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ABSTRACT

The finite element method has been used to predict the

effect of rotation on the vibrational characteristics of

structures,

Kinematics of rotary motion were studied and numerical
adaptation for the calculation of the acceleration matrices
has been accomplished. Successful computation of the
eigenvalue equation was achieved and a solution algorithm
based on a modified QL method was then used.

Existing three dimensional isoparamétric finite elements
were modified to add the extra acceleration matricés. Comparison
with existing methods shows a very good agreement, typical
discrepancies being 1-2%.

It was shown that the centrifugal loading creates an initial
stress field the effect of which can incorporated by the introduction
of a geometric stiffness matrix., While the initial stresses are the
largest contributors{to the changes in the natural frequencies,lthey
had only a very small effect on the mode shapes df any of the
structures that were examined, The centripetal accelerations were
found to have alsmaller influence on the natural Frequenpies. It
was found that the natural frequencies changed with the angular
speed according to the Southwell equation,

The effect of the Coriolis acceleration on the natural
frequencies is negligibly small, The mode shapecs of rotating
structures are affected by the Coriolis acceleration component

and for some structures this effect is significant.
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CHAPTER OI.E

INTRODUCTIC!

Often, designers aresubject to constraints such as economy
on materials, light weight, high strength, reliability and low
factors of safety., Satisfying all these requirements means that
the design procedure should take account of all the factors involved
during the service periodof the‘product. In practice this is
very difficult to carry out simultaneously for many reasons which

may depend on the path followed in design:

a~ Theoretical analysis may involve large equations which in
many cases are difficult or impossible to solve,

b- If the design is based upon experimental investigation
it may be very expensive and limited to brototypes that

afe closely related to the models that were investigated;

The most obvious way out of these problems is to use simpli-
fications which would lead to a possible solution that is acceptable
within the limits of safe operation, One of the suggested
simplifications is to cancel a number bf the problem variables that
have no major effect on the probability of failure of the object
concerned, If the problem continues to be large to handle then
the next step would be to study these variables individually and
later on superimpose their total effect.

1.1. Object of This Work

This study is directed towards investigating the effects of
centrifugal forces on -the vibration characteristics of rotating

machinery, Although the material explained could be appliec
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generally to any rotating system, concern will be given to rotating
cantilever blades for the purpose of comparison with some existing
studies and since failure of these components can cause tragic
consequences, for instance a helicopter can end up falling if any
of its rotor blades fail for any reason since it has no wings at
all, A less disastrous example would be the fracture of a blace
from a turbine which is built to a very close tolerance and it is
very easy to imagine what would happen if the fragment stands in
the way of other blades,

Centrifugal effects on rotating systems have not been a
subject of systematic study although individual lateral studies
in different engineering problems have been undertaken, Among
these problems one can mention three of the more frequently
‘apparent ones; those are, vibration probléms (natural freauencies
and mode shapes), stress analysis, and large displacement problems,
The contribution of centrifugal effects to those problems tends
to vary from one situation to another, in some cases it helps to
reduce large displacements and structure failure, and in other
situations it becomes the major factor in failure probability. It
is éertain however that fﬁr optimum design conditions, these effects
should be taken into account, The need arises for certain means
by which calculation of these effects can be made and at the same
time be universal for a wide range of engineering problems, Obviously
steps 'a' and 'b' are not universal for all kinds of problems., This
is why a change to numerical methods was madé. The finite element
method was chosen since it proved to be versatile for analysing
different problems, Many finite element schemes are in existence(119)

and are continually modified to increase their versatility and
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applicability to a wide range of engineering problems.

This study is intended to fill the gap in these finite element
schemes by presenting a modification to standard element routines
which allows them to take care of the effects of centrifugal forces
and accelerations, ‘[lor the szke of comparison the element that 1is
chosen from the various element families is a general three dimensio-
nal isoparametric element which is based on displacement assumptiors,
Particular attention will be made to investigate the effect of the
coriolis acceleration on the vibration characteristics since earlier
investigations did not concentrate on these effects.

1e2. Layout of this Text :

On the next chapter which concentrates on the background for
this subject>it will be found that apart from the experimental work
that has been carried out theoretical investigations are in existence,
Most of the centrifugal preblems are found to be dealing with the
vibrations of turbine and fan blading and it is due to the fact that
the use of digital computers did not start commercially until the
late fifties, the analytical solutions could not be exfended to
include more than the centripital force effects, Although mention
was made out for the Coriolis accelerafion effects as well as the
shear deformation, the majority of investigations tried to avoid
including these terms in their formulation of equations of motion
or include them in the early stages of formulation to go on with
simplifications that would lead to exclude them in the end.

Through the survey of literature it is found that two investiga-
tions(62’14) tried to prove that shear deformation and rotary
inertia produce negligible effects and hence could be dropped out

(1,5)

of the analysis. Other investigations went to experimental



methods to provide this proof. However, the author thinks that

the accuracy of experimental measurements is usually low and it

may well be that these terms disappear within the limits of
experimental error., Logically it may appear that centrifugal forces
produce radial stresses in long rotating members and hence tend to
reduce the shear deformation to a negligible amount by stiffening
them,

Chapter three in this text gives a brief explanation of the
finite element method in connection with the elements used in this
investigation. Chapter four gives the theoretical formulation
necessary to put the centrifugal effects into action with a finite
element program, while chapter five gives the programming details,
Chapters six and seven are concerned with fhe results and conclusion,
A set of appendicies is put at the end of the text.to aive a
complimentary discription for some of the items which are indirectly
related to this study, Appendix E contains a side work which the
author is suggesting for large library programs and appeﬁdix F
contributes a case study which shows the merits of the finite

element method.,
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CHAPTER TwG

BACKGROUND

2,1+ Introduction

Certainly failures of turbine and fan blades are the largest
and mostcﬂematictypesof failure that occur in rotating machinery
and it seems logical that most studies concerned with these machines
tend to concentrate about these'blades. It is known that for any
theoretical study, simplifying assumptions are used to start the
analysis, and for the present problem it is thought necessary to
start the analysis with the vibrations of non-rotating cantilever
blades, Two main contributions are given tb the vibration of a

single degree of freedom system, The first is the energy method(109’

'108). It can be stated that for anyinstant of free vibration,
the energy of a conservative system (a system that has no energy
dissipation) is partly potential and partly kinetic. The
potential energy is stored in the form of work done'against a
force field such as gravity or work done in elastic deformation.,
Thekineticenergyjjsstored in the mass by virtue of its velocity,
It becomés obvious that the total energy is a constant and its

rate of change is zero. This statement is given in mathematical

form as:

KE + PE = U (2.1)
du

—_— = 0 (2.2
dt )

The natural fraguency of a system can be determined if the

vibrational motion was assumed to be harmonic,

(109)

The second method is the Rayleigh method In this



principle, it is shown that the fundamcntal frequency of vibration
for systems with distributed masses can be determined with good
accuracy by assuming any resonable deflection curve, Moreover the
fundamental frequency will be the correct frequency if the true
deflection of the vibrating system was assumed.,

The chief advantage of the Rayleigh method is the relative
simplicity of the final equations, Unfortunately only the fundamental
frequency can be determined wifh accuracy using this method,
However in certain cases, an acceptable eséimate of higher natural

frequencies is also possible,

2.2. VUibration of Non-Rotating Cantilever Blades:

2¢.2e1. Historical Review:

Probably Carnegie has the longest series of investigation in
the field of vibrations of cantilever blading, and following his
investigations in their order of appearance would give a complete
historical review about the advances in the study of ﬁurbine blades.,

In his investigations Carnegie used both the energy method
and Rayleigh methﬁd to approach the problem of vibration of ﬁre-
wisted cantilever blading., In many insténces he made use of the
Rayleigh method externsively to obtain expressions for the naturél
%requency of gradually devéloped forms of pretwisted cantilever
blades of which the Ffinal form that was studied was an aerofoil
cross section form which represents a prototype of the actual
turbomachinery blade, In more recent papers the investigator
changed to the more general dynamic problem of. the vibrations of
rotaing blades,

A summary the various solution methods for the problem of

vibration of cantilever blading in their order of appearance is given

below:



SUMMARY — DIFFERENT SOLUTION METHODS FOR VIBRATION OF CANTILEVER

*
BLADES (the basic approach to centrifugal effects)

1= _CONTINUUM MODEL APPROACH:

a) Rayleigh - Ritz,

1952 Lo, 1959 Carnegie.
b) Galerkin,

1965 Rao,
c) Transformation.

1966 Montoya.

d) Collocation,

2= DISCRETE MODEL APPROACH:

a) Holzer - Myklestad.
1973 Rao et al,, 1974-5 Ansari, 1977 Dawson and Davies,
b) Matrix.
1951 Plunket, 1976 Murty,
c) Finite Difference.
1960 Carnegie et al,, 1967-1972 Carnegie and Thomas,
d) Polynomial Frequency.
1977 Roa and Banar jee,
e) Finite Element.
1970 Ahmed et al,, 1972 Dokainish and Rawtany,
1973 Bossak and Zienkiewicz, 1973 Gupta, 1973 Trompete
et al., 1974 Filstrup, 1974 Thomas et al., 1975 Tovey,
1975 Allen et al.,, 1975 Vissar et al,, 1976 Thomas et

al., 1976 Barlaw, 1977 Dokumaci,

*
See bibliography of Authors at the end of this text,
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This section will not be dealt in with great detail as it
is very elementary and most of its materials could be found in
text books on vibrations and applied mechanics such as for

(3)

instance Anderson However it should be mentioned that

the method given by Carnegie is found to be satisfactory that

is to relate all the.equations for the more sophisticated system
to the very simplest one by the use of multiplier functions

that depend in most of the cases on the geometry and boundary

conditions,

2.2.2. Displacement Analysis for Static Bending of

Cantilever Blades:

(19)

In reference the static bending of pretwisted cantilever
blading was developed using the calculus of variations on the
equation of the total potential energy to obtain the equations of
stability and upon solving these stability equations expressions
for the static deflection were found, The angle of pretwist
was not to exceed %; radians, Both the case of concantrated
loading and distributed loading were considered as well as
different cross sections of the cantileyer blades such as rectangu-
lar aerofoil and square, The total potential energy was found
as the sum of the strain energy and the gravitational potential
energy. The strain energy is the energy stored in elastic defor-
mation in the blade due to three present moments (refer to figure
2-1):

a- Bending in the x direction,

b—- Bedding in the y direction,

¢- Torsion,

And hence the widly used term bending - bending - torsion for these



Figure (2.1) Choice of the coordinate axes,



-0 -

types of problems, The total strain energy obtained by superposition

thus becomes,

L .
2 2
o - Elyy <d2x> . ny<d2x 0?2y \ , Hlxx (82y\ ¢ (do
- . + — ———
2 \g,2 322 a2 2 \g,2 2\dz/ (**
0
00000000(203)
where,
v is the static angle of elastic twist or torsional deflection
and C 1is the torsional stiffness given by T =C Eg%— and T

is the torque,

The gravitational potential energy is given by the expression
L

Uug = w(y +# rx 9 ) dz (2.4)

w is the weight per unit length,
y 1is the elastic deflection (in the direction of gravitational
force, assumed),
r is the distance between the centre-of-flexure and the centroid
in the X direction,
Finally the total potential energy becomes,

PE = SE + U (2.5)

9

Upon substituting equations (2.3) and 2.4) into equation (2;5)
and applying Euler characteristic equations for stationary conditions
(see Appendix IV of reference 19) for a concentrated load, the

resulting simultaneous equations will become,

2 2 2
d a-y d x
2 E&x( 2)4» EI)“y ( 2) 0
dz d 2 dz
2 2 2
d d x d Yy
£l ( > + ETI, (———f> =
d22 Xx d Z2 y dz2

Integrating twice and substituting for boundary conditions a neuw
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set of simultaneous equations would be obtained which, upon solving,

yield the expressions for the deflecticns in the x and y direc-

tions,
3
- u L
y = ———— , Cq (2.7)
L 3E Ly,
3
w L
X = + Co (2.8)
L 3 E Iyy
where,
[~ 1 I :
XX sin 2¢ -~ 2Q
c1=%<1+-i-’55-%<1—1 )( LS )] (2.9)
L Yy yy ap
r3 IxX cos 24| + 2aL2 -1
= ls \' "1 3 (2.10)
- yy e

and 4 is the angle of pretwist at the free end,
For a blade of rectangular cross section and thickness ratio %-,

m n3 n m3 IXX riz

xx = 122 lyy =735 Tyy 2

it becomes evident from the above relaticns that C1 and Cz are
functions of the geometry,

Recalling that 2 new set of stability equations can be obtained

for the case of distributed loading and hence a new set of multipliers,

c —ut? [1 (1 Ixx) 3 (1 Ixx)(cos 204 + 291 )i] 2 (2.11)
.y, = Cz. - t— |=-=11- o .
L "3° 8EI 2 4 Iyy ad 8EI,

xx ‘yy
' 3
de 3 Ixx sin 2 & - 2¢+ % ar | wLa
"Ca B T s \ 17T “5E1 (2.12)
Y Yy 4 Yy

Again de is the standard result for a blade without pretwist,

In comparing tne deflections resulting from equations (2,7) to
(2.12) with the deflections resulting from experimental tests Carnegie

concluded that the given equations can be used to calculate the
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deflections with high accuracy since both the calculated and

experimental deflections agree with each other,

2,2,3, Vibration Analysis of Static Cantilever Blades:

. In the previous section formulation of the eguations for
the static bending of cantilever blading was successfully developed,
Since the above mentioned equations are accurate judging by the
closeness with experimental results it is found equally suitable
for fdrther use in the vibration analysis, However it should
be mentioned at this point that there is more than one approach
to the vibration problem, The first of these involves solving
the differential equations of motion of the cantilever blades ,
a method which is very exact and easy for cases of simple geometry,

(20)

In referenced a derivation of the differential equations

of motion was being made, The other method is the Rayleigh

method (Appendix A) which can be employed with very reasonable

accuracy for the fundamental frequency of vibration., The exactness

of the Rayleigh method could be checked for any particuiar problem

(such as the lateral vibration of straight cantilzver blades of

rectanqular cross section) by chosing a suitable deflection curve

to fepresent the shape of the fundamental mode of motion, and

using equation (4.7) of Appendix A. The resulting natural

frequency would only be higher than the calculatsd frequency

by a small amount provided that the functions used satisfy the

end boundary conditions, Table (2.1) shows some numerical values,
From a geometrical point of view a straight blade of rect-

angular cross section has three basic modes of vibration , two

of which are due to bending in a principal plane and one due to

torsion, This implies that there should be three corresponding

deflection curves for these motions, UWhen a blade is pretwisted
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it would allow bending to occur simultaneously in both tre x and

Y planes, and a corresponding frecuency of coupled bending-bending

vibration will result, It becomes evident in this case that for

the Rayleigh method to be applied two deflection forms would

become necessary to obtain the value of the coupled bending frequency.
As the geometry of the blade becomes more complicated greater

possiblity of frequency coupling occurs, for instzance a blade of aero-

foil section will have bending in each of the principal planes accom-

panied by torsion to allow for tﬁe centroid and the centre of flexure

to coincide., Hence two corresponding fundamental frequencies of

coupled bending~torsion., Furthermore, if this blade was pretuwisted é

coup}ed bending-bending—-torsion Freqﬁency is more likely to occur,

Again this coupled trioc would need three simultaneous deflection curves

of which two are bending in the x and y planes and the third is

in torsion,

(20)

Carnegie went on to find expressions for the naturzl frequency

of vibration for all'the abovementioned cases, and as mentioned before
he used to relate the formuli for the more complicated geometrical
shapes to the simpler ones by some coefficients and correction factors
that depend upon the geometry itself in most of the cases. Further-
more, this investigator concluded that fhe static deflection relation-
ships are the most obvious forms to te considered for the shapes of
elastic curves of the blades in their fundamental mode of dynamic
motion. Hence the relationships of the previous sections (2.2.2. and
2.2.3.) were employed to obtain further useful data, most of which
is tabulated in table 2.2.

Correction factors were necessary for the case of torsicnal
vibration as the results of experimental tests had shown higher

values for the corresponding frequencies of vibration. Carnegie

suggests that this difference could be attributed to the increase
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FIGURE 2.2.A .

FIGURE 2.1.8 : RELATIONSHIP BETWEEN COORDINATE
AXES .
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of the torsional stiffness of a vibrating blade under pure torsional

oscillation due to the fact that its longitudinal fibers are subject

to bending. The reader is referred to the original paper for further
detail,

In conclusion, it was found that the relations tabulated in
table 2,2 agree with meésured values taken from vibration tecsts
conducted on sets of blades of both uniform rectangular and uniform
aerofoil cross section pertwisted between 0 and S0 degrees, hence
Justifying the use of the Rayleigh's method as a simple but reliable
tool for the calculation of natural frequencies of vibration,

Further material about this subject could be found in text

&
books about vibration such as those listed in references(“’77’108’109),

'2.3. Vibrations of Rotating Cantilever Blades

243.1, The Energy Approach

ihe exprgssion for the potential energy resulting from
centrifugal forces can be obtained by considering a general blade of
length L fixed radially at an angle Y on a rotating disc of radius
R . The speed of rotation being Q rev/min, By considering a rota-
ting coordinate system the disc could be assumed fixed with a radial
‘céntrifugal force imposed on it, In such a case it can be assumed
to have two components of deflection, one being in the plane of rota-
tion and one out of the plane of rotation. UWhen the blade cdeflects
out of the plane of rotation the centrifugal force on an elemental
section dz (Figure 2-2A) will take the same direction as the zz

*
plane and hence its component in the y direction will be zero,

*here y and later x are auxilliary coordinate system inclined at

an angle ¢ to the normal y and x axes respectively(21).
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and it follows that the potential energy stored by the element is

also zero, mathematically

PE- = O (2.13)

The centrifugal force acting in the plane of rotation is
resolved into two components; radial and circumferential, The

radial component is given by df, ,

dF, = dF cosP ' (2.14)

where,
dF=qgdz 9% (R + z) (2.15)
and q is the mass per unit length,

For small angles § , cosf % 1 and the force component
in the z direction is the same as dF given by (2.15) and the z

component of the potential energy becomes,
PE, = dF, A S

where A is the small displacement of the centre of the infinitesimal

(21)

it can be shown that

dA = g <g§ ) +( gz> dz (2.17)

and the total displacement A of the infinitesimal element at z is

.element, By simple geometry

given by
z
_ 2 o2
A= 3 (3:) +<%12-> dz (2.18)

considering small displacements and using eguations (2.15) and (2.18)
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the potential energy in the z direction for the entire blade becomes

J

L
% ? ? 2

PE, = — (R + 2) d x Y
z 2 q z X_ dy
0 0 s 5z dz| dz (2.19)

Now the circumferential components of the centrifugal force

can be written as:
dfy = dFf sin f3 (2.20)

where,

sin B = (2.21)

Substituting equations (2.21) and (2.15) into equation (2.20) yields
dfy = Q02 3
x = g X dz (2.22)

knowing that dFfg increases from zero to dfy then an average value

is taken as ELFQ . The corresponding potential energy for the

o m—

2
entire blade will be,

L
PEg = - [ 2 @2 7 ] d z ' (2.23)
0

The total potential energy resulting from centrifugal forces

will be the sum of its components in the x , Y , and z directions,
PEQ = PEg + PEy + PE, (2.24)

substituting equations (2.23),(2.13) and (2.19) into equation (2.24)
to give
PEQ='—2— 5 g (R+ 2) . 2 g dz- w X dz

ceees(2.25)
Now the relations for coordinate transfer are given by:

xt
< |

N

x = xq sin ¥ + y, cos ¢
(2.26)
y = x, cos¥ + y,  sing
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where xq and Yy, are the shifts of the centroicd in the x and vy

1

directicns respectively resulting from an aerofcil cross section

over a straight rectangular cross section:

X

1
X
+

1 Sy d
i (2.27)
- x

K
. 3

il

<

+

and 3 1is the angle of elastic twist,

Substituting equations (2.26) into equation (2,25) gives:
Qz L z 2 4 2
. & d X1 RAR
PEo = > i [ g (R + 2) . { ( = ‘> + (d . > } dz

-q(xf sin2kp -2 ><1 y,] sing cos@ + y12 cosz(p ):’ dz

cesees(2.28)

The strain energy of a blade vibrating in combined bending-
bending-torsion was obtained earlier in this text and was given by
equation (2.3). When gravitational effects are ignerec the total
potential energy for the blade will be the sum of both equations

(2.3) and (2.28),
PEtotal = PEQ + SE (2.29)

The expressions for the kinetic energy of a blade vibrating in
combined bending-bending-torsion is considered to te the sum of

two parts, the first of which is the kinetic energy of the mass,
concentrated at the centroid, PEt, , The second part is the kinetic
energy due to rotation about the centroid, Pty ., Hence the
instantaneous kinetic energy of the mass at the centroid of the

"infinitesimal element is given by:

d KE, = % g [ (>'<1)2 + (91)2 dz (2.30)
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using equations (2.27) into (2.30) leads to,

d Kbp = %q[(;<+ Cy 9)° + (y+ QxO)szz (2.31)
and the total instantaneous kinetic energy will be,
L
KE_ = 4 - 2+ (s 52
m= %9 J (x + Gy ¥)°+ (y+ 6x V)7 | dz (2.32)

The instantaneous kinetic energy due to rotation about the centroid

is given by,

g .
d KE = —~ dz (2 )2 (2.33)
and the total instantaneous kinetic energy will be,
L _
KE =1 Ig (3)° a2 (2.34)
0

the total kinetic energy for the blade will be the sum of equations

(2.32) and (2.34), thus

KEtotal = KEp + KE | | (2.35)
or
- I
KEtotal =%q0/ [(>'<+€y0>2+<9+' §x0)2+—-§2- (3)2]“
| ........(2.36)

~

Finally the natural frequency of thé fundamental mode can be
obtained by using the Rayleigh principle and equating equations
(2.36) for the kinetic enefgy with (2.29) for the petential energy
will result in the required frequency.

Carnegie(21) was the first to calculate the kinetic and
potential energies in this way and he gave an example praoblem to
test the method. Tha motion was assumed to be harmonic and a

straight rotating cantilever blade of rectangular cross section was



- 20 -

chosen, The following equation was used to represent the static

deflection curve:

4
y = q [ L222 _ L 23 + pd J (2 77)
o 2E Ty 2 3 12 7
and the resulting fundamental circular frequency was:
(2.28)
W, = i 2.38
n
L2
where,
1
a -
K = 1+ w522 [ R L3 + L4 _ L 0052 (2.39)
E 1, 8 106 12+45 *

By comparingW, from equation (2.,38) with the ccrresponding W,
shown on table 2.2 (case number 1) it will be found that both are
the same except for the factor K of eqguation (2.39) which is
clearly a function of the speed of rotation and blade geometry, It is
evident from equation (2.,39) that as the rotational speed increases,
the value of K and hence the fundamental frequency will also be
increased, The rise of the frequency with the speed of rotation
is also explained by the fact that the centrifugal forcés on the
‘blades tend to reduce the lateral bending by increasing the in-plane
force component, this will ensure higher stiffness to mass ratio

and hence a higher natural frequency,

2.3.2. Includina E£ffects due to Torsion, Shear Deflection, and

Rotary Inertia

So far, total energy expressions for a blade vibrating in
combined bending-bending-torsion have been made, It is now wished
to make an allowance for bending of longitudineal fibers occuring due

to torsion. Using Figure (2,3) it can be shown that for small angles
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of elastic twist, the deflection of an element of the blade at a
distance o from the centre of torsion will be:

y = by ' (2.40)
From mechanics of materials the shearing force gv is given by

3

qd~ 9

dy = -~ ¢ I, ( 3) (7.41)
’ dz

where the negative sign indicated a negative shearing force for a
positive deflection vy , Substituting eqguation (2.40) into equaticn
(2.41) will result in,

3

d ¥

dV=-EIxxb( 3> (2.,42)
dz

and the torque due to this shearing force is,

3
- _ 2 d-
dV. b = dT=-EI,b ( 3) (2.43)
dz
for the elemental fibre of figure 2.3, Iy = dt3t3/12 and hence,
' 3 ’ . o
aT= -5 (2 ) 12 3 4p (2.44)
12 c123

and the total torque becomes

3
T=--E (g2 b2 t5 db (2.45)
12 3
dz A

the strain energy due to this elastic torsion will be (3 T d¥ ) ,

L
3
£ dd d~ 3 2 .3
- b .46

Adding equation (2.46) to equation (2.3), will give the total potential
energy for a blade vibrating in combined bending-bending-torsion and

allowing for bending of longitudinal fibres, The total kinetic enerny
expression for the blade will remain the same as equation (2.36)(22).

Two additional terms are required for the total kinetic energy

if the effects of rotary inertia are to be included, they result from
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rotations P, and w?rin the x1zand Y42 planes respectively, and

the resulting extra kinetic energy will be(23)

L . 2 * 2
Kep = ///' { IYY P ( w1r) fxx P ( (p2r) }
+ dz
0 2 2

. ceoess(2,47)
Letting ¢ =[gp1b+ (Sy¥)] and o, =[w, ( Sx )]

1r

(where w1band szare slopes due to bsnding and the prime sign
means a differentiation with respect to z ), and summing with
equation (2.36) the final expression for the kinetic energy allowinrg
for rotary inertia becomes,
L . L WA . .2 . 2
KE = % /4 {q[(x+5y 97+ (y + 5 9) ]+Icg(0)
/ / r'd
g ° s 0 D g . * D .
e P {1y (o Sy 5+ 8 507 15 (0, + S 5+ % $)) oz
..0....(2.48)
If the effect of shear deflection is to be included, the expression

for total potential energy must be modified by adding the strain

energy expressions resulting from this deflection, thus

4

dss=12~{ Fy Sxg+ Fy Syg+ Mx  Sg .+ My G\PQb}, (2.49)

‘where x, and y  are the corresponding deflections due to shear,

Substituting for F , and M into equation (2.49) by

1
(19,23) and integrating

appropriate parameters obtained in references
over the length of the blade, the extra strain energy resulting from

shear deflection will be
L

S A N N e o]} ez (s

where A is the cross sectional area of the blade and k 1is a
torsional constant, Summing equation (2.50) with equation (2.3)
will give the final expression for the total potential enerqy for

a blade vibrating in combined bending-bending-torsion and ailowing
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for shear ceflection,

2,3,3, Procedure to-0Obtain the Equation of Motion:

In the previous sections, expressions far the lowest natural
frequency of rotating and non-rotating cantilever blading were
obtained, based upon energy expressions that were developed for
different boundary conditions, It is found very neipful for every
boundary condition using the calculus of variation (see Appendix G).
The procedure for obtaining these equations is standard and can be
employed for all cases, using Hamilton's Principle vhich states
that the minimum of the integral

£

I = L dt (2.51)
ty

for fixed t, and t2 with L (the Lagrangian)

L = KE - PE , (2.52)

give the Euler-lLagrange equations which are nothing but the equations
of motion of the system,

In the rest of this section an attempt will be made to find
one (since the others follow the same line of steps) set of equation
of motion for a pretwisted blade of uniform asymmetric cross-section,

Using equations (2.3.) and (2.36) to write the Lagrangian,
L ,

L = [%q{(;+§ya)7’+(;+5x0)2+ :g(b)z}
0

2 2 2
Elex /32, 22\/3%\  Elyy (0% ¢ /@39
- + E Ixy 2 + 2 2 + T dz
2 92° 3,2/ \& 9z 2\ €@z

ceceessl(2.53)

and applicatiocn of Hamilton's principle results in
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- t
. . I . 2
Ly = [ﬁq{<x+sya>2+(y+gxe)’+—°—9- (0)}‘
g /0 q

2

52 20\ /a2 2\ ?
2 ) ()]
: Oz dz° oz° ’ 827 - /

(2,54

¢ o0 0 8 00\ o0

Stationary values of this integral which is cf the form of
equation (G.28), are obtained by operating equations (G.29), (G.30)

and (G.31) to it. The resulting differential equations of motion

will be

02 (azy <32x>} . 3 '
A LR e REMCC) BRI e
2

a azx azy .s ..

ol R R C SRR RLA 259

a az .0 . e N b I S

-6—2— {C (———g—)} = q { gy x + Sx y + gy? J o+ gx2 J+ =g (2.57)
o . q

As can be seen, these equations are fairly complicated and are only

soluble for a small number of cases where simplifying boundary

conditions are used,

2.4, Experimental Uork:

Normally, the results from an analytical procedure are backed
up by experimental results to provide the necessary proof that the
analytical procedure can be safsly used in future és a substitute
for the experimental set up that may not be convenient to proceed
later on for various reasons, One of the causes behind this experi-
mental assesment being the difference between the assumed analytical
boundary conditions and the actual environments and a valuable
example can be drawn from the Author's experience during the course

of this investigation, It was agood apportunity that access was
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possible to a readily designed and built turbomachinery blade on
which experimental vibration tests were made (explained later

in this chapter) by clamping the non-rotating blade at the root
between two wooden blocks thus providing a plastic support for
tﬁé blade, Due to the difficulties involved in the attempt to
exactly model the blade root by 3-Dimencsionzl finite elements, a
very primitive method was used instead by assuming an infinite
stiffness at the bottom of the blade shank, this provided a
hypothetical rigid support and the difference in results of the
two methods was in order of magnitude of 3 for the fundamental
frequency (see chapter 6), At the first instant, it was
thought that a mistake is the most evident factor, however

after modelling the blade by various other mefhods and like

other investigations(86’112)

springs were assumed to exist at
the root which means that a finite stiffness is applied at the
shank bottom nodes, it became certain that the choice of bouqdary
coﬁditions has a very significant effect on ths results,

Setting an experimental procedure requires inforﬁation

‘about three definite parts,

1- Definition of the problem variables, blade geometry and

method of clamping:

Probably an ideal experimental setting would be made
using the actual parts or machinery to be tested, however
due to econcmic reasons, and or technical difficulties it
becomes common practice to choose mocel. of smaller or
actual size being produced in a cheaper method and that
help a better control on the variables to be studied,

Normally the problem variables will define the methods



2=

- 27 =

and techniques used to study these variables, and hence

it is at this stage where the two other factors (vibration
excitation and monitoring) are considered carefully,
Methods of Vibration Excitation :

farly experimental investigations were based upon static
cantilever blading rather than rotating blades cue to the
difficulties involved in mcnitoring viorations of the
latter kind, Rao(gd) mentioned that the experimental
investigation of blade vibrations startedwith marine
propellers that were producing excessive noise and hence
ncessitating a study of the natural frequencies and vib-
ration modes, For this particular problem tests were
performed on flat blades of uniform thickness held firmly
at the root and excited with a violin bow, Gther methods
included the use of magneto-striction elements and electro-

magnetic excitation where the blade is vibrated by a

- variable frequency electromagnet, often with a OC bias to

improve the magnetic circuit, the difficulties encountered
is that it is only restricted to magnetic materials and to
low vibratory energy of longer blades. Mechanical flexing
was used for higher excitation energies but the problem
of limited low frequency rangs is still standing same és
vwith the case of ﬁechanical excitation Truman et al.(113)
criticised the jet nozzle method and suggested an alter-
native pulsed air method.

