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ABSTRACT 

This investigation was aimed at determining the impact of environmental stresses such 

as high temperature, low irradiance and drought on reproductive development in 

sweet pepper, particularly var. Blue Star. Special attention was given to abscission 

of the primary and secondary flowers. The role of assimilate accumulation and 

partitioning and the endogenous growth regulator ethylene in mediating stress effects 

on flower abscission were investigated. The hypothesis that flower abscission is 

promoted by these stress factors and that abscission is mediated by increased ethylene 

production and reduced assimilate partitioning to the flowers was tested. 

Imposition of a mean daily temperature (26 °C) from the third true leaf stage 

accelerated the development of the first primary flowers to anthesis when combined 

with high irradiance (4.9 MJ m'2 d-1). However, abscission was increased by 17 % as 

compared to lower temperature treatments at the same irradiance. The combination 

of high temperature and low irradiance (2.4 MJ m-2 d'1) induced complete abscission 

of the primary flowers. Although flower abscission was reduced at the lowest 

temperature examined (14 °C), development of the primary flowers to anthesis was 

slower than at higher temperatures. 

Both varieties, Blue Star and Bell Boy, were able to grow over a wide range of 

temperatures, as indicated by the large difference (c. 35 °C) between the base and 

maximum temperatures for growth indicated by a germination trial. In Blue Star, the 

base (Tb), optimum (T°) and maximum (T. ) temperatures were 6.0,27.5 and 41.5 °C 

respectively, whereas in Bell Boy, the corresponding values were 8.5,23.0 and 44.0 

°C. 
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Severe water stress imposed progressively after the appearance of the first flower bud 

promoted the initial development of the primary, but not the secondary flowers to 

anthesis, but induced early and increased abscission of both primary and secondary 

flowers shortly afterwards. The high percentage abscission of the primary flowers was 

partially offset by the lower abscission of secondary flowers. Percentage abscission 

increased as the severity and duration of water stress increased. However, short 

exposures to stress did not reduce abscission, or advance anthesis. A more advanced 

stage of flower development (4.0 mm diameter) proved more susceptible to early 

abscission than younger flower buds (1.0 mm) when exposed to severe stress. 
Temporary osmotic adjustment occurred soon after the imposition of water stress, 
during which osmotic potential decreased sharply from -1.15 to -1.80 MPa, and 

noticeable reductions in turgor were observed in all treatments between 11 - 22 d 

after the imposition of stress. Although water stress reduced vegetative growth under 
low irradiance, complete flower abscission occurred after anthesis. 

The advancement of anthesis in stressed plants was associated with a decrease in dry 

matter accumulation in the leaves and stems. However, at the onset of flower 

abscission, assimilate accumulation and partitioning were not significantly affected by 

water stress, and flower abscission was not directly related to any reduction in 

assimilate production or its distribution within the shoot. Instead, prior to flower 

abscission in severely stressed plants, ethylene evolution in the flowers increased by 

8-fold as compared to unstressed plants, and by 40-fold relative to severely stressed 

plants measured just before anthesis. The application of the ethylene releasing 

substance, 2-chloroethylphosphonic acid (CEPA), mimicked the effects of severe 

water stress, as reflected by a surge in ethylene evolution prior to abscission, 
followed by increased bud abscission. Sweet pepper flowers were also capable of 
forming abscission zones at the base of their pedicels in response to elevated ethylene 

production, whilst mature leaves were apparently incapable of this response. Foliar 

application of silver thiosulphate (STS) to water stressed plants and STS pre-treatment 

of plants subsequently sprayed with CEPA blocked the action of elevated ethylene 

resulting from severe stress or CEPA application in inducing flower abscission. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Sweet pepper (Capsicum annuum L. ) from the family Solanaceae is a tender perennial 

grown as an annual fruiting crop (Lincoln, 1987). Pepper plants have woody but 

brittle stems and an upright habit. Initially, the plant produces a single stem, but this 

soon branches into two. At the point of branching, one or more flower buds are 

produced and these are known as the primary or crown buds. After the production 

of one or two more leaves, each branch subdivides once more, again developing 

flower buds at each point of division. These are referred to as secondary buds or 

second layer flowers. Any form of stress that restricts the branching system is also 
bound to reduce the number of flowers. The plant structure is illustrated in Plate 

1.1.1 (Smith, 1979). 

Sweet pepper originated in South America, but is now grown throughout the world. 
It is among the most important 'vegetable' crops, ranking fifth in the vegetable area 
harvested on a global scale in 1991, with the largest cultivated areas being in the 

developing countries (FAO, 1992). Besides providing income in such areas, pepper 
fruits are also nutritionally valuable since they are rich in vitamin A and B, niacin, 

riboflavin and thiamine (Tindall, 1983). In Malaysia, the cultivation of sweet pepper 
is fast increasing in importance due to its market potential. Local demand for sweet 

pepper outweighed its production in 1990 by 98% (Hawa et al., 1991), and this 
demand is expected to increase year by year. To meet Malaysia's increasing demand 

for sweet pepper, substantial quantities of the fruit are imported, which adds to the 

bill. To overcome this problem, peppers are grown in the humid, tropical lowland 

areas of Malaysia, replacing the highland areas in which land is increasingly 
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PLATE 1.1.1. Young reproductive plant of sweet pepper showing (a) cotyledons, (b) 
first level or primary flower (crown), (c) second level or secondary flower and (d) 

third level or tertiary flower. Source: Smith, 1979. 
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expensive. 

Conventional production in the lowland areas is beset with many constraints. 
Environmental stresses such as high temperature, low light and lack of water are most 

often cited as causes for bud and flower abscission (Wien et al., 1989a) and such 

conditions may occur under the rainshelters currently used for crop production in the 

lowlands. Since the rainshelters lack environmental control, the flower and bud 

abscission observed there may be attributable to increased temperature and reduced 

radiation within them, especially during the rainy season. Equally, shortage of water 

could be a major cause of abscission. The mean daily temperature in the lowlands is 

typically 26 - 27 °C, but under the rainshelters may increase by 3-7 °C. At the same 

time, the natural radiation penetrating the plastic covers of the shelters is reduced by 

almost 70 % in the morning and late evening, and by 45 % at noon (Hawa Jaafar, 

1991, unpublished). As sustained growth and development of the reproductive sites 

until fruit is set is important in determining the success of early production, it is vital 
to establish how environmental conditions affect flower abscission and what the 

underlying mechanisms may be. 

This thesis comprises a series of experimental studies conducted with the objective 

of determining the impact of environmental stresses, especially high temperature and 

water deficit, on reproductive development in sweet pepper, with special attention 
being given to the abscission of primary and secondary flowers. Investigations also 
focused specifically on the role of assimilate accumulation and partitioning and the 

endogenous growth regulator, ethylene, in mediating the observed stress effects on 
flower abscission. The hypothesis was that flower abscission would be induced by 

high temperature, low light and water stress and that these effects would be mediated 
by increases in endogenous ethylene and reduced carbohydrate supply to the 
developing flowers. Abscission is known to be promoted by enhanced ethylene 

production (Durieux et al., 1983; Sexton et al., 1985; Abeles et al., 1992) and 

reduced assimilate partitioning to the flowers (Calvert, 1969; Halevy, 1984; Stirling 

et al., 1989a). ,II'IýI, 
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1.2 Literature Review 

The following sections review existing information on the effects of environmental 

conditions on reproductive growth and development in sweet pepper, with particular 

emphasis on flower abscission. Where information specifically relating to sweet 

pepper is limited, relevant research on other species is reviewed. 

1.2.1. Temperature, irradiance and flower development 

It is well established that temperature and irradiance both have a major influence on 

the growth and development of young reproductive plants (Kinet et al., 1985; Morris 

and Newell, 1987; Aloni et al., 1991b). Plant responses to temperature and irradiance 

vary between species and cultivars, and may be influenced by the levels of other 

environmental variables (Papadopoulos and Tiessen, 1983; Selander and Welander, 

1984; Kinet et al., 1985; McPherson et al., 1985). For example, in some species 

temperature is critical in determining reproductive development up to anthesis or 

abscission of the buds (Fortanier and Zevenbergen, 1973; Dosser and Larson, 1981; 

Bernier et al., 1981a), whilst in others temperature interacts strongly with irradiance 

to influence flower growth and development (Deli and Tiessen, 1969; Kinet et al., 
1985; Atherton and Harris, 1986). 

High temperatures generally increase the rate of flower development, resulting in 

earlier anthesis (Kinet et al., 1985). This effect has been recorded by several workers 
for grasses, herbaceous dicots and woody species (Calvert, 1964; Moe, 1972; Rawson 

and Bagga, 1979; Armitage et al., 1981). Under near optimum growing conditions 
in a glasshouse, anthesis in the primary flowers of sweet peppers var. World Beater 

was accelerated at a mean daily temperature of 35 °C as compared to 12.5 °C 

(Cochran, 1936). Similarly, in a growth room study, flowering of tomato cv. Ohio 

MR-13 was delayed significantly at a mean air temperature of 16 °C, as compared to 

20.5 °C, whereas cv. Vendor was unaffected (Papadopoulos and Tiessen, 1983). The 

effect of high temperature on flowering in tomato was observed to be greater under 
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high irradiance conditions (Hurd and Cooper, 1967; 1970). 

While high temperature accelerates flower development up to anthesis, it also 
increases flower and bud abscission in sweet pepper (Cochran, 1936,1938; Song et 

al., 1976; Rylski and Spigelman, 1982) and tomato (Calvert, 1969; Atherton and 

Harris, 1986; Wien et al., 1989b). Similarly, Utsunomiya (1992) showed that a high 

mean temperature of 30.5 °C accelerated flower development up to anthesis in passion 
fruit, but also promoted extensive flower abscission after pollination. These results 

suggest that relatively high temperatures promote reproductive growth up to anthesis, 
but may also increase abscission after anthesis. The adverse effect of high 

temperatures after anthesis is also well illustrated by greenhouse-grown sweet pepper 
(Cochran, 1936). For example, at a mean air temperature of 18.5 °C, cv. World 

Beater exhibited the highest percentage fruit set, implying that abscission was 

reduced. However, when the mean temperature was increased to 24 °C, percentage 

abscission increased, with complete abscission of flowers and buds being observed 

at 35 °C (Cochran, 1936). Similar results obtained by Song et al. (1976) also showed 

that abscission increased as mean temperature was raised from 15.5 to 20.5 and 
finally to 35 °C. 

Mean temperature seems to be more important than the variation between day and 

night temperatures in terms of its effects on flower development, anthesis and 

abscission (Kinet et al., 1985; Atherton and Harris, 1986). The influence of 

temperature on developmental processes can be analysed using the thermal time 

concept (Garcia-Huidobro et al., 1982; Stirling et al., 1989b; Peltonen-Sainio, 1991; 

Slafer and Savin, 1991) and this approach can be used to predict the timing of 
developmental events during the life cycle of a crop. The calculation of thermal time 

is based on the linear rate/temperature response of developmental processes between 

base (Tb) and optimum (To) temperatures. Since cardinal temperatures for sweet 

pepper have not previously been reported, a small section of the investigation 

described here attempted to establish Tb, T. and the maximum temperature (T,,, ) by 

means of a germination trial using a thermogradient plate under controlled 

environmental conditions (Chapter 4; Garcia-Huidobro et al., 1982; Mohamed et al., 
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1988a). This technique has generally been found to produce satisfactory and 

reproducible results provided viable and non-dormant seeds of uniform size are used 

(Garcia-Huidobro et al., 1982; Mohamed et al., 1988a). The number of degree days 

(°C d or thermal time) was calculated by accumulating the mean daily temperature 

above Tb. Subsequently the thermal time was used to relate the process of flower 

development (anthesis and abscission) to temperature. 

Abscission at high temperatures may be attributable to competition for assimilates 

between flower buds and young leaves, as proposed by Dinar and Rudich (1985a) and 

Aloni et al. (1991b). The latter workers showed that, under high temperature 

conditions, the young leaves of sweet pepper plants appeared to be more effective in 

importing assimilates than adjacent flower buds. This view was further supported by 

results showing that14C-sucrose was partitioned in favour of young leaves as opposed 

to flowers (Aloni et al., 1991b). In tomato, high temperature also reduced carbon 

transport from leaves by promoting the formation of callous plugs in the phloem of 

the petioles, and also inhibited starch hydrolysis within the leaves (Dinar et al., 
1983). Dinar and Rudich (1985a) later showed that the import of assimilates into 

flower buds and their conversion into starch were also inhibited. Increased abscission 

at high temperatures may also result from a failure of fruit set due to abnormal 

growth of the reproductive structures (Charles and Harris, 1972; Levy et al., 1978; 

Polowick and Sawhney, 1985; Rylski, 1986). 

Flower abscission at high temperatures is particularly severe under low irradiance 

conditions (Atherton and Othman, 1983; Papadopoulos and Tiessen, 1983; Picken, 

1984; Rylski and Spigelman, 1986; Turner and Wien, 1994a). For example, up to 

50% flower abscission was observed when tomato cv. Sonato was grown at a mean 
daily temperature of 20 °C and a mean irradiance of 4.8 MJ M, V, but complete 
flower abortion occurred when irradiance was decreased to 2.5 MJ m-2 V (Atherton 

and Othman, 1983). Kinet (1977a) also reported that the latter irradiance treatment 
induced substantial flower abscission., Low irradiance ý retards inflorescence 

development, accelerates and increases abscission in most species and may induce 

deformation of the flowers (Moe, 1972; Kinet et al., 1985; Kinet, 1994). Abscission 
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of flowers and buds at low irradiance probably occurs because the reduced 

photosynthetically active radiation severely limits the growth of the whole plant 
(Atherton and Harris, 1986; Turner and Wien, 1994b) and increases competition for 

assimilates between the reproductive and vegetative structures (Halevy, 1987; Morris 

and Newell, 1987; Turner and Wien, 1994b). An alternative hypothesis is that the 

levels of the endogenous hormone, ethylene, may be altered (Tripp and Wien, 1989). 

Growing glasshouse tomatoes at a relatively low mean temperature of 18 °C under 
low winter irradiance conditions reduced flower abscission and promoted fruit set (De 

Koning and Hurd, 1983), suggesting that lower temperatures may counteract the 
detrimental effects of low light, and that assimilate supply, redistribution, and 

utilisation may be essential factors in mediating temperature effects. This appears to 
be especially true at the time of appearance of visible buds (Kinet, 1977a; Bernier et 

al., 1981b). Exposure to high temperatures at an earlier stage of the life cycle 

reduced the incidence of flower abscission, possibly by increasing the photosynthetic 
leaf area formed before the flowers were initiated (Calvert, 1969). Wien et al. 
(1989a) showed that, when sweet pepper plants were exposed to 80% shade during 

flowering, open flowers were the first reproductive organs to be shed, followed by 

flower buds. However, there is growing evidence that the increased flower abscission 
induced by the combination of high temperature and low irradiance is more likely to 
be caused by stimulation of endogenous ethylene production (Cameron and Reid, 

1981; Tripp and Wien, 1989; Wien et al., 1989b; Wien et al., 1993; Abeles et al., 
1992). 

It is apparent that there is a need to gain a better understanding of the interactive 

effects of temperature and irradiance on flower growth and development in young 

reproductive plants of sweet pepper. This was achieved by conducting the experiment 
described in Chapter 3, in which young sweet pepper plants were grown under 
different temperature conditions in combination with natural or reduced glasshouse 
irradiance. The time to anthesis and abscission and percentage abscission were 

examined to establish the impact of temperature-irradiance interactions on 
reproductive development in different varieties. The existence and extent of varietal 
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differences in response to temperature were examined further in a study of the 

cardinal temperatures for germination using the thermogradient plate. 

1.2.2 Water stress 

Water stress may take two extreme forms: stress due to an over-abundance of water 

which results in flooding, or stress resulting from a lack of water which causes water 
deficits. The investigations undertaken here were confined to stress induced by water 
deficits, which is sometimes defined as drought. 

In simple terms, water deficits develop when water loss by transpiration exceeds 

absorption by the roots (Turner and Begg, 1981). At any stage of development, 

whether in the open field or under protected cultivation, plants may experience some 
degree of transient, midday water deficit during hot, sunny weather, even when 

growing in moist soil (Boyer et al., 1980; Kramer, 1983). However, it is the 

development of long term deficits in plants that are progressively reducing the 

available soil water that is crucial for overall growth and productivity, as the 

consequent stress may cause severe disturbance of physiological processes and hence 

induce injury (Hsiao, 1973; Kramer, 1983). 

Drought is one of the most important environmental factors limiting crop production 

as water deficits affect every aspect of plant growth. It is well established that water 

stress reduces growth and yield, and that the magnitude of the reduction is dependent 

upon the stage of development at which the stress occurs (Ney et al., 1994). Different 

phases of growth may exhibit differing sensitivity to water stress (Salter and Goode, 

1967; Kaufmann, 1972; Begg and Turner, 1976). Sweet pepper may be expected to 

demonstrate similar differential responses to water stress. 
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1.2.2.1 Water stress and reproductive development 

The deleterious effects of water stress in plants are usually most pronounced in tissues 

and organs undergoing rapid growth and development (Salter and Goode, 1967; 

Slatyer, 1969; Hsiao, 1973; Fischer, 1973). The reproductive stages of growth are 

often, but not always, the most sensitive to water stress (Lewis et al., 1974; Sionet 

and Kramer, 1977; Singh et al., 1987), and, if water deficits occur at this time, yield 
is depressed more than if these occur at other growth stages (Kaufmann, 1972; Hale 

and Orcutt, 1987; Kirkham, 1990). Kaufmann (1972) divided the reproductive cycle 
into three stages when considering the effects of water stress on growth. The first is 

the flowering stage, beginning with the initiation of the flowers, anthesis and 
fertilisation, and culminating in fruit set. This phase largely determines the number 

of mature fruits produced, but not necessarily their individual size. The imposition 

of severe stress at any time during this stage may cause severe flower and bud 

abscission and hence yield loss. In the present study, stress was imposed at the 

appearance of the first flower buds. The other two phases of reproductive cycle 
defined by Kaufmann (1972) were the periods of fruit enlargement and fruit ripening; 

these were not specifically examined in the present study. 

Plant water deficits have been reported by several workers to increase flower 

abscission and reduce fruit set. For example, water deficits during flowering and 

early pod development decreased yield in soybean (Momen et al., 1979; Westgate and 
Peterson, 1993), primarily because of a decrease in pod number per plant resulting 
from increased flower and pod abortion (Shaw and Laing, 1966). In oats moderate 

or severe water deficits imposed after anthesis caused 57 - 80 and 89 - 90% of the 
fertile florets to be aborted respectively (Peltonen-Sainio, 1991). In maize, stress at 

anthesis may cause failure of pollination or poor development of the fertilised 

embryos (Herrero and Johnson, 1983; Westgate and Boyer, 1985). 

In general, the abscission of flowers and juvenile fruit is increased and fruit or seed 
set are decreased by water stress. For example, water stressing cotton plants during 

early flowering caused severe leaf wilting and shedding of new flower buds, but had 
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no effect on existing flowers or boll retention (Grime et al., 1970). Similar stress 

during the period of peak flowering caused extensive bud shedding and reduced boll 

retention, while late stress reduced current flowering and induced almost complete 

loss of bolls. In contrast, Saito and Ito (1967b) observed no effect on flower 

abscission when the water supply to tomato seedlings was restricted. Similarly, 

Dubetz and Mahalle (1969) observed no change in flower abscission in bush beans 

when soil water potential reached -0.8 MPa before, during or after flowering. In 

winter grown glasshouse tomato, a marked increase in flower bud abscission occurred 
before anthesis when plants were stressed after the largest bud on the inflorescence 

reached 4 mm (Atherton and Othman, 1983). However, when stress was applied at 

an earlier stage of development (largest bud 1 mm long), no significant effect on bud 

abscission was observed. In contrast, water stress was especially injurious to wheat 

when imposed during initiation of flower primordia and anthesis (Fischer, 1973; 

Sionet et al., 1980). These findings suggest that there are specific stages of bud 

development which are more susceptible to water stress-induced abscission. Because 

flowering occurs over a defined period, Radin (1993) suggested that yield responds 

strongly to stress at anthesis. Investigations demonstrating the differential sensitivity 

of specific stages of bud development to water stress have been reported by other 

workers (Dubetz and Mahalle, 1969; Huang, 1978). The results obtained also suggest 
that some species are more sensitive than others and that the impact on reproductive 
development may depend on the timing of the stress. 

The effects of water deficits on flowering are complex because the flowering process 

can be affected in many ways. The extent of the effects on abscission, for example, 
is affected by other environmental variables such as temperature and irradiance 

(Lawlor, 1979). For instance, Cochran (1936) demonstrated that the reduction in fruit 

set in water stressed sweet pepper resulting from increased flower abscission was 

greater when the daily mean temperature was increased to 24 °C. Similarly, Klapwijk 

and De Lint (1974) showed that water deficits imposed during flowering in tomato 
induced less flower abscission under low irradiance conditions. The same approach 

of restricting the watering, of tomato plants during winter propagation has been 

practised by the commercial growers to produce 'hard ' or 'balanced' plants in which 
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flower abscission is greatly reduced (Cooper and Hurd, 1968). The purpose of 
imposing such intentional stress by controlling the water supply was to restrict 

vegetative growth without adversely affecting subsequent growth during the 

reproductive phase (De Koning and Hurd, 1983). Increased fruit set following a 
decrease in flower abscission has occasionally been observed when tomato plants were 

subjected to water stress during flowering (Rudich et al., 1977) and some tolerance 

of water deficits has also been observed in sweet pepper (Hernandez-Armenta, 1985). 

According to Hernandez-Armenta (1985), the degree of moisture stress required to 

reduce fruit set significantly in sweet pepper appears to be great, since measurable 
increases in the abscission of reproductive structures occurred only when the plants 

were severely wilted. Similarly, Menzel et al. (1986) demonstrated a reduction in 

flower bud abscission prior to anthesis when passion fruit plants were stressed. 

A limited number of investigations have shown that anthesis may be advanced in 

plants subjected to water stress during early vegetative growth (Cooper et al., 1966; 

De Koning and Hurd, 1983; Wudiri and Henderson, 1985; Drinnan and Menzel, 

1994; Jaafar et al., 1994). For example, when greenhouse tomatoes were gradually 

water stressed after the appearance of the first flower buds, flowering was accelerated 
(De Koning and Hurd, 1983; Wudiri and Henderson, 1985). During water stress, 

accumulation of carbohydrates in the stems was increased and this was suggested to 

advance flowering by providing an enhanced carbohydrate supply to support the 
development of reproductive primordia (De Koning and Hurd, 1983). Observations 

of plants grown using the nutrient film technique further revealed that the 

enhancement of early inflorescence development by stress was accompanied by 

reductions in leaf expansion and stem extension (Cooper, 1976; Hurd and Graves, 

1981). Similar results reported by De Koning and Hurd (1983) suggest that this effect 

of water deficits in promoting reproductive development at the expense of vegetative 

growth may be a common phenomenon. 

Effects of water stress on flower number have been observed in several annual crops. 
For example, processing tomatoes receiving different quantities of water during 

vegetative growth exhibited a decrease in the number of flowers produced as. the 
I 
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severity of stress increased (Wudiri and Henderson, 1985). Similarly, Klapwijk and 

De Lint (1974) demonstrated that the number of flower buds initiated at the growing 

points of tomato plants stressed during winter propagation was reduced. In oats, 

drought was observed to decrease the number of fertile florets in the panicles of oats 

when watering was restricted when the first leaf began to unroll (Peltonen-Sainio, 

1991). 

However, water stress does not always reduce flower number. For example, Rudich 

et at. (1977) demonstrated that processing tomato plants receiving different rates of 

drip irrigation during vegetative growth showed no difference in the number of 
inflorescences produced. Similarly, the number of flower buds per node in apricots 

was not affected by water stress, although total flower number was reduced because 

of a decrease in the number of nodes bearing flowers (Jackson, 1969). De Koning and 
Hurd (1983) reported that the number of flowers reaching anthesis was increased 

when winter-sown tomato plants were subjected to restricted watering, while 
Kaufmann (1972) observed that fruit set was increased because of reduced flower 

abscission when pepper plants were stressed by reducing the osmotic potential of the 

nutrient solution from -0.29 to -0.62 MPa during the first week of flowering. 

In addition to reducing flower number, water stress may also affect flower size, as 
in tomato (Saito and Ito, 1967b). Menzel et al. (1986) also observed a reduction in 

flower size in passion fruit following the imposition of moisture stress, although this 

did not lead to premature abscission, and suggested that these developing flower buds 

acquire some resistance to desiccation. According to Damptey and Aspinal (1976) and 
Yegappan et al. (1982), the smaller flower size in water stressed maize and sunflower 

plants may be attributable to the reduced rate of growth and final size of the 

inflorescence, an effect which might become more serious if the stress was imposed 

earlier during flowering and for a longer period, as observed in apple (Modlibowska, 

1961). The observed effects of water stress on flower size may presage the 

consequent effects on fruit dry weight, as suggested for tomato by Gates (1955). 

However, the reproductive stages are not always the most sensitive to stress 
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(Kirkham, 1990). A classic example was reported by Sionet et al. (1987) who 

exposed goosegrass (Eleusine indica (L. ) Gaertn. ) to water stress at the vegetative 

stage, the reproductive stage and during both stages. Plants subjected to water deficits 

during flowering showed the smallest decline in biomass during stress and a higher 

rate of growth after rewatering, as compared to plants stressed during vegetative 

growth or during both the vegetative and flowering stages. 

The available evidence therefore suggests that some species are more resistant to the 

effects of water stress on flower abscission and fruit set than others. This apparent 
discrepancy may arise from the different approaches used to apply water stress, 

variation in the intensity of the stress imposed, its timing and duration, and 
interactions between treatments imposed and the other environmental factors. Since 

different species exhibit differential sensitivity to water stress, the responses observed 
during reproductive development may also affect time to anthesis and the severity of 

subsequent flower abscission. The experiments described in Chapter 5, were therefore 

carried out to determine the influence of the intensity and duration of water stress, 

and its interaction with irradiance, on flower development and abscission. The role 

of assimilate accumulation and partitioning in mediating the effects of water stress on 
flower development and abscission was also investigated. 

1.2.2.2 Water stress and vegetative growth 

Water stress imposed during vegetative growth may affect subsequent reproductive 
development to an extent that depends on the severity and duration of the stress 
imposed. In general, moderate water stress inhibits vegetative growth, particularly 

leaf expansion (Turner and Begg, 1981; Kramer, 1982; Kirkham, 1990), but 

reproductive development may be hardly affected (Kaufmann, 1972; Bradford and 
Hsiao, 1982). 

It is well documented that expansion growth is extremely sensitive to water stress 
(Hsiao et al., 1985; Hsiao and Jing, 1987) and that restriction of leaf expansion is 
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one of the first symptoms of stress (Kirkham, 1990). El-Sharkawy and Cock (1987) 

suggested that decreasing leaf area by slower growth and leaf rolling during dry 

weather is a mechanism which enables plants to reduce water loss by transpiration. 

Decreases in leaf area resulting from drought also have secondary effects because of 

consequent reductions in light interception and photosynthate production, which in 

turn contribute to the observed reduction in growth (Hale and Orcutt, 1987). Many 

recent studies have reported reductions in leaf growth resulting from water deficits 

(Sobrado and Turner, 1986; McIntyre, 1987; Guralnick and Ting, 1987). For 

example, water stress had a major effect on the leaf area of passion fruit, which was 

associated with reductions in the total number, dry weight and size of the leaves 

(Menzel et al., 1986). Similar reductions in leaf area resulting from the production 

of fewer and smaller leaves or the shedding of older leaves during dry periods have 

been reported for groundnut and sorghum (Ong, 1984; Ong et al., 1985; Huda et al., 

1987). The observed reductions in leaf expansion induced by water stress may imply 

either a reduction in cell expansion and/or a slower rate of cell division, as indicated 

by the longer plastochron, in tomato (De Koning and Hurd, 1983). 

As for reproductive development, the nature and extent of the effects of water deficits 

on vegetative growth depend on the severity and duration of the stress (Chaves, 

1991). Although the effects of mild stress on vegetative growth may be reversible 

upon rewatering, severe and/or prolonged water stress often permanently reduces 

plant growth (Bradford and Hsiao, 1982). For example, when tomato plants were 

mildly stressed, the total number of leaves per plant was increased, although the 

number of leaves below the first truss was unaffected (Cooper et al., 1966). In 

contrast, the imposition of severe stress on sunflower plants directly affected the leaf 

primordia, leading to a permanent reduction in total leaf number (Marc and Palmer, 

1976; Yegappan et al., 1980). During severe and/or prolonged stress, there is also 

more opportunity for the initial responses to lead to secondary and tertiary effects. 
Acevedo et al. (1971) demonstrated that mild stress reduced vegetative growth in 

maize, but that growth resumed within seconds of rewatering, suggesting that the 

increase in tissue water status immediately promoted cell expansion. Similarly, 

Hoogenboom et al. (1987) observed that leaf size in soybean was reduced during 
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periods of moisture' stress, but that the shoots of non-irrigated plants grew more 

rapidly after rain than those of irrigated plants, causing most of the growth reduction 

during the previous stress period to be restored. In contrast, withholding water for 

7d sharply decreased the rate of leaf expansion in bean (Phaseolus vulgaris L. ) and 

no recovery was observed 3d after rewatering (Markhart, 1985). The various 

vegetative organs may also respond differently to stress. For instance, the reductions 

in relative growth rates and dry weights following wilting were greater in the upper 

and younger leaves of tomato than in the lower and older leaves (Gates, 1955). 

However, the younger leaves were more tolerant of water deficits than older tissues 

in that they resumed active growth upon rewatering (Gates, 1964,1968). 

Water stress not only reduces leaf area but also often increases leaf thickness, thereby 

increasing the weight per unit area or specific leaf weight (Kramer, 1983). Hampton 

et al., 1987) observed that thick leaves were associated with drought resistance in 

cotton genotypes which also possessed thick epidermal cell walls and cuticles. 
Retarded growth and development of other plant parts as a result of water deficits 

have also been documented. For example, stem diameter was decreased in tomato, 

indicating that cell expansion across the stem axis was affected by water stress 

(Cooper et al., 1966; De Koning and Hurd, 1983). The number of branches was also 

reduced by water stress in sweet pepper (Wien et al., 1989a), an effect which reduced 

the number of flowers produced because fewer flowering nodes were present. 

In this thesis, investigations of the effects of water stress on vegetative growth, in 

particular leaf number and size, were carried out to determine the relative importance 

of the severity and duration of water stress. The consequences of drought-induced 

restrictions of vegetative growth for reproductive development were also examined. 

1.2.3 Assimilate production and partitioning 

Developing flowers are centres of -growth which require continued supplies of 
assimilate. An acute shortage of carbohydrates resulting from unfavourable 
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environmental conditions during flower development promotes flower abscission in 

many species (Kinet et al., 1985; Halevy, 1987; Kinet, 1994). The occurrence of 

stress-induced abscission under such conditions may result from the inability of young 

flower buds to compete successfully for available assimilates with the meristems and 

developing leaves at the shoot apex (Hussey, 1963; Calvert, 1969; Halevy, 1984), or 

with the roots (Cooper and Hurd, 1968). Several examples of flower abscission 

induced by environmental stresses such as low light and temperature extremes were 

described for tomato (Kinet et al., 1978; Picken, 1984; Dinar and Rudich, 1985a, b), 

sweet peppers (Wien et al., 1989a, b; Turner and Wien, 1994a; Jaafar et al., 1994) 

and cotton (Guinn, 1974). 

During water stress, gas exchange is frequently impaired by reduced stomatal 

conductances (Black et al., 1985; Bennett et al., 1987) and photosynthetic area is 

restricted by decreases in both leaf production and expansion (Ong et al., 1985; Huda 

et al., 1987). As a result, vegetative and reproductive growth are both affected by the 

consequent reduction in assimilate production, as indicated by the reduced total dry 

weight of passion fruit plants subjected to stress (Menzel et al., 1986) and the flower 

abscission induced by the inability to compete successfully for inadequate assimilate 

supplies (Shillo and Halevy, 1976a). Similarly, reproductive growth in groundnut may 
be restricted by inadequate supplies of assimilates resulting from water stress (Stirling 

et al., 1989a). These results suggest that when assimilate supplies are limited by 

stress, partitioning to reproductive organs, particularly young buds and flowers, may 

be reduced to the point where continued growth cannot be supported and premature 

abscission occurs. 

Some stages of reproductive development appear to be more susceptible to stress- 
induced abscission than the others. For example, the most sensitive growth stage to 

water stress in tomato was observed to last for about 10 d from the time the buds 

became macroscopically visible, and restricted supplies of assimilates during this 

period caused complete abortion of the inflorescence, without affecting the growth of 

the young leaves (Kinet, 1977a). Gladiolus flower buds were also very sensitive to 

water stress and low temperature which caused abscission (Shillo and Halevy, 1976a, 
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b); mild water stress also decreased the partitioning of 14C-assimilates to the 

inflorescence, but increased their transport to the competing sink, the corm. 

