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ABSTRACT. 

This thesis is concerned with the theoretical and practical aspects of 

some problems in'Bayesian time series analysis and recursive estimation. 

In particular, we examine procedures for accommodating outliers in dynamic 

linear models which involve the use of heavy-tailed error distributions as 

alternatives to normality. 

Initially we discuss the basic principles of the Bayesian approach to 

robust estimation in general, and develop those ideas in the context of 

linear time series models. Following this, the main body of the thesis 

attacks the problem of intractibility of analysis under outlier 

accommodating assumptions. For both the dynamic linear model and the 

classical autoregressive-moving average schemes we develop methods for 

parameter estimation, forecasting and smoothing with non-normal data. 

This involves the theoretical examination of non-linear recursive filtering 

algorithms as robust alternatives to the Kalman filter and numerical 

examples of the use of'these procedures on simulated data. The asymptotic 

behaviour'of some special recursions is also detailed in connection with 

the theory of stochastic approximation. 

Finally, we report on an application of Bayesian time series analysis 

in the monitoring of medical time series, the particular problem involving 

kidney transplant patients. 
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Chapter 1. Introduction. 

1.1. General Introduction. 

Recent years have seen a continuing development and flourishing of 

the applications of mathematical statistics to interesting and important 

problems in many areas. Time series analysis in particular has received 

an enormous amount of interest from workers in socio-economic studies, 

the physical and engineering sciences, and the life sciences and. medicine. 

In time series studies, as in all statistical modelling, much thought 

and effort is required in the development of a framework for analysis, the 

model to be embedded in that framework, and the study of the characteristics 

of the model. This thesis is devoted to the examination of a wide class. 

of flexible time series models. in a Bayesian framework. 

(a) Bayesian framework. 

The philosophical basis of the Bayesian approach to statistics is 

still somewhat controversial. However, it is indisputable that this 

framework provides a rich and logical bac rop for mathematical modelling 

and has well-defined procedures for handling uncertainty and producing 

inferences. Furthermore, the combination of prior and experimental 

information is both. rigorous and, natural and the intimate relationship 

between Bayesian statistics and decision theory results in a comprehensive 

framework for the utilization of results. 

I believe that the need-for a theory satisfying these, and other, 

practical requirements is in part responsible for the current growing 

interest in Bayesian methods and that, in future, many more important 

appiications will be seen to use, and indeed demand, a Bayesian approach. 

(b) Dynamic Linear Models. 

The extension of Bayesian methods for linear models to the dynamic 

linear models discussed by Harrison and Stevens (1976) has provided a 

class of models capable of imitating the behaviour of many observed 

time series. Although relatively new to the statistical literature, such 



models have been used in engineering applications for some time with Kalman 

(1963) detailing the basic analysis. The flexibility of these models, and 

their potential as aids to understanding pbysical systems as well as 

forecasting, suggests that more interest will be centred on their application 

in diverse fields in the near future. 

(C) Outliers and robustness. 

Another growth area in statistics 'in recent years has been the study 

of robustness and outliers in statistical data. On the Bayesian approach, 

Box and Tiao (1962,1968) provided early contributions to the literature, 

discussing the ideas more fully in Box and Tiao (1973). In general, a 

procedure which is based on a parametric model can be made robust against 

the assumptions of that model by an extension to a wider class of a 

priori plausible models each of which is used to analyse the data. Bayes' 

Theorem is'then used to-provide a posterior distribution. for the class of 

models-entertained. 

Concerning the treatment of outliers within this framework-, an 

observation which is outlying relative to a particular model can be 

accommodated in an analysis by considering a further model in which it 

does not outly. In simple models, inference in the presence of outliers 

using such an approach is well developed, with the works of Box and Tiao 

(1973) and Ramsay & Novick (1980) being particularly relevant. O'Hagan 

(1979) discusses the location estimation problem and examines outlier 

accommodating models relevant to the Bayesian approach and provides a 

starting point for the development of more complex models that are the 

subject of this thesis. 



1.2. Outline of thesis. 

Chapter 2 presents a discussion of some general concepts of Bayesian 

estimation and the roles of prior and likelihood assumpt ions. In the 

special robust location estimation problem, we examine the recursive 

updating of beliefs with reference irf particular to likelihood character- 

istics and the-consequences for posterior distributions and hence inferences. 

O'Hagan (1979) discusses ideas applicable to this simple model and we 

consider this, along with the work of Masreliez (1975), in investigating 

possible error densities as alternatives to normality. Other works in 

robust Bayesian estimation, including Box and Tiao (1973), Box (1980), 

and Ramsay and Novick (1980), are discussed, and parallels are drawn with 

the major classical approaches of Huber (1964,1977) and Hampel (1974). 

In Chapter 3 we examine approximate Bayesian methods for estimation 

in dynamic linear models. Masreliez (1975) and Masreliez and Martin (1977) 

developed useful recursive algorithms as approximations to the intractible 

Bayesian analysis of state-space models with heavy-tailed, non-normal error 

densities. We discuss several serious problems associated with these 

schemes and develop alternatives which, -in addition to solving these 

problems, provide a strong framework for the calculation of approximations 

to the posterior and predictive distributions of interest. The resulting 

schemes have considerable intuitive appeal and are rather closely connected 

to the mixture modelling approach of Harrison an, d Stevens (1976). Indeed 

the latter can be seen to be a special case of our model. 

Chapter 4 is concerned with the estimation of scale and covariance 

parameters. We examine briefly some schemes for sequential estimation of 

scale parameters and covariance matrices of multivariate time series under 

the usual assumption of normality. Then we turn to heavy-tailed 

distributions and develop methods for scale estimation which complement 

and extend the non-linear filtering algorithms already presented for the 

dynamic linear model. 



In Chapter 5 we move away from dynamic Bayesian linear models to 

classical autoregressive-moving average schemes, thoroughly discussed by 

Box and Jenkins (1971). Despite the vast amount of research effort 

that has been devoted to the theory and applications of such models*, 

relatively little has appeared on the robust estimation problem. Notable 

exceptions are. the works of Fox (1972), Abraham and Box (1979), Kleiner 

et al (1979) and Martin (1978,1979), all of whom concentrate on pure 

AR models. Fox distinguishes two types of outliers that occur and require 

different models, one of which is inherently non-linear in the parameters 

to be estimated. Our analyses provide general Bayesian methods for both 

types of outliers in ARMA models based on an extension of the state space 

representation discussed by Priestley (1978) and the techniques of Chapters 

3 and 4. 

Chapter 5 considers the mathematical form of some of the above mentioned 

recursive algorithms in the special case of constant parameters. Here we 

adopt and extend methods of stochastic approximation, developed and used 

by Robbins and Monro (1951), Kashyap, Blaydon and Fu (1970), Fabian (1978). 

and Martin and Masreliez (1975), and use this to examine the asymptotic 

consistency of filtering algorithms with the Bayesian analysis. The works 

of Berk (1966) and Heyde and Johnstone (1978) in asymptotic Bayesian theory 

are relevant here. 

Finally, Chapter 7 consists of a report on an application of Bayesian 

time series modelling in a medical problem. Whilst studying the mainly 

theoretical work of earlier Chapters, the opportunity arose for participation 

in a project involving the Mathematics department at Nottingham University 

and the Renal Unit at Nottingham City Hospital. Early developments were 

reported by Smith and Cook (1980) and this Chapter discusses our more 

recent contributions to this continuing project. 



1.3. Notation and terminology. 

An attempt has been made to follow the style of notation of related 

works, choosing the simplest form where previous authors have differed. 

Throughout vectors are underlined, as x, for example. 11atrices appear 

as capital letters, both Greek and Roman. We make no distinction between 

random variables and their realized values since, generally, the context 

will be unambiguous. All probability distributions are defined via 

densities over Euclidean spaces with respect to Lebesque measure. Such 

densities are represented by the generic symbols p, f and n and the arguments 

follow standard notation. For example p(x), p(x1y) are the densities of 

x and of x given y respectively. The following special densities are 

used repeatedly; 

No &Q is the normal density of 0 with mean m and-variance c. The 

multivariate form is Ne 

rb 
G. [a, b] is the gamma density of A, proportional to k-te-'b for X>O. 

For a (pxp) positive definite symmetric matrix A. WA[a, B] is the 

Wishart density, proportional to JAI 
ýa-p-l)/2 

exp 1-1 trace(BA)I. 

In all cases the subscripts will be dropped when context allows and 

we shall write x ý, p when x has density p. For example 

xIyý, N [m, c] 

when the conditional distributionof x given y is normal with mean m and 

variance c. 

Further notation will be defined as necessary. 



CHAPTER 2. Concepts of robust_Bayesian estimation. 

2.1 Introduction 

2.1.1 General Comments 

Given a scalar parameter 6 about which we have some prior 

knowledge formally described by a prior distribution function, how do 

we assess the influence of a single observation, y, say, on our 

beliefs about 0? For any given likelihood, the effect of y is totally 

described and all-we need do is examine the posterior distribution of 

6 given y. In this Chapter we consider initially a general parameter 

0 and discuss the notions of the influence of an observation and its 

relationship with the concept of an outlier. We than concentrate on 

the special cases of location and scale parameters and attempt to 

build a framework on which to base the analysis of more complex models 

of later Chapters. 

Our main interest lies in obtaining robust methods of estimation 

and thus we concentrate on the effects of likelihood assumptions, 

taking the prior to be unquestioned. Chapter 4 deals with a special 

model where the prior must be treated as suspect as well and we leave 

further discussion to that Chapter. For the moment we concentrate on 

the likelihood and the data y and we shall see that, in a particular 

model, the robustification of estimation procedures is achieved by 

separating the concepts of influential observation and outlier. A 

non-robust analysis is such that influence increases as consistency 

with the prior decreases i. e. as the datum becomes more and more 

aberrant. For a robust analysis, the influence of the observation 

reaches a peak and then begins to decay as. the. observation becomes 

more aberrant. 



2.1.2 Score/influence functions. 

Consider a general scalar parameter e with prior density w(e) and 

a single observation y related to 0 through a likelihood p(ylO). We 

consider now the influence y has on our beliefs about the unobservable 

0. 

In exploring features of the posterior distribution for 0 given 

y an important step is to consider most likely values i. e. the 

posterior modes. Let 0* be such a value. Then, if both 7 and p are 

differentiable in 0, we have 

go (O*IY) =0 (2.1.1) 

where 

In p (0 1 
6a6 

a In Tr In p (y 10) 

=90 (0) + ge(ylO) , say 

in an obvious notation. We recognize g0 We) as the. efficient score 

function (of p(yle) with respect to 0), see for example Cox and 

Hinkley (1974), and following this we call ge (0) and ga (01y) the 

prior and posterior score functions respectively. Thus (2.1.2) 

rephrases the multiplicative Bayes' Theorem in the additive form 

posterior score = prior score + likelihood score 

and this form is particularly useful in examining the behaviour of 

the posterior as y varies for a given likelihood, and as prior/ 

likelihood characteristics vary. In this context, Ramsay and Novick 

(1980) have temed g, (61y) the influence function of p(Oly) with 

respect to e, and introduce the concept of*P- (for prior) robustness 

by calling w(O) P- robust if gA (0) is bounded with respect to 



In a different vein, Box (1980) discusses the use of the like- 

lihood score, g0 (Yle 
0 
), as a measure of the discrepancy from a 

parameter value of 00 as indicated by the observed data y, for a 

given model. We can interpret this by noting that a large "discrepancy" 

leads to a large "difference" between prior and posterior at 00 as 

measured by the difference in score functions there. Similarly, 

consistency of the data y with a value 0 means only a small change 0 
in score. 

Turning now to sensitivity of p(Oly) to y, we define similar 

score functions, but now with respect to y. Subject to differentia- 

bility assumptions, 

(0 1 y) =- -L In p (6 1 y) Dy 

a ln -p (y 18) + -L ln p (y) 
ay Dy 

9 (y g (Y) say, yy 

in an obvious notation. Here gy (YIO) is the score function of the 

likelihood with respect to y and-g 
Y 

(y) is that of the marginal (or 

predictive) density of y. Parelleling Box's use of g (y1e), we can 

interpret gy (yolo) as a measure of the discrepancy of an observation 

YO at a parameter value e. The posterior score gy (61y) then measures 

the "influence" of the observation which will be large when the 

likelihood score is large relative to the marginal score. This 

latter function is given by 

9y (y) =E Eg 
y 

(y 10) 1 y] (2.1.5) 

the marginal score is the posterior expectation of the likelihood 

score. This result is-proved in Appendix A2.1, Lemma 2.1.1, and 

proves extremely useful in later sections. 



Again, bounding the likelihood score function in y will be a 

primary requirement when modelling with protection against outliers 

in mind. This is termed L- robustness by Ramsay and Novick (1980) 

and provides a point of contact with the classical theory of robust 

estimation where the likelihood score coincides with the influence 

function of an M- estimator in location problems (Hampel, 1974). Now 

within the classical framework, the-influence function provides a 

qualitative means of assessing the influence of particular obser- 

vations on the behaviour of sampling theory procedures. In particular 

in studying the behaviour of estimators defined as functionals of 

the empirical distribution function in the case of i. i. d. random 

variables, the influence function at a point x essentially measures 

the influence of an additional observation at x when the sample size 

tends to infinity. This final point is important; the influence 

function is an asymptotic concept and is thus independent of the 

sample. 

Within a coherent framework, we have seen how the likelihood 

score function determines the sensitivity of the posterior distribution 

to a single observation. Considering a random sample {y 
1 sq ynI= yq 

we obtain an analagous relation between score functions given by 

yj 
(01y) =g yj 

(yj 16) -g yj 
(y) 

where, now, 

g (ely) =- --L ln p(Oly), 
yj - ayj 

9 yj 
(Yi1e) = gy(yi1e) =- Dy 

ln P(Yle) I 

Yýyj 't 

and 

9 (Y) =-a ln p(y) yj - 
Ty-i 



Now the' marginal s'core g yj 
(y) is given by 

g (y) =E [g (yj 16) 1 y] 
yj - yj 

as in Ramsay and Novick (1980). So the influence of yj at 0, as 

defined by the posterior score with respect. to y,, is measured by 

the likelihood score (or influence function) minus its expected value 

given the sample. Further discussidn is given in Ramsay and Novick. 

Our main point is that the influence of a particular observation 

must be gauged relative to any other available data, (even in the 

simplest context of a random sample i. e. independent observations), 

and purely asymptotic considerations relating to the likelihood will 

not suffice. 

This line of thought is developed extensively in later Chapters 

where, in a sequential processing of observations, the influence of 

an observation is measured naturally by reference to the "prior", 

which depends on past data. 

We follow up this idea now for the location parameter problem. 

2.2 Location parameter case 

2.2.1 Introduction 

The likelihood now has the form p(ylO) = p(y-0), and we identify 

the various likelihood score functions via 

9y (Yle) =-ge (ylO) = g(y-0), say 

where g(u) is the score function of p(u), in p(u), u EIR. 
au 

Since our intention is to examine various error densities as 

alternatives to normality we assume that 



(i) p(u) is unimodal and symmetric about zero, and positive 

f or all u. 

(ii) p(u) is twice (piece-wise) differentiable in u. 

O'llagan (1979) introduces the important concept of outlier- 

proneness of a distribution within this framework. Let y 1'*0"' Yn 

be independent, identically distributed with density p(y-0). For 

r=1,2,..., n, define the observation set Dr by Drý (Yll***' Yr ). 

Then the distribution whose density is p(. ) is said to be outlier- 

prone of order r if 
0 

lim EP 
lyr+l 1 ->w -CO ý 

(OID 
r+l 

)- p(GID r 
)] d0 = 0, 

for all real t and any prior w(e). 

In fact O'Hagan distinguishes left and right outlier-proneness 

according as yn+, -*+-; since p(y) is symmetric we do not need this 

distinction. Clearly, as noted by O'Hagan, outlier-proneness of 

order 1, relevant in the case of, two observations, is the strongest 

property, implying outlier-proneness of order n for all n. 

Now, using the earlier results of Dawid (1973), O'Hagan proves 

that a distribution with density p(-) satisfying the above conditions 

is outlier-prone of order 1 (or just outlier-prone) if, additionally, 

the following conditions are satisfied; 

(iii) for all C>O, h>O, there exists A such that, when y>A 

and lyl-yi<h, 

lp(y, ) - P(Y)l <E P(Y) 

there exists B such that, for all y>B, 

a 
- 7- ln p(y) is decreasing in y. vy 



I NB the assumed symmetry imposes similar conditions on the left-hand 

tail of p(y). 

Condition (iii) requires that p(y) be essentially uniform in the 

tails and we shall see that this restricts the rate of decay*of p(y) 

to be no greater than exp{-kjyjI as jyj Condition (iv) then 

classifies p(y) according to the behaviour of the score function. We 

refer to likelihoods which satisfy these conditions as robust, and 

examine in some depth some examples in the Appendix A2.2. 

Returning now to the posterior 0ý-score, 

90(oly) =g 6(e) + g(O-Y)s 

we have pointwise convergence of posterior to prior O-score whenever 

p(y) is robust. Note however that this occurs when g(y) -* 0 as 

jyj without the monotonicity requirement of (iv), and so, from a 

practical point of view, robust estimation can be achieved with, for 

example, posterior modes converging to prior modes as jyj -* -v 

without the guarantee of convergence of distribution. functions. 

What are the implications of these ideas for our problem of 

updating beliefs described by a prior w(e) on receiving a single 

observation y with likelihood p(y-0)? Clearly, -in addition to 

assuming a robust likelihood, we require a certain strength of prior 

information in order that an aberrant observation be discredited. 

O'Hagan gives conditions which determine this, as follows; 

Let m(e) be any prior measurable ftnction. Then, if 

ir(6) p(6)-1 d6 Co 
_-w 

and 
Co 

im(0)17r(0) p(0)-1d6 .< 



t 
we have lim f [p(ely) - ir(O)]dO =0 

lyl 

for all real t, and, in addition, 

lim E [m (0) 1 y] -E Ein (G)j = 0. 
IYI 

-> - 
This result holds when p dominates ff in the sense of (v) and (vi). 

We provide an example. 

Example 2.2.1 

Let prior and likelihood be Student t, thus providing both P- 

and L- robustness in the terminology of Ramsay and Novick. 

So 

iT (0) a [h + (e -m) 9-(h+l)/2 

and 

(y-0) et Ek + (y-0) ý -(k+1) /2 
31 hj, k>0, 

where m is the point of symmetry of the prior (the prior mean if 

h> 1). We can distinguish the following cases, depending upon the 

degrees of freedom parameters h and k. 

Let r= h-k. 

(a) r>1. 

Our prior beliefs are "stronger" than our beliefs about the 

likelihood in the sense that the degrees of freedom parameter is 

larger. Clearly (v) holds and so the posterior distribution converges 

to the prior as jyj -* -. For posterior moments, note that 

E[Oply] <- for p< h+k+l, 

whilst 

E[O p]<- for p<k. 



so the result of O'Hagan ensures convergence of moments only for 

p< r-1. 

r< -1. 

The symmetry between 7 and p means that the roles are reversed; 

the discussion of a) is relevant with prior and likelihood inter- 

changed, m replacing y and y, m. 

c) rIg 

Now neither w nor p is dominant as defined by (v). For h=k, 

p(ely) cc I[k+ (O_Y)2] Ek+ (O.. m)gl-(k+l)/2 

Clearly, if (y+m)/2, then p(ely) is symmetric about T for all 

y and m. As jyj increases, p(Oly) becomes bimodal with one mode 

tending to the fixed value m, the other following y, as can be seen 

from the (cubic) modal equation. Similar behaviour is evidenced with 

other values of r in this interval, and indeed, for other symmetric 

distributions as we'discuss in the next section. 

2.2.2. Weak prior information. 

We examine now a special case of the above framework when neither 

7r nor p dominates the other in the sense of the condition (v), (2.2.10). 

We consider the case of 7r and p having. the same functional form, with 

ir having point of symmetry m; 

7T (6) =P (e-M) 
. 

It is clear that we cannot now distinguish an aberrant obser- 

vation y from an "aberrant" prior specification since extremeness of 

corresponds to ly-ml -* -. Thus outlier rejection will not be 

obtained. What does happen? 



Symmetry considerations. 

The assumed symmetry of p leads-to the observation that, as in 

example 2.2.1, if T= (y+m)/2 then 

p(e+xly) a p((y-m)/2+x). p((m-y)/2+x) 

ap «m-y) /2-x) p «y-m) /2-x) 

, by symmetry of p, 

a p(T-xly), for all real x. 

So p(Oly) is symmetric about -6 and, since E[Oly] < CoP T is 

the posterior mean. Further, T is always a candidate for a posterior, 

mode since 

go (Oly) = g(O-in) + g(O-y) 

0 at 0 since g(-u) = -g(u). 

Now when ly-ml is large, we expect bimodality of p(Oly) whenever g 

is redescending, so T will be the location of a minimum of p(61y) 

with two modes symmetrically located about Consider the following 

example. 

Example 2. 
-2.2. 

Take a*Cauchy density, p(u) x fl+u2]-'. Then 

9 (ely) (O-M) 
.+ 

(e-Y) 
0 [1+ (e -M) 1] [1+(o-y2)] 

= 

implies 

ýEl+(ý-3)2] + (ý-3) [1+ý2] . 

where 

ý= O-m and z= y-m. 



Thus 2ý3-3ý2z + ý(2+Z2) -y=0 

or (2ý-z)(ý2-ýz+l) 

having solutions, 

z/2 or 00 (y+m)/2, 

and 1,2 - z/2 I r{-z7--41 /2 
9 

or 0 
1,2 '2 00+ rf -(y-m) '-4 /2 

. 

Thus 00 is the mode if ly-ml < 2, minimum if not. Clearly also 

lim 6, =m, 

Y-m 

f62 

=y* 

In general the above discussion does not carry over to the case 

of different scale factors in iT and p since the symmetry breaks 

down. However we can obtain a feel for'the form of behaviour by 

considering a particular family of densities. 

Special case: the Stable distributions. 

Assume that both. 7 and p are symmetric stable of index a, 

1a<2, with characteristic functions 

xe (t) = exp { imt - ictla I, 

and 

X0 (t) = exp ( jet _ I, tla ,, CP s> 

When c=s the discussion above is relevant. Otherwise we can 

still obtain an expression for the posterior mean which is an 

intuitively appealing generalization of the normal theory result 

corresponding to a=2. 

Lemma 2.2.2 In the above framework 

E[Oly3 = (ca+sa)-I(Cay+sa M). 



Proof. Define 0= O-m and z= y-m. Then the joint characteristic 

function of z and ý is 

xz, ý 
(u, v) =E Ce'uz+'"] 

=E 
[E [e iuz I ý] .e 

ivlj 

i(u+v)ý_1sula 

= exp I-Isul'-Ic(u+v)l'l 
. 

Now it is shown by Lukacs and Laha'(1971), Lemma 6.3.1, that, for any 

two random variables z, ý, 

E[flz] = az if and only if 

a 
a, -L x (u, O), for all u. av "Z, ý "V) 

Iv=O 
Du Z4 

In our case 

3 a-1 
av x 3, ý 

(U, v) x 3, ý 
(u, v). f-cea. ju+vi. sgn(u+v)1 oýu+V, 

U+v=O, 

a (U, v (u, O). J-a. cýjujý-' sgn(u)l 3v '3, ý 
)= X3, ý 

f or all u. 

Further, -L (U, O) =X (u, O). I-a(c a +s a ). 'Jujý-' 
sgn(u)l 3u X3, ý 3,0 

Applying the above quoted result we see that 

E[flz] = az for a= Cý(Ca+syl. 

Hence, transforming back to 0- ý+m and y= z+m we have 

= M+Cý(Ca+sa)-l -M) 

and the result follows 



So lim E[Oly] does not exist. It is intuitively 
I Y-M I -). - 

clear that the posterior variance should diverge too, in this case and 

for other densities. We can show this to be true for the special 

case a=l, the Cauchy density. 

Example 2.2.3. 

Set a=l, ý= c- 
1 (O-M), z= C- 

1 (y-m) and k= c-Is. Then by the 

above Lemma, 

EEý I y] = 

co 
. -2 [, +ý2j -1 [k2+ (ý-Z) 2] -1 Now E[ý21zj = p(z)-l f ký? 7r. dý 

-co 
< 

Further p(z) Tr (I+k) . 
[(l+k) 2+ z 2] 

Partial fractions expansion of the above integrand leads to 

co [h 
I( ý+b) 

+_k e(ý-z) +! a 

17 r 1+ý2 3 
7r p (Z) f5 dý 

-co 
D 

7r 
[k2+ (ý-Z) 2] 7r 1+ý2 

where, setting r2 = k2+z29 

d= [2z2-r2(1-r2)]. [472+(j-r2)2]-l 

and 

(1-r2). [4z2+(l-r2)2]-' 
. 

The integral exists with the integrands involving a and e contributing 

nothing. Thus 

= ff -1 -1 [ý21 z] p(z). Ukb+d] 

On substituting for p(z), b, d we obtain 

var[Oly] . C2 varDIz] . C2fE[ý21zj = E[flZ]21 

C2 
(r2-k)(r2-l)+2z2 (1+k)2+z2 c2Z2 

I 

4z2+(l-r2)2 

I[ 

ý11 + -k) 
(1+k) 2 



c2(r2-k)(r2-l)+2(y-m)2 (c+s)2+(Y_M)2 

4(Y-M)2+(l-r2)2c2 

II 

(k+l) 

I 

C2 (Y-M) I 

(C+S)2 

This complicated expression simplifies when c=s=l to 

var[ely] = 1+(y-M)2/4. 

In all cases, 
y 

lim var[Oly] diverges. 
-ml -* Co 

Now these sort of results indicate a rather conservative "robust" 

analysis in which the posterior density flattens out between m and y 

as ly-ml increases with modes following m and y. The ambiguity is 

ever present. In order to avoid it we need a dominant prior specific- 

ation as we now discuss. - 

2.2.3 Strong prior information. 

Given a robust likelihood p, we need to satisfy (v) of equation 

(2.2.10) in order to achieve full outlier rejection as defined by 

the convergence of posterior to prior distributions. The robust 

likelihoods descend no faster than e-klul as Jul -iý -, 
(for details 

see Appendix A2.2. (b)), and so any prior for which 

Co 
f Tr(6). e-kl'I do co 
- Co 

-hl 01 1+6 
will suffice; in particular w(e) -, e C- > 0, would be appropriate. 

Further, this will lead to convergence of posterior moments of all 

orders to prior moments. Clearly this specification implies an 

asymmetry of the treatment of w and p; the prior is non-robust and 

must be so in order to avoid the ambiguous'analysis discussed in 

§ 2.2.2. 

Now the exponential power prior e -h 0. is not very trActible 

for general 6>0. The case E- 1, the normal density is, however, 



and we discuss this now. 

Normal Prior. 

How can we justifY a normal prior? The reason of tractibility 

is certainly important, and later results show that a normal prior 

provides just enough structure to enable closed form expressions 

for posteri or moments to be derived for a wide range of symmetric 

likelihoods. We have also the following considerations which suggest 

that a normal prior will often be a not unreasonable assumption. 

(i) We may actually have such prior beliefs, possibly from some 

previous analysis. If, for example, y is one of a set of 

observations y of which yy are "good" 
19 Y2, - n 

i. e. can be assigned a normal likelihood, then a pragmatic 

approach to modelling the data might be to suppose an 

inhomogenous sample reserving the robust likelihood for dubious 

observations. O'Hagan (1979) makes some remarks along these 

lines. 

If our prior before making any observations is normal, 

then the posterior given yl,..., Yn is too and forms a normal 

prior for 0 before observing the data y. 

(ii) Arguing along similar lines to (i), but more formally, let 

the data generating mechanism be a mixture of the*form 

f(y) = (I-E) ý(Y) + cp(y) 

Where ý is the standard normal p. d. f. 

Then, as in Box (1980), 

n 
P(Yl .... I Y,, Ie)'= Wopo(e) + W, 

jEj pij(e) 

where 

n 
PO 11 ý (yk-6) 

k=l 



is the likelihood of Q1. ... 0 Yn 10) when all are from the 

normal component of f, 

n 
Plj(e) ]l ý(Yk-o) l. p(y3-8) 

k=l 
kij 

is the likelihood of (yj, 
... Iyn 

10) when all but y, are from 

the normal component, and 

n' 
w _(, _C)n wo _6C. etc. 

Again if our prior is normal, then p(O lyl'**" Yn) is a 

sum of terms the first of which is normal and, when Yn 

are "good" observations, this term will dominate the others as 

discussed by Box and Tiao (1963) and Box (1980). This then 

gives an approximately normal prior before observing y. 

Asymptotic considerations. For large n, under rather weak 

conditions on the prior and likelihood, p(Olyl... y 
n) 

approaches 

normality. See Heyde and Johnstone (1979) for details of 

such conditions. 

So for the rest of this section we take a normal prior 

for 0 when mean m and variance c2, 

C- 
1 ý(c-'(O-m)), c>0, and 

proceed with an examination of various characteristics of 

ly) - 

The poste ior modes. 

Let 0* be a posterior mode. Then the-modal equation is 

g(y-o*) 

or 0* =m+ C2. g(y-e*) 



indicating the robustifying nature of a redescending score function. 

This equation can be solved iteratively to find 0*. We note that a 

simple plot of the posterior score 

90 (oly) = C-2 (O-M) + g(O-Y) 

will provide a guide to the position of modes and indicate whether 

p(Oly) is bimodal. 'If g(y) 'is non-decreasing for y>0, then p(y) 

is non-robust, and g. (61y) is increasing in 0, cutting theO -axis only 

once at the mode. 

Example 2.2.4. 

Let p(y) be Student t with k degrees of freedom. Then 

go(oly) = C-2 (0-m) + (k+l)(0-y) [k+(O-y)2]-I. 

0 

I Y) . 

Bimodality only occurs for small k when c -2 is very small and ly-ml 

large. 



Example 2.2.5. 

Define the Huber k density (Huber, 1964) by 

ý(Y) , 
jyj < k; 

P(Y) CE 
fexp-kjyj, 

otherwise. 

If p(y) has this form then g (61y) is piecewise linear, given by 

* -2 (0-M) + 0-Y ly-61 < k; 

-2 * (6-m) +k0> y+k; 

-2 * (0-m) -k0< y-k. 

In this case the posterior mode can be written in closed form as 

f ollows: - 

Let mo = (1+e)-l(c2y+m), 

, 2k M, = M-C 

M2 ý m+c2k. 

Then m09 ly-ml<k(l+c2); 

m10 y-m<-k(l+c2) 

M2 Y-m>k(l+C2). 

Alternatively, 0* =m+ c3g*(y-m) 

where 

9*(u) 
U. (l+c2 )-I., lul<k(l+c2); fk 

sgn(u) V otherwise, 

is a slightly modified version of the score function g(u). 

Finally note that piecewise linearity of g (01y) means piecewise 

normality of p(Oly). 

For 0 iE I 

p(oly) aciie (c 
i1 (0-m i», j=O 1,29 

where 10= {01 10-yl, <kl 

I, = {01 O<y-kl , 

12 = {01 O>y+k} 
, 



-2 = -2 and c12=c22= C2, C0 1+c . 

Posterior mean and variance. 

It is possible to obtain closed form expressions for the mean 

and variance of p(Oly) within this location parameter framework with 

a normal prior. Masreliez (1975) Proves the following theorem in a 

more general setting. Clearly we can derive similar results for 

higher moments if required to investigate skewness and kurtosis of 

the posterior distribution, with moments of order k requiring the 

existence of the k th derivative of the log likelihood. 

Theorem (Masreliez). 

Let g (y) -L In p (y) and G (y) g (y) 
y Dy yy Dy y 

where 
Co 

p (y) P(Y-0)1T(O) do 
y 

Then (i) E [0 1 y] =m+ C2 9 (Y) 

(ii) var[Oly] = C2 - c4G y 
(y). 

. 
r") 

Proof (Masreliýq,, iI975). 
co 

By definition EEely] =f 07r(O)p(y-O)dO. p (y)-' 
-00 y 

S*o p (y)[E[Olyj-m] = 
'f 

(6-m)7r(O)p(y-O)dO. 
y 

-W 

Now since 7(e) = c- 
1 

ý(c-1(6-m)), then 

(6-M)lr(6) =- 
Dir(0) 

De 

so 

00 
2f BIT (0) 

Py (y) 
[E [e I y] -m] =-c 30 p (y-e) de 

CO CO C2 
(D(Y_O)Tr(e)] 

f ap(y-a) 
n(O)dO on integrating by parts, De 

"0 
C2 f 

7r(O) -L p(y-O)de 
CO 

Dy 

C2. -L p (y) on interchanging th .e orders of integration and ay y 



differentation. So (i) follows. Similarly, using (2.2.1), 

W 

p (y). EU(()-M)2]y] c' f 
. 

(0-m)p(y-O)dO 
y 

-00 

which, on integrating by parts, gives 

00 
r2 Ir(6). fp(y-0) + (6-m) 2-P(y-0). ld0 

= c2p 4 27r(0) 
-LP(y-. O)d6 .y 

(Y) +cf 
00 

30 * DY 

= c2p y 
(y) - c' H(y), 

where, by integration by parts, 

Co Co 32 p' H(y) Ew(6) h(Y-e)] +f iT(O). - (Y-0)d6 
ay 

-00 -Co 
aya6 

32 
2V 

(Y) 
Dy y 

again by interchanging the orders of integration and differentiation. 

