Contents

1 Introduction into the Spectroscopy and Interactions of Metal Complexes ... 1
 1.1 Introduction into interactions within metal complexes 1
 1.2 Au-RG complexes .. 3
 1.2.1 Interest in Au-RG complexes 3
 1.2.2 Electronic states of interest in the Au-RG complexes 5
 1.2.3 Previous investigations of the CM-RG complexes 7
 1.2.4 Present study on Au-RG complexes 10
 1.3 Metal and metal cation complexes important in the chemistry of the MLT region of the atmosphere................................. 11
 1.3.1 Introduction to metals in the MLT region of the atmosphere ... 11
 1.3.2 Previous work on chemistry of the metals in the MLT region of the atmosphere .. 16
 1.3.3 Present work on the chemistry of metal cations in the MLT region of the atmosphere 18
 References .. 19

2 Experimental Procedure and Lava Source Design 24
 2.1 Apparatus .. 24
 2.2 Design of laser vaporization (LaVa) source 30
 2.3 Formation of complexes within a supersonic jet expansion .. 35
 2.4 Resonance enhanced multiphoton ionization (REMPI) 37
 References .. 44
3 Electronic Spectroscopy of the Au-Ar Complex 46

3.1 Introduction ... 46
3.2 Experimental ... 48
3.3 Results ... 48
 3.3.1 \(D^2\Pi_{1/2} \leftarrow X^2\Sigma_{1/2}^+ \) and \(D^2\Pi_{1/2} \leftarrow X^2\Sigma_{1/2}^+ \) spectra 48
 3.3.2 Extrapolation procedures for determining spectroscopic constants .. 52
3.4 Calculations .. 58
 3.4.1 Calculations on the \(X^2\Sigma_{1/2}^+ \) ground state 58
 3.4.2 Calculations on the excited states .. 60
 3.4.3 Accuracy of calculations ... 64
 3.4.4 Franck – Condon simulations of the \(D^2\Pi_{3/2} \leftarrow X^2\Sigma_{1/2}^+ \) Spectrum ... 65
3.5 Discussion ... 67
 3.5.1 Au-Ar \(X^2\Sigma_{1/2}^+ \) state ... 67
 3.5.2 Au-Ar \(D^2\Pi_{1/2} \) state .. 67
 3.5.3 Au-Ar \(D^2\Pi_{3/2} \) state .. 73
 3.5.4 Au-Ar \(E^2\Sigma_{1/2}^+ \) state .. 74
3.6 Conclusions ... 75

References .. 77

4 Electronic Spectroscopy of the Au-Kr Complex 79

4.1 Introduction ... 79
4.2 Experimental procedure .. 80
4.3 Results ... 82
 4.3.1 Overview of Au-Kr spectra ... 82

-ii-
4.3.2 Isotopic analysis: Determination of absolute vibrational numbering

4.4 Calculation on Au-Kr complexes

4.4.1 Au-Kr \(X^2\Sigma_{1/2}^+\) state

4.4.2 Au-Kr excited states

4.5 Analysis of results and discussion

4.5.1 Determination of experimental spectroscopic constants for Au-Kr

4.5.2 Franck-Condon Simulations

4.6 Conclusions

References

5 Electronic Spectroscopy of the Au-Xe complex

5.1 Introduction

5.2 Experimental

5.3 Calculations on Au-Xe complex

5.3.1 Au-Xe \(X^2\Sigma_{1/2}^+\) state

5.3.2 Au-Xe excited states

5.4 Experimental results and discussion

5.4.1 Spectrum in the vicinity of the Au \((6^2P_{1/2})\) atomic transition

5.4.2 Spectrum in the vicinity of the Au \((6^2P_{3/2})\)

5.4.3 Possible involvement of Au–Xe\(^+\) charge transfer states

5.4.4 Possible Involvement of Rydberg states

5.4.5 Possible involvement of states arising from the Au \((5d^96s^16p^1)^4P\) asymptote
5.4.6 Mechanism for predissociation of the $D^3\Pi_{3/2}$ and $D^3\Pi_{1/2}$ states.............................. 132
5.4.7 Comparison to the cation.. 133
5.5 Conclusions ... 135
References .. 136

6 Electronic Spectroscopy of the Au-Ne Complex 139
6.1 Introduction .. 139
6.2 Experimental ... 140
6.3 Experimental Results and Discussion 141
6.3.1 Au-Ne $D^3\Pi_{3/2}$ excited state 141
6.3.2 Au-Ne $D^3\Pi_{1/2}$ excited state 143
6.4 Computational methodology .. 145
6.4.1 Au-Ne $X^2\Sigma_{1/2}^+$ state ... 146
6.4.2 Au-Ne excited state calculations 146
6.5 Discussion .. 150
6.5.1 Non-observance of the $D^3\Pi_{1/2}$ state 150
6.5.2 FCF Simulation of the $D^3\Pi_{3/2}\rightarrow X^2\Sigma_{1/2}^+$ spectrum 151
6.6 Conclusions ... 154
References .. 155

