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Abstract

In the field of underground radioactive waste disposal, complex computer models are

used to describe the flow of groundwater through rocks. An important property in this

context is transmissivity, the ability of the groundwater to pass through rocks, and the

transmissivity field can be represented by a stochastic model. The stochastic model is

included in complex computer models which determine the travel time for radionuclides

released at one point to reach another. As well as the uncertainty due to the stochastic

model, there may also be uncertainties in the inputs of these models. In order to quantify

the uncertainties, Monte Carlo analyses are often used; the computer code will be run

many times and a sample of outputs will be obtained, from which sample statistics can

be calculated. However, for computationally expensive models, it is not always possible

to obtain a large enough sample to provide accurate enough uncertainty analyses. In

this thesis, we present the use of Bayesian emulation methodology as an alternative to

Monte Carlo in the analysis of stochastic models. The idea behind Bayesian emulation

methodology is that information can be obtained from a small number of runs of the

model using an small sample from the input distribution. This information can then be

used to make inferences about the output of the model given any other input.

The current Bayesian emulation methodology is extended to emulate two statistics of a

stochastic computer model; the mean and the distribution function of the output. The

mean is a simple output statistic to emulate and provides some information about how

the output changes due to changes in each input. The distribution function is more

complex to emulate, however it is an important statistic since it contains information

about the entire distribution of the outputs. Distribution functions of radionuclide

travel times have been used as part of risk analyses for underground radioactive waste

disposal. The extended methodology is presented using a case study of a site currently



ii

used for underground disposal of radioactive waste. In this example, three models for

the mean of the transmissivity field are investigated, so that any uncertainty due to

the choice of model can be observed. Available measured transmissivity data is used

to provide distributions for the uncertain inputs of each model for the transmissivity.

The computer code is then run using samples from these distributions to provide a

sample of output data. Emulators are built using this information, and then used to

approximate the mean and distribution function of the output for each of the three

models. The emulators provided estimates comparable to the Monte Carlo estimates,

but in a shorter time. The complexity of the emulation increased as the number of input

parameters increased, but the output of the computer model was not changed very much

by using different models for the mean transmissivity field.
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Chapter 1

Introduction

The Earth’s crust is made up of rocks. These rocks are porous allowing water and

air to fill them. Close to the surface, the rocks are unsaturated and contain mostly

air. Further down, the rocks are saturated; the pores are completely filled with water.

In this saturated zone, the pores of the rocks are usually connected and so water can

move through the rocks. This is groundwater flow, and plays an important role in the

movement of water through our environment.

Groundwater is a valuable source of fresh water, providing drinking water and irrigation

for crops. Groundwater is therefore an important component of a good water supply and

needs to be managed carefully. It is vital that groundwater is kept free from pollution.

An important example of this regards the safe disposal of radioactive waste. One option

is to bury the waste underground. Groundwater is the most likely route for radionuclides

from this waste to reach our environment. Mathematical models of groundwater flow

are therefore built to carry out risk assessments for the burial of radioactive waste.

Another important use of mathematical models of groundwater flow is to ensure that

the extraction of groundwater does not affect the environment, and that lakes, ponds

and wetlands are preserved. In order to manage groundwater effectively, groundwater

flow models are needed so that experiments can be carried out to explore the flow in

certain regions.

One of the major problems in modelling groundwater flow is a lack of knowledge about

the properties of the rock and of the flow of groundwater through the rock. Two im-

portant quantities in this context are; the head which is the ability of the groundwater
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to rise above a datum level, and the transmissivity which describes how fast the water

is travelling through the rock. Boreholes can be drilled to measure various quantities

at a small number of locations. Whilst this information offers us a glimpse of what is

happening underground, we can never know for sure the exact physical structure of the

rock. Therefore, we build models which represent our uncertainty about the physical

quantities of the rock, whilst honouring the measured data.

In this thesis, we are concerned with analysing stochastic groundwater flow models re-

lated to the disposal of nuclear waste underground. We develop models describing the

transmissivity field of the rock. The transmissivity field across an entire region of rock

is uncertain, as it is only known at a small number of locations. We represent this

uncertainty using stochastic models with uncertain hyperparameters. These hyperpa-

rameters are used as inputs to the groundwater flow computer models. The uncertainty

in the hyperparameters arises as they relate to physical properties of the rock that the

groundwater is flowing through. We want to know how the uncertainty in the inputs

affects the uncertainty in the output of the model.

In order to carry out this analysis, we will use Gaussian process emulation to provide

us with an approximation to our computer models. The emulation allows us to deter-

mine the output of a computer model at any input, given that we know the output at

a small sample of design inputs. These emulators have been used in many applications

(Higdon et al. (2004); Bayarri et al. (2007); Kennedy and O’Hagan (2001); Rojnik and

Naveršnik (2008)) and have been shown to provide good estimates to the model output

for deterministic computer models. These GP emulators are derived using Bayesian

inference. In the Bayesian interpretation of probability, probabilities are assigned ac-

cording to the belief that a given hypothesis is true. This is in contrast to the frequentist

approach, where probabilities are assigned to random events according to their relative

frequencies of occurance. Bayesian inference is based on updating prior beliefs using new

information or data to produce a refined set of beliefs. Therefore, under the Bayesian

framework, the basic idea is to represent the computer model output as a function of the

inputs. Then, using a small number of runs of the computer model, an emulator is built

to approximate this function. As well as approximating the output of the computer

model, emulators have built in bounds on their estimate. These bounds enable us to

quantify how much confidence we have in the approximation to the computer model.
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The emulation methodology will be discussed further in the next chapter.

The groundwater flow models we will investigate are stochastic, and so we will extend the

basic emulation methodology to take this into account. For stochastic models, we will

no longer be able to estimate the output of the computer model since there is more than

one possible output for each input configuration. However, we can estimate statistics of

the output, such as the mean and the distribution function. Once the emulators have

been built, we will then be able to use them to analyse the statistics of interest faster

than traditional methods such as Monte Carlo.

In the next section we will introduce the case study of the Waste Isolation Pilot Plant

(WIPP) that we will investigate in this thesis. The Bayesian emulation methodology will

be applied to this case study and the uncertainty in the output of the WIPP computer

model will be analysed.

1.1 Waste Isolation Pilot Plant

The WIPP is a US Department of Energy (D.O.E) repository for disposing of radioactive

waste (U.S. D.O.E. (2010)). In the past it has been used for research and development

into the safe underground disposal of radioactive waste (LaVenue et al. (1990)). Since

1999, the WIPP repository has been fully operational. Due to the research carried out

by the US government, there is a large amount of data available for the WIPP site in

comparison with other regions. This makes it ideal as a case study, and many models

have been built to determine the flow of groundwater in the region (Gotway (1994);

Kröhn and Schelkes (1996); Corbet (2000)). Much of this research has considered how a

radioactive particle would move through the groundwater in surrounding rock if it were

to escape from the repository.

Groundwater moves through different types of rocks at different rates; for a given head

gradient, the more transmissive the rock, the faster the groundwater will move through

it. WIPP is situated in the Delaware Basin in New Mexico. The WIPP repository lies

approximately 650m below the surface in the lower part of the Salado formation. This

formation contains mainly salts, indicating an absence of moving water (which could

move radionuclides to the surface). If there was water in this formation, the salts would

be dissolved and washed away. Above the Salado formation lies a layer of Culebra
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Dolomite, the most transmissive rock in the region.

Computer models have been built to represent different processes in the region (such

as determining the flow of groundwater) in order to carry out performance assessments

to meet the compliance requirements of the US Environmental Protection Agency (U.S.

D.O.E. (2004)). The main part of these requirements were the following (U.S. E.P.A.

(2010)):

• isolation of radionuclides sufficient to meet the containment requirements of the

disposal system,

• protection of individuals from radiation exposures for a period of 10,000 years,

• protection of groundwater from radioactive contamination for 10,000 years.

As part of the risk assessment the probabilities of a set of scenarios occurring are cal-

culated using uncertainty analysis of the computer models. One such scenario is the

possibility of radionuclides escaping the repository and entering the accessible environ-

ment. This would only occur if humans were to drill into the repository when mining. In

this scenario, the radionuclides would escape the repository in the centre of the region,

flow upwards through the Salado formation, and reach the most transmissive Cule-

bra Dolomite lying above it. The groundwater would then transport the radionuclides

through the rocks where it may affect the surrounding environment. The probability of

the accessible environment being contaminated by radionuclides within 10,000 years is

very important for the WIPP site to comply with the EPA regulations. It is through

modelling the region that this probability can be estimated.

We do not have access to the computer models that have been used previously, and

so we will develop our own model for this thesis. The model we build will not be as

complex as those developed by the US D.O.E, as we have less expert knowledge about

the geology of the site. We will, however, develop a stochastic transmissivity model

which honours the transmissivity data collected through many studies of the region

(summarised in: Cauffman et al. (1990)). In contrast to the D.O.E model, we will treat

the hyperparameters of our transmissivity model as uncertain rather than fixed. By

doing so, we will incorporate more uncertainty into our model, but we believe that this

important source of uncertainty can not be ignored when analysing the uncertainty we

have about groundwater flow at the WIPP site.
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The transmissivity field is one part of the model. The other part is to use this field in

a partial differential equation to determine a head field and then use this to calculate

the travel time of a particle travelling from the centre of the region to get to the site

boundary. Our model differs again from the US DOE model in that they use an inverse

model. This inverse modelling uses an iterative procedure to incorporate the head data

as well as the transmissivity data. If a generated transmissivity field does not provide

a head field that is true to the head data, the transmissivity field hyperparameters

are altered and a new transmissivity field is generated and a new head field calculated

from the groundwater equations. This calibration process is repeated until the head field

generated represents the available head data in that the difference between the calculated

head field and the measured head data at each measurement point is below a given small

value. A brief overview of some of the methods used for carrying out this procedure is

given in Section 3.5. Whilst incorporating the head data would reduce the uncertainty

in the output, the extra complexity that it involves is beyond the scope of this thesis.

Here we are most interested in developing a model, which includes the major sources of

uncertainty, that we can analyse the behaviour of using Gaussian process emulation.

Building our own model of the flow through the Culebra Dolomite will involve developing

a stochastic model for the transmissivity field. We will not investigate model uncertainty

per se, although we will investigate several models to find out if the model itself is adding

to the uncertainty in the problem. The hyperparameters of these models will be used in

a computer model which determines the travel time of a particle released in the centre

of the region to reach the boundary of the WIPP site. This site boundary is a square

region extending approximately 2 miles in each direction from the centre of the site,

and lies in the centre of the modelling domain. Choosing only one output to study will

simplify the emulation of the computer model. Since we have a stochastic model for

the transmissivity field, we will obtain a different output every time the computer code

is run with the same inputs. Therefore, we will investigate the mean and distribution

function of the computer model output.

Emulating the mean of the output will provide information about which of the hyperpa-

rameters have the largest effect on the output of the computer model. When we emulate

the distribution function of the output, we integrate out the uncertainty in the hyperpa-

rameters. This will help us to understand if any of our transmissivity field models have
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a larger effect on the output of the computer model than the others. The distribution

function is very useful to emulate as it contains all of the information about the output

of the computer model. In previous studies of modelling the groundwater flow through

the Culebra dolomite (Gotway (1994); U.S. D.O.E. (2004)), the distribution function of

the output has been used to provide information about the distribution travel times for

the purposes of performing a risk analysis of the WIPP site. Therefore, it is important

to estimate this quantity using the Bayesian emulation methodology.

1.2 Outline of the thesis

We review methods for analysing uncertainty in computer models in Chapter 2. Both

uncertainty analysis and sensitivity analysis are discussed. We start by introducing

traditional Monte Carlo methods for carrying out analysis of computer models, and

then move on to the emulation approach. Gaussian Process emulation is described,

along with some simple examples of the method. The approach is then extended to

emulating stochastic models. Simple examples of emulating the mean of a stochastic

function are provided.

The groundwater flow equations are described in Chapter 3. These equations link the

head to the transmissivity using Darcy’s law. If the transmissivity is known, then

the head can be determined. However, the transmissivity cannot possibly be known

everywhere in the region, only at a few measured points. Therefore, we represent our

uncertainty in this quantity using a Gaussian random field model for the transmissivity.

In this chapter we review some of the methods used for generating Gaussian random

transmissivity fields, and for conditioning these fields on available data.

In Chapter 4 we will analyse the data for our models of the transmissivity through the

Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site. The stochastic model

for the transmissivity field will be described using three different forms for the mean

and one covariance function. These will allow us to investigate how much the choice of

stochastic model affects the output of the computer model. As well as the uncertainty

about the transmissivity field, which we have represented with a stochastic model, we

will also be uncertain about the hyperparameters of this model. We therefore carry out

Bayesian inference to obtain distributions for the hyperparameters for each of our chosen
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models. These Bayesian distributions reflect the beliefs, as well as the uncertainty, we

have about the values of the hyperparameters. These hyperparameters will then be used

as inputs to our computer model of the WIPP region.

After deriving distributions for our inputs, we then develop a mixed finite element

model for solving the groundwater flow equations in Chapter 5. The discretisation of

the equations is described. We then discuss how we will generate the transmissivity field,

concentrating on two methods discussed in Chapter 2. We investigate the errors in the

computer model when using different methods to generate the transmissivity field. We

also investigate the error in estimating the mean and distribution function from a sample

of outputs from the computer model. The two errors we consider here are the standard

error of the mean and the standard error of proportion. These errors are frequentist

notions of uncertainty estimating the standard deviation of the sampling distributions

of the sample mean and sample proportion respectively. They are defined as:

Standard error of the sample mean

Consider a random sample X = (X1,X2, . . . ,Xn) of size n taken from a population

with mean, µ and variance σ2, then the sample mean X̄ has mean µ and variance

σ2/n.

The standard error of the sample mean, σ̂/
√
n, is an estimate of the standard

deviation of the sampling distribution of the mean, where σ̂ is the estimator of σ.

Standard error of the sample proportion

Consider a random sample X = (X1,X2, . . . ,Xn) of size n taken from a popu-

lation in which the proportion of successes is p, then X ∼ Bin(n, p). For large

n, X ∼ N(np, pq/n), where q = (1 − p). Now if we let Ps be the proportion of

successes in the sample, then Ps = X/n and Ps ∼ N(p, pq/n).

The standard error of the sample proportion,
È
p̂q̂/n, is the estimate of the stan-

dard deviation of the sampling distribution of proportions, where p̂ and q̂ are

estimates for p and q respectively.

We use these standard errors in Chapter 5 when discussing how many runs of the model

we will need to calculate statistics of the output, such as the mean and percentiles of

the distribution function, as we want to keep the standard error of the mean and the

standard error of the proportion small.
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In Chapter 6 we use Gaussian Process emulation to approximate the mean and the

distribution function of the computer model output. The emulation of the mean is used

to determine which of the hyperparameters has the greatest effect on the mean of the

computer model output using the results for each of the three stochastic models for the

transmissivity. We also introduce a method to approximate the distribution function of

the output. This method is illustrated using a reduced model, where all but one of the

hyperparameters are fixed. Then the distribution function of the output is approximated

for all three stochastic models of the transmissivity field.

Finally, in Chapter 7 we draw conclusions on the use of Gaussian Process emulation in

the analysis of groundwater flow models and further areas of research are identified.



Chapter 2

Analysis of computer models

Computer models are used to predict the outcome of physical processes when it is too

expensive or impractical to carry out a physical experiment. The process is represented

in terms of a mathematical model, which is then implemented in a computer code. The

output of the computer code is then a prediction of the outcome of the process, and

numerical experiments can be carried out by varying different parameters of the code.

For simplicity, the computer models we are considering for the majority of this chapter

are deterministic, with an output t from an input θ. We will extend these ideas to

stochastic computer models at the end of this chapter, as we wish to analyse stochastic

groundwater flow models later in the thesis. The deterministic computer model input

will typically be a vector θ, and the output will be a scalar or vector deterministic

function of the inputs, t = η(θ). Here, we will consider the case when t is a scalar. One

run of the model involves choosing one value of θ and running the code at this input

value to get the corresponding output. Often computer codes may be highly complex,

and may take many days or weeks to run.

There may be many uncertainties when using a computer model to determine the out-

come of physical processes. Kennedy and O’Hagan (2001) give a detailed list of these

uncertainties. An overview of their list is given below.

1. There may be uncertainty about the values of the inputs of the computer code.

These inputs can be thought of as unknown parameters of the model, and the

uncertainty about them is therefore called parameter uncertainty.
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2. As the mathematical model may be a simplification of the process, the model will

inadequately predict the value of the true process, even if the inputs are known.

This is known as structural uncertainty, and is the difference between the true

process and the code output at the best values of the input.

3. The model predicts the process under conditions specified by the inputs. However,

the process itself may not give the same value under repeated conditions. This

residual variability is due to conditions that are not recognised in the mathematical

model on which the computer model is based, i.e. structural uncertainty.

4. If any observations of the process are used to calibrate the code, these may include

errors. The observation errors add to the uncertainty in the model.

5. The output of the code can also be uncertain. Even though it is a mathematical

function of the inputs, it may not be practical to know the output of the code for

any set of inputs if the code is complex and takes a long time to run. However if it

is only required to know the output for a small number of inputs code uncertainty

would not be a problem.

The following four methods have been used to address some of these uncertainties.

Uncertainty analysis is used to predict the output of the code and try to quantify the

uncertainties in the output due to uncertainties in the inputs of the computer model.

Sensitivity analysis examines how the code output varies in response to changes in inputs,

particularly finding out which inputs have the most impact on the output. Calibration

relates to changing the parameters of the model, represented by a computer code, so

that the code output fits the observed data, in the sense that the difference between the

observed outcome and the model output is small. Validation assesses how well the code

predicts reality, to an acceptable level of accuracy.

In this thesis we are interested in analysing the output of groundwater flow models due

to the uncertainties in the inputs. Therefore, we will concentrate on uncertainty and

sensitivity analysis in this chapter. Firstly, we will discuss how simple computer codes

are analysed using Monte Carlo methods. Then we will investigate how the analysis

of more complex codes is carried out using an emulator to approximate the computer

model. We will give an overview of some emulation methods that have been used in

the analysis of computer models, before giving a more detailed explanation of Gaussian
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Process emulation. Finally, we will present some illustrative examples of emulating

simple functions, of 1 and 4 inputs. The 1 dimensional input example will then be

extended to emulating a simple stochastic function.

2.1 Analysis of simple computer models - Monte Carlo

approach

For simple computer models that can be run for a large number of different input

configurations with little computational effort, a Monte Carlo approach can be used

to carry out uncertainty and sensitivity analysis. These methods started in the late

1940s and early 1950s as a way of carrying out computer experiments in the nuclear

industry (Metropolis and Ulam (1949); Donsker and Kac (1950)). Since then, they

have been widely used to solve problems in areas such as radiation transport (Spanier

and Gelbard (2008)), financial modelling (Glasserman (2003)) and statistical physics

(Landau (1999)).

2.1.1 Monte Carlo uncertainty analysis

When carrying out uncertainty analysis, we suppose that one or more of the inputs

are uncertain; we may not know which values to use when running the model. This

may be due to an inability to measure the variable accurately. We would then assign a

probability distribution to the input. The input of the model is then a random vector Θ.

The output T = η(Θ) is also a random variable. Given G(θ), the probability distribution

function of Θ, we want to find mean and variance of T . We can the calculate the mean

of T using

µT =
Z
η(θ)dG(θ), (2.1.1)

and the variance of T is given by

σ2
T =

Z
(η(θ) − µT )2dG(θ). (2.1.2)

When we are able to sample Θ as in the case of the distribution of the output of a

computer model, Monte Carlo methods can be used to carry out the integration in

(2.1.1) and (2.1.2).
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The basic idea of Monte Carlo uncertainty analysis is as follows: A large sample of inputs,

θ1, . . . , θn, are iid samples from the distribution of Θ. The output of the computer

model is evaluated at each of these inputs to get a random sample of outputs, t1 =

η(θ1), . . . , tn = η(θn). Then from the Central Limit Theorem, the sample average µ̂n

can be used as an estimator for (2.1.1) and the sample variance σ̂2
n is an unbiased

estimator for the variance of T , (2.1.2). The estimators for the mean and variance of T

are given by

µT ≈ µ̂n =
1

n

nX
i=1

ti,

and

σ2
T ≈ σ̂2

n =
1

(n − 1)

nX
i=1

(ti − µ̂n)2.

Also by the Central Limit Theorem, a 95% confidence interval for µt can be calculated

using

µ̂n ± 1.96
σ̂n√
n
.

The Monte Carlo approach is one of the most popular methods, as it is simple to

apply, the method is sequential, in that more evaluations can be added without having

to restart the analysis, and it is relatively easy to calculate statistics and errors on

these statistics. However, it does take considerable computational time when using

computationally expensive computer models. For these computer models it is also not

very practical since a new set of runs of the model would be required if the distribution

of the uncertain inputs were to change (Cox (1977)).

2.1.2 Latin Hypercube sampling

McKay (1992) describes Latin Hypercube sampling (LHS) as an improvement on simple

random sampling of the inputs for carrying out Monte Carlo analysis. The idea is an

extension of a Latin Square, where a square grid is sampled once from each row and

each column. Latin Hypercube sampling is a generalisation of this concept over a larger

number of dimensions, where each sample is taken from a single hyperplane. In this way,

we get a sample of input variables that represents the whole of the sample space, where

simple random sampling may miss sections. This improved coverage of the sample space

may lead to reductions in variability in the estimates of the expectation as the largest

distance between two sample points may be smaller than when using simple random
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sampling. The size of a Latin Hypercube sample may be smaller than that of a simple

random sample, whilst still ensuring that the entire input region is taken into account.

LHS is carried out by dividing the sample space into areas of equal probability. For

multivariate LHS of size n this would involve dividing the range of each input into

n intervals of equal probability. This ensures that each interval is represented in the

sample. Each input is randomly sampled once from each of its possible intervals and

given a number from 1 to n determined by the order in which these intervals lie. These

numbers are then randomly permutated for each input to give the numbers a new order.

Each input is then matched with other inputs in the same (new) order.

As a simple bivariate example, consider two inputs both having a uniform distribution

ranging between 0 and 1. If we wanted a sample of size 5, we would split each input range

into five intervals. Samples from each of the five intervals would be taken, and numbered

1 to 5. The same would be done for the second variable. Then the order of the numbers

would be randomly permutated. If the numbers for the first input were {3, 5, 2, 1, 4},
and the second {1, 3, 4, 2, 5}, then the samples would be {3, 1}, {5, 3}, {2, 4}, {1, 2} and

{4, 5}.

This gives a sample that is spread over the entire range of each input, which may give

a more accurate probability distribution of the output by reducing the variability in

the estimates. More than one LH design may be constructed, and the design with the

largest distance between the closest points chosen as the sample of inputs to use for

running the model. This would be fairly computationally expensive, but would ensure

that the design points were spread over the region as much as possible. McKay et al.

(1979) compares latin hypercube sampling with simple random sampling and finds that

LHS provides better estimates of the output statistics than simple random sampling.

2.1.3 Monte Carlo sensitivity analysis

Monte Carlo sensitivity analysis is one step on from Monte Carlo uncertainty analysis.

Rather than concentrating on the statistics of the output, sensitivity analysis uses the

output data to determine which of the inputs has the greatest effect on the output.

For sensitivity analysis (SA), we are interested in the output T = η(Θ) where Θ is

uncertain. After carrying out SA on a computer model, we have more information
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about how the model output responds to changes in the inputs. Once we know which

inputs have the greatest impact on the computer model output, we can investigate ways

of reducing our uncertainty on these inputs, which will in turn reduce the uncertainty

in our model. On the other hand, inputs which have little effect on the output of the

computer model could be removed from the model to simplify the calculations. There

are many sensitivity analysis methods available, but we will concentrate on just a few

methods here (See Saltelli et al. (2000) and Hamby (1994) for wider reviews of the

literature).

Saltelli et al. (2000) groups SA into three classes. Firstly screening methods, such as

presented in Morris (1991), which identify the parameters with the most effect on the

variance of the output. Screening methods are computationally inexpensive, but only

give qualitative information. The second class is local SA, which looks at the impact of

input factors when they are varied by a small amount about a nominal value, usually

the mean of the input factor. The sensitivities are usually found using derivatives and so

these methods are useful when the output of the code is a linear function of the inputs,

where derivatives of the output can be computed easily. The last class is global SA,

which weights the uncertainty in the output to the uncertainty in the inputs, combining

the influence of the entire range of uncertainty and distribution of each input.

Local and global SA are quantitative methods which provide more information than

qualitative methods about how much more important one factor is than another. Global

sensitivity analysis is preferred when there are a large number of inputs and the relation-

ship between the inputs and outputs are non-linear (Cukier et al. (1973)). Here we will

concentrate on global Monte Carlo based methods, as we do not expect our groundwater

flow models to be linear. As in uncertainty analysis, the model is run many times using

randomly selected inputs. The results of these runs are then used to split up the varia-

tion in the output to the sources of variation in the input factors. Many techniques can

be used to achieve this, those discussed here involve correlation and regression analysis.

Scatterplots This is one of the simplest methods for sensitivity analysis. Scatterplots

of the output variable against the sample for each input factor may reveal relationships

between the model inputs and outputs. They only give qualitative measures of these

relationships, and if there is a large number of inputs, there will be a large number of



Chapter 2. Analysis of computer models 15

plots to be examined.

Correlation coefficients Other simple measures are given by the Pearson product

moment correlation coefficient and the Spearman correlation coefficient. These coeffi-

cients are recommended in Gardner et al. (1981) as a way of ranking model parameters

in terms of their contribution to overall uncertainty in the output. Both coefficients give

measures of the correlation between an input variable Θi and the output T .

The Pearson product moment correlation coefficient is found by dividing the covariance

of the variables by the product of their standard deviation. For the correlation between

Θi and T it is defined as:

r =

Pn
j=1

�
Θij − Θ̄i

� �
Tj − T̄

�hPn
j=1

�
Θij − Θ̄i

�2Pn
j=1

�
Tj − T̄

�2i 1
2

, (2.1.3)

where Θ̄i and T̄ are the respective means of Θi and T , and Θij and Tj are samples from

the distribution of Θi and T . The major drawback of this coefficient is that it assumes

that the relationship between the inputs and outputs is linear. For non-linear models,

the data can be ranked and the Spearman correlation coefficient is calculated as follows.

The differences between each rank of corresponding values Θ and T , di, are calculated

to give the coefficient:

ρ = 1 − 6
P
d2

i

n(n2 − 1)
,

where n is the number of pairs of values. Spearman’s correlation coefficient can also

be calculated using equation (2.1.3) with the rank transformed data. The ranking of

the data transforms the relationship between the inputs and outputs of the model from

non-linear to linear by assuming a monotonic relationship between the input and output

data. This may limit the use of the coefficient for more complex relationships, such as

non-monotonic, between the inputs and outputs (Hamby (1994)).

Regression analysis This gives a more quantitative measure of sensitivity and is the

basis for many other Monte Carlo SA methods and the emulation approach discussed

in the next section. For and input θj, the computer model tj = f(θj) is represented by

a regression model of the form

tj = b0 +
X
j

bjθij + ǫi,
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where bj are unknown regression coefficients, θij, j = 1, 2, . . . are samples from the

distribution of θj , and ǫi is the residual error due to the approximation of the computer

model by the regression model. The bj are determined, by a least-squares analysis or

otherwise, and are then used as an indicator of how important each input value θj is

with respect to the uncertainty in t. The regression model is standardised, so that all

variables are placed on a common scale, and then rewritten as

t− t̄

ŝ
=
X
j

bj ŝj

ŝ

θj − θ̄j

ŝj
,

where

t̄ =
X

i

ti
N
, θ̄j =

X
i

θij

N
, ŝ =

"X
i

(ti − t̄)2

N − 1

# 1
2

, ŝj =

"X
i

(θij − θ̄j)
2

N − 1

# 1
2

.

The standardised regression coefficients (SRCs),
bj ŝj

ŝ
, can be used for sensitivity analysis

as they quantify the effect of varying each input variable a small amount away from its

mean, while keeping all other input variables constant.

Saltelli et al. (2000) discuss the importance of the coefficient of determination,

R2
t =

PN
i=1(t̂i − t̄)2PN
i=1(ti − t̄)2

,

where t̂i denotes the estimate of ti given by the regression model, and the Predicted

Error Sum of Squares (PRESS) when carrying out regression analysis. The value of

R2
t determines the performance of the regression model. The closer R2

t is to 1, the

better the model fits the data, and the more valid the SRCs are. The value of the

PRESS determines the adequacy of the regression model. Several regression models are

constructed using N − 1 of the N observations, the value of the omitted observation in

each model is then estimated using the model, and the PRESS statistic calculated for

each of the models. The best model is the one with the smallest PRESS value.

2.2 Analysis of complex computer models - Emulation ap-

proach

Whilst Monte Carlo is simple to carry out, its use may be limited by the time that the

computer model takes to run. Monte Carlo analysis may require many thousands of
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runs to converge and, even for a computer model that has a relatively short running

time of a few seconds, this may take a long time to provide results.

For complex computer models, we can build an emulator to statistically approximate the

computer model output. The emulator can then be used as a cheap approximation to the

model when carrying out Monte Carlo analysis. These emulators are sometimes known

by the alternative term meta-model. There are many different techniques for building

approximations to computer codes, some of which are briefly outlined in Barton (1998).

Here we will give a brief overview of response surface methodology, kriging and then

concentrate on the Gaussian process approach which we will use later in the thesis.

All three methods use data from a number of runs of the code to create an emulator

to approximate the computer model. Only a small number of runs of the expensive

computer model is needed to build an emulator making it computationally cheaper to

carry out the Monte Carlo analysis. It is important that the design of these runs is

chosen to give a good representation of the input space, as the choice of experimental

design for these runs affects the accuracies of these methods. A discussion of this is

given by Allen et al. (2003), although they investigate only response surface methods

and kriging. We will discuss choice of design points further in Section 2.2.3.

An emulator is a statistical representation of the function η(.), with mean η̂(.). As the

code may be very expensive, we are limited to running the code at a set of design points

(inputs), (θ1, . . . ,θn). Data (t = η(θ1), . . . , η(θn)) are obtained from these runs. Using

the data, we want to be able to make inferences about η(θ) for any θ ∈ ×, where × is

the sample space of Θ.

The emulator can be used to provide a point estimate and variance for η(θ). A number

of input configurations are sampled as before, but are evaluated using samples from

the posterior distribution of the emulator instead of using the computer model. These

emulator runs will take much less computational time than using the computer model.

The emulator outputs are

t̂1 = η̂(θ1), ..., t̂n = η̂(θn).

The sample mean ¯̂t will then be the estimate of E(T ), and the sample variance will be

an estimate of Var(T ).
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2.2.1 Response surface methodology

The response surface method described in Box and Draper (1987) seeks to relate a

response (output) to a number of predictors (inputs). The output t is related to inputs

θ by a functional relationship t = η(θ). There may be little known about the relationship

between the inputs and output, as in the case where η(.) is uncertain until the model is

run. If the relationship is assumed to be smooth, then η(.) can be approximated by a

regression function subject to error ǫ

η(θ) =
nX

i=1

βihi(θ) + ǫ, (2.2.1)

where β are unknown regression coefficients, h(.) are specified regression functions.

These commonly take the form (1, θ)T , so that a linear prior mean is provided. The

computer code is evaluated at a set of design points. The β values are then usually

found by least squares. We regard η(θ) as the mean response of the computer model at

inputs θ. This can then be used as an estimate for the computer code output, subject

to error. In this way it is emulating the computer code output.

This approach is recommended over Monte Carlo methods by Cox (1977) since it pro-

vides an inexpensive framework for evaluating the effects of the model inputs. Downing

et al. (1985) also compare the use of response-surface methodology with the Monte Carlo

approach for uncertainty analysis of a complex model. For their model, it is found that

latin hypercube sampling of the original model produces a distribution for T which is

closer to the Monte Carlo distribution than that obtained when using Monte Carlo anal-

ysis of a response surface with reduced input space. Downing et al. (1985) admit that

the response surface model that they created may not be a good fit for their original

model as it may only be a good enough approximation over a limited range of the input

space. Response surface approximations may not give good approximations to highly

nonlinear models or those with a large input space (Simpson et al. (2001) describes this

as more than 10 inputs).

2.2.2 Kriging

Kriging has also been used to create a statistical approximation to the computer code

output (Sacks et al. (1989); Currin et al. (1991); Martin and Simpson (2004) ). This
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method started as a way of predicting spatial data in geostatistics (Matheron (1971))

and we will discuss more details of the simple kriging predictor in this context in Chapter

3.

Sacks et al. (1989) use the simple kriging predictor due to its simplicity. This approach

assumes that the mean and covariance structure are known. Therefore, in the same way

as the response surface method, Sacks et al. (1989) assume that the mean of the output

is a linear function of the inputs (2.2.1) with coefficients to be determined. They also

assume the covariance function to be the exponential function

c(θ,θ′) = exp[−B(θ − θ′)2].

Using data

t = (t1 = η(θ1), t2 = η(θ2), ..., tn = η(θn))T ,

Sacks et al. (1989) consider η̂(θ) = c(θ,θ)T t to be a linear predictor of η(θ) at an untried

θ. They use a frequentist approach, treating this predictor as random, and replacing

the data with a random vector. The mean squared error of the predictor is computed.

Then the best linear unbiased predictor is obtained by choosing the B parameter in

c(θ,θ) to minimise

MSE(η̂(θ)) = E[c(θ,θ)T t − η(θ)]2,

subject to the unbiasedness constraint

E[c(θ,θ)T t] = E[η(θ)].

Sacks et al. (1989) recognise that the frequentist approach will give the same result

as the Bayesian approach when considering a Gaussian process for Z(.) and improper

uniform prior distributions for the βs. Kriging is more complex than response surface

methods, but can deal with a larger number of inputs (Simpson et al. (2001) states that

kriging can handle applications with up to 50 inputs, whereas response surfaces can only

handle up to 10 inputs).

2.2.3 Choosing design points

As a run of the computer model may take a long time, the choice of which input values

to use when running the computer model is important. We may only have a limited
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number of runs from which to gain as much information as possible about the output of

the computer model. Therefore we need to choose a design which covers the full range of

uncertainty about the input values. We need a design which is spread across the sample

space. If two input values are very close together, there may be issues when building

the emulator as the variance-covariance matrix A may become singular and therefore

cannot be inverted. There may also be problems if a large number of inputs are used to

create an emulator as again the input values may be very close together.

The simplest way of choosing input values from which to run the computer code is to

randomly sample from the input distribution G(θ). However, this may not provide a

sample which best represents our uncertainty about the inputs. A larger sample size may

be needed for the inputs to be spread across their sample space. We may also choose

the inputs to be uniformly spread across the sample space of the inputs. However, with

many inputs, this sampling design will generate a large number of inputs with which

the computer model will need to be run.

Another way to sample the input values is to use stratified sampling. The sample space

× is split into a number of strata, and a random sample taken from each strata. The

random samples from all the strata are then put together as a sample from the input

distribution. Latin Hypercube (LH) sampling described by McKay et al. (1979) is a form

of stratified sampling, where the sample space is split into strata of equal probability.

If we want a sample of size N , the sample space is split into strata with probability 1
N

.

Then we sample once from each strata.

Using Latin Hypercube sampling to choose an input design may give better estimates

of the posterior mean and variance of the output than simple random sampling (McKay

et al. (1979)). Different Latin Hypercube samples can be generated when the sample

space is split into the same strata. We can decide which of many LH samples to choose

for our design points by using the maximin criterion as described by Morris and Mitchell

(1995). The maximin criterion is to choose a design which gives the maximum minimum

distance between two points, then the maximum second minimum distance and so on.

