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Abstract 

Problems associated with the processing and statistical analysis of image data are the 

subject of much current interest, and many sophisticated techniques for extracting semantic 

content from degraded or corrupted images have been developed. However, such techniques 

often require considerable computational resources, and thus are, in certain applications, inap­

propriate. The detection localised discontinuities, or edges, in the image can be regarded as a 

pre-processing operation in relation to these sophisticated techniques which, if implemented 

efficiently and successfully, can provide a means for an exploratory analysis that is useful in 

two ways. First, such an analysis can be used to obtain quantitative information relating to the 

underlying structures from which the various regions in the image are derived about which we 

would generally be a priori ignorant. Secondly, in cases where the inference problem relates 

to discovery of the unknown location or dimensions of a particular region or object, or where 

we merely wish to infer the presence or absence of structures having a particular 

configuration, an accurate edge-detection analysis can circumvent the need for the subsequent 

sophisticated analysis. Relatively little interest has been focussed on the edge-detection prob­

lem within a statistical setting. 

In this thesis, we formulate the edge-detection problem in a formal statistical framework, 

and develop a simple and easily implemented technique for the analysis of images derived 

from two-region single edge scenes. We extend this technique in three ways; first, to allow the 

analysis of more more complicated scenes, secondly, by incorporating spatial considerations, 

and thirdly, by considering images of various qualitative nature. We also study edge recon­

struction and representation given the results obtained from the exploratory analysis, and a 

cognitive problem relating to the detection of objects modelled by members of a class of sim­

ple convex objects. Finally, we study in detail aspects of one of the sophisticated image 

analysis techniques, and the important general statistical applications of the theory on which it 

is founded. 
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Chapter 1: Statistical Image Processing. 

(1.1) Introduction. 

The statistical approach to the solution of inference problems in science and engineering 

proceeds as follows. First, we construct a modelling framework in which the problem and any 

subsequent analysis may be formulated and interpreted. We then design and perform an infor­

mative experiment in order to gather data. If necessary, we then might make transformations 

of the data, or carry out an exploratory analysis to discover broad trends and investigate gen­

eral structure. We would then finally proceed with a detailed analysis to complete the inferen­

tial process, and attempt to report a coherent and relevant solution to the problem, conditional 

on the data observed. 

Now suppose that, given a suitable framework, the collated data takes the form of a set 

of observations spatially configured in at least two dimensions, relating to the physical or 

measurable attributes of a collection of subsets or regions in again at least two dimensions 

(either identically or in projection), with the relationship being regarded as stochastic rather 

than deterministic. Suppose that we have interest in making inferences about these (unobserv­

able) attributes and their spatial inter-relation. Then the corresponding exploratory and 

detailed inference problems are referred to as statistical image processing and image 

analysis. 

In this introductory chapter, we give a brief indication of the history of the development 

of image processing techniques and note several important and influential references, and list a 

selection of some of the most important fields of application. We also attempt to provide a 

motivation for the use of specifically statistical techniques discussed and developed in this 

thesis. Later in this chapter, we present a glossary of important terms, and discuss what we 

regard to be the fundamental problems in image processing. Finally, we set out the aims and 

intentions of the work presented in this thesis. 

(1.1.1) History and Applications. 

The problems associated with the collection and processing of image or signal data are 

familiar in scientific and engineering circles, and research extending over the last 30 years, in 

conjunction with tremendous advances in computer and other related technology, has given 

rise to an extensive literature. It is only relatively recently, however, that these problems have 

been embraced and addressed by the statistical community, whereas previously the majority of 

frontier work had been carried out in the research departments of electrical and electronic 

engineering, and computer science, in both industrial companies and academic institutions. 
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Some idea of the how the subject has developed over this period can be gained with 

reference to several periodical publications. Journals associated with the Institute of Electrical 

and Electronic Engineers (I.E.E.E.) have been and are popular media for the presentation of 

both statistical and non-statistical work; see, in particular, I.E.E.E. Proceedings, and Transac­

tions on Information Theory, on Acoustics, Sound, and Signal Processing, and latterly on Pat­

tern Analysis and Machine Intelligence. Other useful specialist journals include Pattern 

Recognition and Computer Vision, Graphics, and Image Processing. It is from such sources 

that the majority of our background references will be drawn, and jointly serve as an orienta­

tion for the work that we shall present. An important and comprehensive introductory text 

with an emphasis on aspects of "classical" image processing and analysis techniques is that of 

Rosenfeld and Kak (1982). See also Andrews and Hunt (1977), Pratt (1978), and 

Schowengerdt (1986). 

Prior to 1970, little concerted effort had been applied to the problem in a specifically 

statistical framework. Problems such as classification and discrimination that, as we shall see 

later, are closely related to the image analysis problem, had been studied extensively, but with 

the relevance being consequential rather that motivative. Early works in which statistical 

analysis was fully considered are Fukunaga (1972) and Duda and Hart (1973). These again 

are excellent introductory texts. An important influence on the development of statistical 

image analysis was Besag (see, for example, Besag (1974,1975,1977,1978)who pioneered 

work on spatial probability structures and statistics, although at that time the link was still 

largely incidental. In last ten years, the growth of interest in the subject has been rapid, and 

many important and interesting papers have appeared. We note two in particular - Geman and 

Geman (1984) and Besag (1986) - which have motivated much subsequent research. We shall 

see and discuss further the particular relevance of each of these papers in the remainder of this 

chapter, and in several subsequent chapters. Note also Ripley (1988) as an important refer­

ence regarding spatial data analysis. 

The works listed above, and the extensive references that they contain, represent a 

comprehensive bibliography of published work relating to image processing and analysis. A 

recent addition to the literature is a Special Issue of the Journal of Applied Statistics, which 

contains a useful introductory paper by Dubes and Jain (1989), and an overview of current 

research. 

Many practical applications of image processing and analysis exist. Without quoting 

specific examples or providing details, the most important of these applications relate to 

agronomy (inference about land-use from satellite images), astronomy (studying the motion of 

galaxies), industrial processing (automated manufacturing and quality control), medicine 

(internal body imaging), and the military (intelligence, reconnaissance, defence/offence sys­

tems), relating variously to the imaging techniques of, for example, photography, tomography, 
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radiography etc. Although aspects of the problem differ in each of these examples, a single 

general framework and terminology will suffice for all of them. 

(1.2) Terminology and notation. 

As indicated above, before we can perform any statistical image processing or analysis, 

we must first construct a framework in which the analysis and its results may be interpreted. 

Prior to this, however, it is also necessary to develop an unambiguous and definitive terminol­

ogy with which we may communicate. From a statistical perspective, the terms that we use 

and their meanings are widely recognised and understood. In the specific context of image 

processing, however, no formal syntax or semantics have ever been established in the general 

literature, with terms and definitions being either duplicated or otherwise insufficiently precise. 

A series of papers of Rosenfeld in the journal Computer Graphics and Image Processing, and 

the important book by Rosenfeld and Kak have gone some way to developing the fundaments 

of a language for the subject, to which a statistical aspect has been added by Fukunaga, Duda 

and Hart, and, perhaps most significantly, Besag (1986), who has had the most profound con­

temporary effect on the attitudes of statisticians, stimulating a great deal of the current interest 

and research. In this thesis, we follow generally the definitions and terminology introduced in 

these references, but also hopefully we will exclude any ambiguities, inconsistencies, and 

redundancies. Later, we shall present a glossary of important terms and the interpretation they 

will have in our subsequent work. We begin by introducing some notation necessary for our 

statistical formulation. 

Recall that in the image processing data analysis problem, we are to observe in some 

space, subsequently denoted m , data that arise indirectly from the physical or measurable 

aspects of a collection of entities in some other space, denoted 8. We shall denote the 

observed data by Y, and the unobservable quantities from which Y is derived by 8. In addition, 

and perhaps more usefully, we define So and Sy as the physical regions in (at most) Euclidean 

3-space in which 8 and Y - qualitatively interpreted at this stage as the characteristics of the 

collection of entities of interest and the observed data, respectively - are located and spatially 

configured. This definition is somewhat abstract, but its interpretation will become evident in 

the light of the examples we give below. Now, due to the practical considerations of the data 

collection procedure, it is necessary to impose some discretisation on the region Sy. In the 

same way, but now for reasons of statistical convenience and ease of implementation, we also 

consider it important to impose discretisation on So. Thus, it is clear that, in general, we shall 

assume that Y is a vector contained in Euclidean m-space, and that 8 is a vector contained in 

Euclidean M-space. The elements of these vectors are commonly referred to as pixels (picture 

elements). Consequently, we shall refer to the vector of unobservable pixel values 8 in So as 

the true scene pixel values, and similarly we shall refer to the vector of observed data pixel 
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values Yin Sy and derived from 8 as the image pixel values. 

The interpretation of the terms defined above is most readily demonstrated by means of a 

simple example. Consider the case where S(J and Sy are both planar regions (that is, S(J and Sy 

have the same dimension, Sy is not a projection of S(J), and furthermore suppose S(J and Sy 

coincide exactly in a rectangular region of dimensions (11,12 ), denoted by S. Using the 

natural coordinate system with axes parallel to the boundaries of S, we may perform the neces­

sary discretisation of Sy by imposing a nl x n2 grid of rectangular pixels each of size 

(11/ n 1) X (12/ n2) on the region, and subsequently recording data elements per pixel. Thus, Y is 

a real vector having nl x n2 elements, each of which may be univariate or multivariate quanti­

ties. Similarly, we may produce a discretisation of S(J by imposing on it a scaled version of 

this grid, consisting of Nl xN2 rectangular pixels of size (It/N1) x (l2/N2)' and consequently 8 

is a real vector having NIx N2 elements. Generally, we shall regard the elements of 8 as tak­

ing values on some set of integers rather than the whole real line, for reasons that we discuss 

below. Figure I depicts the results of such a discretisation, with Nl = N2 = 16, and 

nl = n2 = 8, producing square pixels when the region S is chosen to be square. The discre­

tised versions of S(J and Sy are depicted in figures l(a) and (b) respectively. 

Fig l(a) = S8 Fig l(b) = Sy 

Clearly, this merely represents one possible version of the many different types of discretisa­

tion that may be used. It has several important features. First, the grid used to discretise S(J is 

finer (or of a higher resolution) than that used to discretise Sy. Generally, we might regard the 

grid used to discretise Sy as being in some sense of fixed resolution due to the practical con­

siderations of data collection as mentioned above. Therefore, we regard as coherent the use of 

a grid with higher resolution as a representation of elements in the true scene. Thus, loosely, 

we might regard Y as a corrupted version of a projection of 8, and, in our original notation, 

M ~ m. Secondly, it is clear that, in this particular instance, the pixels in Sy correspond 
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independently to one group of four pixels in Se with no overlapping. Such considerations will 

be of importance in the subsequent statistical analysis. Thirdly, the actual nature of the pro­

cessing problem may be such that Se and Sy have different dimensions - for instance, we may 

have a two-dimensional image derived from a three-dimensional true scene, as is the case in 

many medical imaging examples - in which case Se and Sy coincide only in projection. It is 

evident that each of these points reduce to the following: that, subsequent to the discretisation 

procedure, we must define the precise form of the function used when mapping pixels in Se to 

pixels in Sy. 

Having established the correspondence of pixels in Sy to (blocks of) pixels in Se, we 

now proceed to discuss the introduction of randomness into imaging process. It is clear that if 

this process is regarded as purely deterministic, then statistical techniques are not required, 

and we return to well-established and moderately successful (if intuitively unsatisfactory) non­

statistical techniques. Our interpretation of the imaging process, or the image model, is a 

conventional statistical one, namely that 

Data = Structure * Noise (1.1) 

(see, for example, Smith(1986)), where the terms" Data" and" Structure" in (1.1) correspond 

respectively to "image" and "true scene" as defined above, "Noise" corresponds to the 

inherent but undesirable stochastic element, and * is an operator defining precisely how the 

Structure and Noise interact. This interpretation of the term" Noise" is very close indeed to 

its common interpretation in the image processing context, where a noise-process is regarded 

as acting to corrupt the underlying signal. Hence, we denote the noise-process by E, and thus 

we may formally re-write (1.1) in the image processing context as 

(1.2) 

where f is merely some function involving the operation * and the pixel correspondence 

described above. We could qualify the precise form of f (see Geman and Geman (1984) for a 

mathematical exposition, and, for example, Rosenfeld and Kak (1982) for the image process­

ing aspects), or merely regard it as some "black-box" operation. We favour the latter of these 

options, except where specific knowledge of the operation is relevant to our subsequent model­

ling assumptions. We hence refer to f as the image-formation process, and generally consider 

its form to be a consequence of the mathematical rather than the physical aspect of the image 

processing problem (although, of course, the former will typically be motivated by the latter). 

We discuss the particular aspects of the choice of f in more detail in a later chapter, and we 

shall see that this choice can be regarded as part of the Bayesian a priori model elaboration 
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procedure, and that generally f can be assumed to take some familiar form. 

Having made the largely notational and mathematical definitions above, we now seek to 

define terms with a interpretation specific to the image processing context. For instance, we 

have so far regarded the unobservable 8 as measurable aspects of entities in 8. We shall from 

this point on refer to these entities as texture regions, or merely textures. This terminology is 

largely adopted from traditional 2-D signal processing, and we shall regard it as generically 

rather than specifically defined; that is, its actual interpretation will be contextual. Note that, 

here, the texture regions are regions in (at most) 3-space, rather than being merely planar, and 

that the usage of the term mayor may not coincide with the more common usage. In certain 

practical instances, it may be useful to refer to individual texture regions as objects, and to the 

residual part of any true scene as background in the usual way. We shall also refer to particu­

lar configurations of texture regions, or indeed regions of a particular configuration as pat­

terns, and to the boundaries between adjacent textures as edges, in the usual way. None of 

these definitions conflict to any great degree with those in the literature. Later, however, we 

shall be making further definitions that will supercede to some extent those made previously. 

First, we introduce the probabilistic formulation and notation used subsequently in this thesis. 

As indicated previously, we shall attempt to solve the particular problems in image pro­

cessing that we study within a Bayesian framework, and inference about the unobservable 8 

will be made conditionally on the observed data via some form of posterior distribution or 

density derived from a set of qualitative and quantitative prior assumptions. For example, we 

shall make decisions via posterior probabilities and carry out estimation procedures on the 

basis of posterior distributions, each in conjunction with the appropriate loss-functions for 

incorrect decisions. It falls beyond the scope of this thesis to review the formal (decision­

theoretic) justification for the use of Bayesian methodology, but we feel that, first, in general, 

it provides the most intuitively satisfying method of solution to statistical problems, and 

second, specific to the image processing context, we shall see that this form of inferential 

procedure is of considerable use in the modelling of such complex stochastic systems. 

It is clear that, since we shall adopt a statistical approach to image processing problems, 

it will be necessary to refer notationally to certain forms of probability distributions and densi­

ties. We thus introduce the following notation. We shall write the marginal form for one vari­

able and the joint and conditional forms for two variables as 

[ .] , [.,.] , and [. I . ] 

respectively, with the obvious extension for higher numbers of variables. We shall also 

represent the marginalisation process, of variable 81 with respect to variable 82 , say, as 
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or, equivalently, 

with no other reference being made to the integrator variable. Despite the minimalist nature of 

this notation, its interpretation in every context will be entirely obvious. For discrete probabil­

ities, we shall occasionally adopt the usual Pr( . ) notation. 

Having introduced the basic terminology that we shall use when referring to problems in 

image processing, and the necessary statistical notation, we now proceed to describe and dis­

cuss several important areas within the subject that we study in later chapters. The terminol­

ogy that we use will, on occasion, differ slightly in interpretation relative to more traditional 

interpretations. However, we believe our terminology to be sensible and consistent. 

(1.3) Problems in image processing. 

The problems that we discuss below can be regarded as fundamental problems in image 

processing, and themselves include virtually all other problems of interest in the subject. In 

our description, for definiteness, we shall make specific reference to the situation depicted in 

figure 1, where Se and Sy coincide exactly in a planar rectangular region S, with each discre­

tised into grids of rectangular pixels, and where the resolutions of the two grids mayor may 

not be equal. We begin with what we regard as the most important problem for solution. 

(1.3.1) Image segmentation. 

The image segmentation problem can be presented simply as follows. Given the 

observed (image) data Y, corresponding to pixel values in Sy, our objective is to allocate each 

of the elements in the unobservable (true scene) vector 8, corresponding to pixel values in So, 

to one (or occasionally more) of the textures or texture regions in B. We shall refer to the 

allocation of pixels to textures as classification, both in a transitive and intransitive sense - for 

example, we might validly refer to the "true scene pixel classification" for pixel i, say, mean­

ing the actual underlying value of 8;, or equally as validly to a "pixel classification procedure" 

as the mechanism by which the pixels are allocated. Our interpretation of the term image seg­

mentation here is identical to that of terms such as image restoration or reconstruction that 

are frequently used elsewhere in the literature. We feel that "segmentation" describes the 

nature of the problem more satisfactorily than either of these options. 
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We shall see later that the segmentation problem can be approached, broadly, in three 

ways, which we shall refer to as estimation, probabilistic classification, and non-probabilistic 

classification. Two of these three approaches, estimation and probabilistic classification, are 

derived using slightly different statistical assumptions, and have different ultimate objectives, 

but are generally closely related. The third, non-probabilistic classification, uses low-level or 

quasi-statistical arguments, and can be thought of as principally exploratory data analytic. 

We regard segmentation as the fundamental problem in image processing, since it is the 

prime objective in the majority of fields of application. We thus regard the remaining prob­

lems described below as either preliminary or ancilliary to this primary objective. Later, we 

discuss two cognitive problems where further inferences concerning, for example, presence or 

absence of objects or patterns in the true scene are made either subsequent or in parallel to 

segmentation. First, we describe a problem that can regarded as an important preliminary step 

in the processing of image data. 

(1.3.2) Edge-detection. 

Generally, in the context of image analysis, our interpretation of the nature of the unob­

servable true scene is that it is comprised of broadly homogeneous texture regions configured 

in some way in relation to each other. Inherent in this interpretation of the true scene is the 

concept of boundaries between textures, or edges as defined above. Clearly, it is of interest to 

be able to identify the positions of these edges. We discuss in more detail in a later section 

the justification of our interest in the discernment of edge regions, or edge-detection, and at 

greater length in a later chapter, where we shall note its importance as a preliminary stage in 

the image processing procedure. 

We shall see that, despite the considerable literature concerned with edge-detection 

methodology and applications, little has been done to formulate the problem in a formal pro­

babilistic framework. This latter task is the primary concern of this thesis, and we shall see 

later that, in fact, the edge-detection problem can be approached in a decision-theoretic setting 

by appealing to other well-known statistical techniques. We now describe a third important 

problem in the image processing context. 

(1.3.3) Object detection. 

Consider a texture region configuration in which one texture region is completely spa­

tially contained within another texture that itself extends to cover the remaining region of Sy. 

In such a situation, we refer to these two texture regions as object and background respec­

tively. as indicated briefly above. In this situation, we frequently wish to make inferences con­

cerning the location, dimensions, and orientation of the object relative to the background, or 
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relative to the chosen coordinate axes, rather than merely seeking a solution to the segmenta­

tion problem. Such problems are common in many applications; for example in medical imag­

ing using data collected using tomographic methods, or in military reconnaissance using 

remote sensing. 

The nature of the inference problem here in this object detection problem is fundamen­

tally different to that of the segmentation problem described above. It is cognitive rather than 

merely observational, and thus requires a different approach to its solution. Again, few 

attempts have been made in the literature to formulate this problem in a statistical (or at least 

estimative) setting. We shall attempt such an approach in a later chapter of this thesis. 

Finally, we describe one further problem of a cognitive nature that is related to another 

aspect of image analysis. 

(1.3.4) Pattern recognition. 

We defined the term "pattern" above to mean a particular configuration of texture regions 

in the true scene. Implicit in this definition is the fact that such a configuration must have 

some characteristic quality that allows discrimination between it and other configurations. 

Thus, for any given image, we might wish to make inference relating to the presence or 

absence of patterns of a particular type. We shall refer to this inferential problem as pattern 

recognition, and note that it is practically relevant in many fields of application; for example, 

in the regulation of industrial and engineering processes, and in the machine processing of 

printed characters. 

Clearly, the pattern recognition problem has links with areas of mathematics outside of 

statistics. The connection with sophisticated techniques concerned with shape analysis and 

morphology is obvious, but we might also note links with artificial intelligence, and also with 

the mathematical formulation of psychological concepts. The major part of this broad spec­

trum of ideas obviously falls beyond the scope of this thesis. However, we shall see in a later 

chapter the relevance of pattern recognition to simple problems of object detection. 

We have described what we believe to be the four problems of primary interest in the 

area of image processing. We have noted that generally we regard image segmentation as our 

ultimate goal, but of necessity this must be proceeded by an edge-detection analysis, possibly 

complemented by other inferential procedures, such as object detection and pattern recogni­

tion. The structure of this thesis is broadly along these lines. For the remainder of this intro­

ductory chapter, we describe in detail the approaches developed previously in an attempt to 

solve two of these problems, namely image segmentation and edge-detection. Later, we give 

an account of various statistical and non-statistical edge-detection procedures that have 

appeared in the literature. First, we present a summary of the techniques that have been 
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proposed as a solution to the image segmentation problem. Due to the extensive literature on 

this subject, and bearing in mind that our objective is to formulate the problem in a decision­

theoretic, probabilistic framework, we shall restrict our survey to purely statistical approaches 

to the problem. 

(1.4) Statistical approaches to image segmentation. 

As mentioned above, the problem of image segmentation has been approached in a sta­

tistical framework using techniques that fall into three broad categories. First, it has been 

viewed as an estimation problem, where the elements of 8, the true scene pixel classification 

values, are regarded as unknown parameters that may be estimated using classical (maximum­

likelihood) or Bayesian (maximum probability) techniques. Secondly, it has been viewed as 

what we shall call a probabilistic classification problem, approached via such procedures as 

cluster analysis, discriminant analysis, and predictive classification, where the elements of 8 

are allocated to textures according to their fidelity to texture characteristics. (We note in pass­

ing that there are mathematical links between the maximum probability approach to estimation 

described above and the minimum distance approaches inherent in probabilistic classification, 

although the two approaches can be regarded as conceptually distinct.) Thirdly, the image seg­

mentation problem has been viewed as what we shall call a non-probabilistic classification 

problem. We use this somewhat catch-all category to describe intuitively reasonable and effec­

tive segmentation techniques that do not fall readily into either of the other categories, but 

nevertheless still use some form of statistical methods. It will become apparent later precisely 

which sorts of techniques we include in this category. We now proceed to discuss each of 

these approaches in greater detail. 

(1.4.1) Estimation. 

Before presenting a summary of estimation oriented techniques and procedures, we 

introduce the specific forms of notation that we are to use. Recall equations (1.1) and (1.2), 

and suppose that the stochastic relationship between 8 and Y due to e and quantified through f 

is such that f is known. Then we write the probabilistic dependence of Y on 8 as [Y I 8], with 

all other aspects of the dependence being suppressed at this stage. In a classical statistical 

framework, subsequent inference about 8 is frequently made via maximum-likelihood 

methods, so that, in particular, an estimate of 8, denoted by 8, is given by 

8 = arg max [ Y I 8] 
9 

In a Bayesian decision-theoretic framework, inferences are made via the posterior distribution 

for 8 given Y, denoted by [8 I Y]. In this framework, the required estimate for 8 is derived 
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from [0 I Y] and an appropriate loss function for incorrect actions, denoted by l( 0, iJ). The 

usual Bayesian risk analysis can then be used to show that if this loss function takes the form 

l( 8.6) = {~ iJ = 0 
otherwise 

(1.3) 

then the optimal choice of iJ, that is, the choice of 8 that minimises the expectation of the loss 

function taken with respect to [0 I Y], can be shown to satisfy 

8 = arg max [ 0 I Y] 
(J 

(1.4) 

that is, the estimate for 0 is the joint mode of the joint posterior distribution for 0, [0 I Y]. 

Such an estimate is termed the maximum a posteriori, or M.A.P., estimate. Alternately, if the 

loss function takes the form 

M 

l( 0,8) = L l( OJ , 8;) (1.5) 
i=l 

and l( OJ ,OJ) takes a similar form to (1.3), then the optimal choice for 0 is comprised of the M 

elements OJ that satisfy 

(1.6) 

for i = 1, ... , M, where [(Jj I Y] is the marginal posterior distribution of the single parameter 

(Jj. Such an estimate is termed the marginal posterior modal, or M.P.M., estimate. 

In an image segmentation context, much attention has been paid to evaluating the esti­

mate of 0 given by (1.4), the M.A.P. estimate, and markedly less so to the estimate given by 

(1.6), the M.P.M. estimate. However, we feel that is somewhat misguided, due to the contex­

tual interpretation of the two respective loss functions. Informally, the loss function in (1.3) 

can be interpreted as "all incorrect segmentations derived from the image data are equally as 

bad", whereas that in (1.5) can be interpreted as "how bad a segmentation is depends directly 

on the number of incorrectly classified pixels". In the vast majority of practical applications, 

the latter loss function is clearly more appropriate than the former. For example, we would 

regard the segmentation in figure 2(a) when the true scene comprised a centrally positioned 

square region on a background as inferior to the segmentation depicted in figure 2(b). How­

ever, under the loss function in (1.3) the two segmentations are regarded as equally incorrect. 
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Fig 2(a) : segmentation (a) Fig 2(b) : segmentation (b) 

Clearly, before we are able to report the required estimates we must first evaluate the 

joint posterior distribution, [8 I Y], or the set of marginal posterior distributions, [OJ I Y] for 

i = 1, ... , M. In the Bayesian paradigm, evaluation of these posterior forms involves the 

specification of a prior distribution for the unknown parameters of interest. The nature of this 

prior distribution is that it should both qualitatively (through the choice of functional form) 

and quantitatively (through the choice of prior parameters) reflect our subjective opinions and 

beliefs relating to these parameters. 

In the image segmentation context, for definiteness, we shall consider the specification of 

a joint prior structure for the true scene parameters, denoted by [8], and the evaluation of the 

joint posterior distribution [8 I Y]. It is clear that the joint and marginal prior and posterior 

distributions are, in fact, deterministically related, and that specification of a joint structure 

induces a marginal structure. Via Bayes theorem we have that 

[OIY] oc [YI8][8], (1.7) 

where [Y I 8] is the likelihood function. The problem thus reduces to specifying interesting 

forms for likelihood and prior, and identifying and evaluating the posterior distributional form 

that appears in (1.7). 

Despite the fact that we might regard regard the form of [Y I 0] as fixed (by f), it is 

still strictly a consequence of our (prior) modelling assumptions, and thus we might view (1.7) 

as equivalent to a simple prior-posterior probability map. However, due to the practical con­

siderations of the data collection process, the form of [Y I 0] is often restricted to be one of a 

small number of familiar functions. We are typically more at liberty to choose the form of 
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[ 8] since it will express our opinion concerning the nature of the unobservable true scene. 

Thus, with respect to the other terms in (1.7), it is the model for the true scene pixel parame­

ters as represented by [8] that offers the greatest scope for more refined modelling and subse­

quently improved analysis. We now discuss one general approach to specifying [()] that has 

broadly been accepted as being particularly relevant to the image segmentation problem. 

(1.4.1.1) Modelling the true scene - Markov Random Fields. 

Recall our general interpretation of the true scene as comprising homogeneous texture 

regions separated by edges, the latter regarded as small-scale features relative to the size of 

the texture regions. Thus, in any localised sub-region of the true scene we would generally 

expect contiguous blocks of pixels of the same texture to exist, with isolated pixels of any 

texture rarely occurring. In the light of this interpretation, one possible specification for [8] 

may be constructed as follows. First, consider the conditional distribution of parameter (}i 

given the parameter values at all other pixels, (}(i)' denoted by [(}i I 8(1) ]. Then, because of our 

interpretation of the true scene, it would seem that a realistic modelling assumption is given 

by 

(1.8) 

where the vector (}ai has elements which are the true scene parameter values for pixels in a 

locality or neighbourhood of pixel i. This assumption is appealing in the image segmentation 

context because it reflects our opinion concerning the local nature of the true scene. Thus, via 

(1.8), we have an appealing conditional prior structure for the parameters (). Probability distri­

butions exhibiting the property in (1.8) (and a further important property relating to positivity) 

are referred to as Markov Random Fields, or M.R.F.s, or also as Gibbs distributions - see 

Besag(1974) for further information. One important feature of such distributions (demon­

strated by Besag and other authors) is that specification of the forms for the i conditional 

distributions [(}i I (}a;], for i = 1, ... ,M, completely specifies a unique joint structure for 

[ ()] under weak regularity conditions. Such prior distributions have frequently been used to 

model the true scene in statistical image segmentation procedures. However, the implied joint 

distribution is complex, taking the form 

[()] = .!. exp{ - L Vc ( ())} 
Z ceG 

(1.9) 

where C is the set of cliques (subsets of pixels in which each element is a neighbour of all 

other elements, and in which all neighbours of a member pixel are contained), Vc is the clique 

potential for clique c specified on a scale relative to all other types of clique, and Z is the 



- 14 -

normalising constant for the distribution. The interpretation of the joint structure is somewhat 

less appealing than that of the local conditional structure, but it is nevertheless important, as 

we must at all times consider the global implications of local assumptions. Again, these 

definitions are most easily explained by means of a simple example. Suppose that, in two 

dimensions, for any pixel i internal to the true scene pixel grid (that is, not on a boundary or 

on the corner of the grid), Do; comprises parameter values in all pixels horizontally, vertically 

and diagonally adjacent to i. Then each pixel of this type is contained within ten distinct types 

of clique - one of order one, four of order two, four of order three, and one of order four. 

These cliques, and suggestions for choices of clique potentials, are presented, for example, in 

Derin and Cole (1986). Interpreted using non-Bayesian terminology, [8] is often viewed as 

acting as a smoothness or regularisation constraint that penalises "rough" segmentations. 

As mentioned above, the appeal of the property (1.8) is somewhat lessened by the com­

plex nature of [ 8] in (1.9) and of the resulting posterior distribution from which the estimates 

are to be derived. Also, the complexity of the induced prior marginal structure prevents 

straightforward evaluation of the marginal posterior estimates; in fact, the marginal posterior 

distributions are virtually unobtainable using standard techniques when a prior of this form is 

used. Fortunately, a sophisticated technique for the optimisation of the joint posterior distribu­

tion has been developed, and was presented originally in the segmentation context by Geman 

and Geman (1984). We now discuss the algorithm developed there, and subsequent important 

developments. 

(1.4.1.2) Stochastic Relaxation and Simulated Annealing - the Gibbs Sampler. 

We present here a version of the original algorithm that differs somewhat in emphasis 

from that given originally by Geman and Geman, taking account of recent important develop­

ments in this area. Consider the following procedure. For each pixel i, we may write down the 

full conditional posterior distribution for parameter 8;, denoted by [8; I Y , 8(1) ], as 

(1.10) 

where [8; I 8(,)] == [8; I 80;] for a suitable neighbourhood system defining 80;. Under suit­

able assumptions concerning [Y I 8], the conditional distributions given by (1.10) are 

straightforward to evaluate due to the simple nature of the conditional prior for 8; given 80;. 

The Gibbs Sampler, proposed by Geman and Geman, proceeds as follows. After assigning 

initial values to each of the 8; in some arbitrary fashion, sample iteratively from each of the M 

full conditional distributions [0; I Y , O(i) ], with the values of the conditioning variables 

chosen on each iteration to be equal to the variates most recently obtained for those variables 
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by the iterative procedure. The iterative updating of the 8; by the sampled values is referred to 

as stochastic relaxation (labelling, substitution). Under certain conditions (that the set of full 

conditional distributions uniquely define the joint distribution, and that each conditional distri­

bution is sampled from "infinitely often"), Geman and Geman prove that as the number of 

iterations tends to infinity the joint sample of 8; tends in distribution to [8 I Y] (see Geman 

and Geman (1984) for full details and proofs). Clearly, this technique is also of potential use 

elsewhere in Bayesian statistics, and we shall see such examples of its use later. 

In the segmentation problem we therefore have a technique that allows us "eventually" 

to sample from the joint posterior distribution of the true scene pixel parameters [8 I Y]. To 

derive, say, M.A.P. estimates, however, we must find the mode of this joint posterior distribu­

tion. Again due to Geman and Geman, a maximisation technique is available via the Gibbs 

Sampler. Instead of sampling iteratively from [8; I Y, 8(i)] on every iteration, we sample 

from {[ 8; I Y ,8(1)] pIT for some T > 0 (which is still relatively straightforward due to its 

discrete nature), and change T between iterations, starting with T large but decreasing it to 

zero as the iteration number increases. As T tends to zero, the set of sampled values are con­

centrated on the mode of the joint posterior distribution. The parameter T is referred to as a 

temperature, and the optimisation technique as simulated annealing, reflecting an analogy 

with techniques and processes in thermodynamics. In practice, the temperature must be altered 

according to a schedule that "cools" the system very slowly, and over a long time scale. Thus, 

although the technique is attractive, it can be computationally very demanding. 

The Gibbs Sampler algorithm and associated annealing techniques as presented by 

Geman and Geman have subsequently been developed in a number of ways. The original 

authors suggest the use of an edge-process to lie along the edges between pixels, to act so as 

to restrict the influence of adjacent pixels lying within different texture regions. Ripley (1988) 

describes how the implementation of the algorithm may be improved and devises an appealing 

adaptive scheme to define the priority with which the pixel sites are visited. He also advocates 

the use of an exponential cooling schedule, as opposed to the logarithmic schedule proposed 

by Geman and Geman, and discusses the important issue of the assessment of convergence of 

the iterative process. We return to the problems associated with convergence at a later stage. 

Another amendment to the Gibbs Sampler as it was originally presented may be obtained by 

noting that we can use the identical technique to sample eventually from the marginal poste­

rior distributions for the pixel parameters, [8; I Y] - this is merely a consequence of the 

theorems proved by Geman and Geman, and those stated later by Tanner and Wong (1987) in 

a related context. We therefore now have a technique enabling us to evaluate the M.P.M. esti­

mates for the unknown pixel parameters that were previously unobtainable under this prior 

structure. More profoundly, the work of Tanner and Wong, and that of Gelfand and Smith 

(19 9~) and Gelfand et al. (1989), demonstrates that the Gibbs Sampler methodology may be 
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applied to a much wider range of statistical inference problems than those associated with 

image processing. For example, Gelfand et al. (1988) show that the algorithm may be used to 

compute estimates of marginal posterior densities for unknown parameters in a wide variety of 

normal data models, and Carlin et al. (1989) apply the methodology to inference problems in 

changepoint models: see also Hills (1989) for further theoretical and practical considerations, 

and Roberts and Polson (1990) for a general investigation of the nature and convergence of the 

procedure. Returning to the image segmentation problem, however, in practice, various 

difficulties may arise. Besides the problems concerned with computational load and the assess­

ment of convergence of the algorithm, Greig et al. (1989) show that, in a special case when an 

exact form for the M.A.P. estimate is available, the exact estimate and the estimate derived 

using the Gibbs Sampler and annealing often differ considerably. It is also widely recognised 

that the choice of hyperparameters in the conditional prior distribution [OJ I O(i)] influences 

the nature of the posterior distributions greatly. In particular, the M.A.P. estimate derived 

from an inappropriate specification of prior hyperparameters often allocates all pixels to one 

texture. These negative features are difficult to understand and foresee. Although in simple 

cases we may study analytically and hence gain some understanding of the nature of the prior, 

the nature of the posterior is considerably more complex. We must be aware therefore that, 

despite the attractions of Gibbs distribution models and the stochastic relaxation and simulated 

annealing techniques, a number of practical and theoretical difficulties remain. Indeed, several 

authors (for example, Blake and Zisserman (1987)) doubt the usefulness of Gibbs models in 

problems of modelling true scenes in the image analysis problem. We believe, however, that 

the M.R.F./Gibbs structure captures the qualitative aspect of our prior opinion quite ade­

quately. 

Several models have been proposed to represent the spatial structure relevant in image 

segmentation problems. In the important papers of Besag (1974,1975), the distinction is drawn 

between so-called Conditional Markov (Autoregression) (CM or CAR) models and Simultane­

ous Autoregression (SAR) models, each of which can used to specify spatial structure, 

although the two approaches are not equivalent because of the different covariance structures 

involved in the specifications - indeed, Molina and Ripley (1989, section 3) suggest that we 

can 

"think of the CAR prior corresponding to first differences being white noise but the SAR 

prior to second differences being white noise. " 

See, for example, Kanal (1980), Kashyap et al. (1981), Ripley (1981,1988), Kashyap and 

Chellappa (1983), Kunsch (1987) and Kent and Mardia (1988) for further discussion concern­

ing the representation of spatial structure. In particular, the formulation above, and those of 

Hassner and Sklansky (1980), Cross and Jain (1981), Derin et al. (1984), Geman and Geman 

(1984), Derin and Elliot (1987), and Cohen and Cooper (1987) fall into the former category, 
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whereas, for example, those of Woods (1981), Khotanzad and Chen (1987), and Woods et al. 

(1987) fall into the latter. The choice of one approach over the other usually a matter of per­

sonal taste, or due to algorithmic considerations. In this thesis, we shall adopt the former 

approach, wherein, in the continuous case, the conditional expectations of the pixel values are 

simple linear sums of their neighbouring pixel values. Also, Besag (1975) considered the 

analysis of non-lattice data involving spatial structure. These spatial models have applications 

in each of the image segmentation techniques that we shall discuss. 

We have discussed in some detail the estimative approach to the image segmentation 

problem, as it is with this approach that this thesis will be primarily concerned. We now dis­

cuss briefly the two other statistical approaches to this problem that have been adopted in the 

literature. 

(1.4.2) Probabilistic classification. 

Probabilistic classification techniques such as cluster analysis or discriminant analysis 

derived from classical likelihood or Bayesian posterior or predictive probability formulations 

are familiar in statistics. They are largely concerned with the optimal allocation of each ele­

ment of the data set to one of a number of classes, with optimality defined in terms of 

minimum distance (classical) or maximum probability (Bayesian) criteria. Hence links with 

maximum probability approaches in the estimation context as described above are apparent, 

although there is a clear difference in emphasis between the two approaches. 

In the image segmentation context, probabilistic classification techniques require that we 

allocate each pixel to one of a number of textures about which we have some prior opinion or 

information relating to physical nature. In the case where no spatial structure is assumed, for 

a fixed number of textures K, denoted To, ... , T/C-l, the simplest probabilistic classification 

rules are defined as follows. In a classicaVmaximum-likelihood framework, we allocate pixel 

i to texture 1j, here denoted by OJ E 1j, if 

(1.11) 

which in the Normal case reduces to a minimum-distance criterion, and, in a Bayesian frame­

work, OJ E 1j if 

(1.12) 

the maximum posterior probability criterion. The relationship between the estimative and allo­

cative maximum-likelihood and Bayesian approaches is evident through the forms of (1.11) 

and (1.12) and the forms that appeared in section (1.4.1), particularly equation (1.6). Again, 
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we concentrate here on the Bayesian formulation. In the usual way, we may rewrite the terms 

in (1.12) as 

(1.13) 

where the first term on the right-hand side is now generally an integrated likelihood derived 

from the modelling and prior assumptions, and the second is the prior probability of pixel i 

being a member of texture ~. Thus, comparisons of the sort necessary to achieve a maximum 

posterior probability classification of each pixel in the image defined by (1.12) are straightfor­

ward through (1.13). A complicating factor is that the parameters appearing in the likelihood, 

the texture parameters, are generally unknown and so must be estimated using training data 

from regions in the image known a priori to be derived from individual textures, or have some 

prior distribution specified for them, or be estimated as part of an iterative classification pro­

cedure such as the K-means algorithm described by Hartigan (1975). See also Duda and Hart 

(1973) as another general reference on the use of discriminatory probabilistic techniques in the 

image analysis problem. 

General features of this simple approach are that the conditional distributions of data 

values given the texture parameters take on well-known and tractable forms (usually Normal), 

that there is no structure in the true classification, and that each datum point is allocated to 

only one of the K possible classes. In the image processing context, the first of these is neces­

sary and acceptable, but the second and third perhaps seem inappropriate. We have described 

above the advantages of introducing some from of spatial structure into our prior specification 

for the true scene pixel classification, and such a spatial element has been introduced into the 

classification problem by, for example, Fu and Yu (1980), Switzer (1980,1983), Mardia 

(1984), Haslett (1985), and Klein and Press (1987). We also recognised in our initial formula­

tion of the image processing problem that each observed image pixel value may be derived 

from a number of true scene pixels, and in a similar way we might entertain the possibility 

that each pixel value in the image was an observation from the mixture of the K individual 

texture probability distributions [Yi I 0i E Tic] weighted by some unknown factor Wilc, 

k = 0, ... , K -1. Interest would then lie in making inferences concerning the W ilc for each i, 

interpreted as representing the proportion of pixel i belonging to texture Tic. Such an approach 

is termed fuzzy classification, and the procedure is described in more detail by Kent and Mar­

dia (1988); see also the recent work reported by Cannon et al. (1986) and Gath and Geva 

(1989). We accept the appeal of such an approach in the classification context, but note that 

the M.P.M. technique described above, with the Gibbs Sampler used to compute approximate 

marginal posterior distributions for the true scene classification parameters, seems itself to 

provide a suitably fuzzy rule, which we "harden" by recording only the posterior modal texture 
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for each pixel. 

Finally, we turn to the third category of classification techniques that we loosely 

describe as being non-probabilistic, although in general these techniques will have some basis 

in probability. The techniques are largely informal in nature, but are nevertheless worthy of 

mention. 

(1.4.3) Non-probabilistic classification. 

The first example that we study in this section relates to much of the work discussed in 

(1.4.1) and (1.4.2) above. It was proposed initially by Besag (1983), and discussed later in 

more detail by the same author (Besag (1986)). We regard it as an informal technique, as the 

theory underlying the algorithm through which it is implemented in somewhat incomplete, yet 

one which neatly captures several of the important aspects described above. 

(1.4.3.1) Iterated Conditional Modes. 

Consider the modelling of image-formation and noise process leading to (1.2), and the 

Bayesian formulation of the estimative approach to image segmentation described in (1.4.1). 

Consider in particular the modelling assumptions relating to the M.R.F. prior for the true 

scene pixel classifications defined through (1.8) and (1.9), leading to the full conditional poste­

rior distribution for parameter 0i, [Oi I Y ,9(1')], given by (1.10). Besag proposed that, rather 

than sampling randomly and iteratively from the each of these full conditional distributions 

and using annealing eventually to locate the joint maximum or marginal maxima, we should at 

each stage merely locate the mode of each univariate distribution [Oi I Y , 0(1')] deterministi­

cally, and then use the modal ordinate as the current value of the parameter 0i to be used as 

the value of the conditioning variable in the subsequent iterative procedure. This technique 

captures the important spatial element, and the maximisation step reflects our interest in the 

modal estimates. Besag termed this technique Iterated Conditional Modes, or I.e.M .. In 

practice the algorithm often produces adequate segmentations in a remarkably few number of 

iterations, and thus is less computationally demanding than the Gibbs Sampler. However, the 

problems of choice of hyperparameters in the M.R.F. prior and the assessment of convergence 

of the algorithm still remain. Indeed, as the algorithm proceeds, the quality of the segmenta­

tion often deteriorates. Despite this, the I.C.M. technique can be regarded as more robust (in 

the short term) to the nature of the prior field specification; that is, segmentations consisting 

entirely of one texture will only occur after a large number of iterations. 

Besag also discusses an estimation scheme for the texture parameters appearing in the 

likelihood that will in general be a priori unknown - this point was not discussed by Geman 

and Geman when the Gibbs Sampler was introduced initially. The estimation technique pro­

posed by Besag (1974,1986) is that of maximum pseudo-likelihood, where the estimates are 
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those values maximising a function derived as the product of the likelihood functions of non­

independent sets of variables. Although not a true maximum-likelihood estimate for the vector 

of unknown parameters, this estimate can be proved to have certain similar attractive proper­

ties (see, for example, Besag (1977) on efficiency, Geman and Graffigne (1987) on con­

sistency, and Lakshmanan and Derin (1989) for further discussion), and can be regarded as an 

adequate approximation to the true maximum-likelihood estimate. The problem of parameter 

estimation in M.R.F.s specifically in the image processing context has never been adequately 

solved in a Bayesian framework. 

Thus the I.C.M. technique, although appealing in many ways, actually involves some 

rather ad hoc procedures, and, unlike the Gibbs Sampler, has little theoretical justification -

there are no convergence results equivalent to those proven by Geman and Geman. Note also 

that the resulting segmentation has no associated measure of uncertainty, one principal 

justification for the use of statistical methods in image segmentation. Its chief role currently is 

to act as a pre-processing procedure for other, more formal, techniques. 

(1.4.3.2) Thresholding. 

The second informal segmentation technique that we discuss is known as thresholding. 

Consider the problem of allocating each pixel in the image to precisely one of K textures. 

Suppose that the textures are homogeneous, and numbered so that the texture mean levels 

J10 , .•. ,J1K -1 form a monotone increasing sequence. Then by choosing K -1 constants 

tl , ... ,tK -1 that also form a monotone increasing sequence, we might classify pixel i to tex­

ture ~ if the realisation of variable Yi , denoted by Yi' lies in the interval between tj and tj + 1 , 

with to and tK suitably defined as negative and positive infinity, respectively; that is, 

(J. E T-, J j = O, ... ,K-l. (1.14) 

Clearly, such a procedure is related to the simple probabilistic classification methods 

described above, under assumptions of normality, common noise variance across the image 

and a maximum-likelihood/minimum-distance criterion, or a maximum posterior probability 

criterion under a vague prior specification. More generally, it can be regarded as a simple 

non-parametric segmentation technique - this is its familiar interpretation in classical image 

processing. However, the segmentations obtained are sensitive to the particular threshold 

values chosen, whether the choice be made using exploratory methods (histograms), through 

information from training data, or prior knowledge of the true scene. Ridler and Calvard 

(1978) proposed a simple adaptive thresholding procedure. More recently, Mardia and Hains­

worth (1988) developed a spatial thresholding method by incorporating the prior knowledge of 

spatial structure discussed above, and presented a comparison of techniques for a number of 
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images. See also Perez and Gonzalez (1987) for another adaptive thresholding algorithm. 

The iterative and adaptive thresholding techniques described above perform remarkably 

well despite their simple nature. Again, however, as for the I.C.M. technique, the segmentation 

carries with it no associated measure of uncertainty, and thus might similarly be regarded as a 

pre-processing operation to be carried out prior to a more sophisticated analysis. 

Finally, we mention briefly two further approaches to image segmentation that are imple­

mented as optimisation procedures. First, variants of the EM-algorithm (Dempster et al. 

(1977» have commonly been used to obtain estimative maximum-likelihood segmentations 

from noise-corrupted images. Most recently, Silverman et al. (1990) developed a version of 

the algorithm to reproduce images from data in the context of a positron-emission tomography 

experiment by including a smoothing step. This iterative algorithm produced more than ade­

quate results in practice, but again convergence issues proved difficult. Also, again, point esti­

mates only are obtained by such procedures. Secondly, Gull and Skilling (1985) proposed 

maximum entropy as a methodology and criterion for solution of the segmentation problem. 

Such a technique commonly involves considerable computational expense, and also Molina 

and Ripley (1989) question the validity of the approach to image segmentation, due to the 

nature of the entropy "prior" function. 

(1.5) Edge-detection. 

As mentioned above, edge-detection must be regarded as an important preliminary 

operation in any form of image analysis. It is evident, for example, that although the 

specification of M.R.F. prior forms for the true scene classification via simple local condi­

tional distributions is adequate for pixels internal to a large homogeneous texture region, such 

simple assumptions will not be appropriate at or near texture boundaries. Naturally, therefore, 

the edge-detection problem has received considerable attention in the classical image process­

ing literature. A review of edge-detection techniques can be found in Rosenfeld and Kak 

(1982, chapter 10). We note in particular the work of Nevatia and Babu (1980), who used 

simple thinning and thresholding techniques as the basis of a line-finding algorithm, and the 

work of Marr and Hildreth (1980), Haralick (1984), Nalwa and Binford (1986), Chen and 

Medioni (1989), De Micheli et al. (1989), and Zhou et al. (1989), who used a variety of tech­

niques based on localised differential operators under simple statistical (Gaussian) assumptions 

for the image model. Such techniques commonly involve numerical differentiation or approxi­

mation to differentiation, and subsequent optimisation of the first derivative (extrema 

methods), or location of positions where the second derivative is zero (zero-crossings 

methods): see also Torre and Poggio (1986) for a discussion of the two related (but non­

equivalent) techniques and a description of a regularisation approach to the edge-detection 
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problem, and the work of Canny (1986), who also uses an essentially regularisation-based 

approach. As such techniques commonly revolve around local operations performed in series 

for different sub-images or windows within the complete image, subjective choices must be 

made concerning the size of window used and the precise way in which the results from dif­

ferent windows of possibly different sizes are to be combined: see Lu and Jain (1989) for a 

discussion of such problems. This class of techniques often produces impressive results. How­

ever, we are of the opinion that the localised nature of such techniques is, in fact, in direct 

conflict with our interpretation of many edge-detection problems. We justify this opinion in 

more detail in chapter 2, where we shall see that a re-formulation of the edge-detection prob­

lem is indicated. 

We briefly mention other edge-detection techniques which display a rather more formal 

statistical nature. Mascarenhas and Prado (1980) devised a complex Bayesian multiple 

hypothesis testing procedure from decision-theoretic principles. Cooper and Sung (1983) also 

adopted a Bayesian approach using a multiple-window optimal boundary finding algorithm. 

Recently, Bouthemy (1989) proposed a likelihood ratio hypothesis test for the detection of 

moving edges. Finally, Kashyap and Eom (1989) also devised a likelihood ratio test for edge­

detection in images with more than one texture. This last technique is interesting as it attempts 

to locate edges by inspection of the data in relatively large segments in adjacent rows/columns 

of the image. We shall see the relevance of such an approach to our own work in chapter 2. 

In general, therefore, we regard the complete edge-detection problem to be composed of 

three sub-problems; the detection stage itself, and subsequent localisation (removal of false 

edge-points etc.) and reconstruction or representation of the edge. In this thesis (chapters 2 

to 6) we discuss various aspects of each of these problems. We be concerned in particular with 

a new approach to the detection stage of the problem derived from a Bayesian decision­

theoretic viewpoint. 

(1.6) Plan of thesis. 

The structure of this thesis will be as follows. In chapter 2, we consider the edge­

detection problem in more detail, and attempt to formulate it in a formal decision-theoretic 

framework. In this framework, we shall see that in certain circumstances the edge-detection 

problem in image processing can be interpreted as a familiar problem in a more general statist­

ical context. On the basis of this analogy, we develop an edge-detection scheme with reference 

to an image derived from a simple true scene, with emphasis being placed on the need for 

computational efficiency. We discuss the advantages of our scheme over the local and ad hoc 

techniques described in section (1.5). In chapter 3, we adapt our formulation for the analysis 

of images derived from more complex true scenes, such as those containing convex objects 

and multiple texture regions. We shall often see that exact analysis is possible but 
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computationally demanding, and thus we shall seek to develop various approximation stra­

tegies. In chapter 4, we incorporate notions of localised pixel dependence and edge continuity 

into our original formulation. In chapter 5, we study the performance of our proposed scheme 

in the analysis of images derived using a range of image-formation processes. In chapter 6, we 

consider the reconstruction of edges from the sets of edge-points returned by our edge­

detection scheme, and develop a procedure for the estimation of location, dimension, and 

orientation parameters for a particular class of simple convex objects. We also consider the 

detection of single or multiple objects in images using a variation of our original edge­

detection scheme. Finally, in chapter 7, we show how the edge-detection routines developed in 

previous chapters can be incorporated into segmentation schemes at the early stages of the 

sophisticated procedures described in section (1.4). Also, in the context of the related seg­

mentation problem, we develop an amended version of the Gibbs Sampler algorithm to over­

come the difficulties associated with the estimation of texture parameters mentioned briefly in 

section (1.4.3.1). 
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Chapter 2: Edge-Detection in Image Processing. 

Edge-detection in its broadest sense is a segmentation technique based on the detection 

of localised discontinuities in an image true scene that arise at texture boundaries. It is widely 

regarded as an important first step in image processing for a number of reasons. First, and very 

loosely, most of the "information" contained in an image is to be found at the texture boun­

daries (Rosenfeld and Kak (1982)). Secondly, any presumed global structure concerning the 

spatial nature of the image true scene may be held to be invalid in the vicinity of texture 

boundaries - for instance, our qualitative belief about local dependencies motivates the choice 

of the Markov Random Field as a prior for the image true scene, but it is impractical to con­

sider the precise dependence structure at each pixel. Thus generally we assume some sym­

metric form for the dependencies, e.g. neighbourhood systems holding over all pixels. 

Whereas this is an acceptable assumption for the majority of pixels, it is not necessarily so for 

those pixels near texture boundaries, and so it is of interest to investigate these pixels further. 

(The problem of "breakdown" in dependence structure is tackled by Geman and Geman 

(1984)) by means of a "line process" in conjunction with the more common pixel "intensity 

process".) Thirdly, and somewhat related to both of the above points, if initially we restrict 

attention to the efficient and accurate detection of local discontinuities, then any subsequent 

image analysis will be (a) presumably itself more efficient and accurate (note the importance 

of a good initial realisation of the line process in the work of Geman and Geman), and (b) 

perhaps rendered unnecessary, depending on the underlying decision problem. (In cognitive 

problems - shape analysis, pattern recognition - pixel-by-pixel classification of an image is not 

the real problem. For instance, the nature of the edges of a circle and a square are sufficiently 

different to enable us to distinguish between them, despite their topological similarity.) Con­

sequently, we might expect considerable reductions in processing time if the edge-detection 

problem can be dealt with effectively. Finally, and more esoterically, psychological and phy­

siological evidence indicates the actual use of edge-detection in biological visual perception 

systems. 

Note that throughout the above discussion, we refer to the detection of "localised" 

discontinuities, and this is entirely accurate. However, our interest is in localised discontinui­

ties between larger homogeneous regions , and thus localised detection methods (gradient 

operations, differencing) that operate over a small sub-grid of pixels may be seen to be inap­

propriate - our interpretation of an "edge" or "edge-point" at the true scene (unobserved) level 

is independent of the field-of-vision (entire image or image segment) but this is not the case at 

the observation level. This point is evinced by the poor performance of localised detection 

methods when used to analyse images with relatively high levels of noise-corruption, an exam-

ple of which we shall see later. 
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(2.1) Edge-detection - simple example. 

