
THE USE OF HAPLOID SYSTEMS 

IN PLANT GENETIC MANIPULATION 

by 

ANDREW PIRRIE 

B. Sc. (Hons. ) 
Southampton University 

1982 

Thesis submitted to the University or Nottingham 
for the degree of 

DOCTOR OF PHILOSOPHY, 

December, 1985. 



ST COPY 

AVAILA L 

Variable print quality 



CONTENTS 

PaAe 

CHAPTER 1 INTRODUCTION 

1.1 GENERAL INTRODUCTION 1 

1.2 ANTHER AND POLLEN CULTURE 6 

1.2.1 Pollen development in vivo 7 

1.2.2 Pollen development in vitro 10 

1.2.3 Factors influencing the response within cultured 
anthers 11 

a) bud stress treatments prior to anther culture 11 

b) the stage of pollen development within the 
anther prior to culture 13 

c) the influence or the genotype of the donor plant 14 

d) the growth conditions of the donor plant 15 

e) anther culture conditions 16 

1.2.4 Cytological analysis of anther culture derived 
plants 19 

1.2.5 Variation arising in anther culture derived 
plants 19 

1.2.6 Applications or anther derived haploid plants and 
tissues 21 

a) mutant selection 21 

b) plant breeding 22 

1.2.7 Anther culture in Cyclamen persicum 23 

1.3 HAPLOID PROTOPLASTS IN SOMATIC HYBRIDISATION 25 

1.3.1 Protoplast isolation 26 

1.3.2 Protoplast culture 28 

1.3.3 Protoplast fusion 29 

1.3.4 Selection schemes for the recovery of somatic 
hybrid cell lines and plants 31 

a) mass selection 32 

b) single heterokaryon isolation 32 

C) differential growth conditions 34 

d) metabolic inactivation 35 

e) gene based complementation selection 35 

1.3.5 The efficiency of selection schemes 39 

1.3.6 Analysis of the products or somatic 
hybridisation 40 

a) morphological studies 42 

b) the cytology of somatic hybrid cell lines and 
plants 42 



I page 

C) biochemical characterisation of somatic 
hybrid cell lines and plants 46 

d) molecular approaches to the analysis or 
somatic hybrids 48 

1.3.7 Commercial applications of somatic hybrid 
plants 50 

1.3.8 Somatic hybridisation between N. tabacum (2n) and 
N. glutinosa (n) 52 

CHAPTER 2 TISSUE CULTURE OF CYCLAMEN PERSICUM 

2.1 INTRODUCTION 54 

2.2 MATERIALS AND METHODS 58 
2.2.1 Source of plant material 58 
2.2.2 Growth of plant material 58 

2.2.3 Contamination control 59 
2.2.4 Media preparation and sterilisation 59 

2.2.5 Enzyme preparation and storage 60 

2.2.6 Surface sterilisation of experimental material 60 

2.2.7 Preparation of explants 61 

2.2.8 Culture preparation and conditions 62 

2.2.9 Culture response and subculture 62 

2.2.10 Protoplast isolation and culture 63 

2.2.11 Fluorescein diacetate (FDA) staining of 
isolated protoplasts 65 

2.3 RESULTS 66 

2.3.1 Callus initiation from leaf and petiole explants 
of flowering Cyclamen plants 66 

2.3.2 Subculture and maintenance of callus cultures 
initiated from leaf explants of flowering 
Cyclamen plants 67 

2.3.3 Subculture and maintenance of callus cultures 
initiated from petiole explants of flowering 
Cyclamen plants 69 

2.3.4 Establishing Cyclamen cell suspensions 70 

2.3.5 Callus initiation from root, corm, petiole and 
leaf explants of axenically grown Cyclamen 
seedlings 70 

2.3.6 Callus initiation and morphogenesis in N. tabacum 
and N. glutinosa 71 

2.3.7 Cyclamen protoplast isolation and culture 72 

2.4 CONCLUSION 88 



Pago 

CHAPTER 3 ANTHER CULTURE OF CYCLAMEN PERSICUM. 

NICOTIANA TABACUM AND N. GLUTINOSA 

3.1 INTRODUCTION 89 
3.2 MATERIALS AND METHODS 91 

3.2.1 Source and growth of plant material 91 
3.2.2 Analysis of pollen development 91 
3.2.3 Preparation of acetocarmine stain 91 
3.2.4 Media preparation and sterilisation 92 
3.2.5 Bud selection, bud pretreatment and anther 

culture conditions 92 
3.2.6 Data collection, and recovery of anther 

culture derived plants 93 
3.2.7 Cytological observations 93 
3.2.8 Preparation of feulgen stain 94 

3.3 RESULTS 95 
3.3.1 Pollen development in Cyclamen persicum, 

Nicotiana tabacum and N. glutinosa 95 
3.3.2 Anther culture in N. tabacum 97 

3.3.3 Characterisation of the plantlets derived from 
N. tabacum anther culture 100 

3.3.4 Anther culture in Cyclamen persicum 101 

3.3.5 Anther culture in Nicotiana glutinosa 102 
3.3.6 Characterisation of the plantlets derived from 

N. glutinosa anther culture 103 

3.4 CONCLUSION 121 

CHAPTER 4 ISOLATION AND CULTURE OF HAPLOID PROTOPLASTS 

SUITABLE FOR SOMATIC HYBRIDISATION STUDIES 

4.1 INTRODUCTION 123 

4.2 MATERIALS AND METHODS 125 

4.2.1 Source and growth of plant material 125 

4.2.3 Media and enzyme preparation, sterilisation 
and storage 126 

4.2.4 Mesophyll protoplast isolation 126 

4.2.5 Albino Petunia hybrida protoplast isolation 127 

4.2.6 N. glutinosa tetrad protoplast isolation 127 

4.2.7 Viability determination 128 

4.2.8 Leaf mesophyll protoplast culture 128 

4.2.9 N. 
'glutinosa 

tetrad protoplast cultures 129 



page 

4.3 RESULTS 130 
4.3.1 Isolation and culture of haploid N. glutinosa 

and allodihaploid N. tabacum mesophyll 
protoplasts 130 

4.3.2 Isolation and culture or N. Slutinosa tetrad 
protoplasts 130 

4.4 CONCLUSION 133 

CHAPTER 5 SOMATIC HYBRIDISATION BETWEEN NITRATE REDUCTASE 
DEFICIENT NICOTIANA TABACUM LEAF MESOPHYLL 
PROTOPLASTS (2n) AND N. CLUTINOSA TETRAD 
PROTOPLASTS (n) 

5.1 INTRODUCTION 134 
5.2 MATERIALS AND METHODS 138 

5.2.1 Source and growth of plant material 138 
5.2.2 Media and enzyme preparation, sterilisation 

and storage 138 
5.2.3 N. tabacum nia-130 mesophyll protoplast 

Ts6lation 138 
5.2.4 N. 

' 
glutinosa tetrad protoplast isolation 139 

5.2.5 Protoplast fusion and culture 139 
5.2.6 Morphological and cytological analysis of 

putative somatic hybrid plants 140 
5.2.7 Biochemical analysis of putative somatic hybrid 

plants 141 

a) nitrate reductase assay 141 
b) extraction of soluble proteins from leaves, and 

leaf callus for isoenzyme and Fraction 1 protein 
analysis 141 

C) protein assay 142 
d) isoenzyme analysis following isoelectric 

focusing of soluble protein extracts 143 

e) Fraction 1 protein analysis 144 
5.3 RESULTS 148 

5.3.1 Protoplast isolation and culture 148 
5.3.2 Protoplast fusion, culture and selection of 

putative somatic hybrids 148 
5.3.3 Morphological and cytological examination of the 

putative somatic hybrids and their fusion partners 149 
5.3.4 Biochemical characterisation of the putative 

somatic hybrids and their fusion partners 150 



Pago 

a) nitrate reductase activity 150 
b) isoenzyme analysis 151 

C) Fraction 1 protein analysis 152 
5.4 CONCLUSION 160 

CHAPTER 6 EXAMINATION OF THE FERTILITY OF THE FIVE TRIPLOID 
SOMATIC HYBRIDS BETWEEN N. TABACUM (2n) AND 

N. GLUTINOSA (n) AND CHARACTERISATION OF THE 

FIRST BACKCROSS PROGENY BETWEEN THE SOMATIC 
HYBRIDS AND N. TABACUM 

6.1 INTRODUCTION 162 
6.2 MATERIALS AND METHODS 164 

6.2.1 Source and growth or plant material 164 
6.2.2 Pollen development and viability determination 164 
6.2.3 Sexual crosses 165 
6.2.4 Seed set and viability determinations 165 
6.2.5 Tentoxin sensitivity tests 165 
6.2.6 Morphological characterisation of the progeny 

of backcrosses between the somatic hybrid 
plants and N. tabacum 166 

6.2-T Biochemical characterisation of the progeny or 
backcrosses between the somatic hybrids and 
N. tabacum 166 

6.3 RESULTS 168 
6.3.1 Pollen development, viability and size 168 
6.3.2 Seed set and viability following reciprocal 

crosses between the rive somatic hybrids and 
N. tabacum 168 

6.3.3 Tentoxin sensitivity tests 169 
6.3.4 Morphology of the backcross progeny between 

somatic hybrids NGT 2 and NGT 6 (9) and 
N. tabacum (6) 169 

6.3.5 Morphology of the sexual hybrid between 
N. tabacum (9) and N. glutinosa (6) 170 

6.3.6 Biochemical characterisation of the backcross 
progency between NGT 2 and NGT 6 (9) and 
N. tabac= 170 

6.4 CONCLUSION 179 



Page 

CHAPTER 7 GENERAL DISCUSSION 

7.1 TISSUE CULTURE OF CYCLAMEN PERSICUM 181 

7.2 CYCLAMEN ANTHER CULTURE 188 

7.3 ALTERNATIVE APPROACHES TO UNIFORMITY IN CYCLAMEN 193 

7.4 ANTHER CULTURE IN NICOTIANA SPECIES 195 

7.5 HAPLOID PROTOPLAST ISOLATION AND CULTURE 200 

7.6 GAMETOSOMATIC HYBRIDISATION BETWEEN N. TABACUM (2n) 
AND N. GLUTINOSA (n) t PROTOPLAST FLrSIO-Np- TNTHE 
RECrVERY OF PUTXTIVE GAMETOSOMATIC HYBRID PLANTS 206 

7.7 GAMETOSOMATIC HYBRIDISATION BETWEEN N. TABACUM (2n) 
AND N. GLUTINOSA (n) : MORPHOLOGICAL70 CTYTOLOGICAL AND 
BIOCHt2fl-CALCHARACTERISATION OF THE FIVE PUTATIVE 
GAMETOSOMATIC HYBRID PLANTS 210 

7.8 GAMETOSOMATIC HYBRIDISATION BETWEEN N. TABACUM (2n) 
AND N. GLUTINOSA (n) : ANALYSIS OF THE FERTIL1 Y AND 
PROGENY OF THE GAMETOSOMATIC HYBRID PLANTS 218 

7.9 POSSIBLE LIMITATIONS TO THE APPLICATION OF SOMATIC AND 
GAMETOSOMATIC HYBRIDISATION TO PLANT BREEDING 222 

7.10 FUTURE RESEARCH AREAS ARISING FROM THIS PRESENT STUDY 227 

REFERENCES 230 

APPENDIX 

1. MEDIA COMPOSITION 253 

2. CALIBRATION CURVES 267 



ABSTRACT 

In the present study the use of haplold plants and tissues was 

considered in relation to plant genetic manipulation. Haploid plants 

can be exploited directly, in the synthesis or true breeding lines. 