Evidence to support the view that competition for assimilates may limit bud growth 

was obtained for tomato plants grown under low light conditions since removal of 

young leaves, particularly those which developed at the same time as the 

inflorescence, reduced bud abscision (Aung and Kelly, 1966; Saito and Ito, 1974; 

Kinet, 1977b). Aloni et al. (1991b) also showed that the partitioning of "C-sucrose 

to the buds, but not the young leaves of sweet pepper, was reduced by high 

temperature stress. The involvement of changes in assimilate partitioning between 

reproductive and vegetative structures during water stress in promoting the abscission 

of reproductive organs has not previously been investigated in sweet peppers. 

1.2.4 Ethylene and water stress-induced flower abscission 

As discussed above, certain environmental factors may promote extensive flower 

abscission (Menzel et al., 1986; Kinet, 1994), presumably by reducing assimilate 

production or its partitioning to the flowers (Menzel, 1985; Halevy, 1987). Ethylene 

has also been implicated as the major cause of abscission in many species under stress 

conditions (Sexton et al., 1985; Taiz and Zieger, 1991; Abeles et al., 1992). Ethylene 

production in plants has often been found to increase during various types of stress, 
including low light (Durieux et al., 1983; Wien et al., 1989b), temperature extremes 
(Ohno, 1991; Wien et al., 1993) and flooding (Kawase, 1976; Jackson, 1985). This 

increased ethylene has been called stress ethylene (Kirkham, 1990). Water stress also 

promotes ethylene production, as noted by McMichael et al. (1972), El-Beltagy and 
Hall (1974) and Stumpff and Johnson (1987). However, most studies of water stress- 
induced ethylene production have concentrated on the leaves, and have paid little 

attention to the flowers. A major objective of the study reported here was to 
investigate the role of ethylene in mediating the effects of water stress on flower 

abscission in sweet pepper. 
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1.2.4.1 Stress-induced ethylene 

Apelbaum and Yang (1981) showed that ethylene production increased by more than 

30-fold within 4h of droughting plants and decreased rapidly thereafter. At the time 

of maximum ethylene production, a maximum 9% of the leaf fresh weight had been 

lost, but thereafter ethylene production declined as water loss continued. An increase 

in ethylene production from excised wheat leaves was also observed with increasing 

water stress until c. 10 - 13 % of the tissue water had been lost (Wright, 1977; 

Kimmerer and Kozlowski, 1982). In contrast, Guinn (1976) found that a loss of 1.3% 

of the total moisture content from cotton bolls detached from partially droughted 

plants did not increase the rate of ethylene evolution, indicating perhaps that a greater 
loss of fresh weight was required to stimulate ethylene production. These data suggest 

that during water stress, ethylene production may increase as tissue fresh weight 
decreases until a certain maximum water loss is reached, beyond which further losses 

of fresh weight no longer increase ethylene evolution. 

The involvement of stress-induced ethylene production in accelerating and increasing 

flower and leaf abscission is well documented (El-Beltagy and Hall, 1974; Jordan et 

al., 1972; Guinn, 1976; Hoffman et al., 1983), although the impact of stress on 

ethylene production differs between species and cultivars. Ethylene production by 

cotton petioles increased as leaf water potential decreased from -2.0 to -2.5 MPa 

(McMichael et al., 1972), whilst abscission of the cotyledonary leaves occurred 

following rewatering of stressed cotton seedlings (Jordan et al., 1972). Stumpff and 

Johnson (1987) reported that ethylene production rates increased slightly in response 

to an initial stress of -1.3 MPa, then declined until leaf water potential reached -1.6 
MPa before increasing sharply at -2.5 MPa. A similar response was observed for 

intact Vacia faba plants, in which internal ethylene levels initially declined during 

moderate stress and then increased again under severe stress (El-Beltagy and Hall, 

1974). 

Reductions in osmotic potential have been reported, to accompany the observed 
increases in ethylene production during 

. water stress (Curtis, 1981; Miyamoto and 
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Kamisaka, 1987), and the application of ethylene apparently always reduces osmotic 

potential (Eisinger et al., 1983; Kirkham, 1983,1985; Miyamoto and Kamisaka, 

1987). As plants may be able to maintain turgor at least partially by lowering-their 

osmotic potential during periods of water stress, the observed increase in ethylene 

production during stress may be related to drought tolerance, as suggested by Zhang 

and Kirkham (1988). In contrast, Morgan et al. (1990), Narayana et at. (1991) and 

Eklund et at. (1992) found no increase in ethylene production in response to water 

stress. It has also been observed that endogenous ethylene concentrations were several 

times higher in petioles than in the leaf blade (McAfee and Morgan, 1971), whilst 

root tissue exhibited greater ethylene production than the needles of loblolly pine 

seedlings (Stumpff and Johnson, 1987). Increased ethylene production during water 

stress has also been observed in Freesia inflorescences (Spikeman, 1986) and 

carnation flowers (Borochov et al., 1982). However, although the involvement of 

ethylene in leaf abscission during water stress is well documented, its role in the 

abscission of flowers is not clearly understood and no studies appear to have been 

conducted in this respect for sweet pepper. 

Water stress has consistently been shown to increase endogenous ethylene levels and 

accelerate abscission. However, in order to implicate ethylene firmly in the 

acceleration of water stress-induced abscission, it is necessary to show that the 

endogenous ethylene level increases above the threshold concentration of 0.1-1 1d 1'' 

that is normally effective when added exogenously (Sexton et al., 1985). Burg (1968) 

suggested that rates of ethylene production in the range 3-5 µl kg'' FW h'' would 

produce the necessary saturating concentration in the abscission zone. Tissues in 

which values within this range and where positive correlations between ethylene levels 

and abscission have been found include young cotton bolls (Guinn, 1976), lily buds 

(Van Meeteren and De Proft, 1982) and bean leaves (Jackson and Osborne, 1970; 

Jackson et al., 1973). Several studies have shown that exogenous applications of 

ethylene may stimulate abscission (Morgan and Durham, 1980; Durieux et al., 1983; 

Furutani et al., 1989; Mason and Miller; 1991). This ethylene may be applied either 

as ethylene gas or as compounds which release ethylene within the plant tissues. One 

such compound which is commonly used to generate ethylene within the plant is 2- 
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chloroethylphosphonic acid (CEPA; Maynard and Swan, 1963; Yang, 1969). 

1.2.4.2 CEPA - an ethylene-releasing compound 

The ethylene releasing compound CEPA is believed to elicit physiological responses 
in two ways, i. e. through the direct action of the released ethylene and also through 

the stimulation of ethylene production within the plant tissues (Yang, 1969; Kays and 
Beaudry, 1987; Abeles et al., 1992). In plants capable of autocatalytic production of 

ethylene, ethylene released from CEPA accelerates the endogenous synthesis of 

ethylene (Gupta and Anderson, 1989; Schierle et al., 1989; Foster et al., 1992), 

thereby promoting abscission (Furutani et al., 1989). Autocatalytic ethylene 

production is due primarily to an increase in the activity of the ethylene-forming 

enzyme (EFE) which transforms ACC to ethylene (Abeles et al., 1992) or increases 

ACC production (Riov and Yang, 1982a). In contrast, some plants are autoinhibitory 

and may exhibit reduced ethylene synthesis in response to ethylene application 
(Abdel-Gawad and Martin, 1973; Riov and Yang, 1982b). This may result either 
from reduced ACC levels caused by decreased ACC synthesis (enzyme in SAM 

conversion to ACC; Aharoni, 1985) or from an increase in the conjugation of ACC 

(Liu et al., 1985; Philosoph-Hadas et al., 1985). 

The application of ethylene generating compounds effectively simulates the effects of 

water deficits by increasing internal ethylene production and accelerating and 
increasing abscission (Mason and Miller, 1991; De Munk et al., 1992). Jackson et 

al. (1973) showed that the application of CEPA to bean petioles increased ethylene 

production just prior to abscission to levels similar to those suggested by Burg (1968) 

as being necessary to promote abscission, indicating that ethylene production may 
increase naturally prior to abscission in abscising organs. Application of a spray 

containing 2.1 mM ethephon (2-chloroethylphosphonic acid) to Easter lilies growing 

under a 92% irradiance reduction caused more extensive bud abscission than 4.2 mM 

ethephon (Mason and Miller, 1991). However, under natural glasshouse irradiance 

conditions, maximum abscission occurred following treatment with 4.2 mM ethephon. 
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Temperature also influences the rate of ethylene evolution from CEPA in such a way 

that flower and leaf abscission increase with temperature (Beaudry and Kays, 1988). 

Plants also tend to be much more sensitive to ethylene when under some form of 

stress (Bukovac et al., 1971; Wilde and Edgerton, 1975; Kays and Beaudry, 1987), 

possibly due to the compounding effect of increased endogenous ethylene production 

resulting from the stress (Abeles et al., 1992). For example, water stress is known 

to make cotton leaves more susceptible to abscission (Jordan et al., 1972). These 

results suggest that, while the concentration of the ethylene generating compounds 

applied determines the potential severity of bud abscission, the prevailing macro- and 

micro- climatic conditions strongly influence the condition of the plants, and thus 

their response to applied ethylene. 

To investigate whether increased ethylene production during water stress may be 

responsible for promoting flower abscission in sweet pepper, an experiment was 

carried out using the ethylene-releasing compound, CEPA. Its aim was to establish 

whether CEPA application increased ethylene production and induced flower 

abscission, thereby simulating the effects of water stress (Chapter 6). 

1.2.4.3 Inhibitors of ethylene-action 

The action of ethylene can be inhibited competitively by various chemicals, the most 

common of which are silver nitrate (Beyer, 1976) and silver thiosulphate (STS; 

Cameron and Reid, 1983; Reid, 1985; Veen, 1983; 1986). These chemicals are 
thought to act by blocking the binding sites for ethylene by combining with the 

ethylene receptor, thereby preventing the cells from responding to ethylene (Veen, 

1986). Veen (1986,1987) developed a model based on the concept that competition 
between ethylene and 2,5-NBD occurred at the primary receptor site, whereas that 
between silver and ethylene originated from competition between silver and copper 
atoms for an active site on the secondary enzymic sub-unit of the receptor. Beyer 
(1976) suggested that silver ions could replace copper within the receptor unit and 
might subsequently prevent binding between the primary receptor and ethylene by 
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modifying the receptor molecule, as has been suggested by Yang (1985). 

Silver nitrate and STS are both persistent and specific in their action, although the 

usefulness of silver nitrate has been limited by its relative immobility within plant 

tissues. This immobility is believed to be caused by the participation of silver ions in 

cation-exchange processes at negatively charged sites on the xylem vessel walls (Veen 

and Van De Geijn, 1978; Veen et al., 1980). Possibly because of heavy metal 

toxicity, phytotoxicity is generally induced following its application at effective 

concentrations, thereby increasing ethylene production relative to untreated control 

plants (Aharoni and Lieberman, 1979; Veen, 1983; Atta-Aly et al., 1987). In 

contrast, silver complexed with thiosulphate is extremely mobile within plants because 

the silver chelates possess net negative charges (Veen and Van De Geijn, 1978) which 

enable the anti-ethylene effects of the silver to be preserved within the complex 
(Veen, 1979a, b). STS has been found to be transported up carnation stems at a rate 

of 2m h'1 (Veen and Van De Geijn, 1978), while Reid et al. (1980) showed that 

treatments as short as 10 min with solutions containing as little as 1.0 mM Ag 

postponed senescence in carnation blooms from 5 to 10 d after cutting. As ethylene 
is involved in the regulation of senescence (Kao and Yang, 1983; Abeles et al., 
1992), the observed delay in senescence provides evidence for the effectiveness of 
STS in blocking the action of ethylene. STS is also less phytotoxic than silver nitrate 
(Veen and Van De Geijn, 1978), although it may become toxic at higher 

concentrations (Joyce et al., 1990; Wang and Dunlap, 1990; Dostal et al., 1991). For 

example, the uptake of more than 5 µmol of silver per carnation stem was found to 

be toxic, whereas 0.5 µmol Ag per stem provided maximum vase life (Reid et al., 
1980). 

STS may also block the action of exogenous ethylene applications (Joyce et al., 1990; 

Dostal et al., 1991). In the former study, STS was applied to holly and mistletoe 
branches placed in distilled water and left overnight before being supplied with 
ethylene gas (= 35 1 h') the-following day. Leaf abscission was induced by the 

ethylene treatment within 3d of application, whilst the same percentage abscission 
(60%) did not occur in the control until day 13. However, application of 0.2 -2 µmol 
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Ag per branch prevented leaf abscission in mistletoe for up to 13 d after exposure to 

ethylene. However, at a higher concentration of 4 µmol Ag per branch, STS induced 

leaf abscission, presumably because of silver toxicity, or perhaps in response to the 

increased production of ethylene, as has been observed in vegetable tissues treated 

with Ag (Gavinlertvatana et al., 1980). 

In a simulated shipping study, Dostal et al. (1991) found that exposure to exogenous 

ethylene (1 - 10 Al 1-') for >4h caused 80 - 100% corolla abscission in cut blooms 

of New Guinea impatiens (Impatiens x hawkeri 'Sunfire'), whereas abscission was 

only 65 % in the control. Plants pre-treated with 1 mM STS and subsequently exposed 
to simulated shipping conditions showed a reduced corolla abscission of 75 - 80%, 

whereas complete protection against corolla abscission was observed in plants treated 

with STS and exposed to exogenous ethylene. Application of 4 mM STS produced 

phytotoxic symptoms. Inhibitory effects of STS on ethylene or high temperature (26 

°C)-induced abscission have also been observed in zygocactus plants (Schlumbergera 

truncata; Cameron and Reid, 1981), in which a foliar application of 2 mM STS 

significantly reduced flower and bud abscission. Application of 4 mM STS 

occasionally caused blistering of the leaves which eventually subsided to form dark 

depressions, whereas concentrations lower than 2 mM provided only partial protection 

against ethylene- and stress-induced abscission. The effectiveness of the 4 mM STS 

spray persisted until 28 d and was slightly greater for flowers than for buds. 

These results demonstrate that STS is an effective inhibitor of ethylene-induced 

abscission, although its impact in reducing, preventing or increasing abscission 
depends on the concentration applied. Complete protection was provided by 2 mM 
STS, whereas higher concentrations were phytotoxic and lower concentrations 

provided only partial protection. The effectiveness of STS was apparent within 10 min 

of application, persisted for up to 28 d and did not appear to be affected by the 

method or duration of the STS treatment. For example, ethylene application one day 

after treating mistletoe with STS produced no leaf abscission (Joyce et al., 1990). 

Similar total protection against abscission was also achieved in plants sprayed with 
STS to run off and kept for 7- 28 d before exposing the flowers and buds to ethylene 
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or high temperature (Cameron and Reid, 1981; Dostal et al., 1991). 

Previous work using STS sprays has involved pre-treatment of cut flowers (Reid et 

al., 1980; Veen and Kwakkenbos, 1983; Dostal et al., 1991) or foliage (Wang and 
Dunlap, 1990; Joyce et al., 1990) before exposing them to ethylene, sometimes in 

transport simulation studies. However, few studies have examined the protective 
influence of STS against stress-induced ethylene production in either pot or field 

grown plants, and the consequent abscission of plant organs, particularly flowers. 

To date, Cameron and Reid (1981) have shown that spraying with 4 mM STS reduces 
flower and bud abscission in potted zygocactus plants exposed to stress-induced 

ethylene by keeping them in darkness at high temperature (26 °C) for 4 d. Cameron 

and Reid (1983) subsequently tested the protective influence of STS against flower 

abscission in other species of potted plant. Petal abscission in geranium seedlings 
(Pelargonium hortorum Bailey) was completely suppressed by foliar sprays containing 
0.5 mM STS, while similar treatment of Calceolaria herbeohybrida Voss reduced 
flower drop from 83 to 22 % when plants were exposed to a4d drought in darkness 

at 25 °C. Bracteole drop in Bougainvillea glabra Chois caused by 3d of water stress 

was also reduced by foliar treatment with 0.5 mM STS. STS has been found to be 

completely effective regardless of whether this applied to whole plants or only to 
individual developing inflorescences, and phytotoxic effects have not been observed 

at concentrations of 0.5 mM or less in any of the species examined (Cameron and 
Reid, 1983). 

The available evidence suggests that high temperature and irradiance coupled with 

water stress may exert either beneficial or detrimental effects on growth and 
development in sweet pepper, depending on the severity and duration of the stress. 
Changes in assimilate production and partitioning during stress may not be the direct 

cause of flower abscission, especially during transient stress. There is also evidence 
to suggest that the flower abscission induced by environmental stresses may be 

mediated by increased endogenous ethylene production since it is clear that the 

application of silver ions, which are known to inhibit other ethylene-induced 
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responses completely or partially, suppresses the abscission of flowers and leaves. 

There is therefore considerable evidence that ethylene may be present at levels 

sufficient to induce or accelerate abscission during stress periods such as water stress. 
The primary aim of the present investigation was to establish the impact of 
environmental stresses, especially water deficits, on the growth and development of 
young sweet pepper plants, and to determine the mechanisms involved in mediating 
these stress effects, particularly on flower abscission. 
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CHAPTER 2 

GENERAL MATERIALS AND METHODS 

The experiments described in this thesis were carried out in controlled environment 
facilities at the University of Nottingham between January 1992 and March 1994. This 

chapter describes the materials and methods relevant to all experiments; specific 

modifications to standard procedures are described in the appropriate chapters. 

2.1 Plant materials 

Two F, hybrid varieties of sweet pepper (Capsicum annuum L. ) were used in 

preliminary experiments: Bell Boy (Breeders' Seeds Ltd, Lancaster, UK) was selected 
because it had been widely used in previous experiments in temperate areas (pers. 

comm., Cullen, 1992) and Blue Star (Know-You Seed Co., Ltd, Taiwan) was chosen 
for its continuous high productivity and adaptation to tropical conditions (Hawa and 
Aziz, 1991). 

2.1.1 Propagation 

Germination tests were carried out prior to sowing to determine seed requirements. 
The seeds were thinly sown in flat trays containing Levington F2 Compost (Fisons 

Horticulture Ltd, Ipswich, UK) which were then placed on a propagating bed which 

provided a basal temperature of 24 °C in a glasshouse where the mean ambient 
temperature was 20 - 22 °C. To encourage germination, the trays were covered with 
black polythene which was removed when the cotyledons emerged. When the 

cotyledons had fully expanded, uniform seedlings were pricked out individually into 
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9 cm diameter pots containing Levington M2 potting compost and placed on benches 

in a glasshouse at a mean daily temperature of 20 - 22 °C, usually under natural 
lighting conditions (Plate 2.1.1). 

When the third pair of true leaves was about 1 cm long (defined as the third true-leaf 

stage), the seedlings were transplanted into larger pots (6 or 12 1) containing Levington 

M2 compost. These pots were arranged in a glasshouse at a mean daily temperature 

of 26 ±3 °C with ventilation at 29 °C. The plants received natural radiation, 

supplemented with 400 W high pressure sodium lamps (SON/T) between 0500 - 2300 

h to provide an 18 h daylength and an additional irradiance of 2.5 MJ m2 (PAR; 400- 

700 nm). Relative humidity (RH) was maintained above 65% by placing moist 

capillary mats on the glasshouse floor. 

2.1.2 Seedling management 

The seedlings were watered every morning throughout the growing period to maintain 

optimum growth using a standard nutrient solution containing Vitafeed NPK 214 

(16: 8: 32; N: P20S: K20) at a concentration of O. 5gl 1'. However, neither the plants in 

the water stress treatments nor the unstressed controls received any nutrient solution 
during treatment. This practice was adopted to avoid the development of major 

nutritional differences between the water-stressed and well-watered plants during 

treatment. Spraying of pesticide was carried out whenever necessary, as recommended 

by the manufacturer. Red spider mites and aphids were controlled using Torquell 

(fenbutatin oxide at 50% w/w by Zeneca) and Pirimor' (pirimicarb at 50 % w/w by 

I. C. I. ) respectively, sprayed fortnightly at a concentration of 5g 1'' of water. Thrips 

were controlled using HostaquicksR (heptanophos by Hoechst) and DecisR 

(deltamethrin by Hoechst) at a concentration of 7.0 - 7.5 ml 1-1 of water. 



PLATE 2.1.1. Seedlings established in F2 compost (top) and transplanted to 0.6 1 

pots 4d after germination (bottom). 
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2.2 Reproductive development 

2.2.1 Flower growth 

Periodic measurements were carried out to determine treatment effects on reproductive 

growth, particularly in the primary (flowers borne at the first branching position) and 

secondary flowers (flowers borne at the second branching position; cf. Chapter 1). The 

measurements included the total numbers of flowers and flower buds and the times 

required to reach anthesis or abscission. From these observations, the percentages of 
flowers abscising or reaching anthesis were calculated. 

2.3 Growth measurements 

Periodic non-destructive measurements were carried out on the same plants to monitor 
the effects of temperature, irradiance and water stress on shoot growth. Destructive 

analyses were also carried out at the beginning, midway through and at the end of 

each experiment to provide information on shoot growth and development, particularly 
with regard to the accumulation and partitioning of dry matter to the different plant 
parts. Measurements of roots were not made because of the extreme difficulty of 

separating them from compost. 

2.3.1 Non-destructive approaches 

Various measurements of vegetative growth were taken, including plant height, leaf 

number and stem diameter. Plant height was recorded as the distance between the 

cotyledon and the shoot apex, while the length of the main stem was measured 
between the cotyledon and the point of branching. The number of leaves on the main 
stem (primary leaves) and the rest of the leaves on the shoots subtending the primary 
flowers which were longer than 1 cm (secondary leaves) were counted and totalled to 
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determine effects on leaf initiation. Stem diameter was measured 2-3 cm above the 

cotyledons using electronic callipers (Trimos Sylvac Metrology Ltd, London, UK) to 

establish whether stem thickness and dry matter content were related. 

2.3.2 Destructive sampling 

Vegetative and reproductive parameters that could not be measured non-destructively 
included leaf area and the dry weights of the various plant parts. At regular intervals 

during the experimental period, the shoots were severed at the soil surface, subdivided 
into flowers, fruits, leaves and stems and placed in paper bags. The samples were then 

oven-dried for 48 h at 84 °C, cooled and weighed. 

Before oven-drying, the leaves were placed in polyethylene bags and kept in a 

refrigerator (5 °C in darkness) for no longer than 12 h before measuring leaf areas 

using a Li-Cor 3100 leaf area meter (Li-Cor, Lincoln, NE, USA). The primary leaves 

were detached and separated from the secondary leaves before being passed through 

the instrument, which had been previously calibrated using a standard calibration plate 

measuring 10 cm x 10 cm. This separation was carried out to determine treatment 

effects on the expansion of both primary and secondary leaves. A camera located 

above the area meter board recorded the leaf areas, which were displayed on a Phillips 

25 cm Monitor. To ensure accurate measurements, the leaves were arranged within the 
field of view and overlapping of adjacent leaves was avoided. Specific leaf area (SLA) 

and leaf area ratio (LAR) were calculated from the measurements of total leaf area and 
leaf weight per plant. The length and width of the leaves of various sizes were also 

measured to establish a non-destructive empirical relationship with leaf area, as 

measured using the Li-Cor 3100 meter. 
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2.4 Environmental treatments 

2.4.1 Temperature 

One week before commencing treatments, the temperature regime within the 

glasshouse was set to the required values and allowed to stabilise. Mean daily 

temperature for each treatment was set with a range of +3 °C, above which ventilation 

operated to reduce and below which the heating system operated to increase to 

temperature. Air temperature was measured at plant height using screened and 

aspirated "PT - 100" sensors and the values were recorded by a "Squirrel" Data 

Logger (Grant Instruments Cambridge Ltd, Cambridge, UK) at 30 min intervals. Due 

to a shortage of glasshouse compartments, each temperature treatment was allocated 

to a specific compartment, within which all the other treatments were randomly 

blocked and replicated. To avoid external errors between temperature treatments, the 

other controlled environmental and plant management factors were kept identical in 

all compartments. At the end of the experiment, accumulated total and mean daily 

temperatures during the experiment were calculated from daily records. The thermal 

time requirement for reproductive development was calculated using the cardinal 

temperatures obtained from the thermogradient study of germination (Section 2.4.4). 

2.4.2 Irradiance 

Two levels of irradiance were applied. The "high irradiance" (HI) treatment comprised 

the incident radiation received within the glasshouse, while the "low irradiance" 

treatment (LI) was achieved using green Rokolene netting providing 50% shade 
(Rokolene KDA, Rokocontainers, Nottingham, UK) suspended above and around the 

plants (Plate 2.4.1). Rokolene netting has previously been shown to have no effect on 
light quality (Meiri et al., 1982). In both treatments the incident radiation comprised 

the natural glasshouse radiation, supplemented with 18 h of light from 400 W high 

pressure sodium lamps (SON/T) which provided an additional total radiation of 

apprQximately 5.4 MJ m"2 (,: z 2.5 MJ m2 PAR; 400 - 700 nm) between 0500 and 



PLATE 2.4.1. (top) Experimental layout showing the high (foreground) and low 

irradiance (background and left) treatments. The latter was provided by suspending 

green Rokolene netting above and around the plants. 

PLATE 2.4.2. (bottom) Tube solarimeter suspended above the plants to measure 
incident radiation. 
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2300 h. 

Daily radiation receipts were measured at plant height using tube solarimeters (Plate 

2.4.2; Green and Deuchar, 1985) calibrated against a Kipp Solarimeter (Delta-T 

Devices, Cambridge, UK). Measurements were expressed in W m-' and later converted 

to MJ m 2. The values were recorded using either single channel millivolt integrators 

(Type MV 1, Delta-T Devices Ltd, Burwell, Cambridge, UK) or a Campbell CR10 

Data Logger (Campbell Scientific Inc., Shepshed, UK) at 60 min intervals. In the 

former method, daily voltage readings were recorded and total radiation was calculated 

by dividing the cumulative voltage by the corresponding solarimeter constants, 

obtained by calibration against the Kipp solarimeter. Two solarimeters were allocated 

to each block. At the end of each experiment, accumulated total and mean daily 

radiation receipts were calculated for each treatment. 

2.4.3 Thermogradient plate for germination studies 

A thermogradient plate based on the design reported by Thompson (1970) and adapted 
by Garcia-Huidobro et al. (1982) was used to examine the thermal characteristics of 

seed germination. The thermogradient plate consisted of an aluminium alloy plate with 
dimensions of 70 x 50 cm, heated at one end by 12 5Wx 12 V resistance heaters 

fused to the plate. The other end of the plate was cooled by a refrigeration system. 
This comprised a refrigeration unit which cooled a tank filled with a 33% ethylene 

glycol solution. Fluid from this tank was circulated through pipe loops to the cold end 

of the plate at a rate controlled by a pump and a bypass valve. The pump and valve 

were controlled by a thermistor sensor and related to the hot end of the plate to 

achieve a uniform gradient over its entire length. Thus, different ranges and gradients 

of temperature could be obtained by changing the energy inputs or outputs to the 
heating and cooling systems. The entire thermogradient plate was housed in a 

polystyrene box to provide insulation. The system was accommodated in a growth 

room maintained at a mean temperature of 20 ± 0.5 °C. 
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During the week before each germination trial, a range of different constant 

temperatures was established along the plate by monitoring the temperatures until 

constant readings were achieved. Sets of three replicate plastic petri dishes (4.5 cm 
diameter) containing 30 seeds were placed at intervals along each of these constant 

temperature gradients. Surface temperatures on the plate were monitored using 

thermocouples housed in rectangular petri dishes at several points along the length of 

the plate. Temperature readings from these thermocouples were recorded daily at 1000 

and 1800 h using a Comark Electronic Thermometer Type 1625 Cu/Con (Comark 

Electronics Ltd, Littlehampton, UK). On alternate days, temperatures at the centre of 

petri dishes placed along the same temperature gradient were also measured to check 
for any variation within the temperature gradient. 

2.4.4 Photoperiod 

An 18 h daylength was chosen to avoid having to draw opaque screens over the plants 

on a daily basis during summer in order to achieve a shorter photoperiod. In winter 

the 18 h daylength also partly offset the lower instantaneous fluxes and increased daily 

total irradiances to the level required for normal plant growth. However, to ensure that 

this long day regime was not detrimental for normal reproductive growth and 
development, a preliminary experiment was conducted to examine the effects of a 

range of daylengths (8,10,12,16,18 and 20 h) imposed at the third true leaf stage 

on flower initiation and development. 

In this experiment, an automatic blackout system was used to control daylength by 

excluding all natural daylight when activated, by covering the entire glasshouse 

compartment with black canvas painted with a reflective aluminium coating on its 

outer side. The seedlings in all photoperiod treatments received natural radiation for 

8h daily (the shortest photoperiod treatment) between 0900 and 1700 h, after which 
the automatic blackout system was activated to exclude all natural radiation. In the 
longer photoperiod treatments, extended day lengths were achieved using 100 W 
incandescent lamps providing a PAR flux of about 6.8 µmol m'2 s' incident at plant 

9 
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height, as measured using a cosine corrected pyranometer (Crump Scientific Products 

Ltd, Essex, UK). The photoperiod treatments were separated by black plastic sheets 

suspended between the benches. Mean daily temperature was 20 +3 °C, with 

ventilation at 24 °C. 

The results obtained showed that the 18 h photoperiod had no detrimental effects on 

reproductive growth and development, for example, by inducing flower bud abscission. 

The time to flower initiation and anthesis in the longer photoperiod treatments was 

similar to the 12 h treatment, but was 2 -3 d slower than in the 8 and 10 h 

photoperiod treatments. The delaying effect of long daylength on flower initiation and 

anthesis in sweet pepper has been reported previously by Cochran (1938), and a 

similar response has also been observed in tomato (Hurd, 1973). Salisbury (1982) 

classified Capsicum frutescens L. as a quantitative short-day plant which flowers in 

any daylength, but better under short days. The influence of daylength on flowering 

has also been reported to be relatively unaffected by temperature, as reviewed by 

Schwabe (1971) and Vince-Prue (1975). 

2.5 Imposition and management of water stress 

2.5.1 Water stress treatments 

The water stress treatments applied relied on measurements of pot weight to indicate 

the severity of the drought imposed and the levels of water to be supplied (Saito and 

Ito, 1967a; Klapwijk and De Lint, 1974; Wudiri and Henderson, 1985; Menzel et al., 
1986). Using this method, the soil moisture deficit imposed at different stages of 

growth may be accurately and reproducibly defined (Kramer, 1983). However, 

frequent weighing of pots and regular replacement of the water lost through 

evapotranspiration (ETP) on alternate days in the well watered treatment is necessary 

to avoid substantial variation in soil water content between rewaterings (Richards and 
Marsh, 1961; Plate 2.5.1). 
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PLATE 2.5.1. Water stress experiment using 12 1 pots partly enclosed in clear plastic 
bags to prevent loss of water drainage from the base of the pot. 
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All pots initially received equal volumes of water to maintain them near to the 

predetermined pot capacity (0.26 litre water per litre of compost), and moisture lost 

by ETP was replaced on alternate days. A range of water stress treatments was 

imposed following the appearance of the first flower buds: replacement of water at 

100% of ETP served as a "no stress" control (NS), whereas watering at different 

fractions of ETP provided a range of progressive stress treatments. ETP was 

determined by weighing the NS pots on alternate days using a 50 kg capacity 

mechanical balance (August Sauter Ebingen, Germany). 

2.5.2 Measurements of water stress 

The severity of stress was determined by measuring the components of plant water 

status, i. e., leaf water potential (w), osmotic potential (fr) and turgor potential (y'P), 

and leaf gas exchange. 

2.5.2.1 Components of plant water relations 

Midday yr, was measured in the youngest fully expanded leaf in the upper canopy 

(fourth or fifth leaf from the apex) of four randomly selected plants using a portable 

pressure chamber (PMS Instruments, Corvallis, Oregon, USA; Scholander et al., 

1965). Leaves sampled from the different water stress treatments were taken from 

equivalent nodes on the main stem to avoid age effects on the values obtained (Ritchie 

and Hinckley, 1975). The leaf was excised at the base of the petiole using a sharp 
blade and immediately wrapped in moist tissue and placed in a plastic bag to reduce 
dehydration. It was then inserted into the pressure chamber with the cut petiole 

protruding through the rubber sealing gasket, which was lined with thin layer of 

silicon rubber to create a good seal. The pressure within the chamber was then 

increased using nitrogen gas from a portable cylinder until xylem sap reappeared at 

the cut surface of the petiole (Barrs, 1968). A portable microscope was used to aid 

observation of the end-point when the petiole first began to exude sap. The pressure 
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at the end-point was assumed to be equal to the average bulk water potential within 

the leaf. Each measurement took less than 2 min from excision of the leaf. 

Immediately after measuring yf,, the leaves were rapidly frozen prior to measuring w$ 

using the cryoscopic method (Barrs, 1968; Slavik, 1974). wP was obtained by 

difference between xV, and i5, i. e. 