Thus 

varlely] = E[O-M)21yj - (E[Oly]. -In)2 

C2 - C4 [H(y). 
p (y)-l + g2(y)] yy 

and (ii) follows by noting that 

p (y) H (y) + g2 (y) 
yy 

So the marginal score, which by Lemma 2.1.1 is the posterior 

expected value of the likelihood score, is used explicitly in 

determining the posterior mean. The marginal density py is just the 

convolution of the heavy-tailed likelihood p with a normal prior 

7 and we might intuitively expect the tail'behaviour to mirror that 

of p. This is indeed so and we note the following properties of the 

marginal density, score and information functions: - 



Wpy is unimodal symmetric about m. This follows directly from 

the definition as a convolution of two unimodal symmetric densities. 

Thus gy (y) is skew symmetric about m and Gy (y) is symmetric. 

(ii) For robust likelihoods such that g(y) is bounded and redescending 

then 

a) g (y) is bounded. This foriows since 

9y (y) =E 5ý (y- 0) 1 y2 

Sojg(y-O)j <m implies Ig 
y 

(Y)l < M. 

b) gy (y) redescends. This follows from the work of O'Hagan 

(1979) since we know that 

[0 1 y] -m -* 0 as IyI -* co. 

As an example consider the case of a stable likelihood. 

Assuming without loss of generality that m--O, then 

Co 
'-' exp lt a_t2C2/2 

- ity 1 dt py (y) = (2 ir) f 

(30 

1 

00 
7r f exp I_ ta _ t2C2/2]. cos(ty) dt 

0 

00 
(iry)-1 f exp 1_ (t/Y)a _ t2C2/2y21 cos(t) dt. 

0 

Now exp(-t2c2/2y2) =1+ (ýt2c2/2y2), where Ifl < 1. So, in the 

notation of Lemma A2.2.1 of Appendix A2.2, 

py (Y) = (ITY)- 1. Re 10 (y) + C2(2y2)-1.0(Re I 
2(y)). 

We can follow the proof of Leuma A2.21 to show that gy (y) behaves 

like y- 
1asy 

-* cc, 



(iii) The moment structure of p mirrors that of p since, for k>O, 

y Ckle] C kk E [y E 
[E 

011. <- whenever Ey 

Moreover marginal moments diverge'when likelihood moments do so. 

(iv) G. (y)-may be negative. This occurs I when g (y) redescends 
yy 

(for y>O) and leads to the posterior variance exceeding the prior 

variance. This type of behaviour is noted by O'Hagan (1981) in a 

similar context and is quite'natural. In such cases, Gy (Y) is 

positive for "small" values of theyesidual y-m and therefore, 

varCely] < C2. As ly-ml increases, Cy goes negative and so 

var[ely] ý, C2 reflecting the uncertainty about y. (Is it a good 

observation or not? ) For larger jy-mj,. G 
y 

tends to zero and y is 

classified as an outlier, being ultimately ignored. 

Here we can see how use of an outlier-prone distribution inverts 

the relationship between the influence and the extremeness of an 

observation as we mentioned in the introduction (§2.1.1). 

Consider for example the usual normal (non-robust) analysis. 

The marginal score is just the linear function 

9y (Y) = (1+c 2)-l (Y-M). 

So as ly-ml increases i. e. as y becomes aberrant, (given that the 

prior is unquestioned), then E[ely] grows with y and thus the influence 

of y grows. 

For, say, a Student t likelihood, considering the redescending 

shape of gy (y) we see that the influence of y on E[Oly] reaches a 

peak and then begins to decay as y becomes more and more aberrant. 



( v) Turning now to non-robust likelihoods, py i's non-robust. In 

particular, if g(y) is increasing then p(y) is log concave and 

therefore strongly unimodal, as discussed by Barndorff-Neilsen (1978, 

Chapter 6). Furthermore, Corollary 6.1 of this reference states that 

the convolution of two strongly unimidal (continuous) distributions is 

itself strongly unimodal hence log concave. Since the normal distri- 

bution is strongly unimodal then our. marginal distribution is and 

so g (y) increases. 

This accords with the result of O'Hagan (1979), that strongly 

unimodal distributions (that are continuous and symmetric) are outlier 

resistant and therefore p(Oly) cannot "reject" the outlier y. In our 

framework the posterior mean is increasing for y>m and tends either, 

to infinity with y (as in the exponential power*case, with 1<$, <2, 

Appendix A2.2 (ii)). or to a constant value (as with a logistic or 

double-exponential likelihood). 

We illustrate the similarity between likelihood and marginal 

scores with three examples. In each case, m=o, c2=1. The likelihoods 

are 

(a) Contaminated normal CN[0.1; 1,5] 

(b) Double exponential. 

(c) Student t-8; 

The full line is the likelihood score, the dashed line the marginal. 

We then turn to the related problem of unknown scale parameters 

and explore ideas similar to those above for the location case. 



2.1 

(a) 

(b) 

(c) 



2.3 Scale parameter case. 

q11 T- &--A.. -ýt -- 

Consider the case of known location, 0=0, and unknown scale 

parameter 6>0. Thd likelihood is now 

P(Yla) = cr -1 p (a- 1 
Yý 

and the score functions of p are related by 

g (y a-, cl -yg (y I CY)l y. 

with gy (yja) = a-1g(a y), g(u) being the likelihood score function, 

In p(u), uE 1R. 

It may seem reasonable to suppose that outlier-rejection could 

be achieved by adopting an outlier-prone density p. That this is 

not so can be seen simply by examining the posterior score function 

with respect to a, given a prior w(a), 

-a In P(aly) =- 
a in 7r(a) + a-'[I-cF- 

1 
yg (a- 1 Y)l (2.3.2) Ta 30 

In order that the posterior score converge to the prior as jyj -* -, for 

all a, we require that 

ug (U) -* 1 as IuI -*. -. 

None of our robust likelihoods satisfy this condition; it demands 

tails which are heavier than those of-any density discussed so far. 

In general the densities of §2.2 are such that either ug(u) diverges, 

or, for robust densities, ug(u) converges to some constant not equal 

to unity. For example, with a Student t-k likelihood, 

ug(u) -* I+k as IuI -+ -, 



and thus the observation has a limited effect as it becomes extreme. 

Now we. follow the same line of argument as that of §2.2.3 in 

choosing a prior representing strong information in some sense about 

the scale parameter. 

Define. A = a-2. The usual normal theory analysis requires a 

Gamma prior distribution for X for the conjugate analysis, and we 

adopt such a prior, noting that the discussion of a normal prior for 

location is valid here too, in that a gamma prior for Xis reasonable 

if, for example, 

(i) we have a set of "good" observations to which we assign a normal 

likelihood leading to a gamma form in A (and so a gamma prior 

before making these observations leads to a gamme posterior); 

(ii) More formally, if we model the likelihood as 

(1-0 -1 0 (cr -1 Y) + f-a- 
1p (0-1 Y) , 

then the first term in the expansion of the likelihood of a set 

of good observations will be a gamma form in X and will tend to 

dominate the other terms. 

Within this framework, the following result is applicable, 

Theorem 2.3.1 

Let the prior be IT(X) -G a>O, 0,1ý0 
[a2' 

T] I 

given by 

a-1 - 
Äß 

w (x) aX x>O. 

CO 
Define'the marginal density p (y) fx 'p(X'y). 

ir(X)dX and the score 
y0 

and information functions 

9 (y) ln py(y) GY(y) = -5y g (Y) 
yyy 



Then 

(i) E[Xly] = ý-1. j(a+l)'- yg 
y 

(Y)j, 

(ii) *var[Xly] = 0-2. J2(a+l) -3yg y 
(y) - y2G y 

(Y)I. 

Proof 
00 

By definition E[Xly] .f X3/2p(kly)7r(X)dX. p -1 
0xy 

(Y) 

or 
[EL; 

k1y] - a/O]py(y) = 
'f 

0 
Now, by the special form of-7r, 

(X-cx/0)7r(X) = -2a 
-1 

.a Tr (x (2.3.3) 
ax )l - 

hence 

"0 
p (y) =f -2ß-'TDXEXTr(X)]X! p(Xly)dX [X 1 y] -cc/ ß] - TÄ 

which, on integrating by parts gives 

11 Co Co 1[-2ß-1Xir(X)X p(X y)] + 2ß-1 fXiT(X) 
--2- [Xýp(X'y2d1 

00 al 

xTr(x) 1x- 
pa 

ly) 
+ X-1- yý p(Xly)ldX 

«o 
Dy 

whe-ýe we have used the identity 

a. III P (x Y) p (yx 2X 

Therefore 

py (y) 
[E[Xiy]-«/ßj 

lfXlp(Xlyý7r(X)dÄ +yf 7r (x) 3 Ex ,p 
(X 

ýY)] 
dx 1 

m '» 

Dy 
=a -1 lp 

y (Y) + Yý3-pyywj 
on interchanging the orders of integration and differentiation in the 

second term. The result (i) follows immediately. 



For (ii) note that, using (2.3.3), 

3 
EEX(X-a/ß)lyý p (y) = -2ß_I X 

/2p(X 
y)dX. 

Integration by parts gives 

3/ 
y 

Co 00 a {X 
3/2 

-2 IEXU(X)X 2 P(X 
1 

)] -f x7r (X) 
axp 

(X 
ýy) 

)dX 

Co 
f X7r(Ä). E3X'p(X'y) + xi y -L p(X'y)]dX 
0 Dy 

. 

= 3ß-1p 
y 

(y)E[Xlyl + yß-1 Dy 
[py 

(y) E EX 1 y31 

on interchanging the orders of integration and differentiation in the 

second term. 

So, using (i) 

E EX (X-a/ ß) 1 y3 py (y) -3 ß-2p 
y 

(y) Ea+l-yg 
y 

(Y)u 

YO -1 a+ 3p (y)E[Xlyll. lp 
y 

(y) 
. -5y E [A I yj -ýýy 

The second term here is 

py (Y)YO-2. I-YG 
y 

(y) - (a+l)g 
y 

(Y) + yg 
y 

(y)21 
, 

and-therefore 

0-2 13(a+l) -g (y). [3y+(a+2)y] + y2g2(y) - y2G (y)j. 
yyy 

Using the identity 

var[Xly] = E[X(X-a/$)lyl + a/aE[Xly] - E[Xly]2 

the result follows. 

Note that the prior mean is a/0 and so E[Aly] can be written as 

0 

EX 1 yj -E [X] + ß-! El -yg y 
(Y)i 

- 



Similarly var[Xjy] = varEA] + a-2 [2-3yg 
y 

(y)-y2G 
y 

(y)] *. 

As with the location problem, the marginal density defines the 

posterior mean and variance via the derivatives of the log density. 

(Again, higher moments can be derived similarly). We note the following 

immediate properties of p 

py (y) is unimodal symmetric at. zero. 

py (y) is generally rather heavier-tailed than p(y) in the sense 

that it lacks high order moments. 

kk 
For k>O, EyE 

[E 
[y 

Now E DkIX] = X-k/2 
'f'O 

ukp (u)du, thus, if p has moments of order 

00 
I [k f ukp k, i. e. Eu Mdu < -, then 

kk [X-kl2] E[y ]= E[u ]. E 

For ir W=G 
[EV 

EEY k] 
only exists 

of py is reflecte 

<- if and only if E; 
Q/2 I< 

[A-k/2 E]<- only for k<W, and so 

for k <c4, when E Euk] < w. This heavy-tailedness 

I in the, score function. Since E RIO 1 0, we, 

have, by the Theorem 

(a+l) - yg (y) >, 0 for all y, y 

hence, for jyj j 0, Ig 
y 

(y)l jyj-1(a+l). 

Note that with a normal likelihood, 

9y (y) . (a+l)y/(O+y2) 

and therefore 

lim EEXly] lim var[; kly] =0 
yI), QO yI-,, - 



indicating the lack of robustness of a normal analysis. For 

robust likelihoods (and heavy-tailed non-robust ones), yg (y), 
y 

typically converges to a constant not equal to a+l,: Le. E[Xly] 

tends to a non-zero constant as lyl-), -. 

Similarly, using this bound on yg (y) and the fact that 
yý 

var[x1y] > 0, we can easily bound Gy (y) by 

1y (y) 1 y-ý3(«+1) ,yý 09 

and hence show that var[Xlyl is bounded above by 8(a+l) 0-2. 

Again, for non-normal likelihoods, varr-Xly]- has some finite L 

non-zero limiting value as jyj-. 

2.3.2. Location/Scale. 

Now the likelihood is 

p(yle, a) = a- 1p (a-, ry-el )I a>o, -. W<O<00. 

In order that we can apply the ideas of the separate location and 

scale problems we need to adopt a special form of joint prior distri- 

bution as follows: 

Take a joint prior for (O, a) such that the conditional prior 

Tr(eja) is scaled by a, (centred at zero for simplicity), 

i. e. 7r(ela) = a-17r(a-10), 

and a marginal prior for a, p(a). 

Then we have 

(i) The conditional posterior 701y, a), a P(a- 
1 (Y-0))7r(C-10). 

(ii) The marginal posterior p(aly) is obtained as follows 

Set z=a -1 y and ý= cr -1 0. Then 

co 1PE -1 P(YlG) f a- cr (y-0)]a ir(a O)dO 
00 



Co 
= a- 'f 

p(z-e). Tr(ý)dý 

is unimodal symmetric at zero and scaled by a putting us into the 

framework of §2.3.1. 

This scheme is used in the normal theory model with the joint prior 

being of the normal/gamma form i. e. Tr a normal density and p that 

of the square root of an inverse gamma random variable. Following the 

ideas of this Chapter, we investigate the implications of this prior 

with a non-nomal likelihood. 

-2 Def ine X=a 

Now p(O, X) is such that p(G, X) = w(6 X)p(X), where 

1 N[m, c2X-j 

and p(A) = G[a/2,0/2] . 

Corollary 2.3.1. 

lpl 
cy-l(y-m -2p a-l(y 

co 
Define p(ylo) = a- 5f CF -0)] IT (o 1 X=C, 2) do, and 

-cc 
the score and information functions 

0-igi (a- I (y-m)) ln p(y I a) Dy 

Cr-2 G, (a- 1 (Y-M)) 0-1 
a 

91 (cr- I (Y-M)) TY 

Then 

E[ely, a] =m+ c3cr. g, [(y-m)a-ý 
, 

and 

var[oly, c] = 02 C2-C4G (y-m)a 

Proof. Apply Masreliez's Theorem, noting that from (ii) above, 

P(yla) is unimodal and symmetric about m. 



Corollary 2.3.2. 
OD 

Define further p(y) =p 2(y) =f cy-1 plla-'(y-m)]. p(cr)da 
0 

and 

y, 
G ý-2 

g (y) TL In 
2 P2 (Y) 

2 
(Y) "3ý'y (Y) 

Then 

E[Xly] - b-11(a+l)-yg 
2(y)l' 

and 

var[Xlyj = b-212(a+l)-3yg2 (y)-y2G2(y)l* 

Proof. Apply Theorem 2.3.1 noting that p2 is unimodal symmetric at m. 

Now we have a framework on which to build a scheme for recursive 

estimation of location/scale parameters with non-normal likelihoods. 

In Chapter 3 we use these results in investigating models more general 

than the simple scalar parameter problems of this Chapter; in particular 

linear time-series models. 



Appendix 2. 

A2. I 

Lemma 2.1.1. 

Let 0 FEIR have prior 7r(e)>O, e C--]R, and let y CIR be related to 

0 via a likelihood p(yle)>O for all y. Assume that p is twice 

differentiable with respect to y. - ýf g(ylO), G(yle) are the likelihood 

score and information functions and g(y), G(y) those of the marginal 

density of y, then 

(i) g(y) = E[g(yl 0) ly] 

(ii) g2(y)-G(y) = E[g(ylo)2--G(ylO)Iyj. 

Proof'. - 

Using the property E 
lay 

1n p(ely)l Y] =0 

(Cox & Hinkley, (1974), pllO), and the relation 

.3 In p y) = -2- In p (y 10) - -2- In p (y) 
ay Dy ay 

we have (i) immediately. 

For (ii) we use the identity 

E[( -L ln p(Oly))21y] = E[- 3? ln p(oly)ly] Dy ry 2 

and on expanding the square using (1) we have 

E[g2(yle)+g2(y)-2g(y)g(yle)ly] = E[g2(yle)ly] - g2(y) 

rom 

= E[G(ylO) - G(y)ly] 

and (ii) follows. D 



A2.2 Survey of heavy tailed, unimodal, symmetric densities. 

Contaminated normal. 

Widely used in robustness studies, and in particular, in 

Bayesian approaches to robust estimation, (See, for example, Box 

and Tiao (1968) and Box (1980)), the contaminated normal density 

P(Y) = (I-eWy) *+ fa- 1 gcr- 1 
Y) , 

where O<C<l and o>l, is not outlier-prone. The score function 

illustrates the treatment that an observation receives from such 

a likelihood when used in the location problem. There are three 

distinct regl'ons: 

a) "Small" values of y are essentially assigned to the ý(y) 

component of p(y); 

b) "Medium" values are problematic; is y an outlier or not? 

c) "Large" values of y are assigned to the a- ý(a y) 

component of p. 

Use of this density is not problematic; we can essentially 

consider the two components separately in the usual way, as in 

Harrison and Stevens (1976) for example. 

(ii) Exponential-power 

Box and Tiao (1973) pioneered the use of their family in 

robustness studies; the density is written as 

p(y) = c(o). expl-ilyla 1, 

For O<k, 2, we have a unimodal symmetric and heavy-tailed density, 

with the Laplace, or double-exponential at $=l, and the normal at 

0=2. Box and Tiao restrict attention to 0>, l, the densities for 

$<l being extremely leptokurtic. However, the range 0<1 is just that 



section of this family which are outlier-prone, the others being 

outlier-resistant. To see this consider the conditions of 2.2.1. 

Firstly, condition (iii) of (2.1.8); "uniformity" in the tails. 

For y>O, h>O 

(p (y+hl) 
.-ý0 - ln k- 

-y+ (y+h) 
PTY 7] 

y 
(, +h) 

y 

So for y- 
I h<l, 

(, p(y+h) 01_ ýh + 0(ý-l h2 
- ln (Y7ý =y2 ý2 

Thus 

-Oh 
a) When 0<ý<I, (1) is +01 2-o 

(-Y I 

which tends to zero as y-*. -, so (2.1.8) is satisfied. 

b) Men 1, <a<2 we have from (1) 

(Y+h) 
-- exp (ah) is Y-ý- 

So (2.1.8) is not satisfied. The outlier-resista4ce for 1<ý, <2 is 

noted by O'Hagan (1979) and follows from the strong unimodality of 

the density for such 0. 

Notice that a) and ý) indicate that (2.1.8) will only be 

satisfied for densities which decay no faster than exp{-klyl} 

as mentioned in §2.1. 

The outlier-proneness for 0<1 now follows since, clearly, the 

score function is decreasing function of y>O. 

Student t. 

The score of a Student t density with k degrees of freedom is 



(k+l)y/(k+y2), k>O, 

and ultimately redescends to zero. 

To prove (iii) of (2.2.8), note that 

2 
ip(y+h)l(k7+1) k+y2 

as jyj 
P(Y) k+(y+h)ý'- 

and so the Student t distributions are outlier-prone. 

This family provides a reasonably-tractible density form 

with robust properties and allows for a choice of robustness 

parameter in the degrees of freedom k. We shall use the t distri- 

butions extensively in following Chapters. 

(iv) Stable densities. 

The symmetric stable distribution of index a, 1, <a, <2, has standard 

characteristic function 

exp - Itl' 
, 

C-a 

and a (regular) density onIR which is unimodal at zero. (See, for 

example, Ibragimov and Linnik (1971)). The moments of p(y) exist 

only for order less than a, and so the distributions can be seen to 

be heavy-tailed, lying between the. Cauchy (a=l), and the normal (a=2). 

p(y) is given by the inverse Fourier transform of X which can be 

expressed as 

CO a 
P(Y) f cos(ty)e-t dt. 

0 

Thus p(y) is continuously differentiable in y. The behaviour of 

p(y), g(y) and G(y) is not well known and we examine asymptotic 

expansions of these functions. The following Lemma provides the 

means of doing this; it is a simple extension of Theorem 2.4.2 of 

Ibragimov and Linnik (1971) (page 55), and-the proof follows their 

proof with relevant minor changes. 



Lemma A2.2.1. 

For any a, 1<a<2, k=0,1,2,... and x>O, define 

Co 

k 
(x) fe 

0 

kN 
Then I k(x) E 

n=O 

xpf-it-(t/x)'I. t 
k dt. 

(_, )n+l nna Cos nna 
- r(na+k+l). Isin 

n! na 

+ O(x -(N+I)a-1 for all Nýl. 

Proof . 

Note that the above mentioned Theorem calculates 10 (x). We 

follow that proof by substituting te" for t in the integrand, where 

ý=- 7r/2a. 

Then 

iý(k+l) "0 
+ i(t/x) ak 

k(x) ef expl-te It dt 
0 

which, on expanding 

i(t/x) a 
.. 

N (t/x) na n YWX) 
(N+I)a 

< eZi+-t 31 
IYI 

n=O n! (N+l) . 

gives 

INe 
ie (k+1) 

in na+k i(ir/2+ý)1 dt k(x) =Z na 
ft expl-te 

n=O n! x 0 

I . -(NL+l)a 
0 

(E ý 'r 
f e-t 

cos(w/2+ý) t(N+I)a+k dt (IN +1) '. 
01 

Making a further rotation with te 
io 

replacing t, where now 

0= -7r/2-ý, we have 

cc na+k i (7T/2+ý) Idt =e 
iO(l+na+k) 

. 
ft expl-te r(na+k+l) 
0 

and so 

-, 
'kn N i4. n iO(na+1) 

(x) =e2Ze1£ F(na4k+1) +0r 
«N+ 1) a+k+ 1) 

_ k, na (N+ 1) a 'x n=O n. x (N+1). 

1 



which, on substituting the values of ý and e gives the required result. 

As a check note that 

p(y) = Re[7T-ly-lI 
0 

(x)] gives the asymptotic expansion of Ibragimov and 

Linnik. 

Lemma A2.2.2. 

As y-). -, g(y) = CY- 
1+0 (Y- (a+2) )0 

and G(Y) = (d+C2)Y-2 + O(Y-(a+3)) 

where 

c- - r(a+2)/r(a+l) and d= r(a+3)/r(a+l). 

Co 
_ta Proof: Since p(y) = 7-1 f cos(ty)e dt, 

0 

then 
I-P(Y) 

= 7r- 
1 Co 

-t a 
Dy 

ft sin(ty)e dt 
0 

-1 .2 Co (u/y) a 7r yfu sin(u)e- du 

= _. Tr-ly-2 Im E, 
1 

(y)] 
. 

which, by Lemma A2.2.1, is 

r(a+2)sin(na/2) + 0( -2a-1 
yay 

Thus 

g(y) = Y-1 - 
r(a+2)sin(na/2) + O(Y-2a-l 

a y 

r(a+l)sin(7ra/2) -2a-1 + O(y 
a 

y 

= Y-1 Ic+ O(Y-a-l )1, as required. 

2 
-1 -3 Similarly, since 

NY) 
, 7r Re[I the expression for G DY2 Y2 

follows. 



NB. Dumouchel (1973) proves that the asymptotic expansion of 

Ibragimov and Linnik, p(y) = w- 
1 
Y- Re[io(y)] is differentiable term 

by term as a function of y and we could use this to prove Lemma 2.2.2 

much more simply. However, the method of Lemma 2.2.1 was used in 

the example of the discussion of Masreliez's Theorem in S2.2.3 and 

so we retain it. It is trivial to check that this approach leads to 

the same result. 

Now, we cannot deduce that the stable distributions are outlier- 

prone. Certainly the uniformity of the tails condition is satisfied 

immediately from the asymptotic expansion for p(y). However, it is 

not clear that g(y) is monotonically redescending to zero. Numerical 

studies suggest a form similar to Student t scores and we conjecture 

that the stable distributions are outlier-prone. 

(v) others. The following distributions provide shapes near'to 

normality and all lie on the border of outlier-proneness/resistance, 

with the exception of (d). 
(a) Logistic. 

With p(y) a Sech2(y/2) we have a score function 

g(y) = tan h(y/2), monotonically increasing but bounded. 

Further G(y) sech2(y/2). 

(b) Huber k (See Example 2.2.5 for definition). 

ý(Y) 9 
Jyj < k; 

P (Y) a 
exp-klyl , otherwise, k>, O. 

For k=0 this is just the Laplace. 

(c) Extreme type. 

A shape similar to the logistic is provided by the score 

g(y) = (I-e-lyl). sgn(y), 

corresponding to a density 



p(y) a expl-lyl+e-lyll. 

This is essentially a smoothed version of the Laplace 

density providing a means of removing the irregularity at 

the origin. 

(d) Normal/uniform. 

When y= x/u where x ,v N(0,1). and uv U[0,1] are independent, 

then 

P(Y) a Y-2 
[1-e 

-y2/2 

and so 

g(y) = 2y-l - 
I, 

-e-Y 
2/ 1 -1 y e-Y 

2/2 

This is similar in form to the Cauchy score although we note 

that all moments of p(y) exist. 

(vi) The C-contaminated family. 

The classical theory of robust estimation has often been concerned 

with providing sampling theory procedures that perform well when the 

errors are generated by a contaminated normal mixture of the forms 

ph(y) = (1-(Dý(y) + Ch(y), 0, <C<l, h symmetric. 

The family of such mixtures i. e. 

`2 lPh 1h symmetricl 

is called the f, -contaminated family. Huber (1964) and (1977) 

adopted this family as the focus for his development of minimax 

robust estimation, and mixtures of this form have been discussed 

as providing reasonable approximations to "real-life" error distri- 

butions. The use of a normal contaminant h in both classical and 

Bayesian studies is essentially a parsimonious attempt to model the 

data when h is unknown. Although this works well as shown by Box 



and Tiao (1968) and, in a time-series context, Harrison and Stevens 

(1976), when the contaminant has a large variance, we have seen that 

outlier-rejection cannot be obtained in terms of posterior convergence 

to prior in the location problem with a normal mixture. However, with 

robust h, we have the following result. 

Lenna 2.2.3 

Let h be unimodal symnetric at*zero. If the distribution H with 

density h is outlier-prone, then so is PH= (1-C-)(D + EH. 

Proof 

-klyl h decays no faster than e 

lim {O(y)h-l(y)} = 0. 

, some k>O and therefore note that 

Y-11ý +6) ý(y) 
+C 

h(y+6) 
p ý(Xy) Thus 

f, 
h(Y+6)-Ph(y) 

-(l-C-) 
h(yF My) 

ý(Y) 
+ 

-ph (Y) 
7(ý-Y) 

-* 0 as lyi-)-- for 6>0. 

So (iii) of (2.1.8) holds. 

Further, if gh is the score of p,,, then the score of the mixture gp 

is 

9 (Y) (y) h' (y)) 
h (y) ph (y) 

Now both I (Y) 
and 

ý(Y) tend to zero as jyj-ý-, so h(y) h(y) 

gp(y) - gh(y) -0 as y-), - * 

Thus gp behaves like g. for large y. 

Finally note that gp (y) always lies between y ana gh(y)' since if in 

general 

0 

p (Y) (Y) jpj 



then Lemma 2.2.1 implies that 

k 

g (y) ln p (y) =Z Tr* 9, (h) 
ay j=l i 

where gj (y) is the score of pj(y), and 

k 
(y), with E 

j *pj 
j., j 

Hence, for all y, 

minjgj(y)j < g(y) < maxlgj(y)l. 
ii 

A2.3. Scale mixtures of normals. 

Continuous (and discrete) scale mixtures of normal densities 

provide useful methods of generating samples from symmetric distri- 

butions and in computing characteristics of sampling theory estimators 

as used by Andrews et al (1972) and Relles (1970). This family 

provides a natural framework in which to explore possible alternatives 

to normality and for completeness it is interesting to note that all 

of the robust likelihoods discussed above are continuous scale 

mixtures of normals. 

Let x ,, N[0,11 and v>O be independent of x, with y= xv. Then 

It is well known that, if v -2 \, X2, n>O, then y is 
n 

Student t-n. 

(ii) Following Feller (1966, p. 172), if v2 is stable of index 

a<l, then y is stable of index 2a. In particular if a>, I, 

then y is symmetric stable and heavy-tailed. 

(iii) Andrews and Mallows (1974) show that if v/2 has the asymptotic 

distribution of the Kolmogorov distance statistic then y 

has a logistic distribution. 



A further result of Andrews and Mallows is that if V2/2 is 

exponential, then Y has a double-exponential distribution. 

In fact this is a special case of the following result 

which, as far as we are aware, has not appeared in the 

literature. 

I 

The exponential power distribueions of index O<a<2 are scale 

mixtures of normals. 

Proof Let p(y) = ke-lyl', O<aý2. 

Now p(y) is the characteristic function of a stable random variable 

of index a, thus, if f denotes the density of such a random variable, 

we have, 

00 
p(y) kfe 

iyt 
f(t)dt. 

_-w 

Moreover, from (ii) above, 

00 
f(t) f v- 

1 ý(v- 1 t). g(v)dv 
0 

where g(v) is the density of v when V2 is stable of index a/2. 

So 

00 Co 
p(y) =kf g(v) fe iyt 

v- 
1 «V-1 t)dt dv 

0 -Co 

'» 2V2/2 
-kf g(v)e-y dv 

0 
Co 1111 

af u- g(u- ). u- ý(u- y)du. 
0 

and the result follows. The mixing density is then proportional to 

U g(u 

The following figures illustrate the above examples. In each figure 

the first named score function is given by the full line and the second 

by the dashed line.. 
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CHAPTER 3. The dynamic linear model. 

3.1 Introduction 

In this and the next Chapter we study outlier problems in the 

dynamic linear time series model described as follows: 

Let Y, ,Y 
be a sequence of (mxl) vectors of observations. At 

It# %j 2 

time n, Y is related to the (pxl) vector of parameters 0 by the 
,n in 

observation equation 

YH0+v 
q, n n ,, n ,, n 

where the (mxp) regression matrix Hn is known at time n and 

fyn; n=1,2 .... I is a sequence of zero mean, independent random 

vectors each with the same distribution, and v is independent of , \, n 
0 given the past observations D fyl,. 

*., Y 
,,, n-1 n-1 rV \, n-1 

The system parameter vector 0 obeys the Markov evolution 
, ý, n 

6=G0. +w 
,, n n ., n- 

where the (pxp) transition matrix Gn is known at time n, and 

{w n=1,2 .... } is a sequence of zero mean, independent and identically 
,, n 

distributed random vectors, with w independent of 0_ given D 
, Ln nn 1 n-10 

In addition we assume that the sequences {V I and fw ) are independent. 
, %n , un 

This model formulation, was used by Harrison and Stevens (1976) 

and as such does not coincide with the usual control theoretic 

state space formulation (See, for example, Anderson-and Moore (1979)). 

0 is a stochastic parameter vector which can be interpreted as a Ln 
time varying regression vector, although, in many cases, it is not 

unreasonable to treat 9 as a state vector as in the control 
Jýn 

theoretic context. In Chapter 4 we do just that in a discussion of 

the state space representation of autoregressive and autoregressive- 

moving average models for which it is desirable, from the point of 



view of modelling outliers, to consider such a representation. In 

particular we discuss the problem of outliers in the evolution equation 

of a state vector and clearly this is essentially a problem of 

modelling the errors in (3.1.2), in so far as the technical details are 

the same. 

In this Chapter we restrict attention to possible outliers in 

the observation equation (3.1.1). Hýre we must make an important 

distinction between types of models as follows. If 11 
n 

is a matrix 

of regressors not involving the data D 
n-1 , then an outlier in (3.1.1) 

at time n will affect only Y and not future observations (assuming 
, -,, n 

of course that Gn does not involve D 
n-1 

either). in the terminology 

of Fox (1972), such an observation will be called an additive outlier. 

However if 11 
n 

(and/or Gn) depends upon D 
n-l' 

and in particular upon 

Yn 
-1 , 

then the effect of an outlier at time n is clearly carried 

through to time n+l, n+2,..., via the regression matrix (and/or 

transition matrix Cn). Again following Fox we call this an innovations 

outlier, using this terminology for more general models than the 

autoregressions discussed by Fox. 

In distinguishing these two types of outliers in autoregressive/ 

moving average models we must resort to the state space formulation 

and, as mentioned above, this is done in the next Chapter. For the 

moment we examine (3.1.1) as it stands, making no distinction between 

data dependent and independent matrices Hn and Gn 

Now the Markovian nature of the model leads naturally to a 

sequential approach to estimation of 0, forecasting future 
^,, n 

Y 
n+j, 

j-1,2,..., and smoothing i. e. "forecasting" into the past, 

values of 0 ., j=1,2,..., and a retrospective analysis is generally. 
qp-j 

extremely unwieldy. Typically the model will be much simplified with 

scalar observations and/or parameters, and time independent matrices 



Gn and/or H 

In a sequential analysis, there are two major operations required 

for the estimation of 0 within a coherent framework: 
,,, n 

(i) the so-called time-update 

p(O ID fp(o Jo ). p(O 11D 
)dO 

,, un n- ,, n , n- ,, n- n-I in-j 

providing the parameter predictive density on the left hand 

side. 

