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Abstract 

Two new transcription factor binding sites have been identified within the 

phosphoglycerate kinase (PGK) gene promoter in the yeast Saccharomyces cerevisiae. 
The binding sites are upstream of the previously defined UAS, and are bound in vitro 
by the multifunctional transcription factors Reb 1p and Cpf 1 p. A deletion of the Reb 1p 
binding site was made from a PGK gene construct on a multicopy plasmid, and also 
targeted to the chromosomal copy of PGK. Deletions of the Rap 1p and Abf 1p binding 

sites in the UAS were also targeted to the chromosome. Analysis of RNA from the 

chromosomal deletion strains confirmed the central role of Rap Ip in the activation of 
transcription from PGK. Reb 1p and Abf 1p were also found to be important for 

transcriptional activation. This is in contrast to results from experiments using 

multicopy plasmids carrying Reb 1p or Abf 1p binding site deletions from PGK. In this 

situation, neither the Reb 1p site, nor the Abf 1p site, plays a role in transcriptional 

activation. 

A role for Cpflp at the PGK promoter was examined using a cpfl null strain of yeast. 
Northern blot analysis was used to assay transcription from the chromosomal PGK 

gene in the absence of Cpf l p, and also transcription from a multicopy plasmid 
r 

carrying the wild type PGK gene in the cpfl - background. In both cases, the absence 

of Cpf 1p was found to have very little effect on the level of transcription. 

In addition, a role for the potential yATF binding site at the 3' end of the PGK UAS 

was investigated. Oligonucleotides containing this sequence were inserted upstream of 

a minimal promoter, and levels of a P-galactosidase reporter were assayed. No 

activation over the basal level was observed. A deletion of the potential yATF binding 

site from the UAS was made from a multicopy plasmid construct, and also from the 

chromosomal locus. Transcription from the deleted constructs was found to be no 
different from transcription from the wild type gene. 

Finally, DNA sequences which are able to complement the C-terminus functions of 
Rap 1p were identified. A yeast genomic library was generated downstream of the N- 

terminus and DNA binding domain of Rapip. This library was transformed into a 

rapl is strain of yeast to look for complementation of the is phenotype. Transformants 

which grew at the non-permissive temperature were obtained. Results from the 

analysis of the DNA sequences in these transformants are presented. 



Chapter 1 

Introduction 

1.1 RNA Polymerase II Transcription 

Transcription, catalysed by DNA-dependent RNA polymerase, is the process in 

which an RNA message is made from a gene. Bacteria have one RNA polymerase 
consisting of three core subunits with which additional polypeptides become 

associated, for recognising specific promoters and for gene regulation. In eukaryotic 
cells there are three forms of RNA polymerase which each transcribe a subclass of 
nuclear genes; RNA polymerase I transcribes rDNA genes encoding large ribosomal 
RNAs, RNA polymerase II transcribes the protein-coding messenger RNAs, and 
RNA polymerase III transcribes small RNAs such as tRNA and 5S RNA. In the case 

of class I and class III genes, the transcript, either rRNA or tRNA, is the final 

product, but transcription from the protein encoding class II genes produces an 

mRNA which is translated by the ribosomes to give a protein. As the majority of 

genes fall into class II, most studies have focused on RNA polymerase II (RNA pol 
II). 

RNA pol II is a multisubunit enzyme which shares some subunits with RNA 

polymerases I and III. It consists of two large subunits, which form the structural and 
functional core of the enzyme, and several smaller ones (Sawadogo and Sentenac 

1990). The two large subunits show considerable homology to the bacterial RNA 

polymerase subunits ß and f3' which indicates a conservation of the mechanism of 

transcription between prokaryotes and eukaryotes. As the structure and function of 
RNA pol II subunits has been well conserved between yeast and higher eukaryotes, 
S. cerevisiae is a good model for studying the enzyme (Young 1991). 

1.1.1 Yeast RNA Polymerase II 

Yeast RNA pol II consists of at least eleven subunits, all of which have been cloned 

and sequenced (see review Young 1991). The three largest subunits make up the 

core of the enzyme. The largest is 220 kDa (Young and Davis 1983), and shows 

considerable homology with the large subunit of RNA pol III and the large 

prokaryotic subunit, 13' (Allison et al. 1985), except for the C-terminus which 

encodes a very unusual structure consisting of 26 heptapeptide repeats with the 

consensus amino acid sequence Pro Thr Ser Pro Ser Tyr Ser. This C-terminal 

domain (CTD) is unique to eukaryotic polymerase II enzymes. In yeast, a minimum 

of 9-11 of the repeat units are necessary for viability (Allison et al. 1988), and 
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replacing the yeast repeats with Drosophila CTD repeats gives rise to a recessive 
lethal (Allison et al. 1988). This suggests that the role of the repeat units is species 
specific. 

The state of phosphorylation of the CTD may determine the state of transcriptional 
activation. Two forms of RNA pol II can be isolated, RNA pol 110 and RNA pol HA. 
The IIO form appears to be much more transcriptionally active than the IIA form and 
is also highly phosphorylated (Bartholomew et al. 1986, Cadena and Dahmus 1987). 
It seems to be the unphosphorylated form, RNA pol IIA, which loads onto the 
promoter (Chesnut et al. 1992). Thus active RNA pol II could be formed by multiple 
phosphorylations of its largest subunit after it has associated with the promoter. 

A yeast CTD kinase has been purified (Lee and Greenleaf 1989), and a protein with 
50% homology to a phosphatase has been identified, which allows transcription of 
HIS4 in the absence of BAS 1, BAS2 and GCN4, which are normally required for 
basal and activated transcription (Arndt et al. 1989). If phosphorylation of the CTD 

was required for the elongation phase of transcription, then RNA pol II could be 
"locked" into an initiation complex by maintaining the unphosphorylated form. 
Other possible roles for the CTD include destabilising histone/DNA interactions 
during elongation, and interacting with transcription factors during initiation (Lee 

and Greenleaf 1989). 

The second largest subunit of RNA pol II in yeast is 150 kDa in size and 
homologous to the prokaryotic (3 subunit, whilst the third core subunit is 45 kDa and 
a partial homologue of the bacterial a subunit (Sawadogo and Sentenac 1991). Some 

of the RNA pol II subunits are components of all three RNA polymerases; these are 
known as the common subunits and in yeast have molecular weights of about 27 

kDa, 23 kDa and 14.5 kDa. Finally there are about five small subunits. The resulting 
RNA polymerase is unable to initiate selectively at promoters without the help of 

other factors, but can catalyse template dependent synthesis of RNA. The binding of 
RNA pol II to specific regions of promoters is aided by initiation factors; the TATA 

associated RNA pol II complex is sufficient for accurate transcription, but the level 

of mRNA production is regulated by gene specific factors which bind to the 

upstream of the promoter. 

1.2 Phosphoglycerate Kinase: A Model System for Studying Transcription 

There has been much interest in the phosphoglycerate kinase gene as it is a highly 

expressed gene in yeast, responsible for producing 1-5% of the total cellular RNA 

and protein (Holland and Holland 1978). It catalyses the conversion of 1,3-bis- 
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phosphoglycerate to 3-phosphoglycerate during glycolysis, with the concomitant 
production of ATP. The PGK gene is regulated to some extent by carbon source, 
being three to four times more active in yeast cells grown on glucose than in yeast 
cells grown on a non-fermentable carbon source (Maitra and Lobo 1971, Chambers 
et al. 1989). Regulation of the gene also occurs in response to a heat shock (Piper et 
al. 1988), mediated by a heat shock element at -372. 

The promoter of PGK was a good candidate promoter for the production of 
heterologous proteins in yeast, since when the PGK gene is present on a high copy 
number plasmid, the levels of PGK protein within the cell can be as high as 50% 
(Mellor et al. 1985). Once the components which make up the efficient upstream 
activation sequence were identified, the PGK promoter was found to be a good 
model system for studying the transcriptional mechanisms necessary to achieve high 
levels of gene expression. 

PGK was cloned (Hitzeman et al. 1980) by immunological screening of a yeast 
library in E. coli with a mouse antibody to purified yeast PGK. This identified a 
3.1 kb HindIll fragment containing the entire PGK sequence. All known pgk mutants 
mapped to chromosome III (Lam and Marmur 1977), and it was demonstrated that 

there was only a single copy of the gene in yeast by rescuing pgk mutants with the 
PGK clone. Later, Dobson et al. (1982) mapped PGK to a 2.95 kb Hindill fragment 
from a2 library, and demonstrated that it was "identical" to Hitzeman's 3.1 kb 

fragment. 

The sequence of PGK (Dobson et al. 1982, Hitzeman et al. 1982) revealed an open 

reading frame of 1248 bp encoding 416 amino acids which gave a protein with a 

predicted molecular weight of 44 kDa (Hitzeman et al. 1982). This was found to 
have 65% homology with horse and human PGK amino acid sequences. 
Examination of codon bias showed that out of a possible 61 codons, only 38 were 

used, and 95% of the codons utilised only 25 of the 61 (Hitzeman et al. 1982). This 

restricted codon usage may be one of the factors which allows PGK levels to be so 
high. Similar bias is found in other highly expressed yeast genes (Bennetzen and 
Hall 1982). 

Both the chromosomal copy of PGK, and the. 3.1kb clone on a plasmid, produced a 
1.5kb mRNA. This suggested that all of the control sequences necessary for 

transcription of PGK were present in the clone. The PGK mRNA has a half life of 

70-80 minutes, which is unusually long, and may be another factor contributing to 

the high expression of this gene (unpublished results, cited in Chen et al. 1984). The 

5' end of the PGK RNA transcript was mapped to -36, relative to the ATG of PGK, 
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by cDNA extension (Hitzeman et al. 1982). Polyadenylation was found to occur at 
sites 86-93bp downstream of the TAA stop codon (Hitzeman et al. 1982). 

,% 

The PGK promoter is similar in structure to other yeast RNA pol II promoters 
(Figure 1.1). Pol II promoters consist of a core promoter, from which a low level of 
transcription can be initiated, and an upstream activation sequence (UAS) which 
provides the gene with its regulatory properties, and can activate transcription to as 
much as five thousand times the basal level. Some promoters also have sequences 
for the repression of transcription, upstream repression sequence (URS). The core 
elements of the promoter are the TATA box and RNA start site (RIE on Figure 1.1), 
and RNA pol II promoters contain either both of these, or just the RNA initiation 

sequences (Weis and Reinberg 1992). The TATA box (consensus TATAAA) in 

yeast RNA pol II promoters is found between 40 and 120 base pairs upstream of the 
RNA start site (Chen and Struhl 1985, Furter-Graves and Hall 1990). This is in 

contrast to higher eukaryotes where the TATA element is only 25 to 30 base pairs 
from the start site (Breathnach and Chambon 1981). It acts as a nucleation point for 
the formation of an initiation complex containing RNA polymerase II and general 
transcription factors by allowing TFIID to bind. If the promoter does not contain a 
TATA box, then the initiator provides the site for the formation of the initiation 

complex, possibly through initiator-TAF interactions which tether TFIID (Concino 

et al. 1984, Roeder 1991, Weis and Reinberg 1992, Struhl 1994, Martinez et al. 
1994). 

The basal promoter of PGK contains two potential TATA sequences, TATA1 at 

-152 and TATA2 at -114, and a CT rich region upstream of the RNA start site at -39. 
Deletion of TATA2 has no effect on steady state RNA levels or the amount of PGK 

protein in the cell. Deletion of both potential TATA sites causes a dramatic reduction 
in protein levels (Rathjen and Mellor 1990). When the site of RNA initiation was 
investigated, it was found that initiation from TATA 1 alone was at the wild type site, 
but from TATA2 the amount of wild type initiation was reduced, and initiation 

occurred at sites downstream. If neither TATA site was present then initiation 

occured from sites in the coding region. Thus, for initiation to occur at -39, TATA1 

is sufficient but TATA2 is only partially functional. The RNA initiation site is not 
determined by distance from the TATA box, or by the CAAG sequence at the site of 

initiation. Rather, there is a sequence called the determinator, between the CT rich 

region and CAAG, which determines a single RNA start site. The role of the CT rich 

region is unclear. Such regions are found in many yeast promoters, but deletions in 

this region had no effect on levels of PGK, or the site of initiation. 
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Figure 1.1 The general organisation of a yeast RNA polymerase II promoter. UAS: 

Upstream Activation Sequence, URS: Upstream Repression Sequence, TATA: 

TATA box, RIE: RNA Initiation Element. 



The initiation of transcription requires many components, not just RNA polymerase 
(Table 1.1). This became clear when it was found that many components were 
necessary for reconstituting RNA pol II initiation activity in vitro. Purified RNA 
polymerase II was not sufficient for the initiation of transcription from the 
Adenovirus Major Late promoter (Matsui et al. 1980). However, addition of a 
fractionated human cell extract allowed initiation to occur. The cell extract fractions 
were termed transcription factor (TF) IIA-TFIID, depending upon which fraction 
they appeared in after separation from a crude extract by chromatography on 
phosphocellulose (Matsui et al. 1980). The fractions have since been studied 
intensively to discover the nature of the general transcription factors. Some of these 
fractions later turned out to contain more than one component, and the exact number 
of initiation factors necessary for transcription is not yet known. 

1.3 General Transcription Factors 

1.3.1 TFIID 

This fraction contains the protein which binds to the TATA box; TATA Box 

Binding Protein (TBP). TBP in yeast is a 27 kDa protein, encoded by a unique gene 
(Hahn et al. 1989), with 180 amino acids at the C-terminus which are 80 to 90% 

conserved between species. These C-terminal amino acids (63-240) are required both 

for binding to the minor groove of the TATA box, and also for a basal level of 

transcription (Horikoshi et al. 1990). The N-terminus of yeast TBP shares no 

sequence similarity with the N-termini of TBPs from other species, and it has been 

proposed to be the site of interaction with transcription factors to give an activated 

level of transcription. However, yeast cells expressing TBP lacking the N-terminus 

grow at least as well as cells with wild type TBP, suggesting that this region is not 

required for the essential functions of TBP (Cormack et al. 1991). 

In vitro translated yeast TBP is able to bind to TATA elements, and can also 

complement a mammalian system lacking TFIID (Buratowski et al. 1988). 

Interestingly, initiation occured at the mammalian distance of 30 bp downstream of 

the TATA box, suggesting that the distance of initiation from the TATA box is not 

determined by the TATA binding factor. As TBP is the only one of the basal 

transcription factors able to bind in a sequence specific manner to the TATA box, it 

is thought to recruit other general transcription factors, and also RNA pol II to 

promoters. 

1.3.2 TFIIA 
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Table 1.1 General Initiation Factors Required by Yeast RNA Polymerase II, and 
their Human Homologues 

Yeast M Wt (kDa) Human 

d 27 TFIID 

e 41 TFIIB 

b 85,75,55,50,38 TFIIH 

g 105,54,30 TFIIF 

a 66,43 TFIIE 

TFIIA 32,13.5 TFIIA 



The role of TFIIA in assisting the formation of a stable complex between TFIID and 
the TATA box is unclear. Buratowski et al. (1988) found TFIIA not to be essential 
for transcriptional initiation but it appeared to have a stimulatory effect; other studies 
suggest that TFIIA is necessary to achieve a high level of transcription (Ranish and 
Hahn 1991), or that TFIIA is not required for promoter recognition (Sayre et al. 
1992a). This confusion may be partly explained by the identification of a second 
activity (TFIIJ) in the TFIIA fraction (Cortes et al. 1992). TFIIA had a stimulatory 
effect on transcription and TFIIJ was required for initiation. 

In yeast, TFIIA consists of two polypeptides (32 and 13.5 kDa) both of which are 
required for its activity. Yeast TFIIA can functionally replace mammalian TFIIA in 

basal transcription. It is not a DNA binding protein, and it binds to the TFIID/TATA 

complex with greater affinity than it binds to TFIID not bound to DNA (Ranish and 
Hahn 1991). 

One possible role for TFIIA is to block the interaction of negative regulators with the 

basal transcription factors (Auble and Hahn 1993). ADI (ATP dependent inhibitor) 

prevents TBP from binding to the TATA box in yeast. The interaction of ADI and 
TBP is through the C-terminus of TBP and this is blocked by TFIIA. 

1.3.3 TFIIB 

After TFIID has bound to the TATA box, this complex is bound by TFIIB via a 

protein-protein interaction with TBP. The presence of TFIIB is absolutely required 

for the initiation of transcription (Reinberg and Roeder 1987), where it is necessary 

for the recruitment of RNA pol II to the initiation complex (Buratowski et al. 1989). 

RNA pol II and TFIIF are recruited through another protein-protein interaction 

between the small subunit of TFIIF and TFIIB (Flores et al. 1991). The order of the 

interactions between TFIIB and its targets is not known; TFIIB can bind stably to 

RNA pol II in solution (Koleske and Young 1994) so the association with TBP does 

not necessarily precede association with RNA pol II. 

TFIIB acts as a bridge between TFIID and RNA pol II which suggests that it 

contains separate domains for the two protein-protein interactions. The C-terminus 

has been shown to be both necessary and sufficient for an interaction with the 

TBP/DNA complex (Hisatake et al. 1993), and the N-terminus is important for an 

interaction with TFIIF (Ha et al. 1993). Yeast initiation factor e is the homologue of 

human TFIIB (Tschochner et al. 1992). It is a 41 kDa protein, encoded by SUA7, 

which interacts specifically with RNA polymerase II and, as has been demonstrated 

with gel retardation assays, also with TFIID and TFIIA which are bound to promoter 
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DNA. Factor e is also proposed to be responsible for determining the RNA start site 
(Pinto et al. 1992). 

1.3.4 TFIIF 

This general transcription factor consists of two subunits in humans, RAP30 and 
RAP74 (Flores et al. 1989, Sopta et al. 1989), and three subunits in yeast, 105,54 
and 30 kDa (Tan et al. 1994). The small subunit alone is sufficient for the 
recruitment of RNA pol II to the DNA/IID/IIA/IIB complex (Flores et al. 1991) but 
the complex is formed more efficiently if both subunits are present (Tyree et al. 
1993). The association of TFIIF with RNA pol II can occur in the absence of DNA. 

TFIIF is unique amongst the general transcription factors, since it is found associated 
with the transcription complex after initiation is complete. This means that it can 
interact with both phosphorylated and unphosphorylated forms of RNA pol II. 
Whilst TFIIF is absolutely required for the formation of the initiation complex, it 
also has a role in the elongation of transcription (Flores et al. 1989) where it may 
cooperate with the elongation factor TFIIS. TFIIF is able to increase the rate of 
elongation about six-fold (Bengal et al. 1991), by suppressing pausing at some sites 
on the template (Tan et al. 1994). 

1.3.5 TEILE 

TFIIE is a heterotetramer of two 56 kDa subunits and two 34 kDa subunits which 

enters the pre-initiation complex after RNA pol II (Inostroza et al. 1991). It is not 

required at all promoters, being essential at the adenovirus major late promoter but 

not at the immunoglobulin heavy chain promoter (Parvin et al. 1992). When present 
it probably interacts through RNA pol II; TFIIE has been shown to bind both RNA 

pol II and TFIIB in solution (Reinberg and Roeder 1987). Another protein-protein 

contact may be involved in the recruiting of TFIIH which binds after TFIIE; the 

interaction between TFIIE and TFIIH may be cooperative (Flores et al. 1992). TFIIE 

could contain an ATPase activity, since after addition of ATP or dATP, TFIIE 

dissociates from the initiation complex (Buratowski et al. 1989). 

The yeast equivalent of TFIIE is factor a, but human TFIIE cannot substitute for 

factor a. Factor a consists of two polypeptides of 66 kDa and 43 kDa both of which 

are required for transcriptional activation (Sayre et al. 1992b). When a multi- 

component complex containing RNA pol II and the initiation factors e, b and g was 
isolated from yeast (see Table 1.1), factor a was required, along with TBP, for 

selected transcription in vitro (Koleske and Young 1994). 
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1.3.6 TFIIH 

This complex consists of eight subunits and is the only general transcription factor to 
have an associated enzyme activity (reviewed in Drapkin et al. 1994). TFIIH 
copurifies with a DNA-dependent ATPase activity, an ATP dependent DNA helicase 
activity and a CTD kinase activity. TFIIE is not only able to recruit TFIIH to the pre- 
initiation complex, but also to regulate its enzyme activities. Subunits of TFIIH have 
been shown to be encoded by genes involved in excision repair, thus providing a link 
between transcription and DNA repair (Drapkin and Reinberg 1994). 

The yeast homologue of TFIIH is factor b; originally thought to be made up of three 
polypeptides with weights 85 kDa, 75 kDa and 50 kDa (Feaver et al. 1991a), it is 
now known to contain two other subunits of 55 and 38 kDa (Feaver et al. 1993). 
Associated with factor b is a DNA-dependent ATPase activity which is stimulated 
by DNA fragments containing promoter sequences. There is also a protein kinase 

activity which will phosphorylate the yeast RNA polymerase II CTD (Feaver et al. 
1991b). Like human TFIIH, yeast factor b has a role in nucleotide excision repair; 
the 85 and 50 kDa subunits are encoded by RAD3 and SSLI, and another excision 
repair protein, RAD25/SSL2, interacts with, but is not a component of, factor b 
(Feaver et al. 1993). 

1.4 Binding of basal transcription factors to form an active initiation complex. 

An ordered assembly of general transcription factors and RNA pol II onto a 

promoter has been proposed (Buratowski et al. 1989, reviewed in Conaway and 
Conaway 1993, and Buratowski 1994; see Figure 1.2). In this, TFIID and TFIIA 

bind to the TATA box of the promoter forming a stable complex which is recognised 
by TFIIB. TFIIF can interact with both TFIIB and RNA polymerase II, and it is 

TFIIF that brings RNA pol II to the pre-initiation complex. Two further factors are 

required before transcription can occur; TFIIE binds and recruits TFIIH forming a 

complete pre-initiation complex. ATP is then required to form an activated pre- 
initiation complex, capable of initiating transcription when nucleoside triphosphates 

are supplied (Goodrich and Tjian 1994). There is evidence (Koleske and Young 

1994) that rather than associating with the promoter in a linear fashion, initiation 

factors and RNA polymerase II could assemble into a multisubunit complex in the 

absence of DNA and then bind to the promoter. 

Once the initiation complex has formed, the addition of nucleotides allows 

transcription to take place. The general transcription factors do not travel with the 
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i. TATA + TFIID/TFIIA 

ii. + TFIIB 

iii. + RNA pol II via TFIIF 

iv. +TFIIE 

ý. + TFIIH 

vi. + ATP 

Figure 1.2 The assembly of general transcription factors and RNA polymerase II 

onto a promoter to form a pre-initiation complex. Rather than assembling in a linear 
fashion as shown above, it is possible that components of the general transcription 
factors assemble into a multisubunit complex in the absence of DNA and then bind 

to the promoter (Koleske and Young 1994). 



elongating polymerase, but rather are lost from the initiation complex as it moves 
into elongation (Zawel et al. 1995). TFIID remains bound to the promoter ready to 
recycle TFIIB as it is released. TFIIE is lost by the time the nascent RNA reaches 
+10, and TFIIH sometime after elongation reaches +30. The only general 
trancription factor which has been found associated with RNA polymerase after 
initiation has occured is TFIIF. This is released from the initiation complex after 
+10, but has the ability to reassociate with a polymerase if it stalls at a transcriptional 
block. Once the stalled polymerase starts to elongate TFIIF is released once more. 
This release of general transcription factors after initiation allows these factors to be 

recycled, and may increase the numbers of polymerases loading onto a promoter. 
This may be more important for achieving a high level of transcription than the 
formation of the first initiation complex (Zawel et al. 1995). 

1.5 Activated Transcription 

Both the activation of transcription, and the regulation of transcription in response to 

physiological signals, are a result of the transcription factor binding sites in its 

upstream activating sequence (UAS; see Figure 1.1) The UAS mediates the 

regulation of gene expression in response to physiological signals, and stimulates the 

activity of the core promoter over a basal level. It is similar to the enhancer elements 

of higher eukaryotes in that it can function in both orientations, and at a variable 
distance from the TATA box. However the distance over which it will function is 

only up to about a kilobase, not several, and neither will it work if placed 
downstream of the initiation site (Guarente and Hoar 1984, Struhl 1984). 

In some constitutively expressed genes, the UAS consists of a poly (dA-dT) 

sequence, eg PET56, HIS3 and DED] (Struhl 1985). This activation of transcription 

may be due to the recognition of the poly (dA-dT) sequence by a yeast DNA binding 

protein, or because the general transcription factors are able to gain increased access 

to a DNA template with a disrupted chromatin structure, possibly due to the 

exclusion of nucleosomes. This would explain the constitutive nature of genes with 

poly (dA-dT) UAS. However, the poly (dA-dT) regions of PET56, HIS3 and DEDI 

are all able to form nucleosome cores (Losa et al. 1990). A gene encoding a yeast 

protein that recognises nonalternating oligo(A)"oligo(T) tracts has been cloned 

(Reardon et al. 1993), this may play a role in the promotion of transcription from 

such promoter elements. 

Some yeast genes may rely not only on an upstream activating sequence for 

maximum levels of transcriptional activation. In certain cases the presence of a 

downstream activation sequence (DAS) which influences transcription initiation has 
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been suggested. A transcription factor binding site(s) within the coding region, 
whose deletion reduces the level of transcription but not by decreasing mRNA 
stability, was proposed to explain the observation that some highly expressed yeast 
promoters do not activate heterologous gene constructs to levels which are as high as 
might have been expected (Chen et al. 1984). This has been noted for PGK, PYK and 
SRPI (Mellor et al. 1987, Purvis et al. 1987, Fantino et al. 1992). Indeed, Abflp has 
been shown to bind to the PGK coding region at position +79491 (Ian Graham, 
unpublished results). 

1.5.1 Transcriptional Activator Proteins 

Proteins which activate transcription consist of two domains, a DNA binding domain 

and an activator domain (Hope and Struhl 1986). The DNA binding domain anchors 
the transcription factor to the promoter so that the activation domain is able to 
interact with other factors present at the promoter (Brent and Ptashne 1985). The 
high specificity of the DNA/protein interaction provides a mechanism by which 
genes can be differentially expressed. The activation domain from activator protein 
A can be fused to the DNA binding domain of activator B, and this hybrid will still 

activate transcription as long as binding sites for B are present in the promoter 
(Ptashne 1986). 

Since the association of TFIID with the TATA box is a slow, rate limiting step in 

vitro (Hoopes et al. 1992) various roles for gene specific transcriptional activators 

can be proposed: They could i) act on previously potentiated promoters to increase 

the frequency of initiation, ii) act cooperatively with the general transcription factors 

to help with the assembly of the initiation complex, iii) act independently to help 

assemble the initiation complex, or iv) activate repressed promoters by disrupting 

chromatin structure and allowing general transcription factors to bind. The 

recruitment of TBP to the basal promoter has been shown to be increased by the 

presence of an activator (Klein and Struhl 1994a). 

1.5.2 DNA Binding Domains 

Transcriptional activator proteins utilise various structural motifs in their DNA 

binding domains in order to bind DNA. These include helix-turn-helix (HTH), zinc 

finger, leucine zipper and helix-loop-helix (HLH). The helix-turn-helix motif 

consists of two a-helices separated by about four amino acids forming a ß-turn. 

HTH proteins often bind to DNA as dimers, the second helix fits in the major groove 

whilst the first helix lies across it in contact with the DNA backbone. The recent 

identification of the DNA binding motif of Rap lp provides an example of an HTH 
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protein which does not bind as a dimer (Rhodes D, unpublished). The HTH motif is 
often part of a larger DNA binding domain which is important for recognition of the 
binding site (Pabo and Sauer 1992). 

The zinc finger motif was first noted in TFIIIA (Miller et al. 1985), and consists of 
two cysteines and two histidines positioned to chelate a zinc ion. Once zinc is bound, 
the "finger" will bind DNA. Yeast zinc fingers are not homologous to the TFIIIA 
motif, since although they bind zinc, they have four to six cysteines per finger 
(Pfeifer et al. 1989). Yeast activators with Zn fingers, for example, Gal4p, show 
considerable homology to each other, and this extends either side of the finger. It is 
possible that the finger interacts non-specifically with the DNA and the DNA 
binding specificity is determined by sequence carboxy terminal to this (Pfeifer et al. 
1989). 

The leucine zipper (Landshulz et al. 1988) has a basic region, which usually forms a 
helix, for interaction with DNA, and a dimerization region containing 4 or 5 leucines 

spaced exactly seven amino acids apart. Thus, all the leucines are on the same face 

when a helix is formed. Initially, the leucines were thought to interdigitate when 
dimerization occured (Landshulz et al. 1988), but it is now known that the two 
helices form a coiled coil (O'Shea et al. 1989). For DNA binding to occur, the coiled 
coil fits over the centre of the binding site, and the basic helices extend in opposite 
directions along the major groove. 

The helix-loop-helix motif (Murre et al. 1989a) is similar to the leucine zipper motif 
in that it contains a basic region followed by a dimerization domain. In this case the 
dimerization domain is an a-helix, followed by a six to ten amino acid loop, and a 

second a-helix. Like leucine zipper and HTH proteins, HLH proteins can form both 

homodimers and heterodimers (Murre et al. 1989b) which allows regulation of the 

transcription factor itself, and can also generate new DNA binding specificities. 

1.5.3 Activation Domains 

There are several classes of activator domains, glutamine-rich, for example, Gal11 p, 

proline-rich and the most common class, acidic activators, which seem to be able to 

activate transcription in all eukaryotes tested. Initial studies of the acidic activation 
domains of Gal4p and Gcn4p showed them to be small and negatively charged 
(Hope and Struhl 1986). There was no specific sequence requirement and extensive 
deletions into the Gcn4p activation domain could be made without affecting its in 

vivo function. This suggested that tertiary structure was not important, although the 

activation domain was proposed to form a-helices (Hope et al. 1988). The idea that 
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acidic activation domains are amphipathic helices, or unstructured regions with a 
high concentration of negative charge (Sigler 1988) has been challenged by studies 
which suggest that the activation domains of Gal4p and Gcn4p form ß-sheets 
(Leuther et al. 1993, Van Hoy et al. 1993), although the acidic activator VP16 has 
not been shown to do so. Thus, it is possible that there is more than one mechanism 
by which activators function, and that the activator domain should have a flexible 
structure, for interaction with its targets. 

1.5.4 Interaction Between Upstream and Downstream Promoter Elements 

RNA pol II and the general transcription factors form a complex over the basal 

promoter which may be situated at some distance from the UAS where the activator 
binding sites are located. As only two or three proteins can bind adjacent to the 
initiation complex, proteins upstream must be brought into contact with the basal 
factors. Various suggestions have been made including twisting, sliding and oozing 
(reviewed in Ptashne 1986), but the mechanism now generally accepted for 

eukaryotes is looping (Schleif 1992). In this case two proteins separated by several 
kilobases of DNA can be brought into contact if the intervening DNA forms a loop. 

1.5.5 Targets for Transcriptional Activators 

That activators are able to increase the level of transcription from a gene predicts 

that the activator proteins make contacts with the basal transcription factors. Many of 

the general transcription factors have been demonstrated to interact with activators. 

Acidic activators interact with TBP (Lee and Struhl 1995), TFIIB (Lin and Green 

1991, Roberts et al. 1993) and TFIIH (Xiao et al. 1994), whilst the glutamine-rich 

Spl can interact with TFIIE (Peterson et al. 1991). Also, the largest subunit of RNA 

pol II may interact with activators via the CTD (Allison and Ingles 1989). Activators 

are able to mediate their effects at different stages in the formation of the initiation 

complex. Thus, some act early to increase recruitment of TBP (Klein and Struhl 

1994a) or other general transcription factors, binding sites for basal transcription 

factors on TFIIB are revealed in the presence of an acidic activator (Roberts and 

Green 1994). Others interact with the final components of the complex, possibly 

helping to promote open-complex formation, or chain elongation (Xiao et al. 1994). 

1.5.6 Coactivators 

Further components of the basal transcription machinery were identified when it was 

demonstrated that TBP could not replace the TFIID fraction in responding to 

transcriptional activators such as Spl and GAL-VP16 (Pugh and Tjian 1990, Berger 
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et al. 1990), although basal transcription was not affected. The other factors present 
in the TFIID fraction are termed TBP Associated Factors (TAFs). It was proposed 
that the TAFs might interact with the N-terminus of TBP, but an N-terminal 
truncation of human TBP contains all the major TAFs which form a complex with 
full length TBP. The truncated TBP will support transcriptional activation both from 
different classes of activation domain i) Sp 1-glutamine-rich, ii) Ga14-AH-acidic and 
iii) Zta-not rich in any particular amino acid, and also from a TATA-less promoter 
(Zhou 1993). Yeast TBP has also been found to be stably associated with other 
factors, yeast TAFs (Poon and Weil 1993). 

Other protein factors are involved in transmitting the signal from activators to the 
basal complex, these factors can be titrated by a strong activator causing 
transcription to be reduced from genes without binding sites for that activator 
(Berger et al. 1990, Kelleher et al. 1990). These adaptors, mediators or coactivators 
are proteins which do not bind to DNA but make protein/protein contacts, and they 
have been identified in screens where activators function without their activation 
domains, or where weak activators work as strong ones, eg GAL11, SUG1, ADA2 

and ADA3 (Himmelfarb et al. 1990, Swaffield et al. 1992, Berger et al. 1992, Pina 

et al. 1993). 

Recently a mediator complex was isolated from yeast, which enabled acidic 

activators to activate transcription of a system reconstituted with essentially 
homogenous basal factors, and RNA pol II. The mediator was found to be made up 

of about twenty proteins including three subunits of TFIIF, GAL 11, SUG 1 and 
SRB2,4,5 and 6. At the same time a holoenzyme was isolated which allowed 

purified basal factors to respond to activators. The holoenzyme was found to consist 

of the mediator and RNA pol II (Kim et al. 1994). A similar holoenzyme, stimulated 
by the activator GAL4-VP 16, was isolated by a different group (Thompson et al. 

1993, Koleske and Young 1994). The need for the holoenzyme to allow basal 

transcription factors to respond to activators suggests that a direct interaction 

between activators and general transcription factors may not be sufficient for 

activated transcription. 

1.6 Activated Transcription at PGK 

After the primary structure of PGK had been determined, the promoter was studied 

to find regions which were required for efficient expression of the gene (Ogden et al. 

1986). A series of unidirectional deletions showed that sequence upstream of -620 

could be deleted without any effect on the levels of transcription from PGK. 

However, deletions which removed promoter sequence to -350 caused a dramatic 
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reduction in the amount of RNA produced. The identification of a region which was 
important for transcriptional activation allowed fine deletions to focus on the 
sequence between -620 and -350. Window deletions were made within this region 
and the boundaries of the upstream activation sequence were defined as -402 to -479 
(Ogden et al. 1986). This upstream activation sequence (UAS) could be moved 
closer to the RNA start site without reducing levels of transcription, and insertion of 
the UAS fragment into a deletion window which reduced PGK trancription resulted 
in a return to wild type levels of PGK RNA. In addition, the PGK UAS was able to 
enhance the transcription of a heterologous gene construct consisting of the TRPJ 
promoter linked to the human interferon a-2 coding region (Ogden et al. 1986). 

The PGK UAS was divided into two fragments Y (-461 to -531) and Z (-402 to 

-460) which were incubated in gel retardation assays with protein extracts from cells 
grown in glucose or acetate (Stanway et al. 1987). Different retardation complexes 
were formed depending upon whether the carbon source was fermentable or non- 
fermentable. DNasel footprinting revealed an area of protection over the region -523 
to -496 in cells grown on glucose (termed Yfp, Y footprint) which was absent when 
the cells had been grown on acetate. The UAS appeared to contain two domains, one 
for controlling transcription in response to carbon source and one for activating 
transcription. Also present were three repeats of a sequence, CTTCC, thought to be 

of potential functional significance (Stanway et al. 1987). 

Window deletions of small regions of the PGK UAS were made to look at their 

effects on transcriptional activation (Chambers et al. 1988). These showed that, 

whilst important for transcriptional activation, the CTTCC blocks do not all activate 

to the same extent. Removal of CT block 1 caused a 50% decrease in the level of 

transcription, removal of block 2 reduced transcription by 75%, and deletion of all 

the UAS sequence upstream of block 1 results in about a 90% decrease in activation. 

A window deletion which removed the region protected in footprinting (Yfp) had no 

effect on the level of transcription, but a deletion of sequence 3' to this protected 

region, not including the CTTCC blocks, caused an 80% drop in levels of RNA. 

Thus another functional element of the PGK UAS, termed the activator core (AC), 

was identified (Chambers et al. 1988). Fragment Z (-402 to -460) was extended to 

include the new sequence (Z+). When Z+ was used in a gel retardation assay, a 

specific protein interaction was found which was not due to the protein which bound 

the protected region on fragment Y. DNasel footprinting showed protection of the 

AC region, and also some protection of the CT blocks. This protection was different 

on the coding and non-coding strands suggesting asymetric protein binding. 

14 



The PGK UAS contains three elements; three CTTCC blocks, an activator core and a 
region of strong protein interaction, the Yfp. These elements were examined for 
transcriptional activity in the context of a minimal promoter plasmid (Stanway et al. 
1989). The minimal promoter was constructed by taking TATA and RNA start site 
sequences from the PGK promoter and linking them to the IFN coding region. 
Subfragments of the PGK UAS were cloned upstream of the minimal promoter, and 
the levels of interferon RNA used to determine the relative activation potential of 
each fragment. The whole UAS could activate transcription to a high level and the 
Yfp was able to activate weakly, but the three CTTCC blocks were inactive, as was 
the activator core in combination with one CT block. However, the activator core in 
conjunction with either all three CT blocks, or the Yfp, was able to activate to a 
moderate level. 

The activator core was shown to bind the multifunctional transcription factor Raplp 
(Chambers et al. 1989) and this site was also important for the carbon source 
regulation of PGK. The binding of Raplp to the PGK promoter was investigated 

using nuclear protein extracts from cells which had been grown in glucose or 
pyruvate. Rap 1p binding to the Z+ fragment was seen with the glucose extract but 

not the pyruvate extract. As levels of Rap 1p mRNA are not affected by carbon 
source this suggests that regulation of PGK transcription in response to carbon 
source is mediated at the level of binding Rap lp to the PGK UAS. 

Such regulation could be achieved by post translational modification of Raplp. 
When a nuclear protein extract from cells grown in glucose was treated with 
phosphatase, binding to the Z+ fragment was abolished (Tsang et al. 1990). It could 
be restored by including a phosphatase inhibitor, ammonium molylbdate, or protein 
kinase in the phosphatase reaction. Treatment with phosphatase caused binding of 
Rapip to the Z+ fragment to decrease, but when sequences from the PGK promoter 

normally found 5' to Z+ were included in retardation reactions, binding of 

phosphatased Rapip increased. This may mean that the 5' end of the Raplp binding 

site is involved in the stability of Rap 1p binding. Similar responses were found when 
just the DNA binding domain of Rap 1p was treated with phosphatase. 

Rap Ip appears to play a central role at the PGK promoter. It mediates regulation of 

transcription in response to carbon source (Chambers et al. 1989), and although the 

Rap 1p binding site alone was unable to activate a minimal promoter (Stanway et al. 
1989), in conjunction with the CTTCC boxes it is important for an activated level of 

transcription (Chambers et al. 1988, Stanway et al. 1989, Henry et al. 1994). 
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The 5' region of the PGK UAS, termed the Yfp, contained a perfect match to the 
Abf 1p consensus sequence. A protein which bound to this region was purified from 
yeast and shown to have identical properties to Abf 1p (Chambers et at. 1990). Also, 
in vitro translated Abflp bound to the Yfp (Chambers et at. 1990). The role of 
Abf 1p in the PGK promoter is unclear, although deletion of its binding site did not 
affect transcription from a multicopy plasmid borne copy of PGK (Chambers et at. 
1988), the Abflp site was able to activate a minimal promoter weakly (Stanway et 
al. 1989). Neither did a deletion of the Abflp site affect carbon source regulation 
(Chambers et at. 1989), although the binding of protein to this site appeared to be 

affected by carbon source (Stanway et at. 1987, Chambers et at. 1989). 

