt to Cs contamination. Furthermore, 

information about indigenous fungi is of importance because which fungi colonise 

roots in the field cannot be controlled (Entry et al., 1996). It seems that Cs 

accumulation by plants and the influence of AM fungi on Cs accumulation by plants 

is so variable, that it is possible that conclusions obtained in the laboratory are not 

yet transferable to field conditions.  

During the last decade, molecular studies have increased our knowledge of 

K+ uptake and transport by plants. Up until the end of the 1990s, only a few K+ 

transport protein families, such as inward-rectifying K+ channels (KIRCs), outward-

rectifying cation channels (KORCs) and K+/H+ symporters (KUPs) had been 
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identified in plants (reviewed by Schachtman, 2000). More recently, studies have 

shown that K+ can be transported by several additional plant transport proteins such 

as cyclic-nucleotide gated channels (CNGCs), glutamate receptors (GLRs) and 

cation/H+ antiporters (reviewed by White and Karley, 2010). Since Cs+ is chemically 

similar to K+ and these ions compete for uptake by plant roots, it was long thought 

that Cs+ and K+ shared the same uptake mechanisms; high affinity “active” (proton-

coupled) mechanisms at micromolar rhizosphere concentrations and low affinity 

mechanisms mediated by ion channels at millimolar rhizosphere concentrations 

(Shaw and Bell, 1989; Zhu and Smolders, 2000). The K-deficiency inducible proton-

coupled K+ transporter that contributes to K+ nutrition at low rhizosphere K 

concentrations in A. thaliana, AtHAK5, is also permeable to Cs (Qi et al., 2008). 

However, it has been shown that the K+ channel that contributes most to plant K 

nutrition in A. thaliana, the KIRC AtAKT1, does not mediate Cs+ uptake (Broadley 

et al., 2001). Transcriptomic and functional studies have provided additional insight 

into common and distinct components of K+ and Cs+ uptake (Hampton et al., 2004; 

Sahr et al., 2005a,b; Qi et al., 2008). Previously, Cs+/K+ uptake mechanisms were 

investigated in non mycorrhizal plants. However, AM fungi induce changes in plant 

gene expression (Gomez et al., 2009; Benedito et al., 2010). Here, for the first time, 

mycorrhizal M. truncatula plants have been used to examine the expression of genes 

encoding putative Cs+ transport proteins. The expression of genes encoding four 

putative Cs+ transport proteins (orthologs of AtHKT1, AtGLR2.1, AtAKT1 and 

AtCHX19) were significantly influenced by the presence of Cs and/or arbuscular 

mycorrhiza. Some additional genes encoding VICCs and KUPs also appeared to be 

influenced by the presence of Cs and/or arbuscular mycorrhiza. A challenge for the 

next decade will be to understand the complex processes of Cs+ uptake and transport 

in mycorrhizal plants. 
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Appendix 
 
Table S1: Raw expression values of genes in roots of non mycorrhizal (non myc) and mycorrhizal (myc) Medicago truncatula plants that had been grown without 
or with caesium in the medium. The gene expression was significantly influenced by the presence of Cs in the medium (Analysis of Variance, p <0.05). The 
Medicago probes refer to the Medicago truncatula or M. sativa probe name for the gene on the Affymetrix GeneChip® Medicago genome array and the AGI ID is 
the Arabidopsis thaliana gene identification. The annotation was based on local translated BLAST alignment. The MtGEA Target Description is the annotation 
for the gene obtained from the Medicago truncatula Gene Expression Atlas and the TAIR Target Description is the annotation of the Arabidopsis thaliana genes 
(A. thaliana annotations in italics). 
 

 Raw expression values in roots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.43585.1.S1_at 525.86 644.42 326.89 277.26 At4g15560 CLA1 4.00E-15 1-deoxy-D-xylulose 5-phosphate synthase 
Mtr.40891.1.S1_at 1570.59 1990.27 1449.96 1369.63 At5g60600 HDS 3.00E-51 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase 
Mtr.15436.1.S1_at 206.76 360.79 98.32 199.62 At1g52800  3.00E-41 2OG-Fe(II) oxygenase 
Mtr.50800.1.S1_at 1122.03 1501.98 800.59 706.79 At5g59540  3.00E-42 2OG-Fe(II) oxygenase 
Mtr.762.1.S1_at 173.59 257.05 360.95 458.81 At5g59540  9.00E-28 2OG-Fe(II) oxygenase family 
Mtr.37564.1.S1_at 5554.13 8233.85 3866.43 4448.95 At1g52820  2.00E-50 2-oxoglutarate-dependent dioxygenase 
Mtr.41872.1.S1_at 36.66 53.01 58.06 65.81 At5g59530  9.00E-52 2-oxoglutarate-dependent dioxygenase 
Mtr.34391.1.S1_at 103.20 107.43 251.05 259.60    AAA-type ATPase 
Mtr.23052.1.S1_at 21.88 26.93 71.61 53.16 At4g25835 GA20OX1 2.00E-39 AAA-type ATPase family protein 
Mtr.35992.1.S1_at 94.27 94.38 137.39 151.96    ABC transporter subunit 
Mtr.13167.1.S1_at 335.89 430.12 425.04 619.31 At1g49430 LACS2 2.00E-47 Acyl CoA synthetase 
Mtr.42425.1.S1_at 146.10 108.92 109.30 94.19 At3g55480  3.00E-34 Adaptor protein 
Mtr.37912.1.S1_at 630.47 942.38 437.66 598.69 At5g16970 AT-AER 5.00E-40 Allyl alcohol dehydrogenase 
Mtr.51204.1.S1_at 1254.16 1755.42 989.85 1031.38 At3g04870 ZDS 9.00E-72 Amine oxidase / Zeta-carotene desaturase 
Mtr.13820.1.S1_at 28.77 39.64 43.01 58.00    Anion transport protein 
Mtr.46957.1.S1_at 258.87 284.45 201.36 184.77 At2g45720  2.00E-47 Armadillo/beta-catenin repeat family protein 
Mtr.41053.1.S1_at 125.51 78.52 189.12 258.17 At5g49700  7.00E-05 AT-hook DNA-binding protein 
Mtr.41894.1.S1_at 25.22 25.03 54.87 100.28 At5g49700  7.00E-43 AT-hook DNA-binding protein 
Mtr.20120.1.S1_at 740.23 731.74 444.14 473.07 At4g34760  1.00E-39 Auxin responsive SAUR protein 
Mtr.41038.1.S1_at 91.50 126.79 64.44 94.33 At1g51140  5.00E-05 Basic helix-loop-helix (bHLH) family protein 
Mtr.44189.1.S1_at 876.34 1261.26 644.17 752.43 At5g41410  5.00E-09 BEL1-related homeotic protein 
Mtr.13491.1.S1_at 353.94 210.13 432.47 490.45    Beta xylosidase 
Mtr.12769.1.S1_at 374.97 522.13 317.78 405.02 At5g17560  8.00E-18 BolA-like 
Mtr.40801.1.S1_at 194.79 208.96 274.60 432.24 At2g30600  2.00E-27 BTB/POZ domain-containing protein 
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Table S1 (continued) 

 Raw expression values in roots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.9066.1.S1_at 711.78 981.23 299.02 414.31 At1g49320  1.00E-29 BURP domain-containing protein 
Mtr.35295.1.S1_at 55.02 64.95 39.99 39.86 At1g22070  1.00E-09 bZIP50 protein 
Mtr.35253.1.S1_at 119.31 101.51 98.99 85.04 At5g51510  2.00E-12 CAAX amino terminal protease family 
Mtr.8857.1.S1_at 93.21 130.38 118.68 212.04 At1g08080 ACA7 4.00E-25 Carbonic anhydrase family protein 
Mtr.5789.1.S1_s_at 125.58 128.00 173.28 194.37 At1g15950 CCR1 4.00E-16 Cinnamoyl CoA reductase 
Mtr.17308.1.S1_at 451.31 488.67 317.39 442.34 At1g29390  2.00E-43 Cold acclimation 
Mtr.16199.1.S1_at 247.49 250.65 179.87 170.23 At2g23430  1.00E-06 Cyclin-dependent kinase inhibitor 
Mtr.12486.1.S1_at 67.28 82.99 80.35 29.51    Cystatin 
Mtr.13213.1.S1_at 2403.90 2635.20 1247.31 1400.36 At2g29090 CYP707A2 1.00E-18 Cytochrome P450 
Mtr.13566.1.S1_at 595.12 802.82 566.55 379.30 At4g31950 CYP82C3 2.00E-39 Cytochrome P450 
Mtr.1858.1.S1_at 170.43 145.98 110.44 60.02 At2g02580 CYP71B9 4.00E-49 Cytochrome P450 
Mtr.23217.1.S1_at 75.12 118.86 53.17 73.23 At3g26290 CYP71B26 2.00E-60 Cytochrome P450 
Mtr.39968.1.S1_at 294.91 374.92 233.37 183.51 At3g26300 CYP71B34 3.00E-45 Cytochrome P450 
Mtr.41821.1.S1_at 201.16 276.60 162.03 116.39 At4g36220 FAH1 4.00E-41 Cytochrome P450 
Mtr.42011.1.S1_at 491.68 586.97 373.99 371.41 At3g14680  3.00E-51 Cytochrome P450 
Mtr.42647.1.S1_at 147.16 152.26 67.68 32.21 At2g24180 CYP71B6 7.00E-25 Cytochrome P450 
Mtr.47491.1.S1_s_at 599.25 981.15 335.74 559.47 At3g26290 CYP71B26 1.00E-55 Cytochrome P450 
Mtr.33930.1.S1_at 98.28 124.68 77.95 78.10 At5g24910 CYP714A1 6.00E-43 Cytochrome P450 family protein 
Msa.1818.1.S1_at 287.89 257.68 256.54 375.52 At2g46950  8.00E-33 Cytochrome P450 family protein, 
Msa.1890.1.S1_at 32.32 21.02 40.37 55.91 At5g25610  7.00E-05 Dehydration-responsive protein (RD22) 
Mtr.31269.1.S1_at 568.76 873.88 414.00 523.63 At5g58240 FHIT 8.00E-34 Diadenosine tetraphosphate hydrolase 
Mtr.39486.1.S1_at 77.64 116.22 47.98 30.66 At2g45440 DHDPS2 1.00E-60 Dihydrodipicolinate synthase 
Mtr.37123.1.S1_s_at 1621.49 1939.64 1063.89 975.99 At4g32810 CCD8 9.00E-40 Dioxygenase 
Mtr.41049.1.S1_at 22.49 34.41 41.32 51.54    Disease resistance gene 
Mtr.24731.1.S1_at 115.10 128.93 133.28 197.59 At1g58170  2.00E-10 Disease resistance-responsive protein-related 
Mtr.28150.1.S1_at 57.20 60.47 49.41 40.28 At1g79050  1.00E-87 DNA repair protein recA 
Mtr.28330.1.S1_at 2532.53 2516.95 2264.47 1706.83 At4g12080  1.00E-33 DNA-binding family protein 
Mtr.11636.1.S1_at 1318.62 1976.14 1189.21 1311.94 At1g29160  6.00E-35 Dof zinc finger protein DOF1.5 
Mtr.41050.1.S1_at 217.61 181.04 291.83 238.05    Dolichol-phosphate mannosyltransferase 
Mtr.11947.1.S1_at 206.00 207.10 323.78 266.83 At2g27310  8.00E-06 Early growth response protein / F-box family protein 
Mtr.44757.1.S1_at 1029.97 1573.75 788.08 886.01 At5g25900 GA3 3.00E-71 Ent-kaurene oxidase 
Mtr.43313.1.S1_at 541.66 605.85 611.19 1246.12    ERF-like protein 
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Table S1 (continued) 

 Raw expression values in roots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.11208.1.S1_at 38.51 36.52 56.43 74.33 At3g22970  1.00E-23 Expressed protein 
Mtr.13710.1.S1_at 39.40 48.61 47.30 65.00 At3g25590  6.00E-08 Expressed protein 
Mtr.14652.1.S1_at 1337.54 1464.53 1225.75 711.09 At2g12905  7.00E-15 Expressed protein 
Mtr.1532.1.S1_at 68.57 73.11 144.67 142.42 At5g12010  7.00E-46 Expressed protein 
Mtr.17735.1.S1_at 307.72 388.61 216.82 199.67 At4g27900  1.00E-32 Expressed protein 
Mtr.18857.1.S1_at 120.81 96.41 158.29 108.05 At3g48660  4.00E-22 Expressed protein 
Mtr.27434.1.S1_at 60.30 62.47 45.11 34.27 At2g34160  2.00E-08 Expressed protein 
Mtr.27710.1.S1_at 124.62 163.51 70.78 90.21 At4g04745  1.00E-10 Expressed protein 
Mtr.28306.1.S1_at 135.32 155.88 100.21 74.94 At5g63500  6.00E-20 Expressed protein 
Mtr.29327.1.S1_at 46.01 44.08 66.77 58.82 At1g74055  3.00E-14 Expressed protein 
Mtr.3052.1.S1_at 506.61 802.28 341.33 240.58 At2g41660  1.00E-37 Expressed protein 
Mtr.33659.1.S1_at 197.24 242.57 122.01 162.91 At1g79510  1.00E-41 Expressed protein 
Mtr.39860.1.S1_at 53.42 78.58 40.71 55.34 At1g67050  3.00E-11 Expressed protein 
Mtr.40178.1.S1_at 1504.09 1300.26 2858.18 2143.37 At3g55840  2.00E-14 Expressed protein 
Mtr.43604.1.S1_s_at 275.41 370.46 252.23 287.97 At1g10020  3.00E-35 Expressed protein 
Mtr.45985.1.S1_at 73.13 94.78 59.62 52.18 At5g21940  2.00E-24 Expressed protein 
Mtr.9904.1.S1_at 58.47 59.01 58.24 115.00 At5g37840  9.00E-09 Expressed protein 
Msa.1174.1.S1_at 697.05 655.59 1323.76 940.43 At3g55840  2.00E-40 Expressed protein 
Mtr.8559.1.S1_at 69.75 63.10 104.95 148.62 At1g03220  1.00E-21 Extracellular dermal glycoprotein 
Mtr.37043.1.S1_at 596.34 537.93 736.92 959.55 At5g19100  1.00E-20 Extracellular dermal glycoprotein-related 
Mtr.1408.1.S1_at 909.89 753.05 646.72 629.71 At5g03970  9.00E-25 F-box family protein 
Mtr.24235.1.S1_at 165.51 195.22 134.59 123.47 At2g16365  6.00E-12 F-box family protein 
Mtr.42010.1.S1_at 189.38 138.07 151.96 132.57 At3g23880  4.00E-07 F-box family protein 
Mtr.5478.1.S1_at 156.62 171.58 100.99 142.18 At3g23880  7.00E-06 F-box family protein 
Mtr.43831.1.S1_at 273.65 225.36 370.39 365.25 At1g76920  8.00E-47 F-box protein 
Mtr.38045.1.S1_at 80.65 81.16 154.29 110.32 At4g40080  3.00E-09 Fiber protein Fb19  
Mtr.1169.1.S1_s_at 1616.62 1808.47 1544.96 982.31    Gag/pol polyprotein 
Mtr.37369.1.S1_at 2441.80 3155.97 1923.86 1614.46    Germacrene D synthase 
Mtr.24203.1.S1_at 60.36 87.45 47.41 38.14 At4g25420  3.00E-39 Gibberellin 20-oxidase 
Mtr.37455.1.S1_at 244.01 227.51 412.97 578.20 At4g01070 GT72B1 2.00E-12 Glucosyltransferase-13 
Mtr.50846.1.S1_at 79.19 64.39 98.33 94.94 At4g10630  4.00E-50 Glutaredoxin family protein 
Mtr.37396.1.S1_at 920.11 1081.48 995.41 1379.47 At2g29470 ATGSTU3 5.00E-10 Glutathione S-transferase GST 15 
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Table S1 (continued) 

 Raw expression values in roots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.2288.1.S1_at 180.91 212.49 241.92 292.85 At1g02850 BGLU11 2.00E-25 Glycosyl hydrolase family 1 protein 
Mtr.40320.1.S1_at 1078.44 1105.25 1432.08 1107.12 At2g28110 FRA8 2.00E-05 Glycosyl transferase family 
Mtr.34734.1.S1_at 145.63 118.49 111.10 57.42 At4g10310  2.00E-23 High affinity potassium transporter 2 / Sodium transporter (HKT1) 
Mtr.9928.1.S1_at 168.57 197.72 57.19 45.83 At1g22150  8.00E-25 High affinity sulphate transporter 1 
Mtr.5415.1.S1_s_at 50.70 57.25 40.16 40.71 At1g08460 HDA08 5.00E-52 Histone deacetylase family protein 
Mtr.14819.1.S1_x_at 74.49 48.73 60.16 40.73    Hypothetical protein 
Mtr.20650.1.S1_at 52.69 53.12 46.83 31.19    Hypothetical protein 
Mtr.21184.1.S1_at 223.23 260.58 154.65 186.91    Hypothetical protein 
Mtr.44009.1.S1_at 2965.29 2696.20 5033.83 3343.53 AtMg00030  1.00E-23 Hypothetical protein 
Mtr.49845.1.S1_at 845.02 785.58 654.40 544.81    Hypothetical protein 
Mtr.50277.1.S1_at 3690.40 3373.60 3570.32 4859.33    Hypothetical protein 
Msa.3150.1.S1_at 132.10 142.26 272.58 126.08 AtMg00030  7.00E-28 Hypothetical protein 
Mtr.46631.1.S1_at 39.42 21.34 43.01 324.25 At5g27760  9.00E-14 Hypoxia-responsive family protein 
Mtr.10707.1.S1_at 116.14 76.72 153.94 136.57 At1g02820  7.00E-07 Indole-3-acetic acid induced protein / Late embryogenesis abundant 3 family 
Mtr.8632.1.S1_s_at 1402.17 1518.20 1342.19 2404.39 At1g14890  7.00E-37 Invertase/pectin methylesterase inhibitor family protein 
Mtr.37751.1.S1_at 224.27 206.58 244.41 371.20    Isoflavone-7-O-methytransferase 9 
Mtr.9802.1.S1_at 290.25 295.74 203.11 251.53 At3g27150  1.00E-34 Kelch repeat-containing F-box family protein 
Mtr.40433.1.S1_at 554.68 539.00 782.50 771.19 At1g18270  6.00E-43 Ketose-bisphosphate aldolase class-II family protein 
Mtr.37273.1.S1_at 47.20 53.44 38.23 42.04 At1g03880  1.00E-08 Legumin A precursor / 12S seed storage protein 
Mtr.35520.1.S1_at 178.50 271.70 357.21 307.02 At5g25930  2.00E-17 Leucine-rich repeat family protein 
Mtr.24183.1.S1_at 105.10 98.04 72.69 50.33 At3g47580  3.00E-42 Leucine-rich repeat transmembrane protein kinase 
Mtr.35414.1.S1_at 134.18 182.86 95.53 80.18 At5g53320  6.00E-08 Leucine-rich repeat transmembrane protein kinase 
Mtr.42879.1.S1_at 637.76 592.10 733.05 813.65    Light-induced protein 
Mtr.46870.1.S1_at 223.84 441.66 127.47 177.62 At3g22400 LOX5 1.00E-36 Lipoxygenase 
Mtr.13559.1.S1_s_at 2229.89 2564.68 1074.08 1648.43 At3g49940  2.00E-40 LOB domain protein 
Mtr.27052.1.S1_at 60.57 45.95 39.47 40.35 At5g16300  3.00E-47 Low density lipoprotein B-like protein 
Mtr.38444.1.S1_at 243.99 288.89 371.94 431.16 At2g39420  7.00E-52 Lysophospholipase 
Mtr.36367.1.S1_at 98.67 64.28 112.10 125.90 At1g70890  4.00E-14 Major latex protein-related 
Mtr.11121.1.S1_at 145.83 143.92 205.77 242.26 At3g54110  4.00E-67 Mitochondrial uncoupling protein 
Mtr.33426.1.S1_at 54.11 67.29 62.15 33.72    MRP-like ABC transporter 
Mtr.37527.1.S1_at 45.47 61.78 64.89 107.71 At1g41830  2.00E-38 Multi-copper oxidase type I family protein 
Mtr.32750.1.S1_at 110.03 103.17 163.16 171.78 At3g23560  4.00E-22 Multidrug and toxic compound extrusion (MATE) family 
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Table S1 (continued) 

 Raw expression values in roots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.9331.1.S1_at 196.64 270.27 193.71 203.18    MYB transcription factor 
Mtr.11021.1.S1_at 321.67 429.36 565.84 604.11 At1g69490  7.00E-05 NAC domain protein NAC2 
Mtr.39502.1.S1_at 582.12 408.40 647.83 625.61 At5g37980  9.00E-24 NADP-dependent oxidoreductase 
Mtr.2375.1.S1_at 1390.52 1281.38 1003.81 808.35    Neuraminidase B 
Mtr.41063.1.S1_at 66.00 45.56 125.20 138.54    Nine-cis-epoxycarotenoid dioxygenase 
Mtr.44730.1.S1_at 243.71 331.85 120.34 171.47 At2g26690  1.00E-62 Nitrate transporter 
Mtr.44604.1.S1_at 250.77 261.03 163.14 192.05 At2g36540  4.00E-15 NLI interacting factor (NIF) family protein 
Mtr.8820.1.S1_at 30.46 51.73 77.42 70.32 At1g28470  1.00E-20 No apical meristem (NAM) family protein 
Mtr.47977.1.S1_at 50.02 76.76 33.41 25.07 At2g39210  6.00E-64 Nodule-specific protein 
Mtr.47908.1.S1_at 99.26 97.94 159.90 161.03 At1g68170  4.00E-39 Nodulin MtN21 family protein 
Mtr.4041.1.S1_at 432.52 412.28 555.46 493.71 At1g47490  1.00E-11 Nucleic acid binding protein 
Mtr.43526.1.S1_at 3188.00 3719.25 2428.75 2233.29    O-antigen translocase 
Mtr.45021.1.S1_at 71.39 83.17 41.25 42.23 At1g30220  3.00E-60 Organic-cation transporter / Sugar transporter family protein 
Mtr.30704.1.S1_at 84.72 93.34 136.03 135.19 At5g19730  4.00E-14 Pectinesterase family protein 
Mtr.22665.1.S1_at 68.23 65.39 55.74 39.46 At1g52640  4.00E-53 Pentatricopeptide (PPR) repeat-containing protein 
Mtr.47230.1.S1_at 175.65 132.83 141.59 106.40 At1g08610  2.00E-23 Pentatricopeptide (PPR) repeat-containing protein 
Mtr.24000.1.S1_at 248.77 231.12 213.78 140.17 At5g23070  2.00E-54 Pentatricopeptide (PPR) repeat-containing protein / Thymidine kinase 
Mtr.37112.1.S1_at 136.75 225.23 106.17 90.44 At5g46050  1.00E-16 Peptide transporter 
Mtr.40970.1.S1_at 171.09 207.48 418.16 435.07 At5g05340  6.00E-31 Peroxidase 
Mtr.49999.1.S1_at 37.71 29.01 60.08 71.99 At1g09155  2.00E-20 Phloem-specific lectin / SKP1 interacting partner 3-related 
Mtr.34902.1.S1_s_at 106.83 102.64 52.56 63.16 At1g53310 ATPPC1 7.00E-55 Phosphoenolpyruvate carboxylase 
Mtr.13592.1.S1_at 63.58 79.75 57.55 43.55 At3g15354  4.00E-48 Photomorphogenesis repressor protein-like / WD-40 repeat family protein 
Mtr.12375.1.S1_at 91.51 60.26 123.55 346.75 At1g31330  5.00E-44 Photosystem I reaction center subunit III 
Mtr.46047.1.S1_at 35.51 61.09 64.63 80.01 At5g42180  4.00E-48 Plant peroxidase 
Mtr.23575.1.S1_x_at 120.87 117.28 272.16 280.00 At5g06860  2.00E-32 Polygalacturonase inhibitor protein 
Mtr.12213.1.S1_at 2085.79 1882.46 3077.40 2525.47 At3g53980  2.00E-37 Protease inhibitor 
Mtr.15516.1.S1_at 51.06 45.58 75.07 98.04 At1g23550 SRO2 7.00E-12 Protein with similarity to RCD1 but without the WWE domain 
Msa.3096.1.S1_at 258.86 249.45 282.61 383.86 At5g01320  4.00E-25 Pyruvate decarboxylase 
Mtr.32262.1.S1_at 109.97 131.17 80.66 84.96 At2g33170  4.00E-30 Receptor-like protein kinase 
Mtr.43418.1.S1_s_at 262.37 411.89 575.31 565.04    Receptor-like protein kinase 
Mtr.42979.1.S1_at 46.88 42.49 60.70 102.25    Repetitive proline-rich cell wall protein 1 precursor 
Mtr.41287.1.S1_at 50.69 66.46 38.65 53.88 At2g39140 SVR1 8.00E-37 Ribosomal large subunit pseudouridine synthase B 
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Table S1 (continued) 

