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ABSTRACT

A granular material is usually an irregular packing of particles and its

constitutive relationship is very complex. Previous researches have shown that

the discrete element method is an effective tool for fundamental research of the

behaviour of granular materials. In this research, discrete element modelling

was used to obtain the macroscopic stress-strain behaviour of granular material

in cavity expansion. The micro mechanical features and the mechanical

behaviour of granular material at particle level have been investigated.

A simple procedure was used to generate the samples with spherical particles

and two-ball clumps. The influence of particle properties on the stress-strain

behaviour within an aggregate was investigated in biaxial test simulations. It

was found that more angular clumps lead to sample more homogeneous and

that the interlocking provided by the angular clumps induces a higher strength

and dilation in the sample response. Interparticle friction was also found to

have significant effect on the strength and dilation of the sample. The sample

macromechanical properties can be obtained from these biaxial simulations.

For investigating the effect of particle shape, the spherical or non-spherical

(two-ball clump) particle shapes were used in the cavity expansion simulations.

Monotonic loading was performed on a fan-shaped sample with various

particle properties under a range of initial cavity pressures. The results were
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compared with calculated analytical solutions and existing experimental data in

order to optimise the micro mechanical parameters governing the behaviour.

The pressuremeter test data were adapted for this comparison since the theory

of cavity expansion has been used to describe the pressuremeter tests in soil

and rocks by many geotechnical researchers and engineers.

This research showed that particle properties play an important role in soil

behaviour of cavity expansion under monotonic loading. The contribution of

this research is to present that it is possible to model a granular material of

boundary value problem (cavity expansion) under static conditions, providing

micro mechanical insight into the behaviour.
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CHAPTER 1

INTRODUCTION

1.1 Background

Cavity expansion analysis plays a significant role in modern soil mechanics

and focuses on the cavity pressure needed to expand a cavity in soil by a

certain amount. It provides a versatile and accurate method to analyze the

expansion of cylindrical and spherical cavities in soil and rock in geotechnical

engineering (Yu, 2000). Cavity expansion theory is concerned with the

theoretical study of stress and displacement caused by the expansion and

contraction of cylindrical or spherical cavities in either linear or nonlinear

media. It used to describe the stress-strain behaviour of soil or rocks, so a

mathematical constitutive model and soil properties are needed. Cavity

expansion theory was first developed for application to metal indentation

problems (Bishop et al., 1945; Hill, 1950). The application of cavity expansion

theory to geotechnical problems came later (Gibson and Anderson, 1961;

Meyerhof, 1951). The analysis of a cylindrical cavity has been applied to

practical problems such as the interpretation of pressuremeter tests (Ladanyi,

1963; Palmer, 1972). The application used the principal of continuum

mechanics and was based on constitutive models of various complexities.

Three completely independent assumptions are made in classical continuum
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mechanics, i.e. continuity, homogeneity and isotropy (Malvern, 1969). The

idealization of material is called a continuum, or more precisely, model of the

material (Khan and Huang, 1995). As granular materials consist of grains in

contact and surrounding voids, the micromechanical behaviour of granular

materials is therefore inherently discontinuous and heterogeneous, and

generally anisotropic.

Kishino (1988) pointed out that in continuum mechanical analysis of granular

materials, the determination of a constitutive model is the most difficult

process. A constitutive model based on continuum approach usually includes a

lot of model parameters, which sometimes have no clear physical meaning

(Kishino, 1988). However, when one observes the granular materials as packed

assemblies of particles, the mechanical interaction between particles is very

simple and the material constants have explicit meaning. So granular media

such as sand is composed of discrete particles and exhibits very complex

macroscopic mechanical responses to externally applied loading. Discrete

element method provides a better way to investigate the mechanic behaviour of

granular material at both micro and macro level. The discrete element method

was first developed by Cundall (1971) for rock mechanics and then is being

increasingly used to simulate the mechanical behaviour of granular materials

(Cundall and Strack, 1979; Ting et al., 1989; Rothenburg and Bathurst, 1992).

The early DEM models usually considered the granular material as assemblies

of interacting spheres and reproduced results qualitatively well. However,

materials consisting of non-spherical particles behave significantly differently

from those consisting of spherical particles (Lin and Ng, 1997). Many

experiments show that the discrete characters of the granular materials and
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disconnection of the sample are not fit application of continuum mechanics,

and many researchers have investigate that DEM is an efficient method in

studying granular materials in terms of both the macromechanical and

micromechanical behaviours. In this case, simulation of cavity expansion in

granular material using DEM is studied.

1.2 Aims and Objectives

Since Cundall in 1971 first introduced the innovative distinct element method

into the research on granular materials, DEM has been developed to different

levels and used to a wide range of engineering applications. The purpose of this

project is to understand the mechanical behaviour of the granular material of

cavity expansion and obtain the interaction at micro level by using discrete

element method. However, real granular materials like sand are very complex

and it is very difficult for the development of theory in this area if there are no

simplifying assumptions. As a first approximation, real particle shape is

ignored and the particles are modelled as spheres and simple clumps. It is also

assumed that the spheres are elastic and no rolling resistance is considered.

In DEM, very little research has been reported on the boundary value problem.

Therefore the aim is to study the cavity expansion using DEM and the

objectives of this thesis can be stated as:

1. to use DEM to analyse cavity expansion in granular materials which is

one of the most useful problems in geotechnical engineering, and

develop a suitable particle model in PFC3D that the response of granular

materials under different loading conditions can be modelled.
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2. to compare the DEM solutions with those predicted using cavity

expansion theory based on continuum mechanics.

3. to check the validity of the DEM solutions by comparing them with the

results of cavity expansion tests conducted in the laboratory.

1.3 Outline of Thesis

The thesis is divided into eight chapters. A brief layout of this thesis is given

below.

Chapter 2 presents a literature review describing granular material, and a brief

review of the development and applications of cavity expansion. In section 2.2

and 2.3, cavity expansion theory and the scope of the application in

geomechanics is introduced. The geotechnical applications like in-situ soil

testing are also discussed in this section. Section 2.4 mainly discusses the

granular material characters and the mechanical behaviour of granular material.

Chapter 3 describes the discrete element method theory and the application,

including the principal and numerical modelling using PFC3D. The concepts

and functions of PFC3D and recent applications of PFC3D in simulating soil

behaviour are presented.

In Chapter 4, the preliminary numerical modelling using PFC3D is presented.

An attempt to simulate a biaxial test using spherical particles and the observed

response is discussed. This simulation aims to obtain the soil parameters from

the soil element parameters by using DEM, so it can give some advices of

choosing the soil parameters when using cavity expansion method to obtain

cavity expansion solution.
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Chapter 5 presents the simulations of cavity expansion and preliminary

numerical modelling using PFC3D. Several simulations of cavity expansion

with different particle parameters are described and show the effect of micro

parameters of particle on the macro behaviour of the assembly in cavity

expansion.

Chapter 6, the solution of DEM simulation using PFC3D is compared with the

analytical solution of cavity expansion method. Some results using cavity

expansion method are explained and the comparison results are described as

well.

Chapter 7 is going to describe the comparison results between DEM simulation

and experimental tests. The self-boring pressuremeter test is presented in this

chapter. The effect of particle parameters under monotonic loading is

investigated in the self-boring pressuremeter test simulations.

Chapter 8, conclusions on the work presented in this thesis are provided and

further developments are suggested.
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CHAPTER 2

REVIEW OF DEVELOPMENT OF CAVITY

EXPANSION AND GRANULAR MATERIAL

2.1. Introduction

Cavity expansion in soil or rock is a fundamental problem in theoretical

geomechanics. Geotechnical engineering problems include the investigation of

capacity of pile foundations, pile loading and earth anchors, the interpretation

of in-situ soil testing, analysis of behaviours of tunnels and underground

excavations, and the prediction of borehole instability. This chapter reviews the

relevant literature, including the development of cavity expansion, the

interpretation of in-situ soil test such as cone penetration test and pressuremeter

test, and DEM investigation on granular materials. It begins with an

introduction to cavity expansion theory and associated applications, followed

by a description of in-situ tests as well as the development of laboratory

devices. Finally, a literature review of recent studies about the investigation on

granular materials, the development of computer technology, and discrete

element modelling method is undertaken.
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2.2 Cavity Expansion Theory

Cavity expansion theory was first developed for application to metal

indentation problems (Bishop et al., 1945; Hill, 1950). The application of

cavity expansion theory to geotechnical problems came later (Gibson and

Anderson, 1961; Meyerhof, 1951). Cavity expansion theory focuses on the

stress and displacement fields around cavities embedded. It has been widely

applied in the in-situ soil testing, deep foundations, tunnels and underground

excavations in soil and rock, and wellbore instability in the oil industry. It

provides a useful and simple tool for many complex geotechnical problems.

The cavity expansion or contraction is a one-dimensional boundary value

problem using continuum mechanics to analyse. Therefore, a mathematical

constitutive model and material properties to describe the stress-strain

behaviour of soil are needed. The main application of cavity expansion theory

in soil mechanics is the interpretation of in-situ testing (the cone penetrometer

test and the pressuremeter test). Many researchers focus on this problem and

papers have been published. Use of cavity expansion theory to solve practical

problems is generally termed cavity expansion method. This method applies

the cavity expansion theory to obtain fundamental solutions for a wide range of

geotechnical problems and the analytical solutions are achieved through the

soil properties (Young’s modulus E, Poisson’s ratio v, Friction angle, Cohesion

and Dilation angle) and boundary conditions.

2.2.1 The development of cavity expansion theory

Originally, cavity expansion theory aimed to solve problems of metal

indentation (Bishop et al., 1945; Hill, 1950). Later cavity expansion was
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applied to geotechnical problems (Meyerhof, 1951). Chadwick (1959) is the

first person who developed the analysis with the consideration of friction,

adopting the Mohr-Coulomb criterion with an associate flow rule. In order to

obtain the properties of soil and the pressure-expansion curve in pressuremeter

test that the analysis of a cylindrical cavity has also been applied to interpret

the pressuremeter tests (Palmer, 1972; Hughes et al., 1977; Houlsby and

Withers, 1988; Ajalloeian and Yu, 1998; Houlsby and Yu, 1990; Yu and

Collins, 1998). The work followed by the contributions of Schnaid and

Mantaras (2003), who were interested in cavity expansion in cemented

materials. Salgado and Randolph (2001) focused on the dependence of the

friction angle on stress state and a numerical analysis of cavity expansion in

sand was described.

An analysis of cylindrical or spherical cavity expansion in dilatant soil was

presented by Yu and Houlsby (1991). Yu and Houlsby (1991) pointed out that

it is very difficult to fit the complete real stress-strain behaviour of sandy soils

satisfactorily (Figure 2.1) with a simple elastic perfectly plastic model in

simple boundary problems such as cylindrical cavity expansion. Figure 2.1

shows the actual behaviour of sand and possible elastic-perfectly plastic

models for this behaviour. A number of results were selected and summarised

by Yu and Houlsby (1991) to indicate the effects of various parameters on the

behaviour of cavity expansion. The pressure-expansion relationship was

plotted in Figure 2.2 (the material’s Poisson’s ratio  is 0.3, friction angle  is

30º and a stiffness index E / {p0+[Y/ (α-1)]} is 260º). The dilation angles for

these three curves are 0º, 15º, 30º respectively. It can be seen that the stiffness

of the response increases with the dilatancy (Figure 2.2).
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Figure 2.1: Actual behaviour of sands and possible elastic-perfectly plastic

models (Yu and Houlsby, 1991)

Figure 2.2: Typical pressure-expansion curves for cylindrical cavities (Yu and

Houlsby, 1991)
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More recently, the large-strain dynamic problem of cavity in granular medium

was described by Institute for Geotechnical Engineering (2005). Rosenberg and

Dekel (2008) described a numerical of simulations following the cavity

expansion process. The constitutive model was considered as elastic-perfectly

plastic solid. The relationship between the cavity wall velocity and the applied

pressure in the cavity showed that the simulation result has a good agreement

with the analytical models for compressible solids. In addition, there is a

simple quadratic relation without a linear term between the dynamic radial

stress and its wall velocity for the spherical cavity. For the cylindrical cavity, a

linear term (in wall velocity) has to be added.

2.2.2 Fundamental solutions of cavity expansion problem (Yu, 2000)

Cavity expansion problems can be solved by considering the equations of

equilibrium, compatibility, stress-strain relationship, and stress boundary

conditions together with the failure criteria. In this case, numerous analytical

solutions have been developed for cavity expansion.

Many existing soil and rock models can be divided into three groups and the

appropriate one is selected for solving different problem conditions (Yu, 2000).

Some fundamental solutions for cavity expansion problems are presented.

1. elastic models (linear or nonlinear)

2. viscoelastic or viscoelastic-plastic models

3. elastic-plastic models (perfectly plastic or strain hardening/softening)
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2.2.2.1. Elastic solutions

For the expansion of thick-walled cylinder, the plane strain condition is

assumed since an infinitely long cylinder is considered.

The final stresses are:
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The radial displacement u can be determined:
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where G=E/2(1+ν) is the shear modulus of the material. 

2.2.2.2 Elastic-perfectly plastic solutions

Some basic cavity expansion solutions in elastic-perfectly plastic soils are

described. The soil behaviour is assumed to be under either drained or

undrained conditions when modelled by perfect plasticity. The elastic-plastic

solutions for cavity expansion using both Tresca and Mohr-Coulomb plasticity

models are presented.
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For cylindrical cavity expansion in a finite medium, solution for Tresca

criterion is described first. A long, plane strain cylindrical tube is expanded by

an internal pressure. Internal pressure increase from the initial value p0, the

material behaviour first is elastic and then become plastic from the internal

radius to the external radius.

The elastic solutions for stress and displacement are:
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When the internal pressure gets to p1y, yielding begins to occur on internal

surface:
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After the stress reaches p1y, the material behaviour becomes plastic, and the

stresses and displacement in elastic part are:
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The stresses in the plastic region are:
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Solutions of using Mohr-Coulomb criterion for cylindrical cavity expansion in

a finite medium are presented next. Like the situation before, the internal

pressure increase slowly from the initial pressure p0.

Elastic solution:
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When the internal pressure reaches p1y, material starts to yield from the internal

surface.
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Elastic-plastic solution:

In the elastic region:
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In this equation, c is defined as the outer radius of the plastic zone.

When c=b, the whole cylinder becomes plastic, and the internal pressure is

calculated as:
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The outer boundary displacement can be calculated from equation 2.21:
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The equations 2.22 and 2.23 were used to determine the value c/a and a/a0.
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For small strain problem when r=a, the displacement can be expressed in

equation 2.24:
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Solution procedure is:

If n=γ 

Otherwise
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First, decide the suitable soil properties parameters, like E, v, C, Φ, Ψ and then 

choose the initial pressure p0, the internal and external radius a0 b0.

Second, calculate the derived parameters: G, Y, α, β, γ, δ.  
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Third, calculate the yielding pressure p1y. If the internal pressure p is less than

the yielding pressure, then calculate the expansion radius from elastic solution.

If the pressure is larger than the yielding pressure, then calculate the radius

from the elastic-plastic solution. When c=b, the whole cylinder becomes plastic.

2.2.3 The applications of cavity expansion theory

Cavity expansion theory has been widely applied to geotechnical problems to

obtain the fundamental solutions. It is used to describe the in-situ soil testing
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(cone penetrometer testing and pressuremeter testing) and to predict the

behaviour of piles. It is also commonly used for the engineering solutions of

deep foundations, tunnels and underground. The previous studies indicated that

it is possible to apply cavity unloading solutions to conduct stability

calculations for tunnels (Yu, 2000).

Tunnels have played an important role in the development of civilisation. They

are underground structures having significant benefits to public transportations

(Whittaker and Frith, 1990). Tunnel instability occurs from excessive

displacements. In order to ensure its safety, the analysis of tunnel behaviour

concerns both the stresses and displacement around an excavation and the

latter’s effect upon the tunnel lining (Whittaker and Frith, 1990).

Cavity expansion theory was applied to the design and construction of tunnels

based on the two most important design considerations-stability and

serviceability. Stability requires the tunnel to be built without causing failure.

To ensure stability, it is often necessary to provide some support via linings to

the internal boundary after a tunnel is excavated. To satisfy the serviceability

requirement, the tunnelling-induced displacement must be small in order to

avoid serious damage to the surrounding buildings and structures (Yu, 2000).

Figure 2.3 shows a horizontal cross section of an expanding cylindrical cavity

in an infinite soil mass (Salgado and Prezzi, 2007). Initially, the horizontal

stress is equal everywhere before the cavity is created. A plastic zone is then

created after the cavity creation.
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The radius of plastic zone is R. The plastic zone is bounded by a nonlinear

elastic zone, which extends from R to A. The nonlinear elastic zone is bounded

by a linear elastic zone. In the linear elastic zone, the shear strain is smaller

than the threshold strain (typically between 10-6 and 10-4). In this respect, soil

can be assumed to behave as a linear elastic material. In the nonlinear elastic

zone, the stresses have not reached the failure criterion in terms of peak

strength, but the shear strains are larger than the elastic threshold strain

(Salgado and Prezzi, 2007). They focused on penetration processes, which are

associated with cavity creation in soil.

Figure 2.3: Cavity expansion: Cavity and the plastic and elastic zones (Salgado

and Prezzi, 2007)
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The theory of cavity expansion can be utilised in long-rod penetration

mechanics which is elaborated in Rosenberg and Dekel’s paper (2008). A

series of 2D numerical simulations were used to describe the cavity expansion

process in an elastic-plastic solid. The obtained results of strength value pc

were consistent with the analytical results. The incompressible metal critical

pressure to expansion a cylindrical cavity is:
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An analytical value of the critical pressure in a cylindrical cavity for

compressible specimen can be obtained as:
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For steel specimen, the critical pressure of cylindrical cavities in compressible

solid is not far from the correct one.

The results of critical pressure for aluminium, lead and steel were shown in

Figure 2.4. The results (predicted by the analytical model) for each material of

compressible solid in spherical cavity expansion were also plotted in this figure.

It shows that a sound consistency of results, gained through the simulation and

the analytical model, was achieved. From the obtained results of the cavity wall

velocity and the applied pressure in the cavity, there is an agreement between

the numerical solution and the analytical models for compressible solid.
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Figure 2.4: Comparison between simulation results and the analytical model for

compressible steel, aluminium and lead specimens (Rosenberg and Dekel, 2008)

Undrained plane-stain expansion of a cylindrical cavity in clay was studied by

Palmer (1972). In his paper, the problem of interpreting the results of Menard

pressuremeter tests on soil in situ was described. Cylindrical cavity expansion

by internal pressure was performed in these tests and the relationship between

applied pressure and cavity volume change were measured. The condition of

these tests was for undrained and saturated clay.

The condition is considered as plane strain, undrained and axially symmetric of

the pressuremeter axis, the deformation is:
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The volume increase ratio is:
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Use of cavity expansion to analyse the sand behaviour was developed by

Salgado and Randolph (2001). The relationship between shear and volumetric

strain of variations relative density and stress state in the plastic zone was

described. The fully non-linear soil response was considered in this analysis of

sand. This research can be used to evaluate the soil variable in plastic zone

during the expansion and determine the limit pressure. The cavity expansion-

strain curve also can be obtained.

1
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Figure 2.5 shows how R/a varies with relative density and initial effective

stress state in sand for cylindrical cavity expansion. The properties for sand in

this figure are gr= 0.68, Cg=612, eg=2.17, ng=0.44, Q=9, Rq=0.49, emin=0.48,

emax=0.78, v=0.15, and φc=33. These parameters are those of Ottawa sand

(Salgado et al., 2000). The results show that the ratio of plastic to cavity radius

R/a under limited conditions increased with increasing the dilatancy. Limit

pressure increased when the lateral stress increased.

Figure 2.5: Normalized plastic radius (ratio of plastic to cavity radius) at limit

condition as a function of initial soil state (Salgado and Randolph, 2001)

2.3 The Interpretation of In Situ Soil Tests

Pressuremeters and cone penetrometers are two most widely used instruments

for the measurement of soil properties in-situ. The first method accurately

measures the stiffness and strength of soil, while the second method can be

used to obtain approximate soil profiles quickly. The theory of cylindrical
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cavity expansion has been adopted as the most important interpretation method

for self-boring pressuremeter tests in soil and rock (Clarke, 1995). The cone tip

resistance in the cone penetration test has been predicted properly using

spherical cavity expansion (Yu and Mitchell, 1998).

2.3.1 Pressuremeter test

A pressuremeter is defined here as cylindrical probe designed to apply uniform

pressure to the wall of a borehole by means of an expandable flexible

membrane. When a pressuremeter test is carried out in soils, the measured

pressure displacement curve can be used to back-calculate the mechanical

properties of soils (Yu, 2000).

In Mair and Wood’s paper, the pressuremeter test (PMT) is considered as

placing a cylindrical probe in a pre-drilled hole and expanding this probe while

measuring changes in volume and pressure in the probe. A limited pressure can

be estimated from the reading and a pressure meter modulus can be calculated

from the reading of pressure-volume changes during the test. Presuremeters are

normally installed vertically at various depths in the ground, and they are

connected by tubing or cables to a control unit at the ground surface (Mair and

Wood, 1987).

The main advantages of the pressuremeter test are (1) the boundary conditions

are easy to define; (2) this test can measure the deformation and the strength at

the same time; (3) the self-boring pressuremeter test gives a closest approach to

undisturbed soil of other tests (Yu and Collins, 1998). They considered the
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pressuremeter as cylindrical cavity expansion process and the effective stress

analysis was described.

Finite strain analysis of pressuremeter test was presented by George et al.

(1990). The pressuremeter test was considered as plane strain problem in their

study. The assumptions of this analysis included plane strain, small strain and

rigid perfectly plastic constitutive models of the Mohr-Coulomb type. From the

plot of cavity pressure and expansion strain, it can be seen that a “steady state”

condition was reached by reducing the stiffness and the parametric. The factors

to affect the soil characteristics were evaluated in this paper (George et al.,

1990).

