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ABSTRACT 

The introduction of necrophagous fly larvae (maggots) into chronic wounds for the 

purpose of inducing healing is an ancient practice that has recently undergone a 

renaissance in Western medicine. Through clinical observations, maggots are broadly 

recognised to debride the wound of necrotic tissue, cleanse the wound of infection and 

promote granulation tissue formation. Despite such recognition, little research at the 

biological level has been undertaken to identify the mechanisms by which maggots 

accomplish such feats. 

The dermal fibroblast is a major cellular component of granulation tissue and as such, 
its migration into the wound plays a vital role in new tissue growth. Fibroblast 

migration is directed by the composition of the extracellular matrix. Maggot secretions 

contain proteolytic enzymes that are active against a variety of extracellular matrix 

proteins which are present at the wound site. Hence, this thesis focused upon the effects 

of maggot secretions on human dermal fibroblast adhesion and migration in the 

presence of common extracellular matrix proteins. This was with the aim of elucidating 
the mechanisms by which maggots stimulate tissue formation within the wound and 
from there, developing new products that may be used to promote wound healing. 

Experiments showed that maggot secretions modulated fibroblast adhesion to tissue 

culture plastic surfaces and to surfaces coated with collagen and particularly fibronectin. 

Modification of the protein-coated surface by enzymes present within the secretion 

appeared to play a role. Fibroblast migration upon a fibronectin-coated surface was 

enhanced in the presence of maggot secretions. The same also occurred in the presence 

of a higher concentration of secretions when the cells were located within a three- 
dimensional environment comprising collagen gel and fibronectin. Evidence suggested 
that this may have been associated with enhanced matrix re-modelling. 
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CHAPTER 1 

Introduction 

It has been recognised for hundreds of years that wounds infested with necrophagous 
fly larvae (maggots), tend to heal more quickly and with less complications than non- 
infested wounds (Thomas et al., 1996; Hinshaw, 2000). Although reports of the 

deliberate introduction of maggots into infected and gangrenous wounds followed by 

successful healing date back to ancient times, Western medicine has only adopted this 

practice since the mid-nineteenth century (Thomas et al., 1996; Root-Bernstein and 

Root-Bernstein, 1999; Hinshaw, 2000). Sterile larvae of the Calliphoridae family, 

specifically Lucilia sericata (greenbottle blowfly) and Phormia regina (blackbottle 

blowfly), are used in hospitals today (Hinshaw, 2000) in what is now euphemistically 

referred to as 'larval therapy', 'maggot debridement therapy' or 'biosurgery' (Sherman et 

al., 2000). 

Clinical observations of such larvae stimulating wound healing are widespread (Thomas 

et al., 1996; Church, 1999; Wolff and Hansson, 1999; Bonn, 2000; Sherman, 2000; 

Sherman, Hall and Thomas, 2000; Mumcuoglu, 2001; Wollina et al., 2002). However, 
little research at the biological level has been undertaken to identify the mechanisms by 

which larvae accomplish this. In conducting this area of research, extensive knowledge 

is required of skin anatomy and physiology, the normal wound healing process and the 

reasons behind impaired healing. These areas are introduced below in conjunction with 

a discussion on the role and function of the human, dermal fibroblast and its interactions 

with the external environment. As will be shown, this thesis focused on the effects of L. 

sericata larval-derived products upon fibroblasts, as this cell-type plays an influential 

role in wound healing. Also included is an overview of the methods available for 



treating wounds. Current knowledge concerning the effects of 'biosurgery' and the 

compositions of larval secretions is also presented. 

1.1 Anatomy and physiology of the skin 

The skin is the largest organ of the body and provides protection against aqueous, 

chemical and mechanical assaults; bacterial and viral pathogens and ultra-violet (UV) 

radiation (Wysocki, 2000). It also prevents excessive fluid and electrolyte loss and is 

responsible for thermoregulation through controlling vasoconstriction, vasodilation and 

perspiration (Wysocki, 2000). A typical cross-section of skin is composed of three 

layers: the outer epidermis, which consists of continuous sheets of epithelial cells; the 

dermis, composed of cells enmeshed within a supportive connective tissue or 

extracellular matrix (ECM); and the subcutis, consisting of adipose tissue within a 

framework of fibrous tissue (Fig. 1.1) (Maize, 1998). 

1.1.1 The epidermis 

The epidermis is typically about 75 to 150 µm thick and principally consists of two 

layers of keratinocytes, that are noted for containing intermediate keratin filaments 

termed tonofibrils (Cleary, 1996). The lower basal layer consists of cuboidal or 

columnar-shaped cells from which other cells of the epidermis germinate. The upper 
layer is composed of stratified sheets of keratinocytes derived from the basal layer, 

which are held together by desmosomal junctions and continually displaced outwards as 

new sheets are produced. During their passage to the outer epidermal surface these cells 

differentiate, becoming progressively cornified, until they are eventually shed by a 

process called desquamation (Cleary, 1996). By this stage the cells are flat, anucleate, 

primarily composed of the interfilamentous protein filaggrin and are contained within a 

chemically resistant, highly insoluble envelope (Cleary, 1996). In this way the body is 

bestowed with some degree of protection from the outside and water loss from the skin 

is minimised. The cells are only shed when their desmosome connections with other 

cells are degraded. Lipid sheets and proteoglycans (PGs) are also found within the 
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Figure 1.1 Schematic cross-section of the skin, highlighting its three principle 
divisions of the epidermis, dermis and subcutis. Common structures found within the 

skin are also shown. 
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epidermis. Other cells present include melanocytes, which produce pigment to protect 

against UV radiation, dendritic cells derived from the embryonal neural crest and 
Langerhan's cells which have an immune surveillance function. As shown in Fig. 1.1, 

sweat glands and hair follicles penetrate through the keratinocyte layers to the outside. 

Sweating obviously plays a role in cooling the body through evaporation. Secretion of 

sebum from glands associated with the hair follicles provides an acidic and antibacterial 

coating to the skin which retards the growth of unwelcome micro-organisms (Wysocki, 

2000). 

1.1.2 The basement membrane zone 

The basement membrane zone marks the division between the epidermis and dermis and 

presents a barrier to the exchange of cells and to some large molecules. It comprises a 

membrane which undulates prominently between the epidermis and underlying dermis 

as it follows the dermal papillae-rete ridge pattern. This pattern is formed from 

projections of either dermal or epidermal origin which intercalate with one another. 
Rich in sheet-like structures of collagen type IV, the basement membrane also contains 

the glycoprotein laminin, heparan sulphate PG (perlecan) and chondroitin 6-sulphate PG 

(Timpl et al., 1981; Fine and Couchman, 1988; Cleary, 1996). Basal keratinocytes 

adhere to this membrane through attachment plaques called hemidesmosomes. When 

overlying the dermal papillae, these cells also present numerous finger-like membrane 

projections, termed serrations, at the epidermal-dermal interface, which not only 

strengthen their attachment but also play a major role in anchoring the epidermis to the 
dermis (Cleary, 1996). The basement membrane itself is attached to the underlying 
dermis via bundles of elastin-like microfibrils which are continuous with elastic fibres 

in the dermis. Anchoring fibrils composed of collagen type VII reinforce the 

membrane's attachment with the dermis. 

1.1.3 The dermis 

The dermis is the thickest layer of the skin, ranging from 2 to 4 mm in depth (Wysocki, 

2000). In comparison with the densely cellularised epidermal layer, the dermis is 

sparsely populated with cells, and as shown in Fig. 1.1, is vascularised and innervated 

(Wysocki, 2000). It is composed of a network of ECM proteins, in which collagen is 
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predominant. Collagen is made primarily of proline, glycine, hydroxyproline and 
hydroxylysine and forms triple helical structures owing to repetitive Gly-X-Y motifs, 

common to all collagens (Eckes, Aumailley and Krieg, 1996). So far, 19 different 

collagen types have been identified according to their chain lengths, number of 

collagenous domains (the repetitive motifs) and their content of noncollagenous regions 
(Eckes, Aumailley and Krieg, 1996). Endowing the skin with tensile strength, the 

fibrillar collagens form fibres, each composed of three long, uninterrupted protein 

chains which adopt a triple helical conformation. Each chain or fibril is composed of 

more than one collagen type, with collagen type I being the principal component, 

contributing around 85 % to 90 % of dermal collagen (Smith, Holbrook and Madri, 

1986). Lesser amounts of collagen types III (8 % to 11 % contribution) and V (2 % to 4 

% contribution) are also present (Smith, Holbrook and Madri, 1986). Very small 

quantities of other collagens are associated with the fibrils but do not share the long, 

uninterrupted triple helices of the fibrillar collagens. These include collagens type XII 

and type XIV (Smith, 2001). Elastin is another fibril-forming protein present within the 

matrix. Like collagen, elastin contains high amounts of proline and glycine, but does 

not however contain significant amounts of hydroxyproline (Wysocki, 2000). As such, 

elastin takes on a different structure, adopting coil or spring-like formations which can 
be stretched and, when released, returned to their original conformations (Wysocki, 

2000). This characteristic provides the skin with its elastic recoil and prevents it from 

being permanently reshaped. 

Within the dermis, proteoglycans (PGs) comprise what is often referred to as ̀ ground 

substance', or the matrix occupying the space between collagen and elastin fibres 

(Wysocki, 2000). The varieties of PGs present display a number of different 

glycosaminoglycan (GAG) chains, including heparan sulphate, chondroitin sulphates A, 

B and C, and keratan sulphate (Gallo, 2000). The core proteins of the PGs locate the 

GAG chains to specific locations, which are orientated according to the positioning of 

cells. For example, syndecan is a cell membrane-intercalated proteoglycan which 

carries both heparan sulphate and chondroitin sulphate chains (Harris, Leigh and 
Navsaria, 2001). Small leucine-rich decorins, which carry dermatan sulphate and 

chondroitin sulphate (Iozzo, 1998), are located within the extracellular spaces (Gallo, 

2000). The collagen-proteoglycan-elastin network is interlinked and reinforced by a 
large and complex group of glycoproteins, of which the most common is fibronectin 
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(Wolfe, 1995). Fibronectin is widespread throughout the ECM and through its multiple 

binding sites (Fig. 1.2) forms extensive networks among the collagens and PGs. 

The dermis can be divided into papillary and reticular regions. The papillary dermis lies 

immediately beneath the epidermis and is so named because of its projections which fit 

in between opposing projections from the epidermis, so forming the papillae rete-ridge 

pattern. The dermal papillae contain capillary loops which provide oxygen and 

nutrients to the epidermis via the basement membrane zone. Although the demarcation 

between regions is not distinct, the papillary region contains smaller collagen and 

elastin fibres and a greater proportion of ground substance than the reticular region 

(Wysocki, 2000). The reticular region forms the base of the dermis and is extensively 

vascularised (Wysocki, 2000). 

The fibroblast is the predominant cell-type resident within the dermis. This cell 

synthesises dermal collagens, PGs, elastin and other ECM proteins and has an extensive 

role in wound healing. Other cells present include phagocytic dendritic cells which 

contain antigenic markers. Macrophages, derived from circulating monocytes, are also 

present and when activated they partake in various immune functions. They also play 

an important role in mediating many aspects of wound healing. Lymphocytes and mast 

cells which contain histamine and heparin as well as function in a host of dermal 

inflammatory processes are also present. (Maize, 1998). 

1.1.4 The subcutis 

The subcutis or hypodermis attaches the dermis to underlying structures and provides 
blood vessels which lead on to the dermis. Composed primarily of adipose tissue, the 

subcutis also provides insulation for the body, energy reserves and cushioning from 

external mechanical impacts. In addition, it adds to the mobility of the skin over 

underlying structures such as muscle and bone. 
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Figure 1.2 Structural map of fibronectin showing homologous repeats. Fibronectin is 

dimer, with each subunit linked via a pair of carboxyl-terminal disulphide bonds. Each 

subunit is composed of multiple repeats of three types of structural modules termed 

types I, II or III. Functional binding domains are as indicated. As shown, fibronectin 

can bind to heparin via either of two functional domains. These also bind to heparan 

sulphate GAG chains located on cell membranes. The strongest heparin binding site is 

located towards the carboxyl-terminal end of the molecule (Heparin II). The heparin I 

domain also interacts with fibrin and together with the Fibrin II domain, allows high 

concentrations of fibronectin to be located within the fibrin clot. The close association 
between fibrin and fibronectin is thought to facilitate cellular interaction with fibrin. 

The collagen domain binds to native collagen and with higher affinity to the denatured 

or unravelled regions of the collagen molecule (gelatin). The matrix assembly domain 

facilitates fibronectin fibrillogenesis. The cell binding domain contains the Arg-Gly- 

Asp-Ser (RGDS) sequence (of which RGD is the most crucial) which binds most cells. 
Cell binding to RGD is enhanced by interactions with neighbouring synergy sequences 

such as Pro-His-Ser-Arg-Asn (PHSRN). Units with dotted outlines are inserted within 
the molecule, where indicated, as a result of alternative splicing of mRNA. These units 

are type III modules, one of which comprises a portion of the IIICS region. This 

contains the CS-1 sequence, comprising Leu-Asp-Val (LDV) and the weaker Arg-Glu- 

Asp-Val (REDV) sequences which are recognised by the a4ß I receptor in fibroblasts. 

Splice variants tend to be lacking in plasma fibronectin, but are produced by wound 

macrophages and are believed to modulate fibroblast phenotype (refer to Chapter 6.4). 

(Taken from Yamada and Clark, 1996). 
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1.2 Interactions between cells and the extracellular matrix 

For many years it was believed that the ECM had primarily a structural function, 

providing a mechanical scaffold for cells and tissues. However, it is now becoming 

clear that interactions between the ECM and cells are far more complex and that 

particular ECM components are capable of exerting considerable biological activities. 
Such interactions are reviewed below in the contexts of cell adhesion and migration, 

presentation of growth factors and matrix production. Attention is focused upon 
interactions involving human, dermal fibroblasts. 

1.2.1 Cell adhesion and migration 

The survival of `anchorage-dependent' cells is dependent on their adhesion to suitable 

protein substrates (Stoker et al., 1968; Benecke et al., 1978). Within the skin, 

anchorage-dependent cells such as dermal fibroblasts and basal keratinocytes adhere to 

and migrate along ECM structural proteins such as collagen, fibronectin, laminin and 

vitronectin. Cell adherence is principally mediated through the integrin family of cell 

surface receptors. Integrins are composed of two transmembrane glycoprotein subunits, 

alpha (a) and beta (ß), which are non-covalently bonded on the extracellular side, 

forming a heterodimer. There are a number of different isoforms for each subunit 

owing to alternative splicing of the precursor mRNA molecules (Yamada, Gailit and 
Clark, 1996). Binding is dependent on the recognition of short peptide sequences 
(ligands) present within the protein substrate. For example, the cell binding domain of 

fibronectin contains the tetrapeptide Arg-Gly-Asp-Ser (RGDS) sequence, which is the 

primary ligand for fibroblast attachment via the asps integrin (Fig. 1.2) (Pierschbacher 

and Ruoslahti, 1984; Ruoslahti and Pierschbacher, 1986; Obara, Kang and Yamada, 

1988). Binding is also influenced by the three-dimensional configuration of the protein. 

For example, fibroblasts bind to collagen primarily through aI ß1 and a201 integrins 

(Eckes et al., 2000). However, these integrins only recognise the collagen ligand 

sequence, thought to be Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER), when the protein is 

within its native, triple helical conformation (Knight et al., 2000). 
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Once bound to a ligand, the integrin uses its transmembrane organisation to transmit 

signals into the cytoplasm (Fig. 1.3). Termed ̀ outside-in' signalling (Yamada, Gailit 

and Clark, 1996), integrin binding promotes the clustering of integrins and, through 

associating with various adapter proteins, directs the assembly of actin filaments into 

larger stress fibres. In turn this initiates more integrin clustering, thus enhancing matrix 
binding and the strength of cell adhesion in a positive feedback loop. As a result, focal 

adhesions are formed where aggregates of ECM proteins, integrins and cytoskeletal 

proteins are assembled (Giancotti and Ruoslahti, 1999). This process is subject to a 

regulatory force termed ̀ inside-out' signalling. This is where the tails of the integrin 

receptors, which are located within the cell cytoplasm, determine the affinity of ligand 

binding through controlling the assembly of cytoskeletal linkages in response to signals 
from the outside. The more cytoskeletal linkages that become associated with 

attachments to the ECM, the more likely it will be that focal adhesions will form and 

cell adhesive strength will increase (Yamada, Gailit and Clark, 1996). 

In addition to organising the cell cytoskeleton around contacts with the outside, integrin 

clustering also initiates the formation of integrin-growth factor receptor complexes. 
This results in the partial activation of the growth factor receptors, thus enhancing the 

cell's response to growth factors such as platelet-derived growth factor (PDGF), 

epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) (Porter 

and Hogg, 1998; Giancotti and Ruoslahti, 1999). There is also evidence to suggest that 

integrins interact in cis with other kinds of transmembrane receptors, which together 
influence aspects of cell adhesion, motility, metastasis or growth (Porter and Hogg, 

1998). Of particular interest is research which suggests that integrins, depending on 

their state of activation, may form complexes with urokinase plasminogen activator 

receptor (uPAR) (Porter and Hogg, 1998). uPAR is the cell surface receptor for the 

serine proteinase urokinase-type plasminogen activator (uPA). Upon binding to uPAR, 

uPA is activated to convert plasminogen into plasmin (Mignatti et al., 1996). In turn, 

plasmin degrades fibrin and other ECM proteins and also activates matrix 

metalloproteinases (MMPs) (Mignatti et al., 1996). Such degradation and activation of 

other enzymes, particularly if it is localised around bound integrin receptors may 

promote cell migration through modifying cell adhesion. Indeed, research has shown 

uPAR to co-localise with integrins at the leading edge of migrating cells (Andreasen et 

al., 1997), helping the cells to create a path for directed movement through the matrix 
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Figure 1.3 Schematic diagram showing the integrin heterodimer and the `outside-in' 

signalling generated upon the integrin's binding to a recognised ECM ligand. As 

integrins bind to the ECM they become clustered in the plane of the cell membrane and 

associate with a cytoskeletal and signalling complex, which includes and activates 

various kinases involved in promoting the assembly of actin filaments. The re- 

organisation of actin filaments into larger stress fibres, in turn, causes more integrin 

clustering, thus enhancing matrix binding and integrin organisation in a positive 
feedback loop. Proteins involved in the signalling complex include: Tal, talin; Pax, 

paxillin; Vin, vinculin; FAK, focal adhesion kinase; CAS, p130c''s; Src, serine family 

kinase. (Adapted from Giancotti and Ruoslahti, 1999). 
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(Murphy and Gavrilovic, 1999). The matrix does however, attenuate such degradation 

through storing and presenting plasminogen activator inhibitor type-1 (PAI-1). This 

molecule has been shown to inhibit the catalytic activity of uPA (Pepper and 
Montesano, 1992). It also forms a complex with uPA and uPAR, forming a bridge 

between the matrix and the cell surface (Planur et al., 1997). Hence, through the 

actions of PAI-1, excessive matrix destruction by uPA is prevented and cell adhesion is 

enhanced. Research also suggests that activated uPAR influences cell activity 
independent of uPA's enzymatic characteristics (Nusrat and Chapman, 1991; Odekon, 

Sato and Rifkin, 1992; Quax et al., 1992; Waltz, Sailor and Chapman, 1993; Gyetko et 

al., 1994). This may include modification of integrin receptor affinity (Chapman and 
Wei, 2001). Being a glycosylphosphatidylinositol (GPI)-linked receptor which lacks 

intracellular domains, complexation with integrins may be a method by which uPAR 

transduces signals across the cell membrane. (Porter and Hogg, 1998). 

Cell membrane-associated proteoglycans also influence cell adhesion and behaviour. 

For example, syndecan-1 binds cells via its heparan sulphate chains to a variety of ECM 

components, including fibronectin (Fig. 1.2) and collagen types I, III, V (Bernfield et 

al., 1992). These chains are also thought to be involved in the activation of basic 

fibroblast growth factor (bFGF) at the cell surface and are believed to act as co- 

receptors with integrins (Rapraeger, Krufka and Olwin, 1991; Bernfield et al., 1992; 

Oksala et al., 1995; Woods and Couchman, 1998; Turnbull, Powell and Guimond, 

2001). Dermatan sulphate is also involved in activating cellular response to bFGF and 
has been implicated in fibroblast proliferation, indicating roles for other GAG side 

chains in modifying cell behaviour (Penc et al., 1998; Denholm et al., 2000). 

Successful cell migration through the ECM involves a fine balance between matrix 
degradation and re-modelling, allowing a path to be forged, and maintenance of the 

matrix fibrillar structure, providing a substrate upon which cells can adhere and 

generate leverage for movement. Too much degradation yields a matrix which is 

lacking in points of adhesion and the scaffold necessary for directing cell movement. 
Too little degradation, and the cells are held fast to the substrate, unable to release 
themselves from the matrix. Cells such as fibroblasts express a number of different 

proteolytic enzymes to modify the surrounding matrix. These include serine proteinases 

such as uPA, which as discussed above, activates plasminogen and MMPs (Ellis et al., 
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1993; Behrendt et al., 1993). uPA is secreted as an inactive zymogen (pro-uPA) which 
is activated by trace amounts of plasmin (Mignatti et al., 1996). Once activated, a 

positive feedback loop is initiated, where uPA generates more plasmin, which in turn, 

activates more pro-uPA. This zymogen also binds to cell-bound uPAR, where it is then 

activated, thus localising matrix degradation around the cell. As the actions of uPAs are 

regulated by the uPA/uPAR/PAI-1 complex (Planus et al., 1997) and cells which 

secrete uPA also secrete its inhibitor (Mignatti et al., 1996), serine proteinase activity is 

under fine control. 

Fibroblasts also secrete MMPs to modify the matrix. MMPs are a family of genetically- 

related zinc-dependent proteases that collectively degrade most components of the 

ECM, with distinct specificities (Lambert et al., 2001). Hence, the collagenases target 

native collagens in triple helical conformations, while the gelatinases degrade collagens 
following their unravelling by the actions of collagenases. The stromelysins target the 

basement membrane, including glycoproteins and proteoglycans. The matrilysins have 

a very broad specificity, while the metalloelastases target elastin (Mignatti et al., 1996). 

Like uPA, MMPs are secreted as inactive zymogens which are then activated either 

auto-catalytically, by other MMPs or by a number of serine proteinases including 

plasmin, trypsin, neutrophil elastase and mast cell chymase (Mignatti et al., 1996; 

Lambert et al., 2001). Tissue-derived inhibitors (TIMPs) block the actions of MMPs, 

thus providing a method of controlling proteolysis. 

Release of proteolytic enzymes not only facilitates the cell to alter its adhesion to the 

matrix and forge a path for movement. The resulting controlled degradation of the 

matrix also releases peptides which display various bioactive properties, affecting cell 

adhesion, migration and proliferation. For example, RGD peptides cleaved from 

fibronectin display independent cell adhesive properties (Pierschbacher and Ruoslahti, 

1984), while a peptide from the carboxy-terminal heparin-binding domain of fibronectin 

promotes focal adhesion formation (Woods et al., 1993). A fibronectin peptide 

containing the PHSRN sequence, which acts synergistically with the RGD sequence in 

cell binding (Fig. 1.2), appears to exert a chemotactic response from fibroblasts, 

enhancing ECM invasion within the wound (Livant et al., 2000). Migration-promoting 

properties have also been observed with the gelatin binding domain of fibronectin 

(Schor et al., 1996). Cathepsin D digests of fibronectin have been shown to promote 
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deoxyribonucleic acid (DNA) synthesis, thereby stimulating proliferation (Humphries 

and Ayad, 1983). In addition, actions of bacterial and mammalian collagenases have 

been shown to release peptides from collagen which exhibit chemotactic activity for 

fibroblasts and other cells (Postlethwaite, Seyer and Kang, 1978; Albini and Adelmann- 

Grill, 1985). Modification of the ECM by cell-derived proteolytic enzymes therefore 

has far-reaching consequences for cell behaviour. 

Upon being stimulated to migrate, cells such as fibroblasts polarise and extend 

protrusions in the direction of migration. These protrusions are driven by actin 

polymerisation and develop into large, broad lamellipodia or narrow and pointed 
filopodia. Lamellipodia form when the cytoskeleton extends a branching ̀ dendritic' 

network of actin filaments. These structures are particularly suited to push along a 
broad length of plasma membrane and provide the basis for directional migration. In 

filopodia, the actin filaments are organised into long, parallel bundles and these 

structures may well serve as sensors to explore the local environment (Ridley et al., 
2003). Cell protrusion is regulated by the Rho family of small guanosine triphosphate 

(GTP)-binding proteins (GTPases), including Rac, CDc42, RhoA and RhoG (Ridley et 

al., 2003). The strength of cell adhesion also regulates cell protrusion, by applying a 

resistance to flow and by modulating the activity of the GTPase proteins via the 

transduction of signals from the a5pI integrin receptor (Cox, Sastry and Huttenlocher, 

2001). In order for locomotion to be achieved, the protrusions that the cell makes must 
be stabilised by attachment to the substratum, allowing traction to be exerted. Areas 
lying opposite to the protrusion must then detach, allowing further exploration to take 

place. Hence, the cell must become polarised in its behaviour. Because migrating cells 

must be able to detach from and exert traction on the substratum, the speed of migration 
is a biphasic function of the strength of cell adhesion (Ridley et al., 2003). In turn, cell 

adhesion is determined by the density of adhesive ligands on the substrate (Gaudet et 

al., 2003), the density of integrin receptors that are expressed and the affinity of these 

receptors for the substrate ligand (Ridley et al., 2003). It therefore follows that 

researchers have found intermediate concentrations of adhesive substrate coatings such 

as collagen or fibronectin to be most favourable for migration (DiMilla et al., 1993; 

Gaudet et al., 2003). 
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Studies undertaken by Pelham and Wang (1999), Beningo et al. (2001), Munevar, 

Wang and Dembo (2001a and b), Petroll, Ma and Jester (2003) reveal that migrating 

cells exert the greatest tractional forces on their substratum attachments near the leading 

cell edge. These then pull on adhesions towards the rear of the cell, fitting a ̀ frontal 

towing model' of cell migration. In fibroblasts, the rearmost adhesions often tether the 

cell strongly to the substratum, resulting in a long tail to the site of anchorage (Munevar, 

Wang and Dembo, 2001b; Ridley et al., 2003). The tension that becomes focused at the 

tail is sometimes sufficient to physically break the linkage between integrin and the 

actin cytoskeleton, leaving the integrin behind as the cell moves on (Ridley et al., 
2003). It may therefore be suggested that the release of cell trailing edges, particularly 
for fibroblasts, represents a rate-limiting step of migration. 

1.2.2 Growth factor presentation and effect 

In addition to partially activating growth factor receptors via integrin clustering, the 

ECM exerts other mechanisms by which it may influence the response of cells to 

growth factors. Owing to their flexibility and polyanionic character, GAG chains 

attached to PGs have the ability to bind many different ligands (Gallo and Bernfeld, 

1996). Such characteristics may not only contribute to heparan sulphate's involvement 

in activating bFGF at the cell surface (see section 1.2.1). but also allows the ECM to act 

as a storage depot or reservoir for growth factors. Evidence for this occurring has been 

found with FGF and TGF-ß (Ruoslahti and Yamaguchi, 1991; Vlodavsky et al., 1991; 

Witt and Lander, 1994). In this way, the presentation of growth factors is controlled by 

the composition of the matrix. As cells release proteolytic enzymes to remodel the 

matrix, particularly upon being stimulated to migrate, it therefore follows that the 

matrix confers a regulatory effect upon cell behaviour through the subsequent 

presentation of growth factors. 

The ECM not only controls the presentation of growth factors but also influences the 
levels of growth factor expression and how the cells react to growth factor stimulation. 
For example, the presence of basement membrane down-regulates epithelial cell 

expression of TGF-p1 (Streuli et al., 1993). The reaction of fibroblasts to PDGF has 

been shown to be dependent on the composition of the ECM. Xu and Clark (1995) 
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found that PDGF maximally stimulated a3 and a5 integrin subunits, comprising 

receptors for fibrin and fibronectin ligands, when the cells were embedded within a 

predominantly fibrin or fibronectin matrix. However, when the cells were within a 

collagen gel, PDGF stimulated a2 subunits which recognise collagen ligands. 

1.2.3 Production of extracellular matrix 

As shown in section 1.2.1 and 1.2.2, the ECM exerts a considerable influence over 
fibroblast behaviour. However, dermal fibroblasts are responsible for synthesising 

matrix components and are therefore able to exert control over the composition of the 

matrix that affects them. Nevertheless, the composition of the matrix present at the time 

may partly determine which components are subsequently synthesised, thus 

participating in a dynamic and reciprocal relationship with the cells. For example, 
during wound healing, the presence of TGF-ß initially stimulates fibroblasts to 

synthesise collagen (Ignotz and Massague, 1986). However, as the collagen matrix 
becomes abundant, the cells down-regulate collagen synthesis despite the continued 

presence of stimulating factors such as TGF-ß (Clark et al., 1995). The presence of 

collagen is not the only factor involved in down-regulating collagen production. 
Studies have shown that the mechanical forces the cells experience within the collagen 

matrix also exerts an influence, providing an added dimension to fibroblast-ECM 

interactions (Grinnell, 1994). 

1.3 Wound Healing 

Wounds that proceed to heal normally are referred to as acute wounds. Wounds that fail 

to heal or display a considerable delay in healing are referred to as chronic wounds. 
The characteristics of each type of wound are summarised below. 
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1.3.1 The acute wound 

Normal wound healing involves the co-ordination of a number of dynamic, interactive 

processes which serve to minimise blood loss, eliminate infection, stimulate dermal and 

epidermal cells to proliferate, migrate into the wound space, and form new tissue. 

These may be summarised into three overlapping phases: inflammation, tissue 

formation and tissue re-modelling (Clark, 1996; Singer and Clark, 1999). 

1.3.1.1 Inflammation 

Severe tissue injury causes blood vessel disruption, with extravasation of blood 

constituents (Clark, 1996; Singer and Clark, 1999). This results in the stimulation of 
blood clotting which occurs following the activation of intrinsic and extrinsic pathways 

of enzymatic cascades. Here, the activated form of one clotting factor catalyses the 

activation of the next (Stryer, 1995). The intrinsic pathway begins with the surface 

activation of Hageman factor (factor XII), following its contact with exposed collagen, 
basement membrane or negatively-charged surfaces such as heparin or dextran sulphate. 
The extrinsic pathway is triggered by tissue damage which causes the release of tissue 

procoagulant factor (Stryer, 1995). These two pathways converge on a sequence of 
final steps, whereby thrombin is activated to cleave the plasma protein fibrinogen into 

fibrin. This protein then forms an insoluble cross-linked network, blocking further 

blood loss and providing a scaffold for cell migration into the wound. As shown in Fig. 

1.4, the fibrin clot also entraps platelets which, in addition to providing several clotting 
factors, also release adhesive proteins, chemotactic factors for blood leukocytes and 

growth factors such as PDGF and TGF-a and -ß to stimulate endothelial, dermal and 

epidermal cell invasion (Clark, 1996). Once activated, many of the clotting factors 

stimulate the complement cascade, resulting in the infiltration of inflammatory 

neutrophils (Fig. 1.4) (locono et al., 1998). These cells release enzymes and cytotoxic 

oxygen free-radicals to remove bacteria and foreign particles. They also release 

chemotactic factors for recruiting more neutrophils. Further leukocyte chemotactic 
factors originate from formyl methionyl peptides cleaved from bacterial proteins, 

products released from damaged cells, and the release of fibrinopeptides as thrombin 

cleaves fibrinogen to produce fibrin (Clark, 1996). 
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Figure 1.4 Schematic diagram illustrating the main features of the inflammatory phase 

of wound healing including the fibrin clot, infiltration of neutrophils and macrophages. 

Also featured are growth factors and clotting factors which are derived from the sources 

indicated. These stimulate angiogenesis, neutrophil infiltration, and the proliferation 

and migration of fibroblasts and keratinocytes. FGF, fibroblast growth factor; IGF, 

insulin-like growth factor; KGF, keratinocyte growth factor; PDGF platelet-derived 

growth factor; TGFcc and ß, transforming growth factor alpha and beta; VEGF, vascular 

endothelial growth factor. Note that re-epithelialisation is beginning to occur, the path 

dissecting between fibrin clot and underlying dermis. 
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Monocytes, which later differentiate into active macrophages, are attracted by collagen 
fragments (Postlethwaite and Kang, 1976), elastin (Senior et al., 1980), fibronectin 

(Clark et al., 1988; Clark, 1996), active thrombin (Bar-Shavit et al., 1983) and TGF-ß 

(Wahl et al., 1987). Macrophages undertake many pivotal roles in wound healing, 

including pathogen phagocytosis, degradation and removal of damaged tissue, removal 

of redundant neutrophils and the synthesis of many factors which co-ordinate 

granulation tissue formation (Fig. 1.4) (Martin et al., 1988; Clark, 1996). 

In conjunction with blood clotting, clot lysis also occurs. Here, intrinsic blood vessel 

activities limit platelet aggregation and inactivate thrombin. Plasminogen activators, 

such as tissue-type plasminogen activator (tPA) and the aforementioned uPA are also 

released and cleave the plasma protein plasminogen to release plasmin (Mignatti et al., 

1996). Plasmin then goes on to inactivate clotting factors and degrade fibrin. As a 

result, clotting remains localised to the wound and vessels remain permeable to immune 

cells. In addition, the release of fibrin degradation products stimulates further 

neutrophil and monocyte invasion of the wound (Clark, 1996). 

1.3.1.2 Tissue formation 

Summarised in Fig. 1.5, tissue formation consists of re-epithelialisation of the wound 

and the formation of new stroma or granulation tissue. During re-epithelialisation, basal 

keratinocytes from the wound edge and from skin appendages such as hair follicles 

undergo marked phenotypic alteration to increase their mobility. Changes include the 

retraction of intracellular keratin tonofilaments (Clark, 1996; Paladini et al., 1996; 

Singer and Clark, 1999) and the dissolution of most intercellular desmosomes, releasing 

physical connections between cells. The cells also develop peripheral actin filaments 

and dissolve hemidesmosomal links with the basement membrane in order to facilitate 

movement. All these changes may be stimulated by local release of growth factors such 

as epidermal growth factor (EGF), TGF-a and keratinocyte growth factor (KGF) as well 

as the increased expression of growth factor receptors (Singer and Clark, 1999). 

Once a migratory phenotype has been adopted, the keratinocytes express collagenase 

and plasminogen activator to modify the ECM. Migrating along fibronectin and 

vitronectin glycoproteins, the cells then proceed to locate across the wound space as a 
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sheet, bisecting the upper, dryer parts of the fibrin clot and remaining clot and dermis 

underneath. (Clark, 1996; Singer and Clark, 1999). 

Granulation tissue is a transitional tissue which replaces the fibrin clot that initially fills 

the wound space. It is characterised by a high density of proliferating and migrating 

fibroblasts, macrophages and a provisional matrix that is rich in fibronectin and blood 

vessels. The actions of each cell type present within the tissue are interdependent, with 

macrophages providing a continuing source of growth factors or cytokines. These 

molecules stimulate fibroblast proliferation and the synthesis of ECM components 

(fibroplasia). They also support the growth of new blood vessels (angiogenesis) which 

provide the oxygen and nutrients necessary to sustain cells within the expanding tissue 

(DiPietro, 1995; Clark, 1996; Singer and Clark, 1999). Other sources of stimulation 

may arise from growth factors produced by platelets residing in the fibrin clot. 

Fibroblasts also directly contribute, expressing fibroblast growth factor (FGF) which 

stimulates angiogenesis and an autocrine response. 

The newly formed provisional matrix provides a scaffold of fibrin, fibronectin and 
hyaluronic acid for assisting cell migration (Clark, 1996; Singer and Clark, 1999). As 

with epidermal cells, plasminogen activators and certain matrix metalloproteinases, 

such as interstitial collagenase (MMP-1), gelatinase (MMP-2) and stromelysin (MMP- 

3), are produced by the leading edge of the granulation tissue to cleave a path for cell 

migration into the fibrin clot (Clark, 1996). As discussed previously (section 1.2.1), the 

activities of these enzymes against the fibrin and fibronectin-rich matrix of the clot and 
the granulation tissue may also release bio-active peptides to further enhance fibroblast 

proliferation and migration, thus promoting the advancement of new tissue into the 

wound (Humphries and Ayad, 1983; Pierschbacher and Ruoslahti, 1984; Woods et al., 
1993; Schor et al., 1996; Livant et al., 2000). 

As shown in Fig. 1.4, there is considerable interaction between dermal fibroblasts and 
the keratinocytes of the epidermis. Both cell types express growth factors to influence 

the other's behaviour. There is also evidence to suggest that they co-ordinate to re- 

establish the basement membrane (Hansbrough, 2001). 
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1.3.1.3 Tissue re-modelling 

As keratinocytes migrate from the wound edges and re-form the basement membrane, 

thus forming a viable epidermis, the underlying granulation tissue undergoes re- 

modelling. Occurring first at the wound edges, re-modelling incurs a reduction in the 

density of macrophages and fibroblasts in the granulation tissue through apoptosis. The 

outgrowth of capillaries is also inhibited, reducing blood flow to the area (locono et al., 

1998). Some remaining fibroblasts also transform into myofibroblasts. Expressing a- 

smooth muscle actin, characteristic of contractile smooth muscle cells, myofibroblasts 

co-ordinate to contract the wound edges together (Clark, 1996). Concurrently, cells 

within the new epidermis differentiate to form stratified, cornified, keratinocyte layers, 

thus restoring the permeability barrier (Clark, 1996). 

