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Abstract 

The drilling industry, along with many others, is becoming increasingly competitive, 

demanding greater efforts to improve safety and reduce costs. For this reason, 

companies are progressively looking towards computerised automation to enhance 

performance. Unlike most industries however, the drilling industry has been slow to 

take advantage of the advances in computer and automation technology. Only recently 

have automatic operations such as tubular handling been placed under computer 

control. These activities relate to peripheral mechanical handling problems which are 

relatively easy to solve. The concept of an automatic intelligent drill, capable of making 

its own or assisted decisions about drilling parameters such as weight on bit or 

rotational speed, may seem remote and far into the future. 

Research in drilling automation, at the University of Nottingham, has the ultimate 

objective of achieving computerized drill control through the the application of an 

intelligent knowledge induction system. At the University, a laboratory rig has been 

developed with such a system installed. Decisions for optimal performance are based 

on either maximum penetration or minimum cost drilling. The system has a self­

learning capability, allowing a progressive improvement in performance. The 

prototype system is currently undergoing trials, using real data collected while the 

laboratory rig is drilling and artificial data. The results are very encouraging and 

demonstrate the feasibility and advantages of optimised drill performance. 

This thesis describes the design and development of this drill optimisation scheme 

produced by the author. Both the theory behind the optimisation system, and the results 

of the initial phase of Laboratory testing are included. 
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Thesis Outline 

The design and development of the optimisation system described in this thesis is fairly 

complex and thus difficult to describe in a logical step by step progression. Every effort 

has been made to do so. However, many concepts are interrelated and as a 

consequence, they may require detailed explanation, before a real appreciation is 

gained. Some of these concepts are complicated in their own right and may require 

detailed explanation before being interrelated. Consequently, this can lead to some 

concepts being initially difficult to understand or their relevance seen, which later 

become clear once the whole system has been developed. 

Therefore a brief description of the layout of the thesis has been included, highlighting 

the contents of each chapter, to give the reader a general overview and aid initial 

understanding. 

Chapter 1 provides an introduction to drill optimisation and outlines the proposal of this 

research project, to develop an 'on-line' drill optimisation system. To be able to 

develop and test the optimisation system in a real situation, a laboratory drill rig, 

already in existence was utilized. However, some modifications were required, mainly 

for computer control and these are covered in Chapter 2. To test these modifications, as 

well as generate both an understanding of the drill, and initial ideas on the optimisation 

scheme, a series of tests were performed and are described in Chapter 3. These tests 

highlighted a number of problems with the control of the drill rig and its inefficiency for 

initial software testing. This proved invaluable in subsequent work. 

The idea's gained from Chapter 3, allowed the initial development of the optimisation 

scheme could be conducted. In any optimisation system, decisions have to be made on 

what is the aim of the optimisation scheme, and by what method / parameters this may 

be achieved. This is covered in Chapter 4, and describes several methods which were 

investigated, the optimisation scheme finally being based on minimum cost per metre 

drilling. 

The problems of attaining 'on-line' measurements for the parameters required for the 

optimisation scheme was covered in Chapter 5. A prediction method was developed, 

(mainly for wear rate prediction), which would enhance the known data to aid 

prediction of unknown points giving the system some self-learning capability. 
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In Chapter 6, the developments of Chapter's 4 and 5, were utilized to generate methods 

for a minimum cost optimisation scheme. Several methods were investigated, with a 

continuous computer search method being selected. The compete layout and operation 

of this optimisation system is described, along with the problems of multi strata 

operations. 

Chapter 7 describes the results of the testing programme to validate the optimisation 

system, with conclusions and recommendations for further work being covered in 

Chapters 8 and 9 respectively. 

XVI 



Chapter 1 - Introduction 

1.1 Drill Optimisation 

\ 

Holes are drilled in geological strata for a wide range of applications. For example, 

exploration of an ore body or oil reserve, for extraction purposes, blast hole generation, 

de-watering, and for many other reasons. Virtually every mineral extraction.project 

will require some form of drilling. As a consequence, drilling expertise is very 

important for successful operations. I;?rilling knowledge has progressed through time 

from a fairly simple operation to a highly complex one, involving a variety of different 

drilling techniques and methods, each for a particular purposes or situation. This 

development of technology is aptly summarised by J.L. Lummus (40) which shows the 

progression of rotary drilling - see Table 1.1. 

With increasing knowledge and more advance technology, current drilling limits are 

being pushed further each year (65), with deeper wells in more adverse geology. 

· Combined with increased competition and the harsh economic climate, the demand for 

more sophisticated equipment and computerization is growing. This is not only to 

improve performance, but also to reduce cost. 

The increase in computer technology, has allowed great advances in the monitoring and 

control of the drill rigs and drill parameters. This has resulted in more data being 

available to the drilling engineer for use in performance prediction and optimisation. 

However, the data is only worthwhile if it truly represents what is actually happening 

down hole. 

In the mining industry, where the majority of holes are shallow and of small diameter, 

it is believed that monitored data does represent down hole conditions. This is reflected 

by the degree of monitoring / control equipment on the latest types of drill rig. This not 

only benefits the drilling engineer, but is useful for many other processes such as 

reserve calculation and blast design (32,33,39,46,66). 

In the oil industry, the picture is slightly different as the complexities of monitoring in 

deep holes are much greater. Some experts dispute the levels of accuracy of 

measurements attained and do not believe that the monitored data represents down hole 

conditions. However with progressive research and the increase in the use of 

measurement while drilling (MWD) tools (13,24), it is hoped that this discrepancy will 

be soon eliminated. 

1 



Rotary Drilling Development 

Conception Period 
1900-1920 

Rotary Drilling Principle 
1900 (Spindle Top) 

Rotary Bits 
1908 (Hughes) 

Casing and Cementing 
1904-1910 (Halliburton) 

Drilling Mud 
1914-1916 (National Lead Company) 

Scientific Period 
1948-1968 

Expanded Drilling Research 

Better understanding of 
Hydraulic principles 

Significant Bit Improvements 

Optimised drilling; 
Improved Mud Technology 

Development Period 
1920-1948 

More Powerful Rigs 

Better Bits 

Specialized Muds 

Improved Cementing 

Automation Period 
1968-

Full Automation of Rig 
and Mud Handling 

"Closed-loop" Computer 
Operation of Rig 

Control of Drilling Variables 

Complete planning of Well 
Drilling from Spud to Production 

Table 1.1 Development of Rotary Drilling (After Lummus) 
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In any optimisation process, a decision has to be made on what parameter is to be 

optimised. In an operation such as drilling, there are a multitude of parameters which, if 

optimised could help improve the overall efficiency of the operation, e.g. the percentage 

core recovery, penetration rate, cost, time to completion, ml!d circuits, etc. The choice 

of the parameter comes down to what the hole is actually required for. For exploration 

holes, in certain sections, the most critical constraint may be the percentage core 

recovery. In many cases, the desired optimums will conflict with each other e.g. 

percent~ge core recovery and maximum penetration rate. However for the majority, or 

the major part of most holes, the predominant criteria will be to produce the hole as 

quickly and as cheaply as possible. 

In choosing the optimisation parameter, precaution should be exercised as there are 

many parameters or factors which hinder the drilling operation. Some of these based 

on a table by McDanial and Lummus (44) , are shown in Table 1.2. 

If an optimisation system is employed, it can be seen from Table 1.2 that a number of 

the parameters are unalterable and restrict the optimisation scheme. Others (also 

unalterable) are unpredictable and interfere with and reduce the efficiency of the 

optimisation scheme (1,19,20,39,40,42,49,69). Only a small number are under the 
'- ,"-

direct control of the drilling engineer. The extent to which an optimisation scheme can 

be applied is therefore limited by the unalterable variables. The system also requires a 

degree of flexibility to cope with the unpredictable ones. 

How then can drill optimisation be performed? Many of the currently employed 

systems in the drilling industry use off-line techniques, where historical data from 

previous wells are correlated with others, in an attempt to predict the nature of a similar 

hole to be drilled in the same area. These vary from optimum casing design, methods of 

evaluating rig perfonnance, to the use of drilling simulators. Many publications and 

methods, featuring both manual and latterly computerized methods, have been 

developed throughout drilling history which try to improve the performance of the 

drilling operation. Each has had varying degrees of success (4,8,22,36,41,42, 

48,55,59,63,66,67). 

Other methods rely on drill off tests to predict the likely response of the drilling 

operation in certain rock strata (5,15,26,27,61). The results are fed back through 

various equations, to detennine optimum operating conditions. The most famous is 

"How to achieve minimum cost drilling?" by Galle and Woods (26,27), which 
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Variables which restrict Variables which Compromise 
the optimisation scheme Implementation 

i 

General Rig General Rig 

Program Pump power Location Deviation 

Total depth Rotary power Logistics Lost circulation 

Geological predictions Pump pressure Weather Abnonnal pressures 

Hole sizes Pump liners Planning Sloughing shale 

Evaluation Flexibility Supervision Hole trouble 

Casing program Pit system Mud solids 

Directional Drill string Crew efficiency 

Tripping time Geological correlation 

Table 1.2 Parameters which Hinder and Effect Drilling Optimisation 
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estimates the correct bit weight and rotary speed to attain minimum cost drilling, taking 

into account parameters such as bit wear. 

With the advances in computer technology, the potential of on-line optimisation 

techniques has increased dramatically. To the authors knowledge, the first paper 

published on such a system was in 1968 (74), and to date remains the only known one 

to be published. The paper describes the attempts by the Humble Oil and Refining 

company, to develop an on-line drilling optimisation system using a full scale drill rig. 

The system was developed around a Honeywell DPP 116 digital computer that logged 

all the main drilling parameters and controlled weight on bit and rotational speed. The 

system optimised through a cost equation, similar to the one used in this optimisation 

scheme. Penetration rate characteristics for different combinations of bit and rock types 

were determined by drill off tests and the wear characteristics of the bit were derived 

from wear curves form the manufacturer. The trials proved successful, but the current 

status of this project is unknown to the author. 

More recently other "optimisation" systems have been developed (37,52,64) 

particularly by Tamrock, but these do not directly optimise drilling performance. They 

concentrate on automation of rod handling etc. None however, have been on same the 

scale of the Humble Oil experiment. Therefore scope exists for the development of such 

a system and it is understood that within the drilling industry an increasing amount of 

attention is directed towards optimising drill performance. However much of this 

research is propriety and currently remains unpublished. 

1.2 The Research Project 

Drilling research has been conducted at the University of Nottingham for 6 years, 

predominantly using Diamond Impregnated Core Bits, but latterly with Poly-crystalline 

Diamond Compact Bits. For the context of this project, the Diamond core drill rig 

would be used, being more accessible and with more information available. 

Initial research on diamond impregnated bits was conducted by Ambrose (2), who 

analysed bit performance. In this research a number of different rock samples were 

drilled with a variety of different bits and the results monitored. Amongst the results 

produced we~ graphs of penetr~tion rate. against bit wear rtte. A. typical plot produced 

is shown in FIgure 1.1. From thIS graph It can be seen that lrere IS a trade off between 

penetration rates and bit wear rates. However how do wecfcide where the optimum 

5 



-= .-s -S 
S --QJ -~ 
~ 

= 0 .--~ r.. -QJ 

= QJ 
~ 

Graph of Penetration Rate and Wear Rate against 
Weight on Bit 

400 0.18 

0.16 

300 -S -S 0.14 
S --
QJ -cu 
~ 
r.. 
cu 
QJ 

0.12 ~ 

200 

.... WearRate 
(mm/m) 

0.10 -e- Penetration Rate 
(mm/min) 

100 0.08 -+------r--'-_,._--r------r---....-.----, 

o 100 200 300 

Weight on Bit (kg) 

Figure 1.1 A graph showing the trade off between Penetration Rates and 

Wear Rates 

6 



operation point is? What factors effect this operating point, and is it actually 

achievable? 

This was the basic rationale for this research project, i.e. to develop a system to locate 

and operate a drilling system at the optimum performance point. The idea of such an 

optimisation system is shown by Figure 1.2. Parameters from the drilling operation are 

fed to a central location known as an Intelligent Knowledge Induction System. This has 

the power to process these results and decide which parameters to alter to bring about 

an improvement in performance. In this hypothetical case, rotational speed and weight 

on bit (thrust) are indicated. This process would continue until no change of the 

parameters was seen, hence at this stage the drilling operation would be operating at its 

optimum performance point. 

The project was split into two distinct parts :-

i) To establish feedback control loops on the existing radial ann core drill, and 

to use them to aid the development of a system to maximise penetration rates. 

ii) Find and develop a method to operate the drill at its optimum performance 

point. 
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Chapter 2 - Modifications to the Laboratory Drill Rig and 
Wear Measurement Jig 

2.1 Introduction 

Drilling research at the University started with the conversion of an old radial arm 

machine shop drill to a laboratory rock coring drill. The drill used diamond impregnated 

bits to produce rock cores for testing purposes as well as being used for drill research 

purposes. During the fIrst two years, the laboratory rig was instrumented and computer 

software generated to allow a variety of measurements to be taken, while the machine 

was operating. These include parameters such as rotational speed, weight on bit 

(thrust), penetration rate, flow rate, motor voltage and motor current. From these, a 

variety of other parameters may also be derived. Consequently, this has allowed the 

study of the drill's response and performance while drilling a variety of rocks under 

different conditions. 

In addition, a wear measurement jig was also built, enabling the measurement of wear 

profiles developed on the diamond impregnated bits. This allows a wear history of drill 

bits to be determined. 

The author was involved in much of this work, mostly on the software side, but this 

work and a greater explanation of the Laboratory drill rig and wear measurement jig 

has been covered in previous publications (2,14,56). 

It should be mentioned that at the start of this project the drill monitoring and control 

system was thought adequate for the development of the optimisation system. However 

as the project developed, the processing power of this system proved insufficient and 

the use of an IBM type machine was required for the optimisation algorithm. This 

posed a number of problems which were surmounted, but complicated the structure of 

the optimisation scheme. 

With the benefit of hindsight, and the technological advances in electronics and 

computer systems that have occurred during this project, a different monitoring system 

would have been initially developed, based solely upon a IBM type machine. However 

despite this. a working drill optimisation system was developed, indicating the 

feasibility and potential for such a system It is expected that for full scale test trials 

an upgrade to a Micro Vax or Sun Work Station will be required. 
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2.2 The Laboratory Drill Rig 

2.2.1 Hardware Modifications 

From the onset of this research project, it was apparent that the laboratory drill rig 

would need some major modifications to achieve the ultimate aim of optimising drill 

perfonnance. Documentation on the drill monitoring electronics already in existence 

was sparse. In addition, there had been no provision made for future expansion, which 

would be required for the inclusion of feedback loops to several of the drills 

parameters. Therefore it was decided to rebuild the electronics, salvaging what was 

necessary. 

The drill electronics were based around a BBC Micro Computer. The BBC was an ideal 

computer with which to develop a low cost monitoring system, having many additional 

features compared with other computers. The Basic language was enhanced from those 

nonnally available, allowing a degree of structured programming. It was also readily 

suitable to electronic interfacing, having ports readily available to do so i.e. the User 

Port and the 1 MHz Bus. These and many other features make the BBC an extremely 

versatile machine readily suitable to interfacing projects. 

Figure 2.1, shows the electrical system in its entirety and serves to give the non­

electrical reader an idea of how the complete system works. From Figure 2.1, it can be 

seen that the main communication line between the computer and the external drill 

electronics is the 1 Megahertz bus. The 1 MHz Bus is extremely useful for interfacing as 

it has up to 502 memory addresses specially allocated to it in the BBC. Consequently it 

is possible to service a large number of peripheral devices, and hence its use as the back 

bone of drill electronics system. To allow for ready expansion of the drill electronics, a 

common pin configuration was linked across the entire back plane of the electronics 

rack, Figure 2.2. This configuration consisted of the I MHz Bus lines and the common 

voltages used on the boards. In so doing each board could have direct access to the 1 

MHz bus if required. Those not, such as the signal conditioning board could be located 

next to their controlling boards for easy direct linkage. 

With the addition of hardware to I Mhz Bus, address decoding is essential to ensure 

that only the required chip / peripheral device is accessed by a pre-set range of address 

values. A typical circuit is shown in Figure 2.3. 
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2.2.1.1 Monitoring Hardware 

The majority of the various transducer signals were fed to a central electronics board 

which conditioned and converted the signals to a range of 0 - 10 Volts required by the 

Analog to Digital (AID) convertor. As no changes were made to the monitoring 

transducers, the original signal conditioning board was directly incorporated into the 

new system. The conditioned signals were passed to a 8 bit 8 channel AID converter 

located on a separate adjacent board, directly accessing the 1 MHz Bus. 

Penetration Rate is measured using a Linear Variable Differential Transformer 

Transducer (L.V.D.T.). L.V.D.T.'s utilise the coupling generated by a soft iron 

plunger in a series of coils to relate the position of the plunger. A similar device was 

also used for the wear measurement jig. As both L.V.D.T.'s were never used at the 

same time, it was decided to bring them under a common circuit. A four pole relay was 

used to select the appropriate L.V.D.T. output, and this was fed to an Oscillator 

Demodulator, which translates the L.V.D.T.'s signals to a linear response ranging from 

-1 to + 1 volt. The internal 12 bit AID of the BBC was used for converting this signal, 

but as this required a 0 - 2 volt input, the Oscillator Demodulator output was passed 

through a voltage shifting circuit shown in Figure 2.4. 

The measurement of flow rate, had previously been based on an orifice plate and a 

differential pressure transducer. This had resulted in a multitude of problems, generally 

due to large pressure transients and the transducers incompatibility with water. This 

caused the failure of a number of such transducers. A new method has been developed 

(on the PDC rig) using a low cost water turbine, which while installed on the radial arm 

drill rig, the electronics have not yet been commissioned. 

2.2.1.2 Control Hardware 

The control of external electronics from computers, generally has to be made through 

interface adapters either Versatile Interface Adaptors (VIA) or Peripheral Interface 

Adapters (PIA). Both are very similar, the VIA containing such features as internal 

clocks, useful for more complex interfacing. These devices allow both the reading and 

writing of data to a series of data lines ( collectively known as a port) which can either 

be used for monitoring or control purposes. The BBC has an internal VIA for use by 

the programmer, accessing both the printer and the User port. The User port in this 

case however, has been dedicated to the wear jig and therefore and additional VIA or 

PIA was necessary. As no external timing was required in the control circuits, a PIA, 
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was selected and hung on the 1 MHz bus. This gave access to an additional 16 data 

lines for use in control or monitoring purposes. 

2.2.1.2.1 Stop / Start Control 

To enable a fair degree of automation, drill stop / start control from the micro processor 

was incorporated. This also added a safety feature as the machine could be instructed 

to switch off if torque levels were too high or if the drill had reached the bottom of the 

hole. 

Figure 2.5 shows a circuit diagram for the drill stop / start circuit. By pressing the start 

button, the resulting brief contact closure energises the primary coil, closing the drill 

contacts and the primary contacts and hence primary circuit. The primary and machine 

contacts remain closed until such time as the stop button is pressed, breaking the 

circuit, de-energising the coil and allowing the contacts to open. 

By adding two relays as shown in Figure 2.5, direct control from the computer can be 

established, utilising two data lines from the PIA chip, one for start control the other for 

stop control. As the PIA lines are only at TTL logic levels (i.e. 0-5 volts) and of limited 

current capacity, they are incapable of directly driving a relay. Figure 2.6 shows the 

driving circuit for the two relays triggered by positive logic levels on the control lines. 

This is known as a Darlington pair. 

2.2.1.2.2 Feedback Loops 

From previous drilling tests it was known that both rotational speed and weight on bit 

had a major influence on drill performance, and thus both these parameters were to be 

placed under micro processor control. It was also known that flow rate also had an 

effect, although not significant on this laboratory rig. However due to the difficulties 

experienced in monitoring the flow rate, and its negligible influence, it was decided not 

to control flow rate at this stage. However, the systems electronics were designed to 

allow easy inclusion at later date. 

Manual speed control utilised a potentiometer, to vary the demand signal to the motor 

speed control electronics. As a low budget solution was necessary, it was decided to 

motorize this unit, such that when the motor was energised the computer could control 

the rotation of the potentiometer, and when de-energised manual control would remain. 

1 6 



240 V 
A/C 

,./ 

Start by briefly 
closing circuit 

I -

I -

-~ 
I 

~ 

I 

~ 
I 

I 

I 

I 

I 

I 

I 

~ 
~~ 

Main Motor 
Cwrent 

Stop by breaking 
circuit 

I 

~ 

Key 

§ -Relay Solenoid 

Figure 2.5 The Drill Stop / Start Circuit Diagram 

12 Volts 

n 
I 

Solenoid 

lK 

o Volts 

Figure 2.6 A Darlington Pair Used to Drive the Stop / Start Solenoids 

1 7 



To control the rotation of the potentiometer with any accuracy would require stepper 

motor control. These motors turn a specific angle of rotation for each pulse sent to their 

control circuit. The motor used in this case was an old three phase stepper motor which 

had been salvaged from another piece of equipment. However, most modern stepper 

motors are now four phase, and thus no off the shelf control circuit chips could be 

found. A circuit designed by M.D.Waller for a the conversion of a three phase to six 

phase, was examined and simplified, and proved satisfactory - Figure 2.7. An on / off 

control for the motor was also added to reduce the time for which the motor was 

energised, and thus minimise power supply drain. 

A prototype system for the motorised potentiometer was built out of Metal Mechano to 

prove the principle, using several gear ratio's to attain the desired resolution. This 

system was so successful, it was used for the actual drill speed controller. 

With the success of the speed controller, a similar approach was sought to control the 

weight on bit. Weight on bit was provided by a piston in which air pressure was varied 

to give differing loads. Unfortunately the existing pressure regulator was old and too 

complex to motorize in the same way. However an additional regulator was found, 

which could easily be adapted. This was placed in series with the other. By opening the 

original pressure regulator fully, pressure regulation could be passed to the motorised 

regulator and hence under computer control. 

2.2.2 Software Modifications 

The drill rig software had previously been developed to a fairly high degree (56). 

Consequently only several modifications were made. 

Throughout the history of the rig, the accuracy of penetration rate measurements have 

caused problems due to the electrical noise associated with the internal AID converter on 

the BBC. Many attempts to smooth the resulting fluctuations had improved the reading. 

However, as these were written in Basic, it was thought that an interrupt routine 

(through assembler) could be used to improve the current system. 

Interrupts take priority over the general running of the computer e.g. the execution of a 

programme, and thus give a means of attaining a higher priority over the programme. 

Many devices work using interrupts e.g. disc system, keyboards etc, and all have 

designated priorities. Care therefore must be taken at which level the interrupt is set at 

as the results can otherwise be disastrous. 
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For this application, the lowest priority is used, as only priority over programme 

execution is required, in BBC terms, this is the IRQ2V vector. The interrupt routine 

written utilises the internal VIA timer, which causes an interrupt after a certain time has 

passed. In this case the time set was a twentieth of a second. On each interrupt, the 

timer would be reset and the analog port (penetration measurement) would be read and 

stored accumulatively. On every twentieth reading i.e one second intervals, the analog 

port values would be averaged and stored to disc along with the other drill parameters. 

Previous problems had also occurred with the spin up time of the disc system causing 

the programme to hang, while the disc attained the correct speed and the disc buffer 

emptied. This was also catered for in the interrupt routine by flushing the disc buffer 

each time data was written to the disc, i.e. every second. Consequently, the disc was 

constantly spinning and immediately accessed. 

The interrupt routine proved highly successful and smoothed the penetration rate 

measurements to an acceptable level. However, the only real way to improve the 

system would be to build an external 12 bit Nd convertor. For the marginal benefits 

gained, it was not thought worthwhile at this stage. 

As the project developed, the optimisation routine ran on a P. C for reasons discussed 

later. In so doing, the storage of drilling data on the BBC was abandoned. The data 

was transferred directly to the P.C for storage on a hard disc. Consequently the disc 

system access pans were removed from the BBC monitoring programme. 

For general drilling and specific energy research, data is still stored on the BBC disc, 

and these programmes i.e. Monitoring, Plotting routines etc, have been brought to a 

menu driven option for ease of operation. 

2.3 Wear Measurement Jig 

A prototype wear jig had been already built, with the software being written by the 

author. The current wear jig electronics were housed in a number of boxes making 

transportation difficult. With the re-building of the drill electronics, it was thought 

worthwhile combining the wear jig electronics into a single board and adding it to the 

drill electrical rack. 