The procedure of pressuremeter tests in sand was described by Juran and

Mahmoodzadegan (1989). In this paper, a new approach for interpretation of

pressuremeter tests to determine the shear strength characteristics, dilatancy

properties and shear modulus was described. An elastic-plastic strain hardening

soil model was developed in the dilating behaviour during the pressuremeter

cavity expansion. The correct engineering properties of sand in the cavity

expansion test were correlated with the conventional triaxial compression tests.

It can be noted that the peak friction angle and dilation angle of plane strain

cavity expansion tests were slightly higher than the conventional triaxial tests.

Antonio (1990) presented the application of pressuremeter test and the radial

expansion of cylindrical cavities in sandy soils. A solution of radial expansion

of cylindrical cavities was developed in his paper and the rigid-plastic model

was used in his research. The curve of the friction angle mobilized at each step

of the test deformation can be obtained from this solution and also some
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discussion about the value of the friction angle was mobilized at the critical

voids ratio. The rheological behaviour of a sand medium during the cylindrical

cavity expansion was explained in his research.

Measurement of shear stiffness in pressuremeter tests in municipal solid waste

was described by Dixon et al. (2006). This paper presented the results from a

programme of pressuremeter tests which was modelled in municipal solid

waste. Shear stiffness properties were measured as well. From the results, it has

been shown that a strong relationship between shear modulus and depth from

the unload-reload loops can be obtained. It can be seen that there is a good

agreement between shear stiffness values calculated from small strain in

pressuremeter tests and shear stiffness values measured using the continuous

surface wave method in their research.

A finite element analysis of the cone pressuremeter test in sand was presented

by Houlsby and Yu (1990) and the test was considered as the cylindrical cavity

expansion in a Mohr-Coulomb material. In their paper, a method to obtain the

strength parameters was developed and cavity expansion theory was applied to

explain this test. Another analysis of self-boring pressuremeter test using the

same finite element method was described later by Yu and Collins (1998). The

material was considered as overconsolidated clays in this paper.

2.3.2 Cone penetration test

The cone penetration test (CPT) is an in situ testing method used to determine

the geotechnical engineering properties of soil. The early application of CPT

was to determine the soil bearing capacity. Most notably, limit pressure was
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calculated in a much more effective way and a new formulation for calculating

cone resistance from cavity limit pressure (which considers the true interface

friction angle between the cone and soil) has been developed and implemented

(Salgado and Prezzi, 2007).

The cone penetration test is an axisymmetric problem and the mechanism is

related to the cavity expansion (Huang and Ma, 1994). A series of simulations

were carried out in his research and it allowed the cone penetration test to be

considered in the microscopic analysis. The results show that the loading

history has the effect on the characteristics of soil failure and dilatancy, but

later stress behind the cone base is not sensitive with the soil history. For the

graded sand, the crushing is easy to occur in the small particles. Moreover, the

cone resistance analysis is linked to the classical cavity expansion theory based

on linear elasticity and perfect plasticity. These analyses would produce

substantially the same values of cavity expansion limit pressure as the present

theory (Salgado and Prezzi, 2007).

In Jiang et al.’s paper (2006), a two-dimensional discrete element method was

used to simulate the deep penetration tests on granular materials. The effect of

soil-penetrometer interface friction was discussed in their paper and it has been

proved to affect the actual penetration mechanisms very much. The results

show that the soil near the penetrometer has a complex displacement path in

deep penetration. The penetration depth and tip-soil friction result an

increasing tip resistance. The penetration leads to high gradients of

displacement and velocity fields. The soil near the penetrometer has a loading,

unloading process and the large rotation of principal stresses (like 180º), as
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well as high gradients of both the value and direction of stress can be observed.

In the penetration, the soil of large deformation (when it arrive the stress state)

has a little higher strength than that of the conventional tests.

2.4 Mechanics of Granular Material

Granular materials consist of individual particles in contact and interstitial

voids, so that they generally comprise a multiphase media of solid, liquid and

gas, and sometimes appear to behaviour as fluids or solids. However, the

behaviour of granular material is more complicated than that of a fluid or a

solid. The discrete characteristics of the granular material result in complex

behaviour under different loading conditions.

2.4.1 Granular materials behaviour

In a granular medium composed of discrete particles, forces are transferred

only through the interparticle contacts. The discrete nature makes the

constitutive relationship very complex. The micromechanical behavior of

granular materials is therefore inherently discontinuous and heterogeneous. If

friction does not occur at the contact points, the material cannot sustain applied

shear forces. Some overall resistance to the applied force is generated by the

so-called interlocking effect of particles (Scott, 1963). The movement of

particles takes place as the result of sliding and rolling at contact points,

leading to the macro-deformation. The macroscopic properties of these

materials are obviously related to the basic structure and properties of their

constituents and their interactions (grains and voids).
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2.4.1.1 Internal friction angle

The physics of friction behaviour has been studies for several decades. There is

no doubt that the friction at the contact point plays a dominant role in

controlling the macro-deformation and strength of granular materials. The

Coulomb’s friction law was used to explain the relation between the frictional

force F and the normal force F :

  tanFFF  (2.38)

Where, μ, Φμ are physical constants called frictional coefficient and the

interparticle friction angle respectively. Experiments show that this coefficient

of friction drops when motion begins (the kinematic friction coefficient is less

than the static friction coefficient).

In fact, for granular materials, the internal friction angle Φ has a different

physical meaning compared to inter-particle friction angle Φμ. The internal

friction angle is not a physical constant for a given soil but strongly dependent

on the void ratio, fabric, stress states and other parameters. This angle is low

when grains are smooth or rounded, and it is high for sticky, sharp or very fine

particles. Typically, the value of this angle is between 15°-45°.

2.4.1.2 Stress tensor

In the three-dimensional space with a Cartesian coordinate system, we can

write the total stress tensor for a frictional granular material as:
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Where xx , yy , zz represents the normal stress acting on the YOZ, XOZ and

XOY planes respectively, xy , xz are the shear stresses acting in the Y-direction

and Z-direction respectively on the plane YOZ (whose normal is X), yx , yz

are the shear stress in the X-direction and Z-directions respectively acting on

the plane XOZ (whose normal is Y), and zx , zy are the shear stress in the X

direction and Y direction acting on the plane XOY (whose normal is Z).

Consider a closed continuous domain, with volume V loaded on its boundary S

by a distributed force  xti . Depending on the loads, a stress tensor )(xijij  

belongs to every point of the domain satisfying the boundary condition of

ijij tn  where in is the outwards unit normal vector on S. The volume

average of the stress tensor ( ij ) can be expressed with the help of the Gauss-

Ostrogradski theorem as a surface integral

dStx
V

dV
V

j

S

i

V

ijij  
11

 (2.40)

Where ix is the position vector on the surface S.

There are concentrated forces instead of the distributed loads acting on the

boundary of the domain and between the sub-domains, the above expression
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can be written in a discrete form. Let k
if be the forces acting at the boundary

points k
ix (k=1, 2, …). Then the average stress Equation is modified as

k
j

Sk

k
iij fx

V




1

 (2.41)

Where the index k runs over the external loading forces.

2.4.1.3 Shear and deformation

There are normal stress and shear stress both in the geotechnical construction.

The normal stresses cause volume change due to compression or consolidation.

The shear stresses prevent collapse and help to support the geotechnical

structure. Failure will occur when the shear stress exceeds the limiting shear

stress (strength). Shear strength is a material property, which enables soil to

maintain equilibrium on an inclined surface, such as a natural hillside or the

sloping sides of an embankment or earth dam.

When a granular soil is sheared, homogeneous deformation first takes place.

The elastic strain is dominant at the beginning and is gradually replaced by the

plastic strain. Around a peak stress, the deformation suddenly localizes into

narrow zones (called shear bands), and stress drops sharply to a residual stress

state. The shear strength characteristics of sand can be determined from the

results of either drained triaxial tests or direct shear tests. A soil consists of

discrete particles and its fabric changes easily when subjected to overall shear

distortion. Volume expansion during shear (called dilatancy) is an indication of
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such changes, and is one of the most interesting aspects in the mechanics of

granular media. There is a good reason to believe that external work done is

dissipated through sliding at contact points during non-recoverable deformation.

The experimental obtained relation between dilatancy and mobilized shear

strength in a granular soil on the assumption that sliding is a major micro-

deformation mechanism. This method has been discussed by many engineers,

and also has proposed various possible sliding models to interpret it.

In a dense sand, there is a considerable degree of interlocking between particles.

Before shear failure can take place, this interlocking must be overcome the

frictional resistance at the points of contact. During shearing of a dense sand,

the macroscopic shear plane is horizontal, but sliding between individual

particles takes place on numerous microscopic planes inclined at various angles

above the horizontal as the particles move up and over their neighbours. Rowe

(1962) developed a stress-dilatancy theory relating the ratio of the principal

stresses, the geometry of ideal particle and the relative rates of change of

volumetric and major principal strains. It was shown that:
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Where dεv and dε1 are corresponding small changes in volumetric and major

principal strain respectively (compressive strain being taken as positive) and

'
f is a value of angle of shearing resistance between the limits of  and '

cv

depending on the strain conditions imposed by the test. The value of '
f is a
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function of the instantaneous directions of local interparticle slip as

rearrangement takes place (the preferred directions of local slip would be at

(45°+Φμ/2) to the major principal plane).

2.4.2 The properties of granular material

It is well known that the mechanical behaviour of granular material is affected

by a lot of factors, such as distribution of particle size and particle shape.

Discrete element method has been used in the recent work which gives a

unique opportunity to obtain the properties of granular material from the micro

level.

2.4.2.1 Dynamic properties

Dynamic response of the granular materials has the relationship with the

parameters of shear modulus and damping ratio. The study using triaxial stress

state to investigate dynamic response was developed by Dinesh et al. (2004).

The shear modulus G was obtained by using Young’s modulus E and Poisson’s

ratio μ.

)1(2 


E
G (2.43)

The damping ratio D (in Equation 2.44) was measured from the hysteresis loop

as shown in Figure 2.6:

T

L

A

A
D

4
 (2.44)
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Figure 2.6: Hysteretic stress-strain relationship (Dinesh at el., 2004)

Figure 2.7 shows the relationship between the shear modulus and shear strain

for different confining pressure and Figure 2.8 shows the normalized shear

modulus versus shear strain with the confining pressure same as the Figure 2.7.

The damping ratio versus shear strain has been shown in Figure 2.9. It can be

seen that the larger damping can be obtained under the low confining pressure

and damping increased with the reducing confining pressure at any shear strain

level. For the same confining pressure, the damping increased when the shear

strain increased. From all the results in Figure 2.7, 2.8 and 2.9, it has been

improved that they have a good agreement with the experimental results of

Kokusho (1980) and Yasuda and Matsumoto (1993).
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Figure 2.7: Shear modulus versus shear strain (Dinesh at el., 2004)

Figure 2.8: Normalized shear modulus versus shear strain for different confining

pressure (Dinesh at el., 2004)
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Figure 2.9: Damping ratio versus shear strain (Dinesh at el., 2004)

2.4.2.2 Yielding of granular materials

McDowell and Bolton (1998) examined that the micro mechanics of soils was

subjected to one-dimensional compression. Figure 2.10 shows the plot between

voids ratio and the logarithm of vertical effective stress for sands (Golightly,

1990). At low stresses in region 1, the behaviour was quasi-elastic for the

dense silica sand and small irrecoverable deformations may occur because of

particle rearrangement. Region 2 was described as yielding for soil subjected to

one-dimensional compression, and major plastic deformation occurs beyond

this region.
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Figure 2.10: One-dimensional compression plots for carbonate and silica sands

(Golightly, 1990)

Although not all particles are loaded in the same way, it may be assumed that

all particles will eventually be in the path of the columns of strong force that

transmit the macroscopic stress. Cundall and Strack (1979) showed that the

applied major principal stress was transmitted through columns of strong force

in the discrete element method numerical simulation, as shown in Figure 2.11.

McDowell and Bolton (1998) proposed that the yield stress must be

proportional to the average tensile strength of grains. They defined yielding

stress as a value of macroscopic stress which caused maximum rate of grain

fracture under the increasing stress and the value of yielding stress could be

measured by crushing between flat platens.
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Figure 2.11: Discrete element simulation of array of photoelastic discs (Cundall

and Strack, 1979)

One-dimensional normal compression tests on densely compacted silica sand

of uniformly-graded samples have been described by McDowell (2002). An

analysis of the yielding and plastic hardening of the material has been

developed and the results of these tests were shown in Figure 2.12. It is

obvious that the stress level in the yielding region depended on the initial grain

size and it increased with reducing particle size. In these tests, the initial voids

ratio was approximately same for each aggregate. All particles had similar

angularity and the same compacted way was used to obtain the maximum

density of sample.
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Figure 2.12: Compression plots for different uniform gradings of sand

(McDowell, 2002)

McDowell (2002) described that the applied major principal stress was only

transmitted through two or three columns of strong force for an array

approximately 12 particles wide. Aims to predict the yield stress of the

aggregate as ¼ of the 37% tensile strength of the constituent grains in the

aggregate, a simple estimation (the induced characteristic stress in the particle

forming the columns of strong force should be four times as the applied

macroscopic stress) was used. The results were shown in Figure 2.13, it can be

seen that the yield stress was predicted well and the proposition of this further

strengthens statements (yields stress should be proportional to the tensile

strength of the individual grains) was made by McDowell and Bolton (1998).
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Figure 2.13: Yield stress predicted from single particle crushing tests, assuming

yield stress= (37% tensile strength)/4 (McDowell, 2002)

2.5 Summary

Cavity expansion processes are operative in a number of problems in soil

mechanics; including pressuremeter testing, cone penetration testing. These

problems can be solved by a finite-difference technique using cavity expansion

theory. A description of soil behaviour can be achieved by developing a

constitutive model and a satisfactory technique for measuring the required soil

properties is described. The discrete nature of granular material such as sand

makes the constitutive relations very complex, and also the behaviour of

granular material is complicated. The development and applications of cavity

expansion, as well as the mechanical behaviour of granular material were

discussed in this chapter.
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CHAPTER 3

DISCRETE ELEMENT MODELLING OF

GRANULAR MATERIAL

3.1 Introduction

Granular materials are composed of distinct particles that can displace

independently from each other and interact only at contact points. The discrete

nature of the granular material results in complex behaviour under conditions

of loading and unloading. Although examples of granular materials exist

around us, until now there is no widely accepted constitutive model describing

the behaviour of these materials. The granular materials are particulate in

nature and sustain loads mainly by interparticle friction, such as sand, powers

gravel (Sitharam and Dinesh, 2002). Their constitutive behaviour is

complicated and a lot of tests are needed to understand the soil behaviour

before modelling.

It is well know that the test conditions and particle size distribution can affect

the constitutive behaviour of granular materials (Sitharam and Nimbkar, 2000).

However, it is difficult to model the particle size and gradation effects using

continuum mechanicals based models. From the work of Cundall and Strack
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(1979), the discrete element method (DEM) is widely used to study the

behaviour of granular materials and provides a way to investigate the mechanic

properties of granular material at both microscopic and macroscopic level. In

DEM, the interaction of the assembly’s particles is viewed as a transient

problem with states of equilibrium developing whenever the internal forces

balance.

Model for stress-strain behaviour of granular material with microstructural

consideration can be derived from properties of inter-particle contacts. Each

particle is identified by properties such as normal stiffness, shear stiffness,

friction coefficient and adhesion. The discrete element modelling is allowed to

investigate some features of granular materials which are not easily measured

in laboratory tests, such as interparticle friction and distribution of contact

forces. It is also possible to use the same sample for different loading

conditions, so the material properties (the distribution of contact forces and the

internal particle structure) and the effect of loading conditions can be

investigated independently. Granular materials are modelled as packed

assemblies of discrete elements in DEM. In this chapter, the background and

development of DEM is presented. The concepts and the development of DEM

are introduced in Section 3.2. Section 3.3 presents the application of discrete

element modelling of granular materials and some literature reviews of discrete

element modelling. In section 3.4, discrete element program PFC3D (a

simplified implementation of DEM) is described. In this thesis, a popular

numerical technique (DEM) is used to apply on the cavity expansion

simulations in granular materials.
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3.2 Introduction to the Discrete Element Method

Granular media such as sand composed of discrete particles exhibit very

complex macroscopic mechanical responses to externally applied loading.

DEM is an alternative view of granular materials to investigate their

mechanical behaviour at the microscopic level. DEM was first developed by

Cundall (1971) for rock mechanics applications and is being increasingly used

to simulate the mechanical behaviour of granular materials (Cundall and Strack,

1979; Ting et al., 1989; Rothenburg and Bathurst, 1992). DEM provides the

possibility of investigating the mechanical behaviour of granular materials at

both micro and macro levels. Some researchers developed a numerical quasi-

static model for granular media based on displacement methods of structural

mechanics and finite element method (FEM). However, this method is not able

to follow large displacement and rearrangements which are fundamental

characteristics of state changing processes of granular media. DEM is better in

modelling a discontinuous material than other numerical tools such as FEM

and BEM (boundary element method). It considers the particle-scale

interaction, allowing the micro-mechanics of soil response to be analysed in

detail. In DEM, the interaction of the discrete particles is monitored contact by

contact and the motion of the particles is modelled particle by particle.

DEM numerical simulations become a valuable tool in the study of different

phenomena occurring at the micro mechanical behaviour in granular materials.

DEM provides a virtual laboratory that allows the modeller to perform

experiments which are difficult or impossible to undertake in a physical

laboratory. The DEM is primarily used to study the fabric and structure of
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granular materials under loading and gives the contribution on developing the

constitutive relations for soil using disks and spheres (Bathurst and Rothenburg,

1988; Zhang and Cundall, 1986; Oner, 1984). Recently, Lorig and Brady (1984)

have developed the DEM on the application of stress around tunnel openings.

Cundall and Hart (1992) gave a summary on fundamental aspects of discrete

element modelling systems and defined the scope of DEM. DEM allows finite

displacements and rotations of discrete bodies including complete detachment,

and recognises new contacts automatically as the calculation progresses.

In DEM, the contact forces and displacements of a stressed assembly of

particles are found by tracing the movements of the individual particles. The

particle interactions are considered as a dynamic process with states of

equilibrium developing whenever the internal forces are in balance. The

dynamic interaction of a particle assembly is treated by using an explicit time-

stepping scheme. Specified walls, particle motions and body forces controlled

the particle system of distribution. Damping is one of the most important

calculation parameters in the DEM since the movements of soil particles are

irreversible. If there is kinetic energy in the system, simple harmonic motion

will be occurred around the equilibrium position without damping. Damping

must be applied at the system to evanesce the kinetic energy from the action.

The idea of explicit finite-difference method for continuum analysis is treated

as the heart of most DEM simulations. However the timestep is so small and

the disturbances cannot propagate from any particle further than its immediate

neighbours in a single timestep. So the interaction of particles determines the

forces acting on any particle. Discrete element modelling can accurately
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replicate the behaviour of real assemblies at the particle scale by simulating the

motion of individual grains. A sufficient number of particles are required in the

simulation for getting the accurate macroscopic stress and strain relationship.

In the DEM calculation, velocities and accelerations are assumed constant in

each timestep and the dynamic behaviour is represented numerically by a

timestepping algorithm.

The calculations in DEM are based on two laws: Newton’s second law on the

particles and a force-displacement law at the contacts. Newton’s second law is

used to calculate the motion of each particle arising from the contact and body

forces acting upon it. While the force-displacement law is used to get contact

force from displacement and update the contact forces arising from the relative

motion at each contact. The interparticle forces are renewed at each time step,

which is computed from the relative velocities at the contacts (the force-

displacement relation). Then the new out-of-balance force at each contact is

determined and used to calculate the new translational and rotational of particle

accelerations (Newton’s law of motion) after updating the interparticle force.

Integration of the particle accelerations provides the particle velocities and then

the displacements of each particle are obtained. After that new particle position

is determined by using the updated velocities at the contacts, the process will

repeat. The DEM approach involves two separate scales: the macro-scale on

continuum properties of the assembly and the micro-scale on particle-scale

properties.
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The calculation repeated of force and displacement is given here:

3.3 Influence of particle properties

DEM is a numerical method using assemblies of discs or spheres to describe

the mechanical behaviour of granular material. It has been improved to be a

valid and fundamental tool for the research of granular behaviour. DEM has

been frequently used in the research during the past two decades with the

computational capacity development. It is widely used to investigate the

behaviour of a granular mass from a micromechanical level. The effects of

micro-properties on the mass behaviour are very important and DEM supplies

a useful tool for research on this point.

3.3.1 Particle shape of circular/spherical or non-circular/spherical

In the early discrete element analysis, the particle is used as circle element to

obtain the results from the two-dimensional simulations (Cundall and Strack,

1979). A large number of problems can not be modelled just using the two-

The relationship of force
and displacement

Force

The boundary
conditions of force

Movement equations Displacement

The boundary conditions
of displacement
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dimensional simulations in practical situation, so spherical particles are widely

used in the simulations recent years. Much more information and published

works were obtained from the three-dimensional simulations. Normally,

natural grains (like the sands and gravels) have irregular shapes, so similar

shape is required in the recent research on DEM simulation. If the sample is

filled with non-spherical particles, the more interlocking and moment resistant

will be induced. The problem of circle and spherical particles rolling in the

simulation has been presented by Bardet and Proubet (1991). The biaxial test

was simulated using disks with three different radiuses in DEM (Ting et al.,

1989). They noted that the internal friction angle obtained from the simulation

was lower than the calculation from real sand and particle rotation plays an

important role in the strength and deformation of materials. Santamarina and

Cho (2004) explained that the size and shape of particles reflect the

composition of material and play a significant role in soil behaviour. Particle

shape is a very important parameter to determine the soil characterization,

including sphericity, angularity and roughtness. Simulation using circular or

spherical particles is too idealized to capture the characteristic of soil behaviour.

Frossard (1979) presented that the shape of particles also have a significant

effect on the volume strain, especially in the maximum angle of dilation. Many

researchers focus on the shape of the particle to get more reliable results.