It was thought that a protein bound to the CTTCC blocks in the PGK UAS, since in 

vitro footprinting had revealed some protection over these regions (Chambers et al. 
1988), and binding of Gcrlp to the CTTCC motif had been demonstrated in vitro 
(Baker 1991). However, in vivo binding was harder to demonstrate, but eventually 
Gcrlp was found to bind to just two of the three CTTCC blocks in the PGK 

promoter by in vivo footprinting in GCRI and gcrl - strains (Henry et al. 1994). 

Protection of -454 and -453 in CTTCC block 1 and -429 and -428 in block 3 was 

seen but there was no evidence of protection of block 2. The binding of Rap 1p to its 

binding site was not affected by the presence or absence of Gcrlp. Gcrlp was shown 

to positively influence transcription from PGK but it requires Rap lp to be bound to 

the promoter to do so (Drazinic and Baker, unpublished). 

The yeast co-activator Gall ip has been shown to have a positive effect on 

transcription from PGK in both fermentable and non-fermentable carbon sources 

(Stanway 1994). When levels of PGK were examined in GALL l and gall l- strains 

Gal 11 p was found to stimulate a two-fold increase of PGK transcription. This effect 

is only seen if the Rap 1p site is present; if the Rap 1p site is deleted from a copy of 

PGK on a high copy number plasmid there is no decrease in the activity of the 

construct in a gall l- strain. When the PGK UAS was footprinted in both GALL l and 

gall]- strains no difference in protection was seen, suggesting that binding of 

transcription factors is not affected by Gall ip. 

1.7 Transcription Factors which Bind to thePGK Promoter 

1.7.1 Rapip 

Repressor/Activator protein, or Rapip, is an essential (Shore and Nasmyth 1987), 

abundant transcription factor in the yeast cell. There are estimated to be about 6000 

molecules of Raplp per haploid nucleus (Verdier et al. 1990) most of these have 
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been found, by immunolocalisation, to be at the ends of paired bivalent meiotic 
chromosomes (Klein et al. 1992). The many roles of Rap 1p within the cell are 
reflected in the number of names under which the protein was studied: TUF, SBF-E, 
TBA and GRF1 (Huet et al. 1985, Shore and Nasmyth 1987, Longtine et al. 1989, 
Buchman et al. 1988a) before it was cloned (Shore and Nasmyth 1987). Raplp was 
purified by affinity chromatography and the gene was then isolated from a genomic 
library using an antibody generated against the purified protein. The DNA sequence 
of RAP] contained one ORF encoding a protein with a predicted molecular weight 
of 92.5kDa, although the apparent weight on SDS-PAGE was 120kDa. 

Rap lp is encoded by an essential gene (Shore and Nasmyth 1987) which contains 

within its promoter four Raplp binding sites. These are not essential for efficient 

activation of Rap 1p (Graham and Chambers 1994a), but Rap 1p is thought to have a 

role in negative autoregulation (Graham and Chambers, unpublished results). The 

consensus DNA sequence to which Raplp binds was derived by Buchman et al. 
(1988a) and has recently been extended at both the 5' and 3' ends (Graham and 
Chambers 1994b) to give 5' RTRCACCCANNCMCC 3. This consensus binding 

site has a conserved core, with 5' and 3' flanking regions which may be required to 

stabilise the interaction of Raplp with DNA. 

The DNA binding domain (DBD) of Rap1p (Henry et al. 1990) is in a central region 

of the protein (amino acids 361-596), as demonstrated by testing N- and C-terminal 

truncations of the protein in gel retardation assays. The Raplp DBD does not contain 

any obvious DNA binding motifs, but at a recent meeting the crystal structure was 

shown to be an HTH motif with homology to c-myc (Rhodes D., unpublished). The 

236 amino acid DBD is large when compared with the DNA binding domains of 

other yeast transcription factors such as GAL4, GCN4 and HAP1 whose DBDs 

range from 60 to 148 amino acids. However, another multifunctional transcription 

factor, Abf 1 p, also has a large DNA binding domain, but it does contain a potential 

Zn finger motif at its N-terminus. 

Rap 1p binding sites had been found at silencers, in UASs and at telomeres 

suggesting roles in both activation and silencing (Buchman et al. 1988a, Buchman et 

al. 1988b). This has been demonstrated using yeast strains containing temperature 

sensitive Rap 1p (Kurtz and Shore 1991). MATa, which has a Rap 1p binding site in 

its UAS, shows decreased levels of transcription in rapl is strains, whilst in the same 

strains, partial derepression of HMR silencing occurs (Kurtz and Shore 1991). 

Individual Raplp binding sites from UASs, silencers and telomeres were all shown 

to activate transcription of a P-galactosidase reporter when placed in a UAS-less 

promoter (Buchman et al. 1988b). Since a mutated Raplp binding site at a silencer 
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can be functionally replaced with a true binding site from either a UAS, or a silencer 
(Shore and Nasmyth 1987), the context of the DNA binding site appears to 
determine the role of Rap 1 p. In other words, the sequences which flank Rap 1p 
binding sites at the silencers cause Raplp to silence transcription, whereas those 
surrounding Rapip sites in UASs cause it to activate transcription. 

The C-terminus of Rap 1p contains regions which are important for activation of 
transcription and also transcriptional silencing. Hardy et al. (1992a) fused regions of 
the Rap 1p C-terminus to the GAL4DBD and found that amino acids 630-695 were 
important for transcriptional activation, whilst derepression required amino acids 
678-827. These two regions overlap but the fact that some of the hybrids acted only 
to activate, or to derepress suggests that there may be two separate domains for these 
functions. The rapl s mutants of Sussel and Shore (1991), which are defective in the 

silencing function of Raplp, all map to the C-terminal region of Raplp necessary for 

silencing, but not activation. A further domain has since been defined in the C- 

terminus, responsible for telomeric silencing. Mutations in the last twenty eight 

amino acids of the C-terminus have been demonstrated to be essential for both 

telomeric and HML silencing, and also to play a role in the regulation of telomere 
length (Liu et al. 1994). 

Most studies of Raplp have focused on the C-terminus since a large deletion of the 

N-terminus is still viable (cited in Hardy et al. 1992a). However, in vitro studies 

suggested that the binding of Rap 1p causes the DNA to bend, and that this requires 

the N-terminus. This bending does not ocur at the Raplp recognition sequence but at 

a site 5' to it (Vignais and Sentenac 1989, Gilson et al. 1993). Vignais and Sentenac 

proposed that this bending by Raplp required two domains, one to bind the DNA 

and a second to affect the bending, since mutations which affect the strength of 

Rap 1p binding do not affect DNA bending. In support of this, DNasel and chemical 

footprinting of the Rap l p/DNA complex in vitro revealed that full length Rap 1p or 

just the Raplp DNA binding domain caused a distortion within the consensus 

recognition sequence, but only the full length protein was able to induce a bend in 

the DNA (Gilson et al. 1993). The DNA bend has been shown to be greater than 500, 

but it is reduced by removing 230 N-terminal amino acids (44-274), and increased 

by removing C-terminal amino acids (Muller et al. 1994). 

The many roles of Rap 1p within the yeast cell have been suggested to be a result of 

the context of the Raplp binding site. This hypothesis predicts that there will be 

other proteins in yeast which will interact with Raplp at these loci in order for the 

Raplp binding site to differentiate between activation or silencing. Such proteins 

have been identified: Silent Information Regulator (SIR 1-4) proteins interact with 
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Rap 1p at silencers and telomeres, as does Rap 1 p-Interacting Factor (RIF 1). 
Mutations in RIF] result in defective silencing, and also in the lengthening of 
telomeres, but a deletion of RIF] does not affect the essential activation functions of 
Raplp (Hardy et al. 1992b). The two hybrid system has been used to show that the 
interaction between Rap 1p and Rif 1p involves the C-terminus of Rif 1p and amino 
acids 667-827 of Raplp. This region of Raplp is also needed for its role in silencing 
which suggests that Raplp/Riflp interactions may be restricted to silencers and 
telomeres. An interaction between Raplp and the SIR proteins is suggested by 

evidence that the sub-nuclear localisation of Sir3p and Sir4p is similar to that of 
Rap 1p (Palladino et al. 1993), and that the silencing defect of rap 1s can be supressed 
by overexpression of Sirlp or Sir4p (Sussel and Shore 1991). A direct interaction 
between the C-terminus of Rap 1p and Sir3p and Sir4p was demonstrated using the 

two hybrid system (Moretti et al. 1994). The SIR proteins do not bind DNA and thus 
Rap 1p may be involved in their recruitment to HM loci and telomeres for the 

establishment of silencing. A protein which works in concert with Raplp in the 

activation of transcription at glycolytic loci, is Gcrlp (GlyColysis Regulator). 

1.7.2 Gcrlp 

Gcrlp was first identified as a mutation in yeast which affected several of the 

glycolytic enzymes (Clifton et al. 1978). Whilst the gcrl mutation decreases the 

levels of most glycolytic enzymes, more so when cells are growing on sugars rather 

than without sugars, it is not in an actual glycolytic gene (Clifton and Fraenkel 

1981). The GCR1 gene was cloned by complementation, and sequencing showed it 

to be a 94kDa protein (Baker 1986) which was not essential to the cell. There is 

some evidence that Gcr lp can interact with Rap 1p without contacting DNA, and 

Rap1p and Gcrlp have been shown to coimmunoprecipitate (Tornow et al. 1993), 

suggesting that they can form a complex in vivo. However, Gcrlp is able to bind 

DNA independently of Rap1p (Baker 1991), but it is possible that the interaction of 

Gcr lp with DNA is stabilised by the presence of Rap 1 p. Binding sites for Gcr lp are 

found in the promoters of many glycolytic genes adjacent to Raplp binding sites 

(Reviewed in Chambers et al. 1995). 

The DNA binding domain has been mapped to the C-terminal 154 amino acids of 

Gcrlp (Huie et al. 1992), and a consensus recognition sequence derived with 

CTTCC at its core (Baker 1991). Gcr 1p also contains an activation domain at its N- 

terminus (Tornow et al. 1993). This is essential for the function of Gcrlp in vivo, as 

demonstrated by complementation in gcrl - cells (Tornow et al. 1993). Recently 

Gcrlp has been demonstrated to contain a leucine zipper structure necessary and 
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sufficient for dimerization in vitro and in vivo, although dimerization does not seem 
to be essential for functional Gcrlp (Deminoff et al. 1995) 

Gcr lp at glycolytic gene promoters does not only interact with Rap 1 p. A screen 
looking for other activities which affect the expression of glycolytic genes has 
identified two further Gcr genes; GCR2 and GCR3 (Uemura and Fraenkel 1990, 
Uemura and Jigami 1992a). Mutations in both of these genes have similar 
phenotypes to gcr-1 mutations, vi defective growth on fermentable carbon sources, 
and near normal growth on non-fermentable carbon sources. The amino acid 
sequence of Gcr2p shows a region of similarity with Gcrlp, and the two hybrid 
system has been used to demonstrate an interaction between these proteins (Uemura 
and Jigami 1992b). In this system a GAL4AD/Gcrlp hybrid was able to complement 
a go-2- strain suggesting that Gcr2p provides Gcrlp with an extra activation domain. 
In agreement with this a Rap l p/Gcr2p fusion is able to complement gcrl - mutants. 
Thus Gcrlp and Gcr2p may form a complex in which Gcrlp binds DNA and Gcr2p 
donates an activation domain. The role of Gcr3p remains unclear. 

1.7.3 Abflp 

Abflp (ARS Binding Factor), like Raplp, is a multifunctional yeast protein. Also 

known as SBF-B, BAF1, REB2, GF1, TAF, SUF, OBF1 and Y protein (Shore et al. 
1987, Halfter et al. 1989a, Morrow et al. 1989, Dorsman et al. 1990, Hamil et al. 
1988, Dorsman et al. 1989, Francesconi et al. 1989, Stanway et al. 1987), Abflp 

binding sites are found at silencers, ARSs and in the UASs of genes with a wide 

range of functions such as ribosomal protein genes, glycolytic genes, COX6, CAR] 

and ILVI (Buchman et al. 1988a, Dorsman et al. 1989, Della Seta et al. 1990, 

Trawick et al. 1992, Kovari and Cooper 1991, Remacle and Holmberg 1992). This 

wide range of roles for the protein has been demonstrated using a series of 

temperature sensitive lethal mutations in ABFI (Rhode et al. 1992). At the semi- 

permissive temperature, CEN-ARS plasmids have an ARS-specific instability, the 

cell cycle G1-S phase transition is not efficient, no activation is seen by an Abf 1p 

UAS, there is reduced RNA synthesis, and DNA synthesis is reduced to 25% of wild 

type. 

The purified protein (Sweder et al. 1988, Diffley and Stillman 1988) was found to 

have a molecular mass of 135kDa, and antibodies raised against purified Abf lp were 

used to facilitate its cloning (Rhode et al. 1989, Halfter et al. 1989b). The single 

copy of ABF] is located on chromosome V. It is an essential gene encoding a 731 

amino acid protein with a predicted molecular weight of 81.6kDa (Rhode et al. 

1989). The difference between the predicated weight and the weight as seen in SDS- 
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PAGE is probably due to post-translational modification, or to the conformation of 
Abf 1p affecting its migration through the gel. The protein has a basic N-terminus 
and an acidic C-terminus and contains four asparagine clusters along its length. The 
DNA binding activity of Abf 1p requires the N-terminal two thirds of the protein 
(Halfter et al. 1989b). This part of the protein contains a consensus, 
CysX7HisX3HisX4CysX4Cys, for an atypical metal binding "finger" which seems to 
be involved in the binding of Abf 1p to DNA, since substitution of residues His57 or 
Cys71 abolishes specific DNA binding. 

A consensus binding site for Abf 1p has been determined, RT CRYNNNNNACG 
(Dorsman et al. 1989), containing two conserved elements, shown in bold type, 

separated by a variable sequence of a given length which is equivalent to one turn of 
the DNA helix. An alteration of the spacing between the two conserved elements 
abolishes DNA binding, as does the substitution of the final G for a C. Binding is 

reduced by point mutations of the first T and C of the consensus (Dorsman et al. 
1989. Della Seta et al. 1990) and this reduced ability to bind DNA leads to a 

reduction in the level of transcription from the mutated Abflp binding site (Della 

Seta et al. 1990). Methylation interference, missing contact analysis and potassium 

permanganate footprinting demonstrate that the interaction between DNA and Abf 1p 

involves both the coding and non-coding strands (Della Seta et al. 1990, McBroom 

and Sadowski 1994a). Contact between Abflp and its recognition site in the DNA is 

not limited to the consensus sequence; ethylation studies (McBroom and Sadowski 

1994a) have indicated that phosphates important for binding extend some four or 

five base pairs on either side of the consensus. Thus not only is Abflp in close 

contact with its consensus recognition sequence, but also with regions of flanking 

DNA. 

These extensive interactions may result in the ability of Abflp to bend DNA. The 

bend is towards the minor groove at an angle of approximately 1200 with its centre 

about 7bp 5' to the Abf 1p consensus sequence (McBroom and Sadowski 1994b). 

When DNA bends induced by proteolytic fragments of Abf lp are analysed the 

centres, angles and planes of the bends are different from those induced by the full 

length protein. McBroom and Sadowski suggest a model of DNA bending which 

requires bends induced by three regions of Abf 1p to combine, making up the full 

120°. 

The region of ARS 1 at which Abf 1p binds is associated with bent DNA (Snyder et 

al. 1986, Diffley et al. 1994), and removal of this region affects the in vivo function 

of the ARS. The role of Abf 1p here may be to prevent transcription from upstream 

genes affecting ARS function, or to maintain the region in a nucleosome free state 
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(Snyder et al. 1986). Deletions made in ARS 1 which move the ARS consensus 
sequence (ACS) such that it is incorporated into nucleosome DNA reduce the 
efficiency of the ARS as measured by plasmid stability (Simpson 1990). Five 
matches to the consensus Abf 1p binding site are found in the promoter of ABFI 
(Halfter et al. 1989b) which suggests that, like Rap 1 p, Abf 1p may be involved in 
some kind of autoregulation. 

The role of Abf lp in transcription seems to be as a weak activator; oligonucleotides 
which bind Abf 1p have been shown to activate transcription weakly in a CYCJ 

reporter plasmid (Brand et al. 1987, Halfter et al. 1989a, Buchman and Kornberg 
1990). The level of activation of transcription was increased if the oligonucleotides 
were assayed in combination with the T-rich region from the DED1 promoter 
(Buchman and Kornberg 1990). This synergism between an Abflp binding site and a 
T-rich region has also been noted for ribosomal protein genes (Goncalves et al. 
1995). The synergistic effect is not unique to T-rich sequences in combination with 
Abflp binding sites. Similar effects are seen if the Abflp site is replaced with one 
for either Rap lp or Reb 1p (Buchman and Kornberg 1990, Goncalves et al. 1995), 

although not by the remaining multifunctional transcription factor, Cpf 1 p. 

Rap 1p and Abf 1p are both members of the family of multifunctional transcription 

factors in yeast. Two other members of this family, Reblp and Cpflp, are discussed 

below as their potential interactions with the promoter of the phosphoglycerate 
kinase gene are investigated in this thesis. 

1.7.4 Reb 1p 

A third multifunctional transcription factor is Reblp, named after its ribosomal 

enhancer binding ability (Morrow et al. 1989). Reblp has also been studied as 

RBP1, factor Y, GRF2 and QBP (Kulkens et al. 1989, Fedor et al. 1988, Chasman et 

al. 1990, Brands and Struhl 1990). Reblp was purified from yeast as a protein with a 

molecular weight of 125kDa (Morrow et al. 1990, Chasman et al. 1990), and a 

consensus binding site was determined, YNNYYACCCG (Chasman et al. 1990). A 

search of yeast DNA sequences with this consensus revealed binding sites for Reblp 

in upstream activation sequences, at centromere CEN4 and subtelomeric regions X 

and Y, as well as the 35S rRNA enhancer. The sequences which flank the Rebip 

consensus are important for binding; sequences identical at all positions of the 

consensus bind Reblp with different affinities. Two binding sites for Reblp are 

found in the promoter of the REBJ gene (Morrow et al. 1990, Morrow et al. 1993a), 

and deletion of these almost completely abolishes transcription (unpublished results, 

cited in Lang et al. 1994). 
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When the gene for Reblp was cloned, it was found to be an essential, single copy 
gene on chromosome II (Ju et al. 1990). The open reading frame predicted a 
molecular weight of 92kDa which differs from the weight of the purified protein. 
This difference is probably due to the phosphorylation of serine residues after 
translation (Morrow et al. 1990). There were no common DNA binding motifs in the 
Reblp sequence, although homology with the oncoprotein Myb, whose DNA 
binding region includes periodic tryptophan repeats, was detected (Ju et al. 1990). 
The DNA binding activity of Reb 1p was localised to the C-terminal half of the 
protein (Morrow et al. 1993a) by N- and C-terminal deletions. When S. cerevisiae 
REB1 sequence was compared with the homologous sequence from K. lactis two 
regions of homology were found in the Reblp C-terminus (Morrow et al. 1993a). 
These were separated by 140 amino acids in S. cerevisiae and by 40 amino acids in 
K. lactis. This suggested that Reblp might have a bipartite DNA binding domain. 
Indeed, internal deletions of the Reblp C-terminal sequence can be made which do 

not affect its ability to bind to DNA (Morrow et al. 1993a). Since Reblp binds to 
DNA as a monomer, and protects a footprint of about 20-25bp, the two DNA 

binding domains must be brought together when the protein folds. 

Whilst the N-terminus of Reb 1p can be deleted without affecting DNA binding, this 

region of the protein appears to have an important role in the biological function of 
Reb1p since an N-terminal truncation, missing the first 201 amino acids, is not able 

to support growth of yeast cells whose genomic REB1 gene has been disrupted 

(unpublished results, cited in Morrow et al. 1993a). 

Roles for Reb lp in both transcriptional activation and repression of RNA 

polymerase II genes, and also as a terminator for RNA polymerase I transcription 

have been demonstrated. A Reb ip binding site acts as a weak activator of 

transcription when present in a reporter plasmid, but a synergistic effect is seen when 

the Reb 1p binding site is assayed in conjunction with a T-rich sequence of DNA 

(Buchman and Kornberg 1990, Chasman et al. 1990, Graham and Chambers 1994a). 

Whilst a Rebip binding site alone can activate transcription from a minimal 

promoter, the same site, if placed between a UAS and TATA box, can reduce the 

level of activated transcription from the UAS (Wang et al. 1990). Thus the position 

of the Reb 1p binding site in the promoter could determine its role in transcription. 

Reb 1p appears to play a role in both activation and repression of transcription in the 

glycolytic gene ENO], which has an upstream repression sequence (URS) in its 

promoter as well as a UAS. Both the URS and the UAS bind Rebip (Carmen and 

Holland 1994). 
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Whilst Reb 1p was first identified as a protein which could bind to the ribosomal 
enhancer (Morrow et al. 1989, Kulkens et al. 1989), it is possible that the Reb lp 
binding site is not an essential part of the enhancer. Although mutations in the Reblp 
binding site in the enhancer reduce transcription from an adjacent operon, this is not 
as great an effect as deleting either the entire enhancer region, or the Reblp site in 
the ribosomal promoter (Kulkens et al. 1992). The enhancer appears to contain 
redundant elements; a 45bp region at the 3' end of the 190bp enhancer is sufficient to 
supply enhancer function, but the Reb 1p site, Abf 1p site and T-rich region are all 
able to confer some enhancer function (Morrow et al. 1993b). 

This minor role for Reb 1p at the ribosomal enhancer may be because this site is 
essential for RNA polymerase I termination (Lang and Reeder 1993, Shultz et al. 
1993). Thus, deletion of the enhancer Reblp binding site may reduce transcription 
from adjacent operons as a consequence of upstream transcription running on into 
the enhancer and affecting its function. Transcriptionally active ribosomal genes are 
followed by nucleosome free enhancers (Dammann et al. 1995), which could be due 
to the presence of Reb 1p at the terminator. 

A Reblp binding site has been shown to be an essential part of the RNA pol I 

terminator (Lang and Reeder 1993), where it acts to pause RNA pol I whilst its 

transcript is released (Lang et al. 1994). The Reblp binding site seems to act as a 
non-specific pause element, since it is able to stop RNA polymerases I, II and III. 

However it does not seem to act simply as a block, since the presence of a physical 
block on the template, such as a bead or lac repressor, does not allow transcript 

release (Lang et al. 1994). Whilst the Reblp DNA binding domain appears to be 

sufficient for its pausing function in termination, if the orientation of the binding site 
is reversed (which does not affect Reblp binding) then termination is abolished 
(Lang et al. 1994). This orientation dependence is a property of terminators in higher 

eukaryotes. 

One role proposed for Reb 1p is that of altering chromatin structure to facilitate 

access of other transcription factors. Reblp has been implicated in the positioning of 

nucleosomes in the GALL-GAL10 intergenic region (UASG) to generate a 160bp 

nucleosome free region (Fedor et al. 1988). The nucleosomes across the GALI- 

GAL10 intergenic region are in positions dependent on binding of Reb lp to UASG, 

even when the promoter is repressed during growth on glucose. On induction of 

transcription the arrangement of nucleosomes does not appear to alter, although the 

DNA becomes more accessible to micrococcal nuclease and methidiumpropyl- 

EDTA iron(II) cleavage (Fedor and Kornberg 1989). However, it has been suggested 
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that the activation domain of Gal4p is able to displace a nucleosome when 
transcription from UASG is induced (Axelrod et al. 1993). 

Reb 1p has been shown to be necessary for transcriptional activation of a hybrid (gal- 
Iris $) TATA independent hybrid promoter, consisting of UASG upstream of a Gcn4p 
binding site (Brandl and Struhl 1990). Deletion analysis showed that the Reblp 
binding site was necessary for activation, and that it behaved in a distance dependent 
manner. This requirement for Reblp suggests a possible role for nucleosome 
positioning allowing GCN4 to activate a TATA-less promoter. 

1.7.5 Cpf1p 

Centromere Promoter Factor 1 was first purified as a 57-64kDa protein which bound 

specifically to the CDE 1 sequence in centromeres (Bram and Kornberg 1987). A 
CDE 1 consensus sequence (Hieter et al. 1985) was identified in the promoter of the 
GAL2 gene, and if the CDE 1 site was placed between the GAL] UAS and TATA 

sequence in a GALJ:: his3 fusion, transcription was repressed (Bram and Kornberg 
1987). Thus Cpflp was the first of the group of proteins referred to as 

multifunctional transcription factors to be identified. Other groups purified specific 
CDE 1 binding proteins with a surprising range of molecular weights, 16kDa, 58kDa, 

37 and 64kDa (Cai and Davis 1989, Baker et al. 1989, Jiang and Philippsen 1989). 

However these were found to be degradation products of the same protein when the 

gene was cloned (Baker and Masison 1990, Cai and Davis 1990, Mellor et al. 1990). 

The gene for Cpf 1 p, which maps to chromosome X, has an open reading frame of 
351 amino acids and encodes a 39.4kDa protein. Unlike the other multifunctional 

transcription factors, Rap 1 p, Abf 1p and Reb 1 p, Cpf 1p is not encoded by an essential 

gene. A strain of yeast in which CPFI has been disrupted shows phenotypes of slow 

growth, chromosome loss and methionine auxotrophy. This suggests that Cpflp has 

roles in both chromosome maintenance and in transcriptional regulation. However, 

the CDE 1 consensus sequence shows no transcriptional activation of a minimal 

promoter reporter plasmid and does not show a synergistic effect when assayed in 

conjunction with a T-rich DNA sequence (Mellor et al. 1990, Buchman and 

Kornberg 1990). 

Cpf 1p has been shown to bind to its consensus binding site as a dimer (Mellor et al. 

1990), for which the C-terminus of the protein is necessary. The C-terminus of 

Cpflp contains two potential amphipathic helices preceded by a string of basic 

amino acids, a bHLH motif (Cai and Davis 1990, Mellor et al. 1990), and also a 

dimerisation domain situated C-terminal to the bHLH motif (Dowell et al. 1992). 

The C-terminal 85 amino acids are sufficient for dimerisation and can be replaced 
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with the leucine zipper dimerisation domain from USF, a human homologue of 
Cpflp. The N-terminal 209 amino acids appear to be dispensible for Cpflp function; 
although this region of the protein contains two clusters of acidic amino acids, (Al 
and A2 in Figure 1.3) these can be deleted without losing methionine prototrophy, 
and with only a small increase in plasmid loss (Mellor et al. 1990). 

Binding sites for Cpflp have been identified at centromeres and in promoters, 
suggesting that the protein has at least two roles in the yeast cell. Attempts have been 

made to separate the transcriptional and chromosomal functions of Cpf l p. Mellor et 
al. (1991) found that mutations reducing or abolishing the ability of Cpflp to bind to 
DNA did not affect methionine prototrophy but did cause increased chromosome 
loss, whilst PCR random mutagenesis of CPFI (Foreman and Davis 1993) produced 
two classes of mutations, those which were more compromised for transcriptional 

activation and those more compromised for chromosome loss. However, Masison et 
al. (1993) found that there was a correlation between the ability of mutant Cpflp to 

support methionine independent growth and rescue chromosome loss and its affinity 
for binding the CDE 1 consensus. 

That a cpfl strain should be a methionine auxotroph suggests a role for Cpflp in the 

regulation of methionine biosynthetic genes. Two CDE 1 sites were identified in the 

promoter of MET25 and shown to be required for a high level of activated 

transcription (Thomas et al. 1989), and Cpflp is also required for the transcription of 

MET16 (Thomas et al. 1992). In these cases Cpflp does not appear to behave as a 

conventional transcriptional activator, since it seems that the CDE1 site is required 

rather than of the protein itself (Kent et al. 1994). Whilst Thomas et al. (1992) 

showed by Northern blotting in CPF1 and cpfl strains that neither MET16 nor 

MET25 was transcribed in the absence of Cpf 1 p, Kent et al. (1994) used an RNase 

protection assay to show that both MET16 and MET25 are expressed in a cpfl strain. 

This anomaly can been explained by the fact that the conditions of growth used by 

the two groups were different, and expression of MET16 and MET25 is more 

complex than just requiring Cpflp for activation. Both Met4p and Gcn4p play roles 

in the induction of these genes in reponse to methionine starvation and to general 

amino acid starvation (Thomas et al. 1992, O'Connell et al. 1995). 

One way in which Cpf 1p might affect transcription is through the modulation of 

chromatin proteins, such as Spt21p which regulates histone biosynthesis (McKenzie 

et al. 1993). A screen to find high copy number suppressors of methionine 

auxotrophy in cpfl yeast isolated a DNA sequence containing the 3'd element of Ty 

1-17. This sequence can be used as a promoter by genes such as SPT21 and RPD1. 

When double disruptions were made eg cpfl/spt21, the double mutants were found 
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to grow without methionine. That the strains could not complement the centromere 
defects of cpfl strains again suggests distinct functions for regions of Cpf 1 p. 

The family of multifunctional transcription factors in yeast contains Rap l p, Reb 1 p, 
Abf 1p and Cpf lp (Figure 1.3). These proteins share a number of features which 
separate them from other yeast transcription factors. They are all abundant within the 
cell, as might be expected from the fact that they each have many binding sites. All 
four proteins have roles in the regulation of transcription as well as roles influencing 
the structure of chromatin, and the importance of these proteins to Saccharomyces 

cerelvisiae is demonstrated by the fact that all except for Cpflp are encoded by 

essential genes. 

The homologues of Abf 1 p, Reb 1p and Cpf 1p have been cloned from Kluyveromyces 

lactis by complementation (Goncalves et al. 1992, Morrow et al. 1993a, Mulder et 

al. 1994) and Raplp has been cloned in the same organism by homology to a 

subfragment of S. cerevisiae RAP] (Larson et al. 1994). K. lactis diverged from S. 

cerevisiae about 108 years ago, and comparisons of the protein sequences from both 

species can help to identify regions of functional importance. Abflp, Reblp and 

Cpf 1p from K. lactis can functionally complement S. cerevisiae, but K. lactis Rap 1p 

is unable to complement S. cerevisiae rap] is strains. This may be because the N- 

terminal truncation of K. lactis Raplp has resulted in the loss of domains required 

for interacting with S. cerevisiae proteins, or because the K. lactis protein does not 

have an activation domain. Interestingly, K. lactis CPF] is an essential gene. It is 

possible that in S. cerevisiae, other proteins have evolved to interact with Cpflp and 

overcome the lethal effects of the gene disruption. Thus studying these proteins in 

different yeast species may provide insights into domains to which no function has 

yet been assigned. 

1.7.6 yATF 

The mammalian ATF/CREB family of proteins (Hai et al. 1988) bind an optimal 

binding site TGACGTCA, known as the CRE (cAMP Response Element; Lin and 

Green 1988). Each of the two halves of this palindromic sequence are likely to be 

bound by a protein monomer (Sellers et al. 1990). A yeast protein with the same 

binding specifivity as ATF was identified in yeast (Lin and Green 1989, Jones and 

Jones 1989), and its binding site was shown to have the ability to activate 

transcription. A potential yeast Activating Transcription Factor (yATF) binding site 

has been identified in the PGK promoter (Lin and Green 1989). This potential yATF 

binding site is a poor match to the CRE consensus as it contains only one half of the 

palindrome. However a member of the yeast ATF/CREB family has been shown to 
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bind to such a sequence, containing only one half-site (Nehlin et al. 1992), and so 
further investigation of the potential PGK site was undertaken in this work. 

1.8 Aims of thesis 

At the start of this work the PGK promoter was known to consist of a basal 
promoter, and UAS which bound the transcription factors Rap 1 p, Abf 1p and Gcr l p. 
A potential yATF binding site had also been identified at the 3' end of the UAS. 
Deletions of transcription factor binding sites had been made from PGK constructs 
on multicopy plasmids in order to investigate roles for the transcription factors 
known to bind to the promoter. Since these transcription factors were identified after 
deletion analysis of the promoter to find regions important for the activation of 
transcription, one aim of this work was to carry out a systematic search of the 
promoter with transcription factor consensus binding sites to see whether any other 
factors interacted at this locus. If so, in vitro binding to the new sites would be 
investigated. 

The potential yATF binding site would be inserted into a minimal promoter plasmid 
to look for the ability to activate transcription, and a deletion of the potential binding 

site would be made from a multicopy plasmid. Finally, the deletions of transcription 

factor binding sites which had been made from multicopy plasmid contructs of PGK 

would be introduced into the chromosomal PGK locus by homologous 

recombination. This would allow the roles of the transcription factors to be 

examined in the absence of artifacts such as high plasmid copy-number, interference 

from plasmid sequences and plasmid chromatin structure. 
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Chapter 2 

Materials and Methods 

Techniques employed were those commonly used in molecular biology and were 
used, with occasional alterations, as described in Molecular cloning: a laboratory 
manual (Sambrook J., Fritsch E. F. and Maniatis T. (1989 Second ed. ) Cold Spring 
Harbour Laboratory Press, Cold Spring Harbour, NY. ). 

?. 1 Strains used in this work 

E. coli 
MC1061: FaraD139 d(ara-leu)7696 d(lac)X74 galU galK hsdR2 (rK mK+) mcrBl 
rpsL (Str'') 

BL21(DE3): F` ompT hsdSB (rB mB ), with aX prophage carrying the T7 RNA 

polymerase gene (Studier et al. 1990) 

Saccharomyces cerevisiae 
DBY745: a adel -100 leu2-3 leu2-112 ura3-52 
W303-1A: a ade2-1 trpl -1 canl -100 leu2-3,112 his3-11,15 ura3-52 
R884-1 C: a ade2-1 trpl-1 canl -100 leu2-3,112 his3-11,15 ura3-52 ga111-313 
YAG93: a adel -100 leu2-3 leu2-112 ura3-52 cpfl 410-351 

YLP1: a adel -100 leu2-3 leu2-112 ura3-52 PGK 4-463/-475 

YLP2: a adel -100 leu2-3 leu2-112 ura3-52 PGK 4-503/-516 

YLP3: a adel -100 leu2-3 leu2-112 ura3-52 PGK 4-552/-562 

YLP4: a adel -100 leu2-3 leu2-112 ura3-52 PGK 4-427/-415 

YDS413: a ade 2-1 canl -100 his3-11 his3-15 leu2-3 leu2-112 trpl -1 ura3-1 rapl -4 
YDS410: a ade 2-1 canl -100 his3-11 his3-15 leu2-3 leu2-112 trpl -1 ura3-1 rapl -5 
YDS409: a ade 2-1 canl -100 his3-11 his3-15 leu2-3 leu2-112 trpl-1 ura3-1 rapl -2 

2.2 Bacterial Growth Media 

LB: 1 % bacto-tryptone, 0.5% yeast extract, I% NaCI (+1.5-2% bacto-agar for plates) 

LBAp: LB with 50µg/ml ampicillin 

2.3 Yeast Growth Media 

YPD (complete): 2% bactopeptone, 1% yeast extract, 2% glucose (+2% agar for 

plates) 
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SC (minimal): 0.67% yeast nitrogen base with no amino acids, 1% glucose (+2% 
agar for plates). After autoclaving the SC media was supplemented with a rich amino 
acid mix (100X stock: 0.2% adenine, 0.2% tryptophan, 0.2% histidine, 0.2% 
arginine, 0.2% methionine, 0.3% isoleucine, 0.3% lysine, 0.5% phenylalanine, 1% 
glutamate, 1% aspartate, 1.5% valine, 2% threonine, 4% serine) excluding either 
leucine or uracil to maintain selective pressure for plasmids. 

Buffered SC agar: SC-agar was made up to half of the required volume with water, 
and then 0.2M sodium phosphate buffer pH7 was added to give the final volume. 
After autoclaving amino acids were added as required, and finally X-gal was added 
to give a final concentration of 40µg/ml. 

5-FOA SC-agar: After autoclaving, SC-agar was allowed to cool to about 400C 
before 0.003% leucine, 0.002% uracil, 0.002% adenine and lmg/ml 5-FOA were 
added. 

1.4 Growth Conditions 

Unless otherwise stated E. coli were grown at 37°C in LB or LBAp, and yeast strains 
were grown at 300C in either YPD or SC medium. 

2.5 Isolation of DNA from E. coli 

2.5.1 Miniprep: 2m1 LBAp was inoculated with a single bacterial colony and grown 
for 6-7 hours or overnight. 1.5m1 cells was harvested at high speed for 2 minutes in a 
MicroCentaur and resuspended in l00µ1 GTE (50mM glucose, 25mM TrisHCl, 

lOmM EDTA). 200µl NaOH/SDS (0.2M NaOH, 1% SDS) was added to lyse the 

cells, followed by l50µ1 potassium acetate (3M K+, 5M acetate). Precipitated 

proteins were removed with a5 minute high speed spin and 400µ1 supernatant 

transferred to a fresh Eppendorf. [If the initial culture had been grown overnight the 

supernatant was subjected to a phenol/chloroform extraction at this stage. ] An equal 

volume of ethanol was added and after a brief vortex, tubes were spun at high speed 

for 5 minutes. The pellet of nucleic acid was resuspended in 20µl water. 

2.5.2 Midiprep: 40m1 LBAp was inoculated and grown overnight to stationary phase. 

Cells were harvested (4000rpm, 5 minutes) in a bench top centrifuge and 

resuspended in 2m1 GTE. 4m1 NaOH/SDS was added and then 3ml potassium 

acetate. After removing cell debris and precipitated proteins (4000rpm, 5 minutes), 

2.5 volumes of ethanol were added to the supernatant to precipitate the nucleic acid 
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(4000rpm, 10 minutes). The pellet was resuspended in 4O0µl TE (IOmM Tris, 1mM 
EDTA) to which 5 t1 RNase (DNase free, 500µg/m1, Boehringer Mannheim) was 
added, and left at 37°C for 15 minutes. Tubes were then heated to 70°C for 10 
minutes with 20µ1 10% SDS before two extractions with phenol/chloroform. DNA 
was precipitated with iml ethanol containing 0.3M sodium acetate (EtOH/NaOAc), 
washed with 70% ethanol, and resuspended at a concentration of 0.5-1µg/µ1. 

2.5.3 Large Scale Preparation of DNA from a Caesium Chloride Gradient: A 40 ml 
culture of E. coli was treated as described above until the first precipitation of 
nucleic acid. The pellet was then resuspended in 4.6 ml STE (10nM NaCl, 10mM 
TrisHCl pH 7.4,1mM EDTA). Gradients were made by adding 4.5g CsCI and 180µI 

of 10m`ß/ml ethidium bromide. Small gradient tubes were filled, balanced in pairs, 
and sealed before spinning at 40000rpm, 20°C for 20-24 hours in a Centrikon T- 
2055 ultracentrifuge. After harvesting the supercoiled plasmid band from the 

gradient, the ethidium bromide was removed by successive extractions with butanol 

equilibrated with NaCl-saturated STE. The excess salt was diluted out with 4m1 

water and the DNA was then precipitated with 10ml ethanol (-70°C, 30 minutes). 
The pellet was washed with 70% ethanol and resuspended at 1µg/µl. 

1.5.4 "Wizard" DNA Preps 

Miniprep DNA and midiprep DNA were also be prepared using a "Wizard" kit 

(Promega) following manufacturer's instructions. 