Busby (2009) suggests a hierarchical approach to choosing design points as an improve-

ment on maximin Latin Hypercube design. The idea behind the procedure is to reduce

the uncertainty in the emulator prediction by adding more design points in the areas of

highest uncertainty. A maximin LH design is generated with Nd = (d+2)(d+1)/2+10
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points, where d is the number of dimensions. This corresponds to the minimum number

of points to build a quadratic response surface, and the computer model is run to obtain

data with which to build the emulator. The input space is split into a number of smaller

subspaces based on the correlation lengths of the observed data in each direction. Then

an emulator is built and the accuracy in each subspace, αi, is estimated using cross val-

idation. These accuracies are compared with a preselected accuracy level, α, and where

αi > α a new point is added to that subspace of the input design using a maximin

design. The outputs at these new inputs are found by running the computer model, and

a new emulator built using all of the data. The process is repeated, with more subspaces

of smaller size in each iteration (due to the reduction in correlation length), until all

αi < α.

2.3 Gaussian Process emulators

The final method, which we will discuss in more detail than the previous methods, is

to build a Gaussian process emulator to statistically approximate the output of the

computer model. A non-technical tutorial discussing the main points of this approach is

given in O’Hagan (2006). The method can be thought of as an extension of the kriging

approach in a Bayesian setting.

The Bayesian approach to emulating computer models has wide applications and is pop-

ular due to its flexible framework capable of adapting to complex relationships between

inputs and outputs (Liu and West (2004)). However, the method is not always compu-

tationally feasible for problems with high-dimensional outputs (Higdon et al. (2008)).

An illustration of how Bayesian emulators can be used to deal with various problems

with computer models, including prediction, uncertainty and sensitivity analyses and

verification is given in Kennedy et al. (2006a) using three case studies in carbon dynam-

ics. Gaussian process models have been widely used in many applications: a charged

particle accelerator computer model (Higdon et al. (2004)), models of spot welding

(Bayarri et al. (2007)), oil reservoir models (Kennedy and O’Hagan (2001)), nuclear

release models (Kennedy and O’Hagan (2000)) and a health economic model (Rojnik

and Naveršnik (2008)). Here we will concentrate on emulating deterministic computer

models with a scalar output, but the approach has been extended to multidimensional
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outputs (Rougier (2008)) and dynamic models (Conti et al. (2009)).

For the emulator, we treat η(.) as a stochastic process, where η(.) denotes the approx-

imation to the output function over the entire sample space ×. The output can be

considered as uncertain as its value is not known until the model is run, and it may be

too expensive to run the code for all input distributions.

We start with the following model for η(.)

η(θ) =
qX

i=1

βihi(θ) + Z(θ), (2.3.1)

where for each i, hi(θ) is a specified regression function, βi is an unknown regression

coefficient and Z(.) is a stochastic process with mean zero and covariance between

Z(θ) and Z(θ′) given by some function c(θ,θ′), where c(θ,θ′) is a positive semi-definite

function. A simple regression model on its own may not be a good enough approximation

to the computer code. Therefore this model includes a stochastic process term to allow

for any deviations from the regression term. Using the Bayesian approach, Z(.) is treated

as a Gaussian process and a posterior distribution for η(θ) is derived by updating the

prior information using data, t, obtained from runs of the computer code (Haylock and

O’Hagan (1996)).

O’Hagan (2006) gives two criteria which the emulator must satisfy. First, at a design

point, the emulator must have the same value as the computer model output. Secondly,

the distribution for η(θ) must give a realistic mean and probability distribution about

this mean, given the design data.

2.3.1 Prior assumptions

We can also think of η(.) in equation (2.3.1) as our prior assumption of the output of the

computer model, T ,with the β’s either specified or given a prior distribution. Therefore

the general form for the prior mean is

E[η(θ) | β] = h(θ)T β,

where h(.) is a vector of q known regression functions of θ, chosen to incorporate prior

beliefs about η(.), and β is a vector of q unknown coefficients. The most basic regression

functions to use for h(.) is (1,θ), which provides a linear regression. This has been used
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in previous emulators (Oakley and O’Hagan (2002); Kennedy et al. (2006b)) for its

simplicity, and is the function we will use for the rest of this chapter. Other forms of the

prior mean could be considered if they would provide a more accurate estimation of the

output we are emulating. In Chapter 6 we consider the use of a distribution function as

the prior mean for emulating the distribution function of the output.

The covariance between η(θ) and η(θ′),

Cov(η(θ), η(θ′) | β, σ2) = σ2c(θ,θ′), (2.3.2)

must decrease as the distance between θ and θ′ increases, and must satisfy c(θ,θ) = 1 for

all θ. We must also choose c(., .) so that the covariance matrix is positive semidefinite.

A typical choice of function is

c(θ,θ′) = exp[−(θ − θ′)TB(θ − θ′)], (2.3.3)

where B is a diagonal matrix of positive smoothing parameters. For the following

derivation of the emulator, we assume that B is known. We will discuss how we will

approximate this matrix in Section 2.3.4. This choice of function implies that the output

is a smooth function of the inputs, which is one of the main assumptions that we make

when building the emulator. It also has the advantage that η() has derivatives of all

orders. The use of other covariance functions has been discussed (Sacks et al. (1989),

Rougier et al. (2009)). For a general discussion on the properties of covariance functions

see Stein (1999) and Cressie (1995). For the purposes of this thesis we will use equation

(2.3.3).

For convenience, the conjugate prior for β and σ2 is assumed by Oakley and O’Hagan

(2002) to have a normal inverse gamma distribution:

p(β, σ2) ∝ σ
1
2
(r+q+2) exp

�
−(β − z)TV −1(β − z) + a

2σ2

�
(2.3.4)

The weak form of this:

p(β, σ2) ∝ σ−2, (2.3.5)

is generally used which implies infinite prior variance of η(θ) suggesting that there is

little knowledge about output of the computer model. There may be cases when the

developer of the computer model can provide some proper prior knowledge about η(θ),
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and the process for dealing with this, and finding r, z, V and a for equation (2.3.4), is

discussed in Oakley (2002).

To build the emulator, the model is run with a number of different design points θ1,

θ2,...,θn. The data

t = (t1 = η(θ1), t2 = η(θ2), ..., tn = η(θn))T

are then observed. This observations vector is assumed to have the distribution

t|β, σ2 ∼ N(Hβ, σ2A), (2.3.6)

where

HT = (h(θ1), . . . ,h(θn)) ,

A =

0BBBBBB� 1 c(θ1, θ2) · · · c(θ1, θn)

c(θ2, θ1) 1
...

...
. . .

c(θn, θ1) · · · 1

1CCCCCCA .
2.3.2 Updating the prior

Let z be the joint distribution of η(.) and t given β and σ2. This distribution is multi-

variate normal of the form

z ∼ N (µ,Σ) .

Now z can be split up into two vectors z1 and z2, with µ and Σ split into

µ =

�
µ1

µ2

�
and Σ =

�
Σ11 Σ12

Σ21 Σ22

�
.

Then z1|z2 is also multivariate normal with mean

µ1 + Σ12Σ
−1
22 (z2 − µ2)

and variance-covariance matrix

Σ11 − Σ12Σ
−1
22 Σ21.
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Using this property of multivariate distributions, the prior distribution of η is updated

to

η(.)|t,β, σ2 ∼ N
�
m∗(.), σ2c∗(., .)

�
, (2.3.7)

where

m∗(θ) = h(θ)Tβ + t(θ)TA−1(t −Hβ),

c∗(θ,θ′) = c(θ,θ′) − t(θ)TA−1t(θ′)

t(θ)T = (c(θ,θ1), . . . , c(θ,θn)) .

2.3.3 Removing the conditioning on β and σ2

It will usually be unrealistic to specify β and σ2, so the posterior distribution on η(.)|t
will need to be obtained. First we find

f(η(.),β, σ2|t) = f(η(.)|t,β, σ2)f(β, σ2|t). (2.3.8)

We already know the first term on the right hand side of equation (2.3.8), and so only

need to find f(β, σ2|t). Using Bayes’ Theorem, we can obtain this up to proportionality

with

f(β, σ2|t) ∝ f(β, σ2)f(t|β, σ2). (2.3.9)

From (2.3.6) the likelihood function of t is given by

f(t|β, σ2) =
�
2πσ2

�(−n
2
)
exp
§
− 1

2σ2
(t −Hβ)TA−1(t −Hβ)

ª
. (2.3.10)

We note that (Oakley (1999))

(t −Hβ)TA−1(t −Hβ) = (β − β̂)THTA−1H(β − β̂) + (n− q − 2)σ̂2

where

β̂ = (HTA−1H)−1HTA−1t,

σ̂2 =
tT (A−1 −A−1H(HTA−1H)−1HTA−1)t

n− q − 2
.

Combining the prior (2.3.5) with the likelihood (2.3.10) as in (2.3.9) we get the normal

inverse gamma distribution:

f(β, σ2|t) ∝
�
σ2
�−n

2
−1

exp
§
− 1

2σ2
(β − β̂)THTA−1H(β − β̂) + (n− q − 2)σ̂2

ª
.

(2.3.11)
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Then, treating σ2 as a constant, we have

β ∼ N
�
β̂, σ2(HTA−1H)−1

�
.

This can then be combined with (2.3.7), as in equation (2.3.8), and β integrated out to

give

η(.)|t, σ2 ∼ N
�
m∗∗(.), σ2c∗∗(., .)

�
, (2.3.12)

where

m∗∗(θ) = h(θ)T β̂ + t(θ)TA−1(t −Hβ̂),

c∗∗(θ,θ′) = c(θ,θ′) − t(θ)TA−1t(θ′)

+(h(θ)T − t(θ)TA−1H)(HTA−1H)−1

×(h(θ′)T − t(θ′)TA−1H)T .

To remove the condition on σ we use

f(η(.), σ2|t) = f(η(.)|t, σ2)f(σ2|t),

and then integrate out σ2 (Haylock and O’Hagan (1996)). The second term on the right

hand side is obtained by integrating out β from (2.3.11) to give

σ2|t ∼ (n− q − 2)σ̂2χ−2
n−2.

Combining this with (2.3.12), we obtain

η(θ) −m∗∗(θ)

σ̂
È
c∗∗(θ,θ)

∼ tn−q. (2.3.13)

The estimate of the expectation of η(.) is given by m∗∗(.). The first term of m∗∗ is

similar to the prior mean of η(.), but with the β values updated taking into account the

data. The second term adjusts the posterior mean so that the emulator has the same

value as the computer model at the design points, so meeting the first criteria set out

in O’Hagan (2006). The posterior covariance of η(θ) and η(θ′) is σ̂2c∗∗(θ,θ′). At the

design points where η(θi) = ti is known, c∗∗(θi,θ) = 0 for all θ. O’Hagan (2006) gives

an example that shows by using the Bayesian Gaussian process approach, fewer runs of

the computer code are needed to produce a similar estimate of the mean and standard

deviation to that obtained when using the Monte Carlo approach with a larger number

of runs.
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2.3.4 Estimating smoothness parameters

The matrix of smoothing parameters B contained in the covariance function c(., .) is

also uncertain as our uncertainty about η(.) means we do not know how smooth η(.)

is. This uncertainty cannot be dealt with in the same way as β and σ2. Instead, for

simplicity, B is given a fixed value. This fixed value of B can be estimated by allowing

B to vary and finding the value for which the emulator provides the best estimate of

the computer model. The ‘best’ estimate is determined by the method used to find

it. Using the data, we can find the estimate for B in two ways. For the first method

the best estimate is that which maximises the posterior mode. In the second method,

using cross validation, the best estimate for B is one which minimises a sum of squared

distances. These methods are discussed below.

Estimating B using the posterior mode

Following Oakley (1999), we go through a similar process as before, but this time in-

cluding the unknown variable B in the calculations. The likelihood function of B,β and

σ2 is

f
�
t|β, σ2, B

�
=

|A|− 1
2

(σ2)
n
2 (2π)

n
2

exp

¨
−(t −Hβ)T

A−1

2σ2
(t −Hβ)

«
.

This likelihood function can be combined with the prior distributions for B,β and σ2

using Bayes’ theorem. If we consider non-informative priors for β and σ2, and an

improper uniform priors for the elements of B, the posterior density of B,β and σ2 is

f
�
β, σ2, B|t

�
=

|A|− 1
2

(σ2)
1
2
(n+2) (2π)

q

2

exp

¨
−(t −Hβ)T

A−1

2σ2
(t −Hβ)

«
. (2.3.14)

To obtain the distribution of B conditional only on the data t we now need to marginalise

(2.3.14) with respect to β and σ2. Integrating out β from (2.3.14) we get

f
�
σ2, B|t

�
∝ |A|− 1

2 |HTA−1H|− 1
2

(σ2)
1
2
(n+2−q)

exp

¨
−(t −Hβ̂)T

A−1

2σ2
(t −Hβ̂)

«
, (2.3.15)

which is proportional to an inverse gamma function. Then integrating out σ2 from

(2.3.15) gives us

f (B|t) ∝
�
σ̂2
�− (n−q)

2 |A|− 1
2 |HTA−1H|− 1

2 . (2.3.16)
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To obtain our estimate of B, we find the value of B which maximises (2.3.16). For more

than one input this maximisation can be achieved by using the Nelder Mead algorithm

(Nelder and Mead (1965)).

Estimating B using cross validation

A cross validation method can also be used to estimate B. One observation ti = η(θi)

is removed from the data t to give t−i. Then for a chosen value of B, the posterior

distribution of η(.) is derived. The distance di between the posterior mean of η(θi) and

the observed value ti = η(θi) is then calculated. This process is repeated for i = 1, . . . , n.

The best choice for B is the one which minimises
Pn

i=1 d
2
i . This method of obtaining a

value for B will only give a suitable value if η(.) deviates smoothly from the regression

function. This approach also works better than estimating B from the posterior mode

when considering higher dimensional problems. However, through fixing B at a posterior

estimate, uncertainty about B is not fully taken into account.

2.3.5 Gaussian Process emulators for uncertainty analysis

Rather than simply estimating the mean and variance of T from a sample of outputs

using the emulator, Haylock and O’Hagan (1996) use the posterior distribution for η(.)

(equation 2.3.13) to estimate the expectation and the variance of the computer model

output T = η(Θ). The expectation of the output, conditional on η(.), over the sample

space × is given by

K = E[T |η(.)] =
Z
×
η(θ)dG(θ). (2.3.17)

As the posterior distribution of η(.) is available at each point in the sample space, it

is possible to derive the posterior distribution of K. Haylock and O’Hagan obtain the

following posterior distribution for K.

K − K̂

σ̂
√
W

∼ tn−q, (2.3.18)
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where

K̂ = Rβ̂ + TA−1(t −Hβ̂),

W = U − TA−1T T + (R− TA−1H)(HTA−1H)−1(R− TA−1H)T ,

R =
Z
×

h(θ)T dG(θ),

T =
Z
×

t(θ)TdG(θ),

W =
Z
×

Z
×

c(θ,θ′)TdG(θ)dG(θ′).

A point estimate for K and variance of K can be found by calculating the mean and

variance of the distribution (2.3.18).

The estimation of the variance of the output over the sample space × is given by

L = Var[T |η(.)] = K2 − K̂2,

where

K2 =
Z
×
η2(θ)dG(θ).

It would be very difficult to derive this distribution. Therefore, Haylock and O’Hagan

derive the first two posterior moments of L conditional on the data t. This gives a

posterior mean and variance, conditional on t, of L, the variance of η over ×.

Oakley and O’Hagan (2002) extend this approach to make inferences about the distri-

bution and density functions of the output T . They acknowledge that the analytical

approach is not always practical and so use simulation to obtain summaries about T .

The computational method used to generate draws from the distribution of η(.) is as

follows.

Step 1 Choose n′ simulation points θ′1, . . . , θ
′
n′ .

Step 2 Generate random data d(i) = {η(i)(θ
′
1), . . . , η(i)(θ

′
n)} where η(i)(.) denotes the

function we wish to generate from the distribution of functions that the emulator

describes.

Step 3 Approximate η(i)(.) by m∗∗
(i)(.), the posterior mean of η(i)(.) given d and d(i).

To get a new realisation η(j)(.), the process is repeated. These realisations can then be

used to find the distribution and density functions of T
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Oakley and O’Hagan find the distribution function of T ,

F (s) = pr(T ≤ s) =
Z
×
I{η(θ) ≤ s}dG(θ),

where I is an indicator function, using the simulation approach. Draws of F(i)(.) from

the posterior distribution of F (.) are simulated as follows.

1. Obtain a realisation of η(i)(.) as above.

2. Draw a random sample of inputs θ∗1, . . . , θ
∗
N from G(.) (N large).

3. Approximate F(i)(.) using

F(i)(s) =
1

N

NX
j=1

I{m∗
(i)(θ

∗
j ) ≤ s}

4. Use M realisations, F(i)(.), . . . , F(M)(.) (M large), of the distribution functions to

obtain any required inference about F (.)

The density function of T is also found using a straightforward method:

1. Randomly sample a number of inputs θ∗1, . . . , θ
∗
k from G(.).

2. Estimate η(i)(θ
∗
j ) by m∗∗

(i)(θ
∗
j ), j = 1, . . . , k.

3. Use kernel density estimation to estimate density function fη(i)(Θ)(.).

This process is repeated a number of times to obtain a sample of density functions

fT (1), . . . , fT (M) (M large). The median of this sample gives an estimate of fT (t).

Oakley and O’Hagan give examples of using these methods to obtain distribution and

density functions. They found that their estimates of the distribution function used fewer

model runs than Monte Carlo methods and that the estimates had narrower posterior

intervals. They found that there was more uncertainty when estimating the density

functions.

2.3.6 Gaussian Process emulators for sensitivity analysis

When considering complex computer models, the MC methods for SA in Section 2.1.3

will be very computationally expensive. Oakley and O’Hagan (2004) develop Bayesian
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tools for SA when the model is very expensive. These can only be used when the model

output can be represented by a smooth function of the inputs. The methods are based

on the idea of building an emulator to statistically approximate the computer model as

in section 2.1.2. Inferences about the main effects and interactions of the input variables

can be made from the posterior distribution of η(.) (equation (2.3.13)).

The posterior means of the main effect of input θi and the interaction between inputs

θi and θj are given as

E[ηi(θi)] = Ri(θi) −Rβ̂ + Ti(θi) − Te,

and

E[ηij(θij)] = Rij(θij) −Ri(θi) −Rj(θj) −Rβ̂

+Tij(θij) − Ti(θi) − Tj(θj) − Te,

where, if p is a set of indices and −p the set containing all indices except p,

Rp(θ) =
Z
×−p

h(θ)TdG−p|p(θ−p|θp),

Tp(θ) =
Z
×−p

t(θ)T dG−p|p(θ−p|θp),

e = A−1(t −Hβ̂).

As these are linear functionals of η(.), they can be calculated and plotted against the

relevant input variable. If the inputs are standardised, all variables can be placed on the

same plot to give a graphical summary of how each input variable affects the output.

However, posterior variances of the main effect or interaction term must be taken into

account as the inputs that show most variation may not have the largest effect on the

output of the computer model.

Oakley and O’Hagan (2004) use a regression model which approximately fits the regres-

sion coefficients to T = η(θ). The fit is judged by the expected square error. Regres-

sion fits are usually computed using a sampling based approach (such as Monte Carlo

described above). However, Oakley and O’Hagan (2004) define the regression fits as

functions of η, so there is no need to estimate these measures using a sample. Infer-

ences about variances Vi can also be made from the posterior distribution of the model.

The methods are very computationally efficient as they require fewer model runs than

Monte Carlo methods, and one set of runs of the model provides enough information to

calculate a complete range of sensitivity measures.
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2.4 Using a GP emulator to statistically approximate de-

terministic models

We now consider two simple examples of using emulators to approximate a given func-

tion. This will allow us to compare the true solution to the estimated value given by

the emulator.

2.4.1 1-D example

First we emulate the function

t(θ) = 3 cos θ + 4. (2.4.1)

We evaluate this function at a number of θ values (our inputs) and then use the value of

the function at those points as our observed outputs. We then build an emulator using

the formulation described in Section 2.3, and the design input and output values, to

give an estimated mean and variance for the function. In this example the smoothing

parameter was set to unity, and we have used an exponential covariance function. The

emulator mean and 95% bounds are plotted against the true function in Figure 2.1 for

different numbers of design points.

Increasing the number of design points gives a better approximation to the true func-

tion. The mean of the emulator is a good approximation to the function, and the 95%

bounds of the emulator encapsulate the true function. We can also see that there is no

uncertainty at the data points. Outside the range of the design points, θ ∈ [0, 4], the

variance of the emulator rapidly increases. This is because there are no data available

outside this range to train the emulator. If we wanted to predict a value outside the

input range, there would be large uncertainty in the predicted value. This could be

remedied by including a new design point and building a new emulator.

2.4.2 4-D example

We also look at emulating the following function with four inputs:

3 cos θ1 + sin θ2 + θ2
3 + 4θ4.
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Figure 2.1: Emulator approximation to t = 3 cos θ + 4 with (a) 3 design points and

(b) 5 design points.
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Figure 2.2: Estimated values (crosses) and 95% bounds given by the emulator against

observed values for 4 inputs. Solid line shows observed = expected.
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Again, we evaluate the function at a number of inputs (40 in this case) and then build

an emulator using these inputs and the observed outputs. The smoothing parameter

matrix was found from the posterior mode as in Section 2.3.4. Figure 2.2 shows the

expected values, given by the emulator, against the true observed (function) values at

a further 100 points evenly spread across the input space. We see that the 95% bounds

include the observed values for each of the further 100 points in the input space.

2.5 Using a GP Emulator to statistically approximate

stochastic models

So far, we have discussed how to create an emulator for deterministic computer models.

Many computer models, including those we wish to develop later in this thesis, are not

deterministic but stochastic; different outputs may be obtained when using the same

input value. In this case, we can use an emulator to approximate the mean of the

stochastic output of the computer model.

Whilst there is a large literature on the emulation of deterministic computer models,

the emulation of stochastic models has not been as widely studied. Kleijnen (2009) and

van Beers and Kleijnen (2008) have studied the use of kriging to approximate stochastic

queuing models and are mainly concerned with emulating the mean of the model output.

They take a sample of outputs at each design input and then emulate the mean output

at each input. Bates et al. (2006) include the random “noise factor” inputs along with

the usual “design factor” inputs in their emulation approach to engineering problems.

They build an emulator for this deterministic problem. This emulator is then run with a

new set of design inputs which covers the “design factors” only, with replications taken

by sampling from the “noise factor” inputs. They then have a sample of outputs for

each of the design inputs from which they can calculate statistics such as the mean or

variance of the output. They can then build a second emulator to approximate the

statistic of interest, given a “design factor” input.
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2.5.1 Changes to the emulator equations

We think of the outputs as being the mean value of the output plus an error term. This

is the approach used by van Beers and Kleijnen (2008). For input θi, we observe a

number of outputs:

tij = E[η(θi)] + ǫj(θi), j = 1, . . . ,M.

The estimate of t̄i to use as the observed output of the computer model is given by the

mean of these observations

ˆ̄ti =
1

M

MX
j=1

tij.

The estimated mean outputs, ˆ̄ti, will then have variance

Var[t̂i] =
σ̂2

i

M

=

PM
j=1

�
tij − ˆ̄ti

�2
M(M − 1)

,

where σ̂2
i is an estimate of the variance of the observed outputs for input θi.

The variance of each output t̄i will need to be incorporated into the assumed distribution

for the mean output vector t. Thus the assumed distribution (2.3.6) becomes

t|β, σ2, σ̂2 ∼ N (Hβ,D) ,

where

D = σ2A+ diag

�
σ̂2

M

�
,

σ̂2

M
=

�
σ̂2

1

M
,
σ̂2

2

M
, . . . ,

σ̂2
n

M

�T

.

This ‘nugget’ allows the emulator to deviate away from the estimated means, t̄i, at

the design points. If the variances are large, the resulting mean emulator function

will be very smooth and may not pass through any of the estimated mean values,

t̄i. The emulator variance will increase to allow for the increase in uncertainty of its

approximation to the computer code.

The equations follow through as before, until removing the conditioning on σ2 as σ2 can-

not be removed from the covariance of η(.). Therefore we get the following distribution

for η(.):

η(.)|t, σ2, σ̂2 ∼ N (m∗∗(.), ĉ∗∗) ,
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where

m∗∗(θ) = h(θ)T β̂ + t(θ)TD−1(t −Hβ̂),

ĉ∗∗(θ,θ′) = c(θ,θ′) − t(θ)TD−1t(θ′)

+(h(θ)T − t(θ)TD−1H)(HTA−1H)−1

×(h(θ′)T − t(θ′)TD−1H)T .

We can estimate σ2 using a cross validation method in the same way as we discussed

estimating B at the end of Section 2.3.4. One observation is removed from the data t,

and for a chosen value of σ2, the posterior distribution of η(.) is derived. The distance di

between the posterior mean of η(θ) and the observed value ti is calculated. The process

is repeated by removing each of the other input data points in turn, and calculating the

distances, di, i = 1, . . . , n. The best value for σ is that which minimises
Pn

i=1 d
2
i .

2.5.2 1-D Example for emulating a stochastic equation

We consider a simple example of using an emulator to approximate the mean of the

random function

t(θ) = a cos θ + 4, (2.5.1)

where a is a normally distributed random variable with mean 3 and variance 4. We

choose this example as the mean of this function is the same as equation (2.4.1). There-

fore, if M is a large enough sample, our emulator output should be similar to that shown

in Figure 2.1. When emulating this function, we assume that this function is a black

box, and that we do not know the relationship between the inputs and outputs, or the

distribution of the random variable a.

When evaluated at the same input value θ, equation (2.5.1) will produce different output

values t due to the variability in a. Therefore, when evaluating this function for a design

point θi, we need to evaluate a large number of times to give a sample of the mean value

ti at θi. We can then calculate the sample mean and variance of this sample of outputs

at the design point θi. The data point ti can then be estimated by the sample mean

value, and the sample variance is included in the covariance matrix as described above.

Figure 2.3 shows the emulator mean and 95% bounds. The equation t = 3cos θ + 4 is

also plotted, as this is the mean of equation (2.5.1). This curve passes near the data
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points, but not through them, as the data points are only estimates of the mean. Since

the equation we are emulating is stochastic, the emulator mean is close to, but does not

pass through, the data points. This smoothing is caused by including the variance of

the sample outputs at each input.
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Figure 2.3: Emulator approximation to t = a cos θ + 4, where a ∼ N(3, 4), with

(a) 3 design points and 10 evaluations of t, (b) 3 design points and 100

evaluations of t, (c) 5 design points and 10 evaluations of t, and (d) 5

design points and 100 evaluations of t.

The plots (a) and (c) on the left hand side use only 10 evaluations of the stochastic

function (2.5.1), yet the emulator mean still gives a reasonable estimation of the mean

of t. We also notice that the 95% bounds about the emulator mean are larger, since we

have only a few evaluations of t and so we have more uncertainty about the value of the

t. In the right hand plots (b) and (d), 100 evaluations of t have been carried out, and

we can see that the emulator mean is closer to to true mean of t, and the variance of

the emulator decreases. The right hand plots are similar to those in Figure 2.1, which

is as we expected.

Including more design points and carrying out more evaluations at each design point

improves the accuracy of the emulator, but it can be computationally expensive. For



Chapter 2. Analysis of computer models 38

complex stochastic models, and where the number of dimensions is much larger, the

time taken to evaluate the model a large number of times for each design point could be

immense. Therefore, for stochastic models, we need to weigh up the value of obtaining

accurate means and variances of output data for fewer design points, where the emulator

accuracy may be lower between these points, or of including output data from more

design points, which may improve the accuracy of the emulator, but with less accuracy

on the means and variances of the data points.

2.5.3 Emulating stochastic models when the stochastic variable has a

known distribution

In the previous example, we assume that the distribution of the random variable a in

equation (2.5.1) was unknown. Therefore the function was evaluated many times at each

input point to give a distribution of the output at that point. In this case it did not take

a long time to evaluate the function. However, if we considered a more computationally

expensive stochastic computer code instead of a simple function it would take a long

time to run the model a large number of times for each input. This leads us to consider

another way of approximating the stochastic code by including the random variables

responsible for the stochastic nature of the code as inputs, which is similar to the

approach of Bates et al. (2006).

This method can only be used if the distribution of any random variables in the model

is known, and that these random variables can be used as inputs to the computer code.

The code then becomes a deterministic function of inputs θ and random inputs a, since

for any one combination of inputs the same output will be obtained for every run of

the model. This deterministic function t(θ,a) can then be emulated using the methods

in Section 2.3 to give an emulator η(θ, a). We then run this emulator with a sample of

θ-values, to build a second emulator η(θ) for the mean of the stochastic function t(θ) as

follows:

1. For each input θi, i = 1, . . . , n, the emulator is run with a number of samples of

aj , j = 1, . . . ,M from f(a) to give a sample of outputs η(θi, aj), j = 1, . . . ,M .

2. The mean of the samples, and the variance of the mean for each input θi are
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calculated using:

t̄i =
1

M

MX
j=1

η(θi, aj).ÔVar[ti] =

PM
j=1 (η(θi, aj) − t̄i)

2

M − 1
.

3. The calculated mean and variance of the mean for each θi are then used as in the

first method to emulate the mean of the stochastic function t(θ).

This second approach is more complicated than the first, but it means that the stochastic

computer code needs to be evaluated fewer times. For computer codes with a higher

computational cost this is an advantage, but this second method can only be used when

the random variables which describe the stochastic model can be used as inputs to the

model and their distributions are known. If the random variable a has been incorrectly

specified then the process of choosing design points for a, and obtaining data from the

computer code will need to be repeated for the correct distribution.

2.5.4 1-D example of emulating a stochastic function when the

distribution of the stochastic variables is known

We emulate the same stochastic function as before, but this time consider that we know

the distribution of the random variable a. Therefore, we can write equation (2.5.1) as:

t(θ, a) = a cos θ + 4, (2.5.2)

where a is again a normally distributed random variable with mean 3 and variance 4. We

emulate equation (2.5.2) by sampling the input points over the two dimensional (θ, a)-

space using a latin hypercube sample. This gives us an emulator η(θ, a). This emulator

is repeatedly evaluated at a small sample of θ using samples from the distribution of

a to provide an output mean and variance of the mean for each of the design points.

These are used to build a second emulator for the stochastic function (2.5.1).

Figure 2.4 shows a comparison of the two methods for approximating the mean of the

stochastic function (2.5.1). Plot (a) shows the emulator mean and 95% bounds using the

first method. For this plot, 100 evaluations of t(θ) were carried out at each of the 5 input

points, giving a total of 500 runs of the function. Plot (b) shows the emulator mean and
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Figure 2.4: Emulator approximation to t = a cos θ + 4, where a ∼ N(3, 4), using (a)

first method with 100 evaluations of t(θ) at each data point θ to obtain

output data at each point (b) second method with 100 evaluations of

t(θ, a) across the (θ, a)-space to build an initial emulator, then 100 runs

of the emulator at each data point θ to obtain output data at each point.

variance using the second method. For this plot, 100 training runs were taken across the

two-dimensional (θ, a)-space for the initial emulator. This emulator was then evaluated

100 times at each of the 5 input points using 100 values of a. A second emulator was

then built using the mean and variance of the samples at each input point.

As in the previous example, we see that outside the range of the design points, the

emulator does not perform very well. The results of the second method are comparable

to the first method, but only 100 runs of the initial function were required for the second

method instead of 500 used in the first method. In this example it is not a problem to

evaluate the function 500 times, but for more complex computer codes where running

the code a large number of times is very expensive, it is desirable to run the code as few

times as possible. Therefore, if the distributions of the random variables in the model

are known, and the random variables can be used as inputs to the model, it is preferable

to use the second method to approximate the mean of the stochastic function.
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Groundwater flow modelling

This chapter will explore the main ideas behind groundwater modelling. First we will

review the equations of groundwater flow. Then we will discuss how these equations have

been used to model groundwater flow. We will also consider the sources of uncertainty

that arise when modelling groundwater flow, and ways of dealing with this uncertainty.

3.1 Equations of groundwater flow

In this section we describe the basic concepts and equations of groundwater flow.

Groundwater flow equations describe how groundwater flows through its environment.

The main equation of flow is based on Darcy’s law.

Before we look at the equations, we need to outline a few important concepts of ground-

water flow. We have already mentioned that the rocks which make up the Earth’s crust

are porous. Porosity, φ (dimensionless), is the ratio of void volume in a rock to total

volume, giving us an idea of how much fluid a rock can hold. We are interested in how

this fluid will move through the rock. The permeability, k (m2), of a rock measures the

ability of the rock to transmit fluid through its pores . The driving force behind this

movement of groundwater is head gradient. Head, h (m), is the height, above an arbi-

trary given level, that a fluid in a rock can reach due to the fluid pressure, p (kgm−1s−2),

the density of the fluid, ρ (kgm−3), and acceleration due to gravity, g (≈ 9.81ms−2).

Head gradient is the difference in head between two points in a region over the distance

between those two points. Fluid will always flow from areas of high head to areas of low



Chapter 3. Groundwater flow modelling 42

head.

3.1.1 Darcy’s law

Darcy’s law (Darcy (1856)) is an empirical law which describes how a fluid flows through

a porous medium. In three dimensions, Darcy’s law can be expressed in the generalised

form

q = −k

µ
(∇p − ρgêz),

where q is the Darcy flux (m s−1), k is a tensor of permeability, µ is the fluid viscosity

(kg m−1s−1), and êz is the unit vector in the vertical (z)-direction (Bear (1972)). All

other terms are defined as above. Whilst the flux q has the units of velocity, it is not the

velocity which the water travelling through the porous rock is experiencing. To obtain

the velocity, we need to divide the flux by the porosity of the rock:

u =
q

φ
. (3.1.1)

This accounts for the fact that groundwater can only flow through the voids in the rock.

If we consider the hydraulic conductivity

K =
kρg

µ
,

and the head defined as

h = z +
p

ρg
,

where z is a datum level from which the head is measured, then we can write Darcy’s

law as

q = −kρg

µ
∇
�
p

ρg
− z

�
,

= −K∇h. (3.1.2)

3.1.2 Continuity equation

Conservation of mass is given by the equation

∇ · u = 0. (3.1.3)
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Combining Darcy’s law (3.1.2) with the continuity equation (3.1.3) and (3.1.1) gives (de

Marsily (1986))

∇ ·K∇h = 0. (3.1.4)

In some applications when modelling groundwater flow, the region of interest is much

greater in magnitude in the horizontal direction than in the vertical direction. This

would be the case if we were modelling the flow of groundwater through a thin layer of

rock in a large geographical region. For this case, we assume that the flow is essentially

horizontal and the governing equations can be simplified to two dimensional equations.

If a vertical flow does exist, it is small relative to the horizontal component and so can

be ignored.

In two-dimensions, the hydraulic conductivity, K (ms−1), can be replaced by transmis-

sivity T (m2s−1); the ability of the rock to transmit water. These two terms are related

with the equation T = Kb, where b is the thickness of the thin layer of rock. If we

think of hydraulic conductivity to represent how much groundwater can flow through a

unit square in the region, for a given time and hydraulic gradient, then transmissivity

represents the flow through a rectangle of unit width and height equal to the thickness

of the layer of rock.

Therefore in two dimensions equation (3.1.4) becomes

∇ · T∇h = 0. (3.1.5)

If the transmissivity is considered to be isotropic and constant throughout the region,

then (3.1.5) reduces down to Laplace’s equation

∇2h = 0. (3.1.6)

Equations (3.1.5) and (3.1.6) are those most often used to model the flow of water

through a region of rock. The next section describes groundwater flow modelling and

the issues involved in generating solutions to these equations.