Favier et al. (1999) described that particle shape is very important to get the

real particle behaviours. The earliest DEM were performed on two-dimensional

problem and the shape was considered as either circular or polygonal. Detailed

information of individual particle-particle contact is required for models using

discrete elements (Cundall and Strack, 1979; Drake and Shreve, 1986; Hogue
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and Newland, 1994; Walton, 1983). Later researchers developed the DEM to

three dimensional condition using spheres and polyhedra particle with the

addition of ellipses. The actual shape of granular material (like ellipsoid) in the

DEM has been developed by many researchers (Lin and Ng, 1997). A new

method of representing non-spherical, smooth-surfaced, axisymmetrical

particles in discrete element modelling has been presented by Favier et al.

(1999). The Multi-element particle model is described. This particle was

constructed of spheres whose centres are located on the axis of symmetry. The

two spheres are fixed to be one particle. Figure 3.1 shows the contact of two

particles, each particle has two spherical elements with identical diameters. The

global position of each particle is determined at its centroid by its global

position vector rp(G). The relative position vector between the particle centroid

and the centre of an element sphere dps is prior known because the position of

each sphere within a particle is determined in advance. Figure 3.2 shows how

to transfer the force between the element spheres and particles. The total

moment for the centre of an element sphere due to tangential forces is

)(
1

pscps t

c

c
psct frM 



(3.1)

where
psctf is the tangential component of the contact force at contact point c

and C is the total number of contact points on each sphere at the current

timestep, as shown in Figure 3.2a. Each element sphere resultant contact force

is
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Figure 3.1: Schematic of contact between two multi-element axis-symmetrical

particles, each comprising two element spheres of the same diameter (Favier et

al., 1999)

Figure 3.2b shows that this force is transferred to the centre of each element

sphere. The moments generated by force acting on the centre of each element

sphere which so not pass through the centroid of the particle are then added to

the moment of the tangential forces, giving the total moment acting on the

particle, as shown in Figure 3.2c.
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Figure 3.2: Method of transfer of force acting on element spheres to the centroid

of a particle (Favier et al., 1999)
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where S is total number of element spheres in the particle. The total out-of-

balance force acting on the particle is the vectorial sum of resultant contact

forces acting on its element spheres:

ps

s

s
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
1

(3.5)
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Once the total force and moment of particle have been determined, the

translational and rotational acceleration of the particle can be calculated using

Newton’s second law (Favier et al., 1999). Figure 3.3 shows the three arbitrary

particle reference points A1, A2 and A3 in the co-ordinate frame. The position

vectors of these points have to be linearly independent. The new inertia tensor

can be visualised by the inertia ellipsoid whose major axes are coincident with

the principal axes of inertia and the total applied moment on a particle is

transformed from global co-ordinate to the local co-ordinate system during

each timestep (Favier et al., 1999). This multi-sphere method uses overlapping

spheres to represent non-sphereical particles.

Figure 3.3: Characteristic inertial ellipsoid for a particle a) during particle

generation with arbitrary reference points A1, A2 and A3 and b) during

transformation of local rotation acceleration to the global co-ordinate system

showing rotated reference points B1,B2 and BDN3 (Favier et al., 1999)
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Elastic ellipsoidal particles are used in a three-dimensional discrete element

model (Lin and Ng, 1997). A new numerical model (computer code

ELLIPSE3D) has been developed in this paper. The results show that particle

shape has a very important effect on shear strength, deformation behaviour and

fabric statistics of particle arrays. It described that non-spherical particles in the

discrete element model can possibly be used to study the effect of particle

shape and to improve the results of DEM.

Hogue (1998) pointed out that a lot of computational models can not directly

address the problem about the assemblies of arbitrary particles. When the

model extends to three dimensions, the arbitrary shape is more accentuated.

Several shapes of particle were described in two and three dimensions and their

related techniques for contact detection were compared in his paper. Flexible

shape descriptors were then described and it can represent a variety of arbitrary

shapes within a single simulation allowing efficient, accurate collision

detection between adjacent bodies. Rothenburg and Bathurst (1992) described

the results of numerical simulation using elliptical particles. The influence of

particle eccentricity on peak friction angle and peak dilation rate was presented

in this paper. The accuracy of the proposed stress-force-fabric relationship can

be verified from the results comparing between perfectly circular particles and

particles of elliptical shape.

The fabric evolution of ellipsoidal arrays with different particle shapes was

developed by Ng (2001). He focused on a DEM simulation of drained triaxial

compression tests of ellipsoid arrays using different aspect ratios (major/minor

axis of the ellipsoidal particle) varying between 1.2 and 2. The program
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ELLIPSE3D was used in the drained triaxial compression tests simulation with

periodic boundaries and zero gravity. The fabric parameters were shown in

Figure 3.4, including the particle orientation, normal vector, branch vector (the

vector from one particle centre to the contacted neighbour’s centre), branch

angle and branch distance. Figure 3.5 showed the results of stress-strain

behaviour and volume strain for four specimens. The stress-strain behaviours

of these four samples were quite similar, as shown in Figure 3.5(a). The

volume changes were shown in Figure 3.5(b). It indicated that the effect of

particle shape on the volume change was obvious. The volumetric dilation

decreased with increasing a/b if data of a/b=1.2 was ignored.

Figure 3.4: Fabric parameters (Ng, 2001)
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Figure 3.5: Microscopic results of four specimens: (a) Stress-strain behaviour (b)

Volumetric strain (Ng, 2001)

The effect of applied stress, initial sample porosity, particle shape and

interparticle friction on the behaviour of sand using DEM was studied in Ni's

work (Ni, 2003). In order to investigate the effect of the particle shape, each

particle was modelled as two spheres bonded together with a high strength

parallel bond, as shown in Figure 3.6. The bond can be imagined to act as a

column of elastic glue between the two spheres. The overall shape of particle
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was determined by the radius of these two spherical balls and particle shape

factor was defined as (R+r)/R. They found that the deformation and shear

strength of the assembly are a function of the particle shape factor. The

peak/ultimate shear strength and the overall dilation of the sample during the

simulations increased with increasing the shape factor. However, the degree of

particle rotation reduced significantly with increasing particle shape factor. It

has been improved that particle shape was a very vital parameter for particle

movement since restraining rotation of spherical particles can not capture the

effect of interlocking provided by particle shape.

Figure 3.6: Particle bonded (Ni, 2003)

Many researchers focused on the development of representation of actual shape

of granular materials since modelling the shape characteristic of particle was

significantly important in the DEM. Since DEM was used to simulate the

railway ballast behaviour (Norman and Selig, 1983; McDowell et al., 2005),

the shape of railway ballast has been studied by many people. Lim and

McDowell (2005) developed clumps with simple cubic of 8 spheres to simulate

the box tests. They found that the eight-ball clumps give much more realistic
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behaviour due to particle interlocking. The effect of the shape of railway

ballast on their behaviour has been investigated by Lu and McDowell (2007).

Both spherical particle and clumps were used to represent railway ballast

particle in the simulations. A procedure was developed to generate the clump

which is close to the real ballast, the geometry and generation of a clump along

a direction x was shown in Figure 3.7. It has been shown that balls have been

generated in all selected directions to model the real ballast shape in Figure 3.8.

The edge of the clump was formatted by using the generated balls.

A developed procedure for simulating the real ballast was described in Lu and

McDowell’s paper (2007). It has been noted that the result using clump of the

developed procedure was closer to the real ballast behaviour obtaining from

experimental test.

Figure 3.7: Definition of clump geometry (Lu and McDowell, 2007)
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Figure 3.8: Formation of edge of clump (Lu and McDowell, 2007)

3.3.2 The rotation of each particle

Interpretation of tests on real granular media, such as sand, is difficult because

the stresses inside of the sample cannot be measured, so boundary conditions

must be established. The DEM treats soil like discrete particles and the two-

dimensional disk is used to simulate the laboratory tests in Ting et al.'s paper

(1989). The results show that two-dimensional DEM can simulate realistic

nonlinear, stress history-dependent soil behaviour appropriately when

rotational is restrained of each particle (Ting et al., 1989). It can be found that

the internal friction angle value is close to sand using DEM when the particle

rotation is inhibited.

Iwashita and Oda (1998) described that rotational resistance to rolling for each

particle is one of the factors controlling the strength and dilatancy of granular

soils. They suggested that rotational resistance should be activated at contact

points in the discrete element modelling. A modified distinct element method

(MDEM) was developed by Iwashita and Oda (1998). They used MDEM to

investigate the effect of rolling restriction. In the convention DEM, a set of

springs, dash pots, no-tension joint, and a shear slider were replaced at each
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contact which responded to a contact force Fi acting on it. Then each contact

was installed by an additional set of elastic spring, dash pot, no-tension joint

and a slider, which responded to the moment Mi. The contact model in MDEM

was shown in Figure 3.9.

Figure 3.9: Contact Model in MDEM (Iwashita and Oda, 1998)

Three biaxial tests were carried out to investigate the effect of rolling resistant

on the microstructure which developed in the shear band. The relationship

between the stress ratio and the axial strain, as well as the relationship between

the axial strain and volumetric strain were shown in Figure 3.10. The curve of

rolling resistant test simulation was in between the curves of free rolling test

and no rolling test simulations. It is clear to see that a higher peak and ultimate

shear strength were observed by restricting the particle rotations, compared

with simulations using free rolling particles.

It can be noted that the shear bands has been developed well when the particle

rolling resistant is considered in DEM. That means the high gradient of particle

rotation along the shear band boundaries could be used as a manner to obtain

the natural granular soils.
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Figure 3.10: Stress ratio-axial strain-volumetric strain relationships in three

numerical simulation tests (Iwashita and Oda, 1998)

3.3.3 Interparticle friction angle

From the previous research, it is very clear to see that interparticle friction has

a very important effect on the granular material behaviour. The relationship

between the interparticle friction and shearing strength was investigated using

the results of laboratory triaxial test (Bishop, 1954). Skinner (1969) pointed out

that when the interparticle friction was high, the particle rolling controlled the

sample volume changed and when the interparticle friction was low, the sample

volume changed was controlled by sliding. The shear strength value depends

on both particles rolling and sliding.
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Horne (1968) described the interactions of the different packing condition and

proposed a relationship between the peak strength and interpaticle friction. It

presented that the shear strength increased when the interparticle friction

increased.

Ni (2003) studied the effect of interparticle friction angle using direct shear box

test simulations. Both spheres and two bonded spheres particles were used in

the simulations. It can be noted that the interparticle friction has the significant

effect on the peak strength and volumetric dilation. Both the peak strength and

volumetric dilation were increased when the interparticle friction increased.

For the sample consisting of two bonded spheres, the residual strength

increased with increasing the interparticle friction. However, the residual

strength for samples using spherical particle did not affect much by

interparticle friction. The larger particle rotation was observed for sample

consisting of spherical particles. As for the spherical particles, it is easy to

know that the interlocking between them is less than two bonded spheres

particles.

Many researchers focused on the effect of interparticle friction on soil

behaviour. The relation between interparticle friction and soil friction angle

was discussed by Kruyt and Rothenburg (2004). The results for shear strength

q/p and volumetric strain with various value of interparticle friction coefficient

(μ) were shown in Figure 3.11. In terms of σ1, σ2, mean pressure p=1/2(σ1+σ2)

and shear stress q=1/2(σ1-σ2). It can be seen that the volumetric strain and the

shear strength increased with increasing particle friction coefficient.
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Figure 3.11: Macroscopic behaviour as a function of imposed axial strain for

various interparticle friction coefficients μ (Kruyt and Rothenburg, 2004)

3.3.4 Particle fracture

Two methods have been proposed to model particle breakage in DEM. One is

to treat each granular particle as a porous agglomerate built by bonding smaller

particles (Robertson, 2000 and Lim and McDowell, 2005). Another is to place

(q
/p

)
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the particle with an equivalent group of smaller particles when the original

particle fulfils a predefined failure criterion (Lobo-Guerrero and Vallejo, 2005).

The particle fracture was first investigated by Robertson (2000). Regularly

packed balls of identical size were bonded together using contact bonds for

forming approximately spherical agglomerates. These agglomerates were

intended to represent soil grains and allowed soil particle fracture in the

simulation. Three types of regular packing were investigated: face centred

cubic (FCC), body centred cubic (BCC) and hexagonal close packed (HCP).

The results of HCP packing were the most consistent one among these three

packing types. He found that it was possible to produce a Weibull distribution

of soil particle strengths by randomly removing some of the regularity in the

agglomerate. Flaws of three types were introduced: removing bonds, flawing

balls and removing balls. He presented that a Weibull distribution of bond

strengths was best reproduced by removing balls randomly in the agglomerate

and Weibull modulus depended on the range of the number of balls removed.

McDowell and Harireche (2002) used PFC3D to simulate the fracture of silica

sand with the crushable agglomerates particles. They used realistic particle

parameters and applied gravity to stabilise the agglomerate prior to loading for

replicating experiments of crushing of particles. They described that the force

increase from the beginning of test by allowing the agglomerates to stabilize

under the application of gravity. They also pointed out that the strengths

followed the Weibull distribution, since the right average strength of

agglomerates could be reproduced by a function of size and the correct

statistical distribution of strength for a given size.
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3.4 The PFC3D Particle-Flow Model

3.4.1 Theoretical background

The PFC3D model is a general particle-flow model that simulates the

mechanical behaviour of a system comprised of a collection of arbitrarily-

shaped particles. Particles here occupy a finite amount of space. The model

consist of distinct particles that displace independently of each other and just

interact only at contacts or interfaces between the particles. The fundamental

relationship between particle motion and the corresponding forces follows

Newton’s laws of motion. Particles are assumed to be rigid and the behaviour

of the system is shown by the motion of each particle and the force acting on

each contact point. PFC3D allows particle bonding together at the contact point.

The bond will break when the acting force exceeds the bond strength. The

velocity boundary conditions can be applied on the wall to model the ball

compaction. The contact point affects each other (ball-ball or ball-wall).

Newton’s second law is used as the principle for the motion of each particle

arising from the contact and body forces acting upon it, while the force-

displacement law is used to update the contact force arising from the relative

motion at each contact.

3.4.1.1 Assumptions

PFC3D can model stressed assemblies using the movement and interaction of

rigid spherical particles based on the DEM. PFC3D provides a particle-flow

model containing the following assumptions:
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1. The particles are treated as rigid bodies.

2. The contacts occur over a vanishingly small area (as a point).

3. Behaviour at the contacts uses a soft-contact approach wherein the rigid

particles are allowed to overlap one another at contact points.

4. The magnitude of the overlap is related to the contact force via the

force-displacement law, and all overlaps are small in relation to particle

sizes.

5. Bonds can exist at contacts between particles.

6. All particles are spherical (the clump logic supports the creation of

super-particles of arbitrary shape. Each clump consists of a set of

overlapping spheres, and acts as a rigid body with a deformable

boundary).

The PFC3D particle-flow model includes walls and balls. Walls allow one to

apply velocity boundary conditions to assemblies of balls for purposes of

compaction and confinement. The balls and walls interact with one another via

the forces that arise at contacts. PFC3D is used to model the behaviour of

granular material which the deformation results primarily from the sliding and

rotation of the rigid particles and the interlocking at particle interfaces. A

physical problem is concerned with the movement and interaction of spherical

particles by PFC3D. It is also possible to create particles of arbitrary shapes by

bonding the particles together at the contact points for obtaining more complex
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behaviours of granular materials. The mathematical backgrounds and some

conceptual models are presented in the following section (Itasca, 1999).

3.4.1.2 Theory of PFC

3.4.1.2.1 Calculation cycle

The repeated application of the law of motion to each particle is performed in

the calculation cycle in PFC3D. Contact exists between the balls or a ball and a

wall, which is formed and broken automatically during the simulation (Zhou et

al., 2006).

The calculation cycle in PFC3D is a timestepping algorithm that requires the

repeated application of the law of motion to each particle, a force-displacement

law to each contact, and constant updating of wall positions. The calculation

cycle is illustrated in Figure 3.12. At the start of each timestep, the contacts are

updated from the known particle and wall positions. Then the force-

displacement law is applied to each contact to update the contact forces based

on the relative motion between the two contacted entities and the contact

constitutive model. After that, the law of motion is applied to each particle to

update its velocity and position based on the resultant force and moment

arising at the contact forces and the body forces acting on the particle. Also the

wall positions are updated based on the specified wall velocities.

(1) Force-Displacement law
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The force-displacement law relates the relative displacement between two

entities at a contact and the contact force acting on the entities. There are two

types of the contacts: ball-ball and ball-wall.

Figure 3.12: Calculation cycle in PFC3D (Itasca, 1999)

The contact force vector Fi can be resolved into normal and shear components

with respect to the contact plane as

s
i

n
ii FFF  (3.6)

Where n
iF and s

iF denote the normal and shear component vectors,

respectively.

The normal contact force vector is calculated by

i
nnn

i nUKF  (3.7)
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Where nK is the normal stiffness [force/displacement] at the contact and the

value is determined by the current contact-stiffness model. in is the unit

normal and nU is the overlap of the two entities.

The shear contact force is calculated in an incremental fashion. When the

contact is formed, the total shear contact force is initialized to zero. Each

subsequent relative shear-displacement increment results in an increment of

elastic shear force that is added to the current value. The shear component of

the contact displacement-increment vector occurring over a time step of t is

calculated by

tVU s
i

s
i  (3.8)

The shear elastic force-increment vector is calculated by

s
i

ss
i UkF  (3.9)

Where ks is the shear stiffness [force/displacement] at the contact and the value

is determined by the current contact stiffness model. The shear stiffness is a

tangent modulus. Finally, the new shear contact force is calculated by summing

the old shear force vector existing at the start of the timestep with the shear

elastic force-increment vector.

s
i

s
j

s
i FFF  (3.10)

The values of normal and shear contact force, determined by equations 3.7 and

3.10, are adjusted to satisfy the contact constitutive relations. After this
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adjustment, the contribution of the final contact force to the resultant force and

moment on the two entities in contact is given by

   
iii FFF   11

(3.11)

   
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Where  j

iF  and  j

iM  are the force and moment sums for entity j
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, and iF is given by equation 3.10.

(2) Law of Motion

The motion of a single particle is determined by the resultant force and

moment vectors acting upon it and can be described in terms of the translation

motion of a point in the particle and the rotational motion of the particle.

The equations of motion can be expressed as two vector equations. One of

equations relates the resultant force to the translational motion and the other

one relates the resultant moment to the rotational motion. The equations of

motion can be written in the vector form as

)( iii gxmF 


Translational motion, (3.15)
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

 ii HM Rotational motion, (3.16)

Where Fi is the resultant force, the sum of all externally applied forces acting

on the particle; m is the total mass of the particle; gi is the body force

acceleration vector; Mi is the resultant moment acting on the particle; Hi is the

angular momentum of the particle.

For a spherical particle of radius R with distributing uniformly, the centre of

mass coincides with the sphere centre.


 ii HM can be simplified and referred

to the global-axis system as


 iii mRIM  )
5

2
( 2 . The two equations 3.17

and 3.18 of motion are integrated by finite difference procedure using a

timestep t . The equations


ix and i are calculated at the mid-intervals

( 2/tnt  ), and the other equations ,,,, iiii Fxx


 and iM are calculated at the

primary intervals ( tnt  ).
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The accelerations of translation and rotation at time t in terms of the velocity

values at mid-intervals are shown as:
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So, the velocities at time ( 2/tt  ) can be calculated:
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Finally, used these velocities to update the position of the particle centre:
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In the summary, values of ,,,, )()()2/(
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iF  )( tt

iM  can be calculated from force-displacement law and then used in

the next cycle

3.4.2 Contact constitutive model

The overall constitutive behaviour of a material is simulated in PFC3D by

associating a simple constitutive model in each contact. The constitutive model

acting at a particular contact consists of three parts: a stiffness model, a slip

model and a bonding model. The stiffness model provides an elastic relation

between the contact force and relative displacement. The slip model enforces a

relation between shear and normal contact forces so that the two containing
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balls may slip relative to one another. The bonding model serves to limit the

total normal and shear forces that the contact can carry by enforcing bond-

strength limits. These three models are described in detail in the following

section.

(1) Contact-stiffness model

The contact stiffness provides the relative displacement via a Force-

Displacement Law. Two models are described in PFC3D which are linear model

and Hertz-Mindlin model. The linear contact model is defined by the normal

stiffness (kn) and shear stiffness (ks) between two contacts and assumes that the

stiffnesses of the two contacting entities A and B act in series. The contact

normal and shear stiffnesses for the linear contact model are given by

   
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Where the superscripts [A] and [B] denote the two entities in contact.

(2) The Slip Model

The slip model is an intrinsic property of two entities in contact. It provides no

normal strength in tension and allows slip to occur by limiting the shear force.

The model describes the constitutive behaviour for particle contact occurring at

a point, and it is suitable to be used for the disseminate material such as sand

(Zhou et al., 2006). This model is defined by the friction coefficient at the
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contact μ [dimensionless], where μ is taken to be the minimum friction

coefficient of the two contacting entities. If the overlap is less than or equal to

zero, both the normal and shear contact forces are set to zero.

The contact is checked for slip conditions by calculating the maximum

allowable shear contact force

n
i

s FF max (3.26)

If ss
i FF max , then slip is allowed to occur (in the next calculation cycle) by

setting the magnitude of s
iF via

)/( max
s

i
ss

i
s

i FFFF  (3.27)

(3) The bonding models

PFC3D allows particles to be bonded together at contacts. Two bonding models

are available: a) a contact-bond model and b) a parallel-bond model. The two

types of bonds may be active at the same time. However the presence of a

contact bond inactivates the slip model. The bonds can be envisioned as a kind

of glue joining the two particles. Once a bond is formed at a contact between

two particles, the contact continues exist until the bond broken. Particles can

only be bonded to particles, while a particle can not be bonded to a wall. The

model is suitable for modelling the cohesive materials such as clay (Zhou et al.,

2006).

a) The contact-bond model
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The contact-bond glue is of a vanishingly small size that acts only at the

contact point and the contact bonds can only transmit a force. A contact bond

can be envisaged as a pair of elastic springs with constant normal and shear

stiffnesses acting at the contact point. These two springs have specified shear

and tensile normal strengths. The magnitude of the shear contact force is

limited by the shear contact bond strength and tensile force can be developed at

a contact in the contact bonds. The magnitude of the tensile normal contact

force is determined by the normal contact bond strength.