Alternatively, haploid plants and tissues may provide material for 

further experimentation Involving protoplast fusion. Both approaches 

were investigated. 

Cyclamen persicumq an attractive flowering plant is grown com- 

mercially from seed produced following open r, -c-pollination. As a 

result, Cyclamen is highly heterozygous, but the resulting variation 

is cornercially undesirable. Inbreeding depression prevents the re- 

covery of commercial inbred lines. Anther culture as an alternative 

approach for the recovery or true breeding lines was attempted. In 

order to test the efficiency of the culture procedure and conditions, 

anther culture of N. tabacum was also attempted, since this species is 

known to be highly responsive to anther culture. Despite the recovery 

of very many allodihaploid N. tabacum, plants from anther culture, no 

success was achieved with Cyclamen, and the possible reasons for this 

are discussed. 

It has recently been proposed that limited gene transrer might 

be achieved by somatic hybridisation if diploid protoplasts or a crop 

species were fused with haploid protoplasts or a wild type species, 

and novel allotriploid somatic hybrid Plants recovered. Haploid proto- 

plasts can be isolated from anther culture derived plants, however the 

range of species responsive to anther culture is limited. Tetradsp 

formed as a result of meiosis in the pollen mother cells, were investi- 

gated as an alternative source of haploid Protoplasts for fusion 

studies. 



Somatic hybrids were recovered following fusion between 

N. tabac= leaf mesophyll (2n) and N. glutinosa tetrad (n) proto- 

plasts. The somatic hybrids were fertile, and the progeny of the 

first backcross to N. tabacum were obtained. These results, and 

potential limitations to somatic hybridisation are considered in the 

context or plant breeding. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL INTRODUCTION 

The discovery that within cultured anthers of Datura innoxia, 

pollen grains can undergo sustained division giving rise to haploid 

embryos, and plants (Guha and Maheshwari, 1964 and 1966) led to 

speculation that anther culture might become a simple and widely 

applicable procedure for obtaining large numbers of haploid plants. 

Haploid plants and cell cultures can be used in a variety of ways. 

Haploids are invaluable in mutant selection, since single recessive 

mutations will be immediately expressed. An excellent example of the 

use of anther culture derived haploid cell cultures for mutant 

selection, is the production of nitrate reductase deficient (NR 

cell lines, and in some cases plants which have been obtained in 

Nicotiana tabacum (Muller and Grafe, 1978), Datura innoxia (King and 

Khannat 1980), Hyocyamus muticus (Strauss et al., 1981), 

N. plumbaginifolia (Marton et al., 1982) and Oryza sativa (Wakasa et 

al., 1984). Such mutants are of great interest in studies on nitrate 

metabolism, DNA transformation and somatic hybridisation (Maliga, 

1984). 

The ability to obtain diploid plants following the application 

of chromosome doubling techniques to haploids offers an alternative 

method for the development of true breeding lines. Usually extensive 

inbreeding is necessary to obtain Complete homozygosity, whereas the 

haploid approach achieves this directly. This procedure can be 

applied to hybrids between varieties, allowing new lines to be rapidly 

developed. In this way improved varieties of N. tabacum (Nakamura et 
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al., 1974) and 0. sativa (Hu et al., 1978) have been obtained. 

In spite of these examplesq and the optimism and interest 

expressed for the use of haploids at the first international symposium 

on haploids in higher plants (Kasha, 1974) they have so far failed to 

significantly contribute to the genetic manipulation and improvement 

of crop plants. The reasons for this are complex, but can largely be 

attributed to our inability to obtain an anther culture response in 

most crop plants. Even when haploid plants can be obtained, the 

response is often dependent on the genotype of the donor plant, 

restricting their use still further. In cereals even greater problems 

must be overcome, since albino plants of little use in breeding 

programmes, are frequently produced by anther culture. 

The haploid approach to the production of uniform true breeding 

lines would be advantageous in the breeding of Cyclamen persicum, a 

horticulturally important flowering plant. Inbreeding over several 

generations would be time consuming, and inbreeding depression has been 

reported (Wellensiekt 1959)t suggesting that commercial inbred lines 

may be difficult to obtain. Previous unsuccessful attempts at Cyclamen 

anther culture have concentrated on manipulating the culture media and 

environment (Geierg 1978). An alternative approach, based on the 

following survey of the literature, was developed. Emphasis was 

placed on stress treatments performed on excised buds prior to the 

dissection and culture of the anthers. To evaluate the efficiency of 

this approach, parallel experiments were performed using anthers from 

a Nicotiana tabacum variety, White Burley, from which haploid embryos 

can readily be obtained by anther culture. 

A second application for haploid cell systems to be evaluated, 

was the use of haploid protoplasts in fusion studies. Plant proto- 

plasts can be released by degrading the cell wall with enzymes, 
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usually of fungal origin (Cocking, 1960). Isolated protoplasts can 

undergo sustained division giving a small cell colony capable of plant 

regeneration (Takebe et al., 1971). Protoplasts isolated from differ- 

ent species can be induced to fuse, and the resulting heterokaryon may 

also be capable of sustained division and plant regeneration. Novel 

somatic hybrid plants can be created in this wayq which differ from 

sexual hybrids in a number of ways. Somatic hybrids originate from a 

heterokaryon which possesses the mitochondria and chloroplasts of both 

fusion partners. The retentiong independant segregation and/or genome 

recombinations which may result can give rise to a wide range of 

different organelle combinations (Davey and Kumar, 1983). In contrast 

sexual hybridisation usually results in uniparental (usually maternal) 

inheritance of organelles. Nuclear fusion In the heterokaryon may 

result in somatic hybrids which possess the expected amphiploid 

chromosome number consisting of a summation of the chromosome comple- 

ments of the two fusion partners. Chromosome elimination may occur 

following nuclear fusion, giving rise to a partial hybrid. In some 

cases chromosome elimination may be extreme, in which case only a 

limited gene transfer may occur. Failure of nuclear fusion may give 

rise to cybrids which contain a mixed cytoplasm, but the nucleus of 

only one fusion partner. 

Somatic hybridisation has been demonstrated between sexually 

compatible species (Carlson et al., 1972), but successful somatic 

hybridisation between sexually incompatible species (Melchers et al., 

1978) has aroused more interest. It has been suggested that the 

ability to overcome sexual incompatibility by somatic hybridisation 

will augnent conventional breeding programmes, permitting a free ex- 

change of genetic material. Few somatic hybrids have been produced 

between sexually incompatible species, and those which have been 
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obtained display a range of morphological abnormalities, and are 

sterile. Protoplast systems essential for somatic hybridisation are 

not yet available in many crop speciesg and it remains to be seen to 

what extent somatic hybridisation can contribute to crop improvement. 

It has recently been proposed that the synthesis of triploid 

somatic hybrid plants by fusion of diploid protoplasts of a crop plant 

with haploid protoplasts of a wild type species could facilitate a 

limited genetic exchange from the wild type species into the crop 

species (Pental and Cocking, 1985). In triploid cells introgression 

could occur either by somatic crossing over, by transposition, or 

more probably by trivalent formation at meiosis. Unpaired wild type 

chromosomes might be lost at meiosis or randomly segregate to give 

gametes and ultimately offspring with a reduced wild type chromosome 

complement. By repeated backcrossing to the diploid parentt chromo- 

somes of the wild type would be eliminated. Resulting plants and 

their progeny would need to be assessed for the introgression of novel 

genes of wild type origin. 

Protoplasts can be isolated from anther culture derived haploid 

plants, but as has already been noted, the range of species in which 

haploids can be obtained in this way is limited. Tetrads formed as a 

result of meiosis in the pollen mother cells consist of four haploid 

spores bound within a thick callose wall, and may be an alternative 

source of haploid protoplasts for use in fusion studies. 

In the genus Nicotiana somatic hybrid plants have been 

recovered between nitrate reductase deficient MR-) Nicotiana tabacum 

leaf mesophyll protoplasts (2n 4x = 48) and N. glutinosa cell 

suspension protoplasts Un = 2x 24). The selection of hybrids was 

based on the restoration of nitrate reductase activity, green colour 

and regeneration capacity (Cooper-Bland et al., 1985a). This species 
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combination was chosen to investigate if haploid N. glutinosa proto- 

plasts could be used in fusions with NR- N. tabacum leaf mesophyll 

protoplasts and allopentaploid (functionally triploid) somatic hybrid 

plants recovered. The use of anther culture to generate haploid 

plants of N. glutinosa suitable for protoplast isolation was attempted. 

Tetrads as an alternative source of haploid protoplasts were also 

investigated. 

- 



1.2 ANTHER AND POLLEN CULTURE 

Following the discovery that haploid embryos can be obtained 

directly from pollen grains in cultured anthers of Datura innoxia 

(Guha and Maheshwari, 1964 and 1966), similar studies have been under- 

taken for many other species. An androgenetic response ranging from 

the development of pollen derived calli to the production of haploid 

plants has been recorded in at least 171 species, including some 

sexual hybrids, belonging to 60 genera and 26 families of Angiosperms 

(Maheshwari et al., 1982). The majority of these examples howeverg 

fall into just two families the Solanaceae and Gramineae. 

The mechanism by which the young microspore is switched from 

its normal gametophytic pathway to a sporophytic one is poorly under- 

stood. Comparisons have been made between pollen development in vitro 

and in vivo. It is becoming increasingly apparent that conditions 

preceding anther culture may have more significance in the induction 

of pollen embryogenesis than the culture conditions, which are seen 

to be important only in maintaining further embryogenic development 

(Sunderlandy 1981). There are few examples of successful pollen 

culture, in isolation from the anther. It has been proposed that the 

somatic anther tissues may play a role in inducing or maintaining 

pollen embryogenesis, possibly contributing substances to the 

culture medium (Sunderland and Roberts, 1977). In anther culture, 

conditions must be such that the development of the pollen within the 

anther is stimulated without proliferation of the somatic anther 

tissues. Growth and regeneration from the somatic anther tissue will 

result in the recovery of diploid heterozvgous plants. Such plants 

would need to be separated from haPloid and homozygous diploid plants 

of pollen origin. 
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1.2.1 Pollen Development in vivo 

The developmental sequence by which mature pollen forms from 

pollen mother cells is summarised in Figure 1.1. Premeiotic develop- 

ment of the male meiocytes, or pollen mother cells (P. M. C. 's) occurs 

within the anther loculus. Mitotic division of the P. M. C. 's gives 

rise to a large number of P. M. C. 's which may be arranged within the 

anther loculus such that they all have direct contact with the 

tapetal wall (e. g. Hordeum vulgare). Alternatively, the P. M. C. 's may 

be arranged in rows several cells thick such that some P. M. C. 's have 

no surface contact with the tapetal cells (e. g. Nicotiana tabacum). 

The association between the P. M. C. 's and tapetal cells may be signifi- 

cant in the control of pollen development (Sunderland et al., 1984). 

Sporogenesis begins at the onset of meiosis (Bennet, 1976). 

Meiosis is a highly co-ordinated event, all P. M. C. 's enter meiosis 

synchronouslyq possibly due to the high degree of cytoplasmic 

continuity between individual P. M. C. 's. Cytoplasmic continuity in the 

P. M. C. 's is established by the presence of cytomictic channels 

(Heslop-Harrisong 1966). The meiotic division results in the 

formation of a tetrad consisting of four microspores bound within a 

thick callose wall (Figure 1.1-b). Subsequent deposition of sporo- 

pollenin occurs, initiating the development of an individual wall 

surrounding each microspore. Release of the microspores from the 

tetrad occurs as a result of the enzymatic degradation of the callose 

wall (Figure 1.1-c). Following release the microspores enlarge con- 

siderably and further wall development occurs. A vacuole begins to 

form, which pushes the haploid nucleus, and most of the cytoplasm to- 

wards one pole of the developing microspore (Figure 1.1-d). First 

pollen mitosis occurs giving rise to the formation of the haploid 

vegetative and generative nuclei (Figure 1.1-e). The first pollen 
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FIGURE 1.1 

Schematic representation of pollen development in vivo. 