7 Summary of the Electronic Spectroscopy of the Au-RG Complexes ... 156
7.1 Introduction ... 156
7.2 Trends down Au-RG series .. 156
7.2.1 The $X^2\Sigma^+$ state .. 156
7.2.2 The Au (6p) states ... 159
7.2.3 Hunds case (a)/(c) discussion .. 165
7.3 Velocity map imaging work .. 168
7.3.1 Au-Xe ... 169
7.3.2 Au-Ar and Au-Kr .. 172
7.4 Trends down the Coinage metal – RG series 173
7.5 Conclusions .. 177
References .. 179

8 Ca⁺–X and Y–Ca⁺–X Complexes Important in the Chemistry of
Ionospheric Calcium (X = H₂O, CO₂, N₂, O₂ and O) 182
8.1 Introduction .. 182
8.2 Calculational details ... 183
8.3 Ab initio calculations on Ca⁺-X complexes 185
8.3.1 CaO₂⁺ ... 185
8.3.2 Ca⁺–H₂O ... 186
8.3.3 Ca⁺N₂ .. 186
8.3.4 Ca⁺–CO₂ ... 187
8.3.5 Ca⁺O ... 187
8.4 Geometries of intermediate complexes 189
8.4.1 Intermediate complexes involving closed shell species .189
8.4.2 Geometries of O–Ca⁺–X (where X is CO₂, N₂ or H₂O) intermediate complex ions ... 191
8.4.3 Geometries of O₂Ca⁺–X (where X = CO₂, N₂ or H₂O) intermediate complex ions ... 194
8.4.4 Geometries of O₂–Ca⁺–O Intermediate cluster ion 196
8.4.5 Ca⁺(X)₂ Complexes .. 199
8.4.6 RCCSD(T) Calculations ... 201
9 Mg⁺–X and Y–Mg⁺–X Complexes Important in the Chemistry of Ionospheric Magnesium (X = H₂O, CO₂, N₂, O₂ and O)…………… 208

9.1 Introduction……………………………………………………………………………………………………… 208
9.2 Computational details…………………………………………………………………………………………….. 210
9.3 Ab initio calculations on Mg⁺–X complexes ……………………………………………………………………… 212
 9.3.1 Mg⁺–H₂O …… 212
 9.3.2 Mg⁺–N₂…… 213
 9.3.3 Mg⁺–CO₂ …… 214
 9.3.4 MgO⁺ ……… 216
 9.3.5 MgO₂⁺…… 218
 9.3.6 MgO₃⁺…… 219
9.4 Intermediate Y–Mg⁺–X complexes ……………………………………………………………………………….. 220
 9.4.1 Intermediate Complexes involving only closed-shell ligands……………………………………………… 220
 9.4.2 Geometries of [O–Mg–X]⁺ intermediate complexes where (X = H₂O, CO₂ and N₂) 224
 9.4.3 Geometries of [O₂–Mg–X]⁺ intermediate complexes (X = H₂O, CO₂ and N₂)……………………………. 227
 9.4.4 Geometry of O–Mg⁺–O₂ intermediate complex……………………………………………………………… 229
 9.4.5 Geometries of Mg⁺[X]₂ complexes (X = H₂O, CO₂, N₂ and O₂)…………………………………………… 232
 9.4.6 RCCSD(T) calculations………………………………………………………………………………………… 235
9.5 Conclusions…… 237
References……… 239
List of Figures

Figure 1.1. The general form of a potential energy curve.2

Figure 1.2. Schematic diagram showing the relationship between the atomic states, on the right-hand side of the figure with the molecular ones, on the left-hand side. Note that for the A, B, and C states the large doubly occupied (Au) 6s orbital surrounding the much smaller, singly occupied (Au) 5d orbitals has been omitted for the sake of clarity. ...6

Figure 1.3. Schematic diagram summarizing the important reactions of metals in the MLT region of the atmosphere in which M= Mg+ and Ca+ — see text. ...15

Figure 1.4. The density profile of an observed (a) descending Es that leads to the formation of Na,s layer (c). The descent of the Es was simulated (b) so that the Na density predicted to arise from this event by the atmospheric model (d) could be compared to that observed in the actual sporadic event...17

Figure 2.1. Schematic diagram of experimental setup. Diagram adapted from reference 1. The grey triangles represent turning prisms while the dashed line is the gate valve that separates the two vacuum chambers: The nozzle chamber to the left and ionization chamber to the right...25
Figure 2.2. Assembly of stepper motor, Au rod, Lava source and Pulsed valve...26