Wp=Yl - Ws 

After measuring yri, each leaf sample was inserted into a clean 1.5 ml plastic Sarstedt 

epindorph vial presprayed with a freezing aerosol (Dichlorodifluoro-methane); the 

sample was then sprayed with freezing aerosol and placed in a deep-freeze for 24 h 

at -15 °C. This process destroyed turgor within the living tissue. A coolbox filled with 

ice was used to transport the samples from the glasshouse to the freezer. The samples 

were then thawed for 30 - 60 min at room temperature (Turner et al., 1978; Turner, 

1981) and the vials perforated with minute holes at their narrow ends before being 

placed in clean 7 ml sap collecting tubes. Sap was expressed by centrifuging at 2500 

rev min' using a Mistrel 3000 Centrifuge MSE (Fisons Instrument, UK) for 15 min 

at 4 °C to minimise evaporative losses of from the tissue. 25 µl of the leaf extract was 

then transferred using a micropipette into a 0.5 ml microcentrifuge tube and leaf fir, 

determined using a Roebling Automatic Freezing-Point Osmometer (Hermann 

Roebling, Ketteweg, Berlin). The meter was regularly calibrated using fresh deionised 

water and standard salt solution (300 milliosmol kg` water). Care was taken to avoid 

all sources of measurement error (Squire et al., 1981; Turner, 1981). 

Osmotic potential provides a measure of the solute concentration within a cell or tissue 
(Turner, 1987). The output from the Roebling Osmometer is expressed in units of 

milliosmols and may be converted to MPa as follows (Jones and Gorham, 1983): 

MPa = (mOsmol/1000 x 0.0832 xT °K) 

1000 
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The freezing of tissue causes a breakdown of cell components, which in turn results 
in the mixing of fluid within the cell walls and xylem external to the cell (apoplast), 

with the cell contents (cell vacuole and cytoplasm; symplast). The osmotic potential 

of the apoplastic water is usually above -0.1 to -0.02 MPa, whereas the osmotic 

potential of the symplastic water is usually between -1 to -3 MPa (Turner, 1981). Thus 

the symplastic fluid is diluted by apoplastic water, which may comprise between 5 and 

50% of the total volume of the water in leaves at full turgor (Slavik, 1974; Tyree, 

1976; Grace and Russell, 1977; Wilson et al., 1979). As the volume of apoplastic 

water is unlikely to vary greatly as the leaf dehydrates, the dilution of the symplastic 
fluid by apoplastic water is much greater in dehydrated tissue (Tyree, 1976), thereby 

introducing the possibility of significant underestimates in measurements of osmotic 

potential. To estimate the magnitude of this error, a correction factor for apoplastic 
dilution was calculated from the difference in the values for yr, and w, in tissues which 

were visibly wilted (4IP = 0). Since the measured values of yI, and yl1 carried out 
during water stress experiments agreed closely in fully wilted leaves, in which xVP is 

zero, errors in the estimation of 'V5 introduced by apoplastic dilution were assumed to 
be negligible. 

2.5.2.2 Leaf gas exchange 

Foliar CO2 and H2O fluxes were monitored using an LCA-3 portable infra-red gas 

analyser (IRGA; Analytical Development Corp. (ADC), Hoddesdon, Herts, UK) to 

measure relative humidity, leaf temperature, stomatal diffusive conductance, 

transpiration rate and net photosynthesis. The LCA-3 is an open or steady state 
differential system IRGA without temperature control, and was used with a Parkinson 

broad leaf cuvette (model PLC(B)) with a leaf area of 6.2 cm2. The leaf chamber was 
designed to allow maximum air mixing, and included a Cu-Con thermocouple to read 
the temperature on the undersurface of the leaves and a quantum flux sensor to record 
the PAR flux. The air flow rate was set at 400 cm3 miri'. Values for leaf temperature, 

transpiration rate, relative humidity and intercellular C02 concentration were recorded 
shortly after enclosing the leaf within the chamber. 
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Periodic measurements of gas exchange were carried out between 1000 to 1400 h on 

fully expanded young leaves (fourth or fifth leaf) of similar physiological age. At least 

four leaves from five randomly selected plants per treatment per block were measured, 
for a period of 45 to 60 s before values were recorded. The data obtained were 

transferred into an IBM-compatible PC using an ADCDUMP programme and then 

imported into a Quattro-Pro programme for analysis. Water use ratio (WUR) was 

calculated by dividing the net photosynthesis rate by the corresponding transpiration 

rate. Possible errors introduced by variation in ambient CO2 concentration within the 

glasshouse associated with the operator's respiration were minimised by drawing fresh 

air from about 3.5 m above ground level. 

Relative humidity (RH) within the glasshouse was also determined using wet and dry 

bulb thermometry (Assman and Sling Psychrometers, Casella, London, UK). This 

instrument has a built-in clockwork fan which draws air over the wet and dry bulb 

thermometers to ensure adequate ventilation. The instrument was placed either under 

the canopy or at different locations within the glasshouse for 60 to 90 s before 

recording the readings from the wet and dry bulbs. The percentage RH of the air was 

then calculated from standard tables. 

2.6 Preparation and application of growth regulatory chemicals 

2-Chloroethylphosphonic acid (98% active ingredient; Lot No. 41H7707; Sigma 

Chemical Co., St. Louis, USA) was used as an ethylene-releasing substance and silver 
thiosulphate was applied to block the action of ethylene. 

2.6.1 2-Chloroethylphosphonic acid - CEPA (Ethylene releasing substance) 

A solution of 2-Chloroethylphosphonic acid (CEPA) was prepared on the day of the 

experiment by diluting the substance with distilled water and stored in a refrigerator 
(4 °C) between sprayings. Approximately 10 ml of the chemical was applied daily 

directly onto the primary flower buds when they reached the stage most sensitive to 
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water stress (diameter 4 mm), a treatment which has been found to induce early flower 

abscission in pepper (Section 5.3; Tripp and Wien, 1989). Since no liquid surfactant 

was added, to ensure good contact between the chemical and the flower buds, the buds 

were covered with cotton balls (each pre-weighed at 500 mg) and saturated with the 

chemical. The cotton balls remained on the flower buds throughout the treatment 

period except when carrying out flower counts. 

2.6.2 Silver thiosulphate - STS (Ethylene-action inhibitor) 

Silver thiosulphate solution (STS) was prepared as described by Reid et al. (1980). 

Mixing aqueous solutions of silver nitrate (AgNO3) and sodium thiosulphate 

(Na2SZO3.5H20) should result in essentially complete formation of the STS complex, 
implying stability (Ghosh, 1974). 

Stock solutions of silver nitrate (0.1 M) and sodium thiosulphate (0.1 M) (Fisons 

Scientific Apparatus, Loughborough, UK) were stored in clear storage bottles at room 

temperature (Cameron et al., 1985). STS was prepared on the day of the application 
by mixing known volumes of these solutions with deionised water to produce a 

concentration of 1.0 mM. Silver nitrate was then added slowly to sodium thiosulphate 

solution in the ratio 1: 4 to avoid the formation of a black precipitate of silver sulphide 
(Ag2S). The chemical was applied every three days by spraying 10 ml of the chemical 

onto the shoot system. 

2.7 Ethylene measurements 

Care was taken during all sampling and measuring procedures to avoid damage and 
consequent stress to the plant material as this might have caused the evolution of 
additional ethylene which would have adversely affected the reliability of the 

measurements of ethylene evolution induced by the treatments applied. 
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2.7.1 Sampling procedure 

The rates of ethylene evolution were determined for detached flowers and leaves. 

Primary or secondary flowers and the fourth or fifth youngest leaves were used. The 

organs were excised at the pedicels or petioles using a sharp blade and quickly 

weighed before inserting their excised ends into 1 ml of 2% w: v plain agar contained 

in clean glass vials of known volume. The medium provided mechanical support and 
helped maintain moisture in the vials and thereby minimised additional stress on the 

excised tissue. The vials were sealed with subaseal rubber caps and the time of 

capping was recorded. 10 ml vials were used for flowers, and larger 30 ml vials for 

the leaf samples. 

2.7.2 Gas chromatography and expression of results 

Ethylene production from the excised samples was measured by gas chromatography 
(GC; PU 4500, PYE Unicam, Phillips, UK). The GC was fitted with an alumina F1 

JJ column (JJ's Chromatography Ltd, Kings Lynn, Norfolk), maintained at an 

operating temperature of 110 °C, and equipped with a flame ionisation detector heated 

to 130 T. Nitrogen and hydrogen were supplied as the carrier gases at approximately 
500 (not critical) and 40 ml min-' respectively. Prior entering the GC, they were 

passed through gas-purifying bottles to prevent foreign particles, water vapour and 
light hydrocarbons from contaminating the detector, thus helping to maintain a high 

detector temperature. 

The chromatograph was linked to an ionisation amplifier and a variable speed chart 

recorder operating at 1 mV. Using the F1 column at the temperature stated, alumina 
was found to give good separation of ethylene from ethane and produced the largest 

detector response at low ethylene levels (Ward et al., 1987). Since ethylene production 
was relatively small, the chart peak height was used to determine the concentration of 
the gas. 
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Ethylene evolved by the explants was allowed to accumulate in the sealed vial for 90 

min before withdrawing a1 ml sample of the gas from the vial using a 16 mm 
hypodermic needle fitted to aI ml plastic syringe and injecting it through a rubber 

septum into the GC column. When the relation between wounding and ethylene 

evolution was examined, measurements were made at 90 min intervals. After each 

reading, the samples were well aerated for 5 min then recapped prior to the next 

measurement. Before ethylene measurements from plant tissues were carried out, a 

calibration gas of 10 µl V ethylene was injected from a cylinder into the GC, for use 

as a reference standard (McAfee and Morgan, 1971). 

The rate of ethylene evolution was calculated from the ethylene concentration of the 

gas sample, the volume of the glass vial and the fresh weight of the sample, and was 

expressed in units of nl g'' FW h''. Although not an SI unit, this term has been 

employed in this thesis due to its widespread usage and comprehension throughout the 
literature. 

2.8 Experimental design and statistical analysis 

Most experiments were randomised complete block experiments containing three 
blocks. In experiments involving more than two factors, a split-plot design was used. 
The treatments were randomised accordingly using a Table of Random Numbers. Data 

were analysed using the Genstat 5 analysis of variance (ANOVA Programme), which 

provided means and standard errors of the difference between means (SED) for all 

variables measured. Regression analysis was also carried out in some experiments. 
Significance was tested at the 0.1%, 1% and 5% levels. 
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CHAPTER 3 

VARIETAL RESPONSES TO TEMPERATURE AND IRRADIANCE 

_r 

INTRODUCTION 

As in many other horticultural crops, reproductive growth and development in sweet 

pepper are very sensitive to environmental factors, and problems of poor fruit set 

resulting from flower abscission are common. It is well known that temperature and 

irradiance have a major influence on both early flower development and fruit set 

(Cochran, 1936; Rylski and Spigelman, 1982; Bakker, 1989). While high temperature 

has been observed to promote flower development up to anthesis in sweet pepper, it 

also increased the incidence of flower and bud abscission (Cochran, 1936; 1938). 

These losses were particularly severe when high temperature occurred in combination 

with low irradiance (Rylski and Spigelman, 1986), as was also observed in tomato 

(Atherton and Othman, 1983; Atherton and Harris, 1986; Halevy, 1987). However, 

the existence of inter-specific differences may influence crop responses to the 

interactive effects of temperature and irradiance on the earliness of flower 

development and susceptibility to abscission, thereby affecting percentage fruit set and 

final yield (Rudich et al., 1977; Rylski, 1986; Bakker, 1989). The varietal differences 

that exist within species in resistance to abscision under adverse conditions may also 

form the basis for future breeding programmes since these may determine the extent 

to which flower growth and development are affected by the interactive effects of 

temperature and irradiance. 

This chapter describes an experiment which examined how differing temperature- 

irradiance combinations influenced the growth and development of young reproductive 

plants of two varieties of sweet pepper, Bell Boy and Blue Star. 
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3.1 Influence of temperature and irradiance on reproductive growth and 

development 

Previous work on the reproductive growth and development of sweet pepper has 

shown that, while the optimum temperature range for fruit set was 12 - 16 °C 

(Cochran, 1936), the marketable yield was low because the fruits were deformed 

(Rylski, 1986). Increasing the air temperature at which the plants were grown from 

16 to 27 °C hastened anthesis but also promoted flower abscission, which reached 

100% at 32 - 38 °C (Cochran, 1936). Rylski and Spigelman (1982) showed that high 

day-time temperatures of 28 to 32 °C in combination with a night temperature of 18 

°C did not increase flower abscission, whilst a constant day and night temperature of 

25 °C caused almost total flower drop. Many workers have suggested that low night 

temperatures are important in increasing fruit set (Cochran, 1936; Rylski and 

Spigelman, 1982; Rylski, 1986), but Bakker (1989) demonstrated that the 24 h mean 

temperature also has a significant influence on flower number and fruit set. Earlier 

work on tomato also demonstrated the importance of mean daily temperature in 

controlling flowering (Calvert, 1957). Since the interaction between temperature and 

irradiance during early plant growth may produce long-term effects on growth and 

development (Calvert, 1959), the effects described above may have been the result 

of different combinations of temperature and irradiance. In addition, the varieties used 
in different experiments may have differed in their sensitivity to the environmental 

conditions imposed. 

The main aim of this preliminary glasshouse study was to examine the growth and 
development of two sweet pepper varieties subjected to different mean daily 

temperatures under two levels of irradiance, paying particular attention to post- 

anthesis flower abscission and fruit set. The variety showing the greater response to 

temperature and irradiance in terms of flower abscission, and the temperature 

treatment found to be most favourable for early growth but critical for flower 

abscission and fruit set would be selected for further studies of the impact of 

environmental conditions on reproductive growth and development. 
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3.1.1 Materials and methods 

The experiment was conducted between 14 February and 22 May 1992. Seeds from 

two Fl hybrid varieties, Bell Boy (BB) and Blue Star (BS), were sown in flat trays 

and uniform seedlings with fully expanded cotyledons were pricked out into 3.51 pots 

six days after emergence. The methods of propagation and seedling management were 

as described in Sections 2.1.1 and 2.1.2. Plants were grown under natural glasshouse 

lighting conditions at a mean daily temperature of 20 ±3 °C until they reached the 

third true leaf pair stage (z 1 cm), when the treatments were imposed. 

Three different daily mean temperature treatments were set up (i. e. 26,20 and 14 ± 

3 °C), as explained in Section 2.4.1. Two irradiance levels were applied, high 

irradiance (HI) and low irradiance (LI), as described in Section 2.4.2. The experiment 

was designed as a3x2x2 factorial in a Randomised Complete Block with three 

replicates, each containing 16 plants. Destructive and non-destructive growth analyses 

were carried out regularly to determine the effects of the treatments on reproductive 

and vegetative growth and development using the procedures described in Section 2.3. 

Daily observations were made of the number of flowers that reached anthesis or 

abscised. Flowers that did not drop within 15 d of reaching anthesis were classed as 
having set fruit (Cochran, 1924). Polynomial regression analysis was used to relate 
flower and vegetative development to cumulative incident radiation (total radiation) 

and cumulative temperature (total heat sum or thermal time in degree days; Atherton 

and Othman, 1983). Thermal time was calculated from the daily temperature records 
for the experimental period using the cardinal temperatures obtained from the 

germination trials described in Chapter 4 (Tb = 6.0 °C and To = 27.5 °C). 

3.1.2 Results 

Data for cumulative incident radiation, daily mean irradiance, thermal time, and 

mean, maximum and minimum temperatures between the emergence of the third true 
leaf pair stage (start of treatment) and the end of the experiment 50 d later are 
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summarised in Table 3.1.1. Cumulative incident radiation varied between 235.7 and 
269.8 MJ m'2 in the high irradiance treatment, and between 114.0 and 122.6 MJ m'2 
in the low irradiance treatment (45 - 48% of the high irradiance value). The mean 
daily irradiance varied between 4.7 and 5.4 MJ m2 d-' in the HI treatments and 2.3 - 
2.4 MJ m2 V in the LI treatments. The target mean daily temperature for each 

temperature treatment was achieved quite closely in all treatments. 

Reproductive development 

Results for the effects of temperature and irradiance on flower growth and 
development in both varieties are summarised in Tables 3.1.2 and 3.1.3. 

Time to flower bud emergence Blue Star was the first to show macroscopically 

visible flower buds when grown at 26 °C under high irradiance. These appeared about 

nine days after the treatment started i. e. after receiving about 33 MJ m-2 of total 

radiation or 180 °C d (mean daily irradiance, 4.9 MJ m'2 d'1; mean daily temperature, 
26.3 °C), almost five days earlier than in Bell Boy grown at high irradiance in the 20 

°C treatment (9.4 vs. 14.2 d; p<0.05) and up to 11 d earlier than in the other 
treatments (Table 3.1.2). The chronological time to first flower bud appearance 
increased as temperature decreased from 26 to 20 and then to 14 °C, and from high 

to low irradiance (5.4 to 2.3 MJ m'2 d-'), with var. Bell Boy consistently being slower 

than Blue Star. These results show that Blue Star responded well to the combination 

of high temperature (26 °C) and high irradiance in terms of promotion of earlier 
development of flower buds. 

Time to anthesis In the 26 °C treatment Bell Boy and Blue Star reached first anthesis 
in the primary flowers at about 28 - 30 d under high irradiance conditions (c. 113 - 
119 MJ m-2 or 566 °C d), 6-8d earlier than when Bell Boy was grown under high 

irradiance at 20 °C (p<0.001; Table 3.1.2). As temperature decreased to 20 and 14 

°C and irradiance was reduced (mean 2.4 MJ m' d'), the time taken for flowers to 

reach anthesis increased in both varieties (36 - 49 d; p <0.001). Under low irradiance 

conditions at 26 °C, Bell Boy took longer than Blue Star to reach first anthesis (58 
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TABLE 3.1.1. Cumulative radiation, mean daily irradiance, thermal time and 
temperature conditions within the glasshouse between the third true leaf pair stage 
(start of treatment) and 50 d after treatment commenced. 

Treatment Irradiancec Temperatures (°C) Thermal times 

TEMPI IRRB Cumulative Daily mean Daily Max` Mid (°C d) 
(°C) (MJ m-1) (MJ m-2 d') mean 

26 HI 243.9 4.9 26.3 29.8 23.4 1015.5 

Li 121.8 2.4 

20 HI 269.8 5.4 20.4 23.3 17.6 722.7 

Li 122.6 2.4 

14 HI 235.7 4.7 14.5 17.6 12.0 426.9 

Li 114.0 2.3 

a: Temperature treatment 
b: Irradiance 

c: Mean of six tube solarimeters 
d: Calculated from values recorded at 30 min intervals 

e: Mean maximum temperature 
f: Mean minimum temperature 
g: Calculated using Tb = 6.0 °C obtained in the germination trial 
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TABLE 3.1.2. Effects of temperature, irradiance and variety on the time to first 
flower bud appearance and anthesis in primary and secondary flowers (n = 24). SED 
denotes the Standard Error of the Difference between means. 

Treatment Time to Time to first anthesis (d) 

TEMP IRR VAR appearance flower 1 flower 2b 
of first 

(°C) flower P (d) 

26 HI 

Li 

BB 

BS 

BB 

BS 

12.2(46,3)` 

9.4(33.1) 

14.0(28. o) 
12.9(240) 

29.7(119.5) 

28.3(113.4) 

58.0(150.8) 

49.0(115.3) 

30.3(126.6) 

29.7(119 5) 
38. O 8.. 7) 
36.3(7s. 7) 

20 HI BB 14.2(62.0) 36.0(161.9) 40.0(199,2) 

BS 12.1(49.5) 38.3(170.1) 40.3(199.2) 

Li BB 14.5(28,7) 48.0(171.5) 50.3(120.0 

BS 14.0(28a 48.3(171.5) 5110(122.6) 

14 HI BB 19.3c7o. 1) 57.0(283,7) 54.3(259.2) 

BS 15.8(60.2) 56.0(277.1) 55.7(277.1) 
Li BB 20.3(33.7) 59.3(141.3) 65.0(155.0) 

BS 18.2(30.0) 59.7(151.1) 65.3(155.0) 

SED(TEM) 0.11"' 0.76"' 0.80"' 

SED(IRR) 0.11"' 0.62"' 0.72"' 

SED(VAR) 0.11"' 0.62" 0.51° 

SED(TEM*IRR) 0.17"** 1.08*"* 1.09" 
SED(TEM*VAR) 0.17**" 1.08" 1.03" 

SED(IRR*VAR) 0.16"' 0.88" 0.88° 
SED(TEM*IRR*VAR) 0.26' 1.53"' 1.43" 

a: Primary flowers 
b: Secondary flowers 
c: Values in parenthesis denote cumulative radiation (MJ m-2) 
*, **, ***: significant at p<0.05,0.01,0.001 
n: not significant 
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vs. 49 d). However, at 14 °C, both varieties required a similar period to reach 

anthesis regardless of irradiance level. These results show that, while an interaction 

between high temperature (26 °C) and high irradiance advanced flowering in the more 

responsive variety Blue Star, low temperature (14 °C) retarded flower development 

in both varieties to an extent which could not be compensated for by high irradiance. 

Observations of flower growth and development in the various temperature treatments 

showed that at 14 °C the flower buds were larger in diameter and the petals appeared 

to stick together and took longer to open (7 - 10 d; Plate 3.1.1). When the flowers 

finally opened, abnormalities were observed in the flower parts (Plate 3.1.2) and the 

fruits which eventually developed were deformed (Plate 3.1.3). 

The time required for secondary flowers to reach first anthesis was also shorter under 
high temperature and high irradiance conditions (p<0.001; Table 3.1.2). At 26 °C, 

anthesis was about 10 - 15 d earlier than at 20 °C and up to 29 d earlier than at 14 

°C. High irradiance accelerated anthesis by c. 9d as compared to low irradiance. 

Regression analysis showed a highly significant correlation between the mean total 

number of primary flowers reaching anthesis (n=24) and cumulative radiation or 

thermal time in some treatments (p<0.001). For example, a highly significant 

quadratic relationship existed between the mean total number of flowers reaching 

anthesis in Bell Boy and Blue Star and total radiation and thermal time in the 26 and 
20 °C treatments at high irradiance (Figure 3.1.1a and b). Under low irradiance, a 

significant correlation was only achieved at 20 T. 

Flower number The mean total numbers of primary flowers produced (n= 12) by 

Bell Boy and Blue Star were similar (11.0 - 14.7 flowers) at 26 °C and 20 °C when 

plants were grown under high irradiance (Table 3.1.3). However, under low 

irradiance and at 26 °C, only 1.0 - 3.0 flowers were produced in both varieties 
(p <0.05). Blue Star also produced very few flowers when grown at 14 °C under low 

irradiance (3.8 flowers). These results suggest that the 26 and 20 °C treatments were 

equally effective in promoting flower production at high irradiance, while low 
irradiance greatly reduced flower production in both the 26 and 14 °C treatments. 



PLATE 3.1.1. Stages of flower bud development to anthesis in the 14 °C temperature 
treatment (a - c). Maximum flower bud diameter was larger than in the 26 °C 

treatment (d) and the petals appeared to stick together. 
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PLATE 3.1.2. Abnormalities in flower structure in the 14 °C temperature treatment 
(a-c) as compared to the 20 and 26 °C treatments (d). 

I hdik% 
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VI 
PLATE 3.1.3. Deformed developing fruitlets in the 14 °C temperature treatment, as 

compared with flowers from the other temperature treatments in Blue Star (top) and 
Bell Boy (bottom). 
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TABLE 3.1.3. Effects of temperature, irradiance and variety on the growth of primary and 
secondary flowers (n =12). SED denotes the Standard Error of the Difference between 

means. 

Treatment Primary flower Secondary flower 

TEMP IRR VAR Total Number abscission Total Number 
(°C) number reaching (%) number reaching 

anthesis anthesis 

26 HI 

LI 

BB 

BS 

BB 

BS 

14.0 

11.7 

1.0 

3.0 

13.7 

11.7 

1.0 

3.0 

14.2 

17.2 

100.0 

100.0 

26.3 

24.0 

5.0 

14.0 

26.3 

24.0 

4.0 

14.0 

20 HI BB 14.3 13.7 8.6 28.3 27.0 

BS 14.7 10.7 2.6 27.0 24.7 

Li BB 14.7 11.7 34.3 22.0 22.0 

BS 11.0 9.7 52.3 22.3 22.3 

14 HI BB 14.3 9.7 38.0 25.3 24.7 

BS 9.0 8.7 7.4 25.3 24.7 

Li BB 8.0 2.3 16.7 11.5 11.5 

BS 3.8 2.8 8.3 18.0 18.0 

SED(TEM) 0.81"' 0.64"' 4.92"' 0.67"' 0.90"' 

SED(IRR) 0.66"' 0.51"' 4.02"' 0.55"' 0.73"' 

SED(VAR) 0.66"' 0.51° 4.02"' 0.55" 0.73" 

SED(TEM*IRR) 1.15"' 0.88"' 6.96*** 0.95"' 1.27"' 

SED(TEM*VAR) 1.15' 0.88" 6.96"' 0.95' 1.27' 

SED(IRR*VAR) 0.94" 0.72' 5.68"' 0.78"' 1.04"' 

SED(TEM*IRR*VAR) 1.62' 1.25° 9.84"' 1.34" 1.79' 

*, **, ***: significant at p<0.05,0.01,0.001 
n: not significant 



FIGURE 3.1. Ia. Relationship between the total number of flowers reaching anthesis 
and total radiation for Bell Boy (BB:  ) and Blue Star (BS: 0) in those temperature 
and irradiance treatments where highly significant correlation coefficients were 
established (pS0.001). n= 24. HI: high irradiance; LI: low irradiance. 

Treatments Regression equations 

a: 26 °C + HI BB: Y= -540.94 + 8.47X - 0.03X2 

R2 = 0.96 
BS: Y= -310.74 + 4.94X - 0.02X2 

R2 = 0.96 

b: 20 °C + HI BB: Y= -102.41 + 0.87X +. 0.00X2 
R2=0.98 

BS: Y= -150.45 + 1.52X - 0.00X2 
Rý=0.91 

c: 20 °C + LI BB: Y= -368.77 + 6.18X - 0.02X2 
Rz = 1.00 

BS: Y= 685.66 - 12.61X - 0.06X2 
R2 = 1.00 
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FIGURE 3.1.1b. Relationship between the total number of flowers reaching anthesis 

and thermal time CC d; total accumulated temperature) for Bell Boy (BB:  ) and 
Blue Star (BS: Q) in those temperature and irradiance treatments where highly 

significant correlation coefficients were established (D: 50.001). n =24. HI: high 
irradiance; LI: low irradiance. 

Treatments Regression equations 

a: 26 °C + HI BB: Y= -188.24 + 0.96X - 0.00X2 

R2 = 0.96 
BS: Y= -252.79 + 0.79X - 0.00X2 

R2=0.99 

b: 20 °C + HI BB: Y= -242.89 + 0.88X - 0.00X2 
Rz = 0.97 

BS: Y= -260.22 + 0.86X - 0.00X2 
R2=0.97 

c: 20 °C + LI BB: Y= -256.50 + 0.81X - 0.00X2 
R2 = 1.00 

BS: Y= -1870.50 + 5.49X - 0.00X2 
R2=1.00 
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Flower number appeared to be more affected by low temperature and low irradiance 

in Blue Star. In contrast, Bell Boy consistently produced more flowers in all 

treatments (c. 14), although a decrease in flower number was also observed under low 

irradiance at 14 °C (Table 3.1.3). 

The total number of primary flowers reaching anthesis was apparently affected both 

by interactions between temperature and irradiance and interactions between 

irradiance and variety. The total number of flowers reaching anthesis was greatly 

reduced under low irradiance at 26 and 14 °C (p50.001), primarily because of the 

low number of flowers produced initially. Under low irradiance, the total number of 
flowers reaching anthesis was reduced significantly in both varieties (p S 0.05). 

As for the primary flowers, the total number of secondary flowers produced was also 

markedly reduced by low irradiance at 26 °C in both varieties (p: 50-01; Table 3.1.3). 

Blue Star also produced significantly more secondary flowers than Bell Boy under low 

irradiance at 14 °C, possibly because its thermal requirements for development were 
lower, or because it made more effective use of the available radiation to produce 

assimilates to support flower growth. The numbers of secondary flowers in both 

varieties were greater under high irradiance than under low irradiance conditions in 

all temperature treatments except 20 °C (p: 50.01). Similar results were obtained for 

the total numbers of secondary flowers reaching anthesis as for the production of 

secondary flowers. 

Flower abscission Flower counts made 15 d after first anthesis showed that 

abscission of primary flowers occurred in all treatments. Complete flower abscission 

was observed in both varieties at 26 °C under low irradiance conditions (p<0.001; 

Table 3.1.3; Plate 3.1.4), leading to total failure of fruit set. Better fruit set was 

obtained at 26 °C under high irradiance conditions where only 14 - 17% flower 

abscission was observed. Greater abscission percentages were recorded for plants 

growing under low irradiance at 20 °C (34 - 52%) or at 14 °C (17 - 38%). In the 14 

°C treatment, abscission was lower (p! -. 0.001) in Blue Star than in any other 
treatment irrespective of irradiance level, with the exception of Bell Boy and Blue 



58 

PLATE 3.1.4. Absence of primary and secondary flowers in the high temperature (26 

°C), low irradiance treatment resulting from complete flower abscission. 
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Star grown under high irradiance at 20 °C. Abscission of secondary flowers was not 

observed prior to 50 d after start of experiment, when the plants were harvested for 

final destructive analysis. 

Vegetative growth and development 

Effects on vegetative growth and development were measured in terms of leaf number 

(leaves z1 cm), leaf area, plant height and dry matter content at the time of first 

anthesis in the primary flowers of Bell Boy and Blue Star in the various temperature 

and irradiance treatments examined. The data obtained are summarised in Table 

3.1.4. 

Leaf number Primary leaf (leaves developing on the main stem) number was 

affected by an interaction between irradiance and variety. At first anthesis, plants of 

Bell Boy grown under low irradiance had significantly more primary leaves than Blue 

Star plants grown under either low or high irradiance conditions (p!. -0.05; c. 12 vs. 
10 leaves plant"; Table 3.1.4). The greater leaf numbers under low irradiance in Bell 

Boy may have been attributable to the delaying effect of low irradiance on flower 

initiation, which would have allowed more leaves to be initiated (Cockshull, 1979). 

In contrast, the total number of leaves, including leaves on the branches (secondary 

leaves), was significantly influenced by the interaction between temperature and 

irradiance (p:! 90.001). The maximum number of leaves was recorded at 26 °C under 

high irradiance conditions (32.7 - 39.3 leaves plant''), whilst only 12.7 - 16.7 leaves 

plant'' were produced at 14 °C or 18.0 leaves plant '' under low irradiance at 20 °C 

(p <0.001; Table 3.1.4). Regression analysis showed a highly significant fit (p <0.01) 

for all curves relating total leaf number to total accumulated radiation and thermal 

time in both varieties (Figure 3.1.2). Total leaf number exhibited significant 

correlations with both total radiation and thermal time in all temperature regimes 

examined under both levels of irradiance. 

Leaf area The combination of high temperature (26 °C) and high irradiance 
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TABLE 3.1.4. Effects of temperature, irradiance and variety on vegetative growth and 

total shoot dry weight per plant at first anthesis (n =12). SED denotes the Standard Error 

of the Difference between means. 

Treatment Leaf number Leaf area (Cm-2 ) 

TEMP IRR VAR Leaf 1' Totalb Area 1 Total 
(°C) 

Plant Shoot 
height dry 
(cm) weight 

(g) 

26 HI 

Li 

BB 

BS 

BB 

BS 

11.3 

10.3 

12.3 

9.7 

39.3 

32.7 

24.3 

25.3 

1092 

1201 

978 

854 

1740 

1656 

1367 

1261 

29.5 

29.7 

37.6 

39.1 

17.9 

17.9 

13.8 

15.2 

20 HI BB 11.0 23.7 957 1205 22.5 14.7 

BS 10.7 27.7 900 1251 22.7 15.2 

Li BB 12.3 18.0 988 1099 31.9 12.4 

BS 11.0 18.0 963 1019 33.2 11.6 

14 HI BB 11.3 14.3 460 466 12.1 11.8 

BS 10.7 12.7 417 421 13.0 12.1 

Li BB 11.7 14.7 458 473 15.1 10.4 

BS 10.0 16.7 486 558 16.3 10.5 

SED(TEM) 0.29' 1.52"' 49.1"' 48.0"' 0.75"' 0.28"' 

SED(IRR) 0.24" 1.24"' 40.1" 39.2*** 0.61*** 0.23"' 

SED(VAR) 0.24*** 1.24" 40.1" 39.2" 0.61" 0.23" 

SED(TEM*IRR) 0.41" 2.15"' 69.4* 67.9"' 1.06"' 0.40" 

SED(TEM*VAR) 0.41" 2.15" 69.4" 67.9" 1.06" 0.40" 

SED(IRR*VAR) 0.33* 1.75" 56.7" 55.5" 0.86" 0.32" 

SED(TEM*IRR*VAR) 0.58" 3.04" 98.1" 96.1" 1.50" 0.56" 

a: Primary leaves growing from the main stem 
b: Total includes secondary leaves 
* ** ***: significant at p<0.05,0.01,0.001; n: not significant 



FIGURE 3.1.2a: Relationship between leaf number per plant and total radiation, for 
Bell Boy (BB) and Blue Star (BS) at high (HI: BB:  ; BS: Q) and low (LI. - BB: .; 
BS: X) irradiance in the various temperature treatments. n=24. 