The tissue re-modelling phase also incorporates the transformation of the provisional 

matrix of the granulation tissue into a more collagenous matrix, as the fine collagen 
fibre bundles of the granulation tissue are consolidated into thicker masses (Iocono et 

al., 1998). This is orchestrated by the dermal fibroblast in response to cues from the 

composition of the matrix itself and from growth factors such as TGF-ß (Ignotz and 
Massague, 1986; Clark et al., 1995). Following the completion of healing, this process 
leaves behind a relatively acellular, collagenous scar, with reduced need for blood 

supply (Clark, 1996). 

1.3.2 The chronic wound 

Impaired healing results in the formation of an open, ulcerated, chronic wound, 

generally agreed to be hypoxic (Herrick et al., 1996) (Fig. 1.6). Ulcers may be caused 
by a failure to clear virulent infections. Wound infection prolongs the inflammatory 

phase of healing, prevents epithelialisation, delays collagen synthesis and increases the 

production of inflammatory cytokines which may cause further tissue damage (Waldrop 

and Doughty, 2000). Ulcers may also be caused by diabetes, a condition that is 

becoming a growing problem in Western societies. Here, wounds may be characterised 
by reduced collagen synthesis, decreased wound-breaking strength and impaired 
leukocyte function. These characteristics may be partially explained by increased levels 

of gelatinases and decreased levels of growth factors, particularly insulin growth factor 

21 



ULCER 

Necrotic tissue and serous exudate 

0 EPIDERNIISo 

0 

O r, 
0 

', P xs: ºtrient' : ý" 

Healthy ; 
cells and 

blood 
vessels 

Figure 1.6 Schematic diagram illustrating the main features of the chronic, non-healing 

wound. The ulcer that forms, contains necrotic tissue and serous exudate. It may also 

be infected and the tissue is deprived of oxygen and nutrients because the blood vessels 

have become blocked by matrix cuffs. These cuffs contain polymerised fibrin, 

fibronectin, laminin and type IV collagen (Herrick et al., 1992). 
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(IGF) and TGF-ß (Waldrop and Doughty, 2000). Diabetes also causes vascular tissue 

damage. The ageing process is another factor, compromising immune function, dermal 

and epidermal cell proliferation, collagen synthesis and the quality of collagen produced 

(Waldrop and Doughty, 2000). The elderly are therefore vulnerable to chronic wounds, 

particularly as ageing is associated with medical conditions, such as diabetes and 

circulatory problems, which also contribute to impaired healing. They are also much 

more likely to suffer from immobility, increasing their risks of developing pressure 

sores. Venous hypertension also contributes to impaired healing, presumably through 

causing vascular damage and impairing oxygen perfusion of the affected area. 

Vascular damage associated with impaired healing is believed to involve the 

enlargement of blood vessel pores resulting in the leakage of large molecules, such as 

plasma fibrinogen, into the perivascular space (Browse and Burnaud, 1982). This may 

originate from the diabetic condition, which causes alterations in the vasculature, or 
from excessive venous back-pressure. Another theory is that leakage is caused by the 

accumulation of leukocytes in response to venous stasis, which then release toxic 

metabolites and proteolytic enzymes, damaging the capillaries (Coleridge Smith et al., 
1988). Once leaked from the vessels, fibrinogen is polymerised to fibrin by the plasmin 

present in the area, producing cuffs around individual capillaries. These cuffs are 

proposed to inhibit diffusion of oxygen from the blood vessels to the tissue, thus 
impeding repair (Browse and Burnaud, 1982). However, this has not been conclusively 
demonstrated (Herrick et al., 1992; Yamada and Clark, 1996) and histological studies 

show that fibrin cuffs are discontinuous (Pardes et al., 1990), making it unlikely that 

they inhibit oxygen diffusion alone (Yamada and Clark, 1996). However, fibrin cuffs 

may become highly cross-linked (Mosesson et al., 1989; Shainoff, Urbanic and DiBello, 

1991; Siebenlist and Mosesson, 1992). As a consequence, their porosity may be 

reduced, decreasing the structures' susceptibility to fibrinolysis and altering fibrin's 

interactions with cells and cytokines (Yamada and Clark, 1996). In this respect, 

evidence exists that old venous thrombi become highly cross-linked and resist 
fibrinolysis (Brommer and van Brocke, 1992). 

It has been proposed that fibrin cuffs entrap growth factors, thus inhibiting their 

perfusion into the wound (Falanga and Eaglestein, 1993) and inducing localised cell 

proliferation around blood vessels. Indeed, evidence from Pardes et al. (1990) and 
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Herrick et al. (1992) suggest that continuous cuffs of mesenchymal cells embedded 

within fibrin, fibronectin, laminin and type IV collagen, exist around the 

microvasculature of venous ulcers. Thus, it appears that composite matrix cuffs inhibit 

diffusion of oxygen, growth factors and other nutrients into the wound, causing cell 

death and the build up of necrotic tissue and exudate (Fig. 1.6). 

In addition to vascular problems, there is considerable evidence to suggest that 

fibroblast phenotype may also play an important role in impaired healing. For example, 

other anomolies of ulcerated and chronic wounds include the presence of high levels of 
fibroblast-derived collagenases (MMP-1) and gelatinases (MMP-2) and low levels of 

neutral serine proteinases in chronic leg ulcer exudate, compared with normal, acute 

wound fluids (Weckroth et al., 1996). However, Cook et al. (2000) claim that in 

comparison to normal fibroblasts those excised from chronic wounds produce higher 

levels of tissue inhibitors of MMP-1 and MMP-2, resulting in decreased levels of active 

metalloproteinases. Also, when cultured in collagen lattices, these fibroblasts exhibit 
impaired ECM reorganisation, based on reduced lattice shrinkage. Chronic wound 
fibroblasts also demonstrate impaired collagen synthesis (Herrick et al., 1996). Here, 

tissue hypoxia may be partially responsible through inhibiting the hydroxylation of 

proline residues. Buckley et al. (2001) propose that fibroblasts regulate the switch from 

acute, resolving inflammation, to adaptive immunity and tissue repair. As a result, 

chronic inflammation occurs when the fibroblasts fail to make this switch, due to 

disordered behaviour, thus prolonging the survival and retention of inflammatory 

leukocytes. 

1.4 Wound healing therapies 

In addition to biosurgery (reviewed in section 1.5), there a number of other treatments 

that may be applied to chronic wounds in order to facilitate healing. Firstly, 

debridement is indicated for any wound where necrotic tissue or foreign bodies are 

present or indeed, if the wound is infected (Ramundo and Wells, 2000). Debridement 

or the removal of non-viable tissue and foreign matter helps control or reduce the risk of 
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infection, facilitates visualisation of the wound wall and base, thus aiding wound 

assessment and may prompt the chronic wound to adjust protease and cytokine levels to 

those of the acute wound (Ramundo and Wells, 2000). Methods for debridement 

include the application of exogenous enzymes. For example, collagenases are used to 

dissolve collagen fibres that secure the slough (moist devitalised tissue) or eschar (dry, 

firm devitalised tissue) to the underlying wound bed. Papain and its activator urea are 

used in combination to directly digest the necrotic tissue. Fibrinolysin and a 
deoxyribonuclease are used together (sometimes in combination with a topical 

antibiotic) to degrade fibrin and DNA found in the slough (Ramundo and Wells, 2000). 

Dakin's solution (dilute sodium hypochlorite) may also be used in debridement, 

denaturing protein to aid its removal by other means (Ramundo and Wells, 2000). Wet- 

to-dry debridement consists of applying saline-moistened gauze to the wound bed and 
leaving it to dry, trapping debris from the wound as it does so. However, both Dakin's 

solution and wet-to-dry debridement represent non-selective treatments, affecting both 

non-viable and healthy epithelial and granulation tissue. Surgical debridement (removal 

of necrotic tissue using forceps, scissors or scalpel) is more selective, but some viable 
tissue may also be removed. 

Once it has been cleaned, a variety of different dressings may be applied to the wound, 

providing an environment to maximise the healing response and prevent contamination. 
The type of dressing used is dependent on the characteristics of the wound. Although it 

is necessary to keep the wound moist, thus aiding re-epithelialisation and promoting 
debridement by autolysis (the body's own normal inflammatory process for removing 
necrotic tissue), it is sometimes necessary to apply absorbent pads, alginates or foams to 

wounds producing large amounts of exudate (Dealey, 1999). In so doing, excessive 

moisture is removed, thus preventing maceration of the surrounding skin. Hydrocolloid 
dressings made from cellulose, gelatins and pectins swell and become gel-like as they 

absorb moisture, thus protecting the wound from drying out (Dealey, 1999). Hydrogels, 

made from insoluble polymers have a large water content and are able to hydrate dry 

wounds, aiding the removal of eschar (Dealey, 1999). 

Recent innovations in wound care include the application of growth factors, as there is 

evidence to suggest that chronic wounds are deficient in these signalling molecules 
(Falanga and Eaglestein, 1993). PDGF was the first, and up until 2001, the only 
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recombinant growth factor to be approved by the United States Food and Drug 

administration (FDA) for topical application to wounds (Robson and Smith, 2001). 

Other growth factors including TGF-ß, bFGF, EGF, granulocyte-macrophage colony- 

stimulating factor (GM-CSF) have been tested in clinical trials with varying degrees of 

success. However, as yet, evidence for the effectiveness of growth factor therapy are 

limited (Robson and Smith, 2001). This may be due to poor clinical trial design and 
difficulties in extrapolating laboratory animal data to human patients. Once applied, the 

chronic wound itself may inactivate the growth factors. For example, tissue hypoxia 

may inhibit their activities while excess proteolytic activity may destroy them (Robson 

and Smith, 2001). 

Other topical agents that have been applied to wounds with some success include the 

fibrinolysis promoter tPA, to enhance fibrin removal in venous ulcers (Falanga et al., 

1996). Hyaluronic acid (HA) has also been applied using various delivery vehicles 
(Romanelli, 2001). HA is an important component of the provisional matrix, aiding the 

migration of fibroblasts within the granulation tissue, promoting the proliferation of 

keratinocytes and maintaining an extracellular hydrated space in the epidermis (Oksala 

et al., 1995; Chen and Abatangelo, 1999). 

Other developments include the use of skin replacements. Cadaver allograft skin may 
be applied as a temporary cover, encouraging vascularisation of the wound bed 

(Hansbrough, 2001). Unfortunately, allograft skin is rejected after a few weeks, is in 

limited supply, of variable quality and may carry a risk of transferring viruses to the 

patient (Hansbrough, 2001). It can however, better prepare the wound for accepting 

subsequent skin autografts. Patient skin biopsies may also be taken, from which 
keratinocytes may be harvested and then cultured in the laboratory. These can then be 

grafted back on to the patient's wound as thin sheets of cells or as cells supported on a 

biocompatible and biodegradeable membrane, some of which contain HA esters 
(Hansbrough, 2001; Lobmann et al., 2003). However, such grafts do not always take 

(Kakibuchi et al., 1996), are fragile (Hansbrough, 2001) and the technique requires 

considerable time for growing the cells up in culture. 

Perhaps a more sophisticated approach to skin replacements involves the combined use 

of fibroblasts, embedded within a supportive matrix, and keratinocytes, creating an 
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epidermal-dermal composite graft. In full-thickness wounds, it is preferable to supply 

both epidermal and dermal structures because by definition, full-thickness wounds lack 

dermis. Supplying a dermal replacement will therefore increase the chances of applied 

cultured epithelial sheets taking successfully. Human fibroblasts, in contrast to 

epidermal cells are relatively non-antigenic (Hansbrough, 2001). Allogeneic fibroblasts 

seeded within a biodegradable synthetic matrix have been applied to wounds with some 

success, supporting the take of subsequently applied conventional skin grafts 
(Hansbrough, Dore and Hansbrough, 1992). The cells may do this as they produce 

matrix proteins and numerous cytokines, encouraging vascularisation of the skin graft 
(Hansbrough, 2001). The presence of a fibroblast-populated dermal matrix below a 
layer of keratinocytes has also been shown to promote the formation of basement 

membrane (Hansbrough, 2001). Epidermal-dermal composites are currently in 

development (Ghosh et al., 1997; Chakrabarty et al., 2001; Hansbrough, 2001; 

Bhargava et al., 2004; Huang et al., 2004). 

1.5 The use of maggots in wound healing 

Currently, the use of maggots in the procedure termed ̀ biosurgery' is indicated for 

necrotic and sloughy wounds that have not responded to conventional methods of 
debridement (Dealey, 1999; Ramundo and Wells, 2000). Biosurgery is broadly 

recognised to exert the following beneficial effects upon wounds: debridement or the 

elimination of necrotic tissue; disinfection of the wound through microbial killing; and 

the active promotion of wound healing (Thomas et al., 1996; Church, 1999; Wolff and 
Hansson, 1999; Bonn, 2000; Sherman, Hall and Thomas, 2000; Mumcuoglu, 2001; 

Wollina et al., 2002). Larvae of Calliphoridae, such as L. sericata, are used in 

biosurgery because they select only dead tissue for ingestion. Presumably this is related 

to the fact that in their natural habitat, the adult flies typically lay their eggs on corpses 
(Root-Bernstein and Root-Bernstein, 1999). Due to this characteristic, L. sericata 
larvae are very effective at debriding the wound. The larvae perform this function via 

the release of proteolytic enzymes in their excretions/secretions (ES), which degrade 

and liquefy the necrotic tissue, allowing the larvae to ingest it. As the larvae are very 
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specific in their targeting of dead tissue and are small enough to reach into most areas of 

the wound, they may actually debride the wound far more efficiently and precisely than 

what is achieved through conventional surgical debridement. In addition, it is believed 

that the continual removal of liquefied tissue and serous exudate by the larvae also aids 

debridement (Sherman, Hall and Thomas, 2000). 

It has long been realised that the natural habitats of Calliphoridae larvae, which include 

corpses and excrement, are saturated with bacteria. Hence, they must be able to tolerate 

or even eradicate resident pathogens in order to compete and survive (Sherman, Hall 

and Thomas, 2000). There are a number of ways in which it is believed larvae disinfect 

wounds. Firstly, they actively ingest bacteria which are then lysed in the gut (Robinson 

and Norwood, 1933,1934; Mumcuoglu et al., 2001). Secondly, it has been proposed 

that ammonia secreted by larvae may be responsible for wound disinfection, as fluids 

from wounds undergoing 'biosurgery' are alkaline (Bonn, 2000; Sherman, Hall and 

Thomas, 2000). Another theory is that the copious amounts of exudate that are 

produced in response to mechanical stimulation by crawling larvae may help flush the 

wound of some bacteria (Sherman, Hall and Thomas, 2000). In addition, recent studies 

by Thomas et al. (1999) have shown that L. sericata larval ES contains anti-microbial 

activity. This may also be capable of eliminating multi-drug resistant strains of 

Staphyloccocus aureus such as the methicillin-resistant strain (MRSA). In this respect, 
both Bonn (2000) and Dissemond et al. (2002) report that wounds previously infected 

with MRSA were free of the resistant strain following biosurgery. This is of particular 
interest because infections caused by antibiotic-resistant strains of certain bacteria are 
becoming increasingly commonplace. For example, the UK's Health Protection 

Agency (HPA) has reported an increase in the proportion of patients incubating 

methicillin-resistant strains of S. aureus, from 3% in 1992 to 43 % in 2002 (HPA, 

2003). The US-based National Nosocomial Infections Surveillance (NNIS) System 

report states that the occurrence of resistant strains of Enterococci, S. aureus and 

Pseudomonas aeruginosa in intensive care patients was 47 %, 43 % 
, 
and 49 % higher in 

1999 compared with resistance rates from the preceding five years (NNIS, 1999). 

It has been observed by clinical practioners that 'biosurgery' appears to actively 

stimulate the production of granulation tissue, increasing the rate at which wounds heal 

(Buchman and Blair, 1932; Wilson, Doan and Miller, 1932; Reames, Christensen and 
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Luce, 1988; Thomas et al., 1996; Wolff and Hansson, 1999; Sherman, Hall and 
Thomas, 2000; Mumcuoglu, 2001; Wollina et al., 2002. ). This may simply be due to 

the removal of debris and infection that may have been impairing healing. For example, 

the proteolytic enzymes that have shown to be produced by larvae, may not only liquefy 

necrotic tissue for ingestion, but may also degrade ECM elements of composite fibrin 

cuffs found within ulcerated wounds. This may then initiate the removal of capillary 
blockages, aid wound perfusion and reduce tissue hypoxia. Indeed, research has 

demonstrated L. sericata larval ES to degrade fibrin, fibronectin, laminin and collagens 
I, III, IV and V (Chambers et al., 2003). However, many people believe that larvae do 

actively stimulate wound healing (Sherman, Hall and Thomas, 2000). It has been 

proposed that granulation tissue responds positively to the physical stimulation of larvae 

crawling over the wound (Sherman, Hall and Thomas, 2000). The variety of enzymes, 

allantoin, urea and ammonium bicarbonate by-products of metabolism that the larvae 

exude may also exert bioactivities upon the wound bed (Robinson, 1937,1940; 

Sherman, Hall and Thomas, 2000). For example, trypsin-like enzymes that have been 

discovered within ES (Chambers et al., 2003) may influence healing through activating 

membrane-bound protease-activated receptors (PARs). Part of the G-protein-coupled 

receptor family (Dery and Bunnett, 1999) and expressed by fibroblasts, keratinocytes, 

endothelial cells and platelets, PARs are activated when their attached ligands are 

cleaved by trypsin-like enzymes such as thrombin. Once activated, PARs may 

participate in a number of processes involved in wound healing (Dery and Bunnett, 

1999). The proven degradative activity of larval ES enzymes against many ECM 

components may also influence the wound through the release of bioactive peptides. 
For example, fibrinopeptides behave as chemotactic factors for neutrophils (Clark, 

1996). 

Research by Prete (1997) has shown that human fibroblast proliferation actually 
increases in the presence of L. sericata haemolymph and alimentary secretion. In 

addition, these larval extracts appeared to enhance proliferation of fibroblasts already 

stimulated by the mitogens EGF and interleukin-6 (IL-6). It may be possible that, in 

addition to its own direct actions, larval ES may act synergistically with mitogenic 
factors produced by the body, thus accelerating granulation tissue formation. 
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1.6 Aims and objectives 

As indicated in section 1.3, fibroblasts play many roles in wound healing. They also 

appear to be implicated in impaired healing. Chronic wounds that have been treated 

with maggots often demonstrate an improvement in granulation tissue formation. Due 

to the roles of fibroblasts in tissue formation and impaired healing, this observed effect 

may at least in part be explained by an alteration in fibroblast activity. Increasing the 

rate at which fibroblasts migrate into the wound space may be one way by which the 

advancement of granulation tissue may be improved. As shown in section 1.2.1, the 

speed of cell migration is related to the strength of cell adhesion to the surface. Hence, 

the influence of L. sericata larval ES upon fibroblast adhesion and migration was 
investigated in both two-dimensional and three-dimensional environments. This was 

with the aim of elucidating the mechanisms by which L. sericata larvae stimulate tissue 

formation within the wound and from there, developing new products that may be used 

to promote wound healing. 
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CHAPTER 2 

Materials and Methods 

From the materials and methods utilised for this study, those which were regarded as 

involving the practice of standard, well-established techniques are included within this 

chapter. This encompasses mammalian cell culture and passage, microscopy, 
fluorescent staining of cells for microscopic examination, gel electrophoresis and the 

coating of surfaces with adhesive, extracellular matrix proteins. Additionally, this 

chapter includes a description of how L. sericata larval excretions/secretions (ES) were 

collected and characterised, as this applies to all of the impending chapters which 

present and discuss the results that were obtained during the period of study. Novel 

methods that were developed for particular pieces of research and therefore not 
described here are presented in the appropriate chapter. 

2.1 Materials 

Human, dermal, neonatal fibroblasts were provided by TCS Cellworks®, Claydon, 

Buckinghamshire, UK and sterile, first instar Lucilia sericata larvae were obtained from 

Larve, Surgical Materials Testing Laboratory, Cardiff, UK. Throughout all 

experimental work, tissue culture grade plastic dishes, plates and flasks were supplied 

by Nunc, Life Technologies Ltd, Paisley, UK. All other substances were supplied by 

Sigma®, Poole, Dorset, UK, unless otherwise stated. 
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2.2 Methods 

2.2.1 Fibroblast cell culture 

Human, dermal, neonatal fibroblast cells were monolayer cultured within T75 flasks 

containing standard cell culture medium (Dulbecco's Modified Eagle's Medium 

(DMEM) (GibcoTM Invitrogen Ltd, Paisley, UK), 10 % foetal calf serum (FCS), 

antibiotic/antimycotic solution (100 units/ml penicillin G, 100 µg/ml streptomycin 

sulphate and 0.25 pg/ml amphotericin B) and 2 mM L-glutamine). Cells were incubated 

at 37°C in a5% (v/v) CO2 humidified atmosphere and cell culture medium was 

replaced three times a week. Typically, cells were passaged once every 7 to 10 days, 

when they were approximately 70 % to 80 % confluent. This was undertaken by 

suspending the cells, using 0.25 % trypsin/ethylenediaminetetraacetic acid (EDTA) 

(0.02 %), before splitting them 1 in 10 or 1 in 20 within the standard cell culture 

medium described above. Occasionally, cells were cryopreserved for long term storage. 

This was achieved by re-suspending freshly trypsinised cells within FCS containing 10 

% dimethyl sulphoxide (DMSO). Following re-suspension, cells were immediately 

transferred to an appropriate freezer and left overnight to reach -80°C. The frozen cells 

were then stored in liquid nitrogen until required. Cells between passage numbers 5 and 

10 were used for experiments. 

For experiments, fibroblasts were suspended within serum-free medium. This was to 

ensure that any larval ES subsequently added to the medium retained its full activity, as 

explained in section 2.2.2. The cells were also counted, using an improved Neubauer 

double cell haemocytometer (Weber Scientific International, W. Sussex, UK), and their 

viability determined by Trypan blue exclusion. First they were trypsinised, as 

previously mentioned, and then suspended within standard cell culture medium 

containing 10 % FCS to neutralise the trypsin. The cells were then pelleted by 

centrifugation at 180 g, using a Sigma® 3K15 laboratory centrifuge. Medium 

supernatant was then aspirated and cells washed in sterile, phosphate buffered saline 

(PBS) (pH 7.3) (for formula, see Appendix). Subsequently, cells were pelleted again by 

centrifugation as before. PBS supernatant was removed and the cells re-suspended 
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within 5 ml of serum-free cell culture medium. This suspension (20 µl) was then mixed 

with 60 µl serum-free cell culture medium and 20 pl Trypan blue before being placed 

into the haemocytometer. Those cells that had absorbed the blue dye were considered 

non-viable. Minimum acceptable cell viability of the population was taken as 80 %. 

Once the number and viability of the cells suspended within the serum-free medium had 

been assessed, an appropriate volume of the cell suspension was taken according to how 

many viable cells were required. This sample was then diluted with further serum-free 

cell culture medium to the requisite cell density. 

2.2.2 Luci/ia sericata larval excretion/secretion collection and characterisation 

Secretions (hereon in referred to as excretions/secretions (ES) as the methods by which 

the larvae extrude these substances are uncertain) were collected from sterile, freshly 

hatched Lucilia sericata larvae in an aseptic environment. Approximately four hundred 

larvae were washed, two to four times, in 1 ml of PBS for 30 minutes at room 

temperature (RT) to recover ES products. Larvae were rested for one hour between 

washings. ES collections were pooled and passed through a 0.2 µm pore diameter 

Minisart high flow syringe filter (Sartorius AG, Goettingen, Germany) before use and 

stored at "20°C. 

The protein concentration and proteolytic activity of each batch of ES collected was 
determined. Protein content was estimated using the Bio-Rad (Hercules, CA, USA) 

protein colorimetric assay based upon the Bradford method (Bradford, 1976). Here, a 

sample of ES was removed from storage and thawed at RT. Bovine serum albumin 
(BSA), serially diluted with PBS, was also prepared. The ES and each BSA sample 

were then individually diluted 1 in 10 with PBS, containing 22 % Bio-Rad protein assay 
dye reagent concentrate, and left for 5 minutes at RT. Absorbance at 595 nm 

wavelength by each sample was then measured, using a Dynex MRX microtitre plate 

spectrophotometer, and the results from the BSA samples used to plot a protein standard 

curve. ES protein concentration was determined by comparison with the standard curve 

(Fig. 2.1 and Table 2.1). ES proteolytic activity was assessed through the employment 

of a fluorescein isothiocyanate (FITC)-casein digest assay (Twining, 1984). Here, a 

sample of the ES collected was diluted 1 in 20 with 0.1 M Tris-HCI buffer (pH 8.5) 
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larval ES protein concentration. ES batch tested is as indicated above each graph. With 
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refer to ES absorbance at 595 nm. 
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ES Mean ES protein 
FITC-casein digest: ES specific activity 

fluorescence caused by ES (fluorescence/mg ES 
batch concentration (µg/ml) 

activity protein) 

A 61.28 273.51 7.14 x 106 

B 51.26 247.28 7.72 x 106 

C 50.64 208.23 6.58 x 106 

D 47.98 295.87 9.87 x 106 

E 161.74 610.36 6.04 x 106 

Table 2.1 Characterisation of batches of ES collected separately and from different 

consignments of L. sericata larvae. Details include the mean protein concentration of 

each batch, as estimated using the Bio-Rad protein colorimetric assay. The specific 

proteolytic activity of the ES collected is also shown. This was calculated using the 

known protein concentration and the fluorescence generated from the digestion of 

FITC-casein conjugates. For example, ES batch D yielded a mean fluorescence of 
295.87 from FITC-casein digestion. The amount of ES protein responsible for the 

fluorescence detected, as calculated from the volume of the sample measured, was 

0.030 µg. Hence, the fluorescence/mg ES protein was equal to [1 / (3 x 10'5)] x 295.87 

=9.87 x 106. 
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containing 5.3 % FITC-casein conjugate, made up as previously described (Sarath et al., 

1989) (see Appendix), and incubated at 37°C for two hours. 5% trichloroacetic acid 

(TCA) was then added and incubated for 1 hour at RT to precipitate undigested protein. 

Protein precipitate was pelleted and a sample of the supernatant mixed 1 in 10 with 0.5 

M Tris-HC1(pH 8.8). Fluorescence was measured using a Dynex MFX microtitre plate 

fluorometer (485 nm excitation/538 nm emission wavelengths). Fluorescence detected 

from an ES blank sample was subtracted. The specific activity (fluorescence/mg 

protein) of the batch of ES tested was then calculated. The results are shown in Table 

2.1. 

The effect of FCS upon the proteolytic activity of larval ES was also assessed. Here, 

serum-free cell culture medium was prepared. Cell culture medium containing 20 % 

FCS was also prepared and then serially diluted at a ratio of 1: 1 in serum-free medium. 

80 µl of each serial dilution or serum-free medium was then mixed with 20 µl of serum- 

free medium which contained enough ES (from stock A) to provide 1 µg ES protein. 

For each sample, this yielded final concentrations of 10 pg/ml ES and either 16 %, 8 

4 %, 2 %, 1% or 0% FCS. This procedure was repeated three times to provide three 

replicate samples for each FCS percentage tested. The proteolytic activity of ES 

exposed to each FCS percentage concentration was then measured by following the 

FITC-casein digest assay protocol described above. For this purpose, each replicate 

sample was diluted 1 in 20 with 0.1 M Tris-HC1 buffer (pH 8.5) containing 5.3 % FITC- 

casein conjugate (Appendix). As shown in Fig. 2.2, ES exposed to 0.5 % FCS 

displayed 31.6 % of its proteolytic activity when not exposed to FCS. ES exposed to 8 

% and 16 % FCS exhibited 2.1 % and 1.4 % activity respectively, indicating a near- 

complete inhibition of activity. It was therefore decided to conduct experiments, 

concerning the effects of ES upon human dermal fibroblasts, in serum-free conditions. 

This measure was taken to ensure that the cells would be exposed to the full activity of 

ES. 
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Figure 2.2 Effect of FCS upon ES proteolytic activity, as measured using the FITC- 

casein assay. Columns refer to the y axis on the left hand side of the graph which plots 

the relative fluorescence resulting from the proteolytic degradation of FITC-casein due 

to the actions of ES. The line refers to the y axis on the right hand side of the graph 

which plots the percentage activity of ES in relation to its activity in the absence of 
FCS. 
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2.23 Extracellular matrix protein coating of surfaces 

Bovine fibronectin from a 0.1 % solution stock or acid solubilised rat-tail collagen type 

I (Upstate®, Buckingham, UK) from a 0.37 % solution stock was used to coat tissue 

culture grade plastic well plates. Following dilution with PBS to an appropriate 

concentration, the protein solution indicated was added to each well and incubated 

overnight at 37°C. Wells were then aspirated of remaining solution and washed with 
PBS. Prior to collagen coating, wells were first incubated with 0.01 % poly-L-lysine 

solution for 15 minutes at RT, before being aspirated, washed twice with PBS and left 

to air dry. 

2.2.4 Microscopy 

Within two-dimensional assays, cells were observed through an inverted Leica 

(Cambridge, UK) DM IRB or DM IRBE microscope, using phase contrast or 
fluorescence. Images were captured by an attached digital camera (Leica DC 200 or 
JVC TK C1380) and analysed by Leica Qwin software. 

When fluorescence was used, cells were stained with 5-chloromethylfluorescein 

diacetate (CelltrackerTM green CMFDA, Molecular Probes, Eugene, OR), before being 

incorporated into experiments. Once in contact with a cell, CelltrackerTM freely diffuses 

through the cell membrane and undergoes what is thought to be a glutathione S- 

transferase-mediated reaction within the live cell cytoplasm (refer to company 
literature). This results in the production of membrane-impermeant glutathione- 
fluorescent dye adducts and hence the emission of a fluorescent signal that illuminates 

the whole cell when viewed through standard fluorescein filters. In order to stain the 

cells, 50 µg of lyophilised Celltracker was warmed to RT and then reconstituted in 

DMSO to 10 mM. Cell culture medium that had been aspirated from a flask of 

confluent cells to be stained was then added, diluting CelltrackerTM to 10 µM. The 

medium containing the dye was then returned to the cells and incubated for 45 minutes 

at 37°C in a5% (v/v) CO2 humidified atmosphere. The medium was then replaced 

with fresh, standard cell culture medium and cells incubated for a further 45 minutes. 
After this period, the medium was aspirated and the cells washed twice with PBS. They 

were then trypsinised in the usual way and incorporated into the experiment. 
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Within three-dimensional assays, cells were observed, as before, through an inverted 

Leica (Cambridge, UK) DM IRB microscope using phase contrast. They were also 
imaged using a confocal Leica TCS4D system incorporating a Leica DMRBE upright 
fluorescence microscope. For this purpose, cells were fixed in 4% paraformaldehyde 
(Appendix) for 20 minutes. If they had not already been stained with Celltracker " 

green CMFDA, as outlined above, the cells were then stained with FITC-phalloidin 

conjugate and propidium iodide (PI). This was to allow for confocal imaging of the 

cytoskeletal actin and nuclei respectively. Staining was achieved by first incubating the 

fixed cells in ice-cold permeabilising solution for 10 minutes. Next, a 10 µl aliquot of a 
FITC-phalloidin stock solution was diluted 1 in 100 with PBS containing 1% BSA. 

This was then added to the samples. After 30 minutes, 1% BSA/PBS containing 10 

pg/ml PI was added and left for 1 minute. Assays were washed 3 times with 1% 

BSA/PBS before and after each of the above steps. Refer to the Appendix for further 

details of the solutions used. Before imaging, samples were mounted with a coverslip 

as stated. 

2.2.5 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE, undertaken according to the method of Laemmli (1970), was used to 

investigate the proteolytic activity of ES upon fibronectin and collagen. ES/ECM 

protein samples, prepared as outlined in the text, were diluted 1 in 10 with ice-cold 

acetone and left overnight at -20°C to precipitate the protein. The precipitate present 

within each sample was then pelleted by centrifugation. Subsequently, the supernatant 

was removed from each sample and replaced with 20 µl reducing sample buffer 

(Appendix). 10 µl of SDS 6H molecular weight standards was then obtained. The 

standards and the prepared samples were incubated at 99°C for -5 minutes. The 

samples and standards were then loaded into a4% acrylamide stacking gel in 

preparation for resolving through a 12 % acrylamide gel. The stacking and resolving 

gels had previously been prepared according to the recipes outlined in the Appendix and 

polymerised between plates within Bio-Rad Mini-Protean II cell apparatus. A current 

of 20 mA was applied across each gel in order to separate any fragments within each 

sample. Resulting protein bands were then stained with Coomassie blue and their 

positions compared with those of each of the molecular weight standards. 
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2.2.6 Statistical analysis 

Data were analysed for statistically significant differences using GraphPad Instate' or 

GraphPad Prism TM software. Throughout, data were tested for normal distribution 

before pursuing further analysis. If necessary, the data were transformed, by logging or 

square rooting, in order to generate normal distribution. The appropriate parametric or 

non-parametric tests were then applied. Statistical significance was taken as P 0.05. 
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CHAPTER 3 

Fibroblast Adhesion to Extracellular Matrix Proteins 

3.1 Introduction 

Impaired healing results in the formation of an open, ulcerated, chronic wound. Lucilia 

sericata larvae, or greenbottle fly maggots are sometimes applied to such wounds where 

conventional treatments have failed. It may be deduced from clinical observations that 

the larvae aid wound healing by removing necrotic tissue, disinfecting the wound and 

actively promoting granulation tissue formation (Thomas et al., 1996; Church, 1999; 

Wolff and Hansson, 1999; Bonn, 2000; Sherman, Hall and Thomas, 2000; Mumcuoglu, 

2001; Wollina et al., 2002). Despite such observations being widespread, little research 

at the biological level has been undertaken to identify the mechanisms by which larvae 

accomplish this. However, recently it has been found that L. sericata larval 

excretions/secretions (ES), which are continually exuded into the wound as part of the 

larva's feeding strategy, contains high levels of proteolytic activity. Such activity has 

been shown to act upon common dermal extracellular matrix (ECM) components 
(Chambers et al., 2003). As such, the larvae may inadvertently aid healing by 

introducing proteinases into the wound, which then proceed to initiate changes in the 

healing response. Hence, the bio-active properties of ES were examined. Attention was 

paid to the effects of ES upon human dermal fibroblast behaviour in the presence of 

some common adhesive ECM proteins that have been found liable to ES proteolytic 

activity. 

The human, dermal fibroblast was chosen for investigation because it plays a central 

role in orchestrating successful wound healing. As a major cellular constituent of the 

41 



dermis, fibroblasts are responsible for re-modelling the existing dermal matrix and 

synthesising new matrix (Clark, 1996). They are also responsible for releasing growth 
factors and cytokines to stimulate neighbouring fibroblasts and to orchestrate re- 

epithelialisation and angiogenesis (Clark, 1996). As such, fibroblasts play a pivotal role 
in the expansion of granulation tissue into the wound space. They are also responsible 
for contracting the wound edges together, facilitating wound closure (Tomasek et al., 
2002). Studies have revealed some age-related changes in fibroblast behaviour (Albini 

et al., 1988; Dimri et al., 1995; Ballas and Davidson, 2001) which may contribute to 

impaired healing, particularly when considering that the elderly are prone to non- 
healing wounds. Other studies have described phenotypic differences in fibroblasts 

taken from chronic wounds when compared to those taken from healthy skin (Herrick et 

al., 1996; Hehenberger et al., 1998; Mendez et al., 1998; Ongenae et al., 2000; Raffetto 

et al., 2001; Stanley and Osler, 2001), while others have described differences in the 

behaviour of fibroblasts when exposed to chronic wound fluids (Mendez et al., 1999; 

Malinda and Wysocki, 2000; Weckroth et al., 2001). Further studies have described 

imbalances in the matrix metalloproteinase (MMP) activity within fluids taken from 

chronic wounds (Vaalamo et al., 1996; Weckroth et al., 1996; Cook et al., 2000). As 

fibroblasts release MMPs and their inhibitors, these cells may contribute to such 
imbalances (West, Pereira-Smith and Smith, 1989; Bizot-Foulon et al., 1995; Ashcroft 

et al., 1997). In addition, it has been proposed that fibroblasts regulate the switch from 

acute resolving inflammation to adaptive immunity and tissue repair (Buckley et al., 
2001). Hence, if fibroblasts fail to make this switch, then chronic inflammation and 
impaired healing may result. 

Fibronectin and collagen are two common ECM proteins, both of which are prevalent 

within the wound. Within the dermis, fibroblasts adhere to and migrate along these 

structural proteins, which form a meshwork of fibrils. Fibronectin has been shown to 

facilitate the directional migration of cells into the fibrin clot (Greiling and Clark, 

1997). In in vitro culture, fibroblasts adhere to surfaces coated with these proteins. 
Studies have shown that the strength of adhesion to these surfaces determines fibroblast 

morphology and motility (Dembo and Bell, 1987; DiMilla et al. 1993; Puschel et al., 
1995; Maheshwari et al., 1999; Gaudet et al., 2003). In addition, studies have also 

shown that fibroblasts are unable to proliferate unless attached to a suitable substratum 
(and are therefore termed anchorage-dependent) (Stoker et al., 1968; Benecke et al., 
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1978). Moreover, the expression of MMPs by fibroblasts has been shown to at least in 

part be regulated by the mechanical stress that the cell experiences, this being imparted 

by the rigidity of the substrate that the cell is attached to (Mauch et al., 1989; Lambert 

et al., 1992,1998,2001). Hence, the effect of larval ES upon the adhesion of 

fibroblasts to fibronectin- and collagen-coated surfaces was examined. 

3.2 Methods 

3.2.1 Preliminary observations of fibroblasts exposed to larval ES 

Before any experiments were undertaken, fibroblasts were exposed to larval ES and 

observations recorded. For this purpose, cells were trypsinised and transferred into cell 

culture medium (4.5 % FCS). Following cell counting using a haemocytometer, cells 

were diluted further to a concentration of 90,000 cells/ml. Cell suspension (150 µl) 

containing 13,500 cells was then transferred to each well of a clear, flat-bottomed 48- 

well tissue culture plate. Medium (150 µl, 4.5 % FCS) containing either 10 µg/ml ES 

(taken from ES batch A) or ES blank (an equivalent volume of PBS) was added to each 

well immediately afterwards. Phase contrast images were then taken of the centre of 

each well, using an inverted light microscope, following 72 hours incubation at 37°C. 