Figure 2.3. Schematic of the general timing scheme used. The internal triggering of the Minilite Q-switch, which was relative to the Minilight flashlamps, is not shown on this timing scheme.................29

Figure 2.4. Schematic of Liquid nitrogen cooling system.................33

Figure 2.5. Technical diagram of laser vaporization source. Measurements are given in mm...34

Figure 2.6. Comparison of the range of velocities in the gas reservoir and in the supersonic jet. The supersonic jet can be seen to have a considerably narrower distribution and therefore a considerably lower translational temperature...36

Figure 2.7. Diagram showing the two stages of resonance enhanced multiphoton ionization (REMPI). The 1+1' (left) and 1+1 (right) REMPI processes are shown...39

Figure 2.8. Diagram showing how FCF affects the intensity of vibrational bands observed on excitation to an excited electronic state...43

Figure 3.1. Spectrum of Au-Ar corresponding to the $D^2\Pi_{1/2} \leftarrow X^2\Sigma_{1/2}^+$ transition. The dissociation limit is obtained from $T_{1/2} + D_0^+$, where
the ground state dissociation energy was determined from *ab initio* calculations (discussed in section 3.4.1).

Figure 3.2. Spectrum of Au-Ar corresponding to the $D^2\Pi_{3/2} \leftarrow X^2\Sigma_{1/2}^+$ transition. The dissociation limit is obtained from $T_{3/2} + D_0''$, where the ground state dissociation energy was determined from *ab initio* calculations (discussed in section 3.4.1).

Figure 3.3. A summary of the spectroscopic constants used, or determined, in Section 3.3.2 and in the analysis of Au-RG spectra. From equation 3.3 it can be seen that $\Delta G_{1/2}$ will be equal to $\omega_e - 2\omega_e \chi_e$.

Figure 3.4. LeRoy-Bernstein plot (a) and plot of vibrational spacings against wavenumber for vibrational features observed for the $D^2\Pi_{1/2}$ state. The solid circles represent the analysis of the first set of features ($n-n+6$), whilst open circles represent the analysis of the last set of features ($n+7-n+11$).

Figure 3.5. LeRoy-Bernstein (a) and Birge-Sponer (b) analysis of vibrational features observed in $D^2\Pi_{3/2}$ spectrum. In which ν is that determined in Section 3.4.3.

Figure 3.6. RCCSD(T)/aug-cc-pVDZ calculated curves for Au-Ar electronic states arising from the lowest three atomic asymptotes. Note that the $A^2\Delta$ state lies slightly lower in energy than the $B^2\Pi$ state (but this is indiscernible on this scale), and that the $C^2\Sigma^+$ state was omitted from the calculations, but is expected to lie slightly above the
$B^3\Pi$ state. The $E^3\Sigma^+$ state was also omitted, but lies above the $D^3\Pi$ state. ... 61

Figure 3.7. CASSCF + MRCI + Q calculations for Au-Ar employing the d-aVQZ basis set. ... 63

Figure 3.8. Franck-Condon simulation of the $D^3\Pi_{3/2} \leftarrow X^3\Sigma_{1/2}^+$ transition for Au–Ar, using spectroscopic parameters calculated for the $D^3\Pi$ state (see text) and calculated spectroscopic parameters for the $X^3\Sigma_{1/2}^+$ state given in Table 3.6. Bottom trace: experimental spectrum. Middle trace: simulation. Top trace: overlay of the experimental and simulated spectra. ... 66

Figure 3.9. Schematic potential energy curves depicting the evolution of the shelf state. a) The pure Π and Σ curves b) The effects of spin-orbit splitting is shown c) Inclusion of spin-orbit interactions showing the mixing between states of the same Ω value. ... 73

Figure 4.1. Spectra recorded for the $D^3\Pi_{1/2} \leftarrow X^3\Sigma_{1/2}^+$ Au-Kr transition. The top four isotopically resolved traces were recorded at Bern,1 whilst the bottom trace showing all the isotopomers was recorded in Nottingham. The absolute vibrational numbering is given; the determination of which is described in the section 4.2.2. The dashed line represents the Au $^2P_{1/2} \leftarrow 2S_{1/2}$ transition. 83

Figure 4.2. Au-Kr $D^3\Pi_{3/2} \leftarrow X^3\Sigma_{1/2}^+$ spectra. The top trace is spectrum recorded using a (1+1) REMPI scheme in Bern,1 whilst bottom trace is
recorded using (1+1′) REMPI scheme in Nottingham. Absolute vibrational numbering is determined using isotopic analysis of features reported in Table 4.3.