Treatments Regression equations 

a: 26 °C + HI BB: Y=5.76 - 0.26X + 0.01X2 

R2 = 0.98 
BS: Y=5.54 - 0.25X + 0.01X2 

R2 = 0.98 
26 °C + LI BB: Y=4.43 - 0.18X + 0.01X2 

Rz = 0.98 
BS: Y=4.92 - 0.38X + 0.02X2 

R2 = 0.97 

b: 20 °C + HI BB: Y=3.11 + 0.06X + 0.00X2 
R2 = 0.99 

BS: Y=3.12+0.05X+0.00X2 
R2=1.00 

20°C+LI BB: Y=3.12+0.07X+0.00X2 
R2=0.99 

BS: Y=3.01 + 0.08X + 0.00X2 
Rz=1.00 

C: 14 °C +' HI BB: Y=2.75 + 0.08X - 0.00X2 

R2 = 0.98 
BS: Y=2.81 + 0.07X - 0.00X2 

R2 = 0.97 
14°C+LI BB: Y=2.89+0.13X-0.00X2 

Rý=0.99 
BS: Y. = 2.99 + 0.09X - O. OOX2 

Rý=0.97 
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FIGURE 3.1.2b: Relationship between leaf number per plant and thermal time for 
Bell Boy (BB) and Blue Star (BS) at high (HI: BB:  ; BS: Q) and low (LI: BB: 

BS: X) irradiance in the various temperature treatments. n= 24. 

Treatments Regression equations 

a: 26 °C + HI BB: Y=6.35 - 0.12X + 0.00X2 
Rz=0.96 

BS: Y=6.40 - 0.06X + 0.00X2 
R2 = 0.95 

26°C+LI BB: Y=4.42 - 0.04X + 0.01X2 
R2=0.96 

BS: Y=5.39 - 0.04X + 0.00X2 
R2 = 0.91 

b: 20 °C HI BB: Y=2.99 + 0.01X + 0.00X2 

Rý = 1.00 

BS: Y=3.15+0.00X+0.00X2 

RZ = 1.00 
20 °C + LI BB: Y=3.04 + 0.01 X+0.00X2 

R2 = 1.00 
BS: Y=3.01 +0.01X+0.00X2 

R2 = 1.00 

c: 14 °C + HI BB: Y=2.68 + 0.03X - 0.00X2 
R2 = 0.97 

BS: Y=2.77 + 0.02X - 0.00X2 
R2 = 0.97 

14°C+LI BB: Y=2.79+0.03X-0.00X2 

R2 = 1.00 
BS: Y=2.93+0.01X-0.00X2 

R2, = 0.97 
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increased the area of primary leaves, while low temperature (14 °C) retarded leaf 

expansion to produce the smallest leaf areas regardless of irradiance (p < 0.05; Table 

3.1.4). The leaf area produced at 26 °C under low irradiance was similar to that 

produced at 20 °C under both high and low irradiance. As for total leaf number, total 
leaf area measured at first anthesis was also markedly increased (P. <-0.001) by high 

irradiance at 26 °C, and declined as temperature and irradiance decreased, except at 
14 °C where the marked reductions in total leaf area (c. 3-4 fold) were unaffected 
by low irradiance (Table 3.1.4). This may imply that irradiance was not limiting for 

leaf area expansion at 14 °C. It also appears that an increase in the area of individual 

leaves partially compensated for the reduced leaf number produced under low 

irradiance conditions at 26 and 20 °C. 

Leaf area was significantly greater at high temperature (26 °C) on day 7 than at low 

temperature (14 °C; ps0.01; Figure 3.1.3). By day 14, leaf area was significantly 
increased by the combination of high temperature and high irradiance (p <0.01), and 
by 21 d leaf area was greater in plants of Blue Star grown at 26 °C under high 

irradiance than in the other treatments examined (p50.01). 

Plant height Plant height was greatly increased by low irradiance at 26 °C, and 
decreased as temperature declined to 20 and then to 14 °C (p S 0.001; Table 3.1.4; 
Plate 3.1.5). At 14 °C, plant height was greatly reduced regardless of the irradiance, 

reaching only 12 - 16 cm as compared to 22 - 39 cm at the higher temperatures. 

Shoot dry weight Dry weight at first anthesis was increased by the combination of 
high temperature and irradiance (Table 3.1.4). Total shoot dry weight was greatest 
(c. 18 g plant'; p:, 0.01) at 26 °C under high irradiance but decreased with 
decreasing temperature and at low irradiance. Dry weight was lowest at 14 °C under 
low irradiance. 

Reproductive and vegetative growth depend not only on total dry matter production 
but also its distribution to individual plant parts. Dry matter distribution during early 
plant growth was not studied in the present experiment but was examined in the 



FIGURE 3.1.3. Effects of temperature and irradiance on the final area of the third 
pair of true leaves in Bell Boy (M) and Blue Star (3) under high (J and low (... ) 
irradiance at 26 (a), 20 (b) and 14 °C (c). n= 24. Bars represent the Standard Error 

of the Difference erence between means. 
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PLATE 3.1.5. Promotion of shoot extension by low irradiance at high temperature 
(26 °C) at 21 DAT (a) and 49 DAT (b). At 28 DAT (c), plant height under high 
irradiance varied between temperature treatments: 14 ° (left), 20° (middle) and 26°C 
(right). 
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experiments described in Chapter 5. 

Fruit formation At the end of the experiment, the effects of temperature and 

irradiance on fruit formation were examined. Fruit harvested from plants grown at 

14 °C was all abnormal regardless of irradiance conditions, as compared to fruit from 

the 26 or 20 °C treatments (Plate 3.1.6). The nature of the fruit abnormalities is 

shown in Plate 3.1.7. The effects of low night temperature on fruit formation have 

been discussed previously by Rylski (1973; 1986). 

3.2 Discussion 

The main aim of this preliminary study was to examine the influence of a range of 

temperature and irradiance treatments on the growth and development of two sweet 

pepper varieties. Varietal differences in response to temperature and irradiance were 

demonstrated between first flower bud emergence and anthesis. The combination of 

high temperature and high irradiance promoted earlier emergence of the primary 

flower buds in Blue Star than in Bell Boy. Conversely, lower temperatures delayed 

bud emergence more in Bell Boy, especially under low irradiance conditions. 

These results are consistent with previous reports of the beneficial interactive effects 

of high temperature and irradiance in accelerating flower development in sweet 

pepper (Cochran, 1936; Deli and Tiessen, 1969; Rylski, 1972) and tomato (Calvert, 

1959; Hussey, 1963). In a growth room study, Deli and Tiessen (1969) showed that 

a relatively high night temperature (18 °C) combined with an illuminance of 1600 ft-c 

promoted earlier flower initiation in sweet pepper cv. California Wonder, 62 d after 
imposing the treatment. Reduction of illuminance to 800 ft-c and night temperature 

to 12 °C delayed flowering. In a growth room study of tomato, Calvert (1959) 

showed that the initiation of the first flower was accelerated by a combination of high 

temperature (25 °C) and high illuminance (10000 lux) in cv. Ailsa Craig. As the 

illuminance was decreased to 2500 lux, flower initiation was delayed by up to 29 d. 

These results suggest that the effect of high temperature in hastening the initiation of 
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a 

PLATE 3.1.6. Mature normal. fruits (a) from Bell Boy (left) and Blue Star (right) and 
(b) ripe fruits from Blue Star at 80 DAT, produced in the higher temperature 
treatments. 
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a 

PLATE 3.1.7. Abnormal fruits from the 14 "C temperature treatment. (a) Blue Star, 

(b) Bell Boy, (c) cross section from Blue Star at 14 °C and (d) from Bell Boy (top) and 
Blue Star (bottom) at 20 or 26 °C. 

}t=yp 'ýý ýýIý, tý'ý, 
- ý. 
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the first flower is more rapid at high irradiance in at least some varieties. 

The growth and development of the first flower once it had been initiated was also 
influenced by the aerial environment. Anthesis was hastened more in Blue Star than 

in Bell Boy by the combination of high temperature and high irradiance. However, 

at high temperature and low irradiance, anthesis was delayed by 28 - 30 d in Bell 

Boy, a similar delay to that induced by low temperature (14 °C) in both varieties 

regardless of irradiance. Anthesis in the secondary flowers was enhanced by both high 

temperature and high irradiance. Consistent with these results, the important influence 

of temperature in determining flower development following initiation has also been 

demonstrated in sweet pepper var. World Beater by Cochran (1936) who showed that, 

when other factors were maintained near optimum for growth, anthesis in primary 
flowers was accelerated at higher day/night temperatures (38/32 °C) as compared with 
lower temperatures (15/10 °C) by up to 80 d. Cochran attributed the earlier 

production of buds and blossom at high temperature partly to more rapid vegetative 

growth. Anthesis in the first and second flowers of cv. California Wonder was also 

accelerated (by 51 and 58 d respectively) when a high night temperature (25 °C), was 

combined with natural glasshouse irradiance; lower night temperatures of 10 - 15 °C 

delayed anthesis in both categories of flower (Rylski, 1972). The delaying effect of 
low temperature became more pronounced when combined with a low irradiance of 
1.54 MJ m2 d-1, as was also observed in another cultivar, Delphin (Bakker, 1989). 

Other workers have also reported that anthesis may be hastened by a combination of 
high temperature and high irradiance (Calvert, 1957,1964; Hurd and Cooper, 1967, 

1970). Working under natural daylight conditions in greenhouses, Calvert (1964) 

showed that flowers developed more rapidly at mean air temperatures of 20 than at 
16 °C and recorded an advancement of up to 12 d in the time of first anthesis in the 
first inflorescence. Hurd and Cooper (1967,1970) found that a higher mean 
temperature of 15 °C also advanced the opening of the secondary flowers by up to 18 

d as compared to a lower temperature of 10 °C. 

In addition to the more rapid flower development observed in the present study, the 
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total numbers of primary and secondary flowers produced were also increased in both 

varieties by the combination of high temperature (20 - 26 °C) and high irradiance, but 

were generally decreased at low irradiance in all the temperature treatments 

examined. Varietal differences were most obvious at low irradiance, under which 

conditions the fewest primary and secondary flowers were observed in Blue Star at 

low temperature, and in Bell Boy at high temperature. The number of primary 

flowers reaching anthesis was greater in both varieties at high as compared to lower 

temperatures under high irradiance, but fewer flowers were produced under low 

irradiance irrespective of temperatures. Atherton and Othman (1983) have previously 

established a close relationship between the number of flowers reaching anthesis in 

tomato and total accumulated radiation similar to that found in the present study. A 

close relationship was also observed in the present work between the number of 

flowers reaching anthesis and thermal time. Flower growth and development have 

also been shown to depend closely on thermal time by other workers (Ketring and 
Wheless, 1989; Bagnall and King, 1991). The numbers of secondary flowers reaching 

anthesis followed a similar trend to the primary flowers. These results are consistent 

with those of Cochran (1924,1936), who found that more flowers were produced 

when plants of sweet pepper var. World Beater were grown in warm conditions (19 - 
24 °C) than in intermediate (14 - 19 °C) or cool conditions (10 - 14 °C); in the latter 

treatment, the plants produced only one blossom on average. 

Although the combination of high temperature and irradiance hastened flower 

development, it also promoted flower abscission in both Blue Star and Bell Boy, and 

consequently reduced fruit set. These results are consistent with those of Atherton and 
Othman (1983) who observed 50% flower abscission when tomato cv. Sonato was 

grown at temperatures 16 - 20 °C under a similar mean daily irradiance (4.8 MJ m-2 
d-') to that used in the present study. 

Adverse effects of high temperature on flower abscission have been reported for 

sweet pepper by many workers (Cochran, 1936; Wien et al., 1989a, 1989b; Aloni et 

al., 1991b). Cochran (1936) found that flower abscission in greenhouse-grown sweet 
pepper var. World Beater was increased when temperature was raised from 21/16 °C 
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(day/night) to 27/21 °C, but all other factors were maintained close to the optimum 

for growth. Aloni et al. (1991b) found that, under natural glasshouse lighting 

conditions, a high temperature regime of 25/35 °C (day/night) caused complete flower 

bud abscission in sweet pepper cv. Maor, whereas only c. 50% abscission occurred 

at 35/25 °C and no abscission took place in plants grown at 18/25 °C. These workers 

suggested that the increased bud abscission at high temperature resulted from 

competition for assimilates between flower buds and young leaves. Under such 

conditions, the young leaves appear to be more effective than adjacent flower buds 

in importing assimilates, a view supported by results showing that 14C-sucrose was 

partitioned in favour of young leaves as opposed to flowers. 

Other workers (Quagliotti, 1979; Rylski, 1986; Atherton and Harris, 1986) have 

attributed increased flower abscission at high temperature to the incomplete 

development of floral organs at anthesis. This is not likely to have been the cause of 

flower abscission in the present study since abscission occurred 10 -13 d after anthesis 

and the abscinded flowers showed no structural abnormalities. Instead, the observed 

abscission may have originated from competition for assimilates between the rapidly 

developing reproductive organs and the young leaves, in which the former may be 

more adversely affected than the latter which may provide stronger sinks for 

assimilates (Dinar et al., 1983; Halevy, 1987; Rao et al., 1992). 

Complete flower abscission was observed in Blue Star and Bell Boy at high 

temperature and low irradiance, implying that both varieties were sensitive to this 

flower abscission-inducing environment. Complete truss abortion in tomato cv. Sonato 

was also demonstrated by Atherton and Othman (1983) when a shading treatment was 
applied at the bud visible stage under glasshouse conditions to reduce total radiation 

by 75 % at an air temperature of 16 - 24 T. The mean daily irradiance in Atherton 

and Othman's study was similar both to that used in the present work and that 

adopted by Kinet (1977a) in growth rooms to achieve a high percentage flower 

abortion. 

According to Atherton and Harris (1986), complete flower bud abortion or flower 
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abscission after anthesis may indicate that the quantity of photosynthetically active 

radiation available to support the growth is severely limiting. This may in turn limit 

assimilate availability (Atherton and Othman, 1983), thereby increasing competition 

between the reproductive organs and vegetative sinks for assimilates (Hussey, 1963; 

Halevy, 1987; Morris and Newell, 1987). Turner and Wien (1994a) found that the 

partitioning of dry matter to young leaves in sweet pepper was unchanged by low 

light conditions as compared to the reproductive organs, indicating that the latter may 

be more affected by low light conditions and may therefore provide weaker sinks for 

assimilates. This was further supported by the work of Cooper and Hurd (1968), who 

showed that carbon dioxide enrichment under low irradiance-high temperature 

conditions in winter accelerated flower growth in the first inflorescence and reduced 
flower abortion. It has also been suggested that complete flower abscission may 
involve enhanced production of ethylene by the shaded flower buds, as demonstrated 

by Wien and Yipin (1989). 

Apart from its effects on the reproductive organs, the interaction of temperature and 
irradiance also influenced vegetative growth and development. Such effects are 
important since vegetative growth influences subsequent reproductive growth and 
development, and hence yield (Rylski, 1972). The present study has shown that high 

temperature and high irradiance increased total leaf number, leaf area and total shoot 
dry weight, but decreased stem elongation. The effect of light on leaf number has 

previously been reported to be greater at high (25 °C) than at low (15 °C) temperature 

(Hussey, 1963). Nilwilk (1981) showed that supplementing natural glasshouse 

radiation with 0.49 MJ ml V from HPLR lamps (400 W) increased leaf number in 

sweet pepper cv. Bruinsma Wonder by three. As temperature increased from 19 to 

22 °C, leaf area was also increased by supplementary radiation (Nilwilk, 1981), 

corroborating the results of Newton (1963) and Milthorpe and Newton (1963) who 

also observed that total leaf area was increased by higher radiation. 

Greater shoot elongation under low light conditions has previously been reported in 

sweet pepper, an agreement with the present observations of increased plant height 

under low irradiance conditions, especially at higher temperatures. During a summer 
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shading experiment, Rylski and Spigelman (1986) found that as irradiance decreased 

from 600 to 318 cal cm-2 d-', plant height increased from 29.9 to 40.2 cm in cv. Maor 

as a result of both increased internode elongation and node number. Othman (1984) 

examined young reproductive plants of tomato cv. Sonato in a glasshouse and 

demonstrated that total leaf number per plant was increased and plant height was 

decreased under high irradiance at day/night temperatures of 24/18 °C. Consistent 

with the present results, he also obtained a close direct correlation between total 

incident radiation over a 30 d period and leaf number per plant. Since the total 

number of leaves produced under low irradiance was significantly lower than at high 

irradiance, the priority of vegetative over reproductive growth under low irradiance 

conditions may originate from the promotion of stem extension rather than leaf 

production. 

Total shoot dry matter reflects the carbohydrate status of the shoot system. An acute 

shortage of carbohydrate, indicated by the decrease in total shoot dry weight, often 
leads to complete arrestment of flower development and total flower abscission 
(Halevy, 1987; Morris and Newell, 1987). In the present study, a significant 

reduction in shoot dry weight was observed in plants grown at high temperature and 
low irradiance, which was accompanied by complete flower abscission. A lower 

percentage flower abscission was recorded under high irradiance/high temperature 

conditions and this was accompanied by a greater shoot dry weight. In a glasshouse 

study, Turner and Wien (1994b) found that a low light treatment (320 - 360 µmol m'2 

s'1) at day/night temperatures of 24/18 °C significantly reduced shoot dry weight in 

two sweet pepper cultivars, Shamrock and Ace. Turner and Wien also reported that 

the partitioning of assimilates in the low light treatment favoured the young leaves as 

opposed to the reproductive organs, a conclusion consistent with several other reports 
(Dinar and Rudich, 1985a, b; Morris and Newell, 1987; Halevy, 1987). Since dry 

matter partitioning was not examined in the experiment reported here, it could not be 

ascertained whether dry matter was preferentially partitioned in favour of the 

vegetative as opposed to the reproductive parts, and whether this may have been 

partly responsible for flower abscission. However, changes in shoot dry matter 
distribution are examined in Chapter 5. 
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The results presented here demonstrate the existence of varietal differences between 

Bell Boy and Blue Star in their responses to temperature and irradiance. Under high 

irradiance, var. Blue Star proved to be more responsive to high temperature than Bell 

Boy, resulting in significantly earlier bud emergence and anthesis, although the latter 

effect was not significant. This varietal difference in the time required for flower 

development may reflect differences in the cardinal temperatures of the varieties since 

a variety with lower base and higher optimum temperatures would exhibit more rapid 
development under high temperature conditions (Ong and Monteith, 1985). The 

differences in cardinal temperatures between Bell Boy and Blue Star are examined in 

Chapter 4. 

3.3 Conclusions 

1. Emergence of the first primary flower bud was accelerated more by the 

combination of high temperature (26 °C) and high irradiance (4.9 MJ m'2 d'1) 

in Blue Star than in Bell Boy. Low irradiance (2.4 MJ m-2 d-1) delayed bud 

emergence to a greater extent in Bell Boy than in Blue Star, especially at low 

temperature. 

2. Anthesis was hastened by the combination of high temperature and high 
irradiance in Blue Star, although the time to anthesis was not significantly 
different from Bell Boy. Anthesis was delayed more by the combination of 
high temperature and low irradiance in Bell Boy than in Blue Star, the effect 

of which was comparable to the delaying effect of low temperature (14 °C) in 
both varieties regardless of irradiance. Anthesis in the secondary flowers was 
enhanced by both high temperature and high irradiance, with no varietal 
difference in response. 

3. The total numbers of primary and secondary flowers were increased in both 

varieties under high temperature-high irradiance conditions, and there was a 
corresponding increase in the total numbers of secondary flowers reaching 
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anthesis. However, the number of primary flowers reaching anthesis was 
increased only under high temperature-high irradiance conditions in both 

varieties, or in Bell Boy under high irradiance irrespective of temperature. 

The number of primary flowers reaching anthesis was also closely related to 

total radiation and thermal time. 

4. Although the combination of high temperature and high irradiance accelerated 

flower development up to anthesis, the abscission of primary flowers was 
increased in both varieties relative to the 20 °C, high irradiance treatment. 

Complete abscission occurred under high temperature-low irradiance 

conditions. 

5. Vegetative growth and development were strongly affected by an interaction 

between temperature and irradiance. The combination of high temperature and 
high irradiance increased total leaf number and area, but decreased stem 

growth. Total shoot dry matter declined as temperature and irradiance 

decreased. 

S, 
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CHAPTER 4 

CARDINAL TEMPERATURES AND THERMAL TIME FOR GROWTH AND 

DEVELOPMENT 

INTRODUCTION 

An understanding of varietal differences in response to temperature not only serves as 

a tool for cultivar selection, but also allows the calculation of thermal time scales to 

facilitate comparison of growth and developmental rates and permit prediction of 

development processes such as bolting and flowering in carrot (Atherton et al., 1990) 

and celery (Ramin and Atherton, 1991), curd initiation in cauliflower (Hand and 

Atherton, 1987) and leaf initiation (Kristensen et al., 1985; Elphinstone et al., 1988). 

The use of thermal time to analyse the growth and development of sweet pepper has 

not previously been reported, probably due to the lack of comprehensive information 

on its temperature responses. Work on seed germination in seven pepper cultivars 

(Coons et al., 1989) only established the existence of varietal differences in the 

optimum and maximum temperatures, but did not examine the base temperature, a 

vital aspect in any calculation of thermal time. 

The main aim of this Chapter was to determine cardinal temperatures for the two 

varieties of sweet pepper used in this study. When the rate of germination (the 

reciprocal of time to 50% germination; 1/t = 0.5) is a linear function of temperature, 

the cardinal temperatures (base, optimum and maximum temperatures ste Tb, T. and Tm, 

respectively) for germination may be established and subsequently used to calculate 

the thermal time required for germination (Garcia-Huidobro et al., 1982; Mohamed 

et al.; 1988a). The base temperature (Tb) for germination may differ from that for 

other developmental processes; for example, the Tb value for reproductive development 

is normally higher than that for vegetative development (Angus et al., 1981a, b; Leong 
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and Ong, 1983; Slafer and Savin, 1991). Tb may also differ substantially between 

species or cultivars (Weilgolaski, 1974; Mohamed et al., 1988b; Squire, 1990) and 

may even exhibit considerable variability for the same process (Leong and Ong, 1983). 

In contrast, the results of Ong (1983a, b) for a single variety of millet grown in 

temperature-controlled glasshouses indicate that Tb was conservative for many 

processes and growth stages. To ensure reliable assessments of thermal time, it is 

important to establish accurate values for Tb, and one way of achieving this is to 

determine Tb under controlled conditions (Squire, 1990). 

4.1 Determination of base, maximum and minimum temperatures for 

germination 

The method for examining the effect of temperature on germination rates using a 
thermogradient plate under controlled environment conditions has generally been found 

to be satisfactory and reproducible (Garcia-Huidobro et al., 1982; Mohamed et al., 
1988b), provided viable and non-dormant seeds are used. The analysis of development 

in relation to thermal times derived using this approach is also possible (Mohamed et 

al., 1988a). The main objective of the present study was to determine the base, 

maximum and optimum temperatures for germination in the sweet pepper varieties, 
Bell Boy and Blue Star. The values obtained were used to relate the rate of 

germination to thermal time. 

k 

4.1.1. Materials and methods 

Two germination trials were carried out using a thermogradient plate as described in 

Section 2.4. The first trial was carried out using eight different constant day and night 
temperatures at intervals of 5 °C within the range 5- 45 °C 

. 
Two further constant 

temperatures (26 and 29 °C) were included to achieve better resolution around the 
optimum of 25 - 30 °C for germination in sweet pepper (Coons et a!., 1989). The 

results from the first experiment showed that the seeds failed to germinate either at the 
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upper end of the temperature range (35 - 45 °C) or at the lower end (5 - 10 °C), with 

very high germination percentages (97 - 99%) being observed between 15 and 30 °C. 

Based on these results, a second experiment was conducted using a range of eleven 

more closely spaced (2 °C intervals) constant day/night temperatures (14 - 34 °C) to 

avoid the temperature extremes used in the previous experiment. The results from the 

two experiments were combined to give a more detailed understanding of the influence 

of temperature on germination. 

The experiments began on 27 January 1993 and 12 March 1993 and were continued 

for 30 d, although germination ceased after 20 d. Seeds of Bell Boy (UK) and Blue 

Star (Taiwan) of uniform size (; tý 2 mm) were selected and arranged in sterilised 4.5 

cm diameter plastic petri dishes lined with two layers of Whatman No. 1 filter paper 

and moistened with 2 ml of distilled water. Relatively small petri dishes were used to 

reduce the possible temperature variations which may occur in larger petri dishes 

(Jackson, 1982). Thirty seeds from each variety were distributed uniformly within each 

petri dish. Three replicates were used for each variety at every constant temperature 

examined. Each set of six petri dishes was then covered and placed at the appropriate 

point along the thermogradient plate; their temperatures were checked every day as 
described in Section 2.4. The petri dishes were opened daily at the same time to count 

and remove germinated seeds and add more water if necessary. Seeds were scored as 
having germinated when 1 mm of radicle had emerged from the seed coat (Coons et 

al., 1989). 

Fractional germination was calculated daily by dividing the cumulative number of 

germinated seeds by the total number of seeds used. The values obtained showed how 

the rate of seed germination was affected by the various constant temperatures applied. 
The rate of germination was calculated as the reciprocal of the time taken for half the 

population to germinate. This was then plotted as a linear regression against 

temperature; extrapolation of the regression lines to the temperature axis was used to 

establish the minimum and maximum temperatures, while the point where the two 

regression lines met was used to identify the optimum temperature for germination in 

each variety. Using these cardinal temperatures, ' the thermal time required for 
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germination and rate of germination were calculated as described in Section 4.1.2. The 

results were expressed as the mean of the three replicates for each variety and 
temperature treatment. 

4.1.2 Results 

No seed germination was observed at 5,10 or 40 °C. 

Cumulative germination (G) 

Figure 4.1.1 shows the timecourses for cumulative germination in both varieties 

examined, Bell Boy and Blue Star. The onset of visible germination (i. e. radicle 

emergence) varied with temperature in both varieties and occurred between 1 and 8 
d after the treatments commenced. In Blue Star, seeds germinated first at 27 °C (1 d), 
3d earlier than the first germination in Bell Boy, which occurred after 4d at 22 °C. 
Germination was slowest in the 15 and 35 °C treatments, in which the seeds began to 

germinate between day 8 and 9 in Bell Boy. Maximum germination was similar in 
both varieties (>_ 0.90 - 0.95) at all temperatures except 15 °C (0.63) in Bell Boy and 
35 °C (0.73) in Blue Star, although Bell Boy required a longer period (15 - 19 d) than 
Blue Star (7 - 14 d) to reach maximum germination. 

Rate of germination 

The germination rates for Bell Boy and Blue Star derived from the cumulative 
fractional germination curves are shown in Figure 4.1.2. Blue Star exhibited a higher 

rate of germination over most of the temperature range, particularly between 25 and 
29 °C (0.20 vs. 0.14 d'`). When separate regressions were calculated for the sub- and 
supra-optimum temperature ranges, extremely close linear relationships (p<0.001) 

between germination rate and temperature were obtained for both varieties (Figure 
4.1.2). The experimental data show that germination rate increased with temperature 
from 8.5 to 23.0 °C in Bell Boy, and from 6.0 to 27.5 °C in Blue Star, but thereafter 
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declined sharply to maximum of 44.0 and 41.5 °C in Bell Boy and Blue Star 

respectively. 

Cardinal temperatures 

Extrapolation of the germination rate-temperature regression lines allowed the base 

(Tb), optimum (T°) and maximum (Tm) temperatures to be estimated for both varieties. 

The cardinal temperatures estimated from Figure 4.1.2 for Bell Boy were Tb = 8.5 °C, 

T° = 23.0 °C and Tm = 44.0 °C. For Blue Star, the equivalent values were Tb = 6.0 °C, 

T. = 27.5 °C and T, � = 41.5 °C. 

Thermal time for germination 

For temperatures below To, the thermal time required for germination, 6g, defined as 
the product of time in days t, and the effective temperature (T - Tb) was calculated as 
follows: 

6g=(T-Tb)t 

where T is the constant temperature used and Tb is the base temperature for 

germination in each variety (Garcia-Huidobro et al., 1982; Mohamed et al., 1988b). 

When temperature was above the optimum, the temperature values were converted to 

their equivalent 'effective' temperature (TCf) in the sub-optimum range using the 

method of Craigon et al. (1990). Cumulative germination within the temperature range 

up to T° is shown as a function of thermal time in Figure 4.1.3a for both Bell Boy and 
Blue Star. The minimum Og required for germination varied between varieties, and was 

c. 50 °C d in Bell Boy and 40 °C d in Blue Star. The minimum Og for 90% 

germination was c. 150 °C d in Blue Star, whereas Bell Boy required c. 160 °C d to 

reach 80% germination. When linear regression analysis was carried out to examine 
the relation between cumulative germination and thermal time at near-optimum 

constant temperatures of 22 °C for Bell Boy and 27 °C for Blue Star (Figure 4.1.3b), 

highly significant relationships were obtained. The rate of germination was also 
linearly related to thermal time above the base temperature for each variety (p<0.001; 



FIGURE 4.1.3a. Relationship between cumulative germination at constant 
temperatures between 15 and 27 °C and thermal time (°C d) calculated above a base 

temperature of 8.5 °C in var. Bell Boy (0) and 6.0 °C in var. Blue Star (0). The 
lines are linear regressions (p<0.001). n=3. 

FIGURE 4.1.3b. Relationship between cumulative germination and thermal time (°C 
d) at near-optimum constant temperatures of 22 °C for Bell Boy (O) and 27 °C for 
Blue Star (0). The lines are linear regressions (p < 0.001). n =3. 
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Figure 4.1.4). Germination began first in Blue Star after a thermal time of about 120 

°C d, as opposed to 132 °C d in Bell Boy; germination rate was also more rapid in 

Blue Star. 

4.2 Discussion 

Germination of sweet pepper seed under controlled conditions on a thermogradient 

plate demonstrated similarities and differences in the responses of the two varieties 

examined to various constant temperature treatments between 15 and 35 °C. No 

germination was observed outside this range, possibly because dormancy was induced 

when seeds were exposed to lower or higher temperatures (Coons et al., 1989). Since 

tetrazolium tests were not carried out, the possibility that reduced seed viability 

contributed to germination failure below 14 and above 35 °C cannot be excluded. Blue 

Star showed a higher fractional germination than Bell Boy at all temperatures except 

35 °C, at which a longer period was required to reach maximum fractional germination 

(0.73 on day 20; Figure 4.1.1). In contrast, the lowest fractional germination in Bell 

Boy was recorded at 15 °C. The slower germination at temperatures between 20 and 

30 °C in Bell Boy may reflect an inherent lack of vigour or an adaptive response to 

the environment in which this genotype evolved. 

The linear relationships between the rate of germination and temperature established 
for both varieties (Figure 4.1.2) resemble those reported previously for other species 
(Garcia-Huidobro et al., 1982; Mohamed et al., 1988a). Germination rate increased 

linearly with temperature between Tb and T° and thereafter decreased linearly until Tm 

was reached. The base and maximum temperatures for Blue Star were 2.5 °C lower 

than in Bell Boy, although its optimum temperature was over 4 °C higher at 27.5 °C. 

Both varieties, however, exhibited a similar range of 35.5 °C between their base and 

maximum temperatures. The observed varietal differences in cardinal temperatures 

may, reflect their differing climatic origins. For example, varieties with low Tb and 
high T. values may have evolved in regions which experience extremes of climatic 

variation, whilst varieties from more temperate environments often show a narrower 
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range between the base and maximum temperatures (Mohamed et al., 1988b). Since 

Blue Star is widely cultivated in tropical regions and Bell Boy in temperate areas, it 

was anticipated that the former would be adapted to tropical climates and the latter to 

temperate zones. However, since both varieties exhibited similar Tb (6 - 8.5 °C) and 
T. values (41.5 - 44 °C), it is possible that both may have developed in a 

mediterranean climate but are suitable for growing in either cooler or warmer areas. 
This suggestion is supported by the similar range between Tb and T, 

�, which indicates 

that both varieties evolved under climatic conditions where the diurnal temperature 

variation is large (Squire, 1990). Similar values of Tb and T. have been demonstrated 

for some groundnut cultivars (Mohamed et al., 1988b). 

The germination tests suggest that Blue Star may be slightly more heat tolerant due 

to its lower Tb (6.0 °C) but higher T° (27.5 °C; Ong and Monteith, 1985). These 

differences imply that the rate of development of Blue Star should be faster than that 

of Bell Boy at higher temperatures. This might explain the more rapid development 

observed in Blue Star during early reproductive growth in the 26 °C treatment 
described in Chapter 3. The observed variation in the rate of germination also has 

important implications for crop production in areas where rapid development and heat 

tolerance favour survival. 