2.6 Isolation of DNA from Saccharomyces cerevisiae 

2.6.1 "Ten minute" chromosomal DNA prep. (Hoffman and Winston 1987) 

Yeast cells grown to saturation overnight in 10ml YPD medium were harvested at 

4000rpm for 10 minutes and then washed with 500 µl water. The cell pellet was 

resuspended in 2O0µ1 of a solution comprising 2% Triton X-100,1% SDS, 100mM 

NaCl, I OmM TrisHCl pH8,1 mM EDTA, and 1 00µ1 each of phenol and chloroform 

was added. After the addition of glass beads to just below the meniscus, cells were 

vortexed for 2 minutes. Then 200µ1 TE was added and tubes were spun at high speed 

for 5 minutes. The aqueous layer was precipitated with lml ethanol and the pellet 

dissolved in 400µ1 TE to which 3. i1 RNase (500µg/ml, DNase free, Boehringer)was 

added. This was left at 37°C for 15 minutes. After an ammonium acetate 

precipitation (10µl 4M NH4OAc, l ml ethanol) the DNA was extracted once with 

phenol/chloroform and reprecipitated using EtOH containing 0.3M NaOAc. 
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. 6.2 Copy Number DNA Prep 
Used for the preparation of high quality yeast chromosomal DNA, or to prepare both 
chromosomal DNA and plasmid DNA from yeast for determining plasmid copy 
number. 

DAY 1: Mid-log yeast cells (4-6 x 106 cells per ml) from 50m1 of culture were 
resuspended in 7O0µ1 solution 1 (0.9M sorbitol, 20mM EDTA, 14mM 1- 
mercaptoethanol) in a 25m1 Corex tube. To form spheroplasts, 20µl Lyticase (Sigma, 
8000U/ml in 50mM sodium phosphate buffer (pH7)) was added and the cells were 
left at 37°C for 2-3 hours. To check that spheroplasts had formed, lOµ1 cells in 
l0%tl of water were examined under a light microscope and their appearance 
compared with that of l0µ1 cells in 1M sorbitol; spheroplasts lyse in water. 
Spheroplasts were spun out at 3000rpm for 5 minutes in a Sorvall centrifuge and 
resuspended in 700p1 TE. To this were added 70µl 500mM EDTA pH8,3Oµ1 1M 
TrisHCl pH7.4, l00µ1 10% SDS and 2p1 diethyl pyrocarbonate (DEPC, Sigma) and 
the Corex tubes were left in a 65°C waterbath for 30 minutes without their metal 
caps. After adding l60µ1 5M potassium acetate, they were left on ice for 20 minutes 

and spun at 4000rpm, 5 minutes in a benchtop centrifuge. The supernatant was 
transferred to a 50m1 Falcon tube to which 2m1 ethanol was added, and mixed 

gently. This was spun at 3500rpm for 5 minutes and the pellet was left to resuspend 
in 600p1 TE overnight at room temperature. 

DAY 2: 5 t1 RNase was added to the resuspended nucleic acid and left at 37°C for 

30 minutes. The DNA was then precipitated with 60µl 3M NaOAc and 375µl 

propan-2-ol. The pellet was then washed with 900µl propan-2-ol and left to resupend 

in 200µl TE overnight at room temperature. 

DAY 3: The DNA was extracted twice with phenol/chloroform and once with 

chloroform (mixing well each time) before being precipitated with 500µ1 

EtOH/NaOAc. The pellet was washed twice with 70% ethanol and resuspended in 

100-200µ1 water for at least 4 hours. 

2.7 Digesting DNA 

Colonies of transformed E. coli were screened by digesting miniprep DNA with the 

relevant test restriction enzyme(s). The digests were routinely performed in a 10µ1 

volume containing 3-5µl miniprep DNA, 1µl lOX restriction buffer (supplied with 

the enzyme by the manufacturer), 0.5- l µl restriction enzyme and 0.5µl RNase. The 

digests were incubated for about 1 hour at the correct temperature for the enzyme(s). 

1µl of loading buffer (50% sucrose, 50mM EDTA, 0.1 % Bromophenol blue, 0.01 % 
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xylene cyanol, 0.01 % SDS) was added and the fragments generated by the digest 
were resolved on a 1% agarose gel in TBE (90mM Tris-borate, 2mM EDTA) buffer. 
The gel was stained with ethidium bromide (5µg/ml) for a few minutes before the 
DNA fragments were viewed on an ultraviolet transilluminator. 

Midiprep DNA and caesium pure DNA was generally digested in a 20µl reaction 
volume containing 1-3µg DNA, restriction enzyme and its buffer, but digests of total 

yeast chromosomal DNA were in much larger volumes, 50-l00µ1, and were 

generally left to digest overnight. 

2.8 Liýations 

Vector DNA was prepared by linearising 2µg parental plasmid and then removing 5' 

phosphate groups by treating the digested plasmid with 1-2 i1 Calf Intestinal 

Alkaline Phosphatase (Pharmacia) at 37°C for 30 minutes. After a 

phenol/chloroform extraction the vector was precipitated and resuspended in about 
30-50µ1 water. Insert DNA was isolated from agarose or polyacrylamide gels. 

The ligation reactions were set up with vector: insert ratios of 1: 1 and 1: 5. Thus, 50ng 

vector with 50ng insert and 50ng vector with 0.5µg insert. A 20µl reaction also 

contained 4p 1 5X ligase buffer (GIBCO-BRL) and 0.5µl T4 DNA ligase (GIBCO- 

BRL). The ligations were incubated overnight at 14°C, or for 4-6 hours at room 

temperature if the insert and vector had sticky ends, before being transformed into E. 

coli. 

2.9 Addition of Phosphate Groups to Artificially Synthesised Oligonucleotides 

Artificially synthesised oligonucleotides (Table 2.1C) do not have 5' phosphate 

groups, so before cloning 5' phosphate groups were added in a reaction catalysed by 

T4 polynucleotide kinase (GIBCO-BRL) before pairs of oligonucleotides were 

annealed. 1.25µg of each pair of oligonucleotides was put into a 25µl reaction with 

2.5µl lOX C buffer (500mM Tris pH7.5,100mM MgC12,10mM DTT), 2.5µl 10mM 

rATP and lOU T4 kinase. After an hour at 37°C the kinase reaction was heated to 

700C for 10 minutes, and then left to cool to room temperature which allowed the 

oligonucleotides to anneal together. They could then be used directly in a ligation 

reaction. 
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22.10 Transformation of E. coli 

M1C 1061 was grown to OD600 of 0.6 in 20m1 LB medium at 37°C. Cells were 
harvested at 4000rpm for 5 minutes in a bench top centrifuge. After resuspension in 
10ml 50mM CaCI2 on ice for 20 minutes cells were harvested as before and 
resuspended in, lml 50mM CaC12. l00µ1 of competent cells were added to 20gl of 
DNA solution and left on ice for 30 minutes before being given a 30 second heat 
shock at 55°C and being returned to ice for a few minutes. Transformations were 
spread on LB plates containing ampicillin (50µg/ml) and grown overnight at 37°C. 

1.11 One Step Transformation of Saccharomyces cerevisiae (Chen et al. 1992) 

1.5 ml of mid-log phase DBY745 were harvested and resuspended in 10041 One 
Step Buffer (0.2M lithium acetate, 40% PEG, 100mM DTT). Approximately 1µg of 
plasmid DNA was added to the resuspended cells which were then incubated at 45°C 
for 30 minutes. During this incubation the cells were mixed gently every 10 minutes 
to ensure that they stayed in suspension. Transformants were selected at 300C on SC 

with no leucine (SC-leu), or SC with no uracil (SC-ura). 

112 Lithium Acetate Transformation of S. cerevisiae (Becker and Guarente 1991) 

100 ml of mid-log phase cells were harvested, at 3000rpm for 5 minutes, and 

resuspended in 5ml TE. The spin was repeated twice, with the cells being 

resuspended first in 5ml TE/lOOmM lithium acetate, then in lml TE/lithium acetate. 
The cells were then shaken at 30°C for an hour, before 400gg sonicated salmon 

sperm carrier DNA was added. 1 gg of transforming DNA was added to l00µ1 cells, 

and the reaction was incubated at 30°C for 30 minutes. 700g1 of a solution 

containing 35% (w/v) PEG 4000,100mM lithium acetate/TE, pH 7.5, was added, 

before a further 50 minutes incubation at 30°C. The cells were then heat shocked for 

5 minutes at 42°C, washed with 500µ1 TE, and resuspended in 100µ1 TE for plating 

on selective media. 

2.13 Preparation of Total RNA from Yeast 

Mid-log cells from a 50m1 overnight culture were harvested and washed with 300µ1 

LET buffer (100mM TrisHCl pH7.4,100mM LiCI, 0.1mM EDTA). The cell pellet 

was resuspended in l00µ1 LET buffer and glass beads added to below the meniscus. 

Then 100µl phenol equilibrated with THE (10mM TrisHCl pH7.4,140mM NaCl, 

1 mM EDTA) was added and cells were lysed by vortexing for 20 seconds. 40µl 

TNES (TNE+0.1 %SDS), 100µl water and 100µ1 chloroform were added. After 
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shaking for 45 seconds and spinning at high speed in a MicroCentaur for 5 minutes 
the aqueous layer was removed; this was re-extracted 3 times with phenol/TNE and 
chloroform before the RNA was precipitated with 20µl 3Mpotassium acetate and 
7O0µ1 ethanol at -800C for 30 minutes. The pellet of RNA was washed with 80% 
ethanol and resuspended at 0.5-1 µg/µ1 in water. RNA samples were used as quickly 
as possible after they had been prepared, but if necessary they were stored at -800C 

2.14 Preparing a total protein extract from yeast 

Cells from a 50m1 overnight culture were harvested (3000rpm, 10 minutes) and 
washed twice with 2m125mM sodium phosphate buffer pH7 (7mM Na2HPO4,5mM 
NaH2PO4; for 500m1200mM stock 57.7m1 1M Na2HPO4 was added to 42.3m1 1M 
NaH2PO4). After resuspending the washed pellet in 300µl 25mM NaPO4 buffer with 
1 mM PMSF (Phenylmethylsulfonyl Fluoride) glass beads were added to just below 
the meniscus and tubes were vortexed for 1-2 minutes in 30 second bursts. In 
between vortexing the samples were kept on ice. After a 30 second spin in a 
MicroCentaur the supernatant was transfered to a fresh Eppendorf and the beads and 

cell debris were washed with a further 200µ1 sodium phosphate buffer/PMSF. 

Supernatants were pooled and spun at high speed for 10 minutes at 4°C, after which 
the protein concentration was determined by Biorad Assay and extracts were stored 

at -20°C. 

2.15 Biorad Protein Assay (Bradford 1976) 

Standard solutions of Bovine Serum Albumin (BSA) containing 1-30µg of protein 

were prepared in 800µ1 water and 2O0pl of Biorad reagent was added. After shaking, 

and allowing the colour to develop, the OD595 was read in a Unicam SP1800 

Spectrophotometer. A standard curve of µg protein against OD595 was drawn from 

which the concentration of unknown protein samples could be determined. 5µl of 

each yeast total protein extract was diluted with 795gl water and 200µ1 Biorad 

reagent was added. Once the colour had developed the OD595 was read and the 

concentration of the original samples was calculated. 

2.16 ß-Galactosidase Assay (Miller 1972) 

5µg of total protein extract was mixed with 150µl 2X ß-galactosidase buffer 

(120mM Na2HPO4,80mM NaH2PO4,2mM MgC12,100mM ß-mercaptoethanol, 

1.33mg/ml o-nitrophenyl P-D-galactopyranoside (ONPG)), in a 300µl volume. After 

a brief vortex the reactions were incubated at 37°C for 10-30 minutes whilst a 

yellow colour developed. The reaction was stopped by vortexing with 500µ1 1M 
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NaýCO3. The OD420 was read and the (3-galactosidase activity was calculated and 
expressed as units per mg protein per minute. [1 OD unit min-1 mg-1 = 222 nmoles 
substrate min-1 mg protein-1 ] 
2.17 In vitro protein production 

The same reaction conditions were used with SP6, T3 or T7 RNA polymerases. First 
an RNA transcript was produced from a DNA template by incubating linearized 
plasmid template with a mix containing rNTPs and RNA polymerase. The 
transcription reaction was set up at room temperature, using reagents from a kit from 
Promega, in the following order: 4p1 water, 4 i1 5X transcription buffer (provided 
with the enzyme), 2R1 DTT, O. 5µ1 RNasin, Iµ1 10mM ATP, 1µl IOmM CTP, lµl 
10mM UTP, 0.5µl 1 mM GTP, 2µl 5mM cap analogue (m7G5'ppp5'G), 2µl (1µg) 
template DNA, 2p1 RNA polymerase. This reaction was incubated at 37°C for 10 

minutes before adding 1µl 10mM GTP and continuing the incubation for a further 80 

minutes. 

The DNA template was removed by the addition of 1 µ1 undiluted Promega RQ 1 

DNase at 37°C for 15 minutes and after a phenol/chloroform extraction the RNA 

was precipitated with 1Oµ1 3M sodium acetate and 330µl ethanol. The pellet of RNA 

was washed with 80% ethanol and resuspended in l2µ1 water. 2µl of this was run on 

a 1.5% agarose gel along with some of the DNA template to check that the RNA 

transcript was not degraded. 1 µg of RNA was then used as a template for the in vitro 

translation reaction. 

1µl amino acid mix, 3µl 35S methionine, 1µl RNasin, 2 i1 (1µg) RNA and 8µJ water 

were added to 35µ1 rabbit reticulocyte lysate (Promega) and incubated at 30°C for 1 

hour. Mock translation reactions were prepared at the same time, the components 

were identical but the reactions were not primed with RNA. The translation reactions 

were stored at -20°C. 

2.18 Partial Purification of Overexpressed Reb lp 

Overexpressed Reblp was partially purifed using a modified version of the protocol 

described in Morrow et al. (1993a). 100ml cultures of the E. coli strain which 

overexpresses Reblp, and a control strain containing parental plasmid with no 

Reblp insert, were grown to mid-log phase (OD550 -0.5) before they were induced 

with 4mM IPTG. Induced cells were grown for a further 3 hours before they were 

harvested at 4500rpm for 10 minutes and resuspended in 5m1 TE (pH8). After a 

rapid freeze/thaw the cells were sonicated (3x 15 seconds) on ice. Cell debris was 

removed with a 15000rpm spin for 15 minutes and resuspended in 500µl TE (pH8), 
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whilst three volumes (15m1) 40% saturated (NH4)2S O4 was added to the 
supernatant. After a 30 minute incubation on ice the supernatant was spun at 
15000rpm for 15 minutes. The 40% pellet was resuspended in I ml TE pH7.2, and 
the supernatant was made up to 70% saturated with (NH4)2SO4 and left on ice for a 
further 30 minutes before being spun once more at 15000rpm for 15 minutes. The - 70% pellet was resuspended in 500µl TE pH7.2 and the supernatant was discarded. 

The high concentration of ammonium sulphate was reduced in the 40% and 70% 
pellets by spin dialysis through a Microsep (Amicon). After spinning at 6000rpm for 
1 hour, a further 500µl TE pH7.2 was added, and the spin continued for another 
hour. The concentration of the protein fractions was then determined with a Biorad 
protein assay and 5µg was incubated with labelled DNA fragments in a gel 
retardation assay. 

119 Protein Gel 

A 7.5% SDS polyacrylamide gel was made up in the Biorad Mini-Protean Apparatus 
for resolving proteins. The protein gel (2m1 30: 0.8 acrylamide: bis-acrylamide, 2m1 
1.5M Tris pH8.8,80µl 10% SDS, 3.92m1 water, 70µ1 10% APS, 7µi TEMED) was 

poured to below the depth of the comb and overlayed with propan-2-ol. After the 

protein gel had set, the propan-2-ol was poured off and a stacking gel (5004130: 0.8 

acrylamide: bis-acrylamide, 750µl 0.5M Tris pH6.8,30µl 10% SDS, 1.7m1 water, 
3Oµ1 10% APS, 3µl TEMED) was poured on top. The comb was inserted and the gel 

left to set. 

Protein samples were mixed with 5µl 4X loading buffer (200mM Tris-CI pH 6.8, 

400mM dithiothreitol, 8% SDS, 0.4% bromophenol blue, 40% glycerol) in a 20µl 

volume and heated to 95°C for 5 minutes. They were then loaded immediately and 

the gel was run in 1X protein gel running buffer (5X protein gel running buffer: Tris 

15g11, glycine 72g11, SDS 5g11). The gel was run at 150V until the bromophenol blue 

had moved through the stacking gel when it was turned up to 200V and left until the 

dye had reached the bottom of the gel. 

If the gel had been used for the electrophoresis of radioactive samples it was dried 

onto Whatman paper and exposed to Fuji X-ray film. Otherwise protein bands were 

visualised by simultaneously fixing the gel in methanol: glacial acetic acid, and 

staining it with Coomassie Brilliant Blue. The gel was immersed in 100ml 

Coomassie stain (0.25g Coomassie Brilliant Blue R250 (Sigma) dissolved in 90m1 

Methanol: water (1: 1 v/v), l Oml glacial acetic acid) and left at room temperature for 
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30 minutes. The stain was removed by soaking the gel in destain (30% methanol, 
I0% acetic acid) at room temperature for 30 minutes to overnight. 

2.20 Gel Retardation Assay 

2.20.1 Preparation of Retardation Probes 

Probes were end-labelled with [y--32P] in the presence of T4 polynucleotide kinase. 
After digesting DNA to release the probe fragment, digest reactions were treated 
with Calf Intestinal Alkaline Phosphatase (Pharmacia) to remove 5' phosphate 
groups. The required fragment was then purified from a1% agarose gel using a Gene 
Clean kit (Stratech) and the DNA left in 16µ1 water. To this were added 2µl 1OXC 
buffer (500mM TrisHCl, 100mM MgCl2,10mM DTT), lµl T4 kinase and 1µl {y- 
32P] ATP (185TBq mmol-1, Amersham). The labelling reaction was then left at 
37°C for 1-2 hours. 

Before use the labelled probe was separated from the unincorporated [7-32P] ATP 
by running the labelling reaction through a Nick Column (Pharmacia) or through a 
l ml spun column made from G-50 Sephadex (Pharmacia). 

Spun column: A lml syringe was plugged with glass wool and filled with Sephadex 

G-50 (Pharmacia) which had been pre-swollen in TE. It was spun at 3000rpm for 3 

minutes to compact the Sephadex. The syringe was topped up with Sephadex and 

respun as often as necessary to get a bed volume of lml. The column was 

equilibrated with two 100µl aliquots of TE, spinning for 3 minutes each time. Then 

the reaction volume was made up to 100111 and it was loaded onto the column. The 

eluate, approximately 100µl, was collected and precipitated before the labelled probe 

was resuspended in water at a concentration of about 100 counts per 5µl. 

2.20.2 Binding Reactions 

20µl reactions were set up containing 2 i1 lOX binding buffer (50% glycerol, 10mM 

EDTA, 100mM ß mercaptoethanol, 250mM TrisHCl pH7.5,250mM NaCl, 200mM 

KC1), 2µ10.5µg/µl poly[dl. dC] (Pharmacia), 5µl (100 counts) labelled probe, protein 

(total protein extract or in vitro translated protein) and water. These were incubated 

at room temperature for 45 minutes before being resolved on a 5% polyacrylamide 

gel in 0.5X TBE buffer (45mM Tris borate, 1mM EDTA). After running for 1.5-2 

hours at 150V gels were dried and exposed to X-ray film. 
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2.21 Preparation of probes for Southern and Northern blots 

DNA fragments were isolated from 1% agarose gels and labelled either by nick 
translation or by random oligolabelling depending upon the length of the probe and 
the sensitivity required. Random oligolabelling is a very efficient method of 
labelling a piece of DNA but is not suitable for fragments shorter than 0.5kb. 

1.211.1 Nick translation (Rigby et al. 1977) 

Reagents for nick translation were from a kit supplied by GIBCO-BRL. To 14gl 
DNA were added 2µl solution A2 (0.2mM each of dATP, dGTP, dTTP), 2µl 
solution C (0.4U/gl DNA polymerasel, 40pg/gl DNase I) and 1µl [a-32P] dCTP 
(Amersham) Reactions were left at 150C for 1-5 hours since incorporation of 
labelled nucleotide increases linearly with time. Nick translated probes were 
separated from unincorporated nucleotide using a Nick column (Pharmacia). The 

eluate from the Nick column was used directly to probe filters. 

2.21.2 Random oligolabelling (Feinberg and Vogelstein 1983) 

Probe DNA in 21µl water was boiled for 3 minutes and cooled on ice for 2 minutes. 
Then 6µl 5X oligo labelling buffer (25mM MgC12,120mM Tris pH8,500mM 
PIPES pH6.5,10mM DTT, 0.25mM dATP, 0.25mM dTTP, 0.25mM dGTP, 25U/ml 

random hexanucleotide primers) was added with lµl 10mg/m1 BSA, lµl Klenow 

(BRL) and 1µl [a-32P] dCTP. The labelling reaction was left at 37°C for 1-2 hours. 

The labelled probe was precipitated with 100µl EtOH/NaOAc at -80°C for 30 

minutes before being resuspended in 400µl TE. 

2.22 Southern Blots 

DNA samples were run through 1% agarose gels made with TAE buffer (40mM 

Tris-acetate, 1mM EDTA) either for 5-6 hours at 80V or overnight at 30-40V. The 

gel was then acid depurinated by washing in 0.25M HCI for 15 minutes. The DNA 

on the gel was denatured in 0.2M NaOH and 1.5M NaCl for 20 minutes before the 

gel was washed twice for 15 minutes with neutralization solution (1.5M NaCl, 0.5M 

TrisHCl, 1mM EDTA). The washed gel was placed upside down on a platform 

covered with 3MM Whatman paper with a wick into 20X SSC (3M NaCl, 0.3M 

sodium citrate) and surrounded with parafilm. DNA transfer was onto a 

nitrocellulose filter with 0.45µm pores (Sigma) which was covered with 2 pieces of 

3MM Whatman and then a stack of paper towels. A weight of 0.5-1kg was placed on 

top of the towels and the blot was left for 6 hours or overnight for transfer of the 
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DNA to occur. The DNA was fixed by baking the filter in a 80°C vacuum oven for 2 
hours. The filter was then stored at room temperature until required. 

Before probing a Southern filter it was washed in pre-hybridization buffer (6X SSC, 
SX Denhardt's solution (50m1 of 100X Denhardt's contains lg Ficoll, lg 
polyvinylpyrrolidine and 1g BSA), 0.5% SDS) to which denatured salmon sperm 
DNA had been added, to give a concentration of 50µg/ml, at 65°C for at least an 
hour. The washing was carried out in hybridization bottles in a Hybaid hybridization 
oven. 

After the probe had been denatured (1000C, 5 minutes) it was added to the pre- 
hybridization buffer making sure that the concentrated probe did not touch the filter. 
Hybridization took place at 65°C overnight. Non-specific binding of the probe to the 
filter was reduced by washing the filter at 65°C in 2X SSC, 0.1% SDS twice for 15 

minutes and then increasing the stringency of the washes depending upon how 
homologous the probe was to target DNA. The filter was then covered in Saran wrap 
and exposed either to X-ray film or to a screen for the Molecular Dynamics 
Phosphorimager 425. 

2.23 Northern Blots 

For a 100ml gel, 1.25g agarose was melted in 87m1 water and 10ml lOX 

MOPS/EDTA (200mM MOPS, 50mM NaOAc, lOmM EDTA) was added. When 

this had cooled to 50°C 5. lml 37% formldehyde was added and the gel was poured 

immediately. It was left to set for at least 1 hour before use. 

For each lane 10-20µg total RNA was made up to about 20µ1 with water and 15µ1 

Northern sample buffer (750µl formamide, 150µl 10X MOPS/EDTA, 24Oµ1 37% 

formaldehyde, 100µl water, 80gl 1 %w/v bromophenol blue) was added. The 

samples were incubated at 650C for 15 minutes and then loaded onto the gel. Gels 

were run in 1X MOPS/EDTA buffer at 30V overnight. 

Unused pieces of gel were cut off and the gel soaked in 0.05M NaOH, lOX SSC for 

15 minutes, and then twice in lOX SSC for 15 minutes. The washed gel was placed 

upside down on a platform covered with 3MM Whatman paper with a wick into lOX 

SSC. The gel was surrounded with Parafilm and a piece of 0.2µm nitrocellulose 

filter (Schleicher & Schuell), cut to size, was placed on top. This was overlayed with 

2 pieces of 3MM Whatman, a stack of paper towels and a weight of 0.5-lkg. The 

transfer was left overnight. After dismantling the blot, RNA was fixed to the 
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nitrocellulose filter by baking in an 80°C vacuum oven for 2 hours. The filter could 
then be stored at room temperature until required. 

Northern filters were pre-hybridized at 42°C for at least an hour in 5X SSPE (20X 
SSPE: 3M NaCl, 0.2M NaH2PO4,20mM EDTA), 50% formamide, 5X Denhardt's 
solution and 0.5% SDS to which denatured salmon sperm DNA had been added to a 
final concentration of 100µg/ml. The pre-hybridisation was carried out in 
hybridisation bottles in a Hybaid oven. 

The denatured probe was added to the pre-hybridization buffer and left to hybridize 

overnight at 42°C. Filters were washed at 42°C, twice in 2X SSPE, 0.1% SDS for 15 

minutes and then in 1X SSPE, 0.1% SDS for 30 minutes. They were then covered 
with Saran wrap and exposed either to X-ray film or to screens for the Molecular 

Dynamics Phosphorimager 425. 

?. 24 Removal of Hybridised Probe From Nitrocellulose Filters 

Probes which had been hybridised to nitrocellulose filters were removed so that the 

filter could be hybridised to a second probe. The first probe was stripped by boiling 

the filter in 0.1 % SDS, 1 mM EDTA for twenty minutes. To ensure that the filter was 

clean it was exposed to X-ray film or to phosphorimager screens. A stripped filter 

was washed in 2X SSC or 2X SSPE before the pre-hybridisation procedure was 

repeated. 

2.25 Determination of Plasmid Copy Number 

5-10µg of copy number DNA was digested with about 40U EcoRl in a 100µl 

reaction volume overnight at 37°C to ensure that the chromosomal DNA was cut to 

completion. Digests were then precipitated with EtOH/NaOAc and resuspended in 

20µl water before being electrophoresed on a1% agarose/TAE gel and transfered to 

nitrocellulose. The filter was probed firstly with a plasmid specific probe, and 

secondly with a ribosomal probe (fetes et al. 1978) to recognise chromosomal DNA. 

The ratio of plasmid to chromosomal DNA as indicated by these probes gave an 

indication of the plasmid copy number. In some cases the autorads were examined 

by eye to look for gross differences in ratio, but after the arrival of the Molecular 

Dynamics Phosphorlmager 425, a more accurate estimation could be achieved by 

scanning the filters. 
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2.26 Polymerase Chain Reaction (PCR) 

2.2 6.1 Primers 

Oligonucleotide primers (see Table 2.1A) were synthesised by the Biopolymer 
Synthesis and Analysis Unit (University of Nottingham). 25Oµ1 of aqueous 
oligonucleotide solution was precipitated with 700µ1 EtOH/NaOAc and washed with 
75% ethanol before being resuspended in 50µl water. A1 in 400 dilution of this 
oligonucleotide solution was made and the OD260 of this was determined. The 
concentration of oligonucleotide was calculated, using A260 of 1 as equivalent to a 
concentration of 30µg oligonucleotide per ml, and it was then diluted as required to 
give a 10µM stock solution.. 

In general a 25µl PCR reaction was set up containing 100ng DNA template, 2.54l 
lOµM primer A, 2.5µl 1OµM primer B, 2.5µl IOX PCR buffer (500mM KCI, 
100mM Tris pH8.8,25mM MgCl2,2mM dNTPs), and O. 25µ1 Taq polymerase 
(Boehringer). The reaction was overlayed with mineral oil and subjected to about 30 

repeated cycles of DNA denaturation, primer annealing and product extension in a 
Techne PHC-3 thermal cycler. 

Standard programme: Denature 94°C 40 seconds 
Anneal 55°C 1 minute 
Extend 72°C 2 minutes 30 seconds 

The exact conditions for the PCR programme depended on variables such as the 

melting temperature of the primers, and the predicted size of the amplified product. 

The theoretical melting temperature of a primer was calculated by allowing 4°C for 

each G/C pair and 2°C for each A/T pair. If both primers had high melting 

temperatures then the annealing temperature in the PCR reaction was high, but if 

there were any mismatches between the primer sequence and the target DNA 

sequence then this annealing temperature was lowered. The extension time was 

determined by assuming that the polymerase synthesized DNA at a rate of about lkb 

per minute. 

In some instances when the primers were not totally homologous to the DNA 

template, spurious products were amplified due to the annealing of the primers to 

non specific sites on the template. To reduce the amount of non-specific product a 

"touchdown" PCR programme was used (Don et al. 1991). This starts with an initial 

annealing temperature which is higher than the expected melting temperature of the 

primers and decreases by 2°C every second cycle until the desired annealing 
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temperature is reached. Since the amount of product in a PCR reaction increases 
exponentially, ie after every cycle there is twice as much product as was present in 
the previous cycle, a difference in melting temperature between the correct and incorrect annealings will give a two-fold advantage per cycle. Thus the desired 
product can be amplified preferentially. 

A touchdown PCR programme 

94°C 40 seconds 2 cycles annealing at 70°C 72°C 2 minutes 30 

seconds 
11 11 

68°C 
IIII 660C 
ýý ýý 11 It 

640C 
ItII it it 620C 
it it if it 60°C 

II 11 it 

Sn0C 
11 11 if II 

� 
6OC 

II 

IIII 

II II 

IIII 

94°C 40 seconds 20 cycles annealing at 550C 720C 2 minutes 30 

seconds 

After a PCR programme had been completed, 5µl of each reaction was run on a1% 

agarose gel to check that a product of the right size had been amplified. PCR 

products could generally be digested with no cleaning of the reaction, but for cloning 
into T-vector (Promega) the reaction was extracted once with phenol/chloroform and 

then precipitated. 

2.26.2 Cloning of PCR Products 

If the PCR primers had suitable restriction enzyme sites within them the amplified 

product was cleaved and cloned directly into a vector with compatible ends. 

However, restriction enzyme sites within a few bases of the end of a DNA fragment 

are not always recognised efficiently, often requiring long incubation times for more 

than 50% of template to be cut. In such cases it is helpful to utilise the template 

independent addition of a single adenosine residue to the 3' end of a PCR product by 

some polymerases. 

pGEM-T vector from Promega has been cut within its polylinker with EcoRV, and a 

3' terminal thymidine added to both ends making it suitable for the direct cloning of 

PCR products. This can overcome the difficulty of incorporating restriction enzyme 

sites into PCR primers to facilitate later cloning of the product. Such restriction sites 
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within the primers can still be utilised to excise the PCR product from the T-vector, 
or alternatively restriction sites within the T-vector polylinker can be used. 

2.27 DNA Sequencing 

2.27.1 Sequencing Midiprep or Caesium Pure DNA 

Chain termination DNA sequencing based on the method of Sanger et al. (1977) was 
carried out using a Sequenase kit (United States Biochemical). Double stranded 
DNA was denatured using alkaline denaturation, the sequencing primer (Table 2.1B) 
was annealed and extension in the presence of [(X-35S] dATP and dideoxynucleotides 
allowed to occur. 

5µl lOX denaturing solution (2M NaOH, 2mM EDTA) was added to 5µg of DNA in 

a total volume of 50µ1 water and heated at 37°C for 15 minutes. The denatured DNA 

was precipitated with 5µl 3M NaOAc pH4.5-5.5 and 150µl ethanol at -70°C for 30 

minutes. The pellet was washed with 70% ethanol and resuspended in 2µl sequenase 
buffer, 2µl 10µM sequencing primer and 6µl water. The primer was annealed by 

heating the reaction to 65°C for 2 minutes and then cooling to below 35°C before 

chilling on ice. lµ1 O. 1M DTT, 2µl 1: 5 diluted labelling mix, 241 1: 8 diluted 

sequenase and O. 5µ1 [35S] dATP were added to the annealed DNA mix and this was 
left at room temperature for 5 minutes to allow incorporation of the dATP label into 

the extended product. The reactions were terminated by transferring 3.5µl of the 

labelling reaction to each of 2.5µl ddGTP, ddATP, ddTTP and ddCTP and incubated 

at 37°C for a further 5 minutes. This reaction was stopped by the addition of 4µl 

Stop Solution and samples were heated to 80°C immediately before being loaded on 

an 8% sequencing gel. 

For an 8% sequencing gel 25.2g urea was dissolved in 12ml 38: 2 

acrylamide: bisacrylamide and 6m1 lOX TBE and the volume made up to 60m1. The 

acrylamide was polymerised with 500µl 10% APS and 5Oµ1 TEMED. Sequencing 

gels were run at a constant 30-35W, then dried down and exposed to X-ray film. 

2.27.2 Sequencing of Miniprep DNA 

Miniprep DNA from cultures which had been grown for 6-7 hours was sequenced 

directly by adding lµl 2M NaOH to 9µl miniprep DNA and denaturing at 37°C for 

15 minutes. Then 1.5µl 10µM primer, 3µl 3M KOAc and 75µl cold ethanol were 

added and the DNA/primer mix left to precipitate at -70°C for 30 minutes. The pellet 

was washed with 75% ethanol, resuspended in 10µl 1X sequenase buffer and left at 
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37°C for 20 minutes to anneal the primer to the DNA template. The sequencing 
reactions were then treated as described above. 

2.28 "Pop-In/Pop-Out" Homologous Recombination (Scherer and Davis 1979) 

Inte grating plasmids, pAJ 105, pAJ 107 and pAJ 108, containing PGK sequence with 
deletions in the promoter region, were transformed into DBY745 using the One Step 
method of transformation. After screening with PCR, to ensure that the inserted gene 
had not undergone gene conversion, URA+ transformants were selected and grown at 
30°C overnight in 10ml YPD before the loss of plasmid sequences was selected for 
by growing the URA+ transformants on SC medium containing Img/ml 5- 
fluoroorotic acid (5-FOA). The final strains were confimed by a second PCR screen 
and Southern blotting. 

?.? 9 Recovery of Plasmids from Yeast (Strathern and Higgins 1991) 

I ml of cells from an overnight yeast culture were harvested and resuspended in 

200µ1 TE containing 100mM NaCl, 0.1% SDS. Sterile glass beads were added to 

just below the meniscus, and the Eppendorf vortexed for 1 minute. The vortexing 

was repeated, after addition of 2O0µ1 phenol. Tubes were then spun in a 

microcentrifuge for 2 minutes, and the aqueous layer was extracted with a further 

200µ1 phenol. The aqueous layer was then treated with Glassmilk (Geneclean, 

Stratech), according to the kit instructions, before the DNA was precipitated with 

EtOH/NaOAc for 30 minutes at -80°C. The DNA pellet was washed with 80% 

ethanol, and resuspended in 50µl TE. 2.5µ1 of this was used for each subsequent 

E. coli transformation. 
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Table 2.1 The sequences of oligonucleotides used in this work. The positions of 
PCR primers and sequencing primers are indicated relative to the +1 nucleotide at 
the start of the coding region. The Trp+ primer is from a region upstream of the 
TRPI promoter. The oligonucleotides in Table 2.1C have the transcription factor 
binding site underlined. 

A: PCR Primers 

Primer Sequence (5' to 3') Gene Position 

521A GTGTGACGGATCCGGAAGCTGC 

521B GCTTTCTAACAGATCTATCC 

533A CCAATTTCGGGATCCAACAAGGTCC 

533B CCGCATTAAAGCTGATCAGAAACGCAG 

PGK CCGTCCAATGGGACGTTG 

PGKC2 TTGATGTTGGATCCATAAAGCACG 

PGKD CTTTATGAGGGGATCCTCAATTCAAG 

REB1A TATAGGTCGACCAATATGCC 

REB 1B TTTTCCGGATCCAATTTTCTG 

YCR11cA GGATCGTCCCATAAGAGCAC 

YCR 11 cB GGTACAACACGTAGCGGG 

PGK -415/436 

PGK -1483 / -1464 

PGK -429 / -405 

PGK +1545 f +15t9 

PGK +92/+75 

PGK -565 / -542 

PGK -546 / -571 

REBI -151+5 

REB1 +1440 / +1420 

YCR II c +407 / +426 

YCR II c +2943 / +2926 

U/S 1 AGTACGAGATCTAGAAGGGGCAATATG RAP] -435 / -409 

U/S2 ACTATAAGATCTTGCCCGGGTGGCGGCAGA RAP] +1869 / +1840 



Table 2.1 continued 

B: Sequencing Primers. 

Primer Sequence (5' to 3') Gene Position 

2501e TAGACCCAAGAGGCCTG RAP] +1797 to +1813 

Trp+ TTACGCCGGAGCTCCT 

T'R AAGCTCGAGCATTGACC PGK -116 to -132 

C: Transcription factor binding site oligonucleotides. 

Oligonucleotide Sequence (5' to 3') 

yATF 1 GATCCATTTCGTCACACTGCA 

yATF2 GTAAAGCAGTGTGACGTCTAG 

CRE1 GATCCTGACGTCACTGCA 

CRE2 GATCTGCAGTGACGTCAG 



Chapter 3 

Identification of New Transcription Factor Binding Sites in the PGK Promoter 

3.1 Introduction 

The phosphoglycerate kinase promoter contains binding sites for Raplp, Gcrlp and 
Abf lp (Chambers et al. 1989, Chambers et al. 1990, Henry et al. 1994). These were 
identified in experiments which deleted regions of the promoter to see which ones 
were necessary for a high level of transcriptional activation. In order to see whether 
these were the only transcription factors involved in the regulation of transcription of 
PGK, or whether other sequences were necessary for functions not directly related to 
activation, the sequence of the promoter (see Figure 3.1) was subjected to a search 
using the sequences for consensus binding sites of various yeast transcription factors. 
The consensus sequences chosen included those of transcription factors known to 
bind to other yeast glycolytic promoters eg Reblp; multifunctional yeast 
transcription factors eg Mcm1p and Cpflp; transcription factors involved in glucose 

metabolism eg Mig 1 p; and yATF for which a potential transcription factor binding 

site has already been identified at the 3' of the PGK UAS (Lin and Green 1989). 

Also included were transcription factors whose binding specificities are related to 

transcription factors mentioned above eg Pho4p and yAP 1. Finally the PGK 

sequence was compared with the consensus binding sites of Rap 1p, Abf lp and 

Gcrlp to see whether there were other possible matches for these transcription 

factors. 

3.2 Results 

The results of the search of the PGK promoter sequence, with transcription factor 

binding site consensus sequences, are shown in Table 3.1. Further possible matches 

to the Rap 1p and Abf 1p consensus sequences were identified, as were potential 

binding sites for yATF, Cpflp, Pho4p and Reblp. With the exception of the 

potential yATF binding site, all of the new matches were found upstream of the 

previously defined UAS. 