This modification was conducted at the same time as an additional wear jig was being 

manufactured for DeBeers Industrial Diamond Division. Consequently, because of the 

commercial nature of this project, two printed circuit boards (one for the University 
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and the other for DeBeers) were produced, rather than using prototype boards. While 

the DeBeers project proved highly successful, later modifications to the University 

board through progressive developments, resulted in the PCB becoming untidy. In 

hindsight would have been better to produce the University board on eurocard allowing 

greater flexibility. 

2.3.1 Improvements to the Wear Jig 

With regular use, it was found that the L.Y.D.T. pointers tended to flatten with use, the 

flattening being most pronounced when the pointers were new. This was mainly due to 

the pointers being made of mild steel with no heat treatment being applied. In addition 

to this, the shape of the pointers had an adverse effect on the measured profile. The 

difficulty of machining such small items, resulted in the pointers tending towards a 

conical shape. This had the effect of exaggerating the rounding at the crown extremities 

as shown in Figure 2.8. 

Therefore, a solution to eliminate both problems was necessary, i.e. a pointer needle 

like in shape, good wear/ impact resistance and readily available. The solution was 

found in household picture nails. These were readily available in any hardware shop, 

made of hardened steel and needle like in shape. A suitable holder for these nails was 

made to allow for regular replacement. The improvement on the measured profiles is 

shown in Figure 2.9. 

With the development of the volume loss calculator described later, it was found that 

the method of locating the drill bit in the jig was too inaccurate. Originally the drill bit 

was butted up to a boss which was set at the beginning of an experiment. If the drill bit 

was too small, a blank would be screwed into the bit, effectively elongating it - Figure 

2.10. An additional drawback, was that once the apparatus had been set up for one bit 

type, other bits could not be measured without moving the position of the boss, which 

would invalidate any further measurements of the initial bit. 

A new system (Figure 2.11) was designed in which the location method was directly 

onto the core bit. A small counter sunk hole was drilled into the shank of the drill. care 

being taken not to drill right through. The hole was used to locate a pin which ran 

through the mounting "Y" block. This method also insured that the same portion of the 

segment was measured each time. Subsequent testingby the re-measuring of the same 
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segment several times and comparing the profiles, proved that a greater degree of 

accuracy in location and hence wear loss was achieved by this method. 

2.3.2 Modifications to the Software 

The commercial nature of the DeBeers wear jig ensured the software was developed to 

a high degree of efficiency. All programmes were menu driven and as user-friendly as 

possible. The only major development undertaken during this research project was the 

volume loss calculator. This programme would calculate the amount of wear which had 

occurred between two particular profiles. During profile measurement, the L.V.D.T 

was traversed at a set distance for all measurements. Therefore, the total volume lost 

could be derived by summing the total profile heights, and subtracting one from the 

other. However as the L.V.D.T. may not necessarily start in the exact same position 

each time, discrepancies in the calculated volumes were observed as shown in Figure 

2.12. 

To compensate for this, a routine was written in which the two profiles could be 

superimposed on each other until the best fit was observed - Figure 2.13 . To remove 

end effects and rogue values, inner and outer boundaries could be positioned, and only 

the centre portion sumated. The profile with the new boundaries was re-drawn after 

calculation. A typical result is shown in Figure 2.14. 

At present only the area lost is calculated. For volume to be established, each reading 

would be required to multiplied by the appropriate radii. However, for a series of 

measurements, errors would arise from not being able to accurately locate an exact radii 

position to the crown profile. For this reason, true volume loss was not followed 

further, but left as the area multiplied by the average radius. While not being the exact 

volume lost, it was felt to be sufficient to show the wear trends. 

2.4 BBC - IBM Data Link 

During the development of the optimisation system, the processing power required, 

soon outstripped the capabilities of the BBC. An upgrade was made to an IBM 

compatible, which not only improved memory capacity, but equally important 

processing speed. However, this did cause one major problem due to the drill 

electronics being geared to the BBC. 
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Interfacing from the IBM is much more complex than from the BBC as it does not have 

many of the built in features akin to interfacing as seen on the BBC. Consequently, 

special boards etc have to be brought in. Even with these boards, large scale 

modifications would be required to adapt the electronics to work from a mM. The time 

taken to do this and generate a suite of monitoring programmes similar to those on the 

BBC, was thought to great to be worthwhile at this demonstration phase of the research 

project. Therefore a different approach was sought. 

The concept of using the BBC as a front end processor was developed. In this, the 

BBC would be designated solely to data acquisition and control of the drill. The main 

optimisation system would run on the IBM and send control commands to the BBC, to 

access data, or to instruct a parameter change. The two machines would communicate 

through the RS232 interface common to both machines. 

The establishment of the RS232 data link was originally thought to be a relatively 

straight forward and easy task. Unfortunately, it proved to be to the contrary. The 

control of the RS232 from the BBC was relatively easy and well documented. The mM 

on the other hand was the complete opposite, with infonnation on the hardware side 

extremely sparse. With a great deal of experimentation using a breakout box, the correct 

pin configuration was established. 

However the use of an unorthodox solution was necessary. Problems occurred at the 

IBM end, where data could not be read from the RS232 port. The only solution found 

to this problem was to short the CTR and RTS lines on each computer, leaving only the 

two data lines and ground connected between the two computers. Obviously this is not 

an ideal solution but it proved to be the only solution. 

The shorting of the respective lines, removed any handshaking capabilities between the 

two computers for data transfer control. This made data transfer very complicated as 

data could be easily lost. This would typically happen if the IBM sent data to the BBC 

and the BBC was busy. The input buffer on the BBC would progressively fill as the 

IBM sent more data. If the BBC remained busy and the buffer not accessed, the buffer 

would eventually fill. As the crs line had been shorted no instruction could be sent to 

the IBM to stop it sending data. Consequently any subsequent data sent by the IBM 

would be lost. 

To overcome this problem, some sort of software computer handshaking was required, 

such that one computer would indicate that it was ready to send data, and would hang 
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until such time the other indicated it was ready to receive the data. This has the 

immediate disadvantage that the machines have to wait until the other is ready to receive 

to transmit data, compared to normal transfer where the data is buffered and dealt with 

when the machine is less busy. 

To complicate matters further, it was found also that spurious data appeared on the data 

lines. Unless excluded, this would be be treated as nonnal data and thus corrupt values 

sent subsequently. To solve this problem, the transferred data was marked with a stop 

and start character to ensure the correct data value was deciphered by the other machine. 

It had originally been intended that the IBM would control the BBC by an interrupt 

routine, such that a character sent by the IBM would cause an interrupt routine to be 

called on the BBC. Depending on the character set, this routine would either transfer 

data to the IBM or accept control information. This would allow the BBC to spend 

most of its time monitoring, and transfer data only when requested. Several assembler 

programmes were written to do this, but all proved unsuccessful. All the data transfer 

programmes however worked well in Basic, and therefore the requests from the IBM, 

had to be serviced by a polling routine on the BBC, which regularly checked the RS232 

port to see if a request had been sent. 

2.5 Conclusion 

In concluding this chapter, the laboratory drill rig and wear measurement jig underwent 

a series of modifications to allow the development and testing of the optimisation 

system. Many modifications have also improved the general use of the drill, when 

utilised for general drilling or coring purposes. An RS232 link to a LB.M was also 

established which enables the transferring of data between the two machines. This 

allowed the BBC to take the role of a front end processor. 
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Chapter 3:- Preliminary Drilling Tests and Developments 

3.1 Introduction 

A series of preliminary drilling tests were conducted with the aim of gaining experience 

on the drilling apparatus, as well as generating any ideas on optimisation techniques 

and highlighting any problems that may occur during optimisation tests. 

3.2 Drill Response Tests 

From Ambrose's work, it was apparent that both rotational speed and weightQnbit had 

an influence on penetration rate. Therefore it was decided to conduct a series of 

experiments to validate these results and establish general trends. The tests would 

involve the manipulation of rotational speed and weight on bit to see the response of 

penetration rate. Flush would also be manipulated. As only general trends were 

required only one rock type was used. The results of these tests are shown in Figures 

3.1-3.3. 

From these graphs it can be seen that weight on bit has the greatest influence on 

penetration rate. Rotational speed has some influence, but not as pronounced. - .---

However, from the tests, it was apparent that a certain speed was required for differing 

weight on bit values to ensure the drill did not stall. From the graph showing flush 

variation, it can be seen that for the majority of mid range values, its influence (on this 

machine) is negligible. However at the extremities it does have quite an adverse affect, 

too little causing a build up of cuttings and too great causing hydraulic lift of the bit, 

both causing a reduction in cutting efficiency and hence, a reduction in penetration rate. 

Therefore all subsequent experiments were conducted with the flush rate being 

maintained in the range of 6-12 litres per minute. 

t (It should be noted that while in this laboratory system the influence of flush is 

negligible, in field operations, especially in deep well drilling, the influence of hole 

'hydraulics is critical, not only for hole generation but also well control. Therefore, for 

any field application, hole hydraulics must be taken into account within the optimisation 

. scheme. 
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3.3 The Development and Testing of a Simple Drill Optimisation 
Scheme 

With the lessons learnt from these initial experiments, a control strategy for optimising 

penetration rates was designed and is shown in Figure 3.4. For a given starting 

condition, weight on bit and rotational speed were increased in steps until such time as 

the speed started to drop and a stall condition was occurring. The weight on bit was 

then reduced to regain the speed of the drill. A stall marker would be set and the 

process returned to the initial mode of increasing weight on bit and rotational speed 

once again. If this was performed correctly the stall marker would be cleared. 

However, if on the next increase of weight on bit, stalling occurred again, the drill was 

deemed to be near its optimum point. At this point, the speed was manipulated in either 

direction to see if any improvements in penetration rate could be attained. Once 

completed, the optimisation process would repeat itself but with reduced step incr­

ements. In this way, the computer would search out the optimum operating point for 

maxim urn penetration rate. 

The algorithm was programmed into the BBe computer used for drill monitoring, and 

a series of test perform in the laboratory to validate the algorithm. A typical plot is 

shown in Figure 3.5. It can be seen from the plot that the penetration rate has increased 

to near optimum. 

3.3.1 Problems Arising from the Initial Tests 

From 3.5, it can also be seen that the computer has recovered from two potential stall 

conditions. However in so doing, the amount the computer has reduced weight on bit is 

too great, causing the penetration rates to drop dramatically. 

This is obviously not desirable and requires some modification to the control algorithm. 

The problem arises through the weight on bit actuator. Load on the bit is applied 

through a compressed air piston controlled by a motorized pressure regulator. The 

regulator was treated as having a linear response, i.e. a certain number of steps cause 

a certain increase, and the same number in the opposite, the same pressure decrease. 

This was clearly not the case. 

When a stall condition was encountered, pressure would be reduced as fast as 

possible. However, large number of motor steps /turns were required before the 

pressure began to drop, after which small numbers of turns would cause large pressure 
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drops. This seemed to indicate that the regulator was following an exponential 

response. 

To establish the true response of the regulator, a series of tests were performed. By 

varying the starting pressure, a range of steps were taken in both directions and the 

final pressure in each case noted. The results were quite surprising. The data produced 

indicated that the response was in fact fairly linear! However there was a certain 

number of steps necessary to change direction, before any pressure change was seen 

i.e. a dead band response was being exhibited. 

As pressure measurements tended to fluctuate slightly, a tolerance band was 

established, inside which no change would be required. If the previous change had 

been in the opposite direction from that now required, the required number of steps to 

change direction would be performed. With the correct direction set, if changes were 

just outside the tolerance limit, the pressure would be slowly adjusted towards the 

desired value, otherwise the number of steps to attain the pressure would be calculated 

and performed. 

The setting of the regulator to various pressures could take several seconds and with 

some routines requiring access every second, care had to be taken that on each pass, 

the pressure setting routine did not take longer that 30 seconds to run. This required the 

splitting of the routine into various parts e.g. changing the pressure direction, such that 

the task was accomplished by several calls of the routine. By polling the routine along 

with the other major procedures, the routine would be called as regularly as possible. 

A similar routine was also written for the rotational speed controller, but as this 

exhibited a true linear response, no reversal routine to facilitate direction change was 

necessary. 

The experiment also established another quirk of the drilling system which baffled the 

author for a period of time. During the testing of the control procedures, it was found 

that if both control motors were used at the same time, the rotational speed 

measurements fluctuated widely. However if either procedure was run individually, 

speed measurements remained nonna!. Naturally the first conclusions were that the two 

procedures were interfering with each other by a common variable. However extensive 

checks and the renaming of variables, did not alleviate the problem. No actual reason to 

this problem was found, but it is believed that the current required when both motors 

were power up, caused such a drain on the power supply that voltage drops occurred. 
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This caused other circuits including the rotational speed measurement to malfunction. 

Therefore, each motor was switched off after use and thus the two were never 

energised at the same time, preventing the associated voltage drops. 

These changes could have been incorporated into the maximisation of penetration rate 

algorithm previously described and further improvements made. However, as this 

algorithm was only generated for test purposes, it was not developed further despite 

being successful. The main reason for this, was that no self-learning process was 

involved. Consequently, no benefit from the information gained from previous holes 

could be used to aid the drilling of the next hole. However the optimisation system 

described in the subsequent chapters has this capability and could readily be applied to 

the maximisation of penetration rates. 

3.4 The Drill Simulator 

These tests, also highlighted the difficulty of debugging and developing the software 

while using the drilling machine. Software errors often required the drilling tests to be 

re-run, consequently involving drill re-positioning, collaring, etc, which when 

debugging is very time consuming and frustrating. In addition to this problem, regular 

access to the drilling machine was needed, the drill often being required for other 

purposes, such as laboratory coring as well as its use being bounded by University 

hours. 

To alleviate this problem and aid software development, a simulator was developed 

which would simulate to some degree the action of of the drilling machine. The 

simulation procedure would be held in the monitoring computer, and allow a realistic 

representation of the drilling rig. Therefore, development work could be conducted 

away from the drilling machine in a clean and pleasant atmosphere with increased 

efficiency, rather than in the laboratory environment. 

Furthermore, as mentioned in Chapter 2, the large processing power required by the 

main optimisation system, had resulted in the programme being developed on an 

I.B.M. system, with the BBC monitoring computer being solely used as a front end 

processor. The two computers were linked by an RS232 data link. While this link had 

already been established, the data transfer concepts had to be combined into the 

monitoring (BBC) and optimisation (IBM) routines, to allow control to take place. The 

concept of this data transfer mechanism is similar to that of parallel programming, each 

computer running a part of its own programme, before requiring data to be transferred. 
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Consequently, debugging the software is complex as either machine could be the 

initiator and not necessarily the recorder of an error. The testing of the data transfer 

software would have been extremely time consuming if not impossible, if a simulator 

had not been produced. 

The design of the simulator was such that different processes i.e. drill responses, could 

be interchanged. This would allow the optimisation system to be tested under a variety 

of conditions. To enable a variation in processes, the simulator infonnation was 

contained in a matrix fonn, which could be loaded into the computer from a data file. A 

typical response is shown in Figure 3.6. This represents a hypothetical penetration rate 

against the variables, rotational speed and weight on bit. Therefore for a certain value 

of rotational speed and weight on bit, a certain penetration rate would be returned by the 

simulator. It can be seen from Figure 3.6 that this only describes a two variate process, 

but it could easily be extended to incorporate other parameters such as flush rate by 

adding extra dimensions to the matrix. This allows the optimisation algorithm to be 

developed to a high degree involving many different parameters. However conceptually 

these become impossible to visualise. 

As the processes are generated artificially, complex surfaces may be tested to establish 

whether the algorithm will cope with a wide range of complex surfaces. This is 

particularly useful for testing of multi-hump surfaces such as shown in Figure 3.7. 

Methods for this type of prediction are described in later chapters. 

With the simulation data being contained in a matrix fonn, real or historical data 

generated either from general core drilling or from optimisation test work could be 

transferred into a matrix fonn. This could be used to load the simulator and thus allow 

the simulator to imitate a real process for the particular rock type being drilled. 

This highlighted several other improvements which could be made to the simulator. 

When using artificial data, the response of the simulator was always exact, i.e. at a 

certain rotational speed and weight on bit, a certain rate of penetration rate was 

observed. However, in the real drilling process, the response of the drill is more 

varied, giving data fluctuations, as shown in Figure 3.8 showing the range of standard 

deviation measured during an optimisation test. 

Therefore to enhance the efficiency of the simulator and aid the development of the 

optimisation algorithm, a variation in the sim ulated data was produced. This was left as 

an optional mode, as with initial development exact known values were beneficial. 
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Figure 3.7 A Multi-Hump Surface 
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However as the system becomes more developed, a range of standard deviation values 

could be incorporated, either imaginary, or real values such as those measured form a 

panicular test. In so doing, this would allow more authentic simulation. 

Another feature also incorporated into the simulator was that of a time lag between the 

setting and attaining of the required parameter value as exhibited by the rig. The 

simulator originally gave an immediate response which was initially beneficial to the 

development of the optimisation scheme, as the time lag aspect would only serve to 

slow down the development. However as the optimisation system becomes more 

developed, the time lag between setting and attainment, is useful to simulate the real 

drilling situation. 

The development of the drill simulator proved highly successful, allowing the easy 

testing of the optimisation. The simulation data can take the form of imaginary 

processes, initially used for development work, or to test the system under conditions 

such as multi peak or trough surfaces. Real processes from those of previously 

monitored drilling tests can also be incorporated, to test the optimisation system under 

real conditions, with real or imaginary variations in standard deviation. This has 

consequently allowed the optimisation algorithm to be developed to a high degree, with 

the minimal time spent drilling, in a clean and productive environment. 

3.5 Conclusion 

In concluding, for the drill rig to be used for drill optimisation research, the complete 

electrical system was re-built. As a consequence, a series of tests were performed, 

using a simple optimisation algorithm for maximising penetration rates to ensure that 

the new electrical system functioned properly, as well as generating further ideas on 

drill optimisation. While this algorithm proved successful, it was not progressed any 

further, as it was surpassed by the scheme developed later. However it did highlight 

several problems both in control and optimisation techniques, which aided development 

of the main optimisation scheme. 

The testing of the maximisation of penetration rate algorithm also highlighted the 

problem and inefficiency of developing software in connection with a real process i.e. 

the drilling rig. For this reason, a simulator was established which greatly enhanced the 

development of the optimisation scheme. The simulator also allowed the optimisation 

process to be studied under a wide range of complex surfaces which would otherwise 

be difficult to produce on the drill rig. 
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Chapter 4 - Optimisation Theory 

4.1 Introduction 

In Chapter 1, the basic rationale for the optimisation system developed during this 

research project was introduced. It mentioned that from the work done by Ambrose, 

~ optimum point for a given set of conditions existed between penetration rates and 

wear rates. This point, in the drilling operation was deemed to be most efficient. To 

find this optimum point, a parameter and governing relationship must be developed 

which combines the trade off between penetration rate and the associated wear rate. 

This trade off is well known by drillers that at the start of the hole, Renetration rates 

are generally maximised to ensure rapid hole generation. However as the hole 

becomes progressively deeper, the time taken to pull and change the bit when worn ie 

the tripping time, increases. IE-deep holes the trip_ping time can be considerable and 

therefore more emphasis is placed on conserving bit life to reduce the time spent 

tripping. 

From this, it can be seen the optimum operating point between penetration rate and 

wear rates is not constant throughout the length of the hole. The gepth affects the 

position of the optimum operating point. It is also well known that wear and 

penetration rates are not solely interdependent i.e. penetration rate is not a sole 

function of wear rate and vice versa, but many other parameters effect one or both. 

For example, rock type will effect both whereas abrasivity will only directly effect 

wear. Furthermore, there are other parameters, possibly unknown, who's effects will 

also be unknown. With the complex interaction of all these possible parameters, a 

prototype system designed to cope with them would be extremely complex if not 

impossible to develop. 

Therefore, simplifications have to be made to enable a system to be developed. Once 

this has been proved, other parameters which were otherwise ignored and held 

constant, can be introduced into the optimisation system. Bearing this in mind. the 

choice of a governing parameter and its relationship with others, should aim to 

remove / accommodate as many parameters as possible, without becoming too 

complex. Those that are excluded from it. but still have influence on the result, must 

be dealt with separately. 
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4.2 The Governing Parameter and Its Relationship 

As has been mentioned previously, to enable any optimisation system to be 

developed, the desired aim of the optimisation system must be defined along with its 

relationship to other parameters involved in the operation. In this case, the 

optimisation system must seek out and maintain the most efficient operating point for 

a drilling system. Therefore a parameter must be established to achieve this. 

4.2.1 Maximised Penetration Rates 

If penetration rate was selected, as described in the previous chapter, the optimisation 

system could maintain maximum penetration rate throughout the entire length of the 

hole. However as the hole becomes deeper, the increase in tripping time would 

eventually become detrimental reducing the overall efficiency of hole generation. The 

use of such a system to maximise penetration rate may be of great benefit where 

tripping times remain low i.e. in short holes. These are more common in the Mining 

Industry for blast hole production. 

4.2.2 Time 
The time taken to drill the hole was initially investigated as a possible control 

parameter, as it is every drillers aim to complete the hole as quickly as possible. 

-*,4.2.2.1 Minimum Time For Each Bit Run 

The time taken for each bit run was initially investigated. This comprises the rotating 

time of the bit, and the time taken to trip the bit out of the hole at the new depth. This 

can be written as follows:-

(4.1) ',/ 

where Tb = Total time for each bit run. 

Tr = Rotating time. 

Tt = Tripping time 

The time rotating can be expanded in terms of penetration rate(P) and expected 

distance. 
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T - Expected Distance ___ (4.2) 
r - Penetration Rate 

The Expected Distance is governed by the wear rate (W), and K the expected bit life, 

at the declared penetration rate(P), such that, 

Expected Distance = ~ --- (4.3) 

Therefore 

Tr J;) --- (4.4) 

1 K 
Tr= P . W --- (4.5) 

Similarly, the tripping time may also be expanded in to terms of Present Depth (D) 

and the expected distance drilled with the bit, and the average round trip time per 
metre (Tm). 

Tt = (Present Depth + Expected Distance) . Tm --- (4.6) f 

Thus by substitution, 

K 
Tt=(D+ W) .Tm --- (4.7): 

Therefore, substituting into equation (4.1), gives 

1 K K 
Tb = P . W + (D + W) .Tm --(4.8) I 

Multiplying out, gives 

1 K K 
Tb = P . W + D. Tm + W . Tm --- (4.9) 

By excluding the Present Depth term from the equation (being a constant for each 

particular bit run), once an optimum point has been established for the first bit run, 

then since no other influences will effect the equation, this operating point will remain 

constant for subsequent bit runs. Therefore the drill parameters will remain constant 

for the rest of the hole. 
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Clearly this is not desirable and would not provide a successful optimisation 

algorithm. The failure of this method is that it does not include the effects of other bit 

runs. Only by doing this i.e, looking at the hole as in entirety, does a time 

optimisation system become possible. Therefore time to hole completion was 

investigated. 

4.2.2.2 Total Time to Completion 

Equation 1 gives the time taken to complete one bit run. Therefore by sumating all the 

predicted bit runs, a total time to completion can be estimated. This can be written as 

Time to Completion (T c)= L ( T r + T t) --- (4.10) 

Expanding this equation in a similar fashion, 

n 

Tc - L in K K 
Wn + (Dn + w

n
) .Tm --- (4.11) 

1 

But the Present Depth (Dn) is the previous depth, plus the distance drilled by the bit 

1.e. 

K 
Dn = D (n-1) + W --- (4.12) 

(n-l) 

Therefore we can sumate to the total distance tripped now in terms of the previous bit 

runs, such that the total depth Dn is given by ;-

p=n 
Dn - L Dp --- (4.13) 

1 

--- (4.14) 
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n-J 

Dn = k ~ (j-n+1) . _1 --- (4.15) £..J wn 
n=l 

Therefore total time spent tripping is 

n=] 

Tt = Tm· K L (j-n+1) . ~n --- (4.16) 

n=1 

and thus the total time to completion is given by, 

K 
Wn + 

n=] 

Tm· K. L (j-n+ 1) . ~n --- (4.17) 

n=l 

This gives us an equation which will allow the sumation of total time to completion, 

from various predicted penetration rates and wear rates, until hole bottom is reached. 