Provided that Tb had been accurately determined under controlled conditions, this 

value is often applicable to other developmental processes (Leong and Ong, 1983; 

Morrison et al., 1989; Squire 1990), although some workers have suggested that T. 

may, be - higher during the reproductive phase than during the vegetative phase 
(Weigolaski, 1974; Angus et al., 1981b; Slafer and Savin, 1991). By accumulating the 

mean daily temperature above the base for the appropriate period, the thermal time 

required for specific growth and development stages can be predicted (Atherton et al., 
1990; Craigon et al., 1990). Thermal time is an extremely useful concept because it 

allows the development of crops at different locations and in different seasons to be 

compared (Ong and Monteith, 1985; Squire, 1990). Often, the same variety of a crop 
is grown at a number of different sites and thus requires different amounts of 
chronological time, but similar amounts of thermal, time to reach maturity. Thus, 
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although the chronological duration for any particular developmental process is 

shortest at the optimum temperature and lengthens at temperatures below or above this 

value, the thermal duration for the same process remains the same at each location. 

Using the Tb value obtained from seed germination trials, the fractional emergence of 

groundnut and millet seeds was satisfactorily transformed into thermal time (Mohamed 

et al., 1988b). Correlation of cumulative germination at all the temperatures below T° 

and cumulative germination at temperatures close to the optimum with thermal time 

produced highly significant linear relationships in both varieties examined in the 

present study, especially when optimum temperatures were used (Figure 4.1.3). The 

minimum thermal time needed to initiate germination was 40 °C d in Blue Star and 
55 °C d in Bell Boy, whilst a maximum germination fraction of 0.95 was obtained 

after 165 °C d in Blue Star. Under the optimal temperature environment of 27 °C, Blue 

Star required a lower thermal time than' Bell Boy to initiate germination. Differences 

in the rate of germination between Blue Star and Bell Boy can also be examined using 

the germination thermal time. The thermal time required to achieve specific 

germination rates was consistently lower in the former, ranging from 100 to 120 °C 

d for 0.09 - 0.17 seeds d-', as compared to 0.06 - 0.10 seeds d-' for the greater thermal 

time of 110-130 °C d. 

Several previous attempts have been made to relate crop development to thermal time 

above the base temperature (Ketring and Wheles, 1989; Slafer and Savin, 1991). In 

a study of flowering and bolting in carrot grown under growth room, glasshouse and 
field environments, Craigon et al. (1990) demonstrated a linear relationship between 

the rate of progress to flower bud visibility and the number of vernalising degree days 

accumulated when non juvenile plants were grown in constant temperature rooms. 
However, Slafer and Savin (1991) were unable to establish a unique base temperature 

for all developmental stages in wheat, and suggested that Tb varies in a manner which 
reflects adaptation to low temperatures during early developmental phases and to 

warmer temperatures during reproductive development (Angus et al., 1981 a, b). An 

alternative suggestion is that Tb may be highest during periods of growth when 

metabolic activity is greatest, such as the pre-anthesis and grain filling stages. 
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The present study of the cardinal temperatures for germination in two varieties of 

sweet pepper has made it possible, at least tentatively, to relate the rate of growth and 
development to thermal time. The present work was not intended to provide a detailed 

understanding of the relation between accumulated thermal time and development, but 

rather to determine whether varietal differences in cardinal temperatures may be 

responsible for the observed varietal differences in response to temperature. Since it 

has been shown that the rate of development may be related to thermal time, this may 

open an area where the prediction of growth and development in sweet pepper using 

the concept of accumulated thermal time above the base temperature can provide a 

useful tool for planning glasshouse or protected production of sweet pepper throughout 

the year. In the experiments described in Chapters 5 and 6, thermal time analysis was 

used to separate the effects of temperature and water stress and examined the influence 

of applications of chemicals on developmental processes in sweet pepper variety Blue 

Star, particularly time to anthesis and flower abscission. Although the Tb value 

established in this germination trial may not be identical to that during reproductive 

phase, its use was better than adopting the arbitrary assumption that Tb =0 °C or some 

other value. 

4.3 Conclusions 

1. Germination in the two sweet pepper varieties examined occurred between 15 - 
35 °C, but did not occur outside this temperature range. 

2. The cardinal temperatures established from the linear relationships between the 

germination rate and temperature showed that Tb, T. and T. were respectively 
8.5,23.0 and 44.0 °C for Bell Boy and 6.0,27.5 and 41.5 °C for Blue Star. 

3. Cumulative fractional germination and germination rate were correlated with 
thermal time above the appropriate base temperature for each variety, although 

varietal differences in the developmental processes were apparent. Thus, the 

minimum thermal time required to initiate germination in Bell Boy and Blue 
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Star was 55 and 40 °C d respectively, whilst the thermal time required to 

achieve a germination rate of 0.09 - 0.17 seeds d'' was 100 - 120 °C d in Blue 

Star, as compared to 0.06 - 0.10 seeds d'1 for a greater thermal time of 110 - 
130 °C d in Bell Boy. 

... 
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CHAPTER 5 

INFLUENCE OF WATER STRESS ON GROWTH AND DEVELOPMENT 

INTRODUCTION 

In Chapter 3, it was shown that high temperature (26 °C) promoted the earlier 

initiation and development of primary flowers in Blue Star when combined with high 

irradiance, but that this treatment also increased flower abscission. Reducing 

glasshouse irradiance when the third true leaf was expanding retarded reproductive 

development more than vegetative growth and induced complete flower abscission. 

The failure of the flowers to set fruit may have been at least partly attributable to 

competition between the vegetative and reproductive components for the limited 

assimilate supplies available (Atherton and Harris, 1986; Halevy, 1987). Any 

improvement of reproductive development under low irradiance therefore requires a 

proportionate balance of growth to be maintained within the plant. A restriction on 

vegetative growth, possibly induced by withholding water, may reduce competition 

by producing small 'hard plants', thereby producing a more balanced pattern of 

growth (De Koning and Hurd, 1983). Many commercial growers regularly practise 

'balancing' of growth in early-sown greenhouse tomatoes (Cooper and Hurd, 1968; 

Calvert, 1969; De Koning and Hurd, 1983), usually by subjecting them to periods of 

water stress. 

The experiments described in this Chapter were designed to determine the influence 

of. water stress on the early growth and development of the reproductive organs, 

paying particular attention to the abscission of the primary and secondary flowers. 

They also examined the possible role of changes in dry matter distribution within 

plants induced by water stress in modifying reproductive growth and development in 

sweet pepper. The hypothesis being tested was that water stress would enhance flower 
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growth and development by altering assimilate partitioning in favour of the flowers, 

thereby reducing flower abscission. 

5.1 Effects of water stress and irradiance on growth and development after 
the first bud-visible stage 

Water stress frequently has deleterious effects on the reproductive development of 
horticultural crops (Atherton and Othman, 1983; Wudiri and Henderson, 1985), the 

extent of which depends on the developmental stage when it is imposed (Salter and 
Goode, 1967; Kaufmann, 1972; Begg and Turner, 1978). For example, water stress 
imposed shortly after the flower buds become visible causes flower abscission (Wudiri 

and Henderson, 1985). In contrast, water stress may prolong the period of flower 

development under conditions of low irradiance, thus reducing abscission (Klapwijk 

and De Lint, 1974), an effect which was suggested to originate from an increase in 

the quantity of carbohydrate stored in the stems (De Koning and Hurd, 1983). 

The following experiment was conducted to investigate the extent to which the 
imposition of water stress and low irradiance under glasshouse conditions reduces 
flower abscission through changes in assimilate distribution which favour early flower 

development. 

5.1.1 Materials and methods 

The experiment was conducted between 22 July and 20 October 1992. Two seeds of 
Blue Star were sown in each inverted pyramid cell of Speedling trays (2.5 x 2.5 x 7.2 

cm deep) containing Levington F2 Compost and then managed as described in Section 

2.1. Each cell was thinned to leave one seedling seven days after sowing. At the stage 

when. the third true leaves became visible (17 days after germination), healthy 

seedlings of uniform size were pricked out into 9 cm diameter pots containing 
Levington M2 compost. These were then placed on benches measuring 146 x 78 x 
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75 cm (length x width x height) in a glasshouse where the environmental conditions 

had been pre-set approximately one week before use (Section 2.1). Twenty three days 

after germination, uniform seedlings were transplanted into 12 1 black plastic pots 

containing M2 compost. The experiment was a split-plot 2x4 factorial replicated 

three times, and each treatment contained 42 plants. 

Before imposing water stress, the pots were maintained as described in Section 2.5. 

Following the appearance of the first flower buds (26 d after germination), water 

stress treatments were imposed using the method described in Section 2.5. Four 

watering treatments were applied: replacement of water at 100% of ETP 

(evapotranspiration) served as a "no stress" control (NS), while watering at rates of 
75,50 and 25% of ETP provided progressive "medium stress" (MS), "high stress" 

(HS) and "severe stress" (SS) treatments. Two light treatments were also included, 

as described in Section 2.4. These were a "high irradiance" treatment (HI) which 

comprised the incident radiation received within the glasshouse plus supplementary 
light and a "low irradiance" treatment (LI) which provided c. 33% of HI (Plate 

5.1.1). 

Non-destructive measurements were taken throughout the experimental period to 
determine the timecourse of treatment effects. The numbers of flowers present were 

counted daily and records of the times required for primary and secondary flowers 

to reach anthesis or abscission were compiled and expressed in terms of both 

chronological and thermal time (Tb = 6.0 °C). Periodic destructive analyses were 

conducted to establish treatment effects on the timecourses of vegetative and 

reproductive growth and development, as described in Section 2.3. Environmental 

conditions within the glasshouse were recorded throughout the experimental period 

and accumulated total radiation (Section 2.4) and thermal time (Chapter 4) were 

calculated. Stomatal diffusive conductance, net photosynthesis, transpiration and the 

water use ratio of individual leaves were measured at weekly intervals using an LCA- 

3 portable IRGA (cf. Section 2.5) to examine the effects of progressive stress. 
Midday water potentials (VI, ) were measured weekly in the youngest fully expanded 
leaf of four plants selected randomly from each treatment per block using a pressure 
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PLATE 5.1.1. NS-LI (a) and NS-HI (b) at 7 DAT. 
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chamber. These samples were then used to measure osmotic potential (V1s), and turgor 

potential (q p) was calculated as the difference between the water and osmotic 

potentials. The procedures involved were described in Section 2.5. 

5.1.2 Results 

Environmental conditions 

Irradiance During the 50 d period between the appearance of visible flower buds 

and final harvest, total radiation receipts for plants in the HI and LI irradiance 

treatments were 457 and 139 MJ m-2 respectively (Figure 5.1.1a). These values 

corresponded to mean daily irradiances of 9.1 and 2.8 MJ m-2 d-1, with ranges of 6.4 

-13.3 and 2.1 - 4.2 MJ m'2 d-' in the HI and LI treatments respectively (Figure 

5.1. lb). The high irradiance treatment allowed normal development of the flowers to 

anthesis, but low irradiance induced flower abortion. The radiation received by plants 

in the LI treatment over the entire experimental period was only 30-34% of that in 

the HI treatment. 

Temperature Over the same period, total accumulated thermal time was about 983.5 

°C d, which was equivalent to a mean daily value of 20.1 °C d (Figure 5.1.2a). 

Thermal time was calculated from the mean daily air temperatures and the cardinal 

temperatures for germination determined earlier (cf. Chapter 4). The daily maximum 

and minimum temperatures fluctuated between 28.8 - 35.2 and 20.2 - 24.6 °C 

respectively. However, the variation in the mean daily temperature was smaller, 

ranging between 25.6 - 27.0 °C (Figure 5.1.2b). 

Stomatal diffusive conductance In general, ' stomatal conductance was decreased 

significantly (p<0.001) by water stress at both high and low irradiance. Stomatal 

conductances were significantly lower in the LI treatment (p < 0.001), particularly at 
14 and 21 d after the start of the treatment (DAT; Figure 5.1.3) and in the most 

-severely stressed plants (p<0.001). 
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FIGURE 5.1.2. Timecourses of (a) accumulated thermal time CC d) and (b) weekly 

mean, temperature.  , maximum temperature; Q, mean temperature; ", minimum 

temperature. n =3. 
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Net photosynthesis and transpiration Assimilation by the leaves did not differ 

significantly between treatments, although there was a general trend for 

photosynthesis to decline towards the end of the experiment (Figure 5.1.4). At 14 and 
21 DAT, during a period of relatively high solar radiation receipts, net photosynthesis 

was higher in the HS than in any of the other watering treatments (p<0.05). 

Transpiration also showed no significant difference between treatments and the 

timecourses of changes corresponded closely with those for net photosynthesis (data 

not presented). 

Water use ratio (WUR) The instantaneous water use ratio of single leaves was 

calculated as the ratio of CO2 uptake to H2O loss determined from the IRGA 

measurements. There was no significant difference in WUR between watering 

treatments under either HI or LI conditions, although the values were consistently 
higher in the HS treatment under LI conditions (Figure 5.1.5). However, the pooled 
data for all watering treatments clearly show that WUR was much lower in the LI 

treatment, and decreased sharply towards the end of the experimental period 
(p<0.001). These results indicate that low irradiance did not improve the efficiency 

of water use during the assimilation of C02, but instead its adverse effect became 

more pronounced as the experiment progressed. 

Flower and reproductive development 

Anthesis was not reached in either primary or secondary flowers under LI conditions 
as the developing flower buds began to abscind from 13 DAT onwards. For this 
reason, analysis of the effects of water stress on the time required for the first 

primary and secondary flowers to reach anthesis was restricted to the HI treatment. 

Observations during the first 30 DAT showed that the SS treatment induced early 

anthesis in the primary flowers at 15 DAT, which corresponded to a thermal time of 
329, °C d (p<0.05; Table 5.1.1). However, this was immediately followed by almost 

complete flower abscission (97%; Table 5.1.2). Time to anthesis in the secondary 
flowers . was not affected by the water: stress treatments imposed. The percentage 
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FIGURE 5.1.5. Timecourses showing the effects of water stress on water use ratio 
under (a) high (HI) and (b) low irradiance (LI) conditions.  , NS; Q, MS; A, HS; X. 
SS. c shows the pooled data for all water stress treatments;  , HI; 0, LI. n =12 (a 
and b) or n= 24 (c). Bars represent the Standard Error of the Difference between 

means. 
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TABLE 5.1.1. Effects of irradiance and water stress on the time to first anthesis and 
first flower abscission (n = 18). SED denotes the Standard Error of the Difference 
between means. 

Irradiance Water Days to first flower Degree days to first flower 
(I) stress 

(WS) anthesis abscission anthesis abscission 

18 2b 1 2 12 1 2 

High NS 18 19 20 20 391 418 438 480 

MS 19 20 22 21 411 431 466 459 

HS 18 20 19 20 384 425 418 439 

SS 15 20 16 20 329 432 357 432 

Low NS - - 14 13 - - 301 294 

Low MS - - 14 13 - - 301 287 

HS - - 14 14 - - 315 301 
SS - - 14 13 - - 308 281 

SED(I) 1.09* 0.66** 22.44* 4.39"' 

SED(WS) 0.97`° 0.45"c 1.18' 1.75' 20.15'° 9.29x` 24.24"S 25.67" 

SED(I*WS) 1.81" 2.24' 37.21"s 31.74" 

a: primary flowers 
b: secondary flowers 
c: analyses restricted to water stress effect only 
* significant at p <0.05 
** significant at p<0.01 
*** significant at p<0.001 
ns: not significant 
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TABLE 5.1.2. Effects of irradiance and water stress on the total number of flower buds per 

plant and percentage anthesis and abscission of the primary and secondary flowers (n =18). 
SED denotes the Standard Error of the Difference between means. 

Irradiance Water Flower number % anthesis % abscission 
(I) stress 

(WS) 1' 2b 12 12 

High NS 2.2 2.8 47 82 31 34 

MS 1.6 2.7 41 72 84 32 

HS 1.5 2.8 38 70 89 40 

SS 2.1 2.6 35 77 97 50 

Low NS 2.3 2.2 0 0 100 100 

MS 2.3 2.3 0 0 100 100 

HS 2.4 2.2 0 0 100 100 

SS 2.3 2.2 0 0 100 100 

SED(I) 0.01"' 0.09' 3.671* 5.01" 2.74' 3.98" 

SED(WS) 0.19°3 0.18"3 8.457 6.13"3 5.22"' 3.98" 

SED(I*WS) 0.24' 0.24"S 10.98" 9.03`' 6.95"** 6.29"3 

a: primary flowers 
b: secondary flowers 
* significant at p<0.05 
** significant at p <0.01 
*** significant at p<0.001 

ns: not significant 



109 

anthesis values for primary and secondary flowers showed little effect of water stress 

under high irradiance, whereas under the LI conditions, all primary or secondary 

flower buds failed to reach anthesis (Table 5.1.2; p<0.01). Low irradiance also 

significantly increased the number of primary flowers (p<0.001), but also 

encouraged earlier bud abscission in both primary (p <0.05) and secondary (p <0.01) 

flowers (Table 5.1.1). In contrast, the number of secondary flowers was decreased 

by the LI condition (p<0.05). Complete flower abscission occurred in all watering 

treatments under LI conditions, and high percentage abscission values were observed 

for the primary flowers in the SS-HI, HS-HI and MS-HI treatments, with abscission 

being significantly lower in the NS-HI treatment (Table 5.1.2; p<0.001). In the 

secondary flowers, the watering treatment had little effect on percentage flower 

abscission, but the LI treatment again caused 100% abscission (p<0.01). 

At final harvest (50 DAT), the number of other flowers (excluding primary and 

secondary flowers) and the dry weights of other flowers (bud diameter >2 mm) and 

of fruits developed from primary and secondary flowers were measured (Table 5.1.3). 

The number of other flowers was significantly increased by the HS and MS 

treatments and by the HI conditions (p<0.05), and the corresponding dry weights 

were also higher (p <0.01 and 0.05 respectively; Table 5.1.3). The unstressed plants 

produced fewest 'other' flowers, possibly due to the suppression of later flowering 

by the fast developing fruits in this treatment (Ho and Hewitt, 1986). The dry weight 

of fruit formed from the primary and secondary flowers was significantly greater in 

the NS treatment under HI conditions, followed successively by the MS-HI and HS- 

HI treatments (p <0.05). However, no fruits were formed due to complete flower 

abscission under SS-HI and all LI conditions. The flowers produced in the severely 

stressed treatments were invariably smaller in size and had shorter petioles. 

Vegetative growth and development 

The effects of irradiance and water stress on vegetative growth and development at 
the end of the 50 d experimental period are summarised in Tables 5.1.4 and 5.1.5. 
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TABLE 5.1.3. Effects of irradiance and water stress on the total numbers and dry 

weights of flowers and fruits per plant at final harvest (n =18). SED denotes the 
Standard Error of the Difference between means. 

Irradiance Water stress Other flowersa Dry weight (g) 
(1) (WS) 

(number) other flowers fruits' 

High NS 39 0.6 20.4. 
MS 54 0.9 8.7 

HS 60 0.7 0.9 

SS 47 0.4 0.0 

Low NS 30 0.3 0.0 

MS 47 0.4 0.0 

HS 45 0.4 0.0 

SS 22 0.2 0.0 

SED(I) 2.7' 0.05* 1.71' 

SED(WS) 6.3* 0.06** 2.42* 

SED(I*WS) 8.2"S 0.09", 3.29' 

a: excluding primary and secondary flowers 
b: from primary and secondary flowers 
* significant at p<0.05 
** significant at p<0.01 
*** significant at p <0.001 

ns: not significant 

rýý.. 
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Leaves Leaf growth and development were more severely reduced by water stress 

(p <0.001) than by low irradiance, but there was no significant interaction (p <0.01; 

Table 5.1.4). Total leaf number was reduced in the severe stress treatment relative 

to the NS control by 39 and 44% at high and low irradiance, but was increased in the 

MS treatment by 47 and 5% respectively. The secondary leaves (i. e. those growing 

from the point of branching subtending the primary flowers) were affected by severe 

stress in a similar manner to total leaf number (p<0.001). Leaf dry weight was 40 

and 47 % lower in the SS-HI and SS-LI treatments than in the NS control and 31 % 

and 46% higher in the corresponding MS treatments. Leaf area was significantly 

reduced in the HS and SS treatments and exhibited a ranking of MS > NS > HS > SS. 

Low irradiance also reduced total leaf number and the number of secondary leaves 

per plant (p <0.01), although total leaf dry weight and leaf area were not significantly 

affected. At the end of the experiment, the basal leaves showed no symptoms of 

senescence or abscission due to prolonged progressive stress. 

Leaf areas were significantly reduced by the SS and HS treatments and specific leaf 

area (SLA) was significantly lower in all water stress treatments (p<0.01) or at HI 

(p<0.05), indicating either that the leaves were thicker or their density was greater, 

perhaps because of increased wall thickness. The leafiness of the plants, as indicated 

by their Leaf Area Ratio (LAR), was decreased in all stress treatments under HI 

conditions, but was significantly greater in the NS and MS than in the HS and SS 

, ''treatments under LI conditions (p<0.01). 

Stems The effects of irradiance and water stress on plant growth are presented in 

Table 5.1.5. Total shoot and stem dry weights were significantly reduced in the SS 

treatment under both HI and LI conditions, with the smallest values being recorded 
in the SS-LI treatment (p <0.001). The SS treatment also greatly reduced total plant 

height, branch numbers and stem diameter (p <0.001) under both high and low 

irradiance conditions. The shorter plant height in the SS treatment resulted from a 

significant reduction in shoot extension from the point of branching to the shoot tip 
(p <0.001). The LI treatment consistently produced taller plants with fewer branches 

(p<0.05), a smaller stem diameter and reduced stem dry weights (p<0.01). 
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TABLE 5.1.4. Effects of irradiance and water stress on leaf growth and development at final 

harvest (n = 18). SED denotes the Standard Error of the Difference between means. 

Irradiance Water Leaves per plant SLAb LARC 
(I) stress 

(WS) total secondary' dry wt. area (cm2 g (CO g- 
(no. ) (no. ) (g) (cm2) 1 leaf) 1 plant) 

High NS 123 114 15.9 5921 376 97 

MS 181 172 20.9 6172 300 90 

HS 111 102 15.3 4189 277 92 

SS 75 66 9.5 2250 239 82 

Low NS 94 85 11.8 6098 516 220 

MS 99 90 17.2 6517 404 193 

HS 86 77 12.5 4530 374 157 

SS 53 45 6.3 2275 364 133 

SED(I) 3.6" 3.54" 1.7°' 191.8" 27.3' 13.78' 

SED(WS) 13.8"' 13.81"' 1.7"' 243.2"` 32.0" 9.72"' 

SED(I*WS) 17.3" 17.28" 2.7' 354.3°S 47.8" 18.21" 

a: Secondary leaves above the primary flowers 
b: Specific Leaf Area (cm2 g-' leaf) 
c: Leaf Area Ratio (cm2 g'1 plant) 
* significant at p<0.05 

significant at p<0.01 
*** significant at p <0.001 
ns: not significant 



113 

TABLE 5.1.5. Effects of irradiance and water stress on total shoot dry weights at 25 

and 50 DAT and on shoot characteristics at final harvest (n = 18). SED denotes the 
Standard Error of the Difference between means. 

Irradiance Water Total shoots dry Plant Total Stems 

(I) stress wt. at DAT (g) height branch b 
(WS) (cm) number 

length' dry wt. Diameter 

25 50 (cm) (g) (mm) 

High NS 18.0 62.3 103 87 73 25.7 14 

MS 19.0 58.2 103 97 73 27.7 13 

HS 18.1 37.1 87 79 58 20.1 12 

SS 14.9 21.9 65 64 40 11.9 10 

Low NS 7.4 23.1 110 52 75 11.1 11 

MS 7.6 30.2 113 65 80 12.6 10 

HS 8.6 21.7 107 59 73 11.9 9 

SS 8.5 13.9 85 44 49 7.5 8 

SED(I) 0.7 2.8' 2.6' 5.3' 2.1' 1.0" 0.1" 

SED(WS) 0.6"s 1.9"' 3.0"' 4.3"' 3.3"' 0.9"' 0.3"' 

SED(I*WS) 1.0" 3.6"' 4.5"S 7.5"s 4.61u 1.5"' 0.4's 

a: root dry weight not included 

b: length from the point of branching to the tip of the shoot 
* significant at p<0.05 
** 'significant at p<0.01 
*** significant at p<0.001 

ns: not significant 
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Dry matter distribution 

Total shoot dry weight was reduced by the interaction between LI and SS (Table 

5.1.5). At 25 DAT, shoot dry matter was significantly lower in all watering 

treatments under LI conditions and in the SS-HI treatment than in the NS-HI control 

(p<0.01). This reduction in dry weight was even more pronounced at 50 DAT. 

In general, the percentage of dry matter partitioned to the flowers+fruits and stems 

increased during the treatment period, while that partitioned to the leaves decreased 

(Figure 5.1.6). At 25 DAT, dry matter distribution within the plant was significantly 

affected by irradiance (p <0.01), but not by either water stress or any interaction 

between irradiance and water stress. Low irradiance promoted a greater accumulation 

of dry matter in the leaves at the expense of the flowers and stems. The percentage 
dry matter present in the leaves at 25 DAT was invariably greater than in the stems 

and flowers. 

At 50 DAT, dry matter distribution was influenced by the interaction between 

irradiance and water stress, except in the stems, which were more sensitive to water 

stress. Dry matter partitioning to the leaves was greater under LI than HI conditions, 

particularly in the MS-LI and NS-LI treatments. Under HI conditions, the highest 

percentage of dry matter was partitioned to the severely stressed leaves (p<0.01), 

while the reverse occurred for the partitioning of dry matter to the flowers+fruits. 

High irradiance increased dry matter distribution to the flowers+fruits in the NS-HI 

treatment, followed by the MS-HI, HS-HI and SS-HI treatments (p<0.01). Plants in 

the severe and high water stress treatments also accumulated a greater proportion of 

their dry matter into the stems. 

Plant water relations 

Leaf water osmotic (di) and turgor potentials (OP) were all significantly 

, decreased by water stress (p <0.001; Figure 5.1.7); osmotic potential was also 
reduced by high irradiance (p <0.001; Figure 5.1.8). The extent of the reductions in 



1 

AO 
C 
0 
s 
a 

N 

r. a) 

E 

0 

11 

0- v 

C 
O 

v 

N 
'O 
r. 
d 

N 

E 

0 

115 

FIGURE 5.1.6. Effects of water stress on dry matter distribution at (a) 25 DAT and 
(b) 50 DAT under high (HI) and low irradiance (LI) conditions. Q, NS, ®, MS, 0, 

HS;  , SS. n=18. Bars represent the Standard Error of the Difference between 

means. 
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FIGURE 5.1.7. Effects of water stress on the timecourses for the components of leaf 

water potential.  , NS; Q, MS; ., HS; X, SS. n=24. Bars represent the Standard 
Error of the Difference between means. 
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the components of water potential consistently followed the treatment order 
SS > HS > MS > NS. As the stress period progressed, the values for each component 

gradually decreased and the treatment effects increased (Figure 5.1.7); for instance, 

(, in SS decreased from -0.30 to -1.62 MPa during this period. The significantly 
lower values for ýs in the SS treatment relative to the NS control suggest that some 

osmotic adjustment occurred in response to water stress and that this may have 

minimised the reduction in cell turgor. However, noticeable reductions in turgor were 

apparent in all treatments by 14 DAT, when the VGi values ranged from -0.64 MPa in 

NS to -1.13 MPa in SS. Leaf turgor potentials determined immediately prior to 

anthesis and the abscission of primary flowers in SS-HI were 0.10 and -0.01 MPa 

respectively. The corresponding VI values were -1.29 MPa during anthesis and -1.39 
MPa during flower abscission, while the di, values were -1.39 and -1.38 MPa, 

respectively. 

5.2 Effects of the severity and duration of water stress imposed at 

macroscopic flower bud-visible stage on dry matter distribution during 

flower development 

Experiment 5.1 examined the effects of three levels of stress applied progressively 

after the flower bud-visible stage (BVS). It was evident that, although the imposition 

of stress at BVS accelerated anthesis in the primary flowers, prolonged severe water 

stress ý under natural glasshouse irradiance conditions resulted in severe flower 

abscission. Although shoot biomass and vegetative growth were reduced in plants 

showing flower abscission, the results obtained provide little information on the pattern 

of dry, matter distribution prior to anthesis and flower abscission. It is known that the 

restriction of vegetative growth by stresses imposed when both flowers and leaves are 
developing may increase the supply of assimilates to the flowers, thereby promoting 
their, development and reducing the incidence of flower abscission (Halevy, 1975, 

1987). However, the imposition of severe or prolonged stress over this period may also 

reduce assimilation sufficiently to induce. the abscission of flowers (Russell and 
Morris, 1982; Halevy, 1987; Morris and Newell, 1987). In contrast, mild or short 
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duration stress induces limited and reversible effects which may be rapidly reversed 

upon watering by a transitory phase of more rapid growth than in the unstressed 

control plants (Bradford and Hsiao, 1982). 

The aim of the following experiment was to examine the effects of the severity and 

duration of water stress on dry matter distribution between the vegetative and 

reproductive organs, and to establish the effects on flower abscission. 

5.2.1 Materials and methods 

Seeds of variety Blue Star were sown on I February 1993. Propagation and growth 

conditions were as described in Section 2.1. When the seedlings had produced their 

third pair of true leaves (1 cm long; 22 d after germination), they were transplanted 
from 9 cm diameter pots into 12 1 black plastic pots containing Levington M2 

compost. The water stress treatments were imposed 29 d after germination following 

the procedure described in Experiment 5.1. 

At first appearance of macroscopic flower buds (8 - 10 true leaf stage), the pots were 

randomly allocated to four treatments, each containing 28 pots. The treatments 
included a control (NS), moderate stress (MS), high stress (HS) and severe stress (SS) 

treatments. Two weeks after imposing the treatments, half of the plants in each 

treatment were rewatered and kept near pot capacity until the end of the experiment. 
Thus, from this point onwards there were seven treatments: a well watered control 
(NS) plus three levels of stress severity (MS, HS, SS) and two stress durations (long 

duration stress (LD) imposed from BVS until the end of experiment (35 d) and short 
duration stress (SD) imposed for the first two weeks after BVS). The treatments were 

arranged in a Randomised Complete Block Design containing three replicates; each 
treatment comprised 14 pots. 

Growth measurements and destructive sampling were carried out at regular intervals 

as described in Section 2.3 to determine the effects of the various treatments on dry 
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matter production and distribution and flower abscission. The experiment lasted for 35 

d. 

5.2.2 Results 

During the experimental period, the total irradiance received within the glasshouse was 

365 MJ m 2, with a mean of 10.4 MJ m 2d-% which was sufficient to support normal 

flower growth and development. Total accumulated thermal time was 587 °C d, with 

a daily mean of 16.8 °C d. Relative humidity was maintained at approximately 70%. 

Flower growth and development 

The primary and secondary flowers were both affected either by the severity of water 

stress or the interaction between the duration and severity of stress (Plate 5.2.1). The 

duration of stress alone had little effect on flower growth and development. 

Primary flowers The thermal time required to reach anthesis was influenced by the 

interaction between the duration and severity of water stress. When the SS treatment 

was imposed for an extended period (35 d), first anthesis in the primary flowers was 

accelerated by 28 °C d as compared to the unstressed control (2 d; Table 5.2.1). No 

acceleration of anthesis was observed in the SD treatment. As in the previous 

experiment (Experiment 5.1), the accelerated anthesis was soon followed by increased 

flower abscission in the SS treatment, regardless of the stress duration (p<0.05; Table 

5.2.1). 

Secondary, flowers Although the thermal time to first anthesis was not significantly 

affected by the treatments imposed, the secondary flowers showed earlier abscission 

in the long duration SS treatment than in the NS control, by 72 °C d (p<0.05). 

Percentage abscission was significantly higher in the HS (c. 43%) and SS (c. 30%) 

treatments (p<0.00I) than in the NS control irrespective of stress duration. As for the 

primary flowers, the SS-SD treatment did not enhance anthesis or delay flower 
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a 

PLATE 5.2.1. NS-LD (a) and SS-LD (h) at 25 DAT. Arrows showing the absence of 

primary and secondary flowers in the SS-LD as compared to NS-LD. 

'TP 
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TABLE 5.2.1. Effects of the duration and severity of stress on flower development 
(n =18). SED denotes the Standard Error of the Difference between means. 

Duration Water Thermal time (°C d) to first Abscission (%) 
stress 
(WS) anthesis abscission 

flowerl' flower2b flowerl flower2 flowerl flower2 

NS 351(n)C 402(25) 425(26) 503(30 40 14 

Long MS 368(23) 402(n) 437(27) 497(» 39 27 

(35 d) HS 357(22 397(24) 448(27) 521(31 59 53 
SS 323(20) 380(23) 396(24) 431(26) 73 20 

Short MS 346(21) 402(u) 424(26) 515(31) 49 20 

(14 d) HS 346(21) 4020 431(26) 515(31) 44 37 

SS 357(22 402m) 430(26) 515(31 54 39 

SED(NS) 6.0"s 7.9"3 7.9°5 16.9"' 7.7"' 6.7" 

SED(NS*D) 6.4"s 8.5"s 8.4"-' 18.0' 8.3"s 7.21s 

SED(NS*WS) 6.8' 9.0"s 8.9" 19.1' 8.8' 7.6"' 

SED(NS*D*WS) 7.9"` 10.4" 10.3" 22.1* 10.1's 8.8°s 

a: primary flowers 
b: secondary flowers 
c: numbers in parentheses indicate DAT 
* '= significant at p<0.05 
** significant at p<0.01 
*** , significant at p<0.001 
ns: not significant 
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abscission significantly. 