1.1 a Diploid pollen mother cell. 

1.1 b Tetrad consisting of four haploid spores within a 
thick callose wall. 

1.1 c Uninucleate microspore resulting from the release 
of the spores from the tetrad. 

1.1 d Uninucleate microspore in which vacuole formation 
has occurred. 

1.1 e Mitosis - resulting in the formation of the 

vegetative and generative nuclei. 

1.1 f Early binucleate pollen grain, in which wall 
formation has occurred around the generative nucleus. 

1.1 g The generative cell is completely free within the 

pollen grain, and the vacuole degenerates. 

1.1 hA mature pollen grain. 

The formation of a binucleate structure as a result of the 

first pollen mitosis ( 1.1 d-1.1 e) marks the transition from 

a microspore, to a pollen grain. However, in this study, consistent 

with all previous reports on anther culture, the term pollen will 

be used to describe any of the stages of spore development from uni- 

nucleate microspore to mature pollen grains ( 1.1 c-1.1 h ). 
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mitosis is an asvmmetric division. One daughter nucleus, the 

vegetative nucleus, remains near the centre of the microspore. The 

generative nucleus remains close to the microspore wall, and a hemi- 

spherical cell wall develops surrounding the generative nucleus and 

attaching it to the microspore wall (Figure 1.1-f). Eventually-the 

generative cell wall is constricted, pinching the generative cell 

away from the microspore wall (Figure 1.1-g). Free within the cyto- 

plasm of the microspore, the generative cell enlarges, becoming 

elongated. The generative nucleus enters prophase. Little if any 

cytoplasmic synthesis occurs within the generative cell (Mascarenhas, 

1975). 

During the first pollen mitosis there is an unequal division of 

the cytoplasm, with most of the plastids, mitochondria, and lipid 

bodies being incorporated into the vegetative cell. The vegetative 

cell becomes active with much cytoplasmic synthesis occurring. The 

vacuole declines, and starch deposition occurs within the plastids. 

The changes occurring in the vegetative cell are In preparation for 

the rapid synthetic capability required during pollen tube formation 

(Mascarenhas, 1975). 

A successful anther culture response is usually only achieved 

when anthers selected for culture contain pollen at stages of develop- 

ment between release as the uninucleate microspores from the tetrad 

(Figure 1.1-c) and just after the first pollen mitosis (Figure 1.1-0. 

A standard convention has been proposed, numbering the stages of 

pollen development (Sunderland, 1974), and this was adopted in this 

study. The stages of pollen development are as follows :- 

Stage 1: Tetrads or young microspores just released from the 

callose wall. G1 of the cell cycle. 
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Stage 2: Midphase microspores. Exine well developed. 

Vacuole present but nucleus still in G1. 

Stage 3 Late phase microspore. Vacuole present. 

Nucleus in S phase or C2. 

Stage 4: Pollen mitosis. 

Stage 5: Generative and vegetative nuclei present. 

Generative nucleus cut off by a wall. 

Microspore vacuole still present but often 

obscured by the synthesis of gametophytic 

cytoplasm. 

Stage 6: Starch deposition commencing. No vacuole. 

The pollen stains densely with acetocamine. 

1.2.2 Pollen Development in vitro 

The switch from a gametophytic to a sporophytic mode of 

development may involve the sustained division of either the vege- 

tative cell (Rashid and Street, 1974) or generative cell (Raghavan, 

1975). Alternatively, the microspore may undergo an equal first 

pollen divisiong giving rise to two cells which continue to divide 

(Reinert and BaJaJ9 1977). In cultured anthers of Nicotiana tabacum 

two populations of pollen grains occur. In addition to large pollen 

grains which stain densely with acetocarmine, smaller less densely 

stained grains occur. It is from this latter type of pollen that 

embryoids originate (Sunderland and Wicks, 1971, Wernicke et al. 0 

1978). Such embryogenic like pollen grains have also been observed 

in vivo, and have been reported to give rise to multinuclear 

structures within the anther (Sunderlando 1974; Dale, 1975; Horner 

and Street, 1978). The correlation between the occurrence of pollen 
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dimorphism in vivo and an anther culture response in vitro may 

indicate that pollen grains capable of undergoing pollen embryo- 

genesis pre-exist within the anther prior to culture (Sunderland, 

1980). The subsequent yield of pollen derived plants would therefore 

be a function of the size of the existing pool of embryogenic pollen 

grains PEI grains) and the limitations imposed on the subsequent 

development of these IEI grains by the culture conditions. Several 

factors influence the size of the 'EI grain pool in vivo, including 

the genotype (Sunderland, 1980) and growth conditions of the donor 

plant (Heberle-Bors and Reinert, 1980; Heberle-Bors, 1982a). The 

size of the IEI grain pool may well be determined very early in 

pollen development. Pre-meiotic treatments have been shown to in- 

fluence the size of the IEI grain pool in N. tabacum (Heberle-Borst 

1982b). Despite the evidence that pollen grains capable of embryo- 

genic development are formed in the anther, and that culture permits 

the expression of this capacity, it is not necessarily true that those 

pollen grains visually identified to be embryogenic are the only ones 

capable of further development in this way. Apparently normal pollen 

grains have been observed to undergo additional divisions (Sunderland 

and Evans, 1980). The IEI grain pool is not always visually 

identifiable at the optimum time for anther culture (Sunderland, 

1981). 

1.2.3 Factors Influencingthe Response of Pollen within Cultured 

Anthers 

a) Bud Stress Treatments Prior to Anther Culture 

The emphasis on inducing an embryogenically competent 

fraction of pollen grains prior to culture has led to the development 

of bud pre-treatments designed to increase the fraction of induced 

- 11 - 



pollen. In spite of evidence that the size of the 'E' grain pool is 

determined very early in pollen development (Heberle-Bors, 1982b), 

most pre-treatments are performed immediately prior to anther culture. 

The observation that incubation of buds at 40C prior to culture in- 

creases the embryogenic response of the pollen in culture (Nitsch 

and Noreel, 1973), has led to the development of a variety of temper- 

ature stress pre-treatments. It has been demonstrated in N. tabacum 

that an interaction exists between the pre-treatment temperature, and 

its duration (Sunderland and Roberts, 1979). Lower temperatures give 

an optimum response when used for short periods, whereas longer pre- 

treatment times are necessary at higher temperatures. The optimum 

pre-treatment conditions may also vary according to the stage of 

pollen development within the buds at the beginning of pre-treatment 

(Sunderland and Wildon, 1979). The genotype of the donor plant may 

also influence the optimum pre-treatment conditions (Dunwell et al-t 

1985). The stress pre-treatments are usually carried out on excised 

buds maintained in such a way as to minimize water loss. In Brassica 

anther cultures the incubation of the anthers at an unusually high 

temperature for the first few days of culture stimulates pollen 

embryogenesis (Keller and Stringham, 1978). Such a treatment can 

also be considered as a stress pre-treatment. 

The mechanism by which temperature stress pre-treatments of 

excised buds bring about an increase in pollen embryogenesis is not 

clear. An increase in the frequency of pollen grains undergoing an 

equal first pollen mitosis has been reported following low temperature 

treatments (Nitsch, 1974). Cold temperature pre-treatments may 

prevent the formation of polarity within the microspore by disturbing 

microtubule assembly (Maheshwari et al., 1980). Low temperature 

treatments are known to cause dissolution of microtubules (Hepler 
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and Palevitz, 1974). Centrifugation may also cause the dissolution of 

microtubules, and has also been reported to increase the frequency of 

pollen embryogenesis (Sangwan-Norreel, 1977). Whatever the 

mechanism by which stress pre-treatments influence the yield of pollen 

derived embryos, it is likely that a balance exists between the rate 

at which embryogenic pollen grains are induced, and the rate at which 

normal and induced pollen grains die. This balance will determine the 

optimum duration and conditions necessary for the pre-treatment of 

anthers from a given species or cultivar (Sunderland, 1980). 

Although it is assumed that stress pre-treatments induce other- 

wise normal pollen grains to become embryogenic, it is not proven that 

this is the case. Alternatively, the stress pre-treatments may act by 

permitting a larger fraction of a pre-existing 'E' grain pool to 

express their embryogenic potential. Further experimentation will be 

required to distinguish between these two alternatives. 

b) The Stage of Pollen Development within the Anther Prior to 

Culture 

The stage of pollen development within the anther prior to 

culture is extremely important (Sunderland, 1974). Successful anther 

culture may only be achieved when the pollen is at the correct de- 

velopmental stage. Three classes of plants can be determined 

according to the developmental stage of the pollen within anthers 

which gives an optimum culture response. 

Class I plants include R? =4z=-sniger, Hordeum vulgare and 

Lolium multiflorum which respond best when cultured anthers contain 

pollen at stage 2. 

Class II plants include N. tabacum and Datura innoxia, which 

respond best when cultured anthers contain pollen at stages 3 and 4. 
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Class III plants respond best when cultured anthers contain 

pollen at stage 5, and include N. sylvestris, N. paniculata. and Atropa 

belladonha(Sunderland, 1980). 

The optimum developmental stage for anther culture may depend 

on the genotype of the donor plant. Different varieties of 

N. tabacum have been classified as class II plants (Sunderland and 

Roberts, 1979) and class III plants (Heberle-Bors and Reinert, 1979). 

Class III plants are more likely to produce embryos or callus having 

a higher than haploid chromosome number (Engvild, 1974). 

The culture of anthers which contain pollen outside of the 

optimum developmental stage, at best, may result in a much reduced 

yield of pollen embryos or calli, or at worst may not elicit a 

response. 

C) The Influence of the Genotype of the Donor Plant 

The fact that the genotype of the donor plant can influence the 

size of the 'E' grain pool has already been noted. In addition there 

are several examples of genotypic variation in anther culture where 

no data is given on the frequency of pollen dimorphism, or potential 

fEl grains. These include Hordeum vulgare (Feroughi-Weir et al., 

1982) and Triticum aestivum (Bullock et al., 1982; Lazar et al., 

1984). In Arabidopsis thaliana only 3 out of 18 genotypes tested 

responded in anther culture (Gresshof and Doy, 1972a) and similarly 

low success rates were achieved in a range of Lycopersicon esculentum. 

and Vitis vinifera genotypes (Gresshof and Doy, 1972b and 1974). 

Attempts have been made to recombine genotypes exhibiting a high 

degree of responsiveness in anther culture, to further increase the 

yield of haploid plants both in Solanum tuberosum (Jacobson and 

Sopory, 1978) and Oryza sativa (Miah et al., 1985). The product- 
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ivity of tobacco anthers cultured under standard conditions has also 

been found to be under genotypic control. Genotype also influences 

the effect of environmental treatments designed to increase anther 

productivity (Heberle-Bors, 1984). Standard conditions are often used 

to evaluate the responsiveness of anthers from a range of genotypes. 

The apparent lack of response recorded for many genotypes may be due 

in part to their different culture requirements. Probably because of 

this, conditions have been determined by which Arabidopsis thaliana 

cultivars previously found unresponsive to culture (Gresshof and Doy, 

1972a) will give rise to pollen derived calli (Ames and Scholl, 1978). 

d) The Growth Conditions of the Donor Plant 

The growth of the donor plant also effects the subsequent 

anther response in culture, and again it is not always clear if this 

is due to an increase in pollen dimorphism and therefore the size of 

the potential IEI grain pool, or whether some other mechanism is 

operating. Both the light intensity and the photoperiod under which 

the donor plants are grown have been shown to influence the anther 

culture response in N. tabacum (Dunwell, 1976). The photoperiod has 

also been shown to influence the frequency of pollen dimorphism in 

vivo (Heberle-Bors and Reinert, 1979). The temperature at which the 

donor plant is grown can also influence the anther culture response, 

with a higher than normal growth temperature (20-300C) favouring an 

anther culture response in N. knightiana whilst the opposite is true 

for Brassica napus (Keller and Stringham, 1978). 