However to find an optimum, the best combination of all the bit runs must be 

ascertained to achieve minimum time to completion. Therefore, every combination 

may have to be searched. For just a simple example, having only 5 combinations of 

penetration rates and associated wear rates, it can be seen that there is a tremendous 

build up in the number of possible combinations. 

1st Bit Run 

2nd Bit Run 

3rd Bit Run 

Number of Computations 

5 

25 

125 

Mathematically this can be described by the equation 

Number of combinations = Number of associations (Number of bit runs) 

For a real situation, the number of associations would be much higher. It may be 

possible to eliminate some of the combinations, as the calculation proceeds, but what 

has to be remembered is that some combinations may require less bit runs to reach the 

required depth and hence less time is spent tripping. Therefore care has to be 

exercised in eliminating these, to ensure that the true minimum time is derived. 
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In addition to this, the system is highly inflexible. Any changes in circumstances 

resulting in early bit failure and / or not attaining the predicted distance drilled, such as 

differing geology or hole problems, would disrupt the optimisation system. 

Consequently it would have to be re-run to calculate the ~ew optimised time to 

completion. Furthennore in the equation developed for optimising time to completion, 

an assumption was made that the parameters would not change for the whole of the bit 

run. This would obviously not be the case unless drilling was occurring in 

homogeneous rock. To generate a system to cope with changing geology within each 

bit run, would require an exact knowledge of hole geology and increase the 

calculation time dramatically. 

Clearly the inflexibility of this system and the computer time involved to predict the 

best parameters to attain minimum time to completion makes this method of 

optimising drill perfonnance unsatisfactory. 

4.3 Cost 

Other parameters were looked at but were quickly dismissed apart fonn some fonn of 

cost optimisation. This parameter had the immediate benefit that virtually all other 

parameters could be related to a cost function. The proposed criteria for the 
-

optimisation system of trading off penetration rates and wear rates, can also be easily 

accommodated. Penetration rates have a direct relationshi p to rotating and therefore rig 

running costs. Wear rates not only influence bit consumption but also influence 

tripping time intervals and hence rig costs. Provided an equation can be established 

relating these parameters to cost, the criteria for the proposed optimisation scheme 

could be met. 

The other big advantage in using cost is that at the end of the day, profit is one of the 

most important factors and reducing hole production costs is obviously beneficial. In 

addition, it may be found that by using an optimisation system, wells originally 

thought un-economic to drill, may prove to be economic. 

However for a drilling operation, there are many cost centres, some of which have a 

direct relation to the generation of the hole and others that do not. To ascertain those 

that have some direct influence, a brief cost analysis was perfonned. Two categories 

were produce: fixed cost (independent to the drilling operation) and variable costs ( 

those having some influence). 
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The fixed costs are mainly due to the preparatory work done before drilling can occur, 

or afterwards when the site etc must be restored. Some of these are shown in Figure 

4.1. These costs are mostly independent of the drilling perfonnance and cannot as 

such be incorporated into a cost optimisation scheme. However these costs could be 

reciuced, e.g by improving the efficiency of site restoration, or rig transportation, but 

although they do bring benefits to the total cost to completion they do not reduce the 

drilling cost directly. 

The inclusion of the casing programme as a fixed cost is for simplicity, as the effects 

of running casing in this optimisation scheme have been ignored. Generally the depth 

at which casing is run is governed by the hole geology. Thus while not effecting the 

drilling costs directly, an optimisation scheme that incorporates the casing programme 

into its algorithm would be beneficial. This would allow the optimisation system to 

ensure that when the required depth for casing was reached, the bit would be ready to 

be pulled anyway. 

I The variable costs do directly relate to the cost while drilling and these are shown in 

. Figure 4.2. It can be seen, there are a large variety of cost centres, each having a 

. differing influence on the overall drilling cost. Some are also dependant on external 

, influences e.g. manpower costs vary geographically, fuel cost may vary with 

, economic/ political influences. 

It would be desirable to establish a relationship to include all of these variable costs 

and develop an optimisation system, to minimise total drilling costs. However the 

lessons learnt from the total time to completion, also apply here in that an inflexible 

system would be developed, which would not be able to cope with problems and 

unforeseen influences. 

Therefore a simpler optimisation method is necessary. To do this, cost per metre was 

proposed. This would allow the development of a system which could incorporate all 

of the variable cost mentioned above, including external influences such as geographic 

location, but allow the system to be very adaptable, as the criteria was to minimise the 

cost of each metre drilled. While this may not achieve the minimum cost to 

completion, it does ensure that drilling cost are minimised for the current situation. 

An equation for the cost per metre already existed in most drilling text books, (Drilling 

Practices Manual by P.L. Moore (47) ), and it was decided to use this as the basis 

from which to develop the cost optimisation system. 

48 



Casing Programme 
( Rigging up/ Rigging down) 

Site Restoration 

. .:" . . . 

Figure 4.1 Fixed Costs in a Drilling Programme 
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Figure 4.2 Variable Costs in a Drilling Programme 
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C= ... (4.18) 

where C = Cost per Metre 

B = Bit Costs 

R = Rig Costs per Time Interval 

Tr - Rotating Time 

Tt = Tripping Time 

F = Distance Drilled with Bit 

It can be seen from the equation, that the variable costs have been further simplified, 

and are combined into just two costs, bit and rig costs. While this generalises the 

variable costs, it does have the great benefit of being a very simple equation to work 

with, and to develop an optimisation system around. Once the system has been 

developed, this equation can be expanded to include the other variable costs described 

previously e.g geographic location may also have an influence on labour costs or a 

fuel element may be required. 

These could be included into the equation and expanded as follows. 

c - B + R (T r + T t) + M (T r + T t) + P ·in {S. T r· } 
F 

---(4.19) 

where M - Manpower Costs per Time Interval 

P - Unit Power Costs 

S - Rotational Speed 

in = An Unknown Function 

With the correct system design, the upgrade to a more complicated cost equation 

would only require a straight equation swap, rather than a complete redesign of the 

optimisation system. 

Returning to the original aim of the optimisation system, the basic rational was to 

locate and maintain the optimum operating performance of a drilling system by using 

the trade off between penetration rates and wear rates. To do this, cost per metre has 

been chosen as the optimisation parameter and its relationship given in equation 

(4.18). However it can be seen that none of these terms directly relate to any of the 
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controllable drill parameters. Therefore some mathematical manipulation of this 

equation must take place to convert this equation into one which will be suitable for 

the establishment of an optimisation system. 

Multiplying out equation (4.18), gives us :-

B R . Tr R . T t 
C = F + F + F --- (4.20) 

As with the equations for minimisation of total time to completion, the distance drilled 

by each bit is determined by the total bit life (K) and its wear rate (W), we have:-

Distance Drilled = ~ --- (4.21) 

Also, 

Penetration Rate (P) Distance Drilled (F) ___ (4.22) 
Time Taken (T r) 

Substituting in we have, 

Therefore, 

B C=---

(~) 
R R .Tt 

+ p + (~) --- (4.23) 

C = B .W + R + R.Tt .W ___ (4.24) 
K P K 

If the tripping time is expressed on terms of the average time taken for a round trip 

per meter, using D for depth, we can calculate the tripping time at any depth, thus 

Tt =D. Tm --- (4.25) 

where T m = Average Round Trip Time per Metre 
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and therefore, 

Simplifying gives, 

C 
= (B + R.Tm . D) .W R 

K + P --- (4.27) 

This equation provides a means of comparing combinations of drilling parameters 

through minimum cost per metre, with the ultimate intention of finding a minimum. 

Returning to Figure 1.1, this equation would form the rule base for which decisions 

would be made to improve the current operating position. 

However to do this, both parameters i.e. penetration rates and wear rates must be 

readily available as the absence of one would totally invalidate the optimisation 

system. Furthermore, with the data available, how is the equation used to determine 

the optimum operating point, and is the method used the most efficient? These two 

issues are covered by the following chapters. 

4.4 Cost Equation Sensitivity Analysis 

To understand the effects and trends that the various parameters have in the cost 

equation (4.27), a sensitively analysis was performed. For each test, four different 

combinations of penetration rate and wear rate were used to cover a broad range of 

possibilities. They comprised of worst and best scenarios as shown below :-

1) Low Penetration Rate with High Wear Rate. 

2) High Penetration Rate wi th Low Wear Rate 

3) Low Penetration Rate With Low Wear Rate 

4) High Penetration Rate with High Wear Rate 

Although some of these scenarios are unlikely in reality e.g. high penetration rate with 

low wear rate, they are included to show the boundaries of the system. The values for 

each of these conditions was based on work by Ambrose. They are shown below and 

were kept constant for each test. 
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Low Penetration Rate = 50 mm/min 

High Penetration Rate =350 mm/min 

Low Wear Rate = 0.05 mm/m 

( assuming a 10mm crown Height =200m of drilling) 

High Wear Rate = 0.2 mm/m 

( assuming a 10mm crown Height =50m of drilling) 

Many different graphs were produced relating various parameters to others, but plots 

of cost against depth illustrate the observations well. 

4.4.1 The Effect of Bit and Rig Cost with Respect to Tripping 
Time 

The first series of tests conducted were to establish the effect of Bit and Rig costs, 

with respect to the Tripping time per Metre. For each test, three tripping times would 

be used 10,20 and 40 s/m, shown by the three graphs in each of these tests. 

The Rig and Bit costs used are shown below:-

1) Bit Costs Greater than Rig Costs (Bit Costs = £1500, Rig Costs = £100) 

2) Bit Costs Equal to Rig Costs (Bit Costs = £1000, Rig Costs = £1000) 

3) Bit Costs Less than Rig Costs (Bits costs = £1000, Rig Cost = £10000) 

4.4.1.1 Bit Costs Greater than Rig costs 

From the three graphs shown in Figure 4.3, it can be seen that the tripping time has 

very little effect at all on the cost per metre increasing the cost only marginally with 

increasing depth. It can also be distinctly seen the remarkable division of the four 

penetration and wear rate scenarios into wear rate zones i.e. high and low wear rates. 

If high wear rates were allowed to occur, then the cost per metre would rise 

dramatically. Therefore in this situation, low wear rate are the predominant criteria. 

4.4.1.2 Bit Cost Equal to Rig Costs 

Figure 4.4 shows that with rig and bit costs even, the tripping time is beginning to 

effect the cost per metre as depth increases. With tripping times slow i.e. 40 slm, the 

cost at the greatest depth is nearly double of that when faster tripping times are 

obtained. The division of wear rates still exists, indicating that wear rates should be 
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kept as low as possible, but within these divisions, the differing penetration rates is 

also causing a separation. It can also be seen that at shallower depths, the separation 

between the two wear rate zones has been reduced substantially. 

4.4.1.3 Bit Costs Less than Rig Costs 

It can be seen from Figure 4.5 that the continuing separation of the penetration rates 

and the reduction in separation of the wear rate zones, has occurred to such an extent 

that two of the lines cross, i.e. Low Penetration Rates and Low Wear Rates, and High 

Penetration Rate and High Wear Rate. This indicates that at different depths of the 

bore hole, different criteria are required. The initial part of the hole requires high 

penetration rates, out weighing the associated high wear rates, and in the latter part, 

low wear rates become more important. 

It can also be seen that increasing tripping time again increase the cost per metre 

within increasing depth but more importantly, moves the position of the change over 

point between high penetration rates and low wear rates, thus indicating benefits are 

realised if tripping rates are kept as high as practicably possible. 

4.4.2 The Effect of Bit Costs with Constant Rig Costs 

The last two tests performed, were to show the effect in cost per metre of differing bit 

costs with constant rig costs ( one at low rig cost £100, the other high £10000), and 

constant tripping times, again plotted against depth. The two bit cost used were £500 

and £1500. 

4.4.2.1 Low Rig Costs. 

Figure 4.6 shows that as with the test shown in Figure 4.3, it is essential that when 

bit costs are greater that rig costs, wear rates should be kept to a minimum, otherwise 

the cost per metre increases dramatically. This is highlighted further by the higher of 

the bit cost graphs, where the cost per metre would be tripled is high wear rates were 

to occur. 
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4.4.2.2 High Rig Costs 

Figure 4.7 illustrates that when rig costs are much higher than bit costs, that the 

influence of bit costs on the cost per metre is negligible. This is shown aptly by the 

superimposed graph at the bottom. 

4.4.3 Conclusions of the Sensitivity Analysis 

From the analysis, we can draw several conclusions :-

i ) With rig costs less or equal than bit costs, emphasis is placed on low wear rate, as 

the effect of higher wear values dramatically increase the cost per metre. This is 

increasingly important with high bit costs. Tripping time has very little effect of the 

cost per metre. 

ii) With Rig costs higher than bit costs, bit costs have very little effect on the overall 

cost per metre. Tripping times however, significantly effect the cost per metre. 

Increase tripping time, cause increases in the cost per metre, especially if high wear 

rates are seen. The effect is much less with low wear lates. A cross over point is also 

seen where, after an initial requirement of maximising penetration rates, the emphasis 

is change to low wear rates. The depth at which this interchange occurs is effected by 

the tripping time, being dramatically reduced by increasing tripping times 

4.5 Conclusion 

In concluding, to achieve optimisation of a process, a governing parameter and its 

relation to that process must be developed. In selecting the optimum parameter, it is 

beneficial to select one that eliminates as many variables as possible, to enhance the 

development of the optimisation system. In this case, a trade off between penetration 

rates and wear rates was selected as the rational for drill optimisation. Several 

parameters were examined e.g maximised penetration rate, time per bit run, total time 

to completion, but most were disregarded, due to non-practicality, and / or the 

inflexibility of the likely optimisation system. 

Optimisation by cost per metre was selected as the governing parameter and a well 

established cost equation was used. By mathematical manipulation of this equation, 

parameters directly related to the drilling operation were derived to establish the rule 

base for the optimisation system. 
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To develop general understanding of this equation, a sensitivity analysis was 

perfonned on this equation to indicate the trends etc, associated with it. This 

highlighted several points when dealing with differing rig costs, tripping times etc, 

which were useful when developing the minim urn cost optimisation system. 
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Chapter 5 - Bit Wear and Wear Prediction 

5.1 Introduction 

The monitoring of most drill parameters in the laboratory is relatively easy. In the field 

however, difficulties do arise as a result of current technology limitations and 

engineering constraints. As a consequence, drill parameter monitoring becomes 

difficult. Furthermore when considering deep holes, the surface monitored data may 

not depict the true down hole conditions. Despite this however, it is in the authors 

opinion that with increased exploitation of Measurement While Drilling Tools (MWD) 

and other techniques, accurate and reliable data will be available for most parameters in 

the future. The one exception to this is possibly bit wear. 

Bit wear is a complex subject involving many different processes, which determine the 

type and extent of bit wear. Different bits wear in different ways, but some processes 

are common to all such as abrasion. The correct selection of bit type, may play the most 

crucial part in minimising bit wear and enhancing performance. Despite correct 

selection, wear and damage will always occur, and therefore it is important that 

research is conducted into bit wear to understand the processes that govern it. This is 

not only important to the bit manufacturer, for improving cutting performance and 

reducing wear characteristics, but also to the driller who needs to know when the bits 

life is exhausted and thus reduce the chance of pulling a green bit. 

Throughout drilling history, research has been conducted into bit wear, and 

consequently many schemes and systems have been produced to minimise wear each 

having differing degrees of success (2,5,9,11,13,14,19,25,28,72). Tri-cone roller bits 

have probably been the most extensively researched. They were originally regarded as 

the work horse of the oil drilling industry, still extensively used but now being 

surpassed by PDC bits. Tri-cones are also predominantly used for large diameter blast­

hole production for surface mining operations. 

Prediction of the bit wear mechanism for a tri-cone bit is complicated having both a 

wear mechanism common to all types of bits, as well as a bearing failure mode. 

However previous research, has lead to a good understanding of the wear modes and 

prediction of failure. Consequently several formulas and prediction methods are in 

current use with both the oil industry and surface mining industries. 

62 



Research at the university, has f?cused just on two types of bits, primarily diamond 

impregnated core bits, and latterly polycrystaline diamond bits for use in roof bolting. 

Diamond impregnated bits are generally thought of as having fairly uniform wear 

characteristics (11,70,73), the cutting matrix wearing away to expose new diamonds at 

a relatively constant rate, for constant drill parameters. This enables wear characteristics 

to be determined fairly easily. Much of the work into diamond bit wear was conducted 

by Ambrose. The author continued some of this work, mainly in the improvement of 

the accuracy of the wear measurement jig. Determination of further wear characterises 

were not undertaken due to time constraints. Research on the PDC side is fairly new 

and the author has had no direct involvement. PDC itself, has good wear characteristics 

being comprised of sintered diamond, but it is prone to impact damage and is intolerant 

of maltreatment. Its introduction into the drilling industry has been fairly recent. 

Consequently the wear mechanisms are still under investigation to determine modes of 

wear and best performance scenarios (9,68). 

Attaining wear data in the laboratory is relatively easy. However to measure real field 

wear data and to construct and validate wear models is very difficult as in a commercial 

operation, the tripping of the bit every set distance to measure the incurred wear is 

highly impractical. The actual measurement of the wear is also complicated and often 

prone to subjective interpretation, such as in the case of the lADe wear code for tri­

cone roller bits. 

Furthermore, having attained a wear value, how do we depict what parameters, have 

influenced the wear which has occurred. Obviously in the field, this is very difficult as 

we do not know exactly what bottom hole conditions are. The laboratory environment, 

while not imitating the real situation fully, does enable controlled experiments to be 

performed, and wear characteristics to be taken with relative ease. Once adequate data 

has been gathered and a wear theory developed, comparisons can be made with those 

from the field and validation made. 

'5.2 The Wear Predictor 

The aim of this research project was not to enhance knowledge about the mechanism of 

wear for a particular bit, but to develop a system which would enhance the data already 

available and predict likely wear values for any type of bit. 

Most current wear predictors work on a formula bases, or use rules established from 

data bases. A typical example is shown below for Tri-cone bit wear, F.S.Young (74). 
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Rate of Bit Bearing Wear 

Rate of Bit Tooth Wear 

:=~ .N.Wcr - (5.1) 

dH Af (PN + QN3) 
dtr = (-D1.W+D2)(1+C

1
.H) --- (5.2) 

where B - Normalised bit wear 

tr - Rotating time 

N - Rotary Speed (r.p.m) 

W - Bit Weight, (pounds) 

cr Weight exponent in bearing rate equation 

H - Normalised tooth wear height 

P & Q & C1 = Constants dependent on bit type 

Dl'and D2 = Constants dependant upon bit size 

Af = Formation abrasiveness factor 

By entering the required values, an estimation can be made of the extent and type of 

wear / failure likely to occur. However these equation are rigid, and if inaccurate will 

always remain so. 

The emphasis placed on this predictor was not to be tied to any particular formula or 

rule base, but to predict solely on data collected previously, from other holes. An 

analogy can de drawn, to a brain learning a process for itself. With the large number of 

possible influences on wear, a system that could be expanded to accept these is also 

desirable. 

To produce such a system data points must be stored with distinct set of reference 

parameters, and stored in such a way as to allow the inclusion of additional reference 

parameters. This is best done in a matrix format. For different combinations of 

parameters, each has a unique accessible data point. Additional parameters can be 

accommodated by adding another dimension to the matrix. These matrix tables were 

named S.L.P.M.'s (Self Learning Prediction Matrices), the self-learning aspect is 

described later in this chapter. Therefore, by measuring wear values, these can be 

loaded into the S.L.P.M.'s with respect to their reference parameters. They may be 

either historical data or from on line measurements. 
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5.2.1 Data Validity 

With progressive use of the predictor it is likely that over time several values will be 

generated for one particular point. Therefore, some sort of averaging process is 

necessary. One of the more common methods for continual data streams is the running 

average given by :-

Running Average = 
New Reading + Previous Average 

2 --- '(5.3) 

This method can also be used to generate more a general average by using say the sum 

of the previous five or ten readings. However this method does not give a true 

average, and more importantly, it does not give any indication of the accuracy/ range of 

the data such as given by the standard deviation. To calculate the mean and standard 

deviation, requires the storage of all the previous data values. With the matrix system 

proposed, this would be undesirable, as over time the amount of data stored would be 

colossal. Therefore ways were investigated to reduce the number of values or variables 

which would be required for each point. 

The Mean is given by 

-
x = 

- Sum of all values 
x = Number of values --- (5.4) 

Sum of previous values + New value n_ (5.5) 
Number of values 

-
x -

(No· Xo) + New value 
No + 1 

--- (5.6) 

where No = Previous number of values 
-
Yo = Previous mean 

It can be seen that to calculate the mean, only two values have to be stored, i.e. the 

mean and the number of data points entered. Small errors do occur from progressive 
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multiplication of the mean value but these are negligible. The standard deviation may 

be calculated in a similar fashion. 

Standard Deviation = -V Variance --- 5.7 

L( x _x)2 
Variance =----- --- 5.8 

n 

By multiplying out and reducing, 

Variance I x 2 
_ ( x) 2 --- 5.9 

n 

From this it can be seen that we need to store the 'sum of the squares' of each point 

along with the mean and the number of data points. Thus to calculate both the true mean 

and the standard deviation, we need only need store three values. 

The mean 

The num ber of data Values 

The sum of the squares 

Compared to the original suggestion of storing every data point, this method provides a 

usable and accurate means for determining data reliability. 

Summarising what has be proposed so far; as wear is a difficult parameter to measure, 

we require some sort of prediction mechanism to provide estimation of wear for the 

optimisation scheme. This predictor has been developed in the fonn of a matrix system 

(S.L.P.M.) which may be readily expanded to multi dimensions for the various 

parameters required. To provide some indication of the accuracy of the data, the Mean 

and standard deviation are calculated for each point, but only necessitating three storage 

variable for each point. 

5.2.2 Data Enhancement by Interpolation 

When using the predictor, to start with data values will be sparse, and consequently 

predicted values will be inaccurate but with progressive use the predictor becomes more 

and more accurate. However as the reader has probably already questioned, for a large 

matrix, there are a large number of data points to fill. For example a 20 by 20 has 400 
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points! This is clearly impractical to fill both in the laboratory and in the field. Therefore 

we need some way of enhancing the data which we load into the S.L.P.M.'s, i.e. a 

self-learning capability, such that we can estimate values for unknown points. This can 

be achieved by interpolation. 

Interpolation of data is always subject to risk as the interpolated values may generate 

totally meaningless data which does not represent the true process. However with the 

S.L.P.M.'s having a continual learning process i.e. data will be continually entered, it 

is felt that if interpolation takes place after each addition, a reliable system will be 

produced. 

5.2.2.1 Two Dimensional Interpolation 

There are many ways in which we could 'interpolate' the data with in the matrix. A 

simple system could give every unknown point the average value of all the known 

points. This however, would give unrealistic values as no account is taken of the trend / 

surface variation of the data. This is shown in Figure 5.1. 

Therefore some sort of curve fitting or general averaging method is required. As an 

averaging process is more readily applied and easier to develop, initial work 

concentrated on this type, with the idea of investigating curve fitting etc, at a later date 

once the main optimisation system had been developed. 

For each value with in the matrix if the point was an unknown, the four values directly 

adjacent to the selected value, were averaged. This value then replaced the original 

selected value, as shown below. 

2 2 

I I 
3- ?- 8 3- 5- 8 . 

I I 
5 5 

Using this as the bases of the averaging process. The original method of applying this 

technique was to interpolate the whole matrix starting from one comer and ending in the 

opposite comer. The process would continue until no change was seen in the matrix. 
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Figure 5.1 An Illustration to Show the Effect of Giving the Mean Values 
to Unknown Points 
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This however is extremely wasteful of processing time as generally the influence of the 

new value was restricted to a smail part of the matrix, and therefore did not require the 

whole matrix to be interpolated. 

To improve the efficiency of the interpolation system, a technique which later became 

known as the ripple technique was developed. When a new value was entered into the 

matrix, the averaging process, would radiated outwards in concentric squares (if 2 

dimensional) until the effects were minimal. This would repeat itself starting from the 

new value once again, until no change was seen. 

The original method was to interpolate the whole of each growing square. However, as 

the squares radiate outwards the inner average values would never change, and thus 

computing time would be wasted. Therefore only the periphery values of each square 

would be used as shown. 