Consider the simplest possible and yet still interesting true scene for the edge-detection 

problem. Region S9 consists of two textures Tl ,T2 , the nature of each being governed by the 

(vector) parameters 61 ,62 , respectively, to be thought of as representing mean levels, scale or 

covariance parameters etc.. The two textures are separated by a simple edge (defined by a 

single curve in the plane), and thus there is an abrupt change in the parameters controlling 

pixels on either side of the edge. Figure 3 depicts such a true scene. 

Fig 3 : Simple edge in region S9 

The task that remains is straightforwardly stated: in the light of data Y, the image, observed on 

Sy and presumed to be some noise-corrupted version of the true scene, make inferences con­

cerning the location of the simple edge. The inference will take the form of, say, reporting of 

edge-points in Cartesian coordinates, or of some parametric or non-parametric curve to 

represent the edge, or merely of some highlighted version of the observed image. This simple 

problem is the basis of all edge-detection problems, since, clearly, the region Sy may be con­

sidered as the entire picture or some segment of the entire picture containing one simple edge 

only. The subsequent classification of pixels in S9 will follow on the basis of the inferences 

made about the position of the edge. 

We proceed to consider a simple (but common) version of this simple problem : Assume 

that the image-formation process f( 6 ,e) corrupts each cell in region S9 independently with 

additive Gaussian white noise, that there is a 1-1 correspondence between pixels in S8 and Sy, 

and that the observed pixel image consists of univariate observations, so that 

f: 6~ Y 

and 
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Y,;; = () .. + e· · 
" 'J 'J (2.1) 

a standard linear "Signal + Noise" model. This is a commonly assumed image-formation 

model in the analysis of satellite data, and thus the "edge" in question in this particular simple 

edge-detection problem can be thought of as, for instance, a land-usage boundary, with the 

image Y being the collection of reflectances/radiances in a particular "band" recorded over all 

pixels. Figure 4 depicts a typical image realisation based on the simple edge of figure 3 and 

the image-formation process above. 

Fig 4 : Image containing simple edge 

In this 80 x 80 pixel image, the mean level at every pixel is equal across each texture 

(i.e. (}ij = (}k if pixel (i, j) lies in Tk , k = 1,2) with the textures having different mean lev­

els ((}l = 0.0, (}2 = 1.0) and common variance ((12 = 1.0). Figure 4 is a six-level 

representation of the image. 

It is clear, from this simple example, that localised edge-detection techniques that 

operate over a small sub-grid of pixels do not adequately reflect the nature of the edge­

detection problem. An edge can only be discerned as such if it marks an abrupt change in 

some feature of the image between one large region and another. Techniques that do not take 

this into account cannot hope to capture the edge structure correctly. To make a visual anal­

ogy, in figure 4, we perceive the left half of the whole image to be "lighter" than the right, 

thus making our task of segmentation relatively easy, whereas were we to inspect 3 x 3 or 5 x 

5 sub-images then much of the edge structure would be destroyed. Figure 4 gives some indica­

tion of this problem. The 5 x 5 sub-images of figure 4 are taken from different parts of the 

entire image. Figure 5(a) is a portion of texture 1, centred at pixel (12,12), figure 5(b) depicts 

an edge region centred at pixel (40,50), and figure 5(c) is a portion of texture 2, centred at 

pixel (62,50). It is not straightforward to distinguish which sub-image contains the edge. 



- 27 -

It should be noted that this example is, in terms of Signal-Noise ratio, (defined here simply as 

the absolute value of the ratio ( 01 - O2 ) / a), relatively extreme (i.e. the ratio here is low, 1.0) 

and we might expect localised methods to perform adequately in less extreme cases. However 

it is important to note such fundamental flaws in the localised methods. 

Fig 5(a) : Non-edge Fig 5(b): Edge Fig 5(c) : Non-edge 

Hence we seek an alternative approach to the edge-detection problem. 

(2.2) Changepoint approach to edge-detection 

We wish to formulate the edge-detection problem in such a way as to incorporate the 

notion that an edge should be interpreted as an abrupt (i.e. localised) change in some more 

large-scale feature. Consider the simple edge of figure 3, and a single row (j say) in the image 

matrix, as depicted in figure 6. 

( ( 

) ) 
Fig 6(a) : Simple edge in region S(J Fig 6(a) : Row j from data on region Sy 

Under the image-formation process (2.1) and assuming homogeneity of textures (Ojj = Ok if 

pixel (i ,j) lies in Tic' k = 1,2) it is clear that the distribution of each of the data elements Yjj 

in row j is as follows. 
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For some r ( 1 ~ r ~ 80). 

Y,+ Ij •...• ,YgOj - N( (}2 ,02) (2.2) 

where r represents the unknown (and unobservable) edge-point position in row j. The edge­

detection problem now reduces to that of making inference about r in single or over a number 

of adjacent rows. This is the familiar statistical problem of cbangepoint analysis and 

identification: see, for example. the reviews of Shaban (1980) and Zacks (1982). Hence the 

edge-detection problem in image-processing can be formulated so as to be essentially a practi­

cal application of changepoint analytic techniques. Figure 7 further illustrates this point. Fig­

ure 7(a) is a cross-section of a single row (row 50) from the true scene of the image in figure 

2. It is of the same form as the representations of "ideal edges" in the image-processing litera­

ture, with the edge clearly visible between points 40 and 41 on the horizontal scale. Figure 

7(b) is the same row taken from the noise-corrupted image. It is reminiscent of, for instance, 

time-series plots from system-monitoring operations, an area In which 

prospective/retrospective identification of changepoints is of some importance. Thus the use of 

changepoint analysis in edge-detection problem is intuitively reasonable. Note that the position 

of the underlying shift in mean-level (i.e. the edge) is barely discernible in figure 7(b), due to 

the noise-corruption, so that localised tests for shift in mean-level would be of little use. 

4~-----------------------------------------------------. 

2-

0- ________________________________________________________ --J 

-2 -

-4~---------------~1----------------.1----------------.-1------------~ 

o 20 40 60 80 

Fig 7(a) : Edge cross-section - actual 

4~--------------------------------------------------------~ 

2 

o 

-2 

-4~-----------.------------~------------~--------~ 

o 20 40 60 80 

Fig 7(b) : Edge cross-section - noise-corrupted 
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A changepoint approach to edge-detection was in fact loosely suggested by Rosenfeld 

and Kak (1982, vol. 2, pp. 108-110), and proposed more fully by Basseville (1981). However, 

Basseville used a prospective scheme derived from Hinkley's cumulative sum procedure 

(Hinkley (1971». We feel that a retrospective scheme is more attractive as it reflects the glo­

bal rather than local aspects of the edge-detection problem. 

A number of approaches to the changepoint problem appear in the literature, including 

those based on non-parametric (pettitt (1980), Hinkley (1971» or likelihood (Hinkley (1970» 

formalisms. The approach we adopt here is Bayesian - see, for example, Chernoff and Zacks 

(1964), Broemeling (1972,1974), Smith (1975), Booth and Smith (1982). In the Bayesian for­

mulation, inference is made via a posterior distribution for the unknown changepoint position, 

derived from prior assumptions concerning the functional relation between data and population 

parameters, and prior beliefs about those parameters. Before attempting to formulate the edge­

detection problem in this way, we first formally introduce Bayesian approach to changepoint 

identification, and the necessary notation and terminology. 

(2.3) Bayesian retrospective cbangepoint identification. 

We adopt the following notation. Let Y = (Y1 , •••• , Yn ) be a sequence of random vari­

ables, and y = (Yl' .... ,Yn) be a realisation of these variables. Let 8 be the vector of parame­

ters of the sampling distribution, and VI be a vector of hyperparameters appearing in the 

specification [81 ,,] of the prior distribution for 8. Following e.g. Smith (1975), we make 

the following definition. The sequence of random variables Y1 , •••• , Yn has a changepoint at 

r (1 ~ r ~ n) if 

Y1 , •••• ,Y, - [Yi 1 8'] 1 

where 

In this particular context, our emphasis will be on retrospective changepoint 

identification, that is, given a realisation Yl , .... ,Yn of the process, our objective is (primarily) 

to make inferences about the unknown changepoint position, r. Inference will be made via the 

posterior distribution of r, denoted by [r I Y, ",]. From Bayes theorem, we have that 

[rIY.VI] oc [Ylr.",][r]. (2.3) 

The first term on the right-hand side of (2.3) is the marginal distribution of Y given rand V', 
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and can be re-expressed as the likelihood function for Y integrated over the prior for 8, 

namely 

[Ylr,yr] = J [Ylr.8.yr][8I r .yr] (2.4) 

if 8 is wholly or partially unknown, and simply as the likelihood itself if 8 is completely 

known (in which case we identify yr as 8). If indeed 8 is unknown, then any subsequent 

inference about these parameters will be made via the posterior distribution of 8 

[8IY,yr] = L[8Ir,Y.yr][rIY.yr] (2.5) 

where 

[8Ir,y.yr] oc [Ylr.8,yr] [8Ir.yr]. (2.6) 

We make certain assumptions in order to simplify (2.3). First, in our formulation we 

specifically refer to yr as a vector of hyperparameters, that is, parameters governing the nature 

of our prior belief. Hence, the conditional distribution of Y given r, 8, yr is independent of yr, 

i.e. 

[Ylr,8,yr] - [Ylr,8] 

Secondly, we shall. in general, regard 8 as independent of r a priori, so that 

[8I r ,yr] - [8Iyr]· 

Thirdly. we assume that Y1 , ••••• fn are conditionally independent given 8, and thus 

n 

[Ylr,8] = n [fi Ir,8]. 
i=1 

Finally. we assume that all functional forms [. I .] are known. Each of these assumptions 

are acceptable in the edge-detection context for specific choices of the image-formation pro­

cess. as we shall see later. However. none of the assumptions is absolutely necessary and may 

be relaxed at a later stage. Therefore, from (2.3) and the assumptions above, the posterior 

distribution for r is given by 
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(2.7) 

The final step in the Bayesian procedure is to report some estimate of 7, ;, say, obtained 

via [7 I Y, VI] and an appropriate loss function, rather than [7 I Y, VI] itself. We shall, in gen­

eral, assume a 0-1 loss function, i.e. 

l{r.r) ~ {~ * 7 = r 
* 7 :F- 7 

The resulting estimate under this loss function satisfies 

; = arg max [ 7 I Y , VI] , 
r 

i.e. ; is the posterior mode. The modal ordinate is easily obtained from the discrete univariate 

posterior distribution. 

Before returning specifically to the edge-detection problem, we discuss other aspects of 

Bayesian changepoint identification. The following general points arise from the formulation. 

First, there is an obvious and natural extension of the definition above from a single to a 

multiple-changepoint process. The Bayesian approach to the equivalent problems associated 

with multiple-changepoint sequences is identical to that above; i.e. we would make inference 

VIa [71,72, ••• , 7k I Y, VI] where 

~ J ill [Y; 1 r. • r2 •...• r • • 8] [ 8 I",] [r • • r2 •...• r.] . 

Secondly, [7 I Y, VI] is simply a univariate, n-valued discrete distribution, and thus will be 

easily calculable, with straightforward optimisation, moment calculation, etc .. However, ana­

lytic results (concerned with, say, the properties of [7 I Y, VI] when the distribution of Y is 

altered) will not be generally available. Finally, the precise nature of the "change" implied in 

the definition above is unspecified. We will consider here problems restricted to those in 

which the change is parametric, rather than distributional, so that 

[ . I . ] 1 = [. I . ] 2 but 01 :F- O2 • 

In the light of the above formulation, our primary interest will be in proposing various 

forms for [Y I 7 ,0] , [ 0 I VI] , [ 7] (likelihood - prior combinations) and examining the 
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resulting posterior fonns [r I Y, .,,] . First, we discuss choices of [Y I r ,0] that will be par­

ticularly relevant in the image processing context. 

(2.3.1) Forms for [Y I r ,8]. 

We shall, primarily, consider two forms for [Y I r ,0] (the likelihood), namely those 

arising from choosing [Yj I r , 0] to have 

(1) Normal 

(2) Poisson 

distributions, as these represent the two most relevant forms for the context in which the 

resulting posterior densities are to be used. (It is also convenient to choose the individual 

[Yj I r, 0] so that [Y I r ,0] is easily formed from their product - e.g. choose from the 

exponential family - but that aside, we could assign [Yj I r , 0] to reflect any of a wide range 

of image-formation processes.) 

(2.3.1.1) [Yj I r, 0] Normal. 

Assuming Y; to be conditionally nonnally distributed given 0 = (01 , O2 ,'l"1 , 'l"2) the 

changepoint process of the definition above becomes 

for some unknown r (1 ~ r ~ n),where 

01 :t O2 

01 = (01 , 'l"d 

O2 = ( O2 , 'l"2) • 

Under this scheme, three natural conditions lead to three forms for the likelihood [Y I r ,0]. 

(A) 'l"l = 'l"2 = 'l" (Common precision) 

n 

[ Y I r ,0] = IT [Yj I r , 01 , O2 , 'l" ] 
;=1 
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(B) 81 = 82 = 8 (Common mean) 

n 

[ y 1 r , 8 ] = IT [Yi 1 r , 8 , 'r 1 , 'r2 ] 
i=1 

(C) 81 "* 82 , 'r1 "* 'r2 (Different mean and precision) 

(2.3.1.2) [Yi 1 r , 8] Poisson 

Assuming Yi to be conditionally Poisson distributed gIven 8 = (AI' ~ ) the 

changepoint process of the definition above becomes 

Y1 , •••• , Yr - Poisson( Al ) 

Yr +1 , •••• , Yn - Poisson( ~) 

for some unknown r (1 ~ r ~ n). Here 

Under this scheme, the likelihood [Y I r ,8] is given by 

[Ylr,8] 

Thus, for two different assumptions relating to sampling distributions that we regard as partic­

ularly relevant to image processing problems, we have derived expressions for the likelihood 

function necessary for the evaluation of the changepoint posterior distribution defined by (2.3) 

and (2.7). We now consider various specifications for the prior distributions that appear in 

these equations, namely [81 yt] and [r]. We first consider choices for the continuous 
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parameters 8 appearing in the likelihood. 

(2.3.2) Forms for [81 yt]. 

For each of the likelihoods we propose a selection of prior forms [8 1 VI] chosen so as 

to reflect the quantitative and qualitative nature of our prior beliefs. In general, we suggest the 

use of "conjugate" prior distributions (priors that combine with the likelihood so that the prior 

and posterior distributions for the parameter concerned take the same functional form) for con­

venience, but as before this restriction is not necessary. To obtain a representation of "prior 

ignorance", we consider limiting cases of (conjugate, proper) informative prior distributions 

(that is, via limits of elements of VI), resulting in (improper) non-informative prior distribu­

tions. 

(2.3.2.1) [Yj 1 r ,8] Normal 

We consider three cases : 

(La) 8 known 

(I.b) 'r or ('r1 ,'r2) known, 8 or (81 ,82 ) unknown 

(I.c) 8 unknown 

Situations in which one of 81 ,82 is presumed known, or in which one or both of 81 ,82 is 

presumed known with 'r or ( 'r1 ,'r2 ) unknown are regarded as unrealistic in our context, but 

could quite easily be accommodated into our reasonably flexible framework (see, for example, 

priors 1.1.4 and 1.1.6 in Appendix 1). Also. we do not consider "one-sided" prior assumptions 

(that is. assumptions of the form 8j > 8), but such priors could be included (and indeed may 

be relevant in later applications). For example, 

is one such prior. 

Finally, we note that in case (I.c) above, specifically with 'r or ('r1 ,'r2) unknown, we 

choose ( Bl • B2 ) a priori independent. but dependent on 'r or ( 'rl , 'r2)· For example. for likel­

ihood (A) with 'r unknown, we choose [ Bl • B2 • 'r] so that 
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rather than 

The second of these two possible priors (a form in which 81 ,82 and 'Z" are chosen a priori 

independent) is regarded as inappropriate, as it induces in (81 ,82 ) a lack of in variance to 

scale changes (as noted by Spiegelhalter and Smith (1982» which is undesirable. In the 

equivalent case with 'Z" known, however, we may clearly choose 81 ,82 a priori independent. 

(2.3.2.2) [Yi I r ,8] Poisson 

We consider two cases : 

(2.a) 8 known 

(2.b) 8 unknown 

Again, in case (2.b), we consider conjugate (Gamma) priors for the unknown 9 = (AI, ,1.2) , 

and their non-informative limits; other restrictions ("one-sided" priors etc.) are as above. 

Appendix 1 contains a selection of posterior forms [r I Y , VI] derived for a range of 

choices for [8 I VI], assuming a uniform prior for r . The general form of [r I Y , VI] is 

broadly the same over the range of priors, but a degree of sensitivity to prior input is exhi­

bited. 

All the forms of [r I Y, VI] in Appendix 1 are derived under the assumption that a 

"change" is known to occur (Le. 1 ~ r ~ n-l). The possibility of "no change" (Le. r = n) is 

a straightforward extension of our formulation. In this case we consider Y1 , •••• , YII where 

where 8 = (8, 'Z") or A and we could consider both 8 and 'Z", or 'Z", or neither known a priori, 

and assign priors accordingly. No difficulty arises in the evaluation of posterior probabilities 

in this case provided proper priors are used. However, in the prior ignorance case, if the non­

informative limits of the proper priors used are improper, then we are faced with the problem 

of assigning the constants of proportionality (omitted from Appendix 1) which we feel should 

be different for the two models "change" and "no change" due to the difference in dimen­

sionality between the two models. A possible solution to this problem via a multiplicative 

correction factor is discussed by Spiegelhalter and Smith (1982) and Booth and Smith (1982). 
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(2.3.3) Forms for [r]. 

The discrete prior distribution for the changepoint parameter r, denoted [r], will gen­

erally be taken to be uniform over the range 1 ~ r ~ n -1, 

1 
[r] = n-l r = 1, .... ,n-l. 

If a "no change" possibility is to be entertained, [r] will taken to be 

[r 1 = { 

(l-p) 

n-l 

p 

r = 1, .... ,n-l 

r = n 

for some p (0 ~ p ~ 1). The implications of each of these particular choices in the edge­

detection context are discussed in more detail below. 

Thus a simple scheme for tackling the edge-detection problem can be proposed. For a 

sequence of known length, we would evaluate [r I Y, yt] in the light of the image-formation 

process and prior beliefs, using the techniques described in section (2.3). Suppose y is the 

vector of entries in any given row or column of the image matrix. Then as a solution to the 

edge-detection problem, we would merely compute [r I Y , yt] for Y = y, and report the pos­

terior modal value and position as the most likely edge-position and associated measure of 

uncertainty in that particular row or column. We would repeat this procedure over all or a 

fixed set of rows and columns in the image independently, and report the set of recorded edge­

positions as the result of the analysis. (This scheme clearly ignores certain aspects of the edge­

detection problem, i.e. spatial continuity of edges. These points are discussed later in subse­

quent chapters.) 

Such a scheme is attractive for a number of reasons that we detail in section (2.6) below. 

First, we demonstrate the use of the scheme in the context of the simple edge-detection prob­

lem described above. 

(2.4) Implementation of the edge-detection scheme. 

We now seek to implement the scheme proposed above in the context of the simple edge 

of figure 3 and the image depicted in figure 4, under the same image-formation and noise 

assumptions. Consider the elements of row j, say, and let Yj == Yjj • We noted that in (1 .. 2) the 

conditional distribution [Yj I r ,8], i = I, ... , n, is Normal, due to the image-formation and 

noise assumptions, with parameters 8 = (81 ,82 , (J ). If we assume that the noise terms in 

(2.1) are mutually independent for all cells in any row, then subsequently the variables 
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Y1 , •••• , Y" are mutually independent, conditional on 81 ,82 , and thus [Y I r ,8] is given by 

" [Ylr,8] = II [Yd r ,8]. 
i=1 

(2.8) 

For convenience we reparameterise by replacing a with 'f, the precision, where 'f 
1 

= a2' and 

hence 

identical to likelihood (A) in section (2.3.1.1). Now, if the texture mean levels and noise pre­

cision are a priori unknown, our next task is to specify some form for [8 I yt]. For demons­

tration purposes, following Booth and Smith (1982), we choose a simple form of non­

informative prior distribution. Let [ 8 I yt] be given by 

= const (2.10) 

for - 00 < 8 1 ,82 < 00, 'f > O. This is a standard non-informative prior form, and can be 

regarded as the limit of a standard informative conjugate prior distribution having 81 and 82 a 

priori independent conditional on 'f (Spiegelhalter and Smith (1980», namely prior 8 in sec­

tion 1.1.8 of Appendix 1. Finally, we specify [r] to be uniform on the range 1 ~ r ~ n-1. 

Combining (2.9) and (2.10) via (2.7), we obtain [r I Y, yt] as 

(2.11 ) 

where 

1 r 
YA = - L Yi 

r i=1 

1 " YB = L y. , 
n -r i=r+l 

Note that in this formulation of the edge-detection problem, we consider prior models allow­

ing exactly one changepoint, and thus the valid range for r (under our definition) is 
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1 ~ r ~ n-l. Booth and Smith (1982) also consider a "no changepoint" alternative, which 

extends the valid range for r to 1 ~ r ~ n, and induces the obvious minor change in (2.9). 

Here, in this particular example, we restrict our attention to one changepoint models, and the 

resulting posterior form (2.11), but discuss the implications of the "no changepoint" alternative 

model in chapter 3. 

We now proceed with an implementation of the proposed edge-detection scheme based 

on posterior distribution (2.11) in an analysis of the image in figure 4 derived from simple 

edge true scene in figure 3. 

(2.5) Edge-detection - results. 

In the following analysis, the posterior density in (2.11) was evaluated for each row of 

the image in figure 4, and the position of the posterior mode recorded, along with the modal 

probability. The results of this analysis can be seen in figure 8(a) 
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Fig 8(a) : Results of row analysis 

+ Probability 0.0 - 0.2 

o Probability 0.2 - 0.4 

• Probability 0.4 - 0.6 

• Probability 0.6 - 1.0 

The code for the symbols in figure 8(a) is also given. The complete analysis of the eighty rows 

of the image took around one second of CPU time. It is clear that much of the edge structure 

has been captured, i.e. many edge-point candidates arising as modes in the changepoint poste­

rior density lie at or close to the true edge-point in the row concerned. In many cases, the 

results of a preliminary analysis such as this will be sufficiently accurate to enable the subse­

quent supervised or unsupervised processing techniques to proceed more efficiently - we can 

easily discern edge-regions as opposed to texture-regions, visually or automatically, allowing 

for more straightforward segmentation. However, as a representation of the edge itself, figure 

8(a) is inaccurate due to the presence of serious edge misclassifications or "outliers". It is 

possible to remove these outliers using ideas of spatial continuity of the edge, that is, via our 
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interpretation of the edge itself as continuous in S8. We discuss this issue in greater detail in 

chapter 4. For the moment, we consider a simple technique for the removal of such 

misclassifications. 

In the discretised version of the true scene, we would expect edge points in rows and 

columns to lie close to other edge-points in the adjacent rows and columns. Similarly, we 

would expect accurate edge-point classifications resulting from an edge-detection analysis to 

lie in close proximity to each other. Thus any "isolated" candidate points can be regarded as 

misclassifications, with the term isolated to be defined in some suitable fashion. A possible 

simple "smoothing" technique (in the sense that isolated candidate points disrupt our interpre­

tation of an edge as being locally continuous at all points on its length) is to centre a small 

window at each candidate edge-point, and count the number of other edge-points falling within 

that window. The candidate point can then be accepted as an edge-point or disregarded as a 

misclassification on the basis of the number of adjacent edge-points. Such a technique was 

used to smooth the raw results and produce the sets of points depicted in figure 8(b) and (c). 
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Fig 8(b) : 2 pts per window Fig 8(c) : 3 pts per window 

In figure 8(b) a 7 x 7 pixel window was used in conjunction with an acceptance criterion of 

two points per window. For figure 8(c) the criterion was altered to three. In both cases, the 

additional CPU time involved in the smoothing procedure was of the order of 0.3 seconds. 

Thus the total processing time to produce figures 8(b) and (c) from the image was of the order 

of 1.3 seconds. Many of the misclassified points have been removed. 

(2.6) Conclusions. 

For this simple example, and despite the relatively high level of noise-corruption, the 

changepoint technique for edge-detection has performed both efficiently and effectively in its 
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least sophisticated form and under some fairly limiting assumptions. The performance of the 

technique for lower noise levels is demonstrated in figure 9. Figures 9(a) - (d) depict the 

results of row changepoint analysis for each of the eighty rows of the image in Figure 4 cor­

rupted by Gaussian white-noise of differing variances producing Signal-Noise ratios (S.N.R.) 

1.5, 2.0, 2.5, and 3.0 respectively. The results shown are "unsmoothed" (in the sense defined 

above), and again the analysis in each case took of the order of one second. Note the low 

number of edge-point misclassifications in Figures 9(c) and (d). 
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Fig 9(a): S.N.R. 1.5 

Fig 9(c): S.N.R. 2.5 

Fig 9(b): S.N.R.2.0 
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Changepoint techniques seem attractive and preferable to localised methods for several 

reasons. First, as mentioned above, the changepoint approach seems to reflect more adequately 

the nature of the edge-detection problem. Secondly, the localised methods - differencing, 
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filtering, convolution, local averaging - although intuitively reasonable to some extent are, in 

fact, generally quite arbitrary. The Bayesian changepoint approach at least has a basis in sta­

tistical decision theory. Thirdly, the localised methods generally depend heavily on expert 

input of parameters - threshold, window-width etc. - usually arrived at through detailed prior 

knowledge of the true scene and image. For the changepoint technique, as we have seen, at 

most only very general form of prior knowledge is required. Allied to the last two points, the 

localised methods return a real number at each cell and rely on thresholding to point up edge­

regions, with no measure of uncertainty attached. The changepoint technique returns the most 

probable edge-position in the row concerned, in light of the data in that row and prior assump­

tions, with its associated probability. Finally, and perhaps most importantly, the changepoint 

technique out-performs the simple localised methods at comparable Signal-Noise ratios, as 

illustrated by a simple example, the results of which are depicted in figures 9(e)-(g) . 
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Fig 9(h) : threshold 3.5 



- 42 -

Figures 9(e)-(g) depict the result of a simple localised edge-detection method, namely first 

differencing in two perpendicular directions, with threshold of acceptance ranging from 5.0 to 

3.5. (Le. we take first-order differences along the rows and columns of the image, evaluate 

the edge-magnitude at each cell as the square-root of the sum of the squares of these differ­

ences, and plot all points for which this magnitude is greater than an arbitrarily chosen thres­

hold value.) The image was precisely the same as that used for figure 9(d), with a Signal­

Noise ratio of 3.0. The results are clearly inferior to those obtained using changepoint 

analysis on the same image, and the processing time (0.5 seconds), although shorter, was not 

an adequate compensation. Also, the results obtained are not sufficiently robust to the choice 

of the (arbitrarily assigned) threshold value. We choose this example of localised edge­

detection methods (not merely because of its inadequacy to deal with the edge-detection prob­

lem) because it compares in terms of processing time and prior knowledge of the true scene 

with the changepoint technique. More sophisticated (but still localised) methods compare 

unfavourably in terms of processing time. 

(2.7) Extension of ideas. 

We now seek to extend the above ideas concerning edge-detection via changepoint 

analysis in three general directions: 

(1) More complex true scenes. 

The simple example above demonstrated adequately the use of changepoint techniques in 

edge-detection. However, although it captured the nature of the edge-detection problem 

exactly (locating a discontinuity in some aspect of the image arising at the boundary between 

two non-localised features) it dealt with an idealised true scene. More realistic true scenes 

would involve convex objects, multiple regions, patterns, "thin" features etc .. We examine the 

performance of the changepoint techniques in each of these areas in chapter 3. 

(2) Exploitation of spatial continuity. 

As observed previously, the analysis of the simple image in Figure 2 did not take into 

account the fact that the edge in the true scene was spatially continuous, i.e. adjacent rows of 

the image were treated completely separately and independently. It would be reasonable to 

assume that, in light of the progress made generally in statistical image-processing, the intro­

duction of the notion of local dependence and spatial continuity at the prior stage of one step 

of the procedure would improve results. We seek to adapt the changepoint technique in this 

way in chapter 4. 
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(3) Variation of image-formation and noise processes. 

In our initial example, we assumed a simple linear form for the image-formation process, 

and that the noise process corrupted each pixel in the true scene identically and independently 

with Gaussian white-noise. This again is an idealised situation, and in chapter 5 we seek to 

extend the changepoint technique, specifically via choices of forms for prior distributions for 

the unknown parameters and functional dependencies, to handle more general situations. 

Prior to this, however, we generalise the analysis of the true scene in figure 3 in two 

more straightforward ways. First, given our knowledge of the true scene concerning the gen­

eral orientation of the edge with respect to the usual coordinate axes, a row analysis only 

seemed necessary. Practically we would have no such knowledge, and a column analysis 

would also be needed. Clearly, analysis of the image in any two orthogonal directions would 

suffice, in this sense, but for the moment, for convenience, we restrict attention to row plus 

column analyses, termed a "full" analysis. 

Secondly, and in light of the previous discussion, it is desirable to incorporate a "no 

changepoint" or "no edge" alternative into the analysis. This task is straightforward. Under 

the alternative, we have Y1, .... ,Yn identically distributed, and thus [Y I r ,()] == [Y I ()]. For 

our initial example, therefore, with the Y; 's independently Normally distributed, this implies 

that (2.9) is replaced by 

(2.12) 

where now () = [(), 'r ]. We proceed and specify [() I yt] as before but, as mentioned previ­

ously, we must be aware of the difference in dimensionality between the "changepoint" and 

"no changepoint" models when specifying improper prior forms. Such difficulties are avoided 

if proper prior distributions are specified. The careful use of (2.12), in conjunction with the 

specification of a prior for r of the second form as presented in section (2.3.3), will allow for 

the no changepoint model to be admitted. This should help in the removal of the 

misc1assifications that appear in figure 8(a). The removal (or non-detection) of such points, or 

"false edges", is a familiar problem in classical edge-detection. 
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Chapter 3: Analysis of Complex True Scenes. 

The changepoint formulation of the edge-detection problem described in chapter 2 

related to the analysis of images derived from true scenes in which the edge took the form of a 

single smooth curve. In this chapter, we seek to extend the formulation and adapt and improve 

the single changepoint technique so that more complex true scenes may be analysed in a simi­

lar fashion. The next natural class of true scenes that must be considered is that where the 

single simple edge is replaced by a single closed curve, so that S8 is comprised of precisely 

two texture regions. We shall see that various amendments to our original implementation of 

the edge-detection scheme are necessary. The analysis of images derived from this class of 

true scenes is discussed in sections (3.1) - (3.5). Another class of true scenes of interest are 

multiple region or composite true scenes containing more than two texture varieties. A further 

extension of the single changepoint formulation is necessary for the analysis of such true 

scenes, and this extension and other issues are discussed in sections (3.6) and (3.7). 

We begin by considering a very simple class of two-texture true scenes, which, despite 

their straightforward nature, allow us to illustrate the extension of our changepoint-based 

edge-detection technique. 

(3.1) Convex object true scenes - circle. 

We first consider a simple convex object, namely a circle, lying completely within the 

region S8. Figures 10(a) and (b) depict such a true scene and an image derived from the true 

scene and the image-formation and noise processes of the previous chapter. 

Fig 10(a) : true scene Fig 10(b) : image 

This is a familiar test image: see for example Peli and Malah (1982). Two features are 
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immediately apparent. First, many rows and columns in the true scene contain no edge. 

Secondly, the remaining rows and columns contain two edges, or points at which pixels in 

different texture regions are adjacent. This feature will of course be present in all true scenes 

that contain single convex objects, and thus due to the topological differences from our initial 

example, the edge-detection problem is fundamentally different. 

As we saw in section (2.3), it is possible to generalise the single-changepoint formula­

tion to a k changepoint one. Again consider Y = (Y1 , .•• , Yn ), a sequence of random vari­

ables. Let rl , ... ,ric be the unknown positions of the k changepoints, and 8 and 'I' be as previ­

ously defined. Then the joint posterior density of the variables rl , ... ,ric is given by 

(3.1) 

and we can make inference about the positions of the unknown changepoints via this posterior 

distribution. In the edge-detection context, k = 2 for single convex objects. Also, note that 

the data elements indexed by 1 to rl and r2 + 1 to n are identically distributed conditional on 

8. For example, under the same image-formation and noise processes as in (2.1), we have that 

Y1 , ... ,Yr + 1 and Yr + 1 , ••• ,Yn are distributed as N( 81 ,(12), and that Yr + 1 , •.• ,Yr are distri-
• :I • :I 

buted as N( 82 , (12), with the Yi's independent. In this case, the joint posterior distribution for 

(rl ,r2) conditional on Y under the exactly two changepoint model using the non-informative 

prior specification (2.10) for 8 = (81 ,82 , (1) is thus given by 

where 

r~ . -)2 
SSQ2 = ~ (Yi - YD 

i=r.+l 

n 

SSQ3 = ~ (Yi - YC)2 
i=r:l+l 
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We could evaluate the posterior distribution (3.2) for all pairs ('1 , '2) and locate the 

joint posterior mode. Again, a no changepoint alternative can be considered. Note also that 

this formulation restricts attention to locating exactly two changepoints and thus, in this its 

simplest form, cannot cope with one changepoint sequences. However, with a little care, this 

problem can be overcome by letting '2, without loss of generality presumed greater than 'It 

equal n (here again we must recognise that the no, one and two changepoint models are 

models of different dimension). If we have sufficient prior knowledge of the true scene (i.e 

that it entirely contains a convex object) we need not entertain the one changepoint alternative. 

Thus we may accommodate more complex structures than the simple edge of our origi­

nal example. However, in the absence of relatively detailed prior knowledge of the true scene, 

evaluation of the changepoint posterior probabilities for a sequence under the hypothesis of 

greater than one changepoint is undesirable, principally due to the amount of computation 

involved. For example, rough calculations indicate that the amount of computation required 

for evaluation of probabilities for the one changepoint model increases linearly with n, 

whereas the amount of computation for the two changepoint model increases with n 2 (and, 

similarly, with nk for the k changepoint model). Clearly, this is prohibitive, and as one 

motivation for the development of edge-detection routines is that they should operate, at least 

in part, as pre-processing operations, they should not entail large amounts of computation. We 

shall return to this theme on many occasions throughout this thesis. In the light of the above 

considerations, we now develop other exact and approximate methods for the multiple 

changepoint/edge detection problem. 

(3.2) Approximation in multiple-changepoint models. 

First, it is important to attempt to understand the precise nature of the Bayesian 

changepoint detection technique. Consider again the single changepoint posterior density, to 

be evaluated for a sequence Y. For each r, consider the "left" sub-sequence YL = Y1 , ••• , Yn 

and the "right" sub-sequence YR = Yr + 1 , ••• , Yn • To evaluate the posterior probability for" we 

presume that (1) the elements in the left sub-sequence are identically distributed, (2) the ele­

ments in the right sub-sequence are identically distributed, and (3) the distributions involved 

in (1) and (2) are different. We integrate the likelihoods in (1) and (2) with respect to 

unknown population parameters, to obtain the marginal distributions [YL I VI] and [YR I VI]. 
Given a realisation Y = (YL ,YR) we would expect these marginal distributions to attain their 

maximum when, = ,., the true changepoint position, as away from r neither (1) or (2) will 

be accurate. Thus (in expectation at least) the technique will "always" identify the true 

changepoint. Now consider a two changepoint sequence, with changepoints at ('1·"2·)' 

1 < '1· < ,/ < n, and the behaviour of the changepoint posterior distribution under the one 

changepoint hypothesis. Again, a "high" posterior probability will result when (1), (2), and 

(3) hold together. For the two changepoint sequence, however, one of (l) and (2) will always 
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be inaccurate. to a greater or lesser degree. as measured (in some way) by the marginal proba­

bility attained. But. on considering the behaviour in the vicinity of '1 * and '2*' we may expect 

a localised mode in the posterior distribution at , = '1* and, = '2*' More superficially, '1* 
* and'2 mark abrupt changes in the nature of (sampling and marginal) probability distributions, 

and thus we might expect both to be detected by the one changepoint posterior distribution. 

We shall discuss these points in more detail below. after investigating the behaviour of the one 

changepoint posterior distribution under an incorrect model specification by means of a simu­

lation study. 

Thus. we may expect the single changepoint posterior calculation to assist in the 

identification of changepoint positions in a two or more changepoint sequence in two ways. 

First. we might expect that the mode of the distribution should frequently lie at one of the true 

changepoint positions. Secondly. we might also expect local modes at or near both of the two 

of the true changepoint positions. In practice, the results are encouraging. Figure 11 depicts 

the results of 1000 simulations of two changepoint sequences of total length 80 at a fixed 

Signal-Noise ratio of 3.0, with average posterior probability under the one changepoint 

hypothesis and prior assumptions leading to (2.11) plotted on the vertical scale. The positions 

of the two changepoints were chosen to be symmetrical about the sequence mid-point. and the 

inter-changepoint distance was decreased over the series from (a) to (d). 
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It is clear that. in these idealised situations. the single changepoint posterior assists in 

identification in two changepoint sequences. The results are most instructive when the inter­

changepoint distance is large. as would have been predicted in the light of the above discus­

sion. The behaviour of the single changepoint posterior at lower Signal-Noise ratios is dep­

icted in figure 12. The changepoint positions were fixed at 20 and 60. and the Signal-Noise 
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ratio decreased from 2.5 to 1.0 in intervals of 0.5 over the series (a) - (d). 
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Note the decrease in modal values and the increase in spread of probability as Signal-Noise 

ratio decreases. This is in line with our previous experience with changepoint posterior proba­

bilities for one changepoint sequences. 

Finally, we introduce asymmetry into the changepoint positions. 1000 simulations were 

carried out for various asymmetric combinations of rl· and r2· at fixed Signal-Noise level 3.0. 

The results are shown in figure 13. 

0.6 

0.4 -

0.2 - k. 0 J\. 
I I I I I I 

0 20 40 60 80 0 20 40 60 
• • Fig 13(b) : rl • 20, r2 • 40 Fig 13(a) : rl = 10, r2 = 30 = = 

0.6 

0.4 -

0.2 -

0 J\. 
I I I 

0 20 40 60 80 0 20 40 60 
• • Fig 13(d) : rl • 20, r2 • 50 Fig 13(c) : rl = 10, r2 = 40 = = 

80 

80 

80 

80 

Figure 13 illustrates a problem. Whereas (b) and (d) clearly depict posterior distributions 

with two distinct modes, (a) and (c) depict seemingly unimodal distributions. All four distribu­

tions were generated with relation to two changepoint sequences. In light of these 
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experimental results, it seems plausible that the one changepoint posterior distribution will 

deal adequately with two changepoint sequences in many cases where the inter-changepoint 

distance is large, in the sense that we may associate modes in the distribution with true 

changepoint positions. We now attempt some formal justification. 

(3.2.1) General investigation of the one changepoint approximation. 

Consider a two changepoint sequence Y with changepoints at r/ and r2*' and the poste­

rior distribution [r I Y , VI] derived under a one changepoint hypothesis. Consider the ratio of 

the posterior probabilities at rand r 1 *. From (2.3) we have 

[rIY,VI] 
[r/IY,VI] 

= 

= 

[Ylr,VI][r] 
[Ylr/ ,VI] [r/] 

[Y1 , ••• , Yr I VltJ [Yr +1 , ••• , Yn I Vl2] 

[ Y1 , ••• , Yr I· I VI d [Yr I· + 1 , ••• , Y n I VI 2 ] 
(3.3) 

assuming equal prior probabilities for rand rl *, and that beliefs about (81 ,82 ) are a priori 

independent, with VI = (VII' Vl2). For r < r 1 *, we may factorise the numerator as 

and the denominator as 

Thus, from (3.3), 

[rIY,VI] 
= 

[r/ I Y, VI] 

[ Yr + 1 , ••• , Yr • I Vl2 , Yr • + 1 , ••• , Yn ] 
I I 

[ Yr + 1 , ••• , Yr,· I VII ' Y 1 , ... , Yr ] 
(3.4) 

An interpretation of (3.4) is as follows. The numerator is a measure of how well we 

ld "predl:ht" Y y • from y. 1 Y whereas the denominator is a measure of cou l~ r+l'···' r, r, + , ••. , n , 

how well we could "predict" Yr+1 ••• , Yr,· from Y1 , ••• , Yr· Clearly, therefore, in expectation 

this ratio will be less than one for all r < rt*, given the distribution of the elements of Y. 

Now consider r > rl*. The numerator in (3.3) may be factorised as 

and the denominator may be factorised as 
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[ Y'I· + 1 ... •• Y, 1"'1 . Y1 •...• Y'I· ] 

[Y,,·+1 •...• Y, 1.,,2. Y,+I.···. Yn ] 
(3.5) 

We may interpret (3.5) in a similar way. and again conclude that. provided r is near to rl*' the 

denominator will be larger than the numerator. and the ratio less than one. Hence we would 

expect a local maximum at r = rl*. A similar argument can be applied with respect to r2 *. 

Thus it is reasonable to expect modes in the posterior distribution at the true changepoints. 

Now consider the case where beliefs about ( 91 .92 ) are a priori dependent, or indeed we 

assume a priori that 91 and 92 have a common element. as in section (2.4). Consider the ratio 

in (3.5). This now becomes 

[rIY • .,,] 
[ rl' I Y • ." ] 

(3.6) 

* * Again we examine the behaviour of this ratio in the vicinity of rl. Consider r < rl . We 

may factorise the second term in the numerator as 

and the first term in the denominator as 

Cancelling the term [Y1 ••••• Y, I.,,]. we obtain 

[rlf . .,,] = 

[ r/ If . .,,] 
[ Y, + 1 ..... Y'I· I." . Y1 •...• Y, • Y'I· + 1 ••••• Yn ] 

[ Y, + 1 •. • •• Y'I· I .". Y 1 •. • .• Y,] 

(3.7) 

and can interpret this expression in the same way as above. We would expect the first term in 

(3.7) to be less than one if rl* and n - rl* were "large enough". due to the "corrupting" pres­

ence of Yr· + 1 •.•.• Yn in the numerator. Also. we would expect the second term in (3.7) to be 
1 

approximately equal to one. again provided n - rl* was large enough. Thus we would again 
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expect the ratio to be less than one. Now consider r > rl *. We now factorise the first term in 

the numerator of (3.6) as 

and the second term in the denominator 

Cancelling the term [Y1 , ••• , Yr." I VI], we obtain 

[rIY,VI] 
[ r/ I Y , VI] = 

[ Yr + 1 , ... , Y" I VI, Y1 , ••• , Yr ] 

[Yr +1 , ••• , Y" I VI, Y1 , ••• , Yr."] 
(3.8) 

Again, we expect the first term to be less than one and the second approximately to be one, 

provided r 1 * and n - r 1 * are large enough. Thus the ratio of posterior probabilities is less than 

one for all prospective changepoint positions in the vicinity of the true changepoint, and so we 

would expect a mode in the posterior distribution at the true changepoint rl *. Similar argu­

ments lead us to expect another (local) mode at r2*' We conclude therefore that, in many 

cases, for two changepoint sequences, local modes in one changepoint posterior distributions 

will be good indicators of true changepoint positions. In the special case where rl * = n - r2* 

and the data sequence exhibits symmetry, as in figures 11 and 12, it is also easy to see that 

[ r I Y, VI] takes the same value (in expectation) at rl * and r2 *, provided that the prior 

specification for the unknown elements of 8 is exchangeable, by simple re-ordering of the 

subscripts of the Y,.. 

Thus in the general case it appears that analysis of a two changepoint data sequence 

under a one changepoint modelling assumption produces potentially useful results. More 

specifically, in the case of the posterior distribution (2.11) we can obtain some more rigorous 

results. 

(3.2.2) Investigation of the one changepoint approximations under normality. 

We consider specifically the posterior distribution (2.11) derived under the a non­

informative prior specification for 8 when n is relatively large. The sum of squares term dom­

inates the behaviour of [r I Y, VI] in this case, and consequently the maximum value of 

r " - 2 (-)2 [ r I Y , VI] occurs when L (y; - YA) + L Y,. - YB is a minimum (resulting in an 
,.=1 j=r+l 
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estimate of 7 identical to the maximum-likelihood estimate for the same sampling distribu­

tion). We now study the behaviour of this sum of squares in expectation when the distribution 

of Y is known to be that of a two changepoint sequence. 

Without loss of generality (or after some suitable transformation) we assume that, for 

some a, Y is distributed such that 

-{ 
N(O,I) 1 ~ i ~ 71 * 

y. N( a, I) * + 1 ~ i ~ * , r1 r2 

N(O,I) r2* + 1 ~ i ~ n 

where before * and * the changepoint positions. Now, as r1 r2 are true 
r n 

L (Yi - yA)2 + L (Yi - yB)2 can be expressed in the form yTQY, where 
i=1 i=r+1 

[
Ar 0 ] 

Q = 0 An-r 

where 

1 
1 - - i = j 

[Ap] ij P = -I 
i * j p 

Now suppose E [ Y] = Jl and V [ Y] = I. Then, by a well known result, 

(3.9) 

In this case, where I = I II' 

tr(QI) = n-2 (3.10) 

and, after some algebra, 

= i (Pi - JlA? + i (J.Li - ii~? = 
i=1 i=r+l 

(3.11) 

_ 1 r 

say, where J.LA = - L J.Li 
ri=1 

and J.LB = 
1 i: J.Li. We observe at this point that 

(n-r) i=r+l 
n 

r 2 -)2 
under the distributional assumptions made above, L (fi - YJ +. L (fi - fB has a non-

i=1 ,=r+l 

central chi-squared distribution with non-centrality parameter Ar • 
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Hence, in the light of (3· cr, to ('3-U), the sum of squares is minimised in expectation 

when AT is minimised. After some algebra, it can be shown that 

( * *) * * '2 -'1 ('2 -'1) 1 - a2 1 * ~ i ~ '1 n-, 

[( *) ( *) ] AT *'1 * n - , * = '1 1 - -;: + (n - '2) 1 - n _ : a 2 * '1 ~ i ~ '2 (3.12) 

( * *) * * '2 -'1 ('2 -'1) 1 - , a2 
'2 * ~ i ~ n 

We now consider the behaviour of AT over three separate ranges. 

(1) 

For increasing " it is clear that AT is monotonically decreasing for, in this range, and 

hence the minim urn is attained at, = , 1 *. 

First consider the difference AT • + 1 - AT •• It is easy to see that 
1 1 

AT • + 1 - AT • 
1 1 

(3.13) 

Provided ,/ is relatively large, the first term in the bracket is approximately equal to one. 

Also, provided (n-'I*) is relatively large compared to (n-'2*)' ('2*-'1* is large) the 

second term is appreciably less than one. Thus this difference is greater than zero, and 

AT· + 1 > AT·. It can be shown in a similar fashion that AT+l > AT for all , in the vicinity of 
1 1 

'1 *, and thus that AT is locally minimised at '1 * for, in this range. Note that the magnitude of 

the difference AT • + 1 - AT • is dependent on a2. 
1 I 

Now consider the difference AT • -1 - AT •. Again, it is easy to see that 
a a 

[ 
( *)2 *2 1 n - '2 '1 2 

AT· 1 - AT· = * * -.. a. 
a - a (n -'2 )( n -'2 + 1) '2 ('2 - 1 ) 

(3.14) 

Making the same approximations as above, the first term is approximately one and the second 

less than one, again making the difference greater than zero, and Ara· -1 > Ara·. It can be 

shown that A
T
-l > Ar for all , in the vicinity of '2* and thus that Ar is locally minimised at 

'2 * for, in this range. Again note the influence of a 2 on the magnitude of this difference. 

The exact behaviour of Ar for, over the whole of this range may be investigated in the same 
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way - we would expect some form of quadratic behaviour. 

(3) 

For increasing r, it is clear that AT is monotonically increasing for r in this range, and 

hence the minimum is attained at r = r2*. 

We have shown that AT is locally minimised at rl* and r2*. But more aspects become apparent 

on further inspection. First, if we take rl * and r2 * such that r/ = n - r2 * (symmetric) then 

the behaviour of AT is symmetric - hence the behaviour of [r I Y , VI] depicted in figures 9 and 

10. Secondly, if we vary the inter-changepoint distance r2* - rl*' then it is obvious from the 

form of AT that the minima at rl * and r2 * will be less marked as the inter-changepoint distance 

decreases - hence the behaviour depicted in figure 9. Thirdly, we have noted the role played 

by a in the above, namely, as a2 decreases the minima at r/ and r2 * will be less marked. For 

this example, given the sampling distribution, a can be equated with Signal-Noise ratio -

hence the behaviour depicted in figure 10. Finally, we note that 

( * * )2( 1 1 ) 2 AT - - AT - = r2 - rl .. - ----.. a 
I a n - r2 rl 

(3.15) 

so that if n - r2 * > rl * then AT - > AT -, and vice-versa - hence the behaviour depicted in 
I 2 

figure 11. Also, it is clear that the magnitude of AT1- - ATa- varies as r/ and r2 * vary, for fixed 

r2 * - rl * - hence the difference between figures l1(a) and (b), and figures l1(c) and (d). Thus 

we can adequately explain and understand the behaviour of the posterior distribution (1-11) in 

expectation, for large n. 

We conclude this investigation by studying the behaviour of AT under a more general 

form for the distribution of Y. Suppose now that the magnitude of the change in mean-level at 

rl * is not equal to the change in mean-level at r2 *, i.e. 

{ 

N(O,I) 
Yi - N( a, 1) 

N({3, 1 ) 

* 1 ~ i ~ rl 
* * rl + 1 ~ i ~ r2 

r2* + 1 ~ i ~ n 

for some a ,{3. Note that if {3 = a (or a = 0) then there is effectively no changepoint at r2 * 

(or rl *), and we revert simply to a one changepoint sequence. Also, if f3 = 0 we revert to the 

case above. 

Using (3.9) to (3.11), and after some algebra, it can be shown that 
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(1 ~ r ~ rl *) 

Clearly, the behaviour of Ar is less straightforward in this case. However it can be 

shown that Ar is monotonically decreasing for 1 ~ r ~ rl *, monotonically increasing for 

* . * * * r2 ~ r ~ n, provIded rl , and r2 - rl are relatively large compared to n, and locally 

minimised at rl * and r2 * provided (a - 13)2 is small compared to a2. Note that, in particular, 

(3.16) 

and so we would expect posterior modal values of (2.11) to vary with a 2 , (a - f3f, rl * and 

* r2 . Note also, as suggested above, that by setting 13 = a, we may derive expectation results 

for the posterior distribution (1'/1) under the assumption of one changepoint. Finally, note that 

we can infer only the qualitative behaviour of (2t-1I) in expectation from the results above, due 
r n 

to the non-linear relationship between (1:11> and L (Yi - YJ2 + L (Yi - Y;)2 - however as 
i=1 i=r+I 

this relationship involves logarithmic functions, it is reasonable that we should derive our 

results concerning Ar using difference methods. 

(3.2.3) Conclusions. 

We have seen that the one changepoint posterior distribution (2.11) will often provide an 

adequate means of analysis for a two changepoint sequence; that is, the mode of (2.11) coin­

cides with one of the true changepoint positions. We have also seen that (2.11) is generally 

bimodal in these circumstances, with the modes corresponding to the true changepoint posi­

tions. Thus we might feel justified in trying to locate and record the pair of modal positions 

for such sequences. However, figure 13 demonstrates that this strategy may not be easily 

implemented. There, due to the asymmetry of the sequences, one mode dominates the other, 

and so search techniques may be subverted. Also, as we have tried to formulate the 
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changepoint/edge detection problem using decision-theoretic ideas, it is difficult to justify a 

two mode search in that framework (Le. we choose the mode of the one changepoint posterior 

distribution as our estimator as it minimises Bayes risk with respect to a pre-specified loss 

function - it is not easy to see how the choice of localised modes can be justified in this way). 

Thus, in general, we merely locate and record posterior modal position and probability. 

We now have some practical experience and theoretical understanding of the behaviour 

of the one changepoint posterior distribution given a realisation from a two changepoint 

sequence. Most importantly, we have seen that we may associate posterior modes with true 

changepoint positions. This is of great importance in the edge-detection context, as it implies 

that we may analyse more complex true scenes and images such as those in figure 10 in 

exactly the same way that we analysed the simple example of figure 3 (i.e. using one 

changepoint posterior distributions and recording the position of the posterior mode for each 

row and column), thus keeping computational expense to a minimum. 

(3.3) Analysis of circle true scenes. 

We now proceed to analyse an image derived from the true scene in Figure 10(a). For 

demonstration purposes, 81 was taken as 0.0, 82 was taken as 3.0, and the image-formation 

process was identical to that in equation (2.1), with (12 = 1.0 (hence a relatively large Signal­

Noise ratio of 3.0) The results of the analysis are depicted in figure 14. 

+ 

o + 

o 8 

n 

Fig 14(a) : One changepoint posterior Fig 14(b) : Two changepoint posterior 

Figure 14(a) depicts the raw results of full analysis using the one changepoint posterior distri­

bution (2.11), incorporating positive probability of no changepoint/edge (plotted as 

changepoint at end of row/column). It is clear that much of the circle structure has been cap­

tured, and edge regions are clearly discernible. The analysis took of the order of two seconds. 

Figure 14(b) depicts the raw results of full analysis using the two changepoint posterior 
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distribution (3.2), again incorporating a positive probability of no changepoint/edge (plotted 

now as changepoints at beginning and end of row/column). The edge is again located, with 

posterior probabilities for pairs of changepoints being higher than those for single 

changepoints in figure 14(a) as we would expect. However, in the context of the edge­

detection problem, the results are essentially equivalent - we have successfully located edge 

regions and regions of homogeneity in both cases. The analysis involved in the production of 

figure 14(b) involved of the order of two minutes of processing time. Thus, for the edge­

detection problem, the one changepoint posterior technique is clearly preferable in this case, 

due to the considerable saving in processing time (a factor of around sixty). In the light of 

figure 12, however, we may expect the one changepoint technique to be of less use at lower 

Signal-Noise ratios. Figure 15 depicts the results of full one changepoint analysis on the circle 

true scene for Signal-Noise ratios decreasing from 2.5 to 1.0 in the series (a) to (d). 
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Fig 15(c) : S.N.R. 1.5 Fig 15(d) : S.N.R. 1.0 

Quite surprisingly, the one changepoint "approximation" technique gives adequate results 

for Signal-Noise ratios as low as 1.5. However, the true scene involved is a favourable one in 

that it contains a large, symmetrically situated object. Figures 16 and 17 depict the results of 
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analyses when the true scene is potentially less favourable. 
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For the sequence in figure 16(a)-(0. symmetry was preserved but the radius of the circle was 

varied at fixed Signal-Noise 2.0. The results seem adequate except in the case of figure 16(f). 
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We shall develop special strategies to deal with small objects in section (3.5). Figure 17 dep­

icts the results of one changepoint analyses of an image derived from a true scene containing a 

circle of radius 20.0 displaced from the centre of Se with Signal-Noise ratio fixed at 2.0. 
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These results confirm that for any row in which two edges/changepoints are asymmetri­

cally situated, we detect one (that one nearer the middle of the row in question) with greater 

frequency. However, for these particular examples, the edge-detection problem has been tack­

led with some success - we have captured a good deal (if not all) of the circle structure, and 

have certainly located edge and non-edge regions (note the number of rows/columns correctly 

classified as having no edge/changepoint). We now propose some simple techniques which 

further improve upon the results in figures 15 to 17. 

