
Quantum Search Algorithms

Birgit Hein, Dipl.-Phys.

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

Feburary 2010

Abstract

In this thesis two quantum search algorithms on two different graphs, a hypercube and

a d-dimensional square lattice, are analysed and some applications of the lattice search

are discussed.

The approach in this thesis generalises a picture drawn by Shenvi, Kempe and Whaley,

which was later adapted by Ambainis, Kempe and Rivosh. It defines a one parameter

family of unitary operators Uλ with parameter λ. It will be shown that two eigenvalues

of Uλ form an avoided crossing at the λ-value where Uλ is equal to the old search

operator.

This generalised picture opens the way for a construction of two approximate eigen-

vectors at the crossing and gives rise to a 2 × 2 model Hamiltonian that is used to

approximate the operator Uλ near the crossing. The thus defined Hamiltonian can be

used to calculate the leading order of search time and success probability for the search.

To the best of my knowledge only the scaling of these quantities has been known.

For the algorithm searching the regular lattice, a generalisation of the model Hamiltonian

for m target vertices is constructed. This algorithm can be used to send a signal from

one vertex of the graph to a set of vertices. The signal is transmitted between these

vertices exclusively and is localised only on the sender and the receiving vertices while

the probability to measure the signal at one of the remaining vertices is significantly

i

smaller.

However, this effect can be used to introduce an additional sender to search settings

and send a continuous signal to all target vertices where the signal will localise. This

effect is an improvement compared to the original search algorithm as it does not need

to know the number of target vertices.

ii

Publications

Parts of this work have or will be published in

[1]: B. Hein and G. Tanner. Quantum search algorithms on the hypercube. J. Phys. A, 42:

085303, 2009,

[2]: B. Hein and G. Tanner. Wave communications across regular lattices. Phys. Rev. Lett.,

103: 260501, 2009,

[3]: B. Hein and G. Tanner. Quantum search algorithms on a regular lattice. Accepted

for Publication in Phys. Rev. A, Jun. 2010.

iii

Acknowledgements

First of all, I would like to thank my parents, my brother and my sister who always

supported me on my way.

Then, I would like to thank my supervisor Gregor Tanner for many interesting discus-

sions, his support and for always having an open door for me to drop in when I had

problems.

I also would like to thank the Complex and Disordered Systems group in Nottingham

for providing an inspiring environment and interesting discussions in our seminar.

Additionally I want to thank my former and present office mates for a good, friendly

and productive atmosphere.

And not to forget the school’s administrative staff, especially Andrea Blackbourn and

Helen Cunliffe.

Furthermore, I have been able to contribute to several conferences and seminars and

have participated in many interesting discussions. This helped me to view my project

from different angles and to look at questions I would not have looked at otherwise.

Thank you to everyone who made this possible.

iv

Contents

1 Introduction 1

1.1 Examples for classical search algorithms 1

1.2 Overview . 3

1.2.1 Quantum random walks . 3

1.2.2 Quantum search algorithms . 5

1.2.3 Computer science . 6

1.2.4 Quantum graphs . 7

1.2.5 Notations regarding the growth and decay of a function 8

1.3 Structure and agenda . 8

2 Preliminaries and Definitions 10

2.1 The underlying graph . 10

2.2 Quantum random walks . 12

2.2.1 The abstract quantum random walk 12

2.2.2 A 1-dimensional example . 13

v

CONTENTS

2.2.3 Continuous time quantum random walk 16

2.3 Quantum search algorithms . 18

2.3.1 Grover’s search algorithm . 18

2.3.2 The abstract search algorithm . 20

3 Search algorithm on the hypercube 22

3.1 Definitions and model . 23

3.1.1 The underlying quantum random walk 24

3.1.2 The search algorithm . 26

3.2 Eigenvectors and eigenvalues of the search 27

3.2.1 Introduction of a one parameter family of unitary operators and a

reduced space . 28

3.2.2 Spectrum of Uλ . 31

3.3 Approximative eigenvectors and eigenvalues of Uλ near the mth crossing 33

3.3.1 Verification for the m = 0 crossing. 36

3.3.2 Taylor expansion of g (λ) about 1 38

3.3.3 The crossing eigenvector . 41

3.3.4 Normalisation of the vector of the localised state 42

3.3.5 Localisation at the target state. 43

3.4 Model of avoided crossings . 46

3.4.1 Time of the search . 48

3.4.2 Size of the gap . 48

vi

CONTENTS

3.4.3 Analogy to Grover’s search algorithm 50

3.5 Results for the reduced space . 51

3.6 Results for the original spaceH . 54

4 Search algorithm on a d-dimensional square lattice 58

4.1 Definition and model . 59

4.1.1 Quantum random walk . 60

4.1.2 Eigenvectors and eigenvalues of U 61

4.2 The quantum search algorithm . 62

4.2.1 Reduced space . 63

4.2.2 Approximative eigenvectors of Uλ 64

4.3 Normalisation of the approximated crossing eigenvector 68

4.3.1 First integration I1 . 70

4.3.2 Second integration I2 . 71

4.3.3 Third integration I3 . 72

4.3.4 Higher integrations and normalisations for d > 3 73

4.3.5 Success probability . 75

4.4 Model in the two-level subspace. 77

5 Applications of the lattice search and Grover’s algorithm 82

5.1 m marked vertices . 83

5.1.1 Eigenvalues and eigenvectors of the model Hamiltonian 86

vii

CONTENTS

5.2 Search for m target vertices . 86

5.3 Transfer of a signal . 88

5.3.1 Single impulse . 89

5.3.2 Continuous signal . 92

5.4 Grover’s search algorithm . 94

5.4.1 Grover’s search algorithm for m marked vertices 94

5.4.2 Sender and receiver model for Grover’s algorithm 97

5.4.3 Continuous sender in Grover’s algorithm 99

5.5 Continuous model as search algorithm . 100

5.6 Conditions for an experimental realisation 102

5.6.1 Band structure of the unperturbed lattice 102

5.6.2 Defect states . 105

6 Some thoughts on the lattice search 107

6.1 What makes an algorithm efficient? . 108

6.2 The Kottos-Smilansky coin . 110

6.2.1 Numerics . 111

6.3 Other test coins . 113

6.3.1 The Fourier-coin . 113

6.3.2 Coin without backscattering . 114

6.4 Comparison of the results for different coins 114

viii

CONTENTS

7 Conclusions 117

A Eigenvectors and eigenvalues of the quantum walk on the hypercube 121

A.1 Definitions and notations . 121

A.2 Eigenvalues and eigenvectors . 124

B Theory of avoided crossings 126

B.1 The perturbed two level-system . 126

B.2 Oscillations in the two level system . 128

C Eigenvectors and eigenvalues of the quantum walk on the d-dimensional lat-

tice 130

C.1 Eigenvectors and eigenvalues . 131

C.1.1 ±1-eigenvectors of U. 131

C.1.2 Remaining eigenvectors and eigenvalues for~k 6=~0 of U 132

C.2 Calculation of the scalar product of the coin space contributions with |s〉 134

References 136

ix

CHAPTER 1

Introduction

1.1 Examples for classical search algorithms

Search algorithms are a tool frequently used in every day life. In general, there are two

different types of search algorithms depending on the structure of the problem, that is,

if the underlying database is sorted or not. It is easy to find a name in a telephone book

because all entries are sorted in an alphabetical order, but if that would not be the case?

Imagine the entries are in some random order. What is the most efficient way to find a

telephone number? It would be necessary to go through all entries until the demanded

person is found. Obviously, N
2 entries would have to be checked on average if N is the

number of entries in the book.

There are numerous search problems, the randomly ordered telephone book being

just one example. The probably most prominent example is the travelling salesman

problem which has a long standing history starting in the 19th century and probably

first discussed by Kirkman and Hamilton (see [4] on the history): a salesman has to visit

a given number of towns exactly once in no particular order and return to his hometown.

The search problem is to identify the shortest among all possible routes. In its most

1

CHAPTER 1: INTRODUCTION

abstract form, the towns can be considered as being the vertices of a fully connected

metric graph and the distances between the towns are identified with the lengths of the

bonds connecting the vertices. Now the solution of the problem is the shortest cycle on

the graph that visits all vertices once.

A third example is the so called class of Boolean satisfiability problems, short k-SAT [5].

The problem asks for a d-digit string of Boolean variables (x1, x2, x3, . . . , xd) that fulfils

a set of given clauses. Each clause consists of k Boolean variables that are connected by

the logical OR. The set of clauses is connected by the logical AND operation, that is,

every clause has to have at least one Boolean variable equal TRUE for a Boolean string

(x1, . . . , xd) to be recognised as solution. An example for 3-SAT is

E = (x1 OR x2 OR ¬x3) AND (x1 OR ¬x2 OR x4) AND . . . , (1.1.1)

where ¬ is the logical NOT operation.

k-SAT can be solved using a random walk on a hypercube since the set of Boolean strings

with d entries can be identified with the set of vertices of a d-dimensional hypercube as

both sets consists of d-digit strings containing 0’s and 1’s. The solution can be found

using the following algorithm:

1. start with a random configuration for ~x

2. check E (~x):

• if E (~x) is true: give ~x as solution and stop

• if E (~x) is false, proceed to step 3

3. choose a random integer i in {1, . . . , d}

4. change the ith entry of ~x and return to step 2 .

This is just an example of a search algorithm that finds a solution for the k-SAT Problem,

it is clear that the algorithm will be faster, if it keeps track of the vertices that have been

2

CHAPTER 1: INTRODUCTION

visited previously such that each vertex ~x is not visited more than once. Apart from that

the algorithm described above can be improved in several other ways but it served well

as example.

In 2002, Braich et al. solved a 20 variable 3-SAT Problem on a DNA Computer [6].

1.2 Overview

1.2.1 Quantum random walks

In 1993 Aharonov, Davidovich and Zagury introduced a one dimensional model for a

quantum random walk [7]. This model considers a quantum particle, that is, a particle

described by a wave function, performing a random walk. It is shifted a distance l either

to the left or to the right depending on whether its spin state is up or down. After each

shift the spin state can be arranged in a superposition of up and down. If both operations

are applied alternately, the particle will spread out on the line. A measurement of the

position after each shift operation leads to the quantum particle performing a classical

random walk. However, if the position is not measured the particle performs a so called

‘quantum random walk’ and the average distance from the starting position will increase

faster than for classical random walks (see [7, 8, 9] or section 2.2.2). This clear difference

from the behaviour of a classical random walk occurs due to destructive interference

near the starting position.

In general, there exits two distinct classes of quantum random walks, continuous and

discrete time quantum random walks. An introductory overview on quantum random

walks, which also highlights the difference between discrete time and continuous time

quantum random walks, can be found in [9]. For the discrete time quantum random

walk the position space can also be regarded as discretised. This leads to a position space

3

CHAPTER 1: INTRODUCTION

with a lattice structure which can be considered as graph. These graphs underlying

the quantum random walks are highly regular and have the same bond length for all

bonds. In particular it is interesting to outline the differences between classical and

quantum random walks. As calculated by Aharonov, Davidovich and Zagury, quantum

random walks are able to spread faster through a system [7, 9, 10]. Aharonov, et al. [10]

also showed, that the quantum speed up of random walks is at most polynomial. For a

classical 1-dimensional random walk the average distance from the starting position

increases with
√

T, where T is the number of applications of the shift operation. Notably,

the propagation of a quantum random walk on a line is essentially ballistic, that is, the

average distance is proportional T.

Quantum random walks play also an important role in quantum computation. In 1998,

Farhi and Gutmann presented an analysis using continuous time quantum random

walks to construct a quantum algorithm for decision trees. They showed that if a

classical algorithm needs a time polynomial in the size of the problem, the quantum

algorithm presented in their paper is as efficient. On the other hand an example has

been introduced for which the classical algorithm needs an exponential time whereas

the quantum algorithm succeeds again in polynomial time.

One can also define the notion of a ‘hitting time’, that is, the time that is needed to

propagate from one vertex of a graph to another one. The result in this setting is again

that quantum random walks are significantly faster than classical [11, 12].

Disorder in the graph underlying the quantum random walk has been investigated in

[13] and a review on quantum walks with decoherence can be found in [14].

Some general reports on the usage of quantum random walks for quantum algorithms

have been presented by Kendon [15] or Santha [16]. Quite recently, a few reports on

experimental realisations of quantum random walks have been published [17, 18, 19, 20,

4

CHAPTER 1: INTRODUCTION

21].

In this thesis, only discrete time quantum random walks are discussed. The connection

to quantum graphs is highlighted in [22].

1.2.2 Quantum search algorithms

It has been shown by Grover [23] that a quantum search algorithm may find its target

among N database entries in a time O
(√

N
)

whereas a classical algorithm takes a time

O (N) as in the example of the random telephone book above. It is important to note

that Grover’s algorithm solves the problem in a time that scales optimal in N as it is

known that quantum search algorithms can not scale faster in the number N of database

entries than
√

N [23, 24].

A somewhat related class of quantum search algorithms are search algorithms on a

spacial structure, that is on a graph, based on quantum random walks on these graphs.

Both classes of quantum random walks, lead to a class of quantum search algorithms.

In 2003 Shenvi, Kempe and Whaley discussed a quantum algorithm searching a d-

dimensional hypercube and two years later, Ambainis, Kempe and Rivosh introduced a

quantum search algorithm on a d-dimensional square lattice [25]. These algorithms have

both some analogies to Grover’s search algorithm [23], and are both based on a discrete

time quantum random walk. The only difference to a pure quantum random walk is

that the target of the search is ‘marked’ in some way which leads to a local perturbation

of the quantum random walk on the underlying graph and have some analogies to

Grover’s algorithm. They succeed to find the target vertex in a time of order O
(√

N
)

(apart from the search on the 2 dimensional lattice that scales like O
(√

N ln N
)

).

On the other hand, a search algorithm on a d-dimensional lattice based on a continuous

time quantum random walk, has been investigated by Childs and Goldstone [26]. Using

5

CHAPTER 1: INTRODUCTION

position space only, the algorithm finds the target in a time in time
√

N for d > 4 and

O
(√

N ln N
)

in four dimensions. In a second report [27], Childs and Goldstone added

a spin degree of freedom and used a lattice version of the Dirac Hamiltonian and found

a speed up for lower dimensions. This second search algorithm scales like
√

N time

steps for d > 2 and O
(√

N ln N
)

in two dimensions.

Just last year, Potoček et al. have shown that the search on the hypercube can be

improved by a factor 1√
2

[28] by introducing an auxiliary dimension.

1.2.3 Computer science

As quantum search algorithms are somewhat related to the topics of quantum computa-

tion, a short introduction on computer science is added to this introductory chapter:

Modern computer science started in 1936 when Turing developed a model for an abstract

computer, now called ‘Turing machine’ [29]. The Turing machine was constructed to

do computations and can be considered the first model of a programmable computer.

Turing claimed that this machine is able to calculate any algorithm that can be solved on

any hardware, which includes a modern computer or a mathematician.

In computer science it is often interesting to analyse the complexity of a given problem.

In the example of the random telephone book mentioned above, the classical algorithm

takes O (N) time steps to find the demanded entry while Grover’s algorithm succeeds

in only O
(√

N
)

time steps.

Since the first suggestion of quantum computers by Feynman in 1982 [30], research on

quantum computers has risen many interesting questions, see e.g.[5] for an introduc-

tion Two years after Feynman’s proposal, Deutsch suggested a model for a universal

quantum computer, a quantum generalisation of the Turing machine [31]. It has then

been shown that quantum computers are at least as powerful as classical computers.

6

CHAPTER 1: INTRODUCTION

This is no surprise since at their deepest level, classical computers are ruled by the laws

of quantum mechanics. The inverse problem is much more interesting: Are quantum

computers more powerful than their classical counterparts? In 1992 Deutsch and Jozsa

have shown that this is indeed the case [32].

The most prominent examples for efficient quantum algorithms is Shor’s algorithm for

prime factorisation of an integer N that succeeds in a time polynomial in log N [33], and

Grover’s algorithm [23] for the search of an unsorted database. A realisation of Shor’s

algorithm in an photonic chip has been investigated by Politi, Matthews and O’Brien

[34].

1.2.4 Quantum graphs

It might also be interesting to give a short review of the related but not central field of

quantum graphs.

Not unlike graphs in graph theory, quantum graphs consist of a set of vertices and a

set of one dimensional bonds connecting these. These structures itself are not quantum

but one can imagine a quantum particle or wave package propagating through the

system. The propagation on the bonds is a solution of the one dimensional Schrödinger

equation and the propagating particle or wave is scattered whenever it reaches a vertex.

Introductions on quantum graphs can be found in many reports like [22, 35, 36, 37, 38].

The first application of quantum graphs in physics has been done in 1936 by Pauling

who constructed a model for the free electrons in hydrocarbons [39].

More than 10 years ago Kottos and Smilansky [37, 40] discovered that quantum graphs

can also be used as a model for classically chaotic systems if the bond lengths are chosen

rationally independent, see also [41]. This opened a new approach to the study of

quantum behaviour of classically chaotic systems.

7

CHAPTER 1: INTRODUCTION

In recent years, the study of quantum graphs has become a field with many applica-

tions. Just recently, Schapotschnikow and Gnutzmann used Pauling’s ansatz for the

calculations of the spectra of larger molecules [42] but quantum graphs can also be

used calculate limiting behaviour for wave guides in the limit where the widths of the

channels is small compared to any other lengths scale [43], transport through networks

[44], localisation effects [45], quantum decay in open chaotic systems [46, 47] or quantum

ergodicity [48].

Quantum graphs have also been simulated experimentally [49].

1.2.5 Notations regarding the growth and decay of a function

Throughout this thesis the computer science notations to characterise the growth or

decay of a function are used. f (x) = O (g (x)) denotes that there exist two positive

constants x0 > 0 and a > 0, such that for all x > x0 the inequality 0 ≤ f (x) ≤ ag (x) is

true. Similarly f (x) = Ω (g (x)) will be written if 0 ≤ bg (x) ≤ f (x) for all x > x0 for

some constants x0, b > 0. Furthermore, f (x) = Θ (g (x)) denotes that f (x) = O (g (x))

as well as f (x) = Ω (g (x)).

1.3 Structure and agenda

Chapter 2 starts with more detailed definitions of the underlying graphs, quantum

random walks and search algorithms and collects all fundamental definitions used in

this thesis.

In the following chapter, chapter 3, a search algorithm on the hypercube is introduced

and the relevant operators are defined in more detail. In the scope of this chapter a new

2× 2 model of the search operator is constructed. This model will be explained in detail

8

CHAPTER 1: INTRODUCTION

and used to calculate the first order of localisation amplitude and of the time necessary

for the localisation effects. In chapter 4 the model outlined in the preceding chapter is

again applied to analyse a search algorithm on a regular d-dimensional lattice. Again

the leading order contributions of localisation time and amplitude at the target vertex

are calculated.

Some applications of the search algorithm on the lattice as introduced in chapter 4 will

be presented in chapter 5. The algorithm will in particular be used to search for more

than one target and it will be discussed how this mechanism can be applied to send a

signal though the graph. This setting can also be used to improve both, the lattice search

and Grover’s search algorithm. Additional to that, some ideas to observe the localisation

effect in an experimental situation will be presented. This chapter is followed by some

thoughts about why the search algorithm leads to a localisation and which properties

might play a role in the localisation process in chapter 6.

In chapter 7 a summarisation of the results is presented and some open questions are

discussed.

9

CHAPTER 2

Preliminaries and Definitions

2.1 The underlying graph

Figure 2.1 shows the sketch of a graph with 12 vertices and 19 bonds. In their most

general form they can be considered as networks consisting of vertices v connected by

bonds b, where each bond bi has a length lbi
that is assigned to it.

Let V and B be the sets of vertices and bonds and let |B| and |V| be their corresponding

cardinal numbers. For simplicity only connected graphs are considered, that is, graphs

which can not be divided into subgraphs without removing one or more bonds. Further-

more it will be assumed that for every pair of vertices i and j, there will be at most one

Figure 2.1: Sketch of a graph.

10

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

bond connecting these for undirected bonds and at most one bond in each direction for

directed bonds. Directed bonds allow transition only in one direction while undirected

bonds treat both directions equally, this can be used to model systems with or without

time reversal symmetry.

Using this restrictions the ordered pair (i, j) uniquely defines the bond leading from

vertex i to vertex j. For undirected bonds the lengths lij and lji are equal.

A graph is called connected if it can not be divided into subgraphs without removing

some of its bonds. In other words, each vertex of a connected graph can be reached from

any other vertex by passing through at most |B| bonds.

The quantum dynamics on such a graphs is defined by the Schrödinger equations for

the bonds and the solution are propagating waves. Continuity of the wave function at

the vertices demands that the wave function to be continuous: the wave functions on all

bonds leaving vertex i have the same limiting behaviour and approach the same value.

Let now ki be the number of incoming bonds at vertex i and li be the number of

outgoing bonds. For simplicity ki = li will be assumed at all vertices. Then the mapping

of incoming onto outgoing waves at i can be described using a ki × ki matrix σi which is

called vertex scattering matrix.

Wave propagation on graphs has been discussed in [35, 36, 37, 38].

Following the line of [25, 50], the analysis in this thesis will be restricted to connected

k-regular graphs with undirected bonds. A k-regular graph is a graph, where all vertices

have the same number of outgoing bonds k. Furthermore all bonds of the graph will

have the same bond length which will, for convenience, be normalised to lij = 1 for all

(i, j). Additional to that the vertex scattering matrices will be chosen identically and be

denoted as σ = σi for all i. Later a special vertex scattering matrix will be introduced at

a small number of vertices denoted by σ′.

11

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

In particular only two different types of graphs are regarded in this thesis. A d-

dimensional hypercube, that is, a cube in d dimensions and a d-dimensional square

lattice with nd vertices and periodic boundary conditions.

2.2 Quantum random walks

Now imagine a classical particle performing a random walk on a graph. When the

walker is started on an arbitrary vertex, one of the k outgoing bonds is chosen randomly,

say by throwing a dice or flipping a coin. Then the walker proceeds through this bond

to the next vertex, where again one out of k bonds is chosen for the next iteration. The

probability distribution of the position of the walker spreads out over the graph as time

increases.

Kempe presented an introductory overview on quantum walks in [9] and discussed the

difference of continuous and discrete time quantum random walks in detail. However,

only the discrete time quantum random walk will be discussed here.

Since the propagation of the quantum random walk can be described by unitary opera-

tors, the quantum random walk is not random but deterministic, the name ‘quantum

random walk’ is used, to stress the analogy to a classical random walk. However, if the

position of the quantum walker is measured after every step, it will perform a classical

random walk on the graph, whereas if the position is not measured, the walker will

remain in a superposition of many positions and interferes with itself.

2.2.1 The abstract quantum random walk

Quantum random walks on graphs are defined in analogy to classical random walks

on classical graphs. The quantum walker is positioned somewhere on the graph and

12

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

then a unitary operator σ, called ‘coin flip’, performs a transformation of an internal

degree of freedom. The space corresponding to this internal degree of freedom is called

‘coin space’ and the state can e.g. be imagined as spin state. Since the superposition of

outgoing bonds is chosen according to the walkers coin space state, the coin flip takes

the rôle of a vertex scattering matrix as described in 2.1.

In a second manipulation, the walker is then propagated to the next vertex that is

chosen according to the walkers state in the coin space by a ‘shift operator’ S. Since the

coin space state is typically a superposition of basis states, the waker is shifted into a

superposition of several vertices.

Let |i〉 be the coin space state of the incoming quantum walker at vertex |v〉, then the

overall state can be denoted as |i〉 ⊗ |v〉. First the coin flip σ is applied and the state

(σ |i〉)⊗ |v〉 is obtained before the shift operator S shifts the walker to S (σ |i〉)⊗ |v〉.

The main effect of S can be denoted as a permutations in position space as it changes the

position of the walker, but it may also perform a permutation in coin space. However,

S has to be defined such that it does not violate the underlying graph by shifting the

walker to a new vertex that is not connected to the first one by a bond.

The N-dimensional position space and the k-dimensional coin space define a kN dimen-

sional Hilbert space for the quantum random walk.

2.2.2 A 1-dimensional example

To provide some understanding of quantum random walks a quantum random walk on

a 1-dimensional lattice with periodic boundary conditions will be introduced. Figure

2.2 shows a sketch of such a graph and provides a numbering for the vertices. It will be

assumed that there are n vertices in both directions, with n being large compared to the

number of time steps in the quantum random walk. Furthermore the vertices |n〉 and

13

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

Figure 2.2: Sketch of a 1-dimensional line lattice.

|−n〉 are identified due to the periodic boundary conditions. Thus the overall number

of vertices of the lattice is N = 2n.

Let the quantum random walk be started at the vertex |0〉 and let the two coin space

states be denoted as |→〉 = (1, 0)T and |←〉 = (0, 1)T. A typical state of the system will

be denoted as |iv〉 = |i〉 ⊗ |v〉, where |i〉 is a coin space state and |v〉 a state in position

space.

For this example the coin

σ =
1√
2

1 i

i 1

 (2.2.1)

and the shift operator

S =
∞

∑
i=−∞

(|→ i + 1〉 〈→ i|+ |← i− 1〉 〈← i|) (2.2.2)

will be used. Both operators are taken from [9]. Note that the coin flip does not

distinguish between the two different coin state states but treats both directions equally.

Both operators can also be interpreted to define the wave propagation on the graph.

σ takes the rôle of the vertex scattering matrix: It defines how much of the incoming

amplitude is reflected and how much passes through the vertex and adds a phase factor

to both outgoing waves. S is the bond propagation matrix. Note that bond lengths and

wave vector have been chosen such that the phase factor due to bond propagation is 1.

Since σ acts only locally on the coin space, the tensor product and the identity operator

in position space are used to define a global coin flip

C := σ⊗ 1N (2.2.3)

14

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

|v〉 -4 -3 -2 -1 0 1 2 3 4

T=0 1

T=1 1
2

1
2

T=2 1
4

1
2

1
4

T=3 1
8

3
8

3
8

1
8

T=4 1
16

3
8

1
8

3
8

1
16

Table 2.1: Probabilities for the quantum random walk.

that flips the coin of the quantum walker at all vertices simultaneously.

The quantum random walk is now defined by an application of C followed by an

application of S, that is,

U = SC. (2.2.4)

Let the walk be started in the state

|start〉 :=
1√
2

(|→ 0〉+ |← 0〉) . (2.2.5)

After one time step, that is one application of U, the state results in

U |start〉 =
1 + i

2
(|→ 1〉+ |← −1〉) (2.2.6)

and the probability to measure the walk at |1〉 or |−1〉 is 1
2 each.

For the first four steps, the probability of the quantum random walk evolves as listed in

table 2.1, whereas a classical random walk with probability 1
2 of stepping right or left

evolves as shown in table 2.2. A clear difference between both random walks can be

noted at T = 4. Due to interference effects, the quantum walk as a significantly smaller

probability of returning to |0〉 compared to the classical random walk.