Contradictory reports about the effect of the nutritional 

status of the donor plant on anther culture response have been 

published. In different varieties of. N. tabacum, nitrogen 

starvation, and nitrogen supplements have been shown to stimulate 

- 15 - 



the response of anthers (Sunderland, 1978; Heberle-Bors and Reinerto 

1979). Differences in the nutritional status between buds from the 

same plant may be responsible for the observation that the first 

flower buds harvested from Brassica napus (Thurling and Chay, 1984)t 

and N. tabacum respond best in culture (Dunwellt 1976). 

e) Anther Culture Conditions 

A variety of culture media have been successful in supporting 

embryogenic development of pollen in cultured anthers. The 

nutritional requirements of developing tobacco pollen grains are 

relatively simple. Pollen derived embryos are capable of development 

on a simple M. S. based medium (Murashige and Skoog, 1962 - see 

Appendix 1) solidified with 0.8%(w/v)agar and containing 3%(w/v) 

sucrose as a carbon source. Many other members of the Solanaceae 

also respond well to anther culture under similar conditions. An 

enhanced response may be obtained when agar-solifified media are 

replaced with liquid media (Wernicke and Kohlenbach, 1976). An 

improved method has been reported by which free embryos can be 

obtained from anthers which are floated on the surface of a liquid 

medium. As culture proceeds, the anthers dehisce and induced pollen 

grains begin embryogenic development. The anthers can be serially 

transferred to several petri dishes, such that the embryos develop in 

isolation from the anthers (Sunderland and Roberts, 1977). The bene- 

ficial effect of liquid as opposed to agar solidified media is not 

fully understood. Better diffusion of inhibitory substances away from 

the anther wall, or of nutrients into the anther may be facilitated 

(Wernicke and Kohlenbackj 1976). The observation that activated 

charcoal added to agar solidified mediap but removed by filtration 

prior to anther culture, stimulates the culture response may indicate 
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that substances inhibitory to an anther culture response are present 

in the media, possibly in the agar (Johansson, 1983). This is 

further supported by the fact that agarose, a more refined form or 

agar, also stimulates the yield of pollen derived embryos, when com- 

pared to the use of agar (Wernick and Kohlenbach, 1976). Activated 

charcoal also stimulated the culture response when liquid media are 

employed (Tyagi et al., 1980). For this reason overcoming any in- 

hibitory effects of agar cannot be the only beneficial role of 

activated charcoal in anther culture. An alternative role may be the 

absorption of phenolic compounds originating from senescing somatic 

anther tissues (Johansson, 1983). 

The addition of plant growth hormones to the culture media has 

induced or enhanced the anther culture response for many species. 

Auxins may stimulate pollen embryogenesis, either in addition with a 

cytokinin or alone. Many members of the Solanaceae respond in anther 

culture without the addition of plant growth hormones. In some cases 

pollen embryogenesis has been disrupted by the addition of hormones to 

the culture media. Organic extracts are often used in place of plant 

growth hormones. Coconut milk and vegetable or fruit extracts have 

been particularly useful in cereal anther culture (Chih Ching Chu, 

1982). Organic extracts may be subject to seasonal fluctuation in 

their content, which may result in unpredictable and even unrepro- 

ducible results being obtained. The use of a defined culture medium 

is always preferableg if the same results can be achieved. 

Sucrose is usually used as a carbon source, at a concentration 

of 2-3% (w/v). Higher levels have been used, with 6-12% (w/v) being 

most effective in Hordeum vulgare (Clapham, 1973), Brassica campestris 

(Keller et al., 1975)l and Solanum tuberosum (Sopory, et al., 1978). 

High sucrose levels act not only as a carbon source, but also in 
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favouring callus formation from the pollen grains, while inhibiting 

callus formation from the somatic anther tissue (Ouyang et al., 1973). 

Further development of pollen derived calli, may require their transfer 

to media containing a lower sucrose concentration (Keller et al. 

1975). 

The influence of the physical culture environment has not been 

critically examined. The light intensity has been shown to influence 

the culture response for several species. Continuous light proved 

beneficial for Datura metel anther cultures (Narayanaswamy and Chandyq 

1971) but inhibited the response of Anenome virginiana anthers 

(Johansson and Erikson, 1977). Conditions necessary for the initiation 

of pollen embryogenesis may differ from those required for further 

embryo or callus development. Initial culture of Vitis vinifera 

anthers in the light, followed by their transfer to the dark gave an 

optimal response (Gresshof and Doy, 1974), whereas the reverse was 

found to be true for N. tabacum (Sunderland and Roberts, 1977). 

The effect of the incubation temperature has not been examined 

critically, and usually lies between 20 and 300C. Higher initial 

culture temperatures may be required for successful anther culture in 

Brassica species (Keller and Armstrong, 1979). 

The volume of the culture vessel atmosphere has been shown to 

influence the response of N. tabacum anthers in culture (Dunwell, 

1979). The possible mechanisms by which the gaseous environment may 

influence the anther culture response have not been studied in 

detail. Ethylene has been proposed as the most likely active com- 

ponent (Dunwell, 1979) but previous studies have failed to correlate 

the anther culture response to ethylene concentration (Horner et al., 

1977). 
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1.2.4 Cytological Analysis of Anther Culture Derived Plants 

The majority of plants derived from anther cultures of 

Nicotiana species have been shown to be haploid (Sunderland, 1971; 

Sharma et al., 1983). Usually the ploidy is determined by cyto- 

logical examination of mitosis in actively dividing cells. 

Alternatively, morphological characteristics are used which distinguish 

between haploid and diploid plants, such as the number of chloroplasts 

per guard cell in the stomata (Nitzsche and Wenzel , 1977) . More 

recently, the use of a fluorescence activated cell sorter has enabled 

the DNA content of small samples as anther derived embryos to be 

analysed. Using this method, 75.8% of N. sylvestris, and 94.4% of 

N. paniculata embryos were found to be haploid (Shama et al., 1983). 

In spite of the high recovery of haploid plants in Nicotiana speciesq 

non-haploid plants, including diploids, polyploids and aneuploids 

have been found for nearly all species which have been tested (McComb, 

1978). Diploid plants may be the result of nuclear fusion or endo- 

reduplication early in pollen embryogenesis. Diploid plants 

resulting in this way would be homozygous. Heterozygous diploid 

plants may also be obtained following the development of unreduced 

microspores (Wenzel et al., 1976). For breeding purposes haploid 

plants must be diploidised and this can be readily achieved using 

colchicine treatments of the developing inflorescence (Nakamura et 

al., 1974), or young anther derived plants (Chowdhury, 1984). 

1.2.5 Variation Arising in Anther Culture Derived Plants 

Dihaploid plants developed from anther culture of homozygous 

lines should be identical to the donor plants. However, dihaploid 

plants derived from inbred flue cured cultivars of N. tabacum show 

a reduction in vigour when compared to their donor plants (Burk and 
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Matzinger, 1976; Arcia et al., 1978). In a similar study using 

Burley tobacco cultivars no significant reduction in plant vigour was 

reported (Deaton et al., 1982). These conflicting reports may be 

explained in terms of genetic differences between the flue cured, and 

Burley tobacco cultivars. Dihaploid plants of the flue cured tobacco 

cultivars were generated using colchicine treatments. In the study 

using Burley tobacco cultivars, an alternative chromosome doubling 

technique exploiting natural chromosome doubling in the leaf veins of 

haploid plants was used. Colchicine is known to be mutagenic (De 

Paepe et al., 1977) and may be responsible for the reduction in 

vigour of the dihaploid flue cured tobacco cultivars. The possibility 

that anther culture is intrinsically mutagenic appears unlikely. 

Mutations are mostly deleterious, yet dihaploid plants of the Burley 

tobacco cultivars showed no reduction in vigour, compared to the 

donor inbred lines (Deaton et al., 1982). 

One example of variation in anther culture derived plants, 

which is influenced by the culture conditions, is the regeneration of 

albino plants. Albino's are frequently formed in anther cultures of 

members of the Gramineae, with 5-100% or pollen derived plants being 

affected. (Chi-Ching Chu, 1982). The proportion of albino plants 

obtained varies according to the genotype and physiological state of 

the donor plant, as well as the anther culture conditions used 

(Bullock et al., 1982; Ouyang et al., 1983). Albino plants have been 

shown to contain proplastids, thought to be Precursors of chloroplasts 

(Claphamg 1977). Albino's do not therefore appear to be derived from 

the generative cell in which the plastids may be entirely absent 

(Schroder, 1985). The absence of 23 S and 16 Sr RNA as well as 

Fraction 1 protein which are entirely or partly coded for by the 

chloroplast genome suggests an alteration in the expression or 
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structure. of the chloroplast encoded genes (Sun et al. , 1979). Chloro- 

plast DNA has been extracted from albino wheat plants and round to 

have extensive deletions when compared to chloroplast DNA extracted 

from green plants also obtained from anther culture (Day and Ellis, 

1984). Chloroplast DNA deletions may be a normal part of pollen 

development, since organelle alterations have been proposed as a 

possible mechanism for the maternal inheritance or chloroplasts 

(Vaughn et al., 1980). Alternative possible mechanisms for maternal 

inheritance have also been proposed, including the physical exclusion 

of plastids from the generative cell (Schroder, 1985). It remains to 

be demonstrated if chloroplast DNA deletions are a normal part of 

pollen development in vivo or merely an artifact induced in vitro. 

Modification of another cytoplasmically encoded characteristic# 

a maternally inherited temperature sensitive mutant of N. tabacum has 

also been reported. This indicates that changes in organelle encoded 

information may occur following anther culture even when apparently 

normal green plants are generated (Matzinger and Burk, 1984). 

1.2.6 Applications of Anther Derived Haploid Plants and Tissues 

a) Mutant Selection 

The potential advantages of using haploid cell cultures for 

mutant selection are based on the fact that recessive mutations will 

be expressed immediately. In addition, very large numbers of cells 

can be screened enabling infrequent events to be detected. The 

selection of nitrate reductase deficient mutants in several species 

has already been discussed in the general introduction. Not only are 

such mutants useful in studies on nitrate assimilation, but are also 

extremely valuable in the development of selection schemes for the 

recovery of somatic hybrids. This latter point will be discussed in 
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some detail in the next section. Auxotrophic mutants of Hyocyamus 

muticus requiring amino acids, and vitamins have been obtained using 

anther culture derived haploid cells (Gebhardt et al., 1981 ). 

Similarly amino acid auxotrophs of N. plumbaginifolia have been 

obtained (Negrutiu et al., 1985). 

There remains one problem in the use of haploid cell cultures 

for mutant selection. Once mutant cell lines have been established, 

their plant regeneration capacity has often been lost. Because of 

this extensive genetic analysis by studying the progeny of mutant 

plants cannot be performed. To a limited extent, somatic cell fusion 

can be used to detect genetic complementation. A rapid assay has been 

developed to detect complementation between nitrate reductase deficient 

cell lines (Biasini and Marton, 1985). 

b) Plant Breeding 

Although some culture-induced variation may occur in dihaploid 

plants, their potential use in plant breeding has already been 

demonstrated. Improved cultivars of tobacco (Nakamura et al., 1974), 

rice and wheat (Hu et al., 1978) have been obtained. The recovery of 

anther culture derived plants from interspecific diploid hybrids 

between the potato and its wild relatives may also contribute to the 

improvement of this crop species (Cappadocia et al., 1984). Several 

Brassica, species respond well to anther culture, but it remains to be 

seen if this will lead to the development of improved Brassica 

cultivars (Keller and Stringhamq 1978; Keller and De la Roche, 1983). 