3.2 Groundwater flow modelling

Groundwater flow models have traditionally been deterministic models. Deterministic

models rely on a high degree of understanding of a process within a system. The system
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response can then be defined through the understanding of the governing processes. The

accuracy of deterministic models is therefore partly dependent on how close the concepts

of the governing process reflect the true process. Even if the model accurately represents

the true process, there are a number of factors that are also needed to determine the

response of the system. These are (Konikow and Mercer (1988))

• definition of the properties and boundaries of the domain in which the process is

acting,

• the state of the system at some point in time,

• an estimate of what future processes will be.

In groundwater modelling there is often insufficient or inadequate data to enable these

factors to be fully represented. Therefore the ability of traditional deterministic models

to make predictions about the system response is limited. More recently, research has

been carried out to try to incorporate the data inadequacies in a stochastic manner into

the modelling approach. We will discuss the ways in which this has been carried out in

this section.

3.2.1 Uncertainty in groundwater flow modelling

Much of the uncertainty in modelling groundwater flow comes from limited knowledge

about the values of parameters in the model. Measurements of transmissivity, head

and other variables can only be made at a few locations in the region. To solve the

mathematical equations in section 3.1, we need to know the value of transmissivity

everywhere in the region. Therefore, we need to estimate the transmissivity values

everywhere in the region using the limited data collected at a small number of locations.

This estimation introduces uncertainty into the model, which must be analysed. The

uncertainty in the model parameters will then be propagated through the model to

provide the uncertainty in the model output. This can be carried out using any of

the uncertainty analysis methods, such as Monte Carlo methods (Lahkim and Garcia

(1999)), described in Chapter 2.

Uncertainty can be reduced by including other information such as head data into the

model. This can be used to validate the model, by comparing the computed head values
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to measured values. If the model reproduces the head values at the measurement points,

we can be more sure that our model gives a good representation of the true process. We

discuss the inclusion of head data later in this Chapter.

If the values of transmissivity were to be measured across the entire region, the true

transmissivity field could be known, and the groundwater flow equations solved exactly.

However, it is neither practical or economically viable to measure the transmissivity

values at more than a few locations. Therefore an estimate must be made from the

limited data available. There are different ways of including the uncertainty of the

transmissivity into the data. In the next two sections, we discuss the following methods;

representing the transmissivity with a random field then using realisations of this field

to solve the equations, and using perturbation methods to express the transmissivity

as an expansion of terms then solving the equations for the higher order terms in the

expansion.

3.3 Random field representation of transmissivity fields

The transmissivity of rocks in a region is inherently heterogeneous. To determine the

level of heterogeneity over the region, measurements would need to be made at all

points in the region. This would be impractical, requiring much time and expense.

Therefore, a small number of measurements can be used to estimate the variability in

the transmissivity field within a statistical framework. That is, the spatial variation

of transmissivity can be characterised by its probability distribution estimated from a

small sample of measurements. Transmissivity measurements have been shown to have

a lognormal distribution (Hoeksema and Kitanidis (1985); de Marsily (1986)). Freeze

(1975) used this statistical approach to represent transmissivity as a lognormal random

variable in the analysis of uncertainty in groundwater flow modelling. It has been shown,

however, that although the transmissivity values show large spatial variations, these

variations are not entirely random but spatially correlated (Byers and Stephens (1983);

Hoeksema and Kitanidis (1985); Russo and Bouton (1992)). Therefore, transmissivity

is better represented as a stochastic process, instead of a single random variable.

Stochastic or random spatial process are also known as random fields or random func-

tions. In this thesis, we will refer to the transmissivity to be determined everywhere in
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the region as a random field. A random field Z(x) can be thought of as a set of random

variables, each of which is associated with a point in space, x. The statistical structure

of the random field is determined by how all the of the random variables relate to each

other. To solve equations using a computer model, the domain of interest is discretised

into N points or nodes, x1, . . . ,xN where xi is the position of node i, i = 1, . . . , N . To

construct a discrete transmissivity field on this domain, we can think of the joint cdf of

Z(x) = {Z(x1), . . . , Z(xN )} as a multidimensional random variable.

Taking one sample or realisation of each of the random variables Z(x), we get a dis-

cretised function of x. This realisation of the estimated field then gives a possible

representation of the true field for use in a computer model. Due to the uncertainty

we have about the true field, we consider many equally likely representations of the

transmissivity field by sampling the random variables which make up the random field.

The model can then be evaluated for each representation to give a sample of outputs.

This Monte Carlo method of conditional simulations (Delhomme (1979)) then provides

a distribution for the output, which can then be used in a risk analysis of a nuclear

waste site, for example.

In groundwater modelling, it is often assumed that the log transmissivity field is a Gaus-

sian random field defined by its mean and covariance function (Delhomme (1979)). That

is, it is constructed from a set of random variables, each with a Gaussian distribution,

to give a multidimensional Gaussian random variable. The mean µ and covariance Σ

are usually estimated from the available data, and then representations of the random

field need to be generated to solve the groundwater flow equations.

Methods of generating realisations of random fields can be conditional or unconditional.

Unconditional realisations use the mean and covariance to generate spatial data with a

known spatial distribution. Conditional realisations generate spatial data which preserve

the values at the measurement points as well as having a known distribution. Uncondi-

tional realisation methods are usually the simplest, but do not take any measured data

into account when generating the field. Therefore the generated field may not be as

good an estimation of the true field as a conditioned field.

There are a number of ways of generating conditional realisations of Gaussian random

fields which preserve the values at the measurement points and keep the statistical

structure defined by the mean and covariance function. Both Schabenberger and Gotway
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(2005) and Chiles and Delfiner (1999) have a chapter exploring ways of generating

conditional realisations. In this review, we will concentrate on methods which generate

realisations with a Gaussian spatial distribution.

3.3.1 Unconditional realisation of Gaussian random fields

The simplest method of generating an unconditioned field is based on being able to

decompose a positive definite covariance matrix Σ as

Σ = LLT .

We also use the following reproductive property of the Gaussian distribution. Let Y ∼
N(µ,Σ), and let a,B be constants. Then the following holds:

a + BY ∼ N
�
a + Bµ,BΣBT

�
.

Therefore, if X ∼ N(0, I), and we let a = µ, B = L, then

µ + LX ∼ N(µ,Σ)

(Schabenberger and Gotway (2005)). This means that if we can obtain the matrix L,

then along with a vector of independent Gaussian random variables x ∼ N(0, I), we can

generate a realisation z = µ + Lx from N(µ,Σ).

Cholesky decomposition One way of obtaining the matrix L is to use Cholesky

decomposition. The positive definite matrix Σ is decomposed into an upper triangular

matrix U and a lower triangular matrix L = UT , where Σ = LU. Realisations of the

Gaussian random field from a Gn(µ,Σ) distribution can then be generated simply by

generating a vector, x, of n independent Gaussian random variables with zero mean and

unit covariance and calculating the Cholesky root L of the covariance matrix Σ. An

n× 1 vector of means, µ, is then used to generate a realisation,

z = µ + Lx,

from a Gaussian distribution with mean µ and covariance Σ. This method is good for

small problems, but as the size, n, of the covariance matrix increases, it becomes more

computationally expensive to decompose the covariance matrix.
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3.3.2 Karhunen-Loéve expansion

Another way of generating realisations of the log transmissivity field comes from the

property that every centred Gaussian process with a continuous covariance function has

an expansion of the form of an orthogonal expansion (Adler and Taylor (2007)):

Z(x) =
∞X

k=1

ξkφk(x), (3.3.1)

where ξk are independent Gaussian random variables with zero mean and unit variance,

and φk are functions on Ω, the space on which Z(x) is defined, determined by the

correlation function, C(Z(x), Z(x′)), between two points in the log transmissivity field.

Here we will denote this by C(Z(x), Z(x′)) = C(x,x′). By ordering the eigenvalues from

largest to smallest, and truncating (3.3.1) at an appropriate point, we can generate an

approximation to the Gaussian process by determining the φk, k ≥ 1. These can be

found by solving an eigenfunction problem involving C. When Ω is a compact subset of

ℜN , then the eigenfunction problem takes the form of an integral equation,Z
Ω
C(x,x′)ψk(x

′)dx′ = ekψk(x), (3.3.2)

where C is the correlation function between two points x and x′ in Ω. The solutions ek

and ψk of (3.3.2) are the sets of eigenvalues and eigenfunctions respectively, of C.

Mercer’s theorem (Mercer (1909)) states that the expansion

C(x,x′) =
∞X

k=1

ekψk(x)ψk(x′)

converges absolutely and uniformly on Ω, with the result that {√ekψk} is a complete

orthonormal system. This leads to the Karhunen-Loéve expansion as described by

Karhunen (1946) and Loéve (1955). We let φk =
√
ekψk in the expansion (3.3.1). Then,

given the mean, µ, variance, ω2, and correlation structure of the Gaussian process, we

can represent the transmissivity field as the infinite sum of random functions

Z(x) = µ + ω
∞X

k=1

ξk
√
ekψk(x). (3.3.3)

When approximating the transmissivity field, we consider a truncated Karhunen-Loéve

expansion,

Z(x) = µ + ω
NX

k=1

ξk
√
ekψk(x), (3.3.4)
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to reduce the number of degrees of freedom, and therefore the computational cost. For

the purposes of computing the expansion using numerical methods, we must discretise

the equations. Therefore, the covariance function C becomes a covariance matrix Σ,

and so ek and ψk are now eigenvalues and eigenvectors of Σ. We will describe the

discretisation of these equations in more detail in Chapter 5.

The use of the truncated Karhunen-Loéve expansion relies on the majority of the vari-

ability in the transmissivity field being captured in the first few eigenvalues and eigen-

vectors (or eigenmodes), with the remaining eigenmodes providing the smaller scale

variability. Each pair of eigenvalues and eigenvectors needs to be computed separately

and so there is a large computational cost. Therefore, the truncation pointN is chosen in

order to capture most of the uncertainty in the transmissivity field in the smallest num-

ber of eigenmodes. We will see in Section 5.3.1 that the number of eigenmodes needed

to capture most of the uncertainty is dependent on the correlation function chosen to

represent the uncertainty in the transmissivity field. If a large number of eigenmodes is

needed, other methods of generating random fields may be preferable.

3.3.3 Conditional realisation of Gaussian random fields

Conditional realisations S(s) of a random field Z(s) honour the observed values of Z(s)

at the data points d = {s1, s2, . . . , sm}. A conditional realisation therefore consists of

n = m+ k values:

S(s) = [Z(s1), Z(s2), . . . , Z(sm), S(sm+1), . . . , S(sm+k)]T .

Methods for generating Gaussian random fields either start with an unconditioned re-

alisation which is then conditioned, or condition on the data directly.

Conditioning the Cholesky decomposition realisations The Cholesky decom-

position method described above generates unconditioned realisations of the Gaussian

random field at spatial locations s1, . . . , sn. We want to condition this field on data

values at locations s01, . . . , s0m to generate realisations such that at the data points the

realisations have the same value as the data points.
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The covariance matrix using all n+m locations can be partitioned into

Σ =

�
Σ11 Σ12

Σ21 Σ22

�
,

where

Σ11 has entries C(s0i − s0j), i, j = 1, . . . ,m,

Σ12 = ΣT
2,1 has entries C(s0i − sk), i = 1, . . . ,m, k = 1, . . . , n,

and Σ22 has entries C(sk − sl), k, l = 1, . . . , n.

The Cholesky root can then be partitioned in the same way as Σ:

L =

�
L11 0

L21 L22

�
.

The vector x = (x1,x2)
T now has n +m entries, but only n of these are independent

Gaussian random variables. To generate a realisation, we need to calculate

Lx =

�
L11x1

L21x1 + L22x2

�
.

If Z1 = (Z(s0,1), . . . , Z(s0,m))T is the vector of data values, then to condition the reali-

sation we set L11x1 = Z1. A realisation can then be calculated from

z = µ+ Lx = µ+

�
Z1

L21L
−1
11 Z1 + L22x2

�
.

This method conditions the realisation on the data, but makes the Cholesky root slightly

more computationally expensive to calculate since now Σ is an (n+m)×(n+m) matrix.

3.3.4 Conditioning by kriging

One of the most popular methods is to use kriging to condition the transmissivity field

to the available data (Delhomme (1979); Gotway (1994)). The procedure is described

in more detail below, but the main idea is to first generate an unconditional simulation

using the mean and covariance structure inferred from the data, then condition this on

the data using kriging. Because of the use of kriging in the conditioning step, the values

of transmissivity are preserved at the measurement points, and the covariance structure
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is kept. However as Delhomme (1979) discusses, there may be problems in determining

the true correlation structure of the log transmissivity field as there may be only a small

number of measurements with which to determine the properties of this field.

Before describing how kriging is used to condition a realisation of the transmissivity

field, we first need to introduce the kriging predictor (Matheron (1971)). This predictor

can then be used to condition an unconditioned field, to generate a realisation of the

transmissivity field that honours the observed data.

Simple kriging Since kriging allows us to generate an estimate of the transmissivity

field with a given mean and covariance structure, we can assume that the mean and

covariance are known. Therefore, we describe the use of a simple kriging predictor to

optimally estimate the transmissivity field from the measured data. We assume that

Z(s) = µ(s) + e(s),

where e(s) ∼ N(0,Σ), so that E[Z(s)] = µ(s) and Var[Z(s)] = Σ.

The aim is to find a predictor of Z(s0), p(Z; s0), that minimises E
�
(p(Z; s0) − Z(s0))

2
�
,

where s0 is a known spatial location where we want to predict the value of Z (Cressie

(1995)). We can consider a linear predictor

p(Z; s0) = λ0 + λTZ(s0), (3.3.5)

where λ0,λ
T = [λ1, . . . , λn]T are unknown coefficients to be determined. We can then

write

E
�
(p(Z; s0) − Z(s0))

2
�

= E
�
(λ0 + λTZ(s0) − Z(s0))

2
�
.

If we add and subtract (λT µ(s) − µ(s0))
2 from the right hand side of this equation,

where µ(s0) = E[Z(s0)], it can be shown that

E
�
(p(Z; s0) − Z(s0))

2
�

= Var
�
λTZ(s) − Z(s0)

�
+
�
λ0 + λT µ(s) − µ(s0)

�2
. (3.3.6)

Since both terms on the right-hand side of equation (3.3.6) are non-negative, we can

minimise E
�
(p(Z; s0) − Z(s0))

2
�
by choosing λ0,λ

T such that both terms are minimised.

The second term is minimised when

λ0 = µ(s0) − λT µ(s). (3.3.7)
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If we let Var[Z(s0)] = ω2 and Cov[Z(s), Z(s0)] = ω, then we can rewrite the first term

as

Var
�
λTZ(s) − Z(s0)

�
= ω2 + λTΣλ − 2ωT λ.

If we then differentiate the right hand side of this equation with respect to λ and equate

it to zero, we get λTΣ = ωT . Therefore, if Σ is non-singular, the first term on the right

hand side of equation (3.3.6) is minimised when

λ = Σ−1ω. (3.3.8)

Equations (3.3.7) and (3.3.8) give us values for the coefficients of the linear predictor

(3.3.5). Therefore, the optimal linear predictor is given by

p(Z; s0) = µ(s0) + ωTΣ−1 (Z(s) − µ(s)) . (3.3.9)

This linear predictor uses the mean of the random field, and then adds a term which

adjusts the mean so that it passes through the data points. We could use this optimal

linear predictor as our estimate of the transmissivity field, since it has the same mean

and variance structure as our data, and it honours the data at the measurement points.

However, the resulting transmissivity field would be too smooth for the purpose of

generating a realisation of a heterogenous field. Below we describe how this kriging

predictor can be used to condition random realisations of the transmissivity field. The

resulting realisations of the transmissivity field would be appropriately rough.

Conditioning a realisation using kriging Now that we have derived the kriging

predictor, p(Z; s0), we can use this to condition a realisation of the transmissivity field

to the measured data, Z(s) = [Z(s1), . . . , Z(sm)]T . We want to generate a random

field with the same mean and covariance structure as Z(s), that passes through these

observed values. We can do this by considering an unconditioned realisation of the field

S(s) with the same covariance function as Z(s).

We can write

Z(s) = p(Z; s) + Z(s) − p(Z; s),

where p(Z; s) is given by (3.3.9). The residual, Z(s) − p(Z; s), cannot be obtained, and

so we substitute it with the residual, S(s) − p(Sm; s). Here, Sm = [S(s1), . . . , S(sm)]T ,

and the simple kriging predictor, p(Sm; s), is based on the unconditional simulation at
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locations, s1, . . . , sm, where Z was measured. The conditional realisation can then be

written

Zc(s) = p(Z; s) + S(s) − p(Sm; s)

= S(s) + cTΣ (Z(s) − Sm(s)) . (3.3.10)

The conditional realisation (3.3.10) corrects the unconditioned realisation S(s), by adding

the residual between values of the unconditioned field Sm(s) and the observed data Z(s)

at the measurement points s1, . . . , sm. Therefore, we obtain a realisation of the log

transmissivity field that is not as smooth as one generated from the simple kriging pre-

dictor (3.3.9). We can also generate a sample of realisations to carry out a Monte Carlo

analysis of the computer code, by conditioning a large number of randomly generated

fields using this method.

3.4 Perturbation expansion

Dagan (1982) suggests perturbation methods as an alternative scheme to the conditional

simulations presented by Delhomme (1979). The log transmissivity has been shown to

be normally distributed (Freeze (1975); Hoeksema and Kitanidis (1985)) and so we

consider this instead of transmissivity since it is simpler to use the multivariate normal

distribution. The main idea of perturbation methods is to expand the log transmissivity

about its mean value, where the mean and covariance structure have been inferred

from the data, and then substitute the expansion into the groundwater flow equations.

Terms of the same order of perturbation are then collected to give a set of equations. If

we consider small perturbations, each resulting equation in the set can then be solved

analytically. The solutions up to a desired order are then combined to provide an

approximate solution to the groundwater flow equations.

Lu and Zhang (2004) compare the use of Monte Carlo simulations with a conventional

perturbation approach, and a perturbation approach based on a Karhunen-Loéve expan-

sion approach . They find that the computational cost is significantly lower when using

the Karhunen-Loéve approach than when using the other two approaches. They also dis-

cuss that, unlike the conventional approach, the computational cost for the KL approach

does not depend on the number of grid nodes in the discretised domain. Therefore, they
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describe this approach as most suitable for applying to large-scale problems. Below, we

will describe the perturbation expansion method algebraically using a Karhunen-Loéve

approach as in Roy and Grilli (1997).

First we want to consider log transmissivity instead of transmissivity, so we substitute

in Z = log T into Darcy’s Law (3.1.5) to get

∇2h+ ∇Z · ∇h = 0. (3.4.1)

Next, we expand the log transmissivity about its mean mZ using its standard deviation

ωZ to get

Z = mZ + ωZZ̃, (3.4.2)

where

Z̃(x) =
NX

k=1

ξkgk(x),

gk(x) =
È
λkφk,

ξk are independent normal random variables with zero mean and unit variance, and λk

and φk are the eigenvalues and eigenvectors of the covariance matrix of log transmissivity.

Replacing Z by (3.4.2) in equation (3.4.1), we obtain

∇2h+ ∇mZ · ∇h = −ωZ∇Z̃. (3.4.3)

Then, assuming ωZ is small, we can expand the solution for h in the following form:

h(x) = h0(x) + ωZh1(x) + ω2
Zh2(x) + . . . . (3.4.4)

Putting this into (3.4.3) and identifying terms of the same order of ωZ we get the

following sequence of equations

∇2h0 + ∇mZ · ∇h0 = 0, (3.4.5)

∇2h1 + ∇mZ · ∇h1 = −∇Z̃ · ∇h0, (3.4.6)

∇2h2 + ∇mZ · ∇h2 = −∇Z̃ · ∇h1, (3.4.7)
... .

The first equation (3.4.5) is deterministic and can be solved analytically for h0 given

a specified mean mZ and suitable boundary conditions. Equations (3.4.6) and (3.4.7)
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are stochastic, but can be transformed into a sequence of deterministic functions by

expanding h1 on the same set of random variables, ξk, used to represent Z̃:

h1(x) =
∞X

k=1

ξkh1,k(x). (3.4.8)

Substituting (3.4.8) into (3.4.6), and using the orthonormal property of the random

variables ξk, we get

∇2h1,k + ∇mZ · ∇h1,k = −∇gk · ∇h0, k = 1, 2, . . . . (3.4.9)

Then, given h0, we can solve this for each h1,k, k = 1, . . . , N where N is the truncation

point of the infinite sum (3.4.8), given suitable boundary conditions.

We can approximate the head at this order of ωZ as

h(x) = h0(x) + ωZ

NX
k=1

ξkh1,k(x), (3.4.10)

where h0 represents the mean field mh and ωZh1 represents the random fluctuation

about mh, h̃ = h − mh. The next order of ωZ could then be determined to provide

corrections to mh and h̃.

This method is simple, as it is easy to generate values from a multivariate normal

distribution, and has the advantage of being able to solve the equations analytically.

However, for large variances in the transmissivity values, the equations will need to

be solved numerically and this advantage is lost (Dagan (1982)). Another issue with

perturbation methods is discussed in Roy and Grilli (1997). They use perturbation

methods to solve three test problems and find that while perturbation methods are more

efficient than a Monte Carlo approach, the results are overestimated by 15-20%. They

believe this may be due to the using a large value of ωZ = 1, which stretches the validity

of the perturbation scheme. For moderately heterogeneous porous media where ω2
Z = 2,

Lu and Zhang (2004) find that the results of the perturbation approach deviates from the

Monte Carlo approach, and so higher order corrections are needed. They also find that

for highly heterogeneous porous media, the inclusion of higher order terms does improve

the results, but there are still discrepancies with the Monte Carlo methods. Therefore, if

the variability of the transmissivity field we wish to model is high, perturbation methods

may not provide the best method for carrying out uncertainty analysis.



Chapter 3. Groundwater flow modelling 56

3.5 Use of head data to reduce uncertainty

As well as transmissivity data, which can be used to help determine the transmissivity

field, there are often measurements of head in a region. We will not go into too much

detail about this here as the extra complexity of incorporating this head data is beyond

the scope of this thesis. Here we will briefly overview some of the methods used. For

more comprehensive reviews of inverse modelling of groundwater models see Sun (1999)

and McLaughlin and Townley. The head values can be used to validate the solution

of the groundwater flow equations, by comparing the solutions of the equations to the

measured values. If there is a large amount of difference between the two values, then

the representation of the transmissivity field is not adequate. A traditional calibration

process can be used to improve the model by varying the original model parameters

until there is a best fit between the measured and predicted head values. This ad-hoc

approach means that the model parameters will need to be changed an unknown number

of times before a best fit is achieved.

Inverse modelling is an extension to this calibration procedure, where the adjustment of

model parameters or other model aspects is automated within the model. Poeter and

Hill (1997) demonstrate the benefits of inverse modelling, as opposed to non-automated

calibration procedures, on a simple groundwater flow problem. Their method is to

use least-squares regression to calculate residuals between the measured and calculated

values and use these to obtain a weighted measure (objective function) of how well the

model values match the measured values. The advantages of including the calibration

in the model are that the calibration of parameters can be carried out much faster than

the traditional ad-hoc approach, and the method is more thorough as sensitivities and

correlations between parameters can be included to help with the parameter estimation.

However, there is no guarantee that the model will be a more accurate representation

of the true process.

A similar method is shown in more detail by Gómez-Hernánez et al. (1997). Rather than

finding one optimal transmissivity field which, when substituted into the groundwater

flow equations, reproduces the head values, they generate a large sample of transmis-

sivity fields which honour both the transmissivity and head data. They stress that any

solution which reproduces the spatial variability of the transmissivity and honours the

transmissivity and head data is an acceptable solution. Their approach therefore lacks
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the identifiability and non-uniqueness of other inverse problems.

Stuart (2010) presents a Bayesian approach to the inverse problem. He argues that

solving a least squares optimisation problem may be difficult to solve as inverse problems

are often ill-posed. This problem is overcome by finding a “probability measure” on the

input space, which is the space of possible transmissivity fields in the case of groundwater

flow modelling. The measure contains information about the relative probabilities of

different inputs given the observed data, in this case the head measurements, subject

to noise. The inverse problem is related to the more stable forward problem using this

measure. The approach outlined in Stuart (2010) is applicable to a range of inverse

problems for functions when formulated in a Bayesian fashion.



Chapter 4

WIPP model and data analysis

This chapter discusses the analysis of the available data for our case study based on

the Waste Isolation Pilot Plant (WIPP). The equations describing groundwater flow

in the region are introduced. The uncertainty in the transmissivity field of the WIPP

region is discussed, along with the approach of using a stochastic model to represent

the transmissivity field. We then discuss how the uncertainty in the model can be

quantified using uncertainty analysis. Distributions for the uncertain hyperparameters of

the stochastic model are then derived using Bayesian methodology. These distributions

will be used to provide a sample of inputs for the groundwater flow model when the

uncertainty analysis is carried out in Chapter 6.

4.1 WIPP data

The region we wish to model is a rectangular region Ω of Culebra Dolomite 21500m

by 30500m. The WIPP site lies in the centre of Ω. Within this region, boreholes have

been drilled at locations xi, i = 1, . . . , 39, and the 39 measurements of transmissivity

(Cauffman et al. (1990)) and their log10 values are shown in Table A.1 and in Figure

4.1. The WIPP site boundary, ∂Γ, is given by the inner rectangular region, where most

of the values lie. From this data, we wish to find the transmissivity field T (x),x ∈ Ω of

the entire region Ω for use in a computer model which estimates the time, t, taken for

a particle to exit the site Γ. The next sections describe the mathematical equations for

groundwater flow, and the stochastic model for the transmissivity field. These form the

basis for the groundwater flow model of the WIPP site.
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Figure 4.1: Locations and values of the log10 transmissivity data.
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4.1.1 Groundwater flow equations

The Culebra dolomite is a thin layer of rock approximately 8m thick. This is very

small in comparison to the size of the region which is about 655 km2. Therefore, we

consider the flow to be two dimensional. The groundwater flow equations are derived

from Darcy’s law

q = −T (x)

b
∇h(x), (3.1.2)

where q is the flux of groundwater across the region (m2s−1), T is the transmissivity

and h is the hydraulic head, and conservation of mass

∇ · u = 0 in Ω, . (4.1.1)

From these two equations we obtain the standard equation for representing steady-state

groundwater flow in a two-dimensional region Ω (de Marsily (1986))

1

bφ
∇ · T (x)∇h(x) = 0 in Ω. (4.1.2)

We also have the boundary condition

h(x) = h0(x) on ∂Ω, (4.1.3)

where ∂Ω is the boundary of the region Ω. The boundary condition is obtained by

extrapolating the head data at the boreholes to the boundary of the region. This

is the approach used in the original analysis of the WIPP site. This does introduce

another source of uncertainty into the problem, which could also be incorporated into

our emulator. However, we do not investigate the uncertainty in the head boundary data

as deriving a distribution for the boundary condition would overcomplicate the problem

of investigating how the uncertainty in the transmissivity field affects the uncertainty in

the travel time.

Given the boundary condition (4.1.3) and the transmissivity field, T , we solve equation

(4.1.2) for h. However, we only know the values of transmissivity at a limited number of

points across the region, and cannot possibly measure the values everywhere. Therefore

we represent the transmissivity T (x) as a random field. We will discuss how we are to

model this field in the next section.

An important quantity in modelling the flow in the WIPP region is the time, t, at which

a particle released in the centre of the region reaches the site boundary ∂Γ. This is
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calculated using the transport equation

ζ̇(t) =
q(ζ)

bφ
= −T (ζ)

bφ
∇h(ζ), (4.1.4)

where ζ(t) is the position of the particle at time t, b is the thickness of the rock and

φ is the porosity of the rock. The thickness of the rock is considered constant, and

here we use b = 8m as this is the average thickness of the Culebra in the region. We

also consider the porosity of the rock to be constant, and use φ = 0.16 as this is the

value used in the original WIPP analysis. These two quantities could also be considered

uncertain and included as inputs for our emulator. However, again we want to keep the

problem simple and only consider investigating the uncertainty in the hyperparameters

of the transmissivity field, which we believe have the greatest effect on the travel time,

t.

Equation (4.1.4) is solved using the approximation for T , the calculated value for h and

the initial condition

ζ(0) = ζ0. (4.1.5)

Other interesting quantities that can be obtained from calculating the travel time are

the position along the boundary ∂Γ at which the particle leaves the region, ζ(t), and

the velocity at the release point, ζ̇(0).

4.1.2 Stochastic model for the log transmissivity field

The values of transmissivity T have been measured at a limited number of locations

across the region Ω. To solve the mathematical model describing groundwater flow in

Ω, we need to know the values for all x ∈ Ω. At each point in the rock, transmissivity has

one deterministic value. However, these values cannot possibly be measured everywhere,

and so a physical interpretation of the rock is not feasible. Therefore, we represent the

transmissivity T (x) as a random field. Even though the true transmissivity is not a

random quantity, we can represent it by a random field to represent our uncertainty

about this field (refer to Section 3.3 for more discussion about this point). The observed

data can be used to help us generate a number of realisations of the transmissivity field.

Before we see the data, we can express what we believe the properties of the rock to be

in the prior information. We know that transmissivity values must be greater than zero,
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therefore we consider log transmissivity (log10(T ) = Z(x)). The accepted distribution

for the transmissivity is a lognormal distribution. As discussed in Chapter 3, this arises

from analysis of field data by Freeze (1975), and Hoeksema and Kitanidis (1985), who

found that the transmissivity data displayed an approximately lognormal distribution.

This leads us to investigate a Gaussian random field for the log transmissivity. Another

prior assumption is that all points and directions are the same after removing any

spatial trend; the Gaussian random field should be second order stationary and isotropic.

Therefore the prior representation of the Z(x) field is as a second order stationary,

isotropic Gaussian random field.

The form of the mean of the Gaussian random field is unknown a priori, so we consider

three different means for the log transmissivity field. The first mean we consider is a

constant mean.

E[Z(x)] = β. (4.1.6)

This assumption that the mean of the log transmissivity field is the same everywhere in

the region is the most basic model used in groundwater flow modelling. Another form

for the mean is to consider a linear trend. In this case, we have

E[Z(x))] = β + βxx+ βyy, (4.1.7)

where x and y are the coordinates of x. This mean allows for changes in the transmis-

sivity field due to the position in the region, and any east-west or north-south trends in

the data can be accounted for. The third mean we consider is dependent on the depth

of the overlying rock

E[Z(x))] = β + βddepth(x), (4.1.8)

where depth(x) is the depth of the Culebra dolomite at position x. The depth of the

overlying rock has two effects on the transmissivity field. Firstly, the thicker the rock

above the layer of Culebra, the more compressed in the rock will be leading to smaller

fractures and so the transmissivity will be smaller. Secondly, where the overlying rock

has been eroded away and is thinner the Culebra is subject to stress-relief fractures and

so the transmissivity will be higher as the number of fractures in the rock will be greater.

We only have 39 transmissivity and 35 depth data values (Appendix A) with which

to approximate the parameters of the transmissivity field, and so we want to keep the

number of unknowns as small as possible. Therefore, will start by considering the mean
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to be constant as in (4.1.6). We will investigate the linear and depth trends in the mean

later.

We also assume that the variance is finite everywhere. The Gaussian random field

representing the Z(x) field has covariance

Cov[Z(x), Z(x∗)] = ω2Corr(x,x∗), (4.1.9)

where Corr(x,x∗) is the correlation function between points x and x∗, and ω2 is the

variance of the Z(x) field. As we are assuming that Z(x) is second order stationary and

isotropic, we can write

Corr(x,x∗) = c(x − x∗)

= c(r),

where r is the distance ‖ x − x∗ ‖ between two points in the region Ω.

There are a number of forms that the correlation function can take, and we need to

make sure that the results are not sensitive to the particular form chosen. The main

prior assumptions we have are that the transmissivities at points very far apart are

uncorrelated, and that any realisation of the transmissivity field should be heterogeneous

on small scales with appropriate “roughness”. That is the field should not be too smooth.

The most popular correlation function in the groundwater flow modelling literature is

the exponential correlation function (Hoeksema and Kitanidis (1985); Gotway (1994)).

The exponential correlation function is given by:

c(r) = exp
§
−
�
r

λ

�κª
, (4.1.10)

where the correlation length, λ, is the length at which correlations are nearly zero, and

κ controls the amount by which spatial variations in the data are smoothed. The usual

value for groundwater flow modelling purposes is to set κ = 1 (Hoeksema and Kitanidis

(1985); Gotway (1994); Dagan (1989)), since it results in a field which is not overly

smooth.

The exponential correlation function with κ = 1 belongs to a larger family of correlation

functions, the Matérn family (Stein (1999))

c(r) =
1

2ν−1Γ(ν)

�
r

λ

�ν

Kν

�
r

λ

�
, (4.1.11)



Chapter 4. WIPP model and data analysis 64

where λ is the same as in (4.1.10), ν > 0 determines the smoothness of the random

field Z, and Kν is the modified Bessel function of order ν. This parameterisation of the

Matérn family is recommended by Handcock and Wallis (1994) as it does not depend

on the dimension of the problem, and λ is largely independent of ν. The exponential

correlation function with κ = 1 is a special case of the Matérn correlation function when

ν = 0.5. As ν → ∞, the Matérn function becomes similar to the Gaussian correlation

function

c(r) = exp

�
−
�
r

λ

�2�
. (4.1.12)

This correlation function leads to a very smooth random field Z(x). For the purposes

of using the correlation function to describe the correlation structure of the log trans-

missivity field, we do not wish the field to be too smooth. Therefore, if we were to use

the Matérn family of correlation functions (4.1.11) to describe the correlation in Z(x),

we would need to consider smaller values of ν. Diggle et al. (2003) state that, rather

than estimating ν from sparse data, it is sensible to choose ν from a small set of values

which reflect the knowledge about the smoothness of Z. They suggest choosing ν from

a discrete set {0.5, 1, 1.5, . . . , K
2 }, where K is a small integer.

Another function which is sometimes used is the spherical correlation function, which

in two dimensions is given by

c(r) =

8<: 2
π

�
arcsin r

λ
− r

λ

q
1 −
�

r
λ

�2�
if r ≤ λ

0 if r ≥ λ
(4.1.13)

This function gives no correlation between two points which are further apart than λ.

For simplicity, we choose the exponential correlation function (4.1.10). This represen-

tation of the log transmissivity field allows us to fit a model to the observed data,

d = (Z(x1), . . . , Z(xn)), which allows for nonlinearity. The model also allows for a

spatial correlation such that two values of transmissivity close together will be similar.

In order to generate a realisation of the transmissivity field from our stochastic model,

we need to know the hyperparameters of the stochastic model, θ, given the data d in

Table A.1. The details of how we will generate these fields will be given in Chapter 5. For

the constant mean case θc = (β, ω2, λ), for the linear mean case θl = (β, βx, βy, ω
2, λ)

and for the depth mean case θd = (β, βd, ω
2, λ). We wish to find distributions for the

values of θ, rather than point estimations. We can then run the computer model with
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a sample of different input values of θ from the derived distributions. For each input,

we will generate a large number of realisations of the log transmissivity field. For each

realisation, the groundwater flow equations will be solved to give a travel time, t. This

way we obtain a distribution of output travel times, t. This will allow us to find out

whether any uncertainty in our computer model output is due to the uncertainty we

have on the log transmissivity field Z(x), or on the uncertainty in the hyperparameters,

θ, which are used to generate realisations of Z(x).

4.1.3 Uncertainty analysis of WIPP computer model

We propose the following method to find the source of uncertainty in the travel time, t.

We derive a distribution for θ given the measured transmissivity data d. A sample is

taken of N values of θ. Each of these is used to generate M realisations of Z(.), where

Z(.) denotes the log transmissivity field over the entire region Ω, with which to evaluate

the model. For each realisation the travel time, t, is calculated. Statistics for the travel

time can then be calculated from the sample of travel times.

