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Abstract

Problems associated with the processing and statistical analysis of image data are the
subject of much current interest, and many sophisticated techniques for extracting semantic
content from degraded or corrupted images have been developed. However, such techniques
often require considerable computational resources, and thus are, in certain applications, inap-
propriate. The detection localised discontinuities, or edges, in the image can be regarded as a
pre-processing operation in relation to these sophisticated techniques which, if implemented
efficiently and successfully, can provide a means for an exploratory analysis that is useful in
two ways. First, such an analysis can be used to obtain quantitative information relating to the
underlying structures from which the various regions in the image are derived about which we
would generally be a priori ignorant. Secondly, in cases where the inference problem relates
to discovery of the unknown location or dimensions of a particular region or object, or where
we merely wish to infer the presence or absence of structures having a particular
configuration, an accurate edge-detection analysis can circumvent the need for the subsequent
sophisticated analysis. Relatively little interest has been focussed on the edge-detection prob-

lem within a statistical setting.

In this thesis, we formulate the edge-detection problem in a formal statistical framework,
and develop a simple and easily implemented technique for the analysis of images derived
from two-region single edge scenes. We extend this technique in three ways; first, to allow the
analysis of more more complicated scenes, secondly, by incorporating spatial considerations,
and thirdly, by considering images of various qualitative nature. We also study edge recon-
struction and representation given the results obtained from the exploratory analysis, and a
cognitive problem relating to the detection of objects modelled by members of a class of sim-
ple convex objects. Finally, we study in detail aspects of one of the sophisticated image
analysis techniques, and the important general statistical applications of the theory on which it

is founded.
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Chapter 1 : Statistical Image Processing.

(1.1) Introduction.

The statistical approach to the solution of inference problems in science and engineering
proceeds as follows. First, we construct a modelling framework in which the problem and any
subsequent analysis may be formulated and interpreted. We then design and perform an infor-
mative experiment in order to gather data. If necessary, we then might make transformations
of the data, or carry out an exploratory analysis to discover broad trends and investigate gen-
eral structure. We would then finally proceed with a detailed analysis to complete the inferen-
tial process, and attempt to report a coherent and relevant solution to the problem, conditional

on the data observed.

Now suppose that, given a suitable framework, the collated data takes the form of a set
of observations spatially configured in at least two dimensions, relating to the physical or
measurable attributes of a collection of subsets or regions in again at least two dimensions
(either identically or in projection), with the relationship being regarded as stochastic rather
than deterministic. Suppose that we have interest in making inferences about these (unobserv-
able) attributes and their spatial inter-relation. Then the corresponding exploratory and
detailed inference problems are referred to as statistical image processing and image

analysis.

In this introductory chapter, we give a brief indication of the history of the development
of image processing techniques and note several important and influential references, and list a
selection of some of the most important fields of application. We also attempt to provide a
motivation for the use of specifically statistical techniques discussed and developed in this
thesis. Later in this chapter, we present a glossary of important terms, and discuss what we
regard to be the fundamental problems in image processing. Finally, we set out the aims and

intentions of the work presented in this thesis.

(1.1.1) History and Applications.

The problems associated with the collection and processing of image or signal data are
familiar in scientific and engineering circles, and research extending over the last 30 years, in
conjunction with tremendous advances in computer and other related technology, has given
rise to an extensive literature. It is only relatively recently, however, that these problems have
been embraced and addressed by the statistical community, whereas previously the majority of
frontier work had been carried out in the research departments of electrical and electronic

engineering, and computer science, in both industrial companies and academic institutions.
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Some idea of the how the subject has developed over this period can be gained with
reference to several periodical publications. Journals associated with the Institute of Electrical
and Electronic Engineers (I.E.E.E.) have been and are popular media for the presentation of
both statistical and non-statistical work; see, in particular, I.E.E.E. Proceedings, and Transac-
tions on Information Theory, on Acoustics, Sound, and Signal Processing, and latterly on Pat-
tern Analysis and Machine Intelligence. Other useful specialist journals include Pattern
Recognition and Computer Vision, Graphics, and Image Processing. It is from such sources
that the majority of our background references will be drawn, and jointly serve as an orienta-
tion for the work that we shall present. An important and comprehensive introductory text
with an emphasis on aspects of "classical” image processing and analysis techniques is that of
Rosenfeld and Kak (1982). See also Andrews and Hunt (1977), Pratt (1978), and
Schowengerdt (1986).

Prior to 1970, little concerted effort had been applied to the problem in a specifically
statistical framework. Problems such as classification and discrimination that, as we shall see
later, are closely related to the image analysis problem, had been studied extensively, but with
the relevance being consequential rather that motivative. Early works in which statistical
analysis was fully considered are Fukunaga (1972) and Duda and Hart (1973). These again
are excellent introductory texts. An important influence on the development of statistical
image analysis was Besag (see, for example, Besag (1974,1975,1977,1978)) who pioneered
work on spatial probability structures and statistics, although at that time the link was still
largely incidental. In last ten years, the growth of interest in the subject has been rapid, and
many important and interesting papers have appeared. We note two in particular - Geman and
Geman (1984) and Besag (1986) - which have motivated much subsequent research. We shalli
see and discuss further the particular relevance of each of these papers in the remainder of this
chapter, and in several subsequent chapters. Note also Ripley (1988) as an important refer-

ence regarding spatial data analysis.

The works listed above, and the extensive references that they contain, represent a
comprehensive bibliography of published work relating to image processing and analysis. A
recent addition to the literature is a Special Issue of the Journal of Applied Statistics, which
contains a useful introductory paper by Dubes and Jain (1989), and an overview of current

research.

Many practical applications of image processing and analysis exist. Without quoting
specific examples or providing details, the most important of these applications relate to
agronomy (inference about land-use from satellite images), astronomy (studying the motion of
galaxies), industrial processing (automated manufacturing and quality control), medicine
(internal body imaging), and the military (intelligence, reconnaissance, defence/offence Sys-

tems), relating variously to the imaging techniques of, for example, photography, tomography,
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radiography etc. Although aspects of the problem differ in each of these examples, a single

general framework and terminology will suffice for all of them.

(1.2) Terminology and notation.

As indicated above, before we can perform any statistical image processing or analysis,
we must first construct a framework in which the analysis and its results may be interpreted.
Prior to this, however, it is also necessary to develop an unambiguous and definitive terminol-
ogy with which we may communicate. From a statistical perspective, the terms that we use
and their meanings are widely recognised and understood. In the specific context of image
processing, however, no formal syntax or semantics have ever been established in the general
literature, with terms and definitions being either duplicated or otherwise insufficiently precise.
A series of papers of Rosenfeld in the journal Computer Graphics and Image Processing, and
the important book by Rosenfeld and Kak have gone some way to developing the fundaments
of a language for the subject, to which a statistical aspect has been added by Fukunaga, Duda
and Hart, and, perhaps most significantly, Besag (1986), who has had the most profound con-
temporary effect on the attitudes of statisticians, stimulating a great deal of the current interest
and research. In this thesis, we follow generally the definitions and terminology introduced in
these references, but also hopefully we will exclude any ambiguities, inconsistencies, and
redundancies. Later, we shall present a glossary of important terms and the interpretation they
will have in our subsequent work. We begin by introducing some notation necessary for our

statistical formulation.

Recall that in the image processing data analysis problem, we are to observe in some
space, subsequently denoted ¥ , data that arise indirectly from the physical or measurable
aspects of a collection of entities in some other space, denoted €. We shall denote the
observed data by Y, and the unobservable quantities from which Y is derived by 8. In addition,
and perhaps more usefully, we define Sy and Sy as the physical regions in (at most) Euclidean
3-space in which @ and Y - qualitatively interpreted at this stage as the characteristics of the
collection of entities of interest and the observed data, respectively - are located and spatially
configured. This definition is somewhat abstract, but its interpretation will become evident in
the light of the examples we give below. Now, due to the practical considerations of the data
collection procedure, it is necessary to impose some discretisation on the region Sy. In the
same way, but now for reasons of statistical convenience and ease of implementation, we also
consider it important to impose discretisation on Sg. Thus, it is clear that, in general, we shall
assume that Y is a vector contained in Euclidean m-space, and that @ is a vector contained in
Euclidean M-space. The elements of these vectors are commonly referred to as pixels (picture
elements). Consequently, we shall refer to the vector of unobservable pixel values @ in Sy as

the true scene pixel values, and similarly we shall refer to the vector of observed data pixel
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values Y in Sy and derived from 6 as the image pixel values.

The interpretation of the terms defined above is most readily demonstrated by means of a
simple example. Consider the case where Sy and Sy are both planar regions (that is, Sg and Sy
have the same dimension, Sy is not a projection of Sg), and furthermore suppose Sg and Sy
coincide exactly in a rectangular region of dimensions (l;,l,), denoted by S. Using the
natural coordinate system with axes parallel to the boundaries of S, we may perform the neces-
sary discretisation of Sy by imposing a n;xn, grid of rectangular pixels each of size
(!1/ny) X (I3/ny) on the region, and subsequently recording data elements per pixel. Thus, Y is
a real vector having n; X n, elements, each of which may be univariate or multivariate quanti-
ties. Similarly, we may produce a discretisation of S by imposing on it a scaled version of
this grid, consisting of N, X N, rectangular pixels of size (/,/N,) X (l;/N,), and consequently 8
is a real vector having N, X N, elements. Generally, we shall regard the elements of 8 as tak-
ing values on some set of integers rather than the whole real line, for reasons that we discuss
below. Figure 1 depicts the results of such a discretisation, with Ny = N, = 16, and
n; = np, = 8, producing square pixels when the region § is chosen to be square. The discre-

tised versions of Sy and Sy are depicted in figures 1(a) and (b) respectively.

Fig 1(a) : Sq Fig 1(b) : Sy

Clearly, this merely represents one possible version of the many different types of discretisa-
tion that may be used. It has several important features. First, the grid used to discretise Sq is
finer (or of a higher resolution) than that used to discretise Sy. Generally, we might regard the
grid used to discretise Sy as being in some sense of fixed resolution due to the practical con-
siderations of data collection as mentioned above. Therefore, we regard as coherent the use of
a grid with higher resolution as a representation of elements in the true scene. Thus, loosely,
we might regard Y as a corrupted version of a projection of 8, and, in our original notation,

M = m. Secondly, it is clear that, in this particular instance, the pixels in Sy correspond
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independently to one group of four pixels in S, with no overlapping. Such considerations will
be of importance in the subsequent statistical analysis. Thirdly, the actual nature of the pro-
cessing problem may be such that Sy and Sy have different dimensions - for instance, we may
have a two-dimensional image derived from a three-dimensional true scene, as is the case in
many medical imaging examples - in which case Sy and Sy coincide only in projection. It is
evident that each of these points reduce to the following: that, subsequent to the discretisation
procedure, we must define the precise form of the function used when mapping pixels in Sg to
pixels in Sy.

Having established the correspondence of pixels in Sy to (blocks of) pixels in Sq, we
now proceed to discuss the introduction of randomness into imaging process. It is clear that if
this process is regarded as purely deterministic, then statistical techniques are not required,
and we return to well-established and moderately successful (if intuitively unsatisfactory) non-
statistical techniques. Our interpretation of the imaging process, or the image model, is a

conventional statistical one, namely that

Data = Structure * Noise (1.1

(see, for example, Smith(1986)), where the terms " Data " and " Structure " in (1.1) correspond
respectively to "image" and "true scene" as defined above, "Noise" corresponds to the
inherent but undesirable stochastic element, and * is an operator defining precisely how the
Structure and Noise interact. This interpretation of the term " Noise " is very close indeed to
its common interpretation in the image processing context, where a noise-process is regarded
as acting to corrupt the underlying signal. Hence, we denote the noise-process by &, and thus

we may formally re-write (1.1) in the image processing context as

f:(0,e)>Y (1.2)

where f is merely some function involving the operation * and the pixel correspondence
described above. We could qualify the precise form of f (see Geman and Geman (1984) for a
mathematical exposition, and, for example, Rosenfeld and Kak (1982) for the image process-
ing aspects), or merely regard it as some "black-box" operation. We favour the latter of these
options, except where specific knowledge of the operation is relevant to our subsequent model-
ling assumptions. We hence refer to f as the image-formation process, and generally consider
its form to be a consequence of the mathematical rather than the physical aspect of the image
processing problem (although, of course, the former will typically be motivated by the latter).
We discuss the particular aspects of the choice of f in more detail in a later chapter, and we

shall see that this choice can be regarded as part of the Bayesian a priori model elaboration
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procedure, and that generally f can be assumed to take some familiar form.

Having made the largely notational and mathematical definitions above, we now seek to
define terms with a interpretation specific to the image processing context. For instance, we
have so far regarded the unobservable @ as measurable aspects of entities in €. We shall from
this point on refer to these entities as texture regions, or merely textures. This terminology is
largely adopted from traditional 2-D signal processing, and we shall regard it as generically
rather than specifically defined; that is, its actual interpretation will be contextual. Note that,
here, the texture regions are regions in (at most) 3-space, rather than being merely planar, and
that the usage of the term may or may not coincide with the more common usage. In certain
practical instances, it may be useful to refer to individual texture regions as objects, and to the
residual part of any true scene as background in the usual way. We shall also refer to particu-
lar configurations of texture regions, or indeed regions of a particular configuration as pat-
terns, and to the boundaries between adjacent textures as edges, in the usual way. None of
these definitions conflict to any great degree with those in the literature. Later, however, we
shall be making further definitions that will supercede to some extent those made previously.

First, we introduce the probabilistic formulation and notation used subsequently in this thesis.

As indicated previously, we shall attempt to solve the particular problems in image pro-
cessing that we study within a Bayesian framework, and inference about the unobservable 6
will be made conditionally on the observed data via some form of posterior distribution or
density derived from a set of qualitative and quantitative prior assumptions. For example, we
shall make decisions via posterior probabilities and carry out estimation procedures on the
basis of posterior distributions, each in conjunction with the appropriate loss-functions for
incorrect decisions. It falls beyond the scope of this thesis to review the formal (decision-
theoretic) justification for the use of Bayesian methodology, but we feel that, first, in general,
it provides the most intuitively satisfying method of solution to statistical problems, and
second, specific to the image processing context, we shall see that this form of inferential

procedure is of considerable use in the modelling of such complex stochastic systems.

It is clear that, since we shall adopt a statistical approach to image processing problems,
it will be necessary to refer notationally to certain forms of probability distributions and densi-
ties. We thus introduce the following notation. We shall write the marginal form for one vari-

able and the joint and conditional forms for two variables as

[.].[.-,-].and [.].]

respectively, with the obvious extension for higher numbers of variables. We shall also

represent the marginalisation process, of variable 8, with respect to variable 6,, say, as
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[6:] = [[61.6,].

or, equivalently,

(6] = [[o]6:]]6,].

with no other reference being made to the integrator variable. Despite the minimalist nature of
this notation, its interpretation in every context will be entirely obvious. For discrete probabil-

ities, we shall occasionally adopt the usual Pr( . ) notation.

Having introduced the basic terminology that we shall use when referring to problems in
image processing, and the necessary statistical notation, we now proceed to describe and dis-
cuss several important areas within the subject that we study in later chapters. The terminol-
ogy that we use will, on occasion, differ slightly in interpretation relative to more traditional

interpretations. However, we believe our terminology to be sensible and consistent.

(1.3) Problems in image processing.

The problems that we discuss below can be regarded as fundamental problems in image
processing, and themselves include virtually all other problems of interest in the subject. In
our description, for definiteness, we shall make specific reference to the situation depicted in
figure 1, where Sy and Sy coincide exactly in a planar rectangular region S, with each discre-
tised into grids of rectangular pixels, and where the resolutions of the two grids may or may

not be equal. We begin with what we regard as the most important problem for solution.

(1.3.1) Image segmentation.

The image segmentation problem can be presented simply as follows. Given the
observed (image) data Y, corresponding to pixel values in Sy, our objective is to allocate each
of the elements in the unobservable (true scene) vector @, corresponding to pixel values in Sg,
to one (or occasionally more) of the textures or texture regions in 6. We shall refer to the
allocation of pixels to textures as classification, both in a transitive and intransitive sense - for
example, we might validly refer to the "true scene pixel classification” for pixel i, say, mean-
ing the actual underlying value of 6;, or equally as validly to a "pixel classification procedure"
as the mechanism by which the pixels are allocated. Our interpretation of the term image seg-
mentation here is identical to that of terms such as image restoration or reconstruction that
are frequently used elsewhere in the literature. We feel that "segmentation" describes the

nature of the problem more satisfactorily than either of these options.
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We shall see later that the segmentation problem can be approached, broadly, in three
ways, which we shall refer to as estimation, probabilistic classification, and non-probabilistic
classification. Two of these three approaches, estimation and probabilistic classification, are
derived using slightly different statistical assumptions, and have different ultimate objectives,
but are generally closely related. The third, non-probabilistic classification, uses low-level or

quasi-statistical arguments, and can be thought of as principally exploratory data analytic.

We regard segmentation as the fundamental problem in image processing, since it is the
prime objective in the majority of fields of application. We thus regard the remaining prob-
lems described below as either preliminary or ancilliary to this primary objective. Later, we
discuss two cognitive problems where further inferences concerning, for example, presence or
absence of objects or patterns in the true scene are made either subsequent or in parallel to
segmentation. First, we describe a problem that can regarded as an important preliminary step

in the processing of image data.

(1.3.2) Edge-detection.

Generally, in the context of image analysis, our interpretation of the nature of the unob-
servable true scene is that it is comprised of broadly homogeneous texture regions configured
in some way in relation to each other. Inherent in this interpretation of the true scene is the
concept of boundaries between textures, or edges as defined above. Clearly, it is of interest to
be able to identify the positions of these edges. We discuss in more detail in a later section
the justification of our interest in the discernment of edge regions, or edge-detection, and at
greater length in a later chapter, where we shall note its importance as a preliminary stage in

the image processing procedure.

We shall see that, despite the considerable literature concerned with edge-detection
methodology and applications, little has been done to formulate the problem in a formal pro-
babilistic framework. This latter task is the primary concern of this thesis, and we shall see
later that, in fact, the edge-detection problem can be approached in a decision-theoretic setting
by appealing to other well-known statistical techniques. We now describe a third important

problem in the image processing context.

(1.3.3) Object detection.

Consider a texture region configuration in which one texture region is completely spa-
tially contained within another texture that itself extends to cover the remaining region of Sy.
In such a situation, we refer to these two texture regions as object and background respec-
tively, as indicated briefly above. In this situation, we frequently wish to make inferences con-

cerning the location, dimensions, and orientation of the object relative to the background, or
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relative to the chosen coordinate axes, rather than merely secking a solution to the segmenta-
tion problem. Such problems are common in many applications; for example in medical imag-
ing using data collected using tomographic methods, or in military reconnaissance using

remote sensing.

The nature of the inference problem here in this object detection problem is fundamen-
tally different to that of the segmentation problem described above. It is cognitive rather than
merely observational, and thus requires a different approach to its solution. Again, few
attempts have been made in the literature to formulate this problem in a statistical (or at least

estimative) setting. We shall attempt such an approach in a later chapter of this thesis.

Finally, we describe one further problem of a cognitive nature that is related to another

aspect of image analysis,

(1.3.4) Pattern recognition.

We defined the term "pattern” above to mean a particular configuration of texture regions
in the true scene. Implicit in this definition is the fact that such a configuration must have
some characteristic quality that allows discrimination between it and other configurations.
Thus, for any given image, we might wish to make inference relating to the presence or
absence of patterns of a particular type. We shall refer to this inferential problem as pattern
recognition, and note that it is practically relevant in many fields of application; for example,
in the regulation of industrial and engineering processes, and in the machine processing of

printed characters.

Clearly, the pattern recognition problem has links with areas of mathematics outside of
statistics. The connection with sophisticated techniques concerned with shape analysis and
morphology is obvious, but we might also note links with artificial intelligence, and also with
the mathematical formulation of psychological concepts. The major part of this broad spec-
trum of ideas obviously falls beyond the scope of this thesis. However, we shall see in a later

chapter the relevance of pattern recognition to simple problems of object detection.

We have described what we believe to be the four problems of primary interest in the
area of image processing. We have noted that generally we regard image segmentation as our
ultimate goal, but of necessity this must be proceeded by an edge-detection analysis, possibly
complemented by other inferential procedures, such as object detection and pattern recogni-
tion. The structure of this thesis is broadly along these lines. For the remainder of this intro-
ductory chapter, we describe in detail the approaches developed previously in an attempt to
solve two of these problems, namely image segmentation and edge-detection. Later, we give
an account of various statistical and non-statistical edge-detection procedures that have

appeared in the literature. First, we present a summary of the techniques that have been
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proposed as a solution to the image segmentation problem. Due to the extensive literature on
this subject, and bearing in mind that our objective is to formulate the problem in a decision-
theoretic, probabilistic framework, we shall restrict our survey to purely statistical approaches

to the problem.

(1.4) Statistical approaches to image segmentation.

As mentioned above, the problem of image segmentation has been approached in a sta-
tistical framework using techniques that fall into three broad categories. First, it has been
viewed as an estimation problem, where the elements of 8, the true scene pixel classification
values, are regarded as unknown parameters that may be estimated using classical (maximum-
likelihood) or Bayesian (maximum probability) techniques. Secondly, it has been viewed as
what we shall call a probabilistic classification problem, approached via such procedures as
cluster analysis, discriminant analysis, and predictive classification, where the elements of 8
are allocated to textures according to their fidelity to texture characteristics. (We note in pass-
ing that there are mathematical links between the maximum probability approach to estimation
described above and the minimum distance approaches inherent in probabilistic classification,
although the two approaches can be regarded as conceptually distinct.) Thirdly, the image seg-
mentation problem has been viewed as what we shall call a non-probabilistic classification
problem. We use this somewhat catch-all category to describe intuitively reasonable and effec-
tive segmentation techniques that do not fall readily into either of the other categories, but
nevertheless still use some form of statistical methods. It will become apparent later precisely
which sorts of techniques we include in this category. We now proceed to discuss each of

these approaches in greater detail.

(1.4.1) Estimation.

Before presenting a summary of estimation oriented techniques and procedures, we
introduce the specific forms of notation that we are to use. Recall equations (1.1) and (1.2),
and suppose that the stochastic relationship between 8 and Y due to &€ and quantified through f
is such that f is known. Then we write the probabilistic dependence of Y on @ as [Y | 0], with
all other aspects of the dependence being suppressed at this stage. In a classical statistical
framework, subsequent inference about @ is frequently made via maximum-likelihood
methods, so that, in particular, an estimate of 8, denoted by é, is given by

A

0 = argmgx[Y|0]

In a Bayesian decision-theoretic framework, inferences are made via the posterior distribution

for @ given Y, denoted by [ 8 |Y]. In this framework, the required estimate for 6 is derived
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from [@|Y ] and an appropriate loss function for incorrect actions, denoted by I(B,é). The

usual Bayesian risk analysis can then be used to show that if this loss function takes the form

. 0 60 =-206
(6,8) = . 1.3
( ) 1 otherwise (1.3)

then the optimal choice of 6, that is, the choice of @ that minimises the expectation of the loss

function taken with respect to [ 8 | Y ], can be shown to satisfy

6 = argmgx[9|Y] , (1.4)

that is, the estimate for @ is the joint mode of the joint posterior distribution for 8, [6]Y].
Such an estimate is termed the maximum a posteriori, or M.A.P., estimate. Alternately, if the

loss function takes the form

1(0,6) = E I(6;,6;) (1.5)
i=1

and 1( 6; ,é,-) takes a similar form to (1.3), then the optimal choice for 6 is comprised of the M
elements é,- that satisfy

6, = arg max [6:1Y] (1.6)

fori = 1,...,M, where [ 6; | Y] is the marginal posterior distribution of the single parameter

6;. Such an estimate is termed the marginal posterior modal, or M.P.M,, estimate.

In an image segmentation context, much attention has been paid to evaluating the esti-
mate of @ given by (1.4), the M.A.P. estimate, and markedly less so to the estimate given by
(1.6), the M.P.M. estimate. However, we feel that is somewhat misguided, due to the contex-
tual interpretation of the two respective loss functions. Informally, the loss function in (1.3)
can be interpreted as "all incorrect segmentations derived from the image data are equally as
bad", whereas that in (1.5) can be interpreted as "how bad a segmentation is depends directly
on the number of incorrectly classified pixels”. In the vast majority of practical applications,
the latter loss function is clearly more appropriate than the former. For example, we would
regard the segmentation in figure 2(a) when the true scene comprised a centrally positioned
square region on a background as inferior to the segmentation depicted in figure 2(b). How-

ever, under the loss function in (1.3) the two segmentations are regarded as equally incorrect.
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Fig 2(a) : segmentation (a) Fig 2(b) : segmentation (b)

Clearly, before we are able to report the required estimates we must first evaluate the
joint posterior distribution, [ @ | Y |, or the set of marginal posterior distributions, [8; | Y] for
i = 1,...,M. In the Bayesian paradigm, evaluation of these posterior forms involves the
specification of a prior distribution for the unknown parameters of interest. The nature of this
prior distribution is that it should both qualitatively (through the choice of functional form)
and quantitatively (through the choice of prior parameters) reflect our subjective opinions and

beliefs relating to these parameters.

In the image segmentation context, for definiteness, we shall consider the specification of
a joint prior structure for the true scene parameters, denoted by [ 8], and the evaluation of the
joint posterior distribution [0 | Y]. It is clear that the joint and marginal prior and posterior
distributions are, in fact, deterministically related, and that specification of a joint structure

induces a marginal structure. Via Bayes theorem we have that
[61Y] = [¥]0][6], (1.7)

where [Y | 8] is the likelihood function. The problem thus reduces to specifying interesting
forms for likelihood and prior, and identifying and evaluating the posterior distributional form
that appears in (1.7).

Despite the fact that we might regard regard the form of [Y | 8] as fixed (by f), it is
still strictly a consequence of our (prior) modelling assumptions, and thus we might view (1.7)
as equivalent to a simple prior-posterior probability map. However, due to the practical con-
siderations of the data collection process, the form of [Y | 6 ] is often restricted to be one of a

small number of familiar functions. We are typically more at liberty to choose the form of
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[8] since it will express our opinion concerning the nature of the unobservable true scene.
Thus, with respect to the other terms in (1.7), it is the model for the true scene pixel parame-
ters as represented by [9] that offers the greatest scope for more refined modelling and subse-
quently improved analysis. We now discuss one general approach to specifying [ ] that has

broadly been accepted as being particularly relevant to the image segmentation problem.

(1.4.1.1) Modelling the true scene - Markov Random Fields.

Recall our general interpretation of the true scene as comprising homogeneous texture
regions separated by edges, the latter regarded as small-scale features relative to the size of
the texture regions. Thus, in any localised sub-region of the true scene we would generally
expect contiguous blocks of pixels of the same texture to exist, with isolated pixels of any
texture rarely occurring. In the light of this interpretation, one possible specification for [ 8]
may be constructed as follows. First, consider the conditional distribution of parameter 6,
given the parameter values at all other pixels, 6;, denoted by [ 8; | 6, |. Then, because of our
interpretation of the true scene, it would seem that a realistic modelling assumption is given
by

[6:1600] = [6:]6x] (1.8)

where the vector 8,; has elements which are the true scene parameter values for pixels in a
locality or neighbourhood of pixel i. This assumption is appealing in the image segmentation
context because it reflects our opinion concerning the local nature of the true scene. Thus, via
(1.8), we have an appealing conditional prior structure for the parameters 8. Probability distri-
butions exhibiting the property in (1.8) (and a further important property relating to positivity)
are referred to as Markov Random Fields, or M.R.F.s, or also as Gibbs distributions - see
Besag(1974) for further information. One important feature of such distributions (demon-
strated by Besag and other authors) is that specification of the forms for the i conditional
distributions [ 6; | 8], for i = 1,...,M, completely specifies a unique joint structure for
[ @] under weak regularity conditions. Such prior distributions have frequently been used to

model the true scene in statistical image segmentation procedures. However, the implied joint

distribution is complex, taking the form

(8] = lexp[— Y VC(B)} (1.9)

Z ceC

where C is the set of cliques (subsets of pixels in which each element is a neighbour of all
other elements, and in which all neighbours of a member pixel are contained), V, is the clique

potential for clique ¢ specified on a scale relative to all other types of clique, and Z is the
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normalising constant for the distribution. The interpretation of the joint structure is somewhat
less appealing than that of the local conditional structure, but it is nevertheless important, as
we must at all times consider the global implications of local assumptions. Again, these
definitions are most easily explained by means of a simple example. Suppose that, in two
dimensions, for any pixel i internal to the true scene pixel grid (that is, not on a boundary or
on the corner of the grid), 8;; comprises parameter values in all pixels horizontally, vertically
and diagonally adjacent to i. Then each pixel of this type is contained within ten distinct types
of clique - one of order one, four of order two, four of order three, and one of order four.
These cliques, and suggestions for choices of clique potentials, are presented, for example, in
Derin and Cole (1986). Interpreted using non-Bayesian terminology, [ 8] is often viewed as

acting as a smoothness or regularisation constraint that penalises "rough" segmentations.