At present, easier methods are used with the introduction

of standard electro-magnetic or hydraulic shakers which

are used for higher power requirements, while for low
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power requirements hybrid analogue systems are used with
impact hammers, The latter being fcund useful in low

frequency situations with lightly damped structures.,
Vibration Monitoring:

From a technological point of view, monitering vibrations
is much more involved than exciting these vibrations,It

is believed that attaching strain gauges on the moving
parts is the best method of recording the deformations

and their frequency, but unfortunately there is a great
difficulty involved in transfer of the signals from the
rotating strain gauges to the stationary recording device.
The suggestion of using sliprings has been enhanced by

(24) (4)

Carnegie and Andrews , both were satisfied with

it. An alternative way is possible throﬁgh the use of
mercury cells*. Additional problems are encountered with
high temperatures and high centrifugal action. of éourse,
these problems will require proper heat resisfing properties
for the strain gauge cement. The reader is referred to
Kemp et al°(66).for such types of gauges.

(116)

Wallace in his paper gives some useful

information about the application of transducers in different

practical problems.

Modern monitoring equipment normally censist of

three basic parts:

*literature available from the manufacturers
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2~ The transducer which can be either of two groups, the
seismic transducer (acceleration or velocity transducer)
which measures the absolute motion of moving parts at
the point of attachment, the second qroup consist of
various probes which measure the relative motion
betueed moving parts,

b- The signal conditioning unit that makes decisions with
regard to significgnt parts of the wide frequency banc
of the response spectrum of the transducer.

c- The analysing system which helps interpreting the data
provided and relating it to the problem environment,

(93)

Rao gives a historical review of the development

(55)

of these methods and text books give more detail

about the subject,

24,1, Some Particular Experimental Investiggtions:

In this section detailed explanétion of some experimental
investigation will be given., The author find them necessary since
the first reflects the importance monitoring vibrations on the work
site (32), while the others show the effect of rotation on the vib-
ration characteristics of stationary members., A third group of
investigations will be concerned with the change of some of the
problem variables,

2,4.1010 Davies et alo (32)

In this work a team of investigators combined the application
of theoretical and standard experimental techniques to the diagnosis
of some operational problems on modern power generation plants,
Attention will be given to one problem only that lies within the scope

of this text. This problem is concerned with a large fan that had
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Critical speeds within its range of normal operational speeds,
Lateral vibrations were measured in terms of radial displace-
ment of rotating parts relative to each other.
The site instrumentation included a mobile trolly containing
signal conditioning equipment which enables vibration signals to
be observed and recorded on magnetic tape for further off-site
processing,
The tape is then fed through an analogue digital converter
to a digital computer programmed to analyse the vibration of the
required components by using a fast fourier transform software pack.
By plotting the displacement against the speed of rotaticn a
complete view of the situation was obtained., The vibrations were
reduced by increasing the vertical stiffness of the supporting
bearing and reducing the overhung distance. By changing these
two factors the gyroscopic effects are reduced to minimum as well,

2.4.1.2. R.F. French(sz)

In this work an attempt is made to simulate the actual running
conditions of a gas turbine to study the vibration and fatigue of
the blades in their actual centrifugal field,

The investigation concentrated on the argument that the old
methods of statically testing the blades would not give a very clear
idea about the vibration characteristics, and although an imrovment
of adding a spring luad at the tip of the blade(122) is made but
still it is not satisfactory as it produces a constant load on the
test part, while the centrifugal loading would generate a load
gradient along the blade.

The test rig consists of a 500 HP electric motor which is

coupled to a speed increaser through an eddy current clutch coupling,
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thus giving an infinitely variable speed range of 500-10 000 rev/min,
Vibrations were excited by equally spacec air jets directed at or
near the tip of the blade. A provision is made for high temperature
testing by adding a combustion chamber to the air circuit.

With some difficulty, electrical resistance strain gauges
were used for the strains and thermocouples frcr tne temperature
measurements, The strain gauge and thermocouple leads were brought
and down the face of the disc then out tnrough the centre of the
shaft to a slip ring., A frequency counter was used for fatigue
testing while a magnetic tape was used for stresses or vibrations,
Information from the magnetic tape were fed to an x-y recorcer to

show the vibration response,

2.4.1.3. Bigret' ')

(13

In his 6aper Bigret ) gives a brief explanation of three
experimental procedures to study the vibrations of steam turbine
blades., These three cases are:

a~- determination of the resonant frequencies for stationary

blades,

b- Determination of the resonant frequencies during rotation

in a special rigq.

c- Study of vibration behaviour in service.

It is found that only part -b- is of importance for this text
and it will be explained in more detail. The main point of interest
in here will be the method of signal transmission,

The power driver is a DC motor which suppiies variable speed
to the test rotor.

Vibration is excited by two opposite electro-magnets having

their poles Smm away from the blade tips. Another part of the

excitation comes from the centrifugal effects,
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A sigual transmission system was used, The strains in the
blades were obtained by means of piezoxide transducer and semiconduc-
tor gaugyes, Lead wires from the transducers are connected to a trans—
mitting antenna which consists of a free wire stretched racially due
to the centrifugal forces, The transmitter circuitry consist of
high frenuency generators which are fixed on thke rotor witn their
associated batteries, The receiver antenna is a steel ring placed
around the rotor,

Bigret concludes that it is a simple matter to predict the
resonant frequencies and modes of vibration of stationary blades,
Further he suggested that an algorithm used on a digital ccmputer
can calculate the effect of centrifuyal acceleration due to rotation
but he doubts the possibility of obtaining the effects of caupling
between the blades themselves only., With the aid of the setting
just explained above he was able to obtain an idea about the coupling
effects but not the modes of vibraﬁioh. The interesting point that

(40,41)

the author of this text had noticed is that Ewins who presented

his paper(do) at the same conference mentioned both experimental and
theoretical studies concerning the effect of coupling.

2.4.1.4, Carnegie et al.(za)

It was thought necessafy to finish the part about experimental
work by giving results obtained from an actuel experimental installe-
tion, The work of this paper was divided into two parts, the first
entails the construction of a test rig capable of operating up to a
speed of 20 000 rev/min, The second part included experimental results
of the work carried out in a lower speed range of 4 000 rev/min, Also
given, a complimentary theoretical investigation using the finite

(24)

difference method based on equations of motion given by Carnegie .
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The main point of interest was the lateral vibration in the
weak plane of bending of slgnder blades of uniform rectanqular and
uniform aerofoil cross section, The effect of centrifugal forces
on the natural frequency of the first four modes of such vibration
was obtained, together with the influence of the stagger angle
parareter, Rectangular blades of different length and thickness
were ueed in addition to one blade of a uniform aerofoil cross sec-
tion, fhe stagger angle was varied in steps of 15 degrees over
the range of 0 to 90 degrees, The results are presented in the
same way suggested by DiTorronto(35), that is, showing the effect
of rotational speed on thé natural frequency of blades ag a percen-—
tage increase in the frequenpy above the non-rotating frequency.,

The results are shown in Figures 2-3 to 2-5 showing the effects

of changing the various parameters,

2,5, The Numerical Approach

The problem of vibration of rotating cantilever blades received
much attention with the availability.of digital computers and the
evolution of numerical methods in the early 1950's, It continuously
developed from easy equations and simple boundary conditions
to the inclusion of all the variables involved. The survey given,
in section 2.2.1. is a gooq guide to the history of the numerical
methods as applied to this problem. Concentration will only be given
to studies employing the finite element method, however explanation
of one paper in each of the other methods will be given,

2.5.1. Lumped Parameter Systems :

The work of Ansari(5’6) is well distinguished in this respsect
and a brief description of his work will be given below.

Ansari gave an analysis for the problem of non-linear modes
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of vibration of a complicated (uniform pratwisted blade of unsymmet-—
rical cross section) cantilever beam, mounted on the periphery of a
rotating disc, The analysis was extended to include the effect of
shear deformation, rotary inertia, and coriolis accelerations, The
analysis was based on a discrete mathematical model that follows

the Ritz energy method and it was possible to obtain the fundamental
frequency of vibration of the blade for such a linear problem, The
author points out that the non-linear terms in the equation of motion -
of the system arises from the Coriolis acceleration present., In
his introduction, Ansari points out that previous investigations
attempted to include such effects as shear deformation and rotary
inertia and came out with complicated equatiohs that are only soluble
for a limited number of cases, others just ignored these terms and
ended up with linear equations,

To produce the discrete mathematical model, the blade was
divided into a series of rigid bodies*, the mass of each body was
assumed to be concentrated at a certain mass centre ih the body so
that the field between two successive mass centres is massless but it
possesses bending; shear, and torsional fle;ibilities.

The blade is identified by an agbitrary reference axis of which
the mass centres are separated by different distances., Four assump-
tions were made to aid the‘analysig,

1- The bodies are long enough in the radial direction that

they could be modelled as beams,
2- The displacoments of the mass centres towards the reference

axis (i.e. Znwardly) are small that squares and higher

*analogous to slements in finite element terminology.
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powers of displacements could be neglected,
3- The mass centre axis is inextentional,
4~ Amplitudes are moderately large and therefore any deviation
from the vibratory modes of the corresponding linear system
would be small,
. - . *
By defining a set of axes as given by Myklestad the positions

and velocity vector for the i-th mass centre could be written as,

rj Xy + yj+ rAVau

(2.58)

Ty = ui 1+ vi j+owk

where x,Yy, 2z, and u,v,uw, are defined in terms of gecmetry,
Expressions for the kinetic energy of translation and the kinetic

energy of rotation are given by,

2 2 2 :
KEj ¢r = % mj (ui + vi + wi) (2.599)

where the subscript ';' denotes the i-th section, also,
27 V74 2 17 .

2
KEj rot = % (W Aj*wy By +wy Cj ) . (2.60)

where the W's are expressed later in terms of geometry, and
AR s By , and C; are moments of inertia,

In the expression of the energy of rotation, the products of
inertia were neglected since they are numerically small and tﬁey
introduce unwanted complication,

The total energy will be given by the sum of equations (2.59)

and (2.60)

- 2.61
KEiotal 1 = XEi tr * KE&§ rot (2.61)

and for the whole blade,

n
KE4otal ™ EE; KE4

*"NATURAL MODES OF HELICOPTER BLADES", report written for Bell and
Helicopter Company, Fortworth Texas, Unpublished.
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After substitutions, a final but long expression for the total
kinetic energy was given,
By omitting all the terms that lead to non-linearities and

excluding effects of rotation, the expression for the kinetic enerqgy

could be written in matrix form as:

< (3 [n)3]

where { & } is the vector of velocities,

and [M] is a symmetric inertia matrix which is composed of

partial matricies [Ei]

i
= \ 4

ceceee(2.63)

A generalized mass matrix was given by:

,["' ]= [”TH"' H“ ] (2.64)

where [U ] is the system modal matrix (as was called by Ansari)
/ ’ . 5 .
Pointing out to a previous reference of Ansarl( ), this

investigator gave an expression for the potential energy that

includes the contribution to the centrifugal force field as

wvhere (»J is the Jj-th natural frequency of the linear rotating

blade, corresponding to the j-th normal mode.

-
my 0 mirzi 0 8]
m m; T
i ity; 0 0
-] T (i 2)+n;) 0
m.|= mij{r, +r,“)+A; 0
. 2 2 .
SYMMETRIC \\\\£Bi81n 31+Ciccs Oi) , (Bi-Ci)cos&is.mQi
\ 28 s 2o N\
~_ (Bicos ui+Ci51n Y )
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Applications using the Ritz method to different problems were
given, Two types of problems were discussed;

a) Free vibrations.,

b) Steady state vibrations.

Both cases are based upon enerqgy minimization and expressions
for the harmonic amplituaes were qgiven,

In conclusion, Ansari suggests that the effect of Coriolis
forces is similar to that of a hard spring which gradually becomes
stiffer with increasing amplitudes, Furthermore , the effect of

coupling due to Coriolis forces is significant (range of frequency

Excitation frequency'i

Natural freguency s 1 to 10) at high rotational speeds

ratio
encountered in blade problems and canrnot therefore be ignored.

292, The Finite Difference Method:

At present, tha finite difference method is well known for
the solution of differential equations and can be applied to a

large number of problems provided that correct boundary conditions
are used, A number of text books exist on the subject (65’48).
Further it has been considered as a standard numerical method in

much of @he literature (29)

s« It is out of the scope of this text
to attempt a detailed discussion of the finite difference method,
It will be dealt with to some extent in Appendix F through an

attempt to compare it with the fimite element method and an

experimental method in a particular case study.

(24,25)

The author hacd found only two investigations concerned

wvith the vibration of rotating machinery that employ the finite
difference method. Carnegie(za) used a longer version of equation
(2.56) taken from (reference 21). The equation refers to free

vibration of coupled bending-bending-torsion of a pretwisted blade
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rotating with angular velocity & . Eguations (2.55) and (2.56)

were ignored as the assumption is made that vibration occurs only
in the weak plane of bending., Equation (2.56) was further

modified by simplifying assumptions and the finite difference forms
were introduced for treatment by matrix iteration techniques.

Two meshes were generated; a ten section mesh was used in the

early stages and a twenty section mesh was used later on. Boundary

2
Condition§ for the blade were - x = ; = 0 at the root and ; Q

=0
at thelfree end, The results were shown earlier in figures 2-3

to 2-5,
(25

The second investigation ) dealt with the vibration
characteristics of non-rotating tapered blading., The work of the
paper was divided into three parts,
a~ The vibration of a uniform beam of rectangular cross section
was considered in order to develop the ﬁethod of ana}ysis
and to obtain an estimate éf errors involved by comparing
the results obtained by other investigators.
b~ For beams of square cross section at the root, subjected
to various width tapers in the range of -0.75 and 1.0
and various pretwist angles between 0 and 9C degrees, the
frequency parameter ratios and mode shapes are presented
for selected values of taper and pretuist,
c—~ The effécts of both width and depth of taper on the
vibration of pretwisted beams of square cross section at
the root were investigated,

Based on an earlier paper by the authors, modified equations

of motion were obtained and they represent an eigenvalue problem,

[M{ v} - )‘{Y} (2.66)
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The eigen values and eigen vectors were obtained oy an iterative
procedure and backsubstitution, Oue to the large cors require-
ments such a problem would take, only a small mesh was possible
and mesh sizes of 10,15, and 20 were attempted,

The conclusions drawn were that pretwisted tlades execute
coupled hending--bending vitration since for equare roc: cross
sections the centroid coincides with the centre of flexure, further,
the variation in the frequency of vibration of a uniform beam due
to pretwist and the ratio of width to depth of the cross section.
The principal flexural rigidities of a tapered beam of otherwise
uniform cross section will be unequal except at the root. When such
a beam is pretwisted coupling occurs between the bending motions in
the two mutually perpendicular planes containing the xx and yy axes

of the root cfoss sections, The degree of coupling is a function

of taper and angle of pretuwist,

2.5.3. The Finite Element Method :

Probably the earliest finite eiement study that mentioned
turbine blades was that of Ahmed et al.(1) in 1970, They introduced
a new thick shell element for vibration problems thzt can be used
for highly distorted shapes such as turbine blades., Unfortunately
the element was intended for the free vibration of stationary bodies
only, Never the less the investigators used it for a test problem
on the vibration analysis of a turbine blade. Discripancies of 20%
on lower modes and up to 30% on higher modes from experimental
results were obtained. However it was stated that the element
suggested was not intended for extremely thin sections and hence this
big difference with experimental results,

The earliest finite element work concerned with the problem
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of vibration of rotating blades was that of Dokainish and Rawtani(36).
The two investigators idealised the problem by considering the blades
a2 cantilevers, and since they have a low aspect retio tnen trney uere
treated as cantilever plates rather than teams, their main interest was tr
obtain the natural frequencies anc mode srapes,
The dynamical condition was convertec to zn eauivalent atatina

condition by the use of D'Alembert's principle and hence the stresses due
to in-plane centrifugal forces were included.,

Triangular bending elements were employed for a cuarter of the plate
which was chosen according to symmetry conditions. Three degreesof bending

' a g

freedom were assumed at each node of the triangular elements ( G 3y

8 g’) where '§ ' is the deflection of an arbitrary point on the mid plane
9 x
of the plate and x, and y are the local set of axes for the .elements.

The bending stiffness matrix was obtained following a standard

(124)

finite element procedure as given by Zienkiewicz for the case where

in-plane stresses in the middle surface of the plate are absent, However
due to the presence of in-plane stresses, the strain energy sfored per unit
volume of the element becomes higher than the wusual bending strain energyf
The difference was attributed to "centrifugal strain energy", and hence

the authors arrived at the conclusion that the total stiffness matrix is
equal to the sum of the bending stiffness matrix and the centrifugal
stiffness matrix, The author of this text suggests that the érder of
magnitude of the bending stiffness matrix is very mucn larger than the
order of magnitude of the centrifugal stiffness matrix that in most of the
cases the latter term can be lost when it is put on a computer,

Equating the work done by the external distributed force with

the work done by the nodal forces made it possible to obtain an
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expression for the nodal forces that depend upon the bending mass
matrix, the nodal displacements, and the nodal accelerations.
Finally the two investigators modified the equation of moticn of

the system to the form of an eigen value problem, the eigen values

of which give the values of 1 and of course the
w? 4+ Q2 sin?

eigen vectors will give the mode shapes,

The results were presented in the form of curves sheowing the

variation of the natural frequencies (given as a dimensionless

factor B =w 12 (pt/D)% , D=€Et3/12(1 - “2) ) with the speed
of rotation (wich was again given as the ratio of:

Q / fundamental frequency of the non rotating plate) for different
values of the setting angle and aspect ratio,

Two basic conclusions were drawn; firstly that all the natural
frequencies were observed to increase with the speed of rotation,
This is due to the increase in stiffnéss resulting from the in-piane
centrifugal forces., Secondly, it was observed that the rotating
speed does not produce any significant coupling between the bending
and the torsional modes of vibration. The author of this text finds
a contradiction between this statement and what Carnegie(21) is
suggesting; there exist coupling between the torsional and bending
modes of vibration and the author of this text takes the second view
as the one that is more likely to occur, and some of the results
in chapter 6 indicates clearly this issue,

For quick calculaticn of the natural freguencies of the rotating

blades, the two investigators suggested the use of Southwell coeffi-

cients as given by the equation,
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where, W is the frequency of the rotating blaae,
Wy is the frequency of the non-rotating blade,
Q is the speed of rotation,
S is the Southuwell coefficient,

A list of the above mentioned coefficient was given in a table
in the paper for different values for tne setting angleB (the
angle between the plane of the rotation and the plane of the plate)
and the rotational speed. It should be mentioned at this stage that
Carnegie(za) suggested that the square of the frequency varies
linearly with the square of the speed of rotation and he was able
to prove it experimentally, this of course confirmed equaticn (2.67).

In a more recent work(17) the case of rotating solids was
discussed through the development of an isoparametric solid element
for the free ;ibration problems, Boséak and Zienkiewicz suggested
that the effect of initial stress due to centrifugal forces or due’
to the second order strain components and, when the displacements
are small, it manifests itself through a 'stress stiffness matrix",
which can be handled by an iteration process(124). The problem
6? rotation was idealized by assuming a rotating coordinate axes
systém, and thus the rest of the formulaticn follows the same lines
used for problems with stationary axes set, The formulation included
the effects of centripital and Coriolis components of acceleration
but these effects were excluded at the solution stage due to the
argument that coriolis acceleration components iniroduce complex
terms, Omission of these terms was justified by comparison with
experimental tests within the practical operational speeds (further
details are given in Chapter 4),.

The effect of Gauss integration on the accuracy of results was

investigated and it was concluded that for stiffness calculations
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a set of 2x2x2 Gauss points is more accurate than a set of
3x3x3 UGauss points, During the course of this study the effect
of Gauss integration was also investigated by the autnor of this
text, see chapter six.

The two investigators studied two different types of problems
and were able to combare their solutions with experim=ntal work that
had been carried out on these problems, The problems were,

a- Problems involving stationary cantilever plates and blades.

b- Problems involving rotating cantilever plates and blades,
Both types of problems have been experimented on and the results
of the present investigation were compared with a number.of experi-
mental studies that were described earlier in this chapter, 1t was
found that most of the results agreed‘with each other to within 1%,

Gupta(43)

was more concerned that such problems as those related
to rotating machinery of free spinning structures would take very
large core sizes and he suggested é solution £hat follows the éturm
sequence method, This is an interactive method that finds only one
eigen value at a time,

(112

Trompette and Lalanne ) formulated expressions for the

kinetic and potential energy for a three dimensional rotating solid
element including large strains.,

A turbine blade was modelled from isoparametric solid finite
elements (24 nodes per element). Provision was made for the root
since idealization by isoparametric finite elements for the
exact shape of the root is fairly elaborate and increases the sizs

(59)

of the problem drastically. Instead spring elements were used

at the root, Temperature calculations were allowed for to be

included using the Rayleigh quotient method. Also, the Rayleigh
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gquotient method was used to calculate *he effect of speed on the
natural frequency, Stationary blade vibration results compared
very well with experimental results for the first three modes,
which is expected from a finite element analysis as indicated by
earlier by the work of Ahmed et alg1).

The equations of motion obtained in this investigation was

7)

very much the same as that obtained by Bossak and Zienkieuicz(1
However, no further attempt was'made to include the Coriolis
acceleration component, and in fact it was being neglected at the
solution stage. The simultaneous iterative method was used for the
solution without reducing the number of degrees of freedom of the
system,

(44)

Filstrup divided the state of stress within an operating
turbine or compressor blade into steady-étate and vibratory components,
He used flat shell elements of 5 deqrees of freedom per node on the
NASTRAN finite element program to calculate these stresses., It was
suggested that the steady state stresses (alternatively called
initial stresses) are due to centrifugal forces, pressure acting
on the blade surface, and thermal gradients, but only the centrifugal
forces were considered in loading the blade and neither pressure nor
temperature loading were considered. Two types of meshes were used,
a fine mesh of 400 triangular flat shell elements and a coarse mesh
of 240 triangular flat shell elements.,

Also made, the vibration aﬁalysis of non-rotating blades as
well as for blades rotating at 3600 rev/min,

Both the stationary vibration analysis and the steady-state

analysis follow the same method employed by the PAFEC finite element

program, but the author of this text regrets that no contribution
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was made in.the work of Filstrup to the method of calculating the
natural frequencies and mcde shapes of the rotating blade.

Filstrup suggested that equation (2,67) can be used to relate
the frequencies of the rotating blade to those of the stationary
blades, The value of Southwell coefficient in equation (2.67)
depends upon the geometry of the blade and its position on the disc,
and also it depends on the initial stresses present,

A further practical application was made by this investigator,
its plotting the Campbell diagrams (alternatively called spoke
diagrams- see reference 111),

The blade natural frequencies and multiples of the turbine
shaft speed are plotted against speed so that it then becomes possible
to obtain a complete view of the operational limits, If a certain
speed was chosen then the possibility of resonance occurs if one of
the natural frequencies intersects with one of thé harmonics,

In conclusion, Filstrup suggesté that the use of flat shells
is very suitable for blade idealizations for both low and ﬁigh aspect
ratios for the blades., Further more it was deduced that the natural
frequencies converge more rapidly with finer meshes than do the
displacements which in turn converge more rapidly than ths stressgs.
This means that a coarse mesh is just sufficient for frequency cal-
culations while finer meshes are required for stress calculations,

Probably the earliest intended design of finite elements for
blade vibration applications was in 1973 when Thomas and Dokumaci(104)
described the formulation of improved finite elements for tapered
(105)

beams and later they introduced simple finite elements for

pretwisted blade vibration.

In their first paper the two investigators introduced two



- 49 -

tapered elements for the vibration analysis using & tiermitian poly-
nomial displacement function of the sixth order (see section 3,2).
The idea behind the improvement can be explained as follows; it is
known from the finite element theory {see chapter 3 ) that the
problem working variables can be expressed as a linear combination
of a number of parameters (unknown as yet) which will be approximated
by nodal values, The nodal values must provide continuity over the
whole system, If the number of unknown parameters equals the number
of conditions provided, then, the transformation to nodal values is
unique.However,if in an attempt to refine this approximation the
order of the approximation is increased, then the transformation is
no longer unique, since there uill be many ways of adding more defined
'values. Thus by raising the order of the polynomial function the tuwo
investigators were able to obtain more a;curate results with much
smaller matrix sizes, However, it was concluded that the increase
in accuracy due to a more correct representation of the field dist;
ribution within elements can not make up for the loss of accuracy
resulting from a coarser division. of the field.

Invtheir second paper, Thomas and Dokumaci established a
simple formulation for two twisted finite elements that employ fifth
order polynomials and used them in the calculation of natural
frequencies of pretwisted beams for several boundafy conditions. The
results were compared with an exact methed and it was noticed that
they converged rapidly. One impértant note was given through the
discussions about the presence of negative eigen values which they
attributed to the rounding of errors during the process of preparing

the eigen equation. Ffrom the experience gained throughout the course

of the present study, negative eigen values normally indicate a rigid
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body mode or failure of a particular mode to exist, it is realized
however that in practical terms there is notning like a negative
frequency of oscillation, UWhile working with dimensisnless terms

a negative frequency ratio should indicate vibrations which are

out of phase,

Unfortunately the two investigators did nct include any ~ffect
of rotation in both of their papers,

Like the work of Filstrup which was mentioned earlier in this
section, Allen and Erickson(z) Earried out an analysis of a free
standing turbine blade using the NASTRAN Finite element program,

The stiffening effect of the centrifugsl force field was consicered
by using NASTRAN's differential stiffness option*. Tnis option
allows for a first order approximation for large deformation effects,
such as those considered in beam-column action, The differential
stiffness procedure is done by solving the problem.first assuming

no effect of deflection on loading. Then, using the resulting disp--
lacements normal to the plate elements and the membrane Forceé in
each element, a linsarised first approximation of the stiffening
influence of the membrane forces is obtained in the form of a
differential stiffness matrix, It is assumed that the applied loads
from which the differential stiffness is derived remain fixed in
magnitude and direction during motion of the structure, and that

the points of application move with the structure, The eslements

of the differential stiffness matrix are added to the corresponding
elements in the basic stiffness matrix and the problem is solved

again. It was mentioned that an iteration process of solving and

*Refer to MacNeal,R.H,, "THE NASTRAN THEORETICAL MANUAL'™,NASA SP-221(01),
(1972), and MacCormick,C.w., "THE NASTRAN USER'S MANUAL",NASA SP=222(01)
(1973). It is regrettable that it was not possible to get hold of

NASTRAN Newsletter as it was not public, Author,
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obtaining more refined differential stiffness matricec is necessary
if a higher accuracy is required. The results obtained by the two
investigators were well conforming with the results of actual experi-
ments carried out on the same blades,

Visser et al.(114) and later Schaller at al.(ge) carried out
finite element studiés to obtain the stress and cstress distributions
for a ceramic rotating turbine blade., The study was made with the
aid of a family of three dimensional isoparametric elements of
various displacement polynomials. Mixed or graded elements (see
also reference 15) were used to interface between two different types
of element .

The investigators gave a brief description of the finite element
procedure based upon'the principle of virtual work, It was understood
from the explanation that the blade was assumed stationary and that
the load acting on it consists of a centrifugal force field caused by
a rotational speed of 3600 rev/min, The author of this text finds
that the procedure used is the same as the one employed by the PAFEC
finite element program as given in Appendix C.3.

Tovey(111) in his thesis had included the effect of centrifugal
forces by calculating the radial forces (using D'Alembert principle)
and was able to calculate the stresses by dividing the forces by the
areas at any point in the blade., Then, integration along the whole
blade would give the total stresses, He assumed that no other
stresses are present and he entered the ‘radial stresses' into the
total stiffness matrix of the element, Thus at the end Tovey collected
the total stiffness matrix, made from two components; the ordinary or
basic stiffness matrix without the centrifugal effects plus the

tgtability matrix' which contains the centrifugal effects.
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A more complete analysis based nr the super parametric shell
elements was given by Thomas and Mota Soares(106). The two investi-
gators developed a model for the dynamic analysis of rotating struc-
tures of different shape and thickness, Being shell type elements,
they were found vey suitable for roteting blade analysis. The
analysis accounted for the 'centrifugal mass and stiffness' in
addition to the centrifugal loading vector. The reduced integration
technique was used to evaluate fhe strain energy of the structure,

In a very similar way to the NASTRAN's approach to the treatment of
the centrifugal steady-state stress explained earlier in this section,
the two investigators made their analysis starting by the statement
that the centrifugal force acting on the structure will produce a
'steady—state displacement and oséillatory motion will occur about

an equilibrium position, and hence a non;linear system, They
suggasfed a first approximation as follows; the rotating structure
was considered to have large steady~state elastic diSplacemths wi th
small deformations., Thus the stress and strain tensor can be referred
to the original system of undseformed geometry., On this basis a
Lagrangién enerqgy expression was made. The gyroscopic effect was
aiso included in the final equation of motion and due to its presence

the system no longer stays linear, A good suggestion was made to

separate the linear and non linear terms into two equations, thus

{(5] - (6] + [0]}{90} = {Fc} (2.68)
e [m] {2} [c]{@1}+{[s]-[G]+[o]}{g1}= [r.)] e

where [G] is the gyroscopic matrix,
[0] is the initial stress matrix,

the subscripts (O and 1) derote steady-state and



- 53 -

oscillatory motions,
{ Fci}is the centrifugal loau vector, =nd {F} }is the forcing
function,

Thomas and Mota Soares suggested that at low velocities

equation (2.67) reduces to,

(5] {%}- {re] <

since the stiffness matrix is very big compared to the other two

.70)

IN)

matrices . However at higher velocities an iterative method was
*
suggested ,

The gyroscopic matrix was neglected according to the argument
that it is only proportional to the angular velocity while the other
terms were either proportional to the square of the velocity or
independent. Accordingly, equation (2.69) was reduced to normal

éigen value equation (see also Appendix D),

[m]{§}+ [5]{g} - {F} (2.71)

It should be mentioned that equation (2.71) is only applicable at
low velocities, More over, it is the same form of free vibration
used on the PAFEC finite element program.

