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microsphere. f) AFM height image 1
st
 order plane fitted of an 8 µm

2
 area at the 

top of a microsphere before and g) after sputtering. Corresponding 3
rd

 order 

flattened AFM height images, and a line scan (indicated) are also shown.  
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and concentrated pores measuring ~2 µm in diameter. b) An interpolated 3D 

representation of the protein distribution within a 40 µm
2
 area of a microsphere 
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Figure 5.9  ToF-SIMS of a sectioned microsphere showing a) lysozyme (CNO
-
), 

b) PLGA (C3H3O2
- 
,C3H5O2

-
, C3H3O3

- 
& C3H5O3

-
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