As mentioned above, the appeal of the property (1.8) is somewhat lessened by the com-
plex nature of [0] in (1.9) and of the resulting posterior distribution from which the estimates
are to be derived. Also, the complexity of the induced prior marginal structure prevents
straightforward evaluation of the marginal posterior estimates; in fact, the marginal posterior
distributions are virtually unobtainable using standard techniques when a prior of this form is
used. Fortunately, a sophisticated technique for the optimisation of the joint posterior distribu-
tion has been developed, and was presented originally in the segmentation context by Geman
and Geman (1984). We now discuss the algorithm developed there, and subsequent important

developments.

(1.4.1.2) Stochastic Relaxation and Simulated Annealing - the Gibbs Sampler.

We present here a version of the original algorithm that differs somewhat in emphasis
from that given originally by Geman and Geman, taking account of recent important develop-
ments in this area. Consider the following procedure. For each pixel i, we may write down the

full conditional posterior distribution for parameter ;, denoted by [9,- Y, 0(,)], as

[6:1Y.60] = [Y]6][6:]6p] (1.10)

where [6; |68,,] = [6:|86a] for a suitable neighbourhood system defining 8;;. Under suit-
able assumptions concerning [Y ] @], the conditional distributions given by (1.10) are
straightforward to evaluate due to the simple nature of the conditional prior for 8; given 6y;.
The Gibbs Sampler, proposed by Geman and Geman, proceeds as follows. After assigning
initial values to each of the 8; in some arbitrary fashion, sample iteratively from each of the M
full conditional distributions [6; | Y,0,], with the values of the conditioning variables

chosen on each iteration to be equal to the variates most recently obtained for those variables
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by the iterative procedure. The iterative updating of the 8; by the sampled values is referred to
as stochastic relaxation (labelling, substitution). Under certain conditions (that the set of full
conditional distributions uniquely define the joint distribution, and that each conditional distri-
bution is sampled from "infinitely often"), Geman and Geman prove that as the number of
iterations tends to infinity the joint sample of 6; tends in distribution to [@ | Y] (see Geman
and Geman (1984) for full details and proofs). Clearly, this technique is also of potential use

elsewhere in Bayesian statistics, and we shall see such examples of its use later.

In the segmentation problem we therefore have a technique that allows us "eventually”
to sample from the joint posterior distribution of the true scene pixel parameters [0 | Y]. To
derive, say, M.A.P. estimates, however, we must find the mode of this joint posterior distribu-
tion. Again due to Geman and Geman, a maximisation technique is available via the Gibbs
Sampler. Instead of sampling iteratively from [6;|Y,0,] on every iteration, we sample
from {[6;|Y,0q] }"T for some T > O (which is still relatively straightforward due to its
discrete nature), and change T between iterations, starting with T large but decreasing it to
zero as the iteration number increases. As T tends to zero, the set of sampled values are con-
centrated on the mode of the joint posterior distribution. The parameter T is referred to as a
temperature, and the optimisation technique as simulated annealing, reflecting an analogy
with techniques and processes in thermodynamics. In practice, the temperature must be altered
according to a schedule that "cools" the system very slowly, and over a long time scale. Thus,

although the technique is attractive, it can be computationally very demanding.

The Gibbs Sampler algorithm and associated annealing techniques as presented by
Geman and Geman have subsequently been developed in a number of ways. The original
authors suggest the use of an edge-process to lie along the edges between pixels, to act so as
to restrict the influence of adjacent pixels lying within different texture regions. Ripley (1988)
describes how the implementation of the algorithm may be improved and devises an appealing
adaptive scheme to define the priority with which the pixel sites are visited. He also advocates
the use of an exponential cooling schedule, as opposed to the logarithmic schedule proposed
by Geman and Geman, and discusses the important issue of the assessment of convergence of
the iterative process. We return to the problems associated with convergence at a later stage.
Another amendment to the Gibbs Sampler as it was originally presented may be obtained by
noting that we can use the identical technique to sample eventually from the marginal poste-
rior distributions for the pixel parameters, [6; | Y] - this is merely a consequence of the
theorems proved by Geman and Geman, and those stated later by Tanner and Wong (1987) in
a related context. We therefore now have a technique enabling us to evaluate the M.P.M. esti-
mates for the unknown pixel parameters that were previously unobtainable under this prior
structure. More profoundly, the work of Tanner and Wong, and that of Gelfand and Smith

(199¢) and Gelfand et al. (1989), demonstrates that the Gibbs Sampler methodology may be
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applied to a much wider range of statistical inference problems than those associated with
image processing. For example, Gelfand et al. (1988) show that the algorithm may be used to
compute estimates of marginal posterior densities for unknown parameters in a wide variety of
normal data models, and Carlin er al. (1989) apply the methodology to inference problems in
changepoint models: see also Hills (1989) for further theoretical and practical considerations,
and Roberts and Polson (1990) for a general investigation of the nature and convergence of the
procedure. Returning to the image segmentation problem, however, in practice, various
difficulties may arise. Besides the problems concerned with computational load and the assess-
ment of convergence of the algorithm, Greig et al. (1989) show that, in a special case when an
exact form for the M.A.P. estimate is available, the exact estimate and the estimate derived
using the Gibbs Sampler and annealing often differ considerably. It is also widely recognised
that the choice of hyperparameters in the conditional prior distribution [ ;| 6, ] influences
the nature of the posterior distributions greatly. In particular, the M.A.P. estimate derived
from an inappropriate specification of prior hyperparameters often allocates all pixels to one
texture. These negative features are difficult to understand and foresee. Although in simple
cases we may study analytically and hence gain some understanding of the nature of the prior,
the nature of the posterior is considerably more complex. We must be aware therefore that,
despite the attractions of Gibbs distribution models and the stochastic relaxation and simulated
annealing techniques, a number of practical and theoretical difficulties remain. Indeed, several
authors (for example, Blake and Zisserman (1987)) doubt the usefulness of Gibbs models in
problems of modelling true scenes in the image analysis problem. We believe, however, that
the M.R.F./Gibbs structure captures the qualitative aspect of our prior opinion quite ade-
quately.

Several models have been proposed to represent the spatial structure relevant in image
segmentation problems. In the important papers of Besag (1974,1975), the distinction is drawn
between so-called Conditional Markov (Autoregression) (CM or CAR) models and Simultane-
ous Autoregression (SAR) models, each of which can used to specify spatial structure,
although the two approaches are not equivalent because of the different covariance structures
involved in the specifications - indeed, Molina and Ripley (1989, section 3) suggest that we
can

"think of the CAR prior corresponding to first differences being white noise but the SAR

prior to second differences being white noise.

See, for example, Kanal (1980), Kashyap et al. (1981), Ripley (1981,1988), Kashyap and
Chellappa (1983), Kunsch (1987) and Kent and Mardia (1988) for further discussion concern-
ing the representation of spatial structure. In particular, the formulation above, and those of
Hassner and Sklansky (1980), Cross and Jain (1981), Derin er al. (1984), Geman and Geman
(1984), Derin and Elliot (1987), and Cohen and Cooper (1987) fall into the former category,
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whereas, for example, those of Woods (1981), Khotanzad and Chen (1987), and Woods et al.
(1987) fall into the latter. The choice of one approach over the other usually a matter of per-
sonal taste, or due to algorithmic considerations. In this thesis, we shall adopt the former
approach, wherein, in the continuous case, the conditional expectations of the pixel values are
simple linear sums of their neighbouring pixel values. Also, Besag (1975) considered the
analysis of non-lattice data involving spatial structure. These spatial models have applications

in each of the image segmentation techniques that we shall discuss.

We have discussed in some detail the estimative approach to the image segmentation
problem, as it is with this approach that this thesis will be primarily concerned. We now dis-
cuss briefly the two other statistical approaches to this problem that have been adopted in the

literature.

(1.4.2) Probabilistic classification.

Probabilistic classification techniques such as cluster analysis or discriminant analysis
derived from classical likelihood or Bayesian posterior or predictive probability formulations
are familiar in statistics. They are largely concerned with the optimal allocation of each ele-
ment of the data set to one of a number of classes, with optimality defined in terms of
minimum distance (classical) or maximum probability (Bayesian) criteria. Hence links with
maximum probability approaches in the estimation context as described above are apparent,
although there is a clear difference in emphasis between the two approaches.

In the image segmentation context, probabilistic classification techniques require that we
allocate each pixel to one of a number of textures about which we have some prior opinion or
information relating to physical nature. In the case where no spatial structure is assumed, for
a fixed number of textures K, denoted Ty,...,T;_1, the simplest probabilistic classification
rules are defined as follows. In a classical/maximum-likelihood framework, we allocate pixel

i to texture T;, here denoted by 6; € Tj, if
(Y160, e T;] > [Y |6 eT] ., k= (1.11)

which in the Normal case reduces to a minimum-distance criterion, and, in a Bayesian frame-

work, 6; € T; if

Pr(6; e T;|Y;) > Pr(6, e T |Y;) , k # ) (1.12)

the maximum posterior probability criterion. The relationship between the estimative and allo-
cative maximum-likelihood and Bayesian approaches is evident through the forms of (1.11)

and (1.12) and the forms that appeared in section (1.4.1), particularly equation (1.6). Again,
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we concentrate here on the Bayesian formulation. In the usual way, we may rewrite the terms
in (1.12) as

Pr(6; € T;|Y;) = [%|6; € T;]Pr(6; € Ty) (1.13)

where the first term on the right-hand side is now generally an integrated likelihood derived
from the modelling and prior assumptions, and the second is the prior probability of pixel i
being a member of texture T;. Thus, comparisons of the sort necessary to achieve a maximum
posterior probability classification of each pixel in the image defined by (1.12) are straightfor-
ward through (1.13). A complicating factor is that the parameters appearing in the likelihood,
the texture parameters, are generally unknown and so must be estimated using training data
from regions in the image known a priori to be derived from individual textures, or have some
prior distribution specified for them, or be estimated as part of an iterative classification pro-
cedure such as the K-means algorithm described by Hartigan (1975). See also Duda and Hart
(1973) as another general reference on the use of discriminatory probabilistic techniques in the

image analysis problem.

General features of this simple approach are that the conditional distributions of data
values given the texture parameters take on well-known and tractable forms (usually Normal),
that there is no structure in the true classification, and that each datum point is allocated to
only one of the K possible classes. In the image processing context, the first of these is neces-
sary and acceptable, but the second and third perhaps seem inappropriate. We have described
above the advantages of introducing some from of spatial structure into our prior specification
for the true scene pixel classification, and such a spatial element has been introduced into the
classification problem by, for example, Fu and Yu (1980), Switzer (1980,1983), Mardia
(1984), Haslett (1985), and Klein and Press (1987). We also recognised in our initial formula-
tion of the image processing problem that each observed image pixel value may be derived
from a number of true scene pixels, and in a similar way we might entertain the possibility
that each pixel value in the image was an observation from the mixture of the K individual
texture probability distributions [Y, | 6; € T,,] weighted by some unknown factor wy,
k = 0,...,K—1. Interest would then lie in making inferences concerning the w; for each i,
interpreted as representing the proportion of pixel i belonging to texture T,. Such an approach
is termed fuzzy classification, and the procedure is described in more detail by Kent and Mar-
dia (1988); see also the recent work reported by Cannon et al. (1986) and Gath and Geva
(1989). We accept the appeal of such an approach in the classification context, but note that
the M.P.M. technique described above, with the Gibbs Sampler used to compute approximate

marginal posterior distributions for the true scene classification parameters, seems itself to

provide a suitably fuzzy rule, which we "harden” by recording only the posterior modal texture
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for each pixel.

Finally, we turn to the third category of classification techniques that we loosely
describe as being non-probabilistic, although in general these techniques will have some basis
in probability. The techniques are largely informal in nature, but are nevertheless worthy of

mention.

(1.4.3) Non-probabilistic classification.

The first example that we study in this section relates to much of the work discussed in
(1.4.1) and (1.4.2) above. It was proposed initially by Besag (1983), and discussed later in
more detail by the same author (Besag (1986)). We regard it as an informal technique, as the
theory underlying the algorithm through which it is implemented in somewhat incomplete, yet

one which neatly captures several of the important aspects described above.

(1.4.3.1) Iterated Conditional Modes.

Consider the modelling of image-formation and noise process leading to (1.2), and the
Bayesian formulation of the estimative approach to image segmentation described in (1.4.1).
Consider in particular the modelling assumptions relating to the M.R.F. prior for the true
scene pixel classifications defined through (1.8) and (1.9), leading to the full conditional poste-
rior distribution for parameter 6;, [9,- | Y,B(,)], given by (1.10). Besag proposed that, rather
than sampling randomly and iteratively from the each of these full conditional distributions
and using annealing eventually to locate the joint maximum or marginal maxima, we should at
each stage merely locate the mode of each univariate distribution [6;|Y,6,] deterministi-
cally, and then use the modal ordinate as the current value of the parameter 6; to be used as
the value of the conditioning variable in the subsequent iterative procedure. This technique
captures the important spatial element, and the maximisation step reflects our interest in the
modal estimates. Besag termed this technique Iterated Conditional Modes, or I.C.M.. In
practice the algorithm often produces adequate segmentations in a remarkably few number of
iterations, and thus is less computationally demanding than the Gibbs Sampler. However, the
problems of choice of hyperparameters in the M.R.F. prior and the assessment of convergence
of the algorithm still remain. Indeed, as the algorithm proceeds, the quality of the segmenta-
tion often deteriorates. Despite this, the I.C.M. technique can be regarded as more robust (in
the short term) to the nature of the prior field specification; that is, segmentations consisting

entirely of one texture will only occur after a large number of iterations.

Besag also discusses an estimation scheme for the texture parameters appearing in the
likelihood that will in general be a priori unknown - this point was not discussed by Geman
and Geman when the Gibbs Sampler was introduced initially. The estimation technique pro-

posed by Besag (1974,1986) is that of maximum pseudo-likelihood, where the estimates are
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those values maximising a function derived as the product of the likelihood functions of non-
independent sets of variables. Although not a true maximum-likelihood estimate for the vector
of unknown parameters, this estimate can be proved to have certain similar attractive proper-
ties (see, for example, Besag (1977) on efficiency, Geman and Graffigne (1987) on con-
sistency, and Lakshmanan and Derin (1989) for further discussion), and can be regarded as an
adequate approximation to the true maximum-likelihood estimate. The problem of parameter
estimation in M.R.F.s specifically in the image processing context has never been adequately

solved in a Bayesian framework.

Thus the I.C.M. technique, although appealing in many ways, actually involves some
rather ad hoc procedures, and, unlike the Gibbs Sampler, has little theoretical justification -
there are no convergence results equivalent to those proven by Geman and Geman. Note also
that the resulting segmentation has no associated measure of uncertainty, one principal
justification for the use of statistical methods in image segmentation. Its chief role currently is

to act as a pre-processing procedure for other, more formal, techniques.

(1.4.3.2) Thresholding.

The second informal segmentation technique that we discuss is known as thresholding.
Consider the problem of allocating each pixel in the image to precisely one of K textures.
Suppose that the textures are homogeneous, and numbered so that the texture mean levels
Ho,....Hxg_, form a monotone increasing sequence. Then by choosing K-—1 constants
t;,... g that also form a monotone increasing sequence, we might classify pixel i to tex-

ture T; if the realisation of variable Y;, denoted by y;, lies in the interval between ¢; and ¢,

J
with ¢, and 15 suitably defined as negative and positive infinity, respectively; that is,

<y <ty = 6, €T, , j= 0,...,K-1. (1.14)

Clearly, such a procedure is related to the simple probabilistic classification methods
described above, under assumptions of normality, common noise variance across the image
and a maximum-likelihood/minimum-distance criterion, or a maximum posterior probability
criterion under a vague prior specification. More generally, it can be regarded as a simple
non-parametric segmentation technique - this is its familiar interpretation in classical image
processing. However, the segmentations obtained are sensitive to the particular threshold
values chosen, whether the choice be made using exploratory methods (histograms), through
information from training data, or prior knowledge of the true scene. Ridler and Calvard
(1978) proposed a simple adaptive thresholding procedure. More recently, Mardia and Hains-
worth (1988) developed a spatial thresholding method by incorporating the prior knowledge of

spatial structure discussed above, and presented a comparison of techniques for a number of
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images. See also Perez and Gonzalez (1987) for another adaptive thresholding algorithm.

The iterative and adaptive thresholding techniques described above perform remarkably
well despite their simple nature. Again, however, as for the I.C.M. technique, the segmentation
carries with it no associated measure of uncertainty, and thus might similarly be regarded as a

pre-processing operation to be carried out prior to a more sophisticated analysis.

Finally, we mention briefly two further approaches to image segmentation that are imple-
mented as optimisation procedures. First, variants of the EM-algorithm (Dempster et al.
(1977)) have commonly been used to obtain estimative maximum-likelihood segmentations
from noise-corrupted images. Most recently, Silverman et al. (1990) developed a version of
the algorithm to reproduce images from data in the context of a positron-emission tomography
experiment by including a smoothing step. This iterative algorithm produced more than ade-
quate results in practice, but again convergence issues proved difficult. Also, again, point esti-
mates only are obtained by such procedures. Secondly, Gull and Skilling (1985) proposed
maximum entropy as a methodology and criterion for solution of the segmentation problem.
Such a technique commonly involves considerable computational expense, and also Molina
and Ripley (1989) question the validity of the approach to image segmentation, due to the

nature of the entropy "prior” function.

(1.5) Edge-detection.

As mentioned above, edge-detection must be regarded as an important preliminary
operation in any form of image analysis. It is evident, for example, that although the
specification of M.R.F. prior forms for the true scene classification via simple local condi-
tional distributions is adequate for pixels internal to a large homogeneous texture region, such
simple assumptions will not be appropriate at or near texture boundaries. Naturally, therefore,
the edge-detection problem has received considerable attention in the classical image process-
ing literature. A review of edge-detection techniques can be found in Rosenfeld and Kak
(1982, chapter 10). We note in particular the work of Nevatia and Babu (1980), who used
simple thinning and thresholding techniques as the basis of a line-finding algorithm, and the
work of Marr and Hildreth (1980), Haralick (1984), Nalwa and Binford (1986), Chen and
Medioni (1989), De Micheli er al. (1989), and Zhou et al. (1989), who used a variety of tech-
niques based on localised differential operators under simple statistical (Gaussian) assumptions
for the image model. Such techniques commonly involve numerical differentiation or approxi-
mation to differentiation, and subsequent optimisation of the first derivative (extrema
methods), or location of positions where the second derivative is zero (zero-crossings
methods): see also Torre and Poggio (1986) for a discussion of the two related (but non-

equivalent) techniques and a description of a regularisation approach to the edge-detection
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problem, and the work of Canny (1986), who also uses an essentially regularisation-based
approach. As such techniques commonly revolve around local operations performed in series
for different sub-images or windows within the complete image, subjective choices must be
made concerning the size of window used and the precise way in which the results from dif-
ferent windows of possibly different sizes are to be combined: see Lu and Jain (1989) for a
discussion of such problems. This class of techniques often produces impressive results. How-
ever, we are of the opinion that the localised nature of such techniques is, in fact, in direct
conflict with our interpretation of many edge-detection problems. We justify this opinion in
more detail in chapter 2, where we shall see that a re-formulation of the edge-detection prob-

lem is indicated.

We briefly mention other edge-detection techniques which display a rather more formal
statistical nature. Mascarenhas and Prado (1980) devised a complex Bayesian multiple
hypothesis testing procedure from decision-theoretic principles. Cooper and Sung (1983) also
adopted a Bayesian approach using a multiple-window optimal boundary finding algorithm.
Recently, Bouthemy (1989) proposed a likelihood ratio hypothesis test for the detection of
moving edges. Finally, Kashyap and Eom (1989) also devised a likelihood ratio test for edge-
detection in images with more than one texture. This last technique is interesting as it attempts
to locate edges by inspection of the data in relatively large segments in adjacent rows/columns

of the image. We shall see the relevance of such an approach to our own work in chapter 2.

In general, therefore, we regard the complete edge-detection problem to be composed of
three sub-problems; the detection stage itself, and subsequent localisation (removal of false
edge-points etc.) and reconstruction or representation of the edge. In this thesis (chapters 2
to 6) we discuss various aspects of each of these problems. We be concerned in particular with

a new approach to the detection stage of the problem derived from a Bayesian decision-

theoretic viewpoint.

(1.6) Plan of thesis.

The structure of this thesis will be as follows. In chapter 2, we consider the edge-
detection problem in more detail, and attempt to formulate it in a formal decision-theoretic
framework. In this framework, we shall see that in certain circumstances the edge-detection
problem in image processing can be interpreted as a familiar problem in a more general statist-
ical context. On the basis of this analogy, we develop an edge-detection scheme with reference
to an image derived from a simple true scene, with emphasis being placed on the need for
computational efficiency. We discuss the advantages of our scheme over the local and ad hoc
techniques described in section (1.5). In chapter 3, we adapt our formulation for the analysis
of images derived from more complex true scenes, such as those containing convex objects

and multiple texture regions. We shall often see that exact analysis is possible but
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computationally demanding, and thus we shall seek to develop various approximation stra-
tegies. In chapter 4, we incorporate notions of localised pixel dependence and edge continuity
into our original formulation. In chapter 5, we study the performance of our proposed scheme
in the analysis of images derived using a range of image-formation processes. In chapter 6, we
consider the reconstruction of edges from the sets of edge-points returned by our edge-
detection scheme, and develop a procedure for the estimation of location, dimension, and
orientation parameters for a particular class of simple convex objects. We also consider the
detection of single or multiple objects in images using a variation of our original edge-
detection scheme. Finally, in chapter 7, we show how the edge-detection routines developed in
previous chapters can be incorporated into segmentation schemes at the early stages of the
sophisticated procedures described in section (1.4). Also, in the context of the related seg-
mentation problem, we develop an amended version of the Gibbs Sampler algorithm to over-
come the difficulties associated with the estimation of texture parameters mentioned briefly in
section (1.4.3.1).
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Chapter 2 : Edge—Detection in Image Processing.

Edge-detection in its broadest sense is a segmentation technique based on the detection
of localised discontinuities in an image true scene that arise at texture boundaries. It is widely
regarded as an important first step in image processing for a number of reasons. First, and very
loosely, most of the "information" contained in an image is to be found at the texture boun-
daries (Rosenfeld and Kak (1982)). Secondly, any presumed global structure concerning the
spatial nature of the image true scene may be held to be invalid in the vicinity of texture
boundaries - for instance, our qualitative belief about local dependencies motivates the choice
of the Markov Random Field as a prior for the image true scene, but it is impractical to con-
sider the precise dependence structure at each pixel. Thus generally we assume some sym-
metric form for the dependencies, e.g. neighbourhood systems holding over all pixels.
Whereas this is an acceptable assumption for the majority of pixels, it is not necessarily so for
those pixels near texture boundaries , and so it is of interest to investigate these pixels further.
(The problem of "breakdown" in dependence structure is tackled by Geman and Geman
(1984)) by means of a "line process” in conjunction with the more common pixel "intensity
process".) Thirdly, and somewhat related to both of the above points, if initially we restrict
attention to the efficient and accurate detection of local discontinuities, then any subsequent
image analysis will be (a) presumably itself more efficient and accurate (note the importance
of a good initial realisation of the line process in the work of Geman and Geman), and (b)
perhaps rendered unnecessary, depending on the underlying decision problem. (In cognitive
problems - shape analysis, pattern recognition - pixel-by-pixel classification of an image is not
the real problem. For instance, the nature of the edges of a circle and a square are sufficiently
different to enable us to distinguish between them, despite their topological similarity.) Con-
sequently, we might expect considerable reductions in processing time if the edge-detection
problem can be dealt with effectively. Finally, and more esoterically, psychological and phy-

siological evidence indicates the actual use of edge-detection in biological visual perception

systems.

Note that throughout the above discussion, we refer to the detection of "localised”
discontinuities, and this is entirely accurate. However, our interest is in localised discontinui-
ties between larger homogeneous regions , and thus localised detection methods (gradient
operations, differencing) that operate over a small sub-grid of pixels may be seen to be inap-
propriate - our interpretation of an "edge" or "edge-point" at the true scene (unobserved) level
is independent of the field-of-vision (entire image or image segment) but this is not the case at
the observation level. This point is evinced by the poor performance of localised detection

methods when used to analyse images with relatively high levels of noise-corruption, an exam-

ple of which we shall see later.
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(2.1) Edge-detection - simple example.

Consider the simplest possible and yet still interesting true scene for the edge-detection
problem. Region Sy consists of two textures T, ,T;, the nature of each being governed by the
(vector) parameters 6, , 8,, respectively, to be thought of as representing mean levels, scale or
covariance parameters etc.. The two textures are separated by a simple edge (defined by a
single curve in the plane), and thus there is an abrupt change in the parameters controlling

pixels on either side of the edge. Figure 3 depicts such a true scene.

Fig 3 : Simple edge in region S,

The task that remains is straightforwardly stated: in the light of data ¥, the image, observed on
Sy and presumed to be some noise-corrupted version of the true scene, make inferences con-
cerning the location of the simple edge. The inference will take the form of, say, reporting of
edge-points in Cartesian coordinates, or of some parametric or non-parametric curve to
represent the edge, or merely of some highlighted version of the observed image. This simple
problem is the basis of all edge-detection problems, since, clearly, the region Sy may be con-
sidered as the entire picture or some segment of the entire picture containing one simple edge
only. The subsequent classification of pixels in Sg will follow on the basis of the inferences

made about the position of the edge.

We proceed to consider a simple (but common) version of this simple problem : Assume
that the image-formation process f(6,€) corrupts each cell in region Sg independently with
additive Gaussian white noise, that there is a 1-1 correspondence between pixels in Sg and Sy,

and that the observed pixel image consists of univariate observations, so that

f:06-Y

and
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¥ = 0,'!- + Eij € ~ N(O,O’Z) (2.1)

a standard linear "Signal + Noise" model. This is a commonly assumed image-formation
model in the analysis of satellite data, and thus the "edge" in question in this particular simple
edge-detection problem can be thought of as, for instance, a land-usage boundary, with the
image Y being the collection of reflectances/radiances in a particular "band" recorded over all
pixels. Figure 4 depicts a typical image realisation based on the simple edge of figure 3 and

the image-formation process above.

Fig 4 : Image containing simple edge

In this 80 x 80 pixel image, the mean level at every pixel is equal across each texture
(i.e. 6; = 6, if pixel (i,)) lies in Ty, k = 1,2) with the textures having different mean lev-
els (8, = 00,6, = 1.0) and common variance (62 = 1.0). Figure 4 is a six-level

representation of the image.

It is clear, from this simple example, that localised edge-detection techniques that
operate over a small sub-grid of pixels do not adequately reflect the nature of the edge-
detection problem. An edge can only be discerned as such if it marks an abrupt change in
some feature of the image between one large region and another. Techniques that do not take
this into account cannot hope to capture the edge structure correctly. To make a visual anal-
ogy, in figure 4, we perceive the left half of the whole image to be "lighter” than the right,
thus making our task of segmentation relatively easy, whereas were we to inspect 3 x 3 or § x
5 sub-images then much of the edge structure would be destroyed. Figure 4 gives some indica-
tion of this problem. The 5 x 5 sub-images of figure 4 are taken from different parts of the
entire image. Figure 5(a) is a portion of texture 1, centred at pixel (12,12), figure 5(b) depicts
an edge region centred at pixel (40,50), and figure 5(c) is a portion of texture 2, centred at

pixel (62,50). It is not straightforward to distinguish which sub-image contains the edge.
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It should be noted that this example is, in terms of Signal-Noise ratio, (defined here simply as
the absolute value of the ratio (8, - 6,)/0), relatively extreme (i.e. the ratio here is low, 1.0)
and we might expect localised methods to perform adequately in less extreme cases. However

it is important to note such fundamental flaws in the localised methods.