Ambainis et al. [8] presented a detailed analysis of the difference between classical and

quantum random walks on a line. They also introduced absorbing boundaries to the

15

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

|v〉 -4 -3 -2 -1 0 1 2 3 4

T=0 1

T=1 1
2

1
2

T=2 1
4

1
2

1
4

T=3 1
8

3
8

3
8

1
8

T=4 1
16

1
4

3
8

1
4

1
16

Table 2.2: Probabilities for the classical random walk.

process and found that the probability of the walk being absorbed by an absorbing

boundary directly left to the starting point is 2
π , where in the classical case it is 1. They

carried this investigation a step further, and discovered that the probability increases to

1√
2

if there is a second absorbing boundary a large distance of m vertices away on the

other side. Classically, one would expect the probability to be absorbed on the left side

decreases due to the second boundary.

2.2.3 Continuous time quantum random walk

Although this thesis analyses quantum search algorithm constructed from discrete time

quantum random walks, a short introduction to continuous time quantum random

walks will be provided. Overviews and the relation to discrete time quantum random

walks or classical random walks have been presented in [9, 11, 51].

The continuous time quantum random walk takes place in position space only. That is,

no additional coin space is needed and no coin is flipped. This class of quantum random

walks are a quantum version of a classical continuous time Markov chain [52]. To obtain

a continuous time random walk, one classically, defines an infinitesimal generating

16

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

matrix H using a jumping rate γ for transitions from one vertex to one of its neighbours:

Hij =



−γ if i 6= j and i and j are connected

diγ if i = j

0 otherwise

, (2.2.7)

where di is the number of vertices connected to i.

Let now ~p (t) be the probability distribution at time t, then the random walk will obey

the differential equation

d
dt

~p (t) = −H~p (t) . (2.2.8)

This gives rise to the solution ~p (t) = exp (−Ht)~p (0).

To obtain a quantum process from this classical random walk, Farhi and Gutmann

[52] proposed that the matrix H now becomes a Hamiltonian and the time evolution is

defined by the propagator U (t) = exp (−iHt/h̄).

Overall, the main difference between the discrete and continuous time quantum random

walk is that the continuous time random walk takes place in position space only whereas

the discrete time quantum random walk needs an additional coin space. Although there

are differences, both models for quantum random walks have some similarities as the

fast spreading on a line [52] as discussed above for the discrete time model. Detailed

reports on the similarities and differences may be found in [9, 51]. The main advantage

of the continuous time quantum walk is the smaller Hilbert space which simplifies the

analysis. On the other hand, for the continuous time model it is harder to implement

quantum algorithms for graphs if the maximum degree of the graph is not small [51, 53].

Both quantum random walks can be used as a foundation for a quantum search algo-

rithm [25, 26, 27, 50]. However, for low dimensional lattices the continuous time search

algorithm with no additional auxiliary space is not as efficient as the discrete time search

[26, 27].

17

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

2.3 Quantum search algorithms

Quantum search algorithms are able to solve search problems that have one or more

solutions. For simplicity only the case for one solution will be discussed here. Given a

system of N states that are labelled v1, v2, . . . , vN . Let there be a unique yet unknown

target state, say |vt〉 that satisfies a given condition C implemented by a function C (v)

such that C (vt) = 1 and C (vi) = 0 for all states |vi〉 6= |vt〉.

The most prominent quantum search algorithm is Grover’s search algorithm. It pro-

vides the means to identify the state vt in a time O
(√

N
)

[5, 23, 54]. A report on an

experimental realisation of Grover’s algorithm can be found in [55].

In general, the function implementing condition C is often referred to as ‘oracle’ and

treated as black box since the knowledge of C is not important. The only purpose of

C is to recognise the target state |vt〉 among all possible input states
∣∣vj
〉

by returning

a unique result if questioned for |vt〉. An equivalent problem to searching for |vt〉, is

to invert the unknown function C since the target state is the unique state satisfying

vt = C−1 (1).

2.3.1 Grover’s search algorithm

The search algorithm for N states introduced by Grover in [23] is implemented by the

following rules:

1. initialise the system in the uniform distribution

|ψ〉 :=
(

1√
N

,
1√
N

,
1√
N

, . . . ,
1√
N

)T

(2.3.1)

2. repeat the following unitary operations T times, where T is a particular, but yet

unknown time T = Θ
(√

N
)

18

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

(a) rotate the phase of all states |vi〉 by πC (vi)

(b) apply the unitary matrix D defined by Dii = −1 + 2
N and Dij = 2

N for i 6= j

3. measure the resulting state |ψresult〉 .

Grover has shown that the outcome of the search has a notable overlap with the target

state |vt〉 singled out by C (vt) = 1. The probability to find |ψresult〉 in |vt〉 is at least 1
2 .

A sketch of the proof is given below. A more detailed discussion will be postponed until

section 5.4, an interested reader can also find proofs in [5, 23].

Nielsen and Chuang discussed a geometric approach for Grover’s search algorithm in

[5]: The steps (2a) and (2b) of the algorithm map the 2-dimensional subspace spanned

by |vt〉 and |ψ〉 onto itself. Step (2a) performs a reflection about a vector |α〉 that lies in

this subspace and is orthogonal to |vt〉. Similarly D = 2 |ψ〉 〈ψ| − 1N can be regarded as

reflection about |ψ〉 and as the starting state lies in this subspace, the state is trapped

there.

Both reflections applied in succession perform a rotation about an angle θ that is twice

the angle between |α〉 and |ψ〉. Therefore sin θ
2 = 1√

N
and after T = Θ

(√
N
)

cycles

over the loop of steps (2a) and (2b) the distance of |ψresult〉 to |vt〉 is minimal. If the

rotation is continued once the time T has passed, the distance will increase again as the

state is rotated away from |vt〉.

The quantum search algorithms discussed in this thesis are related to Grover’s algorithm

in a sense that the algorithms can be interpreted as rotations in a two dimensional

subspace spanned by the uniform distribution which will be used as starting state and a

localised state that is close to the target state. Further details will be discussed in section

3.4.3.

19

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

2.3.2 The abstract search algorithm

To employ a quantum random walk as search algorithm, the underlying database of the

search has to be mapped on the vertices of the graph and an oracle is used to identify

the target vertex, that is, the vertex to which the target entry of the database has been

mapped. For simplicity, only locally indistinguishable graphs will be discussed, that

is, graphs where all vertices have the same number of bonds k and the same coin flip

operation is performed at all vertices. Furthermore, all bonds are assumed to be of

unit lengths, such that the same phase factor is added due to the propagation along

the bonds which will be chosen to be 1. In addition to that, the coin flip will treat all

bonds equally and only backscattering may appear with a different probability than

propagation in any other direction.

Let S be the moving shift and σ the local coin flip matrix that is applied at all vertices. A

global coin flip that flips the coin on all vertices simultaneously is defined by C = σ⊗1N ,

where ⊗ denotes the tensor product and 1N the identity operator in position space.

Since there are k outgoing bonds σ is a k× k-matrix and the Hilbert space of the problem

is kN-dimensional.

The quantum random walk U is defined by first applying the global coin flip and then

the moving shift

U = SC. (2.3.2)

The oracle o is defined such that it first scans the database entry mapped to vertex |vi〉

and then returns 0 whenever the entry is not the target entry of the search whereas

o |vt〉 = 1 if ENTRY (vt) is the target. Now, the return value of the oracle can be used to

mark |vt〉 by choosing local coin matrices that depend on the oracle output such that σ

is applied on all unmarked vertices whereas a different coin flip is applied at the target

vertex |vt〉.

20

CHAPTER 2: PRELIMINARIES AND DEFINITIONS

Following this line of thought, the abstract search algorithm is defined as

U′ = SC−
(
σ− σ′

)
⊗ |vt〉 〈vt| , (2.3.3)

where σ′ is the marking coin applied at the target vertex only.

As shown in (2.3.3), the term that is added to U has the form− (σ− σ′)⊗ |vt〉 〈vt|. Since

|vt〉 〈vt| is a projection on the target vertex, the additional term changes at most k2 matrix

elements. As U is a kN × kN-matrix, U′ can be regarded as, up to a small perturbation,

identical to U. Thus, the abstract quantum search algorithm as described in this section

can be regarded as perturbed quantum random walks.

21

CHAPTER 3

Search algorithm on the

hypercube

This chapter starts with an introduction of a search algorithm as introduced by Shenvi,

Kempe and Whaley in [50]. The algorithm is constructed to search the graph of a

hypercube for a given but unknown target vertex. In this search model, the target vertex

acts as a local perturbation in an otherwise highly symmetric quantum random walk. In

the previous analysis [50], Shenvi et al. gave an analytical estimate the search time and

the localisation probability.

The approach used by Shenvi et al. gives an estimate of the eigenvalues and eigenvectors

of the search operator. For the calculation presented here, only the eigenvalues of the

quantum random walk are needed which have been calculated in [56]. The model

introduced in this chapter defines a one parameter family of unitary operators Uλ

(3.2.1). With increasing λ, this family changes continuously from the unperturbed

quantum random walk to the search operator and back. This new picture reveals

avoided crossings in the spectrum as will be seen in figure 3.4.

22

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

The thus introduced family of unitary operators is then analysed in terms of eigenvectors

and eigenvalues. It is argued that only a few entries of the search operator change as

a function of the parameter λ and the eigenvectors of the unperturbed system form

a convenient basis for the calculation of eigenvectors. However, it is argued that the

search algorithm is singled out in the family of unitary operators by an avoided crossing

visible when the spectrum is plotted as a function of λ. The search algorithm is then

characterised by the eigenvectors and eigenvalues near the crossing at λ = 1.

The two eigenvectors at the crossing are calculated approximately and the approximate

eigenvalue equations are given in (3.3.2) and (3.3.10). The subspace spanned by these

two approximate eigenvectors is almost invariant under the action of the search operator

and it is shown that, while one approximate eigenvector acts as starting state, the second

is localised at the target vertex.

Therefore it is argued, that the search operator can be analysed in the two dimensional

subspace spanned by these vectors using a simple model Hamiltonian for the avoided

crossing in equation (3.4.1). This leads finally to an expression for the localisation

probability (3.6.3) and the search time (3.6.2). The result for the latter is found to agree

with the result obtained from numerical simulations of the search as presented in figure

3.5.

3.1 Definitions and model

A d-dimensional hypercube is a graph whose vertices can be encoded using binary

strings with d digits containing either 0 or 1 as entry. Vertices, whose strings are equal

for all but one digit are connected as shown in figure 3.1. Thus each vertex is connected

to d neighbouring vertices via outgoing bonds and the dimension of the Hilbert space

H is dimH = dN, where N = 2d is the number of vertices of the graph.

23

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

Figure 3.1: The hypercube in d = 3 dimensions.

The quantum search algorithm introduced by Shenvi, Kempe and Whaley in [50] will be

discussed in this chapter. As outlined in section 2.3.2, quantum search algorithms can be

regarded as perturbed quantum random walks. The underlying quantum random walk

has been analysed by Moore and Russell [56] who calculated the full set of eigenvalues.

3.1.1 The underlying quantum random walk

In analogy to the discussion in section 2.2 the quantum random walk is ruled by a

unitary operator U = S (σ⊗ 12d), where σ is the local coin flip on all vertices, S is a

moving shift and 12d the identity operator in position space.

The uniform distribution in coin space |s〉 = 1√
d ∑d

i=1 |i〉 is used to define the local coin

flip on each vertex as

σ = 2 |s〉 〈s| − 1d. (3.1.1)

This defines the global coin that flips the coins on all vertices simultaneously as

C = σ⊗ 12d . (3.1.2)

The dN states of the system will be denoted as |ix〉 = |i〉 ⊗ |x〉, where |i〉 is a vector

in the d-dimensional coin space and |x〉 a vector in the N-dimensional position space.

Using these notations the shift operator S can be denoted conveniently. Since S transfers

24

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

the state |ix〉 into |ix⊕ ei〉, where |ei〉 is the unit vector in direction i and ⊕ is the sum

modulo 2, it is defined as

S =
d

∑
i=1

∑
~x
|ix⊕ ei〉 〈ix| . (3.1.3)

The eigenvalues v±k and eigenvectors
∣∣∣v±~k 〉 of the quantum random walk

U = SC (3.1.4)

are discussed in [50, 56] and a detailed calculation can also be found in appendix A. Some

for the scope of this thesis unimportant±1-eigenvectors will be neglected as the analysis

will later be reduced to a subspace orthogonal to them. The remaining two eigenvalues

and orthonormalised eigenvectors that can be found for every d-dimensional binary

vector~k are

v±k = e±iωk = 1− 2k
d
± 2i

d

√
k (d− k) (3.1.5)

|v±~k 〉 =
d

∑
i=1

∑
~x

(−1)
~k·~x 2−d/2
√

2
α±ki

βk |ix〉 (3.1.6)

[50, 56], appendix A.2, where k = |~k| = ∑d
i=1 ki is the Hamming weight of the vector~k

and

α±ki
=


1/
√

k if ki = 1

∓i/
√

d− k if ki = 0

. (3.1.7)

Compared to the previous calculations, a normalisation constant

βk =


√

2 if k = 0 or k = d

1 otherwise

(3.1.8)

has been added.

Since the eigenvalues are a function of k, they are (d
k) times degenerate. Furthermore

note that for k = 0 and d the ± cases are equivalent. For simplicity the notation will not

be altered but the + cases will be regarded only.

25

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

3.1.2 The search algorithm

The quantum random walk can now be altered to create a search algorithm. A target

vertex |v〉 is introduced and marked by a different choice for the coin flip that will be

denoted as σ′. The perturber coin for the hypercube search is σ′ = −1d which leads to

both, a simple analysis and an efficient search algorithm.

To obtain the search algorithm from the unperturbed quantum walk, the old coin σ is

subtracted and the perturber coin σ′ is added locally at the target vertex. This results in

a perturbed global coin flip

C′ = C−
(
σ− σ′

)
⊗ |v〉 〈v| = C− 2 |s〉 〈s| ⊗ |v〉 〈v| . (3.1.9)

Since |s〉 is a 1-eigenvector of σ the search algorithm U′ = SC′ can be simplified.

Defining the state |sv〉 := |s〉 ⊗ |v〉 that is localised at the marked vertex and uniformly

distributed in coin space,

U′ = SC′ (3.1.10)

= S (C− 2C |s〉 〈s| ⊗ |v〉 〈v|) (3.1.11)

= U − 2U |sv〉 〈sv| . (3.1.12)

Up to a few entries the operators U and U′ are identical, in fact, an orthonormal basis

such that equality holds for all but one entry can be constructed using the vectors |sv〉,

U |sv〉 and dN − 2 other basis vectors.

Numerical simulations of the search algorithm U′ verify the analytical observation by

Shenvi, Kempe and Whaley [50]. The algorithm indeed acts as search algorithm and,

starting from the uniform distribution, localises the quantum state at the marked vertex

after some time. Figure 3.2 shows the performance on a 12-dimensional hypercube

searching for the marked vertex |v〉 = ~0 starting in the uniformly distributed state

|start〉 = −i√
N
|s〉 ⊗ (∑~x |x〉) =

∣∣∣v+
~0

〉
, where the sum is performed over all vertices of the

26

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

0
30

60
90

12
0

15
0

18
0

0
2

4
6

8
10

12

0

0.05

0.1

0.15

0.2

0.25

p
ro

b
a
b

il
it

y
 a

t
|x

|

tim
e stepsHamming weight |x|

Figure 3.2: Performance of the search algorithm: The search algorithm on the d = 12

dimensional hypercube is projected on a line such that all vertices with the

same Hamming weight merge into one point. At t = 0 the walk starts in the

uniform distribution and localises at the marked vertex v =~0 at t = 74.

hypercube. The probabilities at the vertices have been projected on a line such that all

vertices with the same distance from the marked vertex are identified, see figure 3.3.

The simulation shows that the search localises at the marked vertex after U′ has been ap-

plied t = 74 times. The even higher amplitude at Hamming weight |~x| = ∑d
i=1 xi = 1 is

the sum of the probabilities for the 12 neighbours of |v〉, where each of the neighbouring

vertices has a probability significantly smaller than the marked vertex.

3.2 Eigenvectors and eigenvalues of the search

For the analysis of the search algorithm, the eigenvectors and eigenvalues of U′ are

discussed. Since the additional term U |sv〉 〈sv| in equation (3.1.12) changes only a few

matrix elements of the quantum random walk, it can be treated as a small perturbation.

The analysis follows the line described below. First an operator Uλ is introduced that

27

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

Figure 3.3: The Hamming weight |~x|measures the distance between ~x and~0. To illus-

trate this, all vertices with the same Hamming weight are projected to one

point.

changes continuously from the quantum random walk to the operator of the search.

Then the eigenvectors and eigenvalues of the thus defined operator are discussed. One

can easily see, the eigenvectors and eigenvalues can be organised such that only a few of

them change as a function of the parameter λ. Thus the subspace of the problem will be

reduced and restricted to the set of these eigenvectors only. The spectrum with respect

to this reduced subspace is finally be plotted in figure 3.4.

3.2.1 Introduction of a one parameter family of unitary operators and

a reduced space

To analyse the search algorithm U′ a one parameter family of unitary operators Uλ with

parameter λ is defined. The family is organised such that Uλ is unitary for all values of

λ and changes continuously from U to U′ as λ changes from 0 to 1. These conditions

are met by

Uλ = U +
(

eiλπ − 1
)

U |sv〉 〈sv| . (3.2.1)

Note that Uλ is 2-periodic in λ and equals U for all even integers whereas Uλ = U′ if

λ is odd. If analysed in the canonical basis, the operation λ→ 2π− λ acts as complex

28

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

conjugation since U and |sv〉 〈sv| are both real operators.

To define a maximal symmetry-reduced space it is crucial to note that all eigenvec-

tors of U orthogonal to |sv〉 remain eigenvectors of Uλ when λ is chosen away from

zero and their eigenvalues remain unchanged. That these eigenvectors and their

eigenvalues are constant when varying λ follows trivially from the definition Uλ =

U +
(
eiλπ − 1

)
U |sv〉 〈sv|. Therefore it is sufficient to concentrate the investigation on

eigenvectors that are not orthogonal to |sv〉.

These vectors are obtained by a reorganisation of eigenvectors in each of the eigenspaces

of U such that the vectors are orthonormalised and there is only one eigenvector not

orthogonal to |sv〉. Let the subspaceH′ be the space spanned by this set of vectors. Note

that this definition ensures thatH′ is the relevant subspace for the investigation because

the operators U and Uλ are different only in their action on this subspace.

Up to a normalisation constant, these vectors are obtained by a projection of |sv〉 into

the corresponding subspace.

To continue with the analysis, the scalar product of |sv〉 with an arbitrary eigenvector

according to (3.1.6) is regarded. To simplify notation, a phase factor e±iϕk =
√

k±i
√

d−k√
d

can be defined and

〈
v±~l | sv

〉
= (−1)

~l~v
√

2−d−1βle
±iϕk . (3.2.2)

The span vectors of the subspaceH′ can now be evaluated as

∣∣ω±′k
〉

= ∑
~l
|~l|=k

∣∣∣v±~l 〉 〈v±~l | sv
〉

(3.2.3)

=
√

2−d−1e±iϕk βk ∑
~l
|~l|=k

(−1)
~l·~v
∣∣∣v±~l 〉 . (3.2.4)

29

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

This gives normalised vectors of the form

∣∣ω±k 〉 :=
1√
(d

k)
∑
~l
|~l|=k

(−1)
~l·~v
∣∣∣v±~l 〉 . (3.2.5)

Again, the vectors defined for k = 0 and k = d will be restricted to
∣∣ω+

0
〉

and
∣∣ω+

d
〉

as

these vectors are up to a phase factor identical to the corresponding − cases.
∣∣ω−0 〉 and∣∣ω−d 〉 will not be considered.

There are 2d − 2 remaining vectors of type
∣∣ω±k 〉 and it can be seen that the 2d − 2

dimensional subspaceH′ is significantly smaller thanH which is d2d-dimensional.

Note that the vectors in this set are not independent of the marked vertex ~v. To simplify

the calculation ~v =~0 can be chosen without loss of generality and

∣∣ω±k 〉 =
1√
(d

k)
∑
~l
|~l|=k

∣∣∣v±~l 〉 (3.2.6)

is obtained for the normalised eigenvectors of Uλ=0. The general case ~v = ~a for some

vector ~a 6= ~0 can easily be reconstructed by performing a transformation in position

space ~x → ~x⊕~a, where ⊕ is again the sum modulo 2.

Although the reasoning for the construction of the subspace H′ is different from the

geometrical approach for the subspace in [50], both subspaces are identical since the set

of span vectors is the same. Note that per definition, the perturber state |sv〉 is inH′.

Using the same symbols for the operators inH′ as in the larger spaceH, Uλ is defined

as

Uλ = U +
(

eiλπ − 1
)

U |sv〉 〈sv| (3.2.7)

where the operator U is now defined via its action on its eigenvectors in the reduced

space

U = v+
0

∣∣ω+
0
〉 〈

ω+
0

∣∣+ v+
d

∣∣ω+
d
〉 〈

ω+
d

∣∣+ d−1

∑
k=1

(
v+

k

∣∣ω+
k
〉 〈

ω+
0

∣∣+ v−k
∣∣ω−k 〉 〈ω−k ∣∣) . (3.2.8)

30

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

To simplify notation, a new index m is defined to replace both indices, k and ±. Let

m ∈ {−d + 1, d} such that {|m| , sgn (m)} = {k,±}. This leads to an identification∣∣ω±k 〉 = |ωm〉, v±k = e±iωk = eiωm = vm and for the phase factor defined in equation

(3.2.2) e±iϕk = eiϕm .

This simplifies the definition of U in the reduced space to

U =
d

∑
m=−d+1

eiωm |ωm〉 〈ωm| . (3.2.9)

To complete the introduction of the reduced space, |sv〉 is expanded in the basis of

span-vectors ofH′.

|sv〉 =
d

∑
m=−d+1

|ωm〉 〈ωm | sv〉 (3.2.10)

=
d

∑
m=−d+1

|ωm〉
1√
(d

k)
∑
~l
|~l|=k

〈
v±~l | sv

〉
, (3.2.11)

where the definition (3.2.5) has been used. With equation (3.2.2) the expression simplifies

to

|sv〉 =
d

∑
m=−d+1

|ωm〉
1√
(d
|m|)

∑
~l
|~l|=|m|

√
2−d−1βmeiϕm (3.2.12)

=
√

2−d−1
d

∑
m=−d+1

√(
d
|m|

)
βmeiϕm |ωm〉 . (3.2.13)

3.2.2 Spectrum of Uλ

Figure 3.4 shows the numerical calculation of eigenphases of Uλ in H′ for the 20-

dimensional hypercube as a function of λ. The spectrum of the reduced space contains

several avoided crossings created by two eigenphases crossing diagonal through a

spectrum of otherwise nearly constant eigenphases. When varying λ over a small

interval near one of the crossings, the eigenvalues not involved in that crossing hardly

change. Some of the avoided crossings with small gap have been enlarged in the figure

such that the character of the avoided crossing is clearly visible.

31

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

Figure 3.4: Phases of the eigenvalues of Uλ as a function of λ in the reduced space for a

20-dimensional hypercube.

32

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

Shenvi, Kempe and Whaley concentrated their analysis on the two eigenvalues of

Uλ=1 closest two 1 and this new model reveals that these eigenvalues have an avoided

crossing in the region near ω = 0 and λ = 1.

It is known that oscillations between the two eigenstates of the avoided crossings can

occur at the crossing. They appear if the starting state is a linear combination of the

two exact eigenvectors, the state will then perform a rotation in the two dimensional

subspace of the eigenvectors of the system that are crucial for the crossing. See appendix

B for an introduction.

The crossings can be enumerated using the index m according to the eigenphases ωm

participating in the crossings.

Note that the eigenvector |ω0〉 of Uλ=0 with eigenphase 0 is the uniform distribution

and therefore identical to the start vector |start〉 of the search shown in figure 3.2.

Numerical simulations have shown that the walk Uλ localises at the marked vertex no

matter which state |ωm〉 is used as starting state. The only conditions are that it has

an avoided crossing, that is, the distance in the crossing is smaller than the distance to

neighbouring eigenphases, and that the parameter λ is chosen as the λ-coordinate of

the mth crossing.

3.3 Approximative eigenvectors and eigenvalues of Uλ near

the mth crossing

Regarding the eigenphases not involved in the crossing as constant can be used to

reduce the dimension of the problem even further. Near each crossing, there is one

eigenvalue eiωm as defined in (3.1.5). This eigenvalue remains in good approximation

constant when λ is varied and belongs to the eigenvector |ωm〉 of Uλ=0. The second

33

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

eigenvalue in the crossing changes the phase continuously and is the eigenvalue of an

yet unknown vector.

Approximations to these two eigenvectors for each crossing will be used to construct a 2-

dimensional subspace spanned by the approximated eigenvectors of Uλ. This subspace

can be used to constructed a 2× 2 model Hamiltonian H such that e−iH yields a good

approximation for Uλ in this 2-dimensional subspace.

For most m’s, the eigenphases of |ωm〉 are in good approximation constant when λ is

changed and the vectors are assumed to be good approximations for the eigenvectors of

Uλ. This can be verified by applying Uλ to the eigenvectors of U

Uλ |ωm〉 = U |ωm〉+
(

eiλπ − 1
)

U |sv〉 〈sv | ωm〉 (3.3.1)

= eiωm |ωm〉+
(

eiλπ − 1
)√

2−d−1

√(
d
|m|

)
βme−iϕm U |sv〉 . (3.3.2)

Since the vector Uλ |sv〉 is normalised, the second term on the right hand side scales like√
(d
|m|)/N, where N is again the number of vertices of the hypercube. For this reason

the error term vanishes for N → ∞ and |ωm〉 is indeed close to an eigenvector of Uλ, as

long as N � 1 and |m| not too close to d
2 .

To obtain a vector that is approximately an eigenvector of Uλ and has an eigenphase

corresponding to one of the diagonal lines in the spectrum, a bit more effort is needed.

Let g± (λ) be a function such that the eigenvalues corresponding to the diagonal lines

in the spectrum are given by eig±(λ) and let
∣∣ν±λ 〉 be the corresponding eigenvectors

such that the eigenvalue equation is approximately fulfilled. A rough estimate can be

obtained by looking at figure 3.4 and a first approximations to g± (λ) is obtained as

g± (λ) ≈ (λ± 1)
π

2
. (3.3.3)

In this chapter, only the solution crossing at ω = 0 will be considered, that is, g (λ) ≈

(λ− 1) π
2 .