(8)

Barlouw studied the accelerations and velccities present

in a structure subjected to compound motions and using finite
element principles he related them to nodal parameters and thus was
able to calculate equivalent nodal loacs. He sucgested that
structures subjected to compound motions such as aero-engines would

normally have gyroscopic inertias acting on the engine rotating parts

due to coupling of the rotational velocities of the engine and

¥it was pointed out that the method follows reference number (8) but
unfortunately no mention of reference number 8) was made in the
reference material list,
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airframe, Such gyroscopic forces would Cause oscillzting stresses
when applied to high speed rotating assemblies and hence increase
the possibility of fatigue failure. Barlow demonstrated the
va}idity of his method by giving an analysis of the stressss due

to gyroscopic and centrifugal forces in an aircraft engine blade

model,

2.5.4, O0Others :

In the previous section, the state of the art of the blade

vibrations was discussed, based upon the finite element method which

included three types of studies;

a- Vibrations of stationary blades.

b- Vibrations of rotating blades.

c— Stress analysis due to the centrifugal lcading of blades.

Houeve£ it was felt necessary before closing. this chapter to
give a brief review of the other available material regarding the
problem of rotating machinery in general which will concentrate
mainly on two pointsj

a- Extra work using the finite element method which include

that of,
(89)

Putter and Mannmer! ~‘; who studied the natural frequency cof

rotating beams using fif'th order polynomial beam finite elements.

Gupta and Rao(43), derived the system matrices of twisted

beam finite elements with linearly varying breadth and depth.

D%ygadlo(Sg) discussed the dynamic model of a rotating gas

turbine disc using finite elements.,

(84)

Newman and Filstrup presented a number of three dimensional

isoparametric finite elements,

(56)

Henry and Lalanne modelled a compressor blade by triangular
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elements and formulated enerqgy expressions for the rotating blades,
C : ‘ (27) A . .
arnegle et al, suggezted an improved method for the quick
convergence of eigen value problems by introducing more deQrees of
freedom using the matrix displacement method.
. . (68) . . . :
Kirkhope and Wilson studied the vibrations of thin rotating
discs and they formulated angular finite elements which have only four
(69)

degrees of freedom and later on they investigated the vibration

modes of bladed discs.

Ulrich Holzlohner(62) discussed transients and time dependent
problems,
(81) . ,
Murty and Murthy presented a finite element formulation
for the natural frequencies of tapered and pretwisted rotors.
... (45) : . :
Filstrup applied the finite element method to a rotating
‘group of lashed turbine blades.
Ku0(70) demonstrated blade dynamics using the NASTRAN finite
element program,

(67

Kennedy and Gorman ) studied the centrifugal .-and thermal
stresses induced in rotating discs using annular finite elements,

Thomas and Belek(107) investigated the effect of the blade
coupling using finite elements,

Rieger et al.(97) presented the dynamic stiffness concept as
a general method for the vibration characteristics of rotor bearing
systems,

Finally a more complete bibliography of finite elements 1is
recommended by Mhiteman(119).

b- Various other studies that include,

(38

Downham ) who concentrated on the vibration monitoring as

a criteria for practical vibration studies.
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. (26) ,
Carnegie and Dawson suggested transforming the differential
equation of motion of asymmetrical aerofoil blades in=o a zet of

simultaneous first order equations and sclving them by a step-by-step

finite difference procedure.

. (91,92
. Rao and Carnegle( »92) wrote a couple of papers regarding the

non-linear vibration of rotating blades using various Ritz processes,
and later on( ) they explained a numericzl procedure based on an
extended Holzer method.

(93)

Rao gave a review of the methods used for the vibration

analysis of turbine blades,

(95

Rao and Banar jee )>used the method of polynomial freguency
equation to study the coupled vibrations of rotating cantilever
blades.,

: (103) _ : C

Swaminathan and Rao formulated -expressions for the Kinetic

energy and potential energy and minimized the Lagrangian obtained
according to the Ritz process and they solved the equations for the
first three natural frequencies.

(80

Murthy and Pierce ) used the transmission matrix method to
predict the effect of phase angle on multibladed rotcr flutter.

Dawson and Davies(sg) presented an extensicn to Myklestad's
method to allow the natural frequencies of lumped mass system to be
obtained.

Murty and Prabhakaran(az) used a lumped inertia force method
to investigate the vibration characteristics of a linearly tapered
cantilever beam.

FU(SS) derived the basic equations for a computer analysis

for an equivalent lumped parameter system which simulates a pretwisted

rotating or non-rotating Timoshenko beam in coupled bending-bending-

torsion vibrations.
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(
Murthy ) used the transmission matrix method to determine

the natural frequencies and mode shapes of rotor clades.
ey 1 o(63) ;
su Lo suggested that there exists non-linezr terms in
the problem of bending vibrations of rotating cantilever beams,
The presence of the Coriolis acceleration is the cause of this
non-linearity., He idealised the problem by assuming the beam
is rigid in bending throughout all its length except at the root
where a spiral spring was used to connect the beam to the rotating
shaft,
.. (54) . . .
Gotham and Smailes studied the particular case of pin
fixed compressor blades.
(78) : : :
Montoya used the Runge—-Kutta numerical integration method
for the coupled bending and torsional vibrations of rotating pretwisted
blades.

(41)

Ewins studied the vibration modes of mistuned bladed discs,
while Whitghead(117) investigated the-effect of mistuning on forced
vibrations,

Schaller et al.(gs) gave a three dimensional study of ceramic
rotating blades and they studied the effect of friction, contact
area; and root fixing geometry on the poot stresses.

De Silva et al,(34) used the finite difference method for the
optimum design of fotating machinery.

Shapiro(100) gave a review of the avilable computer programs for
the vibrations of rotating machinery.

Finally the proceedings of a conference on the vibration in

rotating machinery arranged by the Institute of Mechanical Engineers

and held in Cambridge in 1976 will be pointed out to the reader.
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CHADTER 3

THE FINITE ELEMENT METi<0D

3.17. Introduction

No doubt, the finite element methoc has developed in the past
decade to become the most‘favoured method for engineering design.
The vast amount of literature available maxkes it undesireable to
elaborate on the fundamentals of the method. It will be attempted
to limit the contents of this chapter to the particular points
relevant to this investigation, trying as much as possible to include
the perscnal experience from the application point of view. A number
of text books are available and the author recommends three of them
according to their field of study;
| - K.H. Heubner(64) for a theoretical approach and as a stan-
dard book on the subject.

- L.Jd. Segerlind(gg) for applications,

-~ K.J. Bathe and E.L. wilson(10)For computer implimentation.

(119

any person working on the subject.

whiteman!s ) Bibliography will be found very useful for

3.2, Field Discretization

The field is defined‘as any medium exhibiting a physical change
due to external effects acting on it. A steel structure that is
displaced by an external force could be referred to as a field while
its displacement is considered as. the problem variable. The finite
element procedure involves dividing this field into smaller parts
or elements interconnected with each other by nodes. Corresponding
nodes onN interconnectad elements should have the same value for the

problem variable, so that if the problem variable is displacement
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then two elements sharing a2 node will have the same cisplacement
at that node, Exceptionsz from the above rule can exist, taking

for example a stress element hlaving an average strescs which is
redistributed equally on all the nodes of the element, thus it
wo&ld appear that the same node have a different valiz faor an
adjacent element, The prcblem variable is convayed sy the node

by allowing it to have a number of degrees of freedonr, Thus for
a. problem involving displacements, the maximum number of degrees

of freedom a node can take is six; three of which are translational
in the three coordinate directions, and three corresponding rota-
tional degrees of freedom,

Choosing the elements will mainly be dependent upon the type
of problem, for example in a problem for calculating the deflection
pf_a concrete pile due to a concentrated ioad at the free end, the
pile can be idealized by beam (one dimensional) elements, while
a platform on a ship should be idealized by plate elements which
of course are two dimensional. There are certain situation; where
some elements are preferred to others even though they ére of the
'same dimension group, for example, in problems involving in-plane
stresses the field can be modelled more acurately by using in-plane
slements which have two degrees of freedom per nodz, uhile a problem
for plate vibrations must be modelled so that the elements have some
freedom for flexing out of the plane of the elements, Three dimen-
sional elements are more expensive than other elements since they
involve more matrix operations and larger core sizes. Otheruise,
three dimensional elements are very accurate and can model almost

any field, Special types of elemente are used for various applica-

tions but they are only useful for the application that they are
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made for,

Discretization of the.field into a number of different elements
is normally dependent upon engineering Judgement, but choosing a
simple mesh of elements is desireable for a two fold reason, first
for economy reasons and second to avoid mistakes. The following
rules are found useful;

a- Very small angles can cause problems in calculations and

it is advised that they should be avoided as much as
possible,

b- When using three dimensional elements attention should be
maintained to avoid situations where one side of the element
is 10 times longer than the other side since this will
stiffen the element more than necessary and hence less
accurate results,

c~ Avoid using mismatched elements such as using an element
with one or more midside nodés adjacent to another uhich
has no midside nodes, mixed or graded elements(15) can
solve this problem,

d- Most available literature explain the triangular element,
however it is advised that the quadrilateral isoparametric
series of elements are not much more expensive to used énd
they are more accurate. Probably triangular elemements
are more easy to understand.

The sequence of ordering the elements can affect the size of
the problem (computer core) and the time for solution. For programs
that have a wave method of carrying on the solution it berccmes
necessary to order the elements in such a way that the wave front

is optimized to be as small as possible. The wave front is defined
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as the width of one row of elements attached to each other., Figure
3=1 shows an idealization of a gyro-rotor. The rotor is modelled
by using 8-noded isoparametric axisymmetric elements, A fine
discretization is made, but as can be seen, it is not homogeneous,
the crowded area is where higher stresses are expected and hence
the larger number of elements will provide better accuracy. The
element ordering is shown to meander by arrow heads and the element
numbers are written with bold figures. The widest front is indicated-
by the elements 18 to 23 which are pointed out by the larger empty
triangles, Afterwards the front will be constant, meandering on
groups of four elements, -
Most of the sophisticated finite elemenf programs allow their
'user to define his nodes randomly but uniquely. Later on he can
defihe his elements by reordering the no@es in a topology module,
Gaps between node numbers are preferably avoided to reduce mistakes
and to minimise problem sizes for automatic schemes. It shoulc be
mentioned at this point that a facility for automatié discretization
with limitations does exist on most advanced finite element programs.
With such a Faciiity the user can automati&ally order the node num-
bers, coordinates, wave front, and the may the field is discretized,

So far, the author of this text knows of no facility for autcmati-

cally ordering the element seguence for a comlicated field.

3,3, Interpolation and Transformstions :

In the finite element approximation method a change of a
variabl® within a certain field is assumed to aquire pieceuwise
continuity over the subdomain (elements) via the nodes. Further
more the change of the variable inside the elements is done by
assuming that the change follouws the so called shape functions,

. . . 124
which are functions that should satisfy certain crlteria( ) s
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repeated here for convenience;

a— The shape functions must provide continuity of the field
variable only between the elements (i.e. slope continuity
is not required, or in other words, derivatives of the
change not necessarily be constant),

b— For the displacement approach, the shape function is to
allow any arbitrary form to be taken so that the constant
strain criterion can be observed,

Normally polynomials are chosen for the shape functions for
the simplicity in representing them on the computer and the ease
in numerically integrating and differentiating them. Thus for the
displacement approach which will be adopted throughout all this
work, the displacement vector in any three dimensional body can be

written as:

(v) -2 [u] {u) (1)

i
./

where

{ U } is any displacement in the body and can be taken from
’any continuous equation relating displacements to other external
effects such as loads,

[Né] is a generalized shape function,
while‘{ui} are the displacements measured at the nodes.
In the above equation (3.1) the summation will be taken over all
the elements involved.

The displacements in the element are given DYy

(ue} = [vovpuyT = o] {2} (3.2)

where,

[p ] is a polynomial function whose order and number of
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variables involved depends on the element geometry and accuracy

required,

{ a } is a list of constant coefficients whose number is

the same as the number of nodes on the element,

-

The polynomial terms can be decided by obtaining the

binomial terms for three variables (Corresponding to the three

n -2
dimensional coodinates), { (x+y) + 2 } where 'n’ is

the number of nodes on the elemént. The first of these elements
taken to be of order zero (i.e. unity), and the rest of the terms
will be chosen from the binomial terms taking into account two
priorities,

a—~ Simpler orders come first then higher orders.

b~ Nixeg variables are preferred to pure (single) variables

of the same order. (i.e. x3y is preferred to x4 or
y4 ).

The polynomial terms can be arranged to build a tetrahedron
of which (see figure 3-2);

a- On; edge contains the polynomial terms for one dimensional

problems (one variable only being involved).

b- One side face contains the polynomial terms for 2-D problems,.

Various elements with their polynomial representation are shown
on figure (3-3),

It is noticed that in figure (3-3) the coordinate set EMT was
used instead of the normal coordinate system XYZ, the reason being
due to the use of isoparametric elements, The isoparametric element
family was introduced for the analysis of complicated shape struc-

tures where the sides and faces of the elements can no longer be



FIGURE (3-2)

The polynomial tetrahedron, a guide for choosing
polynomial terms for the shape functions. (dotted
lines represent the X-Y-Z plane, drawn a little curved
to separate them from the external surlaces. Cne
internal point XYZ does exist and ivs link with the
other points and surfaces is omitted to avoid crowding
of the lines.)
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a) 8-noded Quacrilateral.

1 f-t-(z-\- C+E°l+7f
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b) 6~noded Pentzhedrcn.
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c) 8-noded Hexahedron.
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d) 20-noded Hexahedron.

FIGURE (3-3) Some elements used in this investigation with

their polynomial terms, obtained with the aid
of figure (3-2).
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straight, It is due to the fact that numerical inteqgration
becomes very difficult for elements of complicated shapes that these
elements are transformed to a curvilinear set of coordinates
where the new shape of the elements will appear with straight sides
and extends at an equal distance of one unit on both sides of every
coordinate axis and hence the name isoparametric, It will be real-
ized that the integration in this case will be taken betuween the
limits (-1,and1). It just happens that transforming to the new
set of coordinates follows exactly the same lines and rules layed
out for representing the displacement of any particular point on
the element and hence the palynomial terms would be just the same
that it was thought unnecessary to repeat them. Figure (3-4)
.shows the isoparametric transformation of the 20 -noded hexahedron
of figure (3-3) into the new curvilinear. coordinate system leaving
the rest of the transformations of figure (3-3) to the readers
imagination,
Using the polynomial transformation, an analogous equation
to equation (3.2) can be written fof the cqordinate transfers;
« = |o]{a} (3.3)
‘where, x is any cartesian coordinate value on the 'x' axis,
t p ] is a raw matrix of polynomial terms (see figures 3-2
and 3-3),
and {Cl} is a columr vector of coefficients whose number 1is
equal to the number of polnomial terms which again
equals the number of nodes on the element.
The constant coefficientS‘{G.} can be obtained by writing a
number of linear equations which are exactly the same as equation

(3.3) but each has a different value for the nodal coordinates for
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F1GURE (3-4) Transforming the element into the curvilinear

coordinate system,
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both coordinate sets, thus,

o - () for

where, the subscript '' refers tc the nodes,

the matrix [A ]is a square matrix of polynomial terms.

Solving for-[dr}in equation (3.4) above, we get,

to} = (17§l (3.5)

Similar expressions can be written to obtain the corresponding {av}
and {az} for the y and 2z coordinates respectively,
Equation (3.5) above can be substituted in equation (3.3) to

obtain the 'x' coordinate value for any point on the element,

Xg = [p] [A;1] {xn} (3.6)

and in a similar way follous Yo and 2z, thus,

A CN N P O R (5.7)

9 f
and  zg = rP ‘ .A;1] ‘{Zn} (z.8)

3.4, Displacement Elasticity Relationships :

It is established from the theory of elasticity(ze) that the

. *
state of strain at a point can be given by the tensor

Exx Y%y P |
¥x Cyy Yz (3.9)

*This is the only form of tensor notation that will appear in this
text., Tensors for cartesian coordinate systems are a shorter method
of compiling a number of equations, Even though the second order
tensor shown above looks very much like a matrix but every element
of the tensor represent a set of three equations that have three
terms on one of the sides, For further detail see reference 28,
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Specifying *hree displacements U,v,w in the x,y, z directions

respectively it is pocsible to write the strains of equations (3.9)

Oor derivatives of the displacements as follows:

d d R
Exx = 5% ’ E:yy = '5% ) €, = Sl_;' (3.10)
and

du 0

ny = ‘ny :S% + é—vx- (3.11)
D )

Y, = Yy =32 ¢ -D-‘;’j (3.12)
P h)

Vox = Yo =50t %S (3.13)

In the above equations € is the direct strain and Y is the shearing

strain,

Using matrix notation it becomes possible to write the above

equations as,

Exx du/ O x
Eyy ov/Vy.
€, Qu/dz |
{8} = ny = du/dy + Jv/Ox (3.14)
Yy, dv/dz + Ouw/dy
Y, du/Ox + bu/bz

and for finite element approximations we have,
{E} = [B ] {.u } (3.15)

where,

[B‘] is the matrix relating the strains to displacements, and
it consists of differential operators (see reference 57)
{u } is the list of nodal displacements.

assuming linear elastic. behaviour that is, linear stress-strain
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relations, and studying the stress tensor given by

O x Txy Txz
Tyx Oyy Tyx (3.16)
Tzx Tzy Oz2

Where, 'o ' represents the direct stress and 'T ! the shearing

stress, It becomes possible to link the stresses to the strains

via an elasticity matrix [D ] thus,

OXX Exx
Oyy Eyy
(=) = b [o)e} - ()]} o
Txy Yey
Yz Vyz
T2x Yo

For an elastic material there are 21 material constants, the
number which can be figured from equation (3.17) by counting .the
number of elements for the upper half of the matrix [D.] which is
a 6x6 matrix, thus assuming [D ] as symmetrical we have the number

'of material constants equal to,
6 | _
No. = 5 X (6 + 1) =21 (3.18)

However it is known that most materials have the same propertiess in
different directions (i.e. they are 1isotropic) and hence the
number of mon.-zero elements is reduced to 9, thus the final form

of the (D ] matrix will be



-
F2(1—V) 2V 2V 0 0 0
2(1-V) 2V 0 0 0
0 = £ 2(1-V) 0 0 0
2(1+V)(1-2y) 12y .
- 0
SYMMETRICAL 1=2V 0
| 1-2V |

ceceeeas(3.19)

Where, *E' is the constant of elasticity,

and 'Y' is Poisson's ratio.

3.5, Element Matrices (three dimensional)

In this section concern will be given to the derivation of
the stiffness and mass matrices for 3D elements.

In the displacement approach for a discrete system, the
system forces are reléted to the diplacements by the equation,

{F} - [5] {Ui} o (3.20)
where 'F' represents the forces and [S ] is a square matrix called
the stiffness matrix, which is merely the system transfer function.
It should be pointed out that equation (3.20) which is the virtual
work equation in discretized form is analogous to the equation of
a spring.

The stiffness matrix can be obtained from the expression
for the strain energy which is evaluated over the whole volume

of the element by the integral,

SE = éf {E}T{O} dv (3.21)

Using relations (3.17) and (3.15), it is possible to write the

strain energy as,
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SE = %ﬂu}T [B]T [D] [B]{u}dv (3.22)

. - . . : . :
Numerical integration of the above equation is almost impossible

for complicated structures (see also section (3.3.)) without the

introduction of curvilinear coordinates and the change to the
isoparametric Family'of elements. For this family, the elements
are fransformed into very simple shapes in the &M U domain with
details of transformation given earlier in this chapter, in this
case the Kernel [BT][[)] [B ]is a function of E, v ,U and it is
more convenient to write

dv = dx dy dz = ”J]' d€ dm dl (3.23)

where I[J ] is the determinant of the Jacobian Matrix,

-

0x/o%  3y/at  dz/af
[3 ] = | 9/av BY/an.. dz/aq (3.24)
ox/dr oy/ar  3z/3T

-

Hence the final form of the strain energy expression will be agiven

by,

SE = 3 {ue}T [se]-{ue} (3.25)

where the subscript 'e' is introduced to denote the element, and
the stiffness matrlx wlll be given by

=) - 1) / (o) (o)) ot o ex ()

cessssel(3426)

The matrix [A*] is composed of smaller matrices [A-1] arranged
on the diagonal of [A*J . [A—1 ][ A] =[1], and the matrix[A]
is defined earlier in this chapter,

It is found at this stage that proving equation (3.20) above

becomes fairly simple, éince by the theorem of Castigliano, the



- 74 -

differentiation of the strain energy with respect to the displace-
ment gives the set of forces existing in the direction of the

displacement, and hence differentiation equation (3.25) leads to,

- }- [Se]{ue} (3.27)

since [Se] is independent of the displacement, it was assumed =z

“9 a

constant during differentiation, Comparing equations (3.27) and
(3.20) shows that they are identical and that equation (3.26) is
a true representation of the stiffness matrix., The alternative
way of proving equation (3.27) is to minimize the expressicn for
the total potential energy which is normally the strain energy -
plus the work done by the extended loads.,

The mass matrix will be obtained from the expression for

the kinetic energy,

| 02 02 .2
y p(u + v +w ) dv (3.28)

where P is the density, (u, v, w) were defined earlier as the dis-

KE =

_ Nl

placements in the three cartesian coordinate directions, and the

dot (+)indicates differentiation with respect to time. Taking

‘{Ue } = l Uu sV s J ! (3.29)

and using equations (3.6), (3.7), and (3.8) it becomes possible

to write equation (3.28) as

KE = 3 w? {ug}[me]{ue} | (3.30)

where [Ne] is the element mass matrix given by,
[me] - /[NT]p[N] dv (3.31)
v

or in the more detailed way of appendix C,

1 #1 #1 [[a) © 0]
[me] = [A*T]/ / f o {0] o ‘{J]‘ dg dm al [A*]
1 /-1 )
o o )

ceeeeseea(3.32)
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T
where [Q ] = [N* ] [N*‘] and [H*‘] is a polynomizl functior,
written in this way to distinguish it from the generaiized shape

function [N ] .

-

3,0, Merging of Element Matrices-:

The process of collecting the elenent natrices in one system
matrix is called 'Merging'. Once the element meiricez are prepared
as explained in the previous section merging car place based on
the following rules:

a- The element matrices are assumed to te blocks cf data
which consist of a number of terms the position of which
relative to each other is not to be disturbsZ,

b— The element matrices are to te entered on the diagonal
of a larger system matrix one after another according to
the element ordering suggested by the usef (see section
3.2,)e However before transfering the element matrices
to the system matrix they must be changad (transforﬁed)
from local coordinates to élobal coordinates using cdirec-
tion cosines,

c— The element matrices overlap by a numbets of diagonsl
terms which is equal to the number of degrees cof fresdom
being shared between these elements (see figure 3-S).
Thus for two (3D) elements sharing one f-wce cof 4 nodes
each of which has three degrees of freedom, the element
will be overlapped by 4x3 = 12 diagonal terms while the
stiffness matrix of every element will have an order of
n x 3 where 'n' is the number of nodas on the element,

d- Whenever there are terms overlapping, the system stiffness

of that term will be the algebraic sum of the component



FIGURE (3-5)
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Merging of element matrices in the larger

system matrix. Two 8-noded element matrices

are shown to share ) nodes. HNote that for space
limitations each small square is assumed to be

further devided to nine extra smaller squares.

The area outside the element matrices will have

zero terms.
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stiffnesses of the elements for that particular point,

e— The displacements and forces will be merged in the same
manner as that used for the stiffness matrix bearing in
mind that they are column vectors rather than two dimen-
sional matrices .

f— A knowledge of the system bourdary conditions can reaou-e
the size of the system matrices by a certain amount
since a structure that. is fixed to earth by a number of
points can have zero displacements at these particular
points and hence a corresponding infinite stiffness which
substituted by zeroes at the solution stage,

g- The size of the system matrix based upon the above merging
method will seem to be drastical;y large since it will
havé an order which equals S

(NE' X% N007e £ ) = NSF — NCF

lemen

where NE is the number of elements, NDO is the

7element
number of degrees of freedbm per element, NSF is the number
of shared freedoms, and NCF is the number of constrained
freedoms, .However, there are methods which eliminate the
huge number of zero terms that appear below and above the
diagonél of the system matrix and compress the system size,
Further expl gnation on handling large problems will be given

later on in this chazpter,

3.7. Numerical Inteqgration:

It was seen that both equations (3.26) and (3.32) had integ-
ration signs. In most of the cases such integrations can only be

evaluated numerically. Numerical integration has been known for
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a long time, it involves dividing the field to be integrated into
equal parts of known geometical shapes of which the area is easy
to be approximately obtained, thus the sum of all the individual
pa%ts will lead to the value of the integral of the specified
region, Thus in mathematical terms for a rectanguiar approximation
we have,
b n
/ y(x) dx =~ 2 Aj y(x;) (3.33)
a i=1 '
where Aj is the width of a rectangle and y(xj) is the value of
the function y(x) at any particular interval and it represents
the hight of the rectangle, However using equation (3.33) on a
digital computer will consume a relatively long time if good accuracy
is required, hence a faster converging approximation will be
preferable, %he choice is settled on the Gauss integration method
which is suitable for power functions such as polynomial,
The main idea behind the Gaussian integration is that in

the selection of an integration formula such as that of equation
(3.33), it may not be wise to specify that the arcuments (xi) be
équally spaced. The question that is to be asked in such cases
is what choice of the xji énd Aj together will bring maximum

accuracy. In fact(10),

Ai = [b L‘i ()() dx, i = 1,2,3,.0900“ (3034)
a .

where Li is the lagrange multiplier function given by

(x=x5) (x=xq) coveneaX=x5_ 4 ) (Xx=%; 49 Jeeax=x)

Ly (%) = (xi=%g) (xi=x1) wevenealxi=xi -1 ) (Xi=%i+ 1 )eee(xi=xn)

ceessee(3.359)
having the properties Lji(xy) = 0 for k £ i, Li(xi) =1

the arguments X1 ceene Xn are zeros of the nth degree polynomial
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POINTS AND WEIGHTS FOR THE GAUSS

ORDER X. A.
i i
+0,5773502919 1.0000000040
2
-0.5773502915 1.0000000000
+0,7745966692 0.5555555556
3 -0,7745966692 0,5555555556
0.0000000000 0.8888888889
+0.8611363116 0.3478548451
-0.8611363116 0.3478548451
4
+0,3399810436 0.6521451549
-0.3399810436 0.6521451549
TABLE  3-1

INTERGATIGN
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satisfying the condition,

b

K
/ P (X) X dx =20 ’ k = O’ 1, 2, eseecs e n—=1 (3036)
a

thus taking a=-1 and b=1 =& table of points X; and uweights
A; can be produced. Such a table for the Gauss orders 2 to 4 is
shown on table (3-1).,

Finally to evaluate the triple inteqral

+1 41 /41
/// fF(E,Mm,T) dE dm dC
-1 J=1 /=1

it must first be transformed to the triple summation

1 m n
2 > 2 Ay Ag A FOEs 5 M5, Gy )
i=1  j=1 k=1

However due to the symmetrical nature of the isoparametric elements,

the 1limits 1,m,n will all be the same,

(1)

It was shown that a Gauss order of 2 is sufficient for turbine
blade applications and gives better results than the corresponding
order 3., Not withstanding this, Gauss orders of both 2 and 3 have

been investigated,

3.8. Vibration Problems:

The formulation of vibration problems for finite elements goes
in very much the same way as the analytical method. The analogy
can be made by representing the vibrating (not rotating) element by

(3)

a simple damped spring-mass system whose equation of motion is of
the second order given by:
Mu+ Cu + Su = f(t) (3.39)
where M 1is the mass, |
u 1is the displacement,

C 1is ths damping coefficient.

S 1is the spring stiffness.
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f(t) is the time base exciting function.
The analogous descretized guation would be
[ 14 . 1
[me]{ue}+ [ce]{u }+ [se]{ue}= fe | (3.38)
and for the whole system, all the matrices have to be merged to-
gather as explained in section 3.6, to form the system equation
replacing the subscript 'e' in equation (3.38) by 's' for systam.

Simpler forms of equation (3.38) are possible through varicus

boundary conditions such as in the case of undamped vibration, the
term [C ] in equation (3.38) is omittedand further still by putting

fa = 0 for natural vibration of the form,

M]U}+ [S]{u} ={o} (3.39)
assuming a periodic solution for equation (3.39) given by,

{u} = {Uo} cos Wt (3.40)

substituting in equation (3.39) yield

[s]{go} coswt - [N]{uo}. w_z coswt = 0 |
| =([s] - w? [m]){uo_} = 0 (3.41)

Equation (3.41) represent a typical eigenvalue problem wHich has
the necessary condition for a nom trivisl solution of the form shown
in equation (3.30) to appear as,

[s] - ¢ [n]

The eigen values of equation (3.41) gives the natural frequen-

=0 ' (3.42)

cies of the system while each eigenvalue determines a vector which
will give the relative movement of the vibrating structure which

is called the mode shape of the structure at that particular
frequency. A number of methods can be used to solve and evaluate
the sigenvalues and eigenyectors of equation (3.41) ( see referen-
ces 120, 83 ) both as analytical and numerical and at present a lot

of computer programs exist for this purpose. The solution can be
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either to obtain the whole eigen system ur to obtain a specific
eigenvalue, In either case further modification of equation (3.41)
has to be performed before submitting it to the solution stage.