3.2.2 Assessment of cellular and larval ES response to filtered cell culture medium 

containing 10 % FCS 

In most experiments, fibroblasts were suspended within serum-free cell culture medium 
before being exposed to larval ES. This is because previous studies, as described in 

Chapter 2.2.2, revealed FCS to inhibit ES proteolytic activity. In some cases, where 

cells were to be seeded upon tissue culture plastic surfaces that had not been pre-coated 

with any adhesive protein, fibroblasts were suspended in medium containing 10 % FCS 

in order to facilitate their adhesion to the surface. However, the medium had first been 

filtered through a centrifugal filter unit containing a 10,000 molecular weight cut-off 
(MWCO) membrane (MilliporeTM), in an attempt to remove any protease inhibitors. In 
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addition, the cells had been pre-adapted to low serum conditions (2 % FCS) through 

reducing the serum present within the medium by 2% at each passage. In order to 

assess the cells' response to this filtered medium, 1 ml or 100 µl of filtered medium 

containing 45,000 cells/ml was added to each well of a clear 12-well tissue culture plate 

or white, opaque 96-well plate respectively. They were then incubated at 37°C for 72 

hours before the medium was aspirated from the wells and replaced with fresh, filtered 

medium. Cells within the 12-well plate were then observed using phase contrast light 

microscopy, while those within the 96-well plate were subjected to the ATP assay in 

order to estimate adhered cell number (see section 3.2.4). In both cases, comparisons 

were made with cells that had been incubated in unfiltered medium containing 5% 

FCS. The proteolytic activity of ES exposed to the filtered medium was also assessed 

using the FITC-casein assay, as described in Chapter 2.2.2. 

3.2.3 Heat treatment of larval ES 

In order to eliminate the proteolytic activity displayed by larval ES, a sample of ES was 

incubated at 100°C for 30 minutes. The solution was then diluted to 10 µg/ml with 

PBS, and its proteolytic activity estimated using the FITC-casein assay, as described in 

Chapter 2.2.2. A comparison was made with the proteolytic activity of untreated ES 

that had been taken from the same batch and had also been diluted to 10 µg/ml using 
PBS. 

3.2.4 Adenosine triphosphate assay 

The ATPLite'm-M assay system (PerkinElmer®, Boston, USA) monitors adenosine 
triphosphate (ATP) levels by utilising the reaction of ATP present within a sample with 

added luciferase and D-luciferin. As shown in Equation 3.1, such a reaction results in 

the production of light. Hence, the intensity of luminescence from a sample assayed 

using this system reflects the amount of ATP present. 

Equation 3.1 
LUCIFERASE 

ATP + D-luciferin + 02 M&. Oxyluciferin + AMP + PPi + CO2 + Light 
(where: ATP = adenosine triphosphate; AMP = adenosine monophosphate; PPi = inorganic phosphate) 
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As living cells produce ATP, this assay kit can be used to estimate the number of cells 

within a sample according to the concentration of ATP present. Here, this assay was 

used to quantify the number of cells adhering to a surface. The standard assay 

procedures were followed as outlined in Fig. 3.1. 

3.2.4.1 A TP and cell number standard curves 

To validate the assay, ATP and cell number standard curves were established using the 

ATPLiteTM-M assay in order to confirm that the luminescence detected displayed a linear 

relationship with the known ATP concentration or cell number present. For the ATP 

standard curves, a vial of lyophilised ATP (provided with the kit) was reconstituted with 

1170 pl water to obtain 10 mM stock solution. An aliquot was diluted in series, using 

water, to give ATP concentrations ranging from 0.625 µM to 20 . tM. The procedure for 

assaying ATP standards, as outlined in Fig. 3.1a, was then followed. The luminescence 

emanating from each well was detected using a FL600 fluorimeter and luminometer 

(Labtech International). Initially, ATP standard curves were established to validate the 

assay system. They were also used in cell adhesion experiments so that relative 

luminescence readings from samples could be converted to ATP concentration values. 

Hence, an ATP dilution series was assayed at each time-point within the experiment 

performed. For the cell number standard curves, 100 pl of cell culture medium (5 % 

FCS) containing cell densities of between 1,500 and 150,000 cells/ml were added to 

wells of a white, opaque 96-well tissue culture plate and incubated for the time stated. 

The procedure for assaying cell adhesion, as outlined in Fig. 3.1b, was then followed 

from stages ii to iv. 

3.2.5 Cellular nucleic acid assay 

The CyQUANT® assay kit (Molecular Probes) quantifies the number of cells present in 

a sample according to the levels of cellular nucleic acids present. This is achieved 

through the use of a green fluorescent dye (CyQUANT GR) which exhibits an 

enhancement of fluorescence when bound to cellular nucleic acids. Here, this assay was 

used to quantify the number of cells adhering to a surface, providing complementary 

results to those obtained using the ATP assay. 
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b. For cell adhesion experiments, 
a. For A TP standards: following completion of incubation 

period and aspiration of medium: 

i. Prepare white, opaque 96-well plate 
containing 100 µl serum-free / filtered 

medium per well. 

i. Add 100 µl serum-free / filtered 
medium 

ii. Add 50 µl mammalian cell lysis 
solution. Shake the plate for 5 minutes 

at 700 mm 

iii. Add 10 µl of ATP dilution series. 
Shake the plate for 5 minutes at 700 rpm 

iv. Add 50 µl substrate solution. Shake 
the plate for 5 minutes at 700 rpm 

v. Dark adapt the plate for 10 minutes 
and measure luminescence 

Figure 3.1 Standard ATP assay procedures. 

ii. Add 50 µl mammalian cell lysis 
solution. Shake the plate for 5 minutes 

at 700 rpm 

iii. Add 50 µl substrate solution. Shake I 
the elate for 5 minutes at 700 rpm 

iv. Dark adapt the plate for 10 minutes 
and measure luminescence 
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3.2.5.1 Cell number standard curves 

Cell number standard curves were established using the CyQUANT® assay in order to 

confirm that the fluorescence emitted by the CyQUANT GR dye displayed a linear 

relationship with the known cell number present. Initially, serial dilutions of cell 

suspensions, from 244 cells/ml to 500,000 cells/ml, were tested in order to validate the 

assay system. Here, 100 pt of cell suspension was added to each well of a black 96-well 

plate. The plate was then frozen and stored at -80°C until required. Following thawing 

of the plate at RT, 200 µl of distilled water containing 7.5 % cell lysis buffer (provided 

in the assay kit) and 0.4 % CyQUANT GR dye was added to each well. The 

fluorescence emitted from each well was then detected using the FL600 fluorimeter and 
luminometer (485 ± 20 nm excitation/590 ± 35 nm emission wavelengths). Following 

validation, standard curves of 244 cells/ml to 250,000 cells/ml were used for the 

conversion of relative fluorescence readings from samples within cell adhesion 

experiments to cell densities. 

3.2.6 Quantification of fibroblast adhesion in response to larval ES 

Confluent fibroblasts (70 %- 80 %) were trypsinised and suspended in cell culture 

medium containing 10 % FCS, to neutralise remaining trypsin. The serum was then 

removed, as it had already been shown to inhibit ES proteolytic activity (see Chapter 

2.2.2). This was undertaken as described in Chapter 2.2.1, leaving cells re-suspended 

within serum-free cell culture medium or where specified, within medium containing 10 

% FCS which had previously been filtered through a 10,000 MWCO membrane (refer 

to section 3.2.2). The cells were then counted using a haemocytometer and diluted with 
further serum-free or filtered medium to 90,000 cells/ml. Meanwhile, heat-treated or 

untreated ES from the designated batch was diluted to the required concentration using 

serum-free or filtered medium. This was then mixed at a ratio of 1: 1 with the cell 

suspension, leaving a final cell density of 45,000 cells/ml and the ES concentration 
indicated. Aliquots (100 µl) were then added to each well of a white, opaque 96-well 

tissue culture plate (for ATP assay) or each well of a black 96-well tissue culture plate 
(for CyQUANT® assay) and incubated at 37°C for the time stated. Where indicated, the 

wells had previously been coated with either 10 pg/ml fibronectin (1 µg added per well) 
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or 30 µg/ml collagen type I (3 µg added per well), following the procedure outlined in 

Chapter 2.2.3. In some instances before the addition of cells, fibronectin- or collagen- 

coated wells were exposed to either 10 pg/ml untreated ES or ES blank (PBS substitute) 

at 37°C for the time stated, and then washed three times with PBS. These samples 

therefore consisted of ECM protein-coated surfaces pre-exposed to ES and cells which 

remained naive to ES. 

Following the indicated period of incubation, wells within the white 96-well tissue 

culture plates were aspirated of medium, to remove non-adherent cells, and then assayed 
for ATP content, using the ATPLiteTM-M assay kit. The procedure followed was as 

outlined in Fig. 3.1b. Resulting luminescence readings were converted to ATP 

concentration using the appropriate ATP standard curve. Cells plated within the black 

96-well tissue culture plates were aspirated of medium, frozen at -80°C and then thawed 

at RT when required. After they had been thawed, 200 pl of distilled water containing 

7.5 % cell lysis buffer (provided in the assay kit) and 0.4 % CyQUANT GR dye was 

added to each well. As with the cell number standard curves (section 3.2.5.1), the 

fluorescence emitted from each well was then detected using the FL600 fluorimeter and 

luminometer (485 ± 20 nm excitation/590 ± 35 nm emission wavelengths). Resulting 

fluorescence readings were converted to cell numbers using the appropriate cell number 

standard curve. 

3.2.7 Effect of larval ES upon fibroblast cell morphology and spreading over ECM 

protein-coated surfaces 

Here, the visible alterations in fibroblast morphology caused by the presence of ES were 

quantified. Firstly, wells of a 48-well tissue culture plate were coated with either 10 

pg/ml fibronectin (3 µg added per well) or 30 pg/ml collagen type 1 (9 µg added per 

well), following the procedure outlined in Chapter 2.2.3. A flask of 70 %- 80 % 

confluent fibroblasts, pre-stained with CelltrackerTM green CMFDA as outlined in 

Chapter 2.2.4, were trypsinised and the cells suspended in 10 % FCS to neutralise the 

trypsin. The cells were then re-suspended within serum-free cell culture medium at a 
density of 10,000 cells/ml. Meanwhile, untreated or heat-treated ES from batch D was 
diluted to 20 pg/ml within serum-free medium. Alternatively, an equivalent volume of 
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PBS was added to serum-free medium (control). Medium containing either the 

specified ES or PBS was then mixed at a ratio of 1: 1 with the cell suspension. Aliquots 

(300 µl) were then added to each of three fibronectin- or collagen-coated wells, such 

that 1,500 cells were added to each well in the presence or absence of 10 µg/ml ES. 

The cells were then incubated for 4 hours at 37°C. Using fluorescence microscopy, 10 

random images were taken of each well, providing a total of 30 images of cells exposed 

to each condition. The images were then analysed using Leica QUIPS software (Leica 

Microsystems UK, Milton Keynes, UK) to assess the following morphological 

parameters of each cell that was fully visible: area, length, breadth, perimeter and 

roundness. This procedure involved using the appropriate tools within the software 

programme to hand-draw around the circumference of each cell, thus marking its shape 

and size for computational analysis. Roundness was defined as a shape factor, which 

gives a minimum value of unity for a perfect circle. The shape factor was calculated as 
[cell perimeter2 (4ic x cell area x 1.064)''], where 1.064 is the digitisation adjustment 
factor to correct for the corners produced by the digitisation of the cell perimeter. 

3.2.8 Proteolytic degradation of ECM proteins by larval ES: investigation using 
SDS-PAGE 

Here, ES containing-medium that was used to pre-incubate fibronectin- or collagen- 

coated surfaces before the addition of cells, as described in section 3.2.6, was prepared 

and resolved through a 12 % acrylamide gel, as outlined in Chapter 2.2.5. Samples 

containing fibronectin or collagen alone were also run through the gel for comparison. 
In a separate experiment, 1 mg/ml bovine fibronectin stock was diluted with PBS 

containing either untreated or heat-treated ES from batch D, such that final 

concentrations of 100 pg/ml fibronectin and 0.1 pg/ml ES were achieved. This was 

then incubated at 37°C for the time stated. The samples were then prepared for gel 

electrophoresis as outlined in Chapter 2.2.5 and resolved through a 12 % acrylamide 

gel. Samples containing only 100 pg/ml fibronectin or 0.1 pg/ml ES were also 

subjected to electrophoresis for comparison. In all cases, resulting bands were 

visualised by staining with Coomassie blue. 
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3.2.9 Statistical analysis 

Cell adhesion data (estimations of ATP content or cell number) were analysed for 

statistically significant differences using GraphPad Prism TM software. Here, whole 
datasets were initially tested using two-way ANOVA. Data from each time-point were 

then compared using one-way ANOVA and Tukey-Kramer's multiple comparison tests. 

Cell morphological data (resulting from QUIPS analysis) were not normally distributed 

and were therefore compared using the non-parametric analysis of variance equivalent 

of Kruskal-Wallis ANOVA and Dunn's multiple comparisons test. Again, GraphPad 

Prism TM software was used. Throughout, statistical significance was taken as P: 5 0.05. 

3.3 Results 

The findings of Chambers and colleagues (2003) demonstrate larval ES to be rich in 

proteolytic activity, including trypsin-like and chymotrypsin-like serine proteinase 

activity. They also demonstrate the ability of ES to degrade common dermal ECM 

proteins, including collagen and fibronectin. Fibroblasts are known to adhere to such 

proteins within the dermis. In addition, porcine-derived trypsin, in combination with 
EDTA, is used to detach cells from tissue culture grade plastic surfaces during standard 

cell passage procedures (see Chapter 2.2.1). The influence of ES upon fibroblast 

adhesion and morphology in the presence of these ECM proteins was therefore 

examined. 

3.3.1 Preliminary observations of fibroblasts exposed to larval ES 

Preliminary studies, concerning the observation of fibroblasts plated upon tissue culture 

grade plastic surfaces in low serum conditions, revealed that the presence of 10 µg/m1 
ES altered fibroblast morphology. As shown in Fig. 3.2, after 72 hours incubation in 

medium containing ES, cells appeared less elongated than those incubated in the 

absence of ES. Many had also aggregated, while some were floating in suspension. 
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Figure 3.2 Representative images of fibroblast cells following 72 hours incubation in 

the absence (top) or presence of ES (10 µg/ml) (bottom). Cell culture medium 

contained 2.5% FCS. The presence of ES inhibited fibroblast spreading across the 

surface. As indicated by the arrow, large multi-cellular aggregates also formed, 

indicating inhibition of cell adhesion to the surface. 
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These observations lead to the development of assays capable of quantifying the 

number of cells adhering to various surfaces. 

3.3.2 Validation of quantitative cell adhesion assays 

3.3.2.1 A TP assay 

Here, the ATPLiteTM-M luminescent ATP detection assay kit was used to quantify the 

number of cells present in a sample. In order to assess the assay's sensitivity to cell 

number and linearity of response, serial dilutions of a known fibroblast cell density 

were tested. A dilution series of the ATP standard solution provided with the kit was 

also tested. These procedures were repeated in order to confirm reproducibility. As 

shown in Fig. 3.3 the relative intensity of luminescence detected from the ATP standard 
dilution series exhibited a close linear relationship with the ATP concentration present. 
This is exemplified by the high R-squared value (R2) (also known as the coefficient of 
determination) for the linear trendline drawn. 

An experiment undertaken to assess the ATP assay's sensitivity to cell number revealed 

that the relative luminescence detected from each sample of cells immediately after 

plating displayed a strong linear relationship with the density of cells present (Fig. 

3.4a). This was the case for the entire range of cell seeding densities tested, from 1,500 

cells/ml to 150,000 cells/ml, as exemplified by the high R2 value of the linear trendline 

drawn. However, following 48 hours incubation (Fig. 3.4b), the linear relationship 
between initial cell-seeding density and luminescence was considerably weaker, as 

shown by the lower R2 value. It appeared that at the higher cell seeding densities 

(120,000 cells/ml to 150,000 cells/ml), luminescence and therefore the assumed ATP 

levels were levelling off, reaching a plateau. This may have been an indication that the 

cells, which were at a high density to begin with, had rapidly reached confluence over 

the 48 hour incubation period thus inhibiting further proliferation and continuing rises 
in ATP levels. Luminescence intensities and therefore ATP levels across the lowest cell 

seeding densities (1,500 cells/ml to 15,000 cells/ml) appeared to be similar. In fact, as 

shown in Fig. 3.4c, the intensity of luminescence detected after 48 hours was actually 

slightly lower than the values recorded at 0 hours. As the cells were seeded at such low 
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Figure 3.3 Representative ATP standard curve. Each data point represents the mean 

value of three replicate samples. R2 value of the linear trendline shown. 
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Figure 3.4 A representation of the relationship between fibroblast cell seeding density 

and luminescence intensity resulting from application of the ATP assay after 0 hours 

incubation (a) and 48 hours incubation (b). Comparison between results from a. and b. 

is shown in c. Data points represent the mean value of three replicate samples. R2 

value of each linear trendline is shown. 

54 

0 4m- 

0 15000 30000 450DO 60000 75000 90000 105000 120000 135000 150000 

Cell seeding density (cells/ml) 

0 i" 0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000 

Cell seeding density (cellstml) 

0 
1yß ý1ý ý hýo 'ý a`'e 6" 

//f/ l 

Cell seeding density (cells/ml) 

U0h 048h 



seeding densities, the decrease in luminescence may have been indicative of the cells 
failing to establish viable populations. Samples containing moderate cell seeding 
densities from 45,000 cells/ml to 90,000 cells/ml appeared to sustain linear increases in 

the intensity of luminescence recorded over the 48 hour incubation period. This 

indicated that although the cells had proliferated over this time, they had not attained 

confluency. Similar results were obtained when the experiment was repeated. 

Based upon these results, the ATPLiteTM-M luminescent ATP detection assay kit was 

adopted for quantifying fibroblast cell adhesion in response to ES. It was also decided 

that for such experiments, cells should initially be seeded at 45,000 cells/ml. This is 

because, according to the results shown in Fig. 3.4, such a population density should 

allow for linear increases in the detected luminescence as the cells proliferate over 48 

hours. 

3.3.2.2 Cellular nucleic acid assay 

Here, the CyQUANT® cell proliferation assay kit was used to quantify cell numbers 

according to the levels of cellular nucleic acids present. In order to assess the assay's 

sensitivity to cell number and linearity of response, serial dilutions of a known 

fibroblast cell density were tested. As shown in Fig. 3.5, the relative intensity of 
fluorescence detected from samples exhibited a close linear relationship with the cell 
density present. Linearity was maintained across a broad range of cell densities, from 

244 cells/ml to 250,000 cells/ml. This is exemplified by the high R2 value for the linear 

trendline drawn. The CyQUANT® assay procedure was therefore adopted in order to 

assess the number of cells remaining adhered to a particular surface in the presence of 
ES. 

3.3.3 Preliminary studies of cell adhesion using ATP and cellular nucleic acid 

assays 

Use of the ATP and CyQUANT® assays initially involved investigating the adhesion of 

cells upon tissue culture plastic surfaces in the presence of different protein 

concentrations of ES (batch B). As the presence of serum within the medium inhibits 
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Figure 3.5 Representative fibroblast cell number standard curve derived using the 

CyQUANT® assay procedure. Each data point represents the mean value of three 

replicate samples. R2 value of the linear trendline shown. 
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ES proteolytic activity (Fig. 2.2), the existence of serum-free conditions would therefore 

have been ideal. However, a concern was that cell adhesion to the bare, plastic surface 

would have been severely curtailed in a serum-free environment as there would have 

been no proteins present to provide an adhesive coating over the plastic. It was 

conjectured that the protease inhibitors present within serum are of a large size. For 

example, the protease inhibitor a2 macroglobulin is a 772 kDa serum protein which 
displays an almost universal specificity for various proteolytic enzymes (Abe, Shinmei 

and Nagai, 1973; Neurath, 1989). Hence, in an attempt to remove such inhibitors, 

medium containing 10 % FCS was filtered through a 10,000 MWCO membrane before 

being introduced to the cells. As shown in Fig. 3.6, filtration of medium containing 
FCS eliminated its inhibitory activity over the larval ES proteinases. Although curtailed 
in their growth and adhesion (Fig. 3.7), many fibroblasts that had previously been 

adapted to low-serum conditions succeeded in adhering to the plastic surface whilst 

within the 10,000 MWCO filtered medium (Fig. 3.8). However, it must be noted that 
here a control for the absence of FCS was missing. Hence, the benefit of using filtered 

medium over medium in which serum is absent could not be substantiated. In addition, 

the filtered and unfiltered media should have contained the same percentage of FCS 

before their respective treatments. Nevertheless, ATP and CyQUANT® assays that 

were undertaken to quantify the effect of ES upon cell adhesion to uncoated tissue 

culture plastic were conducted in the presence of filtered medium. As shown in Fig. 

3.9a, levels of ATP within samples displayed a dose response to the concentration of ES 

present. As the concentration of ES increased, the levels of ATP decreased. Results 

from the CyQUANT® assay displayed a similar trend in total nucleic acid content, 

confirming a dose-dependent decrease in cell adhesion (Fig. 3.9b). In both assays, 10 

pg/ml ES clearly elicited a substantial decrease in cell adhesion. Hence, this 

concentration of ES was included within subsequent experiments, as described below. 

3.3.4 Heat treatment of larval ES to eradicate proteolytic activity 

Before undertaking work to investigate the effect of ES upon fibroblast behaviour, a 

sample of ES was heat-treated, as described in section 3.2.3, to eradicate its proteolytic 

activity through protein denaturation. Thus, in comparing heat-treated ES with the 

untreated native ES, the contribution of ES proteolytic activity towards any observed 

effect upon cells or protein-coated surfaces could be discerned. Results from the FITC- 
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Figure 3.6 Proteolytic activity of ES (taken from batch B- refer to Table 2.1) in the 

presence of media containing different concentrations of FCS, pre- and post-filtration 
through a 10,000 molecular weight cut-off (MWCO) membrane. Activity measured 

using the FITC-casein assay as described in Chapter 2.2.2. Each value represents the 

mean of three replicate samples. 
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Figure 3.7 Luminescence intensities representing the relative numbers of fibroblasts 

adhered to tissue culture plastic, as measured using the ATP assay. Measurements 

taken following 72 hours incubation of the cells in medium (percentage FCS content 
indicated) that was unfiltered or filtered through a 10,000 MWCO membrane. Each 

value represents the mean of three replicate samples. 
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Figure 3.8 Representative images of fibroblasts adhered to tissue culture plastic in the 

medium indicated and for the times indicated. Medium containing 10% FCS was 
filtered through a 10,000 MWCO membrane. 
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casein assay revealed that heat-treated ES possessed negligible proteolytic activity 

against the substrate (Fig. 3.10). As shown, supernatant from FITC-casein exposed to 

heat-treated ES exhibited similarly low levels of fluorescence to that taken from 

substrate exposed to an ES blank solution (PBS replacement). Supernatant from 

substrate exposed to untreated ES exhibited substantially higher levels of relative 
fluorescence. 

3.3.5 Effect of larval ES upon fibroblast adhesion to fibronectin 

3.3.5.1 A TP and cellular nucleic acid assays 

The effects of larval ES (from batch C) upon fibroblast cell adhesion to a fibronectin- 

coated surface was first examined using the ATPLiteTM-M and CyQUANT® assays. 
Following coating of wells of a 96-well plate with bovine fibronectin, serum-free 

medium containing 4.5 x 103 fibroblasts and either 10 pg/ml larval ES (whole, 

untreated or heat-treated) or ES blank (PBS replacement) was added to each well. 
Following the specified period of incubation, wells were aspirated of medium to remove 
detached cells and the number of remaining adhered cells estimated using the indicated 

assay. 

ATP assay results (Fig. 3.11) revealed lower ATP concentrations within wells exposed 
to untreated ES, indicating the presence of a lower number of cells when compared to 

the control (ES absent) over the time course of the experiment. This difference was 

apparent after only 4 hours incubation, up to which point there had been a limited time 
for cell proliferation to take place under either condition. This suggested that the initial 

number of cells adhering to the fibronectin-coated surface was lower in the presence of 

untreated ES. At 24 hours incubation, ATP levels of adhered cells in the presence of 

untreated ES remained similar to the levels recorded at 4 hours incubation. A slight dip 

in the ATP level was recorded at 48 hours incubation, indicating a small loss in cell 

viability or a decrease in the number of cells remaining adhered. Although wells 

exposed to heat-treated ES displayed higher ATP levels than those exposed to the 

untreated ES, they were still appreciably lower throughout the incubation period than 

those measured in the control wells. Differences were noticeable from 4 hours 
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Figure 3.10 FITC-casein assay demonstrating the effect of heat-treatment upon larval 

ES proteolytic activity. Fluorescence resulting from FITC-casein hydrolysis in the 

absence of ES (PBS replacement) or in the presence of 10 µg/ml untreated ES or 10 

pg/ml heat-treated ES. In both instances, ES was taken from ES batch D (refer to Table 

2.1). Each value represents the mean from three replicate samples. 
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Figure 3.11 Mean ATP concentration derived from fibroblasts seeded upon a 

fibronectin-coated surface in the absence (no ES) or presence of 10 µg/ml larval ES 

(untreated or heat-treated) over the incubation period indicated. Each value represents 

the mean of three replicate samples. 
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incubation onwards, indicating that although heat treatment reduced the influence of ES, 

it did not abolish its effects completely. Statistical analysis of all the assay data, across 

all time-points, revealed significant differences between datasets (two-way ANOVA, P< 

0.0001). Examining data at each time-point revealed that significant differences 
jccurred from 4 hours incubation onwards. One-way ANOVA and Tukey-Kramer's 

multiple comparison tests of data collected at 4 hours incubation revealed significant 
differences between ATP levels contained within: control and untreated ES wells (P < 

0.001); control and heat-treated ES wells (P < 0.01); untreated ES and heat-treated ES 

wells (P < 0.05). 

Cellular nucleic acid assay (CyQUANT®) results revealed lower nucleic acid 

concentrations within wells exposed to heat-treated ES and in particular, untreated ES, 

indicating the presence of a lower number of cells when compared to the control (ES 

absent) (Fig. 3.12). However, no appreciable differences were seen until 48 hours 

incubation. Statistical analysis of all the assay data, across all time-points revealed 

significant differences between datasets (two-way ANOVA, P<0.0001). These 

differences were only apparent from 48 hours incubation. Here, one-way ANOVA and 
Tukey-Kramer's multiple comparison tests exposed significant differences between 

numbers of cells contained within: control and untreated ES wells (P < 0.001); control 

and heat-treated ES wells (P < 0.05); untreated ES and heat-treated ES wells (P < 0.01). 

As the ATP assay results revealed clear differences from 4 hours incubation onwards, 
this suggests that the presence of ES may have also reduced cellular metabolic activity 

and hence, cell viability, in addition to decreasing cell adhesion. 

3.3.5.2 Examination of cell morphology 

Fibroblasts pre-stained with CelltrackerT" green CMFDA were seeded upon a 
fibronectin-coated surface in the presence or absence of 10 µg/ml ES (heat-treated or 

untreated). After 4 hours incubation, random images were taken of the cells using 
fluorescence microscopy. These were then examined with Leica QUIPS software to 

assess various morphological features of the cells observed. Table 3.1 states the total 

number of cells that were fully visible within the images taken and hence the number of 

cells that were analysed for the morphological characteristics described. Statistical 
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Figure 3.12 Mean number of adherent fibroblast cells seeded upon a fibronectin-coated 

surface in the absence (no ES) or presence of 10 pg/ml larval ES (untreated or heat- 

treated) over the incubation period indicated. Numbers measured using the 

CyQUANT® assay. Each value represents the mean of three replicate samples. 
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Cell morphological 

characteristic 
ES absent Untreated ES Heat-treated ES 

Area (µm2) 1539.37 572.28 843.13 

Length (µm) 56.92 28.73 38.04 

Breadth (µm) 40.43 26.07 30.86 

Perimeter (µm) 170.24 92.04 116.77 

Roundness 1.38 1.10 1.22 

Number of cells 
255 322 306 

analysed 

Table 3.1 Measurements of morphological characteristics of cells that had been seeded 

upon a fibronectin-coated surface and incubated for 4 hours in the absence of ES or in 

the presence of 10 µg/ml untreated ES or 10 pg/ml heat-treated ES. Median values are 

presented. The number of cells that were analysed is also shown. Roundness refers to 

a shape factor, where a perfect circle = 1. The shape factor was calculated as [cell 

perimeter2 (41r x cell area x 1.064)"1], where 1.064 is the digitisation adjustment factor 

to correct for the corners produced by the digitisation of the cell perimeter. 
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analysis of the data revealed that they were not normally distributed. Hence, the results 

are presented in terms of the median values calculated. 

As shown in the representative images in Fig. 3.13, cells in untreated ES remained 

smaller and more rounded than those in the absence of ES, which by 4 hours incubation 

had started to spread over the surface. Cells exposed to the heat-treated ES were either 

well spread or had remained small and rounded. This indicated that heat treatment had 

reduced the influence of ES upon cell morphology. These differences were reflected in 

the data that were obtained. As shown in Table 3.1 the presence of untreated ES, and to 

a more limited extent heat-treated ES, reduced the median cell area, length, breadth and 

perimeter calculated. Median shape factor values were also reduced, indicating cells to 

be more rounded in the presence of ES. Application of the Kruskal-Wallis ANOVA and 

Dunn's multiple comparisons test revealed all of these reductions to be significant. 
Highly significant differences (P < 0.001) between all cell culture conditions for all the 

morphological features measured were detected. Differences between the surface areas 

of individual cells are shown in Fig. 3.14. As deduced from the percentage frequency 

distributions displayed, the presence of ES decreased cell surface area, skewing the peak 

of the frequency distribution curve to the left (lower cell area ranges). This was 

particularly so with the untreated ES. 

3.3.6 Effect of larval ES upon fibroblast adhesion to collagen 

3.3.6.1 A TP and cellular nucleic acid assays 

The effects of larval ES (from batch C) upon fibroblast cell adhesion to a collagen- 

coated surface was first examined using the ATPLiteTM-M and CyQUANT® biochemical 

assay kits. Following a similar procedure to when fibronectin was used, cells were 
incubated in the presence or absence of 10 µg/ml larval ES (untreated or heat-treated) 

within wells coated with collagen. Following the specified period of incubation, wells 

were aspirated of medium to remove detached cells and the number of remaining 

adhered cells estimated using the indicated assay. 

ATP assay results (Fig. 3.15) revealed a similar trend to when cells were adhered to 

fibronectin. However, the differences observed between treatments were less 
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Figure 3.13 Representative images of fibroblasts following 4 hours incubation upon a 

fibronectin-coated surface in the absence of ES (I and II) or in the presence of 10 µg/ml 

untreated ES (III and IV) or 10 µg/ml heat-treated ES (V and VI). Images illustrate the 

morphological differences shown quantitatively in Table 3.1 and reflect results of the 

relevant statistical analysis described in section 3.3.5.2. 
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Figure 3.14 Percentage frequency distribution of fibroblast cell area, as measured using 

Leica QUIPS software. Taken from images of cells after they had been incubated for 4 

hours upon a fibronectin-coated surface in the absence (a) or presence of 10 pg/ml 

untreated ES (b) or 10 . tg/ml heat-treated ES (c). 
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Figure 3.15 Mean ATP concentration derived from fibroblasts seeded upon a collagen- 

coated surface in the absence (no ES) or presence of 10 µg/ml larval ES (heat-treated or 

untreated) over the incubation period indicated. Each value represents the mean of three 

replicate samples. ATP assay results from cells seeded upon a fibronectin-coated 

surface are shown in the top right hand corner for comparison (refer to Fig. 3.11). 
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prominent. Here, lower ATP concentrations were measured within wells exposed to 

untreated ES, indicating the presence of a lower number of cells than within the control 
(ES absent). To a lesser extent, the presence of heat-treated ES also reduced the 

concentration of ATP compared with the control. Statistical analysis of all the assay 
data, across all time-points revealed significant differences between datasets (two-way 

ANOVA, P<0.0001). Examining data at each time-point using one-way ANOVA and 
Tukey-Kramer's multiple comparison tests revealed that at 4 hours incubation, ATP 

levels within wells exposed to untreated ES were significantly lower than when ES was 

absent (P < 0.05). However, 24 hours incubation was required before both untreated 

and heat-treated ES exerted significant effects (P < 0.001 for control vs. untreated ES, P 

< 0.05 for control vs. heat-treated ES, P<0.05 for untreated ES vs. heat-treated ES). 

Cellular nucleic acid assay (CyQUANT®) results revealed lower nucleic acid 

concentrations within wells exposed to heat-treated ES and in particular, untreated ES, 

indicating the presence of a lower number of cells when compared to the control (Fig. 

3.16). Statistical analysis of all the assay data across all time-points revealed significant 
differences between datasets (two-way ANOVA, P<0.0001). However, differences were 

only apparent from 48 hours incubation. Here, one-way ANOVA and Tukey-Kramer's 

multiple comparison tests exposed significant differences between estimated numbers of 

cells contained within: control and untreated ES wells (P < 0.001); control and heat- 

treated ES wells (P < 0.01); untreated ES and heat-treated ES wells (P < 0.05). As the 

ATP assay results revealed clear differences from 4 hours incubation onwards, this 

suggests that the presence of ES may have also reduced cellular metabolic activity and 
hence, cell viability, in addition to decreasing cell adhesion. Similar conclusions were 
drawn when fibronectin-coated wells were used. 

3.3.6 2 Examination of cell morphology 

In a procedure similar to that used to examine cell morphology whilst the cells were in 

contact with a fibronectin-coated surface, fibroblasts that had been pre-stained with 
Celltracker M green CMFDA were seeded upon a collagen-coated surface in the 

presence or absence of 10 pg/ml ES (heat-treated or untreated). After 4 hours 

incubation, random images were taken of the cells using fluorescence microscopy. 
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Figure 3.16 Mean number of adherent fibroblast cells seeded upon a collagen-coated 

surface in the absence (no ES) or presence of 10 µg/ml larval ES (heat-treated or 

untreated) over the incubation period indicated. Numbers measured using the 

CyQUANT't assay. Each value represents the mean of three replicate samples. 
Adherent cell number results from cells seeded upon a fibronectin-coated surface are 

shown in the top right hand corner for comparison (refer to Fig. 3.12). 
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These were then examined with Leica QUIPS software. Table 3.2 states the total 

number of cells that were fully visible within the images and hence the number of cells 

that were analysed. As with fibronectin, statistical analysis of the data revealed that 

they were not normally distributed. Hence, the results are presented here in terms of the 

median values calculated. 

As shown in the representative images in Fig. 3.17, differences in the morphologies of 

cells exposed to different conditions were slight or undetectable. Cells in untreated ES 

were only marginally smaller and more rounded than those in the absence of ES. Cells 

exposed to the heat-treated ES appeared quite similar to those in the control. These 

conclusions were reflected in the data that were obtained. As shown in Table 3.2, the 

presence of untreated ES slightly reduced the median cell area, length, breadth and 

perimeter calculated. The median shape factor was also slightly reduced, indicating 

cells to be more rounded in the presence of ES. Application of the Kruskal-Wallis 

ANOVA and Dunn's multiple comparisons test revealed all of these reductions to be 

significant (P < 0.001). Median values for cells in the presence of heat-treated ES were 

only very slightly lower than those for cells in the control. Kruskal-Wallis ANOVA and 

Dunn's multiple comparisons test revealed no significant differences in cell area or cell 

breadth (P < 0.05), although significant differences in cell length (P < 0.01), perimeter 

(P < 0.05) and roundness (P < 0.001) were detected. However, despite these significant 

results, it may be concluded that heat-treated ES exerted a negligible effect over the 4 

hour incubation period. This is because it was difficult to visually distinguish any 
differences within the images between cells exposed to each condition. In addition, the 

differences in the median values were very small. Also, not all of the morphological 
feature comparisons yielded significant results. As each feature is related to each other 

(for instance, cell area will play a role in determining cell length and breadth, while cell 

roundness will affect cell perimeter distance), only firm positive conclusions concerning 

the existence of scientifically important differences could be made if all the 

comparisons provided significant P values. Differences between the surface areas of 

individual cells are shown in Fig. 3.18. As deduced from the graphs displayed, the 

presence of untreated ES increased the percentage frequency of measurements lying 

within the 0 to 500 µm2 range. Heat-treated ES had a minimal effect upon shifting the 

percentage frequency distribution to the left, towards the lower cell area ranges. 
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Cell morphological 

characteristic 
ES absent Untreated ES Heat-treated ES 

Area (µm) 679.54 525.86 627.18 

Length (µm) 32.45 27.66 30.32 

Breadth (µm) 27.664 25.00 26.60 

Perimeter (µm) 102.68 87.25 96.03 

Roundness 1.12 1.09 1.09 

Number of cells 
297 276 292 

analysed 

Table 3.2 Measurements of morphological characteristics of cells that had been seeded 

upon a collagen-coated surface and incubated for 4 hours in the presence or absence of 

10 pg/ml ES (untreated or heat-treated). Median values are presented. The number of 

cells that were analysed is also shown. The shape factor was calculated as [cell 

perimeter2 (4ir x cell area x 1.064)"'], where 1.064 is the digitisation adjustment factor 

to correct for the comers produced by the digitisation of the cell perimeter. 
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Figure 3.17 Representative images of fibroblasts following 4 hours incubation upon a 

collagen-coated surface in the absence of ES (I and II) or in the presence of 10 µg/ml 

untreated ES (III and IV) or 10 pg/ml heat-treated ES (V and VI). Images illustrate the 

morphological differences shown quantitatively in Table 3.2 and reflect results of the 

relevant statistical analysis described in section 3.3.6.2. 
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Figure 3.18 Percentage frequency distribution of fibroblast cell area, as measured using 

Leica QUIPS software. Taken from images of cells after they had been incubated for 4 

hours upon a collagen-coated surface in the absence (a) or presence of 10 µg, /ml 

untreated ES (b) or 10 µg/ml heat-treated ES (c). 
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3.3.7 Effect of larval ES upon the ECM protein-coated surface: influence upon 

fibroblast adhesion 

Previous studies have shown larval ES to degrade common ECM proteins such as 
fibronectin and collagen. Other studies have shown that the concentration of the protein 

coating the surface influences cell adhesion. Hence, the effect of pre-exposing the 
fibronectin- or collagen-coated surface to ES (taken from batch D) before the addition 

of cells was therefore examined. ATP and CyQUANT® assays similar to those 

conducted in sections 3.3.5.1 and 3.3.6.1 were undertaken to estimate the number of 

cells adhering to the pre-exposed surfaces. Comparisons were made with the levels of 

cell adhesion that occurred upon surfaces that had not been pre-exposed to ES, but were 

then subsequently exposed to 10 pg/ml ES or PBS upon the inclusion of cells. 