This method allows us find out where the uncertainty in the computer code is coming

from, θ or Z(.). We require a large number of evaluations (N ×M) of the computer code

using this method and so it is likely to be very computationally expensive to evaluateÖE[t|θ] or ØVar[t|θ], for example. Therefore we would need to create an emulator if we

wanted to estimate E[t|θ] for many different values of θ. We will emulate ÙE[log t|θ] as

we want to ensure the emulator only generates positive values of t. Since our WIPP

groundwater flow model is stochastic, the emulator will be built using θi as our n input

design points, and ÚE[log t|θi] as our output at those design points. The emulator would

be cheaper as it will only require n×M evaluations of the computer code.

Next we present the basic idea for how the emulator will be built, as a motivation to

why we need to derive distributions for θ. A fuller description of the method will be

given in Chapter 6.

1. Derive a distribution for θ given data d using WinBUGs to generate output from

a Markov chain Monte Carlo algorithm. After the chain has converged, a sample

from the posterior distribution can be considered as a sample of the distribution

for θ (see Section 2.1.1).
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2. Use the derived distribution as a guide to take a latin hypercube sample of θ,

θi, i = 1 . . . , n.. The method for doing this will be described in Chapter 6. This

will ensure that the samples are distributed across the range of possible values of

θi. For each sample θi:

(a) Find the eigenvalues and eigenvectors of the truncated Karhunen-Loéve (KL)

expansion.

(b) Sample ξj , j = 1, . . . ,M from NM (0, I). For each sample ξj:

i. Generate a realisation of the log transmissivity field Zi,j(.)|d, where d is

the transmissivity data, using ξj ,θi. The eigenvectors and eigenvalues

calculated in step 2a are also required to generate this field.

ii. Evaluate log ti,j = η (Zi,j(.)), j = 1, . . . ,M , i = 1, . . . , N (where η is the

computer model).

(c) Calculate sample mean and variance for log t|θi , i = 1, . . . , n, usingÚE[log t|θi] =
1

M

MX
j=1

log ti,j, i = 1, . . . , n,ÛVar[log t|θi] =
1

M − 1

MX
j=1

n
log ti,j −ÚE[log t|θi]

o2
, i = 1, . . . , n.

3. Build an emulator using θi as the input points, and the sample mean ÚE[log t|θi],

and variance of the sample mean, ÛVar[E[log t|θi]] =
ÚVar[log t|θi]

M
, as the outputs.

A flow chart to illustrate this method will be given in Chapter 6, when the mean of the

computer model output will be emulated. The emulator can then be used for further

analyses. We generate a sample of θ from the derived distribution with which to evaluate

the emulator. The emulator will then provide outputs log t. These outputs are then used

to calculate statistics for the uncertainty in the WIPP model.

The following section introduces the Bayesian methodology we will use to derive pos-

terior distributions for the hyperparameters θ. The difficulty in doing this is to choose

prior distributions for the hyperparameters when there is limited, if any, prior informa-

tion about each hyperparameter. We use the BUGS (Bayesian inference Using Gibbs

Sampling) software to perform Bayesian analysis of our stochastic model using MCMC

methods. We will derive distributions for θ for each of our three stochastic models for

the log transmissivity field; constant mean θc, linear mean θl and depth mean θd.
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4.2 Bayesian inference using Monte Carlo methods

A Bayesian approach will be used to find distributions for θ. For density functions,

Bayes theorem can be written in the form

f(θ|d) =
f(θ)f(d|θ)

f(d)
, (4.2.1)

where f(θ|d) is the posterior distribution of θ, conditional on the observed data, f(θ)

is the prior distribution of θ, f(d|θ) is the likelihood function and f(d) is a normalising

constant. If we have observed data d, we can use this equation to derive a density

function for an unknown θ.

However, if we cannot obtain the terms in equation (4.2.1) then we cannot find a pos-

terior distribution in this way. In this case we can use MCMC to produce a sample

θj, j = 1, . . . , N from the posterior distribution f(θ|d). If the sample is large enough,

we can use this sample to give a posterior summary of θ. MCMC sampling requires us

to give initial values of θ for the chain, and to choose prior distributions for the hyper-

parameters. After the Markov chain has converged, any sample of θ will be from the

posterior distribution f(θ|d) regardless of the chosen prior distribution or initial values.

WinBUGS (Lunn et al. (2000)) is used to obtain a MCMC sample of the posterior

distribution. WinBUGS contains a powered exponential spatial correlation function,

which fits a Gaussian kriging model to the data. This model has mean β and a covariance

function of the form:

Cov[Z(x), Z(x′)] =
1

τ
exp
�
−φ ‖ x − x′ ‖κ

�
, (4.2.2)

where τ = 1
ω2 controls the overall precision, and φ = 1

λ
controls the rate of decline of

correlation over distance. Note that equation (4.2.2) is the same as equation (4.1.9)

with correlation function (4.1.10).

4.2.1 Convergence properties of the chain

To obtain a sample from the posterior distribution for θ, we need to know when the

chain has converged. A sample from the distribution taken after this point is from

the approximate posterior distribution for θ. By running several chains with widely

dispersed starting values we can check that all the chains convergence to the same
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distribution. By running just one chain, it may seem that it has converged, but it may

be stuck in a local mode.

We can also check the convergence of the chain using the Bayesian output analysis (boa)

package (Smith (2005)) in R. This package allows us to carry out convergence diagnos-

tics on the output from the MCMC chain. The boa package contains four commonly

used convergence diagnostics for MCMC output: Brooks, Gelman and Rubin; Geweke;

Heidelberger and Welch; and Raftery and Lewis (see Smith (2007) for more information

on all of these diagnostics). These diagnostic tests do not provide proof of convergence,

but provide evidence of non-convergence to a stationary distribution. Therefore it is

sensible to use more than one diagnostic for the MCMC output. If there is no evidence

of non-convergence in more than one of the diagnostics, then we can assume that the

MCMC chain has converged to a stationary distribution. This stationary distribution

can be used to provide samples from the joint posterior distribution.

For the WIPP data, we use the Geweke, and Heidelberger and Welch diagnostics as

these can be used to analyse single chains of more than one parameter.

4.2.2 Geweke convergence diagnostic

The Geweke diagnostic (Geweke et al. (1992)) is a measure of how well the Markov

chain has converged to its stationary distribution. The basic idea is to compare the

sample mean x̄1 of n1 samples from an early part of the chain to the sample mean x̄2

of n2 samples in a later part of the chain. The two parts of the chain that are sampled

from must be considered independent for the diagnostic to be valid. Geweke suggests

that the comparison of means should be between the first n1 = 0.1n and last n2 = 0.5n

samples in the chain, after it is thought convergence has occurred, and this choice of

samples is taken here. The diagnostic is based on the statistic

z =
x̄1 − x̄2É
Ŝ(0)
n1

+ Ŝ(0)
n2

,

where Ŝ(0) is a variance estimate calculated as the spectral density at frequency zero.

As the number of iterations in the chain approaches infinity, the z statistic approaches

a Normal distribution with zero mean and unit variance if the chain has converged. If

the z-value falls in the extreme tails of the N (0, 1) distribution, then this suggests that
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the earlier part of the chain had not fully converged. Otherwise it can be said that there

is no evidence that the chain has not converged.

4.2.3 Heidelberger and Welch convergence diagnostic

The Heidelberger and Welch diagnostic (Heidelberger and Welch (1983)) tests that the

chain has reached a stationary distribution. As well as a test for non-convergence, the

diagnostic gives an estimate of the number of samples which should be discarded as

a burn in sequence. The diagnostic is based on Brownian bridge theory and uses the

Cramér-von-Mises test statistic Z 1

0
Bn(t)2dt,

where

Bn(t) =
T⌊nt⌋ − ⌊nt⌋x̄È

nS(0)

Tk =

8<: 0, k = 0Pk
j=1 xj , k ≥ 1

, (4.2.3)

and S(0) is the spectral density, estimated from the second half of the chain, evaluated

at frequency zero. If there is evidence of non-stationarity, the first 10% of iterations

are discarded and the test repeated with the remainder of the chain. This process is

continued until the rest of the chain passes the test, or until more than 50% of the

iterations have been discarded. If the chain fails the test, this indicates that a longer

run of the chain is needed to achieve convergence.

For the part of the chain which has passed the test, a halfwidth test is performed to

determine the accuracy of the posterior mean. The mean of the partial chain and its

associated confidence interval are calculated. The partial chain passes the test, and

therefore the posterior mean is estimated with acceptable accuracy, if the halfwidth of

the confidence interval for the mean is below a specified accuracy level. For this work, we

have chosen the accuracy to be 0.1. If the halfwidth test is not passed, it suggests that

a longer run of the MCMC sampler is needed to increase the accuracy of the posterior

mean.
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4.3 Bayesian inference for the hyperparameters θc

of the log transmissivity field with constant mean

Using the Bayesian approach outlined above, we now derive distributions for the hyper-

parameters, θc = (β, ω2, λ), of the log transmissivity field with a constant mean.

Various prior distributions are investigated for each hyperparameter to give posterior dis-

tributions for θc. The convergence properties of each MCMC chain are also considered.

Then cross validation of the log transmissivity data given the posterior distributions is

carried out. We also consider how θc affects the log transmissivity field Z(x). Finally

we investigate whether changing κ has an effect on the posterior distribution of θc.

4.3.1 Initial values of θc

Initial values of each hyperparameter in θc are needed to start the MCMC chain in

WinBUGS. We investigate three chains for the hyperparameters. The first chain uses

initial values according to the data, and the other two chains start at values either side

of these values for β and λ, and larger values for ω2. If the chains converge to the same

posterior distribution, despite having very different initial values, then the posterior

distribution after convergence is independent of the initial values of the chain. The

initial values for each of the three chains are as follows:

Chain 1: β = −5.5997, the sample mean of the WIPP data; ω2 = 2.298, the sample

variance of the WIPP data; λ = 10000, approximately half of the total modelled

distance in the x-direction and a third of the total modelled distance in the y-

direction.

Chain 2: β = −100 ; ω2 = 100; λ = 100, approximately the minimum distance between

two boreholes (data points).

Chain 3: β = 100; ω2 = 1000; λ = 30000, approximately the maximum distance

between two boreholes (data points).
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4.3.2 Choice of prior distributions for θc

Suitable choices for prior distributions for the hyperparameters θc need to be made

before starting the MCMC sampling in WinBUGS. These priors are updated using the

data in Table A.1 to give posterior distributions for θc. Various choices of prior distri-

bution were investigated and the effects of these choices on the posterior distribution

after convergence of the MCMC sample are discussed below. To investigate the effect

of each prior distribution on the posterior distribution for each hyperparameter, we fix

the prior distributions for the other two hyperparameters. We use the following rela-

tively uninformative prior distributions: Improper prior for β, Uniform prior U [0, 100]

for ω2 and Uniform prior U [0, 40000] for λ. Therefore, whilst investigating what effect

changing the prior distribution for β has, we fix the prior distributions for ω2 and λ at

the prior distributions mentioned above.

The distributions given for θc in the next few sections are the distributions after con-

vergence as described in Section 4.2.1.

4.3.3 Prior distribution for β

As there is no prior information about the value of β we start by trying an improper

prior distribution for β. This represents a prior distribution where any value is equally

likely. This may not seem sensible to experts who have knowledge about the range

of values that the mean of a log transmissivity field has. However, in the absence of

expert information, this prior is a sensible choice. Whilst a large variance, of say 10100,

does seem improbable, this prior distribution is then updated using the available data.

Therefore the posterior distribution, which is the quantity we are interested in, may not

have as large a variance.

Another possible prior distribution for β is a normal distribution with zero mean and

large variance. This large variance reflects our uncertainty about β. The results from

using improper and normal priors are shown in Table 4.1. As the variance increases in the

normal prior, the posterior distribution tends to that obtained when using an improper

prior distribution for β. This is what we would expect as the prior distributions become

similar. The improper distribution is a sensible prior to use for β as a normal prior with

large variance did not change the posterior distribution much. The results from this
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Prior distribution Posterior distribution for β

for β mean s.d. 2.5 % median 97.5 %

Improper -4.934 1.645 -8.318 -5.012 -1.27

N (0, 103) -4.927 1.645 -8.242 -5.009 -1.281

N (0, 106) -4.934 1.645 -8.318 -5.012 -1.27

N (0, 1012) -4.934 1.645 -8.318 -5.012 -1.27

Table 4.1: Effects of prior distributions for β on the posterior distribution of β.

prior will be used for further analysis. The first 50 MCMC iterations for the posterior

distribution given an improper prior are shown in the trace in Figure 4.2. We see that

the three chains converge very quickly to the same distribution.
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Figure 4.2: MCMC traces for all three β chains.

The results of the Geweke convergence diagnostic do not provide any evidence against

convergence of these chains. The chains also pass the Heidelberger and Welch station-

arity and halfwidth tests. Figure 4.3 shows the posterior density of β given an improper

prior using samples from the posterior distribution.

4.3.4 Prior distribution for ω2

As ω2 represents the variance of Z(x), the only prior information we have about ω2

is that it is non-negative. Therefore, we will investigate a uniform prior with lower

bound 0 for ω, and inverse gamma and lognormal priors for ω2. The uniform prior
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Figure 4.3: Posterior density obtained when using improper prior for β.

provides a fairly uninformative prior given the lack of prior information about ω. The

inverse gamma and lognormal priors allow us to investigate the effect of the shape of

the prior distribution on the posterior distribution. As discussed before, we fix the prior

distributions of the other two hyperparameters when investigating the effect of changing

the prior distribution for ω2.

We first investigate a uniform distribution for ω. From Table 4.2, we can see that as the

uniform prior distribution for ω widens, the posterior distribution for ω2 becomes less

sensitive to changes in the prior. The posterior distribution will not allow values outside

of the uniform prior distribution. Therefore the range of the first two prior distributions

may not be wide enough to include all possible values of ω. The mean and standard

deviation of the posterior distribution increases as the prior range increases.
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Prior distribution Posterior distribution for ω2

for ω mean s.d. 2.5 % median 97.5 %

U(0, 2) 3.123 0.5666 1.928 3.19 3.953

U(0, 5) 7.329 4.442 2.311 5.984 18.95

U(0, 10) 7.568 4.875 2.322 5.927 20.27

U(0, 100) 7.568 4.875 2.322 5.927 20.27

Table 4.2: Effects of uniform prior distributions for ω on the posterior distribution of

ω2.

The posterior distributions obtained when using various inverse gamma prior distribu-

tions for ω2 are shown in Table 4.3. A large scale second parameter has been used for all

inverse gamma distributions to reflect our uncertainty about ω2. We can see that as the

inverse gamma prior distribution becomes flatter as the shape first parameter decreases

the posterior distribution mean and standard deviation increases. This is expected as

the mean and variance of the prior distributions also increase as the shape parameter

decreases. The sensitivity of the posterior distribution to the prior distribution reduces

as the prior becomes flatter.

Prior distribution Posterior distribution for ω2

for ω2 mean s.d. 2.5 % median 97.5 %

invG(0.0001, 103) 6.531 4.311 2.124 5.126 18.43

invG(0.001, 103) 6.479 4.284 2.111 5.076 18.23

invG(0.5, 103) 5.363 3.395 1.966 4.315 15.15

invG(1.0, 103) 4.736 2.984 1.875 3.837 13.5

invG(5.0, 103) 2.483 0.8516 1.414 2.305 4.579

invG(10.0, 103) 1.747 0.409 1.123 1.687 2.702

Table 4.3: Effects of inverse gamma prior distributions for ω2 on the posterior distri-

bution of ω2.

In the case of a lognormal prior distribution, as the variance of the prior distribution

increases, the less sensitive the posterior distribution becomes to these changes (Table

4.4). Using a lognormal prior distribution with large variance gives similar results to

using an inverse gamma prior with small shape parameter, as they both give very flat

priors for ω2.

The flatter inverse gamma prior distribution for ω2, invG(0.001, 103), gives a posterior
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Prior distribution Posterior distribution for ω2

for ω2 mean s.d. 2.5 % median 97.5 %

logN (0, 102) 6.19 3.903 2.13 4.976 17.1

logN (0, 103) 6.199 4.087 2.121 4.883 17.48

logN (0, 106) 6.162 4.004 2.142 4.812 17.23

logN (0, 1012) 6.162 4.004 2.142 4.812 17.23

Table 4.4: Effects of lognormal prior distributions for ω2 on the posterior distribution

of ω2.

distribution for ω2 that is close to the posterior distributions given by a lognormal prior

with large variance for ω2 and a uniform prior with small range for ω. However using

a small range limits the posterior distribution of ω2. Figure 4.4 compares the posterior

densities obtained when using each of the following prior distributions: invG(0.001, 103)

and logN (0, 106) for ω2 and ω ∼ U(0, 100).

We can see that the posterior densities for inverse gamma and lognormal priors are

very similar. The uniform prior gives a slightly flatter posterior with a slightly larger

variance. However, most of this posterior distribution is positioned in the same area as

the other two posterior distributions. Therefore, we will use the posterior distribution

obtained from the prior invG(0.001, 103) for ω2 for further analysis. The MCMC traces

for this distribution are shown in Figure 4.5. Again we can see that the three chains

converge to the same distribution. The results of the Geweke convergence diagnostic

do not provide any evidence against convergence of these chains and the Heidelberger

and Welch stationarity and halfwidth tests are passed. The posterior density for ω2 is

shown in Figure 4.6.

4.3.5 Prior distribution for λ

The value of the correlation length λ determines the distance at which the correlations

of the random field Z(x) are nearly zero. There is often little information in the data

about the value of λ. Therefore, a reasonably informative prior should be used for λ, or

the value fixed a priori based on expert knowledge or variogram analysis.

We want to find a distribution for λ rather than a fixed value. Therefore we choose a

prior distribution for λ which gives a wide, but sensible range of correlations between the
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Figure 4.4: Posterior densities obtained when using inverse gamma: invG(0.001, 103)

(solid), lognormal: logN (0, 106) (dashed) priors for ω2, and uniform:

U(0, 100) (dotted) prior for ω.

maximum and minimum distances between two boreholes in the region. The correlation

between any two points in the region must lie in the interval [0,1], where 0 is the minimum

correlation and 1 is the maximum correlation. These correlations are absolute values

and so we do not consider negative correlations here as we are not concerned with the

direction of the correlation.

The minimum distance between two boreholes in the region is 129m, between boreholes

WIPP-19 and WIPP-22, and the maximum distance is 27731m between boreholes H-10

and WIPP-27. We consider that boreholes closer together will be more highly correlated

than those further apart. The correlation between two points further apart may also be

high since we are considering points lying in the same type of rock. However as discussed
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Figure 4.5: MCMC trace for all three ω2 chains.

Figure 4.6: Posterior density for ω2 given an inverse Gamma prior.



Chapter 4. WIPP model and data analysis 78

in Thomas et al. (2004), for modelling purposes, the correlation at the maximum distance

in the region must not be too high as this may lead to identifiability problems between

the overall mean of the spatial random variable Z(x) and the correlation parameter

φ = 1
λ

.

We investigate a uniform prior with various minimum and maximum values for λ. We

first choose λmin = 50 and λmax = 20000. At the minimum distance of 129m between

boreholes, the correlations are between 0.076 and 0.994, and at the maximum distance of

27731m between boreholes, the correlations are between 0 and 0.250. We then consider

extending the range of λ to increase the range of correlations at the maximum distance.

The results are shown in Table 4.5.

Prior distribution Posterior distribution for λ

for λ mean s.d. 2.5 % median 97.5 %

U(50, 20000) 9280 4367 2972 8397 18870

U(50, 30000) 10920 6216 3248 9231 27050

U(50, 40000) 12390 8380 3098 9635 35340

U(30, 40000) 12470 8380 3126 9736 35330

U(10, 40000) 12630 8287 3193 10030 34900

Table 4.5: Effects of prior distributions for λ on the posterior distribution of λ.

The posterior distributions of λ are all skewed towards the lower end of values. We can

also see that the posterior distribution of λ becomes less sensitive to changes in the prior

distribution as the range of the uniform distribution increases. As the lower limit for λ

is decreased, there is only a small amount of change in the posterior distribution of λ.

A correlation length of 10 gives a very small correlation of 2.5 × 10−6 at the minimum

distance of 129m between two boreholes. This seems too small given our assumption

that boreholes closer together will have higher correlations.

Figure 4.7 shows that the three MCMC chains convergence to the same posterior distri-

bution. The results of the Geweke convergence diagnostic do not provide any evidence

against convergence of the chains. The chains also pass the Heidelberger and Welch

stationarity and halfwidth tests.

From Figure 4.8 we can see that because of the upper limit for λ in the prior, the

posterior density is cut off at 40000. The values of the posterior distribution do not

tail off to zero at this upper limit, suggesting that the values of λ could be larger than
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Figure 4.7: MCMC trace for all three λ chains.

Figure 4.8: Posterior density for λ given a uniform prior.
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40000. However, we do not want the upper limit for λ to be much larger than the spatial

region of interest due to the identifiability problem mentioned earlier. At the lower limit

for λ the posterior distribution tails off to zero fairly quickly. Therefore we choose the

uniform prior with range between 50 and 40000 for further analysis.

4.3.6 Correlation between ω2 and λ

The MCMC output for ω2 and λ suggest that there may be a correlation between ω2

and λ. Figure 4.9 plots the values of ω2 against λ for 10000 iterations after convergence

of the MCMC output. We see that there is a slight correlation between ω2 and λ.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

ω2

λ

 

 

Figure 4.9: Correlation between ω2 and λ.

Larger values of ω2 correspond to larger values of λ, and smaller values of ω2 to smaller

values of λ. This correlation could be used when sampling from the sample space of θc

to reduce the space sampled from. The region of the sample space of ω2 and λ which
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contains no values from the posterior distribution, for example where ω2 is large and λ

is small, could be excluded from the sample space.

The correlation between ω2 and λ has been documented in a previous study of trans-

missivity fields by Hoeksema and Kitanidis (1985). They found that, as well as the

parameter estimates for ω2 and λ being highly correlated, their algorithm for estimat-

ing the parameters often did not converge. They ascribe this non-convergence to large

sampling error associated with estimating λ combined with nonlinear dependence of the

covariance on λ. The lack of identifiability between covariances of the log transmissivity

field is described in Hoeksema and Kitandis and by Stein (1999) and can be explained,

as follows, by exploring the variogram. The variogram is a function that describes how

spatially dependent a spatial random field, or spatial random process, is.

The equation for the variogram for our exponential model is given by

2γ(rm) = 2ω2
�
1 − exp

�
−rm
λ

��
.

Expanding this equation using Taylor series for the exponential, we can see that if

λ≫ rm, where rm is the distance between two measurement points, then

2γ(rm) ≃ 2ω2 rm
λ
.

The variogram is approximately linear in ω2

λ
, and so estimating these parameters in-

dividually becomes very difficult. It is also impossible to differentiate between two

transmissivity fields when ω2

λ
= const, λ≫ rm. For example, ω2 = 5 and λ = 20000 will

provide similar transmissivity fields as ω2 = 10 and λ = 40000. Even though the two

correlation functions are different, their variograms are approximately the same when

λ≫ rm as we can see in Figure 4.10.

Hoeksema and Kitandis found that this problem could be greatly reduced by placing

very strict bounds on the allowable value of λ. They discovered in practice, that the

parameters are individually identifiable only if λ is between narrow bounds. They sug-

gest that the upper bound on λ should be equal to the maximum separation distance

between two measurement points.

Stein investigates the identifiability problem by comparing measures based on the mean

squared error (mse) of the best linear predictor (BLP). He provides the following measure

of how well predictions based on a covariance function C1 do when the correct covariance
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Figure 4.10: Variograms for different values of λ and ω2. rm is the distance between

two points in the region.

function is C0:
E0e

2
1

E0e20
=

mse of suboptimal pseudo BLP

mse of optimal BLP
, (4.3.1)

where ej is the error of the best linear predictor if the correct mean is mj and the correct

covariance is Cj, and Ej is the expected value under the correct second order structure

(mj , Cj). He also provides a measure of the accuracy of assessing the mse of the psuedo

BLP:
E1e

2
1

E0e21
=

presumed mse of pseudo BLP

actual mse of psuedo BLP
. (4.3.2)

Stein states that if both of these measures are close to 1, then as far as predicting

Z(x), little is lost by using the suboptimal covariance C1 instead of the correct C0.

Therefore we can use a covariance function, even if it is not optimal, to predict the log

transmissivity field Z(x).
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4.3.7 Cross validation

We now check that the posterior distributions for θc give sensible realisations of the

log transmissivity field. The posterior distributions chosen for further analysis are sum-

marised in Table 4.6. The posterior distributions for θc are used to estimate each ob-

Hyperparameter Posterior distribution

mean s.d. 2.5 % median 97.5 %

β -4.934 1.645 -8.318 -5.012 -1.27

ω2 6.479 4.284 2.111 5.076 18.23

λ 12390 8380 3098 9635 35340

Table 4.6: Posterior distributions chosen for further analysis.

served value Z(xi), i = 1, . . . , 39 using d−i, the data d with one observation, di = Z(xi),

omitted.

The prior representation of Z(x) as a Gaussian random field (equations (4.1.6) and

(4.1.9)) is updated using the property of multivariate distributions given in Section

2.3.2 to give

Z(.)|θc,d ∼ N
�
m∗(.), ω2c∗(., .)

�
, (4.3.3)

where

m∗(x) = β + t(x)TA−1(d−i − β(n−1)), (4.3.4)

c∗(x,x′) = c(x,x′) − t(x)TA−1t(x), (4.3.5)

t(x) = (c(x1,x), . . . , c(xn−1,x)),

A =

0BBBBBB� 1 c(x1,x2) · · · c(x1,xn−1)

c(x2,x1) 1
...

...
. . .

c(xn−1,x1) · · · 1

1CCCCCCA ,
and β(n−1) is a vector of length n− 1 containing β.

We need to estimate the values of Z(x) conditional on the data d−i only. We can use

the equation:

f (Z(x)|d) =
Z
f (Z(x)|d,θc) f (θc|d) dθc. (4.3.6)
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This integral cannot be done analytically due to the prior distributions chosen for θc.

Therefore to estimate Z(.) conditional only on the data, we use the following method

to approximate the integral (4.3.6).

1. Sample θcj
= (βj , ω

2
j , λj), j = 1, . . . , N, from f

�
β, ω2, λ|d

�
.

(When d is a large enough sample, f
�
β, ω2, λ|d−i

�
≈ f
�
β, ω2, λ|d

�
).

2. For each sample, θcj
obtain a sample Zj(xi), i = 1, . . . ,M from

f
�
Z(xi)|θc = θcj

,d
�
.

3. Calculate the total sample mean and variance usingÙE [Z(xi)] =
1

N

NX
j=1

Zj ,
ÛVar [Z(xi)] =

1

N − 1

NX
j=1

�
Zj − ÙE [Z(xi)]

�2
.
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Figure 4.11: Cross validation results for all data points with 95% bounds. Solid line

shows expected = observed.

Figure 4.11 shows the results from the cross validation. We can see that all observed

values of Z(x), except for at borehole P-18, lie within 95% of the approximated values.

If the cross validation is carried out without this point, so that we are only estimating

Z(x) at the remaining 38 data points, we get results as shown in Figure 4.12. There

is little difference in the expected values between the two graphs. The estimations of

the observed variables below -6 when using 38 points were slightly larger than when

estimated using all 39 data points, but the bounds still included the observed value.
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Figure 4.12: Cross validation results for all data points, except borehole P-18, with

95% bounds. Solid line shows expected = observed.

Therefore we will leave the value obtained at borehole P-18 in the data, as does not

affect the expected values at other points.

The cross validation shows that the distributions for θc give a good approximation to

the log transmissivity field, and can be used to estimate how the uncertainty in Z(.)

and θc are propagated through our computer model.

4.4 Effects of θc on the log transmissivity field Z(x)

Before using the distribution for θc to approximate the log transmissivity field, we can

explore how the field changes in response to changes in θc. Choosing the value of the

hyperparameter we are interested in, we sample N values of θc, θcj
, j = 1, . . . , N , from

f(θc|d). Then we sample Z(.) from f(Z(.)|θc = θcj
,d). Evaluating Z at a point in

the region, we are able to see how the distribution of Z changes with changes in the

hyperparameter of interest. For this section, boreholes WIPP-28 and H-15 have been

arbitrarily chosen as points to evaluate Z. The measured values of log transmissivity at

these two boreholes is z = −4.68 at WIPP-28 and z = −6.88 at H-15.
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4.4.1 Changing β

From equation (4.3.4) we can see that β will affect the posterior mean of Z(.). We would

expect that a larger β would give a larger mean value, and a smaller β would give a

smaller mean value. The posterior distribution for β gained from the MCMC sample

gives 2.5% and 97.5% quantiles as -8.3 and -1.3 respectively. Looking at Figure 4.13,

setting β to these values results in a change in the mean of Z(.) at both boreholes. A

larger value of β gives a larger mean of Z(.). This effect is more pronounced at borehole

WIPP-28 than borehole H-15. At both boreholes the posterior distribution for Z(.)

contains the observed value.
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Figure 4.13: Effects on the posterior distribution of Z of changing β: β = −8.3 (solid

line), β = −1.3 (dashed line). Density plot on the left is for borehole

WIPP-28, and on the right for H-15.

4.4.2 Changing ω2

Changing the value of ω2 will change the posterior variance of Z(.) (equation (4.3.3)).

A larger ω2 will lead to a larger variance of Z(.). Values of ω2 were set as 2.1 and 18.2,

the 2.5% and 97.5% values respectively from the posterior distribution of ω2. Figure

4.14 shows that for both boreholes, a larger value of ω2 gives a larger variance.
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Figure 4.14: Effects on the posterior distribution of Z of changing ω2: ω2 = 2.1 (solid

line), ω2 = 18.2 (dashed line). Density plot on the left is for borehole

WIPP-28, and on the right for H-15.
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Figure 4.15: Effects on the posterior distribution of Z of changing λ: λ = 3000 (solid

line), λ = 35000 (dashed line). Density plot on the left is for borehole

WIPP-28, and on the right for H-15.
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4.4.3 Changing λ

The mean and variance of the posterior distribution of Z(.) will be affected by changing

the value of λ. Small values of λ will give estimates of the posterior mean of Z(.) that

do not deviate very far from β. This is because if λ is smaller, the second term on

the right hand side of equation (4.3.4) will be smaller. Changing λ will also affect the

posterior variance of Z(.). Smaller values of λ correspond to lower correlations between

two points and therefore the variance of the field will be larger. However for borehole

H-15 in Figure 4.15 this is not the case. The larger value of λ gives a slightly narrower

distribution for Z.

4.4.4 Effect of varying κ

So far we have been investigating the case where κ = 1. We now explore how allowing κ

to vary affects the log transmissivity field Z(.). Assigning κ a prior uniform distribution

between 1 and 2, and using the prior distributions decided upon above for θc, we use

WinBUGs to obtain posterior distributions for each of the hyperparameters shown in

Table 4.7. Comparing these distributions to those in Table 4.6, allowing κ to vary

Hyperparameter Posterior distributions for θ and κ

mean s.d. 2.5 % median 97.5 %

β -5.08 1.405 -7.551 -5.162 -1.896

ω2 6.505 7.465 2.08 4.399 25.16

λ 7321 6370 1942 5076 27400

κ 1.3 0.2002 1.016 1.269 1.734

Table 4.7: Effects of varying κ on the posterior distribution of ω2.

changes the posterior distributions of β, ω2 and λ slightly. The standard deviation of

β has reduced, decreasing the range of the posterior distribution. The distribution for

ω2 is similar to that obtained when setting κ to 1. The introduction of κ as a variable

seems to have affected the distribution of λ the most, with the values approximately

halved. We also note that the posterior distribution obtained for κ is closer to 1 than

2.

Figure 4.16 shows the effect of varying κ on the posterior distribution of Z(x) at the

boreholes WIPP-28 and H-15. We can see the reduced variance of the distribution of
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Figure 4.16: Effects on the posterior distribution of Z of allowing κ to vary: κ = 1

(solid line), κ ∼ U(1, 2) (dashed line). Density plot on the left is for

borehole WIPP-28, and on the right for H-15.

Z(.) at WIPP-28. This effect is due to the reduction in the distribution of λ. As we

noted before, decreasing the value of λ increases the variance of the distribution of Z(.).

At H-15, there is not a great difference between the variances of the two distributions,

but the mean of Z(.) is smaller when κ is allowed to vary.

Since allowing κ to vary does not change the posterior distribution of Z(.) very much,

and the posterior distribution for κ is close to 1 which is the generally accepted value

for groundwater flow models (Dagan (1989)), we keep the constant κ = 1.

4.5 Bayesian inference for the hyperparameters θl

of the log transmissivity field with linear mean

So far, we have taken the simple assumption that the log transmissivity field has a

constant mean. We would like our stochastic model for the log transmissivity field to

be as good as possible, so we now consider using the linear mean,

E[Z(x))] = β + βxx+ βyy, (4.1.7)
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as the mean of the log transmissivity field. We will need to carry out the inference for

the distributions again for all hyperparameters θl = (β, βx, βy , ω
2, λ). We will see if the

use of a linear mean changes the distributions of the original three hyperparameters. We

expect that the linear mean will provide a better fit to the data and so the variance, ω2,

will be smaller for the linear model. If we see the same relationship between variance

and correlation length as for the constant model, then we would also expect λ to be

smaller in this case. The distributions obtained for all five hyperparameters will then

be checked using cross validation.

4.5.1 Prior assumptions for the linear trend parameters

To simplify the analysis, the prior distributions for the original three hyperparameters,

β, ω2 and λ will be fixed to those chosen previously; improper prior for β, inverse

gamma distribution with shape parameter 0.001 and scale parameter 1000 for ω2, and

uniform distribution between 50 and 40,000 for λ. The initial values for the chains

of the original hyperparameters will also be the same as those chosen before. The

initial values for βx and βy will both be set to zero for chain 1, -0.01 for chain 2 and

0.01 for chain 3. We now consider various prior distributions for βx and βy. As when

investigating the effect of priors for the constant model, we fix the prior distributions

for the other hyperparameters, and so the prior for βy will be fixed at an improper prior

whilst investigating βx and vice versa.

4.5.2 Prior distribution for βx

There is no prior information for βx. Therefore we start by trying an improper prior

distribution for βx, as we did for β when considering a constant mean. We also inves-

tigate the use of a normal distribution with zero mean and large variance. The results

from using these priors are shown in Table 4.8.

We can see that the change in prior distribution has no effect on the posterior distribution

of βx. The first 50 MCMC iterations for the posterior distribution given an improper

prior is shown in the trace in Figure 4.17. The chains converge to the same posterior

distribution.
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Prior distribution Posterior distribution for βx

for βx mean s.d. 2.5 % median 97.5 %

Improper -2.69×10−4 6.78×10−5 -3.97×10−4 -2.71×10−4 -1.27×10−4

N (0, 103) -2.69×10−4 6.78×10−5 -3.97×10−4 -2.71×10−4 -1.27×10−4

N (0, 106) -2.69×10−4 6.78×10−5 -3.97×10−4 -2.71×10−4 -1.27×10−4

Table 4.8: Effects of prior distributions for βx on the posterior distribution of βx.
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Figure 4.17: MCMC traces for all three βx chains.

The same convergence diagnostics as before were used to test whether the MCMC chains

had converged. The Geweke convergence diagnostic showed no evidence that the chains

had not converged. The Heidelberger and Welch stationarity test showed that there was

no evidence of non-stationarity in βx. The halfwidth test was passed, suggesting that the

mean of each sample has been estimated with acceptable accuracy. Figure 4.18 shows

the posterior density of βx given an improper prior using samples from the posterior

distribution. We will use the distribution resulting from the use of the improper prior

for further analysis.