3.2.1 Does Abf 1p bind upstream of the UAS ? 

The two new potential transcription factor binding sites for Abf 1p in the PGK 

promoter are at -704 to -692, and -554 to -542. In order to test whether either of 

these sites could bind AbfIp in vitro, two fragments were isolated from pKV501, a 
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TTAATTTTTTTTTCTTTCCTCTTTTTATTAACCTTAATTTTTATTTTAGATTC 

CTGACTTCAACTCAAGACGCACAGATATTATAACATCTGCATAATAGGCA 

TTTGCAAGAATTACTCGTGAGTAAGGAAAGAGTGAGGAACTATCGCAT 

ACCTGCATTTAAAGATGCCGATTTGGGCGCGAATCCTTTATTTTGGCTTC 

ACCCTCATACTATTATCAGGGCCAGAAAAAGGAAGTGTTTCCCTCCTTC 

TTGAATTGATGTTACCCTCATAAAGCACGTGGCCTCTTATCGAGAA 

AGAAATTACCGTCGCTCGTGATTTGTTTGCAAAAAGAACAA 

AACTGAAAAAACCCAGACACGCTCGACTTCCTGTCTTCCTAT 

TGATTGCAGCTTCCAATTTCGTCACACAACAAGGTCCTAGCG 

ACGGCTCACAGGTTTTGTAACAAGCAATCGAAGGTTCTGGAATGGCGGG 

AAAGGGTTTAGTACCACATGCTATGATGCCCACTGTGATCTCCAGAGCAA 

AGTTC GTTCGATCGTACTGTTACTCTCTCTCTTTCAAACAGAATTGTCCGA 

ATCGTGTGACAACAACAGCCTGTTCTCACACACTCTTTTCTTCTAACCAA 

GGGGGTGGTTTAGTTTAGTAGAACCTCGTGAAACTTACATTTACATATAT 

ATAAACTTGCATAAATTGGTCAATGCAAGAAATACATATTTGGTCTTTTC 

TAATTCGTAGTTTTTCAAGTTATTAGATGCTTTCTTTTTCTCTTTTTTACAG 

ATCATCAAGGAAGTAATTATCTACTTTTTACAACAAATATAAAAACAATG 

Figure 3.1 The sequence of the phosphoglycerate kinase promoter from -820 to the 

methionine start codon, the upstream activation sequence (UAS) is in large type. 

Indicated, in bold type, are regions containing potential binding sites as identified in 

a search of the promoter with consensus binding sites for different transcription 

factors. Also shown are the previously identified binding sites for Rap 1p, Abf 1p and 

Gcr lp (underlined, bold type), and elements of the basal promoter (underlined). 



Table 3.1 The results of a search to identify matches between transcription factor 
consensus binding sites and the phosphoglycerate kinase promoter. Co-ordinates are 
numbered relative to the PGK ATG. 

Transcription Factor Consensus Sequences 

ABF 1 

ACR 1 /S KO 1 

vAP1 

yATF 1 

CPF 1 
GCR 1 

MIG1 

MCM 1 

PHO-1 

RAP I 

REB1 

RTCRYNNNNNACG 

ATGACGTCAT 

STGACTMA 

GTGACGTMR 

KWCGTCA 

RTCACRTG 

CTTCC 

VVWWWSYGGGG 

DCC NRG 
CACGTG 

RTRCACCCANNCMCC 

RMACCCANNCAYY 

YNNYYACCCG 

aN: A, T, CorG 

R: A or G 

Y: T or C 

S: C or G 

K: G or T 

W: AorT 

M: A orC 
D: A, TorG 

b References: 

Refb Match to PGK ? 

1 -704/-692, -554/-542, -516/-503 
2 )t 
3X 

4x 

5 -424/-418 
6 -547/-540 
7 -457/-453, -449/-445, -432/-428 
8 ýt 
9X 

10 -545/-540 
11 -622/-608, -475/-463 
12 -622/-608, -475/-463 
13 -623/-614, -561/-552 

1 Dorsman et al. 1989 

2 Vincent and Struhl 1992 

3 Harshman et al. 1988 
4 Lin and Green 1989 

5 Jones and Jones 1989 

6 Hieter et al. 1985 

7 Huie et al. 1992 

8 Nehlin and Ronne 1990 

9 Wynne and Treisman 1992 

10 Fisher et al. 1991 

11 Graham and Chambers 1994b 

12 Buchman et al. 1988a 

13 Chasman et al. 1990 



clone of PGK with a BamH] site in a deletion window upstream of the known Abf Ip 
binding site at -516 (Chambers et al. 1988). 

A BamHl/Clal fragment was isolated from pKV501 and cut with HinFi to give a 
100bp fragment (Fragment 1, see Figure 3.2) containing one potential Abflp binding 
site (-554 to -542), and a 130bp fragment (Fragment 2) containing the second 
potential Abf 1p binding site (-704 to -692). These small fragments were isolated 
from a polyacrylamide gel and end labelled using [y--32P] ATP and polynucleotide 
kinase. The labelled fragments were then incubated with Abf 1p in a gel retardation 
assay. The previously identified Abflp binding site from the PGK UAS (-516 to 

-503) had been cloned into the polylinker of pSP46, so it was possible to release it as 
a BglII/EcoRl fragment. This fragment, containing a known Abf lp binding site, 
acted as a positive control and was also isolated from polyacrylamide and end 
labelled. 

The protein sources for the gel retardation assays were a yeast total protein extract 
(TPE), as described in materials and methods (2.14), and in vitro translated (IVT) 

Abf 1 protein. pT3ABF 1, a clone of the Abf lp coding region (a gift from J. Diffley), 

was linearized using a HindIll site downstream of the coding region and run-off 
transcripts were produced from the T3 promoter. The RNA was translated in the 

presence of 35S methionine so that the quality of the protein could be checked by 

electrophoresis of the translation reaction through a protein gel, and detection of the 

radioactive Abf 1p on X-ray film (Figure 3.3, lanes 1 and 2). A mock translation 

reaction, not primed with Abflp RNA, was set up in parallel. This mock lysate acts 

as a control for proteins which are already present in the rabbit reticulocyte lysate 

and could interact with DNA fragments non-specifically during a gel retardation 

assay, it does not contains a protein corresponding to the radioactive Abflp (Figure 

3.3, lanes 3 and 4). 

Binding reactions, between PGK promoter fragments 1 and 2 and IVT Abflp, were 

allowed to incubate at room temperature for approximately 45 minutes as described 

in materials and methods, section 2.20.2, before protein/DNA complexes were 

resolved by electrophoresis on 5% polyacrylamide gels. The gels were then dried 

down and exposed to X-ray film at -80°C. 

These gel retardation assays showed that although the in vitro translated protein 

would recognise the known Abf 1p binding site, neither fragment 1 nor fragment 2 

from the PGK promoter was able form a complex (Figure 3.4, compare Abflp lysate 

incubated with the known Abf 1p site (+) with the Abf 1p lysate incubated with 
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ý. 

Figure 3.3 A protein gel showing Abflp translated in vitro in the presence of 35S 

methionine. Lanes 1 and 2 contain two different volumes of Abflp lysate, whilst 
lanes 3 and 4 contain similar volumes of a mock lysate which was not primed with 

Abf lp mRNA. 
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Figure 3.4 Neither fragment 1 nor fragment 2 from the PGK promoter will bind in 

vitro translated Abf 1p. The gel retardation assays show that although IVT Abf 1p will 

not recognise the PGK promoter fragments 1 and 2, it will form a complex with the 

positive control fragment (+) containing the known Abf lp binding site from the PGK 

promoter. F: fragment alone; M: fragment + mock lysate; A: fragment + Abflp 

lysate. 



fragments 1 and 2). This shows that neither of the potential Abf lp binding sites 
upstream of the PGK UAS actually binds Abf 1p in vitro. 

3.2.2 Does Rap Ip bind upstream of the UAS 

In vitro translated Raplp was produced from pPE711 (Chambers et al. 1989). The 
plasmid was linearized with Xbal and RNA was transcribed from the SP6 promoter 
before being translated in a rabbit reticulocyte lysate. The IVT Rap 1p was incubated 
in a gel retardation assay with labelled fragment 1, which contained the potential 
Rap 1p site at -622 to -608, and also with fragment 2 which does not contain a match 
to the Rap lp consensus sequence. No complex formation was seen between the IVT 
Rap 1p and either of the PGK fragments (Figure 3.5), although a complex did form 
between IVT Rap 1p and a DNA fragment containing a known Rap 1p binding site, 
from the TEF2 promoter, which shows that the in vitro produced protein was capable 
of in vitro binding under these assay conditions. Thus there is no new Raplp binding 

site upstream of the PGK UAS. 

3.2.3 Identification of a new transcription factor binding site for Cpflp 

When fragment 1 was incubated with a yeast total protein extract a complex was 
formed between this promoter fragment and a protein present in the extract (Figure 

3.6). This suggests that. there is a sequence on the 100bp fragment that binds a 

protein, or proteins, present in yeast. Fragment 1 contains the potential match to the 

Cpf 1p binding site at -547 to -540. 

A clone of the Cpf 1p coding region downstream of the T7 promoter was a gift from 

Jane Mellor (Oxford University) and this allowed Cpflp to be produced in vitro. 

pSP73-22 (Mellor et al. 1990) was linearized with BamHl and RNA transcripts were 

produced from the T7 promoter. After translation the IVT Cpflp was incubated with 

promoter fragment 1 which contains at its 3' end a match to the Cpf 1p consensus 

binding site (-547 to -540), and also with a truncated version of this fragment 

(fragment IA, Figure 3.2) which had 10bp removed from the 3' end to delete the 

potential Cpf 1p binding site . 

When the DNA/protein complexes had been resolved in a retardation assay, binding 

of IVT Cpf lp was observed with the fragment 1 (Figure 3.7A). However this 

binding was abolished when IVT Cpf lp was incubated with fragment IA (Figure 

3.7B, lanes M and Q. Thus the site of Cpflp binding was localized to the 3' end of 

promoter fragment 1, to the region containing the Cpflp consensus. Fragment IA 

was also incubated with the yeast total protein extract to see whether there were any 
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Figure 3.5 Neither fragment 1 nor fragment 2 from the PGK promoter will bind in 

vitro translated Raplp. The gel retardation assay shows that although IVT Raplp 

will not recognise the PGK promoter fragments 1 and 2, it will form a complex with 

the positive control fragment (+) containing a known Raplp binding site. F: fragment 

alone; M: fragment + mock lysate; R: fragment + Rap1p lysate. 
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Figure 3.6 A gel retardation assay to show that a protein(s) present in a yeast total 

protein extract forms a complex with fragment 1 from the PGK promoter. Two 

preparations of fragment 1 were used, the second of which was labelled to a higher 

specific activity. F: fragment 1 alone; T: fragment 1+ yeast total protein extract. 
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other proteins which could bind to it. A complex was formed between the TPE and 
fragment IA (Figure 3.7B, lane T) suggesting that there was a binding site for 
another yeast protein on the fragment. Since fragment IA contains two potential 
Reblp binding sites (-623 to -614, -561 to -552) the interaction of Reblp and this 
region of the promoter was investigated. 11 

3.2.4 Identification of a new transcription factor binding site for Reblp 

A strain of E. coli from which Reb 1p could be overexpressed by induction with 
IPTG (Morrow et al. 1993a) was a gift from Jonathan Warner (Albert Einstein 
College of Medicine, New York). E. coli, BL21(DE3), had either been been 
transformed with pET 1l a-PCR8, which overexpresses an N-terminal truncated 
version of Reb 1 p, or with pET 11 a, the vector with no Reb 1p insert. The pET series 
of vectors are for cloning and expressing DNA fragments under the control of a T7 

promoter (Studier et al. 1990). They are transformed into an E. coli strain such as 
BL21(DE3) which has expression of T7 RNA polymerase under the control of the 
lacUV5 promoter which is inducible by IPTG. Thus, addition of IPTG allows T7 
RNA polymerase to be produced, and the cloned DNA fragments are expressed 
(Studier et al. 1990). The N-terminal truncation of Reblp is missing the first 201 

amino acids, but this does not affect its binding to DNA since the DNA binding 

domain is in the C-terminus. The truncated version of the protein undergoes less 

degradation than the full length protein when expressed in E. coli (J. Warner, pers 

Comm). 

Two 100ml LBAp cultures were inoculated from 2m1 overnights of the 

overexpressor strain and a strain transformed with just the parental plasmid. The 

cultures were grown to mid-log phase before the cells were induced with IPTG and 

grown at 37°C for a further 3 hours. The overexpressed protein was partially 

purified, using a modified version of Warner's protocol (Morrow et al. 1993a), as 

described in Materials and Methods, section 2.18. 

Two protein fractions were obtained from the partial purification proceedure, a 40% 

and a 70% fraction. The high concentration of ammonium sulphate in these fractions 

was reduced by spin dialysis since the presence of high salt concentration affected 

migration of protein/DNA complexes in gel retardation assays. The concentration of 

the protein fractions was then determined with a Biorad protein assay, and 5µg was 

incubated with a labelled DNA fragment containing a known Reblp site from the 

RAP] promoter. The Reb lp binding activity was found in the 70% protein fraction 

after both 40% and 70% fractions were tested in a gel retardation assay (Figure 3.8). 
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Figure 3.8 A gel retardation assay to determine which fraction of partially purified 

protein contained overexpressed Reblp. The 40% and 70% fractions were incubated 

with a known Reblp site from the RAP] promoter. Lane 1: fragment + protein 

extract from cells containing the Reblp overexpressor construct; Lane 2: fragment + 
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As the 70% fraction contained the partially purified Reblp it was used as the source 
of Reb 1p for a gel retardation with PGK promoter fragment 1A which contains both 

potential Reblp binding sites. This retardation assay provided preliminary evidence 
that there was some Reb 1p binding to the PGK promoter (Figure 3.9, compare lane 1 

with lane 2). However, the high concentration of salts and other proteins in the 
partially purified preparation of overexpressed Reb lp affected the migration of the 
Reblp/DNA complex through the retardation gels. Thus, a clone was constructed 
which could be used for the production of Reb 1p RNA transcripts. This Reb 1p RNA 

could then be translated in vitro and the retardation assays repeated with a different 

source of protein. 

PCR primers were designed to the 5' and 3' of the Reblp coding region with 

restriction enzyme sites for Sall and BamH1 incorporated for ease of cloning the 

PCR product into pSP46. Initial attempts to amplify the Reblp sequence directly 

from yeast chromosomal DNA using touchdown PCR were unsuccessful, so a 

plasmid clone of Reblp, pBA16, also a gift from Jonathan, Warner, was used as a 

template for PCR. A product of about 2.4kb was amplified after 30 cycles (94°C for 

30", 50°C for 40", 72°C for 2'30") followed by 10' at 72°C to make sure that all the 

product was blunt ended. This PCR product was isolated from an agarose gel and 

cleaned (Gene Clean, Stratech) before being cloned directly into T-vector 

(Promega), rather than cutting it with Sall and BamH1 and cloning into pSP46 as 

originally intended. A clone was obtained whose orientation allowed for the 

production of Reblp RNA using the T7 promoter. 

This clone, pAJ141 was linearized with Sstl and run-off transcripts were produced 

using T7 RNA polymerase. Translation was carried out in the presence of 35S 

methionine and the labelled protein was detected on X-ray film (data not shown). 

The Reb 1p lysate had several bands in it which were not present in the mock lysate 

(not primed with Reblp RNA). This suggests that they were Reblp specific bands, 

and were probably truncated proteins. These could be due to premature termination 

in the translation reaction, or to the translation of RNA transcripts which were not 

full length. 

The Reb 1p lysate was used as a source of Reb 1p in the retardation assays with PGK 

promoter fragments 1A and 1B. Fragment 1A contains both potential Reb 1p binding 

sites, whereas fragment 2 contains only the potential binding site at -623 to -614. 

The gel retardation assay showed no binding of IVT Reblp with fragment 1B but 

clear binding to fragment 1A (Figure 3.10). The multiple bands seen in the 

retardation assay are probably due to the presence of different sized Reb1 proteins in 

the Reb 1p lysate. Figure 3.10 suggests that the most upstream of the potential Reb lp 
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Figure 3.9 A gel retardation assay indicating that Reblp is able to form a complex 

with PGK promoter fragment IA. F: fragment alone; 1: fragment + partially purified 

protein extract containing overexpressed Reblp; 2: fragment + partially purified 

protein extract not containing overexpressed Reblp. 
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Figure 3.10 A gel retardation to show that IVT Reblp will form a complex with 
PGK promoter fragment IA but not with fragment 1B. The multiple bands in the 
Reb 1p+ fragment IA track are due to the presence of truncated forms of Reb 1p in 

the lysate. F: fragment alone; R: fragment + Reblp lysate; M: fragment + mock 
lysate. 



binding sites is not occupied in vitro but that the downstream site (-561 to -552), 
adjacent to the newly identified Cpf 1p binding site, will bind Reb 1 p. 

3.3 Discussion 

Whilst the PGK promoter contains many potential transcription factor binding sites, 
only some of these have been shown to interact with proteins in vitro. Abf lp, Rap lp 
and Gcr 1p have been shown previously to bind to the region of the PGK promoter 
defined as the UAS, and two new transcription factor binding sites, for Cpflp and 
Reb 1 p, have now been identified upstream of the UAS by gel retardation assays in 
which fragments from this region of the PGK promoter were incubated with in vitro 
translated proteins. 

That only two of the five potential transcription factor binding sites identified 

upstream of the PGK UAS actually bind a protein in vitro may indicate something 
about the way in which these proteins interact with their recognition sites. The most 
upstream of the two potential Abflp sites (-704 to -692) contains two mismatches to 
the consensus (Table 3.2). One of these is in the highly conserved 3' element ACG 

which is separated from the 5' conserved element by a stretch of DNA whose length 
is more important than its sequence. Mutations in either of the 5' or 3' conserved 
elements leads to a reduction in, or to the abolition of, binding of Abf lp (Dorsman et 

al. 1989). A mismatch found in both of the potential Abflp binding sites is a change 

of the 5' most purine of the consensus being changed to a pyrimidine. An 

investigation into the interactions of Abflp with its binding site (McBroom et al. 
1994a), has shown by missing contact analysis, and by methylation interference, that 

the protein/DNA interaction at this position is important for Abflp binding. This 

same analysis also demonstrated the importance of certain of the bases flanking the 

consensus sequence for making DNA/protein contacts when Abflp binds. 

The potential Raplp binding site upstream of the PGK UAS (-622 to -608) has three 

mismatches to the Buchman et al. (1988a) consensus and five mismatches to the 

Graham and Chambers (1994b) consensus (Table 3.2) which is similar to the 

Buchman consensus, but longer at the 5' end and more constrained at the 3' end. The 

potential PGK sequence matches the proposed core, CACCCA, of both consensus 

sequences except at the final A residue. A point mutation here (position 9 of the 

Graham and Chambers consensus) has been shown to have a considerable effect on 

the strength of Rap 1p binding, as has a point mutation at the conserved C, position 

12, (Vignais and Sentenac 1989). Since, individually these mutations reduce binding 

by between 88-96%, in combination they are very unlikely to allow the formation of 

a complex between Raplp and the DNA. The other mismatches are found at 
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positions 1,3 and 15, in flanking sequences which may be important for stabilising 
interactions between Rap 1p and the consensus core. 

The mismatch between the Cpf 1p binding site in the PGK promoter and the CDE 1 
consensus sequence, RTCACRTG, is outside of the core recognition site 
(CANNTG) for basic Helix-Loop-Helix proteins, the 5' T is replaced with an A in 
the PGK sequence (Table 3.2). The presence of aT in this 5' position inhibits the 
binding of the transcription factor Pho4p, which recognises the same bHLH 
consensus, since it places a methyl group in the major groove (Fisher and Goding 
1992). The binding of Pho4p to the PGK promoter was not investigated in this 
thesis, and it remains a formal possibility. However, Pho4p is involved in the 
regulation of PHO5, and there are sequences outside of the consensus, apart from the 
5' T, which affect Pho4p and Cpflp binding specificity (Fisher and Goding 1992). 

Of the two potential Reb 1p binding sites in the PGK promoter one does bind Reb 1p 

in vitro and the other does not (Figure 3.10). The mismatches to the Rebip 

consensus sequence though are all in the same positions (see Table 3.2); a 5' 

pyrimidine in the consensus is replaced with aG in the most upstream site, which 
does not bind in vitro, and with an A in the downstream site, which does bind Reblp 

in vitro. In both cases a highly conserved 3' G is replaced with a T. Chasman et al. 
(1990) show that the most 5' pyrimidine is not critical for Reb 1p binding, it can be 

functionally replaced with aG as is the case with the non-binding potential site at 

-623 to -614. They also suggest that the region of DNA flanking the Reb lp 

consensus is important since sequences which are identical at every position of the 

consensus bind Reblp with different affinities. The flanking sequences are 

presumably the difference between the two potential Reblp binding sites in the PGK 

promoter, allowing one to bind Reb 1p and the other not. 

In the majority of the cases discussed above mismatches to the consensus binding 

site are not sufficient to explain the lack of binding seen between the PGK promoter 

fragments and in vitro translated protein. This emphasises the importance of the 

DNA flanking the consensus binding site in stabilizing interactions between a 

transcription factor and its core recognition sequence. This is not surprising bearing 

in mind that these multifunctional transcription factors have large DNA binding 

domains (Abf 1 p: 487 amino acids (aa), Reb 1 p: 309aa, Rap 1 p: 235aa, Cpf 1 p: l3laa) 

which might be expected to come into contact with a considerable length of DNA, 

even with bases not immediately adjacent to the consensus site. 

A comparison of the proteins which bind upstream of many glycolytic genes shows 

that the same group of transcription factors are represented at their promoters. Most 
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glycolytic UAS contain a binding site for Raplp, frequently close to a "CT block" 
which is at the core of the Gcrlp binding site. These two transcription factors play a 
key role in the regulation of transcription from glycolytic genes, usually deletion of 
the Rap 1p site results in a decrease in the level of transcription, and genes with 
Gcr lp sites show reduced transcription in a gcrl background. The roles of Abf 1p 
and Reblp in glycolytic promoters are less clear; Abflp appears to have a role in the 
transcription of PFK1 but not of PGK or PYK. At the ENO2 promoter Abflp seems 
to act as an anti-repressor allowing an as yet unidentified factor to activate 
transcription along with Rap 1p and Gcr lp (Willett et al. 1993). Reb 1p seems to be 
involved in the activation of TPI and also TDH3 where it is associated with a 
nucleosome free region. In the ENO] promoter Reblp binds to both the UAS and 
URS. When Reb 1p does bind to a glycolytic promoter, it is in an upstream position 
in comparison with the other transcription factors, suggesting that one of its 
functions may be to protect the promoter from upstream interference. In agreement 
with this, the newly identified Reb lp binding site in the PGK promoter is also in the 
most upstream region of this promoter. The PGK promoter is the first glycolytic 
promoter in which a Cpf lp binding site has been identified and its role here may 
involve chromatin remodelling, since Cpf lp has not been demonstrated to be a 
transcriptional activator. 

Thus, there are binding sites for four members of the family of multifunctional 
transcription factors within one promoter. There may be some redundancy of 
function at the PGK promoter since the roles of the multifunctional transcription 

factors overlap to some extent, and their binding sites are in close proximity to each 

other. However, the PGK promoter makes a good model system in which to study 

these transcription factors to try to elucidate the molecular mechanisms by which 

they regulate gene transcription. One way in which this may be done is by studying 

the effects of deleting individual binding sites from the PGK promoter. 
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Chapter 4 

Construction of Yeast Strains to Investigate the Roles of Transcription Factors 

at the Chromosomal PGK Locus 

4.1 Introduction 

Previous studies of the PGK promoter have looked at the effects of deleting 
transcription factor binding sites from the UAS on the levels of transcription from a 
multi-copy plasmid-borne construct of the gene. This is a straightforward procedure, 
requiring little manipulation of the yeast cell, which allows answers to be obtained 
relatively quickly. Once the required deletion has been made from the promoter, it 

can be cloned into a multi-copy plasmid either linked to a reporter construct eg 13- 

galactosidase, or as a whole gene construct, and the plasmid can be transformed into 

yeast. After transformants have been selected, the effect of the deletion can be 
determined by assaying the levels of the reporter, or by Northern blotting, comparing 
levels of RNA from a plasmid carrying the whole gene with RNA from the deleted 

gene construct. In such experiments the plasmid copy number must be determined 

since a construct present in high copy number can appear more active than it really 
is. This can be overcome to some extent by looking at deletions on single copy 

number plasmids, but the copy number of these can also vary between transformants. 

Another disadvantage of looking at the effects of promoter deletions on plasmids is 

that the higher chromatin structure of plasmids may differ from higher chromosomal 

chromatin structure. If the transcription factor under investigation is one which 

exerts some, or all, of its effects by remodelling chromatin then examination of a 

plasmid-borne deletion may give misleading results. 

To minimise the effects of removing a gene from its wild type context, another way 

of examining the roles of different transcription factors is to look at deletions of their 

binding sites from a chromosomal copy of the gene. A copy of the gene containing 

promoter deletions can be integrated at a non-homologous locus giving a yeast strain 

in which there are two copies of the gene. In this case the promoter can be linked up 

to a reporter gene, or the coding region can be truncated, allowing the message from 

the gene carrying the promoter deletion to be distinguished from the message of the 

wild type gene. Alternatively, the deleted gene construct can be targetted to its 

chromosomal homologue giving tandem copies of the gene. In some cases the loss of 

plasmid sequences and one of the gene copies can be selected for so that only the 

mutated copy of the gene is present in the chromosome. Yeast strains containing 

deletions from the chromosome take more time to prepare than deletions from 
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plasmids but the final strain can be identical to wild type except for a specific 
deletion, and any effects on transcription due to the chromosomal environment of the 
gene will still be present, thus, any differences between the wild type gene and the 
mutated version should be a result of the mutation. 

Unlike Rap 1 p, Reb 1p and Abf 1 p, Cpf lp is not encoded by an essential gene and so 
it is possible to look at the role of Cpflp binding sites in promoters by looking at the 
chromatin structure of these genes, and levels of transcription from them, in a cpfl 
null strain. As this is not feasible for the other members of the family of 
multifunctional transcription factors, yeast strains were made in which binding sites 
for Rap 1 p, Reb 1p and Abf 1p were deleted individually from the chromosomal copy 
of PGK using the Pop-In/Pop-Out method of homologous recombination. A yeast 
strain was also made in which the potential transcription factor binding site for 

yATF, identified by Lin and Green (1989) at the very 3' end of the PGK UAS (-415 

to -402), was deleted. 

4.1.1 The "Pop In - Pop Out" Method of Homologous Recombination 

Deletions of specific transcription factor binding sites from the PGK promoter were 
introduced into the chromosomal copy of the gene using a method of homologous 

recombination based on the method of Scherer and Davis (1979). This has 

advantages over One Step gene disruption (Rothstein 1983), and targeting of in vitro 

mutagenized DNA to the wild type locus (Shortle et al. 1984), since it allows the 

chromosomal copy of the gene to be replaced with a mutated version and all vector 

sequences are lost. One Step gene disruption replaces one yeast marker, for example, 

trp, with a sequence of DNA containing the mutated gene of interest and a second 

yeast marker, for example, ura. Thus transformed yeast would become trp- and 

ura+, however the chromosomal copy of the target gene is still present. This method 

is useful for introducing a promoter linked to a reporter gene such as lacZ into the 

chromosome. The method of Shortle et al. (1984) uses a truncated version of the 

gene for targetting and again the wild type copy is not deleted. In both of these cases 

the plasmid sequences also remain in the genome. 

Use of the Pop-In/Pop-Out method of allele replacement (Figure 4.1) means that 

only one copy of the affected gene is present in the genome of the final strain. This 

copy is present at the wild type locus, contains no vector sequences and only desired 

mutations which were introduced into the gene on the integrating plasmid. A URA3 

based integrating vector is used; this contains no ARS sequences so the plasmid 

cannot exist within the yeast cell unless it has been integrated into the genome. 

Integration can be targeted to the locus of interest by making a double stranded break 
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Figure 4.1 Diagram showing the pop-in/pop-out method of allele replacement. During the pop-in 

a mutation in the promoter of the plasmid-borne copy of PGK, indicated by X, is introduced into 

the chromosome. The pop-out results in one copy of PGK and the vector sequences being lost, 

leaving one copy of PGK carrying the promoter mutation. 



within the target gene on the plasmid. This increases the frequency of recombination 
(Orr-Weaver et al. 1981) and most integration will occur at the region of the genome 
homologous to the cut site. In some cases there can be recombination between the 
marker gene and the integrating plasmid but this is reduced if there is no 
chromosomal copy of the marker, or if it is highly disrupted. The ura3-52 mutation 
is a very stable, non-reverting mutation caused by a Ty insertion within the URA3 

coding region (Rose and Winston 1984). 

Once the Pop-In has occured there are two copies of the target gene in the genome, 
one wild type and one mutant, separated by vector sequence including the URA3 

marker (see Figure 4.1). At this stage it is useful to verify that the mutated copy has 

not undergone gene conversion upon integration; the frequency of gene conversion 
is highest when the double stranded break used to target integration is closest to the 

mutation in the incoming gene (Orr-Weaver et al. 1988). 

The second stage of the proceedure involves selecting for the loss of the URA3 

marker. This happens when a second recombination event takes place between the 

two copies of the gene present in the chromosome, and it results in the loss of one 

copy of the gene, and also the intervening plasmid sequences. This step is selected 
for using 5-fluoroorotic acid (5-FOA; Boeke et al. 1984). URA3 encodes orotidine 5' 

phosphate decarboxylase which is required for the synthesis of uracil; URA3+ cells 

convert 5-FOA to 5-fluorouracil which is toxic to yeast, but ura3- cells, being unable 

to catalyse this conversion, are resistant. Thus, URA3+ yeast containing the required 

Pop-In mutation are grown on medium containing 5-FOA and only ura3- cells ie 

those in which a Pop-Out has occured, will survive. Since Pop-Out cells are ura- the 

medium must contain uracil to allow their growth. 

Finally these cells must be screened to determine which copy of the gene has been 

excised, the mutant or the wild type; if the double stranded break used for targetting 

the Pop-In recombination is between the mutant site and the shortest stretch of 

homology then the Pop-Out is more likely to occur in the longer region of 

homology. Thus it is useful to be able to target an asymmetric insert (with respect to 

the position of the mutation) to increase the chances of retaining the altered gene 

after Pop-Out. 

4.2 Results 

4.2.1 Constructing Chromosomal Deletions of PGK Transcription Factor Binding 

Sites 
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Individual window deletions of the Rap 1p and Abf 1p transcription factor binding 
sites from the PGK gene on a multicopy plasmid had already been constructed 
(Chambers cat al. 1988). pKV516 (ARaplp, -473 to -464) and pKV502 (AAbflp, 

-538 to -473) contain the entire PGK sequence, with a specific transcription factor 
binding site deleted from the UAS and replaced with a BamH1 site, on a Hindlll 
fragment. In order to construct the integrating vectors HindI11/Bglll fragments were 
isolated from pKV502 and pKV516. This utilised a Bgl1I site just upstream of the 
PGK stop codon and facilitated the separation of the PGK fragment from vector 
sequences on an agarose gel. The fragments, which contained the entire PGK 

sequence from the promoter through to + 1156 in the coding region, were cloned into 
the Pvull site of pAJ730 (Figure 4.2) generating recombinants pAJ 107 (AAbf 1 p) and 
pAJ108 (ARap1p). pAJ730 has the URA3 gene from YCp50 (Johnston and Davis 
1984) subcloned into the polylinker of pSP46 (Ogden et al. 1986), but it has no 
CEN/ARS sequences and so cannot exist in the yeast cell unless it has been 
integrated into the chromosome. 

A deletion of the newly identified Reb 1p site was constructed using PCR (Figure 

4.3). The entire PGK sequence was amplified as two products; an upstream product 
from immediately 5' to the Reb 1p site, as far as the HindlIl site at -1480 using PCR 

primers 521B and PGKD, and a downstream product containing the sequence 
immediately 3' to the Rebip site through to the PGK terminator which was amplified 

using primers 533B and PGKC2 (see Table 2.1A for primer sequences and co- 

ordinates). Primers PGKC2 and PGKD had a BamHl site incorporated into them, 

whilst 521B contained a BgIII site and 533B a Bcll site. Thus the downstream 

product could be digested with BamHl and BcII, and the upstream product with 

BamHJ and BgIII. Bcll and BgIII have BamHl compatible ends which meant that the 

PCR products could be cloned directly into pAJ735, this is identical to pAJ730 

except that the Smal site has been converted to a BamHl site. After the PCR 

products had been cloned in the correct orientation, generating pAJ 105 (AReb 1 p), 

the integrating vector contained a clone of the PGK gene but with the RebIp binding 

site replaced with a BamHl linker. 

The integrating vector carrying PGK sequence with the potential yATF binding site 

deleted was constructed by cloning a PCR product, amplified using primers 521A 

and 521 B, containing the region of PGK upstream of the potential yATF site, into 

pAJ735. The downstream PGK sequence, from 3' to the yATF site to +1156 in the 

coding region, was isolated from pAJ 110 as a BamHl /BglII fragment; pAJ 110 is a 

multicopy plasmid where the potential yATF site has been deleted from PGK, the 

yATF deletion was generated using PCR in a similar way to the Reblp deletion 

(Figure 4.3). Primers 521A, 521B, 533A and 533B (Table 2.1A) were used to 
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transcription factor binding site. 

AmpR 

PGK coding region 

pAJ 107: pAJ730 + PGKOAbf 1p 

pAJ 108 : pAJ730 + PGKORap 1p 

pAJ 105: pAJ730 + PGKOReb lp 

pAJ 106: pAJ730 + PGKAyATF 

Figure 4.2 pAJ730, the URA selectable plasmid into which PGK constructs with 

specific transcription factor binding site deletions were cloned. The ARap lp and 
AAbf lp constructs were cloned into the PvuII site, and the AReb 1p and AyATF 

constructs at the Smal site after it was converted to a BamHl site. pAJ730 and its 

derivatives are unable to be maintained in yeast unless they are integrated into the 

chromosome, as they contain no CEN/ARS sequences. 
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amplify the upstream and downstream regions of PGK which were cloned into the 
BamHl site of pAJ6 to give pAJ 110. When the downstream of the yATF deletion 
had been cloned next to the upstream deletion fragment pAJ 106 was generated. Here 
the potential yATF binding site had been replaced with a BamHl linker in a clone of 
PGK extending from the 5' HindIll site to the BglII site at +1156 in the coding 
region. 

Since the process of PCR is prone to errors, Taq polymerase misincorporates bases 

at a rate of about 1 per 4x 104 bases (Innis et al. 1988), the PGK constructs in 

pAJ 105 and pAJ 106 were sequenced across their UAS to ensure that the only 
mutation that had been introduced was that of replacing the transcription factor 
binding site with a BamH1 site. 

pAJ 106, pAJ 107 and pAJ 108 all contain a unique Cla 1 site at -820 in the PGK 

promoter, the Clal site in the coding region is downstream of the Bgill site used for 

subcloning the Rap 1p, Abf1p and yATF deletions and therefore no longer present. 
This unique Clal site was used to linearise pAJ 106, pAJ 107 and pAJ 108 within the 
PGK sequence, before they were transformed into DBY745 using the One Step 

transformation procedure. This was to help to target the Pop-In integration to the 

wild type PGK locus and to increase the efficiency of recombination. pAJ 105 did not 

contain a suitable site for linearisation within PGK so the transformation of DBY745 

was carried out with non-linearised plasmid; this did not have a noticeable effect on 

the number of transformants when compared with the numbers from the pAJ 106, 

pAJ 107 and pAJ 108 transformations. 

After transforming DBY745, URA+ transformants were selected, since these contain 

the integrated plasmid, and screened to ensure that the construct had not undergone 

gene conversion on integration. This screening was achieved with PCR. 

Oligonucleotide primers, homologous to the 5' end of PGK (521B) and to +75 in the 

coding region (PGK), were used to amplify the promoter region of PGK giving a 

product of about 1.8kb. Chromosomal DNA prepared from the URA+ transformants 

using the "Ten minute" prep (Materials and Methods, section 2.6.1) was used as a 

template. Since, after Pop-In there are two copies of PGK in the chromosome, two 

PCR products are amplified with these primers. One copy should be wild type, the 

other should contain an extra BamH1 site. Therefore if gene conversion has not 

occured one of the PCR products should cut with BamH1 giving a pattern of three 

bands on an agarose gel: the full length wild type promoter product which has no 

BamHl site (1 . 
8kb) and two cleavage products from the deleted promoter (- 1.4kb 

and -0.4kb, see Figures 4.4 and 4.5) If gene conversion has occured then both copies 

of PGK will be wild type and therefore the PCR products will not cut with BamHl. 
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Figure 4.5A The PCR screen which allowed the identification of Pop In and Pop 

Out events, during the construction of yeast strains YLP 1 and YLP2 containing 
deletions of Rap 1p and Abf 1p binding sites from the chromosomal PGK promoter. 
For each yeast strain, panel A shows a screen for Pop Ins, and panel Ba screen for 

Pop Outs. Fragment a was cleaved with BamHl to give fragments b and c if the 

transcription factor binding site deletion had been maintained. M: 2JHindIll marker 
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Out events, during the construction of yeast strains YLP3 and YLP4 containing 
deletions of Reb 1p and yATF binding sites from the chromosomal PGK promoter. 
For each yeast strain, panel A shows a screen for Pop Ins, and panel Ba screen for 
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Different numbers of URA+ Pop-In colonies had to be screened for each construct in 

order to find those which had not undergone gene conversion (ARaplp: 2 from 3 

screened, AReb 1 p: 1 from 8, AAbf 1 p: 6 from 6 and AyATF: 9 from 10). This may 
reflect the increased efficiency with which the procedure of homologous integration 

was used as problems with the screening procedure were eliminated. 

Once a Pop-In event had been identified, using the PCR screen, the cells from this 

colony were grown at 30°C overnight in 10ml YPD, and 10091 of this was spread on 

to 5-FOA SC agar. Colonies which grew on the 5-FOA medium had undergone a 

second recombinational event, losing one copy of PGK and also the intervening 

plasmid sequences (see Figure 4.1). A second round of PCR screening was used to 

check that the copy of PGK which had been lost was the wild type copy (Figure 4.5). 

The same primers were used as for the first screen but this time there should only be 

one target in the genome. Thus, if the mutated copy of PGK had been retained the 

amplified product was cleaveable with BamH]. As with the Pop-In stage there was a 
difference in the number of colonies which had to be screened to find one where the 

Pop-Out had occured correctly, ie retaining the mutation; ARap 1 p: 2 from 17, 

: \Reb 1 p: 6 from 10, AAbf l p: 4 from 10 and AyATF: 6 from 8. 

As a final check that the strains were correct, chromosomal DNA from the integrant 

strains was cut with BamH1 and compared with BamH1 digested chromosomal 
DNA from the parent strain, DBY745, in a Southern blot. The blot was probed with 

the 2.95kb HindIll fragment from pB 1 (Hitzeman et al. 1980) which contains the 

entire PGK sequence. In DBY745 PGK is present on a single BamH1 fragment but 

in the integrant strains PGK spans two fragments since the deletion of the 

transcription factor binding sites has introduced an extra BamH1 site. Initially the 

expected sizes for the fragments generated when chromosomal DNA was cut with 

BamH1 were predicted using the sequence of yeast chromosome III which is in the 

database. The area surrounding the PGK locus was examined, and PGK was found 

to lie on a 10.9kb BamH1 fragment. In the DNA from integrant strains digested with 

BamHl , this fragment should have been cleaved into 8.1 and 2.8kb fragments; all 

these fragments should have been resolved on a 1% agarose gel which was 

subequently blotted and probed with the PGK clone. However, although the blots 

showed one band for the DBY745 DNA and two for the integrant strains, the larger 

of the integrant bands appeared to be no different in size from the DBY745 band. 

This was because the position of restriction sites in the yeast from which the 

sequence of chromosome III in the database was obtained is not the same as those in 

DBY745. In DBY745 PGK is present on a fragment larger than 10.9kb; from the 

AiHindlll marker which was run on the gel with the BamH1 digested DNAs this 

fragment was estimated to be about 20kb. The small band released in the integrant 
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strains was about 5kb which left a fragment of 15kb. Bands of 15 and 20kb are hard 
to resolve on 1% agarose so a lower percentage gel was prepared. When the DNAs 

were digested and resolved on a 0.7% agarose gel the differences in size of all the 
bands was clear (Figures 4.6 and 4.7). Thus the presence of a mutated copy of PGK, 

containing a specific deletion of one of its transcription factor binding sites, at the 
chromosomal locus was confirmed. 

