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Abstract 

In these studies the ability of a three-dimensional hepatocyte-stellate cell co- 

culture system to preserve some key aspects of differentiated hepatocyte 

function in vitro is demonstrated. A poly(DL-lactic Acid) surface allows 

dynamic and rapid interaction of hepatocytes and stellate cells to form co- 

culture spheroids in a complex multistage process (shown by time lapse 

microscopy). After five days the spheroids have developed a substantial 

extracellular matrix support and hepatic ultra-structure including bile canaliculi, 

tight junctions, desmosomes and lipid storage. The distribution of the stellate 

cells in the final structure is related to their motile and aggregating role in 

spheroid formation, i. e. mainly central and peripheral, and provides a unique 

and generically applicable insight into the dynamics of multicellular spheroid 

formation where aggregation is induced by one cell type and imposed on 

another. 

The spheroid morphology supports enhanced cell viability relative to 

hepatocytes in a mono-culture mono-layer. Co-culture spheroids also have 

superior cytochrome P450 3A and 2B function, and increased inducibility of 2B 

function, relative to a range of hepatocyte monoculture techniques (HPLC 

detection of testosterone metabolites). Increased function in co-culture is 

supported by greater expression of cytochrome P450 3A23,1A2, and 2E1 

mRNA relative to monoculture (RT-QPCR). Also, high hepatocyte growth 

factor mRNA expression in co-culture suggests a post-traumatic, or possibly 
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regenerative, environment. A preliminary study of human hepatocytes co- 

cultured with rat stellate cells demonstrated prolonged function of cytochrome 

P450 3A4,2C19 and 2C9. The co-culture spheroids are also shown to maintain 

a low level of sensitivity to hepatotoxins DDC and amiodarone after seven days 

in culture. 

This study shows that stellate cells facilitate spheroid formation, influence 

spheroid architecture, and are an effective method of preserving some aspects 

of hepatocyte function in the early stage of culture. 
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CHAPTER 1 

Introduction 



1.1 Introduction 

The work in this thesis was designed to characterise the formation, morphology 

and P450 function of a 3D hepatocyte-stellate cell co-culture system. This 

introduction initially describes the structure and function of the liver and the 

roles and regulation of parenchymal and non-parenchymal hepatic cell types. 

Current tissue engineering strategies are then discussed and related to the 

knowledge of liver homeostasis in vivo. 

1.2 The liver 

The liver is the largest gland in the human body and carries out a wide array of 

homeostatic functions. It receives blood directly from the gut and has an 

important protective role in foreign particle phagocytosis and in degradation of 

xenobiotics via oxidation and conjugation. It brakes down nutrients and 

endogenous elements such as hormones, produces numerous blood proteins such 

as albumin and proteins of the clotting cascade, and is responsible for the 

production of bile to help in the digestion of fats. The liver is also an important 

storage site with reserves of glycogen, iron and vitamins A, D, and B12. The 

functions of the liver are reviewed in more detail under each individual hepatic 

cell type (section 1.2.2) 
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1.2.1 The structure of the liver 

The macro structure of the liver comprises four lobes. Each lobe comprises 

numerous hexagonal functional units called lobules. The lobes and lobules vary 

greatly between species in size and definition; lobules in the porcine liver have a 

well defined extracellular matrix (ECM) boundary whilst there is little visible 

distinction between human lobules. Each lobule has a portal triad at its six 

peripheral points that it shares with two other tessellating lobules. The liver 

receives a dual blood supply from the portal vein and hepatic artery that enters 

the lobule via branches of these vessels in the portal triad. The blood filters 

through sinusoids that separate parenchymal plates (or chords) of hepatocytes 

and drains into a central vein. The sinusoidal endothelium is discontinuous and 

fenestrated on a basement membrane and is separated from the hepatocytes by a 

gap known as the space of Disse. The hepatocytes excrete bile salts into 

depressions between abutting cells known as bile canaliculi. These drain in the 

opposite direction to the blood flow to a collecting bile ductule (Herings canal), 

which is the third vessel of the portal triad. The organisation of the liver lobule 

is shown in figure 1.1. 
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Figure 1.1 

Arteriole and uenule 
branches feeding the 
sinusoids 

Figure l. 1: A micrograph section and schematic section showing the lobular 

organisation of the liver and associated blood flow. 
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1.2.2 The cell types of the liver: Function and paracrine communication 

Hepatocytes, the parenchymal cell of the liver, constitute 80% of total liver 

volume and carry out the majority of hepatic function. Non-parenchymal cells 

occupy only 6.5% of total liver volume but represent 40% of the total liver cell 

number and have complex roles in paracrine regulation of hepatic function. The 

three major non-parenchymal cell types line the walls of the hepatic sinusoid 

(fig 1.2). These are sinusoidal endothelial cells (SECs), Kupffer cells (KCs), and 

hepatic stellate cells (HSCs). The liver also contains a number of specialised 

lymphocyte sub-populations. The hepatocytes and non-parenchymal cells are 

part of a complex network of intercellular paracrine regulation of function and 

regeneration, discussed in more detail below. A variety of mediators are 

involved in this regulation including prostanoids, nitric oxide (NO), endothelin- 

1, tumour necrosis factor alpha (TNFa), interleukins, chemokines, as well as 

many growth factors (transforming growth factor beta (TGF(3), platelet derived 

growth factor (PDGF), Insulin growth factor 1 (IGF-I), hepatocyte growth factor 

(HOF)), and reactive oxygen species (ROS). 
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Figure 1.2 

Hepatocytes 
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Figure 1.2: A schematic of the liver sinusoid and the juxtaposition of associated 

parenchymal and non-parenchymal cell types. 
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1.2.2.1 Hepatocytes 

Hepatocytes have a diverse range of synthetic, degradative and regulatory 

functions. Synthetic functions include production of most plasma proteins, 

interconversion of amino acids, production of glucose from lipids and amino 

acids, formation (and storage) of glycogen from glucose, synthesis of 

cholesterol, lipoproteins and phospholipids and production of bile. The cells also 

carry out degradative functions such as haemoglobin degradation, fatty acid 

oxidation, and break down of glycogen back to glucose. The hepatocytes are the 

major detoxification cell of the body and contain enzymes that oxidise and 

conjugate drugs, toxins, metabolites and hormones to create renally excretable 

water soluble waste products. Hepatocytes are not homogenous in function; cells 

in the periphery of the lobule (Zone I) are more active in the synthesis and 

storage of glycogen and the synthesis of proteins whilst cells towards the central 

vein are more active in detoxification (Zone III). Reverse perfusion of the liver 

and perfusion systems have respectively demonstrated reversed patterns of 

lobule function and gradients of hepatocyte function indicating hepatocytes are 

not committed to a zone phenotype (Den Otter and Tuit, 1972; Allen et al, 

2005). The inference is that the specific hepatocyte phenotype is determined by 

microenvironment factors such as oxygen tension, nutrient status, and 

differences in ECM composition or sequestered factors. 
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1.2.2.1.1 The cytochrome P450 mixed function oxidase system 

The P450 mixed function oxidase (monooxidase) system is one of the most 

diverse enzymatic systems in nature catalysing a vast array of reactions in 

animals, plants, fungi and bacteria. Thousands of different enzymes have been 

identified - humans have over 50 in 18 families and rats over 80. In mammals 

the enzymes are concentrated in the liver, but are also present in many other 

tissues such as lung and kidney. P450 enzymes are central in many hepatic 

functions; the major roles of the enzymes in mammals include steroid synthesis, 

xenobiotic metabolism, arachidonic acid metabolism, fatty acid metabolism and 

synthesis of products such as thromboxane, prostacyclins, cholesterol and bile 

acids. The most important reaction carried out in mammals involves the 

insertion of a single molecular oxygen atom into the substrate, the other being 

used to generate water. In the case of xenobiotic metabolism this mechanism 

often introduces a hydroxyl group to the substrate that is a chemical handle for 

subsequent conjugation. 

The P450 enzyme families are specialised for their different roles and are not 

equally abundant. This results in concentration of research on certain isoforms. 

For example, P450 3A is by far the most abundant isoform in human liver 

(Waxman, 1999) and is the most important drug metabolising family, oxidising 

about 50% of known oxidised pharmaceuticals. P450 2D6 is also responsible for 

a large proportion of xenobiotic and pharmaceutical metabolism. P450 2E1 is a 

xenobiotic metabolising enzyme of particular importance due to being induced 

by ethanol. Significant species differences exist in types and quantities of P450 
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enzymes, but also polymorphisms and sex specific differences occur within 

species. 

1.2.2.2 Sinusoidal Endothelial Cells 

Liver sinusoidal endothelial cells constitute the lining or wall of the hepatic 

sinusoid. They have small fenestrations that allow free diffusion of many 

substances between the blood and the hepatocyte surface and also perform 

endocytosis of many ligands including glycoproteins, components of the ECM, 

immune complexes, transferrin and ceruloplasmin. SECs may have a role in 

immune tolerance. They secrete cytokines, eicosanoids (i. e., prostanoids and 

leukotrienes), endothelin-1, NO, and some ECM components. 

1.2.2.3 Kupffer Cells 

Kupffer cells are macrophages located within the sinusoids that perform 

endocytosis and phagocytosis on particles from the gut, soluble bacterial 

products, and such endogenous waste as senescent or damaged erythrocytes. 

Hepatic macrophages play an important part in early phase liver inflammation 

through secretion of potent inflammatory mediators (ROS, eicosanoids, NO, 

carbon monoxide, IL-1, TNFa, TGFß, and other cytokines). High exposure to 

bacterial products, especially endotoxin (LPS), can initiate this process and 

ultimately lead to hepatocyte and liver injury. In this process KCs also release 

enzymes involved in ECM remodelling. Inflammatory mediators stimulate 

glucose release from hepatocytes via prostaglandins released from KCs and 
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thereby have a role in regulating hepatocyte glucose metabolism. A further role 

of liver macrophages is modulation of the immune response and tolerance to 

certain antigens via complex paracrine interactions involving T-cells, SECs, and 

modulatory cytokine release. 

1.2.2.4 Hepatic stellate cells 

Hepatic stellate cells (H9Cs) are located in the perisinusoidal space. They have 

been known variously as fat-storing cells, Ito cells, lipocytes, perisinusoidal 

cells, or vitamin A-rich cells. They are characterized by an abundance of 

cytoplasmic fat droplets, branching cytoplasmic processes and co-localisation of 

a number of key immunological markers such as glial fibrillary acidic protein 

(GFAP) and desmin (species dependent). In the normal liver HSCs store vitamin 

A, produce ECM components such as collagen (Lewindon et al, 2002), are 

potentially involved in vascularisation of new tissue (Jung et al, 2003), and also 

regulate the contractility, and therefore blood flow, of sinusoids via a-smooth 

muscle actin (aSMA) contraction. Acute damage to hepatocytes activates 

transformation of quiescent HSCs into myofibroblast-like cells that play a key 

role in the development of the inflammatory fibrotic response. Stellate cells are 

thought to have an important cell-cell signalling role in liver homeostasis in vivo 

and are highly active in liver regeneration (Mabuchi et al, 2004). HSCs and 

hepatocytes bilaterally modulate proliferation: HSCs release cytokines such as 

HGF and TGF(3 that respectively positively or negatively modulate hepatocyte 

proliferation, and hepatocytes release nerve growth factor (NGF) that is thought 

to cause stellate cell apoptosis (Oakley et al, 2003). 
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A range of autocrine and paracrine factors regulates HSC function. Mediators 

that affect constriction or relaxation of HSCs derive from various sources such 

as hepatocytes (carbon monoxide, leukotrienes), SECs (endothelin, NO, 

prostaglandins), KCs (prostaglandins, NO), and HSCs themselves (endothelin, 

NO). In the fibrogenic response, TGFß, and the related bone morphogenetic 

proteins (BMPs), are pivotal HSC and KC derived cytokines involved in the 

fibrogenic aspect of stellate cell activation and have similar effects both in vivo 

and in vitro (Liu X et al, 2000; Malik et al, 2002). TGFß is secreted in latent 

form and activated by hepatocytes. It significantly inhibits stellate cell 

proliferation (Shen et al, 2003), up regulates matrix metalloproteinase 2 (MMP- 

2) and activates MMP-2 dependent and independent migratory pathways (Yang 

et al, 2003). In vivo, inhibition of TGFP promotes hepatocyte regeneration, 

reduces ECM accumulation in the space of Disse, and leads to an increased 

proportion of HSCs that have a fat droplet rich "quiescent" morphology 

(Nakamura et al, 2000). Another key HSC proliferative cytokine produced by 

both HSCs and KCs is PDGF. It shares the MMP-2/integrin al/2 mediated pro- 

migratory activity of TGFß (Yang et al, 2003), and is also involved in the 

activation of stellate cells via promotion of mRNA for type 1 and 3 procollagens 

and PDGF itself (Liu et al, 2000(b)). Interleukin 6 (IL-6), produced by HSCs, 

KCs and SECs is another major cytokine thought to be involved in the 

fibrogenic and mitogenic aspects of HSC activation. Other cytokines with 

mitogenic activity on stellate cells include TGFa, IL-1, TNFa, and ILGF 

(Tsukamoto et al, 1999). 
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Stellate cells are also an important paracrine regulator of hepatocytes. HGF, 

extracellular heparan sulphate (EHS) and heparan sulphate proteoglycan (HSP) 

are stellate factors that promote hepatocyte proliferation in stellate-hepatocyte 

co-culture in vitro (Skrtic et al, 1999; Uyama et al, 2002). HGF production by 

stellate cells is stimulated via hepatocyte produced insulin-like growth factor 

(ILGF-1) (and possibly other factors) (Skrtic et al, 1999). Activated stellate cells 

begin to express the HGF receptor (c-met) and the HGF increases the production 

of profibrogenic, anti-proliferative TGF(3 in these cells creating a paracrine loop 

(Ikeda et al, 1998). IL-6 is also important in the proliferative response of 

hepatocytes following partial hepatectomy. 

1.2.3 The extracellular matrix environment and liver function 

The ECM is an important regulator of differentiation and proliferation in many 

tissue types (Roskelley 1995; Maher and Bissell 1993). The ECM structure of 

the liver is not homogenous, but varies across the lobule, and the specific 

composition is thought to influence the phenotype of the hepatocytes (Reid et al, 

1992; Martinez-Hernandez and Amenta, 1993). The space of Disse contains 

mainly type III reticular collagen, but also some type I and IV. Around the 

portal triad ECM is predominantly type IV collagen, fetal laminin and fetal 

chondroitin sulphate proteoglycans, similar in composition to fetal liver ECM. 

In the portal triad region gene expression is correspondingly weighted towards 

early genes such as a-fetoprotein and albumin. In Zone 2, the composition 

changes towards mixtures of type IV collagen and fibrillar collagens, mixtures 

of laminin and fibronectin, and proteoglycans. PEPCK, IGF-1 and connexin 26 
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gene expression are enriched in hepatocytes in this area. Around the central vein 

fibrillar collagens, fibronectin, and highly sulphated forms of heparin sulphate 

proteoglycans predominate and developmentally late gene expression such as 

connexin 32, CYP 3A and 2E is stronger (Reid et al, 1990,1992; Sigal et al, 

1992). ECM regulation of tissue specific gene expression, such as HNF-3a 

through ECM modulation (Dipersio et al, 1991) and gap junction expression 

through glycosaminoglycan presentation (Spray et al, 1987; Fujita et al, 1986), 

can also be achieved in vitro. 

1.2.4 The transcriptional control of hepatocyte function 

Expression of mRNA for proteins involved in liver specific function is under the 

control of a complex network of transcription factors. Most of these are liver 

enriched transcription factors that are more prolific in, but not specific to, 

hepatocytes. A few key families of liver enriched transcription factors 

predominate in the regulation of liver specific function through a non 

hierarchical control network. Each transcription factor gene has at least two 

regulatory elements, a promoter and far-upstream enhancer. Hetero and homo 

dimerisation, transactivation and multiple enhancer binding regions between 

members of a given transcription family add an additional layer of complexity 

and fine control. This combinatorial control is an efficient mechanism to achieve 

both diversity and stringency in control of gene expression (Reviewed in: 

Cereghini, 1996). 
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The family of Hepatocyte Nuclear Factor 1 (HNF1) transcription factors has 

been relatively extensively studied. Recognition sites for this transcription factor 

have been identified in more than 30 liver specific genes including the albumin, 

j3-fibrinogen and connexin 32 promoters (Piechocki et al. 2000) (Reviewed in: 

Tronche and Yaniv, 1992) and HNF 1 expression correlates with the mature 

hepatocyte phenotype of the cell (Baumhueter et al. 1988). The less studied 

HNF3 family has been shown to participate in expression of several liver 

specific genes, including transthyretin and the al-antitrypsin gene (Costa et al, 

1989) but it is now thought to have a predominantly developmental role (Ang et 

al, 1993). 

CCAAT/enhancer binding protein (C/EBP) has recognition sites in a large 

number of liver specific genes including albumin, C-reactive protein, factor IX 

and transferrin (Review: Cereghini, 1996). C/EBPa, ß, and y have been 

characterized and can all form homo and heterodimers to regulate responses. In 

the liver C/EBPa protein is only found in differentiated hepatocytes and 

adipocytes (Johnson et al, 1994). High levels of C/EBPa are associated with 

highly differentiated cells and reduced C/EBPa in both culture and during liver 

regeneration suggests a role in the maintenance of the differentiated state of 

hepatocytes (Umek et al, 1991; Mischoulon et al, 1992). 

The role of the proline and acid-rich subfamily of bZip transcription factors in 

liver function is comparatively understudied (Review: Cereghini, 1996). Factor 

binding to albumin-D element (DBP) interacts with liver specific genes 

including the albumin gene and the gene encoding 7a hydroxylase (C7aH - the 
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rate limiting enzyme in conversion of cholestrol to bile acid). The activity of 

C7aH follows a similar circadian rhythm to this transcription factor suggesting 

a role in cholesterol homeostasis (Lavery and Schibler, 1993). In common with 

other factors discussed, it is down regulated during liver regeneration. PAR 

proteins bind to a subset of C/EBP recognition sites with greater specificity than 

C/EBP proteins 

A further set of transcription factors is the subfamily of the nuclear receptor 

super family and includes the orphan receptors HNF4, Chicken ovalbumin 

upstream promoter transcription factor/Ear3 (CoupTF 1 /Ear3 ), and 

apolipoprotein regulatory protein 1 /CoupTF II (Arp-1 /CoupTF II). HNF4 

interacts with regulatory regions in promoters and enhancers of genes whose 

products are involved in diverse functions such as cholesterol and amino acid 

metabolism, gluconeogenesis and coagulation. The recognition sequence for 

HNF4 also interacts with the closely related orphan receptors CoupTFl/Ear3, 

Arp-1 (AKA CoupTFII), EarII as well as a range of retinoic x receptor (RXR) 

and retinoic acid receptor (RAR) homo and heterodimers (Review: Cereghini, 

1996)(Nakshatri and Chambon, 1994). HNF1 and al antitrypsin promoters only 

bind HNF4. Coup-TFs are negative transcription factors that compete for some 

of their binding sites with other positive transcription factor members of the 

family such as the vitamin D receptor, thyroid hormone receptor, RAR, RXR 

(Hatzis and Talianidis, 2001), the peroxisome proliferation activated regulator, 

and HNF-4 (Qiu et al, 1996), the balance determining the level of transcription. 