4.5.3 Prior distribution for βy

We have no prior information for βy, so again we investigate the use of an improper prior

and a normal prior with large variance. The results are shown in Table 4.9. Again the

change in prior distribution has no effect on the posterior distribution of βy. The first 50
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Figure 4.18: Posterior density obtained when using improper prior for βx.

MCMC iterations for the posterior distribution given an improper prior is shown in the

trace in Figure 4.19. We can see that the three chains converge to the same posterior

distribution.

The results of the Geweke convergence diagnostic do not provide any evidence against

convergence of this chain. The chain also passes the Heidelberger and Welch stationarity

and halfwidth tests, which suggests that all iterations be retained for posterior inference.

Figure 4.20 shows the posterior density of βy given an improper prior using samples from

the posterior distribution.

We will use the distribution resulting from the use the improper prior for further analysis.
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Prior distribution Posterior distribution for βy

for βy mean s.d. 2.5 % median 97.5 %

Improper -3.56×10−5 4.99×10−5 -1.33×10−4 -3.59×10−5 6.43×10−5

N (0, 103) -3.56×10−5 4.99×10−5 -1.33×10−4 -3.59×10−5 6.43×10−5

N (0, 106) -3.56×10−5 4.99×10−5 -1.33×10−4 -3.59×10−5 6.43×10−5

Table 4.9: Effects of prior distributions for βy on the posterior distribution of βy.
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Figure 4.19: MCMC trace for all three βy chains.

4.5.4 Changes to the posterior distributions of the original stochastic

model parameters

By including a linear trend in the data analysis, we expect the posterior distributions

of the original hyperparameters β, ω2 and λ to change. If the linear model fits the data

better than the constant model, the variance, ω2, and the correlation length, λ, of the log

transmissivity field should be expected to be smaller. This reduction in the variability

of the log transmissivity field should lead to less variability in the travel time. Table

4.10 shows the distributions of all the linear model hyperparameters. From the table

we see that the distributions of ω2 and λ have smaller means and spread than when we

were investigating a constant mean (c.f. Table 4.6). The mean and spread for β has

also reduced, although this is not comparable to before since the mean now has three

parameters instead of one. Using the means of the three mean parameters the trend in

the x direction amounts to a decrease in log transmissivity of about 6 from east to west
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Figure 4.20: Posterior density obtained when using improper prior for βy.

across the region. The trend in the y direction is smaller, with a reduction of about 1

from north to south across the region. This suggests that the south of the region is more

transmissive than the north, and there may also be a slight increase in transmissivity

from east to west. Therefore if radionuclides were released in the centre of the region, we

might expect them to be carried via the most transmissive route from north to south.

4.5.5 Cross validation

We now check that the new posterior distributions derived for θl give sensible realisations

of the log transmissivity field. The posterior distributions for θl are used to estimate

each observed value Z(xi), i = 1, . . . , 39 using d−i, the data d with one observation,

di = Z(xi), omitted. We update the prior representation of the log transmissivity field
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Hyperparameter Posterior distribution

mean s.d. 2.5 % median 97.5 %

β -2.034 1.186 -4.319 -2.039 0.2919

βx -2.69×10−4 6.78×10−5 -3.97×10−4 -2.71×10−4 -1.27×10−4

βy -3.56×10−5 4.99×10−5 -1.33×10−4 -3.59×10−5 6.43×10−5

λ 3001 3604 13.88 2163 12600

ω2 1.956 1.676 0.8628 1.521 6.362

Table 4.10: Derived posterior distributions of θl.

Z(x) given in (4.1.7) and (4.1.10) using the log transmissivity data to give

Z(.)|θl,d ∼ N
�
m∗(.), ω2c∗(., .)

�
, (4.5.1)

where

m∗(x) = h(x)T β + t(x)TA−1(d−i −H(n−1)β), (4.5.2)

c∗(x,x′) = c(x,x′) − t(x)TA−1t(x′), (4.5.3)

h(x)T = (1, x, y)

βT = (β, βx, βy)

HT
(n−1) = (h(x1), . . . ,h(xn−1)) ,

t(x) = (c(x1,x), . . . , c(xn−1,x)),

and

A =

0BBBBBB� 1 c(x1,x2) · · · c(x1,xn−1)

c(x2,x1) 1
...

...
. . .

c(xn−1,x1) · · · 1

1CCCCCCA .
Again, we need to estimate the values of Z(.) conditional on the data d−i only. The

integral (4.3.6) with θl instead of θc can be used for this, but it cannot be calculated

analytically due to the choice of prior distributions. We therefore use the same method

as in Section 4.3.7 to approximate this integral.

Figure 4.21 shows the results from this cross validation. All observed values, except that

at borehole P-18, lie within the 95% of the approximated values of log transmissivity.
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Figure 4.21: Cross validation results for all data points with 95% bounds. Solid line

shows expected = observed.

Therefore the distributions of the hyperparameters θl give a good approximation of

the log transmissivity field. We can now use these distributions to estimate how the

uncertainty in Z(.) and θl are propagated through our computer model.

4.6 Bayesian inference for the hyperparameters θd

of the log transmissivity field with depth dependent

mean

We now consider a third form for the mean of the log transmissivity field which takes

the depth of the overlying rock into account,

E[Z(x))] = β + βddepth(x). (4.1.8)

The depth term depth(x) allows the transmissivity field to vary when the depth of

the Culebra dolomite changes. The effect of the depth is that as the thickness of the

overlying rock increases, the transmissivity decreases and vice-versa. We need to carry

out inference for the distributions of the hyperparameters of this field θd = (β, βd, λ, ω
2).

We will see how including the depth term changes the distributions of the original

three hyperparameters, θc. We can also compare the hyperparameter distributions to

those obtained when using a linear mean. As with including a linear trend, we expect
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that a log transmissivity mean dependent on depth will provide a better fit to the

data, and so the variance, ω, and correlation length, λ, hyperparameters will be smaller

than those obtained using a constant mean. The distributions obtained for the four

hyperparameters, θd, will be checked using cross validation.

4.6.1 Dealing with missing depth data

The measured depth data for the boreholes are given in Table A.2. The depth values

at four of the measurement points (CB-1, ENGLE, USGS-1, D-268) are missing from

the data set. Therefore, we need to approximate the depth values at these points when

using WinBUGs to approximate the transmissivity field parameters. We could use an

interpolation method such as kriging to estimate the missing depth values. However,

WinBUGs allows us to incorporate missing data into a model by including a NA entry

into the data file. This specifies the missing values as parameters of the model. We

can then use multiple imputation (Kenward and Carpenter (2007)) to determine the

conditional distribution for the missing data given the observed depth values.

To carry out multiple imputation, the analysis is based on two separate models. The

first model is the usual model of interest or target model. The second model is an

imputation model which defines the conditional distribution of the missing data given the

observed data. The imputation model provides the model of interest with distributions

for the missing data values, or parameters of the target model as they have now become.

The target model then uses these distributions when providing distributions for the

parameters of interest.

In our case, the target model describes the log transmissivity field with a depth de-

pendent mean and the usual exponential correlation function. The imputation model

describes the depth field with mean given by

E[d(x))] = βimp + βimp
t Z(x), (4.6.1)

where βimp and βimp
t are regression coefficients. We use the Gaussian exponential cor-

relation function for the depth field,

c(r) = exp

�
−
�

r

λimp

�2�
, (4.6.2)

where λimp is the correlation length. The Gaussian correlation function is chosen for

the depth as we expect this field to be smooth. Even if it is not very smooth, variations
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Figure 4.22: Locations and values of the depth data.
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in the depth field will be provided for in the stochastic model for the log transmissivity.

The variance of this field is given by ω2imp
.

This imputation model is purely used to allow us to estimate distributions for the missing

depth parameters. This in turn allows WinBUGs to estimate posterior distributions for

the hyperparameters θd. Samples from these distributions are then used to generate

log transmissivity fields for use in the groundwater flow code. The additional model

means that there are now eight unknown parameters that need to be assigned prior

distributions and initial values for in WinBUGs: four from the stochastic model for

the log transmissivity field (β, βd, λ, ω
2), and four from the imputation model for the

depth field (βimp, βimp
t , λimp, ω2imp

). The distributions of the missing depth data are

estimated and used within the WinBUGs code and so do not require initial values and

prior distributions. We also use the cut function in WinBUGs so that information flows

only from the imputation model to the target model. Therefore the target model will

only use the distributions for the missing depth data, and will ignore all other parameters

of the imputation model.

4.6.2 Prior assumptions for the depth trend parameters

For the main model of the log transmissivity field, we again choose the prior distributions

for the original three hyperparameters θc to be the same as before. This will simplify

the additional analysis that needs to be carried out. The initial values for the chains of

β, λ and ω2 will also be the same as previously used.

We also need to assign prior distributions for the parameters of the imputation model of

the depth field. We have no prior information about these parameters so we choose the

following uninformative prior distributions: Gaussian priors with zero mean and large

variance for βimp and βimp
t , and inverse Gamma distributions; invG(1, 100) for λimp and

invG(0.001, 1000) for ω2imp
.

Since the log transmissivity field depends only on the parameters of the target model,

we will only look at varying the prior distribution for βd in this section.
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4.6.3 Prior distribution for βd

We have no prior information about the hyperparameter βd, so we investigate an im-

proper prior distribution, and zero-mean normal distributions with large variances. The

results of this analysis is shown in Table 4.11. We can see from the table that changing

Prior distribution Posterior distribution for βd

for βd mean s.d. 2.5 % median 97.5 %

Improper -4.98×10−4 3.91×10−3 -9.11×10−3 -1.45×10−4 6.47×10−3

N (0, 103) -4.98×10−4 3.91×10−3 -9.11×10−3 -1.45×10−4 6.47×10−3

N (0, 106) -4.98×10−4 3.91×10−3 -9.11×10−3 -1.45×10−4 6.47×10−3

Table 4.11: Effects of prior distributions for βd on the posterior distribution of βd.

the prior distribution has no effect on the posterior distribution for βd. Therefore we

will use an improper prior for the resulting analysis.

We can also output the distributions for the missing depth values to check that sensible

values of depth are being generated when the posterior distribution for βd is being

derived. The depth field used in the original WIPP analysis (U.S. D.O.E. (2004)) was

generated with the help of expert geologists, but we do not have the values at these

missing data points to compare these estimates with. We can use kriging to estimate

of the mean of these values using the method described in Section 3.3.4. These kriged

estimates are displayed in Table 4.12 along with the estimates generated in WinBUGS.

The kriged estimates are similar to the posterior distributions. We also note that that

95% of the distributions for the depth at each borehole all lie with the minimum depth

of 57m and maximum depth of 415m measured at the other 35 boreholes.

Borehole Kriged Posterior distribution for depth at borehole

estimate mean s.d. 2.5 % median 97.5 %

CB-1 147.7 142.8 13 116.2 143.2 167.5

ENGLE 205.6 210.7 16.17 177.1 211.3 241.3

USGS-1 163.8 184.9 14.09 155.7 185.4 211.5

D-268 108.7 109.2 14.51 80.36 109.5 137.4

Table 4.12: Distributions for the missing depth data along with the mean kriged

estimates.
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4.6.4 Changes to the posterior distributions of the original stochastic

model parameters

By including the depth dependant term in the mean of the log transmissivity field we

expect the posterior distributions of the hyperparameters to change. If the depth model

is a better fit to the data than the constant model, we would expect the covariance

hyperparameters, λ and ω2 to reduce. This reduction in variability should then reduce

the variability in the log transmissivity field. The posterior distributions of the hyperpa-

rameters θd are shown in Table 4.13. When the distributions of λ and ω2 are compared

Hyperparameter Posterior distribution

mean s.d. 2.5 % median 97.5 %

β -4.872 1.68 -8.509 -4.776 -1.468

βd -4.98×10−4 3.91×10−3 -9.11×10−3 -1.45×10−4 6.47×10−3

λ 10600 7393 815 8714 27790

ω2 5.987 3.846 1.611 4.885 15.85

Table 4.13: Derived posterior distributions of θd.

to those derived when using a constant mean (c.f. Table 4.6), we see that they are both

slightly smaller. However, they are not as small as when we considered a linear mean

(c.f. Table 4.10). This may be because we have added more variability by including our

uncertainty about the depth field as well as the log transmissivity field. The distribution

for β cannot be directly compared to that derived when using a constant mean model.

We observe in Figure 4.22 that the Culebra dolomite is deeper in the east of the region

than in the west. If we take the mean values for β and βd, along with this trend in the

depth data, the mean log transmissivity field will have slightly larger values (between

0.1 and 0.2 larger) in the west than in the east, suggesting that the groundwater will

flow slightly faster in the west of the region. This is a similar trend to that observed

in the linear model, although the difference between the east and west transmissivities

described by the linear model were around ten times as large. We also considered a

model incorporating both the linear and depth trends. However the MCMC did not

converge suggesting that the information given by both models together does not add

anything new to the analysis.
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Waste Isolation Pilot Plant

computer model

This chapter describes the computer model for the WIPP case study that we wish to

emulate. The groundwater flow equations need to be approximated using a numerical

model. The finite element method we use is described, along with the discretisation

of the equations. A simple test example, where the analytical solution is known, is

used to check the computer model is giving the correct answers. Then we discuss

the generation of the log transmissivity fields, starting with how the eigenvalues and

eigenvectors of the correlation matrix of the log transmissivity field are found using

the finite element method approximation to the eigenvalue equation. We then use the

available measured log transmissivity data to condition the generated log transmissivity

fields. The realisations of the log transmissivity field can be generated using either the

Cholesky decomposition of the covariance matrix, which captures the full uncertainty

of the problem, or the truncated K-L expansion which reduces the number of degrees

of freedom and therefore the computational cost. We discuss how many K-L modes we

need in order to capture the most uncertainty in the smallest number of modes. We

then compare the realisations of transmissivity and head fields generated when using a

constant, a linear and a depth dependent mean for the log transmissivity field. Finally,

we consider the errors in our model that arise from truncating the K-L expansion and

from estimating the mean travel time for a given set of hyperparameters.
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5.1 Finite element approximation to WIPP model equa-

tions

Recall from Section 4.1.1, the groundwater flow equation

−∇ · T (x)∇h(x) = 0 in Ω, (5.1.1)

and the boundary condition

h = h0(x) on ∂Ω. (5.1.2)

We now want to formulate equation (5.1.1) so it can be approximated numerically using

the finite element method. We also want to solve the transport equation

ζ̇ = u(ζ) = −T (ζ)

bφ
∇h(ζ), (5.1.3)

with initial condition

ζ(0) = ζ0. (5.1.4)

Equation (5.1.3) can be solved using integration once we know the head everywhere in

the region from solving (5.1.1).

We choose a mixed finite element method, which will allow us to solve for the head, h(x),

and velocity u simultaneously and to the same order of accuracy. This is preferable to

solving (5.1.1) for the head and then differentiating to obtain the velocity, where accuracy

in the velocity approximation would be lost (Russell and Wheeler (1983)). The velocity

can then be used directly in the transport equation (5.1.3) and differentiated to obtain

the travel time.

To obtain a mixed formulation of (5.1.1), we separate it into the two equations that we

obtained from; Darcy’s law

u = −T∇h, (5.1.5)

and the mass conservation equation

∇ · u = 0. (5.1.6)

These two equations can now be formulated using finite element methods.
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5.1.1 Weak formulation

We find the weak formulation of (5.1.5) by dividing through by T, multiplying by a

weight function w and then integrating over the domain:Z
Ω

1

T
u ·wdΩ = −

Z
Ω
∇h ·wdΩ.

Integration by parts on the right hand side givesZ
Ω

1

T
u ·wdΩ −

Z
Ω
h∇ ·wdΩ = −

Z
∂Ω
hw · ndΓ. (5.1.7)

For the mass conservation equation (5.1.6), we integrate over the domain and note that,

by the divergence theorem, Z
Ω
∇ · udΩ =

Z
∂Ω

u · ndΓ = 0. (5.1.8)

Before approximating equations (5.1.8) and (5.1.7) using finite elements, we will describe

how the domain is to be discretized.

5.1.2 Discretization of the domain and equations

6
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×
(xi, yj)

Figure 5.1: One element of the discretised domain.

The domain Ω is divided up into an NX by NY grid of rectangular elements of size

∆x×∆y. The weak forms (5.1.7) and (5.1.8) can be expressed in finite element form by
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allowing the continuous functions h,u and w to be represented by piecewise functions

H,U and W which are described on the rectangular elements as follows. The head

values H (and the transmissivity values T) are found on the centre of each element (•
nodes), while the velocity values U = (U, V ) are constant over the faces of each element

(→ nodes). Element i, j, (i = 1, . . . , NX , j = 1, . . . , NY ), and the nodes on and around

this element are shown in Figure 5.1. Each element is referenced by its bottom left hand

corner.

The head H is represented by a piecewise constant function where Hi,j is the value of

H on element i, j. The velocity U is represented by a piecewise linear function. On

element i, j this discretised form for U is

U = Ui,jW
U
i,j(x) + Ui+1,jW

U
i+1,j(x) + Vi,jW

V
i,j(y) + Vi,j+1W

V
i,j+1(y).

where

WU
i,j(x) =

xi + ∆x− x

∆x
, WU

i+1,j(x) =
x− xi

∆x
,

W V
i,j(x) =

yi + ∆y − y

∆y
, W V

i,j+1(x) =
y − yi

∆y
.

5.1.3 Flow equation

Under the above discretisation, equation (5.1.7) becomesZ
Ω

1

T
U ·WdΩ| {z }

I

−
Z
Ω
H0∇ · WdΩ| {z }

II

= −
Z

∂Ω
HW · ndΓ| {z }

III

. (5.1.9)

We will consider each term of equation (5.1.9) separately.

Term I First we look at I. The integral can be split up elementwise and evaluated at

each of the four nodes on the boundary of each element.

We consider the contribution to the west node Ui,j from element i, j:Z
Ωi,j

1

T
U · WU

i,jdΩi,j,

where WU
i,j = 1 on node Ui,j and 0 on all other nodes. For the west node Ui,j , we only

consider the terms in the x direction. We also have that

WU
i,j(x) = 1 − (x− xi)

∆x
and WU

i+1,j(x) =
(x− xi)

∆x
.
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Therefore,Z
Ωi,j

1

T
U · Wi,jdΩi,j =

∆y

Ti,j

Z xi+∆x

xi

¨
Ui,j

�
1 − (x− xi)

∆x

�2

+Ui+1,j

�
1 − (x− xi)

∆x

��
(x− xi)

∆x

��
dx

=
∆y

Ti,j

�
−Ui,j

3

�
1 − (x− xi)

∆x

�3

∆x

+Ui+1,j

¨
(x− xi)

2

2∆x
− (x− xi)

3

3∆x2

«�xi+∆x

xi

=
∆x∆y

Ti,j

�
Ui,j

3
+
Ui+1,j

6

�
.

The west node also has a contribution from element i− 1, j. On this element, in the x

direction,

U = Ui−1,jW
U
i−1,j(x) + Ui,jW

U
i,j(x),

where

WU
i,j(x) = 1 − (xi − x)

∆x
and WU

i−1,j(x) =
(xi − x)

∆x
.

Therefore,Z
Ωi−1,j

1

T
U · Wi,jdΩi−1,j =

∆y

Ti−1,j

Z xi

xi−∆x

¨
Ui,j

�
(xi − x)

∆x

�2

+Ui−1,j

�
1 − (xi − x)

∆x

��
(xi − x)

∆x

��
dx

=
∆x∆y

Ti−1,j

�
Ui−1,j

6
+
Ui,j

3

�
.

Adding the contributions from elements i, j and i−1, j together we have the contribution

to term I from the west node of element i, j is

∆x∆y

6

¨
1

Ti−1,j
Ui−1,j + 2

�
1

Ti−1,j
+

1

Ti,j

�
Ui,j +

1

Ti,j
Ui+1,j

«
. (5.1.10)

Similarly, we have the contribution to term I from the east node Ui+1,j of element i, j;

∆x∆y

6

¨
1

Ti,j
Ui−1,j + 2

�
1

Ti,j
+

1

Ti+1,j

�
Ui,j +

1

Ti+1,j
Ui+1,j

«
. (5.1.11)

The contribution to term I from the north node Vi,j+1 of element i, j is

∆x∆y

6

¨
1

Ti,j
Vi,j−1 + 2

�
1

Ti,j
+

1

Ti,j+1

�
Vi,j +

1

Ti,j+1
Vi,j+1

«
, (5.1.12)
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and from the south node Vi,j of element i, j the contribution is

∆x∆y

6

¨
1

Ti,j−1
Vi,j−1 + 2

�
1

Ti,j−1
+

1

Ti,j

�
Vi,j +

1

Ti,j
Vi,j+1

«
. (5.1.13)

Over the entire domain, we obtain a linear system of equations. In matrix form, this

can be written as

M(T)U,

where T is a vector containing the values of T for each element and U is a vector

containing the values of U at each node.

Term II Next we evaluate term II. The contribution to the west node Ui,j from

element i, j is

−
Z
Ωi,j

H∇ ·WU
i,jdΩi,j.

We use the same function for U and basis function for WU
i,j as when considering the west

node of element i, j for term I;

U = Ui,jW
U
i,j(x) + Ui+1,jW

U
i+1,j(x),

and WU
i,j(x) = 1 − (x− xi)

∆x
.

Therefore ∇ · Wk = − 1
∆x

, and so

−
Z
Ωi,j

H∇ ·WU
i,jdΩi,j =

Hi,j

∆x

Z
Ωi,j

dΩi,j

=
Hi,j

∆x
∆x∆y = Hi,j∆y.

The west node also has a contribution from element i− 1, j. On this element,

U = Ui−1,jW
U
i−1,j(x) + Ui,jW

U
i,j(x),

and WU
i,j(x) = 1 − (xi − x)

∆x
.

Then the contribution to node Ui,j from element i− 1, j is

−
Z
Ωi−1,j

H∇ · WU
i,jdΩi−1,j = −Hi−1,j

∆x

Z
Ωi−1,j

dΩi−1,j

= Hi−1,j∆y.



Chapter 5. Waste Isolation Pilot Plant computer model 108

Therefore, the contribution to term II from the west node of element i, j is ∆y(Hi,j −
Hi−1,j). Similarly, the contribution to term II from the east node Ui+1,j of element i, j

is ∆y(Hi+1,j −Hi,j). The contribution to term II from the north node Vi,j+1 of element

i, j is ∆x(Hi,j+1 −Hi,j), and from the south node Vi,j of element i, j, the contribution

is ∆x(Hi,j −Hi,j−1).

Over the entire domain, the contribution from each of the nodes gives a linear system

which can be represented in matrix from as

CH,

where H is a vector containing the values of H for each element.

Term III Finally the boundary term III. From the boundary condition (5.1.2), we

know the values of H0 at some points along the boundary. We use interpolation to

obtain the boundary values at the boundary nodes.

For each element i, j that lies on the boundary of the region Ω, we can evaluate term

III at the node which lies on the boundary ∂Ω. If we consider an element i, j, with its

west node Ui,j lying on ∂Ω, we have

−
Z

∂Ω
H0

i,jW
U
i,j · ndΓ.

where H0
i,j is the interpolated value of H0 on the boundary node of element i, j. On the

west boundary, WU
i,j · n = −1 and so the contribution to term III from the west node

of boundary element i, j is

−H0
i,j

Z
∂Ω
dΓ = H0

i,j∆y.

For the east node of element i, j on the east boundary of Ω, the contribution to term

III is −H0
i,j∆y. Similarly, the contributions to term III from the north and south

boundary nodes are, respectively, −H0
i,j∆x and H0

i,j∆x.

Over the entire boundary, the contribution from each of the boundary nodes can be

written as a vector b.

5.1.4 Mass conservation equation

Equation (5.1.8) becomes Z
∂Ω

U · ndΓ = 0. (5.1.14)
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If we consider this equation over one element of the domain, we have thatZ
∂Ωe

U · ndΓe =
Z

E
UEdΓE +

Z
S
USdΓS +

Z
N
VNdΓN +

Z
S
VSdΓS ,

= −UE∆y + UW∆y − VN∆x+ VS∆x. (5.1.15)

Over the entire domain, we can represent equation (5.1.14) as

CTU = 0,

where U is a vector containing the values of U at each node.

5.1.5 Solving the groundwater flow equations

We therefore have the following system of matrix equations to solve

M(T)U + CH = b, (5.1.16)

CTU = 0.

To simplify the calculations, we replace the matrix M by the mass lumped matrix M̃ .

Multiplying the equation (5.1.16) through by CT M̃−1, we get

CTU| {z }
=0

+CTM̃−1(T)CH = CT M̃−1(T)b.

So we solve

AH = B, (5.1.17)

to obtain H, where A = CTM̃−1(T)C and B = CT M̃−1(T)b.

The elements of matrix A and vector B can be found by considering the contribution to

each matrix from the west, east, north and south nodes separately, and then combining

the entries. For matrix A, the contribution from the node on the west face of an interior

element i, j is

AW = CT M̃−1(T)C = ∆y × 2

∆x∆y

�
1

Ti−1,j
+

1

Ti,j

�−1

× ∆y

=
2∆y

∆x

�
1

Ti,j
+

1

Ti−1,j

�−1

.
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The contribution to B from the node on the west boundary of a boundary element i, j

is

BW = CTM̃−1(T)b = ∆y × 2

∆x∆y
Ti,j ×H0

i,j∆y

=
2∆y

∆x
Ti,jH

0
i,j.

Similarly we have,

AE =
2∆y

∆x

�
1

Ti,j
+

1

Ti+1,j

�−1

, BE =
2∆y

∆x
Ti,jH

0
i,j,

AN =
2∆x

∆y

�
1

Ti,j
+

1

Ti,j+1

�−1

, BN =
2∆x

∆y
Ti,jH

0
i,j,

AS =
2∆x

∆y

�
1

Ti,j−1
+

1

Ti,j

�−1

, BS =
2∆x

∆y
Ti,jH

0
i,j.

The contribution from each of the four boundaries of each element is used to generate 4

matrices in MATLAB, which are then added together to obtain matrix A. The vector B

is obtained in a similar manner. Then we can use MATLAB to solve equation (5.1.17)

for H. To solve for U, we rearrange equation (5.1.16) and again replace matrix M by

the mass lumped matrix M̃ , to give

U = M̃−1(b− CH). (5.1.18)

Since U is constant on the faces of the elements, the contributions to U from the west

face of element i, j, U , and south face of element i, j, V , are given as

Ui,j = − 2

∆x
(Hi,j −Hi−1,j)

�
1

Ti−1,j
+

1

Ti,j

�−1

,

Vi,j = − 2

∆y
(Hi,j −Hi,j−1)

�
1

Ti,j−1
+

1

Ti,j

�−1

.

On the boundary these become

Ui,j = − 2

∆x

�
Hi,j −H0

i,j

�
Ti,j , Vi,j = − 2

∆y

�
Hi,j −H0

i,j

�
Ti,j.

We use these equations in MATLAB to generate a matrix of NX ×NY velocities, one for

each element. This velocity matrix is then used when solving the transport equation.
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5.1.6 Solving the transport equation

Once we have approximated the transmissivity field and calculated the head values for

each element, we can solve the transport equation (5.1.3) to calculate the time at which

a particle released in the centre of the region reaches the WIPP site boundary. We

solve equation (5.1.3) for ζ using one of the ode solvers in MATLAB. Using the initial

condition (5.1.4), we can then find the time t for which ζ(t) lies on the boundary of the

site ∂Γ.

5.1.7 Testing the computer model

We check the computer model is correct by running the model using a simple example

where we know the solution. We consider the region Ω to be a unit square and set the

boundary conditions such that the solution h is linear in x. We also set T to be unity

everywhere in this region. So we solve

∇2h(x, y) = 0, (x, y) ∈ [0, 1] × [0, 1], (5.1.19)

h(x, 0) = h(x, 1) = 10x,

h(0, y) = 0,

h(1, y) = 10.

Equation (5.1.19) has particular solution h(x, y) = Ax+By+C, and using the boundary

conditions the solution is h = 10x. We run our MATLAB model using the same region

size as this test example, and with a 40 × 60 grid. We obtain the correct solution for h

which is linear in x (Figure 5.2).

To check the travel time, we can consider a particle released at point (0.5, 0.5) in the

centre of the test region. We solve

ζ̇(t) = −T∇h, (x, y) ∈ [0, 1] × [0, 1] (5.1.20)

ζ(0) = (0.5, 0.5),

and then use this to find the time at which the particle leaves the region; when ζ ∈ ∂Ω.

For our test problem, we have

ζ̇(t) = −∇10x = (−10, 0),
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Figure 5.2: MATLAB solution of the head field for the test example.

and so, using the initial data,

ζ(t) = (−10t+ 0.5, 0.5).

The velocity is in the negative x direction, so the particle will leave the region by the

west boundary. The particle will reach the boundary at point (0, 0.5) at time t = 0.05.

The MATLAB model gives the correct solution for this simple problem.

5.2 Generating realisations of the log transmissivity field

For the computer model we need to generate realisations of the transmissivity field with

which to solve the groundwater flow equations. These realisations must all have the

same mean and covariance structure. This can be achieved by generating realisations

of the log transmissivity field using the Cholesky decomposition, which provides the full

variability of the log transmissivity field, or the truncated Karhunen-Loéve expansion,

which reduces the number of degrees of freedom and therefore the computational cost.

If the K-L expansion is not truncated, then all NX × NY modes are used and the full
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variability in the problem is restored.

In the following section we describe how both methods are used to generate piecewise

constant log transmissivity fields which can then be used in the finite element equation

(5.1.17) to find the head field. We also consider how the available log transmissivity data

can be used to condition the covariance matrix so that the generated log transmissivity

fields are true to the measured data.

5.2.1 Calculating the Cholesky decomposition

Due to the discretisation of the equations, the covariance Cov(Z(x), Z(x′)) = ω2 exp |x−x′|
λ

is represented by a piecewise constant function Cp(xk,xl). The covariance can then be

represented in matrix form

Ckl = Cp(xk,xl), k, l = 1, . . . , NX ×NY .

This matrix can then be decomposed into lower and upper triangular matrices C = LU ,

where U = LT , using the chol function in MATLAB. This function becomes more

computationally expensive to calculate as NX ×NY increases.

A realisation of the log transmissivity field is then generated from

Z = E[log T ] + Lξ,

where E[log T ] is the constant or linear mean function of log T , and ξ is a vector of

NX ×NY i.i.d. normal random variables with zero mean and unit variance. As discussed

in Chapter 3, this generates a log transmissivity field which keeps the desired covariance

structure. The exponential of this realisation is then taken to give a realisation of

the transmissivity field, T , which can be used in the WIPP computer model. The

transmissivity field is therefore represented as a piecewise constant function.

5.2.2 Calculating the eigenvectors and eigenvalues of the K-L expan-

sion

The truncated K-L expansion,

Z(x) = E[log T ] + ω
NX

k=1

ξk
√
ekψk(x), (5.2.1)
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requires the eigenvalues and eigenfunctions of the correlation function, C(x,x′). To find

these, we formulate Z
Ω
C(x,x′)ψk(x

′)dx′ = ekψk(x) (5.2.2)

using the finite element method.

The solution to equation (5.2.2) can be found numerically using a Galerkin method as

follows. First, we multiply equation (5.2.2) through by a weight function w(x), and then

integrate over x Z
Ω

Z
Ω
C(x,x′)φi(x

′)w(x)dx′dx = ei

Z
Ω
φi(x)w(x)dx.

We discretise the domain Ω into rectangular elements so that now the problem is to find

the eigenvalues and eigenvectors of matrix C. We choose a set of piecewise constant

basis functions V = {ψ1, ψ2, . . . , ψM}, where M = NX ×NY is the number of elements,

and let w(x) ∈ V . Representing C and φi by piecewise constant functions Cp and ϕi,

we have Z
Ω

Z
Ω
Cp(xk,x

′
l)ϕi(x

′
l)ψj(xk)dx

′dx = ei

Z
Ω
ϕi(xk)ψj(xk)dx.

Splitting this equation up element by element gives

MX
k=1

MX
l=1

Cp(xk,x
′
l)ϕi(x

′
l)ψj(xk)

Z
Ωk

Z
Ωl

dx′dx =
MX

k=1

eiϕi(xk)ψj(xk)
Z
Ωk

dx

MX
k=1

MX
l=1

Cp(xk,x
′
l)ϕi(x

′
l)ψj(xk)(∆x∆y)2 =

MX
k=1

eiϕi(xk)ψj(xk)∆x∆y.

If j = k then ψj(xk) = 1, otherwise it is zero. Therefore for each element k,

MX
l=1

Cp(xk,x
′
l)ϕi(x

′
l)∆x∆y = eiϕi(xk).

We can express this equation in matrix form

CΦ = ΛΦ, (5.2.3)

where

Ck,l = Cp(xk,x
′
l)∆x∆y,

Φi,k = ϕi(xk),

Λi = ei.
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The solution of the eigenvalue problem (5.2.3) can be found by finding the eigenvalues

and eigenvectors of the matrix C. The N largest of these can be found using the eigs

function in MATLAB. We note here that MATLAB may not use the best technique

to calculate the eigenvalues and eigenvectors of a matrix and that better methods are

available (Ernst (2009)).

The eigenfunctions of the positive definite symmetric matrix C are orthonormal func-

tions: Z
Ω
φj(x)φk(x)dx = δj,k.

Using this orthonormal property of the eigenvectors,Z
Ω
φk(x)2 = 1.

Discretising this we have

MX
i=1

ϕk(xi)
2
Z
Ωi

dx = 1

MX
i=1

ϕk(xi)
2 =

1

∆x∆y
.

For each i, we have

ϕk(x) =
1√

∆x∆y
.

Therefore, after calculating the eigenvectors, we must divide them by
√

∆x∆y in order

to satisfy the orthonormal property.

The calculated eigenvalues and eigenfunctions can then be put into equation (5.2.1),

along with N random ξi’s, to obtain a realisation of the log transmissivity, Z(x). We

then obtain a realisation of the transmissivity field, T , by taking the exponential of this

field.

5.2.3 Conditioning on measured data

The realisations of the log transmissivity field generated by the above method are based

on an estimation of the covariance structure of the field. We can use measured values

of transmissivity to condition this field. We assume that there is no measurement error

and so the values of transmissivity at the measurement points are the exact values of the
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field at these points. There will be zero variance at the measurement points. The easiest

way of doing this is to set the values of the piecewise transmissivity function to be equal

to the measured value on the elements which include the measurement points. The

methods used condition the transmissivity fields generated by the K-L expansion and

Cholesky methods are described in Chapter 3. The correlation matrix is conditioned so

that the measured values are reproduced in the correct elements, and then the eigenvalue

problem (5.2.3) is solved in the same way as before.

We could also consider that the measurements are independently normally distributed

around their measured value. At the measurement points there will be a small amount

of variance. We could allow for this in the computer model by adding a ‘nugget’ effect.

This may result in a smoother approximation to the transmissivity field, as we allow the

field to move away from the measured values at the measurement points.

5.2.4 Realisations of the log transmissivity field

We can use the derived distributions for θc, θl and θd to generate samples of θc, θl and

θd which represent the distribution structure of θc, θl and θd. From these samples we

can generate a number of realisations for the log transmissivity field using the Cholesky

decomposition. A realisation generated for each model, using the same value of ξ for

each field, are shown in Figure 5.3. We see from plots (a) and (c) that the constant and

depth mean models generate almost identical fields when using the same random vector

ξ, and the linear mean field (b) is similar, although not as much, to both of these. If we

look at the central box, where the boundary of the WIPP site lies, we see that all three

fields are almost identical in this region. This could be due to the comparatively larger

amount of points inside this region than in the surrounding area.