A contact bond consists of normal contact bond strength n
cF and shear contact

bond strength s
cF . If the magnitude of the tensile normal contact force equals or

exceeds the normal contact bond strength, the bond breaks, and both the

normal and shear contact forces are set to zero. If the magnitude of the shear

contact force equals or exceeds the shear contact bond strength, the bond

breaks, but the contact forces are not altered, provided that the shear force does

not exceed the friction limit and provided that the normal force is compressive.

The constitutive behaviour relating the normal and shear components of

contact force and relative displacement for particle contact occurring at a point

is shown in Figure 3.13.

b) The parallel-bond model

A parallel bond can be envisaged as a finite sized piece of cementations

material acted over a circular cross-section lying between the particles. The

parallel bond can transmit both forces and moments between particles. The

constitutive behaviour of the parallel bond is shown in the Figure 3.14, similar
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with the contact bond. Relative motion at the contact causes a force and a

moment to develop within the bond material as a result of the parallel bond

stiffnesses. The parallel bond breaks when either of these normal and shear

maximum stresses exceeds the corresponding parallel bond strength.

(a) Normal component of contact force

(b) Shear component of contact force

Figure 3.13: Constitutive behaviour for contact occurring at a point (Itasca, 1999)
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The total force and moment associated with the parallel bond are denoted by

iF and iM , with the convention that this force and moment represent the

action of the bond on sphere B in Figure 3.14. Each of these vectors can be

resolved into normal and shear components with respect to the contact plane as

s

i

n

ii FFF  (3.28)

s

i

n

ii MMM  (3.29)

Where
n

iF ,
n

iM and
n

iF ,
s

iM denote the normal and shear component vectors,

respectively. These vectors are shown in Figure 3.14.

Figure 3.14: Parallel bond depicted as a cylinder of cementations material (Itasca,

1999)
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Where the parallel bond is depicted as a cylinder of elastic material, the normal

component vectors can be expressed in terms of the scalar values
n

F and
n

M

via

i

n
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The maximum tensile and shear stresses acting on the bond periphery can be

calculated by
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Where A is the area of the bond disk, J is the polar moment of inertia of the

disc cross-section, I is the moment of inertia of the disc cross-section about an

axis through the contact point, and R is the radius of the bond disc. The values

of these parameters can be calculated as:

2
RA  (3.34)
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3.4.3 Clump logic

A clump is a single entity of overlapping balls and behaves as a rigid body (i.e.

the balls comprising the clump remain at a fixed distance from each other).

Internal overlapping contacts are ignored in calculations, resulting in a saving

of computational time compared to a similar calculation in which all contacts

are active. Thus, a clump acts as a rigid body (with a deformable boundary)

that will not break apart, regardless of the forces acting upon it. In this sense, a

clump differs from a group of particles that are bounded to one another.

The total mass of a clump m, the location of the centre of mass of clump  G
ix

and the moments and products of inertia iiI and ijI , which are the basic mass

properties of a clump, are defined by the following equations:
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Where pN is the number of balls in the clump,  pm is the mass of a ball,  px

is the centroid location of the ball and  pR is the radius of the ball.
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The motion of a clump is determined by the resultant force and moment

vectors acting upon it. Because a clump is treated as a rigid body, its motion

can be described in terms of the translational motion of the entire clump. The

equation for translational motion can be written in the vector from

 iii gxmF   (3.41)

where iF is the resultant force, the sum of all externally-applied forces acting

on the clump and ig is the body force acceleration vector arising from gravity

loading.

The equation for rotational motion can be written in the vector form

ii HM  (rotational motion) (3.42)

Where iM is the resultant moment about the centre of mass, and iH is the

time rate-of-change of the angular momentum of the clump.

The resultant moment in Eq. (3.42) is computed by
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Where  p
iM

~
is the externally-applied moment acting on particle  p ,  p

kF is

the resultant force acting on particle  p at its centroid, and  cp
kF , is the force

acting on particle  p at contact  c .

The time rate-of-change of the angular momentum for a system can be written

as
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)( kllkkkjijkijjiiii IIIIH   ),( klij  (3.44)

Where ii   .

3.5 Summary

DEM has been used to model geotechnical problems by many researches. The

basic concepts and general mathematical backgrounds of PFC3D have been

presented in this chapter. DEM is a powerful tool for fundamental research on

the behaviour of granular materials. The main disadvantage of DEM simulation

is the enormous computational expense, since a very small timestep of

simulation must be used to ensure the numerical stability and accuracy. Many

particles are required to guarantee the sufficient number of contacts. It enables

to investigate the particle properties which can not be obtained using

continuum mechanics, such as interparticle friction, contact forces distribution,

as well as coordination numbers. The circular/spherical shape particles tend to

roll excessively and then lead to a lower strength of the assembly, so clump of

complex particle shape and restraining the rotation of circular/spherical

particles have been developed to solve this problem. The determination of

particle parameters (particle shape, particle rotation and friction coefficient) in

the DEM is important for modelling the behaviour of granular materials.



79

CHAPTER 4

DEM SIMULATION OF BIAXIAL TEST

4.1 Introduction

Granular media such as sand composed of discrete particles exhibit very

complex macroscopic mechanical responses to externally applied loading. The

Biaxial test is one of the most important laboratory tests to investigate the soil

stress-strain behaviour. The Biaxial consolidation test was developed to

determine the axial and radial permeabilities by Peters and Leavell (1986) and

then showed that isotropy in stiffness has an important effects on the results.

Previous researchers have succeeded in using PFC3D to simulate the properties

of granular material (Ni, 2003). Compacting of particles for the biaxial

compression test using DEM was discussed by Darius and Rimantas (2006).

Packing of polygonal particles was used to simulate the biaxial test by Pena et

al (2008); they showed the effects of initial density and the interparticle

coefficient of friction on the macro mechanical behaviour of granular material.

Tatsuoka et al. (1986) performed drained plane strain compression tests on

saturated samples of fine angular to sub-angular sand at confining pressures of

400kPa to study the strength and deformation characteristcs of sand. The

porosities of the compacted specimens were around 0.41 and 0.44. Samples
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were prepared by the air-pluviation method with changing the angle δ of

bedding plane to the '
1 –direction during plane strain compression tests from 0

to 90 degrees. The key results from their study are shown in Figure 4.1. It may

be seen that anisotropy is significant in the strength and deformation

characteristics for both dense and loose samples.

Figure 4.1: Typical stress-strain relations for tests at σ3=400kPa for both dense

and loose samples (Tatsuoka et al., 1986)
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In this chapter, the discrete element method is used to simulate the mechanical

behaviour of granular material under the biaxial test conditions and the results

are compared with the experimental data (Tatsuoka et al., 1986), so that the

effects of micro properties can be related to the macro behaviour of granular

material. A confining pressure of 1000kPa has been used in a series of

simulations to study the effect of particle shape, particle friction coefficient and

sample initial porosity on the stress-strain behaviour of granular materials.

Three different sample porosities, two different particle shapes and three

different friction coefficients are studied first. The stress-strain behaviour for

each simulation is then compared with that for experimental results.

4.2 Modelling Procedure

PFC3D models stressed assemblies by the movement and interaction of rigid

spherical particles based on DEM. The model is composed of distinct spheres

that displace independently of one another and interact only at contacts or

interfaces between the spheres. The contact force vector
i

F can be resolved

into normal and shear components ( n

i
F and s

i
F ) with respect to the contact

plane as

s

i

n

ii
FFF  (4.1)

The normal contact force is calculated by

i

nnn

i
nUKF  (4.2)

Where nK is normal stiffness [force/displacement], at the contact and nU is

the overlap of the two entities.
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The shear force-increment is calculated by

s

i

ss

i
UkF  (4.3)

The new shear contact force is calculated by summing the shear force vector

existing at the start of the timestep with the shear force-increment

   s

i

olds

j

s

j FFF  (4.4)

Where sk is the shear stiffness [force/displacement] at the contact and s

iU is

the shear component of the contact displacement-increment vector calculated

from the motion. In these simulations, the normal stiffness, and shear stiffness

were chosen as

kkk sn  (4.5)

PFC3D was used to simulate the plane-strain compression test on samples

consisting of spheres or clumps. A clump is a single entity of overlapping balls

and behaves as a rigid body (i.e. the balls comprising the clump remain at a

fixed distance from each other). Internal overlapping contacts are ignored in

calculations, resulting in a saving of computational time compared to a similar

calculation in which all contacts are active. Thus, a clump acts as a rigid body

(with a deformable boundary) that will not break apart, regardless of the forces

acting upon it. In this sense, a clump differs from a group of particles that are

bounded to one another. The clump logic is given in section 3.4.3 of chapter 3.

A cuboidal sample (Figure 4.2) was generated and loaded by the top and

bottom walls. The right and left walls were used to maintain a constant

confining pressure. The velocities of the top and bottom walls were specified to

simulate the strain controlled loading, the velocities of right and left walls were
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automatically controlled by a servo-mechanism (see Appendix) to keep the

confining pressure constant (Figure 4.3).

Figure 4.2: A sample of biaxial test simulations

Figure 4.3: Schematic illustration of biaxial test

The sample modelled in the numerical biaxial test simulations had dimensions

of 8m × 4m × 1m in the directions of the major (x), minor (y), and intermediate
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(z) principal stresses respectively. The positions of the walls were recorded as

well as the movement and the contact forces for each particle during the whole

simulation for subsequent analysis. The properties of all walls are assumed to

be same. The wall friction coefficient is 0 and wall normal stiffness and shear

stiffness are chosen to be the same as particle stiffness 1×109 N/m. Around

7000 particles are used to form each sample in these simulations. All the

particle parameters are identical. The particle size distribution for this

numerical sample range from 0.075m to 0.1m. The specific gravity is 2.65. Six

walls were generated as sample boundaries. Particles were generated to fill this

space. The samples were generated by the particle radius expansion method.

This is used to place a specified number of particles at random coordinates

within a given space. A population of particles with artificially small radii is

created within the specified volume because a new particle will not be placed if

it would overlap another particle or a wall. The particles are then expanded

until the desired porosity is obtained. The number of particles required to

satisfy the specified particle size and void ratio is defined as:

3

11

3

3

4

3

4
i

NN

i
rrbhte   





 (4.6)

Where b is the width of the sample, h is the length of the sample, t is the

thickness of the sample. N is the total number of the particles. After the sample

is generated, the sample stress state is adjusted to
0  yx
.

0 is the initial

consolidation confining pressure. The stresses
x and

y are defined as the

axial stress and confining stress, calculated from the contact forces and the

ball/wall contact areas. The loading was carried out by moving the top and
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bottom walls at a rate of 0.01m/s after the sample reached the equilibrium

initial state.

4.3 Influence of Initial Sample Porosity

The analyses described in this section were carried out to investigate the effect

of the initial sample porosity. Friction coefficients from 0.0 to 1.0 were used to

control the porosities of assemblies during artificial isotropic compaction; after

compaction the friction coefficient was changed back to 0.7 for the shearing

stage of the simulation. Apart from the initial porosity, the samples were

generated and the biaxial tests simulated exactly as above, each sample

comprising around 7000 spherical particles. The confining stress was 1000kPa,

Figure 4.4 show the results of three simulations carried out from initial porosity,

n, of 0.36, 0.39 and 0.42, in terms of axial stress and volumetric dilation

against axial strain. The particle properties are given in Table 4.1.The peak

value of axial stress varied from 3400kPa for the densest sample to 2250kPa

for the loosest. The corresponding range of axial strain at peak axial stress was

1.8% (densest) to 12.0% (loosest). The final axial stress, at 14.0% axial strain,

was about 2250kPa in all cases (Figure 4.4(a)). The graph of volumetric

dilation against axial strain (Figure 4.4(b)) shows that the peak strength is

associated with maximum rate of dilation. For the densest sample, the dilation

angle at peak strength was nearly 14° compared with 0° for the loosest. The

loosest sample simply contracts to a critical state. All the simulations showed a

dilation rate of about 0° after 14.0% axial strain, indicating that a critical state

had been reached. Dilation angle can be calculated by the equation below:

31

31
maxsin









 (4.7)
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(a)

(b)

Figure 4.4: Axial stress and volumetric dilation of the samples with various initial

porosities (a) Axial stress against axial strain (b) Volumetric dilation against axial

strain
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4.4 Influence of Particle Shape

The simulations described in this section involved numerical biaxial tests on

samples comprising particles of spheres and two-ball clumps. The particle

shapes in these simulations are shown in Figure 4.5. Each of the samples

contained 7000 particles (there are around 14000 particles for the sample

consisting of clumps) with friction coefficient 0.7. All samples were prepared

at an initial porosity of 0.36 under a confining stress of 1000kPa. Figure 4.6

show the axial stress and the volumetric dilation against axial strain for each

sample of spheres and clumps. The peak axial stress increases when the

particle shape changes from sphere to two-ball clump, as would be expected

owing to the increased opportunity for interlocking and dilation (Mitchell,

1993). Both the maximum angle of dilation ψpeak (Figure 4.6(b): calculated

according to Equation (4.7)) and the overall dilation of the sample during the

simulation increased with changing the particle shape. The two initial

stiffnesses from simulations in Figure 4.6(a) are quite similar, and then both

curves reach peak strength at almost the same axial strain. The result using

clumps gives larger peak stress and higher ultimate stress, giving a higher peak

friction angle and critical state friction angle.

(a) (b)

Figure 4.5: PFC3D model (a) single sphere as a particle; (b) two-ball clump as a

particle
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(a)

(b)

Figure 4.6: Axial stress and volumetric dilation of the samples with spherical

particles and two-ball clumps (a) Axial stress against axial strain (b) Volumetric

dilation against axial strain (Initial porosity=0.36)
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Sample Initial porosity Particle friction coefficient and stiffness

Sample of spherical particles 0.36 0.7 1×109N/m

0.39 0.7 1×109N/m

0.42 0.7 1×109N/m

Sample of two-ball clumps 0.36 0.7 1×109N/m

Table 4.1: The particle properties and porosity of the samples for DEM

simulations in Figure 4.6

The simulations in Figure 4.6 used the samples of spherical particles and two-

ball clumps. The information of particles and samples are listed in Table 4.1.

4.5 Influence of Interparticle Friction Angle

Interparticle friction is known to have a significant effect on the deformation

behaviour of a soil (Lee and Seed, 1967). Further numerical biaxial test

simulations were carried out on samples with particle friction coefficients of

0.3, 0.5 and 0.9, to complement the 0.7 simulation already reported. The initial

sample porosity was kept at 0.36 and spherical particles were used in these

simulations. The initial porosity of assembly was controlled by friction

coefficients of 0.0 during artificial isotropic compaction. The samples include

circa 7000 particles with a confining stress of 1000kPa.

The results (shown in Figure 4.7) show that interparticle friction has a large

effect on the peak axial stress, as well as the overall sample dilation at the end

of shear. Figure 4.7(a) shows the stress-strain relationship with different

friction coefficients. The peak axial stress of each stress-strain curve increases
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when the friction coefficient increases. Figure 4.7(b) shows that the volumetric

dilation increases when the friction coefficient increases.

Comparison of the results of the simulations carried out to investigate the effect

of particle shape and interparticle friction angle (Figure 4.6 and Figure 4.7)

shows that increasing the particle friction coefficient dramatically increased

sample peak axial stress and volumetric dilation, but did not affect the ultimate

stress that much. Changing the particle shape from sphere to two-ball clump

did not only affect the peak axial stress and volumetric dilation, but also the

ultimate stress. The simulations in Figure 4.7 are summarised in Table 4.2

showing the particle properties and sample initial states of these simulations.

Sample 1 sample 2 sample 3 sample 4

Particle friction coefficient 0.3 0.5 0.7 0.9

Porosity of the samples 0.36 0.36 0.36 0.36

Particle stiffness (N/m) 1×109 1×109 1×109 1×109

Table 4.2: The particle properties and porosity of the samples for DEM

simulations in Figure 4.7

Therefore using a clump gives both higher peak stress and higher ultimate

stress, and increasing coefficient of friction increases dilation and peak strength.

These results are consistent with previous studies (Ni, 2003).
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(a)

(b)

Figure 4.7: Axial stress and volumetric dilation of the samples with various

particle friction coefficients (a) Axial stress against axial strain (b) Volumetric

dilation against axial strain
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4.6 Results and Discussion

4.6.1 Experimental data

Tatsuoka et al. (1986) performed a series of drained plane strain compression

tests on saturated samples of fine angular to sub-angular sand (Toyoura Sand)

at confining pressure 400kPa. The samples were prepared by the air-pluviation

method with changing the angle of bedding plane to the '

1
 - direction during

plane strain compression tests from 0 to 90 degrees. The equipment used in

their tests is shown in Figure 4.8. The nominal initial sample dimensions are h0

(height) =10.5cm, w0 (length in the '

3
 -direction) =4cm and l0 (length in the

'

2
 -direction) =8cm.

The typical relationships between stress ratio, axial strain and volumetric strain

are shown in Figure 4.1. These curves describe the results from anisotropic

samples with different angle  from 0 to 90 degrees. The DEM simulation

results will be compared with these experimental results.

4.6.2 DEM simulations

DEM provides the possibility to investigate the mechanical behaviour of

granular materials at both micro and macro level. Some results of the

simulations are discussed with reference to the stress-strain behaviour observed

in biaxial tests on real sand reported by Tatsuoka et al. (1986). The particles

used for the simulation follow the relative particle size distribution of Toyoura

sand (the sand tested in laboratory) but proportionally larger. The specified

number of particles can be adjusted by changing the actual particle sizes in



93

proportion to the laboratory particle grading (Figure 4.9). Subsequently the

relative dimensions of the particles in simulation are similar to that of the real

sand. It reduces the number of particles in the simulation and the calculation

time.

Figure 4.8: The equipment of plane strain compression tests (Tatsuoka et al.,

1986)

The simulated sand particles using single spheres and two-ball clumps in the

biaxial test have been shown in Figure 4.2. A clump is an agglomerate of

overlapping spheres. Each clump here comprises two sphere particles of

different sizes. R and r are the radii of the larger and smaller spheres

respectively, and L is the distance between the centres of two spheres in each

clump, such that L=R and r=0.75R. The clumps were formed by creating initial

spheres, of the same size as the simulations using spherical particles. “Virtual

spheres” were then created by deleting the initial spheres and creating a virtual
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space by multiplying the initial sphere diameter by a factor of 1.27. Each

“virtual sphere” formed the outermost possible boundary for each clump and

the clumps were created in the “virtual spheres. The simulated sample

dimensions were chosen to be the same as for the lab sample

(105mm×40mm×80mm), except for the dimension in the plane direction (ie

105mm×40mm×20mm). This is to reduce the number of particles in each

sample and reduce calculation time. The number of each particle size is

adjusted (proportionally remaining the same), so that the specified number of

particles fills the standard sample box at the chosen porosity, which is set by

the user. It should be noted that the porosity set by the user may differ from the

final porosity obtained in sample preparation and just before shearing, since the

final size of the sample may change slightly after cycling to equilibrium. The

initial state is defined such that after one numerical sample has been generated

at the required porosity, a confining stress
0 of 400kPa is applied to all

boundaries and the sample is allowed to come to equilibrium.

The properties of all six walls are assumed to be same. The wall friction

coefficient is 0 and wall normal stiffness and shear stiffness were chosen to be

the same as particle stiffness: 1e6 N/m. The maximum particle radius for each

sample was 2.05mm and the minimum radius was 0.5mm, which was about 10

times the size of the real sand (Figure 4.9). The loading was carried out by

moving the top and bottom walls at a rate 0.0002mm/s after the sample reached

the initial state. The confining pressure is applied to the left and right vertical

walls. The axial stress is applied to the top and bottom walls. The sample front

and back walls were fixed to give plane-strain conditions. In each of the tests,

the sample has about 13000 particles with spheres or two-ball clumps.



95

Figure 4.9: Particle size distributions of numerical sample and real sand

4.6.3 Results

The purpose of these simulations is to try to model using DEM, experimental

biaxial test results, by studying the effects of various parameters. The effects of

interparticle friction and particle shape will be discussed. Three simulations

using spheres with particle friction coefficients of 0.5, 0.7, and 0.9 were

performed with sample initial porosity 0.411 and confining pressure 400kPa as

the initial state, the results are shown in Figure 4.10. However these sample

strengths are much lower than the experimental results, see Figure 4.11.

Therefore the influence of particle shape on the sample strength was studied.

The real sand particle is irregular and involves more complex intergranular

interactions than between spheres. Therefore clumps were used in the

simulation. The shape of the clump is shown in Figure 4.2(b). The simulation

results using both spherical particles and clumps are compared with the

experimental result from Tatsuoka et al. (1986). The particle properties and

initial porosities used in each sample are shown in Table 4.3.

Particle size distribution
in the simulations

Real sand size distribution

Particle size distribution
in the simulations

Real sand size distribution
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Figure 4.10: Stress ratio against axial strain (using spheres, 3 =400kPa)

Figure 4.11: Results of stress ratio against axial strain between experimental test

data and DEM simulations using spheres ( 3 =400kPa)
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The samples using in the laboratory test were anisotropic, but the samples

using in the simulations are isotropic. Therefore two results were selected from

the experimental results (Figure 4.1): δ=90º (top line in Figure 4.12) and δ=0º

(second line to top in Figure 4.12). As shown in Figure 4.12, the bottom line is

the simulation result with spherical particles and the simulation result by using

clumps is shown as the curve above. The simulation result with spherical

particles is selected from Figure 4.10 with particle friction coefficient 0.7. The

simulation results using spheres and clumps are quite similar. We can see that

they reach the peak axial stress almost at the same axial strain before heading

towards a critical state. The result using clumps gives both a larger peak stress

ratio and a higher ultimate stress ratio (critical state angle of friction).