(3.3.1) Analysis of other projections. 

In the above, we analysed each row and column of the image data matrix using 

changepoint techniques and combined the results. However we could equally well choose to 

analyse the image in any two (perpendicular or other) directions, and we would generally 

expect comparable results. Now for any single convex object true scene, any planar projection 

through the image data will contain either two or no edges, and thus there must exist a set of 

optimal projections for the edge-detection problem (in the sense discussed above, for instance 

with inter-edge distances maximised). In practice we would not have the necessary informa­

tion about object position and orientation to make use of these optimal projections, although 

an adaptive analysis technique would potentially be able to choose interesting projections on 

the basis of results already obtained. In any case, we could augment our preliminary full 

analysis of the image by analysis of other projections. 

Recall figure 15(d). At a Signal-Noise ratio of 1.0, our previous analysis did not ade­

quately solve the edge-detection problem for the image concerned. Now consider figure 18(a), 

which depicts the results obtained as from the previous analysis plus the results of a full 

analysis using the pair of perpendicular directions making an angle of 45° with the rows and 

columns of the image (termed a "cross" analysis). For comparison, figure 18(b) depicts the 

results of a full analysis using a two changepoint posterior distribution. 
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Despite the presence of many obvious edge-misclassifications in figure 18(a), we note an 

improvement in the results in the sense that we now can more clearly discern the central 

region of homogeneity. The analysis took the order of four seconds. Figure 18(b) depicts the 

results of analysis based on a two changepoint posterior distribution. As we would expect the 

results are more satisfying, but again the results took of the order of two minutes to produce, 

an unacceptable amount of processing time compared with the small addition to processing 

time needed to carry out extra one changepoint analyses along secondary projections. (Note­

the precise choices of secondary projections for this particular true scene are not important 

due to the scenes symmetric nature. It is possible to choose optimally for any scene. For con­

venience here we choose diagonals in the image matrix.) 

(3.3.2) Binary segmentation. 

As we have seen, our proposed method associates modes in the one changepoint poste­

rior distribution with the true position of a changepoint, independently of whether the underly­

ing sequence actually had one or two (or possibly more) changepoints. Thus a possible stra­

tegy for the detection of multiple changepoints is to compute the posterior probabilities and 

locate the posterior mode f for the each row/column sequence Y as usual, and then to repeat 

the procedure for both of the sub-sequences Y L = (Y1 ,···, Y;) and Y R = (Y; + 1 , ••• , Yn ) 

independently, locating the posterior mode in each case, unless originally f = n. We term this 

technique binary segmentation, and note its implicit use in many fields (e.g. search-type algo­

rithms). Clearly, in the general case we could iterate this segmentation until each segment has 

the posterior mode at its end (indicating no changepoint in each sub-sequence). However for 

the edge-detection problem in the analysis of single convex object true scenes, we need only 

segment at most once for each row/column. 

We propose this technique chiefly to assist in the analysis of true scenes involving some 

form of asymmetry, as in figure 17, and for which some of the underlying structure is captured 

by the standard analysis. Clearly, if the standard analysis produces poor results, then the 

binary segmentation will be of little additional use as it depends largely on the accurate detec­

tion of one of the changepoints for its initial step. Hence we proceed to analyse the true 

scenes underlying figure 17 using the binary segmentation technique. Recall that in these true 

scenes the Signal-Noise ratio was fixed at 2.0 and the degree and nature of the asymmetry 

varied in the series (a) to (f) The one changepoint posterior distribution (2.11) was used at 

each stage, on the entire row/column sequence initially and then on the two resulting sub­

sequences (Note - this is to some extent incoherent from a Bayesian perspective since, in 

deriving (2.11), we specified non-informative prior distribution for the unknown parameters of 

the sampling distribution. After the initial analysis of the row/column data sequence, strictly, 

we should be able to specify informative prior distributions for these parameters and carry out 
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the analysis of the sub-sequences using a different posterior distribution. However, for con­

venience, we restrict attention to analysis using (2.11) at each stage.). The results of the 

analysis are depicted in figure 19. 
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It is clear that, in each case, the circle structure has been captured almost entirely. The 

analysis in each case took the order of 2.7 seconds of processing time, only a minor increase 

from the previous full analyses, and certainly quite acceptable. The only possible problem is 

that there appear to be a relatively high number of edge-misclassifications compared with the 

results we have previously regarded as adequate. There are two reasons for this. First, in the 

full analyses used to produce, say, figures 14 to 16, we recorded 160 posterior modes, one for 

each eighty rows and columns. For figure 19, this number rose to something over 300 in each 

of (a) to (t). Thus it is not surprising that the results appear more "noisy". Secondly, for 

figures 14 to 16 each data sequence had length eighty, whereas for figure 17 the lengths of the 

data (sub-)sequences were variable, theoretically having average length forty. Intuitively (and 

in light of the discussion of the behaviour of (2.11) in expectation above) we would expect to 

locate the true changepoint position with higher probability for longer data sequences. In the 

same vein, in figure 19, no indication is given as to the length of the (sub-)sequence from 

which any particular recorded changepoint resulted (but, as before, one of four symbols was 

used to indicate the magnitude of the modal posterior probability). Strictly, we should indicate 

the dependence of the changepoint posterior distribution on sequence length explicitly by writ­

ing [, I Y ,n , VI] instead of [, I Y , VI], and it is not immediately clear that we may regard 

posterior probabilities resulting from sequences of different lengths as equivalent. Recall 

(3.15). We saw there that the difference in the expected value of the sum of squares was 

given by 

( * * )2( 1 1 ) 2 Ar • - Ar • = '2 -'1 • - -* a 
1 ~ n - '2 '1 

Now, it is easy to see that increasing n, ,/, and '2* by a factor of k, say, will induce an 

increase in the magnitude of this difference by a factor of k , unless of course we have sym­

metry when the difference remains O. Hence altering n subject to these conditions will alter 

the resulting posterior probabilities at '1* and '2* relative to each other in non-symmetric 

cases. 

For the edge-detection problem, these matters are somewhat irrelevant at this point, as 

we have located a set of candidate edge-points and could legitimately proceed to make infer­

ence from them treating each equally. Any subsequent analysis that took into account their 

associated measure of uncertainty (the modal posterior probability p = max [ , I Y , VI], where 
r 

the associated minimum Bayes risk for the 0-1 loss function is 1 - p ) would, however, be 

regarded as more satisfying. Thus we return to the implications of inference based on 

sequences of different length at a later stage. 

We now proceed to study an obvious generalisation of the class of circle true scenes. 
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(3.4) Convex object true scenes - ellipse. 

For our second convex object true scene example we consider an ellipse lying within 

region S9' This is a more complex true scene than the circle of figure 10: for the circle, we 

could vary three parameters in the production of the true scene - two location parameters plus 

radius, whereas for the ellipse we could vary five - two location, lengths of major and minor 

axes, and orientation. Figures 20(a) and (b) depict an ellipse true scene and image derived 

from it using the image-formation process (2.1). 

Fig 20(a) : true scene Fig 20 (b) : image 

We proceed to study the performance of the techniques developed above with respect to the 

ellipse true scene. First, we study the effect of orientation on the ability of the various analytic 

techniques to capture object structure. Fixing location (p, q) as the centre of S9 (40,40), and 

major and minor axis lengths (a, b) as (30,15), and a Signal-Noise ratio of 2.0, different true 

,scenes were obtained by varying the angle of orientation a, measured from the positive x-axis 

in the usual way. The results are depicted in figure 21. In figure 21(a) and (b) a = 0, in (c) 

and (d) a = !!., and in (e) and (f) a = 2n. Figures 21(a), (c), and (e) depict the results of 
3 3 

full analysis. Although some of the ellipse structure is captured in each case, with partial 

edges detected, the complete underlying structure is not captured. This is as we would have 

predicted from the discussion above, and is due to the small inter-changepoint distance in (a) 

and the inherent asymmetry in (C) and (fi). Figures 21(b), (d) and (f) depict the results of 

binary segmentation. As above, these results are more satisfying. Practically the whole ellipse 

edge has been detected in each case, and there are relatively few misclassified points. These 

results confirm that the binary segmentation technique is of considerable use in the analysis of 

images derived from convex object true scenes. 
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Next, we study the behaviour of the technique when the scale parameters a and b are 

varied. As in the previous example, the Signal-Noise ratio was fixed at 2.0, and the angle of 

orientation a was fixed at ~. First, a and b were varied with the ratio b/a = e (ellipticity) 
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fixed equal to 0.5, as in the true scene underlying figure 21. The results of the two types of 

analysis discussed previously are depicted in figure 22. 
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Figures 22(a) and (b) relate to an ellipse with a = 20, figures (c) and (d) to an ellipse with a = 
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15, and figures (e) and (t) to an ellipse with a = 10, with e = 0.5 in each case. The results 

show quite clearly that the binary segmentation technique provides the most satisfactory 

results, and that techniques based purely on the single changepoint posterior distribution give 

poor results for very small ellipses at this order of Signal-Noise ratio. This is an entirely 

understandable phenomenon which is explained fully below. 

It is interesting at this point to compare these results with those obtained by using the 

two changepoint posterior distribution (3.2), depicted in figure 23. 
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These results are by far superior to those depicted in figure22, but again the processing time 

involved (around two minutes) is prohibitive. In the case of (a) and (b) here, the one 

changepoint "approximate" method gives adequate results, but in (c) the two changepoint 

method is preferable. Hence, as noted above, it seems likely that we must adapt the one 

changepoint technique in some way in the case where the inter-changepoint distance is small 

i.e. when we have prior knowledge that the convex object is small. We discuss this after first 

noting the behaviour of the techniques for ellipses having larger ellipticity, because, as we 



- 68 -

shall see, similar problems are encountered. 

Consider ellipses of fixed area where e is allowed to vary. For demonstration purposes, 

we fix ab = 200, but allow e to vary between 0.75 and 0.01. The Signal-Noise ratio was fixed 

at 2.0, and the binary segmentation technique used. The results of the analysis are depicted in 
figure 24. 
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These results are remarkably good, even when the degree of ellipticity is high (the results are 

adequate for these true scenes for the other two methods discussed above also). However, in 

the most extreme case here, figure 24(f) , the structure is lost due to the small inter­

changepoint distance. It is clear that we must adapt our formulation of the edge-detection 

problem so that images derived from true scenes containing small objects may be detected. 

(3.5) Adaptation of changepoint formulation for small objects. 

As we remarked above, the changepoint technique we have introduced is inadequate for 

such problems. Recall, therefore, our motivation for the choice of the changepoint technique 

as a solution to the edge-detection problem. We saw in a previous section how the detection 

of a simple edge between two larger homogeneous texture regions under simple image­

formation assumptions was equivalent to the statistical problem of changepoint analysis. 

Now, clearly, in the two edge case where the edges are close together in any particular 

row/column, the data sequence transects a small convex object, a much more pleasing statisti­

cal analogy is that of outlier detection - we seek to detect a small number of (consecutive) 

pixel values seemingly having raised level relative to the background. Thus we reformulate 

the problem as follows - under the image-formation process (2.1), it is now clear that, for 

some r (1 ~ r ~ n) and some integer k (k small) the conditional distribution [Yi I r ,8] is 

N( 8 1 ,(
2

) for 1 ~ i ~ rand r+k+l ~ i ~ n, and is N( 82 ,(
2 ) for r+l ~ i ~ r+k, where 

k is regarded as another parameter of the system, and is taken to represent the "width" of the 

object in the row/column in question. In practice k will often be unknown, and thus strictly we 

should specify a prior distribution for it and carry out a full Bayesian analysis, and so this is 

merely a reparameterisation of the two changepoint case above which we reject due to compu­

tational limitations. But in this form, a simplification of the problem is obvious. We could 

legitimately restrict the valid range of k to reflect our prior knowledge of the true scene (that 

it contains a small object) by specifying a prior probability of zero for values of k outside that 

range, and proceed to compute the joint posterior distribution [r ,k I Y ,VI]. Alternatively, we 

could fix k to have some value thought a priori to be smaller than the object width, proceed 

and compute [r I Y ,k , VI] and then report the mode of this posterior distribution. This alterna­

tive cannot strictly be regarded as an edge-detection technique, as if k is markedly smaller 

than the true object width then the posterior mode will frequently occur at positions internal to 

the object, but away from the object boundary, so we move into the domain of object- rather 

than edge-detection. However, for small objects, edge-points and internal points are essentially 

equivalent, and we detect the background region of homogeneity correctly, so that much of the 

problem is solved. 

We have already examined the behaviour of the two changepoint posterior distribution 

(3.2), and it is not particularly instructive to study the behaviour of a restricted version, other 
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than to note the obvious improvement in amount of processing time needed. We concentrate, 

therefore, on the k fixed alternative. Under the same prior assumptions that we used to derive 

(2.11), the posterior distribution for r is easily seen to be given by 

(3.17) 

where 0/ {1, .. ,r,r+k+l, .. ,n} ,Olc = {r+l, .. ,r+k}, 

1 
= - L Yi , and 

k ieO 
k 

YO' = 
k 

1 L Y;. 
(n-k)· 0' IE k 

We now study the behaviour of (3.17) for a typical "small object" example. Figure 25 

depicts the results of 1000 simulations of a two changepoint sequence with changepoints at 47 

and 53 and Signal-Noise ratio 2.0 for various prior assumptions and corresponding posterior 

distributions. As in figures 11 to 13 in section (3.2), the average posterior probability was 

plotted on the vertical scale. 

Figure 25(a) depicts the results obtained when using the usual one changepoint posterior 

distribution (2.11). Despite the fact that the posterior mode (neglecting the ends of the 

sequence) occurs at one of the true changepoint positions, and localised modes are associated 

with both of the changepoints, this "expectation" result leads us to believe that, in practice, for 

any single sequence, posterior modes will not be related to true changepoint positions due to 

the presence of random fluctuations in the data sequence (the "expectation" of the posterior 

distribution (2.11) with respect to the distribution of such a sequence is practically uniform). 

Figures 25(b) to (d) depict the results obtained when the posterior distribution (3.17) is used 

for various choices of k. 
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The results in (b) - (d) are more satisfactory than in (a) as in each case the region in which the 

changepoints occur is detected with much greater frequency. Note that. provided the actual 

inter-changepoint distance is small, we can specify k to be smaller than that distance and still 

obtain adequate results (figures 2S(b) and (c». Another important feature is that the computa­

tion involved in the evaluation of the probabilities in (3.17) is essentially equivalent to that 

required to evaluate (2.11). Thus we would expect a marked improvement on the processing 

time required for distribution (3.2). 

We now proceed to analyse the true scene underlying figures 22(e) and 23(c) using the 

posterior distribution (3.17). Nominally, we choose k =3. Recall that the ellipse had dimen­

sions (10,5). and that a Signal-Noise ratio of 2.0 was imposed. The results of the three tech­

niques for such an image are depicted in figure 26. Figures 26(a) and (c) are the results 

obtained previously by using posterior distributions (2.11) (timing 1.8s) and (3.2) (timing 

120s). respectively. Clearly, (a) is inadequate and (c) excellent. Figure 26(b) depicts the 

results obtained when (3.17) is used. Despite the presence of misclassified points, the results 

are a marked improvement on those in (a). The processing time required to produce these 

results was 1.6 seconds. Thus it would seem preferable to use (3.17) (and smooth) rather than 

using (3.2). 
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We now demonstrate the robustness of this detection technique to choices of k. Figure 

27 depicts the results obtained when the true scene underlying figure 24(f) was analysed using 

the technique based on (3.17) for various choices of k. 
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It is clear that, in each case, the results are more satisfying than those depicted in figure 24(f), 

even when the chosen value for k is considerably larger than the true inter-changepoint dis­

tance in any row/column. The results are most impressive when the chosen value for k is of 

the same order as this distance, as we would expect. Thus, if we have sufficient (but not 

unrealistically specific) prior knowledge concerning object size, it would seem preferable to 

use the technique based on (3.17). 

We return to the use of (3.17) in chapter 6 in our discussion of multiple object detection 

problems. 

Note: we acknowledge above the similarity between the changepoint detection problem when 

the inter-changepoint distance is small, and the detection of outliers in a given set of observa­

tions. Consider a standard Bayesian approach to the outlier problem (see, for example, Pettit 

and Smith (1983». Specifically, we wish to identify a subset of observations that arise from 

distributions having different parameters from those of the majority. Consider the case where 

we wish to detect k successive observations of this nature. Then we may write the joint distri­

bution of the variables concerned Y = (Y1 , ••• , Yn ) conditional on the unknown parameters of 

the sampling distribution 9 = (91 ,92 ) as 

, 

i.e. a mixture distribution, where [Y I 9], is the joint conditional distribution assuming that 

the variables (Y,. ... , Y,+k) are the outliers, and 1C, is the prior probability that this is in fact 

correct. Now it is easily seen that, provided the prior [9] is independent of r (in the sense of 

the above), 

, 

where [9 I Y], is the posterior distribution corresponding to [Y 19 ]' and the specified prior, 

and 1C,. is given by 

= 
1C, J [ Y I 9]' [ 9 ] 

L 1C, J [ Y I 9], [ 9] , 

Inference is subsequently made via 1C,., the posterior probability that (Y, , ... , Y,+k) are the 
• 

outliers. It is easy to see that under the same distributional and prior assumptions, 1C, and 

[ r I Y ,k , Y' ], and indeed the two methods, are identical. 
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We have developed various techniques for the solution of the edge-detection problem for 

convex object true scenes based around variations of the Bayesian changepoint identification 

idea. Further illustrations and examples of the use of such techniques may be found in Appen­

dix 2. We now proceed to develop a further technique specifically designed to solve the 

changepoint problem arising from the analysis of more complex true scenes, motivated by the 

need for accuracy and efficiency in processing. 

(3.6) Alternative approach to Bayesian multiple changepoint detection. 

As we have seen above, in the simple one changepoint case, exact inference concerning 

changepoint position is straightforward and computationally feasible. In the two changepoint 

case, exact inference is also possible, but the amount of computation involved in evaluating 

posterior probabilities is prohibitive. We have shown that in this case approximate inference 

based on a one changepoint posterior distribution is computationally efficient and adequate in 

many circumstances. However, in the k (k > 2) changepoint case, exact inference is impracti­

cal, and approximate inference via simpler changepoint assumptions is inadequate. Now, in the 

analysis of complex true scenes, it is probable that solution of the edge-detection problem 

using the changepoint based techniques suggested above will require that exact or approximate 

inference of some sort is not only possible but computationally feasible. This motivates the 

search for a changepoint identification technique which retains some of the points of those 

described above (intuitively appealing, decision-based, non arbitrary etc.) but does not involve 

the need for excessive computation. Before turning to this, however, we discuss other various 

aspects of the identification problem. 

In all of the above, for example in the derivation of (2.11) and (3.2), when we are con­

cerned with changepoint identification, we propose the number of changepoints for the 

sequence concerned, evaluate the joint posterior distribution and report the joint posterior 

mode on the basis of a realisation of the sequence. Now, it is equally as valid to evaluate the 

marginal posterior distribution and report the marginal mode for each changepoint individually 

- this is the equivalent solution to the same decision problem when using a different (but still 

reasonable) loss function to that used previously. However, the only access we have to the 

marginal posterior distribution for each individual changepoint in the above framework is via 

the joint posterior distribution (by marginalising in the usual way), which we have seen to be 

expensive to compute, even when the number of changepoints is relatively small. If we could 

compute the marginal distributions by another method and report the marginal modes, then we 

may be able to lessen the computational load relative to that of the method discussed previ­

ously. 

Consider the sequence of random variables Y = (Y1 , ... , Y,,) represented in figure 30, 

assumed to have k changepoints (rl, ... , ric) of unknown position but where k is presumed 
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known. Let ro = 0, and rk+1 = n. Let the sampling distribution of y. = (y Y ) have 
J 'J-l+I"""J 

parameters 9j , and (Y'J-l+ I ,""Y,) be conditionally independent given 9
j
,j = 1, ... ,k+l. 

Finally, let ( Y1 , .•• , Yk + I ) be conditionally independent given 9 = (9 9) 
1,"" k+I . 

~ Y ~--------______ ~~ __ ~~ ____ ~ ____ ~~__ k+I 
I ...................... ~~ _________ ~ 

I I 

From the conditional independence assumptions, via an equation equivalent to (2.7), we may 

write the marginal posterior distribution of r)· conditional on (ro r· 1 r· r) as , ... , )- , )+1, .. ·, k+l , 

. [rj I rj-l ,rj+l] . (3.18) 

It is clear that in this formulation of the multiple changepoint problem, which is identical to 

our original one, the marginal posterior distribution for rj conditional on the k -1 changepoints 

depends only on rj_1 and rj+1> for j = 1, ... , k. But conditional on rj_l and rj+l, the margi­

nal posterior distribution for rj is identical to the usual one changepoint posterior distribution 

given by (2.7) evaluated for the sub-sequence (lj , Yj +I ), with the valid range of rj being res­

tricted to rj-l+ 1, ... ,rj+I' Thus we may write down [rjlrj-l,rj+l'Y'1I'] using standard 

and familiar techniques, for j = 1, ... , k. 

We now have the set of discrete, univariate posterior distributions [rj I rj-l , 'j+l , Y, 11'] 
for j = 1, ... , k. However, we wish to make inference on the basis of the unconditional mar­

ginal distributions [rj I Y, V' ]. The crucial link is made via the simulation technique known as 

stochastic substitution, and in particular the method for the evaluation of joint or marginal 

distributions from such conditional distributions that was described in chapter 1 section 

(1.4.1.2), the Gibbs Sampler, introduced initially by Geman and Geman (1984), and developed 

further for more familiar statistical problems by Gelfand et al. (1989). Recall that, for the 

collection of random variables of interest, where the corresponding collection of full condi­

tional distributions are completely specified and straightforward to sample from, the Gibbs 

Sampler algorithm proceeds as follows. Given an arbitrary starting value for each of the 
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variables, sample repeatedly from each of the full conditional distributions in turn, where the 

"current" value (i.e. that most recently obtained by the sampling procedure) for each of the 

conditioning variables is used in place of the true value in the functional form of the full 

conditional distribution. It can be shown (Geman and Geman (1984), appendices) that, subject 

to regularity conditions, as the number of iterations, t say, increases, the t'th simulated value 

for variable j tends in distribution to a realisation from the unconditional marginal distribution 

of variable j, and that the t'th set of simulated values for all variables jointly tends in distribu­

tion to a realisation from the joint distribution. 

In the multiple changepoint problem, therefore, the solution to the problem of computing 

marginal posterior distributions on the changepoint positions is straightforward. We write 

down [Tj I Tj_1 , Tj + I , Y, VI] for j = 1, ... , k by the usual techniques, and choose starting 

values (TIO, ••• , TjO). Then we generate a value Til from the discrete posterior distribution 

[TI I TO, T20 , Y, VI] by c.d.f inversion, then a value T21 from [T2 I Til, T30 ,Y , VI] etc. until 

"convergence" (as yet to be defined) at or for a predetermined number of iterations t, resulting 

in a set of sample values (Tit, •.• ,Tjt). We then obtain an estimate of the unconditional mar­

ginal distribution [Tj I Y , VI] for each j by combining the probabilities 10 

[Tj I Tj-It,Tj+lt,Y,VI] additively and averaging (the discrete analogue to the finite mixture 

density estimator of the marginal density in Gelfand and Smith (1990)). Note that in this 

formulation we have integrated out the parameters of secondary interest, namely 0 = 

(01 , .•• , Ok+l). If the O/s were of interest, and we wanted to calculate the marginal posterior 

densities [OJ I Y, VI], we could extend the Gibbs Sampler by including the k+ 1 conditional 

posterior densities 

in the sampling cycle described above. It is easily seen that this conditional posterior density 

for OJ simplifies to 

We could now simulate 2k+ 1 observations per iteration, as opposed to k previously, so we 

might expect processing time to increase, at least by a factor of two, and by a greater factor if 

the functional form of [ OJ I Tj_1 ,Tj , Yj , VI] is difficult to sample from. Also convergence may 

be more difficult to discern for the marginal posterior densities for the continuous parameters 

OJ. Thus we concentrate here solely on the changepoint posterior marginals. 

The above analysis suggests that we may use the Gibbs Sampler algorithm to compute 

the k changepoint posterior marginal distributions and hence derive estimates of the unknown 

changepoint positions. However, to implement the algorithm, we must overcome two 
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difficulties. First, we must be able to decide, in some sense, when convergence has occurred. 

Secondly, to lessen total time to convergence of the algorithm, it is important that an adequate 

set of starting values ('10 , ... , 'lcO) are chosen. We address each of these problems in turn. 

There exist no formal criteria for the assessment of convergence of the Gibbs Sampler 

algorithm. Gelfand et al. (1988) describe graphical convergence diagnostics based upon the 

stability of the marginal posterior density estimates over a range of numbers of iterations. One 

possibility is that the algorithm is diagnosed as converged if the spline-smoothed curves 

representing the density estimates at successive multiples of 10 iterations are indistinguishable 

by eye. This might be a reasonable diagnostic for many purposes, as it represents an overall 

distributional comparison. The analogue in the case of our discrete marginal posterior distribu­

tions would be to assess visually histogram similarity at 10 iterations apart, which would 

presumably be as easy to discern, but perhaps subject to a higher degree of fluctuation. How­

ever, we can improve on this informal procedure in the discrete case by using some measure 

of distance between distributions (i.e. merely a summation over the finite and discrete range of 

each variable of some suitably chosen function of two successive marginal probability esti­

mates) and some stopping criterion - for instance, we could regard convergence to have 

occurred when the total squared distance between successive estimates of the marginal distri­

butions is less than some constant for each of the changepoint variables - this option is not 

generally readily available in the continuous case. We note this possible approach, but reject it 

on the grounds of inefficiency in favour of another convergence diagnostic technique in the 

spirit of those used by Geman and Geman (1984) and Ripley (1988), namely via what we 

broadly term "summary statistics", an alternative rejected by Gelfand et al. principally due to 

its inefficiency, but also presumably due to their different objectives (their interest being in 

reporting the posterior density as a whole). In the image processing context, Geman and 

Geman assess convergence of the Gibbs Sampler (there used in conjunction with the simulated 

annealing technique) in terms of number of pixel "flips"; that is, changes in (the relevant) 

posterior modal estimates. Ripley assesses convergence by monitoring (in the annealing pro­

cess) the magnitude of the energy function in the exponent of the (Gibbs) posterior distribu­

tion, a quantity related to modal posterior probability. These seem intuitively more appealing 

and relevant approaches to our problem, as they specifically relate to the quantity of interest 

(in our case these would be modes in the marginal posterior distributions) and are potentially 

more expediently implemented. Thus, for the moment at least, we regard convergence as hav­

ing occurred when the position of the mode of each marginal changepoint posterior distribu­

tion between iterations a fixed number apart has stabilised. 

Therefore, a possible scheme for implementation of the Gibbs Sampler algorithm in the 

multiple changepoint case is as follows. Given the set of starting values ('10 , ... "IcO), sample 

once from each of the conditional posterior distributions ['j I 'j-l ,'j+l ,Y,yt] by c.d.f. 
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inversion and then iterate the procedure, setting the conditioning variables 7j equal to the most 

recent value of tjl obtained. After to such iterations, obtain values (71t , •.• ,7kl). Repeat this 
o 0 

procedure m times, and obtain m U.d. replicates, (71/
0
(0, ... ,7kl

o
(0) for i = 1, ... , m. Com-

pute the marginal posterior distribution estimates after to iterations, [7j I Y , VI] '0 by summing 

the individual probabilities in the distributions [I (0 (i) y] . 1 
7j 7j-1/

0 
,7j+lto ' ,VI over I, e ement by 

element, and dividing each element by m, i.e. 

or 

the discrete analogue of the mixture density estimate in Gelfand et al. Locate the mode of 

each posterior distribution estimate, [7j I Y , VI] '
0

' the vector of those marginal modes being 

denoted by (rlto ' ••• .fk/J. Then, using the replicates (71/
0
(0, ... , 7kt

o
(i») as starting values, 

sample again from the conditional posterior distributions until the t1 'th iteration is complete, 

t1 = 2to, thus producing a new set of m U.d. replicates (711 (i) , ••• ,7kl (i»). Compute the esti-
I I 

mates [7j I Y, VI] II in the same way as above, and again locate their modes (r1/1 ' ... ,rkl
l

). If 

the successive modal positions coincide, or rj/0 = rj/l' for each j, we deem convergence to 

have occurred, otherwise we repeat the three steps of the procedure (calculate and sample 

from the full conditional distributions for another to iterations and m replications, compute 

marginal distribution estimates, locate modes) for t2 ,t3 , ... , where tj = (j + l)to, until con­

vergence after tc iterations, when rA_I = rj/e for all j. 

It might seem at first sight that the amount of computation involved in such a scheme is 

potentially very large. Using the values proposed by Gelfand et al. of to = 10 and m = 50, 

we must evaluate each of the k conditional posterior distributions [7j I 7j-1 ,7j+1 ,Y, VI] a total 

of tom = 500 times between comparisons of modal positions, and in the process generate one 

variate from each distribution. The c.d.f. inversion technique is a "one-for-one" sampling 

scheme, and therefore we must generate a total of tomk = 500k variates uniformly from 

(0,1) during the same period. However, as we shall see, in many cases we are able to choose 

to and m to be considerably smaller than those values proposed above, and still obtain ade­

quate results. 

The remaining problem concerning the implementation of the Gibbs Sampler algorithm 

is that of choosing the set of starting values (710 , ... , 7kO). We might naively choose k values 

uniformly spaced in, or randomly chosen and suitably ordered from, the set {I, ... , n -1 }. 
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Using this approach, however, it is clear that because of the properties of the conditional dis­

tribution [7j I 7j -1 ,7j + 1 ,Y , yt] we have to some extent studied in a previous section, if two or 

more of the true changepoint positions lie between 7j-l and 7j+l> the algorithm will be sub­

verted unless great care is taken in the procedure used when updating the values of the condi­

tioning variable. An alternative choice for the set of starting values would be to choose each 

of the 7jO equal to 7k + 1 = n for j = 1, ... , k. This would add an extra element in that we 

might expect the set (711 , ... ,7k 1) to correspond quite closely to the true changepoint posi­

tions, due to the nature of the conditional posterior distributions. 

We now present an illustrative example of the use of the Gibbs Sampler algorithm in the 

multiple changepoint problem. 

(3.6.1) Approximation of changepoint marginal posterior distributions, k = 2. 

Consider a sequence Y having k = 2 changepoints at unknown positions represented as 

random variables 71,72' We wish to make inference about these positions marginally on the 

basis of a realisation y of Y, and certain prior assumptions. Specifically, assume that 

(Y1 , ... ,Y,) are identically distributed as N( 81 ,(12), (Y" + 1 , ... ,Y,J are identically distri­

buted as N( 82 , (12), and (Y'2+ 1 ' ... ,Yn ) are identically distributed as N( 83 ,(12). Assuming 

also the Yi's to be conditionally independent given 8 = (81 ,82 ,83 , (1), and that 8 is 

unknown and that the form of [8j ,8j +1 ,(1] is identical to (2.10), it is easily seen that if we 

again define 70 = 0 and 7k+l == 73 = n, and choose [7j I 7j-l ,7j+l] to be uniform, the 

form of the conditional posterior distribution [7j I 7j_l ,7j+l ,Y, yt] is identical to (2.11), i.e. 

where 

n· J 

and 7. takes values in {7j-l + 1, ... ,7j+l - I}. If we allow a non-zero prior probability of "no 
J 

changepoint" in {7j-l + 1, ... ,7j+l}' we make the relevant adjustment to (1.24), and choose 

[7j I 7j-l ' 7j+l] to be of the form 
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{ 

(l-p) 

(rj+1 - ;_1- 1) rj = rj -1 + 1, ... .rj + 1 - 1 
(3.20) 

for some p (0 ~ p ~ 1). However, were we to choose p non-zero then we would be allow­

ing the possibility of coincident changepoint positions on any single iteration, and hence effec­

tively a reduction of k on subsequent iterations, which we feel may disrupt the Gibbs Sampler 

algorithm unduly. For the moment we choose p = O. As suggested above we choose 

( , 10 , '20) to equal n. We now proceed to compare the marginal posterior distributions for '1 

and '2 obtained, the processing time involved, and the number of iterations to convergence 

using the Gibbs Sampler with various choices of to and m, for several pairs ('1· "2·) of true 

changepoint positions and Signal-Noise ratios. 

First, we study the effect that varying to and m has on processing time. The entries in 

table 1 are the amounts of processing time required for the Gibbs Sampler to converge for 

various pairs of choices (to, m) using the stable-mode convergence criterion averaged over 

200 runs. The sequences of length 80 generated had true changepoints '1· = 24 and 
• 

'2 = 56, 81 = 83 , and a Signal-Noise ratio of 2.0. 

to 

1 2 3 5 10 

1 0.1178 0.1530 0.1846 0.2519 0.4274 

3 0.2518 0.3609 0.4603 0.6748 1.1828 

m 5 0.3956 0.5604 0.7301 1.0770 1.9492 

10 0.7277 1.0798 1.4280 2.1357 3.9022 

20 1.4256 2.0974 2.7737 4.1068 7.7784 

Table 1 

On inspection of the the timings in table 1, it is clear that computation time increases 

more quickly with m than with to - this is encouraging, as m relates primarily to the adequacy 

of the estimate of the marginal distribution, which is not our chief concern, and only acts as a 

secondary factor in relation to assessment of rate of convergence (i.e. through the convergence 

diagnostic, posterior modal position, which we might expect to be fairly stable even for small 

m in the majority of cases). It should also be noted that, for this particular admittedly 
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straightforward example the algorithm was diagnosed as converged on iteration 2to in practi­

cally all of the 200 repetitions of the analysis. 

Thus it only remains to compare the results obtained using the Gibbs Sampler with those 

obtained from an "exact" analysis using (3.2). Figures 31(a) and (b) depict the exact marginal 

posterior distributions of rl and r2 respectively, evaluated using (3.2) and marginalisation, 

averaged over 200 runs. Figure 31(c) and (d) depict the "approximate" marginal posterior dis­

tributions obtained using Gibbs Sampler for various choices of to and m. 
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The solid, dashed and dotted lines in (c) and (d) correspond to (10,20), (3,5) and (1,1) as 

choices for (to, m) respectively. The three are virtually indistinguishable, and all approximate 

the true marginal posterior distribution more than adequately. This illustrates the considerable 

potential of the Gibbs Sampler technique for the multiple changepoint problem. 

The evaluation of the exact posterior probabilities in figures 31(a) and (b) took an aver­

age of 0.5355 seconds over the 200 runs. Thus, in many cases for this particular example, the 

Gibbs Sampler gives adequate results in a shorter time than the exact analysis. We now repeat 

the analysis with r2· = 30 at the same Signal-Noise ratio and under the same prior assump-

tions. The results are depicted in figure 32. 
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In figure 32(c) and (d), the solid, dashed and dotted lines in (c) and (d) correspond to (5,3), 

(5,1) and (1,1) as choices for (to,m) respectively. Again, it is clear that in each case the 

estimate of the marginal posterior distribution approximates the exact marginal posterior dis­

tribution well. The relative timings involved were comparable to those in table 1, and the 

latter two cases were appreciably faster than the evaluation of the exact margins. Again, for 

this example, convergence was generally perceived to have occurred after 2to iterations in the 

majority of cases. 

We now study the effect that altering Signal-Noise ratio has on the efficiency of the 

Gibbs Sampler in producing estimates of marginal distributions and modes. Fixing 71* = 24 

and 72* = 40, we vary the Signal-Noise ratio between 2.0 and 1.0 in decrements of 0.5. The 

results are depicted in the series figure 33 to figure 35. In each case, (a) and (b) depict the 

exact marginal distributions of 71 and 72, respectively, obtained via (3.2), and (c) and (d) dep­

ict the approximate marginal distributions obtained using the Gibbs Sampler, with the pair 

(to, m ) chosen as (5,1) for demonstration purposes. 

The results are clearly impressive (in the sense that the approximation is excellent) even 

at low Signal-Noise ratios. It is interesting to note the rate of convergence in each case. In 

figure 33(c) and (d), with S.N.R equal to 2.0, convergence was diagnosed on average after 

11.12 iterations (approximately 2to) and the average processing time was 0.2501 seconds. In 

figure 34(c) and (d), S.N.R. equal to 1.5, the corresponding averages were 14.65 (3to) and 

0.3199 seconds, and in figure 35(c) and (d), the averages were 26.67 (5to) and 0.5471 seconds 

respectively. Hence, as we might have predicted, the rate of convergence decreases with 

decreasing Signal-Noise ratio. In the latter case, the processing time involved when using the 

Gibbs Sampler was comparable with that involved when evaluating the marginal posterior 

80 

80 
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distributions exactly, which conflicts with our motivation for using the Gibbs Sampler in the 

multiple changepoint problem (potential computation time reduction in the image-processing 

context). We need not be unduly worried, however, as we shall see below that the saving 

incurred for larger k is appreciable. 

(3.6.2) Approximation of changepoint marginal posterior distributions, k = 3. 

We now investigate the behaviour of the Gibbs Sampler for larger k. Consider the case 

k = 3. Using the same prior specifications as above, it is again straightforward to evaluate 

the conditional posterior distributions, and each takes precisely the same form as (3.19). The 

Gibbs Sampler algorithm then requires that we should sample and update the conditioning 

variables iteratively to convergence. We might intuitively expect processing time to increase 

linearly with k. For demonstration and comparative purposes, we investigate the performance 

of the Gibbs Sampler on Normal sequences having changepoints at 24, 40, and 66, with 

corresponding mean levels 0.0, 2.0, 4.0, and 1.0. The margins obtained via the Gibbs Sampler 

(averaged over 200 runs) and the exact margins obtained using the three changepoint 

equivalent to (3.2) are depicted in Figure 36. 

0.6 

0.4 -

0.2-

0 ~\.. 
I I I 

0 20 40 60 80 0 
I 

20 
I 

40 
I 

60 80 
Fig 36(a) : Exact margin of rl Fig 36(b) : Approximate margin of r 1 

0.6 

0.4 -

0.2-

/~ 0 
I I I 

A 

0 20 40 60 80 0 
I 

20 
I 

40 
I 

60 80 

Fig 36(c) : Exact margin of r2 

0.8 -.---------------:---, 

0.6-

0.4 -

0.2-
O~---_,r_----,_----~~)~--~ 

I I I 

o 20 40 60 80 

Fig 36(e) : Exact margin of r3 

o 

Fig 36(d) : Approximate margin of r2 

I 
20 

I 
40 

I 
60 

Fig 36(f) : Approximate margin of r3 

The results of the Gibbs Sampler depicted in Figure 36(b), (d), and (f) were obtained using 

to = 20 and m = 1 to show the potential of the algorithm. It is clear that the approximate 

margin is very close to the exact margin in each case. For these values of to and m, the 

80 
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average processing time was 0.9386 seconds, and the average number of iterations needed for 

the algorithm to converge was 45.20 (2to). The exact analysis required an average of 17.40 

seconds of processing time for calculation of the margins. Thus we now have a 17-fold time­

saving in calculation of the margins in the three changepoint case, compared to approximately 

a 3-fold saving in the two changepoint case. 

It is interesting to study the results obtained using the Gibbs Sampler In the three­

changepoint case when the value of to is varied. Figure 37 depicts the 72 margin resulting 

from a Gibbs Sampler analysis carried out with to taking the values IS, 10, 5, 1 in the series 

(a) to (d), with convergence being assessed by modal position stability in the usual way. 
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These results illustrate one minor drawback of our implementation of the Gibbs Sampler 

to evaluate the marginal distributions. We must take great care over the assessment of conver­

gence, since when using the same convergence diagnostic as above with a range of values of 

to, the resulting marginal distribution estimates are markedly different. Choosing to large 

enough practically ensures convergence to the "correct" distribution but increases processing 

time. One possible alternative implementation would involve choosing to large initially, com­

pleting the sampling sampling cycle to times and evaluating the marginal distributions and 

modal positions, and then re-calculating the distributions and modes after every subsequent or 

alternate iteration, assessing convergence in the usual way. This would hopefully ensure that 

the Gibbs Sampler had "settled down" to the correct values of the changepoint positions before 

any assessment of convergence is made. Results of an analysis using this alternative scheme -

choosing to = 20 initially then inspecting modal positions after each subsequent iteration -

are depicted in figure 36. Again, only the 72 margin is shown. 
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Fig 38(b) : Approximate margin of r2' alternative scheme 

It is clear that (a) and (b) are very similar. The processing time involved in producing 

(a) and (b) was 0.9386 and 0.5117 seconds respectively. Thus we have practically halved the 

amount of processing time needed by using the alternative scheme, and achieved comparable 

results. Further processing time reductions may be achieved in a similar way. 

Two other points should be noted. First, as mentioned previously, we could assess con­

vergence via a distance measure between successive marginal distribution estimates. This 

would presumably help to eliminate problems associated with the choice of to and provide 

some notion of rate of convergence. However, use of this method would present its own 

difficulties. In addition to those mentioned above concerning computation time, we would be 

forced to introduce scales of distance, and stopping-rules etc. which would further complicate 

practical implementation. Secondly, in the context of the edge-detection problem, as our 

interest is principally in marginal posterior modal positions, we need not be overly concerned 

with the nature of the distribution estimates themselves provided that we gain sufficient and 

accurate information from a Gibbs Sampler analysis to enable us to report the posterior modal 

positions. This implies that, provided we are not primarily concerned with modal posterior 

probability for each margin, we can afford to choose to smaller than is necessary in other 

problems. For example, in the case depicted in figure 37, we gain information about the posi­

tion of both the second and third changepoints from the r2 margin (much in the same way that 

we could have made inference about two changepoint positions when using the one 

changepoint posterior distribution (2.11) in a previous section). The precise behaviour seen in 

figure 37 is understandable given our experience with changepoint sequences when we recall 

that the magnitUde of the mean-level change at r3· is 3.0, compared with 2.0 at r2·' so we 
• 

might expect a "short-term" convergence effect in the iterative procedure to r3 . 
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Finally, before we demonstrate the application of this sampling-based method in the 

edge-detection problem, we propose a simplification/approximation to the full Gibbs Sampler 

algorithm with the intention of further reducing processing time. Recall the set of full condi­

tional posterior distributions ['j I 'j-l ,'j + 1 ,Y , VI], j = I, ... , k, and the set of starting 

values ('10, ... , 'lcO)' Then the simplified algorithm proceeds as follows. Compute 

['1 1'0, '20, Y , VI], and instead of sampling from this distribution, choose the value '11 to be 

that at which the distribution is maximised. Then choose '21 to be that value which maximises 

['2 I '11 ,'30, Y, VI] etc. until the modal positions stabilise. It is reasonable to expect the set 

('It , ... , 'Jet ) to coincide with the actual changepoint positions after convergence at iteration . . 
te in many straightforward instances. This approximation to the full Gibbs Sampler procedure 

follows the I.C.M. approximation to the maximum probability estimates in image segmentation 

problems discussed in section (1.4.3.1) of chapter 1. It also has links with the binary segmen­

tation technique proposed in section (3.3.2). 

We now demonstrate the use of this approximation to the Gibbs Sampler in the two and 

three changepoint cases. First, we investigate its behaviour for two changepoint sequences 

identical to those in figure 33, i.e. with the change in mean-level at '2· equal in magnitude but 

opposite in sign to that at '1·' We choose '1· = 24 and '2· = 50, and a Signal-Noise ratio of 

2.0, and make the same prior assumptions and hence use the same functional form (3.19) for 

the full conditional posterior distributions. The results of 1000 repetitions of the analysis are 

presented in figure 39. 
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The proportion of occurrences of each point being detected as a mode at convergence are plot­

ted on the vertical scale (hence figure 37 should not strictly be thought of as depicting the 

marginal probability distributions of '1 and '2, but as expected frequency distributions of the 

modal positions of the marginal distributions of ' 1 and '2)' It is clear from figure 39 that this 
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approximate method provides adequate results in the two changepoint detection case. The 

average processing time involved in producing these results was 0.0823 seconds, and the algo­

rithm had generally converged before the fourth iteration. This represents a time saving of at 

least one-third compared with the timings in table 1. 

We now investigate the three changepoint case, in particular sequences identical to those 

represented in figure 36, with true changepoints at 24, 40, and 66, and mean-levels 0.0, 2.0, 

4.0 and 1.0, and a common variance of 1.0. Again 1000 repetitions of the analysis were car­

ried out. The relative expected frequencies are depicted in figure 40. 
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These results are less adequate than those obtained previously, due presumably to the 

fact that the Signal-Noise ratio at r3 * is appreciably larger than at either rl* or r2 *, and hence 

we again get a "short-term" convergence effect. However, we still gain some information as to 

the true changepoint positions by combining the results from the three margins in some way. 

The average processing time involved in this case was 0.0998 seconds. 

Note: throughout the above we have assumed the number of changepoints k in any analysis to 

be known. This is of course practically unrealistic. However, it can be verified that if k is 

mis-specified relative to the true nature of the data sequence, then results at convergence are 

broadly satisfactory, that is, we gain sufficient information from the margins individually and 
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jointly to be able to infer the positions of the true changepoints. Figure 41 depicts the margins 

obtained from a Gibbs Sampler analysis of a two changepoint sequence with r· = 24 and 
• 1 

r2 = 40 and a Signal-Noise ratio of 2.0 (Le. precisely as in figure 33), but with k chosen to 

be three. 
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It is clear that the two changepoints are detected accurately as modes in the marginal distribu­

tions. Similar results are obtained if k is specified to be less than the actual number of 

changepoints in the sequence (much in the same way that the one changepoint posterior mar­

gin (2.11) provides useful information when used to analyse two changepoint sequences). 

However, we generally consider it advisable to specify k larger rather than smaller in the case 

where the actual number of changepoints is truly unknown, as the results from particular mar­

gins would then be re-enforced by the results from others. 

(3.6.3) Edge-detection analysis using marginal approximation. 

We now conclude this section by demonstrating the use of these approximate techniques 

for multiple changepoint detection with specific reference to the edge-detection problem. First, 

however, we make a further comment concerning the implementation of the Gibbs Sampler-

based "full" changepoint analysis of an image. 
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We noted above the potential difficulties encountered in choosing the set of values 

needed to initialise the Gibbs Sampler algorithm. Now, the schemes we have suggested above 

for the analysis of an image have involved row-by-row and column-by-column based 

changepoint distribution computations with each row/column being treated independently. 

However, we would generally expect the edges in the true-scene to be spatially continuous. 

We return to this very important piece of prior knowledge in more detail at a later stage, but 

here we merely consider its implications for the implementation of a Gibbs Sampler-based 

edge-detection procedure. Consider a true-scene and image to be analysed using Gibbs 

Sampler techniques, with each row/column assumed to contain at most k edges/changepoints. 

Assuming, for example, the row analysis to be carried out in the same order as in all of the 

previous schemes (i.e. beginning at row 1 and with the analysis of row j immediately follow­

ing the analysis of row i-I for i = 2, ... , n) then it is clear that, having specified the neces­

sary initial values for row i-I and completed a Gibbs Sampler analysis of the data in that 

row, with k edge-point candidates selected as coinciding with modes in the k changepoint 

marginal posterior distributions, then because of our qualitative prior knowledge concerning 

spatial continuity a sensible choice for the initial values needed for the Gibbs Sampler analysis 

of row i would be those k values recorded as the modes for row i-I. This is an intuitively 

reasonable choice for two reasons. First, if the j'th mode in row i-I corresponded to a true 

edge-point, then because of the assumed spatial continuity of the edge, it is likely that row i 

would also contain an edge-point in the vicinity of that mode, and hence we might expect an 

improvement in the rate of convergence of the Gibbs Sampler. Secondly, even if the j'th mode 

in row i-I did not correspond to an edge-point but rather to an outlying or extremely noise­

corrupted value, it is unlikely that row i would also contain a similarly outlying value in the 

vicinity of this mode, and thus due to the stochastic nature of the "updating" step of the Gibbs 

Sampler it is unlikely that the algorithm would converge to a point near to it (more generally, 

the choice of the k modes from row i-I as starting values for row i can only theoretically 

improve the rate of convergence). 

We now proceed with a demonstration of the use of the Gibbs Sampler algorithm in the 

analysis of a simple image. We study the results obtained from an analysis of the circle true­

scene and image in figure 10. We saw above that, after making certain prior assumptions 

related to the nature of the image-formation process and true-scene parameters the one and 

two changepoint posterior distributions (2.11) and (3.2) both dealt adequately with the edge­

detection problem when the Signal-Noise ratio was relatively large (> 2.0), but that the one 

changepoint approximation was less adequate for lower values. Figure 42(a) depicts the results 

of a full analysis using the one changepoint posterior distribution (2.11). Figure 42(c) depicts 

the results of a full analysis using the using a combination of (2.11) and the two changepoint 

posterior distribution (3.2). Each row/column was first analysed using (2.11) with the "no 
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changepoint" possibility having a positive probability, and unless the mode of the distribution 

was found to indicate a "no changepoint" decision (i.e. unless the mode occurred at r = n) 

then that row/column was re-analysed using (3.2), and for comparison purposes the individual 

margins for each changepoint were computed and their modal position and value recorded. 

Figure 42(b) depicts the results of a similar analysis but where the margins for the individual 

changepoints were computed using the Gibbs Sampler techniques discussed above, with the 

stable mode convergence criterion and the method for choosing initial values for the iterative 

step of the algorithm on the basis of the results of the previous analysis were both imple­

mented. The values of to and m were both nominally chosen to equal 1 for demonstration 

purposes, and k was chosen to be 2 (reasonable, if we know that the true scene contains a 

single convex object). 
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It is clear that the results in each case are more than adequate. Recall, however, that the pro­

babilities represented in figure 42(a) are really only an approximation to the true probabilities, 

as they arise from an incorrectly specified model (one instead of two changepoints per row and 
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column). The processing time involved in producing the results in figure 42(a) was 1.82 

seconds. Now, on inspection of the results in figures 42(b) and (c), it is evident that the Gibbs 

Sampler-based technique has provided results which compare extremely favourably with the 

results arising from an exact analysis. The processing times involved in producing the results 

for figures 42(b) and (c) were 10.78 and 70.80 seconds respectively. Thus we have achieved at 

least a 7-fold time saving even in this straightforward case by using the approximate method. 

This is very encouraging when we consider that our primary motivation for introducing Gibbs 

Sampler-based techniques was to lessen computation time for mUltiple changepoint/edge true 

scenes and images. 

It is of interest to study the results of the three analyses on the same true scene but 

where the Signal-Noise ratio in the image is decreased to 1.0. Figure 43 depicts the results of 

the analyses of such an image. Precisely the same schemes were used for (b) and (c) as in the 

example above. 
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In this, a more difficult case, the one changepoint technique does not provide adequate results. 
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However, again, the results in (b) and (c) compare favourably, and give a reasonable indica­

tion as to the position of the edge in the image. The processing times involved in the produc­

tion of these results were 1.78, 10.44, and 55.88 seconds respectively, and so again the Gibbs 

Sampler-based technique seems preferable. 

The results depicted in figures 42 and 43, in conjunction with the reduction of the amount 

processing time required are encouraging. The Gibbs Sampler technique for the approximation 

of marginal posterior distributions makes the changepoint-based edge-detection analysis of 

multi-region true scenes. We now proceed to demonstrate the use of this technique in the 

analysis of such true scenes. 

(3.7) Analysis of multiple region true scenes. 

We now turn to a more complex true-scene and investigate whether the Gibbs Sampler 

techniques cope adequately with the added complexity. Figures 44(a) and (b) represent an 

artificial true scene and image comprising a square and rectangle having different textures 

denoted 82, and 83 as before, on a background texture denoted 81 . 

Fig 44(a) : true scene Fig 44(b) : image 

For illustrative purposes, we assume the same form for the image-formation process as 

before with additive Gaussian white-noise of constant variance 0.5 corrupting each pixel 

independently, and choose mean-levels of 0.0, 2.0, and 3.0 for the three textures respectively . 

We proceed to analyse this image using Gibbs Sampler-based techniques. Figure 45 depicts 

the results obtained using the implementation of the Gibbs Sampler suggested above (prelim­

inary "no changepoint" analysis, choice of initial values, convergence etc.) for various 

choices of the pair (to, m), with k chosen to be three in the analysis of each row/column 

(clearly this represents a mis-specification of k in some of the rows/columns). 
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Fig 45(c) : to = 5, m = 1 

The results in each case seem excellent, except possibly for one incomplete edge in (a). Note 

that the boundary between square and rectangle, where the Signal-Noise ratio is 1.41, is 

detected less readily than any of the other edges, and that Signal-Noise ratio does in general 

effect the efficiency of the algorithm. This is entirely in line with our previous experience with 

the edge-detection problem. The timings involved in the production of the results were 12.50, 

14.78 and 21.38 seconds for (a), (b), and (c) respectively. An exact three changepoint analysis 

of this true scene was not feasible due to the enormous amount of processing time required. 

It is interesting at this stage to note the effect that our use of prior knowledge concern­

ing edge continuity has on the convergence of the algorithm. Figure 46 depicts the results of 

an analysis identical to that above, but with the initial values for the Gibbs Sampler chosen 

independently of results from other rows/columns. These results are inferior in the sense that 

there appear to be more mis-classifications of edge-points, and one edge (that where the 

Signal-Noise ratio is at its lowest) remains virtually completely undetected - this was evident 

for larger values of (to, m) also. Also, the respective timings for (a), (b) and (c) in this case 
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were 18.38, 21.24, and 21.82, and so the rate of convergence is seemingly appreciably slower. 