Figure 4.3. Re-analysis of Isotopic shifts reported by Wallimann\(^1\) for the \(D^2\Pi_{1/2}\) spectra [(a) – (c)] and \(D^2\Pi_{3/2}\) spectra [(d) – (f)]. The isotopomers compared for each of the plots are as follows (a) Au\(^{80}\)Kr and Au\(^{84}\)Kr, (b) Au\(^{80}\)Kr and Au\(^{86}\)Kr, (c) Au\(^{83}\)Kr and Au\(^{86}\)Kr, (d) Au\(^{82}\)Kr and Au\(^{86}\)Kr, (e) Au\(^{83}\)Kr and Au\(^{86}\)Kr, (f) Au\(^{84}\)Kr and Au\(^{86}\)Kr.

Figure 4.4. Calculated RCCSD(T) potential energy curves for Au–Kr in the absence of spin-orbit interaction. Note that the \(A^2\Delta\) state lies slightly lower in energy than the \(B^2\Pi\) state (but this is indiscernible on this scale), and that the \(C^2\Sigma^+\) state was omitted from the calculations, but is expected to lie slightly above the \(B^2\Pi\) state. The \(E^2\Sigma^+\) state was also omitted, but lies above the \(D^2\Pi\) state.

Figure 4.5. CASSCF + MRCI + Q calculations on the \(D^2\Pi_{\Omega_2}\) and \(E^2\Sigma_{1/2}^+\) states including spin-orbit coupling. The slight kink in the \(E\) state potential is due to the mixing with the \(D^2\Pi_{1/2}\) state. INSET: expanded view of the \(R\) region of the \(D^2\Pi_{1/2}\) state showing the very shallow minimum caused by mixing with the \(E^2\Sigma_{1/2}^+\) state.

Figure 4.6. Analysis of vibrational features observed for the Au–Kr \(D^2\Pi_{1/2} ← X^2\Sigma_{1/2}^+\) transition. The top plot is that of a LeRoy-Bernstein extrapolation extrapolated to show \(D_L\). The Birge-Sponer plot (middle) is extrapolated to show \(v'\) at the dissociation limit. The fitting of the
vibrational levels to the Morse approximation is shown in the bottom plot. Results are reported in Table 4.5.94

Figure 4.7. Analysis of vibrational features observed for the Au-Kr $D^2\Pi_{3/2} \leftrightarrow X^2\Sigma_{1/2}^+$ transition. Top plot: LeRoy-Bernstein plot extrapolated to show D_L. Middle: Birge-Sponer plot extrapolated to show v' at D_L. Bottom: Vibrational levels are fitted to Morse approximation. Results are reported in Table 4.6...96

Figure 4.8. Schematic diagram based on the RCCSD(T) and CASSCF + MRCI + Q calculations, showing the spin-orbit curves relevant to the observed spectral region. Right-hand side: Overview. Left-hand side: Expanded view...99

Figure 4.9. The Franck-Condon simulation of the $D^2\Pi_{1/2} \leftrightarrow X^2\Sigma_{1/2}^+$ transition – see text for details. The simulated spectrum has been scaled so that the most intense feature matches that of the corresponding experimental one (trace e)...101

Figure 4.10. Franck-Condon simulation of the $D^2\Pi_{3/2} \leftrightarrow X^2\Sigma_{1/2}^+$ transition; as can be seen intensity to blue in the experimental spectrum is missing owing to predissociation – see text for details. The simulated spectrum (bold trace) has been scaled so that the intensity of the $v' = 27$ feature (indicated by vertical arrow) matches that of the corresponding experimental one..103
Figure 5.1. Calculated RCCSD(T) potential energy curves for Au–Xe in the absence of spin-orbit interaction. Note that the minimum of the $A^2\Delta$ state lies slightly lower in energy than that of the $B^2\Pi$ state (but this is indiscernible on this scale), and that the $C^2\Sigma^+$ state was omitted from the calculations, but is expected to be essentially identical with the $B^2\Pi$ and $A^2\Delta$ states. The $E^2\Sigma^+$ state was also omitted, but lies above the $D^2\Pi$ state – see Figure 4.2. .. 111

Figure 5.2. CASSCF + MRCI + Q calculations on the excited states of Au–Xe including spin-orbit coupling. The D and E states arise from the Au – localized $6^2P_J \leftarrow 6^2S_{1/2}$ excitation, the other states correspond to excitation of the Au 6s electron to the 7s and 7p Rydberg orbitals. The position of the Au($^4P_{5/2}$) + Xe(1S) asymptote has been marked using the experimental value for the Au($^4P_{5/2}$) + Au($6^2S_{1/2}$) excitation energy... 112

Figure 5.3. Top trace shows the (1+1) REMPI spectrum obtained for the $D^2\Pi_{1/2} \leftarrow X^2\Sigma_{1/2}^+$ Au-Xe transition. The spectrum was recorded using a gas mix of 1.5 bar Xe topped up to 3.5 bar with Ne. The absolute vibrational numbering was determined from an isotopic analysis of vibrational features above $\nu' = 28$ (see text). Hot bands features are marked by an asterisk. The strong feature marked with an arrow does not fit the vibrational progression, and its intensity changed with conditions relative to the other features in the spectrum; it has yet to be assigned. Bottom trace shows Franck-Condon simulation of spectrum... 115
Figure 5.4. High resolution scan over $v' = 31$ displaying the energy separation of individual isotopomers.