Figure 4.12: Comparison between results from PFC3D simulation and

experimental data ( 3 =400kPa)
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Sample Initial porosity Particle friction coefficient and stiffness

Sample of spherical particles 0.41 0.7 1×106N/m

Sample of two-ball clumps 0.41 0.7 1×106N/m

Table 4.3: The particle properties and porosity of the samples for DEM

simulations in Figure 4.12

The simulations in Figure 4.10 show that the friction coefficient of a particle is

an important parameter to affect the sample properties. The shear strength and

friction angle of the sample both increase with the increasing particle friction

coefficient. Therefore, another DEM simulation using particle friction

coefficient 0.9 is carried out to obtain the particle friction coefficient effect on

the behaviour of sample consisting of clumps, as shown in Figure 4.13. Table

4.4 lists the particle properties and initial porosities of each sample.

Figure 4.13: Comparison between results from PFC3D simulation using clumps

and experimental data ( 3 =400kPa)
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Sample Initial porosity Particle friction coefficient and stiffness

Sample of two-ball clumps 0.41 0.9 1×106N/m

Sample of two-ball clumps 0.41 0.7 1×106N/m

Table 4.4: The particle properties and porosity of the samples for DEM

simulations in Figure 4.13

As shown in Figure 4.12, the simulated mechanical behaviour of granular

materials is compared with those observed from the laboratory tests. The

material used in the laboratory test is a sub-angular sand (Toyoura sand). The

particle shape must be the principal reason for affecting the material behaviour

in the simulations. Figure 4.12 shows the effect of particle shape. It can be seen

that the stress ratio-strain curve for the clumps is closer to the experimental test

result. The effect of particle friction coefficient on behaviour of sample using

clumps shows that the stress ratio-strain curve for particle friction coefficient

0.9 is closer to the experimental test data (Figure 4.13). The strength of sample

increased when the particle friction coefficient increased, but the ultimate axial

stress ratio did not affect much by the particle friction coefficient.

4.7 Conclusions

In this chapter, granular material behaviour is investigated by the numerical

approach with the aid of DEM. The mechanical response of cohesionless

granular material under monotonic loading is studied. DEM has been used to

simulate successfully the typical granular material behaviour in the plane-strain

biaxial compression tests and compares well with experimental test results. The
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simulations show that particle properties have a significant effect on the soil

stress-strain behaviour.

Using the soil element to simulate the soil behaviour is a very complex

problem, where many factors should be considered. These simulations are very

important for the micro parameters research. The shear strength and friction

angle of the sample increases when the particle friction coefficient increases

and when the shape is irregular. The results are valuable for developing the

constitutive model of the soil. So DEM can simulate the biaxial test properly

and the suitable soil properties can be obtained.
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CHAPTER 5

DEM SIMULATION OF CAVITY EXPANSION

5.1 Introduction

This chapter describes the simulation of cylindrical cavity expansion in

granular materials using the discrete element method (DEM). Cavity expansion

analysis focuses on the cavity pressure needed to expand a cavity in a material

medium by a certain radial displacement. The problem of expansion of

cylindrical cavities has been dealt with by many investigators in the last 50

years, in connection with its potential applications to a number of practical

problems in mechanics and engineering. Three distinct zones can be considered

during the stress increases depending on the strain levels. Figure 5.1 shows the

three zones (Salgado et al., 1997). In the linear elastic zone, the soil linear

elastic and the strains are very small. Beyond the nonlinear elastic zone, the

material has yielded and strains are plastic (Salgado et al., 1997).

For granular material, the discrete element method is a useful tool for studying

cavity expansion, based on discrete particle properties. This numerical analysis

technique starts with basic constitutive laws at interparticle contacts and the

macroscopic response of particle assemblage under loading can be provided.

Few studies have been carried out on analysis of cavity expansion on granular
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material. The dynamic problem of the symmetric expansion of a cylindrical or

spherical cavity in a granular material was studied by Osinov (2005). This

problem was solved by a finite-difference technique. A description of soil

behaviour can be achieved by developing a constitutive model and a

satisfactory technique for measuring the required soil properties. As far as

granular soils are concerned, DEM is popular used to simulate the granular soil

behaviour. Because of the micro properties can be defined in DEM which is

very difficult to describe in the other method. As the thesis mentioned in the

beginning section, DEM has succeeded used to simulate the penetration test.

The penetration test is an in situ testing method used to determine the

geotechnical engineering properties of soil. The penetration test can be

considered as an axisymmetric problem and the mechanism is related to the

cavity expansion (Huang and Ma, 1994). Therefore, DEM might be used in the

cavity expansion simulation. In this research, PFC3D is used to simulate the soil

behaviour in the cavity expansion.

Figure 5.1: Cavity expansion generates plastic, nonlinear elastic and elastic zone

(Salgado et al., 1997)
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5.2 Modelling Procedure

The DEM code PFC3D was used to simulate cylindrical cavity expansion on

samples consisting of spheres (Figure 5.3). For this situation, which is

axisymmetric, a quarter of the sample was generated and loaded by the internal

circular boundary using a constant strain rate. A quarter of the geometry was

chosen so as to have vertical and horizontal boundaries to align with the axes

for simplicity. That is reduces calculation time significantly. To investigate the

effect of sample shape, one simulation of full circle was compared with that of

a quarter. The minimum particle radius for each sample was 0.075m and

maximum radius was 0.1m. The particle friction coefficient is 0.7 and the

normal stiffness and shear stiffness of particles are 1×109N/m. The density of

the particles is 2650kg/m3. The results were shown in Figure 5.2. It has been

shown that there is not a large effect on the result, but it can save a lot of

calculation time using a quarter of the sample. Therefore a quarter of the

sample was used for the other simulations in this thesis for saving the

calculation time.

The velocity of the external boundary was automatically controlled by a servo-

mechanism (see Appendix) to keep a constant external pressure (Figure 5.4).

Stresses on the walls are determined from the particles contact forces acting on

them. Six walls were generated as sample boundaries, as shown in Figure 5.5.

The normal stress on each wall was calculated by the summation of the normal

contact forces acting on the wall divided by the area of the sample where the

wall was located. The wall friction coefficient is 0 and wall normal stiffness

and shear stiffness are 1×109 N/m. The samples had dimensions of
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approximately 13.0m external diameter × 2.0m internal diameter × 1.0m high

with more than 7000 particles in each sample. For each simulation, about 2

weeks are needed using computer with Intel(R) Core(TM)2 CPU 6320

@1.86GHz, 1.97GB of RAM and 250GB memory. It also depends on the

number of particles, particle stiffness and the particle size.

The same particle properties are used as described before. The samples were

generated by the particle radius expansion method. This is used to place a

specified number of particles at random coordinates within a given space.

Generate the particles with small diameter first and then multiply a ratio to get

the design diameter particle because a new particle will not be placed if it

would overlap another particle or a wall.

Figure 5.2: Cavity expansion simulations using full circle and a quarter of the

sample
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Figure 5.3: DEM sample for cavity expansion

Figure 5.4: Schematic illustration for cavity expansion
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Figure 5.5: Six walls of DEM sample

After the sample is generated, the sample stress state is adjusted to Pi=Pe=P0. P0

is the initial cavity pressure. Pi and Pe are defined as the internal and external

pressures. The loading was carried out by moving the internal wall at a rate of

0.01m/s after the sample reached the initial state. The sample thickness was

fixed by front and back walls to simulate the plane-strain condition. An initial

cavity pressure of 20MPa was used. For the initial cavity pressure

Pi=Pe=P0=20MPa, four samples were generated with different initial porosities

(0.36, 0.38, 0.40 and 0.42). The initial porosities were calculated by a

measurement sphere which is a function available in PFC3D. Many

measurement spheres are generated to cover the whole sample. The finial

porosity is calculated using the average value of these porosities. The various

initial porosities of these samples result from the different particle friction

coefficients (0.0-0.7) during the generation of each sample. Once the initial
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state of the sample is reached, the particle friction coefficient is changed to 0.7

to study the effect of porosity on the behaviour. Different particle friction

coefficients of 0.1, 0.3, 0.5 0.7 and 0.9, were used to examine the effect of this

particle property on cavity expansion curves when the sample initial porosity is

0.36. Two particle shapes (as for the biaxial test simulations) were used to

investigate the effect of particle shape. The particle properties and sample

initial states are listed in Table 5.1.

5.3 Effect of Particle Parameters and Loading Conditions

5.3.1 Effect of speed of loading

In this research, all the simulations were operated with particle rotation allowed.

It is well known that particle rotation plays an important role in the

development of shear bands (Bardet and Proubet, 1992; Oda, 1997). While the

degree of particle rotation is a factor of particle shape, it is easy to ascertain

that non-spherical particles can cause more interlocking than spherical particles.

The interlocking gives higher rolling resistance and the peak and critical state

angles of friction will be higher than for an aggregate of spherical particles.

The more interlocked sample will also give a higher yield pressure (Oda and

Iwashita, 2000). This part will be discussed in the section 5.3.5. Loading

velocity is another important parameter in the simulations. It will influence the

macro behaviour of the sample significantly. A suitable loading velocity needs

to be determined for each sample in the simulations. The priority in choosing

this parameter is to minimise calculation time. When the loading velocity is

slow enough, both the mean contact force and mean unbalanced force approach

a constant value and if the velocity is reduced further, the sample response does
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not change much. For these simulations in this research, loading velocities of

0.001m/s, 0.005m/s, 0.01m/s, 0.05m/s, 0.1m/s have been used. It was found

that the fastest velocity that could be applied without significantly affecting the

results was 0.01m/s.

5.3.2 Effect of number of particles

The minimum number of required particles also needs to be determined. To

examine the effect of the number of particles in the sample, simulations with

samples comprising 3000, 7000, 10000 and 15000 particles were carried out.

To run one simulation with 15000 particles, extra 2 weeks are needed. In view

of the computer time taken to run an analysis with a very large number of

particles, further simulations were carried out on samples comprising 7000

particles only. This was considered reasonable in view of the relatively small

changes in the behaviour found by using 10,000 or 15,000 particles.

5.3.3 Effect of initial sample porosity

It is well known that the sample porosity can have a great influence on the soil

behaviour. Figure 5.6 shows the results of four simulations carried out with

initial porosity, n, of 0.36, 0.38, 0.40 and 0.42, in terms of P/P0 against a/a0. P

is defined as the cavity pressure and P0 is the initial cavity pressure. Also a is

defined as the radius of the cavity during loading and a0 is the radius of the

cavity at initial unloaded state. In the case of the dense sample (n=0.36, n refers

to porosity) there is a pronounced peak cavity pressure ratio of about 3.1

attained at an internal radius ratio of 1.15. Before the peak, the cavity pressure

increases as the internal radius increases. After the peak, the cavity pressure
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decreases as the internal radius increases. For the sample (n=0.38, medium

dense), a maximum cavity pressure ratio 2.8 is attained at an internal radius

ratio of 1.2. For the sample (n=0.40), the maximum cavity pressure is attained

at an internal radius ratio of 1.3. For the loose sample (n=0.42), the maximum

cavity pressure ratio 2.2 occurs at a large internal radius ratio and there is no

significant occurrence of a peak cavity pressure prior to this. Around 7000

particles were generated for each sample. The initial cavity pressure for these

samples was 20MPa and b0/a0 was around 6. The final cavity pressure ratio, at

1.7 internal radius, was about 2 in all cases.

Figure 5.6: The cavity expansion curves of different sample initial porosities

using DEM simulations

5.3.4 Effect of initial sample thickness

It can be seen that this is a plane-strain problem, so the thickness of sample is

fixed. For obtaining the thickness effect on the behaviour of cavity expansion,
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3 simulations with thickness of 0.5, 1 and 2m were carried out. The other

particle properties were given in the beginning. The simulation results are

shown in Figure 5.7. It can be seen that the thickness of sample did not affect

the cavity expansion behaviour much if the number of the particles is enough.

Therefore, the suitable thickness of the sample can be determined regarding the

geometry of the sample and the number of particles.

Figure 5.7: The cavity expansion curves of different sample initial thickness using

DEM simulations

5.3.5 Effect of particle friction coefficient

The biaxial test simulations showed that friction coefficient plays a significant

role in the DEM simulations. The stress-strain response of an assembly not

only depends on the particle shape but also on interparticle friction. The effect
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of particle shape will be discussed in the next section. In this section, a serious

of simulations was carried out to investigate the effect of particle friction

coefficient. The sample was prepared using the same method which was

described before and when the sample initial state was reached, the particle

friction coefficient was changed to 0.1, 0.3, 0.5 0.7 and 0.9 respectively for

each sample. Thus every time the same sample existed before loading. The

different particle friction coefficients (varying from 0.1 to 0.9) were applied to

the dense sample (initial porosity=0.36). The effect of particle friction

coefficient on the cavity expansion simulations is shown in Figure 5.8. It can

be seen that the friction coefficient has a large effect on the cavity expansion

behaviour when the friction coefficient is lower than 0.7. However, it makes

little difference to the cavity pressure when the friction coefficient is increased

from 0.7 to 0.9.

Figure 5.8 show that particle friction coefficient had a large effect on the peak

value of cavity pressure. The peak value of cavity pressure increases when the

particle friction coefficient increases. However, the cavity pressure ratio (P/P0)

at the end was approximately of 2 in all cases. Although the samples had not

quite reached critical states, this strongly suggests that the cavity pressure at

the critical state would not be significantly affected by the particle friction

coefficient. The peak cavity pressures were obtained almost at the same

internal radius ratio (a/a0=1.15) irrespective of particle friction coefficient; this

is a different observation to the simulations with different initial porosities and

coefficient of friction of 0.7.
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Figure 5.8: Cavity expansion curves for different particle friction coefficients

using spheres with porosity n=0.36

5.3.6 Effect of particle shape

Particle shape plays a key role in the behaviour of granular materials. Previous

studies (Ting et al., 1989; Ng and Dobry, 1992; Rothenburg and Bathurst, 1992)

have shown that particle shape has a great influence on the mechanical

behaviour of granular materials and using spheres to represent each grain is not

enough for granular materials comprising angular particles. This section

presents a simple particle shape by using two balls of different sizes to form a

clump, in order to show the effect of the particle shape on the inhomogeneous

stresses induced within the particle assembly. The result of a cavity expansion

simulation on clumps is compared with that for cavity expansion on spheres

and the effects of the particle shape on contact distribution and particle

displacements are studied.
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The particle shape used in these simulations is the same as in the biaxial test

simulation in chapter 4, shown in Figure 4.5. Apart from the particle shape, the

samples were generated exactly same with the procedure described before. A

quarter of the sample was generated and loaded by the internal circular

boundary using a constant strain rate. The velocity of the external boundary

was automatically controlled by a servo-mechanism to keep a constant external

pressure. Figure 5.9 shows the simulated samples for spheres and two-ball

clumps. The sample has dimensions of approximately 13.0mm external

diameter, 2.0mm internal diameter and 1.0mm high. Figure 5.9(a) shows the

sample with 7696 spheres. The normal and shear stiffness (liner-elastic) of the

spheres were set to be 1 109 N/m and the stiffness of the walls were set to

have the same value with the spheres. The particle friction coefficient was 0.7

and the density of the spheres was 2650kg/m3. The clumps were formed by

replacing the spheres. “Virtual spheres” were created by deleting the initial

spheres and creating a virtual space by multiplying the initial sphere diameter

by a factor of 1.27. Each “virtual spheres” formed the outermost possible

boundary for each clump and the clumps were created with in the “virtual

spheres”. Figure 5.9(b) shows the sample containing 7696 clumps (15392

balls). For the clumps, the stiffnesses and coefficients of friction used were the

same as for the samples on spheres. The initial porosity was 0.36 for both

samples of spheres and clumps. It should be note that for the clumps, the

particle friction coefficient during sample preparation was set to a little higher

(particle friction coefficient=0.1) than that for the sample of spheres during

compaction, in order to obtain the same initial porosity as the spherical particle

sample.
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(a)

(b)

Figure 5.9: Sample for cavity expansion simulations using (a) spheres and (b)

two-ball clumps
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There is a contribution to the mass in the overlapping region from each of the

overlapping balls. This may not influent the mechanical behaviour of the

clumps under static loading. However, when the dynamic effect of the clumps

is significant, the influence of mass due to overlapping balls will become

significant. In such dynamic simulations, density can be scaled to give the

correct particle mass, but the distribution of mass will be incorrect, leading to

incorrect moments of inertia and hence rolling resistance. In these simulations,

density is not scaled to fit correct mass.

Figure 5.10 shows the contact forces for each of the samples under compaction.

It can be seen that the contact forces are reduced for the clumps, and more

homogeneous for the sample consisting of more complex shape particles. This

is because the higher number of contacts per particle for the sample of two-ball

clumps leads to a more homogeneous stress distribution.

Figure 5.11 and Figure 5.12 show the contact forces for the spheres and clumps

before and after loading respectively. It is noted that the number of contacts

does not change much during the loading. The magnitude of the mean contact

force for sample of clumps is less than that for the sample of spheres, because

of the higher number of contacts per particle for the sample of clumps. It

should be noted that the maximum contact force for the clumps is higher than

that for the spheres.

Figure 5.13 shows the particle displacement vectors for the sample of spheres

and two-ball clumps drawn at the same scale. It can be seen that the

displacements of these samples on the side of internal wall and inside of the

sample are larger than those displacements on the other positions and the
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displacement are generally outwards. The difference between sample of

spheres and clumps can be attributed to the interlocking provided by the three-

dimensional clumps, which affects the rolling resistance. The higher number of

balls in the sample consisting of two-ball clumps leads to more displacement

vectors.

Sample Initial porosity Particle friction coefficient and stiffness

Sample of spherical particles 0.36 0.1 1×109N/m

0.36 0.3 1×109N/m

0.36 0.5 1×109N/m

0.36 0.7 1×109N/m

0.36 0.9 1×109N/m

0.38 0.7 1×109N/m

0.40 0.7 1×109N/m

0.42 0.7 1×109N/m

Sample of two-ball clumps 0.36 0.7 1×109N/m

Table 5.1: The particle properties and the sample initial states
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(a)

(b)

Figure 5.10: Contact forces for (a) spheres, (b) two-ball clumps, drawn to the

same scale
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(a)

(b)

Figure 5.11: Contact forces for sample of spheres (a) before loading (maximum

contact force=3.114 106N, mean contact force=5.393 105N, number of

contacts=30693); (b) after loading (maximum contact force=5.953 106N, mean

contact force=6.647 105 N, number of contacts=29335).
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(a)

(b)

Figure 5.12: Contact forces for sample of clumps (a) before loading (maximum

contact force=3.290 106N, mean contact force=4.685 105N, number of

contacts=61452); (b) after loading (maximum contact force=9.941 106N, mean

contact force=5.870 105N, number of contacts=58067).
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(a)

(b)

Figure 5.13: Total displacement after loading for (a) spheres (maximum

displacement = 1.088mm), (b) two-ball clumps (maximum displacement =

1.020mm)
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Figure 5.14 shows the responses of the sample of spheres and two-ball clumps

during the cavity expansion. It can be seen that the clumps sample give a

higher cavity pressure than the sample of spheres. The difference in the

response of the sample of spheres and two-ball clumps can be attributed to the

interlocking provided by the three-dimensional clumps, which affects the

rolling resistance and particle displacement. Thus particle shape has a very

important influence on the response of the aggregate. As discussed before,

particle friction coefficient has a great effect on the maximum cavity pressure,

but this did not affect the critical state at large strains (Figure 5.8). However for

the clumps, not only does the maximum cavity pressure increase, but the

critical or ultimate cavity pressure also increases (Figure 5.14).

Figure 5.14: Cavity expansion curves for spheres and clumps

5.3.7 Effect of the initial cavity pressure

The in situ state of stress is an important parameter in many areas of

geotechnical design. Pressuremeter tests can be used to estimate the in situ
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horizontal stress, and thus describe the state of stress in a soil. An experimental

study of finite pressuremeter length effects in sand has been developed by

Ajalloeian (1996). This experimental study involved a series of calibration

chamber tests with four different length to diameter ratios of L/D=5, 10, 15, 20

in a 1m height by 1m diameter calibration chamber. Stress controlled

boundaries allowed independent control of vertical and horizontal stresses in

the range of 50kPa to 150kPa. The material of Stockton Beach sand was used

in these experimental tests. A schematic diagram of the triaxial chamber is

shown in Figure 5.15.

Figure 5.15: Schematic diagram of the calibration chamber (Ajalloeian, 1996)

The length of membrane as a flexible part of the pressuremeter is variable but

its diameter is constant (D=30mm). In his research, any soil has two limiting

states of density: the loosest and the densest possible states. These states are
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influenced by the characteristics of the element grains. The relative density (Rd)

is defined as follow (Equation 5.1):

minmax

max

ee

ee
Rd




 (5.1)

Where maxe , mine , e are the void ratios in maximum, minimum and natural

states respectively. The influence of specific gravity on the test results is

normalised by converting maximum and minimum densities to void ratios. In

this research, the samples were prepared by raining pluviation with an average

Rd =0.852 for the dense sample, an average Rd =0.639 for the medium dense

sample and an average Rd =0.307 for the loose sample. The maximum and

minimum dry densities of Stockton Beach sand are 1.77 t/m3 and 1.49 t/m3

respectively. The value of Gs is 2.65 and γw=9.81kN/m3 were found for

Stockton Beach sand. Equations 5.2 and 5.3 were used to calculate emax and

emin as 0.78 and 0.5 respectively.
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In most analyses, cavity expansion is considered as a plane strain problem, so

the walls perpendicular to the length direction have been fixed. Three different

initial isotropic states of stress (50, 100 and 150kPa) have been used to perform

the simulations with the medium dense sand with Rd =0.67 and L/D=20. From

equation 5.1, voids ratio for this sample is e=0.6. Figure 5.16 shows typical
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results for tests performed on samples of similar density, subject to a variety of

initial cavity pressures (Ajalloeian, 1996). In this figure, the abscissa and

longitudinal coordinates are cavity strain (εc) and cavity pressure (p')

respectively. They can be defined here:

3

2
'

''
vhp

 
 (5.4)

a

aa
c

0
 (5.5)

where σ'h is the effect horizontal stress; σ'v is the effective vertical stress;

Figure 5.16: Influence of mean effective stress on pressuremeter pressure-

expansion curves (medium density sand, L/D=20, K=1) (Ajalloeian, 1996)

Using this information, the simulation of DEM of cavity expansion has been

developed. Figure 5.17 shows PFC3D models of the cavity expansion using

spherical particles. These particles were used in order to model the particle size
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distribution considered by Ajalloeian (1996) shown in Figure 5.18. The DEM

simulations are performed to investigate the initial cavity pressure effect on the

cavity expansion curves. The particle properties and the sample initial state are

given in Table 5.2. Different initial cavity pressures 50kPa, 100kPa and 150kPa

were performed on the samples with similar initial geometry (b0/a0 is around

10). The purpose of this series of simulations is to investigate the cavity

expansion under various stress conditions and compare with the experimental

test data.