Once constructed these yeast strains, with specific transcription factor binding sites 
deleted from the promoter of the chromosomal PGK gene, were used to investigate 

the roles of Rap 1 p, Abf 1 p, Reb 1p and yATF in the regulation of transcription at this 
locus. The role of Cpf 1p was investigated by comparing the level of PGK RNA from 

a cpf] null strain, with the level from an isogenic wild type strain. 

4.2.2 Rap lp is Central to the Activation of Transcription at PGK in the Chromosome 

The effect of deleting specific transcription factor binding sites from the PGK 

promoter was determined by looking at the amount of RNA produced by the deleted 

strain and comparing it with the wild type level produced from the parental yeast 
DB Y745 . 

Strains DB Y745, YLP1 (ARap 1 p), YLP2 (AAbf l p), YLP3 (AReb 1 p) and 
YLP4 (AvATF) (Table 4.1) were grown to mid-log phase in YPD, usually overnight 

at 300C. The cells were harvested and total RNA was extracted (Materials and 

Methods, section 2.13). This was transfered to nitrocellulose and analysed by 

Northern blotting. RNA from the parental strain DBY745 was compared with RNA 

from more than one derivative of each of the deletion strains. Each filter was probed 

initially with a PGK specific probe, the Hindill fragment from pB 1 which contains 

the entire PGK sequence (Hitzeman et al. 1980), and secondly with a probe for 

ribosomal RNA to act as a loading control (Petes et al. 1978; Figures 4.8 and 4.9). 

It was clear just from an examination of the autoradiographs by eye (Figures 4.8 and 

4.9) that there were differences in the levels of PGK RNA produced by the different 

strains; YLP 1 contained very little PGK RNA, whilst YLP2, YLP3 and YLP4 

contained less than DBY745. These experiments were repeated a number of times, 

and Figures 4.8 and 4.9 show data from representative autoradiographs. The 

differences in the levels of PGK RNA were quantified using a phosphorimager. First 

the amount of PGK probe hybridised to the filter was determined by scanning the 

filter. Then this probe was stripped from the filter which was next hybridised to the 

ribosomal probe. The amount of RNA loaded onto the gel was indicated by the 

ribosomal probe and thus the PGK counts could be normalised (Tables 4.2 and 4.3). 
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Figure 4.6A A Southern blot of BamH1 digested chromosomal DNA from 

DB Y745, YLP 1 and YLP2, showing the presence of the extra BamHl site in the 

yeast strains constructed with a specific transcription factor binding site deletion 

from the PGK promoter. Band A in the wild type yeast (DBY745), is digested by 

BamHl to give bands B and C in the deletion strains YLP 1 and YLP2. Digested 

DNA was electrophoresed on 0.7% agarose, and the Southern filter was probed with 
the entire PGK sequence. D: DNA from DBY745. B(i): A map of the BamHl 

fragment from chromosome III on which PGK is situated, showing (ii), the extra 
BamHl site present after deleting a specific transcription factor binding site. 
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Figure 4.7 A Southern blot of BamHl digested chromosomal DNA from DBY745, 

YLP4 and YLP3, showing the presence of the extra BamHl site in the yeast strains 

constructed with a specific transcription factor binding site deletion from the PGK 

promoter. Band A in the wild type yeast (DBY745), is digested by BamHl to give B 

and C in the deletion strains YLP3 and YLP4. Digested DNA was electrophoresed 

on 0.7% agarose, and the Southern filter was probed with the entire PGK sequence. 
D: DNA from DBY745. 



Table 4.1 Yeast strains constructed from the parental yeast DBY745 by homologous 

recombination. Specific deletions of transcription factor binding sites from the 

chromosomal PGK promoter are indicated, the co-ordinates of the deletions are 

relative to the PGK ATG. 

Strain PGK genotype Deletion 

DB Y745 wild type None 

YLP 1 ORap 1p -473 to -464 

YLP2 AAbflp -538 to -473 

YLP3 OReblp -561 to -552 

YLP4 AyATF -427 to -414 
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Rb 

Figure 4.8 A Northern blot comparing the amount of PGK RNA from DBY745 

with that from yeast strains YLP1, YLP2 and YLP3 which contain specific 
transcription factor deletions from the chromosomal PGK promoter. 
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Figure 4.9 A Northern blot comparing the level of PGK RNA from DBY745 with 
that from yeast strain YLP4 which contains a deletion of the potential yATF binding 

site from the chromosomal PGK promoter. 



Table 4.3 Phosphorimager analysis of Northern blots of chromosomal PGK deleted 

of its potential yATF site. The results shown are from one experiment using three 
independently isolated deletion strains. The spread of results from this and other 
experiments with the same strains suggests that the activity of PGK in YLP4 does 

not significantly differ from wild type PGK activity. 

Strain PGK counts Rb counts Corrected PGK a% Activity 

DBY745 1370597 3648735 1370597 100 

YLP4 763308 2593114 1074040 

YLP4 457526 1770089 943111 

YLP4 586731 1737933 1231823 
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a PGK levels were normalised for the loading of RNA on the filters as indicated by 

the ribosomal counts. 



The phosphorimager analysis showed that when the binding site for Raplp was 
deleted from the PGK promoter there was a dramatic reduction in the amount of 
RNA produced; the level of PGK RNA in yeast strain YLP 1 was so low that the 
phosphorimager was unable to detect an increase over the background level in the 
position where the radioactive PGK band should have appeared on the filter. The 
lack of PGK message could have been due to a lack of RNA on the filter but, as the 
ribosomal probe shows, this was not the case. Indeed, when more than 20µg of 
YLPI RNA was electrophoresed, a concentration of RNA at which the gel was 
almost overloaded, it was possible to detect a small amount of PGK mRNA even in 
the absence of a Raplp binding site in the promoter (Data not shown). Deletions of 
the binding site for either Abf 1p or Reb 1p caused an approximately 50% decrease in 
the level of transcription from PGK (Table 4.2), whilst after correcting for the 
loading of the gel, deletion of the potential binding site for yATF resulted in a drop 

of 20% when compared with the wild type level (Table 4.3). 

4.2.3 The Role of Cpf 1p at the Chromosomal PGK Locus 

Cpflp is not encoded by an essential gene so it was not necessary to construct a 

yeast strain containing a deletion of the Cpflp binding site from the PGK promoter 
in order to investigate the role that this site plays in regulating transcription at this 

locus. A cpfl null strain, YAG93, has been constructed in which the Cpflp coding 

region has been deleted from the chromosomal locus (Kent et al. 1993). YAG93 was 

a gift from Nick Kent (Oxford University) enabling a direct comparison to be made 
between the levels of PGK RNA in DBY745, which has both a wild type PGK gene 

and a wild type CPF] gene, and in YAG93, which is isogenic to DBY745 except for 

the cpfl null mutation. 

DBY745 and YAG93 were grown to mid-log phase at 300C overnight in YPD. The 

cells were harvested and RNA was extracted and analysed by Northern blotting. The 

filters were probed with the PGK specific probe, the Hindlll fragment from pB 1, and 

with a ribosomal probe to act as a loading control (Figure 4.10). They were then 

quantified using a phosphorimager (Table 4.4). After correcting for the loading of 

the filter the cpfl null strain was found to have a 29% increase in the level of PGK 

mRNA. 

4.2.4 Is the PGK Promoter Bidirectional? 

When the Saccharomyces cerevisiae chromosome III sequence was published 

(Oliver et al. 1992) it was possible to look at the position of PGK and its promoter in 

relation to other genes close to it on the chromosome. As shown in Figure 4.1 1A the 
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Figure 4.10 A Northern blot comparing the level of PGK RNA from DB Y745 with 
that from YAG93 which is cpfl - but otherwise isogenic to DBY745. 
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I- YCR11 c ORF ' 

PGK 
133598 136475 UAS 

137348 138598 
- PGK 
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B 
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YCR11 cA YCR11 cB 

pBl Pi3K clone 

YCR11c YCR12w 
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Figure 4.11 A shows the region of chromosome III containing YCR12w, the ORF 

encoding phosphoglycerate kinase, and YCR1Ic an unassigned ORF upstream of 
PGK. The numbers refer to the positions of these sequences on chromosome III. B 

shows the position of primers used to construct a YCR 11 c probe by PCR, and the 
Hindlll/Clal digest of pB 1 which released a shorter probe containing 600bp of 
YCR 11 c. The relative positions of YCR 11 c and YCR 12w on the Hindlll PGK clone 

are indicated. 



PGK UAS was found to be situated midway between two open reading frames, 
YCR 12w, encoding phosphoglycerate kinase, and YCR 11 c which is an unassigned 
ORF of 2877bp, with homology to ADP1, a probable ATP-dependent permease 
precursor. Interestingly, YCR 11 c is an open reading frame which runs in the 
opposite orientation to that of PGK. This raised the possibility that the PGK UAS is 
bidirectional, like UASGAL which controls both GAL] and GALIO. To determine 
whether transcription from both PGK and YCR 11 c is controlled by the same UAS, 
two probes were made to the YCR 11 c ORF (Figure 4.11 B) and these were used to 
probe Northern filters containing total yeast RNA. 

4.2.5 YCR II c Probes 

A probe was amplified from chromosomal DBY745 DNA (Copy Number Prep, 
Materials and Methods, section 2.6.2) using primers YCR 11 cA and YCR 11 cB 
(Table 2.1 A) which are homologous to positions +407 and +2943 in the YCR 11 c 
ORF. A product of about 2.3kb was produced after a touchdown PCR programme 
and 30 cycles annealing at 55°C. This YCR1lc probe was isolated from an agarose 
gel prior to random oligolabelling. 

A second, shorter, YCRIlc probe was isolated from pBl. This was the 660bp 
between the Clal site upstream of the Reb lp site in the PGK UAS and the Hindlll 

site at the end of the PGK clone. This contains the first 612 bases of the YCR11c 

ORF. After isolating this fragment from agarose it was labelled by nick translation. 

On several occasions Northern filters containing RNA from DBY745, and also the 

yeast strains with deletions from the PGK promoter, which had previously been 

probed for both PGK and ribosomal RNA, were probed with one or other of the 

YCR I1c probes but no message from the YCR 1lc ORF was detected under 

conditions in which PGK mRNA could be detected. In case the amount of RNA 

remaining on the filters was considerably reduced after they had been stripped twice, 

fresh filters were also probed with the YCR 11 c probes but again no message could 

be detected (Data not shown). 

4.3 Discussion 

The yeast strains whose construction has been described above, YLP1-4 (see Table 

4.1), were made with the intention of using them to investigate the role of specific 

transcription factors at the PGK promoter. They facilitated the search for answers to 

questions about what effect the removal of a transcription factor binding site, and 

hence the transcription factor, would have on transcriptional regulation. Since the 
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only change to the promoter is the one introduced, and there are no considerations 
about the effect of plasmid copy number or the effect of plasmid chromatin structure 
to be made, any difference between the level of transcription from the wild type gene 
and the mutated gene can be attributed to the lack of a specific factor. 

However, these strains are also useful for looking at other aspects of transcription 
related to the PGK promoter. The transcription factors important for carbon source 
regulation of PGK can be investigated at a chromosomal level rather than using 
plasmids, by growing the deletion strains in different carbon sources. Another use 
for the deletions which have been made, is to use them to look for evidence of 
protein-protein interactions between transcription factors which bind to the promoter 
and mediator proteins thought to affect transcription at this locus. The deletions 

could be integrated into yeast which are for example gall l- or gcrl - to see whether a 
particular transcription factor is required for these proteins to exert their effects. 

Alternatively a strain in which the level of transcription from the PGK locus was so 
low as to be barely detectable (YLP1, Figure 4.8) could be used as a parental strain 
for the integration of other PGK related constructs at a non-homologous locus. For 

example, Dr Ian Graham is trying to identify the regions of Raplp which are 
important in its role as a transcriptional activator by performing an experiment in 

which the Raplp binding site in the PGK promoter has been replaced with a LexA 

binding site. This construct will be integrated at the Leu2 locus of YLP1. The 

resulting strain will then be transformed with plasmid borne LexA:: Raplp fusions 

and if the region of Rap 1p in the fusion is sufficient to activate transcription this. will 

be detected by Northern blotting. As the PGK mRNA from the disrupted 

chromosomal gene is barely detectable it will not be necessary to distinguish 

between the chromosomal PGK message and the message from the reporter PGK. It 

would be possible to perform this experiment in a strain with wild type chromosomal 

PGK and to integrate a truncated reporter, however, a truncated gene might not 

contain all of the information necessary for making a stable RNA. 

The transcription factor binding site deletions from the chromosomal copy of the 

phosphoglycerate kinase gene confirmed the central role of Raplp in the control of 

transcription at this locus, and also raised questions about roles for Abflp and 

Reb 1 p. The amount of PGK RNA from strain YLP 1 on the filter was so low that it 

was not possible to quantify it, but since ribosomal RNA was present in those tracks 

we can be sure that the lack of PGK message was not a consequence of there being 

no RNA present on the filter. Quantification of other filters suggest that the level of 

PGK mRNA in YLP1 is about 3-5% of wild type. Since a deletion of the Raplp 

binding site from the PGK promoter essentially knocks out the production of PGK 
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mRNA, it might be expected that yeast cells carrying this deletion would not be able 
to grow as well on glucose medium as wild type cells. In the experiments described 

above all the strains were grown on a complete yeast medium supplemented with 
glucose (YPD). Under these conditions no difference in the growth rate of any of the 
PGK promoter mutant strains was apparent when compared with the growth of wild 
type DBY745. However, when strains were grown on minimal medium (SC) 

supplemented with glucose, and only adenine, leucine and uracil rather than a rich 
amino acid mix, the doubling time of YLP 1 was found to be slower than that of 
DBY745 (L. Jenkins, pers comm). This suggests that a lack of PGK does affect the 

yeast cell when glucose is the sole carbon source. YPD medium contains various 
components which yeast can utilise for growth rather than relying on the metabolism 
of glucose. 

The deletions of the Abf 1p binding site from the UAS, and of the Reb lp binding site 
from the upstream region of the PGK promoter also have an effect on the level of 
RNA, suggesting roles for both of these transcription factors at the PGK locus; 

deletion of either binding site caused an approximately 50% reduction in the level of 
PGK RNA. The result for the deletion of the Abf 1p binding site is in contrast with 

the findings of earlier experiments which suggest that deletion of the Abf 1p binding 

site from the PGK UAS had no detectable effect on the levels of RNA (Chambers et 

al. 1988). However, this earlier study looked at the effects of deletion of the Abf 1p 

binding site when the PGK gene was carried on a multicopy plasmid. This situation 
is more artificial than looking at the chromosomal locus; the gene is present in high 

copy number which may mask small differences in levels of transcription, and the 

higher chromatin structure of plasmid DNA may differ from the higher chromatin 

structure of chromosomal DNA. A difference in chromatin struture may affect the 

functioning of proteins which cause an alteration in chromatin structure in order to 

exert their effects. The different conclusions, about the effect of deleting the Abf 1p 

binding site from the PGK promoter drawn by the previous study and this work, may 

be a result of the difference in chromatin structures found between a plasmid and 

chromosome environment. Alternatively they may simply be a result of the advances 

that have been made in increasing the sensitivity of methods used for the 

quantification of DNA and RNA levels. In the earlier study quantification methods 

were not as sensitive as those available today, this may mean that a small change in 

the level of RNA was not detected. 

In contrast to the deletions of Rap 1 p, Reb 1p and Abf 1p binding sites from the PGK 

promoter, examination of transcription in a yeast strain lacking Cpflp (YAG93) 

showed an increase in the activity of PGK. This difference may be a result of the 

approaches used to examine the transcription factors; deleting the transcription factor 
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binding sites from the promoter preventing the protein from binding is not equivalent 
to looking at transcription from the gene when the binding site is present but the 
transcription factor is not. The absence of Cpf 1p from the yeast cell may affect other 
genes which in turn affect PGK. However, each time transcription of PGK in 
YAG93 was measured there was an increase in activity which could indicate a role 
for Cpf 1p in which it acts as a repressor of transcription. 

These results suggest that the Rap 1p binding site in the phosphoglycerate promoter 
is essential for the activation of transcription at this locus, and that the binding sites 
for Reb 1p and Abf 1p play an important role in allowing the promoter to activate at 
the highest level. The small reduction in the amount of transcription seen when the 

potential binding site for yATF is deleted may indicate that this site does have some 
role in the regulation of transcription of PGK, although the range of transcriptional 

activities seen in experiments with YLP4 suggest that this is not a significant result. 
Also the introduction of the BamHl linker in place of the potential yATF site has 

disrupted the 3' flanking sequence of the most downstream of the two Gcrlp binding 

sites in the UAS. Three of the bases in this region of the Gcrlp binding site no 
longer match the consensus binding site (Huie et al. 1992) This could result in a 
decrease in the level of transcription, due to the disruption of the Gcrlp interaction. 

No YCR1 lc message was detected by probing Northern filters containing total yeast 
RNA using conditions that allow the detection of PGK RNA. This suggests that 

either YCR 11 c is not expressed under the growth conditions used in these 

experiments ie on YPD containing 2% glucose, or that it is expressed at a level too 

low to be detected by our blotting proceedure. If YCR 11 c was under control of the 

PGK UAS it might be expected to be expressed at a similarly high level. 

However there is an example of two genes under control of the same UAS being 

expressed at different levels. Expression of GCYI and RIO] is controlled by a 

bidirectional promoter containing a Reb lp site and UASGAL, but whilst GCYI 

expression is regulated by Gal4p, expression of RIO] is constitutive and independent 

of Gal4p. This difference in expression is due to the basal promoter elements rather 

than the UAS components; the GCY] basal promoter contains a consensus TATAA 

sequence but RIO] contains a non consensus TATAGA sequence. YCR 11 c however 

appears to contain a consensus TATA sequence 137bp upstream of the ATG. 
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Chapter 5 

The Effect of Transcription Factor Binding Site Deletions on Regulation of a 
Plasmid-Borne Copy of PGK, and the Use of a Minimal Promoter to Determine 

Roles for Transcription Factors. 

5.1 Introduction 

As shown in Chapter 4, a deletion of the Abf 1p binding site from the chromosomal 
PGK UAS causes a decrease in the level of PGK transcription of approximately 
50%. This result is in direct contrast with earlier experiments in which the Abf lp 

binding site deletion was not seen to have any effect on PGK transcription 
(Chambers et al. 1988). However, this previous experiment was investigating the 

effects of the deletion on transcription from a multicopy plasmid-borne PGK gene 

construct. It is possible that the use of the multicopy plasmids masked the effects of 

the binding site deletion because the high number of plasmids in the cell may have 

resulted in the production of such high levels of PGK RNA that a small reduction in 

the amount of transcription from each plasmid was not detectable. Alternatively, the 

difference in requirement of Abflp for maximal PGK transcription could depend on 

the structural environment of the gene; Abf lp might only be able to exert its effects 

when PGK is in a chromosomal rather than episomal state. A further explanation for 

these differing results could be a direct consequence of the change in methods used 

for the quantification of blots. Before densitometric and phosphorimager analyses 

were available, differences in the intensity of bands on autoradiographs were 

determined visually, thus small differences between constructs may have been 

overlooked. 

In the light of these possibilities it was important to repeat the experiment in which 

the effect of deleting the Abf lp binding site from a multicopy plasmid-borne copy of 

PGK was investigated. Since both Abf 1p and Reb 1p are thought to have functions 

which involve chromatin remodelling, and both are weak transcriptional activators, 

they may perform similar functions in the PGK promoter. At the ILVI promoter 

Abf 1p and Reblp binding sites have been shown to be functionally interchangable 

(Remade and Holmberg 1992). The similarities between these two multifunctional 

transcription factors prompted an investigation into the effects of a multicopy Reblp 

binding site deletion at the same time as repeating the Abflp experiment. As a 

deletion of the Rap 1p binding site had a dramatic effect on the levels of PGK RNA 

whether it is from a plasmid-borne copy of the gene (Chambers et al. 1988) or from 

the chromosomal locus (this work), this part of the experiment was not repeated. 

e? 
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A second way of looking at the roles of transcription factors to see whether they are 
capable of activating transcription is to introduce binding sites into a minimal 
promoter reporter plasmid. A minimal promoter consists of TATA box and RNA 
initiation site sequences that are sufficient to promote a basal level of correctly 
initiated transcription. This minimal promoter is usually used to drive expression of 
a reporter gene. The reporter may be the coding region for an enzyme whose levels 

within the cell are easy to assay eg lacZ, or it could be a heterologous coding region 
whose expression can be determined by RNA analysis. Such a plasmid can be used 
to determine the activation potential of DNA fragments containing transcription 
factor binding sites. This is an artificial system where DNA sequences are cloned 
immediately upstream of the basal promoter which alters the spacing found in wild 
type promoters, but it allows a rapid assessment of the strength of transcription 
factor binding sites. If the reporter gene is lacZ, transformants can be grown on 
indicator plates containing X-gal, which is a substrate for (3-galactosidase. In the 

presence of (3-galactosidase, X-gal is metabolised giving a blue colour. The 

white/pale blue colonies of transformants containing just the minimal promoter 

plasmid become dark blue if a binding site for a transcriptional activator is cloned 

upstream of the basal elements. This crude assessment can then be quantified by 

preparing protein extracts from the transformants, and assaying these for 13- 

galactosidase activity. 

A minimal promoter plasmid was used in this work to see whether the two newly 

identified transcription factor binding sites for Reb 1p and Cpf lp in the PGK 

promoter were able to increase the level to which the PGK UAS was able to activate 

transcription. It was also used to investigate a role for the potential transcription 

factor binding site which had previously been identified for yeast Activating 

Transcription Factor (yATF, Lin and Green 1989) at the 3' end of the UAS. Finally, 

a minimal promoter construct was transformed into two strains of yeast, W303-1A 

and R884-1C, which are GALI1 and gall] respectively, to look for evidence of a 

protein/protein interaction between Gall lp and Rap 1 p. Thus one simple system can 

be used in a variety of ways to provide preliminary evidence which can then be 

verified in further experiments. 

5.2 Results 

5.2.1 Multicopy Plasmid-Borne Deletions of the Reb 1p and Abf 1p Sites from the 

PGK UAS 
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The Reb 1p site was deleted from a multicopy plasmid borne copy of PGK by 
cloning the PCR products amplified using primer pairs 521B/PGKD and 
533B/PGKC2 (see Table 2.1A for primer sequences and co-ordinates) into the 
BamH] site of pAJ6, a leucine selectable yeast shuttle vector, giving pAJ 112 (Figure 
5.1). This was sequenced across its UAS to ensure that mutations had not been 
introduced by the process of PCR. These PCR products (Figure 4.3) are the same as 
those which were cloned into pAJ735 to make the AReb 1p integrating vector. A 
deletion of the Abf 1p site from the PGK UAS already existed on the multicopy 
plasmid pKV502 (Chambers et al. 1988). In addition, a control plasmid for these 
experiments was pMA27, which is a multicopy plasmid bearing a wild type copy of 
the PGK gene (Mellor et al. 1983). 

The leucine-selectable plasmids pKV502, pMA27 and pAJ 112 were transformed 
into DBY745 using the One Step method (Chen et al. 1992). Two transformants of 
each plasmid were selected at random and grown to mid-log phase in SC-leu. RNA 

was extracted and examined by Northern blotting. The filters were probed with a 
PGK specific probe which consisted of the entire PGK sequence isolated as a 
Hindlll fragment from pB 1 (Hitzeman et al. 1980), then a ribosomal probe (Petes et 
al. 1978) to act as a loading control, and finally with a leu2 probe. The yeast marker 
on these plasmids, leu2d, is a truncated version of the leucine gene, so the leu2 probe 
recognised the leu2d RNA message from the plasmids, allowing an estimation of 
copy number to be made. 

The results of the different probings can be seen in Figure 5.2. After the filters were 

scanned using a phosphorimager, the relative PGK and ribosomal counts for each 

plasmid were determined. Since the plasmid copy numbers were similar, 

compensating for them had very little effect on the PGK counts corrected for 

ribosomal loading (Table 5.1). After these corrections had been made, the plasmid 

carrying a deletion of the Reb 1p binding site was found to be as active as the wild 
type construct, and the deletion of the Abf 1p binding site resulted in only a slight 
increase in transcriptional activity. 

5.2.2 The Effect of Deleting the Potential yATF site from the PGK Promoter 

A possible role for the potential yATF site in the PGK UAS was examined by 

making a deletion of this sequence from the PGK promoter. As with the deletion of 

the Reblp site, this was achieved using PCR (Figure 4.3). PCR primers 521A and 
521B (Table 2.1A) were used to amplify the region immediately upstream of the 

potential yATF site using pKV521 (Chambers et al. 1988) as a template. After a 

touchdown PCR a product of 1.4kb had been amplified. The region of PGK 

ý 

ý 
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leu2-d /2 micron 

Figure 5.1 Multicopy plasmid pAJ 112 which contains the entire PGK sequence but 

with the Reblp binding site (-562 to -552) deleted and replaced with a BamHl 
linker. This is a shuttle vector with an origin of replication and ampicillin resistance 

gene for growth in E. coli, and leu2-d/2 micron sequences for maintenance in yeast. 
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Figure 5.2 Northern blot of RNA from DBY745 transformed with pMA27, pKV502 
and pAJ 112 probed with PGK, a ribosomal probe to act as a loading control, and 
leu2 for an estimation of plasmid copy number. 
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downstream of the yATF sequence was amplified on a 1.9kb fragment using PCR 
primers 533A and 533B, with pKV533 (Chambers et al. 1988) as a template. The 

upstream product was cut with BamHl and Bcll. The two products were then cloned 
into the BamHl site of pAJ6. This formed pAJ 110, a multicopy plasmid containing 
the entire PGK sequence but with a BamHl linker replacing the potential yATF 
binding site. The plasmid was sequenced in the region of its UAS to ensure that no 
mutations had been introduced by the process of PCR. 

DBY745 was transformed with the multicopy plasmid pAJ 110, and with the control 
plasmid pMA27, containing the wild type PGK sequence, using the One Step 

method of transformation. 100ml SC-leu cultures innoculated with three 
transformants each of pAJ 110 and pMA27 were grown overnight. RNA was 
prepared from one 50m1 aliquot of harvested cells whilst the other was frozen at 

-800C for later plasmid copy number analysis. The RNA was electrophoresed, 
blotted and the filter probed firstly with the PGK specific probe from pB 1 (Hitzeman 

et al. 1980), and then with a ribosomal probe (Petes et al. 1978) to act as a loading 

control (Figure 5.3). The filters were then scanned with a phosphorimager to 
determine the relative number of counts in each lane (Table 5.2). The plasmid copy 
numbers of the constructs were also determined. In this instance, the plasmid 
specific probe selected was a clone of PGK. This will also recognise the 

chromosomal copy of PGK, but as there is only one copy of this compared to 50-100 

copies of plasmid-borne PGK, the chromosomal DNA was not visible on the probed 
filter. Also, since the growth conditions for all the cells were the same, the amount of 

message from the chromosomal PGK gene should be constant. The ratio of plasmid 
to chromosomal counts was then calculated (Table 5.2). 

After the PGK counts had been corrected for ribosomal loading and for plasmid 

copy number, an average PGK activity was calculated for each plasmid. The 

construct containing the potential yATF site deletion was found to be about 25% 

more active than the wild type PGK control (Table 5.2). Thus, if the potential yATF 
binding site within the UAS did play a role in the regulation of PGK, it could be 

mediating a negative effect on transcription. However, the variation in the data in 

Table 5.2 is too large to draw conclusions about the role of yATF at the PGK locus. 

The overlap in PGK counts between pMA27 and pAJ110 means that it is not 

possible to say that 124% activity is any different from 100% activity. 

5.2.3 A Plasmid-Borne Copy of PGK in a cp 1 background 

To investigate the effect of a lack of Cpflp on PGK transcription, the equivalent of 
deleting the Cpflp binding site from the promoter present on a high copy number 
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Figure 5.3 Northern blot of RNA from DBY745 transformed with pMA27 and 
pAJ 110. The blot was probed with PGK, and a ribosomal probe. 



Table 5.2 Phosphorimager analysis of Northern blots of RNA isolated from 
DBY745 transformed with the multicopy plasmids pMA27, carrying a wild type 

copy of PGK, and pAJ 110, which carries a copy of PGK deleted of its potential 
yATF binding site. 

Plasmid PGK counts Rb counts Copy Number Corrected PGK % Activity 

18180.77 

pMA27 69323.31 

41800.28 

182427.28 

pAJ110 107142.12 

122562.21 

43530.06 

91009.74 

108252.57 

130576.90 

103906.04 

100036.80 

1.9 

1.7 

1.2 

2.2 

3.4 

4.3 

0.22 

0.45 100 

0.32 

0.635 

0.303 

0.285 

124 



plasmid was to measure the activation from a wild type copy of PGK in yeast cells 
which do not contain Cpf1 protein. A One Step transformation of DBY745 and 
YAG93 (a yeast strain isogenic to DBY745 but with a cpfl null mutation, see 
Materials and Methods, section 2.1) with the multicopy plasmid pMA27 was carried 
out. Two transformants of each strain were then grown to mid-log phase in SC-leu 
medium and RNA was extracted for analysis by Northern blotting. The filters were 
probed with a PGK specific probe, a ribosomal probe and a leu2 probe (Figure 5.4). 
This allowed the levels of PGK message to be corrected for both RNA loading and 
for the copy number of the plasmids (Table 5.3). 

After correcting the PGK counts for the amount of RNA loaded on the gel, as 
indicated by the ribosomal probe, and for plasmid copy number, as indicated by the 
leu2 probe, the activity of the PGK promoter in the absence of Cpf lp is about 20% 
lower than in DBY745. This suggests that if the Cpflp binding site plays a role in 

transcription from a plasmid-borne copy of PGK it is only a small one. 

5.2.4 Transcriptional Activity of the Redefined UAS 

The newly identified Reb 1p and Cpf 1p transcription factor binding sites in the PGK 

promoter are upstream of the previously defined UAS. In order to see whether these 

two binding sites have an effect on the activating potential of the UAS, this region of 
the promoter was examined in a minimal promoter plasmid. 

The minimal promoter plasmid pAJ28 (L. Jenkins; Figure 5.5) contains the TATA 

and RNA initiation sequences (T'R) from the PGK promoter, which are sufficient to 
direct a low level of accurately initiated transcription (Stanway et al. 1989), 

upstream of the lacZ coding region. This minimal promoter is not able to produce 
high levels of (3 -galactosidase. However, the presence of a binding site for a 

transcriptional activator upstream of the minimal promoter causes an elevated level 

of transcription from lacZ, and cells containing such constructs will appear blue 

when grown on X-gal indicator plates. Thus, DNA sequences can be cloned into a 
BamHl site upstream of T'R to test whether or not they are able to activate 

transcription. 

A fragment of the PGK promoter from -402, the 3' boundary of the UAS, to the Clal 

site at -820, was isolated as a BamHl /Clal fragment from pKV505 (Chambers et al. 
1988). This fragment, containing the previously defined UAS and the 5' region of the 

promoter with the newly identified binding sites for Reb 1p and Cpf 1 p, was cloned 
into pAJ28. This generated pAJ 133, where the orientation of the transcription factor 

binding sites in relation to the basal promoter was the same as in the wild type -,; p 
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Figure 5.4 Northern blot of RNA from DBY745 and YAG93 transformed with 

pMA27, probed with PGK, a ribosomal probe to act as a loading control, and leu2 

for an estimation of plasmid copy number. 
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Figure 5.5 Minimal promoter plasmid pAJ28, a multicopy shuttle vector in which 
the TATA and RNA initiation sequences (T'R) from the PGK promoter are able to 
direct a low level of accurately initiated transcription from the lacZ coding region. A 

unique BamHl site upstream of T'R is used for the cloning of DNA fragments 

containing suspected binding sites for transcriptional regulators. 



promoter. pAJ 133 was transformed into DBY745 by the One Step method, and 
transformants were streaked onto X-gal indicator plates and compared with 
transformants of pAJ28, and pAJ211, which contains the originally defined UAS 

cloned in the correct orientation upstream of T'R (L. Jenkins). Quantitative liquid ß- 

galactosidase assays were also carried out, using total protein extracts made from 

each of the transformants. 

Each transformant was grown to mid-log phase in SC-leu medium. The cells were 
harvested as two 50ml pellets one of which was frozen at -800C, so that an 

estimation of plasmid copy number could be made, the other of which was used to 

make the total protein extract as described in materials and methods. The protein 

concentration of the total protein extracts was determined with a Biorad assay 
(Bradford 1976) and 5µg of each extract was put into the 3-galactosidase assay. 
Reactions were incubated for 10-20 minutes, and the (3-galactosidase activity was 

expressed as activity per mg protein per minute (Table 5.4). Plasmid copy number 

was determined as described in materials and methods (2.6.2); the amount of 

plasmid DNA in each transformant, as indicated by a lacZ probe, was compared with 
the amount of chromosomal DNA, as indicated by a ribosomal probe. The 13- 

galactosidase activities for each transformant were then corrected for differences in 

plasmid copy number and the average activity of three transformants for each 

construct was plotted in a Bar Chart (Figure 5.6) 

As would be expected, transcription from the plasmids containing the PGK UAS 

fragments is much higher than that from the control plasmid pAJ28. However, 

although the average (3-galactosidase activity for the extended UAS (EUAS), which 
includes the newly identified Reblp and Cpflp binding sites, is higher than the 

average activity for the original UAS, the range of 13-galactosidase activities 

obtained for these two sets of transformants overlaps. This suggests that there may 
be no real difference in the activation potentials of these two constructs. 

5.2.5 The PGK yATF Sequence in a Minimal Promoter Plasmid 

The second way in which a possible role for the potential yATF site in the PGK 

UAS was investigated, was to synthesize two oligonucleotides (yATF 1 and yATF2, 
Table 2.1C). When these were annealed they contained the potential yATF sequence 
from the PGK promoter (TTTCGTCACAC), flanked by BamHl compatible ends to 
facilitate cloning. After cloning of these oligonucleotides into a BamHl site, a Pst] 

site was also generated which aided screening of miniprep cultures. The 

oligonucleotides were cloned into the minimal promoter plasmid, pAJ28, to see 

whether or not they were able to activate transcription. 
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Table 5.4 A comparison of the (3-galactosidase levels of minimal promoter reporter 
contructs. Three separate transformants of each plasmid were assayed in parallel. 
The ß-galactosidase activities were corrected for plasmid copy number before an 
average activity was calculated. 

Plasmid Construct ß-gal activity Copy Number Average Activity 

/mg protein/minute (Corrected) 

0.6 1.5 

pAJ28 T'R 0.6 0.9 0.95 

0.88 0.5 

27.6 2.6 

pAJ211 UAS 34.4 1.6 13.37 

20.8 2.6 

26 2.3 

pAJ133 EUASa 33.2 2.2 15.55 

32.4 1.6 

a the EUAS fragment contains the previously defined UAS and 280bp upstream. See 

text for details. 
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Figure 5.6 A comparison of the ß-galactosidase activities of pAJ28, pAJ211 and 

pAJ133. Three transformants of each construct were assayed in parallel, the average 

activities of these after correction for plasmid copy number are shown above. pAJ28 

was assigned a relative activity of 1. 



yATF 1 and yATF2 were phosphorylated and annealed (see Materials and Methods, 

section 2.9) before they were cloned into pAJ28 to give pAJ 128 which contained the 
PGK potential yATF sequence upstream of T'R. A tandem insertion of yATF 
upstream of T'R, pAJ129, was achieved by cloning the yATF oligonucleotides into 
the reformed BamHl site of pAJ128. It had been found previously that the PGK 
UAS containing the CTTCC blocks and potential yATF site alone was not able to 
activate a minimal promoter, but that the CTTCC blocks and potential yATF 
sequence in conjunction with the Rapip site were able to activate (Stanway et al. 
1989). Thus pAJ128 was also used as a vector to clone the TEF2 Rap 1p site 
upstream of the yATF sequence to see whether this sequence had any effect on 
transcription activated by Rap 1 p. The plasmid containing the Rap 1p binding site 
upstream of yATF was pAJ 130. All pAJ28 derived constructs were sequenced to 

check the number and orientation of the insertions. Sequencing was carried out using 
a primer which bound to the T'R sequence in pAJ28, just downstream of the BamHl 

site where the insertions had been made. 

Plasmids pAJ28, pAJ128, pAJ129, pAJ 130 and pAJ207 were transformed into 
DBY745 using the One Step transformation procedure. pAJ207 contains one Raplp 

site upstream of T'R and was constructed by L. Jenkins. Transformants were 
streaked onto X-gal indicator plates to look for gross differences in the amounts of 
(3-galactosidase produced. A more quantitative determination of the levels of 13- 

galactosidase was then obtained by making total protein extracts and carrying out 
liquid ß-galactosidase assays. As before, half of each culture was used for plasmid 

copy number analysis. Without the benefit of phosphorimager analysis, the lacZ and 

ribosomal probings were compared by eye to look for any gross differences in copy 
number. As there did not appear to be any (Figure 5.7, lanes 1-10), the (3 - 
galactosidase activities for each construct (Table 5.5) were not altered. 

As can be seen from Figure 5.8, the minimal promoter plasmid, pAJ28, is only able 
to activate transcription of the lacZ reporter weakly. When this basal level of 
transcription is compared with that from the plasmids containing either one or two 

copies of the PGK potential yATF binding site, pAJ128 and pAJ129, no increase 

over the basal level can be seen, suggesting that the yATF sequence is not able to 

activate transcription of the minimal promoter either on its own, or in tandem. 

However, when one Rap 1p site is upstream of the minimal promoter, pAJ207, the 
levels of P-galactosidase are about lOX those of pAJ28. A similar increase is seen if 

the Rap 1p site is in conjunction with the yATF sequence, pAJ 130. 

5.2.6 The CRE Consensus is No More Active than the yATF Sequence 
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Figure 5.7 Copy Number data for DBY745 transformed with pAJ28 (lanes 1 and 6), 

pAJ128 (lanes 2 and 7), pAJ129 (lanes 3 and 8), pAJ207 (lanes 4 and 9) and pAJ 130 

(lanes 5 and 10). Also for W303-1A and R884-1C transformed with pAJ210 (lanes 

11 and 12). Blots were probed with lacZ to detect plasmid DNA, and with a 

ribosomal probe to detect chromosomal DNA. Data in lanes 1-10 refer to the 

plasmids in Table 5.5, and in lanes 11 and 12 to plasmids in Table 5.7. 



Table 5.5 A comparison of the levels of transcriptional activity of sequences from 

the PGK promoter cloned into the minimal promoter plasmid pAJ28. The results 
shown are from two different transformants assayed on separate occasions. For 

plasmid copy number analysis see Figure 5.7, lanes 1-10. 

Plasmid Construct ß-gal activity 

/mg protein/minute 

pAJ28 T'R 0.32 

pAJ128 1X ATF 0.4 

pAJ129 2X ATF 0.84 

pAJ207 RAP 1 4.8 

pAJ 130 RAP 1 ATF 5.8 

pAJ28 T'R 0.6 

pAJ 128 1X ATF 0.52 

pAJ129 2X ATF 0.6 

pAJ207 RAP I 3.72 

pAJ 130 RAP 1 ATF 4.8 
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Figure 5.8 A comparison of the (3-galactosidase activity of pAJ28 based reporter 

constructs. The bar chart shows the average for two transformants assayed 

separately, but with ß-galactosidase activities normalised in relation to pAJ28 which 

was assigned a relative activity of 1. 