However, anther culture has not been successfully achieved for 

the majority of crop species. In those species for which an anther 

culture response has been reportedl this is often limited to the 

production of calli which fail to regenerate. In many species of the 
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Gramineae regeneration gives rise to albino plants of little use in 

plant breeding. Successful anther culture is frequently limited to a 

few highly responsive genotypes. Until a better understanding of the 

mechanism underlying pollen embryogenesis is achieved, progress in the 

application of the anther culture technique to plant breeding will 

continue to be slow. 

1.2.7 Anther Culture in Cyclamen persicum 

From the Preceding discussion, the rollowing general conclusions 

can be drawn. Anther culture is widely applicable within the 

Solanaceae, but attempts to utilise this technique in other families 

has led to limited success. Pollen embryogenesis is poorly under- 

stood. While the influence of externally applied treatments has been 

widely reported, few attempts have been made to critically examine 

their effect. Contradictory reports about the effect of different 

treatments designed to increase the response of anthers in culture 

have been reported. There would appear to be great differences in the 

response of different species, and even between cultivars of the same 

species. 

In general, it would appear that there are two stages in 

anther culture. The first stage involves the induction of pollen 

into an embryogenic state. The second stage involves the maintenance 

of embryo development. Induction can be brought about prior to 

anther culture. Physical stress treatments are extensively used to 

induce embryogenic pollen in anthers prior to culture. Such treat- 

ments can greatly increase the yield of pollen derived embryos, or 

result in their recoverv when PreviousiV untreated anthers had failed 

to respond in culture. The induction phase mav, or mav not involve 

the culture medium. However. it is clear that the culture medium. 
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and ohvsical culture conditions strongly influence the second stage, 

that of maintaining the development or pollen derived embryos. 

The advantages of anther culture for the development or true 

breeding lines in Cyclamen persicum have been discussed in the general 

introduction. Previous unsuccessful attempts at anther culture in 

Cyclamen have concentrated on the influence of the culture medium. 

An alternative approach would be to concentrate on physical treatments 

prior to anther culture, in order to induce embryogenic pollen. The 

results of such pre-treatment may be detected by microscopic obser- 

vation of the pollen following pre-treatments, or after a few days of 

anther culture. Alternativelyq the development of macroscopic 

structures arising from the cultured anthers following pre-treatments 

may permit large numbers of anthers to be screened for a culture 

response. 

At the same time studies on the development of somatic tissue 

in vitro may give valuable information about the culture requirements 

of Cyclamen tissues. This information maY be applied to stage two of 

anther culture - the maintenance of embryogenic development. 

To assess the efficiency of such an approachq parallel experi- 

ments were performed to see if an improvement in the culture 

response of N. tabacum anthers can be achieved. 

A more systematic approach tO, Cyclamen anther culture may result 

in a successful anther culture response. 
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1.3 HAPLOID PROTOPLASTS IN SOMATIC HYBRIDISATION 

Haploid protoplasts have only very rarely been used in studies 

on somatic hybridisation. However, the recent suggestion that the 

production of novel triploid somatic hybrid plants might facilitate a 

limited gene transfer from a wild type species to a crop plant (Pental 

and Cocking, 1985) (See 1.1, General Introduction) encourages the 

view that haploid protoplasts can contribute significantly to somatic 

hybridisation. 

The advantages of somatic hybridisation over sexual hybrid- 

isation have been discussed in the general introduction. For somatic 

hybridisation to contribute to breeding programmes many problems must 

be overcome. The range of crop species in which protoplast systems 

are available is still limited. Selection schemes for the recovery of 

somatic hybrid plants and tissues must be developed. For seed plants 

fertility is essential, if the products of somatic hybridisation are 

to be integrated into plant breeding programmes. Somatic hybrids 

between sexually incompatible species have so far proved sterile. 

Somatic hybridisation can be divided into distinct stages. 

Suitable methods by which large numbers of viable protoplasts can be 

isolated must be developed. Conditions under which these protoplasts 

will divide and ultimately give rise to complete plants must be 

ascertained. For somatic hybrids to be produced protoplast fusion 

must be brought about. Following fusion, a method by which the 

relatively small number of surviving hybrid colonies can be recovered 

from the majority of colonies of parental or homokaryon origin must 

be applied. Hybrid colonies must be regenerated, and the somatic 

hybrid plant characterised. Each of these stages is essential to any 

somatic hybridisation programme, and will be considered in some 

detail. 
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1.3.1 Protoplast Isolation 

The isolation of large numbers of plant protoplasts is brought 

about by the enzymatic degradation of the plant cell wall (Cockingo 

1960). The cell wall has three major components: cellulose -a 

linear polymer of D-glucose with B-1,4 linkages, hemicellulose -a 

mixed polymer of glucose, galactose and xylose with 0-19 3 and 0-10 

4 linkages, and pectic substances - pectin being a methyl -D- 

galacturonate with ce-10 4 linkages. 

Successful protoplast release is usually achieved using a com- 

bination of commercially available enzvme preparations, usually of 

fungal origin, which have a range of cellulytic, hemicellulytic and 

pectolytic activities (Power and Cocking, 1968). The combination and 

concentration of enzymes used must usually be determined empirically 

(Patnaik and Cocking, 1982). Partial purification of the enzyme 

preparation by desalting (Slobas et al., 1980) or elution through 

biogel (Patnaik et al., 1981) may be necessary. Purification removes 

substances harmful to protoplast viability including compound of 

fungal origing and other enzyme activities (e. g. proteases, ribo- 

nucleases). Highly purified enzyme solutions may however, be less 

effective at protoplast releaseq indicating that a range of enzyme 

activities may be required for effective cell wall degradation 

(Davey and Kumarl 1983). 

Isolated protoplasts must be separated from the enzyme solution 

and any remaining cellular debris. Highly vacuolated protoplasts may 

be separated by flotation on sucrose solutions (Gregory and Cockingo 

1965). Density gradients of 'percoll (Scowcroft and Larkin, 1980) 

and two phase systems employing sodium metrazoate and Ificoll (Larkin 

1976), have also been used. 

Solutions used in the isolation and purification of protoplasts, 
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must be osmotically stabilised to prevent excess plasmolysis, or 

bursting of the protoplasts. Mannitol, a sugar alcohol cannot be 

metabolised by the protoplast and is frequently used in this respect. 

Protoplasts can be isolated from a wide range of somatic 

plant tissues, including roots (Xu at al., 1982), cotyledons Mu at 

al., 1982), coleoptiles (Hall and Cockingo 1971)t stem pith (Hams at 

al., 1979), and petals (Flick and Evans, 1983). Protoplasts of 

gametic origin have also been isolated from tetrads (Bohjwani and 

Cocking, 1972), and germinating Pollen tubes (Condeelis, 1974). For 

consistently high yields of uniform protoplasts, leaf mesophyll 

tissue (Takebe et al., 1968), and cell suspension cultures have been 

used most extensively. One disadvantage of using cell cultures as a 

source of protoplasts is the observed chromosomal instability arising 

In such cultures. Most long term cultures contain a mixture of diploid, 

polyploidt and aneuploid cells (Bayliss, 1980). Conditions have, how- 

ever, been described which enable the long term maintenance of chromo- 

somally stable suspension cultures of N. tabacum suitable for proto- 

plast isolation (Evans and Gamborg, 1982). 

Methods by which large numbers of viable protoplasts can be 

routinely isolated must be established empirically for each system. 

Generally, young actively growing cells or tissues are selected. 

Plants grown in the greenhouse are subject to environmental 

fluctuations which can influence the yield and viability of isolated 

protoplasts (Shepard and Totten, 1977; Tal and Watts, 1979). The 

growth of plants under controlled conditions can be manipulated to give 

more reproducible results (Santos et al., 1980). Similarly, the 

growth conditions of cultured cells must be manipulated and standard- 

ised to give reproducibly high yields of viable protoplasts. 
a 
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1.3.2 Protoplast Culture 

Isolated protoplasts are usually cultured in media modified 

from those used in cell and tissue culture by the addition of a 

suitable osmoticum. The regeneration of a cell wall (Nagata and 

Takebe, 1970), and sustained division of protoplast derived cells 

(Kao et al., 1970) is followed by the regeneration of whole plants 

from the protoplast derived calli (Takebe et al., 1971). 

Cell wall synthesis may be initiated after a very short delay, 

as was observed in Vicia hajastana (Williamson et al., 1977) or after 

a lag phase which may last 8 hours in N. tabacum (Burgess et al., 

1978). Although nuclear division has been observed in the absence of 

cell wall synthesis (Reinert and Hellman, 1971; Galbraith and Shields, 

1982), the formation of a cell wall is essential for cell division 

(Meyer and Abel, 1975; Schilde-Renshcher, 1977). 

Division of protoplast derived cells usually occurs after 2-7 

days of culture. Sustained cell division leads to the formation of 

colonies as undifferentiated cells. Suitable manipulation of the 

hormone regime may induce differentiation and ultimately plant 

regeneration. Protoplast culture at high density is usually required 

to initiate division in protoplast derived cells. Once initiated, 

cell division can proceed at a much reduced density (Caboche, 1980). 

This can be exploited in selection schemes designed to recover mutant 

or somatic hybrid colonies. Conditions which only permit the survival 

of mutant or hybrid colonies can be impossed once cell division has 

been initiated. The few surviving mutant or hybrid colonies would 

be capable of sustained division even at the much reduced density. 

The growth conditions of the donor plant (Cassels and Cocker, 

1982) as well as the culture media, hormone combination and physical 

culture conditions (photoperiod and light intensity, temperature) can 
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influence the response of cultured protoplasts (Davcyt 1983). However, 

genetic differences between species and cultivars usually determine 

the protoplast response in culture. Only 61 species have been reported 

to regenerate plants from cultured protoplasts, many of these species 

are in the Solanaceae, and there are few examples of economically 

important crop plants (Binding et al., 1981; Davey and Kumarq 1983). 

1.3.3 Protoplast Fusion 

A variety of chemical treatments, as well as electrical stimuli 

have been reported to induce protoplast fusion. The first report of 

chemically induced protoplast fusion used sodium nitrate CPower et al. 9 

1970). This method was subsequently used in the production of the 

first interspecific somatic hybrid plantt between Nicotiana glauca 

and N. langsdorffii (Carlson et al., 1972). Deterioration of proto- 

plasts exposed to sodium nitrate has also been reported (Power and 

Frearson, 1973) and this led to the development of less damaging 

chemical fusogens. 

The use of a high concentration of calcium ions (50 mM CaCl2)9 

buffered at high pH (pH 10.5) Causes PrOtOPlast fusion without excess 

damage (Keller and Melchers, 1973). Similarly polyethylene glycol 

(P. E. G. ) has also been reported to Promote protoplast fusion (Kao and 

Michayluk, 1974; Wallin, et al., 1974). Subsequently enhanced fusion 

frequencies have been obtained using a Combination of high pH/Ca 2+ 

and P. E. G. (Kao et al., 1974). The majority of somatic hybrids 

reported to date result from the use of high pH/Ca 2+ or P. E. G. as 

fusogen, either alone, or in combination. 