Figure 5.5. Isotopic shift analysis of the features observed for the $D^2\Pi_{1/2} \rightarrow \chi^2\Sigma_{1/2}^+$ Au-Xe transition (a) – (c) and in the region of the Au ($6^2P_{3/2}$) atomic transition (d) – (e). The larger dots represent the experimental shifts; smaller dots theoretical shifts. ξ represents a running integer variable, allowing theoretical shifts to be compared to experiment.

Figure 5.6. The solid line represents the Morse approximation fit for the $v' = 28$-32 levels of the $^{197}\text{Au}^{132}\text{Xe}$. The open circles are the energies of these features and the crosses the energies of the $v' < 28$, indicating that all features are part of the same vibrational progression.

Figure 5.7. (1+1') REMPI spectrum of Au-Xe $\Xi_{1/2}$ state.

Figure 5.8. High resolution scan over a single vibrational transition ($v' = 8$) of the spectrum in Figure 5.7, showing the contribution of different isotopomers.

Figure 5.9. Comparison of Birge-Sponer plots when lower energy features ($v' = 4 - 7$) of $\Xi_{1/2}$ spectrum plotted as part of (a) $^{197}\text{Au}^{129}\text{Xe}$ and (b) $^{197}\text{Au}^{132}\text{Xe}$ vibrational progressions. The “kink” observed in (b) indicates that the features are not part of this vibrational progression.
Figure 5.10. Schematic of potential energy curves in the energy region close to the Au 6P_J levels. The A, B and C states arise from the Au (2D_J) + Xe (1S) asymptotes. These curves are generated by using the RCCSD(T) curves, and shifting them according to the experimental atomic splitting, and assuming the curves are not interacting with any others. The D and E states are the CASSCF+MRCI+Q curves that have been shifted so that the atomic spin-orbit asymptotes are at the correct energy. The dashed curve represents the state from which the spectrum in Figure 5.7 arises. The left-hand diagram is in the absence of interaction between the dashed curve and the E state. The right-hand diagram is in the presence of this interaction. Note the production of a barrier consistent with observations.

Figure 6.1. (1+1) REMPI spectrum of $D^4\Pi_{3/2} \leftarrow X^2\Sigma_{1/2}^+$ transition for $^{197}\text{Au}^{20}\text{Ne}$. The vibrational numbering was determined from an analysis of isotopic shifts between isotopomers (see text).

Figure 6.2. Comparison of $^{197}\text{Au}^{20}\text{Ne}$ and $^{197}\text{Au}^{22}\text{Ne}$ spectra for the low-energy ($v' = 0-2$) region of $D^4\Pi_{3/2} \leftarrow X^2\Sigma_{1/2}^+$ transition.

Figure 6.3. Calculated (lines with small circles) and experimental (large circles, with error bars) isotopic shifts between vibrational energy levels in $^{197}\text{Au}^{20}\text{Ne}$ and $^{197}\text{Au}^{22}\text{Ne}$, for various absolute numberings, where the $v' - \xi$ value labels the observed features. Centres of the asymmetric bands have been estimated.
Figure 6.4. Morse analysis (a) and LeRoy-Bernstein analysis (b) of vibrational features observed for the $^{197}\text{Au} - ^{20}\text{Ne}$ $D^2\Pi_{3/2}$ state. 145

Figure 6.5. Calculated RCCSD(T)/aVQZ potential energy curves for the X, A, B and D states of Au–Ne. Note that the A and B states cannot be resolved from each other on this scale, and the C state (not calculated) would also be expected not to be resolvable. The E state, also not included, lies to higher energy (see Figure 6.6) 148

Figure 6.6. CASSCF+MRCI+Q/aVQZ calculations for the $D^2\Pi_{1/2}$, $D^2\Pi_{3/2}$ and $E^2\Sigma_{1/2}^+$ states of Au–Ne. .. 149

Figure 6.7. Franck-Condon simulation of the $D^2\Pi_{3/2} \leftarrow X^2\Sigma_{1/2}^+$ transition for $^{197}\text{Au} - ^{20}\text{Ne}$, using parameters from the ab initio calculations reported (see text). The intensities of the simulated spectrum have been scaled so that the $\nu' = 0$ intensity matches the experimental one. ... 152