The potential yATF binding site from the PGK promoter appears to be unable to 
activate the minimal promoter T'R, but as the effect of a true binding site for this 
transcription factor on the same minimal promoter was not known, this result did not 
necessarily mean that yATF does not bind to this sequence. In order to clarify this 
point, a second set of oligonucleotides was synthesised. This set, CRE 1 and CRE2 
(Table 2.1 C) formed the consensus yATF binding site (TGACGTCA; Lin and Green 
1988), the CRE (cAMP responsive element), when annealed. 

As with the yATF oligonucleotides, CRE 1 and CRE2 were phosphorylated and 
cloned into the BamHl site of pAJ28. Sequencing with T'R primer identified clones 
containing either one or two copies of the CRE consensus (pAJ 131 and pAJ 132, 

respectively). The TEF2 Raplp binding site was cloned upstream of the CRE 

consensus, and two clones were obtained in which the orientation of the Rap 1p site 
differed; a minus orientation (pAJ 134), and a plus orientation (pAJ 135), which is the 

orientation found in the PGK UAS. These new plasmid constructs were transformed 
into DBY745 using the One Step method and once again transformants were first 

examined on X-gal indicator plates and secondly in liquid assay (Table 5.6, Figure 
5.9). 

As before, the plasmid copy number for each of the transformants was determined, 

this time with the benefit of the phosphorimager. The ratio of ribosomal probe to 

lacZ probe was similar (0.2-1.5) for all the transformants, except for two pAJ28 

transformants and one pAJ132 transformant, whose copy numbers were considerably 
higher than the others. This may have been due to the quality of the initial DNA prep 

or to the amount of DNA loaded onto the gel. The transcriptional activity of these 

transformants is in agreement with that from the same constructs in other 

experiments, in all cases these transformants give a basal level of transcriptional 

activity. If the high copy numbers are a true reflection of the number of plasmids 

within the yeast cell, and were affecting the amount of (3-galactosidase, then it might 

be expected that these transformants would be anomalously active. Since the basal 

level of transcription of these transformants has not been affected by their high 

plasmid copy numbers it is likely that the anomaly lies in the copy number 

estimation. Thus, the average activities represented in Figure 5.9 have not been 

corrected for copy number. 

The results of these (3-galactosidase assays show that the levels of activation seen 

with the CRE consensus oligonucleotide constructs are similar to the levels from the 

yATF constructs. Neither one nor two copies of either the yATF or CRE 

oligonucleotides is able to activate transcription to more than the basal level of 
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Table 5.6 A comparison of the levels of (3-galactosidase activity of sequences from 
the PGK promoter, and the CRE consensus, when cloned into the minimal promoter 
plasmid pAJ28. The results shown are from two different transformants assayed on 
separate occasions. 

Plasmid Construct ß-gal activity Copy Number 

/mg protein /min 

pAJ28 T'R 

pAJ207 1X RAP I 

pAJ134 RAP 1(-) CRE 

pAJ128 1X ATF 

pAJ129 2X ATF 

pAJ 130 RAP 1 ATF 

pAJ131 1X CRE 

pAJ132 2X CRE 

pAJ 13 5 RAP 1(+) CRE 

0.24 

1.81 

3.4 

0.24 

0.29 

2.13 

0.27 

0.4 

4.2 

12.83 

1.12 

1.19 

0.72 

1.12 

0.63 

0.95 

12.56 

1.54 

pAJ28 T'R 0.8 6.96 

pAJ207 1X RAP I 2.88 0.59 

pAJ134 RAP 1(-) CRE 5.8 0.77 

pAJ 128 1X ATF 0.96 0.47 

pAJ 129 2X ATF 0.72 0.37 

pAJ 130 RAP 1 ATF 2.8 0.2 

pAJ131 1X CRE 0.96 0.26 

pAJ132 2X CRE 0.94 0.52 

pAJ 135 RAP 1(+) CRE 4.4 0.66 
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Figure 5.9 A comparison of the (3-galactosidase activity of pAJ28 based reporter 

constructs. The bar chart shows the average for two transformants assayed 
separately, but with their ß-galactosidase activities normalised to pAJ28 which was 

assigned a relative activity of 1. 



pAJ28 (compare pAJ28 with pAJ 128, pAJ 129, pAJ 131 and pAJ 132 in Figure 5.9). 
When the Rap lp binding site is upstream of the yATF sequence (pAJ 130), there is a 
small increase over the level of activation of the Raplp site alone (pAJ207). 
However, when the Rap 1p binding site is upstream of the CRE consensus (pAJ 134 

and pAJ 135), the level of ß-galactosidase produced is twice that of pAJ207, this 
increase is not affected by the orientation of the Raplp binding site. 

5.2.7 An Interaction between Rap 1p and Gal 11 p 

Gal II p has been proposed as a mediator of PGK transcription. To determine 

whether an interaction between Raplp and Galllp, two yeast strains W303-1A 
(GAL] l) and R884-1 C (gall 1), a gift from Clive Stanway (Oxford University), were 
transformed with a multicopy plasmid, pAJ210, containing three Raplp binding sites 

upstream of the minimal promoter, T'R (L. Jenkins). Transformants were grown in 

SC medium and total protein extracts were made. After the protein concentration had 
been determined, (3-galactosidase assays were carried out to see whether there was 

any difference in the ability of the three Rap 1p binding sites to activate the minimal 

promoter in the presence and absence of Gall lp. 

The results of this analysis are in Table 5.7 and Figure 5.10 showing that in the 

absence of Gal 11 p the plasmid containing three Rap 1p binding sites is only about 
60% as active as pAJ210 in the presence of Gal 11 p. As with the other experiments 

using multicopy plasmids, the copy numbers of the transformants used here were 

checked by isolating copy number DNA, and looking at the ratio of lacZ probe to 

ribosomal probe (see Figure 5.7, lanes 11 and 12). The drop in activity of pAJ210 in 

the gall] strain could potentially have been due to an effect of growth rate. If one 

yeast strain does not grow as fast as a second one they will have different doubling 

times, this could affect the replication of plasmids contained within the strains such 

that the strain growing more slowly will contain fewer plasmids. As R884-1C 

appeared to grow more slowly than W303-1A, the growth rates of the two strains 

were determined to see whether a difference in growth rate could explain the 

difference in activity of the plasmids. However, when the growth curves were 

plotted both cultures were seen to grow at the same rate (Figure 5.11). 

5.3 Discussion 

The results of the binding site deletions from the PGK promoter on a multicopy 

plasmid, and also the level of transcription from pMA27 in a cpfl - background differ 

from the results obtained when looking at similar constructs in a single copy 

chromosomal location. Whilst the chromosomal deletion of Reblp and Abflp 
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Table 5.7 A comparison of the levels of ß-galactosidase activity between GALI1 

and gall l strains of yeast transformed with pAJ210 which contains three Rap 1p sites 
upstream of the minimal promoter T'R. For plasmid copy number analysis see Figure 
5.7, lanes 11 and 12. 

Yeast Strain Genotype Plasmid ß-gal activity 

/mg protein/minute 

W303-1A GALll+ pAJ210 

R884-IC gall l- pAJ210 

23.2 

14 
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Figure 5.10 The ß-galactosidase activity (shown as a percentage) of pAJ210 
transformed into GAL 11 (W303-1 A) and gall l (R884-1 C) strains of yeast. 
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binding sites caused an approximately 50% decrease in the level of mRNA produced 
from PGK, no such decrease was seen from the multicopy plasmids. The deletion of 
the Abf lp binding site, pKV502, showed a 14% increase in levels of transcription 

over those from the control plasmid pMA27. This figure is within the range of 
experimental variation and shows that the previous conclusions about the effects of a 
multicopy plasmid-borne Abflp binding site deletion were correct. Equally, the 
deletion of the Reb 1p binding site had no effect on the activity of the plasmid-borne 
PGK promoter. Thus, with respect to Abf 1p and Reb 1p binding sites, the difference 
between the chromosomal and episomal states of PGK is most likely to be one of 
chromatin structure. 

Unlike the absence of Abflp and Reblp, a lack of Cpflp caused the levels of 
chromosomal PGK to increase by about 30%. However, when the effect of the same 
lack of Cpf 1 protein was measured using a multicopy plasmid-borne copy of PGK 
(pMA27), the level of transcription was reduced by about 20% in YAG93, which is 

the cpfl - strain of yeast. Cpf 1p has not been shown to be a transcriptional activator, 
and it seems likely that these differences in the influence of Cpf 1p on plasmid and 
chromosomal copies of PGK are again due to the effects of this protein on chromatin 

structure. 

When the ability of the previously defined UAS to activate transcription from the 

minimal promoter plasmid pAJ28 was compared with the ability of an extended 
UAS fragment to activate the same minimal promoter, it was found that although the 

average activation by the promoter fragment including the two newly identified 

transcription factor binding sites was slightly higher than that from just the UAS 

alone, the range of (3-galactosidase activities for the two constructs overlapped. This 

suggests that the role played by Reb 1p and Cpf 1p during transcriptional activation at 

the PGK promoter is not to provide further strong activation domains. This is not 

surprising since Reb 1p has only a weak activation domain, and Cpf 1p has not been 

demonstrated to activate transcription. Rather they may be necessary to influence 

changes to chromatin structure. As has already been shown, Reb 1p does not play an 
important part in the activation of transcription from a PGK promoter present on a 

multicopy plasmid and a lack of Cpf 1p has only a small effect, so it is perhaps not 

unexpected that no effect is seen when looking at these new binding sites in a 

multicopy, minimal promoter plasmid system. 

The investigation into a role for the potential yATF binding site at the 3' end of the 

PGK UAS involved determining whether this sequence was able to activate 

transcription from a minimal promoter plasmid, and also whether a deletion affected 

transcription from a multicopy plasmid-borne copy of PGK. The constructs made by 
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cloning oligonucleotides matching the PGK yATF sequence upstream of the 

minimal promoter TR do not show any activation of the promoter over basal level 

even when two copies are present. This is in direct contrast to earlier work which 
suggested that even a single copy of a yATF binding site could activate a minimal 
promoter, and that in multicopy, yATF was able to activate to the level of a UAS 
(Jones and Jones 1989, Lin and Green 1989). This would suggest that the sequence 
under investigation here was not a bona fide yATF binding site. 

However, a consensus binding site for yATF, the cAMP Response Element (CRE) 

was also cloned upstream of T'R in both single and tandem copies. Neither of these 

constructs were able to activate the minimal promoter plasmid which poses the 

question that the design of the minimal promoter may not be optimal for yATF 
function. With regard to this, the earlier experiments of Lin and Green (1989) have 

been repeated using a CRE in place of the yATF site (Sellers et al. 1990) and only a 

very low level of activation was obtained. This is similar to the results obtained in 

this work, where the CRE is unable to activate the minimal promoter. When either 
the yATF or CRE oligonucleotides were cloned between the Raplp binding site and 

the basal promoter, an increase in the level of activation was seen over that caused 
by a Rap 1p binding site alone. If the CRE was cloned adjacent to the Rap 1p binding 

site, this increase was twice that of the Rap 1p binding site alone. This may indicate 

some kind of cooperation between Raplp and the CRE, and might suggest that the 

potential yATF binding site in the PGK promoter does not act within the cell. The 

small increase seen when the yATF sequence is in conjunction with the Raplp 

binding site may be a result of an increase in distance between the Rap lp binding 

site and the basal promoter, facilitating activation by Raplp. 

Deleting the potential yATF site from the PGK promoter does not provide any 

evidence for an activating role for this sequence. In fact a deletion of the potential 

yATF site caused a 24% increase in the level of transcription from PGK on a 

multicopy plasmid, although, as discussed earlier, it is not possible to distinguish this 
figure from that of 100% for the wild-type gene so this result cannot be regarded as 

significant. A repressing activity of yATF has been identified in yeast (Nehlin et al. 
1992, Vincent and Struhl 1992) thus it is possible that yATF is acting to repress 
transcription at PGK. However, a yATF binding site which is responsible for 

repression of his3-303 was able to activate transcription when placed upstream of the 

gall TATA element (Sellers et al. 1990). Thus it might be expected that the potential 

yATF binding site from the PGK promoter would activate transcription when taken 

out of context and inserted upstream of a minimal promoter. A possible explanation 
for the increase in transcription from a copy of PGK deleted of the yATF sequence is 

that the construction of the deletion has affected the binding site for Gcr l p; although 
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Gcr Ip recognises a short core consensus sequence CTTCC, longer flanking regions 
are required for its interaction with DNA (Huie et al. 1992). 

Plasmid pAJ 210 containing three Rap 1p sites upstream of a minimal promoter is 

only able to activate transcription to 60% of wild type in the absence of Gall l p. This 

suggests that Gall 1p can interact with Rap 1p to activate transcription, and is 

supported by a recent paper, Stanway et al. (1994). This shows that PGK mRNA 
levels are about 50% lower in a gall] strain than in GAL] ] yeast, but if the Rap lp 
binding site is deleted from the PGK promoter the gall] mutation does not affect 
PGK transcription. While they show that a Rap 1p site is required for Gal 11 p to exert 
its effects, they cannot rule out the possibility that Gall lp interacts with Gcrlp. Use 

of the plasmid containing only Rap 1p sites (pAJ210), suggests that an interaction 
between Raplp and Gall lp is important for the positive influence of Gall 1p on 
PGK transcription. An interaction between Rap 1p and Gall lp has been 
demonstrated at the HMR silencer (Sussel et al. 1995), who show that a mutation in 
GAL] ] is able to suppress the silencing defect of a rap]S strain. This effect appeared 
to be silencer specific, and the restoration of silencing was not due to a reduction in 

the level of transcription. 

It has been suggested (Nishizawa et al. 1990), that Gall lp interacts with both Rap Ip 

and initiation sequences thus bringing the UAS into contact with the basal promoter. 
If the UAS is placed immediately adjacent to the minimal promoter, at a distance of 
25bp, then there is no reduction in transcriptional activity in the gall] strain. The 

results shown here do not agree with the hypothesis that Gall lp is dispensible when 

the UAS is in close proximity to the TATA box; the Rap lp sites in pAJ210 are 

cloned just upstream of the TATA box in the minimal promoter, but the construct 

shows a decrease in activity in the absence of Gal 11 p. 

However, Sakurai et al. (1993) suggest that Gall lp acts to activate transcription as a 
basal transcription factor. In a construct consisting of tandem Rap lp sites upstream 

of a CYC1-lacZ reporter which has been integrated into the chromosome, they find 

that Gal llp stimulates the basal promoter activity to the same extent as transcription 

from the Rap 1p sites; the difference in the spacing between the UAS and TATA box 

does not affect the integrated construct. This would mean that the reduction in ß- 

galactosidase level seen when pAJ210 is in a gall] background was due to the effect 

of Gal llp on T'R, the basal promoter. If Gal 11 p does act as part of the pre-initiation 

complex, it is not required at all promoters, in which aspect it resembles TFIIE (see 

Introduction, 1.3.5). Galllp dependency could require the basal promoter or the 

activators present upstream. The presence of Gall lp in a twenty polypeptide 

complex necessary for allowing basal transcription factors and RNA pol II to 
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respond to acidic activators (Kim et al. 1994) strengthens the argument that Gall ip 

acts at the basal promoter. However, influence from the activator proteins bound 

upstream of the basal promoter would not seem unreasonable, particularly in the 

light of Stanway's results described above. 
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Chapter 6 

Construction of a Genomic Yeast Library 

6.1 Introduction 

As discussed in the introduction (1.7.1), Rap 1p is a member of the family of 
multifunctional yeast transcription factors, and performs many important functions 

within the yeast cell. Many studies of Rap 1p have been undertaken to define the 
domains of the protein necessary to carry out these varied functions. The N-terminus 
is dispensible for cell viability (cited in Hardy et al. 1992a), so interest has focused 

on the C-terminus to find regions for telomere binding, activation and silencing. 

A yeast library was constructed, with the intention of using a genetic screen to 
identify DNA sequences which encode proteins which are able to provide the same 
C-terminal functions as Rap 1p (Figure 6.1). This could identify proteins which have 

the same functional properties as the C-terminus of Raplp, or which interact with 
Rapip within the cell to mediate some of its functions. To achieve this, strains of 

yeast with temperature sensitive (rapl ts) mutations in the RAP] gene were used 
(Kurtz and Shore 1991). These yeast are able to grow at 25°C, but when moved to 

the non-permissive temperature of 37°C the DNA binding activity of Raplp is 

abolished. Since functional Raplp is essential for cell viability the rapl is mutant 

strains cannot grow. 

The library of approximately lkb fragments of the yeast genome was cloned into a 

single copy plasmid vector containing a C-terminal truncated version of the RAP] 

gene. The resulting library plasmids were then transformed into yeast, and 

transformants which grew at 37°C were selected. Any cells which grew at 37°C 

should contain the plasmid in which the insert of yeast DNA complements the 

Raplp C-terminus function. 

There are many approaches for the construction of libraries in yeast, depending on 

the nature of the insert required. The first step is to break high molecular weight 

chromosomal DNA into smaller fragments for cloning. This can be achieved using 

restriction enzyme digests, or by mechanical shearing of the DNA using needles, or 

by sonication. Once the DNA has been broken into smaller fragments a fraction of a 

specific size can be selected if required. DNA which has been mechanically sheared 

should be treated, for example with Klenow or Mung Bean Nuclease, to ensure that 

it is blunt ended before any attempt at cloning it is made. At this stage synthetic 

ll. 
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Figure 6.1 The genetic screen used to identify sequences which complement a rapl is phenotype. 
A: The is yeast will not grow at 37°C because the is mutation prevents Raplp from binding to 

DNA and performing essential functions. B: If the library produces a fusion protein which can 

complement the is mutation then growth will occur at 37°C. 



restriction enzyme linkers can be added. The starting DNA should have a molecular 
weight which is significantly higher than that of the required insert DNA to ensure 
that the whole genome is represented in the ligation reactions with phosphatased 
vector. 

Most approaches clone partially restricted yeast DNA; this yields libraries containing 
relatively large (--6kb) overlapping fragments of DNA. These clones can then be 
characterised further, for example by blotting, to identify clones of interest. 
However, partial digestion could not be used in the construction of this library since 
the resultant fragments would be too large. 

Once the yeast fragments had been cloned the library had to be transformed into 

yeast. The probability of any given DNA sequence being present in the library is 

given by the following equation: 

N= 
loge (1-P) 
loge ('-f) 

P: desired probability 

f: fractional proportion of genome 
in a single recombinant 

N: necessary number of recombinants 

If the desired probability of finding a given 1kb fragment of Saccharomyces DNA, 

from a total 14000 kb, is 99%, then 6.45 x 104 recombinants are needed. All of these 

must then be transformed into yeast in order to have a good chance of selecting any 

which will allow the rap]ts strains to grow at the non-permissive temperature. A 

large number of yeast transformants should grow at the permissive temperature of 
25°C indicating that the transformation proceedure has worked efficiently, and that 

enough transformed yeast are present at 37°C to detect the very small percentage 

which contain a plasmid able to complement the rap] ts 
. 

The work described in this chapter was carried out in collaboration with Dr Alistair 

Chambers and Dr. Ian Graham. 

6.2 Results 

6.2.1 Construction of pAJ800 

The vector into which the library was to be cloned was pAJ800 (Figure 6.2), this was 

constructed by cloning the N-terminus and DNA binding domain of Rap 1p into 

pAJ73 1, a URA selectable, single copy shuttle vector (Graham and Chambers 

1994a). PCR primers U/S 1 and U/S2 (see Table 2.1A) were used to amplify a region 

ing in the promoter of the RAP] gene, through the N-terminus and as far as the X 
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Figure 6.2 The URA selectable, single copy, shuttle vector pAJ800, which contains 

a region from the RAP1 gene containing the promoter from -430, and the coding region 

as far as the 3' end of the DNA binding domain. There is a Smal site at the end of the 

DNA binding domain into which yeast fragments can be cloned. 



3' end of the DNA binding domain (-430 to amino acid 595). The primers were 
designed to incorporate an in frame Smal site 3' of the DNA binding domain, into 
which blunt ended library fragments could be cloned. The template for the PCR 
reactions was pPE7 10 which contains the whole of the RAP] gene, and its promoter 
as far as -436. After touchdown PCR, a product of about 2.2kb was visible, this was 
reamplified and cleaned with a phenol/chloroform extraction before being digested 
with BgIII. The digested product was cloned, by Dr. Ian Graham, into BgIII cut 
pAJ731 to give pAJ800, a single copy yeast plasmid containing the N-terminus and 
DNA binding domain of Rap 1 p. 

Prior to the construction of the yeast library some control experiments were carried 
out by Dr. I. Graham and Dr. A. Chambers to ensure that it was feasible to look for 
DNA sequences which were able to complement the C-terminus functions of Raplp 

using the approach outlined above. Firstly, the rapl is strains of yeast were 
transformed with a plasmid which carried the whole RAP] gene, to see that the wild 
type protein could complement the mutant and thus allow growth at 37°C. If this had 

not been possible then the whole approach of constructing a library would not have 

worked. 

Next rapl is yeast strains YDS409, YDS410 and YDS413 were transformed with the 

plasmid pAJ800, which contains only the Raplp N-terminus and DNA binding 

domain. Growth of transformants was tested at both the permissive, and non- 

permissive temperatures (250C and 37°C), but only found at 25°C. This confirmed 
that pAJ800 alone is unable to produce functional Rap 1 p, and thus cannot 

complement the temperature sensitive phenotype. So, if a DNA sequence cloned 
downstream of the Rap 1p DNA binding domain allowed growth of a is strain at 
37°C, that DNA sequence must encode a protein which is able to provide the 

function of the missing C-terminus, or interact with Rap 1p in vivo. 

Finally, a known yeast activation domain was cloned into the Smal site downstream 

of the DNA binding domain, to see whether this could replace the Raplp C-terminus 

which is thought to contain the activation domain. Preliminary evidence suggests 

that the Gal4p activation domain is able to complement the is phenotype of YDS410 

and YDS413, allowing growth to occur at 37°C. 

6.2.2 Construction of yeast library 

Initially, to obtain random fragments of about l kb, yeast chromosomal DNA was 

treated with a sonicator until all high molecular weight DNA had been randomly 

sheared into fragments within the 0.5-2kb range, as seen on an agarose gel. 

2 
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Fragments thus formed were cloned downstream of the DNA binding domain of 
Rap 1 p. Transformants screened from the supposed libraries prepared in this manner 
were found to contain very few inserts, which may have been due to inefficient 
formation of blunt ends, or to the instability of the DNA after sonication. 

The second approach to cloning small fragments of yeast chromosomal DNA was to 
select restriction enzymes which cut within a 4bp recognition sequence. Since the 
recognition site for such enzymes will occur on average every 44 bases, fragments of 
DNA with an average length of 256bp will be generated. However since such 
restriction enzyme sites are not distributed evenly over the DNA, a range of small 
fragments should be produced. 

20µg chromosomal yeast DNA, prepared using the copy number prep, was digested 

with RsaI, a restriction enzyme which recognises the 4bp sequence GT\LAC. When 

the DNA had been digested to completion, it was incubated with Smal cut and 
phosphatased pAJ800 in ligation reactions with molar vector: insert ratios of 1: 5, 

1: 10 and 5: 1. To ensure that the whole yeast genome was represented in the library 

ligations the number of genome equivalents present was calculated (see Table 6.1). 

An aliquot of each ligation was transformed into E. coli to ensure that the reactions 
including insert DNA showed an increase in transformation efficiency over a ligation 

control containing only phosphatased vector. Colonies from these transformations 

were screened with a Pstl digest which showed that about 70% of transformants 

from the 1: 5 and 1: 10 ligations contained a library insert. The remainder of these 
ligations was then transformed into MC 1061, and 100µl aliquots were spread on 

LBAp plates. Transformants from these plates were pooled to inoculate 500m1 

LBAp cultures for the large scale preparation of DNA using the Promega "Wizard 

Maxipreps" kit. This provided a stock of concentrated library DNA ready for 

transformation into yeast. 

6.2.3 Transforming the Library into Yeast 

The first yeast transformations with 10mg of the library, used the One-Step method 

of transformation, and the most severe of the raplts strains, YDS413. These 

transformations were not efficient enough to give a large enough number of colonies 

at 25°C such that there would be a reasonable chance of finding complementation at 

37°C. The lithium acetate method of transformation was then used. This was more 

efficient, but still no complementation was seen at 37°C. 
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Table 6.1 Calculating the genome equivalents present in each of the pAJ800 
ligation reactions with Rsal cut DBY745, in the construction of a yeast genomic 
library. 

Molar Ratio Vector: Insert pmol Insert Genome equivalents 

1: 5 3.33 

1: 10 6.66 

5: 1 0.267 

Calculating the Number of Genome Equivalents 

lpmol ds DNA = 0.75µg/kb 

. ". 2.5µg of 1kb insert = 2.5/0.75 pmol = 3.33 pmol 

3.33 x 10-12 moles x 6.02 x 1023 =2x 1012 molecules 

each molecule is approximately l kb 

. ". the total number of bp is 2x 1015 

1.43 x 108 

2.86 x 108 

1.15 x 107 

Yeast genome length is 14 Mbase 

. ". 2x 1015/1.4 x 107 = 1.43 x 108 genome equivalents 



All further analysis of the Saccharomyces cerevisiae genomic library in pAJ800 was 
carried out by Dr. I. Graham, who transformed 10µg of the library into the rapl is 

strain YDS410, using the One-Step method. The rapl is mutation in this strain is not 
as severe as that in YDS413 (Kurtz and Shore 1991), and after a week of incubation 
transformants started to appear at 37°C. These took longer to grow on the plate 
transformed with the library made from the 1: 10 vector: insert ligation. Altogether 9 

colonies grew on the 1: 5 library plate and 2 on the 1: 10. The transformation plates 
which were left at 25°C had approximately 2000 colonies on them, this suggests that 
0.28% of the library clones was able to complement the rapl is strain. 

All 11 colonies were restreaked on Sc-ura plates and of these 9 grew when returned 
to 370C, so they were grown overnight in YPD for plasmid rescue (see materials and 
methods, 2.29). The rescued plasmids were retransformed into MC 1061 and 
minipreps were made. The miniprep DNA was sequenced with primer 25010+ (Table 

2.1B) which anneals to the Raplp DNA binding domain sequence upstream of the 
Sinai site and reads downstream into the cloned DNA sequence. 

Sequences obtained were compared with the yeast database (Table 6.2) and having 

ascertained that each clone contained an insert with homology to yeast sequence, 
"Wizard" miniprep DNA of each was retransformed into YDS410 and also YDS409. 

These retransformants grew both at 25°C and 37°C showing that genuine 

complementation was occuring. 

6.3 Discussion 

Transformation of rapl is yeast with a genomic yeast library yielded some 

transformants which were able to grow at the non-permissive temperature of 37°C. 

The library insert DNA sequences, from plasmids rescued from these transformants, 

were compared with the yeast database (Table 6.2), and demonstrated to be of yeast 

origin. Certain of the clones contained multiple insertions of yeast sequence which is 

probably a result of the library having been prepared from yeast DNA with an 

average length of 256bp. The DNA sequence was then used to predict the amino 

acid sequence of the protein which would be produced from the fusion of Raplp 

DNA binding domain with the yeast DNA insert (Table 6.3). 

At the outset of these experiments, it was predicted that complementation of the 

raplts strains would occur if the sequence cloned downstream of the Raplp DNA 

binding domain encoded a protein which had the same properties as the Rapip C- 

terminus, or was able to interact with Raplp within the cell. The DNA sequence 

might even have been part of the Rapip C-terminus. So, to find that the fusion 
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Table 6.2 A comparison of library insert sequences, which allowed 
complementation of the rapl is strain of yeast, YDS410, with the yeast database. 
Clones 1,5,7 and 9 contained multiple insertions. 

Clone Positions Accession No % Identity To Positions 

1 1-196 

1 1-196 

1 1-196 

1 1-196 

1 27-196 

1 196-223 

2 1-167 

3 1-167 

4 1-157 

5 1-77 

5 74-169 

6 and 8 1-230 

7 1-145 

7 146-191 

9 51-97 

9 100-146 

U 18922 

Z48148 

SCCHRIX 

Z34098 

U22383 

MISC13 

SCE9379 

SCUBA2G 

YSCPRE5A 

SCD9717 

SCHRIII 

SCA21 

SCRDNA02 

SCRAR 1 

YSCH9986 

SCGACOP 

100 60594-60759 

99 6719-6914 

99 6723-6918 

99 3922-4117 

97 21457-21288 

100 812-782 

98 24229-24063 

100 20-186 

100 1958-1803 

100 23002-22926 

98 261489-261584 

99 1129-900 

100 30-174 

100 46-1 

100 5196-5150 

89 2053-2007 

Gene? 

ChrV telomere 

ChrX telomere 

ChrIX telomere 

ChrX telomere 

ChrXII telomere 

OXI3 

ME 14-YER046 

UBA2 (ChrIV) 

PRE5 (- strand) 

ChrIV ORF 

TUP 1 (- strand) 

2µm (? REP 1) 

rDNA NTS 

RAR I (- strand) 

YHR 164c 

COP I (- strand) 



Table 6.3 The amino acid sequences of the RAP 1:: Library fusions. The sequence 
of wild type Raplp is shown at the bottom of the table. Potential protein kinase C 

phosphorylation sites are indicated by bold type. 

Library Clone Amino Acid Sequence 

1 AATPTYGASDRQPSLKMYYPAE 

2 AATHAKALREELSNMPSITL 

3 AATTNILDLEIT 

4 AATHRNK 

5 AATHSSLSP 

6 and 8 AATHKVQKCLVSYTKGTNSISGNRKGLSR 

7 AATTGRSRGLV 

9 AANMMQIEDVDTNLYDLAISTLKN 

RAP 1+ AAKRARNYSSQRNVQPTANAASA 



proteins had only an extra 4 to 26 amino acids added was surprising. Also, none of 
these fusion proteins shows any homology with any other protein in the database, 
yeast or otherwise. This leaves the question, how are these short amino acid 
sequences able to complement ? 

Most of the amino acid sequences which have been added onto the Raplp DNA 
binding domain have potential protein phosphorylation sites, and there is also a 
potential phosphorylation site just downstream of the DNA binding domain in 
Raplp. It is possible that phosphorylation of this region of the protein has a key role 
in the interaction of Raplp with other proteins involved in its essential functions. 
This arguement could apply to different modifications of Raplp for which a certain 
amino acid(s) is necessary. 

Alternatively, rather than having an enhanced ability to interact with other proteins, 
the extra amino acids may increase the stability of the Rap l p/DNA interaction. 

Raplp is envisaged as binding DNA via two subdomains, one which binds the core 

of the consensus, and one binding the 3' flanking region (Rhodes D. unpublished). 
There is also a tail region of the DNA binding domain which seems to loop back and 
interact with DNA near the consensus core (Rhodes D. unpublished). The additional 

amino acids in the fusion proteins could conceivably extend the tail and stabilise 
Rap 1p binding to DNA. 

Recently the DNA binding domain of Raplp, and a region just downstream of it, 

have been shown to be responsible for the toxicity of RAPT overexpression 

(Freeman et al. 1995). Point mutations in this region which give proteins which are 

not toxic at high concentrations do not bind DNA as well as wild type Raplp. Since 

the binding assays were carried out in the presence of wild type Rap l p, this may 

indicate the presence of a limiting interacting factor, or modification required for 

efficient DNA binding. This fits with the hypothesis above, that the amino acids 

added to the Raplp DNA binding domain may include an essential modified residue, 

or form a domain for ineracting with other factors within the cell. If toxicity from 

RAP] overexpression is due to the binding of Raplp to low affinity sites within the 

cell, the importance of the region C-terminal to the Rap 1p DNA binding domain 

could be in stabilising such weak interactions (Freeman et al. 1995). Again, this 

function could be fulfilled by the short stretches of amino acids found to be added in 

the transformants growing at 37°C. 

The rescue of the C-terminal deletion of Rap lp may be due to a stabilisation of the 

mRNA or the protein resulting in a rise in the levels of protein within the cell. This 

predication could be tested by making total protein extracts from is yeast and library 

X 
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transformants, and looking at their ability to bind a Raplp binding site in a gel 
retardation assay. If the ability of the transformed yeast to grow at 37°C is simply 
due to the increased levels of Raplp in the cell, then the complementation observed 
could be the result of high levels of Rap lp being able to perform the essential 
function of the C-terminus fortuitously, possibly through the presence of lots of 
copies of a domain in the N-terminus or DNA binding domain. 

The results of this library construction were not what was initially predicted. If it 
was to be repeated then some changes to the approach could be made. The library 
was constructed from very short fragments of DNA which were often cloned as 
multiple insertions. The chances of isolating DNA sequences which encode yeast 
proteins with the same essential functions as the Raplp C-terminus, or that interact 

with Rap ip within the cell might be increased if the insert DNA was larger. Thus, a 
library could be prepared from yeast DNA which had been cut with Hincll. This is a 
restriction enzyme with a 6bp recognition sequence, but this sequence has a two base 
degeneracy (GTY. I-RAC) making it equivalent to a 5bp recognition site. Digestion 

with Hincll would yield DNA fragments of approximately lkb. As Hincll is a blunt 

cutter, these could still be cloned into the Smal site engineered at the 3' end of the 
Rap 1p DNA binding domain. 

DNA fragments from a restriction digest of yeast DNA would still not be random. In 

this work, DNA fragments produced by sonication could not be cloned, this may 
have been due to instability of the DNA after sonication, or because the formation of 
blunt ends by Klenow and Mung Bean Nuclease was not efficient. If larger DNA 

fragments were being used to construct the library, shorter sonication times would be 

used, or the DNA could be sheared by pushing it through hypodermic needles. The 

DNA fragments need to be blunt ended for cloning, because the Smal site into 

which they are cloned has been engineered to be in frame with the upstream RAP] 

sequence. 

A change could also be made to the vector, pAJ800, into which the library fragments 

are cloned. Although pAJ800 transformants grow at 25°C, they do not grow well. 

This could be because truncated Raplp, from the plasmid, competes for binding sites 

with the Raplp produced by the cell. It is also possible that transcriptional 

readthrough is occuring from the RAP] sequence into the URA selectable marker. 

This might prevent proper initiation from occuring at URA. This could be prevented 

by putting a terminator, or a blocker sequence, downstream of the RAP] insert. 
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Chapter 7 

General Discussion 

The results presented in this thesis demonstrate the existence of two new 
transcription factor binding sites, for Reb 1p and Cpf 1 p, in the promoter of PGK, 

upstream of the originally defined UAS, and go on to investigate whether these 
transcription factors are involved in the regulation of transcription at this locus. In 

addition, deletions of binding sites for two transcription factors already known to 
bind the PGK UAS, Raplp and Abflp (Chambers et al. 1989, Chambers et al. 
1990), were made from the chromosomal locus, in order to extend the earlier studies 
of these proteins in the activation of PGK. At the same time, a minimal promoter 
was used to try to assign a role to the potential yATF binding site identified by Lin 

and Green (1989). 

7.1 Multifunctional Transcription Factors at the PGK Promoter 

In order to determine the role of Reblp in the PGK promoter, a deletion of its 

binding site was made from the chromosomal PGK gene. This deletion was found to 

reduce transcription at this locus by about 50%, showing this binding site to be 

important for the regulation of transcription. This means that the PGK UAS is larger 

than previously thought, and extends upstream to include the Reblp binding site at 

-561 to -552. Levels of transcription from a similar deletion of the Reb lp binding 

site were investigated on a multicopy plasmid construct. In this case, there was no 

difference between the Reblp deleted construct and the wild type promoter. This 

difference between the chromosomal and plasmid context may be the reason that the 

Reblp binding site was not identified in the initial deletion analysis of the PGK 

promoter (Ogden et al. 1986), which used PGK constructs on high copy-number 

plasmids. This result may indicate that the role of Reb lp depends on the structure of 

the DNA in which the binding site is present, or could simply be due to the number 

of copies of the gene present in the cell when using mulitcopy plasmids. Fifty to one 

hundred gene copies may mask effects observed when only looking at the 

chromosomal locus. 

This difference in the role of a Reb lp binding site has been observed previously. 

Binding site mutations which prevent Reb 1p from binding to the rDNA enhancer 

had no effect on transcription from a minigene construct on a multicopy plasmid 

(Kulkens et al. 1989). However, when the same construct was integrated at the 
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chromosomal locus, the mutations in the Reb 1p binding site were found to reduce 
transcription from an adjacent operon (Kulkens et al. 1992). 

The 50% decrease in transcription when the Reb 1p binding site is deleted from the 

chromosomal locus suggests that it is important for the regulation of PGK. Its role 
may be one of influencing chromatin structure, as has been observed at the GALI -10 
intergenic region. Here Reb 1p seems to cause the repositioning of nucleosomes over 

a 160bp region allowing increased access to transcription factors (Fedor et al. 1988, 

Fedor and Kornberg 1989). A hybrid promoter consisting of the UASGAL and a 
Gcn4p binding site is dependent on Reb lp to position nucleosomes, so that Gcn4p 

can activate transcription (Brandl and Struhl 1990). Reb 1p has also been shown to 

act as a weak activator of transcription (Buchman and Kornberg 1990, Chasman et 

al. 1990, Wang et al. 1990) where it can act synergistically with other weak 

activators such as those binding to a T-rich region, found in DEDJ or RAP] 

promoters (Chasman et al. 1990, Graham and Chambers 1994a). 

Another role which has been proposed for Reblp is that of preventing readthrough 

transcription from disrupting the formation of initiation complexes at the promoter 

of a gene downstream. A similar effect is seen in the role of Reblp as a terminator 

for RNA pol I transcription (Shultz et al. 1993, Lang and Reeder 1993). The 

presence of Reblp on its binding site causes all three polymerases to pause, although 

if the transcript is not released then readthrough can occur (Lang et al. 1994). 

The Reb 1p binding site in the PGK promoter is the most upstream of the 

transcription factor binding sites in this promoter. As such it resembles other 

glycolytic genes which contain Reblp binding sites (reviewed in Chambers et al. 

1995). This suggests that Reblp may act as a boundary for the promoter. The Reblp 

binding site in the TPI promoter can be deleted with no effect on levels of 

transcription if the sequence 5' to the binding site is not from TPI. However, if the 

sequence 5' to the Reb 1p binding site is from TPI, the deletion causes a five-fold 

reduction in the level of expression (Scott and Baker 1993). The presence of Reblp 

may prevent an inhibitory effect from the upstream sequence from interfering with 

transcription initiation. In the TPI promoter Reblp is proposed to modulate 

chromatin structure allowing Rap 1p and Gcr lp access to their binding sites (Scott 

and Baker 1993). In the ENO] promoter a Reb1p binding site is found at the 5' of the 

URS, and a deletion of this site results in a 30% loss of URS activity (Carmen and 

Holland 1994). The ENO] promoter also has a Reblp binding site in its UAS2 

(Carmen and Holland 1994). Thus, in the glycolytic genes Reblp seems to perform a 

variety of functions, activation and repression of transcription, and also chromatin 

modulation. 
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After finding that the deletion of the Reb 1p binding site from the PGK promoter had 
an effect if assayed at the chromosomal locus, but not on a multicopy plasmid, the 
roles of Rap 1p and Abf lp were investigated at the chromosomal locus. The effect of 
deleting the Rap 1p binding site is the same regardless of the location of the deletion. 
A dramatic reduction in the level of transcription from the PGK promoter is seen, 
thus confirming the central role played by Raplp at this locus. The yeast strain in 

which the Raplp site has been deleted from the chromosomal gene is able to grow 
on medium containing glucose, this suggests that a low level of PGK is being 

produced. If no PGK was present, then growth of this strain on 2% glucose would be 

severely reduced (Ciriacy and Breitenbach 1979). 