A recent advance is the development of electrically induced 

fusion, as an alternative to chemical treatments (Zimmerman and 

Scheurich, 1981; Vienken et al., 1981). Protoplasts are aligned in 
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an A. C. field, and induced to fuse by a short D. C. pulse. Using this 

technique interspecific somatic hybrids between N. tabacum and 

N. plumbaginifolia have recently been recovered (Bates and 11asenkampf, 

1985). 

Chemical and physical treatments designed to induce protoplast 

fusion also cause considerable damage. High fusion frequencies are 

often correlated with a reduction in the viability of the protoplasts 

(Ward et al., 1979). It has recently been proposed that high fusion 

frequencies might be achieved without the subsequent loss of viabilityp 

if protoplast systems which readily undergo fusion are exploited 

(Boss et al., 1984). Tetrad protoplasts readily undergo fusion 

without the application of a specific fusogen (Bhojwani and Cockingo 

1972). This may be of considerable advantage if tetrad protoplasts 

are to be used in attempts at somatic hybridisation. 

The mechanism of protoplast fusion is not fully understood. The 

plasma membrane of plant protoplasts usually carries a net negative 

electropotential chargeg causing protoplasts to repel one another 

under normal conditions (Grout et al., 1972). The electropotential 

charge of -25 to -35 mV for normal tobacco mesophyll protoplasts is 

neutralised when the protoplasts are suspended in a solution containing 

a high concentration of calcium ions. This neutralisation of the 

surface potential is associated with protoplast aggregation and 

fusion (Nagata and Melcherst 1978)t and may explain the action of 

high pH/Ca 2+ fusogens. It is not known if the electropotential charge 

carried by the plasma membrane of tetrad protoplasts is different 

from that of mesophyll protoplasts. If it is significantly lower, 

this might explain the ease with which tetrad protoplasts undergo 

fusion. 

It is not clear how P. E. G. brings about fusion. It has been 
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suggested that P. E. G. might link protoplasts via bonds between 

positively charged cations and the negatively charged plasma membrane 

(Kao and Michayluk, 1974). In addition the strong affinity of P. E. G. 

for water may cause local dehydration of the plasma membrane, 

increasing fluidity and encouraging fusion (Borochov and Borochovo 

1979). Commercial P. E. G. preprations contain traces of ot-tocopherol 

to reduce oxidation. It has been observed that a-tocopherol also 

stimulates fusion synergistically with P. E. Q. Highly purified P. E. G. 

causes agglutination but not fusion of human erythrocytes. This has 

led to speculation that P. E. G. alone only causes agglutination, and 

that fusion is stimulated by the presence of ct-tocopherol (Honda et 

al., 1980; Honda et al., 1981). 

Fusion between plant protoplasts isolated from very different 

sources, such as Daucus carota and Hordeum vulgare has been reported 

(Dudits et al., 1976). Following fusion between protoplasts with 

visually distinct cytoplasm, cytoplasmic mixing can be observed. 

Nuclear fusion has been observed in heterokaryons formed between Pisum 

sativum and Glycine max within the first day of culture,, and prior to 

mitosis (Constabel et al., 1975). Similarly nuclear fusion was 

observed in heterokaryons formed between D. carota and H. vulgare 

(Dudits et al., 1976)0 suggesting that the formation of a heterokaryon 

in which a hybrid nucleus exists does not limit our ability to create 

somatic hybrids. Limitations must be due to factors operating 

subsequently to fusion. 

1.3.4 Selection Schemes for the Recovery of Somatic Hybrid 

Cell Lines and Plants 

Following fusion, the populations of protoplasts usually 

includes between 0.1 and 5.0% heterokaryons. In the unlikely event 
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that heterokaryons divide with the same frequency as protoplasts or 

parental origin, the cell colonies recovered will consist of a 

similarly low percentage of hybrid material. As will be discussed 

later, in reality the recovery of hybrid colonies may be much lower 

than predicted by this assumption. The ability to recognise hybrid 

material amongst material of parental origin is therefore a crucial 

step in any somatic hybridisation programme. 

a) Mass Selection 

It has been suggested that somatic hybrid plants might be 

identified among a large population of plants regenerated from 

colonies recovered following a fusion experiment. Using this approach 

somatic hybrids have been recovered between N. tabacum and N. glutinosa. 

Somatic hybrids were identified following biochemical analysis per- 

formed on a large number of individual plants (Uchimaya, 1982). Using 

a similar approach putative somatic hybrids between Lycopersicon 

esculentum and L. peruvianum have been identified based on the 

morphology of the regenerated plants. Hybridity in this case must be 

established biochemically (Kinsarat pers. comm. ). Mass selection in 

this way will probably be of limited use, since somatic hybrids may 

be so few in number that very large numbers of plants would need to 

be regenerated to recover them. 

b) Single Heterokaryon Isolation 

Visual identification and mechanical isolation of single 

heterokaryons has been proposed as a simple and universally applicable 

selection method. Fusion between protoplasts from different sources 

often results in heterokaryons which are visually distinct from 

either protoplast type. The presence of chloroplasts (from mesophyll 
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protoplasts) and cytoplasmic strands (from cultured call protoplasts) 

has enabled the identification of heterokaryons between Glycine max 

and N. glauca. Following dilution and inoculation of 25 pl aliquots 

of post fusion protoplast suspension into individual wells, those 

wells identified to contain single heterokaryons were registered and 

subsequently somatic hybrid colonies recovered (Kao, 1977). Using 

similar methods somatic hybrid tissues have been recovered betwoen 

Arabidopsis thaliana and Brassica campestris (Gleba and Hoffman, 

1978) and also Atropa belladonna and N. chinensis (Gleba at al., 1982). 

Frequently heterokaryons have been physically Isolated and 

placed in a suitable nurse culture to permit their growth. Auxo- 

trophic mutants or albinos against which selection can be applied are 

cultured at the normal density. The small number of heterokaryons 

manually isolated are added to this culture. Thus hybrids between 

nitrate reductase deficient (NR-) N. tabacum and a wild type 

N. paniculata and wild type N. sylvestris have been recovered follow- 

ing the use of the same NR N. tabacum line as a nurse culture. 

Hybrids were subsequently recovered from the nurse culture on the 

basis of their ability to utillse nitrate as sole nitrogen source 

(Hein et al., 1983). Hybrids have also been recovered between 

N. knightiana and N. sylvestris following heterokaryon isolation and 

nurse culture in albino N. sylvestris Protoplasts (Menczel et al., 

1978). Similarly somatic hybrids between N. tabacum and N. rustica 

have been recoveredv in this case the nurse culture consisted of 

albino Petunia hybrida protoplasts (Hamill et al., 1984). In both 

cases green somatic hybrid colonies were selected from a mass of 

colourless albino colonies. 

The visual identification of heterokaryons between protoplasts 

of different cell types cannot always be unequivocally ascertained, 
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and labelling protoplasts with fluorescent dyes may aid manual 

isolation (Patnaik at al. , 1982; Kanchanapoom at al. , 1985). 

The use of fluorescent dyes has been extensively used in animal 

systems where the mechanical isolation of heterokaryons is automated 

using a fluorescence activated cell sorter (Herzenberg et al., 1976). 

This technique may be applied to plant protoplast fusion studies 

(Redenbaugh et al., 1982), and although somatic hybrids have yet to 

be recovered in this way, protoplasts can survive sorting in such an 

instrument (Galbraith et al., 1984) and future success seems likely. 

Automation would be a significant advance for mechanical 

isolation. The success of single heterokaryon isolation largely 

depends on the number of heterokaryons selected, and the frequency 

with which they subsequently form calli and ultimately plants. 

Although the throughput of heterokaryons to hybrid plants may be high 

in interspecific hybrids within the Nicotiana (Hamill et al., 1984), 

a much lower success rate has been achieved in other systems (Power 

et al. 9 1977). This may severely limit the applicability of manual 

heterokaryon isolation. 

C) Differential Growth Characteristics 

The use of media on which a preferential growth of hybrid cells 

occurs was used in the production of the first interspecific somatic 

hybrid, between N. glauca and N. langsdorffii (Carlson et al., 1972). 

Selection was based on the observation that the sexual hybrid between 

these two species shows genetic t=our formation. Colonies obtained 

following fusion were selected on a medium deficient in auxin. 

Colonies capable of sustained growth were regenerated, and the somatic 

hybrid nature of the plants verified cytologically and biochemically. 

The ability of protoplasts isolated from the sexual hybrid between 
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Petunia parodii and P. hybrida to grow on a defined medium which 

would not support the growth of either parent was also used as the 

basis for selection of somatic hybrids between these two species 

(Power et al., 1977). Similarly the knowledge that only the sexual 

hybrid between Solanum tuberosum and S. chacoensO regenerated on a 

given medium was used to select somatic hyrbids in this species com- 

bination (Butenko and Kuchko, 1980). Selection schemes which require 

a knowledge of the culture requirements of the sexual hybrid between 

a given species combination are obviously of limited use. Somatic 

hybridisation may well be used only in cases where the sexual hybrid 

cannot be producedt and so a knowledge of the culture requirements of 

the somatic hybrid cannot be obtained. 

d) Metabolic Inactivation 

The metabolic inactivation of protoplasts prior to fusion has 

been successfully used in the recovery of somatic hybrids. 

Iodoacetate inactivated Petunia hybrida protoplasts have been fused 

with diethylpyrocarbonate inactivated Solanum nigrum protoplasts, 

and hybrid colonies recovered (Nehls, 1978). Similarly x-irradiated 

N. tabacum, protoplasts have been fused with iodoacetate inactivated 

N. plumbaginifolia protoplasts, and somatic hybrids recovered 

(Siderov et al. t 1981). The use of irradiation to inactivate one 

partner in protoplast fusion has been extensively used in studies 

designed to recover cybrids-hybrids having the nucleus of one species 

in a foreign or mixed cytoplasm (Fluhr et al., 1984). 

e) Gene-Based Complementation Selection Schemes 

The majority of somatic hybrid plants and tissues produced so 

far have involved the use of gene-based complementation schemes 
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(Pelletier and Chupaeu, 1984). Non allelic albinosq auxotrophic 

mutants and resistance to metabolic inhibitors have been used 

frequently in combination with a knowledge or the growth character- 

istics of the species to be fused. A lack of growth or regeneration 

in one of the fusion partners is particularly useful and can be used 

in combination with mutant systems. 

e) 

(I) The Use of Albinos 

The observation that wild type Petunia parodii protoplasts were 

Incapable of sustained growth on a medium which supported sustained 

growth of albino P. hybrida and albino P. parviflora protoplasts has 

been exploited in the hybridisation of P. parodii with each of these 

species. Green colonies were selected on the medium preventing 

P. parodii alone from undergoing Sustained division. These were 

later conf irmed to be somatic hybrids (Cocking et al., 1977; Power 

et al., 1979 and 1980). Similarly the limited development of wild 

type Datura discolor and D. stramonium protoplasts on a medium 

supporting sustained development of albino D. innoxia protoplasts has 

also facilitated somatic hybrid plant production between these two 

species (Schieder, 1978). 

The use of an albino as half selection, and the morphology of 

regenerated green shoots to identify somatic hybrids has been used In 

the combination of albino D. innoxia with wild type Atropa belladonna 

(Krumbiegel and Schieder, 1979)9 albino N. tabacum with wild type 

N. nesophilia and wild type N. stocktonii (Evans et al*, 1981), and 

also between albino Solanumi nigrum and wild type S. tuberosum 

(Binding et al., 1982). 