Figure 6.8. Simulated rotational profiles for the vibrational features of the $D^2\Pi_{3/2} \leftarrow X^2\Sigma_{1/2}^+$ transition for $^{197}\text{Au} - ^{20}\text{Ne}$. .. 153

Figure 7.1. CASSCF+MRCI+Q/aVQZ calculations for the $D^2\Pi_{1/2}$, $D^2\Pi_{3/2}$ and $E^2\Sigma_{1/2}^+$ states of Au–He. .. 160

Figure 7.2. Graph showing how Δ varies with respect to S, each normalized to the spin-orbit splitting parameter, ζ. 166
Figure 7.3. (inset) The Au fragment image observed following excitation of the Au-Xe $\Sigma_{1/2} (v'=13)$ level. The left hand side shows the raw image, the right hand side the result of the image reconstruction. The smaller less-well resolved rings at the centre of the image are Au atoms produced in direct dissociation of Au-Ar which is produced simultaneously with Au-Xe. The main figure shows the extracted TKER spectra observed by imaging the Au fragment following excitation of each Au-Xe $\Sigma_{1/2} (v')$ level. Extrapolation to zero TKER confirms that predissociation occurs into the Au ($^2P_{1/2}$) + Xe (1S) channel. This diagram was produced by Dr. W. Scott Hopkins and used with the permission of Dr. S. R. Mackenzie.171

Figure 7.4. MOLDEN contour diagrams of the HOMO for each CM–RG complex calculated at the RCCSD(T) R_e values. The spacings of the contours are constant and were selected to show the details clearly for all complexes. The different colours indicate opposite signs of the wavefunction. Diagram produced by A. M. Gardner.........................176

Figure 8.1. B3LYP/6-311++G(2d,p) geometry optimized structures of Y–Ca$^+$–X complexes. Note that the lines joining atoms do not necessarily indicate a chemical bond. ..198

Figure 8.2. Alternative B3LYP/6-311++G(2d,p) and MP2/6-311++G(2d,p) geometry optimized structures of O–Ca$^+$–O$_2$ complexes. Note that the lines joining atoms do not necessarily indicate a chemical bond. ..199
Figure 8.3. B3LYP/6-311++G(2d,p) geometry optimized structures of Ca+(X)\textsubscript{2} complexes. Note that the lines joining atoms do not necessarily indicate a chemical bond.

Figure 9.1. Schematic diagram of reactions important to the ion-molecule chemistry of Mg and Mg+ in the MLT region of the atmosphere. The red arrows represent ligand switching reactions.

Figure 9.2. B3LYP/6-311G(2d,p) Optimized geometries of Mg+–X complexes. Note that the lines joining atoms do not necessarily indicate a chemical bond.

Figure 9.3. B3LYP/6-311+G(2d,p) optimized geometries of [X–Mg–Y]+ complexes. Note that the lines joining atoms do not necessarily indicate a chemical bond.

Figure 9.4. B3LYP/6-311+G(2d,p) optimized geometries of [MgX\textsubscript{2}]+ complexes. Note that the lines joining atoms do not necessarily indicate a chemical bond.
List of Tables

Table 3.1. Summary of spectroscopic constants derived in reference 1. ...47

Table 3.2. Line positions for $D^3\Pi_{1/2} \leftarrow X^2\Sigma_{1/2}^+$ spectrum shown in Figure 3.1. The first observed peak is denoted as n.49

Table 3.3. Line positions for $D^3\Pi_{3/2} \leftarrow X^2\Sigma_{1/2}^+$ spectrum shown in Figure 3.2. The first observed peak is denoted as n.51

Table 3.4. Results of LeRoy-Bernstein and vibrational spacing analysis for the $D^3\Pi_{1/2}$ state. Details in text.................................56

Table 3.5. Results of LeRoy-Bernstein and Birge-sponer analysis for $D^3\Pi_{3/2}$ state. ...57

Table 3.6. Au-Ar $X^2\Sigma_{1/2}^+$ state calculated spectroscopic constants at RCCSD(T) level using specified basis set.59

Table 3.7. Rotational constants required to obtain a theoretical peak shape and width similar to that observed experimentally for the $D^3\Pi_{1/2}$ state. B_0'' was determined theoretically as 0.036 cm$^{-1}$. The dashed line indicates the change in regime within the progression.68
Table 3.8. Rotational constants required to obtain a theoretical peak shape and width similar to that observed experimentally for the $D^\Pi_{3/2}$ state. B_0^* was determined theoretically as 0.036 cm$^{-1}$.................74

Table 4.1. Spectroscopic constants for Au-Kr reported by Wallimann.1
Details in text ...80

Table 4.2. Assignment of features observed for the $D^\Pi_{1/2} \leftarrow X^\Sigma_{1/2^*}$ transition. The positions for “all isotopomers” was determined at Nottingham, whilst the isotopically resolved complexes were recorded at Bern.1..84