The maintenance of liver specific function by dexamethasone is probably 

attributable to its upregulating effect on RXR (Wan et al, 1994). RAR/RXR 
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heterodimers also bind the HNF3a promoter (Jacob et al, 1999), induce a- 

fetoprotein a marker of hepatocyte differentiation and maturation (Li et al, 

1996) as well as binding the Coup-TF promoter, presumably in a complex 

negative feed back loop. 

1.2.5 The in vivo - in vitro divide 

The complexity of hepatic function and its regulation are evident from the 

information above. A precise micro-structure, paracrine regulatory network, and 

specific ECM and physical environment, all combine to influence a complex 

web of hepatocyte enriched transcription factors to produce a given hepatic 

function. Although much is known, the mechanisms responsible at each level of 

this control are not fully understood. However, their regulation is key to 

differentiated function in vivo and the current understanding of their control is 

the best source to provide direction for liver engineering strategies in vitro. 
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1.3 Tissue engineering 

The simple concept of tissue engineering involves the removal of a cell from a 

host or donor, the multiplication of that cell to a functional unit, and then the 

return to the host. The field also offers the potential to develop in vitro organ 

assays and disease models as well as tissue based therapeutic solutions. Tissue 

engineering is a multidisciplinary area requiring expertise in cell biology, 

material science, and beyond. Its aims are to manipulate tissue growth and 

function through design and optimisation of novel culture techniques, surfaces 

and scaffolds. Demand is rapidly growing for this technology across a wide 

range of therapeutic areas. Significant progress has been achieved in skin, 

cartilage, and even nerve tissue engineering. More complex tissues such as the 

pancreatic beta cell islets or the liver pose greater challenges. 

1.3.1 The need for tissue engineered liver 

There is an increasing urgency for hepatocyte culture systems that sustain 

hepatocyte function in vitro. Such systems could contribute to the development 

of solutions to a variety of industrial and therapeutic problems. In industry, high 

throughput metabolism and toxicology screens are required that will improve 

accuracy and reproducibility of developmental compound screening and also 

help comply with the pressure to `reduce, refine and replace' animal testing in 

areas of research that historically have relied heavily on animal based methods. 

An example of this is recent EU legislation (2003/15/EC) that prohibits 

cosmetics firms selling products tested on animals within the EU after 2009 
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resulting in a rush to validate alternative in vitro systems for a range of tissues 

and assay types. In therapeutic terms, the need for liver assist or replacement 

technology is also urgent: the waiting list for liver transplant stands at nearly 18 

000 in the US with over 20% of patients having waited more than 5 years (The 

organ procurement and transplantation network, October, 2005). In vitro culture 

systems offer the potential of hepatic dialysis to allow regeneration of a patients 

own liver, or alternatively of a seeding system to repopulate a damaged liver. A 

further application for in vitro liver culture is the study of liver disease where 

improved models of conditions such as fibrosis, cirrhosis, and viral infection and 

replication are required. This is of particular importance as Hepatitis C has an 

estimated infection rate of just less than 1% in the UK population and a global 

incidence estimated at 2.2% (The global burden of Hepatitis C working group, 

2004). Future levels of cirrhosis and liver cancer are predicted to be 

correspondingly high and it is therefore important to improve the currently 

limited research capabilities into the pathology of these conditions. 

1.3.2 The challenge of hepatic tissue engineering 

Creating a tissue engineered liver model should be relatively easy. The liver 

exhibits amazing regenerative capacity; after two-thirds hepatectomy liver mass 

and function are rapidly recovered over a matter of weeks. However, once 

isolated, hepatocytes cultured on tissue culture plastic rapidly de-differentiate 

and die. The cells progressively lose their liver specific attributes, such as 

xenobiotic metabolism, production of blood proteins, and polarised membrane 

structure. The time course of deterioration for each function differs; rapid loss of 
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some major P450 enzymes occurs within the first day of culture, and production 

of proteins such as albumin lasts longer (Guillouzo, 1998). This functional 

instability presents a barrier to the development of robust in vitro cell culture 

models. 

Liver tissue engineering is further challenged by the low availability of human 

cells. Currently, cells are used from hepatic resections or from organs unsuitable 

for transplant. Other species can be used but there is significant inter-species 

functional variation such as in the prevalence of various P450 enzymes and in 

the manner of dedifferentiation. Furthermore, any successful human hepatocyte 

culture system would create a demand that would be impossible to meet through 

current sources. Attempts to address this issue are being made through stem cell 

or progenitor cell differentiation research, perpetual culture systems, or, in the 

case of therapeutic support or seeding systems, through use of a patients' own 

cells. 

The cause and nature of the changes in hepatocytes that occur in culture are 

disputed; even the terminology, dedifferentiation or adaptation, is contentious. 

Transcriptional changes are variously attributed to the loss of an ECM support, 

paracrine signals or other endogenous regulators. This is supported by the 

benefits of media supplements (Washizu et al, 2000) and also by the 

requirements of an ECM to maintain functions such as P450 inducibility 

(Schuetz et al, 1988). Alternatively, it is suggested that loss of mRNA is not 

solely due to loss of endogenous signals, but an active response to the cells new 

environment (Wang et al, 1997). For example fibronectin reportedly mediates 
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RNAse induction via integrin receptors contributing to loss of P450 2C 11 

(Hodgkinson et al, 2000). The nature of the change of cell transcription in vitro 

has implications for strategies to prevent it. 

1.3.3 Techniques in liver tissue engineering 

The functional and longevity limitations of traditional hepatocyte culture have 

driven the development of a plethora of techniques designed to reproduce the 

essential stimuli required to maintain the in vivo phenotype of hepatocytes in 

vitro (Powers et al, 2002, Bhatia et al, 1998, Michalopoulos et al, 1975). 

Strategies are diverse and include growth factor or nutrient media 

supplementation, incorporation of ECM components in the culture environment, 

promotion of three-dimensional structure formation, and co-culture with a 

second cell type. These techniques are not mutually exclusive; co-culture may 

mediate an effect through soluble mediator or ECM production by the second 

cell type, and some ECM based methods have a three dimensional aspect and 

develop cell polarity. 

1.3.3.1 Media supplementation and long term hepatocyte culture 

Early attempts to prolong hepatocyte function in vitro involved variation of the 

culture media composition. Some supplements have become common additives 

to hepatocyte culture medium with relatively well defined effects. 

Dexamethasone is often used to augment matrix gene transcription (fibronectin 

and collagen), tyrosine aminotransferase and other liver enriched activity 
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(Jefferson et al, 1985). However, it has also been shown to inhibit spheroid 

formation (Abu-Absi et al, 2005) and may therefore interfere with development 

of morphology beneficial for long-term culture. Nicotinamide can be used to 

stimulate proliferation in cultured primary hepatocytes (Sato et al, 1999) and 

nicotinic acid to facilitate small colony formation, the latter reportedly without 

any effect on proliferation. Insulin and epidermal growth factor (EGF) can be 

used as in vitro hepatocyte growth factors (Nakamura and Ichihara, 1985), 

whilst EGF combined with HGF supplementation allows culture of hepatocytes 

for up to 5 weeks with well-preserved morphology and expression of a number 

of in-vivo like markers, liver specific proteins and liver-enriched transcription 

factors (Runge et al, 2000). A balance of additives such as these can be used to 

help promote the desired phenotype, i. e. proliferative or functional, for the 

purpose of the culture. 

1.3.3.2 The role of extracellular matrix in liver tissue engineering 

A complex and graduated ECM network surrounds hepatocytes in vivo and is 

thought to influence hepatocyte phenotype. Fibronectin is the predominant 

component but there is also some collagen type I, minor quantities of types III, 

IV, V, and VI as well as other proteins (see section 1.2.3, Reviewed in: 

Martinez-Hernandez and Amenta, 1993). Hepatocytes have also been 

demonstrated to respond to ECM stimuli in vitro. Culture surfaces coated with 

ECM components such as fibronectin, collagen, laminin, vitronectin or 

commercial products such as MatrigelTM are claimed to improve hepatocyte 

adherence, prolong survival and improve functionality in the short term. 
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Increasing levels of cell deposition and cell organisation on these surfaces 

(Clement et al. 1984), as well as ECM dependent cytokeratin organisation 

(Ballet et al. 1991), correlate well with higher hepatocyte specific function. 

Remodelling of the ECM environment involving the cell-cell interaction 

dependent activation of MMP-2 has also been observed in culture (Theret et al. 

1997). 

Fibronectin is a comparatively well studied ECM component due to its 

prevalence in vivo. A culture surface presenting the integrin-binding motif of 

fibronectin (the arginine-glycine-aspartic acid sequence (RGD)) reportedly 

enhances differentiated function and maintains the round in vivo like 

morphology of hepatocytes in vitro (Bhadriraju and Hansen, 2000). Compared 

with collagen type I or entactin-collagen IV-laminin (ECL), fibronectin is also 

reported to be the only ECM protein to support in vitro formation of chords 

reminiscent of hepatocyte plate organization in vivo with expression of CK18, 

albumin, a-fetoprotein, and associated transcription factors HNF4 and HNFIa 

(Sanchez et al, 2000). 

MatrigelTM (a protein mixture from a murine fibroblastic cell line) is a popular 

ECM blend used as a hepatocyte culture substratum that, in the short term, 

supports hepatocyte survival and function including a number of P450 activities 

(Schuetz et al, 1988, Liu et al, 1991). It is associated with general higher 

expression of liver specific proteins and supports expression of the gap junction 

protein connexin 32 and EGF receptor specific epitope, none of which are 

observed with type I collagen (Moghe et al. 1996). It is possible that the 
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properties of MatrigelTM (predominantly type IV collagen, laminin, and heparan 

sulfate proteoglycan (HSP)) are attributable to its incorporation of several basal 

lamina components. A study attempting to isolate the effects of individual ECM 

components has suggested that matrix rich in laminin, a MatrigelTM constituent, 

provides the most convincing maintenance of ECM supported phenotype in 

vitro (Schuetz et al, 1988). MatrigelTM also contains glycosaminoglycans and 

proteoglycans that independently demonstrate potent concentration dependent 

induction of hepatocyte gap junction expression and function and increase the 

expression of liver enriched mRNA (Fujita et al. 1987). In addition, these 

mediators often cause contraction of the cell sheet and consequent increase in 

cell packing density, a phenomenon frequently associated with differentiated 

function. 

Although the majority of evidence supports ECM promotion of in vitro 

hepatocyte function, alternative reports suggest that whilst hepatocytes adhere 

well to ECM coated surfaces this is associated with flattening of the cells and 

loss of function (Michalopoulos et al, 1975; Rojkind et al, 1980). Furthermore, 

loss of certain hepatocyte specific gene expression and cellular spreading, 

mediated via a specific integrin receptor, has been attributed to fibronectin in 

vitro (Hodgkinson et al, 2000). However, fibronectin clearly does not cause 

dedifferentiation in vivo, presumably due to a moderating factor in the ECM or 

from nearby cells. These conflicting studies demonstrate the difficulty of 

viewing various ECM components in isolation. Some of the variation may also 

be accounted for by differences in culture morphology, poorly defined cell 

populations and variable culture conditions between laboratories. 
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1.3.3.3 Three dimensional culture structures in liver tissue engineering 

The composition of the support matrix surrounding the hepatocytes is only one 

of the factors determining cellular phenotype. The morphology and 

juxtaposition of the cells is also closely linked to gene expression. A wide 

variety of 3D culture techniques have been developed including spheroid 

formation, sandwich culture, micro spheres and polymer scaffolds amongst 

others (see section 5.1). Advances in 3D cell culture techniques have produced 

benefits that include preservation of membrane polarity and cell structure, 

maintenance of functional attributes such as albumin production, suppression of 

markers of de-differentiation such as a-fetoprotein, and maintenance of EGF 

and HGF receptor expression (Ringel et al, 2005; Dunn et al, 1989; Powers et 

al, 2002, Engl et al. 2004, Hanada et al. 2003, Kudryavtseva et al, 2003). 

A relatively common method of producing 3D cell constructs involves cell 

culture on non-adherent surfaces to produce aggregates or spheroids. These 

develop tight junctions between cells, have microvilli lined channels and bile 

canaliculi with active secretion (Koide et al, 1990), and have polarised 

distribution of basal and apical membrane proteins (Abu-Absi et al, 2002). 

Hepatocyte spheroids also demonstrate improved base line and inducible tissue- 

specific gene expression (Tamura et al, 1995). However, spheroid aggregates 

suffer from limitations such as consolidation to larger aggregates and the 

formation of a barrier layer. Central necrosis after approximately a week, 

presumably due to nutrient deprivation or waste build up, and reduced toxicity 
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sensitivity are both reported in some spheroid models (Battle T et al, 1999; 

Torok E et al, 2001). 

1.3.3.4 Co-cultures and liver tissue engineering 

Co-culture of hepatocytes with a second cell type has been shown to prolong a 

differentiated hepatocyte phenotype in vitro. In early studies human fibroblasts 

were used as the second cell type and promoted better hepatocyte attachment 

and cyclophosphamide metabolism (Kligerman et al, 1980). This was followed 

by a number of studies using fibroblast cell lines, such as 3T3, that demonstrated 

prolonged P450 function (Riccalton Banks et al, 2003(b); Washizu et al, 2001). 

The early work with fibroblasts was followed by co-culture of hepatocytes with 

liver epithelial cells. This is probably the most extensively studied system; it 

improved hepatocyte acute phase protein production and P450 activity 

(Guillouzo et al, 1984; Begue et al, 1984, Akrawi et al, 1993), taurocholate 

uptake (Foliot et al, 1985), liver enriched mRNA expression (Fraslin et al, 

1985), coagulation factor production and urea production (Auth et al, 2005). 

Some of these benefits, such as xenobiotic metabolism, were also demonstrated 

with epithelial-like cell line co-cultures offering a system easier to work with 

than one involving non-continuous epithelial cells (Donato et al, 1990; Donato 

et al, 1991). 

Sinusoidal endothelial cells have been used in various forms as hepatocyte co- 

culture partners. A hepatic derived sinusoidal endothelial cell line, a pulmonary 
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endothelial cell line, and aortic endothelial cells amongst others have variously 

been shown to reduce a-fetoprotein expression and prolong production of 

albumin and other liver associated proteins (Morin and Normand, 1986; 

Talamini et al, 1998; Harimoto et al, 2002). 

The remaining cell type of the sinusoidal compartment, the stellate cell, has also 

been trialled as an in vitro co-culture component. Due to the pivotal role of this 

cell in fibrosis, these studies have often been directed at ECM deposition (Loreal 

et al, 1993), or associated disease related responses such as alcohol induction of 

procollagen expression (Fontana et al, 1997). In terms of improved hepatocyte 

function, co-culture with the stellate cell line Li90 supports improved P450 

function but not urea production (Okamoto et al, 1998). However, co-culture 

with stellate cell line CFSC-2G reduces functionality in terms of albumin 

content and metabolic rate, as well as reducing proliferation (Arnaud et al, 

2003). Primary stellate cells are also reported to maintain hepatocyte numbers in 

mixed co-culture, relative to a 25% drop in mono-culture, and increase 

hepatocyte numbers in separated co-culture, suggesting a complex regulatory 

role in hepatocyte proliferation (Uyama et al, 2002). 

Other functional co-cultures have included hepatocytes with bone marrow cells 

that form functional aggregates (Ijima et al, 2005), and hepatocytes with 

pancreatic islets, where improved function is attributed to insulin and glucagons 

(Kaufmann et al, 1999). A number of studies have considered Kupffer cells and 

other macrophages as co-culture components but usually with the aim of 

studying Kupffer mediated toxicity in response to factors such as endotoxin and 
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not prolonged function (Hoebe et al, 2001). The related field of foetal 

hepatocyte differentiation has also used co-culture with liver derived cells to 

direct differentiation of stem cells and various progenitor cells. 

The complexity of cross regulation of all these cell types in vitro, as outlined in 

section 1.2.2, may limit the functional potential of a system involving only two 

cell types. This view is supported by a particularly successful hepatocyte culture 

model involving pre-culture of mixed stromal cells on a mesh followed by 

seeding of hepatocytes that results in long and diverse function over several 

months (Naughton et al, 1995). The nature of the stromal cell population is not 

defined however and an alternative study suggests that stellate cells and kupffer 

cells predominate over endothelial cells in mixed non-parenchymal cell culture 

with associated benefits similar to those previously reported (Ries et al, 2000). 

The development of the co-culture field has led to a desire to control and 

understand the interactions between different cell types in vitro. Techniques 

have been developed to control the spatial arrangement of cells on culture 

surfaces i. e. photosensitive surfaces that allow micro patterning through UV 

light and photomasks (Kang et al, 2004), magnetic nanoparticle containing cells 

that can be controlled using magnetic forces (Ito et al, 2004), and thermo 

responsive polymers that can regulate attachment and patterning (Tsuda et al, 

2005). Such technologies contribute to further understanding of cellular 

interactions and the basis of the co-culture effect. 
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The basis for the co-culture effect probably varies depending on the co-culture 

component, and in a number of cases has been shown to be relatively non- 

specific. For example, hepatocyte albumin and urea production are proportional 

to cadherin presentation by a co-cultured non-functional transfected cell line 

(Brieva and Moghe, 2001), support of hepatocyte differentiated function in 

organotypic islands formed by co-culture with various cell lines is reportedly 

totally dependent on the ability of the cell line to produce a 3D collagen network 

(Kudryavtseva, 2003), and functional benefits in an epithelial cell co-culture 

system are dependent on cell contact, but not on junctional communication 

(Mesnil et al, 1987). In heterotypic culture with 3T3 cells, micro-structure 

control has demonstrated enhanced liver specific function specifically in 

hepatocytes with a heterotypic interface (Bhatia et al, 1998), but this is 

countered by the claim that TGF3 production is responsible for hepatocyte 

function in 3T3 co-culture (Chia et al, 2005). Gene array technology may 

provide the most illuminating insight into the mechanisms of hepatocyte 

function support by co-culture. The technique has been used to identify 17 

communication related genes, such as N-cadherin, that are upregulated in a 

range of different fibroblast co-cultures and are therefore potentially involved in 

hepatocyte modulation in co-culture (Khetani et al, 2004). 

1.3.3.5 Bioreactors in liver tissue engineering 

The most advanced and complex liver culture involves the use of bioreactors. 

These are designed to allow control of elements of the culture system 

environment. The drive to develop complex bioreactors is provided by evidence 
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that physical parameters such as perfusion/shear flow (Kan et al, 1998, Kan et 

al, 2004) or oxygenation (Tilles et al, 2001) influence hepatocyte function and 

longevity. Bioreactors often involve a combination of known functionally 

beneficial factors, such as co-culture or ECM support. Functionally beneficial 

systems have included perfusion of human 3D non-parenchymal cell hepatocyte 

co-culture aggregates with integral oxygenation (Zeilinger et al, 2002), 

perfusion of hepatocyte BEC co-culture in collagen gel (Auth et al, 1998), 

hepatocyte SEC co-culture in a flow bioreactor (Pollok et al, 1998), and 

hepatocyte, BEC and SEC co-culture in a rotary low shear force bioreactor 

(Yoffe et al, 1999). These systems have variously shown improvements in the 

cell parameters measured e. g. P450 activity, albumin production, or in vivo like 

organisation. Detailed analysis of a channelled bioreactor has also revealed 

zonation of hepatocyte function from the entrance to the exit channel (Allen et 

al, 2005). Porcine cells in a model of extracorporeal liver support have been 

used to reduce ammonia levels and maintain P450 metabolism in toxic plasma 

circulated through an oxygenated bioreactor for 6 hours (Papadimitriou et al, 

2004) and, in an alternative model, maintain ammonia detoxification and P450 

activity for two weeks in a perfused high density sandwich between semi- 

permeable membranes (De Bartolo and Bader, 2001). 