Non allelic haploid light sensitive (chlorophyll deficient) 
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mutants of N. tabacum have been fused, and green intraspecific 

somatic hybrid plants recovered as a result of complementation 

(Melchers and Labib, 1974). Green plants have also been recovered as 

a result of complementation between non-allelic albinos following 

fusion between albino N. tabacum, and albino N. sy vestris (Melchers 

1977) and also between N. tabacum and N. rustica (Douglas et al., 

1981a). 

e) 

(II) The Use of Stable Auxotrophic Mutants 

Few stable auxotrophic mutants have been isolated and 

characterised in higher plants (Maliga 1980,1984). Nitrate reductase 

deficient (NR mutants are, however, a notable exception (Muller and 

Grafe, 1978), and have been used extensively in somatic hybridisation. 

Non-allelic NR- N. tabacum cell lines have been fused and intra- 

specific hybrids produced based on the ability of hybrid colonies to 

utilise nitrate as sole source of nitrogen (Glimelius et al., 1978). 

Interspecific somatic hybrids have also been recovered by complement- 

ation of non-allelic NR mutants, including hybrids between N. tabacum 

and Hyocyamus muticus (Potrykus et al., 1983). 

Somatic hybrids have frequently been obtained using NR- lines 

as half selection. Fusion of NR N. tabacum with wild type 

N. paniculata and also wild type N. sylvestris followed by single 

heterokaryon isolation and nurse culture in the same NR- N. tabacum 

line has enabled the recovery of somatic hybrids between these 

species (Hein et al., 1983). Somatic hybrids have also been recovered 

following fusion between NR N. tabacum and wild type N. glutinosa. 

Selection was based on the restoration Of nitrate reductase activity 

coupled with the regeneration ability Of N. tabacum. N., glutinosa 
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colonies were pale in colour and failed to regenerate on the medium 

used (Cooper-Bland et al., 1985a). The use of irradiation to provent 

division of the wild type fusion partner has also been used and 

somatic hybrids obtained between NR_ N. tabacum and irradiated wild 

type Datura innoxia as well as with irradiated wild type Physalis 

minima (Gupta et al., 1983). Similarly hybrids between NR_ N. tabacum 

and irradiated N. glutinosa have been recovered (Cooper-Bland et al., 

1985b). 

Recently nitrate reductase deficiency has been combined with 

streptomycin resistance by sexual crosses (Hamill et al. 9 1983) and 

also by somatic hybridisation (Hamill et al., 1984). Such an NR-, 

streptomycin resistant N. tabacum mutant has proved useful in the 

recovery of somatic hybrid plants with wild type N. rustica (Hamill, 

1983; Pental et al., 1984) and also somatic hybrid cell lines with 

wild type Petunia hybrida, one of which regenerated after extensive 

loss of N. tabacum chromosomes (Pental et al., 1985). 

e) 

(III) The Use of Resistance to Metabolic Inhibitors 

Resistance to normally toxic amino-acid analogues can also be 

used in somatic hybridisation as a selective marker. Intraspecific 

hybrids between non-allelic amino acid analogue resistant 

N. sylvestris lines has been reported (White and Vasil, 1979). Inter- 

specific somatic hybrids have also been recovered between an amino 

acid analogue resistant Daucus carota cell line unable to regeneratep 

and a D. capillofolium line capable of regeneration (Kameya et al. p 
1981). 

Naturally occurring differential drug sensitivities between 

species have also been described (Cocking et al., 1974), and incorp- 
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orated into selection schemes. Hybrids have been recovered following 

protoplast fusion between Petunia parodii resistant to Actinomycin-D 

but unable to undergo sustained division on a medium which supports 

the growth of Actinomycin-D sensitive P. hybrida protoplasts. 

Selection was based on sustained growth in the presence of Actinomycin- 

D (Power at al., 1976). Drug resistance can be obtained by selection 

in vitro. Resistance to streptomycin (Maliga at al., 1973) and 

lincomycin (Cseplo and Maligat 1984) has been obtained in this way. 

Both streptomycin and lincomycin resistance has been exploited in 

somatic hybridisation (Menczel et al., 1981 ; Cseplo et al., 1984). 

Advances in the manipulation of genetically engineered 

Agrobacterium, tumefasciens Ti plasmid have resulted in the 

regeneration of plants expressing foreign genes (Herrera-Estrella et 

al., 1983; Barton et al., 1983). The ability to transform plant 

cells using vectors conferring resistance factors has also been demon- 

strated (Bevan, Flavel and Chilton, 1983). It is likely that this will 

be used as a tool for manipulating selective markers in protoplast 

systems prior to somatic hybridisation attempts (Negrutiu et al., 

1984). 

1.3.5 The Efficiency of Selection Schemes 

The frequency with which somatic hybrid plants are recovered 

following protoplast fusion depends mostly on the species combination 

chosen, but also on the efficiency of the selection scheme employed. 

Somatic hybrids between N. tabacUm and N. rustica have been 

recovered by single heterokaryon isolation, as well as by complement- 

ation selection using an NR streptOmycin resistant double mutant 

of N. tabacum. 20% of heterokaryons selected manually gave rise to 

somatic hybrid plants, compared to a 7% recovery using Complementation 

- 39 - 



selection (Harnill et al. , 1984; Pental et al., 1984). Using the same 

double mutant of N. tabacum somatic hybrid colonies were also 

recovered following fusion experiments with Petunia hybrida. Approxi- 

mately 0.1 - 1.2% of heterokaryons gave rise to hybrid colonies. 

Biochemical analysis suggested a gradual loss of N. tabacum chromosomes 

from cell lines established from these colonies. Of six somatic hybrid 

cell lines studied in detail, one eventually regenerated giving a 

frequency of hybrid plant recovery from heterokaryons of only 0.02 - 
0.2% (Pental et al., 1985). 

Somatic hybrids between P. hybrida and P. parodii have also 

been reported. Using different selection schemes the frequency of 

bybrid plant recovery from heterokaryons formed varied between 0.001 

and 0.09% (Power et al., 1977). 

Clearly the use of manual isolation would be inappropriate if 9 

for biological reasons, the throughput of heterokaryons to somatic 

hybrid plants is very low. Only a limited number of heterokaryons can 

be isolated manually, although automation by the use of a fluorescence 

activated cell sorter would overcome this problem. Gene based com- 

plementation selection schemes enable very large numbers of 

heterokaryons to be screened. This may overcome the problem of low 

recovery rates of hybrid plants from heterokaryons. 

1.3.6 Analysis of the Products of Somatic Hybridisation 

Protoplast fusion may allow the combination of genomes from 

widely divergent species and genera with the potential of overcoming 

sexual incompatibility barriers. Sexual reproduction usually results 

in uniparental (maternal) segregation of cytoplasmically inherited 

characteristics. Cytoplasmic mixing following protoplast fusion may 

permit novel combination of nuclear and cytoplasmic encoded information 
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to be recovered. The nuclear and cytoplasmic combinations which may 

arise as a result of fusion are extensive (Davey and Kumar, 1983). 

The retention of a mixed organelle population, independent organelle 

segregation, and mitochondrial and chloroplast genome recombinations 

have been reported. 

Heterokaryons initially possess the nuclear genomes of both 

fusion partners. These may be retained giving rise to balanced 

somatic hybrid plants with a stable amphiploid chromosome complement, 

as was found in somatic hybrids between N. tabacum and N. Slauca 

(Evans et al., 1980). Chromosome elimination may result in a partial 

or asymmetric hybrid with all or most of one of the contributing 

genomesq but a much reduced contribution from the other fusion 

partner. Such a situation was observed in hybrid cell lines between 

Glycine max and N. glauca, which gradually lost, N. glauca chromosomes 

over a6 month period in culture (Kao, 1977). Only very few 

N. glauca chromosomes were retained after 36 months in culture (Wetter 

and Kao, 1980). The complete elimination of one set of chromosomes 

has also been reported following fusion between Petunia hybrida and 

Parthenocissus tricuspidata. In spite of the loss of all P. hybrida 

chromosomes, a P. hybrida specific isoperoxidase was still present in 

this cell line (Power et al., 1975). In this way protoplast fusion 

can bring about a limited gene transfer. 

Protoplast fusion does not always result in nuclear fusion 

within the heterokaryon. This may result in the development of 

somatic hybrids possessing the nucleus of only one fusion partner, 

but having a mixed cytoplasm. Such hybrids, termed cybrids may be 

particularly useful in the manipulation of mitochondrial and chloro- 

plast encoded characteristics (Fluhr, 1983). 

Analysis of putative somatic hybridsq both to confirm hybridity, 
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and to determine their genetic make-up has included studies on the 

morphology of regenerated plants, especially where identifiable 

genetic markers have been used. Somatic hybrid call lines and plants 

can also be analysed cytologically and biochemically. Recently the 

analysis of organelle D. N. A. restriction patterns, and the use of 

nuclear D. N. A. probes has added to our understanding of the conse- 

quences of somatic hybridisation (Hams, 1983a). 

a) Morphological Studies 

Examination of the morphology of regenerated plants, following 

the fusion of Petunia parodii protoplasts with P. hybrida, P. Inflata 

and P. parviflora has permitted the identification of hybrids on the 

basis of intermediate leaf size and shape, flower morphology and 

pigmentationg petiole and pedicel length, and trichome morphology in 

comparison with the parental types (Power et al., 1976,1979# 1980). 

However, morphological studies may be of limited use in the identifi- 

cation of somatic hybrids. Partial hybridst or cases of limited gene 

transfer may well mostly resemble one parent. Intermediate morphology 

is not always observed in balanced somatic hybrids. Somatic hybrid 

plants between N. tabacum and N. rustica exhibit increased vigour when 

compared to both parents (Douglas et al., 1981o,; Pental et al., 1984). 

Somatic hybrid plants formed between Lycopersicon esculentum and 

Solanum. tuberosum (Melchers et al., 1978) and also between Arabidopsis 

thaliana and Brassica campestris (Gleba and Hoffman, 1980) showed 

grossly abnormal morphologies. 

b) The Cytology of Somatic Hybrid Plants and Tissues 

The cytological examination of somatic hybrid cell lines and 

plants has also assisted in their identification, and has contributed 

to our understanding of processes occurring following fusion. The 
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chromosome number of somatic hybrid plants may correspond to the 

summation of the parental chromosome numbers, giving the expected 

amphiploid condition. Such a situation was found in somatic hybrids 

between N. glauca and N. langsdorffii- (Evans et al. 9 1982), and in 

several other combinations. 

However, variation from the expected amphiploid chromosome 

number is frequently observed in somatic hybrids. For example, 

following fusion between two non-allelic haploid light sensitive 

mutants of N. tabacum intraspecific somatic hybrids have been 

produced of which, 54% possessed the expected amphiploid number 

(2n = 48), with a further 12% having numbers close to this value. In 

addition 23% were triploid On = 72) and 12% tetraploid (4n = 96). 

The remainder were aneuploids close to the triploid or tetraploid 

number (Melchers and Labib, 1974). More recently somatic hybridsbetween 

N. tabacum and N. rustica have been reported. Only 1 plant out of 15 

tested was found to have the expected amphiploid chromosome number of 

96. The rest had lower chromosome numbers ranging from 68 to 95. A 

variation in the chromosome number was reported between plants 

arising from the same hybrid colony (Douglas et al., 1981b). 

Variations from the expected amphiploid chromosome number may arise 

due to variation pre-existing at the time of fusion. Multiple fusions 

may also occur, and the changes associated with long term culture may 

also arise during the tissue culture phase between protoplast fusion 

and hybrid plant regeneration. Variation in the chromosome number 

between different cells of the same root tip has been demonstrated in 

somatic hybrids between N. tabacum and N. knightiana indicating that 

plant regeneration does not necessarily fix a stable chromosome 

number (Maliga et al., 1978). 