Vegetative development 

Measurements made immediately prior to first anthesis in the primary flowers showed 

a progressive decrease in total leaf area and branch number as the severity of stress 

increased, irrespective of its duration (Table 5.2.2). Long duration severe stress 
decreased leaf expansion by 9% (p<0.01) and the number of branching nodes by 80% 

(p<0.05) relative to the unstressed NS control. A similar effect was observed in the 

short duration, severe stress treatment. Total leaf number was not significantly affected 
by the treatments imposed, although there was a trend of decreasing values with 
increasing severity of stress. This restriction in vegetative development may have 

reduced competition for assimilates by the developing vegetative organs, thereby 

favouring the initial development of flowers in SS-LD. However, the equivalent short 
duration stress treatment (SS-SD) did not appear to hasten flower development, 

probably because of greater competition for assimilates by new leaves produced after 
the stress ended. 

By first abscission, there were no longer any significant treatment effects on vegetative 
development, although total leaf number, leaf area and branch number were invariably 

lower in SS-LD than in the NS control. 

Dry matter production and distribution 

Figures 5.2.1 and 5.2.2 show the effects of the duration and severity of water stress 

on the timecourses of dry matter production and distribution. Their individual effects 
and the interaction between the duration and severity of stress had little influence on 
dry matter production and distribution. Dry matter accumulation (g) in the leaves and 

stems, but not the flowers, was decreased by severe stress (p<0.05; Figure 5.2.1) just 

prior to anthesis (18 DAT). Immediately after first abscission (25 DAT), no significant 

reductions in dry matter accumulation were observed for any of the shoot components 
in the SS treatment. Following more prolonged stress, the dry weights of the leaves 
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TABLE 5.2.2. Effects of the duration and severity of water stress on vegetative growth and 
development before first anthesis and after first abscission (n = 12). SED denotes the Standard 
Error of the Difference between means. 

Duration Water Before anthesis (plant-) After abscission (plant'') 

stress 
(WS) leaf leaf branch leaf leaf branch 

no. area no. no. area no. 
(cm2) (cm2) 

NS 26 1348 5 63 3280 41 

Long MS 26 1402 6 63 3191 39 

(35 d) HS 24 1248 2 57 3839 30 

SS 23 1220 1 54 2567 30 

Short MS 28 1436 6 56 3143 33 

(14 d) HS 25 1247 2 56 2933 31 

SS 21 1149 2 58 2934 27 

SED(NS) 2.2" 61.6"5 1.4T 5.7"s 211.2°' 4.6' 

SED(NS*D) 2.3"s 65.9-' 1.6' 6.1"s 225.8" 4.9"S 

SED(NS*WS) 2.5' 69.9" 1.6' 6.4°s 239.5" 5.2' 

SED(NS*D*WS) 2.9" 80.71 1.9`s 7.4's 276.5°' 6.0" 

* significant at p<0.05 
** significant at p<0.01 
ns: not significant 



FIGURE 5.2.1. Effects of the duration and severity of water stress on the timecourses 

of dry matter accumulation (g plant'') by (a) flowers, (b) leaves and (c) stems. 0, NS; 
®, MS; 9, HS;  , SS. n= 12. Bars represent the Standard Error of the Difference 
between means. n. v. denotes negligible values S 0.05 g plant-'. 
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and stems at day 35 were greatly reduced in both the SS and HS treatments under LD 

conditions (p<0.001; Figure 5.2.1). The accumulation of assimilates by the flowers at 
35 DAT was also significantly reduced by both prolonged (LD) and severe stress (SS). 

Dry matter distribution (%) to the leaves, stems and flowers was not significantly 

affected by the treatments imposed either before anthesis (18 DAT) or shortly after 

abscission (25 DAT; Figure 5.2.2). This indicates that, although dry matter production 

before anthesis was reduced by the stress, its partitioning between plant organs 

remained unaffected. Although there were no significant treatment effects, dry matter 
distribution to the flowers and stems increased with time, whereas that to the leaves 

decreased. Similar trends were also observed for dry weight accumulation. 

Water stress reduced shoot dry matter shortly before anthesis by 12 - 20% in the SS 

treatment (p<0.05; Table 5.2.3). This reduction resulted primarily from decreases in 

the dry weights of the leaves and stems (9 - 20 and 23% respectively), whereas the 

flowers were apparently unaffected by stress at this time. By first flower abscission, 

shoot dry weight was no longer significantly affected by the treatments imposed (Table 

5.2.3). Similarly, the dry weights of the flowers, leaves and stems did not differ 

significantly between treatments, although the values for leaves and stems were again 

consistently lower in the more stressed treatments. With greater replication, these 

trends might well have proved significant. These results imply that, although the early 

restriction of vegetative development by stress may have increased the supply of 

available assimilates to the flowers, thereby promoting anthesis, the abscission of the 

primary flowers could not be linked directly with reductions in either total shoot dry 

weight or the dry matter content of the leaves. 

Plant water relations 

Figure 5.2.3 shows the timecourses for the components of leaf water potential (Y,, yr, 
and WP) as influenced by the duration and severity of water stress. yr, in SS plants and 

yr, in the SS-LD treatment had both decreased significantly by 14 DAT relative to the 
NS controls, but then increased again by 21 DAT. 'V was similarly affected by the 
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TABLE 5.2.3. Effects of the duration and severity of water stress on total shoot dry weight 
and dry matter distribution before anthesis (18 DAT) and after flower abscission (25 DAT, 

n= 12). SED denotes the Standard Error of the Difference between means. 

Duration Water Tissue dry weight (g plant-') 
stress 
(WS) 

Before anthesis After abscission 

total flower leaf stem total flower leaf stem 
shoot shoot 

NS 6.0 0.1 4.6 1.3 17.8 0.5 11.5 5.8 

Long MS 6.0 0.1 4.6 1.3 18.1 0.5 11.9 5.7 

(35 d) HS 5.4 0.1 4.2 1.2 15.6 0.5 10.1 5.1 

SS 5.3 0.1 4.2 1.0 14.8 0.5 9.4 4.9 

Short MS 6.2 0.1 4.9 1.3 17.5 0.6 11.5 5.4 

(14 d) HS 5.4 0.1 4.2 1.2 16.7 0.5 10.8 5.4 

SS 4.8 0.0 3.7 1.0 15.7 0.5 10.4 4.4 

SED(NS) 0.37"' 0.02" 0.29` 0.08°' 1.07"' 0.04"S 0.79" 0.35' 

SED(NS*D) 0.40T 0.02"s 0.31` 0.08"' 1.15° 0.04'u 0.85" 0.38"' 

SED(NS*WS) 0.38' 0.02"' 0.33* 0.09' 1.22"' 0.04" 0.90"' 0.40'' 

SED(NS*D*WS) 0.47"' 0.02"' 0.38'' 0.11", 1.40"' 0.05"s 1.04n' 0.46"s 

*. significant at p<0.05 
ns: not significant 
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duration and severity of stress. Immediately after anthesis (21 DAT), yf, in SS-LD was 

significantly lower than in the NS control (-1.10 vs. -0.98 MPa; p<0.05). y, in SS-SD 

increased from -1.27 to -0.64 MPa between 14 and 21 DAT, 6d after releasing the 

stress, and smaller increases were also observed in the HS-SD and MS-SD treatments. 

Smaller increases in w, also occurred under LD conditions during this period, even 

though stress had not been relieved in these treatments. The values for all plant water 

relations components decreased more severely in SS-LD than in the other watering 

treatments after first flower abscission (28 DAT). yp decreased to -0.15 MPa (p<0.01) 

and yr, to -1.53 (p<0.05) in SS-LD, resulting a decline in yr, to -1.64 MPa (p<0.001). 

As stress continued to 35 DAT, y,, y, and wP all decreased further in SS-LD, 

reflecting the increasing severity of the water stress conditions. After the release of 

stress under SD conditions (14 DAT), the values for all water relations components 
increased initially in the water stress treatments and then remained stable for the 

remainder of the experimental period. 

5.3 Differential sensitivity to water stress according to the stage of flower bud 

development 

The previous experiment described the influence of the duration and severity of 

progressive water stress imposed at the flower-bud visible stage (BVS) on subsequent 
flower development. Between 264 - 424 °C d after BVS, the total numbers of 
branches and leaves produced, branch and leaf dry weights, and total shoot dry 

weights were all significantly reduced by stress. These effects appeared to be 

associated with an acceleration of anthesis in the primary, but not in the secondary 
flowers. Since plants frequently show differential sensitivity to stress at different 

stages of growth (Salter and Goode, 1967), it was anticipated that subjecting pepper 

plants, to stress at different stages of reproductive growth would have differential 

effects on flower development. 

The experiment reported here was designed to explore the effects of water stress 
imposed at defined stages of flower bud growth, starting from the early flower bud- 
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visible stage, on subsequent vegetative and reproductive growth and development in 

sweet pepper. 

5.3.1 Materials and methods 

Seeds of the Fl hybrid variety Blue Star were sown on 11,14 and 17 May, 1993 so 

that plants at defined stages of flower bud growth could be exposed simultaneously 

to water stress. In this way, all plants would experience the same radiation and 

temperature conditions during the treatment period. The experiment ended on 29 July 

1993,40 d after the treatments commenced. Methods of propagation and 

environmental control were as described in Section 2.1. 

When the cotyledons had fully expanded, the seedlings were pricked out individually 

into 9 cm diameter pots containing M2 Levington Compost and placed in a glasshouse 

under natural irradiance conditions with a mean daily temperature of 20 - 22 °C. 

When the third pair of true leaves were about 1 cm long (315 - 350 °C d after 
germination), the seedlings were transplanted into 23 cm diameter pots (6 1) 

containing M2 compost. The plants were then placed in a glasshouse with a mean 
daily temperature of 26 ±3 °C under natural glasshouse lighting conditions, 

supplemented by high pressure sodium lamps (SON/T) between 0500 - 2300 h to 

provide an 18 h daylength and an additional total irradiance of 4.6 MJ m'Z. 

Before imposing the water stress treatments, all plants were watered and maintained 
as described in Section 2.5. The water stress treatments, high stress (HS) and severe 
stress (SS), commenced when the flower buds had reached diameters of 0.5 - 1.0 mm 
(stage BS3), 2.0 - 2.5 mm (BS2) and 3.5 -{4.0 mm (BS1). An unstressed (NS) 

treatment with flower buds at stage BS3 was included as a control. The method of 

stress imposition using pot weighing was described in Section 2.5. 

Periodic destructive growth analyses were carried out to determine effects on both 

reproductive and vegetative growth and development using the procedures described 



133 

in Section 2.2. The experiment was a2 by 3 factorial arranged as a Randomised 

Complete Block Design, replicated three times. Each treatment contained 15 plants 

in each replicate. 

5.3.2 Results 

The total radiation received by plants during the 40 d period between imposing water 

stress and final harvest was 522 MJ m-2, equivalent to a mean daily irradiance of 13.1 

MJ m2 d''. Over the same period, the total number of degree days accumulated 

(assuming Tb = 6.0, T° = 27.5 and T. = 41.5 °C) was 780 °C d, equivalent to a 

daily mean of 19.5 °C d (cf. Chapter 4). 

Flower and reproductive development 

Development of the primary and secondary flowers was not affected by any 

interaction between water stress and the stage of bud development. Instead, the 

thermal time required to reach first flower abscission in both types of flower was 

strongly affected (p: 50.001) by the individual effects of the bud stage when stress 

was imposed and the water stress treatment involved (Table 5.3.1). In the analysis of 

variance, examination of the thermal times required to reach abscission was confined 

to the water stress treatments, as no flower abscission was observed in the NS 

control. 

Primary flowers The largest flower buds (BS1: 4.0 mm) reached anthesis first, and 

were also the first to show abscission in both the SS and HS treatments (p <0.001; 

Table 5.3.1). The thermal time (°C d) between anthesis and first flower abscission 

was also significantly shorter in the primary flowers (p <0.01) when stress was 

imposed at BS1 or BS2 than at BS3, supporting the view that the most advanced 
stages of flower bud development are more susceptible to abscission than newly 
developed flower buds. The more rapid abscission induced by the imposition of stress 

at stage BS1 was accompanied by an increase in percentage flower abscission (77 and 
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TABLE 5.3.1. Effects of water stress applied at various stages of flower bud 

development on degree days (°C d) to first anthesis and first fower abscission and the 

thermal time intervals between anthesis and first flower abscission (n=18). SED 

denotes the Standard Error of the Difference between means. 

Water Bud °C d to anthesis °C d to abscission Interval (°C d) between 

stress diameter anthesis and abscission 
(WS) (MM) Flower1 Flower2b Flower1 Flower2 Flower1 Flower2 

NS 372(1s)` 442(U) 

High 1.0 373(18 442(22) 487(24) 577(29) 114 135 

stress 
(HS) 2.5 308(5) 360(18) 373(18) 445(22) 64 85 

4.0 256(12) 308(15) 322(16) 410(20) 66 102 

Severe 1.0 354(17) 423(21) 461(23) 486(25) 107 63 

stress 
(SS) 2.5 308(15) 366(18) 341(17) 454(23) 32 88 

4.0 256(12) 322(16) 301(15) 334(16) 45 12 

SED(NS) _,. 
4.51' 5.71' 

SED(WS) 6.947 7.90"' 12.71' 21.30' 13.82"' 16.74" 

SED(BS) 8.50"' 9.67"' 15.57"' 26.10"' 16.92" 20.50"' 

SED(WS*BS) 12.02's 13.68"' 22.01's 33.81"s 23.93"' 28.99"s 

a: primary flowers 
b: secondary flowers 

c: numbers in parentheses indicate DAT 
* significant at p<0.05; ** significant at p<0.01-, *** significant at p<0.001 
ns: not significant 
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92% for the HS and SS treatments; p<0.05; Table 5.3.2); the corresponding values 
for stress imposed at BS2 and BS3 were 52 - 88% and 25 - 83% respectively. 
Imposition of severe stress at any stage of flower development caused greater flower 

abscission than the HS treatment (83 - 92% and 25 - 77% respectively; p<0.001; 
Table 5.3.2). 

Secondary flowers As for the primary flowers, the largest buds (BS1) reached 

anthesis first in the SS treatment, although this was followed by early abscission 
(p<0.001; Table 5.3.1). The thermal time between anthesis and abscission was 

significantly shorter in SS (12 - 88 °C d) than in the HS (85 - 135 °C d) treatment 

(p<0.01). Percentage flower abscission was increased by the SS treatment to 75 - 
100% (p<0.001; Table 5.3.2). 

When plants with newly developed (BS3: 1.0 mm) or the most advanced flower buds 

(BS1: 4.0 mm) were exposed to water stress, the number of primary flowers per plant 

was increased (p<0.01) from 1.2 to 1.5 - 1.7 flowers plant'' for the BS1 treatment, 

whilst the number of secondary flowers decreased from 3.3 to 2.3 - 2.5 flowers plant' 
'_. (p < 0.05; Table 5.3.2) for the BS3 treatment. It also appeared that the lower 

'number of primary flowers in the BS1 as compared to the BS3 treatment was offset 
by a greater number of secondary flowers, and vice versa. However, similar flower 

numbers to the unstressed control were recorded when plants were stressed when the 
flowers buds were at BS2 (2.5 mm). 

-lie dry weight of flowers +fruit at final harvest was significantly reduced (p <0.001) 

by' the water stress treatments (Table 5.3.4) and there was no interaction between 

water stress and the stage of bud development when this was imposed. The dry 

weight of flowers+fruit in the HS and SS treatments was reduced by approximately 
47 and 96% relative to the NS control. The greatly reduced flowers+fruit dry 

weights. in the SS treatment suggest that the plants were unable to sustain flower 

development after anthesis under prolonged severe stress. 
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TABLE 5.3.2. Effects of water stress applied at various stages of flower bud 

development on total flower numbers per plant and percentage abscission of primary 

and secondary flowers (n = 18). SED denotes the Standard Error of the Difference 

between means. 

Water Bud Total flower no. plant-' Abscission (%) 

stress diameter 
(WS) (mm) Flowerla Flower2b Flower! Flower2 

NS 1.0 1.2 3.3 64 

High 1.0 1.7 2.5 25 23 
stress 
(HS) 2.5 1.2 3.0 52 50 

4.0 1.5 2.7 77 34 

Severe 1.0 2.0 2.3 83 100 
stress 
(SS) 2.5 1.3 3.0 88 75 

4.0 1.7 2.4 92 90 

SED(NS) 0.13' 0.21" 9.69*** 10.07' 

SED(NS*WS) 0.14' 0.23' 10.36' 11.72"' 

SED(NS*BS) 0.15" 0.24' 10.98' 12.43's 

SED(NS*WS*BS) 0.17" 0.28M 12.68"' 14.36"' 

a: primary flowers 

b: secondary flowers 
* significant at p<0.05; ** significant at p<0.01; *** significant at p<0.001 
ns: not significant 



137 

TABLE 5.3.3. Effects of water stress applied at various stages of flower bud 
development on vegetative growth and development measured after first flower 

abscission (17 d; n= 9). SED denotes the Standard Error of the Difference between 

means. 

Water Bud Total plant' Total leaves Total 

stress diameter plant'' branches 
(WS) (mm) 

height shoot dry area no. 
plant-' 

(cm) wt. (g) (cm2) 

NS 1.0 40.8 19.8 3470 58.3 30 

High 1.0 38.4 16.9 2749 54.7 25 
stress 
(HS) 2.5 41.7 16.2 2580 41.3 20 

4.0 47.8 20.3 3183 59.3 35 

Severe 1.0 36.0 13.4 2056 36.3 17 
stress 
(SS) 2.5 40.5 15.3 2465 43.0 22 

4.0 44.2 17.5 2538 44.0 21 

SED(NS) 1.08"s 0.48"' 87.2"' 2.16"' 1.1"' 

SED(NS*WS) 1.15' 0.51"' 93.2"' 2.30"' 1.2"' 

SED(NS*BS) 1.22*** 0.54"' 98.9"' 2.44"' 1.3"' 

SED(NS*WS*BS) 1.41" 0.63' 114.2" 2.82"' 1.5"' 

* significant at p<0.05 
** significant at p <0.01 
*** significant at p <0.001 
ns: not significant 
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TABLE 5.3.4. Effects of water stress applied at various stages of flower bud 

development on vegetative growth and development and flower+fruit dry weight at 
final harvest (40 d; n= 9). SED denotes the Standard Error of the Difference between 

means. 

Water Bud Total planrl Total leaves plant' Total Flower 
stress diameter branches + fruit 
(WS) (mm) height shoot area no. plant' dry wt. 

(cm) dry wt. (cm2) (g) 
(g) 

NS 1.0 59.3 60.7 4674 88.6 77 19.7 

High 1.0 56.1 37.7 3537 65.6 49 9.9 
stress 
(HS) 2.5 65.0 41.0 3854 72.0 56 10.2 

4.0 62.3 42.6 3833 71.6 58 11.5 

Severe 1.0 48.3 24.4 3118 57.1 36 0.5 
stress 
(SS) 2.5 52.4 26.5 3141 61.6 37 0.6 

4.0 53.0 26.2 3150 57.7 38 0.9 

SED(NS) 1.98"s 1.68"' 220.3"' 4.47"' 3.31 1.60' 

SED(NS*WS) 2.11"' 1.80*** 235.5" 4.78" 3.53"' 1.71"' 

SED(NS*BS) 2.24** 1.90'u 249.8's 5.07"' 3.75's 1.82`s 

SED(NS*WS*BS) 2.59t 2.20°' 288.4' 5.88n' 4.33n' 2.10"s 

* significant at p<0.05 
** significant at p<0.01 
*** significant at p<0.001 
ns: not significant 
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Vegetative growth and development 

The measurements of vegetative growth and development made after flower abscission 
(17 DAT) showed that total leaf area, leaf and branch numbers and total shoot dry 

weight were all reduced in the SS treatment relative to the NS-BS3 control, 

irrespective of the stage of bud development when stress was imposed; these 

reductions were particularly severe in the SS-BS3 treatment (p <0.05 - 0.001; Table 

5.3.3). However, in the HS-BS 1 treatment, no significant reductions in vegetative 

growth were observed relative to the NS control; instead, higher total branch numbers 

and shoot dry weights were observed (p<0.001 and 0.05 respectively). It appears 

that, although the imposition of the SS treatment on plants with the smallest flower 

buds (BS3) restricted vegetative growth and development more severely than when 

severe stress imposed at more advanced bud stages, flower abscission was not 

accelerated to the same extent as in the SS-BS1 treatment. Conversely, although 

vegetative growth and development in the HS-BS 1 treatment were not restricted by 

the water stress, flower development after anthesis was not promoted since abscission 

occurred earlier than in the NS control or SS-BS3 treatments. This may imply that 

the reproductive organs of plants with the largest developing buds (BS1) were more 

sensitive than the vegetative parts to the SS or HS treatments, which advanced 

anthesis but promoted early flower abscission, and that the restricted vegetative 

growth in the SS treatment may reflect the impact of the severe stress. The plants 

with the smallest buds (BS3) when the stress treatments were imposed and those 

subjected to the SS treatment were significantly shorter than the NS-BS3 control 
(p <0.001; Table 5.3.3). 

At final harvest (40 DAT), no interactive effect between water stress and the stage 

of bud, development when stress was first imposed were detected for vegetative 

growth and development. Plant height, total shoot dry weight, total leaf number and 

area and total branch number were all significantly reduced by water stress, especially 

under, SS conditions (p<0.01 - 0.001; Table 5.3.4). Vegetative growth was reduced 

more by prolonged severe stress than by high stress relative to the unstressed control, 
but the stage of bud development when stress was imposed had no significant effect 
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on most of the vegetative characters examined. However, plants that were stressed 

at an earlier growth stage (BS3) were significantly shorter than the BS3 control plants 
(p<0.01). 

Shoot dry matter and distribution 

The effect of applying water stress at different stages of flower development on total 

shoot dry matter production is shown in Figure 5.3.1. The interactive effects of water 

stress and bud stage first became apparent at 17 DAT, when shoot dry matter in the 

SS-BS3 treatment was significantly lower than in the other treatments (p <0.05). 

Thereafter, the difference in biomass between treatments increased due to the 
individual effects of the water stress treatments and stages of bud development when 

stress was imposed. Shoot dry matter was most severely reduced in the SS and BS3 

treatments (p<0.001). 

Dry matter distribution (DMD; % of total shoot dry weight) to the leaves and stems 

was strongly affected by the individual effects of both water stress and the stage of 
bud growth when the stress was imposed (p<0.001). DMD to the flowers during 

early stress (17 DAT) was affected by the interactive effects of water stress and stage 
of bud growth (p <0.01) in such a way that dry matter distribution to the flowers was 
increased in SS-BS1 plants relative to the NS-BS3 control and the other treatments. 
DMD to the stems and flowers+fruits generally increased during the experimental 

period with the exception of DMD to the flowers+fruits under SS conditions, where 

a progressive decrease was observed regardless of bud stage. DMD to the leaves 

decreased throughout the experimental period (Figure 5.3.2). DMD to the leaves was 

significantly lower (p<0.05) when stress was imposed at BS 1 (largest bud) than in 

the other treatments up to 17 DAT (1 -2d after first abscission). Conversely, DMD 

to the stems was 14% higher in BS l than in BS2, and 25% higher than in BS3 or the 
NS-BS3 control (p<0.001). DMD to the flowers was lower in the SS-BS1 treatment 

than in any other treatment (p<0.01). 'As the stress progressed, DMD to the leaves 

increased in the SS treatment relative to the NS-BS3 control (p<0.001), whereas 
DMD to the stem was significantly greater than in the NS-BS3 control only at final 
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harvest (p <0.001). There was a simultaneous marked reduction (p <0.001) in DMD 

to the flowers+fruit relative to the NS control under SS conditions, regardless of the 

bud stage when stress was applied (Figure 5.3.2). Much smaller reductions in DMD 

to the flowers+fruits were observed under HS conditions. 

Water relations 

In general, plant water relations were more strongly influenced by the water stress 

treatment than by the stage of bud growth, with no interactive effects. Leaf water 
(ý), osmotic (ý, ) and turgor potentials (dip) were all significantly lower in the SS 

treatment than in the HS and unstressed control treatments (p <0.001; Figure 5.3.3). 

By 11 DAT, v'p and BG, had decreased sharply in all of the water stress treatments 

relative to the NS-BS3 control (p<0.001), resulting in a decline in ý,. As the stress 

progressed, V', and VG, increased in the HS but decreased in the SS treatments. The 

values for the SS treatment continued to decline to minimum values of -0.35 and - 
2.14 MPa for ýp and VG, at 22 DAT, during which period z 50% flower abscission 

occurred. During the same period, Vs in SS-BS1 also reached its lowest value of -1.9 
MPa (p <0.01). Towards the end of the experiment (34 DAT), Op in the SS treatment 

appeared to increase slightly, although not significantly, whilst 'G, continued to decline 

to the lowest recorded value of -2.0 MPa in SS-BS1. Correspondingly, the values of 
in the SS treatment increased slightly to c. -2.0 MPa. The lower values of 0: in the 

SS treatment suggest that some osmotic adjustment occurred in response to water 

stress, which may have helped to maintain cell turgor. 

Correlations 

Linear regressions were calculated to establish the relationships between the 

percentage abscission of primary flowers and turgor potential (Figure 5.3.4), and 
flower abscission and DMD (Figure 5.3.5). Under conditions of severe stress, 
increasing flower abscission in BS2 was closely associated with decreasing turgor 
(R2=0.99; p<0.001), whereas under conditions of high stress, increasing flower 

abscission in BS3 was apparently correlated with increasing turgor (R2=0.88). No 
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strong relationships were established for the other treatments. 

DMD to the leaves was negatively correlated with turgor in both the NS control and 

SS treatments at BS1 (Figure 5.3.5; R2=0.99; p: 50.001), but was positively correlated 

in the HS treatment at BS3 (RZ=0.96). DMD to the stems decreased as turgor declined 

when SS was imposed at BSI or BS2 (R2=0.99; p<0.01). Relatively close relationships 

also existed between DMD to flowers+fruit and turgor when of SS and HS conditions 

were imposed at BS3 (R2=0.94) or BS1 (R2=0.88). 

5.4 Discussion 

The overall aim of the experiments described in this Chapter was firstly to determine 

the extent to which water stress affects flower development and abscission and 

secondly to establish whether changes in dry matter distribution had any role in 

mediating these effects. The hypothesis was that the early imposition of water stress 

would promote flower growth and development and reduce abscission by increasing 

assimilate partitioning to the flower buds and subtending stem. 

Restriction of vegetative growth by the imposition of water stress under low irradiance 

conditions (daily mean: 2.8 MJ m'2 d'1) did not improve early reproductive growth and 
development. Complete abscission of both primary and secondary flowers occurred 

under low irradiance and there was no interactive effect of water stress, suggesting that 

low irradiance had a greater effect on flower development than water stress. Complete 

flower truss abortion has been reported previously for early-grown glasshouse tomatoes 

receiving similar daily mean quantities of radiation and there was again no beneficial 

effect of water stress on reproductive development in these studies (Klapwijk and De 

Lint, 1974; Othman, 1984; Halevy, 1987). The detrimental effects of low irradiance 

on flower growth were discussed in Chapter 3 (e. g. Atherton and Othman, 1983; 

Atherton and Harris, 1986; Halevy, ' 1987), and are thought to originate from limited 

supplies of assimilates to the flower buds (Saito and Ito, 1967a, 1972; Picken, 1984; 

Morris and Newell, 1987; Turner and Wien, 1994a). Under such conditions, flower 

initiation (Hussey, 1963) and development (Calvert, 1969) are more severely affected 
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than vegetative growth, bringing about severe flower abscission (Turner and Ewing, 

1988; Wien et al., 1989b; Turner and Wien, 1994a). In contrast, De Koning and Hurd 

(1983) showed that restriction of water supplies to winter-grown glasshouse tomatoes 

advanced flowering by four days when the greenhouse atmosphere was enriched with 
1000 vpm CO2 during the daylight period. This may reflect increased assimilation 

resulting from the additional CO2 and also more favourable partitioning of that 

assimilate to the flowers. 

Under relatively high irradiance conditions (daily mean 9.1 - 13.1 MJ n f' d''), the 

development of primary, but not secondary flowers was accelerated when water stress 

was imposed at the time of appearance of the first flower buds. This hastening effect 

of severe stress was also influenced by the duration of stress. Severe stress gradually 

imposed over a prolonged period (i. e. uninterrupted stress from the stage when the 

first flower buds became visible to final harvest), or when applied at the most 

advanced stage of flower bud development (diameter: 4.0 mm) advanced anthesis in 

the primary flowers. 

Faster flower development in response to water stress has been reported for several 

crops, including processing tomato (Wudiri and Henderson, 1985), coffee (Alvim, 

1960; Drinnan and Menzel, 1994) and bamboo (Alvim, 1964). When tomatoes were 

gradually stressed after the appearance of the first flower buds, flowering was 

accelerated (Wudiri and Henderson, 1985), and Cooper et al. (1966) and De Koning 

and Hurd (1983) also observed earlier anthesis when tomato plants were sparingly 

watered. Nakata and Suehisa (1969) showed that, when water was not limiting, 

flowering of Litchi chinensis occurred on only 50% of the branches, but that water 

stress caused flowering on 75 - 95% of. the branches, and also induced earlier 
flowering. In contrast, some delaying effect of water stress on flower development has 

also been reported for tomato (Gates, 1955; Klapwijk and De Lint, 1974; Atherton and 
Othman, 1983) and wheat (Angus and Moncur, 1977). These conflicting results may 
be attributable to the different methods of imposing water stress adopted in the present 

and previous studies, since sudden and/or severe stress was employed by all of these 

workers. 
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The earlier anthesis induced by water stress was immediately followed by flower 

abscission in the present study. This was most dramatic when stress was applied at the 

most advanced stage of flower bud development. Thus, plants stressed after the largest 

bud in the inflorescence had reached 4 mm showed a marked increase in abscission, 

whereas the number of buds aborting was not significantly affected when stress was 

applied at earlier stages of development, an observation supported by previous work 

(Atherton and Othman, 1983). Rudich et al. (1977) also observed that irrigation during 

early flowering reduced flower abortion. The newly developed flower buds seemed to 

be more resistant to water stress-induced abscission, possibly because of their more 

adaptable nature (Menzel et al., 1986). A similar response was observed in 

passionfruit, in which the newly developed flower buds appeared to acquire some 

resistance when exposed to severe water stress, and exhibited no premature abscission, 

although flower size was reduced (Menzel et al., 1986). 

As prolonged stress enhanced only the initial development of flowers before hastening 

their abscission, shortening the water stress period might be expected to allow flower 

development to anthesis. However, the results obtained in the present study showed 

that shortening the stress duration did not hasten anthesis or delay abscission, although 

there was some evidence that the percentage abscission of primary flowers was 

reduced. 

Flower development was not enhanced after rewatering, as had been expected in view 

of previous reports of a recovery in growth in other species following the alleviation 

of drought (Acosta Gallegos and Kohashi Shibata, 1989; Munier-Jolain et al., 1993; 

Ney et al., 1994). This may have been due to increased competition for assimilates 
between the flowers and vegetative organs, since more new leaves were formed after 

the stress ended. According to Acevedo et al. (1971), the release of stress effected a 
transitory phase of, more rapid growth than the unstressed steady-state rate, with the 

result that there was no net reduction in leaf elongation over the entire period. Indeed, 

there are reports that growth may resume within seconds of rewatering plants due to 

promotion of cell expansion (Acevedo et aL,: 1971; Bradford and Hsiao, 1982). 

Consistent with the present results, shoot growth in Coffea arabica L. also showed a 
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significant increase after rewatering plants, in which yf, had declined to -2.5 MPa, as 

compared to plants in which yfi was maintained above -0.5 MPa (Drinnan and Menzel, 

1994). 

Expansive growth has been noted to be the process most sensitive to water stress 

(Hsiao et al., 1985; Hsiao and Jing, 1987) and restriction of leaf expansion growth is 

one of the earliest symptoms of water stress (Kriedemann, 1986; Kirkham, 1990). 

Consistent with this statement, total leaf areas and branch numbers were both 

decreased during the accelerated anthesis of primary flowers by severe stress observed 
in the present study. This reduction in vegetative growth was accompanied by a 
decrease in total shoot dry weight which resulted from reductions in dry matter 

accumulation by both the leaves and stems. The dry weight of the flowers was not 

affected. The observed reduction in vegetative growth may have been at least partly 

responsible for the accelerated anthesis under water stress, due to the consequent 

reduction in the availability of assimilate to support the growth of both vegetative and 

reproductive organs (De Koning and Hurd, 1983; Halevy, 1987). 