Table 4.3. Assignment of features observed for the $D^\Pi_{3/2} \leftarrow X^\Sigma_{1/2^*}$ transition. The positions for “all isotopomers” was determined at Nottingham, whilst the isotopically resolved complexes were recorded at Bern.1..86

Table 4.4. Calculated spectroscopic constants for 197Au-84Kr $X^\Sigma_{1/2^*}$
..91

Table 4.5. Spectroscopic constants (cm$^{-1}$) obtained using vibrational features of $D^\Pi_{1/2} \leftarrow X^\Sigma_{1/2^*}$ spectrum of 197Au-84Kr...............................95

Table 4.6. Spectroscopic constants (cm$^{-1}$) obtained using vibrational features of $D^\Pi_{3/2} \leftarrow X^\Sigma_{1/2^*}$ spectrum of 197Au-84Kr...............................96

-xx-
Table 5.1. Calculated spectroscopic constants for 197Au-132Xe $X^2\Sigma^+$

Table 5.2. Transition wavenumbers for the $D^2\Pi_{1/2} \leftarrow X^2\Sigma_{1/2}^+$ transition. For $v' = 28-32$ these are isotopomer specific, as noted; for $v' = 16-27$, these are the peak maxima, which are expected to correspond to the 197Au-132Xe isotopomer.

Table 5.3. Table of spectroscopic constants derived for the $D^2\Pi_{1/2}$ state (cm$^{-1}$).

Table 5.4. Table showing 197Au-Xe isotopomer line positions (cm$^{-1}$) for the $\Xi_{1/2}$ spectrum. For $v' = 8-13$ these are isotopomer specific as noted in text; for $v' = 4-7$ the reported position corresponds to the peak maxima suspected to be 197Au-129Xe.

Table 5.5. Table of spectroscopic constants derived for the $\Xi_{1/2}$ state (cm$^{-1}$).

Table 5.6. D_0 values for the $D^2\Pi_{3/2}$ excited state and $X^1\Sigma^+$ cation states and their ratios.

Table 6.1. Line position (cm$^{-1}$) for features observed for the $D^2\Pi_{3/2} \leftarrow X^2\Sigma_{1/2}^+$ transition.

Table 6.2. Derived spectroscopic constants (cm$^{-1}$) for the 197Au-20Ne $D^2\Pi_{3/2}$ state.
Table 6.3. Calculated spectroscopic constants, and 0-1 and 1-2 vibrational intervals for the $X^2\Sigma_{1/2}^+$ state of $^{197}\text{Au}^{20}\text{Ne}$ at the RCCSD(T) level of theory. ... 146

Table 7.1. Calculated spectroscopic constants, and 0-1 and 1-2 vibrational intervals for the $X^2\Sigma^+$ of Au-RG at the RCCSD(T) level of theory. ... 158

Table 7.2. CASSCF+MRCI+Q+SO values of Δ/ζ for Au–RG at the minima of the $D^2\Pi_{3/2}$ curves. Also included are the RCCSD(T)/daVQZ R_e and D_e values for the $D^2\Pi$ excited state neutral and $X^2\Sigma^+$ ground cationic states.. 165

Table 7.3. Variation in separation of $D^2\Pi_{1/2}$ and $D^2\Pi_{3/2}$ states of $^{197}\text{Au}^{84}\text{Kr}$ as a function of ν'. Ratio is that of the separation to the atomic value of 3815.4 cm$^{-1}$. .. 167

Table 7.4. Summary of theoretically derived spectroscopic constants for the $X^2\Sigma_{1/2}^+$ state of the CM-RG complexes. Constants presented for Cu-RG and Ag-RG complexes are “best” results from reference 9, whilst those for Au-RG are from this work. ... 174

Table 8.1. Dissociation energies (kJ mol$^{-1}$) for Ca$^+$–X complexes (X = H$_2$O, CO$_2$, N$_2$, O and O$_2$).. 186
Table 8.2. Total energies, electronic states and harmonic vibrational frequencies for X–Ca²⁺–Y complexes (where X and Y = CO₂, N₂ and H₂O) calculated at MP2/6-311++G (2d,p) level of theory. Note that N₂(s) indicates N₂ approaching in a side-on manner, whilst i indicates an imaginary frequency. The global minima are highlighted. 190

Table 8.3. Total energies, electronic states and harmonic vibrational frequencies for X–Ca²⁺–Y complexes (where X and Y = CO₂, N₂ and H₂O) calculated at B3LYP/6-311++G (2d,p) level of theory. Note that N₂(s) indicates N₂ approaching in a side-on manner, whilst i indicates an imaginary frequency. The global minima are highlighted. 191