 Raw expression values in roots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID Gene name e-value MtGEA Target Description / TAIR Target Description 

Mtr.45966.1.S1_at 293.65 625.85 180.99 276.79 At5g17230 PSY 3.00E-49 Ribosomal protein S2 / Phytoene synthase 
Mtr.47463.1.S1_at 51.95 75.46 31.43 23.63 At3g49950  2.00E-38 Scarecrow transcription factor family protein 
Mtr.51973.1.S1_at 64.64 75.48 61.56 56.89 At3g16990  3.00E-42 Seed maturation protein / TENA/THI-4 family protein 
Mtr.35871.1.S1_at 39.07 73.26 23.06 26.68 At4g37650  6.00E-14 Short-root protein 
Mtr.7886.1.S1_at 78.68 116.11 43.82 46.77 At4g37650  4.00E-39 Short-root protein 
Mtr.32746.1.S1_at 67.42 90.42 99.32 135.24    Somatic embryogenesis receptor kinase-like protein 
Mtr.1872.1.S1_at 608.69 647.53 1514.37 2037.59    Specific tissue protein 2 
Mtr.32685.1.S1_at 47.64 42.98 65.88 47.17 At2g46090  8.00E-11 Sphingosine kinase (SphK) 
Mtr.44565.1.S1_at 24.95 27.15 41.13 76.62 At1g43800  3.00E-61 Stearoyl acyl carrier protein desaturase 
Mtr.45469.1.S1_at 33.82 31.20 51.23 100.06 At1g43800  1.00E-71 Stearoyl acyl carrier protein desaturase 
Msa.1276.1.S1_at 1255.84 1362.01 1075.76 1000.70 At4g02280  2.00E-77 Sucrose synthase 
Mtr.2082.1.S1_at 70.53 91.69 49.70 69.71 At5g17570  7.00E-35 TatD-related deoxyribonuclease family protein 
Mtr.33281.1.S1_s_at 18.47 24.20 68.65 79.13 At5g23960 TPS21 2.00E-18 Terpenoid synthetase 
Mtr.12895.1.S1_at 828.96 750.00 1134.73 849.52    Tetratricopeptide repeat protein-like 
Mtr.12366.1.S1_s_at 1985.49 2193.99 1617.93 1470.58 At1g74840  8.00E-36 Transcription factor Myb1 
Mtr.51252.1.S1_s_at 116.12 124.92 181.69 216.49 At5g42830  8.00E-64 Transferase 
Mtr.33621.1.S1_at 193.10 161.16 152.59 128.55 At2g37020  2.00E-57 Translin-like protein 
Mtr.24439.1.S1_at 84.58 85.00 74.44 45.45    Tubulin family 
Mtr.2218.1.S1_at 85.26 105.09 69.78 71.13 At5g04460  2.00E-08 Ubiquitin-protein ligase-like 
Mtr.34715.1.S1_at 134.53 155.86 110.02 104.62 At4g36550  2.00E-14 U-box domain-containing protein 
Mtr.40333.1.S1_x_at 480.99 773.98 982.32 880.15 At2g44790 UCC2 3.00E-07 Uclacyanin II precursor (Blue copper-binding protein II) 
Mtr.40991.1.S1_at 65.45 95.06 93.83 111.35 At1g05680  9.00E-39 UDP-glucosyltransferase 
Mtr.37847.1.S1_at 60.25 19.98 65.70 398.81 At1g22370 AtUGT85A5 7.00E-29 UDP-glycosyltransferase 
Mtr.42709.1.S1_at 52.45 92.30 42.93 43.20 At1g22360 AtUGT85A2 5.00E-33 UDP-glycosyltransferase 85A8 
Msa.1328.1.S1_at 42.87 36.70 50.40 94.93 At4g10270  1.00E-17 Wound-responsive family protein 
Mtr.42336.1.S1_at 35.45 48.82 56.81 76.76 At4g18170  3.00E-15 WRKY transcription factor 48  
Mtr.10910.1.S1_at 35.48 32.74 37.95 61.26 At1g10550 XTH33 9.00E-14 Xyloglucan endotransglucosylase 
Mtr.40928.1.S1_at 1433.18 1371.38 2122.86 1630.56 At5g25560  8.00E-35 Zinc finger (C3HC4-type RING finger) family protein 
Mtr.38300.1.S1_at 75.91 85.76 56.88 54.01 At1g48570  3.00E-41 Zinc finger (Ran-binding) family protein 
Mtr.10450.1.S1_at 27.31 23.29 55.67 52.06    No annotation 
Mtr.12123.1.S1_at 76.04 75.86 112.47 96.35    No annotation 
Mtr.1566.1.S1_at 82.29 130.67 46.53 68.92    No annotation 
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Table S1 (continued) 

 Raw expression values in roots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID Gene name e-value MtGEA Target Description / TAIR Target Description 

Mtr.1950.1.S1_at 29.06 49.24 53.37 113.48    No annotation 
Mtr.27040.1.S1_s_at 58.67 67.02 50.08 47.60    No annotation 
Mtr.27223.1.S1_at 386.45 339.83 154.13 174.51    No annotation 
Mtr.28840.1.S1_at 49.23 45.34 75.97 58.75    No annotation 
Mtr.29163.1.S1_at 78.69 78.99 59.10 57.31    No annotation 
Mtr.29418.1.S1_at 150.60 192.91 326.67 348.69    No annotation 
Mtr.30257.1.S1_at 90.52 65.74 116.16 94.69    No annotation 
Mtr.31248.1.S1_s_at 64.89 60.17 75.27 137.06    No annotation 
Mtr.31505.1.S1_at 174.14 164.82 235.58 199.55    No annotation 
Mtr.32877.1.S1_at 305.71 269.20 513.54 286.78    No annotation 
Mtr.34598.1.S1_at 516.30 675.86 474.98 373.51    No annotation 
Mtr.3505.1.S1_at 62.39 50.93 81.13 72.21    No annotation 
Mtr.3548.1.S1_at 51.97 50.66 89.30 55.50    No annotation 
Mtr.35926.1.S1_at 296.32 259.46 270.96 171.78    No annotation 
Mtr.3967.1.S1_at 43.04 34.21 61.67 48.99    No annotation 
Mtr.40295.1.S1_at 196.61 207.34 214.12 291.91    No annotation 
Mtr.4078.1.S1_at 120.56 116.64 128.93 191.22    No annotation 
Mtr.42148.1.S1_at 121.88 93.40 159.93 119.01    No annotation 
Mtr.4260.1.S1_at 102.06 76.12 143.92 152.00    No annotation 
Mtr.44211.1.S1_at 56.03 63.94 104.16 112.40    No annotation 
Mtr.44741.1.S1_at 198.92 156.25 108.90 77.44    No annotation 
Mtr.8171.1.S1_at 170.06 120.75 239.65 150.90    No annotation 
Mtr.8172.1.S1_at 651.69 372.82 907.47 615.65    No annotation 
Mtr.8880.1.S1_at 42.85 42.38 88.79 70.54    No annotation 
Msa.812.1.S1_at 1353.02 1222.04 2100.22 1182.59    No annotation 
Msa.832.1.S1_at 648.86 580.31 1080.63 615.02    No annotation 
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Table S2: Raw expression values of genes in roots of non mycorrhizal (non myc) and mycorrhizal (myc) Medicago truncatula plants that had been grown without 
or with caesium in the medium. The gene expression was significantly influenced by arbuscular mycorrhiza (Analysis of Variance, p <0.05). The Medicago 
probes refer to the Medicago truncatula or M. sativa probe name for the gene on the Affymetrix GeneChip® Medicago genome array and the AGI ID is the 
Arabidopsis thaliana gene identification. The annotation was based on local translated BLAST alignment. The MtGEA Target Description is the annotation for 
the gene obtained from the Medicago truncatula Gene Expression Atlas and the TAIR Target Description is the annotation of the Arabidopsis thaliana genes 
(A. thaliana annotations in italics). 
 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.15436.1.S1_at 206.76 360.79 98.32 199.62 At1g52800 3.00E-41 2OG-Fe(II) oxygenase 
Msa.1308.1.S1_at 47.84 65.49 44.98 56.26 At5g35910 3.00E-62 3'-5' exonuclease domain-containing protein 
Mtr.43421.1.S1_at 235.37 381.38 222.24 299.98 At1g20480 5.00E-40 4-coumarate-CoA ligase family protein 
Msa.2547.1.S1_at 59.47 59.95 49.01 74.86 At2g33450 3.00E-27 50S ribosomal protein L28 
Mtr.36163.1.S1_at 189.13 104.19 196.58 146.63   60S ribosomal protein 
Mtr.18815.1.S1_at 239.37 329.55 174.55 288.41 At1g15520 5.00E-28 AAA ATPase; ABC transporter related 
Mtr.34622.1.S1_at 238.56 179.95 273.09 185.14   Abscisic stress ripening protein 
Mtr.13167.1.S1_at 335.89 430.12 425.04 619.31 At1g49430 2.00E-47 Acyl CoA synthetase 
Mtr.42425.1.S1_at 146.10 108.92 109.30 94.19 At3g55480 3.00E-34 Adaptor protein, adaptin-like  
Mtr.43862.1.S1_at 39.54 58.22 35.88 88.60 At4g04880 7.00E-39 Adenosine/AMP deaminase family protein 
Mtr.12034.1.S1_at 160.66 147.08 200.78 140.35   ADP/ATP translocase-like protein 
Mtr.10593.1.S1_at 1056.07 1641.32 1181.40 1276.03 At1g13280 3.00E-40 Allene oxide cyclase precursor 
Mtr.37912.1.S1_at 630.47 942.38 437.66 598.69 At5g16970 5.00E-40 Allyl alcohol dehydrogenase 
Mtr.3632.1.S1_at 73.64 61.61 81.01 53.85   Angiotensinogen 
Mtr.23461.1.S1_at 51.96 71.90 60.67 82.54 At3g18400 3.00E-11 Apical meristem (NAM) protein family 
Mtr.43281.1.S1_at 270.73 359.52 215.17 401.88 At4g18910 2.00E-20 Aquaglyceroporin 
Mtr.27738.1.S1_at 32.99 56.86 45.47 116.79 At1g01490 7.00E-16 ATP-dependent molecular chaperone / Heavy-metal-associated domain-containing protein 
Mtr.44128.1.S1_at 94.84 94.32 60.67 111.38 At3g07360 4.00E-32 Avr9/Cf-9 rapidly elicited protein-like 
Mtr.37400.1.S1_at 425.56 481.35 254.88 471.42 At3g07340 8.00E-20 Basic helix-loop-helix (bHLH) family protein 
Mtr.41038.1.S1_at 91.50 126.79 64.44 94.33 At1g51140 5.00E-05 Basic helix-loop-helix (bHLH) family protein 
Mtr.50730.1.S1_at 410.35 334.71 539.00 273.21   Basic-leucine zipper (bZIP) transcription factor 
Mtr.12161.1.S1_at 395.38 562.28 357.42 756.71 At3g60130 2.00E-45 Beta-glucosidase precursor isoform AH I 
Mtr.50900.1.S1_at 866.09 779.54 433.79 1107.88 At5g60490 2.00E-24 Beta-Ig-H3/fasciclin 
Mtr.17361.1.S1_at 822.43 758.75 349.96 1301.13 At5g03170 2.00E-30 Beta-Ig-H3/fasciclin  
Mtr.37837.1.S1_s_at 67.33 100.01 52.88 89.60 At5g08130 3.00E-36 BHLH protein family-like 
Mtr.12769.1.S1_at 374.97 522.13 317.78 405.02 At5g17560 8.00E-18 BolA-like family protein 
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Table S2 (continued) 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.7101.1.S1_at 58.28 79.51 49.33 78.50 At4g16610 1.00E-10 C2H2 zinc-finger protein 
Mtr.2219.1.S1_x_at 162.04 120.69 198.91 135.94   Ca2+/Na+ antiporter 
Mtr.40942.1.S1_at 847.99 905.87 736.96 1122.30 At4g34050 1.00E-15 Caffeoyl-CoA O-methyltransferase 5  
Mtr.11249.1.S1_s_at 51.47 80.79 53.46 90.36 At4g33000 3.00E-18 Calcineurin B-like protein 10 
Mtr.10823.1.S1_s_at 47.10 42.55 29.63 56.94 At3g56760 1.00E-66 Calcium-dependent protein kinase-like 
Mtr.10272.1.S1_at 40.85 61.60 39.56 68.43 At3g22930 8.00E-61 Calmodulin 
Mtr.42008.1.S1_s_at 216.47 255.90 178.19 269.37 At2g02790 1.00E-15 Calmodulin-binding family protein 
Mtr.8857.1.S1_at 93.21 130.38 118.68 212.04 At1g08080 4.00E-25 Carbonic anhydrase family protein 
Mtr.34859.1.S1_at 82.59 64.43 70.25 50.75 At3g47060 9.00E-68 Cell division protein FtsH 
Mtr.44799.1.S1_at 173.70 335.50 202.44 306.68 At1g55120 5.00E-29 Cell wall invertase II / Beta-fructosidase 
Mtr.40676.1.S1_at 183.32 206.79 142.62 266.62 At3g18490 8.00E-58 Chloroplast nucleoid DNA binding / Aspartyl protease family protein 
Mtr.12985.1.S1_at 563.89 464.91 640.94 482.27 At1g62880 2.00E-18 Cornichon family protein 
Mtr.13774.1.S1_at 120.08 94.33 160.81 98.45   Cytochrome b 
Mtr.37029.1.S1_at 125.81 90.70 156.18 85.35   Cytochrome b 
Mtr.42015.1.S1_at 238.12 329.76 219.45 291.73 At5g09680 4.00E-32 Cytochrome b5 domain-containing protein 
Mtr.47491.1.S1_s_at 599.25 981.15 335.74 559.47 At3g26290 1.00E-55 Cytochrome P450 
Msa.1818.1.S1_at 287.89 257.68 256.54 375.52 At2g46950 8.00E-33 Cytochrome P450 family protein 
Mtr.8651.1.S1_a_at 279.47 31.64 45.04 12.14   Dehydrin-like protein 
Mtr.30372.1.S1_at 169.26 147.38 171.85 103.52 At3g11670 1.00E-06 Digalactosyldiacylglycerol synthase 1 
Mtr.23370.1.S1_at 78.27 127.60 74.22 110.89   Disease resistance protein 
Mtr.23370.1.S1_s_at 198.23 236.98 155.10 240.93   Disease resistance protein 
Mtr.4738.1.S1_s_at 66.12 137.30 110.23 160.12 At2g28670 1.00E-14 Disease resistance-responsive family protein  
Mtr.24731.1.S1_at 115.10 128.93 133.28 197.59 At1g58170 2.00E-10 Disease resistance-responsive protein-related 
Mtr.50411.1.S1_at 92.59 75.84 68.45 142.13 At1g13635 9.00E-36 DNA glycosylase 
Mtr.38994.1.S1_at 224.81 262.81 143.41 285.21 At1g69780 5.00E-34 DNA-binding protein 
Mtr.11636.1.S1_at 1318.62 1976.14 1189.21 1311.94 At1g29160 6.00E-35 Dof zinc finger protein 
Mtr.6125.1.S1_s_at 500.51 648.61 439.26 747.43 At4g19120 2.00E-43 Early-responsive to dehydration stress protein (ERD3) 
Mtr.34086.1.S1_at 227.21 212.82 289.69 188.30 At5g07710 6.00E-09 Exonuclease family protein 
Mtr.37813.1.S1_s_at 34.37 77.30 35.01 47.60 At1g68470 6.00E-71 Exostosin family protein 
Mtr.6079.1.S1_at 30.72 51.58 34.75 43.63 At4g22580 1.00E-34 Exostosin family protein 
Msa.1613.1.S1_s_at 84.52 134.02 81.91 116.27 At1g09310 2.00E-51 Expressed protein 
Mtr.11390.1.S1_at 160.61 214.65 163.61 208.57 At3g55990 7.00E-61 Expressed protein 



 