3.3.7.1 Fibronectin 

As shown in Fig. 3.19, pre-exposing the fibronectin-coated surface to ES modified the 
levels of ATP detected. The longer the surface was exposed to ES, the lower the ATP 

levels measured, indicating an inverse relationship between exposure to ES and 
subsequent levels of cell adhesion and cell viability. Application of the one-way ANOVA 

and Tukey-Kramer's multiple comparison tests upon data collated at each time-point 

revealed significant differences in the levels of ATP and therefore the estimated levels 

of cell adhesion and viability (Table 3.3). Firstly, at 4,24 and 48 hour time-points, cell 

adhesion and viability upon the surfaces pre-exposed for 24 and 48 hours was 
significantly lower than that upon the surface which was not exposed to ES at any time 
(the ES blank control), either before or upon the addition of cells. As the pre-exposed 
surfaces were aspirated of all medium containing ES and washed three times with PBS 

before the addition of cells, such significant differences indicate that ES exerted an 
indirect effect upon cell adhesion and viability by altering the surface. 

There were also significant differences in cell adhesion and viability between samples 

containing the pre-exposed surfaces (pre-exposed to ES for either 4,24 or 48 hours) and 
those containing surfaces that had been simultaneously seeded with cells and exposed to 

ES (the 10 µg/ml ES control). However, it is interesting to note that there were no 

significant differences when comparing cell adhesion upon surfaces that had been 
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Figure 3.19 Mean ATP concentration derived from fibroblasts seeded upon a 
fibronectin-coated surface in the absence or presence of 10 µg/ml ES. Where indicated, 

the surface had first been pre-exposed to 10 pg/ml larval ES for 4,24 or 48 hours before 

the addition of cells in ES-free medium. Each value represents the mean of three 

replicate samples. 
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4 Hours One-way ANOVA: P<0.000 1. 

ES blank 10 µg/ml 4h pre- 24h pre- 48h pre- 

control ES control exposed exposed exposed 

ES blank ----- 
10 pg/ml ES ns ---- 

4h pre-exposed ns ns --- 
24h pre-exposed P<0.001 P<0.001 P<0.001 -- 
48h pre-exposed P<0.001 P<0.001 P<0.001 ns - 

24 Hours One-wav ANOVA: P<0.0001. 
ES blank 10 µg/ml 4h pre- 24h pre- 48h pre- 

control ES control exposed exposed exposed 

ES blank - 
10 µg/m1 ES P<0.001 

4h pre-exposed ns P<0.001 --- 
24h pre-exposed P<0.001 ns P<0.001 -- 
48h pre-exposed P<0.001 P<0.001 P<0.001 ns - 

48 Hours One-way ANOVA: P<0.000 1. 
ES blank 10 µg/m1 4h pre- 24h pre- 48h pre- 

control ES control exposed exposed exposed 

ES blank ----- 
10 µg/m1 ES P<0.001 ---- 

4h pre-exposed p<0.01 P<0.001 --- 
24h pre-exposed P<0.001 ns p<0.001 -- 
48h pre-exposed P<0.001 ns p<0.001 ns 

Table 3.3 Analysis of cell adhesion/viability upon a fibronectin-coated surface, as 

estimated using the ATP assay. Results of one-way ANOVA and Tukey-Kramer's 

multiple comparison tests upon data collated at each time-point of a 48 hour incubation 

period. As shown by the results highlighted in yellow, there were no significant 
differences in cell adhesion/viability upon surfaces that had been exposed to ES for the 

same length of time, either before the addition of cells (the pre-exposed surfaces) or 
from when cells had been added (10 pg/ml ES control). 
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exposed to ES for the same length of time, either before the addition of cells (the pre- 

exposed surfaces) or from when cells had been added (10 pg/ml ES control). This 

indicated that modification of the fibronectin-coated surface by ES played a primary 

role in altering cell adhesion and viability. 

In a similar experiment, the CyQUANT® assay was applied to determine the total 

number of adherent cells within samples. Here, pre-exposing the fibronectin-coated 

surface to ES was shown to modify cell number estimates (Fig. 3.20). As with the ATP 

assay, results demonstrated that the longer the surface was exposed to ES, the lower the 

cell numbers measured, indicating an inverse relationship between exposure to ES and 

subsequent levels of cell adhesion. Indeed, application of the one-way ANOVA and 
Tukey-Kramer's multiple comparison tests revealed that cell number estimates within 

samples containing the pre-exposed surfaces were significantly lower than within those 

containing surfaces that had not been exposed to ES at any time (the ES blank control) 
(Table 3.4). However, as can be seen in Fig. 3.20, the differences were much smaller 

than those estimated by the ATP assay. In addition, cell adhesion in the presence of ES 

(10 pg/ml ES control) was significantly lower than the levels of cell adhesion that had 

occurred upon the pre-exposed surfaces. It therefore appeared that although pre- 

exposing the fibronectin-coated surface to ES subsequently influenced fibroblast 

adhesion, the effect was not as great as when the cells were actually exposed to ES upon 

their introduction to the surface. 

3.3.7.2 Collagen 

As shown in Fig. 3.21, pre-exposing the collagen-coated surface to ES modified the 

levels of ATP detected. In common with the results described in the previous section 
(3.3.6.1), there appeared to be an inverse relationship between length of pre-exposure to 

ES and subsequent levels of cell adhesion and viability. However, differences between 

samples were smaller and were not deemed to be significant at the 24 hour time-point 

(Table 3.5). Indeed, none of the data measured at 24 hours displayed any significant 
differences. In comparison to when the surfaces were coated with fibronectin, the 

results here were less conclusive. However, pre-exposing the collagen-coated surface to 

ES did appear to exert a limited effect upon the cells. 
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Figure 3.20 Mean number of adherent fibroblast cells seeded upon a fibronectin-coated 

surface in the absence or presence of 10 pg/m1 ES. Where indicated, the surface had 

first been pre-exposed to 10 pg/ml larval ES for 4,24 or 48 hours before the addition of 

cells in ES-free medium. Each value represents the mean of three replicate samples. 

82 



4 Hours One-way ANOVA: P=0.1151 (not significant). 

ES blank 10 µg/ml 4h pre- 24h pre- 48h pre- 

control ES control exposed exposed exposed 

ES blank ----- 
10 µg/ml ES ns ---- 

4h pre-exposed ns ns --- 
24h pre-exposed ns ns ns -- 
48h pre-exposed ns ns ns ns 

24 Hours One-wav ANOVA: P=0.0002. 
ES blank 

control 

10 µg/ml 4h pre- 24h pre- 48h pre- 

ES control exposed exposed exposed 

ES blank - ---- 
10 µg/ml ES P<0.001 ---- 

4h pre-exposed ns P<0.01 --- 
24h pre-exposed P<0.01 ns ns -- 
48h pre-exposed P<0.05 P<0.05 ns ns 

48 Hours One"wav ANOVA: P<0.0001. 
ES blank 

control 

10 µg/ml 

ES control 

4h pre- 24h pre- 48h pre- 

exposed exposed exposed 

ES blank - - --- 
10pg/m1ES P<0.001 - --- 

4h pre-exposed ns P<0.001 --- 
24h pre-exposed P<0.001 P<0.001 P<0.05 -- 
48h pre-exposed P<0.001 P<0.01 P<0.001 ns - 

Table 3.4 Analysis of cell adhesion upon a fibronectin-coated surface, as estimated 

using the CyQUANT® assay. Results of one-way ANOVA and Tukey-Kramer's multiple 

comparison tests upon data collated at each time-point of a 48 hour incubation period. 
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Figure 3.21 Mean ATP concentration derived from fibroblasts seeded upon a collagen- 

coated surface in the absence or presence of 10 pg/ml ES. Where indicated, the surface 

had first been pre-exposed to 10 pg/ml larval ES for 4,24 or 48 hours before the 

addition of cells in ES-free medium. Each value represents the mean of three replicate 

samples. ATP assay results from cells seeded upon a fibronectin-coated surface are 

shown in the top right hand corner for comparison (refer to Fig. 3.19). 
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4 Hours One-way ANOVA: P<0.0001. 
ES blank 10 µg/ml 4h pre- 24h pre- 48h pre- 

control ES control exposed exposed exposed 

ES blank ----- 
10 pg/m1 ES ns ---- 

4h pre-exposed ns ns --- 
24h pre-exposed P<0.001 P<0.001 P<0.01 -- 
48h pre-exposed P<0.001 P<0.001 P<0.01 ns - 

24 Hours One-way ANOVA: P=0.0749 (not significant). 
ES blank 10 µg/ml 4h pre- 24h pre- 48h pre- 

control ES control exposed exposed exposed 

ES blank ----- 
10 µg/m1 ES ns ---- 

4h pre-exposed ns ns --- 
24h pre-exposed ns ns ns -- 
48h pre-exposed ns ns ns ns - 

48 Hours One-way ANOVA: P=0.0002. 
ES blank 

control 

10 µg/ml 
ES control 

4h pre- 24h pre- 48h pre- 

exposed exposed exposed 
ES blank - - --- 

10µg/mlES P<0.01 - --- 
4h pre-exposed P<0.05 ns --- 
24h pre-exposed P<0.01 ns ns -- 
48h pre-exposed P<0.001 ns P<0.05 ns - 

Table 3.5 Analysis of cell adhesion/viability upon a collagen-coated surface, as 

estimated using the ATP assay. Results of one-way ANOVA and Tukey-Kramer's 

multiple comparison tests upon data collated at each time-point of a 48 hour incubation 

period. 
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Results from a similar experiment in which the CyQUANT® assay was applied, were 
less conclusive than comparative results from when fibronectin was used. As shown in 

Fig. 3.22, pre-exposing the collagen-coated surface to ES before the addition of cells 

appeared to exert little effect upon subsequent cell adhesion. Results were similar to 

those taken from samples containing surfaces that had not been exposed to ES at any 

time (the ES blank control). In addition, cell adhesion in the presence of ES (10 µg/ml 
ES control) was significantly lower than the levels of adhesion which occurred upon the 

pre-exposed surfaces at all the time-points measured (Table 3.6). Although lower 

numbers of cells were found upon 48 hour pre-exposed surfaces than upon surfaces pre- 

exposed for 4 hours, the differences were small and not significantly different. There 

was therefore insufficient evidence to suggest that the length of pre-exposure to ES 

displayed an inverse relationship with subsequent levels of cell adhesion. However, as 

shown with the ATP assay results, cell viability may have been slightly affected. 

3.3.8 Proteolytic degradation of ECM proteins by larval ES: investigation using 
SDS-PAGE. 

A previous study has established that larval ES degrades fibronectin and other ECM 

proteins (Chambers et al., 2003). However, this conclusion was based upon 

experiments in which larval ES was incubated with ECM proteins that were in solution, 

rather than as coatings over a plastic surface. In the cell adhesion experiments (section 

3.3.5 to 3.3.7), the ES that was used only came into contact with fibronectin or collagen 

surface coatings. The ability of larval ES to release proteolytic fragments from such 

coatings was therefore investigated. Hence, the solution of ES (10 pg/ml) that was 

exposed to the fibronectin- or collagen-coated surfaces, as described in section 3.3.7, 

was separated into its component peptides using SDS-PAGE. As shown in Fig. 3.23, 

there appeared to be little evidence for the existence of fibronectin or collagen 

proteolytic fragments within the solutions. It may therefore be concluded that no 

proteolytic degradation took place. However, it is also possible that ES degraded the 

ECM protein present on the surface but the resulting fragments remained adhered to that 

surface. In such a scenario, the solution of ES removed at the end of the pre-exposure 
time would not have contained any proteolytic fragments. In addition, the solution of 
ES tested was only in contact with the ECM-coated surface for 4 hours. It is possible 
that the solutions that remained in contact with the surface for longer may have 
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Figure 3.22 Mean number of adherent fibroblast cells seeded upon a collagen-coated 

surface in the absence or presence of 10 µg/ml ES. Where indicated, the surface had 

first been pre-exposed to 10 µg/ml larval ES for 4,24 or 48 hours before the addition of 

cells in ES-free medium. Each value represents the mean of three replicate samples. 
Adherent cell number results from cells seeded upon a fibronectin-coated surface are 

shown in the top right hand corner for comparison (refer to Fig. 3.20). 
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4 Hours One-way ANOVA: P<0.0001. 
ES blank 10 µg/ml 4h pre- 24h pre- 48h pre- 

control ES control exposed exposed exposed 

ES blank ----- 
10 pg/m1 ES P<0.001 ---- 

4h pre-exposed ns p<0.001 --- 
24h pre-exposed p<0.01 P<0.001 ns -- 
48h pre-exposed p<0.01 P<0.001 ns ns - 

24 Hours One-way ANOVA: P<0.000 1. 
ES blank 10 µg/ml 4h pre- 24h pre- 48h pre- 

control ES control exposed exposed exposed 

ES blank ----- 
10 pg/m1 ES P<0.001 ---- 

4h pre-exposed p<0.05 P<0.001 --- 
24h pre-exposed ns p<0.001 ns -- 
48h pre-exposed P<0.001 P<0.01 ns p<0.05 - 

48 Hours One-wav ANOVA: P<0.000 1. 
ES blank 

control 

10 pg/ml 4h pre- 24h pre- 48h pre- 

ES control exposed exposed exposed 

ES blank - ---- 
10 pg/ml ES P<0.001 ---- 

4h pre-exposed ns P<0.001 --- 
24h pre-exposed ns P<0.001 ns -- 
48h pre-exposed ns P<0.01 ns P<0.01 - 

Table 3.6 Analysis of cell adhesion upon a collagen-coated surface, as estimated using 

the CyQUANT® assay. Results of one-way ANOVA and Tukey-Kramer's multiple 

comparison tests upon data collated at each time-point of a 48 hour incubation period. 
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Figure 3.23 SDS-PAGE gel (12%) showing separation of the contents within a larval 

ES solution incubated upon a fibronectin- or collagen-coated surface für 4 hours. 

Solutions containing native fibronectin, native collagen or larval ES alone are also 

separated on the gel, to provide a comparison. Numbers superimposed on the right 

hand side of the gel refer to the molecular weight standard bands (Da). 
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contained proteolytic fragments. However, a separate experiment was undertaken to 

confirm that ES does degrade fibronectin in solution. Here, fibronectin was exposed to 

0.1 pg/ml ES (100 times lower concentration than that used to pre-expose the ECM- 

coated surfaces), and then separated using SDS-PAGE. As shown in Fig. 3.24a, by 4 

hours incubation, ES had fragmented fibronectin. It also appeared that such degradation 

progressed as the exposure time to ES increased. Fig. 3.24b confirms that heat-treating 

the ES to eradicate its proteolytic activity prevented any fibronectin degradation from 

taking place. Such a lack of degradative activity may have contributed to the 

observations reported in section 3.3.5 and 3.3.6 concerning the weaker influence of 
heat-treated ES upon fibroblast adhesion in comparison with the untreated ES. 

3.4 Discussion 

Initial observations showed that fibroblasts, in the presence of 10 pg/ml larval ES, 

displayed altered morphologies. Further studies revealed that fibroblast adhesion to the 

tissue culture surface was modified in the presence of ES. As the concentration of ES 

increased, the number of fibroblasts successfully adhering to the surface decreased, 

indicating a dose-dependent, direct effect upon the cell surface receptors (integrins) or 
their connections with the surface. The presence of larval ES also reduced fibroblast 

adhesion to fibronectin- and collagen-coated surfaces. Results also suggested that cell 

viability may have been reduced as well. In addition, ES induced changes in the 

morphology of cells adhering to these surfaces. Here, studies revealed that cells in the 

presence of ES adopted more compact, rounded morphologies, indicating a lower 

number of receptor-mediated interactions with the surface in question. Interestingly, 

heat-treated ES, which was shown to have negligible proteolytic activity, did not 
influence cell adhesion, viability and morphology as much as the untreated ES. This 

suggests that ES proteinases were involved in modifying fibroblast behaviour. In both 

the cell adhesion and morphology studies, differences between treatments were more 

profound in the presence of fibronectin than collagen, indicating that the properties of 
the surface-coating were involved in the ES-mediated changes in fibroblast behaviour. 

Evidence which supports this hypothesis was provided by studies which showed that 
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Figure 3.24 SDS-PAGE gel (12%) showing degradation of fibronectin (100 pg/ml) 

following exposure to either 0.1 pg/ml untreated ES (a) or 0.1 [ig/ml heat-treated ES (h) 

for the times indicated. Native fibronectin and larval 1_; S alone are also separated on the 

gel, to provide a comparison. Numbers superimposed on the right hand side of the gel 

refer to the molecular weight standard bands (Da). Larval ES failed to stain, indicating 

low protein concentration relative to its high specific enzymatic activity. 
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pre-exposing the fibronectin-coated surface to ES resulted in modified cell adhesion, 

despite the fact that the cells had never come into contact with ES. As the pre-exposure 

time lengthened, the subsequent effects upon cell adhesion increased, indicating a 

progressive modification of the fibronectin coating. Larval ES proteinases may have 

played a role in this, perhaps through proteolytic degradation of the fibronectin surface. 

This supposition is supported by experiments that characterised heat-treated ES as 

containing negligible proteolytic activity and a weaker influence upon cell adhesion 

than untreated ES. It is also supported by previous research, which has shown ES to 

degrade common ECM proteins including fibronectin (Chambers et al., 2003). 

As expected from previous studies involving collagen, pre-exposing collagen-coated 

surfaces to ES resulted in a less clear outcome. Although an effect upon subsequent cell 

viability and maybe adhesion was observed, the results were not as convincing as those 

recorded in the presence of fibronectin. Here, any modification of the collagen coating 

that ES may have caused did not exert as great an influence upon cell behaviour. 

Alternatively, the collagen coating may have been more resistant to modification. 
However, as mentioned, previous research has revealed ES to degrade common ECM 

proteins, including collagen (Chambers et al., 2003). It may be noted that images taken 

for the morphology studies showed that cells not exposed to ES remained more rounded 

when adhered to collagen than when adhered to fibronectin. This suggests that 

fibroblasts spread more successfully over fibronectin than collagen. Modification of the 

surface by pre-exposure to ES would therefore be able to exert a potentially greater 

effect upon fibroblast adhesion to fibronectin because the cells appear to interact more 

with an unmodified fibronectin surface compared with an unmodified collagen surface. 

SDS-PAGE separation of ES exposed to fibronectin- or collagen-coated surfaces did not 

reveal the presence of any fibronectin or collagen fragments. However, separation of 
ES diluted within a solution of fibronectin did confirm the presence of proteolytic 
fragments of fibronectin. The ECM protein was fragmented in a progressive, time- 

dependent manner. It therefore appears likely that ES had fragmented the fibronectin 

surface and possibly the collagen surface. However, fragments may not have showed as 

visible bands on the gel because the concentration of the protein may not have been 

high enough. Alternatively, any fragments released from the proteins may have 

remained adhered to the tissue culture surface. Any role that the modification of the 
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protein surface may have played in altering fibroblast adhesion is emphasised by the 

negligible effect that heat-treated ES exerted upon fibronectin in solution. Using SDS- 

PAGE, no fragmentation of fibronectin was observed at any time-point. The apparent 
inability of heat-treated ES to alter fibronectin may perhaps explain why it exerted only 

a modest effect upon fibroblast behaviour. The fact that heat-treated ES exerted any 

effect at all may have due to some low level residual proteolytic activity which was too 

low to be detected by the FITC-casein assay used to assess proteolytic activity. While 

this level of activity may have been too weak to break the FITC-casein bond or 
fragment fibronectin, it may still have been able to affect integrin receptors or their 

connections directly. Alternatively, the presence of some non-proteolytic heat-stable 

agent may have been responsible. 

It may therefore be concluded from these results that ES at a concentration of 10 µg/ml 

reduces the extent of fibroblast adhesion, affects cell viability and induces a more 

rounded morphology by altering integrin receptor interactions with the surface. 
Proteinases within ES appear to be responsible and may act to alter adhesion by 

targeting the receptors directly, degrading their extracellular domains or surface 

connections. These actions may also be responsible for reducing cell viability as 
fibroblasts are anchorage-dependent cells (Stoker et al., 1968; Benecke et al., 1978). As 

such, their metabolic activity and survival is dependent upon their adhesion to suitable 

protein substrates. ES proteinases may also influence cell adhesion and viability 
through modifying, where present, the fibronectin-coated surface, reducing its adhesive 

properties. The discrete adhesive sites present within this molecule may explain why 

modification of the fibronectin surface may play a role in altering cell adhesion and 

morphology. Research has found that fibronectin contains a number of functional 

domains, which include binding sites for cells, various ECM proteins or molecules from 

a variety of other sources (Mohn, 1997), as shown in Fig. 1.2 in Chapter 1. The 

primary cell attachment site consists of a tetrapeptide of Arg-Gly-Asp-Ser (RGDS) 

located within the cell-binding domain of fibronectin (Pierschbacher and Ruoslahti, 

1984; Ruoslahti and Pierschbacher, 1986; Obara, Kang and Yamada, 1988). In 

fibroblasts, the (41 integrin is the main receptor for this site. However, other receptors 

are believed to be involved, both with this attachment site and neighbouring sites, which 

are thought to act synergistically in inducing cell attachment (Aota, Nagai and Yamada, 

1991; Aota, Nomizu and Yamada, 1994; Bowditch et al., 1994). These include the 
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integrin receptors (13ßi, 04ßI9 avß3 and a,, ß6 (Gailit and Clark, 1996). Several peptides 

from the heparin-binding domain (heparin II in Fig. 1.2 in Chapter 1) also support cell 

attachment via interaction with cell membrane-associated proteoglycans such as the 

syndecans (McCarthy et al., 1988,1990; Drake et al., 1992; Woods et al., 1993). One 

study has shown focal adhesion formation in fibroblasts to be dependent upon their 

binding to the heparin-binding domain of fibronectin (Woods et al., 2000). Additional 

cell binding sites have been located on the carboxyl-terminal side of the heparin-binding 

domain. Termed the connecting segment (site IIICS), this region contains the (14ßl 

receptor-binding sites CS-1 and CS-5 (Huhtala et al., 1995). The CS-1 sequence binds 

with high affinity to the a4ß1 receptor and is also recognised by the a4ß7 receptor. Such 

findings suggest that the spatial configuration and co-operation of a number of ligand- 

bound integrins, facilitated by additional interactions between fibronectin and cell 

membrane-associated proteoglycans, determines the strength of cell adhesion achieved. 

Hence, the deletion of any of these binding sites by the actions of ES will weaken the 

association of the fibroblasts with the surface. For example, even if the primary RGDS 

cell attachment site remained intact upon the fibronectin coating, the re-location of 

neighbouring attachment sites would prevent the full adhesion activity of this site. Such 

rearrangement of the positioning of binding sites may occur if the fibronectin coating 

the surface was fragmented by the proteolytic actions of ES. Alternatively, binding 

sequences may be destroyed completely by proteolysis, depending on how long the 

fibronectin was exposed to ES and what concentration of ES was used. 

The destruction of cell-binding sites by ES would inevitably alter the density of 

adhesive sites available to the cell. Evidence has shown that the density of particular 

attachment sites available influences the strength of cell adhesion. For example, Wang 

and Ingber (1994) found that raising the density of a fibronectin RGD peptide coating 

over ferromagnetic microbeads promoted the spreading of attached endothelial cells. It 

also altered the mechanical properties of the attached cells' cytoskeletons, increasing 

cytoskeletal stiffness, apparent viscosity and permanent deformation in response to an 

applied stress. Goldstein and DiMilla (2002) found, through using a radial-flow 

chamber, that the strength of hydrodynamic shear required to detach cells increased as 

the concentration of fibronectin coating the surface also increased. Garcia, Ducheyne 

and Boettiger (1997) found that cell adhesive strength increased linearly with adsorbed 
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fibronectin surface density. Collectively, these results suggest that increasing the 

concentration of ECM proteins promotes integrin-ligand binding and the formation of 

molecular links with the cytoskeleton, thus increasing the strength by which cells are 
held in place. These findings are in accordance with the ̀ receptor saturation model' 

originally presented by Dembo and Bell (1987) and later by Gaudet et al. (2003) (Fig. 

3.25a). Based upon thermodynamic analysis of cell adhesion, this model explains the 

influence of the substrate surface upon cell spreading in terms of the number of 

adhesive sites available to the cell. As the substrate surface concentration increases, the 

adhesive sites become denser and cell adhesion increases as the number of integrin 

receptors binding to the substrate becomes higher. Concurrently, cell spreading also 
increases because the cell is able to make more contacts with the substrate. However, 

assuming that integrins are expressed in finite numbers (Akiyama and Yamada, 1985), 

there will come a point where the integrin receptors become saturated by available 

adhesive sites. As the number of adhesive sites increases above the saturation point, 

cell spreading starts to decrease because the integrin receptors become saturated over a 

smaller distance. According to the ̀ receptor saturation model', the addition of ES, 

which reduces cell adhesion and causes a more rounded cell morphology must be 

inducing a reduction in the availability of adhesive sites (Fig. 3.25b). Results show that 

this reduction may be caused by both modification of the surface and direct degradation 

of the integrin receptor connections with the surface. 

Another possible mechanism by which ES alters fibroblast adhesion and viability may 
involve the modification of fibroblast-mediated proteolysis of the fibronectin substrate. 
Research by Huhtala et al. (1995) has shown that when fibroblasts are seeded upon a 

chymotryptic 120 kD fragment of fibronectin containing the RGDS cell binding 

sequence, the cells upregulate collagenase (MMP-1), gelatinase B (MMP-9) and 

stomelysin-1 (MMP-3) expression. The additional presence of the IIICS connecting 

segment (or more particularly the CS-1 binding sequence) results in the suppression of 
MMP levels back to those detected when intact fibronectin is used. As mentioned in the 

previous paragraph, the RGDS cell-binding sequence in fibronectin is targeted by the 

a5ß1 receptor, whereas the a4(31 integrin receptor targets CS-1 and CS-5 sites within the 

IIICS connecting segment. These results therefore indicate that co-operative signalling 
by a5 1 and a4(3I integrin receptors regulates MMP gene expression in fibroblasts. In 

addition, Huhtala et al. (1995) found that peptide V (located within the heparin-binding 

95 



a. 

Increasing substrate concentration 

Increasing strength of call adhesion 

b. 

QR, 

eIl 
duction in 

K 

adhesion 

Induction of a 
more rounded cell 

Proteinases in ES target 
integrin receptors and break 
interactions with the surface. 

Attachment sites onthe 

Increasing strength of call adhesion 

Figure 3.25 Receptor saturation model showing the relationship between substrate 

concentration, cell adhesion, cell spreading and the influence of larval ES. a. At low 

substrate concentrations, the number of available adhesive sites are low. Hence, the cell 

is unable to spread fully. As the substrate concentration rises, cell spreading and the 

strength of cell adhesion increases as the cell comes into contact with more adhesive 

sites. At the `saturation' point, the number of available integrin receptors within the cell 

are approximately equal to the number of adhesive sites that the cell can reach. If the 

substrate concentration rises further, adhesive sites become denser. Cell spreading 

therefore starts to decrease as the integrin receptors become saturated by adhesive sites 

over a smaller area. However, the strength of cell adhesion continues to rise as the 

anchorage within a given area becomes stronger. b. The effect of the presence of 

untreated larval ES. Here, ES reduces the availability of adhesive sites through 

proteolytic modification of the surface. Integrin receptor-ligand bonds may also be 

directly targeted. As a consequence, cell spreading and adhesion is reduced. Cells may 

also become detached. Figures adapted from Gaudet et al. (2003). 
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domain of the fibronectin molecule), in conjunction with the 120 kD fragment, 

increases MMP expression to levels above those induced by the 120 kD fragment alone. 
Hence, changes induced by the binding of cell membrane-associated proteoglycans also 
influences MMP expression. Additionally, studies have shown that any reduction in 

mechanical stress experienced by the cell initiates an increase in MMP expression 
(Mauch et al., 1989; Lambert et al., 1992,1998,2001). Hence, if cells adhering to 

particular fragments of fibronectin did not attach as firmly as they would do when 

adhering to intact fibronectin, then the levels of mechanical tension that they experience 

would be lower. MMP expression may therefore be upregulated as a result. From the 

evidence presented by Mauch et al., 1989; Huhtala et al., 1995 and Lambert et al., 
1992,1998,2001, it may therefore be proposed that ES mediates the strength of 
fibroblast adhesion to the surface not only through decreasing the adhesive capacity of 
the fibronectin present. If the cells are limited to contact with particular fibronectin 

domains by the actions of ES or the mechanical stress that they experience is reduced, 
then the cells themselves may also potentiate a reduction in cell adhesion by 

upregulating the expression of MMPs. 

The release of fibronectin peptides and modification of fibroblast adhesion may have 

consequences for other aspects of fibroblast behaviour. For example, certain fibronectin 

peptides have been shown to possess chemotactic properties (Postlethwaite et al., 1981 

Livant et al., 2000). Cell attachment has been shown to control fibronectin and a5pi 
integrin expression (Dalton, Marcantonio and Assoian, 1992). Integrins have been 

shown to associate with other receptors, altering their affinity for specific ligands 
(Porter and Hogg, 1998). As described in Chapter 1.2.1, they have also been shown to 

co-localise with urokinase plasminogen activator receptor (uPAR), together with 
urokinase plasminogen activator (uPA) and its inhibitor (uPAI-1), forming an integrin- 

protease complex to promote migration and modulate cell adhesion (Planus et al., 1997; 

Porter and Hogg, 1998). There is also evidence to suggest that the strength of cell 

adhesion and the density of adhesive sites determine the speed of cell migration (Dembo 

and Bell, 1987; DiMilla et al., 1993; Puschel et al., 1995; Maheshwari et al., 1999; Cox, 

Sastry and Huttenlocher, 2001; Gaudet et al., 2003). It is therefore possible that if ES 

modifies fibroblast adhesion to proteins such as collagen and particularly fibronectin, it 

may also influence fibroblast migration. 
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3.5 Conclusions 

L. sericata larval ES at a concentration of 10 µg/ml was found to reduce the extent of 

fibroblast adhesion to both tissue culture plastic and fibronectin- and collagen-coated 

surfaces. It also appeared to reduce cell viability and induce a more rounded cell 

morphology, in accordance with a reduction in the number of receptor-mediated 
interactions with the surface. Such modifications in fibroblast-surface interactions were 
dose-dependent and reliant upon the proteolytic activity present within ES. Proteinases 

within ES appeared to act by targeting the cell surface receptors directly, degrading their 

extracellular domains or surface connections, and also by modifying the protein-coated 

surface, particularly when fibronectin was used. Possible implications originating from 

the proteolytic modification of the fibronectin surface include a decrease in the density 

of available adhesive sites, which in concert with a less favourable spatial orientation of 

adhesive sites, causes a reduction in the adhesive capacity of the surface. Another 

possible implication resulting from the fragmentation of the fibronectin molecule 

concerns the upregulation of fibroblast MMP expression as a result of modified integrin 

receptor signalling. As will be investigated in Chapter 4, modification of fibroblast 

adhesion may have consequences for fibroblast migration and the progression of wound 
healing. 
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CHAPTER 4 

Fibroblast Migration in Two Dimensions 

4.1 Introduction 

In the previous chapter L. sericata ES was shown to modify fibroblast adhesion and 

spreading upon fibronectin and to a lesser extent, collagen. It was also shown to 

fragment fibronectin by proteolytic degradation. These results suggest that ES is 

capable of influencing fibroblast-ECM interactions. The ability to exert such influences 

may have important consequences in many physiological processes, including wound 
healing. For instance, a major feature of wound healing in which fibroblasts play a vital 

role, is the formation of granulation tissue (discussed within Chapter 1). As part of this 

process, fibroblasts migrate into the wound space (Chen, 1981, Clark, 1996; 

Maheshwari et al., 1999). Fibroblast migration has been shown to be controlled in part 
by the composition and structure of the ECM environment surrounding the cells. For 

example, penetration of the fibrin clot is believed to be assisted by the presence of 
fibronectin as the cells have been shown to use this protein as a scaffold for `contact 

guidance' (Hsieh and Chen, 1983; Clark, 1996). There is also evidence to suggest that 

the matrix itself drives the translocation of cells towards other areas of the matrix 

containing higher concentrations of fibronectin (Newman, Frenz and Tomasek, 1985; 

Hocking, Sottile and Langenbach, 2000). Believed to be associated with matrix 
fibrillogenesis, this has also been shown with non-living particles, indicating the 

influence that the composition of the matrix can independently exert upon cell 

movement. Another theory is that the matrix acts as a reservoir for growth factors, 

controlling their presentation to the cells (Nathan and Sporn, 1991, Eckes et al., 2000). 

In addition to the ECM exerting control over fibroblast migration, there is evidence to 
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suggest that cells reciprocate. Firstly, fibroblasts in response to pro-inflammatory 

mediators such as interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-a) 

secrete various MMPs and plasminogen activator to break down the surrounding matrix, 

so easing their translocation into other areas (Grant et al., 1987; Wilhelm et al., 1987; 

Saus et al., 1988; Stetler-Stevenson et al., 1989; Mauviel, 1993; Woessner, 1991; Bizot- 

Foulon et al., 1995. They also synthesise new matrix components, thus altering the 

character of the matrix and, in so doing, modifying the signals that they receive from 

their environment (Welch et al., 1990; Clark, 1996; Eckes et al., 2000). 

It is therefore clear that modification of fibroblast-ECM interactions by the actions of 

substances released by L. sericata larvae may provide a mechanism by which 
biosurgery influences wound healing. An indication that this may be occurring is 

provided by numerous clinical observations which suggest that wounds treated with 
larvae demonstrate enhanced granulation tissue development (Buchman and Blair, 

1932; Wilson, Doan and Miller, 1932; Reames, Christensen and Luce, 1988; Thomas et 

al., 1996; Wolff and Hansson, 1999; Sherman, Hall and Thomas, 2000; Mumcuoglu, 

2001; Wollina et al., 2002. ). Modification of fibroblast migration may play a 

significant part in this because new tissue formation is dependent upon fibroblast 

movement into the wound space. Fibroblast motility is also subject to interactions with 
the ECM. Investigations into the effects of ES upon fibroblast migration were therefore 

undertaken. 

Cell migration has been observed in a variety of two-dimensional assays. These assays 
have employed methods ranging from tracking the movement and membrane activity of 
individual cells (Maheshwari et al., 1999; Raffetto et al., 2001) to monitoring the rate 

at which a gap, surrounded by areas of confluent cells, is filled by invading cells 
(Malinda and Wysocki, 2000). Other assays have involved studying the mechanical 
forces generated by cells when they migrate across flexible substrata (reviewed by 

Beningo and Wang, 2002). The impact of coating surfaces with ECM components, 
including collagen, laminin and fibronectin has also been investigated (Dean and 
Blankenship, 1997). In addition, various studies examining the influence of ECM- 

derived proteolytic degradation products upon cell migration have been performed 
(Schor et al., 1996; Livant et al., 2000). 
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Here, the effect of ES upon fibroblast migration was investigated using a novel, two- 

dimensional in vitro wound assay. This involved seeding fibroblasts onto a fibronectin- 

coated surface and then monitoring their migration, using time-lapse digital 

photography, into a cell-free area. It was hypothesised that the presence of ES would 
increase the rate at which the leading cell edge migrated into the free-space. 

4.2 Methods 

4.2.1 Two-dimensional in vitro wound assay 

A 35 mm tissue culture dish containing 2 ml of bovine fibronectin at 0.1,1.0,10,100 or 
1000 µg/ml concentration was incubated overnight at 37°C. The fibronectin solution 

was then aspirated and a sterile, glass cloning cylinder, of 4.7 mm internal diameter, 

was placed upright in the middle of the dish. A flask of 70 %- 80 % confluent 
fibroblasts were then trypsinised, as described in Chapter 2.2.1 and suspended in cell 

culture medium containing 10 % FCS, to neutralise remaining trypsin. The serum was 
then removed, as it had already been shown to inhibit ES proteolytic activity (see 

Chapter 2.2.2). This was undertaken as described in Chapter 2.2.1, leaving cells 

suspended within serum-free cell culture medium. Following cell counting using a 
haemocytometer, 1x 106 fibroblasts were taken and suspended within 2 ml of serum- 
free cell culture medium. This contained either 0.1 pg/ml ES (taken from batch D) or 

an equivalent volume of PBS (PBS blank). In one assay, 10 pg/ml ES was added to the 

medium. The cells were then seeded around the outside of the cylinder within the dish. 

Cell culture medium, which was identical to that used to suspend the cells, was then 

added to the inside of the cylinder to ensure consistent exposure of the whole 
fibronectin surface. The dish was then incubated for 4 hours at 37°C. 