Preparation can be made by first modifying equation (3.41) as

follows:

[s R} - (0] (o) (547
then by inverting {S ]to the other side and letting A =£j% we
get

-1
() () Lo} 2w (300
using the choleski decomposition ( see Appendix D) the matrix [qu]

can be decomposed into

[s ]—1 = [ ﬁr] =1 [ L]'1 (3.45)

substituting in equation (3.44) results

() ) (0] feed o )
[L]—1 [m] {“0} =[L]T {Uo} (3.46)

defining

X = [L]T {uo} | (3.47)

and upon substituting into equation (3.46) the final form of eguation

or

(3.41) will be |

[A]{x}=7\{x} (3.48)
which is exactly the same as equation (D.25) in Appendix D to
which the reader will be referred for the method of solution, It
should be mentioned at this stage that general solution algorithms

are in existance ( c<2e for example reference 121 or 83).

3,9, Arrangements for Large Problems - Economization of the Degrees

of Freedom,

Requiring more accuracy from finite elements means an extra

investment on increasing one or more of the following factors:
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a- Total mumber of elements in the descretized field,

b— Number of nodes per element.

c- Number of degrees of freedom per node.,

Increasing any of the above factors will lead to the same
result which is larger program sizes and higher running expenses,
The latter (expenszs) being a function of the progyram size,
Further more, the type of problem plays a major role in deciding
the program size, for instance vibration problems need more than
double the size of the static problems since vibration problems
require extra space for the mass matrix which the statics problems
would not need at all., In review of the methods used to deal
with large problems, the Author finds three distinct procedures
with regard to the way the problem is tackled,

a- Organizational: It will be seen after reading section

3.6. that the merged element matrices will form a
Conventionally diagonal matrix which consists of a large
number of zero elements off its conventional diagénal.

A smart program writer can make use of this fact and store
the diagonal matrices in a much smaller form which is
normally called the banded form, finally at the solution
stage the matrix is used row by row while the necessary
zero terms being added in their appropriate places mak-
ing use of the knowledge about the way these terms have
been removed in the first place. Another method would

be to use backing store (disc or magnetic tape) to store
data which can be retrisved bit by bit when required. The
third method would be by creating a data front which is

a special way of ordering the elements so that the width
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of the System matrix is maintained to a minimum {see section
3.2, and references 58,59, and 87).

Numerical: Eigen value problems are a good example of

large problems which have a very expensive =2xact solution,
For this reason approximate sclutions are used. Mathema-
ticians and mumerical analysts have devised a number of

these solutions and the best is to refer to their expertise
in this field (see section D.3. and references 9 and 10)

It should be mentioned that some of these methods deal

with finding only a certain eigen value at a time while
others solve for the whole eigen system,

Analytical: A method was divised to reduce the size of

the system matrices based upon personal judgement(124)
or automatically by deciding the degree of freedom with
high ratio of mass to stiffness since these degrees of

freedom have higher effect on the natural frequency using

the simple relation as a guide,

wn (X/"I\S;l— (3.49)

where S 1is the stiffness andM is the mass, and since
our interest is to obtain the fundamental frequency in
most of the cases it is found that the lowest fundamental
is obtained with the highest ratio of mass to stiffness
this approximation is based on the justification that the
engineer always find his way through short cuts to the
required result making his steps simpler through ignaoring
complicated terms which are within the engineering
tolerence criterion. Such degrees of freedom are normally

called 'Masters' or more scientifically independent degrees
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of freedom, Other degrees of freedom will be linearly
related to the independent degrees of freedom and they
are called slaves or again using the scientific termino-—-
logy the dependent degrees cf freedom. This method is
explained in references 57,58, and 61 and will not be
elaborated in hefe. However further reference will be
made in a later chapter,

3610, Centrifugal Loadings

It was mentioned in chapter 2 that most of the existing
finite element programs deal with the centrifugal loading as
being part of the body loads and implementing it is dons by
modifying the force vector in equation (3.20), normally the
body loads are represented by equivalent nodal loads by
assuming it as a distributed load and equating the werk dcne
by this load on the element with the uqu done by the nodes
resu%ts in calculating the nodal loads, Further details will

be found in reference 57 and 58,
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CHAFTER 4

FUNDAMENTAL ~2NALYSIS = VISRATIONS FOR HOTATING FACAINTRY

- Unlike the previous chapter which was 2 general chanter fnr
the finite element method, this chapter will be particularly
devoted to including the centrifugal effects on the calcclation
of the modes and frequencies of vibration for different elements.,
The process which constitutes the major part of thiz work consists
of;

a- fFormulation of equations for a 3D isoparametric element,
b~ Preparation of the system matrices prior to the solution
stage,

c- Solution of equations,

4,1, Kinematic Analysis of a Point on a Rotating Gody :

Prior to the analysis it will be found useful to look into a
simple situation, that of a block sliding along a rotating rod 0OA.
OA is rotating at a speed Q= g3/ dt , which is'not necessa-—
‘rily a constant, 1If the block *B' of Figure 4-1 is situatec at an
instantaneous radius 'r' from the origin '0' (polar representation),
then its cartesian coordinates will be:

X = T cos 9 (4.1)
and

y = r sin ¥ (4.2)

The cartesian velocities and acceleraticns of B8 are obtained
by differentiating equations (4.1) and (4.2) tuwicz with respect to
time, thus,

o i @3
4 = X = r cos 3 - r sin 9 " (4.3)
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and

2 % 2
. ’e . 0 C‘\? '&
9——;=x=rcosﬁ-2rsin0—c——r0050 (—a—t> - r sinvY e

dt gt d t?
or
>°<'='1:c050—2;§2éiﬂ§—1‘92 cosd - rqa sin?¥ (4.4)

and similarly,

y =T sind + 21 R cosy - 1 Qz sin Y + r @ cos ¥ (4.5)

wvhere,

(4.8)
dt

Now by choosing the 'x' coordinate in a way that 3= 0 , then ue
get,

cos ¥ = 1 and siny = O : (4.7)
substituting this into equations (4.4) and (4.5) will give,

X=1% - 1@  (4.8)
and

y=2r1rQ + ra (4.9)
It is apparent from equations (4.8) and (4.9) that there is a
total of four acceleration components of which the first two are
radial or parallel to the rod (equation 4.8) and the other two
which are tangential components are perpendicular to the rod
(equation 4,9). v

Following the same lines of analysis, we now move to the
next problem of the rotating body OA of figure (4-2)., If it is

assumed that a point 'P' on OA is being distorted from its original

position P1 by an angle ¥ = ///é dt due to rotation plus two
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8

X

FIGURE 4-1 Block sliding on a rotating rod

x

FIGURE 4-2 Kinematics of a point on a rotating body
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extra deflectione u and uy in the radial and tangential
directions respectively due to the centrifugal action,; then it
becomes easy to imagine that point 'F' is in an analogous
situation to that of block 'B' of ficure (4-1). There exists
a minor detail however, that is, in the first case of figure
(4-1) the Hlock wacs assuﬁed to be completely independent of

OA in the radial direction while it is forced to move with

OA in thke tangential direction, and hence its a one degree of
freedom system, while in the second case, even if point 'F!

is a part of OA it will be assumed that it is linked to OA

by radial and tangentisl springs that it will possess two
degrees of freedom, The accelerations of point 'P' can be
’obtained by differentiating its coordinates of position twice
withlrespect to time., Referring to figure (4-2), the new

coordinates of position of point P are given by,

2
x = (R + ur) cos J - u, sin § (4,10)-
and '
y = (R + u) sin § + u, cos ¥ (4.11)
= By © and b - Qat (4.12)

Differentiation with respect to time gives,

. . d‘& ' -c_j;ﬁ ° .
x = = (R + Ur) sin 3 gt *.Yr cos v - [ut cos J St t Ut sind ]

e~ (R+u) sin & +Q + &

v

r cos v -‘[ Uy cosd + S+ L.Jt sin< ]
ceceeae(4.13)

and

y= (R+ ur) ccs g N+ L.Jr sing - up sin ¥ - Q + CIt cos ¥

sesesss(4.14)

where,

gd d(B+¥) _ a¥
at dt = &t =% (4.15)
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The second differertiation with rzzpect to time 0 x can be
» . . . : d
greatly simplified if  is assumed to be =z constant and T g,
then

§¥-Q{(Fi+ur) COS‘&'E,%*-L.Jr sin{}}--ur sinﬁ;\?*U cesy

ct r
™ ° C'% .
—[ Q {— Uy mind g?+ FPLLERY }+ up rosV 'C‘k* . 55-r‘5]
000000(4016)
and
e L] L4 0 oo
y = Q{—(R+ur)sin0-g—f+urcos® }+urcos€f—§-—t-+ursin3
. . N
- {Ut cos v %§+ Uy sin v }—ut sin@%g+ Uy cos v

oooooo(d.17)
Again arranging for the coordinate system that the relations of

equations (4.7) are true then equations (4,16) and (4,17) reduce to

K== Q2 (R+up) + U, -2Q0, (4.18)
and

e i o Q? | ‘

y = 2Qup+ Gy - Ut (4.19)

If it is assumed that point 'P' is displaced in the '2!
direction as well then there will be a z component of acceleration
which clearly consists of uz only since the displacement in the
'2' direction is only u, thus the third equation corresponding
to equations (4.18) and (4.19) is,

z = u, (4.20)
In sorting out the accelerations of equations (4,18) to (4,20) it
is found that they consist of three parts:

1- Centripgtal acceleration proportional to the displacements

2- Coriolis accelerations which are proportional to the

velocities,
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3- Relative acceleration= which for~ the rest of the terms,
Using the shape function notation of (section 3.3.) to enable
applying the finite element method, the acceleration vectgor cen be

written in terms of the nodal accelerations as follous,.

a B (0 -1 0]
{a} = {2, )= 5 1 0 [:-:]{’u'} ol oo []{x}
a 00 1] |0 0 0]
1 0 0]
- 2200 1 of [w]{u]} - 2%n (4.21)
00 0

4e1e1. Provision for Rotation About More Than One Axis
It is now wished to obtain a more general form of equation
(4,21) to include the effect of rotation about more than one axis.
However this time vector notation will be used siﬁce the rumber cf
terms involQed is much less than the brevious method. |
Consider the point 'P' to be moving on a rotéting boay of

speed

Q=0 1 + Q,3 + Qk (4.22)

Yy = 2

where S_Z is the total vector and Qx, Qy, and QZ are its

components in the three unit directions 4, J, and k respectively.
The instantaneous position of point 'P' is given by the vector
£=(R+Ur)-ji+ut=,-+uz!<- (4.23)

where R is the original radius of P, figure (4-2) and Ul pUy e U,

1
are the distortions after a time A t,

The velocity of the vector r is obtained differentiating respect

+Q xr (4.24)
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Making use of the unit vector procucts,

ixi= Jx J= kx k

Lx 3= -Jx L = kK
Ix k= -kx J = 4
kx L= -4x k = 3 or i

=

-4

(4,25)

(4.26)

(4.27)

(4.28)

It becomes easy to form the product of two general vectors,

£=X1L+Y1l+21.'.‘.
and
B= x4+ y, 3 + 2,k
 then
AX B =lyyz; =zpy) 2 -(x 2= 2. %) 3+,
i J k
1% Y #
X2 Y2 %

and similerly,

1 3 k

x 2= [0 9 o

R+ur ug u

- (QY u, =S, up) 4 -{ U v, = (Rwr)}i

+{Qx ug - Qy(R+ur) } k

Substituting equation (4,30) into equation (4,24) leads to

_l:'_ = (l.Jr" Qy u, = Qz ug) 4 "{’c‘t + 8 Uy - Qz (Rﬂ"r)} J

(4,30)

e {040 u -0 (Reu) J K (a31)



- 93 -

The accelerations can be found by a second differentiation with

respact to time,

«  dr .
= e+ Qxz
- = (ug v i, -0, B L (i = Q0+ 0, 00) 3
+(u, +Q Uy -Q 0 )k + 2 x g (4.32)

Y

Again making use of the product of aquation (4,.29)

1 Il X
QAxp = Q Q Q,
Gr+ yUz— 2Yt Gt‘ u_+ z(R+Ur) U+ Ug- y(R+ur)

......(4.33)

Expanding anq rearranging gives,

i =[Q5, - 0y + L Qpues 2,u) - Reu)(R7+ 2] &
+[ Qz;’r"'Qx‘:'z+ Q)'{Qz”z"Qx(R‘*'-’r) } "“t(sz+ sz )] J
+[ Q. ‘.’t"' Qyﬂr-r QZ{QX(R+ur) + 'Qy ug }-uz( Qx2+ Qyz )]3_

ececoes(bs34)

Finally substitution in equation (4.32) will give the acceleration

vector,

E = [Ure 200 8,+2,00) 2l 0y up+ Quy)=(8 + u)(? + 02 ) ]

+[:-'.t+ 2(Q Up ~Quuz )+ Qy {Qz uz+ (R +ug) }-ut ( sz+ sz ) ]

co+
+ u,

2R vt - Qpur)+ % { Bl Rvug) + By g J- 0z (24 02)]

00000000(4.35)

Jon

Ix



Initial examination of equation (4.35) shows that it consists of
three different accelerations, relative accelerations proportional
to U, Coriolis accelerations proportional to 2$U and the third
is the centripital accelerations which form the third terms QZIJo
A fourth group of acceleration terms does exist and its terms are
proportional to QFFR which the author of this text calls it
acceleration of position. However these last accelerations will
not appear on the left hand side of the differential equation of
motion and hence will not affect the results., Using matrix nota-
tion , a corresponding but more general equation than equation

(4.21) can be obtained, hencs,

(1 o o] 0 -, Qy.
{a} = o 1 of (W) {t} +2 o, o - (v {3}
0 0 1 2 2 o
[ -@7 Q2 2.9 o9, Q)+
+ Qy R -2+ 922) Q, 2, (n){u}+ Q, | R
20, R,9, @90 Q, Q
eeeee(4.36)

Thus by putting Q = Q =0, Q. = jnto equation

(4.,36) the equation reduces to eguation (4.21)

4.1.,2. A Further Step into Generality

In the analyeis of the previous section it was assumed that
there are radial and tangential components of displacement and

that the axes set was so chosen that the initial position of point
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P has a racius R which is always coinsiding with the radial
component of Adiepia:¢merr “his will complicate the shape functions
and will limit the applica£ion te certain gec ki only and a
more complete analysis can be mads by considering R as a position
vector uf constant length and that the displacements are composed

of components in the‘three cartesian directions thus,

R= r 4+ rod v r,k (4.37)
and
‘—‘ = Ux.& + UyJ + uzl (4038)

Following the same procedure used in the previous section, a similar

equation to (4.36) can be obtained with a more complete matrix for

the accelerations of position, thus

1 0 0] [0 -9, Q]
{a} = lo 1 o (N]{u} +2]9, 0 -9 [N]{u}
0 0 1 _-Qy Q 0
@2+ o0, o |
ol g @9 gn [[W{) -r]
Q, R, Q,0, (22492

or (s} {] [ - 2[(3E} [l {0063 -] o

As was mentioned earlier in this chapter, the accelerations
of position are not included in the left hand side of the equation
of motion and hence they would not affect the results, Equation
(4.39) has standard shape functions which are used for a genasral
3-D brick finite elemenﬁ while the shape functions of equation

(4.36) have to be modified to care for the non-standard displacements.
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4,2, Formulation of the fMzin Esuation of “otion :

In the previous chapter generzl comments on vitration problers
were niven and methods of soluticn with limitaticns an< toundary
conditions were discussed., Also the discretized form of a general
vibration equation was given by equation (3.38) which is repeated
below for convenience,

[m]{'u'} + [c]{u} + [S]{u} = {F} (4.40)

where Vl] is the mass matrix.

()

is a modified stiffness matrix

o

[
(5]
[ ] is a Coriolis matrix resulting from the Coriolis effect,
{F‘} is a force vector containing the internal and external
loads.,

Equation (é.tﬂb looks very much like a general forced damped
vibration equation with [C_]corresponds to the damping matfix.

The derivation of equation (4.40) above is started with the
virtual work process(17), thus

(s){u} - {r} - {o} (4.41)

which is merely the same as equation (3.20) of the previous chapter,

In equation (4.41) [S:] is a generalised stiffnecs matrix given by

the form,

['s] =[[BT][D][B] '(4;42)




and {F} is the load matrix given by:

{F} = [rtNT]{X} dv (4.43)

The dynamic forces are Caiculates with the aid of C'ilembert's
principle and body forces could be written as:

{x} = p{a} | (4.44)
where p 1is the density and { a:} the present accelerations as
given by equation (4.21) or equation (4.,39).

Substituting equation (4.44) into equation (4.43) results
in,

{r,} - [ Ln]e{a} o (4. 45)

v
substituting equation (4.21) or equation (4.39) into equation
(4.45) then into equation (4.41) gives the final form of the
equation of motion,
[m]{uy + 2 [c]{o) + ( [s] - [sT] ) [u} ={a,}r
ceseselb,46)

where the matrix [ C] is the Coriolis acceleration matrix given by,

| T

[c] = //[N ]p‘[Q1]{N} dv (4.47)
v

is the centripital acceleration matrix,

[ o [o]l0] o

The two matrices [§21] and [S}z] are matrices of speed components
. 2
as defined by equation (4.39), [S?z] = [521 ] .
Knowing from a glance on the matrix [§?1 ] that it is skeuw

symmetric, it becomes easy to understand that the Coriolis matrix

is also skew symmetric,




- 08 -

The right hand side of ecuation (4.46) contains the term
[ @, ] R uhich is not a function of the displacement but it
represents a prescribed body force, which can be treated statically
together with any other prescribed forces present, The first step
of the calculation must therefore be static analysis that is based

L

on the original ecusilon (4,41, from which an initial stress matrix

[

LO ] is obtained as

e -

o, I '[xyI IXZI
[°] = o, 1 Ty, (4. 49)
(symmetric) a, 1

where I 1is a 3%3 identity matrix,

The second step would be to calculate the geometric stiffness
matrix [Sg] given by

[59] = [GT][O][ G_] dv | (4.50)

\J

where the matrix [G] is a matrix defining detrivatives, it is
related to the matrix [B] of equation (3.14) simply through

(124)

their definitions. The reader is referred to Zienkiewics for
more detail about the geometric stiffnessvmatrix. The writer finds
references (17) and (125) rather confusing and are inconsistant in
defining the matrix [G ] or the representation of the geometric
stiffness matrix,

Having obtained the geometric stiffness matrix, the right hand
term of equation (4.,45) could be transferred to the left and the
equation can now be written in a more general form:

[M] {6} + 2 [c]{5) + [s7]{u} = {o} (4.51)

where

[5,]= [s] - [s ]+ [Sg] (4.52)
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4,3, lMethoo of Solution:

Equation (4.91) represent a Hermitian eigen value problem to
which a number of solution methods are asvailable (see references

120, 10), among the solution methods are

a- Sturm sequence methoc (42)

b- The me thod of iliewmark (30)

c- Recurrence formulas (124, 64)
(121)

d- Medified QL Algorithm

It should be mentioned at this stage that most of the
investigations dealing with centrifugal effects had omitted the terms
proportional to the wvelocity such as the damping terms ﬁr specifi--
cally the Coriolis term inorder to reduce the problem to an ordi--
nary eigen value problem such as that of equation (3.41). The
PAFEC finite element program solves equation (3.41) by using the
QR Algorithm,

The work of this text will follow a mocified QL Algorithm. By
shifting the eigen equation to an upper Hessenberg form, the
QL method is used to solve this equation and finally back substitu-

tion is used to obtain the eigen system of the original equation.

4,3,1, Formulation of the eigen equation:

In this section an attempt will be made to obtain the eigen
equation in order to be able to solve it following the procedure
suggested above,

Starting by the suggestion given by reference (42) tc rewrite

equation (4.40) as follows:
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| .o | .
BRI ORECIRE
S < T e P M B et {n} (4.53)
(] O 0 ! [s] (

This is possible by partitioning (see /ppendix L), fogation
(4.53) can be uritten asy

‘A ) 4 )

o= L v e84,
where °"A' is skew symmetric and 'B' is symmetric and positive
definite,

A possible solution of equation (4.54) is,

y = et (4.55)
substituting into equation (4.54) to obtain; |

(B+ paA)y =0 (456 )
‘equation (4.56) can be written in the form

(G+ YI)u=20 ‘ (4.57)
where G = L1 ALT" , Y=1/p, u)=vfi1; (4,58)
and 'I' being‘the unit matrix and 'L' is a lower triangular matrix
found by the Choleski decomposition of the matrix '8' as explained
in Appendix D, ] |
g = LLT | (4.59)
Equation (4.57) represent the eigen value equation with the

real matrix 'G' to uwhich the above mentioned solution procedure

can now be applied.

4,3,2., Reduction to Upper Hessenberq fForms

Prior to the explanation of ‘the reduction procedure it will be
necessary to lay down some definitions,

Consider a system of linear equations such as the one mentioned
in Appendix D (viz equation D.1 or the short form of equation D.2)

which will be repeated here for convenience
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A - 1 ‘1
17 312 « ¢ . 344 Y &
°21 %22 ¢ - ¢ Fpp %2 72
. . [ . [ [} ¢ = o (4‘60)
[ . [ . L) [ L] .
i m2 * mr fi )

Probably the reader is familiar with the solution of such a
system by direct algebraic elimination in which the celumn vector
Y is regarded as fixed and then it becomes recuirec to deternine
all the column vectors for which AX =Y, In these terins the
system represented m linear equations and n unknowns, It will
be found useful to regard the vector Y as a variable, in whicnh
case we get a system of m linear homogeneous equations in © + n
variables:

=Y + AX = 0 (4.61)
Furthermore, it is more convenient to remove the minus sign by

letting V = =Y , to obtain in block form

1 )
[1]{v} + [al{x}=4—){—] =0 (4.62)
A X
or in expanded form,
V1 . . o . "‘811 X1 + ° . "'81n xn =0
V2 . ° ° +821 X1 + . . +82n Xn =0
[ ] L ] . + L] [ ] + L ] [ ] + ] ® L] (4.63)
. . + . « *+ ) e ¥ o o
Vm *ap1 X9t o « *3un X T 0

It seems very trivial to attempt to solve for the v's in
terms of the x's in the system (4,63) since the number of unknouns

is m+tn while the system has only m linear equations, Howsver our
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objective s to znlve for 2s ma-y as poz-itle of the x. in terms

-

of thre v'z snd the rect of *he ¥v's, To <nlve the system (4,63),

it will be exchanged for another system uhich has exactly the

zame solution bul yhich is preferable in sore sence, until ‘he
“0llouing system iz achieved;
x’ 4+ h X /-+ ee e 4 t'- X -~ + C \V +~ ®oee 4 -~ v =O
1 11 *(r+1) 15 *n 11 V4 T YIm Y
o R ees s e o . N ] .
. . o e e e . . L I B B J P
. ° [ 28 N X ] ° PY 000 -
-
-+ + . ‘ ** + C, A =
XEF Bpg X(pe1) ¥ 0ttt ¥ bpg Xym ¥ Cpq Vg T e F Cpp vy = 0
0 x "+ + 0 X = 4 Cpq Vg + iy, v, =0
(r+1) e n t1 U1 teee Tt Tm
o I Y . ° oo e e L4
L4 o006 L ] ] ev e L]
e L 2N BN N J [} [ LR B IR J L 4

0 x(r+15—+ teen v DX ot vt et Oy Y = 0

ceeren.(4.64)

where {1/,......,0’_} is a permutation of {1,.....,r;} , T < m,
s =n~-r, and t=r+1, r is called the rank of the matrix 'A' of
coefficients of the system (4.63), and any solution of (4.64) is
obtained by‘assigning the v's any éet'of valués which satisfy the
last m-r equations and assigning arbitrary values to X(r+1f yeceesX e
In case the values of the v's are specified, (4.54) has a non-trivial
solution if and only if the last m~r eguations reduce to 0 = 0 ,

From the above it becomes possible to conclude that: tuwo
systems of linear equations are said to be equivalent if and
only if the solution of either system is a solution of the other,
In manipulating equations it is wished to be certain that any
operations performed will produce a system that is equivalent
to the original system, There are some operations that are
permissible under this requirement, First, it is apparent
that the solution is not affected by the order in which the

equations are written,
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Hence any permutation of the arrangement of equations will produce
an equivalent system, Second, any eaguation may be related by a
non zero scalar multiple of itself, Since such a scalar has a
reciprocal, the process can be reversed and the systoms are
equivalent, Third, an equation can bte replaced by the sum of

it<elf and any other equation in the cvstem, Thus w2 can

0
)
}=
o]
2
n

summarize three kinds of what is celled Elementary Zperati

for a linear system of homogeneous equations:

a- Permutation of any two equations.

b- HMultiplication of any equation by a non zero scalar,

c— Addition of one equation to another,

It should be mentioned that the three elementary operations
correspond to row operations which are useful in evaluating deter—
minants by replacing a given determinant by an equal determinants
which is simpler, In this context, "Simpler" means that the neu
determinant contains more zeros or.at'least a more useful arrangé?
ment of zeros.

The next step after defining elementary operations is to define
elementary matrices , An Elementary Matrix is any matrix wﬁich
can be obtained by performing a single elementary row operation on
the Identity matrix,

There are three types of elementary matrices , one for each
type of elementary row operation, Recalling the definition of the
identity or unit matrix as given by equation (D.11) of Appendix D
we can describe these matrices ,

a- Permutative matrix: Let Pij be the matrix obtained from I

by permutating the ith and jth rows, Then

Pyg =1 -a35 % a5 —aj;*ag; (6.£5)
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- Fultiplicatinn by 2 censtants Lot "i2) denotz the matrix
obtained from I by multiplying “he ith row bv c#0 . rf.:._(c>
is obtained by adding c-1 to the element in the (i,i)
- pocitior, <o,
Mi(e) = 1+ (c-1) ayy (4.65)
C—~ Addition: Let A*ij denote the matrix obtaimec from 1 by

adding row i to row j where i # j. Clearly,

* .
Aij=1+aij (4.67)
*
The merits of the three elementary matrices pij s mi(c)’ A i

stems from the fact that an elementary row operation on artitrary
rectangular matrix A may be performed by permutating 4 (i.e., multi-
plying A on the left) by the corresponding elementary matrix, MNow
since there is an identity matrix of any dimension, it follows that
there exists three elementary matrices of each dimension. If A is
mx n, then any premultiplying matrix B must have m columns for BeA
to be defined.

The subject of elementary matrices can be expanded to various
types of application and the reader is referred to any text book on
the subject such as reference (51). One application that will be
given here with concern is the reduction of a matrix A to upper -
Hessenberg form, or in other words, to a matrix H such that

Hy; = 0 (i > j*+1) (4.68)
The reduction may be achieved in a stable manner by the use of either
stabilized elementary matrices or elementary unitary matricies,

The reduction by stabilized elementary matrices takes place
in n-2 major steps; immediately before the rth step the original

matrix Aq has been reduced to Rr which is of upper Hessenberg form

in its first r-1 columns., For real matrices the rth step is then
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78 Tnllnu~s

(r)

a) Determine the maximum n® *-e quantitics G im0 e M) e

If the maximum is zero the r-th step is complete. 7therwise

(r) the

this mavinum elerment ic denoted by @(p.1) ,r P°°
/8-

procedure continues ac follous.
'
b) Kows (r+1) znd (r+1) are interchanged then the sane is dore
. -~
with columns (r+1) and (r+1).
c) The following steps are repeated for each value of i from

r+2 to nj;

) (r) (r) . -~
. = N ¥
Computation of i, 141 ajr / ar+i,r s subtrzction of
. (3 + ) . [ ol “_. .
Nj,r+1 times row r+1 from row i and addition of ni,r+1 times

column i to column r+1 .,
The relationship betuween A. and A, , may be expressec in the

form
_ a1 {4
Apsqr = Npyq Ir+1,(r+1) Ar Ir+1,(r+1) Nr+1 (4.69)

where Ir+1,(r+1f. is an elementary permutation matrix and'Nr+1 is

an elementary matrix with

(Nr+1)i,r+1 = Nireq (i=T+250000yn) and (Nr+1)ij== 5;
coeess(4,70)
Otherwise* an alternative procedure can be explained as follows: |
The row and column interchanges used in this reduction effective-
T

+
ly determine a permutation matrix P such that when Ry =Pq R4 P

is reduced no row interchanges are required, It further determines

* 1] is a substitute for the elements of the identity matrix,

;=0 (143 , ;=1 (1=
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2 unit lower trisncular matrix * with r, as its Tirzt columnn such

that,

e

7 N = NH (4.71)

A
uhere H is of upper-Heseenberq form. From enuation (4.71) N =ng H
can be determined directly column by column by enuating in succession
columns 1,2,.045n of the two sides a~c interchanges can b geiler-
mined at the same time,

Reference 76 gives algorithms for the reductinn procedures
explainec tocether with the necessary backsuhstitution procedures,
The algorithms are written in ALGCL and since the PAFEC finite
element program is written in FORTRAN it was necesszry to “ranslate
these programs into FORTRAM in order to be able to use them on the
'PAFEC program, The method used ﬁo check the correctness of the
translated versions was by comparing results from the FORTRAN pregram
with the results of sample prdblems given in the original paper.