226

Table S2 (continued) 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.13710.1.S1_at 39.40 48.61 47.30 65.00 At3g25590 6.00E-08 Expressed protein 
Mtr.14652.1.S1_at 1337.54 1464.53 1225.75 711.09 At2g12905 7.00E-15 Expressed protein 
Mtr.18857.1.S1_at 120.81 96.41 158.29 108.05 At3g48660 4.00E-22 Expressed protein 
Mtr.18858.1.S1_at 990.87 869.22 1282.33 785.25 At3g48660 2.00E-14 Expressed protein 
Mtr.20398.1.S1_at 355.50 557.71 323.35 561.80 At3g23090 7.00E-39 Expressed protein 
Mtr.21612.1.S1_at 479.72 525.19 351.74 557.08 At4g36660 6.00E-53 Expressed protein 
Mtr.250.1.S1_at 67.97 94.15 60.27 112.46 At2g35290 3.00E-11 Expressed protein 
Mtr.26508.1.S1_at 151.15 113.91 165.09 97.34 At4g13740 1.00E-43 Expressed protein 
Mtr.28713.1.S1_at 47.77 36.42 52.53 36.28 At2g20585 8.00E-17 Expressed protein 
Mtr.32117.1.S1_at 205.10 247.36 184.39 297.66 At3g48980 5.00E-75 Expressed protein 
Mtr.32435.1.S1_at 79.18 49.48 80.37 44.63 At3g61690 6.00E-74 Expressed protein 
Mtr.33829.1.S1_at 214.07 223.85 164.93 365.90 At2g35880 3.00E-44 Expressed protein 
Mtr.35312.1.S1_at 243.41 324.31 211.54 397.72 At5g41050 3.00E-16 Expressed protein 
Mtr.35565.1.S1_at 59.52 91.95 75.62 81.38 At5g61670 4.00E-07 Expressed protein 
Mtr.36203.1.S1_at 249.82 182.77 200.79 155.55 At1g13360 7.00E-09 Expressed protein 
Mtr.37377.1.S1_at 1602.59 1071.31 1586.16 1342.17   Expressed protein 
Mtr.39860.1.S1_at 53.42 78.58 40.71 55.34 At1g67050 3.00E-11 Expressed protein 
Mtr.40229.1.S1_at 178.40 114.18 192.70 120.03 At4g29735 7.00E-20 Expressed protein 
Mtr.42939.1.S1_at 1585.48 1557.37 2278.35 1376.81 At1g28135 1.00E-05 Expressed protein 
Mtr.43458.1.S1_s_at 365.32 560.55 309.24 531.04 At3g23090 6.00E-08 Expressed protein 
Mtr.43604.1.S1_s_at 275.41 370.46 252.23 287.97 At1g10020 3.00E-35 Expressed protein 
Mtr.4424.1.S1_at 99.80 96.05 126.73 71.39 At1g49405 4.00E-22 Expressed protein 
Mtr.44722.1.S1_at 313.20 239.58 336.15 239.84 At1g53035 2.00E-40 Expressed protein 
Mtr.47992.1.S1_at 34.95 44.82 34.98 59.98 At2g25735 1.00E-06 Expressed protein 
Mtr.5386.1.S1_at 51.53 80.43 47.68 70.96 At2g17550 8.00E-05 Expressed protein 
Mtr.9010.1.S1_at 1154.75 686.36 1059.97 638.76 At5g05250 2.00E-15 Expressed protein 
Mtr.9169.1.S1_at 248.88 273.26 228.85 385.47 At5g67210 1.00E-66 Expressed protein 
Mtr.9500.1.S1_at 349.62 227.18 393.94 262.41 At1g33055 2.00E-09 Expressed protein 
Mtr.9904.1.S1_at 58.47 59.01 58.24 115.00 At5g37840 9.00E-09 Expressed protein 
Mtr.47022.1.S1_s_at 20.49 86.05 20.42 104.66 At5g01740 1.00E-13 Expressed wound-inducible protein 
Mtr.13136.1.S1_at 646.32 585.86 293.13 929.21 At5g60490 1.00E-10 Fasciclin-like AGP 10 
Mtr.13136.1.S1_s_at 251.51 255.01 96.69 345.72 At5g60490 2.00E-33 Fasciclin-like AGP 10 
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 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Msa.2535.1.S1_at 618.99 1254.59 743.68 1086.72 At2g20520 8.00E-28 Fasciclin-like arabinogalactan-protein (FLA6) 
Mtr.13033.1.S1_at 522.24 1183.04 661.31 1017.22 At2g20520 8.00E-38 Fasciclin-like arabinogalactan-protein (FLA6) 
Mtr.37610.1.S1_at 3623.88 3952.98 3301.57 4901.75   Fasciclin-like arabinogalactan-protein 2 
Mtr.42010.1.S1_at 189.38 138.07 151.96 132.57 At3g23880 4.00E-07 F-box family protein 
Mtr.5478.1.S1_at 156.62 171.58 100.99 142.18 At3g23880 7.00E-06 F-box family protein 
Mtr.24699.1.S1_at 72.26 103.13 74.33 81.16 At5g39450 2.00E-31 F-box protein family-like 
Mtr.7403.1.S1_at 369.58 256.10 468.37 330.11   Fe(II) transport protein 3 
Mtr.19637.1.S1_s_at 662.86 769.80 660.07 966.43 At1g50480 1.00E-82 Formate-tetrahydrofolate ligase 
Mtr.24871.1.S1_s_at 52.73 100.09 60.67 114.80 At3g13790 3.00E-33 Fructan 1-exohydrolase IIa precursor 
Mtr.1989.1.S1_at 107.82 136.70 98.60 114.24 At5g13810 4.00E-20 Glutaredoxin family protein 
Mtr.12560.1.S1_at 44.75 69.89 56.28 82.80   Glutathione S-transferase 
Mtr.37396.1.S1_at 920.11 1081.48 995.41 1379.47 At2g29470 5.00E-10 Glutathione S-transferase 
Mtr.43490.1.S1_at 2589.67 2294.10 3054.82 2296.23   Glycine/proline-rich protein 
Mtr.43182.1.S1_at 1121.03 1758.64 786.54 1366.99 At1g61820 3.00E-47 Glycosyl hydrolase family 1 protein 
Mtr.38003.1.S1_at 102.16 152.80 103.00 136.06 At4g16660 3.00E-67 Growth regulator like protein / Heat shock protein 70 
Mtr.44959.1.S1_at 40.27 52.73 33.42 58.73   Guanine nucleotide releasing factor 1 
Mtr.47603.1.S1_at 173.74 142.51 170.54 106.31   Haloacid dehalogenase-like hydrolase family 
Mtr.10662.1.S1_at 278.52 163.03 246.74 128.28 At4g25200 1.00E-33 Heat shock 22 kDa protein 
Mtr.40057.1.S1_at 925.07 842.04 983.90 615.43 At5g09590 2.00E-34 Heat shock 70 kDa protein 
Msa.1899.1.S1_at 1422.57 1210.25 1756.99 1207.24 At5g56030 6.00E-86 Heat shock protein 81-2 (HSP81-2) 
Mtr.36259.1.S1_at 94.23 68.98 96.57 46.51   Heat shock protein PIR1 homolog 
Mtr.44719.1.S1_at 84.28 46.53 84.83 54.43 At2g26150 3.00E-21 Heat shock transcription factor 
Mtr.9270.1.S1_at 808.29 1109.38 601.49 1011.14 At4g08570 4.00E-47 Heavy-metal-associated domain-containing protein 
Mtr.34734.1.S1_at 145.63 118.49 111.10 57.42 At4g10310 2.00E-23 High affinity potassium transporter 2 / Sodium transporter (HKT1) 
Mtr.42733.1.S1_at 42.65 54.77 46.03 76.12   Histone H1  
Mtr.50674.1.S1_at 61.13 117.40 59.59 90.67   Homeodomain-like; Myb, DNA-binding 
Mtr.43748.1.S1_s_at 88.20 103.69 72.19 103.32 At1g77420 3.00E-39 Hydrolase 
Mtr.8442.1.S1_at 1112.18 1681.89 1577.26 2796.21   Hydroxyproline-rich glycoprotein 
Mtr.17436.1.S1_at 28.85 43.82 27.21 55.02 At1g72790 2.00E-13 Hydroxyproline-rich glycoprotein family protein 
Msa.3150.1.S1_at 132.10 142.26 272.58 126.08 AtMg00030 7.00E-28 Hypothetical protein 
Mtr.14819.1.S1_x_at 74.49 48.73 60.16 40.73   Hypothetical protein 
Mtr.14994.1.S1_at 233.99 477.38 287.85 439.19   Hypothetical protein 
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Mtr.17844.1.S1_at 105.58 160.85 93.10 161.67   Hypothetical protein 
Mtr.18605.1.S1_at 62.41 123.09 86.17 119.07   Hypothetical protein 
Mtr.18605.1.S1_x_at 97.86 192.73 123.97 182.09   Hypothetical protein 
Mtr.21430.1.S1_at 65.97 57.54 94.10 48.77   Hypothetical protein 
Mtr.44009.1.S1_at 2965.29 2696.20 5033.83 3343.53 AtMg00030 1.00E-23 Hypothetical protein 
Mtr.49373.1.S1_at 80.57 59.88 75.67 46.19   Hypothetical protein 
Mtr.49667.1.S1_at 293.70 404.02 302.14 330.09   Hypothetical protein 
Mtr.50115.1.S1_at 142.26 130.68 184.99 92.21   Hypothetical protein 
Mtr.50487.1.S1_at 49.13 26.42 43.79 29.70   Hypothetical protein 
Mtr.37387.1.S1_s_at 107.80 174.09 114.68 129.90 At1g79110 2.00E-12 Inhibitor of apoptosis-like protein 
Mtr.43211.1.S1_at 1435.33 1171.79 1565.24 1171.33 At1g16350 2.00E-17 Inosine monophosphate dehydrogenase 
Mtr.8632.1.S1_s_at 1402.17 1518.20 1342.19 2404.39 At1g14890 7.00E-37 Invertase/pectin methylesterase inhibitor family protein 
Mtr.13235.1.S1_at 401.95 477.63 368.36 624.45   Isoprenylated protein 
Mtr.14066.1.S1_s_at 904.03 488.24 697.54 438.23 AtCg00490 6.00E-101 Large subunit of RUBISCO 
Mtr.41347.1.S1_at 91.65 152.38 69.13 118.88 At5g15900 7.00E-38 Leaf senescence protein-like 
Mtr.10005.1.S1_at 84.52 96.24 87.78 133.49 At1g07650 5.00E-55 Leucine-rich repeat transmembrane protein kinase 
Mtr.24183.1.S1_at 105.10 98.04 72.69 50.33 At3g47580 3.00E-42 Leucine-rich repeat transmembrane protein kinase 
Mtr.18715.1.S1_at 56.59 45.95 71.47 21.86 At4g08850 8.00E-28 Leucine-rich repeat; Protein kinase 
Mtr.43246.1.S1_s_at 92.22 118.72 74.29 108.36 At4g36860 2.00E-75 LIM domain containing protein-like 
Msa.1835.1.S1_at 39.66 48.29 41.92 69.08 At1g49430 2.00E-47 Long-chain-fatty-acid-CoA ligase 
Mtr.40285.1.S1_at 87.17 226.43 77.09 197.85   Lysosomal protective protein precurso 
Mtr.35647.1.S1_at 266.19 440.94 238.08 329.76   Major allergen 
Mtr.19730.1.S1_at 32.96 46.26 34.79 51.81   Microtubule-associated protein 
Mtr.7160.1.S1_at 34.87 57.08 33.90 53.57 At2g34660 2.00E-62 MRP-like ABC transporter  
Mtr.11148.1.S1_at 472.80 536.12 444.02 703.15   Multi resistance protein homolog 
Mtr.37527.1.S1_at 45.47 61.78 64.89 107.71 At1g41830 2.00E-38 Multi-copper oxidase type I family protein 
Mtr.9331.1.S1_at 196.64 270.27 193.71 203.18   MYB transcription factor 
Msa.1055.1.S1_at 2075.95 1380.84 1773.47 1096.72 AtMg00580 6.00E-36 NADH dehydrogenase subunit 4 
Mtr.11042.1.S1_at 665.77 837.49 512.45 908.34 At1g12110 1.00E-30 Nitrate transporter 
Mtr.44730.1.S1_at 243.71 331.85 120.34 171.47 At2g26690 1.00E-62 Nitrate transporter 
Mtr.42072.1.S1_at 129.85 345.00 119.34 235.55 At5g25250 4.00E-31 Nodulin 
Mtr.15545.1.S1_at 90.80 76.12 87.48 50.04 At4g28940 5.00E-15 Nucleosidase-related 
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Mtr.3864.1.S1_at 55.25 44.77 63.09 46.92 At2g34410 3.00E-07 O-acetyltransferase family protein 
Mtr.8606.1.S1_at 1640.38 1803.76 1562.23 2820.29 At5g54160 6.00E-09 O-methyltransferase 
Mtr.35511.1.S1_at 22.46 355.81 27.83 272.54 At2g38870 5.00E-12 Pathogenesis-related protein / Protease inhibitor 
Mtr.1107.1.S1_at 30.67 50.20 28.14 53.13 At1g67750 2.00E-78 Pectate lyase 
Msa.1350.1.S1_at 18.82 38.59 16.90 48.18 At3g49220 8.00E-61 Pectinesterase family protein 
Mtr.22665.1.S1_at 68.23 65.39 55.74 39.46 At1g52640 4.00E-53 Pentatricopeptide (PPR) repeat-containing protein 
Mtr.47230.1.S1_at 175.65 132.83 141.59 106.40 At1g08610 2.00E-23 Pentatricopeptide (PPR) repeat-containing protein 
Mtr.9254.1.S1_at 87.04 131.81 110.00 204.61 At2g37040 5.00E-42 Phenylalanine ammonia lyase 
Mtr.17725.1.S1_at 37.86 52.95 29.99 98.97 At3g49220 5.00E-96 Plant invertase / Pectinesterase family protein 
Msa.2731.1.S1_at 189.79 278.57 168.46 226.83 At1g08500 7.00E-53 Plastocyanin-like domain-containing protein 
Mtr.23580.1.S1_at 18.64 47.00 33.75 78.69 At5g06860 1.00E-45 Polygalacturonase inhibitor protein 
Mtr.38202.1.S1_at 98.82 146.42 118.04 233.88   Probable WRKY transcription factor 28  
Mtr.11599.1.S1_at 81.04 56.53 109.37 54.69 At1g04870 1.00E-22 Protein arginine N-methyltransferase family protein 
Mtr.3066.1.S1_s_at 26.16 65.43 40.64 55.27 At2g17220 3.00E-37 Protein kinase 
Mtr.24165.1.S1_at 42.14 115.82 31.20 51.04 At2g28930 2.00E-21 Protein kinase (APK1b) 
Mtr.50390.1.S1_at 79.91 70.54 97.46 68.19 At2g42390 9.00E-47 Protein kinase C substrate 
Mtr.1770.1.S1_at 44.80 58.91 44.53 67.37 At3g44610 4.00E-60 Protein kinase-like protein 
Mtr.31497.1.S1_at 43.94 60.80 40.64 68.25 At4g11530 2.00E-35 Protein kinase-like protein 
Mtr.5506.1.S1_at 374.04 280.25 426.61 249.88 At2g32720 1.00E-10 Protein phosphatase / Cytochrome b5 
Mtr.35025.1.S1_at 52.79 44.73 70.35 39.81   protein-tyrosine kinase 
Mtr.35208.1.S1_at 264.89 293.52 169.93 300.27   P-selectin glycoprotein ligand 1 
Mtr.44281.1.S1_at 293.60 450.53 224.58 386.10 At2g01880 2.00E-60 Purple acid phosphatase 
Mtr.5541.1.S1_at 86.41 132.55 77.46 112.11   R2R3-MYB transcription factor 
Mtr.29863.1.S1_at 145.54 92.88 141.79 57.54   Repetitive proline-rich cell wall protein 1 precursor 
Mtr.40069.1.S1_at 1630.49 2011.98 1567.60 2827.41   Repetitive proline-rich cell wall protein 2 precursor 
Mtr.39757.1.S1_at 46.76 27.99 48.26 26.32   Retinitis pigmentosa GTPase regulator-like protein 
Mtr.48952.1.S1_s_at 16.79 16.34 13.73 58.32 At5g66170 1.00E-35 Rhodanese-like / Senescence-associated family protein 
Mtr.41287.1.S1_at 50.69 66.46 38.65 53.88 At2g39140 8.00E-37 Ribosomal large subunit pseudouridine synthase B 
Mtr.39857.1.S1_at 87.18 69.15 112.89 71.17   Ribosomal protein S14 
Msa.1532.1.S1_at 121.17 52.76 105.34 59.67 At2g34520 9.00E-42 Ribosomal protein S14 mitochondrial family protein 
Mtr.20925.1.S1_s_at 1135.47 1092.78 1384.62 996.24 At1g55310 6.00E-13 RNA-binding region RNP-1 / SC35-like splicing factor 
Mtr.50912.1.S1_at 16.48 65.32 18.30 40.91 At5g60520 2.00E-53 Root cap / Late embryogenesis abundant protein-related 
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Mtr.43089.1.S1_at 377.41 517.07 455.87 849.20 At5g06760 3.00E-12 Seed maturation protein LEA 4 
Mtr.32128.1.S1_at 646.89 711.79 514.43 836.24 At2g27920 1.00E-45 Serine carboxypeptidase S10 family protein 
Mtr.32685.1.S1_at 47.64 42.98 65.88 47.17 At2g46090 8.00E-11 Sphingosine kinase (SphK)  
Mtr.43944.1.S1_at 291.64 162.96 174.24 162.25   Sporulation-specific glucan 1,3-beta-glucosidase precursor 
Mtr.11185.1.S1_at 42.70 46.58 36.27 58.37 At1g10760 4.00E-71 Starch excess protein (SEX1) 
Mtr.2286.1.S1_at 29.13 69.41 33.55 96.48 At1g50720 2.00E-35 Stigma-specific Stig1 family protein 
Mtr.13963.1.S1_at 19.58 82.19 23.58 47.38 At2g05920 1.00E-16 Subtilase family protein 
Mtr.32626.1.S1_at 140.34 260.15 118.17 147.40 At2g45680 4.00E-40 Syntaxin binding protein 4 / TCP family transcription factor 
Mtr.2082.1.S1_at 70.53 91.69 49.70 69.71 At5g17570 7.00E-35 TatD-related deoxyribonuclease family protein 
Mtr.34190.1.S1_at 75.81 59.18 97.47 54.19   Telomere binding protein TBP1 
Mtr.12895.1.S1_at 828.96 750.00 1134.73 849.52   Tetratricopeptide repeat protein-like 
Mtr.40572.1.S1_at 1256.70 881.42 1219.93 1016.25 At2g02180 4.00E-43 Tobamovirus multiplication protein 3 (TOM3) 
Mtr.9771.1.S1_at 250.86 222.86 296.88 197.43 At5g14530 2.00E-33 Transducin family protein 
Mtr.51660.1.S1_at 256.10 420.17 258.42 339.29 At5g07860 4.00E-12 Transferase 
Mtr.7001.1.S1_at 82.70 126.25 59.13 144.84   Transmembrane GTPase 
Mtr.30085.1.S1_at 73.03 64.41 105.14 58.35 At2g44520 2.00E-06 UbiA prenyltransferase family protein 
Mtr.40991.1.S1_at 65.45 95.06 93.83 111.35 At1g05680 9.00E-39 UDP-glucosyltransferase 
Mtr.35914.1.S1_at 237.77 235.98 253.99 167.63 At3g08790 3.00E-05 VHS domain-containing protein 
Msa.1954.1.S1_at 50.78 70.80 54.72 62.14 At2g47260 1.00E-16 WRKY family transcription factor 
Mtr.9902.1.S1_s_at 48.38 69.82 44.78 72.87 At4g26640 3.00E-13 WRKY family transcription factor 
Mtr.12483.1.S1_at 49.23 95.56 44.24 127.38 At5g24110 6.00E-14 WRKY transcription factor 41  
Mtr.42336.1.S1_at 35.45 48.82 56.81 76.76 At4g18170 3.00E-15 WRKY transcription factor 48 
Mtr.43969.1.S1_s_at 82.35 94.14 50.90 91.61 At3g13810 7.00E-05 Zinc finger (C2H2 type) family protein 
Mtr.24268.1.S1_s_at 354.37 311.66 407.05 262.46 At4g17910 3.00E-16 Zinc finger (C3HC4-type RING finger) family protein 
Mtr.43697.1.S1_at 1471.82 1240.64 1534.20 1104.61 At2g23780 4.00E-14 Zinc finger (C3HC4-type RING finger) family protein 
Mtr.7890.1.S1_at 402.14 347.57 467.58 363.59 At3g43700 2.00E-05 Zinc finger POZ domain protein 
Mtr.19759.1.S1_at 55.81 38.82 59.03 32.38 At4g13010 3.00E-63 Zinc-containing alcohol dehydrogenase superfamily 
Mtr.18387.1.S1_at 27.56 28.83 19.29 53.73   Zn-finger, C2H2 type  
Msa.1828.1.S1_at 50.25 43.86 51.37 32.81   No annotation 
Msa.2597.1.S1_at 934.57 1290.23 1135.85 1545.55   No annotation 
Msa.2805.1.S1_at 1821.90 2384.95 1936.85 3136.82   No annotation 
Msa.713.1.S1_at 40.46 34.71 53.17 30.10   No annotation 
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Msa.812.1.S1_at 1353.02 1222.04 2100.22 1182.59   No annotation 
Msa.832.1.S1_at 648.86 580.31 1080.63 615.02   No annotation 
Mtr.10542.1.S1_at 1743.25 2586.34 1871.54 2538.95   No annotation 
Mtr.10978.1.S1_at 2021.63 1674.02 2297.14 1647.24   No annotation 
Mtr.11800.1.S1_at 735.41 642.91 927.37 659.24   No annotation 
Mtr.12246.1.S1_at 4104.73 5240.34 4905.49 7300.46   No annotation 
Mtr.12664.1.S1_at 48.27 95.92 76.17 88.25   No annotation 
Mtr.1505.1.S1_at 40.11 58.62 29.50 55.29   No annotation 
Mtr.1566.1.S1_at 82.29 130.67 46.53 68.92   No annotation 
Mtr.19044.1.S1_at 61.43 45.67 53.42 43.08   No annotation 
Mtr.26426.1.S1_at 74.03 75.15 98.56 55.52   No annotation 
Mtr.26822.1.S1_at 313.74 297.95 410.53 198.35   No annotation 
Mtr.26822.1.S1_s_at 438.50 360.83 536.44 313.93   No annotation 
Mtr.27006.1.S1_at 314.70 196.95 299.02 208.83   No annotation 
Mtr.27533.1.S1_s_at 807.83 608.99 1039.90 657.16   No annotation 
Mtr.27673.1.S1_at 276.04 249.79 364.62 237.97   No annotation 
Mtr.27688.1.S1_at 445.42 356.46 476.35 300.35   No annotation 
Mtr.28744.1.S1_at 555.28 418.78 528.75 393.57   No annotation 
Mtr.28748.1.S1_at 68.21 54.51 92.18 57.68   No annotation 
Mtr.2932.1.S1_at 103.33 70.86 91.65 67.51   No annotation 
Mtr.29657.1.S1_at 110.41 105.26 151.08 93.14   No annotation 
Mtr.29708.1.S1_at 117.70 116.33 145.07 96.41   No annotation 
Mtr.30102.1.S1_at 167.81 102.00 187.53 92.77   No annotation 
Mtr.30611.1.S1_at 92.50 80.13 113.90 66.19   No annotation 
Mtr.30651.1.S1_at 325.76 151.74 375.27 212.81   No annotation 
Mtr.30654.1.S1_at 58.25 34.05 82.73 45.17   No annotation 
Mtr.30655.1.S1_at 51.69 27.34 62.46 30.73   No annotation 
Mtr.30866.1.S1_at 131.47 119.81 181.47 104.34   No annotation 
Mtr.3154.1.S1_s_at 62.01 55.70 66.86 36.58   No annotation 
Mtr.3216.1.S1_at 13985.36 9388.89 13790.28 10641.58   No annotation 
Mtr.3229.1.S1_at 361.13 297.30 410.98 265.42   No annotation 
Mtr.32877.1.S1_at 305.71 269.20 513.54 286.78   No annotation 
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Table S2 (continued) 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.3348.1.S1_at 514.15 378.18 556.56 307.83   No annotation 
Mtr.3357.1.S1_at 99.71 89.86 134.79 77.53   No annotation 
Mtr.3376.1.S1_at 52.71 32.78 66.60 42.06   No annotation 
Mtr.33795.1.S1_at 134.98 75.39 100.06 80.52   No annotation 
Mtr.33999.1.S1_at 313.37 172.35 243.87 185.45   No annotation 
Mtr.3406.1.S1_at 72.61 55.87 95.49 50.33   No annotation 
Mtr.3434.1.S1_at 156.70 126.31 212.56 102.02   No annotation 
Mtr.35477.1.S1_at 66.78 56.24 79.00 37.97   No annotation 
Mtr.3548.1.S1_at 51.97 50.66 89.30 55.50   No annotation 
Mtr.35926.1.S1_at 296.32 259.46 270.96 171.78   No annotation 
Mtr.37025.1.S1_a_at 48.26 29.10 51.42 28.04   No annotation 
Mtr.37095.1.S1_at 805.98 514.35 724.98 510.47   No annotation 
Mtr.37852.1.S1_at 27.21 31.06 12.44 140.91   No annotation 
Mtr.38324.1.S1_at 548.65 450.79 568.32 396.89   No annotation 
Mtr.39230.1.S1_at 486.47 409.09 573.46 397.99   No annotation 
Mtr.39253.1.S1_at 98.69 56.24 83.21 74.39   No annotation 
Mtr.39848.1.S1_at 74.20 58.19 90.92 59.07   No annotation 
Mtr.40295.1.S1_at 196.61 207.34 214.12 291.91   No annotation 
Mtr.42130.1.S1_at 751.94 640.37 827.63 620.35   No annotation 
Mtr.42148.1.S1_at 121.88 93.40 159.93 119.01   No annotation 
Mtr.4231.1.S1_at 203.13 142.69 240.50 152.56   No annotation 
Mtr.4250.1.S1_at 103.31 89.91 123.58 51.87   No annotation 
Mtr.42802.1.S1_at 495.81 388.58 545.52 385.93   No annotation 
Mtr.4298.1.S1_at 61.26 49.97 80.91 52.42   No annotation 
Mtr.43313.1.S1_at 541.66 605.85 611.19 1246.12   No annotation 
Mtr.44042.1.S1_at 283.39 267.94 325.98 185.83   No annotation 
Mtr.44470.1.S1_at 122.72 116.88 124.46 72.78   No annotation 
Mtr.45600.1.S1_s_at 1182.43 954.38 1422.87 814.28   No annotation 
Mtr.45601.1.S1_s_at 1797.63 1633.50 1917.63 1189.22   No annotation 
Mtr.46577.1.S1_s_at 143.18 95.34 125.49 106.91   No annotation 
Mtr.47257.1.S1_at 3585.76 3466.11 2591.85 5666.52   No annotation 
Mtr.47257.1.S1_s_at 3698.02 3924.70 2608.69 5348.17   No annotation 
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Table S2 (continued) 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.4738.1.S1_at 53.79 89.13 76.85 114.31   No annotation 
Mtr.4988.1.S1_at 362.23 239.21 407.51 247.29   No annotation 
Mtr.7281.1.S1_at 111.74 94.05 142.08 96.86   No annotation 
Mtr.7740.1.S1_at 88.53 65.69 93.24 50.59   No annotation 
Mtr.8171.1.S1_at 170.06 120.75 239.65 150.90   No annotation 
Mtr.8172.1.S1_at 651.69 372.82 907.47 615.65   No annotation 
Mtr.8363.1.S1_at 443.93 247.49 483.21 293.24   No annotation 
Mtr.9288.1.S1_at 102.87 79.88 116.06 63.47   No annotation 
Mtr.9299.1.S1_at 79.04 48.52 81.82 52.48   No annotation 
Mtr.9377.1.S1_at 63.38 68.20 35.89 110.33   No annotation 
Mtr.9665.1.S1_at 44.91 48.16 37.86 58.16   No annotation 
Mtr.9762.1.S1_at 432.96 341.07 533.41 367.42   No annotation 
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Table S3: Raw expression values of genes in roots of non mycorrhizal (non myc) and mycorrhizal (myc) Medicago truncatula plants that had been grown without 
or with caesium in the medium. The gene expression was significantly influenced by an interaction of Cs in the medium and arbuscular mycorrhiza (Analysis of 
Variance, p <0.05). The Medicago probes refer to the Medicago truncatula probe name for the gene on the Affymetrix GeneChip® Medicago genome array and 
the AGI ID is the Arabidopsis thaliana gene identification. The annotation was based on local translated BLAST alignment. The MtGEA Target Description is 
the annotation for the gene obtained from the Medicago truncatula Gene Expression Atlas and the TAIR Target Description is the annotation of the Arabidopsis 
thaliana genes (A. thaliana annotations in italics). 
 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Msa.2547.1.S1_at 59.47 59.95 49.01 74.86 At2g33450 3.00E-27 50S ribosomal protein L28, chloroplast 
Mtr.37444.1.S1_at 2715.69 2387.48 2404.21 3043.52 At1g77120 7.00E-15 Alcohol dehydrogenase 1 
Mtr.1076.1.S1_at 975.82 766.34 502.11 858.05 At1g73590 1.00E-67 Auxin efflux carrier protein 
Mtr.760.1.S1_s_at 144.89 230.56 200.71 111.87 At2g36210 4.00E-15 Auxin-induced protein family 
Mtr.44128.1.S1_at 94.84 94.32 60.67 111.38 At3g07360 4.00E-32 Avr9/Cf-9 rapidly elicited protein-like / Armadillo/beta-catenin repeat family protein 
Mtr.50730.1.S1_at 410.35 334.71 539.00 273.21   Basic-leucine zipper (bZIP) transcription factor  
Mtr.17361.1.S1_at 822.43 758.75 349.96 1301.13 At5g03170 2.00E-30 Beta-Ig-H3/fasciclin  
Mtr.50900.1.S1_at 866.09 779.54 433.79 1107.88 At5g60490 2.00E-24 Beta-Ig-H3/fasciclin  
Mtr.40942.1.S1_at 847.99 905.87 736.96 1122.30 At4g34050 1.00E-15 Caffeoyl-CoA O-methyltransferase 5  
Mtr.10823.1.S1_s_at 47.10 42.55 29.63 56.94 At3g56760 1.00E-66 Calcium-dependent protein kinase-like 
Msa.888.1.S1_at 157.44 346.00 277.15 67.26 At3g22840 2.00E-45 Chlorophyll A-B binding family protein  
Mtr.12569.1.S1_at 1418.52 1637.63 2256.26 1554.22 At1g64660 2.00E-45 Cys/Met metabolism pyridoxal-phosphate-dependent enzyme family protein 
Mtr.12486.1.S1_at 67.28 82.99 80.35 29.51   Cystatin 
Mtr.10175.1.S1_at 697.20 1069.19 944.26 721.06 At3g48290 4.00E-40 Cytochrome P450 
Mtr.13153.1.S1_at 52.97 40.44 34.77 52.37 At3g14610 3.00E-34 Cytochrome P450 
Mtr.13566.1.S1_at 595.12 802.82 566.55 379.30 At4g31950 2.00E-39 Cytochrome P450  
Msa.1818.1.S1_at 287.89 257.68 256.54 375.52 At2g46950 8.00E-33 Cytochrome P450 family protein 
Mtr.30372.1.S1_at 169.26 147.38 171.85 103.52 At3g11670 1.00E-06 Digalactosyldiacylglycerol synthase 1 
Mtr.28166.1.S1_at 192.25 219.81 241.23 140.07   Dihydrolipoamide dehydrogenase  
Mtr.50411.1.S1_at 92.59 75.84 68.45 142.13 At1g13635 9.00E-36 DNA glycosylase 
Mtr.38994.1.S1_at 224.81 262.81 143.41 285.21 At1g69780 5.00E-34 DNA-binding protein 
Mtr.34086.1.S1_at 227.21 212.82 289.69 188.30 At5g07710 6.00E-09 Exonuclease family protein 
Mtr.14652.1.S1_at 1337.54 1464.53 1225.75 711.09 At2g12905 7.00E-15 Expressed protein 
Mtr.27434.1.S1_at 60.30 62.47 45.11 34.27 At2g34160 2.00E-08 Expressed protein 
Mtr.27849.1.S1_at 471.55 349.24 335.57 593.93 At5g24920 6.00E-06 Expressed protein 
Mtr.33829.1.S1_at 214.07 223.85 164.93 365.90 At2g35880 3.00E-44 Expressed protein 
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Table S3 (continued) 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.42939.1.S1_at 1585.48 1557.37 2278.35 1376.81 At1g28135 1.00E-05 Expressed protein 
Mtr.7227.1.S1_at 37.24 58.37 54.00 33.93 At1g17455 3.00E-37 Expressed protein 
Mtr.9655.1.S1_at 148.63 187.10 153.66 123.92 At1g17210 3.00E-52 Expressed protein 
Mtr.9904.1.S1_at 58.47 59.01 58.24 115.00 At5g37840 9.00E-09 Expressed protein 
Mtr.13136.1.S1_at 646.32 585.86 293.13 929.21 At5g60490 1.00E-10 Fasciclin-like 
Mtr.13136.1.S1_s_at 251.51 255.01 96.69 345.72 At5g60490 2.00E-33 Fasciclin-like 
Mtr.9854.1.S1_at 93.00 83.22 64.13 113.32 At3g58790 7.00E-73 Galacturonosyltransferase activity 
Mtr.40734.1.S1_at 619.85 953.11 904.05 507.62 At2g36800 6.00E-65 Glucosyltransferase-14 
Mtr.40320.1.S1_at 1078.44 1105.25 1432.08 1107.12 At2g28110 2.00E-05 Glycosyl transferase family  
Mtr.44590.1.S1_s_at 33.36 25.58 31.36 53.48 At2g37090 2.00E-44 Glycuronosyltransferase-like protein 
Mtr.20183.1.S1_s_at 161.72 156.04 117.00 199.81 At1g80160 4.00E-34 Glyoxalase/extradiol ring-cleavage dioxygenase / Lactoylglutathione lyase family protein 
Mtr.44959.1.S1_at 40.27 52.73 33.42 58.73   Guanine nucleotide releasing factor 1  
Mtr.40057.1.S1_at 925.07 842.04 983.90 615.43 At5g09590 2.00E-34 Heat shock 70 kDa protein 
Mtr.31518.1.S1_at 399.08 262.78 382.14 521.61   Hydrolase, alpha/beta fold family 
Mtr.37437.1.S1_at 72.75 90.31 101.20 69.90   Hypersensitive-induced response protein 
Msa.3150.1.S1_at 132.10 142.26 272.58 126.08 AtMg00030 7.00E-28 Hypothetical protein 
Mtr.49328.1.S1_at 52.66 23.27 18.22 119.56   Hypothetical protein 
Mtr.50277.1.S1_at 3690.40 3373.60 3570.32 4859.33   Hypothetical protein 
Mtr.46631.1.S1_at 39.42 21.34 43.01 324.25 At5g27760 9.00E-14 Hypoxia-responsive family protein 
Mtr.4424.1.S1_at 99.80 96.05 126.73 71.39 At1g49405 4.00E-22 Integral membrane protein 
Mtr.8632.1.S1_s_at 1402.17 1518.20 1342.19 2404.39 At1g14890 7.00E-37 Invertase/pectin methylesterase inhibitor family protein 
Mtr.35520.1.S1_at 178.50 271.70 357.21 307.02 At5g25930 2.00E-17 Leucine-rich repeat family protein 
Mtr.11809.1.S1_at 336.74 261.16 243.30 445.70 At4g24120 8.00E-46 Metal-nicotinamine transporter / Oligopeptide transporter OPT family protein 
Mtr.33467.1.S1_at 227.82 163.49 149.98 181.72   MLP-like protein 43 
Mtr.33426.1.S1_at 54.11 67.29 62.15 33.72   MRP-like ABC transporter  
Mtr.11148.1.S1_at 472.80 536.12 444.02 703.15   Multi resistance protein homolog 
Mtr.9331.1.S1_at 196.64 270.27 193.71 203.18   MYB transcription factor 
Mtr.14314.1.S1_at 73.25 51.74 37.62 100.42 At5g64700 2.00E-39 Nodulin MtN21 family protein 
Mtr.22897.1.S1_at 269.03 217.60 212.18 271.25 At3g62110 4.00E-61 Polygalacturonase 
Mtr.8212.1.S1_at 191.52 143.40 144.19 276.07 At1g18390 1.00E-11 Protein kinase 
Mtr.45613.1.S1_s_at 1800.68 2289.61 2018.41 1172.16 AtCg00700 7.00E-15 PSII low MW protein 
Mtr.38555.1.S1_at 171.72 122.50 90.71 281.59 At1g17250 1.00E-11 Receptor-kinase like protein / Leucine-rich repeat family protein 
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Table S3 (continued) 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.42037.1.S1_at 209.63 176.34 111.29 184.69 At5g16000 8.00E-46 Receptor-kinase like protein / Leucine-rich repeat family protein 
Mtr.48952.1.S1_at 50.69 43.41 46.61 148.55   Rhodanese-like 
Mtr.48952.1.S1_s_at 16.79 16.34 13.73 58.32 At5g66170 1.00E-35 Rhodanese-like / Senescence-associated family protein 
Mtr.50074.1.S1_at 22.51 10.11 13.15 67.98   RmlC-like cupin 
Mtr.11185.1.S1_at 42.70 46.58 36.27 58.37 At1g10760 4.00E-71 Starch excess protein (SEX1) 
Mtr.27746.1.S1_at 41.40 59.19 42.82 30.14   SUPERMAN like protein 
Mtr.3548.1.S1_at 51.97 50.66 89.30 55.50 At5g51910 2.00E-04 TCP family transcription factor 
Mtr.30085.1.S1_at 73.03 64.41 105.14 58.35 At2g44520 2.00E-06 UbiA prenyltransferase family protein 
Mtr.8345.1.S1_at 44.80 50.21 65.41 40.31 At4g17895 1.00E-18 Ubiquitin-specific protease 20 
Mtr.37847.1.S1_at 60.25 19.98 65.70 398.81 At1g22370 7.00E-29 UDP-glycosyltransferase 85A8 
Mtr.35914.1.S1_at 237.77 235.98 253.99 167.63 At3g08790 3.00E-05 VHS domain-containing protein 
Mtr.13171.1.S1_at 226.97 116.70 139.72 443.48 At4g10270 2.00E-06 Wound-responsive family protein 
Mtr.7286.1.S1_at 65.01 54.95 35.78 66.74 At1g72220 7.00E-44 Zinc finger (C3HC4-type RING finger) family protein 
Mtr.18387.1.S1_at 27.56 28.83 19.29 53.73   Zn-finger, C2H2 type  
Msa.2945.1.S1_at 770.00 840.79 1163.44 738.05   No annotation 
Msa.713.1.S1_at 40.46 34.71 53.17 30.10   No annotation 
Msa.812.1.S1_at 1353.02 1222.04 2100.22 1182.59   No annotation 
Mtr.26426.1.S1_at 74.03 75.15 98.56 55.52   No annotation 
Mtr.26822.1.S1_at 313.74 297.95 410.53 198.35   No annotation 
Mtr.27252.1.S1_at 60.75 65.13 63.99 44.61   No annotation 
Mtr.28657.1.S1_s_at 44.77 35.60 29.54 56.24   No annotation 
Mtr.29657.1.S1_at 110.41 105.26 151.08 93.14   No annotation 
Mtr.29708.1.S1_at 117.70 116.33 145.07 96.41   No annotation 
Mtr.30866.1.S1_at 131.47 119.81 181.47 104.34   No annotation 
Mtr.32877.1.S1_at 305.71 269.20 513.54 286.78   No annotation 
Mtr.3434.1.S1_at 156.70 126.31 212.56 102.02   No annotation 
Mtr.36065.1.S1_at 104.29 79.59 76.57 150.24   No annotation 
Mtr.39253.1.S1_at 98.69 56.24 83.21 74.39   No annotation 
Mtr.45041.1.S1_at 49.29 28.07 18.74 49.58   No annotation 
Mtr.47257.1.S1_at 3585.76 3466.11 2591.85 5666.52   No annotation 
Mtr.47257.1.S1_s_at 3698.02 3924.70 2608.69 5348.17   No annotation 
Mtr.8264.1.S1_at 69.62 100.38 104.49 48.66   No annotation 
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Table S3 (continued) 