If we examine Figure 4.1, the data seem to suggest larger values of log transmissivity in

the East of the region and smaller values in the West. Comparing the plots in Figure 5.3,

we see that the realisations generated from the constant mean and depth mean models,

plots (a) and (c), do not reflect this East-West trend as much as when using the linear

mean model, plot (b). This leads us to consider that a linear mean as a better fit to

the data, and perhaps to reduce the uncertainty in the hyperparameters and therefore

in the log transmissivity field.
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Figure 5.3: Realisations of the conditioned log transmissivity field (a) constant mean

(b) linear mean (c) depth mean using the same ξ. White indicates high

log transmissivity values and black indicates low log transmissivity values.

Inner box represents the WIPP site boundary.
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Figure 5.4: Head fields corresponding to the transmissivity fields in Figure 5.3 gen-

erated using (a) constant mean (b) linear mean (c) depth mean, with 20

pathlines. White indicates high head values and black indicates low head

values. Inner box represents the WIPP site boundary.
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5.2.5 Realisations of the head field and pathlines

We can also compare how each model for the transmissivity field affects the head field

and pathlines. Realisations of the head field and pathlines generated using the three

log transmissivity fields from Figure 5.3 are shown in Figure 5.4. We see again that all

three models produce similar fields and pathlines. In plot (b), the linear mean produces

a slightly different head field in the northeast of the plot, due to the more pronounced

east-west trend in the corresponding transmissivity plot (Figure 5.3(b)). However, since

the main direction of travel is south, this does not cause a marked effect on the pathlines,

which are also similar for all three models. From this small sample of pathlines, none of

the models appears to show more variability than any of the others. However, there may

be a difference in the time taken to travel along these paths, and this is what we will

investigate by emulating the travel time generated by the computer model in Chapter

6. Before doing so, we want to estimate the errors in the computer model.

5.3 Errors in computer model

The computer model contains errors from three main sources. Firstly there is discreti-

sation error ǫd resulting from approximating the continuous equations with a discretised

domain. There is also an error introduced by truncating the K-L expansion ǫt. The final

source of error is statistical error ǫs arising from solving the equations using a Monte

Carlo method. Each of these errors can be quantified. In this section we discuss the

truncation error and statistical error, and attempt to quantify them.

5.3.1 Truncation error for K-L expansion

As mentioned in Section 3.3.2, the truncated K-L expansion (5.2.1) is used to reduce

the number of degrees of freedom and so the computational cost of calculating the

eigenvalues and eigenvectors. We want to determine the value of N for which we can

capture the most variability in the smallest number of modes. For a 40 by 60 grid, we

have a total of 2400 eigenvalues and eigenvectors. If we were to use all of these, we

would obtain the full variance of the problem and would obtain the same field as that

captured by the Cholesky decomposition. Figure 5.5 plots the variance captured against
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the number of modes for the conditioned covariance matrices using the mean e values

of the constant and linear cases derived in the last chapter.
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Figure 5.5: Number of modes against the amount of variance captured for the con-

stant mean model (blue), and the linear mean model (black). Total vari-

ance for both the linear and constant models are shown by a solid line,

and 90% of the total variance is shown by a dashed line.

We see that the constant mean model captures more variance than the linear mean

model. This is due to the constant mean model having a larger variance in comparison

to the linear mean model; the mean value of ω2 = 6.5 for constant mean and 2 for

linear mean. Therefore, when using the full 2400 modes, the linear mean is capturing

approximately 1.4/2 × 100% = 70% of the variability in its model. This is much more

than the constant model which only captures approximately 1.64/6 × 100% = 25% of

the variability in its model. This suggests that we should use the linear mean model for

the log transmissivity field.

The number of K-L modes to capture 90% of the variance for the constant case is around

500 modes, and for the linear it is around 800 modes. This is large, and so the K-L

expansion may not provide as large a reduction in degrees of freedom as anticipated.

The calculation of the eigenvalues and eigenvectors of the correlation matrix is one of

the most expensive parts of the computer code, and becomes more expensive the more

modes we include. However, as mentioned before, there are faster methods than the

one which MATLAB uses to calculate the eigenvalues and eigenvectors (Ernst (2009)).
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For the purposes of this thesis, we will use a different method to generate realisations of

the log transmissivity field such as the Cholesky decomposition method. This method

generates a field using all 2400 degrees of freedom, and so there is no truncation error.

5.3.2 Statistical error

Due to the uncertainties in the transmissivity field, discussed in Chapter 4, the computer

model needs to be run a large number of times to calculate statistics for the log travel

time given the uncertainties in the transmissivity field and in the hyperparameters of

this field. It will be impossible to run the computer model over the infinite number

of combinations of hyperparameters and transmissivity fields. Therefore we use Monte

Carlo (MC) methods to analyse the computer model. There is a statistical error in

carrying out this analysis, which reduces as the number of samples increases. We want

to quantify and reduce the statistical error as much as possible, while still being able to

carry out the analysis within a sensible computational time.

5.3.3 Computational expense of Monte Carlo methods to calculate

statistics of the WIPP computer model

When using the K-L expansion the eigenvalue problem is solved once for each set of

hyperparameters. To calculate 800 modes on a 40 by 60 grid of the domain, takes

approximately 140 seconds using MATLAB, and is the most expensive part of the com-

puter model. This is not too long, but the calculation needs to be repeated for each

sample of hyperparameters we wish to evaluate the model with. After the eigenvalues

and eigenvectors have been calculated, the computer model takes approximately 0.05

seconds to generate a random log transmissivity field and provide one possible value of

s. It will therefore take approximately 140 + 0.05×M evaluations in order to carry out

a Monte Carlo analysis of the computer model over the space of random variables of the

K-L expansion. This becomes (140 + 0.05×M)×N when the MC analysis is extended

over the space of hyperparameters as well.

For the Cholesky decomposition method, the Cholesky decomposition is solved once for

each set of hyperparameters. This takes approximately 4 seconds for a 40 by 60 grid

using MATLAB, and again, is the most expensive part of the computer model. After
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the decomposition has been calculated, the computer model takes approximately 0.75

seconds to generate a random log transmissivity field and provide one possible value

of s. For this method, it will take 4 + 0.75 ×M evaluations in order to carry out a

Monte Carlo analysis of the computer model over the space of random variables of the

Cholesky decomposition. This becomes (4 + 0.75 ×M) × N when the MC analysis is

extended over the space of hyperparameters as well. When M > 200, this method is

more computationally expensive than the K-L expansion method using 800 modes, but

it does include all 2400 modes.

We note that these times have been calculated for a 40 by 60 grid. If we consider a 80 by

120 grid, the Cholesky decomposition takes around 76.8 seconds, and then generating

the transmissivity field and calculating the travel time a further 1.04 seconds. Therefore

the MC analysis of the computer code would take longer. For even finer meshes, the

times taken will be longer again.

5.3.4 Use of emulator to approximate WIPP computer model statistics

Since M and N are both large numbers, this makes the computer model very expensive

to analyse for either method. Therefore, we are using a Gaussian process emulator

to make the analysis less computationally expensive. The emulator will be used as a

cheap substitute for the computer model when performing MC analysis. The use of an

emulator also introduces an error, but we can also quantify this error.

To build the emulator we need to calculate statistics (such as the mean, median, cdf

etc.) for s = log t given the hyperparameters θ for a small set of hyperparameters. We

choose to use a log transform on the time so that the emulator provides positive travel

times. We are also assuming that, after taking logs, the Gaussian marginal distribution

is appropriate and the relationship between θ and log travel time is linear.

Calculating statistics for each set of hyperparameters involves using a Monte Carlo

analysis to estimate the statistics of interest. We can quantify the statistical error in

estimating the mean travel time given one set of hyperparameters for different values

of M . We also want to estimate the cumulative distribution function F (s) using the

emulator. Again, we need to carry out a MC analysis to find an estimate ÕF (s) of the

distribution function at a small sample of values of s for each hyperparameter. Then
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we can use the emulator to approximate F (s) at those values of s, and then interpolate

between them to provide an estimate of the cumulative distribution function. We can

quantify the statistical error in calculating ÕF (s) for each set of hyperparameters for

different values of M .

5.3.5 Accuracy of the mean log travel time

For one set of hyperparameters, θi, we use the following method to carry out the MC

analysis to find an estimate of the mean log travel time Ê[s|θi].

1. Choose a number of evaluations of the computer model M .

2. Generate M independent realisations of log T .

3. For each realisation of log T find the log travel time s to obtain

s|θi = (s1, s2, . . . , sM ).

4. Approximate the mean log travel time s̄|θi by

Ê[s|θi]M =
1

M

MX
j=1

sj , (5.3.1)

The larger M is, the more accurate our estimate Ê[s|θi]. However, it could become

expensive to provide an estimate of the travel time for each set of hyperparameters this

way. Therefore, we want to calculate the error in our estimate so we can obtain an

accurate estimate within a given tolerance and using a reasonable computational time.

We consider the estimate of the mean travel time given M samples of t, ×E[s|θi]M to be

a random variable. The statistical error ǫs is defined by

ǫs = Ê[s|θi]M − s̄|θi. (5.3.2)

We define a random variable YM by

YM =

√
M

σ

�
Ê[s|θi]M − s̄|θi

�
, (5.3.3)

where σ is the standard deviation of s̄|θi, and FM (s) = P (YM ≤ s) is the cdf of

YM . Given that Ê[s|θi]j , j = 1, . . . ,M are independent random variables each with
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zero mean, positive variance and finite third absolute moment, then the Berry-Esseen

theorem (Feller (1971)) implies that

sup
s∈ℜ

|FM (s) − Φ(s)| ≤ 0.7655
E
�
|(s|θi) − (s̄|θi)|3

�
σ3

√
M

, (5.3.4)

where Φ(s) is the cdf of the standard normal distribution.

Therefore if M ≫ 0.586
E[|(s|θi)−(log t̄|θi)|3]

2

σ6 then YM has the normal distribution and

P

�
|ǫs| ≤ c0

σ√
M

�
= 2Φ(c0) − 1 for c0 > 0.

If c0 = 1.96 then the event |ǫs| ≤ c0
σ√
M

has probability 0.95. We can not calculate σ

directly, but instead can estimate it from the sample standard deviation, σ̂

σ ≈ σ̂ =

�
1

M

MX
j=1

(sj|θi)
2 −×E[s|θi]

2

M

� 1
2

.

We now have an upper bound on the statistical error in the estimate of mean log travel

time given one set of hyperparameters. The rate of convergence is of order M− 1
2 . Table

5.1 gives the statistical error for increasing values of M using the mean values for θi

for the linear case using the Cholesky method. We see that the error decreases as M

Mean estimate, Statistical error, Error in Number of Time,ÖE[s|θi]M |ǫs| ≈ c0
σ̂√
M

estimate, % runs, M secs

4.6264 0.008 0.1729 500 597

4.6099 0.0054 0.1171 1000 1117

4.6059 0.0033 0.0716 2500 2677

4.6025 0.0024 0.0521 5000 5277

4.6053 0.002 0.0434 7500 7877

4.6063 0.0017 0.0369 10000 10477

4.6062 0.0014 0.0304 15000 15677

Table 5.1: Statistical errors of the estimated mean log10 travel time estimate for in-

creasing number of runs of the computer model and the computational

time taken to calculate the estimate.

increases, which is as expected.

We can also consider the running mean values for the mean estimate when deciding what

valueM should take. Figure 5.6 shows the running mean of the log travel time along with
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Figure 5.6: Running means of the estimated mean with statistical error bounds.

statistical error bounds on the mean. We see that the mean levels off after around 7500

iterations. This suggests that we can use the value of the estimated mean log travel

time after 7500 evaluations of the code. This takes approximately 131 minutes and

estimates the mean value with 0.04% error on the mean. The analysis can be repeated

to estimate the mean for a small set of hyperparameters. The results are then used to

build an emulator to estimate the mean travel time given any set of hyperparameters.

The building of this emulator is discussed in the next chapter.

5.3.6 Accuracy of the cumulative distribution of the log travel time

We also need to calculate the accuracy of estimating the cumulative distribution of the

log travel time from MC runs of the code. The sample cumulative distribution function

FM (s) of a variable s can be used to estimate the cumulative distribution function F (s).

It is given by ÕF (s) ≈ FM (s) =

PM
i=1 I(Si ≤ s)

M
.

This is equivalent to random repetitions of a Bernoulli trial. Therefore, as M becomes

large,ÕF (s) → F (s). For finite M , the standard error of ÕF (s) is
È
p(1 − p)/M .

For our computer model, we want to calculate ×F (s|θ) and the standard deviation of this

estimate for a small number of s values. For ease of notation we will use F (s) = F (s|θ)
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and ˆF (s) = ×F (s|θ) from this point. Table 5.2 shows the mean estimate for×F (4.5), along

with the standard deviation of that estimate for increasing number of runs of the code.

estimate of mean s.d of estimate number of runs time, secs

0.36 4.80×10−2 100 181

0.38 2.17×10−2 500 597

0.366 1.52×10−2 1000 1117

0.3802 6.87×10−3 5000 5277

0.3872 4.87×10−3 10000 10477

Table 5.2: Estimate of the mean value of F (s), and standard deviations of these

estimates for s = 4.5, given one set of hyperparameters and increasing

number of runs of the code.

We see that the number of runs to calculate the estimated mean of ÕF (s) with small

standard deviation is much smaller than the number of runs we needed to estimate the

mean of log travel time given one set of hyperparameters. Figure 5.7 shows the running

means of the estimated mean with error bounds for three values of s. The estimates

for the larger and smaller values of s level out after around 1500 iterations, but for the

middle value of s = 4.6, the running estimate levels out after around 2500 iterations of

the code. This suggests that we need about 2000 runs of the code to provide a good
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Figure 5.7: Running means of the estimated mean with error bounds for s =

4.1, 4.6 and 5.1.
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estimate of F (s) for each s, which is faster to converge than the mean of the computer

model output. This could be due to the distribution function lying in [0, 1] and the

mean of s lying in (0,−∞). To run the code 2000 times for one set of hyperparameters

takes approximately 38 mins, and provides the data to estimate F (s) for any value of s.

Table 5.3 shows the mean estimate of ÕF (s), and its standard deviation for 11 values of

s, given one set of hyperparameters, and 2000 runs of the code.

s estimate of mean s.d. of estimate

3.5 0 0

4 0.005 2.23×10−3

4.2 0.043 6.41×10−3

4.4 0.216 1.30×10−2

4.5 0.366 1.52×10−2

4.6 0.509 1.58×10−2

4.8 0.769 1.33×10−2

5 0.905 9.27×10−3

5.25 0.967 5.65×10−3

5.5 0.992 2.82×10−3

6 1 0

Table 5.3: Estimates of the mean values of F (s), and standard deviations of these

estimates for various values of s, given one set of hyperparameters and

1000 runs of the code.

We can repeat this for a small sample of hyperparmeters to obtain estimates of the meanÕF (s), and standard deviation of the mean, for different values of s. The results can then

be used to build an emulator to approximate the cumulative distribution function of the

log travel times. This emulation will be described in the next chapter.



Chapter 6

Emulation of WIPP groundwater

model

We now want to perform uncertainty analysis on the computer model created in Chap-

ter 5. Whilst this computer model does not take a large amount of time to run once,

carrying out uncertainty analysis using a Monte Carlo approach will be very computa-

tionally expensive. If we want to find out how much uncertainty there is in the output

of the computer model, we could run the code for 50000 runs with a different set of

hyperparameters for each run. Running the code 50000 times with a 80 by 120 mesh

would take approximately 45 days, which is a long time for carrying out uncertainty

analysis. We note that our model is not the most complicated model, and that to carry

out the analysis on more complex models of groundwater flow may take longer. As well

as taking a long time, carrying out the Monte Carlo analysis this way does not tell us

about the sources of uncertainty in the model.

In order to find out whether the uncertainty in the output is due to the uncertainty in the

hyperparameters of the log transmissivity field, or to the uncertainty in this field, we need

to run the model a large number of times with each set of hyperparameters. This will give

a sample of outputs for each set of hyperparameters, so we can calculate the uncertainty

in the output when the hyperparameters are fixed, and when they are allowed to vary.

To carry out this analysis for 1000 realisations of the log transmissivity field for each

of 1000 hyperparameters (a total of 1000000 runs) would take approximately 12 days

for a 80 by 120 mesh. For a larger sample of 5000 hyperparameters (or 5000000 runs),
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this would take over 60 days. This is a much longer time for carrying out the analysis.

Therefore we choose to build an emulator to statistically approximate the groundwater

flow code. This much less computationally expensive emulator will then be used in place

of the groundwater flow code when carrying out uncertainty analysis.

In order to build an emulator, we need to run the computer code with a small sample of

inputs to provide data with which to build the emulator. The inputs to the groundwater

flow code are the hyperparameters of the log transmissivity field. To investigate how the

choice of mean function for the log transmissivity field affects the output of the ground-

water flow model, we will emulate the groundwater flow code for the constant, linear and

depth mean hyperparameters and compare the results. A sample of hyperparameters

to be used to train the emulator can be generated using the distributions derived in

Chapter 4. The code can then be run a number of times for each set of hyperparameters

to give a sample of outputs for each of the hyperparameters. Once we have run the code

and obtained our data we can then use this data to build an emulator.

The following section discusses the sampling plan for the hyperparameters, and how the

data is obtained. Then we discuss the emulation of the groundwater flow model. We

wish to emulate several different statistics for the computer model for our uncertainty

analysis. First we will investigate the approximation of the mean log travel time, as

this is the simplest emulator we can build. Once built, the emulator will provide us

with the mean log travel time given any set of hyperparameters. We can use this

emulator to provide us with information on how the mean log travel time varies as the

hyperparameters vary. The next emulator we build will approximate the cumulative

distribution function of the log travel times. This emulator is more complex, but will

provide information about the entire distribution of the log travel time.

6.1 Running the WIPP groundwater flow model

To provide data for training an emulator to approximate the groundwater flow code,

we need to run the code for a small sample of inputs. The general rule is 10 training

points for each dimension of the input space (Loeppky et al. (2009)). This is due to

approximation of the emulator to the true output becoming better as we include more

points. However, as we increase the number of training points the correlation matrix
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in the emulator becomes larger and more expensive to invert. Therefore, the use of 10

values for each input is used. We start by obtaining a latin hypercube sample of θ, from

a sample space consistent with the distributions derived in Section 4.3. The method

for this is described in more detail in the next Section. We then need to decide how

many runs of the code need to be carried out for each set of hyperparameters in the

sample, and run the code accordingly. The output from these runs will be used to create

an emulator to statistically approximate the output from the WIPP groundwater flow

model.

Derive distribution
for θ

Take Latin Hypercube
sample θi, i = 1, . . . , n
from distributions
consistent with f(θ)

Input θi
Repeat for n
samples of θi

Sample ξj ,j = 1, . . . ,M
from N(0, 1)

Calculate Cholesky
decomposition

WIPP
COMPUTER
MODEL

Input ξj

Repeat for M
samples of ξj

Generate a realisation of
the log transmissivity field

Solve head equation

Solve travel time equation
to find si,j = sj |θi

Solve velocity equation

Output si = (si,1, . . . , si,N )

EMULATION OF
MEAN OF OUTPUT

EMULATION OF
CDF OF OUTPUT

Figure 6.1: Flowchart showing the steps for running the WIPP computer model to

obtain data for emulation. The steps in the emulation boxes are shown

in Figures 6.2 (mean emulation) and 6.14 (cdf emulation).
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Figure 6.1 shows a flow chart detailing the steps included in running the computer model

to obtain the data for building the emulators for the mean and distribution function.

The steps in the emulation boxes will be presented later.

6.1.1 Sampling from posterior distribution of the hyperparameters

For building the emulator, we want to have 10 values for each input dimension. In the

constant mean model we have 3 inputs and so require a sample of 30 hyperparameters

θc from the input space Xc . For the linear mean we have two more hyperparameters

and so will need a sample of 50 hyperparameters θl from the input space Xl. The depth

mean will require a sample of 40 hyperparameters θd from the input space Xd.

The sample from the derived distributions for θc, θl and θd must cover the entire range

of values for each input. This is to make sure that the emulator can provide a good

estimate of the output of the WIPP code. To represent the sample space, we take a Latin

hypercube sample from the input space of θc, θl and θd as described in Subsection 2.1.2.

The input space can be split into sections of equal probability to ensure that the areas of

the input space with highest density of input values are represented with more samples

than areas with lower density of input values. However, this may cause problems when

building an emulator, because if the input values are too close together, the correlation

matrix may become nearly singular and therefore nearly uninvertable.

Another way of generating the sample is to split the sample space uniformly into sections

of equal size. This deals with the problem of the input values being too close together,

but may not represent the sample by having too many values away from the areas of

interest in the input space. A compromise between these two is to split the sample space

of each input into quartiles given by their distribution, and then split each quartile up

uniformly. This would make sure that the areas of interest are well represented, whilst

data points will not be too close together. A Latin hypercube sample can then be taken

using the sectioned sample space.

6.1.2 Sample of hyperparameters for the constant mean model

Table 6.2 shows the quartile ranges of the posterior distribution of all hyperparameters

θc = (β, ω2, λ) for the constant mean model. Using the distributions in Table 6.2
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we use the maximin criterion to find a constrained Latin Hypercube sample with the

maximum minimum distance between points in the sample space. We constrain the

sample space so that the sampling design takes into account the correlation between

ω2 and λ discussed in Section 4.3.6. The constraints are needed as it does not make

sense to run the computer model with values outside of the range of ω2 and λ. This is

because the computer model will produce incorrect or no results for some values outside

this range. The constraints were found by looking at Figure 4.9 and finding two straight

lines either side of the correlated sample. The constraint is therefore that the sample of

ω2 and λ must lie in the area between these two lines.

The sampling then takes the form of a rejection sampler, where any samples that include

values of ω2 and λ that do not meet the constraint are rejected and the next sample is

taken. A sampling design for 30 samples of θc is shown in Table B.1. This sampling

scheme achieves the required result that larger values of ω2 are paired with larger values

of λ and smaller values of ω2 are paired with smaller values of λ.

6.1.3 Sample of hyperparameters for the linear mean model

Table 6.1 shows the quartile ranges of the posterior distribution of all hyperparameters

θl = (β, βx, βy , ω
2, λ) for the linear mean model. Using the distributions in Table 6.1

we again use the maximin criterion to find a Latin Hypercube sample of θl. A sampling

design for 50 samples of θl is shown in Table B.2. This sampling design also takes into

account the correlation between ω2 and λ in the same way as the sample design from

the constant model.

6.1.4 Sample of hyperparameters for the depth mean model

Table 6.1 shows the quartile ranges of the posterior distribution of all hyperparameters

θd = (β, βd, ω
2, λ) for the depth mean model. Using the distributions in Table 6.3 we

use the maximin criterion to give a sampling design for 40 samples of θd shown in Table

B.3. Again, this sampling design also takes into account the correlation between ω2 and

λ in the same way as the sample design from the constant model.
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Hyper- Posterior distribution

parameter mean s.d. 2.5 % 25 % median 75 % 97.5 %

β -2.034 1.186 -4.319 -2.738 -2.039 -1.384 0.291

βx -2.69×10−4 6.78×10−5 -3.97×10−4 -3.11×10−4 -2.71×10−4 -2.28×10−4 -1.27×10−4

βy -3.56×10−5 4.99×10−5 -1.33×10−4 -6.28×10−5 -3.59×10−5 -5.90×10−5 6.43×10−5

λ 3001 3604 13.88 1445 2163 3842 12600

ω2 1.956 1.676 0.862 1.230 1.521 2.104 6.366

Table 6.1: Posterior Distributions for the hyperparameters θl including quartile ranges.

Hyperparameter Posterior distribution

mean s.d. 2.5 % 25 % median 75 % 97.5 %

β -4.934 1.645 -8.318 -5.76 -5.012 -4.151 -1.27

ω2 6.479 4.284 2.111 3.537 5.076 8.007 18.23

λ 12390 8380 3098 6340 9635 15820 35340

Table 6.2: Posterior Distributions for the hyperparameters θc including quartile ranges.

Hyper- Posterior distribution

parameter mean s.d. 2.5 % 25 % median 75 % 97.5 %

β -4.872 1.68 -8.509 -5.738 -4.776 -3.955 -1.468

βd -4.98×10−4 3.91×10−3 -9.11×10−3 -2.88×10−3 -1.45×10−4 2.18×10−3 6.47×10−3

λ 10600 7393 815 4816 8714 15030 27790

ω2 5.987 3.846 1.611 3.112 4.885 7.86275 15.85

Table 6.3: Posterior Distributions for the hyperparameters θd including quartile ranges.
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6.1.5 Obtaining data from the groundwater flow code

We can now evaluate the code using the input designs chosen in the previous section.

The number of evaluations for each set of input hyperparameters depends on what we

wish to emulate from the code. In the last chapter we analysed how many runs we would

need for different statistics of interest. To give a good approximation of the mean log

travel time, it was found that we would need approximately 5000 evaluations of the code

for each set of hyperparameters. To approximate the cumulative distribution function

at given values of the log travel time, it was found that we needed approximately 1000

evaluations of the code for each set of hyperparameters.

Therefore for each model, we run the groundwater flow code 1000 times for each cor-

responding sample set of the hyperparameters. We have 10n sets of hyperparameters,

where n is the input dimension, and we evaluate each of these 10n sets, 1000 times giving

1000 × 10n evaluations. Therefore, for the constant model, this involves evaluating the

code 30000 times taking approximately 12.5 hours, whilst for the linear model, the code

is evaluated 50000 times taking approximately 20.8 hours. The depth model will need

40000 evaluations of the code taking around 16.7 hours. It is much faster to evaluate

the code for these small number of runs than to carry out the full Monte Carlo analysis

which, as discussed at the start of this chapter, would take many days.

The runs of the code provide all of the data needed to estimate the statistics such as

mean and cumulative distribution of our outputs. Using the estimated values, we can

now go on to emulate the WIPP groundwater flow model, and use these emulators to

perform uncertainty analysis of the code.

6.2 Emulating the mean log travel time

The simplest statistic to emulate for a stochastic computer model is the mean of the

output. Therefore we start by emulating the mean of the log travel time, s = log t. This

assumes that the relationship between s and θ is approximately linear, and also ensures

that the travel time will always be positive. We obtain a sample from the distribution

for θ to use to run the WIPP computer code to obtain data to build the emulator. The

samples used for the three models are shown in Tables B.1, B.2 and B.3.
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Since we have a stochastic model, we run the code many times for each design point.

This will provide us with a sample of outputs from each input. The mean and variance

of the mean for each sample can then be calculated as described in Chapter 5, and an

emulator for the mean output can then be built with this information.

6.2.1 Mean emulator method

The method for emulating the mean of the stochastic computer model is as follows:

1. Run the computer model a number of times for each of the sets of hyperparameters

of the input design to obtain a sample of travel times for each emulator input point.

Mean emulator ˆ̄S = ηθ

(a) Using the samples collected, calculate an estimate for the mean log travel

time and the variance of this mean for each set of hyperparameters:×E[s|θi] =
1

M

MX
j=1

log ti,j, i = 1, . . . , n,ÙVar[s|θi] =
1

M − 1

MX
j=1

{si,j − E[s|θi]}2 , i = 1, . . . , n.

(b) Build an emulator for ˆ̄s using the estimated mean and variance of this

mean calculated in step 1a and the formulation for emulating stochastic

computer models, described in Chapter 2.3.

2. The mean emulator can then be used to estimate the mean log travel time for any

set of hyperparameters.

A flowchart showing how this method fits in to the whole analysis is shown in Figure

6.2. We can use the mean emulator to investigate the main effects of each of the

hyperparameters, to see which has the most impact on the mean of the output of the

computer model. This can be done by fixing all hyperparameters except one and seeing

how varying this hyperparameter affects the mean of the computer model output. We

can also integrate the emulator over θ to give a mean log travel time with all uncertainty

in the model accounted for. However, this will give us only one value and so may not

be very useful in giving us information about the model.
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Derive distribution
for θ

Take Latin Hypercube
sample θi, i = 1, . . . , n
from distributions
consistent with f(θ)

Input θi
Repeat for n
samples of θi

WIPP
COMPUTER
MODEL

Output si = (si,1, . . . , si,N )

EMULATION OF
MEAN OF OUTPUT

EMULATION OF
CDF OF OUTPUT

Calculate estimates
ˆ̄si and Var[ˆ̄si] from si, i = 1, . . . , n

Build emulator ηS̄(θ) using
θi,i = 1, . . . , n as input design,
and ˆ̄si and Var[ˆ̄si], as output data

Use emulator ηS̄(θ) to estimate the
mean of the computer model, s̄,
given any θ

Figure 6.2: Flowchart showing the steps for emulating the mean of the WIPP com-

puter model output. The steps in the WIPP computer model and cdf

emulation boxes are shown in Figures 6.1 (WIPP computer model) and

6.14 (cdf emulation).
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Before we emulate the mean log travel time, we have to make a transformation to the

hyperparameters, which are the inputs to our emulator. Due to the hyperparameters

varying by different orders of magnitude from each other, we scale the hyperparameters

so that they all lie between 0 and 1. This stops the correlation matrix becoming singular.

The hyperparameters can then be transformed back after emulation for analysis of the

emulator output.

6.2.2 Emulated mean log travel time for constant mean model

We emulate the mean log travel time, s̄ for the constant mean model using 30 sets

of hyperparameters to train the emulator. From this emulator, we can investigate the

effect that each hyperparameter has on the mean log travel time. We do this by fixing

all hyperparameters except one to their mean values. The hyperparameter of interest is

then allowed to vary within the range of its derived distribution, and the change in the

mean log travel time can be plotted against it.

We start by looking at the mean hyperparameter, β of the constant model. Based on

samples of the distribution gained using WinBUGs, the extreme values of this hyper-

parameter lie at around -13 and 1. The mean and 95% bounds of the derived posterior

distribution for ˆ̄S = ηθ are plotted against β in Figure 6.3.

We see that as β increases, the mean log travel time decreases. We would expect this

effect since β is the mean of the log transmissivity field. As the log transmissivity

increases, so does the speed of the groundwater flow, and therefore the travel time

decreases. For the constant model, this decrease in the log travel time is of around 0.2

from the smallest value of β to the largest value. From Table 6.2, we see that 95% of the

distribution for β lies between -8.3 and -1.3. In this range, the values of ˆ̄s mostly stay

the same, at around 4.62, and only decreases by around 0.02 between around β = −3

and β = −1.3. Therefore changing β has an effect on the mean log travel time, but this

is not a large effect for the majority of values of β. We also note that the bounds on

the emulator are very small in the middle region of the plot. This could be due to the

training data for the emulator having very small variances.

Next we investigate the effects of varying the covariance hyperparameters λ and ω2.

Looking at Figures 6.4 and 6.5, it appears that these two hyperparameters both have
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Figure 6.3: Effects of the constant transmissivity field mean hyperparameter, β, on

log travel time.
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Figure 6.4: Effects of the constant transmissivity field correlation length hyperparam-

eter, λ, on log travel time.
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Figure 6.5: Effects of the constant transmissivity field mean variance hyperparameter,

ω2, on log travel time.
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Figure 6.6: Effects of the constant transmissivity field covariance hyperparameters, λ

and ω2, on log travel time.
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a larger effect on the mean log travel time than the mean hyperparameter β. For the

full range of samples of λ the mean log travel time varies by about 0.45, and for ω2

the values vary by about 1. This is more of an effect than β has. We also notice that

both of these figures have very narrow emulator bounds for a section of the values of

that hyperparameter. Narrow bounds like this are usually due to being close to training

points. In this case, it could be due to the correlation between λ and ω2, and the values

at which one was fixed and the other allowed to vary in the figures.

Another problem with fixing λ and ω2 separately at their mean values and then varying

the other is that it does not provide us with a true representation of how the mean log

travel time is affected. This is due to the correlation between λ and ω2 as discussed in

Section 4.3.6. We therefore plot the surface of ˆ̄s as in Figure 6.6. From this figure we

can see that the mean log travel time varies almost linearly in λ and ω. A small sample

from the MC output of WinBUGs for the distribution of λ and ω2 has also been plotted.

The values of log travel time that this sample lies in is between around 4.45 and 4.7,

with most of the values between 4.5 and 4.65. The effect of λ and ω2 together is smaller

than the effect on the mean values of log travel time given by λ and ω2 separately,

and is now similar to the effect of β on the mean. Therefore, for the constant mean

model, the mean and covariance hyperparameters have a similar effect on the mean log

travel time across their whole range. When we consider 95% of the distributions of the

hyperparameters, the covariance hyperparameters have a larger effect.

6.2.3 Emulated mean log travel time for linear mean model

Again, we use the emulator to show the main effects of the hyperparameters on ˆ̄s. We

fix all hyperparameters except one, then run the emulator for a sample of values of the

unfixed value. We then see how the mean log travel time varies with each of the input

hyperparameters. We start with the hyperparameters of the mean in the linear mean

model, β, βx and βy.

The effect of β on the log travel time is shown in Figure 6.7. We see that, as for the

constant model, the mean log travel time decreases as β increases. However, in this

case, the effect that β has is much greater. The range of values for s̄ is around 2.6 for

the full range of β in our MC sample. From Table 6.1, the 95% range of values for β is

between -4.3 and 0.3. For this range of β values, the values of ˆ̄s vary between 5 and 4.5.
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Figure 6.7: Effects of the linear transmissivity field mean hyperparameter, β, on log

travel time.
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Figure 6.8: Effects of the linear transmissivity field mean hyperparameter, βx, on log

travel time.
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Figure 6.9: Effects of the linear transmissivity field mean hyperparameter, βy, on log

travel time.
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Figure 6.10: Effects of the linear transmissivity field covariance hyperparameters, λ

and ω2, on log travel time.
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This decrease of 0.5 is larger than we found for the 95% values of beta in the constant

model. Therefore the mean hyperparameter β has more of an effect on the mean log

travel time in the linear model than in the constant model.

In the linear model, we have two more hyperparameters relating to the mean of the log

transmissivity field. The effects of these are shown in Figures 6.8 and 6.9. Both of these

hyperparameters have less of an effect across their range of values than β, but they still

have an effect. We notice the same trend as for β: as βx and βy increase, the mean log

travel time decreases. For βx, the values of ˆ̄s decrease by around 1, and for βy the values

of ˆ̄s decrease by around 2. When we look at the 95% intervals of βx and βy, we find

that the values of ˆ̄s both change by around 0.5. This means that, for the 95% interval,

βx and βy have a similar effect on the mean log travel time as β.

When we investigate the correlation parameters, we know that we cannot learn much by

looking at these separately, so we consider them together. Figure 6.10 shows a contour

plot of the mean log travel time for λ and ω2. This time, we not not have as much of a

linear trend in log travel time as we observed in the constant model. The range of log

travel times relating to the MC sample of λ and ω2 is between around 3.6 and 4.1. This

is a larger range than for the constant model. It is similar to the effect of the linear

mean hyperparameters, suggesting that for the linear model, all of the hyperparameters

have a similar effect on the mean log travel time.

We notice that for the linear model, there is more variability in the mean log travel

times than for the constant model. This may be because we are considering more

hyperparameters in the linear model, and therefore have introduced more uncertainty

into the model. However, for both models we see that the most important source of

uncertainty is in the covariance hyperparameters. By reducing our uncertainty in these

hyperparameters, we could reduce the effect that this uncertainty has on the mean

output of the computer model.

6.2.4 Emulated mean log travel time for depth mean model

Finally, we emulate the mean log travel time for the depth mean model. We again want

to investigate the effect that each hyperparameter has on the mean log travel time. We

may expect that as in the other two models, the covariance hyperparameters have a
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greater effect on the mean log travel time than the mean hyperparameters.