The development of a culture system with flow is attractive as it provides 

potential for an extracorporeal BAL support device, and, in this way, bioreactors 

are the link between in vitro culture systems and a clinically useful BAL support 

system. Most of these bioreactors show promising qualities for an extracorporeal 

BAL support device. However, analysing cause and effect in systems this 
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complex is extremely difficult, with individual factors hard to isolate. For 

example, SEC and nonparenchymal cell co-culture on 3D polymers under flow 

is reported, contrary to what the majority of the literature would lead us to 

suspect, to have no effect on albumin secretion or urea synthesis (Kaihara et al, 

2000). Such anomalies are most likely due to different bioreactor designs 

resulting in multiple different variables between groups other than those 

described as the target of the experiments. 

1.3.3.6 Alternative strategies to mature hepatocyte isolation and culture 

The culture of mature hepatocytes in vitro is an important field in the search for 

in vitro screening systems and extracorporeal BAL systems. However, there are 

related fields that have also shown progress towards the same goals. Most of 

these techniques offer alternatives that circumvent the shortage of human tissue. 

Cell lines are a simple solution promoted for in vitro testing due to their 

availability and ease of use and validation. However, older cell lines such as 

HepG2 cells are woefully inadequate for studying a variety of hepatocyte 

functions (Wilkening et al, 2003) and, whilst newer cell lines express higher 

levels of liver specific proteins e. g. P450 enzymes (Degawa et al, 2003), these 

are not as high as primary hepatocytes, and not sufficiently in vivo like in their 

responses. 

Transgenic animals offer the possibility of metabolism and toxicology tests in 

animals with a humanised liver phenotype, or of growing transgenic 
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immunologically compatible human organs in animals for xenotransplantation. 

Alternatively, liver localised or ectopic transplantation of hepatocyte 

suspensions or hepatocyte microspheres to support liver function offer 

alternatives to whole organ transplant. 

There is also interest in differentiation of progenitor or stem cells into scaleable 

functional hepatocyte populations. Implanting cells and observing 

differentiation in vivo has achieved most success. However, conversion of 

haematopoietic stem cells to hepatocytes without fusion has also been achieved 

in vitro in separated injured liver co-culture (Jang et al, 2004). Differentiation of 

mesenchymal stem cells to hepatocyte like phenotype has been stimulated in 

vitro using fibronectin, SCF, HGF, EGF, and FGF-4 (Lange et al, 2005). A 

combination model of mesenchymal stem cells pre-cultured with damaged liver 

tissue prior to transplantation appears to have hepatic potential (Luk et al, 2005). 
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1.4 Project background, hypothesis and aims 

This thesis describes studies that were designed to evaluate some of the 

functional and morphological characteristics of an in vitro hepatocyte and 

hepatic stellate cell co-culture system. 

The system entails co-culture of pre-cultured, activated, hepatic stellate cells 

with freshly isolated hepatocytes on a PDLLA surface. Hepatic stellate cells were 

used due to their involvement in hepatocyte regulation in vivo (see section 

1.2.2.4). In vitro the cells interact to form multicellular 3D spheroids. These co- 

culture spheroids have previously been shown to maintain low-level albumin 

production and P450 I A2 function over several months (Riccalton-Banks et al, 

2003). Also, hepatocytes in co-culture with stellate cells enter into S phase of 

the cell cycle demonstrating potential for a proliferative hepatocyte culture 

system (Lewis, 2003); cells in standard mono-culture are blocked at the mid to 

late G1 phase restriction point (Loyer et al, 1996). 

It is hypothesised that the hepatocyte stellate cell co-culture system will support 

a high level of differentiated function and structure. To test this hypothesis, the 

studies described in this thesis aim to: 

> Develop and validate an HPLC method and apply it to quantifying 

metabolite production by in vitro cell systems. 
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> Design and validate reverse transcriptase PCR probes to investigate 

expression of various liver enriched mRNAs and cytokines. 

¢ Use time-lapse photography to study the manner and time frame of cell 

interactions and spheroid formation. 

> Use immunohistology and transmission electron microscopy to 

investigate the structure of the spheroids. 

> Evaluate the potential of the co-culture system as a toxicological model. 
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CHAPTER 2 

Formation and Structure of 

Hepatocyte Stellate Cell Co-culture 

Spheroids 



2.1 Introduction 

2.1.1 The advantages of 3D cell culture 

The liver has a complex and highly organised 3D architecture. A 3D culture 

system is therefore necessary to allow elements of hepatic structure to develop 

in vitro. Such a system, correctly engineered, is likely to provide a more faithful 

model of liver function and response than a cell monolayer through allowing 

cells to create an in vivo like microenvironment and heterotypic cell 

connections. For example, potential exists for gradients of environmental 

factors such as nutrients, toxins, waste products, ECM, paracrine mediators and 

physical stress. In early development of 3D systems these are unlikely to be in 

the correct balance to provide an in vivo like range, but such a system offers the 

opportunity to introduce in vivo like complexity. 

2.1.2 Methods and mechanisms of formation of 3D aggregates 

There is strong evidence that the method and mechanism of hepatocyte 

spheroid formation is critical to the functional performance of the resultant 

aggregate. Manipulation of aggregation is therefore important, and has been 

achieved through numerous methods. Growth factor supplementation and 

matrix compliance alter the kinetics of aggregation (Semler et al, 2000), and 

different culture surfaces can result in different mechanisms of spheroid 

formation (Hasebe et al, 2005). In the latter case, attachment of cells to the 

culture surface resulted in relatively slow formation of more functional 

spheroids and involved the plasminogen activator/plasmin system whereas 
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formation of spheroids without attachment was faster, did not involve the 

PA/plasmin system, but produced less functional aggregates. The speed of 

aggregation may be important in establishing rapid cell-cell contact and 

function, but the effect of this on function is unclear. An alternative study on 

the mechanics of formation of 3D hepatocyte structure has suggested that the 

actin network is essential for hepatocytes to self assemble into aggregates 

(Emmanouhl et al, 2001), but experiments disrupting such an integral cell 

structure will interfere with multiple other mechanisms. The complexity and 

multifactorial nature of the events that contribute to aggregation make it 

difficult to observe and difficult to create appropriately controlled experiments. 

2.1.3 Aggregate shape, ultrastructure and ECM organisation 

If ECM is presented in a three-dimensional architecture, such as a sandwich 

culture or encapsulation, both cell shape and some aspects of functionality are 

preserved (Dunn et al, 1989; Engl et al, 2004). In contrast, although 

hepatocytes adhere well to an ECM coated surface to form a 2D monolayer, this 

is associated with flattening of the cells and loss of function (Michalopoulos et 

al, 1975; Rojkind et al, 1980). The composition of any ECM support is also 

important, demonstrated by enhanced function, morphology, and viability on 

matrix derived from solubilised acellular liver compared with simple collagen 

or plastic (Burra et al, 2004). Therefore the evidence combines to suggest that 

the correct ECM mixture presented in the correct orientation could have 

benefits for hepatocytes in culture. 
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A 3D structure is thought to be advantageous due to making in vivo like 3D 

connectivity possible. 3D aggregate structures have more cadherin expression 

and less integrin expression than monolayers suggesting more cell to cell 

communication (Hou et al, 2001). Increased connectivity between cells, and, in 

co-cultures, the arrangement of cells to maximise heterotypic interfaces, have 

both been linked to improved cell function (Bhatia et al, 1998; Khetani et al, 

2004). Aspects of liver ultrastucture such as cellular junctions, membrane 

polarity and bile canaliculi are commonly reported in 3D culture systems such 

as aggregate cultures in bioreactors (Zeilinger et al, 2004; Powers et al, 2002), 

collagen sandwich cultures (Engl et al, 2004), spheroid cultures (Koide et al, 

1990; Abu-Absi et al, 2002; Dvir-Ginzberg et al, 2004), and cultures on 

polymer scaffolds (Hanada et al, 2003). Such systems usually also involve 

some form of ECM support, and, in practice these characteristics are difficult to 

analyse independently. For example, in a co-culture model of preserved 

hepatocyte morphology and function, these attributes have been shown to be 

dependent on the ability of the cells to form aggregates with a 3D ECM 

network (Kudryavtseva and Engelhardt, 2003). 

2.1.4 Cell viability in 3D structures 

Functionality and viability of culture systems are not necessarily synonymous. 

Spheroid structures, repeatedly demonstrated to have improved hepatocyte 

specific function, suffer central necrosis after one to two weeks presumably as a 

result of toxin accumulation and/or nutrient deprivation (Dvir-Ginzberg et al, 

2004). A depth of 80-100 µm has been suggested as the maximum at which 
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hepatocytes can survive in an aggregate structure (Fukuda et al, 2004). 

However, this range will inevitably depend on the density and composition of 

the aggregate amongst other factors. 

2.1.5 Aims 

The studies described in this chapter were designed to characterise the 

formation, composition and structure of the co-culture spheroids. A range of 

mono-culture techniques were used to provide 2D and 3D mono-culture 

comparisons for hepatocyte-stellate cell co-culture and thereby distinguish 

between the co-culture effect and alternative methods of aggregation. Mono- 

culture aggregates are formed by agitated culture, or trypsin pre-treatment, the 

latter being a technique hypothesised to increase cell adhesion through release 

of sticky glycopeptides, and rearrangement of surface glyco proteins (Deman et 

al, 1974). The chapter specifically aims to: 

¢ Use time lapse photography to study the characteristics of formation of 

co-culture spheroids. 

> Use histology and immunolocalisation techniques to study the structure, 

heterotypic cell arrangement, and ECM support in the spheroids. 

> Use LDH leakage and Live-DeadTM probe in conjunction with confocal 

microscopy to study the viability of cells in the spheroids. 
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Use TEM to investigate the ultrastructure of the spheroids. 
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2.2.2 Rat stellate cell isolation 

Stellate cells were isolated as described previously (Riccalton-Banks et al., 

2003). In brief, supernatant from cell washes and the percoll purification spin 

were combined, and made up to 200 ml with stellate culture media (DMEM 

(Gibco) supplemented with 5 mM L-glutamine, 100 U Penicillin, 100 µg 

streptomycin, 250 ng amphotericin B and 10% FCS Gold (PAA laboratories)). 

This was centrifuged three times at 50g, each time retaining the supernatant and 

discarding the pellet. The final supernatant was centrifuged at 260g, the 

resultant pellet suspended in stellate culture medium, and plated into two T75 

flasks. Media was changed after 12 to 24 hours and then every three days. Cells 

were cultured for several weeks until confluent before use. 

2.2.3 PDLLA coating of culture plates 

PDLLA (Polyscience Inc) was dissolved in 2,2,2-Trifluoroethanol at a 

concentration of 1.5 mg/ml. 500 µl of PDLLA solution was added to each 962 

mm2 nunclon dish. The dishes were placed in an oven at 60°C for 

approximately 1 hour to evaporate the solvent and then exposed under a 

sterilising UV lamp for 30 minutes before being stored at -20°C. 

2.2.4 Methods of cell culture 

Co-cultures comprised of 300 000 cultured stellate cells and 600 000 freshly 

isolated hepatocytes combined in a PDLLA coated 962 mm2 circular plate, and 
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maintained in 1.5 ml hepatocyte culture medium (William's E media 

supplemented with 5 mM L-glutamine, 50 µg/ml gentamicin, 5 mM 

nicotinamide, and 10 mU/mi insulin). Dexamethasone media supplementation 

is not used as this has a detrimental effect on spheroid formation (also observed 

and published by Abu-Absi et al, 2005). Mono-cultures were conducted using 

600 000 hepatocytes in the same types of plates and also in untreated tissue 

culture plastic (TCP) plates, and were maintained in the same manner. Mono- 

cultures on TCP were cultured with 10% FCS for the first 2 hours. Agitated 

cultures were conducted in PrimariaTM plates on a rotary plate shaker at 120 

rpm. Trypsin treated cultures were incubated for 10 minutes with 2 . tM trypsin 

in 200 µl media, followed by dilution to 1.5 ml with hepatocyte culture media. 

Incubation for all cultures was at 37°C in a 5% CO2 atmosphere. 

2.2.5 Time Lapse Photography 

Cells were kept in a 37°C CO2 supplemented incubation chamber under a Leica 

DR IRBE microscope with an attached Leica DC 200 digital camera. Images 

were acquired every 6 minutes and converted into video using Adobe 

PremierTM software. Time lapse sequences were constructed such that I second 

of sequence time equates to 2 hours of cell culture. 

2.2.6 Histology and immunolocalisation 

Five day old spheroids or liver samples were prepared for histology by fixing 

aggregates in 10% formalin in PBS for approximately l hour, suspending the 

fixed tissue in an agarose gel pellet. The agarose pellet was then dehydrated 
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through a series of alcohol concentrations (70%, 90% and 100% v/v), cleared 

using xylene and then embedded in paraffin wax. 4 µm paraffin sections were 

then cut using a Leica RM 2165 microtome and allowed to dry overnight. These 

were deparaffinised by heating the sections at 60°C for 10 minutes, then passing 

them through xylene (2 x5 minutes) and rehydrated through a series of 

decreasing percentage alcohol solutions. Samples were then subject to the 

relevant empirical or immunological protocol, dehydrated through increasing 

alcohol concentrations, and mounted in DPX. 

Cell monolayers were prepared for histology by placing a drop of cell 

suspension on a microscope slide, allowing the cells to attach and develop a 

typical morphology over several hours, and then fixing for 30 minutes in 10% 

formalin. 

Empirical stains used were Mayer's Haematoxylin and alcoholic eosin 1 %, 

Picrosirius Red; lmg/ml Sirius red for 1 hour, saturated aqueous picric acid 

(Junqueira et al, 1979), and silver impregnation of reticulin. Immunological 

studies used various primary antibodies: monoclonal anti-human fibronectin 

(Sigma IST-3) in a 1: 10 dilution, SMA (clone 1A4,1: 250 dilution), GFAP 

(1: 100), desmin (1: 10), aBcrystallin (1: 250), followed by DakoTM liquid DAB 

+ substrate-chromagen kit used as per manufacturers instructions. All slides 

were visualised using a Leica DM IRB microscope. 
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2.2.7 LDH assay of cell viability 

The LDH assay was conducted using a commercially available kit (Roche 

applied science - Cytotoxicity detection kit (LDH)). Supernatant was removed 

from the cells and centrifuged to remove any cells/spheroids and then 

refrigerated. Any pelleted cells/spheroids were lysed using 0.5 ml Triton-X 100 

(1%) in assay medium that was then transferred to lyse the remaining cells in 

the culture well. The assay was conducted in a 96 well plate using 100 µl of 

assay supernatant or cell lysate and 100 µl of freshly prepared Diaphorase, 

NAD+, Iodotetrazolium chloride and sodium lactate mixture (from kit). 

Incubation was 30 minutes. Formazan formation (directly related to LDH 

content) was measured by detecting absorbance in a plate reader at 490 Mn. 

Percentage cell death was calculated by dividing the LDH activity value from 

the supernatant by the LDH activity value of the supernatant and remaining cell 

lysate combined and multiplying by 100. 

2.2.8 Live-DeadTM kit assay of cell viability 

Live-DeadTM kit (Molecular Probes) was used to further assess cell viability. 

Five day old spheroids were incubated for 40 minutes at room temperature in 

hepatocyte culture media containing 4 µM ethidium-homodimer, and 2 µM 

calcein AM. Spheroids were then washed, re-suspended in fresh media, and 

visualised using a water immersion lens on a confocal microscope fitted with a 

488/568 double dichroic filter, detection at 515 nm and 617 nm. 
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2.2.9 Transmission Electron Microscopy 

Spheroids were fixed in 2.5% glutaraldehyde in sodium cacodylate buffer, 

embedded in 5% (w/v) agarose and then fixed in 2% (v/v) osmium tetroxide for 

2 hours. The agarose-aggregate samples were then dehydrated through a series 

of alcohols: 50%, 70%, 90% (v/v) ethanol (all 2x 15 minutes), and chemically 

dried with 100% (v/v) ethanol (3 x 30 minutes) and 100% (v/v) acetone (2 x 15 

minutes). Samples were then set in epon epoxyresin, sliced in to 80 nm sections 

using a glass knife on a Reichert-Jung Ultracut E microtome and mounted on 

100 mesh hexagonal copper grids (TAAB, UK). These were stained with lead 

citrate and uranyl acetate (saturated solution diluted 1: 1 with 100% methanol) 

and visualised using a Jeol 1010 TEM (80 KV accelerating voltage). 
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2.3 Results 

2.3.1 Light microscopy comparison of cell culture methods 

Hepatocytes co-cultured with stellate cells formed spheroids of 100-150 µm 

diameter over approximately two days that included most cellular material in 

the culture well (figure 2.1a). The hepatocyte mono-culture control involving 

trypsin pre-treatment formed similar size aggregates over a similar time period 

(figure 2.1b), but the initial aggregation was slower than the stellate facilitated 

aggregation in co-culture. The agitated hepatocyte mono-culture control formed 

spheroids within 12 hours that were inclusive of most cellular material and were 

approximately 200 µm or more in diameter (figure 2.1 c). Hepatocytes in static 

mono-culture on a PDLLA surface formed aggregates slowly and inconsistently 

that were rarely larger than 50-70 µm, and were less inclusive of material in the 

culture dish (figure 2.1d). Hepatocytes in standard culture on tissue culture 

plastic attached to the culture surface and flattened to form a typical monolayer 

(figure 2.1e). The formation and morphology of the co-culture and agitated 

culture systems are discussed in detail in chapter 5. 

2.3.2 Hepatocyte - stellate cell interactions and spheroid formation 

Hepatocytes co-cultured with stellate cells on a PDLLA surface formed 

spheroids of 100-150 . tm in diameter over approximately two days. If a 

gradient of stellate cell density was present spheroids formed only in areas of 
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high stellate cell concentration with hepatocyte monolayer formation in areas of 

lower stellate cell density (figure 2.2). 

The lowest magnification hepatocyte-hepatic stellate cell co-culture time lapse 

movie gives a temporal overview of the course of aggregation and spheroid 

formation (Figure 2.3, Time lapse 1). The process occurred in several distinct 

phases, each of which is annotated on the time-lapse movies. The first 12 hour 

period of culture was characterised by low cell motility and some hepatocyte 

spreading. This was followed by 12 hours of relatively high cell motility in 

which rapid stellate cell contraction led to aggregate formation. A further 12 

hours of consolidation occurred in which the outlines of the spheroids became 

smooth and distinct, and the remaining cells were amalgamated. After this the 

spheroids maintained a stable morphology. 

The highest magnification hepatocyte-hepatic stellate cell co-culture time lapse 

movie provides a detailed view of the heterotypic cell interactions (Figure 2.4, 

Time lapse 2). Stellate cells rapidly developed the normal culture activated 

multiple process morphology (Sato et al, 2003) in the first few hours of culture. 