 Raw expression values in roots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.8273.1.S1_at 919.68 1540.81 1181.57 952.08   No annotation 
Mtr.9377.1.S1_at 63.38 68.20 35.89 110.33   No annotation 
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Table S4: Raw expression values of genes in shoots of non mycorrhizal (non myc) and mycorrhizal (myc) Medicago truncatula plants that had been grown 
without or with caesium in the medium. The gene expression was significantly influenced by the presence of Cs in the medium (Analysis of Variance, p <0.05). 
The Medicago probes refer to the Medicago truncatula or M. sativa probe name for the gene on the Affymetrix GeneChip® Medicago genome array and the AGI 
ID is the Arabidopsis thaliana gene identification. The annotation was based on local translated BLAST alignment. The MtGEA Target Description is the 
annotation for the gene obtained from the Medicago truncatula Gene Expression Atlas and the TAIR Target Description is the annotation of the Arabidopsis 
thaliana genes (A. thaliana annotations in italics). 
 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.5963.1.S1_at 1088.60 1600.45 946.83 893.39    AAA-type ATPase-like protein 
Mtr.40695.1.S1_s_at 804.45 651.33 499.56 333.43 At1g65890 AAE12 5.00E-26 Acyl-activating enzyme 12 (AAE12) 
Mtr.43580.1.S1_at 16.87 77.22 41.24 10.79 At1g20560  2.00E-05 Adenosine monophosphate binding protein 1 
Mtr.14426.1.S1_at 66.91 53.47 29.11 29.55 At1g59960  2.00E-14 Aldo/keto reductase  
Mtr.45133.1.S1_at 76.05 84.85 147.44 90.22 At4g12270  6.00E-62 Amine oxidase 
Msa.1814.1.S1_at 1294.02 1270.42 664.43 1416.05 At1g35720 ANNAT1 2.00E-62 Annexin gene family 
Mtr.40663.1.S1_at 240.33 463.71 268.15 213.90 At1g31280  2.00E-08 Argonaute genePAZ domain-containing protein 
Mtr.21172.1.S1_at 125.83 144.65 194.23 174.13 At4g11400  2.00E-40 AT-rich interaction region 
Mtr.43097.1.S1_at 411.64 917.54 568.35 1551.85 At5g18670  2.00E-21 Beta-amylase 
Mtr.13752.1.S1_at 521.34 338.22 360.08 349.00 At4g33000 CBL10 5.00E-22 Calcineurin B-like protein 10 
Mtr.38079.1.S1_at 32.25 64.22 27.59 15.58 At2g36220  6.00E-13 Calcium/calmodulin protein kinase 1 
Mtr.9580.1.S1_at 73.61 161.90 52.23 64.94 At5g64220  2.00E-18 Calmodulin-binding protein 
Mtr.10055.1.S1_at 362.76 453.23 256.47 226.68    cAMP-dependent protein kinase type 3  
Mtr.35147.1.S1_s_at 426.65 300.62 262.99 92.86 At1g11190 BFN1 3.00E-12 CEL I mismatch endonuclease 
Mtr.38029.1.S1_at 6385.65 4632.52 5149.92 4257.20 At1g75350 emb2184 1.00E-40 Chloroplast 50S ribosomal protein L31-like 
Mtr.33424.1.S1_s_at 104.74 130.71 97.92 63.94    Condensin complex component 
Mtr.2712.1.S1_at 1089.24 722.40 825.60 514.41    Cyclin delta-3 
Mtr.1456.1.S1_at 191.31 272.83 169.67 210.09 At2g31270 CDT1A 4.00E-07 Cyclin-dependent protein kinase 
Mtr.11364.1.S1_at 100.04 281.77 56.63 52.29 At2g46960 CYP709B1 1.00E-41 Cytochrome P450 
Msa.1818.1.S1_at 266.81 647.07 178.64 144.63 At2g46950 CYP709B2 8.00E-33 Cytochrome P450 family protein 
Mtr.38799.1.S1_s_at 331.78 377.78 438.70 81.63 At2g41510 CKX1 1.00E-33 Cytokinin oxidase-like protein 
Mtr.44219.1.S1_at 76.90 73.09 69.92 18.41 At3g63440 CKX6 6.00E-64 Cytokinin oxidase-like protein 
Mtr.43949.1.S1_at 198.58 227.38 295.68 215.22 At2g26830 emb1187 8.00E-23 Ethanolamine kinase 
Mtr.13061.1.S1_at 396.67 271.33 246.18 224.17 At1g11440  1.00E-09 Expressed protein 
Mtr.18422.1.S1_at 108.78 178.68 106.95 24.25 At5g04550  2.00E-33 Expressed protein 
Mtr.24811.1.S1_at 84.68 95.04 129.48 107.74 At2g26200  6.00E-34 Expressed protein 
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Table S4 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.27397.1.S1_at 647.94 368.75 389.74 337.54 At2g04360  1.00E-49 Expressed protein 
Mtr.38228.1.S1_at 443.99 816.74 596.01 1042.04 At5g59050  5.00E-06 Expressed protein 
Mtr.38291.1.S1_at 1909.86 2395.71 1393.44 1812.16 At2g46490  4.00E-12 Expressed protein 
Mtr.38672.1.S1_at 1334.26 857.17 908.73 724.39 At1g51100  2.00E-26 Expressed protein 
Mtr.40792.1.S1_at 245.52 346.55 264.85 168.99 At1g53380  4.00E-42 Expressed protein 
Mtr.41288.1.S1_at 793.29 532.83 591.05 492.23 At3g23760  8.00E-70 Expressed protein 
Mtr.27793.1.S1_s_at 336.37 187.29 190.48 184.09    Galactosidase like protein 
Mtr.43170.1.S1_s_at 135.18 144.46 251.13 208.15 At5g18170 GDH1 2.00E-36 Glutamate dehydrogenase 1  
Mtr.12412.1.S1_at 389.71 471.23 724.63 620.03 At5g18170  3.00E-28 Glutamate dehydrogenase 1   
Mtr.6324.1.S1_at 50.52 44.90 32.50 27.63 At5g27100  2.00E-39 Glutamate receptor 2.4 precursor  
Mtr.43300.1.S1_at 2653.44 1836.02 2124.23 1750.79 At4g28730  1.00E-26 Glutaredoxin protein family-like 
Mtr.13661.1.S1_at 423.88 354.28 303.24 254.08 At1g66970 SVL2 7.00E-38 Glycerophosphoryl diester phosphodiesterase 2 precursor  
Msa.2885.1.S1_at 9641.88 6826.59 7143.95 7008.88 At1g32470  2.00E-43 Glycine cleavage system H protein 
Mtr.8969.1.S1_at 284.44 187.88 137.62 160.79 At2g27500  3.00E-56 Glycosyl hydrolase family 17 protein 
Mtr.37156.1.S1_at 295.19 344.73 226.57 247.87 At5g05460  4.00E-24 Glycosyl hydrolase family 85 protein 
Mtr.37584.1.S1_at 1706.10 1411.62 1262.97 1164.88 At3g11660  5.00E-25 Harpin-induced family protein 
Mtr.50930.1.S1_at 88.17 31.68 23.79 20.21 At3g50330  1.00E-32 Helix-loop-helix DNA-binding 
Mtr.19029.1.S1_s_at 187.54 247.27 178.91 182.86    Hypothetical protein 
Mtr.17966.1.S1_at 43.46 72.66 24.85 23.29    Leucine-rich repeat 
Mtr.7591.1.S1_at 54.00 106.21 71.41 25.43 At4g29880  3.00E-23 Leucine-rich repeat family protein 
Mtr.35681.1.S1_at 218.33 141.32 102.79 117.28    Metal-dependent amidase/aminoacylase/carboxypeptidase 
Mtr.44870.1.S1_at 536.88 799.49 358.84 345.81    MLO-like protein 10  
Mtr.13060.1.S1_at 169.52 212.29 133.36 93.65 At2g35660 CTF2A 3.00E-68 Monooxygenase family protein 
Mtr.17230.1.S1_at 19.19 60.12 34.35 11.13 At3g17630  2.00E-16 Na+/H+ antiporter-like protein 
Mtr.2375.1.S1_at 26.87 64.65 33.02 13.33    Neuraminidase B 
Mtr.6666.1.S1_at 245.10 405.29 190.05 301.85 At2g39510  4.00E-04 Nodulin MtN21 family protein 
Mtr.27937.1.S1_at 185.59 291.56 124.36 206.92 At1g68170  1.00E-28 Nodulin-like protein 
Msa.2628.1.S1_at 153.17 93.69 94.52 93.25 At4g33490  9.00E-57 Nucellin protein 
Mtr.37374.1.S1_at 2005.63 1739.91 1514.85 1107.02 At4g37050 PLP4 3.00E-12 Patatin-like protein 1 
Mtr.50768.1.S1_at 284.69 147.97 101.02 119.88 At2g14095  2.00E-13 Peptidase A11B 
Mtr.39868.1.S1_at 35.33 54.20 55.05 56.01 At1g06900  8.00E-61 Peptidase M16 family protein  
Mtr.9748.1.S1_at 641.12 370.38 487.21 308.78 At3g15520  1.00E-73 Peptidyl-prolyl cis-trans isomerase  



 

240

Table S4 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.22013.1.S1_s_at 2330.46 897.88 1141.31 723.26 At3g26060 ATPRX Q 2.00E-19 Peroxiredoxin Q 
Mtr.6484.1.S1_at 951.23 1824.33 978.62 360.21 At2g32830  3.00E-05 Phosphate transporter 2 
Mtr.38209.1.S1_at 1276.40 928.65 676.55 1357.58    Polysaccharide ABC transporter 
Mtr.51989.1.S1_s_at 34.68 60.10 39.86 23.84 At2g26650  7.00E-34 Potassium channel 
Mtr.43279.1.S1_at 112.49 314.91 353.10 290.95 At3g30775 ERD5 3.00E-50 Proline dehydrogenase  
Mtr.39238.1.S1_at 2590.93 909.95 1058.60 1101.40 At3g16370  1.00E-61 Proline-rich protein APG-like / GDSL-motif lipase 
Msa.1037.1.S1_at 67.85 90.12 110.33 104.41 At1g07870  1.00E-93 Protein kinase family protein 
Mtr.5291.1.S1_at 336.23 120.57 178.32 127.01 At1g45207  2.00E-15 Remorin family protein 
Mtr.48460.1.S1_at 193.23 202.62 253.77 213.28 At3g12280  2.00E-26 Retinoblastoma-related protein 
Mtr.19517.1.S1_at 15702.92 10707.55 11264.72 11010.34 At5g38410  8.00E-05 Ribulose bisphosphate carboxylase 
Mtr.40987.1.S1_at 3522.41 2203.64 2463.78 2136.79 At1g71500  2.00E-30 Rieske (2Fe-2S) domain-containing protein 
Mtr.39708.1.S1_at 1375.93 975.38 681.40 694.15    Serine/threonine kinase protein-like 
Mtr.38550.1.S1_at 36.73 40.30 83.01 52.65 At4g34980 SLP2 4.00E-67 Subtilisin-like proteinase 
Mtr.38540.1.S1_at 55.61 39.75 16.58 22.27 At5g23960 TPS21 3.00E-28 Terpene synthase 
Mtr.12493.1.S1_at 1552.23 947.53 1179.10 877.06 At2g41680 NTRC 1.00E-29 Thioredoxin reductase 
Mtr.15318.1.S1_at 1077.39 660.85 853.11 676.67 At1g76760 ATY1 6.00E-47 Thioredoxin-related 
Mtr.33389.1.S1_at 99.60 145.63 138.16 145.15 At1g16800  2.00E-05 tRNA-splicing endonuclease positive effector-related 
Mtr.45215.1.S1_at 338.16 581.87 407.21 265.72 At2g41560 ACA4 4.00E-22 Type IIB calcium ATPase 
Mtr.5950.1.S1_s_at 1786.03 1715.98 1102.05 1046.52 At5g25560  7.00E-75 Zinc finger protein 
Mtr.10267.1.S1_at 606.77 500.91 472.51 441.97    No annotation 
Mtr.12664.1.S1_at 68.04 88.48 46.23 36.53    No annotation 
Mtr.12886.1.S1_at 1078.70 742.55 739.84 662.97    No annotation 
Mtr.27107.1.S1_at 170.88 115.89 62.07 97.66    No annotation 
Mtr.28477.1.S1_at 127.11 110.32 49.25 95.74    No annotation 
Mtr.35562.1.S1_at 31.79 90.32 20.38 16.43    No annotation 
Mtr.38803.1.S1_at 401.78 638.75 371.01 226.27    No annotation 
Mtr.40695.1.S1_at 797.41 733.40 618.62 375.50    No annotation 
Mtr.4597.1.S1_at 651.51 1066.40 644.58 588.16    No annotation 
Mtr.9377.1.S1_at 156.59 119.42 77.07 139.70    No annotation 
Mtr.9483.1.S1_at 1927.79 1136.32 1293.89 1137.47    No annotation 