34

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

The yet unknown vector |νλ〉 is expanded in the basis of the set of span vectors
∣∣ωj
〉

of

H′. Let

|νλ〉 =
d

∑
j=−d+1

aj
∣∣ωj
〉

(3.3.4)

be the normalised eig(λ)-eigenvector with some unknown set of coefficients aj and let

|νλ〉 be orthogonal with respect to the other eigenvector that contributes to the mth

crossing, that is am = 0. The yet arbitrary phase of |νλ〉 will be defined by choosing the

scalar product with |sv〉 real and non-negative and a parameter b is defined such that

b = 〈sv | νλ〉 ∈ [0, 1] . (3.3.5)

Using these definitions the eigenvalue equation takes the form

Uλ |νλ〉 =U |νλ〉+
(

eiλπ − 1
)

bU |sv〉 (3.3.6)

=eig(λ) |νλ〉+
[
U |νλ〉 − eig(λ) |νλ〉+

(
eiλπ − 1

)
bU |sv〉

]
(3.3.7)

=eig(λ) |νλ〉+ b
(

eiλπ − 1
)√

2−d−1

√(
d
|m|

)
βmeiϕm+iωm |ωm〉

+
d

∑
j=−d+1

j 6=m

[
aj

(
eiωk − eig(λ)

)

+ b
(

eiλπ − 1
)√

2−d−1

√(
d
|j|

)
β je

iϕj+iωj

] ∣∣ωj
〉

. (3.3.8)

Demanding the term in the square brackets to be zero defines the set of coefficients

aj =
b
(
eiλπ − 1

)√
2−d−1

√
(d
|j|)β je

iϕj+iωj

eig(λ) − eiωj
(3.3.9)

and the approximative eigenvalue equation is

Uλ |νλ〉 = eig(λ) |νλ〉+ b
(

eiλπ − 1
)√

2−d−1

√(
d
|m|

)
βmeiϕm+iωm |ωm〉 . (3.3.10)

As before, the additional term is of the order
√

(d
|m|)/N and is small for N � 1 and |m|

not too close to d
2 .

Since b depends on the aj’s, equation (3.3.9) represents a set of coupled equations and b

in (3.3.5) cancels as it appears as a factor in both sides of the equation. Thus (3.3.5) leads

35

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

to a sum rule

1 != 2−d−1
(

eiλπ − 1
) d

∑
j=−d+1

j 6=m

(
d
|j|

)
β2

j
eiωj

eig(λ) − eiωj
(3.3.11)

and b remains so far undefined by the above equations and can be used as normalisation

parameter if a solution exists. To prove the existence of a solution for the coupled

equations (3.3.9), it remains to show that the sum rule (3.3.11) is fulfilled. Note that the

sum rule (3.3.11) provides an implicit formula for the phase g (λ).

Let λm be the value of λ at the avoided crossing of the eigenphases of |νλ〉 and |ωm〉. It

remains to prove that the eigenphases cross, that is, the sum rule is at least approximately

true in a region for λ near λm and for g (λm) = ωm.

The technique to solve the equations for λm and g (λ) at λ ≈ λm is to demand g (λm) =

ωm and solve (3.3.11) for λ to obtain λm. This can in turn be used to verify that

(λm, g (λm)) are indeed the coordinates of the avoided crossing by looking at the spec-

trum. If this is the case, g (λ) near λm can be obtained using (3.3.11).

3.3.1 Verification for the m = 0 crossing.

The set of equations (3.3.9) has a valid solution if the sum formula (3.3.11) holds. Which

will be analysed in the following. For simplicity, the calculation will be done only for

the main crossing at λ = 1, ω = 0, see figure 3.4.

Note that in the position and coin-space basis ofH both operators, U and the projection

on the marking state |sv〉 〈sv|, are real. Thus the symmetry operation λ → 2π − λ

performs a complex conjugation on Uλ in this basis. Therefore the spectrum of Uλ

is symmetric about (λ = 1, ω = 0). Since there is only one crossing in that region of

the spectrum, it has to be exactly at that point. Note that the crossings of Uλ in H are

identical to those of Uλ defined forH′ since the space has been reduced by eigenvectors

of Uλ with constant eigenphases only.

36

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

It remains to show that equation (3.3.11) holds in good approximation at the main

crossing for large N. Let

S (λ) := 2−d−1
(

eiλπ − 1
) d

∑
j=−d+1

j 6=0

(
d
|j|

)
β2

j
eiωj

eig(λ) − eiωj
(3.3.12)

and S (λ) != 1 needs to be shown.

The sum can be rearranged such that positive and negative j are added up in pairs while

the j = d term remains, that is

S (λ) =2−d−1
(

eiλπ − 1
)

·
(

d−1

∑
j=1

(
d
j

)
β2

j

(
eiωj

eig(λ) − eiωj
+

eiωj−d

eig(λ) − eiωj−d

)
+ β2

d
eiωd

eig(λ) − eiωd

)
. (3.3.13)

Using (3.1.7) and (3.1.8), the symmetry of the spectrum of U, eiωj−d = −eiωj which

follows from (3.1.5) and eiωj−d = e−iω|d−j| for 0 < j < d, one obtains

S (λ) =2−d−1
(

eiλπ − 1
)(d−1

∑
j=1

(
d
j

)(
eiωj

eig(λ) − eiωj
+

−eiωj

eig(λ) + eiωj

)

+ 2
−1

eig(λ) + 1

)
(3.3.14)

=2−d−1
(

eiλπ − 1
)(d−1

∑
j=1

(
d
j

)
2

e2iωj

e2ig(λ) − e2iωj
− 2

eig(λ) + 1

)
. (3.3.15)

Some trigonometry leads to e
2iωj

e2ig(λ)−e
2iωj

= i
2 cot

(
ωj − g (λ)

)
− 1

2 and

1
eig(λ)+1

= 1
2 −

i
2 tan g(λ)

2 . Now the sum formula simplifies to

S (λ) =2−d−1
(

eiλπ − 1
)(d−1

∑
j=1

(
d
j

) (
i cot

(
ωj − g (λ)

)
− 1
)
− 1

+ i tan
g (λ)

2

)
(3.3.16)

=2−d−1
(

eiλπ − 1
)(

i
d−1

∑
j=1

(
d
j

)
cot
(
ωj − g (λ)

)
− 2d + 1

+ i tan
g (λ)

2

)
, (3.3.17)

where ∑d
j=0 (d

j) = 2d has been used.

37

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

Inserting λ = 1 and using g (1) = 0, it can be seen that

S (1) = 2−d−1 (−2)

(
i

d−1

∑
j=1

(
d
j

)
cot
(
ωj
)
− 2d + 1

)
. (3.3.18)

The remaining sum cancels since cot ωj has an odd symmetry about j = d
2 and

S (1) = 1− 2−d (3.3.19)

confirms the expectation that the sum rule S (1) = 1 holds in good approximation.

3.3.2 Taylor expansion of g (λ) about 1

To obtain the function g (λ) near λ = 1, a Taylor expansion can be evaluated by calculat-

ing the derivatives of g (λ) at λ = 1 iteratively.

The first derivative, g′ (1), results from demanding dS(λ)
dλ |λ=1

!= 0, that is,

0 =
dS (λ)

dλ
(3.3.20)

=2−d−1

(
eiλπiπ

(
i

d−1

∑
j=1

(
d
j

)
cot
(
ωj − g (λ)

)
− 2d + 1 + i tan

g (λ)
2

)

+
(

eiλπ − 1
)

g′ (λ)

·
(

i
d−1

∑
j=1

(
d
j

)(
1 + cot2 (ωj − g (λ)

))
+

i
2

(
1 + tan2 g (λ)

2

)))
, (3.3.21)

and at λ = 1

0 = 2−d−1

(
− iπ

(
−2d + 1

)
− 2g′ (1)

(
i

d−1

∑
j=1

(
d
j

)(
1 + cot2 (ωj

))
+

i
2

))
, (3.3.22)

where the identity ∑d−1
j=1 (d

j) cot
(
ωj
)

= 0 was again useful. Solving this equation for

g′ (1) results in

g′ (1) =
2dπ − π

2 ∑d−1
j=1 (d

j) cot2
(
ωj
)
+ 2 · 2d − 4 + 1

(3.3.23)

=
π − 2−dπ

2 + 2−d+1 ∑d−1
j=1 (d

j) cot2
(
ωj
)
− 3 · 2−d

. (3.3.24)

38

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

Note that both, g (1) = 0 and limd→∞ g′ (1) = π
2 agree with the rough estimate g± (λ) ≈

(λ± 1) π
2 from equation (3.3.3) if 2−d+1 ∑d−1

j=1 (d
j) cot2 (ωj

)
→ 0 as d→ ∞. This remains

to be shown.

Let

γd := 2−d+1
d−1

∑
j=1

(
d
j

)
cot2 (ωj

)
= 2−d+1

d−1

∑
j=1

(
d
j

)
d2 − 4jd + 4j2

4jd− 4j2
, (3.3.25)

where the definition of ω|j| from ei sgn(j)ωj = 1− 2|j|
d − sgn (j) 2i

d

√
|j| (d− |j|) was used.

For large graphs, that is d � 1, the de Moivre-Laplace Theorem states (d
j)2−d ∼√

2
πd exp

(
− 2

d

(
j− d

2

)2
)

[57] and

γd ∼
1
2

√
2

πd

d−1

∑
j=1

d2 − 4jd + 4j2

4jd− 4j2
e−

2
d (j− d

2)
2

(3.3.26)

is obtained.

To simplify this result Poisson’s summation formula is used and the sum is approximated

by an integration

γd ∼
√

1
2πd

∫ d− 1
2

1
2

dx
∞

∑
n=−∞

δ (x− n)
d2 − 4xd + 4x2

4xd− 4x2 e−
2
d (x− d

2)
2

. (3.3.27)

The sum of delta distributions is periodic in x and can be replaced by its Fourier series

which leads to

γd ∼
√

1
2πd

∫ d− 1
2

1
2

dx
∞

∑
n=−∞

e2πinx d2 − 4xd + 4x2

4xd− 4x2 e−
2
d (x− d

2)
2

. (3.3.28)

Note that this step is not rigorous, since the left hand side of the equation is not a

function but a distribution, and convergence of the right hand side has not been shown.

However, it can be used in this case [58].

The substitution y = 2x
d is employed to obtain

γd ∼
1
2

√
d

2π

∫ 2− 1
d

1
d

dy
∞

∑
n=−∞

eπinyd 1− 2y + y2

2y− y2 e−
d
2 (y−1)2

. (3.3.29)

The approximation above holds for large N only, that is, search algorithms searching

a large graph. In the case of d � 1 all terms n 6= 0 can be neglected because there are

39

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

fast oscillations in the exponent leading to sub dominant terms only. Furthermore, the

symmetry about y = 1 allows a reduction of the integration interval.

γd ∼
√

d
2π

∫ 1

1
d

dy
1− 2y + y2

2y− y2 e−
d
2 (y−1)2

(3.3.30)

=

√
d

2π

∫ 1
2

1
d

dy
1− 2y + y2

2y− y2 e−
d
2 (y−1)2

+

√
d

2π

∫ 1

1
2

dy
1− 2y + y2

2y− y2 e−
d
2 (y−1)2

, (3.3.31)

where the integration interval has been split into two regions.

The first integration can easily be estimated by providing an upper and lower bound

which equals or approaches 0 for d→ ∞. Since the integrand is greater than 0 the lower

bound is trivial as the integral has to be greater than 0 as well. An upper bound can be

defined by replacing y by 1
2 in the exponential function,√

d
2π

∫ 1
2

1
d

dy
1− 2y + y2

2y− y2 e−
d
2 (y−1)2

<

√
d

2π

∫ 1
2

1
d

dy
1− 2y + y2

2y− y2 e−
d
8

=

√
d

2π
e−

d
8

2− d + d ln (2d− 1)− d ln 3
2d

(3.3.32)

which has a leading term
√

d
2π e−

d
8 ln (2d− 1).

For the second integration f (d) :=
√

d
2π

∫ 1
1
2

dy 1−2y+y2

2y−y2 e−
d
2 (y−1)2

, an upper and lower

bound can be found by appointing bounds for the denominator√
d

2π

∫ 1

1
2

dy
(

1− 2y + y2
)

e−
d
2 (y−1)2

< f (d) <
4
3

√
d

2π

∫ 1

1
2

dy
(

1− 2y + y2
)

e−
d
2 (y−1)2

. (3.3.33)

The remaining integration that appears in both bounds yields√
d

2π

∫ 1

1
2

dy
(

1− 2y + y2
)

e−
d
2 (y−1)2

=

√
d

2π

(
−e−

d
8

2d
+
√

π

2
d−

3
2 erf

(√
d
8

))
,

(3.3.34)

where erf (x) = 2√
π

∫ x
0 dte−t2

is the error function. Since erf (x) ≈ 1 for x � 1, the

leading term for d� 1 is 1
2d . As both sides of (3.3.33) differ only by a constant, and all

40

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

the remaining terms of (3.3.31) decay faster to 0 as e−
d
8 d the leading order and its error

are

γd =
1

2d
+O

(
e−

d
8 d
)

. (3.3.35)

To conclude this section, it has been shown that the sum formula (3.3.11) is fulfilled for

m = 0 as it is true for λ = 1 and g (1) = 0 in good approximation and that the first

derivative fits to the rough approximation (3.3.3) taken from the spectrum in figure 3.4

since

g′ (1) =
π − 2−dπ

2 + 1
2d − 3 · 2−d +O

(
e−

d
8 d
) ≈ π

2
for d� 1. (3.3.36)

3.3.3 The crossing eigenvector

So far only the sum formula for the m = 0 crossing has been discussed. It remains to

show that there also exist solutions for the crossings at m 6= 0. Since the discussion in

section 3.6 will show that m = 0 is the only important case, a detailed discussion of the

non-relevant crossings will be skipped and for now it will be assumed that the sum

formula holds for all crossings and the set of equations in (3.3.9) has a valid solution.

However, for m = 0 the results obtained stand on firm ground. For m = 0 there exists a

valid solution for the coefficients aj and the eigenvalue equation for Uλ has been solved

approximately resulting in the approximate eigenvector

|νλ〉 =
d

∑
j=−d+1

j 6=m

aj
∣∣ωj
〉

(3.3.37)

= b
(

eiλπ − 1
)√

2−d−1
d

∑
j=−d+1

j 6=m

√
(d
|j|)β je

iϕj+iωj

eig(λ) − eiωj

∣∣ωj
〉

. (3.3.38)

It is interesting to note that the vector has a coefficient
(
eiλπ − 1

)
and thus, the reasoning

breaks down whenever λ approaches an even integer. Hence the solution exists only if

41

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

U is perturbed by the marking coin. This is indeed no surprise as the diagonal lines in

the spectrum disappear when λ = 0 or 2 as can be seen in figure 3.4.

The yet unknown parameter b gives the normalisation of the vector and can therefore

be defined by demanding 〈νλ | νλ〉 = 1.

3.3.4 Normalisation of the vector of the localised state

The eigenvector |νλ〉 as defined in (3.3.38) has a so far unknown normalisation constant

b. Since b was originally defined as scalar product of two normalised vectors (3.3.5) and

the phase was defined such that b is real and positive, 0 ≤ b ≤ 1 can be deduced.

To start with, 〈νλ | νλ〉 = 1 results in the condition

1

|b|2
=
∣∣∣eiλπ − 1

∣∣∣2 2−d−1
d

∑
j=−d+1

j 6=m

(
d
|j|

) β2
j∣∣∣eig(λ) − eiωj

∣∣∣2 . (3.3.39)

It is a hard challenge to estimate the sum but it is related to the sum formula discussed

in section 3.3.1. Remember that the sum formula and its derivatives with respect to λ

define the function g (λ) via a Taylor expansion about the crossing and that the first

two terms about λ = 1 at m = 0 have been calculated in section 3.3.1. The condition

dS(λ)
dλ |λ=1

!= 0 will be used to calculate the demanded sum and 0 = dS
dλ gives

0 =
d

dλ

2−d−1
(

eiλπ − 1
) d

∑
j=−d+1

j 6=m

(
d
|j|

)
β2

j
eiωj

eig(λ) − eiωj

 (3.3.40)

=2−d−1iπeiλπ
d

∑
j=−d+1

j 6=m

(
d
|j|

)
β2

j
eiωj

eig(λ) − eiωj

− 2−d−1
(

eiλπ − 1
)

ig′ (λ)
d

∑
j=−d+1

j 6=m

(
d
|j|

)
β2

j
eiωj+ig(λ)(

eig(λ) − eiωj
)2 (3.3.41)

The first term can easily be calculated using the sum formula and for the second term it

is sufficient to note that the phase factor in the nominator of the fraction can be moved

42

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

to the denominator

0 =
iπeiλπ

eiλπ − 1
− 2−d−1

(
eiλπ − 1

)
ig′ (λ)

·
d

∑
j=−d+1

j 6=m

(
d
|j|

)
β2

j
1(

eig(λ) − eiωj
) (

e−iωj − e−ig(λ)
) . (3.3.42)

This results in an expression for the demanded sum

πeiλπ

g′ (λ)
(
eiλπ − 1

)2 = −2−d−1
d

∑
j=−d+1

j 6=m

(
d
|j|

) β2
j∣∣∣eig(λ) − eiωj

∣∣∣2 . (3.3.43)

Therefore, the normalisation constant b is ruled by the first derivative of g (λ) and

1

|b|2
= −

∣∣∣eiλπ − 1
∣∣∣2 πeiλπ

g′ (λ)
(
eiλπ − 1

)2 (3.3.44)

=
π

g′ (λ)
. (3.3.45)

Demanding 0 ≤ b ≤ 1 now defines the phase factor of the normalisation constant of

|νλ〉 and results in

b =

√
g′ (λ)

π
. (3.3.46)

Note that from the rough estimate for g (λ) in (3.3.3) b ≈ 1√
2

can be estimated which

agrees with 0 ≤ b ≤ 1.

3.3.5 Localisation at the target state.

There are two approximate eigenvectors at the crossing, that is, |ωm〉 which is used as

start state and the other, the perturber state |νλ〉 whose eigenphase crosses diagonal

through the spectrum (figure 3.4) which has ideally a big overlap with the marked

state |sv〉 of the search algorithm. To analyse if this is indeed the case, it is once more

important to remember that b has been defined as the scalar product b = 〈sv | νλ〉 in

(3.3.5). For λ = 1 and d� 1, the first derivative of g (λ) as calculated in (3.3.36) results

in

〈sv | νλ〉|λ=1 ≈
√

1
2 + 1

2d
. (3.3.47)

43

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

This is in fact a crucial point as the approach in this thesis is to characterise Uλ by

concentrating on the avoided crossings in the spectrum and to reduce the problem

to a two dimensional subspace spanned by |ωm〉 and |νλ〉. Since |ωm〉 is the starting

state of the algorithm, and for m = 0 also the uniform distribution, this result proves

that the target state |sv〉 has a notable overlap with the other approximate eigenvector.

Only a relatively large b enables this approach to be appropriate since it proves that the

perturber state |sv〉 has a sufficiently large contribution in the 2 dimensional subspace

in question.

Although the overlap given in (3.3.47) does not seem much, it leads to a probability of

nearly 1
2 which is in particular not d-dependent.

This result is notable since the algorithm for the m = 0 crossing starts in the uniform

distribution in position space. Half of the vertices have a distance to ~v =~0 with even

and half of them a distance with odd Hamming weight. Each application of Uλ=1

changes the parity of the Hamming weight; the amplitude at vertices in even distances

are moved to vertices with odd distance and vice versa. To localise more than half of the

probability on the target vertex would mean that there exists a time T such that after T

applications of Uλ=1 more than half of the probability is localised on vertices with an

even distance, that is the target vertex |v〉 itself, which is impossible. As a consequence

the search algorithm that starts in the uniform distribution cannot achieve a localisation

probability higher than 1
2 .

However, numerical simulations as shown in figure 3.2 suggest that |νλ〉 is localised on

the hypercube somewhere near the target vertex |v〉. To specify this somewhere near the target

vertex analytical, it is interesting to calculate the scalar product 〈νλ | U | sv〉 which gives

a lower bound to the amplitude localised on the nearest neighbours.

Obviously, the state U |sv〉 is localised on the d nearest neighbours of the target vertex

44

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

since the state |sv〉 has been propagated once. An ad hoc argument predicts that the

probability at the nearest neighbours is equal or larger than the probability on the

marked vertex. It is known from numerics (figure 3.2) that the localisation at the target

vertex holds for a few time steps. It can be deduced that the amplitude on the target

vertex will propagate to the nearest neighbours when Uλ is applied once and some of

the amplitude of the nearest neighbours propagates to the target vertex to replace the

amplitude that was shifted away. To keep the probability nearly constant the amplitude

localised on the nearest neighbours cannot be less than b.

However, the calculation is straight forward and yields

〈νλ | U | sv〉 =b
(

e−iλπ − 1
)

2−d−1

·
d

∑
j=−d+1

j 6=m

(
d
|j|

)
β2

j
e−iϕj−iωj

e−ig(λ) − e−iωj
e+iϕj

〈
ωj
∣∣U ∣∣ωj

〉
(3.3.48)

=be−iλπ
(

eiλπ − 1
)

2−d−1eig(λ)
d

∑
j=−d+1

j 6=m

(
d
|j|

)
β2

j
eiωj

eig(λ) − eiωj
(3.3.49)

=beiωm e−iλπ (3.3.50)

which provides a more rigorous proof for the ad hoc argument discussed above. In the

last step, the sum formula (3.3.11) and eig(λ) = eiωm have been used. Note that U |sv〉 is

only one state out of d2 states localised on the nearest neighbours and the probability

that is actually localised on the nearest neighbours is very likely to extend the probability

in U |sv〉.

For the main crossing at λ = 1 the result is remarkable since the amplitude of |νλ〉 in the

two orthogonal states |sv〉 and U |sv〉 is, up to a phase, equal to b and since it approaches

1√
2

for d→ ∞. The probability P, to measure |νλ=1〉 either at the marked vertex |v〉 or

on its nearest neighbours is

P = 2b2 =
1− 2−d

1 + 1
4d − 3 · 2−d−1 +O

(
e−

d
8 d
) (3.3.51)

45

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

and approaching 1 if d→ ∞. Therefore the state |νλ〉 can be considered localised on the

marked vertex and its nearest neighbours. A measurement once the search has localised

in |νλ〉 gives either the target vertex or one of its nearest neighbours with a probability

close to 1. Note that for the crossings where m 6= 0, g′ (λ) ≈ π
2 is known from the

numerics only and the result has not been verified analytically.

Notably, the contribution on the nearest neighbours is not an arbitrary state but U |sv〉.

As a consequence, if the outcome of the measurement is not the target vertex itself, the

coin state at the measured vertex points into the direction of the target vertex as can be

verified by the definition of the shift operator S in (3.1.3). Therefore the target vertex

can be identified and confirmed after the measurement with at most two more oracle

queries first on the vertex determined by the measurement and, if this fails to be the

target state, on the neighbouring vertex of this vertex singled out by the coin state.

So far, it has been shown that the two dimensional subspace contains the starting state

and a state localised at the target vertex. To prove that the search algorithm on the

hypercube indeed succeeds to localise at the marked vertex in a timeO
(

1√
N

)
, it remains

to show that there exists an integer T, such that UT
λ |ωm〉 has a strong overlap with |νλ〉

and to calculate the time T.

3.4 Model of avoided crossings

The analysis in the previous sections identified two approximate eigenvectors |ωm〉 and

|νλ〉 and their eigenvalues. The two vectors span an approximately invariant subspace

relevant for the avoided crossing of Uλ. In fact the approximate eigenvalues of these

vectors do not avoid the crossing at λ = λm.

Since the subspace is identified and starting and localised state are contained in this

space the next step is to construct a 2× 2 model for the search algorithm Uλ. This can

46

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

be done using a Hamiltonian, that is a hermitian matrix H that characterises the time

propagation through
(

U2×2
λm

)t
= e−iHt, where Planck’s constant was chosen as h̄ = 1.

In general, an avoided crossing can be described using a Hamiltonian containing the

two eigenvalues and a small coupling constant ε > 0 with an arbitrary phase eiδ. Thus

the crossing in the search algorithm for the mth crossing at λm can be analysed using

the model Hamiltonian

H =

−ωm ε eiδ

ε e−iδ −ωm

 , (3.4.1)

where the identity g (λm) = ωm, the so far unknown real constants ε and δ and the

canonical basis is defined as |1〉 = |ωm〉, |2〉 = |νλm〉 is used. Since ωm is real, the matrix

is Hermitian.

Eigenvectors and eigenvalues of H are easily calculated

eigenvector eigenvalue

|u1〉 = 1√
2

 1

−e−iδ

 −ωm − ε

|u2〉 = 1√
2

 1

e−iδ

 −ωm + ε.

(3.4.2)

Starting and localised state are calculated in the |u1〉, |u2〉 basis, that is,

|ωm〉 =
1√
2

(|u1〉+ |u2〉) (3.4.3)

|νλm〉 =
−eiδ
√

2
(|u1〉 − |u2〉) . (3.4.4)

47

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

3.4.1 Time of the search

Since the preliminary calculations are done, the 2× 2 model for Uλm can be applied t

times to the starting state

(
U2×2

λm

)t
|start〉 = e−iHt |ωm〉 (3.4.5)

= e−iHt 1√
2

(|u1〉+ |u2〉) (3.4.6)

=
1√
2

(
ei(ωm+ε)t |u1〉+ ei(ωm−ε)t |u2〉

)
. (3.4.7)

Defining the time t := π
2ε leads to e±iεt = ±i and

(
U2×2

λm

)t
|start〉 =

eiωmt
√

2
(i |u1〉 − i |u2〉) (3.4.8)

= −ieiωmt−iδ |νλm〉 (3.4.9)

which is the localised state. Thus the time the walk needs to localise at the marked

vertex is inversely proportional to the parameter ε in the Hamiltonian.

Since the two eigenvalues of H given in equation (3.4.2) differ by 2ε, the coupling

constant ε is half the distance of the eigenvalues in the spectrum of Uλm at the crossing.

According to figure 3.4 the search algorithm for m = 0 can be expected to take longest

since it describes the algorithm at the crossing with the smallest gap in the avoided

crossing.

3.4.2 Size of the gap

The size of the gap and the time the search algorithm needs is ruled by the coupling

constant ε in the model Hamiltonian. The entries of the model Hamiltonian H can

be determined using the relation U2×2
λm

= e−iH . Let T be the transformation matrix to

diagonalise H, then

T−1HT = diag (−ωm − ε,−ωm + ε) (3.4.10)

48

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

and

U2×2
λm

= Tdiag
(

eiωm+iε, eiωm−iε
)

T−1 (3.4.11)

for the 2× 2 model of the unitary operator U2×2
λm

and after a transformation into the

original basis

U2×2
λm

=

 eiωm cos ε −ieiωm eiδ sin ε

−ieiωm e−iδ sin ε eiωm cos ε

 . (3.4.12)

These matrix elements can be calculated more easily. In fact most of the work is done by

using equations (3.3.2), (3.3.10) and (3.3.50). Since g (λm) = ωm the diagonal entries are

〈ωm | Uλm | ωm〉 = eiωm +
(

eiλπ − 1
)

2−d−1
(

d
|m|

)
β2

meiωm (3.4.13)

〈νλm | Uλm | νλm〉 = eiωm (3.4.14)

and for the off-diagonal terms

〈ωm | Uλm | νλm〉 = b
(

eiλπ − 1
)√

2−d−1

√(
d
|m|

)
βmeiϕm+iωm (3.4.15)

〈νλm | Uλm | ωm〉 = −b
(

e−iλπ − 1
)√

2−d−1

√(
d
|m|

)
βme−iϕm+iωm (3.4.16)

are obtained.