(ii) the prior to posterior update 

p(O ID ge ID ). p(y le D 
, ý, n n nn n- 1n,, n n- 

It is immediately clear that the-linear/normal framework makes 

these two operations simple and tractible and leads to the Kalman 

filter recursive algorithm for the mean and covariance matrix of the 

normal posterior distribution derived in (ii). Changing the normality 

assumption for either v or w destroys this analytic tractibility' 
,,, n nn 

and in order to obtain "exact" results within a Bayesian framework 

we must resort to numerical integration techniques. Specifically we 

must calculate the parameter predictive density of (i) pointwise for 

each value of 0 inIRP and similarly for the prior to posterior 
, ý, n 

analysis. Clearly thisis not feasible. The computational effort 

required is prohibitive and some form of approximation to the 

Bayesian analysis is desirable. Our intention here is to examine 

some possible approximations in the case where we assume non-nO'rmality 

of the observational errors v 
, ý, n 

Since we are assuming that outliers may occur only in (3.1.1), 

we retain the standard normality assumption for w 
,,, n 

w 'I, N 
Nn 

lo'Wnl 



where the W are known positive definite matrices. Usually Wn =W 

for all n. Further, we assume that, at time n, the density 

P(e ) is approximately normal 
,,, n 1 

ID 
n-1 

(0 ID )N NEm c 
�, n-1 n-1 �n- 1' n- 11 

where m and C are functions of D. The validity of this 
,,, n-I n-1 n-I 

approximation is discussed in detail later, and it turns out to be 

justifiable in certain circumstances. We remark that'it is in the 

first instance a convenient approximation from the point of view of 

tractability of analysis, for it implies that the time update 

above is the same as the usual normal theory, giving 

(0 ID )% Nýa P 
, \, n n-1 n n] 

where aGm 
,,, n n ,, n 

and p=CcGT+W 
nn n-1 nn 

Furthermore, this assumption enables us to use the more general 

form of Masreliez's result, our Theorem 2.4.1, to obtain the posterior 

mean and covariance matrix for ý ID in closed form. In general 
ýn n 

p(O. 
_ 

ID is not of course, exactly normal, but, whilst admitting 
, \, n 1 n- 1 

that an examination of the exact density has no substitute as far as 

coherent inference and rational decision making are concerned, there 

seems much justification in the context of our model for behaving 

pragmatically and adopting useful'approximations to the full Bayesian 

analysis. Given the data D 
n-1 , we are at liberty to examine 

PQ ID ), (with all the associated problems of numerical integration 
,, ýn n- 1 

for moments and marginal posterior distributions, and visualization 

of possibly high dimensional densities), but for the purpose of 

proceeding to the next observation stage, a sensible approximation 

which provides a tractible prior usefully summarizing our beliefs 

about 0 ID has much to recommend itself. In fact we shall see n, n-1 n-1 



that in the problem of interest here such an approach will generally 

result in very little loss of precision and, -indeed, this approach 

seems to be implicit in the mixture modelling of Harrison and Stevens 

(1976) where an exploding mixture of posterior distributions at each 

observation stage is "collapsed" to an approximation for the same 

reasons. 

3.2 Scalar observations: filtering with heavy-tailed errors. 

3.2.1 General comments and prior specification. 

In modelling the error distribution of the vn with a view to 

robustifying the usual conjugate normal analysis we assume that pv 

is unimodal, symmetric at zero and heavy-tailed relative to the 

normal density 0, in the sense that the score function gV is bounded 

above by a linear function 

Ig (u)l =Ia in p (u)l < klul, for some k>O. 
v au 

This admits distributions which are not outlier-prone such as 

the exponential family of index ý between one and two, whereas from 

a practical viewpoint we believe that a restriction to redescending 

score functions is desirable. In particular the Student t distributions 

provide useful alternatives to normality. 

Following the discussion of 93.1, our prior for 0 ID is 
e,, n n-I 

N[a Pj and within this framework'the following result was proved 
,,, n' 

by Masreliez as the general form of Theorem 2.4.1: - 

E[p IDj a+Ph g(y -h 
Ta 

q, n n ,, n n, ý, n n %, njn 

and 

var IDn] -Phh 
TP G(y -h 

Ta), le 
n 

Pn 
ný, nqn nn,, n%, n IV 

(3.2.1) 

(3.2.2) 

where, setting uýy -hTa , we have 
nn\, rL-, n 



g (u ln p (y ) and G (u (u (3.2.3) 
n 3y nnDun 

nn 

with 

p(y p(y -h 
Tafp (y -h 

T0). 
p(O ID )dO 

nn,, nxn IRP vn un-. n Ln n %, n 

So the correction made to the prior mean a for E JDJ is a 19 
n 1\0 

linear transformation of the smoothed score (or influence function) 

hg (y -h 
Ta ln p _hT 0 )ID 

, un n ,,, nxn v Yn 
,, a,,., n n n r1i - 

The linear transformation Pn essentially weights the correction 

term according to the uncertainty in the prior. We can relate this 

result to the empirical influence function discussed by Cox and 

Weisberg (1980) in the context of a static regression mode. 1 corresponding 

to 0 =0 for all n, m. In this case a=m and P=C. The 
e, al %, m ,, n r-n-1 n n-1 

empirical influence function IF 
n 

for yn given D 
n-1 

is used by Cox and 

Weisberg to quantify the effect of Yn on the estimates of regression 

parameters and, from a Bayesian point of view, would correspond to 

IF mm n \, n-1 nn 

a difference in posterior means. Of course Cox & Weisberg operate 

wholly within a normal model when IF 
n 

is a linear function of y n* 
Under the above conditions Mazreliez's result implies that, for non- 

nomal p,,, 

IF Phg -h 
Ta 

n ri, ý, n Yn 
qnqn 

involving directly the classical influence function of p 
V 

Now in Masreliez's original paper (1975), he uses the above 

result to-compute recursive estimates of 0 in some examples. However, 
n 

the error density he uses is a contaminated normal mixture for which 

a closed form expression can be obtained for the marginal score 

function. In fact this procedure coincides with the mixture modelling 



of Harrison and Stevens (1976) when using such an error density. The 

philosophy behind its implementation in this framework is that the 

use of a heavy-tailed likelihood classifies observations according to 

how extreme they are and then collapsing the true mixture of posterior 

distributions to a single normal with the same mean and covariance 

matrix leads to an analysis close to the full explosive Bayesian 

analysis. Indeed Masreliez's numerical results compare the "collapsed" 

filters with the exact posterior mean and covariance matrix and his 

results indicate that the approximation is excellent in the cases he 

studied. 

What about using alternative heavy-tailed error densities, and 

in particular Student t distributions? Well in general we. cannot use 

Masreliez's result without calculating the marginal score by numerical 

integration. The exceptional case is for the Huber family of distri- 

butions as discussed in example 2.4.3 where the score function was 

computed. The expressions for g and G are somewhat tedious to compute, 

but this does give us a means of using the Huber distributions, (much 

used in the classical approach to robust estimation) in this time 

series model, without resorting to numerical techniques. Indeed, 

Masreliez and Martin (1977) use the Huber family in their minimax 

development of the filtering algorithms of Masreliez's original work, 

and their results are extremely encouraging. Broadly speaking the 

robust filters behave similarly to the Kalman filters for near normal 

data and yet have all the benefits of rejecting outliers which derive 

from the use of robust likelihoods. We discuss this further in the 

next section. 

1.2.2. Review of Masreliez and Martins' work. 

In their (1977) paper, Masreliez and Martin do not actually 
0 

calculate the marginal score and information functions in order to 

provide the true mean and covariance matrix defined in (3.2.1) and 



(3.2.2), but rather they use an approximation based upon a scaled 

version of the likelihood as follows: 

Approximate p(y n) 
ýy the scaled likelihood 

)= 0-1 (a -1 ti uhTa P(yn n Pv nnný Yn-, 
%, n Nn 

(3.2.4) 

where a is"a scale factor to be defined. Note that p, has been 

assumed to have scale parameter known and equal to unity and thus, if 

P'V is normal, (3.2.4) holds exactly with 

cj2 = q2 + 1, where q2 =hTPh 
nnn,, n n, %, n 

(3.2.5) 

In view of this, Masreliez and Martin suggest that for general 

heavy-tailed p, a2 be defined as in (3.2.5). Further justification 
Vn 

for this is given by Martin (1979) with reference to the contaminated 

normal density. If pV (U 
n)= 

CN[F_; l, aq = (1-6)ý(u 
n)+ 

ea-1 ý (Cr- 1u 
n); 

then the marginal density is of the same form 

CN[f_; l+q2, U2+qfl 
nn 

Setting 02 = 1+q2 and a2 = 02+q2, Martin shows that the marginal 0nIn 

score g can be written as 

b(u ). {l-a2/a2l 
n01ý 

where 

Mu )-l + (1-C 
un 

(cr-2 -2 
. 
). Jl.. ((y2/a2). exp n01[20 

For c2>> 1, we have g(u n)=a01 9V (a 
01Un). 

Thus the approximation used in this work is as follows: 

Dn] =m=a+Ph -1 -1 
n ,n%, n ri,., n' an gv (an un) 

and 

var JDnj =C=P-Phh 
TP 

a-2. G (a- Iu). F, Pk, 
n nn rinn ý, n nnvnn 

(3.2.6) 

(3.2.7) 



Using this scheme and assuming approximate normality of 

p(O ID ) at each stage, extremely encouraging results are 
.nn 

reported by Masreliez and Martin for problems involving scalar 0 
,,, n 

as mentioned at the end of the 'last section. Further uses of this 

approach are discussed by Martin (1979) and (1980), and Kleiner 

et al (1979), as part of a larger study of robust estimation of 

power spectra. From our point of view an. attractive feature of this 

scheme is that predictive distributions, (both for comparison of 

alternative model structures/error distr: ibutions and for forecasting), 

are available directly. A further positive connection between this 

approach and the Bayesian analysis is a coincidental result applicable 

when the filters are-based on Huber densities. In this special case, 

we can show by reference to example 2.4.2 of §2.4, that the equation 

(3.2.6) actually delines the posterior mode, and thus provides an 

optimal point estimate at each stage. Furthermore in this case we 

can rewrite (3.2.7) as 

T c- p- +hh. G (cr-lu 
nnn,,, n vnn 

due to the special form of Gv, and so the information matrix is 

being used as a proxy for the "precision" matrix from a normal 

likelihood. 

Of course this is not true for general pv, and there are 

several apparent disadvantages of this scheme to be noted. 

(i) The approximation to posterior moments obtained by this 

scaling of the likelihood to obtain an approximate 

marginal density is based on heuristic considerations 

alone. Are there any more formal approaches to the problem? 

In the case of the Huber likelihood, the filtering algorithms 

are not smooth functions of the observations, as they should 



be (the exact mean and covariance matrix are). Indeed, 

the information function G is zero outside the central v 

normal part of the likelihood, implying that Cn-Pn 

there, whereas in the central part Cn is the normal theory 

value. On the boundary there is a discontinuity. The 

true posterior covariance is a continuous function of 

y and this discontinuity of C is not desirable. Can 
nn 

this be remedied? 

(iii) Following (ii) what happens in the extreme case of a 

double exponential likelihood, where Gv is zero almost 

everywhere? 

In certain cases, Cn may not be positive definite! 

-2 G 0-1 All we require for this to happen is that anVnu 
n) 

be large enough that Cn be negative definite as follows: 

cn>0 if and only if 

hhTPa -2 G (a-lu ) 
nnvnn 

Now if G -1 )= 0 then C=P>0. Otherwise, for 
v(an un nn 

positive definite Cn we require, from the above 

inequality, that 

-1 -2 T G (a u)<1+q where q2 hPh 
vnnnvn%. n nui 

It is clear that this may not be satisfied, in particular 

if qn is large. For example, when pV is Student 1: with 

k degrees of freedom the maximum value of GV is l+k-19 

thus restricting qn to be no greater than k. 

This is clearly undesirable. 

(v) Further undesirable behaviour of C occurs with the 
V 

exponential power family where GV does not exist at the 



origin and tends to infinity as un tends to zero. 

(ii) How can we justify further the-. nomal approximation to 

p(O ID 
, -,, n n 

We now consider*alternative approaches in order to try to avoid the 

above drawbacks. In the next section, we attempt to answer (i) 

above by an approximation to the Bayesian analysis. 

3.2t2ý The Gradient algorithm. 

The discussion preceeding (3.2.8) of the special fom of 

Masreliez and Martin's recursions in the case of a Huber likelihood 

are reminiscent of certain aspects of asymptotic distribution theory 

in that the mode and information matrix are used as mean and 

precision matrix. of the normal approximation. We follow this 

further in this section. 

Heuristically, if p(O ID ) is concentrated about a, and 
,,, n n- I ,, n 

T is approximateky quadratic in e in a neighbourhood if Pv(yn7, 'ý, 
nqn ,n 

of a, then, expanding the log likelihood as a function of 0 about 
Nn Nn 

a in a Taylor series we obtain 
,, n 

TTý, T tn. p (y -h 0) =tn. P (y -h a)+0h -hTa 
vn,, n, ý, n n jLqn ion*o,, n*gv(yn qn,, n 

_j OT h li T0G (y -h 
Ta)>+ 

r(y ;0) 
, \, n, tn%n�n vn %ri, \, n n Nn 

.vv where r(y ;e O(llonll2), and 0=0 -a n tn ,,, n ix %, n 

If we ignore the remainder term r(y n; 
Od' we have an approximate 

log posterior given by 

P 'ý'T -1'%j 'ý'Th 
.g (u , cn. p(O ID constant 0p0+ '0 

,, n n , %, n n Nn . nn vn 

ly 

OT hhT0G (u 
,,, n,,, rtq, n, %, n vn 



where uy -h 
Ta 

nn qpun 

T So, if we define P-l+h hG (u ), then 
nn vn,, xi v, n 

tn p(p ID constant +0 
"JTh 

.g (u 
'0ý'T -C 8 

r%, n n , n,., n vn-,, n n ,, n 

Now if C is non-singular, define C i. e. C and we nnnnn 
have 

(0 ID )%N 
, bn n 

1, mbn'Cnl 

where ma+Chg (u (3.2.8), 
, \, n nn rL, \, n vn 

T 
and cp+hhG (u (3.2.9). 

nn,. n, \, n vn 

Note that when Gv is zero, then Cn=Pn. Otherwise we-can rewrite 

(3.2.8) as 

T I-lg a' +Ph. Fh PhG (u )+ (u (3.2.10) 
nn rL-, n -? ý, n n,,, n vnvn 

and (3.2.9) as 

T -I T C=P-Ph. PhG (u )+I] hPG (u (3.2.11) 
nnnn 

[ý 
,,,. n n,, ý, n vn%, n nvn 

and from these two equations we can calculate m and C without 
, %, n n 

inverting the matrix Cn1. 

The recursions (3.2.10), (3.2.11) are similar to the updating 

algorithms for posterior mode and covariance matrix in asymptotic . 

Bayesian theory and as such are essentially a one-step version of a 

stochastic gradient (or Newton-Raphson) type algorithm. To see 

this note that e* the posterior mode satisfies , %, n 

� 
where 

-1 T f (0 P (0 -a. ) -h. g (yn-h (3.2.12) 
,,,, n n ý, n Cn nn v rjinn 



m is then a first step in the iteration of 
,,, n 

34 
T 

ýn f(e 
,, n nn ,, n 

with 00 =a as starting point. Having noted this, it is clear Ili ,,, n 

that the recursions are really useful only when P is small. n 
However, algorithms of this type have been used with some success. 

For some example, Martin and Masreliez (1975) propose a similar 

algorithm in the simple location problem, when 6- constant for all 
,,, n 

n. Polyak and Tsyphin (1980) discuss related algorithms with Gv 

replaced by a constant and in particular by the expected information 

matrix at a rather than the observed matrix. These refinements 
,n 

are geared towards producing asymptotically efficient estimation 

algorithms for fixed parameters 0 and we discuss such aspects 
q, n 

in detail in Chapter 6. At the moment we are interested in 

approximating finite sample posterior means and covariance matrices 

in time series, and such asymptotic considerations are spurious. 

One further related work is that of Vere Jones (1975) in an 

entirely different context. He proposes algorithms of a stochastic 

process for forecasting various point processes. Again Vere Jones 

uses non-normal processes in general. 

Notice that when pV is normal, the recursions above reduce to 

the Kalman filter. It might be hoped that for pv near to normality, 

for example with a Student t distribution with a large degree of 

freedom parameter, the algorithms above will behave like the Kalman 

filter for "good" data whilst retaining the attractive outlier 

resistant properties of at distribution based analysis. Indeed 

this is the case and is illustrated at the end of this Chapter in 

numerical examples, with a modified algorithm introduced in the 

next section. A further positive remark about the gradient 

algorithm is that it does not conflict with Masreliezs' theorem, 



as follows: 

if we adopt m defined by (3.2.10), then, using Masreliezsl 
,, n 

result, 

g(u (q2G (u )+1)- 19 (u 
nnvnvn 

where q2 = hT Ph 
n ,, n n,,, n 

Thus 

Dg(u 
n) - (q 2G (u (u -u nvnvn 

n 

= (q2 -2 
where tG (u )+l). D (u )q2 

nnvnvnn 

and 

Dc. (uý, ) 

vn Du 

The second order approximation to the log likelihood assumes that 

V 
is zero. Thus, from (3.2.2), using G above we have 

C=P-PhThP . (q2G (u )+l)- 1G (u 
nnn, ý, n, ý, n nnvnvn 

which is just the value given in (3.2.11), so the gradient approxi- 

mation is consistent with Masrelieq's link between m and C 
Nn n 

However, there are several serious drawbacks to the gradient 

algorithm, all'of which are shared by the algorithm of §3.2.2. We 

note the following: 

Again the mean m suffers the problem of having discon- 
q, n 

tinuities for some pV. In particular, the discontinuity 

in G for a Huber likelihood now appears in the mean m V ,, n 
as well as in C 

n 

(ii) The algorithms cannot be based on the double-exponential 

distribution since G is zerb almost everywhere and thus 



Cn as defined will not reproduce the behaviour of the 

posterior covariance matrix. 

In some cases, for example that of the Student t density, 

G can take negative values. This means that C>P 
nn 

which is as it should be for such observations as 

discussed in Chapter 2. However it may be that Cn as 

defined above will noE be positive definite. Clearly 

this behaviour is unreasonable. 

As mentioned above, we discuss theoretical aspects of this algorithm 

in Chapter 6. The practical problems are of interest here and we 

introduce a new approach which avoids all the above drawbacks and 

provides what we believe to be the most useful algorithm for this 

model. It has considerable intuitive appeal and also a very strong 

theoretical basis. 

3.2.4. The modal recursions. 

To motivate what follows consider the modal equation (1.2.12). 

The gradient algorithm was derived as a second order approximation 

to the solution of (3.2.12). The recursions of this section are 

derived as, essentially, a first order approximation as follows: 

Since we assume that pV is symmetric we have pV (u) as a 

function of U2, say f(u2/2) where f is a positive function on 

[0, -). Unimodality of pv implies f decreases on [0, -). Clearly 

then, the score gv is defined by 

(u) =- -L 2-n p (u) .- fi(U2/2). U/f(U2/2). v Du v 

= ýW. u, say 

where ý, (u) = -. f, (u2/2)/f(u2/2). 



The following properties of ýv are immediate: 

TV (u) is positive for all real u, since f, and hence 

Zn f, is a decreasing function of u2. 

(ii) ýv (u), being a function of u2, is symmetric about zero. 

(u) is differentiable since p (u) is assumed twice 

differentiable. 

Now, we can write the modal equation (3.2.12) in the form 

r- 1 (6*-a )-h .ý (yn-h T0*). (y -h 
T 0*) = 

n �n �, n �n v �, n�, n n brL�n ru 

Týv Te*ý-l T* 
or 

[P-l+h 
h (y -h 

[P-la 
+h .* (y -h 0 )y 

n , n, %, n n ,, n, -,, n n \, n Nn vn-, n, \, n nj 

since P -1 +hhTý (y -h 
T0*) is nonsingular by virtue of the 

n ,., nxn vn,, nxn 

positivity of ýv. Rearranging this expression we obtain 

1TTTTT 
a+ 

[- 
+h h q) (y -h 0* )] . 

1h (y -h 6*). (y -h a 
,n 

Pn 
ý, n, ý, n vn qp, ý, n rtný vn,, m%, n n nmn 

Tt -1 T 
=a+Ph . (l+h Phý (y -h 0 ». ý (y -h 0*). (y -h a ). (3.2.13) 

ý, n n�n bn nbn vn Nn, \, n vn bn�, n n %n�n 

Now (3.2.13) can be used to calculate 0* iteratively, substituting 
, ý, n 

0 into the right hand side and calculating the left hand side as 

e If we begin with*00 =a and approximate the solution by the one- 
, ý, n ,, n ,n 
step estimate 81 =m, we obtain 

, ý, n ,, n 

-1 +Ph. (I+hTP h (u g (u (3.2.14) 
n,, un \, n n, \, n vnvn 

as our "modal recursion". 

In order to calculate the corresponding covariance matrix 

we use Masreliezs' result as follows: -' identifying the marginal 

-1 score g(u ) with (1+q2 * (u )) .g (u ), q2 - 
JP h, we only need nnvnvnn -%, n n-. n 

to differentiate with respect to un to find 



Lemma 

If g(uý 
(1+q2 ý (u -1 (u 

nnv 
d) 

- gu n) 

ag(u 
then defining G(u 

n ýu n we have 
n 

2ý (u 1a -2 G(u 
n 

(u 
n 

). (I+q 
nvn 

))- +un*v (u 
n 

). (l+q 
nv 

T 
and P-Phh. P G(u ) is always positive definite when ý (u) 

n n, %, n-,, n nnV 
is non-increasing for u>O. 

Proof : 

2* (u 
21 

.g 
(u ). q2ý (u G (u (1+q G (u (I+q2ý (U. ))- 

nnvnvnnvnvnnvn 

Since gv (u 
n) 

= ýv(ud-un , then Gv (u 
n)=ý V(un) 

+ 
ýv (u 

n 
). u 

n 

and so 

(U ))-21ý G(u (I+q2ý (u (u )u+q2ý2 (u 
nvnvnvnnnvn 

I 
q2 (u )ý (u ). u -g (u )q2ý (u 
nvnvnnvnnvn 

-1 I(u )u (1+q2 (U )) ý (u + (1+q2ý (u ))-2ý 
1 nvnvnnvnnn 

as required. 

Further, since ýv (u 
n) 

is nonincreasing for un >0 and symmetric about 

zero, then 

I 
- ý(u 

n 
). u 

n 
>, 0 always. 

Hence 

P-PhhTP . 
(l+q2ý (u ))-lý (u )+Ph Jp 

.ý (u ) 
nn nnnrun nnvnvnn,,. nun nnn 

[ 
+h hT .ý (u ')]-I +Ph hTp ý (u ) pn 

Annn vn n-. n, -tn nnn 

where ý (u )=- (I+q2 -21 
nn nýv 

(u 
n))' 

ýv(un )u 
n 

>, 0. 

So C is always positive definite, and further, is always greater n 
T for non-zero u than +h hý (u 

[Pn 

-,, n, 'tn v nd n 



The modal recursions are now 

Ph (I+q2ý (U )) -1 g (u (3.2.15) 
n,,, n nvnvn 

and 

PhhTP G(u (3.2.16) 
nn n-. n nn 

with G(u 
n) as in the above Lemma. 

We note that 

(i) The Kalman filter obtains when p is normal. 

(ii) Otherwise m looks like the posterior mean for the normal 
,n 

model with a variance 

var[u. ] = *-'(u. ) 
v 

depending upon y n' 

C C* +R where C* is the posterior covariance matrix 
nnnn 

from the normal model with variance ý-'(u ) as above. Vn 
The Rn term corrects the posterior variance and can be 

thought of as an adjustment reflecting uncertainty about 

the "estimate" ý-'(u ) of the error variance. This 
Vn 

adjustment will be positive i. e. an increased covariance 

matrix, when by using Lemma, 3.2.1, * 
V'(u n) 

is decreasing 

for positive un. This is true for all the densities of 

Chapter 2 with the exception of mixtures of the form 

l(u) + cp 

(and with more components); in particular the contaminated 

normal densities. However for such mixtures we apply the 

recursions separately to each component of the mixture 

and then Cn is always positiye definite, as follows: - 



For a k-component mixture, 

k 
Pu(u) E pj (U) 

j=l I 

then, 

kT 
p(O ID ) cc E p(O ID pj (y -h 

ri, nn 3=1 q, nnn ,n 

k 

cc Z p(o ID 
j=l xn n-; 'Pj)"Tj 

Tk 
where -ffý f p(o ID -h 0) do w., and Er 

i ip ,, n n-1 
Pj (yn 

,, n-ýn ý, n J j. 1 

Thus using the modal recursions on each component p(O ID 'p. ), 
n n-I 3 

we obtain values m. and C, and 
,, nj nj 

k 
E01 Dý Z 7rý ýn 

j=l J ,, nj 

k 
var D Tr + (m m) (m -M 

nj Nnj Nn , nj Nn IjIC n ,nn= 
il 

TI 

Clearly using this approach to mixtures, the special case of normal 

components will result in the true mean and covariance matrix being 

calculated via the modal algorithms. 

Returning to the criticisms of Masreliez and Martin's algorithms 

and the gradient algorithms we shall show in some examples that 

the problems of smoothness of m and C have been solved by the 
nn 

modal algorithm. The final objection, that of assuming approximate 

posterior normality, is the subject of section 3.2.5. Following 

the examples, some figures are provided illustrating the normal 

approximation to the posterior for a scalar parameter on" For 

several different likelihoods p, we plot the exact posterior density 

p(oly) (C-10) P(Y-O) 

for three values of y, 1,3 and 5. These appear as the full lines. 

The modal approximation as derived in this section appears as the 



dashed line. Each page has three figures for the three values of 

the prior variance c=1,3 and 5. 

Ekamples 3.2.1. 

(a) At normality we obtain the Kalman Filter with ý (u (1+q2)-l. 
vnn 

(b) Exponential power family of index 0,0<0, <2. Clearly 

(U) = O. ju, 0-2, 
uý0, aýd so the approximate marginal 

score is 

g(u )= (q2. a + ju 2-a -1 
nn nl 

)* Oun 

and information 

C(u )=ý 12 -O+q2o] [q, 
2a + 

2-1-2. 
n 

1(6-1)lun 

nn 
lu 

nl 

In particular for 0=1, the double exponential density, then 

g(u ) (q2 + ju I)-lu 
nnnn 

and G(u ) q2. (q2 + ju 1)-2. 
nnnn 

(c) Student t with k degrees of freedom. Here we have 

g(u (k+l)u /(ka2+u 
nnnn 

where 

C2 + q2(1+k- nn 

So the marginal score is approximately given by that of the 

likelihood with a different scale factor. In this case the 

modal recursions are like those of Masreliez and Martin 

although the definition of the scale factors differ. 

(d) Huber 

The marginal score is g(u 
n) Un' (1+q 

n 
2)-1 

9 
1U, 

nI <k, 

ku 
n'(Iunl 

+q 
n 

2k). otherwise 

and clearly g is continuous as a function of un0 
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3.2.5. Scale mixtures of normal distributions. 

The notes following the derivation of the modal recursions 

lead to the interpretation of the recursions being derived from the 

Kalman filter with a data-dependent "estimate" of the error variance 

used as a robustifying factor. We investigate this further in this 

section. 

In Chapter 2 we discussed the family of scale mixtures of 

normal distributions and remarked that many of the symmetric distri- 

butions of interest are in this family. A general result about 

the representation of p- as 
v 

Co 
pv (u) -f NEO, t]W(t)dt (3.2.17) 

0 

was given by Chu (1968) as follows: 

If p (u) is a function of H2 
. then there exists a scalar V2 

function w(t), t>, O, such that pV (u) can be expressed by (3.2.17) 

above. 

Clearly the converse is trivial. Now the main condition for 

Chu's result is that, if P (U) = f(U2 /2). then f(s) vanishes 
V 

faster than S_ 
1 

as s-ý-. For details see Chu. (1968). Clearly then, 

for all the symmetric distributions of Chapter 2 which decay at 

least as fast as the Cauchy, this result holds. However, there 

is no assurance that w(t) as defined is a density function., Indeed 

there are heavy-tailed p for which w(t) is'not even positive on 
V 

[0, -). As'an example, take pV (u) a [4+u4j_1 i. e. f(s) a [1+s2]-'. 

It is easily verified that the mixing function is w(t) a t-isin(t/2). 

Andrews & Mallows (1974) provide the conditions for w(t)-to be 

a density, as follows; I 

if pv is symmetric about zero, then w(t) is a density if and 



only if 

kdkI 

dx k. Pv (x 0, for x>O and h 

Using this result we can verify the result of Appendix 2B, 

that the exponential power distributions are scale mixtures of 

normals. when the index 0 lies in [1,2]. Our proof is, however, 

direct and provides the precise form of the mixing distribution. 

Now for such distributions we have the decomposition of g 

as gv (U) =ýv (u)u for all u. This representation of the score was 

actually an ingredient of the robust. estimation of Ramsay and Novick 

(1980) in Bayesian regression problems, although this was not made 

explicit. They suggest robustifying standard analyses by multiplying 

the usual score funct ions, (in the normal case gV (u) a u), by a 

functions which limits the growth of gv and nullifies it asymptotically. 

In particular they replace u by a function proportional to 

u. exp{-a julb/2, 
. for some positive constants a and. b; cle 

. 
arly this 

can be seen to be an embedding of the likelihood in the family of 

continuous scale mixtures with 

ýv (s) = exp{-al slb/2). 

We shall now see how the modal recursions can be seen as an 

approximation to the analysis with a likelihood which is a scale 

mixture of normals. 

Conditional analysis. 

We work with the density written as 

Co 1 
v 

(u) f w(X). NEO, X-]dX. 
0 

So X is the conditional precision parameter of the normal 

distribution of u given X. In the model (3.2.1) and'(3.2.2), 



since the Jv 
n) are independent, we have, for n=1,2,.. 

(v 
n 

Ix 
n) are i. i. d. N[O, X 

n-11 

with nIa 
sequence of independent, identically distributed 

random variables with density w(X). 

Thus, given X and 0_ ID as N 
19C the usual normal 

n ,, n 1 n- 1 
ýmn 

- n-1] 

theory leads to 

(0 1D, A) 'ý, N [In (), ), C (X )] , 
(3.2.18) 

Avn nn , tn nnn 

where 

ma+Ph. X -1 +h 
TPh1 (y -h 

Ta (3.2.19) 
, \, n ,n\, n rvun n ,, n n^. n n ý, nl\, n 

and 

(X )=P-Ph (X-'+h TPh) -i hTP (3.2.20) 
nnn ty\, n n bn nbn run n 

with k, P as usual. 

Therefore 

(0 ID ) lb f NEný 
nn0 rvn 

(n). 
'Cn 

('n)1 P (Än 1Dn)d ýn' 

where 

P(X n 
ID 

n)a w(x n 
)p(y 

n 
ID 

n-l'Xn) 
and 

(y 
n 

ID ) ri, NhTaX -1 +h 
Tph. (3.2.21) 

n-j'ýn nynlý, n n nn mn] 
In, 

In particular, 

EI Dn 2) liDn]. (y -h 
Ta) ]=mah E[X (1+X q- (3.2.22) 

n -vn \, n 
+ Pnnn 

nnnn%, n! \, n 

where q2 = hTP h 
n An nvn 

and var JDý -PhhT. PE q2)-lD Le 
n= 

Cn = Pn 
neý, n xn n 

[Xn('+ýn 
n n] 

TT 
q2)-' ID ] +PhhP (y -h a) ývar [Xn('+Xn 

nn ma, \, n nn,,, n, %, n 

(3.2.23) 



where the expectations on the right hand side are taken over 

(An IDn). 

Note that X (I+X q2)-l is the precision of y given D 
nnnnn n-1* 

Defining the variable Tn to be, 

q2X (I+q2X 
nnnn 

then clearly Tn 45 [0,1], and we have the following, rather 

remarkable, observation; 

In order to calculate both the posterior. mean and covariance 

, 
ID 

, all we need is three numerical integrations matrix of 0 
4, n n 

over [0, a. That is one for the normalizing constant 

p(y n 
ID 

n-1) 
fP (yn ID 

n'Tdp('rn) 
dT 

n 0 

and one each for the mean and variance of Tn ID 
n. 

This is independent 

of the dimension p of 0. If we compute these moments of 0 
"-n 

directly, we require a total of j(p+l)(p+2) numerical integrations 

over IRP. 

Those one dimensional integrals over [0,1ý can be done very 

efficiently and even fairly crude approximations via Simpson's 

rule provide excellent results. 

Furthermore, the calculation of marginal posterior distributions 

for individual elements of 0 and subsets of 0 are rather difficult 
"'n -ýn 

from the posterior distribution directly. However, using this 

approach we have, for example, if eý (9 )19 
1n Aun 

1 
(a 

in 
ID 

nfN 
Imin(ln)'Cl3n(ln p (x 

nIDn 
)dX 

n 0 

where m (X )= (T 
, which provides In n , ýn(Xd) , and C 

lin 
(X 

n)= 
(C 

n 
(X 

n)), 1 

an easier route to the marginal posteriors. 