Figure 6.11 shows the effect of the mean hyperparameter β on ˆ̄s. We see the same effect

of mean log travel time decreases as β increase as when investigating the constant and

linear models. The effect on the mean log travel time is very similar to that produced

when considering a constant model, with a small range of around 0.2 in values of ˆ̄s, and

a 95% range of around 0.03.
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Figure 6.11: Effects of the depth transmissivity field mean hyperparameter, β, on log

travel time.

The hyperparameter βd indicates how much the depth affects the log transmissivity

field, and therefore the log travel time. Investigating its effect on the mean log travel

time may give us information on how much of an effect including the depth data has on

the output of the computer code. We see the effect of βd on the mean log travel time in

Figure 6.12.

When βd > 0, this leads to higher mean log transmissivity fields and so shorter travel

times, which we see in the figure. When βd < 0, the mean log transmissivity fields

are lower, and so the travel times will be longer. This effect is shown on the graph for

−0.005 < βd < 0. When βd < −0.005, the mean travel times reduce again, but not

as quickly as for when βd > 0. However, the general trend is as we would expect with
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Figure 6.12: Effects of the depth transmissivity field mean hyperparameter, βd, on

log travel time.
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Figure 6.13: Effects of the depth transmissivity field covariance hyperparameters, λ

and ω2, on log travel time.
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shorter travel times when βd > 0 and longer travel times when βd < 0. Varying the

value of βd does affect the mean log travel time, but not as much as β. Across the whole

range of values for βd given by the MC output, we see a change of around 0.13 in ˆ̄s. For

the 95% range of βd, there is a only a small range of about 0.05 in ˆ̄s. This suggests that

including this hyperparameter into our model may not have much of an effect on the

mean output.

We now investigate the effect of the covariance hyperparameters on the mean log travel

time. Again, we consider the two hyperparameters together due to their correlation.

Figure 6.13 shows the effect of varying λ and ω2 on the mean log travel time. We see

the same linear trend in the mean log travel time as when considering a constant or a

linear model. The range of ˆ̄s values covered by the MC sample is between around 4 and

5, with most of the values lying between about 4.3 and 4.8. If we compare this to the

range of travel times estimated for β, the covariance hyperparameters have a greater

effect on the travel times than β for the depth model. The range of travel times for the

covariance hyperparameters of the depth model is larger than for the constant model,

but similar to the linear model. This may be because of the addition of the depth term

in the model for the log transmissivity field which introduces more uncertainty than is

in the constant model.

6.3 Calculating the unconditional mean

The emulator can be used to calculate the unconditional mean for each of the three

models. We can run the emulator with 10000 samples of θ from the derived posterior

distributions f(θ), to get a sample of log travel times s. We then integrate out θ using

Monte Carlo integration as described in Section 2.1.1. The results of this integration

are shown in Table 6.4.

Model Mean estimate for log1 0 travel time, Variance of mean estimate,

µ̂s σ̂s

Constant mean 4.6128 0.0027

Linear mean 4.6141 0.7928

Depth dependent mean 4.6313 0.0315

Table 6.4: Unconditional estimates for the mean log travel time.
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As seen in the previous few sections, the variance in the emulated estimates increases

as the number of inputs are increased. The small variances are likely to be due to the

large number of runs of the computer model used to approximate the mean log travel

time for each sample of θ in the inputs. We also notice that the three estimates are very

similar in size, suggesting that there is not much difference between each of the three

models. Therefore the simplest model may be the best as it reduces the complexity and

the computational time, but does not lose as much accuracy when estimating the mean

log travel time.

6.4 Emulating the cumulative distribution of the log travel

time

Using an emulator to provide estimates of the mean log travel time gives limited in-

formation about the log travel time. To find out more about the distribution of travel

times, we could estimate percentiles of the distribution. This could be carried out in

the same way as the mean. In terms of radioactive waste disposal, useful percentiles

are the 5th percentile or the 10th percentile of travel times. These shorter travel times

are of interest, since regulations normally state a minimum number of years that the

radioactive waste would reach the accessible environment.

It may also be useful to find out about the whole distribution of travel times, and not just

the mean or percentiles. Therefore we consider emulating the cumulative distribution

function (cdf) of the log travel time FS(s). The method we propose is more complicated

than estimating the mean or percentiles, but we can use the samples of s obtained when

emulating the mean, so there is no need to run the WIPP computer model again for this

purpose. The distribution function captures all of the uncertainty in the model and so

it provides information about the entire range of model outputs. We note that model

uncertainty is not captured by the distribution function, but by comparing different

models we can see if the choice of models affects the distribution function of the output.

Knowing about the whole range of outcomes, rather than just the mean, is important in

the area of radioactive waste disposal as models are built to help with risk assessments.

For the travel times, the shorter travel times are of interest as we wish to know the

fastest time that radionuclides could enter the environment. Distribution functions of



Chapter 6. Emulation of WIPP groundwater model 147

the travel times were part of the evidence used by the US D.O.E. to satisfy the US

Enviromental Protection Agency that the WIPP disposal site would comply with the

guidance and standards for the management and disposal of radioactive waste (U.S.

D.O.E. (2004)). Therefore, emulating the distribution function is useful in the field of

radioactive waste disposal.

For this second emulation method, we are no longer approximating a computer model

with an emulator, but instead using the emulation methodology to approximate a func-

tion F (s). We can consider this function unknown in the same way that we can consider

the output of a computer model unknown. Therefore we can treat it in a similar way,

with a sample from the distribution of inputs and uncertain outputs arising from these

inputs. In this case, s is no longer a control variable, but an input to the function. We

use the sample of s from our earlier runs of the model, along with the fact that s is

conditional on θ to estimate F (s|θ) for any (s,θ). Therefore, it is possible to build a

conditional emulator to estimate F (s|θ) which can then be integrated over θ to give an

estimate for F (s).

Using the output data, we can find an approximation to the conditional cdf of the travel

time and the hyperparameters:

F̂S|Θ(s|θ) =
NrunsX
i=1

I(si ≤ s)

Nruns
= p, (6.4.1)

where I is an indicator function equal to 1 when si ≤ s and 0 otherwise. This cdf is

an estimate of FS|Θ(s|θ). We note that (6.4.1) is equivalent to random repetitions of a

Bernoulli trial and therefore it has variance

Var[F̂S|Θ(s|θ)] =
p(1 − p)

Nruns
. (6.4.2)

As Nruns → ∞, F̂S|Θ(s|θ) → FS|Θ(s|θ).

We would like to find the marginal distribution FS(s) using the integral

FS(s) =
Z
FS|Θ(s|θ)fθ(θ)dθ. (6.4.3)

However we only have an approximation to FS|Θ(s|θ), and a Monte Carlo sample from

the distribution fθ(θ); θ1, . . . ,θNsample
. Therefore, we estimate the integral using Monte

Carlo integration:

F̂S(s) =
1

Nsample

NsampleX
i=1

F̂S|Θ(s|θi). (6.4.4)
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The sum (6.4.4) simplifies the problem of finding the marginal distribution for FS(s).

However, we still do not have all of the information needed to be able to calculate it.

From the output data, we can only calculate F̂S|Θ(s|θ) for the small sample of θ that

the sample was obtained from. In order to calculate (6.4.4), we need to be able to find

F̂S|Θ(s|θ) for any value of θ.

Therefore we use another emulator, ηS|Θ(s|θ), to approximate F̂S|Θ(s|θ). This condi-

tional cdf emulator η(s|θ) will be built using the same Latin hypercube sampling design

for θ as when we emulated the mean of the log travel times, with a sample of s values

included. We do not know what values of s the cdf of FS(s) will include, so the s values

are chosen to be evenly spread between 0 and 10 to give a wide range of values. The val-

ues of s are then simply shuffled and then added to the Latin hypercube design. Whilst

this may not give us the best maximin design that we desire, it means that the computer

code does not need to be run again for this problem. The output data for building this

emulator will be the estimates of F̂S|Θ(s|θ), given each (s,θ), and the variance of these

estimates (6.4.2).

For any given (s,θ), the emulator will provide a distribution for ηS|Θ(s|θ) with a mean

m∗(s|θ) and variance σ̂2c∗(s, s|θ). The emulator can be used as an approximation to

F̂S|Θ(s|θ), and the variance of the emulator gives the variance of this approximation.

Therefore we can estimate (6.4.4) as

F̂S(s) =
1

Nsample

NsampleX
i=1

E
�
ηS|Θ(s|θi)

�
=

1

Nsample

NsampleX
i=1

m∗(s|θi). (6.4.5)

To calculate (6.4.5) for a large number of s values may also be very computationally

expensive. We choose to build a second cdf emulator ηS(s) to approximate F̂S(s). This

marginal cdf emulator will allow us to approximate F̂S(s) given any value of s. The

sampling design to build this emulator will be a small sample of s values between 0 and

10 . The output data from this sample of inputs can be found using (6.4.5). We also

need to know the variance of this output in order to build the marginal cdf emulator.
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This variance is given by

Var
�
F̂S(s)

�
=

1

Nsample

NsampleX
i=1

Var
h
η

S|Θ
j (s|θi)

i
+

1

Nsample

NsampleX
i=1

{E
�
ηS|Θ(s|θi)

�
− ηS|Θ(s|θi)}2

=
1

Nsample

NsampleX
i=1

{σ̂2c∗(s, s|θi)}

+
1

Nsample

NsampleX
i=1

{m∗(s|θi) − ηS|Θ(s|θi)}2. (6.4.6)

The emulator ηS(s) can then be used to approximate FS(s) for any value of s, and

therefore we can construct an approximate cumulative distribution function using this

emulator. The cumulative distribution function provides us with information about the

distribution of travel times, which we did not know when we considered just the mean

of the log travel times.

6.4.1 Summary of method for emulating the cdf of the log travel time

The full method of approximating the cumulative distribution function of the log travel

time can be summarised as follows:

1. From the data obtained from our runs of the code, we can build an emulator

ηS|Θ(s|θ) to approximate the cumulative distribution function FS|Θ(s|θ).

Conditional CDF emulator ηS|Θ

(a) Using the output data from the runs of the computer code, calculate

F̂S|Θ(s|θ) using (6.4.1) for each (s|θ).

(b) Calculate the variances of each F̂S|Θ(s|θ) using (6.4.2).

(c) Use the input design, estimates of F̂S|Θ(s|θ) calculated in step 1a, and

variances of these estimates calculated in step 1b to build a conditional

cdf emulator ηS|Θ(s|θ) to approximate F̂S|Θ(s|θ) given any (s|θ)

2. We then use this conditional cdf emulator to approximate the marginal distribution

F̂S(s) using (6.4.5). To carry out this sum for a large number of s values may also
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be computationally expensive so we will evaluate (6.4.5) at a small sample of s

values. Then we interpolate between these values using a second marginal cdf

emulator ηS(s) which will approximate the marginal distribution F̂S(s) given any

s.

Marginal CDF emulator ηS

(a) Using the conditional cdf emulator ηS|Θ, calculate F̂S(s) at the small

sample of s using (6.4.5), and the Monte Carlo sample from the distri-

bution fθ(θ).

(b) Calculate the variances of each F̂S(s) using (6.4.6).

(c) Use the input design, estimates of F̂S(s) calculated in step 2a, and vari-

ances of these estimates calculated in step 2b to build a marginal cdf

emulator ηS(s) to approximate F̂S(s) given any s

3. The marginal cdf emulator ηS can then be used to construct an approximate

cumulative distribution function, and can be plotted against s.

A flowchart showing this method and how it fits into the whole analysis is shown in

Figure 6.14. As when we emulated the mean, we scale all of the input variables of the

emulator ηS|Θ to lie between 0 and 1 so that the correlation matrix does not become

singular due to the different scales of the hyperparameters. We do not need to make

this transformation when building the emulator ηS since the values of s are only in

one dimension and evenly spread and so we do not have the same problems as when

emulating a function of θ.

6.5 Emulation issues

Emulating the cumulative distribution function for the log travel times is more compli-

cated than emulating the mean. Firstly, we have the problem that the emulator output

is constrained to lie between 0 and 1. We can solve this problem by transforming the

data from [0, 1] to R, then emulating and then transforming the emulator outputs back

to [0, 1]. We need to find an appropriate function and its inverse to carry this out.

This transform may have its own problems if the transformed data is not smooth. The

emulator would then perform badly, since its main assumption is a smooth relationship
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Figure 6.14: Flowchart showing the steps for emulating the distribution function of

the WIPP computer model output. The steps in the WIPP computer

model and mean emulation boxes are shown in Figures 6.1 (WIPP com-

puter model) and 6.2 (mean emulation).
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between the data. In this case, we try a different approach of using more design points.

This will reduce the amount of the emulated surface that lies outside [0, 1], but we will

still have some values outside this space.

The second issue we need to consider is the scale of each of the hyperparameters when

calculating the smoothing parameters. The algorithm to calculate the smoothing pa-

rameters by maximising the posterior mode depends very much on the starting values

that it is given. Therefore, an appropriate scaling is needed when each hyperparame-

ter varies from the others by many orders of magnitude. We also have the additional

problem of the convergence time of the algorithm when the number of design points is

large. In this case we can choose the smoothing parameters manually and use a cross

validation procedure as described in Section 2.3.4 to improve our choice.

In the next few sections we will discuss how to deal with the problems of constraining

the output, using more design points and estimating the smoothing parameters. We

will illustrate these issues by considering the reduced problem of emulating the cdf

with only one hyperparameter. In this example, we arbitrarily choose to fix all the

hyperparameters except λ. This reduced example means that we are only emulating a

two dimensional function of s and λ and so the resulting surface can be visually compared

with that obtained from the Monte Carlo runs of the code at each training point λi.

This surface can then be integrated over the distribution of λ at a small number of

points to provide us with data for the second emulator. A second emulator is then built

from the data collected from the first emulator. This second emulator provides us with

an approximation for the cumulative distribution function of log travel times, with all

uncertainty in λ and in the log transmissivity field integrated out.

6.5.1 Constraining the emulator output to lie in [0,1]

The main issue of emulating a cumulative distribution function is that when the emula-

tors are evaluated with new values away from the design points, the emulator outputs

may lie outside [0,1], which we do not to happen. To solve this problem, we can trans-

form the data from [0,1] to R, then emulate. The emulator is then run with a sample of

inputs, then the output is transferred back onto [0,1]. This is achieved by using a scaled

error function and its inverse in the following way.
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For the first emulator ηS|θ, we let the data F̂ (s|θ) = p where p ∈ [0, 1]. Then to

transform this data to R, we can use the standard normal quantile function:

y = Φ−1(p) =
√

2erf−1(2p − 1), p ∈ [0, 1],

where

erf(x) =
2√
π

Z x

0
e−t2dt.

Once the function has been emulated in R, the emulator outputs y = ηS|θ can then be

transformed back into [0,1] using the standard normal cumulative distribution function:

p = Φ(y) =
1

2

�
1 + erf

�
y√
2

��
, y ∈ R.

To evaluate the estimate F̂S(s) and its variance, the equations (6.4.5) and (6.4.6)

need to be changed to reflect the transformation of the data. Noting that after the

transformation, the emulator η
S|Θ
j (s|θi) is not an approximation to FS|θ(s|θ), but to

GS|θ(s|θ) =
√

2erf−1(2FS|θ(s|θ) − 1), the estimate (6.4.5) becomes

F̂S(s) =
1

Nsample

NsampleX
i=1

�
1

2
+

1

2
erf

�
m∗(s|θi)√

2

��
. (6.5.1)

The variance (6.4.6) then becomes

Var[F̂S(s)] =
1

Nsample

NsampleX
i=1

�
1

2
+

1

2
erf

�
1√
2

n
σ2c∗(s, s|θi) +

�
m∗(s|θi) − η(S|Θ)(s|θi)

�2o��
.

(6.5.2)

We can carry out the same transformation when building the second emulator ηS , but

with data F̂ (s) = p. In this case we do not need to evaluate an integral, so the emulator

outputs can be transformed back directly. These transformations of the data ensure

that our approximation to the cumulative distribution function of the log travel time do

not lie outside the interval [0,1].

One problem that can occur when emulating a transformed data set is that the trans-

formed data may not be as smooth as the original data. We see this in our reduced ex-

ample of emulating the surface F (s|λ). In our example, we run the computer code with a

sample of 40 values of λ from f(λ) with all other hyperparameters fixed. From these runs

we obtain a sample of 1000 log travel times, s|λi = (s1|λi, . . . , s1000|λi), i = 1, . . . , 40.

We can construct approximate cdfs for each λ in our sample set from these samples.
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These cdfs may not be smooth since they are estimated from a MC run of the code.

This problem is solved by estimating the cdf using density estimation methods, and the

MATLAB statistics toolbox contains a function ksdensity to enable us to do this. We

also expect the cdfs to be smooth between values of λi as values of λ closer together

should produce similar cdfs. This smoothness in each direction enables us to build an

emulator ηS|Λ(s, λ) to approximate F (s|λ).
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Figure 6.15: Contour plot F̂ (s|λ) obtained from (a) MC runs of the code and

(b) transformed contour plot Ĝ(s|λ).

Problems occur when we transform the surface from [0, 1] to R. The first difficulty is

that we cannot deal with infinities when coding in MATLAB. Therefore the mapping of

0 to −∞ and 1 to ∞ needs to be changed slightly. We get around this numerical issue by

adding a small number to the data when F̂ (s|λ) = 0, and subtracting a small number

to the data when F̂ (s|λ) = 1. The second issue is of the surface becoming rougher

when it is transformed. Figure 6.15 shows the MC surface F̂ (s|λ) and the transformed

surface Ĝ(s|λ). We see that the transformed surface is much rougher than the original

surface along the right-hand side of the transformed cdf in the λ direction. An emulator

may have a problem approximating this rough surface. The original surface is much

smoother in the λ direction. This roughness is only a problem when we are considering

any of θ as the inputs to the emulator. The second emulator that we build for s only

will not have the same problems, since the cdfs in the s direction are much smoother..

Therefore, for the first emulator in this example, we need to find a way of constraining

the surface to lie between 0 and 1 without transforming the data, if possible.
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6.5.2 Using more design points

One way to improve the approximation of the emulator to the true function is to increase

the number of design points. This can be restricted in the θ direction, as it may be too

computationally expensive to run the computer code many times for the added data

points. However, since we have run the computer model a number of times for each

hyperparameter, we are able to have as many design points in the s direction, for each

design hyperparameter θ, as we wish, without having to obtain any more information

from the computer model. We can therefore build the emulator with more data, and so

the approximation to the function we are trying to emulate will be better.

For each set of hyperparameters, we have used the runs of the code to construct an

approximate cumulative distribution function. Therefore, for any (s,θi), we can find an

approximation to F (s|θi), along with an associated variance of F (s|θi). For the example

we have been looking at, we can increase the number of design points in the s direction

and then estimate FS|Λ(s|λi), and the variance of this estimate Var[FS|Λ(s|λi)], at each

of these design points. This data can then be used to build the emulator. As we increase

the number of points in the s direction, the approximation to the Monte Carlo surface

will improve, and a smaller amount of the surface will lie outside of [0, 1]. We can see

the effect of increasing the number of design points in the s direction in Figure 6.16.

When only a few values of s are used in the input design, the emulator is not as good

an approximation to the true surface as when more points are included. The emulator

overshoots and some of the surface lies outside the interval [0, 1]. As the number of

points is increased, the emulator is tied down in more places, and so we see a better

approximation to the true surface and less of the surface outside the required region.

Therefore, the more points we use, the better our approximation. However, we do not

want to use too many points as the correlation matrix will become close to singular if

two points are too close together, which is more likely to happen as we introduce more

points.

In our example, we choose to sample 20 values of s for each λi. We therefore have 800

training points with which to build our emulator ηS|Λ(s|λ). We build the emulator using

the formulation for emulating stochastic models. The resulting mean surface is shown

in Figure 6.17 along with the surface obtained using the MC data from the runs of the

code.
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Figure 6.16: Mean emulated contour plots ηS|Λ(s|λ) with (a) 1 sample of s for each

λi (Latin Hypercube), (b) 2 samples of s for each λi, (c) 4 samples of s

for each λi and (d) 8 samples of s for each λi.

We can see that the emulated conditional cdf is a good approximation to the cdf obtained

from MC runs of the computer code. This is due to the large number of design points

used to build the emulator. We can plot the residual error between the emulated and

MC surfaces (Figure 6.18) to see how large the error between these values is.

We note that most of the errors between the mean of the emulator and the Monte Carlo

output we are trying to emulate are close to zero. The larger errors are along the areas

where there is a large amount of change in F (s|λ). Where the surface changes by a large

amount over a small spatial region, we may expect the emulator to not perform as well

since the emulator is based on an assumption of smoothness. As the emulator smoothes

through the data points, the emulator may slightly over, or under, shoot the function

it is trying to approximate. We notice that the undershooting is mostly in the region

where F (s|λ) = 0, and the overshooting is in the region where F (s|λ) = 1. Using more

design points in our emulator reduces this effect, but does not stop it entirely. We need

to be careful and check the errors are small. When we integrate over λ to build the

second emulator, the errors in the first emulator average out to be very small. These
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Figure 6.17: Contour plot F̂ (s|λ) obtained from MC runs of the code (a) and

mean emulated contour plot ηS|Λ(s|λ) (b).
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Figure 6.18: Residual error contour plot between F̂ (s|λ) obtained from MC runs of

the code and mean emulated surface ηS|Λ(s|λ).
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Figure 6.19: CDF for log travel times with all uncertainty in λ and Z(x) integrated

out (all other hyperparameters fixed).

slight errors can be fixed by adjusting the data F̂S(s) to lie within the interval [0, 1].

To complete our example of emulating the cdf of s with all hyperparameters fixed,

we integrate the emulator over f(λ). To do this for all values of s would be very

computationally expensive. Therefore, we choose a small sample of s and then calculate

an estimate F̂ (s), and the variance of F̂ (s), by integrating the emulator over λ at each

of these s values. We then use this information to build a second emulator which

approximates F (s) for any s. This emulation of the cdf is shown in Figure 6.19, along

with a cdf estimated using MC methods on the output of the computer model. We

see that the emulator is a good approximation to the MC output. The time taken

to calculate the cdf using the emulator was much faster than when using Monte Carlo

methods. Including running the code to obtain data, the emulator took around 18 hours

to provide an approximation to the distribution function, whereas the MC sample took

around 10 days to obtain.
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6.5.3 Using a different prior mean for the emulator

Whilst increasing the number of design points in the s direction provides a better ap-

proximation to the distribution function, it also increases the computational cost of

building the emulator. As we increase the dimensions of the problem to include all of

the hyperparameters θ, we may still have problems with the emulator generating values

outside the range [0, 1], and tending towards the linear prior,

E[η(θ, s) | β] = h(θ, s)T β, (6.5.3)

away from the design points. This leads us to consider the use of an alternative prior

mean for the emulator.

A more suitable prior mean would be a monotonic, non-linear function with the same

properties as a distribution function. The simplest prior mean to use would therefore

be the Gaussian distribution function:

E[η(s) | µ, τ ] =
1

2

�
1 + erf

�
s− µ√

2τ

��
. (6.5.4)

We no longer have a regression problem, where we had to estimate the regression coef-

ficients, β. Instead, we need to estimate µ and τ of this function in order to determine

the prior mean. Since these two parameters relate to the mean and standard deviation

of a distribution function, we propose that they be estimated from the samples of log

travel times collected from the computer model at each of the design points. We see the

estimation of these parameters from these output samples as no different to obtaining

estimates for β for the previous mean function. We also note that, for each design point

θ, the estimates µ̂ and τ̂ may vary and so we need to determine µ̂(θ) and τ̂(θ). The

prior mean, (6.5.4), will therefore become

E[η(s|θ) | µ = µ̂, τ = τ̂ ] =
1

2

�
1 + erf

�
s− µ̂(θ)√

2τ̂(θ)

��
= h(s|θ). (6.5.5)

To demonstrate the effect of each of the two prior means on the emulator output, we

can use the values of s obtained from one λ and compare the use of the two prior

mean functions in estimating the distribution function(Figure 6.20). We see that away

from the design points, the functions revert back to the prior mean. Whilst this is not
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Figure 6.20: Effect of prior means away from data points. Plot (a) shows a linear

prior mean and plot (b) shows a Gaussian distribution function as the

prior mean.
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too much of a problem in one dimension, when fitting the surface in more than one

dimension, it is more important that the prior gives a good fit to the data as there is

more space between data points. For the linear prior mean, this means that much of the

surface may not be close to the true surface, unless a large number of design points are

used. For the Gaussian distribution function prior, with mean and variance estimated

from the data as described above, much more of the surface will be closer to the true

surface, and fewer data points will be required. The emulator should then provide a

better approximation to the true surface between the data points.

The estimates µ̂(θ) and τ̂(θ) are obtained from mean and standard deviation of the

sample at each θi, i = 1, . . . ,M :

µ̂(θi) =
1

M

MX
j=1

sj |θi,

τ̂(θi) =

Ì
1

M − 1

MX
j=1

(sj|θi − µ̂(θi))2. (6.5.6)

The standard errors of µ̂(θi) and τ̂(θi), ǫM and ǫS respectively, can be found using

(Lehmann and Casella (1998))

ǫM (θi) =
τ̂(θi)√
M

,

ǫS(θi) =
τ̂(θi)È

2(M − 1)
. (6.5.7)

In order to use h(s|θ) in the emulator equations, we will need to know µ̂(θ) and τ̂(θ)

at any point θ, not just at the design points θi. Since these are estimates for use in our

prior function, it is not too important to know the exact value at any point, so a smooth

interpolation can be used to obtain the general trend of these parameters throughout

the θ space. Therefore, we can use a spline or kriging interpolator to approximate these

values.

Since we have a different mean, we need to reformulate the emulator equations we

derived in Section 2.3. Here we have (s,θ), instead of t. To simplify the notation in the

following equations, we will use s = (s|θ). We start by providing a new prior for the

data vector y. Instead of the distribution (2.3.6), we now have

y|σ2, µ, τ ∼ N(h, σ2A), (6.5.8)
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where hT = (h(s1), . . . , h(sn)), and σ2 and A are the same as before. This data is then

used to update the prior distribution of η in the same way as in Section 2.3.2 to give

η(.)|y, σ2, µ, τ ∼ N
�
m∗(.), σ2c∗(., .)

�
, (6.5.9)

where

m∗(x) = h(x) + t(x)TA−1(y − h),

c∗(x,x′) = c(x,x′) − t(x)TA−1t(x′)

t(x)T = (c(x,x1), . . . , c(x,xn)) .

The terms µ = µ̂, τ = τ̂ will be ignored from this point on, as we are estimating these

from the data y. We will now concentrate on removing the conditioning on σ2, which

cannot be specified beforehand. As in Section 2.3.3, we want to obtain the posterior

distribution η(.)|y by integrating out σ2 from

f(η(.), σ2|y) = f(η(.)|y, σ2)f(σ2|y).

The first term on the right hand side is given by (6.5.9). We can find the second term

up to proportionality using

f(σ2|y) ∝ f(y|σ2)f(σ2).

We use a similar weak prior mean for σ2 as before; f(σ2) ∝ σ−2. Combining this

with the likelihood function for y obtained from (6.5.8), we have the inverse gamma

distribution:

f(σ2|y) ∝
�
σ2
�−n

2
−1

exp
§

1

2σ2
(n− q − 2)σ̂2

ª
, (6.5.10)

where

σ̂2 =
(y − h)TA−1(y − h)

n− q − 2
. (6.5.11)

Combining the prior (6.5.9) with (6.5.10), we get the normal inverse gamma distribution:

f(η(.), σ2|y) ∝
�
σ2
�− (n+2)

2
−1

exp
§
− 1

2σ2

�
c∗(., .)−1 (η(.) −m∗(.))2 + (n− q − 2)σ̂2

�ª
.

Integrating out σ2, we obtain

η(s) −m∗(s)

σ̂
È
c∗(s, s)

∼ tn−q. (6.5.12)
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We can use this new formulation to provide us with a distribution for the output of the

computer code with a prior mean given by (6.5.5).

To illustrate the use of the Gaussian distribution function as a prior, we now go back

to the two dimensional example of emulating the surface F̂ (s|λ). We will estimate µ(λ)

and τ(λ) and their standard errors from the output data. For each λi, i = 1, . . . , 40,

we have a sample of 1000 log travel times. For each of these samples, we can estimate

values of µ and τ . Then, we use spline interpolation to predict the values of µ̂ and τ̂

between the data points. The results of this are shown in Figure 6.21. In plot (a) the

100 9000
4.5

5

5.5

λ

µ

(a)

100 9000
0.1

0.2

0.3

0.4

0.5

0.6
(b)

λ

τ

<

<

Figure 6.21: Interpolation of (a) µ̂ and (b) τ̂ . Circles indicate the estimated values

at the design points λ.

circles are the estimates of µ̂ given from the each of the computer code runs using λ.

The interpolation through these estimates is given by the solid line µ̂. Since these values

are estimated from data, and have an associated standard error, the interpolation does

not pass through the estimated values, but provides the general trend of µ̂ to inform

our prior mean. We see that the interpolated line is similar in shape to the shape in the

contour plot in Figure 6.17(a) obtained from MC runs of the code. Plot (b) in Figure

6.21 shows the estimated and interpolated values for τ̂ . Again, the interpolation does

not pass through the data points, but provides a smooth approximation to τ̂ given the

estimated values and their standard errors. These approximations can then be used in

the emulator equations for the prior mean function.
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Given the estimated values of µ̂ and τ̂ , we can repeat the emulation of F (s|λ) using our

new prior mean. Figure 6.22 shows the mean of the emulator ηS|Λ(s|λ) using increasing

numbers of design points. We can compare these plots with those in Figure 6.16 where
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Figure 6.22: Mean emulated contour plots ηS|Λ(s|λ), using the Gaussian distribution

function as a prior, with (a) 1 sample of s for each λi (Latin Hypercube),

(b) 2 samples of s for each λi, (c) 4 samples of s for each λi and (d) 8

samples of s for each λi.

a linear prior mean was used. We see that all of the approximations are better than

when using the linear prior mean, even in plot (a) where we have a latin hypercube

sample. We also notice that, as before, the approximation improves when more samples

are taken in the s direction for each λi. The values to the left and right edges of each

plot in Figure 6.22 are 0 and 1 respectively, due to the prior mean being 0 and 1 at these

edges. This is an improvement to the linear prior where the emulator strayed back to

the prior mean outside of the data points. We can use this improvement to sample most

of the values of s for each λi in the area where there is the most change in the surface,

and only have a few points outside of this area. In this way, we can reduce the number

of design points and so reduce the computational cost of building the emulator.

We finish this example building an emulator built using 16 samples of s for each λ. The
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resulting distribution function after this emulator has been integrated over λ is shown in

Figure 6.23. If we compare this plot with Figure 6.19, we see that by using the Gaussian

distribution function as our prior mean for the emulator, the approximation to the MC

estimate has been improved.
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Figure 6.23: CDF for log travel times using a gaussian distribution function prior with

all uncertainty in λ and Z(x) integrated out (all other hyperparameters

fixed).

6.5.4 Estimating the smoothing parameters

The final issue is how to estimate the smoothing parameters. This becomes more difficult

as we increase the dimension of the input sample space. In Section 2.3.4, two methods

were described to estimate the smoothing parameters; maximising the posterior mode,

and using cross validation. Maximising the posterior mode is simple when using an

optimisation algorithm. However, the results that the algorithm provides depend very

much on the starting values that are given to the algorithm. Since the hyperparameters

vary by a number of orders of magnitude, we need to make sure that the smoothing

parameters are scaled appropriately so that the correlation matrix does not become

singular. Again we use s = (s|θ) to simplify the notation. In the following equations, the

simplification, s = (s1, s2, . . . , sk) where s1 = s and s2, . . . , sk are the hyperparameters
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θ. For example, in the constant mean case, s = (s, β, ω2, λ)

The correlation matrix has terms

c(s, s′) = exp{−(s − s′)TB(s− s′)}

where s is a design point. Since B is a diagonal matrix, the term inside the exponential

is given as

−
nX

k=1

(sk − s′k)
2Bkk, (6.5.13)

where Bkk is a different smoothing parameter for each of the parameters that the emu-

lator is built from. Therefore for the constant mean case, 6.5.13 becomes

−(s− s′)B11 − (β − β′)B22 − (ω2 − ω2′)B33 − (λ− λ′)B44, (6.5.14)

and we want to determine the smoothing parameters Bkk, k = 1, . . . , 4.

For the correlation matrix to be non-singular, we need Bkk ≈ O
�

1
(sk−s′

k
)2

�
, k = 1, . . . , n.

However, we may still run into problems as the range of distances (sk − s′k) may also

run over several orders of magnitude, and so we may find it difficult to choose a value

to scale Bkk with. We can simplify this by scaling the hyperparameters so that they all

lie within [0, 1]. This is done using

sk − skmin

skmax − skmin

, k = 1, . . . , n.

Therefore if we apply this scaling to (6.5.13), we get

−
nX

k=1

1

(skmax − skmin)
2 (sk − s′k)

2Bkk.

We now require Bkk ≈ O
�
(skmax − skmin)

2
�
, k = 1, . . . , n for the correlation matrix to

be non-singular. Since we know skmax and skmin, k = 1, . . . , n from the design points,

the scaling of the smoothing parameters is easier to apply.

For the example we have been looking at, the correlation matrix with λ and s scaled to

[0,1] has terms

−
�

1

(λmax − λmin)
2 (λi − λj)

2B11 +
1

(smax − smin)
2 (si − sj)

2B22

�
.

We know that λmin = 100, λmax = 9000, and we have set smin = 2, smax = 8. Therefore,

we can make sure that the smoothing parameters B11 and B22 are of the correct order.
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We can then choose suitable starting values for our algorithm which maximises the pos-

terior mode. When the number of design inputs of the emulator increase, the algorithm

takes longer to run and find the optimal values for the smoothing parameters. In this

case, we choose smoothing parameters using a cross validation procedure as described

in Section 2.3.4.

In the next sections, we will extend the previous simple example to include the uncer-

tainty in all of the hyperparameters for each of the three mean models of log transmissiv-

ity. By estimating the cumulative distribution function for s, with all other uncertainty

in the model integrated out, we can compare how the different assumptions on the prior

mean of the log transmissivity field affect the log travel time.

6.6 Emulated cdf for the constant mean model

We now approximate the cumulative distribution for s for the constant model. If we use

the same data collected from the computer model as we used to emulate the mean log

travel time, then we do not have to run the computer model any more to approximate

the distribution function. Therefore, we have 30 design points in Xc, the sample space

of θc, and 1000 sample of s for each of these points. For each of the design points, we

include 20 values of s, to give us a total of 600 design points across the four dimensional

space (s,θc). This four dimensional space means that we cannot plot the first emulator

surface ηs|θc . We can however, plot slices through the surface in each of the three

directions, β, λ and ω2. We have scaled the hyperparameters and s so that they all lie

in [0, 1]. The scaled parameters are given the notation β′, λ′, ω2′, s′. Slices taken by fixing

two of the scaled hyperparameters at 0.5 and allowing the other scaled hyperparameter

and s′ to vary are shown in the first three plots in Figure 6.24. The fourth plot takes

into account the correlation between λ′ and ω2′, by fixing β′ only and letting λ′ = ω2′.