Following incubation the cloning cylinder was removed, taking cares not to disturb the 

confluent cell layer that had formed around it. The dish was then immediately placed 

under an inverted microscope and positioned so that the inner boundary of the cell layer 

was viewed in a vertical orientation and approximately a third of the field of view was 
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taken up by cells. In the assay containing 10 µg/ml ES, the cell boundary was viewed in 

a diagonal orientation. For all the assays a temperature of 37°C was maintained using a 
heated, perspex incubation chamber surrounding the stage and sterile filtered 5% (v/v) 

CO2 was perfused over the dish. Phase contrast images were then taken of the same 
field of view every three minutes for 48 hours, using Lida time-lapse software. The 

images were then sorted in ascending chronological order and compiled into a 
Microsoft AVI movie format using Adobe Premiere 5.1. Movies are available for 

viewing on the enclosed CD-ROM. 

4.2.2 Analysis of results 

In addition to qualitative analysis of the time-lapse movies, images were also analysed 

quantitatively for the extent of cell migration into the free space created by the cloning 

cylinder. This was undertaken by first selecting the images that pictured the progress of 
the cell boundary after 0,24 and 48 hours incubation. An area within each image was 
then selected. This contained the edge of the original cell boundary and part of the 
initially cell-free space (Fig. 4.1). For consistency, the area selected for analysis was 
kept at the same size for all images analysed and in the same position for each image 

derived from the same experiment. Initially, the total area of this selected region was 

calculated. This was performed using Leica QUIPS software. The area within this 

region that was covered by cells was also measured using the same software. Here, the 

perimeter of each cell or group of confluent cells lying within the selected region was 

outlined and the enclosed area measured in µm2. All the measurements were then added 
together and the total expressed as a percentage of the total area analysed (Fig. 4.2). 

The increase in percentage cell surface area coverage over time was then determined by 

subtracting the percentage coverage at 0 hours from the percentage coverage at 24 or 48 
hours. This method made sure that the percentages calculated at 0 hours were 
negligible for all experiments, thus ensuring that differences in the initial positioning of 
the cell boundary in the field of view did not affect the values obtained. It also ensured 
that only cell migration into the un-seeded, cell-free area was quantified. The complete 
field of view in each image was also analysed to quantify the percentage increase in cell 

surface area coverage of the whole image after 24 and 48 hours incubation. This was 

undertaken using Leica QUIPS software as before. The data generated were then 

compared with those obtained when the methods outlined in Fig. 4.1 and 4.2 were used. 
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Figure 4.1 A representation of how images generated from the two-dimensional in 

vitro wound assay were analysed quantitatively for the extent of cell migration into the 

free space. An area within the image, taken from the position of the cell boundary at 

time 0 hours into the initially cell-free area, was defined as shown here, enclosed within 

a black rectangle. This area was then analysed for cell surface area coverage. Micron 

bar represents 100 µm. 
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Figure 4.2 Quantitative analysis of cell migration. A region within each image, 

outlined by a black rectangle, was analysed for fibroblast cell surface area coverage. 

The perimeter of each cell or group of confluent cells lying within the selected region 

was outlined and the enclosed area (shown in green for illustrative purposes) measured 
2 in µm. All the measurements were then added together and the total expressed as a 

percentage of the total area analysed. Micron bar represents 100 µm. 
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4.3 Results 

4.3.1 Two-dimensional in vitro wound assay 

Two-dimensional in vitro wound assays were assembled containing 1x 106 fibroblasts, 

seeded in the presence or absence of ES, upon surfaces coated with different 

concentrations of fibronectin. Initially, cells were observed on a surface coated with 10 

pg/ml fibronectin whilst exposed to 10 pg/ml ES. Following this preliminary study, 

cells were seeded upon surfaces coated with 0.1,1.0,10,100 or 1000 µg/ml fibronectin 

without any ES. In an additional study, where 100 µg/ml fibronectin was used to coat 

the surface, 0.1 pg/ml ES was also added at the time of cell seeding. For each assay, 
fibroblast migration into the cell-free area was recorded through the use of time-lapse 

digital photography (see enclosed CD-ROM). 

Cells that were placed on a 10 pg/ml fibronectin surface whilst exposed to 10 µg/ml ES 

had difficulty in adhering to the surface (Fig. 4.3). Even at the beginning of this 

preliminary study, where cells had not been exposed to ES for very long, many of the 

cells were floating in the medium or else had adhered to the surface but failed to spread. 
Over the 48 hour observation period, many of the adhered cells became either detached, 

inhibited from spreading further or more rounded in morphology. One cell which is 

highlighted within part of the movie by a red circle, demonstrates the apparent difficulty 

that the cells had in maintaining adhesions with the surface. At the beginning of the 

movie, the cell was rounded. It was then observed to express short, but broad, 

lamellipodial extensions. However, over time these extensions were reduced to short, 

slender, finger-like projections or filopodia. The projections were then lost as the cell 

rounded-up. It appeared that some of these projections were physically detached from 

the cell. By around 24 hours (half-way through the movie), the cell started to make a 

recovery and began to spread out again. Indeed, by approximately two thirds of the way 

through the observation period, the cell appeared quite well spread. It was also longer 

and less rounded, resembling a polarised morphology. However, before very long the 

cell rapidly lost its connections with the surface. The projections became very thin and 

the cell adopted a smaller and more rounded morphology. By the end of the 48 hour 

period, the cell appeared fully rounded again. Another cell, highlighted within part of 
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Figure 4.3 Fibroblast cell migration over 48 hours, whilst exposed to 10 ýtg/ml I. S, 

upon a surface coated with 10 pg/ml fibronectin. Many of'the cells shown are 

unattached and floating in the medium. Micron bar represents 100 µm. 
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the movie by a green circle, briefly demonstrates migration as it can be observed to 

move away from the group of cells where it was originally located. However, this cell 
failed to maintain a well-spread morphology throughout the observation period. None 

of the other cells demonstrated any significant migration. In addition, extracellular 
debris was observed. This debris, viewed as black or dark grey static or floating marks, 

appeared to increase as the period of incubation lengthened. It is possible that the debris 

resulted from the destruction of cells. The fact that the cell encircled in red periodically 
lost its spread morphology because its extensions became severed suggests that this may 
be possible. However, further investigations are required to confirm this. Whatever the 

case, the presence of 10 pg/ml ES appeared to be deleterious to the cells, inhibiting 

fibroblast adhesion and migration. It was therefore decided to apply a much lower 

concentration of 0.1 pg/ml ES in further studies. 

After the preliminary study described above, cell migration in response to different 

concentrations of fibronectin was assessed. The movies, and selected stills contained 

within them, demonstrated that cell behaviour within the serum-free conditions of the 

assay was influenced by the concentration of fibronectin present upon the surface (Fig. 

4.4a). Initially, cells were able to adhere and spread upon the surface coated with 0.1 

µg/ml fibronectin. However, the majority failed to adhere for very long and returned to 

suspension over the 48 hour incubation period. As a consequence, few cells were able 
to migrate and the original cell boundary receded during this time. In contrast, cells 

adhered and spread well over the surface coated with 1 µg/ml fibronectin. Over 48 

hours, they migrated into the un-seeded, cell-free area, thus expanding the cell boundary 

further into the observed field of view. Cells were also seen to adhere and spread over 

the surfaces coated with 10,100 and 1000 µg/ml fibronectin. As with the 1 pg/mi 
fibronectin-coated surface, the cells also migrated into the initially cell-free area, thus 

expanding the cell boundary. However, the motility of the cells exposed to the 1000 

pg/ml fibronectin-coated surface appeared to be lower. Here, the distance that the cell 

boundary travelled into the un-seeded area was less than that seen when 1 to 100 pg/ml 
fibronectin was present. As a consequence, more of the un-seeded area within the field 

of view was left exposed by the end of the observed 48 hour incubation period. The 

movies and selected still images also demonstrated that the presence of 0.1 pg/ml ES 
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Figure 4.4a Fibroblast cell migration over 48 hours upon a fibronectin-coated surface. 

Concentration of fibronectin is indicated, in µg/ml, on the left hand side of each series of 
images. Micron bar represents 100 µm. 
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accelerated the level of cell migration that was achieved within the assay (Fig. 4.4b). 

Here, ES was added to cells that were then seeded upon a 100 µg/ml fibronectin-coated 

surface. Similar to what was observed when ES was absent, cells adhered and spread 

well upon the surface. However, over the ensuing 48 hours the cells were observed to 

move rapidly into the un-seeded area, filling the entire field of view far earlier than 

when ES was omitted. The corresponding movie also showed that the migrating cell 
boundary moved through and past the observed field of view during its rapid progress 
into the un-seeded area. Indeed, observations that were made at a lower magnification 
immediately after the 48-hour time period had elapsed, indicated that cells had migrated 

at least twice as far as the field of view visible within the time-lapse movie. This result 
is in contrast to what was observed when cells were exposed to the higher ES 

concentration of 10 pg/ml. 

4.3.2 Analysis of results 

Quantitative analysis of the images shown in Fig. 4.4a and b, in which the total 

percentage cell surface area coverage within each image was assessed, concurred with 
the observations that were made in section 4.3.1. Use of the method outlined in Fig. 4.1 

and 4.2 revealed that in the absence of ES, surfaces coated with 1.0 µg/ml fibronectin or 

10 µg/ml fibronectin yielded the greatest increase in cell surface area coverage of the 

un-seeded, initially cell-free area, with values of 37 % and 36 % respectively after 48 

hours (Fig. 4.5a). This is compared with an increase of only 14 % when 1000 µg/ml 
fibronectin was used to coat the surface, thus indicating that the higher concentration of 
fibronectin inhibited migration. An increase of 0.2 % was calculated over the 48 hour 

period when 0.1 µg/ml fibronectin coated the surface. While such a negligible increase 

may show that the cells did not migrate successfully into the un-seeded area, it does not 

reflect the retreat of the cell boundary from its original position. This is because the 

region that was analysed within each image covered only the unseeded area and the 

edge of the original cell boundary. The assays containing surfaces coated with 100 

pg/ml fibronectin revealed that, in the absence of ES, cell surface area coverage 
increased by 19 % after 24 hours and 30 % after 48 hours. However, coverage attained 
in the presence of 0.1 pg/ml ES reached 51 % by 24 hours and 56 % by 48 hours. 

These values were 2.6 times and 1.9 times higher respectively than the coverage 
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Figure 4.4b Fibroblast cell migration over 48 hours upon a 100 pg/ml tihronectin-coated 
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Figure 4.5a Migration of fibroblasts across a cell-free area: percentage increase in total 

cell surface area coverage of a fibronectin-coated surface, as calculated using the 

methods outlined in Fig. 4.1 and 4.2. Concentration of fibronectin used to coat surface 

varied from 0.1 to 1000 µg/ml, as indicated. Cellular response to the presence of 
0.1 µg/ml ES whilst upon a 100 pg/ml fibronectin surface is also shown. Percentage 

increases in cell surface area coverage over 24 hours in the absence of ES (") or in the 

presence of 0.1 pg/ml ES ("). Percentage increases in cell surface area coverage over 

48 hours in the absence of ES (A) or in the presence of 0.1 µg/ml ES (D). 
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attained by cells when ES was omitted. This analysis therefore confirmed that the 

presence of ES accelerated cell migration. 

In addition to the analysis described above, which was performed upon a selected region 

within each image, the whole field of view within each image was also analysed. This 

method included analysis of both the un-seeded, initially cell-free area and all of the 

visible, cell-seeded area. As such, this allowed for quantifying the extent to which the 

boundary of cells, that had been seeded upon the 0.1 pg/ml fibronectin-coated surface, 

receded over the 48 hours. Here, calculations revealed that total cell surface area 

coverage had changed by -11 % after 24 hours incubation and -23 % after 48 hours 

incubation (Fig. 4.5b). In contrast, cell coverage over the 1.0 µg/ml fibronectin-coated 

surface was shown to have increased by 13 % over 48 hours, compared with 23 % when 

the surface had been coated with 10 µg/ml fibronectin. As with the alternative method 

of analysis, cells on the surface coated with 1000 pg/ml fibronectin demonstrated only a 

small increase in total cell coverage. By 48 hours, a maximum increase of only 5% had 

been attained. Cells on the 100 pg/ml fibronectin-coated surface showed an increase in 

total surface area coverage. By 24 hours, coverage was 16 % greater than at the 

beginning of the incubation period. However, by 48 hours this difference had dropped 

to 9 %. This may have been due to an overall sparser distribution of cells by 48 hours, 

including those within the original cell-seeded area. In contrast, when ES was present, 

the change in total cell surface area coverage was far greater, increasing by 34 % after 
24 hours and 40 % after 48 hours. Thus, calculations drawn from both methods of data 

analysis support the hypothesis that ES promotes fibroblast migration across fibronectin 

surfaces. They also confirm that the concentration of fibronectin present upon the 

surface influenced cell adhesion and the rate of migration. 
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Figure 4.5b Migration of fibroblasts across a cell-free area: percentage increase in total 

cell surface area coverage of a fibronectin-coated surface. Data derived from analysis 

of the whole field of view. Concentration of fibronectin used to coat surface varied 

from 0.1 to 1000 µg/ml, as indicated. Cellular response to the presence of 0.1 pg/ml ES 

whilst upon a 100 µg/ml fibronectin surface is also shown. Percentage increases in cell 

surface area coverage over 24 hours in the absence of ES (") or in the presence of 0.1 

pg/ml ES ("). Percentage increases in cell surface area coverage over 48 hours in the 

absence of ES (0)or in the presence of 0.1 Vg/ml ES (0). 
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4.4 Discussion 

The results presented within Chapter 3 demonstrate that L. sericata larval ES modifies 
fibroblast adhesion to ECM-coated surfaces, particularly fibronectin (Horobin et al., 
2003). Such an influence over fibroblast behaviour could have implications upon 
fibroblast motility. Hence, the effect of ES upon human, dermal fibroblast migration 

within two-dimensional in vitro wound assays was investigated. Initially, 10 gg/ml ES 

was included within the assay because this same concentration had been applied to 

experiments presented within Chapter 3. Results from this preliminary study indicated 

that the majority of cells were prevented from adhering and migrating across the 10 

pg/ml fibronectin-coated surface. This effect was not due to the concentration of 
fibronectin present, as cells were shown to spread and migrate well over this surface 

when ES was absent. It may therefore be concluded that the presence of ES was 

responsible. Hence, the results from this preliminary study complement those that were 

obtained in the previous chapter, where various assays showed that 10 µg/ml ES also 

reduced fibroblast adhesion to fibronectin. Additionally however, the preliminary time- 

lapse study provides an indication as to the possible consequences of such a reduction in 

fibroblast adhesion. Here, this action was shown to have a deleterious effect upon the 

cells, inhibiting their attachment to the substratum, preventing migration and possibly 

causing the destruction of cellular extensions. 

Further time-lapse studies showed that in contrast, the addition of ES at the much lower 

concentration of 0.1 pg/ml enhanced fibroblast migration upon fibronectin. Although 

these results must be treated with caution because no replicate samples were tested and 

therefore no statistical analysis performed, the margin by which 0.1 µg/ml ES increased 

migration allows for tentative conclusions to be drawn. It may be proposed that this 

concentration of ES hastened the rate of cell migration by altering the fibronectin-coated 

surface. This hypothesis is based upon results from the previous chapter where it was 

shown that over a similar period of time and at the same concentration, ES modified 
fibronectin, degrading it into separate peptides (see Fig. 3.24a). Such an alteration in 

the character of the fibronectin surface may have caused a reduction in the strength of 
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fibroblast adhesion, without, as was observed with the higher ES concentration, 
inhibiting cell attachment. In turn, this may have contributed to accelerated migration. 

The supposition that ES assisted migration by reducing the strength of cell adhesion is 

supported by the results that were obtained when different concentrations of fibronectin 

were tested in the absence of ES. The lowest fibronectin surface concentration tested 

(0.1 pg/ml) was insufficient to sustain prolonged cell adherence, thus inhibiting 

migration. Intermediate fibronectin concentrations (1 and 10 µg/ml) provided for 

optimal migration, while the highest concentrations (100 and 1000 pg/ml) reduced 

migration. These results are consistent with the ̀ receptor saturation model' originally 

presented by Dembo and Bell in 1987 and later by Gaudet et al. (2003). Based upon 
thermodynamic analysis of cell adhesion, this model explains the influence of the 

substrate surface upon cell spreading in terms of the number of adhesive sites available 

to the cell. Used in Chapter 3.4 to explain why fibroblasts exposed to 10 µg/ml ES 

exhibited a more rounded morphology (Fig. 3.25), this model may also be used to 

explain the effects of cell adhesion upon migration (Fig. 4.6). As the substrate surface 

concentration increases there will come a point where the integrin receptors, assuming 
they are expressed in finite numbers (Akiyama and Yamada, 1985), become saturated 
by available adhesive sites. Below the saturation point, cell spreading increases with a 

rise in the density of adhesive sites because the cell is able to make more contacts with 
the substrate. However, above the saturation point, cell spreading decreases with a 

continuing rise in the density of adhesive sites because the integrin receptors become 

saturated over a smaller distance. Hence, the saturation point coincides with a transition 
in the response of cells to increasing substrate concentration. Gaudet et al. (2003) 

found that at collagen surface concentrations far below the saturation point, BALB/c 

3T3 fibroblast cell migration was negligible. However as the collagen surface 

concentration increased to near saturation point, a more motile cell phenotype became 

prominent. Cell migration then increased as the collagen concentration increased. At 

the highest collagen concentrations tested, cell migration became inhibited. According 

to Gaudet et al. (2003) ̀ it is generally accepted that this inhibition occurs because the 

substrate becomes overly adhesive and the contractility of the cell is unable to overcome 
the adhesive attachments'. This theory is consistent with the ̀ receptor saturation 

model' because integrin receptor-ligand bonds that occur when the adhesive sites are 
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Figure 4.6 Receptor saturation model showing the relationship between substrate 

concentration, cell adhesion, spreading and migration. At low substrate concentrations, 

the number of available adhesive sites are low. Hence, the cell is unable to spread fully. 

Migration is inhibited because the cell is unable to maintain sufficient contact with the 

substrate to generate traction forces. As the substrate concentration rises, cell spreading 

increases as the cell comes into contact with more adhesive sites. Cell movement also 

becomes possible. At the `saturation' point, the number of available integrin receptors 

within the cell are approximately equal to the number of adhesive sites that the cell can 

reach. Cell motility continues to increase as a greater number of adhesive sites become 

accessible. If the substrate concentration rises further, adhesive sites become denser. 

Thus, cell spreading begins to decrease as the integrin receptors become saturated by 

adhesive sites over a smaller area. Eventually, adhesive sites become so dense that the 

substrate becomes excessively adhesive. Here, cell traction forces can no longer 

overcome the strength of cell adhesion. Thus, cell motility is decreased. Figure adapted 

from Gaudet et al. (2003). 
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very dense, tend to be clustered together and are therefore more able to resist 

mechanical loads that promote detachment. 

Such a biphasic response of cell migration to collagen concentration, as Gaudet et al. 
(2003) found, was also observed with fibronectin in the experiments presented here. In 

addition, DiMilla et al. (1993) observed a similar response with human smooth muscle 

cells plated on fibronectin and type IV collagen. Further evidence in support of the 
`receptor saturation model' is provided by Wang and Ingber (1994) and Goldstein A. S. 

and DiMilla P. A. (2002), as described in Chapter 3.4. Their results suggest that 
increasing the concentration of ECM proteins coating a surface promotes the binding of 
integrin receptors and the formation of molecular links with the cytoskeleton. In turn, 

this increases the strength by which cells are held in place and reduces the dynamic 

responsiveness of cells to external stimuli. More evidence is provided by Puschel et al. 
(1995). These researchers found that fibroblasts taken from elderly volunteers (aged 

between 80 and 92 years old) adhered more strongly to fibronectin than those taken 
from younger individuals (aged between 20 to 30 years old). The authors hypothesised 

that the increased adhesive capacity of older fibroblasts contributes to impaired healing 

in the elderly by slowing the rate at which the cells can migrate through the surrounding 

matrix and into the wound space. Yet further evidence suggests that a5ß1 integrin- 

mediated adhesion to high fibronectin concentrations induces a ̀ stop' signal for cell 

migration via activating the GTPase protein RhoA, which stimulates focal adhesion 
formation (Cox, Sastry and Huttenlocher, 2001). The authors found that as RhoA 

activity increased with increasing fibronectin, the activity of other GTPase proteins, 
CDc42 and Racl, both of which co-ordinate to promote cell polarisation and protrusion, 
actually decreased. Hence according to these findings, an increase in the strength of cell 

adhesion above a certain point causes a decrease in the protrusion of cells into new 
territory. Inducement of `stop' signals may therefore be another method by which high 

substrate concentrations inhibit migration. 

In order to fully appreciate how the fibronectin surface concentration and the presence 

of ES influenced fibroblast migration, it is necessary to discuss the mechanisms by 

which cells migrate. Studies undertaken by Pelham and Wang (1999), Beningo et al. 
(2001), Munevar, Wang and Dembo (2001a and b), Petroll, Ma and Jester (2003) 

reveal that cells migrate via the exertion of tractional forces near the leading cell edge, 
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while adhesions located at the back of the cell serve as passive anchors. Discussed in 

more detail within Chapter 1, these results concur with "a frontal towing model of cell 

migration, in which the frontal regions serve as the `engine' that tows an adhesive cargo 

consisting of the cell body and the tail" (Beningo and Wang, 2002). This adhesive 

cargo produces dragging forces which, according to Munevar, Wang and Dembo 

(2001b), sometimes show a strong focus at the tail-end of the cell. As these forces resist 
forward movement, it may be suggested that the release of cell trailing edges represents 

a rate-limiting step of migration. If this is so, the high fibronectin concentrations tested 

within the experiments presented here may have inhibited migration. This is because 

the high density of adhesive sites may have caused clustering of integrin receptor-ligand 
bonds at the trailing edge of the cell. Stronger tractional forces would therefore have 

been necessary to effect forward motion because a greater number of bonds would 

needed to have been disrupted and reformed. In accordance with this theory, Gaudet et 

al (2003) found that traction per unit area exerted by migrating cells was greater at high 

substrate concentration. 

Considering how cells migrate, the presence of 0.1 pg/ml ES may have increased 

fibroblast migration by assisting the detachment of cell trailing edges, without 

compromising the cells' abilities to exert tractional forces. Generation of such 
differential effects across the geography of the cell may be possible when considering 

the general shape of migrating cells. As shown by various migration studies and within 
the time-lapse movies recorded here, the leading edge of a cell is generally broader than 
its trailing edge. The trailing edge can on occasion extend, becoming exceptionally 
long and thin as the cell body moves while the end of the trailing edge fails to release 
from the surface. In this case, the trailing edge would be attached to a smaller area of 
fibronectin than the leading edge. If the fibronectin surface had been altered by the 

proteolytic actions of ES, reducing its surface adhesion capacity, then the trailing edge 

would be more vulnerable to losing grip than the leading edge. This is particularly so 

when considering that clustering of receptor-ligand bonds at the trailing edge of the cell 
is less likely to occur when adhesive sites are more sparse. Thus, migration would be 

enhanced. In accordance with the ̀ receptor saturation model', a similar mechanism of 

promoting migration may be involved when cells are exposed to a lower concentration 

of substrate. 
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Another possible explanation as to how 0.1 Vg/ml ES accelerated migration is also 

based upon the shape of migrating cells. A broad leading edge, located a short distance 

from the thicker cell body, and an extended long, thin trailing cell edge would result in a 

situation where the trailing edge possessed a much higher surface area to volume ratio 

than the main cell body or indeed, the broader lamellipodial leading edge. As a 

consequence, the trailing edge of the cell and its receptor-surface interactions would be 

more exposed to the surrounding medium. Presumably, this would result in the trailing 

edge being more vulnerable to direct attack from the proteolytic agents present with ES. 

Hence, substrate adhesions located at the rear of the cell may be more likely to be 

destroyed by proteolysis than those located towards the cell front. Possible evidence for 

the destruction of cell trailing edge adhesions, and maybe of the cytoplasmic extensions 

themselves, may be observed in the time-lapse movie showing cells exposed to 10 

µg/ml ES. Here, it appears that thin cytoplasmic extensions may be being broken off, 

resulting in the failure of the cells to spread. Differences in the character of the 

adhesions found at the cell front compared with the rear of the cell may also contribute 

to differential effects of ES across the cell. As discussed within Chapter 1.2.1, focal 

adhesions which form at the leading cell edge, generate the most traction to drive 

migration. As they mature, the adhesions become larger and are relocated backwards, 

into the cell body and towards the trailing cell edge, becoming focal adhesion plaques. 
It may be the case that these more mature focal adhesions are more liable to protelytic 

action than their younger counterparts, or that they are less able to react dynamically to 

a changing environment. 

Thus, in considering the effect of ES upon fibroblast migration in terms of the ̀ receptor 

saturation model', 0.1 µg/ml ES may have promoted migration on a surface coated with 

a relatively high concentration of fibronectin (100 µg/ml) by reducing the density of 

adhesive sites (Fig. 4.7a). The higher ES concentration of 10 pg/ml may have reduced 

migration on the surface coated with an intermediate concentration of fibronectin (10 

pg/ml), by the same means. However, a reduction in the density of adhesive sites may 

have occurred to such an extent that the cells could not maintain enough bonds with the 

surface to allow spreading or indeed to remain attached (Fig. 4.7b). This is in 

agreement with what was observed in the relevant time-lapse movie. As the 

119 



a. 

Aot 
CELL 

r 

LOW 
substrate HIGH 

concentration 
V substrate 

SATURATION concentration 

Increwed t iII apieadiny r.:. < 

Increasing substrate concentration 

b. 

Addition of 10µq: ni FS in 
cells on interme liMe 

fibronectin concentration 

_... - -- 
-- -- =, -ate--- - 

LOW 
substrate 

concentration 

Figure 4.7 Receptor saturation model demonstrating the proposed impact that the 

presence of larval ES has upon cell adhesion, spreading and migration. a. The effect of 

0.1 µg/ml ES upon cells seeded on a relatively high concentration of fibronectin. This 

concentration of ES alters the fibronectin surface, reducing the density of adhesive sites 

and therefore promoting cell spreading and migration. b. The effect of 10 µg/ml ES 

upon cells seeded on an intermediate fibronectin concentration. Through the high 

proteolytic activity of ES, adhesive sites are reduced, inhibiting cell spreading and 

migration. Integrin receptor-ligand bonds that remain may also be degraded and the 

cells become detached. 

120 

Increasing substrate concentration 



concentration of ES was so high, direct proteolytic degradation of receptor-ligand bonds 

may also have played a major role. 

However, modulation of cell adhesion by proteinases within ES may not be the only 
factor involved in its migration-altering activity. This is because the rate of migration in 

the presence of 0.1 pg/ml ES was far higher than any recorded in its absence, regardless 

of the fibronectin concentration that was used to coat the surface. Although this has not 
been investigated, there is a possibility that ES contains growth factors or cytokines 

which directly promote fibroblast motility. With this in mind, one piece of research by 

Maheshwari et al. (1999) is of particular interest. This concerned the effect of EGF 

upon WT NR6 murine fibroblast cell (a 3T3-derived cell line transfected with wild-type 
human epidermal growth factor receptor or EGFR) migration over surfaces coated with 

0.1 to 3 pg/ml fibronectin. The authors found that firstly, cell adhesion increased as the 

concentration of the fibronectin coating increased, both in the presence and absence of 
EGF. However, in the presence of EGF, the strength of adhesion was relatively lower 

throughout. Secondly, they discovered that the speed of cell migration in the presence 

of EGF displayed a biphasic response to the strength of cell adhesion, with optimal 

migration being observed at an intermediate concentration of 1 µg/ml fibronectin. Such 

a biphasic response was not observed when EGF was absent. In this case, migration 

speed was unaffected by the narrow range of fibronectin concentrations used and 

therefore the strength of cell adhesion present. These results indicated that cell adhesive 

strength is not the only biophysical process regulating cell locomotion speed, as the 

addition of EGF must have induced another contributory factor or factors to become 

involved. 

In continuation of this research, Maheshwari et al. (1999) also examined cell membrane 

activity in terms of fractional membrane protrusion. This was determined by first 

calculating the area extended by a cell over a given time in order to find the average rate 

of change of cell protrusion area. This data was then normalised to account for 

differences in average cell area. The results revealed that with increasing fibronectin 

coating concentration and concomitant cell adhesive strength, EGF first decreased 

membrane activity compared with the control, then increased it and then finally had no 

effect. Here, maximum membrane activity was observed at 0.3 and 1 pg/ml fibronectin 
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concentration. Thus, EGF not only elicited a bi-phasic response to fibronectin in terms 

of cell migration speed, it also elicited a bi-phasic response in terms of cell membrane 

activity. Further examination of these results revealed that the response curves 

representing migration speed and membrane activity did not precisely run parallel with 

each other when plotted against fibronectin concentration. At 0.3 µg/ml fibronectin, 

EGF enhanced cell membrane activity but failed to promote the speed of cell 
locomotion above the level observed in the control. This indicated that membrane 

activity, although influential, was not the only controlling factor involved in cell 

migration. The researchers therefore concluded that in the presence of EGF, both cell 

membrane activity and cell adhesive strength (and therefore fibronectin concentration) 

affect cell migration. 

With these conclusions in mind, it would be interesting to observe the effect of ES upon 
fibroblast cell membrane activity. How ES affects cell migration upon surfaces coated 

with different concentrations of fibronectin would also be of interest. Here, in the 

absence of these results, some parallels may be drawn against the effects that EGF was 

shown to exert upon the cells, as demonstrated by Maheshwari et al. (1999). ES like 

EGF has been shown to reduce cell adhesion to fibronectin (Chapter 3), albeit perhaps 
by different mechanisms. It may therefore be speculated that at low concentrations of 
fibronectin, ES may actually inhibit cell migration. This is because Maheshwari et al. 

(1999) found that at the lowest fibronectin concentration tested (0.1 µg/ml), EGF 

inhibited cell membrane activity and migration. The authors hypothesised that this was 
due to EGF reducing cell adhesion to a surface that already had a low surface adhesion 

capacity. This in turn would have prevented the EGF-stimulated cells from being able 
to establish any stable attachments. ES may therefore prove to exert the same effect. 
Higher concentrations of ES may also exert a similar effect at higher concentrations of 
fibronectin. This was indeed observed when cells were exposed to 10 pg/ml ES, as 

shown in the relevant time-lapse movie. 

It may also be speculated that at very high concentrations of fibronectin, ES at just 0.1 

pg/ml may not be able to exert such a dramatic effect upon migration. Maheshwari et 

al. (1999) found that at the highest fibronectin concentration tested (3 µg/ml), EGF had 

little effect upon cell membrane activity and migration. They explained this through 
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hypothesising that the strength of cell adhesion to this surface fibronectin concentration 

is overriding the influence that EGF can exert. Another theory is that high cell adhesive 

strength is inducing the cells to produce ̀ stop' signals on migration. This has indeed 

been observed by Cox, Sastry and Huttenlocher (2001), as discussed earlier. However, 

to hypothesise that the effects of ES like EGF, can be overridden by high surface 

fibronectin concentrations, does not take into account the proven ability of proteinases 

within ES to break down fibronectin (Chambers et al., 2003; Horobin et al., 2003) thus 

presumably altering surface/receptor interactions. Nor does it consider the fact that ES 

was shown to increase migration while cells were attached to a far higher concentration 

of fibronectin than was used when EGF was tested. Another factor also unaccounted 
for in this hypothesis concerns the consequences that may result from the liberation of 

peptides from fibronectin as it is degraded by the proteolytic actions of ES. Once 

exposed, a number of peptide sequences found within fibronectin have been shown to 

modulate fibroblast adhesion (Pierschbacher and Ruoslahti, 1984; Woods et al., 1993), 

chemotaxis (Postlethwaite et al., 1981) and migration (Livant et al., 2000). Fibronectin 

fragments have also been shown to regulate matrix metalloproteinase (MMP) gene 

expression by fibroblasts (Huhtala et al., 1995). This study showed that a 120 kDa 

fibronectin fragment containing the central cell-binding domain, co-ordinately induces 

procollagenase and its activator urokinase plasminogen activator (uPA), thus increasing 

matrix-degradative activity. As discussed previously, MMPs are important in tissue re- 

modelling during wound healing, breaking down ECM components to allow the free 

passage of migrating fibroblasts and therefore the advancement of granulation tissue 

(Clark, 1996). 

Having discussed the parallels and possible differences between EGF- and ES- 

stimulation of fibroblast migration, it is interesting to note the findings of Prete (1997). 

Here, the author found that the addition of `alimentary secretions', from late second 
instars of Phaenicia sericata larvae, augmented the mitogenic actions of EGF upon 

human fibroblasts. If the mitogenic activity of EGF is also influenced by the strength of 

cell adhesion to a surface, then ES may behave synergistically by modifying fibroblast 

adhesion towards a level more conducive to the actions of EGF. Alternatively, ES may 

also contain some form of independent, yet limited growth-promoting activity. This 

may be a reasonable conclusion as Prete demonstrated that cells in the presence of 10 % 

serum, modestly increased [3H]-thymidine incorporation when exposed to `alimentary 
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secretions' alone. However, the research in this thesis has found no evidence to suggest 

that ES in isolation, without the presence of any serum components or other sources of 

growth factors, conveys mitogenic action. It may therefore be assumed that the 

promotion of cell proliferation by ES requires cells to interact with other mitogenic 

stimuli. 

Despite the lack of evidence to suggest that ES stimulates fibroblast proliferation 
independently, it may be argued that any increase in the rate at which a confluent layer 

of cells expands its borders, is due to enhanced cell proliferation. However, the 

advantage of observing cells in real-time as they migrate across a surface, is that the 

progress of individual cells can be visibly tracked. In addition, any cell division can 

also be observed. With this in mind, it may be concluded that after viewing the time- 

lapse movies recorded in these experiments, ES enhanced the progression of the leading 

cell edge by stimulating cell locomotion and not cell proliferation. The visual tracking 

of individual cells exposed to 0.1 pg/ml ES revealed them to be moving much more 

rapidly than cells migrating in the absence of ES. In addition, cell division did not 

appear to be more frequent. 

4.5 Conclusions 

In summary, larval ES at 0.1 µg/ml, appears to enhance the rate at which fibroblasts 

migrate across a fibronectin-coated surface. Much higher concentrations of ES, such as 
10 pg/ml, induce the opposite effect, indicating a dose-dependent response. ES 

proteinases and/or the actions of other as yet unknown agents within ES may be 

responsible. These results were obtained while observing cells in a two-dimensional 

environment. In vivo however, cells interact within a three-dimensional environment. 
As will be discussed in the next chapter, several studies have shown the behaviour of 
fibroblasts to be dependent upon whether they are exposed to two-dimensional or three- 

dimensional environments. With this in mind, research was directed towards 
developing a more physiologically-relevant, three-dimensional, in vitro wound assay, in 

which the effects of larval ES upon fibroblast migration could be observed. 
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CHAPTER 5 

Fibroblast Migration in Three Dimensions: Method 
Development 

5.1 Introduction 

As shown in the previous chapter, larval ES appears to modify fibroblast migratory 

behaviour, increasing the rate at which the cells migrate across a fibronectin-coated 

surface. However, as briefly discussed, cells behave differently upon planar surfaces 

than within the three-dimensional matrix that they experience in vivo. Examination of 

mesenchymal cells in situ has revealed that they adopt stellate shapes and protrude 
dendritic-like networks of extensions (Tamariz and Grinnell, 2002; Grinnell et al., 

2003). This is in contrast to their flattened, lamellar appearance on planar surfaces 
(Elsdale and Bard, 1972). Cells observed in situ also exhibit attachments to the 

surrounding matrix that are characteristically different to those observed in two- 

dimensional environments (Breathnach, 1978; Trinkaus, 1984; van Exan and Hardy, 

1984; Omagari and Ogawa, 1990; Beertsen, McCulloch and Sodek, 2000; Cukierman et 

al., 2001). Termed "3D-matrix adhesions" by their original observers, these 

attachments contain paxillin and a5 integrin receptors that have co-localised and run 

parallel with fibronectin fibres within the ECM. This is in contrast to the associations 
formed in the two-dimensional environment. Here, the attachments comprise of much 

more discrete focal contacts and can be identified as focal adhesions, containing integrin 

a�ß3, paxillin, vinculin and focal adhesion kinase (FAK) (Fig. 1.3, Chapter 1), or 

fibrillar adhesions, which are composed of asp, integrin and tensin (Zamir et al., 1999; 

Friedl and Bröcker, 2000). 
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The introduction of the fibroblast-populated collagen lattice by Ehrmann and Gey 

(1956) signified the first attempt to observe fibroblasts in vitro within a three- 

dimensional environment. Since then, collagen gels have been widely used for in vivo- 

like cell culture (Friedl and Bröcker, 2000) and are considered to represent a fair 

reproduction of the biophysical architecture of the dermis, in terms of the random 

network-like distribution of collagen type I fibres (Friedl and Bröcker, 2000). 

Cells embedded within collagen gels have been shown to adopt dendritic-like networks 

of extensions that share some similarity to the in situ-like morphology (Elsdale and 
Bard, 1972; Tamariz and Grinnell, 2002; Grinnell et al., 2003; Cukierman et al., 2001). 

First used quantitatively as models of wound contraction (Bell et al, 1979), cell motility 

within such gels has been shown to result in ßl integrin receptor-mediated translocation 

of collagen fibrils and global matrix re-modelling (gel contraction) (Bell et al, 1979; 

Tomasek & Akiyama, 1992; Kuhn et al., 2000; Cukierman et al., 2001). As the extent 

of re-modelling appears dependent upon the density of cells present, with minimal 

contraction occurring below 1x 104 cells per ml of gel, this suggests that intercellular 

communication plays a role (Ehrlich, Gabbiani and Meda, 2000; Ehrlich and 

Rittenburg, 2000). Indeed, metabolic coupling between cells where they communicate 

via the intercellular passage of molecules through gap junctions, has been shown to 

occur within collagen gels and has been found to be necessary for their contraction 

(Ehrlich, Gabbiani and Meda, 2000; Ehrlich and Rittenburg, 2000; Grinnell et al., 
2003). 