 



 

241

Table S5: Raw expression values of genes in shoots of non mycorrhizal (non myc) and mycorrhizal (myc) Medicago truncatula plants that had been grown 
without or with caesium in the medium. The gene expression was significantly influenced by arbuscular mycorrhiza (Analysis of Variance, p <0.05). The 
Medicago probes refer to the Medicago truncatula or M. sativa probe name for the gene on the Affymetrix GeneChip® Medicago genome array and the AGI ID is 
the Arabidopsis thaliana gene identification. The annotation was based on local translated BLAST alignment. The MtGEA Target Description is the annotation 
for the gene obtained from the Medicago truncatula Gene Expression Atlas and the TAIR Target Description is the annotation of the Arabidopsis thaliana genes 
(A. thaliana annotations in italics). 
 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID Gene name e-value MtGEA Target Description / TAIR Target Description 

Msa.1080.1.S1_at 1354.81 598.63 763.21 565.12 At3g11630  3.00E-54 2-cys peroxiredoxin 
Msa.1307.1.S1_at 1650.66 770.01 973.01 707.75 At3g11630  3.00E-59 2-cys peroxiredoxin 
Mtr.12260.1.S1_at 8371.31 4872.31 6268.22 4830.64 At5g06290 2-Cys Prx B 1.00E-72 2-Cys peroxiredoxin 
Mtr.25633.1.S1_at 5478.64 2830.84 3712.58 2799.43 At5g06290 2-Cys Prx B 4.00E-106 2-Cys peroxiredoxin 
Msa.2517.1.S1_at 962.86 656.23 818.05 751.63 At4g33510 DHS2 1.00E-80 2-dehydro-3-deoxyphosphoheptonate aldolase 2  
Mtr.8920.1.S1_at 205.07 152.57 256.02 164.90 At5g64290  2.00E-31 2-oxoglutarate/malate translocator 
Mtr.28252.1.S1_at 48.02 57.65 33.38 58.68 At1g06620  7.00E-40 2-oxoglutarate-dependent dioxygenase 
Mtr.13458.1.S1_at 177.44 95.28 161.92 99.78 At4g05090  9.00E-59 3(2),5-Bisphosphate nucleotidase-like protein 
Mtr.34741.1.S1_at 341.03 244.57 324.82 224.87 At4g05090  2.00E-44 3(2),5-Bisphosphate nucleotidase-like protein 
Mtr.13096.1.S1_at 1199.82 654.15 815.60 591.15 At5g18660 PCB2 8.00E-69 3,8-divinyl protochlorophyllide a 8-vinyl reductase  
Mtr.41249.1.S1_at 3778.88 1990.81 2407.71 2061.38 At5g14320  3.00E-59 30S ribosomal protein S13 
Mtr.9095.1.S1_at 5385.81 3278.53 3900.41 3509.05 At1g74970 RPS9 4.00E-71 30S ribosomal protein S9 
Mtr.11893.1.S1_at 825.10 481.23 588.69 460.27 At2g02500 ISPD 5.00E-74 4-Diphosphocytidyl-2C-methyl-D-erythritol synthase 
Mtr.16367.1.S1_at 27.10 41.90 21.70 47.37    AAA ATPase 
Mtr.21293.1.S1_at 121.41 88.53 106.55 68.19 At2g14750 APK1 4.00E-19 AAA ATPase / APS kinaseadenylylsulfate kinase 
Mtr.9795.1.S1_at 886.96 555.79 660.76 643.62 At1g17840 WBC11 6.00E-79 ABC transporter 
Mtr.8752.1.S1_at 956.13 353.48 537.85 532.81 At3g51440  6.00E-21 ABC transporter permease protein / Strictosidine synthase family protein 
Mtr.4028.1.S1_at 762.71 384.26 697.12 374.47 At2g36840  5.00E-39 ACT domain-containing protein 
Mtr.9843.1.S1_at 598.48 245.46 414.46 253.41 At2g36840  2.00E-73 ACT domain-containing protein 
Mtr.37684.1.S1_at 1790.66 2393.69 1735.11 2659.42 At2g16700 ADF5 4.00E-21 Actin-depolymerizing factor 5  
Mtr.40695.1.S1_s_at 804.45 651.33 499.56 333.43 At1g65890 AAE12 5.00E-26 Acyl-activating enzyme 12 (AAE12) 
Mtr.45535.1.S1_at 127.66 73.15 88.78 70.54    Adenylyl-sulfate kinase 
Mtr.45535.1.S1_s_at 162.83 123.57 134.05 101.97 At2g14750 APK1 1.00E-05 Adenylyl-sulfate kinase 
Mtr.19660.1.S1_at 59.45 44.49 69.59 42.79 At4g32440  1.00E-14 Agenet domain-containing protein 
Mtr.18939.1.S1_at 23.85 35.24 20.12 74.57 At1g25530  1.00E-35 Amino acid/polyamine transporter II  
Msa.1814.1.S1_at 1294.02 1270.42 664.43 1416.05 At1g35720 ANNAT1 2.00E-62 Annexin gene family 

 



 

242

Table S5 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.37757.1.S1_at 1763.67 2147.85 1299.98 3037.87 At5g01210  1.00E-52 Anthranilate N-benzoyltransferase-like protein 
Msa.1751.1.S1_at 371.05 87.44 101.02 105.90 At4g18910  6.00E-41 Aquaglyceroporin / NOD26-like major intrinsic protein 2  
Mtr.40663.1.S1_at 240.33 463.71 268.15 213.90 At1g31280  2.00E-08 Argonaute gene PAZ domain-containing protein  
Mtr.12736.1.S1_at 2207.80 999.02 1500.74 1262.31 At4g09010 APX4 1.00E-54 Ascorbate peroxidase 
Mtr.32351.1.S1_s_at 2429.71 940.48 1420.90 1257.92 At4g09010 APX4 1.00E-15 Ascorbate peroxidase APX4 
Mtr.7842.1.S1_at 4457.73 2374.83 3550.73 2903.71 At4g09010 APX4 3.00E-19 Ascorbate peroxidase APX4  
Msa.2600.1.S1_at 55.37 172.19 83.86 168.56 At1g66180  4.00E-35 Aspartyl protease family protein 
Mtr.41053.1.S1_at 304.96 627.05 370.89 621.29 At5g49700  7.00E-05 AT-hook DNA-binding protein 
Mtr.20763.1.S1_s_at 406.38 213.11 379.58 203.72 At1g19920 APS2 3.00E-17 ATP sulfurylase-related 
Mtr.45729.1.S1_s_at 780.56 405.54 667.71 376.96 At1g19920 APS2 6.00E-37 ATP sulfurylase-related 
Mtr.41682.1.S1_at 775.18 509.33 636.22 505.55 At1g32500 ATNAP6 3.00E-33 ATP-binding-cassette transporter 
Mtr.10708.1.S1_at 2921.53 2022.93 2409.02 2179.02 At1g12410  2.00E-44 ATP-dependent Clp proteinase catalytic chain  
Mtr.25341.1.S1_at 79.44 21.84 30.80 25.63 At2g17500  4.00E-51 Auxin efflux carrier family protein 
Mtr.25341.1.S1_x_at 55.19 14.07 21.10 16.49 At2g17500  4.00E-51 Auxin efflux carrier family protein 
Mtr.10432.1.S1_at 2451.49 2563.94 1853.53 3258.57    Auxin-induced protein 22B  
Mtr.25939.1.S1_at 301.24 266.66 99.79 458.41 At4g38840  4.00E-25 Auxin-induced protein 6B 
Mtr.10431.1.S1_at 733.77 802.60 607.70 972.04 At1g04240 SHY2 2.00E-31 Auxin-induced protein IAA4 
Mtr.702.1.S1_at 186.19 155.61 82.49 237.71 At4g38840  8.00E-26 Auxin-induced protein X10A 
Mtr.705.1.S1_x_at 69.86 48.49 14.86 100.83 At4g38840  4.00E-12 Auxin-induced protein X10A 
Mtr.10147.1.S1_at 133.02 200.31 19.37 184.89 At4g34760  5.00E-16 Auxin-induced SAUR-like protein 
Mtr.10701.1.S1_at 451.07 897.12 365.71 1292.48    Axi 1 protein-like protein 
Mtr.21519.1.S1_at 75.47 73.28 93.23 72.70 At2g32590  3.00E-47 Barren family protein 
Mtr.44005.1.S1_at 11.85 48.31 14.91 53.61 At5g65640 bHLH093 1.00E-54 Basic helix-loop-helix (bHLH) family protein 
Mtr.14223.1.S1_at 385.83 278.31 304.98 203.14 At2g42300  3.00E-54 Basic helix-loop-helix dimerisation region bHLH 
Mtr.12848.1.S1_at 268.99 410.14 267.96 572.10 At5g44380  4.00E-20 Berberine bridge enzyme-like protein / FAD-binding domain 
Msa.1635.1.S1_at 987.35 1380.65 604.93 1607.67 At1g70850  1.00E-15 Bet v I allergen family protein 
Mtr.43097.1.S1_at 411.64 917.54 568.35 1551.85 At5g18670 BMY3 2.00E-21 Beta-amylase 
Mtr.13426.1.S1_at 303.27 426.37 368.67 429.41 At5g15870  6.00E-55 Beta-glucan-elicitor receptor 
Mtr.44504.1.S1_at 61.37 135.05 53.71 127.19 At5g15870  1.00E-16 Beta-glucan-elicitor receptor 
Mtr.12519.1.S1_at 1283.15 773.64 909.95 791.51 At2g26640 KCS11 1.00E-15 beta-ketoacyl-CoA synthase 
Mtr.27641.1.S1_at 93.94 468.69 227.06 491.71 At2g30600  4.00E-08 BTB/POZ domain-containing protein 
Mtr.37023.1.S1_s_at 4458.05 8347.50 5946.90 8476.21 At2g30600  2.00E-20 BTB/POZ domain-containing protein 
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Table S5 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.40801.1.S1_at 1142.42 3961.57 2172.47 4107.60 At2g30600  2.00E-27 BTB/POZ domain-containing protein 
Mtr.8953.1.S1_s_at 73.31 36.46 60.53 56.98 At2g46270  1.00E-25 BZip transcription factor / G-box binding factor 3 
Mtr.2631.1.S1_at 840.82 394.93 728.59 282.00 At5g54160 ATOMT1 1.00E-37 Caffeic acid O-methyltransferase II 
Mtr.13752.1.S1_at 521.34 338.22 360.08 349.00 At4g33000 CBL10 5.00E-22 Calcineurin B-like protein 10 
Mtr.38175.1.S1_at 784.06 382.67 570.72 340.28 At5g62070  4.00E-18 Calmodulin-binding family protein 
Mtr.41220.1.S1_at 35.87 59.34 27.20 66.43 At2g24300  2.00E-71 Calmodulin-binding protein 
Mtr.9580.1.S1_at 73.61 161.90 52.23 64.94 At5g64220  2.00E-18 Calmodulin-binding protein 
Mtr.2092.1.S1_at 222.47 56.33 95.25 25.18    Carbonic anhydrase 
Mtr.11409.1.S1_at 498.81 349.24 390.63 165.04 At1g11190 BFN1 5.00E-26 CEL I mismatch endonuclease 
Mtr.35147.1.S1_s_at 426.65 300.62 262.99 92.86 At1g11190  3.00E-12 CEL I mismatch endonuclease 
Mtr.43442.1.S1_at 2624.07 1438.74 2115.82 1486.19 At1g75690  1.00E-51 Chaperone protein dnaJ-related 
Mtr.51755.1.S1_at 115.12 162.89 122.30 131.26 At1g23100  1.00E-14 Chaperonin  
Mtr.13324.1.S1_at 2844.23 1456.83 1804.05 1404.28 At1g19150 LHCA6 1.00E-94 Chlorophyll A-B binding protein 
Mtr.38029.1.S1_at 6385.65 4632.52 5149.92 4257.20 At1g75350  1.00E-40 Chloroplast 50S ribosomal protein L31-like 
Mtr.13460.1.S1_at 3808.95 2182.44 2513.34 2052.32 At5g13510  6.00E-54 Chloroplast ribosomal protein L10 
Mtr.35138.1.S1_at 1071.72 741.85 892.70 737.17 At2g47450 CAO 1.00E-53 Chloroplast signal recognition particle component (CAO) 
Mtr.27628.1.S1_at 102.61 191.86 102.07 241.97 At4g27430 CIP7 7.00E-15 COP1-interacting protein 7 (CIP7) 
Mtr.2712.1.S1_at 1089.24 722.40 825.60 514.41    Cyclin delta-3 
Mtr.1456.1.S1_at 191.31 272.83 169.67 210.09 At2g31270 CDT1A 4.00E-07 Cyclin-dependent protein kinase 
Mtr.21518.1.S1_at 926.46 410.60 660.69 463.45 At4g15440 HPL1 1.00E-10 Cytochrome P450 / Hydroperoxide lyase (HPL1) 
Mtr.21518.1.S1_s_at 2347.25 1120.10 1944.24 1459.66 At4g15440  2.00E-56 Cytochrome P450 / Hydroperoxide lyase (HPL1) 
Mtr.38799.1.S1_at 189.77 295.07 337.35 58.81    Cytokinin oxidase-like protein 
Mtr.38799.1.S1_s_at 331.78 377.78 438.70 81.63 At2g41510 CKX1 1.00E-33 Cytokinin oxidase-like protein 
Mtr.51672.1.S1_at 2577.22 1221.79 1767.00 1292.47 At1g69740  1.00E-88 Delta-aminolevulinic acid dehydratase / Porphobilinogen synthase 
Mtr.33588.1.S1_at 37.48 46.26 32.41 61.41 At3g04220  2.00E-08 Disease resistance protein  
Mtr.31300.1.S1_at 720.11 457.74 624.77 501.71 At1g65870  4.00E-41 Disease resistance response protein 
Mtr.45367.1.S1_at 70.87 122.11 71.37 126.62    DNA binding with one finger 7 protein 
Mtr.9768.1.S1_at 116.05 124.03 97.08 159.54 At2g31970 RAD50 9.00E-28 DNA repair-recombination protein  
Mtr.1977.1.S1_at 210.00 132.94 157.60 158.41 At1g76880  9.00E-05 DNA-binding protein DF1 
Mtr.39563.1.S1_at 79.61 96.30 76.89 119.88 At3g55560 AGF2 1.00E-15 DNA-binding protein-related 
Mtr.24891.1.S1_at 360.70 816.18 245.46 636.62 At2g47440  2.00E-38 DnaJ domain-containing protein 
Mtr.38240.1.S1_s_at 21.85 46.86 21.29 53.71 At1g01250  5.00E-09 DREB subfamily 
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Table S5 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID 

Gene 
name e-value MtGEA Target Description / TAIR Target Description 

Mtr.10192.1.S1_at 493.54 187.47 326.35 232.00 At1g01250  1.00E-36 DREB-like protein 
Mtr.32790.1.S1_at 613.63 710.97 484.73 1469.82 At1g54070  2.00E-11 Drm3 
Mtr.32790.1.S1_s_at 780.37 1014.86 626.59 1649.61    Drm3 
Mtr.44506.1.S1_x_at 283.21 444.26 281.03 436.22 At3g57240 BG3 2.00E-32 Endo-1,3-beta-glucanase 
Msa.3121.1.S1_at 174.01 803.78 257.47 1562.87 At5g61590  2.00E-31 ERF (ethylene response factor) subfamily 
Mtr.11873.1.S1_at 66.06 88.10 54.00 138.29 At3g51770  7.00E-73 Ethylene-overproduction protein / Tetratricopeptide repeat (TPR) 
Msa.1766.1.S1_at 2698.36 1605.64 1850.29 1662.08 At3g61870  1.00E-15 Expressed protein 
Msa.989.1.S1_s_at 821.60 458.36 591.49 469.99 At3g61870  3.00E-62 Expressed protein 
Mtr.1101.1.S1_s_at 32.29 53.95 43.84 54.46 At1g13120 emb1745 3.00E-31 Expressed protein 
Mtr.11829.1.S1_at 497.28 343.62 461.95 358.77 At1g10660  1.00E-46 Expressed protein 
Mtr.12188.1.S1_at 352.01 173.31 184.48 161.82 At2g04360  1.00E-10 Expressed protein 
Mtr.12227.1.S1_s_at 66.47 143.47 102.40 165.20 At3g29575  2.00E-30 Expressed protein 
Mtr.12418.1.S1_at 1627.06 1024.49 1386.10 778.60 At1g16080  1.00E-36 Expressed protein 
Mtr.13061.1.S1_at 396.67 271.33 246.18 224.17 At1g11440  1.00E-09 Expressed protein 
Mtr.13441.1.S1_at 218.55 171.66 216.24 131.12 At1g28510  1.00E-46 Expressed protein 
Mtr.14799.1.S1_at 343.18 209.37 251.66 199.53 At5g63050  9.00E-28 Expressed protein 
Mtr.15457.1.S1_at 34.71 46.13 28.85 66.98 At2g47480  3.00E-17 Expressed protein 
Mtr.18237.1.S1_at 5688.91 3648.98 4094.88 3644.36 At3g61870  3.00E-74 Expressed protein 
Mtr.21922.1.S1_at 91.31 70.97 105.02 72.78 At3g18295  9.00E-14 Expressed protein 
Mtr.23325.1.S1_at 65.75 32.08 53.90 33.69 At1g02700  2.00E-31 Expressed protein 
Mtr.24755.1.S1_at 165.95 142.70 195.68 70.36 At1g52565  5.00E-06 Expressed protein 
Mtr.25425.1.S1_at 208.04 103.28 123.81 110.88 At5g03120  6.00E-13 Expressed protein 
Mtr.25634.1.S1_at 112.95 68.25 98.08 81.91 At3g52520  4.00E-10 Expressed protein 
Mtr.27068.1.S1_at 103.32 156.19 55.18 203.76 At5g14090  3.00E-25 Expressed protein 
Mtr.27397.1.S1_at 647.94 368.75 389.74 337.54 At2g04360  1.00E-49 Expressed protein 
Mtr.29273.1.S1_at 41.17 142.53 44.73 163.75 At4g12690  8.00E-19 Expressed protein 
Mtr.31763.1.S1_at 367.45 199.74 236.14 226.28 At4g40045  2.00E-13 Expressed protein 
Mtr.34752.1.S1_s_at 88.87 132.52 54.93 146.36 At3g13950  4.00E-06 Expressed protein 
Mtr.36171.1.S1_s_at 117.18 183.82 121.11 179.84 At5g05840  6.00E-24 Expressed protein 
Mtr.37079.1.S1_at 90.44 112.69 57.85 137.12 At2g45450  2.00E-09 Expressed protein 
Mtr.38228.1.S1_at 443.99 816.74 596.01 1042.04 At5g59050  5.00E-06 Expressed protein 
Mtr.38291.1.S1_at 1909.86 2395.71 1393.44 1812.16 At2g46490  4.00E-12 Expressed protein 
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Gene 
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Mtr.38615.1.S1_at 653.52 1308.81 770.10 1025.03 At4g19700  4.00E-28 Expressed protein 
Mtr.38661.1.S1_at 728.40 412.44 488.28 379.71 At5g44650  1.00E-31 Expressed protein 
Mtr.38672.1.S1_at 1334.26 857.17 908.73 724.39 At1g51100  2.00E-26 Expressed protein 
Mtr.39059.1.S1_at 77.12 79.58 51.41 101.76 At4g14380  3.00E-13 Expressed protein 
Mtr.39209.1.S1_at 338.23 231.78 252.60 237.33 At5g43150  4.00E-09 Expressed protein 
Mtr.39327.1.S1_at 801.53 321.14 474.41 323.40 At2g35450  2.00E-37 Expressed protein 
Mtr.40236.1.S1_s_at 3881.89 2668.21 5412.00 1295.53 At1g17710  4.00E-27 Expressed protein 
Mtr.41288.1.S1_at 793.29 532.83 591.05 492.23 At3g23760  8.00E-70 Expressed protein 
Mtr.42067.1.S1_s_at 236.08 1012.56 464.66 1052.73 At3g19680  2.00E-15 Expressed protein 
Mtr.42139.1.S1_at 69.47 85.00 50.37 102.21 At2g42610  9.00E-65 Expressed protein 
Mtr.42257.1.S1_at 54.64 79.91 27.93 99.91 At2g31160  3.00E-54 Expressed protein 
Mtr.42374.1.S1_at 324.99 152.35 210.76 169.98 At3g28760  2.00E-73 Expressed protein 
Mtr.43494.1.S1_at 271.42 480.04 329.45 516.25 At1g56020  3.00E-09 Expressed protein 
Mtr.43604.1.S1_s_at 147.06 633.91 311.57 768.55 At1g10020  3.00E-35 Expressed protein 
Mtr.44533.1.S1_at 203.68 102.52 109.65 100.32 At3g20680  5.00E-32 Expressed protein 
Mtr.44854.1.S1_at 1097.51 749.27 859.26 680.61 At4g28080  4.00E-07 Expressed protein 
Mtr.45095.1.S1_at 410.94 255.94 323.60 228.44 At3g27050  8.00E-49 Expressed protein 
Mtr.46118.1.S1_at 932.49 822.01 1042.69 669.73 At5g53045  5.00E-13 Expressed protein 
Mtr.4993.1.S1_at 119.83 228.55 213.40 208.43 At2g28130  4.00E-16 Expressed protein 
Mtr.50974.1.S1_at 578.18 340.94 413.01 356.74 At4g31560 HCF153 2.00E-16 Expressed protein 
Mtr.51053.1.S1_at 146.26 97.22 122.36 83.13 At5g64480  8.00E-14 Expressed protein 
Mtr.5840.1.S1_at 21.37 66.57 19.15 64.79 At2g04220  8.00E-21 Expressed protein 
Mtr.691.1.S1_at 189.30 198.49 143.40 241.41 At4g21500  2.00E-10 Expressed protein 
Mtr.8670.1.S1_at 1637.75 1307.30 1779.70 1224.64 At2g12400  1.00E-35 Expressed protein 
Mtr.9012.1.S1_s_at 841.01 491.15 628.63 575.91 At5g24060  1.00E-35 Expressed protein 
Mtr.928.1.S1_at 169.23 101.29 113.36 84.11 At4g34090  3.00E-17 Expressed protein 
Mtr.8968.1.S1_at 3955.55 4444.72 5045.72 1980.58 At1g17710  2.00E-19 Expressed protein  
Mtr.8559.1.S1_at 268.40 792.17 427.57 1207.69 At1g03220  1.00E-21 Extracellular dermal glycoprotein 
Mtr.9322.1.S1_at 112.44 314.76 51.15 378.14 At3g23840  6.00E-46 Fatty acid elongase-like protein / Transferase family protein 
Mtr.42010.1.S1_at 37.21 53.75 44.40 60.16 At3g23880  4.00E-07 F-box family protein 
Mtr.24508.1.S1_at 8688.68 4392.57 6534.30 4829.75 At1g60950 FED A 1.00E-37 Ferredoxin 
Mtr.49132.1.S1_at 2839.29 1947.06 2260.84 1887.53 At4g14890  1.00E-47 Ferredoxin 
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Mtr.33883.1.S1_at 23.54 39.32 28.66 59.63 At5g48460  1.00E-58 Fimbrin-like protein AtFim2  
Mtr.32723.1.S1_at 417.40 207.82 243.54 211.62 At2g20830  5.00E-29 Formiminotransferase-cyclodeaminase-like 
Mtr.23357.1.S1_at 37.78 72.00 44.48 68.94    Functional candidate resistance protein KR1 
Mtr.27793.1.S1_s_at 336.37 187.29 190.48 184.09    Galactosidase like protein 
Mtr.9233.1.S1_at 316.44 444.12 246.61 384.99 At3g54810 BME3 3.00E-06 GATA type zinc finger domain 
Mtr.6808.1.S1_at 162.46 111.03 143.10 105.28 At2g30330  3.00E-34 GCN5-like protein 1 
Mtr.40268.1.S1_at 289.31 199.92 225.33 195.54 At2g39770 CYT1 8.00E-90 GDP-mannose pyrophosphorylase (GMP1) 
Mtr.8725.1.S1_at 164.84 327.57 153.73 398.09 At5g14470  1.00E-32 GHMP kinase-related 
Mtr.32124.1.S1_at 175.46 142.53 251.39 27.67 At1g30040 GA2OX2 2.00E-44 Gibberellin 2-beta-dioxygenase  
Mtr.38883.1.S1_at 78.36 72.50 49.69 110.64 At1g78440 ATGA2OX1 3.00E-34 Gibberellin 2-oxidase 
Mtr.9997.1.S1_at 168.24 345.51 209.31 267.55 At5g20870  1.00E-05 Glucan endo-1,3-beta-glucosidase precursor 
Mtr.2057.1.S1_s_at 68.18 47.25 89.72 61.87 At5g64290 DIT2.1 5.00E-24 Glutamate/malate translocator 
Msa.3145.1.S1_s_at 257.68 305.77 208.87 332.23 At5g37600 GSR1 1.00E-70 Glutamine synthetase 
Mtr.22927.1.S1_at 733.78 931.84 666.54 887.41 At5g37600 GSR1 6.00E-99 Glutamine synthetase 
Mtr.33674.1.S1_at 78.33 12.78 67.24 19.51    Glutamyl-tRNA reductase 1 
Mtr.19479.1.S1_at 810.70 534.50 777.18 493.22 At2g38270 CXIP2 4.00E-79 Glutaredoxin / CAX-interacting protein 
Mtr.43300.1.S1_at 2653.44 1836.02 2124.23 1750.79 At4g28730  1.00E-26 Glutaredoxin protein family-like 
Mtr.40518.1.S1_at 86.80 54.80 76.03 33.67 At1g02930 GSTF6 5.00E-25 Glutathione S-transferase 
Msa.2885.1.S1_at 9641.88 6826.59 7143.95 7008.88 At1g32470  2.00E-43 Glycine cleavage system H protein 
Mtr.9582.1.S1_at 426.46 312.16 467.95 341.71 At3g01180 AtSS2 8.00E-35 Glycogen(starch) synthase isoform II precursor 
Mtr.8679.1.S1_at 2292.66 3584.29 2138.50 2583.13 At1g24170 LGT9 6.00E-21 Glycosyl transferase 
Mtr.40320.1.S1_at 624.14 1269.19 771.94 1127.81 At2g28110 FRA8 2.00E-05 Glycosyl transferase family 47 protein 
Mtr.13030.1.S1_at 341.60 543.62 372.60 555.16 At5g59840  5.00E-20 GTP-binding protein 
Mtr.38394.1.S1_at 673.09 359.06 471.22 381.11 At4g28556 RIC7 6.00E-09 Heat-shock protein beta-7 / P21-rho-binding domain-containing protein  
Msa.1621.1.S1_at 214.95 405.00 130.42 514.65 At3g04720  2.00E-51 Hevein-like protein (HEL) 
Mtr.11436.1.S1_at 821.78 506.09 568.58 574.84 At1g31860 AT-IE 7.00E-74 Histidine biosynthesis bifunctional protein / Pyrophosphohydrolase 
Mtr.21405.1.S1_at 99.23 162.65 96.31 159.47 At3g61150 HDG1 8.00E-58 Homeobox 
Mtr.40459.1.S1_at 745.29 820.25 548.54 1079.34 At4g37790 HAT22 6.00E-39 Homeobox protein HAT9 
Mtr.45889.1.S1_at 163.66 243.00 117.02 260.03 At4g16780 ATHB-2 3.00E-53 Homeobox-leucine zipper protein 
Mtr.11739.1.S1_s_at 294.28 180.52 224.32 178.23 At2g18950 HPT1 1.00E-39 Homogentisate phytylprenyltransferase 
Msa.2909.1.S1_at 320.96 223.06 268.04 206.56 At2g18950 HPT1 1.00E-71 Homogentisate phytylprenyltransferase family protein (HPT1) 
Mtr.43749.1.S1_s_at 839.67 452.77 654.39 559.63 At1g77420  9.00E-43 Hydrolase 