Throughout the first 8 hours of culture, despite hepatocyte contact, contraction 

to aggregates did not occur. After the first 8 hours of culture the stellate 

processes rapidly retracted creating co-culture aggregates. After 20-24 hours the 

aggregates underwent some consolidation. The tension developed in the stellate 

cell contractile response can be seen at the beginning of this period (in the top 

left of the movie) as a spheroid is literally catapulted off screen by a stellate cell 

process. This movie clearly shows that the stellate cells were highly motile and 
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the hepatocytes immobile except under the active contractile control of the 

stellate cells. 

The stellate cells did not display the same level of motility or retract their 

processes in the same manner when mono-cultured on a PDLLA surface (Figure 

2.5, Time lapse 3). However they did retract their processes rapidly in response 

to hepatocyte conditioned media (Figure 2.6, Time lapse 4). Also, stellate cells 

exhibited the same contractile response to hepatocyte fragments as whole cells 

(Figure 2.7, Time lapse 5). This aggregation occurred as soon as the cell 

fragments were added. Stellate cells partially aggregated epithelial liver cell line 

Hep G2 cells but slower and with formation of less well defined aggregates 

than primary hepatocytes (Figure 2.8, Time lapse 6). Stellate cells failed to 

aggregate epithelial pulmonary cell line A549 cells (not shown). 

Hepatocytes were static and did not adhere to the PDLLA culture surface or 

form aggregates when mono-cultured on PDLLA (Figure 2.9, Time lapse 7). 

2.3.3 Stellate cell characterisitics in vitro and their distribution in co- 

culture spheroids 

A study of the stellate cell population in mono-culture conducted after a period 

of approximately 3 weeks in vitro, immediately prior to incorporation into co- 

culture, defined some of the immunological characteristics of the stellate cells 

involved in spheroid formation. The presence of GFAP (figure 2.10) and 

desmin (figure 2.11) confirmed the identity of the stellate cells (Cassiman et al, 
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2002). Heat shock protein ocB-Crystallin (figure 2.12) and fibronectin (figure 

2.13) were also detected and are reportedly expressed by activated stellate cells 

in vitro (Cassiman et al, 2001). Detection of SMA filaments (figure 2.14) and 

SEM (figure 2.15) demonstrated the cells typical contractile multi-process 

activated morphology (Sato et al, 2003). After 5 days in co-culture the stellate 

cells were identified in spheroid sections by immunolocalisation of SMA. They 

were located mainly around the periphery and centre of the spheroids (figure 

2.16). In some smaller spheroids a single central stellate cell was seen. 

2.3.4 Morphology and ultra structure of hepatocyte - stellate cell co- 

culture spheroids and shaken hepatocyte mono-culture spheroids 

Histology techniques and TEM were used to investigate the structure of 

spheroids formed by hepatocyte - stellate cell co-culture compared with 

hepatocyte only spheroids formed by agitated culture. Haematoxylin and eosin 

staining showed healthy looking nuclei evenly distributed throughout the co- 

culture spheroid, a distinct barrier outline, and a compact structure (figure 

2.17). Staining with haematoxylin alone highlighted the high density of cell 

nuclei in co-culture and elongation of nuclei on the edge of the spheroids 

(figure 2.17 inset). The co-culture spheroids had a complex ECM support: Picro 

Sirius red staining demonstrated a widespread fibrous collagen matrix (figure 

2.18) and silver impregnation of reticulin detected thick fibre deposition, 

although this was harder to discern due to nuclear staining (figure 2.19). In 

addition, immunolocalisation of fibronectin revealed a capsule on the periphery 

of the co-culture up to 10 gm thick (figure 2.20). All of these ECM types are 

widely distributed in normal rat liver sections (inset figures 2.18-2.20). 
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In contrast to the co-culture spheroids, the agitated mono-culture spheroids had 

a lower density of nuclei and occasionally non-viable centres. They had a total 

absence of fibrous collagen matrix (figure 2.21 a) and reticulin fibres (figure 

2.21b), and lacked a peripheral fibronectin capsule (figure 2.21 c). 

Further support that co-culture spheroids had the capacity to form and maintain 

hepatic architecture was provided by TEM, which showed a well-developed 

hepatic ultra structure, including bile canaliculi, tight junctions, desmosomes, 

fat storage and glycogen storage (figure 2.22a). None of these features were 

observed in monoculture spheroids. A myosin containing stellate cell was 

identified near the periphery of one spheroid section, forming multiple 

junctions with the adjacent hepatocyte (figure 2.22b). 

2.3.5 Viability of the hepatocyte - stellate cell co-culture spheroid 

A study of the viability of the co-culture spheroids relative to cells in mono- 

culture demonstrated a stabilisation of cell viability after spheroid formation in 

co-culture (figure 2.23a). Between 24 and 48 hours of culture, cell death 

assessed by LDH leakage was approximately 10% in both mono-culture and co- 

culture. However, over the subsequent 3 days cell death was 30% of remaining 

cells in co-culture compared to 58% in mono-culture. A similar benefit of 24% 

cell death in co-culture to 49% in mono-culture was maintained over the 

following two days. Absolute levels of LDH leakage were also higher in mono- 

culture relative to co-culture showing this result was not a distortion of the 
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leaked to lysed LDH ratio due to an increasing stable stellate cell population in 

co-culture (figure 2.23b). This viability data was supported by confocal 

microscopy of Live-DeadTM treated co-culture spheroids after 5 days in culture 

that showed spheroids were viable throughout (figure 2.24). 
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Figure 2.2 

Figure 2.2: Images of hepatocyte and stellate cell co-culture on a PDLLA 

surface. Spheroid formation occurred only in areas of high stellate cell density 

(marked to the left of the line in image (a) and in between the lines in image 

(b)). Outside these areas, where stellate cell density was lower, hepatocytes 

adhered to the culture surface. 



Figure 2.3: Images of hepatocyte-stellate cell co-culture (time lapse movie 1) on 

a PDLLA surface showing the time course of formation of spheroids. Stellate 

cell motility, initially low, increased with time in culture with hepatocytes. 

Spheroid formation occurred rapidly in an approximately 6 hour window in the 

region of 15 hours into co-culture. After this time spheroids were stable. 
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Figure 2.4: Images of hepatocyte-stellate cell co-culture (time lapse movie 2) on 

a PDLLA surface showing that stellate cell processes contracted when contacted 

by hepatocytes. Motility and contractility increased with time in culture. This is 

demonstrated in the top left of the movie after 21 hours when a newly formed 

spheroid under tension from a contracting stellate cell process is pulled off 

screen. 



Figure 2.5 

Figure 2.5: Images of stellate cell mono-culture (time lapse movie 3) on a 

PDLLA surface showing that activated stellate cell processes did not contract, 

and stellate cell motility was relatively low, in mono-culture after a similar 

period in culture to that at which maximum motility was observed in co-culture. 



Figure 2.6 

Figure 2.6: Images of stellate cell mono-culture (time lapse movie 4) on a 

PDLLA surface showing that activated stellate cells in mono-culture rapidly 

retracted processes in response to hepatocyte conditioned media (added 

immediately prior to 0 hours image). 



Figure 2.7 

Figure 2.7: Images of stellate cell mono-culture (time lapse movie 5) on a 

PDLLA surface showing that activated stellate cell processes contracted in 

response to hepatocyte fragments (added immediately prior to 0 hours image). 
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Figure 2.8: Images of primary stellate cell and Hep G2 cell line co-culture (time 

lapse movie 6) on a PDLLA surface showing activated stellate cells do not 

aggregate Hep G2 cells in the same manner as freshly isolated primary 

hepatocytes. 



Figure 2.9 

Figure 2.9: Images of hepatocyte mono-culture (time lapse movie 5) on a 
PDLLA surface showing hepatocytes do not aggregate or attach to the surface 

under these conditions. 
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Figure 2.10: GFAP is a rat stellate cell marker. Immunolocalisation after 3 

weeks in mono-culture differentiates stellate cells from myofibroblasts. 
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Figure 2.11: Desmin is a rat stellate cell marker. Immunolocalisation after 3 

weeks in mono-culture differentiates stellate cells from myofibroblasts. 
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Figure 2.12: Stellate cells are an important source of ECM. This image shows 
fibronectin immunolocalisation in rat stellate cells after 3 weeks in vitro. 

Figure 2.13: Stellate cells are 
a. , ý"ý th ý 

known to express aB-Crystallin. 
Immunolocalisation in rat stellate cells after 3 weeks in mono-culture is an 
indicator of activated phenotype. 
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Figure 2.14: Activated stellate cells express SMA. Immunolocalisation in rat 

stellate cells after 3 weeks in culture is evidence of the contractile morphology 

of the cells at this time. 

'Y1k'1fr! 1! " [. YflITT 2000954ilm- 'z, 1T1T; 1 

Figure 2.15: An SEM image of a rat stellate cell showing activated morphology 

after 3 weeks in mono-culture. This is typical of the stellate cell morphology 
prior to co-culture with hepatocytes. 



Figure 2.16 

Figure 2.16: Images of SMA (green) immunolocalisation in spheroid sections 

prepared after 5 days of co-culture showing the arrangement of stellate cells 

around the periphery and in the centre of hepatocyte-stellate cell co-culture 

spheroids. Nucleus counterstained with DAPI (blue). 
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Figure 2.17: Haemotoxylin and eosin stained sections from 5-day-old 
hepatocyte-stellate cell spheroids shows viability and compact morphology. 
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Figure 2.18: PSR staining of sections from 5-day-old hepatocyte-stellate cell 
co-culture spheroids shows the distribution of this important ECM component 
(normal liver section inset). 
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Figure 2.19: Reticulin staining in sections from 5-day-old hepatocyte-stellate 

cell co-culture spheroids shows the distribution of this important ECM 

component (normal liver section inset). 

Figure 2.20: Fibronectin immunolocalisation in 5-day-old hepatocyte-stellate 

cell co-culture spheroid sections shows the peripheral deposition of this 
important ECM component (normal liver section inset right). 
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Figure 2.21: Collagen staining (a), reticulin staining (b) and fibronectin 

immunolocalisation (c) in sections from 5 day old hepatocyte mono-culture 

spheroids formed by culture agitation demonstrated an absence of all these 

ECM components. 
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Figure 2.22(a). A1 EM image depicting a range of cellular uitrasti ucturc 

features in 5-day-old hepatocyte stellate cell co-culture spheroids; A: tight 

junction; B: desmosome; C: bile canaliculus; D: mitochondria; E: glycogen 

storage; F: lipid deposition. 
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Figure 2.2(b): Ai LM image of a hcpat icytc-stellate cell cu-culture 

spheroid showing a thin stellate cell or cellular process near the spheroid 

border, identified by A: myosin fibres and B: multiple junctions with the 

adjacent cell. 
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Figure 2.23(a): A graph showing cell death over time in hepatocyte-stellate cell 

co-culture spheroids compared to hepatocyte mono-culture. Data shows the 

percentage of LDH leaked during a culture period as a proportion of the total 

LDH in the well after total cell lysis. This gives an indication of the percentage 

cell death since the previous measurement. 
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Figure 2.23(b): A graph showing absolute LDH leakage over time in 

hepatocyte-stellate cell co-culture spheroids compared to hepatocyte mono- 

culture. The higher absolute LDH leakage in mono-culture between 2 and 5 

days indicates the viability result in figure (a) is not due to a stable viable 

stellate cell population. 
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Figure 2.24: Live deadTM treated 5-day-old hepatocyte-stellate cell co-culture 

spheroids after 5 days in culture visualised by confocal microscopy are viable 

throughout. The images are presented with sections to show the viability at 

different levels of penetration. 



2.4 Discussion 

A range of techniques was used to look at the cellular arrangement, ECM 

support and ultra structure of co-culture and mono-culture spheroids. Co-culture 

with stellate cells had a major effect on the organisation of hepatocytes into 

spheroidal aggregates both in the dynamics of the aggregation process and in 

the structure and composition of the resulting aggregates. 

2.4.1 Characterisation of the stellate cell population in vitro prior to co- 

culture 

Some characterisation of the stellate cell population involved in spheroid 

formation was necessary due to the potential changes, such as 

transdifferentiation to myofibroblasts, that can occur over an extended time in 

culture (Cassiman et al, 2002). Identification of the key stellate cell markers 

GFAP and desmin discount the possibility of a simple myofibroblast 

population. However, the strong expression of SMA, fibronectin and aB- 

crystallin indicate an activated contractile myofibroblast like morphology at the 

time of incorporation into the co-culture. 

2.4.2 The characteristics of hepatocyte-stellate cell co-culture spheroid 

formation 

In hepatocyte-stellate cell co-culture, aggregation is not a result of passive cell 

collision and adhesion. It is an active process dependent on stellate cell motility. 

The stellate cell process contraction and morphology is influenced by 
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hepatocyte co-culture and this process is informative about the factors 

influencing cell aggregation. The delay before the start of stellate cell process 

contraction, despite cell contact, and the increase in stellate cell process 

contractility over time, has a number of potential explanations including 

adaptation of gene expression leading to build up of cell surface protein or 

soluble mediator expression. Formation of co-culture spheroids only in areas of 

high stellate cell density, combined with the failure of stellate cells to facilitate 

alternative epithelial cell line spheroid formation as effectively as primary 

hepatocyte spheroid formation, suggests factors from both stellate cells and 

differentiated hepatocytes are required for stellate facilitated spheroid 

formation. The contraction of stellate cells in response to hepatocyte fragments 

and hepatocyte conditioned media supports the involvement of a hepatocyte 

soluble mediator(s) and eliminates the involvement of complex cross talk 

between the two cell types (i. e. a signal from one cell type triggering a signal 

from the second cell type that then acts on the first) in eliciting this response. 

2.4.3 The structure and cellular arrangement of the hepatocyte-stellate cell 

co-culture spheroids 

The structure of the co-culture produced spheroids is related to the mechanism 

of formation. Stellate cells on the periphery of the spheroids are hypothesised to 

be those that were beneath the hepatocytes during the initial plating phase and 

therefore end up on the exterior of the spheroid; these are often thicker on a 

flatter side of a spheroid, presumably the side that was on the culture surface. 

When a stellate cell is located in the centre of a spheroid this is thought to be 
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the result of the stellate cell attaching on the top of hepatocytes, or pulling two 

smaller aggregates together. The benefit of this type of aggregation in which 

one cell type actively pulls a second passive cell type around it is seen in the 

high degree of heterotypic contact. 

Important structural characteristics of liver tissue developed only when stellate 

cells were present. The organised ECM support with a specifically capsular 

peripheral fibronectin deposition, relative to the pervasive collagen, is 

particularly interesting due to the importance of the former as a component of 

the basal lamina. Both collagen and fibronectin are highly expressed 

components of the liver ECM in vivo, and recreation of this support in vitro 

will therefore probably be an important element for any long term culture 

environment. A hepatocyte stellate cell co-culture system will potentially 

improve on previous ECM supports as it incorporates the major ECM 

producing cell type of the liver and has previously been shown to produce a 

liver like collagen pattern (Takai et al, 2001). Furthermore, high mRNA 

expression of various ECM components is found in the regenerating liver 

(Jakowlew et al, 1991). Paradoxically, the ECM could have the disadvantage of 

a diffusion barrier for nutrients or waste products, although cell viability was 

not detrimentally affected over the period of this study, and spheroids are not 

wider than the limit suggested by previous studies (Fukuda et al, 2004). 

The functional effectiveness of the cell contacts and intercommunication in the 

stellate-hepatocyte co-culture was further demonstrated by development of a 

well defined hepatic ultra structure including bile canaliculi, desmosomes and 
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tight junctions. Hepatocytes also showed evidence of fat deposition and 

glycogen storage. These features are all likely to be indicative of preserved cell 

function and communication. Their absence in mono-cultures demonstrates that 

signalling to the hepatocytes from the stellate cells or from the ECM that 

develops in the stellate cells presence is required for hepatocytes to form these 

structures. 

2.4.4 Viability of the hepatocyte-stellate cell co-culture spheroids 

The improved maintenance of cell viability in co-culture relative to mono-layer 

only occurs after the cells have adopted a multicellular spheroid morphology. 

This suggests fast aggregation could be important in preventing early cell death. 

Also, hepatocytes in contact with a heterotypic cell type reportedly have greater 

function than their isolated counterparts (Bhatia et al, 1998). In combination 

this suggests that methods such as this that rapidly establish heterotypic cell 

contact and maximise heterotypic cell interfaces through 3D morphology are an 

important tool in producing viable and functional tissue aggregates. 

2.4.5 Conclusion 

Co-culture on a PDLLA surface demonstrates an optimised environment for cell 

interaction and aggregation with associated liver like ultra structure. This study 

provides a generic model of aggregation and cellular arrangement for 

multicellular structures where aggregation is imposed on one cell type by the 

contractility of another. Such methods have a potentially important role in 
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functional and structural support of tissue engineered cell culture aggregates, 

and provide a valuable method of aggregating non-motile cells. 
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CHAPTER 3 

CYP 450 Maintenance in 

Hepatocyte - Stellate Cell Co- 

culture 



3.1 Introduction 

3.1.1 Defining liver function 

The liver is a multifunctional organ. Therefore a large number of functions can 

potentially be assayed to indicate the state of differentiation of a hepatocyte 

population in culture. Some of the more popular assays include detection of 

blood protein production, ammonia metabolism, membrane transport, and phase 

I oxidation or phase II conjugation reaction products. The rank of importance of 

the functions maintained in an in vitro culture system is defined by the potential 

applications of the system being investigated. Ammonia metabolism will be 

particularly vital for an effective bio-artificial liver, whilst drug metabolising 

enzymes are of more importance for in vitro toxicology and metabolism assays. 

Furthermore, it is not yet clear whether mechanisms that enhance certain 

functions, such as xenobiotic metabolism, may be detrimental to others such as 

transport. It is therefore important that an attempt to define the functionality of a 

culture system strictly defines the remit. 

3.1.2 Why measure cytochrome P450 enzyme function? 

The studies in this chapter investigate P450 oxidation reactions. These reactions 

are required in in vivo proportions in models of metabolism to give accurate 

metabolic profiles. They are also important in toxicology models if P450 

metabolically activated toxins are to be detected, and in bio-artificial liver 

devices for xenobiotic clearance and oxidation of endogenous compounds. 

74 



Specifically, the function of P450 3A was investigated. P450 3A function was 

chosen due to its importance in xenobiotic metabolism; 50% of metabolically 

oxidised pharmaceuticals are substrates. It is also a highly labile liver function 

and therefore provides a stringent test for a long-term culture system. 

Furthermore, a well established method is available for accurate determination 

of P450 3A activity that can simultaneously provide information on other P450 

activities. 