By comparing these matrix elements to the ones in (3.4.12) the yet unknown constant ε

can be estimated using sin ε = b
∣∣eiλπ − 1

∣∣√2−d−1
√

(d
|m|)βm and cos ε = 1 +O

(
2−d

)
resulting from the diagonal and off-diagonal terms respectively.

Thus the constant

ε = b
∣∣∣eiλπ − 1

∣∣∣√2−d−1

√(
d
|m|

)
βm +O

(
2−d

)
(3.4.17)

and the phase factor

eiδ = ieiφm
eiλmπ − 1∣∣eiλmπ − 1

∣∣ (3.4.18)

are obtained. Since 2d is the number of vertices of the d-dimensional hypercube, the

gaps ∆m = 2ε for fixed m scale like 1√
N

whereas the error is of order 1
N .

49

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

3.4.3 Analogy to Grover’s search algorithm

The search algorithms for the m = 0th crossing on the hypercube discussed above and

the search algorithm on a regular d-dimensional square lattice as discussed in chapter

4 have some analogy to Grover’s algorithm. Grover’s algorithm has been discussed

in references [5, 23] and introduced in section 2.3.1 of this thesis. Like in Grover’s

algorithm, the main effect of the search algorithms discussed here take place in a 2-

dimensional subspace spanned by the uniform superposition in position space and a

state localised at the target vertex. Ambainis, Kempe and Rivosh noted that Grover’s

algorithm can be viewed as a search algorithm on a fully connected graph [25].

The crucial part of Grover’s algorithm consists of the two steps (2a) and (2b) discussed

in section 2.3.1. The first step, (2a), is a reflection about the marked state and the second,

(2b), a reflection about the uniform state that acts as starting state. Both operations are

performed alternatingly. The same can be said for the search algorithm on the hypercube

for m = 0 at λ = 1 and the search algorithm on the regular lattice that will be discussed

in chapter 4 since both algorithms can be written as

U1 = U (1− 2 |sv〉 〈sv|) . (3.4.19)

Here 1− 2 |sv〉 〈sv| is a reflection about the target state |sv〉, so there is a one to one

correspondence to the equivalent step in Grover’s algorithm.

The second step of Grover’s algorithm is a reflection about the uniform distributed

state. Unlike in Grover’s algorithm, the algorithms on graphs have a spatial order of

the vertices since they are arranged on a graph and transition can only take place to

connected vertices. Taking this into account, there is a correspondence of U to step (2b)

since the matrix U performs a local coin flip that is equivalent to the matrix D as defined

in (2a) and then shifts the walk to neighbouring vertices.

50

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

3.5 Results for the reduced space

To summarise the results for the reduced spaceH′, the previous sections are recapitu-

lated.

In section 3.4.1 it was shown that

T = integer (t) = integer
(π

2ε

)
(3.5.1)

applications of Uλm to the starting state |start〉 = |ωm〉 are needed. After this time the

walk is localised on the target vertex with probability b2 and with at least the same

probability the walk can be found on the nearest neighbours of the target vertex |v〉 and

b has been estimated for large N as b ≈
√

1
2 , see equations (3.3.46) and (3.3.3) 1. For

λ = 1, a more detailed expression for b can be obtained from (3.3.46) and (3.3.36).

All in all the search needs a time

tm =

√
2d−1π

b
∣∣eiλmπ − 1

∣∣√(d
|m|)βm

+O (1) (3.5.2)

to localise at the target vertex. Thus the result for the leading order scales like
√

N,

where N = 2d is the number of vertices of the hypercube. This coincides with the scaling

obtained by Shenvi, Kempe and Whaley [50]. Additionally to the scaling of the leading

order term, the coefficient has also been obtained here and it can be seen that the walk

succeeds faster the higher m.

Figure 3.5 shows numerical results for the time the search needs as a function of the

number of dimensions d for m = 0, 1, 2 and 3 drawn as circles, squares and triangles,

respectively.

1Strictly speaking, b ≈
√

1
2 has not been shown to hold for general m 6= 0 since the estimate for the slope

of g (λ) was obtained as observation from numerical calculations of the spectrum of Uλ for some d. Only for

the central crossing at λ0 = 1, the leading order contributions for d � 1 has been calculated and the thus

obtained results agrees with the rough estimate taking from figure 3.4

51

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

10 15 20 25 30
dimensions

10

100

1000

10000

1e+05

tim
e

m=0
m=1
m=2
m=3
crude estimate
lambda from numerics

Figure 3.5: Comparison of numerical and theoretical results for the time of the search.

The symbols correspond to numerical results while the lines show the

theoretical results. The continuous line was determined using the rough

estimate (3.3.3) for the values λm where the avoided crossings occur. The

dashed lines use values for λm obtained numerically from the spectrum.

The straight and dashed lines show different approximations of the theoretical results

in equation (3.5.2). Since the evaluations of b and λm are hard, the approximations

discussed in section 3.3 for d� 1 have been used.

Both approximations for the theoretical results make use of b ≈
√

1
2 , whereas λm was

estimated differently. The rough estimate

ωm = g (λm) ≈ (λm − 1)
π

2
(3.5.3)

was used for the evaluation of the time shown as continuous line. For the approximation

shown as dashed lines, the λm-values resulting from numerical calculations of the

spectra have been employed; that is, the λ-values used where obtained by searching for

the minimal distance between the eigenphases in the gaps of the avoided crossings in

the spectrum.

Only for the m = 0 crossing no approximation was used as λ0 = 1 is known exactly.

52

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

For large d both analytical results are in good agreement with the numerics. Since the

approximations used to generate the analytical results in (3.5.2) hold only for d � 1,

it can be expected to find larger differences for smaller d which is meet by the results

shown in the figure. Furthermore, the dashed line can be expected to show a better

approximation to the numerical results, since the rough estimate for g (λ) has been used

only once while λm originates directly from the spectrum. Again, the figure follows the

expectation.

In order to understand why the differences between the expected times from the an-

alytical calculation and the measured time from numerical experiments show better

agreement for smaller |m|, the spectrum has to be considered. Figure 3.4 shows the

spectrum of a 20 dimensional hypercube and it can be seen that, coming from λ = 1, the

diagonal line disappears somewhere at λ = 1± 0.6 and the crossings become more and

more inaccurate at higher |m| values. The 3rd crossing already has λ3 > 1.5 and is close

to the region where the diagonal eigenphase disappears and the analysis breaks down.

For smaller dimensions, the difference between the horizontal lines is larger since the

density of eigenphases decreases for there are only 2d eigenvectors in the reduced space.

A consequence is that this leads to the crossings being further away from λ = 1 and an

earlier breakdown of the analysis. The only crossing that is not affected by this is the

crossing for m = 0 at λ0 = 1, ω = 0 for which the figure agrees very well even for small

d.

Figures 3.6 and 3.7 show how the probability to measure Ut
λ |ωm〉 at the target vertex

|v〉 changes as a function of t for different m and a fixed number of dimensions, that

is d = 25. As expected, the localisation occurs faster the higher m. The algorithm for

m = 2 finds the marked vertex in 1/5th of the time needed for m = 0 but there is a price

to pay since the walk has a slightly lower probability at its maximum. Regarding the

algorithms for higher and higher m in figure 3.7, an optimal search algorithm can be

53

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

0 2000 4000 6000 8000
number of time steps

0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty
 to

 f
in

d
th

e
w

al
k

in
 |v

>

m=0
m=1
m=2

Figure 3.6: The probability to measure the state at the marked vertex in d = 25 di-

mensions for the central crossing and the first two crossings for higher

m.

identified before the loss due to amplitude drop is bigger than the gain of a faster search:

The maximum of the algorithm using m = 4 does not extend the curve for m = 3, so

there is nothing gained and only the loss due to lower amplitude.

Numerical observations lead to the conclusion that the quantum search algorithm fails to

localise at the marked vertex for higher |m| as soon as the gap is of the same magnitude

as the distance between two neighbouring eigenvalues next to the crossing.

3.6 Results for the original spaceH

Unfortunately, the fast algorithms for m 6= 0 can not be used in the original space H.

To understand why, one has to regard the construction of the reduced Hilbert space.

The introduction of the marked vertex at ~v =~0 broke the symmetry of the system and

reduced the degeneracy of the eigenvalues. For the then following reduction of the

54

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

0 200 400 600 800 1000 1200 1400
number of time steps

0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty
 to

 fi
nd

 th
e

w
al

k
in

 |v
>

m=0
m=1
m=2
m=3
m=4
m=5

Figure 3.7: Detail of figure 3.6 with more crossings for higher m. To concentrate on the

relevant maxima, each curve has been cut off after its first maximum.

space all eigenvectors corresponding to eigenvalues that do not change in λ where

dropped. The remaining eigenvectors are given in equation (3.2.5). The |ωm〉 are linear

combinations of eigenvectors in the corresponding eiωm -eigenspace but there is a phase

factor that depends on the position of the target vertex ~v, see (3.2.5). Therefore the linear

combination is not known for unknown ~v. Since the thus defined eigenvector acts as

starting vector for the search at the mth crossing, the demanded starting state is not

defined for unknown ~v. In fact, a search algorithm can be employed to identify the right

state in the (d
|m|) dimensional eigenspace. This can only be done in a time of the order√

(d
|m|), as it is not possible to construct a faster search [23, 24]. To construct such an

algorithm, the previously discussed search algorithm can be used as oracle to determine

whether a state leads to a successful search or not. However, this search algorithm

succeeds not faster than in Ω
(√

(d
|m|)
)

time steps and takes away the speed up gained

by choosing m 6= 0.

This negative result justifies the sloppy analysis for the search algorithms for m 6= 0. The

only search algorithm that can be used for arbitrary ~v is the one starting in the uniform

distribution |ω0〉 for which a careful analysis was presented in this chapter.

55

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

To summarise it has been shown in this chapter that the search starting in the uniform

distributions leads to a localisation after T time steps, where T = integer (t) and

t =

√
2d−1π

b
∣∣eiλ0π − 1

∣∣√(d
0)β0

+O (1) (3.6.1)

=
√

Nπ

4

√√√√2 + 1
2d − 3 · 2−d +O

(
e−

d
8 d
)

1− 2−d +O (1) . (3.6.2)

After T time steps it has a probability

P~v =
1− 2−d

2 + 1
2d − 3 · 2−d +O

(
e−

d
8 d
) (3.6.3)

to be measured at the target vertex and with probability

Pnn =
1− 2−d

1 + 1
4d − 3 · 2−d−1 +O

(
e−

d
8 d
) (3.6.4)

the walk is found either at the target vertex or at one of its nearest neighbours.

In the case of large d the probabilities reach their maximum and the search algorithm can

be optimised if the outcome of the measurement is verified using the oracle once more

and check, if the resulting vertex is indeed marked. The search state will be measured at

the target vertex with a probability close to 1
2 and the answer is ’yes’. If the outcome

is negative, the target vertex can be found after one additional oracle call as described

in section 3.3.5 and without repeating the search. Therefore at most 2 additional oracle

calls are needed if the search is stopped and the target vertex will be obtained with a

probability close to 1.

Recent result on the hypercube search

Potoček et al. have developed an algorithm for the search on the d-dimensional hy-

percube that demonstrates a speed-up of 1√
2

compared to the Shenvi Kempe Whaley

algorithm discussed here by adding an auxiliary dimension to the coin space [28].

56

CHAPTER 3: SEARCH ALGORITHM ON THE HYPERCUBE

From equation (3.6.2), it follows that the search algorithm introduced by Potoček et al.

localises at the marked vertex in

t =
√

Nπ

4

√√√√1 + 1
4d − 3 · 2−d−1 +O

(
e−

d
8 d
)

1− 2−d +O (1) (3.6.5)

time steps.

57

CHAPTER 4

Search algorithm on a

d-dimensional square lattice

The second model for a search algorithm to be discussed in this thesis, is a search on a

d-dimensional square lattice previously discussed by Ambainis, Kempe and Rivosh in

[25].

In their paper, Ambainis, Kempe and Rivosh analyse two search algorithms and estimate

the order of search time. In this chapter, the more efficient of the two is analysed using

the technique of avoided crossings introduced in chapter 3 of this thesis. Like the search

algorithm on the hypercube, the lattice search can be regarded as a perturbed quantum

random walk where the target vertices are singled out by a marking coin flip.

In this chapter, the method introduced in chapter 3 is applied to the different system

and the search time and localisation probability of this search are calculated. That is

like before, a family of unitary operators with parameter λ is defined and an avoided

crossing is found in the spectrum at λ = 1 as shown in figure 4.2. Again two approximate

eigenvectors near the crossing are being calculated (eqs (4.2.7) and (4.2.18) give their

58

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

approximate eigenvalue equations).

However, the approximate eigenvectors lead to a construction of a two dimensional,

nearly invariant subspace and again it is shown that this subspace contains starting

state and a state localised at the target vertex.

Most of the work in this chapter is spend on the estimate of the normalisation constant

b of the approximate eigenvector |νλ〉 finally obtained in equation (4.3.42), which turns

out to be crucial for the analysis of the search time (4.4.12) and amplitude of the localised

state at the target vertex (4.3.43). As in the previous chapter, the analytical results are

compared to some results obtained by numerical simulations, figure 4.4 and are found

in good agreement.

4.1 Definition and model

Let the graph be a d-dimensional lattice with n equally partitioned vertices in each

dimension, making overall N = nd vertices, and periodic boundary conditions. The

positions of the vertices in the lattice are defined by the set of vectors |x〉 = ~x =

(x1, x2, . . . , xd), where the coordinates xi ∈ {0, 1, . . . , n− 1} are integers.

Each vertex has bonds to its 2d nearest neighbours, two in each direction, and two

vertices at positions ~x and ~y are connected, if and only if, xi − yi = 0 for all but one i

and the absolute value of the difference in the remaining dimension is either 1 or n− 1.

The quantum walk that will serve as foundation for the search algorithm is basically the

same as discussed in section 3.1.1 but adapted to the different graph.

59

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

4.1.1 Quantum random walk

The local coin flip σ is defined as in (3.1.1) for the hypercube, that is,

σ = 2 |s〉 〈s| − 12d. (4.1.1)

As before |s〉 is defined as the uniform distribution in coin space. Using the vectors |i±〉

as coin space basis vectors pointing to the nearest neighbours located in positive and

negative i-direction and i = 1, . . . , d labels the dimensions, the uniform distribution is

defined as |s〉 = 1√
2d ∑d

i=1 (|i+〉+ |i−〉). The global coin flip is again defined as the local

coin flip applied at all vertices using the tensor product and the identity operator in

position space

C = σ⊗ 1N . (4.1.2)

Using the unit vector in i+-direction |ei〉 and |i±x〉 = |i±〉 ⊗ |x〉, the moving shift S is

defined according to

S = ∑
~x

d

∑
i=1

(∣∣i+x− ei
〉 〈

i−x
∣∣+ ∣∣i−x + ei

〉 〈
i+x
∣∣) . (4.1.3)

At first glance, S looks counter intuitive as it performs permutations in coin space as

well as in position space, but in fact it is a very natural definition for a moving shift as

a walker leaving vertex ~x in direction i+, enters vertex ~x +~ei from direction i−. This

obviously justifies the permutation in coin space.

As discussed in section 2.2, the dimension of the Hilbert spaceH of the quantum random

walk is the number of vertices times the number of bonds at each vertex. Hence, the

d-dimensional lattice has dimH = 2dnd.

The quantum random walk itself is defined according to

U = SC, (4.1.4)

60

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

where the first operator applied to the quantum walker is the coin flip C and then the

walker is moved to the neighbouring vertices by the shift operator S.

4.1.2 Eigenvectors and eigenvalues of U

Ambainis, Kempe and Rivosh analysed the eigenvalues and eigenvectors of the quantum

walk defined in the previous section and in [25]. Some of the properties of eigenvectors

and eigenvalues are important for the following analysis, these properties are outlined

in this section. A more detailed discussion can be found in appendix C.

Using the tensor product, the eigenvectors can be divided into a vector in coin space |u〉

and a position space vector |X〉 according to

∣∣φ~k

〉
= |u〉 ⊗

∣∣X~k

〉
, (4.1.5)

where~k is a vector with entries ki ∈ {0, 1, . . . , n− 1}. Using the tensor product once

more, the vector in position space can be factorised into contributions for each dimension,∣∣X~k

〉
=
⊗d

i=1
∣∣χki

〉
, where the vectors

∣∣χki

〉
are obtained from the canonical basis vectors

of position space using a Fourier transformation

∣∣χki

〉
=

1√
n

n−1

∑
j=0

ωki j |j〉 where ω = e2πi/n. (4.1.6)

The thus obtained basis provides a convenient way to denote the eigenvectors. Although

the set of eigenvectors, especially for arbitrary d, is hard to calculate some properties

can be verified. Appendix C.1 analyses the complete set of eigenvalues and discusses

important properties of the eigenvectors that are outlined below in more detail.

Only some of the eigenvectors are important for the scope of this thesis which are

the ones having a coin space component not orthogonal to |s〉. These vectors are the

1-eigenvector |φ0〉 = |s〉 ⊗
∣∣X~0

〉
which is the uniform distribution and two eigenvectors∣∣∣φ±~k 〉 =

∣∣∣u±~k 〉⊗ ∣∣X~k

〉
for each~k 6=~0 with complex conjugated eigenvalues e±iθ~k , where

cos θ~k = 1
d ∑d

i=1 cos 2πki
n .

61

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

These 2N− 1 eigenvectors are the ones that are important for the later analysis. Although

these eigenvectors are hard to calculate, it is shown in appendix C.2 that
〈

s | u±~k

〉
=

1√
2
. The remaining eigenvectors are (d− 1) N + 1 eigenvectors with eigenvalue 1 and

(d− 1) N eigenvectors with eigenvalue −1.

4.2 The quantum search algorithm

Following the model of the abstract search algorithm in section 2.3.2 and Ambainis,

Kempe and Rivosh [25], a target vertex |v〉 is introduced and the coin flip of the target

vertex is changed to σ′ = −12d leading to a perturbed coin flip

C′ = C−
(
σ− σ′

)
⊗ |v〉 〈v| . (4.2.1)

The effect of this perturbation is analogue to the perturbation discussed for the hyper-

cube in equations (3.1.9 - 3.1.12) and the resulting search algorithm is characterised

by

U′ = U − 2U |sv〉 〈sv| . (4.2.2)

Figure 4.1 shows the localisation of the probability at the target vertex for four different

times, T = 0, 19, 38 and 57. That is, the resulting states after the application of (U′)T on

the uniformly distributed state |φ0〉 on a logarithmic scale.

The mechanism behind the Ambainis Kempe Rivosh search algorithm can be analysed

following the treatment developed for the hypercube in chapter 3. In analogy to the

definition (3.2.1) a unitary one parameter operator Uλ is defined for the d-dimensional

lattice:

Uλ = U +
(

eiπλ − 1
)

U |sv〉 〈sv| . (4.2.3)

62

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

Figure 4.1: Probability distribution of the quantum walk on a 31× 31-lattice for several

times T (on a logarithmic scale).

4.2.1 Reduced space

A reduced space H′ can be defined to keep the system as simple as possible. This is

done by dropping all ±1-eigenvectors of U expect |φ0〉 and the ones represented by∣∣∣φ±~k 〉 which occur for even n. These vectors can be dropped since they are orthogonal

to |sv〉 and neither eigenvalue nor eigenvector change by a variation of λ. Having done

so, a reduced subspace for the problem can be defined. This subspace is the 2N − 1

dimensional Hilbert spaceH′ spanned by |φ0〉 and
∣∣∣φ±~k 〉 for~k 6=~0.

This reduction is by far not as complete as the reduction for the search on the hypercube

in section 3.2.1. For the hypercube the reduction removed all degeneracies from the

spectrum while in this case some degeneracies remain. For example the vectors
∣∣∣φ±~k 〉

for ~k1 = (1, 0, 0, . . .) and ~k2 = (0, 1, 0, . . .) give rise to the same eigenvalues e±iθ~k .

The scalar product
〈

φ±~k
| sv
〉

can be calculated using
〈

s | u±~k

〉
= 1√

2
(appendix C.2)

63

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

0 0.5 1 1.5 2
λ

-2

0

2

ω

Figure 4.2: The eigenphases as functions of λ for n = 11, d = 2.

and thus |sv〉 can be expanded in terms of eigenvectors in the reduced space, that is

|sv〉 = 1H′ |sv〉 (4.2.4)

= |φ0〉 〈φ0 | sv〉+ ∑
~k 6=~0

(∣∣∣φ+
~k

〉 〈
φ+
~k

∣∣∣+ ∣∣∣φ−~k 〉 〈φ−~k

∣∣∣) |sv〉 (4.2.5)

=
1√
N
|φ0〉+

1√
2N

∑
~k 6=~0

ω−
~k~v
(∣∣∣φ+

~k

〉
+
∣∣∣φ−~k 〉) . (4.2.6)

Since |sv〉 is orthogonal to all eigenvectors of U not contained inH′ this expansion also

holds for the non-reduced space.

4.2.2 Approximative eigenvectors of Uλ

The technique to calculate the search time T introduced in chapter 3 for the hypercube

search can also be used in order to estimate the search time T for the lattice search

64

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

algorithm.

The spectrum of Uλ for a 11× 11-lattice in the reduced spaceH′ is plotted in figure 4.2.

Again, the perturbation leads to an avoided crossing in the spectrum. Other than for the

m 6= 0-crossings in the spectrum of the hypercube search, the coordinates of the crossing

(λ = 1, ω = 0) are well known which simplifies the discussion. Following the reasoning

in section 3.4 the search time can be estimated using a 2× 2 model Hamiltonian H that

is constructed using the subspace spanned by the two approximate eigenvectors of Uλ

with eigenvalues that participate in the crossing.

Thus, the approximate eigenvectors have to be found. The first guess for one approxi-

mative eigenvector is the uniform distribution |φ0〉 and indeed, up to an error term of

O
(

N−1/2
)

this vector is an eigenvector with eigenvalue 1 since

Uλ |φ0〉 = |φ0〉+
(

eiλπ − 1
)

U |sv〉 1√
N

(4.2.7)

= |φ0〉+O
(

N−1/2
)

. (4.2.8)

Since the actions of the unitary operator U and the projection |sv〉 〈sv| on the set of

eigenvectors of U in the reduced space is well known, the eigenvector corresponding

to the line that crosses diagonal through the point (λ = 1, ω = 0) in figure 4.2 can be

calculated using an expansion in the eigenvectors of U, that is,

|νλ〉 = a0 |φ0〉+ ∑
~k 6=~0

(
a+
~k

∣∣∣φ+
~k

〉
+ a−~k

∣∣∣φ−~k 〉) (4.2.9)

with a yet unknown set of coefficients a0 and a±~k , and

|a0|2 + ∑
~k 6=~0

(∣∣∣a+
~k

∣∣∣2 +
∣∣∣a−~k ∣∣∣2

)
= 1 (4.2.10)

is demanded such that |νλ〉 is normalised.

The condition Uλ |νλ〉 ≈ eig(λ) |νλ〉, that is, the approximate eigenvalue equation with an

unknown eigenvalue eig(λ) gives a linear system of equations for the 2N − 1 unknown

65

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

coefficients. Since both, |νλ〉 and |φ0〉, are approximate eigenvectors of Uλ the two

vectors can be assumed to be orthogonal. Demanding |νλ〉 ⊥ |φ0〉 is equivalent to

a0 = 0.

A straight forward application of Uλ on |νλ〉 results in

Uλ |νλ〉 = ∑
~k 6=~0

(
a+
~k

eiθ~k
∣∣∣φ+

~k

〉
+ a−~k e−iθ~k

∣∣∣φ−~k 〉)+
(

eiπλ − 1
)

·

 1√
N
|φ0〉+

1√
2N

∑
~k 6=~0

ω−
~k~v
(

eiθ~k
∣∣∣φ+

~k

〉
+ e−iθ~k

∣∣∣φ−~k 〉)
 〈sv | νλ〉 . (4.2.11)

For simplicity, a constant

b := 〈sv | νλ〉 (4.2.12)

is defined. The overall phase factor of |νλ〉 can be defined such that b ≥ 0. Now the

right hand side of the approximate eigenvalue equation, that is eig(λ) |νλ〉, is added and

subtracted to obtain

Uλ |νλ〉 =eig(λ) |νλ〉+
b
(
eiπλ − 1

)
√

N
|φ0〉

+ ∑
~k 6=~0

((
a+
~k

(
eiθ~k − eig(λ)

)
+

b
(
eiπλ − 1

)
ω−

~k~veiθ~k
√

2N

) ∣∣∣φ+
~k

〉

+

(
a−~k

(
e−iθ~k − eig(λ)

)
+

b
(
eiπλ − 1

)
ω−

~k~ve−iθ~k
√

2N

) ∣∣∣φ−~k 〉
)

. (4.2.13)

Demanding the sum to be zero defines the coefficients

a±~k =
b
(
eiπλ − 1

)
ω−

~k~ve±iθ~k
√

2N
(

eig(λ) − e±iθ~k
) (4.2.14)

and gives the error term of the eigenvalue equation as
b(eiπλ−1)√

N
|φ0〉. Therefore the error

term is O
(

b√
N

)
and due to b ≤ 1 it can be considered small.

Using the set of coefficients a±~k from (4.2.14) the constant b appears on both sides of

b = 〈sv | νλ〉. Hence the system of equations has a solution, if and only if

b = 〈sv | νλ〉 (4.2.15)

66

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

is at least approximatively fulfilled at the crossing. Using equations (4.2.6) and (4.2.14),

the condition can be denoted as

1 =
(
eiπλ − 1

)
2N ∑

~k 6=~0

(
eiθ~k

eig(λ) − eiθ~k
+

e−iθ~k

eig(λ) − e−iθ~k

)
. (4.2.16)

The crossing occurs at λ = 1 and eig(1) = 1 for which the sum formula (4.2.16) can be

calculated explicitly, that is,

1 =
−2
2N ∑

~k 6=~0

(−1) =
1
N

(N − 1) = 1− 1
N

. (4.2.17)

Therefore no exact solution exists. This is not surprising as |νλ〉 is not an exact eigen-

vector. Since the error term 1
N is small and decays to 0 as N → ∞, equation (4.2.17)

holds in good approximation and it is verified that the set of coefficients from equation

(4.2.14) define an approximate solution of the set of coupled equations given in (4.2.14).