The second check which is used more than often in this work wes to-
reverse the process and see whether the origimal data is obtained,

In the present case, the backsubstitution routine was used to give

the required test,

4, 3.3, Solution by *he QL Algorithm

Eigen value problems have their share among the contributions
to the digital solution of problems, There are many dedicated

algorithms in this respect(120’1?1’g’10’83)

and in many cases it is
left to the user to decide which algorithm he is going to use
according to his recuirments, It is known that the LR transforma-
tion of Rutishauser is a powerful method for finding the eigenvalues

of symmetric banded matric es. Little attention however had been

given to its application to the more difficult problem of finding
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the eiqen systein of a gencral unsymmetric matrix, I the matrix

is largye then two nain difficultics are liwely to occur, Firctly,

the triangular decomposition, which forms the basis of this method
)]

is not slways nurerically stable, and secondly the amcuni of

comout~ticen will *e very creat, The Rutishauzer meihod consicte of
. . r T c e
forming a cequence of matrices A( ) wher= A( ) = A the original
. r+1 r . Py s
matrix, and A( ) (r) by decomposirg it into

is derived from A

\
lower and upper triangular matrices , L(r) and U(r) and forming
the product of these in the reversed order, hence giving the

relations:
(2 (5) ()

A(r+1)= U(r) L(r) (4,72)

It can be readily seen that the process consists of a series

of similarity transformations on the original matrix:

A(re1) _ ()7 (0) (0)

e () (M=, () (2 ()

[ 3 B I N ) L o009 L

(4.73)
Thus with some conditions to be fulfilled and as r 5w ,

r)

A( tends to an upper triangular matfix of which the diagonal
elements are the eigenvalues arranged in order of modulus, the first
being the largest.

Knowing from section (4.3.1) that the eigen equation G is
cskew symmetric , it was thought that the easiest way to solve it
is by considering it completely unsymmetric- and solving it by the

(49,50)

QL algorithm of Francis. Francis wrote a similar algorithm
to the L R algorithm (arbitrarily calling it the QL algorithm)

except that the transformations involved are all unitary and can thus
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be expected to be numericzlly stat.e, Francis suggestec that there

are variouc advantages in “irsi convertiry the reiri, to almost-

[«A]

triangular form, the main advantage being the reduction of the
amount of computation involvcc, It will hHe reazlizec tnet lhis idea

wvac ucad in this =tudy ac

y +

. il A3 e gt d R .
1 W2S BXplLZines ZnarLleT L 2ITE L LITEMLUH S

section,
The QR algorithm with chifts of the oricin is cescribec by
the relations:

(T (a(0) _((8) 1y ()

and (4,74)
A(5+1) _y(5) ()T, (0)
thus giving
+
A(241) _ (1) L(5) (o) (4.75)
: (r) . (r) . . . .
where Q is orthogonal, U is an upper triangular matrix, andg

k() (1)

is the shift of origin, UWhen the initial matrix A is of
upper Hessenberg form then it is easy to show that this is true of
all A(r).

By comparing equation (4,75 ) to equation (4,73) it will be
realized that Q in the first equation is analogous to L in the
second equation except thét Q is orthogonal,

If all the K@) are taken to be zero then in ceneral A(r) tends
to a form in which a§f%,i ’ agf%’i+1 =0 (i=1424+..4n=-2) and hence
all the eigen values are either isolated on the diagonal or they
are the eigenvalues of a 2x 2 diagonal submatrix, Origin shifts are
normally used to obtain convergence and for rapid results each
shift should yltimately be close to an eigen value of A(1).

ALGOL programs have been written to solve problems using the

QR method and the reader is referred to reference (121) and reference

(72) for further information. The author of this text has translated
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IS - . s .. ~—r — . —_—~ —_ e - 3 )
thece grocrems i-ito F2RT00 in grder to make tmem compatitle wil

the FAFCZ finitr 2lrment Ton TR AL

nrogram whizch I~ ogritlen 1 Alle
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o)
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As mentioned in the previous section, the method of

.

the tranzlated progrzms 1z by opereting ther on tho toag

o~

(W

cr
]

-~
@9}
A

~o”

- LI . : 1o o3 - . .
o oarisinzl raners 22 well as comparing ther itk the AL

set of subroutine libraries.

4,3,4, Backsubstitution :

Arrays and pointers left from the reduction to upper Hessenberg
form of the original matrix are nermally kept and pessed cver from
one routine to the other until the last stage when the sicen system
of the transformed matrix is obtained. The backsubstitution
process is used to obtain the eigen system of the original matrix

with the aid of these pointers and vectors.
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CHAEPTER  FIUE

PROGRAIING  TICHLICUES . CETAIL

The progran coding that was written for this investination
was prepared in the form of independent scientific subroutine
segm its wilden woula allow any user to select any routine TOD L
particular application that he may need, A large proportion of
the coding was concerned with the solution of a Hermitian eigenvalue
problem, [Manipulation routines are written to allow a ceneral
vibration problem to be solved, that is, the solution routine
accepts three matrices ,

a- A mass or inertia matrix which is proportional to the

acceleration,

b- A damping or Coriolis matrix which is proportional to

the velocity,
c- A stiffness plus/or an initial stress matrix which is
proportional to the displacement.,
and solves for the eigen system of the problem,

To make a more versatile program, it was chosen to write
compatible segments which zllow computation of the above matrices
on the PAFEC finite element program (which is explained in appendix
C) and automatically call the manipulation routines and solution
routines then join the results with the PAFEC program for further

processing such as plotting the mode shapes.

5.1. Necessary Conditions for Compatibility:

It is important to make certain that all the program segments
being written to run with another program such as the PAFEC finite

element program must be compatible to the best possible way in order
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to make the resulting program completely efficient, ouring the

preparation of this stucy, concern wvas given Lo o suntor of rules,

- a= Jhenever possible the written preaoram was maoe to use the
data base (arrangement of the data base is explainec in
appendix C) and to avoid ucsing incepence bt _ifays LI sive
core,

b— The notation used was the same as the PAFEC notation
except for some variables to which evocative names uwere
given,

c—- Whenever possible the PAFEC suite of subroutines was
used to prevent duplication of the effort anu increasing
the number of segments,

d- Although the PAFEC 75 system control mocdule (see Appendix
C) is very flexible and allows a wide range of applica-
tions, a big effort was paid to avoid mixing between.the
phases and minor changes were put to only three phases
individually. These phases are: phase 4 (the automatic
data generation phase), phase 6 where the calculation of
element matrices is made, and phase 7 which is the
solution phase,

e~ Only one user file was created for the necessary alterations
in every phase since there is a separate subroutine library
for every phase,

f- To be compatible with the automatic nature of the PAFEC
program all the necessary changes to existing subroutines
were made in a way that thesechangesupuld not be followed
if the centrifugal module is not in existence.

g- Excessive usage of ccre was avoided where possible,
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2.2, Modifications liecessary Uefore the Matrix Genmeration:

Unfortunately, the PAFEC 75 finite element program does not
fave the facility for calculating the combinzc effect of more than
one loading case, such as comtined mecces and frecuencies uith pre-
scribed stresses or cisplacements. knowing (see appendix C) that

; on ~ ' L : . ~— = -~ SE A : vt sy
the LrOET nalicy ic %o rec o ~r fro fgmne 25T art In decio s ine

protlem as much as possible, it becomes necessary to modify some

of the routines even at earlier stages of handling & problem,
Pctually the changes start as early as the automatic data wveneration
phase in which the user's supplied data is interpretted following
the rules layed out in reference 59,

Alterations for the above mentioned phase (phase 4) took two
different directions. The first of these was based upon the philo-~
sophy that these changes should be performed in a way that allous
the program to work for more than one solution type at the same
time, Thisvmeans that there are tﬁreé areas that must be surveyéd
in order to fulfill these requirements, These areas zre:

a- The automatic choice of the sdlution type.

b~ The prefront data generation routines,

c-~ The instantaneous size of the stiffness matrix.

However, due to the large number of changes that were required,
the first path was unregrettably ignored,

Instead, it was decided to let the system assume one kind of
solution for the early stages and make the necessary modifications
to the later routines, It was decided to fool the system that
there is only the modes and frequencies to be calculated since we

are mainly concerned with effect of centrifugal action on the
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vibratior. charactarictic-, The prescnze of the centrifugal mocule

will be ignored in phase 4 and no body loaos will be assumed,

5.3. Modifications to Obtain the Coriolis and Nther Acceleration

Tro cheanter four tre pececcnry Tormuloticon for the vibi-*ion
of rotating bodies was made theoretically and in this section the
practical implementation of these equations on the PAFEC 75 finite
element program will be explained,

Two alternative methods are suggested for the computation of
the Coriolis and other matrices , each method leads to the same
results but has advantages and disadvantages over the other
‘method,

a=- The first nethod : It will seen by comparing equations

(4.47) and (4.48) for the acceleration matrices (repeated here

for convenience) with equation (3.31) for the mass matrix that

[/ [NTJP[Q1][N] dv | (a.m)'
[[NT]F)[_QzJ(N] dv (4.48)

(NT}P [N ]dv (3.31)

—— — d
= w o
O : % —
— —_—
" n ]

they are identical cxcept.for the small matrices &31} and EQZ]
and it becomes easy to obtain the matrices @?1 ] and [}22 ]
if a coding for the mass matrix exists. Unfortunately this is
not the case with the PAFEC finite element program for which the
method of obtaining the mass and stiffness matrices is explained
in section (C.3.) of the Appendix. Figure (c-1) of Appendix C

shouws @ flow chart of an element routine from which it is possible

to find out a startingpoint of modification for the acceleration
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matricesz , it is the subroutire R3733% uvwhich performs tne post-

and premultiplication by the matrix [A-1] » It wiil be seen
from figure (C-2) which is a flow chart for the subroutine R37008
that carrying out the multiplication is done only onre for one
degree of freedom on. every node on the element followed by a
triple 'U0' loop which is set up to recZistribute tnese values
in their appropriate place on the mass matrix for all the three
degrees of freedom of the node, It is exactly at this pcint the
difficulty arises, A simple insertion of a matrix [521] or
[5%2] cannot be made with the existine coding, A new idea
is suggested, it is to let the mass matrix be prepared first in
the normal way, then splitting it into two identical halves or
matrices by taking its square root. This is possible and the
reader is referred to Appendix D for a more detailed explanation
of a square root procedure, A conventionally diagonal matrix [gzt ]
of size (3x number of nodes on the element)2 can be formed, it

is supposed to have either the matrix [521] or [522]

arrangsd on the diagonal as many times as the number of nodes on

the element while the rest of the matrix will be left null., An
extra post- and pre-multipication can then be carried out to
obtain any of the acceleration matrices ,

So far, it does not seem to be a difficult matter to
carry out the above operations, However, the actual situation
is not as easy as it appears to be since as it is the case with
any matrix handling routine, the square root subroutine makes a
cubic increase of time directly with the increase of the size of
matrices it is handling, thus from initial test runs it uas

found to converge on three iterations only in a short time for
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a ?»? matrir, while for a ?0-rnder elerent —acs matrix of cize
60x60 it was found that subroutines make an average of 50 itera-
tiorc anc aproximately 10 timcsz as much of the .rccessary time Lo
calculate the masc matrix itself, Howevzr, remerbering that the
mass matrix is initizlly prepared by permutation o one thirc of
the *atal airhor af riroreons Af frocdnar ae fre o plemond (‘f.r.
the normal calculation cycle it would take 3 times more than the
shor t cut) the conclusion is that going through the lony windegd
route of splitting the mass matrix is still favourable since it
is independent of the method of calculating the mass matrix and
hence it will be universal for 2ll kinds of elements, The
question that could be posed now is how to compromise between
core and time requirements ? An answer cannot be given without
pointing out to specific computer configuration and accounting
methods, but in general since the sguare root method is unavoid-
ably consuming a great amount of time then it would be advisable
to restrict the work in phase 6 (calculation of eleme%t matrices
to finding out only the square roots and allowing for the rest
to be resumed after a restart in phase 7 (solution).

It should be stated‘i%is stage that putting the necessary
changes inside the subroutine R37008 will make the method limited
to only the 3D group of element which is the only group that
employs this subroutine, instead it wiil be suggested that these
changes take place #t a later stage in the subroutine R14000
(ses table 5-1 for a list of these routines) which is called by
all the slement families at the end of every element generation

in order to store the element matrices on a sequential file,

In the second method it was chosen to write the necessary
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coding and allocz“e ~maore rnrmputer space for the corputation of

the Coriolis matrix and the change to the stiffness matrix inside

the routine R37008 (see table 9-1).

5¢3.1. FEconomizztion of *h& Deqgrees of Freedom and ¥arging of
Matrices

in section (4,4,1) o7 the provicus chapter 1E o5 snown

that a problem will be encountered in handling large core
requirements, hence condensation of degrees of freedocn should
be made. Ffor the PAFEC program this has been done and an
automatic choice of dependent and independent degrees of freedom
is also possible (see references 57 anc 61}, Unortunatzly “hese
facilities are only availsble for the simpler probler of equation
(3.39). :

[ M ] {‘U } + [ S ]{LJ } = { 0 } : (3.39)
Hence it becomes necessary to prove that the extra terms of

equation (4.65) can also follow the economization procedure,

[ Heh - )G} (o) - [} e

7

Referring again to the dynamic equaticn (4.65) and following

(124)

the same lines given by Zienkiewicz s the expression for the

o= ((0)(5))" (o} - (1 42))T o)
(1) {4 (5.1

using D'Alembert principle for dynamic loads, After some transfor-
mation it becomes possible to write the expression for the minimum

potential energy

e B O TN N EO T B
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e |
where { L } is the indejrendert degree:s of freecom array and

{U} = {-g—} | (5.3)

in uhickl{;J} is the dependent degrees of freedor arrzy co that

= .
{:;f = [\] {L? } =, a)
in equation (5.4) {L] is a matrix specifying the dependence of

= - . . £
{u } upon { u-} . Finally ignoring some of the inertia terms( )

we can write:

() -

following the same terminology it becomes easy to note that

r B
rm*] (1)
- L L ‘ hLd
[ f 17T , )
*| |1 I
LC ] - LLJ ~C. L (5'6)
. - J
[ a -
[ S*] _ I T Ps-q 1
S L Sl L

Hence the same procedure could be followed to economize the degrees
of freedom as before,

The reduction procedure is explained and justified in
references 58 and 61 both for the mass and stiffness matrices.
Following the same lines of analysis justification of the
procedure for reducing the Coriolis matrix can also bte established
and need not be further elaborated here,

In writing the reduction routine for the Coriolis matrix some
time saving was obtained by making use of the fact that the Coriolis
matrix is skew symmetr;c. Any multiplication by the diagonal terms
will result in a zero value and hence wherever these multiplcations

occured they were ignored,
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45 for as other core renuirements are considerad, af
automatic workspace generation routine was written by the author
to allow temporary workspace modules to be created on the data
Gace, A large amount of core was saved by the introduction »f
2 small function subprogramn which simulates the matrix [Ci] of
the privious sectics instean of creating the whole mobrix,

Merging the mass and stiffness matrices did not change
since modifications on these matrices are carried out before
the call to the merging routine, but rnever the less the routine
had to be modified to merge the third array, the Coriolis array.
The modification was simple and straicht forwarc., 1t involved
similar instructions to those used in merging the mass matrix,
being effective only in the case of the presence of the centrifugal
module,

Helping function subprograms were written to aid handling
information bétween the data base which is a long unidimensional
array and the other bits of the program, A list of all the sub-
routines involved or written by the author is given at the end of

this chapter, and lists of the FORTRAN coding could be obtained

by request,

5.4, Preparation of the Eigen Equation

Although the procedure used to prepare the eigen equation
follows the general pattern explained in section (4.4.1) of the
previous chapter, ils preparation is more involved with the problem
of core economy and its found equally important to give a brief
idea about it. The preparation is made by the subroutine H52102
which is written by the author. A flow chart of the routine is

shown below while a more detailed explanation is given in appendix H,
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Enter from H524100

'

Clear the data base

!

Create workspace for the second partitioned

array B8 uwhich contains the masc matrix and
stiffness matrix on its diagonal, Add one
extra row for the Choleski decomposition,

Call to KOLINV to find the lower inverse array

{

Transfer the lower inverse array to the next available

space and store it on backing store,

Y

Clear the data base

1

Declare space for the second partitioned array and

fill it with the necessary mass and Coriolis arrays

S

Y

Bring back the lower inverse

array from backing store

Y

Multiply L' by A using an intelligent

k matrix multiplication subroutine Fig 5-2

y

Put the results in A

1

Transpose A and put the result in A

one

Figure 5-1 Flow chart for the preparation of the eigen equation




Set I = 0
|
I =1+ -
Set J =0
1
J=3J+ 1
set X = 0 -
set K = 0
1 .
K=K+ 1 —

Y

Perform the matrix multiplication and add to
the old value X = A(I,K) * B(K,3) + X |

gone through No
ell the columns of the

irst array 'Rl

Put the sum 'X' into the one row workspace
array at position I, f,8. C(I) = X

gone through No
all the columns of the

gcond array 'B'

Y

Set a loop to put the contents of the workspace
matrix 'C' into row 'I' of the first array 'A‘
whose contents are not going to be used again

gone through
all the rows of the

No

)

irst array 'A’

Figure 5-2 Flow chart for a core saver multiplication routine
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S5.5. Scaling the Matrices Prior to Manipulation :

In the forgoing chapters, formulation of various kinds
of the vibration and eigenvalue equations was made, no matter
how different they were all of these equations shared two entities,
the mass and the stiffnesg. Theoretically, solution for these
protlems should give correct answere irrespective of the values
of the mass and stiffness, However, this is not true in practice
since the order of magnitude of the stiffness over the mass is
quite often larger than the number of significant digits of most
digital computers, This reauces the reliability of the numerical
solution procedure unless extra precautions are taken, Recalling
that in section (4,4.,2) a discussion was made regarding elementary
processes in which it was stated that for a set of linear eqguations
a modification of one row could be made by multiplying it by a
constant without affecting the results, Based on this principle
a subroutine can be uritten to scale a square matrix.so that the
majority of its elements will vary around an order of unity, this
is done by dividing every term on the array by a scaling factor

.which is given by the following product equation:

Scaling factor = ( [ aji )1/n s 1= 1,2,3, so0oon (5.7)

where [1 indicates product of all the diagonal terms a;: of

ii
the matrix (A ] which is of ordsr n,
This procedure can be applied to the partitioned arrays of

equation (4.74) which is repeated below for convenience,

(o]
!
—
=2
—)
cs
a——
=
—
o
Coe

TET if + -;—FGT ~-=) =0 (4.47)

The second partitioned erray can be multiplied by a scaling
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factor which will balance it, howsver it can be easily seen that
due to the difference betwsen the mass and stiffness matrices
the scaling procedure will take an average which will not improve
the partitioned matrix at all, Instead only the stiffness matrix
will be scaled and the changes to equation (4.47) will appear as
[ I ]
Q| o g-(m] ) [
) | (0 () W) b

t_/|;_;

0000000(508)
wvhere the stiffness matrix [S] is modified by a diagonal matrix
[ DJ which must be inverted before multiplying it by the first

partitioned array.,

Equation (5.8) can be written as ,

SO R B B CO IR D
)| (mdile) (o) | o IS
ceascee(5.9)
[S*] - (o] [S] (5.10)

[0])(o]) = (1] (5.11)

Thus as the second partitioned array becomes properly scaled
Choleski decomposition can be affected without loss of accuracy,
The alternative approach to the problem of loss of accuracy is the
use of double precision facilities which is normally available on
most digital computers, and the author's reply to the argument

that these facilities increase the core requirements is that
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intelligunt routines can be written to make use of double precision
facilities for rounding og errorsonly and thus optimum use of core
is achieved,

Une final comment on the scaling of equation (5.9) is that
multiplying the firét partitioned array by [0-1] will reduce the
accuracy of obtaining the effect of the Coriolis acceleration

component on the vibration characteristics,

5.6, Solution :

As explained earlier the solution of the vibration equation
goes in three stages for which thrée different subroutines were
written, A general short subroutine was written to allocate
the necessary workspace and make calls to all the other routines
involved including the preparation routine for the eigen equation.
The frequencies of vibration will come out on the imaginary part
of the eigen values after backsubstitution in pairs of equal valus
and opposite sign, while the mode shapes will be the eigenvector
corresponding to the positive imaginary eigenvalues,

Finally to match the results in the PAFEC data base clearing
the data base of the unnecessary modules and putting the results
in their appropriate modules is carried out, The easiest way of
avoiding troublses of loosing modules or shifting them by mistake
is to store the address part of every module information in IBASE
separately from the entry point to the particular solution routines

and then restore them just before returning to the calling ssgment,
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CHAPTER SIX

NUMERICAL APPLICATIONS AND RESULTS

6.1, Introduction:

Calculatian of the natural frequencies of =tatiaonary
structures ic one of the mair facilities avails=zle o~ the PAFEC
finite element program, Calculation and plotting of the
eigenvectors is also possible and it gives the vibrational modes
for the structures being studied, This chapter displays the
effect of rotation on the vibrational characteristics, All the
element families on the PAFEC system can be used for vibration
studies, but for the present investigation concentration was given
to problems involving three dimensional elements since the theory

given earlier in chapter four was tailored for these elements,

6.2, Structurees Used in this Chapter:

A number of different structures will be used in the next

section for the purposed of testing the program, These are:

a- A simple two degree of freedom structure which is
composed of two freely vibrating masses and springs,
figure (6-1), The masses are sandwiched between
frictionless walls to restrict their motion to ons
direction only.

b- A straight cantilever beam of square cross section as
shown in figure (6-2)., The beam has the dimensions of
20x1x1cm and it is fixed radially on & rotating rigid
disc of radius 20 cm, The structure is idealised by five
20-noded elements of the three dimensional isoperametric
family, The material used is steel having the following

properties
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Figure (6-1) A two degree of freedom system,
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Modulus of Elasticity 209><109 ﬁ/mz

Density

7800 kg/m3

Poisson's Ratio 0.3

The constraints used on the cantilever root are only
partial clamping in order to simulate the simple beam
condition for the sake of comparison,

A straight cantilever beam of dimensiors 20x5 x5cm fixed
radially on a rotating disc of radius 20 cm, The beam is
idealised by five 8-noded elements of the t-ree dimensional
isoparametric family, The material is steel with the same
properties as in 'b' above, Constraints are only partial
as shown in figure (6=3),

Same as structure 'c' above with all its dimensicns and
detéil except that full constraints are applied at the
root,

A rectangular cantilever beam of dimensions 15,24 x 2,54

x 0,476 cm (6 x1x3/16 in) figure (6-4), The beam is
idealised by twenty four 20-noded elements of the three
dimensional isoparametric family, The root is partially
clamped,

The arrangement shown in figure (6~5) consists of a cantile-
ver clamped on the periphery of a rotating disc., The
longitudinal axis of the cantilever is parallel to the

axis of rotation, The disc radius is Z0cm and the beam
has the dimensions of 20x5x5cm, The root is fully
clamped,

A pretwisted aserofoil cross section compressor tlacde, figure

(6-6). The blede is idealised by tnirty six 16-noded elevents

of the three dimensional isoparametric family. Constraints arg
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Figure (6-5) Structure 'f': A straight cantilever beam of
dimensions 20x5x5cm, fixed on a rotating disc
so that the longitudinel axis is parallel to the
axis of rotation (top). The beam is idealised by
five B8-noded elements with the base fully clamped
(bottom),
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Idealization of a pretwisted compressor blacde

Figure 6-6
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partislly applied at the root. The material is titarium
with the following propertiec,

115.7 x 10° N/m?

Modulus of Elasticity

Density 4500 kg/m3

0.327

Poisson's Ratio
A low aspgct ratio, rotating tapered cantilever beam of length
5cm, width 2.5cm. Height at the root 0.6c¢m, and height atl
the free end 0.3 ecm, The beam is rotated abtout its root st

a stagger of 450. Ultra high speed of 52000 rev/min was used
for the sake of comparison. The beam is idealised by eight

20-noded three dimensional isoparametric elements, figure 6-7,

6.3, Program Testing:

6.3.17., Testing the Solution Routine:

A number of methods were used to assess and test the

performance of the solution procedure descrited in chapter five

of this text:

a- By comparison with examples given by Uilkinson(121) who

wrote some of the routines in ALGOL thus establishing

the correctness of the FORTRAN translation by the author
of this text, The results agreed up to nine
significant digits,

Testing the program against a known eigenvalue problem,
The problem chosen is structure 'a' of section 6,2. which
consists of two freely vibrating masses and springs
figure (6-1).

Assuming the two masses My and M, to be displace; by the
values X, and X respectively, the governing differential
equations would be,

M 0 ;1 K1 + K2 -Ko x1 0

1 + = (6.1)
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Following any text cook on vibrations leads to the
frequency equation tre soluticn of unich -ises tie two
natural frequencies for the system as

QH = 0,914519 Hz and ub = 3,46224 Hz

Substitution of the above frenuencies gives the following
eigenvectors,
0,669824 1

1 -0,267929
/

The mass and stiffness matrices of cquatior (£.1) were

fed to the solution procedurs to obtain the follcuwing

W, = 0,914519 Hz (“2 = 3,46224}2
\
0.669824 1.0
V1 = and U2 =
1.0 -0,267932

by using an extra segment to calculate the eigenvalue

equation as suggested in chapter 5,

c- Partial comparison of larger problems showing the effect

of rotation without the Coriolis component can be made
with other existing solution packages such as the NAG
library of reference (83) or the existing facilities on
the PAFEC program for free undamped vibration, Starting

by the partitioned equation (4,53) which is repeated

below,
o J(=n])ful [m]o il [a .
(] [ng@} o {{s]]u 0 (4.53)

the Coriolis matrix can be nulled so that the ecuation

turns into that of a free undamped vibration, thus

o |- ;J_}+ m] o } {_0.} (5.2)

M| o (Luo) [0 {[s]]{u 0

and after departitioning
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(-] {5} + [n]{a} = {of (6.3)
[m] {8} + [s]{u} = {o} (6.4)

Ubviously equation (6,3) gives nu information at all since

the two entities on the left hand side cancel each other,
leaving equation (6.4) which is exactly the same as equation
{3.39) or the equation used by the FAFEC system for free
undamped vibration, The affect of equation (6.3) will be

to double the size of the probtlem without any appreciable
change on it, Structure 'b' of section 6.2. was used to

make the necessary comparison,

The present soluticn procedure gives complex
frequencies and vectors., However, the imaginary part of
the frequencies and vectors is found to be at least twelve
orders of magnitude smaller than the real part as should
be expected if the Coriolis component of acceleration is
omitted.

By comparing the real part of frequencies and vectors with
their counterparts obtained by using the existing PAFEC
solution packages it was found that they égreed up to the
seventh significant digit,
Thus from the above tests it is concluded that the new
solution method is accurate and can be used for further studies

of vibration problems,

6.3.2. Testing the Effects of Rotation (Without Coriolis):

Structure 'b' of section 6.2. was used to study the correctness
of the implimentation of the effect of rotation (i.e. initial stress
fisld and centrifugal ascceleration terms) without the Coriolis terms,

The fundamental natural frequency of the stationary structure

can be calculated using the formula
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_ 3.5156 E1
Wstationary L2 P A (6.5)

to be 209,28 Hz, Using enuation (2,39) which is repeated belouw

K=mrotating___/ 2r% pn [l(£)3+_1__(£“ ___4_‘0

’L\
W T el |8 ‘R T 70.6\R \R/ l

stationary

100000(2.39)
to obtain a multiplier which converts the stationary frequency
into that of a rotating structure gives the following values

taking §2= S0 rad/s

K1 1.0243 for stagger angle 00.
K2 = 1,0381 for stagger angle 900.

hence the corresponding rotational frequencies would be

w1 = 214,36 Hz ~ and W, = 217.24 Hz,
Results from the finite element program give
' % error
(”stationary = 209,70 Hz | 0.20
wrotating,stagger 00 = 219.89 Hz 2.36
0o = 225,50 Hz 3.51

(urotating,stagger 90
An alternative method of comparison would be by comparing results

taken from structure 'e' with the graph of figure 2-3b which is

takenfromeapapertnrtarnegie(ZQ). The following figures were obtained
Carnegie's Finite element Percentége
values values difference

Stationary 168 Hz 170 Hz 1.19

Rotating at 183 Hz 184 Hz 0.546

3000 rev/min

Although there is a small error involved in interpretting
values off the Carnegie(za) graph, it would be expected that
structure 'e! would give better accuracy than structure 'b' since

it has a larger number of elements in its idealization,
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Thus the cading for calculating tre frequencies of

vibration of rotating structures is accurate and reliatle,

6.3.3. Tecting the Implementation of the Ccriolis Fffect

-

Three different methods were used to evaluate various acpectics

of the implimertation of the Coriolis effects

a— It is possible to make a qualitative but not cuantitative
evaluation of the Coriolis effects, This took the form
of checking whether the Coriolis effect produces a
positive or negative change on the frequencies of
vibration, and whether it would produce larger effects
on some structures than others, As an example structure
'c' of the previous section has a Coriolis force acting
to soften or destiffen the structure in a tangential
direction in the plane of rotation, as a consequence the
frequencies should drop in value, This effect can be

seen in the results from the program,

Q- o Q= 3000 rev/min Q= 3000 rev/min
- without Coriolis with Coriolis
W= 1170,045 Hz W= 1172,575 Hz W= 1172,461Hz
b- It was pointed out that including tne

Coriolis component would increase the earray sizes by a
factor of 4, This means that problens with more than 60
degrees of freedom can never be solved on the Nottingham
1906 A computer without reverting to a method for the

reduction of the degrees of freedom, Testing the reduction
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procedure for the Coriolis matrix is an easy tack and it involves

comparison between the c‘ructurec tha* are solved wi*hout reduction

with corresponding ones that are solved by removing some of the degrees
of freedom, Tables (6-1) shows a comparison of the results taken

using structure 'f', The small percentage error indicate the validity
of the reduction procedure numerically, Discussion of the recduction
procedure was made in crapter five.

Direct comparison is possible due to the very recent publication of
reference 129. Low aspect ratio cantilevers such as structure 'h' were
used and rotated at ultra high speeds to be able to see the Coriolis
effect. Table (6-2) gives a comparison between the results discussed in
reference 129 and the present results, It is noticed that there is a
persistant difference of about 3-5% between the two sets. This is due to
the better éccuracy'of the 20-noded three dimensional elements over the
triangular plate elements used in reference 129, The Coriolis effect

on the Fipst bending frequency is quoted to be 3.45% in reference 129
while the present investigation calculates it to be 3.48% whicH is a
very good agreement, However in comparing the Coriolis e%fect on the
first torsional mode it is found that reference 129 mentions a very high
value of 2.53% corresponding to a present value of 0.53%. The author of
this text believes that the present value is more accurate due to the
fact that at any section perpendicular to the axis of the beam torsional
vibrations would give velocities in opposite directions, and hence the
Coriolis forces cancel each other. The small discrepancy in the present
results may well be due to rounding of errors or due to the automatic
choice of master degrees of fresdom. Furthermore, reference 129 suggests
that the Coriolis effect is proportional to the speed of rotation while
the other rotation effects are proportional to the square of the speed

of rotation and hence the Coriolis effect never beccmes predominant.