3.1.3 Long term liver culture with maintenance of cytochrome P450 enzyme 

function 

The consensus of published information suggests that P450 3A activity can be 

maintained over two to three weeks in human hepatocytes cultured in modified 

systems (e. g. collagen gel sandwich or epithelial cell co-culture) whilst the 

duration of activity in rat cells is far shorter. In collagen gel sandwich culture 

P450 3A mediated testosterone metabolism to 60-hydroxytestosterone by 

human hepatocytes has been maintained without deterioration for 9 days (Kern 

et al, 1997). In contrast rat function deteriorated after only 3 days. In rat liver 

slices testosterone metabolism significantly decreases over the first 48 hours 

(Muller et al, 1998). In human hepatocytes in sandwich culture rifampicin is an 

effective inducer of P450 3A function after 3 days, however rifampicin is not 

effective after this culture period in rat hepatocytes (Kern et al, 1997). In rat 

liver slices induction of P450 3A, 1Al, 1A2 and 2B have all been achieved 3 

days after isolation, although this involved supplementation with dexamethasone 

from the start of culture (Gokhale et al, 1997). 
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Co-culture of hepatocytes with other liver epithelial cells has been studied over 

the last 20 years. Maintenance of non-specific total P450 content over 10 days in 

rat hepatocytes has been shown compared with a rapid drop in conventional 

culture (Begue et al, 1984). This effect was also observed in human hepatocytes, 

although over a longer time period (Ratanasavanh et al, 1986). Evidence of 

sustained phase II function has also been presented (Vandenberghe et al, 1992). 

More recently P450 mediated lidocaine metabolism to MEGX, to which P450 

3A contributes a part, has been maintained up to three weeks and improved 

relative to monoculture in human hepatocytes co-cultured with biliary epithelial 

cells (Auth MK et al, 2005). 

3.1.4 Methods of measuring cytochrome P450 enzyme activity 

A range of assays is available to measure P450 function. They vary in 

specificity and accuracy. Generally the test cells are exposed to a P450 substrate 

and then the levels of metabolite produced are recorded. Substrates with 

fluorescent metabolites (ie metabolism of ethoxyresorufin to resorufin via the 

ethoxyresorufin dealkylase activity of P450 1A1) can be used to give a 

fluorescence endpoint, easily read in a plate reader. Alternatively, metabolite 

levels can be assayed more accurately using analytical methods such as HPLC. 

However, substrates and metabolites vary in their usefulness. Detecting MEGX, 

a product of lignocaine metabolism, is a method of assaying P450 activity, but 

the metabolism is contributed to by several different P450 isozymes, making 

definite conclusions about specific activity difficult. Gold standards have been 
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developed for a number of the P450 isozymes i. e. a substrate that has a 

metabolite produced only or predominantly by a single isozyme. Testosterone is 

the gold standard substrate for analysis of P450 3A activity and is therefore the 

substrate used in this work. 

The regiospecific hydroxylation of testosterone by various P450 enzymes 

enables the production of hydroxytestosterone metabolites to be related to P450 

activity. The 60-hydroxylation of testosterone is predominantly mediated by 

P450 3A, the major isoform being 3A4 in human (Waxman et al, 1991) and 3A1 

in rat (Sonderfan et al, 1987). Oxidation of testosterone to 4-androstene-3,17- 

dione in rats is predominantly catalysed by P450 2B I (greater than 80%) with 

minor contribution by 2C 11 and 2B2 (Sonderfan et al, 1989). In human 

hepatocytes P450 2C19, and to a lesser extent 2C9, are responsible for 

production of 4-androstene-3,17-dione, with potential contribution from P450 

2B6 (Yamazaki et al, 1997). 2a-hydroxylation is predominantly P450 2C 11 

mediated in rat (Sonderfan et al, 1989). An orthologous enzyme to P450 2C 11 

has not yet been identified in humans, but 2a-hydroxylation is presumably 

mediated by an enzyme in the 2C subfamily (Raucy et al, 2002). 11 ß- 

hydroxylation is catalysed by P450 11 B in both rat and humans. An HPLC 

method is used to detect the quantity of these testosterone metabolites in the 

incubation medium. This method can therefore provide detailed information 

about the activity of P450 3A, but can also provide an indication of other P450 

activities via those metabolites produced from a range of isozymes. 
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3.1.5 Aims 

The studies described in this chapter were designed to investigate the 

characteristics of P450 enzyme function in the hepatocyte-stellate cell co-culture 

system. Specifically, the work aimed to: 

> Validate an HPLC based testosterone metabolism assay of P450 

activity. 

¢ Apply the HPLC method to investigate the pattern and rate of reduction 

in function of various P450 enzymes over time in the hepatocyte - 

hepatic stellate cell co-culture system relative to the range of control 

culture systems described in chapter 2. 

¢ Investigate the response of the cells to inducing agents. 

> Conduct a preliminary investigation into the effect of rat stellate cell 

co-culture on the P450 function of a single preparation of human 

hepatocytes. 
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3.2 Materials and Methods 

3.2.1 Cell isolation and culture 

Rat cells were isolated as described in chapter 2 and co-cultured in 6 well plates. 

Human hepatocytes were obtained from the UK Human Tissue Bank. Cells were 

from a hepatic resection necessitated by colorectal metastasis in a non-smoking 

Caucasian female, aged 63. Cells were transported at 4°C and plated down at 

approximately 8 hours after surgery, at which point viability was still 75%. 

125000 human hepatocytes were combined with 62500 cultured rat stellate cells 

per well of a PLA coated 24 well plate and maintained in 320 µl of hepatocyte 

culture medium. The control was a human hepatocyte mono-culture. 

3.2.2 Testosterone metabolism assay 

Rat or human cell cultures were incubated for 1 hour at 37°C in 1.5 ml or 320 µl 

respectively of EBSS supplemented with 1 mM Ca2+ and 1 mM Mgz+ and 

containing 100 µM testosterone. Supernatant was centrifuged to remove cell 

debris, and frozen for later analysis. For the induction study, cell cultures were 

maintained for 4 days after cell isolation before a3 day incubation with 

hepatocyte culture media supplemented with 10 µM dexamethasone and 100 

µM Phenobarbital. 
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3.2.3 HPLC 

Samples were analysed using a Beckman HPLC 1090 fitted with a Zorbax 300 

SB-C 18 4.6 mm x 15 cm column maintained at 50°C. Mobile phase A consisted 

of 450 ml H20: 50 ml Acetonitrile: 250 µl Formic acid, and mobile phase B 

consisted of 50 ml H20: 450 ml Acetonitrile: 75 µl Formic acid. Mobile phase 

was run at 1 ml/minute, starting at 15% B, increasing linearly over 10 minutes to 

50% B. UV absorbance was detected at 245 nm using an integral diode array 

detector. Sample injection volume was 40 µl. Each run was controlled by 

intermittent injection of an external standard of testosterone, as well as a mix of 

all metabolite standards. The run was valid if the standard varied no more than 

2% from injection to injection, or from that of previous runs. 

3.2.4 Experimental design and data analysis 

Rat hepatocytes were subject to the five different culture systems described in 

chapter 2. The purpose of comparing the co-culture to so many different types of 

culture was to attempt to isolate the effect of co-culture from aggregation. Each 

culture was carried out at least five times in duplicate except for the induction 

experiment that was carried out three times in duplicate. Duplicates were 

averaged to create independent data points for statistical analysis. Data was 

analysed using one way ANOVA for differences in metabolite production 

between the various culture conditions. Post tests with Tukeys error control 

were conducted to identify these differences. All data analysis was done in excel 

using Analyze-itTM excel add in for the post tests. Graphs show mean values +/- 
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the standard error of the mean. A single sample of human cells in duplicate was 

also assayed in co-culture and TCP mono-culture. In these graphs the error bars 

represent the standard error of the duplicate. 

P450 function is expressed as a percentage of initial activity, not per mg protein. 

This is due to the complication of cell populations changing in co-culture where 

only one cell type, the hepatocyte, is responsible for function. The change in 

total protein in the culture may not reflect the change in hepatocyte population 

and therefore is invalid to normalise function. The value for initial function used 

to calculate the percentage function is a single average value from all 

experiments. This is necessary because experimental variation means that the 

initial assay of function cannot be done at exactly the same time after each cell 

isolation. Figure 3.6 shows the dynamic changes in function in the few hours 

following isolation that would lead to a large source of error if a separate initial 

assay was used for each experiment. 
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3.3 Results 

3.3.1 Development and validation of an HPLC method for detection of 

testosterone metabolites 

3.3.1.1 HPLC testosterone metabolite elution times 

The standards of testosterone and its metabolites were run individually to 

determine their elution times. A mix of all standards was then run intermittently 

throughout each experiment and samples and compounds were identified by 

order and time of elution. Figure 3.1 shows an HPLC trace from a sample 

containing a mix of all standards with labelled elution times. Figure 3.2 shows a 

sample HPLC trace from a biological sample with identifiable peaks labelled. 

3.3.1.2 Validation of testosterone metabolite elution times and quantitation 

of UV absorbance 

Validation of the linearity of UV absorbance of testosterone metabolites was 

carried out over 0-10 µM to cover the concentrations of metabolites preliminary 

studies indicated were likely to be present in experimental samples. Six repeat 

injections of 0,2.5,5,7.5 and 10 µM concentration standards of each compound 

were carried out. Acceptable analytical validation requires a plot of 

concentration against UV absorbance to have a linear correlation coefficient 

greater than 0.99 (figure 3.3). The coefficient of variation over the range of 

analytical values should be less than 2%. A worked example of the calculation 
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of coefficient of variation for 6a-hydroxytestosterone is shown in table 3.1. 

Table 3.2 shows values for the other metabolites without the repeat injection 

values. Validation was also carried out up to 200 µM in the same manner, and 

all R squared values were also greater than 0.99. Samples could be frozen for 

several weeks with a 2% reduction in detection. Recovery was 98% i. e. if 

incubation media was not exposed to cells, 98% of starting material was 

detected. 
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Figure 3.1: HPLC elution times for standard solutions of testosterone and a 

selection of important testosterone P450 phase I metabolites: 6a- 

hydroxytestosterone, 6ß-hydroxytestosterone, 2a-hydroxytestosterone, 11 ß- 

hydroxytestosterone and 4-androstene-3,17-dione. 

Figure 3.2: An HPLC trace of the testosterone metabolite profile from freshly 

isolated hepatocytes incubated for I hour with 10011M testosterone with 

identifiable peaks labelled. 
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Repeat injection values Mean SD Variance 

10 µM 303 304 308 298 301 306 303 3.56 12.67 

7.5 µM 220 224 224 223 226 225 224 2.07 4.27 

5 µM 150 155 153 153 151 151 152 1.83 3.37 

2.5 pM 72 74 73 74 75 71 73 1.47 2.17 

0µM 0 0 0 0 0 0 0 0 0 

Average mean 

absorbance 

Average 

variance 

Average 

standard dev 

Co-efficient of 

variation % 
188 5.62 2.37 1.26 

Table 3.1: A worked example of the calculation of the coefficient of variation 

for repeat injections of 6a-hydroxytestosterone to establish the variability of the 

HPLC method. 

Average Co-efficient 
Average Average 

Metabolite mean of variation 
variance standard dev 

absorbance % 
6-alpha 188 5.62 2.37 1.26 
6-beta 128 5.62 2.37 1.85 

11-beta 204 7.44 2.73 1.33 

2-alpha 164 9.38 3.06 1.87 
Testosterone 228 8.05 2.84 1.24 
4-androstene 

251 10.46 3.23 1.29 3,17 dione 

Table 3.2: Coefficients of variation similarly calculated for other hydroxyl 

testosterone metabolites. 
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Figure 3.3: A graph showing the linearity of UV absorbance at 245 Mn relative 

to concentration of the different isomeric hydroxytestosterone metabolites over 

the experimental range. All R2 values are greater than 0.99. 
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3.3.2 Application of the HPLC testosterone metabolite assay to detect 

cytochrome P450 enzyme activity in hepatocyte culture systems 

3.3.2.1 Absolute quantities of testosterone metabolite production by freshly 

isolated hepatocytes 

Absolute levels of testosterone metabolite production by freshly isolated cells 

were assessed to inform about baseline function. The quantities of metabolite 

produced by the cells are very small. The average area under the curve 

representing UV absorbance of 6ß-hydroxytestosterone is 47 (standard deviation 

9.6, standard error 3.4). Using the trend line from figure 3.3, this equates to 2.2 

µM 60-hydroxytestosterone in the media after the initial assay. In 1.5 ml this is 

a total of 3.3 nmol in a well which would roughly equate to 0.0055 pmol of 

metabolite being produced by each cell over the 1 hour incubation. Table 3.3 

shows these figures for the other metabolites. This is an estimate with a number 

of potential sources of error. Subsequent long term culture experimental data is 

expressed as a percentage of this function because other forms of expression 

become increasingly unreliable with time in culture and as cell populations 

change. 

87 



Table 3.3 

Arbitrary 
Species, Media Media Metabolite 

Uv 
metabolite concentration content per cell 

absorbance 

Rat, 6ß-hydroxy 
47 2.3 . tM 3.3 nmol 0.0055 pmol 

testosterone 

Rat, 4- 

androstene-3, 189 4.7 µM 7.1 nmol 0.0118 pmol 
17-dione 

Human, 6ß- 

hydroxy 452 21.8 µM 7.0 nmol 0.0349 pmol 
testosterone 

Human, 4- 

androstene-3, 114 2.8 µM 0.9 nmol 0.0045 pmol 
17-dione 

Human, 11 ß- 

hydroxy 54 1.7 µM 0.5 nmol 0.0027 pmol 

testosterone 

Human, 2a- 

hydroxy 74 2.8 µM 0.9 nmol 0.0045 pmol 
testosterone 

Table 3.3: The area under the curve (arbitrary units) representing UV absorbance 

of measured metabolites at the start of the culture period and calculated 

production of metabolite per cell. 
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3.3.2.2 Relative maintenance of cytochrome P450 3A function in hepatocyte 

culture systems 

Hepatocyte production of 60-hydroxytestosterone is assayed as an indicator of 

P450 3A function (figure 3.4). This metabolite is detected after two and five 

days of culture in all culture systems but not thereafter. Analysis of variance 

identifies a difference between culture systems at both these time points 

(P<_0.0001). Table 3.4 shows the confidence level for differences identified 

between each culture system using Tukeys post test to control for type I error. 

The most striking difference after two days of culture is the inferior function of 

shaken cells compared to all other cultures. Trypsin and co-culture aggregated 

cells have an advantage over other cultures at this point, but statistical 

confidence is relatively weak. After five days in culture the co-culture spheroids 

had far superior function to all other culture models. This is significant in 

magnitude with metabolism of testosterone to 6ß-hydroxytestosterone by P450 

3A 7.2 fold greater than the closest comparator. 

3.3.2.3 Relative maintenance of cytochrome P450 2B1,2B2 and 2C11 

function in hepatocyte culture systems 

Hepatocyte production of 4-androstene-3,17-dione was assayed as an indicator 

of P450 2B1 function (with minor contributions from 2B2 and 2C11)(figure 

3.5). This metabolite was detected after two, five, ten and fourteen days in 

culture. Analysis of variance identified a difference between culture systems at 

all these time points (P_<0.0001), and table 3.5 displays the significance of 
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differences identified using Tukeys post test. After two days of culture the only 

difference observed with confidence was the inferior function of the shaken 

cells. After five days of culture the co-culture system had maintained superior 

function to all other culture systems, similarly after ten days and 14 days, 

although at the later two time points comparators were reduced to mono-culture 

on TCP and PLA due to practical constraints. The magnitude of the differences 

are less than those observed with P450 3A function. Metabolite levels in co- 

culture are 1.3 fold greater than the most active mono-culture after 5 days, 4.3 

fold greater after 10 days, and was the only culture producing this metabolite 

after 14 days. 
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Figure 3.4 
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Day 2 Day 5 

Co vs TCP P<_0.01 P<_0.01 
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TCP vs Shaken P: 50.05 - 
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PLA mono vs Shaken P50.01 - 

Trypsin vs Shaken P<_0.01 - 

Figure 3.4: The production of 6ß-hydroxytestosterone (indicating P450 3A 

functionality) from the substrate testosterone over time in various culture 

systems, namely hepatocyte monocultures on TCP or PLA, hepatocyte mono- 

culture aggregates formed by agitation or trypsin pre-treatment, and hepatocyte- 

stellate cell co-culture aggregates. Function is expressed as a percentage of the 

function of freshly isolated hepatocytes. 

Table 3.4: Statistical significance of the differences shown in figure 3.4 

calculated using ANOVA and Tukey's post test. 
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Figure 3.5 
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Figure 3.5: The production of 4-androstene-3,17-dione (indicating P450 2B 

functionality) from the substrate testosterone over time in various culture 

systems, namely hepatocyte monocultures on TCP or PLA, hepatocyte mono- 

culture aggregates formed by agitation or trypsin pre-treatment, and hepatocyte- 

stellate cell co-culture aggregates. Function is expressed as a percentage of the 

function of freshly isolated hepatocytes. 

Table 3.5: Statistical significance of the differences shown in figure 3.5 

calculated using ANOVA and Tukey's post test. 
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3.3.2.4 Characteristics of cytochrome P450 function loss in hepatocyte 

culture systems 

Greater than expected variability in the initial measurements of P450 enzyme 

function at the start of the culture period led to an experiment to assess the rate 

and linearity of early function loss. This involved assaying function at frequent 

time points. A marked rise in 4-androstene-3,17-dione production and, to a 

lesser extent, 60-hydroxytestosterone production, was observed in the few hours 

after isolation and commencing culture, followed by an exponential reduction in 

function (figure 3.6). After this rapid deterioration of P450 activity a low level 

of relatively stable function was observed (figure 3.4,3.5, and 3.6). 

3.3.2.5 Relative levels of induction of P450 function in hepatocyte culture 

systems 

Rat hepatocytes on TCP, PLA, or in co-culture were all assayed for response to 

induction with phenobarbital and dexamethasone between days four and seven 

of culture. The resulting maintenance of combined P450 2B 1,2C 11 and 2B2 

activity is shown in figure 3.7 as a percentage of initial activity. ANOVA detects 

a difference between these culture systems (P50.0001). Tukeys post test 

identifies a difference between induced co-culture and all other cultures, induced 

or not (P: 50.01 for all). The difference between non-induced co-culture and 

mono-culture is also reiterated, though at a lower confidence level to above due 

to a smaller sample size (P50.05 for all). No difference is detected between the 
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other mono-culture groups, induced or not. Also, P450 3A function is not 

detected at this time. 
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Figure 3.6 
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Figure 3.6: The pattern of function loss of CYP 450 3A and 2B over the first 72 

hours of rat hepatocyte mono-culture and hepatocyte-stellate cell co-culture. 
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Figure 3.7 
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Figure 3.7: The 4-androstene-3,17-dione production by 7-day-old cultures after 

culture either in the presence (prefix i) or absence (no prefix) of the enzyme 

inducers dexamethasone and phenobarbital since day 4 of culture. 
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3.3.2.6 Relative maintenance of cytochrome P450 enzyme function in 

human hepatocyte co-culture and mono-culture 

P450 function of a single sample of human hepatocytes was assayed in 

duplicate. In this single sample, metabolism of testosterone to four different 

hydroxy metabolites was reduced by up to 90% after two days of either co- 

culture or mono-culture (fig 3.8-3.11). A marginally greater reduction was 

observed in co-culture. Production of metabolites then increased for both culture 

methods up to 8 days. The peak metabolite detection from the mono-culture 

occurred earlier than the peak detection from the co-culture. Detection of all 

metabolites is maintained at a higher level in co-culture from day 8 through to 

day 24 of culture. This discrepancy in function between mono-culture and co- 

culture is most pronounced for 6ß-hydroxytestosterone (P450 3A) and 2a- 

hydroxytestosterone (P450 2C) production. 
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Figure 3.8: 11 ß-hydroxytestosterone (P450 11 B activity) production by human 

hepatocytes in mono-culture or in co-culture with rat stellate cells. 
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Figure 3.9: 2a-hydroxytestosterone (P450 2C activity) production by human 

hepatocytes in mono-culture or in co-culture with rat stellate cells. 
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Figure 3.10: 4-androstene-3,17-dione (P450 2B activity) by human hepatocytes 

in mono-culture or in co-culture with rat stellate cells. 
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Figure 3.11: 6ß-hydroxytestosterone (P450 3A activity) production by human 

hepatocytes in mono-culture or co-culture with rat stellate cells. 
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3.4 Discussion 

An HPLC based testosterone metabolism assay was developed in order to 

establish the longevity of function of certain P450 enzymes in hepatocytes under 

different culture conditions. Loss of P450 enzyme activity was recorded over 

time in culture and differences were observed in the pattern and rate of function 

loss in different systems and between species. 