Therefore, the vector defined as

|νλ〉 =
b
(
eiπλ − 1

)
√

2N
∑

~k 6=~0

ω−
~k~v

·
(

eiθ~k

eig(λ) − eiθ~k

∣∣∣φ+
~k

〉
+

e−iθ~k

eig(λ) − e−iθ~k

∣∣∣φ−~k 〉
)

, (4.2.18)

fulfils the approximate eigenvalue equation

Uλ |νλ〉 = eig(λ) |νλ〉+
b
(
eiπλ − 1

)
√

N
|φ0〉 (4.2.19)

= eig(λ) |νλ〉+O
(

1√
N

)
(4.2.20)

and can be considered an approximate eigenvector of Uλ with eigenvalue eig(λ), where

eig(1) = 1.

The only unknown in |νλ〉 is the constant b as it dropped out of the equations. Since the

vector |νλ〉 is demanded to be normalised b actually turns out to be the normalisation

constant.

67

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

4.3 Normalisation of the approximated crossing eigenvec-

tor

The normalisation |b| of the approximate eigenvector of |vλ〉 is important for estimating

the search time because the normalisation of the vectors is crucial for evaluating the

matrix elements of the 2× 2 model for Uλ.

To determine the normalisation requires a lengthy and technical calculation. First the

expression for the normalisation will be expanded in a sum and then the first terms

will be approached one by one. The result, up to leading order, for d = 2 and 3 and an

estimate of the scaling for d ≥ 4 is finally presented in equation (4.3.42). In principle,

the leading order term for the normalisation constants for d ≥ 4 can be obtained using

numerical integration methods as in the d = 3 case.

Demanding normalisation of |vλ〉 and regarding λ = 1 and eig(1) = 1 only, results in

1

|b|2
=

4
2N ∑

~k 6=~0

2∣∣∣1− eiθ~k
∣∣∣2 (4.3.1)

=
2
N ∑

~k 6=~0

1
1− cos θ~k

(4.3.2)

=
2d
N ∑

~k 6=~0

1

d−∑d
i=1 cos 2πki

n

, (4.3.3)

where the sum over all vectors ~k in a d-dimensional cube has to be calculated for

ki ∈ {0, 1, . . . , n − 1}, ~k 6= ~0. This can be rearranged to a summation over lower

dimensional objects where only a limited number of entries of~k are not 0.

That is, all one dimensional edges, two dimensional faces, 3-dimensional cubes etc. with

ki varying from 1 to n− 1. The edges are obtained by choosing d− 1 entries of~k equal 0,

while the remaining entry varies from 1 to n− 1, the faces have d− 2 entries of~k equal 0

and two in [1, n− 1] and higher dimensions correspondingly. This new arrangement

68

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

results in

1

|b|2
=

2d
N ∑

~k 6=~0

1

d−∑d
i=1 cos 2πki

n

(4.3.4)

=
2d
N

d︸︷︷︸
number of edges

n−1

∑
j1=1

1

1−∑1
l=1 cos 2π jl

n︸ ︷︷ ︸
contribution of one edge

+
2d
N

(
d
2

)
︸︷︷︸

number of faces

n−1

∑
j1,j2=1

1

2−∑2
l=1 cos 2π jl

n︸ ︷︷ ︸
contribution of one face

+ . . . (4.3.5)

=
2d
N

d

∑
i=1

(
d
i

) n−1

∑
j1,j2,...,ji=1

1

i−∑i
l=1 cos 2π jl

n

(4.3.6)

=
2d
N

d

∑
i=1

(
d
i

)(n
π

)i
Ii, (4.3.7)

where in the last step Ii :=
(

π
n
)i

∑n−1
j1,...,ji=1

(
i−∑i

l=1 cos 2π jl
n

)−1
was defined.

To obtain the normalisation constant |b| for the approximate eigenvector of the search

on the d-dimensional lattice, all sums from I1 to Id have to be calculated.

The identity 1− cos x = 2 sin2 x
2 can be used to simplify these sums. One obtains

Ii =
1
2

(π

n

)i n−1

∑
j1,...,ji=1

(
i

∑
l=1

sin2 π jl
n

)−1

. (4.3.8)

In section 3.3.2 Poisson’s summation formula was used to approximate a sum by an

integral. The same can be done for the Ii’s. First each sum is replaced by an integration

and a sum over delta functions is added such that the integrand contributes only at the

old jl’s

Ii =
1
2

(π

n

)i ∫ n− 1
2

1
2

dx1

∞

∑
m1=−∞

δ (x1 −m1) . . .

∫ n− 1
2

1
2

dxi

∞

∑
mi=−∞

δ (xi −mi)

(
i

∑
l=1

sin2 πxl
n

)−1

. (4.3.9)

69

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

In a second step, the sums of delta functions can again be replaced by their Fourier

series ∑∞
mj=−∞ δ

(
xj −mj

)
= ∑∞

mj=−∞ e2πimjxj . This results in

Ii =
1
2

(π

n

)i ∫ n− 1
2

1
2

dx1

∞

∑
m1=−∞

e2πim1x1 . . .

∫ n− 1
2

1
2

dxi

∞

∑
mi=−∞

e2πimixi

(
i

∑
l=1

sin2 πxl
n

)−1

(4.3.10)

=
1
2

∫ π− π
2n

π
2n

dy1 . . .
∫ π− π

2n

π
2n

dyi

∞

∑
m1=−∞

· · ·
∞

∑
mi=−∞

e2in(m1y1+···+miyi)

∑i
l=1 sin2 yl

, (4.3.11)

where the last equality is due to a reordering of terms and the substitution yj = π
n xj for

all integrals.

Using the same arguments as before (section 3.3.2), the contributions are neglected if

one of the mj’s is not zero, since the exponential function leads to rapid oscillations if

n� 1. Hence only the mj = 0 terms are taken into account and for n� 1

Ii ≈
1
2

∫ π− π
2n

π
2n

dy1 . . .
∫ π− π

2n

π
2n

dyi
1

∑i
l=1 sin2 yl

. (4.3.12)

In the remainder of this chapter equality will be assumed.

Using the symmetry of the sine squared, the integration simplifies to

Ii = 2i−1
∫ π

2

π
2n

dy1 . . .
∫ π

2

π
2n

dyi
1

∑i
l=1 sin2 yl

(4.3.13)

and the integrations can finally be calculated.

4.3.1 First integration I1

The first integration is quickly done and one obtains

I1 =
∫ π

2

π
2n

dy
1

sin2 y
= [− cot y]

π
2
y= π

2n
= cot

π

2n
. (4.3.14)

70

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

4.3.2 Second integration I2

The second integration

I2 = 2
∫ π

2

π
2n

dx
∫ π

2

π
2n

dy
1

sin2 x + sin2 y
(4.3.15)

is by far more difficult. It is important to note that the integrand is symmetric with

respect to exchanged x and y and therefore

I2 = 4
∫ π

2

π
2n

dx
∫ π

2

x
dy

1
sin2 x + sin2 y

. (4.3.16)

Now the y integration can be solved by observing that

d
dx

arctan
(

tan y
tan x

√
2 tan2 x + 1

)
sin x

√
sin2 x + 1

=
1

sin2 x + sin2 y
. (4.3.17)

Thus

I2 = 4
∫ π

2

π
2n

dx

arctan
(

tan y
tan x

√
2 tan2 x + 1

)
sin x

√
sin2 x + 1


π
2

y=x

(4.3.18)

= 4
∫ π

2

π
2n

dx
π
2 − arctan

(√
2 tan2 x + 1

)
sin x

√
sin2 x + 1

. (4.3.19)

The ansatz I2 = 4
∫ π

2
π
2n

dx f g′ and the functions

f =
π

2
− arctan

√
2 tan2 x + 1 (4.3.20)

and

g = − ln
(√

2 + cot2 x + cot x
)

(4.3.21)

are used to integrate by parts

I2 =4 ln
(√

2 + cot2 π

2n
+ cot

π

2n

)(
π

2
− arctan

√
2 tan2 π

2n
+ 1
)

− 4
∫ π

2

π
2n

dx
ln
(√

2 + cot2 x + cot x
)

√
2 + cot2 x

. (4.3.22)

71

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

This is simplified using the substitution z = tan x and

I2 =4 ln
(√

2 + cot2 π

2n
+ cot

π

2n

)(
π

2
− arctan

√
2 tan2 π

2n
+ 1
)

− 4
∫ ∞

tan π
2n

dz
z
(

ln
(

1 +
√

2z2 + 1
)
− ln z

)
√

2z2 + 1 (1 + z2)
. (4.3.23)

This last integration can finally be expanded1 to

I2 = π ln n + π ln
4
π
− 2K− π

2
ln 2 +O

(
1
n2

)
, (4.3.24)

where K ≈ 0.916 is Catalan’s constant.

Normalisation for d = 2

The formula for the normalisation is given in (4.3.7) and the result for the d = 2

dimensional lattice is

1

|b|2
=

4
N

2

∑
i=1

(
2
i

)(n
π

)i
Ii (4.3.25)

=
4
N

(
2

n
π

I1 +
N
π2 I2

)
(4.3.26)

=
8

πn
cot

π

2n
+

4
π

ln n +
4
π

ln
4
π
− 8K

π2 −
2
π

ln 2

+O
(

1
n2

)
(4.3.27)

=
2
π

ln N +
16
π2 +

4
π

ln
4
π
− 8K

π2 −
2
π

ln 2 +O
(

1
N

)
. (4.3.28)

4.3.3 Third integration I3

For the third integration only the limit n→ ∞ will be evaluated. Starting with

I3 = 4
∫ π

2

π
2n

dx
∫ π

2

π
2n

dy
∫ π

2

π
2n

dz
1

sin2 x + sin2 y + sin2 z
(4.3.29)

1The expansion was calculated by MATHEMATICA.

72

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

a substitution x′ = tan x in all three variables leads to

I3 =4
∫ ∞

tan π
2n

dx
∫ ∞

tan π
2n

dy
∫ ∞

tan π
2n

dz

1
x2 (1 + y2) (1 + y2) + (1 + x2) y2 (1 + z2) + (1 + x2) (1 + y2) z2 (4.3.30)

which converges to2

lim
n→∞

I3 = 15.672 (4.3.31)

Thus I3 = 15.672 · · ·+ f (n) where limn→∞ f (n) = 0.

Normalisation for d = 3

The result for the normalisation of the d = 3 dimensional lattice is computed as

1

|b|2
=

6
N

3

∑
i=1

(
3
i

)(n
π

)i
Ii (4.3.32)

=
6
N

(n
π

)3
I3 +O

(
ln N

n

)
(4.3.33)

=
6

π3 I3 +O
(

ln N
n

)
(4.3.34)

= Θ (1) . (4.3.35)

4.3.4 Higher integrations and normalisations for d > 3

Although some results used for this section will not be proven until section 4.4, the

calculation shall be presented here because it completes the results of the previous

sections by providing an estimate for b for dimensions d ≥ 4.

Since the integrations get more and more difficult, this section aims at proving that T

scales like
√

N for d > 3. It will be shown in section 4.4, equation (4.4.11), that the search

time for arbitrary d is given by T = π
√

N
4b . This later result and the lower bound for

2This result was obtained using MAPLE.

73

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

the scaling T = Ω
(√

N
)

proven by Grover and Bennett et. al. [23, 24], lead to a lower

bound for the scaling of 1
|b|2

for any d. One obtains 1
|b|2

= Ω (1). It remains to show

that this bound is tight for d > 3 by proving the existence of an upper bound that is

independent of N and leads to 1
|b|2

= O (1).

This can be shown by induction.

• By (4.3.35) it is evident that 1
|b|2

= O (1) holds for d = 3.

• Assuming that 1
|b|2

= O (1) holds for some d ≥ 3, it follows by

1

|b|2
= 2d

d

∑
i=1

(
d
i

)
ni−d

πi Ii (4.3.36)

(equation (4.3.7)) that Id = O (1).

• It remains to show that 1
|b|2

= O (1) also holds for d + 1.

The starting point is again provided by equation (4.3.7) but this time for for d + 1,

that is,

1

|b|2
= 2 (d + 1)

(
d

∑
i=1

(
d + 1

i

)
ni−d−1

πi Ii +
1

πd+1 Id+1

)
. (4.3.37)

The sum of the first d terms adds to a leading order of 1
n , since Ii = O (1) for

3 ≤ i ≤ d and the lower order terms I2 = Θ (ln N) and I1 = Θ (n) have prefactors

n1−d and n−d, respectively. Therefore these contributions vanish for n→ ∞.

It remains to show that Id+1 = O (1) and this can be done using equation (4.3.13),

that is,

Id+1 = 2d
∫ π

2

π
2n

dy1 . . .
∫ π

2

π
2n

dyd+1
1

∑d
l=1 sin2 yl + sin2 yd+1

. (4.3.38)

As the sines are greater than zero, an upper bound is obtained by dropping the

last one. Now the yd+1 integration can be performed

Id+1 ≤ 2d
(π

2
− π

2n

) ∫ π
2

π
2n

dy1 . . .
∫ π

2

π
2n

dyd
1

∑d
l=1 sin2 yl

(4.3.39)

=
(

π − π

n

)
Id (4.3.40)

74

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

and this results in Id+1 = O (1). Thus, the normalisation constant is of the

demanded order 1
|b|2

= O (1).

Lower and upper bound together prove that the scaling of b for d ≥ 3 dimensions is

characterised by

1
b2 = Θ (1) (4.3.41)

and the scaling of the number of time steps is T = Θ
(√

N
)

.

Thus, the overall result for the normalisation constant is

1
b2 =



2
π ln N + 16

π2 + 4
π ln 4

π −
8K
π2 − 2

π ln 2 +O
(

1
N

)
for d = 2

6
π3 I3 +O

(
ln N
3√N

)
for d = 3

Θ (1) for d ≥ 4

, (4.3.42)

where K ≈ 0.916 is Catalans constant and I3 has a leading order of I3 ≈ 15.672 (4.3.31).

It is important to note that the result for d ≥ 4 relies on equation (4.4.11) which was

used to calculate the bounds for d ≥ 4. Therefore the scaling for d ≥ 4 remains unclear

until it has been shown that equation (4.4.11) holds.

Since it has been shown that for i ≥ 3, the leading order of Ii in the limit n → ∞ does

not depend on n. Thus it can be calculated from equation (4.3.13) by replacing π
2n with 0

and using numerical integration methods.

4.3.5 Success probability

Since the model introduced in section 3.4 leads to a localisation on |νλ〉, the scalar

product in (4.2.12) is crucial to estimate how much probability will be localised at the

target vertex |v〉. b = 〈sv | νλ=1〉 does give a lower bound only as there is no need for

the vector |νλ〉 to have a coin space contribution parallel to |s〉. Therefore the probability

to measure |νλ〉 at the target vertex |v〉 is greater or equal b2.

75

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

0 200 400 600 800 1000
N

0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty

d=2
d=3
d=4
fit

Figure 4.3: Numerical results for the maximal probability at the target vertex as a

function of N for d = 2, 3 and 4. The fitted curve is a one-parameter fit with

a constant times the scaling given in equation (4.3.43).

From equation (4.3.42), it is known

b =



1√
2
π ln N+ 16

π2 + 4
π ln 4

π−
8K
π2−

2
π ln 2+O(1

N)
= Θ

(
1√

ln N

)
for d = 2

1√
6

π3 I3+O
(

ln N
3√N

) = Θ (1) for d = 3

Θ (1) for d ≥ 4

. (4.3.43)

The localisation at the target vertex is not N-dependent for d ≥ 3, but in the d = 2

case the amplitude of |νλ〉 on |v〉may decrease like 1√
ln N

. However, the state |νλ=1〉 is

localised on the marked vertex for d = 2 since the average amplitude of an eigenstate of

the random walk U deceases like 1√
N

. Amplitude amplification methods can be used

to increase the success probability to a constant in N by repeating the search algorithm

O
(√

ln N
)

times [59].

Numerical results of how the probability to find the walk at the target vertex scales as a

function of N are shown in figure 4.3. It can be expected that b gives a lower bound for

76

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

the scaling only as it measures the amplitude in the coin space state |s〉 at |v〉. However,

the estimates represent the behaviour of the localisation on the target vertex very well.

The shape of the localised state |νλ=1〉 on a 31× 31 lattice can be seen in figure 4.1.

Like for the hypercube, section 3.3.5, the probability in |sv〉 is of the same order as the

probability in U |sv〉 as

〈vλ=1 | U | sv〉 = − 2b
2N ∑

~k 6=~0

(
1

e−ig(1) − eiθ~k
+

1

e−ig(1) − e−iθ~k

)
(4.3.44)

= −b
(

1− 1
N

)
. (4.3.45)

To obtain the last equality eig(1) = 1 has been used. Due to the definition of the shift

operator S (4.1.3), the state U |sv〉 is localised on the vertex adjacent to the target vertex

and the state in the coin space points into the direction of the target vertex.

4.4 Model in the two-level subspace.

In the neighbourhood of the crossing, the dynamics of the search algorithm can be

described in terms of the two-level subspace spanned by the orthogonal vectors |Φ0〉

and |νλ〉 which are identified with the standard basis vectors |1〉 and |2〉 respectively.

Let the 2× 2 Hamiltonian H of the search be defined as

H =

 −ω ε eiδ

ε e−iδ −ω

 , (4.4.1)

where ω is the phase of the eigenvalue at the crossing, that is, an integer multiple of

2π since eiω != 1 and the entry ε e−iδ is defined such that ε, δ ∈ R. ε is a small constant

enabling the coupling of the two states. Following the calculation in section 3.4 this

77

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

ansatz leads to the 2× 2 model of Uλ

U2×2
λ =

 cos ε −ieiδ sin ε

−ie−iδ sin ε cos ε

 , (4.4.2)

where the matrix elements can be calculated explicitly.

The eigenvalues and eigenvectors of H are discussed in section 3.4 and it has been

shown that the walk localises on the perturber state |νλ〉 in a time t = π
2ε by applying(

U2×2
λ

)t
to the starting state, that is, the uniform distribution

(
U2×2

λ

)t
|start〉 = −ie−iδ |νλ〉 (4.4.3)

as shown in section 3.4.1.

Since t = π
2ε does not necessarily need to be integer, the number of time steps necessary

for localisation is denoted by T and defined as the integer closest to t.

The calculation of matrix elements for λ = 1 uses equations (4.2.7), (4.2.19) and (4.2.6),

and results in

〈φ0 | U1 | φ0〉 = 1− 2
N

(4.4.4)

〈ν1 | U1 | ν1〉 = 1 (4.4.5)

for the diagonal elements and

〈φ0 | U1 | ν1〉 =
−2b√

N
(4.4.6)

〈ν1 | U1 | φ0〉 =
−2√

N
〈ν1 | U | sv〉 (4.4.7)

=
2b√

N

(
1− 1

N

)
(4.4.8)

for the off-diagonal entries, where (4.3.45) has been used for the last equality.

Comparing the results for the matrix elements to those of equation (4.4.2), the constants

eiδ = −i and ε =
2b√

N
+O

(
1
N

)
(4.4.9)

78

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

0 200 400 600 800 1000 1200
N

0

10

20

30

40

50

60

70

T
(N

)

d=2 numeric
d=3 numeric
d=4 numeric
d=2 theory
d=3 theory
d=4 fit

Figure 4.4: The localisation time t after which the walk is localised at the marked vertex

for several N. Numerical result compared to analytical for d = 2, 3 and 4.

are obtained and the Hamiltonian results in

H =

−ω −iε

iε −ω

 . (4.4.10)

Therefore the time of the search algorithm is identified as

t =
π

2ε
=

π
√

N
4b

+O (1) . (4.4.11)

Note that this equation finally verifies the results for 1
b2 in the case d ≥ 4 as stated in

(4.3.42).

Overall, the number of time steps T specified by the analysis is the integer closest to t

where

t =



π
√

N
4

√
2
π ln N + 16−8K

π2 + 4 ln 4
π−2 ln 2

π +O (1) for d = 2

π
√

N
4

√
6I3
π3 +O (1) for d = 3

Θ
(√

N
)

for d ≥ 4.

(4.4.12)

79

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

0 50 100 150 200
time T

0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty

2d graph
3d graph
6d graph

Figure 4.5: The time evolution of the probability on the marked vertex for three graphs

containing 729 vertices in d = 2, 3 and 6 organised as 272, 93 and 36.

Figure 4.4 compares the analytical results for the localisation time to times obtained

from numerical simulations. The theoretical results agree very well with the numerical

outcome. The general behaviour suggested by this figure is that the walk for a fixed

number of vertices is faster the higher the dimension. In fact, it is advisable to add some

vertices and to reorganise the underlying database such that the search can take place in

a higher dimension.

For example the figure shows clearly that the search on a 103 graph is faster than the

search on a 302 graph although 100 vertices have been added. In addition to that

equation (4.3.43) suggests that not only the search time but also the localisation is better

for the larger system. Figure 4.5 gives a different example as it shows the probability at

the target vertex as a function of T for three different graphs containing 729 vertices each,

organised on lattices in 2, 3 or 6 dimensions. The search time as well as the localisation

on the target vertex improve as d gets higher. A very naive reasoning to explain this

effect is to realise that the graph is far better connected in larger dimensions since each

vertex has 2d outgoing bonds. The price to pay for this speed up is an enlarged Hilbert

80

CHAPTER 4: SEARCH ALGORITHM ON A d-DIMENSIONAL SQUARE LATTICE

space since dimH = 2dN, where N = nd.

The results of the analytical calculation as given in equations (4.4.12) and (4.3.43) shows a

strikingly different behaviour for d = 2 and d ≥ 3 which is confirmed by the simulations

shown in figure 4.5.

In the following chapter 5, some applications of the search algorithm on the lattice are

discussed.

81

CHAPTER 5

Applications of the lattice search

and Grover’s algorithm

The search algorithm on the lattice introduced in chapter 4 possesses some interesting

features which will be discussed in this chapter. Some surprising effects occur when

more than one marked vertex is located on the lattice. To start with, the search algorithm

is generalised to search for m targets, where m � N. Then it will be shown that the

search algorithm can be employed to send a signal from one vertex that therefore acts

as ‘sender’ to another vertex or a set of vertices acting as ‘receivers’. To the best of my

knowledge such sender and receiver models have not been discussed before; apart from

[2], where the results presented here have been published. The algorithm starts in a state

localised at the sender. If sender and receivers are marked as for the search algorithm,

the signal will localise at the receivers as the algorithm proceeds as shown in figure 5.4.

This sender-receiver setting allows one to send a signal from one vertex of the graph

to a set of receivers without localisation at other vertices. It should also be noted, that

neither the sender nor the receivers need to know the others positions.

This effect can now be used to introduce a new kind of search algorithm that introduces

82

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

an additional marked vertex to the set of target vertices which acts as sender where

the target vertices act as receivers. Doing so, a continuous signal can be send from the

sender which will localise at the target vertices, see figure 5.6. This way a measurement

of the signal will reveal the target vertices. Other than for the search algorithms of the

previous chapters, it is not crucial to know the search time (for which knowledge of

the number of receivers is needed) as the localisation on the target vertices does not

disappear.

Numerical simulations are shown to visualise the effects and to verify the analytical

results. Most figures for the lattices search shown in this chapter result from simulations

for the 31× 31 lattice although the analysis holds for arbitrary d > 1.

After the detailed discussion for the algorithms on the lattice, both effects, the sender

and receiver model as well as the continuous signal search algorithm, will then be

shown to hold also for the setting of Grover’s search algorithm. To do so, a more general

introduction of Grover’s search algorithm as presented in section 2.3.1 will be given

such that the algorithm searches for m target states. Then one of the marked states is

singled out as sender. As for the lattice, the signal localises at the receiving states for

the single impulse as well as the continuous signal which is used for the new search

algorithm.

To close this chapter, some similarities of the lattice underlying the search algorithm dis-

cussed chapter 4 to periodic structures as in solid states or optical crystals are discussed.

Furthermore, the band structure of the unperturbed 2-dimensional lattice is calculated.

5.1 m marked vertices

The analysis of the lattice search can easily be adapted to search for more than one

marked vertex. The reduced space H′ introduced in section 4.2.1 is defined such that

83

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

0.4 0.6 0.8 1 1.2 1.4 1.6
λ

-1

-0.5

0

0.5

1

ω

Figure 5.1: The crossing for m = 4 on a d = 2, N = 121 lattice, magnification.

H \H′ is orthogonal to all vectors of type |s〉 ⊗ |w〉, where |s〉 is equally distributed in

coin space and |w〉 an arbitrary vector in position space.

Consider m� N marked vertices and denote these
∣∣vi〉, where i = 1, . . . , m and ~vi 6= ~vj

for i 6= j. The operator Uλ can be adapted by changing the coin matrix analogous to the

case with one marked vertex, that is

Uλ = U +
m

∑
i=1

(
eiπλi − 1

)
U
∣∣∣svi
〉 〈

svi
∣∣∣ , (5.1.1)

where the index λ consists of m parameters λ = (λ1, λ2, . . . , λm). To simplify the

notation λ = 1 will be used for λi = 1 for all i. The marking states
∣∣svi〉 can be

calculated like in (4.2.6) and

∣∣∣svi
〉

=
1√
N
|φ0〉+

1√
2N

∑
~k 6=~0

ω−
~k~vi
(∣∣∣φ+

~k

〉
+
∣∣∣φ−~k 〉) . (5.1.2)

The operator Uλ is now defined in an m-parameter space. Figure 5.1 shows the eigen-

phases at the avoided crossing along the line in parameter space where all λi’s are equal.

For the 2-dimensional lattice containing 117 unmarked and 4 marked vertices, there are

84

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

three eigenphases crossing at the point (λ = 1, ω = 0) and two outer eigenphases in an

avoided crossing.

Again, a model Hamiltonian for the crossing is constructed. It can be reckoned that the

important vectors are m localised states, one for each marked vertex, and the uniform

distribution. This results in a model Hamiltonian specified by an (m + 1)× (m + 1)

matrix. The spectra shown in figures 5.1 and 4.2 support this approach as there are

m + 1 eigenphases near (λ = 1, ω = 0).

Furthermore, the overlap between different localised states will be neglected, that

is, 〈νi
λ|ν

j
λ〉 = δij is assumed. A second assumption that will be employed is that

the localised state for a single marked vertex as given in (4.2.18) provides a good

approximation for the localised states. Therefore the m vectors

∣∣∣νi
λ

〉
=

b
(
eiπλ − 1

)
√

2N
∑

~k 6=~0

ω−
~k~vi

(
eiθ~k

eig(λ) − eiθ~k

∣∣∣φ+
~k

〉
+

e−iθ~k

eig(λ) − e−iθ~k

∣∣∣φ−~k 〉
)

(5.1.3)

will be used for the m localised states.