Old Method 

First 
Ripple 

14-__ Second __ _ 

Ripple 

New Method 

A similar action is seen by ripples ( hence the name ) radiating outward from its 

disturbance point in water. Figure 5.2 shows a small two by two matrix undergoing 

rippling. It can be seen from this that the closer the points are effected to a greater 

extent, than those further away. 

5.2.2.2 Three Dimensional Ripple. 

The ripple method described so far has only been for two dimensions and is thus easy 

to visualise and develop. For three dimensions, a cubic like structure is see. Therefore 

an average of the six adjacent values to the selected point must be taken forming a three 

dimensional cross, as shown overleaf. 
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a 0 0 1 2 3 4 5 6 6 6 5 4 4 3 2 1 0 0 0 
0 a 0 1 2 3 5 6 7 7 7 6 5 4 3 2 1 0 0 0 
0 0 0 1 3 4 6 8 9 9 9 7 5 4 3 2 1 0 0 0 
0 0 1 2 3 5 8 10 12 13 12 9 7 5 4 3 1 0 0 0 
0 0 1 2 4 7 10 13 17 19 17 13 9 7 5 3 1 0 a 0 
a 0 1 3 5 8 12 17 24 31 24 17 11 8 5 3 1 0 0 a 
a 0 1 3 5 8 13 19 31 58 31 19 12 8 5 3 1 a 0 a 
0 0 1 3 5 8 12 17 24 31 24 17 11 7 5 3 1 0 0 a 
0 a 1 3 5 7 10 13 17 19 17 13 9 6 4 2 1 0 0 0 
0 0 1 3 4 5 7 9 11 12 11 9 7 5 3 2 1 0 0 0 
0 0 1 2 3 4 5 6 7 8 8 7 5 4 3 1 0 0 0 0 
0 a 1 2 2 3 3 4 555 5 4 3 2 1 0 0 0 0 
0 a 1 1 1 1 2 2 3 3 3 3 3 2 2 1 a 0 a 0 
0 0 a 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 j 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 a 0 0 0 

a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 a 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 5.2 A Two by Two Matrix which has Undergone Rippling After a 
Value has Been Entered 
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8 8 

7 ___ 1/4 7 __ 1/4 
?- 6-• -6 

9/1 9/1 
3 3 

The actual mode of rippling will take a cuboidal shell. However, this may be split down 

into six two dimensional squares similar to those of the two dimensional ripple. 

However unlike the 2-D ripple where just the periphery is averaged, the whole square 

must be averaged. 

z 

e.g Side 1 = Constant -Y, Average (X,Z) 

5.2.2.3 Multi- Dimensional Interpolation 

It may be necessary for dimensions greater than three, but these are beyond the capacity 

of the human brain. Therefore a pattern must be established which links the addition 

of extra dimensions. 

Considering the two dimensional ripple, rippling occurs in a square like function , with 

the respective areas being held either constant or rippled. This is summarised below:-

,I 1 1. Constant + Y, Ripple -X to +X 

Y 
4 2 2. Constant + X, Ripple +Y to-Y 

L3 ~ 3. Constant -Y, Ripple +X to -X 

4. Constant -X, Ripple -Y to +Y 
x 

7 1 



In the three dimension ripple, the steps are listed below. 

1. Constant -Y, Average (X,Z) 
z 2. Constant +Y, Average (X,Z) 

3. Constant -Z, A verage (X, Y) 

Y 
4. Constant +Z, Average (X, Y) 

5. Constant -X, Average (Y,Z) 
x 6. Constant +X, Average (Y,Z) 

From the two dimension case, it looks as though no pattern exists. However as 

mentioned previously, in the 2D version only the peripheral values were used, as 

averaging the whole of each growing square was inefficient. However if this method 

was used a pattern could be established. 

2D :- Average (X,Y) 

3D :- Constant 7 Z Average (X, Y) 

Constant 7 Y Average (X,Z) 

Constant 7 X Average (Y,Z) 

Thus for a four dimensional ripple, the selected would require the average of the eight 

adjacent values, W 71 , X 71, Y 71, Z 71, and ripple in a fashion shown below. 

Constant 7 W 

Constant 7 X 

Constant 7 Y 

Constant 7 Z 

Constant 7 Z 

Constant 7 Y 

Constant 7 X 

Constant 2" Z 

Constant 7 Y 

Constant 2" W 

Constant 7 Z 

Constant 2" W 

Constant 2" X 

Constant ~ W 

Constant ~ Y 

Constant ~ X 
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A verage (X, Y) 

Average (X,Z) 

Average (Y,Z) 

Average (W,Y) 

Average (W,Z) 

Average (Y,Z) 

Average (X,W) 

Average (X,Z) 

Average (W,Z) 

A verage (X, Y) 

Average (X,W) 

Average (Y, W) 



5.3 Testing of the Predictor 

For the initial development of the predictors only two and three dimensional ripple 

methods were developed. To test the accuracy of prediction, the matrices were loaded 

with a set number of known points, with rippling occurring after each addition. To 

generate the known data points, random co-ordinates were fed into a known equation 

and the value calculated. Once the required number of points had been entered, using 

the known equation, the accuracy of the interpolation could be determined. 

Several test were performed, by varying the number of entered values as well as the 

form of the equation. This allowed equations / surfaces of varying complexity to be 

tested. 

5.4 Results 

For a measure of the prediction accuracy a limit was set in which the data had to be 

within the ~ 10 % of the real value, the greater number in this range, the greater the 

accuracy. 

5.4.1 Two Dimensional Method. 

Figure 5.3 shows a three dimensional plot of the equation / function which was used to 

perform the fIrst series of tests. Table 5.1 shows the results of these tests, with Figures 

5.4 - 5.6, giving typical examples. It can be seen that initially with only limited data in 

the S.L.P.M.'s, the predicted results are highly inaccurate. However after the 

S.L.P.M. is 5% full, there is a dramatic improvement in the accuracy, i.e. with the 

S.L.P.M. only 10% full, 77% of the data is acceptable, and with the S.L.P.M. 37.5% 

full, 97% is acceptable. This is also reflected in the time taken to ripple each of the 

tests, the majority of time taken with the first 5%, and only small increases there after. 

Therefore for simple surfaces, the ripple method proved a good predictor. 

Figure 5.7 shows the three dimensional dome like structure generated by the equation 

for the second series of experiments. The results are shown in Table 5.2 and Figures 

5.8 - 5.10. From these results it can be seen that the accuracy of the prediction method 

is reduced. Despite this, the predictor still performs adequately once 15-20% of the 

S.L.P.M. is full, with 70% of the data being with in the tolerance. As the surface 

changes more rapidly than in test one, the influence of each point to the matrix as a 

whole is reduced and hence the very low rippling times are seen. 
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Equation: 2X + 3Y 

Figure 5.3 A 3-Dimensional Plot of the Equation Used for the First 
Set of 2-Dimensional Ripple Tests 
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Table 5.1· 2-Qimensional Ripple Test 1 

Matrix Size :- 20*20 

Equation :- 2*X + 3*Y. 

Test Number of 
Number known 

values 

1 20 
(5%) 

2 40 
(10%) 

3 60 
(15%) 

4 80 
(20%) 

5 100 
(25%) 

6 150 
(37.5%) 

Error in 
interpolated 
values. 

<10% 

<20% 

<50% 

>50% 

<10% 

<20% 

<50% 

>50% 

<10% 

<20% 

<50% 

>50% 

<10% 

<20% 

<50% 

>50% 

<10% 

<20% 

<50% 

>50% 

<10% 

<20% 

<50% 

>50% 

Number of Runs per Test 20 

Average Average Average time 
number percentage taken to ripple 
ill error ill error all values 
range range. (seconds) 

25.25 63.51 % 

44.10 11.02% 29.10 
76.60 19.15% 

254.05 6.31% 

308.55 77.14% 
26.65 12.94% 
51.75 6.66% 

31.25 

13.05 3.24% 

356.95 89.24% 

23.20 5.80% 
32.95 

13.10 3.27% 

6.75 1.67% 

355.60 88.90% 

25.40 6.35% 34.90 
14.05 3.51% 

4.95 1.24% 

372.10 93.02% 

16.00 4.00% 
34.85 

8.30 2.07% 
3.60 0.90% 

386.85 96.71 % 

8.55 2.14% 
36.85 

3.65 0.91% 

0.95 0.24% 
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Equation :- 2X + 3Y 

62 64 60 59 59 60 62 64 66 68 71 74 78 76 7 73 73 73 73 73 
59 59 58 5 5Q 60 62 64 66 68 71 75 83 77 7 1 I 73 73 73 
56 56 56 57 58 60 62 65 66 68 70 73 76 75 73 73 73 7 73 73 
54 54 54 55 56 58 61 67 66 67 69 72 73 73 72 72 73 7 I 

52 52 52 53 5~ 56 59 62 64 66 68 72 71 71 71 72 73 74 76 79 
50 50 50 51 52 54 57 59 61 63 65 67 68 69 70 72 74 75 78 85 
48 48 48 49 50 52 54 56 58 60 62 64 56 68 69 71 76 74 75 77 
46 46 46 47 48 50 52 54 56 58 60 62 64 67 67 68 70 70 71 71 
43 43 44 45 46 48 50 52 54 56 58 60 61 63 64 65 66 66 66 66 
40 40 41 42 43 45 47 49 51 53 55 57 58 59 60 61 62 62 62 62 
3 34 37 38 40 42 44 46 48 50 52 54 55 56 57 58 59 59 59 59 
35 35 36 37 38 40 42 44 46 48 49 51 53 54 55 56 58 57 57 57 
34 34 34 34 36 38 40 41 43 45 46 48 50 51 52 54 58 55 54 54 
32 32 32 29 34 36 37 37 40 42 43 45 47 48 49 51 52 52 51 51 
31 31 31 1 33 35 36 37 38 39 40 42 44 45 46 47 48 49 48 48 
31 31 31 32 33 34 35 J 36 35 38 39 41 42 43 44 45 46 46 46 
31 31 31 32 32 33 34 34 33 34 36 37 39 40 41 42 43 44 45 44 
31 31 31 32 32 33 33 32 27 34 35 37 38 39 40 42 43 44 44 
31 31 31 32 32 32 32 32 31 32 32 32 34 36 38 38 41 43 44 44 
31 31 31 31 31 31 31 31 31 31 30 27 32 35 31 38 40 42 43 44 

Random entered values = 20 
Interpolated values with <101. error= 244 
Inter 01 ed s i 10-2 r r= 7 

Interpolated values with 20r.-50r. error= 33 
Interpolated values with >50r. error = 28 

Figure 5.4 A Typical Result from the First 2-Ditnensional Test Showing 
the Resulting S.L.P.M. Values after 20 RandomValues have Been Entered 
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Equation :- 2X + 3Y 