Figure 5.17: PFC3D model with spherical particles

The particle properties Sample initial state

Particle stiffness (N/m) Particle friction coefficient Initial cavity pressure (KPa) Initial porosity

1×106 0.7 50; 100; 150 0.33

Table 5.2: The particle properties and the sample initial states for simulations in

Figure 5.19
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Figure 5.18: Grain size distribution curve for Stockton Beach Sand

The simulation results are shown in Figure 5.19. It can be seen that for soils of

a given density, a trend of increasing cavity pressure at a given cavity strain

with increasing insitu stresses is clearly observed. It is easy can be obtain that

increasing the initial cavity pressure increases the soil resistance. As shown in

Figure 5.19, we can get the similar results comparing with the experimental test

data, although there are still some differences between the results, especially at

larger cavity strains (Figure 5.20).

The difference between the experimental test result and DEM simulation result

could be due to the geometry of the sample, initial porosity and the shape of the

particles. The geometry used in the simulation (b0/a0=10) is smaller than the

experimental test. The geometry used in the experimental test (b0/a0) is around

33. The initial porosity in the simulation is 0.33, but in the laboratory test is

0.37. The particle shape used in all these simulations is spheres, while the real

particle shape used in the experimental test is obviously non-spherical.

0

20

40

60

80

100

0.01 0.1 1 10

Particle Size (mm)

P
e

rc
e

n
ta

g
e

p
a

s
s

in
g

(%
)



127

Figure 5.19: Cavity expansion curves using different in-situ stresses in DEM

simulations
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All these factors contribute to the difference between the results of the DEM

simulations and the experimental test results, but the same pattern is discovered.

The simulations demonstrate the validity of cavity expansion can be correctly

modelled under a range of initial cavity pressures. Qualitative analysis is only

discussed here; more simulations with similar conditions to the experimental

test are needed for the quantitative analysis.

5.4 Conclusions

PFC3D can be used to simulate soil behaviour under different conditions, and

the parameters of the particles hold an important place in the DEM simulation.

Selecting the suitable particle parameters is important for DEM simulations.

The size of the particle is selected bigger for some simulations to reduce the

calculation time since the timestep is related to the particle size. These

simulations are just used for comparing with the analytical solutions. The

particle properties are selected the same for biaxial simulation and cavity

expansion simulation. For comparing with the experiment test result, the

particle size is needed to follow with the test material. Only two simple particle

shapes are used in these simulations which can not provide the real interlocking

of the granular material. These simulations are aim to show the interlocking

effect on the granular material behaviour. For simulating the real granular

material behaviour, the complicated particle shape similar with the real

material is required.

Soil has a very complicated structure, the continuum mechanics is not suit for

granular materials like sand under large strain. This chapter showed that DEM

can simulate the cavity expansion in granular materials. The particle
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parameters and sample initial conditions effect on the sample behaviour of

cavity expansion were investigated. Some of these results are used in the

following chapter to compare with the analytical solution. More simulations

are needed in the future to reveal more realistic behaviour and properties of

granular material during cavity expansion.

Further simulations using more realistic particle shapes would shed further

light on the micro mechanics of the behaviour in doing cavity expansion.
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CHAPTER 6

COMPARISON BETWEEN DEM SIMULATION

AND ANALYTICAL SOLUTION

6.1 Introduction

Cavity expansion analysis plays a significant role in modern soil mechanics.

Cavity expansion in soil or rock is a fundamental problem in theoretical

geomechanics primarily because it provides a useful and simple tool for

modelling many complex geotechnical problems. To compare the DEM

simulation results with continuum analysis, analytical solutions of large strain

expansion of Mohr-Coulomb material are given (Yu, 2000). For simplicity, the

soil stress-strain behaviour is considered as elastic-perfectly plastic. Some

biaxial test simulations using DEM are performed to obtain the basic granular

material properties for obtaining cavity expansion analytical solutions based on

continuum mechanics. The particle properties have a significant effect on the

soil stress-strain behaviour. The influence of micro-properties of granular

material on the macroscopic stress-strain behaviour observed in the DEM

simulation was described in chapter 4.

In this chapter, macro properties of samples with various input particle

parameters are presented and used to obtain the theoretical cavity expansion
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solutions. Cavity expansion analysis focuses on the cavity pressure needed to

expand a cavity in soil by a certain amount. The analysis of a cylindrical cavity

has been applied to practical problems such as the interpretation of

pressuremeter tests (Ladanyi, 1963; Palmer, 1972). A detailed study of the

application of cylindrical cavity expansion in modelling the installation of

driven piles was given by Randolph and Wroth (1979). The effect of

longitudinal shaft friction in a cylindrical expanding cavity has also been

considered (Sagaseta, 1984).

DEM modelling is a popular method to numerical simulation for granular soils.

To simulate the cylindrical cavity expansion stress-strain curve in a granular

material, the cavity expansion simulation using DEM has been discussed in

chapter 5. This chapter is mainly focus on the comparison between the

analytical solution using cavity expansion method and numerical simulation

result using DEM.

6.2 Biaxial Test Simulation

The mechanical response of cohesionless granular materials under monotonic

loading is studied using DEM simulations. It describes the effect of initial

density and interparticle coefficient of friction on the macro-mechanical

behaviour of granular material. Many researchers have shown that DEM

successfully simulates the granular material behaviour in the biaxial mode, as

observed in experimental tests (Ni, 2003; Huang et al., 2008; Gong, 2008). The

DEM simulation of biaxial test has been described in chapter 4.
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6.2.1 Sample preparation

PFC3D was used to simulate the biaxial test on samples consisting of spherical

particles. A cuboidal sample was generated and loaded by the top and bottom

walls. The right and left walls were used to maintain a constant confining

pressure. The velocities of the top and bottom walls were specified to simulate

the strain controlled loading, the velocities of right and left walls were

automatically controlled by a servo-mechanism (see Appendix) to keep the

confining pressure constant. The sample modelled in the numerical biaxial test

simulations had dimensions of 4m × 1m × 8m in the directions of the minor

(y), intermediate (z) and major (x) principal stresses respectively. The

properties of all these walls are assumed to be the same. The wall friction

coefficient is 0 and wall normal stiffness and shear stiffness are chosen to be

the same as particle stiffness 1×109 N/m. Around 7000 particles are used to

form each sample in these simulations. All the particle parameters are identical.

Particle friction coefficient is 0.7 and the particle size distribution for this

numerical sample ranged from 0.075 to 0.1m. The specific gravity is 2.65.

6.2.2 Results and discussion

Simulation of a materials macro behaviour using DEM is difficult as the choice

of micro-properties is complicated. The particle properties have an important

effect on the macro behaviour. Figures 6.1 to 6.3 show the mechanical

behaviour of the granular assembly sheared under biaxial condition with

samples of different initial porosities. Two samples are generated using
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spherical particles and each sample has a different confining stress of 100, 500

and 1000KPa, respectively. Figure 6.1a shows the stress-strain curves of a

dense sample, with initial porosity n=0.36, where axial strain εa is the strain

along the x direction. It shows a peak stress at a relatively low strain and

thereafter the stress necessary for additional strain decreases. The stress-strain

behaviour of a loose sample, with n=0.42, are presented in Figure 6.1b showing

that the principal stress ratio increases gradually to an ultimate value without a

prior peak.

Figure 6.2 and Figure 6.3 show the stress-strain behaviour and dilation of

samples with confining pressure of 1000KPa and initial porosity of 0.36 and

0.42. The term dilatancy is used to describe the increase in volume of a dense

sand during shearing and the rate of dilation can be represented by the gradient

dεv/dεa. Figure 6.2 shows the counterpart of Figure 6.1 under drained condition,

with the sample having different initial porosities after being compressed to

1000KPa istropically. It can be seen from Figure 6.2 that the loose sample

exhibits a hardening behaviour, while the dense sample tends to show strain-

softening after reaching their peak states. However, an essentially identical

critical state is finally approached when the samples are subjected to large

deformations. The critical axial stress is around 2100KPa. The maximum angle

of friction (φ) is determined from peak stresses.

The results in Figure 6.3 show an increase in the volume of the specimen

during shearing for a dense sand, as characterized by the relationship between

volumetric strain and axial strain. The volumetric strain is defined as the

change of volume per unit of volume. The peak strength normally corresponds
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to the maximum rate of dilation. A parameter known as the angle of dilation

(ψ) is defined either in terms of the maximum and minimum principal strain 

increments dε1 and dε3 or in terms of increments of volumetric strain (dεv) and

maximum shear strain (dγ). In the case of a loose sand the increase in stress is 

accompanied by a decrease in volume, as shown in Figure 6.3. The particle

parameters and the initial states of each sample are given in Table 6.1. This

information needs to be used in the cavity expansion simulations, which will be

described later.

The initial porosity was calculated using measurement spheres, which is a

function available in PFC3D. The porosity of all measurement spheres is shown

in Figure 6.4. The bottom plane is used to indicate the position of each

measurement sphere located at X-Y plane of sample in biaxial test simulation

and the vertical axle is used to present the porosity of each sphere. We can see

that the porosities are quite uniform. The finial initial porosity is the average

value of these porosities.

The particle properties Sample initial state

Particle stiffness (N/m) Particle friction coefficient Confining pressure (KPa) Initial porosity

1×109 0.7 100; 500; 1000 0.36, 0.42

Table 6.1: The particle properties and the sample initial states of biaxial test

simulation
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(a) Initial porosity=0.36

(b) Initial porosity=0.42

Figure 6.1: Stress-strain behaviour of cell pressure 100, 500, 1000kPa using

DEM
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Figure 6.2: Stress-strain behaviour of DEM simulations (Cell pressure=1000kPa)

Figure 6.3: Volumetric dilation against axial strain of DEM simulations (Cell

pressure=1000kPa)
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Figure 6.4: The initial porosities of biaxial test simulation

This chapter presents mainly on the comparison between the analytical solution

and DEM simulation results of cavity expansion. It is clear that the material

properties are important for getting the analytical solution, so these biaxial tests

simulations using DEM are performed to evaluate the material properties from

the particle-scale view. The same particle parameters are applied in both the

biaxial test simulations and cavity expansion simulations, and the soil

parameters which are used in the theoretical analytical solution of cavity

expansion are calculated from the biaxial test simulation results. In addition,

the same initial conditions are required for these two kinds of simulations. For

the cylindrical cavity expansion simulation, z direction is fixed for simulating

the plane-strain problem. So z direction is fixed as well in the biaxial test

simulations for the relative same initial conditions. These biaxial test

simulations are like a ligament that connects the analytical solution and the
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DEM solution of cavity expansion.

6.3 Cavity Expansion Simulation

Cavity expansion processes are relevant to a number of problems of interest in

soil mechanics, including pressuremeter testing, pile driving, pile loading to

failure, cone penetration testing, and detonation of explosive devices within

soil deposits. Many researchers focused on this problem. The boundary

condition problems like bearing cavity of granular ground have been studied by

Ting et al. (1989). Huang and Ma (1994) were the first to use DEM in deep

penetration simulations in sand. Later, the study on soil-penetrometer interface

friction has been described by Jiang et al. (2006). A two-dimensional discrete

element method has been used to simulate the deep penetration tests on a

granular ground. The DEM simulation of cavity expansion has been presented

in chapter 5.

6.3.1 Sample preparation

The DEM code PFC3D was used to simulate cylindrical cavity expansion on

samples consisting of spheres or clumps (Figure 6.5).A quarter of a fan-shaped

sample was generated and loaded by its internal boundary using a constant

strain rate. The velocity of its external boundary was automatically controlled

by a servo-mechanism (see Appendix) to keep a constant external pressure. The

sample thickness was fixed by front and back walls to simulate the plane-strain

condition. Two other walls normal to x and y axes are fixed since it is an axial

symmetry of the x and y axes structure. Stresses on the walls are determined

from the particles contact forces acting on them. The particle parameters are
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exactly the same with the biaxial test simulations. For the sample consisting of

spherical particles, all the particle parameters and sample initial states are

shown in table 6.2. The minimum particle radius for each sample was 0.075m

and maximum radius was 0.1m. The particle friction coefficient is 0.7 and the

normal stiffness and shear stiffness of particles are 1×109N/m. Six walls were

generated as sample boundaries. The wall friction coefficient is 0 and wall

normal stiffness and shear stiffness are 1×109 N/m. Around 7000 Particles were

generated to fill into this space for each sample.

Two different initial cavity pressures were used. One was 20MPa. The other

was 1MPa. For the higher initial cavity pressure Pi=Pe=P0=20MPa, four

samples are generated with different initial porosities (0.36, 0.38, 0.40 and 0.42)

which have been described in chapter 5. The initial porosities are calculated by

a measurement sphere which is a function available in PFC3D. Using the

measurement spheres, the porosity of each sphere can be obtained. Many

spheres are generated to cover the whole sample. The finial porosity is decided

by using the average value of these porosities (Figure 6.6). As shown in Figure

6.6, X-Y plane is used to show the position of each sphere and the z axle is

used to indicate the porosity of each measurement sphere. The various initial

porosities of these samples can result from the different particle friction

coefficients during the generation of each sample. Once the initial state of the

sample is reached, the particle friction coefficient is changed to the same value

0.7. While for the lower initial cavity pressure Pi=Pe=P0=1MPa, another two

samples are generated with initial porosities n=0.36 and 0.42. The samples

generation and the initial porosity calculation are the same with the samples of

higher initial cavity pressure.
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For investigating the result of sample consisting of different particle shape,

anther sample using two-ball clumps (Figure 6.5(b)) was generated with initial

porosity n=0.36. The initial cavity pressure was 20MPa and the particle

parameters are the same with the spherical particle described in Table 6.2.

The particle properties Sample initial state

Particle stiffness (N/m) Particle friction coefficient Confining pressure (MPa) Initial porosity

1×109 0.7 1; 20 0.36, 0.42

Table 6.2: The particle properties and the sample initial states of cavity expansion

simulation

(a) (b)

Figure 6.5: PFC3D model (a) single sphere as a particle; (b) two-ball clump as a

particle
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Figure 6.6: The initial porosities of cavity expansion simulation

6.3.2 Results and discussion

6.3.2.1 Cylindrical cavity expansion curves of DEM simulation

PFC3D can be used to simulate the soil behaviour under different conditions.

The parameters of the particles hold an important place in DEM simulation.

The selection of particle parameters has significant influences on the sample

behaviours. Figure 6.7 shows the results of two simulations selected from

Figure 5.6 in chapter 5. The initial cavity pressure for these samples is 20MPa

and b0/a0 is around 6. It can be seen from Figure 6.7 that the peak cavity

pressure ratio (P/P0) varied from 3.1 for the dense sample to 2.2 for the loose.

The corresponding range of internal radius (a/a0) at peak pressure was 1.13

(dense) to 1.28 (loose). The final cavity pressure ratio, at 1.7 internal radius,

was about 2 in these cases. The results of another two simulations (Initial
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porosity n=0.36 and 0.42) of initial cavity pressure P0=1MPa have been shown

in Figure 6.8. It is apparent that the result obtained from lower initial cavity

pressure is in accordance with the result of higher initial cavity pressure shown

in Figure 6.7. Meanwhile, it is found that the maximum cavity pressures

increase significantly while the value of initial porosities decreases.

Figure 6.7: The cavity expansion curves of different initial porosities using DEM

simulations (Initial cavity pressure=20MPa)

Figure 6.9 shows the typical results of cavity expansion simulations performed

on samples of similar initial porosities (0.36 and 0.42), subject to a variety of

initial cavity pressures. It can be seen that for soils of a given porosity, a trend

of increasing the value of cavity pressure ratio with decreasing the initial cavity

pressure is clearly observed. The results of initial porosity 0.36 are graphically

presented in Figure 6.9 (a) for initial cavity pressures of 1MPa and 20MPa. As
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can be expected, the curve of small initial cavity pressure tends to give the

maximum cavity pressure at smaller internal radius ratio (a/a0).

Figure 6.8: The cavity expansion curves of different initial porosities using DEM

simulations (Initial cavity pressure=1MPa)

In other words, this happens when the deformation required to reach the

maximum cavity pressure is smaller than the one of higher initial cavity

pressure. This is because the different initial cavity pressures are used for these

simulations of similar initial porosity. As the state of a material depends not

only on its density (void ratio e) but also on P (confining pressure). For the

different P, different ec (the preordained void ratio at a critical state) can be

obtained. So the soil behaviour could be different for the same current void

ratio but different P.

As shown in Figure 6.9 (b), the initial porosity is 0.42, the value of the cavity
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pressure increases during the loading and the maximum cavity pressure occurs

at increasingly large value of internal radius ratio when the initial cavity

pressure is 20MPa. No prior peak value of cavity pressure is shown. While for

the sample of initial cavity pressure of 1MPa, the soils must be relative denser

than that of initial cavity pressure 20MPa when the similar initial porosity 0.42

is considered. The result in Figure 6.9 (b) showing that a softening curve is

observed with the initial cavity pressure 1MPa and the value of cavity strain

required to reach the maximum cavity pressure is also relative smaller. The

peak cavity pressure is reached at very small internal radius ratio (a/a0=1.03).

It is interesting to compare these simulation results with the analytical cavity

expansion solutions obtained from Yu (1992, 2000). The cavity expansion

theory is applied to obtain the analytical solution of cavity expansion using soil

properties which is described in the following part. These soil properties are

obtained from the biaxial test simulations results. So the particle parameters

and sample initial states of cavity expansion simulations are selected the same

with the biaxial test simulations to make sure that these results of comparison

comes from the same soil particles. Some biaxial test simulation results have

been discussed in the beginning, as shown in Figure 6.1. The results shown in

Figure 6.7 and 6.8 which have the same initial state with the samples in these

biaxial test simulations are used to compare with the theoretical analytical

solutions. For the sample consisting of two-ball clumps, the result shown in

Figure 6.10 is going to compare with the analytical solution too. In order to

obtain this analytical solution, some biaxial test simulations using the same

particle properties and initial states with the cavity expansion simulations for

two-ball clumps are needed.
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(a) Initial porosity=0.36

(b) Initial porosity=0.42

Figure 6.9: The cavity expansion curves of different initial cavity pressures for

samples of different initial porosities in DEM simulations
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Figure 6.10: The cavity expansion curve of sample consisting of two-ball clumps

and initial porosity n=0.36 in DEM simulations

6.3.2.2 The analytical solutions of cylindrical cavity expansion

The cylindrical cavity expansion stress-strain curve of idealized material can be

obtained using the cavity expansion method (Yu, 1992, 2000). The material is

modelled as an isotropic dilatant elastic-perfectly plastic material. The elastic

behaviour obeys Hooke’s law until the onset of yielding which is determined

by the Mohr-Coulomb criterion. The theoretical cylindrical cavity expansion

curve is described by the material properties (Young’s modulus E, Poisson’s

ratio ν, cohesion c, angle of friction φ and angle of dilation ψ). A non-

associated plastic flow rule is used and therefore the dilatancy of the soil is

fully taken into account. In order to obtain the proper material properties for

analytical solutions, DEM simulations of biaxial tests were carried out as

described before. This biaxial test simulation acts as ligament to connect the

analytical solution using macroscale material properties and the DEM solution



147

using microsacle particle properties. The analytical solution can be presented

for stress and displacement field for the cylindrical cavity expansion.

6.3.2.2.1 Soil properties

The properties of the soil are defined by the Young’s modulus E, Poisson’s

ratio ν, cohesion c, angle of friction φ and angle of dilation ψ. The initial in-situ 

stress is P0. Some derived parameters which are constant can be abbreviated in

the mathematics.
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Initially the radii of inner and outer boundaries of the cylinder are a0, b0

respectively and a hydrostatic pressure p0 acts throughout the soil which is

assumed to be homogeneous. An additional pressure p-p0 is then applied inside

the cavity and increased sufficiently slowly for dynamic effects to be negligible.

If the principal stress components satisfy the inequalities kji   , the

Mohr-Coulomb yield function takes the form Yik  . Tensile stress and

strain are considered as positive.

At any time in any position around the cavity, the inner and outer radii a0 and

b0 change to a and b and the stress must satisfy the equation of equilibrium:

r
r r

r
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
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Subject to the two boundary conditions:

p
arr 


 (6.9)
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
 (6.10)

The displacement is defined as 0rru 

6.3.2.2.2 Elastic response and Elastic-plastic stress analysis

The deformation of the soil at first is purely elastic with the cavity pressure

increases from p0. The elastic stress-strain relationship can be expressed as:
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The solution of equations (6.11), (6.12) and (6.8) subject to the boundary

conditions (6.9) and (6.10) is given in chapter 2 (elastic-perfectly plastic

solutions).

When the internal pressure reaches p1y (Equation 2.16), the material starts to

yield from the internal surface. After initial yielding at the cavity wall, a plastic

region forms around the inner wall and the cavity wall which increased with

the cavity pressure.

The radius of elastic-plastic boundary, the internal pressure (When c=b, the

whole cylinder becomes plastic), the outer boundary displacement in the elastic

zone and the value of c/a and a/a0 can be obtained using equations shown in

chapter 2. These equations in chapter 2 aimed to express the pressure and

expansion relationship depends on the different conditions.

6.3.2.2.3 The procedure

To obtain the cylindrical cavity expansion analytical solutions, decide the soil

properties first. Choose the suitable soil properties parameters, like E, v, C, Φ,

Ψ and then decide the initial pressure p0 and the internal and external radius a0

b0. Secondly, calculate the derived parameters: G, Y, α, β, γ, δ using equations 

6.1-6.7. Calculate the yielding pressure p1y from equation 2.16 in chapter 2. If

the internal pressure p is less than this yielding pressure, then calculate the
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expansion radius from elastic solution in chapter 2. If the pressure is larger than

this yielding pressure, then calculate the radius from the elastic-plastic

solutions shown in chapter 2 as well. When c=b, the whole cylinder becomes

plastic, the pressure at that conditions also can be calculated (as shown in

chapter 2).