We feel that this approach has much to commend it; it provides 

exact values for the moments of 0 and easier calculation of 4, n. 
distributions of interest. However the modal recursions perform 

remarkably well as approximations, (as is illustrated later in 

§3.2.6 by means of numerical examples), and so we examine them further' 

now. 

Interpretation of modal recursions. 

Defining ý 
=, ý (u ) we have the modal recursion for m as 

nun , -n 

Ai ru 
a+PhX . (j+X q2)-1(y. -h 

T 
, bn An n evn n, nnn Ibn n 

=E 
ýo 

nID n'ýn'ý'ýýn] * 

The recursion for Cn is, similarly, 

var ID ;k+R 'ý'j n n 
[on 

n'ýn' 

TU 
(u 

n 
). U 

n' 
where R is defined as PhhP (U (u )=- 

n n,, -n", n nnnnn (1+q2ý (u ))2 
nun 

Relating these equations to (3.2.22) and (3.2.23) we see 

that we are approximating 

E (1+q2 JDJ 
. (1+q2'x (3.2.24) [Xn 

nAd nn n) ' 

and 

u var (1+q2 -1 IDn] = --ý . (I+q2ý )-2 (3.2.25) 
n' 

1Xn 
nýd nnn 

As an example, for a Student L-k likelihood, 

ý= (k+l). (k+u2)-'. 
nn 

I%j X is actually an approximation to the posterior mean of X 
nn 

given by 

ý= E[X ID e =a =E =a ] (3.2.26) 
nnn n-n n-J 

[Xn I Yn "O\, n "-n 



To see this, note that from Lemma 2.2.1 of Appendix 24 we have 

-D 2-n p (y1,1 6)= E[- 2 f-n p (y ja X)1y pej un ynnnnb 
n 

with-the expectation being'over p(X nlyn"'Olud . Thus 

-h 
T= (y -h 

T0). 
E gv (yn 

%, me n) n -ýmn 
EX 

nI 
Yn 

ýT0=E [Xn I yn 9' 0 
11] vn ýV"d 

and the result (3.2. -26) follows. 

Now the problem of estimating Ix 
n} 

falls essentially into the 

category of many-parameter estimation discussed by Lindley (1971) 

and Leonard (1976). However, in our framework we have proper 

priors for both 0 and X at time n and generally, w(X ) will-be 
A, n nn 

fairly concentrated (typically so will p(O ID For example, \, n n)) 
with a Student t-k likelihood w(X nk Xk with variance 2k 

For k fairly large, say between 15 and 20, then w is fairly 

concentrated and the posterior p(X n 
ID 

n) 
will tend to be concentrated 

too. Now for a related problem O'Hagan (1976) recommends 

marginal modes for precision parameters rather than joint modes. 
ru 

Following this we should consider replacing the approximate mean Xn 

by the mode A* of p(X ID where x* is a solution nn n) n 

23 & w(X X -1 + q2(X q2+1)-12 -1 +X U2. (X q2+1)-2 .0 (3.2.27) 5-11k nnnnnnnnn 
n 

and which must be obtained iteratively in general. 

Then 

mm (X )=a+PhX (l+I*q 
.u, Un rUn n --n n^, n nnnn 

and 

PhhTp. Z IX*(1+X*q2)-lu 
nnn, -nlbn n ayn nnn nl 

are the recursions corresponding to elimination of X by maximising n 

at marginal mode Xn 



Clearly ý IX*(I+X*q2)-'U can be found by differentiating 3yn nnnd 

and then calculating X* again by differentiation of (3.2.27). 3yn n 

The details are routine, and, following our comments above there 

will typically be very little difference between X and X, and nn 

the numerical examples illustrate the effectiveness of the 

recursions using Xn 

In summary then, the modal recursions have the nice inter- 

pretation of an approximate analysis with the nuisance parameters 

ev Xn being replaced by estimates Xn rather than integrated out. In 

many cases, the fact that p(X 
n 

ID 
n) 

is rather concentrated makes 

this a reasonable approach. Further the conditional posterior 
PV distribution p(O ID X ýX ) is normal, justifying the normal ,,. n nnn 

approximation when using the modal recursions. 

Further we can, if required, integrate An out at each stage 

via a reasonably simple numerical integration, made exceptionally 

attractive by the fact that the calculations required are the same 

whatever the dimension p of the regression vector may be. The 

approximation of pQ ID ) by a normal density with the same mean 4., n n 

and covariance can then be seen to be in the same spirit as the 

work of Harrison and Stevens (1976); here we have a general mixing 

density p(X n 
ID 

n) 
whereas the Harrison and Stevens model utilizes 

a discrete mixing distribution. Clearly future observations carry 

information about the current X as long as P is unknown. However 
n Ln 

the comments of 0.1 are pertinent in that it is expedient in this 

sequential analysis to adopt useful approximations to the full 

intractable analysis and eliminate An before proceeding to the 

next observation stage. 



3.2.6 Numerical Examples. 

The following graphs provide an idea of the behaviour of 
4. 

the modal algorithms applied to a scalor markov model given by 

Yn 2-' 0n+ "'n' 

0n=0 
n-71 

+ ton' 

The scale parameter of the density pV is unity a. s implicitly 

assumed throughout this Chapter and the variance of wn is taken as 

a constant, Wn=R for all n. 

Figures-1. Comparison of Student t based filters, modal/exact. 

Several realizations of the system above were generated and 

modal filters based on Student t distributions were used to track 

0n. The figures 3.2(a), 3.3(a) provide a display of the absolute 

tracking errors of the modal filters and the exact filters as 

calculated by the numerical integration discussed earlier. The 

distribution f 9L m which the {v 
n} were drawn is stated, as is the 

'IX 

value of the parameter R. In each set of three figures the same 

data is used providing a comparison of the different properties 

of the filters for different degrees of freedom parameter k. 

The figures 3.2(b), 3-. 3(b) display the corresponding values 

of the posterior variance of 0n as generated by both the modal and 

exact algorithms. 

In all of these examples, we began with mo =0 and CO 

for both filters, and 0, = 0. Many more such simulations have been 

done and these graphs are typical of those simulations. 
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rigures 2. 

Several realizations of length 30 were generated with various 

error densities producing the {v 
n) 

in order to compare robust 

filters based on Student t densities with the Kalman filter. In 

each set of three figures we share the following: 

For the actual data generating distribution and value of R as 

stated on each set of figures, the upper figure A plots the process 

0n and the data y n* 
The centre figure B plots the process 0n and 

a (symmetric) 95% credible interval for 0n 

mn+1.96. sqrt(Cn)' 

where mn, Cn are the mean and variance deriving from a. robust modal 

algorithm based on the density as stated. The lower figure C 

provides the same plot based on the Kalman filter for figures 

3.4a, b. 

Both the chosen t density and the normal density for the 

Kalmah filter have scale parameter unity. In each case, the prior 

specification was mo = 0, CO =9 and we began with 00 = 0. 

For figures 3.5a, b the lower plot C displays the process 

0 and the 95% interval based on a filter derived from the true 
n 

likelihood and employing the collapsing procedure of Harrison and 

Stevens. As shown by Masreliez and Martin (1977) and Masreliez 

(1975), the collapsing procedure produces results almost identical 

to those of the exact, but explosive, analysis. Again these 

figures are typical examples of more extensive numerical studies 

with different error densities. 
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Figures 3. Simulations. 

Each of the following sets of six graphs have the following 

features. 

one thousand sequences of fifteen observations on the markov 

system. above were generated under various conditions. The obser- 

vational errors for figures 3.6 to 3.8 were generated from the 

0,1 
contaminated normal density CN[O. 1,16] = 0.9ý(*) + 

(41 
* The 

value of the variance ratio R= W/V is as stated in each set of 

figures. Here V is the observational error variance given by 

o. 9 + (0.1)16 = 2.5. 

The full lines in the graphs (a) are the averages of the 

squared errors of the robust filters, 

1000 

Z (0 
n -m nj 

)2/1000, n=1,2,..., 15. 
i=1 

where m nj 
is the posterior mean from the robust filter for the 

j 
th 

se . quence of 
. the 1000 runs, at time n. The three graphs are for 

three values of the degrees of freedom k of the Student t density 

on which the filter is based. 

The short dash line is the mean squared error (as above) 

for the collapsed mixture-tilter as in Figures 2. The long dash 

line in the upper frame (k=5) is the average squared error for a 

Kalman filter based on the nominal N[o, l] density, while that in 

the other two frames is that based on an N[O, Vj density i. e. using 

the true variance of the non-normal density. 

Similarly the graphs b) display the theoretical posterior 

variances for each of the above mentioned filters, 

1000 

yn=Ecn /1000, 
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General. conclusions. 

From figures 1, we see that the modal filter performs, in general, 

similarly to the exact filter for Student t based algorithms 

although the latter behaves more smoothly for the range of values 

of both k and R considered i. e. k=5,10,15 and R=1/3,1,3. Also, 

the var 
- iance C (ý ) generated by the modal recursion is in these 

examples almost exactly that given by the exact filter (requiring 

numerical integrations).. overall there seems very little to lose 

in using the modal filters. 

From figures 2 we get an idea of the robustness provided by tudent 

t based filters. Use of a robust filter based on a t-k density 

with k between 5 and 10 requires no more computation effort than 

the Kalman filter and the performance'on normal or near-normal 

data is similar. The pay-off comes when outliers occur with the 

robust filter maintaining a smooth and accurate track of the 

process while the Kalman filter behaves erratically, being totally 

misled by the aberrant observations. 

From figures 3 we see that, for a range of priors and likelihoods, 

the values produced by the modal recursions for the theoretical 

posterior variances are typically very close to the simulation mean 

squared errors. Further we can see that the Kalman filter posterior 

variances are totally misleading when the data is heavy-tailed 

non-normal; the values are generally much smaller than the simulation 

mean squared errors. Finally, it is overwhelmingly clear that the 

robust filters outperform the Kalman filters in terms of mean squared 

errors for these simulations. 

3.3. Prediction and Smoothing 

The previous section discusses the calculation and approximation 

of the posterior distribution for the parameter vector On . We now 



examine. the implications of that analysis for the other impoftant 

ingredients of these time-series problems, that is the calculation 

of the predictive densities 

p(y 

and P(yk ID d' k>n, 

and also of the smoothed densities 

P(e k 
ID k 

The marginal (predictive) density p (y 
n 

ID 
n-1 

) is required for model 

criticism as in Box (1981), and in the related framework of 

adaptive estimation via mixture modelling. 

-Me predictive densities for Yn+h ,k>1 form the basis from which 

forecasts of future behaviour are made. We discuss these first. 

3.3.1 Prediction. 

(i) p(y n 
ID 

n-I 

This density is defined by fp -h 
T0). 

p(O ID 
_ 

)dO 
, ýp v 

(yn 
ývvn nn n1ý, n 

We have noticed that this density is essentially a "flattened" 

version of the likelihood in that convulution with the normal prior 

does not change the essential characteristics of the tail-behaviour. 

For the heavy-tailed likelihoods of interest, all the approximate 

filtering algorithms involve an approximation to p(y n 
ID 

n-1 
) as 

discussed below. 

a) Masreliez and Martins' approach. 

The scaled version of the likelihood is just 

p (y. D)= cr -1 p (cy -Iu), u `2 y- 
Ja 

n-1 nvnnnn nji, ý, n 

T, 
with CF2 =I+ q2 and q2 =hPh nnnr,, n ri,,, n 



The gradient algorithm. 

In deriving this algorithm in §3.2.3, the Taylor series 

'approximation to the likelihood was 

T T, \, in p (yn-hT' )2 in p (u )+ '0" Th 
g (u )- ým6' hh0G (u ) 

runlý, n vn tn bn vn %n--n -, rvbn vn 

Al 

where 6-0 -a 15-n ^. n ý, n 

Hence 

WT PuT T, ý, 
p(y ID p (u ). f p(O ID exp 

F'E\ 
hg (u 0hh0G (u )d0 

n n-I vn IRP ý, n n- I xrom vn bn, *tn n,, un vn]n 

( -p/21p -1 1 -eyT "ýT -1 20 1ý (u f exp hg (u )-10 
. 

ýhnhTG (u )+P JdO 
nvn ip ý, w-n vn 4-n n-n vnn llýn 

fjg2(u ). h TCh (3.3.1) Ic Ilp Ip (u )f p(O ID ) dO e'Xp 
nnvn 3kp %, n n %, n vn-,. n nvn 

where p(O ID ) is the gradient approximation 
,,, n n 

(6 ID ) ru Nrg Cj, 
nn bn 

with mn, Cn defined by (3.2.8) and (3.2.9). 

Thus (3.3.1) isjust 

Ic IIp (u )explig (u )jC h 
ul 

lpn 
vnvn '\, n n "un 

or, since C- p- 1+hhTG (u we have 
nn '%, nlý, n vn 

p(y n 
ID 

n-1) = [1+q2 Gv(un expl lgv(un) 3q2. (l+q2GV (un); ll 
- Pv(u (3.3.2' 

nnnn 

T2 
Notice that at normality, (ynID Nha I+q as required. 

n-1 

[", Tnnn 
n 

Clearly both (i) and (ii) suffer from the problems outlined in 

3.2 and in general cannot be recommended. The modal approximation 

does, however, lead to excellent approximations to predictive 

distributions with none of those drawbacks. 

(iii) The modal approximation. 

Given the modal recursion we have. the approximate marginal 

score given by 



g(u (1+q2ý (u ))-lg 
nnvn. v 

(u 
n 

or 
Co 

p(y ID a exp 1- f (1+q2ý (U »-lg (u )du (3.3.3) 
n n-1) nvnvn nl* 

Examples 3.3.1 

(a) Student t likelihood with k degrees of freedom. g(u n) 
is 

1 now the score of a scaled Student t-k density, (T- .TU n k(an d' 

where a2 = I+q2(I+k-') 
nn 

(b) Double exponential likelihood, - pv (u) a exp - Jul. 

Now 
-1 

(u (1+q2 lu gnn nl-l) sgn (un) 

(ju +q2)-' 
nl nUn 

Writing 

g(u )= sgn(u )- q2 sgn(u ). (Iu I+q2)-' 
nnnnnn 

we have 

f g(u du lunj - q2 tn(ju I+q2) + constant, nnn-nn 
and so 

2 

p(y ID a exp I- ju 11. +q2) n 
n n-d n 

(Iunl 
n 

[Notice 
that this is of the form p (u ).. (Iu +q2) 

q 

vn nl n 

(c) Huber k likelihood. 

Now g(u u (I+q2)-l IU < k; 
nnn nI 

ku (ju, I+kq2)-', otherwise. I 
nnn 

Then 

p(y ID eXpl-JU2. (l+q ju Iýk; 
n n-d 01 

nnn 

k2 2, 
(ju I+k2q2) n expl-klu 11, otherwise. nn. n 



Of course we can calculate the exact marginal density very 

easily via the expression of pV as a scale mixture of, normal 

densities. 

Clearly 

co 
p(y n 

lDrl_, ) =f p(ynID 
n-l'Y*W(A 

) dX 
0nn 

where 

(y ID 
pX) I'v NhTa, X -1 +q2] 

n n-11 n 

[",, 

n, x, nnn 

and wOL ) is the mixing density. This one-dimensional integral can 
n 

again be transformed easily to the unit interval and simple 

quadrature used to evaluate it. As earlier, this avoids integration 

over]Rp and is independent of p, and is the recommended method of 

calculating the marginal density. 

The following examples display the scaled approximation of 

Masreliez and MArtin, our modal approximation and the exact 

predictive density for'a few likelihoods with, various prior 

specifications. 

The likelihoods are Student t-k, with k=5,10,15 and double- 

exponential. The prior was centred at zero with q2 = C'=1/3 s, 1,3. 



3.9 (a) 

C=1/3 

C=l 

C=3 

7 

STUDENT T-15 
MARGINAL 
SCALED APPROXIMATION 
MODAL APPROXIMATION 



3.9 (b) 

DOWLE EXPONENTIAL 
MARGINAL 
SCALED APPROXIMATION 

--- MODAL APPROXIMATION 



3.9 

STUDENT T-5 
MARGINAL 
SCALED APPROXIMATION 

I t/3 

C=l 

C=3 

--- MODAL APPROXIMATION 



P(yn+k ID 
nk>1. 

Clearly, for k >, n, given 0 ID vN 'C run n 
Imn 

n1p 

then 

(0 ID %Nn, Tn 
, bk n) 

[-tk 
k] 
n 

where 

tn=Gtn C%l IcTk- 11 

and 
nGTnGT+w k=n+l, n+2 kk k-1 nk 

Therefore the predictive density for Yk ID 
n 

is of the same form as 

the density of (i) above; the convolution of pV with a normal prior. 

As such the comments of (i) are appropriate. 

The form of the predictor ID 
,hTtn is of interest and Of Yk 

n . kvk' 

we now consider a very special example 

Special case: the scalar steady model. 

For all n, Yý = On + ")n' 

0ný0 
n-1 

+W 
nt* 

n=1,2,.,. 

This steady model is discussed by Harrison and Stevens (1976) 

as describing a slowly evolving trend 0n. For this model, Smith 

(1979) examines a generalization of the normal theory to various 

other (exponential family) distributions for yn, which involves 

discarding the linear evolution of 0n in favour of a construction 

providing mathematical tractibility whilst retaining the notions 

of increased uncertainty and "steadiness" of the evolution On-14on 

Smith considers the forms of the predictors of yk, k>n given Dn 

for such models and shows them to be exponentially weighted moving 

averages of past observations just as in the case of normality. 

In all the examples, the exponentially decaying weights are data- 



independeiit, (essentially following from the use of the exponential 

family), and thus the predictors are linear in the observations. 

This linearity should immediately warn prospective users of the 

models of the sensitivity to*outliers; some robustification is 

desirable. 

Returning to the linear evolution and the use of heavy-tailed, 

non-normal errors, we see that i1i this case the predictor is 

tn=tnm for all n. k k-i n 
Now 

Mn=M 
n-1 

+f 
n*(Yn -M n-I 

) 

where 

E -1 1D] 
n 

1Xnpn'('+Vn) 
n 

directly from equation (3.2.22). 

Clearly 0<fný1. We can then rewrite mn as 

mn= (1-f 
n 

)m 
n -1 

+f 
nyn 

nn 
Ea 

r* yr+H (1-f 
r r=l r=l 

where 
n 

afH. (1-f ), f or 1ýr<n. 
j=r+l 

n 
Clearly Ear=1 for all n, and so, as n-ý-, the steady state 

r=O 
predictor is 

n 
m=Eay 

r=l rr 

which is a weighted moving average of past observations. However 

now not only do the weights ar decay exponentially but they are 

data-dependent in such a way as to downweight the contribution of 

aberrant observations, providing robust predictors, when pV is 



Note that if we use the modal recursions as an approximation 
rv 

then the same conclusions hold, with now fn being replaced by fn 

where 

I\d rv 1\0 
fn=X 

npn* 
(I+X 

npn) 

as in (3.2.24). 

3.3.2. Smoothing. 

It is often of interest and importance to calculate the smoothed 

density p(. &ID 
n)' 

k<n, at time n. In particular if changes occur 

in the model structure we can only decide what has happened after 

receiving further data for confirmation. It turns out that a 

straightforward recursive system of equations can be derived for 

the smoothed densities given our assumption of approximate posterior 

normality at each stage (whether we use the modal algorithm or the 

exact method). 

Martin (1979) proved this result for the scaled algorithm of 

Masreliez and Martin (1977). - His proof, however, is unnecessarily 

long and misses the essential point that the approximate posterior 

normality is the key factor in developing the smoothed densities. 

We prove the result directly, and much more simply, in the following 

Theorem. 

Theorem 3.3.1. 

In the model of (3.2.1) and (3.2.2), if p(O ID N[m. C1 
, un nnn 

for all n, then 

where 

nn p(e ID NT k] k n, ,, uk n) kk 

tn=GT -1 
J.. 

[tn 
-a q, k lN + Ck' 

k+l'pk+ Ik+l ,, k+l] 



and 

nT -1 n -1 T=c-CGpP 1-T 
G 

kk k* k+l k+l 
C 

k+ k+l] Pk+ k+lCk' 

where 

G=GTw kk+l =. k+l Tk' Pk+l 
k+l Ck Gk+l + k+l* 

Proof: For k<n, p(O ID P(O D ID )dO 
, -k n) - fp 

Avk 
lOvk+ 

1 n) 'P(, Ouk+ 
1n -vk+ 1 

IR 
. 

Thus (1) defines p(e ID recursively. Setting k=n-1, we have 
,, vk n) 

p (9 )= p(6 9 
-1 

n, n- 1 
10 D 

_110 
D 

1)p(y 
je 0D 

, bn n 4, n bn n- n \, n-1 bn n-1)*P(YnleO%dn n1 (2) 

The first term of (2) is, by Bayes Theorem, 

P(e 10 D)= p(e 
_ 

ID ). P(O le D ). p(e ID -1 
ý. n-l n6n n-o \, n I n- 1 "un \, n-1 n-1 -vn n-, l) 

so (e ru 
D-^, Nm No [G W' 

n-llen n)i no -9 P I'Cn-I Ln 1 n] nvn-1 nvn 

N0 Rn-1 Rn_llp 

ýn-l 

where xM+CGT. P-1 (o -a , ý, n-l , un-1 nnn,. n Am 

and 

RCCGTP -1 GC 
n-1 n-1 n- nnn n-1 

For the second tem in (2) note that 

P(Y. 10 0Dp (y -h 
T0), 

not involving 
un-I ý, n n-1 vn^. n, %, n 

kn-l' 

and so (2) becomes 

(0 10 D) tu N Exn-1 
,R nun- 1 %n n kn-1 n-13' (3) 

Hence, from (1) 

ID fNRN Lm C Ide 
np0 

Lxn-1 
nn IR -n-1 n kn %, n 

nn N Itn-1 T 
n- 1] kn-1 



nT -1 wbere tEGPm -a ll, n-1 
Exn-I ID)nl 77 Tvn-l + Cn-1 

nn'ý, n 
aý, nl 

and, similarly, TnE 
[R ýn n) n)T ID 

n-I n-1 
+x 

nW 
ýxn-i tk 

n] 

so 

Tn=R+CGT p- 
1c 

P- 
1GC9 

n-1 n-1 n-1 nnnnn n-1 

cGT P-1 -I G' C 
n-1 n-1 nn 

lpn-Cnlpn 
n n-l' 

Noting that tn= ýi ,Tn. C, ehe result stated holds for k= n-l. , ý, n nnn 

We prove the general result by induction. 

Assume that for some k<n, the stated result holds. Then the 

first term in the integrand of (1) is calculated as for the case 

k=n-1. 

Set D 
n, k = (y 

ktil .... yn). Then, by Bayes Theorem, 

P(o D p(8 D ). p(D eD )p(D D 
, %., kl, 

oi, 
k+l n I'vk 

1'I 
'k+l' k 4, k+ 1'k Nk+l kn, kI novk n, klo 

6 

But, given 0D is independent of 0 and the final two terms 
, \, k+l ' n, k 11-k 

cancel. The first is, by Bayes Theorem, 

P(e D)a p(O ID jjoý D 
vk 

lovk+ 
1kW k)p(, O-k+l k k) 

which, as in (3) above, is just Nx (4) 
0E k'Rk] 

where 
rvk 

+CGT p- 
1 

. (0 
ruk n-ic k* n+l' n+l 

and 

C-CGTp -1 Gc kk k* k+l k+l k+l' k* 

Returning now to (1) we have 

(6 ID It, fNNn 
+l, 

Tn d4+1 
1%, k n) p 

Lxk'Rkl ýtk 
k+ 11 IR 

0, 
nn N 

\, k 
kti, 



where 

tn= EFxk I Dn] GTp-1(tnI)I 
, \, k -, 

ý ýnk + Ck k+ I k+ I* W+ 1 -, a,. k+ 1 

and 

n n) (x n _e k_ TE [Rk +k rv tk) 
T JDJ, 

k 
kk 

= Rk + Ck GTp -1 Tnp -1 Gc 
, k+I k+l k+l k+l k+l k' 

C k C k GTI k+1 Pk--1 1-T 
n] 1Pk+ 
k+I P-1 G C. 

k+1 k+I k, 

The proof now follows by induction. 

So Theorem 3.3.1 provides the means of recursively calculating 

the smoothed densities. Notice that-the recursions are the same 

as those of the normal model, but now robust. In practice only one 

or two steps back are required 

P( n-2 
ID 

n 
the Markov nature of 

about 01k<n,, carried in Y , \, k n 
p(O ID ) will be little differ, 

, \, k n 

i. e. calculation of p(O ID ) and , %on-1 n, 

the model means that information 

gets "weaker" as In-kI grows and so 

ent from p(e ID )'as In-kj 
, T, k n-1 

To see this in the special case of the steady scalar model set 

p=1, GIh for all n, and w=w. Then by the Theorem 
n %, n n 

n n-1 
en 

n n-1 

3, 

IT T 
+w 

T-T kkI U+w k+1 k+11 
n 

Cn 2(n-k) 
w0 as I n-k I -ý- Co. 

nI 

3.4. Vector Observations. 

Until now we have concentrated for sake of clarity of exposition, 

on scalar observations. We now return to the general vector obser- 

vations model of §3.1, and extend the ideas of this Chapter to this 

general case. We note that the development is parallel to that for 

scalar observations and so we content ourselves with a simple 

presentation. 



The density pv of un is now a multivariate density for which we 

assume the following: - 

p (u) is continuous and positive for uC Mn; 
V IV Aj 

p (p) twice piecewise differentiable in u; 
v 1ý0 

p Q) unimodal at zero and. spherically symmetric; v Au 

(iv) p (u) heavy tailed relative to the standard multivariate V Aj 

normal density in the sense that 

Zn p (, u ý< kui k>0, uC IR. 

v 'IV 
i lui )l 

as a function of uiq 

The multivariate form, of Masreliez's result, Theorem 3.2.1, is 

applicable: when QO ID N [a 
n n-ji ýn ,P n] 

Define the marginal density p'by 

p(Z -H afp (y -H 6 ). N. La P 1d0 
\, n n�n IR pv %n rL-ý, n n ni nn 

and its score function g by 
"LO 

(u )=-a. tn p (Y -H au=Y -H a n, n DY ý, n n, ', n ý, n ovn wm 
%, n 

Further, define the informationmatrix G by 

GO 
a 

g(u 
ay 

T 

^n 
Then 

JDý -a+PHT g(u ) E Ean 
n6n nn Avn 

and 

VarEO IDJ. = p-PHT G(u )H P. 
nnnn nn nn 



The score g has ith component 

(u P-n p §M gi A-n ay. 
L 

each of which mirrors the behaviour of the likelihood score in the 

same way as in the scalar model of §3.2.3. Now the spherical 

symmetry of pv, that is 

Pv (ý) =f(kT k/2) j, .kG 
101, 

implies that 

9 (u) (u) u, say 
rvv 1ý0 v 'IV Aj 

where (u) is a function of uTk given by 
lu V 

ITT fQ ý12)1f(ru ýo M/2) v 1\0 

This decomposition of g leads immediately, to the multivariate v 

analogues of the modal recursions, as follows; 

mnE Lon IDn] is given approximately by 

ma+P HT[I+ý,, (u ). H PHT (3.4.1) 
un r%)n nn I-n nn n] gý, V 

(, u, 
ýd 

Identifying this with Masreliez's result we have 

+* (u ). H pHT9 (u (3.4.2) g (%) = 
[I 

v 'kn nn 
Tn] 

v "un 

Hence G(u )=a can be calculated as follows: 
,, un Du Tg 

(%) 

-n 
-1T Set ý(u) (u) and QHPH. We have 

ru v Ili nnnn 

g(, U, )= [wu )+Q -1 
%, n An n] kn 

or ý(U) g(u )+Q g(u u Iýj ,. n n -n r0n 

and, differentiating with respectýto u, we obtain, , Cn 

q, n G(u ). 1"Iý(lul-n)+Qn] 9(, uvn) a ,,, n u 
,,, n 



Let R= [Iý(u )+Q 
n .n 

Then 

G(u Ru in 
, -n n rýa -3uT 

, x, n 

R 
[R 

unR (3.4.3) 
nný, n Du Tn 

,,, n 
The modal recursion for C is then 

n 

P-PHT G(u )H P (3.4.4) 
nnnn rvn nn 

with. G(u 
n) given by (3.4.3). 

Example 3.4.1. 

Let pv be multivariate Student t-k, 

Tj - (k+m) /2 
u p (u) a [k+u u 

Then ý(u) (u) (k+m)- I (k+u T 
u), leading to 

1%j v CIV NN 

-1 T (k+m) u Iýj 

(3.4.3) then becomes 
T 

uu 
G(u (u )Qý -1 li - 

nrom -1 Jý (u (3.4.5) 
f\, n v un [k+u Tu[, +ýv (^un) Qn] 

v ,, n 
,, un, \jJ 

Again it is clear that, when pv is actually a scale mixture of 

normals, 

Go 
w (, X) dX, f NX ýOJA 

0 

then ý (u ) plays the role of an estimate of X; as in §3.2.5, 
v un n 

ýv (put, 
n)=E 

[A 
nID n'novn=, 

ak0 

Further comment on*this development, and on the exact analysis v 

scale mixtures, imitates 93.2 exactly and so we persue it no further. 



CHAPTER 4. The D. L. M.; scale problems. 

4.1 Introduction 

We now turn to the estimation of unknown scale parameters and 

covariance matrices of the error distributions in the models of 

Chapter 3. We assumed throughout that the scale parameters of 

observational error densities were known and unity in the caselof 

scalar observations and that multivariate observations had spherically 

symmetric error distributions. In general this will not be the case 

and successful implementation of filtering algorithms will depend 

upon effective estimation of scale parameters and matrices of 

elliptically symmetric error densities. 

In §4.3 we concentrate on the scalar model of §3.2 and examine 

features of the posterior distributions for scale parameters of' 

heavy-tailed densities. In the simpler context of location estimation 

rather than time-series, a variety of classical procedures have been 

proposed for scale estimation. In particular scale analogues of 

robust M-estimators have been found useful, as in Huber (1973) and 

(1978), and these approximate the coherent solution in that maximum 

likelihood can be viewed as an approximation to a posterior modal 

so lution in some cases. In the more complex time-series problems, 

Martin (1979) and (1980) utilizes such ideas to. develop scale 

estimates for use in his recursive filtering algorithms discussed 

in §3.2.1. In particular the latter reference provides a discussion 

of two posS'ible methods. 

The first is to calculate a time invariant estimate of the 

constant scale parameter via an approximate maximum likelihood 

approach similar to that outlined in Huber (1973). This then provides 

a global scale estimate and of course demands a retrospective analysis 

i. e. must be computed off-line. The second suggestion is to estimate 

the scale parameter'seque'ntially by an auxilliary data-dependent 



recursion. This scheme, preferred by Martin, is intuitively appealing 

and the success of Martins' algorithms bears out the usefulness of 

such an approach. Unfortunately the mentioned auxilliary recursion 

is not given in that reference. Also, a. s always, such a scheme suffers 

from a lack of formal justification and, more practically, distributional 

results for such estimators are not provided and so little feel for 

uncertainty involved with a point estimate of scale can be obtained. 

We approach the problem within a coherent framework and the 

main difficulty lies in obtaining tractible forms for posterior 

distributions of scale parameters. In §4.3 we use ideas of Chapter 3 

to develop approximations to the formal Bayesian analysis of unknown 

scale parameters in the scalar observations model. In §4.4 we 

develop this in the multivariate case. Here we encounter further 

problems of tractibility, for even in the case of the usual normal 

linear'model, (without the added complications of the time series 

model), there is no tractible conjugate analysis. when both the 

regression vector and the covariance matrix are unknown when, in 

addition, we have proper priors for these two a priori independent 

parameters. In order to surmount these problems in the non-normal 

case, we consider first the analysis in the normal model to obtain 

some idea of the sort of approach that might be appropriate. This 

is the subject matter of the next section. 

4.2 The normal model: unknown covariance structure. 

4.2.1 Unknown covariance scale parameter. 

We take the model of §3.1, 

He 
n ,n 

G0+wv n=1,2,... ' (4.2.2) 
n ,, n run 



with the assumptions made in Chapter 3. The difference now is that 

the [v }are normally distributed. 
, ý, n 

The most general assumption that we can make about the 

covariance structure of v whilst retaining a tractible (conjugate) 
, ý, n 

sequential analysis is as follows; 

Let (v I A) *'k, N ý0, X- Iv0 
, %, n ml 

(4.2.3) 

where Vn is a known (mxm) covariance matrix and X is an unknown 

scalar parameter. The prior to posterior analysis for 0 and X 
,,, n 

will now follow the usual conjugate theory of, for example, De Groot 

(1970, §9.10), if the prior covariance matrix of a ID is also 
q, n n- 1 

scaled by 'A 

i. e. (0 ID 
, X) 'ý, N ýa 

,X 
-1 P. ] (4.2.4) 

,,, n n- In 

and if, in addition, the prior for XID is a Gamma distribution 
,, n-I 

(XID 
n-1 

) 11, G [a 
n-1 

/2, a 
n- 1 

/2] 
, 

(4.2.5) 

with a 
n-1 Ia n-I 

both positive. 