 

247

Table S5 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID Gene name e-value MtGEA Target Description / TAIR Target Description 

Msa.3143.1.S1_at 2110.51 995.94 1639.42 1155.67 At4g15440 HPL1 1.00E-59 Hydroperoxide lyase (HPL1) 
Mtr.45669.1.S1_at 454.95 224.45 263.18 233.81 At1g17650 GLYR2 5.00E-08 Hydroxyacid dehydrogenase/reductase 
Mtr.41103.1.S1_at 655.18 451.95 500.99 501.53 At1g79870  4.00E-61 Hydroxyphenylpyruvate reductase (HPPR)   
Mtr.8442.1.S1_at 39.21 157.96 7.76 358.02    Hydroxyproline-rich glycoprotein 
Mtr.12870.1.S1_at 548.02 987.35 390.13 1442.96 At5g65660  6.00E-09 Hydroxyproline-rich glycoprotein family protein 
Mtr.17626.1.S1_s_at 42.92 90.90 40.35 76.15    Hypothetical protein 
Mtr.17706.1.S1_at 509.61 326.48 419.75 316.85    Hypothetical protein 
Mtr.19029.1.S1_s_at 187.54 247.27 178.91 182.86    Hypothetical protein 
Mtr.49736.1.S1_x_at 390.73 528.40 254.94 782.15    Hypothetical protein 
Mtr.51374.1.S1_at 46.29 101.56 41.93 76.52    Hypothetical protein 
Mtr.51662.1.S1_at 63.83 77.19 62.31 80.03    Hypothetical protein 
Mtr.52057.1.S1_at 34.47 97.26 39.60 59.72    Hypothetical protein 
Mtr.13915.1.S1_at 249.08 143.07 194.68 178.63 At1g78620  2.00E-24 Integral membrane family protein 
Mtr.27878.1.S1_at 870.75 178.13 438.27 210.81 At1g75280  3.00E-41 Isoflavone reductase-like protein 
Mtr.5446.1.S1_at 27.37 57.70 35.22 85.03 At1g70510 KNAT2 2.00E-18 KN1-type homeobox protein 
Mtr.5446.1.S1_s_at 30.57 76.78 34.71 138.24 At1g70510 KNAT2 2.00E-18 KN1-type homeobox protein 
Mtr.34690.1.S1_at 249.85 124.15 179.32 100.04 At1g67280  3.00E-39 Lactoylglutathione lyase 
Mtr.428.1.S1_s_at 99.81 117.76 69.40 132.11 At3g05990  9.00E-54 Leucine rich repeat protein family  
Mtr.41172.1.S1_s_at 33.33 56.04 35.10 45.99 At3g05990  7.00E-60 Leucine-rich repeat family protein 
Mtr.44074.1.S1_at 117.67 238.00 137.11 263.51 At4g03390 SRF3 2.00E-57 Leucine-rich repeat transmembrane protein kinase 
Mtr.12682.1.S1_at 2869.75 1670.78 2148.24 1628.97 At1g45474 LHCA5 5.00E-44 Light-harvesting complex protein 
Mtr.13800.1.S1_at 59.32 18.23 28.93 22.51 At3g61680  7.00E-40 Lipase class 3 family protein-like 
Mtr.12359.1.S1_at 231.48 369.50 172.98 548.30    M.truncatula enod40 mRNA for non-translatable RNA 
Mtr.40508.1.S1_at 5896.93 3888.86 5187.04 3993.31 At5g45930 CHLI2 1.00E-36 Magnesium-chelatase subunit chlI 
Mtr.14257.1.S1_at 4515.84 2559.94 3877.73 2338.35 At4g25080 CHLM 3.00E-73 Magnesium-protoporphyrin IX methyltransferase 
Mtr.29176.1.S1_at 194.02 128.34 169.37 124.83 At1g26160  7.00E-14 Metal-dependent phosphohydrolase  
Mtr.13480.1.S1_at 329.09 216.53 273.26 228.09 At3g59980  4.00E-27 Methionyl-tRNA synthetase 
Mtr.34403.1.S1_at 158.64 111.59 114.12 110.12 At2g33820 MBAC1 2.00E-58 Mitochondrial basic amino acid carrier 
Mtr.37525.1.S1_at 994.15 147.23 285.03 244.75    Multifunctional aquaporin 
Mtr.51597.1.S1_s_at 177.20 126.31 152.59 110.81 At4g11980 ATNUDX14 2.00E-23 MutT/nudix family protein 
Mtr.11942.1.S1_at 254.98 129.44 173.85 190.81 At3g10760  4.00E-07 Myb family transcription factor 
Mtr.13636.1.S1_at 48.12 96.27 28.31 112.26 At1g57560  1.00E-09 Myb family transcription factor MYB2 
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Mtr.44930.1.S1_s_at 56.06 57.76 32.69 68.44 At3g28910  2.00E-29 MYB96 transcription factor-like protein 
Mtr.9341.1.S1_at 133.82 72.02 87.22 78.65    NAD(P)H-quinone oxidoreductase chain 4 
Mtr.2382.1.S1_at 41.56 73.33 19.96 86.66 At2g47270  3.00E-12 NADH dehydrogenase subunit 2 
Mtr.39567.1.S1_at 802.90 993.48 527.95 1229.76 At1g27040  1.00E-05 Nitrate transporter NTL1 
Mtr.22598.1.S1_at 118.74 286.99 116.55 324.02 At3g43630  1.00E-47 Nodulin-like protein 
Mtr.27937.1.S1_at 185.59 291.56 124.36 206.92 At1g68170  1.00E-28 Nodulin-like protein 
Mtr.31296.1.S1_at 35.68 45.19 42.04 64.67 At4g19450  4.00E-50 Nodulin-related 
Mtr.42611.1.S1_at 68.82 37.72 51.97 47.64 At2g38550  2.00E-09 Non-green plastid inner envelope membrane protein precursor 
Mtr.12256.1.S1_at 1010.43 2318.96 265.18 2190.05    Nonspecific lipid-transfer protein precursor 
Msa.2628.1.S1_at 153.17 93.69 94.52 93.25 At4g33490  9.00E-57 Nucellin protein 
Msa.1457.1.S1_at 552.29 303.64 330.87 251.08 At5g20550  9.00E-51 Oxidoreductase, 2OG-Fe(II) oxygenase family protein 
Mtr.38677.1.S1_at 67.09 43.43 60.23 34.65 At1g17020 SRG1 8.00E-56 Oxidoreductase, 2OG-Fe(II) oxygenase family protein 
Mtr.38768.1.S1_at 87.29 92.59 44.43 149.04 At4g25310  1.00E-40 Oxidoreductase, 2OG-Fe(II) oxygenase family protein 
Mtr.31344.1.S1_at 75.15 44.56 64.69 51.05 At3g15090  3.00E-20 Oxidoreductase-like protein  
Mtr.35444.1.S1_at 2426.60 1315.20 1819.89 1232.35 At3g55330 PPL1 2.00E-13 Oxygen evolving complex protein-like / Photosystem II reaction center 
Mtr.6707.1.S1_s_at 135.59 100.38 235.16 114.18 At2g17340  3.00E-59 Pantothenate kinase-related 
Mtr.12532.1.S1_at 7661.93 4146.89 6397.11 5183.78 At4g37070 PLP1 2.00E-16 Patatin-like protein 1 
Mtr.26632.1.S1_at 111.00 134.47 38.55 188.44 At1g78780  8.00E-64 Pathogenesis-related family protein 
Mtr.43770.1.S1_at 113.11 140.62 80.24 181.73 At3g19690  3.00E-06 Pathogenesis-related PR-1-like protein 
Mtr.39139.1.S1_at 289.39 531.71 175.74 703.93 At3g04720  6.00E-50 Pathogenesis-related protein 4A / Hevein-like protein (HEL) 
Mtr.38897.1.S1_at 496.81 750.83 312.48 700.10 At3g43270  9.00E-54 Pectinesterase PPE8B precursor 
Mtr.47230.1.S1_at 39.47 71.25 60.14 60.71 At1g08610  2.00E-23 Pentatricopeptide (PPR) repeat-containing protein 
Mtr.39868.1.S1_at 35.33 54.20 55.05 56.01 At1g06900  8.00E-61 Peptidase M16 family protein 
Mtr.9748.1.S1_at 641.12 370.38 487.21 308.78 At3g15520  1.00E-73 Peptidyl-prolyl cis-trans isomerase  
Mtr.39782.1.S1_at 444.09 158.87 242.78 165.68 At1g74070  8.00E-19 Peptidyl-prolyl cis-trans isomerase cyclophilin-type family protein 
Mtr.10844.1.S1_at 4396.43 2180.89 2864.32 1806.52 At3g26060 ATPRX Q 9.00E-51 Peroxiredoxin Q 
Mtr.22013.1.S1_s_at 2330.46 897.88 1141.31 723.26 At3g26060 ATPRX Q 2.00E-19 Peroxiredoxin Q 
Mtr.12209.1.S1_at 530.08 2910.12 1187.92 2581.57 At4g08950  2.00E-45 Phi-1 protein 
Msa.1875.1.S1_at 86.47 298.16 121.27 267.25 At4g08950  8.00E-40 Phosphate-responsive protein 
Msa.3094.1.S1_at 884.71 3765.54 1636.50 3538.04 At4g08950  4.00E-58 Phosphate-responsive protein 
Msa.1910.1.S1_at 9951.99 6616.74 8656.98 6654.03 At1g56190  9.00E-48 Phosphoglycerate kinase 
Mtr.33734.1.S1_at 145.57 73.78 101.01 96.48 At1g58280  1.00E-15 Phosphoglycerate mutase-like protein 
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Mtr.41408.1.S1_at 40.59 114.64 84.69 101.63 At1g52700  5.00E-49 Phospholipase/carboxylesterase family protein 
Mtr.31792.1.S1_at 1090.35 603.39 733.70 552.35 At5g43745  2.00E-15 Phosphotransferase-related 
Msa.1588.1.S1_at 1430.60 1015.59 1202.02 1032.10 At2g47590 PHR2 9.00E-46 Photolyase/blue light photoreceptor (PHR2) 
Mtr.223.1.S1_at 2974.20 2005.29 2519.97 2191.93 At2g47590 PHR2 5.00E-61 Photolyase/blue-light receptor (PHR2) 
Mtr.34726.1.S1_at 245.60 65.00 231.02 107.59 At4g02770 PSAD-1 2.00E-57 Photosystem I reaction center subunit II 
Mtr.43317.1.S1_s_at 4066.33 2343.90 3519.91 2795.43 At1g67740 PSBY 7.00E-15 Photosystem II core complex proteins psbY 
Mtr.37092.1.S1_at 1414.28 742.85 981.25 968.41    Photosystem II M protein 
Mtr.40683.1.S1_at 2766.96 1651.86 2036.14 1492.91 At4g28660 PSB28 1.00E-52 Photosystem II protein W-like protein 
Mtr.12722.1.S1_at 1437.01 788.45 1404.18 784.05 At5g17230 PSY 1.00E-64 Phytoene synthase (PSY)  
Mtr.20321.1.S1_at 2953.26 682.73 2362.84 765.07 At2g45180  4.00E-30 Plant lipid transfer / Protease inhibitor 
Mtr.43596.1.S1_at 4714.50 3196.88 3628.62 2993.43 At4g17560  3.00E-44 Plastid ribosomal protein L19 
Mtr.49640.1.S1_at 365.09 230.39 327.17 219.13 At2g21280 SULA 2.00E-80 Plastid-targeted protein 
Mtr.49641.1.S1_at 614.97 474.54 679.41 403.86 At2g21280 SULA 4.00E-38 Plastid-targeted protein 
Mtr.8772.1.S1_at 2864.69 1721.11 2387.69 1669.51 At3g01480 CYP38 7.00E-49 Poly(A) polymerase 
Mtr.8773.1.S1_s_at 924.78 383.42 513.25 397.98 At3g01480 CYP38 6.00E-37 Poly(A) polymerase  
Mtr.46184.1.S1_at 1939.48 1338.56 1893.75 1426.19 At4g36810 GGPS1 8.00E-57 Polyprenyl synthetase 
Mtr.38209.1.S1_at 1276.40 928.65 676.55 1357.58    Polysaccharide ABC transporter 
Mtr.17054.1.S1_s_at 616.50 410.14 505.18 440.92 At5g19370  2.00E-69 PpiC-type peptidyl-prolyl cis-trans isomerase / Rhodanese-like domain 
Mtr.21270.1.S1_at 1015.47 477.51 688.03 514.75 At5g34930  3.00E-10 Prephenate dehydrogenase  
Mtr.13880.1.S1_at 309.86 348.04 221.29 565.65 At1g29195  9.00E-31 Prokineticin 2 precursor (PK2) 
Mtr.12290.1.S1_s_at 390.72 1104.93 668.09 762.08    Proline dehydrogenase 
Mtr.39238.1.S1_at 2590.93 909.95 1058.60 1101.40 At3g16370  1.00E-61 Proline-rich protein APG-like / GDSL-motif lipase 
Mtr.40631.1.S1_at 85.68 113.08 70.31 122.68 At4g33950 OST1 1.00E-17 Protein kinase 
Mtr.43264.1.S1_at 67.38 78.41 46.40 111.78 At4g33950 OST1 2.00E-69 Protein kinase 
Mtr.9552.1.S1_at 183.95 381.68 228.62 206.23 At1g50700 CPK33 5.00E-08 Protein kinase 
Mtr.46263.1.S1_at 120.93 190.65 137.35 134.65 At4g14350  9.00E-67 Protein kinase-like 
Mtr.2338.1.S1_at 227.77 314.69 193.72 380.31 At1g28230  7.00E-43 Purine permease (PUP1) 
Mtr.37731.1.S1_at 5672.37 2490.20 4472.96 3209.06 At1g03600 PSB27 5.00E-41 PWWP domain protein-like / Photosystem II family protein 
Mtr.10984.1.S1_at 248.10 382.84 188.51 331.60 At2g29990 NDA2 4.00E-26 Pyridine nucleotide-disulphide oxidoreductase family protein 
Mtr.9546.1.S1_at 54.47 69.98 45.13 99.95 At2g29990 NDA2 9.00E-47 Pyridine nucleotide-disulphide oxidoreductase family protein 
Mtr.44591.1.S1_at 2344.09 1434.76 1732.46 1268.72 At1g23740  1.00E-59 Quinone oxidoreductase-like protein 
Mtr.40349.1.S1_at 350.21 264.55 280.39 174.93 At1g22740 RABG3B 9.00E-32 Ras-related protein (RAB7) 
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 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID Gene name e-value MtGEA Target Description / TAIR Target Description 

Mtr.24464.1.S1_at 20.56 53.41 31.29 43.13 At1g16670  9.00E-38 Receptor-like protein kinase 
Mtr.2927.1.S1_at 36.85 67.98 50.27 75.05 At2g33170  1.00E-32 Receptor-like protein kinase 
Mtr.5291.1.S1_at 336.23 120.57 178.32 127.01 At1g45207  2.00E-15 Remorin family protein 
Mtr.28279.1.S1_at 37.06 62.95 39.05 53.38 At3g14460  4.00E-08 Resistance complex protein  
Mtr.39812.1.S1_s_at 58.29 128.79 52.47 66.32 At5g47910 RBOHD 6.00E-60 Respiratory burst oxidase homolog 
Mtr.24829.1.S1_at 105.72 188.48 10.92 622.87    Retroelement pol polyprotein-related 
Mtr.49088.1.S1_at 229.14 280.09 129.49 359.07 At2g17850  5.00E-37 Rhodanese-like / Senescence-associated family protein 
Mtr.37187.1.S1_at 379.99 357.79 491.19 252.20 At4g24750  2.00E-66 Rhodanese-like domain-containing protein-like 
Mtr.16922.1.S1_at 153.25 103.53 128.27 98.30 At4g28706  1.00E-55 Ribokinase / pfkB-type carbohydrate kinase family protein 
Mtr.27411.1.S1_s_at 237.71 150.05 165.02 143.18 At3g52380 CP33 5.00E-17 Ribonucleoprotein precursor  
Mtr.19517.1.S1_at 15702.92 10707.55 11264.72 11010.34 At5g38410  8.00E-05 Ribulose bisphosphate carboxylase, small chain  
Mtr.40987.1.S1_at 3522.41 2203.64 2463.78 2136.79 At1g71500  2.00E-30 Rieske (2Fe-2S) domain-containing protein 
Mtr.24065.1.S1_at 19.94 65.92 12.92 118.80 At1g49230  2.00E-44 RING zinc finger protein 
Mtr.37552.1.S1_at 6649.64 3962.80 5391.81 4917.44 At1g60000  3.00E-33 RNA- or ssDNA-binding protein  
Mtr.41209.1.S1_at 454.05 252.81 338.40 296.46 At5g17520 RCP1 5.00E-62 Root cap 1 (RCP1)  
Mtr.42261.1.S1_at 3304.42 2576.07 2847.61 2152.75    Rubisco activase  
Mtr.10881.1.S1_at 2989.98 2011.39 2326.75 1962.21 At1g54500  3.00E-55 Rubredoxin family protein 
Msa.2701.1.S1_at 772.30 739.95 920.54 344.77 At1g27730 STZ 2.00E-19 Salt tolerance zinc finger protein  
Mtr.41191.1.S1_at 56.72 75.02 54.75 82.67 At2g43650  1.00E-05 Sas10/U3 ribonucleoprotein (Utp) family protein 
Mtr.8921.1.S1_at 344.04 220.89 300.50 233.05 At4g08690  6.00E-35 SEC14 cytosolic factor family protein 
Mtr.43769.1.S1_at 285.17 853.20 416.14 848.70 At5g20250 DIN10 1.00E-20 Seed imbibition protein / Alkaline alpha galactosidase 
Mtr.13668.1.S1_at 52.54 85.95 38.43 78.09 At5g20700  1.00E-12 Senescence-associated protein-related 
Mtr.4799.1.S1_at 188.20 251.90 144.49 234.94 At5g20700  2.00E-10 Senescence-associated protein-related 
Mtr.31632.1.S1_at 268.98 537.22 158.92 548.76    Serine/threonine protein kinase 
Mtr.34632.1.S1_s_at 1608.17 6281.94 2984.40 5740.31    Seven transmembrane helix receptor 
Mtr.41710.1.S1_at 183.93 234.40 214.90 282.82 At1g28060  2.00E-62 Small nuclear ribonucleoprotein family protein 
Mtr.28620.1.S1_at 76.53 58.79 58.95 54.17 At5g04610  7.00E-24 Spermidine synthase-related  
Mtr.31150.1.S1_at 638.63 383.44 455.40 366.71 At1g33290  5.00E-50 Sporulation protein-related 
Mtr.27443.1.S1_at 356.41 118.39 340.93 246.99 At5g59810 SBT5.4 2.00E-57 Subtilisin-like protease 
Mtr.20281.1.S1_at 114.82 77.50 96.68 74.19 At2g46225 ABIL1 3.00E-50 Subunit of the WAVE complex 
Mtr.10952.1.S1_at 410.43 222.18 346.50 183.85    Sulfate adenylyltransferase 
Mtr.31750.1.S1_at 142.82 308.12 119.94 399.45 At3g15990  2.00E-29 Sulfate transporter 3.4 
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Table S5 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID Gene name e-value MtGEA Target Description / TAIR Target Description 