Note that especially the assumption 〈νi
λ|ν

j
λ〉 = δij does not necessarily hold. It can

be seen from the definition (5.1.3) and from figure 4.1 that the amplitude of
∣∣νi

λ

〉
is

not zero everywhere but on |vi〉. However, it will be assumed that interaction can be

neglected as a relatively large probability is localised at the target vertex and its 2d

nearest neighbours, see section 4.3.5.

Finally, it will be assumed that the matrix elements
〈

νi
λ | H | ν

j
λ

〉
= 0 for i 6= j, that

is, interaction takes place through the uniform distribution |φ0〉 only which can be

regarded as carrier state. The remaining non-diagonal matrix elements ±iε have been

calculated in (4.4.9). Hence ε = 2b√
N

+O
(

1
N

)
. The diagonal entries ω are again integer

multiples of 2π as they are defined by the phase of the crossing. Now, the Hamiltonian

H can be determined using the canonical basis defined as {|1〉 , |2〉 , . . . , |m + 1〉} =

85

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

{
|Φ0〉 ,

∣∣ν1
λ=1
〉

, . . . ,
∣∣νm

λ=1
〉}

that is

H =



−ω −iε −iε . . . −iε

iε −ω 0 . . . 0

iε 0 −ω
. . .

...

...
...

. 0

iε 0 . . . 0 −ω


(5.1.4)

in analogy to the definition in (4.4.1).

5.1.1 Eigenvalues and eigenvectors of the model Hamiltonian

To agree with numerical calculations of the spectrum of Uλ in the space H′ as shown in

figure 5.1 H needs m− 1 eigenvalues −ω and 2 eigenvalues −ω± ∆
2 . Here ∆ is defined

as the distance between the two outer eigenphases of Uλ.

Eigenvectors and eigenvalues of H are easily calculated:

eigenvector eigenvalue

|u±〉 = i√
2m

(
∓i
√

m, 1, 1, . . . , 1
)T −ω±

√
mε∣∣ui〉 = 1√

i(i−1)

(
∑i

j=2 |j〉+ (1− i) |i + 1〉
)

−ω

, (5.1.5)

where
∣∣ui〉 is defined for i = 2, 3, . . . , m. Hence the analytical results coincide with the

numerics.

5.2 Search for m target vertices

The uniform distribution |φ0〉 = |1〉 can be expressed using the eigenvectors of H, that

is, |φ0〉 = 1√
2
(|u+〉 − |u−〉). Following the calculation in section 3.4.1, the time of the

search is computed by applying Uλ=1 t-times to the starting state, where t remains

86

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

Figure 5.2: The localisation at T = 24 of the search for 4 marked vertices on a 31× 31-

lattice.

unknown. The resulting state is

(
U(m+1)×(m+1)

λ=1

)t
|φ0〉 = e−iHt 1√

2

(∣∣u+〉− ∣∣u−〉) (5.2.1)

=
1√
2

(
ei(ω−

√
mε)t ∣∣u+〉− ei(ω+

√
mε)t ∣∣u−〉) . (5.2.2)

The yet unknown time t is now defined such that ei
√

mεt = i, that is,

t =
π

2
√

mε
(5.2.3)

and therefore

(
U(m+1)×(m+1)

λ=1

)t
|φ0〉 =

eiωt
√

2

(
−i
∣∣u+〉− i

∣∣u−〉) (5.2.4)

= − ieiωt
√

m
(0, 1, 1, . . . , 1)T . (5.2.5)

It can now be seen that the search algorithm localises on all m marked vertices simulta-

neously after T time steps, where T is the integer closest to t. This coincides with the

result for m = 1 in (4.4.11).

In figure 5.2 the resulting state of the search algorithm for 4 target vertices is displayed

while figure 5.3 shows the time evolution of the probability on several vertices. For a

87

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

0 50 100 150 200
time T

0

0.01

0.02

0.03

0.04

0.05

0.06

pr
ob

ab
ili

ty

target vertices
other

Figure 5.3: Time evolution on the 4 marked vertices and 4 randomly chosen unmarked

vertices on a 31× 31-lattice.

31× 31-lattice, the search localises on the marked positions after T = 22 times steps.

To visualise the time evolution, figure 5.3 shows how the probabilities on the 4 target

vertices evolve compared to the probabilities on 4 randomly chosen unmarked vertices

in the same setting, that is, the same configuration of target vertices and the same lattice.

Equation (4.3.43) shows that, for the 2-dimensional lattice, the probability decays with

increasing N. This explains the small probability to measure the walk at one of the

target vertices in figures 5.2 and 5.3, but the probability is still large compared to the

probability at the unmarked vertices. However, better results can be expected for the

lattice in d ≥ 3 dimensions (compare figure 4.3).

5.3 Transfer of a signal

The quantum search with m ≥ 2 marked vertices can be used to transmit a signal across

the graph without further changes to the search operator Uλ=1. It is also remarkably

that neither sender or receiver need to now each others position.

88

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

5.3.1 Single impulse

If the algorithm starts not in the uniform distribution but at vertex |vm〉 the starting state

is
∣∣νm

λ=1
〉

=̂ |m + 1〉. After applying Uλ=1 t times, the resulting state is of the form

(
U(m+1)×(m+1)

λ=1

)t
|νm

λ 〉 (5.3.1)

= − ie−iHt
√

2m

(∣∣u+〉+
∣∣u−〉− i

√
2 (m− 1) |um〉

)
(5.3.2)

= − ieiωt
√

2m

(
e−i
√

mεt ∣∣u+〉+ ei
√

mεt ∣∣u−〉− i
√

2 (m− 1) |um〉
)

.

(5.3.3)

Choosing t = π√
mε(

U(m+1)×(m+1)
λ=1

)t
|νm

λ=1〉 =
ieiωt
√

2m

(∣∣u+〉+
∣∣u−〉+ i

√
2 (m− 1) |um〉

)
(5.3.4)

= −eiωt
(

0,
2
m

,
2
m

, . . . ,
2
m

,
2
m
− 1
)T

(5.3.5)

is obtained and the state is localised on all m− 1 remaining marked vertices with the

same amplitude and a remaining contribution on the mth marked vertex. For further

reference, the vertex |vm〉will be referred to as ‘sender’ and the remaining m− 1 marked

vertices as ‘receivers’.

Note that in the special case m = 2, the whole signal is transmitted and the amplitude

on the sender vanishes completely. Figure 5.4 shows how the intensity on the sender, a

single receiver and 4 randomly chosen vertices evolves in time. The noise on top of the

signal of the sender seems to be due to the way the starting state has been generated.

In an experiment it would be difficult to generate
∣∣∣νsender

λ

〉
. Therefore the starting state

used for the numerics was constructed as the localised state of the search algorithm

that started in the uniform distribution where
∣∣∣νsender

λ

〉
acted as the only marked vertex.

Only after this first localisation, when the probability at the sender had reached its first

maximum, the second marked vertex was introduced.

89

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

0 50 100 150 200
time T

0

0.05

0.1

0.15

0.2

pr
ob

ab
ili

ty

sender
receiver
other

Figure 5.4: A signal is transferred from one vertex, acting as sender to another one, the

receiver, on a 31× 31-lattice. At the bottom of the figure, the probability

evolution on 4 randomly chosen vertices is plotted.

The whole process is periodic and once the walk is localised at the receiver the rôles of

sender and receiver change and the receiver returns the signal back to the sender.

The set of marked vertices splits in one sender and m− 1 receivers. At each receiver 4
m2 of

the probability will localise and a probability of (2−m)2

m2 remains at the sender. Figure 5.5

shows some results for various simulations on a 31× 31 lattice. The general behaviour

agrees with the theoretical result although there are differences. The theoretical model

is based on the assumption that there are no interactions between different marked

vertices, that is, the configuration of sender and receivers does not have any influence

on the result. This assumption is just an approximation and figure 5.5 shows that

the configuration of sender and receivers does play a rôle. This can be seen as there

are different intensities for different configurations. In the case of two receivers the

differences obtained for different configurations are most striking.

Furthermore the plot showing the localisation of the search for 4 marked vertices printed

in figure 5.2 shows that the distribution is likely to affect the resulting state: It can be

90

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

0 1 2 3 4 5 6
number of receivers (m-1)

0

0.5

1

in
te

ns
ity

 (
ar

bi
tr

ar
y

un
its

)

sender
receiver
theory

Figure 5.5: Amplitude of the signal at the sender and the receivers after the localisation

on the receivers on a 31× 31 lattice. Three different receiver configurations

have been considered for each fixed m. The bold lines give the predictions

obtained from equation (5.3.5).

seen that the amplitude on the neighbours of the marked vertices is notably away from

zero and if two receivers are close together, e.g. neighbours, interference effects are

expected. Thus the different results for different configurations of marked vertices

shown in figure 5.5 are explained.

Interestingly, the sender can estimate how many receivers are listening to the signal by

tracking the signal locally at the senders position. There are two indicators that enable

an estimate, the time and the minimal amplitude. The time after which the signal at

the sender reaches its minimum scales like t = π√
mε

, but since the minimum are quite

broad, the time measurements are inaccurate. Figure 5.5 suggests that by tracking the

magnitude locally to measure the minimal amplitude, the sender is able to distinguish

between m− 1 = 1, 2 or ≥ 3 receivers. This technique is not accurate for more than 3

receivers because the differences due to different sender-receiver configurations are on

the same scale as the difference between different numbers of receivers. However, if the

91

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

0 50 100 150 200 250 300 350 400
time

0

10

20

30

40

50

si
gn

al
 a

t s
en

de
r

an
d

re
ce

iv
er

s

sender
receiver 1
receiver 2

Figure 5.6: A signal is fed in continuously at a sender and observed at the receiver. At

time t = 200 the receiver changes position and the dashed lines show the

signals for the case of an unchanged receiver. A 31× 31 lattice was used

and to keep the signal finite, the system was damped and 10% of the signals

at sender and receiver and 1% at all other vertices was reduced.

sender knows where the receivers are located on the lattice, an estimate seems possible.

5.3.2 Continuous signal

Since it is possible to transfer a signal from one marked vertex to some receivers without

knowing the number or positions of the receivers, it is interesting to investigate if the

mechanism works for a continuous signal as well. Numerical simulations suggest that

this is the case.

Figure 5.6 shows the results for two different settings. In both simulations the signal

is fed into the lattice by adding the state |sv〉 at a sender ~v at each time step. A single

sender was introduced at a randomly chosen position and the signal at sender and

receiver has been investigated. Furthermore, some damping was introduced to keep the

signal finite. Up to time T = 200 the figure shows how the signal evolves at sender and

92

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

receiver. The system takes some time until an equilibrium between damping and added

signal occurs. After T = 200, the system is almost stable as shown by the dashed line

for T > 200.

The second simulation, shown by the continuous line, starts identically but at T = 200

the position of the receiver was changed and the figure for T ≥ 200 shows how the

system adapts to this sudden change. The result is that the signal at the old receiver

position breaks down almost immediately whereas a new peak arises at the new position

in less time than the peak at the initial position.

The faster time is easy to explain, since according to the model introduced in section 5.1,

the localised states at sender and receiver interact through a carrier state, the uniform

distribution. Therefore the peak at the first receiver can not be built up, until a sufficient

amount of the signal has been transferred into the carrier state. When the position of the

receiver is changed, this is not necessary as the carrier state is already occupied.

The overshooting of the signal at the old position shortly after the receiver has been

moved is due to the special choice of damping. That is, a general damping of 1% at all

vertices and a damping of 10% at sender and receiver. This has been done to simulate

an additional bond attached to those vertices where 10% of the signal leaves the graph,

enabling sender and receiver to perform measurements without affecting the state in

the system. Hence the equilibrium that arises after a critical time at the receiver takes

this damping into account. Then, when the position is changed the damping at the old

position disappeared and the signal overshoots before the system adjusts to the new

setting with the now unmarked coin at this position and the signal breaks down.

93

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

5.4 Grover’s search algorithm

In this section, the sender and receiver model and the continuous search discussed above

will be adapted to Grover’s search algorithm. In section 2.3.1 Grover’s search algorithm

has been introduced (see also [5, 23]) but a detailed discussion has been postponed until

now. The discussion starts with a repetition of the definition given in the earlier section,

here adapted to m target states.

Given a system with N states of which m � N states are target states. Grover con-

structed a search algorithm [23] that will localise on the target states using the following

steps.

1. initialise the system in the uniform distribution

|ψ〉 :=
(

1√
N

,
1√
N

,
1√
N

, . . . ,
1√
N

)T

(5.4.1)

2. repeat the following unitary operations T times, where T is a particular, but yet

unknown time T = Ω
(√

N
)

(a) rotate the phase of all states |vi〉 by π if |vi〉 is a target state and by 0 otherwise.

(b) apply the unitary matrix D defined by Dii = −1 + 2
N and Dij = 2

N for i 6= j

3. measure the resulting state |ψresult〉 .

5.4.1 Grover’s search algorithm for m marked vertices

The calculation of the search time for m marked vertices follows the presentation in [5].

As discussed in section 2.3.1, Grover’s algorithm, consists of a successive application of

two reflection operators performing a rotation in a two dimensional subspace.

|ψ〉 =
1√
N

(1, 1, . . . , 1)T (5.4.2)

94

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

is defined as the uniform distribution (5.4.1) and let the uniform distributions of the m

target states and the N −m unmarked states be defined as

|vt〉 =
1√
m∑

~x

′ |x〉 (5.4.3)

|vu〉 =
1√

N −m∑
~x

′′ |x〉 , (5.4.4)

where ∑′ sums over all marked and ∑′′ over all unmarked states ~x. Using these

distributions, the uniform distribution (5.4.1) can be expressed as |ψ〉 =
√

m
N |vt〉 +√

N−m
N |vu〉 = sin θ

2 |vt〉+ cos θ
2 |vu〉 for some angle θ with

θ = 2 arcsin
√

m
N

. (5.4.5)

Grover’s algorithm can be denoted as

G = (2 |ψ〉 〈ψ| − 1) O, (5.4.6)

where the oracle O switches the sign of all components of the m marked states [5] and

therefore

O = 1− 2∑
~x

′ |x〉 〈x| . (5.4.7)

For any superposition |α〉 = sin α |vt〉+ cos α |vu〉, Grover’s algorithm performs a rota-

tion in the 2-dimensional space spanned by |vt〉 and |vu〉 since

G |α〉 = (2 |ψ〉 〈ψ| − 1) (− sin α |vt〉+ cos α |vu〉) (5.4.8)

=2 |ψ〉
(
− sin

θ

2
sin α + cos

θ

2
cos α

)
+ sin α |vt〉 − cos α |vu〉 (5.4.9)

=
((
−2 sin2 θ

2
+ 1
)

sin α + 2 cos
θ

2
sin

θ

2
cos α

)
|vt〉

+
((

2 cos2 θ

2
− 1
)

cos α− 2 sin
θ

2
cos

θ

2
sin α

)
|vu〉 (5.4.10)

= sin (θ + α) |vt〉+ cos (θ + α) |vu〉 (5.4.11)

and the angle of the rotation is θ. Note that G does not shift the state out of the plane

spanned by |vt〉 and |vu〉. A sketch of the 2-dimensional subspace and the effect of G is

shown in figure 5.7.

95

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

Figure 5.7: The action of G in the 2-dimensional subspace.

In particular, this is true for |ψ〉 and t applications of G lead to

Gt |ψ〉 = sin
(

θ

2
+ tθ

)
|vt〉+ cos

(
θ

2
+ tθ

)
|vu〉 . (5.4.12)

It is obvious that for small angles θ, the algorithm reaches a state close to |vt〉 for some t

and will be measured in one of the m marked states after t applications of G with high

probability. The optimal number of applications of the search algorithm G is defined as

the integer T which is closest to t defined by

sin
(

θ

2
+ tθ

)
= 1, (5.4.13)

that is,

t =
π

2θ
− 1

2
. (5.4.14)

If only a small fraction of states are target states and m � N, then θ ≈ 2
√

m
N follows

from (5.4.5) and

t ≈ π
√

N
4
√

m
− 1

2
. (5.4.15)

Thus the number of time steps T scales like

T = Θ

(√
N
m

)
. (5.4.16)

96

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

5.4.2 Sender and receiver model for Grover’s algorithm

This thesis introduced a sender-receiver model for the lattice search. As will be shown

in this section, the same can be done for Grover’s search algorithm.

To transfer the sender and receiver model to Grover’s algorithm the definitions of the

previous section need to be changed. Additional to the m marked vertices, a special

marked state |v0〉 called ‘sender’ is introduced making the number of unmarked vertices

N −m− 1.

The new set of vectors is defined as

|vt〉 =
1√
m ∑

~x 6=~v0

′ |x〉 (5.4.17)

|vu〉 =
1√

N −m− 1∑
~x

′′ |x〉 (5.4.18)

|ψ〉 =
√

m
N
|vt〉+

√
N −m− 1

N
|vu〉+

1√
N
|v0〉 , (5.4.19)

where ∑′ and ∑′′ sum over all marked and unmarked states respectively. Note that |vt〉

is the uniform distribution of all marked states but the sender.

To simplify the analysis, two auxiliary states are introduced

|α〉 =
√

m
m + 1

|vt〉+
1√

m + 1
|v0〉 (5.4.20)

|β〉 = − 1√
m + 1

|vt〉+
√

m
m + 1

|v0〉 (5.4.21)

such that |α〉 is the uniform distribution of all marked states including the sender and

|β〉 is a second state in the |vt〉-|v0〉-plane orthogonal to |α〉. Note that this implies |β〉

orthogonal to |ψ〉, the uniform distribution of all states.

The uniform distribution lies in the span of |uu〉 and |α〉 and an angle θ is defined such

97

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

that

|ψ〉 =

√
N −m− 1

N
|vu〉+

√
m + 1

N
|α〉 (5.4.22)

= cos
θ

2
|vu〉+ sin

θ

2
|α〉 . (5.4.23)

The action of G on an arbitrary vector in the span of the vectors |vu〉, |α〉 and |β〉

will be analysed using a normalised test vector |a〉 = au |vu〉 + aα |α〉 + aβ |β〉 with

|au|2 + |aα|2 +
∣∣aβ

∣∣2 = 1:

G |a〉 = (2 |ψ〉 〈ψ| − 1)
(
au |vu〉 − aα |α〉 − aβ |β〉

)
(5.4.24)

=2 |ψ〉
(

au cos
θ

2
− aα sin

θ

2

)
− au |vu〉+ aα |α〉+ aβ |β〉 (5.4.25)

= (au cos θ − aα sin θ) |vu〉+ (au sin θ + aα cos θ) |α〉+ aβ |β〉 . (5.4.26)

As before, this subspace does not mix with its complement and the algorithm once

started in this subspace is trapped there.

If the canonical basis is identified with these three basis vectors, that is |vu〉 = |1〉,

|α〉 = |2〉 and |β〉 = |3〉, G is the rotation matrix

G =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (5.4.27)

as can be seen from (5.4.26), and hence

Gt =


cos (tθ) − sin (tθ) 0

sin (tθ) cos (tθ) 0

0 0 1

 . (5.4.28)

The uniform distribution of all unmarked states is |vu〉 = (1, 0, 0)T. An angle φ is

98

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

defined such that sin φ
2 = 1√

1+m
and cos φ

2 =
√

m
1+m and simple algebra leads to

|v0〉 =
(

0, sin
φ

2
, cos

φ

2

)T

(5.4.29)

|vt〉 =
(

0, cos
φ

2
,− sin

φ

2

)T

. (5.4.30)

Now, the effect of t applications of G on the sender |v0〉 can easily be analysed and one

observes oscillations in all three states

〈
v0 | Gt | v0

〉
= sin2 φ

2
cos (tθ) + cos2 φ

2
(5.4.31)

〈
vt | Gt | v0

〉
=

1
2

sin φ (cos (tθ)− 1) (5.4.32)

〈
vu | Gt | v0

〉
=− sin

φ

2
sin (tθ) . (5.4.33)

Figure 5.8 shows the probability for N = 50, and m = 1 and m = 5 in two different

plots in one state of the set of receiving and unmarked states. Note that the curve for the

unmarked state is close to zero and barely visible.

0 5 10 15 20 25 30
time

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

sender
receiver
unmarked

 1 receiver

0 5 10 15 20 25 30
time

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

sender
receiver
unmarked

 5 receivers

Figure 5.8: Results for Grover’s algorithm in a setting with 50 states and one sender

and one and five receivers respectively.

5.4.3 Continuous sender in Grover’s algorithm

To send an continuous signal from the sender to the receivers, some damping needs

to be introduced such that the system reaches a constant saturation state. Let p be the

99

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

0 50 100 150 200
time

0

20

40

60

80

100

120

si
gn

al

sender
receiver
unmarked

 1 receiver

0 50 100 150 200
time

0

50

100

150

200

250

300

si
gn

al

sender
receiver
unmarked

 5 receivers

Figure 5.9: Results for Grover’s algorithm with 50 states and continuous sender. The

figures show the signal of a system with 5% damping and one receiver and

five receivers respectively.

probability of the undamped part, then (100− 100p) % of the amplitude in each state is

damped. The state |A (T)〉 after T time steps can be calculated using

|A (T)〉 =
T−1

∑
i=0

piGi |a〉 , (5.4.34)

where |a〉 is an arbitrary state that is added every time step.

Using the amplitudes given in equations (5.4.31), (5.4.32) and (5.4.33) the signal 〈test|A(t)〉2
k

has been plotted in figure 5.9, where k is the number of states, that is 1 for the sender, m

for the receiver and N −m− 1 for the unmarked state and |test〉 was chosen equal to

the uniform distributions of sender, receivers and unmarked states.

5.5 Continuous model as search algorithm

The continuous-sender model for Grover’s search and the lattice search as shown in

sections 5.3.2 and 5.4.3 represents an improvement to both search algorithms. Additional

to the target vertices of the search setting, a sender is introduced and sends a continuous

signal to the target vertices which act as receivers. This model has the advantages that

100

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

no uniform distribution is required to search for the target vertices and the number of

target vertices does not need to be known.

Unlike the original algorithm from Grover, there is no need to know the search time

exactly since once the walk is localised at the receivers, the signal remains there. A critical

point of Grover’s algorithm is knowing the localisation time T close to t = π
√

N
4
√

m −
1
2

at which one needs to perform the measurement. Since T depends on the overall

number of states N and the number of target states m, Grover’s algorithm requires the

knowledge of the size of the system N and the number of target states in advance. If the

measurement is not performed at T, the algorithm is not well localised and the result of

the measurement can be any arbitrary vertex.

The algorithm with continuous sender produces a high signal at all marked vertices,

that is sender and target vertices. It reaches a stable localisation such that the time is

not a critical factor for the algorithm and neither the number of target states. It might

seem to be a disadvantage that the time at which the localisation reaches a stationary

state takes significantly longer. In the example given in figure 5.9 for one receiver, no

major changes occur after 100 time steps while the localisation time defined by (5.4.15)

is 5 time steps. However, the numerics suggests that a localisation emerges with an

amplitude notably higher than at the unmarked states after a much shorter time.

A different approach leading to a somewhat similar result was introduced in [60]. Mizel

introduced a search algorithm similar to Grover’s algorithm that succeeds to localise at

an unknown number of target vertices in a time
√

N. Due to dissipation the rotation in

the two dimensional subspace is damped and does eventually stop in the localised state.

Although the method used is quite different from the approach discussed in this thesis,

both algorithms are able to find an unknown number of target vertices and the localised

state becomes stationary.

101

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

Figure 5.10: Unit cell (black) within the 2 dimensional periodic lattice (grey).

5.6 Conditions for an experimental realisation

A promising implementation for an experimental realisation is provided by systems

with periodic structures like crystals in solid states or photonic crystals. An introduction

to photonic crystals can be found in [61]. These systems can be regarded as periodic

structures consisting of unit cells and it is possible to introduce perturbations by altering

single unit cells.

The system of the search on a regular square lattice as defined in section 4.1.1 draws a

similar picture since an otherwise periodic system is perturbed by a marked vertex or

defect.

As sketched in figure 5.10 the lattice can be understood to be composed of unit cells

whose boundaries cross the bonds of the graph in the middle. The operator U introduced

in section 4.1.1 will, for the scope of this section, be redefined such that it now propagates

waves from one unit cell to its nearest neighbours. Other than in solid states or photonic

crystals, the lattice takes only interactions between nearest neighbours into account and

neglects dissipation.

5.6.1 Band structure of the unperturbed lattice

Assuming that Uλ=0 does not depend on the frequency of the quantum particle propa-

gating through the 2-dimensional lattice, the band structure of the unperturbed lattice

102

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

can be evaluated by the condition

det
(
12dnd − eikaUλ=0

)
≡ 0, (5.6.1)

where a is the geometrical width of the unit cells and k the wave length of the walker.

Hence eika is the phase shift between incoming and outgoing waves of the unit cells.

Note that condition (5.6.1) is equivalent to demanding e−ika being an eigenvalue of Uλ=0

as it is equivalent to det
(
12dnd e−ika −Uλ=0

)
≡ 0. The phase factor can be obtained by

calculating the eigenstates, that is, asking for stationary solutions of Uλ=0.

Consider the 2-dimensional lattice and let ψx
b , ψ

y
d be the wave functions on bond b and d

respectively, where b is an index varying over all bonds pointing in x direction and d

enumerating the bonds in y direction. Let the coordinate on the bonds be defined such

that the direction of increasing coordinates agrees with the directions of x and y.

Wave propagation on the bonds can be characterised using plane waves and a set of

coefficients Ab, Bb, Cd, Dd according to

ψx
b = Abeikx + Bbe−ikx (5.6.2)

ψ
y
d = Cdeiky + Dde−iky. (5.6.3)

Regard the wave functions in the neighbourhood of a vertex v. Let b and d be the bonds

leaving v in negative x and y directions and b + 1, d + 1 the bonds leaving v in positive

x and y directions respectively. Due to the periodicity of the system stationary solutions

are translational invariant and the wave functions ψx
b+1 and ψ

y
d+1 are specified by the

wave functions on ψx
b and ψ

y
d and the yet unknown phase factors κ1 and κ2

Ab+1 = eiκ1a Ab

Bb+1 = eiκ1aBb

Cb+1 = eiκ2aCb

Db+1 = eiκ2aDb

. (5.6.4)

103

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

However, time propagation provides an additional mapping between the amplitudes

that is governed by the vertex scattering matrix σ that maps the four incoming waves at

v to the four outgoing waves 

Bbe−ika

Ab+1

Dde−ika

Cd+1


= σ



Abeika

Bb+1

Cdeika

Dd+1


. (5.6.5)

The definition of σ from equation (4.1.1) and the set of identities in (5.6.4) leads to a

linear system of equations in Ab, Bb, Cd and Dd

−eika eiκ1a − 2e−ika eika eiκ2a

eika − 2eiκ1a −eiκ1a eika eiκ2a

eika eiκ1a −eika eiκ2a − 2e−ika

eika eiκ1a eika − 2eiκ2a −eiκ2a





Ab

Bb

Cd

Dd


=~0. (5.6.6)

To obtain stationary solutions for the wave function, the determinant of the matrix of

coefficients needs to be zero, and hence

0 = sin (ka) (cos (κ1a) + cos (κ2a)− 2 cos (ka)) (5.6.7)

defines the band structure of the 2 dimensional lattice.