Fig 5(a) : Non-edge Fig 5(b): Edge Fig 5(c) : Non-edge

Hence we seck an alternative approach to the edge-detection problem.

(2.2) Changepoint approach to edge-detection

We wish to formulate the edge-detection problem in such a way as to incorporate the
notion that an edge should be interpreted as an abrupt (i.e. localised) change in some more
large-scale feature. Consider the simple edge of figure 3, and a single row (j say) in the image

matrix, as depicted in figure 6.

0, 0, 0, 0,

R e T L L T L T E L L L LR R LR LIRS

Fig 6(a) : Simple edge in region S Fig 6(a) : Row j from data on region Sy

Under the image-formation process (2.1) and assuming homogeneity of textures ( 8; = 6, if

pixel (i,j) lies in Ty, k = 1,2) it is clear that the distribution of each of the data elements Y;

in row j is as follows.
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Forsomer (1 < r < 80),
Yy ,....Y,; ~ N(8;,0%)

Y,i1j s Y0; ~ N(6y,0%) (2.2)

where r represents the unknown (and unobservable) edge-point position in row j. The edge-
detection problem now reduces to that of making inference about  in single or over a number
of adjacent rows. This is the familiar statistical problem of changepoint amalysis and
identification: see, for example, the reviews of Shaban (1980) and Zacks (1982). Hence the
edge-detection problem in image-processing can be formulated so as to be essentially a practi-
cal application of changepoint analytic techniques. Figure 7 further illustrates this point. Fig-
ure 7(a) is a cross-section of a single row (row 50) from the true scene of the image in figure
2. It is of the same form as the representations of "ideal edges” in the image-processing litera-
ture, with the edge clearly visible between points 40 and 41 on the horizontal scale. Figure
7(b) is the same row taken from the noise-corrupted image. It is reminiscent of, for instance,
time-seriecs  plots from  system-monitoring  operations, an area in  which
prospective/retrospective identification of changepoints is of some importance. Thus the use of
changepoint analysis in edge-detection problem is intuitively reasonable. Note that the position
of the underlying shift in mean-level (i.e. the edge) is barely discernible in figure 7(b), due to

the noise-corruption, so that localised tests for shift in mean-level would be of little use.

-4 T I I
0 20 40 60 80

Fig 7(a) : Edge cross-section - actual

-4 l l I
0 20 40 60 80
Fig 7(b) : Edge cross-section - noise-corrupted
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A changepoint approach to edge-detection was in fact loosely suggested by Rosenfeld
and Kak (1982, vol. 2, pp. 108-110), and proposed more fully by Basseville (1981). However,
Basseville used a prospective scheme derived from Hinkley’s cumulative sum procedure
(Hinkley (1971)). We feel that a retrospective scheme is more attractive as it reflects the glo-

bal rather than local aspects of the edge-detection problem.

A number of approaches to the changepoint problem appear in the literature, including
those based on non-parametric (Pettitt (1980), Hinkley (1971)) or likelihood (Hinkley (1970))
formalisms. The approach we adopt here is Bayesian - see, for example, Chernoff and Zacks
(1964), Broemeling (1972,1974), Smith (1975), Booth and Smith (1982). In the Bayesian for-
mulation, inference is made via a posterior distribution for the unknown changepoint position,
derived from prior assumptions concerning the functional relation between data and population
parameters, and prior beliefs about those parameters. Before attempting to formulate the edge-
detection problem in this way, we first formally introduce Bayesian approach to changepoint

identification, and the necessary notation and terminology.

(2.3) Bayesian retrospective changepoint identification.

We adopt the following notation. Let ¥ = (Y,,....,Y,) be a sequence of random vari-
ables, and y = (y;,....,¥, ) be a realisation of these variables. Let @ be the vector of parame-
ters of the sampling distribution, and y be a vector of hyperparameters appearing in the
specification [ @ | y] of the prior distribution for 8. Following e.g. Smith (1975), we make
the following definition. The sequence of random variables Y;,....,Y, has a changepoint at

r(l<r<n)if
Y., ~ [Yi]61],
Y i1sen s ~ [Yi]62],
where

[.161], = [-16:2];

In this particular context, our emphasis will be on retrospective changepoint
identification, that is, given a realisation y,....,y, of the process, our objective is (primarily)
to make inferences about the unknown changepoint position, 7. Inference will be made via the

posterior distribution of r, denoted by [r]Y, w]. From Bayes theorem, we have that

[r1Y.w] « [YIr.y][r]. (2.3)

The first term on the right-hand side of (2.3) is the marginal distribution of Y given r and vy,
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and can be re-expressed as the likelihood function for ¥ integrated over the prior for 8,

namely

[YIr.w] = [ [Y]r.6.¥][0]r.v] (2.4)

if @ is wholly or partially unknown, and simply as the likelihood itself if @ is completely
known (in which case we identify y as 8). If indeed @ is unknown, then any subsequent

inference about these parameters will be made via the posterior distribution of

[61Y.v] = Z[6]|r.Y,.¥y][r|Y.v] (2.5)

where
[0|r.Y.¥] < [Y|r,0,y][0]|r.v]. (2.6)

We make certain assumptions in order to simplify (2.3). First, in our formulation we
specifically refer to y as a vector of hyperparameters, that is, parameters governing the nature
of our prior belief. Hence, the conditional distribution of Y given r, 8, y is independent of y,

ie.
[Y|r.6,y] = [Y]|r.0]
Secondly, we shall, in general, regard 6 as independent of r a priori, so that
[6]r.v] = [0]y].

Thirdly, we assume that Y, ,...., Y, are conditionally independent given 6, and thus
[Y|r.0] = I:[l [v;|r.0].

Finally, we assume that all functional forms [.|.] are known. Each of these assumptions
are acceptable in the edge-detection context for specific choices of the image-formation pro-
cess, as we shall see later. However, none of the assumptions is absolutely necessary and may

be relaxed at a later stage. Therefore, from (2.3) and the assumptions above, the posterior

distribution for r is given by
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[r17.w] = [ TT [%1r.0](61v](r]. @7

The final step in the Bayesian procedure is to report some estimate of r, 7, say, obtained
via [r|Y,y] and an appropriate loss function, rather than [7|Y,y] itself. We shall, in gen-

eral, assume a 0-1 loss function, i.e.
O r =r
(r,r') = .
( ) [ 1
The resulting estimate under this loss function satisfies

F = argmax|[r|Y,y],

i.e. 7 is the posterior mode. The modal ordinate is easily obtained from the discrete univariate

posterior distribution.

Before returning specifically to the edge-detection problem, we discuss other aspects of
Bayesian changepoint identification. The following general points arise from the formulation.
First, there is an obvious and natural extension of the definition above from a single to a
multiple-changepoint process. The Bayesian approach to the equivalent problems associated
with multiple-changepoint sequences is identical to that above; i.e. we would make inference

via [rl,rz,...,rkIY,l/l] where

[rl,rz,...,rkIY,'I’] oc [Y|r1,r2,...,rk,y/] [’l,rz,...,rk]
= I_-Il[Yilrl’m"”’r"’e][HIW][rl,rz,--.,rk].

Secondly, [7|Y,y] is simply a univariate, n-valued discrete distribution, and thus will be
easily calculable, with straightforward optimisation, moment calculation, etc.. However, ana-
Iytic results (concerned with, say, the properties of [7|Y,y] when the distribution of Y is
altered) will not be generally available. Finally, the precise nature of the "change" implied in

the definition above is unspecified. We will consider here problems restricted to those in

which the change is parametric, rather than distributional, so that

[.1.],=[.1.], but & #6,.

In the light of the above formulation, our primary interest will be in proposing various

forms for [Y|r,8].[6|w].[r] (ikelihood - prior combinations) and cxamining the
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resulting posterior forms [r |Y,y]. First, we discuss choices of [¥ |7 ,6] that will be par-

ticularly relevant in the image processing context.

(2.3.1) Forms for [Y | 7 ,8].

We shall, primarily, consider two forms for [Y |7 ,8] (the likelihood), namely those
arising from choosing [¥; |7,0] to have

(1) Normal
(2) Poisson

distributions, as these represent the two most relevant forms for the context in which the
resulting posterior densities are to be used. (It is also convenient to choose the individual
[Y;|r.6] so that [Y |r,0] is easily formed from their product - e.g. choose from the
exponential family - but that aside, we could assign [Y;|r,0] to reflect any of a wide range

of image-formation processes.)

(2.3.1.1) [Y;|r,0] Normal.

Assuming Y; to be conditionally normally distributed given 6 = (6,,6,,7,,7,) the

changepoint process of the definition above becomes

Yl”""Yr -~ N(Ol ,7:1-1)

) TR A’(92’T2“1

for some unknown r (1 < r < n), where

0, # 6,
6, = (91’71)
0, = (92,1'2)-

Under this scheme, three natural conditions lead to three forms for the likelihood [Y|r.0].

(A 1, = 1, = 7 (Common precision)

[YIY,B] = 1—11 [YilraBI'OZ’T]

i=r+1

o ﬁeXP[ -% [él (¥; - 6,)* + i (Y - 92)2]}
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(B) 6, = 6, = 6 (Common mean)

[¥17.0) = L [%1r.6.5.5]
3, 55 _n 2. o 2
< Ty 7T, © €xp ZZ(Y, 0) ? z (K—G)

i=1

i=r+1

(C) 6, # 6,,7, # 7, (Different mean and precision)

[er,el = I;Il [Y,-|r,91,92,11,12]

r (n—r)

r 7. T
oc f121'2 2 €xXp —al Z (Y‘ - 91)2 -
i=1

2y (v-6)y

i=r+1

(2.3.1.2) [Y;|r,8] Poisson

Assuming Y; to be conditionally Poisson distributed given 6 = (4;,4,) the

changepoint process of the definition above becomes

Yy,....Y, ~ Poisson(A,)

Y, i1see,Y, ~ Poisson(A,)
for some unknown r (1 < r < n). Here

91=7»1

0, = 4,

Under this scheme, the likelihood [ Y | 7 ,8] is given by

Thus, for two different assumptions relating to sampling distributions that we regard as partic-
ularly relevant to image processing problems, we have derived expressions for the likelihood
function necessary for the evaluation of the changepoint posterior distribution defined by (2.3)
and (2.7). We now consider various specifications for the prior distributions that appear in

these equations, namely [@|w] and [r]. We first consider choices for the continuous
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parameters 8 appearing in the likelihood.

(2.3.2) Forms for [0 | y].

For each of the likelihoods we propose a selection of prior forms [ | ] chosen so as
to reflect the quantitative and qualitative nature of our prior beliefs. In general, we suggest the
use of "conjugate” prior distributions (priors that combine with the likelihood so that the prior
and posterior distributions for the parameter concerned take the same functional form) for con-
venience, but as before this restriction is not necessary. To obtain a representation of "prior
ignorance”, we consider limiting cases of (conjugate, proper) informative prior distributions
(that is, via limits of elements of y ), resulting in (improper) non-informative prior distribu-

tions.
(2.3.2.1) [Y; | r,6] Normal
We consider three cases :
(1.a) @ known
(1.b) 7 or (7;,7,) known, 8 or (6,,6,) unknown

(1.c) 6 unknown

Situations in which one of 6,6, is presumed known, or in which one or both of 8,6, is
presumed known with 7 or (7, ,7,) unknown are regarded as unrealistic in our context, but
could quite easily be accommodated into our reasonably flexible framework (see, for example,
priors 1.1.4 and 1.1.6 in Appendix 1). Also, we do not consider "one-sided" prior assumptions
(that is, assumptions of the form §; > 6;), but such priors could be included (and indeed may

be relevant in later applications). For example,

[6,.6,.7] [6,]6:.7][6:]
[6,]6,,7] = U(61,0,+7')
(6] = N(wi.ni")

is one such prior.

Finally, we note that in case (1.c) above, specifically with 7 or (11 , T, ) unknown, we
choose (8, ,8,) a priori independent, but dependent on T or (7,.7,) . For example, for likel-

ihood (A) with 7 unknown, we choose [ 8; , 6, ,7] so that

[6,.6,.7] = [91|T][92|T][T]
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rather than

[61.6:.7] = [6:][6][7].

The second of these two possible priors (a form in which 6,6, and 7 are chosen a priori
independent) is regarded as inappropriate, as it induces in (6,,6,) a lack of invariance to
scale changes (as noted by Spiegelhalter and Smith (1982)) which is undesirable. In the

equivalent case with 7 known, however, we may clearly choose 8, , 0, a priori independent.

(2.3.2.2) [Y; | r,0] Poisson
We consider two cases :
(2.a) 0 known

(2.b) 6 unknown

Again, in case (2.b), we consider conjugate (Gamma) priors for the unknown 8 = (4;,4,),

and their non-informative limits; other restrictions ("one-sided" priors etc.) are as above.

Appendix 1 contains a selection of posterior forms [r |Y,y] derived for a range of
choices for [0 | y], assuming a uniform prior for r . The general form of [r|Y,y] is
broadly the same over the range of priors, but a degree of sensitivity to prior input is exhi-

bited.

All the forms of [r | Y,I[I] in Appendix 1 are derived under the assumption that a
"change" is known to occur (i.e. 1 < r < n—1). The possibility of "no change" (i.e. r = n) is

a straightforward extension of our formulation. In this case we consider Y, ,....,Y, where
Yi,..,¥, ~ [Y;]|0]

where & = (6,7) or A and we could consider both 8 and 7, or 7, or neither known a priori,
and assign priors accordingly. No difficulty arises in the evaluation of posterior probabilities
in this case provided proper priors are used. However, in the prior ignorance case, if the non-
informative limits of the proper priors used are improper, then we are faced with the problem
of assigning the constants of proportionality (omitted from Appendix 1) which we feel should
be different for the two models "change" and "no change" due to the difference in dimen-
sionality between the two models. A possible solution to this problem via a multiplicative

correction factor is discussed by Spiegelhalter and Smith (1982) and Booth and Smith (1982).
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(2.3.3) Forms for [r].

The discrete prior distribution for the changepoint parameter 7, denoted [r], will gen-

erally be taken to be uniform over the range 1 < r < n-—1,
1
rf = — = 1,..,n-1.
r] = — n

If a "no change” possibility is to be entertained, [ 7] will taken to be

(1-p)
[r] = n-1
p r=n

for some p (0 < p < 1). The implications of each of these particular choices in the edge-

detection context are discussed in more detail below.

Thus a simple scheme for tackling the edge-detection problem can be proposed. For a
sequence of known length, we would evaluate [7 |Y,y] in the light of the image-formation
process and prior beliefs, using the techniques described in section (2.3). Suppose y is the
vector of entries in any given row or column of the image matrix. Then as a solution to the
edge-detection problem, we would merely compute [ |Y,y] for Y = y, and report the pos-
terior modal value and position as the most likely edge-position and associated measure of
uncertainty in that particular row or column. We would repeat this procedure over all or a
fixed set of rows and columns in the image independently, and report the set of recorded edge-
positions as the result of the analysis. (This scheme clearly ignores certain aspects of the edge-
detection problem, i.e. spatial continuity of edges. These points are discussed later in subse-

quent chapters.)

Such a scheme is attractive for a number of reasons that we detail in section (2.6) below.

First, we demonstrate the use of the scheme in the context of the simple edge-detection prob-

lem described above.

(2.4) Implementation of the edge-detection scheme.

We now seek to implement the scheme proposed above in the context of the simple edge
of figure 3 and the image depicted in figure 4, under the same image-formation and noise
assumptions. Consider the elements of row j, say, and let Y; = Y;. We noted that in (2.2) the
conditional distribution [Y; |r ,0],i = 1,...,n, is Normal, due to the image-formation and
noise assumptions, with parameters 6 = (6,,6,,0). If we assume that the noise terms in

(2.1) are mutually independent for all cells in any row, then subsequently the variables
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Y;,....,Y, are mutually independent, conditional on 8, , 05, and thus [Y |r.0 ] is given by
[Y|r.0] = Ul[n]r,e]. (2.8)

: : : : - 1
For convenience we reparameterise by replacing o with 7, the precision, where 7 = 2’ and

hence

[Y|r.,0] = ﬁexp[—% -2::1 (Y; - 6, + i (1',._92)2]], (2.9)

i=r+1

identical to likelihood (A) in section (2.3.1.1). Now, if the texture mean levels and noise pre-
cision are a priori unknown, our next task is to specify some form for [ 8 | y]. For demons-
tration purposes, following Booth and Smith (1982), we choose a simple form of non-

informative prior distribution. Let [0 | ] be given by

[61v] [6:.6,.7]

= [61]z][62]| 7] [7]

= const (2.10)

for —oo < 0,0, < ~,7>0. This is a standard non-informative prior form, and can be
regarded as the limit of a standard informative conjugate prior distribution having 6, and 6, a
priori independent conditional on 7 (Spiegelhalter and Smith (1980)), namely prior 8 in sec-
tion 1.1.8 of Appendix 1. Finally, we specify [r] to be uniform on the range 1 < r < n-1.

Combining (2.9) and (2.10) via (2.7), we obtain [r |Y, y/] as

r

n -n/2
[F1¥.y] = {ra-n} 2] S (% - Baf+ 3 (Y.-—Y—B>2] @11

i=1 i=f+l

where

— 1 Z

Y, = =YY
ri=1

_ 1 n

YB = — Z Yl
n=ri=r+1

Note that in this formulation of the edge-detection problem, we consider prior models allow-

ing exactly one changepoint, and thus the valid range for r (under our definition) is
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1 < 7 < n-1. Booth and Smith (1982) also consider a "no changepoint” alternative, which
extends the valid range for r to 1 < r < n, and induces the obvious minor change in (2.9).
Here, in this particular example, we restrict our attention to one changepoint models, and the

resulting posterior form (2.11), but discuss the implications of the "no changepoint” alternative
model in chapter 3.

We now proceed with an implementation of the proposed edge-detection scheme based

on posterior distribution (2.11) in an analysis of the image in figure 4 derived from simple

edge true scene in figure 3.

(2.5) Edge-detection - results.

In the following analysis, the posterior density in (2.11) was evaluated for each row of
the image in figure 4, and the position of the posterior mode recorded, along with the modal

probability. The results of this analysis can be seen in figure 8(a)
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Fig 8(a) : Results of row analysis

The code for the symbols in figure 8(a) is also given. The complete analysis of the eighty rows
of the image took around one second of CPU time. It is clear that much of the edge structure
has been captured, i.e. many edge-point candidates arising as modes in the changepoint poste-
rior density lie at or close to the true edge-point in the row concerned. In many cases, the
results of a preliminary analysis such as this will be sufficiently accurate to enable the subse-
quent supervised or unsupervised processing techniques to proceed more efficiently - we can
easily discern edge-regions as opposed to texture-regions, visually or automatically, allowing
for more straightforward segmentation. However, as a representation of the edge itself, figure
8(a) is inaccurate due to the presence of serious edge misclassifications or "outliers”. It is

possible to remove these outliers using ideas of spatial continuity of the edge, that is, via our
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interpretation of the edge itself as continuous in S,. We discuss this issue in greater detail in

chapter 4. For the moment, we consider a simple technique for the removal of such

misclassifications.

In the discretised version of the true scene, we would expect edge points in rows and
columns to lie close to other edge-points in the adjacent rows and columns. Similarly, we
would expect accurate edge-point classifications resulting from an edge-detection analysis to
lie in close proximity to each other. Thus any "isolated” candidate points can be regarded as
misclassifications, with the term isolated to be defined in some suitable fashion. A possible
simple "smoothing" technique (in the sense that isolated candidate points disrupt our interpre-
tation of an edge as being locally continuous at all points on its length) is to centre a small
window at each candidate edge-point, and count the number of other edge-points falling within
that window. The candidate point can then be accepted as an edge-point or disregarded as a
misclassification on the basis of the number of adjacent edge-points. Such a technique was

used to smooth the raw results and produce the sets of points depicted in figure 8(b) and (c).
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Fig 8(b) : 2 pts per window Fig 8(c) : 3 pts per window

In figure 8(b) a 7 x 7 pixel window was used in conjunction with an acceptance criterion of
two points per window. For figure 8(c) the criterion was altered to three. In both cases, the
additional CPU time involved in the smoothing procedure was of the order of 0.3 seconds.
Thus the total processing time to produce figures 8(b) and (c) from the image was of the order

of 1.3 seconds. Many of the misclassified points have been removed.

(2.6) Conclusions.
For this simple example, and despite the relatively high level of noise-corruption, the

changepoint technique for edge-detection has performed both efficiently and effectively in its



least sophisticated form and under some fairly limiting assumptions. The performance of the

technique for lower noise levels is demonstrated in figure 9. Figures 9(a) - (d) depict the

results of row changepoint analysis for each of the eighty rows of the image in Figure 4 cor-

rupted by Gaussian white-noise of differing variances producing Signal-Noise ratios (S.N.R.)

1.5, 2.0, 2.5, and 3.0 respectively. The results shown are "unsmoothed" (in the sense defined

above), and again the analysis in each case took of the order of one second. Note the low

number of edge-point misclassifications in Figures 9(c) and (d).
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Fig 9(c) : S.N.R. 2.5

Fig 9(d) : S.N.R. 3.0

Changepoint techniques seem attractive and preferable to localised methods for several

reasons. First, as mentioned above, the changepoint approach seems to reflect more adequately

the nature of the edge-detection problem. Secondly, the localised methods - differencing,




filtering, convolution, local averaging - although intuitively reasonable to some extent are, in

fact, generally quite arbitrary. The Bayesian changepoint approach at least has a basis in sta-

tistical decision theory. Thirdly, the localised methods generally depend heavily on expert

input of parameters - threshold, window-width etc. - usually arrived at through detailed prior

knowledge of the true scene and image. For the changepoint technique, as we have seen, at

most only very general form of prior knowledge is required. Allied to the last two points, the

localised methods return a real number at each cell and rely on thresholding to point up edge-

regions, with no measure of uncertainty attached. The changepoint technique returns the most

probable edge-position in the row concerned, in light of the data in that row and prior assump-

tions, with its associated probability. Finally, and perhaps most importantly, the changepoint

technique out-performs the simple localised methods at comparable Signal-Noise ratios, as

illustrated by a simple example, the results of which are depicted in figures 9(e)-(g).
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Figures 9(e)-(g) depict the result of a simple localised edge-detection method, namely first
differencing in two perpendicular directions, with threshold of acceptance ranging from 5.0 to
3.5. (i.e. we take first-order differences along the rows and columns of the image , evaluate
the edge-magnitude at each cell as the square-root of the sum of the squares of these differ-
ences, and plot all points for which this magnitude is greater than an arbitrarily chosen thres-
hold value.) The image was precisely the same as that used for figure 9(d), with a Signal-
Noise ratio of 3.0. The results are clearly inferior to those obtained using changepoint
analysis on the same image, and the processing time (0.5 seconds), although shorter, was not
an adequate compensation. Also, the results obtained are not sufficiently robust to the choice
of the (arbitrarily assigned) threshold value. We choose this example of localised edge-
detection methods (not merely because of its inadequacy to deal with the edge-detection prob-
lem) because it compares in terms of processing time and prior knowledge of the true scene
with the changepoint technique. More sophisticated (but still localised) methods compare

unfavourably in terms of processing time.

(2.7) Extension of ideas.

We now seek to extend the above ideas concerning edge-detection via changepoint

analysis in three general directions:

(1) More complex true scenes.

The simple example above demonstrated adequately the use of changepoint techniques in
edge-detection. However, although it captured the nature of the edge-detection problem
exactly (locating a discontinuity in some aspect of the image arising at the boundary between
two non-localised features) it dealt with an idealised true scene. More realistic true scenes
would involve convex objects, multiple regions, patterns, "thin" features etc.. We examine the

performance of the changepoint techniques in each of these areas in chapter 3.

(2) Exploitation of spatial continuity.

As observed previously, the analysis of the simple image in Figure 2 did not take into
account the fact that the edge in the true scene was spatially continuous, i.e. adjacent rows of
the image were treated completely separately and independently. It would be reasonable to
assume that, in light of the progress made generally in statistical image-processing, the intro-
duction of the notion of local dependence and spatial continuity at the prior stage of one step

of the procedure would improve results. We seek to adapt the changepoint technique in this

way in chapter 4.
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(3) Variation of image-formation and noise processes.

In our initial example, we assumed a simple linear form for the image-formation process,
and that the noise process corrupted each pixel in the true scene identically and independently
with Gaussian white-noise. This again is an idealised situation, and in chapter 5 we seek to
extend the changepoint technique, specifically via choices of forms for prior distributions for

the unknown parameters and functional dependencies, to handle more general situations.

Prior to this, however, we generalise the analysis of the true scene in figure 3 in two
more straightforward ways. First, given our knowledge of the true scene concerning the gen-
eral orientation of the edge with respect to the usual coordinate axes, a row analysis only
seemed necessary. Practically we would have no such knowledge, and a column analysis
would also be needed. Clearly, analysis of the image in any two orthogonal directions would
suffice, in this sense, but for the moment, for convenience, we restrict attention to row plus

column analyses, termed a "full" analysis.

Secondly, and in light of the previous discussion, it is desirable to incorporate a "no
changepoint” or "no edge" alternative into the analysis. This task is straightforward. Under
the alternative, we have Y;,.....Y, identically distributed, and thus [Y |r,0] = [Y|@]. For
our initial example, therefore, with the Y;’s independently Normally distributed, this implies

that (2.9) is replaced by
[Y]6] ,%exp{ -g [): (¥ - 0)2]] (2.12)
i=1

where now 8 = [8,7]. We proceed and specify [ 8 | y] as before but, as mentioned previ-
ously, we must be aware of the difference in dimensionality between the "changepoint” and
"no changepoint” models when specifying improper prior forms. Such difficulties are avoided
if proper prior distributions are specified. The careful use of (2.12), in conjunction with the
specification of a prior for r of the second form as presented in section (2.3.3), will allow for
the no changepoint model to be admitted. This should help in the removal of the
misclassifications that appear in figure 8(a). The removal (or non-detection) of such points, or

"false edges", is a familiar problem in classical edge-detection,
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Chapter 3 : Analysis of Complex True Scenes.

The changepoint formulation of the edge-detection problem described in chapter 2
related to the analysis of images derived from true scenes in which the edge took the form of a
single smooth curve. In this chapter, we seek to extend the formulation and adapt and improve
the single changepoint technique so that more complex true scenes may be analysed in a simi-
lar fashion. The next natural class of true scenes that must be considered is that where the
single simple edge is replaced by a single closed curve, so that Sy is comprised of precisely
two texture regions. We shall see that various amendments to our original implementation of
the edge-detection scheme are necessary. The analysis of images derived from this class of
true scenes is discussed in sections (3.1) - (3.5). Another class of true scenes of interest are
multiple region or composite true scenes containing more than two texture varieties. A further
extension of the single changepoint formulation is necessary for the analysis of such true

scenes, and this extension and other issues are discussed in sections (3.6) and (3.7).

We begin by considering a very simple class of two-texture true scenes, which, despite
their straightforward nature, allow us to illustrate the extension of our changepoint-based

edge-detection technique.

(3.1) Convex object true scenes - circle.

We first consider a simple convex object, namely a circle, lying completely within the
region Sg. Figures 10(a) and (b) depict such a true scene and an image derived from the true

scene and the image-formation and noise processes of the previous chapter.

Fig 10(a) : true scene Fig 10(b) : image

This is a familiar test image: see for example Peli and Malah (1982). Two features are
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immediately apparent. First, many rows and columns in the true scene contain no edge.
Secondly, the remaining rows and columns contain two edges, or points at which pixels in
different texture regions are adjacent. This feature will of course be present in all true scenes
that contain single convex objects, and thus due to the topological differences from our initial

example, the edge-detection problem is fundamentally different.