The results obtained here, are not entirely consistent with this hypothesis since no 

significant reductions in vegetative development, shoot dry weight or its partitioning 

were observed at the time of first flower abscission in the severely stressed plants as 

compared to the unstressed plants, although a trend of declining dry matter distribution 

to the vegetative parts was apparent. However, a significant decrease in total shoot dry 

weight became apparent two days after abscission, which was again accompanied by 

a reduced partitioning of dry weight to the leaves and an increase to the stems. From 

these results, it appears that there may be a transitional period under severe stress 

conditions when flower abscission is not caused directly by a decrease in total 

assimilate production or competition for the available assimilates between vegetative 

and reproductive organs. These results therefore suggest that other mechanisms may 

operate to regulate flower abscission under progressive stress conditions. In support 

of this view, many workers have suggested, that water stress may inhibit flower 

development by altering the balance of endogenous growth substances which may 
trigger abscission (Hsiao, 1973; Menzel, 1985; Kirkham, 1990). 
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Prolonged severe water stress reduced leaf number and area even more than low 

irradiance. Consequently, total shoot dry weights became increasingly reduced relative 

to the unstressed control, with an even greater proportion of dry matter being 

partitioned to the stems of severely and highly stressed plants than to the leaves and 
flowers and fruits. In contrast, a greater proportion of the total dry matter was 

accumulated in the leaves under low irradiance conditions at the expense of flowers 

and stems. As the duration of the stress increased under low irradiance conditions, 

more dry matter was partitioned to the stems of severely and highly stressed plants 

than to the leaves and flowers+fruits. Shoot extension was also restricted by water 

stress, resulting in shorter plants with fewer branches and thinner stems. Water stress 

and low irradiance both increased leaf thickness. Prolonged severe stress has also been 

reported by other workers to retard vegetative and reproductive growth and change the 

pattern of dry matter distribution (De Koning and Hurd, 1983; Menzel et aL, 1986; 

Turner, 1991). 

The increasing severity of water stress in the present study is apparent from the 

progressive reductions in yi, yrs and y p, the intensity of which reflected the severity 

of the stress imposed. A temporary osmotic adjustment shortly after imposition of 

water stress was followed by noticeable reductions in leaf turgor in all treatments and 

wilting became apparent between 11 and 22 DAT, when yi, had fallen to between -1.2 

and -1.8 MPa. 

Osmotic adjustment has been suggested as a mechanism of drought tolerance (Turner 

and Begg, 1981; Morgan, 1984; Ludlow and Muchow, 1988), and has been reported 

previously in water stressed sweet pepper (Aloni et al., 1991a; Wullschleger and 
Oosterhuis, 1991). Reductions in osmotic potential in response to water stress have 

been proposed to play a significant role in turgor maintenance (Zimmermann, 1978; 

Turner, 1986), thereby enabling a range of growth processes to be at least partially 

maintained (Morgan, 1984; Turner, 1986). Consistent with the present study, osmotic 

adjustment has also been suggested to be effective in reducing the impact of water 
deficits on growth only during short term stress (Toft et al., 1987; Kirkham, 1990). 
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During anthesis, there was a tendency for almost all components of plant water 

potential to decrease during severe stress, and the values declined sharply during first 

abscission. However, the reductions in the water relations components were not 

consistent, e. g. iVP was similar (0.22 MPa) during both anthesis and abscission. 

Although correlation analyses showed there was no close relationship between flower 

abscission and yrp, reductions in leaf turgor and water potential were observed during 

flower abscission, consistent with reports for severely stressed millet and groundnut 

(Squire et al., 1983; Black et aL, 1985); stomatal conductances also generally decline 

during severe stress (Black et al., 1985; Menzel et al., 1986). Although decreased 

stomatal conductance during periods of water stress may limit net photosynthesis 

(Schulze and Hall, 1982; Chaves, 1991), the decline in stomatal conductance observed 

in the present study did not appear to reduce net photosynthesis, as inferred from the 

non-significant effects of water stress on total shoot dry weight and its partitioning 

during abscission discussed above. Transpiration was also not affected by water stress. 

According to Kirkham (1990), it is possible that non-stomatal factors may be involved 

in maintaining higher photosynthetic rates under water stress conditions, as observed 

in wheat (Johnson et al., 1987) and sunflower (Cox and Jolliff, 1987). Furthermore, 

although correlation analysis showed that DMD was closely related to yiP in some 

treatments, the relationship did not appear to be consistent. 

These results suggest that the effects of water stress on anthesis and flower abscission 

cannot be directly related to changes in tissue water relations or dry matter distribution 

per se, but may be mediated by related water stress-induced changes which are more 

sensitive to the effects of stress. t For example, increasing evidence suggests an 
important role for plant growth substances in the abscission of flowers (Hsiao, 1973; 

Miyamoto and Kamisaka, 1987; Kirkham, 1990). The role of ethylene in flower 

abscission in sweet pepper is examined in greater detail in Chapter 6. 

5.5 Conclusions 

1. Mean radiation levels of, 9.15 - . 13.1 MJ m-2 d" allowed normal development 
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of the flowers to anthesis, but complete abscission of the primary and 

secondary flower buds occurred under low irradiance conditions (2.8 MJ m'2 

d-1). 

2. The development of primary flowers was accelerated when increasingly severe 

water stress was imposed at the appearance of the first flower bud. This effect 

was also dependent upon the duration of stress. Prolonged severe stress 

enhanced anthesis in the primary but not in secondary flowers. 

3. The initial acceleration of reproductive development induced by severe water 

stress did not continue after anthesis, due to the early onset of extensive 

flower abscission. The most advanced stage of flower bud development at the 

time of imposing the stress was most susceptible to early abscission. 

4. Shortening the duration of water stress did not hasten anthesis or reduce 

abscission, probably because of competition for assimilates by new leaves 

produced after the stress ended. 

5. The accelerated development of primary flowers to anthesis caused by severe 

stress was accompanied by a decrease in vegetative growth (total leaf and 

branch numbers and leaf area). However, no reduction in the vegetative 
development was detected during first flower abscission. 

6. Vegetative growth and development were more severely affected by the severe 

and prolonged water stress than by short stress or low irradiance. Shoot 

extension was restricted by severe stress and low irradiance, resulting in 

shorter plants with fewer branches and thinner stems. Water stress and low 

irradiance increased leaf thickness, whilst low irradiance increased leaf area, 

especially in unstressed or moderately stressed plants. 

7. Shoot dry weight immediately prior to anthesis was reduced by severe stress, 
which decreased dry matter accumulation in both the leaves and stems. 
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However, at the onset of flower abscission, shoot dry weight and its 

partitioning were not affected by severe stress. This implies that, although the 

advancement of anthesis may have been associated with a decrease in dry 

matter accumulation in the leaves and stems, flower abscission was not 

directly related to any reduction in assimilates production or its distribution 

within the shoot. 

8. Shoot dry weights were more severely affected by prolonged severe water 

stress than by low irradiance conditions. Under low irradiance, a greater 

proportion of the dry matter was partitioned to the leaves, whilst at high 

irradiance the reverse applied. 

9. All components of water potential declined as the stress progressed. The 

extent of the reductions reflected the severity of stress treatment imposed. A 

temporary osmotic adjustment occurred soon after the imposition of water 

stress, during which the osmotic potential decreased sharply. Noticeable 

reductions in turgor were apparent in all treatments between 11 - 22 DAT. 

Low irradiance did not affect plant water relations with the exception of 

osmotic potential after prolonged severe stress. 
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CHAPTER 6 

ROLE OF ETHYLENE IN MEDIATING THE EFFECTS OF 

WATER STRESS 

INTRODUCTION 

The young flower bud constitutes a weak sink in comparison with vegetative apices 

and developing leaves (Halevy, 1975,1984). Under stress conditions which reduce 

assimilate supply, flower buds compete poorly for assimilates, often leading to bud 

abscission or the arrestment of flower development (Morris and Newell, 1987; Halevy, 

1987). Environmental conditions or treatments that enhance the supply of assimilates 

to the flower buds or reduce vegetative growth generally reduce abscission and 

promote flower development (Halevy, 1987). Previous experiments (Chapter 5) 

showed that restriction of early vegetative growth through the gradual imposition of 

water stress shortly after the appearance of the first visible flower buds favoured their 
initial development, leading to earlier anthesis of the primary flowers. However, 

progressive water stress did not enhance the subsequent development of these and later 

flowers, which were lost by abscission. This may in part have been attributable to the 

reduced availability of assimilates within the plant (Menzel et al., 1986; Stirling et. 

al., 1989a, b; Wien et al., 1989a). Stress-induced changes in the concentration and 

distribution of endogenous growth substances might also have been involved in 

promoting flower abscission (Halevy, 1985; Abeles et al., 1992). 

Ethylene appears to be a major promoter of flower abortion and abscission in many 

plant species under stress conditions (Halevy and Mayak, 1981; Sexton et al., 1985). 

Its production in plants has often been found to increase during water stress (Jordan 

et aL. 1972; Kirkham, 1985) or stress induced by temperature extremes (Ohno, 1991) 

or low light (Durieux et al., 1983). Although there is much information implicating 
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ethylene in stress-induced abscission, especially of vegetative organs, little attention 
has been directed to understanding its role and mechanisms of action in water stress- 
induced flower abscission. 

The following experiments were designed to establish the role of ethylene in mediating 

the effects of water stress on flower development, particularly its involvement in 

initiating or accelerating flower abscission. 

6.1 Ethylene production, dry matter accumulation and water relations in 

water stressed plants during flower development 

Increased ethylene production is associated with a lowering of both leaf water 
(McMichael et al., 1972) and osmotic potentials (Curtis, 1981; Stumpff and Johnson, 

1987; Miyamoto and Kamisaka, 1987) and a marked reduction in leaf fresh weight 
(Apelbaum and Yang, 1981). The abscission of flowers and leaves is also known to 
increase with increasing ethylene production (McMichael et al., 1973; Guinn, 1976; 

Curtis, 1981) to an extent related to the age and physiological state of the organs 
involved (Jackson et al., 1973; Durieux et al., 1983; Abeles et al., 1992). Leaves and 
flowers generally become more susceptible to abscission as they age (Sexton et al., 
1985; Tripp, 1986). Responsiveness to ethylene may also be altered by water stress 

conditions, resulting in a marked acceleration of stress-induced abscission (Jordan et 

al., 1972). If ethylene is involved in promoting flower abscission, endogenous ethylene 
levels may be expected to increase following the imposition of water stress and with 
increasing age. 

The main purpose of the following experiment was to measure ethylene production 
during water stress and examine its role in accelerating flower abscission. Total shoot 
dry -weight, the partitioning of dry matter and changes in plant water status were 

examined to detect any link with changes in ethylene production. Ethylene evolution 
at different stages of flower development was also determined. 
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6.1.1 Materials and methods 

Seeds of Capsicum hybrid variety Blue Star were sown on 6 September 1993. 

Propagation and seedling maintenance were as described in Section 2.1. When the 

third true leaf pair was about 1 cm long (22 days after germination: DAG), the 

seedlings were transplanted into 61 pots containing Levington M2 compost. Water 

stress treatments were imposed when the flower buds reached the stage of development 

most sensitive to stress, i. e. at a bud diameter of 4.0 mm (38 DAG). The method of 
imposing water stress treatment followed that explained in Section 2.5 and the 

treatment period lasted for 25 d (i. e. ending on 13 November 1993). The experiment 

comprised two treatments: severe stress (SS), which had previously been shown to 

exert a consistently detrimental effect by inducing premature flower abscission, and 

a non-stress (NS) control. The treatments were arranged in a Randomised Complete 

Block Design, blocked six times. Each treatment contained 96 plants. 

Ethylene evolution was measured at specific stages of flower growth prior to 

abscission. The time to first anthesis and first abscission was predicted using thermal 

time calculations (cf. Chapter 5). Ethylene production rate or evolution from the leaves 

was, measured to determine differences between treatments and establish how these 

were related to abscission. The method of ethylene measurement was as described in 
Section 2.7. Growth measurements and destructive analyses (Section 2.3), which 
included the determination of leaf water status (Section 2.5), coincided closely with 
the ethylene measurements to determine whether reproductive and vegetative growth 

were related to ethylene evolution. 

Excising plant tissues for ethylene measurement causes a degree of wounding to the 

explants (Burg, 1968; Abeles et al., 1992), which may compound the effects of stress 

on ethylene production. Therefore, tissues sampled just before flower abscission were 
used as test material to establish , the timecourse of ethylene . evolution by detached 
flowers and leaves and the time of peak production after sampling the tissues. These 

measurements were made to establish any differences in ethylene evolution between 

treatments and organs. Two initial measurements were made at 45 min intervals after 
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closing the incubation vials. Subsequent measurements were taken at 90 min intervals 

over a total period of 12 h. After each reading, the vials were aerated, recapped, and 

the presence of ethylene was verified by gas chromatography. 

6.1.1 Results 

Total accumulated radiation received between the appearance of first visible flower 

bud and final harvest was 321.8 MJ m2, with a daily mean of 7.85 MJ m-2 d''. Values 

for daily mean and accumulated thermal time were 19.0 and 780.8 °C d respectively. 

First anthesis and flower abscission in SS occurred at 436 and 537 °C d respectively. 

First anthesis in NS was observed at 497 °C d. 

Ethylene production 

The rates of ethylene evolution by primary flowers and leaves measured just before 

first anthesis and flower abscission in the NS and SS treatments are presented in Table 

6.1.1. There was no significant increase in the rates of ethylene evolution from either 

the flowers or leaves of stressed plants immediately before anthesis. Ethylene evolution 

from the leaves was approximately 10-fold greater than in the flowers in both the NS 

änd SS treatments, implying that the leaves may be a site for ethylene synthesis. 

Preceding the first abscission in SS, ethylene evolution from the primary flowers was 

approximately 8-fold greater than in the NS treatment (p< 0.001) and about 40-fold 

greater than that measured before anthesis (0.021 vs. 0.851 nl g" If 1). Although 

ethylene production was lower in NS than in SS, there was still an increase of c. 6- 

fold as compared to the earlier measurements prior to anthesis, suggesting that 

ethylene production in flowers increases with age. 

During the period before first abscission, higher rates of ethylene evolution were also 
observed in stressed as compared to unstressed leaves (0.299 vs. 0.140 nl g" FW h'1; 

p<0.05) but these levels were approximately 3-fold lower than in the stressed flowers 

(Table 6.1.1). This may imply that developing flowers were more sensitive than the 
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TABLE 6.1.1. Effects of watering treatments on the rates of ethylene evolution (nl g4 
FW h'') from the primary flowers and leaves sampled immediately before anthesis and 
flower abscission (n = 18). SED denotes the Standard Error of the Difference between 

means. 

Water stress Before first anthesis Before first abscission 

Flowers Leaves Flowers Leaves 

NS 0.016 0.142 0.106 0.140 

SS 0.021 0.170 0.851 0.299 

SED 0.005" 0.023" 0.110"` 0.015* 

* significant at p<0.05; *** significant at p<0.001; ns: not significant 

TABLE 6.1.2. Effects of watering treatments on shoot dry matter and its distribution 

immediately before first anthesis and flower abscission (n =18). SED denotes the 
Standard Error of the Difference between means. 

Water Before first anthesis (g) Before first abscission (g) 
stress 

Total Total 

shoot Flower Leaf Stem shoot Flower Leaf Stem 

NS 6.4 0.3 4.5 1.6 9.0 0.3 6.2 2.5 

SS 5.3 0.2 3.8 1.2 8.7 0.4 5.9 2.5 

SED 
, -- . 

0.33" 0.10" , 0.23* 7,0.10" 
, 

0.27" 
, 0.02' 

, 
0.20" 0.08"s 

* significant at p<0.05; ** significant at p<0.01; ns: not significant 
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leaves to severe stress and that this was reflected by the higher rates of ethylene 

evolution. Ethylene evolution from the leaves increased as the duration of the stress 

period increased, from 0.170 before anthesis to 0.299 nl g'' FW h'' before abscission, 

although the increment was smaller than in the flowers. However, ethylene evolution 
from non-stressed leaves remained unchanged between anthesis and abscission at 0.140 

nl g'' FW h'', but was consistently higher than in the NS flowers both before anthesis 

and abscission. These results indicate that under unstressed growing conditions, the 

rate of ethylene evolution from the leaves is greater than that from the flowers, 

although this situation may be reversed in younger plants with less advanced 4 mm 
flower buds (Figure 6.1.1). The changing rate of ethylene evolution at different stages 

of flower development is clearly depicted in Figure 6.1.1. 

Timecourse of ethylene production 

Figure 6.1.2 shows the changing rates of ethylene evolution from excised flowers and 
leaves following abscission. The peak release of ethylene by flowers and leaves from 

stressed plants occurred 90 min after excision and evolution then gradually decreased 

during the remainder of the observation period in the flowers, but levelled off in the 
leaves around 270 - 360 min after excision. Flowers and leaves from the NS treatment 
took longer to reach a much lower peak ethylene evolution, some 180 min after 
excision. SS increased ethylene evolution from the flowers significantly throughout the 

timecourse, while a significant increase was only detected in the leaves during the 

peak period. The much higher rates of ethylene production from SS flowers until 720 

min after excision may indicate that they possess higher levels of endogenous ethylene. 

Dry matter distribution 

Dry matter distribution between the components of the shoot is shown in Tables 6.1.2 

and 6.1.3. As found in the previous experiment (Chapter 5.2), SS significantly reduced 
total shoot dry weight (p<0.01; c. 20%) immediately prior to anthesis and dry matter 
accumulation in the flowers, leaves and stems were all consistently reduced in the SS 

treatment (Table 6.1.2; p<0.01). However, dry matter distribution to these components 
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TABLE 6.1.3. Effects of watering treatments on shoot dry matter and its 
distribution after first, flower abscission (n = 18). SED denotes the Standard 
Error of the Difference between means. 

Water After first abscission (g) 

stress Total 
shoot Flower Leaf Stem 

NS 13.0 0.4 8.1 4.5 

SS 11.2 0.6 7.1 3.5 

SED 0.35*** 0.08"' 0.22"' 0.18"' 

*** significant at p<0.001 

TABLE 6.1.4. Effects of watering treatments on the components of plant water relations 
measured just before first anthesis and first flower abscission (n=18). SED denotes the 
Standard Error of the Difference between means. 

Water Before first anthesis (MPa) Before first abscission (MPa) 
stress vl 0: OP 01 OP 

NS : -0.43 -1.02 0.58, - -0.83 -1.09 0.27 

SS -0.78 -1.18 0.42 -1.29 -1.27 -0.02 

SED 0.07"' 0.09' 0.11 "s 0.07"' 0.04"' 0.08"' 

* significant at p<0.05; *** significant at p<0.001; ns: not significant 
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expressed as a percentage of the total remained similar in both the NS and SS 

treatments (Figure 6.1.3). Prior to first abscission, no significant reduction was 

observed in total shoot, leaf or stem dry weights in the SS treatment (Table 6.1.2), 

although the dry weight of the flowers (p<0.05) was significantly increased, implying 

that more assimilates may have been directed to the developing flowers after anthesis. 

During the same period, the percentage of dry matter present in the leaves of NS 

plants was clearly reduced, while the fraction present in the stems was significantly 
increased (Figure 6.1.3; p<0.01). Immediately after first abscission, total shoot dry 

matter was significantly decreased in SS (Table 6.1.3; 11.2 vs. 13.0 g; p<0.001), as 

were leaf (7.1 vs. 8.1 g) and stem dry weights (3.7 vs. 4.5 g; p<0.001). However, 

flower dry weight was significantly increased. Neither total shoot dry matter 

production nor its distribution in SS plants (Figure 6.1.3) was correlated with the 

observed increase in the rate of ethylene production (Figure 6.1.3), suggesting that the 

abscission of primary flowers observed during severe water stress was not directly 

attributable either to the reduction in total shoot dry weight or to the altered pattern 

of dry matter distribution. 

Plant water relations 

Seven days after imposing the stress treatment (i. e. shortly before the first anthesis of 

primary flowers), yf, and yi, were both significantly decreased in SS, while yrP was 
unaffected (Table 6.1.4). However, by 12, d before first abscission, SS had caused 

significant reductions in all water relations components and leaves in the stressed 

treatment lost turgor entirely. The observed decrease in the values for all water 

relations components coincided with the marked increase in ethylene evolution which 

preceded abscission, although the observed changes were not linearly correlated. 

6.2 . 
Effects of the ethylene releasing compound 2-chloroethylphosphonic acid 

,.. on flower development . 

-t 

The previous experiment (Section 6.1) showed that flower abscission induced by 
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water stress is preceded by a dramatic increase in ethylene production. It was now 

necessary to determine whether ethylene triggered the observed abscission. The effects 

of exogenous ethylene on flower abscission have been reported by several authors 
(Kays and Beaudry, 1987; Furutani 'et al., 1989; Mason and Miller, 1991). Tripp and 
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Wien (1989) showed that applications of the ethylene-releasing compound 2- 

chlororethylphosphonic acid (CEPA) increased bud abscission in sweet pepper. The 

present experiment was therefore designed to examine the extent to which applications 

of exogenous ethylene may substitute for water stress in promoting flower abscission 
in sweet pepper. 

As ethylene is dispersed very rapidly in air, it was inappropriate to apply ethylene in 

a gaseous form in glasshouse experiments. This problem was overcome by using the 

ethylene-releasing compound, 2-chloroethylphosphonic acid (CEPA), which is readily 

absorbed, translocated and decomposed to produce ethylene after being sprayed onto 

plant tissues, thereby allowing the hormone to exert its effects (Kays and Beaudry, 

1987; Abeles et al., 1992). 

6.2.1 Materials and methods 

Seeds were sown on 16 October 1993 and the seedlings were pricked out into 9 cm 

pots 16 d later. The method of propagation, general maintenance of seedlings and 

glasshouse conditions were as described in Sections 2.1 and 2.4. The plants in all 
treatments were kept well watered to maintain optimum growth. The treatments were 
applied on 25 December 1993 when the secondary buds had reached a diameter of 4.0 

mm. Since almost all of the primary flower buds remained dormant or withered 
immediately after they became visible, probably due to the low light conditions, the 

secondary flowers were used for treatments. The experiment continued until 2 January 

1994. 

Prior to this experiment, a preliminary trial was conducted to test a range of CEPA 

(98% a. i. ) concentrations (100 - 1500 mg 1'1 CEPA); these were either sprayed over 
the entire shoot or applied directly to flower buds with diameters of 1.5 - 4.0 mm. 
This preliminary trial was intended to determine the minimum concentration which 
induced abscission and the stages of flower development which were most sensitive 
to CEPA application. Since no surfactant was'added, 'the flower buds were enclosed 
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in cotton balls (pre-weighed at 500 mg) to ensure good contact and the CEPA was 

applied to the cotton balls. These tests showed that the application of I mg flower' 

of CEPA using a 100 mg 1'1 CEPA solution was sufficient to promote the formation 

of an abscission line on the pedicels of 4.0 mm diameter buds within two to three days 

of application. This was rapidly followed by increased flower abscission. Mature 

pepper leaves, however, were not capable of forming abscission layers in response to 

foliar applications of CEPA, although limited epinastic curvature was observed; in 

contrast, young developing leaves formed abscission lines at the base of their petioles 

and this was followed by leaf abscission (Plate 6.2.1). The rate of ethylene evolution 
from flower buds at this time was within the range observed under severe stress just 

before abscission. Based on these results, two concentrations of CEPA, 50 mg 1.1 (0.5 

mg CEPA flower-) and 100 mg 1'1 (1 mg CEPA flower"), were applied daily to 

individual flower buds for 3 d; the control was sprayed with distilled water. The 

method of chemical preparation and application was as described in Section 2.6. The 

experiment was an Randomised Complete Block Design replicated three times, each 

containing of 75 plants. 

Periodic flower counts and measurements of ethylene evolution from excised flowers 

and leaves were carried out throughout the treatment period to determine the 

sensitivity of flowers to exogenous ethylene and the rate of ethylene evolution from 

the leaves of plants whose flower buds had been treated with CEPA. Regression 

analysis of the values for percentage flower abscission and ethylene evolution rate was 

used to test for any possible relationship. Dry matter accumulation, its partitioning 

within the shoot and leaf water status were also examined to determine the effects of 

exogenous ethylene on these variables. 

6.2.2 Results 

During the period following first macroscopic bud appearance, accumulated irradiance 

measured using solarimeters was 167.9 MJ m'2, with mean of 4.0 MJ m'2 d''. The 

accumulated thermal time was 831.4 °C d, with a daily mean of 19.8 °C d. 



PLATE 6.2.1. Preferential abscission of young developing leaves as compared to 
mature leaves following application of CEPA (top) and retention of young leaves in 

the control sprayed with distilled water (bottom). Arrows show the position of the 
abscinded leaves. 
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Ethylene evolution rates 

Figure 6.2.1 shows the timecourses of ethylene evolution from flowers and leaves after 

spraying with 50 and 100 mg 1-' CEPA. There was no significant increase in the rates 

of ethylene evolution from the flowers and leaves one hour after CEPA application 

(shown as Day 0), which may imply that CEPA absorption or its decomposition within 

the buds was slow (Yamaguchi et al., 1971; Weaver et al., 1972; Abeles et al., 1992). 

No increase in ethylene evolution from the leaves, which were not sprayed with CEPA 

was detected, suggesting that there was no immediate response of these tissues to 

ethylene application to the buds, probably because there was no movement of CEPA 

from the flower buds to the leaves (Giulivo et al., 1981). 

Flowers From day 1 onwards, both CEPA treatments increased ethylene evolution 
from the flowers markedly compared to the control (p<0.001). Within Id of spraying 

with 100 mg 1'1 CEPA, ethylene evolution increased sharply to a maximum of 0.94 nl 

g'' FW h"', before decreasing to values below those produced in response to 50 mg 1'' 

CEPA. The maximum ethylene evolution induced by 50 mg 1'' CEPA (0.89 nl g'' FW 

h"') occurred one day later than at the higher CEPA level, but thereafter the decline 

in ethylene evolution was similar in both treatments. These results imply that ethylene 

production is more rapid at the higher CEPA concentration. 

Leaves Ethylene evolution following application of 100 mg 1'' CEPA was 

significantly higher than at 50 mg 1` and both CEPA treatments increased gradually 

until day 3, before increasing sharply. By day 4, ethylene evolution had increased by 

approximately 14- and 9-fold in the 100 and 50 mg 1'' CEPA treatments respectively, 

relative to than in the control. The sharp increase in ethylene evolution from the leaves 

following the decline in evolution from the flowers could be due to two possibilities. 
Firstly, ethylene synthesis in the leaves might have been induced by the uptake of 

ethylene from the glasshouse atmosphere after being evolved from the flower pedicels 
following the formation of the abscission zone and during abscission (Burg and Burg, 

1964,1965; Solomos, 1989). Secondly, sweet pepper may be capable of autocatalytic 

production of ethylene, whereby ethylene "released from CEPA accelerates the 
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endogenous synthesis of ethylene (Gupta and Anderson, 1989; Schierle et al., 1989). 

Flower abscission 

Sweet pepper plants are clearly capable of producing an abscission zone in the pedicels 

of the flowers following CEPA application (Plate 6.2.2) and thereafter flower 

abscission began to occur. Earlier (day 1) and increased abscission was induced by 100 

than 50 mg 1'' CEPA (p<0.001; Figure 6.2.2) following the formation of a visible 

abscission line. The line became distinct on day 2, when gentle pressure caused the 
flower to abscind easily. Almost complete flower abscission occurred during this 

period, which was preceded by a sharp increase in ethylene evolution from the flowers 

to 0.94 nl g'' FW h'' on day 1. By day 3, the pedicels had shrivelled and the flowers 

abscinded voluntarily. 

At the lower CEPA concentration, the formation of the abscission zone and the 
increase in percentage abscission occurred more gradually. The abscission line was 
first observed on day 2 and became distinct on day 3, and this was followed by a 

marked increase in abscission from 40 to 98%. As at the higher CEPA concentration, 

the increase in percentage abscission was preceded by an increase in the rate of 

ethylene evolution two days earlier. 

Correlation 

Figure 6.2.3 shows the highly significant (p<0.001) quadratic relationships between 

percentage flower abscission and ethylene evolution from flowers treated with 50 or 
100 mg 1` CEPA. Percentage flower abscission was lowest (c. 6%) when ethylene 

evolution was approximately 0.06 nl g'' FW h` and maximum abscission (100%) 

occurred when ethylene evolution reached approximately 0.97 nl g" FW h'' in the 50 

mg 1` and 0.55 nl g'' FW h' in the 100 mg 1'' CEPA treatments. As ethylene 
evolution continued to increase in the 100 mg 1"' CEPA treatment, no simultaneous 
increase in percentage abscission was observed. 



PLATE 6.2.2. Sequence of flower bud abscission following the formation of an 
abscission zone at the base of pedicel following treatment with 100 mg P CEPA. (a) 
0 DAT; (b) 1 DAT (note distinct formation of the abscission layer); (c) 2 DAT; (d) 3 
DAT. 
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FIGURE 6.2.2. Effects of 2-chloroethylphosphonic acid application on percentage 
flower abscission.  , Control; Q, 50 mg 1"' (0.5 mg CEPA flower-'); ®, 100 mg P 

(1.0 mg CEPA flower-'. n=15. Bars represent the Standard Error of the Difference 

between means. 

FIGURE 6.2.3. Relationship between percentage flower abscission and the rate of 
ethylene evolution from flowers treated with 50 (0) and 100 (U) mg P (0.5 and 1.0 

mg CEPA flower" respectively) 2-chloroethylphosphonic acid. n=15. Regression 

equations: 50 mg 1'': Y= -16.16 + 213.90X - 97.26X1 and 100 mg 1'1: Y= -18.64 + 
402.61X - 368.62X2; R2 = 0.998 and 0.804 (p<0.01) respectively. 
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Plant water status 

Leaf yr,, yr, and yip on day 4 decreased as the rate of CEPA application increased 

(p<0.01; Figure 6.2.4). A broadly similar pattern was observed 7d after application 
(p<O. 01), although yr, was not significantly reduced by the treatments imposed and was 
less negative than ywi in 100 mg 1'1 CEPA treatment, causing a negative turgor of -0.13 
MPa to be recorded. In the 50 mg 1-1 CEPA treatment, which appeared to impose 

stress upon the plants more gradually, turgor was still retained at day 7, possibly 
because of osmotic adjustment. These results suggest that the application of CEPA to 

plants may simulate the effect of water stress on leaf water relations, where the nature 

of the response observed depends on the severity and duration of the stress applied. 
The more gradual stress imposed by the lower CEPA application also appeared to 

enhance the capacity of the leaves for osmotic adjustment. 

6.3 Inhibition of ethylene action by silver thiosulphate 

The involvement of endogenous and exogenous ethylene in flower abscission 

following the imposition of stress or the application of ethylene-generating sprays is 

well established (Halevy and Mayak, 1981; Sexton et al., 1985; Abeles et al., 1992). 

However, the action of ethylene can be competitively inhibited by various chemicals, 

including silver nitrate (Beyer, 1976) and silver thiosulphate (STS; Veen, 1983,1986). 

These chemicals are thought to act by blocking binding sites for ethylene by 

combining with the ethylene receptor, thereby preventing the cells from responding to 

ethylene (Veen, 1986; Abeles et al., 1992). Both chemicals are persistent and specific 
in their action, although the usefulness of silver nitrate has been limited by its relative 
immobility within plant tissues and the phytotoxicity which is generally induced 

following its application at effective concentrations. In contrast, silver 

complexed, with thiosulphate is extremely mobile within the plant, is less phytotoxic 
(Veen and Van De Geijn, 1978) and remains active within plant tissues for extended 
periods (Reid et al., 1980). At higher concentrations, however, it becomes phytotoxic 
(Wang and Dunlap, 1990). 
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In this section, two experiments were conducted using silver thiosulphate (STS) as an 
inhibitor of the promotory effect of ethylene on flower abscission. In the first 

experiment, STS was applied to plants subjected to water stress, while the second, 
flower buds pretreated with STS were supplied with the ethylene-generating substance, 
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2-chloroethlyphosphonic acid (CEPA). The main aim of these experiments was to test 

further the role of increased endogenous ethylene production in mediating the 

induction of flower abscission by water stress, as suggested by the preceding 

experiments. 

6.3.1 Inhibition of water stress-induced ethylene production by silver 

thiosulphate 

In Experiment 6.1, it was found that severe water stress increased flower abscission 

and dramatically increased the rate of ethylene production prior to abscission. Since 

ethylene is widely believed to be involved in mediating abscission, blocking its action 

with STS may be expected to prevent or reduce this process. The experiment described 

below was carried out to establish whether STS provided protection against water 

stress-induced flower abscission. 