Figure 5.11 shows a three dimensional plot of the thus obtained band structure for a = 1.

The band structure is 2k periodic and the figure is restricted to k ∈ [−π, π].

The finite number of vertices per dimension and periodic boundary conditions of the

lattice demand the phase factors for n translations in dimension i to be eiκian = 1.

Therefore the band structure is discretised according to

κi =
2πli
an

li ∈ Z. (5.6.8)

A phase shift of more than 2π in positive or negative direction can not be distinguished

from a smaller one. Thus κia can be restricted to [−π, π] without loss of generality.

104

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

Figure 5.11: The band structure of the two dimensional lattice.

The thus obtained discrete band structure coincides with the eigenphases discussed in

section 4.1.2.

5.6.2 Defect states

From the analysis in section 4.2 it is known that the perturbation introduces a new

eigenphase, the defect state, that crosses through the spectrum at k = 0 modulo 2π.

Defect states that are localised in the band gap are trapped at the defect since no

transition through the regular, unperturbed system is possible. Given a system with

defect states that are within the band and have a frequency near a uniformly distributed

state at k = 0 modulo 2π. According to the analysis of the search on the lattice, it

should be possible for the defect state of this system to interact with the eigenstates of

the unperturbed system and it may be assumed that a localisation from the uniformly

distributed state does occur in an experimental setting.

Although it is not yet clear what conditions such a system has to meet, it will be

interesting for further research to investigate if an experimental search algorithm in

105

CHAPTER 5: APPLICATIONS OF THE LATTICE SEARCH AND GROVER’S ALGORITHM

a crystal can be constructed. Following the reasoning above, one can expect that one

condition is that the system has a localised defect with a defect state close to a uniformly

distributed state.

106

CHAPTER 6

Some thoughts on the lattice

search

This chapter lists some speculations and ideas why some search algorithms are suc-

cessful while others are not. There are many open questions about the conditions for

successful localisation processes.

The main part of the chapter consists of reasoning and numerical simulations. Based on

the lattices search different coin flip operations are tested against the search constructed

by Ambainis, Kempe and Rivosh (AKR). Although the lattice search in d dimensions

does not scale optimal, that is with
√

N, the coin flips tested in this chapter are not better.

On the contrary, two of the three tested algorithms achieve no significant localisation at

all, figure 6.3. Only the coin in equation (6.2.1) results in a time which scales better than

the AKR-coin, compare figure 6.1. However, the localisation is not as good as for the

AKR-coin (figure 6.2) and therefore the overall behaviour does not seem to be better. A

detailed analysis of the search algorithm would be necessary to compare both search

algorithms but this however, is beyond the scope of this chapter and due to lack of time

beyond the scope of this thesis.

107

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

6.1 What makes an algorithm efficient?

It is somehow surprising that the search algorithm on the lattices has a different efficiency

in 2 than in 3 or more dimensions. Answering the question ‘Why?’ might provide deeper

inside into conditions that enable the algorithm to localise on the target vertex faster.

The algorithm in 2 dimensions needsO
(√

N ln N
)

time steps, whileO
(√

N
)

provides

a lower bound for search algorithms in general [23, 24]. Therefore it is not guaranteed

that no algorithm exists that provides a search on the 2-dimensional lattice with a

more efficient scaling in N. Furthermore equation (4.3.43) shows that the scaling of

the amplitude on the marked vertex is not as good as for lattices with more than two

dimensions.

How does the search algorithm for a d-dimensional lattice localise? It can be seen

from figure 4.5 and from the theory in section 4.4 that, up to some fluctuations, the

probability to measure the walk at the target vertex increases steadily until it reaches

its maximum where it remains for a few time steps before it starts do decrease again.

Since a notable amount of probability is localised at the marked vertex, the algorithm

has to have backscattering at the neighbouring vertices. Otherwise, the walk would not

be able to localise at the marked vertex with a probability of more than 40%, as can be

seen for the 6-dimensional lattice in figure 4.5, for more than two time steps. Obviously,

the 40% intensity at time t1 would be shifted to the neighbouring vertices at t1 + 1, and

on a lattice without backscattering, the probability can not extend 20% at t1 + 2. As the

localisation on the target vertex is high for more than two time steps, some contributions

must have been backscattered from the nearest neighbours of the target vertex.

The coin flip ruling the backscattering at the nearest neighbours of the target vertex is

the unperturbed local coin flip as defined in equation (4.1.1). That is the backscattering

is defined through the diagonal terms as 1
d − 1, while the factors for the amplitudes of

108

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

the outgoing waves in all other directions are 1
d .

It can be seen that the coin flip acts differently in 2 dimensions. In this lattice, backscat-

tering is singled out only in sign and the magnitude for backscattering is equal to the

magnitude for scattering in any other direction. The lattices in more dimensions single

backscattering out in sign and magnitude as the probability for backscattering is higher

than for any other direction.

One may thus conclude that backscattering enables the algorithm to trap the amplitude

more efficiently at the marked vertex and that the search will thus have an improved

localisation if backscattering is increased. To investigate if the poor result for the search

on the 2-dimensional lattice is connected to the lower probability for backscattering

some numerical results are considered in section 6.2.

An argument against higher backscattering is that it is important that the walk is able to

spread ‘fast’ through the network. When the walk is started in the uniform distribution

and no marked vertex is introduced, it will remain there because the uniform distribution

is an eigenstate of the unperturbed walk. As soon as a vertex is marked by a different

coin flip, the ‘knowledge’ of the perturbation starts to spread through the graph. 3-

dimensional simulations on the 2-dimensional graph as shown in figure 4.1 and figure 4.5

for several time steps give the impression that the marked vertices attract the probability

right from the start. To localise the probability at the target vertex the information has to

spread through the graph and to increase backscattering may be the wrong approach

to make the search more efficient. Thus the amount of backscattering may have to be

balanced between these two effects.

The performance of three different coins will be analysed in this chapter, the ‘Kottos-

Smilansky coin’, the Fourier coin and an algorithm based on a coin without backscatter-

ing will be investigated.

109

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

6.2 The Kottos-Smilansky coin

The most promising coin flip is the Kottos-Smilansky coin. This coin matrix, introduced

by Kottos and Smilansky in 1999 [37], is a generalisation of the coin used in chapter 4

and is defined as

σKS (µ) =
(

1 + e−iµ
)
|s〉 〈s| − 12d, (6.2.1)

where |s〉 is defined as in chapter 4, that is, |s〉 = 1√
2d ∑d

i=1 (|i+〉+ |i−〉) and µ is a real

parameter.

This matrix has the advantage that on the one hand, it is a generalisation of the coin used

in chapter 4 since the this coin is represented by the µ = 0 case. On the other hand, the

parameter µ ∈ [0, π] can be varied to increase backscattering continuously. It is certainly

not wise to choose µ = π, because for this choice the probability for backscattering

equals 1 and the algorithm cannot localise anywhere as the amplitude is trapped on the

bond where it started.

The global coin flip is defined again by the local coin flip on all vertices, that is C (µ) =

σKS (µ)⊗ 1N .

Note that in terms of the parameter µ the distance of the local coin and the old perturber

coin −12d is reduced if µ 6= 0 is chosen since the perturber coin used earlier equals

σ′ = σKS (π). To make up for this, a new perturber coin σ′ (µ) = σKS (π + µ) is

introduced.

To obtain the perturbed global coin, the local coin at the target vertex |v〉 is replaced by

the perturber coin

C′ (µ) = C (µ)−
(
σKS (µ)− σ′ (µ)

)
⊗ |v〉 〈v| (6.2.2)

= C (µ)− 2e−iµ |s〉 〈s| ⊗ |v〉 〈v| . (6.2.3)

110

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

10 100 1000
N

10

100

tim
e

mu=0.0
mu=0.02
mu=0.05
mu=0.1

Figure 6.1: Time needed for the localisation on the marked vertex for the search algo-

rithms for several µ as a function of N.

Since |s〉 is a e−iµ-eigenvector of σ (µ)

U′ (µ) = SC′ (µ) (6.2.4)

= S (C (µ)− 2C (µ) |s〉 〈s| ⊗ |v〉 〈v|) (6.2.5)

= U (µ)− 2U (µ) |sv〉 〈sv| (6.2.6)

results in a generalised search algorithm where backscattering can easily be varied.

Some numerical simulations for this search algorithm will be presented in the following

section.

6.2.1 Numerics

The numerical simulation for the success of the search in 2 dimensions for some µ,

including the old search algorithm represented by µ = 0, are shown in figure 6.1.

It can be seen that the search algorithms for µ 6= 0 scale faster than
√

N ln N, since

the distance in time between the different algorithms increases rapidly for large N.

111

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

0 200 400 600 800 1000 1200
N

0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty

mu=0.0
mu=0.02
mu=0.05
mu=0.1

Figure 6.2: Probability at the target vertex as a function of N for the search algorithms

shown in figure 6.1.

Thus backscattering affects the localisation process and localisation occurs faster when

backscattering is increased.

However, figure 6.2 shows that the search algorithms for µ 6= 0 do not localise as much

probability as the µ = 0 algorithm. In the limit N → ∞, the probabilities of the µ 6= 0

algorithms decrease even faster than the algorithm introduced by Ambainis, Kempe

and Rivosh. To obtain a constant success probability amplitude amplification methods

like in [59] have to be used and the search needs to be repeated several times.

Overall, a detailed calculation is necessary to determine if the algorithm is more efficient

for µ 6= 0 since the faster search is balanced by a higher number of repetitions to obtain

a success probability for the algorithm that does not change with N.

Thus the numerical results do not confirm the arguments in section 6.1. It was expected

that the localisation will improve if backscattering is increased and that backscatter-

ing might lead to longer search times. However, the figures display that the scaling

behaviour of the time improves and the localisation amplitude decreases when µ was

112

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

increased.

To understand this effects a more detailed analysis of the spectrum of the search algo-

rithm would be necessary. Unfortunately there was no time to do this as part of this

thesis.

6.3 Other test coins

6.3.1 The Fourier-coin

The second coin to be tested is the Fourier-coin

σF =
1√
2d

2d

∑
i,j=1

eiπij/d |i〉 〈j| , (6.3.1)

where the coin space span vectors where labelled using i and j, and the summation

indices are varied from 1 to 2d for convenience. Note that this does not coincide with

the notation above where i ∈ [0, d] and the basis states have been labelled as |i+〉 and

|i−〉. However, for i ∈ [0, d] the new labels for the basis states can be mapped to the old

set according to

|i〉 ↔ |i+〉

|i + d〉 ↔ |i−〉
(6.3.2)

and the old definition for the shift operator defined in (4.1.3) can be employed.

The most successful marking coin I could find for this algorithm is

σ′F =
2d

∑
i=1

eiπi/d |i〉 〈i| . (6.3.3)

Some results for the search will be shown and discussed in section 6.4.

113

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

6.3.2 Coin without backscattering

Harrison, Smilansky and Winn investigated graphs where backscattering is prohibited

[62]. They introduced a coin

σHSW =
1√

2d− 1
(H − 12d) , (6.3.4)

where H is an orthogonal 2d× 2d matrix with entries ±1 fulfilling H + H† = 212d. For

the simulations shown in figure 6.3, the Matrix

H =



1 −1 1 −1

1 1 −1 −1

−1 1 1 −1

1 1 1 1


(6.3.5)

was used.

According to the claim that backscattering at the vertices adjacent to the target vertex is

important, these vertices have been marked as well as the target vertex. The best results

where obtained for the marking coin σ′ = 2 |s〉 〈s| − 12d.

6.4 Comparison of the results for different coins

Figure 6.3 shows the outcome of three simulations using the standard coin σ = 2 |s〉 〈s| −

12d, the Fourier coin and the coin without backscattering on a 31× 31 lattice.

The algorithm based on the Fourier coin and the one based on the HSW-coin cannot

compete with the search algorithm discussed in chapter 4. The localisations obtained

using these coins have a maximum comparable to the probability of the uniform distri-

bution. The algorithms achieve an enhancement compared to the uniform distribution

of five or two times respectively. Additional to that poor result, the maxima are near

the 50th time step, so they are not even faster. Although the maximum of the standard

114

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

0 25 50 75 100 125 150 175 200
time

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

pr
ob

ab
ili

ty
 a

t t
ar

ge
t v

er
te

x

AKR-search
fourier coin
HSW coin

Figure 6.3: Probability on the marked vertex for different coins on a 31× 31 lattice.

search algorithm is not visible, it is reached at about the same time. This can be seen

from the minimum since the localisation takes half of the time of the first minimum

which follows from a calculation analogue to the calculations in sections 4.4 and 3.4.

One surely has to analyse the spectrum of the algorithms simulated in this chapter to

understand why they show the behaviour displayed in this chapters figures. Due to

lack of time, this analysis has not been done in the scope of this thesis but nevertheless,

some criteria for efficient search algorithms have been identified.

It seems crucial to have an avoided crossing in the spectra of the search algorithm

and that the eigenvectors of the two eigenvalues that avoid the crossing are linear

combinations of a state localised at the target vertices and a totally symmetric state that

can be used as starting state. From section 3.4.1 it is known that the oscillation between

this two states that leads to a localisation is the faster, the bigger the gap, that is t = π
∆ ,

where ∆ is the distance in the gap. Furthermore, the eigenvalues in the avoided crossings

have to be separated from the others by a distance larger than ∆ such that the main

interaction is between them. Note that the last condition, the separation, applies only

115

CHAPTER 6: SOME THOUGHTS ON THE LATTICE SEARCH

to eigenvalues that are affected by the perturbation that changes the quantum random

walk into a search algorithm. Both systems discussed in this thesis, the hypercube and

the lattice search, had a highly degenerate eigenspace with eigenphase 0, that is, in the

centre of the crossing, which where not affected by the perturbation parameter λ.

The last observation that shall be noted is that the coin of the hypercube and lattice

search is σ = 2 |s〉 〈s| −12d. This is a very special choice as it coincides with the matrix D

defined by Dii = −1 + 2
N and Dij = 2

N for i 6= j used for Grover’s algorithm 2.3.1. Thus

the search algorithms using this coin have more similarities with Grover’s algorithm

than the search algorithms using different coins. Being close to Grover’s algorithm

might be a condition for an optimal search algorithm as it can be shown that Grover’s

algorithm scales like an optimal search algorithm [5, 23, 24].

116

CHAPTER 7

Conclusions

A new method to analyse search algorithms on graphs has been introduced and success-

fully applied to two search algorithms previously introduced in [25, 50]. For both sys-

tems, only the scaling of search time and localisation amplitude has been known before

while this thesis gives the leading order terms of both quantities for the d-dimensional

hypercube and for the 2 and 3 dimensional lattices. For a d > 3 dimensional lattice only

the order has been calculated here but the leading order terms can be obtained using

numerical integrations as has been discussed in section 4.3.

The new model for the analysis of the search algorithm containing one target vertex

introduces a 2× 2 model Hamiltonian that characterises an avoided crossing in the

spectrum of a one parameter family of unitary operators. As a function of the parameter

these operators change continuously from the unperturbed quantum walk to the search

algorithm and back. Notably the crossing occurs exactly at the same position in parame-

ter space as the search algorithm. It has also been shown that the localisation process of

the later occurs due to oscillations between two eigenstates of the operator describing

the search algorithm.

The search algorithm has then been generalised to find an arbitrary number of m� N

117

CHAPTER 7: CONCLUSIONS

target vertices by generalising the model Hamiltonian to obtain a (m + 1)× (m + 1)

Hamiltonian. This Hamiltonian has been used to calculate the search time for m target

vertices. Compared to the m = 1 case the search time is reduced by a factor 1√
m .

Apart from the new model, this thesis introduces new applications of search algorithms.

If more than one vertex is marked, the algorithm can be used to send a signal from one

vertex, the ‘sender’, to the other marked vertices which act as receivers. After a time

which is twice the search time, a signal that was started at the sender is localised at the

receivers with some amplitude remaining at the sender. Throughout this process, the

signal on the unaffected vertices is small compared to the signals on sender and receivers.

Remarkably, in the case of one receiver the signal is transferred in full. Additionally, the

sender can, by tracking the local amplitude at its position, estimate how many receivers

are ‘listening’ to the signal.

This sender-receiver scenario has been calculated analytically for the lattice search as

well as for Grover’s algorithm. The calculation for the lattice has been approved by

some numerical simulations.

In a different setting the sender can send a continuous signal through a damped system.

Again the signal is transferred to the receivers, an effect that can be used as search

algorithm. This search demands no additional knowledge as required in the search

algorithms starting in the uniform distributions as discussed in [23, 25, 50, 54]. This is

because the measurement of the target vertices has no longer to be performed precisely

at the localisation time which depends on the system size and the number of target

vertices but at any time larger than that.

As described in section 5.6 the lattice search has some similarities to systems with

crystalline structure and an experimental realisation using photonic crystals or solid

states seem possible.

118

CHAPTER 7: CONCLUSIONS

Some speculations about the effects causing the localisation at the target vertices are

outlined in the last chapter and investigated using numerical simulations. It was

assumed that increased backscattering leads to a better localisation at the target vertex

and decreases the time of the search. The result of the simulation was quite unexpected

and a detailed analysis would be necessary to understand the simulations. Furthermore

the simulations for other test coins showed that the choice for the coin flip is crucial for

the success of the search.

This thesis introduced a new model to investigate quantum search algorithms and found

some interesting new applications. Yet, there are many open questions that remain open

or are inspired by this thesis.

It is not a new but surely an interesting question for future research to gain more

understanding of how to design successful search algorithms. And how can the general

model of search algorithms be transferred to enable efficient searches on a wider class of

graphs? Especially for the two dimensional lattice search a lot room for improvement

might be left as the algorithm localises in T ∼
√

N ln N time and the optimal time for

quantum search algorithms scales like
√

N [23, 24].

So far, only periodic boundary conditions of the lattice have been considered. For finite

lattices without periodic boundary conditions the positions on the lattice are no longer

equivalent and it might matter if the target vertices are close to the boundary or near the

centre of the system. How will this change the search algorithm and the sender-receiver

model?

Even for the lattice with periodic boundary conditions it is unclear how well the sender

can distinguish between different numbers of receivers. In the model discussed in

section 5.3 no interaction between the localised state was assumed but results from

numerical simulations as presented in figure 5.5 proved that the spatial configuration of

119

CHAPTER 7: CONCLUSIONS

sender and receivers does have an effect and different configurations lead to variations

in the amplitudes at sender and receiver.

Fluctuations of the bond lengths for quantum random walks have been studied [13]

resulting in a critical disorder in the lengths at which the walk looses its quantum

speedup. It is surely interesting to analyse how sensitive the search algorithm is to those

fluctuation or to external noise.

Additional it is interesting to investigate how and if experimental applications of the

search algorithm will localise. A graph is a purely mathematical construction and the

bonds and vertices have zero width, so the question arises if a real lattice with a nonzero

bond width will also localise at a target vertex.

A different experimental application was discussed in section 5.6. It was speculated that

the search might be used to find local perturbations in periodic systems like solid states

or laser induced lattices. Is it possible to send a signal from one perturbation to another

in these systems?

I am confident that this thesis represents one step of gaining a better understanding of

quantum search algorithms and that at least some of this questions will be answered by

future research.

120

APPENDIX A

Eigenvectors and eigenvalues of

the quantum walk on the

hypercube

The derivation of eigenvectors and eigenvalues in this appendix follows the discussion

by Moore and Russell presented in [56].

A.1 Definitions and notations

The quantum random walk is defined by the two operators C and S in (3.1.2) and (3.1.3)

respectively. To analyse the quantum walk, the Fourier transformed position space

vector

∣∣v~k〉 =
∣∣u~k

〉
⊗
(

1√
N

∑
~x

(−1)~x
~k |x〉

)
(A.1.1)

121

APPENDIX A: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
HYPERCUBE

is considered, where~k is a vector containing d entries equal to 0 or 1. Let U be applied

to this state

U
∣∣v~k〉 = S

(
σ
∣∣u~k

〉)
⊗
(

1√
N

∑
~x

(−1)~x
~k |x〉

)
(A.1.2)

=
1√
N

d

∑
i=1

∑
~x

(−1)~x
~k |ix⊕ ei〉

〈
i | σ | u~k

〉
, (A.1.3)

where the operation ⊕ is the sum modulo 2 and ei the unit vector in the ith dimension.

A reorganisation of the sum over x transforms this result to

U
∣∣v~k〉 =

1√
N

d

∑
i=1

∑
~x

(−1)~x
~k+ki |ix〉

〈
i | σ | u~k

〉
(A.1.4)

=

(
d

∑
i=1

(−1)ki |i〉 〈i| σ
) ∣∣u~k

〉
⊗
∣∣v~k〉 (A.1.5)

=
(

M~k

∣∣u~k

〉)
⊗
∣∣v~k〉 , (A.1.6)

where M~k is defined as the matrix operator acting on the coin space component only.

The factorisation according to (A.1.1) simplifies the eigenvalue equation of U to N

eigenvalue equations, one for each of the M~k’s, in the d-dimensional coin space, where

M~k =



(−1)k1
(2

d − 1
)

(−1)k1 2
d . . . (−1)k1 2

d

(−1)k2 2
d (−1)k2

(2
d − 1

) . . .
...

...
. (−1)kd−1 2

d

(−1)kd 2
d . . . (−1)kd 2

d (−1)kd
(2

d − 1
)


. (A.1.7)

To simplify the matrix, the basis can be reordered by a permutation matrix T~k that shifts

the rows (columns) with ki = 0 and ki = 1 to the top (left) and bottom (right) respectively.

The result is a block matrix M = T~k M~kT~k =

A B

C D

, where A is a (d− k)× (d− k)

122

APPENDIX A: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
HYPERCUBE

matrix and D a k× k matrix. The blocks are

A =



2
d − 1 2

d . . . 2
d

2
d

2
d − 1

. . .
...

...
. 2

d

2
d . . . 2

d
2
d − 1


(A.1.8)

B =


2
d . . . 2

d

...
. . .

...

2
d . . . 2

d

 (A.1.9)

C =


− 2

d . . . − 2
d

...
. . .

...

− 2
d . . . − 2

d

 (A.1.10)

D =



− 2
d + 1 − 2

d . . . − 2
d

− 2
d − 2

d + 1
. . .

...

...
. − 2

d

− 2
d . . . − 2

d − 2
d + 1


. (A.1.11)

Let |1d−k〉 and |0d−k〉 be two vectors with d− k entries equal to 1√
d−k

and 0, respectively.

The vectors |1k〉 and |0k〉 are defined analogously. These definitions will be used to

compose vectors in the d-dimensional coin space by writing |ab〉 where |a〉 is a d− k

vector that fixes the first d− k entries and |b〉 fixes the remaining k entries.

Now the matrices A, B, C and D can be denoted as

A =
2
d

(d− k) |1d−k〉 〈1d−k| − 1d−k (A.1.12)

B =
2
d

√
k (d− k) |1d−k〉 〈1k| (A.1.13)

C = −2
d

√
k (d− k) |1k〉 〈1d−k| (A.1.14)

D = −2
d

k |1k〉 〈1k|+ 1k. (A.1.15)

123

APPENDIX A: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
HYPERCUBE

A.2 Eigenvalues and eigenvectors

Any (d− k)-dimensional vector |ud−k〉 orthogonal to |1d−k〉 fulfils the equations

A |ud−k〉 = − |ud−k〉 and C |ud−k〉 = |0k〉 and therefore the composed vector |ud−k0k〉 is

a −1-eigenvector according to

M |ud−k0k〉 = − |ud−k0k〉 . (A.2.1)

Analogously, any k-dimensional vector |uk〉 orthogonal to |1k〉 can be composed with

|0d−k〉 to form a 1-eigenvector of M that is

M |0d−kuk〉 = |0d−kuk〉 . (A.2.2)

So far d− 2 eigenvectors with eigenvalue +1 or −1 have been identified. The remaining

2 eigenvectors are orthogonal to the eigenvectors determined above and are thus linear

combinations of |1d−k0k〉 and |0d−k1k〉. Let

∣∣v~k〉 = a |1d−k0k〉+ b |0d−k1k〉 (A.2.3)

then there are two distinct solutions for the coefficients a and b such that
∣∣v~k〉 is an

eigenvector of M. These solutions are a = ∓ i√
2

and b = 1√
2

since

M
∣∣v~k〉 =

(
a− 2a

d
k +

2b
d

√
k (d− k)

)
|1d−k0k〉

+
(
−2a

d

√
k (d− k)− 2bk

d
+ b
)
|0d−k1k〉 (A.2.4)

=∓ i√
2

(
1− 2k

d
± 2i

d

√
k (d− k)

)
|1d−k0k〉

+
1√
2

(
1− 2k

d
± 2i

d

√
k (d− k)

)
|0d−k1k〉 . (A.2.5)

Note that in the cases k = 0 or d one of these vector components contains zero entries.

Choosing the coefficient for the vector without entries equal to zero b = 0 and a = 0 are

regarded for k = 0 and k = d, respectively. In these cases, normalisation requires an

additional factor
√

2.

124

APPENDIX A: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
HYPERCUBE

The two eigenvalues of M have an absolute value 1 and are given as

v±k =e±iωk = 1− 2k
d
± 2i

d

√
k (d− k) (A.2.6)

and the eigenvectors are

|v±~k 〉 =
d

∑
i=1

∑
~x

(−1)
~k·~x 2−d/2
√

2
α±ki

βk |i,~x〉 , (A.2.7)

where

α±ki
=


1/
√

k if ki = 1

∓i/
√

d− k, if ki = 0

(A.2.8)

βk =


√

2, if k = 0 or k = d

1 otherwise

. (A.2.9)

Since the set of eigenvectors and eigenvalues of U are identical to the eigenvectors

and eigenvalues of M~k = T~k MT~k the eigenvalues of U are also eigenvalues of M as the

permutation matrix T~k does not change the eigenvalues. The (d− k− 1) eigenvectors

with eigenvalue +1 and the (k− 1) eigenvectors with eigenvalue −1 of U are supported

in the vector components where ki = 0 and ki = 1 and orthogonal to the vectors(
(1, 1, . . . , 1)T −~k

)
and~k, respectively. The remaining two eigenvectors are, in the form

denoted in (A.2.7)-(A.2.9), invariant under the permutation defined by T~k.

125

APPENDIX B

Theory of avoided crossings

Avoided crossings occur in perturbed quantum mechanical two-level systems. Since this

model is used to analyse the localisation process of the search algorithms in chapters 3

and 4, a more detailed introduction will be added.