3.4.1 The degradation of cytochrome P450 enzyme function in cultured 

hepatocytes 

The variability of P450 function in hepatocytes post isolation demonstrates the 

danger of assuming comparability of data obtained from experiments with 

freshly isolated cells. A small discrepancy in time between the start of liver 

perfusion and initial assays may result in a large discrepancy in metabolism 

values being recorded and contribute to discrepancies in the literature. This is 

particularly pertinent as a number of standard pharmaceutical assays use such 

cells. 

It is not clear if the rise in function post isolation is recovery of function lost 

during isolation or induction of function above in vivo levels due to stress or 

other factors associated with isolation or culture. The pattern of changing P450 

activity is the same but slower in human hepatocytes relative to rat cells 

showing the pattern is not species specific other than in its time course. These 

results are consistent with those of a previous study that demonstrated chemical 
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inhibition of protein synthesis augmented P450 gene expression, suggesting that 

these genes were under the control of negative transcription factors (Degawa et 

al, 2003). If a similar global reduction in protein synthesis occurs due to the in 

vitro culture environment, a similar rise in P450 activity would be anticipated. 

The only inconsistency with this theory is the preliminary human data indicating 

that P450 activity is initially high. This could be due to the harsh environment of 

isolation and cooled transport having a temporary major effect on protein 

synthesis. This would explain why a similar initial high value is not seen in rat 

cells that have been isolated and transferred to a relatively hospitable culture 

environment far faster than the human cells. Irrespective of the mechanism, this 

complexity presents further problems in timing of initial base level function or 

standardised assays in rat hepatocytes. 

Increasing P450 function post isolation in the absence of inducing agents has 

been reported previously. The most direct comparison is a hepatocyte sandwich 

culture in which it was reported that rat cells display dynamic changes in 

function that are not exhibited by human cells. A sharp rise in P450 3A activity 

is detected in rat cells over the first three days, compared to steady maintenance 

of human cell function over 9 days (Kern et al, 1997). This apparent reversal of 

species effect compared with the studies reported here is perhaps evidence of the 

ability of culture conditions to influence the time course and pattern of enzyme 

function over time. In rat cells a rapid deterioration of P450 3A function similar 

to that observed in these studies is more commonly reported (Muller et al, 

1998). 
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A notable anomaly in this work is the testosterone metabolism detected in 

mono-culture hepatocytes on a PLA surface. This low level of function is 

possibly attributable to the aggregation and consequent survival of a small 

number of cells. 

3.4.2 The effect of stellate cell co-culture on hepatocyte cytochrome P450 

function 

The stellate cell co-culture has a clear moderating effect on the loss of P450 

function. If this were simply caused by more cells being lost from mono-cultures 

during cell maintenance, or a higher death rate in mono-culture, there would be 

a lower function result in mono-culture from the second assay, with a growing 

discrepancy at each time point. The higher levels of function in the early stages 

of human hepatocyte mono-culture give confidence in a true stellate mediated 

effect. Further, mono-culture spheroid controls eliminate substrate availability 

as a confounding factor in comparison to monolayer. 

As discussed above, rat and human hepatocytes in culture lost P450 3A and 

P450 2B activity in a distinctive pattern of rising and falling function. The 

significant prolonging of both these phases observed in rat and human co-culture 

spheroids relative to mono-culture could be attributable to slower deterioration 

of global protein synthesis in the co-culture. If the P450 enzymes were under the 

control of negative transcription factors (Degawa et al, 2003), function would 

rise faster in the mono-culture as the negative influence diminished but would 

also peak and fall earlier than co-culture where both the negative transcription 
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factors and P450 expression could be maintained longer, effectively moving the 

dedifferentiation curve to the right. 

3.4.3 Comparison of the hepatocyte - stellate cell co-culture system with 

alternative culture systems 

The hepatocyte - stellate cell co-culture contrasts favourably with the limited 

comparable published data. Human hepatocytes in co-culture with stellate cells 

exhibited rising P450 function for an 8 day duration. Hepatocytes cultured in a 

collagen sandwich are reported to support stable P450 function for the same 

period (Kern et al, 1997). Furthermore, the duration of detection of testosterone 

metabolism to 60-hydroxytestosterone by human hepatocytes co-cultured with 

stellate cells is similar to that reported for metabolism of lidocaine to mono- 

ethyl-glycine-xylidide (MEGX) in co-cultures of human hepatocytes with BECs 

(although MEGX production is contributed to by enzymes other than CYP 3A) 

(Auth et al, 2005). This implies that functional deterioration sets in after a 

similar time in each of these systems, but the response during the viable culture 

period varies in the different culture environments. Detailed CYP 3A function 

and expression in comparable rat systems has not been reported. However, rat 

hepatocytes co-cultured with biliary epithelial cells (BECs) have been shown to 

maintain acute phase protein production and non specific total P450 content 

(Guillouzo et al, 1984; Begue et al, 1984), and co-cultures with the stellate cell 

line CFSC-2G have been shown to reduce albumin production (Arnaud et al, 

2003) or elevate albumin mRNA expression (Rojkind et al, 1995). This implies 

that the functional benefits of co-culture are obtained through a range of 
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different co-culture partners and raises questions regarding the specificity of the 

support. A further study to compare a range of alternative co-cultures and 

endpoints in a single lab is required to ascertain if one cell type offers clear 

benefits over the others. 

3.4.5 Conclusions 

This work demonstrates the need for a well characterised stable system. The 

volatility of function in the first few hours of culture, the point at which many 

assays are currently conducted, and the deterioration of function over the longer 

term are both barriers to producing a culture system that can be validated to 

regulatory requirements or deliver the stability of function required for a BAL. 

The co-culture of hepatocytes and hepatic stellate cells provides a functional 

improvement on standard mono-culture techniques through a reduction in the 

initial peak of P450 function and an increased longevity of P450 function in 

both human and rat cultures. This work in conjunction with that of others 

indicates the initial rise in function is part of the dedifferentiation process as 

opposed to a general recovery of cell function, and the whole process is slowed 

by co-culture with stellate cells. However, the overall benefit of the hepatocyte - 

stellate cell co-culture technique with respect to other modified culture systems 

remains equivocal. 
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CHAPTER 4 

Maintenance of mRNA Expression 

in Hepatocyte - Stellate Cell Co- 

culture 



4.1 Introduction 

The production of liver enzymes and liver derived blood proteins is the 

culmination of a complex regulatory network. Experiments on hepatocyte 

culture systems in vitro have predominantly considered final function as 

opposed to the underlying gene transcription. This is probably partially due to 

the potential scope of gene transcription studies. A transcription factor network 

containing multiple cross-talking components underlies the transcription and 

translation of mRNA for a single metabolic enzyme or blood protein (Review: 

Akiyama and Gonzalez, 2003). Furthermore, such networks are not discrete. 

For these reasons it is easier to draw simple conclusions, with immediate 

relevance to an in vitro systems end goals, from a functional assay such as that 

described in chapter 3. However, understanding the patterns of gene 

transcription underlying function, and ultimately controlling them, will be 

essential in achieving prolonged and manipulable hepatocyte function in vitro. 

4.1.1 Prolonged cytochrome P450 mRNA transcription by hepatocytes in 

vitro 

There are problems in direct comparability of transcriptional data from different 

research groups similar to those for comparisons of functional data. The 

consensus of information available suggests that P450 mRNA can be detected 

in isolated primary rat hepatocytes for several days in standard mono-culture 

and up to a week in modified culture systems e. g. sandwich cultures or culture 

with inducers (Boess et al, 2003; Davila and Morris, 1999). The typical pattern 
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of P450 mRNA loss in isolated rat hepatocytes in the absence of inducers 

involves a rapid decrease over one or two days of culture, followed by very low 

sustained expression if a modified culture system is used (Hodgkinson, et al 

2000; Fujita et al, 2005). A comprehensive micro-array study to detect 

differences in total gene expression profile between various culture techniques 

found increasing divergence relative to intact liver across liver slices, sandwich 

culture, standard mono-layer culture and several hepatic cell lines (Boess et al, 

2003). Unsurprisingly, divergence from intact liver also increased with time in 

culture. However, rapid down regulation of P450 mRNA was still observed in 

all systems. 

4.1.2 Liver regeneration and the roles of HGF and TGFII 

Cytokines are a vital element of hepatocyte regulation. HGF and TGFßI are of 

particular interest due to their roles in regulating liver regeneration. They are 

both induced rapidly by chemical or physical liver injury (Asami et al, 1991; 

Mitsue et al, 1995) and have a complex relationship with other cytokines. HGF 

is vital for successful liver regeneration subsequent to partial hepatectomy 

(Phaneuf et al, 2004; Burr et al, 1998) acting through modulation of TGFa 

(Tomiya et al, 1998,2000). TGFß1 inhibits proliferation of hepatocytes, up 

regulates HGF and down regulates TGFa (Nozato et al, 2003). It is also 

thought to play some role in inducing hepatocyte apoptosis (Samson et al, 

2002), although it is not thought to be responsible for termination of 

regeneration (Oe et al, 2004), and to have a general differentiating effect. The 

ability of regenerating liver hepatocytes to activate latent TGF 31 provides 
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further evidence of the importance of this cytokine in hepatic regeneration 

(Jakowlew et al, 1991). Further interplay between these cytokines is observed 

in the capacity of TGFß1 to enhance TGFa mediated cell motility, yet 

drastically reduce HGF mediated chemotaxis (Stolz and Michalopoulos, 1998). 

4.1.3 The reverse transcription - polymerase chain reaction technique 

In this chapter reverse transcriptase polymerase chain reaction (RT-PCR) is 

used to investigate levels of significant mRNAs in co-culture and mono-culture. 

RT-PCR is a powerful technique for assaying mRNA levels. Cells are lysed and 

processed to isolate total RNA using a simple partition method. Total RNA is 

then reverse transcribed to cDNA. The cDNA is magnified through PCR using 

a specialised probe. The probe is modified to have a fluorescent reporter marker 

at the 5' end and a fluorescence quencher at the 3' end. If the target sequence is 

present the probe will anneal to the cDNA downstream of one of the primer 

binding sites (fig 4.1 A). At this point, whilst the probe is intact, fluorescence is 

effectively quenched by the proximity of the quencher. In a PCR cycle, primers 

bind and the probe is displaced and broken down by the 5' nuclease activity of 

the DNA polymerase as the primer is extended (fig 4.1 B). Release of the 

fluorescent reporter from the proximity of the quencher during polymerisation 

results in a rise in fluorescence proportional to the product produced (fig 4.1 Q. 
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Figure 4.1 
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Figure 4.1: The process of PCR and associated fluorescent signal amplification. 

In the work described here the TagmanTM real time PCR system is used. The 

innovation of real time PCR allows monitoring of fluorescence throughout the 

PCR cycling so the cycle number at which fluorescence is first detected (cycle 

threshold (Ct)) can be used instead of analysing fluorescence after a set number 

of cycles. Figure 4.2 shows a chart of fluorescence plotted against number of 

PCR cycles, with an arrow to show the Ct value. The greater the quantity of 

starting product, the lower the Ct i. e. the less PCR cycles required to reach a 

detectable quantity of product. Figure 4.3 shows a chart of changes in detection 

of the quencher and reference dye. 
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Figure 4.2: TaqmanTM software scrcenshot showing amplification of 

fluorescence during RT-PCR and the Ct value (24.279) at which fluorescence is 

first detected. 
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Figure 4.3: TagmanTM software screen shot shows the real time change in FAM 

(target label) and TAMRA (quencher) detection with respect to PCR heat cycle. 
Reference dye ROX, to control for detector variation, and background 

fluorescence are also shown. 



4.1.4 Presentation of relative vs absolute gene expression 

The Ct value alone is not useful. It can either be related to a standard curve 

created with known concentrations of cDNA to give absolute quantification, or 

it can be expressed relative to another Ct value to give expression relative to 

another sample, known as the calibrator. In this work we use freshly isolated 

cells as the calibrator. 

4.1.5 Use of endogenous controls to normalise relative expression of target 

cDNA 

Accuracy of quantification of the changes in mRNA content can be enhanced 

through normalisation of results to expression of an endogenous control. The 

endogenous control is amplified along side the target cDNA in all samples, and 

final results for target cDNA are adjusted relative to the endogenous control to 

standardize for the amount of cDNA added to a reaction. Therefore the most 

important characteristic of an endogenous control gene is that its level of 

expression remains relatively constant under different experimental conditions. 

18s RNA is an example of a common endogenous control, termed a 

`housekeeping' gene, so called because it constitutes part of the basic cell 

machinery and is consequently highly and stably expressed in most situations. 

An alternative endogenous control in hepatocytes is porphobilinogen deaminase 

(PBGD), a liver enriched protein that catalyses polymerisation of 

porphobilinogen molecules. However, no single endogenous control gene 

always manifests stable expression levels under all experimental conditions and 
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it is therefore necessary to characterize the suitability of various housekeeping 

genes to serve as endogenous controls under particular experimental conditions. 

4.1.6 Aim of chapter 

The studies described in this chapter were designed to investigate the levels of 

mRNA for various functional enzymes and cytokines in the hepatocyte stellate 

cell co-culture system. Specifically to: 

> Design and validate TagmanTM PCR primer and probe sets for mRNA 

targets. 

> Identify an appropriate method of presenting relative expression of 

mRNA targets i. e. adjusted to an endogenous control such as 18s 

mRNA or PBDG mRNA, or as a proportion of total mRNA. 

¢ Apply the technique to investigate the levels of P450 3A, P450 2E1, 

P450 1 A2, HGF and TGFß i mRNA in co-culture. 
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4.2 Materials and methods 

4.2.1 Cell isolation and culture 

Cells were cultured as described in chapter 2. 

4.2.2 RNA isolation and cleaning 

Total RNA was isolated from five day old cultures using Trizo1TM (Invitrogen) 

reagent according to the manufacturer's protocol. The RNA was cleaned using 

a MinieasyTM kit (Quiagen) and quantified using a NanodropTM 

Spectrophotometer. Quality of the RNA prep was verified by gel 

electrophoresis. 

4.2.3 Reverse transcription reaction 

The reverse transcription reaction was performed with TagmanTM RT reagents 

(Applied Biosystems) according to the manufacturer's instructions. Typically 

500 ng to 1 . tg total RNA was obtained, and mixed with the appropriate ratio of 

RT buffer, MgC12i deoxynucleotide triphosphates, random hexamers, RNase 

inhibitor and multiscribe reverse transcriptase. 
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4.2.4 PCR 

PCR primers and probes used for quantitation of P450 3A, 1A2,2E1 and HGF 

cDNA were designed using Primer ExpressTM Software (Applied Biosystems) 

and blasted using the NCBI database. The P450 3A probe picks up both 3A1 

and 3A23. Primer and probe combinations were optimized (Table 4.1). The 18s 

and PBGD primer/probe sets were bought from Roche and used as specified in 

the manufacturers instructions. The probes were labeled with a 5'-reporter 

fluorescent dye (6-carboxyfluorescein) and a 3'-quencher dye (6-carboxy- 

tetramethyl-rhodamine). PCR reaction mixtures were made up according to the 

manufacturer's instructions in 25 µl triplicates for each target cDNA, using 12.5 

µl platinum qPCR supermix UDGTM (Applied Biosystems), the specified 

primer/probe concentrations (Table 2.1), and 10 ng of cDNA. Positive controls 

were derived from freshly isolated hepatocytes. Amplification was carried out 

in 96-well thermal cycler plates (Alpha Labs) in an ABI Prism 7700 Sequence 

Detection SystemTM (Applied Biosystems). cDNA standard curves were created 

using dilution of freshly isolated hepatocyte cDNA, and sample values were 

compared to this calibration curve and converted to a percentage of freshly 

isolated cell expression. 

4.2.5 Data handling and experimental design 

Data is expressed as mRNA content relative to freshly isolated cells. Co- 

cultures are expressed relative to a co-culture made of freshly isolated 

hepatocytes and pre-cultured stellate cells in co-culture, and mono-culture is 
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expressed relative to a freshly isolated PercollTM purified hepatocyte pellet. N 

numbers are given for each individual experiment in the results. Charts are 

shown with error bars representing the standard error of the mean. 
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Table 4.1 

Forward 5' TTATGCTCTTCACCGTGATCCA 3' 900 nmol Primer 

3A1/3A23 
Reverse 
Primer 5' AATGCTGCCCTTGTTCTCCTT 3' 900 nmol 

Probe 5' CTGAACCTTTCTGGGCGAAATTCCTCA 3' 200 nmol 

Forward 5' CAACATTGTCAATGACATCTTTGGA 3' 900 nmol Primer 

I A2 1A2 
Reverse 5' CCGTGGCTGCCGATCTC 3' 50 nmol Prim 

Probe 5' CAATCACCGTGTCCAGCTCCTCATGAA 3' 200 nmol 

Forward 5' GGATCCAGCTTTACAATAACTTTGC 3' 300 nmol Primer 

2E1 
Reverse se 5' GTCCAGTGACTGAAGGTGTTCCT 3' 50 nmol 

Probe 5'T1 TTCAAGTGTGTACTGTTTTATTFCAGACA 25 nmol CATTTTTCA 3' 

Forward 
Primer 5' AACAAGGTCTGGACTCACATGTTC 3' 900 nmol 

TGFßi 
Pnmere 5' CGTCTGGCTCCCAGAAGATATG 3' 900 nmol 

Probe 5'CGGTGTAAATCCTCCATATTCTTGTCCCAC 200 nmol AT 3' 

Forward 
Primer 5' AACAAGGTCTGGACTCACATGTTC 3' 900 nmol 

HGF 
Pnm e 5' CGTCTGGCTCCCAGAAGATAT G 3' 900 nmol er 

Probe 5'CGGTGTAAATCCTCCATATTCTTGTOOCAC 200 nmol AT 3' 

Table 4.1: The designed Taqman® RT-PCR primer and probe sequences for the 

cDNA targets and their final concentrations in the reaction mixtures. 
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4.3 Results 

4.3.1 PCR primer and probe optimisation and validation 

In a perfect system every PCR cycle will result in a doubling of cDNA i. e. 

100% efficiency. In reality, primer and probe concentrations are optimised to 

achieve between 90 and 110% efficiency. As the increase in cDNA is 

exponential, a plot of log starting cDNA concentration against the Ct value 

gives a straight line, the gradient of which corresponds to the efficiency. Figure 

4.4 shows a demonstration graph of Ct values plotted against log cDNA 

concentration for 90,100 and 110% efficiency and the corresponding gradients. 