Fibroblast migration within collagen gels has also been studied. In two dimensions, 

migration across a surface is predominantly a function of adhesion and de-adhesion 

events because resistance to the advancing cell body above the planar surface is lacking. 

Within three dimensions however, cells have to overcome resistance from the matrix 

that completely surrounds them. Matrix barriers force the cells to adapt their 

morphology, making them either change shape and/or enzymatically degrade ECM 

components in order to facilitate locomotion (Friedl and Bröcker, 2000; Haas, Davis and 

Madri, 1998). It is therefore perhaps unsurprising that the ECM exerts a considerable 
influence over the behaviour of cells embedded within it. For example, researchers 
have found that fibroblasts only up-regulate a2(3 i integrin receptor expression when they 

are placed within a collagen gel and not when they are attaching to a collagen-coated 
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surface (Klein et al., 1991). This finding indicates the importance of the biomechanical 

architecture of the matrix in determining fibroblast behaviour. 

Within gels, collagen concentrations of between 1.5 to 2 mg/ml are preferable for 

observing cell migration (Friedl and Bröcker, 2000). However, it has been reported that 

the motility of cells within gels containing collagen only, results predominantly in 

matrix re-organisation and contraction rather than cell locomotion (Bell et al, 1979; 

Harris, Stopak and Wild, 1981; Grinnell, 1994; Tomasek et al., 2002). Within tissue, 

collagen is associated with a variety of ECM components including fibronectin and 

GAGs. This may explain why collagen gels in vitro are less favourable to cell adhesion, 

migration, proliferation and adoption of in situ-like morphologies, than cell-derived 

three-dimensional matrices (Cukierman et al., 2001). Therefore, in order to observe 

cells within more physiologically relevant conditions, the addition of other ECM 

components to collagen gels is preferable. As discussed previously, fibroblasts are 

known to use fibronectin to assist migration into the wound space during granulation 

tissue formation (Hsieh and Chen, 1983; Clark, 1996). It therefore seems logical that 

the addition of fibronectin to collagen gels improves the migration of embedded cells. 

One study estimated that the addition of 30 µg/ml fibronectin provides for optimal 

migration (Greiling and Clark, 1997). Other studies have examined the suitability of 

conventional cell culture media for providing physiologically relevant conditions. 

These have shown that supplementing media with L-ascorbic acid 2-phosphate 

stimulates accumulation of dermal fibroblast-derived collagen matrix and multilayering 

of fibroblasts (Hata and Senoo, 1989; Ishikawa et al., 1997; Ohgoda et al., 1998). The 

addition of L-ascorbic acid 2-phosphate has also been shown to improve renal, 

proximal, tubular cell growth and promote in vivo-like function (Nowak and 
Schnellmann, 1996). Based upon this information, in vitro wound assays containing 

three-dimensional collagen/fibronectin matrices were developed in order to assess cell 

migration in three dimensions. The use of L-ascorbic acid 2-phosphate in the 

production of an in vitro three-dimensional matrix was also investigated. 
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5.2 Methods 

5.2.1 Preparation of collagen gels 

5.2.1.1 Collagen gel -1 mg/ml 

Powdered DMEM (GibcoTM, Invitrogen Ltd, Paisley, UK) was dissolved in a solution 

containing antibiotic/antimycotic, L-glutamine, N-(2-hydroxyethyl)piperazine-N'-(2- 

ethanesulphonic acid); 4-(2-hydroxyethyl)piperazine-1-ethanesulphonic acid (HEPES) 

and NaHCO3, such that all of the above components were mixed at 1.5 times the 

concentrations used for routine cell culture (see Appendix). Where mentioned, 0.3 mM 

L-ascorbic acid 2-phosphate or 45 pg/ml bovine fibronectin was also present. 
Following refrigeration, the stock solution was mixed on ice, at a ratio of 2: 1, with a 

cold solution containing 3 mg/ml acid-solubilised bovine collagen type I (ICN 

Biomedicals, Ohio, USA). A final concentration of 1x DMEM, 1.0 mg/ml collagen, 25 

mM HEPES, 3.7 g/1 NaHCO3 and where present, 0.2 mM L-ascorbic acid 2-phosphate 

and 30 pg/ml fibronectin, was obtained. 

5.2.1.2 Collagen gel - 1.5 mg/ml 

As before, powdered DMEM (GibcoTM, Invitrogen Ltd, Paisley, UK) was dissolved in a 

solution containing antibiotic/antimycotic, L-glutamine, HEPES and NaHCO3. 

However, in this case all of the above components were mixed at twice the 

concentrations used for routine cell culture (see Appendix ). In addition, 60 pg/ml 
bovine fibronectin was also present. Following refrigeration, the stock solution was 

mixed on ice, at a ratio of 1: 1, with a cold solution of 3 mg/ml acid-solubilised bovine 

collagen type I. A final concentration of 1x DMEM, 1.5 mg/ml collagen, 25 mM 

HEPES, 3.7 g/1 NaHCO3 and 30 pg/ml fibronectin was obtained. 
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5.2.2 Development of three-dimensional assays using the cloning cylinder 

Fibroblast cells were trypsinised and suspended in cell culture medium containing 10 % 

FCS to neutralise the trypsin. They were then prepared in serum-free medium and 

counted, using a haemocytometer, as described in Chapter 2.2.1. The cells were again 

pelleted and re-suspended at a density of Ix106 cells/ml within a specified collagen 

solution. The solution was kept on ice to prevent gelation and the cells were mixed by 

careful and slow pipetting, in order to minimise bubble formation. 

A pre-cooled 35 mm dish was prepared with a cloning cylinder placed upright in its 

centre. The collagen solution containing the cells was then poured into this dish around 

the outside of the cylinder (Fig. 5.1). Following sufficient incubation at 37°C to effect 

gelation, the cloning cylinder was carefully removed, so as not to disturb the gel that 

had formed around it. Next, concentrated serum-free cell culture medium, some of 

which was incorporated into the collagen solution (refer to section 5.2.1), was diluted to 

1x concentration. It was ensured that where L-ascorbic acid 2-phosphate was present 

within the gel, the medium also contained this component. This medium (2 ml) was 

then added to the dish, covering the gel, and replaced every 24 hours. Cells were 

observed using phase contrast microscopy and/or confocal microscopy, as described in 

Chapter 2.2.4. 

5.2.2.1 Fibroblast migration from a populated gel in the presence of L-ascorbic acid 2- 

phosphate 

Fibroblasts were suspended as described above, within 1.5 ml or 2 ml of a1 mg/ml 

collagen gel solution, containing 0.2 mM L-ascorbic acid 2-phosphate. In one case, 30 

pg/ml fibronectin was also added. The assay was then prepared following the methods 

outlined in Fig. 5.1 and above. Cells were observed migrating out of the gel and 

towards the centre of the dish, across the exposed tissue culture plastic surface. 
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Figure 5.1 Three-dimensional in vitro wound assay assembled using a cloning 

cylinder. 1. Cloning cylinder placed upright in the centre of a 35 mm tissue culture 

dish. Fibroblast-seeded collagen solution poured around the outside of the cylinder. 2. 

After collagen gelation, the cloning cylinder is removed to leave a hole in the gel layer. 

3. Cell culture medium poured on top of the gel, to cover. 
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5.2.2.2 Fibroblast migration from a populated gel to a cell free gel 

Fibroblasts cells were suspended as described previously within a1 mg/ml or 1.5 mg/ml 

collagen gel solution, containing 30 pg/ml fibronectin. However, no L-ascorbic acid 2- 

phosphate was present. As before, the assay was prepared following the methods 

outlined in Fig. 5.1 and above. In addition however, a small volume of collagen 

solution, of the same composition as that used to suspend the cells, was pipetted into the 

centre of the cloning cylinder until it had reached a similar height to that of the cell- 

populated solution surrounding the outside of the cylinder. Following removal of the 

cylinder, cells were observed at the cell-populated/cell-free boundary using phase 

contrast microscopy. 

In many cases, cells were also fixed and stained in situ in preparation for analysis by 

confocal microscopy. This was achieved by first aspirating the serum-free cell culture 

medium from the top of the gel. Enough 4% paraformaldehyde to cover the gel was 

then added and left at RT for 20 minutes. The FITC-PI staining protocol, as outlined in 

Chapter 2.2.4, was then followed. In one case, cells were pre-stained with CelltrackerTM 

before being embedded within the gel. Here, following fixation of the cells as described 

above, no further staining was required. Whatever the case, gels were stored in the dark 

at 4°C before being taken to the confocal microscope. Immediately prior to analysis, 

gels were mounted with a drop of 2.5 % 1-4 diazabicyclo-2-2-2-octane (DABCO) 

solution (see Appendix) and a coverslip. 

5.2.3 Development of three-dimensional assays using the `cell droplet' method 

Here, a droplet of collagen solution seeded with cells were placed between two gel 
layers as illustrated in Fig. 5.2. Firstly, a stock of 1.5 mg/ml collagen solution, 

containing 30 pg/ml fibronectin was prepared (see section 5.2.1.2). Where specified, 
larval ES (from batch E- see Table 2.1) was added to the concentration indicated. For 

specified controls PBS was added in place of ES. Once prepared, 650 µl or 1000 µl of 

the stock solution was poured into a 35 mm or 58 mm tissue culture dish respectively 

and left to gel at 37°C in an even, thin, continuous layer. 
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Figure 5.2 Three-dimensional in vitro wound assay assembled using the `cell droplet' 

method. 1. Collagen solution poured into tissue culture dish and left to gel in a thin, 

even layer. 2. Droplet of collagen solution containing Ix 107 cells/ml, placed on top of 

the first gel layer and left to gel. 3. Second collagen layer poured over the top of the 

cell droplet to cover and left to gel. 4. Cell culture medium then poured on top of the 

gel. 5. Fully assembled assay shown in cross-section, illustrating how all the cells 

within the droplet are completely surrounded by collagen gel and therefore must migrate 

in three dimensions. 

132 



Fibroblast cells were then trypsinised and prepared in serum-free medium, as described 

previously (Chapter 2.2.1). Following cell number estimation using a haemocytometer, 

the cells were again pelleted and re-suspended within the collagen stock solution 

prepared above (section 5.2.1.2) at a density of 1x107 cells/ml. One droplet containing 

20 pl of this cell suspension was then placed on top of the gel layer within the 35 mm 

dish. Alternatively, five droplets, each containing 2 . tl or 0.5 µl of this cell suspension 

were placed on top of the gel layer within the 58 mm dish, at a distance far enough apart 

to ensure that they did not come into contact. In either case, dishes were incubated at 
37°C to allow the droplets to gel. 

Following incubation, another 650 pl or 1000 µl of the collagen stock solution was 

poured carefully over the top of the cell droplets located within the 35 mm or 58 mm 
dish respectively, to completely cover them. Dishes were then incubated at 37°C to 

allow gelling of the top collagen layers to occur. Finally, serum-free cell culture 

medium from the same stock used to make the collagen gel, was diluted to 1x 

concentration and then added to each dish, until gels were covered. Where ES was 

present within the gels, ES was also added to the medium, to the same concentration. 
The assembled assays were then incubated at 37°C in a humidified 5% CO2 atmosphere 
for the time stated. Medium was replaced every 24 hours. 

Cells were observed in situ, using both phase contrast microscopy and confocal 

microscopy. For the latter, cells were first fixed with 4% paraformaldehyde and stained 
with FITC-phalloidin and PI within their gels, as described in Chapter 2.2.4. 
Immediately prior to analysis, gels were carefully drained and blotted of excess liquid, 
before being mounted with Bio-Rad fluorescence mounting medium and a coverslip. 
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5.3 Results 

53.1 Development of three-dimensional assays using the cloning cylinder 

5.3.1.1 Fibroblast migration from a populated gel in the presence of L-ascorbic acid 2- 

phosphate 

Fibroblast cells were suspended within 1.5 ml or 2 ml of a1 mg/ml collagen solution, 

containing 0.2 mM L-ascorbic acid 2-phosphate and in one case 30 µg/ml fibronectin. 

They were then seeded around the outside of a cloning cylinder placed upright in the 

middle of a 35 mm dish. Following gelation of the collagen solution, the cloning 

cylinder was removed, leaving a hole in the middle of the gel. The cells were then 

observed migrating out of the gel and across the exposed surface in the centre of the 

dish, using phase contrast microscopy. 

For each gel assembled, the inside edge of the gel could clearly be seen immediately 

after the removal of the cloning cylinder, taken as 0 hours (Fig. 5.3), at both low and 
high magnifications. Also, there were few or no cells present upon the surface of the 

dish that had been exposed by the removal of the cylinder. Those cells that had gained 

access to the surface, were positioned close to the gel edge. It was therefore clear that 

the cloning cylinder represented a successful barrier to the gel and the cells contained 

within the gel. 

The dish containing 2 ml of gel was monitored over a period of 15 days, until it was 
discarded. During that time, it was noted that cells had migrated from the gel, across 

the dish surface. The progress that the migrating cell edge had made after 48 hours, 7 

days and 15 days incubation is shown in Fig. 5.4a. Here it was apparent that the 

migrating cells were aligning themselves with each other as they began to form a 

monolayer, appearing more tightly organised at the gel boundary by 7 days incubation, 

than at the earlier time-point of 48 hours. Although cells had migrated further by 15 

days incubation, forming a monolayer covering all of the exposed surface (Fig. 5.4b), 

the density of cell coverage did not appear to be higher, nor were there any indications 

that multi-layering of cells was occurring. 
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Figure 5.3 Boundary between fibroblast-populated gel and exposed dish surface 

immediately following removal of cloning cylinder (taken as 0 hours incubation). 

Sample containing: 2 ml gel (I, II); 1.5 ml gel (III, IV); 2 ml gel including 30 µg/ml 

fibronectin (V, VI). 
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Figure 5.4a Boundary between 2 ml of fibroblast-populated gel and exposed dish 

surface following 48 hours incubation (I, II), 7 days incubation (III, IV) or 15 days 

incubation (V, VI) after removal of cloning cylinder. 
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Figure 5.4b Centre of exposed surface of dish containing 2 ml fibroblast-populated gel. 

Progress of cells from gel towards centre of dish following 7 days incubation (I) and 15 

days incubation (II) after removal of cloning cylinder. 
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The dish containing 1.5 ml of gel was monitored over a period of 8 days, sometime after 

which it became detached during incubation and was therefore discarded. Before this 

occurred, cell migration from the gel, across the exposed dish surface, appeared similar 

to that from the gel of 2 ml volume described above. However, at 8 days migration, it 

was noted that the gel had apparently receded from its original boundary, as indicated 

by the relatively large, irregular gaps that had formed between the gel edge and the 

trailing edge of the migrating cell monolayer (Fig. 5.5). This may have been an 

indication of collagen re-modelling by cells in situ, resulting in gel contraction. 

The presence of 30 . ig/ml fibronectin within the gel appeared to exert only a marginal 

influence upon cell migration across the exposed surface (Fig. 5.6). A comparison of 

Figs. 5.4a and 5.6, revealed that the number of cells that had migrated across the surface 

after 48 hours incubation, appeared to be slightly fewer when fibronectin was present. 

However, as the gels relevant to these figures were assembled using cells of the same 

passage number, but from separate trypsinisation and counting procedures, this 

difference may have been due to slight variability in cell number concentration. It was 

also observed that the cells migrating within the gel containing fibronectin appeared to 

be larger. This may be explained by the apparent lower density of migrating cells, 

reducing contact inhibition of cell spreading. Unfortunately, after 5 days incubation, 

the gel containing fibronectin became detached from the surface and was therefore 

discarded. 

5.3.1.2 Fibroblast migration from a populated gel to a cell-free gel 

Fibroblast cells suspended within aI mg/ml or 1.5 mg/ml collagen solution containing 

30 pg/ml fibronectin, were seeded around the outside of a cloning cylinder placed 

upright in the middle of a 35 mm dish. Once the solution had gelled, a small volume of 

collagen solution, of the same composition as that used to suspend the cells, was placed 

into the centre of the cylinder until it had reached a similar height to that of the 

surrounding gel. Following partial gelation of the solution, the cloning cylinder was 

removed and the cell-populated and cell-free gels allowed to converge and gelling 

to complete. Cells were observed at the cell-populated/cell-free boundary using both 

phase contrast and confocal microscopy. 
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Figure 5.5 Boundary between fibroblast-populated gel and exposed dish surface 

following 8 days incubation after removal of cloning cylinder. Images demonstrate that 

the gel had receded from its original boundary over the incubation period. This is 

indicated by the relatively large, irregular gaps that are visible between the gel edge and 

the trailing edge of the migrating cell monolayer. 
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Figure 5.6 Boundary between 2 ml fibroblast-populated gel, containing 30 µg/ml 
fibronectin, and exposed dish surface following 48 hours (I, II) or 5 days incubation (III, 

IV) after removal of cloning cylinder. 
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Initially, assays were assembled using gel of I mg/ml collagen concentration and cells 

that had been pre-stained with CelltrackerTM green, as described in Chapter 2.2.4. Here, 

cells within one such assay were fixed with 4% paraformaldehyde in situ immediately 

following removal of the cloning cylinder (taken as 0 hours incubation). The assay was 

then observed, using phase contrast microscopy, to check that the boundary between 

cell-populated and cell-free gels was clear and had not been disrupted by removal of the 

cloning cylinder. This was confirmed using confocal microscopy where, as 

demonstrated in Fig. 5.7, the boundary was observed to have been successfully 

maintained throughout the complete depth of the gel. However, it was also noted that 

there appeared to be more cells at the bottom than at the top of the populated gel, 
indicating that sinking of cells had occurred. In general, once gels containing I mg/ml 

collagen had set, they remained quite weak, being easily dislodged. They were also 

easily deformed by the lens of the confocal microscope during focusing. As such, 

images had to be taken with extreme care in order to ensure their reliability. 

A similar assay was fixed following 24 hours incubation, in order to assess cell 

migration across the gel boundaries. Confocal microscopy revealed that cells had 

indeed migrated out of the populated gel (Fig. 5.8). However, as shown in the series of 

images taken vertically through the gel boundaries, cells had only migrated at the 

bottom of the gel (Fig. 5.9). It is possible that the cells had migrated on the tissue 

culture plastic surface underneath the cell-free gel section. This pattern of migration 

might have occurred because the cell-free gel may have lifted off the surface of the dish 

upon removal of the cloning cylinder. This in turn would have allowed cells from the 

populated gel to undermine the cell-free gel and therefore migrate in two dimensions 

along the dish surface. Considering how easily gels of 1 mg/ml collagen concentration 

can be dislodged, as noted above, this explanation appears likely. 

In order to overcome the difficulties described above, further assays were assembled 

using gel of a higher collagen concentration (1.5 mg/ml). In addition, cells were stained 

with FITC-phalloidin and PI following fixation to allow a more detailed observation of 

cellular morphology. In one such assay, the cells were fixed and stained in situ 
immediately following removal of the cloning cylinder in order to assess the clarity of 

the cell-populated/cell-free boundary. As shown in Fig. 5.10, the boundary could 

clearly be discerned, indicating that it had been successfully maintained. Other assays 
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Figure 5.7 Z series of optical sections, taken using confocal microscope and displayed 

in a gallery, from left to right, moving from top to bottom (above) and as a maximum 

intensity projection of all the sections (below). These show the boundary between 

fibroblast-populated and cell-free gels through -50 µm depth. Cells, stained with 

CelltrackerT"' green, fixed immediately following removal of cloning cylinder (0 hours 

incubation). 
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Figure 5.8 Z series of optical sections, taken using confocal microscope and displayed 

as a maximum intensity projection of all the sections. Boundary between fibroblast- 

populated and cell-free gels following 24 hours incubation after removal of cloning 

cylinder. Cells stained with CelltrackerTN green. 
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Figure 5.9 Z series of optical sections, taken using confocal microscope and displayed 

in a gallery, from left to right, moving from top to bottom. Boundary between 

fibroblast-populated and cell-free gels following 24 hours incubation after removal of 

the cloning cylinder. Sections taken from top and bottom of series are highlighted and 
demonstrate that cell migration was occurring only at the bottom of the gel. Cells 

stained with CelltrackerTM green. 
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Figure 5.10 Boundary between fibroblast-populated and cell-free gels, immediately 

after removal of the cloning cylinder. A demarcation between the two can clearly be 

seen when imaged using phase contrast microscopy (I) or fluorescence microscopy 

through a standard fluorescein filter set (II). 
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were incubated for either 48 hours or 5 days following removal of the cylinder, before 

being fixed and stained, so as to establish whether cells were able to migrate from the 

populated gel. As shown in Fig. 5.11, there appeared to be little migration of cells 

across the gel boundary after 48 hours incubation. This image was typical of 

observations made at this time. Even after 5 days incubation, there appeared to be no 

evidence of cell migration (Fig. 5.12). In addition, one image suggests that part of the 

cell-populated gel had become detached from the boundary edge, as it shows an isolated 

group of cells present within the cell-free gel which did not appear to have invaded from 

the populated gel (Fig. 5.13). This may have occurred during incubation of the gel, 

replenishment of media or fixing. 

Figs. 5.11 to 5.13 also show that the cells appeared reluctant to position themselves 

across the gel boundaries. They can be seen lying parallel with the boundary edge, 

projecting few, if any, extensions into the cell-free gel. Comparing morphologies of 

cells at very high magnification yielded similar conclusions (Fig. 5.14). Here, the 

images show that cells positioned within the populated gel, away from its edge, 

projected lamellipodia and fine, dendritic-like extensions in all directions. Those at the 

boundary edge however, remained parallel with it and projected very few extensions in 

the direction of the cell-free gel. 

As before, problems in assay assembly remained, with a number of assays having to be 

discarded before analysis. Unfortunately, the gel assembly remained fragile and, on 

several occasions during removal of the cloning cylinder, the cell-free gel section 
became detached from the dish surface. 

5.3.2 Development of three-dimensional assays using the `cell droplet' method 

Here, assays were assembled throughout, using gels made from a 1.5 mg/ml collagen 

solution, containing 30 pg/ml fibronectin. Fibroblast cells, suspended within a droplet 

of such a solution, were placed on top of a layer of gel. Following the droplet's gelation 

another layer of gel was then added to cover it. Cell migration out of the droplet and 
into the surrounding matrix was observed using both phase contrast and confocal 

microscopy. 
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Figure 5.11 Z series of optical sections, taken using confocal microscope and displayed 

in a gallery, from left to right, moving from top to bottom (above) and as a maximum 

intensity projection of all the sections (below). This series shows the boundary between 

fibroblast-populated and cell-free gels through -166 µm depth. Cells fixed following 

48 hours incubation after removal of cloning cylinder and stained with FITC-phalloidin 

and propidium iodide. 
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Figure 5.12 Z series of optical sections, taken using confocal microscope and displayed 

in a gallery, from left to right, moving from top to bottom (above) and as a maximum 

intensity projection of all the sections (below). This series shows the boundary between 

fibroblast-populated and cell-free gels. Cells fixed following 5 days incubation from 

removal of the cloning cylinder and stained with FITC-phalloidin and propidium iodide. 
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Figure 5.13 Z series of optical sections, taken using confocal microscope and displayed 

in a gallery, from left to right, moving from top to bottom (above) and as a maximum 

intensity projection of all the sections (below). These show the boundary between 

fibroblast-populated and cell-free gels through -75 µm depth. Part of the cell-populated 

gel appears to have become detached from the boundary edge. Cells fixed following 5 

days incubation from removal of the cloning cylinder and stained with FITC-phalloidin 

and propidium iodide. 
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Figure 5.14 Z series of optical sections, taken using confocal microscope and displayed 

as maximum intensity projections of all the sections. Fibroblasts fixed following 5 days 

incubation from removal of the cloning cylinder and stained with FITC-phalloidin and 

propidium iodide. Representative images of cells in the middle (I, II) and at the edge 

(III) of the cell-populated gel. Blue, dotted arrow represents boundary between cell- 

populated gel and cell-free gel. 
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At first, the assay was assembled within a 35 mm dish and included one droplet of 20 µl 

volume. As shown, at 0 hours incubation, immediately after the assay was assembled, a 
boundary defined by cells within the gel droplet could clearly be seen (Fig. 5.15). The 

cells were confluent and none were found scattered around the outside of the boundary. 

They also appeared viable as they were already beginning to project dendritic-like 

extensions. After 48 hours incubation, cells at the droplet's edge were observed to have 

extended into the surrounding gel (Fig. 5.16). Some had migrated away from the 

droplet completely. Cell migration was also observed following 5 days incubation, 

although the distances travelled by cells appeared similar to those observed at the earlier 

time-point (Fig. 5.17). 

Droplets of 0.5 µl volume were then used, with the aim of allowing microscopic 
imaging of the whole of each droplet's circumference at once. Here, each assay was 

assembled within a 58 mm dish and included five droplets, placed apart from each 

other. In one such assay images, taken immediately after its assembly, demonstrate that 

the whole of each droplet could be viewed in one image when using phase contrast 

microscopy, at low magnifications (Fig. 5.18). Cells within some of the droplets were 

near-confluent and therefore provided for a clear boundary between the droplet and the 

surrounding gel (Fig. 5.18, droplets 3 to 5). However, they were not all evenly spread, 

with some areas containing higher densities of cells than others. In other droplets (Fig. 

5.18, droplets 1 to 2), very few cells were present and appeared scattered. Here no 
distinct droplet boundaries could be discerned. These problems were thought to be 

associated with practical difficulties in accurately pipetting such small volumes of 

solution. In many cases the solution gelled within the pipette. Following 48 hours 

incubation, it was observed that cells had successfully migrated from the droplets in 

both horizontal and vertical orientations (Fig, 5.18 to 5.20), indicating the potential of 
the ̀ cell droplet' method. 

The assay was then repeated in an attempt to improve the pipetting of the droplets. In 

this case three assays were assembled, one of which served as a control (no ES), while 

the remainder contained either 1 µg/m1 ES or 10 pg/ml ES throughout the media, gel 

and droplets present. Unfortunately, it proved even more difficult to pipette each 
droplet successfully. In most cases, a droplet failed to release from the pipette upon the 
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Figure 5.15 Edge of a 20 µl fibroblast-seeded gel droplet embedded within a cell-free 
gel. Throughout, gel contained 1.5 mg/ml collagen and 30 µg/ml fibronectin. Phase 

contrast images taken immediately after assay assembly (0 hours incubation). Cells 

appear confluent and a clear cell boundary can be seen (I - IV). When observed at high 

magnification (V - VI), cells are shown to have already started developing dendritic-like 

extensions. 
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Figure 5.16 Edge of a 20 pl fibroblast-seeded gel droplet embedded within a cell-free 
gel. Throughout, gel contained 1.5 mg/ml collagen and 30 µg/ml fibronectin. Phase 

contrast images taken after 48 hours incubation of assembled assay. Cells at the 

periphery of the droplet are shown extending into the surrounding gel (I - II). Cells 
have also migrated away from the droplet (III - VI). 
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Figure 5.17 Edge of a 20 pl fibroblast-seeded gel droplet embedded within a cell-free 
gel. Throughout, gel contained 1.5 mg/ml collagen and 30 pg/ml fibronectin. Phase 

contrast images taken after 5 days incubation of assembled assay. Cells at the periphery 
of the droplet are shown migrating into the surrounding gel. 
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Figure 5.18 Phase contrast images of 0.5 µl fibroblast-seeded gel droplets embedded 

within a cell-free gel. Images taken immediately after assay assembly (0 h) or after 48 

hours incubation. 
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Figure 5.19 Images showing the edge of a 0.5 pl fibroblast-seeded gel droplet 

following 48 hours incubation. a. Phase contrast image of droplet, recognised as #5 in 

Fig. 5.18. b. Z series of optical sections, taken using confocal microscope and 
displayed as a maximum intensity projection of all the sections. Cells fixed and stained 
with FITC-phalloidin and propidium iodide. Droplet identified as #3 in Fig. 5.18. 
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Figure 5.20 Z series of optical sections, taken using confocal microscope and displayed 
in a gallery, from left to right, moving from top to bottom. Each tiled image in the 
gallery represents a composite of 6 sequential optical sections. Edge (a) or centre (b) of 
a 0.5 µl fibroblast-seeded gel droplet (#3 in Fig. 5.18) shown through -144 pm depth. 
Cells fixed after 48 hours incubation and stained with FITC-phalloidin and propidium 
iodide. 
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solution's ejection, resulting in few cells being deposited. However, of those cells 

present, distinct morphological differences were observed, which appeared dependent 

upon the presence of ES. After 24 hours incubation, cells in 1 µg/ml ES and 

particularly 10 pg/ml ES appeared well spread and many were extending long 

projections (Fig. 5.21). Those exposed to 10 pg/ml ES also exhibited strand-like fibril 

connections with adjacent cells, even when they lay quite far apart. In contrast, many 

cells within the control had failed to spread at such a low seeding density, remaining 

rounded. Cellular debris also appeared to be present. 

It was also noticed that the gels exposed to both concentrations of ES were more 
translucent in appearance. This increased over time, until, by 48 hours incubation, the 

gel containing 10 pg/ml ES had transformed to a clear, viscous, liquid-like state. As a 

consequence, the cells contained within had adopted a more rounded morphology, but 

were still maintaining connections with each other (Fig. 5.22). By this time, cells 

within 1 pg/ml ES were beginning to exhibit fibril connections that appeared similar to 

those observed 24 hours earlier in the higher ES concentration. Many cells in the 

control remained rounded and cellular debris continued to be observed, indicating a loss 

of cell viability. 

Due to the difficulties associated with accurately pipetting small volumes of solution, 

such as 0.5 µl as described above, the assay was modified to include slightly larger 

droplets of 2 µl volume. This was with the aim of providing for easier pipetting, whilst 

still producing droplets that would each be small enough to be viewed within one 

microscopic image. In one such assay, images taken immediately after its assembly 
demonstrate that the whole of each droplet could indeed be viewed in its entirety using 

phase contrast microscopy, albeit at very low magnifications (Fig. 5.23a). The cells 

appeared viable as dendritic-like extensions were already beginning to protrude (Fig. 

5.23b). Cells within each droplet appeared densely and evenly spread, providing for 

clear boundaries between droplets and the surrounding gel. Confocal microscopy 

revealed the boundary to be consistent throughout the depth of the droplet, with no cells 

scattered outside of it (Fig. 5.24). Images taken after assays had been incubated for 24 

hours demonstrated that cells had successfully migrated from the droplets in both 

horizontal and vertical orientations (Fig. 5.25). 
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Figure 5.21 Representative phase contrast images of 0.5 µl fibroblast-seeded gel 

droplets embedded within a cell-free gel. Images taken following 24 hours incubation. 

Appearance of cells in the absence of ES (control) (I, II) or in the presence of 1 p. g/ml 

ES (III, IV) or 10 µg/ml ES (V, VI). Many cells in the control have failed to spread, 

remaining rounded. Cellular debris is also present. The presence of strand-like fibres 

between cells exposed to 10 µg/ml can be discerned. Examples of these are indicated 

by arrows. 
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Figure 5.22 Representative phase contrast images of 0.5 pl fibroblast-seeded gel 
droplets embedded within a cell-free gel. Images taken following 48 hours incubation. 
Appearance of cells in the absence of ES (control) (I, II) or in the presence of 1 µg/ml 
ES (III, IV) or 10 pg/ml ES (V, VI). Many cells in the control have failed to spread and 
cellular debris is present. The presence of strand-like fibres between cells exposed to 1 

pg/ml ES can just be observed, as indicated by the arrows. Cells in 10 µg/ml ES have 
rounded up, but thin, intercellular connections are maintained. 
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Figure 5.23 A2 µl fibroblast-seeded gel droplet embedded within a cell-free gel. 
Phase contrast images taken shortly after assay assembly. a. Image taken at low 
magnification to illustrate that the whole droplet could be viewed simultaneously. b. 
Image taken at higher magnification to show that the cells were already developing 
dendritic-like extensions, thus demonstrating their viability. 
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Figure 5.24 Z series of optical sections, taken using confocal microscope and displayed 

in a gallery, from left to right, moving from top to bottom. Edge of a2 µl fibroblast- 

seeded gel droplet embedded within a cell-free gel. Cells fixed immediately after assay 

assembly (0 hours incubation) and stained with FITC-phalloidin and propidium iodide. 

Sections through the gel show that the cell droplet boundary was consistent and no cells 

were scattered away from the droplet in either a vertical or horizontal orientation. 
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Figure 5.25 A2 pl fibroblast-seeded gel droplet embedded within a cell-free gel. 
Images taken after 24 hours incubation. a. and b. Phase contrast images demonstrating 
that cells had migrated in a horizontal orientation from the droplet. c. z series of optical 
sections, taken using confocal microscope and displayed in a gallery, from left to right, 
moving from top to bottom. This image demonstrates that cells had migrated in a 
vertical orientation, above and below the droplet. Cells stained with FITC-phalloidin 

and propidium iodide. 
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5.4 Discussion 

As discussed already in this chapter, supplementation of cell culture media with L- 

ascorbic acid 2-phosphate has been shown to induce fibroblasts to arrange themselves in 

multi-layers and accumulate collagen matrix (Hata and Senoo, 1989; Ishikawa et al., 

1997; Ohgoda et al., 1998). Thus, to investigate the possibility of developing three- 

dimensional assays that incorporate fibroblast-derived matrices, cells were observed 

migrating from a collagen gel to an uncovered surface, whilst exposed to 0.2 mM L- 

ascorbic acid 2-phosphate. While this concentration of ascorbic acid has been shown to 

successfully induce fibroblasts to produce a three-dimensional tissue-like matrix 
(Ohgoda et al., 1998), the same was not observed here. Multi-layering of migrating 

cells failed to occur during the time periods in which the assays were observed. Failure 

to induce any noticeable levels of fibroblast-derived matrices, in which cells could be 

observed in three dimensions, resulted in the decision to investigate other methods for 

allowing the viewing of fibroblasts in three-dimensional environments. Externally- 

derived collagen/fibronectin gel matrices were therefore included in subsequent assays. 

In order to ensure continuity with previous work, in which cell adhesion and migration 

was observed in the absence of ascorbic acid, it was decided to omit L-ascorbic acid 2- 

phosphate from these assays. 

Assays designed to observe cells embedded within collagen/fibronectin gel matrices 

were first assembled using cloning cylinders to separate cell-free from cell-populated 

gels. These assays proved difficult to assemble throughout, with much wastage 

resulting from disruption of the gels during removal of the cylinders. Initially, gels of I 

mg/ml collagen concentration were used. These proved particularly fragile and were 

prone to being distorted by the lens of the confocal microscope. Cells embedded within 

these gels also tended to sink through them by gravity, either because gelling took too 

long to complete and/or because the resulting gels were too weak to support each cell's 

position. In addition, no cells were observed migrating across the cell-populated/cell- 
free boundaries. Although increasing the collagen concentration to 1.5 mg/ml relieved 

some of these problems, assays still proved difficult to assemble. The cells also 

remained reluctant to cross cell-populated/cell-free boundaries. It therefore appeared 

that this assay design, although successful in separating a cell-populated from a cell-free 
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gel, failed to provide the conditions necessary for the two gels to form a continuous 

matrix that cells could traverse when migrating. 

Ensuing difficulties with assays assembled using cloning cylinders led to the decision to 

assemble alternative three-dimensional assays. The result was the development of the 

`cell droplet' method of assembly in which droplets of cells suspended within a gel 

solution were placed upon a cell-free gel layer and then covered with another layer of 

cell-free gel. The migration of cells out of each droplet could then be observed in a 
horizontal orientation, using phase contrast microscopy and in a vertical orientation, 

using confocal microscopy. These assays proved far easier to assemble and cells within 
the droplets were able to infiltrate the surrounding, cell-free gel by migration. Problems 

that were encountered, concerned determining the volume and therefore the size of each 

cell droplet suitable for allowing the whole of its circumference to be viewed 

simultaneously under the phase contrast microscope. This was with the aim of 
facilitating an estimation of the total number of cells migrating into the surrounding 

cell-free gel at any given moment. Although easier to view, very small droplets, each of 

0.5 µl volume, proved difficult to deliver, with such small gel volumes being prone to 

gelling within the pipette tips. Droplets of 2 µl volume were easier to pipette, yet 

remained small enough to be viewed in their entirety. Both phase contrast and confocal 

microscopy revealed clear demarcations between cell-populated and cell-free areas at 

the beginning of each observed assay's incubation period. This provided evidence that 

the cells were not drifting out of the droplets before the gel solutions had been given 

sufficient time to set. Thus, any cells observed outside of the droplet perimeter after a 

given period of incubation could be attributed to active cell migration. 

Some interesting observations worth reiterating originated from one assay containing 

cell droplets of 0.5 µl volume and larval ES at concentrations of 1 pg/ml and 10 pg/ml. 
Here, it was noted that the presence of ES facilitated the spreading of cells that were 

present at a very low population density. The higher ES concentration in particular 

appeared to alter the morphologies of the cells observed, increasing the lengths of 

cellular extensions protruding into the gel. Fine, strand-like fibrils could also be seen 

connecting cells, some of which lay a considerable distance apart. The appearance of 
these fibril-like structures may have been related to the observed partial degradation of 
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the gels into viscous, liquid states. Presumably, such degradation was caused by 

proteolytic enzymes present within the ES. As these structures also appeared to be 

connecting cells, they may also have resulted from modified fibroblast behaviour. 