- 143 -

wopasly jo seeabag = 40Q
*

LEL’0 L29°86lLlL Lg9°well l
UOT3B8TNATE] SJTOTI0)
*UTW/A3I QOOE UOT3E30X yo peads 981 °0 £68°96LL | 099°v6LL ! Y3TM uOT3IE}OY
*Wwa p¢ snipex Jo astp buriezox ¢82°0 cgo’sell 299°veli 4
UOT3BTNITED STTOTI0]
B UO PaxTy ‘wogxgxQz 9¢Z°0 gev°LelLl L99°v6lLlL L }NoOYy3 M uofiejoy
SUOTSUBWIP 4O JIBNAATTIUBD gvZ°0 6v0°6e6lLL LtoL*gell l
1ybreays :,4, 8INjoNIys 661 °0 L6v°86LL | 0OL°96LL L UOT3BIGTA 88Ty
400 ¢l 400 TTV
S)IBWAY 10113 9% X X Jaquny epoy UOT3NTOS
ZH Aouanbax g
wopasly 4o sasibap 4o Jaqunu syy BuTaINPaT 3NOY3TM pue Y3TM PauTE3qo S3TNSBI JO UOSTIBdWo]  |-g 8Tqe)




¢ 8580 wWoJI_: A3uanbaay
(¢ @380 woly Adusnbaly - ¢ 8sed woly Asuanbsly)

00l = Agq uanib sT 3208448 STTOTIO] 8Y] =-¢

62l 481 woxy Aousnbaay
(Aouenbay jusssad - gZ| 483 woxy Asuanbaly)

00L * Aq uanth sT e@auaasyyip e8bejuasaad ay| =z

‘10138 TTBWS B 03 8sTJd Buln1b

621 90uUsioyal Jo sydeab ayj woly peqgsidisjuTl ST ¥STaejse ue AQ pspssdsad senTen Aouanbaa 4 -| $sajonN
° z * z ’ UOTSJIO papniouUl
LG°¢ HlZ°Z6Y. Hov voLL * 1SI0] ST107407)
Le g ZH LL°L622 | ZH LG°822Z butpueg ‘butyeioy 5
| pepniaax3
o, [ :t_‘P) [ o~ N . [ ]
S %25 °0 1S 0% °S HB8B°LEGL | ZH 0Z°Z96L uoTsIo] STTOT207
1_ uoTsIoj | uoTsIoj | 26°2 ZH y0°LLEC ZH 95°6082 Butpuseg ‘butiejoy A
%8y ° ¢ WS e 9y °G— ZH OV°GLPL | ZHEV°ZZ6L * uoTsIo|
Butpuag | butpuag G8°¢ ZH 9¢£° 0622 ZH Z8°9912 Butpuag AIeuoOT3E3G L
jussald | 621 49y uoT3ebT3sanu] 62l ON
1098443 ST[OTI0] 82UBJI384JTJ % juasaldg ‘82uaxaysy 8poyjy uoTadTaasaq 8sg8]
‘uTw/nea

000 Z§ uoT3ie3jox 4o pasads pus «omv a1bue 1a866e3s ‘wwg pus esay 38 3ybTay ‘wwg j00a
18 3ybtay ‘wwgz yzpIm ‘wwgs y3bust Jo zanayrTaues GBuyysjzox pazadey €,y, 8IN3INI3S

*uoT3ebTysanuT juasaad 8y} puB EZ| SJUBIBJBI usBM3BQg UOsTIBAWOD f53233448 STTOTIO) (Z=9) a1q8]



- 145 -

This acceptable logic contradicts the results dicslayed in reference
129 on two different levels. First on = prosortionality level,
graphs given in the paper indicates that as the csjeed is increasec
the Coriolis effect becomes larger than other rotational effects
wich does not agree with what was previcusly men%ionec 'the Coriolis

effect never becomes predominant!, Second, referznces (17 and 63)

suggest that on a dirsct level, at any particular speed the Coriolis
effect is never larger than cther rotational effects which again
contradicts the results of reference 129 sucgesting that the latter

may be wrong. The present results agree qualitatively with other

investigations,

6.4, Particular Effects:

6.4,1. Effects of Rotation Without Including Coriolis Calculations
The initial stress field created by centrifugal rotation is
the largest contributor to the changes in the frequencies of
vibration, Beams fixed radially on rotating discs would normally
inérease their fr9quehcy as the spsed is increased due to the stiffen-
ing effect resulting from the centrifugal force field., The centripstal
accelerations have an opposite effect and they tend to so“ten the
stchture and hence reduée the frequencies by an amount which is
normally smaller than the increase brought by the initial stresses.
Table (6-3) shows a comparative study for the changes on the
frequencies of structure 'd' due to the effects of initial stresses
alone, and initial stresses plus centripetal accelerations, A plot
of the square of the frequency versus the square of the speed of
rotation is shown in figure (6-8).
The effect of speed does not always act to increase the

frequency of vibration., In some structures the opposite is
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Table 6-3 Effect of rotation on the frequencies of vibration,

first mode only.,

?peed Frequency Hz % Change from stationary
rev/sec 1st effect 2nd effect 1st effect 2nd effect
0 1199,157 1199,152 0.00 0.00
50 1203,721 1201,961 0.38 0.23
100 1217,324 1210, 348 1.51 0.93
150 1239,663 1224,201 3,37 2.08
200 1270,279 1243,335 5.93 3.68

1st effect is due to the presence of initial stresses only,
2nd effect is due to the presence of initial stresses plus the

centripetal accelerations,

Structure 'd': Cantilever beam of dimensions 20 x5 x 5cm, fixed on

a rotating disc of radius 20 cm,
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Figure 6-8 Frequency-speed plat showing the effect of each
individual component,
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expected, Taking structure 'f' for example, the centrifugal action
will help the beam to flex more and hence the frequencies of
vibration are reduced., The fundamental frequency of vibration was
seen to reduce from 1198.491 Hz when stationary to 1197.,488 Hz when
rotating at 3000 rev/min,

Neither the initial stresses nor the centripetal accelerations
affect the mode shapes of simple beams such as structure 'd’,
Slight changes in the mode shapes may occur due to the choice of
automatic masters which is affected es changes are introduced on
the stiffness matrix (see section 3.9,).

Changes taking place on the mode shapes of structures with
complicated geometry cannot be easily predicted and every individual
case may bs studied on its own, Taking for example the pretwisted
compressor blade shown on figure (6-6), The blade is idealised by
16-ndded elements which are more adaptable than the 20-noded
elements for plate applications, The frequency of vibration of the
first mode was seen to increase from 31,673 Hz to 42,965Hz as the
speed of rotation was increased from 0 to 3000 rev/min, The frequen-
cies of higher modes are shown in table (6-4), Rotation affects
the mode shapes as can be seen on figures (6-9) and (6-10)which

show a comparison for the two lowest modes,

6.4.2, Effect of the Coriolis Component:

By studying table 6-5 it can be clearly seen that the
Coriolis acceleration component has a very small effect on the
fundamental frequency of vibration of structure 'd'. The plot
shoun on figure (6-11) shows that the Coriolis effect is small
at lower speeds of rotation tut gets bigger as the speed is

increased., This non-linear behaviour is expected since the



Table 6-4 Effect of rotation on the frecuencies of vibration of

- 149 -

a pretwisted compressor blade, (Speed 3000 rev/min)

Freouency (Hz) and percentage chance from stationary

\

Rotating Rotating
Mode No. Stationary exc%u?%ng “Change | iMclu0ing | schange

Coriolis Coriolis

effects effects
1 31.67 42,96 35,64 42,08 32.88
2 91.11 140,12 53.7¢ 140,66 54,38
3 219,97 305,31 38,85 307,04 39,69
4 240,58 317,60 32,01 316.57 31.58
5 435,67 491,22 12,72 491,27 12,73
6 589,85 640,63 8.60 636,94 7.98
7 654,06 717.81 g,74 717,75 9,73
8 871.18 908,54 4,28 905,54 3.94




- 150 -

Stationary Rotating

Figure (6-9) Effect of rotation (without Coriolis) on the first
mode shape of a pretwisted compressor blade when

rotated at 3000 rev/min,
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/ *\g | ‘ Kxﬁ*\\‘
I L

Rotating

Stationary

Figure (6-10) Effect of rotation (without Coriolis) on the second

mode shape of a pretwisted compressor blade when

rotated at 3000 rev/min,
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Figure 6-11 Frequency-speed plot showing the effect of each
individual component,
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Coriolis zcceleratinn component is proportional to the angular
velocity while the initial stresses and the centripetal accelerations
are functions of the square of the angular velocity.

It was pointed out earlier that the Coriolis =zcceleratinn
comnponent produces a complex =igenvector which includes the time
anc space domains of the c<egrees 3f freedom on the <tructure. Th2
motion of each degree of freedom is described by three complex
coordinate axes corresponding to X,y, and z. UWhen expressed by
their equivalent trigonometric relations, each complex coordinate
gives information about the amplitude and phase angle of the motion
in that particular direction, thus for the x coordinate we have;

a, + 1 by = a, cos®W,t + by sin Wit (6.6)

(a2 + by? )% cos('wrvt + Py) (6.7)

where ay, and b, are the real and imaginary parts of the x
coordinate,

is the real component of the complex frequency.

¢x is the phase angle = tan | ;5

X

Wy

Thus by plotting all the displacements of one cycle at
different positions in time the vibrational mode shape can be
obtained.

Figure (6-12) shows the first bending mode of an edge line
on structure 'f' both including and excluding the Coriolis effects.
Other edge lines give the same pattern. Due to large phase angles
between the coordinate axes, the first bending mode is seen to
change with Coriolis effects so that instead of vibrating in one
plane as in the stationary cass, it is vibrating in an elliptical

motion. This behaviour is expected since while rotating and



Figure (6-12)

1st bending mode of a rotating cantilever beam

structure 'f'., a- including Coriolis effects,

b- €Xcluding Coriolis effects, Axial displacements

are not plotted.



vibrating in one plane, the Coriolis forces will caucs=2 motion to
occur in a perpendicular plane and hence the complex moce shape
of figure (6-12),

The second bending mode (figure 6-13) is following the same
pattern in that the Coriclis terms are oringing lateral movements,
However, it is important to notice that tre velscity <erms (%) have
opposite directions at the exaggerated sections of fizure (6=-13),
Accordingly the Coriolis forces would have opposite cirections and
hence the total Coriolis effectAon the mode shape is not as pronounced
as its effect on the first bending mode. This is gererally true for
higher mode shapes. Hence ignoring the effect of Coriolis acceleration
on the higher mode shapes is a reasonable engineerinc short cut for
which earlier investigators chose to select. It is felt however thag
ignoring the Coriolis effect on the first mode is not justified due
to the detectable change introduced despite the luw ratio of speed to
natural frequency that was used for this particular problem. The
ratio of speed to natural frequency for the second mode is much lpwer
than the first mode yet there is a very slight change on the mode
~shape indicating that at higher speeds the Coriolis effect on higher
modes must be taken into account,

Comparing plots of mode shapes resulting from the use of more
accurate elemenfs with corresponding plots obtained by using less
accurate elements does not show a discernable difference. This important
issue is discussed in the next chapter,

It becomes evident from the above that the effect of the Coriolis
terms on the mode shapes is more pronounced than their effects on the

natural frequencies,
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Figure (6-13)

2nd bending mode of a rotating — - - SN
cantilever beam (structure 'f'), \\\\

axisl displacements not plotted. a- Including Coriclis
effects, notice the dirctions of motion on exaggerated

sactions., b- Excluding Coriolis effects,
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CHAPTER SEVCN

DISCUSSION

7¢1. Introduction:

Choosing the finite element method for this study was based
upon a comparative study.given in appendix 'F', The finite
element method was compared with other methods such as the finite
difference method and an experimental method. It was found that
the finite element method was more accurate and easier to apply.
The same is true for a large number of engineering problems where
complex geometry is involvéd.

The main reason behind choosing the PAFEC system was its
' availability. A number of problems were studied in chapter six
using the PAFEC system, The author's impression is that the
system is very versatile and has a number of useful ficilities in
addition to obtaining satisfactory results once a suitable
idealization of the problem is made, The author reg;ets that
although documentation for data input is well explained, the need
exists for a Users' Experience Document, Also information for
_ program developers is not adequate.

Choosing the family of three dimensional isoparametric
elements for the study ofvvibrational problems was‘made after
studying the theory and programming methods behind this and other

families of elements.

7.2. Vibration of Non-Rotating Structures:

The elements that were used in all the problem idealizations
in this study were the 8 -noded, 16 —ncded, and the 20 - noded three

dimensional isoparametric elements, The B8 - noded element was chosen
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because it offered a larger computer time and core saving compared witn

the 20-noded element., 1t was found that the penalties of using this
element were its poorer acéuracy and a limited utility fcr modelling
thin blades.

Experience with various problems indicates that the idealization
of the structure'plays a major role in the accuracy o the results,
However it was found that with the best possible combination , the
frequencies of the 20-noded elements were far more accurate than the
frequencies of the B-noded eleménts.(uhich are based on a simpler
polynomial shape function than the 20-noded elements), The B-noded
elements are normally stiffer and idealizing any structure with ore
such element in any one direction results in a much higher
stiffness, This produces smaller displacements for static problems
and higher natural frequencies for dynamic problems. The author
finds that if one 20-noded element is substituted for eight B-noded
elements (to give the same problem size) imprdved frequencies are
obtained. This means that the 8-noded elements are not desirable
for blade vibration problem idealization.

The use of reduced integration techniques will not improve the
efficiency of the é—noded element since they are modelled by a
first order polynomial for which the order of the Gauss integration
does not affect the accuracy of the integration. As for the 20-noded
elements, their response to changing the order of Gauss integration
and constraints is more pronounced than the alternative B8-noded
elements and improvements of 25% were noticed on some of the
results. The difficulty encountered with the use of the 20-noded
elements is that thsy occupy a large area of computer storage which
enforces a limit on the total number of elements that can be used.

Comparisons of the results obtained by these elements with other
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methods havz been carried out by other investigators (references 87
and 58), The results of the present investigation do not differ
from that of reference 58 since both use the same program,

The B-noded elements can be used far the predictionrn zf the moce
shepes of vibration since these were not found to be greatly affected

by the accuracy of the natural frecuency results.

7.3. Vibration of Rotating Structures :

In order to study the effect of rotation on the vibration
characteristics of structures, two cases have bean used;

a—- Straight, rectangular cross section cantilever beams,

b- Pretwisted,.aerofoil cross section compressor fan blade.

The beams had different dimensions and constraints and were

studied with a view to obtaining better information about the
behaviour of the modified elements with changes in geometry. At
the early stages in the preparation of the various acceleration
matrices it was found very useful to use a structure of two or
even one slement to make certain of the correctness of the
modifications introduced. All the mafrices that were preparad
were checked by alternative programs at least once (the geometric
stiffness matrix was checked by three different programs)., Although
a bit tedious, this method of testing was found to be very

convenient,

Exhaustive testing was carried on the pretwisted blade to



- 161 -

make its results compare favourably with experimentzl results,
However a difference of (30%) was still observed anz the author
of this text attributes the difference to the ideal:zation of the
blade root in the finite element model. A recent irvestigaticn

by Nagamatsu et al(127)

was faced with the same prozlem, The

investigators =uggested that the diffzrencs be-uesr -he ckperi-
mental and numerical frequency values was due to ths fact that

the actual roots of the blade.did not satisfy complzte clamping
conditions that were used in the numerical study .

The method used to assess the validity of the results
described in the previous chapter was to split the assessment into
two main parts, the first was intended'to establish the correctness’
of the computer programs by feeding known data to give expected
results, IH the second part, real structures were idealized and
fed to the PAFEC program and the results were compared with other
published material. In both part excellent conformity uag'obtained.

In comparing the results of the present work with the results
of other investigations it was found that when the Coriolis accele-
ration combonent is not included the change of the frequency of
vibration with the anguiar speed follows the Southwell equation
(2.78) which agrees completely with other studies(21’24’36). This
qualitative result is backed up by a quantitative comparison with
the results obtained by Carnegie(24) which showed a very small
percentage error of 0,546 , Rotation may chanje the sequence
of the mode shapes since it increases some of the frequencies and
reduces others but it does not change the first three mode shapes

of straight cantilever beams,

when the Coriolis effects are included, the frequencies
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of vibraticn were not found to change =zpprecizbl, at noderzate
angular speeds. The results were found in agreement with the
work of references(63 and 129). Coriolis acceleraticn comoonents
were found to introduce a complex eigenvector with differing phase
angles for differeﬁt coordinate directions and hence their effect
cannot be ignorec,

It was mentioned that implimenting the Coriolis calculations
requires large computer time and storage, This fact may disccurage

carrying on these calculations due to the small changes brought

TR S BB B BB B Ak

by the Coriolis terms., The author suggests the following economical

procedure to overcome thié difficulty. Since the frecuencies are

not affected much by the Coriolis components,then their calculaticn

can be made accurately by using 20-noded elements without introcducing

the coriolis terms. In a second run, the mode shapes can be obtéined

using a less accurate element such as the 8~noded element which

consumes much less computer time aﬁd core storage even when the - a

Coriolis terms are included,

7.4. Program Considerations:

Solution procedures have been investigated, such as the Sturm

(42) (30)

sequence method , the method of Newmark , and a modified QL.

method(121). The modified QL solution procedure has been found to
give satisfactory results in comparison to other existing prccedures
(8@). Although the present work had criticised the method of

solution that calculates one eigenvalue at a time, the sturm
sequence program suggested by Gupta(az) was attempted but unfortunately
no useful output was obtained. It is believed that there are some

errors in the program such as the repeated statements in the main

segment at the lines denoted by SPINO193 and SPINO194, Nagamatsu et
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al(127)

pointed out that ire above program could ne czac blo
unfortunately they did nmot try to use i, instea:z the,; usec the
surface iteration method,

One of the largest time consuming program z=gme~ts uszed in
this investigation was the square root method for calzulating the

Coriolis matrix, The calculation of trz sguzre -20% =f

(1

r arra/
is an iterative process, the number of iteratiorz of uhich is seen
to increase with the size of the matrix, Thus for thz 60 x 60
arrays associated with the 20-noded 3 Delements, the number of
iterations averaged 35, In compariscon to the normal calculation
of the Coriolis matrix (see table 7-1), it is fcund zie the
square root method takes as much as 4 times more time for the
8-noded glements, and about 9 times as much for the 20-noded
‘elements, Néver the less the author finds that this method has
its own advantage that the programmer can prepare the extra
ma;riceS' independently of the method used to prepare the mass
and other matrices.

Feeding the initial stresses causes some delay since a
reading periﬁheral is allocated to read them from magnetic tape
in éddition to the Calcuiation of the necessary changes on the
stiffness matrix,

Other clocking times show that the time difference rises
by a factor of 50 between the application of the solution routines
suggested in this text and the normal PAFEC routlnes. However
one should not forget two factsj;

a- The PAFEC routines are incapable of solving the full

skew symmetric eigenvalue equation in which the Coriolis

term occurs,
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Table 7-1 Clocking times for various runs on a cantilever of five

3=-D elements,

*

Phase | Nc of CPU Time (Milliseconds)
No nodes 1 2 3 4
6 8 0.03 0.54 0.14 ———
6 20 0,32 13.33 1.47 2.04
7 8 0.46 26.23 26,06 26,33
7 20 2,55 27,38 27,49 29,16

*The numbers 1, 2, 3, and 4 have the following meanings
a- In phase 6:
1- Free vibration of non-rotating structure, ne calculation
"of Coriolis or other matricies.

2- Vibration of rotating structures, calculation of
Coriolis matrix by square root method, initial stresses
not considered,

3- Same as 2 but Coriolis matrix calculated by normal
method,

4- Same as 3 in addition to calculating the initial stress
matrix,

b- In phase 7:

1- Vibration of non-rotating structure, using existing
PAFEC routines.

2, 3, and 4- Vibration of rotating structure, using own

solution routines.
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b— T2 prezent routines run into the trouble of more
processing to obtain more precise results by rounding
of errors in addition to the use of double precision
variables which makes the time used much longer than the
time consumed by the corresponding PAFEC subroutines.
Furchermore, preparation of tie eilgen equation i: longer

and more involved on the present solution routines,

7495, Suggestions for Further Work:

It is unfortunate that most of the time of this project was
spent on ensuring a trouble free program that would suit the
existing PAFEC 75 program, The result was that only a feuw
applications could be studied. It would be hoped that the method
could be applied to more cases in the future. Such investigation
would add to the knowledge gained in the course of this study
concerning the Feasibility of the method,

During the process of writing the computer Coding, great
care was taken to avoid unnecessry usage of computer time and
core, houwever in'debugging the program, less attention is paid to
these principles and nence deviations from them may occur. For
example, a lafge amount of core saving could be achieved in the

preparation of the eigenvélue equation by the use of partiticning

techniques,

(128)

The QZ algorithm is a computer program to solve a

general eigenvalue equation and could be used for the present

investigation. By the time the author became aware of the presence

of such an algorithm he had already chosen his solution programs,
The shortage of time did not allow investigating the advantages

and disadvantages of using it. Further work can be made to test

this algorithm,

R N N
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CHAGC PR  TTr-y

CONCLUSION

=

This study was directed towards obtaining the effects of

rotation on the vibration charscteristics cof structures, Tliumericel

prediction was made by modifyi-g trree dimensional icoparsmeric

finite elements. Comparison with existing work has been made. The

followirg conclusions have been drawn.

1=

Literature search: The theoretical analysec made by Carnegie
were found to be the most comprehensive to date, Numerical
adaptations by Mota Soares were found very suitable for -
finite element application.

Experimentally, a modal analysis procedure can be used

for vibration studies. It was used in this investigation

- for the vibration analysis of the compressor fan blade to

provide a comparison with the results of the numerical
procedure.,

The finite element method: Three dimensional isoparametric
elements ﬁhat are based on displaceﬁent assumptions were
chosen and cdascribed for the purpose of modifying them for
the vibratior studies,

Fundamental analysis: Kinematics of rotating structures
have been developed and the equation of motion was derived,
A study of the solution methods was made and a modified

QL slgorithm was suggested.

Results: It was found that the natural frequencies changed

with the speed of rotation according to the Southuwell

equation (2.78). Comparison with literature shows that in
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e abtcscence of the Loriolic accelers-ion tre resul-s corfor-

with equation (2.39) with a minor difference of 1% only. The
initial stresses were found to be the largest contributor to
the changes on the natural frequencies while -e ce~tripetal
accelerations were contributing s smaller frac-ion. Jhen
Coriolis effects are excluded, t-e lower mode znapes of
rotating straight cantilever beams are not changed.

It was possible to calculate the effects of the “oriolis
acceleration component on the natural frequencies. It uas
found that its effect was to decrease the frequency by
typically 2% at high speedsAoF roctation. The effect increases
with speed but never becomes predominant cver the changes
by the initial stresses., This effect is considered to be
sufficiently small for the Coriolic component to be neglected
in the calculation of natural_frequencies. Comparisaon with
the very recent work of reference (129) gives very close
agreement, The effect of Coriolis components on the modes
shapes can not be ignored and in some cases it becomes

dominant, especially at higher speeds,

An economic procedure feor incorporating the Coriolis effect
was suggested, It consists of calculating the natural
frequencies accurately using 20-noded elements without the
including Coriolis effects, then the mode shapes can be
obtained with good accuracy using 8-noded elements,

General: Carrying out this study has led to other important
side work on three different problems;

a- A time consuming but useful method for obtaining the
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Coriolis and other acceleration matrices from t-e stiffness
and mass matrices independantly from t-e procedure used
for the preparation of these matrices,
b= The introduction of an offse® plate element whicn proved
to be accurate and reliable for various decign applications,
c—- The development of a standarcisation progren for large

FORTRAN library programs, which can be used as a programmincg

aid.
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APPENDIX A

A.1. RAYLEIGH'S METHOD

RAel1.1. Simple Beam Theory

It was stated earlier in this text that the funcamental
frequency of vibration can be obtained with good accuracy by
assuming a suitable elastic deflection curve, ine proof of
this statement is given in (Ref 77)and will not be repeated
in here, however an attempt will be made to obtain the frequency
of vibration for beams,

Taking a small portion of a deflected beam as the ane shouwn
in figure A - 1.

From the geometry of the figure:

= Ox
a9 dR (A.1)

where dv is a very small angle, and 3 is the slope of the
elastic curve.
Assuming harmonic motion, the kinetic energy of the vibrating
beam becomes,
KE max = é/yz dm = % /y2 dm (A.2)
The work done on the beam in the form of elastic deformation
represents the potential energy of thevbeam. Thus if & 1is the

slope of the beam after deformation:

3. 9y (A.3)
dx

the work done is

Wb = PE = %ﬁdﬁ (A.4)

where M is the bending moment,

Recalling that the radius R is related to the bending moment by

the following equation -

U . (A.5)
R £1

which is called the flexure equation for beams,



FIGURE A-1
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Geometrical relatio

deflected peam

ns for a deflected beam
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Upon substituting equations (A.1), (A.3), and (A.5) into equation
(A.4) the expression for the work done becomes
s d?
= i - 1
wo = %/ £7 dx =3 El(a;-é—) dx (Re6)
Equating the kinetic and the potential energies result the

fudamental frequency of the beam

2
2
)
w?2 /El(de o x (A.7)

- /y2 dm

A.2., Extensions for Lumped Mass Systems :

The above mentioned method can be applied for lumped - mass
systems with some extensions as follouws:

For a system with n - degrees of freedom that is moving in its
fundamental frequency mode, the shape of the fundamental mode could
be estimated (say) through experience, and the motion is approximated

'by

X1 ‘Y1
X2 YZ
X3 = v3 X ) (A. 8) |
Xn Yn

in whicth}represents the estimated shape and X is a generalized
coordinate,

By dafinition( 3) , the kinetic energy of a lumped mass
system is a positive de{?inate quadratic form in the generalised
velocities ;1, x;, ....,;n. 1t becomes possible to write an
expression for the kinetic energ} as: |

KE = % {;i }T [mij] { ii} siJ =1, n (A.9)

The elastic potential energy or strain energy staored in a

mechanical lumped mass system is equal to the work done by the
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applied forces in deforming thre system from the posi<ion o' static

equilibrium hence

= ) T .
PE-SE-a-{xi} Fid) , 1= 1,n (A.10)
or
= 1 T .
PE = 3 {Fi } {xi} sy 1= 1,n
AG5u%mING a linear force - displacement relationzaip ue csn writs

{ % }= [Sij] { xi}, i,j= 1,n (A.11)
where, [ Si j] is a stiffness matrix,
If we rename [S i ] al by the flexibility matrix [K i J
we can write equation (A.11) as;
(xi}= [kij] {Fi} isj = 1,n (R.12)
Combining either equations (A.11) or (A.12) with equation (A.10)
will result in a guadratic form in the displacements or forces

respectively

pE:é{xi}T [Sij] {xi}’ a2 m e (A.13)
e =3 {r J1 [y (s caae |

Substituting the transformation equation (A.8) into the expressions

for the kinetic enerqy and the potential enerqy to give:
-3 (o) o] (v} %
2
e -3 v} [s] {v) =

from which we can define a general mass and stiffness associated

(A.14)

wi [m}as{y}r [m ]{y} (A.15)
[s] - {vF [ ]{v]

correspondingly, the general inertia and elastic forces become

]

ri--.g.t_ "a%TE = - [m]x (A.16)
re=——§—f;‘- - ‘[“] X (R.17)

In a similar way a generalized expression for the external force
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acting o» the system can be obtained from the work done by the

external forces acting in a virtual displacement x .

{gﬁ_}-r{Fe;} (ha18)
CX {Yi}T { Fex} , 1 =1,n

than the yneralized force will be

Foy = {Y }T { rex} (A.19)

Finally the equation of motion could be written as

CwD

or

CuwD

L F= - [M]X - [S] XJrFex:D (A.20)
from which an approximation for the fundamental eigen value in free

vibration could be obtained

w? = (s {YI} [Sij]{yl}

LS )| ' 5 i 53 = Tyeua,n (R.21)
L] {YI} [mij]{yi} J A

As was stated earlier in this text (sec 2.1), a close estimate of

the eigen value will be obtained with a fairly good guess of the
mode shape, furthermore the approximate value of the fundamental
. . (109)
eigen value will always be larger than the exact value,
This last statement could be assesed by the fact that normally a
beam system consistsof an infinite number of degrees of freedom
and reducing it to a system with a finite number of degrees of
freedom will imply more constraints on the system which will

only make it stiffer and hence increase the value of its fundamental

eigen valus,
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APPENDIX 5

DEFFINTION OF ThHE CORIOLIS ACCELERATION COMPONE( T

Corsider a rod AB, rotating counter clockuwise about the paint
'"A' with an angular velo city . Assume a block 'C', sliding
radially outwards along AB at a constant speed 'VU' relative to the
rod (see figure 5=1).

After a time interval At it will be feund that the block
had moved from C to ¢ and point B had moved to é thus the rod
makes an angle AJdwith its original position. As can be seen from
the figure, the absolute velocity of the block at its original
position is composed of two components, V along the rod, and r
pefpendicular to the rod, while at the new position the velocity

components will be,

Vp = Vcos(A9) - (r +Ar) « R sin(AY ) (B.1)

radially or along the rod, and
vy = V sin(A¥ ) + (¢ +4r) - ¢ cos( AV ) _ (B.2)
perpendicular to the new position of the rod.