As we saw in section (2.3), it is possible to generalise the single-changepoint formula-
tion to a k changepoint one. Again consider ¥ = (Y,,...,Y,), a sequence of random vari-
ables. Let 7y, ..., 7, be the unknown positions of the k changepoints, and 8 and Y be as previ-

ously defined. Then the joint posterior density of the variables 7y, ...,r, is given by

[rl,...,rle,l[I] o< [erl,...,rk,v,] [rl,...,rk]

= I[erl""’rk’el[Blwl[rl"”’rk] (31)

and we can make inference about the positions of the unknown changepoints via this posterior
distribution. In the edge-detection context, k = 2 for single convex objects. Also, note that
the data elements indexed by 1 to r; and r,+1 to n are identically distributed conditional on
0. For example, under the same image-formation and noise processes as in (2.1), we have that
) RTINS APS and Y, v1,....Y, are distributed as N( 6, ,62), and that Y, v1,...,Y, are distri-
buted as N( 68, ,0?), with the ¥;’s independent. In this case, the joint posterior distribution for
(ry ,r,) conditional on Y under the exactly two changepoint model using the non-informative

prior specification (2.10) for 8 = (6,,0,,0) is thus given by

[ri.r21 Y, 9] < {(ra=riXn+r 1)} 2{85Q, + §SQ, + §8Qs}7*  (3.2)

where

$SQ; = 3 (% - To)?
i=1

§50, = Y (Y, - ¥p)?

i=r,+1

$S0 = 3 (Y - Te)?

i=r,+1

7z —i——(im 3 Y)

T (n+r -\ i=r,+1

1 &
Y_- = — 2 YA
7, - ri)is=r +1
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We could evaluate the posterior distribution (3.2) for all pairs (r;,r,) and locate the
joint posterior mode. Again, a no changepoint alternative can be considered. Note also that
this formulation restricts attention to locating exactly two changepoints and thus, in this its
simplest form, cannot cope with one changepoint sequences. However, with a little care, this
problem can be overcome by letting 7,, without loss of generality presumed greater than r,,
equal n (here again we must recognise that the no, one and two changepoint models are
models of different dimension). If we have sufficient prior knowledge of the true scene (i.e

that it entirely contains a convex object) we need not entertain the one changepoint alternative.

Thus we may accommodate more complex structures than the simple edge of our origi-
nal example. However, in the absence of relatively detailed prior knowledge of the true scene,
evaluation of the changepoint posterior probabilities for a sequence under the hypothesis of
greater than one changepoint is undesirable, principally due to the amount of computation
involved. For example, rough calculations indicate that the amount of computation required
for evaluation of probabilities for the one changepoint model increases linearly with n,
whereas the amount of computation for the two changepoint model increases with n? (and,
similarly, with n* for the k changepoint model). Clearly, this is prohibitive, and as one
motivation for the development of edge-detection routines is that they should operate, at least
in part, as pre-processing operations, they should not entail large amounts of computation. We
shall return to this theme on many occasions throughout this thesis. In the light of the above
considerations, we now develop other exact and approximate methods for the multiple

changepoint/edge detection problem.

(3.2) Approximation in multiple-changepoint models.

First, it is important to attempt to understand the precise nature of the Bayesian
changepoint detection technique. Consider again the single changepoint posterior density, to
be evaluated for a sequence Y. For each r, consider the "left" sub-sequence Y, = Yy,...,Y,,
and the "right" sub-sequence Yz =Y,,;,...,Y,. To evaluate the posterior probability for r, we
presume that (1) the elements in the left sub-sequence are identically distributed, (2) the ele-
ments in the right sub-sequence are identically distributed, and (3) the distributions involved
in (1) and (2) are different. We integrate the likelihoods in (1) and (2) with respect to
unknown population parameters, to obtain the marginal distributions [Y.|w] and [Yg | y].
Given a realisation y = (y.,yg) we would expect these marginal distributions to attain their
maximum when r = r", the true changepoint position, as away from r" neither (1) or (2) will
be accurate. Thus (in expectation at least) the technique will "always" identify the true
changepoint. Now consider a two changepoint sequence, with changepoints at (rl',rz‘),

1 < r,” < r,” < n,and the behaviour of the changepoint posterior distribution under the one
changepoint hypothesis. Again, a "high" posterior probability will result when (1), (2), and

(3) hold together. For the two changepoint sequence, however, one of (1) and (2) will always
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be inaccurate, to a greater or lesser degree, as measured (in some way) by the marginal proba-
bility attained. But, on considering the behaviour in the vicinity of 7,” and r,”, we may expect
a localised mode in the posterior distribution at r = ry and r = r, . More superficially, r,"
and rz‘ mark abrupt changes in the nature of (sampling and marginal) probability distributions,
and thus we might expect both to be detected by the one changepoint posterior distribution.
We shall discuss these points in more detail below, after investigating the behaviour of the one

changepoint posterior distribution under an incorrect model specification by means of a simu-

lation study.

Thus, we may expect the single changepoint posterior calculation to assist in the
identification of changepoint positions in a two or more changepoint sequence in two ways.
First, we might expect that the mode of the distribution should frequently lie at one of the true
changepoint positions. Secondly, we might also expect local modes at or near both of the two
of the true changepoint positions. In practice, the results are encouraging. Figure 11 depicts
the results of 1000 simulations of two changepoint sequences of total length 80 at a fixed
Signal-Noise ratio of 3.0, with average posterior probability under the one changepoint
hypothesis and prior assumptions leading to (2.11) plotted on the vertical scale. The positions
of the two changepoints were chosen to be symmetrical about the sequence mid-point, and the

inter-changepoint distance was decreased over the series from (a) to (d).
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Fig 11(a) : Changepoints at 10, 70 Fig 11(b) : Changepoints at 20, 60
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Fig 11(c) : Changepoints at 30, 50 Fig 11(d) : Changepoints at 35, 45

It is clear that, in these idealised situations, the single changepoint posterior assists in
identification in two changepoint sequences. The results are most instructive when the inter-
changepoint distance is large, as would have been predicted in the light of the above discus-
sion. The behaviour of the single changepoint posterior at lower Signal-Noise ratios is dep-

icted in figure 12. The changepoint positions were fixed at 20 and 60, and the Signal-Noise
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ratio decreased from 2.5 to 1.0 in intervals of 0.5 over the series (a) - (d).
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Fig 12(a) : SN.R 2.5 Fig 12(b) : S.N.R 2.0
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0.4 -
0.2 -
0 4 | Jl\ =T I —T—
0 20 40 60 80 20 40 60 80

Fig 12(c) : SN.R 1.5

Fig 12(d) : SN.R 1.0

Note the decrease in modal values and the increase in spread of probability as Signal-Noise
ratio decreases. This is in line with our previous experience with changepoint posterior proba-

bilities for one changepoint sequences.

Finally, we introduce asymmetry into the changepoint positions. 1000 simulations were
carried out for various asymmetric combinations of r,* and r2* at fixed Signal-Noise level 3.0.

The results are shown in figure 13.
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Fig 13(a): r," = 10,r," = 30 Fig 13(b) : r;” = 20,71, = 40
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I
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Fig 13¢c):r," = 10,7, = 40 Fig 13(d) : r," = 20,71, = 50

Figure 13 illustrates a problem. Whereas (b) and (d) clearly depict posterior distributions
with two distinct modes, (a) and (c) depict seemingly unimodal distributions. All four distribu-

tions were generated with relation to two changepoint sequences. In light of these
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experimental results, it seems plausible that the one changepoint posterior distribution will
deal adequately with two changepoint sequences in many cases where the inter-changepoint
distance is large, in the sense that we may associate modes in the distribution with true

changepoint positions. We now attempt some formal justification.

(3.2.1) General investigation of the one changepoint approximation.

Consider a two changepoint sequence Y with changepoints at 7;" and r, , and the poste-

rior distribution [r | ¥,y ] derived under a one changepoint hypothesis. Consider the ratio of

the posterior probabilities at 7 and r,". From (2.3) we have
1Yyl (vl
(1 1Y.v] [YIr .w][r]

[Yl""’ Yr I Wl] [Yr+1"--’ Yn | WZ]
(Yo Yol [V Yal 2]

(3.3)

assuming equal prior probabilities for r and ry, and that beliefs about (6, ,6,) are a priori

independent, with y = (y;,y3). Forr < r, , we may factorise the numerator as

[Yy,., B | vil [Yersn Yoo W2 Y heens Y,] [Yr,‘+1v--, Y, |v,]

and the denominator as
[Yl""’ Yr IWI] [Yr+l9"" le‘ IV’I ’Yl""’ Yr] [le.+1,°"’ Yn IVZ]

Thus, from (3.3),

(1] _ [ B l¥a b Yol (34)
[rY.v] [Y,H,...,Y,;ly/l,Yl,...,Y,]

An interpretation of (3.4) is as follows. The numerator is a measure of how well we

could "predict” Y, ,y,..., ¥,c from Y, - g, Y, , whereas the denominator is a measure of
how well we could "predict” Y, 41 ..., 1;° from Y;,..., Y,. Clearly, therefore, in expectation
this ratio will be less than one for all r < rlt, given the distribution of the elements of Y.

Now consider r > rl*. The numerator in (3.3) may be factorised as
RO ALY R AFSPRND £ W1, Y e Lo [Yransees Ya lv2]

and the denominator may be factorised as
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and thus, again, we re-express (3.3) as

[rY.,v] N R AT A 708 ANNNS A
T R T 5 = .
[rl IY’V] [le.+l’°“’YrIWZ’Yr+l"°"Yn]

(3.5)

We may interpret (3.5) in a similar way, and again conclude that, provided r is near to r,, the
denominator will be larger than the numerator, and the ratio less than one. Hence we would
expect a local maximum at r = r,". A similar argument can be applied with respect to r, .

Thus it is reasonable to expect modes in the posterior distribution at the true changepoints.

Now consider the case where beliefs about ( 8 , 8, ) are a priori dependent, or indeed we
assume a priori that 6; and 6, have a common element, as in section (2.4). Consider the ratio

in (3.5). This now becomes

[r1¥.v] _ [N LY B Yl W Yan 1]
[riY.v] [V, Yo W] [Y,l°+1,...,Y,,|VI,Y1,...,Y,‘°]

(3.6)

Again we examine the behaviour of this ratio in the vicinity of rlt. Consider r < rl*. We

may factorise the second term in the numerator as
RTINS ALY L0 (TS A ALICTH V)Y st Yl ¥ Yo ¥
and the first term in the denominator as
[Yi, o L W] [Vt o [ W Y, Y,].

Cancelling the term [Y;,..., Y, | y], we obtain

[r|Y.¥v] _ [Y,“,...,Y,l~|y/,Yl,...,Y,,Y,l'H,...,Y,,]
[rl IY,W] [Y,+1,...,Y,l‘IV,Yl,...,Y,]

RANEER AL IR Y, ]
[Yr‘°+l’--°’ Y, I W'Yl’--" le°]

(3.7)

and can interpret this expression in the same way as above. We would expect the first term in
(3.7) to be less than one if r, and n - r,. were "large enough”, due to the "corrupting” pres-

ence of ¥, *,1,..., ¥, in the numerator. Also, we would expect the second term in (3.7) to be

approximately equal to one, again provided n - r, was large enough. Thus we would again
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expect the ratio to be less than one. Now consider r > rlt. We now factorise the first term in

the numerator of (3.6) as

[Yy,..., A L2 N D ACTPIRNS 45 1725 A Y, -]

and the second term in the denominator

RATSINNS ALV ANNS A0 ATINNS A | b AT 20 £ 720 NS 203 I

Cancelling the term [Y,,..., Y, | v], we obtain

[rlY,w] _ [Y,I-H,...,Y,|y/,Y,,...,Y,l°]
A LR 4 B
[r|Y.,y] [Y,l-+1,...,Y,|w,Yl,...,Y,l—,Y,“,...,Y,,]

RARTNS A RS ANNS A
[Y,H,...,Y,,|w,Y1,...,Y,_'] '

(3.8)

Again, we expect the first term to be less than one and the second approximately to be one,
provided rl' and n - rl* are large enough. Thus the ratio of posterior probabilities is less than
one for all prospective changepoint positions in the vicinity of the true changepoint, and so we
would expect a mode in the posterior distribution at the true changepoint r,". Similar argu-
ments lead us to expect another (local) mode at r2*. We conclude therefore that, in many
cases, for two changepoint sequences, local modes in one changepoint posterior distributions
will be good indicators of true changepoint positions. In the special case where rl' = n- r2‘
and the data sequence exhibits symmetry, as in figures 11 and 12, it is also easy to see that
[r | Y,y/] takes the same value (in expectation) at rl' and r2', provided that the prior

specification for the unknown elements of 8 is exchangeable, by simple re-ordering of the

subscripts of the Y;.

Thus in the general case it appears that analysis of a two changepoint data sequence
under a one changepoint modelling assumption produces potentially useful results. More

specifically, in the case of the posterior distribution (2.11) we can obtain some more rigorous

results.

(3.2.2) Investigation of the one changepoint approximations under normality.
We consider specifically the posterior distribution (2.11) derived under the a non-
informative prior specification for @ when n is relatively large. The sum of squares term dom-

inates the behaviour of [r | Y,y/] in this case, and consequently the maximum value of

r — ’l e . » . . .
[r ' Y,V’] occurs when Y (Y, - YA)2+ Y 1 (Y,- - YB)2 iS a minimum (resulting in an
i=1 i=r+
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estimate of r identical to the maximum-likelihood estimate for the same sampling distribu-
tion). We now study the behaviour of this sum of squares in expectation when the distribution

of Y is known to be that of a two changepoint sequence.

Without loss of generality (or after some suitable transformation) we assume that, for

some o, Y is distributed such that

N0,1) 1 sisr

» L . .,
where as before r, and r, are the true changepoint positions. Now,

r _ n _—
Y (Y; - 72+ Y (Y; - Y5)? can be expressed in the form YQY, where
=1

= i=r+1
4, 0
¢ =10 a,.

where

[Ap]ij = -1

Now suppose E[ Y] = g and V[Y] = Z. Then, by a well known result,

E[YTQY] = p'Qu + r(QZ) . (3.9)
In this case, where X = I,
tr(QX) = n-2 (3.10)
and, after some algebra,
u'ou = él (i — Ha)* + éﬂ(u.- - ug) = A (3.11)
say, where y, = %é‘a i and Up = (nl_r)iziﬂu,-. We observe at this point that

r n
2 v \2
under the distributional assumptions made above, Y (Y, - V) + _ ZH (Y; = Yp)” has a non-
i=1 i=r

central chi-squared distribution with non-centrality parameter A,
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Hence, in the light of (3G to (3-J/), the sum of squares is minimised in expectation

when 4, is minimised. After some algebra, it can be shown that

r * *

* * r» —r *
(r2 —”1)(1—-2—1)0:2 1 <i<n
n-r
* rI* * n r* *
Ay = ¢ ["1( “—)+(’l—72)(1— 2)]0!2 ry Sis<n 3.12)

r n-—r
* * r* r‘ -

L (r2 _’1)(1- 2 1)0!2 r, £i<n

We now consider the behaviour of A, over three separate ranges.

*

M1=srs<sr.

For increasing r, it is clear that 4, is monotonically decreasing for r in this range, and

hence the minimum is attained at r = rl*.

*

2) rl* Sr<n

First consider the difference Ar +1— A, . Itis easy to see that

"1’“2 (n_rZ‘)z 2

rl*(r1*+l) - (n—rl‘)(n—rl; - l) @

Artir=Ay (3.13)

Provided rl* is relatively large, the first term in the bracket is approximately equal to one.
Also, provided (n—r,") is relatively large compared to (n—r,"), (r, —r, is large) the
second term is appreciably less than one. Thus this difference is greater than zero, and
Ar*+1 > A, - It can be shown in a similar fashion that 4,,, > 4, for all 7 in the vicinity of
rl*, and thus that A, is locally minimised at rf for r in this range. Note that the magnitude of

the difference 4, -, -4, - is dependent on a’.

Now consider the difference l,z-_l—l,;. Again, it is easy to see that

(ﬂ—r2‘)2 ’1‘2 2
.« -2 - s a“ . 3.14
Arz—l l’; (n_;)(n—rz + 1) 72 (r2 _1) ( )

Making the same approximations as above, the first term is approximately one and the second
less than one, again making the difference greater than zero, and 4,-_; > Ar:. It can be
shown that 4,_, > A, for all r in the vicinity of r, and thus that 4, is locally minimised at
r,” for r in this range. Again note the influence of a? on the magnitude of this difference.

The exact behaviour of 4, for r over the whole of this range may be investigated in the same
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way - we would expect some form of quadratic behaviour.

(3)r2*$r$n

For increasing r, it is clear that A, is monotonically increasing for r in this range, and

hence the minimum is attained at r = r,".

We have shown that A, is locally minimised at r, and r2*. But more aspects become apparent
on further inspection. First, if we take ;" and r," such that ;" = n — r,” (symmetric) then
the behaviour of 4, is symmetric - hence the behaviour of [ | Y,y ] depicted in figures 9 and
10. Secondly, if we vary the inter-changepoint distance r2* — r,, then it is obvious from the
form of 4, that the minima at rl* and r2* will be less marked as the inter-changepoint distance
decreases - hence the behaviour depicted in figure 9. Thirdly, we have noted the role played
by « in the above, namely, as a? decreases the minima at rl* and r2* will be less marked. For
this example, given the sampling distribution, @ can be equated with Signal-Noise ratio -

hence the behaviour depicted in figure 10. Finally, we note that

Aps = Qe = (12 —rl‘)2(;l—_172; - %)oﬂ (3.15)
so that if n—r, > r; then A,+ > A, and vice-versa - hence the behaviour depicted in
figure 11. Also, it is clear that the magnitude of 4, - — 4, - varies as ry and r,” vary, for fixed
r2* - rl* - hence the difference between figures 11(a) and (b), and figures 11(c) and (d). Thus
we can adequately explain and understand the behaviour of the posterior distribution (2}) in
expectation, for large n.

We conclude this investigation by studying the behaviour of A, under a more general
form for the distribution of ¥. Suppose now that the magnitude of the change in mean-level at

. * o,
rl* is not equal to the change in mean-level at r; , 1.€.

N(0,1) 1 sisn
Y, ~{ Na,1) r’+
N(B.1) 2 +

pd st

for some o ,f3. Note thatif § = a (or a = 0) then there is effectively no changepoint at r,
(or rlt), and we revert simply to a one changepoint sequence. Also, if § = 0 we revert to the
case above.

Using (3.9) to (3.11), and after some algebra, it can be shown that
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*

A’ — (rz.—rl‘)(l_rz —-r
r

*®

Jia- 7+ (=212 = e+ (=

n-—r

(1 Srsrlt)

n_

A, = (n_r;)(l - ”"i )(a_/s)url‘(l - ’%)az (n"<rs<n)

*

A = (ry - ’1*)(1 - %)(a‘ﬁ)z*' rTl‘[(’z*— r)a? + (r-r")p]

(r," <r<n)

Clearly, the behaviour of A, is less straightforward in this case. However it can be

shown that 4, is monotonically decreasing for 1 < r < r,”, monotonically increasing for
. * .

r, <r < n, provided r, , and r2* —r," are relatively large compared to n, and locally

. . . * . .
minimised at r, and r2* provided (a — ﬁ)z is small compared to a®. Note that, in particular,

=2 = (R -n)| = (a- PP - ea? (3.16)
n-—r ry

and so we would expect posterior modal values of (2.11) to vary with a?,(a - B)?,r," and
rz*. Note also, as suggested above, that by setting 8 = «a, we may derive expectation results
for the posterior distribution (2:/Iy under the assumption of one changepoint. Finally, note that

we can infer only the qualitative behaviour of (2]{) in expectation from the results above, due

to the non-linear relationship between (2-#) and ¥ (Y; - ¥,)>+ ¥ (¥; — ¥5)* - however as
=1

i i=r+1
this relationship involves logarithmic functions, it is reasonable that we should derive our

results concerning 4, using difference methods.

(3.2.3) Conclusions.

We have seen that the one changepoint posterior distribution (2.11) will often provide an
adequate means of analysis for a two changepoint sequence; that is, the mode of (2.11) coin-
cides with one of the true changepoint positions. We have also seen that (2.11) is generally
bimodal in these circumstances, with the modes corresponding to the true changepoint posi-
tions. Thus we might feel justified in trying to locate and record the pair of modal positions
for such sequences. However, figure 13 demonstrates that this strategy may not be easily
implemented. There, due to the asymmetry of the sequences, one mode dominates the other,

and so search techniques may be subverted. Also, as we have tried to formulate the
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changepoint/edge detection problem using decision-theoretic ideas, it is difficult to justify a
two mode search in that framework (i.e. we choose the mode of the one changepoint posterior
distribution as our estimator as it minimises Bayes risk with respect to a pre-specified loss
function - it is not easy to see how the choice of localised modes can be justified in this way).

Thus, in general, we merely locate and record posterior modal position and probability.

We now have some practical experience and theoretical understanding of the behaviour
of the one changepoint posterior distribution given a realisation from a two changepoint
sequence. Most importantly, we have seen that we may associate posterior modes with true
changepoint positions. This is of great importance in the edge-detection context, as it implies
that we may analyse more complex true scenes and images such as those in figure 10 in
exactly the same way that we analysed the simple example of figure 3 (i.e. using one
changepoint posterior distributions and recording the position of the posterior mode for each

row and column), thus keeping computational expense to a minimum.

(3.3) Analysis of circle true scenes.

We now proceed to analyse an image derived from the true scene in Figure 10(a). For
demonstration purposes, 8; was taken as 0.0, 6, was taken as 3.0, and the image-formation
process was identical to that in equation (2.1), with 02 = 1.0 (hence a relatively large Signal-

Noise ratio of 3.0) The results of the analysis are depicted in figure 14.
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Fig 14(a) : One changepoint posterior Fig 14(b) : Two changepoint posterior

Figure 14(a) depicts the raw results of full analysis using the one changepoint posterior distri-
bution (2.11), incorporating positive probability of no changepoint/edge (plotted as
changepoint at end of row/column). Tt is clear that much of the circle structure has been cap-
tured, and edge regions are clearly discernible. The analysis took of the order of two seconds.

Figure 14(b) depicts the raw results of full analysis using the two changepoint posterior
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distribution (3.2), again incorporating a positive probability of no changepoint/edge (plotted
now as changepoints at beginning and end of row/column). The edge is again located, with
posterior probabilities for pairs of changepoints being higher than those for single
changepoints in figure 14(a) as we would expect. However, in the context of the edge-
detection problem, the results are essentially equivalent - we have successfully located edge
regions and regions of homogeneity in both cases. The analysis involved in the production of
figure 14(b) involved of the order of two minutes of processing time. Thus, for the edge-
detection problem, the one changepoint posterior technique is clearly preferable in this case,
due to the considerable saving in processing time (a factor of around sixty). In the light of
figure 12, however, we may expect the one changepoint technique to be of less use at lower
Signal-Noise ratios. Figure 15 depicts the results of full one changepoint analysis on the circle

true scene for Signal-Noise ratios decreasing from 2.5 to 1.0 in the series (a) to (d).

Fig 15(c) : S.N.R. 1.5 Fig 15(d) : S.N.R. 1.0

Quite surprisingly, the one changepoint "approximation” technique gives adequate results
for Signal-Noise ratios as low as 1.5. However, the true scene involved is a favourable one in

that it contains a large, symmetrically situated object. Figures 16 and 17 depict the results of
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analyses when the true scene is potentially less favourable.
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Fig 16(e) : radius 10.0 Fig 16(f) : radius 5.0

For the sequence in figure 16(a)-(f), symmetry was preserved but the radius of the circle was

varied at fixed Signal-Noise 2.0. The results seem adequate except in the case of figure 16(f).
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We shall develop special strategies to deal with small objects in section (3.5). Figure 17 dep-
icts the results of one changepoint analyses of an image derived from a true scene containing a

circle of radius 20.0 displaced from the centre of S, with Signal-Noise ratio fixed at 2.0.
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Fig 17(e) : centre (30,30) Fig 17(f) : centre (25,25)
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These results confirm that for any row in which two edges/changepoints are asymmetri-
cally situated, we detect one (that one nearer the middle of the row in question) with greater
frequency. However, for these particular examples, the edge-detection problem has been tack-
led with some success - we have captured a good deal (if not all) of the circle structure, and
have certainly located edge and non-edge regions (note the number of rows/columns correctly
classified as having no edge/changepoint). We now propose some simple techniques which

further improve upon the results in figures 15 to 17.

(3.3.1) Analysis of other projections.

In the above, we analysed each row and column of the image data matrix using
changepoint techniques and combined the results. However we could equally well choose to
analyse the image in any two (perpendicular or other) directions, and we would generally
expect comparable results. Now for any single convex object true scene, any planar projection
through the image data will contain either two or no edges, and thus there must exist a set of
optimal projections for the edge-detection problem (in the sense discussed above, for instance
with inter-edge distances maximised). In practice we would not have the necessary informa-
tion about object position and orientation to make use of these optimal projections, although
an adaptive analysis technique would potentially be able to choose interesting projections on
the basis of results already obtained. In any case, we could augment our preliminary full

analysis of the image by analysis of other projections.

Recall figure 15(d). At a Signal-Noise ratio of 1.0, our previous analysis did not ade-
quately solve the edge-detection problem for the image concerned. Now consider figure 18(a),
which depicts the results obtained as from the previous analysis plus the results of a full
analysis using the pair of perpendicular directions making an angle of 45° with the rows and
columns of the image (termed a "cross" analysis). For comparison, figure 18(b) depicts the

results of a full analysis using a two changepoint posterior distribution.

Fig 18(a) : full + cross analyses Fig 18(b) : two changepoint analysis
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Despite the presence of many obvious edge-misclassifications in figure 18(a), we note an
improvement in the results in the sense that we now can more clearly discern the central
region of homogeneity. The analysis took the order of four seconds. Figure 18(b) depicts the
results of analysis based on a two changepoint posterior distribution. As we would expect the
results are more satisfying, but again the results took of the order of two minutes to produce,
an unacceptable amount of processing time compared with the small addition to processing
time needed to carry out extra one changepoint analyses along secondary projections. (Note -
the precise choices of secondary projections for this particular true scene are not important
due to the scenes symmetric nature. It is possible to choose optimally for any scene. For con-

venience here we choose diagonals in the image matrix.)

(3.3.2) Binary segmentation.

As we have seen, our proposed method associates modes in the one changepoint poste-
rior distribution with the true position of a changepoint, independently of whether the underly-
ing sequence actually had one or two (or possibly more) changepoints. Thus a possible stra-
tegy for the detection of multiple changepoints is to compute the posterior probabilities and
locate the posterior mode 7 for the each row/column sequence Y as usual, and then to repeat
the procedure for both of the sub-sequences Y, = (Y;,...,Y;) and Yg = (Y7,1,-... ¥,)
independently, locating the posterior mode in each case, unless originally 7 = n. We term this
technique binary segmentation, and note its implicit use in many fields (e.g. search-type algo-
rithms). Clearly, in the general case we could iterate this segmentation until each segment has
the posterior mode at its end (indicating no changepoint in each sub-sequence). However for
the edge-detection problem in the analysis of single convex object true scenes, we need only

segment at most once for each row/column.