6.3.2.2.4 Discussion of the results

In this chapter, some basic cavity expansion solutions for elastic-perfectly

plastic soils are described. To obtain the cylindrical cavity expansion analytical

solution using soil properties, the soil is modelled as an isotropic dilatant

elastic-perfectly plastic material obeying the Mohr-Coulomb criterion as

described before. It is very difficult to fit the complete real stress-strain

behaviour of sandy soil satisfactorily with a simple elastic-perfectly plastic

model. The upper bound and lower bound are used to explain the soil

behaviour. Real stress-strain behaviour is between them. For the sample of

spherical particles, the upper bound and lower bound are chosen as elastic-

perfectly plastic model based on the biaxial test simulation results in Figure 6.1.

These models are formed by two straight lines shown in Figure 6.11. The upper

bound is formed using initial stiffness and peak axial stress value. The lower

bound is mainly formed by critical axial stress. When the horizontal straight

line cross the critical axial stress, it is easy to find another point through the

stress-strain curve on this line. Connect this point with the origin of coordinates

to form another straight line for lower bound. The sample of initial porosity

n=0.42 is quite loose and no prior peak axial stress is obtained. Therefore only

one elastic-perfectly plastic model is used for this sample (see Figure 6.12).
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This model is composed by initial stiffness and ultimate axial stress value. For

the sample of non-spherical particles, some biaxial test simulations of sample

consisting of two-ball clumps with initial porosity n=0.36 were carried out to

calculate the soil properties. Figure 6.13 shows the generated upper bound and

lower bound for this sample using the same method as the sample of spherical

particles.

The soil properties can be obtained from these selected upper bound and lower

bound models based on the biaxial test simulation results. The

ultimate/maximum friction angle and cohesion are obtained from Mohr-

Coulomb criterion. The other macroscale parameters of the material are

obtained from these equations:

Young’s modulus:
X
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In accordance with these equations and the Mohr-Coulomb criterion, the

material properties of each model can be calculated, as shown in table 6.3.

From biaxial test simulations results, the material behaviours are represented

by five elastic perfectly plastic models to calculate these material properties.
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Figure 6.11: The choosing upper bound and lower bound for sample initial

porosity 0.36 in DEM simulation
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Figure 6.12: The choosing upper bound and lower bound for sample initial

porosity 0.42 in DEM simulation
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Figure 6.13: The choosing upper bound and lower bound for sample of two-ball

clumps (Initial porosity n=0.36) in DEM simulation
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Upper bound approach and lower bound approach are shown in Figure 6.11

and Figure 6.13 and elastic-perfectly plastic model is shown in Figure 6.12. As

we can see from Figure 6.11 and Figure 6.13, the upper bound is based on the

maximum axial stress. The maximum rate of dilation is occurred when the peak

axial stress is reached. It can explain that the maximum friction angle and

maximum dilation angle can be obtained using upper bound approach. While

the lower bound is formed by critical axial stress. It can be used to calculate the

critical friction angle and critical dilation angle. The value of slope of curves in

Figure 6.11 and Figure 6.13 (Volumetric dilation against axial strain) becomes

more and more small and the value is almost zero when the critical state is

reached. That means the dilation angle is zero and the minimum friction angle

can be obtained when the lower bound is used in the calculation. Plotted in

Figure 6.12 shows that just one elastic-perfectly plastic model is generated to

explain the soil behaviour, so the friction angle calculated using this model is

both maximum and critical friction angle. The dilation angle is zero since the

maximum axial stress equal to the critical axial stress in this case. These

parameters are very useful for the analytical solutions of cavity expansion

using the cavity expansion method. The theoretical results of cylindrical cavity

expansion can be obtained using these calculated soil parameters and the

boundary values of cavity expansion from the large strain analysis. In the large

strain analysis the cylinder thickness is continuously reduced as the elastic-

plastic boundary spreads out. The results are graphically illustrated in Figure

6.14 for sample initial porosity of 0.36 and 0.42 and initial cavity pressure of

20MPa. The results in Figure 6.14 (a) show that a softening curve is observed

for the sample initial porosity n=0.36, but not for another sample initial
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porosity n=0.42. Plotted in Figure 6.15 is the cavity expansion curves with

sample initial porosity of 0.36, 0.42 again, but the initial cavity pressure is

1MPa. Softening behaviour can be observed for both of them shown in Figure

6.15. Figure 6.16 shows the cavity expansion curves obtained using cavity

expansion method for the sample initial porosity of 0.36 and particle of two-

ball clumps with the initial cavity pressure of 20MPa. The same result can be

observed as shown in Figure 6.14 and Figure 6.15. The maximum cavity

pressure is normally reached before the whole cylinder becomes plastic.

   Model       Initial porosity       E (MPa)          v         φ (D)       ψ (D)       c (MPa)        b0/a0 P0 (MPa)

U-D-S 0.36 2400 0.3 33 14 0 6.20/1.15 1, 20

L-D-S 0.36 1615 0.3 21 0 0 6.20/1.15 1, 20

E-L-S 0.42 568 0.3 22 0 0 6.41/1.02 1, 20

U-C 0.36 2310 0.3 42 16 0 6.33/1.07 20

L-C 0.36 1800 0.3 28 0 0 6.33/1.07 20

U-D-S: Upper bound approach of elastic-perfectly plastic model for sample consisting of spherical

particles (relative dense sample with initial porosity=0.36)

L-D-S: Lower bound approach of elastic-perfectly plastic model for sample consisting of spherical

particles (relative dense sample with initial porosity=0.36)

E-L-S: Elastic-perfectly plastic model for sample consisting of spherical particles (relative loose sample

with initial porosity=0.42)

U-C: Upper bound approach of elastic-perfectly plastic model for sample consisting of two-ball clumps

(initial porosity=0.36)

L-C: Lower bound approach of elastic-perfectly plastic model for sample consisting of two-ball clumps

(initial porosity=0.36)

Table 6.3: The material properties for analytical solution of cavity expansion
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(a) Initial porosity=0.36

(b) Initial porosity=0.42

Figure 6.14: The theoretical analytical solutions for sample initial porosity of 0.36

and 0.42 (Initial cavity pressure=20MPa)



158

(a) Initial porosity=0.36

(b) Initial porosity=0.42

Figure 6.15: The theoretical analytical solutions for sample initial porosity of 0.36

and 0.42 (Initial cavity pressure=1MPa)
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Figure 6.16: The theoretical analytical solution of cavity expansion for sample of

two-ball clumps (Initial porosity n=0.36)

6.3.3 Comparison of DEM results and analytical solutions

The DEM simulation results of cylindrical cavity expansion using spherical

particles (Figure 6.7 and Figure 6.8) are compared with the ones obtained from

theoretical solutions (Figure 6.14 and Figure 6.15). The comparisons are shown

in Figure 6.18 and Figure 6.19. Figure 6.17 presents the comparison results of

DEM simulation of cavity expansion using two-ball clumps (Figure 6.10) and

theoretical solutions (Figure 6.16). These figures show the simulation and

theoretical results, in term of cavity pressure ratio (P/P0) against internal radius

ratio (a/a0). Both the analytical solution and the DEM solution for the samples

of same initial porosity and same initial cavity pressure are plotted in these

figures to demonstrate a direct comparison.
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As expected, the DEM simulation results are just in between of upper bound

and lower bound values of the analytical solutions (Figure 6.17, Figure 6.18 (a)

and Figure 6.19(a)). As to another two samples, the initial porosity value of

0.42, only one elastic-perfectly plastic model is used to describe the soil

behaviour, the results are shown in Figure 6.18 (b) and Figure 6.19 (b). As can

be seen from these figures, the simulation result gives a good fit to the

theoretical result. That means DEM can be used to simulate the cavity

expansion in granular materials and the results show a great agreement with the

theoretical analytical solutions.

Figure 6.17: The compansion of DEM simulation result and analytical solution

(Sample of initial porosity n=0.36 and particle of two-ball clumps)
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(a) Initial Porosity=0.36

(b) Initial Porosity=0.42

Figure 6.18: The comparison of DEM simualtion results and analytical solutions

(Initial cavity pressure=20MPa)
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(a) Initial Porosity=0.36

(a) Initial Porosity=0.42

Figure 6.19: The comparison of DEM simualtion results and analytical solutions

(Initial cavity pressure=1MPa)
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6.4 Conclusions

In this chapter, a numerical analysis of cylindrical cavity expansion in a

granular material is investigated with the aid of DEM. While the analytical

approach works at a macroscopic level, the numerical method has the

advantages of providing the mechanical behaviour of the granular assembly at

both the macro- and micro- scales. The cylindrical cavity expansion stress-

strain curves of cohesionless granular material under monotonic loading are

studied.

The comparison of the simulation results with the theoretical results shows a

good agreement. DEM is a useful method to simulate cylindrical cavity

expansion in a granular material using spherical or non-spherical particles.

These simulation results need to be compared with the experimental results.

The results presented in this chapter have shown that the DEM was able to

capture accurately the macro scale response of the cavity expansion problem in

granular material by comparison to the analytical data obtained from the cavity

expansion method.

Particle shape plays a significant role in the behaviour of granular material.

The early DEM models usually considered the granular material as assemblies

of interacting spheres and reproduced results qualitatively well. However,

materials consisting of non-spherical particles behave significantly differently

from those consisting of spherical particles (Lin and Ng, 1997). More recent

DEM developments focus on the shape of the particles to get more reliable

results (Jensen et al., 2001; Lu and McDowell, 2007). Using complex non-
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spherical shaped clump to represent each particle in cavity expansion

simulation is required for the further research.

Particle parameters have a considerable effect on the simulated behaviour.

Another procedure which permits the generation of clumps of spheres is being

developed for comparison with experimental results of calibration chamber

tests. Next chapter will focus on studying the validity of the DEM solutions by

comparing them with the results of cavity expansion tests conducted in the

laboratory.
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CHAPTER 7

PRESSUREMETER TEST SIMULATIONS

7.1 Introduction

Interpretation of tests on real granular media, such as sand, is difficult because

the stresses inside the sample cannot be measured straightly and must be

estimated from the boundary conditions. The numerical analysis of discrete

element method technique starts with basic constitutive laws at interparticle

contacts and the macroscopic response of particle assemblage after loading can

be obtained using this method. In this research, PFC3D was used to simulate the

soil behaviour in the pressuremeter test. The particles used in the simulation

followed the relative particle size distribution of Leighton Buzzard sand. This

sand is tested in laboratory by Fahey (1980) and these results are used for

comparison. The specific size of sample can be adjusted by changing the actual

sample size of simulations in proportion to the laboratory sample size. The

influence of the micro-properties of the granular material on the macroscopic

stress-strain behaviour observed in the DEM simulation can be obtained.

As far as granular soils are concerned, DEM is popularly used to simulate the

granular soil behaviour. The properties of particles can be defined in the DEM

which is very difficult to describe in the other method. The DEM has been
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widely used for granular materials with respect to the fundamental behaviours

such as macro failure criteria of granular materials (Thornton, 2000) and shear

strength functions of unsaturated granulates (Jiang et al., 2004). The DEM is

able to monitor the evolution of internal stresses and deformation patterns in a

non-destructive manner with the comparison of experiments. It also facilitates

sample reproducibility. It provides a powerful numerical tool for modeling the

mechanical behaviour of granular material and for studying the

micromechanical behaviour of granular material. Few studies have been carried

out using DEM analysis of pressuremeter test in granular material. DEM has

succeeded used to simulate some cavity expansion problems, like penetration

test. Many researchers have focused on this problem. DEM is also used for

solving the boundary condition problems like bearing cavity of granular ground

(Ting et al., 1989). Huang and Ma (1994) were the first to use DEM in deep

penetration simulation in sand. In their paper, the DEM-BEM simulation

technique was described. The granular soil mass near the penetration was

simulated by the discrete element method (DEM). However, the soil mass was

simulated using the boundary element method (BEM) in the far field, where

the strain is expected to be small. The cone penetration mechanism can be

evaluated without the complication caused by boundary effects using this

method. Later the study on soil-penetrometer interface friction was described

by Jiang et al. (2006). A two-dimensional discrete element method (DEM) has

been used to simulate the deep penetration tests on a granular ground. Cavity

expansion can be used to describe the pressuremeter test, so DEM might be

used in the pressuremeter test simulation.

Cavity expansion processes are relevant to pressuremeter testing. The theory of
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cylindrical cavity expansion has been adapted by geotechnical researchers and

engineers as the most important interpretation method for self-boring

pressuremeter tests in soil and rock. It is also used to describe the soil

properties of cone pressuremeter tests. This chapter presents a numerical study

on pressuremeter tests in granular materials to focus on the effect of particle

properties. A range simulation of various initial porosities using different

particle shapes has been carried out. In particular, the key contribution is to

show that the validity of pressuremeter test can be correctly modelled using

discrete element method, providing micromechanical insight into the

behaviour.

7.2 Experimental Data

The pressuremeter test (PMT) is a well established in-situ test in geotechnical

engineering for estimation of soil properties such as deriving strength and

stiffness parameters (Fahey, 1986). These tests consisted essentially of

expanding a thick cylinder of sand under conditions of plane strain. In a PMT,

the pressure in the cavity is increased above the in situ horizontal pressure.

Displacement is purely radial and is constant with depth through the material.

In all the tests the initial value of the outer boundary pressure was constant

during the loading. The element is subjected to plane strain deformation.

Pressuremeter development has involved advances both in respect of the

equipment and theoretical. The introduction of the pressuremeter into

geotechnical practice is described by Menard in the late 1950’s (Menard, 1957).

It was a device which was inserted into a preformed borehole to measure the

strength and stiffness of the surrounding soils and rocks. More general
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descriptions of the development of the pressuremeter and associated theories

are provided in references by Baguelin et al. (1978), Wroth (1984) and Mair

and Wood (1987). Over the last three decades, the pressuremeter has been

developed in the areas of the equipment and analysis and it is recent widely

used in site investigation to evaluate in situ soil properties. It is necessary for

pressuremeter testing to perform proper calibrations of the instrument (Mair

and Wood, 1987). Therefore, calibration of a pressuremeter is very important if

accurate estimates of soil properties are required. Recently, Ajalloeian (1996)

focus on the effect of pressuremeter length on derived soil properties from both

loading and unloading pressuremeter tests. Finite-element analysis of a two-

dimensional axisymmetric was used to simulate pressuremeter tests and it was

found that the finite pressuremeter length has a significant effect on the soil

properties.

Fahey (1980) performed a series of pressuremeter tests on dense samples of

sand at initial pressure 90kPa. The soil used in this study was Leighton

Buzzard Sand and the particles are subrounded and contain mainly quartz.

Figure 7.1 is the variety of different sizes and shapes of the sand particles

which influence the number of interparticle contacts per unit volume. The

small pressuremeter was modelled on that originally designed by Hughes

(1973). The plane strain apparatus was designed for the purpose of controlling

the conditions at the top and bottom boundaries of the deforming region during

a pressuremeter test (Figure 7.2). Figure 7.2 shows sections in elevation

(Section Y-Y) and plan (Section X-X) through the assembles apparatus.
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Figure 7.1: Microphotograph of Leighton Buzzard Sand (Fahey, 1980)

Figure 7.2: Section through the plane strain apparatus (Fahey, 1980)
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The top and bottom plates of the apparatus were machined flat and ground to a

mirror finish, with end friction being further reduced by greasing the plates and

placing a sheet of thin latex rubber between the sand and the plates. Measured

expansion volumes must also be corrected for the effects of system compliance

in order to give the true cavity expansion volume (e.g. Baguelin et al., 1978

and Mair and Wood, 1987). The sample was prepared by pouring sand very

slowly from a hopper suspended about 1 m above the container to achieve a

reproducible sample of maximum density. The average voids ratio measured in

this manner was 0.5115, so the initial porosity is 0.34. The tests were

performed in the thick cylinder apparatus with frictionless top and bottom

boundaries. In all tests, the initial value of the outer boundary pressure was set

to 90KPa. SC test (test with smooth ends and constant boundary pressure)

results with the pressure-expansion curves for four tests in the SC group are

presented in Figure 7.3 (Fahey, 1980).

Figure 7.3: Pressure-expansion curves for four SC tests (Fahey, 1980)
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7.3 Modelling Procedure

7.3.1 The DEM Code

The DEM code PFC3D was used to simulate pressuremeter test on samples

consisting of spheres or clumps (Figure 7.4). A clump is an agglomerate of

overlapping spheres. Each clump here comprises two sphere particles of

different sizes. If R and r are the radii of the larger and smaller spheres

respectively and L is the distance between the centres of two spheres in each

clump, the relationship among them are L=R and r=0.75R. The clumps were

formed by creating initial spheres, of the same size as the simulations using

spherical particles. “Virtual spheres” were then created by deleting the initial

spheres and creating a virtual space by multiplying the initial sphere diameter

by a factor of 1.27. Each “virtual sphere” formed the outermost possible

boundary for each clump and the clumps were created in the “virtual spheres.

The model is composed of distinct particles that displace independently of one

another and interact only at contacts or interfaces between the particles.

(a) (b)

Figure 7.4: PFC3D model (a) single sphere as a particle; (b) two-ball clump as a

particle
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A clump is a single entity of overlapping balls (i.e. the balls comprising the

clump remain at a fixed distance from each other). Internal overlapping

contacts are ignored in calculations, resulting in a saving of computational time

compared to a similar calculation in which all contacts are active. For the

clumps, the total volume of balls in a clump is greater than the volume of the

clump because of balls overlap. The mass of the clump is therefore greater than

the mass of an equivalent clump with a uniform density. The entity such as this

is not available in PFC3D currently. There is a contribution to the mass in the

overlapping region from each of the overlapping balls. This may not influent

the mechanical behaviour of the clumps under static loading. However, when

the dynamic effect of the clumps is significant, the influence of mass due to

overlapping balls will become significant. A modified density can be used in

each clump for further research. In order to achieve the desired mass, the

modified density ρm is derived from the initial density ρ0 as





i

clump

m
V

V 0 (7.1)

Where Vi is the volume of the ith ball in the clump and Vclump is the volume of

the clump and

clump
overlap

ii VVV  (7.2)

Where  overlap
iV is the volume of overlap in the clump. In such dynamic

simulations, density can be scaled to give the correct particle mass, but the

distribution of mass will be incorrect, leading to incorrect moments of inertia

and hence rolling resistance. Therefore, density is not scaled to fit correct mass
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in these simulations.

7.3.2 Sample preparation

Fahey (1986) described thick cylinder tests of sand to simulate pressuremeter

tests. The nominal initial sample dimensions are 40mm in diameter and was

expanded in a cylindrical sample of sand with 400mm in diameter by 200mm

long in the experimental test. The experimental test was contained in an

apparatus which allowed the outside boundary pressure constant and no axial

movement to occur. The material used in these tests is composed of Leighton

Buzzard sand with maximum diameter of 4mm, and a minimum diameter of

0.15mm, as shown in Figure 7.5.

Due to the geometric symmetry of the problem concerned, only a quarter of the

sample was considered in the analyses. The sample was loaded by the internal

circular boundary using a constant strain rate. The velocity of the external

boundary was automatically controlled by a servo-mechanism (see Appendix)

to keep a constant external pressure (Figure 7.6).

The samples had dimensions of approximately 60.0mm in external diameter ×

6.0mm in internal diameter × 30.0mm in height with more than 10000 particles

in each sample, which follow the relative sample size of laboratory test, but

proportionally smaller. There are too many particles generated if the same

sample geometry with experimental test is used. Multiple-sized particles of

approximately 0.15mm - 4mm diameter were used in order to model the

particle size distribution in the laboratory test by Fahey (1986). The density of

the particles is 2650kg/m3.
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Figure 7.5: Particle size distribution of Leighton Buzzard sand

Figure 7.6: Schematic illustration of cavity expansion
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Figure 7.7 shows PFC3D models of the pressuremeter test and granular material

particle models use single spheres or 2-ball clumps. The initial porosity and the

number of particles used in each sample of spherical particles and two-ball

clumps are given in Table 7.1. In these pressuremeter test models, six walls

were generated as sample boundaries. Two cylindrical vertical walls were used

to simulate the flexible membrane and two horizontal walls were placed at the

top and bottom of the sample, respectively. Another two vertical walls normal

to x and y axes are fixed since it is an axisymmetric structure.

The normal and shear stiffness of the balls was set to 1×106N/m and the

specific gravity was 2.65. A friction coefficient of 0.5 was used for all balls in

the simulations. The walls were set to frictionless during each simulation. The

two horizontal walls and two vertical walls had the same normal stiffness as

the particles (1×106N/m). The normal stiffness of the cylindrical vertical wall

was set to be one tenth of the normal stiffness (1×105N/m) of the particles in

order to simulate the effect of the flexible membrane. The two horizontal walls

are fixed since this is plane-strain problem.

The assemblies were generated by the particle radius expansion method. This is

used to place a specified number of particles at random coordinates within a

given space without overlapping. A population of spheres were initially

generated by artificially small of their final diameter. The number of spheres

generated in the sample was calculated from a porosity, which is set by the user.

It should be noted that the porosity set by user may differ from the final

porosity obtained in sample initial state shown in Table 7.1, since the final size

of the sample may change slightly and the spheres may be replaced by other
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shaped particles (2-ball clumps). The spheres were then expanded to their final

size and the system was cycled to equilibrium with the locations of walls

remaining fixed.

The Newton’s second law and a force-displacement law were used in the

calculations. The equations of motion were solved via a time-stepping

algorithm in which contact forces were calculated from relative displacements

between particles at the contact and used to calculate velocity and position of

the particles and therefore updated contact forces. This process was continued

until the particles were in equilibrium. In order to make particle easy to arrange,

the friction coefficients for all particles were choose a small value at the

beginning. If non-spherical-shaped particles were used, the spheres could be

replaced by clumps with random orientation. After particles of the sample were

replaced by clumps, the high contact forces were mainly produced by

overlapping of the particle replacement. For reducing the high contact forces,

the system was cycled to equilibrium again. After that, all walls were moved

outwards at the same slow rate for obtaining an initial state free sample of

internal forces at first.