Thus the importance of the use of spatial prior knowledge is clearly demonstrated, even when 

that prior knowledge is purely qualitative (i.e. we know merely that "edges are continuous", 

but need not quantify this statement in any way). 
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We now complicate the true scene further by effectively increasing the number of 

changepoints to be found in any particular row or column. Figure 47(a) and (b) represent an 

artificial true scene and image comprising two overlapping circles of the same texture 82 on a 

background texture 81 , where the "intersection" of the circles has a different texture 83 

created as some function of the 82 's, taken here to be additive. We assume the same form for 

image-formation and noise processes, and choose mean levels 0.0 and 2.0 for 81 and 82 , and 

hence by the additive assumption we induce 83 to be 4.0. Note that now the Signal-Noise ratio 

is 2.83 at each boundary (we choose these relatively large values in order to demonstrate the 

potential of the Gibbs Sampler technique and to allow comparison with results obtained using 

exact methods. The problem becomes difficult at lower levels of S.N.R. when using any 
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Again, the results seem generally good. However, several features are worthy of comment. In 

figure 48(a), the outline of the two circles has been detected, but the boundaries of the inter­

section have not - this is as we would have predicted, since k = 2 represents a mis­

specification for several of the rows/columns. It would have been possible to inspect the mar­

gins obtained more closely for evidence of other changepoints, but this would have been time­

consuming (and barely justifiable in the decision-theoretic sense). The processing time 

involved in the production of the results in figure 48(a) was 10.84 seconds (an exact two 

changepoint analysis of this image produced practically identical results in 96.82 seconds). 

Secondly, in figure 48(b), practically all of each of the boundaries has been detected. This is 

surprising as k = 3 represents a mis-specification for all of the rows/columns of the image. 

There is a degree of mis-classification of edge-points, but many of these correspond to lower 

modal probabilities than those recorded actually on the edges themselves. The processing time 

involved was 17.16 seconds. Finally, in figure 48(c), each of the boundaries has been fully 

detected, but there appears to be a larger number of mis-classifications. This is due to our 

recording four points for each row/column where the majority of rows/columns contain no or 

two edges. Again, the points actually on the boundaries seem to be recorded with higher pro­

babilities The processing time involved here was 22.74 seconds. So, overall in this case, we 

might prefer the results in (b) to those in (a) and (c). 

Finally, we investigate the performance of the Gibbs Sampler on a complex composite 

true scene. Figures 49(a) and (b) represent an artificial true scene and image comprising four 

objects - rectangle, square, ellipse, circle - of various textures and their intersections. For this 

example, the rectangle, circle and ellipse were chosen to have the same texture 82 , the square 

to have texture 83 , square/rectangle intersection to have texture 84 created additively from 82 

and 83 , with the background being texture 81 , 

81 

84 

83 

Fig 49(a) : true scene Fig 49(b) : image 
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We assume the same form for image-formation and noise processes, and choose mean levels 

0.0, 2.0, and I.S for 8it 82 , and 83 , inducing 84 to be 3.S, and thus there are a range of 

Signal-Noise ratios in the image. We carry out an identical Gibbs Sampler analysis to that 

above, with k fixed and equal to 4, and m equal to 1. Figure SO depicts the results obtained for 

a range of values of to. 
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Even in this complicated case the results are encouraging. Note that there is visually little 

difference between the results from each analysis. The processing times involved in the pro­

duction of the results were 22.74, 39.04 and 69.66 seconds for (a), (b) and (c) respectively, 

none of which being inordinately large considering the relative complexity of the true scene. 

Thus in the examples above, we have seen how the Gibbs Sampler algorithm is useful to 

our edge-detection routines, allowing good approximate inferences about edge positions to be 

made in the Bayesian changepoint framework for images derived from relatively complex true 

scenes without an excessive amount of processing time being required. We present further 

applications of the Gibbs Sampler algorithm later in this thesis. 
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Fig 47(a) : true scene Fig 47(b) : image 

technique). We proceed to carry out a Gibbs Sampler analysis under exactly the same prior 

assumptions and using the same implementation as above, with to and m both equal to 1. We 

study the behaviour for different choices of k. The results are depicted in figure 48. 
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(3.8) Analysis of complex true scenes· conclusions. 

We have seen above how the one changepoint posterior distribution (2.11) can be used 

as the basis of an edge-detection technique for more complex true scenes as well as for the 

simple single edge true scene for which it was originally designed. We saw, for example, that 

for single convex objects, (2.11) dealt adequately with a surprisingly large number of cases, 

despite the fact that its "one-changepoint" presumption was incorrect for each of the rows and 

columns of the image. We presented some theoretical justification for the use of (2.11) for the 

two changepoint sequences present in a convex object true scene, and saw that modes in (2.11) 

could be associated with true changepoint positions in a two changepoint sequence, and indeed 

that (2.11) was frequently bimodal with modes at both true changepoint positions. We rejected 

the idea of locating the two changepoints using "approximate" inference in this way, however, 

on both practical and theoretical grounds. We then saw that exact inference was possible using 

the natural two changepoint extension to (2.11), namely (3.2), but that the resulting edge­

detection technique involved an unacceptable amount of computation. We therefore discussed 

adjustments to a "full" (row/column) analysis using (2.11) suitable for the analysis of convex 

object true scenes. First, we saw how the analysis of projections in the image data other than 

those perpendicular to the axes of the true scene was informative in some circumstances. 

Secondly, we saw how another binary search technique (binary segmentation) was extremely 

useful and straightforwardly implemented in the analysis of convex object true scenes. We 

discussed another adjustment to (2.11) leading to the posterior form (3.17) specifically to deal 

with small convex objects or thin features. Finally, we saw how sampling based techniques for 

evaluating marginal posterior distributions, more specifically using the Gibbs Sampler algo­

rithm, could be used as a detection technique for multiple changepoint sequences. We saw that 

when applied to the edge-detection problem and implemented in the correct way, these tech­

niques produced generally excellent results in circumstances when an exact analysis using the 

mUltiple changepoint extension to (2.11) would not have been feasible due to the immense 

amount of computation required. 
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Chapter 4: Spatial Dependence and Edge Continuity. 

As we have seen in chapters 2 and 3, ideas from changepoint analysis can be used as the 

basis of a decision-based technique for the solution of the important problem of edge­

detection. We have seen that we may identify edges in the image with modes in changepoint 

posterior probability distributions. However, we have typically carried out the above analyses 

processing each row/column in isolation, and treated the results obtained independently (the 

exceptions to this being our use of "smoothing" in the production of figures 8(b) and (c), and 

the development of the implementation of the Gibbs Sampler-based detection methods). Now, 

while this may be justified on the grounds of simplicity and expediency, it clearly ignores one 

crucial aspect of our prior knowledge of the nature of the true scene, namely the presence of 

localised spatial dependence. The use of local dependence priors (Gibbs/M.R.F) for true 

scenes in statistical image processing is well documented in recent years, and is widely 

regarded as being of fundamental importance. For the edge-detection problem, the concepts of 

spatial dependence in and continuity of the true scene is important in two ways. First, we 

would expect pixels in non-edge regions to exhibit spatial dependence in the usual way, and 

consequently non-edge portions in anyone particular row should correspond spatially to non­

edge portions in adjacent rows. Secondly, we would expect edges in the true scene to be spa­

tially continuous, and thus edge-points in any row should correspond to similarly positioned 

edge-points in adjacent rows. This suggests that the changepoint based techniques developed 

above may be amended to incorporate local dependence ideas in two ways, either (1) via the 

prior form for texture parameters (assuming some joint prior distribution for the pixel ele­

ments of adjacent rows/columns in the true scene), or (2) via the form of the prior distribution 

for changepoint position in adjacent rows/columns (or indeed via a combination of (1) and 

(2)). However, we must ultimately balance the advantages that may be gained from these con­

siderations against the additional processing demand needed for their implementation. 

We now proceed and attempt to adapt the changepoint detection techniques using the 

ideas discussed above. 

(4.1) Localised pixel dependence. 

We attempt to incorporate local dependencies into the form of our prior distribution for 

the discretised pixel version of the true scene for use in changepoint based edge-detection 

techniques. In keeping with the notation of previous chapters () = {(}ij, i ,j = 1 , ... ,n } 

represent the random variable corresponding to the discretised n x n pixel version of the true 

scene S9. and Y = {Yij • i ,j = 1 •...• n } represent the random variable corresponding to the 

observed image derived from (). Let (}i and Yi represent a single row/column taken from the 
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true scene and image respectively. Now recall the definition of the Markov Random Field joint 

distribution in section (1.4.1.1) of chapter 1 related here specifically to O. In addition to a 

positivity condition, the M.R.F. is characterised by the following relation - for each (i ,j), the 

conditional distribution of Oij given O(iJ) = {Olcl; k,l = 1 , ... , n , k "#i , 1 "# j} can be written 

(4.1) 

where Oi)ij represents the pixels in some suitably defined neighbourhood of (i ,j), usually 

taken to be a subset of pixels in Se in the vicinity of (i ,j). 

In the edge-detection problem, our interest lies in changepoint posterior distributions 

given the data in rows/columns of the image. To allow the evaluation of these distributions, 

we must specify prior distributions for the true scene parameters, and previously we have 

chosen particularly simple forms. We now concentrate on more complex choices using the 

conditioning property (4.1). We consider two alternatives. 

(4.1.1) Introduction of pixel dependence: method 1. 

Consider the joint posterior changepoint distribution of the single changepoints 

( rj -1 , rj , rj + d = r J in each of the three adjacent rows j -I , j , j + 1 given the data in those 

rows (YJ-l,Yj ,Yj +d = YJ • If we denote the true scene pixel values in rows j-I,j,j+I, 

(OJ-I, OJ, OJ+d by OJ then it is clear that 

[rJ I YJ , 'If] oc [YJ I rJ , 'If] [rJ] 

= J [YJ I rJ , OJ ] [ OJ I rJ , 'If] [rJ ] (4.2) 

It remains to specify forms for each term in (4.2). The first term is merely the likelihood, and 

under the same conditional independence assumptions as in the previous section can be written 

where SJ denotes the pixels of S in rows j-I ,j ,j+ 1. The third term in (4.2) is the joint prior 

on changepoint position in the three rows, and can be chosen to be uniform, or chosen so as to 

reffect the spatial continuity of the edge - this is discussed in section (4.2). 

Thus it remains to specify a form for [OJ I rJ , 'If], the joint prior for true scene values in 

the three rows. In this section we choose this prior to be of the Gibbs/M.R.F. form (4.1), and 

may select, for example, from any of the forms presented in Besag (1974,1986). We now pro­

vide an illustrative example. Suppose that the image formation process corrupted each pixel in 

the true scene independently and identically with Gaussian white-noise as before, so that 

(4.3) 
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and suppose that (]2 is known. Then a suitable choice for the distribution of 8
J 

might be based 

on the conjugate auto-normal version of (4.1), i.e. 

( 
-1 ( .. )2] 

oc exp - 8ij - Jiij - L 13E 8kl 
2Aij (k,/) e iJij 

(4.4) 

We thus introduce a further stage into the hierarchy of the modelling of the image data (we 

choose the prior mean, variance and interaction parameters Jiij ,Aij ,{311 to be the same across 

each texture but different between textures). It is now clear that the prior for 8J takes the form 

of a multivariate Normal distribution 

(4.5) 

where JiJ is the 3n x 1 vector of prior means, and QJ is the 3n x 3n matrix with diagonal 

entries ;.. and off-diagonal entries - ~~~ - we choose the parameters to ensure that QJ is 
u u 

symmetric and positive-definite. We may naturally extend this prior to [YJ I rJ ,8J ], 

reflecting the changepoint positions in the three rows by careful choice of JirJ and by ensuring 

that 131/ is non-zero if and only if pixels (i ,j) and (k, l) are neighbours and are not separated 

by changepoints forming an edge in the three rows. We denote the resulting Normal prior 

conditional on r J by 

Now, from (4.3) it is clear that 

and thus by (4.6) and a standard result of Lindley and Smith (1972) 

[YJ I rJ , 'If] = J [ YJ I rJ ,8J ] [ 8J I rJ , 'If ] 

- N(JirJ ,Ir) 

h r -_ (]2r + Qr -I, 
W ere ~'J J 

(4.6) 

(4.7) 
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Thus to compute the probabilities in (4.2) we must evaluate the multivariate Normal pro­

bability in (4.7), i.e. the quantity 

(4.8) 

We now investigate the nature of I, and its inverse. It is clear that 
./ 

= Q, -I( a2Q, + I) 
./ ./ 

and hence 

(4.9) 

so that interest turns to inverting (J2Q, + I. First, we examine the precise form of Q, in the 
./ ./ 

changepoint context. Assuming that Aij = Al and pH = PI if pixels (i ,j) and (k ,I) are in 

texture region 1, and Aij = ~ and pH = P2 if pixels (i ,j) and (k, I) are in texture region 

2, and under a second order nearest neighbour system (where the eight neighbours of pixel 

(i,j)are{(k,l):k = i,i±1 ,I = j,j±1 ,(k,/) i= (i,j)}),Q, can be written 
./ 

Q,./ = (4.10) 

where the first row and column block refer to OJ-I' the second to OJ and the third to OJ+l' the 

off-diagonal blocks representing the interactions between adjacent rows - note that rows i-I 

and j+ 1 are a priori independent. A, is the n x n matrix given by 

[
C

1 
0 ] A, = 0' C;_, (4.11) 

1 . ' 
and C 1 is the k x k tri-diagonal matrix matrix with diagonal elements A' and off-dIagonal ele-

I 

ments - Pi for i = 1,2. Now consider B ,. We make the restriction that changepoint posi-
A' 'J-l J 

I 

tions in adjacent rows can only differ by one pixel to reflect the spatial continuity of the edge 



- 104 -

over the three rows. Thus we consider only three cases. 

First, if T,'_t = T· - 1, then B can be written 
, '1-1'1 

D,I_1 0 0 
1 

B IT 0 0 = U,-1 (4.12) '1-1'1 1 

0 1 Dl V II _, 11_' 
1 1 

where Dk
i 

IS th k k . d' f3 e x tn- lagonal matrix with all non-zero elements equal to i for 
A,. , 

i = 1, 2, u~ is the k x 1 vector with only the k'th element non-zero and equal to _ Pi and Vi 
A,.' k , 

is the k x 1 vector with only the first element non-zero and equal to - Pi for i = 1,2, and 0 
A" , 

is the zero matrix of appropriate dimension. 

Secondly, if T,'-t = T,' then B can be written 
'1-1'1 

(4.13) 

Finally, if Tj-l = T,' + 1, then B, , can be written 
1-1 1 

Dl 
r

J 
u 1 

'1 
0 

B 0 0 lT 
= v ll _, -1 

'1-1'1 1 (4.14) 
0 0 D;_, -1 

1 

Thus, using (4.10) - (4.14), we can write down Q, and hence a 2Q, + I explicitly - the 
J J 

2 

latter being identical in form to Q'J but with the diagonal elements of C ~ replaced by ~. + 1, 
, 

and all other non-zero elements of Q'J replaced by - a;:'i, for i = 1,2. 
, 

It remains to invert a2Q, + I before computation of the quantity In (4.8). This is a 
J 

solvable problem, as we may evaluate the determinant using a recurrence relation, and hence 

immediately write down by inspection the inverse for this tri-diagonal matrix, or alternately 

use an iterative method for successive values of T over the complete range. However, it is 

clear that the amount of computation involved in the remaining calculation is considerable in 

either case (the evaluation of the determinant factor and the sum of squares in (4.8) would be 

time consuming for large n even if the form of I, were relatively straightforward, which it 
J 
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certainly is not in this situation). 

We may simplify the problem of inverting I'J by making certain assumptions. We could 

revert to the simpler situation in which Q, is taken to be independent of T and the 
J J, 

changepoint structure is only reflected in choice of prior mean vector. Then Q, would take the 
J 

form 

(4.15) 

where An is the n x n tri-diagonal matrix with diagonal elements .!.. and non-zero off-diagonal 
A 

elements - ~ , and B n is the n x n tri-diagonal matrix with all non zero elements equal to - ~. 
Under this assumption, evaluation of (4.8) is more straightforward as the I-I term is constant 'J 
for all choices of TJ and thus need be evaluated only once in any implementation. Inversion of 

I, here is possible, but again complex - the presence of the (J2] term makes the inversion 
J 

procedure non-trivial. This suggests an alternative simplification - set (J2 equal to zero origi­

nally so as to make I, = Q, -1 and thus the evaluation of (4.8) straightforward, as clearly 
J J 

then I,-l = Q, which we have straightforwardly specified above. Setting (J2 equal to zero is 
J J 

merely a reparameterisation of the problem, which basically introduces local dependence into 

the first (data) stage of the modelling hierarchy, i.e. the distribution of YJ given the true scene 

parameters replaces conditional independence with a covariance structure given by Q, -1, i.e. 
J 

where J1 = (J11 ,J12) refers to the mean level parameters, and yty = (Al'~ ,/31,/32) are the 

known parameters in the dispersion matrix Q'J. However, for uniformity of notation and 

preservation of the hierarchical structure, we continue to regard the covariance structure as 

being introduced at the first prior stage (note that this is essentially equivalent to the assump­

tions made in the previous section when we considered the rows/columns independently, and 

regarded the textures as being homogeneous). It is clear from (4.1) precisely how the introduc­

tion of the dependence structure acts much in the way of classical noise-reduction methods in 

non-statistical image-processing, by use of local averaging. 

Hence we may use the above simplifications to aid in the evaluation of the posterior 

probabilities. However, we consider techniques based upon, for instance, (4.2) and (4.8), as 

being practically inappropriate due to the large amount of computation required. For example, 
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informal calculations suggest that the evaluation of the sum of squares in (4.8) takes the order 

of 20 times longer than standard analysis using the usual one changepoint posterior distribu­

tion (2.11). Also. difficulties may arise over the specification of the prior parameters in (4.4). 

It is widely known that choice of these hyperparameters is critical in standard M.R.F. based 

statistical image reconstruction. Finally. although the extension of the formulation to multiple 

changepoint problems is possible. its implementation is certainly not straightforward, and it is 

not clear how the one changepoint spatial posterior distribution would behave in a two 

changepoint context. 

In light of the above discussion. we consider a second technique based upon a different 

changepoint posterior distribution in an effort to remove some of the difficulties mentioned. 

(4.1.2) Introduction of pixel dependence: method 2. 

Consider the conditional posterior distribution on changepoint position in row j given 

the data Yj in that row and the true scene pixel values in rows j -1 and j -1, 

[r I Yj , OJ-I, OJ+1 , VI]. Then it is clear that 

[ r I Yj , OJ -I • OJ + 1 , VI] oc [Yj I r , OJ -I , OJ + 1 , VI] [r I OJ -I , OJ + d 

= J [ Yj I r , OJ -I , OJ , OJ + 1 ][ OJ I r , OJ -I , OJ + 1 ' VI ] 

. [r I OJ_I , OJ+l] (4.16) 

Under the usual conditional independence assumptions we have a further simplification 

II 

= IT [Yij I Oij] 
i=l 

It is clear that now the dimensionality of the problem has been reduced from 3n to n and thus 

we might expect the amount of processing time required to be reduced by a factor of three 

compared to the above technique. 

After specifying forms for [Yij 10ij]' [OJ I r, OJ-I, OJ+l , VI] and [r I OJ-l , OJ+l], we 

may evaluate the functional form of (4.16). We might then proceed by substituting estimates 

of O. and O· based on y. 1 and y. 1 into this functional form to enable us to compute the 
J-l J+I J- J+ 

posterior probabilities. We consider this solution with respect to the illustrative example 

described above. 

Suppose, as before, that the Yij are independently Normally distributed conditional on 

the Oij, specifically [fij I Oij] == N( Oij , (72), or [Yj I r , OJ] == N( OJ , a211l ). Now, we must 

specify some prior distribution for OJ conditional on OJ-I ,OJ+1 and r. We choose this prior to 
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be of the form of (4.4), i.e. 

where Taij = L pHOlel and the summation runs over the neighbours of (i ,j), but with I =i= j, 
(Ie,l) 

the mean parameters J1ij chosen to reflect the nature of the changepoint sequence, and the vari-

ance and interaction parameters A.ij ,pH are chosen to be equal for simplicity. This prior then 

takes the form of a multivariate Normal distribution of dimension n, i.e. 

n 

~ I Q,I2exp{ - ~(Yj - A,p-1j l Q,( Yj - A,p- TJ ) l (4.18) 

where J1 = [J11 ,J12]T are the mean levels of the two textures, A, is the n x 2 matrix 

reflecting the changepoint position in row j, 1j = [Talj'''., Tanj ]T, and Q, is the n x n 

interaction matrix which takes the form of (4.11) 

[
C, 0] Q = , 0 C,._, 

(4.19) 

where as before Cit: is the k x k tri-diagonal matrix with diagonal elements ~ and non-zero 

off-diagonal elements _I!.. Again, using the result of Lindley and Smith, it is clear that 
A. 

(4.20) 

where I, = a2J + Q,-l and we may evaluate the posterior probabilities in (4.16). As 

before, inversion of I, as in (4.9) is complex, but feasible due to the simple form of Q,. 

Recall that, by (4.9), 

but here Q, is block tri-diagonal, and thus we may write (a
2Q, + J t 1 = P" where 
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= [E-1 0] P, ~ E,,-!, (4.22) 

(J'2 
and Ek is the k x k tri-diagonal matrix with diagonal elements T + 1 and non-zero off-

(J'2p 
diagonal elements - T' Note that the extension to the case where A and p are different for 

different textures at the prior stage is straightforward. Hence, from (4.21) and (4.22), we have 

I, -1 = P,Q, 

(4.23) 

Unfortunately, this form for the inverse of I, involves a large number of non-zero terms, and 

hence to lessen the amount of computation required we must again set (J'2 equal to zero, 

equivalent to the assumption of homogeneous textures exhibiting a localised dependence struc­

ture, or alternatively, dependence at the data stage. 

Finally, before implementing such a scheme, we make one further simplifying assump­

tion by specifying the prior means to both equal zero, and letting the true values in adjacent 

rows solely govern the texture mean levels in the changepoint analysis of row j. This removes 

the need for specifying values for J.ll and J.l2, or parameters in any subsequent stage of the 

hierarchy. The only parameters we must specify now are the variance and interaction parame­

ters, which is pleasing as we concentrate here on the effect of the introduction of the depen­

dence structure. 

Taking into account all of the above simplifications, we proceed with an evaluation of 

the conditional posterior distribution [r Ilj,Oj-l ,OJ+l ,yr], but with Yj - 1 and Yj + 1 used as 

estimates of OJ -1 and OJ + 1, and assuming a uniform prior for r, i.e. 

(4.24) 

h T'" [ T" T"] T and f - ~ P}';/Cl, the summation mnmng over the neigh-were j = a Ij , ... , anj aij - .t.J 
(/c,l) 

bours of ( i ,j) but with I "# j. 

Thus, in (4.24), we have another possible changepoint posterior distribution of interest. 

However, we again encounter problems in practice. Ultimately, we do have to choose values 

for A and f3 - to do so without previous experience or unrealistically detailed knowledge of the 

true scene is complex. We might try an analysis of the image concerned using a range of 
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values for the hyperparameters and compare results over the range, but this is unsatisfactory. 

In light of this and the other factors mentioned above (we have made several very restrictive 

assumptions), we reject the practical implementation of these techniques as a solution to the 

edge-detection problem. Instead, we concentrate on more naive techniques which attempt to 

catch the flavour of some of the more complex ideas discussed but require less in the way of 

prior input. 

We now investigate some naive techniques for improvement of the changepoint posterior 

based techniques for solution of the edge-detection problem. We saw above how the formal 

introduction of ideas of spatial continuity corresponded roughly to noise-reduction techniques 

and local averaging in non-statistical image-processing. We now study the effect of such 

noise-reduction techniques for some of the true scenes and images studied in the previous sec­

tion. 

(4.1.3) Introduction of pixel dependence: naive methods. 

First, consider the simple edge true scene in Figure 3 on p. 25. We saw how the stan­

dard changepoint technique based on the posterior distribution in (2.11) was ineffective at low 

Signal-Noise ratios. Thus we compare the results obtained using (2.11) on the original image 

with those obtained by pre-processing the image using local averaging over a small neighbour­

hood (taken here to be second order nearest neighbour) and carrying out an analysis using 

(2.11). It is clear that such an averaging procedure induces a correlation in the data in the 

pre-processed image, which we note but subsequently ignore for ease of processing. Also, 

local averaging and subsequent changepoint analysis of this nature is strongly related to (4.17) 

above, but with the precise dependence structure somewhat altered. The results of the two 

row only analyses are depicted in figure 51. 
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Fig 51 (a) : standard analysis 

o 

Fig 51 (b) : analysis of pre-processed data 

Recall that, in this example, the Signal-Noise ratio was fixed as 1.0. It is clear that such 
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simple pre-processing is of considerable use and importance. In this context, local averaging 

effectively increases Signal-Noise ratio at the boundary, and also lessens the impact of any 

outlying or extreme noise-corrupted values in the image data. We would expect also that it 

would "blur" the edge, but as can be seen from figure 51, this is not necessarily the case. The 

processing times involved in producing the results in figures 51(a) and (b) were 0.92 and 3.64 

seconds respectively (with pre-processing time included in the latter case) for the row ana­

lyses. 

We now carry out a full analyses on the same true scene as that in figure 10(a) on p. 44, 

namely the circle, again with the Signal-Noise ratio fixed and equal to 1.0. The results are 

depicted in figure 52. 

• + 
++ 

.~ + ,,-++ ++- + 
+ • 0 + 
0+ + .-

• + <9 +++ - + 
+ + ++ 0 

0 • 
.o- .. ~o + 0 0 ~o + 

f • 
0 0+ .-

co 0 
~ 0 + 

+ 

l! 
0 

0+ + 

0> + 0 
0 

, 
0 

8+ 
e 

+ 

0%00 
.0 

0 + ++ J 0 + ++ 0 e 0> + + .. , 0 0 + 
+ 

o\+<Po 
+ + 

• • + ++ 
+ i n 0 

Fig 52(a) : standard analysis Fig 52(b) : analysis of pre-processed data 

Again, the pre-processing of the image data gives rise to more satisfying results - we can more 

readily discern the nature of the true scene in (b) than in (a). The processing times involved 

here were 1.82 and 5.78 seconds for (a) and (b) respectively. 

Thus we have seen how very naive ideas concerning spatial continuity can actually 

improve the performance of the changepoint based techniques introduced previously. We now 

suggest other similar simple ideas. For example, prior to evaluating the changepoint posterior 

distribution conditional on the data in the row/column concerned, we must specify a form for 

the distribution of the unknown parameters of the textures, [0 I 'If]. We saw above how con­

ditional priors dependent on true scene pixel values in adjacent rows of the form 

[ OJ I r, OJ-I, OJ+l] could also be used. A natural extension would be to use a prior for OJ 

which was dependent in some way on the observed data rather than the true scene values in 

adjacent rows, i.e. we might choose the hyperparameters for the prior for OJ as being (deter­

ministically) related to the data in adjacent rows. Consider, for example, a Normal 

changepoint sequence we might select an informative conjugate Normal/Chi-squared prior for 

the unknown parameters, and choose hyperparameters on the basis of results in adjacent rows. 
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Also, it is evident from our original formulation of the changepoint problem that we may 

derive posterior distributions for the true scene parameters in each row, and that these poste­

rior distributions in the Normal case take the form of mixtures of Normal/Chi-squared distri­

butions, which may then be used to derive prior distributions for for adjacent rows. 

It should be noted that these latter ideas are fundamentally different to our original ideas 

about the use of local dependence in priors for the true scene in the edge-detection problem, in 

the sense that they merely use (a posteriori) inferences from single rows to aid in the analysis 

of others, rather than utilising any underlying prior structure. Thus, strictly, we might expect 

the latter ideas to be of little assistance for true scenes corrupted by high levels of additive 

noise. This point is demonstrated by figure 53. The results depicted in figure 53(a) and (b) 

were obtained by row analysis of the single edge true scene in our previous example, where 

the Signal-Noise ratio at the boundary in the image is 1.0. Figure (a) depicts the results 

obtained when changepoint posterior (2.11) is used, where all of the prior distributions 

specified are non-informative, whereas (b) depicts the results obtained when using a posterior 

distribution derived by assuming a degenerate prior distribution i.e. where all of the texture 

parameters are known and correctly specified. 

o 
o 

+ 

Fig 53(a) : Non-informative priors Fig 53(b) : All parameters known 

The results are very similar in terms of accuracy in detection of the edge (presumably due to 

the large amount of data available in each row). Thus as we indicated above, use of 

knowledge concerning spatial dependencies in the fashion mentioned above without use of a 

true scene dependence structure is of little use in this example (we obtain similar results when 

completely ignorant of the true scene parameters to those obtained when we know them pre­

cisely) compared with the improvement obtained when using dependence-based local averag­

ing ideas as in figure 53(b). Thus it seems that introducing some form of local averaging pro­

cedure into the changepoint-based edge-detection analysis is the most profitable way of incor-

porating aspects of localised pixel dependence. 
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(4.2) Edge continuity. 

We now attempt to incorporate some notion of edge continuity into our changepoint for­

mulation of the edge-detection problem. Above, we saw how to amend our choice of prior for 

true scene parameters in each row by introducing a joint structure for the true scene parame­

ters in adjacent rows using Gibbs/M.R.F. type ideas. Here we try to amend our choice of prior 

for changepoint position. 

(4.2.1) Two row joint prior specification. 

Consider the discrete, univariate prior distribution on changepoint position in row j, 

[ rj] for use in the evaluation of the changepoint posterior distribution. Previously, we have 

taken this prior to be uniform (a discrete, non-informative prior). We now study other possible 

choices. For example, it is clear that, using the notation introduced above, 

[rj] = L [rj,rj_d 
7

j
_

1 

= L [rj I rj-d [rj-d (4.25) 
7

j
_

1 

and hence by choice of [rj , rj -I] and marginalisation we may be able to introduce some idea 

of edge continuity - unfortunately, (4.25) is of little practical use in this form, as if we are a 

priori ignorant of changepoint position in any row, then all quantities in (4.25) will ultimately 

be uniform. However, it does lead to a more feasible proposal. Recall that in our full row 

analyses we would begin at row 1, proceed to row 2 etc. until row n had been analysed, treat­

ing each row and its corresponding changepoint posterior distribution independently. Now 

consider the changepoint prior for row j conditional on the data in row j -1, Yj - lt denoted 

[rj I y}-I]' Then under the usual conditional independence assumptions 

[rj I Yj-d = L [rj ,rj_1 I Y}-d 
7

j
_

1 

(4.26) 

where the second term in the latter expression is merely the posterior distribution from row 

j -1 which is known from analysis of the previous row. Thus (4.26) defines an iterative 

scheme through which we can encourage edge continuity. Before implementation we note 

several factors. First, as is clear from (4.26), we must specify the distribution [rj I rj -1 ]. This 

could be chosen to take several forms, i.e. 
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p 
Irj - rj-ll ~ W 

[rj I rj-d 
W+l 

= (4.27) I-p 

n-W-l 
otherwise 

for some Wand p, that is, constant over a symmetric interval containing rj_l' Another possi­

bility for the choice of [rj I rj_l] would take the form 

(4.28) 

for some Wand A. Figure 54 shows the effect of introducing such an updating scheme for 

[ rj I rj_l ]. Figure 54(a) depicts the results of standard row analysis of the single edge true 

scene-based with Signal-Noise ratio equal to 1.0 using (2.11), and figure 54(b) depicts the 

results when (2.11) is implemented in conjunction with (4.28) as the marginal distribution of 

Yj conditional on r, with A = 2.0 and W = 4 for demonstration purposes. 
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Fig 54(a) : Standard analysis 

o 

Fig 54(b) : Implementation of (4.. 28) 

The improvement is remarkable. However, the processing time involved in the production of 

(b) was 16.6 seconds which is considerably more than that required for the standard analysis. 

It it also interesting at this point to study the effect that different choices of A have on the 

resulting set posterior modes. Figure 55(a), (b) and (c) correspond to choices of A = 1.5, 1.0 

and 0.5 respectively. 

It is clear that the choice of A, although not crucial, does effect the final results. Figure 

55 seems to indicate that A should be chosen to be large, but as we shall see below, this is not 

always advisable. We also note this stage that the choice of W is important, but that because 

of our knowledge of the continuous nature of edges in the true scene, is much more straight-

forward. 
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Fig 55(a) : A- = 1.5 Fig 55(b) : A- 1.0 = 

Fig 55(c) : A- = 0.5 

The second factor we note in (4.26) is that in this precise form, [rj-l I Yj-d depends on 

the posterior distribution [rj-2 Ilj -2] through [rj -1 I Yj- 2] etc., so that there is some form of 

relation between the distribution for row j and the distributions for all preceding rows. This 

has little influence if, as in the single edge true scene above, all changepoints occur at approx­

imately the same position in each row i.e analysis is being carried out in a direction perpen­

dicular to a reasonably straight edge. Generally, however, it may be regarded as undesirable. 

Fortunately, this property is easily removed, as the changepoint prior acts multiplicatively at 

each stage and thus its effect can be removed by division . For example, if we require that 

only adjacent rows should be related, then from (4.26) 

[rj Il}-d = L [rj I rj-tl [rj-l I Yj-tl 
r
J

_
1 

ex: L [rj I rj-tl [li-l I rj-tl [rj-l I Yj-2] (4.29) 
r
J

_
1 
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and so the effect of row j-2 on the posterior distribution in row j can be removed by multi­

plying the posterior probability for each possible realisation of 'j by the corresponding poste­

rior probability for that realisation for row j-2. From (4.29) it is clear that this is equivalent 

to evaluating ['j-l I Yj - 1 ] with a uniform prior distribution for 'j-l for use in the evaluation 

of ['j Il}-d. The extension to allow a relationship between rows a larger distance apart is 

straightforward. We now study the effect that removing the inft uence of distant rows in such a 

manner has on the set of results obtained. First, we examine the effect in the analysis of the 

single edge true scene. Figure 56(a) depicts the results obtained using a standard implementa­

tion of (4.28) reproduced from figure 54(b) for comparison. Figure 56(b) depicts the results 

obtained when the scheme for the removal of long distance effects discussed above is used. 

The Signal-Noise ratio at the boundary was again 1.0, and A and W were nominally chosen to 

be 2.0 and 4 respectively. 

It is clear that, in this case, adjustment of (4.28) to procure the removal of long distance 

effects is undesirable, as the edge is less well-defined in (b) than in (a) - this is as we would 

have predicted from the above discussion, as here the row analysis is being carried out in a 

direction perpendicular to a virtually straight edge, and so information about changepoint posi­

tion in any row will be relevant to the changepoint position in distant rows. However, two 

positive aspects can be noted. First, the results in figure 55(b) are more satisfying than those 

in figure 53(a) from a standard analysis, in the sense that the spread of detected edge-points is 

smaller, making the edge itself easier to discern. Secondly, the processing time involved in the 

production of the results in figure 55(b) was 10.9 seconds, representing a time saving over the 

standard implementation of t428) by a factor of a third. We may wish to trade accuracy of 

results for reductions in processing time at some later stage. 
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Fig 56(a) : Standard implementation (4.28) Fig 55(b) : Adjusted implementation (4.28) 

We now study the effect of adjusting (4.28) in the way described above when the edge 

in the true scene has a different orientation. Figure 57 depicts the results of row analysis of a 
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single edge true scene where the edge is not perpendicular to the direction of analysis. Figure 

57(a) depicts the results obtained using the standard implementation, (b) the adjusted imple­

mentation. The Signal-Noise ratio was again 1.0, and A. was chosen to be 2.0, as this gave the 

most satisfying results previously. 
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Fig 57(a) : Standard implementation (N..2.8) Fig 57(b) : Adjusted implementation ( 28) 

It is clear that there is a marked upward trend in the detected edge in (a) compared to that in 

(b) - this is again what we would have predicted from our understanding of the standard itera­

tive scheme, as the changepoint posterior distributions for rows several pixels apart are 

strongly related. Figure 57(b) reflects the actual location and nature of the edge much more 

accurately. Figure 58 depicts the results of the same analysis repeated with A. now chosen to 

be 1.0. 
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Fig 58(a) : Standard implementation t~28) Fig 58(b) : Adjusted implementation (,..28) 

Now the difference between (a) and (b) is less marked, indicating that choosing A. large is not 

necessarily optimal. The analyses involved in the production of figures 57 and 58(b) were 

again appreciably faster than those for 57 and 58(a). 
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As a final remark, we note that a full (row and column) analysis of edge true scenes such 

as that in figures 57 and 58 would have overcome the problems mentioned above - we could 

have chosen A.. to be relatively small and still obtained accurate results - but this would of 

course increase processing time. Also, use of other forms for [rj I rj_l], i.e. such as that in 

(4.27), could be designed so as to reduce the effect that distant preceding rows have on those 

subsequently processed. 

The final feature we note in (4.26) is that there is an asymmetry in the processing and 

updating scheme, i.e. we compute the changepoint posterior distribution for row j dependent 

on the results from rows j-I ,j-2 etc. which lie wholly "to the left of' or "below" row j. 

This does not reflect our prior knowledge of the edge in the true scene, which would indicate 

some form of symmetry in the infl uence that adjacent rows have on the posterior distribution 

in row j (we might have some joint belief a priori concerning changepoint positions in row j 

and rows j-I ,j+ I for example). We now attempt to adapt (4.26) to incorporate such prior 

knowledge. 

(4.2.2) Three row joint prior specification. 

Consider the changepoint prior for row j conditional on the data in rows j-I and j + I 

denoted by [rj I Yj - 1 , Yj + d. Then under the usual conditional independence assumptions, an 

equivalent expression to (4.26) is 

[rj I Yj - 1 'Yj+d = = L [rj_l ,rj,rj+ll Yj - 1 'Yj+d 
rj_1rj+l 

(4.30) 

If we make the additional assumption that in this scheme the posterior distributions from rows 

j-I and j+I are independent in the processing of row j (in the way described above) then 

[rj I Yj - 1 , Yj+d = L [rj I rj-l , rj+d [rj-l Il}-d [rj+l I Yj+d 
rj_1rj + 1 

where the posterior distributions [rj_l I Yj - 1 ] and [rj+l I Yj +1 ] are computed using uniform 

priors for changepoint position (this ensures that this scheme can be used in the analysis of 

whole images without the induced inter-row relationship being present. If we had not made 

the independence assumption above, the amount of computation required would be excessively 

large). We alter notation slightly at this stage - we write the posterior distribution for 

changepoint r conditional on data Y as [r I Y] u if a uniform prior distribution for r is used. 

Hence (4.30) becomes 
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(4.31) 

Note from (4.31) that as we can arrive at, say, [r I Y] f [I Y Y ] . I b j j u rom rj j-I, j+l sImp y y 

multiplying by an appropriate factor, the bulk of the computation (i.e. the evaluation of the 

marginal distribution of data conditional on changepoint position but unconditional of other 

unknown parameters) need only be carried out once for each row in a complete analysis, thus 

keeping computational costs to a minimum. However, it is also clear from (4.31) that evalua­

tion of [rj I Yj - I , Yj+d in this way involves a double summation over rj-l and rj+I and thus 

we would expect an n-fold increase in processing time compared to the evaluation of (4.26). 

Thus the use of (4.31) in this form is not practicable, and we seek simplifications. For exam­

ple, we might try forming the univariate distribution on { 1 , ... , n -I }, [rj -lj + 1 I Yj -1 , Yj + 1 ] 

given by 

(4.32) 

(representing a coincident changepoint position in rows j-I and j+l) and then evaluating the 

posterior distribution 

[rj I Yj- I 'Yj+tl = L [rj I rj-Ij+d [rj-Ij+I I Yj- I ,lj+du (4.33) 
rJ- 1J+ 1 

The amount of computation involved in (4.33) is thus of the same order as that required for 

(4.26). We could extend the definition in (4.32) to 

(4.34) 

for small N, but this would increase processing time. 

As we have seen, an increase in processing time seems to be inevitable for all of the 

above techniques. The additional burden is due principally to the marginalisation procedure 

necessary after specifying a priori the joint probability structure for changepoint positions in 

adjacent rows. In light of this, we now take a fundamentally different approach in an attempt 

to incorporate prior knowledge concerning edge continuity into the changepoint based edge­

detection techniques described above. 

We saw in the derivation of (4.26) and (4.30) how marginalisation of the joint prior 

distribution conditional on data in neighbouring rows could be used to derive useful prior dis­

tributions for changepoint positions in single rows. We saw the effect of incorporating a 
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posteriori inferences from adjacent rows. Here, we propose that these posterior inferences (i.e. 

the changepoint posterior distributions from neighbouring rows) be used directly to derive the 

single row priors, without the need for the time-consuming marginalisation procedure. We dis­

cuss two possible techniques of this type. 

(4.2.3) Obtaining prior for rJ· via [r. 1 I y. l] and [r. I y. ] 
J- J- J+l J+l' 

First, we consider choosing the prior distribution for changepoint position in row j con­

ditional on the data in rows j-I and j+I, as in (4.31). We might then derive this prior 

directly as a function of the posterior distributions in the neighbouring rows computed using 

uniform priors for changepoint positions, denoted [rj-l I Yj-l]u and [rj+l I Yj +1]u respec­

tively in the above notation. For instance, we might combine these two distributions point­

wise additively, i.e. so that 

Pr( rJ· = r I Y Y ) j-l' j+l = 

or multiplicatively, so that 

Pr( rJ· = r I YJ' -1 'YJ' + 1) = Pr( r r I Y ) Pr( I Y ) j-l = j-l U rj+l = r j+l U (4.36) 

for r = 1, ... , n -I, assuming, as above, that the changepoint variables rj-l and rj + 1 are 

independent in the derivation of [rj I l'j-l ,l'j+d. Evaluation of the priors in this way would 

induce an n fold reduction in processing time compared to (4.26). Note that we regard the 

symmetric (in j-I and j+I) forms of (4.35) and (4.36) as essential here to minimise the dis­

ruptive effect of isolated outlying or extreme data values in the image on the changepoint 

posterior distributions. We also regard the additive form (4.35) to be more intuitively reason­

able for use in the changepoint/edge-detection context. We now study the effect that, for 

example, (4.35) has on the results obtained using an otherwise standard analysis. Figure 59 

depicts the results obtained of an analysis using tha adjusted version of (4.28) discussed 

above, and the modification in (4.35), where the single edge true scene concerned was cor­

rupted to produce an image with Signal-Noise ratio equal to 1.0 at the boundary. 

It is clear that, for this image. the results from the adjusted version of (4.28) and an 

implementation of (4.35) are very similar. both being an improvement on the results obtained 

by a standard analysis. Crucially. however. the processing times involved in the production of 

the results in (a) and (b) were 10.12 and 1.16 seconds respectively. Therefore. we have 

achieved of the order of ten-fold reduction in processing time by using the modification 
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(4.35) compared to the adjusted version of (4.28). The improvement is also noticeable in a full 

row/column analysis of the image underlying figures 57 and 58, where again the Signal-Noise 

ratio was 1.0 the results of which are depicted in figure 60. 
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Fig 60(a) : adjusted (4.28) Fig 60(b) : (4.35) 

The results are again comparable and the processing times involved were 22.32 and 2.24 

seconds for (a) and (b) respectively. Thus again the implementation of (4.35) is a factor of 10 

quicker than the adjusted version of (4.28). 

So far in this section, we have only studied modifications to the one changepoint poste­

rior based technique for edge-detection. We saw in a previous section, however, that the one 

changepoint posterior could be used to make approximate inference in more complicated 

multi-changepoint situations corresponding to more complex (convex object) true scenes. For 

completeness, we include here one such approximate analysis, that of the circle in figure 10, 

with the modifications concerning edge continuity included. Figure 61 depicts the results 

obtained from an analysis of a centrally positioned circle with Signal-Noise ratio equal to 1.0 

by each of the three techniques represented in figures 59 and 60. In figure 61 (a), the image 
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was analysed with the "exactly one changepoint" version of (2.11), and in figure 61(b) A, was 

chosen to be 1.0, and W was set equal to 4. 
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The results in (b) and (c) do seem to be an improvement on those in (a), but not as great an 

improvement as for the single edge true scene above. It should be noted that everything that 

we have derived using prior knowledge of changepoint position over adjacent rows in the sin­

gle changepoint case can be reproduced in multiple changepoint case if necessary, but would 

naturally involve further increases in processing time. 

Finally in this section, we propose one further technique by which the prior distribution 

for Tj may be obtained from the posterior distributions in rows j -1 and j + 1. Consider the 

changepoint prior distribution for row j conditional on the posterior estimates of changepoint 

positions (i.e. posterior modes) for rows j -1 and j + 1 derived using uniform priors for 

changepoint position and denoted [Tj I 'j-l , 'j+ 1 ]. Priors of this form are of interest here as 

in the edge-detection problem we would like the edge-point estimates in neighbouring rows to 

be in close proximity to each other. Also, no marginalisation procedure is necessary and 
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therefore we might expect processing techniques based on such priors to be reasonably time 

efficient. Again the bulk of the calculation, the evaluation of marginal row data distributions, 

need be carried out once only for each row. We might specify [rj I Pj -I 'Pj + I] to be of the 

form 

Irj - Mjl ~ WI 

otherwise 
(4.37) 

where Mj = (Pj _ 1 + Pj+d/2 and K is a normalising constant. We might introduce a further 

feature where [rj I Pj _ 1 'Pj + I] is chosen to be uniform on the range between Pj _ 1 and Pj + I and 

zero elsewhere if IPj - 1 - Pj+ll > W2 as this would indicate some unwanted spatial 

discrepancy between adjacent edge-points. By choosing A. to be zero in (4.37) we obtain a 

uniform distribution over the range {Mj - WI, ... ,Mj + Wd. Again, choices of WI and W2 

can be made with reference to ideas about edge continuity. Many priors such as (4.37) may be 

specified. 

We now investigate the effect of priors such as (4.37). Figure 62 depicts the results of 

three analyses of the familiar single edge true scene. Figures 62(a) depicts the results obtained 

from a row analysis using the modification in (4.35) respectively, whereas (b) depicts the 

results obtained when (4.37) is implemented, with A. = 3.0, WI = 4 and W2 = 6. Again, the 

Signal-Noise ratio at the boundary was 1.0. 
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Fig 62(b) : (4.37) 

It is clear that the results in (b) are comparable with those in (a) as a representation of 

the edge, in terms of the degree of continuity exhibited. The processing time involved in the 

production of the results in (b) was 1.24 seconds, marginally slower than for a standard 

analysis, and comparable to an analysis using the modification (4.35). Thus it seems that using 

priors such as that in (4.37) has advantages, as well as being perhaps more intuitively 
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appealing than, say, (4.35) or (4.36). 

It is interesting to see how altering A. affects the results obtained. Figure 63 depicts the 

results obtained when A. was chosen to be 0.0 and 10.0 in (a) and (b) respectively. The same 

values for WI and W2 were used as for figure 62. 

• 

Fig 63(a) : A. = 0.0 Fig 63(b) : A. = 10.0 

The results are broadly similar. Thus it seems that this prior is less sensitive to choices of A. 

than was, say, (4.28). This must be regarded as a positive aspect, as we would need our poste­

rior inferences to be to some degree robust to a range of prior specifications - recall that A. is 

merely a hyperparameter relating to the (conditional) structure of changepoints in adjacent 

rows. 

For completeness, we include the full analysis of the single edge true scene/image in 

figure 57 using the prior in (4.37). Figure 64(b) depicts the results obtained when using (4.37) 

with A. = 3.0, whereas (b) depicts the results from a standard analysis using (4.35) Recall 

that the Signal-Noise ratio for the image concerned was 1.0. Again the results seem satisfac­

tory, and the processing times for (a) and (b) were again comparable. 
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Thus it seems that priors of the form of (4.37) compare favourably with the other ideas 

and techniques we have seen. One potential misgiving we may have is that using priors condi­

tional on posterior modal positions in neighbouring rows may not be sufficiently effective for 

approximate inference in multiple changepoint cases. Somewhat surprisingly, however, priors 

of the form of (4.37) seem to perform quite as adequately as the other techniques discussed 

above. This is demonstrated by figure 65, where (a) depicts the results of a standard analysis, 

and (b) the results of an analysis with (4.37) implemented, with A. = 3.0. 
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(4.4) Post-processing. 

As we have seen above, it is possible to incorporate ideas of spatial continuity into 

changepoint based techniques via priors for unknown parameters. In precisely the same way, 

given a set of edge-point candidates with their associated posterior probabilities resulting from 

a changepoint based analysis of an image, we would like to be able to use these ideas in order 

to remove isolated and therefore probably mis-classified points from this set. We have already 

used a simple "smoothing" technique of this nature to enhance the appearance of a set of 

results, and more importantly, we shall see later when we study parametric edge reconstruction 

techniques that simple estimation procedures (e.g. least-squares estimation) are extremely sen­

sitive to the presence of outlying mis-classified points. Hence we now proceed to study briefly 

some simple post-processing techniques. 

(4.3.1) Naive post-processing techniques. 

First, and most simply, we could accept or reject an edge-point candidate on the basis of 

its associated posterior probability alone, i.e. accept the point if the probability is greater than 

some pre-fixed threshold, reject otherwise. This is somewhat of an ad-hoc technique, but is 

perhaps more acceptable than the other threshold based criteria mentioned previously as the 

quantity of interest is a posterior probability rather than, for example, some arbitrary intensity 



- 125 -

level. Also, such a technique can be justified in terms of the Bayesian decision problem con­

cerning changepoint identification - recall that the Bayesian estimate of changepoint position 

is the posterior modal position corresponding to the minimised Bayes risk under a specified 

loss function. However, in practice, this technique is inefficient for removing isolated edge­

points, as are others purely based on posterior probabilities. 

Secondly, we could use only our knowledge of edge continuity to remove mis-classified 

points, i.e. an edge-point distant from any other recorded edge-points is by definition a mis­

classification. This idea forms the basis for the smoothing technique we saw above. There, the 

number of edge-points recorded as modes in the changepoint posterior distributions lying in a 

small sub-grid centred at each individual edge-point in tum was counted, and if that number 

was again greater than a pre-fixed threshold the individual point was accepted. This technique, 

although easily implemented and reasonably effective, is difficult to justify in a decision­

theoretic setting. It clearly captures the essence of the problem, but requires a degree of input 

(setting sub-grid size and choosing the threshold number of pixels) which might be regarded 

as too detailed, even though we appeal to the ideas of spatial continuity etc. discussed in detail 

previously. Fortunately, in many of the simple cases we have studied (the single edge true 

scene processed by the standard changepoint technique, the convex object true scene processed 

using binary segmentation, complex true scenes processed using Gibbs Sampler based methods 

all at high (> 1.0) Signal-Noise ratios and the improved results obtained using spatial priors) 

the simple smoothing technique is reasonably robust to changes in grid-size and threshold 

value as the edge itself is boldly delineated compared with the mis-classified points which are 

spread relatively diversely. We also reiterate that for the purpose of keeping processing time 

to a minimum, we may have to compromise and use such simple and intuitively appealing but 

basically ad-hoc techniques, provided that the results are robust to input parameters. 

Finally, we consider a simple iterative scheme based on the standard edge-detection 

techniques developed above (we regard these as post-processing operations as they are imple­

mented subsequent to and dependent on the results of the initial analysis). Buck et al. (1988) 

describe an iterative technique based on changepoint analytic methods for the segmentation of 

a two texture true scene, altering prior values for the texture parameters on the basis of the 

results after each iteration. Here, in the edge-detection context, we consider altering the 

changepoint prior between iterations in the same way. 

(4.3.2) An iterative post-processing scheme. 

Consider first the row analysis of a true scene using changepoint techniques but with 

each row being treated independently from all others, and using uniform priors on changepoint 

position, as in our initial examples in chapter 2. After the row analysis is complete, we have 

obtained a posterior probability for each pixel in each row of the image, namely the 
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probability that the changepoint in that row occurs at that pixel, conditional on the data in that 

row. Let E(O) be the n x n matrix whose entries are the n 2 posterior probabilities. Now con­

sider the matrix p(O) whose elements are formed from the elements of E(O) by some local 

operation. In particular, consider the case where the (i ,j)'th element of p(O) is given by 

(4.38) 

i.e. a local average, where Kj is a scaling constant to ensure that the elements of row j sum to 

1. The next step in the iterative procedure is to form the matrix E(l) where 

(4.39) 

It is then clear that the elements of E(l) are merely the row posterior probabilities on 

changepoint position, where the probabilities are evaluated using priors for changepoint posi­

tion defined by the rows of P (0) - recall that these prior probabilities update the posterior pro­

babilities obtained using uniform priors in a simple multiplicative fashion. To obtain esti­

mates of changepoint positions in we then normalise and locate the maximum row by row in 

the usual way. We now repeat this procedure and form p(1) from E(l) via (4.38), and then E(2) 

from E(O) and p(1) via (4.39), and normalise and locate the row modes etc. until the positions 

of these modes stabilise. The amount of computation required to implement such a scheme 

would not appear to be overly large, as merely simple local averaging operations are necessary 

in addition to the usual probability calculations and maximisation routines. 

We now illustrate the use of the iterative scheme defined by (4.38) and (4.39) on images 

derived from the simple edge and circle true scenes. Figure 66 depicts the results obtained 

after each of the first three iterations of the scheme when a row analysis using the posterior 

distribution (2.11) is carried out, the Signal-Noise ratio at the boundary being 1.0. 

o 

+ o 

Fig 66(a) : Raw results Fig 66(b) : First iteration 
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Fig 66(c) : Second iteration 

There is a marked improvement between (a) and (b) in terms of the results being a representa­

tion of the edge. The additional processing time needed was 1.3 seconds per iteration. Figure 

67 depicts the results obtained after each of the first three iterations of the scheme for a full 

analysis again based on the posterior distribution (2.11). The Signal-Noise ratio involved was 

again 1.0. 
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Again there is a clear improvement after each iteration, with the edge being located with 

increasing accuracy. The additional processing time here was 2.6 seconds. Thus, in both cases, 

the procedure leads to more satisfying results. Naturally, we encounter the usual difficulties 

associated with such iterative schemes which we have no completely satisfactory solutions 

other than simple intuitive ones. For instance, we again merely assess "convergence" of the 

algorithm via modal position stability etc. without fully understanding the nature and 

behaviour of the results at intermediate stages. However, in practice, more than three iterations 

are rarely needed, and so we content ourselves with accepting the results at this stage. 

It is easy to develop other simple iterative schemes of this nature which can be used for 

the post-processing of results from changepoint based analyses. 

(4.5) Spatial dependence and edge continuity - conclusions. 

We have seen in this section how to incorporate spatial prior knowledge into our 

changepoint based analytic techniques, with the intent of removing isolated or mis-classified 

edge-points. We first attempted to use Gibbs-type priors for the true scene pixel parameters, 

and saw that the amount of computation involved proved to be restrictive. However, approxi­

mate versions of these types of priors were successfully and efficiently used as the basis of 

noise-reduction algorithms for pre-processing of the image data. We then developed several 

special forms for changepoint prior distributions in an attempt to encourage edge-continuity. 