62 60 60 62 63 6S 70 76 73 73 75 77 80 84 90 90 91 93 961 00 
59 59 60 62 63 65 68 71 71 72 74 76 79 82 86 89 91 92 95 96 
56 57 59 62 63 64 66 68 69 71 73 76 78 80 83 85 87 89 92 94 
53 55 57 59 61 63 64 66 67 69 72 75 76 78 80 82 84 86 88 89 
52 53 55 56 58 60 62 64 65 67 70 72 74 76 78 80 82 84 86 86 
50 51 52 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 82 82 
~~~OO~~$~~~~6S~ron~~~ ~ ~ 

46 46 46 47 49 51 53 55 57 59 61 S3 65 67 69 71 73 75 76 76 
43 43 43 44 46 48 50 52 54 56 58 60 62 64 66 S8 70 72 74 73 
40 40 40 41 43 45 47 49 51 53 55 57 59 61 63 65 66 67 68 68 
37 37 36 38 40 42 44 46 48 50 52 54 56 58 60 61 62 63 6~ 64 
33 34 34 35 37 40 42 43 45 47 49 51 53 55 57 58 59 60 61 61 
29 30 30 32 34 37 39 40 43 45 46 48 50 52 54 56 57 58 59 59 
23 27 28 29 31 34 37 39 41 42 44 46 48 49 51 53 55 56 57 57 
24 25 25 27 29 32 34 36 38 38 41 43 45 46 48 50 52 54 56 55 
23 23 21 23 25 28 31 34 36 38 40 41 42 43 45 47 49 51 52 52 
21 21 20 20 22 24 28 31 34 36 38 39 38 40 43 45 47 49 50 50 
18 18 18 17 19 23 26 28 31 33 36 38 39 40 42 43 45 46 47 49 
14 14 16 18 20 22 23 22 27 29 33 36 38 40 40 38 42 42 45 46 
11 7 13 17 20 22 23 23 24 23 30 35 38 39 40 40 42 3 44 45 

Random entered values = 60 
Interpolated values with <10% error= 283 
Interp dues wi h - ~ e r = 4 
Interpolated values with 20X-50X error= 17 
Interpolated values with >50X error = 6 

Figure 5.5 A Typical Result from the First 2-Dimensional Test Showing 
the Resulting S.L.P.M. Values after 60 Random Values have Been Entered 

77 



Equation :- 2X + 3Y 

62 64 65 68 70 72 74 74 76 80 82 82 83 86 90 89 90 91 90 90 
59 61 63 65 67 69 71 73 75 77 79 80 82 85 87 88 91 93 90 89 
57 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 B8 87 
54 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 86 86 85 
50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 83 83 83 
49 50 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 80 81 81 
46 47 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 7B 80 80 
41 44 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 
38 41 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 
35 38 39 42 44 45 47 49 51 53 55 57 59 61 63 65 67 69 71 72 
32 35 37 39 41 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 
29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 
26 28 30 32 34 36 38 40 42 44 47 49 50 52 54 56 58 60 62 64 
25 26 27 29 31 33 35 38 40 42 44 46 47 49 51 53 55 57 59 61 
22 23 24 26 28 30 32 35 36 38 41 42 44 46 48 50 52 54 56 58 
17 19 21 23 25 27 29 32 34 36 38 40 42 43 45 47 49 51 53 55 
14 16 18 20 23 24 27 29 31 33 34 36 39 41 43 44 46 48 50 52 
11 13 15 18 21 23 24 25 28 30 31 33 36 38 40 41 43 45 47 49 
8 10 12 15 18 20 21 23 24 26 28 31 33 34 37 39 40 43 45 46 
9 9 9 11 16 18 17 2 23 23 27 29 29 32 33 36 37 41 44 45 

Random entered values = 150 
Interpolated values with <10% error= 242 
lnterpolat d v lu i 0- O~ error= 
Interpolated values with 20r.-5Q% error= 2 
Interpolated values with >50r. error = 1 

Figure 5.6 A Typical Result from the First 2-Dimensional Test Showing 
the Resulting S.L.P.M. Values after 150 RandomValues have Been Entered 
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Equation: 

,/ 

/ 

OIO~ 

Figure 5.7 A 3-Dimensional Plot of the Equation Used for the Second Set 
of 2-Dimensional Ripple Tests 

79 



Table 5.2 :- 2-Dimensional Ripple Test 2 

Matrix Size :- 20*20 Number of Runs per Test :- 20 

Equation : - 40*«sin(xl20*Pi))*(sin(y/20*Pi))) 

Test Number of Error in Average Average Average time 

Number known interpolated number percentage taken to ripple 
values values. ill error ill error all values 

range range. (seconds) 

<10% 78.10 19.52% 

1 20 <20% 70.50 17.62% 14.20 
(5%) <50% 136.75 34.19% 

>50% 114.65 28.66% 

<10% 156.45 39.11% 

<20% 83.00 20.75% 
2 40 18.60 

(10%) <50% 56.30 14.07% 

>50% 104.25 26.06% 

<10% 205.70 51.41 % 

60 <20% 69.20 17.30% 
3 20.11 

(15%) <50% 38.65 9.66% 

>50% 86.45 21.61 % 

<10% 246.95 61.74% 

4 80 
<20% 43.75 10.94% 22.30 

(20%) <50% 31.65 7.91% 

>50% 77.65 19.41 % 

<10% 276.40 69.10% 

<20% 33.45 8.36% 
5 100 23.65 

(25%) <50% 29.65 7.41% 

>50% 60.50 15.21 % 

<10% 318.90 72.22% 

<20% 18.20 4.55% 
26.05 

6 150 
(37.5%) <50% 21.00 5.25% 

>50% 41.90 10.47% 

80 



E qua t ion : - (40* ( (s i n (X/20*P i ) ) * (8 i n (Y /20*P i ) ) ) ) + 1 

6 6 7 8 9 10 11 11 11 10 12 13 13 12 11 10 9 9 9 9 
5 6 7 8 9 10 11 12 11 7 12 14 14 13 12 11 9 8 9 9 
3 6 8 8 10 11 12 13 13 13 15 16 15 14 13 11 9 5 8 8 
7 8 10 11 12 13 14 15 16 17 19 18 17 16 14 12 ,0 8 8 8 
9 10 12 15 15 15 16 17 18 19 20 20 19 18 16 14 12 10 9 9 

10 11 13 15 16 17 18 19 20 22 23 24 22 20 18 16 13 10 10 10 
11 12 4 16 18 19 20 21 22 24 27 32 26 23 20 17 14 11 11 11 
12 13 15 18 20 22 23 23 24 25 27 29 27 25 22 19 16 14 12 11 
13 14 16 19 23 26 26 25 26 27 28 28 28 28 24 21 18 15 13 12 
14 15 17 20 25 33 28 27 27 28 28 28 29 33 26 21 18 15 13 12 
14 15 17 20 24 27 27 27 28 29 29 28 28 7 24 20 15 13 12 
14 15 17 20 22 24 26 27 30 32 30 28 26 25 22 19 16 14 12 10 
14 15 17 19 21 23 25 27 31 39 31 27 25 23 21 18 15 13 10 7 
13 14 16 18 20 22 24 25 28 30 28 25 23 21 19 17 5 12 8 1 
12 13 15 18 20 21 22 23 25 25 24 23 21 20 18 6 4 12 10 7 
11 10 14 17 21 21 21 21 22 22 21 20 19 18 17 15 14 13 11 10 
10 11 13 16 18 20 19 19 19 19 19 18 8 7 16 14 4 13 12 11 
9 10 12 14 15 16 16 16 16 16 16 16 16 16 15 12 13 13 12 12 
6 7 10 12 13 14 14 14 14 14 14 14 14 14 14 13 13 13 12 12 
2 3 8 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 12 12 

Random entered values = 20 
Interpolated values with <10% error= 51 
In rpolated valu s i h 0- r. er r= 100 
Interpolated values with 20X-50X error= 119 
Interpolated values with >50i. error = 110 

Figure 5.8 A Typical Result from the Second 2-Dimensional Test Showing 
the Resulting S.L.P .M. Values after 20 Random Values have Been Entered 
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E qua t ion : - (40* ( (5 j n (Xl20*P i ) ) * (5 i n (Y 120*P i ) ) ) ) +1 

9 8 6 6 5 1 4 1 6 8 6 1 4 1 8 11 11 11 10 8 
9 8 4 7 8 8 9 9 10 11 10 8 9 9 11 12 12 11 9 6 
9 9 8 10 12 13 14 14 14 13 13 13 13 13 13 12 9 1 

10 10 9 12 13 15 17 18 18 18 17 17 17 16 14 14 13 11 8 
11 11 12 14 16 18 20 23 22 ~2 21 21 20 19 17 16 15 13 12 11 
11 12 14 6 18 20 22 24 5 25 25 25 24 24 20 18 15 10 12 12 
11 13 16 19 20 22 25 27 29 29 29 29 27 25 22 19 16 11 12 12 
10 13 17 22 22 24 27 31 36 34 34 35 31 28 25 21 17 I 13 12 
7 13 17 21 23 26 29 33 39 37 36 35 33 32 28 22 18 13 12 

11 14 18 21 24 27 30 34 37 38 38 37 34 32 27 22 18 5 13 12 
11 15 19 22 26 29 31 34 37 41 41 39 35 33 27 ~ 18 1~ 13 12 
7 14 19 23 29 31 32 3 37 39 38 36 33 30 ~ 22 18 1~ 13 12 

12 15 18 22 27 32 33 34 36 39 36 34 32 29 21 17 13 13 12 
13 15 18 21 25 29 33 33 34 37 34 33 33 28 24 20 16 13 12 12 
12 13 16 19 23 27 30 30 31 32 31 30 28 25 22 19 15 11 11 11 
10 10 14 17 21 24 25 26 27 28 29 28 25 22 20 18 14 10 9 9 
8 10 12 15 18 20 21 22 23 24 24 23 21 19 18 15 12 9 5 7 
4 8 1U 12 14 16 17 18 19 19 19 18 17 16 15 12 0 8 7 7 
7 8 9 9 10 12 13 15 16 16 15 14 4 14 13 11 8 5 6 7 
8 8 7 5 5 8 7 12 14 14 12 7 11 12 12 10 7 3 5 6 

Random entered values = 60 
Interpolated values with <10r. error= 157 
Int rpola 1 e wi 1G- % : 
Interpolated values with 20r.-50r. error: 21 
Interpolated values with >50r. error: 94 

Figure 5.9 A Typical Result from the Second 2-Dimensional Test 
Showing the Resulting S.L.P.M. Values after 60 Random Values have Been 

Entered 
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E qua t ion : -- (40* ( (s i n (X/20*P i ) ) * (s i n (Y 120*P i ) ) ) ) + 1 

2 1 465 1 44 1 44 1 44 1 1 33 2 2 
2 3 6 8 8 6 7 8 7 8 7 7 7 7 5 4 4 2 1· 
3 5 7 10 11 11 12 13 13 13 13 13 12 11 10 7 4 3 
5 7 9 12 14 15 16 17 18 19 19 18 17 16 14 12 7 5 3 
G 8 12 15 18 20 20 21 22 23 24 23 22 20 17 15 12 8 5 1 
5 10 14 18 21 24 24 5 2 27 29 28 26 24 20 17 14 10 5 4 
6 12 16 20 23 26 27 29 30 31 33 32 30 27 23 20 16 11 6 6 

11 14 18 22 25 28 30 33 34 35 35 35 33 30 26 22 17 12 9 7 
12 14 18 23 28 31 33 37 39 39 38 37 35 31 28 23 18 14 10 6 
11 13 19 24 29 33 35 38 40 41 39 37 35 32 29 24 19 14 9 1 
7 13 19 25 29 33 35 38 41 41 39 37 35 33 29 24 19 13 10 6 

10 13 19 24 28 32 35 37 39 40 40 37 36 32 29 24 19 14 10 8 
11 13 18 23 27 31 35 36 37 39 39 36 34 31 28 23 18 13 7 8 
10 13 17 22 26 30 33 34 35 37 36 35 33 30 26 22 17 13 9 8 
6 11 16 20 24 27 29 31 32 33 32 31 30 27 24 20 16 11 6 6 
7 10 14 18 21 24 26 28 29 29 28 28 26 23 20 17 14 10 5 5 
5 8 12 15 18 20 22 23 24 24 24 23 22 20 17 15 12 5 4 
5 7 9 12 14 16 17 19 19 19 19 18 17 16 14 12 8 5 1 
3 6 9 10 12 14 15 14 14 13 13 13 11 10 8 7 5 3 
2 5 6 5 5 6 10 11 7 9 7 7 9 6 5 6 4 3 4 4 

Random entered values = 150 
Interpolated values with <107. error= 169 
I nt rpo 1 e · - 1"= ? 
Interpolated values with 207.-507. error= 19 
Interpolated values with >507. error = 41 

Figure 5.10 A Typical Result from the Second 2-Dimensional Test Showing 
the Resulting S.L.P.M. Values after 150 Random Values have Been Entered 
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Figure 5.11 shows the last two dimensional surface tested, and as it is a fairly complex 

one. The results in Table 5.3 and Figures 5.12 - 5.14 reflect this fact, with the accuracy 

of the prediction method dropping dramatically. Only when the S.L.P.M. is 37.5% 

full are the predictions acceptable i.e. 60% are within tolerance. This implies that for 

more complex surfaces, other methods of interpolating must be used in conjunction or 

instead of this method. 

5.4.2 Three Dimensional Method 

Table 5.4 gives the results of interpolation of a three dimensional simple equation. As 

with the two dimensional simple equation, a good correlation between predicted and 

actual values is seen (with the S.L.P.M. 20% full, 90% of the data is ~10%). The time 

taken however, has increased dramatically, being some 6-7 time greater than for the 

two dimensional ripple. 

The results of a complex three dimensional surface ripple are shown in Table 5.5. It can 

be seen that for this type of surface, other methods must be used such as curve fitting in 

conjunction with rippling, as the prediction method is inaccurate i.e with the S.L.P.M. 

30% full, only 46.55% is with in the tolerance range. 

5.5 Conclusion 

In concluding this chapter, wear is a complex subject with many different parameters 

effecting the type and extent of wear. It is also a difficult parameter to measure, both 

physically and practically. Therefore, the prediction of likely scenarios is required to aid 

drilling performance. There are many equations which have been produced calculating 

wear rates etc, some in every day use. However in using these equations, 

improvements to prediction will never occur unless the equation is re-calibrated with 

field results. 

The wear predictor used for the drill optimisation system was designed to eliminate this 

problem, and to learn the wear process, therefore continually improving its prediction 

perfonnance. To do this data was stored in a matrix fonnat (named Self Learning 

Prediction Matrices), in which wear or penetration rates could be referenced by specific 

parameters. As wear results are hard to generate, on each addition of a new value. the 

S.L.P.M. would be interpolated to estimate unknown data points. The interpolation 

system used the "ripple" technique, which perfonns an averaging process within the 

S.L.P.M. The test results of the predictor are encouraging, especially for 
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Equation: 

0,0 

Figure 5.11 A 3 -Dimensional Plot of the Equation Used for the Third Set 
of 2-Dimensional Ripple Tests 
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Table 5.3· .2-Dimensional Ripple Test 3 

Matrix Size:- 20*20 Number of Runs per Test: 20 

Equation : - 20*((sin(x!7*Pi))*(sin(y/12*Pi))) 

Test Number of Error in Average Average Average time 

Number known interpolated number percentage taken to ripple 
values values. ill error ill error all values 

range range. (seconds) 

<10% 89.05 22.26% 

1 20 <20% 16.50 4.13% 5.00 
(5%) <50% 85.45 21.36% 

>50% 209.00 52.25% 

<10% 115.70 28.92% 

<20% 31.15 7.95% 
2 40 

<50% 117.90 7.95 
(10%) 29.47% 

>50% 135.25 33.81 % 

<10% 135.55 33.89% 

60 <20% 39.20 9.80% 
3 10.30 

(15%) <50% 150.60 37.65% 

>50% 74.65 18.60% 

<10% 162.55 40.64% 

4 80 
<20% 53.20 13.30% 11.95 

(20%) <50% 137.00 34.25% 

>50% 47.25 11.81 % 

<10% 183.60 45.90% 

<20% 64.60 16.15% 
5 100 31.65% 

13.45 
(25%) <50% 126.75 

>50% 25.05 6.29% 

<10% 238.80 59.70% 

<20% 77.30 19.32% 
16.70 

6 150 
(37.5%) <50% 72.55 18.14% 

>50% 11.35 2.84% 
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 4 3 1 -2 -6-1 0- 4-13-12 
-6 -6 -5 -4 -3 -2 0 1 2 3 4 5 5 2 -2 -6-11 -19-14-12 
-7 -7 -7 -6 -4 -2 0 2 3 4 5 6 9 4 -1 -6-10-13-12 -9 
-8 -9-10 -8 -5 -2 1 4 5 5 6 6 6 3 -1 -6-11-11-10 -
-9-11 -17-10 -6 -3 2 8 6 6 6 6 5 3 -1 -7-17-11 -9 -8 
-8 -9-10 -8 -6 -6 0 4 5 6 7 6 5 3 o -4 -8 -8 -7 -6 
-5 -6 -6 -6 -5 -4 -1 2 4 6 10 6 4 3 1 -2 -4 -5 -5 -4 
-3 -3 -3 -3 -3 -2 -1 1 2 4 5 4 3 3 2 
0 o -1 -1 -1 -1 0 1 0 2 3 3 2 2 2 
3 4 2 1 1 0 0 1 1 1 1 1 1 1 1 
6 6 5 3 2 1 0 0 0 0 0 0 0 0 0 
8 11 7 5 4 2 o -1 -1 -1 -1 -1 -1 -1 -1 
7 8 7 6 5 3 o -2 -3 -3 -3 -3 -3 -2 -1 
6 7 7 8 8 4 o -3 -5 -6 -6 -5 -4 -3 -1 
5 6 7 10 16 5 -1 -5 -7 -9-11 -8 -5 -3 -1 
4 5 6 7 7 2 -3 -8 -8-11 -19-10 -6 -3 -1 
3 4 4 4 3 o -3 -6 -7 -9-11 -8 -5 -3 -1 
2 2 2 2 2 -1 -3 -5 -6 -7 -7 -6 -4 -3 -1 
2 2 2 2 2 -1 -3 -4 -5 -5 -5 -4 -3 -2 -1 
1 1 1 2 4 a -2 -3 -4 -4 -4 -3 -2 -2 -1 

Random entered values = 20 
Interpo1ated values with <10r. error= 67 
In ~ 

Interpolated values with 20r.-50r. error= 69 
Interpolated values with >50r. error = 234 

o -2 -3 -3 -2 
1 -1 -1 -1 -1 
1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 a a 0 
a 0 0 0 a 
a 0 0 0 a 

Figure 5.12 A Typical Result from the Third 2-Dimensional Test Showing 
the Resulting S.L.P.M. Values after 20 Random Values have Been Entered 
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Equat i on : - 20*<sin(x/7*pi )*sfn(y/12*pl)) 

-10-12-13-13-12 -8 -3 1 4 4 3 1 0 -2 -5 -8-10-11 -12-13 
-9-12-14-15-15 -9 -3 3 7 5 3 1 0 -2 -6-10-11-12- 3-13 
-9-13-16-19- 4 -9 -2 6 16 7 3 1 0 0 -7-1&-13-13-16-13 
-8-15-17-19-13 -8 -2 5 8 5 2 0 -1 -3 -6-10-11-11-1 -12 

-11 -14-17-15-11 -8 -1 8 5 3 -'1 -1 -2 -3 -5 -8 -9-10-10-10 
-10-11-12-11 -9 -6 0 2 l ' 0 -1 -2 -2 -3 -4 -6 -8 -9 - -8 
-8 -9 -9 -8 -8 -6 -3 -2 -2 -2 -2 -2 -2 -2 -3 -4 -6-10 -7 -6 
-5 -6 -6 -5 -5 -5 -4 -3 -3 -3 -2 -1 -1 -1 -1 -1 -2 -4 -3 -3 
o -2 -2 0 -3 -4 -4 -3 -4 -4 -3 0 0 0 1 2 2 1 1 0 
2 1 1 1 -1 -2 -3 -2 -5 -6 -6 -4 -2 0 2 4 5 5 4 3 
4 4 4 4 2 1 -2 -4 -7-10-10 -7 -4 -1 3 8 9 9 8 4 
6 7 9 7 6 6 -1 -5 -8-11-12-10 -6 -2 3 8 14 14 11 6 
8 10 17 10 7 5 -1 -8-10-13-17-14 -8 -2 3 7 10 11 10 8 
8 9 11 9 7 8 -1 -7-10-12-14-15 -8 -2 3 7 9 10 9 8 
8 8 9 8 6 4 -2 -9-10-11-12-11 -7 -1 5 9 9 9 9 8 
9 9 9 7 5 3 0 -6 -9-11-13-10 -6 0 8 15 10 9 9 B 

10 10 10 8 5 2 -1 -5 -8-12-17-10 -5 0 5 9 9 9 9 8 
10 11 14 10 S 2 -1 -4 -7-10-11 -8 -4 0 3 6 7 8 8 8 
10 10 11 10 6 2 -1 -4 -7-10 -8 -6 -4 -1 2 5 6 7 8 8 
10 9 9 8 5 2 0 -3 -5 -5 -5 -5 -3 -1 2 4 5 6 7 8 

Random entered values = 60 
Interpolated values with <10% error= 80 
Int rpolated v ues i 10-2 ~ rr r= 34 
Interpolated values with 20%-50% error= 116 
Interpolated values with >50% error = 110 

Figure 5.13 A Typical Result from the Third 2-Dimensional Test Showing 
the Resulting S.L.P.M. Values after 60 Random Values have Been Entered 
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-14-15-16-15-14 -7 0 7 14 16 15 14 8 0 -8-11-1 -17-14 -8 
-13-15-19-16-13 -8 0 8 15 19 15 12 7 0 -7- -15- 6-15-12 
-9- 4-17-16-13 -7 1 9 14 1 14 12 9 0 -9-13-19-18-16-13 

-11-14-17-19-15 -7 1 8 15 15 14 11 8 1 -6- 2-19-19-15-12 
-11-13-17-17-12 -8 0 6 12 15 17 11 6 1 -5-10- 5-17-13 -8 
-9-11-14-12 -9 -5 0 5 11 14 13 9 - 0 -6 - 2-14-11 -8 
-4 -7 -9 -8 -8 -4 0 4 7 10 10 8 4 0 -4 -,-10-10 -, -4 
-2 -4 -5 -4 -4 -2 0 2 4 5 5 4 2 0 -2 -3 - -4 -4 -3 
1 00 0 000 00 1 0 1 1 00 1 1 1 0 0 
5 5 4 4 4 2 0 -2 -3 -3 -3 -2 -1 0 2 4 5 5 4 2 
8 8 8 8 8 4 0 -4 -8 -7 -7 -6 -3 0 4 8 9 9 8 5 

11 11 12 11 11 6 0 -6 -9-11 -14-10 -6 0 6 11 14 2 11 6 
13 14 17 4 11 . 8 1 -6-10- 4-17-14 -8 0 8 13 17 11:"' 13 10 
14 15 19 16 12 7 0 -8- 2-19-19-13 -7 0 8 15 19 19 15 11 
15 16 18 19 12 6 0 -6-11-15-15-11 -6 0 9 14 18 19 16 9 
14 15 19 11 6 0 -6-11-14-14-11 -6 0 7 14 19 17 15 8 
13 14 5 13 10 8 0 -7-14-15-17-14 -8 -1 6 14 15 14 13 10 
11 12 14 11 8 5 -1 -6-11 -14-13-11 -6 -1 5 10 12 12 11 10 
9 9 9 8 6 3 -1 -4 -8-10-10 -8 -4 0 4 8 10 10 8 8 
8 7 5 5 4 2 -1 -4 -6 -7 -5 -5 -2 0 4 7 8 7 4 6 

Random entered values = 150 
Interpolated values with <10% error= 86 
Interpol d val with 1 - ~ p ro = 7 
Interpolated values with 20%-50% error= 63 
Interpolated values with >50% error = 28 

Figure 5.14 A Typical Result from the Third 2-Dimensional Test Showing 
the Resulting S.L.P.M. Values after 150 Random Values have Been Entered 
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Table 5.4:- 3-Dimensional Ripple Test 1 

Matrix Size :- 10*10*10 

Equation :- 2*X + 3*Y.+2*Z 

Test Number of Error in 
Number known interpolated 

values values. 

<10% 

1 50 <20% 

(5%) <50% 

>50% 

<10% 

<20% 
2 100 

<50% (10%) 
>50% 

<10% 

3 200 <20% 

(20%) <50% 

>50% 

Number of Runs per Test 20 

Average Average Average time 
number percentage taken to ripple 
ill error ill error all values 
range range. (seconds) 

567.90 56.79% 

311.05 31.10% 167.30 
98.45 9.84% 

22.60 2.26% 

793.05 79.30% 
137.45 13.74% 
53.74 5.38% 

196.40 

15.75 1.57% 

907.65 90.76% 

63.10 6.31% 
231.40 

25.35 2.53% 

3.90 0.39% 
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Table 5.5 :- 3-Dimensional Ripple Test 2 

Matrix Size :- 10*10*10 Numberof Runs per Test 20 

Equation : -80*(sin(x/10*pi)*sin(y/10*pi)*sin(z/10*pi» 

Test Number of Error in Average Average Average time 
Number known interpolated number percentage taken to ripple 

values values. ill error ill error all values 
range range. (seconds) 

<10% 137.80 13.78% 

1 50 <20% 99.10 9.91% 126.65 

(5%) <50% 311.85 31.18% 

>50% 451.25 45.12% 

<10% 202.90 20.29% 

<20% 125.95 12.59% 
2 100 

<50% 270.70 27.07% 
182.35 

(10%) 
>50% 400.45 40.04% 

<10% 342.35 14.23% 

<20% 174.60 17.46% 
3 200 241.90 

(20%) <50% 180.15 18.01 % 

>50% 302.90 30.29% 

<10% 465.50 46.55% 

<20% 182.60 18.26% 267.20 4 300 
(30%) <50% 120.95 12.09% 

>50% 230.95 23.09% 
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simple functions. However as the functions become more complex, the accuracy of 

prediction drops. This indicated that some sort of polynomial curve fitting technique 

should also be developed to aid the rippling technique. In view that the predictor 

worked fairly well on moderately complex surfaces, work on the polynomial fitter was 

left, to return to once the initial optimisation system had be developed and was running. 
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Chapter 6 - The Control Algorithm 

6.1 Introduction 

In Chapter 1, an introduction was given to drilling optimisation and an indication of the 

requirements for the development of such a system. This concept was shown by 

Figure 1.2, where drilling parameters were fed to an Intelligent Knowledge Induction 

System, which was used to model the current drilling environment. It then selected and 

manipulated those parameters required to bring about an improvement to the current 

situation. 

To enable an optimisation system to make such judgements, a decision has to be made 

on what is the requirement of the optimisation system, and through which controlling 

parameter or parameters, this can be achieved. Its relationship with other drilling 

parameters must also be considered, to ensure that they do not conflict with the overall 

optimisation scheme. This selection process was developed in Chapter 4. The 

optimisation criteria had previously been defined as achieving optimum operating 

perfonnance through the trade off between penetration rates and wear rates. Many 

drilling parameters were proposed for the controlling parameter, but most were 

rejected. Cost per metre was selected, as it enabled both a relatively simple and flexible 

system to be developed. A simple cost equation was used incorporating running costs 

such as bit costs and rig charges. However, as this equation contained no parameters 

directly relating the drilling operation, it was manipulated to produce such an equation, 

with parameters more specific to the drilling operation. This equation 4.27 (shown 

below) would fonn the basis for the optimisation scheme. 

(B + R. Tm . D) . W R 
C - ----------"K,..:.:..:....---- + P ---- ( 6.1) 

To use this equation however, data must be readily available for both penetration rates 

and wear rates. While penetration rates may generally be measured on line, wear rates 

are difficult to measure and often require extensive laboratory testing to obtain. A 

method for storing and enhancing known data was described in Chapter 5, where the 

concept of S.L.P.M.'s was developed and used to progressively learn and predict a 

process such as bit wear. Utilising these S.L.P.M.'s in the cost optimisation scheme, 

enables reliable and readily available data to prime the cost optimisation equation. 
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However, how is this data and the cost optimisation equation used, and by what 

process can the minimum cost operating point be determined? Once the optimum point 

has been established, can the system cope with a changing environment such as 

changing lithology? The answers to these questions forms the basis for this chapter 

and it describes the various methods which have been developed to locate the minimum 

cost operating point and overcome problems likely to be encountered by the 

optimisation system. 

6.2 Establishing the Minimum Cost Operating Point 

6.2.1 Maxima and Minima Theory. 

In any process requiring either a maximum or minimum value to be found, one of the 

most simple and direct methods is that of maxima and minima theory. This states that 

when the fIrst derivative is equal to zero, then a maximum, minimum or inflection is 

found. By substituting values back into the equation, the type of feature found may be 

established. 

To apply this, the fIrst derivative of equation 6.1 must be found. However it can be 

seen that there are two independent variables with respect to cost, that of penetration 

rate and wear rate. Therefore, substitution is required to eliminate one of them, i.e. a 

relationship between wear rate and penetration rate must be found such that :-

W = f(P) --- (6.2) 

Substituting this into equation 6.1 ,gives 

(B + R . T m . D) . f(P) R 
C = K + P --- (6.3) 

and differentiating gives, 

dC 
dP= 

B + (R . T m . D) . rep) 
K 

R 
p2 

--- (6.4) 

To fInd the minimum, the equation is equated with zero, such that, 

B + (R . T m . D) . f'(P) 
0= K 

R 
p2 ---- (6.5) 
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and thus 

f(P) . p2 - (B + : .' T~ . D) --- (6.6) 

However, to be able to solve this, the relationship W-f (P) must be found. 

The work reported by Ambrose, gave a series of relationships between varying 

rotational speeds and weight on bit values, with corresponding penetration rates and 

wear rates. For each rock type tested, values were entered into a database, allowing 

retrieval and also subsequent addition in the event of new values being generated. A 

curve fitting routine utilising least squares method was used on each set of data (i.e. for 

each different rock type) to detennine a polynomial equation. The best fit was 

detennined by visual observation. For simplicity the equations were kept to forth order 

or below. The resulting polynomial equation 6.7, thus gave the desired relationship 

between wear rates and penetration rates. 

W = f (P) = E . p4 + D. p3 + C. p2 + B . P + A ---(6.7) 

where A,B,C,D,E are constants 

of the polynomial equation. 

The resulting polynomial can be readily differentiated such that, 

f(P) = 4. E. p3 + 3. D. p2 + 2. C .P + B ---(6.8) 

Substituting this back into equation 6.7, gives 

(4.E. p3 + 3. D. p2 + 2. C .P + B). p2 _ R . K . D) ---(6.9) 
(B + R . T m 

Hence by solving this, a minimum can be detennined. This can be achieved using an 

iterative technique such as Newton Raphson. 

The method described, formed the bases of a computer programme, which was 

developed at an early stage in the research project. It was developed to test the idea of 
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cost optimisation and to learn and generate ideas which would aid the design of the 

main cost optimisation system. 

From the work performed by Ambrose, four rock types had been tested, and thus 

penetration rates and associated wear rates from this work, were used to generate the 

polynomial relationship described. However, it should be noted that these relationships 

only hold for the data shown. They are not general rules or laws, but are solely used to 

show how such a relationship could be developed with progressive testing, and how 

these relationships may be used for minimum cost prediction. 

The relationships developed are shown in Figures 6.1 - 6.4. Using these relationships, 

tables could be generated giving the cost per metre for differing values of the 

parameters in the cost equation, as shown in Table 6.1. It can be seen from this table 

that the penetration rates have been evenly space, having ten values ranging from 

maximum penetration rate to zero. The wear rates have been derived from the 

polynomial expression and these penetration rate values. From the minimum cost 

values for each depth (highlighted in the table), it can be seen that in certain cases as 

depth increases, the required penetration rate and wear rate change. 

By utilising the principle of maxima and minima, and the substitution via the 

polynomial relationship, all previously described, the computer programme can be 

made to determine the best wear rates and penetration rates for a particular drill rig 

scenario, at any depth. Furthermore, as polynomial relationships have been derived for 

four rock types, the programme was developed to allow differing combinations and 

thickness of the rocks, hence giving self-designer bore holes. 

Figure 6.5 shows the results of such a test on a hypothetical hole with the same rig 

conditions as shown in Table 6.1. It can be seen that on several occasions, changes of 

penetration rate and wear rate have been made within a particular lithology. Tripping 

depths and the cost per metre at the start and finish of each horizon are shown. 

Therefore by using this format, the proposed hole could be drilled at minimum cost. 

However, while this method does give an easy solution, it should be remembered that 

penetration rates and wear rates are not truly interdependent, but there are many other 

variables which effect either one or both. For this reason, the assumption that W = f(P) 

is invalid, and therefore this method was not persued any further. This method also has 

another disadvantage when considering development of a versatile optimisation 

system. To enable differentiation, the exact process must be known, either by a 
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Rock Type :- Gniess 

Penetration Rate Wear Rate 

(mm/min) (urn / m) 

50 400 

60 300 

70 200 

90 185 

100 150 

135 200 

500 

..- 400 -€ 
E 
::I 
'-" 

~ 
~ 300 ~ 

~ 
~ 

200 

100~~~----~------------~------

40 60 80 100 120 140 

Pen. Rate (mm/min) 

y = 1003.3038 . 16.2692x + 0.0767x"2 R = 0.97 

Figure 6.1 Wear Rates Vs Penetration Rate Data, Graph and Polynomial Fit for 
Gniess 
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Rock Type:- Sandstone 

Penetration Rate Wear Rate 

(mm/min) (um/m) 

50 180 

100 150 

150 110 

200 100 

250 95 

350 90 

200 

180 

~ 160 
-€ 
E 
=' '-" 140 
£ 
~ 

ez::: 

~ 120 

::: 
100 

80 
0 100 200 300 400 

Pen. Rate (mm/min) 

y = 222.6429 - 0.9324x + 0.0016x"2 R = 0.99 

Figure 6.2 Wear Rates Vs Penetration Rate Data, Graph and Polynomial Fit for 
Sandstone. 
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Rock Type :- Limestone 

Penetration Rate Wear Rate 

(mm/min) (urn /m) 

20 300 

30 140 

40 80 

70 25 

90 30 

100 90 
110 190 

400 

300 --.§. 
E 
::::2 

"--' 
(]) 200 ..... 
~ 

~ 
@ 
(]) 

~ 100 

O~--~--~--~--------~------~ 
o 20 40 60 80 100 120 

Pen. Rate (mm/min) 

y = 1017.9478 - 55.8907x + 1.2155x"2 - 0.012x"3 + 0.000e+Ox"4 R = 1.00 

Figure 6.3 Wear Rates Vs Penetration Rate Data, Graph and Polynomial Fit for 
Limestone 
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Rock Type :- Fine Grained Sandstone 

Penetration Rate Wear Rate 

(mm/min) (um/m) 

100 40 

150 41 

200 42 

300 45 

350 50 

380 70 

80 

-- 70 
E -E 
:::l 
'-' 60 Cl) .... 
"" c.::: 
~ 50 Cl) 
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40 

30~--------~----------~------

o 100 200 300 400 

Pen. Rate (mm/min) 

y = 59.9214 - 0.2385x + 6.555e-4x"2 R = 0.91 

Figure 6.4 Wear Rates Vs Penetration Rate Data, Graph and Polynomial Fit for 
Fine Grained Sandstone. 
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Bit Costs = £1500 

Rig Cost Per Day = £5000 

Average Round Trip Time Per Metre = 20 seconds 

Rock Type :- Gnlea 

Penetration Wear Rate 
Depth (Metres) 

Rate (mm/s) (mm/m) 10 100 500 1000 1500 

2.250 0.205 56.71 58.84 68.33 80.20 92.06 
2.025 0.159 §2.U U.l'7 61.63 70.83 80.03 
1.800 0.141 53.46 54.93 U.U n.n '7 '7 • '78 
1.575 0.151 59.57 61.14 68.13 76.87 85.61 
1.350 0.189 71.44 73.40 82.15 93.09 104.03 
1.125 0.255 85.45 87.79 98.21 111.23 124.25 
0.900 0.349 117.05 120.69 136.85 157.04 177.24 
0.675 0.470 156.78 161.67 183.43 210.63 237.83 
0.425 0.620 229.88 263.34 265.05 300.92 336.80 
0.225 0.798 377.83 386.14 423.08 469.26 515.44 

Rock Type :- Sandstone 

Penetration Wear Rate 
Depth (Metres) 

Rate (mm/s) (mm/m) 10 100 500 1000 1500 

5.833 0.092 H.I] l~.n It.~§ 34.37 39.69 
5.250 0.087 24.17 25.08 29.11 H.U n.n 
4.667 0.087 25.55 26.46 30.48 35.52 40.55 
4.083 0.090 27.78 28.72 32.88 38.09 43.30 
3.500 0.097 31.20 32.21 36.70 42.31 47.92 
2.917 0.108 36.16 37.29 42.29 48.54 54.79 
2.333 0.123 43.40 44.68 50.37 57.49 64.61 
1.750 0.142 54.53 56.01 62.59 70.80 79.02 
1.167 0.165 74.53 76.25 83.89 93.44 102.98 
0.583 0.192 128.29 130.29 139.17 50.29 161.40 

Rock Type:- Limestone 

Penetration Wear Rate Depth (Metres) 

Rate (mm/s) (mm/m) 10 100 500 1000 1500 

1.833 0.135 51.98 53.38 59.63 67.45 75.26 

1.650 0.070 45.46 46.38 49.62 53.67 57.73 

1.467 0.040 ~§.U ~§.~1I. ~'7.'7' §~.n §l.n 

1.283 0.027 49.19 49.47 50.72 52.28 53.84 

1.110 0.022 55.46 55.69 56.71 57.98 59.25 

0.917 0.027 67.19 67.47 68.72 70.28 71.85 

0.733 0.054 87.l1 87.68 90.18 93.30 96.43 

0.550 0.121 123.51 124.77 130.37 137.37 144.38 

0.367 0.260 196.99 199.69 211.73 226.78 241.82 

0.183 0.511 393.47 398.80 422.45 452.03 481.60 

Rock Type :- Fine Grained Sandstone 

Penetration Wear Rate 
Depth (Metres) 

Rate (mm/s) (mm/m) 10 100 500 1000 1500 

6.333 0.064 18.81 19.48 22.44 26.15 29.85 

5.700 0.055 U.~'7 U.U 21.59 24.77 27.95 

5.067 0.048 18.68 19.18 2lI. .~~ l~.n l'.~§ 

4.433 0.043 19.55 20.00 21.99 24.48 26.97 

3.800 0.040 21.28 21.69 23.54 25.86 28.17 