With these assumptions, the posterior distribution is of the 

same normal/gamma form, given by 

(0 1D, X) m, N9 X- 1 C. 1 (4.2.6) 
, \, n n 

ýmn 

and, defining R= Var ID HPHT+V 
n 

An 
n-j'a nnnn 

(XID 
n)ý, 

G [an /2, On/21 

where m. ,C are given by the usual Kalman filter recursions and 
n, n n 

a n-1 

a=a+ (Y -H a)TR (Y -H a (4.2.7) 
n n-1 ý, n mun n run nn 



Clearly then, if (4.2.4) is to bold for all n, the covariance 

matrix of W must also be scaled by X. 
n, n 

p=CCGT+W 
nn n-1 nn 

and var ID -1 P if var `2 )'-l 14 ýen 
n- 11 n 

ýWnl 
n* 1ý 

The system described above is essentially a generalization of 

the static linear model as in De Croot. The marginal posterior 

distribution for e and the marginal for y are available as 
,,, n kn 

multivariate t distributions 

p(0 ID )a [ß + (0 -m )T c- 
1 (0 -m )] -(a +1)/2 

, x, n nn %n �, n n ., n nn 

and 

p(Y ID ) 
,, n n- 1 

with an given by (4.2.7). 

The predictive distributions for Yn+k ID 
n' 

k=1,2,..., are also 

available as t distributions in the usual way. 

This analysis provides an extremely useful method of learning 

the scaling of errors in the dynamic linear model and, indeed, is 

used extensively in Chapter'7 in a practical problem. There is 

little more to be said'about this case and we turn to the (intractible) 

I problem of an unknown covariance matrix in the normal model. 

4.2.2. Unknown covariance matrix. 

Retaining the model (4.2.1) and (4.2.2), we now assume that the 

covariance matrix of ýv is unknown. Generally 
,. n 

N, X'JC 

where both X and A are-unknown. This model is an important part of n 

the robust estimation of e and A in §4.4. For this section we 
,,, n 



assume the An known and equal to unity, 

v ", N, A- n=1,2 
n. n 

ýo 

When 0 is known, the conjugate analysis is obtained by adopting 
,,, n 

a Wishart distribution for A (De Groot (1970), as follows; 

(AID 
n-1) 

-w Wlan-1 IV n-11 given by 

p(AID 
n-l 

) cc JAI 
(a 

n-1 
exp{-ju-(V n-1 

A)) 

where tr is the trace function. Then E[AID 
_1] 

=a V- 1. 
n n-I n-1 

Defining u=Y-H0, we have the likelihood, for known 0 
, ý, n ý. n n,,, n ý, n 

given by 

(Y l'n, ') N N[H 0 A-'] 
n, n n, \, n 

and so 

0DW 
%, n n 

lan'Vnl 

where 

a= ct 1+1, 

and 

(4.2.8) 

+u*uT (4.2.9) 
ý, n ^, n 

The problems arise since 0 is not known. For the full model 
"Ji 

we have a complex posterior distribution p(O AID ) when the prior 
un n 

for e is the usual Nýa ,P and the prior for A is the Wishart 
ý, n n rý 

distribution above, with 0 and A independent. O'Hagan (1976) 
,, n 

discusses the calculation of various joint and marginal modes in a 

similar framework and investigates the relationships between such 

point estimates. He also discusses the relative merits of such 

estimates, broadly concluding that for the covariance matrices, (and 

precision matrices such as A), the marginal modes provide "better" 

estimates than joint modes. We discuss the calculation of marginal 

modes and of approximations to p(e ID ) and p(AID ) which derive 
, ý, n nn 

from ideas similar to those used in the modal recursions of Chapter 3. 



This is done in (b) and (c) below. In (a) we consider the joint 

distribution, joint modes and approximations to the Bayesian analysis 

derived from the joint density. 

(a) Joint distribution 

P(o . AID ) cc JAI exp{-Itr(V 
_ 

A)). 
,,, n nn1 

exp _,; )T p- (0 -a 
,, n n ,n ,n 

JAII exp 1_1(y _H 0 )T A(Y -H 0 (4.2.10) 
,,, n n, ý, n ,, n mn 

The joint modes (6*, A*) are defined by the modal equations 
,, n 

--I 
PHH a] +PHT. 

[H T+ A*- 
[, 
Yxn- 

n,,, n nnnnnnI 

and 

vy*T An (a -H 0) (Y -H 0)] (4.2.12) 
n-l-M) n- 

+ (, 
tn n,, un ,, n n, -,, n 

which can be solved iteratively to provide the values of the modes 

for use as point estimates. 

As an approximation, note that if we use as a starting point for 

such an iteration the prior means a and A we obtain one-step 
,,, n n-l' 

estimates 

el =aPHT. 
[H 

P HT + A-111-1 Ha (4.2.13) 
nnnnn n- 

[, 
Y%, 

n-n, ý, n] 

and Al-1 = (a -M)- + (Y -H a ). (Y -H a)T (4.2.14) 
n n-1 ý, n ii,,, n c,, n n, ý, n 

]- 

Clearly the recursions (4.2.13) and (4.2.14) follow from a Taylor 

series approximation to'p(O AID ), expanding as a function of 6 
q, n n \, n 

and A about the prior means a and A and retaining second order 
, \, n n-j- 

terms in 0 but only first order terms in A. This approximation 
un 

would imply that (0 
, AID ) are approximately independent, with 

, \, n n 



and 

where 

and 

ot ný ctn- 1+1' 

(Y -H a) (Y -H a) 
ý, n n, -. n \, n riqn 

(b) Marginal for 0 
A, n 

-(a ' +1)/2 
IV + (Y -H 0) (y -H eT n-i 

nnn,,, n ,, n ri,,, n 

a (I + (Y -H e )T V-1 n-1 
+1)/2 

ji n,,, n n-1 
(Y,, 

Ln-llnnn 

(a + (Y -H 0)TA (Y -H 0 n-I 
n ,, n n, ý, n n-1 ,,, n ii,,, n 

(4.2.16) 

where A EEA I Dn_, ] =a* V-1 
n-I n-1 n-I 

Therefore p(O, IID n) 
is proportional to the product of a normal prior. 

and a multivariate Student t likelihood. We dealt with just such a 

problem in Chapter 3 and can directly apply those results as follows: 

The likelihood 

(Y 10 
,D n, n Avn n- 

where W(A) = G[c ý 'n- 

('n[D ,. N [0 Cý 
,,, n) ; -,, n 

(AID 
n)"W 

E(ln 
,v n] 9 

Cl =P-PHTHT+A -1 PH 
nnnn 

[Hnpn 

n n- 

dn 

p(Y 10 Df p(Y 10 A) p(AID )dA 
,, n nn n- IR n ,, n \, n n-I 

can be expressed as a scale mixture of normals, 

Go -1 "V fN LH e, X- A W(A )d Xn 
00 n,,, n n n- n 

ý2, a /2] and A is independent of A, 0. Then 
n-I n qn 

(0 ID ' An) m, N 
,nn 

ýmn (Xn) ' Cn (n)1 

where 

m (X a+P HT 
[H 

pHX+ A- X (y -H a 
, Ch n ,, n nnnnnn n-Tl n ,, n n,, n 



and 

c (A PHT 
[H 

PHX +A- HPX 
nnnnnnnnn n- 11 nnn 

The modal recursions of Chapter 3 can now be used to provide an 

approximation given by 

(0 ID N Im (X ), C 
3' 

�n n bn n n] 

ev T 
where X ý(u (a 

_1+1). 
(a +1i Au 

n ý, n nnI ,nn inn 

and u=Y-Ha 
"JI ,, n n,,, n 

Furthermore 

m=m (X a' +PHT R- 1. ý(u ). u (4.2.17) 
, I, n ev'Xi Pull qA1 nnn kp ,, n 

where R=HPHT ý(u )+A -1 
. The covariance corresponding to this 

nnnn\; i n- 
is 

Mi 
Cn=Cn (X 

n)+Sn. 

IX0 T-1 
where C (X )=P-PHRHP ý(u 

nnnnnnnn nn 

T1TT 
and S=PH R- .uu. R-IR P* (a 

_+u 
Au 

nnnný, n,,, n nnnn1,,, n n-l,,, n 

Those recursions follow directly from §3.2.4 in the special case of a 

Student t likelihood. 

Due to the excellent performance of the Student t based modal 

recursions in Chapter 3 we expect the above algorithm to perform well 

and illustrate it later with numerical examples. For large n, an 

behaves like n and (4.2.17), (4.2.18) behave like the Kalman Filter. 

A closer examination of the form of m reveals a similarity between 
,,, n 

itself and the joint recursion of (4.2.13) above. The latter is 

essentially just EQ6nJD 
n, 

A='n-11 whilst'the modal recursion (S. 2.17) 

is equal to E ýO ID A=RJ , where A= ý(u )A rather than just 
n n' nn,, n n-1 

A 
n-1* 

Clearly for large n there is no difference and numerical studies 

later indicate similar small sample perfo'mance. 



(c) Marginal for A 

P(Y IA, D)=N Fjl a-1 +Q 
,,, n n- 1 nnjý n] 

where Q=Hp HT. So, immediately, 
nnnn 

(a 
n-1 -M-I)/: ý 

P(AID )ccIA1. JA- I +Q I 
n. n 

Following the ph 

with a density of the 

exp 
{-I 

tr[AV +(A- 1 -1 T (4.2.19) +Qn) u,, nýT$ n 

ilosophy of dapter 3, we approximate (4.2.19), 

same functional form as the prior i. e. Wishart. 

If we increment. the power of JAI by one half - taking essentially one 

degree of freedom for Y ýthen "linearizing" the resultant exponent 
,, n 

as a function of A will supply a Wishart form. To do this we require 

the following matrix derivatives: 

a -1 1 Tj 
.ITI -5- tr (A (I+AQ )- uu (I+Q A)- A +Qn) Uinuý, n n -, n-. n n 

Ia111 ýA tnlA- +Q 
nI= -A-'(A-'+Q n 

)- A- . 

These are special 6ases of results proved in Lemma 5.1 in the Appendix 

5A. 

The exponent to be linearized is then, from (4.2.19) on ignoring 

a term IAI(an-l-m)/2 
9 

I-I tniAl -itr[AV , +(A- 1 +Q )- 1uu 
nnIn qn,,, nl 

So using a Taylor series expansion to first order about A=A 
n-1 

the 

prior mean we obtain 

constant -jtr J[A-A 
_ 

]. [-A-' (A-1 +Q )-'A-' +A -1 +V- 
nI n-i n-1 n n-1 n-I n 

. -l T )-j (I+A Q)uu (I+Q A 
n-1 n \, nnn n n-1 

by using (i) and (ii) above. 



Rewriting we have 

constant -1trJAV nI 
where 

Vn=V 
n-1 

+Dn (A 
n-d 

and 

D (A) = -A-'(A-I+Q )- 1 A- + A- + (I+AQ )- 1uuT (I+Q A)-l 
nnn,, nxn n 

T -1 = (I+AQ u (I+Q A) (4.2.20) 
n 

ýun 
n+ 

Qn (, +AQnýl 
n 

Note that p(AID n) 
is now approximately W[an, Vn] with an= an-1+1' 

Further the approximate posterior mode, is 

if a>m n 

N 
which can be seen to be an approximation to the true mode An which is 

a solution of 

r%j 'IV -1 
An = (a 

n-M) 
EVn- 

1 +D n 
(Adj . 

Clearly 

A*= (a -M). +D (A )] -1 
nn 

EYn-1 
n n-I 

is a one-step approximation to A' with starting point A Further 
n n-l* 

D (A) involves P i. e. takes into account the uncertainty about 8 
nn 

,n 
The joint recursions for and A of equations (4.2.13) and (4.2.14) 

have been used extensively in the engineering literature as in, for 

example Ljung (1978), and the book of-Goodwin and Payne (1977). The 

usual approach is via approximate joint maximum likelihood estimation 

and examples are given in the above references with also convergence 

analyses. We much prefer the marginal modal recursions; firstly 

it is generally the marginal distributions that are of interest, and 

secondly the expression of the marginal likelihod for Y given 0 
ý, n \, n 

D 
n-I as a Student t likelihood puts-us into the framework of 

Chapter 3 with a special density form and we have seen that the modal 

recursions for t likelihood perform well. 



§4.2.3 Numerical Examples. 

The following sets of figures provide a comparison of the 

performances of the algorithms discussed above. For several data 

generating distributions we use the well tried and tested approximate 

joint maximum likelihood type algorithm together with our marginal 

modal recursions to track a 2-dimensional state vector 0 with 

covariance matrix A unknown. In each case we take 

W= WI 2'. w ý' 0.1, for all n. 

Each set of figures, 4.1 to 4.4 has five plots. Plots A and B 

display the absolute errors in-the two components of the recursions 

for 0; thus plot A is of 
,, n 

le -M 1, where e (0 0)T and ni ni ý, n n n2 

m (m 'M )T 
nx n1 nj 

for both filters. 

Plots C, D and E in-each set of figures display the absolute errors 

in the covariance matrix recursion in the same way. For the modal 

recursion for A we use the mean of the approximate posterior Wishart 

density as defined in (c) of §4.2.2. Plots C and D are of the 

diagonal elements, and E of the off-diagonal element. The priors 

taken were A %, WU1, ý] 
, ý0-ý NEO, 100 1] with 0 actually 0. Many 

n. 0 f%P 

more numerical studies were undertaken with a variety of priors and 

starting values but these figures are typical. The two algorithms 

perform similarly in general but, as shown by the Cauchy example, 

4.3, the marginal modal solution is much more effective and robust 

in non normal situations. 



4.1 

O. S24- 

0.419- 

0.314- 

0.209- 

0.104- 

10 20 30 40 s'o 60 70 ao 
;0 ; 00 0 

1.908 
1; 

B. 

ABSOLUTE ERRORS - MEAN 
DATA FROM N(O, I) 

MODAL FILTER 
-------- JOINT FILTER 



4.1 

O. S66- 

OAS3. 

0.339- 

0.226- 1 0% 11 

oJ13- 

0 

0. 

E. 

ABSOLUTE ERRORS - COVARIANCE 
DATA FROM N(O, I) 

MODAL FILTER 
-------- JOINT FILTER 

10 20 30 w so 60 70 ao 90 100 



Z 

0.909 

0.652 

* 0.4S4 

0.227 

0 

B. 

ABSOLUTE ERRORS - MEAN 
DATA FROM N (0, V) -V=( (1,0.5) , (0.510. S) ) 
- MODAL FILTER 
-------- JOINT FILTER 

10 20 30 40 so 60 70 00 90 100 



4.2 

0.472- 

0.3S4- 

%% 

10 20 SO 40 so 60 70 00 go 100 

0. 

O. Sos 

0.406 

0.305 

0.203 

0.101 

ABSOLUTE ERRORS - COVARIANCE 
DATA FROM N (Op V) -V (1 0.5), (0.5,0-5) 

MODAL FILTER 
-------- JOINT FILTER 

10 20 30 ýlo so 60 70 80 90 100 



4.3 

2. IS6- 

I. Ses- 

I. 40 4 

0.? 42 

B. 

It 
It 

lip 

10 20 

I 

If 

44, 

I, II If & 

70 so 90 100 40 so to 

Ise- 

0.5? 9 - it 

0 10 20 30 40 .I 'It ) 60 io 00 90 100 

ABSOLUTE ERRORS - MEAN 
DATA FROM CAUCHY 

- MODAL FILTER 
-------- JOINT FILTER 



4.3 

C. 

13. 

E. 

% 

% 
2. iBT- % 

1 . 640 4 

1.093 

0.546 

i so 40 so 60 70 Do 90 100 

2,042 

10 20 4'0 so 60 -to go 9,0 1,00 

r- 
0 

0.730 

0.2921 0, 

10 20 30 io 

I"-*. 

-- ý,, 

so . 
60 ?o so 90 )00 

ABSOLUTE ERRORS - COVARIANCE 
DATA FROM CAUCHY 

MODAL -FI LTER 
JOINT FILIER 



4.3. Non-normality: heavy-tailed error distributions. 

Scalar observations: unknown scale parameters. 

Consider the scalar observations model of (3.2.1) and (3.2.2) 

with observation equation 

hT0+v 
n qpqn n 

(4.3.1) 

We now assume that the heavy-tailed unimodal symmetric error 

density pv of vn is known up to a scale parameter a, 

PV (V 
n 

Icr) = cr-1 PV (0- 1v 
n)' n-1,2,... (4.3.2) 

In Chapter 2 we discussed at some length the joint prior 

specification for 0 and a when 0 was both scalar and constant 
,,,, n in 

i. e. the location/scale problem of §2.5.2 and §2.5.3. The comments 

of those sections are applicable here; if the prior for 0 is scaled 

by a with prior mean a not involving 02, then the'marginal likelihood 
,,, n 

of y given a is also scaled by a, 
n 

ID p (a- IhTa lyn " 
%, 
j ). P(yn n-l'o) 8* 0 -, 

vn 

So we may as well begin our analysis by considering the case 

of e known (and equal, say, to a ). We adopt a Camma prior for 
, ý, n ý, n 

;k= C-2 as discussed in 92.5.3, 
, 

(XID 
_e 

=a ) ru G[an_1/2, /2] 
n1ý, n Zn 

On- 
1 

(a) Known 0=a 
,,, n ý, n 

Set znýy-hTa. Then p(XID ) is given by 
n ui,, n n 

p(XID n)aC 
[a 

n_1/2,0 n- 1/ 
21' XIPV('ýlzn) (4.3.3) 

Again the route to a recursive updating algorithm for X is the 

same as that adopted in §4.2; approximate the posterior by a density 

of the same functional form as the prior via a Taylor series expansion 

of the log likelihood. In this case we already have the factor X' in 



the likelihood so-the power of X in the posterior can be directly 

incremented by one half representing a degree of freedom for y n* 
The remaining exponent in the likelihood is then expanded to first 

order as 

tr\ p (; klz. ) = constant + (X-t )a tIN p (z 'el- )+ 
vnn1 

az 
n-1 vnnI 

where t 
n-1 

is the prior mean t 
n-I F. a 

n-1 
lo 

n-l* 

Ignoring higher order terms leads to 

(XID 
n) '%' C [an /2, ýn /2] , (4.3.4) 

where an=a n-I 
+ 1, 

and 

ýn ý ýn-l -2 at 
n-I 

tt. % pv (z 
nz n-d' 

(4.3.5) 

Now, if gv is the score of pv, then 

-3 en p (z xi) M-19 (Z xi ý -x vn n 
)zn" 

2X 

therefore 

+ le 
i- 

$Z 9 (Z il ). n-1 n1nvn n-1 

Further the syrmnetry of pv implies that the score factors as 

9v (u) 
v 

(u). u, and hence 

0ý On-1 + z2 ý (z 
-) 

(4.3.6) 
nvnn1 

Clearly *V acts as a "robustifier"; at normality ýV =1 and 

(4.3.6) is exact and non-robust. Otherwise, for heavy-tailed pV 

limits the inference of the squared residual z2 on the factor 
Vn 

an and hence on the posterior of X. Note that the posterior mode 

Z* is given by 
n 



t*-l =0-1 (a -2) f or 'a 
nnnn 

+z ý al z )l 
n-1 nv n-1 n 

Clearly the exact mode is 

^- 1= -llßn +Z2 ý (i iZ )] f- (CL -2) -1 nvnn 

and so 
* 

is a one-step approximation to 
in 

with starting point 
n 

n-1 

Finally the posterior mean is given by E[XID 
n] 

2ý ý'n m anlon' 

whose inverse then satisfies 

a2 = e-1 = C2_ + a-' [Z2 (Zl_ z)- C2_ý . nnnInnvn1nn 

Alternatively, noting that 

a tn p(z JC2) =--1 [Z 2ý (CF-1 z)- all 7 -CT In 2aT nvn 

we have the recursive algorithm for 02 defined by 
n 

a2 cj2 - 2G4 
, a-1 

[- 
---D- tn p(Z la2_1)1. (4.3.7) 

n n-1 n-1 n aa2 nn 
n-1 

NB: Similar recursions can be derived for E[X- 1 JDnj and various modes 

of X, X- 1 
etc. They differ, in general, only by constant multipliers 

of the score function in (4.3.7). 

So we obtain recursive algorithms for moments of X which depend 

on the observations via the score function as in the case of 0 
, ý, n 

when I is known. As noted in Chapter 2, likelihoods which are 

"robust" for 0 i. e. have bounded and redescending score functions, 
,,, n 

are not necessarily robust for X in that'the posterior p(XID n) will 

not converge to the prior as Iz 
nI 

increases. our approximate gamma 

posterior for X behaves in this way: in general $n does not converge 

to 0 
n-l' and clearly an ý' a n-1 

+I implies no possibility of 

convergence to the prior. 



In the case of normality Zn -* 0 as Iz 
n1 -* co. For a robust analysis 

we should require some constant limit for tn hopefully not too small. 

-2 From (4.3.6) this requires that ýv decays at least as fast as zn 

which is the case for the Student t family in particular. For the 

-2 exponential power family the rate is always less than zn meaning 

tn -* - as'lz 
nI 

does; in particular for index 0<0<2 the rate is 

like Iz 10-2. In fact all the othqr heavy-tailed distributions of n 

Appendix 2B but the stable family and the normal/uniform-lead to this 

non-robust behaviour of t. The stable ý function is asymptotically nV 
O(Z- 2) 

so leading to behaviour similar to the student family. The 
n 

normal/uniform behaves like the Cauchy in the tails. 

Interpretation via scale mixtures of normals. 
CO 

When p (v f N[O,; k- 
I )dX 

.n=1,29 ... with {X ) independent 
vn0n 

lw(Xn 
nn 

positive random variables we can again proceed by a conditonal analysis. 

p(XID X)g. G ßn-1 /2]. X' exp {-X XZ2/2} 
nn 

Ean-1/2' 
nn 

and 

where 

c E(c, +1)/2, (o +A Z2)/2] (4.3.8) 
n-1 n-1 nn 

00 
p(XID nf p(XID nlxn)P(An 

ID 
n 

)d Xn' (4.3.9) 
0 

P(X n 
ID 

n)a WO n) P(Ynl xnD 

and 

P(y AD)a Z21 
-(a n-1 

+1)/2 
(4.3.10) 

ni nn 
Ion-J+Xn 

n 

Thus EEXID] = (a +1) Eý +X z 2)-11D 
n n-1 

[( 
n- Inn n] 

Clearly (4.3.6) can be viewed as an approximation, given by 

E[XID 
nXn 

=Xý , where Xný, ýv (z 
nt n-1). 



Note further that, us: ing Lemma 2.1.1, we have 

1 
x19 (X 

3Z)= 
xz ý (X2Z )=E-a In p(z IX, 1 )lz 

vnnvn Dz 
nnn n'X] 

Az Ex 
n 

[Xnlzn']' 

Ilu 
thus -A = E[X,, Iz X=i E ID X=Z (4.3.12) 

nn n_ 1] 
[ýn 

n n_ 1] 

This development is just as in the location problem. The function 

is used in an approximation as a robustifier in an attempt to 

eliminate the nuisance parameter Xn by substitution of an estimate 

rather than by integrating over p(X n 
ID d- 

If we prefer to evaluate E[XIDn] numerically, we approximate 

p(XID n) 
by G[a 

n 
/2,0 

n 
/21 

where 

n-1 

and 
-1 2)-11D] =E ID] 
nnn 

ß= 
r(ßný-1+ý'n 

ann 
[ßn 

(ýn) -1 

This approximation then has the same mean as p(XID 
n) and can be seen 

to provide the closest Camma approximation in terms of the Kullback 

Leibler directed divergence (See Appendix 5B). As in the location case, 

we can evaluate ý by a single integration over E0,1] since n (. 7 

C1= a- I 1+x z2a-1 ) -. 1 1D 
nn n-1 n] 

and the subject of this expectation is contained in the unit interval. 

We provide some numerical examples of this approximation when the 

likelihood is in the Student t family. Figures 4.4 and 4.5 each 

contain three plots corresponding to different prior specification 

A 'k, G [b/2, b/2] , 

with b=2,6,10. In each plot we have drawn the posterior density 



for Aly and the approximate gamma density just discussed for the two 

values of y, 1.5 and 3. 



4.4 

STUDENT T-2S 
POSTERIOR 

APPRO ý! rl 4J 

El :, 
" 

i. 21's 

2.687 

2ý ISI 

Li 

S. 512. 
B=6 

4 12S- 

3.937- 

3.15 
i 

2.362 

1, 

-- 

------------ 

0. % 0.2 0,3 oý4 0. $ 04 0.7 u-» 0 l'- iG1. * 1 

6.3 
B=2 

S. 4 

4. S 

3. 

2. ?1 

1.0: 

c? 

Cs C( Ql 



4.5 

STUDENT T-15 

POSTER"CR 
Tl 

2.687 

1.612-1 

O. S37 

Ir,, -1 - r- -'T*-'- r--" "T---, T 

') s 0.4 0. V. (). 6 0.1 0 -3 0-9 1. () 1.1 

5.512 
13=6 

4.66 

3.957 11 

T T- T- II. --T- 

o., j Q. S 0.6 0. r0., 3 o-Q 1.0 1.1 

6. Al 

2.137 

1.0 
4 0. q060.1 0.13 



(b) The full model: unknown X and 0 via scale mixtures of normals. 
, \, n 

We now use this approach to learning scale parameters in the model 

(4.3.1) with the parameter evolution (3.2.1). As in §4.2-1, we 

again scale the covariance matrix of the evolution errors w by the 
, Zn 

unknown cr. 

Thus the prior is 

leading to 

where 

(0 1D, A) m, X- 1c 
1 

[mn- 

n- 

]' 

(0 ID 
, X) Il- N 

[a -1 p 
,, n n- 1 eln " n] v 

a=CM and P=GCGT+W 
,, un n -%, n nn n-1 na 

In addition 

XID I- Ca 
n 

[n-1 

with X independent of w and v 
n, n -n 

Now, conditional on the mixing parameter Xn we have 

16 X, A N[h T0 
,u n %n' n An-. n n] 

Thus 

(i) (0 ID X, X)%N (X ), X -1 c (X 
,nnn 

[m� 

nnn ný 

where m (A )=a+Ph (X q2+1)-lX (y -h 
Ta 

.nný, n n,,, n nnnn%, n,, Zn 

(1 )=P-Phh Tp (X q2+1)-lx 9 nnn nbn�, n nnnn 

and 

q2 =hTph 
n \, n mm 

(ii) (XID 
n, 

Xn) 'u G [an / 2, ßn (x 
n)1 

where an=a n-1 
+ J, 

and 

ß (X )=ß+ (y -h a) (X q2+1) X nn n-i n %, rLmn nn n' 



(iii) From (i) and (ii), 

p(0 ID X)& fß (1 )+ (0 
_m (X »TC 1 

(X )(6 -m (X »l- ( P+ctn )/2 

�, n nnnn�, n �, n nn bn Nn bn n 

Clearly one-dimensional integrations over [0,11 will suffice 

to calculate moments of X and 0 given D exactly. To obtain simple 
,,, n n 

analogues of the modal recursions we follow'the ideas of earlier 

sections by replacing Xn by an estimate Xn, given by 

E =a 
n 

[Xn 
Yn'ro,, 

n nn n- 

vt 
(y -h 

Ta [n- 

1 n, qji, ý, 
d] 

From (i) and (ii) above, we then have the recursion 

AU rwj 
m=m (A )=a+Ph (X q2+1)-l t -i gv(t 

11(yn 
-h 

Ta )) (4.3.13) 
,.,, n ,nný, n n, -, n nn n-1 n- nnnn 

I 
The equation for Cn, the approximate posterior variance, is derived 

as in §3.2.4 and 93.2.5, as 

ni 

Cn=Cn (X 
n)+Rn 

(4.3.14) 

'I, 
where Rn is an extra term (which is such that Cn>Cn (X 

n 
)) given 

by 

R=PhhTp (y -h 
Ta 

n n,,, rl,., n nn 
('? 

ni- In qn, ý, n 

and 0 (u )=-ý. (u )u (1 + q2 ý (u )) 
nnVnnnvn 

'N' Then we approximate p(e ID X) = p(O ID X, X ýX 
6n n nn nnn 

(4.3.15) 



Aj 
Furtber, for X, p(XID n p(XID nx ný 

An 

G [an' 2,0 
n 

/2], (4.3.16) 

Ili T Ou -"%j where ýn (X + (yn-h a ). (X qX 
nn n-1 ý, nnn nnn 

T CA tu 2+1)-lg ei ß+ (y 
n -h a) (X q (yn-h a n-1 ý, n�, n n-1 nn vlin-1 u Nn 

The following figures provide. some numerical examples concerning 

the model 

Yn '-- 0n+v 
ny 

0n0 
n-1 +W nt n 1,2,... 

with wnN N[O, w] and for variour error densities pv as stated below 

each figure. The robust filters are based on Student t distributions 

for 5 and 15 degrees of freedom. The parameter R is the square of 

the ratio of the scale parameters, R= wX. The upper frame in each 

set of three, A, provides a plot of the function $n /a 
n 

against n as 

an estimate of A The frames B and C display 95% credible intervals 

for 0n, which is plotted too. 

We can again see the excellent performance of the robust filters 

on all sets of data and the "smoothing" effect of the choice of 

robustness parameter k (as the degrees of freedom of the model). 

The confidence intervals for k=5 are obviously wider than those for 

k=15. Again these figures are representative of more extensive 

numerical studies. 
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4.3.2. Prediction and Smoothing. 

(a) Prediction. 

(i) The marginal density p(ynID n-d- 

We calculate p(y n 
ID 

n-1) 
just as in §3.3.1. From the modal 

recursion above we have 

T- iru 
+ (y; h a q2+1) X 

n-I qnnn 
(ýn 

nn 

tj T 
with A=ý -h a n[ n- 1 

(yn 
qnqg 

Now, from (5.3.16) we have an approximation to the score of p(y n 
ID 

n) 
by using our scale analogue (Theorem 2.3.1) of Masreliez's Theorem, 

just as we used the latter in S3.3.1. 

From Theorem 2.3.1, we have, defining u=y -h 
Ta, that 

nn,, nxn 

EJXJDý = ý-l' ja -u g (u 
n-I nn1n 

where 

g (u )=-3t p(ynID In 3yn n nj 

is the marginal score function. 

Further from (4.3.16), 

[X 1 Dn] ci Z= an ß-1 p n 

so, equating the two and rearranging we have 

lb ry 
2+1) +Xu 21-1 (4.3.17) gl(un) = an Xn>unfßn-1(Xnqn 

nn 

This then defines the approximate marginal density-via 

Co 
p(y n 

ID 
n)a 

expf -fg1 (U 
n 

)du 
nl' 

--Im 



Example 4.3.2. 

(i) Normal likelihood. 
"J 

If pv (u) = O(u), then Xn=1 since w(X n) 
is degenerate at Xn 

So g (u )=au fs (q2+1) +u 21-1 which is the score of 1nnn n-1 nn 

'P(yn 
ID 

n)a 
Jý 

n-1 
+ (q 

n 
2+1)-lu 

n 
21 n 

/2 

a scaled Student t distribution an4 the exact result. 

Student t-k likelihood. 
Aj -1 Now Xn "2 (k+l) (k+? - n-I 

), and so 

gl (U )= CL, U ly +u 21-1 
nnnn 

where 
-1 al =a (k+l) (k+a 

nnn 

and 

[ 2(k+l)+k] (k+a Yn 
n-I 

qnn 

Thus, again, p(y nIPn 
) is a scaled Student t distribution although now 

with a different degrees of freedom parameter, a' n 

-a 
p(y ID )a ly +u2l n 

nnnn 

In the special case q2=0, corresponding to 0 known, and n ,, n 

a b, we have 
n- n- 

- W+ 1) /2 
P(yn ID 

n)a 
11 +un 2/kll 

where k' b k/(b+k+l). 

For various values of k we computed the true marginal density and 

this approximation for a range of b and these are displayed in 

the following figures. 
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(ii) Predictive densities. 

The calculation of predictive densities for future observations 

proceeds along the same lines. 

For k>n, 

hT0 )) p(O X, D ID )dO d), P (yk ID 
n) 

=f fp xpv (X (yk-, 
%J<k ,, k 

I 
n) P (X 

n ,., n IR 

.1 
Clearly (0 ; k, D Ntn X- 1Tn 

n. k n) , x, k' k 

where, as in §3.3.1, for k= n+l, n+2 

tn=Gtn and Tn=GTnGT+w 
, ýk k \, k- 1nn k-I kk 

Thus, defining 

nTn 
- hý t. p uk ' Yk 

K,. K 

n2 bTTnb 'lk 
%, 
k k ,, k 

and 

= PvLflukJ 

we have, by analogy with (4.3.17), 

a '-ý, n f%jn n2 -ýn n2 -1" 
3yk 

tn P(yk IDn) 2ý ('+OLn) Ak Iýn(Xk qk +1) + Xk uk I 
-Uk 

Note that, both for the marginal density of yn ID 
n-1 and for these 

predictive densities, when 0 is known as in §4.3.1(a), we have 
,, n 

2 n2 qqk0 for all k, and then the score above becomes 

n 1, + n2j-l. uk n uk 

. (b) Smoothing. 