Finally, we discussed post-processing schemes, and suggested one particular iterative pro­

cedure. The majority of examples presented concerned the analysis of single edge true scenes 

using the one changepoint posterior distribution (2.11), with the obvious extension to the mul-

tiple changepoint case being mentioned. 
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Chapter 5: Variation of Image-Formation Process. 

We have seen how under a simple linear form for the image-formation process, the edge­

detection problem may be straightforwardly formulated to be equivalent to an extensively stu­

died version of the statistical problem of changepoint identification - that in which each pixel 

in the discretised version of the true scene is corrupted identically, independently and addi­

tively with Gaussian white-noise in the formation of the image. This a model commonly used 

in image processing (see, for example, Hansen and Elliot (1982», specifically used in the 

study of remote sensing and satellite data. However, it is clearly limited in its applicability, 

and we now seek more general models, and attempt to apply the ideas we have seen previ­

ously concerning changepoint analysis and identification to these models. 

(5.1) Mathematical representation of the image-formation process. 

We begin by studying the standard formulation of the image-formation process described 

by Geman and Geman (1984), and initially follow their notation. Let F denote the true scene 

as represented by the discretised (pixel) intensity process, and let N represent the noise­

process. Then the observed (degraded) intensity image G can be written 

G = VI( ¢( H( F ) ) , N ) (5.1) 

where H affects local-averaging or "blurring" on F (and thus corresponds to the point-spread 

function in classical image processing), ¢ is some (possibly non-linear) transformation func­

tion, and VI represents a combination function, used to incorporate the noise-process into the 

the degradation model. A (not unrealistic) simplification of (5.1) is made by assuming that N 

corrupts each pixel independently. Thus (5.1) can be written 

G = ¢( H( F ) ) * N (5.2) 

where * represents a (usually additive or multiplicative) combination function so that now N 

acts (functionally) independently of F. If we consider each pixel in isolation, then for pixel 

(i ,j), (5.2) is equivalent to 

Gij = ¢( L H(i-k,j-l)F/C/)*Nij 
(/c,/) 

(5.3) 

where the summation runs over pixels in the vicinity of (i ,j). Geman and Geman also make 
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additional assumptions concerning the nature of F and N, and introduce the idea of a true 

scene line process, L (corresponding to edge positions in the true scene specified relative to 

pixel positions), which is not transformed by the image-formation process. In the segmenta­

tion problem, interest then centres on specifying prior forms for the true scene F which take 

the form of Gibbs/M.R.F. distributions. Now, in the notation adopted above, we regard the 

transformed version of F by Hand ¢> as being merely equivalent to another process 8 (Le. 

¢> (H( F)) == 8), and replacing N by £, and G by Y, we merely have that Y = 8 * £, or 

y .. = 8··*£·· 
'J 'J 'J (5.4) 

as implied in (2.1). Thus it is clear how the conditional independence assumptions concerning 

the Yi/s is justified. The formulation (5.4) is equivalent to that used by Besag (1986) and 

others for solution of the segmentation problem. Note that, in this notation, (5.1) may be re­

written simply as Y = f( 8 , £ ). 

Thus, despite the complexity of the physical nature of the image-formation process 

described in (5.1), (5.2) and (5.3), the final form as given in (5.4) is relatively straightforward, 

and we need only concentrate on specifying forms for the noise-process (error structure). We 

then face the problem of making inference about the unknown 8 (or F) and L conditional on 

the realisation Y (or G) through (5.4) and statistical decision theory via Bayes theorem, and so 

we must also choose prior distributions for these unknown parameters. The methods of solu­

tion of the segmentation and edge-detection problems are then crucially different. In the seg­

mentation problem, as we have basically one observation per unknown parameter (Le. one 

realisation derived from the true scene value at each pixel), we must specify complex spatial 

priors so as to maximise the influence of our relevant prior knowledge concerning local depen­

dence. In the edge-detection problem, however, we have vastly fewer numbers of unknown 

parameters of interest (i.e. edge positions in rows and columns), and so we can afford to use 

less complex prior forms for these parameters and the (nuisance) parameters (used to describe 

texture characteristics) in our analysis (we marginalise the problem from interest in (8, L) to 

interest solely in L by integration). Indeed, we have seen in the examples above that, for our 

changepoint based techniques, we may even process individual rows and columns indepen­

dently in many cases and still obtain useful results. It is these simplifying measures which 

allow less time consuming processing algorithms to be devised. 

We now study different simple choices for the function *. First, we revert to our initial 

assumption, where * is taken to be additive. 
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(S.2) Additive noise corruption. 

We saw in our initial examples In chapters 2 and 3 how the simple linear image­
formation process in (2.1) 

y .. = 0 .. + C" 
'J 'J 'J (5.5) 

played an important role in our changepoint based edge-detection techniques, and in statistical 

image-processing in general. We chose to investigate the situation where the Eij were indepen­

dent and identically distributed Gaussian white-noise variables, and the model for the true 

scene in which the 0ij were chosen to be equal across textures. We now seek other interesting 

choices of the image-formation process. Recall that, in our solution of the edge-detection 

problem using changepoint analytic techniques, one necessary step was to calculate the func­

tional form of the likelihood [Y I r ,0] i.e. the conditional distribution of the data in each row 

given the true scene parameters and edge/changepoint position in that row. Thus we restrict 

attention to those image-formation processes for which the calculation of [Y I r ,0] in product 

form is straightforward. 

(5.2.1) Eij Normally distributed. 

Consider first the two texture image derived from a single edge true scene such as that in 

figure 3, with characteristic parameters (01 ,02 ). First, we consider the case which we have to 

some extent studied previously, where the error terms Cij are Normally distributed and the 

textures are presumed homogeneous - thus we write OJ = OJ, i = 1,2. Then there are clearly 

three reasonable models we may use for the true scene and error structure for use in the edge­

detection techniques -

(1) Common variance in error terms across textures. 

(2) Common texture mean. 

(3) Different texture means, different error variances between textures. 

(1) we have already studied, (2) and (3) are other possible models, perhaps ansmg from 

image-formation processes having different physical attributes. Note that in (1) the difference 

in distribution of the elements in observed image Y is purely due to our assumptions concern­

ing true scene pixel parameters, in (2) the difference is purely due to different error assump­

tions, and in (3) the difference is due to a combination of both. Also, here we only consider 

models inducing within-texture homogeneity in terms of distribution of the observed image Y -

this restriction is entirely reasonable (and ultimately necessary, although it is sometimes intro­

duced at higher levels of the hierarchy in other areas of the statistical modelling of images). 
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In each of these cases, where the error terms Eij are presumed independent, the observed 

data Yij are clearly conditionally independent given the true scene parameters, and thus 

[ Y I r ,9] may be formed easily for data in each row/column, with the dependence on 

edge/changepoint position being of utmost importance in this likelihood. It now remains to 

specify prior distributions for the unknown parameters in [Y I r ,9], that is, the texture 

parameters and changepoint position. In the examples we have seen, we have used non­

informative prior distributions for the continuous parameters, which can be viewed as limiting 

forms of conjugate prior distributions. We chiefly restrict attention here to such conjugate 

prior forms because of their analytic tractability which allows for less time consuming pro­

cessing. 

The resulting changepoint posterior forms under a range of prior assumptions (certain 

parameters known, dependent priors etc.) can be found in Appendix 1. We concentrate princi­

pally on case (1) above, for the reasons discussed, and also because it represents the most 

widely studied situation in the changepoint literature. We include this appendix for complete­

ness, but present no examples of the use of the range of posterior distributions in the edge­

detection context as we feel that we have sufficient knowledge and experience of the 

behaviour of such distributions. We note that amount of computation and thus processing time 

required increases linearly with sequence length n for all of the one changepoint posterior 

distributions included, and thus overall processing times for the analysis of images should be 

comparable. 

It is interesting to study the results obtained under an incorrect model specification, for 

example, under assumption of common variance for the error terms when in fact the different 

textures are corrupted by different levels of noise (we might regard this as a technique for 

detecting changes in underlying mean level even if we suspect that there is also a change in 

variance). First, we repeat our simulation experiments to study the behaviour of the "common 

variance" changepoint posterior distribution in such a situation. Figure 68 depicts the posterior 

distributions obtained when calculated via (2.11) for sequences in which the change in mean 

level is from 0.0 to 1.5, but where there is also a change in standard deviation of the error 

terms from an initial value of 1.0. Figures (a) and (b) depict the results obtained when there is 

a decrease in error standard deviation, whereas (c) and (d) correspond to an increase. The 

actual changepoint position was 32 in a sequence of length 80. As before, the posterior distri­

butions shown are obtained by averaging over 1000 replications, and thus can be regarded as 

expectation results (expectation taken with respect to the data distribution). Two features are 

apparent. First, the posterior mode in each case corresponds precisely to the actual 

changepoint position. This is encouraging, as it indicates that the common variance posterior 

distribution is of use even when it represents a mis-specification. Secondly, the modal value of 

the distribution decreases and its variance increases as the error variance increases. Further 
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experimentation indicates that the distribution becomes approximately uniform in appearance 

when the standard deviation change is of the order of +1.5. Thus we might expect the mis­

specification to be of importance when the error terms have these orders of magnitude for their 

variance. 
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It is also interesting to compare the (expected) posterior distributions obtained for two 

changepoint sequences as in figures 11, 12, and 13 using (2.11) when there is again a different 

error structure for each texture. Figure 69 depict the "expected" (i.e. averaged over 1000 runs) 

posterior distributions calculated using (2.11) in which the change in mean level is 2.0, and a 

change in variance that increases from (a) to (d). The error variance for the "outer" textures is 

1.0. For demonstration purposes, we choose the actual changepoint positions to be 25 and 55. 
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We note that the features present above are also present here. So again mis-specification of the 
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model in this way frequently allows adequate results to be obtained. Note also that the exact 

behaviour of (2.11) when actually it represents such a mis-specification in light of the true 

data distribution could have been predicted from results analogous to those in section (3.2) of 

chapter 3. 

Finally, we inspect the results obtained when the posterior distribution (2.11) is used as 

the basis of an edge-detection technique in situations when it in fact represents a mis­

specification relative to the actual image-formation process. Figure 70 depicts the results of a 

row analysis of the single edge true scene where the change in mean level was from 0.0 to 1.0, 

and the initial variance was 1.0. This series of results is exactly line with what we would have 

predicted form the posterior distributions depicted in figure 68. Figure 71 depicts the results 

obtained by a similar analysis of the circle true scene with background of mean level 0.0 and 

circle mean level 2.0, with background error variance 1.0 and varying circle error variance. 

Again, the results are in line with the expected posterior distributions depicted in figure 69. 

Thus overall, it seems that if we make a common variance assumption even when this 

represents a mis-specification, the results we obtain for the edge-detection problem are ade­

quate. 
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It is possible to suggest other additive error structures (e.g. t-distributed errors) for 

modelling continuous data. For the modelling of discrete data, we may again suggest additive 

error structures applicable in the image analysis context. For example, consider a binary true 

scene (pixels taking values 0 or 1) as in the single edge and single convex object true scenes 

we have seen above, corrupted with additive binary noise, that is pixels in the true scene have 

their value "flipped" stochastically with constant probability p (the noise corruption level is 

evaluated as 100 % x p). Again, if we assume that the error terms are independent as in our 

previous examples, then the elements in the observed binary image are conditionally indepen­

dent. This is a commonly assumed form for of image-formation process (see, for example Peli 

and Malah (1982), Greig et al. (1989» and a binary image corrupted in such a way with vary­

ing p is depicted in figure 72. It is also clear that we may discretise the images consisting of 

continuous valued pixels into binary images by thresholding etc. We shall see below precisely 

how to evaluate the changepoint posterior distribution for use in the edge-detection problem 

for such images. 

(5.2.2) Changepoint identification for binary sequences. 

Consider the standard additive image formation model discussed above (as in (5.5» of 

the form 

y .. = B·· ee·· 
'J 'J 'J 

(5.6) 

where Bij takes the values 0 or 1, where e represents addition modulo 2, and where eij takes 

the values 0 or 1 with probabilities 1 - P and p respectively, p being an a priori unknown 

parameter in the model. It is clear that this describes precisely the additive binary noise model 

of the previous paragraph. If we again assume that the error terms are independent, the 

observed values Y
ij 

are conditionally independent given the true scene values Bij. Now, con­

sider as before a single row, j say, taken from the image data. In the edge-detection problem, 

we wish to detect the point representing the boundary at which texture 1 and texture 2 meet, in 

light of the data in row j. As we have seen this is equivalent to the a posteriori identification 

of the position r of a changepoint for the data sequence under the same modelling assump­

tions. Now, for the model in (5.6) and the subsequent assumptions, it can be seen that the 

conditional distribution of data elements in row j is given by 

Bernoulli(p) 

Bernoulli(I - p) 

i = I, ... ,r 
i = r+I, ... ,n 

(5.7) 

where if we allow p to take values on the whole of (0, 1 ), (5.7) reflects our a priori indiffer­

ence as to whether texture I "precedes" texture 2 in the underlying true scene. Suppressing the 
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Fig 72(a) : p = 0 Fig 72(b): p = 0.1 

Fig 72(c): p = 0.2 Fig 72(d): p = 0.3 
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dependence on j, it is clear that the likelihood [Y I r ,p] is given by 

(5.S) 

, n 

where S, = L Yi - L Yi • Assuming a uniform prior for rover 1, ... , n - 1, the posterior 
i=1 i=,+1 

distribution of r is given by 

[ r I Y, VI] oc J [Y I r ,p] [p I VI] (5.9) 

and thus we must specify a prior distribution for the unknown parameter p. We might choose 

this prior to be informative (a conjugate Beta distribution for example), or non-informative for 

which we have several candidates. The non-informative prior distribution we choose is of the 

form 

1 

[pIVl] oc {p(l-p)} 2 (5.10) 

for p in (0,1) and zero elsewhere, which is intuitively pleasing because it is a proper prior, 

and can be derived using several different logical arguments. Hence from (S:S) to (1 .. 10) we 

have 

[rIY.,,] oc r(n-r+s,+~)r(r-s,+~) (5.11) 

which can be evaluated using the appropriate NAG library routine. 

We now study the behaviour of the posterior distribution for r in various circumstances. 

First, we investigate the different forms obtained when p (corresponding to Signal-Noise ratio) 

is varied. Figure 73 depicts the "expected" (in the sense discussed previously) posterior distri­

butions obtained using (5.11) when p is increased from 0.1 to 0.4. The actual changepoint 

position was again chosen to be 24 in a sequence of length SO. 
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Fig 73(a) : p = 0.1 
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Fig 73(b) : p = 0.2 
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Fig 73(d) : p = 0.4 

As we would have predicted, the posterior mode corresponds to the actual changepoint posi­

tion, and the modal probability value decreases as the error rate increases. Note that, in (d), 

where the noise corruption is severe the changepoint is still detected as the mode of the poste­

rior distribution, albeit barely discernible from the other values in the distribution. Clearly this 

behaviour will be mirrored for values of p increasing above 0.5. When p = 0.5 (representing 

a lack of any underlying structure) and p = 0 or 1 (representing a row consisting of one tex­

ture only) the following posterior distributions are obtained. 
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Fig 73(e) : p = 0.5 Fig 73(f) : p = 0 or 1 

Figure 73(e) represents a uniform distribution, and (f) a distribution for which practically all 

of the probability lies at the ends of the sequence. Both of these results are entirely reason­

able given the actual distribution of the data. 

We now study the behaviour of (5.11) when the data results from a two changepoint 

sequence. Figure 74 depicts the expected posterior distributions obtained for the range of 

values of p above, where the two changepoints at 24 and 56 in the sequence. 
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The results depicted in figure 74 are in line with our previous experience with symmetric 

sequences in that the resulting expected posterior distributions are also symmetric, but with 

the returned modal probabilities being less than those returned for one changepoint sequences 

having the same degree of noise-corruption, and with these modal probabilities decreasing as 

the degree of noise-corruption increased. We discover, on further experimentation, that, as 

before, the modal probabilities increase with inter-changepoint distance. For sequences with 

changepoints asymmetrically positioned, we again find that the resulting expected posterior 

distributions are also asymmetric, with modal probability increasing inversely with distance 

from the middle of the sequence. The precise expected behaviour of (S.l1) under varying dis­

tributional assumptions could be investigated in the same way that we investigated (2.11) in 

section (3.2.2) in chapter 3. Crucially, we observe that we may associate modes in the poste­

rior distribution with actual changepoint positions as before - this could have been predicted 

from the informal discussion in section (3.2.1). 

We now study the results obtained from a row analysis of single edge true scene-based 

images with varying degrees of noise-corruption. Figure 7S depicts the results obtained using 

(S.l1) independently on each row where the images concerned had been derived from the true 

scene using p = 0.1, 0.2 , and 0.3 in (a), (b) and (c) respectively. 
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The changepoint technique seems to have coped adequately in each of these situations, except 

possibly in (c), where there appear to be quite a large number of edge mis-classifications even 

though the edge has been broadly detected correctly. Further experimentation showed that 

p = 0.3 proved to be an approximate upper limit on when (5.11) was effective for detecting 

the edge. The analyses in figure 75 required an average of 2.00 seconds processing time, 

approximately twice as much as the analogous analyses based on (2.11). This increase was 

largely due to repeated calls of NAG routine S 14ABF to evaluate the (log) Gamma function 

terms in (5.11). 

We now turn to an analysis of images derived from the circle true scene. Figure 76 

depicts the results obtained from a full analysis in each case, where the same values of pare 

used as in the previous example. 
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Fig 76(c) : p = 0.3 

In each case the circle structure has been captured, with the number of edge mis-classifications 

increasing with p. The amount of processing time required here was 3.90 seconds for each 

analysis. 
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Analysis of asymmetric circle true scene images gave results broadly similar to those 

depicted in figure 17, that is, with one portion of the edge being detected only but with higher 

returned modal probabilities. Analysis of other (e.g. convex object) images is naturally quite 

straightforward. It is also possible to repeat the other developments of analytic technique that 

were made to the simple analysis using (2.11) (e.g. binary segmentation techniques for convex 

object true scenes, Gibbs Sampler-based techniques for complex true scenes, spatial ideas 

etc.). 

Finally, we note that, in the analysis of the single edge true scene and continuous data 

under a normality assumption using (2.11), then for a Noise ratio 1/ a and without loss of 

generality the mean levels for the textures were taken to be 0 and 1, then assuming prior 

ignorance as to the allocation of mean levels to textures, the expected mis-classification or 

error rate, denoted p for reasons we shall see below is given by 

p = 1 _ 4>( 0: ) (5.12) 

where 4>(.) is the unit Normal distribution function. Clearly p is the probability that a pixel 

would be mis-classified if the image was segmented using threshold 0.5. Thus p here can be 

regarded as being equivalent in some sense to the p in (5.7) to (5.10). This gives a means of 

comparing the efficiency of (2.11) and (5.11) on roughly equal terms. Note especially that 

a = I corresponds roughly to p = 0.31, and thus we see by comparing figure 8(a) with 

figure 75(c) that analysis using (2.11) (and the continuum in the data) is more efficient. 

This completes our study of additive error structures. We note, but do not provide exam­

ples here, that a similar approach could be adopted for multiplicative error structures, or 

indeed that we could regard the multiplicative noise to be acting additively after a suitable 

(log) transformation. However, the additive (Gaussian) noise-model is assumed in the large 

majority of practical applications of statistically based image analysis techniques (presumably 

for reasons of analytic tractability above all others). We now present one further image­

formation model of a different variety to those discussed previously in this section. 

(5.3) Data arising from Poisson sources. 

Consider the image-formation process where the observed value at pixel (i ,j), Yjj , is a 

random variable having a Poisson distribution with expected value (Jjj' i.e. 

[ ] 
Y-9 y .. I (J.. ex: (J .. 4/ e 4/ 

'i 'i 'i 
(5.13) 
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Such a model is applicable in the analysis of "count-based" image data, with the count arising 

possibly from the monitoring of radioactive materials in a medical environment. Note that it 

does not fit easily into the Signal * Noise form that we have seen in the earlier parts of this 

section, but nevertheless does represent a valid image model (in the segmentation problem we 

regard the (}ij as unobservables about which we make a posteriori inferences after making a 

priori assumptions and observing data Yij)' Again, consider a single row j taken from the 

image data, and the application of the single changepoint technique for solution of the edge­

detection problem. Assuming homogeneity of textures (i.e. (}ij is constant for all pixels in each 

texture) it is clear that 

_ {poiSSOn«(}t) 
Poisson«(}2) 

i = 1, ... ,r 
i = r+ 1, ... , n 

(5.14) 

Thus the likelihood is straightforwardly formed through (5.14). Again, we regard the pair 

«(}t , (}2) as unknown parameters for which we must specify a prior distribution. We could 

choose an informative conjugate (Le. Gamma) prior for each of (}t and (}2 independently - the 

precise details of this and the resulting posterior form are given in part two of Appendix 1. 

Here, we concentrate on the non-informative limit of this conjugate prior, given by 

1 (5.15) 

the choice of which can again be justified using several different logical arguments. From 

(5.14) and (5.15) , and assuming a uniform prior distribution for r, therefore, we obtain 

(5.16) 

which again merely involves simple terms, and can be evaluated straightforwardly using NAG 

library routines S14AAF or S14ABF. 

(5.3.1) Behaviour of changepoint posterior distribution - poisson sequences. 

We now study the behaviour of this posterior distribution for various values of (}t and 

(}2, first in the one changepoint and then the two changepoint case. Figure 77 depicts the 

expected posterior obtained when (}t has value nominally fixed as 2.0, and (}2 is allowed to 

vary (we shall study later if we are able to interchange (}t and (}2 and obtain identical distribu­

tions). The actual changepoint position in each case was again taken to be 24 in the sequence 
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of length 80. 
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Fig 77(c) : 92 = 4.0 Fig 77(d) : 82 = 3.0 

As we would expect of from our previous experience of changepoint sequences and 

Bayesian identification techniques, the changepoint is accurately detected in expectation, with 

modal probability increasing with 92 • In this case the posterior distributions appear to be sym­

metric about the mode in its vicinity. 

We now study the behaviour of (5.16) in the two changepoint case. Figure 7S depicts the 

results obtained for the symmetric changepoint case (changepoints again at 24 and 56) for the 

same values of 91 and 92 as above. 
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These posterior distributions have identical features to the posterior distributions we have seen 

previously, and the results in the asymmetric cases are broadly similar. We again omit a full 

study of the expected behaviour of this posterior form, but we do however note two points 
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apparent on further experimentation with different values of 81 and 82 in the two changepoint 

case. First, we discover that if we interchange 81 and 82 then the resulting posterior distribu­

tion is altered - this point is made in figure 79, with the modes in (a) taking slightly greater 

values than those in (b), and the distribution in (a) as a whole having a slightly smaller vari­

ance than that in (b). 
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Fig 79(a) : 8 1 = 2.0,82 = 6.0 
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Fig 79(b) : 81 = 6.0,82 = 2.0 

The difference between the distributions is more marked when the changepoints are asymmetr­

ically situated. Secondly, it is clear from its form that (2.11) will be invariant to changes of 

location in the data when the scale is fixed, i.e. the posterior distribution obtained for a 

sequence where the true mean levels are 0.0 and 1.0 is the same as that obtained when the true 

mean levels are a and a + 1, for any value of a provided the variance remains constant. 

There is no such simple additive (figure 80(a), constant mean difference) or multiplicative 

(figure 80(b), constant ratio of means) based relationship for (5.16). 
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Fig 80(a) : 8 1 = 6.0,82 = 10.0 
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Fig 80(b) : 81 = 6.0,82 = 18.0 

Neither of the points above is surprising given first the relatively complex nature of 

(5.16), and also the inherent differences (e.g. variance-mean relationship) between the Poisson 

distributed variables and the other variables we have studied. Important though it is that we 

may still associate modes in the posterior distributions with actual changepoint positions in the 

two changepoint case, it is clear that we must overcome the difficulties that these differences 

bring. Previously, we could have made simple data transformations (e.g. normalisation) 

without affecting the posterior probabilities obtained - with Poisson distributed data this is not 

the case. We now attempt to solve this problem by means of another form of data transforma­

tion before proceeding to investigate the analysis of Poisson source based images. 

As indicated, the complications that arose above were due principally to the mean­

variance inter-relationship, i.e. for a Poisson variable Y, 
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E[Y] = 8 v[ Y] = 8 

for some 8 > O. Now, it can be shown (see, for example Rao (1973), pp. 426-7) that for 

large 8, the variable Z = {Y is approximately normally distributed, with 

E[Z] = {lJ v[ z] = 0.25 

i.e. asymptotically, the variance of Z is independent of 8. In the changepoint/edge-detection 

context, therefore, we might expect to be able to make the square-root transformation of the 

data to normality in order to avoid some of the difficulties mentioned above. Also, we might 

expect the resulting posterior forms to be more straightforward than (5.16) - recall that in the 

changepoint problem, we regard the mean levels 81 and 82 as unknown (nuisance) parameters 

which we can remove by integration over suitable prior measures, and in the normal case this 

generally produces attractive changepoint posterior distributions. 

(5.3.2) Square-root transformation of Poisson data. 

We now study how making the square-root transformation on the data effects the 

behaviour of our Bayesian changepoint identification techniques. First, we derive the one 

changepoint posterior distribution in the case equivalent to (2.1) and the subsequent derivation 

of (2.11) when the error-term variance is known. Consider a sequence of normally distributed 

variables Y assumed to have a single changepoint at an a priori unknown position, with the 

two subsequences having a priori unknown mean levels 81 and 82 and known variance a 2 (see 

in particular section 1.1 of Appendix 1). In order to evaluate the posterior distribution for 

changepoint position r, we must specify a prior distribution for the pair (81 ,82 ). Several 

such prior forms are suggested in section 1.1, Appendix 1. The precise form we choose here is 

the non-informative limit of independent conjugate normal priors for each parameter, 

described in 1.1.2 of the appendix, this reducing merely to the uniform measure on ( - 00 ,00 ) 

(clearly an improper prior, so that we must take care if we wish to incorporate a no 

changepoint alternative into the formulation as before). Using standard techniques, and substi-

. 1 b . tutmg l' = 2' we 0 tam 
a 

where again and 
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We note immediately from the form of (5.17) the presence of the sum of squares term in 

the exponent, and hence that for large n the qualitative behaviour of this posterior distribution 

in expectation with respect to modal positions will be identical to that which we considered in 

section (3.2.2) of chapter 3 (i.e. that the posterior distribution will be maximised when the 

sum of squares is minimised, and two localised modes will be obtained if the distribution of Y 

is altered to that of a two changepoint sequence). We note also that, as for (2.11), the evalua­

tion of (5.17) involves merely simple functions of sufficient statistics, and thus should be rela­

tively straightforward. Both of these points are positive aspects when we consider the relative 

merits of evaluating (5.16) Y is Poisson and evaluating (5.17) when Y is subjected to a square­

root transformation to approximate normality as described above, as we saw that the form of 

(5.16) did not lend itself easily to an analytic study of its behaviour, and that its evaluation 

required the evaluation of special functions via NAG library routines. 

Before studying the adequacy of the normal approximation specifically in the 

changepoint case, we first investigate the behaviour of (5.17) when the data Y is actually 

exactly normally distributed. Without loss of generality, we consider the case (J2 = l' = 1.0, 

and various choices for 91 and 92 , as it is clear from its form that posterior distributions 

obtained via (5.17) will be invariant to location changes in the distribution of Y. This is a very 

important feature enabling us to evaluate the changes in the posterior distribution obtained 

when the Signal-Noise ratio (or in this case the difference in means) is changed. 

In the one changepoint case, the posterior distributions obtained are as we would have 

predicted, with the mode corresponding to the actual changepoint position. The behaviour over 

a range of values of Signal-Noise ratio was also similar to that for (2.11). Both of these 

features are entirely reasonable given our experience with Bayesian changepoint techniques, 

and more specifically the study we made of the properties of sums of squares of normally 

distributed variables in section (3.2.2). In the two changepoint case, we again discover that the 

posterior distributions obtained via (5.17) are frequently bimodal, with the modes correspond­

ing to the actual changepoint positions. In addition, all the features concerning symmetry and 

asymmetry that we have noted previously when we have used one changepoint posterior distri­

butions to make approximate inferences for two changepoint sequences were present in the 

results obtained using (5.17). We also note that in all of these results we were able to inter­

change mean levels 9 1 and 92 and obtain identical posterior distributions. 

It is interesting to briefly compare the results obtained in the two changepoint case when 

using (2.11) and (5.17). For demonstration purposes, we choose an asymmetric sequence 

(changepoints at 24 and 65) where the mean change is large (2.0). Figure 81 depicts the two 

expected posterior distributions obtained. 
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Fig 81(a) : (2.11) Fig 81(b) : (5.17) 

The modal probabilities for (5.17) are greater than those for (2.11). This is reasonable, as 

clearly we instilled a greater degree of structure and a lesser degree of ignorance using our 

prior knowledge of a2. This difference in behaviour could of course be deduced from the 

functional forms of (2.11) and (5.17). 

We now investigate the consequences of making the square-root transformation to 

approximate normality for Poisson sequences in the changepoint context. First, recall that in 

the derivation of (5.17) we specified a non-informative prior distribution for each of the mean 

levels. We note that the particular prior that we have used corresponds exactly to a non­

informative prior specification for the mean levels in the Poisson distributed case (i.e. 

ignorance of (} is equivalent to ignorance of ...[8). Had we had some quantitative prior 

knowledge of the mean levels in the Poisson case, then we would have had to taken a degree 

of care over the choice of prior distributions after the transformation to approximate normal-

ity. 

Consider then the transformation of Poisson sequences to approximate Normal 

sequences, and the subsequent posterior distributions obtained. Consider first the one 

changepoint case. Figure 82 depicts the posterior distributions obtained for a typical (and 

representative) sequence where the changepoint was at 30, and the mean change was from 8 to 

12 in the original Poisson sequence. Figure 82(a) depicts the expected posterior distribution 

when using (5.16), (b) when using (5.17). 

0.3 .......----------------, 

0.2 

0.1 

O~----~~--~~-----T--~ 

o 20 40 60 80 

Fig 82(a): (5.16) 

o 20 40 60 
Fig 82(b) : (5.17) 

80 

The two distributions are indistinguishable. Thus it seems that in the one changepoint case the 

square-root transformation to normality does not have a disruptive effect on the resulting pos­

terior distributions. However, we note again that interchanging 91 and 92 does alter the result­

ing modal values to some small degree, and thus we now acknowledge this as a general and 

slightly negative feature of of our changepoint detection methods (and consequently whenever 
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we refer to 8. and 82 from here onwards, we assume that 8. < 82 ). However, when non­

informative priors for the mean levels are used the overall difference between the posterior 

distributions is negligible, with the posterior modal positions unchanged (presumably why this 

feature did not seem especially relevant in our previous analyses). Thus this feature is of lim­

ited importance for the context in which we work. Note that this feature is of course not 

present for the additive binary noise case we studied in the derivation of (5.11), where the 

distributions of all the data variables were controlled by a single parameter p. 

Consider now this transformation of Poisson variables in the two changepoint case. Fig­

ure 83 depicts the resulting posterior distributions calculated via (5.16) and (5.17) for another 

typical and representative sequence where the actual changepoints were at 20 and 50, and 

again the mean change was from 8 to 12 in the original Poisson sequence. 
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Fig 83(a) : (5.16) 

o 20 40 60 
Fig 83(b) : (5.17) 

80 

Again, the distributions are virtually indistinguishable. Thus we feel reasonably satisfied that 

the Normal approximation that we have made is adequate for the derivation of changepoint 

posterior distributions. 

In light of the results that we have seen above, we might now feel confident in using the 

square-root transformation of the Poisson data sequences to approximate normality for two 

reasons. First, the resulting posterior form (5.17) is more easily computed than (5.16), not 

requiring the evaluation of special functions, and hence would induce a saving in computation 

time in the context of the edge-detection routines we have developed. Secondly, the functional 

form of (5.17) is more analytically tractable than that of (5.16), and hence we may apply all of 

the theory we investigated earlier. Finally, and perhaps most importantly, the form of the 

transformation gives us insight into how altering the difference in mean levels in the Poisson 

sequence (analogous to altering Signal-Noise ratio for Normal sequences) precisely effects the 

resulting changepoint posterior distributions - whereas before we saw that in the Normal case, 

(2.11) was invariant to location changes that preserved the difference in mean levels, we now 

realise that in the Poisson case, (5.16) is (approximately) invariant to location changes that 

preserve the difference in the square-roots of the mean levels. This is confirmed by the poste­

rior distributions depicted in figure 84, the two changepoint sequence having changepoints at 

24 and 65, and where the mean levels were changed in such a fashion, with the difference in 

their square-roots being kept constant at 0.712788. 
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Fig 84(a) : 81 = 6.0, 82 = 10.0 

o 20 40 60 80 
Fig 84(b) : 81 = 10.0, 82 = 15.0161 

Again, these distributions are virtually indistinguishable, and our thoughts above are 

confirmed. The results are repeated if the square-root transformation is made prior to evalua­

tion of the posterior distribution. The distributions for the transformed variables are shown on 

figure 84 as dashed lines, but are practically coincident with the solid lines representing the 

original distributions at every point. 

Finally in this section we study the use of changepoint based edge-detection techniques 

when the image data arises from Poisson sources. 

First, we consider the analysis of single edge true scene-based images. Figure 85 depicts 

the results obtained using (5.16) on un-transformed Poisson distributed data where 81 was 

fixed equal to 4.0, and 82 was allowed to vary. 
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Again, the changepoint technique has coped adequately in each of these cases. The analyses 

involved in the production of the results in figure 85 required an average of 2.48 seconds of 

processing time. Recall that the analyses based on (2.11) took of the order of one second - the 

increase here is again due to the repeated calls of NAG routine S14ABF to evaluate the log 

Gamma function needed in the evaluation of (5.16). 

Now we consider an analysis of the data after it has been transformed using a square­

root transformation. Note also that after this initial transformation, we make make a further 

location transformation of each data element by some constant, taken here to be the data mean 

over all the image, and still preserve the effective Signal-Noise ratio. This is sometimes neces­

sary purely for computational convenience. Note also, that the differences in mean level in 

figure 85(a), (b), and (c) correspond approximately to Signal-Noise ratios of 2.34, 1.65, and 

0.89 respectively in the Normal approximation, given a known variance of 0.25. This gives us 

some perspective of the performance of the changepoint techniques under these distributional 

assumptions relative to the performance of, for instance, (2.11). Figure 86 depicts the results 

obtained using (5.17) on the transformed data. 
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These results are virtually indistinguishable from those in figure 85, re-enforcing our faith in 

the Normal approximation for Poisson distributed data. Importantly, however, the analyses of 

these images using (5.17) required an average of only 1.18 seconds of processing time. This 

represents a saving of over a half compared to the analysis of the identical data set, which we 

must regard as important given our primary objective of efficient and accurate processing. 

Finally, we consider the analysis of circle true scenes and images produced under the assump­

tion of Poisson sources. Figure 87 depicts the results obtained using (5.16) on the un­

transformed data, where again 81 was fixed at 4.0 and 82 varied. 
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The circle structure is captured satisfactorily in (a) and (b), but somewhat less so in (c). How-

I I rceI·ve the central region of homogeneity, and so the results overall 
ever, we can c ear y pe 

seem to be adequate. The analysis required an average of 4.56 seconds in each case. Now we 

. I· ·ng (5 17) on the square-root transformed data, again with the shift in consIder an ana YSIS USI . 

location by the overall data mean implemented. The results are depicted in figure 88. 
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Again the two sets of results are indistinguishable. The analysis of this data usmg (5.17) 

required an average of 2.30 seconds of processing time, again a saving of around a half com­

pared to the analysis of the un-transformed data. 

Analysis of asymmetric true scene images gave results that were in line with what we 

have seen previously for (2.11) and (5.11) with one portion of the edge being detected. Again, 

we may develop further techniques for edge-detection based on (5.16) or (5.17) in the same 

way that we did previously to cope with convex object and more complex true scenes. 

(3.4) Variation of image-formation process - conclusions. 

We have seen in this section how the changepoint posterior distributions used in the 

edge-detection techniques we have developed can be adjusted to cope with a range of image­

formation models. First, in the additive Gaussian noise case, we saw how only relatively 

minor adjustments to our initial formulation of the edge-detection problem (two textures, dif­

ferent mean levels but common variance) were required to deal with slightly different image 
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models (Le. different texture means, variances). We also studied the results obtained when the 

changepoint posterior distribution was derived under an incorrect model specification, and saw 

that the mis-specified model often produced adequate results. Next we studied a different addi­

tive noise model, namely that where a binary image is corrupted by additive binary noise. We 

derived a changepoint posterior distribution in the usual way, (5.11), studied its behaviour in 

expectation for various degrees of corruption, and then studied its adequacy as a solution of 

the edge-detection problem. Principally, we saw that it gave acceptable results, but required 

larger amounts of processing time than the techniques previously studied. Also, we deduced 

that it was generally less efficient than techniques based on an underlying normality assump­

tion. Finally, we studied an image-formation process which was different in nature from any 

previously mentioned, namely where the data arise from Poisson sources. We derived a 

changepoint posterior distribution, (5.16), and studied its behaviour in expectation, but saw 

that its behaviour for over a range of texture means was not predictable, and that its evaluation 

involved evaluation of complex functions. For these reasons, we discussed the effect of a 

square-root transformation of the data to approximate normality. We saw that the equivalent 

changepoint problem for the transformed data involved the derivation of a posterior distribu­

tion under a known variance condition. The behaviour of this posterior distribution, (5.17), 

was then studied in expectation, and its adequacy as some sort of approximation to (5.16) was 

found to be satisfactory. The nature of the transformation also gave insight into the behaviour 

of (5.16) for different values of the underlying mean levels. Finally, (5.16) and (5.17) were 

used as the bases of edge-detection techniques for un-transformed and transformed Poisson 

data images respectively. The results obtained were found to be comparable and adequate in 

each case, but it was discovered that the processing time required when using (5.17) was only 

half that required when using (5.16). Thus we concluded that the transformation of Poisson 

data to approximate normality was advisable in every sense. 
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Chapter 6: Edge-Reconstruction and Object Detection. 

In the preceding chapters, we have seen how, given an observed image derived from an 

a priori unknown true scene, Bayesian changepoint analytic techniques may be used as the 

basis of a solution to the important problem of edge-detection. Using such methods, we have 

obtained sets of candidate edge-points and associated probabilities as modal positions and 

values in changepoint posterior distributions. Using ideas about local spatial relationships and 

our interpretation of the posterior probabilities themselves, we have removed some of the 

edge-points, regarding them as mis-classifications. Thus the first stage of our processing of the 

image is complete. We now concentrate on the subsequent stages of processing, and attempt to 

incorporate the simple techniques that we have developed into the more complex and sophisti­

cated techniques that are necessary for successful solution of the problems that arise in the 

area of the statistical analysis of images. First, we discuss our primary objectives in this area. 

The approach that we take to image analysis problems will be, of course, ultimately 

dependent on the underlying decision problem. For instance, in the segmentation problem, we 

wish to classify pixels into texture classes on the basis of a limited amount of data (commonly 

one observation per unknown parameter) and certain qualitative (and possibly quantitative) 

prior knowledge of the true scene. This is a relatively straightforward statistical decision prob­

lem to formulate, but a relatively difficult one to solve practically, and thus we attempt to 

simplify the problem using what we would regard in this context as pre-processing techniques 

such as edge-detection. However, if we merely wish to report the positions of regions of 

discontinuity in the image, or the position, dimensions and orientation of objects in the image, 

then the underlying decision problem, and hence our approach to its solution, is quite dif­

ferent. We shall see in our final chapter how our changepoint techniques can be used directly 

to aid in the solution of segmentation-type problems. In this chapter we concentrate on two 

related and straightforward problems (again perhaps to be regarded as preparatory techniques 

to be carried out prior to segmentation), both of which follow naturally from the changepoint 

based edge-detection results that we have already obtained. First, we investigate simple edge­

reconstruction techniques, that is, given a set of edge-points we seek routines that will 

represent the edge by means of a smooth curve in some coherent manner, either for visual 

enhancement or for analytic purposes. We discuss both parametric and non-parametric tech­

niques. Secondly, we develop object detection routines so that, given a set of edge-points, we 

may draw inferences concerning the location, dimensions and orientation of objects in the true 

scene. We examine particularly the case of objects with edges having a certain parametric 

form, namely that of an ellipse. We also study the related "tank-spotting" problem, where we 

wish to discover the location of a (possibly unknown) number of small objects in the true 
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scene, and where the true scene itself changes with time but the object positions in successive 

"frames" are closely related. Again, throughout all of our discussion, we must reflect the need 

for time-efficient processing, as, at this stage, we may still be able to trade this against the 

need for a high level of accuracy. 

(6.1) Edge-reconstruction. 

We now seek to develop techniques that will allow texture region boundaries and object 

edges to be reconstructed from the set of edge-point candidates obtained via the changepoint 

based detection routines that we have seen in previous sections. We attempt to achieve recon­

struction by implementation of simple and therefore hopefully time-efficient statistical estima­

tion schemes, and hence represent the edge as a smooth curve in the plane. We mention both 

parametric (e.g. least-squares etc.) and non-parametric (e.g. spline-based) estimation methods 

and compare their relative merits. First, we introduce some necessary notation. 

Let Es = {ei: i = 1, ... , p} denote the set of P pixels in S that have been detected as 

edge-points in a changepoint analysis of the image, and let the point ei have (real) coordinates 

(Xi ,Yi) in a coordinate system where the axes are parallel to the edges of the rectangular 

region S. For the moment, we treat each of the elements of Es equally, making no reference to 

either their associated posterior probability or the direction in which they were detected as 

edge-points (Le. in the row or column concerned). We note the relevance of each of these 

points at a later stage. Also, we regard the elements of Es as having already been post­

processed to some degree, possibly using spatial or probabilistic ideas to exclude clear mis­

classifications. Despite this, P is still generally rather large (of the order of the number of 

rows and columns of the image). We proceed to consider various possible techniques for 

reconstructing an edge or edges from the set Es· 

We first concentrate on the representation of a single edge in the true scene as a smooth 

parametric curve. Our first approach is to fit a simple linear statistical model to the location 

data (the coordinates of the elements of Es)· 

(6.1.1) Single edge representation via polynomial regression. 

Consider a simple polynomial regression model for coordinate variables (X, Y) in the 

coordinate system having axes parallel to the edges of region S of, for definiteness, Y on X, of 

dimension k + 1, i.e. where 

(6.1) 

where e is regarded as an error term. The problem of representing the edge now merely 

reduces to choosing the parameters a = (ao,···, air.) (and indeed k itself) on the basis of the 
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set of (observed) coordinates (Xi ,Yi) of the elements of Es , and some reasonable and sensible 

criterion. 

Clearly, if we regard e as some random quantity, then (6.1) is merely a simple form of 

linear statistical model for the location data, which has been extensively studied, and thus we 

are able to select from a wide range of techniques and criteria in order to solve the edge­

representation problem (for instance, for a Bayesian formulation of the analysis of the linear 

model, we mention Lindley and Smith (1972) as an important reference). For our purposes, 

however, given our constraints on processing time, we seek a simple formulation that leads to 

an easily implemented method of solution. One such intuitively plausible solution would 

involve choosing a to minimise the distance Dy, where 

K 

Dy = L (Yi - y;}2 (6.2) 
i=1 

and Yi is the fitted Y coordinate obtained from the model in (6.1) and Xi for a particular choice 

of a. Let dy~2 = (Yi - j;)2. Viewing (6.2) purely as a distance measure, it is clear that 

choosing a in this way (using a "least-squares" type criterion) is intuitively reasonable. Also, 

it is clear that it is equivalent to using a maximum-likelihood criterion under assumption that 

the error terms in (6.1) are independent and identically normally distributed. This latter point 

is somewhat less appealing in these circumstances than that purely of a distance based cri­

terion, but perhaps more statistically satisfactory - recall that in this context, the standard 

maximum-likelihood estimates are identical to Bayesian estimates resulting from a specific 

(non-informative) choice of prior distribution. We also note several other important features. 

First, in place of, or in addition to, (6.1), we might consider the equivalent polynomial regres-

sion model of X on Y given by 

(6.3) 

where again P = (Po, ... ,13k) are regarded as a priori unknown parameters, and choose 

those parameters to minimise D x , where 

K 

Dx = L (Xi - X;}2 (6.4) 
i=1 

and, as above, we write dx~2 = (Xi - Xi ? Clearly, we would expect (6.1) to provide a better 

fit for broadly "horizontal" edges and (6.3) a better fit for "vertical" edges in the true scene. 

Practically, we might fit both (6.1) and (6.3), and assess relative goodness of fit between the 
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two with respect to the relative magnitudes of the minimum values of Dy and D;c attained. 

Secondly, we note that the minimisations of Dy and D;c are readily available, using for 

instance NAG library routine F04ANF and associated routines, and that generally these 

minimisations are not computationally costly even when k is relatively large. Thus straight­

forwardly we may fit polynomials of high order to obtain an effective representation of the 

edge. Thirdly, we might also consider choosing the coefficient parameters of the model by 

minimisation of the distance measured as the shortest straight line distance between the fitted 

and observed points (a hybrid of (6.2) and (6.4)). However, the formulation of this type of 

solution is less straightforward and more complex to implement. Finally, as we noted above, 

there is an equivalence between this type of least-squares type distance criterion and 

maximum-likelihood estimation under a normality assumption. We may thus exploit this rela­

tionship to obtain measures of uncertainty (standard errors etc.) if so required, and to intro­

duce other aspects (weighting of points, sensitivity considerations etc.) into the formulation. 

We study some of these points and other necessary modifications in a later section. 

We now investigate the reconstructions obtained using the simple polynomial regression 

technique described above, where the set Es represents a typical set of results obtained by 

changepoint analysis of an image derived from various single edge true scenes. First, recall the 

familiar single edge of figure 3 in chapter 2. We have seen in figures 8 and 9 how the results 

obtained using changepoint based techniques vary with Signal-Noise ratio. On the basis of the 

results depicted there, now study the various smooth curve representations obtained using (6.1) 

and (6.3) above. In each case, for demonstration purposes we attempt to fit cubic, quartic and 

quintic polynomials to the data and note the relative residual sums of squares (6.2) and (6.4) 

obtained - we can compare these directly as a measure of relative (but not absolute) goodness 

of fit. Figure 89 depicts the edge-reconstructions obtained after an initial row analysis of 

images derived from the single edge true scene and varying degrees of noise-corruption. In 

each case, the solid, dashed, and dotted lines represent the fitted cubic, quartic and quintic 

curves obtained by regressing X on Y (i.e. via (6.3)), the data (the set Es) consisting of the 

row modal positions of one changepoint posterior distributions evaluated using (2.11) under 

the relevant prior assumptions. The edge-point data was spatially unsmoothed, but those points 

having associated posterior probability less than a pre-fixed threshold (in this case 0.2, where 

the common prior probability for each potential changepoint position in the sequence of length 

80 is 0.0127) are omitted from the subsequent analysis - we do not regard this step as unrea-

sonable or impractical. 
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• 

Fig 89(a) : S.N.R. = 2.0 
Fig 89(b) : S.N.R. = 1.4 

+ 

+ 

• 
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+ 

Fig 89(c) : S.N.R. = 0.8 

It is clear from figure 89 that at high Signal-Noise ratios the changepoint results and conse­

quently the fits obtained are quite adequate - the edge representations resulting from the three 

fitted polynomials are indistinguishable (the edge-points themselves are omitted from figure 89 

(a». At lower Signal-Noise ratios, the changepoint modes are more diversely spread over the 

image, and hence the resulting curve differ to a greater degree, and are less adequate as 

representations of the edge - this effect can be seen in (c), where each of the curves, although 

fair summaries of the cloud of points, differ radically from the actual edge in the lower part of 

scene. Also, and as would be expected from figure 89, the residual sums of squares for the 

curves fitted to the results in (a) were considerably smaller than those for the curves in (c), but 

in each case there was no significant improvement in fit over the increasingly complex models. 

We stress at this point that our objectives here are purely representational rather than explana­

tory, and so we are indifferent to precisely which model, curve and set of estimated parame­

ters we choose, given comparable residual sums of squares. We must also guard against 

"overfitting" the data points - our interpretation of the nature of edges in the true scene 
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suggests that, very generally, they should be able to be represented adequately by a low order 

polynomial in this way. Thus we should be able to choose k in (6.1) or (6.3) to be no more 

than, say, five or six. With the large number of points in Es , K of the order of n for an n x n 

image, to fit polynomials of this order should be sufficient. Evaluation of the least-squares 

polynomials using NAG routine F04ANF required of the order of 0.01 seconds of processing 

time, negligible compared to, say, the computation of the changepoint posterior distributions. 

We now compare the curves and fits obtained for edges having other orientations in the 

true scene. Figure 90 depicts the raw changepoint results from the analysis of a true scene 

3x x x . 
containing a single edge broadly making an angle of - , - , and - 10 (a), (b), and (c) 

8 4 8 

respectively, where the image is derived under a Signal-Noise ratio of 1.0. In each case, the 

edge itself was not generated using a polynomial form as in (6.1) or (6.3). Again, the analysis 

was based on posterior distribution (2.11). 
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These results seem to exhibit the same broad features, that is, general appearance, apparent 

number of mis-classifications, degree of localisation, and it is clear that simple smoothing 
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techniques could be used to improve their appearance. We now seek to fit polynomial curves 

to these sets of points as above to obtain a representation of the edge in each case. Figure 91 

depicts the curves obtained when, for demonstration purposes, quintic polynomial forms are 

chosen. In each of (a), (b), and (c), the solid line represents the regression of Y on X, the 

dotted line the regression of X on Y. In this instance, the ehangepoint results were post­

smoothed using a 7 x 7 window - the remaining points after post-smoothing are included in 

figure 91. 

Fig 91 (a) : 37t/8 Fig 91(b) : 7t/4 

Fig 91(e) : 7t/8 

It can be seen that each of the curves is an adequate representation of the edge structure 

implied in each of the data sets (in (a), we would ignore any parts of the fitted curve distant 

from all elements of the data set). It is interesting to note the residual sums of squares for 

. d. ·d 1 gressI·on In figure 91(a) The regression of Y on X resulted in a sum of each In IVI ua re· ' 

f 1605 049 whereas the regression of X on Y resulted in a sum of squares of only 
squares 0 ., 

101.789. Thus we would clearly choose the latter curve as a better representation of the data 

. I (b) the respective sums of squares were 413.459 and 217.877, and thus we would 
pomts. n , 

. th latter curve but would be more indifferent between the two. In (c), the 
stIll choose e , 
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respective sums of squares were 158.163 and 282.875, and here so we would choose the 

former curve. This is as we predicted above, with quality of fit in each case being dependent 

on edge orientation. 

Thus we have seen that, frequently, single, simple edges in the true scene can be 

detected using changepoint analytic techniques, and represented adequately using curves 

derived from polynomial regression models. Crucially, these procedures can be implemented 

efficiently using simple and widely available routines. We now note some further points for 

consideration that can be seen to be relevant in this area. 

(6.1.1.1) Weighting of points. 

We noted above that it would be intuitively reasonable to incorporate the modal poste­

rior probability associated with each of the recorded edge-points into our 

estimation/representation procedures. Also, we noted that classification of pixel as an edge­

point was more credible if several other pixels in its immediate vicinity were also classified as 

edge-points - this formed the basis for our simple smoothing algorithm. Both of these ideas 

may be used in the edge representation problem by means of weighting of the data points. 

This would involve first forming a set of non-negative weights, {WI' ... ' WK} say, one for 

each element of Es, so that Wi was large if the modal probability for point ej was large and/or 

if ei was in proximity a large number of other elements of Es. Then, recalling the equivalence 

between least-squares criteria and maximum-likelihood estimation under normality, we may 

derive weighted least-squares estimates using standard theory. However, a precise technique 

for relating the modal probability and proximity to other edge-points, two quantities vastly 

different in nature, effectively and coherently is not immediately obvious. Also, evaluation of 

such weighted least-squares estimates is generally less straightforward and more computation­

ally demanding. Routines are available, e.g. NAG library routine E02ADF, for solution of gen­

eral weighted least-squares curve fitting problems, but they also involve a relatively complex 

implementation. 

(6.1.1.2) Robustness and influence. 

It is well known that least-squares criteria such as those discussed above are sensitive to 

outlying values, that is, inferences made from a data set containing one or more spurious 

observations may differ greatly from inferences made from a similar data set with the spurious 

observations removed. This is, naturally, a cause for some concern in the edge representation 

context, as here, although we might hope to remove the majority of mis-classified or outlying 

edge-points using the simple smoothing technique, it is clear that serious mis-classifications 

will occur and possibly adversely affect the estimation of the regression parameters. We thus 

might seek, first, to make the estimation procedure robust to the effect of such outlying edge-
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points, and second, detect outlying points with reference to their degree of influence on the 

procedures. 

Several measures can be taken to robustify the least-squares based estimation procedure 

in, for example, (6.1) and (6.3). For instance, we might replace Dy by Dy', where 

D' y (6.5) 

and dy,' is some distance function defined for the i'th observed and fitted y-values, and then 

obtain estimates for the parameters by minimisation of D y ' Interest here, therefore, clearly 

centres on specifying forms for dy,', and several such forms have been proposed. First, we 

might choose 

(6.6) 

the absolute difference in observed and fitted y-values. This is equivalent to an assumption 

that the error terms in the model have a double-exponential (and therefore heavy-tailed) distri­

bution, and corresponds to the so-called L1-norm procedure. The L1-norm solution for an over­

determined system of simultaneous equations can be evaluated using NAG library routine 

E02GAF - this solution is relatively analytically complex. Second, we might choose 

I Yi - Yi I ~ h 

otherwise 
(6.7) 

which is equivalent to an assumption that the error terms in the model have a "Huber" distri­

bution, i.e. loosely, that the "smaller" errors have a Normal distribution and the "larger" errors 

have a double-exponential distribution, with the threshold between the two given by constant 

h. Again, this induces the error distribution to be heavy-tailed. Finally, we might choose 

I Yi - Yi I ~ h 

otherwise 
(6.8) 

which is approximately equivalent to an assumption that the error terms have a t distribution 

with number of degrees of freedom relating to choice of h. Thus again, this choice 

corresponds to choosing a heavy-tailed distribution for the error terms. Minimisation of (6.7) 

and (6.8) is possible using routines in the E04 section of the NAG library. This generally 

becomes quite involved and complex, and thus requires careful implementation. 