When the Abf 1p site is deleted from the chromosomal copy of PGK, the effect on 
transcription is in contrast to that seen when the same deletion is looked at on a 

multicopy plasmid. The chromosomal deletion caused an approximately 50% 

decrease in the level of transcription, whilst no effect is seen on a multicopy plasmid. 
Thus, like Reb 1 p, Abf 1p exerts its effects at the chromosomal locus. This suggests 
that the roles of these two proteins at the PGK promoter may be similar. Both are 

weak transcriptional activators, and whilst Reblp can displace nucleosomes (Fedor 

et al. 1988), Abflp is able to bend DNA (McBroom and Sadowski 1994b). A related 
function for Reb 1p and Abf 1p has been shown at the IL VI promoter where binding 

sites for the two proteins are functionally interchangeable (Remacle and Holmberg 

1992). Similarly, the rRNA enhancer is composed of redundant elements, a Reb1p 

binding site, an Abf 1p binding site and a T-rich region, again suggesting similar 

functions for Reb 1p and Abf 1p (Morrow et al. 1993b). 

The role of Cpflp at the PGK promoter was investigated using a cpfl null strain of 

yeast since Cpflp is not encoded by an essential gene. In this strain the activity of 

the chromosomal PGK promoter increased by 29%, and that of the plasmid-borne 

promoter decreased by about 20%. This difference in transcriptional activity between 

the chromosome and plasmid location, in the absence of Cpflp, is not unusual for 

genes with CDE1 sites (N. Kent, pers comm). However, these small changes in PGK 

expression make it difficult to assign a role to Cpflp at this locus. 

The role of Cpf lp in the regulation of transcription is unclear. The presence or 

absence of Cpflp appears to have no effect on the expression of MET25, TRPI and 

GAL2 (Mellor et al. 1991) all of which contain CDE 1 motifs. When the Downstream 

Activation Sequence (DAS) from LPD1 was cloned upstream of a CYC:: lacZ fusion 

activated transcription was obtained and the level of this transcription was not 

affected by mutation of the CDE1 motifs present (Sinclair et al. 1994). Similarly, 
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Nlellor et al. (1990) saw no activation from a PGK minimal promoter after insertion 
of the CDE 1 motif from either TRP1, SAM2 or CEN3. However, Bram and Kornberg 
(1087) suggest that transcription is repressed if a Cpflp binding site is placed 
between the UAS and TATA element of a GAL 1-HIS fusion, and Thomas et al. 

1989) have shown that deletion of the CDE 1 motifs from MET25 results in a 
considerable reduction in the level of transcription. MET16 and MET25 have been 
shown not to be transcribed in the absence of Cpflp (Thomas et al. 1992), and also 
to be transcribed in the absence of Cpf 1p (Kent et al. 1994). These differences are 
due in part to the different growth conditions used by the two groups. More recently 
transcription from MET16 has been shown to require Cpf l p, although this is not 
sufficient for full UAS activity (O'Connell et al. 1995) 

It is likely that Cpflp plays a role in modulating chromatin structure; sensitivity to 
micrococcal nuclease at the TRPI promoter is lost in the absence of Cpflp (Mellor et 
al. 1990), and localized changes to the chromatin structure of MET16, which depend 

on Cpf 1 p, have also been detected (O'Connell et al. 1995). Masison et al. (1993) 

suggest that Cpf lp alters chromatin structure to facilitate the formation of active 
transcription complexes. This view is supported by evidence from the study of 
Upstream Transcription Factor (USF), a mammalian transcription factor for which 
Cpflp may be the yeast homologue. USF can compete with the assembly of 

promoter fragments into nucleosomes allowing the formation of stable preinitiation 

complexes (Workman et al. 1990). The promoter can then be bound by other 
transcription factors. Cpflp may modulate chromatin structure by interacting with 

chromatin proteins such as histones. Mutations in SPT21, RPD1, RPD2 and CCR4 

could all complement cpfl - methionine auxotrophy, but not the centromere defects 

(McKenzie et al. 1993). This led to the proposal that Cpflp does not bind directly to 

CDE 1 to function during transcription, but forms part of a complex binding a target 

sequence. 

It is possible that in vivo the Cpflp binding site in the PGK promoter is bound by 

another bHLH transcription factor. Recently mutations in a protein encoded by 

SGC1 have been shown to suppress the requirement for Gcr lp at glycolytic 

promoters, including PGK (Nishi et al. 1995). Sgclp contains a region of similarity 

to the basic-Helix-Loop-Helix motif which makes it a good candidate for interaction 

at the PGK promoter. 

7.2 xATF Does Not Have a Role in the Regulation of Transcription at the PGK 

Locus 
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In mammalian cells, members of the ATF/CREB family of proteins are recognised 
by their ability to bind the CRE consensus, TGACGTCA (Lin and Green 1988). A 

protein with a similar binding affinity was purified from yeast (Lin and Green 1989, 
Jones and Jones 1989), and a potential binding site for yATF was identified in the 
PGK UAS (Lin and Green 1989). Early work suggested that a single yATF binding 

site could activate transcription from a minimal promoter, and that multiple copies of 
the yATF binding site could activate transcription to the level of a UAS (Lin and 
Green 1989, Jones and Jones 1989). The results presented here do not show any such 
activation, either with the potential yATF binding site or with the optimal ATF 

binding site, the CRE, neither of which was able to stimulate the level of 
transcription over a basal level. Sellers et al (1990) repeated the earlier experiments 

of Lin and Green (1989) using the CRE and obtained only a very low level of 

activation, not strong activation to the level of a UAS. Since, the CRE 

oligonucleotides were unable to activate the minimal promoter plasmid, pAJ28, the 

lack of activation seen with the oligonucleotides containing the potential yATF 
binding site could not be taken to mean that this sequence played no role in PGK 

transcription. 

Both activator and repressor activities of ATF have been identified in yeast (Sellers 

et al. 1990, Vincent and Struhl 1992) as in mammals (Hai et al. 1988), indicating 

that there is probably a family of ATF proteins containing both activators and 

repressors. Although there could be just one protein whose function depends on 

promoter context, two or three distinct activities that bind to the CRE have been seen 

in yeast extract fractions from a heparin-agarose column (Sellers et al. 1990), these 

could of course be due to proteolytic degradation, or to differential modification of 

the same protein. 

A repressor protein has been cloned from S. cerevisiae and is known as Acrlp 

(ATF/CREB Repressor, Vincent and Struhl 1992), or Skolp (Suppressor of Kinase 

Overexpression, Nehlin et al. 1992). Acrlp was identified in a screen for mutations 

that eliminate repression mediated through the CRE. It has a bZIP DNA binding 

domain which resembles those of mammalian ATF/CREB proteins (Vincent and 

Struhl 1992), and binds to the CRE as a homodimer. SKO1 is identical to ACR1, and 

was isolated as a high copy number suppressor of the lethal overexpression of cAMP 

dependent protein kinase (cAPK; Nehlin et al. 1992), suggesting a possible 

interaction between Sko 1p and cAPK. Sko 1p acts as a negative regulator of SUC2, 

interacting positively with Mig 1 p. The Sko 1p binding site in the SUC2 promoter 

contains only one half site of the CRE, as such it resembles the potential yATF site 

in PGK which also contains only one half site. Thus, it is possible that if yATF does 

not activate transcription at the PGK locus, then it may have a role in repression. 
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However Sellers et al. (1990) found that the yATF binding site responsible for 
repression in his3-303 was able to activate transcription weakly when upstream of 
the gall TATA element. It might be expected therefore, that if the potential yATF 
binding site had any function in the control of transcription from PGK then it should 
show weak activation when taken out of context and inserted into a minimal 
promoter construct. 

To ensure that a role for yATF in the transcription of PGK had not been overlooked, 
because binding sites for interacting factors were not present at the minimal 
promoter, the potential yATF binding site was deleted from the PGK UAS in a gene 
construct on a multicopy plasmid, and also from the chromosomal locus. The 

multicopy plasmid deletion was no different in activity from the wild type gene, and 

whilst the deletion of yATF sequence from the chromosomal locus caused a decrease 

of about 20% in the level of transcription, this is likely to be due to a disruption to 

the flanking sequence of the upstream Gcrlp binding site, rather than because the 

yATF binding site is having an effect. The insertion of the BamH] linker which 

removed the potential yATF binding site disrupts three of the bases in the 3' flanking 

sequence. 

Stanway et al. (1989) showed that the PGK potential yATF binding site is apparently 
inactive in their minimal promoter plasmid. It was not assayed alone, but in 

conjunction with the three CTTCC boxes which bind GCR1, this construct was not 

transcriptionally active, but if the Rap 1p site was also included transcriptional 

activation was observed. In this work, activation by the yATF sequence in 

conjuction with a Rap lp binding site was looked for, to see whether the yATF 

binding site had any effect on the stimulation of transcription by Raplp. The 

Rap 1 p/yATF contruct was only slightly more active than a Rap 1p binding site alone, 

and could have been due to an increase in the distance between the Rap lp site and 

the basal promoter. The Raplp/CRE constructs however, were about twice as active 

as a Rap1p binding site on its own. This suggests that a protein which binds the CRE 

in yeast may be able to interact with Rap 1 p. 

Recently SKOI /ACRI was isolated as a high copy number suppressor of the toxicity 

of Rap lp overexpression (Freeman et al. 1995). This is not due to a reduction in the 

amount of Rap 1p within the cell, but may be because it can titrate the excess Rap 1p. 

This model predicts that if this were the case, then very high levels of Skolp/Acrlp 

would be toxic due to a lack of Rap 1 p, and indeed Nehlin et al. (1992) found that 

high expression of SKOI inhibits the growth of yeast cells. However, Freeman et al. 

(1995) were not able to detect an interaction between Rap 1p and Sko 1 p/Acr 1p using 
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the two hybrid system. Even if Sko 1 p/Acr 1p does not interact directly with Rap 1 p, it 
may provide a link with cAMP for the activation of transcription by RapIp. 

SKO1 was isolated as a suppressor of lethal cAPK overexpression (Nehlin et al. 
1992), and it has been proposed that cAMP modulates the transcriptional activity of 
Rap 1p (Klein and Struhl 1994). Rap 1p was shown to be phosphorylated, and bind 
DNA more efficiently, in glucose media (Tsang et al. 1990), and since transcription 
from ribosomal protein genes is increased when protein kinase A (PKA) levels are 
increased by knocking out BCYJ, which encodes the regulatory subunit of PKA 
(Toda et al. 1987) it is thought that the increase in transcription is due to the 

phosphorylation of Rap 1 p. If the Rap 1p binding sites are deleted from upstream of 
the ribosomal protein gene RPS13, no increase in the level of transcription is seen in 

the bcyl strain (Klein and Struhl 1994b). However, ribosomal protein genes are 
induced by both nutrient availability, and cAMP (Neuman-Silberberg et al. 1995). 
These inductions involve different pathways; induction by cAMP requires de novo 
protein synthesis, and also the presence of Rap 1p binding sites (Neuman-Silberberg 

et al. 1995). Since in the absence of cAMP, levels of Raplp within the cell decrease, 

the protein synthesis required could be that of Raplp. Thus, cAMP induction is not 

simply a matter of phosphorylating Rap1p. 

7.3 A Model for the Regulation of Transcription at the PGK Promoter 

The transcription factor with a central role in the activation of PGK is Raplp. 

Deletion of its binding site causes a large decrease in the level of transcription, 

presumably because when it is bound to the promoter it provides not only an 

activation domain, but is also able to interact with Gcrlp, and also Gall lp. Raplp 

may help to stabilize the interaction of Gcr 1p with its DNA binding site, after which 

Gcr2p and Gcr3p may be recruited. The role of Reb 1p may be to generate a 

nucleosome free region across the promoter allowing the other transcription factors 

access to their binding sites. The ability of Abflp to bend DNA could bring the 

transcription factors bound to the upstream region of the promoter closer to the basal 

transcription factors. If Cpf 1p does have a role it may be to facilitate the formation 

of a stable initiation complex. Weak activation domains at the PGK promoter are 

provided by Rap l p, Reb 1 p, Abf 1 p, Gcr lp and Gcr2p all of which could make 

multiple contacts with the basal transcription factors. One link between the upstream 

and downstream parts of the promoter could be through Gall lp, which interacts with 

Raplp, and is also a component of the transcription mediator complex. 

ý-- 
17 

ý 
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7.4 Further Work 

Now that two new transcription factor binding sites have been identified in the PGK 

promoter, it is important to find out more about their role at this locus. In order to 

see whether Reblp is involved in the positioning of nucleosomes, the micrococcal 

nuclease DNA footprint of the promoter could be determined. It would be of interest 

to see whether Sgc lp could bind to the PGK promoter. Since it might be predicted 

that any bHLH proteins which recognise the CACGTG sequence will be able to bind 

to a fragment from the PGK promoter in vitro, evidence for an interaction of Sgc 1p 

should be looked for in vivo, again using footprinting techniques. 

The regulation of PGK in response to carbon source can be tested using the yeast 

strains constructed with transcription factor binding site deletions from the PGK 

promoter. The effects that these deletions have on yeast grown with different carbon 

sources should be looked at, repression of PGK would be expected on non- 
fermentable carbon souces. 
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Introduction 

The glycolytic pathway (Fig. 1) is central to the bio- 

chemistry of the yeast cell and is essential for many of 
the processes in which yeast is used for the benefit of 
mankind. It allows yeast cells growing under aerobic 
conditions to convert sugars to ethanol and, in the 
process, produce energy. The genes encoding the en- 
zymes of the pathway have been cloned and intensively 
studied. Some of them were amongst the first yeast 
genes to be isolated and because of their high expres- 
sion levels their promoters have been widely used to 
construct yeast expression vectors and as model sys- 
tems to study transcription. As details of the organisa- 
tion of glycolytic promoters have emerged, it has 
become clear that these "simple housekeeping genes" 
have sophisticated molecular mechanisms controlling 
their expression. The purpose of this review is to bring 
together results from a wide range of studies in an 
attempt to produce an overall view of glycolytic gene 
expression. We will highlight both the similarities and 
differences between different glycolytic promoters and 
the potential use of these systems to answer important 
general questions about yeast gene expression. 

A. Chambers (CO) " E. A. Packham " I. R. Graham 
Department of Genetics, University of Nottingham, Queen's Medi- 
cal Centre, Nottingham NG7 2UII, UK 

Communicated by L. A. Grivell 

Glycolytic promoters: variations on a common theme? 

The organisation of glycolytic gene promoters is sum- 
marised in Fig. 2. Some glycolytic promoters, such as 
PGK, ENO2 and TPI, contain only positively acting 
upstream elements [upstream activation sequences 
(UAS)] (Cohen et al. 1986; Ogden et al. 1986; Scott et 
al. 1990). Others, such as ENO], TDN3 and PGJIfl, also 
contain negatively acting upstream repression se- 
quences (URS) (Cohen et al. 1987; Rodicio et al. 1993; 
Kuroda et al. 1994). Much attention has focused on determining the sequence organisation of glycolytic 
UAS and the characterisation of the transcription fac- 
tors which interact with them. Most of these UAS 
contain potential binding sites for the multifunctional 
transcription factor Rapip (Shore and Nasmyth 1987). 
Rapip binds to the promoters of many housekeeping 
genes, the mating-type silencers ! IRML and IIIIIR, and 
the repeat regions of telomeres (Iluet et al. 1985; Shore 
and Nasmyth 1987; Buchman et al. 1988). Rapip has 
been shown to bind in vitro to the promoters of the 
glycolytic genes TPI, TDII3, PGK, ENOI, ENO2, PYKI, 
PDC1 and ADIII (Chambers et al. 1989; Nishizawa 
et al. 1989; Brindle et al. 1990; Butler et al. 1990; 
Santangelo and Tornow 1990; Scott et al. 1990; Bitter 
et al. 1991). In vivo footprinting experiments have con- 
firmed that the sites in the TPI, PGK and PYK) pro- 
moters are occupied in yeast cells (Scott and Baker 
1993; Dumitru and McNeil 1994; Stanway et al. 1994). 
The weight of evidence suggests that Rapl p is a general binding factor at glycolytic promoters. In those pro- 
moters where Rapip binding has been demonstrated it 
appears to play an important role in transcriptional 
activation, although the extent of the dependence of different promoters on Rapip is variable. In the PGK 
promoter, deletion of the single Rapip-binding site 
caused a reduction in transcription of more than 80% 
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Fig. 2 Organisation of glycolytic gene promoters. The diagrams are 

approximately to scale and show the positions of sequence elements 
in the promoters of glycolytic genes. The Raplp (RAP 0- and AbfIp 
(ABFI)-binding sites include potential binding sites (matches to 

consensus recognition sequence), sites shown to bind in vitro and 
sites shown to bind in vivo, these are discussed in the text. Gcrlp- 
binding sites are shown as filled-in circles, these also include poten- 
tial binding sites and sites shown to bind in vivo. UAS and URS 

show the positions of previously designated regulatory sequences. 
REBI indicates the positions of binding sites for Reblp. C shows the 

position of an in vitro binding site for Cpftp. CCBF and MIGI show 
positions of potential binding sites for the cell-cycle box factor and 
the Migip transcriptional repressor respectively. The open circles at 
the ENOI URS represent uncharacterised binding factors 

(Chambers et at. 1988). Similarly, mutation of the 
Raplp-binding site in the TPI UAS caused a ten-fold 
reduction in transcription (Scott and Baker 1993). In 
the PFK2 and PGMII promoters, potential Raplp-bind- 
ing sites have been identified which play little, if any, 
role in activation (Ilcinisch et at. 1991; Rodicio et al. 1993). However, these sites have been less well defined 
than sites in other promoters and Rapip binding has 
not been demonstrated either in vitro or in vivo. The second major element found in glycolytic pro- 
moters is one or more binding sites for the glycolytic 
regulatory protein Gcrlp. This protein interacts 
with a recognition sequence containing the pentamer 5' CT/ATCC3' at its core (Baker 1991). This so-called "CT block" was first recognised as an important ele- 
ment in the PGK promoter and subsequently in the 
TD113 and TPI gene promoters (Ogden et at. 1986; 
Chambers et al. 1988; Scott et al. 1990; Bitter et at. 1991). Although it was long regarded as a potential binding site for Gcrlp, it was extremely difficult to demonstrate Gcrlp binding to this sequence in vitro, because the interaction between this protein and DNA 
is very weak. Sequence-specific DNA binding by Gcrlp 
was demonstrated in 1991 and a consensus DNA rec- 

ognition site was derived in 1992 (Baker 1991; Buie et 
at. 1992). The Gcrlp-binding sites shown in Fig. 2 are 
mainly potential binding sites based on matches to the 
in vitro consensus. Gcrlp has been demonstrated to 
bind in vivo at the promoters of the TPI, PYKI and 
PGK genes (Scott and Baker 1993; Dumitru and 
McNeil 1994; Stanway et al. 1994). It is possible to find 
potential Gcrlp-binding sites at a number of locations 
in every glycolytic promoter; however, it is likely that 
only those sites in reasonable proximity to Raplp- 
binding sites are functionally important in vivo (Iluie 
et al. 1992). 

Binding sites for the other multifunctional transcrip- 
tion factors Abflp and Reblp are also found within 
some glycolytic promoters. Abflp binds to ARS 
sequences (yeast origins of replication), mating-type 
silencers, and a number of gene promoters (Buchman 
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TRANSCRIPTIONAL ACTIVATION OF GLYCOLYTIC GENES 

Fig. 3A model for transcriptional activation of glycolytic genes. 
The diagram shows a hypothetical glycolytic promoter containing 
binding sites for Reblp (REBI), Abflp (ABFI), another transcrip- 

tional activator (X), Raplp (RAPT) and Gcrlp (GCRI). Reblp may 
bind to the promoter and generate a nucleosome-free region to aid 
the binding of the other factors. Raplp binding stabilises binding of 
Gcrlp, which in turn interacts with Gcr2p. Each factor alone con- 
tains a weak transcriptional-activation domain (light grey shading) 

and these domains work together to stimulate transcription. In the 

presence of glucose, phosphorylation of the activation domain of 
Rap Ip leads to an increase in the activation potential of the protein 
(dark grey shading) and an overall increase in transcriptional activa- 
tion 

et at. 1988; Diffley Stillman 1988,1989; Dorsman et al. 
1989; Rhode et al. 1989; Dorsman et al. 1990; Rhode 

et al. 1992). Glycolytic promoters containing Abflp- 
binding sites include those of the PFK1, PFK2, FBA 1, 
PGK, ENO2 and PYKI genes (Brindle et at. 1990, 
Chambers et at. 1990; Heinisch et al. 1991). The binding 

sites in the PFKI and PGK promoters appear to play 
some role in transcriptional activation (Heinisch et at. 
1991; E. A. P., I. R. G. and A. C., manuscript submitted). 
In contrast, the site within the PYKI promoter plays 
little, if any, role (Nishizawa et al. 1989). In the ENO2 

promoter, Abf1p acts as anti-repressor, allowing an 
unknown activator to work in combination with 
Rapip and Gcrlp (Willett et al. 1993). 

Reblp was first identified as a factor binding to 
a RNA polymerase I enhancer (Morrow et al. 1989; Ju 

et al. 1990). It was subsequently shown to be important 
in RNA polymerase I transcription termination and 
to bind to a number of polymerase II promoters 
(Chasman et al. 1990; Lang et al. 1994). Binding sites for 
this factor have been identified in the TPI, TDH3, PGK 
and ENO] promoters (Scott et at. 1990; Carmen and 
Holland 1994; Yagi et al. 1994; E. A. P., I. R. G. and A. C., 

manuscript submitted). In the TPI promoter, the 

Rebip-binding site is important for transcriptional ac- 
tivation. A mutation in this site led to a five-fold reduc- 
tion in gene expression (Scott and Baker 1993). The 
sites in TD113 also appear to be important and it is 
interesting to note that these sites correspond with the 
5' end of a nucleosome-frec region which extends over 
most of the rest of the promoter (Pavlovic and ilorz 
1988; Yagi et al. 1994). The ENO] promoter contains 
binding sites for Rebip as components of both UAS 
and URS elements, which emphasises the multifunc- 
tional nature of this transcription factor (Carmen and 
Holland 1994). 

Overall, glycolytic promoters show many similarities 
in organisation: all appear to contain binding sites for 
Raplp and Gcrlp. They also show differences in de- 
tails: some are bound by Rebip and Abfip and some 
contain URS as well as UAS. The basic mechanisms 
which control the activation of these genes are likely to 
be similar (Fig. 3) but imposed on these are gene- 
specific differences which lead to the variations in ex- 
pression levels and induction characteristics which 
these genes display. 

Downstream activation sequences in glycolytic genes 

Several glycolytic genes contain sequences within their 
coding regions which appear to be important for maxi- 
mal gene expression. Such sequences have been termed 
downstream activation sequences or DAS. Genes in 
which DAS have been identified include PGK and 
PYKI (Mellor et al. 1987; Purvis et al. 1987). Recently 
the presence of a DAS within the TDI! gene has also 
been suggested, although in this case the evidence is not 
conclusive (Jung et al. 1995). The PGK DAS has been 
mapped to positions + 37 to + 236 relative to the 
ATG of the gene (Mellor et al. 1987). The PYKI DAS 
has been less-well defined, but is thought to lie between 
positions + 516 and + 870. An intriguing feature of 
DAS is the presence of potential binding sites for multi- 
functional transcription factors. The PGK DAS con- 
tains an Abfip-binding site between positions + 79 
and + 91 (I. R. G. and A. C., unpublished) and there is 
also a good potential binding site for Raplp towards 
the end of the PGK coding region (Fantino ct al. 1992). 
The TD113 coding region contains an Abflp-binding 
site within a DNA fragment extending from position 
+ 77 to + 200 (Jung et al. 1995). This DNA fragment 

has been shown to activate expression of a reporter 
gene when inserted upstream of basal promoter ele- 
ments, but a role in TDI13 expression has yet to he 
established (Jung et al. 1995). The PYKI coding region 
also contains a number of potential binding sites for 
both Raplp and Abflp. In the few other genes where 
DAS have been identified, binding sites for multifunc- 
tional transcription factors are also present. The SRPI 
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Table I Effects of gcrl, 2 and 
3 mutations on the activities of 
glycolytic enzymes in yeast cells 
grown on different carbon 
sources. Activities shown are 
percentages compared to 
enzyme activity in a wild-type 
strain (Clifton and Fraenkel 
1981; Uemura and Fraenkel 
1990; Uemura and Jigami 
1992 a) 

Enzyme gcrl 
(glycerol/lactate) 

IIXK 174 
PGI 9 
PFK 57 
FBA 8 
TPI 4 
TDII 26 
PGK 21 
PGM I 
ENO 2 
PYK 13 

gcrl . ecr2 gcr3-2 
(glycolytic media) (glycerol/lactate) (glycerol/lactate) 

226 134 
20 14 
72 58 
31 6 
22 7 
45 7 
55 11 

24 
53 

32 3 

88 
58 
63 
85 

106 
92 
82 

118 
44 
80 

gcr3-2 
(glucose) 

76 
63 
59 

139 
64 
64 
62 
49 
29 
82 

gene encodes a highly expressed serine-rich protein cantly greater effect in cells grown on non-fermentable 
(Marguet and Lauquin 1986). This gene contains carbon sources (Uemura and Fraenkel 1990). In cells 
a Rapip-binding site between positions + 710 and grown on medium containing glucose, the growth de- 
+ 743, which has been shown to be important for 

maximal gene expression (Fantino et al. 1992). The 
LPDI gene encoding lipoamide dehydrogenase con- 
tains both DAS and downstream repression sequences 
(DRS) (Sinclair et al. 1994). In this case a binding site 
for the centromere/promoter-binding factor Cpflp is 
associated with one DAS, and Abfip- and Raplp-bind- 
ing sites are found associated with the DRS. 

Mutations which affect glycolytic gene expression 
The notion that glycolytic genes may share a common 
mechanism of transcriptional activation arose from the 
isolation of mutations which affect the expression of 
almost the whole set of these genes. Perhaps the most 
important of these is the gcrl mutation (Clifton and 
Fraenkel 1981). Yeast strains which possess gcrl muta- 
tions show reduced expression of most glycolytic en- 
zymes on both fermentable and non-fermentable media 
(Table 1) (Clifton and Fraenkel 1981). Generally, the 
effects are more pronounced on non-fermentable media 
and the different glycolytic enzymes are affected to 
differing degrees. IIXK enzyme activity increases in 
gcrl mutants but all the rest of the glycolytic enzymes decrease in activity. The most severely affected are the 
enzymes PGI, FI3A, TPI, PGM and ENO. These vari- 
ations in enzyme levels are probably due to effects at the level of transcription. Differences in mRNA levels 
have been demonstrated for the ENO1, ENO2, 
TDll1,2,3, TPI, PGK and ADlll eenes (finlland et al. 1987; Santangelo and Tornow 1990; Scott et al. 1990: factor, but it contains no obvious DNA-binding motifs. Henry et at. 1994). More recently two other mutations, No information is currently available regarding the effect 
gcr2 and gcr3, which affect the expression of most of the pop2 mutation on other glycolytic genes. Muta- 
glycolytic genes have been isolated (Uemura and tions in a gene designated PDC2 specifically affect the Fraenkel 1990; Ucmura and Jigami 1992 a). Of these, expression of PDCI and the second structural gene for 
gcr2 is the most severe. This mutation has a signifi- pyruvate decarboxylase, PDC5 (Hohmann 1993; 

fect is only partial, a less severe phenotype than that 
seen in gcrl mutants. In general, the genes most affec- 
ted by gcr2 are the same as those most affected by gcrl. 
gcr3 is a less severe mutation which has more effect in 

glucose-grown cells than in cells grown on non-fer- 
mentable carbon sources (Uemura and Jigami 1992 a). 
However, even in glucose-grown cells, the effects are 
much less dramatic than those of gcrl and gcr2 muta- 
tions. Mutations in three other genes, designated SGCI, 
SGC2 and SGC5, can suppress the requirement of 
glycolytic genes for the GCRI gene product (Nishi et al. 
1995). Dominant mutations in SGCI and SGC2, and 
recessive mutations in SGCS, restore normal growth to 
a gcrl null strain. The mutation in SGCI has been 
shown to mediate effects at the levels of transcription. 
In a SGCI/gcrl double-mutant strain, the level of PGK, 
PGMI, PYKI and TPI mRNAs were all found to be 
higher than in a gcrl single-mutant strain. The SGCI 
gene has been cloned and sequenced and has been 
shown to encode a transcription factor of the basic- 
helix-loop-helix class (Nishi et al. 1995). Mutations 
have also been identified which affect the expression of 
individual glycolytic genes. One such mutation is pop2 
which affects the expression of the PGK gene (Sakai 
et al. 1992). This mutation causes an increase in activity 
of the PGK promoter on non-fermentable carbon sour- 
ces. In the pop2 mutant strain PGK expression is no 
longer inducible by glucose. This suggests that the 
POP2 gene influences the mechanism by which the 
PGK promoter is maintained in a repressed state on 
non-fermentable carbon sources. The gene encodes 
a protein with glutamine-rich, proline-rich and 
serine/threonine-rich regions. It may be a transcription 
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Raghuram et al. 1994). Pdc2p appears to be a transcrip- 
tion factor with an activation domain rich in aspara- 
gine residues (Raghuram et al. 1994). Other glycolytic 
genes do not appear to be affected by pdc2 mutations 
(Hohmann 1993). 

The role of Rapip at glycolytic gene promoters 

Central to the functioning of glycolytic promoters are 
the transcription factors Raplp and Gcrlp. Neither of 
these alone is sufficient to allow high-level gene expres- 
sion, but they work synergistically when combined 
(Stanway et al. 1989; Bitter et al. 1991). Raplp was first 
identified as the protein factor TUF which was shown to 
interact with RPG box sequences in the promoters of the 
TEFI, TEF2, EF-1 a and RP51A genes (Huet et al. 1985). 
TUF was suggested to be a general factor which co- 
ordinates expression of many genes encoding different 
protein components of the translational machinery. The 
RAPT (TUF) gene was cloned in 1987 and was shown to 
encode a protein of 827 amino acids, essential for the 
survival of yeast cells (Shore and Nasmyth 1987). Exten- 
sive studies on the promoters of ribosomal protein genes 
have provided important insights into the role of Raplp 
in transcriptional activation. Many ribosomal protein 
gene promoters contain two tandemly arranged RPG 
boxes, often in combination with a downstream T-rich 

element (Rotenberg and Woolford 1986; Vignais et al. 
1987; Woudt et al. 1987). These motifs work together to 
mediate high-level, regulated, gene expression. Other 

ribosomal protein gene promoters contain the T-rich 
element, but instead of RPG boxes possess a single 
Abfl p-binding site (Hamil et al. 1988; Herruer et al. 
1989; Goncalves et al. 1995). Again the Abflp site works 
not alone, but in combination with the T-rich region 
(Goncalves et al. 1995). These studies suggest that the 
roles of Raplp and Abflp at gene promoters may be 
similar and that both only work efficiently to stimulate 
gene expression when combined with other factors. The 
mechanisms by which Rapip and Abflp increase tran- 
scription have been hard to define. An activation do- 
main has been characterised within Raplp using 
Gal4p/Raplp fusions and a reporter gene containing 
multiple Gal4p-binding sites upstream of a basal pro- 
moter. This approach defined the Raplp activation do- 
main as the region between amino acids 630 and 695, 
although even greater activation was obtained when the 
region between amino acids 630 and 727 was tested 
(Hardy et al. 1992). More recent experiments using 
LexA/Raplp fusions demonstrated that the region be- 
tween amino acids 635 and 827 of Raplp is not an 
activator, but that the region between amino acids 630 
and 827 is a strong activator (Moretti et al. 1994). This 
indicates that the five amino acids which are different 
between these two constructs are critical for transcrip- 
tional activation in the context of the reporter system 
used. 

A set of rap] mutant alleles, known as the rapt' 
alleles, cause telomere elongation and instability 
(Kyrion et al. 1992). One of these alleles encodes a pro- 
tein which lacks the C terminus from position 664. Cells 
containing this allele are viable, although they grow 
more slowly than normal. As activation is almost cer- 
tainly the essential role of Rapip, this allele must con- 
tain a functional activation domain. If this is correct the 
activation domain can be further localised to positions 
630 to 664. Domain swapping experiments are open to 
the criticism that the regions identified may not func- 
tion in the same way within the context of the complete 
protein and that reporter-gene assays may examine the 
ability to activate transcription under unrealistic condi- 
tions. For these reasons it would be useful to have rap! 
mutations which affect only the activation function of 
the protein. However, within the large collection of 
mutant rap] alleles described, there are none specifi- 
cally defective in transcriptional activation. Strains 
containing temperature-sensitive alleles of rap! (rapt" 
alleles) show decreased activation of the MATa locus 
at non-permissive temperatures, but this effect is 
thought to be due to lack of binding of Rapip to the 
MATa alpha UAS, rather than a defect in transcrip- 
tional activation (Kurtz and Shore 1991). The rap 1-5 
allele has a mutation at amino acid position 694, at one 
end of the activation domain of Rapip. Although it is 
possible that this mutation could effect activation by 
Rapip this is unlikely because the rap 1-5 allele is one 
of the least severe of the rap" alleles isolated (Kurtz and 
Shore 1991). In addition, the mutant Rapip produced 
has a heat-labile DNA-binding activity, despite the fact 
that the mutation is not within the DNA-binding do- 
main of the protein (Henry et al. 1990). The presence of 
an activation domain within Rapip might suggest 
a function similar to that of more conventional tran- 
scription factors such as Gal4p and Gcn4p, However, 
the context-dependent functioning of the protein and 
its multifunctional nature hint at a more unusual role. 
This role might involve a re-modelling of chromatin 
structure around UAS. Evidence for such a role comes 
from the H1S4 promoter where Rapip binding is 
required for the action of Baslp, Bas2p and Gen4p 
(Devlin et al. 1991). The presence of a Rapip-binding 
site causes two adjacent regions of the UAS to show 
increased sensitivity to micrococcal nuclease. These 
regions contain the binding sites for Baslp and Bas2p, 
and Gcn4p, respectively. This work suggested a role for 
Rapip in maintaining accessibility of transcription fac- 
tor-binding sites within chromatin. A recombination 
initiation site upstream of the 111S4 gene also requires 
binding of Rapip, Baslp and Bas2p (White et al. 1993). 
Interestingly, either two Rapip sites, or a short region 
of telomeric DNA, can functionally replace the normal 
site, perhaps by altering chromatin structure to give 
increased accessibility to the recombination machinery. 
The product of the SIN4 gene is required for full expres- 
sion of 11154 and for 7y1, MATa and CTS!, all of which 
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contain Rapip sites within their promoters (Jiang and 
Stillman 1995). However, Sin4p appears not to work 
through Rapip because expression of a CYCI-lacZ re- 
porter gene driven by Rapip-binding sites was unalter- 
ed in a sin4 mutant strain (Jiang and Stillman 1995). 
The ability of Rapip to bend DNA may also play some 
role in Rapip function at promoters. Rapip induces 
a DNA bend upstream of its binding site (Vignais and 
Sentenac 1989; Gilson et al. 1993). The domain of 
Rapip required for this bending appears to be located 
in the N terminus, a region of the protein not thought 
to be essential in vivo (Shore and Nasmyth 1987; 
Gilson et al. 1994). DNA bending cannot therefore 
be critical for Rapip function. 

Other more radical suggestions have also been made 
to explain the role of Rapip in transcriptional activa- 
tion. One possibility is that interactions between Rapip 
and other nuclear components localise gene promoters 
to a particular domain within the nucleus (Klein et al. 
1992). Interactions between the C terminus of Rapip, 
Sir2p, Sir3p, Sir4p and Riflp have been shown to be 
important in transcriptional silencing and in localising 
telomeres to the nuclear periphery (Klein et al. 1992; 
Moretti et al. 1994; Cockell et al. 1995). Factors in- 
volved in activation could compete for interactions 
with Rapip and sub-localise promoters to a different 
region of the nucleus. 

1995). Gcr2p could provide an additional transcrip- 
tional activation domain at UAS via its interaction 

with Gcrlp. Little is known about the role of Gcr3p at 

glycolytic UAS. It may be a DNA-binding protein and 
it has certain characteristics of a transcriptional ac- 
tivator (Uemura and Jigami 1992 a). 

Abfip and Rebip 

Some glycolytic promoters also contain binding sites 
for Abfip and Rebip. Abfip is a protein of 731 amino 
acids encoded by an essential yeast gene (Difiley and 
Stillman 1989; Halfter et at. 1989 b; Rhode et al. 1989). 
It contains an unusual type of zinc finger at the N ter- 

minus and within the C terminus there are regions rich 
in acidic amino acids. The amino-acid sequence of 
Abfip contains several blocks of similarity with Rapip. 
The two proteins are 30% identical and 40% conserved 
over 60% of their sequence (Difiiey and Stillman 1989). 
Both Raplp and Abflp share a region of homology 
with a protein called Sanlp. Mutations in the gene 
encoding Sanip can suppress weak sir4 mutations, 
implying an interaction between Sanip and Sir4p. By 

extrapolation it was suggested that both Abfip and 
Raplp could also interact with Sir4p via the conserved 
Sanlp homology. This was confirmed for Rapip when 
it was shown that the Sanlp homology is within the 
region of Rapip required for the interaction between 
the C terminus of Raplp and Sir4p (Diffley and Still- 
man 1989; Moretti et at. 1994). This strongly implies 
that Abfip also interacts with Sir4p. Such an interac- 
tion is likely to be important in silencing, rather than 
activation. An isolated binding site for Abflp inserted 
upstream of a reporter gene is an extremely weak ac- 
tivator (Buchman and Kornberg 1990; Goncalves et at. 
1995). A strong Abflp-binding site has been shown to 
give only as much activation as a weak Raplp-binding 
site (Buchman and Kornberg 1990). In promoters of 
ribosomal protein genes Abflp sites are often found in 
combination with T-rich elements. Similar situations 
are found in the DEDI promoter, where two AbfIp sites 
work synergistically with a T-rich element, and in the 
intergenic region between the YPTI and TUB2 genes 
which also contains a T-rich element (Halfter et at. 1989 
a; Buchman and Kornberg 1990). T-rich regions are 
generally not found in the promoters of glycolytic 
genes, except for the PFKJ gene. The arrangement here 
is probably not analogous to that seen in ribosomal 
protein gene promoters because the T-rich region is 
almost certainly too far away from the Abflp-binding 
sites to work synergistically with Abflp. In genes en- 
coding mitochondrial components, Abflp-binding sites 
are often found in combination with a binding site for 
the Hap2/3/4 complex (Dorsman and Grivell 1990; 
De Winde and Grivell 1992). In many glycolytic gene 
promoters Abflp-binding sites are found close to 

The roles of Gcrip, Gcr2p and Gcrip at glycolytic promoters 

Although the mechanism by which Rapip exerts its 
effects at glycolytic promoters is unclear, one its roles in 
this context appears to be to enhance the targeting of 
Gcrlp to UAS. Gcrlp is a transcription factor which 
interacts directly with glycolytic gene promoters. It 
contains an activation domain in the N-terminal one- 
third of the protein and a sequence-specific DNA-bind- 
ing domain at the C-terminus (F 1 uie et al. 1992; Tornow 
et al. 1993). The interaction between Gcrlp and DNA 
in vivo appears to be stabilised by an interaction be- 
tween Gcrip and Rapip bound to an adjacent DNA 
sequence (Scott and Baker 1993). In some situations Gcrlp may be targeted to promoters via a protein: 
protein interaction with Rapip, without the necessity for direct DNA binding by Gcrip (Tornow et al. 1993). 
This is unlikely to be the case in glycolytic promoters because in these promoters most Rapip sites have 
Gcrip sites located close by. Furthermore, Gcrip has 
been shown to interact with DNA in vivo at the TPI, 
PGK and PYKI promoters (Scott and Baker 1993; 
Dumitru and McNeil 1994; Stanway et al. 1994). Gcrip 
is thought to work in combination with Gcr2p 
(Uemura and Jigami 1992b). A direct interaction be- 
tween Gcrip and Gcr2p has been demonstrated using the two-hybrid system and mutations in GCRI can suppress gcr2 mutations (Ucmura and Jigami 1992b, 
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Raplp-binding sites to form a combination which may 
be analogous to those described above. Abflp may 
perform its function at glycolytic promoters by organis- 
ing the architecture of the chromatin around the UAS. 
Abfl p bends DNA by about 1200, with the centre of the 
bend 7 bp 5' of its consensus binding site (McBroom 

and Sadowski 1994). This DNA bending may be impor- 
tant for the assembly or functioning of the complex of 
transcription factors bound at the UAS. 