There is little to be said about the smoothed densities 

p(O-ID ), for k< 
Nk n 

Invoking Theorem 3.3.1, we see that the appropriate approximation 

is 



p(0 ID X) =NnT n-, 13 n 
r, k n 

ýk' 
k 

nI-I 
where t= rn, +CGp tn -a 

,, vk %, K k k+l k+l 
l,, 

uk+l %, k+lj 

and Tn=c-C GT P-1 Tn p- 1 
nkk n+l k+j 

[pk+l- 
k+l] n+l 

Gk+l Ck' 

Co 
Thus P( 6k ID 

nf P(p k 
ID 

n 
X)p(XID 

n 
)dX 

0 A. 

to + (o n)TT n-1 (0 n )J, 
-a n 

/2 

n ., k k Lk Lk 

a scaled multivariate t density, exactly as in the case of a 

normal likelihood. 

4.3.3. Vector observations: unknown covariance matrix. 

Consider the model of §4.2.1 with now a heavy-tailed unimodal 

and elliptically symmetric error density 

(uJA) = JAJ'p (Alu) = JAI lf(u T Au/2) 
v 1ýj v Ilu IV rý, 

for some decreasing function f on1R, with f>0. 

We approach the problem of estimation of A via the construction 

of p as a scale mixture of normal densities 

Co 
p (u1A) =1NC A- 1 X-'] w(X)dX 

0 

I-, 

ý 

where w is the mixing density. So for the model of 54.2.1, we 

assume that 

v JX NN A- 1 X- In=1,2 ri, n n Fc, nj 

with 

Ix 
nIi. 

i. d. with density w(X). 

Now we are in a position to use the development of §4.2.2. as 

follows: - 



It at time n 

(i) (AID 
n-1 

W 
[yn-l' 

v 
n-1] 

with 

p(AID n-1 
)a JAI exp f-I tr(V 

n-1 
A)j; 

(0 1DN 
II. n-1 n-1 

[Tý, 

n-19 
Cn-11 

then the analogues of equations (4.2.17) to (4.2.20) lead to 

approximate posterior distributions conditional Dn Xn are 

(iii) (0 ID X)bN in (X ), c (X 
r. n nný, n nn n) 

rinn 

where 

PHTR «U. )u (4.3.18) 
�n n �n nnn �n �n 

with a=Gm=GGT+WV 
, Zn nxn-l' 

Pn 
n 

Cn- 
nn 

and uy-Ha, R=HPHT ý(u )+ A-' 
un kn nnn nnnn,, n n-l* 

The function is given by 

x (y +1). (y +X uTAu) -1 (4.3.19) 
, bn n n-1 n-1 n �n n-1 n 

where A EEAJD -1 
n-1 n-11 ý Yn-1 Vn-l' 

Further 

c (X )=p- P-H T 
R- 1HP 

ý(u )+S 
nnnnnnnn iCn n 

where S=PH R- 1uuTR -1 HP (y +X uT Au 
nnnn qriqn nnn n-1 rDun n-l,, ý, n n 

Uv) (AID 
n' 

xn). w lyn' VnJ 

where 

Yn m Yn-1 + is- 

and 

Vn=V 
n-1 +Dn (A 

n-1 
Ix 

n) ' 



where the function D is defined by, 

,I 
D (AIX (I+AQ XIu+XQ (I+A IuT AX -1 

nnnn1, 

rnumm 

nn 
Qn'n)](, +Qn 

n) 
(4.3.20) 

Now, as in 4.3.3(a) we produce modal recursions by using an estimate 

of An, given by 

AE0 =a A=A 
vtAn-lun] 

['Nn 
I Yn ý, n %. n' n-I 

ru 

Thus the equation for m is just m=m (A ), given by 
,,, n ,, n ,, n n 

NT -1 PHR «u )u 
�n n #bn nnn bn tn 

0.0' T -1 with now ý(u X (y +1) (y +X uAu and 
*, %, n n n-1 n-I nqx n-l,,, n 

-1 
n=HnP nHTný(-um) 

+A 
n-l' 

from (4.3.19). The corresponding approximation to the posterior 

covariance matrix is given by 

CC-P IJG (u )HP 
nnnn-,, n nn 

where 

GO JR-1ý(u )u 
, %, n unn nl 

.n 

Further details are routinely derived from these basic observations. 



Appendix 4. 

4A Lemma 4.1. 

Let A, A, B be (mxm) symmetric matrices with A positive definite. 

Define the scalar functions f and g by 

f (A) = tr (A- I 
+A)-lB] 

and 

g(A) = ZnIA- 1 
+A f 

Then (i) Lf (A) = (I+AA)-'B (I+AA)-l 
DA 

and (ii) 3g (A) = -A-'(A-'+A)-lA-l. 3A 

Proof. Define the (mxm) matrix X by X- (A- 1 
+A)-'. Then, for all ij, 

af (A) = tr 
'X 

5A 
[ 

3A 

But A- 1X+ AX = I, and so, 

DA- 1 
(A-*l+A) 3X 

TA-ý 
. DA 

ij ij - 

Now, to calculate, 
a 

note that 

-1 -1 3A AA=I so 
2-A A+ A' ý-A. = DA. . ij ij 

3A 
So, since 5-A.. t. tT where Z. is a zero column vector with unity 

,,,, 'ý'j ij 

in the i th 
position, we have 

3A A-1t. tT A-1. DA -vl- -A 

Hence 

ax X A-1 t tT cl x 5 TA 
ij rvi rvj 

Df1 -lXB so (A) = tr[XA- Z iTA 
DA vi-. j 

tr[Z 
T 

A- 
1 
XBXA- I til 

"0 Iýj 



= Z. A- 1 XBXA- It, fýj rvj 
and therefore 

af (A) = A-'XBXA- 7A 

and the result M follows. 

For (ii) note that 

ag(A) Z( Gg(A) 1D (A) 
DA ZPM 

10 j! 
)j] DA 

ij 

tr 
rag(A) 3A-1 T 
[ 

DA-' 
ý A- 

iii 

1 

tr' 
19g(A) DA- 

Du 0 
DA"! li 

DA -1 T -1 Now we know 7A. A-1t. t. A , and, further, 
ij ýI'X'j 

Dg (A) -=3 XhIA -1 +Aj (A-'+A)-' =X 
3A_ 1 aA_ 1 

and so 
ýg(A) 

= tr -XA- 
1 t. tTA- 

DA 
II 

A XA 
AJ 

3g(A)'= 
_ A- 1 

XA- as required. DA 



Appendix 4A: Lemma 4.2. 

Let A, ý be random variables with joint density 

p(X, ý) = G, [a/2, b/2]7r(ý) 

where b is a function of Let p(X) be the marginal density 

of X. 

Define fM = G[a/2, ý/2] and choose a>0 such that 

Co 

is minimized as a function of 0.1 is the Kullback-Leibler directed 

divergence from f to p (Kullback, 1959) and 

0 with equality if and only if f-p 

almost everywhere. Thus a satisfies 

0 

or 
a [ýa-21 

+ sX 
'g-o E222+r( a2l] 0. 

a Therefore E0 2 20 TI = 

or 2ý =E EX] 
. 

But 

E[X] = E[EEXIý]] = E[a b(ý)-1 

and so 0 satisfies 

0-1 = 



CHAPTER 5. Classical time series models. 

5.1. Autoregressive models. 

As mentioned in Chapter 3 we must make a distinction between 

regressions in which the data enters into the matrix of regressors 

and those-in which they do not. This distinction was noted in the 

context of autoregressions by Fox (1972) in a discussion of outliers 

in time series. The two basic models are described as follows, and 

following Kleiner et al (1979), we shallcall them the innovations 

outliers (10) model and the additive outliers (AO) model. 

5.1.1. Innovations outliers. 

p 
Let Yn E 8. y. +vn (5.1.1) 

3=1 J n-j 

be the observation equation. The so called innovation at time n is 

the observational error vn and a large innovation will have an 

effect on future observations since the aberrant observation will be 

used as a regressor. Suppose that, for example, yn is uncontaminated 

with {v 
nI as i. i. d. N[O'U2]. Define the contaminated process {zn ) by 

zk Yk k<n, 

zn Yn + 6,6 >0 

p 
zkjE0j Zk-j +v k' n<k. 

Then we effectively have an outlying innovation, vn+6, at time n. 

Thus z n+l = Yn+l +616, 

z+ 02 +e )s t. n+2 
ý Yn+2 12 

and so on. In particular, for an AR(l) process, 

n+r y+r 60 foe r>0 n+r 1 



and so the effect of the shift 6 on the process decays as r increases 

with the actual observations [z 
n} given by the true process {y 

n 

plus an exponentially decaying shift. 

Abraham and Box (1979) discuss a retrospective Bayesian analysis* 

of 10 models within the framework of the "conditional model" described 

by Box (1979 
, 1980 ). This approach assumes that outliers occur with 

some probability, a, say, and proceeds to calculate the posterior/ 

predictive distributions of interest conditional upon knowing that a 

given subset S= (y 
r, jo ... sy r) 

of the data are aberrant. The outliers 

are modelled by a non-zero shift, as with (z 
n) 

above, with the shift 

being the same for all outlying observations. Inferences are made 

by averaging the posterior/predictive distributions with, respect to 

posterior probabilities of the given subsets S being aberrant. This 

procedure becomes computationally expensive with calculations required 

for each k=1,2,... ' and all possible subsets of size k, and is 

usually only performed for a small number of outliers, up to, say, 

5% of the sample size, corresponding to a small a. 

From the point of view of sequential estimation of course we 

cannot do this without performing a new analysis at each time point- 

using all the data to that time. However, this innovations outlier 

model falls into the framework of Chapter 3, (although now, of course, 

we are taking 0=0 to be fixed for all n; the general variable 0 
, \, n 1\0 %, n 

can be handled in the same way using the usual linear evolution 

equation). Given that we believe in the model (4.1A) as the data 

generating mechanism, we need only adopt a heavy-tailed, near 

normal error density pV for the vn in order that outliers are 

automatically downweighted at the time of occurrence. However it is 

not clear that this limits the effect of the outlier at time n on 

p(OID ), for k>n, for which the observed z is used as a fixed 
, %j kn 

regressor. We examine the consequences in the special case of an 



ARM process. 

Special case p=l. 

Now e=O 1 and the observations {z are related to the "clean" 

process {ykj by the equations 

Yk 'ý Yk-I +Vkk=1,2 

zn ý* Yn k<n 

Yk +0 n-k 6, k>, n, 

where 6 is the shift (assume 6_> 0 for clarity) at time n. Consider 

first the normal theory analysis, p V(U) - ýW- 

Kalman filter. 

(61D 
nN 

Emno Cý 

where 

+cz (1+c z2 )-1 (z -Z 
n n-1 n-l- I n- 1 n-1 n-I n n-? n-1 

and 

c- c+ Z2 (5.1.4) 
n n-1 n-1 

Clearly mn is linear in 6, mn -)- - wi'th 6. Cn is constant however. 

So p(ejD n) moves along with the outlier, in the usual non-robust 

way associated with a normal likelihood. 

Now at time n+l, we can rewrite m n+l 
in the form 

-1 
+ z2 +Z m+ZZZ Z] 

n+l n-1 n-1 nj 
(; 

n-1 n-1 n n-1 n+l n 

IC 1 

a nd, since zn= yn+S and zn+l ý Yn+l + 06, we have 

m 
[6-2 

Cl + z2 6-2 + (y 6- +J) 
[Cn 11m 

n-1 
6-2 

n+l n-1 n-1 n 

+ (y 
n 

6-1 +M- Z n-1 
+ (y 

n 
6- 1 

+1)(yn+l 6- l+ 
1) 



--,. -as6 -)- -. 

Further 

C -1 + Z2 
n+l nn 

%4ith S. 

Thus p(OID n+1 
) becomes degenerate about the true value 0, a rather 

remarkable observation. Of course in practice 6 is finite. 

(ii) Robust filter. 

If pV is outlier-prone with score g(u) = V(u)u, (so ý(u) is 

bounded), then at time n we have, with a normal prior (DID 
n-i 

) rV 

N 
[Mn-19 

Cn-j' that the posterior 6-score is 

a -1 0 - -7, p(61D )=C (6-M )-Z (Z -Z 
n n-1 h-i n-1 n n-1 

»(zi zn-10) 

So the posterior score converges to the prior score for all 0 as 

1 6 (hence zn) tends to infinity if ý(u) decays faster than u- . The 

posterior modal equation is 

e= 
[C-11 

+ Z2 ý(Z -Z je)f 
1M-+zz ý(z -Z 6 

n- n-1 n n- 

Icn-i 

h1 n-I nn n-1 

ý 

and the posterior mode (s) On* tend to m as 6 tends to infinity 
n n-i 

-1 when ý(u) decays faster than u. Use of the modal recursions of 

Chapter 3 with, for example, Student t likelihoods, provides a 

robust analysis: 

M=M+c (I+C Z2_ gu ))-lg(u 
ti n-1 n-1 n-1 n1nn 

where un=zn-m n-1 9 implies mn -+ M n-i as 6 -* -. -Also 

c- C2_ G (u 
n-i n1nn 

with 

G (U ). -L 1 (j+C2 z2 ý (U » -1g(u ) 1, 
nn Du 

n n-1 n-1 nn 



and Gn (u 
n) -* 0 as un-- implies Cn -* C 

n-I as6 -),. -. 

Going now to time n+l, the score of p(OID n+l 
) is given as 

c- 1 (0-m 
-)-Z 

(Z -Z o»(Z -Z 6) -Z (Z -Z o»(Z -Z 0), 
. n-1 n-1 n n-1 n n-1 n n+l ii n+l n 

and so posterior mode(s) 6* satisfy n+l 

0*-1 +z2 «Z -Z 0* )+ Z2«Z -Z0*-1 in' +Z Z n+l 
Cn-1 

n-1 n n-1 n+I n n+l n n+1)] 

[Cn-1 

n-1 n n-1 

ý(z -Z 0* )+ZZ «z -Z 6* 
n n-1 n+l n+l ii n+l n n+l 

Since ý is bounded, 0* -0 with 6 -+ -. 

Use of the modal recursions similarly lead to m 
n+1 -* 0 as 

co, just as for the Kalman filter. However, unlike the Kalman filter, 

C 
n+1 

does not necessarily tend to zero. Consider the Student t-k 

likelihood. Then 

-2 [ 
Z2 Z2 (k+l) + u2 +k U2 Z2 G (u (k+l) 

[k+C 
k+C Z2 (k+l) 

n n+l n+l nnn 1] nn n+]l n 

1+0_mý ] -2 
(k+l) 

[U-2 
+Cn (k+l)(y 

n 
6-1+1)2 + [C-n+l 6- 2 

Y 6- 
1 
+1 

2 [k6-2 
+C (k+l)(y S-1+1) 

nInn2 -[C-n+l' -nO 

where u n+l =z n+l -zn mn = (yn+l-mnyn) + 6(0-mn) 

and C 
n+l =y n+l -M ny n' 

Therefore lim C lim Ic 
- C2 z2G (u )I 

n+ S-ýw nnU n+ 1 n+ I 

c2_ (k+l) 
n-1 n1 

ICn- 
1 

(k+l) - (0-m 
n-dq 

ECn-1 (k+ 1) + (0 -m n-1 
) 2] 2 

Note that this limit is non-zero unless m 
n-1 

= 0' 



Example 5.1.1. 

To illustrate-consider the following numerical example of a 

sample of size 11 from an AR(l) process with 0=O. jr . We took 

mo -0 and CO = 10 and ran a Kalman filter together with a robust 

Student t-4 modal filter on the data, with an added shift of 6 at 

time 10. Denote the Kalman filter mean and variance of OID 
n 

by 

(m 
n, 

cn) and those of the robust filter by (x 
11 ,sn After 9 "good" 

observations we had, 

N= Normal theory posterior N[O. 353,0.362] 

R= Robust posterior N[O. 365,0.495] 

Time n 

Shift n= 10 n= 11 

S0N (0.539, 0.339) (0.535, 0.284) 

R (0.621, 0.479) (0.572, 0.335) 

S=5N (1.137, 0.339) (0.604, 0.133) 
R (0.538, 0.500) (0-509, 0.127) 

= lo N (1.734, 0.339) (0.575, 0.081) 
R (0.471, 0.497) (0.503, 0.078) 

100 N (12.500,0.339) (0.510,0.010) 

R (0.380,0.495) (0.500,0.094) 

Example 5.1.2. 

A second example is illustrated in Fig. 5.1. Using the same 

AR(l) process the posterior density is plotted at times n= 18,19 

and 20 and an innovations outlier is introduced at time n= 19. 

The likelihood was a. Student t-4 density. 
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Unknown error variance. 

The above assumes that the scale parameter of pV is known and 

unity. Now let p(V n)=a 
-1 PV (a -1 V n) ,n=1,2,... with a unknown. 

Define X= 0-2. Staying for definiteness with the simple AR(l) 

process the usual conjugate analysis for normal pv leads to 

(OIX, Dn) n- Eni� X-' C, 1 

and 

(XID 
n) 

I'v G [a 
n 

/2,0 
n 

/2] 
v 

where mn, Cn are defined 
. 
in (4.1.3) and (4.1.4), an ý2 a n-1 

+1 and- 

+ (Z -Z 
n n-1 n n-imn-1 n1 n-1 

Clearly the usual non-robustness is apparent. On receipt of the next 

observation, z 
n+l , we have (XID 

n+l 
) ll, G lan+l /2,0 

n+l 
/21 with, now, 

a. a+1 and 
n+l n 

0+ (z -zm )2(l + Z2 C 
n+l n n+l nnnn 

Again 0 -).. - with 6, so p(XID 
n) 

and p(XID 
n+l 

) become degenerate at 

the origin as 6 -)ý -. 

We can easily see that use of an outlier prone likelihood p v 

with either the exact recursions on the modal recursions of §4.3.1. 

will lead to a robust, analysis with the same features as the models 

of Chapter 4: (XID 
n 

G[a 
n 

/2, a n 
/21 where both 0n and 0 

n+j 
are 

bounded above as functions of 6 and reach the upper bounds as 6 

5.1.2. Additive outliers. 
p 

Let x=E0. x. +v be-a p order autoregression which nJ n-j n 

is unobservable in general, the data {y 
n) 

deriving from 

xn+Cn, 



The general idea is that xn is a "clean" process e. g. vn are normally 

distributed and that outliers occur with "large" values of C. Such 
n 

an outlier produces a single aberrant observation; the effect does 

not carry over to future data. This model comes closer to the 

concept of outlying observations and, as mentioned in Kleiner et al 

(1979) and Martin (1979), additive outliers provide more realistic 

models as they tend to occur much more frequently in practice than 

innovations outliers. Of course we now have an inherently non-linear 

model (non-linear in the parameters 0). In their discussion of 

outliers in autoregressions, Abraham and Box (1979) remark that 

numerical integrations are required to obtain marginal posterior and 

predictive distributions in their retrospective analysis. The problem 

is far worse in a sequential framework where these numerical inte- 

grations must be done at each observation stage, even with normality 

of the errors {P- 
n 

). However a conditional analysis together with a 

fairly crude summation replacing the numerical integration provides 

excellent results and we discuss the analysis now, beginning with 

normally distributed {E 
n 

). We provide the general treatment with the 

variance of the process errors vn unknown. 

(a) Normal observational errors. 

Martin (1979) discusses the use of the state space form of the 

model of this section when the variance of the errors and the parameter 

vector 0 are known. This form is 
F%j 

hTx+ IE 9 Yn ý 
tn ,, n n 

xGx+v, n=1,2 
nun -, n ,, n 

where xT= (x ,xx) is the state vector; 
, %, n nnn p+l 

2 

P-1 
:Io 

is the state transition matrix; 

(5.1.3) 

(5.1.4) 



vT= (V , 0'... ' 0), 
bn n 

T 
and h (1,0 

rv 

0 is now playing the role of a parameter vector in the control 
I\j 
theoretic terminology. Martin's work is concerned with tracking 

the state x using robust filtering algorithms derived from the 

scaled recursions of Chapter 3, §3, We are interested in such a 

track but of main interest is the unknown parameter vector 0 which 

Martin assumes to be known (or uses an off-line estimate for 0). 
ev 

Furthermore, var W will be unknown in general. 

Our analysis assumes the following; 

(') {v } are i. i. d. N[O, x-ll with A unknown. 

{6 
n) 

are i. i. d. NCO, cy2X-l] , with o2 known, and (C 
n) 

independent of {v 
n}' 

a priori has a gamma distribution. C[cio/2,0 
0 

NQm�X-lcj 

with mo, CO not involving 1. (See Appendix 5A for the 

calculation of m, C 
1\0 00 

Then for given 0, the usual Kalman recursions obtain as follows: 
Ii 

IX, 0, D ) -, N%N -1 ]' 
.. n� 

ýmn(O)' Cn(0)1 

where m (0) -a (0) +P (2)h (a2+h TP (0)h) -1 (y 
-i a 

%nn, n % lu n Nn -v nNn% %n % 

and C (6) =P (6) -P (O)h hTP (0) (c2+h TP (0)h) -1 
, n%n ru N nN % n% % 

with, as usual, a (0) =Gm (6), P (0) -GC (O)G T+V 
Avn n. ,, n-1 ý, n ,, n-1 v 

and 

=0 otherwise. 1, 
Ij 



Further 

where 

(X IO, D ) "v G /2, 2 
n 

ßn (t6%. ) /]" 

ol n-1 
1, 

and 

(y 
--h 

Ta (0»2(CF2+h Tp (0)h)-1. 
n-1 %n eu mn N n, n r, -v 

Note that hTG=0T so y _Ija (0) y_ OTm (0) and, similarly, 
nn qn- 

hTP (0) h= (0)1 
,, =0Tc 

n ru 
Ep 

n n- im 

with hT Vh 
Aj Ili 

The calculation of p(OID ) is then straightforward, defined 
ýn 

pointwise by the recursive equation 

where 

p(OID p(OID ) p(y 10, D 
A, n n. n-1 n ei, n- 1 

pQ 2+hTP (, O)h)-l 0 (, ) 
-oln /2 

a (, )Oln-I 
/2 

yn 10, D 
n-1 

) a(a 
NnNn%, n-I N 

For small p, in particular for p=I or 2, the use of a fairly 

coarse grid of values for 0 leads to a useful procedure. 
AU 

The model (5.1.3) and (5.1.4) was developed in order to provide 

an additive outlier generating structure by the introduction of the 

errors {C 
n 

1. As such, the distribution of those errors should 

suffice to produce outliers and nothing more since the usual variation, 

i. e. the innovations are already modelled as the {V 
n} . Following 

Martin (1980), the parsimonious model for the(enor density p. of 

the i. i. d. fE I is taken as 

ýTI PE (0 m (1 T'60+ 7r P (C--) 
90. < 7r lp f91 

where ir is "small", 60 represents a point mass at' the origin, and 

p is a unimodal, symmetric heavy-tailed density. Thus the error 

density for the observations fy 
nI 

is that of un '0 Vn+Cn which, 

when {v 
n} are i. i. d. N[O, ý 

, 
is given by 



+ Irf (u 
n) I 

where f is the convolution of p with ý. [As an aside note that to 

be consistent with this'error model in the innovations outlier case 

of §4.1.1, we ought to take our pV as a mixture of a normal with a 

heavy tailed density. This is just the prescription of Appendix 2]. 

Now the analysis (a) above applies to normal p. This will 

produce a partially robust analysis but full outlier-rejection can 

only be obtained by using an outlier-prone density. In the following 

we use a general p with the normal analysis (a) being a special Case. 

(b) Non normality. 

Assume that 

IV 
n} given X are i. i. d. NEo,, x-'] ; 

{En) given X are i. i. d. Xlpc(X'F. ) where pC is the mixture 

(1-106 + ir p (C )0< 7r 

with p unimodal, symmetric heavy tailed; 

x -1 Co 
lb % ýmo 

where m do not involve 
, %do I 

co 

X Ilu G[ao/2 00/2] . 

The analysis adopted involves collapsing mixtures of normal 

distributions in the way of Harrison and Stevens (1976) as we did 

in Chapters 3 and 4 and requires at time n that, approximately, 

g, n 
(x N[m -, c 
�n 1% n-1 ý -, 

(0) X 
n-i 

(0)] 
lb N 

with m (6), c (0) independent of X, 
m, n- 1 r� n-1 



and 

(110, D 
-)-. 

G 
[an 

- 1/2, ß (0) /2] . N n-1 n- 1 �%# 

Given these assumptions, 

(x N[a 
ru nu n n. n-1 n m. n %ý 

with a (o) ,P 
(0) as given in - (a) above. Now we examine the 

,, n n, n 

components of the analysis separately. 

0 

p(x XJ8, D 
n 

We have the joint nomal/g4mma prior p(x given above, 
, %., n %, nI 

so the posterior is just proportional to 

p(x XIO, D ) f(i-lr)6 + 7rx 
Ip 

(X 
Ir 

, t, n N n-1 r n=o 
en 

where r hT 
ný 

Yn - 
,, 

xn - yn - Xn' 

So 

p(x XIO, D )ý *(1-IT*)p-(X »XIO, D )+ Tr*p (X XIO, D ) 
Zn�, n1 mn ,n2 Nn %n 

The functions pl, P21 Tr 
* 

are as*follows. 

Pi is the posterior when r- 
n-0 so 

yn hTx=x= JG 
x+hTv 

,,, nn ^4 %, n-1 n, %, n 

Tx+v 

Therefore '(x ly =x 0, D X) vN. 
n (6) , Tr, ' -19 t 

nn�n[. 0%, n-1 
t 

and (x 1yx0, D)%G CL /2, ß (0)/ 
nn�n 

[ccn 

nl 

where tn (0) -m (0) +c (0) 0(1+0 Tc WO) -1 (y 70 
Tm- 

�, n-1 �, �n- 1% n- 1uN% n-1 %%n� %n i% 

Tn (0) -c (0) -c Woo Tc (0) (1+0 Tc (o)o -19 
n-1 N n-1 , n-1 m, n/u n-1 m, � n-1 , %) 

n-1 



and 

ß (0) =ß+ (1+0 Tc (0)6)-' (y -0 
Tm (0» 

ni eu n-1 #b n-1 r. tu n% �n 1% 

Further p(x IX, O, D y ýx ) is the (singular) normal density 
q, n rj, nnn. 

N[ (y : tn 
T(, »T, X-1 r0 OT 

n �n-1 tu 

11 

0.: 0.0040 

.0: T n_ (0) 
ýN. 

Nrm (0), ý-1 c say 
%n ni 

The second component P2 is proportional to the product of a 

normal/gamma prior with a heavy-tailed likelihood and thus the 

methods of Chapter 3 are directly applicable with the extras of 

Chapter 4 to deal with the scaling A. We use the modal recursions 

of Chapter 4, §4.3.1. 

Let g(C-) =- -1 tn P(E) = ý(e). r. and express p(E: ) as a scale 34ý n 
mixture of normals. 

Co 
p(C- fN 

9X w(X )dX 
n0 n] n n' 01 

Define the prior mean for the scale of the [v 
nI to be 

E[, 110 Dp0,0 
n 04 - q, n- 1] ý "' -I 

(o, ) w an- On 1 
(q, ) 

1\0 
Then if X (0) E =a (0), A-Y-I_1(0), D 

n 

[AnI, 
0ý, ', xvn 

Nn-1 Nt n- 

[t10 
OT m n-l(e. 

) (yn-^, 
n-1(0)) 

the modal recursions are given by 

m (0) ca (0) +P (O)h (q2(0)X (0)+1) x (0) u' (0) (5.1.10) 
�n2 � bn % Nn eu %n�n%nNn eu 

with q2(e) = hTp (e)h and u (0) -y-0Tm n \, \.. n r. NnNn,, n 



Further 

(6) =P (6)-P (0)h hTP (6) ý (, ei (0)u (6» - 
(5.1.11) 

n2 r%, n ru n ru tu rb n ru n n-1 %n% 

where ý, (u) is calculated as in equation (4.3.15) of 54.3.1. 

If, also, aný ctn- 1+ 

and 

(0) + U2(O) (0) ß 
n2 . n- 1b. n%. n%n 

then the modal algorithm gives the joint normal/gamma posterior 

p(x XID pOqC 
JO) 

, \, n n N. n 

as 

and 

(x JX, D 90gE 
ý0) %N (6), x- 1c (0 

, run n ru n 

[! 
ýi 2%n2 %)] 

ID 
lo 09 - cc 

n 
/2j, 2] 

n #b 
C-J(» ßn2(eol, / r" G[ 

The function ff* is defined via the predictive densities for yn 

in (ii) below. The approximation to the joint posterior p(x XID 90) ýn nN 

will be in the spirit of Chapter 3 and is made by collapsing to a single 

normal gamma 

X, D 9 0) %N (0) 
, x- 1c (0 

lui 

l! 
ý, 

ry 

and 

(XID 6) NG /2, ß (0)/ 
n tu 

[Ct 

rn nZ 

where m (0) = (1-n*) m (0) + w*m (0), 
r, n %, ni N n2 m, 

c (0) - (1-, T*) (0» (! 
ý, (0)-m (0» 

n 

[Cn 

%n % 

TI 

+ Tr 
[Cn2(') 

+m 
2(G» 

(M (0)-m (0»ý 
% Zn eu -, n r, Nn m, n2 % 

and ß (6)-' = (1-lr*) ß (0)-1 + 7r*ß (0)-1 
nZ ni tu n2 % 



Predictive densities for y nlo* 

We calculate first pl(ynle) = p(y, 10, D Since 
n-l' 

IEn 0) Yn m Nn' 

we have 

(y I; k, D N0TmTC Me 
n n- un1v, n- 1N ov 

1110, 

a n 
(y _eTm _ 

(0))2 --F 

and so'p (y 10) a (1+0 TC Mel 0 (0) + _n 
A. nI f 

1n,, - r, n- 1 *v 
I 
n-I T 1) 0) ' On-I (0) 

0 
"V 

f 

(11, Cn-I (n',, 

(5.1.13) 

Also (1-ir le *) " ('-'T)pl(yn 
A. 

) 
v 

(s. i. W 

For P2 (y p(ynl', D we refer to §4.3.2 of Ch. 4, where 
n nj n-1 I 

YO) 

this marginal density is derived when the modal recursions are used 

as an approximation. Equation (4.3.17) gives the marginal score which 

can be used to find 10). In particular, if we use a Student t P2 (yn 
ev 

density for p then we obtain the marginal given in examples 4.3.2 (U). 

Further n* C' ITP2 (y 
n 

), and so w* can be obtained using, in 

addition, (5.1.14). 

(iii) Posterior for 0. 

p(OID )a p(OID )p(y 10, D )l 
, \, n ,, n- 1n^, n-1 

is calculated again pointwise, using 

p(y I O, D 0 
n \, n-1) 

ý-. (1-7r)pl(yn'Ae, ) + IP2(ynl,,, )* 

Example 5.1.3. 

For illustration the model of Example 5.1.2 was used in the same 

way but now with an additive outlier at time n= 19. The posterior 

densities at times n= 18,19 and 20 are shown in Figure 5.2. 
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5.1.3. Modelling outliers of unknown type. 

How do we approach the problem of modelling outliers in auto- 

regressions when both types are-admitted? Martin (1979) mentions 

that it seems difficult to obtain efficient classical M-estimators 

of autoregressive parameters when both types occur. In particular, 

the performance of robust M-estimators (and the analysis of §5.1.1) 

is seriously degraded if additive -outliers (which are not specifically 

modelled in §5.1.1) occur. See Miller (1980) for an example of this 

and Martin (1980) for discussion. Clearly modelling additive outliers 

as in S5.1.2 solves the problem and what we need to do is simply model 

both types of outliers, as follows. 

Let hTx +E $ Yn ý 
ý, ,nn 

and 

x= Gx +V n 
, ý, n %, n- 1 nn 

where h, X G, v are as before. However now take p (v ) to be 
ý, n ,nvn 

heavy-tailed non-normal and 

.p (6 )= (1-7r)S +7rp(C ) with p also heavy-tailed. 
c- n0n 

In order to base the analysis of this model on previous ideas 

we express both p and p as scale mixtures of normals. 6v 

co 
Then =fN ý-l -1 O(Xn )d'n PC-(F-nlX) ýn 

0 

10 

where W(x 
n 

(1-TO 60 +ITW, (x 
n) 

and 

co 
p(6 JX) fN 

Ix 
-1 X-jw'(ýn )d 'n 

nn 0 Fo 
and, further, 

Co 
-1 -1 

v(vn 
1 X) -fN 

r(J'X 
'an 

]u 
(pn) dpn 



where u and w' are specified densities on1R. Finally X and p are nn 

independent and independent of Xr, Pr for r0n. Now the conditional 

analysis given f 
ný" 

(X 
nPPn 

) proceeds in the usual way and we. use the 

modal approximations to eliminate fn. However we adopt a specific 

density u for Vn as follows. If vn is normal, then we have the AO 

model of §5.1.3 i. e. normal. prior, non-normal likelihood. To use this 

in the case of AO and 10 structure, we take pv as a contaminated normal 

mixture, i. e. the special case 

U(P) = (1-Y)61 + Y6 

where v >> I and 0<y<1, with y small. 

The analysis now follows 55.1.2 for each component of the 

resulting mixture posterior of normal/gamma densities for (x X), 
, Cn 

p(x XIO, D 
,,, n r\j n 

This is a 4-component mixture just as in the Multi-state model of 

Harrison and Stevens (1976) with the addition of a more general error 

density for Cn providing a means of using an outlier prone distri- 

butioA via the modal approximations and also with a scale parameter 

in X-1. 