This defines the range within which the gradients of the validation graphs for 

each primer probe set must fall. Figure 4.5 shows an example validation graph 

including gradient and correlation coefficient for the P450 3A primer and probe 

set; table 4.2 shows this validation data for the other primer probe sets. 
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Figure 4.4 
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Figure 4.4: A demonstration graph showing gradients of CT value vs log cDNA 

concentration for hypothetical 90%, 100% and 110% PCR efficiency. 
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Figure 4.5 

Table 4.2 

Gradient % PCR efficiency Correlation coefficient 
PBGD -3.05 110.4 0.999 

18s -3.37 98.0 0.998 
3A1/3A23 -3.40 96.8 0.996 

2E1 -3.39 97.2 0.972 
I A2 -3.34 99.3 0.983 
HGF -3.50 93.0 0.993 

TGF 31 -3.68 87.1 0.968 

Figure 4.5: An example validation graph for the PCR primer and probe set for 

P450 3A1/3A23 cDNA. 

Table 4.2: PCR efficiency data for other similarly validated cDNA primer and 

probe sets. 
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4.3.2 Endogenous control expression 

18s RNA and PBGD mRNA were investigated as potential endogenous 

controls. An endogenous control must be stably expressed over time and 

different experimental conditions to provide a reliable normalising value. 

However, 18s RNA Ct values became increasingly erratic with time in culture. 

At the start of culture Ct values were approximately 10 for both mono and co- 

cultures. After 2 days in culture Ct values for co-cultures were approximately 

12 compared with 15-20 for mono-cultures. P50.05 for differences between co- 

culture and mono-culture on PLA (Tukey's post-test) but statistical confidence 

was lower than this for the difference between TCP mono-culture and co- 

culture. After 5 days in culture Ct values were about 15-20 for co-culture 

compared with negligible values for mono-culture (erratic Ct values above 30) 

(figure 4.6). The variation of 18s RNA with respect to both time and culture 

conditions makes it doubly unsuitable as an endogenous control in this instance. 

Expression of PBGD mRNA was not detected after 4 days in culture. 

Consequently, data was not normalised to an endogenous control and was 

therefore expressed relative to total RNA. 
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Figure 4.6 
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Figure 4.6: The decrease in expression of 18s RNA in cells maintained in 

hepatocyte stellate cell co-culture or hepatocyte mono-culture on TCP or PLA 

culture surfaces (N=3). 
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4.3.3 Liver enriched gene transcription in mono-cultures and co-culture 

Expression of mRNA for three P450 liver enzymes and various liver enriched 

transcription factors and cytokines were determined in stellate cell mono- 

cultures relative to freshly isolated hepatocytes. This was to give an indication 

of the likely cell type responsible for mRNA expression in subsequent co- 

culture analysis. Most target mRNAs were not detected in the stellate cells or 

were expressed at relatively low levels (Table 4.3). CEBPa and ß, HNF3a, 

AHR and NFkB mRNA were present at detectable levels relative to hepatocytes 

along with the cytokines HGF and TGF3I that were highly expressed. The P450 

mRNA expression was confined to the hepatocytes. 

The decline in P450 mRNA content was dramatic in both co-culture and mono- 

culture: after 5 days in co-culture P450 3A content relative to freshly isolated 

cells was 6%, I A2 content was 11% and 2E I content was 6% (figure 4.7). 

However, the content of P450 mRNAs in the mono-culture had declined more 

than in the co-culture spheroids: P450 3A was 5% of that in co-culture, P450 

IA2 content 43% of that in co-culture and P450 2E1 content 41% of that in co- 

culture (figure 4.8). 

No RNA was obtained from 5-day-old mono-cultures on PDLLA. The 

expression of the liver enriched transcription factors was erratic and 

inconsistent and data is not presented. 
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Table 4.3 

2E1 AHR CEBPß CEBPa HNF1a HNF3a 

0.53 4.32 0.08 0.13 

HNF3ß HNF4a NFkB PXR 3A 1A2 

2.77 

HGF TGFD1 IL-6 PDGF 

4.57 47.92 

Table 4.3: Expression of markers of hepatocyte functionality and certain 

cytokines in stellate cells relative to freshly isolated hepatocytes (expression in 

hepatocytes is 1): Any expression of P450 mRNA detected in co-culture can 

therefore probably attributable to hepatocytes (N=3). 
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Figure 4.7 
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Figure 4.7: The content of three P450 mRNA targets relative to freshly isolated 

cells after 5 days in hepatocyte stellate cell co-culture on a PLA surface or 

hepatocyte mono-culture on a TCP surface (N=2). 
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Figure 4.8 
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Figure 4.8: The content of three P450 mRNA targets in hepatocytes mono- 

cultured on TCP relative to hepatocytes and stellate cells co-cultured on PLA 

after five days (N=2). 
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4.3.4 Cytokine transcription in mono cultures and co-culture 

The stellate cell monoculture was screened for expression of HGF, TGFß 1, IL-6 

and PDGF. HGF and TGFß 1 were both detected whilst IL-6 and PDGF were 

not. HGF and TGFß 1 were therefore investigated in co-culture. HGF and 

TGFß 1 were also present in freshly isolated hepatocytes. However, content was 

4.5 fold and 48 fold higher respectively in stellate cells (Table 4.3). 

HGF mRNA content was 3.5 fold increased in co-culture after 5 days relative to 

the freshly isolated and mixed co-culture. In contrast, hepatocytes in mono- 

culture contained only a third of the initial HGF mRNA content after the same 

time period (figure 4.9). TGFß1 mRNA content was unchanged after 5 days in 

co-culture, but increased 32 fold in mono-culture. In absolute terms this 

resulted in very similar TGFß1 content in both culture systems after 5 days 

(figure 4.10). 
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Figure 4.9: The content of HGF mRNA after five days in hepatocyte-stellate 

cell co-culture or hepatocyte mono-culture on TCP expressed relative to freshly 

isolated cell cultures. 
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mono-culture on TCP expressed relative to freshly isolated cell cultures. 
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4.4 Discussion 

4.4.1 Expression of endogenous controls in hepatocyte culture 

The rapid decrease in both 18s and PBDG mRNA content in both culture types 

demonstrates the hazards of using an endogenous control in a system as 

severely disrupted as freshly isolated hepatocytes. If 18s mRNA was used as an 

endogenous control, the decline in content over time in culture and the faster 

decline in mono-culture than in co-culture, would result in calculation of 

artificially high levels of expression of the gene of interest in later stages of 

culture relative to earlier stages and in mono-culture relative to co-culture. The 

usual stable nature of 18s RNA content emphasises the need for caution when 

using endogenous controls to identify gene expression in rapidly changing in 

vitro cells. 

It is perhaps unsurprising that normally stable hepatocyte gene expression 

changes after the shock of tissue digestion and transfer to a culture dish 

environment. It is, however, interesting that a fall in I8s is recorded using this 

method. The dilution of all samples to equivalent total RNA concentrations 

prior to reverse transcription and PCR means data is expressed proportionate to 

total RNA. Consequently if total RNA per cell fell in one experimental group, 

and all different RNAs fell in proportion, the same Ct values would be obtained 

as would be obtained from an alternative sample if everything remained 

unchanged at initial levels. Therefore, a fall in 18s must imply a rise, or a 

slower fall, of other RNAs. A possible explanation for this result is a large 
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synthesis of certain RNAs in response to the shock of isolation. In this case, 18s 

expression would appear to have fallen as a proportion of the whole. This is 

supported by reports that a majority of genes are up regulated in culture; 

compared to those genes down regulated, four times as many genes' expression 

increased by more than 6 fold in a number of culture systems (Boess et al, 

2003). Genes involved in both apoptosis and proliferation are significant 

amongst those up regulated. A further hazard in interpreting the data is 

identified by reports of variable mRNA stability in hepatocytes in vitro post 

isolation (Hodgkinson et al, 2000). The content of mRNA is not, therefore, a 

strict guide to transcription but the net effect of a change in transcriptive and 

degradative processes. 

These results do not invalidate the studies, but certainly require that 

interpretation is cautious, and clearly invalidate the use of either 18s or PBDG 

as an endogenous control. Therefore, results are not related to any internal 

standard and simply show whether the mRNA of interest represents a smaller or 

larger proportion of total RNA. 

4.4.2 Complexities of attributing gene expression in co-culture 

Analysis of gene expression in co-culture is problematic due to uncertainties 

regarding the cell source of mRNA. Although stellate cell phenotype probably 

changes in response to the co-culture environment, analysing cells in mono- 

culture is the best indicator for allowing cell expression to be attributed to either 

cell type in co-culture without developing complex cell separation protocols. 
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The lack of or low expression of P450 mRNA in stellate cell mono-culture 

makes it unlikely that stellate cells are the source in co-culture. However this is 

not the case for HGF and TGFß 1 expression (see section 4.4.4). 

Co-culture analysis is further complicated by the uncertainty of changes in cell 

populations during culture. In mono-culture hepatocyte populations reduce and 

stellate cells increase. If this occurred in co-culture, expression of a hepatocyte 

specific gene relative to total RNA using the methods described would be 

artificially small. 

4.4.3 Liver enriched gene transcription in hepatocyte - stellate cell co- 

culture and hepatocyte mono-culture 

The hepatocyte - stellate cell co-culture environment supports a higher 

maintenance of P450 1A2,2E1 and 3A mRNA expression than a hepatocyte 

mono-culture environment. Expression of the results proportional to the total 

RNA discounts the possibility that this could be due to greater cell survival in 

the co-culture system. The best comparison in the literature is provided by a 

microarray study (Boess et al, 2003) that reported 18% of initial P450 3A1 and 

complete disappearance of 3A2 mRNA expression after 5 days in sandwich 

culture. The probe used in this work is sensitive to both these isoforms and 

reports about 6% expression after 5 days in co-culture. Therefore in terms of 

P450 3A expression the co-culture spheroids are probably not greatly dissimilar 

to sandwich culture after 5 days. The greater support of P450 3A expression 

relative to mono-culture compared with P450 1A2 or 2E1 expression (figure 
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4.8) is particularly encouraging as this is the most labile of the mRNAs studied. 

Although in these studies a single time point does not allow comment on the 

pattern of P450 mRNA loss, all literature (in the absence of inducers) reports a 

rapid fall, followed by extinction in standard culture, or by a low plateau in 

some modified culture systems (Boess et al, 2003, Hodgkinson, et al 2000; 

Fujita et al, 2005). The results are therefore hypothesised to represent 

expression during this reported plateau phase. 

The data obtained in attempting to validate an endogenous control shows a 

rapid depletion of 18s RNA and PBDG mRNA. The decline in 18s expression 

indicates that basic cellular machinery deteriorates as fast as the liver enriched 

mRNAs. The slightly slower deterioration in co-culture suggests a modest 

braking effect on cell dedifferentiation. The 18s data also supports the P450 

activity data in indicating that in the absence of stellate cells hepatocytes are 

most unstable under non-adherent conditions i. e. on a PLA surface. 

Initial investigation of a range of liver enriched transcription factors generated 

no meaningful data. Inconsistency was observed with respect to culture time 

and culture systems. Unfortunately, although the co-culture environment is 

demonstrated to preserve function, it is still highly unstable. The results suggest 

that the disruption to the complex network controlling the expression of P450 

mRNA is too severe to study in this system. It would be worth revisiting this if 

the system can be made more stable. 
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4.4.4 Cytokine expression 

The content of HGF and TGFßI in both hepatocyte and stellate cell mono- 

cultures prevents expression of these cytokines being attributed to a single cell 

type in co-culture. However, the increase in HGF mRNA content in co-culture 

to higher than that seen in either hepatocyte or stellate cell mono-culture 

indicates the co-culture environment is stimulating up regulation of HGF 

transcription in at least one cell type. Although up regulation of 

TGF(31 transcription is clear in mono-culture hepatocytes, net expression does 

not change significantly in co-culture. However, the initial higher levels in co- 

culture than hepatocyte mono-culture due to stellate TGFßI expression could 

mask a number of scenarios i. e. any increase or decrease in expression from 

either cell type with a net effect of maintained expression. 

Irrespective of cell source these cytokines have interesting implications in a 

culture system. TGFß1 has been credited with enhancing hepatocyte specific 

function in a 3T3-hepatocyte co-culture model (Chia et al, 2005). However, 

similarly high TGF(31 levels in monoculture as well as stellate cell co-culture 

suggests that this cannot be the sole factor in this case. The level of HGF could 

explain the observation that more hepatocytes enter S-phase in co-culture than 

in mono-culture (Lewis, 2003). The high expression of HGF and TGFßI could 

be regarded as a post-traumatic response to isolation from irretrievably 

deteriorating cells, or alternatively, could be considered a small part of a more 

comprehensive regenerative environment (Fausto et al, 1995). Cytokines will 
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inevitably be an important component of regulating hepatocytes in an in vitro 

environment and the use of stellate cells as a co-culture source of cytokines is 

an alternative to ad hoc addition of purified cytokines to incubation media. This 

cell combination could potentially be stimulating other beneficial cytokines and 

raises the possibility of a self-regulating or user regulated system. For example, 

TGFßI depletion via antisense mRNA or antibody may reduce TGFß1 mediated 

attenuation of the HGF/TGFa response with beneficial effects on replication 

and cell viability. 

4.4.5 Conclusions 

The co-culture model demonstrates prolonged elevated levels of P450 mRNAs, 

and has an effect on regulatory cytokine production. Unfortunately, the 

disruption to cellular machinery is too severe after isolation to use 

housekeeping genes to normalise mRNA expression, or to investigate the 

complexity of transcriptional regulation underlying the P450 mRNA levels. 

Although N=2 is too small to allow statistical analysis of P450 differences, the 

differences observed are substantial, repeated across all three P450 mRNAs and 

support the functional data in chapter 3. Gene array studies may be a method to 

further illuminate the control of expression in the spheroids and would allow 

interesting comparisons between spheroid gene expression profiles and 

regenerating liver, fibrotic liver and other liver states. 
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CHAPTER 5 

Hepatocyte - Stellate Cell Co- 

culture Spheroids as a Model of 

Liver Toxicity 



5.1 Introduction 

Hepatotoxicity is a major cause of drug failure. This is due in large part to the 

idiosyncratic nature of liver toxicity and the differences between humans and 

preclinical species. A reliable high throughput toxicological screen is needed 

for early stage drug development to reduce the rate of late stage drug candidate 

attrition, improve drug safety, reduce animal use and improve assay 

reproducibility. A range of improved predictive in vitro models is being 

developed with these objectives. 

5.1.1 In vitro models of hepatotoxicity 

Hepatocytes in vitro rapidly lose toxicological sensitivity. In particular, 

metabolism mediated toxicity sensitivity is reduced in a matter of hours due to 

dedifferentiation and loss of P450 enzyme activity (Guillouzo, 1998). It has 

been suggested that this is associated with a pro-inflammatory response 

inherent to the collagenase method of cell isolation and is therefore a very early 

problem in the process of liver culture (Paine and Andreakos, 2004). 

Success has been limited in developing systems that will identify complex or 

non-acute hepatic toxicity. Most trials involve using the prolonged function 

culture models discussed in previous chapters. The epithelial cell hepatocyte 

co-culture model can respond to repeated toxic inflammatory stimuli (Conner et 

al, 1990) and detects chronic low dose amitriptyline toxicity at concentrations 

not toxic over a 24 hour exposure period. However, it does not similarly detect 
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clonidine or malotilate toxicity and so lacks reliability (Ratanasavanh et al, 

1988). Hep G2 and primary hepatocyte spheroid systems are both reliable 

indicators of hepatotoxicity for a number of compounds such as D- 

galactosamine, propranolol, diclofenac, and paracetamol if a range of functional 

and enzyme leakage endpoints are used (Xu et al, 2003). Spheroid systems also 

have altered triglycerides and raised cholesterol and esters suggesting a 

potential role in the study of fatty liver (Bollard et al, 2002). However, 

spheroids are reported to be less sensitive to the toxic effects of the well known 

hepatotoxin methotrexate than are cells in monolayer (Walker et al, 2000). 

Liver slices are an important liver toxicity model due to the maintenance of 

liver structure and cell type ratios; they can identify toxicity when more than 

one cell type is involved e. g. Kupffer cell mediated toxicity (Ishiyama et al, 

1995) and can give information on lobular localisation of damage (Moronvalle- 

Halley et al, 2005). Liver slices also have an 80% correlation of gene 

expression in response to diverse toxins relative to the in vivo situation. 

However, these responses are far less sensitive and of lower magnitude than in 

vivo assays and are not significantly better correlated than isolated cells (Jessen 

et al, 2003). The development of bioreactors with graduated environments has 

achieved detection of acute toxicity and modelled lobular localisation of cell 

death (Allen et al, 2005). Such flow-through reactors also demonstrate potential 

for high throughput non-invasive measurement of toxicity (Deglmann et al, 

2002). All these systems, despite individual strengths, currently lack the in vivo 

like responses and reliability required for a robust assay. 
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5.1.2 Assays of toxicity 

Assays designed to identify toxic responses have a range of potential end 

points. Detection of enzyme leakage (e. g. LDH) is a crude measure of cell death 

that detects when the cell membrane has been compromised; an alternative and 

often earlier indication of cytotoxicity is mitochondrial activity (Kikkawa et al, 

2005). There are also non-acutely lethal but equally important toxic effects, 

such as steatosis, cholestasis, and genotoxicity, that require different endpoints. 

In vitro culture models have different strengths in detecting different toxic 

endpoints and relatively simple models sometimes suffice. For example, the 

change in total protein content of Hep G2 cultures is a good predictor of acute 

toxicity (Dierickx et al, 2005). Simple short term culture systems can also 

identify some forms of chronic toxicity through displaying early markers that 

can be correlated with a later toxic effect. Examples include accumulation of 

pericanalicular F-actin and an increase in cytosolic free calcium in hepatocyte 

couplets associated with cholestatic agents (Thibault et al, 1994), caspase 3 

(amongst others) activation associated with apoptotic agents (Gomez-Lechon et 

al, 2002), and micronucleus induction associated with liver mutagens and 

carcinogens (Muller-Tegethoff et al, 1997). More complex culture models 

become necessary when chronic toxicity lacks reliable early markers or 

involves cell-cell interactions. 
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5.1.3 Aims 

The studies described in this chapter were designed to provide a preliminary 

assessment of the suitability of the hepatocyte-stellate cell co-culture spheroids 

as a model of acute and chronic toxicity. Specifically, to: 

> Use LDH leakage to ascertain the sensitivity of primary hepatocytes to 

the hepatotoxic mitochondrial oxidation inhibitors DDC and 

amiodarone. 

> Compare cell death in hepatocyte mono-cultures with that in 

hepatocyte-stellate cell co-culture spheroids due to chronic exposure to 

sub-acutely lethal concentrations of DDC. 

> Compare cell death in hepatocyte and stellate cell mono-cultures with 

that in hepatocyte-stellate cell co-culture spheroids after 7 days due to 

acute exposure to a range of DDC and amiodarone concentrations. 
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5.2 Materials and Methods 

5.2.1 Cell isolation and culture 

Rat cells were isolated as described in chapter 2 and cultured in 24 well plates; 

200 000 Hepatocytes or 100 000 stellate cells were used per well for respective 

mono-cultures and 200 000 hepatocytes combined with 100 000 stellate cells 

for co-culture. 