We propose this technique chiefly to assist in the analysis of true scenes involving some
form of asymmetry, as in figure 17, and for which some of the underlying structure is captured
by the standard analysis. Clearly, if the standard analysis produces poor results, then the
binary segmentation will be of little additional use as it depends largely on the accurate detec-
tion of one of the changepoints for its initial step. Hence we proceed to analyse the true
scenes underlying figure 17 using the binary segmentation technique. Recall that in these true
scenes the Signal-Noise ratio was fixed at 2.0 and the degree and nature of the asymmetry
varied in the series (a) to (f) The one changepoint posterior distribution (2.11) was used at
each stage, on the entire row/column sequence initially and then on the two resulting sub-
sequences (Note - this is to some extent incoherent from a Bayesian perspective since, in
deriving (2.11), we specified non-informative prior distribution for the unknown parameters of
the sampling distribution. After the initial analysis of the row/column data sequence, strictly,

we should be able to specify informative prior distributions for these parameters and carry out
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the analysis of the sub-sequences using a different posterior distribution. However, for con-

venience, we restrict attention to analysis using (2.11) at each stage.). The results of the

analysis are depicted in figure 19.
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It is clear that, in each case, the circle structure has been captured almost entirely. The
analysis in each case took the order of 2.7 seconds of processing time, only a minor increase
from the previous full analyses, and certainly quite acceptable. The only possible problem is
that there appear to be a relatively high number of edge-misclassifications compared with the
results we have previously regarded as adequate. There are two reasons for this. First, in the
full analyses used to produce, say, figures 14 to 16, we recorded 160 posterior modes, one for
each eighty rows and columns. For figure 19, this number rose to something over 300 in each
of (a) to (f). Thus it is not surprising that the results appear more "noisy". Secondly, for
figures 14 to 16 each data sequence had length eighty, whereas for figure 17 the lengths of the
data (sub-)sequences were variable, theoretically having average length forty. Intuitively (and
in light of the discussion of the behaviour of (2.11) in expectation above) we would expect to
locate the true changepoint position with higher probability for longer data sequences. In the
same vein, in figure 19, no indication is given as to the length of the (sub-)sequence from
which any particular recorded changepoint resulted (but, as before, one of four symbols was
used to indicate the magnitude of the modal posterior probability). Strictly, we should indicate
the dependence of the changepoint posterior distribution on sequence length explicitly by writ-
ing [r|Y,n,y] instead of [r|Y,y], and it is not immediately clear that we may regard
posterior probabilities resulting from sequences of different lengths as equivalent. Recall
(3.15). We saw there that the difference in the expected value of the sum of squares was
given by

Ae = A- = (r;—rl‘)2(—1——; - i.)aZ

! : n-—r, ry

Now, it is easy to see that increasing n, rl*, and r2' by a factor of k, say, will induce an
increase in the magnitude of this difference by a factor of k , unless of course we have sym-
metry when the difference remains 0. Hence altering n subject to these conditions will alter
the resulting posterior probabilities at r, and r, relative to each other in non-symmetric
cases.

For the edge-detection problem, these matters are somewhat irrelevant at this point, as
we have located a set of candidate edge-points and could legitimately proceed to make infer-
ence from them treating each equally. Any subsequent analysis that took into account their

associated measure of uncertainty (the modal posterior probability p = m’ax [r] Y,y], where

the associated minimum Bayes risk for the 0-1 loss function is 1 — p ) would, however, be
regarded as more satisfying. Thus we return to the implications of inference based on

sequences of different length at a later stage.

We now proceed to study an obvious generalisation of the class of circle true scencs.



(3.4) Convex object true scenes - ellipse.

For our second convex object true scene example we consider an ellipse lying within
region Sy. This is a more complex true scene than the circle of figure 10: for the circle, we
could vary three parameters in the production of the true scene - two location parameters plus
radius, whereas for the ellipse we could vary five - two location, lengths of major and minor

axes, and orientation. Figures 20(a) and (b) depict an ellipse true scene and image derived

from it using the image-formation process (2.1).

Fig 20(a) : true scene Fig 20(b) : image

We proceed to study the performance of the techniques developed above with respect to the
ellipse true scene. First, we study the effect of orientation on the ability of the various analytic
techniques to capture object structure. Fixing location (p,q) as the centre of Sy (40,40), and
major and minor axis lengths (a,b) as (30,15), and a Signal-Noise ratio of 2.0, different true
scenes were obtained by varying the angle of orientation @, measured from the positive x-axis

in the usual way. The results are depicted in figure 21. In figure 21(a) and (b) @ = 0, in (¢)
and (d) o = 7§z , and in (e) and (f) a = 2?” . Figures 21(a), (c), and (e) depict the results of

full analysis. Although some of the ellipse structure is captured in each case, with partial
edges detected, the complete underlying structure is not captured. This is as we would have
predicted from the discussion above, and is due to the small inter-changepoint distance in (a)
and the inherent asymmetry in (¢) and (¢). Figures 21(b), (d) and (f) depict the results of
binary segmentation. As above, these results are more satisfying. Practically the whole ellipse
edge has been detected in each case, and there are relatively few misclassified points. These
results confirm that the binary segmentation technique is of considerable use in the analysis of

images derived from convex object true scenes.
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Fig 21(f)

Next, we study the behaviour of the technique when the scale parameters a and b are

varied. As in the previous example, the Signal-Noise ratio was fixed at 2.0, and the angle of

orientation « was fixed at —. First, a and b were varied with the ratio b/a = e (ellipticity)
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fixed equal to 0.5, as in the true scene underlying figure 21. The results of the two types of

analysis discussed previously are depicted in figure 22.

Fig 22(a) Fig 22(b)

Fig 22(c) Fig 22(D)

Figures 22(a) and (b) relate to an ellipse with a = 20, figures (c) and (d) to an ellipse with a =
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15, and figures (e) and (f) to an ellipse with a = 10, with ¢ = 0.5 in each case. The results
show quite clearly that the binary segmentation technique provides the most satisfactory
results, and that techniques based purely on the single changepoint posterior distribution give
poor results for very small ellipses at this order of Signal-Noise ratio. This is an entirely

understandable phenomenon which is explained fully below.

It is interesting at this point to compare these results with those obtained by using the

two changepoint posterior distribution (3.2), depicted in figure 23.

Fig 23(a) : a = 20 Fig 23(b): a =15

Fig 23(c): a =10

These results are by far superior to those depicted in figure22, but again the processing time
involved (around two minutes) is prohibitive. In the case of (a) and (b) here, the one
changepoint "approximate" method gives adequate results, but in (c) the two changepoint
method is preferable. Hence, as noted above, it seems likely that we must adapt the one
changepoint technique in some way in the case where the inter-changepoint distance is small
i.e. when we have prior knowledge that the convex object is small. We discuss this after first

noting the behaviour of the techniques for ellipses having larger ellipticity, because, as we
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shall see, similar problems are encountered.

Consider ellipses of fixed area where e is allowed to vary. For demonstration purposes,
we fix ab = 200, but allow e to vary between 0.75 and 0.01. The Signal-Noise ratio was fixed

at 2.0, and the binary segmentation technique used. The results of the analysis are depicted in
figure 24.

Fig24():e = 0.75 Fig 24(b) : e = 0.5

Fig 24(e): e = 0.05 Fig 24(f) : e = 0.01
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These results are remarkably good, even when the degree of ellipticity is high (the results are
adequate for these true scenes for the other two methods discussed above also). However, in
the most extreme case here, figure 24(f), the structure is lost due to the small inter-
changepoint distance. It is clear that we must adapt our formulation of the edge-detection

problem so that images derived from true scenes containing small objects may be detected.

(3.5) Adaptation of changepoint formulation for small objects.

As we remarked above, the changepoint technique we have introduced is inadequate for
such problems. Recall, therefore, our motivation for the choice of the changepoint technique
as a solution to the edge-detection problem. We saw in a previous section how the detection
of a simple edge between two larger homogeneous texture regions under simple image-
formation assumptions was equivalent to the statistical problem of changepoint analysis.
Now, clearly, in the two edge case where the edges are close together in any particular
row/column, the data sequence transects a small convex object, a much more pleasing statisti-
cal analogy is that of outlier detection - we seek to detect a small number of (consecutive)
pixel values seemingly having raised level relative to the background. Thus we reformulate
the problem as follows - under the image-formation process (2.1), it is now clear that, for
some r(1 < r < n) and some integer k (k small) the conditional distribution [Y, | 7 ,0] is
N(6,,0%)for1 < i < randr+k+1 <i < n,and is N(6,,0%) for r+1 < i < r+k, where
k is regarded as another parameter of the system, and is taken to represent the "width" of the
object in the row/column in question. In practice k£ will often be unknown, and thus strictly we
should specify a prior distribution for it and carry out a full Bayesian analysis, and so this is
merely a reparameterisation of the two changepoint case above which we reject due to compu-
tational limitations. But in this form, a simplification of the problem is obvious. We could
legitimately restrict the valid range of k to reflect our prior knowledge of the true scene (that
it contains a small object) by specifying a prior probability of zero for values of k outside that
range, and proceed to compute the joint posterior distribution [r,k | Y, y/]. Alternatively, we
could fix £ to have some value thought a priori to be smaller than the object width, proceed
and compute [7 | Y,k,y ] and then report the mode of this posterior distribution. This alterna-
tive cannot strictly be regarded as an edge-detection technique, as if k is markedly smaller
than the true object width then the posterior mode will frequently occur at positions internal to
the object, but away from the object boundary, so we move into the domain of object- rather
than edge-detection. However, for small objects, edge-points and internal points are essentially
equivalent, and we detect the background region of homogeneity correctly, so that much of the

problem is solved.

We have already examined the behaviour of the two changepoint posterior distribution

(3.2), and it is not particularly instructive to study the behaviour of a restricted version, other
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than to note the obvious improvement in amount of processing time needed. We concentrate,
therefore, on the k fixed alternative. Under the same prior assumptions that we used to derive

(2.11), the posterior distribution for 7 is easily seen to be given by

[r Y.k, y] = {k(n—k)}“m{ Y (N-Y )P+ 3 (Y,-—YZ)2}_"/2 (3.17)

; ’ .
ie0O, i€0,

where 0," = {1,.,r.r+k+1,,n} , 0, = {r+l,.,r+k},

1 — 1
YO = - Z Y', and Y, = Y.
' kico, o (n—k); e%,' ‘

We now study the behaviour of (3.17) for a typical "small object" example. Figure 25
depicts the results of 1000 simulations of a two changepoint sequence with changepoints at 47
and 53 and Signal-Noise ratio 2.0 for various prior assumptions and corresponding posterior
distributions. As in figures 11 to 13 in section (3.2), the average posterior probability was

plotted on the vertical scale.

Figure 25(a) depicts the results obtained when using the usual one changepoint posterior
distribution (2.11). Despite the fact that the posterior mode (neglecting the ends of the
sequence) occurs at one of the true changepoint positions, and localised modes are associated
with both of the changepoints, this "expectation” result leads us to believe that, in practice, for
any single sequence, posterior modes will not be related to true changepoint positions due to
the presence of random fluctuations in the data sequence (the "expectation" of the posterior
distribution (2.11) with respect to the distribution of such a sequence is practically uniform).
Figures 25(b) to (d) depict the results obtained when the posterior distribution (3.17) is used

for various choices of k.

0.6 —
0.4 —
0.2 —
. . _ N
I i I | I T
0 20 40 60 80 0 20 40 60 80
Fig 25(a) : distribution (2.11) Fig 25(b) : distribution (3.17), k=2
0.6 —
0.4 —
0.2 — j\
0 | T l | | T
0 20 40 60 80 0 20 40 60 80

Fig 25(c) : distribution (3.17), k =4 Fig 25(d) : distribution (3.17), k=6



-71 -

The results in (b) - (d) are more satisfactory than in (a) as in each case the region in which the
changepoints occur is detected with much greater frequency. Note that, provided the actual
inter-changepoint distance is small, we can specify k to be smaller than that distance and still
obtain adequate results (figures 25(b) and (c)). Another important feature is that the computa-
tion involved in the evaluation of the probabilities in (3.17) is essentially equivalent to that

required to evaluate (2.11). Thus we would expect a marked improvement on the processing

time required for distribution (3.2).

We now proceed to analyse the true scene underlying figures 22(e) and 23(c) using the
posterior distribution (3.17). Nominally, we choose k=3. Recall that the ellipse had dimen-
sions (10,5), and that a Signal-Noise ratio of 2.0 was imposed. The results of the three tech-
niques for such an image are depicted in figure 26. Figures 26(a) and (c) are the results
obtained previously by using posterior distributions (2.11) (timing 1.8s) and (3.2) (timing
120s), respectively. Clearly, (a) is inadequate and (c) excellent. Figure 26(b) depicts the
results obtained when (3.17) is used. Despite the presence of misclassified points, the results
are a marked improvement on those in (a). The processing time required to produce these
results was 1.6 seconds. Thus it would seem preferable to use (3.17) (and smooth) rather than
using (3.2).

Fig 26(a) : distribution (2.11) Fig 26(b) : distribution (3.17), k=3

Fig 26(c) : distribution (3.2)
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We now demonstrate the robustness of this detection technique to choices of k. Figure
27 depicts the results obtained when the true scene underlying figure 24(f) was analysed using

the technique based on (3.17) for various choices of k.
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It is clear that, in each case, the results are more satisfying than those depicted in figure 24(f),
even when the chosen value for k is considerably larger than the true inter-changepoint dis-
tance in any row/column. The results are most impressive when the chosen value for k is of
the same order as this distance, as we would expect. Thus, if we have sufficient (but not

unrealistically specific) prior knowledge concerning object size, it would seem preferable to

use the technique based on (3.17).

We return to the use of (3.17) in chapter 6 in our discussion of multiple object detection

problems.

Note : we acknowledge above the similarity between the changepoint detection problem when
the inter-changepoint distance is small, and the detection of outliers in a given set of observa-
tions. Consider a standard Bayesian approach to the outlier problem (see, for example, Pettit
and Smith (1983)). Specifically, we wish to identify a subset of observations that arise from
distributions having different parameters from those of the majority. Consider the case where
we wish to detect k successive observations of this nature. Then we may write the joint distri-
bution of the variables concerned Y = (Yy,..., ¥, ) conditional on the unknown parameters of

the sampling distribution 6 = (6;,80,) as
[Y|6] = Z=,[Y]0],

i.e. a mixture distribution, where [Y | ], is the joint conditional distribution assuming that

the variables (Y,,..., ¥,,; ) are the outliers, and =, is the prior probability that this is in fact
correct. Now it is easily seen that, provided the prior [ @] is independent of  (in the sense of

the above),

[6]¥] = T=7[0]Y],

r

where [ ]Y], is the posterior distribution corresponding to [Y | 6], and the specified prior,

and 7," is given by

=z f[v]e],[#] |
) Zr‘,ﬂ,f[YIO],[O]

7y

Inference is subsequently made via 7,", the posterior probability that (Y,,..., Y,y ) are the
outliers. It is easy to see that under the same distributional and prior assumptions, z, and

[r|Y.k, v ], and indeed the two methods, are identical.
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We have developed various techniques for the solution of the edge-detection problem for
convex object true scenes based around variations of the Bayesian changepoint identification
idea. Further illustrations and examples of the use of such techniques may be found in Appen-
dix 2. We now proceed to develop a further technique specifically designed to solve the

changepoint problem arising from the analysis of more complex true scenes, motivated by the

need for accuracy and efficiency in processing.

(3.6) Alternative approach to Bayesian multiple changepoint detection.

As we have seen above, in the simple one changepoint case, exact inference concerning
changepoint position is straightforward and computationally feasible. In the two changepoint
case, exact inference is also possible, but the amount of computation involved in evaluating
posterior probabilities is prohibitive. We have shown that in this case approximate inference
based on a one changepoint posterior distribution is computationally efficient and adequate in
many circumstances. However, in the k (k > 2) changepoint case, exact inference is impracti-
cal, and approximate inference via simpler changepoint assumptions is inadequate. Now, in the
analysis of complex true scenes, it is probable that solution of the edge-detection problem
using the changepoint based techniques suggested above will require that exact or approximate
inference of some sort is not only possible but computationally feasible. This motivates the
search for a changepoint identification technique which retains some of the points of those
described above (intuitively appealing, decision-based, non arbitrary etc.) but does not involve
the need for excessive computation. Before turning to this, however, we discuss other various

aspects of the identification problem.

In all of the above, for example in the derivation of (2.11) and (3.2), when we are con-
cerned with changepoint identification, we propose the number of changepoints for the
sequence concerned, evaluate the joint posterior distribution and report the joint posterior
mode on the basis of a realisation of the sequence. Now, it is equally as valid to evaluate the
marginal posterior distribution and report the marginal mode for each changepoint individually
- this is the equivalent solution to the same decision problem when using a different (but still
reasonable) loss function to that used previously. However, the only access we have to the
marginal posterior distribution for each individual changepoint in the above framework is via
the joint posterior distribution (by marginalising in the usual way), which we have seen to be
expensive to compute, even when the number of changepoints is relatively small. If we could
compute the marginal distributions by another method and report the marginal modes, then we

may be able to lessen the computational load reiative to that of the method discussed previ-

ously.
Consider the sequence of random variables ¥ = (Y;,..., Y, ) represented in figure 30,

assumed to have k changepoints (ry,..., r,) of unknown position but where k is presumed
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known. Let ry = 0, and r,,, = n. Let the sampling distribution of ¥; = (Y, ,,,..., 7, ) have
FESY rl
parameters 6;, and (Y’/--“"”’ Y,j) be conditionally independent given 0;,j=1,.., k+l,

Finally, let (Y,..., Y4, ) be conditionally independent given 8 = (6,,..., 6;,,).

Y, Y, Y, )
. e — —_—— +
......................
0, 0
2 0
3 Ok 41
i [ | |
Yo , e e
1 r
2 3 Tk Trs1

Figure 30

From the conditional independence assumptions, via an equation equivalent to (2.7), we may

write the margin i istributi ; iti
ginal posterior distribution of rj conditional on (7g,..., Fj_y ,Fjy1,..., Tkyp ), @S

[rj Iro,..., rj_l ,rj+1,...,rk+1,Y,y/] = [rjlrj_l,er,Y,W]

< [ 1Y %00 17,.6.600] 8,601 | W] [1; 1751 07j01]

r

=1 I‘I+1[Yi|ej]_h+l [Y: 1641] [6;.6;41 | ¥]
i=r_, i=r

.[rjlrj_l,er] . (3.18)

It is clear that in this formulation of the multiple changepoint problem, which is identical to
our original one, the marginal posterior distribution for r; conditional on the k—1 changepoints
depends only on r;_; and r;,,, for j = 1,..., k. But conditional on r;_, and r;,,, the margi-
nal posterior distribution for r; is identical to the usual one changepoint posterior distribution
given by (2.7) evaluated for the sub-sequence (Y, ,Y;+1), with the valid range of r; being res-
tricted to r;_y + 1,...,74;. Thus we may write down [r;|r;_;,7;4;,Y,y] using standard

and familiar techniques, forj = 1,..., k.

We now have the set of discrete, univariate posterior distributions [rj | 7j-147j41.Y, v]
forj = 1,..., k. However, we wish to make inference on the basis of the unconditional mar-
ginal distributions [r; | Y, v ]. The crucial link is made via the simulation technique known as
stochastic substitution, and in particular the method for the evaluation of joint or marginal
distributions from such conditional distributions that was described in chapter 1 section
(1.4.1.2), the Gibbs Sampler, introduced initially by Geman and Geman (1984), and developed
further for more familiar statistical problems by Gelfand er al. (1989). Recall that, for the
collection of random variables of interest, where the corresponding collection of full condi-
tional distributions are completely specified and straightforward to sample from, the Gibbs

Sampler algorithm proceeds as follows. Given an arbitrary starting value for each of the
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variables, sample repeatedly from each of the full conditional distributions in turn, where the
"current” value (i.e. that most recently obtained by the sampling procedure) for each of the
conditioning variables is used in place of the true value in the functional form of the full
conditional distribution. It can be shown (Geman and Geman (1984), appendices) that, subject
to regularity conditions, as the number of iterations, ¢ say, increases, the ¢’th simulated value
for variable j tends in distribution to a realisation from the unconditional marginal distribution

of variable j, and that the ¢’th set of simulated values for all variables jointly tends in distribu-

tion to a realisation from the joint distribution.

In the multiple changepoint problem, therefore, the solution to the problem of computing
marginal posterior distributions on the changepoint positions is straightforward. We write
down [rjlrj_l ,rj+1,Y,v/] for j = 1,...,k by the usual techniques, and choose starting
values (ryg,...,7j0). Then we generate a value r;; from the discrete posterior distribution
[r1170.720.Y,¥] by c.d.f inversion, then a value r,; from [r2]7r11.730.Y,¥] etc. until
"convergence” (as yet to be defined) at or for a predetermined number of iterations ¢, resulting
in a set of sample values (7, ... Tt ). We then obtain an estimate of the unconditional mar-
ginal distribution [rj | Y,y/] for each j by combining the probabilities in
[rj | 7jc1e 27 et .Y ,y] additively and averaging (the discrete analogue to the finite mixture
density estimator of the marginal density in Gelfand and Smith (1990)). Note that in this
formulation we have integrated out the parameters of secondary interest, namely 6 =
(6y,..., Ox41). If the 0,’s were of interest, and we wanted to calculate the marginal posterior
densities [Oj | Y,w], we could extend the Gibbs Sampler by including the k+1 conditional

posterior densities
[ej I Fos-ev s Tk41 ’01 3 oo ’ej—l ’0j+1 y e ’0k+l ’Y’W]

in the sampling cycle described above. It is easily seen that this conditional posterior density

for 6; simplifies to

r
(617 Yoyl o | 1 [%16][61v]
i=rj_,+1
We could now simulate 2k+1 observations per iteration, as opposed to k previously, so we
might expect processing time to increase, at least by a factor of two, and by a greater factor if
the functional form of [ 8; | r;_y,r;,Y;,y] is difficult to sample from. Also convergence may
be more difficult to discern for the marginal posterior densities for the continuous parameters

6;. Thus we concentrate here solely on the changepoint posterior marginals.

The above analysis suggests that we may use the Gibbs Sampler algorithm to compute
the k changepoint posterior marginal distributions and hence derive estimates of the unknown

changepoint positions. However, to implement the algorithm, we must overcome two
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difficulties. First, we must be able to decide, in some sense, when convergence has occurred.
Secondly, to lessen total time to convergence of the algorithm, it is important that an adequate

set of starting values (ryg, ... 7o) are chosen. We address each of these problems in turn.

There exist no formal criteria for the assessment of convergence of the Gibbs Sampler
algorithm. Gelfand et al. (1988) describe graphical convergence diagnostics based upon the
stability of the marginal posterior density estimates over a range of numbers of iterations. One
possibility is that the algorithm is diagnosed as converged if the spline-smoothed curves
representing the density estimates at successive multiples of 10 iterations are indistinguishable
by eye. This might be a reasonable diagnostic for many purposes, as it represents an overall
distributional comparison. The analogue in the case of our discrete marginal posterior distribu-
tions would be to assess visually histogram similarity at 10 iterations apart, which would
presumably be as easy to discern, but perhaps subject to a higher degree of fluctuation. How-
ever, we can improve on this informal procedure in the discrete case by using some measure
of distance between distributions (i.e. merely a summation over the finite and discrete range of
each variable of some suitably chosen function of two successive marginal probability esti-
mates) and some stopping criterion - for instance, we could regard convergence to have
occurred when the total squared distance between successive estimates of the marginal distri-
butions is less than some constant for each of the changepoint variables - this option is not
generally readily available in the continuous case. We note this possible approach, but reject it
on the grounds of inefficiency in favour of another convergence diagnostic technique in the
spirit of those used by Geman and Geman (1984) and Ripley (1988), namely via what we
broadly term "summary statistics”, an alternative rejected by Gelfand er al. principally due to
its inefficiency, but also presumably due to their different objectives (their interest being in
reporting the posterior density as a whole). In the image processing context, Geman and
Geman assess convergence of the Gibbs Sampler (there used in conjunction with the simulated
annealing technique) in terms of number of pixel "flips"; that is, changes in (the relevant)
posterior modal estimates. Ripley assesses convergence by monitoring (in the annealing pro-
cess) the magnitude of the energy function in the exponent of the (Gibbs) posterior distribu-
tion, a quantity related to modal posterior probability. These seem intuitively more appealing
and relevant approaches to our problem, as they specifically relate to the quantity of interest
(in our case these would be modes in the marginal posterior distributions) and are potentially
more expediently implemented. Thus, for the moment at least, we regard convergence as hav-
ing occurred when the position of the mode of each marginal changepoint posterior distribu-

tion between iterations a fixed number apart has stabilised.
Therefore, a possible scheme for implementation of the Gibbs Sampler algorithm in the
multiple changepoint case is as follows. Given the set of starting values (74, ..., 7o ), sample

once from each of the conditional posterior distributions [rjlrj_l riv1, Y, ] by cdf.
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inversion and then iterate the procedure, setting the conditioning variables r; equal to the most
recent value of r;, obtained. After tp such iterations, obtain values (’1:,, s een ,rk,o). Repeat this
procedure m times, and obtain m i.i.d. replicates, (s re @) for i = 1,..., m. Com-
pute the marginal posterior distribution estimates after 1y iterations, [rj | Y, y] ;, by summing
the individual probabilities in the distributions [rj | rj_l,o(‘),rjﬂ,o("),Y, v] over i, element by
element, and dividing each element by m, i.e.

[rj I Y’W]lo = [rj I rj—lto(i)’rj+lt°(0’Y’v,]

D

1
m;
or

Pr(r; = rIY,y/),o -

L3

Pr(r; = rlrjio1,®5 700,07 )

the discrete analogue of the mixture density estimate in Gelfand et al. Locate the mode of
each posterior distribution estimate, [rj |Y,v] ,,» the vector of those marginal modes being
denoted by (7, ,...,#, ). Then, using the replicates (rl,o('),...,rk,o(i)) as starting values,
sample again from the conditional posterior distributions until the ¢,’th iteration is complete,
1 = 2, thus producing a new set of m i.i.d. replicates (ru,(i)’ ,rk,l(i)). Compute the esti-
mates [rj | Y, W]'. in the same way as above, and again locate their modes (fn, N ). If
the successive modal positions coincide, or r‘j,o = #;, for each j, we deem convergence to
have occurred, otherwise we repeat the three steps of the procedure (calculate and sample
from the full conditional distributions for another ¢, iterations and m replications, compute
marginal distribution estimates, locate modes) for #,,t3, ..., where t; = (j + 1)t, until con-

vergence after ¢, iterations, when 7, = F; for all j.

It might seem at first sight that the amount of computation involved in such a scheme is
potentially very large. Using the values proposed by Gelfand et al. of t; = 10 and m = 50,
we must evaluate each of the k£ conditional posterior distributions [rj | ric1.7j41,Y, v] a total
of tom = 500 times between comparisons of modal positions, and in the process generate one
variate from each distribution. The c.d.f. inversion technique is a "one-for-one" sampling
scheme, and therefore we must generate a total of tgmk = 500k variates uniformly from
(0, 1) during the same period. However, as we shall see, in many cases we are able to choose
to and m to be considerably smaller than those values proposed above, and still obtain ade-
quate results.

The remaining problem concerning the implementation of the Gibbs Sampler algorithm

is that of choosing the set of starting values (ryq, ... 7). We might naively choose & values

uniformly spaced in, or randomly chosen and suitably ordered from, the set {1,...,n-1}.
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Using this approach, however, it is clear that because of the properties of the conditional dis-
tribution [r; | r;_y,r;,,,Y,y] we have to some extent studied in a previous section, if two or
more of the true changepoint positions lic between 7;_; and r;,,, the algorithm will be sub-
verted unless great care is taken in the procedure used when updating the values of the condi-
tioning variable. An alternative choice for the set of starting values would be to choose each
of the r; equal to rp,; = n for j = 1,...,k. This would add an extra element in that we
might expect the set (ry;,...,7;;) to correspond quite closely to the true changepoint posi-

tions, due to the nature of the conditional posterior distributions.

We now present an illustrative example of the use of the Gibbs Sampler algorithm in the

multiple changepoint problem.

(3.6.1) Approximation of changepoint marginal posterior distributions, £ = 2.

Consider a sequence Y having £ = 2 changepoints at unknown positions represented as
random variables r,,r,. We wish to make inference about these positions marginally on the
basis of a realisation y of Y, and certain prior assumptions. Specifically, assume that
(Y1,...,Y, ) are identically distributed as N(6, .62), (¥, 41,...,Y, ) are identically distri-
buted as N(8,,07), and (¥, ,;,...,Y,) are identically distributed as N(6; ,02). Assuming
also the Y¥;’s to be conditionally independent given 6 = (6,,6,,6;,0), and that @ is
unknown and that the form of [6;,6;,, ,0] is identical to (2.10), it is easily seen that if we
again define ry = 0 and r,,; = r3 = n, and choose [rj|rj_1 ,rj,,l] to be uniform, the

form of the conditional posterior distribution [; | 7;_;,7;41,Y,y] is identical to (2.11), i.e.