Now in the case of a single AO or 10 generating model, a 

of surprisingly large" observation indicates unequivocably the 

occurrence of an outlier of that type and the analysis reflects 

this, ignoring the outlier. However in the model of this section 

complications arise just as in the Harrison-Stevens system, and 

these problems underly the comments of Martin (1979) on distinguishing 

outlier type. 

If yn is "large", we cannot know at time n whether we have had 

an AO or an 10 and, since the latter corresponds to a change in the 



level of the state vector x but the former does not, then the 

corresponding components of p(x 10, D) will be centred some 
, ý, n n, n 

distance apart leading to the possibility of a bimodal posterior. 

A further observation will help to distinguish the outlier types at 

time n via calculation of p(x 10, D although the occurrence of 
týjn Av n+1 

an outlier at time n+1 would complicate matters. Mallows (1980), 

in a discussion of the related-problem of smoothing time series, ý 

suggests just such a behaviour as being required for a fully robust 

analysis. 

In order to cope with this behaviour we follow Harrison and 

Stevens proposal of not collapsing p(x XIO, D) to a single joint 
, ý, n I%J n 

normal/gamma density but instead retaining the full 4-state 

mixture as our prior for time n+l. Thus we require 4 parallel 

analyses at each observation stage. 

Example 5.1.4. 

Figure 5.3 provides a plot of the posterior densities for the 

ARM process of the earlier examples. This time both innovation 

and additive outliers occur at n= 19. 
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5.2. Autoregressive - moving average models. 

Normal errors: state space representation. 

The general ARMA model is inherently non-linear in the moving 

average parameters and so cannot be directly analysed using Kalman 

filtering techniques in a sequential processing of the observations. 

However, using a state-space representation of the model we are able 

to utilize Kalman filtering techni4ues as we did with the AO-AR model 

in §5.1.1 to compute the posterior distribution for the parameters 

pointwise. Priestley (1980) describes in detail the state space 

representation of ARMA systems and this method is used by Gardner 

et al (1980) in calculating likelihood functions recursively for 

ARIA models. Clearly the approach extends easily to mc&-e general 

models and Harvey and Phillips (1979) use the state space form for 

estimation in regression models with ARMA errors, again from a 

maximum likelihood point of view. The Bayesian analysis of ARMA 

models discussed in this section can easily be generalised in the same 

way. 

We begin by defining the state space model. 

We have the general ARMA(p, q) model for observations {y 
n) given by 

pq 
Yn E Yn-j ej 'ýn -Ev n-j 

ýj n 
I j=l 

where the {v } are i. i. 'd. N[O, X- and eT=), 
np 

T ) are the unknown parameters. The state space model 
q 

is defined as follows. 

Let r= max(p, q) and define 00 for j= p+l .... r and 

q+l,..., r. Further define the new parame'ters iT. by 

-ff i= 
Then, if x=y-v, n=1,2,..., the state vector x is given by 

nnný, n 



x= (X q ... 
x- 

Nn nn r+l 

The regression matrix is (1,0,..., 0) for all n and the state 

transition matrix is 

r ýj ý2-"ý ,r 
G=r....... 10.... 00 

0.... 10 

with the model 

y= hTx tvn=1,2... (5.2.2) 
n \, \, n n 

Gx+w (5.2.3) 

where now w is not a vector of errors but a constant at time n, 
n, n 

T 

with 
r 

Wn=Ey n-j "'i (5.2.4) 
j=1 

Now the calculation of p(e, flD ) proceeds in essentially the same 
rýj ,un 

way as for the additive outliers autoregression of §5.1.2. We apply 

the Kalman filter to (x 10, ý) and calculate the predictive density 
q, n %, q, 

for (y 10,0) from that analysis. n %, q, 

Clearly if, at time n, 

(x 10,0, X, D 
. 1) ý, Nm X- Ic (5.2.5) 

q, n q, n- n-1 

where m 
_,, 

C are functions of 0, ý, then 
,,, n n-I et, q. 

(x 10, ý, X, D ) n. N 3, x -1 c 
�n \, �, n 

[mn 

n] 

where m, C are found from the usual normal analysis as 
, \, n n 

+Ph (JP'h+lj-l (y -h 
Ta 

ri,, .,, nn%, ,, n 

PhhTPhTP h+l)-ý, 
n ri,,, ,., n ,. ri,,, 



Gm +w 
\, n 1 ,, n 

PnGc 
n-1 

Notice that hTG=ýT so u =, y -h 
Ta=y-ýTmw 

I\j Ilu nn rv Nn n -u ý, n n 

is just the residual given ý, O and xm 
$ýJ AJ ,, n 

Further P(Y 0, ý, X, D NhTa ShTP h+l)X- 
n eu n-1 n, fUn rv n-, 

So if (Xle, ý, D Ga /2,0 
eu ý, n- 1 

[n- 

1 n-1 

(with depending upon n-1 

we have an=a n-1 
+ 

an ýa+ U2 (hTP h+l)-', 
n-1 n i, nv 

and (y 10, ý, D 
1) 

has at density, proportional to 
n %# ,v n- 

10 + u2(h 
TP h+l)-') n-1 

n-I n, n-. 

Therefore 

p(6, flD ) oc p(0, flD )p(y 10, ý, D 
,, u ,wn n- 1n\, \, n-d 

is updated pointwise just as in the AO AR models of S5.1.2. This 

is the form of computation used by Gardner et al (1980) in computing 

the likelihood function for maximum likelihood estimation of ARMA 

models with normal errors. Details of numerical performance as far 

as accuracy and speed are concerned are discussed in depth in 

that reference. However of'course, such an algorithm is extremely 

sensitive to outliers due to the normality assumptions and we intend 

to protect against this. It is quite clear that the form of model * 

(5.2.2) and (5.2.3) is just the same as that of the AO AR model, 

then th. e method of analysis is the same. We briefly discuss the 

results. 



a) Innovations outliers. 

Innovations outliers are modelled by giving the {v 
nIa 

heavy- 

tailed density pv. From the model (5.2.2) and (5.2.3) we see that 

we have the model of Chapter 4 for updating p(x X16, ý, D ) and 
, Ln r%, n-1 

the analysis is the same as that of §5.1.2 for the AO AR model. We 

obtain the marginal density p(y 10, ý, D ) as a Student t form and 
n %, n. n- 1 

p(e, flD ) is then calculated pointwise in a recursive fashion. 
n, Ln 

b) Additive outliers. 

This case is somewhat different. To model additive outliers we 

have to introduce a third level in the hierarchical model as follows. 

Replace yn of (5.2.2) by a further process variable. z n 
Let 

(F 
n 

be the "outlier" at time n, with the density of §5.1.2, 

P6(E n)= 
(1 -11) 60+ Trp (E 

n)0< 7r 

where p is outlier-prone. *Assume JC- 
nI are i. i. d. given X, with 

density XIp, (XIQ. 

Then the observations {y 
nI satisfy 

Yn -ý zn+cn, 

with 

hx+v 
\, ,, n n 

Gx+wvn= lp2 
\, n ,n 

where {v I are i. i. d. NX -1 
n 

lo I- 

Now, as defined, this model cannot be directly analysed by the 

method of §5.1.2. due to the appearance of the only partially 

observable {z ) in w n Nn 
r 

where to = Z- ir. z 
ý, n nn j=l j n-J 



To overcome this we augment the state vector-as follows. Define 

a new state vector g by 
,, n. 

9ý (9 1,9 1, ---99 )= (z 
px), n n-i n-2r ý, n ý, n 

where zT= (z 
vzz 1%, nn n-r 

The now state equation is 

Hg +V 
,, n-1 ,n 

where 

IT '7rr r 

7r l7rr 

0G 

and vT=(, v 'o, ..., 0) is (2rxl). 
, \, n n 

For example, with an MA(l) model, It 

The corresponding observation equation is 

(5.2.6) 

y=hg+C (5.2.7) 
n -, n n 

T where now h is (2rxl), h (1,0,..., 0). 
1\0 ft, 

Thus given the normal/gama prior for (y Xjý%ý, D we havesay, 
n-1 , m, n-1) 

(y ) Ii, N 1-m 
vX 

-1 C where as usual mC1 are n n- -n n-ýI n- 
functions of 0 and 0 but not A , and 

'IV r%j 

(XJO, ý, D ) \, G /2,0 /d 
, where 

, \, ,u 

[an- 

1 n-1 

again a depends on 0 and ý. 
n-1 f%. * Iko 

Thus N N[a ,Xp 't, N n-I n n] 

with a =' Hm, PHCHT+V, 
, vn . vn- 1n n-1 



where V 
11 ýI and V=0 otherwise. 

Then the posterior density is a mixture of two components, 

as is the predictive density for yn, according as En is zero or not 

just as in 

i) En = 6, hence Yn ý zn* So p(y J. X, O, ý, D ) is a singular normal 
,, n n 

distribution 

c 

with m, c derived via the Kalman filter. Note that we will hAve 
q, n n 

the first element of m as y and the first row and column of C 
,,, n nn 

set to zeros. See equations (5.1.8) and '(5.1.9). 

The predictive density p(ynJx, m, D X, O, ý, D 
,, v v n-d 

is just P(ZnI 
rv, , n-d 

and so we simply take the prior Student t density p(z n 
10, ý, D 

n-I PV fWJ 
as the likelihood component in the posterior update 

p(0, flD )a p(6, flD )p(z 10,0, D 
n n- 1n iv 4, n- 

ii) G: 
n00. 

In this case we apply directly the modal equations 

just as in §5.1.2. See that section for details, equations (5.1.10) 

to (5-1-14) inclusive. 

(c) Both types. It suffices to note that taking a contaminated 

normal mixture density for vn in (5.2.6) puts us into the framework 

of the AR 10 and AO model and the analysis parellels §5.1.3. 



Appendix 5A. Calculation of initial mean and variance matrix for 

state vectors in models of this Chapter. 

For all outlier models of this Chapter we require the values 

of m=m (0,0) and co =c (0, ý), the prior mean vector and covariance 
'VO PV 0un, 0N I)i 

matrix of 
. 
the state vector Zn of (5.2.6). ' [The AR models are a 

special case with. ý = 0]. As in Gardner et al (1980), taking the 
1ý1 A. 

state equation at time n=0 with defined as g we have 

go =Hg+vs 
ru AU 0 Au 0 

Thus m (0, ý) = mo =Hm and so mo = 0. 
'IV 0 e6 ^v 'IV 1%00 1%, 

Further CO =HC0HT+V, where V 
11 ý1 and V 

13 =0 otherwise. 

Gardner et al (1980) provide an algorithm for the solution of this 

equation as a function of Co. 

Example 1. AR(l) model, co = 02 c0+1 or co = (1-02)-l. 

Example 2. MA(l) model, 

c0= -ý ý] '0 -ý -0] ,, 

and so, if CO Cl C3] then IC3 

C2 

for o, co v. Otherwise c2ýc3= ý-2 1 Cl +ý -2. 



CHAPTER 6 

Asymptotic theory of recursive algorithms. 

6.1. Introduction 

In this Chapter we examine some of the recursive algorithms 

of earlier Chapters in greater mathematical detail in order to obtain 

results about asymptotic behaviour. The recursions were constructed 

as approximations to the formal Bayesian analyses and examples have 

shown that their behaviour in finite samples is excellent. This 

Chapter is concerned with special cases of the models of the previous 

Chapters and, in particular, with constant parameters, where the 

notion of convergence is relevant. 

Suppose we have a random sample of real valued observations 

IYJ,..., Y 
n) whose distribution depends upon an unknown real parameter 

0. The problem of sequentially estimating 0 by the sampling theory 

method of Stochastic Approximation (S. A. ), originally developed by 

Robbins and Monro (1951), has been considered by several authors. 

Recent contributions by Kashyap, Blaydon and Fu (1970) and Fabian 

(1978), have provided widely applicable results about the asymptotic 

properties of S. A. algorithms, and Martin'and Masreliez (1975), and 

Poliak and Tsyphin (1979) have applied such schemes to estimation in 

models such as those of Chapter 3. The basic form of S. A. depends 

upon the existence of an observable sequence {Z,,..., Z 
nI such that 

E 6, D for all n [Zn I 
n-1 

0 

where, as usual, D {Y A sequence of estimates of 0 is 
r V. 60py r 

then defined recursively by 

aZ n n-1 nn 
where 

GO co 

Za and Ea2< 
n=l n n=l n 



{a I is harmonic. 
n 

Given further conditions on the sequence {Z } (regularity 
n 

conditions for the distribution of the Zn), convergence of 8n to 

in some sense can often be proved and, generally, the (sampling 

theoretic) asymptotic distribution of 0 shown to be normal. Sacks 
n 

(1958) proves results of this kind and Fabian (1978) provides a 

t horough analysis of both convergeýce and asymptotic normality of 

a general S. A. scheme. Fabian also discusses the so-called 

of asymptotically efficient" algorithms, providing a sequence of 

estimates 0n whose sampling theoretic variance approaches the 

Cramer-Rao lower bound as n increases. The first investigation of 

such efficient schemes appears to have been the work of Sakrison (1965) 

in an engineering problem. Later Anbar (1973) and Abdelhamid (1973) 

considered transformations of the original observation {Y 
n) 

which 

lead to asymptotically efficient S. A. estimates. 

We shall be cbncerned with these efficient schemes, the basic 

form of which is as follows. Suppose that the common density f of 

the Yn is twice differentiable in 6 with score function 

g(ylo) =-a ZK f (yl 0) 36 

and Fisher Information 

1 (0) = E-1 g(y 16) 10] 
. 562 

[The extension to vector 0 and Y is obvious] 
ru ru 

Then 0n is defined by the recursion 

I 

0n=0 
n-1 -n -1 A(O 

n-1 
) -1 g(Y. 16 

n-1 
) (6.1.1) 

where A(x) is bounded above and below away from zero and A(O) 



The recursion is intuitively attractive; for a "regular" problem- 

E1j', (yJO)IO] =0 (6.1.2) 

and so (6.1.1) is of the form of a stochastic gradient algorithm 

for finding the zero(s) of the regression function 

M(X) = EFS(ylX)IO] 

with the gain function n- 
I AW-1 being chosen to provide the 

correct asymptotic variance i. e. the Cramer-Rao lower bound. 

From a Bayesian viewpoint (6.1.1) is attractive for the following 

reason. 

Note that g(y , X) ý. - -a ih 
ff. ýL ýx 

2 f(Ylo) ý 0, wv (y i 0)-ý 
so M(X) is the derivative with respect to X of the Kullback-Leibler 

directed divergence 

K(O', X) Ef( 
X)-l 10 

ffL MY 
-0) 

11 

(subject to regularity conditions). Thus the S. A. scheme (6.1.1) 

is constructed to locate the zeros of 

M(X) =a K(O, X) ax (6.1.4) 

and, since K(O, X) is positive for X00 with an absolute minimum at 

0, (Kullback, 1959), then 0 is one of the possible limits of 0n- 

Now Berk (1966) discusses the asymptotic form of the posterior 

distribution p(OID n) and shows that,. subject to regularity conditions, 

p(OID 
n) asymptotically concentrates on the set of values X in the 

range of 0 such that K(O, X) is minimized. ' Hence the efficient S. A. 

scheme asymptotically favours the same values as p(BID 



However, there are two major problems associated with these 

algorithms. For a Bayesian, an important question is that of the 

lack of a coherent basis for such sampling theory schemes. Secondly, 

and more practically, they are designed specifically for asymptotic 

optimality and small sample performance may be poor. Ljung (1978) 

discusses*this and references illustrations of just how bad small 

sample behaviour can be for certain models. 

our recursions', (both the modal and exact forms), are constructed 

as approximate Bayes' "estimators" for any sample size and thus 

provide at least a partial solution to the above mentioned criticisms. 

A coherent basis exists and small sample performance has been 

illustrated by way of example and is generally excellenti We 

proceed now to examine the asymptotic properties of our recursions 

and discuss the meaning of the corresponding approximate posterior 

distributions. 

We require a S. A. convergence result for our analysis and this 

appears in the Appendix 6. It is a generalization and extension of 

the result of Kashyap. B[oydon and Fu (1970) mentioned above, and 

provides convergence results for static regression and simple 

location problems, and for joint regression/scale estimation. 

96.2 Location and regression. 

96.2.1 Scalar location estimation. 

Consider a random sample fy 
1 ..., ynlfrom a unimodal, symmetric 

distribution with density p having unknown location e. Adopting a 

normal likelihood as a model, the usual conjugate analysis leads to 

a posterior 

(GID 
n)N 

NEm 
n 

CJ , 

where mn=m n-1 
+Cn (y 

n -M n_j 
), (6.2.2) 



and C-1 = C-1 + It 
n 11-1 

(6.2.3) 

or CC C2_ (C +1) (6.2.4) 
n n-1 n1 n-1 

Now (6.2.2) fits into the S. A. framework with the current 

"estimate" of 0, mn, given by the previous estimate plus a correction 

term proportional to the current residual. The constant of 

proportionality, C 
n' 

decays harmonIcally with n as evidenced by 

(6.2.3). 

If we choose a heavy-tailed, non-normal likelihood, then our 

recursions of Chapter 3 lead to an approximate posterior distribution 

(6.2.1), with 

mn=m n-1 
+C 

n-1 gn(yn -M n-1 
)l (6.2.5) 

and cc- C2_ G (y -m (6.2.6) 
n n-I n1nnn 

where gn (u) is skew-symmetric about the origin and has a zero there, 

and Gn (u) = ag 
n 

Mýau. 

Now (6.2.5) resembles the efficient S. A. recursions with the 

difference that gn is not the simple likelihood score function. For 

the exact recursion g is the score of the convolution of the likelihood 

with the N Emn-l'Cn- 
1] 

density; for the modal recursion 

gn (U) = (1+C 
n-1 

ý(U)Tlg(u) 

where g(u) = ý(u) u is the likelihood score. In both cases we have, 

essentially, a "smoothed" form of g(u) providing the response to the 

observation yn. Furthermore, the gain function C 
n-I 

is data dependent 

and, by analogy with the S. A. form, is re quired to behave harmonically 

with n. The fact that Cn may be greater than C 
n-l' 

is relevant in 

improving the small sample behaviour of the algorithm. Note'that, 

for both our recursions, as C 
n-l-"0, gn (u) for all u leading 



to the simple S'. A. recursive form (6.1.1). 

Now we can rewrite (6.2.6) in the form of (6,2.3), as 

C- 1+y (y -M (6.2.7) 
n-1 nnn 

where Yn (u) =Gn (u) Fý-C 
n-1 

Gn (6.2.8) 

The denominator in (6.2.8) is positive by virtue of the positivity 

of Cn, C 
n-1 

and (6.2.6). This form proves useful in examining the 

convergence of mn, which we now do. 
. 

Note that, from (6.2.7), defining An=nCn then 

-1=-1 -1 -1 (6.2.9) Eyr (u 
r+nC0 r=l 

where ur 'ý Yr -m r-l* 
In view of the above discussion, we expect 

the sequence {A 
nI 

to have a positive limit as n -* c-, and this is 

just the sort of condition used by Martin and Masreliez (1975). 

In fact the following condition suffices in this simple scalar 

problem. 

Condition 6.2.1. 

There exist m>6>0 such that, for all n, 

CA< (6,2.10) 

Notes WA stronger assumption will be required for the general 

regression model of S6.2.2. 

(ii) For some likelihoods yn (u) is always positive and, in 

that case, truncating such that Yn(un) >y>0 for all n and u 

leads to an upper bound as in (6.2.10). 'For Student t and normal/ 

uniform likelihoods, 'yn(u) may take negative values and in such 

cases we must truncate A- 1 below away from zero as necessary. n 
Similarly, for most likelihoods yn (u) is bounded above for all 



n and u and so A- 1 is bounded above. In exceptional cases a 
n 

truncation of A- 1 directly is again necessary. 
n 

Of course in practice, since . we process only a finite sample, 

we simply use the recursions without modification. Truncations of 

this kind, as used by Martin and Masreliez (1975) for example, are 

purely technical devices for use in the convergence proof. 

Now the other conditions for convergence of the recursions 

are given in the following result. 

Lemma 6.2.1. Define u=y-x, and 

rn (xie) = E[A 
n- 1 gn (un) I O'XI - 

Then, for all n, if our score function satisfies Ign (u)j < k1ul, 

rn (XIO) =0 if and only if x=0; 

(ii) in 
. (0-x) r (xio) > 031 f or E- > 0; 

de< 1 x-a 1< 

(iii) E EA2 g2 (U ) 10'. 
' X3 <- h [l+ (0-x) ý] 

, n-1 nn 
h>0. 

Proof: 

gn (u) is skew-symmetric about zero and p(u) is symmetric, 

therefore 

00 
f gn (y-x) p (y-0) dy 

00 
()0 

f gn (y) fp(y-a) - p(y+a)Idy 
Co 

where a= x-o. 

So r n(xlo) =rn (a) and, for both a and y positive, gn (y) >0 and 

p(y-a) > p(y+a). Thus rn (a) > 0. ýlso, by symmetry, rn (a) <0 

for a<0. Finally rn (a) =0 and so (i)'and (ii) hold. 



Further EFA2 2(u )10,, x] .c M2E[g2(u)10, x] by condition 6.1.1. 
n-I gn nn 

Now for our heavy-tailed likelihoods, lg, (u)l < k1ul, k>0 for all 

n. Therefore 

E52(U )le, x] < k21var[ý je] + (0-X)21 
nn 

h[l+(O-X)2] ,h>0 

whenever the second moment of p is*finite. If p has no variance, 

then we must use a bounded score function. In fact if Ign (u)l <k 

for all n, u as, for example, with a Student t density, then, (iii) 

holds directly without the requirement of the existence of any 

moments of p. 

Using Lemma 6.2.1 and Theorem A6.1 we immediately deduce the 

following: 

Theorem 6.2.1. 

If condition 6.2.1 holds then 

m -* 0 with probability one. n 

Proof : 

The result follows as a special case of Theorem A6.1 with 

A=1, Aý0 for all n. 

Nn 
1,6, X) =n Cn gn+l(yn+l _X) 9 

(ii) g+1 (Zn+ 
1,1-v 

r (XIO) =nC 
, Z, n+ 1 ,,,, n 

E5n+l(yn+l-x)lolxl' 

and the properties established in Lerma 6.2.1. 

Asymptotic distribution. 

Under regularity conditions on. the score and information 

functions of the assumed likelihood, Hey4e and Johnstone (1978) 

examine the asymptotic form of p(OID n 
). Given that the posterior 



mode 0n is consistent for 0, that the information function G(y-0) 

is continuous around 0 and that 

-1n pn=ZG (yi-on) 
k=l 

tends to infinity with n, their result is that p(OID n) 
is 

asymptotically normal with mean 0n and variance Pn 

With the stronger assumption that nPn converges to a finite 

non-zero limit, we show that our approximate normal posterior 

distribution agrees with this result and so our approximation is 

"asymptotically efficient". 

Corollary 6.2.1. 

If n- 
I p- P>0asn 

n 

c - 1[ -1 -11 Then ncn -P n 
0, with probability one. 

Proof: By virtue of (6.2.1), Cn -)- 0 as n -* -. For the modal 

recursion with likelihood score g(u) = #(u) and information G(u), 

then 

C (u) g(u)ý(U) C 
n-1 

n 
(u) =2 

[I+C 
n-1 

11+Cn-Mu)] 

So Gn (u) G(u) -)-0 as n for all u. Similarly this is true for 

the exact recursion. Further, from (6.2.8), y (u) -G (u) -* 0 
nn 

as n and thus, since 

111 -1 
n 

n-I C-1 = n- C- +nEy (U-) 
n r=l rr 

we have 

n 
c cn-Z G(u d] 0asn 

r=l 

By continuity of G and consistency 8f mn and 0n we have 



-1 
&L .1 

1: G (y -x)-F G(Y - 0) -* rrr=Ir 

with probability one for x=m and x=0. *So n- 
1 (C-1-p- 0 

rrrrnn 

almost surely. 

Note that since Pn and Cn are both O(n- this implies that there 

exists Mn O(n) such that 

11 
n 

(c 
n-pn 

o 

with probability one. 

§6.2.2. The Regression Case. 

Given-vector observations {Y ; n=1,2,... l in e such'that 
, ý, n 

H01,2.... e CIRP9 

where the v are independent identically distributed with a unimodal 
n, n 

symmetric density p(v), the generalizations of (6.2.5) are 
1\0 

+C -H 
Tg (u 

n- 1n,, n ,, n 

cc-c HT G (u )HC (6.2.12) 
n n-I n-1 nnn n-l' 

uY-HM 
Nn nun n, -Cn-I 

13 

Now both Fabian (1978) and Kashyap, Blaydan and Fu (1970) use conditions 

on the recursion (6.2.11) that we cannot generally satisfy. Poljak 

and Tsypkin (1979) replace the gain matrix C 
n- with n- 

1C for a 

positive definite matrix C and subsequently note that their convergence 

results hold for gains of the form C 
n-1 such that nC n-1 

converges to 

C in some sense as n We adopt a similar assumption. 



Condition 6.2.2. 

There exist, M>6>0, K>O, Cn >E>O and positive definite symmetric 

matrices An such that, if An=nCn, 

(i) 6< JIA 
n 

11 <M 

(ii) "A 
nýc+. 

A 
n' 

IlAn 11 < Kn-fn . 

for some positive definite. symmetric matrix C. 

-1=-1n Note that Cc+Er (u (6.2.13) 
n0 r=1 r , ur 

where r (u) C HTG (u)H 
]-I [HT 

G (u)H (6.2.14) 
r-1 rrrrrj r 

n 
So Condition 6.2.2 requires that nEr (u ) is bounded above 

r- 1rr 
and below (away from zero) in norm, and has a positive definite 

limit C with the difference between it and its limit decaying as an 

inverse power of n. A similar condition is used by Sakrison (1965) 

although he uses further restrictions to define a particular value of 

C. 

Theorem 6.2.2. 

Let Condition 6.2.2 hold. Suppose we assume a heavy-tailed 

likelihood and that E[IIH <t<-. Then M converges almost n 
11 41 

qn 
surely to 0. 

1, 
f we adopt a robust likelihood then the condition on the 11 

n can be 

weakened to E[IIH 
n 

11 2] <t< 00 
1 

Proof 

Let r (XIO) =E 
[H 

4n (y -H X)JO, 

E 
[H 

(a +v )10, X r (a 4n 
ý, n ,, n ,, n qn 

where a=H (O-X). Clearly, as in the scalar case of Lemma 6.1.1, the , ý, n n Av ru 



symmetry and unimodality of p(v) and to skew-symmetry of g (u) 
n ru 

imply that r (a 0. Furthermore, (O-X) Tr (XIO) E[a T (a V0X 
q, n ,, n to ,n%, nkn rsn+, ijn) 

is positive for a0 by the same conditions. Now for our heavy- 
,, un 'IV 

tailed likelihoods we have either 

(a) jjg or (b) jjg (U)II < 
A. n 

(luu) II<ku. II 
nun PV 

for all n, ' u. , 

In case (a), E HrLg 
ý, n 

(a +v 6, X 
,,, n %, n I I. IX-1 

<K E[ IIH 11 
( 

Ila 11 + IIv 11 )10, 

n \, n qn I. 

<K E[ IIHnlI 2 IIo-XlI +bE 
[IIv 11] 

< c1le-XII + d, say, c, d>0,. 
Iýj Aj 

when EI Hu IIJ < Go. 
, ý, n 

Similarly, using E 
111"n1l ý 

<t< -op 

E>0; IIH (a+v 2 10, X< f1jo-XII 2+g, f, F r& r. \, n I%j Id, N 

when E[11, u 11 ý< 
Co. 

, I, n 

In case 

E 
[11 

Hrlýn(a -+v O, X <KE< say 
,, n ,n Iko 

IIHnIl 

and Eg (a +v 2 le, < m, say. 
[II 

Hn, 
,n rn ,n fli 

ý 

F 
Note that using a robust likelihood as in (b) requires only that 

E[ IIH 
n 

11 2] < 

The above conditions are just those'of Theorem A6.1 so we 

deduce that Mn converges with probability one and 

lim E[a T (a +v )10, X=M 0 
N n-,, -- ,n 

ýn 
\, n \, n 



However-this implies that lim H (e-M 0 with probability one by 
n-*, - n, Nn-1 

the positivity condition and hence M converges to 0. 
,,, n N 

Corollary 6.2.2. 

As in the scalar case, the correct asymptotic distribution is 

provided i. e: our approximation is "asymptotically pfficient". 

Proof: 

As in Corollary 6.2.1, Cn -ý- Wand n, ' CnnPn0 almost 

surely, 

1nT 
where PEH G(Y -H 0 )H is assumed O(n), 

n r=1 r qr rqn r 

G being the information matrix of p and 0 the mode of p(OID 
,n ev n 

Note that, since Pn and Cn are O(n there exist a matrix Mn of 

order n such that Mn (C 
n-pn 

0 almost surely. 

Example. 

As an example consider the innovations outlier model for 

autoregressions discussed in §5.1.1. 

p 
Yn =Ear Yn-r +vnn=1,2 

r=l 
T So here H=h= (y y n qn n-1 n-p 

Defining rrýrr (u 
r) of (6.2.14) we have 

Tr (u )H rA 
rrrrrr 

where A is a p. p matrix with ij element r 

(A 
r)'j 

= Yr-i Yr-j* 

-1 _1 -1n -1 -I Thus nCn=nzrr+nC0 has a finite limit when,. for 
r=1 

example, var Irr Yr-i Yr-ý* is uniformly bounded for all r, i, j. 

In particular, -if rr is bounded above and is positive for all r 



(as, for example, with the logistic likelihood), this condition 

coincides with the requirement of Theorem 6.2.2, that the fourth 

moment of p(v) exists. Further, stationarity of the process is 

required by Theorem 6.2.2 implying a restricted range of values 

for 0. In such cases the restriction of recursions to lie within 

such a range does not affect convergence and, in practice, is not 

always necesssary. 

§6.3. 
_ 

Scale problems. 

§6.3.1. Simple scale problem for a random sample. 

Given {Y 
n; n=1,2,1 consisting of independent observations with 

common unimodal, symmetric and heavy-tailed density with unknown 

scale a, the approximation derived in 54.3.1 leads to a posterior 

gamma distribution for X=6! 2 

(; k IG [an /2, an / 

where -an=a n-I 
(6.3.2) 

On ý On-1 + Y2ý(y la )l (6.3.3) 
nn n-1 

and the likelihood score is g(n) = MO. Further the mean of 

(6.3.1) is cc /0 =a -2 where nnn 

C2 = CT2 +a -1 2ý(y /Cr CY2 (6.3.4) 
n n-1 n 

[yn 

n n-1 - n- 1] - 

To prove convergence we assume that a2 satisfies n 

Condition 6.3.1. There exists M>C: >0 with E< C2 <M for all n. n 
[Note that this truncation is irrelevant in practice: simply choose 

6W to be the smallest (largest) numbers available on whatever 

machine is used for c alculation]. 



Theorem 6.3.1. If Condition 6.3.1 holds and our likelihood is 

heavy-tailed then a2 converges with probability one to the solution 
n 

02 of (y2 = EC2*(y/CFO)j 00y 

Proof: an+a0 so noting the truncation of condition 6.3.1, 

A= a2 a- is harmonic. For our heavy-tailed likelihoods, 
n n-1-n 

u2gU) is increasing in u; (this is easily checked for the likelihoods 

of Appendix 2. ) Thus 

M(CF2) = E[(y2/cr2)*(y/cy) -0 

is decreasing in a2. Furthermore Mn (02) is continuous in 02 and 

i) lim MW) >0 (in some cases 
G2,0 

ii) jim M(C2) <0. 
Cr2-, 00 

For example, with a Student t-k likelihood, the limit in i) is k, 

and that in ii) is -1. 

So there exists a unique root 02 of M(cF2) = 0, and, in addition, 0 

2- 2) M(G2) 2j a2 %a 0a >-O for a0 Finally, since either Ig(u)l <k 

for all u or Ig(u)l < k1ul for all u we can find a constant C>0 

satisfying 

(y2/Cr2)*(y/Cr)-J <C +(a2- 2) 
11 

Go 
ý. 

as a function of 02. In particular if p is one of our robust 

likelihoods 'then u2gu) is bounded above by a constant. otherwise 

the existence of the fourth moment of the true likelihood is a 

sufficient condition for this bound. 

Now these conditions lead to the satisfaction of those of Theorem 

A6.1. Alternatively, (since A6.1 is a very general result), the 

original convergence result of Kashyap, Blaydon and Fu (1970) may be 



used directly to give probability one convergence of a2 to 02 as 
n0 

stated. 

Note that, as in §4.3.1, we have the identity 

2gyj(j) 
- CF2 4a tn p(yIC2) acr y2a" =-, (6.3.5) 

where gyý2) p is the likelihood. So (6.3.4) is a gradient 

algorithm and the convergence poini a2 satisfies 0 

in p(ylcr, )] = 77710- 

Q 

which, as in Berk (1966), is the set of concentration of the posterior 

distribution p(a2lD n 
). For the asymptotic distribution note that 

an+a and var[XIDJ 2ý 0' = 01-1 a -4, therefore (6.3.1) is 
n0 nlýn2 nn 

asymptotically normal 

(X IDN -2 
9 cl- 

I 
a- asn 

n 

[an 

nnI 

This agrees with the asymptotic form of p(XID ) when the likelihood 
n 

is normal. Otherwise we could obtain asymptotic agreement by 

eventually using a second order approximation to p(AID n) 
rather 

than the first order scheme of §4.3.1. Clearly it would be 

preferable to approximate the posterior of, for example, tn(X) which 

will be closer to normality. 