3.167 0.Q38 24.02 24.41 26.17 28.37 30.57 

2.533 0.039 28.74 29.15 30.95 33.21 35.47 

1.900 0.041 36.66 37.08 38.98 41.35 43.73 

1.267 0.046 52.63 53.l1 55.24 57.90 60.56 

0.633 0.052 99.28 99.82 102.23 105.24 108.25 

Table 6.1 The Cost per Metre for Varying Penetration and Wear Rates. 
for the Rig Parameters and Rock Types Shown 
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-. Fine Grained .:-
-·Sandstone 

Depth 
(Metres) 

Crown 
Hieght 
(mm) 

o 10.00 

50 5.4 

120 1.55 

159 10.0 0 

220 7.56 

270 4.81 

350 0.97 

356 10.00 

415 0.62 

420 10.00 

492 10.00 

500 8.87 

596 10.00 

610 8.712 

700 0.88 

706 10.00 

777 10.00 

800 6.76 

941 10.00 

1000 7.168 

Comments 

Trip 
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0.048 

. 

Figure 6.5 The Minimum Cost Results Obtained for Maxima and Minima 
Cost Optimisation 
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pre-defined equation or by data to which one can be fitted. Therefore, by using this 

method, an optimisation system could never start form a null state, thus would require 

test programmes from which the relevant data could be learnt. In an optimisation 

process, this is not desirable. 

Despite these limitations however, the method of substitution and applying maxima and 

minima theory, is extremely useful and could be applied to aid the search algorithm for 

locating areas of minimum cost, especially when multi-slope surfaces are seen. This 

will be expanded later in Chapter 9. 

6.2.2 Partial Differentiation 

As the cost optimisation equation has two independent variables i.e. penetration rate 

and wear rate, it is possible to partially differentiate the equation with respect to each 

variable. The resulting equations may be solved in a similar way to find a minimum as 

that described previously. 

The two partial differential equations of equation 6.1 are shown below. 

oC 
dP -

oC 
dW -

(B + R . Tm . D) oW 
K . dP 

(B + R . Tm . D) 
K 

R 
p2 

R 
p2 ---- (6.10) 

oP 
dW ---- (6.11) 

A solution to these equations was sought, but none were found due to the large number 

of unknowns which make any solutions complex if not impossible. 

6.2.3 Computer Search Methods 

The two methods described above provide a direct method with which to locate a 

maximum or minimum position. However both these methods were ruled out for use in 

drill optimisation. Therefore a different way in which to use this equation to achieve 

optimisation must be found. 

Developing technology has produced computers with ever increasing memory capacity 

and more importantly increased processor speed. This allows a large number of 

calculations to be performed in a short space of time. Consequently it is now possible 
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to develop computer search methods which can cope with the large numbers of 

repetitive calculations required to find the optimum value or position. 

Applying this to a drill optimisation scheme, associated combinations of penetration 

rates and wear rates could be fed through the cost equation and the combination 

yielding the minimum cost, used to set the drill parameters. However to do such 

calculations, the system requires the ready access of both penetration rate and 

associated wear rate data. Such a storage method was described in Chapter 5, where 

penetration rates and wear rates were stored by set reference parameters in S.L.P.M.'s. 

By accessing parameters common to both, a means of inter-relating the two can be 

established. 

Therefore, the various com binations of wear rates and penetration rates can be fed 

through the cost equation to yield a minimum cost. Furthermore, as drilling progresses, 

the two S.L.P.M.'s will progressively learn their respective process and hence enhance 

the prediction of the minimum cost position. This process is shown in Figure 6.6. 

However, by using this method, it has to be remembered that the process of wear rate 

and lor penetration rate may not be fully understood ie the S.L.P.M.s may only be 

partially full. Furthermore, if the system is starting from the null state, then they will 

contain no information. Therefore, as the computer searching method can only predict 

the minimum cost based on the information it contains, and hence"" the predicted 

minimum cost per metre may not necessarily be the true minimum cost per metre. This 

may be hidden in an area where information is sparse or unknown, and consequently 

not revealed by the S.L.P.M.'s interpolation method. 

The control algorithm therefore, also has to be able to search for the true minimum cost 

position starting from that given by the predictors. This may be achieved by 

manipulating the drill's parameters and monitoring the response. 

6.2.3.1 The Search Algorithms 

The search algorithm has to be able to manipulate the drill parameters in such a way as 

to bring about an improvement to the current situation. Several methods were tried, 

each having a varying degrees of success. The results of the search methods are 

contained in the next chapter, but the theory of each is described below. 

104 



: 

::::: : 

: .. 
. . , .. 

: : . . : · . · . ( Drill " 0 -I I 10:::::::::::::::::::: rl · . .... .:.~ 

. . : : · . 
~ Data) 

.... 
· . .. . . . . . . 

: · . . . . 
: · . · . . . · . : · . . . · . : · . . . . · . · . . . . 

~ ~ . . · . · . · . . . . . . .. · . · . '- -" · . · . . . . . . · . . . 

Database 

( control] 
\. Data / 

" " :::::::::.,.::: ::::::::::::::::::::,.::::::,.; ,>:,:,,:::::::::::::::: :;:;;::.;:; ~:T:::::::::::::::::/:::: .":::: 

11!!111:1 

:::::: :::::::::::::: 
::::::::::::::::::::::::;:::::::::. 

::I:::: 
Optimisation ::: Prediction ·ft 

Algorithm .... Mechanism .. 
(Cost Equation) f 

:1:,' 1 (S.l.P .M.'s) 
:::::::{7:: .:.,.: }ff:·:.,::)t:ff::·:·:·:·:· ~ .::,.:::::::::I!::·: :::.:::::::::::::::.,.:::::::::::: :.:.:.: .:::::: 

Figure 6.6 A Simplified Control Scheme with the Prediction Mechanism 
Included 

105 



6.2.3.1.1 Vector Method 

This method was designed as an initial starting process, which would determine the 

best direction in which to manipulate the drilling parameters to bring about the greatest 

improvement over the current situation. From the selected starting point, four data 

points are established by manipulating the required parameters in a cross format and 

their differences compared to the central point established. The diagonal values are 

detennined by summating the two adjacent cross values, if the point is an unknown. If 

the vector of this value falls between 30 - 60 degrees of the two cross values and has a 

positive value (i.e. an improvement in the current situation), the vector is deemed to 

exist, otherwise it is disregarded. 

The values are then compared to the central one, and the one giving the best 

improvement selected, diagonal ones taking preference, as shown in Figure 6.7. If all 

the values indicate no improvement can be made, then the central point must be near or 

on the optimum operating point. Analysis of the other values calculated can also take 

place to detennine whether multi-hump surfaces are present, as in the case shown in 

Figure 6.8. 

If this occurs, the appropriate co-ordinates can be stored to a stack for later retrieval 

and examination. By altering the size of each of the crosses tested, a general search 

method can be established. By using large values to start with, which progressively 

decrease in size each time an optimum point is found, the system can 'home in' on the 

true optimum operating point. 

6.2.3.1.2 Uni-Directional Increments 

This is a very simple method and involves the manipulation of only one drill parameter 

at a time. Starting at the predicted minimum point, and either using a random starting 

direction or one selected by the vector method, an increment in this direction is taken 

e.g. an increase in rotational speed. The response of the drilling system is noted. 

Progressive increments are added until such time that a deterioration is experienced. 

The direction is then reversed, and backtracked until the optimum value for that 

parameter established. The search algorithm then selects another parameter, and 

optimises it in the same way. The parameter selection continues in a rotational fashion 

until no improvements are seen, indicating the optimum operating point has been 

reached. 
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6.2.3.1.3 Multi Directional Method 

This method is similar to the uni-directional method but all parameters are searched at 

the same time. This is perfonned on a rotational bases. In turn, each of the parameters 

is manipulated in its respective direction and the response determined. If an 

improvement is seen the search algorithm moves to the new optimum point. If not, the 

search algorithm stays at the original position, and the direction of manipulation is 

changed. The parameter is not manipulated further until all the other parameters have 

been manipulated. 

6.3 The Complete Cost Optimisation System 

The complete optimisation system is summarised in Figure 6.9, which shows the 

main parts of the control scheme. Infonnation about the drilling operation is fed directly 

via transducers on the rig etc, to a central data base. The infonnation within this data 

base, along with external data such as wear rates, geology, etc is used to load two 

S.L.P.M., one for penetration rate, and the other for wear rate. The optimisation 

algorithm uses the cost equation to predict the estimated minimum cost position, 

from the data contained within these two S.L.P.M's. This estimated minimum cost 

may not necessarily be the true minimum cost, as the penetration rate and wear rate 

processes may not be fully understood i.e. the S.L.P.M.'s may only be partially full. 

Therefore, a search algorithm is used to manipulate the drill parameters in an effort to 

improve the current operating point and establish a lower minimum cost. This 

manipulation continues until no improvements are seen, whereby the true minimum 

cost operating point has been established. 

As the cost optimisation scheme is running, new penetration rate and wear rate values 

will be generated, both from attaining the initial minimum cost predicated point and 

subsequent drill parameter manipulation. This data can in turn be fed back to the 

S.L.P.M.'s to improve their understanding of their respective processes, and thus aid 

subsequent minimum cost predictions. 

Furthermore, with this fed back and progressive learning process, it would be 

extremely foolish to loose the data held within the S.L.P.M.'s once the hole had been 

completed. By saving the two S.L.P.M.'s to the computers disc system each time a 

hole is completed, then reloading them at the start of the next hole, the optimisation 

system's "experience and knowledge" can be passed on from hole to hole, in a similar 

fashion to a human drilling engineer. 
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For research purposes, the cost ~nfonnation generated by cost equation and the two 

S.L.P.M.'s is used to generate a third S.L.P.M. for cost. It plays no real part in the 

optimisation system apart from supplying readily available cost data. For initial research 

purposes it is extremely useful however, as it allows access to what the computer has 

interpreted the cost function to be. When using the optimisation system in simulated 

mode, the interpreted cost function can be compared directly with the simulated cost 

function. This allows an accuracy of the interpretation to be detennined, as well as 

ways to possibly improve the optimisation system. 

6.4 Change in Rock Strata 

The cost optimisation scheme discussed so far, has been made with the assumption 

that it is operating under homogeneous rock strata conditions. This is obviously rare 

and thus for differing lithologies, changes in penetration rate and wear rate will be 

seen. Therefore, any optimisation system must be able to cope with changing lithology. 

The present system could adequately cope with rock strata changes, as the S.L.P.M.'s 

would slowly learn the new process associated with the new rock fonnation. However 

this would not only be time consuming but also destroy the infonnation learnt about the 

previous rock strata. Therefore it would be advantageous to have a set of S.L.P.M.'s 

for different lithologies. These could be interchanged by the computer when a rock 

strata was indicated. 

For this to occur, the optimisation system has to be able to initially detect a change in 

lithology and ultimately predict the new rock type being entered. The detection of strata 

boundaries has been under investigation for a number of years particularly in the 

surface mining environment to aid optimum blast design (32,33,51,52,53,66). A good 

example of this is shown in Figure 6.10 where penetration rates have been used to 

detennine the location of weak strata amongst strong overburden. This detennination 

can then be used to allow the optimum placing of charges. 

Increasing attention is also focusing on the parameter specific energy, which has also 

been used to aid strata identification. Specific energy is the energy required to excavate 

a unit volume of rock. It was originally proposed by Teale (62), and is calculated by the 

equation 6.12. 
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S "f" E ( F 21t N. T pecIIc nergy e) = A + A . U --- (6.12) 

where F - Force on the bit 

A - Area of bit 

N - Rotational speed 

T - Torque 

U - Penetration rate 

All the parameters within this equation are generally easy to measure, and therefore a 

constant indication of specific energy can be obtained. However it was mentioned 

earlier in this thesis, that results are only worthwhile if the monitored data truly 

represents down hole conditions. In oil well drilling, the data may not be so, but it is 

the authors opinion that this problem will soon be resolved. 

Thus for differing rock strata, differing ranges of specific energy are seen. It is unlikely 

that specific energy will be solely be able to be used to predict rock type. With a 

combination of other parameters such as torque, penetration rates etc, which all change 

with differing rock strata, it may be possible to find some method of characterising 

different rock stratas. 

Research into rock strata prediction is still in is early stages (21,32,51,52,71), but it is 

known that an increasing effort is being made to reliably predict rock strata types from 

monitored drill parameters. 

Some preliminary joint research was conducted into strata identification with another 

post graduate student S. Rogers, the results of which were encouraging. A number of 

rock samples consisting of different limestones and sandstones were cored and the 

average specific energy of each core was calculated. Along with other such data such as 

Uniaxial Compressive Strength of each core, the graph shown in Figure 6.11 was 

produced. 

It can be seen that there is a distinct zoning of the two rock types. At present, no 

further work has been undertaken to explore the possibility of whether other rock types 

fit into zones as well. If this is the case, this may allow an initial strata type predictor to 

be established. 

Another important parameter which is also currently undergoing investigation is 

vibration analysis of the drill string. This is being used in an attempt to determine a 
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variety of infonnation, ranging from bit wear to rock strata type, differing rocks having 

different vibration signatures (51). 

With a combination of such techniques, it is felt that a system capable of reliable rock 

strata prediction from monitored drill data, will be available in the foreseeable future. 

Returning to the optimisation system, strata identification will thus allow the correct 

penetration rate and wear rate S.L.P.M.'s to be selected and used. Therefore 

progressive improvements will be made to the respective S.L.P.M.'s each time a rock 

strata is entered. Furthermore a check system can also be established to ensure the 

correct rock strata has been selected. On initial selection of a particular set of 

S.L.P.M.'s, the values contained within them can be compared to those actually being 

monitored. If large discrepancies are seen and persist, it is probable that a wrong strata 

type was predicted, and therefore re-selection can be made. In this way, the 

optimisation system will be able to cope with changing lithological conditions. 

The strata type predictor and S.L.P.M. selector can be incorporated in the over all 

control scheme as shown in Figure 6.12. 

6.5 Operating constants 

There will frequently be situations in which the optimisation system will not be able to 

. operate unbounded. For example directional controlled wells will necessitate the 

maintenance of the weight on bit within defined limits. The optimisation system could 

be developed to operate within certain operating constraints, in this example 

maintaining 'constant' weight on bit yet still optimising cost by controlling the other 

drilling parameters. 

6.6 Conclusion 

In conclusion, this chapter has developed a control strategy based on the cost equation 

6.1, which was introduced in Chapter 4. A number of methods for detennining the 

minimum cost operating point have been discussed. Initial attempts were focused on 

maxima and minima theory. A system was developed using this theory which worked 

successfully and gave a good insight to later work. However, in designing this system, 

the assumption that W =f(P) was made, which in reality is not true. Therefore this 

method was abandoned. This method may be of great use however in improving the 
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interpolation method of the predictors and locating multi-peak surfaces.Partial 

differentiation was also attempted but no solutions were found. 

A continuous computer searching method was developed, which searches for a 

minimum cost operating point and continually manipulates the drilling parameters to 

ensure minimum cost drilling is being achieved. To aid this searching process, a 

prediction mechanism (the cost equation and the two S.L.P.M.'s) locates a minimum 

cost operating position from information previously learnt. The search routine then 

"walks" the drill parameters to the true minimum cost operating position. A simplified 

diagram of this process was shown in Figure 6.6. 

To allow the system to cope with changes in lithology, each strata type will have an 

associated pair of S.L.P.M.'s. Using parameters such as specific energy, torque, 

penetration rate and vibrational analysis, rock boundaries will be detected and a 

prediction of the new strata type made, consequently allowing the appropriate 

S.L.P.M.'s to be selected. The prediction of multi-lithology holes however, is still in 

its early stage of development. The complete cost minimisation system was shown in 

Figure 6.12. The results of tests using this system are covered in the next chapter. 
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Chapter 7 - The Results of the Optimisation System 

7.1 Introduction 

The previous chapters have been concerned with the design of the cost optimisation 

scheme. This chapter discusses the development of the cost optimisation programme, 

and the results of the test work undertaken to validate the optimisation scheme. With the 

development of such a computer system, it is difficult to indicate to the reader in writing 

why certain methods are better than others and the success in performance of the 

optimisation scheme. However with the use of a 3-D plotting routine, it is hoped to 

convey this information, which would otherwise be easily shown visually by a 

demonstration of the optimisation system. 

7.2 The Cost Optimisation Computer Programme 

It has been previously been mentioned that the drill rig used in this research project, had 

been instrumented to allow monitoring and control of its parameters through a BBC 

Micro-computer. Due to the limited memory and processing power of this machine, the 

main optimisation system was developed on an I.B.M. type computer. To avoid the 

rebuilding of the drill electronics to suit the I.B.M., the BBC would be utilised in a 

front end processor role, with monitored data and control information being passed 

between the two machines via an RS232 data link. 

The IBM supports many different languages, and therefore a decision on which one to 

base this optimisation system around had to be made. Several languages were 

considered 'C' and Pascal being the favoured two. Pascal is an extremely versatile 

language with both good user and graphics capabilities, as well as an easy structure. 

'C' is a language which allows as standard many unorthodox practices enabling more 

innovative programming. However, this makes the code more difficult to understand. 

As this was an initial development system in which ready understanding of the various 

routines was necessary, Pascal was chosen. 

The optimisation scheme in its entirety has been shown previously in Figure 6.12. It is 

a large and complex system. The development of the programme was therefore split 

into tasks which were developed, encoded and tested separately e.g. data transfer 

mechanism between the BBC and IBM, the data storage and interpolation method 

described in Chapter 5, the control scheme and search methods as discussed in Chapter 
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6. Many other minor tasks and utility programmes were also developed, such as a 3-D 

screen plotter, methods of developing customized simulation data, and X-Y plotter 

routines for hard copies. 

If all these routines were contained in one programme, the size would be enormous 

hindering, editing and debugging. Therefore many of the tasks were split into Units 

(sub programmes which are compiled separately). These can be referenced (linked) to 

the main programme, and their contents used as normal. 

7.3 The Testing of the Optimisation System 

The majority of the test work focused on two main parts of the optimisation system, the 

data storage and interpolation method (S.L.P.M.'s) and the search routines for 

'walking' the drill to the minimum cost operating point. The testing of the S.L.P.M.'s 

was covered in Chapter 5, and the results given. With this process developed, the 

testing of the search routines could be undertaken. The remainder of this chapter will 

focus on the results of the various search methods developed in Chapter 6 and the 

results of the overall cost minimisation system. 

The testing of the optimisation system using the complete system i.e. the IBM, BBC 

and laboratory drill rig would have been extremely complex and tedious. Therefore it 

was decided to split the testing into several parts. An initial creditation phase would be 

conducted using the IBM alone, with set imaginary processes for penetration rates and 

wear rates. Once accomplished, the system could be tested by using the drill simulator 

incorporating the data transfer mechanisms between the mM and the BBC, and fmally 

the laboratory machine itself. 

It was also felt that using the criteria of optimising by minimum cost would also add an 

extra degree of complexity due to the requirement of two simulators i.e for penetration 

rates and wear rates, to generate the cost data. The optimisation surface seen therefore, 

would bear no resemblance to either of these two processes. Consequently, this would 

hinder debugging and possible improvements to the search methods. 

Therefore it was decided to test the various systems through maximisation of 

penetration rates. While this at first seem contrary to the design of the optimisation 

system, the criteria of both systems is to establish either a maximum or minimum 

point, by finding progressive improvements to the current operating point until such 

time that no improvements are made. Therefore by declaring whether an improvement 

1 1 8 



is a lower value (i.e for minimising cost) or a higher value (for maximising penetration 

rates), the optimisation system can be used for both scenarios. 

In this way, by using maximum penetration rates, only one simulation process is 

required. This gives a much simpler optimisation system, in which its search 

performance can be readily seen and interpreted. This would also aid later test work 

when using both the drill simulator and the laboratory drilling rig, as visual 

determination of maximum penetration rates is much easier than minimum cost. 

7.3.1 Test Work Using the I.B.M Alone 

Much of the development and test work was completed using the LB.M on its own. 

This not only simplified the testing of the optimisation system as no data transfer 

mechanism etc was necessary, but also and more imponantly reduced the time taken 

for each test, which was essential for debugging and further development work. 

The series of tests conducted initially sought to establish the best search method for 

"walking" the optimisation system to the maximum penetration rate position. This 

search method would then be tested under more severe conditions. With this complete 

and the test results satisfactory, the optimisation system would be changed to minimum 

cost and the system tested under progressively adverse but realistic conditions. 

7.3.1.1 Maximisation of Penetration Rates 

As penetration rates are generally available on line, their ready availability negated the 

need for a prediction and interpolation mechanism, as this only serves to improve the 

overall understanding of the penetration rate process, and does not help optimisation. 

Therefore, when the optimisation scheme was tested using the maximisation of 

penetration rate mode, the ripple method was switched off, increasing the speed with 

which optimisation was achieved. For the description of the results however, it has 

been used to show how the ripple system aids overall understanding of the simulated 

penetration rate process. 

Figure 7.1 shows the simulated penetration rate process used for all these tests. Each 

test was also started at the same point to allow some comparison to be made. 
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7.3.1.1.1 Establishment of the Search Routine 

i ) Vector Method 

This method evaluates four points in a cross format from its present position and selects 

the best direction in which optimisation can be achieved. When no improvements can 

be seen, the search method would be at the optimum operating point (refer to 

6.2.3.1.1). The results of the Vector method are shown in Figures 7.2 - 7.4. From 

these figures it can be seen how the optimisation system has attained maximum 

penetration rate, and the progressive learning of the penetration rate process by the 

S.L.P.M.'s through the Ripple method. The route taken by the method is a fairly direct 

route. However, the number of parameter changes required to do this is great, as each 

move requires four separate manipulations of the drill parameters. This is clearly not an 

ideal system. 

Improvements can be made by initially increasing the size of the search cross, and 

reducing its size each time an optimum point is found. The increase in efficiency is 

shown in Figure 7.5. It is interesting to note the change in path direction. 

ii ) Uni-Directional Method 

This search method involves the manipulation of one parameter in such a way as to 

locate this parameters optimum operating position. When achieved, another parameter 

is then selected and optimised in a similar way. This continues until there are no 

changes in any of the parameters, yielding the optimum point. (refer to 6.2.3.1.2). The 

result of this method is shown in Figure 7.6. From this plot, it can be seen that the 

optimum point has been reached once again, but with a reduced number of parameter 

manipulations compared to the Vector method. The efficiency of this search routine 

depends however on the initial start direction, which in this case is a random value. 

From Figure 7.7, a more direct and hence efficient route has been followed by starting 

with a different start direction. 

iii ) Combined Vector and Uni-Directional Method 

To eliminate the faults of the last two systems i.e, the large number of holes required by 

the Vector method and the varying efficiency of the Uni-Directional method, a 

combined system was developed. 

In this search method, the initial start direction would be determined by the Vector 

method. The Uni- Directional method would then continue to optimise in this direction 

until an optimum was found. The Vector method would be used once again to select 
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Figure 7.2 An Early Stage of the Vector Method Locating Maximum Penetration 
Rate Process 
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Figure 7.3 An Intennediate Plot of the Vector Method Test Showing the Progressi ve 
Learning by the S.L.P.M.of the Penetration Rate Process 
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Figure 7.4 The Final Path Taken by the Vector Method to Locate Maximum 
Penetration Rate 
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Figure 7.5 An illustration of the Improvement in Efficiency of the Search by 
Increasing the Size of the Search Cross 
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Figure 7.6 A Plot of the Final Path Taken by the Uni-Directional Method to Locate 
Maximum Penetration Rate 
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Figure 7.7 The Change in the Efficiency of the Uni-Directional Method Caused by a 
Different S tarring Direction 
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another direction for optimisation by the Uni-Directional method. This would continue 

until no further changes were seen. Figure 7.8 shows the result of this method. 

Ironically, in this case it has followed the same path as the Uni -Directional method, as 

on each vector assessment these directions proved the most promising. However by 

using a different starting location the benefit of the combined system can be seen -

Figures 7.9 and 7.10. 

iv ) Multi-Directional Method 

This method is similar to the uni directional method but the parameters are manipulated 

only once (rather than continually until an optimum is found), before the selection of 

another parameter. The rotational selection repeats itself until no further change are 

seen, (refer to 6.2.3.1.3). From these results, Figure 7.11 and 7.12, it can be clearly 

be seen that this picks a direct route locating the optimum position, and is not effected 

by its starting position or direction. This method also has the lowest number of 

parameter manipulations. 

7.3.1.1.2 Conclusion of the Search Method Tests 

It has been shown that all the methods found the maximum penetration position, but 

with varying degrees of efficiency. The Vector method while choosing the most direct 