5.5 Conclusions 

Three-dimensional assays assembled using the `cell droplet' method proved to be the 

most successful of those that were investigated. Of the cell droplet volumes tested, 2 µl 

was confirmed as large enough to dispense with ease. This volume also produced 
droplets that were small enough to be viewed in their entirety under the phase contrast 

microscope. It was therefore decided to continue using this method of assembly, 
incorporating 2 µl cell droplets into three-dimensional assays for quantifying the effects 

of larval ES upon fibroblast migration. It was also decided to investigate further the 

findings of one experiment when 0.5 µl cell droplets were used, resulting 

unintentionally in very low population densities. As described above, the presence of 
ES in these assays exerted a considerable effect upon cell morphology and the structure 

of the matrix between cells. 
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CHAPTER 6 

Fibroblast Migration in Three Dimensions 

6.1 Introduction 

Results within Chapter 4 demonstrated L. sericata larval ES to enhance fibroblast 

migration across a fibronectin-coated surface. However, existing evidence suggests that 

cells behave very differently within two dimensions than within their familiar three- 

dimensional in vivo environment (Elsdale and Bard, 1972; Breathnach, 1978; Trinkaus, 

1984; Van Exan and Hardy, 1984; Omagari and Ogawa, 1990; Zamir et al., 1999; 

Beertsen, McCulloch and Sodek, 2000; Friedl and Bröcker, 2000 Cukierman et al., 
2001; Tamariz and Grinnell, 2002; Grinnell et al., 2003). With this in mind, further 

research was directed towards developing a three-dimensional in vitro wound assay in 

which to observe fibroblast migration in response to ES. As shown in the previous 

chapter, this objective was first addressed by attempting to induce fibroblasts, using L- 

ascorbic acid 2-phosphate, to produce substantial volumes of their own ECM. As these 

attempts proved unsuccessful, externally derived gel matrices were utilised. Based 

upon the fibroblast-populated collagen lattice, first introduced by Ehrmann and Gey 

(1956), this procedure involved embedding fibroblasts within a collagen gel matrix. 
Fibronectin (30 pg/ml) was also added to the matrix, as previous research has found this 

concentration optimal for migration (Greiling and Clark, 1997). After experimenting 

with assay assembly methods designed to allow cells to be observed migrating from a 

cell-populated to a cell-free section of gel, the `cell droplet' method of assembly was 
deemed the most suitable. 
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Here, this chapter presents the effects that ES exerted upon fibroblast migration within 
three-dimensional assays, assembled using the `cell droplet' method. Also presented 

are findings resulting from the observation of cells that were embedded at much lower 

population densities within these assays. Here, the influence of ES upon fibroblast 

morphology and matrix structure was noted and inferences were drawn. 

6.2 Methods 

6.2.1 Three-dimensional in vitro wound assay - fibroblast migration 

A stock solution containing 1.5 mg/ml collagen and 30 
. g/ml fibronectin was prepared 

as described in Chapter 5.2.1.2. Larval ES (from batch E- see Table 2.1) was also 

added to the concentration indicated. For the controls, an equivalent volume of PBS 

was added in place of ES. Three-dimensional in vitro wound assays were then 

assembled following the `cell droplet' method described in the Chapter 5.2.3. Here for 

each assay, five droplets of the above stock solution, of 2 µl volume containing 1x107 

fibroblast cells/ml, were placed on top of a pre-prepared gel layer within a 58 mm tissue 

culture dish. Following gelation of the droplets, stock solution was poured over the top 

to completely cover them and left to gel. Finally, serum-free cell culture medium, from 

the same source that was used to make the gel solution stock, was diluted to 1x 

concentration using distilled water and either larval ES or, where appropriate, an 
equivalent volume of PBS. When ES was present, this was added to the same 
concentration as that which was present within the gel. This medium (2 ml) was then 

poured into each dish to cover the gels. The assembled assay was incubated at 37°C in 

a humidified 5% (v/v) CO2 atmosphere for the time stated. Medium was replaced 
every 24 hours. 

Phase contrast images, showing the whole area of each cell droplet embedded within 

each gel, were taken following 0 hours, 24 hours and where possible 48 hours 

incubation. At 48 hours, it was observed that the gel containing 5 µg/ml ES had 

detached from the well surface, whilst that containing 10 pg/ml ES had dissolved 
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completely to a viscous liquid state. Fibroblast migration within the gels was therefore 

quantified following 24 hours incubation, when each assay was still intact. 

Using Microsoft Paint Shop Pro 6 the image of each cell droplet at 0 hours was 

superimposed over the same droplet's image after 24 hours incubation, as shown in Fig. 

6.1. These composite images were then analysed using Leica QUIPS software. Firstly, 

the perimeter distance of the original cell droplet was calculated. This was followed by 

quantifying the number of fibroblasts that had migrated horizontally, away from the cell 

droplet, over the 24 hour period. In order to correct for variable droplet perimeter 

distances, the number of migrating cells was expressed as cells per µm perimeter of the 

original cell droplet boundary. The linear distance each cell had migrated was also 

estimated. Analysis by the viewer was performed blind. 

After 48 hours incubation, fibroblasts within intact gels were fixed in situ by the 

addition of 4% paraformaldehyde, as described in Chapter 5.2.2.2, and then stained 

with FITC-phalloidin and PI following the method outlined in Chapter 2.2.4. Following 

staining, gels were carefully blotted to remove excess liquid and then mounted with 

Bio-Rad fluorescence mounting medium and a coverslip. They were then visualised 

using a confocal microscope, as described in Chapter 2.2.4. Maximum intensity images 

of cell droplet edges were taken to observe migrating cell morphology. In addition, 

series' of images showing focal planes through the z-axis of the gel, including above, 

through and below each cell droplet, were taken and examined to quantify the number 

of cells that had migrated in a vertical direction. These images were compared with 

each other and also with those taken from replicate assays that had been treated in a 

similar way but had not been allowed to incubate following their assembly (ie the cells 
had been fixed following 0 hours incubation). This was undertaken to confirm that the 

probability of cells drifting out of the droplets during assay assembly was low. 

6.2.1.1 Statistical analysis 

Values, representing the number of migrating cells per µm perimeter of each cell 
droplet replicate within each treatment, were transformed to their square roots to ensure 

normal distribution within treatments. The transformed values were then subjected to 

one-way analysis of variance (ANOVA) and Dunnett's Multiple Comparison Tests, 
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Figure 6.1 A demonstration of how fibroblast migration from gel droplets within three- 
dimensional in vitro wound assays was quantified from phase contrast microscopic 
images. 1. Fibroblast-seeded droplet immediately after assay assembly (0 hours 
incubation). 2. The same droplet after 24 hours incubation. 3. Fibroblast-seeded 
droplet at 0 hours incubation, coloured black for contrast, superimposed upon image 
from 24 hours incubation. 4. Only those cells that had migrated from the droplet over 
the 24 hour period are left showing, thus allowing them to be counted. The distance 
each cell had travelled was estimated by measuring the lengths of vectors (shown in 
blue), drawn from the leading edge of each cell, to the perimeter of the superimposed 0 
hours image. The perimeter distance of the fibroblast-seeded droplet at 0 hours 
incubation was also measured by drawing around the superimposed 0 hours image. 
These measurements were performed using Leica QUIPS software. 
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using GraphPad PrismTM software. In all cases, equal variance was confirmed and 

statistical significance was defined as P :S0.05. Confidence Intervals were also 

scrutinised. 

Linear distances travelled by each migrating cell were compiled under each droplet 

replicate within each treatment. They were then log transformed to ensure normal 
distribution and the geometric means collated under the appropriate treatment category. 
Following confirmation of normal distribution, the collated means were analysed using 

one-way ANOVA and Dunnett's Multiple Comparison Tests, available within 
GraphPad Prism"". Again, in all cases, equal variance was confirmed and statistical 

significance was defined as P: 5 0.05. Similarly, Confidence Intervals were examined. 

6.2.2 Three-dimensional in vitro wound assay - fibroblast morphology and matrix 

organisation 

In a separate experiment, three-dimensional in vitro wound assays were assembled, as 

described in section 6.2.1, with minor modifications. Here, one 20 µl droplet, 

containing a lower cell density of 3x 105 cells/ml, was incorporated into each assay. 
Assays were treated with either 1 µg/ml ES, 5 pg/ml ES or PBS blank (control). 

Cellular morphology was observed following 0,24 and 48 hours incubation using phase 

contrast microscopy. Any development of intercellular connective fibrils, indicative of 

those that were seen within a previous assay exposed to 10 pg/ml ES (Fig. 5.21) was 

also noted. 

6.3 Results 

6.3.1 Three-dimensional in vitro wound assay - fibroblast migration 

Three-dimensional in vitro wound assays were assembled according to the ̀ cell droplet' 

method described in Chapter 5.2.3. Here, five droplets of 2 pl volume containing 1x107 

cells/ml were incorporated into each assay. The migration of cells out of each droplet, 
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whilst exposed to 0.1,1.0,5 and 10 pg/m1 larval ES was quantified and cellular 

morphology assessed. 

Two separate experiments were performed. One compared the effects of 0.1 µg/ml ES 

and 5 pg/m1 ES against a control, where ES was absent. The other examined the effects 

of 1 µg/ml ES and 10 pg/ml ES, when compared with another control. As typified in 

Fig. 6.2, the droplet edges within assays from both experiments were clearly demarcated 

by the presence of cells. The cells also appeared viable, as they were already beginning 

to develop dendritic-like extensions soon after assay assembly. 

As demonstrated by the representative images shown in Fig. 6.3 and 6.4 the whole of 

each droplet within each assay, from both experiments, could be viewed in one image 

when the phase contrast microscope was used at a low magnification. These images 

also indicated that by 24 hours incubation, cell migration into the surrounding gel had 

occurred. Initial observations suggested that cell migration from the droplets exposed to 

5 pg/ml ES was more extensive than within the control (Fig. 6.3). Differences between 

other assays were more difficult to distinguish. By 48 hours incubation, it was clear that 

cells within the controls or exposed to 0.1 pg/ml ES or 1 pg/ml ES had continued to 

migrate into the surrounding gel (Figure 6.5 and Figure 6.6). Cells within 1 µg/ml ES 

also appeared to have migrated further than in the respective control (Figure 6.6). In 

contrast, the cell droplets exposed to 10 pg/ml ES appeared to have been degraded over 

this time because the circumference of the main population of cells within each droplet, 

as shown in the example image, appeared to be smaller (Figure 6.6). In addition, the 

cells within each droplet were more scattered than what they had been 24 hours earlier. 
Some areas of cells had also contracted into tight, dark masses. The gel exposed to 5 

pg/ml ES had unfortunately become detached from the dish surface, causing disruption 

of the cell droplets (Figure 6.5). 

Phase contrast images, taken at higher magnifications after the assays had been 

incubated for 24 hours, revealed differences in the morphologies of cells at the droplet 

edges (Fig. 6.7 and 6.8). These differences were dependent on the concentration of 
larval ES present. In the representative images shown, no clear morphological 
differences could be discerned between cells in the relevant control and those in 0.1 
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Figure 6.2 Z series of optical sections, taken using confocal microscope, and displayed 

as maximum intensity projections of all the sections. Images show the edge of a 

fibroblast-seeded gel droplet embedded within a cell-free gel. Dendritic-like extensions 

can be observed protruding from the cells. Cells fixed and stained with FITC-phalloidin 

and propidium iodide soon after assay assembly (0 hours incubation). 
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Figure 6.3 Representative phase contrast images of fibroblast-seeded gel droplets, of 2 

pl volume, immediately following their placement within a cell-free gel (0 h) or 24 
hours after their placement within the cell-free gel. Numerals on the left hand side of 
the images refer to the concentration of larval ES (µg/ml) present within the assay. 0 
ES refers to the control where ES was absent. 
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Figure 6.4 Representative phase contrast images of fibroblast-seeded gel droplets, of 2 
µl volume, immediately following their placement within a cell-free gel (0 h) or 24 
hours after their placement within the cell-free gel. Numerals on the left hand side of 
the images refer to the concentration of larval ES (pg/ml) present within the assay. 0 
ES refers to the control where ES was absent. 
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Figure 6.5 Representative phase contrast images of fibroblast-seeded gel droplets, of 2 
µl volume, following 24 or 48 hours incubation within cell-free gels. Concentration of larval ES (pg/ml) shown on left hand side of the images. 0 ES refers to the control 
where ES was absent. Note that after 48 hours, the gel exposed to 5 µg/ml ES became 
detached from the dish surface. 

176 

24 h 



24 h 

0 ES 

r{a `r 

ý: ý"° 

ýýY 

, 

1 ES 

10 ES 

"a 

41 

.y' 

48 h 

y 
ýý 4 it 

ray... 
v 

-i.,,. -. tF. -, 
". �.. 

i\ 

, 1ý 
T ýq , 

ijr[ 

e". 

Figure 6.6 Representative phase contrast images of fibroblast-seeded gel droplets, of 2 
Al volume, following 24 or 48 hours incubation within cell-free gels. Concentration of 
larval ES (pg/ml) shown on left hand side of the images. 0 ES refers to the control 
where ES was absent. 
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Figure 6.7a Representative phase contrast images of the edges of fibroblast-seeded gel 
droplets following 24 hours incubation within a cell-free gel. Comparison between cells 
in the control where ES was absent (I to IV) and cells exposed to 0.1 pg/ml ES (V to 
VIII). 
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Figure 6.7b Representative phase contrast images of the edges of fibroblast-seeded gel 

droplets following 24 hours incubation within a cell-free gel. Comparison between cells 

in the control where ES was absent (I to IV) and cells exposed to 5 . tg/ml ES (V to 

VIII). 
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Figure 6.8a Representative phase contrast images of the edges of fibroblast-seeded gel 
droplets following 24 hours incubation within a cell-free gel. Comparison between cells 
in the control where ES was absent (I to IV) and cells exposed to I pg/ml ES (V to 
VIII). 
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Figure 6.8b Representative phase contrast images of the edges of fibroblast-seeded gel 
droplets following 24 hours incubation within a cell-free gel. Comparison between cells 
in the control where ES was absent (I to IV) and cells exposed to 10 pg/ml ES (V to 
VIII). 
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Vg/ml ES (Fig. 6.7a) or 1 pg/ml ES (Fig. 6.8a). However, cells exposed to 5 µg/ml ES 

appeared larger and had projected longer and more numerous extensions into the 

surrounding gel (Fig. 6.7b). It was also clear that more cells had migrated across and 

away from the original cell droplet perimeter. In places, migrating cells exhibited 

parallel alignment indicating some degree of organisation. Many cells positioned at the 

perimeter of the droplet within 10 pg/ml ES displayed numerous, slender extensions, 

some of which were exceptionally long compared to those seen when other conditions 

were present (Fig. 6.8b). It was also noted that gels exposed to 5 or 10 µg/ml ES were 

much more transparent than their respective controls, improving visibility under the 

microscope. 

Images taken after 48 hours revealed more pronounced differences between cells 

(Figure 6.9 and 6.10). Cells exposed to 0.1 µg/ml ES still appeared very similar to 

those within the respective control (Figure 6.9a). However, cells exposed to 1 µg/ml ES 

looked more elongated, with longer, more slender extensions (Figure 6.1Oa). The 

distance of migration away from the droplet also appeared to be greater. Despite the gel 
having become dislodged before the 48 hours incubation was complete, it was still 

possible to view some cells exposed to 5 pg/ml ES in their original positions within the 

matrix. The example images shown in Figure 6.9b revealed that the cells that had 

migrated out of the droplet appeared elongated, with numerous, long extensions. The 

gel exposed to 10 pg/ml ES had by 48 hours incubation, turned into a viscous liquid. 

The cells within the droplets appeared to be more rounded than those in the control, 
having lost many of their slender extensions (Figure 6.1 Ob). However, a significant 

proportion of these cells had remained in physical contact with others by maintaining 
long, slender intercellular extensions. 

Confocal microscopic images, taken after assays had been incubated for 48 hours, also 

revealed differences in cellular morphology and migration. As shown in Fig. 6.11, cells 

within 1 pg/ml ES appeared longer and had migrated further from the droplet edge than 

those in the absence of ES. This observation is in agreement with those made when the 

relevant phase contrast images were examined (Figure 6.1 Oa). 
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Figure 6.9a Representative phase contrast images of the edges of fibroblast-seeded gel 
droplets following 48 hours incubation within a cell-free gel. Comparison between cells 
in the control where ES was absent (I to IV) and cells exposed to 0.1 pg/ml ES (V to 
VIII). 
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Figure 6.9b Representative phase contrast images of the edges of fibroblast-seeded gel droplets following 48 hours incubation within a cell-free gel. Comparison between cells 
in the control where ES was absent (I to IV) and cells exposed to 5 pg/ml ES (V to 
VIII). 
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Figure 6.10a Representative phase contrast images of the edges of fibroblast-seeded 

gel droplets following 48 hours incubation within a cell-free gel. Comparison between 

cells in the control where ES was absent (I to IV) and cells exposed to I µg/ml ES (V to 

VIII). 
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Figure 6.10b Representative phase contrast images of the edges of fibroblast-seeded 

gel droplets following 48 hours incubation within a cell-free gel. Comparison between 

cells in the control where ES was absent (I to IV) and cells exposed to 10 pg/ml ES (V 

to VIII). 
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; ure 6.11 Z series of optical sections, taken using confocal microscope and displayed 

maximum intensity projections of all the sections. Representative images showing 
edges of fibroblast-seeded gel droplets following 48 hours incubation embedded 

thin cell-free gels. Appearance of cells in the absence of ES (control) (top) or in the 

; sence of I pg/ml ES (bottom). Cells fixed and stained with FITC-phalloidin and 
)pidium iodide. 
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Low magnification phase contrast images of all droplets, taken after they had been 

incubated for 0 or 24 hours, as exemplified in Fig. 6.3 and 6.4, were analysed as 
described in section 6.2 and Fig. 6.1. This was with the purpose of quantifying the 

extent of cell migration out of each droplet in a horizontal orientation. This was 

achieved by first counting the number of migrating cells and then measuring the linear 

distance that each had travelled. The results shown in Fig. 6.12 confirm that over the 24 

hour incubation period, the number of cells that had migrated per µm perimeter of each 

cell droplet was highest in the presence of 5 pg/ml ES. The distances that these cells 
had travelled were also amongst the highest recorded (Fig. 6.13). Cells migrating in the 

presence of 1 pg/ml ES were more numerous than those migrating under control 

conditions. They also appeared to have travelled slightly further. The number of cells 

migrating in the presence of 0.1 pg/ml ES was slightly lower than that seen in the 

relevant control, where ES was absent. There appeared to be no difference in the 

distances that the cells had migrated. In contrast, the presence of 10 µg/ml ES inhibited 

the number of migrating cells and the distances travelled. 

6.3.1.1 Statistical analysis 

In addition to visual observations, data taken from Fig. 6.12, showing the number of 

migrating cells per µm perimeter, were subjected to statistical analysis as described in 

section 6.2.1.1. Firstly, all the data was square rooted to ensure normal distribution. 

The transformed data were then compared using one-way ANOVA and Dunnett's 
Multiple Comparison Test. In both experiments, significant differences were observed 
between all larval ES-treated assays and their controls (P < 0.001) (Table 6.1). The 
distance that each cell had migrated (Fig. 6.13) was also analysed. Here, the data were 
log transformed to ensure normal distribution. The Geometric means from each dataset 

were then compared using one-way ANOVA and Dunnett's Multiple Comparison Test. 

As expected, in comparison with the appropriate controls, 5 µg/ml ES yielded 

statistically significantly higher migration (P < 0.001), while 0.1 pg/ml ES had no effect 
(P > 0.05) (Table 6.2). In contrast, 10 pg/ml ES exerted a significant inhibitory effect 
(P < 0.001), while 1 pg/ml ES promoted migration (P < 0.05). 
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Figure 6.12 Fibroblast migration from 2 µl cell-seeded gel droplets within three- 

dimensional in vitro wound assays over 24 hours. Results expressed as number of 

migrating cells per µm perimeter of droplet. Each value represents the mean of five 

replicate droplets ±1 standard deviation. a. Migration in the absence of ES (control) or 
in the presence of 0.1 pg/ml ES (0.1 ES) or 5 pg/ml ES (5 ES). b. Migration in the 

absence of ES (control) or in the presence of 1 pg/ml ES (1 ES) or 10 µg/ml ES (10 

ES). 
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Figure 6.12 Fibroblast migration from 2 pl cell-seeded gel droplets within thrce- 

dimensional in vitro wound assays over 24 hours. Results expressed as number of 

migrating cells per tm perimeter of droplet. Fach value represents the mean of live 

replicate droplets ±I standard deviation. a. Migration in the absence of [S (control) or 

in the presence of 0.1 pg/ml ES (0.1 1_; S) or 5 pg/mI FS (5 1": S). b. Migration in the 

absence of ES (control) or in the presence of I pg/ml FS (l I,: S) or 10 pg/ml I: 5 (1(1 

ES). 
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Figure 6.13 Median distance travelled by fibroblasts migrating from each cell-seeded 

gel droplet embedded within three-dimensional in vitro wound assays. Values from five 

replicate droplets shown. Solid shapes (experiment 1) represent distance travelled in the 

absence of ES (control #1) or in the presence of 0.1 pg/ml ES or 5 µg/ml ES. Open 

shapes (experiment 2) represent distance travelled in the absence of ES (control #2) or 
in the presence of 1 pg/ml ES or 10 pg/ml ES. 
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Experiment 1. One-way ANOVA: P<0.000 1. Bartlett's: P>0.05, equal variance. 

Larval ES Control (ES absent) 

(µg/ml) P value 95 % CI of difference 

0.1 < 0.001 0.008 to 0.053 

5<0.001 -0.074 to -0.029 

Experiment 2. One-way ANOVA: P<0.000 1. Bartlett's: P>0.05, equal variance. 

Larval ES Control (ES absent) 
(µg/ml) P value 95 % Cl of difference 

1<0.001 -0.056 to -0.012 
10 < 0.001 0.043 to 0.0869 

Table 6.1 Statistical analysis of fibroblast migration data from three-dimensional in 

vitro wound assays. Comparison between larval ES-treated and control assays in the 

number of migrating cells per pm droplet perimeter using one-way ANOVA and 
Dunnett's Multiple Comparison Test. Confidence Interval referred to as Cl. P<0.05 

taken as significant. Bartlett's test for equal variance yielded P values > 0.05. 

Therefore, equal variance assumed. 
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Experiment 1. One-way ANOVA: P=0.0001. Bartlett's: P>0.05, equal variance. 

Larval ES Control (ES absent) 

(µg/m1) P value 95 % CI of difference 

0.1 ns 

5<0.001 
-0.130 to 0.035 

-0.288 to -0.124 

Experiment 2. One-way ANOVA: P<0.000 1. Bartlett's: P>0.05, equal variance. 

Larval ES Control (ES absent) 

(µg/ml) P value 95 % CI of difference 

1<0.05 -0.139 to -0.004 
10 < 0.001 0.051 to 0.187 

Table 6.2 Statistical analysis of fibroblast migration data from three-dimensional in 

vitro wound assays. Comparison between larval ES-treated and control assays in the 

mean distance travelled by migrating cells from each droplet using one-way ANOVA 

and Dunnett's Multiple Comparison Test. Confidence Interval referred to as CI. P< 

0.05 taken as significant. Bartlett's test for equal variance yielded P values > 0.05. 

Therefore, equal variance assumed. 
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The 95 % Confidence Intervals (CIs) of the differences between compared sample 

means, as shown in Table 6.1 and 6.2, provide a measure of the true differences 

between population means. These were therefore scrutinised in order to assess the 

importance of the significant differences described above. It was clear, just by viewing 

phase contrast images, that 5 pg/ml ES had a very positive influence upon cell 

migration. Hence, the CIs generated when results from this treatment were compared 

with those from the control, were regarded as indicating important significant 

differences. 

With this in mind, it was clear that when the number of migrating cells was compared, 

between the control and the assay containing 0.1 pg/ml ES, the lower confidence limit 

of the CI generated was very low (Table 6.1). This indicated that although the means 

were different (as P<0.001), the scientific relevance could not be stated without more 

data. However, in comparison with the control, no differences in cell morphology could 

be seen at the droplet edges, either by 24 or 48 hours incubation (Fig. 6.7a and 6.9a). In 

addition, there were no significant differences in terms of the distance that migrating 

cells had travelled (Table 6.2). It was therefore decided that within the three- 

dimensional assay environment, 0.1 µg/m1 ES had no decisive influence over fibroblast 

migratory behaviour. 

When the number of migrating cells and the distances travelled were compared between 

the control and the assay containing 1 µg/ml ES, the lower confidence limits of the CIs 

generated were also low (Table 6.1 and 6.2). This indicated the need for more data in 

order to make clear conclusions. However, the cells exposed to 1 µg/ml ES appeared to 

be morphologically different to those within the control, particularly after 48 hours 

incubation (Fig. 6.10a). In addition, it was visibly apparent that following 48 hours, the 

cells exposed to ES had migrated further (Fig. 6.6 and 6.1 Oa. It may therefore be 

tentatively concluded that 1 µg/ml ES did exert a stimulatory effect upon migration. 

When 10 pg/m1 ES was tested against the control, the lower confidence limit of the Cl, 

resulting from a comparison of the distance travelled by migrating cells, was low (Table 

6.2). This indicated that, although the means were different (as P<0.001), the scientific 

relevance could not be stated without more data. However, in comparing the number of 
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migrating cells, the lower confidence limit of the CI calculated (Table 6.1) was 

sufficiently high to suggest a scientifically important difference. In addition, the 

circumferences of the cell droplets exposed to 10 µg/ml ES had decreased in size. Here, 

it was noted that the image of each droplet at 0 hours incubation overlapped the 

circumference of the same droplet's image following 24 hours incubation (Fig. 6.14). 

Also, differences in cell morphology were clearly observed (Fig. 6.8b and Fig. 6.1Ob). 

It was therefore concluded that 10 pg/ml ES did exert an influence over fibroblast 

behaviour. 

The extent of cell migration out of each droplet in a vertical orientation was also 

assessed using confocal microscopy. Here, a number of z series' of optical sections 

were taken of droplets after they had been incubated for 48 hours within the assays that 

had been analysed above. Confocal images were also taken of droplets that had been 

assembled within separate assays and immediately fixed without any incubation (0 

hours incubation). All droplets within assays fixed at 0 hours were analysed. Of those 

incubated for 48 hours, droplets were selected at random by the microscope operator. 
The area imaged within each droplet was also chosen arbitrarily. Within each z series, 

sections were categorised into particular zones, depending on how far they lied from the 

main body of the droplet (Fig. 6.15a). Cells visible within each section were then 

allocated to the appropriate zone (Fig. 6.15b). As shown in the example image, no cells 

were found above or below the droplets that had been fixed at 0 hours incubation (Fig. 

6.16a). This confirmed that any cells found outside of the droplets that had been 

incubated for 48 hours had most likely migrated to these locations. Evidence for the 

occurrence of migration is exemplified by Fig. 6.16b. As shown in Fig. 6.17 more cells, 
in both the control and 1 pg/ml ES, were found in zones closer to the droplet. However, 

there was little difference between treatments. As each z series image incorporated only 

a very small surface area it is reasonable to propose that more images were required to 

allow conclusions to be drawn. 
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Figure 6.14 Fibroblast-seeded gel droplet within three-dimensional in vitro wound 
assay exposed to 10 pg/ml larval ES. Surface area coverage of droplet at 0 hours 
highlighted in yellow. Image of same droplet after 24 hours incubation seen 
underneath. Yellow arrow indicates border of droplet at 0 hours. Black arrow denotes 
border of droplet at 24 hours. 
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Figure 6.15a Illustration of how fibroblast migration in a vertical orientation, above 

and below the cell-seeded gel droplet, was quantified. Az series of optical sections was 

taken using a confocal microscope. These were then analysed to determine the position 

of cells contained within the droplet. The optical sections surrounding the droplet were 

categorised into zones that were 6 sections deep. Cells that were positioned within 

sections included in each zone were counted. Counts within the lower and upper 

regions of each zone were then combined. The presence of both upper and lower 

regions were required for the zone to be included in the analysis. In this example, only 

the upper region of zone 4 was visible. Zone 4 was therefore discounted. 
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Although also visible 
in zone 1, these cells 
are brightest within 
sections in zone 2 and 
are therefore included 
within this zone. 

Although also visible in 
zone 3, these cells are 
brightest within sections 
in zone 2. They are 
therefore included within 
zone 2 for analysis. 

Although also visible 
in zone 2, these cells 
are brightest within 
sections in zone 1 and 
are therefore included 
within this zone. 

Figure 6.15b The top 27 optical sections taken from the z series of sections shown in 

Fig. 6.15a. Images taken using a confocal microscope. Illustration of how cells present 

within sections were allocated to particular zones. This was dependent upon the 

position of the section in which they appeared brightest. 
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Figure 6.16 Z series of 54 optical sections, taken using confocal microscope and 
displayed in a gallery, from left to right, moving from top to bottom. Each of the nine 
images in the gallery represents a composite of 6 sequential optical sections. Position of 
fibroblasts within, above or below a cell-seeded gel droplet embedded within a cell-free 
gel. a. Droplet exposed to I pg/ml ES and fixed immediately after assay assembly (0 
hours incubation). b. Droplet in the absence of ES and fixed after 48 hours incubation. 
Cells stained with FITC-phalloidin and propidium iodide. 
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Figure 6.17 Mean number of fibroblasts that had migrated in a vertical orientation 

from cell-seeded gel droplets over 48 hours, either in the absence of l IS (control) or in 

the presence of I µg/ml ES. For each treatment. tour con focal iseries images vVerc 

analysed. For each z series image, the number of cells within each of the /. ones was 

counted. The mean number of cells within each zone was then derived using data from 

the four z series images analysed for each treatment. The total number of cells present 

within all of the zones within each image was also calculated and the mean total number 

of cells determined. In order to compare the distribution of migrating cells between 

zones, the percentage contribution of each zone's mean cell count to the mean total 

count was calculated as follows: (zone n mean cell count / mean total cell count) - IOU. 

Determination of zones and the categorisation of cells into each zone was perlormed as 

shown in Fig. 6.15a and b. 
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63.2 Three-dimensional in vitro wound assay - fibroblast morphology and matrix 

organisation 

As noted in the previous chapter, strand-like fibril connections were observed between 

adjacent cells within gel assays exposed to 10 pg/ml ES (Fig. 5.21). Such connections 

proved to be difficult to observe between densely packed cells in the assays described in 

section 6.3.1. Hence to investigate these fibrils further, three-dimensional in vitro 

wound assays were assembled with slight modifications to those utilised within section 

6.3.1. Here, one 20 µl droplet, containing a lower cell density of 3x 105 cells/ml, was 
incorporated into each assay. Assays treated with either 1 pg/ml ES or 5 µg/ml ES were 

tested and compared with a control. As shown in Fig. 6.18a, cells appeared to be 

similar following assay assembly (0 hours incubation). However, after 24 hours the 

majority of cells exposed to 1 µg/ml ES, and in particular 5 µg/m1 ES, were less 

rounded and had spread further than those within the control (Fig. 6.18b). In places, 

within the assay containing 5 pg/ml ES, intercellular parallel-aligned connective fibrils 

could also be observed. By 48 hours (Fig. 6.18c), cells within the control were rounded. 
In contrast, cells within both concentrations of larval ES appeared to be well spread. 

Connective fibrils between many cells within 5 pg/ml ES could clearly be seen and the 

gel was more translucent than within the other assays. 

6.4 Discussion 

Results presented within Chapter 4 suggest that larval ES at a concentration of 0.1 

pg/ml, enhances fibroblast migration across fibronectin-coated surfaces. However, as 

previously discussed, fibroblasts behave differently within two dimensions than within 

more familiar in vivo-like three-dimensional ECM environments. The migration of 
fibroblasts within collagen/fibronectin gels in response to various concentrations of ES 

was therefore examined. Results demonstrated that ES modified fibroblast migratory 
behaviour in a dose-dependent manner. In comparison with the relevant controls, ES 

concentrations of 1 and 5 pg/ml significantly increased both the number of migrating 

cells and the distances they had travelled away from the cell droplet. Out of the 
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Figure 6.18b Representative phase contrast images showing fibroblasts within three- 
dimensional in vitro wound assays, at a seeding density of 3x 105 cells/ml, following 
24 hours incubation. Appearance of cells in the absence of ES (control) (I, II) or in the 

presence of I . tg/ml ES (III, IV) or 5 µg/ml ES (V, VI). Aligned, strand-like connective 
fibrils have just become visible within the assay exposed to 5 µg/ml ES, as indicated by 

the blue arrows. 
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Figure 6.18c Representative phase contrast images showing fibroblasts within three- 
dimensional in vitro wound assays, at a seeding density of 3x 105 cells/ml, following 
48 hours incubation. Appearance of cells in the absence of ES (control) (I, II) or in the 
presence of 1 µg/ml ES (III, IV) or 5 µg/ml ES (V, VI). Aligned, strand-like connective 
fibrils visible within the assay exposed to 5 tg/ml ES, as indicated by the blue arrows. 
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concentrations tested, 5 pg/ml ES proved optimal for migration. In comparison, 10 

pg/ml ES, the highest concentration tested, appeared to inhibit cell migration. In 

contrast to the results that were recorded in the two-dimensional in vitro wound assays, 

as documented in Chapter 4, ES at a concentration of 0.1 pg/ml exerted little effect 

upon migration. 

A mechanism by which concentrations of 1 and 5 pg/ml ES promoted fibroblast 

migration may be related to the actions of ES upon the collagen/fibronectin gel 

surrounding the cells. Evidence, which suggests that ES may have altered the matrix 

components within the three-dimensional assays, is provided by observations that were 

made during the experiment. Here, it was noted that gels exposed to 5 and 10 µg/ml ES 

became increasingly translucent over time, indicating that modifications were taking 

place. Further evidence is provided by results presented within Chapter 3, which 
demonstrate that the proteolytic activity within ES causes the progressive fragmentation 

of fibronectin. In addition, previous research has shown ES to fragment collagen and 

other ECM components (Chambers et at., 2003). Within the two-dimensional in vitro 

wound assays (Chapter 4), the acceleration of migration in the presence of 0.1 µg/ml ES 

was hypothesised to be at least partially attributed to ES proteolytic activity modifying 
the fibronectin-coated surface. Such activity may have changed the density of adhesive 

sites available to the cells and in so doing, according to the ̀ receptor saturation model', 

promoted migration (Fig. 4.7a). Within the three-dimensional assays described here, 

this same proteolytic activity may have modified the biophysical properties of the gel 

and in the process altered fibroblast behaviour. 

In order to appreciate how ES may have promoted fibroblast migration by altering the 

matrix in which the cells were embedded, it is first necessary to understand the extent to 

which the biophysical properties of that matrix influence fibroblast behaviour. The 

stiffness or degree of mechanical tension present within the matrix has been shown to 

control fibroblast phenotype. This is thought to be related to the functions of fibroblasts 

in wound healing because evidence suggests that the cells not only contribute to 

granulation tissue formation, but also initiate wound closure. Although fibroblasts 

migrate slowly compared with other cells, such as keratinocytes and leukocytes, they 

exert much greater tractional forces (Harris, Stopak and Wild, 1981; Fray et al., 1998). 
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Harris, Stopak and Wild (1981) have estimated that the strength of traction exerted by 

fibroblasts is at least two or three orders of magnitude higher than what is required for 

the cells' normal pace of locomotion. This indicates that for fibroblasts, traction fulfills 

a function that remains distinct from migration. Ehrlich and Rajaratnam (1990) have 

proposed that the tractional forces generated by fibroblasts migrating into the 

granulation tissue are sufficient to precipitate wound closure. In addition however, 

fibroblasts have also been shown to differentiate into a contractile phenotype (Gabbiani, 

Ryan and Majno, 1971). Triggered by a rise in mechanical tension, probably caused by 

tractional forces exerted by migrating fibroblasts, the cells develop features of the 

protomyofibroblast (Tomasek et al, 2002). This contractile cell phenotype expresses 

actin stress fibres, focal adhesion complexes and organises the formation of fibronectin 

fibrils on the cell surface. Composed of both fibronectin from its surrounds and 

secreted cellular fibronectin, these fibrils contain a splice variant to normal adult 
fibronectin, which only appears during embryogenesis and wound healing (French- 

Constant, Dvorak and Hynes, 1989; Brown et al., 1993; Serini et al., 1998). The 

presence of this splice variant, termed ED-A (refer to Fig. 1.2 in Chapter 1), together 

with a continuing rise in mechanical tension and the presence of TGF-ß 1, which 

promotes further ED-A fibronectin expression, leads to the emergence of the 

myofibroblast (Hinz et al., 2001; Serini et al., 1998; Desmouliere et al., 1993; Vaughan, 

Howard and Tomasek, 2000). Expressing a-smooth muscle actin, myofibroblasts exert 

even greater contractile force and are believed to be involved in the latter stages of 

wound healing, when the wound is finally closed. The role that fibronectin fibril 

formation plays in the induction of a more contractile fibroblast phenotype is perhaps 
highlighted by the work of Hocking, Sottile and Langenbach (2000). These researchers 
found that fibronectin polymerisation within a free-floating fibroblast-populated 

collagen gel increased fibroblast-mediated contraction. 

It is therefore clear that the degree of mechanical tension within the matrix influences 

fibroblast phenotype. From the tractional forces exerted by the migrating fibroblast to 

the strong contractility of the myofibroblast, it is also clear that the cell itself exerts a 

major influence upon the stiffness of the matrix around it, initiating a positive feedback 

loop. Within the wound, it may be hypothesised that the tractional forces generated by 

fibroblasts migrating into the granulation tissue, causes re-modelling of the matrix. 
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This results in a rise in the tension of the matrix, encouraging the protomyofibroblast 

phenotype to emerge. In turn, the myofibroblast predominates. 