[ri1rjctsrien Yow] e {(r = rima) (7ea = )

-n /2
’ . e . Y

[ Zj (-7 + X (Yi_YBj)Z] (3.19)
i=r,_,+1 i=r+1

where
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and r; takes values in {rj_l +1,...,r4—1 } If we allow a non-zero prior probability of "no
J
changepoint” in {71+ 1,....7j4 }, we make the relevant adjustment to (1.24), and choose

[r;]7j-1 ,rj+1] to be of the form
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(1-p)
[’jl"j-l”’jn] = (”j+1—'j—1"1)

p rj = rj+1

1
(3.20)

for some p (0 < p < 1). However, were we to choose p non-zero then we would be allow-
ing the possibility of coincident changepoint positions on any single iteration, and hence effec-
tively a reduction of k£ on subsequent iterations, which we feel may disrupt the Gibbs Sampler
algorithm unduly. For the moment we choose p = 0. As suggested above we choose
(r10.720) to equal n. We now proceed to compare the marginal posterior distributions for r,
and r, obtained, the processing time involved, and the number of iterations to convergence
using the Gibbs Sampler with various choices of to and m, for several pairs (r, ,r,") of true

changepoint positions and Signal-Noise ratios.

First, we study the effect that varying o and m has on processing time. The entries in
table 1 are the amounts of processing time required for the Gibbs Sampler to converge for
various pairs of choices (y,m) using the stable-mode convergence criterion averaged over
200 runs. The sequences of length 80 generated had true changepoints r,” = 24 and

»

r, = 56,0, = 65, and a Signal-Noise ratio of 2.0.

1| 0.1178 | 0.1530 | 0.1846 | 0.2519 | 0.4274

3 | 0.2518 | 0.3609 | 0.4603 | 0.6748 | 1.1828

m 5 | 0.3956 | 0.5604 | 0.7301 | 1.0770 | 1.9492

10 | 0.7277 | 1.0798 | 1.4280 | 2.1357 | 3.9022

20 | 1.4256 | 2.0974 | 2.7737 | 4.1068 | 7.7784

Table 1

On inspection of the the timings in table 1, it is clear that computation time increases
more quickly with m than with ¢, - this is encouraging, as m relates primarily to the adequacy
of the estimate of the marginal distribution, which is not our chief concern, and only acts as a
secondary factor in relation to assessment of rate of convergence (i.e. through the convergence
diagnostic, posterior modal position, which we might expect to be fairly stable even for small

m in the majority of cases). It should also be noted that, for this particular admittedly



-81 -

straightforward example the algorithm was diagnosed as converged on iteration 2¢, in practi-
cally all of the 200 repetitions of the analysis.

Thus it only remains to compare the results obtained using the Gibbs Sampler with those
obtained from an "exact" analysis using (3.2). Figures 31(a) and (b) depict the exact marginal
posterior distributions of r; and r, respectively, evaluated using (3.2) and marginalisation,
averaged over 200 runs. Figure 31(c) and (d) depict the "approximate" marginal posterior dis-

tributions obtained using Gibbs Sampler for various choices of ¢y, and m.
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Fig 31(a) : Exact margin of r, Fig 31(b) : Exact margin of r,
0.6
0.4 —
0.2 —
0 20 40 60 80 0 20 40 60 80
Fig 31(c) : Approximate margin of r; Fig 31(d) : Approximate margin of r;

The solid, dashed and dotted lines in (c) and (d) correspond to (10,20), (3,5) and (1,1) as
choices for (t,,m) respectively. The three are virtually indistinguishable, and all approximate
the true marginal posterior distribution more than adequately. This illustrates the considerable

potential of the Gibbs Sampler technique for the multiple changepoint problem.

The evaluation of the exact posterior probabilities in figures 31(a) and (b) took an aver-
age of 0.5355 seconds over the 200 runs. Thus, in many cases for this particular example, the
Gibbs Sampler gives adequate results in a shorter time than the exact analysis. We now repeat
the analysis with r2* — 30 at the same Signal-Noise ratio and under the same prior assump-

tions. The results are depicted in figure 32.
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In figure 32(c) and (d), the solid, dashed and dotted lines in (¢) and (d) correspond to (5,3),
(5,1) and (1,1) as choices for (1 ,m) respectively. Again, it is clear that in each case the
estimate of the marginal posterior distribution approximates the exact marginal posterior dis-
tribution well. The relative timings involved were comparable to those in table 1, and the
latter two cases were appreciably faster than the evaluation of the exact margins. Again, for
this example, convergence was generally perceived to have occurred after 2t, iterations in the
majority of cases.

We now study the effect that altering Signal-Noise ratio has on the efficiency of the
Gibbs Sampler in producing estimates of marginal distributions and modes. Fixing r,” = 24
and r,” = 40, we vary the Signal-Noise ratio between 2.0 and 1.0 in decrements of 0.5. The
results are depicted in the series figure 33 to figure 35. In each case, (a) and (b) depict the
exact marginal distributions of r; and r,, respectively, obtained via (3.2), and (c) and (d) dep-
ict the approximate marginal distributions obtained using the Gibbs Sampler, with the pair

(to,m) chosen as (5,1) for demonstration purposes.

The results are clearly impressive (in the sense that the approximation is excellent) even
at low Signal-Noise ratios. It is interesting to note the rate of convergence in each case. In
figure 33(c) and (d), with S.N.R equal to 2.0, convergence was diagnosed on average after
11.12 iterations (approximately 2¢,) and the average processing time was 0.2501 seconds. In
figure 34(c) and (d), S.N.R. equal to 1.5, the corresponding averages were 14.65 (3ty) and
0.3199 seconds, and in figure 35(c) and (d), the averages were 26.67 (5¢y) and 0.5471 seconds
respectively. Hence, as we might have predicted, the rate of convergence decreases with
decreasing Signal-Noise ratio. In the latter case, the processing time involved when using the

Gibbs Sampler was comparable with that involved when evaluating the marginal posterior
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distributions exactly, which conflicts with our motivation for using the Gibbs Sampler in the
multiple changepoint problem (potential computation time reduction in the image-processing

context). We need not be unduly worried, however, as we shall sce below that the saving

incurred for larger k is appreciable.

(3.6.2) Approximation of changepoint marginal posterior distributions, k = 3.

We now investigate the behaviour of the Gibbs Sampler for larger k. Consider the case
k = 3. Using the same prior specifications as above, it is again straightforward to evaluate
the conditional posterior distributions, and each takes precisely the same form as (3.19). The
Gibbs Sampler algorithm then requires that we should sample and update the conditioning
variables iteratively to convergence. We might intuitively expect processing time to increase
linearly with k. For demonstration and comparative purposes, we investigate the performance
of the Gibbs Sampler on Normal sequences having changepoints at 24, 40, and 66, with
corresponding mean levels 0.0, 2.0, 4.0, and 1.0. The margins obtained via the Gibbs Sampler
(averaged over 200 runs) and the exact margins obtained using the three changepoint

equivalent to (3.2) are depicted in Figure 36.
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Fig 36(e) : Exact margin of r; Fig 36(f) : Approximate margin of r;

The results of the Gibbs Sampler depicted in Figure 36(b), (d), and (f) were obtained using
to, = 20 and m = 1 to show the potential of the algorithm. It is clear that the approximate

margin is very close to the exact margin in each case. For these values of t, and m, the
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average processing time was 0.9386 seconds, and the average number of iterations needed for
the algorithm to converge was 45.20 (2¢,). The exact analysis required an average of 17.40
seconds of processing time for calculation of the margins. Thus we now have a 17-fold time-

saving in calculation of the margins in the three changepoint case, compared to approximately

a 3-fold saving in the two changepoint case.

It is interesting to study the results obtained using the Gibbs Sampler in the three-
changepoint case when the value of ¢, is varied. Figure 37 depicts the r, margin resulting
from a Gibbs Sampler analysis carried out with ¢, taking the values 15, 10, 5, 1 in the series

(a) to (d), with convergence being assessed by modal position stability in the usual way.
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Fig37(a) : t, = 15 Fig 37(b) :tp = 10
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Fig 37(c) itg = 5 Fig 37(d) iy = 1

These results illustrate one minor drawback of our implementation of the Gibbs Sampler
to evaluate the marginal distributions. We must take great care over the assessment of conver-
gence, since when using the same convergence diagnostic as above with a range of values of
ty, the resulting marginal distribution estimates are markedly different. Choosing ¢, large
enough practically ensures convergence to the "correct” distribution but increases processing
time. One possible alternative implementation would involve choosing ¢, large initially, com-
pleting the sampling sampling cycle £, times and evaluating the marginal distributions and
modal positions, and then re-calculating the distributions and modes after every subsequent or
alternate iteration, assessing convergence in the usual way. This would hopefully ensure that
the Gibbs Sampler had "settled down" to the correct values of the changepoint positions before
any assessment of convergence is made. Results of an analysis using this alternative scheme -

choosing t, = 20 initially then inspecting modal positions after each subsequent iteration -

are depicted in figure 36. Again, only the r, margin is shown.
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Fig 38(b) : Approximate margin of r,, alternative scheme

It is clear that (a) and (b) are very similar. The processing time involved in producing
(a) and (b) was 0.9386 and 0.5117 seconds respectively. Thus we have practically halved the
amount of processing time needed by using the alternative scheme, and achieved comparable

results. Further processing time reductions may be achieved in a similar way.

Two other points should be noted. First, as mentioned previously, we could assess con-
vergence via a distance measure between successive marginal distribution estimates. This
would presumably help to eliminate problems associated with the choice of t, and provide
some notion of rate of convergence. However, use of this method would present its own
difficulties. In addition to those mentioned above concerning computation time, we would be
forced to introduce scales of distance, and stopping-rules etc. which would further complicate
practical implementation. Secondly, in the context of the edge-detection problem, as our
interest is principally in marginal posterior modal positions, we need not be overly concerned
with the nature of the distribution estimates themselves provided that we gain sufficient and
accurate information from a Gibbs Sampler analysis to enable us to report the posterior modal
positions. This implies that, provided we are not primarily concerned with modal posterior
probability for each margin, we can afford to choose f, smaller than is necessary in other
problems. For example, in the case depicted in figure 37, we gain information about the posi-
tion of both the second and third changepoints from the r, margin (much in the same way that
we could have made inference about two changepoint positions when using the one
changepoint posterior distribution (2.11) in a previous section). The precise behaviour seen in
figure 37 is understandable given our experience with changepoint sequences when we recall
that the magnitude of the mean-level change at ry is 3.0, compared with 2.0 at r, , SO We

might expect a "short-term” convergence effect in the iterative procedure to rs .
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Finally, before we demonstrate the application of this sampling-based method in the
edge-detection problem, we propose a simplification/approximation to the full Gibbs Sampler
algorithm with the intention of further reducing processing time. Recall the set of full condi-
tional posterior distributions [rj | ric1.7j41,Y,w], j = 1,.. .k, and the set of starting
values (ryg,...,70). Then the simplified algorithm proceeds as follows. Compute
[rl |70.720.Y, v ], and instead of sampling from this distribution, choose the value ry; to be
that at which the distribution is maximised. Then choose r1 to be that value which maximises
[72]711.730.Y., v] etc. until the modal positions stabilise. It is reasonable to expect the set
(rl,‘ s eee ,rk,‘) to coincide with the actual changepoint positions after convergence at iteration
{. in many straightforward instances. This approximation to the full Gibbs Sampler procedure
follows the I.C.M. approximation to the maximum probability estimates in image segmentation
problems discussed in section (1.4.3.1) of chapter 1. It also has links with the binary segmen-

tation technique proposed in section (3.3.2).

We now demonstrate the use of this approximation to the Gibbs Sampler in the two and
three changepoint cases. First, we investigate its behaviour for two changepoint sequences
identical to those in figure 33, i.e. with the change in mean-level at r, equal in magnitude but
opposite in sign to that at 7,". We choose ri. = 24 and r,, = 50,and a Signal-Noise ratio of
2.0, and make the same prior assumptions and hence use the same functional form (3.19) for
the full conditional posterior distributions. The results of 1000 repetitions of the analysis are

presented in figure 39.
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Fig 39(b) : Distribution of mode , r, margin

The proportion of occurrences of each point being detected as a mode at convergence are plot-
ted on the vertical scale (hence figure 37 should not strictly be thought of as depicting the
marginal probability distributions of r; and r,, but as expected frequency distributions of the

modal positions of the marginal distributions of r; and r,). It is clear from figure 39 that this
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approximate method provides adequate results in the two changepoint detection case. The
average processing time involved in producing these results was 0.0823 seconds, and the algo-
rithm had generally converged before the fourth iteration. This represents a time saving of at

least one-third compared with the timings in table 1.

We now investigate the three changepoint case, in particular sequences identical to those
represented in figure 36, with true changepoints at 24, 40, and 66, and mean-levels 0.0, 2.0,
4.0 and 1.0, and a common variance of 1.0. Again 1000 repetitions of the analysis were car-

ried out. The relative expected frequencies are depicted in figure 40.
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These results are less adequate than those obtained previously, due presumably to the
fact that the Signal-Noise ratio at r3' is appreciably larger than at either r1' or r2*, and hence
we again get a "short-term” convergence effect. However, we still gain some information as to
the true changepoint positions by combining the results from the three margins in some way.

The average processing time involved in this case was 0.0998 seconds.

Note: throughout the above we have assumed the number of changepoints £ in any analysis to
be known. This is of course practically unrealistic. However, it can be verified that if k is
mis-specified relative to the true nature of the data sequence, then results at convergence are

broadly satisfactory, that is, we gain sufficient information from the margins individually and
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jointly to be able to infer the positions of the true changepoints. Figure 41 depicts the margins

obtained from a Gibbs Sampler analysis of a two changepoint sequence with r;” = 24 and

*

r2 = 40 and a Signal-Noise ratio of 2.0 (i.e. precisely as in figure 33), but with k chosen to
be three.
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It is clear that the two changepoints are detected accurately as modes in the marginal distribu-
tions. Similar results are obtained if k is specified to be less than the actual number of
changepoints in the sequence (much in the same way that the one changepoint posterior mar-
gin (2.11) provides useful information when used to analyse two changepoint sequences).
However, we generally consider it advisable to specify k larger rather than smaller in the case
where the actual number of changepoints is truly unknown, as the results from particular mar-

gins would then be re-enforced by the results from others.

(3.6.3) Edge-detection analysis using marginal approximation.

We now conclude this section by demonstrating the use of these approximate techniques
for multiple changepoint detection with specific reference to the edge-detection problem. First,

however, we make a further comment concerning the implementation of the Gibbs Sampler-

based "full" changepoint analysis of an image.
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We noted above the potential difficulties encountered in choosing the set of values
needed to initialise the Gibbs Sampler algorithm. Now, the schemes we have suggested above
for the analysis of an image have involved row-by-row and column-by-column based
changepoint distribution computations with each row/column being treated independently.
However, we would generally expect the edges in the true-scene to be spatially continuous.
We return to this very important piece of prior knowledge in more detail at a later stage, but
here we merely consider its implications for the implementation of a Gibbs Sampler-based
edge-detection procedure. Consider a true-scene and image to be analysed using Gibbs
Sampler techniques, with each row/column assumed to contain at most & edges/changepoints.
Assuming, for example, the row analysis to be carried out in the same order as in all of the
previous schemes (i.e. beginning at row 1 and with the analysis of row j immediately follow-
ing the analysis of row i—1 fori = 2,...,n) then it is clear that, having specified the neces-
sary initial values for row i—1 and completed a Gibbs Sampler analysis of the data in that
row, with k edge-point candidates selected as coinciding with modes in the k changepoint
marginal posterior distributions, then because of our qualitative prior knowledge concerning
spatial continuity a sensible choice for the initial values needed for the Gibbs Sampler analysis
of row i would be those k£ values recorded as the modes for row i—1. This is an intuitively
reasonable choice for two reasons. First, if the j’th mode in row i—1 corresponded to a true
edge-point, then because of the assumed spatial continuity of the edge, it is likely that row i
would also contain an edge-point in the vicinity of that mode, and hence we might expect an
improvement in the rate of convergence of the Gibbs Sampler. Secondly, even if the j’th mode
in row i—1 did not correspond to an edge-point but rather to an outlying or extremely noise-
corrupted value, it is unlikely that row i would also contain a similarly outlying value in the
vicinity of this mode, and thus due to the stochastic nature of the "updating” step of the Gibbs
Sampler it is unlikely that the algorithm would converge to a point near to it (more generally,
the choice of the k¥ modes from row i—1 as starting values for row i can only theoretically

improve the rate of convergence).

We now proceed with a demonstration of the use of the Gibbs Sampler algorithm in the
analysis of a simple image. We study the results obtained from an analysis of the circle true-
scene and image in figure 10. We saw above that, after making certain prior assumptions
related to the nature of the image-formation process and true-scene parameters the one and
two changepoint posterior distributions (2.11) and (3.2) both dealt adequately with the edge-
detection problem when the Signal-Noise ratio was relatively large (> 2.0), but that the one
changepoint approximation was less adequate for lower values. Figure 42(a) depicts the results
of a full analysis using the one changepoint posterior distribution (2.11). Figure 42(c) depicts
the results of a full analysis using the using a combination of (2.11) and the two changepoint

posterior distribution (3.2). Each row/column was first analysed using (2.11) with the "no
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changepoint” possibility having a positive probability, and unless the mode of the distribution
was found to indicate a "no changepoint” decision (i.e. unless the mode occurred at r = n)
then that row/column was re-analysed using (3.2), and for comparison purposes the individual
margins for each changepoint were computed and their modal position and value recorded.
Figure 42(b) depicts the results of a similar analysis but where the margins for the individual
changepoints were computed using the Gibbs Sampler techniques discussed above, with the
stable mode convergence criterion and the method for choosing initial values for the iterative
step of the algorithm on the basis of the results of the previous analysis were both imple-
mented. The values of 7, and m were both nominally chosen to equal 1 for demonstration

purposes, and k was chosen to be 2 (reasonable, if we know that the true scene contains a

single convex object).
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It is clear that the results in each case are more than adequate. Recall, however, that the pro-
babilities represented in figure 42(a) are really only an approximation to the true probabilities,

as they arise from an incorrectly specified model (one instead of two changepoints per row and
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column). The processing time involved in producing the results in figure 42(a) was 1.82
seconds. Now, on inspection of the results in figures 42(b) and (c), it is evident that the Gibbs
Sampler-based technique has provided results which compare extremely favourably with the
results arising from an exact analysis. The processing times involved in producing the results
for figures 42(b) and (c) were 10.78 and 70.80 seconds respectively. Thus we have achieved at
least a 7-fold time saving even in this straightforward case by using the approximate method.
This is very encouraging when we consider that our primary motivation for introducing Gibbs

Sampler-based techniques was to lessen computation time for multiple changepoint/edge true

scenes and images.

It is of interest to study the results of the three analyses on the same true scene but
where the Signal-Noise ratio in the image is decreased to 1.0. Figure 43 depicts the results of

the analyses of such an image. Precisely the same schemes were used for (b) and (c) as in the

example above.

Fig 43(c) : ry,r,, €xact

In this, a more difficult case, the one changepoint technique does not provide adequate results.
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However, again, the results in (b) and (c) compare favourably, and give a reasonable indica-
tion as to the position of the edge in the image. The processing times involved in the produc-
tion of these results were 1.78, 10.44, and 55.88 seconds respectively, and so again the Gibbs

Sampler-based technique seems preferable.

The results depicted in figures 42 and 43, in conjunction with the reduction of the amount
processing time required are encouraging. The Gibbs Sampler technique for the approximation
of marginal posterior distributions makes the changepoint-based edge-detection analysis of
multi-region true scenes. We now proceed to demonstrate the use of this technique in the

analysis of such true scenes.

(3.7) Analysis of multiple region true scenes.

We now turn to a more complex true-scene and investigate whether the Gibbs Sampler
techniques cope adequately with the added complexity. Figures 44(a) and (b) represent an
artificial true scene and image comprising a square and rectangle having different textures

denoted 8, and 05 as before, on a background texture denoted 6.

Fig 44(a) : true scene Fig 44(b) : image

For illustrative purposes, we assume the same form for the image-formation process as
before with additive Gaussian white-noise of constant variance 0.5 corrupting each pixel
independently, and choose mean-levels of 0.0, 2.0, and 3.0 for the three textures respectively.
We proceed to analyse this image using Gibbs Sampler-based techniques. Figure 45 depicts
the results obtained using the implementation of the Gibbs Sampler suggested above (prelim-
inary "no changepoint” analysis, choice of initial values, convergence etc.) for various
choices of the pair (fo,m), with k chosen to be three in the analysis of each row/column

(clearly this represents a mis-specification of k in some of the rows/columns).
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Figd5(c):to = 5,m = 1

The results in each case seem excellent, except possibly for one incomplete edge in (a). Note
that the boundary between square and rectangle, where the Signal-Noise ratio is 1.41, is
detected less readily than any of the other edges, and that Signal-Noise ratio does in general
effect the efficiency of the algorithm. This is entirely in line with our previous experience with
the edge-detection problem. The timings involved in the production of the results were 12.50,
14.78 and 21.38 seconds for (a), (b), and (c) respectively. An exact three changepoint analysis

of this true scene was not feasible due to the enormous amount of processing time required.

It is interesting at this stage to note the effect that our use of prior knowledge concern-
ing edge continuity has on the convergence of the algorithm. Figure 46 depicts the results of
an analysis identical to that above, but with the initial values for the Gibbs Sampler chosen
independently of results from other rows/columns. These results are inferior in the sense that
there appear to be more mis-classifications of edge-points, and one edge (that where the
Signal-Noise ratio is at its lowest) remains virtually completely undetected - this was evident

for larger values of (f,,m) also. Also, the respective timings for (a), (b) and (c) in this case
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were 18.38, 21.24, and 21.82, and so the rate of convergence is seemingly appreciably slower.
Thus the importance of the use of spatial prior knowledge is clearly demonstrated, even when
that prior knowledge is purely qualitative (i.e. we know merely that "edges are continuous”,

but need not quantify this statement in any way).

I
[

Fig46(c): 1ty = S, m

We now complicate the true scene further by effectively increasing the number of
changepoints to be found in any particular row or column. Figure 47(a) and (b) represent an
artificial true scene and image comprising two overlapping circles of the same texture 8, on a
background texture 6;, where the "intersection” of the circles has a different texture 6,
created as some function of the 8,’s, taken here to be additive. We assume the same form for
image-formation and noise processes, and choose mean levels 0.0 and 2.0 for 8, and 8,, and
hence by the additive assumption we induce ;5 to be 4.0. Note that now the Signal-Noise ratio
is 2.83 at each boundary (we choose these relatively large values in order to demonstrate the
potential of the Gibbs Sampler technique and to allow comparison with results obtained using

exact methods. The problem becomes difficult at lower levels of S.N.R. when using any
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Again, the results seem generally good. However, several features are worthy of comment. In
figure 48(a), the outline of the two circles has been detected, but the boundaries of the inter-
section have not - this is as we would have predicted, since k = 2 represents a mis-
specification for several of the rows/columns. It would have been possible to inspect the mar-
gins obtained more closely for evidence of other changepoints, but this would have been time-
consuming (and barely justifiable in the decision-theoretic sense). The processing time
involved in the production of the results in figure 48(a) was 10.84 seconds (an exact two
changepoint analysis of this image produced practically identical results in 96.82 seconds).
Secondly, in figure 48(b), practically all of each of the boundaries has been detected. This is
surprising as k = 3 represents a mis-specification for all of the rows/columns of the image.
There is a degree of mis-classification of edge-points, but many of these correspond to lower
modal probabilities than those recorded actually on the edges themselves. The processing time
involved was 17.16 seconds. Finally, in figure 48(c), each of the boundaries has been fully
detected, but there appears to be a larger number of mis-classifications. This is due to our
recording four points for each row/column where the majority of rows/columns contain no or
two edges. Again, the points actually on the boundaries seem to be recorded with higher pro-
babilities The processing time involved here was 22.74 seconds. So, overall in this case, we

might prefer the results in (b) to those in (a) and (c).

Finally, we investigate the performance of the Gibbs Sampler on a complex composite
true scene. Figures 49(a) and (b) represent an artificial true scene and image comprising four
objects - rectangle, square, ellipse, circle - of various textures and their intersections. For this
example, the rectangle, circle and ellipse were chosen to have the same texture 8,, the square

to have texture 05, square/rectangle intersection to have texture 0, created additively from 6,

and @5, with the background being texture 6.

Fig 49(a) : true scene Fig 49(b) : image
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We assume the same form for image-formation and noise processes, and choose mean levels
0.0, 2.0, and 1.5 for 6,1, 8,, and 65, inducing 6, to be 3.5, and thus there are a range of
Signal-Noise ratios in the image. We carry out an identical Gibbs Sampler analysis to that

above, with k fixed and equal to 4, and m equal to 1. Figure 50 depicts the results obtained for
a range of values of ¢,.

Fig 50(c) : t; = 20

Even in this complicated case the results are encouraging. Note that there is visually little
difference between the results from each analysis. The processing times involved in the pro-
duction of the results were 22.74, 39.04 and 69.66 seconds for (a), (b) and (c) respectively,

none of which being inordinately large considering the relative complexity of the true scene.

Thus in the examples above, we have seen how the Gibbs Sampler algorithm is useful to
our edge-detection routines, allowing good approximate inferences about edge positions to be
made in the Bayesian changepoint framework for images derived from relatively complex true
scenes without an excessive amount of processing time being required. We present further

applications of the Gibbs Sampler algorithm later in this thesis.
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Fig 47(a) : true scene Fig 47(b) : image

technique). We proceed to carry out a Gibbs Sampler analysis under exactly the same prior
assumptions and using the same implementation as above, with ¢, and m both equal to 1. We

study the behaviour for different choices of k. The results are depicted in figure 48.

=
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Fig 48(c) : k = 4
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(3.8) Analysis of complex true scenes - conclusions.

We have seen above how the one changepoint posterior distribution (2.11) can be used
as the basis of an edge-detection technique for more complex true scenes as well as for the
simple single edge true scene for which it was originally designed. We saw, for example, that
for single convex objects, (2.11) dealt adequately with a surprisingly large number of cases,
despite the fact that its "one-changepoint" presumption was incorrect for each of the rows and
columns of the image. We presented some theoretical justification for the use of (2.11) for the
two changepoint sequences present in a convex object true scene, and saw that modes in (2.11)
could be associated with true changepoint positions in a two changepoint sequence, and indeed
that (2.11) was frequently bimodal with modes at both true changepoint positions. We rejected
the idea of locating the two changepoints using "approximate” inference in this way, however,
on both practical and theoretical grounds. We then saw that exact inference was possible using
the natural two changepoint extension to (2.11), namely (3.2), but that the resulting edge-
detection technique involved an unacceptable amount of computation. We therefore discussed
adjustments to a "full" (row/column) analysis using (2.11) suitable for the analysis of convex
object true scenes. First, we saw how the analysis of projections in the image data other than
those perpendicular to the axes of the true scene was informative in some circumstances.
Secondly, we saw how another binary search technique (binary segmentation) was extremely
useful and straightforwardly implemented in the analysis of convex object true scenes. We
discussed another adjustment to (2.11) leading to the posterior form (3.17) specifically to deal
with small convex objects or thin features. Finally, we saw how sampling based techniques for
evaluating marginal posterior distributions, more specifically using the Gibbs Sampler algo-
rithm, could be used as a detection technique for multiple changepoint sequences. We saw that
when applied to the edge-detection problem and implemented in the correct way, these tech-
niques produced generally excellent results in circumstances when an exact analysis using the

multiple changepoint extension to (2.11) would not have been feasible due to the immense

amount of computation required.
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Chapter 4 : Spatial Dependence and Edge Continuity.