Having said this, the heuristic justification and experimental 

verification of the accuracy of the original approximation of (6.3.1) 

leads us to believe that there is little practical gain in adopting 

the asymptotically efficient form. 

§6.3.2. Joint regression/scale problem. 

Consider now the model 

y ý' hT +v n=1.2 nmn 



with the assumptions of §6.2.2 and §6.3.1. Directly from §4.3.1 

we have the approximationp 

(01D X) NNI 9X 
-1 C9 1 

n-L n 
Fh 

where MC are defined by (6.2.11,12) with the difference 
,,, n n 

that u (y -hT M 
nn,, n qn- n-1 

(X DG 
[I 

n 
/2, * 0n/ 2] 

n Cc 

where ann are defined by (6.3.2,3) with Yn replaced 

by Ena 
n-1 un, ý(u) replaced by 

(1+q2gu))-l*(U) 
n 

and q2 =hTch n kn n- 1 qp 

Now we can write 

x=X+ n- 
IAr (E 

,,, n+ qn n nn h+ 

where XT (M , ýr2), 
-%, n qn n 

AnC 
n 

na 

and r (E )T= (hT g (u ), c 2ý (u )- a2) 
,n n+l qm+1 n n+l n+l n+l n+l n 

and use Theorem A6.1 to show convergence of X as follows. 
, x, n 

Theorem 6.3.2. Given conditions 6.2.1 and 6.3.1, the use of a 

heavy-tailed likelihood means that X converges with probability 
,n 

one to (0, a2)T. 
11,0 

Proof: Under the assumptions above, the-appearance of a2 in the 
n 

recursions for M and C is of no importance; it essentially, means 
,,, n n 

that we are adopting a different scale factor for each observation. 

In particular Theorem 6.2.2 holds for the modified M recursion and 
,, n 



0 with probability one irrespective*of the behaviour of a2 
Aj n 

(subject to Condition 6.3.1 of course). 

For a2 note that the zero of the regression function 
n 

E .2 C2 =0 EE y (u 
+1) 

1 
(6.3.7) 

n+j n+j nn F 
depends on n and we have a dvnamic stochastic approximation scheme 

such as discussed by Uosaki (1974). and Ruppert (1979). We could use 

the results of these works in modified form to show convergence for 

our scheme but it is much simpler to proceed as follows. 

We have 

(u) ý(u) - q2 gu)2/(]. +q2 ý (u)) 
n+l n+j n+l 

and so 

C2 = a2 + a-' 
Ff2 

ý(u )- an2] - a-lq2+JM n+j nn n+l n+l nn n(ýn+l 

where M (C) C-2ý2(C-/a )/(l+q2 ý(C/a )). 
nn n+j n 

Now if E (E )I O, m is bounded above, condition (i) of Theorem 
[Mn, 

n n+1 v vn] 
I ý- 1 A6.1 holds since both a and q2 are O(n ). Indeed, for. robust n n+1 

likelihoods M (C-) is bounded above for all n; for our other heavy- 
n 

tailed likelihoods, E (E )10, m] is bounded if the second moment 
[Mn 

n+1 \, -un 
of p exists. The proof of Theorem 6.3.1 can now be used to show that 

the a2 part of the recursion for X also satisfies the conditions 
n, %, n 

of Theorem A6.1; the details are the same. -From this we deduce 

that X converges with probability one to the stated point (0, C12). 
ý, n f%O 0 

As far as the asymptotic distribution is concerned, the comments 

of the previous two sections are pertinent. Full asymptotic 

efficiency is not achieved for (a2lD 
n) 

but a minor modification 

would permit this. In practice, the original scheme is more than 

adequate as an approximation to the true posterior distribution. 



Appendix 6. 

Theorem A6.1. [Based on Kashyap, Blaydon and Fu (1970)]. 

Let {Y ; n=1,2.... I be a sequence of (mxl) random vectors with 
, i, n 

distribution depending upon the (pxl) parameter vector 0; 
1ý1 

{g ; n=1,2.... }a sequence of functions of M7 toIRP with 
r,, n 

g (Y (Y 10) possible depending upon D {A ; n=1,2.... )a 
Aun , un ,, n ,, n .,, n-1 ,, n 

sequence of (pxp) positive definite matrices satisfying Condition 

6.2.2. 

Def ine MM+ n- 
IAgm 

ýv 
llrvo 11 'ý co, 

,, n+ I ý, n n , n+J(Zn+&)' 

and 

r (XIO) =E (y Ix)l0, x * , bn 

[ýgn 

nn lb 

if 

(i) r (616) = , bn �, N lb 

(ii) inf (O_X)T rn (XIO) >, 0, for all a>0; 

a< IIx-O <CL 
ru N I%j 1XI rýo 

Ii Aj 
E[JIg (y' IX)II I O, X <h 110-XII + b, b, k > 0; 

,,, 

j 

,,, n ,n,, %, 

Uv) Eg (Y I X) 210,, X] h 
[1+ 

O-X h>0; 
,,, n ,, n ,, ru fto f%, 

then M converges with probability one to 0 'where 
n, n AJO 

(0 _0)T lim r (0 10) = 
, \i 0 rt, n-+- �, n q, 

In particular e=e if either (i) is a unique solution or 
, ý, O rv 

lim r (XIO) has only 0 as a possible zero. 
n-*- ýn ý, ,u AU 

Proof : 

Let X=M-0, q XT C-' X, and Mn {Mol,..., m 
n ,,, n ,n AV n ,n ,n IV 'IV N 

Then 

9T (Y im )x+29T (Y im )Acx 
n+l nn �n+ 1 Zn+ 1 �, n rn n �, n+ 1 \, n+ 1 bn n .n 

; i2 9 (Y im P (Y Im 
, bn+ 1 n+ 1 lb %n n rn+l run+l rUn 



where Pný (C+A 
n)c 

-1 (C+A 
n 

Now there exist*constants a, v .... a5 such that, by Condition 

6.2.2, (iii) and (iv), 

[T+l 
(y im Egcx10, ýi' <q 

n �n+ 1 �n n rn ru n 

1 

nrc n 
Jn 

and 
[T+1 

(y g Egn 
rAn+ 1 

1, M%, 
n) 

Pn gn+ 1 
(, y, 

n+ nM%, n) 
a4 a5 

< 
ll+q ] 

'a n 
[3 

nC n n2C-n 
Thus 

ýn 2 [T+I(y Im )x In 0 'M E 
[q 

eEg 
n+ n ,, n In+ 1 ,, n ,, n 

4qn 
[1+11n] 

+f 
np 

00 CO 

where EVn and Efn both converge, 
n=l n=i 

and from (ii) we deduce that E 
[q 

n+ 
< 

nCl+"nl 
+ fnO (2) 

From this point on, the proof of Kashyap, Blaydon and Fu (1970) 

can be followed (using (1) and (2)), to show that X converges almost 

surely and, also, 

lim (M -0) 
Tr (M le) =0 with 

n-+co n, ,, n \, 

probability one. The result follows. 



Chapter 7. Multi-State Modelling. 

7.1 Introduction. 

This Chapter comprises a report on some work done in conjunction 

with the Renal Unit at the City Hospital in Nottingham. The problem 

is one of monitoring medical time series made up of observations on 

various chemical indicators from patients in post operative care. 

In particular, in monitoring kidney transplant recipients, sequences 

of chemicals in the blood and urine are routinely collected in order 

to assess renal function and, in this context, the identification 

and examination of trends in the data provides a useful guide to the 

state of the transplant at any time. Clearly some form of statistical 

processing of the data would appear to be necessary to clarify the 

patterns of behaviour evidenced in this, and other, medical time 

series. 

Previous analyses of medical time series have focused on 

monitoring steady behaviour of the variables of interest. In 

particular, Chik et al (1979), in a study of foetal heart rate 

variability, apply simple exponentially weighted moving average 

(EWMA) techniques to smooth the data for presentation to clinicians. 

Hill and Endresen (1978) are concerned with monitoring heart rates 

and blood pressures of patients i. n intensive care. They a: dopt 

essentially the same approach for smoothing data, although they base 

their analysis on Kalman filtering techniques. 

Our coherent approach uses the dynamic Bayesian linear model 

as a flexible basis for*sensible analyses of time series which 

exhibit structural changes, some of paramount importance, others 

incidental. In particular, abrupt changes of certain kinds may 

indicate some form'of relapse and, in renal care, the possibility 

of rejection of a transplant. The multi-state model of Harrison 

and Stevens (1976) models such phenomena automatically, whereas 



alternative monitoring techniques, such as those used by Chik et al 

and Hill and Endreson, break down on the occurrence of such events. 

Stoodley and Mirnia (1979) adopt a linear growth model as used by 

Harrison and Stevens, and devise an automatically resetting CUSUM 

to detect changes. They compare their system favourably with the 

multi-state model, commenting that the latter requires a great deal 

of expertise for satisfactory operation and that the purpose built 

computer program they used was Very demanding of time and storage. 

We return to those comments in §743. 

In 57.2 we discuss aspects of the data from the Renal Unit in 

Nottingham and describe our construction of a model. §7.3 outlines 

the use of the linear growth model in a multi-state framework and 

discusses some problems encountered in our early attempts at analysis. 

Theoretical extensions of the model to overcome such problems are 

then presented. Finally §7.4 contains examples of outputs of the - 

analyses and a discussion of the problems of making inferences about 

changes in renal function from the apparent changes in the monitored 

indicators. 

7.2 Kidney Transplant Study. 

7.2.1 Transplant Data. 

Historical perspective. 

In caring for kidney transplant recipients, doctors are aware 

that dramatic changes in the function of the transplanted organ 

can occur suddenly and lead to a serious relapse and possible 

rejection of the kidney. Observations are made on various chemical 

indicators which hopefully provide useful guidelines to renal 

function at any time. The problem we are concerned with is to 

analyse such data sequentially in*order to detect any changes as 

soon as possible and assess their significance. 



The state of renal function is generally gauged by clinicians 

via an unobservable factor termed the Glomerular Filtration Rate 

(GFR), which measures the rate of clearance of various substances 

through the kidneys. In order to estimate GFR, the blood and urine 

concentrations of several chemicals are measured and related to kidney 

function. One of the most important of such indicators is the 

chemical serum creatinine which is-easily measured in the blood. 

Our study centres on creatinine although others, notably plasma 

concentrates of urea and a chemical called ý2 microglobulin, are 

also of interest and are analysed similarly. , 

Under normal renal function GFR is constant and creatinine is 

excreted at a constant rate. A fall off in GFR is indicated by an 

increased blood concentration of creatinine and so it is this event 

that we are concerned with detecting in connection with possible 

rejection episodes. 

In recent years, investigations of the behaviour of plasma 

creatinine with changing GFR have argued that reciprocal plasma 

creatinine is approximately linear with time. Knapp et al (1977) 

discuss this and Trimble (1980) examines this in depth, also considering 

an alternativee log transformation. The reciprocal transform is used 

by Smith and Cook (1980) in an attempt to identify change points in 

creatinine series using Bayesian regression techniques. This successful 

study treats reciprocal creatinine readings as independent obser- 

vations from a straight line regression model against time. The 

technique of fitting piecewise linear functions of time to the data 

provides inferences about the change point corresponding to the time 

of onset of a rejection episode. Clearly the analysis is retrospective 

whereas our study requires a sequential approach and a recognition 

of the time series nature of the data. - 



I In addition to the reciprocal transform, a time dependent 

correction is made to the creatinine data in order to take into 

account fluctuations in the level of body-water of the patient. 

An increase in body-water dilutes the plasma concentration of 

creatinine and this occurs in particular at the onset of rejection, 

just the time when we want to detect an increase. To correct this 

distortion, a routine adjustment itLvolving body weight is made to 

the raw creatinine readings. Further discussion of this appears in 

Knapp et al (1977) and Trimble (1980) where the dramatic improvement 

in the linearity of reciprocal creatinine with time when this 

correction is made is illustrated. 

Further features of the data. 

(i) The observation on plasma creatinine are taken notionally at 

8 hourly intervals over what is usually a period of several 

weeks in the case of (ultimately) successful transplants. The 

general pattern of behaviour is that an early period of poor 

renal function is followed by a gradual improvement and then a 

more erratic period which (hopefully) settles down as the organ 

is accepted and reaches its steady functioning level. The data 

on the graphs in §7.4.1 illustrate this. 

(ii) Dialysis treatment is often provided in the early stages of post 

operative care to support the transplanted kidney. This has the 

effect of a short term improvement in renal function evidenced 

by a sudden decrease in the level of plasma creatinine followed 

by a slower decrease to the original level. 

As the level of creatinine increases the data becomes more 

noisy. This behaviour will tend to obscure subtle changes in 

function if not properly modelled. 



(iv) The observations are not always equally spaced; there are 

missing values and, sometimes, extra readings within an eight 

hourly period. 

(v) The data contains outliers due to laboratory measurement and 

recording techniques and transfer to computer storage. 

(vi) A different set of data, on urine measurements which we 

analyse similarly, exhibits "seasonal" variation due to 

diurnal body rythms. 

Clearly any successful analysýs must observe these features 

and provide a means of explaining them in the model adopted. 

§7.3 discusses the model. 

7.2.2 The System Model. 

Steady Renal function. 

We now investigate the use of the approximately linear 

evolution with time of the reciprocal, body-water corrected serum 

creatinine. 

Let ý Ot 
be the (unobservable) creatinine level at time t and 

ýt the body-water corrected value, 

tw t4ot (7.2.1) 

where Wt is a known factor depending upon body weight. We suppose, 

that, for a time period [S, T] of steady renal function, 

-1 = ýt li t=S, S+1,..., T. (7.2.2) 

Now we measure a value XOtv say, of ý 
Ot subject to error. The 

following two main sources of error, are apparent. 



Analytical Error. 

As noted in §7.2.1. the variation in the data increases with 

the level. This would usually suggest a log transformation to 

achieve constant variance but to do this would mean losing the 

linear structure (7.2.2). Instead we introduce an additive error 

at whose distribution depends upon ý Ot, 

Specifically, we take, approximately, 

(atlý, 
t) ru NEO, C? ý2 (7.2.3) 

0 tl 
for some constant c. The quality control laboratory at the City 

Hospital in Nottingham were able to supply an approximate value 

for the coefficient of variation c for our data, of about 10%. 

(ii) Reporting Error. 

The data is measured in units of Vmol/i (micro moles per litre) 

and is quoted to the nearest 10 of such units. Thus each reading is 

automatically subject to-an additive, zero mean, symmetric error 

ut say, with range [-5,51. 

Incorporating those two errors into a measurement model we have 

ot ot a t, Ut 

or, if Xt denotes the body-water corrected observation 

xt =wtx ot ýt+wt (a 
t +u d (7.2.4) 

-1 1 Define Ot =ý and the datum yt = X- . Then, from (7.2.4) our tt 

series is given by 

at 

. (I+S d (7.2.5) 

where 



-1 st =0twt (a 
t +u d= ýot . (a 

t +u d (7.2.6) 

We now approximate (7.2.5) in the following way. If IStl<<l, 

then (1+S 
t)= 

I-St, and so, from (7.2.5) 

t (1-s t ). (7.2.7) 

This assumption can indeed be seen to be reasonable for our data and 

is the subject of Appendix 7. A(a). 

At this stage we consider one final source of error. 

(iii) Timing Error. 

Observations are nominally timed at units of eight hours apart, 

Allowing for a timing error of at most 30 minutes of the nominal 

time gives us a third source of variation in the form of a zero- 

mean symmetric error rt say, and in terms of the timing units of 

8 hours, Irtl < 1/16. 

In the light of this, we correct (7.2.7) by adjusting 

Ot = p+$t by a factor $rt, leading to 

t+Vt 

where 

(7.2.8) 

vt = -S t0t+ 
(1-S 

t 
)ar 

t 
(7.2.9) 

In Appendix 7. A(b) we discuss the error vt, concluding with the 

approximation 

(vtlet) NN[0,62. cg (7.2.10) 
t 

which is adequate for nearly all t. 

7.3 Multi-State Modelling. 

'7 '1 1 llU- T %1-1-1 

The linear evolution of 0t (7.2.2), and the structure (7.2.8) 



fit neatly into the linear growth model of HS(1976), given by 

yt =0t+ vtp 

ot =0 t-I +0t+ ytt (7.2.12) 

at + stp (7.2.13) 

where yt, 6t are additional zero-mean, independent normal errors. 

[A seasonal extension of this model was also developed for the urine 

data mentioned in 97.2.1(vi); details follow HS (1971) and (1976). 

To model changes define the states M 
tj , j-l,..., 4 at time t to be 

(1) steady state, (2) change in level, et, (3) change in the trend' 

ýtjo (4) outlier, respectively. These are all features noted in 

97.2.1 and are constructed by setting, in state M 
tjI 

Var = C202. R. 1vt I mtj , et] 
t vj 

V[ 
tjMt 

]= c2RYjp ar yj 

Var[StIMtj] = c2R6j, 

where the multipliers R_j are given in the table below. 

i R 
Vj 

R 
YJ 

R sj 

mt, = Steady State 1 1 0 0 

m 
t2 = Level Change 2 1 90 0 

m 
t3 

Trend Change 3 1 0 60 

m 
t4 

Outlier 4 100 0 0 

The following prior information is also input: 

Prior probabilities of states Mtj, 

PO 
T= (PO *, pO ) where, for j=l,..., 4, 

IV 4 

PO Prob[Mt ], for all j 



The values chosen for our data are 

(0.85,0.06,0.07,0.02), 

admitting a priori a relatively high incidence of changes in 

level and trend with comparatively fewer outliers. 

T Prior distribution for the state vector Xt = (6 at 
114 t, at 

taken to be normal, 

01, c2C XN 
'IV 0 

EM 
0 

where we originally took 

mT=, (0,0), Co = diag(100,100). 
ru 0 

This prior distribution essentially represents vague prior knowledge 

of (009 00). In fact the clinicians are generally fairly confident 

that the level of creatinine at time zero is about 1000, corresponding 

to 00 = 0.001, and that initial growth is negligible, 00=0. Thus 

a more realistic prior is adopted, with these values defining X 
'IV 0 

and C0 given by diag (0.01,0.01). Clearly, considering the range 

of values for 6t, this still represents a fairly diffuse prior 

distribution. 

Now if we know Var [vtjIr 
tj 

] for all tjjjthen the prior to 

posterior analysis outlined by Harrison and Stevens obtains and this 

has the following basic features. 

At time t, 

(a) the conditional posterior for X is given by a "collapsed" density 

(X ID If N it Cti. Cý (7.2.14) 
, ý, t t tj 

ýmt 

(b) the posterior probabilities for M 
tj are calculated, 

Prob r-M 
,I Dý (7.2.15) 

tj L: -t 



(c) the unconditional posterior for Xt is 
1ý1 

4 
p(XtIDt) EpX ID (7.2.16) 

ti -P(, 
%it t tj 

However, Var [VtIM 
j'a 

I= C202 Rj, for all tj. To use the normal ttt 

analysis, we replace this with the assumption 

VarEvt I Mtj] = c2ý . Rvj (7.2.17) 
t 

where 

C2 , C2 10t I Dt 2 (7.2.18) . E[ 
ti 

for all tj 

using the expected level of the series rather than the true level. 

Probabilities of States. 

The probabilities given in (a) above are the interesting elements 

from the point of view of assessing renal function. If, for example, 

these weights favobr M 
t2 

then we suspect a change in level at time t 

as occurs after dialysis treatment. More importantly an abrupt change 

in trend from a positive to negative direction implies an increase in 

plasma creatinine consistent with a deterioration in renal function 

and possible onset of rejection. So in the first instance we look 

for high values of p t3' together with a shift of p(OtIDt) to favouring 

negative growth. Of course we should examine a plot of p(0tjDt) in 

order to determine the directions of trend but a useful guideline 

will be a negative value of E [ýtjDj or a negative value of E[OtIDt+ 

On the receipt of an observation yt that is not consistent with 

Mt, it is impossible to distinguish between possible changes immediately. 

A further observation yt+l will in general clarify the issue and our 

procedure is to treat the weights Ptj as providing only a general 

indication of the state of the system and'taking a low value of p ti 
to mean some form of instability has arisen at time t. We then 



calculate 

q. = Prob ClIt Dt+ 
ti I 

after observing yt+1. These "one-step back" or "smoothed" 

probabilities give us a more concrete basis for assessing changes at 

time t and are calculated already during the collapsing procedure 

at time t+l. Although we generally base our inferences on the qtjp 

it is sometimes not clear even one step on what has happened and 

a further confirmatory observation must be taken. For example a level 

change at time t may be obscured by an outlier at t+l. Thus we 

calculate 

r tj ý Prob [Mtj I Dt+j , j=1,. .. 

which, although generally of little use, provide a confirmation of 

changes in some, albeit infrequent, events. 

7.3.2 Unknown Variation. 

Early implementation of US. 

The analysis above used a given value of the coefficient of 

variation c appearing in the variance structure of the model. 

Operating like this was moderately successful in the early stages of 

the study although sensitivity to chosen values gave problems 

requiring a period of experience with the system to tune to optimal 

values. 

In the light of this we adopted HS's approach involving a 

discrete "grid" of values for c and, viewing c as a random variable, 

the assignment of a prior distribution over this grid. This leads 

to a tractible analysis within the multi-state framework although 

now, of course, we have a 4N state model where N is the size of 

the grid. So at each stage a 4N component model "explodes" to a 
_2" (4N) state model which must then be collapsed back to 4N states. 



It is just this large dimensionality that leads Stoodley and Mirnia 

(1979) to complain about the demand that this approach makes on 

computer time and space. We agree with this entirely, a less 

cumbersome and more elegant approach is required. Furthermore, the 

choice of a grid is somewhat arbitrary and the resulting mixture 

"likelihood" suffers from a lack of identifiability in that some 

variance levels may be reproduced within the mixture. 

An alternative approach. 

In the light of the above comments we adopt the following 

approach which allows for a more realistic modelling of the 

distribution of unknown variance parameters and also fits nicely 

into the multi-state framework. (The details are essentially a 

special case of the investigations of §4.3). 

-2 Define X=c. Then at time t, we have a conditional likelihood 

given by 

(Y mmD nu N ýh T 
Xt, A-1 G2 tlx'Ztl 

ý, 
til t-l, i, t-1 til X0 ru 

where hT = (1,0) and a2 is given in (7.2.18). 
fkj tj 

Suppose that the prior for Xt, X given MD is of the 
1%j t-l'i, t-1 

conjugate normal/gamma form 

(Xt I X, Mt_ 1 i, Dt_ 1) Iýo N FýL 
., X- 1P. 

Yý, 3. fýp t3. 

nb 
(XIM DG t-1 t_li] 

t-ii, t-1 
[212 

Then, given X, the usual analysis leads to a normal posterior for 

xt given X, M 
tj ,m -11 ,Dt. For A we have 

(xlmti$ mt 
-li 

Dt)-. G[nt/2, Btij/ý 

where nt nt_, + 1, 



B 
tij .2b t- ii, 

(y -h 
Ta 

. 
)2/(h TP h+cr2 ), for all ij. 

t e%, Pt 3.1%# t in, ti 

So 

P(X XIM ., D )=Z p(X XIM ., M D ). p(M IM D) 
Ibt tj t i=i 'v t tj t-ii, t t-ii tj t 

Now the conditional posterior for X IX, Mtj, D cQn be collapsed as t 

usual to a single normal with the same moments. Similarly p(AIM tj 
D 

is a mixture of gammas, 

4 
,E G[n 

t 
/2, B 

tij 
/23. p(M t-li 

jMtjqD 
t i=i 

which we collapse to the nearest gamma density as defined by the 

minimum Kullback-Leibler divergence approximation of Appendix 4B, 

G[nt/2, btj/2] where 

k-I 
Btij. p(Mt_l IMtjvD 

ti i=i it 

Finally then we have the (collapsed) joint normal/gamma mixture for 

p(Xt, XID ) given by 
I%j t 

k 
ptj. NG[ýt, Xjllt., Ct,, nt, b 

t 

where NGUX, XIM, C, n, Q denotes the density of 
CU Itj 

(X I X) I'v N 

and 

X x, GEn/2, b/2]. 

All that remains is to calculate p(M t-1i 
IM 

tj ,Dt) and pt, z- p(MtjiDt), 

which are obtained simply as follows. 

Clearly p(ytiMtj, Mt_li, Dt_, ) is a Student t density, 

proportional to 

T -n 
(CF2 +hp h)-l B- t/2 

tj -,, t in, tij 



Now p(M t-li 
Im 

tj , Dt) a p(ytIMtj, Mt_li, Dt_, ). pt_li 

and p (M 
tj 

IDt)a P(Y t '111 tj 
D 

t-d poj I 

4 
where p(ytIMt,, D 

t-1 
E P(Y 

t 
Im 

tj ,m t-lil 
D 

t-1 
) p(Mt_lilMtj, Dt). 

i=l 

With this'method of learning the unknown coefficient of variation 

0 
in the creatinine, and other, series, we found that we obtained a much 

more robust analysis together with increased sensitivity in the 

detection and estimation of changes. In the next section we present 

some examples of graphical output from some analyses. 

7.4. Implementation. 

7.4.1. Graphical Output. 

Figures 7.4 a) - d) illustrate the output of a computer program 

written for the analysis of creatinine, and other time series. 

Figs a) and b) have the following common features. 

(i) The upper graph displays the corrected creatinine plotted on an 

inverted reciprocal scale. Thus a change of trend from 

negative to positive on this graph indicates a deterioration 

in renal function. 

(ii) The second graph is of posterior probabilities of some form 

of instability at the current time, as measured by 1-p 
ti . 

(iii) The thir. d graph is of the "one-step back" probability of a 

positive trend change. Thus we display q t3 when E[OtIDt+ 11<0. 

The lower graph is of the "two-step back" probabilities, r tj 
subject, again,. to a negative value of E[atIDt+ ]. 

2 

(V) In addition the circles plotted on the lower two graphs are 

of the (appropriately lagged) probabilities of a change in 



level, providing a little extra information about the state of 

the system. 

Figure 7.4 a) is a typical series, whilst 7.4 b) is somewhat 

special being extremely quiet and serving only to illustrate the 

detection of level changes due to dialysis treatment (indicated by 

HD at the top of the upper graph), and the detection of the onset of 
a 

rejection at day 45. 

Figs. c) and d) have the same basic features. Fig. c) is 

concerned with urea rather than creatinine, urea being the other 

important indicator we studied. Fig. d) displays the output of the 

analysis of both creatinine and urea on the same graphs; viewing 

the two together is often helpful for the clinician. 

7.4.2. Inferences and Decisions. 

In order to make inferences about the state of the kidney and 

to make recommendations that the clinicians take the relevant action, 

we have to be guided by past experience with the data in interpreting 

the probabilities of changes. At this stage in the study no formal 

decision theoretic analysis and explication of clinicians utilities 

has been made and we resort to the following simple procedure. 

Each of the creatinine series (about 30 to date, with average 

length 65 days) were analysed. For a set of "levels", 

aI< Cc 2<... <am=1, we recorded the number and timing of the 

occurrences of posterior probabilities p t3 
(concerning possible 

rejections) that exceeded the chosen levels. The set of such at 

a level a will be called the set of "positives at level a", P(a). 

[A similar procedure'was followed using the "one step back" 

probabilities q t3 
leading to a set of positives Q(a)p say] 



Following this, the data was given to a group of consultant 

clinicians who, armed with patients records, results of various 

physiological tests, and the benefit of professional hindsight, 

classified all observations as either non-rejection or "probable or 

definite rejection". Further medical details can be found in the 

thesis of Trimble (1980). The latter group of events will be 

called the "rejections", and number R, the former are called the 

"non-rejections", and number N. 

Thus at a level a, the proportion of "true positives" is given 

by T(a), where 

R. T(a) = Number of "rejections" in P(a). 

Further the proportion of "false positives" is given by F(a), 

where 

N. F(a) = Number of "non-rejections" in P(a). 

Now suppose that we adopt the procedure of interpreting a 

probability p, t3 
(or q t3 

) as indicating a possible rejection if it 

exceeds a cutoff value a, say. Our problem is to choose ao in 
0 

some rational way. Suppose the clinician deems it K times more 

important that he detects a rejection than that he receives a false 

alarm. Then we model his utility function as 

K, if he receives a vindicated warning, 

-1, if the warning is false, 

and the expected gain at a cutoff level a is 

G(a) =K Prob[re. jectionlpositive at level a] 

- Prob [non-rej ection1positive at level C13. 

On the basis of'our data, we estimate this by 



K. T (a) -F (a) . 

So our problem is simply to maximize G(a) as a function of ao. 

Assuming G(a) is differentiable, then the optimal level ao satisfies 

K. DT(ci) DF(a) 
= Da act 

or, since 
DT(a) 

. 
DT(a) aF(a) 

and assuming 
aF(a) j 0, we have 

Da DF7a) Da Da 

3T 
= K-1 at a=a DF 0 

So a plot of the pairs 
(F(a 

i 
), T(cci))-for our set of levels 

ai 'i=1,2,..., M will give us an approximation to T as a function of 

F and we can then interpolate to find a0. 

Graphically 

-r ot ) 

"/ kI 

The procedure is intuitively reasonable: we move a down the curve 

from the. upper right and hope to decrease F faster than T. 

In particular for creatinine, the cutoff value obtained for 

"on-line" probabilities p t3 was about 0.15 when K=3. This corresponds 

to a posterior/prior odds ratio of about 2.4. with this cutoff level, 

31 out of 32 "rejections" were detected, . and, in the one missed 

episode, clinical diignosis was made on the basis of several extra 

observations made during one day, which information was not used in 

the analysis. For the "one-step back" probabilities, the posterior/ 

71 



prior odds ratio was about 3.5, indicating the improvement in the 

expected performance due to using a further observation. So the 

system appears capable of detecting rejections and, with this 

procedure, the number of false alarms remains acceptable to the 

clinician. Furthermore, for those rejection episodes that were 

treated by the doctors at the time, the computerised monitoring 

system detected a possible rejection (i. e. p reached cutoff level) 
t3 

at the time, and)on average)treatment followed 1.5 observations later, 

In the light of this we feel that such a system offers much in the 

way of an aid to clinicians in detecting and diagnosing transplant 

rejections. 

7.5. Conclusions. 

The early results of our study of kidney transplant data 

reported above illustrate the flexibility and practical utility of 

multi-state modelling in a non-forecasting problem. Clearly there 

remains much to be. done in this area, notably analyses of other 

indicators and then the construction and implementation of multi- 

variate models in order to tie together indicators. 

It is quite clear from this study that successful implementation 

of such an approach will not be achieved without a thorough investigaton 

of the physical system being analysed in order to move towards a model 

which both captures some of the structure of the data, and can be 

adapted to a reasonably simple mathematical form. Furthermore, a 

detailed study of error characteristics seems desirable since, if 

neglected, the sensitivity of analysis will be considerably impaired. 

Finally, a coherent basis for learning about unknown variation as 

detailed in §7.4 is also valuable in improving performance and in 

adding to our knowledge about the time series being studied. 
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Appendix 7. A. 

st = ý- I (a +u ) 
ot tt 

where a -. N, c2ý2 vc= t 
10 

0 t] 
and I ut I<5. 

For serum creatinine we have that, in general, 

10 <ý ot < 1000. 

Indeed almost all the values exceed 100. 

Thus ý- 
1<k tqhere k is at most 0.1 and typically closer to 0.01, 

0t 

hence 

Istj < 10-1 kl+5k. Ot 
But aN c2] and so, with high probability, Ot t 

10 

Istj < 5(c+k). 

Thus Istj <1 with Istj << 1 for most t, and thus it is not 

unreasonable to suppose that 

(I+s d- I- 1-s 
t. 

vt =*-s t0t+ 
(I-S 

t) ar t 

where Irt 1 <1/16. 

Now, given 0 t, ""t is clearly s3hmnetrically distributed about 

zero. Further, since ý_ I=W0 
we-have Ot tt 



Var[vtl6 ]= E[s2e2 + (1+s2-2st)a2r2 - 2ste (1-s )ar 
ttttttt tlot] 

+ 62C2+ 02E[r2 11 + W2e2Ef 21 + C21. 04W2E[uýl t] ttttttt 

Now 0t is at most 0.1, typically 0(10 -2 ) and $ is of the same order. 

From §7.2.2 (iii) and assuming that the timing error rt is approximately 

normally distributed we have E[r2] 4x 10-4 . E[U21 is 0(l) and 
tt 

C2 = 10-2. 

Taking these points into consideration, we see that 

Var[. Vtlo ]= 04 W2 E[u2] + 02 c2 ttttt 

on ignoring terms smaller by 0(10-2 ). Now for 0t at the upper end 

of its rangp, that is near 0.1, both terms remaining are, important. 

However, for 0t of order 10-2 and smaller the variance of vt is 

approximately given by 02 C2. This approximation essentially assumes t 

that the contributions of timing and reporting errors are negligible 

compared with the analytic error at, and an approximately normal 

distribution for vt follows. 
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