Mtr.12493.1.S1_at 1552.23 947.53 1179.10 877.06 At2g41680 NTRC 1.00E-29 Thioredoxin reductase 
Mtr.15318.1.S1_at 1077.39 660.85 853.11 676.67 At1g76760 ATY1 6.00E-47 Thioredoxin-related 
Mtr.40730.1.S1_at 3421.72 2079.41 2700.45 2102.03 At4g02530  2.00E-35 Thylakoid lumenal 16.5 kDa protein 
Mtr.34594.1.S1_s_at 2531.97 1618.37 1905.80 1742.43    Thylakoid lumenal 17.4 kDa protein 
Mtr.38403.1.S1_at 3119.30 1522.13 2134.88 1651.07 At3g55330 PPL1 8.00E-35 Thylakoid lumenal 25.6 kDa protein / Photosystem II reaction center 
Mtr.43702.1.S1_at 109.31 66.45 98.32 57.35 At1g12250  4.00E-39 Thylakoid lumenal protein-like 
Mtr.21620.1.S1_at 412.32 290.69 333.96 300.33 At1g29810  2.00E-37 Transcriptional coactivator/pterin dehydratase  
Mtr.7001.1.S1_at 59.14 140.17 47.73 142.06    Transmembrane GTPase 
Mtr.52340.1.S1_s_at 539.67 800.87 671.57 933.44 At1g06410 ATTPS7 5.00E-80 Trehalose-phosphatase / Glycosyl transferase family 20 protein 
Mtr.33389.1.S1_at 99.60 145.63 138.16 145.15 At1g16800  2.00E-05 tRNA-splicing endonuclease positive effector-related 
Msa.1058.1.S1_at 111.21 68.51 87.22 68.21 At3g44620  3.00E-58 Tyrosine phosphatase-like protein 
Mtr.15385.1.S1_at 537.64 377.96 461.44 354.13 At2g18950 HPT1 7.00E-72 UbiA prenyltransferase  
Mtr.13567.1.S1_at 1873.63 1060.55 1375.44 1227.96 At3g11950  5.00E-36 UbiA prenyltransferase family protein 
Mtr.6887.1.S1_at 97.37 39.54 56.28 30.62 At3g20630 UBP14 2.00E-19 Ubiquitin isopeptidase T 
Mtr.24551.1.S1_s_at 1087.37 325.83 685.87 390.28 At3g20630 UBP14 1.00E-13 Ubiquitin-specific protease 14 
Mtr.32678.1.S1_s_at 402.98 126.54 258.78 133.99    Ubiquitin-specific protease 14 
Mtr.32703.1.S1_at 252.65 75.25 146.87 76.98 At3g20630 UBP14 6.00E-23 Ubiquitin-specific protease 14 
Mtr.10389.1.S1_s_at 2294.29 4162.83 2551.78 4978.57 At1g63180 UGE3 2.00E-83 UDP-glucose 4-epimerase 
Mtr.21000.1.S1_at 85.16 124.27 81.62 178.84 At3g62550  2.00E-33 Universal stress protein 
Mtr.32186.1.S1_at 159.22 113.86 138.93 103.22 At2g26540 HEMD 1.00E-24 Uroporphyrinogen-III synthase family protein 
Mtr.44993.1.S1_at 366.48 210.55 275.08 213.09 At2g26540 HEMD 2.00E-23 Uroporphyrinogen-III synthase family protein 
Mtr.33754.1.S1_at 43.73 55.91 40.08 59.22 At5g52990  1.00E-15 Vesicle-associated membrane protein-related 
Msa.1277.1.S1_s_at 108.38 264.92 131.01 298.56 At4g10270  3.00E-09 Wound-responsive family protein 
Mtr.43704.1.S1_at 11.09 80.97 23.25 90.32 At4g10270  1.00E-04 Wound-responsive family protein 
Mtr.42546.1.S1_at 59.56 96.72 72.96 95.49 At4g31805  2.00E-10 WRKY family transcription factor 
Mtr.10910.1.S1_at 117.17 996.72 143.51 173.23 At1g10550 XTH33 9.00E-14 Xyloglucan endotransglucosylase 
Mtr.21678.1.S1_at 335.84 232.74 327.69 259.97 At2g45190 AFO 3.00E-12 YABBY protein 
Mtr.38995.1.S1_at 621.65 382.62 609.85 524.15 At2g26580  3.00E-28 YABBY-like transcription factor  
Mtr.23979.1.S1_s_at 113.26 170.66 125.97 179.28 At3g50700 AtIDD2 8.00E-18 Zinc finger (C2H2 type) family protein 
Mtr.9746.1.S1_at 241.39 438.50 116.32 634.36 At4g37890 EDA40 2.00E-19 Zinc finger (C3HC4-type RING finger) family protein 
Mtr.38590.1.S1_at 81.93 145.77 37.57 252.47 At2g22680  1.00E-15 Zinc finger (C3HC4-type RING finger)-like protein 
Mtr.13378.1.S1_at 42.19 68.88 38.83 89.93 At1g66140 ZFP4 2.00E-29 Zinc finger protein 4 
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Table S5 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID Gene name e-value MtGEA Target Description / TAIR Target Description 

Mtr.19131.1.S1_at 451.39 717.36 498.27 972.01 At2g19810  5.00E-23 Zn-finger 
Msa.960.1.S1_at 273.00 206.02 236.46 191.42    No annotation 
Mtr.10117.1.S1_at 21.79 47.10 35.69 53.09    No annotation 
Mtr.11122.1.S1_at 1015.00 578.30 1184.09 269.03    No annotation 
Mtr.11744.1.S1_at 116.58 57.97 119.16 54.98    No annotation 
Mtr.11844.1.S1_at 250.36 440.71 222.00 842.72    No annotation 
Mtr.11949.1.S1_s_at 570.85 933.05 496.69 651.46    No annotation 
Mtr.12886.1.S1_at 1078.70 742.55 739.84 662.97    No annotation 
Mtr.13245.1.S1_at 17.09 83.53 24.07 93.57    No annotation 
Mtr.1505.1.S1_at 25.75 61.01 22.33 61.24    No annotation 
Mtr.1752.1.S1_at 147.57 234.78 207.14 233.82    No annotation 
Mtr.2190.1.S1_s_at 655.20 374.76 435.89 413.50    No annotation 
Mtr.23356.1.S1_at 38.63 86.03 40.57 76.23    No annotation 
Mtr.23854.1.S1_at 21.84 97.08 13.37 182.93    No annotation 
Mtr.26556.1.S1_at 42.45 48.84 40.72 60.97    No annotation 
Mtr.28311.1.S1_s_at 341.13 234.15 168.89 773.47    No annotation 
Mtr.28696.1.S1_at 737.48 978.38 737.21 1171.17    No annotation 
Mtr.28985.1.S1_at 64.48 39.56 48.09 44.72    No annotation 
Mtr.32996.1.S1_at 48.26 71.51 50.86 64.98    No annotation 
Mtr.35561.1.S1_at 149.41 243.91 149.79 161.52    No annotation 
Mtr.35564.1.S1_at 1061.28 516.68 699.33 483.92    No annotation 
Mtr.35849.1.S1_at 327.46 112.68 245.04 130.05    No annotation 
Mtr.35926.1.S1_at 122.79 94.19 132.36 57.69    No annotation 
Mtr.36886.1.S1_at 180.67 328.38 218.94 396.92    No annotation 
Mtr.38183.1.S1_at 637.67 651.08 598.87 884.97    No annotation 
Mtr.38957.1.S1_at 696.93 861.10 579.33 1457.41    No annotation 
Mtr.39676.1.S1_at 73.41 115.98 83.86 88.10    No annotation 
Mtr.39710.1.S1_at 35.64 43.09 32.13 79.57    No annotation 
Mtr.40613.1.S1_at 523.88 431.81 304.00 1150.12    No annotation 
Mtr.42067.1.S1_at 976.03 3473.67 1947.39 3565.10    No annotation 
Mtr.42405.1.S1_at 88.31 371.49 82.33 172.82    No annotation 
Mtr.43175.1.S1_s_at 247.18 459.14 317.67 341.76    No annotation 
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Table S5 (continued) 

 Raw expression values in shoots     
 Without caesium With caesium     

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID Gene name e-value MtGEA Target Description / TAIR Target Description 

Mtr.43176.1.S1_s_at 33.03 69.56 40.13 50.56    No annotation 
Mtr.43205.1.S1_at 179.81 306.39 241.39 320.04    No annotation 
Mtr.43749.1.S1_at 992.29 500.90 706.68 566.40    No annotation 
Mtr.44396.1.S1_at 606.49 151.81 265.21 160.05    No annotation 
Mtr.44887.1.S1_at 226.59 333.52 200.00 265.14    No annotation 
Mtr.45270.1.S1_at 179.89 254.72 196.54 498.42    No annotation 
Mtr.4769.1.S1_at 335.67 427.29 306.73 496.14    No annotation 
Mtr.5376.1.S1_at 281.27 425.40 282.71 685.22    No annotation 
Mtr.5376.1.S1_x_at 289.08 387.49 224.27 549.08    No annotation 
Mtr.6123.1.S1_at 672.13 415.62 500.67 394.54    No annotation 
Mtr.6193.1.S1_at 269.65 178.49 238.77 198.96    No annotation 
Mtr.6666.1.S1_at 245.10 405.29 190.05 301.85    No annotation 
Mtr.8314.1.S1_at 106.25 170.14 75.46 174.12    No annotation 
Mtr.8588.1.S1_at 4799.82 2565.61 4299.27 3105.07    No annotation 
Mtr.8905.1.S1_at 241.26 1012.79 477.83 1064.36    No annotation 
Mtr.9377.1.S1_at 156.59 119.42 77.07 139.70    No annotation 
Mtr.9483.1.S1_at 1927.79 1136.32 1293.89 1137.47    No annotation 
Mtr.9730.1.S1_at 302.66 447.93 309.20 430.86    No annotation 
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Table S6: Raw expression values of genes in shoots of non mycorrhizal (non myc) and mycorrhizal (myc) Medicago truncatula plants that had been grown 
without or with caesium in the medium. The gene expression was significantly influenced by an interaction of Cs in the medium and arbuscular mycorrhiza 
(Analysis of Variance, p <0.05). The Medicago probes refer to the Medicago truncatula or M. sativa probe name for the gene on the Affymetrix GeneChip® 
Medicago genome array and the AGI ID is the Arabidopsis thaliana gene identification. The annotation was based on local translated BLAST alignment. The 
MtGEA Target Description is the annotation for the gene obtained from the Medicago truncatula Gene Expression Atlas and the TAIR Target Description is the 
annotation of the Arabidopsis thaliana genes (A. thaliana annotations in italics). 
 

 Raw expression values in shoots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.1751.1.S1_s_at 1136.65 407.00 667.45 851.07   16S rRNA & tRNA-Val chloroplast genes 
Mtr.15981.1.S1_at 34.78 73.63 56.47 26.28   AAA ATPase 
Mtr.8752.1.S1_at 956.13 353.48 537.85 532.81 At3g51440 6.00E-21 ABC transporter permease protein / Strictosidine synthase family protein 
Mtr.9795.1.S1_at 886.96 555.79 660.76 643.62 At1g17840 6.00E-79 ABC transporter permease protein 
Mtr.43580.1.S1_at 16.87 77.22 41.24 10.79 At1g20560 2.00E-05 Adenosine monophosphate binding protein 1 
Mtr.7044.1.S1_at 724.50 240.25 267.68 394.43 At5g42250 8.00E-57 Alcohol dehydrogenase 
Mtr.18939.1.S1_at 23.85 35.24 20.12 74.57 At1g25530 1.00E-35 Amino acid/polyamine transporter II 
Mtr.52344.1.S1_at 230.07 249.44 276.31 187.81 At2g30970 7.00E-51 Aminotransferase 
Mtr.31276.1.S1_at 60.28 89.35 94.41 57.43 At3g05870 1.00E-33 Anaphase promoting complex subunit 11 
Mtr.18027.1.S1_at 53.28 133.95 68.07 48.75 At1g10340 1.00E-17 Ankyrin 
Msa.1814.1.S1_at 1294.02 1270.42 664.43 1416.05 At1g35720 2.00E-62 Annexin gene family 
Mtr.38170.1.S1_at 167.12 413.70 283.70 105.63 At3g29670 1.00E-28 Anthocyanin acyltransferase 
Msa.1751.1.S1_at 371.05 87.44 101.02 105.90 At4g18910 6.00E-41 Aquaglyceroporin / NOD26-like major intrinsic protein 2 
Mtr.40663.1.S1_at 240.33 463.71 268.15 213.90 At1g31280 2.00E-08 Argonaute gene 
Mtr.26509.1.S1_at 100.61 126.56 138.42 77.42 At4g14147 6.00E-56 ARP2/3 complex 20 kDa subunit 
Mtr.12736.1.S1_at 2207.80 999.02 1500.74 1262.31 At4g09010 1.00E-54 Ascorbate peroxidase APX4 
Mtr.32351.1.S1_s_at 2429.71 940.48 1420.90 1257.92 At4g09010 1.00E-15 Ascorbate peroxidase APX4 
Mtr.49793.1.S1_x_at 122.53 56.92 37.54 107.27 At4g38840 1.00E-26 Auxin responsive 
Mtr.19878.1.S1_x_at 294.63 181.68 95.36 285.23 At4g38840 4.00E-25 Auxin responsive SAUR protein 
Mtr.19881.1.S1_x_at 232.84 153.63 69.70 243.82   Auxin responsive SAUR protein 
Mtr.19891.1.S1_s_at 178.92 102.31 58.04 189.29 At4g38840 3.00E-05 Auxin responsive SAUR protein 
Mtr.19897.1.S1_x_at 87.44 40.47 31.23 73.60 At4g38840 2.00E-11 Auxin responsive SAUR protein 
Mtr.20626.1.S1_s_at 157.40 120.83 60.06 161.44 At4g38840 1.00E-28 Auxin responsive SAUR protein 
Mtr.49795.1.S1_at 1132.97 882.02 421.36 1286.02 At4g38840 4.00E-05 Auxin responsive SAUR protein 
Mtr.696.1.S1_at 76.82 72.02 17.63 130.86 At4g34770 3.00E-30 Auxin-induced (indole-3-acetic acid induced) protein family 
Mtr.702.1.S1_at 186.19 155.61 82.49 237.71 At4g38840 8.00E-26 Auxin-induced protein 
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Table S6 (continued) 

 Raw expression values in shoots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.705.1.S1_x_at 69.86 48.49 14.86 100.83 At4g38840 4.00E-12 Auxin-induced protein 
Mtr.10432.1.S1_at 2451.49 2563.94 1853.53 3258.57   Auxin-induced protein 22B  
Mtr.25939.1.S1_at 301.24 266.66 99.79 458.41 At4g38840 4.00E-25 Auxin-induced protein 6B 
Mtr.10431.1.S1_at 733.77 802.60 607.70 972.04 At1g04240 2.00E-31 Auxin-induced protein IAA4 
Mtr.5719.1.S1_at 591.41 403.84 236.19 588.64 At3g15540 6.00E-41 Auxin-induced protein IAA6 
Msa.2799.1.S1_at 175.94 127.67 54.92 207.64 At4g38840 4.00E-25 Auxin-responsive protein 
Mtr.21519.1.S1_at 75.47 73.28 93.23 72.70 At2g32590 3.00E-47 Barren family protein 
Mtr.47752.1.S1_at 78.57 33.04 49.63 68.13 At4g37850 4.00E-21 bHLH transcription factor 
Mtr.23446.1.S1_at 179.54 191.68 239.50 149.44 At3g25410 3.00E-08 Bile acid:sodium symporter family protein 
Mtr.50053.1.S1_at 259.45 157.74 129.44 227.45 At1g55760 1.00E-53 BTB/POZ domain-containing protein 
Mtr.8953.1.S1_s_at 73.31 36.46 60.53 56.98 At2g46270 1.00E-25 BZip transcription factor 
Mtr.22070.1.S1_s_at 556.84 417.39 344.68 536.78 At1g63220 8.00E-33 C2 domain-containing protein 
Mtr.13752.1.S1_at 521.34 338.22 360.08 349.00 At4g33000 5.00E-22 Calcineurin B-like protein 10 
Msa.884.1.S1_at 93.62 210.24 119.41 119.18 At3g20410 6.00E-50 Calmodulin-domain protein kinase isoform 9 (CPK9) 
Mtr.13675.1.S1_at 547.80 645.69 691.38 469.92 At1g55090 1.00E-63 Carbon-nitrogen hydrolase family protein 
Mtr.48649.1.S1_at 164.66 276.72 436.40 128.07 At2g32540 1.00E-15 Cellulose synthase 
Mtr.45617.1.S1_s_at 1279.23 503.94 617.79 826.56 AtCg01230 1.00E-12 Chloroplast gene encoding ribosomal protein s12 
Mtr.38799.1.S1_at 189.77 295.07 337.35 58.81   Cytokinin oxidase-like protein 
Mtr.38799.1.S1_s_at 331.78 377.78 438.70 81.63 At2g41510 1.00E-33 Cytokinin oxidase-like protein 
Mtr.33677.1.S1_s_at 774.95 1527.87 1290.53 537.40 At4g24890 8.00E-21 Diphosphonucleotide phosphatase-like protein 
Mtr.9768.1.S1_at 116.05 124.03 97.08 159.54 At2g31970 9.00E-28 DNA repair-recombination protein 
Mtr.1977.1.S1_at 210.00 132.94 157.60 158.41 At1g76880 9.00E-05 DNA-binding protein DF1 
Mtr.11636.1.S1_at 137.57 374.63 222.47 108.78 At1g29160 6.00E-35 Dof zinc finger protein DOF1.5 
Mtr.32790.1.S1_at 613.63 710.97 484.73 1469.82 At1g54070 2.00E-11 Dormancy/auxin associated protein-related 
Mtr.30698.1.S1_at 215.79 369.09 468.40 193.65 At4g39780 3.00E-11 DREB subfamily A-6 of ERF/AP2 transcription factor family 
Mtr.12426.1.S1_at 470.77 730.50 612.31 467.51 At3g60190 2.00E-38 Dynamin-like protein 
Mtr.40245.1.S1_s_at 1035.42 1744.94 2075.96 570.82 At3g22840 2.00E-24 Early light inducible protein / Chlorophyll A-B binding family protein 
Mtr.43949.1.S1_at 198.58 227.38 295.68 215.22 At2g26830 8.00E-23 Ethanolamine kinase 
Msa.1155.1.S1_at 92.73 143.89 130.07 108.06 At3g26618 5.00E-79 Eukaryotic release factor 1 family protein 
Mtr.31293.1.S1_s_at 43.47 84.27 64.56 17.27 At1g12920 8.00E-13 Eukaryotic release factor 1 family protein 
Msa.2711.1.S1_at 62.24 56.59 52.15 74.92 At4g17940 2.00E-35 Expressed protein 
Mtr.13130.1.S1_at 462.69 521.22 574.07 321.91 At1g67600 2.00E-28 Expressed protein 
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Table S6 (continued) 

 Raw expression values in shoots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.18422.1.S1_at 108.78 178.68 106.95 24.25 At5g04550 2.00E-33 Expressed protein 
Mtr.19877.1.S1_at 60.52 121.14 100.52 18.96 At5g54790 6.00E-05 Expressed protein 
Mtr.26902.1.S1_at 29.91 61.05 59.53 45.02 At1g54990 5.00E-10 Expressed protein 
Mtr.27397.1.S1_at 647.94 368.75 389.74 337.54 At2g04360 1.00E-49 Expressed protein 
Mtr.31763.1.S1_at 367.45 199.74 236.14 226.28 At4g40045 2.00E-13 Expressed protein 
Mtr.33522.1.S1_at 2051.18 1161.24 1145.18 1410.36 At1g55370 1.00E-26 Expressed protein 
Mtr.33829.1.S1_at 503.53 400.57 292.37 494.60 At2g35880 3.00E-44 Expressed protein 
Mtr.34633.1.S1_at 164.84 131.96 94.96 153.48 At2g21180 7.00E-19 Expressed protein 
Mtr.38615.1.S1_at 653.52 1308.81 770.10 1025.03 At4g19700 4.00E-28 Expressed protein 
Mtr.39059.1.S1_at 77.12 79.58 51.41 101.76 At4g14380 3.00E-13 Expressed protein 
Mtr.39079.1.S1_at 205.39 375.10 406.23 58.70 At1g29640 4.00E-16 Expressed protein 
Mtr.40744.1.S1_at 1383.16 1018.68 939.61 1134.30 At5g65470 6.00E-43 Expressed protein 
Mtr.40792.1.S1_at 245.52 346.55 264.85 168.99 At1g53380 4.00E-42 Expressed protein 
Mtr.44054.1.S1_at 109.84 198.89 172.43 142.92 At5g47050 1.00E-25 Expressed protein 
Mtr.44654.1.S1_at 668.53 355.76 341.10 425.09 At1g55370 2.00E-33 Expressed protein 
Mtr.4993.1.S1_at 119.83 228.55 213.40 208.43 At2g28130 4.00E-16 Expressed protein 
Mtr.8968.1.S1_at 3955.55 4444.72 5045.72 1980.58 At1g17710 2.00E-19 Expressed protein 
Mtr.38045.1.S1_at 67.35 125.89 100.99 66.63 At4g40080 3.00E-09 Fiber protein Fb19 / Epsin N-terminal homology (ENTH) domain-containing protein 
Mtr.27793.1.S1_s_at 336.37 187.29 190.48 184.09   Galactosidase like protein 
Mtr.42348.1.S1_at 54.80 93.40 73.14 38.34 At3g05320 2.00E-19 GDP-fucose protein-O-fucosyltransferase 1  
Msa.1132.1.S1_at 161.78 87.93 70.98 191.98 At1g29660 1.00E-43 GDSL-motif lipase/hydrolase family protein 
Mtr.27387.1.S1_at 593.75 109.29 102.92 120.73 At1g33811 2.00E-76 GDSL-motif lipase/hydrolase family protein 
Mtr.29989.1.S1_at 89.99 26.28 29.18 30.35 At1g33811 2.00E-43 GDSL-motif lipase/hydrolase family protein 
Mtr.42392.1.S1_at 122.68 62.75 55.94 124.48 At4g18970 2.00E-54 GDSL-motif lipase/hydrolase family protein 
Mtr.38883.1.S1_at 78.36 72.50 49.69 110.64 At1g78440 3.00E-34 Gibberellin 2-oxidase 
Mtr.1798.1.S1_s_at 407.60 370.63 310.19 518.69 At1g66200 8.00E-34 Glutamine synthetase 
Msa.2885.1.S1_at 9641.88 6826.59 7143.95 7008.88 At1g32470 2.00E-43 Glycine cleavage system H protein 
Mtr.8969.1.S1_at 284.44 187.88 137.62 160.79 At2g27500 3.00E-56 Glycosyl hydrolase family 17 protein 
Mtr.44959.1.S1_at 49.44 42.10 23.09 49.66   Guanine nucleotide releasing factor 1 
Mtr.34734.1.S1_at 59.22 78.81 127.05 32.53 At4g10310 2.00E-23 High affinity potassium transporter 2 / Sodium transporter (HKT1) 
Mtr.41103.1.S1_at 655.18 451.95 500.99 501.53 At1g79870 4.00E-61 Hydroxyphenylpyruvate reductase 
Mtr.14242.1.S1_s_at 180.99 691.99 210.24 141.77   Hypothetical protein 
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Table S6 (continued) 