Considering that fibroblasts exert strong tractional forces, it is perhaps unsurprising that 

they exert considerable mechanical tension within collagen gels that are tethered to the 
dish surface. It is conceivable that in such a situation, the resident fibroblasts may 
differentiate into the protomyofibroblast state. Indeed, Tomasek et al. (2002) believe 

this to be the case. The question remains as to what occurs upon the release of this 

mechanical tension, when the collagen gel is freed from its tethers by the investigator's 

intervention. Such studies have shown fibroblasts to rapidly contract the gel following 
its release. It is also believed that the cells upregulate MMP production. For instance, 

release of collagenase is thought to be associated with re-organisation of the actin 

cytoskeleton, which occurs when the cell experiences a change in mechanical loading 

(Unemori and Werb, 1986; Lambert et al., 2001). This reaction may represent an 

attempt by the cells to re-instate mechanical tension by enhancing localised matrix 

modification (Lambert, Lapiere and Nusgens, 1998). Further evidence, which suggests 
that fibroblasts react to oppose the relaxation of mechanical tension, is provided by 

Brown et al. (1996,1998), Eastwood, McGrouther and Brown (1994) and Eastwood et 

al. (1996). These researchers developed the tensional culture force monitor to measure 
the reaction of fibroblasts embedded within collagen gels, to changes in externally 

applied mechanical loads. Their results revealed that fibroblasts maintain an active 
tensional homeostasis, reacting to modify the endogenous matrix tension in the opposite 
direction to externally applied loads. Hence, an increase in the externally applied load 

and therefore an increase in mechanical tension, elicits a decrease in cell-mediated 
contraction and vice versa. In support of this evidence, it is interesting to note that 

within the body, almost all connective tissues, including the dermis are held in tensional 
homeostasis (Tomasek et al., 2002). 

Reports have shown stress relaxation within collagen gels to cause other modifications 
in fibroblast behaviour. For example, Lee et al. (1993) have observed that fibroblasts 

within an anchored collagen matrix retract their pseudopodia when the gel is freed. 

This change in the environment also triggers ectocytosis of plasma membrane vesicles 

containing actin, annexins II and VI and (3I integrin receptors. Jenkins et al. (1999) 
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have found that fibroblasts upregulate a2 integrin subunit mRNA expression when the 

anchored collagen gel in which they are embedded is released. 

There is therefore considerable evidence to show that the strength of mechanical tension 

within fibroblast-populated in vitro collagen gels influences fibroblast behaviour. 

Hence, it is reasonable to assume that within the three-dimensional assays undertaken 
here, ES proteolytic modification of the collagen/fibronectin gel may have contributed 

to the enhancement of fibroblast migration. This is because it was noted that the gels 

exposed to 5 and 10 µg/ml ES were more translucent than their respective controls. 
They were also more fragile and over time, the gel exposed to the highest concentration 

of ES actually degraded into a viscous liquid state. This suggests that the presence of 
ES reduces the stiffness of collagen/fibronectin gels and in so doing, dissipates the 

mechanical load imposed upon any embedded cells. If this is the case, an upregulation 

of MMP expression by the resident cells may have resulted. The cells may also have 

reacted by escalating tractional force, in order to maintain tensional homeostasis. As a 

consequence of both these reactions, matrix re-modelling around the cells may have 

been enhanced. Increased cellular traction would also have been reflected by changes in 

cell morphology. As Harris, Stopak and Wild (1981) observed, fibroblast traction `... is 

distinct from simple contraction like that of a muscle... ' because ̀... the cells elongate 
instead of shorten as they compress and stretch the collagen around them'. 

Evidence that the fibroblasts responded to the presence of ES by increasing the exertion 

of traction is provided by another experiment that was performed. Here, the 

morphology of fibroblasts in the absence of ES or in the presence of 1 pg/ml ES or 5 

pg/ml ES was investigated. In order to avoid any contact inhibition, the cells were 

embedded within the gels at a much lower population density than in the previous 

experiments, when fibroblast migration was quantified. The presence of considerable 

space between cells also allowed for the observation of any intercellular connective 
fibrils that may have formed, as was reported in the previous chapter, when cells were 

exposed to 10 pg/ml ES. As described within this chapter's results (section 6.3.2), cells 

within 1 and 5 pg/ml ES exhibited an enhanced degree of spreading compared with the 

control, which became increasingly apparent as the incubation time increased. By 48 

hours, most cells within the control had become rounded, whilst cells exposed to either 
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concentration of ES remained well spread. This may have been indicative of increased 

cellular traction in response to ES because, as mentioned above, fibroblasts elongate 
instead of shorten when exerting traction (Harris, Stopak and Wild, 1981). 

Within this same experiment, intercellular connective fibrils were also observed in gels 

exposed to 5 µg/ml ES. Although it was not possible to identify these fibrils as being 

composed of collagen or fibronectin, it is interesting to note that they bore an intriguing 

resemblance to structures that were first reported by Harris, Stopak and Wild (1981) and 
later by Sawhney and Howard (2002). Both these groups of researchers found that over 

a period of time, patterns of aligned collagen formed between explants of fibroblasts 

that were embedded approximately 1.5 cm or 1 mm apart within tethered collagen gels. 
These aligned fibrils, as shown in the example image recorded by Sawhney and Howard 

(2002) (Fig. 6.19, image I), appear similar to the structures that were observed between 

individual cells exposed to 5 pg/ml ES (Fig. 6.18bc and 6.19, image VI) and within a 

previous experiment, to 10 µg/ml ES (Fig. 5.21). They also appear remarkably similar 

to structures that were observed between cell droplets within a collagen/fibronectin gel 

exposed to 0.1 pg/ml ES (Fig. 6.19, images II to V). These images were taken from a 

preliminary assay that was assembled in a similar way to the three-dimensional assays 

that were used to quantify fibroblast migration. Kept under observation, it was noted 
that following the gel's accidental detachment from the dish surface, cell droplets within 

the gel appeared to be connected by parallel-aligned fibrils. The cells appeared to be in 

direct contact with these fibrils, indicating cellular involvement in fibril alignment. Fig. 

6.19, image IV, even shows one cell apparently pulling on one of the fibrils, drawing 

the fibril towards the cell body. Sawhney and Howard (2002) named the fibril 

structures they observed as ̀ ligament-like collagen straps'. In agreement with the 

conclusions of Harris, Stopak and Wild (1981) these researchers believed that the 
`straps' had been formed by cellular traction forces. They then went on to demonstrate 

that the effects of small local movements of the collagen fibres, caused by the actions of 

cells, can be transmitted a great distance to cause global re-alignment. This is owing to 

the interconnected matrix or mesh-like network that the collagen forms. Using a nylon 

net as an analogy, Sawhney and Howard (2002) showed that a small pull from two fixed 

points results in a small displacement of points located on the axis of tension, but a 

much larger displacement of points located at right angles to the axis of tension. 
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Figure 6.19 Formation of collagen `straps' between cell populations and individual 
cells within three-dimensional assays - comparison with research by Sawhney and Howard (2002). 1 Mouse dermal fibroblast explants after 8 hours incubation within 1.7 
mg/ml type I collagen gel, containing 10% FCS. Picture adapted from Fig. I in 
Sawhney and Howard (2002). II to V2 pl fibroblast-seeded gel droplets within three- 
dimensional in vitro assay containing 1.5 mg/ml type I collagen, 30 p. g/ml fibronectin 
and 0.1 Vg/ml ES, following 5 days incubation and accidental detachment of the gel. Note that image IV displays an area within image 11 at a higher magnification. VI 
Fibroblast cells within three-dimensional in vitro assay, containing 1.5 mg/ml type I 
collagen, 30 pg/ml fibronectin and 5 p. g/ml ES following 48 hours incubation. Droplet 
seeding density of 3x 105 cells/ml. Distances between cells indicated by yellow dotted 
lines. 
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Termed ̀ orthogonal amplification of mesh distortion', this phenomenon potentiates the 

alignment of collagen fibrils over relatively large distances. As stated by Sawhney and 
Howard (2002), this implies that tractional forces may provide the driving force behind 

the patterning of collagen in connective tissues during development and wound healing. 

Considering the comparative evidence of Harris, Stopak and Wild (1981) and Sawhney 

and Howard (2002), it may be concluded that within the experiments conducted here, 

the presence of ES caused enhanced matrix re-modelling as exemplified by the 
formation of aligned fibrils, presumably composed of collagen, between cells (Fig. 6.19, 

image VIII and Fig. 6.18). However, Harris, Stopak and Wild (1981) and Sawhney and 
Howard (2002) observed the occurrence of fibril alignment in the absence of ES. It 

therefore has to be asked why the same was not observed here in the control sample 

where ES was not present. One possible reason is that fibril alignment does not 
typically occur between individual, isolated cells. Harris, Stopak and Wild (1981) and 
Sawhney and Howard (2002) observed collagen ̀ strap' formation between isolated 

clusters of confluent cells. However, Harris, Stopak and Wild (1981) did observe a 
localised, almost radial alignment of fibrils surrounding individual cells, although no 

mention was made of these fibrils interacting with neighbouring cells on a one-to-one 
basis. It is possible that the presence of ES may have allowed fibril alignment to occur 
between individual cells. 

Another reason is that Harris, Stopak and Wild (1981) and Sawhney and Howard (2002) 
included 10 % FCS within their gel matrices. No serum was present in the experiments 
undertaken here. It may be that without the stimulatory effects of serum, fibroblasts are 
inhibited from re-modelling the collagen matrix effectively. Evidence for this is 

provided by Tomasek et al. (1992). These researchers discovered that removing serum 
just prior to the release of tethered fibroblast-populated collagen gels, inhibited the 

extent of subsequent gel contraction by the resident cells. This suggests that ES 

contains agents that indirectly initiate a cellular response by altering the biophysical 

properties of the gel matrix and/or, by directly stimulating the cells to respond to their 

environment. As discussed above there is considerable evidence to suggest that 
fibroblasts are capable of sensing and responding to mechanical signals from the matrix. 
In addition, it is possible that there are also mechanisms by which fibroblasts may be 
directly stimulated by components that are already known to exist within ES. One such 
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mechanism involves the activation of certain membrane-bound receptors. It has been 

shown that fibroblasts express proteinase-activated receptors (PARs) (reviewed by Dery 

and Bunnett, 1999). As discussed within Chapter 1.5, this family of G-protein-coupled 

receptors are activated by thrombin and trypsin-like enzymes. These serine proteinases 

cleave specific sites located on the extracellular side of the receptor, exposing N- 

terminal tethered ligands which then bind and activate the cleaved receptors. Synthetic 

peptides corresponding to the tethered ligands also directly activate these receptors 
(Maryanoff et al., 2001). Coupled to signalling pathways that are related to growth and 
inflammation, activation of PAR receptors may elicit a range of cellular responses. For 

example, PAR-1 activation by thrombin has been shown to induce mitogenesis in 
fibroblasts (Dery and Bunnett, 1999). As discussed previously within Chapter 1.5, 
larval ES contains trypsin-like serine proteinases. Hence, in addition to eliciting 

cellular responses through proteolytic modification of the matrix, these enzymes may 

also directly interact with fibroblast signalling mechanisms. 

Another mechanism by which ES enhanced matrix re-modelling may have involved 

substances with actions similar to those of plasmin, the activated form of plasminogen. 
Using fluorogenic substrates specific to certain classes of enzymes, previous research 
has demonstrated that ES may contain plasmin-like serine proteases (Chambers et al., 
2003). Plasmin is known to activate zymogen pre-cursors of various MMPs secreted by 

cells (Mignatti et al., 1996). Although plasmin does not degrade collagen directly, the 

plasmin-like activity of ES may have enhanced the localised degradation of the 

collagen/fibronectin matrix surrounding the fibroblasts by increasing the activity of the 
MMPs that the cells may have secreted. 

How enhanced matrix re-modelling by the actions of ES is translated into accelerated 
fibroblast migration, as observed in the quantitative assays when cell droplets were 
exposed to 1 and 5 gg/ml ES, may be explained by the way fibroblasts use collagen 
fibrils to assist migration. In the mechanism termed ̀ contact guidance', fibroblasts 

align themselves along discontinuities in the surrounding substrata (McCarthy, Iida and 
Furcht, 1996). Thus, alignment of collagen fibrils by enhanced matrix re-modelling 
may promote directional cell migration. Indeed, Sawhney and Howard (2002) found 
that collagen ̀ strap' formation between clusters of cells precipitated the advancement of 
cells and also directed cell migration towards neighbouring cell clusters. 
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Relaxation of the matrix and a specific kind of proteolytic activity that may be present 

within ES may also have interacted to stimulate migration. In addition to its plasmin- 
like activity, ES also appears to contain urokinase-like activity (Chambers et al. (2003). 

Referred to as urokinase plasminogen activators (uPAs), urokinases convert 

plasminogen into its active form, plasmin. They also bind with urokinase plasminogen 

activator receptors (uPARs), which studies have shown to be expressed by fibroblasts 

(Ellis, Behrendt and Dano, 1993; Behrendt et al., 1993; Mignatti et al., 1996). Once 

bound, these receptors localise to focal adhesion sites through binding with PI, 132 and ß3 

integrins. (Chapman and Wei, 2001; Porter and Hogg, 1998). It is believed that as a 
consequence integrin-mediated function is modulated, perhaps by the induction of a 
conformational change in the ECM receptor (Chapman and Wei, 2001). As a result, the 

affinity of the integrin receptors for ECM ligand sites may be altered and a more motile 

cell phenotype promoted. Indeed, uPAR has been reported to have a signalling role in 

cell migration, adhesion and chemotaxis (Odekon, Sato and Rifkin, 1992; Waltz, Sailor 

and Chapman, 1993; Gyetko et al., 1994). Evidence suggests that protein kinase C may 
play a role in the uPAR signal transduction pathway associated with cell migration 
(Busso et al., 1994). uPARs also appear to be physically linked to actin microfilaments 

within the cell (Wang et al., 1995). This may perhaps explain ligated uPAR localisation 

to focal adhesion sites. Bayraktutan and Jones (1995) have found that disruption of the 

actin cytoskeleton results in an upregulation of uPAR expression in human, dermal 
fibroblasts. On this point, it is interesting to note that fibroblasts embedded within 
collagen gels re-organise their cytoskeletons in response to the relaxation of mechanical 
tension (Unemori and Werb, 1986). Hence, it seems logical that as a consequence, 
uPAR expression may be enhanced. Considering this evidence, it is reasonable to 
speculate that urokinase-like activity within ES may have resulted in the ligation of 
uPARs expressed by the fibroblasts, and their subsequent localisation to integrin 

receptors. In turn, this may have modulated integrin-mediated function, thereby 

promoting migration. Relaxation of the collagen/fibronectin gels by ES proteolytic 
activity may also have promoted further uPAR-mediated control of fibroblast phenotype 
through causing changes in the actin cytoskeleton, thus upregulating uPAR expression. 

Another related mechanism by which urokinase-like activity may enhance migration is 
dependent upon the presence of plasminogen. Upon binding to uPAR, uPA is activated 
to convert plasminogen into plasmin. This is part of a self-maintained feedback loop as 
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plasmin also activates uPA. Once produced, plasmin goes on to activate MMP 

zymogens. Hence, in the presence of plasminogen, localisation of uPAR to integrins 

may focus proteolytic degradation of the matrix to focal adhesion sites because pro- 

MMPs released at these sites will be activated. This in turn, allows for fine control of 

matrix re-modelling to areas within the immediate vicinity of the cell where contact 

with the ECM is made. Although it is not clear whether the in vitro assays here 

contained plasminogen, originating from either the ES or as impurities in the matrix 

componments, it would almost certainly be present within the actual wound. This is 

because circulating plasminogen is quite readily transported to extravascular sites. As 

such, the presence of uPA-like activity within ES may have a profound effect upon the 
levels of active plasmin within the wound and may represent another mechanism by 

which ES stimulates fibroblast migration. Plasmin is also believed to mobilise stores of 
bFGF complexed with proteoglycans in the extracellular matrix (Mignatti et al., 1996). 

As such, raising the plasmin levels may increase the availability of this important 

growth factor to the cells, which again may enhance migration. In addition, bFGF may 

also contribute to fibroblast proliferation and angiogenesis. Stimulatory mechanisms 

originating from the conversion of plasminogen into plasmin may not however have 

played a role within the in vitro assays here, as plasminogen may not have been present. 
Nevertheless, it is interesting to note that relaxation of mechanical tension within 

collagen gels stimulates fibroblast expression of MMPs in conjunction with actin 

cytoskeleton re-organisation and subsequent upregulation of uPAR expression. As 

MMPs are activated by plasmin and uPA increases the levels of plasmin when bound to 

uPAR, it may well be that fibroblasts release MMPs in anticipation of higher levels of 

plasmin. There is after all, little point in increasing MMP expression if there was not 
the capacity to activate these molecules. 

As fibroblasts are capable of detecting and responding to changes in mechanical 
tension, it is clear from the images shown in Fig. 6.18 that however ES stimulated 
fibroblasts to remodel the matrix, the enhancement of intercellular communication may 
have resulted. This is because each cell would presumably have been able to detect 

local differences in mechanical tension due to opposing tractional forces from other 

cells causing fibril alignment. Cells lying a considerable distance apart may have been 

capable of detecting each other's physical presence. For example, within Fig. 6.19, 

image VI, the length of the fibrils aligned between two cells was approximately 400 
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µm. Such an enhanced awareness of neighbouring cells, even over comparatively long 

distances, may have resulted in the improved co-ordination of action between cells. 
This in turn may also have contributed to enhanced migration within the quantitative 
three-dimensional assays. This may be relevant in the chronic wound situation where 
isolated clusters of healthy, viable cells may be made aware of each other's presence 

across areas of tissue that have been freshly debrided of non-viable, necrotic tissue by 

the actions of maggots and their secretions. Indeed, Sheetz , Felsenfeld and Gabraith 
(1998) propose a similar mechanism of co-ordinated cell migration, where the cells 
direct their movement according to the orientation and rigidity of the ECM protein 
fibres. This is based upon their own research which demonstrates that cells are capable 
of sensing the stiffness of individual surface contacts (Choquet, Felsenfeld and Sheetz, 
1997) and the research of Wang and Ingber (1994) which shows that cytoskeletal 

stiffness increases in proportion to the force applied to integrins. 

Another mechanism by which fibroblast migration was enhanced may be related to the 

production of bio-active peptides through the proteolytic degradation of the collagen 

and/or fibronectin constituents of the gel. Both these matrix components have been 

shown to release bio-active peptides upon their fragmentation. These peptides then go 
on to influence fibroblast adhesion and migration (Pierschbacher and Ruoslahti, 1984; 
Woods et al., 1993; Livant et al., 2000; Schor et al., 1996). Of particular interest is the 
finding that a 120 kDa fibronectin fragment, containing the central cell-binding domain, 
induces a net increase in matrix-degradative activity in fibrocartilaginous cells (Hu et al, 
2000). It appears to do this by inducing both MMPs and their activator uPA while at 
the same time inhibiting TIMPs. Co-operative signalling by a5ß, and a43i integrin 

receptors may be involved in this (Huhtala et al. (1995). In addition, some matrix- 
derived peptides may mimic ligands that activate PARS. 

Apart from facilitating the migration of cells into the wound space, promotion of a 
migratory fibroblast phenotype by the direct or indirect actions of ES may also confer 
another benefit. Research has shown that induction of migration is associated with 
tyrosine phosphorylation of p130 Crk-associated substrate (CAS), which then 

complexes with the adaptor protein c-CrkII (Crk) (Klemke et al., 1998). Through the 
assembly of signal-generating complexes, this adaptor protein is involved in co- 
ordinating a cascade of biochemical signals initiated by integrin or cytokine receptor 
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ligation. In addition to inducing migration, CAS/Crk coupling is also associated with 

the suppression of apoptosis (Cho and Klemke 2000). Hence, the presence of ES within 

the wound may promote cell survival, thereby providing further assistance to new tissue 

growth. 

Despite the supposed benefits of ES proteolytic activity in enhancing migration, it is 

important that proteolysis is not excessive. Unlike the carefully controlled localised 

MMP expression and activation around cells, the addition of ES causes global 
breakdown of the matrix irrespective of where the cells are. Sufficient fibril structure 

needs to remain in order to facilitate contact guidance and translocation. This point is 

perhaps illustrated by the results that were obtained from the quantitative three- 
dimensional assays that were exposed to the highest ES concentration. Here, 10 µg/ml 
ES not only inhibited migration, but also rapidly degraded the gel into a viscous liquid 

state. Over periods of time longer than when migration was quantified, 5 µg/ml ES may 

also have eventually inhibited migration, due to progressive matrix degradation. It 

would therefore be interesting to measure the concentration gradient of ES proteolytic 

activity through the depth of chronic wounds treated by maggots. It would also be 

interesting to determine the influence of wound exudates upon this gradient. As the 

exudates are expelled to the wound surface, ES may be washed out of the wound. 
Perhaps an as yet undetermined intermediate level of ES activity is optimal for 

enhancing fibroblast migration and wound healing. 

As displayed previously within Chapter 4, ES at a concentration of 0.1 µg/ml increased 

fibroblast migration within a two-dimensional in vitro wound assay. However, this 

concentration apparently had little influence within the three-dimensional assay 
described here. This may have been due to requirements for cell translocation differing 
between two-dimensional and three-dimensional environments. Cell migration in two 
dimensions is predominantly a function of adhesion and de-adhesion events because 

resistance to the advancing cell body above the planar surface is lacking. This explains 

why research presented here in Chapter 4 and in other studies has found that the 

concentration of fibronectin coating a surface exerts a major influence upon the speed of 
cell migration. Noted for its adhesive properties, the greater the concentration of 
fibronectin present, the more adhesive the surface will be to fibroblasts. Within three 
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dimensions however, cells have to overcome resistance from the matrix that completely 

surrounds them. Unlike the two-dimensional environment, cells have to create or find a 

passage through the fibrous network of the matrix before forward movement can be 

initiated (Haas et al., 1998; Friedl and Bröcker, 2000). In addition, it may be 

hypothesised that the cell's detachment from the matrix for the purpose of migration is 

more difficult in the three-dimensional than the two-dimensional environment. This is 

because in three dimensions the cell is in contact with the matrix at all angles. As 

presented within Chapter 3, ES substantially modifies fibroblast adhesion to planar 

surfaces. It is therefore logical to assume that fibroblast migration will be more 

sensitive to ES when the cells are located upon a planar surface than when they are 

embedded within a three-dimensional matrix environment. Hence, higher 

concentrations of ES would be required to promote fibroblast migration within gel 

matrices than upon two-dimensional surfaces. 

Another reason why 0.1 pg/ml ES promoted fibroblast migration in the two- 
dimensional assay but not in the three-dimensional assay may have been due to the 

different batches of ES that were used. As shown in Chapter 3, ES that had been heat- 

treated to remove its proteolytic activity exerted a much lower influence upon fibroblast 

adhesion to fibronectin than untreated ES. It may therefore be assumed that the 

proteolytic activity of ES plays a role in enhancing fibroblast migration because, as 
discussed above, the strength of cell adhesion influences migration. With a specific 

activity of 6.04 x 106 units per mg protein (ES batch E), the ES applied here in the 

three-dimensional assays demonstrated 0.61 of the proteolytic activity of the ES 

employed within the two-dimensional assays (with a specific activity of 9.87 x 106 units 

per mg protein - ES batch D), as measured using FITC-casein substrate assays (see 

Table 2.1 in Chapter 2). This difference can only be explained by variation between the 
batches of larvae that were obtained. Reasons for this variability remain to be 

elucidated. 
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6.5 Conclusions 

Within the time periods examined, ES concentrations of 1 and 5 µg/ml promoted 
fibroblast migration within collagen/fibronectin gels. Evidence suggested that this 

might have been associated with enhanced matrix re-modelling. Partial proteolytic 
degradation of the matrix components by the actions of ES may have been one 

contributory factor. This may have relaxed mechanical tension within the matrix 

thereby stimulating opposing cellular traction forces that have been shown to re- 

organise the surrounding collagen fibril network. Proteolytic degradation may also 
have released bio-active peptides. Particular enzymatic activities within ES may also 
have activated MMP zymogens produced by the cells, thus enhancing localised matrix 
degradation around the cells. In addition, these activities may have been involved in 

directly stimulating membrane-bound receptors expressed by the cells, including PARS 

and uPARs. In turn, this may have activated a variety of responses, including changes 
in fibroblast adhesion, migration, proliferation and chemotaxis. Promotion of fibroblast 

migration may have also promoted cell survival through the inhibition of apoptosis. 

The presence of ES within the wound may confer additional benefits. For instance, the 

possibility of plasmin-like activity within ES and the conversion of plasminogen to 

plasmin may lead to the mobilisation of growth factor stores held within the matrix. It 

may also stimulate angiogenesis. Furthermore, increased cellular traction forces and 

matrix re-modelling may facilitate intercellular communication between isolated 

clusters of viable cells. 

217 



CHAPTER 7 

Final Conclusions 

Maggots placed within chronic wounds, in the procedure termed ̀ biosurgery', have 

been observed to debride the wound of necrotic tissue, cleanse the wound of infection 

and promote granulation tissue formation. However, little is known about the 

mechanisms by which they initiate these beneficial effects upon the wound. The work 

presented within this thesis was directed towards elucidating how the maggots may 

promote new tissue formation. Fibroblast migration was therefore examined as this 

aspect of the cell's behaviour directs the expansion and invasion of granulation tissue 

into the wound space. Fibroblast adhesion was also examined as this plays an integral 

role in determining the cell's ability to translocate. Both these features of fibroblast 

behaviour were observed in the presence of common extracellular matrix proteins as 

these have been shown to be controlling factors. For the purpose of determining the 

influence that maggots may exert upon the cells, these studies included the presence of 

maggot secretions as these have been shown to modify ECM proteins that are present at 

the wound site, thus providing a possible avenue by which maggots may influence 

healing. 

As shown in Chapter 3, the secretions (more properly termed excretions/secretions or 
ES) modulated fibroblast adhesion to collagen-coated and, in particular, fibronectin- 

coated surfaces. Studies showed that this was related to proteolytic modification of the 

ECM protein coating by enzymes present within ES. Fibroblast adhesion to uncoated 

tissue culture plastic was also modified in the presence of ES in a dose-dependent 

manner. This suggests that ES may be targeting the integrin receptor-surface complex 
directly, in addition to modifying the ECM protein. 
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Work presented in Chapter 4 showed that the presence of just 0.1 µg/ml ES accelerated 
fibroblast migration over a fibronectin-coated surface. This may be attributed to the 

modulatory effects that ES was shown to exert upon fibroblast adhesion. However, at 

10 pg/ml, the concentration of ES used to study fibroblast adhesion to collagen and 

fibronectin, ES had a negative impact upon migration. These results show that while 

modification of the strength of fibroblast adhesion may be necessary to promote 

migration, a reduction in the number of fibroblasts adhering to the surface, as was seen 
in Chapter 3, will induce the opposite effect. This indicates the importance by which 

the concentration of larval secretions present within the wound influences the progress 

of healing. 

As was noted within this thesis, results presented within Chapter 4 were based upon 

two-dimensional assays. Cells in vivo interact within a three-dimensional environment, 

with ECM surrounding them on all sides. Research has shown that cells behave very 
differently within the three-dimensional environment than upon planar surfaces, 
displaying different morphologies and receptor-surface interactions. Chapter 5 was 

therefore devoted to the development of three-dimensional in vitro wound assays 
incorporating collagen gel/fibronectin composites. Chapter 6 contains work resulting 
from the study of fibroblast migration and morphology within these assays whilst the 

cells were exposed to different concentrations of ES. Hence, the effects of ES upon 
fibroblast behaviour were observed while the cells were experiencing an environment 

more akin to the in vivo state. Here, larval ES was found to promote fibroblast 

migration. Of the concentrations tested, 5 µg/ml ES was optimal for migration over a 
24 hour period. Evidence suggested that this may have been associated with enhanced 
matrix re-modelling, arising from the partial proteolytic degradation of the gel matrix. 
Cell morphological studies revealed that the cells themselves may also have been 

stimulated to re-organise the matrix in response to the actions of ES. As with the two- 

dimensional assay, 10 µg/ml ES had a negative effect upon migration. This appeared to 

be related to the excessive proteolytic degradation of the gel matrix into a liquid state, 

preventing the cells from gaining purchase upon any solid substratum. Over longer 

periods of time, the same may also have occurred with the gel exposed to 5 µg/ml ES 

because, by 48 hours incubation, it had become fragile and more transparent in 

appearance. Although 0.1 pg/ml ES exerted no noticeable effect upon fibroblast 
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migration in the time period studied, it may eventually have promoted migration. This 

is because, judging from results involving the higher concentrations of ES, it appears 

that ES modifies the gel matrix in a progressive dose- and time-dependent manner. 

Before the onset of work that was included within this thesis, colleagues had recently 

discovered that larval ES is a rich source of proteolytic enzymes, incorporating serine 

proteinase (trypsin-like and chymotrypsin-like), aspartyl proteinase and 

metalloproteinase activities (Chambers et al., 2003). In addition, the chymotrypsin-like 

activity within ES was shown to degrade ECM components, including fibrin clots, 
fibronectin, laminin and collagen. In the chronic wound such activity may transfer to 

the break-down of composite matrix cuffs which are believed to surround blood vessels 

and contribute to impaired healing. If this is the case, such activity may promote re- 

perfusion of the wound with oxygen, nutrients and growth factors. It may also 

contribute to wound debridement, aiding the removal of slough and eschar. Work 

presented within this thesis suggests that larval ES may also promote healing through 

enhancing matrix re-modelling and increasing the rate of fibroblast migration, thus 

promoting the recruitment of cells to the wound space and accelerating granulation 

tissue formation. A model of wound healing under the influence of ES is proposed in 

Fig. 7.1. This combines the findings of the thesis presented here and of Chambers et al. 

(2003). However, the model does not include the reported anti-microbial effects of 
biosurgery which provides a whole new exciting area for research. Future work leading 

on from this thesis may include the identification of the particular proteolytic enzymes, 

or indeed other as yet unidentified substances, which are responsible for promoting 
fibroblast migration and enhancing matrix re-modelling. Once these have been 

identified, they may then form the basis for developing new wound healing products 

which may prove to be more versatile than applying the whole, live maggot. They may 

also prove to be a more ̀ palatable' alternative for clinicians and patients alike. 
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Figure 7.1 Proposed model for the advancement of wound healing under the influence 

of L. sericata larval ES. Infiltration of larval ES, indicated in yellow, into the open 

chronic wound initiates debridement. It also promotes matrix re-modelling, assisting 

the degradation of components found within composite matrix cuffs which block blood 

vessels, thus aiding re-perfusion of the wound. Fibroblast migration is also assisted, 

promoting the recruitment of cells to the wound, possibly through additional 

chemotaxic effects. As a result of the actions of ES, non-viable tissue is removed, 

oxygenation of the wound is improved and granulation tissue growth is enhanced. 
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APPENDIX 

A. 1. Phosphate buffered saline (PBS) composition 

The following was made up in distilled H2O: 

Component Concentration (M) 
NaCl 0.160 
KCl 0.003 

Na2HPO4 0.008 
KH2PO4 0.001 

A. 2. Preparation of fluorescein isothiocyanate (FITC)-casein 
conjugate 

"1g casein dissolved in 100 ml of 50 mM Na2C03 / NaHC03 buffer (pH 9.5) 

containing 150 mM NaCl. pH adjusted after dissolution if necessary. 

" 40 mg fluorescein isothiocyanate (FITC) then added and mixed gently for 1 hour at 
RT. 

" Solution dialysed twice against 2L distilled H2O containing 1 g/L activated charcoal. 
Solution then dialysed against 2L 50 mM Tris-HC1(pH 8.5), followed by 2L 50 

mM Tris-HC1(pH 7.2). 

" Protein concentration adjusted to 0.5 %. Solution aliquoted and stored at -20°C until 

required. 
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A. 3. Preparation of 4% paraformaldehyde 

9 10 g paraformaldehyde added to 75 ml distilled H2O and heated to 60°C. 

" IM NaOH added until solution became clear. Solution allowed to cool. 

9 Volume made up to 100 ml using distilled H20, thus producing 10 % 

paraformaldehyde solution. Solution then filtered through Whatman No. 1 filter 

paper. 

9 80 ml 10 % paraformaldehyde mixed with 100 ml 0.2 M NaH2PO4 / Na2HPO4 buffer 

(pH 7.4). pH adjusted after mixing if necessary. 

" Volume made up to 200 ml using distilled H20, thus producing 4% 

paraformaldehyde. pH adjusted after mixing if necessary. Solution aliquoted and 

stored at -20°C until required. 

A. 4. FITC-phalloidin staining procedure - solutions used 

i. Preparation of permeabilising solution 

The following was mixed in distilled H20, adjusted to pH 7.4 and then Triton X-100 

added to 0.5 % concentration: 

Component Concentration (M) 
HEPES 0.020 
Sucrose 0.300 
NaCl 0.050 
MgCI2 0.003 
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ii. Preparation of FITC-phalloidin 

" FITC-phalloidin stock solution was made by mixing 100 µg FITC-phalloidin with 

120 µ1 ethanol. Solution was stored at -20°C in 10 µ1 aliquots until required. 

" FITC-phalloidin working solution was made by mixing 10 µl aliquot of the FITC- 

phalloidin stock solution with 1 ml 1% BSA/PBS. Working solution was made up 

fresh, as and when required. 

iii. Preparation of propidium iodide (PI) 

" PI stock solution was made by mixing 10 mg PI with 1 ml PBS. Solution was stored 

at 4°C in the dark until required. 

" PI working solution was made by mixing 10 µl of the PI stock solution with 10 ml 1 

% BSA/PBS. Solution was stored at 4°C in the dark until required. 

A. 5. Preparation of samples and acrylamide gels for SDS-PAGE 

Protein present within a sample was precipitated using ice-cold acetone. Supernatant 

was then removed and replaced with 20 µl reducing sample buffer, made up as follows: 

Component Amount added to make 10 ml total volume 
0.5MTris/HC1pH6.8 2ml 
Glycerol 2 ml 
10%(w/v)SDS* 4ml 
1% Bromophenol blue 0.2 % 
Dithiothreitol 0.154 g (for end concentration of 0.1 M) 

Distilled H2O 2 ml 
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For the gels, the following components were mixed at the volumes shown below. APS 

and TEMED were added immediately before pouring the solution between plates that 

had been assembled in the mini gel apparatus. Volumes made were sufficient for 2 gels. 

Stacking gel (4 % Resolving gel (12 % 
Component acrylamide). Volume acrylamide). Volume 

added (ml) added (ml) 

acrylamide/bisacrylamide 0.65 4.80 
(30%: 0.8%w/v) 
0.5 M Tris/HCI pH 6.8 1.25 - 
1.5 M Tris/HC1 pH 8.8 - 3.00 
10 % (w/v) SDS* 0.05 0.12 
Distilled H2O 2.98 4.08 
10 % (w/v) APS** 0.025 0.06 
TEMED*** 0.01 6x 10"3 

The SDS-PAGE electrode buffer consisted of. 

_Component 
Concentration (M) 

Tris 0.025 
Glycine 0.19 
SDS* 3.5 x 10-3 

* SDS: sodium dodecyl sulphate. 
** APS: ammonium persulphate. 
*** TEMED: N, N, N, N- tetramethyl-ethylenediamine. 
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A. 6. Preparation of collagen gels 

i. Preparation for final collagen concentration of 1 mg/ml 

Solution A- collagen stock Solution B-1.5 x cell culture medium 
3 mg/ml acid-solubilised 20.07 g DMEMt powder 

bovine collagen type I 73.95 ml NaHCO3 (7.5 % solution) 
37.5 ml HEPEStt 

15 ml AB/AMttt 
15 ml L-Glutamine (0.2 M) 

Solution B made up to final volume of 955 ml with 
distilled H2O and sterile-filtered 

For 10 ml of I mg/ml collagen solution containing 1x concentration of cell culture 

medium: 

Solution A 3.333 ml 
Solution B 6.366 ml 
Distilled H2O (or where specified, 0.300 ml 
fibronectin at 1 mg/ml) 

Final component concentrations: 

Collagen 
DMEMt 
NaHCO3 
HEPEStt 
AB/AMttt 

L-Glutamine 
Fibronectin (present where specified 

1 mg/ml 
Ix concentration 
3.7g/1 
25 mM 
100 units/ml penicillin G, 100 µg/ml 
streptomycin sulphate, 0.25 µg/ml 
amphotericin B 
2 mM 
30 pg/ml 
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ii. Preparation for final collagen concentration of 1.5 mg/ml 

Solution A- collagen stock Solution B-1.5 x cell culture medium 
3 mg/ml acid-solubilised 26.76 g DMEMt powder 
bovine collagen type I 98.6 ml NaHCO3 (7.5 % solution) 

50 ml HEPEStt 
20 ml AB/AMttt 

20 ml L-Glutamine (0.2 M) 
Solution B made up to final volume of 940 ml with 

distilled H2O and sterile-filtered 

For 10 ml of 1.5 mg/ml collagen solution containing 1x concentration of cell culture 

medium: 

Solution A 5.000 ml 
Solution B 4.700 ml 
Distilled H2O (or where specified, 0.300 ml 
fibronectin at I mg/ml) 

Final component concentrations: 

Collagen 
DMEMt 
NaHCO3 
HEPEStt 
AB/AMttt 

L-Glutamine 
Fibronectin (present where specified 

1 mg/ml 
1x concentration 
3.7g/1 
25 mM 
100 units/ml penicillin G, 100 µg/m1 
streptomycin sulphate, 0.25 µg/ml 
amphotericin B 
2mM 
30 pg/ml 

t DMEM: Dulbecco's Modified Eagle's Medium. 
tt HEPES: N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulphonic acid); 4-(2- 

hydroxyethyl)piperazine- I -ethanesulphonic acid. 
ttt AB/AM: antibiotic/antimycotic solution (10,000 units/ml penicillin G, 10 mg/ml 

streptomycin sulphate and 25 pg/ml amphotericin B). 
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A. 7. Preparation of 1-4 diazabicyclo-2-2-2-octane (DABCO) 

" DABCO stock solution was made by mixing 20 mg DABCO with 20 ml PBS. 

Solution was adjusted to pH 8.6 and stored at 4°C until required. 

" DABCO working solution was made by mixing 2 ml of the DABCO stock solution 

with 18 ml glycerol, giving a final concentration of 2.5 % DABCO. Working 

solution was made up fresh as and when required. 

`ýý. 
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