Table 8.4. Total energies, electronic states and harmonic vibrational frequencies for OCa⁺–Y complexes (where X = CO₂, N₂ and H₂O) calculated at MP2/6-311++G (2d,p) level of theory. Note that N₂(s) indicates N₂ approaching in a side-on manner, whilst i indicates an imaginary frequency. The global minima are highlighted. 193

Table 8.5. Total energies, electronic states and harmonic vibrational frequencies for OCa⁺–X complexes (where X = CO₂, N₂ and H₂O) calculated at B3LYP/6-311++G (2d,p) level of theory. Note that N₂(s) indicates N₂ approaching in a side-on manner, whilst i indicates an imaginary frequency. The global minima are highlighted. 194

Table 8.6. Total energies, electronic states and harmonic vibrational frequencies for O₂Ca⁺–X complexes (where X = CO₂, N₂ and H₂O) calculated at MP2/6-311++G (2d,p) level of theory......................... 195
Table 8.7. Total energies, electronic states, harmonic vibrational frequencies for O₂Ca⁺–X complexes (where X = CO₂, N₂ and H₂O) calculated at B3LYP/6-311++G (2d,p) level of theory.195

Table 8.8. Total energies, electronic states and harmonic vibrational frequencies for the O₂Ca⁺–O complexes calculated at B3LYP/6-311++G (2d,p) level of theory. Note that O₂(s) indicates O₂ approaching in a side-on manner, whilst i indicates an imaginary frequency. The global minima are highlighted. ...197

Table 8.9. Total energies, electronic states and harmonic vibrational frequencies for Ca⁺(X)₂ complexes calculated at the B3LYP/6-311++G(2d,p) level. Note that sN₂ or sO₂ indicates N₂ or O₂ approaching in a side-on manner. The global minima are highlighted. ...200

Table 8.10. RCCSD(T)/aug-cc-pVQZ/B3LYP/6-311++G(2d,p) total energies and summary of lowest energy state and associated rotational constants ...202

Table 8.11. Binding Energies for X–Ca⁺–Y Complexes (kJ mol⁻¹).203

Table 9.1. Total energies, electronic states, harmonic vibrational frequencies and rotational constants of the Mg⁺–X complexes obtained at the B3LYP/6-311+G(2d,p) level of theory. a214
Table 9.2. Dissociation energies (kJ mol\(^{-1}\)) of the Mg\(^{+}\)--X complexes (X = H\(_2\)O, CO\(_2\), N\(_2\), O, O\(_2\) and O\(_3\)). \(D_0\) (\(D_e\)) values shown.

Table 9.3. Total energies, electronic states and harmonic vibrational frequencies of the X--Mg\(^{+}\)--Y (X, Y = CO\(_2\), H\(_2\)O and N\(_2\)) complexes optimized and calculated at B3LYP/6-311+G(2d,p) level of theory. Rotational constants are given for the highlighted global minima only. sN\(_2\) denotes side-on binding, otherwise the binding is end-on, whilst \(i\) indicates an imaginary frequency.

Table 9.4. Total energies, electronic states and harmonic vibrational frequencies of the O--Mg\(^{+}\)--X (X = CO\(_2\), H\(_2\)O and N\(_2\)) complexes optimized and calculated at B3LYP/6-311+G(2d,p) level of theory. Rotational constants are given for the highlighted global minima only. sO\(_2\) denotes side-on binding, otherwise the binding is end-on, whilst \(i\) indicates an imaginary frequency.

Table 9.5. Total energies, electronic states and harmonic vibrational frequencies of the O\(_2\)--Mg\(^{+}\)--X (X = CO\(_2\), H\(_2\)O and N\(_2\)) complexes optimized and calculated at B3LYP/6-311+G(2d,p) level of theory. Rotational constants are given for the highlighted global minima only. sO\(_2\) denotes side-on binding, otherwise the binding is end-on, whilst \(i\) indicates an imaginary frequency.

Table 9.6. Total energies, electronic states and harmonic vibrational frequencies of the O\(_2\)--Mg\(^{+}\)--O complexes optimized and calculated at B3LYP/6-311+G(2d,p) level of theory. Rotational constants are given
for the highlighted global minima only. sO₂ denotes side-on binding,
otherwise the binding is end-on, whilst i indicates an imaginary
frequency. ...231

Table 9.7. Total energies, electronic states and harmonic vibrational
frequencies of the X–Mg⁺–X (X = O₂, CO₂, H₂O and N₂) complexes
optimized and calculated at B3LYP/6-311+G(2d,p) level of theory.
Rotational constants are given for the highlighted global minima only.
sO₂ and sN₂ denotes side-on binding, otherwise the binding is end-on,
whilst i indicates an imaginary frequency.234

Table 9.8. RCCSD(T) Total Energies ...236

Table 9.9. Binding Energies, D₀ (Dₑ) of the X–Mg⁺–Y complexes
(kJmol⁻¹)
...238