Sample 1 sample 2 sample 3 sample 4

Number of particles 7921 7942 15872 15826

Initial porosity of samples 0.38 0.32 0.37 0.28

Table 7.1: Number of particles, initial porosity of the samples in DEM

simulations
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(a)

(b)

Figure 7.7: A sample of cavity expansion simulation of (a) single spherical

particles (b) two-ball clumps
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Artificial isotropic compression was applied to achieve the required stress state,

after the sample generation procedure was completed. The required pressures

could be obtained, since the servo-control (see Appendix) was applied to all

walls. Stresses on the walls are determined from constant forces acting on the

particles and strains experienced by tracking the relation distance between

appropriate walls, respectively.

Material response is computed by recording the various stress and strain

quantities using the history logic. Different initial porosities of samples were

prepared using single spheres and 2-ball clumps, respectively. The different

initial porosities of the samples were controlled from friction coefficients of 0.0

to 0.5 during artificial isotropic compaction. Once the initial state of the sample

is reached, the friction coefficient was changed back to 0.5 for the loading

stage of simulation. Monotonic loading was applied to internal wall with a

constant speed of 0.01mm/s, so that the rate of loading was slow enough for the

samples to remain under static loading conditions, but at the fastest rate which

it did not affect the results deemed to be acceptable for saving the calculation

time.

7.4 Results and Discussion

For many years, the pressure-expansion curves obtained from a pressuremeter

test have been used to determine soil properties such as the shear modulus and

the strength parameters. The purpose of these simulations is to get a similar

typical behaviour of sand using DEM simulation compared to experimental

results. In this chapter, simulations using different interparticle frictions,

particle shapes and sample initial porosities will be discussed. The effect of the



179

micro-properties of granular material on its cavity expansion behaviour has

been investigated using a three-dimensional, numerical simulation of a

standard laboratory pressuremeter test. All the simulations were operated with

particle rotation allowed in this research.

7.4.1 The particle shape

Particle shape plays a significant role in the behaviour of granular material.

The behaviour of materials which consists of non-spherical particles is

significant different from those consisting of spherical particles (Lin and Ng,

1997). Using complex irregular-shaped clumps to represent each particle in the

pressuremeter test simulation is not practical due to the calculations being too

time-consuming. However the spherical shape is too idealized to represent real

granular material elements like sand grains. The real sand particle is irregular

and involves more complex intergranular interactions than spherical particles.

For these reasons, a simple non-spherical particle of two-ball clump was used

in these simulations. In this research, two simple shapes were used in the

pressuremeter test simulations to represent the soil particle. The shapes (sphere

and two-ball clump) are shown in Figure 7.4. The simulation results by using

spherical particles and clumps are compared with the experimental result from

Fahey (1986) to obtain a better model for modelling pressuremeter test of

granular materials.

Table 7.1 lists the properties of each sample. Sample 1 and sample 2 are loose

and dense samples constitutive of spherical particles. While sample 3 and

sample 4 are loose and dense samples made up of two-ball clumps. The initial
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porosities of these samples were produced by using different particle friction

coefficients 0.0 and 0.5 under 90kPa isotropic compaction. For the sample

consisting of either spherical particles or two-ball clumps, it is possible to

calculate the porosity using a measurement sphere, which is a function in

PFC3D. The porosity of each sphere can be obtained. The finial initial porosity

for each sample is the average value of all measurement spheres in the sample.

So many spheres are needed to cover the entire sample.

The porosity of the samples produced by using different friction coefficients

(e.g. μ=0.0 for dense samples and μ=0.5 for loose samples) for each particle

shape model is listed in Table 7.1. Monotonic loading was applied to each

sample under a constant external pressure of 90KPa. The cavity expansion

curves of these samples are plotted in Figure 7.8 and Figure 7.9. Figure 7.8

shows the simulation results of sample consisting of spherical particles together

with experimental data and Figure 7.9 shows the comparison of simulation

results of sample consisting of two-ball clumps and experimental data. This

experimental data was chosen from one of the experimental data in Figure 7.3

(SC7).

Comparing with the experimental data (Fahey, 1986), the results of sample

consisting of spherical particles are both lower than the experimental data, as

shown in Figure 7.8. While the result shown in Figure 7.9 is different, this

experimental data is between the results of loose sample and dense sample

using clumps.
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Figure 7.8: Results of pressuremeter test simulation for both dense and loose

samples using single spheres

Figure 7.9: Results of pressuremeter test simulation for both dense and loose

samples using two-ball clumps
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Figure 7.10 shows the contact force for dense sample consisting of spherical

particles and clumps after compaction, prior to loading. It can be seen that the

contact forces are reduced for two-ball clumps (sample 4), which is in

agreement with the results published by Lu and McDowell (2007), and that the

stress distribution for the clumps is more homogeneous because of the higher

number of contacts for sample 4. Figure 7.11 shows the contact forces for these

two samples after loading. The force around the internal wall was higher than

the other position since the internal wall is used to apply the loading.

Comparing with Figure 7.10, it can be noted that the number of contacts does

not change much during the loading. The more contacts in the sample of two-

ball clumps cause a more homogenous stress distribution, so the magnitude of

the mean contact force for sample using clumps is less than that for the sample

using spheres. Figure 7.12 shows the particle displacement vectors for the

samples of spheres and two-ball clumps drawn at the same scale. It can be seen

that the displacements of spheres on the side of internal wall are larger than

those displacements on the side of external wall and the displacements are

generally outwards. It is well known that more interlocking is displayed

between the clumps than spheres, so the displacement for the sample of clumps

is a little different. For the clumps, the particle displacements are bigger around

the side of internal wall and the displacements are outwards too. However, the

displacement distribution for the clumps is more homogeneous than that for the

spheres because the higher number of balls leads to more displacement vectors.

These particle displacements of samples were indicated at the same cavity

strain. The displacements are generally outwards for these samples, since

loading is applied.
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(a)

(b)

Figure 7.10: Contact force for dense sample of a) spherical particles (sample 2:

number of contacts=27791) and b) two-ball clumps (sample 4: number of

contacts=50268) prior to loading
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(a)

(b)

Figure 7.11: Contact force for dense sample of a) spherical particles (sample 2:

number of contacts=27800) and b) two-ball clumps (sample 4: number of

contacts=50106) after loading
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(a)

(b)

Figure 7.12: Total displacements for sample of a) spherical particles and b) two-

ball clumps after loading
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It can be noted that the stress-strain response of an assembly depends not only

on the particle shape but on interparticle friction as well (Lu and McDowell,

2008). A series of simulations was performed to investigate the effect of

friction coefficient. Different particle friction coefficients (varying from 0.5 to

0.9) were applied to the sample with dense random packing of spherical

particles. The effect of particle friction coefficient on the cavity expansion

curve is shown in Figure 7.13 for just the dense samples. It can be seen that the

friction coefficient has a large effect on the cavity expansion curve when the

friction coefficient is lower than 0.7. However, it makes little difference to the

behaviour of cavity expansion when the friction coefficient is changed from 0.7

to 0.9. Comparing with experimental result (as shown in Figure 7.13), the

cavity expansion curves in the simulations are still lower than that of the

experimental test, even when a high friction coefficient is used.

Figure 7.13: Effect of particle friction coefficient on expansion curve of spherical

particles
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Therefore, the correct behaviour cannot be modelled by purely increasing the

friction coefficient. A real sand particle is typically non-spherical with a rough

surface texture (as shown in Figure 7.1) and particle interlocking plays an

important role in the soil behaviour of cavity expansion. The different particle

friction coefficients (0.5, 0.7 and 0.9) were used in the dense and loose sample

of clumps as well. Cavity pressure for different particle friction coefficients of

these samples during cylindrical cavity expansion is plotted in Figure 7.14, that

the same results were observed in Figure 7.13. The cavity expansion curve

increases with the particle friction coefficient increasing. The behaviour of

cavity expansion is affected by the particle friction coefficient, especially when

the friction coefficient is low. After the particle friction coefficient was high

enough, the particle friction coefficient did not obvious influence the behaviour

of cavity expansion. It can be seen in Figure 7.13 and Figure 7.14, the

interparticle friction has made a contribution to the maximum cavity pressure,

but does not affect the stiffness of samples much.

The general results of different particle shapes are discussed before. As can be

seen in Figure 7.8 and Figure 7.9, the maximum cavity pressure increase with

particle angularity increasing and increasing particle angularity gives a higher

sample initial stiffness. The material used in the laboratory test is Leighton

Buzzard sand. The real shape of particle is non-spherical, so the particle shape

must be the principal reason to affect the material behaviour in the simulations.

It can be seen in Figure 7.8 and Figure 7.9, the laboratory test can be simulated

better using clumps than spheres. The simulation result with clumps is similar

to the experimental test result than the one with spheres.
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(a)

(b)

Figure 7.14: Effect of friction coefficient on expansion curve using two-ball

clumps (a) dense sample (b) loose sample
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The experiment data is between the results of dense and loose samples using

two-ball clumps, as shown in Figure 7.9. The closer simulation result to the

experimental data could be obtained when the initial porosity is selected

between the porosities of these two samples. In this case, the sample of similar

initial porosity with experimental test needs to generate for the simulation.

More generally, the particle is generated using two-ball clump which is closer

to the real material element than spheres.

7.4.2 The sample porosity

The experimental results are compared with the results of existing simulation

results, but the initial sample porosities are all different from the sample in the

experimental test. Simulation of a material’s macro behaviour using DEM is

difficult as the choice of micro-properties is complicated. Further, the validity

of current simulation methods of pressuremeter tests will be assessed by

comparison with the experimental results. From the comparison result in

Figure 7.14, it can be noted that the sample of similar porosity with the

experimental test in the simulation is required. One simulation result using

sample consisting of two-ball clumps with the initial porosity of 0.33 and

particle friction coefficient of 0.5 is compared with the experimental test data

(the porosity in the experimental test is 0.34), as shown in Figure 7.15. We can

see that this simulation result is closer to the experimental result comparing

with the results in Figure 7.8 and Figure 7.9. However, the simulation result is

still lower than the experimental data. It is clear to see that increasing the

sample initial porosity to 0.34 (the initial porosity in the experimental test)

causes the sample cavity expansion curve lower, not higher. That means the
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sample porosity changing from 0.33 to 0.34 can not make the comparison

result better. Though the porosity 0.34 is performed in the experimental test,

the particle shape in the simulation is not exactly same with the real soil

element shape in the experimental test. We can not expect to get the better

result using the same initial porosity with the experimental test since different

particle shapes of samples are used.

Figure 7.15: Results of comparison between the experimental data and DEM

simulation of two-ball clumps using particle friction coefficient of 0.5

It can be noted that the interparticle friction has an important effect on the

maximum cavity pressure, as shown in Figure 7.14. The maximum cavity

pressure increases when the particle friction coefficient increases. The particle

friction coefficient 0.7 was used in the simulation and compared with the

experimental result together with the result using particle friction coefficient of

0.5, as shown in Figure 7.16. The particle properties and sample initial
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porosities are shown in Table 7.2. As we expected, the experimental data is

between these two simulations results and the difference of them is very small.

We consider that DEM can simulate the pressuremeter test properly if realistic

particle shape and properties are used in simulations.

Figure 7.16: Results of comparison between the experimental data and DEM

simulation of two-ball clumps using particle friction coefficient of 0.5 and 0.7 and

initial porosity of 0.33

Sample Initial porosity Particle friction coefficient and stiffness

Sample of two-ball clumps 0.33 0.5 1×106N/m

0.33 0.7 1×106N/m

Table 7.2: Particle properties and initial porosities of the samples in DEM

simulations



192

7.4.2.1 Limit pressure

In Figure 7.16, it is demonstrated that the limit pressure would be reached at a

cavity strain ε of about 7% for the experimental data. For the pressure-

expansion curves of two simulations using two-ball clumps, the maximum

pressure were reached at a strain of about 5% for both of them. It can be seen

in Figure 7.16, limit pressure for experimental test data was around 610kPa at

cavity strain ε=7%, while the limit pressures obtained in the DEM simulation

were 580kPa and 630kPa at around the same cavity strain ε =5%. It is clear that

the limit pressure in the experiment test occur at cavity strain ε=7%, which is a

little late than that in both of two DEM simulation results (the limit pressure

happen at cavity strain ε=5%). Figure 7.16 shows that the DEM simulation

results have a good agreement with the experimental test data. The limit

pressure in the experimental test is between that in these two simulation results.

7.4.2.2 Dilation angle

The dilative behaviour of granular material is very important. Dense granular

materials will dilate during shear due to the interlocking between the soil

particles. One of the fundamental issues to model the stress-strain behaviour of

a soil is to correctly describe its dilatancy. Dilatancy is used to describe the

increase in volume of dense sand during shearing, the maximum rate

corresponding to the peak stress. A parameter known as the angle of dilation (ψ) 

is defined to represent the rate of dilation. In a conventional in situ

pressuremeter test, displacement measurements can only be made at the cavity

wall. It is difficulties in calibrating the system and only qualitative results were

obtained. While comparing with the experimental method, the inner and outer
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boundary displacements can be recorded easily using PFC3D program in the

DEM simulation.

In the Figure 7.17, the displacement of the outer boundary (ξb) is plotted

against the displacement of the cavity wall (ξa) for the simulations of two-ball

clumps using particle friction coefficient of 0.5 and 0.7. The plot is initially

curved and thereafter can be approximated by linear portion. Based on the

equation 7.3, the dilation rate can be determined using slope ξb/ξa (Jewell et al.,

1980). The values of ψ can be obtained using this manner for the performed 

simulations using particle friction coefficient 0.5 and 0.7, as the two straight

lines shown in Figure 7.17.
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Figure 7.17: Boundary displacements of simulation using samples of two-ball

clumps and particle friction coefficients of 0.5 and 0.7

It can be concluded that the dilation angle for the sample of particle friction

coefficient 0.5 and 0.7 are 16° and 23° using equation 7.3. While the dilation
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angle in the experimental test was 19° (Fahey, 1986). It is clear that this result

is coincident with the result obtained before (Figure 7.16). The dilation angle

of sample in the experimental test is between the angles of samples in the DEM

simulation.
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Where ξa, ξb are radial displacement at the inner and outer boundaries; a and b

are inner and outer radii of a cylinder; ψ is dilation angle.  

7.5 Conclusions

DEM successfully simulates the typical granular material behaviour in the

pressuremeter test. These simulations show that particle properties have a great

effect on the soil behaviour. The comparison between the DEM simulation

results and the laboratory test results shows that the result using clumps is

better than the result using spheres. The peak cavity pressure and friction angle

of sample increase when the particle friction coefficient increases or when the

particle shape is irregular.

The comparison of the DEM simulation result and the experimental test data

shows a good agreement. The key contribution is that the pressuremeter test of

granular materials can be modelled using DEM, providing micromechanical

insight into the behaviour. The validity of the DEM solutions has been assessed

by comparing them with the results of pressuremeter tests conducted in the

laboratory.
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR FUTURE

RESEARCH

8.1 Summary and Conclusions

The aim of cavity expansion simulation is to investigate the effect of micro

parameters on macro response of granular material during the cavity expansion

condition. A three-dimensional discrete element method computer code PFC3D

has been used to investigate the mechanical response of cohesionless granular

materials under cavity expansion. In this study, granular materials have been

modelled by spheres and non-spherical particles (two-ball clumps). DEM

simulations of cavity expansion and laboratory tests in the pressuremeter test

were performed to investigate the effects of particle properties and sample

initial state for assemblages on their mechanical response. Particles of 0.075m-

0.1m diameter were used to simulate a granular material during cavity

expansion, and the effects of the interparticle friction, particle shape and initial

porosity of an assemblage on its cavity expansion curve were investigated

using numerical simulations. Particle followed the size distribution of Leighton

Buzzard sand was used to simulate the pressuremeter test.
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8.1.1 Effect of the particle shape and interparticle friction

Particle properties play an important role in determining the mechanical

behaviour of granular material. Simulation of material behaviour using DEM is

difficult as the particle properties are complicated to choose. The effects of

particle friction coefficient and particle shape on the cavity expansion

behaviour have been studied in the monotonic loading. The conclusions are:

1. The friction coefficient between the particles has a large effect on the

maximum cavity pressure, but not on the ultimate cavity pressure. The

peak value of cavity pressure increases when the particle friction

coefficient increases.

2. A simple procedure has been developed which permits the generation

of clumps of overlapping spheres to simulate different particles. In the

pressuremeter test simulations, the mean contact forces of sample using

clumps are found to become lower and more homogeneous than that of

spherical particles.

3. Results using the angular clumps show a more realistic response than

those using spheres by comparing with laboratory test results. This

difference can be attributed to the interlocking provided by the angular

clumps, which affects the rolling resistance and particle displacements.

4. The effect of particle shape is also studied in the cavity expansion

simulations. Both peak cavity pressure and ultimate cavity pressure

increase with increasing particle angularity, and increasing particle

angularity give a higher initial stiffness.
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8.1.2 Effect of sample initial state

The effect of sample initial states on soil behaviour in cavity expansion has

been investigated. The mechanical behaviour of granular material under

monotonic loading of different initial states has been investigated in the cavity

expansion. Sample initial porosity and initial cavity pressure both play a

significant role in the DEM simulation of cavity expansion. The conclusions

are:

1. From the simulations of samples using different initial porosities, it is

found that the maximum cavity pressure increases significantly while

the value of initial porosity decreases. However, the initial porosity

does not affect the ultimate cavity pressure much. All the ultimate

cavity pressures reach almost the same value for different initial

porosities.

2. Simulations of different initial cavity pressures were conducted. It can

be seen that the value of cavity pressure increased with increasing the

cavity pressure level at a given cavity strain. It can be easily obtained

that increasing the initial cavity pressure increases the soil resistance.

The comparison of the simulation results with the theoretical results shows a

good agreement. The key contribution is to show that the cavity expansion of

granular materials can be modelled using DEM, providing micromechanical

insight into the soil behaviour. Cavity expansion analysis can be used to

explain the soil behaviour in the pressuremeter test and the validity of DEM

solutions of the pressuremeter test can be proved by comparing them with the

results of the pressuremeter tests conducted in the laboratory.
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8.2 Suggestions for Further Research

The results of sample using spherical particles with no bond for the cavity

expansion have been examined by comparing with analytical solution using

cavity expansion method. Particle shape significantly affects the response of

the granular material. The future work in this research will investigate more

different shaped particle models in cavity expansion simulation. The same

particle properties will be used in the biaxial test simulations to investigate the

material behaviour and sample properties for the cavity expansion method to

obtain the analytical solutions.

Pressuremeter test is an application of cavity expansion. DEM has been used to

simulate in this pressuremeter test. The simulations carried out in this research

focus on the simple shaped particles. In the future work, more realistic particle

shape models will be used to get a better result since particle shape is an

important factor. However, it should be noted that the size and shape of

fragment in the natural particle are determined by contact force distribution of

flaws in the particle. Therefore, in further work, the particle model should also

be able to capture realistic particle fracture.

As for the clumps (spheres overlap), the total volume of spheres in a clump is

greater than the volume of the clump (overlap between spheres in the clump

counted once), and the mass of the clumps is therefore greater than the mass of

a clump (overlap between spheres in the clump counted once) with a uniform

density. As there is overlapping of spheres within a clump, a contribution to the

mass in the overlapping region from each of the overlapping spheres is

considered. This also affects the moment of inertia tensor of the clump since
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the mass is not uniformly distributed within the clump. A method for

producing clumps with uniform density and correct moment of inertia tensor is

needed to be developed in the future.

A cylindrical wall was used to simulate a flexible membrane in the research.

The real flexible membrane can not be simulated since the displacement of

wall always keeps the same. Alternative methods should be developed in the

future to model the real flexible boundary conditions. Although, it is possible

to simulate a flexible membrane using a large number of bonded balls, this

makes the computations too time-consuming. Consequently, a better method is

required. Capturing the particle shape and flexible boundary is a goal in further

research. Particle shape determines the contact force distribution under the

same loading condition, boundary condition and particle arrangement.

For reducing the calculation time, a quarter of the sample was generated since

this is axisymmetric problem. In this case, extra two boundaries were generated

which do not exist in the real problem. The real problem can not be simulated

because of the boundary effects in these simulations. A better boundary is

required to model the real problem. Periodic boundary is often used to simulate

a large system by modelling a small part. To eliminate boundary effects in the

computation, simulation using periodic boundary is needed to be developed in

the future.

It has been shown that the discrete element method provides a useful micro

mechanical insight into the behaviour of granular material. However, the

contact mechanics between real particles is not fully understood in this
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research. Future research can study contact mechanics for real particle and

develop a more realistic and effective contact constitutive model in DEM.
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APPENDIX

The Numerical Servo-Mechanism

A servo-control algorithm was developed to reduce the difference between

measured and required stresses (Itasca Consulting Group, Inc., 1999). A wall

velocity is adjusted to make the measured stress close to required stress and

control the stress state. The wall velocity )(wu was calculated from a function

of the measured stress σmeasured, the required stress σrequired and a “gain”

parameter G in Equation A.1.

    GGu requiredmeasuredw)( (A.1)

The maximum increment in wall force arising from wall movement in one

timestep can be calculated using Equation A.2.

tuNkF w
c

w
n

w  )()()(  (A.2)

where Nc is the number of contacts on the wall, and kn
(w) is the average stiffness

of these contacts. Therefore, the change in mean wall stress (Δσ(w)) is

calculated by Equation A.3.
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where A is the area of wall.

For stability, the absolute value of the change in wall stress must be less than

the absolute value of the difference between the measured stresses and required

stresses. Thus, a relaxation factor (α) is used and the stability requirement

becomes:

  )(w (A.4)

Substituting Equations A.1 and A.3 into Equation A.4, we can get:
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and the “gain” parameter can be determined by Equation A.6.
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Therefore, the required stress can be achieved using Equation A.1 by adjusting

the wall velocity.