- 163 -

Each of the proposed robustness measures can be viewed within the Bayesian frame­

work; see, for example Smith (1983). Consider the common statistical problem of making 

inference about an a priori unknown parameter 8 conditional on data Y. In the Bayesian 

methodology, we make inference via the posterior distribution [81 Y] given by 

[8IY] oc [YI8][8] 

in the usual way. Taking logs and differentiating partially with respect to 8, we obtain 

(6.9) 

a a a 
where lelY = - a810g [ 81 Y]. lYle = - a810g[ Y 18], and Ie = - a810g[ 8] - we refer 

to the terms in (6.9) as "influence functions". It is thus clear through (6.9) how assumptions 

concerning the likelihood function, specifically the error structure imposed on the data in the 

Signal + Noise model, can be related on a linear scale in the inferential context, and how 

varying the choice of error structure can lead to robust estimation procedures. Consider the 

choices for dyJ ' that we have already discussed - dyJ
2 originally, then the functions in (6.6), 

(6.7) and (6.8), and the corresponding distributional assumptions of Normal, double­

exponential, Huber, and approximate (-distributed errors. The influence functions for each of 

these forms are depicted in figure 92, with residual Ei = Yi - Yi plotted as abscissa and 

corresponding influence plotted as ordinate. 

In (a), the influence of Ei increases linearly with its magnitude. In (b), the influence of 

Ei is constant. In (c), the influence of Ei varies linearly with its magnitude when lEi I is less 

than h and is constant otherwise. In (d), the influence of Ei varies linearly with its magnitude 

when lei I is less than h and is zero otherwise. Thus in the latter three case, we limit the 

infl uence on our inferences about the unknown parameters of the system of points for which Ei 

is large. By such methods, therefore, we would hope to make the estimation procedures robust 

to the presence of outlying values. However, in a practical context, "tuning" the procedure 

(choosing values of h) might prove difficult, and, as mentioned previously, the necessary 

minimisation routines are computationally expensive, and also involve other difficulties (start­

ing values, natural constraints to be specified). Thus, we feel that rather than attempt to robus­

tify the least-squares estimation procedure, we should remove possible outlying or mis­

classified points using the smoothing technique we have already seen, or other such simple 

techniques. 
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Influence Influence 

Fig 92(b) : (6.6) 

Influence Influence 

Fig 92(c) : (6.7) Fig 92(c) : (6.8) 

A topic that is related to the robustness considerations that we have mentioned above is 

that of identification of outliers in a data set (rather than seeking to limit their effect on a 

posteriori inferences). In a Bayesian framework, for instance, we might assess the importance 

of a point with respect to posterior inferences about the unknown parameter(s) of interest with 

reference to its influence on the relevant posterior or predictive distribution - see, for example, 

Johnson and Geisser (1982), Pettit and Smith (1983) for a discussion and a comparison with 

various non-Bayesian measures concerned with identification of outliers in the Normal linear 

model. This technique for outlier detection is also similar in nature to non-Bayesian cross­

validation type techniques. We might view, therefore, such techniques as altemati ves to the 

simple smoothing technique implemented above. However, such methods are known to be time 

consuming in their implementation, and thus we are again inclined against them in favour of 

simpler methods. We shall mention the importance of influence and robustness in more detail 

in a later section in connection with a least-squares estimation problem for a particular family 

of closed curves. 



- 165 -

Thus we have seen above that, after suitable smoothing etc. of the results arising from 

changepoint analysis of an image, single simple edges may generally be represented ade­

quately using parametric regression models, and that for these simple models the additional 

computation required is minimal. However, we more commonly have to analyse images 

derived from true scenes containing multiple or composite edges, or closed curves representing 

the edges of objects. The simple polynomial regression models we have described above are 

inadequate for modelling and hence reconstructing these types of edge, and thus we might feel 

it necessary to introduce other, more sophisticated reconstruction techniques. We now discuss 

a familiar non-parametric regression-type approach commonly used when attempting solution 

to the curve-fitting problem. 

(6.2) Curve-fitting via spline-functions 

Consider first the problem of reconstructing a simple edge from the results of a 

changepoint based analysis of an image. Given the set of recorded and accepted edge-points 

Es and their coordinates, (Xi ,Yi), we seek as a solution to the edge-reconstruction problem 

some (continuous) functional relationship between the X and Y coordinates for values of x in 

(some region of) S, not merely in the function at the data points themselves, but also in the 

some sort of extrapolation in the interval on the x axis between two adjacent values of Xi' The 

common statistical model used in this data representation problem can be written 

(6.10) 

where our objective is to make inference about the function f - more specifically, we seek 

some estimate j of f. For convenience, we shall assume that the observed Xi are ordered 

(Xl ~ X2 ~ ... ~ xp), and that the error terms £j are independent zero-mean variables. 

We could, of course, list any number of criteria for the choice of j. We could, for 

instance, choose a least-squares criteria as above, and hence choose j so that the residual sum 

of squares is minimised. Without any further constraints, the parametric solution to such a 

problem is of the form of a polynomial function of order P + 1, similar to those in the models 

described above, and the The non-parametric solution is effectively any function that interpo­

lates the data points. Such solutions, however, are generally intuitively unsatisfying, and are 

especially so in the edge-reconstruction context - we interpret edges in a true scene to be 

broadly smooth curves with possibly occasional sharp corners, rather than curves exhibiting a 

high degree of localised variability. For this reason, it has been widely suggested that instead 

of merely minimising the residual sum of squares, we should rather minimise some function 

involving the sum of squares and some penalty function used to penalise any curve exhibiting 

rapid local variation. One such penalty function which has been commonly used takes the 
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form 

which is combined additively with the residual sum of squares to produce a "modified" or 

"penalised" sum of squares - such a choice for the penalty function has a physical interpreta­

tion as the strain energy in a wire when that wire takes the same shape as I. Thus the problem 

of producing an estimate j reduces to finding that function which minimises the modified sum 

of squares Dmy given by 

p 

= L (Yi - I(X;»)2 + fJ J {/"(x)}2 dx 
i=1 

(6.11) 

where fJ is regarded as a "smoothing" parameter, and is used to trade-off fidelity to the data 

(as measured by the first term) against the smoothness or localised variability of I (as meas­

ured by the second term). Such a procedure can be viewed as a penalised-likelihood approach 

(under the assumption that the error terms in (6.10) are normally distributed), and can also be 

justified in a Bayesian framework (see, for example, Kimeldorf and Wabha (1970». 

The solution to the minimisation problem in (6.11) can be shown to be a piecewise cubic 

polynomial having continuous first and second derivatives at the data points. Such a curve is 

termed a cubic spline, and represents a flexible solution to the non-parametric regression prob­

lem that we have described above. Spline functions are widely used as representational devices 

in data analysis, image processing and computer graphics. There exists an extensive literature 

on splines in a numerical analysis context, and a less extensive one relating to statistical 

analysis. Three important references are Silverman (1985) which contains a statistical ground­

ing and theoretical justification of Bayesian and non-Bayesian aspects of the spline function in 

data analysis problems, further references relating to the statistical foundation of the subject, 

and univariate and bivariate examples, De Boor (1978), which describes the problem in a 

numerical analytic context, and providing a number of straightforward and efficient Fortran 

programs for implementations, and Bartels et al. (1987), which contains a more contemporary 

but less rigorous numerical analytic view, geared especially to computer graphical representa­

tions, and investigating extensions of the ideas to multi-dimensions and generalised spline 

curves of higher degree. Other important theoretical and practical application references are 

detailed within these three. Specifically in the context of computer vision, Shahraray and 

Anderson (1989) used the formulation in (6.11) to reconstruct contours in images. Crucially, 

it can be shown that the computational burden involved in evaluating I is surprisingly small, 

in fact going up only linearly with the number of data points. Thus, it seems that spline 
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functions provide an ideal form of solution to our edge-reconstruction problem, not only in the 

case of simple single edges, but also for more complex composite edges. In the case of such 

composite true scenes, spline smoothing problem is clearly slightly different to both the single 

edge or single closed curve problems. The most important features in composite scenes are 

those points at which smooth curves meet with a discontinuity in derivative. Consider, for 

instance, the reconstruction of a rectangle with sharp corners from edge-point data. Clearly, 

the standard cubic spline curve cannot deal easily with such a problem, as we have seen that 

cubic splines always have continuous first derivative. This difficulty can be overcome, how­

ever, with a little care - for example, we might use an interpolating spline (j3 = 0) through a 

subset of Es , the elements of which are chosen as representing the positions where the smooth 

curves meet. We discuss composite true scenes and the related reconstruction problems at 

greater length at a later stage. 

There are, however, a number of negative aspects associated with implementing a spline 

based curve fitting algorithm. First, we have the problem of choosing the value for the 

smoothing parameter p. This task may be performed automatically using a standard or gen­

eralised cross-validation technique (for details and comments, see Silverman (1985) and dis­

cussion), but this appears to add considerably to the computational burden, and although intui­

tively reasonable is still somewhat arbitrary. Also, we cannot readily regard p as a hyper­

parameter that we may choose at our discretion. Secondly, and related to the first point, our 

sole goodness-of-fit statistic is the value of the modified sum of squares in (6.11) which, as 

indicated previously, is ultimately of little use in assessing adequacy of the curve as a 

representation of the relationships in the data. Thirdly, and perhaps most importantly, by their 

very non-parametric nature, spline curves can not be regarded as anything but representational 

_ there is no explanatory aspect, nor is their any scope for model elaboration or simplification 

_ and indeed we might argue that because of the scale difference between edge and pixel 

width, indicating that the inter-ordinate distance is small compared with the size of the edge 

itself, the smoothed changepoint results themselves provide as adequate a representation of the 

edge as the spline smoothed curve in many cases. Therefore, spline based curve-fitting tech­

niques seem incongruous in relation to our chief interpretation of the image analysis problem -

we are principally and ultimately concerned with a pixel-by-pixel segmentation of the true 

scene into regions of like or homogeneity at some discretised level. We have tolerated the 

representational polynomials above because such a segmentation could be readily deduced 

from them, but for piecewise polynomials such a segmentation is by no means as straightfor­

ward. It is for this reason that we regard spline based curves as representations of edges in 

the true scene, despite their many positive aspects, as beyond the scope of this thesis. We shall 

now subsequently consider only techniques that have some form of explanatory quality, or aid 

in solution to the segmentation problem. 
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We now concentrate on the edge-reconstruction problem for true scenes containing sin­

gle convex objects. Now, it is clear that the polynomial regression models proposed above are 

inappropriate, and indeed not sufficiently sophisticated to reconstruct accurately or even ade­

quately the closed curve defining the object boundary. However, the ideas introduced above of 

minimum distance/least-squares criteria are still appealing. Thus, initially, we concentrate on 

attempting to fit other parametric models to the data set Es using criteria similar in nature to 

(6.2) and (6.4). Note that, in solving the edge-reconstruction using parametric models, we also 

partially solve the object detection and recognition problem discussed previously (we gain 

information as to the location, dimensions and orientation of the object). This would not as 

readily be the case if we were to use non-parametric models. We now proceed and attempt to 

implement the least-squares techniques discussed above for a particular class of convex 

objects whose boundary can be described using a particular parametric form. 

(6.3) Edge-reconstruction for elliptical objects. 

Consider an ellipse in the Cartesian plane having centre (p, q), with major and minor 

semi-axes a and b, and orientated so that its major axis make an angle of a with the positive 

x-axis. Such an ellipse defined by these five parameters is depicted in figure 93. 

y 

a 

Fig 93 : Ellipse 

A point (x, y) in Cartesian coordinates lying on this ellipse therefore satisfies 

((x-p)cosa + (y-q)sina)2 + (-(x-p)sina ~ (y-q)cosa? = 1. (6.12) 
a2 b 

We regard the ellipse to have a sufficiently flexible parametric form as to justify our attention 

t S ggest that it be taken very broadly as representative of the class of all simple 
(and venture 0 u 
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convex objects). 

OUf objective in the edge-reconstruction problem is thus to estimate the five parameters 

the ellipse on the basis of the elements of Es, the edge-points resulting from changepoint 

based analysis of the image. As discussed previously, it is reasonable to solve this estimation 

problem using some minimum-distancelleast-squares criterion. However, several points are 

relevant here that were not relevant above in our study of polynomial regression and least­

squares estimation in the context of simple edges. First, we felt that in the majority of cases, 

at least one of (6.2) or (6.4) would be acceptable as the quantity for minimisation in the above 

due to the nature of the edge. Here, where the edge is in fact a closed curve, neither seems 

appropriate, and we might instead prefer to concentrate on the minimum perpendicular dis­

tance criterion. Secondly, we were able to obtain adequate representations for the edge in our 

previous analysis using simple linear models. It is clear that this is not immediately possible 

here, as (6.12) is plainly non-linear in each of the five parameters, and thus we might be 

interested in formulating a reparameterisation of the problem. These and other points are dis­

cussed in detail below. 

The problem of fitting conic sections to data has been studied previously by Bookstein 

(1979), who used a conic splining technique. Other related problems have been discussed by 

Ripley and Rasson (1977), and Moore (1984), who studied the problem of reconstructing con­

vex sets where typically the data consisted of a set of coordinates in the plane, and knowledge 

as to whether each point was internal or external to that set. For our purposes, the most 

relevant formulation and solution to the ellipse reconstruction problem was described by 

Forbes (1987). It is this formulation that we follow most closely. 

(6.3.1) Ellipse reconstruction - standard formulation. 

First we consider of problem of fitting an ellipse through the elements of Es so that the 

sum of shortest distances between point and ellipse over all points is minimised, that is we 

seek to minimise 

K 

D = L d/ (6.13) 
i= 1 

where d/ = (Xi - XiG? + (Yi - YiG? and (XiG ,YiG) are the coordinates of the point eiG on 

the ellipse nearest to point ei' for each i (Le. eiG lies at the intersection of the ellipse and the 

normal to ellipse passing through ei)' Our first task, therefore, is to determine these coordi-

nates. We may parameterise a point (x, y) on the ellipse by 

x = acosacos8 - bsinasin8 + p 
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y = asinacosO + bcosasin 0 + q 

and hence, after some algebra, it can be shown the minimum value of d·2 occurs when 0 , 
satisfies 

a(xcosa + ysina)sinO + b(xsina - ycosa)cosO + (b 2 - a2 )sinOcosO = O. (6.14) 

It is not straightforward to solve (6.14) for 0 analytically. Forbes suggests including the deter­

mination of the coordinates of the points ejC (through the angles OJ defined by (6.14)) for 

i = 1, ... , K into the overall optimisation procedure, but this increases the dimensionality of 

the problem by K. Thus, we reject this minimum distance ellipse for the moment, and turn our 

attention to other possibilities. 

One minimum distance criterion of interest is the minimum radial distance (i.e. rather 

than measuring the shortest distance to the ellipse for each point ej, we measure the distance 

along the line radial from the centre of the ellipse through eJ. This may be regarded as an 

approximation to the minimum perpendicular shortest distance, and the approximation will 

clearly be more adequate for points for lying near the major and minor axes of the ellipse. 

Using this approximation is advantageous, as we may now obtain the individual distance terms 

more readily - we may immediately write down the point-to-curve distance in this case 

without the need for solution of equations such as (6.14). For each i, the point on the ellipse 

of interest is defined (in our alternative parameterisation) by OJ, where 

or 

tanOj = 

tan( OJ + a) = 
y - q 

x-p 

(y - q )cosa - (x - p )sina 

(y - q)sina + (x - p)cosa 

from which we may straightforwardly evaluate the minimum radial distance for each point ej 

in terms of (p, q ,a, b ,a). Forbes discusses a correction of the minimal radial distance cri­

terion by evaluating the angle between the radial vector (x - p ,y - q)T and the normal vector 

n given in this case by 

(

x - p )( acos2a + bsin2a) + (y - q)( b - a )cosasina ) 
n- ( 2 .2) - (x - p )( b - a )cosasina + (y - q) bcos a + asm a 
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for a point (x,y) on the ellipse in the above parameterisation which can be used to give some 

indication of by how much the radial distance overestimates the true (perpendicular) distance 

between each point ei and the ellipse. 

Forbes also describes a further approximate least-squares technique based on a linearised 

version of the problem (that we shall discuss in detail below) and using a weighting scheme 

for each of the residuals. 

Solution of the ellipse reconstruction problem for this parameterisation and via these 

exact and approximate least-squares techniques, therefore, requires the use of some numerical 

minimisation routine, and thus may be relatively complicated to implement. Prior to attempt­

ing such solutions, therefore, we seek a simpler formulation. It is clear that, in the above 

parameterisation, the potential problems arise due to the non-linearity of, for instance, (6.12) 

and (6.13) in the ellipse parameters. We thus seek a formulation in which this non-linearity is 

replaced by linearity (we have seen in the previous section, parameter estimation procedures 

etc. are much more straightforward to implement for models in which the parameters appear 

linearly, and also that we may easily incorporate simple ideas of robustness and influence into 

such (least-squares based) procedures for linear models for data). To this end, we now discuss 

a linearised version of the ellipse reconstruction problem. 

(6.3.2) Linear least-squares ellipse reconstruction 

It is well known that the equation of a general conic section can be expressed in Carte­

sian coordinates in the form 

(6.15) 

For an ellipse we have the additional condition that cl < 4CSC4 (with similar constraints for 

circles, parabolas etc.). Clearly, (6.13) defines a six parameter model, whereas the ellipse 

reconstruction problem involves only a five parameter model. Forbes discusses a suitable con­

straint in order to define a well determined and numerically stable model which we now 

describe. 

We seek some simple linear constraint on the parameters of (6.15). It is inadvisable 

merely to set one of ( Co , ••• , Cs ) equal to a non-zero constant and divide through (6.15), as in 

reality that parameter might in fact be equal to zero for the ellipse concerned. However equat­

ing coefficients of terms in x 2, y2 etc. in (6.12) and (6.15), it is apparent that the constants in 

(6.15) are given by 
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cos2a sin2a 
Cs = a2 +--

b2 

cos2a sin2a 
C4 = 

b2 +--
a2 

C3 = 2cosasina( :2 - ~) 

C2 = - 2csP - C3q 

Cl = - 2C4q - C3P 

Co = 2 2 
CsP + C4Q + C3PQ - 1. 

It is immediately clear that both C4 and Cs are strictly non-negative. Given a priori ignorance 

of the actual parameter values, we note that setting C4 + Cs equal to a constant is preferable to 

setting either C4 or Cs to a constant individually (as we have no knowledge as to which of 

these options, with the parameters appearing asymmetrically in each, is actually more accu­

rate) - clearly C4 + Cs can be reduced to (a2 + b2) /a2b2. 

In light of the above discussion, therefore, we may re-express (6.15) as 

(6.16) 

after dividing each term by C4 + Cs. Equating coefficients in (6.12) and (6.16), we now have 

that 

a2 _ b2 
Y4 = 2 2 cos2a 

a + b 

a2 _ b2 . 
Y3 = 2 2 sm2a 

a + b 

Y2 = 2p( 1 - Y4) - 2QY3 

Yl = 2Q( 1 + Y4) - 2PY3 

2 
a2b2 PY2 QYl 

Yo = - -- -
a2 + b2 2 2 

enabling us to relate parameters in this our linear parameterisation (Yo, Yl , Y2 , Y3 , Y4) to our 

original parameterisation (p, Q , a , b , a) of the ellipse. Forbes notes the geometric significance 

of Y3 and Y4 and their relation to the positions of the foci of the ellipse. It is possible, after 

some algebra, to invert the relations above, and consequently, if we define eccentricity 
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e = bla, from Forbes (section 2.4) we have that 

tan2a r3 = r4 

e = C -r5)4 
1 + rs 

p = « 1 + r4 )r2 + r3 rd 
2r6 

q = « 1 - r4 )rl + r3r2) 
2r6 

a = ( (2ro + JYY2 + qr,) )4 
2{ 1 - rs) 

b = ea 

with rs and r6 given by 

1 

rs = (r3 2 + rl) 2 and r6 = 1 - rl 

and a is determined exactly given r3 and r4 by the fact that r4 ~ 0 =:) I a I ~ ~, and 

r3 ~ 0 =:) a ~ O. 

Thus, in (6.16), we have a version of the general ellipse equation that is linear in the set 

of ellipse parameters. Thus, as in our reconstruction of simple edges using polynomial regres­

sion, we may now simply fit a linear model of the form of (6.16) to the data in Es in order to 

reconstruct the ellipse, that is, given the coordinates (Xi' Yi) of ei, we find the least-squares 

solution to the over-determined system of equations given by 

(6.17) 

for i = 1, ... , K. It is interesting to note the precise quantity measured by ei' On inspection 

of the form of (6.15), Forbes (section 2.3) discovers that the i'th residual error ei can be writ­

ten as -2eln{ 1 + e2 ) times the difference between the area of the best fit ellipse {as defined 

by the system (6.17» and the ellipse with the same centre, orientation and eccentricity and 

that passes through (Xi ,Yi)' Thus, whereas previously we have interpreted the least-squares 

parameter estimates to be those for which the sum of squares of distances in the plane is 

minimised, here we interpret the estimates to be those for which the sum of squares of the 

differences in areas of ellipses is minimised. This is quite a radical change in interpretation, 

although a perfectly legitimate one. For the general edge-reconstruction problem, therefore, 
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our new formulation of this problem and its subsequent interpretation may seem inappropriate. 

However, in the specific context of ellipse reconstruction, which is inextricably linked to the 

object detection problem, we regard the new formulation to be rather more sensible, as 

"objects" are viewed expressly as space-filling entities in two dimensions (and we have (inad­

vertently) derived a solution relating to minimum area residuals which actually reflects the 

nature of the ellipse reconstruction/detection problem). Thus, the use of (6- J 5) and the usual 

least-squares criterion is reasonable. Recall, also, that such an approach to parameter estima­

tion is equivalent to maximum-likelihood estimation in the Normal linear model, and conse­

quently we can use robustifying measures as discussed in section (6.1.1.2) to improve the esti­

mation procedure. 

Forbes (section 2.5) proceeds to examine in detail the numerical stability of the model 

proposed in (6.16), and his principal conclusions are as follows. The model is "well­

conditioned" (in the numerical analytic sense) if e is large, or if a is near 0 or rc/2. For small 

e (e < 0.1, an extremely eccentric ellipse), it is "numerically advantageous" to rotate the data 

prior to implementation of the estimation procedure so that the major axis of the ellipse is 

parallel to the x-axis. Forbes suggests that this can be done automatically by first fitting a 

straight line to the data, and then rotating by the angle that the straight line made with the 

x-axis. In our experience, this procedure often gives unsatisfactory results when automated, 

and is only generally useful when implemented manUally. It should be noted, however, for our 

applications and for the objects for which our changepoint techniques have been developed, a 

value of e < 0.1 can be regarded as un typical. Forbes also suggests that the data should be 

translated by their centroid so that the centre of the linear least-squares ellipse lies close the 

origin during the estimation procedure, and subsequently translated back to its true location 

before the estimates are reported. Again, in practice, we find this procedure unreliable and 

generally unhelpful. 

Forbes (section (2.6)) also proceeds with details of how (classically) to estimate the vari­

ances of the parameters of interest (p, q , a , b , a) via the variance of r = (ro, rl , r2 , r3 , Y4 ) 

_ each of the parameters of interest can be regarded as a function, z = z( r) say, of r, and 

consequently the variance of z can be written 

(6.18) 

where (J is the root mean square residual resulting from the fit of (6.17), J is the design matrix 

for the model (6.17), and V is the gradient operator. Whilst it must be noted that such a classi­

cal statistical procedure conflicts with our general Bayesian framework, such a procedure can 

be used to give us qualitative (if not quantitative) insight into the nature of estimates arising 

from a least-squares based analysis of the linear model (6.27). For example, Forbes considers 
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the limiting cases as e approaches 0 and 1, and examines the resulting behaviour of the param­

eter variances. He discovers that the estimate of the variance of a increases with e - this is 

entirely reasonable, as e tending to 1 corresponds to an ellipse becoming circular, when of 

course a is a redundant parameter. He also notes that the variance of each of the location 

parameters p and q depends on e and a, and that with e small, a near 0 induces a large 

variance for p and a small variance for q, whereas for a near 1C/2 the converse is true. Again, 

the behaviour in each case is intuitively reasonable. Finally, from variance calculations, 

Forbes establishes that the variance of a increases with e, and also that for a very eccentric 

ellipse, it is important to have sufficient data points at the extreme values on the major axis to 

accurately determine a. 

As indicated above, we might regard quantitative inferences based on such estimation 

procedures as theoretically unsound - we have used classically (maximum-likelihood) based 

estimation techniques that lie uneasily with the Bayesian methodology that we have previously 

adopted. However, for our purposes and in the context of a relatively straightforward (and, 

crucially, linear) model, where the number of data points is relatively large, such procedures 

generally suffice. We shall see at a later stage how estimates of variances can be useful as 

model diagnostics, and as a basis for a technique for the removal of of outlying points. 

Forbes suggests one further approximate method, in which each of the points III the 

linear least-squares problem described by (6.16) are weighted by a factor related to the differ­

ence between the residual error given in (6.17) and the true (shortest) distance to the ellipse. 

The approximate method thus requires the numerical solution of a non-linear least-squares 

problem that can be obtained using an iterative linear least-squares algorithm. As mentioned 

above, such procedures are often difficult to implement and time-consuming. Thus, for the 

moment, we concentrate solely on the linear formulation and the model in (6.16) and (6.17). 

We now turn to the actual implementation of the estimation procedures described above. 

We begin with an investigation of the parameter estimates obtained for simulated edge-point 

data, as it is important that we have a thorough understanding of the adequacy of the pro­

cedures before we turn to the analysis of data arising from the edge-detection routines 

described in previous sections. 

(6.3.3) Analysis of simulated edge-point data. 

Our interest in this section lies in the performance of the estimation schemes described 

above, principally the linear least-squares scheme given in (6.16) and (6.17), under various 

d
. . For I'nstance we certainly wish to investigate (quantitatively) the estimates 

con IUons. ' 
obtained for different combinations of the parameters (p, q , a ,b , a), and the effect of varying 

the degree of "noise-corruption" in the data (recall that the least-squares approach is 

. I t to maximum-likelihood estimation in the case where the error-terms are normally 
eqUlva en 
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distributed - we have interest in the effect that altering the variance of this Normal distribution 

has on the resulting estimates). Also, Forbes concentrates on the situation where the data is 

uniformly distributed around the edge of the ellipse - we have interest in the case where the 

data are not distributed in this way, specifically in the case where the data are restricted to one 

section of the edge. Finally, we are interested in the robustness of the formulation to outlying 

values (points lying away from the edge of the ellipse). As we shall see, each of these areas is 

important in the edge-detection context. First, we discuss how precisely to introduce random­

ness into the simulated edge-point data given the values of (p,q,a,b ,a). 

It is clear that if the number of edge-points K is greater than or equal to 5, and each of 

the points lies precisely on the ellipse, then each of the schemes will reconstruct the ellipse 

exactly - this case is of little theoretical or practical interest. However, if the points are dis­

placed in some (random) way then consequently we would expect some disparity between the 

true ellipse parameters and the resulting estimates of these parameters, with model adequacy 

or otherwise being partly judged with respect to the degree of this disparity in the usual way. 

We may introduce randomness into the edge-point data in several ways. Recall that the linear 

formulation subsequently requires an assumption of normality in the error terms e given by 

where, in the context of our inferences about (p, q , a, b, a), 0'£ is an unknown nuisance 

parameter. Thus, in order to introduce randomness in a way so that our model is a correctly 

specified, we might generate a value of e for some fixed value of 0'£, and replace ro by ro - e 

in (6.16). Now it is clear from the inversion formulae that map (ro, rl , r2 , r3 , r4) to 

( p , q , a , b , a) that as ro is present only in the forms for a and b, it is only these two parame­

ters that will be effected by any alteration to ro. Thus to generate an edge-point randomly with 

Normal errors, we may simply replace ro by ro - e in the formula for a and b, and obtain a'" 

and b ... and then generate a point (x, y) using 

x = a'" cosacosB - b'" sinasinB + p 

y = a'" sinacosB + b'" cosasinB + q (6.17) 

I of B (to Produce data uniformly distributed around the ellipse, we simply 
for some va ue 

h K 1 es of B to be Ttl K 2Ttl K , ... ,2Tt). Under such a scheme, the model in (6.17) 
choose t e va u ' 
. I ·fied Figure 94 depicts 80 edge-points uniformly distributed in this way, gen-
IS correct Y spec 1 • 

. h e different values of 0'£. The actual parameter vector for the ellipse from 
era ted usmg t re 
which the data was generated was (p,q,a,b,a) = (40,40,20,10,0.5). 
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Fig 94(c) : ae = 30.0 

In each case, for this particular ellipse, the randomness of the points is most visually evident 

at the ends of the major axis. These pictures are reminiscent of many we have seen in previous 

sections. However, the technique that we have used to induce randomness in the points is not 

intuitively appealing as a simulation technique for points resulting from changepoint based 

edge-detection analysis - recall that the error terms here relate to a measurement of area, 

whereas, in actuality, due to the nature of the changepoint technique, we might expect them to 

relate to some measurement of distance. Another similar feature is that, in light of the nature 

of the changepoint posterior distributions that we have studied, we would expect the detected 

edge-points to lie externally (i.e. more distant from the centre of the ellipse than the edge 

itself) to a (raised-level) object on a (lower-level) background - here we have internal and 

external points. In fact, we have little knowledge of the true distribution of detected points 

resulting from changepoint analysis. In spite of these remarks, simulating points in the way 

described is useful in order to allow us to study to performance of the estimation procedures. 

We could, of course, simulate random points in many other ways - for instance, we 

could include additive errors in x and y in (6.17), or in any of the ellipse parameters etc .. 
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However only for . . al h , our ongm sc erne does (6.14) represent a correct model specification, and 

so it is on this scheme that we concentrate. 

We now investigate the estimates obtained using the linear model (6.14) and the simu­

lated data. For demonstration purposes, we study the (40,40,20,10,0.5) ellipse above for 

various values of the error standard deviation Ue , with now 20 data points being uniformly 

distributed on the edge of the ellipse. The least-squares solution to the over-determined system 

of equations is obtained using NAG library routine F04ANF, and standard errors for the 

ellipse parameters are obtained using (6.18). The parameter estimates, standard errors and 

mean square errors are presented in table 2. 

Ue 

10 20 30 40 50 

p 40.073 (0.106) 40.147 (0.213) 40.223 (0.322) 40.301 (0.434) 40.382 (0.553) 

q 39.972 (0.076) 39.949 (0.154) 39.931 (0.232) 39.920 (0.313) 39.915 (0.396) 

a 20.375 (0.084) 20.785 (0.167) 21.228 (0.252) 21.700 (0.339) 22.200 (0.429) 

b 10.012 (0.171) 10.007 (0.323) 9.989 (0.457) 9.961 (0.574) 9.925 (0.676) 

a 0.508 (0.001) 0.516 (0.002) 0.523 (0.003) 0.530 (0.004) 0.535 (0.005) 

m.s.e 5.89 11.65 17.29 22.81 28.22 

Table 2 

Clearly, the estimation procedure is producing adequate results even for relatively large 

values of u£. Two features are evident. First, the standard errors associated with estimates of 

p and b are markedly larger than for the other estimates. This is inherent in the linear formu­

lation that we have adopted, and bears out the observations that we have made previously. 

Secondly the estimate of a differs from the true parameter value by over 10% for U e = 50.0, 

despite the small standard error. This is a reason for mild concern, but the true and recon­

structed ellipses actually only differ to a very minor degree, and are virtually indistinguishable 

visually, as can be seen from figure 95. From a representational aspect, therefore, the estima­

tion procedure is sufficiently accurate. In terms of explanation, important in the area of object 

detection, the location and dimension parameters are estimated adequately. Thus, we have rea­

sons to be satisfied to a degree with the procedure. 



- 179 -

• • 
• • • • • • 

• • 
• • 

• • 
• • • • 

• • 

Fig 95(a) : true ellipse Fig 95(b) : simulated edge-points 

Fig 95(c) : reconstructed ellipse 

On closer inspection of table 2, and further experimentation with larger values of 0'£, 

other trends become apparent. For instance, the estimates of parameters a and e (defined 

naively as the ratio of the estimate of b to the estimate of a) respectively increase and 

decrease monotonically with 0'£ - this appears to be true for ellipses of general dimension and 

orientation. We do not discuss the reasons for such trends here - see Forbes (sections 2.5 and 

2.6) for a full discussion of the behaviour of the model and estimates. We merely comment 

that such a feature is typical of least-squares estimation procedures, which, as we mentioned 

above, are not robust to the presence of outliers, and thus potentially unreliable in situations 

where the data is subject to high-levels of noise-corruption. Thus we might take steps to 

robustify the procedure, such as those described in the previous section. However, we also 

notice that the estimates of the parameters p and q are usually accurately determined by the 

procedure for these data sets - we shall see later that the presence of outliers having a dif­

ferent origin (spurious points not resulting from corruption of the ellipse itself) does, unfor­

tunately, adversely affect the estimates of these parameters also. 
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We now investigate the adequacy of the estimation procedures when the data is not uni­

formly distributed around the edge of the ellipse. We could choose to investigate the case 

where the set of (x ,y) values are simulated using (6.19) and a set of () values randomly 

(rather than deterministically) chosen in the (0, 21t) interval. We prefer, however, to concen­

trate on situations more relevant to our own particular interests. For example, we saw in figure 

15 that commonly only one section or arc of the object edge is detected using changepoint 

techniques. Also, in figure 19, we saw that it is possible to detect two disconnected arcs of the 

object edge, and these arcs may coincide with the major or minor axes - we have already 

noted the need for sufficient data in these regions. It is straightforward to simulate data for 

each of these situations. 

We begin with the single arc problem. First, we consider the case when the points cover 

precisely half of the perimeter of the ellipse. Figure 96 depicts three such sets of points (with 

one arc in the direction of the major and minor axis covered in (a) and (c), and an intermedi­

ate case in (b», and the resulting ellipse reconstructions. The true ellipse parameters used 

were identical to those above. Again, 20 data points were generated, (1£ was nominally chosen 

to be 20.0, and the linear least-squares model (6.16) was fitted. 

Fig 96(a): major axis Fig 96(b): intermediate 

Fig 96(c) : 
. . 

mmor aXIs 
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The parameter estimates, standard and mean square errors presented in table 3. 

(a) (b) (c) 

p 38.745 (0.325) 40.921 (0.334) 39.844 (0.403) 

q 41.733 (0.277) 41.044 (0.346) 39.798 (0.261) 

a 19.759 (0.509) 19.027 (0.372) 20.624 (0.362) 

b 7.863 (0.443) 9.845 (0.773) 10.240 (0.254) 

a 0.499 (0.001) 0.455 (0.004) 0.525 (0.002) 

m.s.e 11.25 12.83 12.83 

Table 3 

The most noticeable difference between the three reconstructed ellipses lies in the estimates 

for the b parameter, which varies by as much as 30% relative to the true parameter value. 

Inspection of the estimates and standard errors reveals an unsurprising picture - we estimate 

the length of the major axis more accurately in (a), the minor axis in (c), and the standard 

errors are generally larger in (b). The estimation procedure is performing as we would have 

predicted. Note also that the mean square error for the fit in (a) is smaller than for either (b) or 

(c) - thus, as we would generally regard (a) as an inferior reconstruction to both (b) and (c) 

relative to the true parameter values, we must ensure that we take great care over the infer­

ences we draw from such goodness-of-fit statistics. 

We now investigate the situation where the data points extend over a smaller arc of the 

perimeter of the ellipse. For demonstration purposes, we consider an example where this arc 

partially includes one end of the minor axis of the ellipse, the parameters of which are identi­

cal to those used in the previous example. For this example, (j£ was chosen to be 20.0, and 20 

simulated points were generated. The results of fitting the linear least-squares model to each of 

three data sets (corresponding to arcs covering 2/5, 1/3 and 2n of the ellipse perimeter respec­

tively) are depicted in figure 97. 

These results are generally unsurprising - note how the location of the reconstructed 

ellipse differs increasingly from the true location as the fraction of the perimeter over which 

the data points extend decreases, and how the estimate of parameter a is generally quite good. 

For smaller fractional coverage, estimates of parameters a and b became unobtainable as the 

points tended to collinearity. In the edge-reconstruction/object-detection context, therefore, we 

might only feel it necessary or of interest to fit an ellipse through any edge-point data set if we 
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have a sufficient number of points in two perpendicular directions. 

~ • 

Fig 97(a): 2/5 coverage Fig 97 (b): 1/3 coverage 

~ • 

Fig 97 (c): 2/7 coverage 

Finally, we investigate the situation in which the data points extend over two discon­

nected arcs of the ellipse perimeter. Using the identical ellipse the the one used in previous 

examples, with (J£ = 20.0, 30 data points were generated so to cover two (diametrically 

opposed) arcs, with a total angular coverage of half the ellipse perimeter. The data points are 

depicted in figure 98. 

• •• 
I • 

. .... 
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•• .... • 
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Fig 98(a): major axes 

~~, 

\ . 
\ • 

Fig 98(b): mInor axes 
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These data sets are included for the following reason - no fit of an ellipse was possible using 

the identical NAG routine for any of the three, with one or other or both of the parameters a 

and b being impossible to estimate (or being improbably large). The reasons for this are evi­

dent - again, we must obtain sufficient data in the two relevant perpendicular directions. 

We have attempted to explore and expose the limitations and fallibilities of our ellipse 

reconstruction technique. We conclude that it is essential to have data points covering large 

arcs of the ellipse perimeter to ensure that the ellipse is adequately reconstructed - if this is 

the case, then the linear least-squares formulation returns acceptably accurate estimates. This 

indicates that it is absolutely necessary for such a reconstruction to be possible that a two 

changepoint posterior distribution or one of the modifications of the single changepoint poste­

rior forms that we discussed should be used, rather than merely the single changepoint form 

itself. Fortunately, when using the two changepoint form or, for instance, binary segmentation 

at a sufficiently high Signal-Noise ratio, it is generally possible to obtain edge-points over 

large arcs of the perimeter of the object - see, for example, figure 19 on p. 62. 

Finally in our discussion of the analysis of simulated edge-point data relating to ellipses, 

we examine the behaviour of the linear least-squares formulation when presented not only with 

noisy data arising from approximately accurate edge-point classifications, but with other, 

spurious and outlying data points. Such data could arise from insufficient smoothing of the 

results of a changepoint analysis of the image, or indeed as a result of the noise present in the 

image itself. We now discuss the effect of introducing such spurious edge-points, and possible 

techniques for reducing their impact. 

(6.3.4) Removal of spurious edge-points. 

First, we consider the introduction of a single spurious point, s = (xs , y s ) say, into the 

data set. For demonstration purposes, we generate 15 edge-points placed uniformly around the 

perimeter of the familiar (40,40,20,10,0.5) ellipse, with (1£ = 20.0, and nominally choose 

s to be at (15,10). Figure 99(a) depicts the entire data set, and (b) and (c) depict the resulting 

reconstructed ellipses with s omitted and included respectively. 

The effect of including the single point is immediately apparent - the ellipse has been 

elongated and translated toward the lower left-hand corner of S. The point parameter esti­

mates represented 10 (b) and (c) were (40.29,40.03,19.88,10.40,0.53) and 

(36.79,36.56,31.04,8.95,0.70) respectively. The respective mean square errors were 11.42 

and 67.08. Again, the lack of robustness of the least-squares estimation technique is demon­

strated. Further examples with other outliers are depicted in figure 99(d), (e) and (t). 
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• • 
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Fig 99(a): data set Fig 99(b): s omitted 

• 

• • 

Fig 99(c): s included Fig 99( d) : s = (10, 70 ) 

• 

• • 

Fig 99(e) : s = (65,35) Fig 99(0 : s = (45,45) 

These examples illustrate the degree to which various outlying values can affect the recon­

structed ellipse, and it is evident that the presence of spurious elements in the data set is detri­

mental to the least-squares estimation procedure. We now discuss three approaches intended to 

overcome the problems posed by the presence of such spurious data points. 
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First we could ensure that adequate smoothing is carried out, using the probabilistic and 

spatial ideas we have discussed at length previously. To automate this process, to make it 

independent of visual supervision (one of our goals), and still reject all outlying/mis-classified 

points is a relatively relatively complex task, however - we could never feel completely secure 

that the automated procedure has performed sufficiently adequately. 

Secondly, as indicated on several occasions above, we could take steps to robustify the 

least-squares procedure. For example, instead of using a least-squares criterion, we could use 

the L1-norm or minimum absolute distance criterion. It is possible to fit the linear model given 

in (6.16) and using an L1-norm procedure automatically using NAG library routine E02GAF. 

Figure 100 depicts the ellipses reconstructed from the data sets in figure 99(d), (e), and (f) 

under an L1-norm criterion. 

• 

• • 

Fig 100(a) : s = (10,70) Fig 100(b) : s = (65,35) 

Fig 100(c) : s = (45,45) 

We have obtained an improved fit in case (b) (this was so for the data set in figure 99(a) also), 

and the fit in case (c) is as adequate as the previous one. However, the reconstructed ellipse 

in case (a) is still utterly different to the true ellipse. It is relatively straightforward to con­

struct other such examples, even using single spurious data points. It should be noted that if 
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the number of "legitimate" data points is increased the L1-norm solution can eventually coin­

cide with the true ellipse - in case (a) here, 30 points are sufficient. This is not the case for the 

least-squares solution, which will always be influenced by spurious data points, albeit to a 

lesser degree as the number of legitimate points increases - in case (a), the ellipse based on 30 

legitimate data points and the single outlier is still markedly different from the true ellipse. 

The other robustifying techniques (using (6.7) and (6.8» may also be implemented, but in our 

experience this proves to be laborious, difficult to automate, and usually ineffective. 

One other point is important here. Although we may try automatically to smooth the data 

and subsequently obtain robust estimates from them, we still have no diagnostic (other than 

our own visual assessment) that would allow us to judge whether the reconstructed ellipse is 

an adequate representation of the data - we have already noted the unreliability of using mean 

square errors to assess absolute goodness-of-fit - or whether any spurious and outlying points 

remain in the data set. The third of our approaches attempts to address each of these problems 

using techniques for outlier identification. We discuss one classically-based procedure and one 

Bayesian technique for the removal of outlying edge-points. First, we must introduce a 

geometric algorithm that is of assistance in their implementation. 

(6.3.4.1) Convex-hull peeling. 

Consider the nature of outlier detection problems in the ellipse reconstruction context. 

Generally, we have a large number of points scattered around the edge itself, and rather a 

smaller number of spurious points distant from the edge. One standard form of analysis, 

namely cross-validation, requires that each data point in tum be omitted from the data set to 

assess its importance (as measured by some (generally classically based) inferential quantity -

mean square error, for example). One major criticism of this approach, however, is that it is 

extremely time-consuming - of order n! for a set of n points if the number of outlying points 

is unknown. In the context of ellipse reconstruction, experience informs us that spurious points 

are most detrimental when they lie externally to and distant from the ellipse - clearly, there­

fore, we ought try and remove these "external" points as early as possible. This provides our 

motivation for the use of the technique of convex hull peeling. 

Convex-hull peeling proceeds as follows. Consider a set Po of points in the plane (we 

consider the 2-D case explicitly - the extension to spaces in other dimensions is straightfor­

ward). Fit a relevant model to the entire data set. Form the convex hull hI of the elements of 

Po, and then form a subset HI of Po, the elements of which being those elements in Po lying 

on the boundary of hI' Then assess the individual importance of each element eH i of HI to Po 
1 

by evaluating some diagnostic quantity derived from the model obtained after fitting Po \ eH .• l' 
After all of the elements of HI have been addressed, form a new set of points PI given by 

PI = Po \ //1' Repeat the above procedure, by forming h2 and H2 defined accordingly. 
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Such a scheme allows us to assess the relative importance of points in the data set indi­

vidually from the most "external" inwards. We suggest two possible diagnostic quantities. 

Using a classical approach, we could compare the effect of omitting each point on overall 

mean square error, or on individual parameter estimates and standard errors. From a Bayesian 

standpoint, we could examine the degree to which omitting each point alters the posterior dis­

tribution for the set of ellipse parameters, for example using the ideas of Pettit and Smith 

(1983). In either case, it should become apparent which points are more important than others, 

or when an adequate fit is perceived. Other details will become evident when we provide 

examples below. 

Clearly, for us to be able to implement such an approach, we must readily be able to 

form the convex hull of any given set of points. This is a non-trivial task, but fortunately there 

is the widely available algorithm of Green and Silverman (1979) devised precisely for this 

purpose which can be easily and efficiently implemented. Indeed, the related work of Silver­

man and Titterington (1981) on minimum covering ellipses is also potentially of use, and we 

shall see one application of this work at a later stage. The precise details of the convex hull 

peeling algorithm are given in the 1979 paper - here we merely concentrate on application to 

outlier removal. 

Consider the data set in figures 99(e) and 100(a), with single outlier at s = (10, 70). 

We now attempt to apply the ideas discussed above and the convex hull peeling algorithm in 

an attempt to obtain an adequate fit. Figure 101 shows how the results develop - figure 101(a) 

depicts the data itself, and (b) the boundary of the convex hull of the points. The points are 

numbered in the order they are to be omitted - the ordering is established by the Green­

Silverman algorithm, and takes the points in an anti-clockwise direction, starting at the point 

with largest x-coordinate. Our technique for outlier detection proceeds as follows. For each of 

the points 1 to II, we obtain estimates and standard error for the ellipse parameters and the 

corresponding mean square errors by fitting the linear model (6.16) using a least-squares cri­

terion to the remaining 15 data points. The mean square error arising from the fit of the com­

plete data set was 184.83. 
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Fig 101 (a): data set 
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Fig 101(b): boundary of convex hull 
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For demonstration purposes. we adopt a classical approach. and assess model adequacy purely 

via the value of the mean square error obtained. The mean square errors to the nearest integer 

are displayed in table 4. 

Point omitted 

1 2 3 4 5 6 7 8 9 10 11 

180 185 11 190 182 176 188 189 187 190 190 

Table 4 

Clearly. omitting point 3 changes the mean square error radically. whereas omitting the other 

points individually has little effect. Thus we have successfully identified the outlier as the 

point which most significantly alters the goodness of fit of the model. Once point 3 is omitted. 

the mean square error and parameter stabilise. and no other points are diagnosed as outliers on 

subsequent iterations (all fifteen remaining points lie on the boundary of the convex hull on 

subsequent iterations, and the mean square error is not changed radically from the 11.42 value 

quoted above). Figure 102 (c) depicts the reconstructed ellipse using the remaining fifteen 

points. 

Fig 101(c) : remaining points and fit 

This data set might be claimed to be relatively untypical. with the spurious data point 

being quite contradictory in its position relative to the remaining data. and hence clearly very 

influential. In situations when the spurious point is reasonably close to the rest of the data. the 

technique might not perform as adequately. However. on experimentation with various dif­

ferent positions for s. we find that the technique actually detects the outlying point (as the 

single point that changes most radically the mean square error of the fitted model) in situations 

when s is in close proximity to the rest of the data. Some examples are given in figure 102. 
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Fig 102(a) : s = (20,30) Figl02(b):s = (55,55) 
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Fig 102(c): s = (30,50) 

In each case, the spurious point lies close to the others. The mean square errors resulting from 

a fit of the linear model (6.14) were, respectively, 15.41, 15.57 and 29.27. After using the 

convex hull peeling technique and inspecting mean square errors, the spurious points were 

identified on the first iteration, with the relevant mean square errors being reduced to the 11.42 

value, and with the fit not being improved significantly by the removal of other points on 

subsequent iterations (here we do not use the term "significant" in the statistical sense -

although clearly we could impose such an interpretation onto the difference in mean square 

error values, and indeed shortly will do so - but merely as a qualitative statement). We note in 

passing that for each of the data sets depicted in figure 102, the parameter estimates obtained 

were actually quite adequate before the spurious point was removed - however, for these 

examples, we are in the privileged position of knowing the true ellipse parameter values, and 

this of course is practically unrealistic. We might adopt the attitude to continue removing 

points until some facet of the resulting fit, for example mean square error, stabilises. Clearly, 

however, this approach is not completely satisfactory, as although generally the spurious point 

is accurately identified, the re-fitting of the model on subsequent iterations is time-consuming. 
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In the examples given above, we have merely concentrated on the case of a single 

outlier. We now give one further brief example to investigate the performance of the detection 

technique in the multiple outlier case, after making some relevant comments. The nature of the 

new problem is clearly sightly different to that of the old. Previously we geared the 

identification technique to the single outlier problem by omitting each point on the convex hull 

individually in tum and subsequently replacing it. In the multiple outlier case, a more appeal­

ing approach would be to discard a point completely (never re-include it at any later stage of 

the ellipse fitting analysis) once it is identified as an outlier. Using this method the total 

amount of computation required should be lessened. Such an approach is easily implemented 

with a minor adjustment to the algorithm described above. Our decision to label a point as an 

outlier or otherwise must now be made "on-line" rather than retrospectively, but this merely 

calls for a minor adjustment to our original approach. 

We use such an approach in the analysis of the data set in figure 103, which contains 

three spurious points at (60,10), (35,60), and (10,50) amidst the 15 legitimate points lying 

uniformly around the perimeter of the ellipse, corrupted using Ge = 20.0. A fit of the linear­

model under a least-squares criterion resulted in point parameter estimates of 

(42.84,37.47,31.47,14.66,-0.60), and a mean square error of 190.36. 

• 
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Fig 103(a): data set 
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Fig 103(c): 2nd iteration 
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Using the convex hull peeling technique, omitting each point in turn and re-fitting the 

model, on the first iteration we obtain the mean square errors contained in table 5. It is clear 

that the fit is improved most radically when point 5 is omitted, and thus as usual proceed with 

the second iteration as depicted in figure Io.3(c), and subsequently remove all the outlying 

points. However, we also note that the fit is significantly improved when point 2 is omitted 

(again we use the term "significantly" in a qualitative sense) - thus it might be advantageous to 

diagnose point 2 an outlier and subsequently remove it from the analysis. 

Point omitted - 1st iteration 

1 2 3 4 5 6 7 

m.s.e. 191.91 171.89 189.0.8 190..33 121.15 184.69 187.65 

Table 5 

The amended scheme thus proceeds as follows - USlOg the convex hull boundary in 

figure 103.(b). we begin to peel points until we note that omitting point 2 reduces the mean 

square error to 171.89. which we regard as a significant reduction. We consequently discard 

point 2. and continue peeling points on the same convex hull. now comparing the new mean 

square errors to this value. This continues until we reach point 5. which. when omitted. effects 

a further reduction of the mean square error to 77.0.7. We consequently discard point 5 also. 

No other points are discarded on the first iteration. On the second iteration. the mean square 

error is only reduced drastically when point 3 is omitted. when the mean square is reduced to 

the 11.42 value we obtained earlier. Thus we obtained identical conclusions in fewer iterations 

(and fewer fits of the model) than when using the previous approach. 

The techniques described above are straightforward to implement in a supervised setting. 

However it is our desire that the such techniques should be automated. and thus we must pre­

cisely define the way in which we decide to discard points. We require a notion of statistical 

significance to relate to our goodness-of-fit statistic (this seems more relevant here in the 

automatic case than in the supervised case). Problems relating to robustness and influence for 

regression models such as that in (6.16) have been widely studied in a classical statistical 

framework, and many test statistics and diagnostics have been proposed; see. for example. 

Cook and Weisberg (1982) for a comprehensive survey. It is clear that simple criteria for the 

discarding of points in the edge-point data set automatically can be introduced. 
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(6.3.4.2) Bayesian detection of influential observations. 

We might regard the outlier detection problem to be almost equivalent (contained 

within) the following broader problem. Given a set of data points resulting from an informa­

tive experiment concerning a parameter of interest, locate elements in that set which most 

affect the inferences that we make. We might consequently wish to identify these important 

or "influential" points as possible outliers. In a Bayesian setting, one sensible measure of the 

influence of a point (or, more generally, subset of points) can be derived in relation to the 

change in the posterior distributions for the parameters in the proposed model when that point 

is omitted. For instance, Pettitt and Smith (1983) suggest a Bayesian influence measure for 

inference about the mean parameters in Normal linear models based on the Kullback-Liebler 

distance between the respective posterior distributions. They show that, under a non­

informative joint prior specification for the mean parameter 8 and with measurement error 

variance dl known, the influence measure for the i'th observed value Sj can be written (Pettitt 

and Smith, equation (3.11)) 

(6.20) 

where 8 is the usual least-squares estimate of 8, and it is the i'th row of the design matrix J. 

The value of tj, the "Studentised residual" for point i, is commonly used as an intuitive meas­

ure of "outlyingness". 

Thus, in (6.20), we have the basis of a technique for outlier detection, the details of 

which similar to the non-Bayesian technique described above. Now, instead of evaluating 

mean square errors etc. and discarding points on the convex hull which improve the global fit 

of the model, we now measure the influence of individual points (or sets of points) on the 

convex hull using (6.20) (or the equivalent formula) and discard points accordingly. It is clear, 

however, that to evaluate (6.20), we must know (J precisely. Pettitt and Smith note the robust­

ness of (6.20) (in terms of the ordering of possible outliers) to changes in (J, and this is our 

experience also. Thus, subsequently, we set (j = 1.0 for demonstration purposes. 

For one brief illustration, we will use the multiple outlier data set in figure 103. Table 6 

contains the value of the Bayesian influence measure in (6.20) (x 10-5) evaluated for the 

points on the convex hull in the first iteration. It is clear that point 5 is the most influential 
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point and thus is correctly identified as an outlier. On the next two iterations, the other two 

spurious points are correctly identified. 

Point omitted - 1st iteration 

1 2 3 4 5 6 7 

m.s.e. 0.021 0.178 0.032 0.033 10.22 0.246 0.096 

Table 6 

Again, this technique is reasonably straightforward to implement in a supervised fashion, but 

more complicated to implement automatically. Here though, (6.20) actually measures some 

distance between posterior distributions, and thus we might feel happier in pre-fixing some 

lower threshold below which we do not seek to reject any further points (although we might 

actually require this threshold might to depend on the value of 0'). 

We have discussed various models, estimation procedures, robustness measures etc. for 

simulated edge-point data, intended to investigate performance in the reconstruction of edges 

in single convex object true scenes. We now present some examples where the data set is 

actually derived from the changepoint based analysis of such scenes. 

(6.3.5) Analysis of true edge-point data. 

We begin by making a three relevant comments. First, as we saw in section (3.3.2) of 

chapter 3, binary segmentation seems the most sensible technique to use for the analysis of 

single convex objects, and the problem of dealing with edge-points arising as posterior modes 

for sequences of different length is avoided as we (can) treat each recorded point equally. 