In the slice through β′, s in plot (a), we see the values on the left are zero, and on the

right are 1 with a monotonic increase from left to right, as we would expect from a

distribution function. From the sampling design in Table B.1, we have that β′ = [0, 1]

relates to β = [−8.625,−0.939]. The shape of the plot is similar to the shape in Figure

6.3 between these values of β. Plot (b) gives a slice in the λ′, s′ direction. We see that

the surface is not as smooth as plot (a). In plot (c) we have a slice through the ω2′, s′
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Figure 6.24: Slices through mean of emulator ηs|θc using a constant model (a)

λ′, ω2′ = 0.5, (b) β′, ω2′ = 0.5, (c) β′, λ′ = 0.5, (d) β′ = 0.5, λ′ = ω2′.
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Figure 6.25: Estimated cumulative distribution function for log travel time using a

constant model.
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directions. This plot suggests that there is no difference in the distribution function

as we change ω. We also note that the shape of the surface is similar to that across

β′ = 0.5 in plot (a). This leads us to the conclusion that ω does not affect the distribution

function of the output as much as λ and β. Due to the correlation between λ and ω2, we

would like to consider these hyperparameters together and so we show a slice through

λ′ = ω2′, s′ in plot (d). There is not much difference in this plot to plot (b). Again, the

values lie in [0,1] and we have a monotonically increasing function from left to right.

The first emulator is then integrated over θc at a small sample of s. Figure 6.25 shows the

cumulative distribution function for s constructed using this method, and that obtained

from a MC sample of 10000 runs of the original computer code. We see that the MC

estimate lies within the 98% bounds of the emulator from F (s) = 0.2 to 0.8. At the

lower and upper ends of the distribution, the emulator overestimates the distribution

function by up to around 0.05. The approximation could be improved by including more

design points from Xc in the first emulator, but this would increase the computational

cost of approximating this function.

To obtain the MC estimate takes approximately 153 hours. In contrast the emulated

estimate takes approximately 13.5 hours, which is less than a tenth of the time. Most of

this time is taken up with running the computer model to obtain 1000 samples for each

of the design points. After the data has been collected, it only takes around an hour to

emulate the conditional cdf, integrate over θc and then to emulate the marginal cdf.

6.7 Emulated cdf for the linear mean model

Next we emulate the distribution function for the linear model. In this case, we have 50

design points in Xl and we choose 20 more design points in the s direction for each of

these. We therefore have 1000 design points to cover the six dimensional space of (s,θl).

As before, we build an emulator ηs|θl . Two-dimensional slices through the emulator are

plotted in Figure 6.26. Plot (a) shows a slice in the β′, s direction with λ′ and ω2′ fixed

at 0.5. As in the constant model, the shape of the plot from β′ = 0 to β′ = 1 is similar to

the shape in Figure 6.7. The next three plots, (b), (c) and (d) are all very similar. Again,

the shape of the plots is similar to when β = 0.5 in plot (a). These plots suggest that the

hyperparameters, βx, βy , λ and ω2 do not affect the distribution function of the output
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Figure 6.26: Slices through mean of emulator ηs|θl using a linear model (a)

β′
x, β

′
y, λ

′, ω2′ = 0.5, (b) β′, β′
y, λ

′, ω2′ = 0.5, (c) β′, β′
xλ

′, ω2′ = 0.5,

(d) β′, β′
x, β

′
y = 0.5, λ′ = ω2′.
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Figure 6.27: Estimated cumulative distribution function for log travel time using a

linear model.
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as they change, and that β is the most important hyperparameter for determining the

distribution function. This is in contrast with the results we obtained for the mean

of the computer code output, where we found that all of the hyperparameters have a

similar effect on the mean output.

Integrating over θl gives the approximation to the marginal cumulative distribution

function for s shown in Figure 6.27, along with an estimate obtained from 10000 MC

runs of the computer code. We see that the MC estimation of the cdf lies within the 98%

bounds of the emulator for F (s) between 0 and 0.75 and 0.95 and 1. The mean of the

emulator overestimates the MC estimate for most of the plot, and does not approximate

the MC estimate very well for the values at F (s) = 0 and F (s) = 1, although the

bounds in these regions include the MC estimate. For s = 4 to s = 4.6, the emulator

and the MC estimate are very similar. For the linear model, the emulated approximation

is worse than for the constant model. This could be due to the increased number of

dimensions that the conditional emulator contained, increasing the uncertainty in the

approximation, which is shown by the larger bounds of the emulator. The MC estimate

is similar to that obtained for the constant model, so the increase in hyperparameters

has not affected the variability of the travel times very much.

For the linear model, the emulated distribution takes approximately 21.8 hours, and the

MC estimate takes the same time as before. The emulation time is due to the larger

number of design points used to evaluate the model. It takes approximately 25 mins to

run the computer model 1000 times with the same input to approximate a distribution

function with. After this, the time taken to emulate the conditional cdf, integrate over

θl and then to emulate the marginal cdf is just over an hour, slightly longer than for the

constant model due to the larger number of design points.

6.8 Emulated cdf for the depth mean model

Finally we emulate the distribution function for the depth model. We have 40 design

points in Xd and we choose 20 more design points in the s direction for each of these.

The five dimensional space of (s,θd) is covered with 800 design points. Again we build

an emulator ηs|θd , which we will then integrate over. Two-dimensional slices through

the first emulator are plotted in Figure 6.28. In plot (a), the shape of the surface as β′
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Figure 6.28: Slices through mean of emulator ηs|θd using a depth model (a)

β′
d, λ

′, ω2′ = 0.5, (b) β′, λ′, ω2′ = 0.5, (c) β′, β′
d = 0.5, λ′ = ω2′.
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Figure 6.29: Estimated cumulative distribution function for log travel time using a

depth model.
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goes from 0 to 1 is similar to that seen in Figure 6.11. Plots (b) is the slice through

β′d, s. This plot suggests that varying βd does not affect the distribution function of

the output. This is similar to the result we found when emulating the mean of the

distribution function; that including βd in the model does not affect the analysis by very

much. We notice that the surface is similar in shape to plot (a) when β′ = 0.5. Finally

in plot (c) we have a slice through λ′ = ω2′, s. We see that the surface is less smooth

than the previous plots for β′ and β′d, and again we have a good approximation surface

of distribution functions.

We now integrate over the first emulator over θd at a small sample of s, and then emulate

the distribution function for s only. Figure 6.29 shows the cumulative distribution

function for s constructed in this way, along with an estimate obtained from 10000

MC runs of the computer code. We see that the MC estimate lies within the emulator

bounds from F (s) = 0 to around 0.4 and then again from around F (s) = 0.8 to 1. In the

middle section of the distribution function, the emulator underestimated the distribution

function by up to about 0.05. We also notice that the MC estimation is very similar to

that obtained from the constant model.

For the linear model, the emulated distribution takes approximately 17.7 hours, and the

MC estimate takes the same time as before. Again, it takes approximately 25 mins to

run the computer model 1000 times with the same input to approximate a distribution

function with. After this, the time taken to emulate the conditional cdf, integrate over

θd and then to emulate the marginal cdf is around an hour, slightly longer than for the

constant model, and slightly shorter than the linear model due to the difference in the

number of design points.
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Conclusions

We have investigated the application of Gaussian process emulators to carry out un-

certainty analysis of stochastic models of groundwater flow. In particular, we applied

the Bayesian emulation methods to a case study of the WIPP nuclear waste disposal

facility. For this site, it is important to be able to quantify the our uncertainty in

groundwater flow models of the region, as these types of models are used as part of risk

assessments. In this thesis we set out to discover how the uncertainty in the transmis-

sivity field would propagate through the groundwater flow equations to the travel time.

This involved developing three stochastic models for the mean of the transmissivity field,

and using the available data to derive distributions for the parameters of these fields.

A computer model was built to solve the groundwater flow equations numerically, and

then the output of this model was analysed for each of the three mean transmissivity

field models.

7.1 Development of transmissivity field models

The WIPP case study was used in this thesis as there is a comparatively large amount

of data available with which to characterise the transmissivity field. However, even with

this data, we found that there is still a lot of uncertainty about the transmissivity field.

We chose to represent the transmissivity field using a Gaussian random field model. This

allowed us to describe the field using mean and covariance functions. We investigated

three different functions for the mean of the log transmissivity field. These were a

constant mean, a linear trend in the mean and a depth dependent mean.
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The three models investigated in this thesis were simpler than those used in the most

recent report on the WIPP site by the US D.O.E.: the 2009 WIPP Compliance Recerti-

fication Application (U.S. D.O.E. (2009)). Here the modelling region is split into three

zones according to the measured transmissivity values and known geology of the region.

The following model for the mean transmissivity is described:

Y (x) = β1 + β2d(x) + β3If (x) + β4ID(x) + β5IH(x), (7.1.1)

where the β’s are regression coefficients to be determined, d(x) is the depth to the

Culebra dolomite. In addition, there are three indicator functions;

• If (x) is the fracture-interconnectivity indicator equal to 1 if fracturing and high

transmissivity values have been observed at point x and 0 otherwise.

• ID(x) is a dissolution indicator function that equals 1 if dissolution of the Salado

formation has occurred at point x and 0 otherwise. Dissolution leads to larger

fractures and therefore high transmissivity.

• IH(x) is a halite indicator function equal to 1 in locations where halite occurs

beneath the Culebra dolomite and 0 otherwise. If halite is present it acts like

cement, blocking the pores of the Culebra and so reducing transmissivity.

Equation (7.1.1) is the same depth dependent model as we have investigated in this the-

sis, but with additional terms that allow the transmissivity to be determined according

to where it lies in the region. In the west of the region is the fracture zone with high

transmissivity, and in the west is the halite zone where transmissivity is low. The WIPP

site and boundary lies within the central zone, where the Culebra is not affected by ei-

ther fractures or halite, and areas of high transmissivity are said to occur stochastically

(U.S. D.O.E. (2009)). Therefore, for calculating the travel times within this site, these

extra indicators may add an extra level of complexity than is required, and our simpler

depth model for the mean transmissivity field may be adequate for this purpose.

For the covariance function, we chose an exponential function, which is the same type as

used in the 2009 WIPP CRA. The stochastic models we investigated for the transmis-

sivity field provided us with uncertain hyperparameters. In previous work on the WIPP

site, the hyperparameters of the transmissivity fields had been set at fixed values using

standard regression analysis on equation (7.1.1) using measured data from the site and
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expert knowledge about where the geological zones lay. However, we did not have this

expert knowledge, and we did not want to ignore the uncertainty in these hyperparam-

eters. Therefore we decided to provide distributions for these hyperparameters rather

than fix them at set values. In Chapter 4 we used Bayesian methods to provide us with

distributions for the hyperparameters given the available data. We assumed little or

no prior information about the hyperparameters when deriving the distributions, and

chose posterior distributions which were not influenced by the prior distributions. We

used cross validation to check that the distributions obtained gave sensible values of the

transmissivity field. Some of the distributions, especially for the correlation length λ,

contained wide ranging values. The derivation of these distributions could have been

improved by obtaining expert knowledge about these hyperparameters.

We introduced and discussed methods of generating realisations of transmissivity fields

using a Gaussian random field model in Chapter 3. Two of the methods, the K-L

expansion and the Cholesky decomposition method were investigated further in Chapter

5. The K-L expansion is used to reduce the dimensionality of a problem to make it easier

to solve. However, we found that the number of nodes required to give an adequate

level of accuracy was greater than expected. In terms of computational time, it was

faster to carry out a Cholesky decomposition of the correlation matrix than to calculate

the eigenvalues and eigenvectors required for enough accuracy with the K-L expansion.

However, the eigenvalue solver eig in MATLAB may not be the fastest. The Cholesky

decomposition method also has the benefit of including all of the uncertainty in the

problem, and so this was used in the computer model for the rest of the analysis.

The methods of generating transmissivity fields presented in this thesis are different

from that used in the WIPP certification. In the CRA analysis, the mean transmissivity

field, or base field, is generated from equation (7.1.1) using normal random variables in

the central zone in the region. Then a residual field is generated through conditional

simulations, as discussed in Chapter 3, and combined with the base field. This stochastic

simulated field was then used as the initial field for an inverse calibration procedure

using the head data. We discussed the idea behind inverse modelling briefly at the end

of Chapter 3. This procedure generates a field which is conditional on both head and

transmissivity data, and for the CRA, pilot points were used to improve the accuracy

of the generated field. The pilot point method involves estimating the transmissivity
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values at a set of arbitrary points so that the head field fits the measured head values

as accurately as possible. For the CRA, this procedure was repeated for 150 base fields

and the groundwater flow equations were solved for each of these fields. The cumulative

distribution function of this small sample of calculated travel times was then plotted

and used as an indicator of how long a particle released in the centre of the region would

take to reach the site boundary.

7.2 Analysis of the WIPP computer model using Bayesian

emulation methodology

Our analysis of the travel times was different to that carried out in the WIPP CRA. We

considered a larger number of possible transmissivity fields and calculated travel times

for each field. This would have been very computationally expensive using MC methods

and so we chose to use Gaussian process emulation to reduce the computational cost

of the analysis. These methods were introduced in Chapter 2 and then extended to

emulate the mean of the output of a stochastic model. In Chapter 6, we then discussed

the use of Bayesian emulation methodology to approximate the distribution function of

the output of a stochastic model.

In order to emulate and analyse the computer model, we needed to obtain data with

which to build an emulator. Therefore, at the end of Chapter 5, we investigated how

many runs of the computer model would be required to obtain estimates of the mean

and points of the distribution function with enough accuracy to emulate. We found that

around 500 runs were needed to estimate the distribution function and around 7500 runs

were needed to estimate the mean to a required accuracy. However, given the time that

it took to run the code for each hyperparameter, we decided to that the code should be

run 1000 times for each design point, and then the same sample data could be used for

emulating both the mean and distribution function of the output. After obtaining data

from runs of the computer model, we then emulated the mean and distribution function

of the output in Chapter 6. The emulators were used to reduce the time taken to carry

out the analysis and provide statistical approximations to the output of the computer

model.

Firstly, we emulated the mean output, since this is the simplest thing to do for a stochas-
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tic model. We estimated the mean, and variance of the mean relating to each of our

design points, and emulated the mean of the computer model output using this infor-

mation. The resulting emulators gave us information about the main effects of each

hyperparameter. In all three cases the results showed that the hyperparameters which

affected the mean log travel time the most were those of the covariance function. As

we increased the number of hyperparameters in our model, the variability in the mean

log travel time also increased. This could have been due to the increase in the uncer-

tainty in the problem introduced as more hyperparameters were introduced. Another

explanation could have been that the number of input dimensions increased and so the

accuracy of the emulator was reduced, although this should have been taken into account

by increasing the number of design points.

Emulating the mean did not give us information about the whole distribution of travel

times so we emulated the cumulative distribution function of the model. We used a

simple example with only one varying hyperparameter to illustrate the method used.

We found that the application of emulators to emulating the distribution function was

not simple. We came across several problems when building the emulator. The largest

problem was of constraining the emulator output to lie within [0,1]. This was solved by

specifying a more suitable prior mean for the emulator. Using a Gaussian distribution

function as a prior mean meant that the resulting emulator mean would have similar

properties, and so would also lie in [0,1]. This meant that the parameters of the Gaussian

distribution function prior had to be approximated from the output samples of the code.

We saw this as no different to estimating the regression coefficients from the data in the

usual prior formulation for the emulator.

The second problem was to estimate the smoothing parameters. We had to make sure

that the smoothing parameters were appropriately scaled, since we had scaled the hyper-

parameters before building the emulator. This gave us a starting point to choose initial

values for the procedure to maximise the posterior mode of the emulator. As we had

a large number of design points and data, the maximisation algorithm was too expen-

sive to use, and could not guarantee suitable smoothing parameters, as these depended

largely on the initial values. Therefore, we had to estimate the smoothing parameters

using a cross validation procedure across some of the design points. We could not use

them all, or this would also have been very computationally expensive.
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Once these problems had been overcome, we could then emulate the distribution func-

tion for each of the three models and compare them to the MC estimate. As for the

mean, we found that as the number of hyperparameters (inputs) increased, the emulator

became less accurate. Therefore, the emulation of the depth model, with 4 hyperpa-

rameters, provided a better approximation to the MC cdf than the linear model, with 5

hyperparameters. The emulation of the constant model, with 3 hyperparameters, was

more accurate again than the depth model. We found that the distribution functions

for each of the three models were very similar, and so the choice of mean transmissivity

model did not affect the log travel times. In terms of emulating the distribution function

of the log travel time, the constant model was the simplest and fastest as it contained

the fewest input hyperparameters.

The emulation of the distribution function presented in Chapter 6, could be used to

estimate the distribution function of other stochastic models with uncertain inputs.

However, we note that in this case we are fortunate that we can run the computer code

enough times for each hyperparameter that an approximation to the conditional cdf of

the inputs and outputs to a fairly high degree of accuracy is possible. Since we then

integrate over this approximation to estimate the marginal cdf, it is important that the

estimation to the conditional cdf does not have too much variability. For more expensive

codes, it may only be possible to run the code for a few runs for each input. In this

case the cdf may not be able to be calculated with enough accuracy for the results to

be useful. We would also have this problem when emulating the mean. However for

either case, emulator bounds are larger, giving a quantitative value for the error in the

emulator.

There were some limitations to our approach. The main limitation is that the emulators

that we built for this thesis were very specific to this problem, and the input space is

dependent on the distributions that we derived for the hyperparameters. Therefore if

more information was gathered that moved the range of the hyperparameters outside of

the current sample space, the emulator would need to be rebuilt. However, we wanted

to build the best emulator we could with the current information and so chose this

limited approach to give the best results. We also have the problem that the emulated

distribution functions do not respect monotonicity. In Chapter 6 we tried a probit

transformation to try to solve the problem, but other transformations from [0, 1] to R
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such as logit or complementary log-log could be used.

Since we performed a larger MC analysis over the hyperparameters as well as the stochas-

tic model and have not used inverse modelling, our distribution functions may not be

comparable to those found in the WIPP CRA. They also investigated several scenarios

based on whether full, partial or no mining would occur in the region. For their no

mining scenario, they obtained a median travel time of 18,289 years. This is under half

the time we found in all three of our models which estimated the median travel time

to be around 38,000 years. The minimum and maximum travel times they estimated

to be 3,111 years and 101,205 years respectively. All three of our models overestimated

the minimum travel time with a minimum of around 5,000 years. The maximum travel

times were also over estimated by our model with the constant and depth means hav-

ing a maximum of around 3 million years and the linear mean having a maximum of

around 13 million years. These overestimations of our model to the WIPP results could

be due to our model having more uncertainty due to including the uncertainty in the

hyperparameters. We also did not use the head data in our analysis, which may lead to

a reduction in uncertainty in the code output.

7.3 Further work

Whilst researching this thesis, a number of interesting ideas have arisen that we have

not had the time to investigate. A few of these are discussed below.

7.3.1 Investigating different covariance functions for the

log transmissivity field

By investigating three stochastic models for the mean log transmissivity field, we have

been able to see that the choice of mean transmissivity affects the log travel time very

little. From this analysis, we were able to determine that the covariance hyperparam-

eters were the most important parameters in terms of the mean of the log travel time.

Therefore, another area of investigation could be to check the sensitivity of the travel

times to the correlation function used for the log transmissivity field. In Chapter 4,

we introduced the Matérn covariance function. This function includes an additional

parameter to the exponential function which controls the smoothness of the correlation.
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It may therefore provide a better fit to the log transmissivity data than the exponential

correlation function used in this thesis. However, as discussed in Stein (1999), it would

be difficult to derive a distribution for the smoothness parameter and so it may need

to be set a priori. To provide a transmissivity field with appropriate roughness, a small

value of the smoothing parameter, between around 0.5 and 2.5 would be required. Since

the exponential function is equivalent to the Matérn with smoothing parameter 0.5, this

may mean that the log travel time is only affected by a small amount.

7.3.2 Emulating other outputs of the code

As well as the log travel time, there are other properties of the groundwater flow which

may be of interest. Remember that the code represents the groundwater flow in the

WIPP region, considering how a particle released in the centre of the region will travel

to the site boundary. In this thesis, we have been interested in the time taken for the

particle to reach the site boundary, but our code can be easily adapted to output more

information about this scenario.

One of the outputs of interest is the position of the particle when it exits the region. This

is easily output since the ode to calculate the travel time also provides this information.

From preliminary runs, the exit position is usually along the south of the site, although

it occasionally exits from the west edge of the site. Therefore, to simplify the emulation,

the exit position xf could be considered as a one dimensional position along the southern

boundary of the site. When the exit position exits through the west boundary of the

site, the exit position could be considered as xf = 0. The other output of interest that

is easily output from our code is the velocity of the groundwater flow at the release

point. In order to solve the ode for the travel time, the code calculates the velocities

everywhere in the region and so the velocity at the release point is easily obtainable from

this. Future work could be carried out to investigate whether these additional outputs

are dependent on the hyperparameters, and whether each output is correlated with the

other outputs.

This extra information we can obtain from the code could be analysed in the same way as

we have done with the log travel time, by emulating the mean and distribution functions

of these output. However, a more interesting analysis could look into how these outputs

interact with each other; do faster travel times leave the site at a similar point?; or does
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the initial velocity lead affect the travel time? Emulators for multivariate outputs could

be adapted to deal with emulating stochastic models in order to carry out this analysis

of the correlations between the outputs.

7.3.3 Including other parameters into the uncertainty analysis

As mentioned in Section 4.1.1, there are other uncertain parameters which we could

have included in θ as inputs to our emulator. These are

• h0(x) the head values on the boundary of the WIPP region.

• b(x) the thickness of the Culebra Dolomite across the region.

• φ(x) the porosity of the Culebra Dolomite across the region.

In this thesis we used a head boundary condition h0(x) used in the WIPP CRA report.

This came from extrapolating the head data to a number of points on the boundary

of the region. The values of h0 between these values were then interpolated along the

boundary. We did not consider the uncertainty in the approximation of this condition

from the head measurements or in the head measurements themselves. We also used

estimates b(x) ≈ b̂ = 8m and φ(x) ≈ φ̂ = 0.16 which were given in the WIPP CRA

report. These quantities can also be found from measurements taken in the WIPP

region. We could extend our emulator to include these parameters if we wanted to

analyse how they affect the log travel time.

Since all three parameters are functions of x, we would need to approximate each of these

parameters using suitable functions, in the same way that we approximated Z(x). The

hyperparameters of these approximations could then be used as inputs to the computer

model as we have shown in this thesis. A result of increasing the number of inputs in the

emulator, is that the uncertainty in approximation the log travel time would increase.

7.3.4 Reducing the uncertainty in the output of the computer model

Our computer model contained two main sources of uncertainty. The uncertainty arising

from the hyperparameters could be reduced by using expert opinions to help to determine

distributions for the hyperparameters. The improved distributions may be narrower
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and so the resulting log transmissivity fields and travel times may also be less variable.

Another way of reducing uncertainty, which was briefly discussed at the end of Chapter

3, would be to include head data to improve the accuracy of the transmissivity field

realisations. Again, this would reduce the variability in the log travel times.
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Location
Borehole Transmissivity T log10 T

(m2s−1)
m East m North

H-1 613423 3581684 9.3 × 10−07 -6.03
H-2 612660 3581652 6.3 × 10−07 -6.20
H-3 613714 3580892 2.5 × 10−06 -5.61
H-4 612398 3578484 1.0 × 10−06 -6.00
H-5 616888 3584793 9.8 × 10−08 -7.01
H-6 610595 3584991 3.5 × 10−05 -4.45
H-7 608106 3574644 1.5 × 10−03 -2.81
H-9 613974 3568252 1.3 × 10−04 -3.90
H-10 622967 3572458 7.6 × 10−08 -7.12
H-11 615341 3579124 3.1 × 10−05 -4.51
H-12 617023 3575452 1.9 × 10−07 -6.71
H-14 612341 3580354 3.3 × 10−07 -6.48
H-15 615315 3581859 1.3 × 10−07 -6.88
H-16 613369 3582212 7.8 × 10−07 -6.11
H-17 615718 3577513 2.3 × 10−07 -6.64
H-18 612264 3583166 1.7 × 10−06 -5.78
DOE-1 615203 3580333 1.2 × 10−05 -4.93
DOE-2 613683 3585294 9.5 × 10−05 -4.02
P-14 609084 3581976 2.8 × 10−04 -3.56
P-15 610624 3578747 9.1 × 10−08 -7.04
P-17 613926 3577466 1.1 × 10−06 -5.97
P-18 618367 3580350 7.6 × 10−11 -10.12
WIPP-12 613710 3583524 1.1 × 10−07 -6.97
WIPP-13 612644 3584247 7.4 × 10−05 -4.13
WIPP-18 613735 3583179 3.2 × 10−07 -6.49
WIPP-19 613739 3582782 6.5 × 10−07 -6.19
WIPP-21 613743 3582319 2.7 × 10−07 -6.57
WIPP-22 613739 3582653 4.0 × 10−07 -6.40
WIPP-25 606385 3584028 2.9 × 10−04 -3.54
WIPP-26 604014 3581162 1.2 × 10−03 -2.91
WIPP-27 604426 3593079 4.3 × 10−04 -3.37
WIPP-28 611266 3594680 2.1 × 10−05 -4.68
WIPP-30 613721 3589701 2.5 × 10−07 -6.60
ERDA-9 613696 3581958 5.0 × 10−07 -6.30
CB-1 613191 3578049 3.0 × 10−07 -6.52
ENGLE 614953 3567454 4.6 × 10−05 -4.34
USGS-1 606462 3569459 5.5 × 10−04 -3.26
D-268 608702 3578877 2.0 × 10−06 -5.69
AEC-7 621126 3589381 2.8 × 10−07 -6.55

Table A.1: Measured transmissivity values at WIPP.
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Location Depth D

Borehole

m East m North ft m

H-1 613423 3581684 676 206.0
H-2 612660 3581649 623 189.9
H-3 613720 3580892 672 204.8
H-4 612400 3578484 498 151.8
H-5 616888 3584793 897 273.4
H-6 610590 3584992 604 184.1
H-7 608110 3574644 237 72.2
H-9 613974 3568252 647 197.2
H-10 622970 3572458 1360 414.5
H-11 615350 3579124 740 225.6
H-12 617023 3575452 825 251.5
H-14 612341 3580354 545 166.1
H-15 615315 3581859 859 261.8
H-16 613369 3582212 703 214.3
H-17 615718 3577513 706 215.2
H-18 612264 3583166 689 210.0
DOE-1 615203 3580333 829 252.7
DOE-2 613683 3585294 846 257.9
P-14 609084 3581976 573 174.7
P-15 610624 3578747 413 125.9
P-17 613926 3577466 558 170.1
P-18 618367 3580350 909 277.1
WIPP-12 613710 3583524 810 246.9
WIPP-13 612644 3584247 701 213.7
WIPP-18 613735 3583179 786 239.6
WIPP-19 613739 3582782 756 230.4
WIPP-21 613743 3582319 729 222.2
WIPP-22 613739 3582653 742 226.2
WIPP-25 606385 3584028 447 136.2
WIPP-26 604014 3581162 186 56.7
WIPP-27 604426 3593079 292 89.0
WIPP-28 611266 3594680 420 128.0
WIPP-30 613721 3589701 631 192.3
ERDA-9 613696 3581958 704 214.6
CB-1 613191 3578049 no data no data
ENGLE 614953 3567454 no data no data
USGS-1 606462 3569459 no data no data
D-268 608702 3578877 no data no data
AEC-7 621126 3589381 870 265.2

Table A.2: Measured depth values to top of Culebra at WIPP.
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Sample β ω2 λ
1 -7.757 0.414 3488
2 -5.531 0.833 3952
3 -8.625 1.270 4302
4 -3.160 1.882 4628
5 -2.342 2.085 5007
6 -4.643 2.663 5875
7 -5.047 3.432 6180
8 -0.939 3.547 6652
9 -5.687 3.869 7040
10 -7.109 4.102 7804
11 -3.992 4.161 8357
12 -4.199 4.379 8957
13 -5.106 4.771 9320
14 -8.495 4.791 9880
15 -2.975 5.029 10375
16 -4.999 5.112 10869
17 -5.701 5.533 11180
18 -7.521 6.196 12136
19 -4.550 6.390 13619
20 -1.675 6.808 14057
21 -6.618 7.318 15911
22 -5.456 7.760 16474
23 -5.323 8.654 17279
24 -2.193 10.789 20824
25 -1.166 12.442 24439
26 -4.976 14.429 25840
27 -4.299 15.198 29205
28 -4.727 17.944 30579
29 -5.284 18.603 34046
30 -4.113 20.136 35591

Table B.1: Sampling design for θc.
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Sample β βx βy ω2 λ
1 -2.667 -2.97×10−4 2.16×10−5 0.094 91
2 -4.210 -2.88×10−4 -4.34×10−5 0.178 175
3 -1.033 -1.50×10−4 -4.53×10−5 0.227 288
4 -0.297 -2.66×10−4 -4.40×10−5 0.371 409
5 -2.821 -2.43×10−4 -5.22×10−5 0.472 565
6 -0.933 -1.78×10−4 -1.24×10−4 0.524 623
7 -1.761 -2.60×10−4 -1.12×10−4 0.658 794
8 0.105 -1.69×10−4 -5.82×10−5 0.714 910
9 -1.873 -3.52×10−4 -5.65×10−5 0.836 1045
10 -2.612 -2.63×10−4 -6.19×10−5 0.916 1146
11 -4.608 -1.30×10−4 2.33×10−6 1.048 1192
12 -3.793 -2.34×10−4 4.04×10−5 1.158 1385
13 -1.738 -3.14×10−4 -8.81×10−5 1.223 1437
14 -2.467 -3.62×10−4 -5.62×10−5 1.237 1486
15 -1.514 -1.39×10−4 4.39×10−5 1.263 1531
16 -2.322 -3.26×10−4 -9.59×10−5 1.281 1568
17 -3.187 -2.44×10−4 -3.61×10−5 1.301 1622
18 -1.921 -3.67×10−4 5.83×10−5 1.333 1655
19 -1.584 -3.46×10−4 -1.17×10−4 1.369 1711
20 -3.403 -1.61×10−4 2.68×10−5 1.380 1758
21 -0.418 -3.04×10−4 -4.29×10−5 1.423 1818
22 -0.767 -3.25×10−4 -4.15×10−5 1.437 1885
23 -2.019 -2.85×10−4 -5.01×10−5 1.470 1921
24 -1.162 -2.74×10−4 -5.39×10−5 1.494 1958
25 -1.994 -2.70×10−4 -4.81×10−5 1.524 2022
26 -0.584 -2.31×10−4 -7.42×10−5 1.503 2091
27 -2.122 -2.47×10−4 7.03×10−5 1.575 2163
28 -2.452 -3.03×10−4 -3.58×10−5 1.616 2269
29 -2.544 -2.79×10−4 -5.22×10−5 1.696 2390
30 -3.547 -2.13×10−4 -1.91×10−5 1.729 2521
31 -1.422 -3.81×10−4 -5.88×10−5 1.761 2674
32 -1.467 -2.55×10−4 -4.02×10−5 1.803 2820
33 -4.258 -3.08×10−4 -4.04×10−5 1.888 3000
34 -0.580 -2.01×10−4 -5.83×10−5 1.925 3066
35 -1.614 -2.92×10−4 -7.22×10−5 1.981 3249
36 -1.960 -3.38×10−4 -1.05×10−4 2.001 3344
37 -2.266 -2.73×10−4 -5.17×10−5 2.090 3472
38 -0.004 -1.95×10−4 -3.95×10−5 2.245 4022
39 -4.009 -3.75×10−4 -3.06×10−5 2.601 4366
40 -4.977 -1.85×10−4 -4.64×10−5 3.287 5760
41 -4.765 -2.50×10−4 -1.66×10−5 3.448 6546
42 -1.840 -1.30×10−4 -3.73×10−5 3.761 7309
43 -2.190 -3.91×10−4 -6.58×10−5 4.283 7703
44 -2.076 -2.69×10−4 -9.76×10−5 4.601 8521
45 -1.373 -2.93×10−4 -1.30×10−4 5.233 9369
46 -2.405 -2.82×10−4 -4.90×10−5 5.511 10178
47 -1.177 -3.93×10−4 6.85×10−6 5.990 10807
48 -2.986 -2.15×10−4 -5.44×10−5 6.503 12128
49 -0.170 -2.28×10−4 -8.49×10−5 6.983 12630
50 -1.654 -2.39×10−4 -4.77×10−5 7.111 13254

Table B.2: Sampling design for θl.
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Sample β βd ω2 λ
1 -5.22273 -0.00271263 0.199002 784.541
2 -5.30486 3.73×10−4 0.457315 1230.03
3 -2.54291 0.00188727 0.637836 1438.12
4 -6.82796 0.00452542 0.848427 1765.31
5 -6.74737 0.00322399 1.29201 2551.5
6 -4.8878 0.00120288 1.73691 2974.45
7 -6.31389 -0.00256472 1.84879 3389.76
8 -4.43893 -7.10×10−4 2.17548 3555.74
9 -6.13563 -0.00108936 2.63435 4348.3
10 -7.70815 -5.15×10−4 2.97228 4595.53
11 -2.28088 -0.00341948 3.15356 5022.63
12 -4.30286 0.00216171 3.30646 5289.41
13 -8.16685 -1.01×10−4 3.62606 5811.38
14 -5.11627 -0.00717561 3.83974 6259.15
15 -4.25843 -0.00332578 3.97749 6606.63
16 -1.77656 0.00681048 4.1009 6840.57
17 -4.1133 -1.19×10−4 4.41611 7434.64
18 -5.00063 -0.00191072 4.47568 7961.06
19 -4.39833 -0.00169054 4.64361 8263.79
20 -5.42449 -2.81×10−4 4.84179 8478.95
21 -5.6513 0.0036968 4.90637 9081.65
22 -4.02663 -8.90×10−4 5.37741 9592.71
23 -5.04689 6.64×10−4 5.45111 10240.8
24 -3.48393 -0.00629184 5.67778 10558.9
25 -1.23698 -0.00769209 6.16567 11520.5
26 -8.62361 -0.00496951 6.42068 11994.1
27 -3.38971 -0.00217988 6.79992 12657.6
28 -2.75056 0.00571024 7.12265 12984.5
29 -1.41006 -0.00482498 7.40537 14151.5
30 -2.14605 0.00337802 7.76636 14951.5
31 -4.74129 6.08×10−4 8.45565 16237.4
32 -4.60015 -0.00682908 8.69012 17085.1
33 -4.85439 8.98×10−4 9.98312 19115.3
34 -8.89602 0.00129674 11.1534 21056
35 -4.76976 -0.00421502 11.3811 22394.4
36 -3.06746 -0.0014829 11.985 23032.8
37 -5.62239 0.00492735 13.37 26121.1
38 -3.97255 0.00164543 14.0754 26770.3
39 -4.19161 1.17×10−4 14.8326 28569.8
40 -8.36755 -0.00848732 15.2508 29272.8

Table B.3: Sampling design for θd.
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Kröhn, K-P. and Schelkes, K. Modelling of regional variable density groundwater flow in

an area in New Mexico: importance of influencing parameters and processes. In Cal-

ibration and Reliability in Groundwater Modelling (Proceedings of the ModelCARE96

Conference), pages 353–361, Golden, Colorado, September 1996.

Lahkim, B.M. and Garcia, L.A. Stochastic modeling of exposure and risk in a con-

taminated heterogeneous aquifer. 1: Monte carlo uncertainty analysis. Environmental

Engineering Science, 16(5):315–328, 1999.

Landau, D.P. A guide to Monte Carlo simulations in statistical physics, 3rd Edition.

Cambridge University Press, 1999.

LaVenue, A.M., Cauffman, T.L., and Pickens, J.F. Ground-water flow modeling of the

culebra dolomite. volume I: Model calibration. Technical Report SAND89-7068/1.,

Sandia National Laboratories, 1990.

Lehmann, E.L. and Casella, G. Theory of point estimation. Springer-Verlag, New York,

1998.

Liu, F. and West, M. A dynamic modelling strategy for bayesian computer model

emulation. Bayesian Analysis, 4(2):393–412, 2004.

Loeppky, J.L., Sacks, J., and Welch, W.J. Choosing the sample size of a computer

experiment: a practical guide. Technometrics, 51(4):366–376, 2009.
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