For small angles A9, it is possible to write,

sin(A9) = Ad =0 At,
cos( AY) = 1 {(B.3)
Ar = v At

Substituting relations (B.3) into equations (B.1) and (B.2),
and neglecting higher orders lead to,

Vg = V-1 . 5% » (B.4)

and

Vy=rT. Q + 2.0LQA¢L (B.5S)

Differntiating equations (B8.4) and (B.5) with respect to time

results in the acceleration components,



- 175 -

Q >
N “
. > <
* A
\Q /\X\// Q)
<// //’>
X
\p s 7
/
AN //// b‘\C/
/S 7
s
2,7 \ 0
p o r.
AN \4
t=0
s ]
(%4 > *]
A oAV B
r__ JIC

FIGURE B-1 Crank slider mechanism



- 176 -

A= 1. Q2 (6.6)

and A, = 2V.Q (B.7)

where Ap and AL are radial (along the rod) and tangental (per-
pendicular to the rod) acceleration corponents respectively. Equation
(B.6) represent the acceleration of paint C on the rod with which
the centre of the block is coincident, while the right hand term of
equation (B.7) which is called the Coriolis acceleration component

is the acceleration of the bloék relative to the rod, which can be
seen to result from two effects, first, the changing magnitude of

the tangential component r.Q of the velocity of the block, and

second, the changing direction of the radial component V,
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APPERDIX C

THE PAFEC SCHEME

PAFEC (Program for Autematic Ffinite Element Calculations) was
started in the University of Nottingham in the late cixties.
Initially, it was in?ended to be a research tool to ease finite
elemznt studies, As thefinite elerent method rzpidly developed
to become a chosen method for engineering design and application.
PAFEC was ceveloped in accordance, and commercial users staTtea
to exist, At this point a separate administration was allocated
inside the Department of Mechanical Engineering to mzaintain the
program and support advice for the increasing number of users, As
the number of industrial users increased, the pregram wes further
developed to reduce input information to a minimum with increasing
attention to keep the user as far as poésible from involving in
the internal details of the program or machine instructions. At
present, thé program ig very Flexible; can do alot of automatic
data check and assume defaults when necessary, in addition to the
possiblity of linking users own coding and restart from various
points on the program, In the last gquarter of 1976, PAFEC was
completely commerciallized when the PAFEC group separated from the
University of Nottingham and a patent was affected to all the codes
that were in existance,

The use of the scheme is well documented in users manuals,
both in short and detailed forms(58 to 62) .« But despite the

'systems manual' which was only recently released, the Author of

this text still finds a gap in documentation for the more advanced

user who might wish to add or develop some parts of the scheme,
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C.1. PAFEC 70 + System ancd Associated Preprocessor

This system was the first PAFEC program to appear in package
form, probably it was written for the second gereration of computers,
It had a good simple preprocessor to automatically run the program,
The program used to run in two stages or phases, the first stage
is to read, interpret and store inpi't infarmation; arn in the nacond
stage, element matrices are created, merged and solved,

A prepocessor is a separately running computer program which
can be employed routinely to ease and improve the use of the finite
element processor progreams at an cverall cost saving., PAFEC 70 +
is supplied with a FORTRAN preprocessor "PAFECAA" which reads the
input data and writes a FORTRAN program together with the necessary
machine instructions to run it as a normal program., PAFECAA is
being controlled by another machine interaﬁtive 'Macro’ (PAFECA)
which is a lower level language program written in machine instruction
language (at present GEORGE 3 and 4 for the ICL 1906 computer),

The 70+ system is composed of a general subroutine library
which is used in both stages of operation and an element subroutine
library which is used in the second stage only. Other specific
libraries are in existence, such as mesh generation and drawing
subroutine libraries etc and they are used at different stages
depending upon what is guessed from the users input information.

When running a program, 70+ will store the input data in three
main arrays;

a- CPOOC :- Array for coordinates of position,

Displacement numbers and Oirection
cosines,

b- PLO ¢+~ Array for applied loads, later on for

calculated displacements,
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CLIST :— Data List, an array which is used as a
data base for all the rest of the finite
element date, Pointers are used to
address the start and end of various in-
formation on DLIST and are narmally put

in the opeginninyg of this array,

The reader is referred to the users manual (58) for other

supported facilities and information,

C.2. PAFEC 75 And Associated Processors:

The need for this system came from a number of factors of which

one can

a=—

Ce=-

mention,

The development of mesh generation facility made it possible
have very large problem sizes which gave rise to the need
for means of reallocating the core requirements at various
-stages of running time,

The need of users to allocate workspaces and access various
data during operation

Economization on unnecessary repetitions of complete runs

in the event of errors being encountered or the use of
iteration cycles.

Increase in coding to the extent that flooding the core
became a common event, This of course led to the require-
ment for further classification of coding and more libraries
of subroutines,

Increase in the number of commercial users made the program
developers realize that the program should elaborate more
on reducing the manual work to the degree that even basic

knowledge of programming is not required from the users,
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This raised the need for = neuw DLOZESSCT
f— In addition to point 'a! above, there was an increasing
demand to exchange data between core and packing stnre
to allow more space for larger problems,
g- The develop™ent of the third generatior or computers

-,

- [P S Lo~ ., \ . I : : - — .
male 1t poscel-le "o uze more | 1o St OCNE syste,
;

had to develop in accordance,
h— The need for standardization,
Thus, the new system came with the following features,

a- Modular; Various modules are to hold either initial or
calculated data, The modules are createc internally,
externally, with fixed or variable lengths. Morover,
the modules can be exchanged between core and backing
storé easily and can be erased from either or both of
them,

b- Compact; Only two main common arrays are used, BASE for
carrying the modules, and IBASE to hold information about
the module lengths, positien, and existance on core, in
addition to holding various error flags and control
integers, A lot of the internal subroutines have no
arguments at all but they collect information from the
common arrays BASE and IBASE.

c~ Partitioned; The program operates in ten distinguished
stages or phases., These phases are as fcllows:

1- Reading initial data and control module and setting
up the data base .
2- Mesh generation if requested by user,

3- Drawing elements and nodes,
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4- Generation of freedoms,

5=~ Drawing of freerms and constraints,
6~ Generation of element matricies.,

7- Solution of equations,

8- Drawing of displacements

O~ Calculatinn of <stre-zars,

10~ Drawing of stresses,

d- Advanced processor; The processor, often called the controiler,
is a supervisor program that analyses the instructions
given in the control module by the user to decide how the
program is going to be run (the reader is referred tc the
published literature about the control module options).
The processor writes machine instructions and various
FORTRAN codes to run the program at different phases in
addition to monitoring the program events in anticipation
for future runs, Also, the brocessor checks a large
number ofsyntax in the users supplied data.

e~ Flexible; Due to the big number of subroutines made
available to the user and programmer to enable them to
manipulate data and modules very easily without causing
any loss of other information,

The disadvantages of the 75 system are listed below:

a— Needs file storage on a large scale that will add extra
expense for file store investment.

b- Takes more time in transfers between core and backing store,

c—- Loses efficiency due to repetition of data retrieval and
extra steps in processing units of information rather than

blocks of information at a time due to the neec of space




on core,

d- Involvement of the processor in machine interaction that
makes linking the program to other machines very cifficult
if not impossible in addition to the difficulty in
implimenting the program on different machines (the latter

i3 a problem that concerpzthe rrograrm develoser

eanC 18

n

out of the scope of this text),

£ 3. Preparation of the Stiffness and Mass Matricies:

Derivation of the element matrices in the PAFEC scneme is
explained in references (58 and 539) and need not be elahorated
here, 0Only the equations for the mass and stiffness matrices
will be given in here, thus the stiffness matrix of a three dimen-

sional isoparametric element using the displacement approach is

given by,
+1 +1 41 1
(s ] = Wl ) TN o on e ]
e J J
-1 -1 -1
....‘..(C‘1)
‘wheres, [A¢ is a matrix that is composed of smaller matrices

[Af1] arranged on the diagonal of [A* ] s [A~1] [ A ] = I
and the matrix ;[ A ] consists of row substituticns of the nodal
values ( E,-“.,g ) into the shape functions, | J | is the Jacobian

5]

matriceg that relate displacements to strains and stresses to

matrix and is its determipant, [ 8} and [ 0 ] are the

strains respectively.,

The mass matrix for these elements, obtained from expressions
for the kinetic energy of a vibrating but not translating or

rotating solid elements is given by
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["e] - [*T]//q/ . o o [5)] <& om oT [ne]
L |

ceeees (C.2)

1 %! * *
wiere, [UJ = N N and [ is a polynomiasl fu-ction

znd tr

D

asterisk is uséd to defer it from a general shzoe func-

tion (see section 3.2.). It is seen that bot+ integrations of
equations (C.1) and (C.2) are made with reference to =r isoparametric
representation of the element which must bz transferred to “he proper
axes using the pre- and past- multiplication by [?i] .

The main interest of this section is to show how the mass and
stiffness matrices are prepared once their squations are known,
Going back to (reference 61) to look for a general 3-D element
routine, such as the one reproduced in figure (C-1)., It will be
fouod that this routine consists of three main parts,

a- Preparation of constants and matrices before the integration
loop, this includes finding the Gauss integration points,
setting the [A-1J matrix and various polynomial
coefficients in addition to setting the elasticity matrix
[o] .

b— Building a triple integration loop to create the Jacobian
and perform the product [ BTJ [DJ [B] .

c—- Perform the post- and pre— multiplication by [A—1] and
merging the element matrices with the system matrix.

The first part of 'c' above is done using the subroutine R37008

for which a flow chart is given in figure (C-2). It is clearly seen
from the flow chart that carrying out the multiplication is

done only once for one degree of freedom on every node on the
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elerent, then a triple DO loop is set up to redistribute these
values in their appropriate place on the mass or stiffness

matrix for all the three degrees of freedom on the node. Since

the element is assumed to be icsotropic in all the “hree coordinate
directions, it is hoped by this procedure that come time can o=

savid in maving one calculation cut of three similar onecs,

C.4, Scope and Validitvs

At present PAFEC is a wellldeveloped computer program that
can be adopted to numerous kinds of engineering problems an<d a
proper Jjudoement about its validity can be made by comparing it
with other programs of its kind, This task has been carried out
by a number of contributors in the text, "STRUCTURAL MECHANICS
COMPUTER PROGRAMS"™ which is edited by Pilkey and others, published

by the University Press of VYirginia, Charlottesville, 1974,



- 185 -

Figure (C-1) General 3 Delement routine, taken from reference (60).

-
enter R37110 from main program ‘
is the
current element No

return

of the right
type

Yes

Find Gauss integration points (R13100)

Find A~' and constants in various polynomials (r37001)
Retrieve element properties (R09930)

Find stress—strain matrix DO using (R37009)

Find polynomial coefficients for element loads (R37002)

Set up relationship between local and global axes DCA (R12100)
Calculate pressure at mid-side nodes using(R37067)

Create polynomial coefficients for nodal coordinates (R37003)

A

Nested
2 Integration
3 Loops

{

Call polynomial routine R35210
A Set up Jacobian (R37000)
Jr Set up B matrix and find B' DB using (R37004)
% Find Mass integral using (R11110)
Form gravity, centrifugal, and tharmal loads (R37005)

!

end of loop

{

Integrate for pressure loads (RS?OO?)}

4

end of loop

Y

end of loop

Y
=
Post- and pre-multiply by A (R37008)
Test for errors (R37700)
' )
wWrite element matrices to backing store (R14000)
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Figure C-2 Flowchart for the routine R37008 which performs the
post- and premultiplication by [a ]-1 outside the

integration loop.

Enter from any 3D
element routine

*

Set up constants, control
integers, and null the
element matrix [SE]

Vibration
problem?

Yes

Start by multiplications for the mass part,
symmetrisize the polynimial matrix [QE] using R11000

Set up the transpose multiplication &A] = [AINV]TX [QR]

Copy the result of previous step in QR]

Set up the multiplication [A] = [QR] X [AINV]

Set up a nested triple 'DO' loop to put the terms of the
lower triangle of [ A] into the upper triangle of [se] .

S —

Ty

Carry on the multiplication for the stiffness part,

Set up a triple loop to fill in the matrix [QE ] from [QO]

Set up the post and premultiplication by [AINU]as performed
in the mass part,

With a triple 1loop fill in the stiffness terms in the lower

part of SE .

Yes

Centrifugal
loading ?

Set up a triple 1loop to
fi11 [FE]

RETURN
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APPENDIX D

SOME _ PROPERTIES OF MATRICES

Del. Definition= and Basic Operatiors:

Matrices were introduced to make it possitie to write a large
number of data and equations in a shorter form, For =xanple 3 set

of simultaneous linear equations which j$ written in zlgebraic fornm

aﬂ X1 + 812 X2 + ceees + 81m Xm y1

821 x’] + 822 x2 t cesees + 82m Xm = y2

L] [ L] L J L ] (D.'])
Gm1 X1 T 8na X2 F eeves ¥ oapy Xp = vy

can be written in a neater form using matrix notation as:

811 812 . . . a’lm x'l Y1
81 822 ¢« ¢ o app X2 Y2

] [ ] e ] 3 ) ° - ° (D.Z)
@n1 Zm2 . . 8mm Xm Ym

1t is seen from equation (D.2) that the coefficients a; ; are

separated from the variables x; . The matrix of coefficients aw.j
is called a square matrix while the matrix of entities X; or Y;
is a column matrix., A row matrix is a matrix having one row of

elements, while a general double dimensional matrix would be a

rectangular matrix of order mxn, where m and n correspcnd to the

number of rows and number of columns respectively. The multiplica-

tion of matrices is the procedure which makes equation (D,1) and
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PR

(D.2) equivalent, The ~ule for matrix sultiplicztior can —e srouwn
on two second order matricegs such as
aiq aqo b1q Bqp
Al = and [BJ = . (D.3)
821 822 b21 D22
and to multiply the matrix [A] by the matrix {%] =z third matrix

[C] can be formed row by row by multiplying each row in turn of

[l\] by the corresponding elements of each and svery column of Ls]
giving
a b + a b a b + a b
B _ 11 M1 12 721 11 712 12 22]
[e] = [»]- (&) -
°21 P11 * 822 Baq @gq Bp + app bao |
00-005(004)

The product [C] of the two matrices . [_AJ and [_BJ above is
defined only when they are conformable; that is when the number of
columns of [A.] equal the number of rous of [lB] .

Two matrices will be equal if and only if they are of the
same size and corresponding pairs of elements are equal, In much
the same way, matrix addition or subtraction involves simply adding
or subtracting the corresponding elements, Thus we have,

7 2 7 -6 8 -4
+ = (D.5)

or in subscript element notation,

] - (] - [

In general matrix multiplication is not commutative, but associative

and distributive, so it is possible to uwrite,



) (VD ()00 o]
() () - B0 - (o]

The transpose of a matrix is the exchange of its rows by its columnc

;
{aij] ) [aji] (D.8)

A symmetric matrix is a matrix that has its upper triangle equals

triuz

its lower triangle i.e.,

] - ) - 2]
of course equation (D.BA) can be considered as a corollary of equa-
tion (D.8).

A skew symmetric matrix is a matrix that has its upper triangle
equals to =1 multiplied by the elemencts bf the lower triangle,

[aijJ = - [aji] s [aii] = [ajj] = 0 (D.9)
The elements aij] of a matrix can be zero, real, q;adrature or
complex numbers,

The diagonal matrix is a matrix that has non-zerc values on
the diagonal while 1t has a zero every Qhere else, thus,

ajj = 0 forall i 7o (D.10)

A special case of the diagonal matrix is the 'unit' matrix

which has all the diagonal terms equal to unity, so we can write,
a;:] = 0 for all i # j

[ li] (D.11)
[aii] = [aJJ] = 1 ‘

Inverting a matrix [A ] is the process of dividing the unit

matrix by the matrix [A ] s
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[I\-1J . or [a]) [a7") = [1] (7.12)

where [I ]is the unit or unitary matrix,

Partitioning a matrix is the process of parting elements of

the matrix by horizontal or vertical lines, or both,

B 1 4 | | 1
1 : 5 -1 : 3 = inl_LEEHJi_[E_l N
it B ICRH Y I TS o)
-4 1 -7 0 i 6 . !
L l [ i
where, ~

1
Y
—_—
I
.
c—
o
——)
Il
“
Lo
@]
[S—"
)
A7)

—
ol
—)
1}

(4] , [e)]=(-2 0] ,ana [f]= (5]

The so called submatrices [a ] to [.f] are normaly treated as
matrix elements with the necessary caution that during multiplication
the partitioned matrices should follow the conformatbility re-
quirement,

By partitioning, it is aimed to reduce some labour when dealing
with matrices of order higher than three. However, whilst the
-amount of calculation to be carried out in the final stage of the
solution is not shortened by partitioning, it is generally found
less tiring to deal with products and matrix operations in submatrix
groups than to work on the whole of the original matrices without
splitting them up.

The trace of a matrix [A ] is the sum of &li its diagonal

element, thus,

3

tr [A ] = - aji (D.14)

D.2. Orthogonal Transformations:

Transforming sets of axes is a common practice in finitas element
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stucies, and it can be done with the use of matrix notation, A

particularly simple matrix that transforms displacements when

expressed in terms of orthogonal axis directions is a matrix of

nine direction cosines given by [aijJ ’

[ 11 12 13 |
La]= | 5 22 23 (D.15)
31 32 33
L -

which relates the three directions of an axis system uith the three

directions of a rotated axis system.

For each axis system that

consists of three mutually perpendicular directions, the direction

cosines are interrelated by a set of six equatiors formed by corres-

pondence with

e i

1

i e

J

and typical

2
Qg F
Laq -
2
Ooq ¥

the dot

product of the three unit vectors

= itdoz kK=
(D.16)
=j-k=&o£=o .
equations can be formed such as,
2 2
+ =
C12 %3 L
29 F Qs Xpp F Az e Qgg = O
(D.17)
2 2
Gyp * o3 1
e tc

Thus the complete set of equations could be represented by matrix

notation as the product,

—

11

21

31

12

22

32

131 [ 14 21 31 |
sl |12 22 32| =[alld"] -[1]
33 |13 23 33 | ceses(D.18)
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Equation (D.18) is called an orthogonal relation and the iratrix
is called an orthogonal matrix,

Comparing equation (D.18) with the earlier definition of equation
(D.12) shows that for the orthogonal matrix [a‘], e inverse and

transpose are identical,

[oar]. (a1

(0e19)
Since forming the transpose is a very easy operation, here its
equivalence to the inverse makes handling many manipulations involviné
direction cosines very simple.

Going back to the problem of transformation, suppose that the
matrix [A ] of equation (D.2) relates the vectors {x} and (y} .
Assume that a new base was introduced and its new coordinates are {§ }
and {§'} s it is required to find the matrix (A.] which relates

{x } to {jy } interms of the original matrix [A ] . 1o do this

we assume a transformation matrix[(l]so that

{(x} = [a) {5} ana {y}- [al{5} (D.20)
substituting the relations (D.20) into (D.2) we get,

(«1{7} = [a)la] {x} | (D.21)
solving for {.)7} leads to

[7] - [a=1] [a)[a] {%] (D.22)
and thus we can define [A.] as

[a] - (a=1] [a]le] | (D.23)
Using equation (D.12) into equation (D,23) leads to the very simple
conclusion that if an orthogonal- matrix is used in the change of
basis then we get the simple relation

[a] - [a™][a]){a] (D.24)

D.3. Application to Eigen Yalues and Vectors

If { xj} is a column matrix, and [A ] is a square matrix of
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the came order of {x } s> “hen the procuct [f ?{x } is <1350 a
column. Our intention is to find those columns <{x } so that [A ]{x }

is proportional to '{x } « In other words, we are lcoking for the

so%ution of the homogeneous equations

[a] {x}= 1 {x} (D.25)
In order to find a non trivial solution, tne detesrrirz-t* af
matrix of coefficients must be set to zero, thus=s

det ([A'] - A I) =0 . (D.26)
Assume for simplicity that the order of the matrices is only three,

then equation (D.26) becomes

po

agq = A 412 213
a5, a,, -A 2,2 =0 (D.27)
| 231 ~agp 52 ‘xJ

expanding to obtain

a
2 22 223 11 13
X - X (aqq + a,, * a33) + A + ' +
830 833 839 833
811 299
~det [A] =0 (D.28)
829 829

Equation (D.28) represent a cubic polynomial poscsessing three roots
for A called the characteristic roots or eigen values of the
matrix [A ] . For a general matrix [A ] of order 'm' there will
be 'n' characteristic roots., Equation (D.28) is know as the
characteristic equation of [A ] . The vector {’x } s chosen that
([A]-XI) {x} =0 (D.29)

is known as the characteristic vector or the eignvector of [A ] .

* It is assumed that the reader is familiar with determina~ts, other-

wise reference (7) is suggested,
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It should te roticed thab z change cf basis can -e mace in the
following manner; suppose that the matrix [A } of equation (D.2)

represents a linear transformation then th2 change of basis is dare

tsing

(31 )
{7}

Subztitutinc for { X p in equztion (D.25) yielZs

(7] =} -5} (0.31)
where [E.] is given by equation (D.24).
The transformation of equation (D.31) is referred to as similarity
transformation., If [a:]is crthogonal then the tftramsformation is
called crthogonal similarity transformation., Such transformations
are very helpful in obtaining eigen velues or then change the

problem nature from matrix inversion to matrix transpose.

D.4. Reduction to Dianonal form

For a given symmetric matrix [A ] , it is possible to find an
orthogonal matrix [r]] such that the product [[1]T { AJ [f1] is
diagonal,

Let the normalized characteristic vectors ‘{xi}, correspond
to the roots Ri the matrix

[f]]: (x1 Xy Xg essees xn) (D.32)
is orthogonzl. This condition still holds even with identical roots

and further , signs can be adjusted that the determinant l[ﬂ ]]is + 1.

Thus the product [/&}[}1] becomes,
(A](n] = [A) (xg %y eeee %)

=( K1 X1 )\2 X2 ceooe x xn) (0.33)

[ A1 0 0 eos O]
0 0 e O
= (x) %y eee X)) %2 : : -[ﬂ][o]
BN



- 195 -

and nence [ ] [ - Mt ' -
J D (D.34)

The matrix [D ] in eguation (D.34) abcve is 3 diagonal matrix
consisting of the eigen values arranged on the diagonal in order.

In a similar way, general non-symmetric matrices can te reduced

to an upper Hessenburg form(121 and 76).

0.5 Powers of Sguare Matrices

If a square matrix [A } is given, it is reciiredto find a form
n _
for [A ] where 'n' is a positive integer. Let [A ] be

diagonalized by the matrix [T’] so that

)T (][] (o] (0.3%)
(] =mg} L SRR A £ 3 S-S TSN

then

A=

- () 0 W e | [f) (Be38)
I
S
m

. —‘
From the above analysis it was seen that only integer powers
of a matrix can be taken, but .in fact square roots or any real pouwer

(12)

of a matrix can be made and the reader is referred to for proof.

For the case of a square root of a matrix equation (D.36) becomes,
3
[\

(3t - (1] °

0 L B NN U 1

0 eeeee O [T ]-1 (0.37)

§ eseiy

S

D.6. The Choleski Method of Matrix Decomposition:

PP ,\?’wo

o0 000

Theoretically, it is possible to decompose a matrix into two
triangular matrices, one of them is a lower trlangular ma*rix and

the other is an upper triangular matrix. Further more, symmetric
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matrices can Le decomposed to ive tne upper half zs the ‘ranspose
of the lower half, thus
[A]
[A]

To illustrate the method, =zn example of a set of equatione of

[ L] [ ul for unsymmetric Matrices (D.38)

[L] [LT] for symmetric Matrices= (D.39)

order three will be given, It s required to find tre coefficientcs

l.. such that,
1)

- n r 11 }
a5 symmetric l11 0 0 l11 121 131
429 89 B o9 1,0 0 1o 135
831 932 233 ] 13g 1zp 1a4] |0 0 1as

- . J -

e @ 08 08 %58 8 (D‘L’LD)
Multiplying the two matrices of coefficients on the right

hand side of the above equation will result in

811 7 151

81 7 199 12

339 = 199 134 (D.41)
822 7 151-+ 132

830 = 139 1pg ¥ 135 15

a,., =12 + 12+ 12

33 31 32 33

Using the above set of equations a generalization for a matrix
of order n can be made, thus for a matrix of n rows, the i th row

is given by,

. -1
J
= ivi = s s - l. 1 l ( -1 2 3
:ZE: 1, 1, = e;; oiving 1i5 ( a; ; EE ikt i )/ g5 0 (=1 ,_;)
k=1 cey
k=1
000000(0042)

and for the diagonal elements
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i 5 -1 L\
Li 78y 91VING 1y T ( G T > liJ (D.43)
k=1 ) k=1

The choleski decomposition or factorization is very useful in
solving a set of simultaneous equatione such as equation (D.2). The
proceduyre can be performed in two stages, Each involve the solution
of a set of equations with a triangular matrix, such a solution is
simplified by a forward- or back substitution. Referring again to
equation (D.2) it is found that the equation reduces to

ORI (0,00
and a vector {B } is found such that

[L] {8l - { v} (D.45)

after which solution can proceed for the eguation

[u] . {x}-{8} (D.46)
t should be mentioned that in general, finite element matrices

are symmetric and our procedure can be further reduced by assuming

that _ ' . .
[ u ] = [LT ] (D.47)
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APBELUIX

AN _AUTOMATIC FORTRAN-FORTRAN REARRANGING PROGRAM FOR LLARGEL

LIBRARY PROGRAMS

£t.17 Introduction

At present, standardization is an acceptec fact whicn is favnureo

for any type of subject released to public or exchanged betueen a
number of people, whether it was a marufactured article, published

material, or even a way of eating or dressing ciothes which to some
extent follow a certain standard of fashion anc morality, The
guestion that lays itself in here is how far should one qo alono
with standardization, The answer can be derived from the fact that
classified irnformation can be much easier to learn and memorize than
other scattered ones, a good example can be taken from peoples
ability to memorize hundreds Qf musical notes and rhythms whether they
know to play a musical instrument or not, but the reason of ccurse being
that music always follow certain rules, Thus the answer would be that
standardization should be carried out in any possible way that makes
things more classified and then easier to understand and memorize.

It is established that FORTRAN is a standard international problem
oriented scientific higher level language for digital computers, and
no doubt that today there exist hundreds of sophisticated programs
written in FORTRAN =nd presented in the form of complete packages to
do various types of operations and calculations amongst which one can
mention Matrix Handling, Problem.Solving, Structural Analysis,
Statistical Studies, Graphics, Computer Aided Deign, etc. Although
the majority of users see these packages as a collection cf black box
routines, a number of specific users will be in direct contact with the

contents of these packages, and most probably they will need to understand
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parts of it, modify or append to other parts of it, beirmg 3hle to
do so since they know the language (FORTRAN) which in itself is a
standard that follows certain rules of syntax., However due to the
difference between the ways of indivicual thinxing, it is still

found that these codes are a little out of standard. To clarify

thie [-)Oir\t an ex&’"‘ple would bhe giyen wi*h ren:rc Lo cigtement

labis L
sequence, Assume that a programmer writes a program with a numter
of statement label that start by 10 ang increases by a factor of
10 every time a new label is required, after finishing the program
he found that he needs to add extra statements and labels betuween
some labelled statements, then it is sensible enough to cive the new
statement labels values which lie between the labels which the
statements are to be inserted in between, or add ten to the last
(normally highest) label achieved and continue in the normal way.
Thus for a long program this process will become more and more
difficult as the writer will tend to loose track of numbers, and
again this process will be much more difficult for an external writer
who would want to further modify the program. Thus the need arises
for a method by which these programs can be rewritten or rearranqged
so that they are faster to be followed and understood, and at the
same time they become easier to be modified, These are the reasons
for introducing the present rearranging program which are mainly
based on the argument that ™although FORTRAN is a standard language
on its own, its output listings must be further ctandardized if
they are to be further processed".

£,2., Features of the Suggested proaram:

a— Reorders the statement labels so that they appear in an

ascending order on two different levels:
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1- FORMAT statement labeles will be increased from 1 to
99 in steps of 1,
2- Other statement labels will start from 100 to 5190
increasing in steps of 10,

This feature was introduced to ease following and mocifying
the nackage nrogra=m ceding,
Modifies all the statements thet refer to other labelled
statements with accordance to the new numbering scheme
explained in 'a' above,
Modifies all the DO statements so that their indexes appear
in the form ( Ln ), where 'L' {abbreviation for loop) is
an implicit integer variable, and 'n' is arm integer constant
which points out the lcop nesting, the opposite is unfor-
tunately not true since the possiblity of occurance of a
loop index outside the do loop makes it necessary to store
information about every variable used as an index for a DU’
loop, and hence 'n' is actually increasing with the number
of different variables used for DO loop indexing. UWith the
aid of this feature the user is autﬁmatically notified of
the presence of DO locps and extra loops can be inserted
depending upon feature 'e' belouw.
with reference to boint 'c' above, all references to the
loop index within a certain loop will be modified and re-
placed by the new locp index.
All the statsments inside a DO loop will be indented by a
number of spaces which equals to (3* the nesting level).
The indenting stops as the loop terminator is encountered,
This will allow the user to easily recognise loop nesting,

and the existance of loops in general.



f~ Brings all the FOPYAT statemente 5 the erc 0° the -~gment

Just before the end statement in crder to let the user track

the FORMAT statments easily since there may be more than
one reference to the came FORMAT inside one procram segment,

g- COMMENT statements will be inscribed by two lines above anc
below the corment regariless of 4o cavTans Yoo §n lire-s,
This facility will distinguish comments fror other executzble
statements,

h- For programs with alot of different subroutine calls, an
extra facility exists that allows automatically inserting
a Comment statement which descrites the callecd subroutinc
immediately after the CALL statement.

i- Up to 64 characters will be allowed in a statement and the
rest will be transfered to the next line as a continuation
statement, This feature was introduced to allow the program
to be photocopied on A4 size paper without the need to reduce
its size,

j= For a text file with a number of various segments, the
order of statement labels will be reset for every new segment
to start as in point 'a'! above,

k— Other minor facilities such as including 50 lines of coding

in one page and page numbering plus statement numbering(in

columns 73 - 80) etc.... will not be given in much detail
due to the shortage of space.