route, required a large number of parameter manipulations to do so. The Uni­

Directional method could also be one of the most efficient methods, but was sensitive to 

starting direction. In an effort to enhance both systems, they were combined. This 

produced quite a good system, which generally found the optimum operating point 

efficiently. However in certain situations due to the nature of the surface, its efficiency 

would be reduced. The Multi-Directional method proved to be the best routine tested. It 

had no starting constraints and established a near direct route to the optimum position. 

For these reasons, the Multi-Direction method was chosen as the search method for the 

optimisation system. 

While only one series of tests have been shown, several surfaces were used to test the 

chosen search routine. These surfaces however, were restricted to uni-peak or uni­

trough surfaces, as at this initial development stage, no capability for multi-peak 

surfaces has been included. All tests proved successful. 
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Figure 7.8 The Final Path Taken by the Combined Vector and Uni-Directional 
Method to Locate Maximum Penetration Rate 
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Figure 7.9 The Path Taken to Locate Maximum Penetration Rate by the Uni­
Directional Method from a Different Starting Position 
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Figure 7.11 An Intennediate Plot of the Multi-Directional Method Showing the 
Progressive Learning of the Penetration Rate Process by the S.L.P.M. 
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Figure 7.12 The Final Path Taken by the Multi-Directional Method to Locate 
Maximum Penetration Rate 
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Several other points are also worth noting at this stage:-

1) It can be seen that the Ripple method in all cases has enhanced the S.L.P.M.'s 

knowledge of the simulation process shown in Figure 7.1, (i.e. penetration rate as a 

function of weight on bit and rotational speed). While the general trend has been 

established, discrepancies by the interpolation system do exist at the peripheries. 

However as the system is searching for maximum penetration rates, this does not 

matter as in the S.L.P.M., the area around the maximum penetration point is well 

defined. Improvements to the ripple method (by curve fitting etc) would serve to 

improve their prediction further. 

2) In the testing of the Vector Method, improvements were made by increasing the 

initial size of the search pattern and progressively reducing them as optimum points 

were established. Figure 7.13 show the improvements made to the Multi-Directional 

search by doing this. It can be seen after just a small number of parameter 

manipulations, the search routine has nearly reached the optimum operating area. Due 

to the progressive reduction of search sizes, the method requires actually more 

manipulations than the original method. However, the latter are all in the maximum 

penetration rate area and thus while requiring a greater number of manipulations, higher 

penetration rates are achieved at a much earlier stage. This therefore provides an 

improvement to the optimisation system, but for further development the search size 

was kept to unity, being easier to follow the path of the search routine. 

7.3.1.1.3 Data Variance 

With the search method selected, it was decided to see how the system would cope with 

fluctuations in penetration rate measurements. This would be more akin to the real 

situation where for set drill parameters, (in this case weight on bit and rotational speed), 

factors such as friction, minor lithology changes, etc would cause fluctuations in the 

measure penetration rates. However by calculating the mean for each point as described 

in Chapter 5, with the optimisation system visiting the point several times, a 

representative value could be calculated, reducing the effect of rouge values and thus 

allowing optimisation to continue. 

U sing the simulated process as shown in Figure 7.1, a random variation of ! 20% of 

the simulation value was introduced. The results of the optimisation test were quite 

surprising, with the search method attaining the maximum penetration rate area in quite 

a short time, Figure 7.14. The word area is used because, unlike in the non variance 
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Figure 7.13 The Improvement in Efficiency to the Multi-DirectionalMethod by 
Increasing the Size of the Search. 
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Figure 7.14 A Plot of the Optimisation System Attaining Maximum Penetration 
Rates with a !20% Variation in Penetration Rate Values 
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system where values are constant, the fluctuation in data has the effect of varying the 

mean values, slightly causing the search method to "wander" around this maximum 

value area. 

Such was the success of the optimisation system, a second test was developed where 

the data values fluctuated "2- 60% of the simulated value. The system once again 

attained the maximum penetration rate area, Figure 7.15, but a considerable number of 

parameters changes were required, with the path being fairly contorted. However, it 

does show the optimisation system can work under fairly extreme conditions. 

7.3.1.2 Minimum Cost Optimisation Using the IBM Alone 

The previous section established the best search method to be used in the optimisation 

scheme as well as testing it to a satisfactory degree, using maximisation of penetration 

rates as the criteria. The system was therefore changed to optimise by minimum cost 

drilling, to allow further test to continue. 

To generate cost data, two simulators are required, one for penetration rates and the 

other for wear rates. The two used in this series of tests is shown in Figures 7.1 and 

7.16 respectively. The other variables in the cost equation were set to constant values as 

shown. 

C -
(B + R. Tm . D) . W R 

K +p 

where Rig Costs (R) = £l000/day 

Bit Costs (B) = £500 
Round Trip time /metre (T m)= 20 seconds/metre 

Crown Height (K)= 10mm 

Depth (D)= 1000m 

Using these variables and the data held within the two simulators, a simulated cost 

surface can be generated as shown in Figure 7.17. During the optimisation tests, unlike 

those of maximum penetration rate tests, the cost S.L.P.M. will not resemble the 

simulated surface as no rippling takes place. Therefore only the path of the optimisation 

system will be shown along with the cost calculated values. 

To test the optimisation system under the minimum cost drilling criteria. four scenarios 

were used with increasing severity, but increasing realism. In each test. the search 
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Figure 7.15 The Optimisation System Attaining Maximum Penetration 
Rates with a "! 60% Variation in Penetration Rate Values 
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Figure 7.16 The Simulated Wear Rate Process 
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Figure 7.17 The Cost Surface Generated by the Cost Equation, Using the 
Two Simulators and the Defmed Cost Variables 
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method would remain the same, but the data from both simulators would be changed 

according to the test. The tests are listed below. 

1) Simulator wear rate and simulator penetration rate 

2) Simulator wear rate and penetration rate variance 

3) Randomly generated wear values and simulator penetration rate 

4) Randomly generated wear values and penetration rates variance 

7.3.1.2.1 Simulator Wear Rate and Simulator Penetration Rate 

In this test, when a cost value was required for a point, the values of penetration rate 

and wear rate used, were those given directly by the respective simulators, i.e. no data 

variations were included. The result of this test is shown in Figure 7.18. It can be seen 

from this that the optimisation system, has directly "homed" into the minimum cost 

value position. The number of manipulations to do this is relatively small, indicating a 

good degree of efficiency. However, it does have to be remembered that there are no 

data fluctuations and thus optimisation is relatively easy. 

7.3.1.2.2 Simulator Wear Rate and Penetration Rate Variance 

To complicate the process slightly, a degree of variation in penetration rates was added. 

When the cost values were calculated, the wear rate was that returned by the simulator, 
where as the penetration rate value had a ~20% variance added to the simulator value 

(the same process as used in the latter tests of maximisation of penetration rates). The 

results are shown in Figures 7.19 and 7.20. Figure 7.19 shows the cost surface 

generated. From the figure, it can be seen that the path is slightly more contorted than 

the previous test. This is due to the variation of penetration rates altering the calculated 

cost values. Only when a representative mean value for penetration rates for a particular 

point has been established, do the cost fluctuations diminish and allow the 

optimisation to progress further. This wandering and averaging process is reflected by 

the large increase in the number of parameter manipulations required to attain the 

minimum cost position. Figure 7.20 shows the penetration rate S.L.P.M., and it can 

be seen that the penetration rate process has only been partially learnt. However as the 

minimum cost position has been located, the knowledge that greater penetration rates 

can be achieved is irrelevant as a movement in this direction would only cause an 

increase in cost from the present situation. Therefore this shortcoming does not maner. 
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Figure 7.18 A Plot of the Optimisation System Locating the Minim urn Cost Position 
with No Data Fluctuations 
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Figure 7.19 The Cos~ Swface Generated During Testing with Simulator Wear Values 
and Penetration Rate Variance 
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Figure 7.20 The Associated Penetration Rate S.L.P.M. Surface Generated During 
Testing with Simulator Wear Values and Penetration Rate Variance 
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7.3.1.2.3 Randomly Generated Wear Values and Simulator 
Penetration Rate 

In the previous two tests, each time a cost calculation was required, a known wear rate 

value ( i.e. one held within the simulator) was returned. However in the real situation, 

this would not be the case as wear values would be generated only when the bit was 

tripped. Therefore, a more realistic scheme must be developed, to reduce the regularity 

with which simulator wear values are entered into the wear S.L.P.M., and rely more 

on the values generated by the interpolation system i.e. the ripple method. Thus when 

cost data is required, the wear value is returned from the wear S.L.P.M. rather than the 

wear simulator. To ensure that some known values are passed to the wear S.L.P.M., 

simulator values would be entered into the wear S.L.P.M. at random intervals. This 

would mimic the generation of a newly measured wear values as with a real life 

situation. In this way, the wear S.L.P.M. would be performing its role as a data 

enhancement mechanism rather than a straight storage system. With the progressive 

entering of wear values into the wear S.L.P.M., the predicted wear values returned will 

increase with accuracy. 

In this and the following test, the random variance was set at twenty, such that on 

average, after every twenty parameter manipulations and thus cost calculations, a new 

wear value would be generated from the wear simulator. This would be entered into 

the wear S.L.P.M. and interpolated. To aid initial prediction of the wear S.L.P.M., it 

was seeded with 5 randomly positioned wear values, to imitate some limited prior 

knowledge. 

The results of this test, using the randomly generated wear values and simulator 

penetration rates are shown in Figures 7.21 -7.22. Figure 7.21. shows the cost 

optimisation surface and the path taken. It can be seen that the system has initially 

headed for the maximum penetration rate area, and then unexpectedly 'U' turned. This 

is entirely due to the values returned by the wear S.L.P.M. Initially the wear process in 

the S.L.P.M. is not well established, and therefore, the increases in penetration rate 

values, currently out way the low wear values returned by the wear S.L.P.M. However 

as shown in Figure 7.22, at the point of turn, a new wear value was generated. The 

resulting interpolation alters many of the surrounding wear values, to ones closer to the 

simulator wear values. In this case, much higher. Consequently, subsequent cost 

calculations using the new wear S.L.P.M. values reveal this area to be unattractive with 

high cost values. The optimisation system thus walks back to a region of lower wear 
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Figure 7.21 An Intennediate Plot of the Cost Surface During Minimum Cost 
Optimisation Using Randomly Generated Wear Values and Simulator 
Penetration Rates 
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Figure 7.22 An Intennediate Plot of the Penetration Rate S.L.P.M. During Minimum 
Cost Optimisation Using Randomly Generated Wear Values and 
Simulator Penetration Rates 
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values, eventually 'homing' in on the true minimum cost area. Figure 7.23 shows this 
later stage. 

The study of Figure 7.22 reveals some interesting observations. It can be seen that the 

randomly seeded values at the start of the test (the blips in the smooth surface), are on 

the periphery, and consequently, their influence on the wear S.L.P.M. is less. In this 

test, the initial interpolation would have indicated low wear rates through the centre of 

the wear S.L.P.M., and hence the initial search towards the maximum penetration rate 

area. If however, these initial points had been in strategic positions such as the one 

generated at the point of turn, then the optimisation system would have achieved its 
goal much quicker. 

This highlights two points :-

1) The optimisation system can achieve optimisation from very little prior knowledge, 

but due to this deficiency it may take some time to do so while knowledge is learnt. 

However as the system is progressively used, this knowledge will be passed from test 

to test, enhancing optimisation. 

2) Benefits arise if some initial knowledge is known and is of strategic importance. 

Obviously we cannot dictate or know which wear values are of importance, but by 

priming the S.L.P.M.'s with historical data etc, it is felt that optimisation would be 

achieved much quicker. 

7.3.1.2.4 Randomly Generated Wear Values and Penetration Rates 
Variance 

Unlike the previous test, this is beginning to represents a realistic situation with the 
inclusion of a penetration variance of ~ 20% of the simulator value. The rate at which 

random wear values were generated was kept at twenty, which of course is very low 

but this value is used to increase the speed of the optimisation, while still illustrating the 

point. 

From Figure 7.24, it can be seen that the optimisation system heads towards the 

minimum cost area but in a contorted fashion due to the variation in penetration rates. 

Once again however, the generation of low cost values from the initially deficient wear 

S.L.P.M., cause the search method to establish a minimum cost position in the 

maximum penetration rate region. As randomly generated wear values entered into the 
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Figure 7.23 A Later Plot of the Cost Surface with the Minimum Cost Position 
Obtained 
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Figure 7.24 The Cost Surface Generated by the Test Using Randomly Generated 
Wear Values and Penetration Rate Variance 
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wear S.L.P.M., the system back tracks to the minimum cost area. In so doing, a large 

number of parameter manipulations are required. Despite this, it can be seen that the 

system has achieved the minimum cost drilling area. Furthermore if another test was 

run using the data generated from this test, the optimisations system would home into 

the minimum cost area much quicker. Figure 7.25 shows such a subsequent test. 

7.3.1.2.5 Conclusion of Minimum Cost Tests 

The optimisation system was tested under a series of tests for minimum cost drilling, 

each with progressive severity but realism. From the initial test, it can be seen, that with 

idealistic data i.e. 'on-line' and non varying, the optimisation system locates the 

minimum cost position directly. Once data fluctuations etc are introduced as shown, the 

path with which optimisation is achieved is more contorted. This is partially shown in 

the second test with penetration rate variance but simulator wear values, where although 

the path is fairly direct, the number of parameter manipulations is high. This is due to 

the optimisation system requiring continuous searching of the surrounding points to 

develop representative means of the surrounding points, to allow optimisation to 

continue. 

The idea of randomly generated wear values was also introduced, where by a wear 

value from the simulator would only be entered at random intervals. The wear value 

used for the cost equation would be given by the wear S.L.P.M. rather than the wear 

simulator. This would mimic a more realistic situation where the generation of wear 

values is more sparse. The cost optimisation scheme was tested using the randomly 

generated wear values, with both simulator penetration rates and penetration rate 

variance. Both tests located the minimum cost area, the penetration rate variance test, 

taking much longer and with more parameter manipulations required. 

Both tests highlighted the disadvantage of the system starting from a null state, i.e. 

limited wear information, which consequently cause the optimisation system to wander 

to establish the required knowledge. However as the system showed, that by 

progressive learning, it homes to the minimum cost area quickly, rather than wandering 

haphazardly. Therefore by induding historical data and the passing on of information 

from test to test, the system will become more efficient at locating the minimum cost 

position readily as shown by Figure 7.25. 
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Figure 7.25 The Effect of Passing On of Knowledge From Test to Test 
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7.3.1.3 Conclusion of IBM Alone 

The system was tested under both optimisation criteria, and all the results proved 

satisfactory. Using the IBM on its own has allowed the system to be developed and 

tested to a high degree before the complexities of data transfer etc were incorporated. 

This has also allowed a demonstration system to be established, negating the need for 

the use of two computers. 

7.3.2 The IBM and BBC Drill Simulator 

With the optimisation system successfully proven using the IDM alone, the next stage 

was to test it with the BBC Drill Simulator incorporated. This would ensure that the 

data transfer mechanisms and relative functions would perform properly. The tests 

undertaken were similar to those when the IBM was used on its own. Consequently 

plots of the maximum penetration rate, cost surfaces etc are generally not included as 

reference can be made to those previously shown. 

7.3.2.1 Maximisation of Penetration Rates 

7.3.2.1.1 Non-Fluctuating Penetration Rate 

Figure 7.26 shows the Drill Simulators response to the control provided through the 

optimisation system geared for maximum penetration rates. No data variance is 

included. During the testing of the Drill Simulator, the Drill Simulator was always 

started with random starting conditions, to allow testing to start from unknown and 

varied positions. However, the previous optimisation tests were always started at the 

same position. Consequently, it can be seen that the fIrst twenty seconds of Figure 7.26 

show the optimisation system attaining this position (this will be seen in all the Drill 

Simulator tests). Once this position has been reached, there is a rapid increase in 

penetration rate, and the maximum penetration rate is found within 100 seconds. 

Continuing manipulation of the drill parameters ensures that the maximum value has 

been found and is maintained, but this also causes the cyclic pattern seen towards the 

end of the test. 

The time taken to achieve optimisation is fairly short, but no data variance occurs, and 

the response if the simulator is immediate. If the laboratory drill rig was used, 

optimisation would take much longer as the drill would require several seconds to attain 

the requested parameters. 
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Figure 7.26 The Response of the Drill Simulator to the Control Provided by the Optimisation System 
Set for Maximisation of Penetration Rates 



7.3.2.1.2 Penetration Rate Variance 

Figure 7.27 shows the Drill Simulator under optimisation of penetration rates but with a 

"!" 20% variance in the penetration rate readings. It can be seen that despite the data 

variation (which increase with increasing penetration rate), the optimisation system has 

still attained maximum penetration rate. However with data fluctuations it is difficult to 

see, but it can be visualised that the average would tend towards this value. The time 

taken to reach the optimum position is much greater than when no data fluctuations are 

seen. However under these conditions, it is not surprising. 

7.3.2.2 Minim urn Cost 

7.3.2.2.1 Simulator Wear and Non Fluctuating Penetration Rates 

Figure 7.28 illustrates the Drill Simulators response to minimum cost optimisation. No 

data variation or randomly generated wear rates have been used. It can be seen that the 

optimisation system has located the minimum cost position readily after initially 

attaining the starting position. However unless calculations are performed it is difficult 

from this graph to establish whether true minimum cost has been found. This highlights 

one of the reasons why the optimisation system was initially tested using maximum 

penetration rates, as its performance is much easier to determine. 

7.3.2.2.2 Simulator Wear and Fluctuating Penetration Rates 

Figure 7.29 shows the Drill Simulators response to minimum cost optimisation using 

simulator wear values and penetration rate variance. From the plot, it can be seen that 

the optimisation system has located the minimum cost area, despite the penetration rate 

fluctuations as seen by the simulators response. Again the penetration rate fluctuations 

have the effect of elongating the time taken to achieve the minimum cost position, 

compared to when no variation is seen. 

7.3.2.2.3 Randomly Generated Wear Values and Non Fluctuating 

Penetration Rates 

Figure 7.30 shows the drill simulators response to randomly generated wear values but 

with no penetration rate variance. In this test the random value has been set to five, 

such that after approximately five cost calculations a new wear rate value is generated 

and loaded into the wear S.L.P.M. The cost optimisation surface is shown in Figure 
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7.31. As previously described, with randomly generated wear values due to the lack of 

initial knowledge of the wear S.L.P.M., the optimisation system at the beginning 

heads off towards greater penetration rates. In this case, improvements are gained by 

increasing rotational speed, followed by weight on bit increases with intermittent 

rotational speed increases. The result is the search point being located near the 

maximum penetration rate area. However at this point, a wear value is entered into the 

wear S.L.P.M., (at about 160 seconds on the graph, shown by the flat lines of all three 

parameters due to rippling). The result is a decrease in rotational speed but with further 

weight on bit increases. Again at about 190 seconds, another wear value is generated. 

The resulting interpolation establishes high wear rate values are present in this area and 

the optimisation system walks back to lower wear values and hence the minimum cost 

area where it remains. 

The same test was performed again, but with the random value increased to twenty, 

Figure 7.32. Again after initially setting the starting conditions, the optimisation system 

passes the minimum cost area in favour of higher penetration rates. However, after 

two wear values are generated (one at 130 seconds and the other at 170 seconds), the 

system returns to the minimum cost area. Further manipulations and randomly 

generated wear values will progressively reduce the oscillations currently seen in the 

system, (220 seconds and above). 

7.3.2.2.4 Randomly Generated Wear Values and Fluctuating 

Penetration Rates 

The last test incorporated both randomly generated wear values and penetration rate 

variance. Figure 7.33 shows the Drill Simulators response to the optimisation system 

control. In this test (the cost surface shown in Figure 3.34), the optimisation system 

does not head directly for the maximum penetration rate area as with previous tests. 

This might be considered unusual. However, examination of Figure 7.35, a plot of the 

wear S.L.P.M., indicates that a seeded wear value was present in this area, resulting in 

cost values here much greater than elsewhere. As it can be seen from the cost plot, the 

search method has progressively increased weight on bit until such time as a randomly 

generated wear value causes the search method to back track and locate the minimum 

cost area. In this test, the optimisation speed was increased due to the luck of an initial 

random seed value being well placed 
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Figure 7.31 A Plot of the Cost Surface Generated by Optimisation Through 
Minimum Cost with Randomly Generated Wear Values, the Random 
Value Set at 5 
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Figure 7.34 The Cost Surface Generated by Optimisation Through Minimum Cost 
Using the Drill Simulator, with Randomly Generated Wear Values and 
Penetration Rate Variance 
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Figure 7.35 The Wear Rate S.L.P.M. Generated by Minimum Cost Optimisation 
Using the Drill Simulator, with RandomlyGenerated Wear Values and 
Penetration Rate Variance 
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7.3.3 The IBM and the Laboratory Drill 

Unfortunately due to the lack of time, machine testing was not accomplished. Several 

tests using the machine and various parts of the optimisation system were undertaken 

during the development, but no results were saved. 

However despite this shortcoming, the BBC Drill Simulator was developed in such a 

way that a direct swop with the Laboratory drill software can take place. This will 

remove the possibilities of software problems in the near future. The author is confident 

that the optimisation system will perform as planned during real drilling trials in the 

near future. 

7.4 Conclusions 

The theory of the optimisation system was covered in previous chapters and gave a 

good introduction to the ideas behind the optimisation scheme, how it works as well as 

the likely performance. From the results of this chapter, this has been taken one step 

further, indicating what the current optimisation system is capable of and its likely 

future performance. 

It has been previously mentioned that for the development of the initial system. the 

laboratory drill rig would be used. The computer system used to monitor an control the 

drill rig was not suitable (in memory capacity and processor speed) for the development 

of the optimisation scheme, and therefore a IBM type machine was used. Pascal was 

the chosen as the programming language, being both versatile and relatively easy to 

understand due to its structured nature. The optimisation programme was split into 

tasks which were developed separately, to aid debugging. With the long length of the 

programme, various tasks were grouped into Units (Sub-programmes) which are 

referenced by the main programme, when required. Documentation on the programme 

has been omitted as its length and complexity would take a separate volume to explain. 

However, it is felt that the general working of the programme can be understO<XL from 

the previous theoretical chapters and the results shown in this chapter. 

To aid both development and prove the system, the optimisation scheme has undergone 

a large testing programme. It has been accomplished in several stages, involving 

different levels of complexity, utilizing the IBM alone, the IBM and BBC drill 

simulator and the laboratory drill rig. 
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Initial development test work, used the IBM alone to establish the most effective and 

efficient search method with which to locate the optimum position. When using the 

IBM alone, simulators have to be used to generate both the wear rates and penetration 

rates required. To reduce the complexities further, initial test used maximisation of 

penetration rates rather than minimisation of cost as the optimisation criteria, being both 

easier to develop ( only one simulator required) and more readily visualised. Of the four 

search methods tested, Figures 7.2 to 7.12, the combination of the Vector and the Uni­

Directional method proved satisfactory, but the Multi-Directional method proved by far 

to be the best. It found near direct paths to the optimum point, and its efficiency was 

not dependent upon starting position or direction. 

With the search method selected, the testing of the optimisation system was taken a 

stage further, and a variance was added to the penetration rates. In the first test, the 

variance was set to ~20%, and the optimisation system attained maximum penetration 

rates readily, Figure 7.14. Such was the success of the system, the variance was 
increased to ~60% of the simulated value. The path taken in this case, is much more 

contorted and required many more parameter manipulations, but the system once again 

has attained the maximum penetration rate area, Figure 7.15. 

The success of these initial tests allowed the optimisation system to be switched to 

search for minimum cost. This required the use of the two simulators, i.e. the 

penetration rate simulator and the wear rate simulator. The other variables in the cost 

equation were assigned values, which remained the same for all subsequent tests. 

The first test under the minimum cost criteria used straight simulator values i.e. no data 

fluctuations were incorporated. This was accomplished with relative ease, Figure 7.18. 

Penetration rate variance was added, and again the optimisation system attained the 