6.3.1.1 Materials and methods 

Seeds were sown on 10 October 1993 and seedlings pricked out into 9 cm pots on 26 

October 1993. The method of propagation and general maintenance of the seedlings 

and glasshouse conditions were as described in Section 2.1. As in Experiment 6.2, 

secondary flowers were used and treatments began when these reached a diameter of 

3.5 - 4.5 mm (61 d after germination). Three treatments were imposed: no water stress 

(NS), severe stress (SS), and severe stress plus a spray treatment with 1 mM STS 

(SS+1). The plants were arranged in a Randomised Complete Block Design, blocked 

three times and with each treatment containing 36 plants. The experiment continued 
for 15 d after the treatments were imposed. 

Water stress was imposed as described in Section 2.5, and STS was prepared as 
described in Section 2.6. Since STS was effective regardless of whether it was applied 
to whole plants or only to individual developing inflorescences (Cameron and Reid, 
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1983), c. 10 ml of 1 mM STS was applied as a foliar spray every three days. The 

control and severe stress treatments were sprayed with distilled water. Flower counts 

and measurements of ethylene evolution were carried out to determine the influence 

STS on ethylene production and flower abscission. 

6.3.1.2 Results 

Flower abscission 

Limited flower abscission was observed 6d after imposing the treatments in plants 

that were subjected to severe water stress, although this was not significantly greater 

than in the other treatments (Table 6.3.1). However, by 10 d after the treatment began, 

abscission had increased markedly to 61% in the severely stressed plants. In contrast, 
flowers from severely stressed plants treated with 1 mM STS spray exhibited complete 
flower retention, suggesting that this treatment was effective in preventing water 

stress-induced flower abscission (Plate 6.3.1). 

Rate of ethylene evolution from flowers 

Ethylene evolution from the flowers of severely stressed plants was significantly 

greater than in the other treatments (Table 6.3.1), at a time when 11 % of the flowers 

had abscinded. However, when severely stressed plants were treated with STS, there 

was no equivalent increase in ethylene evolution. By day 10, ethylene evolution had 

increased even further in the severely stressed plants, but this effect was again 
effectively blocked by STS (p<0.001). Indeed, ethylene evolution from STS-treated 

flowers was lower than in the control treatment. A small increase in ethylene 

production between days 6 and 10 was also observed in the NS control treatment, 

possibly reflecting an inherent increase associated with natural aging of the flowers. 
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TABLE 6.3.1. Inhibitory effects of silver thiosulphate on flower abscission and on ethylene 

evolution from detached f lowers (n = 18). SED denotes the Standard Error of the Difference 

between means. 

Treatment Flower abscission (%) Ethylene evolution rate (nl g' FW h-') 

Days after start of treatment 

6 10 6 10 

NS 060.06 0.29 

SS 11 61 0.37 0.89 

SS+1 000.07 0.10 

SED 4.54's 6.42m 0.092' 0.034' 

* significant at p<0.05 
*** significant at p<0.001 
ns: not significant 

6.3.2 Inhibition of CEPA-induced ethylene production in flowers by silver 
thiosulphate 

In Experiment 6.2 it was found that the application of exogenous ethylene in the form 

of 2-chloroethylphosphonic acid (CEPA) mimicked the effects of water stress by 
inducing increased flower abscission. In a recent study, Mason and Miller (1991) 

found that pre-treatment with STS reduced the abscission of flowers treated with 
CEPA. The object of the present experiment was to test whether STS could provide 
partial or complete protection against CEPA-induced flower abscission in sweet 
pepper. 



PLATE 6.3.1. Treatment with 1 mm STS prevents flower abscission in severely 
stressed plants. (a) SS plants + STS; (b) SS plants; (c) NS control. 
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6.3.2.1 Materials and methods 

Blue Star seeds were sown on 16 October 1993 and pricked out on 1 November 1993. 

The method of propagation and general maintenance of the seedlings and glasshouse 

conditions were as described in Section 2.1. The experiment was a factorial 2x2 and 

a control arranged in a Randomised Complete Block Design, blocked three times. The 

five treatments applied comprised two levels of CEPA (50 and 100 mg 1'' applied in 

10 ml aliquots), with and without STS (0 and 1 mM in 10 ml aliquots) and a control 

sprayed with distilled water. Each treatment contained 12 plants. 

The treatments were imposed on 25 December 1993 when the secondary flower buds 

had reached a diameter of 3.5 - 4.0 mm, and lasted for 10 d. The buds were sprayed 

with 10 ml of STS and one day later were covered with fresh cotton wool balls and 

sprayed with 10 ml of CEPA or distilled water. The buds were covered in cotton wool 
balls to ensure good contact with the chemical. Both chemicals were reapplied in the 

same way 3d later. The STS and CEPA solutions were prepared as described in 

Section 2.6. Periodic flower counts were made to determine the effectiveness of STS 

in blocking the flower abscission induced by exogenous ethylene. 

6.3.2.2 Results 

Flower abscission 

Table 6.3.2 clearly demonstrates the inhibitory effect of STS application on ethylene- 
induced flower abscission. Application of silver thiosulphate at a concentration of 1 

mM completely inhibited flower bud abscission at both levels of CEPA (p<0.001) at 

all three sampling dates. During the same period, plants sprayed with CEPA and not 

protected with STS exhibited a marked increase in percentage abscission which 
increased with time and CEPA concentration (Plate 6.3.2). These results provide strong 

evidence that ethylene may mediate stress-induced abscission of flowers and buds. 
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TABLE 6.3.2. Inhibitory effect of silver thiosulphate on flower abscission induced by 

2-chloroethylphosphonic acid (n=18). SED denotes the Standard Error of the 
Difference between means. 

CEPA STS Flower abscission (%) 
(mg 1") (mm) 

Days after STS application 

357 

Control 000 

50 0 11 50 94 

1000 

100 0 83 100 100 

1000 

SED(Control) 5.56"S 0.32"' 2.77"' 

SED(Control*CEPA) 6.09"' 0.36"' 3.03"' 

SED(Control*STS) 6.09"' 0.36"' 3.03"' 

SED(CONTROL*CEPA*STS) 7.03"' 0.41" 3.50"' 

* significant at p<0.05 
** significant at p<0.01 
*** significant at p<0.001 
ns: not significant 



PLATE 6.3.2. Treatment with 1 mM STS prevents flower abscission in plants sprayed 
with 100 mg t' CEPA. (a) CEPA + STS (28 DA 7); (b) CEPA + STS (40 DA 7); (c) 

CEPA (40 DA 7). 
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6.4 Discussion 

The previous Chapter examined the growth responses of glasshouse-grown sweet 

pepper plants to progressive water stress imposed at various stages of flower bud 

development. Clear relationships were established between growth responses and the 

severity and duration of stress. The experiments described in this chapter investigated 

the possible role of ethylene in mediating the effects of severe stress on reproductive 

growth and development. 

Progressive imposition of severe and prolonged water stress on reproductive plants 

when the first flower bud became macroscopically visible induced early and increased 

flower abscission. Although reductions in the availability of photoassimilates due to 

water stress have been suggested by other workers as a cause of abscission (Peltonen- 

Sainio, 1991), no consistent reduction in total shoot dry matter was observed in the 

work reported here. The observed decline in turgor shortly before flower abscission 

could not be related directly to flower abscission or shoot dry matter production, 

suggesting that other changes occurred much sooner and at lower stress levels than 

those associated with turgor loss (Hsiao, 1973). 

A role for ethylene in stress-induced abscission in other species is well documented 

(Halevy and Mayak, 1981; Durieux et al., 1983; Sexton et al., 1985; Olmo, 1991; 

Abeles et al., 1992). While ethylene production has often been found to increase 

following the imposition of water stress or drought in many species, ultimately 

resulting in leaf abscission (Jordan et al., 1972; Michael et al., 1972; El-Beltagy and 
Hall, 1974; Apelbaum and Yang, 1981; Kimmerer and Kozlowski, 1982; Kirkham, 

1985), very few studies have examined the role of drought-induced ethylene 

production in flower abscission - in horticultural crops. The work carried out here 

showed that water stress significantly increased ethylene evolution immediately prior 

to flower abscission to a level 40-fold greater than that measured before anthesis, and 
by up to 8-fold relative to unstressed plants. Ethylene evolution from flowers was also 
3-fold greater than from leaves in water stressed plants, whereas the reverse applied 
in unstressed control plants. A similar involvement of increased ethylene production 
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immediately prior to the abscission of water stressed young cotton bolls has also been 

reported (Guinn, 1976). These observations suggest that the enhancement of ethylene 

production in flowers by water stress may have increased their susceptibility to 

abscission. 

While water stress induced flower abscission, no simultaneous leaf abscission occurred 

in the older leaves. The lower rate of ethylene evolution by the leaves immediately 

prior to flower abscission suggests that the developing flowers of sweet pepper may 
have been more sensitive to water stress. The differential sensitivity to stress-induced 

ethylene production between plant organs and species (Sexton et al., 1985) can often 
be attributed to the presence or absence of a differentiated class of target cells which 
form the separation layer - the line of abscission (Osborne, 1982; Abeles et al., 1992). 

This line was observed in the present study to develop at the base of the pedicels just 

before the abscission. Similar abscission lines were not observed at the base of the 

petioles of mature leaves of sweet pepper, however, suggesting that the target cells 

were absent, or that endogenous ethylene levels did not reach the critical level for 

induction of leaf abscission. The observed increase in ethylene evolution with time 
from non-stressed flowers and leaves may indicate that ethylene production increased 

with the physiological age of individual flowers and the plants themselves (Sexton et 
al., 1985; Abeles et al., 1992). In non-stressed plants, the leaves also appeared to 

produce more ethylene than the flowers. 

The findings so far have excluded direct roles for reductions in total shoot assimilate 

production or the components of water potential in promoting flower abscission in 

water stressed pepper plants. Instead, water stress-induced ethylene production was 
thought to be a more likely contributory factor to the flower abscission observed in 

stressed plants. To confirm this, a series of experiments was carried out on the 

assumption that, if the promotion of ethylene production by water stress was the causal 
factor for flower abscission in stressed plants, then administering ethylene-releasing 

substances to non-stressed plants should increase ethylene production and mimic the 

effects of water stress in inducing flower abscission. Total shoot dry matter and its 

partitioning to the leaves and stems did not decline markedly during the period of 
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increased ethylene evolution from flowers and therefore could not be correlated with 

the altered pattern of ethylene evolution. This further supports the view that reductions 
in assimilate production or dry matter partitioning to the leaves and stems were not 
directly involved in inducing flower abscission. Decreases in leaf water and osmotic 

potentials following increases in ethylene production have been reported previously 

(McMichael, 1972; Curtis, 1981; Stumpff and Johnson 1987; Miyamoto and Kamisaka, 

1987) and the results obtained in the present study are consistent with these reports. 
However, these changes could not be related with ethylene evolution from flowers or 
leaves, implying that, although decreases in the components of water potential may 
indicate the severity of stress in plants, they are not necessarily closely coordinated 

with hormonal changes, which may be induced at much lower stress levels than those 
indicated by turgor potential. 

The application of the ethylene-releasing compound (CEPA) to the flower buds of 
sweet pepper mimicked the effects of water stress. The resultant increase in ethylene 
evolution from the flowers was reflected by increased flower abscission prior to 

anthesis, but not by increased leaf abscission. This observation suggests that the flower 

buds were more sensitive to ethylene-induced abscission than the leaves, especially 

when sprayed with a relatively high concentration of CEPA. Highly significant 
quadratic correlations relating percentage flower abscission to ethylene evolution rate 
following the application of CEPA were established. Similar effects of exogenous 

ethylene on flower abscission have been described previously (Durieux et al., 1982; 

Kays and Beaudry, 1987; Furutani et al., 1989; Mason and Miller, 1991; Abeles et al., 
1992). 

The concentration of the ethylene-releasing compound applied and the duration of 
exposure may both affect the response observed (Kay and Beaudry, 1987). In the 

present work, it was observed that applications of the higher CEPA concentration 
caused the abscission layer to form more rapidly at the base of the pedicels than at the 
lower concentration, and that this was followed by earlier and greater bud abscission. 
Mason and Miller (1991) also showed that applications of a high concentration of 
CEPA (4.2 Mm) caused greater bud abscission in glasshouse-grown Easter lilies than 



188 

a lower CEPA concentration (2.1 Mm). Increases in ambient temperature increase both 

the rate of ethylene evolution from CEPA (Bukovac et at, 1971; Wilde and Edgerton, 

1975), and the absorption of CEPA by plant tissues (Olien and Bukovac, 1982), which 

combine to determine the magnitude of the plant response. Thus, the much greater 

effect of CEPA in accelerating bud abscission prior to anthesis, especially at the higher 

concentration, as compared to the ethylene-induced flower abscission that occurred 
immediately after anthesis in water stressed plants suggests that the release of ethylene 
from CEPA may have been accelerated by the prevailing high glasshouse temperature 

(26 °C). In addition, sweet pepper plants may be capable of autocatalytic production 

of ethylene, whereby ethylene released from CEPA would accelerate the endogenous 

synthesis of ethylene (Gupta and Anderson, 1989; Schierle et at, 1989; Foster et at, 
1992), thereby accelerating the abscission process (Furutani et at, 1989). The present 

results also demonstrated the rapid formation of a distinct abscission layer in flower 

pedicels following the application of CEPA, especially at the higher concentration, 
indicating that the flower buds of sweet pepper plants are capable of forming an 

abscission line prior to stress-induced bud abscission (Abeles et at, 1992). Similar 

results were reported by Wong and Osborne (1978) and Osborne (1982). 

In green pepper and tomato, a major exit for endogenous ethylene to the external 
environment has been reported to be diffusion via the pedicels (Burg and Burg, 1964). 
Thus, the separation layer at the base of the pedicels may be an important exit point 
for ethylene from the abscinding flowers and, since leaves have a greater porosity in 

terms of the total number of stomata per unit area than fruit or flower buds, greater 

gas exchange between the tissue and the external environment is possible (Abeles et 

at, 1992; Ben-Yehoshua et at, 1985). This may provide an explanation for the abrupt 
increase in ethylene evolution from the leaves on the fourth day after CEPA 

application when all the flowers and buds had abscinded. Another possible explanation 
for the observed increase in ethylene evolution from leaves which had not been treated 

with CEPA is the capability of plants to undergo autocatalytic production of ethylene, 

whereby applications of exogenous ethylene have been shown to increase the levels 

of endogenous ethylene in plant tissues (Burg and Burg, 1964,1965; Solomos, 1989). 
Although high ethylene evolution rates were detected for leaves treated with the higher 



189 

concentration of CEPA, there was no formation of a separation layer in the petioles 

of mature leaves. However, newly developed young leaves abscinded following the 
formation of an abscission zone, while a very mild epinastic curvature was seen in the 

older leaves. A similar preferential abscission of the younger leaves has been reported 
in pepper (Woltering, 1987) and cotton (Morgan, 1973; Beaudry and Kays, 1988).. 

Water, osmotic and turgor potentials were all decreased following treatment with 
CEPA. In agreement with this observation, Kirkham (1985) found that the osmotic 

potentials of two genotypes of pearl millet grown under well watered conditions 
decreased following treatment with ethephon. Ishizawa and Esashi (1984) also found 

that ethylene promoted solute accumulation in the coleoptiles of rice (Oryza sativa L. ), 

while Eisinger et al. (1983) reported that treatment with ethylene increased cell-sap 

osmolality in pea. 

The results obtained strongly suggest that ethylene may mediate the impact of water 

stress on flower abscission, a supposition supported by the experiments involving the 

use of silver thiosulphate (STS) to block ethylene-induced abscission. These confirmed 
that ethylene has a major role in promoting flower or bud abscission in water stressed 

sweet pepper and that foliar application of STS one day after imposing water stress 
proved highly effective in blocking abscission. Although ethylene evolution increased 

significantly in severely stressed plants, no similar promotion of ethylene evolution 

was observed in plants treated with STS. Similarly, plants pre-treated with STS 

showed no abscission response to CEPA and this protective effect persisted for at least 

7- 10 d. The protective influence of STS against flower abscission has been reported 

previously (Cameron and Reid, 1983; Dostal et al., 1991), although most previous 

studies have concentrated on stresses other than water stress. For instance, Cameron 

and Reid (1981) showed that foliar application of STS produced 80 - 90% retention 
of flowers and buds in zygocactus plants stressed by exposure to ethylene or 26 °C and 
darkness for four weeks after application; these treatments would otherwise have 
induced complete abscission of buds, flowers and leaflets. Cameron and Reid (1983) 

also demonstrated a marked effect of STS in preventing the abscission of floral organs 
and flowers in potted flowering plants. For example, petal abscission from geranium 
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flowers (Pelargonium hortorum Bailey) exposed to continuous light at 25 °C was 
completely suppressed by a 0.5 mM foliar spray of STS, while a similar treatment 

reduced flower drop from 83 to 22% in Calceolaria herbeohybrida Voss plants 

exposed to four days of drought in darkness at 25 °C. The protective influence of STS 

against stress-induced flower abscission was also observed when Easter lily was 

sprayed with ethephon following treatment with STS and then exposed to a 92% 

reduction in irradiance for 14 d (Mason and Miller, 1991). The effectiveness of the 

STS spray persisted for about two weeks after treatment. These results suggest that the 
STS applications have great potential as a means of reducing stress-induced abscission 
in potted flowering plants, including sweet pepper. However, further studies should be 

carried out to examine the effectiveness of STS as a preventative measure against 
flower abscission in soil-grown sweet pepper plants raised in protected shelters, or 
field-grown sweet pepper plants in the open. Such studies should also examine the 

subsequent fruiting performance of STS treated plants. 

6.5 Conclusions 

1. Water stress significantly increased ethylene evolution from sweet pepper 
flowers immediately prior to abscission to a rate 40-fold greater than that 

measured before anthesis. Ethylene evolution from the flowers was also 
increased by up to 8-fold as compared with unstressed control plants. 

2. Ethylene evolution from the flowers was lower than from the leaves in 

unstressed plants, but in stressed plants, ethylene evolution from the flowers 

was 3-fold greater than from the leaves, implying that developing flowers were 
more sensitive to water stress. In unstressed plants, ethylene evolution from the 
flowers increased with age.. 

3. Shoot dry matter and its partitioning to the leaves and stems did not decline 

markedly during the period of increased ethylene evolution from the flowers, 
and therefore could not be correlated with the changing pattern of ethylene 
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evolution. This further supports the view that reductions in assimilate 

production or partitioning to the leaves and stems were not directly involved 

in inducing flower abscission. 

4. The application of the ethylene-releasing compound 2-chloroethylphosphonic 

acid (CEPA) to flower buds increased ethylene evolution from the buds and 

mimicked the effects of water stress by increasing abscission. This observation 

strongly suggests that ethylene mediates the impact of water stress on flower 

abscission. Exogenous ethylene applications also promoted bud abscission prior 

to anthesis. 

5. The severity of flower abscission following CEPA application was dependent 

upon the concentration applied. At 100 mg l CEPA, almost 100% abscission 

occurred on day 2 after application, following a peak in ethylene evolution on 
day 1. Treatment with 50 mg I-' CEPA induced complete abscission on day 4, 

following a peak in ethylene evolution on days 2-3 after application. 

6. A highly significant quadratic correlation was established between percentage 
flower abscission and ethylene evolution following the application of CEPA. 

7. Sweet pepper flowers were capable of forming abscission lines at the base of 
the pedicels following exposure to elevated endogenous ethylene concentrations 

caused either by water stress or exogenous ethylene application. Mature pepper 
leaves were incapable of forming abscission layers, although younger leaves 

developed abscission zones when sprayed with CEPA. 

8. Foliar application of silver thiosulphate (STS) was highly effective in blocking 

the increase in ethylene evolution and preventing flower abscission in water 

stressed plants. Pre-treatment with STS also blocked the promotory influence 

of ethylene released from CEPA on flower abscission. The protective effects 
persisted for 7- 10 d. 
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9. Although the components of water potential were all decreased during periods 
of increased ethylene production, these changes could not be consistently 
related to increased ethylene evolution from the flowers and leaves. These 

results imply that the relatively large decreases in water relations components 

observed during progressive water stress may not be useful in predicting the 

changes in ethylene production which are effective in promoting abscission; 

. 
these may be induced by much smaller losses in water status or turgor. 

I 
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CHAPTER 7 

GENERAL DISCUSSION 

The principal objective of this Chapter is to bring together the main conclusions from 

the various investigations carried out in this project. The overall aim was to determine 

the impact of environmental stresses, especially high temperature and water deficits, 

on reproductive development in sweet pepper, with special attention being given to 

abscission of the primary and secondary flowers since this has major implications for 

the economic value of the crop. The role of assimilate accumulation and partitioning 

and the endogenous growth regulator, ethylene, in mediating stress effects on flower 

abscission were also investigated. Throughout this work, the principal hypotheses 

were that flower abscission would be promoted by high temperature, low light and 

water stress, and that abscission is mediated by enhanced ethylene production and 

reduced partitioning of photosynthetic assimilates to the flowers. 

The experiment which examined how differing temperature/irradiance combinations 
influenced the growth and development of young reproductive plants of two varieties 

of sweet pepper (Chapter 3) showed that a high mean daily temperature (26 °C) 

accelerated the development of the first primary flowers between the third true leaf 

stage and anthesis when combined with high irradiance (4.9 MJ m'2 d-1), but 

subsequently increased abscission of the primary flowers as compared to the lower 

temperature treatments examined (20 and 14 °C). Development of the secondary 
flowers was accelerated by high temperature and high irradiance. At low temperature 
(14 °C), flower abscission was reduced, but the period between flower development 

and fruit set was longer than at higher temperatures and the fruits formed were 

abnormal. However, when high temperature was combined with low irradiance (2.4 
MJ m2 d-'), complete abscission, of the primary flowers occurred. The flower 

abscission observed under conditions of high temperature and high irradiance might 
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have resulted from competition for assimilates between the flower buds and young 
leaves, as was suggested by Aloni et al. (1991b). In this case, young leaves would 

appear to be more effective sinks than adjacent flower buds in importing assimilates 

(Dinar et al., 1983; Aloni et al., 1991b). Under conditions of low irradiance, the 

complete abscission observed before or after anthesis was attributable to the greatly 

reduced quantity of photosynthetically active radiation available to support growth 

(Picken, 1984; Atherton and Harris, 1986), which would have limited assimilate 

availability, thereby increasing competition between the reproductive and vegetative 

sinks for assimilates (Dinar et al., 1983; Morris and Newell, 1987). However, it has 

also been suggested that flower abscission under high temperature or low irradiance 

conditions may be attributable to enhanced ethylene production in the flowers (Wien 

and Yipin, 1989; Wien et al., 1993). 

The results presented in Chapter 3 also indicate the existence of varietal variation in 

the responses of reproductive development in sweet pepper to differences in 

temperature. For example, flower emergence in var. Blue Star was faster than in Bell 

Boy at high temperature (26 °C), although the varietal differences in the time to 

anthesis were not significant. To relate flower development in sweet pepper to 

temperature, the thermal time concept was adopted. Thermal time is an extremely 

useful concept because it allows the development of crops at different locations and 
in different seasons to be compared (Ong and Monteith, 1985; Squire, 1990). 

Since the cardinal temperatures for growth and development in sweet pepper (base, 

optimum and maximum temperatures; Tb, To and T. respectively), appear not to have 

been reported previously, the cardinal temperatures for germination were calculated 
from the linear relationships between germination and temperature established using 

a thermogradient plate (Chapter 4). The values obtained for Tb, T. and Tm were 6.0, 

27.5 and 41.5 °C in Blue Star and 8.5,23.0 and 44.0 °C in Bell Boy. These cardinal 
temperatures were subsequently used in Chapters 5 and 6 to calculate the predicted 
thermal times for anthesis and flower abscission. Although the cardinal temperatures 

obtained from germination trials may not be identical to those for flower development 
due to possible : differences between - the vegetative and reproductive stages of 
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development (Angus et al., 1981a, b; Slafer and Savin, 1991), the use of a Tb value 

for germination in a given species in thermal time calculations is better than simply 

assuming that Tb is 0 °C or some other arbitrary value (Squire, 1990). Since the rate 

of development in sweet pepper was shown in the present work to be related to 

thermal time, the prediction of growth and development in this crop using the concept 

of accumulated thermal time above the base temperature may provide a useful tool 

for planning glasshouse or protected production throughout the year. Further studies 

are required however to check between possible differences in cardinal temperatures 

for the various stages of growth and development before confident predictions can be 

made. 

Under low irradiance conditions, flower abscission may be reduced when plants are 

water stressed without inducing deleterious effects on the subsequent growth of the 

whole plant, thereby encouraging the reproductive phase (Cooper and Hurd, 1968; 

De Koning and Hurd, 1983). The possibility that flower abscission might be reduced 

by water stress under high temperature/low irradiance conditions was partly tested in 

Chapter 5, and the possible role of changes in dry matter distribution induced by 

water stress was examined. Restriction of vegetative growth by water stress imposed 

at the appearance of the first flower bud under low irradiance conditions did not 
improve early reproductive growth and development (Chapter 5.1); instead complete 

abscission of the primary and secondary flowers was observed under low irradiance 

conditions. These results suggest that low irradiance had a greater effect on flower 

development than water stress, consistent with the observations of Atherton and 

Othman (1983) and Halevy (1987). 

Under high irradiance conditions, severe water stress enhanced flower development 

up to anthesis, but subsequently promoted early and increased abscission. In general, 

the development of primary, but not secondary, flowers to anthesis was accelerated 
by increasing the severity or duration of water stress (Chapter 5.2). In contrast, the 

abscission of both primary and secondary flowers was accelerated by increasing the 

intensity and duration of water stress. The high percentage abscission of primary 
flowers was largely offset by, the reduced abscission of the secondary flowers. 
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Shortening the duration of water stress did not advance anthesis, or reduce abscission 

either in this or previous studies (Munier-Jolain et al., 1993; Ney et al., 1994). This 

may have been due to increased competition for assimilates between the flowers and 

vegetative organs since additional leaves were produced after the stress ended, 

resulting in a transitory phase of more rapid growth in the previously mildly stressed 

plants than the unstressed steady-state rate. Hence, there was no overall reduction in 

leaf elongation due to the promotion of cell expansion after rewatering mildly stressed 

plants (Acevedo et al., 1971; Bradford and Hsiao, 1982). The most advanced stage 

of flower development at the time of imposing the stress also proved to be the most 

susceptible to early abscission (Chapter 5.3). 

Examination of the growth analysis data immediately prior to anthesis showed that 

severe stress decreased dry matter accumulation in both the leaves and stems (Chapter 

6.1). However, at the onset of flower abscission, shoot dry weight and its partitioning 
were not significantly affected by severe stress. This implies that, although the 
advancement of anthesis may have been associated with a decrease in dry matter 
accumulation in the leaves and stems, flower abscission was not directly related to 

any reduction in assimilate production or its distribution within the shoot. 

The involvement of ethylene in the stress-induced abscission of leaves and other plant 
organs is well documented (Halevy and Mayak, 1981; Durieux et al., 1983; Sexton 

et al., 1985; Ohno, 1991; Abeles et al., 1992), and increases in ethylene production 
have been found following the imposition of water stress in many plant species. Such 
increases in ethylene evolution are known to promote leaf abscission (Jordan et al., 
1972; Apelbaum and Yang, 1981; Kimmerer and Kozlowski, 1982; Kirkham, 1985), 
but a few studies have examined the role of ethylene in water stress-induced flower 

abscission. The present investigation (Chapter 6.1) has shown that, just prior to 
flower abscission in the severely stressed treatment, ethylene evolution from the 
flowers increased by up to 8-fold as compared with unstressed plants, and by 40-fold 

as compared to severely stressed plants measured before anthesis. Ethylene evolution 
from water stressed flowers was also 3-fold greater than from the leaves, whereas in 

unstressed control plants ethylene evolution from the flowers was lower than from the 
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leaves. These results imply that flowers may be more sensitive to water stress in 

terms of promotion of ethylene production prior to abscission. While water stress 
induced flower abscission, there was no simultaneous abscission of the older leaves, 

suggesting a role for ethylene in mediating flower abscission in sweet pepper. 

Total shoot dry matter production and the partitioning of dry matter to the leaves and 

stems did not decline markedly during the period of increased ethylene evolution from 

flowers. Shoot dry matter production and partitioning also could not be correlated 

closely with the changing pattern of ethylene evolution. This further supports the view 

that changes in assimilate production or partitioning to the leaves and stems were not 
directly involved in inducing flower abscission. Decreases in leaf water and osmotic 

potentials following increases in ethylene production have been reported previously 
(Stumpff and Johnson, 1987; Miyamoto and Kamisaka, 1987), and the results from 

the present study are consistent with these reports. However, the changes in leaf 

water potential induced by severe stress were not correlated with those in ethylene 

evolution from flowers and leaves, implying that, although decreases in the 

components of water potential may be indicative of the severity of stress in plants, 

as observed in Chapter 5, they are not necessarily responsible for the observed 
hormonal changes, which may take place much sooner or at lower stress levels than 
those observed in the present study (Hsiao, 1973). 

The promotion of flower abscission by water stress observed in the present work was 

preceded by a dramatic increase in ethylene production. To test whether ethylene is 

capable of triggering flower abscission, an experiment was carried out to determine 

the effects of exogenous ethylene on flower abscission (Chapter 6.2). Several authors 
have shown that the application of the ethylene-releasing compound 2-chloroethyl 

phosphonic acid (CEPA) increased bud and flower abscission (Tripp and Wien, 1989; 
Furutani et al., 1989; Mason and Miller, 1991) following an increase in ethylene 
production. 

The present study has shown that application of CEPA to the flower buds of sweet 
pepper mimicked the effects of water stress by increasing bud abscission and that the 



198 

extent of abscission induced by CEPA application was dependent upon the 

concentration applied. The higher concentration of CEPA (100 mg l-') induced almost 

complete and more rapid flower abscission (by day 2 after CEPA application) than 

the lower CEPA concentration (50 mg 1'). At the lower CEPA concentration, 

abscission occurred more gradually and complete abscission was observed two days 

later than at the higher concentration. The effectiveness of ethylene-releasing 

compounds strongly suggests that ethylene is involved in mediating the promotory 
influence of water stress on flower abscission. A highly significant quadratic 

relationship between percentage flower abscission and ethylene evolution following 

the application of CEPA was also established. The flowers of sweet pepper were 
found to be capable of forming an abscission zone at the base of their pedicels 
following exposure to elevated endogenous ethylene concentrations resulting either 
from water stress or treatment with ethylene-releasing compounds. Mature pepper 
leaves, however, were incapable of forming abscission layers in response to these 

treatments, although limited epinastic curvature was observed. In contrast, young 
developing leaves formed abscission lines at the base of their petioles and this was 
followed by abscission. Similar preferential abscission of the younger leaves has also 
been reported by other workers (Woltering, 1987; Beaudry and Kays, 1988). 

The results obtained firmly suggest that ethylene is involved in mediating the impact 

of water stress on flower abscission. Furthermore, the experiments involving the use 
of silver thiosulphate (STS) to block the action of ethylene in inducing abscission 

showed that a foliar application of 1 mM STS one day after imposing water stress 
(Chapter 6.3.1) or STS pre-treatment of plants sprayed with CEPA (Chapter 6.3.2) 

blocked the abscission response normally induced by both treatments. These results 
confirmed the role of ethylene in promoting flower and bud abscission in sweet 

pepper under water stress conditions. The protective influence of STS against flower 

abscission has been reported previously (Cameron and Reid, 1983; Dostal et al., 
1991), although most earlier studies concentrated on stresses other than water stress. 
The protective effect of STS against flower abscission observed in the present study 
persisted until the experiment was terminated, at least 10 d after application, but in 

other work, the protective influence of STS has been reported to persist for up to 28 
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d after first application (Cameron and Reid, 1981). These observations further suggest 

that STS treatment has great potential as a means of reducing stress-induced 

abscission in flowering pot plants, including sweet pepper. The results presented in 

Chapter 6 indicate that STS treatment blocks the action of stress-induced ethylene in 

promoting abscission. To validate this conclusion, further research is necessary to 

examine the effectiveness of STS as a protective measure against flower abscission 

in soil-grown sweet pepper plants raised in protected rainshelters or under field 

conditions. The use of other inhibitors of ethylene action should also be tested and 

the commercial feasibility of these compounds determined. In such studies, it would 

also be important to examine the subsequent fruiting performance of plants treated 

with protective agents. 

The study has demonstrated the feasibility of using accumulated thermal time above 

the Tb obtained from germination studies to predict the time to anthesis and flower 

abscission. However, since Tb may differ between the vegetative and reproductive 

stages of development (Ebata, 1990; Slafer and Savin, 1991), further studies of 

cardinal temperatures at different stages of growth are required to obtain a better 

understanding of the thermal times required for specific developmental stages, 

particularly flower initiation and development. The suitability of these more precisely 
defined thermal times for field and protected rainshelter applications should be 

investigated to establish whether reliable predictions of the dates for various 

reproductive developmental stages can be obtained. Further studies of the influence 

of irradiance, water stress, endogenous ethylene levels and ethylene blocking 

compounds should also be carried out to determine the effects of these factors on the 

thermal time requirement for flower development, in particular flower abscission. 

The work presented here dealt only with flowering and flower abscission in the first 

two inflorescences. Further. studies might usefully examine later flowers that are 
developing whilst the plant is also carrying a fruit load. 
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