Secondly, if we use the binary segmentation technique then, except for ellipses having eccen­

tricity near zero, we are generally assured of obtaining edge-points that are distributed com­

pletely around the perimeter of the ellipse. Thirdly, because of the difference in order of mag­

nitude between pixel and object scales (for the type of objects in which we are interested), we 

obtain a large number of correctly recorded edge-points relative to the number of outlying or 

mis-classified points. Thus, we might regard the simple smoothing of results as adequate for 

removal of such points, rather than using the other techniques described above. 

Our first example is based on the results of analysis of an image derived from a true 

scene in which the ellipse is identical to that in our simulated examples, that is defined by the 

val ues (40,40,20, 10,0.5) for the various parameters. Under assumption of an image­

formation process identical to that in (2.1), the image was derived from the true scene with 

Signal-Noise ratio 1.5, and then was analysed using the binary segmentation technique based 
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on the one changepoint posterior distribution (2.11). The raw results of a full analysis, and the 

smoothed results using a simple smoother (chosen nominally, without reference to the 

recorded points) are depicted in figure 100(a) and (b) respectively. Figure 100(c) depicts the 

reconstructed (solid) and actual (dotted) ellipses. The reconstruction was obtained via a fit of 

the linear model (6.16) under a least-squares criterion. 
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Fig 100(a): raw results 
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Fig 100(b): smoothed results 

Fig 100(c): reconstructed ellipses 

The parameter estimates (standard errors) obtained from the least-squares fit were 

(39.S6 (0.72),40.21 (0.S4), 22.10 (0.47), 9.86 (0.63), 0.S4 (O.OOS)) for the vector of five param­

eters (p, q, a, b, a) respectively, and the mean square error was 3S.68 for the 28 points fitted. 

Clearly, the reconstructed ellipse is slightly elongated (due to the lack of points at the ends of 

the ellipse on he major axis), but otherwise the reconstruction seems adequate. 

Our second example is based on the analysis of an image derived from a true scene with 

an ellipse defined by the parameters (20 ,4S, IS, IS ,0), i.e. a circle. Figure lOS depicts the 

results of a full binary segmentation analysis and the subsequent ellipse reconstructions. The 

Signal-Noise ratio in the image was I.S. 
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Fig 105(a): raw results Fig 1 05(b): smoothed results 

Fig 105(c): reconstructed ellipses 

The parameter estimates and standard errors obtained by a fit of the linear model under a 

least-squares criterion were 

(p, q, a, b, a) = (19.30 (0.23) ,44.72 (0.24),15.68 (0.17),15.01 (0.83),1.64 (0.089)) . 

The reconstruction is again quite adequate, with the reconstructed ellipse resembling the true 

one very closely. 

Our final example is based on the analysis of an image derived from a true scene with an 

ellipse defined by the parameters (40.40.50.5.0.7). i.e. eccentricity 0.1, reasonably extreme. 

Figure 106 depicts the results of a full binary segmentation analysis and the subsequent ellipse 

reconstruction. The Signal-Noise ratio in this case was 2.0. 
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o 

Fig 106(a): raw results Fig 106(b): smoothed results 

Fig 106(c): reconstructed ellipses 

For this data, the parameter estimates and standard errors were as follows -

(p, q, a, b, a) = (39.60 (0.83),39.64 (0.71),53.46 (0.67),5.42 (0.05) ,0.70 (0.0001» 

The true and reconstructed ellipses are virtually indistinguishable, although again the most 

noticeable discrepancy between the two lies in the lengths of the major axes - the estimate of 

a is again larger than the true value. The reason for this general trait in the reconstructed 

ellipses is that, for ellipses of even only mild eccentricity, the changepoints in any given row 

are close together in regions of the ellipse near the ends of the major axis. We might attempt 

to overcome the discrepancy between true and estimated parameter values by means of some 

empirically determined discount factor, or by ensuring that the analysis is carried along a pair 

of perpendicular directions parallel to the axes of the ellipse (and thus accurately determining 

the position of edge-points at the ends of the ellipse). 
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The typical examples above confirm that the ellipse estimation procedures perform ade­

quately on edge-point data arising from changepoint based analysis of simulated images 

derived from single convex object true scenes, where the objects themselves are regarded as 

ellipses, and of reasonable dimensions as to make a standard changepoint based analysis appli­

cable. Finally in this section we concentrate specifically on a problem in object detection in 

which we see that it is convenient to assume that the objects can be regarded as ellipses, but 

are small in relation to the size of region S, and where there may exist more than one object in 

any given true scene. 

(6.4) Multiple object detection - The Tank Spotting problem. 

In the majority of practical examples that we have seen above, we have been interested 

in the detection of localised boundaries between large-scale, homogeneous texture regions, 

occurring in simple or composite true scenes. We now study a problem of a different nature. 

Consider the case where the true scene contains a (possibly unknown) number of small (rela­

tive to the dimensions Se) convex objects. Then the related inference or detection problem 

might involve discovery of the number, locations and dimensions of these objects from a 

noise-corrupted version of the true scene. Further, the true scene might arise as one "frame" 

in a "film" of moving objects, and thus we might also wish to discover the associated veloci­

ties. Such problems commonly arise in medical imaging - tumour detection from Gamma 

camera images - or in a military environment - detection of land vehicles from satellite photo­

graphs. It is from the latter of these that the name of this particular inference problem - "Tank 

Spotting" - is derived (albeit a misleadingly offensive label for a largely defensive technique). 

Figure 107 depicts a typical Tank Spotting image containing three objects centred at pixels 

(20,60), (30,40) and (70,10) in the 80 x 80 grid. 

Fig 107: multi-object image 
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Clearly, the nature of the problem indicates that the standard edge-detection techniques 

we have developed are not applicable here. Recall, however, the discussion that led to the 

derivation of the posterior form (3.17). There, we had interest in a two changepoint sequence 

with the inter-changepoint distance k small and presumed known, and where the outer seg­

ments of the sequence were derived from the same texture region (and hence contained ele­

ments that were identically distributed). Such a formulation is clearly of interest in the Tank 

Spotting problem, where the objects (tanks) themselves are small in relation to the size of the 

background (battlefield) region, and we have a degree of prior knowledge as to their dimen­

sions. 

Thus we propose to use (3.17) as the basis for a solution to the Tank Spotting problem. 

First, we make several comments. We noted after the simulation study of the behaviour of 

(3.17) in figure 25 that it was not necessary to know the value of k exactly, and that it was 

permissible to specify a value for k smaller than the true value and still obtain useful informa­

tion from the posterior distribution. Furthermore, if we choose k in this "minimal" sense, then 

figure 25 informs us that the posterior mode will occur with (approximately) equal frequency 

across a narrow band near to (immediately following in the data sequence) the true first 

changepoint position - intuitively, (3.17) will return with equal probability any point for which 

the next k -1 pixels in that row are contained within the object. Thus, we are specifically in 

the object detection (rather than edge-detection) domain, and this should be reflected in subse­

quent inferential procedures. Finally, and related to the second point, when smoothing the 

results using the simple smoothing technique described previously, we might discard recorded 

points more readily than in the edge-detection problem, as we would expect a higher detected 

point density within an object than in the vicinity of an edge. 

We now present some examples to demonstrate the implementation of an object detec­

tion technique based on posterior distribution (3.17). First, some notes on the nature of the test 

images. We shall investigate images derived from single and multiple object true scenes, and 

generally we will be interested in situations where the objects are "bright" or "hot" compared 

with the background (i.e. the images exhibit a relatively high Signal-Noise ratio). Also, for 

ease of automatic image generation, we use elliptical objects in our test images - rectangles, 

hand-drawn figures etc. would plainly be as adequate. The image generation procedure will 

thus be as follows. For each object, we pre-fix a non-extreme value for the eccentricity e of 

the ellipse, say 2/3, and a value for minor axis length b. We then merely choose a location 

(p, q) randomly in S, and an orientation a randomly in (0, 2lt), and generate a suitably distri­

buted variate as a pixel value for each pixel within the object. In the multiple object case we 

might like to make each object identical in dimensions. We shall use the image-formation pro­

cess in (2.1) with a common noise variance, and usually induce the same Signal-Noise ratio in 

each object. In the multiple object case we might like to make each object identical in 
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dimensions and only different to each other in location and orientation. 

(6.4.1) Single object detection. 

We begin with an example in which the true scene contains only one object - we shall 

see later how such cases are of interest, for instance, in tumour detection in medical imaging. 

Figure 108(a) depicts an image derived from a single object true scene, where the object, an 

ellipse, is located at (14.12,42.10) (chosen automatically) , and has dimensions (9.0,6.0) 

and angle of orientation 4.48. The Signal-Noise ratio is 2.0. Figure 108(b) depicts the results 

of a full changepoint analysis based on the posterior distribution (3.17) , with k chosen to be 

4. Figure 108(c) depicts the points remaining after use of a simple smoother - a 7 x 7 grid, 

with an acceptance criterion of 4 points per grid (we denote this (3,4) - 3 pixels either side 

of the central one - rather than (7 ,4)). 

Fig 108(a): image 
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Fig 108(b): raw results 
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Fig 108(c): smoothed results 

In (b), there is a broad spread of recorded points across Sy. However, there is only one 

region in which the density of recorded points is high, that being the region of the object. Note 

also that the posterior probabilities associated with recorded points in this region are higher 
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than for points elsewhere. The simple smoother effectively removes the large number of spuri­

ous and mis-classified points, leaving figure 108(c) a fair representation of the position and 

dimensions of the tumour. 

The initial results , therefore , seem adequate. However , we might feel it necessary to 

demonstrate the robustness of the final results to the choices of smoothing window and cri­

terion , and the choice for k. We have discussed choices of the post-processing (smoothing) 

parameters above - loosely , we try to accept high densities of points as objects. We now 

demonstrate the effect that altering k has on the final results. Figure 109 depicts the results 

obtained from an analysis of the single object true scene in figure 108(a) when k is chosen to 

take values 2,6, and 8. The results have been smoothed using a (3 ,4) smoother. 

Fig 109(a): k = 2 Fig 109(b): k = 6 

Fig 109(c): k = 8 

The results are broadly similar to each other, and to those in figure 109(c), and so we conclude 

that the technique is fairly robust to choices of k, at least in terms of the visual appearance of 

the results. Theoretically, however, we still regard it as preferable to choose k in the minimal 

sense described above. 
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Having obtained the results from changepoint analysis and post-smoothing, we are now 

faced with making inference about the location, dimensions and orientation of the object. Pre­

viously, we have used statistical methods to reconstruct, say, the edges of ellipses from sets of 

edge-points. Here, however, the problem is somewhat different - we are presented with a set 

of points, some of which we are prepared to admit as being internal to the object in question -

and thus the edge-reconstruction assumptions and techniques do not seem particularly relevant. 

We could adopt one of several naive approaches in an attempt to draw some form of approxi­

mate inference. For example, we could report the centroid of the recorded data as an estimate 

of the location of the object. Less adequately, we could report the dimensions of the smallest 

rectangle with sides parallel to the coordinate axes that contains all of the data points as esti­

mates of the dimensions of the object, or attempt to fit a linear regression model through the 

data to obtain an estimate of the orientation of the data. We now discuss a slightly more 

sophisticated technique based on a geometric algorithm devised by Silverman and Titterington 

(1981). 

(6.4.1.1) Minimum covering ellipses. 

Consider the set Es of recorded and accepted points in S. Then one problem of interest 

(and relevance to the object detection problem) is to construct the ellipse in the plane of 

minimum area covering all of the elements of Es. In p dimensions, this problem is known as 

the Minimum Ellipsoid problem, and is familiar in a statistical context, relating to problems in 

the areas of design and outlier detection. For the planar case, Silverman and Titterington 

develop an efficient algorithm to compute the minimum covering ellipse for a given data set. 

They prove that either 3,4, or 5 elements of Es only lie on this minimum ellipse, and as 

clearly these points must lie on the convex hull of all points in Es , the amount of computation 

required is limited irrespective of the number of elements in Es. Precise details of the algo­

rithm, and the geometric and statistical arguments are given in Silverman and Titterington 

(1981). 

The use of the idea of a minimum covering ellipse seems appropriate in the context of 

object detection - we wish to make inference about location, dimensions and orientation from 

a set of points known to be internal to some convex object of a priori unknown shape, and, as 

mentioned previously, we deem it adequate to assume an ellipse to be an approximation to the 

shape of the object. Importantly, the minimum ellipse algorithm provides the basis for an 

automatic and efficient technique for object detection. Thus, we now proceed to attempt an 

implementation of the algorithm for the sets of results in figures 108 and 109. 

In light of the comments made above concerning the choice of k, we shall attempt object 

reconstructions for the data sets corresponding to k = 2,4, and 6. Figure 11 0 depicts the 

three data sets, and the reconstructed ellipses. 
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Fig 1l0(a): k = 2 Fig 1l0(b): k = 4 

Fig 1l0(c): k = 6 

Clearly, although they differ slightly in shape, the reconstructed ellipses are similar. The 

"estimated" parameters (although we do not estimate these parameters as such) of the 

minimum covering ellipses in the three cases are presented in table 7. 

k = 2 k = 4 k = 6 

P 14.67 13.63 13.33 

q 41.67 41.59 42.00 

a 9.96 8.84 9.27 

b 6.33 6.65 5.64 

a 1.65 1.75 1.67 

Table 7 
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Further examples of Tank Spotting for single objects can be found in the images appen­

dix. Generally, the technique works adequately for Signal-Noise ratios as low as 1.0, and is 

fairly robust to changes in the chosen value for k and nature of the smoother used. 

The timings involved in the production of the results at various stages for the examples 

above are as follows. The changepoint analysis using (3.17) took, on average, around 1.7 

seconds of processing time. The smoothing procedure and reconstruction of the ellipse using 

the Silverman-Titterington algorithm took an average total time of around 1.9 seconds. Thus, 

the total processing time involved in the detection of the object was around 3.6 seconds. 

Furthermore, the entire procedure can be readily automated. The only slight problem that 

might occur in an automatic implementation concerns the particular choice of smoother and 

the removal of isolated pairs, triples etc. of points, although hopefully this can be tackled by 

the point-density arguments and an iterated smoothing approach. 

(6.4.2) Multiple object detection. 

We now tum to the multiple object detection problem. The difficulties arising from this 

new problem are two-fold. Not only do we wish to make inference about the locations, dimen­

sions and orientation of each of the objects, as discussed, we also wish to be able to distin­

guish between objects, and hence enumerate them. We might feel at this stage that merely 

using (3.17) as the basis of a detection method for multiple object images is insufficient, but 

note that in a previous example, a one changepoint posterior distribution was of use in a more 

complex situation. Thus, for the moment, we proceed with (3.17) rather than formulate any­

thing more intricate. 

It is possible to solve the problem of being able to distinguish between objects by intro­

ducing a labelling scheme into the smoothing procedure - that is, if a point is accepted under 

the point-density criterion, then it and all the points in its immediate vicinity are labelled with 

a number or "type", unless any of these points have been labelled previously as another type in 

which case the new point is labelled with this old type. This procedure adds negligibly to the 

amount of processing already required. 

We now present examples of the performance of our algorithm in the multiple object 

detection problem. Figure III (a) depicts an image derived from a true scene containing three 

tanks located at (58.31,75.10), (22.19,39.74), and (76.83,25.62) - again these locations 

were chosen randomly in S - and various orientations. The tanks are identical having dimen­

sions (3.0,4.5), and the image formation process is such that the intensity for each tank com­

pared to the background corresponds to a Signal-Noise ratio of 2.0. Figure 111(b) depicts the 

results of a full analysis using (3.17), with k chosen to be 2 (with the benefit of a degree of 

prior knowledge as to the dimensions of the tanks). Figure 111(c) depicts the results after 

smoothing with a (3,4) smoother, and the ellipses reconstructed using the Silverman-



Titterington algorithm. 

Fig 111(a): Image 
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Fig 111(b): raw results 

Fig 1 11 (c) : reconstruction 

The parameter values for the ellipses reconstructed from the smoothed and labelled 

changepoint data are presented in table 8. 

Tank 1 Tank 2 Tank 3 

p 56.93 23.04 75.96 

q 75.34 37.58 25.64 

a 4.32 7.43 4.72 

b 3.81 4.82 2.64 

a -0.14 -0.59 2.17 

Table 8 
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The location parameters for the reconstructed ellipses are all accurate to within around 3% of 

the true scene location parameters, whereas the dimension parameters all differ to a larger 

degree. These features are intuitively reasonable given the nature of our object detection tech­

nique - as mentioned previously, we would expect the mode of (3.17) to occur within a narrow 

band centred on the true "changepoint" position, and thus we might expect the reconstructed 

ellipses to be located correctly but be increased in size relative to the true ellipses. This sug­

gests the use of some multiplicative discount factor for these parameters. The orientation 

parameters for the reconstructed ellipses are generally unreliable for making inference about 

the orientations of ellipses in the true scene - again, this is connected with the nature of the 

posterior distribution (3.17). We also note that the results were generally robust to changes in 

k and the type of smoother used. 

Thus we have developed a fully automatic technique for the detection of multiple objects 

In the Tank Spotting problem. Not only do we obtain information related to location and 

dimension, we also have (through the labelling scheme described above) the ability to count 

the number of objects in the true scene. We note at this stage that all the modifications that we 

made to posterior distribution (2.11) to improve results - introduction of spatial continuity into 

the prior specification, different model elaborations etc., even binary segmentation methods -

could be made as straightforwardly to posterior distribution. Especially relevant here is the 

"frame of film" Tank Spotting problem, in which the positions of the tanks are rapidly chang­

ing, being regarded as constant for each frame but slightly different between frames. Clearly, a 

sensible approach in this situation would be derive a prior distribution over the pixels in So 

(and consequently in each of the rows and columns of the image) for the positions of the 

objects through their recorded positions in the previous frame. This should assist greatly in 

tracking the tanks. We also note that (3.17) is in fact a special case of a two changepoint 

distribution, and we could extend the formulation and calculate further calculate further poste­

rior distributions to be able to detect multiple objects (equivalently , these distributions are 

merely special cases of the multiple changepoint distributions that we have seen previously. 

Naturally , we would encounter the usual problems concerned with computational demand , 

but we could overcome this by replacing exact inference via the posterior distributions by 

approximate inference via the Gibbs Sampler based technique described in a previous section. 

This concludes our study of edge-reconstruction and object detection problems for sim­

ple true scenes involving single edges and objects. Finally in this section, we discuss briefly 

the difficulties associated with reconstruction problems relating to more complex composite 

true scenes. 
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(6.5) Edge-reconstruction for complex true scenes. 

Until this point, we have regarded edges in the true scene as simple, smooth and possi­

bly closed single curves. For complex true scenes, however, our interpretation of the edges 

they contain is slightly different. More specifically, we regard the edges as being only piece­

wise simple or smooth, having discontinuities in first derivative - see, for example, the edges 

in the true scenes depicted in figures 44, 47, and 49. Thus, in the processing of results derived 

from such true scenes, we might seek to treat the reconstruction problem in this way, that is, 

reproduce the piecewise portions of the edges using the techniques discussed previously, and 

them "seam" the portions together. There are, of course, difficulties with such an approach, 

perhaps the most obvious one being determining automatically (in an unsupervised fashion) 

the seaming points. It is possible to suggest intuitively reasonable techniques - first differenc­

ing as an approximate gradient calculation, or localised curve fitting for small sets of neigh­

bouring points - but the problem generally remains a stumbling block to automated reconstruc­

tion. A natural solution technique for the piecewise edges in a composite true scene is, of 

course, to use the spline techniques discussed at length previously, but as we mentioned then 

there are also analogous problems associated with such an approach. However, recall the pre­

cise nature of our decision problem, our ultimate goal - to achieve a discretised, pixel-by-pixel 

segmentation of the image into homogeneous regions. It is not clear how any piecewise recon­

struction of edges from a set of edge-points derived from a composite true scene, a purely 

representational procedure, could aid in solution of the segmentation problem. Thus we regard 

such reconstructions as being beyond the scope of this thesis. 

(6.6) Edge-reconstruction and object detection - conclusions. 

In this section we have discussed stages of processing subsequent to an initial edge­

detection analysis using changepoint analytic methods. We began by studying various pro­

cedures designed for representational purposes, that is, to visually enhance the resulting edge­

point data. We studied various aspects of a least-squares approach in polynomial regression, 

and discussed the merits and otherwise of spline smoothing in data representation, but omitted 

any detailed discussion as it was felt not to be relevant to the specific decision problems 

covered in this thesis. Inherent in this was the fact that we now principally regard edge­

detection as a pre-processing technique, an aid in the solution of the segmentation problem, 

rather than as a final solution of ultimate interest. However, specifically in the context of 

object detection, we still deem the edge-reconstruction problem important if it in any way 

assists in the gathering of information concerning the location, dimensions and orientation of 

objects in the true scene. To this end, we discussed at length the problems associated with the 

reconstruction of the edge of elliptical objects (taken as representative of the class of convex 
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objects), making use in particular of a linearised ellipse model and least-squares estimation 

procedures. We also discussed robustness and outlying points, described a familiar and poten­

tially automatic technique for robust ellipse reconstruction based on convex hull peeling. We 

then discussed the related Tank Spotting problem, and adapted a changepoint technique dis­

cussed in a previous section to help in solution of the multiple object detection problem, and 

called on a minimum covering ellipse algorithm to help in making inferences about the 

objects. Finally, we noted that edge-reconstruction for complex true scenes was possible using 

spline based methods, but of little interest compared to the more important segmentation prob­

lem. 
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Chapter 7: Image Segmentation and Pixel Classification. 

In previous sections, we have seen the development of techniques for edge-detection in 

image processing resulting from the formulation of the problem as an exercise in statistical 

changepoint identification. We also saw how the results of the edge-detection analysis could 

be processed to allow inference in the related areas of edge-reconstruction and object detec­

tion. We eventually concluded that, despite the intuitive, theoretical and practical importance 

of learning about areas of discontinuity in the true scene, edge-detection per se should perhaps 

only be regarded as a pre-processing procedure, and not a primary and ultimate objective. Our 

principal aim is to achieve a segmentation of some discretised version of the true scene into 

homogeneous regions, a pixel-by-pixel classification into a (finite) number of distinct divisions 

or "colours" (the object detection and Tank Spotting problems may be regarded as being of a 

slightly different nature to the segmentation problem, or merely as special cases of it). In this 

final section, we attempt to integrate the edge-detection techniques that we have studied in 

previous sections with existing methods of solution to segmentation-type problems. 

As detailed in the introduction, we may view the segmentation problem in several subtly 

different ways. First, we may regard it as an estimation problem, usually in a Bayesian frame­

work - estimate the true scene pixel values via suitable posterior distributions and appropriate 

loss functions (M.A.P. estimation via annealing (Geman and Geman) etc.). Secondly, we may 

regard it as a probabilistic classification or discrimination problem, again usually in a Baye­

sian framework - assign labels to pixels using (discrete) posterior probabilities, generally 

without spatial considerations. Thirdly, we may regard it as a non-probabilistic classification 

problem, and consider solutions that mayor may not be statistical in nature, or statistical solu­

tions that are intuitively reasonable but informal (for example, Besag's ICM approach). 

Clearly, there are relationships between these three broad categories, but we shall continue to 

view them to be largely distinct. The presence of edges, discontinuities in the true scene, is a 

disruptive feature for each of these approaches. Consider, for example, the problem of obtain­

ing initial estimates for the parameters of the image-formation process - this is an important 

task in each of the techniques mentioned above. One common suggestion relates to the use of 

"training data" - data gathered from some other source allowing posterior and predictive distri­

butions, or naive estimates for these parameters to be computed. Unfortunately, in practice, 

this "other source" is not available, and we are forced gather the necessary information from 

the un-processed image itself. In an unsupervised setting, this task is by no means straightfor­

ward, as we need to be sure that the locations from which we extract the training data - for 

example, taking the form of 7 x 7 grids of pixel values - are internal to regions of homo­

geneity in the true scene. Clearly, this is only possible after an initial edge-detection routine 

has been used, and the edge-points post-processed, so that edge regions may be delineated. We 
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shall see such an approach implemented in relation to various classification schemes for vari­

ous true scenes and images later. This typical example illustrates the importance of edge­

detection as a pre-processing procedure. It also re-enforces our impression that edge­

reconstruction purely as a technique for visual enhancement is of little use in an analytic con­

text - we need only be able to distinguish edge-regions from texture regions at the pre­

processing stage, and this can be achieved practically as well when using the smoothed edge­

point data as when using an "estimate" of the edge reconstructed from them. 

Therefore, in light of the above discussion, we investigate how our changepoint-based 

edge-detection routines can be introduced into a general approach to image segmentation. We 

have two principal objectives. First, we desire that pre-processing should be included in a 

straightforward way that, as in all our previous analyses, does not incur large computational 

costs. Secondly, we desire that it be introduced in an unsupervised fashion, or at least that the 

need for manual intervention be kept to a minimum. We shall see later how these objectives 

are achieved in the context of sophisticated classification, estimation and discrimination tech­

niques. We begin by developing naive classification procedures using the results obtained 

directly from our edge-detection routines and smoothing procedures. 

(7.1) Naive classification via changepoint analysis. 

Given the set of post-smoothed and acceptable edge-points Es, we wish to construct a 

segmented version of the discretised true scene. For simple true scenes, we may naively 

achieve the segmentation with reference only to the position of each pixel in relation to the 

approximate detected edge (i.e "left", "right" of, or "above", "below" a simple edge, internal or 

external to the closed curve representing the edge of an object), with the actual pixel value in 

the image having no bearing on the classification of that pixel. Intuitively, such purely spatial 

classification techniques might be of use when little is known about the nature of the image­

formation or noise-processes, or as initial steps prior to more sophisticated processing. We 

now give a simple illustrative example of a technique of this nature relating to the analysis of 

single edge true scenes, and subsequently shall see a similar technique developed for convex 

object true scenes. 

(7.1.1) Single edge example. 

Recall the set of edge-points depicted in figure 9(b) on p. 40 in chapter 2, and repro­

duced in figure 1 12(a). These edge-points arise as modes in changepoint posterior distribu­

tions used in a row analysis of an image for which the Signal-Noise ratio is 2.0. The points 

clearly visually delineate the position of the edge. Consequently, it is visually straightforward 

to segment the image into its two constituent regions - those sets of pixels to the left and to 

the right of the edge. This segmentation may be achieved in an automated sense as follows _ 
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for each row, label each pixel to the left (recall that, without loss of generality, we defined 

pixel 1 in a row to be at the left-hand end of that row) of the detected changepoint as "0", and 

each to the right as "1", with labelling being independent between rows. Figure 112(b) depicts 

the resulting segmentation using the naive technique described above. For comparison pur­

poses, figure 112(c) depicts a two-texture segmentation of the image using a simple (non­

spatial) maximum-likelihood classification rule, with texture means known. 

;: . 

Fig 112(a): changepoint results Fig 112(b): naive classification 

Fig 112(c): M.L. classification 

Clearly, the naive classification rule classifies a higher percentage of pixels correctly - with 

the maximum-likelihood rule we expect an error-rate of around 16% in the best possible case 

(when the threshold for texture segmentation is optimally chosen), and this clearly exceeds the 

error rate in figure 112(b). We might expect difficulties to arise for images having a lower 

intrinsic Signal-Noise ratio - the adequacy of the changepoint results and the subsequent seg­

mentations will obviously decrease. Figure 113 depicts the results of an analysis of the identi­

cal image to that in figure 112, but where the Signal-Noise ratio has been decreased to 1.0. 
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Fig 113(a): changepoint results Fig 113(b): naive classification 

Fig 113(c): M.L. classification 

Remarkably, the naive segmentation technique, although producing imperfect results, is still 

reasonably adequate, and out-performs the maximum-likelihood classifier which now exhibits 

an error rate of almost 31 %. 

The comparison between the naive and maximum-likelihood classification techniques on 

these terms is not strictly a fair one - the former reflects both value and spatial location of the 

pixel in the image, whereas the latter is specifically non-spatial. However, the maximum­

likelihood segmentation is often used as an initial stage in more sophisticated processing pro­

cedures, and hence we might regard the naive technique as an alternative that requires less in 

the way of prior input and, incidentally, processing time (requiring approximately 1.5 

seconds). 

Thus, for this simple example, the naive classification technique seems to produce ade­

quate segmentations. However, the specific true scene that we have studied, where the edge is 

generally perpendicular to the direction of analysis, is particularly easy to segment purely on 

the basis of the results of a row analysis of the image. For true scenes in which the edge has a 
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more general angle of orientation, more care must be taken over the way in which pixels are 

classified. Fortunately, only a minor change to the segmentation algorithm is required to allow 

column based pixel classification to be incorporated into the complete classification algorithm. 

We thus have a simple and automatic classification procedure for use with single edge true 

scenes. 

(7.1.2) Convex object example. 

We now seek a similar naive classification scheme for single convex object true scenes. 

Our previous notions of a pixel being to the "left" or "right" of an edge are replaced by "inter­

nal" and "external" pixels (object and background pixels), and hence the naive classification 

routine will be a little more complex. A possible labelling procedure analogous to the above, 

therefore, proceeds as follows. Given the set of acceptable edge-points Es resulting from a full 

analysis of the image, we label pixels in each row such that those pixels left of the extreme 

left-hand changepoint and right of the extreme right-hand changepoint are labelled "0", and 

those between the two extreme changepoints "1", and then repeat the process for each column. 

We adopt this approach as the geometry of the object indicates that each row and column in 

the true scene will contain either two or no changepoints, and although in practice the actual 

number of detected changepoints may differ from these two values, the use of extreme 

changepoints in the labelling procedure seems an intuitively sensible and conservative 

approach. The positions of the the two extreme changepoints are discovered in an efficient 

manner by tracking along the pixel sequence from either end in turn. One possible difficulty 

with such an approach arises when row and column classifications for any particular pixel 

conflict (i.e. a pixel is labelled "0" by row and "1" by column, for example). This difficulty 

may be overcome by taking the mean classification for that pixel over row and column, and 

subsequently attach a label of "0" if this mean is 0 or 0.5, or "1" if it is 1.0 - this naive 

approach will suffice for our current purposes, as it can be implemented without the need for 

any further intricate labelling algorithm. Alternatively, of course, we might choose to classify 

via row or column only, and thus avoid problems concerned with such conflicting 

classification - for convex objects whose edges are accurately detected, this approach is valid 

but less conservative, intuitively mis-classifying pixels at a higher rate. 

Figure 114 provides an illustration of the use of the naive classification algorithm for 

single convex object true scenes. Figure 114(a) depicts an image derived from a true scene 

containing a single ellipse using the usual image-formation process (2.1) to produce a Signal­

Noise ratio of 2.0. Figure 114(b) depicts the unsmoothed results of a full analysis using the 

binary segmentation version (specifically designed for such images) of changepoint analysis 

based on posterior distribution (2.11). Figure 114(c) depicts the segmentation resulting from 

the naive classification (jointly via row and column classifications) procedure described above 

after the changepoint results were smoothed using a simple (3,2) smoother. 
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Fig 114(a): image Fig 114(b): changepoint results 
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Fig 114(c): naive classification 

The segmentation using the naive classification method seems to be adequate. Again, the seg­

mentation was achieved in an unsupervised setting in a matter of seconds. 

It is possible to suggest many other such simple classification techniques. Importantly, 

the ideas can be extended with care to be of use for more complex and composite true scenes. 

Recall our study of edge-detection based on multiple changepoint posterior distributions, and 

the Gibbs Sampler technique for approximating such distributions. It is easy to see how, with 

careful labelling of pixels, and combination of row and column classifications etc., naive seg­

mentations may be achieved. Also, using standard or approximate changepoint analysis, it is 

possible to derive posterior distributions for each of the unknown texture parameters in addi­

tion to changepoint positions. Such a procedure may clearly be of use in attempting to 

achieve a segmentation of the image, but would add considerably to the amount of, processing 

time required. 

Each of the naive techniques described above classifies pixels according to their position 

relative to changepoint positions in row or column on the basis of a changepoint posterior 
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distribution. It is possible to incorporate these naive techniques into an iterative and adaptive 

classification scheme which we now describe. 

(7.2) Iterative changepoint classification. 

The following scheme was proposed by Buck et al. (1988) for the analysis of images 

derived from simple true scenes, and is a typical example of an iterative classification scheme. 

Consider, for example, the case where rows and columns in the discretised version of the true 

scene contain at most two edge-points - clearly this may be extended to the general case of k 

edge-points per row with care, but as we have seen previously, exact analysis is computation­

ally infeasible for k ~ 3. Also, assume that the image-formation process is as in (2.1), and 

that our model of the image is of homogeneous regions in S9. Then in the usual way we may 

write down the form of two changepoint joint posterior distribution incorporating all one 

changepoint and the no changepoint alternatives by means of the obvious parameter con­

straints. For convenience now and later, we specify conjugate Normal-Gamma priors for the 

texture parameters, and for the first iteration the limiting non-informative versions of these 

conjugate priors are used. Using the posterior distributions, we may classify pixels by row 

and column as described above. Buck et al. consider the special "object on background" case, 

in which there are only two texture regions having distinct characteristics, and thus seek to 

achieve a segmentation of the image into two classes "high" (1) and "low" (0). They combine 

the row and column classifications by means of an "intersection principle" similar to the one 

we proposed above in which pixels are classified 1 only if they are classified 1 in both row 

and column analyses. Thus, after the first iteration, we have a segmentation of the entire 

image. The adaptive and iterative stage proceeds as follows. Given the initial segmentation, 

we alter the hyperparameters in the prior for the texture parameters in any given row or 

column in accordance with estimates for the texture parameters derived from the segmentation 

elsewhere in the image - the updating of the hyperparameters in this way is straightforward. 

We then proceed with another full analysis and complete another segmentation. This procedure 

is iterated until no changes in pixel classification are observed between iterations. 

This procedure is an intuitively reasonable attempt to achieve a segmentation via 

changepoint analytic techniques. However, the algorithm as it stands has no formal theoretical 

justification, and consequently little is known concerning its convergence properties. Also, as 

the use of two changepoint posterior distributions is practically essential, computational 

requirements limit the scope of use of the algorithm to images having a small number of rows 

and columns. Unfortunately, the changepoint detection methods that we have developed 

become less reliable as the length of the data sequence decreases. Despite these negative fac­

tors, Buck et al. report that satisfactory segmentation results can be obtained. 
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The adaptive and iterative aspects of this algorithm are similar in nature to aspects of the 

Gibbs Sampler based detection techniques for image segmentation we discussed in chapter 1. 

In the adaptive sense, we would include the full conditional posterior distributions for the tex­

ture parameters into the sampling cycle, and not integrate the likelihood, leaving full condi­

tional versions of the changepoint posterior distributions, and would then sample iteratively 

until convergence. We would usually treat each row and column independently, but could pos­

sibly incorporate with care global interpretations for the texture parameters, taking into 

account the pixel classification in the "current" segmentation (using either a synchronous or 

asynchronous pixel updating method). The classification technique described above contains 

no stochastic element in either its pixel value or texture parameter updating procedures. 

Thus above we have described classification schemes based purely on the results the 

edge-detection routines using changepoint analysis. The schemes are to some extent arbitrary, 

and take little account of actual image pixel values. A simple and natural extension would be 

to use the segmentations achieved by such schemes as initial segmentations in more formal 

probabilistic classification or estimation schemes, as suggested previously. The advantage of 

using the naive classification schemes initially is that it can be done in an unsupervised 

manner - recall the problems associated with choosing suitable discrimination parameters 

without prior knowledge of content of the true scene. We now present some examples to illus­

trate how the simple schemes can be incorporated into probabilistic classification routines. We 

begin with an example of a simple discriminatory approach. 

(7.3) Simple probabilistic classification. 

Consider the simplest possible pixel classification scheme that classifies a pixel to a tex­

ture with respect to that textures posterior probability given the pixel image value - that is, 

classify pixel i to texture ~ if 

(7.1) 

for all other textures Tic. In the two texture case under this rule, therefore, we would classify 

pixel i to texture To (i E To) if 

and to texture Tl otherwise. By Bayes theorem, cancelling constants in the usual way, this 

condition is equivalent to 

~ i E To (7.2) 
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where Pr( Yi !1j) is the likelihood of observing Yi conditional on pixel i being in texture j, 

and Pr( 1j ) is the prior probability that pixel i is in texture j, for j = 0, 1. Under the standard 

assumptions concerning the image-formation process (i.e. that the error terms are normally 

distributed) it is clear that, for pixel i in texture j, 

where J,lj is the mean for texture j, and (Ij is the standard deviation of the noise terms corrupt­

ing texture j. For the moment we shall assume that (Ij need not be equal for each texture, and 

that in fact J,lj and (Ij are parameters at our disposal. The simplest version of this classification 

scheme therefore proceeds as follows. We choose pairs (J,lj , (Ij ), and prior probabilities Pr( 1j) 

for j = 0,1, evaluate the terms in (7.2) and allocate pixels to textures accordingly. We might 

choose (J,lj , (Ij ) arbitrarily, or using simple techniques (inspection of an appropriate grey-level 

histogram), or using training data - choice of these parameters is not straightforward in an 

unsupervised setting. Also, in the case of prior ignorance of the true scene, we are virtually 

forced to specify the Pr( 1j) to be equal - in the two texture case, Pr( To) = Pr( T1 ) = 0.5-

and revert to a classical discrimination rule, equivalent to the maximum-likelihood rule we 

saw earlier. Calculation of expected error rates are straightforward for such schemes. 

Thus, the most significant difficulty with the implementation of such a scheme lies in the 

specification of the parameters (J,lj' (Ij) - choice of these parameters in the case of a priori 

ignorance of the true scene image-formation process is practically impossible, and is also not 

straightforward when training data is available. However, using the naive classification 

schemes described above, the difficulty may be overcome in an unsupervised setting. 

(7.3.1) Probabilistic classification - simple example. 

Consider, for example, the analysis of an image derived from a single convex object true 

scene. We may repeat the edge-detection analysis (as in figure 114(b)) and, on the basis of the 

results obtained, achieve a naive segmentation in the way described above (figure 114(c)) by 

labelling all "external" points 1, all "external" points 0, and all points for which the row and 

column classifications conflict 0.5. We then proceed and produce a binary segmentation of the 

image into two textures using the probabilistic discrimination techniques described by (7.1) 

and (7.2) in the following way. For each texture To and T1, we obtain estimates for mean and 

variance parameters using those pixel values labelled 0 an 1 in the naive segmentation respec­

tively - generally, as the amount of data relating to each texture is large, the usual maximum­

likelihood estimates will suffice. Further, having produced such estimates, we may specify the 

prior texture probabilities Pr( '0) for j = 0,1 in accordance with the initial segmentation - for 

example, we might choose Pr( To) to be 0.75 if the naive classification was 0, 0.5 if the naive 
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classification was 0.5. and 0.25 if the naive classification was 1. A simple scheme such as this 

one merely provides an automatic implementation for the familiar classification technique. 

incorporating some low level and qualitative information via the choices of the Pr( ~ ). 

We now present a simple example to demonstrate the use of the automatic classification 

technique described above. Figure 115(a) depicts an image derived from a true scene contain­

ing a single ellipse centred at (60.20) of dimensions (15.0.7.5) and angle of orientation 2.1. 

corrupted so that the Signal-Noise ratio is 1.5 - means 1.5 and 0.0 for object and background 

respectively. with a noise variance of 1.0. Figure 115(b) depicts the segmentation achieved 

using the naive classification technique derived from the results of a full changepoint analysis 

using posterior distribution (2.11). Figure 115(c) depicts the segmentation achieved using the 

simple probabilistic classification technique with the prior probabilities and parameters in (7.1) 

and (7.2) chosen automatically. In this instance. we assume that variances are different 

between textures - it is possible to derive the analogous form to (7.1) under a common vari­

ance assumption. using a pooled sample estimator. 
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Fig 115(a) : image Fig 115(b) : naive classification 

Fig 115(c) : classification using (7.2) 

The estimates for the mean and variance pair (J1j . (Jj) for textures 0 and 1 were 
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(-0.005.1.003) and (1.321.1.148) respectively. with. initially. 5610 pixels being classified 0 

and 191 pixels being classified 1 - the remaining 599 pixels were indeterminately classified as 

0.5. For comparison purposes. figure 116 depicts the segmentations obtained using a super­

vised version of the simple classification scheme for various choices of input parameters under 

a common variance assumption and equal prior texture probabilities. Figure 116(a) depicts the 

segmentation obtained when the means from above are used. (b) where the texture means are 

correctly (i.e. exactly as in the image) specified. and (c) where the means are incorrectly 

specified. 
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Fig 116(a) : means -0.005 and 1.321 
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Fig 116(b) : means 0.0 and 1.5 

. . 

Fig 116(c) : means 0.0 and 2.0 

Of the four probabilistic binary segmentations of the image in figureI15(a). it is clear that the 

pixel mis-classification rate is lowest in figure 115(c) in which some degree of spatial 

knowledge derived from the results of changepoint analysis is incorporated. A direct com­

parison of figures 115(c) and 116(a) (in which the texture means are specified identically) 

illustrates the effect that specifying unequal prior texture probabilities has on the final segmen­

tation. We also note at this point that the segmentation achieved via the naive classification 

technique (figure 115(b» is in fact superior to each of the other four segmentations - this is 
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relevant if we merely seek an initial approximate segmentation for use in further routines, but 

as the naive classification scheme is rather ad hoc, having no formal justification, the segmen­

tation does not bear fair comparison with the segmentations achieved using formal probabilis­

tic techniques. 

The total processing time required for the unsupervised production of the segmentation 

in figure 115(c) was of the order of 5.0 seconds. This is comparable with times for other non­

iterative segmentation algorithms, and is by no means prohibitive. Thus we have improved on 

a simple probabilistic classification scheme by incorporating results from edge-detection 

analysis and the naive classification approach in an unsupervised manner without incurring any 

great computational burden. 

Clearly, the probabilistic scheme described above could be implemented in an iterative 

fashion, with texture parameters being updated subsequent to each successive segmentation, as 

in the so-called "K-means" algorithm (see, for example, Hartigan(1975». The problem with 

such iterative schemes is that generally there exists little formal theory relating to the nature 

of their behaviour and assessment of their convergence. The Gibbs Sampler iterative algo­

rithm for image segmentation discussed previously can be regarded as being superior to such 

schemes, because although convergence may again be difficult to discern, it is at least assured 

by the theorems proved by Geman and Geman. A natural and obvious extension to the usual 

Gibbs Sampler algorithm that merely concentrates on pixel classification (via global or margi­

nal estimation of true classification parameters) would be one that incorporated some facility 

for updating the texture parameters subsequent to each successive segmented in some coherent 

and regulated fashion, in some form of simultaneous scheme. We now proceed to develop 

such an iterative scheme which may be used for segmentation after an initial segmentation has 

been achieved using one of the naive classification routines above. 

(7.4) Simultaneous image segmentation and parameter estimation. 

As described in the first chapter of this thesis, maximum posterior probability estimates 

of true scene pixel classifications under standard prior assumptions (Markov random field) 

may be obtained via stochastic relaxation (Gibbs Sampler) and optimisation (simulated anneal­

ing) in the following way - sample iteratively from the "full" conditional posterior distribu­

tions of the true scene classification parameters until convergence. Consider, for definiteness, 

the case where the image-formation process is as in (2.1) with with the noise terms indepen­

dently normally distributed, but where the noise variance is different for each texture, and 

suppose that the number of textures is known to be K. Suppose also that we specify the loss 

function in the Bayesian estimation problem in such a way that the estimates of the true scene 

classification parameters correspond to the modes of the marginal posterior distributions for 

those parameters - the marginal posterior mode (M.P.M.) estimation scheme. Then the Gibbs 
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Sampler algorithm under these circumstances proceeds as follows. The full conditional poste­

rior distribution of the true scene classification parameter for pixel (i ,j) given the true scene 

classification elsewhere 8(1j), denoted [8ij I Y ,Jl , l' , 8(i})] (a discrete distribution, with 8ij tak­

ing values on {O, 1 , ... , K -1 }) is given by 

(7.3) 

where 8iJij is the true scene classification in pixels neighbouring (i , j), Jl = 

[,uo ,,ul, ... ,,uK_l]T and l' = ['fo ,'fl, ... ,'fK_dT are the (Kx 1) vectors of texture means 

and precisions, and where [Yij 18ij ,Jl, 1'] depends 8ij in such a way that if 8ij = k then 

(7.4) 

In the usual way, [8ij I 8iJij ] takes the form of a Gibbs distribution so as to reflect qualita­

tively our prior knowledge of the spatial dependence structure in the true scene classification. 

Consider the simplest possible form for [8ij I 8iJij ], where 

(7.5) 

and where, for each k, #i/Ie) is the number of elements of the vector 8iJij equal to k - this is 

equivalent to an assumption that the only contributions to the joint prior distribution for pixel 

classifications over the entire true scene, [8], are made pairwise by neighbouring pixels in the 

same texture. Such a prior distribution is commonly used as a simple model for the discretised 

true scene (see, for example Besag(1986)). The hyperparameter f3 in (7.5) is a parameter at our 

disposal, and may be chosen in a number of ways, as noted in the introductory section. Thus, 

combining (7.4) and (7.5) via (7.3), it is clear that the elements of the discrete distribution 

[ 8ij I Y ,Jl, l' , 8W)] are given by 

1 

Pr( lIij = k I Y ,Jl , 'I" ,11(00) ~ '1",2 exp{ - ; ( Yij - Jl.)2 + Pili}'> } (7.6) 

for k = 0, 1 , ... K -1. Thus, standard implementation of the Gibbs Sampler algorithm in con­

junction with the annealing procedure for optimisation involves sampling iteratively from the 

distribution given by (7.6) raised to the power p - the annealing control parameter - after 
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normalisation, and varying p according to some pre-calculated schedule. The optimisation pro­

cess necessary for the evaluation of the posterior modal values is thus time-consuming - con­

vergence is required for each p and across all values of p in the schedule. The parameters J1. 

and 't" in this implementation can be regarded as known initially and fixed, but in many 

instances parameter updating schemes are used subsequent to each segmentation of the image 

being completed. Once such scheme suggested by Besag (1974) and implemented by other 

authors is that of maximum pseudo-likelihood estimation. This approach is related to the stan­

dard maximum-likelihood, but differs in the sense that the function of the parameters to be 

maximised is not a true likelihood, but the product of conditionally dependent likelihoods -

see, for example, Lakshmanan and Derin (1989) for such one such implementation of a recur­

sive "Adaptive Segmentation Algorithm" similar in nature to the EM algorithm for use in 

M.A.P. estimation, and related convergence results, and a discussion of other techniques. Such 

an approach seems neither as elegant nor as intuitively pleasing as that underlying the Gibbs 

Sampler algorithm, and is derived principally out of convenience. 

However, consider the following minor adjustment to the standard Gibbs Sampler 

approach to M.P.M. estimation described above. In addition to the n x n full conditional poste­

rior distributions [Bij I Y ,J1. , 't" , B(iJ) ], we may write down in the same way the full conditional 

posterior distributions for J1. and 't", or equivalently, the K pairs of full conditional posterior 

distributions for J1.1e. and 'flc.> k = 0,1, ... , K -1. Consider, for example, the full conditional 

posterior distribution for J1.1e. given the data Y, the true scene pixel classification 8, the vector 

of mean parameters for the other textures J1.(k), and the vector of texture precision parameters 

'f, denoted [J1.1e. I Y ,J1.(k) ,'t" ,8]. Now, and importantly, given the image-formation assumptions, 

it is clear that conditional on the true scene classification 8, the J1.1e. are independent of each 

other, and are also independent of the precision parameters relating to other textures, and also 

that for each k, J1.1e. is dependent only on pixel values in the image derived from pixels in the 

true scene classified to texture Tie., denoted YIe.' Therefore, we may simply write 

[J1.1e. I Y ,J1.(k) , 't" , B] - [J1.1e. I YIe. , 'fie. ] (7.7) 

as the form for the full conditional posterior distribution for J1.1e.' In the usual way we rewrite 

[J1.1e. I YIe. , 'fie.] via Bayes theorem and our independence assumption 

(7.8) 
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where [.uk] is our prior distribution for .uk. Under our assumption of normally distributed 

errors in the image-formation process, it is clear that if nk denotes the number of elements of 

Yk then the first term in (7.8) may be written 

(7.9) 

Now, for convenience, we may choose [.uk] to be of the standard conjugate (normal) form for 

this likelihood, that is that [.uk] = N( lPk, rk- 1) say. Thus, from (7.8) and the standard pro­

cedure, it is easy to show that 

(7.10) 

where Yk 

Thus we have derived a form for the full conditional posterior distribution for .uk. In a 

similar way we may derive the equivalent posterior distribution for 'rk, which we denote 

[ 'rk I Y,.uk , 'r(k) ,0]. Identical arguments to those leading to (7.7) allow us to write 

(7.11) 

and consequently 

= (7.12) 

where [ 'rk] is our prior distribution for 'rk. Again, if we choose a standard conjugate (Gamma) 

form for [ 'rk ], say ['rk] = Ga( ak , Ok), then it easy to show that 

[ 1:. I y •• Il.] " Ga( a. + ; • 15. + ~ ) (7.13) 

Thus in total we have the forms of n2 + 2K full conditional posterior distributions, 

namely for i , j = 1, ... , n, and [.uk I Y,.u(k) ,'r,O] and 
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[ 'riel Y , Illc , 'r(Ic) , 8] for k = 0, 1 , ... , K -1, and in the example we have described above, we 

need to specify 2K + 1 prior parameters, namely those relating to prior beliefs concerning 

texture parameters, tPle , rle , ale , ole for k = 0, 1 , .... K -I, and the parameter p. For conveni­

ence, we continue to suppress via our notation the functional dependence of each of the condi­

tional distributions on these hyperparameters. We now propose the following amendment to 

the standard Gibbs Sampler approach to M.P .M. estimation in an attempt to include some form 

of adaptive parameter updating scheme into the segmentation procedure. 

Recall the work of Gelfand et al. (1989) on the approximation of marginal posterior 

densities in "difficult" Normal models, and our work on the approximation of changepoint pos­

terior distributions, via the Gibbs Sampler which has been discussed at length in previous sec­

tions. There, after sampling iteratively from the set of full conditional distributions until con­

vergence is diagnosed over a number of replications, density/distribution estimates were 

formed. More specifically. for each replication. at convergence, the sampled values from each 

conditional form are regarded as essentially sampled values from the required marginal forms. 

Our proposal of an amendment of the Gibbs Sampler algorithm for use in the image 

segmentation problem is as follows. We propose simply that on each iteration, we should sam­

ple from the 2K conditional posteriors [Ille I Y.Il(Ic) , 'r ,8] and ['rle! Y ,Illc , 'f(Ic) ,8], k = 

O,I, ... ,K-l, in addition to the n 2 conditional posteriors [8ij !lij,Il,'f,8aij]. i,j = 

1 •... , n, required for the standard analysis. For example, suppose that after iteration t, we 

have most recently obtained values 8ijt ,Illet , 'rlet for each of the parameters of interest (with the 

extra subscript denoting the number of the most recent iteration in the obvious way). Then on 

the next iteration, we sample again from the [8ij I Yij ,Il. 'f , 8aij ] with the relevant values from 

8ijt .Illet , 'rlet substituted into the posterior form as the conditioning variables, and also from the 

[Ille IY.Il(Ic),'f,8] and ['rle IY,IlIc.'r(Ic),8] in the same way. We choose here to update the 

most recent or "current" values asynchronously i.e. as soon as we have sampled a replacement 

value from the corresponding conditional posterior distribution, principally for computational 

convenience. Intuitively, the values obtained for the texture parameters will gradually become 

closer and closer to the true parameter values, and, crucially, the theorems proved by Geman 

and Geman insure that at convergence the sampled values are in fact variates from the true 

marginal posteriors, for both true scene pixel classification and texture parameters. 

Thus, for a practical implementation of this amended form of the Gibbs Sampler algo­

rithm for the evaluation of marginal posterior modes, we need consider, first, the specification 

of starting values and prior parameters, and, second, the assessment of convergence and the 

reporting of posterior estimates. We address these points in turn. 
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(7.4.1) Specification of hyperparameters. 

The parameters ;" , rIc , a" , 0" for k = 0, 1 , ... ,K -1 and f3 are parameters in prior dis­

tributions, and as such we are at liberty to choose them in any way we see fit. However, "sen­

sible" choices for these parameters will clearly improve the rate of convergence of the algo­

rithm, and thus it is in our interest to choose them accurately. We have seen above how naive 

classification schemes may be used to derive initial parameter estimates and thus it is possible 

to specify the prior texture parameters in accordance with these estimates in an automatic pro­

cedure. Having specified the precise forms of the prior distributions, the choice of starting 

values for the Gibbs Sampler algorithm - for the texture means and precisions, we choose the 

initial values as the modes of the prior distributions, and for the true scene classification 

parameters, we use the familiar maximum-likelihood classification rule derived from the prior 

distributions for each individual pixel. The prior specification of f3 is somewhat more compli­

cated. Whereas we have sufficient experience with normal models to allow us specify parame­

ters in normal priors in a sensible way, we have relatively little experience of specifying 

parameters in Gibbs priors. For example, in the particular case above, it is widely known from 

theoretical work in statistical Physics on the Ising model, and from the work of, for instance, 

Besag, that the choice of f3 must be made with care to avoid critical and super-critical 

behaviour of the random field concerned. Typically, choosing {3 too large will result in conver­

gence to segmented images of containing one texture only - for instance, for convex object 

true scenes, pixels classified to the object texture are gradually "peeled away" from the outside 

of the object until the object eventually disappears. Also, it is clear from the form of (7.6) that 

the choice of /3 should be related in some way to the values of texture precision parameters, 

indicating that some adaptive scheme for updating {3 between iterations on the basis of current 

parameter estimates elsewhere may be necessary. More generally, we should introduce a 

parameter /3" for each texture T", and also "between texture" pixel interaction parameters {3"l 

for pixels in textures T" and Tl in the prior form in (7.5), to allow a more sophisticated prior 

model for the true scene classification. Thus the problems concerned with the specification of 

hyperparameters in Gibbs prior for the true scene compound each other rapidly. We can offer 

no further recommendation concerning the choice of /3 other than that described in previous 

sections, and for the moment content ourselves with the practical experience of others. 

(7.4.2) Assessment of convergence. 