minimum cost position, but required substantially more parameter manipulations. This 

increase was due to the fluctuations in the penetration rates, altering the calculated cost 

values. Only when a representative mean was develop, did the fluctuations in the 

penetration rates and hence cost reduce. 

In the real situation, wear rate values would only be generated at random intervals, 

unlike in the previous tests which relied on a simulator value for every cost calculation. 

Therefore, a randomly generated wear value system was developed. Wear values for 

the cost calculations were obtained from the wear S.L.P.M. , rather than from the wear 

simulator. New wear values were only entered into the wear S.L.P.M. and rippled, at 
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defined random intervals. Consequently the wear S.L.P.M. would perform its true role 

as a data enhancement system, rather than just a straight data storage mechanism. 

Two tests were performed using randomly generated wear data, one with simulator 
penetration rates, Figure 7.23, and the other with penetration rate variance of 7 20%, 

Figure 7.24. Both tests achieved the minim urn cost drilling area, the penetration rate 

variance taking much longer. In both tests, the optimisation system headed towards the 

maximum penetration rate area, as the wear values returned by the wear S.L.P.M. were 

much lower than corresponding ones in the wear simulator, due to the wear 

S.L.P.M.'s initial limited knowledge. However as wear data was generated in this 

area, the ripple system revealed the extent of the high wear rates in this region, and 

therefore the high costs. As a consequence, the optimisation system returned to areas of 

lower wear rates and thus attained the minimum cost position. 

These two tests highlight that the system can work from very little prior knowledge, 

but the time taken to do so may be great. However the speed of optimisation could be 

increased if some knowledge was present before hand, e.g. the priming of the wear 

S.L.P.M. with historical data. Furthermore, with the passing of of knowledge from 

test to test, wear predictions will progressively improve, increasing optimisation speed, 

Figure 7.25. 

A set of similar tests were performed using the IBM and The BBC Drill Simulator, to 

incorporate the data transfer mechanisms etc. The results (Figure 7.26 - 7.35), show 

both plots of the optimisation surfaces, as well as graphs of the drill simulators 

response. The true effect of the penetration rate variance can be seen on some of these 

tests. All the tests achieved their optimum position, their efficiency depending on the 

severity of the test. The success of these tests has paved the way for Laboratory drill 

test trials, as the drill simulator was designed to directly interchange with the laboratory 

drill monitor and control programme. 

At the time of writing, laboratory test trials had not conducted. The author though is 

confident that the optimisation system will perform successfully on the laboratory rig, 

with the results being presented at the forth coming SPE/IADC Drilling Conference in 

Amsterdam, March 91 

168 



Chapter 8 - Conclusions 

In the exploitation of mineral reserves, drilling is an essential part of the location and 

extraction processes, so much so that drilling expertise is essential for the success of 

such operations. The increases in present technology, has enable the capability limits to 

be pushed further each year, and new ways are continually developed to improve or 

optimise drill performance. However, the development of an automatic drill, capable of 

self-optimisation is a long way into the future. Some initial attempts have been made to 

produce such a system, the earliest being in 1968, where the Humble Oil and Refming 

Company conducted full scale trials on a oil type drill rig. Other more recent 

developments have mainly been associated with mining type drill rigs such as those 

manufactured by Tamrock. However the success of these projects has been varied but 

to the author's knowledge, none have been commercially successful. Therefore, scope 

exists for the development of a drilling optimisation system. 

A brief introduction was made into optimisation and more specifically into drill 

optimisation in Chapter 1. The Chapter also described that from work conducted by 

Ambrose, a trade off between penetration rates and wear rates was apparent, which 

could possibly be used as the control rationale for a drill optimisation system. This 

formed the basis for this research project, i.e. to develop a drill optimisation system 

using the trade off between penetration rates and wear rates. 

A Laboratory drill rig was already in existence, which used diamond impregnated drill 

bits. It was used for both Laboratory work as well as research purposes. It was decided 

to develop the optimisation system around this machine, while not being ideal, it would 

serve to prove the point. Chapter 2 described, that as the optimisation system would 

require control as well as monitoring capabilities, due to the constraints in the old drill 

electronics, the electronic system was rebuilt to allow many additional features to be 

added, such as rotational speed control, weight on bit control and stop / start control of 

the drill rig. The modifications to the wear measurement jig were also described as 

inaccuracies were established, as the jig was progressively used. 

At an early stage, it became apparent that the capabilities of the drill monitoring 

computer / control computer would be insufficient to host the optimisation scheme. 

Therefore. it was decided to use the BBC as a front end processor, i.e. solely dedicated 

to monitoring and control of the drill rig, and have the optimisation system running on a 

separate computer. This was chosen to be an IBM type machine. Data would be passed 

from machine to machine via an RS232 link. Originally this was thought to be an easy 
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process, but it proved to the contrary, and only by some unorthodox practices was a 

link eventually established. While this is obviously not an ideal situation, as the system 

was to be an initial development phase, with future development using a different 

computer and possibly drill rig, it was though not worthwhile rebuilding the drill 

electronic to be geared towards the IBM. 

In Chapter 3, some initial tests were conducted to generate ideas on drill optimisation 

techniques as well as highlight any problems that may occur while using the laboratory 

rig. The initial test took the form of a simple optimisation scheme designed to attain 

maximum penetration rates. The system worked well as shown by the results. 

However, some problems did occur with both the optimisation algorithm and drill 

control. As the optimisation algorithm was only for tests purposes, no modifications to 

it were made. The drill control problems were of importance however, and corrective 

measures were taken to alleviate them. The discovery of these problems proved 

invaluable in later tests and with the lessons learnt about the laboratory rig as well as for 

a future optimisation system, made these initial tests worthwhile. 

These tests, also highlighted the inefficiency of initial testing of the computer software 

with the laboratory rig, due to the necessity for collaring etc for each test run. This 

made debugging time consuming and extremely frustrating. Therefore a Drill Simulator 

was developed in which the simulator programme would exactly mimic the drill rigs 

monitoring and control processes. Penetration rates were provided by a matrix type 

system, such that for differing drill parameter values ( in this case Weight on bit and 

rotational speed) different penetration rate values would be returned. By changing the 

simulation matrices, different responses could be attained, such as would be seen in 

different rock strata. This would allow testing to be accomplished away for the 

laboratory rig with increased efficiency. Once the programmes had been proven on the 

drill simulator, testing could return to the laboratory drill. Many other additions and 

complications were added to the simulator as the research project developed to assist 

development, by trying to establish more realistic scenarios. This allows quite 

comprehensive testing before laboratory trials are required. 

With the initial test trials of the laboratory controls etc complete and a drill simulator 

established with which to aid development, attention turned to developing the main 

optimisation system. Using the criteria of the trade off between penetration rates and 

wear rates, ways in which this could be achieved through various drill parameters were 

examined as described in Chapter 4. Several ways were looked at, such as time for 

each bit run, total time to completion as well as maximising penetration rates. However 
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all these proved not suitable for various reasons, either not fitting the trade off criteria 

or being to complex and inflexible to provide a good optimisation scheme. The cost of 

the operation was also looked at, and a brief cost analysis was conducted, to establish 

the main cost centres of the drilling operation. While optimising by minimising total 

cost to completion was rejected as being to inflexible, minimising cost per metre was 

developed and established as the control mechanism by which this optimisation scheme 

would work. It had a number of advantages, it was a flexible system, capable of coping 

with unforeseen problems, good economic benefits as well as the fact that most drilling 

parameters could be related to it. 

A well establish equation existed with which to calculate cost per metre and it was 

adopted to be used for the main control equation (equation 4.18). However, it did not 

contain any controllable parameters associated with the drilling operation, and therefore 

some mathematical manipulation was required, to derive equation 4.27. This relates 

cost per metre to both penetration rate and wear rate. This equation would be used as 

the main decision process in the optimisation system. It was also noted in this chapter 

that this was a fairly simple equation, but the optimisation system would designed to 

allow a more complicated one covering more of the cost centres to be used, once the 

initial system had been developed and tested to a satisfactory degree. 

A sensitivity analysis was performed on this equation to understand the trends etc 

associated with the various parameters involved to aid the development of the 

optimisation scheme. 

With the optimisation equation derived, the problem of attaining reliable drilling data for 

use in the equation, and hence for optimisation was covered in Chapter 5. While 

penetration rates are generally easy to measure and are often available on line, wear 

rates are much harder to obtain. Some equations etc, are available which may be used to 

predict wear, but these can never improve their prediction. Therefore, a data 

enhancement system was developed to initially store known wear values, and estimate 

unknowns. The method used a matrix based system in which wear rates could be 

referenced to various parameters by the dimensions of the matrix. Theses matrices 

became known as S.L.P.M.'s. 

To enhance known data, an interpolation system was developed, known as the ripple 

method, which would radiate the influence of a known point outwards, until no effect 

was seen. An extensive testing programme was conducted, to establish the reliability of 

the ripple method, and the results were shown. Generally, the results proved 

171 



satisfactory but with complex su~aces, the predictions began to deteriorate. However, 

when considering that a development system was required, they were adequate at this 

stage. Improvements could take place at a later date once the main cost optimisation 
scheme was developed. 

The data enhancement mechanism allowed ready available and reliable data with which 

to use in the cost equation, and thus design and development of the optimisation 

scheme could take place. This was elaborated in Chapter 6. The chapter described 

several schemes which were tried, maxima and minima being the fIrst. By establishing 

a relationship between penetration rates and wear rates, differentiation of the cost 

equation could occur and hence a solution could be found. A computer programme was 

developed to use this method, and while this method was abandoned for logistic 

reasons, it did generate some ideas, which were useful in the development of the 

current system. 

With no solution being found by mathematical means, a computer based search system 

was developed which from known data, would locate the minimum cost position as 

shown in Figure 6.6. However as the data may only be partially known, the true 

optimisation position may yet be undetected, and therefore the search method must also 

be capable of 'walking' the drill to the true optimisation position by manipulation of the 

drill parameters. Several method were designed to do this, their theory being covered in 

Chapter 6. The design of the complete cost optimisation scheme was shown in Figure 

6.9. 

The current cost optimisation scheme design has not considered the effect of changes in 

rock strata. This was also dealt with in Chapter 6. The optimisation system would cope 

as it stands with a change in rock strata, the penetration rate and wear rate S.L.P.M.'s 

learning the new process corresponding to the new rock type. However this would be a 

time consuming process and irradicate all the information learnt about the previous rock 

strata. Therefore it was proposed that each rock strata would have its own set of 

S.L.P.M.'s. For this to be incorporated into the optimisation system though, detection 

of a change in rock strata must occur in addition to its prediction. Detection of strata 

boundaries is possible through the use of specific energy and other related parameters. 

Rock strata prediction from the measured drilling variables, however is much more 

difficult. Research in this area is relatively new, with many different ideas being 

followed. At present no reliable prediction system has been developed but it is thought 

that one will be developed in the foreseeable future. 
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With such a system incorporated into the scheme (Figure 6.12), once a rock boundary 

has been indicated and the prediction on the rock type made, the appropriated 

S.L.P.M.'s can be selected allowing the optimisation process to continue. The 

interchanging of the S.L.P.M's and the progressive use of the system, will allow the 

gradual build up of knowledge for each rock strata. At the time of writing the 

optimisation system does not include the capability for changes in rock strata. 

The testing of the optimisation system was covered in Chapter 7, which described the 

various tests which were used to prove the drill optimisation system. Initial testing used 

the IBM alone to eliminate the requirement for data transfer between the two 

computers. It also used maximum penetration rates as its optimising criteria requiring 

only a penetration rate simulator, rather than the two required by the cost system. 

The first series of tests involved the selection of the search routine to locate the true 

optimum position through manipulation of the drill parameters. Four methods were 

proposed in Chapter 6, and their results indicated that the Multi-Directional method was 

be the best, (Figures 7.2 - 7.13. This method found a near direct route to the optimum 

position, and its efficiency was not effected by starting position or direction. To test the 

durability of this method a variance in the penetration rates was added. Initially this was 

set at -:!" 20% of the simulator value and then increased to -:!" 60%. Both these tests 

acquired the maximum penetration rate region, the -:!"60% variance taking much longer 

and requiring many more parameter manipulations, Figures 7.14 -7.15. 

With these tests performed satisfactorily, the system was switched to optimise by 

minimum cost. With no data fluctuations incorporated the system located the minimum 

cost position directly, Figure 7.18. Penetration variance was added, and although the 

path to minimum cost was more contorted and required a larger number of 

manipulations, the minimum cost position was found once again, Figure 7.19. 

The two previous tests had relied 'on line' wear measurements i.e. for every cost 

calculation, a wear value was returned from the wear simulator. In reality however, this 

is not possible as wear values are generated at intermittent intervals. Therefore a 

randomly generated wear value mechanism was developed. In this process, the wear 

values for the cost calculations were returned from the wear S.L.P.M., rather than the 

wear simulator. To enable the wear S.L.P.M.to learn the wear process as in real life, 

wear values were entered into the wear S.L.P.M. at a variable random interval. In this 

way, the wear S.L.P.M. perform the role of a data enhancement mechanism rather than 

a data storage system. 
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Two tests were perfonned, one using simulator penetration rate and the other with 

penetration rate variance, Figures 7.20 -7.24. The initial limited knowledge of the wear 

S.L.P.M. caused some initial wandering, but once the wear process had been learnt by 

additionally generated wear values, the minimum cost position was located. The effect 

of the passing on of infonnation was also demonstrated by the running of the same test, 

but with the infonnation of the previous test included, and showed the minimum cost 

position to be located much quicker, Figure 7.25. 

With the testing of the system on the IBM alone complete, a similar series of tests were 

conducted using the IBM in conjuction with the BBC Drill Simulator to incorporate the 

data transfer mechanisms etc. All tests again proved satisfactory as shown by the 

results, Figures 26-35. The time taken however was much longer due to the response 

of the Drill Simulator. This test phase ensured that the system would work with the 

BBC and that the data transfer software was free fonn errors. As the simulator 

programme was designed to directly interchange with the laboratory drill monitor 

Icontrol programme, and thus, these tests paved the way for laboratory drill test trials. 

Unfortunately due to time constraints, full scale laboratory test trials did not take place. 

However various parts were tested with the laboratory rig and worked satisfactorily. 

However no results were retained at the time. The author is confident though that test 

trials in the near future will prove the validity of this drill optimisation system. 

In concluding, a drill optimisation system has been developed which is capable of 

achieving drill optimisation either by maximising penetration rates or more importantly 

by minimum cost per metre drilling. The theory of the optimisation system has been 

covered and much of the development work conducted described. Results of the first 

phase of testing of the optimisation system have also been included and described. 

They indicate the success of this initial development minimum cost drilling optimisation 

system and highlight the potential it holds for revolutionising current drilling practices. 
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Chapter 9 - Recommendations for Future Work 

In this thesis, a description of the fIrst stages of the development of a drill optimisation 

system have been given. It has also shown the initial testing of the system, highlighting 

the potential for further development, with the ultimate aim of producing a 

commercially viable drill optimisation system. However before this system becomes 

commercially viable, there are many more research and development stages which must 

be accomplished. Some ideas and thoughts for future work are covered in this Chapter. 

It has been split into two parts, fIrstly initial improvements to the optimisation system 

itself and secondly, more general recommendations. 

9.1 Improvements to the Optimisation System 

9.1.1 Rock Boundary Indication and Strata Prediction 

This subject was briefly covered in Chapter 6, where reference was made to the 

detection of strata boundaries, and the ultimately the prediction of strata type. However, 

research and conclusions in this area are still vague and thus a comprehensive literature 

survey and analysis would be benefIcial to establish present states of the art and 

possible areas where additional strata prediction research could be undertaken. The 

research conducted by Rogers and Rowsell shown in Figure 6.11 should also be 

continued further as these results proved promising. 

A strata boundary indicator and rock type prediction mechanism should be also 

incorporated into the optimisation scheme, however elementary for the following 

reasons:-

1) It would allow the development of the various S.L.P.M. switching routines which 

will be required, as well as some sort of testing routine to check whether the correct 

selection has been made, i.e if the drill parameters show large continual discrepancies 

from the S.L.P.M. values, a wrong selection may have been made. 

In addition, the problem of data corruption within the S.L.P.M.'s can be addressed. 

When passing through strata boundaries bedding planes etc, are likely to corrupt the 

data values held within the previous rock strata S.L.P.M.'s. Furthermore, the wrong 

rock type prediction, and thus wrong S.L.P.M. selection would also cause undesired 

data corruption. Therefore some mechanism, such as a buffering procedure, to store 
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and vet the data needs to be developed, to limit the possibility of corrupting the 

S.L.P.M.'s. 

2) If the two processes i.e. boundary indication and strata prediction are unitised, when 

better recognition systems are developed, they may be directly switched with the old 

methods, thus not incorporating any programme alterations as would be the case if the 

prediction mechanisms were incorporated into the main optimisation programme. 

Furthermore, this would allow a very basic initial predictor to be used to enable point 1 

to be accomplished 

3) A better understanding and possible use of the parameters measured and calculated, 

may be developed when concerned with strata identification. 

9.1.2 Rolling Depth 

All the minimum cost test, presently formed are with the depth being held constant. 

This should be changed to allow the depth to be increased at the rate of penetration as 

the test progresses. As the depth increases a continual change in the cost profile will be 

seen, thus requiring constant re-establishment of the minimum cost position. However, 

particularly in the simulated tests, the depth increase may be required to be accelerated 

say by a factor of ten, since by using real time penetration rates, the time taken to reach 

depths of 1 ()()() metres will be great. 

9.1.3 Multi-Peak Surface Prediction and Improvements to the 

Ripple Method 

In Chapter 6, a method of locating the minimum cost position using Maxima and 

Minima theory was described. To enable differentiation of the cost equation, a 

substitution had to be made. This was achieved by fitting a polynomial equation to the 

data in question, to eliminate one of the unknown parameters. While this method was 

rejected, it does have several important processes which could be used to improve the 

performance of the optimisation system. 

i ) Multi-Peak Surface Predictor. 

The simulation processes etc used so far have only had one maximum or minimum 

point, for simplicity reasons. Some research has suggested that drilling costs will have 

only one such value (31). However, it would be advantageous if the optimisation 

system could cope with multi-peak surfaces in case they arose. Such a system could be 
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developed, by using the polynomial curve fitting routine used for the maxima and 

mimima system. A series of curves could be fitted to the data held within the 

S.L.P.M.'s for each set of parameters. The general trends of these equations could be 

established to see if a second hump or trough was present. Depending on the 

optimisation required, the search algorithm could be switched to investigate this region. 

If improvements were seen, then the optimisation system would remain at this new 

position, otherwise it would return to the previously located optimum point 

Furthermore the use of these curves could also be used to establish trends in the data to 

aid the Multi-Directional search method locate the optimum point with increased speed 

ii) S.L.P.M. Prediction Accuracy 

From the results of the ripple method it was apparent that on non linear surfaces, the 

prediction accuracy was reduced, being more pronounced on complex surfaces. This is 

due to the linear averaging process employed, being unable to cope with a non-linear 

process. 

The process could be again enhanced by using the curve fitting routine for interpolation 

purposes, instead of or in conjunction with the Ripple Method. By fitting curves to the 

data contained within the S.L.P.M.'s, depending on the accuracy of the fit, the 

unknown data points could be adjusted to the values attained from the resulting 

polynomial equation. This would enable a much better interpolation system for non­

linear surfaces. 

Only outline sketches of these two recommendations have been made but it is in the 

authors opinion that it would be a valuable contribution (particularly the improvements 

to the prediction accuracy) if developed and incorporated into the optimisation system. 

9.1.4 Wear Rate Variance 

The generation of the randomly generated wear rate mechanism went along way to 

improving the realism of the optimisation tests. However, the values entered into the 

wear S.L.P.M. were those of the simulator, and thus contain no variance, i.e. if the 

same point was entered twice, the same value would be returned from the simulator. 

Therefore it is proposed to include a variance mechanism in the wear rates values such 

as those seen for the penetration rates, as it is very unlikely that in the field that 

variation in wear rates will not occur. 
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9.1.5 Examination of the Optimisation Programme 

During the research project, every effort was made to keep the optimisation programme 

as tidy and as structured as possible. However, with progressive developments etc, this 

is always difficult to maintain. Furthermore, when initially developing routines, 

solutions are required and generally the fIrst found becomes the only one due to time 

constraints. As a consequence, many of the routines written may be ineffIcient. It is felt 

that at this stage, it would be benefIcial to initially tidy up the optimisation and support 

programmes, and examine the various routines to see if improvements in efficiency can 

be obtained. 

9.2 General Improvements and Recommendations 

9.2.1 Machine Test Trials 

Of all the recommendations for further work this must be the most important and which 

due to time constraints was not performed. While simulation tests etc are worthwhile 

and serve to reduce awkward laboratory testing, especially when developing and 

debugging software, they are no substitute for the real situation. Therefore it is 

recommended that the series of initial tests performed on the IBM alone, and the IBM 

and drill simulator are performed to the laboratory drill rig in the near future. This will 

give creditation to the optimisation system indicating it can work in a real environment 

as well as a simulated case. 

9.2.2 Wear Data 

Most of the minimum cost test work was conducted using totally hypothetical wear 

scenarios based on the work conducted by Ambrose on diamond impregnated bits. 

Despite this work, there is insuffIcient wear data to establish a comprehensive wear 

scenario. Although the optimisation system can ( and is designed to) run with limited 

wear knowledge and enhance its knowledge through the generation of new wear rate 

values as drilling proceeds, in the laboratory situation, such a testing programme is 

impracticable as it would take an exceedingly long time to accomplish just one test. 

This lack of real knowledge, thus prevents the system from being tested with real data, 

and hence being able to determine whether realistic solutions are being achieved. 

Information such as this could be obtained from some of the wear predictor equations 
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such as Galle and Woods and it is recommended that this is undertaken to see the 

simulators response. 

However, historical data from industry would also be beneficial in two ways. Initially 

the data could be used to prime the wear S.L.P.M. and the results of this analysed. 

Secondly, with more information such as penetration rates, weight on bit, torque, 

stratagraphic columns etc, the optimisation system could be run to see the correlation 

between those reported by the historical data, and that by the optimisation system. If the 

results were widely different, examination could determine whether further 

improvements to the optimisation system were necessary or whether it could predict 

lower cost holes. 

9.2.3 Field Test Trials 

While this is some way into the future, it is worth mentioning as some steps could be 

taken to aid this process. The installation of the optimisation system on a industrial drill 

rig poses many problems with both safety and reliability, compared to that of a 

laboratory rig. Therefore it is proposed that a survey is conducted to establish what 

electronic monitoring and control systems i.e. transducers etc, is available and 

permissible for use on such a drill rig. This would enable early selection to be made, 

allowing the required electronics and software to be developed. 

Once the hardware side has been developed, it is envisaged that field trials would take a 

two phase approach, the first using the optimisation system solely in a monitoring role, 

with the optimisation system results being displayed as a suggestive action. In this 

way, creditation of the optimisation system could be achieved with regards to 

transducer reliability, optimisation predictions etc, without directly interfering with the 

drilling operation. Secondly once the initial stage was successfully proven, the control 

side could be incorporated and the optimisation system run in its entirety. 

With these recommendations and further research work, it is hoped that this drill cost 

optimisation system may in the future be a indispensable requirement of the rig floor. 
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