As we have seen in chapters 2 and 3, ideas from changepoint analysis can be used as the
basis of a decision-based technique for the solution of the important problem of edge-
detection. We have seen that we may identify edges in the image with modes in changepoint
posterior probability distributions. However, we have typically carried out the above analyses
processing each row/column in isolation, and treated the results obtained independently (the
exceptions to this being our use of "smoothing" in the production of figures 8(b) and (c), and
the development of the implementation of the Gibbs Sampler-based detection methods). Now,
while this may be justified on the grounds of simplicity and expediency, it clearly ignores one
crucial aspect of our prior knowledge of the nature of the true scene, namely the presence of
localised spatial dependence. The use of local dependence priors (Gibbs/M.R.F) for true
scenes in statistical image processing is well documented in recent years, and is widely
regarded as being of fundamental importance. For the edge-detection problem, the concepts of
spatial dependence in and continuity of the true scene is important in two ways. First, we
would expect pixels in non-edge regions to exhibit spatial dependence in the usual way, and
consequently non-edge portions in any one particular row should correspond spatially to non-
edge portions in adjacent rows. Secondly, we would expect edges in the true scene to be spa-
tially continuous, and thus edge-points in any row should correspond to similarly positioned
edge-points in adjacent rows. This suggests that the changepoint based techniques developed
above may be amended to incorporate local dependence ideas in two ways, either (1) via the
prior form for texture parameters (assuming some joint prior distribution for the pixel ele-
ments of adjacent rows/columns in the true scene), or (2) via the form of the prior distribution
for changepoint position in adjacent rows/columns (or indeed via a combination of (1) and
(2)). However, we must ultimately balance the advantages that may be gained from these con-

siderations against the additional processing demand needed for their implementation.

We now proceed and attempt to adapt the changepoint detection techniques using the

ideas discussed above.

(4.1) Localised pixel dependence.

We attempt to incorporate local dependencies into the form of our prior distribution for
the discretised pixel version of the true scene for use in changepoint based edge-detection
techniques. In keeping with the notation of previous chapters 6 = {6;.i,j=1,...,n]}
represent the random variable corresponding to the discretised nxn pixel version of the true
scene S, and ¥ = { Yi,i,j=1,.. ,n} represent the random variable corresponding to the
observed image derived from 8. Let 6; and Y; represent a single row/column taken from the
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true scene and image respectively. Now recall the definition of the Markov Random Field joint
distribution in section (1.4.1.1) of chapter 1 related here specifically to 8. In addition to a
positivity condition, the M.R.F. is characterised by the following relation - for each (i, ), the

conditional distribution of 8;; given 8, = {6, ;k,l =1,...,n ,k#i,l # j} can be written

[6;164@] = [6;]6a] 4.1)

where 0;,; represents the pixels in some suitably defined neighbourhood of (i,j), usually

taken to be a subset of pixels in Sy in the vicinity of (i,j).

In the edge-detection problem, our interest lies in changepoint posterior distributions
given the data in rows/columns of the image. To allow the evaluation of these distributions,
we must specify prior distributions for the true scene parameters, and previously we have
chosen particularly simple forms. We now concentrate on more complex choices using the

conditioning property (4.1). We consider two alternatives.

(4.1.1) Introduction of pixel dependence: method 1.

Consider the joint posterior changepoint distribution of the single changepoints
(rj—1.7;,rjs1) = ry in each of the three adjacent rows j—1,j,j+1 given the data in those
rows (Yj_l ,}’j,Yj+1) = Y,. If we denote the true scene pixel values in rows j-1,j,j+1,

(gj-—l ,HJ ’9j+1) by 0, then it is clear that
[rs1Y,.w] o (Y| w] 1]

= [[Ys1rs.6,] [0 |5, 9] [rs] 4.2)

It remains to specify forms for each term in (4.2). The first term is merely the likelihood, and
under the same conditional independence assumptions as in the previous section can be written
[Y,]r;.6;] = (i.]QSI[YU 16, ]
where S, denotes the pixels of S in rows j-1, j,j+1. The third term in (4.2) is the joint prior
on changepoint position in the three rows, and can be chosen to be uniform, or chosen so as to

reflect the spatial continuity of the edge - this is discussed in section (4.2).

Thus it remains to specify a form for [, | r;, ], the joint prior for true scene values in
the three rows. In this section we choose this prior to be of the Gibbs/M.R.F. form (4.1), and
may select, for example, from any of the forms presented in Besag (1974,1986). We now pro-

vide an illustrative example. Suppose that the image formation process corrupted each pixel in

the true scene independently and identically with Gaussian white-noise as before, so that

[v;]6;] = N(6; ,0%) 4.3)
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and suppose that o is known. Then a suitable choice for the distribution of 8; might be based

on the conjugate auto-normal version of (4.1), i.e.

[eijleaij] = N(llij*‘ ) ﬁlgekl »'lij)
(k.0 € 3ij

-1 L \2

oc CXP[W(% - Y ﬂifeu) } (4.4)
ij (kD) € 3ij

We thus introduce a further stage into the hierarchy of the modelling of the image data (we

choose the prior mean, variance and interaction parameters Wi Ay B4 to be the same across

each texture but different between textures). It is now clear that the prior for 6, takes the form

of a multivariate Normal distribution
[6:1w] = N(u;.0;71)

1
o< exp —E(OJ—”J)TQJ(BJ_ﬂJ)] 4.5)

where p; is the 3nXx 1 vector of prior means, and Q; is the 3nx3n matrix with diagonal
o1 ] . Bi .
entries — and off-diagonal entries —=— - we choose the parameters to ensure that Q; is

ij ij
symmetric and positive-definite. We may naturally extend this prior to [Y,|r,,0,],

reflecting the changepoint positions in the three rows by careful choice of i, and by ensuring

that B4 is non-zero if and only if pixels (i,j) and (k,!) are neighbours and are not separated

by changepoints forming an edge in the three rows. We denote the resulting Normal prior

conditional on r; by

[91 l ry ’W] N(”r,’er—l) . (46)

Now, from (4.3) it is clear that
[YJ I 0]] = N(OJ ,0'21)
and thus by (4.6) and a standard result of Lindley and Smith (1972)

(Y| ¥] = I[YllrJ’OJ] [0, |rs.¥]

N(u,, . Z, ) 4.7)

2 -1
where 2, = o1+ Q..
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Thus to compute the probabilities in (4.2) we must evaluate the multivariate Normal pro-
bability in (4.7), i.e. the quantity

-3n -3n

(2n)7|z,,|7exp[ -, Y5 (Y -, )] . 4.8)

We now investigate the nature of Z,J and its inverse. It is clear that

Z, = o+ Q.
= 0,7(o%Q, + 1)
and hence
z,"' = (o’Q, +1)'Q, (4.9)

so that interest turns to inverting 0’2er + 1. First, we examine the precise form of Q', in the
changepoint context. Assuming that A;; = A, and B = B, if pixels (i,j) and (k,!) are in
texture region 1, and 4;; = 4, and B4 = B, if pixels (i,j) and (k,!) are in texture region
2, and under a second order nearest neighbour system (where the eight neighbours of pixel

(i,jyare {(k,1):k = i,ix1,1 = j,jx1,(k,1) # (i,j)]), @, canbe written

A, B, , 0
-1 117y
Q'J = BT’J—l'/ A'j B’:’/u (4.10)
0 BT’I’]+1 Ar]*l

where the first row and column block refer to 8;_;, the second to 6; and the third to 6;,,, the
off-diagonal blocks representing the interactions between adjacent rows - note that rows j-1

and j+1 are a priori independent. A, is the n X n matrix given by

cl o
A, = [0 c? ] (4.11)

1 : '
and Cf is the k X k tri-diagonal matrix matrix with diagonal elements T and off-diagonal e¢le-

ments - '-6-—‘ fori = 1,2. Now consider B, o, We make the restriction that changepoint posi-
l_
i

tions in adjacent rows can only differ by one pixel to reflect the spatial continuity of the cdge
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over the three rows. Thus we consider only three cases.

First, if r;,_;, = r; -1, then B, , can be written
J J 1-174

Drf—l 0 0
B, .= |45 0 0 (4.12)

2 2
0 Un_,, D"";

where Dy is the kxk tri-diagonal matrix with all non-zero elements equal to —Eﬁ for

[}

i = 1,2, uf is the kx 1 vector with only the k’th element non-zero and equal to — % and v}

4

is the kX 1 vector with only the first element non-zero and equal to —% fori = 1,2,and 0

i

is the zero matrix of appropriate dimension.

Secondly, if r;_; = r; then B,H,l can be written

D, 0
B, = | o p2 (4.13)

Finally, if r;_; = rj + 1, then B,H, can be written

D,} u,t 0
B, , =0 0 vl (4.14)
0 0 Dnz—rl—l

Thus, using (4.10) - (4.14), we can write down Q,J and hence O'ZQ,J + I explicitly - the

2
. i o}
latter being identical in form to Q,J but with the diagonal elements of C; replaced by N + 1,

2
O pPi .
and all other non-zero elements of Q. replaced by — —A_ﬂ_’ fori = 1,2.
i

It remains to invert 0'2Q,J + I before computation of the quantity in (4.8). This is a

solvable problem, as we may evaluate the determinant using a recurrence relation, and hence
immediately write down by inspection the inverse for this tri-diagonal matrix, or alternately
use an iterative method for successive values of r over the complete range. However, it is
clear that the amount of computation involved in the remaining calculation is considerable in
either case (the evaluation of the determinant factor and the sum of squares in (4.8) would be

time consuming for large n even if the form of Z,I were relatively straightforward, which it
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certainly is not in this situation).

We may simplify the problem of inverting E,J by making certain assumptions. We could
revert to the simpler situation in which Q,J is taken to be independent of r;, and the

changepoint structure is only reflected in choice of prior mean vector. Then 0, would take the
J

form

A, B, 0
Q. = | B, A, B, (4.15)
0 BT, A,

where A, is the n X n tri-diagonal matrix with diagonal elements % and non-zero off-diagonal

B

elements — 1 and B, is the n X n tri-diagonal matrix with all non zero elements equal to — g

Under this assumption, evaluation of (4.8) is more straightforward as the E,:l term is constant
for all choices of r; and thus need be evaluated only once in any implementation. Inversion of
Z’: here is possible, but again complex - the presence of the oI term makes the inversion
procedure non-trivial. This suggests an alternative simplification - set o2 equal to zero origi-
nally so as to make Z,J = Q,J'1 and thus the evaluation of (4.8) straightforward, as clearly
then 2,:1 = Q’: which we have straightforwardly specified above. Setting a2 equal to zero is
merely a reparameterisation of the problem, which basically introduces local dependence into
the first (data) stage of the modelling hierarchy, i.e. the distribution of Y, given the true scene

parameters replaces conditional independence with a covariance structure given by Q,l'l, ie.

[YJIrJJl’WY] = N(Ar’ﬂ’QrI_l)

where £ = (i, .4 ) refers to the mean level parameters, and yy = (4,,4,,B:,B,) are the
known parameters in the dispersion matrix @, . However, for uniformity of notation and
preservation of the hierarchical structure, we continue to regard the covariance structure as
being introduced at the first prior stage (note that this is essentially equivalent to the assump-
tions made in the previous section when we considered the rows/columns independently, and
regarded the textures as being homogeneous). It is clear from (4.1) precisely how the introduc-
tion of the dependence structure acts much in the way of classical noise-reduction methods in

non-statistical image-processing, by use of local averaging.

Hence we may use the above simplifications to aid in the evaluation of the posterior
probabilities. However, we consider techniques based upon, for instance, (4.2) and (4.8), as

being practically inappropriate due to the large amount of computation required. For example,
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informal calculations suggest that the evaluation of the sum of squares in (4.8) takes the order
of 20 times longer than standard analysis using the usual one changepoint posterior distribu-
tion (2.11). Also, difficulties may arise over the specification of the prior parameters in (4.4).
It is widely known that choice of these hyperparameters is critical in standard M.R.F. based
statistical image reconstruction. Finally, although the extension of the formulation to multiple
changepoint problems is possible, its implementation is certainly not straightforward, and it is
not clear how the one changepoint spatial posterior distribution would behave in a two

changepoint context.

In light of the above discussion, we consider a second technique based upon a different

changepoint posterior distribution in an effort to remove some of the difficulties mentioned.

(4.1.2) Introduction of pixel dependence: method 2.

Consider the conditional posterior distribution on changepoint position in row j given
the data Y; in that row and the true scene pixel values in rows j—1 and j-1,

[r | }’J ’gj—l ’9j+1 ,ll/]. Then it is clear that
(717,651,051, %] = [¥;|7.6;-1.8,01,¥] [7]6j-1,6j.1]
= f [YJ |r,8j_1 ,0],91+1][91 |r,0j_1 ’0j+1 ,W]
. [r I Oj_l ’0j+1] (4.16)
Under the usual conditional independence assumptions we have a further simplification

[ler,ej—l’gjaej+1] = [¥;]7.6;]

fll[”ijleif]

It is clear that now the dimensionality of the problem has been reduced from 3n to n and thus
we might expect the amount of processing time required to be reduced by a factor of three
compared to the above technique.

After specifying forms for [Y;|6;]), [6;]7.6;-1,6;41 ] and [r]6;_;.0;.1], we
may evaluate the functional form of (4.16). We might then proceed by substituting estimates
of ;,_, and 6,1 based on Y;_; and Yj,y into this functional form to enable us to compute the
posterior probabilities. We consider this solution with respect to the illustrative example
described above.

Suppose, as before, that the Y;; are independently Normally distributed conditional on
the 8, specifically [Y;]6;] = N(8;,0%), or [Y;|r.6;] = N(6; ,a°1,). Now, we must

specify some prior distribution for 0 conditional on 8;_, 041 and r. We choose this prior to
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be of the form of (4.4), i.e.
1 . ..
[eij | r.0; 4 »9j+1] o< CXP{ - ﬂj(eij - Hy ‘»Bi'f-ljei-lj = B%1j6i41j — Ty )2 (4.17)
ij

where Ty; = Y Bi6,; and the summation runs over the neighbours of (i,j), but with I # j,
(k,D)

the mean parameters u;; chosen to reflect the nature of the changepoint sequence, and the vari-
ance and interaction parameters 4;;, B are chosen to be equal for simplicity. This prior then

takes the form of a multivariate Normal distribution of dimension n, i.e.

[6;17.6;-1.6;:1] = N(A,u+T,07")

n

> 1
o Ierzexp[—i(Yj-Ar#— T;) Q. (Y- Au- T,-)] (4.18)

where 4 = [#1 ,uz]T are the mean levels of the two textures, A, is the n X2 matrix
reflecting the changepoint position in row j, Tj = [Tayj,....Tan )", and @, is the nxn

interaction matrix which takes the form of (4.11)

c, 0
Q, = [0 C.._,] (4.19)

. 1
where as before C, is the kX k tri-diagonal matrix with diagonal elements 1 and non-zero

off-diagonal elements — g Again, using the result of Lindley and Smith, it is clear that
[¥]7.0j-1,6j:1] = ] [¥;|7.6;-1.6;.0;1][6;17.6,-1,6,.1,V]
= N(A,u+T,%) (4.20)

where X2, = o2l + Q,”! and we may evaluate the posterior probabilities in (4.16). As

before, inversion of X, as in (4.9) is complex, but feasible due to the simple form of Q,.

Recall that, by (4.9),

! = (6%Q, + 17'Q, 4.21)

but here @, is block tri-diagonal, and thus we may write (0'2Q, + I )'1 = P,, where
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El 0
P, = [ '0 g1 ] (4.22)

- » . . . . 2
and E; is the kxk tri-diagonal matrix with diagonal elements %— + 1 and non-zero off-

2
. o .
diagonal elements — 7 Note that the extension to the case where A and 8 are different for

different textures at the prior stage is straightforward. Hence, from (4.21) and (4.22), we have

z =P,

E1C, 0
= 0 E-lcC (4.23)

n—r
Unfortunately, this form for the inverse of X, involves a large number of non-zero terms, and
hence to lessen the amount of computation required we must again set o2 equal to zero,
equivalent to the assumption of homogeneous textures exhibiting a localised dependence struc-

ture, or alternatively, dependence at the data stage.

Finally, before implementing such a scheme, we make one further simplifying assump-
tion by specifying the prior means to both equal zero, and letting the true values in adjacent
rows solely govern the texture mean levels in the changepoint analysis of row j. This removes
the need for specifying values for u; and u,, or parameters in any subsequent stage of the
hierarchy. The only parameters we must specify now are the variance and interaction parame-
ters, which is pleasing as we concentrate here on the effect of the introduction of the depen-
dence structure.

Taking into account all of the above simplifications, we proceed with an evaluation of
the conditional posterior distribution [r | Y;,0;_1,6;41 ,¥], but with Y;_, and Y;, used as

estimates of 8;_; and 6., and assuming a uniform prior for r, i.e.

[71Y,6;-1.6j1.¥] = |Qr|26XP{—§(Yf—Tj) Q.(Y; - 1) (4.24)
where f} = [faljw-- ’fanj]T and Ty; = Y PYu, the summation running over the neigh-

(kD
bours of (i,j) but with I # j.
Thus, in (4.24), we have another possible changepoint posterior distribution of interest.
However, we again encounter problems in practice. Ultimately, we do have to choose valucs
for A and B - to do so without previous experience or unrealistically detailed knowledge of the

true scene is complex. We might try an analysis of the image concerned using a range of
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values for the hyperparameters and compare results over the range, but this is unsatisfactory.
In light of this and the other factors mentioned above (we have made several very restrictive
assumptions), we reject the practical implementation of these techniques as a solution to the
edge-detection problem. Instead, we concentrate on more naive techniques which attempt to

catch the flavour of some of the more complex ideas discussed but require less in the way of

prior input.

We now investigate some naive techniques for improvement of the changepoint posterior
based techniques for solution of the edge-detection problem. We saw above how the formal
introduction of ideas of spatial continuity corresponded roughly to noise-reduction techniques
and local averaging in non-statistical image-processing. We now study the effect of such

noise-reduction techniques for some of the true scenes and images studied in the previous sec-

tion.

(4.1.3) Introduction of pixel dependence: naive methods.

First, consider the simple edge true scene in Figure 3 on p. 25. We saw how the stan-
dard changepoint technique based on the posterior distribution in (2.11) was ineffective at low
Signal-Noise ratios. Thus we compare the results obtained using (2.11) on the original image
with those obtained by pre-processing the image using local averaging over a small neighbour-
hood (taken here to be second order nearest neighbour) and carrying out an analysis using
(2.11). It is clear that such an averaging procedure induces a correlation in the data in the
pre-processed image, which we note but subsequently ignore for ease of processing. Also,
local averaging and subsequent changepoint analysis of this nature is strongly related to (4.17)
above, but with the precise dependence structure somewhat altered. The results of the two

row only analyses are depicted in figure 51.

+

+
oo

+ 0

#0000

2

.

F

* 3
f

N

O‘t

’ ¥

Fig 51(a) : standard analysis Fig 51(b) : analysis of pre-processed data

Recall that, in this example, the Signal-Noise ratio was fixed as 1.0. It is clear that such
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simple pre-processing is of considerable use and importance. In this context, local averaging
effectively increases Signal-Noise ratio at the boundary, and also lessens the impact of any
outlying or extreme noise-corrupted values in the image data. We would expect also that it
would "blur” the edge, but as can be seen from figure 51, this is not necessarily the case. The
processing times involved in producing the results in figures 51(a) and (b) were 0.92 and 3.64

seconds respectively (with pre-processing time included in the latter case) for the row ana-

lyses.

We now carry out a full analyses on the same true scene as that in figure 10(a) on p. 44,
namely the circle, again with the Signal-Noise ratio fixed and equal to 1.0. The results are

depicted in figure 52.

Fig 52(a) : standard analysis Fig 52(b) : analysis of pre-processed data

Again, the pre-processing of the image data gives rise to more satisfying results - we can more
readily discern the nature of the true scene in (b) than in (a). The processing times involved

here were 1.82 and 5.78 seconds for (a) and (b) respectively.

Thus we have seen how very naive ideas concerning spatial continuity can actually
improve the performance of the changepoint based techniques introduced previously. We now
suggest other similar simple ideas. For example, prior to evaluating the changepoint posterior
distribution conditional on the data in the row/column concerned, we must specify a form for
the distribution of the unknown parameters of the textures, [ 8| y]. We saw above how con-
ditional priors dependent on true scene pixel values in adjacent rows of the form
[01 |r,0j_1 ,Bj-H] could also be used. A natural extension would be to use a prior for 6,
which was dependent in some way on the observed data rather than the true scene values in
adjacent rows, i.e. we might choose the hyperparameters for the prior for 6; as being (deter-
ministically) related to the data in adjacent rows. Consider, for example, a Normal
changepoint sequence we might select an informative conjugate Normal/Chi-squared prior for

the unknown parameters, and choose hyperparameters on the basis of results in adjacent rows.
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Also, it is evident from our original formulation of the changepoint problem that we may
derive posterior distributions for the true scene parameters in each row, and that these poste-
rior distributions in the Normal case take the form of mixtures of Normal/Chi-squared distri-

butions, which may then be used to derive prior distributions for for adjacent rows.

It should be noted that these latter ideas are fundamentally different to our original ideas
about the use of local dependence in priors for the true scene in the edge-detection problem, in
the sense that they merely use (a posteriori) inferences from single rows to aid in the analysis
of others, rather than utilising any underlying prior structure. Thus, strictly, we might expect
the latter ideas to be of little assistance for true scenes corrupted by high levels of additive
noise. This point is demonstrated by figure 53. The results depicted in figure 53(a) and (b)
were obtained by row analysis of the single edge true scene in our previous example, where
the Signal-Noise ratio at the boundary in the image is 1.0. Figure (a) depicts the results
obtained when changepoint posterior (2.11) is used, where all of the prior distributions
specified are non-informative, whereas (b) depicts the results obtained when using a posterior
distribution derived by assuming a degenerate prior distribution i.e. where all of the texture

parameters are known and correctly specified.

+é § +
+ ob + +%
o o
@ + o+
o8 D
+ +
§o - 8, "
+ +
o % 8*0
+ +
+ o
o ¢-* +* .
oS o&
<
+ - o -8"
6 © -
+ o
L N e+°
+ F ° + &
&°o o+
* o . +© o
°b+ o Ob"'
o o + 00
+
+
3 8,

Fig 53(a) : Non-informative priors Fig 53(b) : All parameters known

The results are very similar in terms of accuracy in detection of the edge (presumably due to
the large amount of data available in each row). Thus as we indicated above, use of
knowledge concerning spatial dependencies in the fashion mentioned above without use of a
true scene dependence structure is of little use in this example (we obtain similar results when
completely ignorant of the true scene parameters L0 those obtained when we know them pre-
cisely) compared with the improvement obtained when using dependence-based local averag-
ing ideas as in figure 53(b). Thus it seems that introducing some form of local averaging pro-
cedure into the changepoint-based edge-detection analysis is the most profitable way of incor-

porating aspects of localised pixel dependence.
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(4.2) Edge continuity.

We now attempt to incorporate some notion of edge continuity into our changepoint for-
mulation of the edge-detection problem. Above, we saw how to amend our choice of prior for
true scene parameters in each row by introducing a joint structure for the true scene parame-

ters in adjacent rows using Gibbs/M.R.F. type ideas. Here we try to amend our choice of prior

for changepoint position.

(4.2.1) Two row joint prior specification.

Consider the discrete, univariate prior distribution on changepoint position in row j,
[rj] for use in the evaluation of the changepoint posterior distribution. Previously, we have
taken this prior to be uniform (a discrete, non-informative prior). We now study other possible

choices. For example, it is clear that, using the notation introduced above,
[ri] = X [rj.ri4]
L

= ¥ [rilri-1][ri-1] (4.25)

rj-!
and hence by choice of [rj T 1] and marginalisation we may be able to introduce some idea
of edge continuity - unfortunately, (4.25) is of little practical use in this form, as if we are a
priori ignorant of changepoint position in any row, then all quantities in (4.25) will ultimately
be uniform. However, it does lead to a more feasible proposal. Recall that in our full row
analyses we would begin at row 1, proceed to row 2 etc. until row n had been analysed, treat-
ing each row and its corresponding changepoint posterior distribution independently. Now
consider the changepoint prior for row j conditional on the data in row j-1, ¥;_;, denoted

[rj | Y, ] Then under the usual conditional independence assumptions

[ri 1Y) = X [rrie0 [ Y]

T

> [rjlrj—l] [rj—IIY'-—l] (4.26)

rJ_l

1

where the second term in the latter expression is merely the posterior distribution from row
j—1 which is known from analysis of the previous row. Thus (4.26) defines an iterative
scheme through which we can encourage edge continuity. Before implementation we note
several factors. First, as is clear from (4.26), we must specify the distribution [r; | r;_;]. This

could be chosen to take several forms, i.e.



_WTI Tj r1_1| s W
L= 1-p | 4.27)
W1 otherwise

for some W i ic i ini i
and p, that is, constant over a symmetric interval containing r;_;. Another possi-

bility for the choice of [r; | r;_; ] would take the form

[rjlrj_l] oc exp{—llrj—rj_lu |rj—rj_1| < W (428)

for some W and A. Figure 54 shows the effect of introducing such an updating scheme for
[rj |rj_1 ]. Figure 54(a) depicts the results of standard row analysis of the single edge true
scene-based with Signal-Noise ratio equal to 1.0 using (2.11), and figure 54(b) depicts the
results when (2.11) is implemented in conjunction with (4.28) as the marginal distribution of

Y; conditional on r, with A = 2.0 and W = 4 for demonstration purposes.
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Fig 54(a) : Standard analysis Fig 54(b) : Implementation of (4 28)

The improvement is remarkable. However, the processing time involved in the production of
(b) was 16.6 seconds which is considerably more than that required for the standard analysis.
It it also interesting at this point to study the effect that different choices of A have on the
resulting set posterior modes. Figure 55(a), (b) and (c) correspond to choices of 4 = 1.5, 1.0
and 0.5 respectively.

It is clear that the choice of A, although not crucial, does effect the final results. Figure
55 seems to indicate that A should be chosen to be large, but as we shall see below, this is not
always advisable. We also note this stage that the choice of W is important, but that because

of our knowledge of the continuous nature of edges in the true scene, is much more straight-

forward.
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Fig 55(c): A = 0.5

The second factor we note in (4.26) is that in this precise form, [r;_; | ¥;_; ] depends on
the posterior distribution [r;_, | ¥;_,] through [r;_; | ¥;_,] etc., so that there is some form of
relation between the distribution for row j and the distributions for all preceding rows. This
has little influence if, as in the single edge true scene above, all changepoints occur at approx-
imately the same position in each row i.e analysis is being carried out in a direction perpen-
dicular to a reasonably straight edge. Generally, however, it may be regarded as undesirable.
Fortunately, this property is easily removed, as the changepoint prior acts multiplicatively at

each stage and thus its effect can be removed by division . For example, if we require that

only adjacent rows should be related, then from (4.26)
[ri1 Y] = X [rilria] [rj-11Y5-1]
rj_l

< % [rilra] (Yol raa ] [roa [ Y2 ] (4.29)
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and so the effect of row j—2 on the posterior distribution in row j can be removed by multi-
plying the posterior probability for each possible realisation of r; by the corresponding poste-
rior probability for that realisation for row Jj—2. From (4.29) it is clear that this is equivalent
to evaluating [rj_l | Yj_l] with a uniform prior distribution for r;-1 for use in the evaluation
of [r,- | Y;_, ] The extension to allow a relationship between rows a larger distance apart is
straightforward. We now study the effect that removing the influence of distant rows in such a
manner has on the set of results obtained. First, we examine the effect in the analysis of the
single edge true scene. Figure 56(a) depicts the results obtained using a standard implementa-
tion of (4.28) reproduced from figure 54(b) for comparison. Figure 56(b) depicts the results
obtained when the scheme for the removal of long distance effects discussed above is used.
The Signal-Noise ratio at the boundary was again 1.0, and A and W were nominally chosen to

be 2.0 and 4 respectively.