 Raw expression values in shoots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.16694.1.S1_at 39.46 81.99 64.30 30.79   Hypothetical protein 
Mtr.17058.1.S1_at 75.76 59.31 48.59 70.50   Hypothetical protein 
Mtr.19029.1.S1_s_at 187.54 247.27 178.91 182.86   Hypothetical protein 
Mtr.26005.1.S1_at 311.40 537.65 363.98 294.75   Hypothetical protein 
Mtr.5470.1.S1_x_at 141.91 107.19 57.59 223.46   Indole-3-acetic acid induced protein 
Mtr.41616.1.S1_at 489.45 338.61 355.93 458.66 At4g24220 1.00E-63 Induced upon wounding stress 
Mtr.13915.1.S1_at 249.08 143.07 194.68 178.63 At1g78620 2.00E-24 Integral membrane family protein 
Mtr.1575.1.S1_at 114.95 65.90 69.24 73.99 At5g08100 2.00E-31 L-asparaginase 
Mtr.7591.1.S1_at 54.00 106.21 71.41 25.43 At4g29880 3.00E-23 Leucine-rich repeat family protein 
Mtr.43705.1.S1_at 101.86 129.01 137.93 69.73 At2g19190 4.00E-29 Light repressible receptor protein kinase 
Mtr.8462.1.S1_at 1167.93 1487.70 1268.08 832.04 At1g72520 4.00E-40 Lipoxygenase 
Mtr.26293.1.S1_s_at 72.68 134.37 113.29 78.18 At3g21630 5.00E-51 LysM domain-containing receptor-like kinase 7 
Mtr.11716.1.S1_at 149.95 262.06 273.47 145.18 At5g61640 8.00E-61 Methionine sulfoxide reductase A 
Mtr.44950.1.S1_at 468.91 339.64 195.38 416.92 At5g44680 3.00E-05 Methyladenine glycosylase family protein 
Mtr.34806.1.S1_s_at 115.86 224.24 154.20 69.02 At1g11310 3.00E-16 MLO-like protein 2 
Mtr.37525.1.S1_at 994.15 147.23 285.03 244.75   Multifunctional aquaporin 
Mtr.11942.1.S1_at 254.98 129.44 173.85 190.81 At3g10760 4.00E-07 Myb family transcription factor 
Mtr.44930.1.S1_s_at 56.06 57.76 32.69 68.44 At3g28910 2.00E-29 MYB96 transcription factor-like protein 
Mtr.17230.1.S1_at 19.19 60.12 34.35 11.13 At3g17630 2.00E-16 Na+/H+ antiporter-like protein  
Mtr.11021.1.S1_at 449.67 1236.93 1082.46 583.60 At1g69490 7.00E-05 NAC domain protein NAC2 
Mtr.2375.1.S1_at 26.87 64.65 33.02 13.33   Neuraminidase B 
Mtr.44141.1.S1_at 38.47 58.26 66.78 37.34 At5g64530 2.00E-13 No apical meristem (NAM) family protein 
Mtr.2673.1.S1_s_at 1053.02 709.50 788.82 1310.16 At1g75500 7.00E-33 Nodulin MtN21 family protein 
Mtr.2424.1.S1_at 24.90 66.90 36.37 28.33   Nodulin-like protein 
Mtr.31850.1.S1_at 103.39 146.20 161.21 123.37 At1g06560 2.00E-21 NOL1/NOP2/sun family protein 
Msa.2628.1.S1_at 153.17 93.69 94.52 93.25 At4g33490 9.00E-57 Nucellin protein 
Mtr.4724.1.S1_at 957.33 1832.35 1527.65 607.07 At3g20660 2.00E-23 Organic anion transporter-like protein / Sugar transporter family protein 
Mtr.12532.1.S1_at 7661.93 4146.89 6397.11 5183.78 At4g37070 2.00E-16 Patatin-like protein 1 
Mtr.47230.1.S1_at 39.47 71.25 60.14 60.71 At1g08610 2.00E-23 Pentatricopeptide (PPR) repeat-containing protein 
Mtr.51559.1.S1_at 86.22 50.30 52.53 75.04 At4g33490 6.00E-64 Peptidase aspartic / Nucellin protein 
Mtr.39868.1.S1_at 35.33 54.20 55.05 56.01 At1g06900 8.00E-61 Peptidase M16 family protein 
Msa.1821.1.S1_at 81.23 133.26 130.22 74.42 At5g61640 2.00E-45 Peptide methionine sulfoxide reductase 
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Table S6 (continued) 

 Raw expression values in shoots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Msa.1262.1.S1_at 250.65 294.87 301.30 191.71 At2g39970 7.00E-36 Peroxisomal membrane protein (PMP36) 
Mtr.6484.1.S1_at 951.23 1824.33 978.62 360.21 At2g32830 3.00E-05 Phosphate transporter 2 
Mtr.33734.1.S1_at 145.57 73.78 101.01 96.48 At1g58280 1.00E-15 Phosphoglycerate mutase-like protein 
Mtr.41408.1.S1_at 40.59 114.64 84.69 101.63 At1g52700 5.00E-49 Phospholipase/carboxylesterase family protein 
Mtr.37092.1.S1_at 1414.28 742.85 981.25 968.41   Photosystem II M protein 
Mtr.38209.1.S1_at 1276.40 928.65 676.55 1357.58   Polysaccharide ABC transporter 
Mtr.51989.1.S1_s_at 34.68 60.10 39.86 23.84 At2g26650 7.00E-34 Potassium channel 
Mtr.1874.1.S1_s_at 189.87 234.61 203.95 129.24   Potential phospholipid-transporting ATPase 9  
Mtr.17054.1.S1_s_at 616.50 410.14 505.18 440.92 At5g19370 2.00E-69 PpiC-type peptidyl-prolyl cis-trans isomerase / Rhodanese-like domain-containing protein 
Mtr.43279.1.S1_at 112.49 314.91 353.10 290.95 At3g30775 3.00E-50 Proline dehydrogenase 
Msa.1490.1.S1_at 224.59 65.24 61.30 140.18 At4g38770 5.00E-18 Proline-rich family protein (PRP4) 
Mtr.38468.1.S1_at 1146.14 265.34 294.97 711.17 At4g38770 2.00E-31 Proline-rich protein 
Mtr.39238.1.S1_at 2590.93 909.95 1058.60 1101.40 At3g16370 1.00E-61 Proline-rich protein APG-like 
Mtr.12213.1.S1_at 407.41 342.90 359.49 705.72 At3g53980 2.00E-37 Protease inhibitor 
Mtr.9552.1.S1_at 183.95 381.68 228.62 206.23 At1g50700 5.00E-08 Protein kinase 
Mtr.11345.1.S1_at 77.70 107.33 117.24 63.04   Protein kinase APK1A 
Mtr.26005.1.S1_s_at 492.71 860.21 610.85 496.37 At2g45910 2.00E-62 Protein kinase family protein 
Mtr.33566.1.S1_at 140.08 238.05 192.49 64.41 At5g47740 7.00E-19 Protein kinase family protein 
Mtr.36136.1.S1_at 494.16 756.13 617.40 330.88 At2g33580 2.00E-23 Protein kinase family protein 
Mtr.46263.1.S1_at 120.93 190.65 137.35 134.65 At4g14350 9.00E-67 Protein kinase-like 
Mtr.9846.1.S1_at 54.23 94.32 77.01 50.28 At1g44750 3.00E-57 Purine permease family protein 
Mtr.26299.1.S1_at 1537.64 2534.83 2035.39 591.13 At3g52820 2.00E-75 Purple acid phosphatase (PAP22) 
Mtr.24207.1.S1_at 107.87 183.85 143.99 26.18 At3g15890 1.00E-29 Receptor protein kinase PERK1-like protein 
Mtr.5291.1.S1_at 336.23 120.57 178.32 127.01 At1g45207 2.00E-15 Remorin family protein 
Mtr.25774.1.S1_x_at 218.16 661.89 249.48 177.57   Reverse transcriptase 
Mtr.8645.1.S1_at 180.90 293.97 245.40 202.44   Riboflavin biosynthesis protein ribA 
Mtr.52094.1.S1_at 179.51 98.79 103.82 129.28   Ribosomal protein L14 
Mtr.34372.1.S1_at 43.66 108.47 72.53 45.08 At2g07725 6.00E-10 Ribosomal protein L5 
Mtr.39857.1.S1_at 654.52 360.40 439.01 496.35   Ribosomal protein S14 
Mtr.19517.1.S1_at 15702.92 10707.55 11264.72 11010.34 At5g38410 8.00E-05 Ribulose bisphosphate carboxylase, small chain 
Mtr.6778.1.S1_at 97.82 72.38 66.48 105.22 At1g32490 5.00E-20 RNA helicase-like 
Mtr.14729.1.S1_at 536.19 428.17 379.33 675.37 At4g17940 1.00E-35 RNA-processing protein 
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Table S6 (continued) 

 Raw expression values in shoots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Msa.2701.1.S1_at 772.30 739.95 920.54 344.77 At1g27730 2.00E-19 Salt tolerance zinc finger protein 
Mtr.24391.1.S1_at 850.21 791.19 570.51 1038.61 At3g22550 1.00E-15 Senescence-associated protein-related 
Mtr.50713.1.S1_at 132.56 142.58 181.07 114.96 At1g09140 6.00E-16 SF2/ASF splicing modulator 
Msa.875.1.S1_at 361.96 469.54 456.99 304.92 At3g61160 6.00E-25 Shaggy-related protein kinase beta 
Mtr.40819.1.S1_at 102.25 300.35 188.97 79.91 At1g53300 3.00E-16 Thioredoxin family protein 
Mtr.15318.1.S1_at 1077.39 660.85 853.11 676.67 At1g76760 6.00E-47 Thioredoxin-related 
Mtr.10644.1.S1_at 1413.18 1687.35 1706.56 1287.52 At1g12230 2.00E-52 Transaldolase ToTAL2 
Mtr.40304.1.S1_at 533.57 625.38 668.04 412.12 At4g16820 3.00E-54 Triacylglycerol lipase like protein 
Msa.1179.1.S1_at 103.54 72.61 75.45 83.31 At2g45330 3.00E-18 tRNA 2'phosphotransferase 
Mtr.33389.1.S1_at 99.60 145.63 138.16 145.15 At1g16800 2.00E-05 tRNA-splicing endonuclease positive effector-related 
Mtr.45215.1.S1_at 338.16 581.87 407.21 265.72 At2g41560 4.00E-22 Type IIB calcium ATPase 
Mtr.20215.1.S1_at 22.43 63.10 27.27 12.77   Uncharacterized Cys-rich domain 
Mtr.7906.1.S1_at 289.64 802.87 392.80 148.39 At1g30755 9.00E-12 Vasopressin V1b receptor variant 
Mtr.21379.1.S1_at 156.20 192.85 232.54 166.44 At5g49430 2.00E-73 WD-40 repeat / Transducin family protein 
Mtr.49829.1.S1_at 82.65 120.18 112.92 57.80 At1g15750 6.00E-11 WD-40 repeat family protein 
Mtr.43632.1.S1_at 639.68 919.83 884.67 563.26   Wound-induced GSK-3-like protein 
Mtr.10071.1.S1_at 27.34 51.70 58.22 21.81   WRKY transcription factor 47  
Mtr.41226.1.S1_at 34.33 59.60 74.04 32.91 At1g29280 8.00E-14 WRKY transcription factor 65 
Mtr.41302.1.S1_at 158.31 113.78 109.32 130.06 At3g09770 2.00E-25 Zinc finger (C3HC4-type RING finger) family protein 
Mtr.8696.1.S1_at 1500.81 1740.12 1906.91 830.08   Zinc finger DNA-binding protein 
Mtr.5436.1.S1_at 287.66 142.95 159.67 183.38 At5g60850 4.00E-28 Zinc finger protein 
Mtr.18592.1.S1_at 39.08 166.71 117.03 16.85 At2g28710 2.00E-23 Zn-finger, C2H2 type 
Mtr.10123.1.S1_at 135.50 196.60 188.11 117.66   No annotation 
Mtr.12772.1.S1_at 232.42 424.26 302.41 124.80   No annotation 
Mtr.2174.1.S1_at 30.64 91.48 56.57 24.57   No annotation 
Mtr.22211.1.S1_at 48.02 104.38 66.52 23.78   No annotation 
Mtr.27999.1.S1_at 63.69 25.83 33.00 33.64   No annotation 
Mtr.28014.1.S1_at 15.19 66.01 30.54 13.96   No annotation 
Mtr.28311.1.S1_s_at 341.13 234.15 168.89 773.47   No annotation 
Mtr.28477.1.S1_at 127.11 110.32 49.25 95.74   No annotation 
Mtr.29127.1.S1_at 98.24 131.31 134.42 35.93   No annotation 
Mtr.29414.1.S1_at 28.70 53.15 55.31 22.03   No annotation 
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Table S6 (continued) 

 Raw expression values in shoots    
 Without caesium With caesium    

Medicago probes 
Non 
myc Myc 

Non 
myc Myc AGI ID e-value MtGEA Target Description / TAIR Target Description 

Mtr.31523.1.S1_at 127.91 193.81 165.09 113.22   No annotation 
Mtr.35562.1.S1_at 31.79 90.32 20.38 16.43   No annotation 
Mtr.37091.1.S1_at 2760.26 1117.76 1457.40 1920.30   No annotation 
Mtr.39777.1.S1_at 854.69 621.34 536.85 677.96   No annotation 
Mtr.40613.1.S1_at 523.88 431.81 304.00 1150.12   No annotation 
Mtr.43176.1.S1_s_at 33.03 69.56 40.13 50.56   No annotation 
Mtr.43974.1.S1_at 39.14 86.67 62.78 39.17   No annotation 
Mtr.44546.1.S1_at 171.09 268.26 230.11 83.92   No annotation 
Mtr.44843.1.S1_at 94.83 119.58 124.45 92.78   No annotation 
Mtr.4597.1.S1_at 651.51 1066.40 644.58 588.16   No annotation 
Mtr.46651.1.S1_x_at 2213.46 829.52 1001.81 1574.76   No annotation 
Mtr.47257.1.S1_at 5528.03 3991.30 3865.47 6277.23   No annotation 
Mtr.7207.1.S1_at 608.68 1064.24 771.18 700.12   No annotation 
Mtr.8309.1.S1_at 80.65 202.33 100.03 24.09   No annotation 
Mtr.9377.1.S1_at 156.59 119.42 77.07 139.70   No annotation 
Mtr.9483.1.S1_at 1927.79 1136.32 1293.89 1137.47   No annotation 
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Table S7: Gene ontology classification of Medicago truncatula genes in roots that where significantly differentially expressed due to the presence of Cs in the 
medium (Table S1). The classification was based on AmiGO using Arabidopsis thaliana orthologs with the whole genome of Arabidopsis as background. 
 

GO Term (Biological Process) P-value Sample 
frequency 

Background 
frequency Genes 

GO:0019748 secondary metabolic 
process 1.55E-03 11/145 

(7.6%) 
369/29974 

(1.2%) 
At1g15950; At1g58170; At2g29090; At2g29470; At3g04870; At4g25420; At4g32810; 
At4g36220; At5g17230; At5g23960; At5g25900 

GO:0044255 cellular lipid metabolic 
process 8.58E-03 11/145 

(7.6%) 
442/29974 

(1.5%) 
At1g43800; At1g49430; At2g29090; At3g04870; At4g15560; At4g25420; At4g32810; 
At5g17230; At5g23960; At5g25900; At5g60600 

GO:0006720 isoprenoid metabolic 
process 1.36E-05 9/145 

(6.2%) 
132/29974 

(0.4%) 
At2g29090; At3g04870; At4g15560; At4g25420; At4g32810; At5g17230; At5g23960; 
At5g25900; At5g60600 

GO:0006721 terpenoid metabolic 
process 3.50E-04 7/145 

(4.8%) 
96/29974 

(0.3%) At2g29090; At3g04870; At4g25420; At4g32810; At5g17230; At5g23960; At5g25900 
GO:0008299 isoprenoid biosynthetic 
process 8.32E-04 7/145 

(4.8%) 
109/29974 

(0.4%) At3g04870; At4g15560; At4g25420; At5g17230; At5g23960; At5g25900; At5g60600 
     

GO Term (Molecular Function) P-value Sample 
frequency 

Background 
frequency Genes 

GO:0019825 oxygen binding 1.15E-04 10/145 
(6.9%) 

223/29974 
(0.7%) 

At2g02580; At2g24180; At2g29090; At2g46950; At3g14680; At3g26290; At3g26300; 
At4g31950; At5g24910; At5g25900 

GO:0016491 oxidoreductase activity 7.16E-06 25/145 
(17.2%) 

1363/29974 
(4.5%) 

At1g15950; At1g18270; At1g43800; At1g52820; At2g02580; At2g24180; At2g29090; 
At2g46950; At3g04870; At3g14680; At3g22400; At3g26290; At3g26300; At4g25420; 
At4g31950; At4g32810; At4g36220; At5g05340; At5g16970; At5g24910; At5g25900; 
At5g37980; At5g42180; At5g59540; At5g60600 

GO:0015020 glucuronosyltransferase 
activity 7.17E-03 3/145 

(2.1%) 
9/29974 
(0.0%) At1g22360; At1g22370; At2g28110 

GO:0009055 electron carrier activity 7.39E-03 11/145 
(7.6%) 

435/29974 
(1.5%) 

At2g02580; At2g24180; At2g44790; At2g46950; At3g14680; At3g22400; At3g26290; 
At3g26300; At4g31950; At5g24910; At5g42180 

GO:0005506 iron ion binding 7.54E-03 10/145 
(6.9%) 

355/29974 
(1.2%) 

At2g02580; At2g24180; At2g46950; At3g14680; At3g22400; At3g26290; At3g26300; 
At4g31950; At5g24910; At5g42180 
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Table S8: Gene ontology classification of Medicago truncatula genes in shoots that where significantly differentially expressed due to the presence of Cs in the 
medium (Table S4). The classification was based on AmiGO using Arabidopsis thaliana orthologs with the whole genome of Arabidopsis as background. 
 

GO Term (Molecular Function) P-value Sample 
frequency 

Background 
frequency Genes 

GO:0003824 catalytic activity 6.73E-04 34/63 
(54.0%) 

7615/29974 
(25.4%) 

At1g06900; At1g07870; At1g11190; At1g32470; At1g35720; At1g59960; At1g65890; 
At1g66970; At1g71500; At1g76760; At2g26830; At2g27500; At2g31270; At2g35660; 
At2g41510; At2g41560; At2g41680; At2g46950; At2g46960; At3g15520; At3g16370; 
At3g26060; At3g30775; At3g63440; At4g12270; At4g28730; At4g33490; At4g34980; 
At4g37050; At5g05460; At5g18170; At5g18670; At5g23960; At5g38410 

GO:0016491 oxidoreductase activity 8.22E-06 16/63 
(25.4%) 

1363/29974 
(4.5%) 

At1g32470; At1g35720; At1g59960; At1g71500; At1g76760; At5g18170; At2g35660; 
At2g41510; At2g41680; At2g46950; At2g46960; At3g26060; At3g30775; At3g63440; 
At4g12270; At4g28730 
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Table S9: Gene ontology classification of Medicago truncatula genes in shoots that where significantly differentially expressed due to arbuscular mycorrhiza 
(Table S5). The classification was based on AmiGO using Arabidopsis thaliana orthologs with the whole genome of Arabidopsis as background. 
 

GO Term (Molecular Function) P-value Sample 
frequency 

Background 
frequency Genes 

GO:0003824 catalytic activity 6.16E-05 108/268 
(40.3%) 

7615/29974 
(25.4%) 

At1g02930; At1g03220; At1g06410; At1g06620; At1g06900; At1g10550; At1g11190; 
At1g12410; At1g16670; At1g17020; At1g17650; At1g17710; At1g17840; At1g19920; 
At1g23740; At1g24170; At1g26160; At1g29810; At1g30040; At1g31860; At1g32470; 
At1g33290; At1g35720; At1g50700; At1g52700; At1g56190; At1g63180; At1g65890; 
At1g66180; At1g67280; At1g69740; At1g71500; At1g74070; At1g75280; 
At1g76760; At1g77420; At1g78440; At1g79870; At2g02500; At2g14750; At2g18950; 
At2g20830; At2g21280; At2g22680; At2g26540; At2g26640; At2g28110; At2g29990; 
At2g31270; At2g31970; At2g33170; At2g35450; At2g38270; At2g39770; At2g41510; 
At2g41680; At2g47590; At3g01180; At3g01480; At3g04220; At3g11630; At3g11950; 
At3g15090; At3g15520; At3g16370; At3g20630; At3g23840; At3g26060; At3g43270; 
At3g44620; At3g57240; At3g61680; At4g03390; At4g05090; At4g09010; At4g11980; 
At4g14350; At4g15440; At4g25080; At4g25310; At4g28706; At4g28730; At4g33490; 
At4g33510; At4g33950; At4g36810; At4g37070; At4g37890; At5g01210; At5g04610; 
At5g06290; At5g14470; At5g15870; At5g17230; At5g18660; At5g18670; At5g19370; 
At5g20250; At5g20550; At5g20870; At5g34930; At5g37600; At5g38410; At5g44380; 
At5g45930; At5g47910; At5g54160; At5g59810 

GO:0051920 peroxiredoxin activity 2.97E-03 3/268 
(1.1%) 

4/29974 
(0.0%) At3g11630; At3g26060; At5g06290 

 
GO Term (Cellular Component) P-value Sample 

frequency 
Background 
frequency Genes 

GO:0009507 chloroplast 3.27E-21 74/268 
(27.6%) 

2179/29974 
(7.3%) 

At1g03600; At1g12250; At1g12410; At1g16080; At1g17650; At1g19150; At1g19920; 
At1g23740; At1g26160; At1g31860; At1g32500; At1g35720; At1g45474; At1g54500; 
At1g58280; At1g60000; At1g60950; At1g67280; At1g67740; At1g69740; 
At1g71500; At1g74070; At1g74970; At1g75350; At1g75690; At1g76760; At1g78620; 
At2g02500; At2g14750; At2g18950; At2g21280; At2g26540; At2g31270; At2g32590; 
At2g35450; At2g38270; At2g38550; At2g41680; At2g45180; At2g47450; At3g01180; 
At3g01480; At3g15520; At3g26060; At3g44620; At3g50700; At3g52380; At3g55330; 
At3g55560; At3g59980; At3g61680; At3g61870; At4g02530; At4g02770; At4g05090; 
At4g09010; At4g11980; At4g14890; At4g15440; At4g17560; At4g25080; At4g28660; 
At4g28730; At4g33510; At4g36810; At5g06290; At5g17230; At5g17520; 
At5g18660; At5g20250; At5g38410; At5g43745; At5g45930; At5g64290 

 