E.3 ORGANIZATIONAL DETAILS:

The program is mainly written in FORTRAN, normally started as

a semicompiled version, It is operated on the ICL 1960 machine by
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e 1/0 Cevices, lczcs the

program on core, and starts the execution,

The text file consits of a MASTER segment and subprogram

segments as follows

-

MASTER ARNG4

SUBROUTINE MGN

FUNCTION 1IQ

SUBROUTINE SLASHO

SUBROUTINE RITA

SUBROUTINE NTST1

FUNCTION JSum

$=~This is the main segment, it allocates

all the m3in arraves, <ets Gn trs gaarsatar
codes and other initial information,reads
the DATA textfile and controls the calls
to other segments,

This is used for debugging the present
program (unnecessary).

Characters comparison function, checks tuo
characters for similarity,

This is called after printing an output
line on the line printer to reprint a
slash (/) over the letter 'o' to differ

it from the zero.

This is the main output printing routine,
it does other functions before or after
printing a statement,

This subroutine classifies the FORTRAN
STATEMENTS and it looks for statement
labels.

This function interprets the statement

label various digits and delivers the

number as an integer.

* GEORGE3 is a machine operation language and a Macro is a small

program that uses such a language.
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ERCUTING STANAL e O . r ;
SUERCUTING STANAL i— Lhangis LE looy incexes and replace
variable names,

SUBROUTINE ARNGE — Reorders statement labels,

SUBARABGUTINE SEARCH := Relevant to feature 'n' of trie previcus

section, searcres for subroutine descriptieon

I FOY
r- L s + PR N . " - -
O G pUdoe L0 4T Lo : oL ut&:y:’_}"w 2 G

E.4 CLASSIFICATION OF STATEIENTS:

In the previous section, it was mentioned tnat the Subroutine
NTST1 classifies the FORTRAN statements, this classification is
necessary inorcer to be able to carry on the various other tasks.
The procedure would be a little simpler if these statements were
the only statements existing in the program, but unfortunately
the existance of a wide choice of variables makes it very likely
that variables will be mixed with some FCRTRAN statements, However
as a start it will be assumed that there is no such mixing between
variables aﬁd statements, The classification goes in very much
the same way to that of ref, (Sale, see bibliography at the end
of this Appendix). Scanning normally starts from column 7 on the
records (1 record is equivalent to the contents of 80 column punched
card), and only two characters are chosen at a time. If these tuwo
characters match with the first two characters of a FORTRAN statement
then the rest of the characters will be compared for correctness
with some other special tests that are particular to that statement,
Further grouping of statements are made for function - similar
statements such as read and write statements since they follow the
same syntax., Table E.1 shows the various groups of statements to-

gether with the method of checking them,
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E.5. PRINCIFLE OF OPERATION

The text file containing the source to be rearranged is brought
and processed in core segment - by - segment using tne master ARMGCG
which lonks for the segment terminztor as it storec it record-bv-
record on the character array '1Ia' in ccre, Once the terminctor
is located, processing this senrent wi tart iy coonning it oY uice
as follouws:

a— In the first scan four main checks are made,

1= Continuation records are indicated and decision 1s made

as to whether they arc a continuation of a FCRiAT

)

m

statemen: or continuation of an arcinary statement, fo:
the first case the record is moved to the end of tne
segment, while in the seconc case it is left avove.

2- The presence of a statement label is indicated by looking
into the contents of the first five columns of a recorc.

3- One point (2) above shows the presence of a statement
label then the whole record is studied fof the presence
of a FORMAT, if it is not present then ARNGE is called
to interpret and replace the laﬁel according to the new
numbering scheme (see point a.2. of section £.2.)
keeping a2t the same time a record of the old value of
the label so that in the second scan all the references
to this _abel can be traced and changed in accordance.
If instead a FORMAT was indicated, then ARNGE is called
to recrdcr the label according to the FORMAT labelling
schems,

4~ DO loops are checked for their indexes, and notes are

taken for the index name preparinag for the next scan,
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h—~ In the cecen” scan, the Master segme~i LRLCO calls the

statement analyser routine NTST1 for every statement to

find references to the statement iacels anc correct them

according to the first scan, wiile variatle names arec also

studied and may be changed if necessary. MNTST1 calls both

ARNGE and STANAL to renumber the labels anc renane the

variables respectivelv.

Before the Master ARNG4 moves the control to process the next
statement it calls the output ?outine RITA to write the statement
just being processed to the line printer. RITA tests comments to
insert a line before the comment ard another one after it, also it
can call SLASHO to slash the letter 'o' &s well as performing a
counting process to write page numbers, line or statement numbers,
and finally before returning to the main segment, it calls the
subroutine ROUT to look for subroutine cails and put a comment to
describe the called routine as an extra feature. After a segment
is rearranged all the arrays are cleared and a new segment is
processed, This procedure continues until the end cf the te#t
file,
The flow chart shown on figure (E-1) further explains the

principle of operation, Figure (E-2) is a test cample while
the rest of the appendix is left for the listing of the whole
program (being arranged by itself).

£.6 SCOPE AND LIMITATIONS:

Due to the nature of the program, it will be assumed that
the text file to be arranged is syntax free, that is, it has been

compiled by a FORTRAN compiler and the errors were debugged before

this program can be used,




Normally large library programs are presented in short
segments of not more than 500 records each, Knouwing this fact
makes it possible to reduce the amount of core usec for these

programs, The present listing however assumes a maximum length

of segment of B850 records,
Cn the ICL 1906 machine the proar=n takes 23k words =nz it
consumes about 78 seconds to arrange a text file of length 1200

lines,

Only two machine dependent routines were used to allou
faster character comparison which can be easily replaced by

equivalent routines for other machines,

£E.7, References:

1- Housden R.J.W.
"PHRASE STRUCTURES IN FORTRAN".
The Computer Journal, Volume 14, No. 3.

2- Morris D., T.G. Kennedy, and L. Last
"FLOWCODER"
The Computer Journal, Vol. 14, no. 3.

3- 0'Brian F, and R.C. Beckwith
"A TECHNIQUE FOR COMPUTER FLOWCHART GENERATION".
The Computer Journal , Dec 1967

A- Sale A.H.JO
"THE CLASSIFICATION OF FORTRAN STATEMENTS"
The Computer Journal, Vol 14, No. 1.

S~ Simmons D.B.
"THE ART OF WRITING LARGE PROGRAMS"
Computer/March/Apri1/1972, P43,
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NO IS IT A
TERMINATOR?
PICK UP A RECORD FROM CORE

& 2 SCAN NO.? 1

CALL NTST1
Is IT A

CALL RITA CONTINUATION?

1w

LES DO STATEMENT?

CONTINUATION FOR YES

Y A A

FIND THE INDEX &
MAKE NOTE.

CALL ARNGE TO ORDER
FROM 1 TO 99 .

T Y

Y Y [CALL ARNGE T ORDER TRANSFER TO THE END
FROM 100 TO 5190 . OF SEGMENT .

l l

Figure (E=1) Flouchart
for the
principle of
operation of
the rearrange-
ment program

Y




BEST COPY

AVAILABLE

TEXT IN ORIGINAL IS
CLOSE TO THE EDGE OF
THE PAGE
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APPENDIX F

CASE STUDY: ANALYSIS OF TulO-WAY SINGLE PANEL SLABS

LOADED BY A CONCENTRATED LOAD AT THE CENTRE

Fo1. Introduction:

Two way slabs are structural systems *that consist of a flat
plate simply supported or built in with beams which cpan tetween
columns, Simple or multiple pannels may extend over tne b=ams in
one or two directions, They find application in reirforced conceete
buildings as floor systeme in addition to their use in mechanical
parts,

The aim of this study is to obtain an idea 'quantitativewise'
about the effectiveness, applicabitity and fensibibty of the Finite
Element method as used to analyse engineering structures. The
'study will be based upon comparison between three methods of sol:ition,
the experimental, the finite difference, and the finite element
method., In using the latter method, different results were obtained
according to different idealizations of the problem, The nearest
idealization to the exprimental model required pragramming a neu
element into the present PAFEC 70+ scheme. This element is called

an Offset Plate Bending and Stretching Element,

F.2. The Experimental Method:

Experimental tests were carried out using perspex mocels for
the plate and the supporting beams, while steel columns fixed
rigidly to a steel frame are used to support the whole assembly,
so that it could be assumed (according to the big difference in
mechanical properties of perspex and steel and knowing that the load
used is only 10 Newtons ) that the columns are of infinite stiffness.

Strain gauges were used all over the plate and stiffeners to
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measure the strains and hence moment coefficients while a mechanical
extensometer was put toc indicate the deflection under the point of
application of the load.

Strain gauges are knoun for reliable strain measurements and
the results obtained from this method could be reasonabley accurate,
Thus the results of the experimental method will be taken as the

Judging factor that will give an idea of the other two methods used,

Fe3., The Finite Difference Method:

The finite difference method was long known to be a versatile
method that could be used to approximate solutions to many types of
slab problems., Any combination of beam and slab configuration
;ubject to any arbitrary loading‘system could be handled by this
'methbd. Just like the finite element method, the finite difference
method satisfies the requirements of equilibrium and compatibiliy at
only a finite number of points* rather than satisfying these condi-
tions at every point on the slab and beams. Houwever the proéess of
limitting the effect of all the points to a finite number of points
will be carried out on the expence of accuracy. The process of
satisfyiég equilibrium and compatibiliy of each of 'n' points in
the slab results in a set of 'n' linear algebraic equations which
are written in terms of the deflection of each of the points consi-

dered, The set of equations is then solved simultaneously to give

the deflection at each point.

*By this assumption is meant that both the finite element and the

finite difference methods satisfy compatibility and equilibrium
equations., Houwever the difference between the two is that the
finite difference method satisfies the above mentioned equations
at a finite number of points while the finite element method
setisfies them at a finite number if interconnected elements rather
than points. (see also reference 125).
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The operators required for the slab beam sysztem were formed
from the conditions of equilbrium of the model rather than from
the governing differential equations. Modifications .ere made
to cater for internal discontinueties and other conditions.

To carry on the complete solutions, the following assumptions
were made in addition to those required for platzs and shells
(110)

as given for instance in reference . These assumptions

are.

a- The behaviour of beam in both bending and torsion is linearly

elastic.

b-— The neutral axis of the beams caoimsides with the ﬁiddle

plane of the slab, (not offset heams).

c— The forces and moments acting on a beam are assumed to be

distributed along a line and not over a finite width.

d— Torsicn in the beam is assumed to be uniform between the

nodal points and the effecfs'of warping are neglected.

e— The action of the column is assumed to be concentratec at

a point, located at the intera ction of the column centre-
line and the midde plane of the slab.

Dué to the enor mous core requirements of such program, only
one quarter of the slab-beam system was analysed and modification
for the conditions of symmetry were made.

In comparing the results of the finite difference method with
the experimental results, reasonable agreement was noticed between
them., This agreement was good on two different levels; first, the
was exellent agreement in the bending moment trends as well as the

deflections as the edge beam stiffness was changsd, and second,

there existed relatively good agreement in the numerical values of
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the deflections as well as bending momeuts,

One last comment to the above mentioned method is that as the
problem geometries or boundary conditions become complicated, it
becomes harder to apply the finite difference to the prot.em, In
the fircst case (Complicated geanetry) finer and finmer meshes must
be used anu in the second caoe (boundzary conditions) more difference

operators have to be involved.,

F.4. The Finite Tlement Method:

As it was stated earlier in this Appendix, the finite element
method reduces a problem with an infinite number to one with a_finite
number of unknowns by partitioning the problem region into smaller
regions or elements and by carefully expressing the working variabples
'of the problem in terms of approkimating functions¥* that are assumed
to be existing within each element. Elements are distinguished by
nodal points on their boundaries (or more rarely at the interior).
The approximating functions (usually polynomials, since they are
easy to integrate and differentiate) are expressed in terms of values
of the problem working variables at these nodal points.

As the above mentioned relations are set up, the nodal values
of the working variable become the new unknowns. As soon as these
unknowns are found, the approximating functions become known and
the distribution of the working variable in the whole problem could
then be obtained by merging the finite elements together to obtain

the full system matrix.

5.4.1. Problem Ideszlization:

In using such a versatile finite element program, many approathes

*The approximating fuctions should satisfy certain criteria. See

reference (124).



to the problem can be made. However tre best iuvezlization snould

be cne which is most near to reality or at lesst to the experimental
method. Two main idealizations were taken into consiuveration, cre
that is neesr to the experimental model, and one which is ~car to tne
finite difference methoo model., The dimensions =nd properties of
all cthe models were assumed to be the =ame in «l’ thne caces beiny
considered,

A diagramatic explangtion of the models made in all the three
metnods is shown on figure F-1,

Probably model number (1) of the finite element models is the
nearest to the experimentzl model as the offset plate elements
offer a certain width upon which they are acting and unlike tne
finite difference model in which the beams are limitted to one line
of action. Model (5) of the finite element models is the nearest
to the finite difference model since the beam elements are defined
by two nodes only and it could be implimented that they act on the
line joining the two nodes. It should be pointed out at fhis stage
that the beam elemsnt data on the PAFEC finite element program
contains a measure of the beam width which again is a merit in
comparison to the finite difference method.

Model number (2) offers an axis of symmetry that coinsides with
the axis of the slab but it is not near to the experimental model
and on the other hand it is not near to the finite difference method
since the plate elements offer a finite width of action.

Model number (3) offer a line of action for the stiffne-s tut
is not suitable in the since that it offers no rotational stifinesg
between the stiffeners and the plate.

Model number (4) approaches the experimental model in the manner
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that the beams are offset and their axic Jdo rote-inside with the
axis of the plate, Wwhile on the other hand, it is still near to
the finite cifference model since the beams have one line of action.
Three types of meshes were used for the finite element mocdels,
the first is a fine mesh which is just similar to the mesh used in
Lhe Firise nifferonce mndelz, The cecand ig o cgarcr mpeh A° Sagr
elements on the slab only. The third mesh is a non-uniform mesh
which provides accuracy at the points of importance only.
Constraints were put as shown in the diagrams. Obviously all

the constraints which appear on the internal edges are due to

symmetry since only one quarter of the slab was taken,

FoeS, Modification of a Combined Bending and Stretching Eleme~t into

‘an Offset Plate Element:

It is required to transfer the displacements and forces to an
element which is of fset from another depending on the forces and
displacements that exist on the second element., Thus in figure
(F-2), an element is offest by an amount €z from an existing node
on another parallel element,

It is known that bending-stretching elements have five degrees
of freedom per node(57), of which two degrees of freedom are for in-
plane interaction and another three are for out of plane interaction®
These degrees of freedom could be multiplied by a transformation

matrix [ T ] to give the displacements on the element.

* in the PAFEC 70+ scheme this isset by putting a DATA statement in

the element routina. For instance in R44210 which is a bending

stretching routine we have DATA 10G/1,2,3,4,5,0/
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u, T 1 0 0 0 ¢ | u, |
uy 0 1 0 -8 ¢ uy,
u_ = 0 0 1 0 O u (Fo1)
‘ o, 0 0 0 1 0 o
elementL¢y.J ] J 0 o 0 1-J L_®Y _J noce

or
{o}= [1] {u) (r.2
where e,n refer to element and node respectively,

Also a transformation of forces could be effected and it will appear

as,

{re b=l {r ) (F.3)

The relation between the forces and displacements is given

1Fe }= [se]{te} (F.4)

However, inorder to merge the elements together it is required
to obtain the above relation at the nodal points (where the elements
‘are assumed to be linked together) rather than at the element ends.
This could be fulfilled by simply substituting equations (F.2) and

(F.3) in equation (F.4) above to obtain:

[T'T]{?n}= [s][ 7] un} (F.5)
Iend =[] {s] [7]{u} (F.6)

From equation (F.6) it appears that a transformation is possible by

or

modifying the stiffness matrix and the last equation (F.6) is re-

written in the following form,

{Fn) = [oneu]{ v} (F.7)

where [Snew]is the new stiffness matrix,
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Thus the routine H44710 (hending and stretching plate element
routine on the PAFEC finite element program) is modified to become
an offset element routine by just changing the parts related to the
stiffness matrix in the appropiate manner, It should be remenbered
though that the above procedure was made for only one node, but it
Coulu e arrangec o suit “he wiolie eitrer pertitici, procucts a:

whole matrix products as follows:

{Fn} = - [5] T. {Un}  (F.q)

L
— . L J

The structure of the system matrix as set up by the PAFEC scheme

is shown below,

_ _ | ~ -
‘ body mass
loads matrix
stiffness stiffness
matrix matrix
L ‘ i | )

for static applications for dynamic applications

Actually one half of the stiffness matrix is stored in the lower
triangle since it is known to be symmetrical for such elements,

The other half of the system array would be occupied by either a
column vector of the body loads as it is the case with problems of
static nature or it may be filled with a mass matrix as is the case
with dynamic problems. 1In both cases (static and dynamic) one have
to symmetrize the stiffness matrix before transforming it, Further,

another transformation would be required for the body load or the
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mass matrix whichever is relevant,

FoS5.1. Modification of the Mass Matrix

Dynamic problems need extra force terms to be added over the
static problemrs, those are the forces required to overcome the

inertia. The equation linking forces and displacements could be

U Fiot )= ([ se | - W [ me]) { uc} (F.9)

where, { Ftot } is the array of total forces.

Equation (F.9) above contains two parts; the first of which is
the previous static term and the second is the dynamic forces term,
like the static forces, the dynamic forces are given as a product
of a matrix [M ] by the displacements matrix., The displacements
are assumed to vary hormonically at a frequency ' W ' rad/sec.,

Substituting equations (F.2) and (F.3) into equation (F.9) and

rearranging results in

{ Ftot } node

"
[ a—|
-
-
—_—
—_—
[ ]
w
]
| N
|
S
N
—
=
) .
—
S
—
_.‘
| E—)
—
cC
o)
——

ooo.oo(ro10)
It is clear from equation (F.10) above that the mass matrix M

is modified in the same manner the stiffness matrix was modified,

Fo.6, Results:

All the experimental results as well as the results of the

(123)

finite difference method are taken from reference and since

they are so many it was thought unnecessary to repeat them in here.
Only the results of various finite element model idealizations as
given in figure (F=1) will be shown on figures (F-3 to F 13). Each
of these figures take one of four titles:

a—- drawing of the mesh and choice of model,

b- drawing of the constraints,
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c- Drawing of the displaced shape diagram,
d- A comparison drawing that shows the change of one variable.
As mentioned earlier in this appendix, the main interest is to

discover the merits of using the finite element method over the
fiéite difference method as an analysis procedure, hence it was
found unnecessary to follow the aspects of the finite di“ference
program (ZMA) with detail since it is explained elsemhere(123) inclu-
ding the calculation of the deflection coefficients end the moment

coefficients rather than just comparing the actual deflections due

to the concentrated load at the centre.

F.7, Discussion of Results:

From the different possible problem idealiéations, if is found
that the finite element method is a flexible and easy to apply
hethod for better geometrical similarity with the actual model in
comparison to the finite difference method.

Correctness of the solution could be check by comparing the
effect of reducing the edge deflection as the edge beam .stiffness
'is increased, as well as the reduction of the deflections in general.

As a matter of quick reference, all the deflections under the
point of application of the loads were put to be equal on all the
displaced shape diagrams rather than putting them as the absolute
displacements. All the other displacements are scaled 1in accordance.
By this way it becomes possible to note the differences quickly.

All the results taken from models 2,3, and 4 of the finite
elements idealization models were better than those obtained by
the finite difference method. Their values vary differently bet-
ween the experimental values and the finite difference values. In

comparison with experimental results, the difference was found to
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be in the iange of 6% to 147 .,

The values obtained from model (5) which is the nearest
idealization to the finite difference model were very cloce to those
obtained by the finite difference model, but their numerical values
is higher which means that they are still nearer to the experimental
model, |

Results obtained from model number (1) are found to be completely
conforming with experimental results (0.5% difference only), while
with the finite difference method the results showed a deviation of
up to 25% from the experimental results,

Results obtained with the crude meshes showed good agreement
with the experimental results, and when comparing them with results
obtained by the finite difference method the appeared to be fairly

reasonable,

Fe8, Conclusion:

The.finite element method seems to give better results than the
finite difference method in general. Results could be obtained at
early stages with fairly crude meshes and would still be valid to a
great extent. As far as versatility is concerned it is certain that
a slightly sophisticated program could'be adopted to solve a large
varicty of problems, while for the finite difference method a new
program has to be written every time since operators must be

specified differently for every problem.
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FIGURE F-1 Beam - Slab Idealization for Different Models

—
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—

<:\iiate Plate Bending & Stretching Element

__t_ - - 1) - - —
Offset Plate or /'i____j
Plates | '

w=0 : Plate Bending & wyO0
Stretching Element) !

fom o= o~ —

; One or More
\ stiffeners Stuck
to Each Other

2) - - = -
I
e - —
~Accunmulated Plate ' !
or Plates (Bending “___9.‘
& Stretching) v 50
Plate Bending and Stretching
Elements
3) - _ - —
Vertical Plate AT
Elements (no rota-
tional Stiffness) — L'—
- w=0
(beam acting
on one line of
Plate Bending & action.)
Stretching Element
L) e m
-
Offset Beam or R
{
FINITE DIFFERENCE MODEL Beams o
v2 0
| ] (beam acting on one
Plate Allowing for Plate 1ine of actioq )

Bending & Stretching

]
|
‘ F-—-
//27t::i F--j
‘k — 5) — -
Beams (23 Ordinary Beam P
l : Elements ‘ ‘

wv=0 we 0
(beams act on one line of action)




element

3

z | Ez

existing node

Figure (F-2) Two plate elements offset by €,
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APPENDIX G

VARIATIONAL PRINCIPLES

The calculus of variations plays a good role in the sub ject
of dynamics, particularly for conservative systems. It is of particu-
lar'use to the engineer in two classes of dynamic equations and is
directly analogous to similar principlés in other fields such as the
principle of minimum strain energy in elasticity, At present, the
variational procedures are widely used due to the development of
numerical techniques., The second class of dynamics that is making
use of the variational techniques is the true optimization of dynamic
performance of moving objects and systems, A typical example would
be the programming of magnitude and direction of rocket engine thrust

to achieve optimum performance.

Ge1l., Original Principles from Ordinary Calculus:

A familiar problem of elementary calculus is to find the
maximum or minimum values of algebraic functions such as:

v o=t () | | (ea)

A mathematical development was made to ease'findiné points of
zero slope of w plotted against y, hence the conditions for extreme .

valuses,

duw
dy

If we attempt to extend 'uw' to be a function of two variables

=0 (G.2)

w = f (y,2) (G.3)
then we can express the change in 'w' as

d
dw =%¢ dy + -é% dz (G.4)

Now for dwu to be zero and only zero for an arbitrary dy and dz the

following condition must be satisfied;

%,%ﬁ,g (G.S)
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The points for which the above equation holds are called
stationary values of 'u' and it includes maxima,minima and other

*
flat areas . The nature of the stationary point could be governec

by the relation;

2
azu1> < O v | 82w
Oyoz 3 2 3 2 (G.6)
y z
u Cal
Se if 3 2 and ‘2575 are positive then the stationary point °
y z

is a minimum; if they are negative then we have a maximum.
Generalizing equation.(G.S) means that we have a function of
'n' variables or coordinates,
w o= flu;) 5, i=1, 2, 3, eeeo N (G.7)
and we can think of extending equztions (G.4) and (G.5) so that we

have general equations,

n
= = L = . G.8
duw 0 i=1 3o dujg (G.8)
ofr
= 0 F) i = 1, 2’ 3, eeoeee n (G.g)
TH

and the nature of the stationary points will be defined by the second

T 3% oL |
erlvatlves EE;%;;; R 193 =15 25 35 eceeey N o

It is well known that for problems with more than one variable,
variables can be eliminated by having more equations, each equation
makes possible eliminating one variable, This is made possible to

some of the problems by adding boundary conditions or constrains.

*It is suggested that they are areas since the plot of equation (G.3)

is like a geographical map,
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Thus we may find the stationary value of w=f(x, y, z) su-ject to

the constraint ¢(x,y,z) =0 . Using the eliminatior princicle

just mentioned above, it is possible to eliminate z from w = F(x,y,7).
Here again we can write equation (G.8) in expancec for- for the

differential of w , thus

of or of
= —t— i — = 1)
dw B dx + Ty dy + 35 dz 0 (G,10)

sub ject to the constraint among the differentials dx, 2y, dz that,

0¢ 0o G,
do = 3% dx + 3y dy + 3 dz = O (G.11)
or using the summation notation,
L 0¢
= 2 — = G.12
90 = Z T 0 | (6.12)

Solving (G.11) for dz and substituting in (G.10) to get

of
' oz ® 9
- af af ( a [ d ) = ‘O
du = Zcdx * By 9y - \ax X Ty Y
oz

00.0.0.(8.13)
then it becomes easier now to consider only x and y as independent

and the necessary conditions for stationary values become

of | of
5r 82 a0 ar %z 80 _
?dx a¢  Ox ’ y 20 9y

Dz 9z

0000000(6014)
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and & (x,y,z) = O
Solving the above three equations will lead <o tfs coordinatcs

(Xsysz) of the stationary value of uw.,

Ge2., Application to Inteqrals:

A widely used application of the calculus of variation is finding
an entire function y(x) which gives an extreme, or stationary value
of a gquantity I, which could be definec for a given form of 'f' as

",

I = | f [x, y(x), {z(x)] d x (G.15)

X

where the prime on the third term indicates differentiation of y(x)
with respect to X,

It is evident that the curve y(x) can assume any path between
the limits (x1, y1), and there can be an open choice to y(x) so that
I becomes a minimum or a maximum, however in this particular problem
it is wished to find the function y(x) which will give the integral
of equation (G.15) a minimum value between its limits, based on the
assumption that the form of f in terms of x, y, 2 is already knouwn.

With reference to figure (G.1) it is possible to choose a curve,

Y(@,x) = y(x) + @M (x) (G.16)
which is neighbouring to y(x) and extends between the same limts of
y(x). In equation (G.16) is not a function of X, and TM(x) is a
smooth curve chosen that

M(x,) = Mx,) =0 (G.17)

Thus when ' @' is small, the neighbouring curve Y approaches



- 247 -

Figure G.1 Showing the function y(x) and its

neighbouring curve Y(a,x)
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y(x) and the integral I will have

X
(&) = 2 f(x,y+ QM , Y +an

1

-

occurs when dI{( @ )

da

a7 g
%

But since

f (X, Y 9 )

OJIQ)

ax

'x' is not a function of

The limit as Q—+0 will give the curve y{x)

This condition

_ 0, i.,e. the minimum of -, tr._s

(X, y+an,)’/+0.1,\)dx

(G.19)

rat then Of (x) _

da =0 .
using the chain rule on equation (G.19) we get
. ) X 14
dl 2 OFf oy or ov \
aa = ° =/ < v "3 * By © a3 ) 9%  (6.20)
X1
Since it was assumed, ‘
7/ ’ ’
Yy = y +a7 and Y = y + a0
then it follous that,
d oy _ 4y _ By _ 4
4% = da - ' @ g T
So
dI Ki 3
a [ of N (x) + -—f, T\(x)] d x (G.21)
X1 oY Y
It is required to have d I _ 4 for @ - g, then equation (G.21)
d
reduces to
X2
df a :
d 1 - = T + == T(x)
da a=0 -0 ['?T§ (x) C

(G.22)
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note that Y was replaced by 'y' zince they are the zame st a = Q,

Inte ing 1
egrating the second term of equation (G.22) ty par:s lead to

/xz af ‘ﬁ a X2 )(2 a
i d = e - d f
. By Udex =gy M (x) S <a;,>dx

X1 x1
........(6.23)

Substituting into equation (G.22) of equation (G.23) and rearranging

terms gives,

d

a

+—

making use of equation (G.17) leads to,

X2
- or d (Or
0 = ; [ 3y " dx (ET;)J MN(x) dx | (G.24)

but since M(x) was chosen arbitrarily then the integral of equation

(G.24) can only be zero if,

8- (3) -

Equation (G.25) is known as an Euler-lLagrange equation and is a
necessary (although not sufficient) condition for a minimum or maxi-
mum of I . 1In effect, its a transfer function to obtain y(x);
Quite often the integral of equation (G.15) contains more than
one derivative of y such as § or ; , several different functions

of x or even the extreme case of having several independent

variables such as X, 3, t ... etc, and a more general form of (G.15)

would be

L /%2 ,
I = / / f [x: y(x), )"(x): )I/(x)..., z(x), /Z(x),...,t, y(),
to X

Y(t)yaeans z(t)....]dx dt  (6.26)
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following the same lines of analysis used a-
equation or set of enquations corres

be obtained, thus

ﬁ_i(?@i%ﬁ Or\, «vo _ 3 (3F) 0323\
dy  Ox \dy 3,2 \3Y - 3t\ay/* ~2<a—/>+ =

“

-0ve, a more gener:z.

Poncing to eguation (G.258) ¢un

@]
dt
3t 3 <3F>+ 62<8f-‘>+ d <af> 32<af> (5.27)
- == 2 - mlar )y —(z==)+ .. = G.27
z Ox \oz D52 0% ot \0z 3t 0%
where the dots indicate differentiation with respect to time (e.g.
y = dy/ dt). Clearly from equation (G.27) that there is a

separate equation for every dependent variable,

A particular case of equations (G.26) and (G.27) is the one used

in section 2.,3.3. in this text, where we have the dependent variables

(x5 y, &) as functions of (z and t), thus,

t1 22
* D . o 5 e / b “ se
te / i (y’)7:Y:Y:Y:X:>/<:X:X:X:0:\3:\?:0:0: Zyt) dzdt
t0 z1

'......(0.28)

and the corresponding Euler-Lagrange equations would be,

3 9 [ar +_§E<aj.>_i<a_f>+ﬁi<i§>
dy ~ 9z \dy 3,2 dy ot \dy 342 \oY
3r _ @ (3r), @2 (ﬁ)i(ﬁ)ﬁ(
ox 0z \3%/) 5.2 \8%/ Bt \3x/ 5,

3r _ 3 (ar), o2 (91'_3<§i>+12_<?;)
3% "9z \0%)* 5.2 \85)” 7 \a3/ " 5,2\53

1

|
(an]

N
I
o

]
o

(G.29)

(G.30)

(G.31)
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