It is clear that, in this case, adjustment of (4.28) to procure the removal of long distance
effects is undesirable, as the edge is less well-defined in (b) than in (a) - this is as we would
have predicted from the above discussion, as here the row analysis is being carried out in a
direction perpendicular to a virtually straight edge, and so information about changepoint posi-
tion in any row will be relevant to the changepoint position in distant rows. However, two
positive aspects can be noted. First, the results in figure 55(b) are more satisfying than those
in figure 53(a) from a standard analysis, in the sense that the spread of detected edge-points is
smaller, making the edge itself easier to discern. Secondly, the processing time involved in the
production of the results in figure 55(b) was 10.9 seconds, representing a time saving over the
standard implementation of (428) by a factor of a third. We may wish to trade accuracy of

results for reductions in processing time at some later stage.
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Fig 56(a) : Standard implementation (4.28) Fig 55(b) : Adjusted implementation (4.28)

We now study the effect of adjusting (4.28) in the way described above when the edge

in the true scene has a different orientation. Figure 57 depicts the results of row analysis of a
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single edge true scene where the edge is not perpendicular to the direction of analysis. Figure
57(a) depicts the results obtained using the standard implementation, (b) the adjusted imple-

mentation. The Signal-Noise ratio was again 1.0, and A was chosen to be 2.0, as this gave the
most satisfying results previously.
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Fig 57(a) : Standard implementation (&28) Fig 57(b) : Adjusted implementation ( 28)

It is clear that there is a marked upward trend in the detected edge in (a) compared to that in
(b) - this is again what we would have predicted from our understanding of the standard itera-
tive scheme, as the changepoint posterior distributions for rows several pixels apart are
strongly related. Figure 57(b) reflects the actual location and nature of the edge much more
accurately. Figure 58 depicts the results of the same analysis repeated with 4 now chosen to
be 1.0.
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Fig 58(a) : Standard implementation (4.28) Fig 58(b) : Adjusted implementation (4,28)

Now the difference between (a) and (b) is less marked, indicating that choosing A large is not
necessarily optimal. The analyses involved in the production of figures 57 and 58(b) were

again appreciably faster than those for 57 and 58(a).
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As a final remark, we note that a full (row and column) analysis of edge true scenes such
as that in figures 57 and 58 would have overcome the problems mentioned above - we could
have chosen A to be relatively small and still obtained accurate results - but this would of
course increase processing time. Also, use of other forms for [r; |r;_;], i.e. such as that in

(4.27), could be designed so as to reduce the effect that distant preceding rows have on those

subsequently processed.

The final feature we note in (4.26) is that there is an asymmetry in the processing and
updating scheme, i.e. we compute the changepoint posterior distribution for row j dependent
on the results from rows j—1,j-2 etc. which lie wholly "to the left of" or "below" row j.
This does not reflect our prior knowledge of the edge in the true scene, which would indicate
some form of symmetry in the influence that adjacent rows have on the posterior distribution
in row j (we might have some joint belief a priori concerning changepoint positions in row j
and rows j—1,j+1 for example). We now attempt to adapt (4.26) to incorporate such prior

knowledge.

(4.2.2) Three row joint prior specification.

Consider the changepoint prior for row j conditional on the data in rows j—1 and j+1
denoted by [rj | ¥;_ ,1’j+1]. Then under the usual conditional independence assumptions, an

equivalent expression to (4.26) is

[ri1¥-1.Y;in] = = X [ricy.rirjen 1 Yio1s Y]
rj—l’j+l
= Y [rilrcrial [ricnorien [ Yo Y] (4.30)
T

If we make the additional assumption that in this scheme the posterior distributions from rows

j—1 and j+1 are independent in the processing of row j (in the way described above) then

[/ 1¥-1. Y] = Z [7; 17io1.rje1]) [ric Yot ] (701 1 Y]

'j—nr/u

where the posterior distributions [7;_; |Y;_;] and [r;4 |¥;,;] are computed using uniform
priors for changepoint position (this ensures that this scheme can be used in the analysis of
whole images without the induced inter-row relationship being present. If we had not made
the independence assumption above, the amount of computation required would be excessively
large). We alter notation slightly at this stage - we write the posterior distribution for

changepoint r conditional on data Y as [r|Y], if a uniform prior distribution for r is used.

Hence (4.30) becomes
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Uil Y] = 8 (51 e 1 Yoy (e | Y ]y @31)

jlj-o»l

Note from (4.31) that as we can arrive at, say, [7; 1¥;]y from [r;|¥;_,,Y;,,] simply by
multiplying by an appropriate factor, the bulk of the computation (i.e. the evaluation of the
marginal distribution of data conditional on changepoint position but unconditional of other
unknown parameters) need only be carried out once for each row in a complete analysis, thus
keeping computational costs to a minimum., However, it is also clear from (4.31) that evalua-
tion of [r; | Y;_;,¥;,,] in this way involves a double summation over r;_; and r;,; and thus
we would expect an n-fold increase in processing time compared to the evaluation of (4.26).
Thus the use of (4.31) in this form is not practicable, and we seek simplifications. For exam-
ple, we might try forming the univariate distribution on {1,....n=1}, [rj_4jn | Y;_1 .Y ]

given by

[ricsr 1 Yo Y]y = (o 1Y)y (e | Y ]y (4.32)

(representing a coincident changepoint position in rows j—1 and Jj+1) and then evaluating the

posterior distribution

[7 1Yo, Y] = 3 [r]7i-1je1] [rjcijer | Yio1. Y ]y (4.33)

Ty

The amount of computation involved in (4.33) is thus of the same order as that required for

(4.26). We could extend the definition in (4.32) to

[ri-ijs1 | Yjo1: Y1 ]y = I ZI N [ric 1Y)y [ | Y ]y (4.34)

for small N, but this would increase processing time.

As we have seen, an increase in processing time seems to be inevitable for all of the
above techniques. The additional burden is due principally to the marginalisation procedure
necessary after specifying a priori the joint probability structure for changepoint positions in
adjacent rows. In light of this, we now take a fundamentally different approach in an attempt
to incorporate prior knowledge concerning edge continuity into the changepoint based edge-
detection techniques described above.

We saw in the derivation of (4.26) and (4.30) how marginalisation of the joint prior

distribution conditional on data in neighbouring rows could be used to derive useful prior dis-

tributions for changepoint positions in single rows. We saw the effect of incorporating a
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posteriori inferences from adjacent rows. Here, we propose that these posterior inferences (i.e.
the changepoint posterior distributions from neighbouring rows) be used directly to derive the

single row priors, without the need for the time-consuming marginalisation procedure. We dis-

cuss two possible techniques of this type.

(4.2.3) Obtaining prior for r; via [7i-11Y;_;] and [7ie1 | ¥j41].

First, we consider choosing the prior distribution for changepoint position in row J con-
ditional on the data in rows j—1 and J+1, as in (4.31). We might then derive this prior
directly as a function of the posterior distributions in the neighbouring rows computed using
uniform priors for changepoint positions, denoted [7-11%;_,], and [7i411Y;41], respec-
tively in the above notation. For instance, we might combine these two distributions point-

wise additively, i.e. so that

Pr(r; = r|Y_1.Y,) = Pr(r;_, = r|Y_1)y +Pr(rjsy = rYia)y

- Pr(r;_; = r| Y1)y Pr(rjey = r| Y1)y - (4.35)
or multiplicatively, so that
Pr(rj = r| Y1, ¥01) = Pr(rjoy = 7 |Yig)y Pr(rn = 7| Y1)y (4.36)

for r = 1,...,n—1, assuming, as above, that the changepoint variables rj-y and r;,q are
independent in the derivation of [rj = ,Yj,,l]. Evaluation of the priors in this way would
induce an n fold reduction in processing time compared to (4.26). Note that we regard the
symmetric (in j—1 and j+1) forms of (4.35) and (4.36) as essential here to minimise the dis-
ruptive effect of isolated outlying or extreme data values in the image on the changepoint
posterior distributions. We also regard the additive form (4.35) to be more intuitively reason-
able for use in the changepoint/edge-detection context. We now study the effect that, for
example, (4.35) has on the results obtained using an otherwise standard analysis. Figure 59
depicts the results obtained of an analysis using tha adjusted version of (4.28) discussed
above, and the modification in (4.35), where the single edge true scene concerned was cor-

rupted to produce an image with Signal-Noise ratio equal to 1.0 at the boundary.

It is clear that, for this image, the results from the adjusted version of (4.28) and an
implementation of (4.35) are very similar, both being an improvement on the results obtained
by a standard analysis. Crucially, however, the processing times involved in the production of
the results in (a) and (b) were 10.12 and 1.16 seconds respectively. Therefore, we have

achieved of the order of ten-fold reduction in processing time by using the modification
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Fig 59(a) : adjusted (4.28) Fig 59(b) : (4.35)

(4.35) compared to the adjusted version of (4.28). The improvement is also noticeable in a full
row/column analysis of the image underlying figures 57 and 58, where again the Signal-Noise

ratio was 1.0 the results of which are depicted in figure 60.
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Fig 60(a) : adjusted (4.28) Fig 60(b) : (4.35)

The results are again comparable and the processing times involved were 22.32 and 2.24
seconds for (a) and (b) respectively. Thus again the implementation of (4.35) is a factor of 10

quicker than the adjusted version of (4.28).

So far in this section, we have only studied modifications to the one changepoint poste-
rior based technique for edge-detection. We saw in a previous section, however, that the one
changepoint posterior could be used to make approximate inference in more complicated
multi-changepoint situations corresponding to more complex (convex object) true scenes. For
completeness, we include here one such approximate analysis, that of the circle in figure 10,
with the modifications concerning edge continuity included. Figure 61 depicts the results
obtained from an analysis of a centrally positioned circle with Signal-Noise ratio equal to 1.0

by each of the three techniques represented in figures 59 and 60. In figure 61(a), the image
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was analysed with the "exactly one changepoint” version of (2.11), and in figure 61(b) A was
chosen to be 1.0, and W was set equal to 4.
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Fig 61(c) : (4.35)

The results in (b) and (c) do seem to be an improvement on those in (a), but not as great an
improvement as for the single edge true scene above. It should be noted that everything that
we have derived using prior knowledge of changepoint position over adjacent rows in the sin-
gle changepoint case can be reproduced in multiple changepoint case if necessary, but would

naturally involve further increases in processing time.

Finally in this section, we propose one further technique by which the prior distribution
for r; may be obtained from the posterior distributions in rows j-1 and j+1. Consider the
changepoint prior distribution for row j conditional on the posterior estimates of changepoint
positions (i.e. posterior modes) for rows j—1 and j+1 derived using uniform priors for
changepoint position and denoted [r; | #;_1,7;,;]. Priors of this form are of interest here as
in the edge-detection problem we would like the edge-point estimates in neighbouring rows to

be in close proximity to each other. Also, no marginalisation procedure is necessary and
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therefore we might expect processing techniques based on such priors to be reasonably time
efficient. Again the bulk of the calculation, the evaluation of marginal row data distributions,

need be carried out once only for each row. We might specify [rj | 71 ,r‘j+1] to be of the
form

Kexp{ -Alr; - M;|} |r,-M;| < W,

0 otherwise (4.37)
where M; = (7;_; + #;,1)/2 and K is a normalising constant. We might introduce a further
feature where [r,- | 7i-1 ,i‘jH] is chosen to be uniform on the range between #;_; and fj41 and
zero elsewhere if |#,_; - 7,,| > W, as this would indicate some unwanted spatial
discrepancy between adjacent edge-points. By choosing A to be zero in (4.37) we obtain a
uniform distribution over the range {Mj - Wi, .M + W,}. Again, choices of W; and W,
can be made with reference to ideas about edge continuity. Many priors such as (4.37) may be

specified.

We now investigate the effect of priors such as (4.37). Figure 62 depicts the results of
three analyses of the familiar single edge true scene. Figures 62(a) depicts the results obtained
from a row analysis using the modification in (4.35) respectively, whereas (b) depicts the
results obtained when (4.37) is implemented, with 4 = 3.0, W; = 4 and W, = 6. Again, the

Signal-Noise ratio at the boundary was 1.0.
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Fig 62(a) : (4.35) Fig 62(b) : (4.37)

It is clear that the results in (b) are comparable with those in (a) as a representation of
the edge, in terms of the degree of continuity exhibited. The processing time involved in the
production of the results in (b) was 1.24 seconds, marginally slower than for a standard
analysis, and comparable to an analysis using the modification (4.35). Thus it seems that using

priors such as that in (4.37) has advantages, as well as being perhaps more intuitively
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appealing than, say, (4.35) or (4.36).

It is interesting to see how altering A affects the results obtained. Figure 63 depicts the
results obtained when A was chosen to be 0.0 and 10.0 in (a) and (b) respectively. The same

values for W, and W, were used as for figure 62.
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Fig 63(@): A4 = 0.0 Fig 63(b): 4 = 10.0

The results are broadly similar. Thus it seems that this prior is less sensitive to choices of A
than was, say, (4.28). This must be regarded as a positive aspect, as we would need our poste-
rior inferences to be to some degree robust to a range of prior specifications - recall that 4 is

merely a hyperparameter relating to the (conditional) structure of changepoints in adjacent

rows.

For completeness, we include the full analysis of the single edge true scene/image in
figure 57 using the prior in (4.37). Figure 64(b) depicts the results obtained when using (4.37)
with 4 = 3.0, whereas (b) depicts the results from a standard analysis using (4.35) Recall
that the Signal-Noise ratio for the image concerned was 1.0. Again the results seem satisfac-

tory, and the processing times for (a) and (b) were again comparable.
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Thus it seems that priors of the form of (4.37) compare favourably with the other ideas
and techniques we have seen. One potential misgiving we may have is that using priors condi-
tional on posterior modal positions in neighbouring rows may not be sufficiently effective for
approximate inference in multiple changepoint cases. Somewhat surprisingly, however, priors
of the form of (4.37) seem to perform quite as adequately as the other techniques discussed
above. This is demonstrated by figure 65, where (a) depicts the results of a standard analysis,
and (b) the results of an analysis with (4.37) implemented, with A = 3.0.
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(4.4) Post-processing.

As we have seen above, it is possible to incorporate ideas of spatial continuity into
changepoint based techniques via priors for unknown parameters. In precisely the same way,
given a set of edge-point candidates with their associated posterior probabilities resulting from
a changepoint based analysis of an image, we would like to be able to use these ideas in order
to remove isolated and therefore probably mis-classified points from this set. We have already
used a simple "smoothing" technique of this nature to enhance the appearance of a set of
results, and more importantly, we shall see later when we study parametric edge reconstruction
techniques that simple estimation procedures (e.g. least-squares estimation) are extremely sen-

sitive to the presence of outlying mis-classified points. Hence we now proceed to study briefly

some simple post-processing techniques.

(4.3.1) Naive post-processing techniques.

First, and most simply, we could accept or reject an edge-point candidate on the basis of
its associated posterior probability alone, i.e. accept the point if the probability is greater than
some pre-fixed threshold, reject otherwise. This is somewhat of an ad-hoc technique, but is
perhaps more acceptable than the other threshold based criteria mentioned previously as the

quantity of interest is a posterior probability rather than, for example, some arbitrary intensity
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level. Also, such a technique can be justified in terms of the Bayesian decision problem con-
cerning changepoint identification - recall that the Bayesian estimate of changepoint position
is the posterior modal position corresponding to the minimised Bayes risk under a specified
loss function. However, in practice, this technique is inefficient for removing isolated edge-

points, as are others purely based on posterior probabilities.

Secondly, we could use only our knowledge of edge continuity to remove mis-classified
points, i.e. an edge-point distant from any other recorded edge-points is by definition a mis-
classification. This idea forms the basis for the smoothing technique we saw above. There, the
number of edge-points recorded as modes in the changepoint posterior distributions lying in a
small sub-grid centred at each individual edge-point in turn was counted, and if that number
was again greater than a pre-fixed threshold the individual point was accepted. This technique,
although easily implemented and reasonably effective, is difficult to justify in a decision-
theoretic setting. It clearly captures the essence of the problem, but requires a degree of input
(setting sub-grid size and choosing the threshold number of pixels) which might be regarded
as too detailed, even though we appeal to the ideas of spatial continuity etc. discussed in detail
previously. Fortunately, in many of the simple cases we have studied (the single edge true
scene processed by the standard changepoint technique, the convex object true scene processed
using binary segmentation, complex true scenes processed using Gibbs Sampler based methods
all at high (> 1.0) Signal-Noise ratios and the improved results obtained using spatial priors)
the simple smoothing technique is reasonably robust to changes in grid-size and threshold
value as the edge itself is boldly delineated compared with the mis-classified points which are
spread relatively diversely. We also reiterate that for the purpose of keeping processing time
to a minimum, we may have to compromise and use such simple and intuitively appealing but

basically ad-hoc techniques, provided that the results are robust to input parameters.

Finally, we consider a simple iterative scheme based on the standard edge-detection
techniques developed above (we regard these as post-processing operations as they are imple-
mented subsequent to and dependent on the results of the initial analysis). Buck et al. (1988)
describe an iterative technique based on changepoint analytic methods for the segmentation of
a two texture true scene, altering prior values for the texture parameters on the basis of the

results after each iteration. Here, in the edge-detection context, we consider altering the

changepoint prior between iterations in the same way.

(4.3.2) An iterative post-processing scheme.

Consider first the row analysis of a true scene using changepoint techniques but with
each row being treated independently from all others, and using uniform priors on changepoint
position, as in our initial examples in chapter 2. After the row analysis is complete, we have

obtained a posterior probability for each pixel in each row of the image, namely the
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probability that the changepoint in that row occurs at that pixel, conditional on the data in that
0 . .

row. Let E” be the nx n matrix whose entries are the n2 posterior probabilities . Now con-

sider the matrix P whose elements are formed from the elements of E® by some local

operation. In particular, consider the case where the (i, J)'th element of P® is given by

oy _ 1
POl = & X (5O, 439

1.. a local average, where K; is a scaling constant to ensure that the elements of row J sum to

1. The next step in the iterative procedure is to form the matrix E® where
@ = 0
[E ]ij - [E()]ij[P(O)]ij y (4.39)

It is then clear that the elements of E® are merely the row posterior probabilities on
changepoint position, where the probabilities are evaluated using priors for changepoint posi-
tion defined by the rows of P - recall that these prior probabilities update the posterior pro-
babilities obtained using uniform priors in a simple multiplicative fashion. To obtain esti-
mates of changepoint positions in we then normalise and locate the maximum row by row in
the usual way. We now repeat this procedure and form P® from EV via (4.38), and then E®
from E® and P® via (4.39), and normalise and locate the row modes etc. until the positions
of these modes stabilise. The amount of computation required to implement such a scheme
would not appear to be overly large, as merely simple local averaging operations are necessary

in addition to the usual probability calculations and maximisation routines.

We now illustrate the use of the iterative scheme defined by (4.38) and (4.39) on images
derived from the simple edge and circle true scenes. Figure 66 depicts the results obtained
after each of the first three iterations of the scheme when a row analysis using the posterior

distribution (2.11) is carried out, the Signal-Noise ratio at the boundary being 1.0.
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Fig 66(a) : Raw results Fig 66(b) : First iteration
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Fig 66(c) : Second iteration

There is a marked improvement between (a) and (b) in terms of the results being a representa-
tion of the edge. The additional processing time needed was 1.3 seconds per iteration. Figure
67 depicts the results obtained after each of the first three iterations of the scheme for a full

analysis again based on the posterior distribution (2.11). The Signal-Noise ratio involved was

again 1.0.
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Again there is a clear improvement after each iteration, with the edge being located with
increasing accuracy. The additional processing time here was 2.6 seconds. Thus, in both cases,
the procedure leads to more satisfying results. Naturally, we encounter the usual difficulties
associated with such iterative schemes which we have no completely satisfactory solutions
other than simple intuitive ones. For instance, we again merely assess "convergence" of the
algorithm via modal position stability etc. without fully understanding the nature and
behaviour of the results at intermediate stages. However, in practice, more than three iterations

are rarely needed, and so we content ourselves with accepting the results at this stage.

It is easy to develop other simple iterative schemes of this nature which can be used for

the post-processing of results from changepoint based analyses.

(4.5) Spatial dependence and edge continuity - conclusions.

We have seen in this section how to incorporate spatial prior knowledge into our
changepoint based analytic techniques, with the intent of removing isolated or mis-classified
edge-points. We first attempted to use Gibbs-type priors for the true scene pixel parameters,
and saw that the amount of computation involved proved to be restrictive. However, approxi-
mate versions of these types of priors were successfully and efficiently used as the basis of
noise-reduction algorithms for pre-processing of the image data. We then developed several
special forms for changepoint prior distributions in an attempt to encourage edge-continuity.
Finally, we discussed post-processing schemes, and suggested one particular iterative pro-
cedure. The majority of examples presented concerned the analysis of single edge true scenes
using the one changepoint posterior distribution (2.11), with the obvious extension to the mul-

tiple changepoint case being mentioned.
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Chapter 5: Variation of Image—Formation Process.

We have seen how under a simple linear form for the image-formation process, the edge-
detection problem may be straightforwardly formulated to be equivalent to an extensively stu-
died version of the statistical problem of changepoint identification - that in which each pixel
in the discretised version of the true scene is corrupted identically, independently and addi-
tively with Gaussian white-noise in the formation of the image. This a model commonly used
in image processing (see, for example, Hansen and Elliot (1982)), specifically used in the
study of remote sensing and satellite data. However, it is clearly limited in its applicability,
and we now seek more general models, and attempt to apply the ideas we have seen previ-

ously concerning changepoint analysis and identification to these models.

(5.1) Mathematical representation of the image-formation process.

We begin by studying the standard formulation of the image-formation process described
by Geman and Geman (1984), and initially follow their notation. Let F denote the true scene
as represented by the discretised (pixel) intensity process, and let N represent the noisec-

process. Then the observed (degraded) intensity image G can be written

G = w(¢(H(F)),N) (5.1)

where H affects local-averaging or "blurring” on F (and thus corresponds to the point-spread
function in classical image processing), ¢ is some (possibly non-linear) transformation func-
tion, and y represents a combination function, used to incorporate the noise-process into the
the degradation model. A (not unrealistic) simplification of (5.1) is made by assuming that N

corrupts each pixel independently. Thus (5.1) can be written
G = ¢(H(F))*N (5.2)

where * represents a (usually additive or multiplicative) combination function so that now N

acts (functionally) independently of F. If we consider each pixel in isolation, then for pixel

(i,j), (5.2) is equivalent to

y H(i—k,j—l)Fk,)*N,-- (5.3)
(k,1)

Gij = ¢(

where the summation runs over pixels in the vicinity of (i,j). Geman and Geman also make
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additional assumptions concerning the nature of F and N, and introduce the idea of a true
scene line process, L (corresponding to edge positions in the true scene specified relative to
pixel positions), which is not transformed by the image-formation process. In the segmenta-
tion problem, interest then centres on specifying prior forms for the true scene F which take
the form of Gibbs/M.R.F. distributions. Now, in the notation adopted above, we regard the
transformed version of F by H and ¢ as being merely equivalent to another process @ (i.e.

¢(H(F)) = 0), and replacing N by €, and G by Y, we merely have that Y = @*¢, or
i = O (5.4)

as implied in (2.1). Thus it is clear how the conditional independence assumptions concerning
the Y;;’s is justified. The formulation (5.4) is equivalent to that used by Besag (1986) and
others for solution of the segmentation problem. Note that, in this notation, (5.1) may be re-

written simply as ¥ = £(8,¢).

Thus, despite the complexity of the physical nature of the image-formation process
described in (5.1), (5.2) and (5.3), the final form as given in (5.4) is relatively straightforward,
and we need only concentrate on specifying forms for the noise-process (error structure). We
then face the problem of making inference about the unknown @ (or F) and L conditional on
the realisation Y (or G) through (5.4) and statistical decision theory via Bayes theorem, and so
we must also choose prior distributions for these unknown parameters. The methods of solu-
tion of the segmentation and edge-detection problems are then crucially different. In the seg-
mentation problem, as we have basically one observation per unknown parameter (i.e. one
realisation derived from the true scene value at each pixel), we must specify complex spatial
priors so as to maximise the influence of our relevant prior knowledge concerning local depen-
dence. In the edge-detection problem, however, we have vastly fewer numbers of unknown
parameters of interest (i.e. edge positions in rows and columns), and so we can afford to use
less complex prior forms for these parameters and the (nuisance) parameters (used to describe
texture characteristics) in our analysis (we marginalise the problem from interest in (8,L) to
interest solely in L by integration). Indeed, we have seen in the examples above that, for our
changepoint based techniques, we may even process individual rows and columns indepen-

dently in many cases and still obtain useful results. It is these simplifying measures which
allow less time consuming processing algorithms to be devised.
We now study different simple choices for the function *. First, we revert to our initial

assumption, where * is taken to be additive.
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(5.2) Additive noise corruption.

We saw in our initial examples in chapters 2 and 3 how the simple linear image-

formation process in 2.1

Yij = 6+¢; (5.5)

played an important role in our changepoint based edge-detection techniques, and in statistical
image-processing in general. We chose to investigate the situation where the €;; were indepen-
dent and identically distributed Gaussian white-noise variables, and the model for the true
scene in which the 6;; were chosen to be equal across textures. We now seek other interesting
choices of the image-formation process. Recall that, in our solution of the edge-detection
problem using changepoint analytic techniques, one necessary step was to calculate the func-
tional form of the likelihood [ Y |r,0] i.e. the conditional distribution of the data in each row
given the true scene parameters and edge/changepoint position in that row. Thus we restrict
attention to those image-formation processes for which the calculation of [Y|r,8] in product

form is straightforward.

(5.2.1) ¢; Normally distributed.

Consider first the two texture image derived from a single edge true scene such as that in
figure 3, with characteristic parameters (8, , 6, ). First, we consider the case which we have to
some extent studied previously, where the error terms €;; are Normally distributed and the
textures are presumed homogeneous - thus we write 8; = 6;,i = 1,2. Then there are clearly

three reasonable models we may use for the true scene and error structure for use in the edge-

detection techniques -

(1) Common variance in error terms across textures.

(2) Common texture mean.

(3) Different texture means, different error variances between textures.

(1) we have already studied, (2) and (3) are other possible models, perhaps arising from
image-formation processes having different physical attributes. Note that in (1) the difference
in distribution of the elements in observed image Y is purely due to our assumptions concern-
ing true scene pixel parameters, in (2) the difference is purely due to different error assump-
tions, and in (3) the difference is due to a combination of both. Also, here we only consider
models inducing within-texture homogeneity in terms of distribution of the observed image Y -
this restriction is entirely reasonable (and ultimately necessary, although it is sometimes intro-

duced at higher levels of the hierarchy in other areas of the statistical modelling of images).
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In each of these cases, where the error terms €;; are presumed independent, the observed
data Y; are clearly conditionally independent given the true scene parameters, and thus
[Y |7.,6] may be formed easily for data in each row/column, with the dependence on
edge/changepoint position being of utmost importance in this likelihood. It now remains to
specify prior distributions for the unknown parameters in [Y |r ,0], that is, the texture
parameters and changepoint position. In the examples we have seen, we have used non-
informative prior distributions for the continuous parameters, which can be viewed as limiting
forms of conjugate prior distributions. We chiefly restrict attention here to such conjugate
prior forms because of their analytic tractability which allows. for less time consuming pro-

cessing.

The resulting changepoint posterior forms under a range of prior assumptions (certain
parameters known, dependent priors etc.) can be found in Appendix 1. We concentrate princi-
pally on case (1) above, for the reasons discussed, and also because it represents the most
widely studied situation in the changepoint literature. We include this appendix for complete-
ness, but present no examples of the use of the range of posterior distributions in the edge-
detection context as we feel that we have sufficient knowledge and experience of the
behaviour of such distributions. We note that amount of computation and thus processing time
required increases linearly with sequence length n for all of the one changepoint posterior
distributions included, and thus overall processing times for the analysis of images should be

comparable.

It is interesting to study the results obtained under an incorrect model specification, for
example, under assumption of common variance for the error terms when in fact the different
textures are corrupted by different levels of noise (we might regard this as a technique for
detecting changes in underlying mean level even if we suspect that there is also a change in
variance). First, we repeat our simulation experiments to study the behaviour of the "common
variance" changepoint posterior distribution in such a situation. Figure 68 depicts the posterior
distributions obtained when calculated via (2.11) for sequences in which the change in mean
level is from 0.0 to 1.5, but where there is also a change in standard deviation of the error
terms from an initial value of 1.0. Figures (a) and (b) depict the results obtained when there is
a decrease in error standard deviation, whereas (¢) and (d) correspond to an increase. The
actual changepoint position was 32 in a sequence of length 80. As before, the posterior distri-
butions shown are obtained by averaging over 1000 replications, and thus can be regarded as
expectation results (expectation taken with respect to the data distribution). Two features are
apparent. First, the posterior mode in each case corresponds precisely to the actual
changepoint position. This is encouraging, as it indicates that the common variance posterior
distribution is of use even when it represents a mis-specification. Secondly, the modal value of
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