As mentioned in our previous discussion of the Gibbs Sampler algorithm, assessment of 

convergence can often be a difficult task, and there exist no formal criteria that may be used 

as the basis of diagnostic tools. One commonly used approach in the M.P.M case is to com­

pare the segmentations achieved after successive iterations, with convergence being diagnosed 

if the number of discordant pairs of pixels is small, say less than or equal to 5% of the pixels 

in the entire image. It is widely reported that during the progression of the algorithm, the 
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number of pixel "flips" between iterations rarely falls consistently to zero - it is easy to see 

why this is so, as when the Gibbs Sampler algorithm is used without an edge-process (Geman 

and Geman), the marginal posterior distributions for a pixel on or near the boundary of two 

textures will not allow easy classification into either texture, as the neighbourhood of that 

pixel contains significant numbers of pixels in the true scene classified to each. Thus, even 

near convergence, we might expect some fluctuation in the M.P.M classification of some pix­

els - we might feel because of this that merely counting the number of pixels changing 

classification, or the change in the number of pixels classified to each texture between itera­

tions is insufficient. Despite this, we continue to use such criteria in an attempt to assess con­

vergence because of their straightforwardness and ease of automatic implementation. Hope­

fully, at some later stage, we may be able also to use some of the ideas above concerning the 

location of pixels that change classification frequently to aid in the assessment of convergence. 

It may also be possible to incorporate some criteria involving the posterior distributions of the 

texture parameters into the overall assessment - for instance by tracking the posterior modal 

estimates of these parameters subsequent to each iteration - despite the fact that these parame­

ters are not our primary concern. We now study precisely how the posterior estimates and 

distributions may be constructed in this context. 

(7.4.3) Evaluation of modal estimates. 

The task of locating the posterior modal estimates in standard implementations of M.P.M 

image segmentation routines is performed using simulated annealing as an optimisation tool. 

As mentioned above, this can be laborious and time consuming. In the work of Gelfand et ai., 

posterior estimates, densities and distributions are constructed as averages of the results of 

independent replications of the Gibbs Sampler analysis. Now consider the implications of such 

an approach in the image segmentation context. The notion of producing a number of indepen­

dent replications of the analysis is daunting due to the amount of computation required - we 

must compute the exact forms of n2 + 2K posterior distributions, sample uniformly from 

(0,1) n2 times, and from Normal and Gamma distributions K times, on each iteration. Conse­

quently, for the implementation described above with R replications, the marginal posterior 

distribution estimate for 8jj is the average of R discrete K-valued distributions, the marginal 

posterior density estimate for J.L1c is an equal-weighted mixture of R Normal densities of the 

form of (7.10), and the marginal posterior density estimate for 'flc is an equal-weighted mixture 

of R Gamma densities of the form of (7.13), for k = 0, 1 , ... ,K -1, with the distributions and 

densities within each mixture being conditionally independent given Y. The process of averag­

ing over a number of replications is essentially used to reduce the variance of the 

density/distribution estimates. Thus, again the amount of computation required is large, espe­

cially for the (continuous) texture parameters, and the idea of producing replicate analyses is 

not appealing. Fortunately, it seems that this is not necessary in a large number of cases, for 
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the following reasons. On inspection of the marginal posterior distributions for the true scene 

classification parameters, we discover that, once the algorithm has converged (and often from 

a very early stage of the iterative procedure), these distributions are practically degenerate, 

that is, the posterior probability of one particular texture being almost 1.0, with all the other 

posterior probabilities being negligible. Only for pixels at or near texture boundaries in the 

true scene do the marginal distributions not exhibit this quality, as we might have predicted 

from the above discussion. Thus, generally, little is to be gained by performing replicate ana­

lyses, as our primary goal is to achieve a maximum probability segmentation of the image. 

Naturally, if we seek estimates for the texture parameters also, it is advantageous to perform 

replications. Consider the case of the marginal posterior density for Pk' This posterior density 

is, as mentioned above an R-mixture of Normal densities that have approximately (i.e. in 

expectation) equal means and variances. Then the posterior variance for Pk is approximately a 

factor of R times smaller than for each individual replication - hence performing replicate ana­

lyses is advisable. However, by the same argument, it is clear that the posterior modal esti­

mate for Pk will not be altered greatly by the formation of the R-mixture, and thus, if such a 

point estimate is sufficient (as it may well do given that the texture parameters are not of 

primary interest) then we need not be too concerned about performing only one or a small 

number of replicate Gibbs Sampler analyses. 

(7.4.4) Merging of textures. 

Finally, we discuss one further aspect of the implementation of the amended Gibbs 

Sampler algorithm, namely the choice of the number of textures K. Clearly, in the case where 

we are a priori completely ignorant of the nature of the true scene, specification of K is 

difficult, and therefore practically we might choose K large. Given a degree of prior 

knowledge (for instance from the results of an edge-detection analysis, we might be better able 

to choose K accurately. In either case, we would tend to choose K as representing some upper 

bound on the actual number of distinct textures that we believe to be present in the true scene. 

Consequently, we are faced with a second problem. If we specify K larger than the actual 

number of textures, then for convergence to a correct segmentation it will be necessary to 

merge two or more of the original textures into one at some stage of the analysis. This is a 

familiar technique in image processing (also known as "split and merge" or "region growing" 

etc. - see, for example, Cohen and Cooper (1987» that is generally carried out with some 

small degree of statistical rigour, but rarely using a Bayesian methodology. In our amended 

Gibbs Sampler scheme, however, we immediately have available an intuitively reasonable tex­

ture merging technique that can be justified in a Bayesian framework. For each texture, we 

have an adequate approximation to the marginal posterior density for the texture mean and 

precision parameters. Thus if the pair of posterior distributions for the parameters of texture Tk 

are negligibly different to the pair of posterior densities for texture T1, we may merge textures 
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Tic and Tl into one at that stage, form pooled sample posterior densities and estimates for the 

mean and precision parameters of the new texture, and proceed with the iterative part of the 

Gibbs Sampler algorithm, with the number of textures K decreased by one. We do not qualify 

the phrase "negligibly different" at this stage, but merely note the following several straight­

forward techniques for assessing the dissimilarity between two probability distributions. First, 

we could compare one or more summary statistics (modal position, mean, moments) of each 

distribution and merge the two textures if the elements of the two sets of statistics differed 

only by a small percentage. Alternatively, we could compare the densities as a whole using 

some distance measure - the Kullback-Liebler distance (for which the calculation is tractable 

for Normal and Gamma probability densities), the L1-distance (total absolute distance) and the 

Lrdistance (total squared distance) are three possible alternative measures. Another simpler 

merge technique proceeds as follows. Given the modal posterior estimates for the texture 

parameters, (P-Ic ,ilc ) and (P-I ,il ) for textures Tic and TI respectively, consider the two Normal 

distributions N(p-Ic ,ilc -1) and N(p-I ,ii-I) - without loss of generality assume that P-Ic > P-I. 

We may then calculate the minimum probability of mis-classification Pc (the tail overlap 

between the two densities) achieved when the optimum threshold value, x·, is used, where 

clearly x* satisfies <l>1c(X*) = <l>/(X*) (with <l>1c(.) and <1>/(.) being the two Normal density 

functions for k and I respectively). It is easily seen that 

(7.14) 

where <1>(.) is the unit Normal distribution function. Hence we may evaluate expected error 

rates for such an equal mixture of these distributions. We might then consider merging the 

textures if Pc is large, as this would indicate that, in the segmentation context, it would be 

difficult to differentiate between pixels in the image from the two textures. We note that each 

of the texture merging techniques described above would add to the amount of processing time 

required - after each iteration, each remaining texture would be compared pairwise with every 

other, with the textures being merged if necessary. However, this additional time would be 

minimal in comparison to the amount of time spent per iteration of the Gibbs Sampler algo­

rithm itself. Another more subtle texture merging approach that avoids the problems encoun­

tered in the techniques described above, and is more in keeping with the general formulation 

is as follows. In deriving the full conditional posterior distributions for texture mean parame­

ters given by (7.8), we specified a prior distribution [Illc] for k = 0, ... , K -1, and regarded 

the parameters Jllc as a priori independent. To encourage or discourage texture merging, we 

could alter this prior specification so that the Illc were a priori dependent (i.e. change [Illc] to 

[Illc I 1l(1c) ]) and repeat the original analysis. A simple prior conditional dependence structure, 

for example reflecting restricted or ordered ranges for the parameters, would not complicate 
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the sampling procedure overly, and would also not add appreciably to the amount of computa­

tion required. It is also possible to use other intuitively reasonable and simple merge tech­

niques and criteria in addition to those described above. 

Having noted each of the points above concerning the implementation of the amended 

Gibbs Sampler algorithm, we now proceed with several illustrative examples of its application 

for different images. 

(7.S) M.P.M. segmentation using amended Gibbs Sampler - examples. 

In the examples we present below, we shall be specifically concerned with the following 

points. First, we shall study the adequacy of the algorithm over a range of Signal-Noise ratios. 

Secondly, we shall investigate the robustness of the various estimates at convergence to prior 

specification - we require that the algorithm (and indeed the methodology from which it is 

derived) must perform adequately when these initial estimates and naive classifications are 

poor. Thirdly, we shall study various aspects of the convergence of the algorithm, and com­

pare the efficiency of several of the diagnostics described above. 

(7.5.1) Two texture true scene. 

We begin with a simple two texture example where the segmentation problem is rela­

tively straightforward. Figure 117(a) depicts an image derived from the familiar circle true 

scene discretised into an 80 x 80 pixel grid, where independent additive Gaussian noise terms 

of variance 1.0 are combined with each true scene pixel value, with texture mean levels of 0.0 

and 2.0 for the background and object respectively, giving a Signal-Noise ratio of 2.0. Figure 

117(b) depicts a binary segmentation of the image achieved using the usual maximum­

likelihood criterion with prior texture means 0.0 and 2.0 under a common variance assumption 

- this represents an optimal choice of parameters in terms of producing a minimum expected 

error rate. 

Fig 117(a) : image Fig 117(b) : two texture segmentation 
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It is clear that even in this relatively straightforward example, the non-spatial maximum­

likelihood classifier does not produce an adequate segmentation. We now proceed with an 

implementation of the Gibbs Sampler algorithm in an attempt to achieve the M.P.M. solution 

to the segmentation problem. 

In the two texture case, we must write down the forms of the full conditional posterior 

distributions and densities for each of the 6400 pixels in the true scene and the 4 texture 

parameters given in (7.6), (7.10), and (7.13) respectively (thus, essentially, we seek the solu­

tion to an estimation problem in 6404 parameters), and proceed to sample iteratively around 

the cycle until convergence. Prior to this, however, we must specify parameters in the prior 

distributions of the texture parameter, and also the interaction parameter {3. In our example we 

choose these parameters in some arbitrary fashion, but we could easily have used the naive 

techniques discussed previously. For the texture means, we choose the mean, precision hyper­

parameters in the Normal priors as (0.0,0.0001) and (1.0,0.0001) for textures To (back­

ground) and Tl (object) respectively - such a specification is sub-optimal in the sense 

described above, and reasonably "vague" (we could represent prior ignorance of the true tex­

ture mean levels by choosing prior precisions equal to 0.0) . For the texture precisions, we 

choose identical Gamma priors with hyperparameters (2.0, 1.0) - thus, the prior modal posi­

tion corresponds exactly to the true precision value 1.0, but still the prior information 

represented by these densities does not seem unrealistically detailed. For the moment, we 

choose f3 initially to take the value as proposed by Besag, namely 1.5, but we may have cause 

to review this choice at a later stage. We now present the results and segmentations obtained 

using this amended algorithm. 

For demonstration purposes, we study the behaviour of a selection of the summary 

statistics mentioned above to obtain some idea of the nature of convergence for this relatively 

straightforward example. For the texture parameters, we track the posterior modal estimate in 

each case over the sequence of iterations, and for the true scene pixel classification parame­

ters, we track the number of pixels allocated to each texture after each iteration, and the 

number of pixels changing classification on that iteration. The algorithm was allowed to run 

for 100 iterations in total. Figure 118 depicts the sequence of posterior modal estimates of the 

texture parameters for textures To and Tl plotted (on the vertical scale) against iteration 

number. 
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Fig 118(a) : posterior mode J.1o Fig 118(b) : posterior mode PI 
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Fig 118(c) : posterior mode 'fo Fig 118(d) : posterior mode 'l'l 

It is clear that convergence of the parameters for To occurs rapidly, the consequence of an 

accurate prior specification, and that convergence of the parameters for Tl occurs within 

around 10 iterations. We adjudge convergence in this case by observing that the plots attain a 

constant horizontal level. It is also evident that the posterior modal estimate for parameter Jll 

is less than the true value of that parameter - around 1.96 as opposed to 2.0. This is no cause 

for concern, however, as it is again merely a consequence of the prior specification. The esti­

mates obtained are generally excellent. 

Figure 119 depicts plots of the sequences of numbers of To-allocated, no, and T1-

allocated, nl' pixels in (a) and (b) respectively. 
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Fig 119(a) : no Fig 119(b) : nl 

The plots appear to stabilise at around 20 iterations, that is, significantly later than the plots in 

figure 118. Figure 120 depicts similar plots for the difference in the number of pixels allocated 

to each texture and the number of pixel flips at each iteration in (a) and (b) respectively. 
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Fig 120(b) : number of pixel flips 

The plot in (a) appears to stabilise again at around 20 iterations, whereas the plot in (b) stabil­

ises much more rapidly, after only around 5 iterations. The contradictions implied by these 

plots demonstrate how difficult the assessment of convergence is for this algorithm. 
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Fig 121(a) : 1 iteration Fig 121(b) : 2 iterations 

Fig 121(c) : 5 iterations Fig 121(d) : 10 iterations 

Fig 121 (e) : 40 iterations Fig 121(f): 100 iterations 
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Figure 121 depicts the segmentations achieved after various numbers of iterations of the 

algorithm. In each case except the last, the representation is of the current (i.e. sampled) seg­

mentation and not the M.P.M. segmentation at that iteration. In the last segmented image, after 

100 iterations, the M.P.M. solution is represented, with the marginal posterior distributions for 

the pixel classification parameters approximated by the full conditional posterior distributions, 

with the conditioning parameters taking the values of those in the current segmentation (i.e. 

equivalent to number of replications R = 1). Convergence appears to occur rapidly, with an 

adequate segmentation achieved by the IO'th iteration (without the actual marginal modes 

being evaluated). 

On further experimentation with this particular image, we found that the algorithm con­

verged to an adequate segmentation (and a small error rate) for a wide range of prior parame­

ters, provided that the maximum-likelihood classifier allocated sufficient pixels to each texture 

in the initial segmentation. Practically, this suggests that only very vague prior knowledge is 

required, and such knowledge is readily available from exploratory analysis. We note espe­

cially that varying f3 (within reason) for this image generally only alters the rate of conver­

gence. Finally, we note also that, as mentioned above, the approximate marginal posterior 

distributions for the true scene classification parameters obtained via the algorithm were 

largely degenerate. 

In the example above, the segmentation problem was relatively straightforward as the 

Signal-Noise ratio involved was high. We now proceed to investigate a more testing example 

in which the Signal-Noise ratio is somewhat lower. 

Consider the identical image to that in figure 117(a) of derived from a circle true scene, 

but where the object texture mean-level is reduced from 2.0 to 0.5, hence producing a Signal­

Noise ratio of 0.5. Figure 122(a) depicts such an image, and figure 122(b) depicts the optimal 

maximum-likelihood segmentation under a correct prior specification. 

Fig 122(a) : image Fig 122(b) : two texture segmentation 
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Clearly this presents a very difficult segmentation problem, and a severe test of the Gibbs 

Sampler algorithm. On experimentation with images of this type, we find that several features 

that we did not need to consider previously assume greater importance. For example, the mar­

ginal posterior distribution estimates for the image in figure 117(a) were predominantly degen­

erate, and thus we were able to track the current (sampled) classification parameter values 

rather than the marginal modal estimates without any great loss in accuracy. For images such 

as that in figure 122(a), however, the marginal distribution estimates are not generally degen­

erate, and thus frequently the sampled and modal values for these distribution do not coincide. 

Hence, for definiteness, we now record the modal estimates instead of the "current" values, 

and use them in an identical way to that described above and demonstrated in figure 118, to 

aid in the diagnosis convergence Also, for images in which the Signal-Noise ratio is low, the 

segmentations obtained are extremely sensitive to the prior specification. We have already 

mentioned how the correct choice of f3 is important in all applications of the Gibbs Sampler 

algorithm, but that when the Signal-Noise ratio is high (and discrimination dominates smooth­

ing), the margin for error in this choice is quite large. By the same argument, when the Signal­

Noise ratio is low (and the discrimination is inconclusive), we would expect a correct choice 

of f3 to be crucial. Similarly, it is clear that the texture parameter prior distributions must be 

specified with some degree of adequacy, as in the example above, so that sufficient numbers of 

pixels are correctly classified in the initial segmentation. 

Noting each of these features, we now investigate the performance of the Gibbs Sampler 

algorithm for the image in figure 122(a). To discover if any acceptable segmentations can be 

achieved such a case where the noise corruption is high, we first specify prior distributions for 

the texture parameters which correspond closely to their true values. For the texture means, we 

choose the mean and precision parameters in the Normal prior distributions to be (0.0,0.1) 

for J10 and (0.6,0.1 ) for J11, and for the texture precisions, we again choose identical Gamma 

priors with parameters (2.0, 1.0) - this might be regarded as unrealistically specific as a prac­

tical example, but serves our demonstration purposes. We discuss the of f3 in more detail 

below, but for the moment, for reasons that will become apparent, we choose f3 = 0.5. Figure 

123 depicts plots of the successive posterior modal estimates over 100 iterations of the subse­

quent implementation of the amended algorithm. 

Here, the estimates of the texture To parameters are well behaved, due again to the accu­

racy of the prior specification. The estimates for texture T1 , however, are less well behaved 

and more wildly fluctuating, due in part to the smaller "sample size" (the number of pixels in 

the true scene) for that texture. Generally, however, we would diagnose the algorithm as con­

verged after around 20 iterations. Figures 124 and 125 depict plots of pixel counts and pixel 

flips. 
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Again, we draw the conclusion that the algorithm has converged after around 20 iterations. 

However, if we now inspect the two results at iteration 20 and iteration 100, we see that seg­

mentations are in fact markedly different. Figure 126 depicts these two segmentations. 
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Fig 126(a) : 20 iterations Fig 126(b) : 100 iterations 

The total numbers of pixels allocated to the two textures in each of figure 126(a) and (b) are 

approximately equal, as are the respective texture parameter estimates. Clearly, however, the 

second segmentation is superior to the first. This illustrates the difficulty that the assessment 

of convergence of the iterative Gibbs Sampler procedure presents for images in which the 

Signal-Noise ratio is low, and the marginal posterior distributions for many of the 

classification parameters are not degenerate. Furthermore, consider figure 127(a) and (b), 

which depict the segmentations achieved after 40 and 60 iterations respectively. 

Fig 127(a) : 40 iterations Fig 127(b) : 60 iterations 

It is clear that, visually, the segmentation in (a) is more adequate than that in (b), despite the 

fact that it was achieved in a fewer number of iterations. This has profound implications for 

our ideas concerning convergence diagnostics, and suggests that for images which the Signal-
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Noise ratio is low, we need either to perform replicate analyses and form more stable marginal 

posterior distributions, or view convergence as occurring over a much longer time-scale than 

merely 100 iterations. In relation to the latter of these points, figure 12S(a) and (b) depict plots 

of texture mean parameter estimates and the quantity no - nl over 1000 iterations of the algo­

rithm respectively. 
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The behaviour of the texture mean parameter estimates depicted in figure 12S(a) seems gen­

erally satisfactory over the extent of the 1000 iterations. However, toward the latter part of the 

sequence, value of no - nl appears to undergo an upward change in value. On further inspec­

tion, this appears only to be a short-term phenomenon, but serves to point up the fact that in 

cases where the Signal-Noise ratio is low the assessment of convergence will be generally a 

difficult task. Clearly, were we to perform replicate analyses, and form density estimates in the 

way described by Gelfand et al., we might expect that the task may be made moderately more 

easy, as the sequence of texture and classification parameter estimates will be more stable. 

Thus, in practical terms, it seems that the problems concerned with the assessment of 

convergence of the Gibbs Sampler algorithm are, as yet, largely unresolved. Each of the cri­

teria discussed above, along with others such as studying the relative positions of pixels that 

change classification between iterations frequently, or studying modal probability values, can 

be regarded as being of some use, but ultimately such assessments we still be made in some 

subjective fashion, perhaps only after a visual inspection of the segmentation obtained. This is 

an unsatisfactory situation, but until further investigation of the mathematical nature of the 

convergence of the algorithm has been carried out, we appear to have little alternative. We 
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console ourselves with the fact that, whenever the Signal-Noise ratio is sufficiently large 

(greater than 1.0 say, which we may discern from the posterior distributions for the texture 

means and precisions), we may run the algorithm for a fixed number of iterations, 50 say, then 

stop deterministically, and still obtain an adequate segmentation. 

The problems discussed above arise predominantly through our lack of mathematical 

understanding of the global behaviour of the posterior field induced by our (Gibbs) prior 

specification and its interaction with the likelihood function that represents the relationship 

between the signal and the observed data at the pixel level. We mentioned briefly in the intro­

ductory chapter several ways in which, for simple examples, the parameters in the conditional 

prior distribution may be chosen to avoid critical or super-critical behaviour of the prior field 

globally. Such issues, however, are only of relevance to the dogmatic Bayesian, one who 

believes that his prior specification should reflect solely his prior opinions, without reference 

to how such a specification will interact with the data - here, we must be primarily concerned 

with the nature of the posterior field, as it is from this that we are to make inferences. Titter­

ington (1986) suggests cross-validation as a possible non-Bayesian solution to this problem. 

We feel that such an adaptive approach is attractive, but unacceptable in this form. However, 

a adaptive solution (of sorts) to this problem may be as follows. Recall our amended Gibbs 

Sampler approach to the problem of simultaneous segmentation and parameter estimation. 

There, we merely included the relevant conditional posterior distributions for the texture 

parameters, given by (7.7) and (7.11), in the sampling cycle, and iterated to "convergence". 

Now, by simply adding another level to the hierarchy, we may regard the parameters in the 

conditional prior distributions as unknowns, write down a suitable form for their conditional 

(posterior) distributions, and include these posterior distributions in the sampling cycle also. 

Intuitively, we should thus obtain an adaptive scheme that prevents the posterior field behav­

ing in a super-critical fashion. For example, in the simple two texture problem presented 

above, with interaction parameter 13, we might write down the conditional distribution 

[13 I Y ,Il , 'f, 8], and include it in the sampling cycle. Under certain simplifying assumptions, 

for instance that knowledge of the true scene parameter values dominates that of the data 

values, this conditional distribution may be simplified to [13 Ill, 'f, 8] and so on. We suggest 

that the functional form of [13 Ill, 'f ,8] should depend on 8 through the number of like pairs 

of adjacent pixels or equivalently through the number of isolated pixels in some way in the 

current segmentation, in some way. We make such suggestions due to their intuitive appeal 

(we would like 13 to be large when the segmentation is "rough" and small when the segmenta­

tion is "smooth"), and because it is widely reported by other authors that the value of such 

smoothing parameters should be altered at various stages of the iterative procedure, but unfor­

tunately we can offer no information as yet as to their effect on the convergence of the Gibbs 

Sampler algorithm. 
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(7.5.2) Multiple texture true scenes. 

We now give one more brief example of the use of the amended Gibbs Sampler algo­

rithm in a segmentation problem where the true scene is known to contain three textures, 

namely a background and two distinct objects. Figure 129(a) depicts the underlying true scene, 

where the three texture mean levels are 0.0, 1.5, and 2.5 for textures To, Tl and T2 respec­

tively. Figure 129(b) depicts the image obtained when this true scene is corrupted by random, 

independent and additive zero-mean noise terms of precision 1.0, with the image discretised 

into an 80 x 80 grid of pixels. 

Fig 129(a) : true scene Fig 129(b) : image 

We feel that this is a relatively straightforward example, and yet is suitable to demonstrate the 

performance of the algorithm. 

For this particular example, the Gibbs Sampler algorithm was implemented under a com­

mon texture precision assumption, that is, the three texture precision conditional posterior dis­

tributions given by (7.11) were replaced by a single conditional posterior distribution 

[ 'r I Y ,p, 8] for precision parameter 'r. It is easily seen that, in place of (7.12), we have that 

K 

[ 'r I Y ,p, 8] oc II II [Yij l,uk ,'r ][ 'r ] 
k=1 (i.j) e Tk 

(7.14) 

where ['r] is the prior distribution for 'r. If we again choose a conjugate prior form for ['r] , 

say ['r] == Ga( a, 0), then it is easy to show that 

(7.15) 



1 K 
where SSQ = ~ L I: ( Yij - Pie )2. 

n Ie:: 1 (i.)) e T. 
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The sampling cycle now contains n2 + K + 1 full conditional posterior distributions. 

We must now specify a total of six prior parameters for the texture means, and two for the 

texture precision. In this implementation, for convenience, we assume the prior distribution in 

(7.5), involving only one parameter, although we accept that it would be perhaps more satis­

factory to specify a more complicated prior form in the three texture situation. For demonstra­

tion purposes, we choose the mean and precision parameters in the Normal priors for the tex­

ture means to be (0.0,0.1), (1.0,0.1), and (2.0,0.1). This represents a sub-optimal choice 

given the true texture mean values. We choose the parameters in the Gamma prior for the 

texture precision to be (2.0, 1.0), and thus the prior mode corresponds precisely with the true 

noise precision. The choice of the single interaction parameter f3 needs care. We must try and 

ensure that it is of the right order so that the lower mean-valued texture region (in this case 

T1) is not eradicated, while maintaining an adequate convergence rate. Naturally, we have no 

real knowledge as to what "the right order" is, but on previous experience, and having 

specified the prior parameters as above, we feel that f3 = 1.0 seems a sensible choice. 

The implementation of the amended Gibbs Sampler algorithm produced the behaviour of 

the posterior modal estimates for the texture parameters over the 200 iterations depicted in 

figure 130. 
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Fig 130(a) : texture parameter posterior estimates 

It is clear that each of the parameters has converged before the 200 iterations are complete. 

One notable feature is the behaviour of the modal posterior estimate for the mean parameter 

for texture T
2

• There appears to be an upward trend in the corresponding plot, until around 120 

iterations, when the values of successive estimates stabilise. 

The "current" segmentation was recorded after 25, 50, 75, 100, ISO, and finally 200 

iterations, and is depicted in figure 131. The sequence is extremely interesting. Throughout, 
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Fig 131(a) : 25 iterations Fig 131(b) : 50 iterations 

Fig 131(c) : 75 iterations Fig 131(d) : 100 iterations 

Fig 131(e) : 150 iterations Fig 131 (0 : 200 iterations 
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the elliptical texture region T2 (with a Signal-Noise ratio 2.5) is reproduced accurately, as is 

the background region, with all isolated pixels being removed before the 25'th iteration is 

reached. However, the square texture region T} (where the effective Signal-Noise ratio is 1.5) 

is initially partitioned into two, with some pixels interior to that region being allocated to a 

different non-background texture. This partition persists until between the 100'th and 150'th 

iterations (thus explaining the behaviour in figure 130). We believe this to be a consequence 

of the prior specification, particularly the choice of a one parameter prior for the pixel alloca­

tion parameters. However, the algorithm appears to converge to an adequate segmentation 

before 200 iterations. Figure 132 depicts the plots of the pixel counts over the 200 iterations. 
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Again, whereas the number of background pixels, no, remains approximately constant, the 

number of pixels allocated to textures T} and T2 only stabilise after around 129 iterations. 

Note also that the recorded number of pixel flips stabilise rapidly, after around 25 iterations. 

Thus, we again conclude that the convergence should not merely be assessed via one summary 

statistic, and in general great care should be taken. 

We present two final pixel images of interest. Figure 133(a) depicts a plot of the margi­

nal posterior modal probabilities for the pixel classification parameters depicted in figure 

131(f). The predominant dark colour represents a posterior probability of greater than 0.995 

for that pixel, and hence we see that in the majority of cases, the marginal posterior distribu­

tions are practically degenerate. Note how the texture region boundaries are picked out in a 

lighter shade, representing a lower posterior probability for the pixels concerned. Figure 

133(b) depicts a plot representing the number of flips (changes of allocation between succes­

sive iterations) undergone by each pixel, with a dark shade representing a high number of 

flips. Note here how again the texture boundaries are picked out, and note also that pixels 
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internal to texture T2 changed allocation infrequently, whereas those internal to Tl changed 

markedly more often, corresponding to the removal of the partition as described above. We 

believe plots such as these made at regular periods during the analysis may be of use in 

assessing the convergence of the algorithm. 

: .:' : 

Fig 133(a) : posterior probability Fig 133(b) : number of flips 

We note one interesting fact concerning the analysis of the image in figure 129(b). If the stan­

dard Gibbs Sampler algorithm is implemented with the same prior specification and parame­

ters, but without the texture parameters being updated between iterations (either stochastically 

or using any other adaptive estimation technique), the segmentation obtained at convergence 

comprises only two textures, To and T2 , with no pixels allocated to texture T1• Thus, generally, 

we might regard our amended algorithm to be superior to the non-adaptive original version. 

This completes the test examples that we present, and we conclude with some general 

remarks. We have studied examples of two and three texture true scenes, and investigated the 

adequacy of the amended Gibbs Sampler in each case. The extension to true scenes with larger 

numbers of textures is obvious, but with it goes the added complexity of the specification of 

the prior distributions for the texture parameters and the spatial prior for the pixel 

classification parameters, and also the increased numbers of statistics to use in the assessment 

of convergence. We also note here that for single texture true scenes the amended Gibbs 

Sampler produced adequate results (Le. converged to a single texture segmentation), even 

when the prior texture means were chosen to be close together, and the amount of smoothing 

was minimal, independent of however many textures were initially surmised, and without the 

need for reference to any of the texture-merging techniques described above. Thus, although 

we have encountered several practical difficulties, we have reason to be generally satisfied 

with the performance of the amended Gibbs Sampler algorithm. 
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Given the emphasis of the earlier chapters, another natural extension to the Gibbs 

Sampler algorithm that has been suggested by many authors would be to incorporate 

knowledge or opinion concerning edge positions. The edge-process "dual" to the pixel­

intensity process in the interpretation of the Markov Random Field prior forms in image seg­

mentation is largely viewed as defining subtleties in the neighbourhood system, that is, two 

adjacent pixels are not regarded as neighbours if an edge-section is present between them (see 

Geman and Geman (1984) for a full discussion). Practically, the use of an edge-process within 

a Gibbs Sampler algorithm should help to preserve the boundaries between textures, and possi­

bly even aid in improving the apparent rate of convergence, and our own preliminary investi­

gations in in this area, and the work of other authors, seem to suggest that this is the case. 

Intuitively, our probabilistic formulation of the edge-detection problem as one in changepoint 

analysis seems to lend itself well to the use of an edge-process in this way, providing initial 

locations and corresponding probabilities for the edge-sections. 

Finally in this chapter, we present a worked example to demonstrate the techniques dis­

cussed. It is a a semi-artificial example, the interest for which was motivated by the work of 

Ripley (1988, chapter 5), in which we shall demonstrate the implementation of the edge­

detection routines and the use of the amended Gibbs Sampler algorithm for segmentation. 

(7.6) Worked example - Ireland. 

Figure 134(a) depicts a 64 x 64 pixel discretised version of a map of Ireland, reproduced 

from Ripley (1988, pl02). It is used there as an example true scene to demonstrate the use 

annealing and related techniques. Figure 134(b) depicts an image derived from the binary true 

scene when Gaussian zero-mean error terms are added independently to each pixel - here, the 

two textures To (light) and Tl (dark) are homogeneous, with mean-levels 0.0 and 1.0 respec­

tively, and the noise standard deviation was chosen to be 0.65, identical to that used by Ripley 

in his demonstration. 

Fig 134(a) : true scene Fig 134(b) : image 
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This presents an interesting example on which to test the edge-detection and segmentation 

routines that we have developed, for a number of reasons. First, for solution of the edge­

detection problem using a changepoint formulation, we should really be forced to evaluate 

multiple changepoint posterior distributions, as the nature of the true scene is complex. 

Secondly, the level of noise-corruption should render the edge-detection and segmentation 

problems relatively difficult. Thirdly, we have the results and comments of Ripley available 

for immediate comparison. 

We shall assume that any pre-processing (for example, noise-reduction) has been carried 

out prior to any analysis that we shall perform. We begin as if in complete prior ignorance of 

the true scene, other than the knowledge that it contains two distinct textures, and the noise­

terms are identically and independently normally distributed. Hence, first, we carry out an 

edge-detection analysis using changepoint techniques. For comparison, we analyse the image 

using posterior distributions derived under assumptions of one and two changepoints, and 

usmg the binary segmentation technique and the approximate inference procedures derived 

using the Gibbs Sampler approach for one, two, and three changepoint models, each of which 

we presented in chapter 3. We assume the same prior specification as in our previous analyses, 

that is, with the texture mean-levels and noise standard-deviation being regarded as unknown 

parameters about which we are a priori ignorant, and thus for which we specify a non­

informative prior distribution. Figure 135 depicts the raw results of these various analyses. 

The posterior modal positions and values are represented using the symbols introduced in 

chapter 2. 

The six plots in figure 135 result from the following changepoint-based analyses. Figure 

135(a) depicts the results of a full analysis using the one changepoint posterior distribution 

(2.11). Figure 135(b) depicts the results of the binary segmentation type technique described 

in chapter 3, under the same prior specification as in the derivation of (2.11). Figure 135(c) 

depicts the results obtained when the two changepoint posterior distribution (3.2) is used to 

derive exact marginal distributions for the two changepoints. Figures 135 (d), (e) and (f) dep­

ict the results obtained when the Gibbs Sampler algorithm is used to obtain approximate mar­

ginal posterior distributions for one, two and three changepoints respectively, also as described 

in chapter 3, again under the same prior assumptions as in the derivation of (2.11). For 

demonstration purposes, the Gibbs Sampler algorithm was implemented using steps of 10 

iterations for 1 replication, with convergence being assessed via stability of posterior modal 

positions. Each set of results presented is un smoothed, apart from the removal of points on the 

frame of the region of interest. 

The results are generally encouraging. Perhaps most surprisingly, the results derived 

under one changepoint models are adequate, with the eastern and southern coastlines being 

detected accurately. Note also how the approximate methods produce results equivalent to the 
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corresponding exact methods. We note that simple smoothing of the results may visually 

improve their Quality. The timings involved in the production of the results in figure 135(a) to 

(0 were 1.14,1.90,51.10,9.88,16.88, and 22.62 seconds respectively for the processing of 

the 128 rows and columns in the image. Thus, for the multiple changepoint models, use of the 

Gibbs Sampler approximate methods may lead to significant time savings without significant 

loss of accuracy. 

We now proceed with an attempt to segment the noise-corrupted image. First, we obtain 

a segmentation automatically using the naive classification technique developed for convex 

object true scenes described earlier in this chapter. Using the results of the binary segmenta­

tion analysis depicted in figure 135(a), after suitable smoothing, each pixel is classified to 

texture Tl if the row and column classifications agree that the pixel was "internal" to the 

object, and to texture To otherwise. Figure 136(a) depicts the segmentation obtained by such a 

procedure. 
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Fig 136(a) : naive classification Fig 136(b) : probabilistic classification 

From the segmentation in figure 136(a), we obtain naive estimates of the texture mean parame­

ters and the noise variances. In this example, the estimates are 0.2413 and 0.8077 for the 

texture means, and 0.5860 and 0.6159 for the noise terms which, at this stage, we do not 

assume are identically distributed between textures. In total, 2231 pixels were naively allo­

cated to texture To, and 439 were allocated to texture T1• Figure 136(b) depicts the segmenta­

tion obtained when simple probabilistic classification is used, incorporating the prior 

knowledge concerning true classification for each pixel obtained during the edge-detection 

analysis, that is, we set the prior probability that any pixel belongs to texture To or Tl (nomi­

nally) to be 0.875 if the row and column classifications agree, and to 0.5 otherwise. Clearly, 

despite the sub-optimal choice of the texture parameters in the classification procedure, the 

segmentation obtained is generally quite adequate for use as an initial realisation in 
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subsequent more sophisticated analyses. 

Finally for this example, we attempt to obtain an M.P.M. segmentation via the amended 

Gibbs Sampler algorithm described above. As usual, we must first specify the parameters in 

the prior distributions for the texture means and (now presumed common) noise precision, and 

the parameters in the Gibbs prior for the true scene. We may specify these parameters 

automatically in the following way. We may choose the prior means for the texture mean-level 

parameters to be equal to those obtained using the naive technique above, 0.2413 and 0.8077, 

and the prior precision for these parameters to be reasonably small, say, 0.001 in each case. 

For the noise precision, we could specify Gamma distribution with mode around 1.0/0.6 = 

1.6667, but here we revert to the Ga(2.0 ,1.0) specification used previously. Thus our prior 

specification for these parameters is again clearly sub-optimal, although quite adequate. We 

again choose a one parameter Gibbs prior with interaction parameter p. Now, given the results 

of our naive classification procedure, we have reason to believe that the effective Signal-Noise 

for the image is (0.8077 - 0.2413 )/0.6 == 1.0. Hence, given our experience with simulated 

images in which the Signal-Noise ratio is 1.0, we feel that choosing p = 1.0 is acceptably 

conservative, and that the induced prior field will not dominate the posterior field in this case. 

Hence, using this specification, we proceed with an implementation of the algorithm. Figure 

137 depicts the plots of the posterior modal estimates of the texture mean and noise precision 

parameters on each of the first 200 iterations. 
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Fig 137(a) : texture parameter posterior estimates 

The estimates generally seem well behaved, and on the basis of these plots we might infer that 

the algorithm has converged almost immediately. Figure 138 depicts the plots of the number 

of pixels allocated to the respective textures. 
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Again, these plots appear to be relatively stable, after an abrupt change no and nl at around 

the 50'th iteration, and so we are willing to accept that the algorithm has converged prior to, 

say, the 75'th iteration. Figure 139(a) and (b) depict the segmentations obtained after 75 and 

200 iterations respectively. 
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Fig 139(a) : 75 iterations Fig 139(b) : 200 iterations 

The two segmentations are broadly similar, but differ slightly, especially in the vicinity of the 

north-west coastline - with knowledge of the true scene we would regard the second segmenta­

tion as visually more satisfactory, but the percentage pixel difference is actually quite low 

(actually 1.688%). This confirms the segmentation problem as being very difficult - the human 

eye is able to perceive such small differences between images. Note that all small scale 

features in the true scene (the detail on the western coast, lakes, islands etc.) are not present in 

the segmented images. This is the penalty for making simple and global assumptions concern­

ing the local nature of the true scene, as expressed via the Gibbs prior. It is generally sug­

gested that this problem may be partly overcome by using more sophisticated priors (although, 

in practice, this may prove ineffective without sufficient prior knowledge of the true scene), or 

by discretising the true scene via a pixel grid of higher resolution than that used to discretise 

the image (which naturally increases the amount of computation needed) . 



- 249 -

For completeness, we include four other segmentations of interest. Figure 140(a) depicts 

the segmentation obtained after 200 iterations when the prior means for the texture mean 

parameters are set to 0.0 and 2.0 for textures To and T. respectively, with the prior 

specification otherwise identical. Figure 140(b) depicts the segmentation obtained at the same 

stage, with the original prior means, but with P increased to 2.0. Figure 140(c) depicts the 

segmentation obtained when the initial prior specification is used, but without the values of the 

texture parameters being updated in the fashion prescribed by our amended version of the 

Gibbs Sampler algorithm. Figure 140(c) depicts the segmentation obtained by using Besag's 

I.C.M. classification technique, with the prior means specified as 0.2413 and 0.8077, and f3 
equal to 1.0, after only 5 iterations. 

Fig 140(a) : prior means 0.0 and 2.0 Fig 140(b) : f3 = 2.0 

Fig 140(c) : non-adaptive Fig 140(d) : l.e.M., f3 = 1.0 
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Again, the reconstructions are broadly similar, but we notice several important features. The 

segmentation in (a) is clearly inadequate. This is largely due to the poor prior specification of 

the texture mean parameters. In reality, the algorithm had not converged at this stage, and did 

not converge for around another 200 iterations, after which the segmentation had improved a 

little relative to the true scene, even though the "Wales" and "Scotland" regions were still 

absent. Thus we infer that the prior specification can effect the rate of convergence of the 

algorithm adversely. The segmentations in (b) and (c) are also inadequate. In (b), the choice of 

f3 has led to the prior field dominating the posterior field, and in (c) the lack of updating of the 

parameters has had an appreciable negative effect. The segmentation achieved using I.C.M. 

depicted in (d) is remarkably good. However, the quality of this segmentation became increas­

ingly worse as the procedure was iterated, indicating that, in this context, f3 = 1.0 is too 

large. We are also left with little probabilistic interpretation of the results. Thus, as reported 

by other authors, it may be advantageous to precede any formal probabilistic analysis using 

the Gibbs Sampler by a small number of iterations of I.e.M., in order to remove the majority 

of isolated pixels created by non-spatial classification techniques. 

(7.7) Image segmentation and pixel classification· conclusions. 

In this chapter we have seen how changepoint techniques can be used directly to achieve 

naive segmentations, and indirectly as the first stage of a probabilistic classification technique 

for simple edge and convex object true scenes. We also saw how the changepoint techniques 

could be used to obtain initial parameter estimates from training data to be used subsequently 

in more sophisticated segmentation schemes. We attempted to overcome the problem of 

coherent parameter estimation in one such scheme implemented via the Gibbs Sampler by 

developing an amended version of the algorithm in which the full conditional posterior distri­

butions of the unknown texture parameters were included in the usual sampling scheme, allow­

ing approximate posterior marginal estimates for these parameters to be obtained. Finally, we 

studied a worked example based on an image derived from a familiar true scene. 
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Appendix 1 : Posterior forms. 

1. Normal. 

1.1. Likelihood (A) - common variance, 9 = (91 ,91 , 'r) 

1.1.1 Prior 1: [91 ,92 , 'r] = constant. 

All parameters known. 

'r known, independent Normal priors for 91 ,92 

[9d = N(Pl, 111- 1) 

[92 ] = N(P2, 112- 1
) 

VI = (J11 ,J12 ,111 ,112) 

[r I Y.lJf 1 ~ 11, -1J2exp{ - ~ [SSQ, + I:z, + 13,1] 

1 ~ 1',. YB = ~ 
(n-r) i=r+l 

(Non-informative limit: 111 ,112 -7 0 ) 
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-r known , Uniform priors for 81 ,82 

tr = r(n-r) 

[8d = U(OI,£I) 

[ 82 ] = U( ~ , £2) 

'" = (01,£1,02,£2) 

[ r I Y. '" 1 ~ t,-l/2exp{ - ~SSQ, } [<p. (e.) - <PM.)][ <P2(e2) - <P2( 82) 1 

<1>1(.) = <1>(r-r)1/2(. -YA)) 

<1>2(.) = <1>( «n-r)-r)1I2(. - YB )) 

<1>(.) - Unit Normal c.d.f 

(Non-informative limit: £1 '£2 ~ 00,01 , ~ ~ - 00) 

1.1.4 Prior 4: [81 ,82 , -r] = [82 1 81 ] 

81 , -r known, dependent Normal prior for 82 conditional on 81 

(W.l.o.g assume 81 = 0) 

[82 181 ] = N(81, 11121) 

'" = (1112) 

Ulr = (n-r)-r + 1112) 

= (n -r) 1112 y-
B
2 

U2r 
Ulr 

r n 
2 - 2 

SSQnr = L Yi + L (Yi - YB ) 
i=1 i=r+l 

(Non-informative limit: 1112 ~ 0) 



Vir = 

V2r = 

V3r = 

Yc = 

K = 
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1.1.5 Prior 5: [81 ,82 , -r] = [82 1 8tl [ 8tl 

-r known, dependent Normal priors for ( 81 ,82 ) 

[82 18tl = N(81 , 77i21) 

[8d = N(P1, 771- 1) 

yt = (Ill ,771 ,7712) 

(r-r + K + 771)«n-r)-r + 7712) 

rK (- - 2 YA - YB ) 
rf + K 

(rf + K)771 ( - )2 
r-r + K + 771 III - Y c 

r-rYA + KYB 

r-r + K 

(n-r)-r7712 

(n-r)-r + 7712 

(Non-informative limit: 771 , 7712 ~ 0) 

81 , -r known, dependent Normal prior for 82 conditional on 81 and -r 

(W.l.o.g assume 81 = 0) 

[82 181 ,-r] = N(81,(rr)-I) 

yt = (r) 

Wlr = (n-r) + r 

W2r = (n-r)r rj 
(n-r) + r 

(Non-informative limit: r ~ 0) 



aIr = 

a2r = 

a3r = 

YD = 

K' = 
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1.1.7 Prior 7: [81 ,82 , 1'] = [82 I 81 , l' ][ 8tl 

l' known , dependent Normal priors for ( 81 , 82 ) conditional on l' 

[82 181 ,1'] = N(81,(rr)-I) 

[ 81 ] = N(Pl, 711- 1) 

." = (J.J.l, r, 71d 

(r1' + K' + 711)«n-r) + r) 

rK' (- -)2 , YA - YB r + K 

r1' + K' ( Y )2 
r1' + K' + 711 J.ll - D 

r1'YA + K'YB 

r1' + K' 

(n-r)'Z'Y 

Wlr 

(Non-informative limit: 711 ' r ~ 0) 

1.1.8 Prior 8: [81 ,82 , 1'] = [81 11'][ 82 11' ][ l' ] 

Independent Normal priors for ( 81 , 82 ) conditional on l' 

Gamma prior for l' 

[81 11'] =N(J.ll,rl1'-I) 

[82 11'] = N(J.l2,r21'-I) 

[1'] = Ga(a/2,P/2) 

." = (J.ll ,J.l2 , rl ,r2 ,a,p) 

(n + a) 
] -1/2 { b b Il} 2 [r I Y, yt oc b1r SSQr + 2r + 3r + ~ 

b1r = (r + rl)«n-r) + r2) 

rrl (PI - YA)2 
r + rl 

b
3r 

= (n-r)r2 (P2 - y
B

)2 
(n-r) + r2 

(Non-informative limit: rl , r2 ,a ,p ~ 0) 
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1.2. Likelihood (8) • common mean, 8 = (8, 'l't ,'l'1) 

1.2.1 Prior 1: [8, 'l'1 , 'l'2] = constant. 

C1r = 

C2r = 

C3r = 

All parameters known. 

! (n-r) { 'l' r 'l' n ) 
[r I Y , yt] oc 'l'? 'l'2 2 exp -...! L (Yi - 8)2 - ~ L ( Yi - 8 f 

2 i=1 2 i=r+1 

1.2.2 Prior 2: [8, 'l'1 , 'l'2] = [8] 

'l'1 , 'l'2 known Normal priors for 8 

[8] = N(P1,1]1-1) 

yt = (J.l1, 1]d 

r'l'1 + (n-r)'l'2 + 1]1 

r(n-r)'l'1 'l'2 (- - f YA - YB 
r'l'1 + (n-r)'l'2 

r(n-r)'l'1'l'21]1(J.l - YEf 
C1r 

r 

SSQ1r = L (Yi - YA)2 
;=1 

r'l'1 YA + (n-r)'l'2YB 

r'l'1 + (n-r)'l'2 

(Non-informative limit: 1]1 ~ 0) 

1.3. Likelihood (C) • different means, variances 8 = (8t , 81 , 'l't ,'l'1) 

1.3.1 Prior 1: [81,82 , 'l'1 , 'l'2] = constant. 

All parameters known. 
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'l'1 ,'l'2 known, independent Normal priors for 01 , O2 

[ 01 1 = N(Pl, 111- 1) 

[02l = N(P2,112- 1) 

'If = (Ill ,1l2, 111,112) 

(Non-informative limit: 111 , 112 ~ 0) 

'l'1 ' 'l'2 known . 

Independent Normal priors for 01 , O2 conditional on 't'l , 't'2 

[01 I 't'1] = N(PI, (rl 'l'1)-I) 

[021't'2] = N(P2,(r2't'2)-I) 

'If = (Ill ,1l2 , rl , r2) 

(r-l) (II-r-l) ( 1 ) 
[ r I Y, 'If] ex el~1/2't'1-2-'t'2-2 -exp - 2 ['t'ISSQlr + 't'2 SSQ2r+ e2r + e3r] 

elr = (r + rl)«n-r) + r2) 

r'l'l rl ( Y- )2 
e2r = III - A 

r + rl 

(n-r)'l'2r2 ( y- )2 
.-:....--~~ 112 - B 
(n-r) + r2 

(Non-informative limit: rl , r2 ~ 0) 
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All parameters unknown. 

Independent Normal priors for 81 ,82 conditional on 'l'1 , 'l'2 

Independent Gamma priors for 'l'1 , 'l'2 

[ 81 l'l'l] = N(p.I, (rl 'l'1)-I) 

[ 82 I 1'2] = N(p.2, (r2 'l'2)-1 ) 

[1'd = Ga( ad2 ,Pd2) 

[ 'l'2] = Ga( a2/2 ,P2/2) 

VI = (J1.1 ,J1.2 ,rl ,r2 ,al ,PI ,a2 ,P2) 

[ I ] -ll2r( r + a I - I ) r( n - r + a2 - 1 ) r Y, VI oc: e Ir 2 2 

(,+CI -I) (,,-'+ CI -I) 

{SSQlr+ e2r +Pd-2'-{SSQ2r + e3r+P2} 2' 

(Non-informative limit: rl , r2 , al ,PI , a2 ,P2 ~ 0) 

2. Poisson. 

2.1.1 Prior 1: [AI' ~] = constant. 

All parameters known. 

[r I Y, VI] oc: Afy, J.Y, exp{ -rAI -(n-r)~} 

2.1.2Prior2: [AI'~] = [Ad[~] 

All parameters unknown. 

Independent Gamma priors for Al , ~ 

[Ad = Ga(al,Pd 

[~] = Ga(a2,P2) 

VI = (al ,PI , a2 ,P2) 

r(a l + ±Yi + !)r(a2 + . ~ Yj + ~) 
i-I 2 l=r+1 

(Non-informative limit: al , a2 ,PI ,P2 ~ 0) 
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Appendix 2 : Edge-detection - examples. 

In this appendix, we present further examples of the use of the changepoint based edge­

detection routines developed in previous chapters. In each case, part (a) depicts the true scene, 

and part (b) the image derived from the true scene under the image formation process in equa­

tion (2.1), where each pixel is corrupted independently and identically with additive zero-mean 

and normally distributed noise. For demonstration purposes, the images were generated to 

exhibit a Signal-Noise ratio of 1.5, and are displayed using a six level grey scale. In figure 

A2-1 through to A2-5, the results depicted in parts (c) to (f) arise as the result of the following 

analyses. Part (c) depicts the results of a full analysis with each row and column treated 

independently using the posterior distribution in (2.11) under a one changepoint assumption. 

Part (d) depicts the results using the binary segmentation technique described in section (3.3.2) 

of chapter 3, under similar assumptions. Part (e) depicts the results of a full analysis using the 

marginalised version of the joint posterior distribution in equation (3.2) under a two 

changepoint assumption. Part (f) depicts the results of a full analysis based on the marginal 

posterior approximation technique using the Gibbs Sampler algorithm discussed in section 

(3.2), with both number of iterations to and number of replications m set equal to one. In each 

case, a non-informative specification for the texture mean-level and noise variance parameters 

was used. In addition, a probability of p = 0.1 was placed on the no changepoint alternative 

model. The amount of computation time required to produce each set of results is recorded in 

each case. In figure A2-6, part (c) depicts the results of an full analysis using (2.11), and parts 

(d), (e), and (f) depict the results obtained using the Gibbs Sampler approximation technique 

to compute the posterior marginal distributions under two, three, and four changepoint 

assumptions. Again, to and m were set equal to 1 in each case. In figure A2-7, part (a) depicts 

a relatively simple three texture true scene, with the homogeneous textures To, T1 , and T2 hav­

ing mean-levels 0.0, 1.0, and, 3.0 respectively, so that the Signal-Noise ratio at the To / T} 

boundary is half that at Tl / T2 boundary. Parts (c) to (f) depict respectively the results of row 

analyses using (2.11), the binary segmentation technique, the marginalised version of (3.2), 

and the Gibbs Sampler based approximation to the posterior marginal distributions with to and 

m equal to 1. Figure A2-8(a) depicts a chessboard type true scene with texture mean-levels 0.0 

and 1.5, and part (b) depicts an image derived when the noise variance is 1.0. Again, parts (c) 

and (d) depict full analysis results obtained using (2.11) and the binary segmentation tech­

nique. Parts (e) and (f) depict the results of Gibbs Sampler based analyses under a three 

changepoint with (to , m) set equal to ( 1 ,1) and (5,3) respectively. 
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Fig A2-3(b) image 
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Fig A2-6(b) Image 

- • + + + 

" + + +. • + 
+++ cY 

o o~ • • 0>+ • 00: 

o • 

o 91 0 O. 

co • cf'--: 0 0 
p 0 0 QD>.. ct+ 0 

o 

++ 

o 

~o 

• 
+ 

o 
• 0 0 0 

0'8 -
rD 
• 

o + 

+. 

• 

+ 
o 

+ 

\ • 
• • e _.-

o • • o 

o 

, 
• + • 

n 

Fig A2-6(d) 22.9 seconds 

+""f ~ 00. + +++ ~ 

"+0 + + 0 0 Q.c 0 o~.o ~ + c:t 
: +.. ..... 0 + "'.0 ~+ 0" • + 0 rY 
'lO 0 + 0.+1 o. g 

...s> I\a. 0 • o"! 0 0 n..... d.:."". • + 0 '" 
-.+ o. . A + ... "'0 ~....:: 

4 + • <!I' ~ ~ 9 rltfa,. + • • • • 
• +..0..0 _. + 09 ·0 

... ;,.. __ • o. ... \ 
c1 + ~ ~+. ~.. .. 8 

~. ,.. 0 0 0 • • 0 

• • +,,0> 0 J ·0 
• 1.0;0 e- -

• + ~ _ 0 0 + ~o + • 

• • • ~ o. '" ~.,. + 

'\0 •• L ~ +o 0 
.Ib ~o 0 ~. 0 0' 

+ ~ + + • ~ ce~ __ 
• riTiII .,.,,- -IJr . ~. ., 

he). 8. rYo· ..... - • 
~ • + r#.o 0 

.0 0 .~ + 0 0 • 

:. te",~_y ~o~:~ ._0 
0+ + v- ........ + ( 

+~, 0 0 0 0 _ _ + + C 

nO n.n. 0 0. 0 ~ 

Fig A2-6(f) 51.5 seconds 



- 265 -

. 

To T. T2 
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