Reb 1p has also been implicated in determining 

chromatin structure. At the GAL UAS Reblp binds to 
DNA and excludes nucleosomes from a region of about 
230 bp (Fedor et al. 1988). The protein itself is a weak 
activator but when combined with the T-rich element 
from the DEDI promoter a strong synergistic effect was 
observed, leading to the suggestion that Reblp potenti- 
ates the action of other activators by providing a more 
favourable chromatin environment (Chasman et al. 
1990). At glycolytic UAS the main role of Reblp may 
be to facilitate the binding of other transcription factors 

to the DNA. In most cases where Rebip has been 

shown to interact with glycolytic UAS it binds up- 
stream of the other transcription factors so it could also 

induction depends on whether the enzyme activity 
itself, or the level of mRNA encoding the enzyme, is 
assayed. Early experiments using a hybrid yeast (Sac- 
charomyces fragilis x Saccharomyces dobzhanskii) sug- 
gested that the specific activities of many glycolytic 
enzymes increase in response to glucose or galactose. 
Most increased between three- and seven-fold but some 
increased 50-70 fold (Maitra and Lobo 1971). In con- 
trast, more recent experiments, using specific probes to 
detect glycolytic mRNAs, suggested that most 
glycolytic enzymes are induced less than two-fold and 
the greatest degree of induction is about four-fold 
(Moore et al. 1991). These attempts to simultaneously 
assess the changes in activity of most of the enzymes 
within the pathway have been supplemented by studies 
on individual enzymes. Such studies suggest that ex- 
pression of some glycolytic genes, for example ENOI 
and TDH3, is clearly constitutive, whereas other genes, 
such as PGK, PYKI and PDC1, are induced by glucose 
(Tuite et al. 1982; Burke et al. 1983; Schmitt et al. 1983; 
Cohen et al. 1987; Chambers et al. 1989; Kuroda et al. 
1994). These results are summarised in Table 2. 

have a role in defining the boundary of the UAS. Reblp 
is important in transcription termination by RNA 

polymerase I where it causes polymerase pausing (Lang 

et al. 1994). As Reblp also causes pausing by RNA 

polymerase II it may help to prevent readthrough tran- 

scription from adjacent ORFs. 

Co-ordinate Induction of glycolytic gene expression by glucose 

The enzymes which comprise the yeast glycolytic path- 
way are expressed to a high level. In yeast cells growing 
on a fermentable carbon source, such as glucose, they 

comprise about 30% of the total soluble protein (Hess 

et al. 1969; Fraenkel 1982). In yeast cells growing on 
non-fermentable carbon sources, such as ethanol or 
glycerol/lactate, many of the glycolytic enzymes may 
not be required. It is tempting to look at glycolysis in 

the same way as other microbial metabolic pathways, 
which switch on only when required to metabolise 
a particular substrate. In this case, the pathway could 
be turned on in the presence of glucose or other sugars 
and turned off in the absence of glucose and the pres- 
ence of non-fermentable carbon sources. However, the 

situation is not that simple because some of the 

glycolytic enzymes are additionally involved in 

gluconeogenesis during growth on non-fermentable 
carbon sources. Some glycolytic enzymes are induced 
by glucose, but others appear to be constitutively ex- 
pressed, irrespective of the carbon source (Maitra and 
Lobo 1971; Cohen et al. 1987; Kuroda et al. 1994). 
Constitutively expressed enzymes are generally those 
involved in gluconeogenesis as well as glycolysis. For 
those enzymes that are induced, the apparent degree of 

Mechanism of glucose Induction 

Glucose induction of some glycolytic promoters may 
be analogous to the increase in expression of many 

Table 2 Inducibility of glycolytic gene expression by glucose. Induc- 
tion of glycolytic gene expression by glucose is variable and may 
depend on the strain assayed and whether enzyme activity or mRNA 
level is measured. A further difficulty is that the level of induction 
may be fairly low and some workers define a two-fold increase as 
induction, whereas others may regard this level of increase as consti- 
tutive expression. We have categorised a gene as inducible only 
where there is clear evidence of a significant change in mRNA level. 
Data was obtained from the following publications; PG1 (Aguilera 
and Zimmermann 1986; Green et al. 1988), PEKI and PFK2 
(Heinisch et al. 1991), FBAI (Compagno et al. 1991), TPI (Scott et al. 
1990. ), TD112 (Moore et al. 1991), TDN3 (McAlister and Holland 
1985 a; Kuroda et al. 1994), PGK (Tuite et al 1982; Chambers et al. 
1989), PGA1(Rodicio et al. 1993), ENOI/ENO2 (McAlister and 1lol- 
land 1982; Cohen et al. 1986,1987), PYKI (Nishizawa ct al. 1989), 
PDCI (Schmitt et al. 1983), ADHI (Santangelo and Tornow 1990) 

Gene Glucose induction 

PG/I 
PFKI 
PFK2 
FBAI 
TPl 
TD1-12 
TD113 
PGK 
PGM 
ENO! 
ENO2 
PYK 
PDCI 
ADIII 

No 
No 
No 
No 
No 
No 
No 
Yes 
No 
No 
Yes 
Yes 
Yes 
Yes 
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ribosomal protein genes which occurs when yeast cells 
are shifted from non-fermentable media to medium 
containing glucose. Transcription of these genes in- 

creases about four-fold on shifting cells to a glucose 
medium (llerruer et al. 1987; Kraakman et al. 1993). 
This effect occurs irrespective of whether the promoter 
contains an RPG box or an Abflp-binding site, but in 
both cases the T-rich element present in these pro- 
moters is also required (Kraakman et al. 1993; Gon- 
calves et al. 1995). The sequences involved in glucose 
induction of many glycolytic promoters have not been 
well defined, but the response could be imposed on 
these promoters via changes in the activity of Rapip 
and/or Abflp. At the PGK promoter the Raplp-bind- 
ing site is necessary for increased transcription in me- 

more phosphorylation of Abflp leads. to greater 
transcription of COX6 (Silve et al. 1992). If phos- 

phorylation changes to Abflp are involved in mediating 
transcriptional effects in response to changes in carbon 

source, it remains to be explained how these changes 

can lead to different transcriptional effects at different 

promoters. 
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Abstract We have identified two new transcription fac- 
tor binding sites upstream of the previously defined 
UAS within the phosphoglycerate kinase (PGK) gene 
promoter in Saccharomyces cerevisiae. These sites are 
bound in vitro by the multifunctional factors Cpflp 

and Rebip. We have generated targeted deletions of 
RapIp, Abf1p and Rebip binding sites in the promoter 
of the chromosomal copy of the PGK gene. Northern 
blot analysis confirmed that most PGK promoter ac- 
tivity is mediated through the Raplp binding site. 
However, significant effects are also mediated through 
both the Reblp and Abflp sites. In contrast, when the 
promoter is present on a high-copy-number plasmid, 
both the Abflp and Reblp sites play no role in tran- 
scriptional activation. The role of Cpflp was examined 
using a cpfl null strain. Cpflp was found to have little if 

any, effect on activation of either the chromosomal or 
plasmid-borne PGK gene. 

Key words Phosphoglycerate kinase " Cpflp " Raplp 
Reblp " Abflp 

Introduction 

The phosphoglycerate kinase (PGK) gene is a highly 

expressed glycolytic gene in the budding yeast Sacchar- 

omyces cerevisiae. The promoter of the gene contains 
a UAS located between positions - 538 and - 402, 

relative to the translational start codon (Ogden et al. 
1986). The UAS contains binding sites for the multi- 
functional transcription factors Abflp and Raplp, as 
well as the glycolysis-specific transcription factor 

Gcrlp (Fig. 1) (Chambers et al. 1989,1990). Abflp is 
a multifunctional protein which interacts with yeast 
DNA replication origins (ARS) and transcriptional si- 
lencers (HMLI, HMRE, HMRI) (Difiley and Stillman 
1988,1989; Buchman et al. 1988; Rhode et al. 1989). In 
addition, it is a weak transcriptional activator that 
binds to the promoters of a number of genes, including 
the bidirectional promoter of the YPTI and TU132 
genes, several nuclear genes encoding mitochondrial 
proteins (COX6, QCR8), ribosomal protein genes S33, 
L2 and L3 and the glycolytic genes PYKI and ENO2 
(Halfter et al. 1989; Dorsman et al. 1988,1989; Della 
Seta et al. 1990; Chambers et al. 1990; Brindle et al. 
1990; Trawick et al. 1992; de Winde and Grivell 1992). 
Raplp is also a multifunctional transcription factor. 
Like Abflp, it binds both to transcriptional silencers 
(HMLE, HMRE) and a number of gene promoters 
(Shore et al. 1987; Shore and Nasmyth 1987), mainly 
those of housekeeping genes. They include the 
glycolytic genes TPI, TDI13, ENO!, ENO2, PYK1, 
PDC1 and AD111, genes encoding ribosomal proteins 
such as S24, L46 and L25, and genes such as TEFI and 
TEF2, which encode translation elongation factors 
(Huet et al. 1985; Woudt et al. 1987; Nishizawa et al. 
1989; Scott et al. 1990; Brindle et at. 1990; Butler et at. 
1990; Santangelo and Tornow 1990; Bitter et al. 1991). 
Rap Ip also interacts with the C(I _3)A repeat region of 
yeast telomeres, where it plays a role in controlling 
telomere length (Longtine et at. 1989; Conrad et al. 
1990; Lustig et al. 1990; Sussel and Shore 1991). 

The gene encoding Gcrlp was first identified in 
a search for mutations which affect expression of 
glycolytic genes (Clifton and Fraenkel 198 1). t/crl mu- 
tant strains show reduced expression of most glycolytic 
genes on both fermentable and non-fermentable media 
(Clifton and Fraenkel 1981). Gcrlp was subsequently 
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shown to be a DNA binding protein that interacts with 
a consensus binding site containing 5'-CT/ATCC-3' at 
its core (Huie et al. 1992). The PGK UAS contains three 
good matches to the Gcrlp consensus recognition site. 
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downstream of the Rapip site (Ogden et al. 1986). In 
vivo footprinting experiments suggested that only two 
of these sites are actually occupied in yeast cells (Henry 
et al. 1994). Gcrlp appears to work in combination 
with Rapip, which may stabilise the interaction be- 
tween Gcrlp and DNA. There is also some evidence 
that the interaction between Gcrlp and Rapip may be 
sufficient to target Gcrlp to the UAS, without an 
interaction between Gcrlp and DNA (Tornow et al. 
1993). 

The role of these transcription factor binding sites 
in PGK promoter function has been investigated 
previously using deleted promoters carried on a 
multicopy, 2 gm-based plasmid (Chambers et al. 1988). 
Deletion of only the Rapip binding site from the PGK 
promoter resulted in an 80% reduction in PGK mRNA 
level, suggesting a central role for this factor in UAS 
function (Chambers et at. 1988). Deletion of individual 
Gcrlp binding sites also caused a significant reduction 
in PGK transcription. In contrast, a similar deletion of 
the Abflp site had no effect on PGK expression. These 
results suggested that Abflp plays little role in PGK 
UAS function. When individual binding sites for 
Rapip, Abflp and Gcr1p were placed upstream of 
a minimal promoter, none was found to be a strong 
activator of transcription (Stanway et al. 1989). How- 
ever, combination of either the Abflp site, or Gcrlp 
sites, with the Rapip site was sufficient for transcrip- 
tional activation. 

Two other multifunctional transcription factors, 
Reb1p and Cpflp, have also been shown to interact 
with some glycolytic gene promoters. Rebip is en- 
coded by an essential gene (Ju et at. 1990). It has 
binding sites in many gene promoters including 
RAPT, ACT, TRPI, TRP3, TRP5, PYK1 and 
GAL10 (Chasman et al. 1990). It also binds at the 
centromere CEN4 and in subtelomeric regions 
(Chasman et al. 1990). Binding sites for Cpflp are 
found both in promoters and at centromeres. Pro- 
moters which contain Cpflp binding sites include 
MET25, TRPI and GAL2 (Mellor et at. 1990,1991). 
The role of Cpflp in transcriptional activation is con- 
troversial; it is not a conventional transcriptional ac- 
tivator, but it may affect chromatin structure (Kent 
et al. 1994). Unlike the other multifunctional transcrip- 
tion factors, Cpflp is not encoded by an essential gene 
(Mellor et at. 1990). 

We have now identified new binding sites for both 
Rebip and Cpflp in the PGK promoter, upstream of 
the previously defined UAS. We have made deletions of 
the Rapip, Abflp and Rebip binding sites, within the 
promoter of the chromosomal copy of the PGK gene 
and determined their effects on PGK expression. The 
effects of these deletions have been compared with their 
effects on PGK expression from a multicopy plasmid. 
The role of Cpflp, at both the chromosomal locus and 
the plasmid-borne promoter, has been examined in 
a cpJ7 null strain. 

Materials and methods 

Strains and media 

All plasmid manipulations were carried out in Escherichta colt 
MC1061 [F- araD139 A(ara-leu)7696 A(lac)X74 galU yalK hsdR2 
(rx- mKa) mcrA mcrBl rpsL (Strr)]. Experiments were performed 
using the yeast strains Saccharomyces cerevisiae DBY745, or YAG93 
(Kent et al. 1994), isogenic to DBY745 but cp/7 null and therefore 
phenotypically Met- (see Table 2). Transformed yeast strains were 
grown in synthetic complete medium with 2% glucose, lacking 
either uracil (SC-ura) or leucine (SC-lcu) (Hawthorne and Mortimer 
1960). 

Plasmid construction 

Uracil-selectable plasmids were constructed containing the PGK 
promoter and coding sequence, with deletions in the promoter 
region. The promoters of these constructs were identical to the 
wild-type promoter except that a transcription factor binding site 
was replaced with a Barn III linker. Integrating plasmids were based 
on pAJ730, in which the URA3 gene from YCp5O (Johnston and 
Davis 1984) was subcloned into the polylinker of pSP46 (Ogden 
et al. 1986). pAJ735 is a variant of pAJ730, in which the Sinai site was 
replaced by a BamHl site. Multicopy plasmids were generated by 
cloning the PGK gene and its promoter into pAJ6 (Graham and 
Chambers 1994). 

A deletion of the Reblp transcription factor binding site was made 
using the polymerase chain reaction (PCR). In order to delete the 
Reblp binding site, four primers were used to amplify the upstream 
and downstream regions of PGK; (521 B/PG KD with 533 B/PG KC2, 
Table 1) using pKV521 and pBl as template DNA (Chambers et al. 
1988; Hitzeman et al. 1980). After amplification, the upstream PCR 
product was cut with Bglll and Bamlll, and the downstream PCR 
product was cut with Bc11 and BamHl. The resultant fragments were 
cloned into the unique Bamill site of pAJ735, generating an intact 
promoter containing a BamHI linker in place of the Rebip tran- 
scription factor binding site (pAJ 105). The construct deleted for the 
potential Reblp binding site was also cloned into the Bamlfl site of 
pAJ6 to give pAJl12. PGK constructs deleted for the Rap Ip and 
Abflp transcription factor binding sites already existed on multi- 
copy plasmids (pKV516, pKV502) (Chambers et al. 1988); llindlll- 
Bglll fragments from these plasmids were cloned into pAJ730, 
generating uracil-selectable plasmids pAJ 107 and pAJ 108. 

In vitro protein production 

Abflp, Rapip, Cpflp and Rebip were produced by in vitro tran- 
scription and translation of their respective cloned genes. Abf lp and 
Rapip were made as previously described (Chambers et al. 1989); 
Cpflp was produced using plasmid pSP73-22, a gift from J. Mellor, 

Table l Sequences of primers used for deleting the Rehi p transcrip- 
tion factor binding site from the PGK promoter and for amplifying 
the REBI coding region 

Primer Sequence 

521B 
533B 
PGKD 
PGKC2 
REBIA 
REBIB 

5' GCTTTCTAACAGATCTATC'C 3' 
5' CCGCATTAAAGCTGATC'AGAAACGCAG 3' 
5' CTTTATGAGGGGATCC'TCAATTCAAG 3' 
5' TTGATGTTGGATCCATAAAGCAC G 3' 
5' TATAGGTCGACCAATATGCC 3' 
5' TTTTCCGGATCCAATTTTCTG 3' 

-j 
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A clone of the RED/ gene was a gift from J. Warner. Primers 
(REBIA and REBIB, Table 1) were used to amplify the REDI 
coding region using pRS316 as template DNA (Morrow et al. 1993). 
The amplified REBI gene was subsequently cloned into the pGEM- 
T vector (Promcga), The resulting plasmid, pT7-REBI, was lin- 
earized downstream of the REB1 coding region using Sstl and 
run-off transcripts were produced using T7 RNA polymerase. To 
produce the proteins, I pg RNA was translated in a rabbit re- 
ticulocyte lysate (Promega) in the presence of [35S]methionine 
(Amcrsham). As controls, mock reactions, containing no added 
mRNA, were performed in parallel. 

Preparation of yeast total protein extracts and 
get retardation analysis 

Total protein extracts were prepared from yeast cells as previously 
described (Graham and Chambers 1994). DNA fragments, labelled 
using [y-32P]ATP (Amersham) and T4 polynucleotide kinase, were 
incubated with either 1-2 Vg protein from a yeast total protein 
extract or 3--5 p1 of rabbit reticulocyte lysate primed with RAP], 
ABFI, CPFI or REBI mRNA. 1-3 pg poly[dl-dC] (Pharmacia) was 
added to each binding reaction as a non-specific competitor. After 
a 45 min incubation at room temperature, DNA/protein complexes 
were resolved by electrophoresis on a 5% polyacrylamide gel con- 
taining 0.5X TBE. 

RNA analysis 

RNA was prepared from yeast by the method of Dobson et al. (1982) 
for Northern analysis. Filters were probed with a PGK-specific 
probe, to detect PGK mRNA, and a ribosomal probe to measure 
rRNA as a loading control (Chambers et al. 1988). Where necessary, 
plasmid copy number was determined by probing filters with a Ieu2d 
probe. 

Ilomologous rccombination 

Homologous recombination was achieved using the Pop In-Pop 
Out method (Scherer and Davis 1979). Plasmids pAJ105 (AREBI), 
pAJI07 (AABFI) and pAJ108 (ARAP1) were transformed into DBY745 and Ura` transformants were selected. After screening, to find transformants in which the inserted gene had not undergone 

Fig. IA, Ii The PGK promoter 
showing (A) the UAS with binding sites for Abf)p (A), 
Rap) p (R) and Gcr) p (G), and in 
B the sequence of the promoter 
upstream of the UAS with 
potential transcription factor 
binding sites. Indicated in ß are the promoter fragments (I, IA. lß) 
used in gel retardation assays 

A 
-538 

B 
"624 

REBt 9/10 

gene conversion, loss of plasmid sequences was selected for by 

growth on SC plates containing 1 mg/ml 5-FOA (Boeke et al. 1984). 
Constructs were verified by restriction analysis of a PCR product 
amplified from the altered chromosomal DNA, and Southern blot- 

ting. 

Results 

Identification of transcription binding sites upstream of 
the PGK UAS 

An examination of the promoter sequence upstream of 
the PGK UAS revealed close matches to the consensus 
binding sites for the multifunctional transcription fac- 
tors Abfip, Cpflp, Rebip and Rapip (Fig. 1). Rapip 
and Abflp have already been shown to bind within the 
PGK UAS, whilst Rebip binding sites have been iden- 
tified in the promoters of other glycolytic genes (Cham- 
bers et al. 1989,1990; Scott and Baker 1993; Carmen 
and Holland 1994). In order to determine if any of these 
proteins bind upstream of the PGK UAS, Abflp, 
Rap1p, Cpflp and Reblp were all synthesised by in 
vitro translation (IVT) and tested in gel retardation 
assays with radioactively labelled promoter fragments 
(I, IA, IB), isolated from the PGK promoter. Fragment 
I extends from position - 624 to position - 538 and 
contains all five potential binding sites (Fig. 1B). When 
IVT Abflp or Rapip was assayed with fragment I, no 
DNA: protein complexes were detected (Fig. 2A, B). 
This suggested that fragment I contains neither an 
AbfIp, nor a Rapip binding site. Control experiments, 
using known binding sites, demonstrated that both 
IVT Abf1p and IVT Rapip were capable of binding to 
DNA in our assay (Fig. 2A, B). IVT Cpflp generated 
a single complex with fragment I, indicating that Cpflp 
can interact with this DNA fragment in vitro (Fig. 2C). 
The site of the interaction was localized to the 3' end of 
fragment I because when 10 bp were removed from the 
3' end of this fragment, complex formation with IVT 

-402 

A R Ga 
-UAS -ý 

-538 
ABF112113 

GCiCTTCACCCTCATACTATTAT ßTßTTTCCCTCCTTCTTGAATTßATßTTACCCTCATAAAGCACGTGGC 

RAPI 10/15 REB19/10 CPF17/B 

1 

IA 

IB 
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Cpflp was abolished (data not shown). This 10 bp 
region contains a good match to the Cpflp consensus 
binding site. Fragment I also contains two potential 
binding sites for Reb 1 p. To test these sites, two trun- 
cated versions of fragment I, designated IA and IB, 
were used. Fragment IA contains both of the potential 
Reb 1p binding sites, fragment IB contains only the 
upstream site. When each of these fragments was tested 
with Reblp in gel retardation assays, complex forma- 
tion was only seen with fragment IA (Fig. 2D). No 
complexes were detected with fragment IB. Fragment 
IB has lost the good match to the consensus Reh lp 
binding site, spanning positions - 552 to - 562. As 
removal of this site abolished Reb1p binding it must be 
the only Reblp binding site within fragment 1. 

The effect of deletions of transcription factor binding sites 
on transcription of the chromosomal PGK gene 

We have extended earlier studies of the PGK promoter 
by generating a series of yeast strains containing tran- 
scription factor binding site deletions in the promoter 
of the chromosomal copy of the PGK gene (Table 2). 
The newly identified Reblp binding site, plus the Abflp 
and Rapt p binding sites within the UAS, were removed 
individually, and the effects on PGK expression deter- 
mined. In each of the strains, the only PGK gene 
present was driven by a promoter lacking one of the 
specific transcription factor binding sites. The parental 
yeast strain, DBY745, containing a complete PGK pro- 
moter and gene, was used as a control. Each yeast 

Table 2 Yeast strains used in this work 

t)BY745 x adel-1001eu2-3 leu2-l12 ura3-52 
YA693 a adel-/00 leu2-3 leu2-112 ura3-52 er%1A10-351 
YI- PI or adel-1110 leu2-3 leu2-112 ura3-52 PGh A-463! -475 
YLP2 a adel-100 Ieu2-3 leu2-112 ura3-52 PGh , 1-503/-516 
NT P3 x udel-l00 leu2-3 1eu2-112 uru3-52 PGh . 1-552'-562 

--- ----------- 

D 

Fig. 2A-D Gel retardation assays using reticulocyte Iysates primed 
with the appropriate mRNAs as sources of the corresponding pro- 
teins. A RapIp incubated with a control fragment containing 
a known Raplp hinding site (first three lanes) and with ! 'Gh 
promoter fragment I (final two lanes). B Ahflp incubated with 
it control fragment containing a known Ahflp hinding site (Iirst 
three lanes) and with P(ih promoter fragment I (final two lanes). 
C PGK promoter fragment I incubated with ('pill). I) Rehlp 
incubated with PGti promoter fragments IN (first iIirec lanes) and 
IA (final 3 Tames). Abbreviations: I-, fragment alone; M, rabbit 
reticulocyte lysate not primed with template mRNA; Ra, Ab, C'p, 
Re, rabbit reticulocyte lysate primed with mRNA for RapIp, Ahflp, 
Cpflp or Rehlp 

strain was grown to mid-log phase and the cells har- 
vested. Total RNA was then isolated from the yeast 
cells and analysed using Northern blotting (Fig. 3A). 
Each blot was probed with a PGti-specific probe, and 
with a probe to detect ribosomal RNA, as a loading 
control. 

Clear differences in PGti expression were observed 
between the four strains. 'The strain in which the Rap Ip 
binding site had been deleted from the promoter con- 
tained very little PGti mRNA. The strains in which the 
PGti promoter lacked either the Ahflp or Rehlp bind- 
ing site, contained considerably less PGti mRNA than 
DBY745. In order to quantify these differences, North- 
ern filters were scanned using a phosphorimager and 
the PGti mRNA signals were normalised for differ- 
ences in RNA loading. These corrected values are 
represented graphically in the lower part of' Fig, 3. 
Deletion of the Raplp site in the centre of the LEAS 
(strain YLPI) reduced the amount of PGti inRNA 
below detectable levels. Deletion of either the Ahflp 
alone (strain YL_P2), or the Rehlp site alone (strain 
YLP3), resulted in a reduction of approximately 52 
in the level of PGti mRNA. 't'hese results confirm the 
importance of Raplp as the key activator of the PGti 
promoter, but also indicate that both Ahflpand Rehlp 
play a role in transcriptional activation. The result for Ahflp is in contrast to the results of previous 
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YLP3 YLP3 
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Rb 

loaded, the Ieºº? d probe was used to detect IranscrºpUon 

of the plasmid-borne Ieu2d gene, as a measure of plas- 

mid copy number. Initially, it appeared that the activity 

of the I'(; 1< promoter was increased in YA(iN because 

these samples contained relatively more 1'(; h mRNA. 
However, the copy number of plastid pMA_' 1 was 
found to have increased in this strain. -Phis makes it 

dillicult to assess the importance of ('pflp ill determin- 

ing pronlotcr activity. The Northern lifters were ana- 
lyscd quantitatively using a phosphorinmger and the 

I'GK signals normalised for loading and copy number. 
'I lie results are represented graphically in the lower half 

of I ig. 4.11'a linear relationship between copy number 

and RNA level is assumed, the normalised results sug- 

gest that the activity of the VGl< promoter was reduced 
by approsinwtely 20"r,, in YA693, compared to 
I)RY745. This suggests that ('pflp plays, at most. 

it very minor role in the activity of the l'GI< promoter 
on a high-copy-number plasnlid. 

Iu in\r, tiealr. the etlnUihuliun (11' ('1)1'11 to the activity 
of the 116 h Prortlolcr we have made use of a r1, // null 
strain (Y, 1( i') Z1 I lit,, strain is isogonic vaith I)UY74S 

e\ccl)t 1'or the , ill/ mutation (Kent et al. 191)4). '1 he 

aelltlly of the cltrolltou, tllal ! '(ih Iuetts In YA(i1)3 and 
I)IiY74S was determined by measuring 1'(iti niRNA 
levels in nlid-lo o Pia e cultures of each , train. North- 
ern Plots of total RNA Iron there cells were probed 
using ;I ! '(ih-sPceilie Probe and it Probe to detect 
rl(NA its ;I loading control (I 1L,. 31i). the blot was 
ul; llysrd by piosphurt ita er ; uu1 the dillerenee in 1'(i h 

c. Iression hetween the two strains was determined, 
aller correcting for RNA loading. I hest corrected 

; dues ale represented pra; hically in the lower half of 
iv'. t In the ahsenee of lunetional ('111lp there was an 

increase of "9 in the level of 1'(ih mRNA. 'I lit,, 
uterease rtl: ty he wllhtn the hounds of e' perintcntal 
error ; Ind nl; ty not he significant. iternativeIN, it nl: ly 
sti.. esl tll; lt (pllp plilys it 111111u1 Ilegattve role it the 
I'(ýh Promoter I hr : letivlty uI it Plasnlid-borne ! '(, h 
Pn, nl�Icr was also compared between YA(i1)3 and 
I)It)l 7.1) I'I: rsnlill 1tMA27, it nttllticopy Ilastnid carry- 
tnl the wdd Iype ! 'til pronlufer ; lad gene, was tr lls- 
1t11nIed into cult strain and two Irnnsfornl; utts of cach 
were }down to nlul-log Phase In seierli\e nleditlnl. ('ells 
were then harvested and used to prepare (null RNA for 
analysts un Northern Now, I he hints were Probed with 
! '(; h-, ribosomal RNA- and Iru'1! speeultc probes 
(I ip. 4A, mid d: II; I not shuwnl I he rihusulnal RNA 
prtlhe was used to me, tstne the ann, unt of cach ItNA 

I he effect of Reh Ip and Ahf lp binding site deletions on 
the activity of a plasmid hnrne 116h promoter 

Previous experiments suggested that an Ahfl h binding 

site deletion had no effect on 1'(; h promoter function 

on a high-copy-number plasmid (('hampers et al. I98SI. 
I hose experiments were perforated without the benefits 

of phosphorinr, tger technology, which allows very ac- 
Curate quantification of hyhridVat loll data. In the light 

of our result suggesting a role for Ahfl p at the I AS of 
the chrontosotuaI 1'(; h gene, we have repeated pre- 
vious experiments using a 1'(; N promoter with an 
Ahftp hituling rile deletion on a high-COIl-number 
plasmi(I IpKV5I)2). We have also constructed and tes- 
ted a similar plasmid in which the newly identified 
Rehlp binding site is deleted (I)A. 1 112). As a control ��C 
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have used plasmid pMA27, which contains the com- 
plete PGK promoter (Mellor et al. 1983). Two trans- 
formants containing each plasmid were grown to mid- 
log phase and the cells harvested. The harvested cells 
were used to prepare total RNA which was analysed by 
Northern blotting; blots were probed with a PGK 
probe and a ribosomal RNA specific probe as a loading 

control (Fig. 4A, B). The blots were also probed with 
a probe to detect expression of the plasm id-borne Ieu2d 
gene, to allow us to compensate for any differences in 

plasmid copy number (data not shown). On examina- 
tion of the blots, it appeared that the deletions had very 
little effect on the activity of the promoter in this 
situation; differences in the PGK signal intensity corre- 
sponded to differences in loading, as revealed by the 
ribosomal loading control. The signals from the differ- 
ent probes were then quantified using a phos- 
phorimager and the PGK signals normalised for 
loading and plasmid copy number. The results are 
represented graphically in the lower part of Fig. 4. In 
this case the plasmid copy numbers were all very sim- 
ilar and normalising for copy number had very little 
influence on the final results. These clearly show that 
the previous conclusions regarding the effects of the 
Abfl p site deletion on the plasmid-borne promoter 
were correct. The activity of the PGK promoter 
increased by 14`%0 when the Abf fp site was deleted, 
a value within the range of experimental variation. The 
results also show that deletion of the Reblp binding 
site had no effect on the activity of the plasmid-borne 
PGK promoter, indeed, the activities of the promoters 
plus and minus the Reh 1p site were within P! /0 of each 
other. 

Discuuion 

Prior to this work, the PGK UAS had been defined as 
the region spanning positions - 538 to - 40-1 in the 

DBY745 

+AABF1 

00r 

Rb 1 

DBY745 
. wt 

J 

DBY745 
+pREBt 

Fig. 4A, B Northern analysis of plasmid-borne PG? promoter ac- 
tivity in DBY745 and YAG93. Total RNA was isolated from each 
strain, transferred to nitrocellulose and probed with a ! '(iK-specific 
probe (PGK) and a probe to detect ribosomal RNA as a loading 
control (Rh). The blots were also probed with a ! eu2d probe to 
measure relative plasmid copy number, as described in the text. Each 
blot was scanned using a phosphorimager and the PGb signals 
corrected for differences in loading and plasmid copy number. These 
corrected signals are represented graphically in the lower half of the 
Figure. Panel A shows the activity of the wild-type promoter 
(pMA27) in DBY745 and YAG93, plus the activity of the promoter 
with the Abflp site deleted (pKV502 AABI- 1) in I)BY745. Panel 
B compares the activity of the wild-type promoter with that of the 
promoter with the Reblp site deleted (pAJI 12'ARFBI) 

PGK promoter (Ogden et at. 1986). This region con- 
tains binding sites for the multifunctional transcription 
factors Rapt p and Ahfl p, as well as the glycolytic- 
specific transcription factor Gcrlp (Chambers et at. 
1989,1990, Henry et if. 1994). Raptp and Gcrlp had 
been shown to be involved in transcriptional activation 
of the promoter but no clear role for Abflp had been 
identified (Chambers et at. 1989,1990). We have now 
identified binding sites for two other members of the 
multifunctional transcription factor Cannily, Reh Ip and 
Cpflp, immediately upstream of'the previously defined 
UAS. 

In order to determine the role of kehl p. we gener- 
ated it targeted deletion of the RehIp binding site 
within the promoter of the chromosomal copy of the 
PGK gene. The Reh Ip site was found to be important 
for full activation of the promoter. When this site was 
deleted, the level of PGK niRNA was reduced by about 
501! 1, x. The UAS therefore extends over it larger region 
than previously thought and includes the RehIp site at 
- 562. 

The original studies which identified regions of the 
PGK promoter important for activating transcription 
concluded that sequences 5' of 479 were not re- 
quired (Ogden et at. 1986; Chambers et at. I988). 'I he 
involvement of RehIp was probably missed because 
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the Rch 11) binding site had no effect on the activity of suflicient I'(iK eni. ynle for the glycolytic pathway to 

the prone)ter in this context. This may he because the operate. The result for the Ahflp site deletion in the 

role 4 Kehl p depends on the chronlos oIllal context of chromosomal context was in contrast to that pre- 

the prunlotct. A similar observation regarding the role viously reported (('hampers et al. 19;; S). This site is 

of Kehlp has been , tilde previously. Disruption of required for full activation of the 1'GK acne. Renulv; ll 

a kehlp binding site in an rDNA enhancer had no of the site reduced 1'GK expression by approxnnately 
effect on the a ml-, cription of the adjacent opcron w hen 5t)' o. the same magnitude of ellect as that caused by the 

assawd using a nlinigene construct on it ntulticopy Rehlp site deletion-'I herefore. both Rehlp and Abflp 

plasntid; however, when disruptions of the same Reh 11) exert their etlects at the chrontosontal locus, but not 
binding site were examined in the chromosome, it dc- when the promoter is on a high-copy-plasntid. Rap 11) is 

crease in the levels of transcription was seen (Kulkens important it, both situations. -I'hcse results suggest that 

cl at. 1981, I99? ). Alternatively, the difference between the function of Ahflp at the 11G1v promoter slay he 

the elect of (lie deletion within the chrolllsotle and the related to the (unction of kehl p. Perhaps both proteins 
plasnlid may be related to the number of copies of the work by mediating particular changes in chromatin 
gene present in each case. 'I here is just one copy of the structure. Similar roles for Ahl'lp and Rehlp have pre- 
chromosomal I'GK gene and between 10(1 and 2()(1 viously been suggested by the observation that at the 
Copies of the plaslnid-borne gene. The large number of 11.1' / promoter binding sites for the two protein, are 
copies of the gene in the latter situation nay obscure functionally interchangeable (Reni acie and Ilolmherg 
the effect of Kehl p observed at the chromosomal locus. 1992). 
I he 51)"� reduction resulting front the deletion of the The role of ('pflp at the I'(iK promoter was investi- 
Rehlp binding site at the chromosomal locus suggests gated using it rill/ null strain. In this strain the activity 
that Kehl P has an important role. Rebip is known to of the chromosomal PGK promoter increased by 29 
displace ntteleosonies front the 6.1I. l-I0 intcrgenic re- and that of the plasmid-borne promoter was reduced 
gion all (I has been shown to be a very weak activator of by about 20 ̀ i,. These small changes. which may be 
transcription (('hasman et at, 1990). It call act synergis- within the range of experimental variation, make it 
tically with other weak transcriptional activators or hard to draw any conclusions regarding the role ol, 

-rich regions such as those found ill the I)H)I and ('pflp. 'file role of ('PHI) as it transcription factor 
11.11'/ promoters I('hasnlan et al. 19911; (irahant and remains elusive. The presence or absence of ('pflp 
('panthers 1994). Another possible function for Kehlp appears to have no afoot on the expression of . 

11I': 7''ß, 
nwv he in preventing polynerases front disrupting 1 R1'/ and G. -1/2, all of which contain ('l)F. I motifs 
preinitiauoin Complexes if transcription is carried (Mellor et al. 1191). Similarly, it has been reported that 
through Ir�nt all upstream gene. This effect is also seen no activation of transcription Is detected from a ! '(iiv 
when a Rchlp binding site acts as a transcriptional minimal promoter after insertion of the ('DVA motif 
termination site for RNA polynlcrase I I1. ang et at. from either 'I K1'!. S. -1.11' or ('1: N' i (Mellor et A. 1991)). 
1994). l Ile presence of Rehlp at its binding site causes More recently, transcription from A11: "! 'IO has been 
all three RNA pol`ntcrascs to pause, although if the shown to require ('P1,11), although this protein in itself 
transcript Is not rcleascd. read-through can occur is not sufficient for full LAS activity (()'f'unnel Ct at. 
Ilang et at. 1994). Hehl1 hinds upstreantt of the other 111)5). It is likely that ('pflp plays a role ill modulating 
transcription Iaclors which interact with the 1'Gh pro- chromatin strutcturc; sensitivity to micrococcal nu- 
Motel', a position sinularr Io that in which it is found in clease at the '1'111'/ promoter is lost in the absence of 
the promotes of / Ill and it may therefore have ('pfl p and localised changes to the Chromatin structure 
a role in defining the hoalltdaal) of the pronnoler, or of which depend on ('pflp, have also been 
perhaps Impose ditectiortalat5 on the IIAS (Scott and detected (Mellor et al. 199(1; O'('omell et at. 1995). 
Raker 191{; ('acmes and Holland 1994). ('pflp may alter chromatin structure to facilitate the I lieohst"rtatuon tlnaat RehIpis nnportanl In thechro- formation of active transcription complexes. 'Ibis view 
Inosolual, hilt not the plasntid, context prompted its to is supported by evidence from a study of alto 111,1111 
re unveslig. ite itc rolesol the Raplpauul Ahtlp binding ntalian transcription factor IISI', of which ('pflp stay 
sites will"" the oligutally defined I AS. I hose sites he the yeast homologue. IISI' can compete with the hate hoes studied previously, using high-copy Alas- assembly of promoter l'ragntents into nucleosones nulls. I )eleiion of the Rapt p handing site trout the I. AS allowing the formation of stable preinitiation cont- of the Chrontosonaal 1%k gene Confirmed the central Ilexes (Worknran et al. 19911). The promoter can then intpolta lice of Raplp. Renlovaal of tills binding site he hound by other transcription factors. It is also eatused it diantatae reduction in 1'(; h promoter possible that in vino the ('pflp site in the PGK pro- staength. I he yeast strain in which the onl copy of the moter is hound by another transcription factor of the N(, h geile has a Raap1 p handing site deletion wlthun the basic helix-loop-helix class. 'I he protein encoded by the promoter is still able to grow ()It mcdnunn lontaining recently identified SG('I gene is a good candidate 
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(Nishi et al. 1995). Mutations in SGCI can suppress the 

requirement for Gcrl p at glycolytic promoters, includ- 
ing PGK. 

The newly characterised transcription factor binding 

sites in the PGK promoter extend the similarity be- 
tween PGK and other glycolytic promoters. Most 

glycolytic promoters contain binding sites for Raplp 
and Gcr l p, and some have Reb lp and Abflp binding 
sites. These promoters are complex in organisation, 
and it remains a major challenge to determine the 
precise roles played by the many different transcription 
factors in controlling the expression of these "simple" 
housekeeping genes. 
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