5.2.2 LDH assay 

The LDH assay was conducted using a commercially available kit (Roche 

applied science - Cytotoxicity detection kit (LDH)). Supernatant was removed 

from the cells and centrifuged to remove any cells/spheroids and then 

refrigerated. Any pelleted cells/spheroids were lysed using 0.5 ml Triton-X 100 

(1%) in assay medium that was then transferred to lyse the remaining cells in 

the culture well. The assay was conducted in a 96 well plate using 100 µ1 of 

assay supernatant or cell lysate and 100 µl of freshly prepared Diaphorase, 

NAD+, Iodotetrazolium chloride and sodium lactate mixture (from kit). 

Incubation was 30 minutes. Formazan formation (directly related to LDH 

content) was measured by detecting absorbance in a plate reader at 490 nm. 

Percentage cell death was calculated by dividing the LDH activity value from 

the supernatant by the LDH activity value of the supernatant and remaining cell 

lysate combined and multiplying by 100. 
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5.2.3 Experimental design 

To determine LD50, cells were plated for 2 hours on TCP before a change to 

media containing either DDC or amiodarone (0,10,20,30,50, and 100 µM 

concentrations in duplicate) and incubated over 24 hours followed by the LDH 

cytotoxicity assay. 

To study chronic exposure to DDC, hepatocytes were co-cultured or mono- 

cultured for 2 hours or 24 hours before addition of media containing sub lethal 

4 µM or 15 µM DDC concentrations respectively. At each media change the 

LDH assay was conducted on duplicate wells at each concentration and fresh 

DDC containing media was added. 

To determine the sensitivity of 7 day old cells to DDC and amiodarone, 

hepatocytes were co-cultured or mono-cultured for 7 days before a change to 

media containing either DDC (0,40,80,120,160 and 200 µM concentrations 

in duplicate) or amiodarone (0,20,40,60,80, and 100 µM concentrations in 

duplicate) and incubated over 24 hours followed by the LDH cytotoxicity assay. 

To determine the sensitivity of stellate cells in mono-culture to DDC or 

amiodarone, stellate cells were cultured for three weeks before being plated into 

24 well plates. 24 hours after plating, media was changed to contain DDC or 

amiodarone (0,10,20,30,50, and 100 pM concentrations in duplicate) and 

cells were incubated over 24 hours followed by the LDH cytotoxicity assay. 
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5.3 Results 

Dose-cell death curves were created for 24 hour exposure of 2 hour old primary 

hepatocyte mono-cultures on TCP to amiodarone and DDC. LD50 was 

approximately 90 µM for DDC and 43 µM for amiodarone (figures 5.1 and 

5.3). The LDH method of assessing cell viability was supported by microscopy 

showing increased cell granularity with increased compound concentrations 

(figures 5.2 and 5.4). 

The dose-cell death curve was used to establish low lethality concentrations of 

DDC to use for chronic exposure. Exposure of mono-culture and co-culture 

cells over 7 days to 4 µM and 15 pM DDC did not lead to any discernible 

increase in cytotoxicity relative to non-exposed mono-cultures and co-cultures 

(figure 5.5). 

The response of 7 day old mono-cultures and co-cultures to the toxic 

compounds DDC and amiodarone was assessed with reference to freshly 

isolated cells. The mono-cultured cells did not produce a dose-cell death curve, 

with approximately 40% of remaining cells dieing between day 7 and 8 

irrespective of DDC or amiodarone concentration. Cell death was far lower in 

co-culture, approximately 5% without toxin. This percentage increased with 

increasing concentration of amiodarone, but only rose to a maximum of 13% 

cell death at concentrations that were lethal to over 90% of freshly isolated 

hepatocytes. Cell death also increased with addition of DDC, rising to 20% in 
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response to relatively low concentrations, but a typical dose response effect was 

not observed (figure 5.6). 

The viability of mono-cultured stellate cells after exposure to a range of 

concentrations of DDC and amiodarone was assessed (figure 5.7). Over 80% 

cell death occured when stellate cells were exposed to 25 µM amiodarone and 

over 60% cell death with 50 µM DDC. Increasing amiodarone concentration 

above this level to 100 . tM has little effect on stellate cell death whilst 

increasing DDC levels to 200 . tM results in a gradual increase up to 90% cell 

death. 
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Figure 5.1 a 
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Figure 5.1 b 

Figure 5.1: (a) A graph of percentage cell death (calculated via leaked LDH 

activity divided by total LDH activity) of primary hepatocytes exposed over 24 
hours to a range of amiodarone concentrations after 2 hours culture. (b) The 
leaked and lysed LDH activity are shown separately. LD50 is between 32 µM 
and 50 µM, estimated 43 µM. (N=2) 
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Figure 5.2 

Figure 5.2: Microscopy images support the LDH method of detecting cell death 
by showing increased cell granularity with increasing amiodarone 

concentration. 



Figure 5.3a 

Figure 5.3b 

Figure 5.3: (a) A graph of percentage cell death (calculated via leaked LDH 

activity divided by total LDH activity) of primary hepatocytes exposed over 24 
hours to a range of DDC concentrations after 2 hours culture. (b) The leaked 

and lysed LDH activities are shown separately. LD50 is between 50 µM and 

100 µM, estimated 90. tM. (N=2) 

143 



Figure 5.4 

Figure 5.4: Microscopy images support the LDH method of cell death detection 

showing increasing cell granularity with increasing DDC concentration. 



Figure 5.5a 
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Figure 5.5: (a) Percentage cell death of hepatocytes over three consecutive time 

periods in culture when exposed to 4 µM DDC from the start of culture. (b) 

Percentage cell death of hepatocytes in culture exposed to 15 µM DDC after the 

first 24 hours of culture. 
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Figure 5.6a 

Figure 5.6b 

Figure 5.6: (a) Concentration vs cell death graph for exposure of spheroids to a 

range of DDC concentrations after one week of co-culture (b) Concentration vs 

cell death graph for exposure of spheroids to a range of amiodarone 

concentrations after one week of co-culture. 
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Figure 5.7a 
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Figure 5.7: (a) A graph of percentage cell death (calculated via leaked LDH 

activity divided by total LDH activity) of activated stellate cells exposed over 
24 hours to a range of DDC concentrations. (b) A graph of percentage cell 
death (calculated via leaked LDH activity divided by total LDH activity) of 

activated stellate cells exposed over 24 hours to a range of amiodarone 
concentrations. 
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5.4 Discussion 

There is a need for reliable in vitro screens for hepatotoxicity. The preliminary 

studies discussed here were conducted to indicate the suitability of the 

hepatocyte -stellate cell co-culture system for such a screen. The co-culture is 

shown to have some benefits relative to hepatocyte mono-culture for detecting 

two hepatotoxic compounds. 

Detection of toxicity after seven days of hepatocyte-stellate cell co-culture 

represents an improvement over mono-culture, which gave no meaningful 

results after 7 days. However, the low sensitivity of the response relative to 

freshly isolated hepatocytes limits the potential usefulness of the model. A 

potential explanation for this reduced sensitivity is localisation of cell death in 

certain areas of the spheroids. This could be caused by either poor penetration 

of the spheroid or cells in the spheroid having micro-environment dependent 

sensitivity. This would result in a dose response curve that would be diluted by 

the large proportion of unaffected cells. An alternative explanation could be the 

sensitivity of stellate cells to the toxic compounds. If stellate cells in co-culture 

do not change in sensitivity, or increase in number, then over time an increasing 

proportion of cell death will be due to stellate cell toxicity. The position of the 

stellate cells on the periphery of the spheroid would make them particularly 

vulnerable to a toxin in the media. This would similarly result in a dose 

response curve with a low maximal response proportionate to the amount of the 

total cell population being affected. These are general issues that would need to 

be considered in any spheroid model of hepatocyte toxicity or a model that 

incorporates a non-parenchymal cell. 
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This system needs to be improved in a number of respects to be an effective in 

vitro toxicological screen. A primary problem is the rapidly changing nature of 

the system; the cell population, measured en masse, is highly sensitive to toxin 

when freshly isolated but over the ensuing days becomes rapidly more resistant. 

A stable state is required for long term studies of toxicity so the sensitivity of 

the cells is constant. Furthermore, an equivalence of sensitivity to toxin with 

primary cells would have to be achieved, or, at worst, a validated equivalence 

factor (there is some evidence that toxic responses to short high dose exposure 

in vitro correlate well with long low dose exposure toxicity in vivo (O'Brien et 

al, 2004) indicating an equivalence factor may be workable). Also, the spheroid 

morphology and resultant heterogenous cell environment needs to be better 

understood i. e. if the drug did penetrate the spheroids would the cells at 

different depths respond in the same way. A mitochondrial respiration inhibitor 

may be less toxic to deeper less active cells, a P450 activated toxin may be 

more toxic to deeper cells (lower oxygen levels have been suggested to lead to 

greater P450 expression), but these cells may conversely be exposed to lower 

concentrations of toxin. Furthermore, in co-culture the impact of various non- 

parenchymal cells needs to be understood both in terms of their effect on 

hepatocyte responses to toxic substances as well as their own sensitivity to 

toxins. 

There are other toxic endpoints that would need to be considered to draw a 

conclusive view of the potential of the hepatocyte-stellate cell co-culture 

spheroid as a model of toxicity. However, the preliminary results suggest its use 
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in detecting mitochondrial toxicity is limited. Unfortunately, the complexities 

that improve the longevity and the function of in vitro hepatocyte culture 

models such as this currently present barriers to simple assays and validation. 
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CHAPTER 6 

General Discussion and 

Conclusion 



6.1 Project overview 

There is a need for in vitro hepatocyte culture systems that maintain an in vivo- 

like phenotype to facilitate the development of a range of industrial and 

therapeutic solutions. In this thesis, a study of the formation, morphology and 

function of hepatocyte-stellate cell co-culture spheroids is reported. This novel 

3D co-culture is the first to use a non-parenchymal cell type to actively promote 

an organised hepatocyte aggregate morphology via control of culture surface 

properties. The activity of a number of important P450 enzymes and expression 

of P450 mRNAs are prolonged relative to hepatocytes in 2D monoculture. 

6.2 The basis of improved cytochrome P450 function and mRNA expression 

in hepatocyte-stellate cell co-culture 

The problem of hepatocyte de-differentiation and death in vitro can be framed in 

three simple alternative scenarios. 

> Hepatocytes removed from essential paracrine, blood borne or structural 

in vivo environmental factors rapidly de-differentiate and die for lack of 

these stimuli. 

¢ Cells do not lack a signal to maintain differentiated function but receive a 

de-differentiation stimulus from the in vitro culture environment. 

151 



¢ Cells are irretrievably committed to de-differentiate and die during the 

cell isolation process. 

The relative longevity achieved in certain culture systems makes the latter 

scenario unlikely, although it could occur for a proportion of cells creating a 

hostile environment for cell survival. The diversity of in vitro culture conditions 

that suffer similar dedifferentiation fates questions the second scenario unless the 

dedifferentiation stimulus was common to all culture environments. The most 

likely scenario seems to be that the hepatocytes require an in vitro environment 

containing the appropriate stimuli to support differentiated function. The 

hepatocyte-stellate cell co-culture model supports this hypothesis through 

providing an environment with many in vivo-like hepatic attributes and 

corresponding benefits in function. 

A general mechanism by which co-culture supports hepatocyte function has not 

been elucidated. Co-culture may enhance function through soluble mediator 

production (Chia et al, 2005), ECM production (Kudryavtseva et al, 2003), cell 

contact (Bhatia et al, 1998), promoting a favourable morphology (Kudryavtseva 

et al, 2003), or simply through the manner of aggregation (Hasebe et al, 2005). 

Studies that have tried to separate these effects in co-culture are in disagreement, 

probably because they use variable cell types and are too simplistic. A 

combination of factors may be required to elicit an effect or different factors may 

be synergistic. 
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This work has demonstrated a number of factors that may be responsible for the 

co-culture effect in the hepatocyte-hepatic stellate cell system. Stellate cell 

production of HGF, TGFßI and various other soluble mediators may influence 

hepatocyte function. TGFßI production has previously been credited for the 3T3 

fibroblast mediated maintenance of hepatocyte function (Chia et al, 2005) but is 

also profibrotic (Nakamura et al, 2000), perhaps explaining the ECM deposition 

and activated stellate cell attributes of the model. The correlation of viability 

with aggregate formation indicates that either an individual or combination of 

factors such as cell contact, morphology or ECM environment are important in 

preventing cell death. A further potential mechanism by which stellate cells 

could enhance hepatocyte function is through loss of retinol content in vitro, 

presumably into the culture media, which may act via RXR/RAR nuclear 

receptors to enhance hepatocyte function. Although the co-culture spheroid 

model is beneficial in both longevity and function of hepatocytes, some aspects 

of the system may reduce function. Possible modifications to investigate this are 

discussed in section 6.5. 

6.3 Comparing the hepatocyte-stellate cell co-culture to alternative models 

It is important to be able to determine if a given in vitro hepatocyte culture 

model performs better than those previously reported. This is difficult due to 

significant inter-laboratory variation (Ringel et al, 2002). This variation partially 

derives from the range of different species and culture techniques used. Cells are 

isolated from different sexes of different sources, including porcine, human, rat, 

monkey and others, that differ in many factors such as the prevalence of P450 
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enzymes. Minor differences in culture technique such as cell handling, media 

supplementation (particularly with respect to the addition of dexamethasone or 

DMSO), cell density, cell purity, cell culture substrate and many others can all 

have major effects on cell phenotype (Vandenberghe et al, 1992). Even if media 

is defined at the start of culture, hepatocytes degrade additives and produce more 

of their own at a rate dependent on other variables such as cell density and media 

volume (Nakamura et al, 1983) resulting in non-comparability of individual 

variables after a short period. In more complex systems such as co-cultures, 

variability in the purity of the initial cell populations may lead to variation in 

phenotypic changes in either cell type over the culture period, adding more 

sources of discrepancy. A further barrier to comparison is the variety of 

functional end points, particularly with P450 function. These diverse assays 

differ in specificity and sensitivity; some measure the net activity of a range of 

different P450 enzymes that contribute in different proportions to the final 

metabolic products. The complexity of the pattern of dedifferentiation also 

means that equivalent time points are not directly comparable but must be 

viewed over the full period of dedifferentiation. The pattern of dedifferentiation 

of transcription factors underlying this response is probably even more complex. 

If results are to be compared between laboratories a good set of validated 

controls is important as a relative benchmark for the activity of a novel culture 

system. However, no standard exists and good controls are difficult to achieve. 

For example, a standard monolayer monoculture control is morphologically 

different from a co-culture spheroid so distinguishing between the affects of co- 

culture or cell aggregation independently is impossible. Attempts to overcome 
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this morphological variable by alternative methods of forming cell aggregates, 

such as agitating monoculture cells, inherently introduce more variables. 

Consequently, in these studies multiple comparator culture types were used for 

the functional assays. 

A further complication in defining the success of enhanced function hepatocyte 

cultures is the variation in hepatocyte phenotype through the zones of the lobule 

in vivo. Different culture systems may produce phenotypically different 

hepatocytes, but may be equally valid models of different lobular zones. The 

literature suggests that it is easier to maintain blood protein production than P450 

activity. It is possible that high oxygen tension, an almost universal feature of in 

vitro culture systems, promotes a perilobular phenotype with low P450 activity 

and high blood protein production. 

As a consequence of the comparative difficulties described above, it is only 

possible to conclude that qualitatively the hepatocyte-stellate cell co-culture 

model is comparable to other advanced models in creation of both a complex 

ultra structure and functional support. However, in the aspects investigated, it is 

better than simple monolayer mono-culture systems. 

6.4 Potential applications of the hepatocyte stellate cell co-culture 

The functional attributes of the hepatocyte stellate cell co-culture may be 

valuable in the development of a bioartificial liver system or in vitro metabolic 

screen. However, the functional advantages are not sufficient in this model to 
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independently address either of these issues. The system has potential as a model 

of either healthy or diseased liver tissue. The viability, in vivo like structure and 

ECM deposition by stellate cells is evidence of recreation of an in vivo like 

environment for hepatocyte support, but the level of deposition suggests the 

spheroids may be equally appropriate as a model of fibrosis. The ultra structure 

and fat storage may allow cholestasis and steatosis respectively to be 

investigated. The system also shows some promise as a post trauma model or a 

model of hepatic regeneration. Stellate cells are integral to both of these 

processes and the ECM deposition and high level of HGF mRNA found in the 

co-culture are both features of the regenerative liver associated with hepatectomy 

or severe injury. The spheroids have some attributes that are required for a 

toxicological or metabolism screen. However, the morphology of the system 

would potentially limit accessibility of interior cells for maintenance or test 

compounds and lead to gradients of cell phenotype. The toxicological sensitivity 

and longevity of function would also both need improving. 

6.5 Potential improvements to the hepatocyte-stellate cell co-culture model 

The viability and functional benefits of the hepatocyte-hepatic stellate cell co- 

culture system are identified only after two days in culture. This correlates with 

the aggregation of the cells, although it could also be attributable to 

accumulation of soluble mediators or other forms of gene expression. In either 

case, the speed and manner of formation of the aggregates appears critical. 

Optimisation by using an alternative faster method of forced aggregation to 

rapidly establish cell contact, or by pre-culturing stellate cells in the co-culture 
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environment to allow soluble mediator/ECM accumulation, could potentially 

achieve these benefits far earlier in the culture process. Also, the support of 

hepatocytes by cell contact and morphology in this model are closely linked to 

the method of formation. The final non-homogenous distribution of stellate cells 

resulting from their role in aggregation may result in a different distribution than 

is optimal for functional support of the hepatocytes. Similarly, the contractile 

morphology that promotes aggregation may be less effective at functional 

maintenance than the quiescent stellate cell phenotype. This could be 

investigated using manipulation of aggregation to change the cell distributions or 

two stellate populations, one quiescent and one activated. This may also avoid 

the formation of a peripheral ECM barrier. 

Although the viability results indicate cell contact is important to prevent cell 

death, the spheroid morphology could have some drawbacks i. e. the peripheral 

distribution of the stellate cells, formation of an ECM capsule and high density 

of cells in the co-culture may not be optimal. However, the spheroid morphology 

would create a nutrient and oxygen gradient similar to that in the hepatic lobule 

which could be advantageous in developing an in vivo like variety of cell 

phenotypes. However, to investigate this the co-culture interaction should be 

explored without the spheroid structure. A stellate cell hepatocyte bi-layer could 

still support 3D structural aspects but would have fewer complexities in terms of 

nutrient availability. Also, a bi-layer separated by a semi permeable membrane 

would create a system reminiscent of hepatocyte plates in vivo. 
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6.6 Conclusion 

The hepatocyte-hepatic stellate cell co-culture system supports a higher level of 

differentiated hepatocyte function than hepatocytes cultured alone. The 

mechanism of aggregate formation facilitates retention of differentiated function 

and leads to a complex structure, some aspects of which are in vivo-like, and 

some of which are associated with liver pathology. Although the hepatocyte 

stellate cell interaction alone appears unlikely to be sufficient to produce a useful 

model, it offers a tool that, in combination with other techniques, may lead to 

more successful complex culture systems. 
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