B.1 The perturbed two level-system

In the basis of eigenstates, a two level system has the Hamiltonian

H0 =

E1 0

0 E2

 , (B.1.1)

where E1 and E2 are the two eigenenergies. The eigenenergies depend on a parameter λ

and cross for some distinct value, say λ = 0 whereas E1 6= E2 for λ 6= 0. Trivially, the

eigenvectors of H are

|v1〉 = (1, 0)T (B.1.2)

|v2〉 = (0, 1)T . (B.1.3)

A sketch of the crossing is drawn in figure B.1.

126

APPENDIX B: THEORY OF AVOIDED CROSSINGS

Figure B.1: Sketch of an avoided crossing.

The perturbation W is defined by a perturbation matrix W =

w11 w12

w21 w22

, where the

matrix elements wij are such that W is Hermitian, that is w11, w22 ∈ R and w21 = w∗12,

where ∗ denotes complex conjugation. Furthermore, the perturbation will be regarded

as small compared to the typical differences of the entries of H0. The diagonal elements

of W can be neglected without loss of generality as they are only shifting the energy

levels E1 and E2 and can be added easily into the final result by Ei → Ei + wii.

This defines the Hamiltonian of the perturbed system as

H = H0 + W =

 E1 w12

w∗12 E2

 (B.1.4)

and the eigenvalues of the perturbed Hamiltonian are

e1 =
E1 + E2

2
+

∆
2

(B.1.5)

e2 =
E1 + E2

2
− ∆

2
, (B.1.6)

where the difference in the energy levels is defined as ∆ =
√

(E1 − E2)
2 + 4 |w12|2 and

the corresponding non-normalised eigenvectors are

∣∣u′1〉 = (E1 − E2 + ∆, 2w∗12)
T (B.1.7)∣∣u′2〉 = (E1 − E2 − ∆, 2w∗12)
T . (B.1.8)

Let |u1〉 and |u2〉 be the normalised eigenvectors, then in the limit |w12| → 0, the

eigenvectors of H approach those of H0 but how |u1〉 and |u2〉 approach |v1〉 and |v2〉

127

APPENDIX B: THEORY OF AVOIDED CROSSINGS

depends on the sign of E1 − E2 as

∆ ≈ |E1 − E2| . (B.1.9)

Hence, for E1 − E2 > 0, |u1〉 → |v1〉 and |u2〉 → |v2〉, whereas on the other side of

the crossing, that is for E1 − E2 < 0, the identification of eigenvectors is the other way

around and |u1〉 → |v2〉 and |u2〉 → |v1〉. Therefore the eigenvectors and eigenvalues

of H reorganise near the crossing and switch their limiting behaviour for |λ| → ∞

approaching now the other eigenvector and eigenvalue of H0 as can be seen in figure

B.1.

B.2 Oscillations in the two level system

An interesting effect occurs when at λ = 0 the system is changed from H0 to H. If the

energy at the crossing is defined as E1 = E2 = 0, the Hamiltonian H takes the form

Hcrossing =

 0 ω12

ω∗12 0

 (B.2.1)

and its eigenvectors and eigenvalues are

eigenvector eigenvalue

∣∣∣ucrossing
1

〉
= 1√

2

eiω

1

 |ω12|

∣∣∣ucrossing
2

〉
= 1√

2

−eiω

1

 − |ω12|

, (B.2.2)

where ω is the phase of ω12.

If the system is initialised in one eigenstate of H0, say in |v1〉 when the perturbation is

turned on, the state will evolve in time as |v (t)〉 = e−iHcrossingt |v1〉, where h̄ = 1 was

128

APPENDIX B: THEORY OF AVOIDED CROSSINGS

chosen, and therefore

|v (t)〉 =
e−iω
√

2
e−iHcrossingt

(∣∣∣ucrossing
1

〉
−
∣∣∣ucrossing

2

〉)
(B.2.3)

=
e−iω
√

2

(
e−i|ω12|t

∣∣∣ucrossing
1

〉
− ei|ω12|t

∣∣∣ucrossing
2

〉)
(B.2.4)

= cos (|ω12| t) |v1〉+ e−iω− π
2 sin (|ω12| t) |v2〉 . (B.2.5)

It can be seen that the system oscillates between the two states |v1〉 and |v2〉 with

frequency |ω12|.

A more detailed discussion can be found in textbooks on quantum mechanics like [63].

129

APPENDIX C

Eigenvectors and eigenvalues of

the quantum walk on the

d-dimensional lattice

The analysis in this appendix is based on the derivation of eigenvectors and eigenvalues

in [25] by Ambainis, Kempe and Rivosh.

Using the definitions from section 4.1.2, the eigenvalue equation simplifies from U
∣∣φ~k

〉
=

φ~k

∣∣φ~k

〉
to
(
σ~k |u〉

)
⊗
∣∣X~k

〉
= φ~k

∣∣u~k

〉
⊗
∣∣X~k

〉
, where φ~k is the eigenvalue and σ~k = Mσ is

a 2d× 2d matrix defined using the local coin flip σ.

Let the basis vectors of the coin space |i±〉 for i = 1 . . . d be mapped on the canonical

basis vectors |j〉, j = 1 . . . 2d such that

∣∣l+〉→ |2l − 1〉 (C.0.1)∣∣l−〉→ |2l〉 (C.0.2)

for l = 1 . . . d. In this basis, M is block diagonal matrix consisting of d blocks Mi =

130

APPENDIX C: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
d-DIMENSIONAL LATTICE

 0 ωki

ω−ki 0

, that is,

M =



M1 0 0

0 M2 0 . . .

0 0 M3

...
. . .


. (C.0.3)

Hence
∣∣φ~k

〉
is an φ~k-eigenvector of U, if and only if |u〉 is an eigenvector of σ~k with

eigenvalue φ~k.

The set of eigenvectors, especially for arbitrary d, is hard to calculate although some

of them are easily verified. The analysis in appendix C.1 gives the complete set of

eigenvalues and discusses important properties of the eigenvectors.

C.1 Eigenvectors and eigenvalues

C.1.1 ±1-eigenvectors of U.

Each of the blocks Mi has the two eigenvalues ±1 with corresponding eigenvectors

1√
2

(
ω

ki
2 ,±ω−

ki
2

)T

. Therefore the matrix M has eigenvalues ±1 with multiplicity d

each. Both eigenspaces can be reorganised such that d− 1 eigenvectors are orthogonal

to |s〉 leaving two non-orthogonal normalised eigenvectors, say
∣∣∣w±1

~k

〉
.

Since σ~k = M (2 |s〉 〈s| − 12d), the ±1-eigenvectors of M orthogonal to |s〉 are ∓1-

eigenvectors of σ~k. Let the d− 1 eigenvectors of both eigenspaces be denoted as
∣∣∣∣u±1

j~k

〉
,

where the index j = 1, . . . , d− 1 numbers the eigenvectors of each eigenspace.

In the case of~k =~0 all −1-eigenvectors of M are orthogonal to |s〉 for the eigenvectors

of the d blocks are (1,−1)T. Again, the 1-eigenvectors of M can be reorganised such

131

APPENDIX C: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
d-DIMENSIONAL LATTICE

that d− 1 of them are orthogonal to |s〉. As |s〉 is a 1-eigenvector of M, the eigenvalues

of M are ±1 with multiplicity d each.

The d − 1 eigenvectors of M with eigenvalue 1 that are orthogonal to |s〉 are −1-

eigenvectors of σ~0 while |s〉 is a 1-eigenvector of M and a 1-eigenvector of σ~0. The d

eigenvectors of M with eigenvalue−1 are orthogonal to |s〉 and therefore 1-eigenvectors

of σ~0. In this case the 1 eigenspace has dimension d + 1 and there are d− 1 dimensions

in the −1 eigenspace.

Note that the 1-eigenvector of U defined as |φ0〉 := |s〉 ⊗
∣∣X~0

〉
is a state uniformly

distributed in coin and position space.

C.1.2 Remaining eigenvectors and eigenvalues for~k 6=~0 of U

Let the two remaining eigenvectors of M for~k 6=~0, that is, the linear combinations of

the eigenvectors of M that are not orthogonal to |s〉, be
∣∣∣w+1

~k

〉
and

∣∣∣w−1
~k

〉
. Since |s〉 lies

in the plane spanned by these vectors, two coefficients α1 and α2 with |α1|2 + |α2|2 = 1

can be found such that |s〉 = α1

∣∣∣w+1
~k

〉
+ α2

∣∣∣w−1
~k

〉
. Since

∣∣∣w+1
~k

〉
and

∣∣∣w−1
~k

〉
are both

eigenvectors of the unitary matrix M for different eigenvalues and therefore orthogonal,

the vector
∣∣s⊥〉 = α∗2

∣∣∣w+1
~k

〉
− α∗1

∣∣∣w−1
~k

〉
is orthogonal to |s〉. Here ∗ denotes complex

conjugation.

In return the vectors
∣∣∣w±1

~k

〉
can be expanded according to

∣∣∣w±1
~k

〉
=
(
|s〉 〈s|+

∣∣∣s⊥〉 〈s⊥
∣∣∣) ∣∣∣w±1

~k

〉
(C.1.1)

and

∣∣∣w+1
~k

〉
= α∗1 |s〉+ α2

∣∣∣s⊥〉 (C.1.2)∣∣∣w−1
~k

〉
= α∗2 |s〉 − α1

∣∣∣s⊥〉 (C.1.3)

132

APPENDIX C: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
d-DIMENSIONAL LATTICE

is obtained. Note that the vectors are still undefined as
∣∣s⊥〉 cannot be evaluated easily

for general d and~k.

To obtain the eigenvalues, let |u〉 = β1 |s〉+ β2
∣∣s⊥〉 be one of the two eigenvectors of σ~k

not orthogonal to |s〉 with |β1|2 + |β2|2 = 1. Now
∣∣u⊥〉 = β∗2 |s〉 − β∗1

∣∣s⊥〉 is a vector in

the plane orthogonal to |u〉 and

|s〉 = β∗1 |u〉+ β2

∣∣∣u⊥〉 (C.1.4)∣∣∣s⊥〉 = β∗2 |u〉 − β1

∣∣∣u⊥〉 . (C.1.5)

Using these definitions the eigenvalues can be determined. First σ |u〉 can be evaluated

by expanding |u〉 in the eigenbases of σ using |s〉 and
∣∣s⊥〉. Then M can be applied to

an expansion of σ |u〉 in the eigenbasis of M. One obtains

σ~k |u〉 = (α1β1 − α∗2 β2)
∣∣∣w+1

~k

〉
+ (−α2β1 − α∗1 β2)

∣∣∣w−1
~k

〉
. (C.1.6)

This vector is then transformed back into the |u〉,
∣∣u⊥〉 basis which yields

σ~k |u〉 =
(
|α1|2 − |α2|2 + 4i Im (α1α2β1β∗2)

)
|u〉

+
(
−2α∗1α∗2 β2

2 − 2α1α2β2
1

) ∣∣∣u⊥〉 . (C.1.7)

Since |u〉 was defined as eigenvector of σ~k, the second term has to be zero, that is,

α∗1α∗2 β2
2 + α1α2β2

1 = 0.

The real part of the eigenvalue |α1|2 − |α2|2 can be calculated by noting that 〈s| σ~k |s〉 =

|α1|2 − |α2|2 and 〈s| σ~k |s〉 = 1
2d ∑d

i=1

(
ωki + ω−ki

)
= 1

d ∑d
i=1 cos 2πki

n . Therefore the two

eigenvectors of type |u〉 have eigenvalues with identical real parts. Since the determinant

of σ~k is real, they have to be complex conjugated.

Now the two eigenvalues of
∣∣∣u±~k 〉 can be identified as e±iθ~k , where Re e±iθ~k = cos θ~k =

1
d ∑d

i=1 cos 2πki
n and the phase of the eigenvector is defined such that

〈
s | u±~k

〉
is real and

greater zero.

133

APPENDIX C: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
d-DIMENSIONAL LATTICE

C.2 Calculation of the scalar product of the coin space

contributions with |s〉

As discussed in previous sections M is a block diagonal matrix consisting of d blocks

Mi =

 0 ωki

ω−ki 0

,

M =



M1 0 0

0 M2 0 . . .

0 0 M3

...
. . .


, (C.2.1)

where ω = e2πi/n [25].

A block diagonal matrix T with TT = 1 defined as

T =



0 1 0 0

1 0 0 0 . . .

0 0 0 1

0 0 1 0

...
. . .


, (C.2.2)

can be used to perform a complex conjugation on M since the transformation TMT

results in M∗ and, due to TσT = σ, the transformation matrix has the same effect on σ~k

since Tσ~kT = σ∗~k
.

Comparison of the eigenvalue equation in coin space.

σ~k

∣∣∣u+
~k

〉
= eiθ~k

∣∣∣u+
~k

〉
(C.2.3)

134

APPENDIX C: EIGENVECTORS AND EIGENVALUES OF THE QUANTUM WALK ON THE
d-DIMENSIONAL LATTICE

and its complex conjugate

σ∗~k

∣∣∣u+
~k

〉∗
= e−iθ~k

∣∣∣u+
~k

〉∗
(C.2.4)

Tσ~kT
∣∣∣u+

~k

〉∗
= e−iθ~k

∣∣∣u+
~k

〉∗
(C.2.5)

results in the relation T
∣∣∣u+

~k

〉∗
=
∣∣∣u−~k 〉 between these two eigenvectors of σ~k.

The phase of
∣∣∣u+

~k

〉
is defined by choosing

〈
s | u+

~k

〉
to be real and greater zero. Since |s〉

is a 1-eigenvector of T,

〈
s | u+

~k

〉
=
〈

s | u−~k

〉
∈ R (C.2.6)

is concluded.

The eigenvectors |ev〉 of σ~k can easily be organised to be orthonormal and the identity

operator in coin space can be denoted as a sum of projectors on all eigenvectors

12d = ∑
|ev〉
|ev〉 〈ev| . (C.2.7)

By multiplication with |s〉 from both sides, and using that all ±1-eigenvectors are

orthogonal to |s〉 [25]

1 =
∣∣∣〈s | u+

~k

〉∣∣∣2 +
∣∣∣〈s | u−~k

〉∣∣∣2 (C.2.8)

is obtained.

Using (C.2.6), the promised result
〈

s | u±~k

〉
= 1√

2
is derived.

135

Bibliography

[1] B. Hein and G. Tanner. Quantum search algorithms on the hypercube. J. Phys. A,

42:085303, 2009.

[2] B. Hein and G. Tanner. Wave communications across regular lattices. Phys. Rev.

Lett., 103:260501, 2009.

[3] B. Hein and G. Tanner. Quantum search algorithms on a regular lattice. Accepted

for Publication in Phys. Rev. A, 2010.

[4] N. L. Biggs, E. K. Lloyd, and R.J. Wilson. Graph Theory 1736 - 1936. Clarendon Press,

Oxford, 1976.

[5] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, Cambridge, 2000.

[6] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adleman.

Solution of a 20 variable 3-SAT problem on a DNA computer. Science, 296 :499,

2002.

[7] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Phys. Rev. A,

48(2):1687, 1993.

136

BIBLIOGRAPHY

[8] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous. One-dimensional

quantum walks. In Proceedings of the 33rd ACM Symposium on Theory of Computing,

page 37, 2001.

[9] J. Kempe. Quantum random walks - an introductory overview. Contemporary

Physics, 44:307, 2003.

[10] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs.

In Proceedings of the 33rd ACM Symposium on Theory of Computing, page 50, 2001.

[11] A. M. Childs, E. Farhi, and S. Gutmann. An example of the difference between

quantum and classical random walks. Quantum Information Processing, 1(1/2):35,

2002.

[12] J. Kempe. Discrete quantum walks hit exponentially faster. In Lecture Notes in

Computer Science, volume 2764 , page 781, Berlin/Heidelberg, 2003. Springer.

[13] J. P. Keating, N. Linden, J. C. F. Matthews, and A. Winter. Localization and its

consequences for quantum walk algorithms and quantum communication. Phys.

Rev. A, 76:012315, 2007.

[14] V. Kendon. Decoherence in quantum walks - a review. Mathematical Structures in

Comp. Sci, 17 (6):1169, 2007. Preprint at arXiv:quant-phys/0606016.

[15] V. Kendon. A random walk approach to quantum algorithms. Phil. Trans. R. Soc. A,

364 :3407, 2006.

[16] M. Santha. Quantum walk based search algorithms. Proceedings of the 5th confer-

ence on theory and applications of models of computation, 4978 :31, 2008. Preprint at

arXiv:quant-phys/0808.0059v1.

[17] P. Xue, B. C. Sanders, and D. Leibfried. Quantum walk on a line for a trapped ion.

Phys. Rev. Lett., 103:183602, 2009.

137

BIBLIOGRAPHY

[18] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and

T. Schaetz. Quantum walk of a trapped ion in phase space. Phys. Rev. Lett., 103:

090504, 2009.

[19] F. Zähringer, G. Kirchmair, R. Gerritsma, E Solano, R. Blatt, and C. F. Ross. Realiza-

tion of a quantum walk with one and two trapped ions. Phys. Rev. Lett., 104:100503,

2010.

[20] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson,

I. Jex, and C. Silberhorn. Photons walking on the line: A quantum walk with

adjustable coin operations. Phys. Rev. Lett., 104:050502, 2010.

[21] M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A.G.

White. Discrete single-photon quantum walk with turnable decoherence. Phys. Rev.

Lett., 104:153602, 2010.

[22] G. Tanner. From quantum graphs to quantum random walks. In Non-Linear

Dynamics and Fundamental Interactions, volume 213, page 69, Springer, Dordrecht,

2006. Preprint at arXiv:quant-phys/0504224.

[23] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc.

28th STOC, pages 212–219, ACM Press, Philadelphia, Pennsylvania, 1996.

[24] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses

of quantum computing. SIAM J. Comput, 26(5):1510, 1997.

[25] A. Ambainis, J. Kempe, and A. Rivosh. Coins make quantum walks faster. In

Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, pages

1099–1108, Philadelphia, 2005. Society for industrial and applied mathematics.

[26] A. M. Childs and J. Goldstone. Spatial search by quantum walk. Phys. Rev. A, 70:

022314, 2004.

138

BIBLIOGRAPHY

[27] A. M. Childs and J. Goldstone. Spatial search and the Dirac equation. Phys. Rev. A,

70:042312, 2004.

[28] V. Potoček, A. Gábris, T. Kiss, and I. Jex. Optimized quantum random-walk search

algorithms on the hypercube. Phys. Rev. A, 79:012325, 2009.

[29] A. M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. In Proceedings of the London Mathematical Socociety 2, volume 42,

page 230, 1936.

[30] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21(6/7):467,

1982.

[31] D. Deutsch. Quantum theory, the church-turing principle and the universal quan-

tum computer. Proc. R. Soc. Lond. A, 400:97, 1985.

[32] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation.

Proc. R. Soc. Lond. A., 439 :553, 1992.

[33] P. W. Shor. Polynoial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Comput., 26 (5):1484, 1997.

[34] A. Politi, J. C. F. Matthews, and J. L. O’Brien. Shor’s quantum factoring algorithm

on a photonic chip. Science, 325(5945):1221, 2009.

[35] F. Barra and P. Gaspard. Classical dynamics on graphs. Phys. Rev. E, 63(6):066215,

2001.

[36] S. Gnutzmann and U. Smilansky. Quantum graphs: Applications to quantum chaos

and universal spectral statistics. Advances in Physics, 55:527, 2006.

[37] T. Kottos and U. Smilansky. Periodic orbit theory and spectral statistics for quantum

graphs. Annals of Physics, 274:76, 1999.

139

BIBLIOGRAPHY

[38] S. Severini and G. Tanner. Regular quantum graphs. J. Phys. A, 37:6675, 2004.

[39] L. Pauling. The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys., 4:

673, 1936.

[40] T. Kottos and U. Smilansky. Quantum chaos on graphs. Phys. Rev. Lett., 79(3):4794,

1997.

[41] T. Kottos and H. Schanz. Quantum graphs: a model for quantum chaos. Physica E:

Low-dimensional Systems and Nanostructures, 9(3):523, 2001.

[42] P. Schapotschnikow and S. Gnutzmann. Spectra of graphs and semi-conductin

polymers. Proceedings of Symposia in Pure Mathematics, 77 :691, 2008.

[43] K. Ruedenberg and C. W. Scherr. Free-electron network model for conjugated

systems. I. theory. J. Chem. Phys, 21:1565, 1953.

[44] F. Barra and P. Gaspard. Transport and dynamics on open quantum graphs. Phys.

Rev. E, 65 (21):16205, 2001.

[45] H. Schanz and U. Smilansky. Periodic-orbit theory of Anderson localization on

graphs. Phys. Rev. Lett., 84 (7):1427, 2000.

[46] T. Kottos and U. Smilansky. Chaotic scattering on graphs. Phys. Rev. Lett., 85(5):968,

2000.

[47] M. Puhlmann, H. Schanz, T. Kottos, and T. Geisel. Quantum decay of an open

chaotic system: A semiclassical approach. Europhys. Lett., 69 :313, 2005.

[48] S. Gnutzmann, J. P. Keating, and F. Piotet. Quantum ergodicity on graphs. Phys.

Rev. Lett., 101 :264102, 2008.

[49] O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, and L. Sirko. Experi-

mental simulation of quantum graphs by microwave networks. Phys. Rev. E, 69(5):

056205, 2004.

140

BIBLIOGRAPHY

[50] N. Shenvi, J. Kempe, and K. B. Whaley. Quantum random-walk search algorithm.

Phys. Rev. A, 67:052307, 2003.

[51] A. M. Childs. On the relationship between continuous- and discrete-time quantum

walk. Commun. Math. Phys., 294:581, 2010.

[52] E. Farhi and S. Gutmann. Quantum computation and decision trees. Phys. Rev. A,

58(2):915, 1998.

[53] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algorithms

for simulating sparse hamiltonians. Communications in Mathematical Physics, 270(2):

359, 2007.

[54] L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack.

Phys. Rev. Lett., 79:325, 1997.

[55] N. Bhattacharya, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw. Imple-

mentation of quantum search algorithm using classical fourier optics. Phys. Rev.

Lett., 88:137901, 2002.

[56] C. Moore and A. Russell. Quantum walks on the hypercube. In Proceedings of

RANDOM, pages 164–178, Springer, Cambridge, 2002. Preprint at arXiv:quant-

ph/0103137v1.

[57] G. Merziger, G. Mühlbach, D. Wille, and T. Wirth. Formeln + Hilfen zur Höheren

Mathematik. Binomi Verlag, Springe, 1996.

[58] T.M. Apostol. Mathematical Analysis. Addison-Wesley, Reading, 2nd edition, 1974.

[59] L. K. Grover. A framework for fast quantum mechanical algorithms. In STOC

’98: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages

53–62, New York, 1998. ACM.

[60] A. Mizel. Critically damped quantum search. Phys. Rev. Lett., 102:150501, 2009.

141

BIBLIOGRAPHY

[61] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R.D. Meade. Photonic Crystals.

Princeton University Press, Princeton, Oxford, 2008.

[62] J. M. Harrison, U. Smilansky, and B. Winn. Quantum graphs where back-scattering

is prohibited. J. Phys. A, 40 :14181, 2007.

[63] C. Cohen-Tannoudji. Quantum Mechanics, volume one. John Wiley & Sons, New

York, 1977.

142

	Titlepage
	Abstract
	Publications
	Acknowledgements
	Contents
	1 Introduction
	1.1 Examples for classical search algorithms
	1.2 Overview
	1.2.1 Quantum random walks
	1.2.2 Quantum search algorithms
	1.2.3 Computer science
	1.2.4 Quantum graphs
	1.2.5 Notations regarding the growth and decay of a function

	1.3 Structure and agenda

	2 Preliminaries and Definitions
	2.1 The underlying graph
	2.2 Quantum random walks
	2.2.1 The abstract quantum random walk
	2.2.2 A 1-dimensional example
	2.2.3 Continuous time quantum random walk

	2.3 Quantum search algorithms
	2.3.1 Grover's search algorithm
	2.3.2 The abstract search algorithm

	3 Search algorithm on the hypercube
	3.1 Definitions and model
	3.1.1 The underlying quantum random walk
	3.1.2 The search algorithm

	3.2 Eigenvectors and eigenvalues of the search
	3.2.1 Introduction of a one parameter family of unitary operators and a reduced space
	3.2.2 Spectrum of U

	3.3 Approximative eigenvectors and eigenvalues of U near the mth crossing
	3.3.1 Verification for the m=0 crossing.
	3.3.2 Taylor expansion of g() about 1
	3.3.3 The crossing eigenvector
	3.3.4 Normalisation of the vector of the localised state
	3.3.5 Localisation at the target state.

	3.4 Model of avoided crossings
	3.4.1 Time of the search
	3.4.2 Size of the gap
	3.4.3 Analogy to Grover's search algorithm

	3.5 Results for the reduced space
	3.6 Results for the original space H

	4 Search algorithm on a d-dimensional square lattice
	4.1 Definition and model
	4.1.1 Quantum random walk
	4.1.2 Eigenvectors and eigenvalues of U

	4.2 The quantum search algorithm
	4.2.1 Reduced space
	4.2.2 Approximative eigenvectors of U

	4.3 Normalisation of the approximated crossing eigenvector
	4.3.1 First integration I1
	4.3.2 Second integration I2
	4.3.3 Third integration I3
	4.3.4 Higher integrations and normalisations for d>3
	4.3.5 Success probability

	4.4 Model in the two-level subspace.

	5 Applications of the lattice search and Grover's algorithm
	5.1 m marked vertices
	5.1.1 Eigenvalues and eigenvectors of the model Hamiltonian

	5.2 Search for m target vertices
	5.3 Transfer of a signal
	5.3.1 Single impulse
	5.3.2 Continuous signal

	5.4 Grover's search algorithm
	5.4.1 Grover's search algorithm for m marked vertices
	5.4.2 Sender and receiver model for Grover's algorithm
	5.4.3 Continuous sender in Grover's algorithm

	5.5 Continuous model as search algorithm
	5.6 Conditions for an experimental realisation
	5.6.1 Band structure of the unperturbed lattice
	5.6.2 Defect states

	6 Some thoughts on the lattice search
	6.1 What makes an algorithm efficient?
	6.2 The Kottos-Smilansky coin
	6.2.1 Numerics

	6.3 Other test coins
	6.3.1 The Fourier-coin
	6.3.2 Coin without backscattering

	6.4 Comparison of the results for different coins

	7 Conclusions
	A Eigenvectors and eigenvalues of the quantum walk on the hypercube
	A.1 Definitions and notations
	A.2 Eigenvalues and eigenvectors

	B Theory of avoided crossings
	B.1 The perturbed two level-system
	B.2 Oscillations in the two level system

	C Eigenvectors and eigenvalues of the quantum walk on the d-dimensional lattice
	C.1 Eigenvectors and eigenvalues
	C.1.1 1-eigenvectors of U.
	C.1.2 Remaining eigenvectors and eigenvalues for = of U

	C.2 Calculation of the scalar product of the coin space contributions with | s"526930B

	References