Chromosome eliminations are not necessarily random. Somatic 
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hybrid cell lines between Arabidopsis thaliana and Brassica campestris 

have been reported to show extreme variations in chromosome number and 

ploidy levels (Gleba and Hoffman, 1978). Although there was no 

evidence of specific chromosome loss in the cell lines, or one of the 

regenerated plants obtained, a second regenerated plant showed the 

complete loss of identifiable Brassica chromosomes, although evidence 

of Brassica specific gene expression was still present (Gleba and 

Hoffman, 1979 and 1980). Unidirectional chromosome loss has been 

reported for somatic hybrid plants between Datura innoxia and Atropa 

belladonna, which possess only a few chromosomes from Atropa but a 

full complement of Datura chromosomes (Krumbiegal and Schieder, 1981). 

Similarly the gradual loss of N. glauca chromosomes from somatic 

hybrid cell lines between Glycine max and N. glauca (Kao, 1977; 

Wetter and Kao, 1980), and also N. tabacum chromosomes from somatic 

hybrid cell lines between G. max and N. tabacum (Chien et al., 1982) 

has been reported. 

Chromosome loss may be extreme, as was reported for somatic 

hybrid cell lines between Petunia hybrida and Parthenocissus 

tricuspidata (Power et al., 1975). In this case complete elimination 

of Petunia chromosomes was observed in spite of the presence of 

Petunia specific iso-peroxidases found in extracts of this tissue. 

Although chromosome loss is frequently observed in somatic 

hybrids between widely divergent species, it is not necessarily in- 

evitable. Hybrid callus tissue between Atropa belladonna and 

N. chinensis has been shown to retain both chromosome sets (Gleba et 

al., 1982). Although chromosome elimination frequently precedes 

plant regenerationt it is not yet clear if it facilitates plant 

regeneration. 

Chromosomal rearrangements are known to occur in cultured cells 
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of celery (Murata and Orton, 1983), and restructuring of the chromo- 

somes has been observed in somatic hybrids between Glycine max and 

N. glauca (Kao, 1977). Such rearrangements or somatic recombinations, 

if they occur between chromosomes of the different fusion partners, 

may explain the persistence of gene activity specific to a fusion 

partner for which complete chromosome elimination has occurred. For 

example, the persistence of an iso-peroxidase specific to Petunia 

hybrida in hybrid cell lines between Petunia hybrida and 

Parthenocissus tricuspidata which have lost all Petunia chromosomes 

may be explained in this way. Similarly the correction of nuclear 

albinism in Daucus carota by fusion with Aegipodium podagraria 

protoplasts persisted despite the elimination of all identifiable 

Aegipodium chromosomes (Dudits et al., 1979). The use of irradiation 

to direct unidirectional chromosome elimination (and simplify 

selection) has been proposed (Harms, 1983a). Chromosome fragmentation 

as a result of irradiation may facilitate elimination. Fusion between 

nuclear albino Daucus carota and irradiated Petroselinum hortense 

protoplasts resulted in the incomplete loss of Petroselinum chromo- 

somes in the regenerated plants (Dudits et al., 1980). No non- 

irradiated fusions were performed, and the possibility remains that 

irradiation alone did not bring about the elimination of Petroselinum 

chromosomes. Chromosome fragments have been observed in somatic 

hybrids where one fusion partner has been irradiated (Itoh and 

Futsuhara, 1983; Cooper-Bland et al., 1985b), suggesting that 

irradiation does not necessarily bring about complete chromosome 

elimination. This complicates the interpretation of experiments in 

which the correction of nitrate reductase deficiency in N. tabacum 

has been achieved by fusion with irradiated Physalis. maxima and 

irradiated Datura innoxia protoplasts, but cytological analysis has 

not been performed (Gupta et al., 1983). 
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c) Biochemical Characterisation of Somatic Hybrid 

Cell Lines and Plants 

Neither morphological or cytological methods are sufficient to 

confidently determine the hybridity of putative somatic hybrid tissues 

or plants. For this reason, more definitive methods have been sought, 

and biochemical methods are usually used to confirm hybridity. Isoen- 

zymes, multiple molecular forms of an enzyme which exhibit similar 

substrate specificity (Scandalios, 1969) have frequently been used 

for this purpose. Following electrophoresis, species specific banding 

patterns are frequently obtained with gels stained for a particular 

family of isoenzymes. Somatic hybrids may be represented by the 

summation of the parental banding patterns (Carlson et al., 1972; 

Power et al., 1976), or as a summation of the parental banding 

patterns, with the addition of novel bands not present in either 

parent (Maliga et al., 1978; Gleba and Hoffman, 1978,1979). Isoenzyme 

patterns may change due to the gradual loss of chromosomes in hybrid 

tissues (Power et al., 1975; Wetter, 1977; Pental et al., 1985). 

Care must be taken in the interpretation of isoenzyme data since the 

expression of isoenzymes may be influenced differently in somatic 

hybrid tissues under the same conditions as the parental tissues used 

for comparison. 

Fraction 1 protein (ribulose bisphosphate carboxylase/ 

oxygenase) is the most abundant soluble protein in plant leaves, and 

comprises of nuclear encoded small subunits and chloroplast encoded 

large subunits Mung, 1976). Analysis of the subunit polypeptide 

composition of Fraction 1 protein therefore gives information on the 

nuclear and chloroplast composition of somatic hybrids between species 

which have characteristically different large and small subunit 

polypeptide compositions. Fraction 1 protein is not subject to the 

- 46 - 



same environmental variations in gene expression which may confound 

isoenzyme studies, as it is produced in only one form. Analysis of 

the Fraction 1 protein polypeptides from somatic hybrid plants between 

N. glauca and N. langsdorffii (Carlson et al., 1972) indicated the 

presence of the small subunit polypeptides (nuclear encoded) from 

both parental species, but only the large subunit polypeptides 

(chloroplast encoded) of N.. langsdorffii (Kung et al., 1975). More 

detailed analysis of a population of somatic hybrid plants between 

N. glauca and N. langsdorffii has confirmed the presence o: F the 

nuclear encoded subunits from both species, but only the chloroplast 

encoded subunits of one of the parental species. An almost equal 

number of plants possessed the chloroplast encoded subunits of 

either N. glauca or N. langsdorffii (Smith et al., 1976; Chen et al., 

1977). 

The segregation of chloroplast types, indicated by Fraction 1 

protein analysis has been reported in several other somatic hybrid 

combinations, including Petunia parodii and P. parviflora (Power et 

al., 1980), N. tabacum and N. rustica (Douglas et al., 1981c; Hamill 

et al. 9 1984), and N. tabacum and N. glutinosa (Uchimaya, 1982; 

Cooper-Bland et al., 1985a). 

Chloroplast segregation does not always occur at an early 

stage of development of somatic hybrid plants. This can result in 

the regeneration or subsequent development of chimearas with differ- 

ent cell lineages possessing different chloroplast types. A mixed 

population of chloroplasts may be retained. In somatic hybrids 

between N. tabacum, and N. sylvestris chloroplast segregation was still 

found to occur in the second generation progeny of this fertile 

somatic hybrid (Fluhr et al., 1983). Similarly "plastome hetero- 

zygotes" have been detected in somatic hybrids between N. tabacum and 
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N,. glauca as well as between N. tabacum and N. tabacum lines bearing 

a foreign cytoplasm (that of. N. suaveoleus, N. undulata, N. repanda 

or N. plumbaginifolia) (Gleba et al., 1985). 

Where selective markers associated with the chloroplast are 

used in the isolation of somatic hybrids, the chloroplast type is 

inevitably that of the type favoured by selection. Thus in a com- 

parison between single heterokaryon isolation and the use of mutant 

complementation encorporating a chloroplast encoded streptomycin 

resistancep in producing somatic hybrids between N. tabacum and 

N. rustica, random chloroplast segregation occurred in the absence of 

selection pressure. In contrast hybrids obtained on the basis of 

streptomycin resistance were found to possess only the N. tabacum 

streptomycin resistant chloroplast type (Hamill, 1983). 

Although random chloroplast segregation or a mixed chloroplast 

population may result following the selection of hybrids in the 

absence of selection pressure in favour of either chloroplast type, 

one chloroplast type may still be preferentially incorporated into 

somatic hybrid plants (Kumar et al., 1982; Bonnett and Glimelius, 

1983). This suggests that some chloroplasts naturally possess a 

selective advantage in spite of the absence of applied selection 

pressure. 

d) Molecular Approaches to the Analysis of Somatic Hybrids 

A more accurate method by which the chloroplast or mito- 

chondrial genome can be identified is the analysis of restriction 

endonuclease cleavage patterns for isolated chloroplast or mito- 

chondrial D. N. A. Using this method chloroplast segregation was 

found to have occurred in intraspecific somatic hybrids of 

N. tabacum (Belliard et al., 1978). Similarly segregation of 
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chloroplast types occurred in somatic hybrids between Lycopersicon 

esculentum and Solanum tuberosum and was identified in this way 

(Schiller et al., 1982). Recently recombination has been reported 

between the chloroplasts of a lincomycin resistant 

N. plumbaginifoliat and streptomycin resistant, chlorophyll deficient 

mutant of N. tabacum. Green lincomycin and streptomycin resistant 

somatic hybrids were found to have novel chloroplast types in which 

restriction endonuclease restriction sites specific to both parents 

were present (Medgyesy et al., 1985). Failure to detect chloroplast 

recombination in other studies (Fluhr et al., 1984) and in all 

somatic hybrids examined previously suggests chloroplast recombination 

is an infrequent event. Success in this recent investigation was 

probably due to the strong selective pressure in favour of the recom- 

binant chloroplast type. 

In contrast to the infrequent occurrence of chloroplast genome 

recombinationg extensive rearrangements of the mitochondrial genome 

have been found in many somatic hybrids examined (Belliard et al., 

1979; Nagy et al., 1981; Boeshore et al., 1983; Chetrit et al., 

1985). The association of cytoplasmic male sterility (C. M. S. ) with 

the mitochondrial genome (Galun et al., 1982) has been used as a 

marker for the mitochondrial genome in Nicotiana cybrids (Menczel et 

al., 1983). 

The use of labelled D. N. A. probes has also enabled the 

identification and characterisation of somatic hybrids. Species 

specific differences in the nuclear D. N. A. restriction pattern probed 

with labelled r D. N. A. can be used to demonstrate nuclear hybridity 

(Uchimayaj 1982), and similar methods can be used with chloroplast and 

mitochondrial gene probes. Using these methods a regenerated plant 

obtained following fusion between N. tabacum and Petunia hybrida was 
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found to possess the chloroplast type of N. tabacum but only the 

nuclear r D. N. A. hybridisation pattern specific to 
-P. 

hybrida. 

Isoenzyme analysis performed at various stages after fusion already 

indicated the gradual loss of N. tabacum chromosomes (Pental et al =Of 
1985). 

Species specific D. N. A. probes have also been used in the 

identification of a somatic hybrid cell line between Lycopersicon 

esculentum and L. penellii (O'Connel and Hanson, 1985). 

1.3.7 Commercial Applications for Somatic Hybrid Plants 

Polyploidy has played a major role in plant evolution, and at 

least one-third of flowering plants are thought to be of polyploid 

origin. The evolutionary success of polyploids is considered to be 

due, in part, to genetic heterozygosity incorporated into the hybrid 

genome (Stebbins, 1979). Allopolyploid plants are hybrids resulting 

from a cross between two species whose chromosomes do not pair at 

meiosis. After chromosome doubling an allopolyploid nucleus contains 

at least two distinct diploid genomes which distribute themselves in- 

dependantly at meiosis. Thus allopolyploid plants acquire the genetic 

information and diversity represented in each complete progenitor 

genome. 

Allopolyploids are analagous with balanced somatic hybrid 

plants. Somatic hybridisation may contribute to plant breeding by 

permitting the generation of a wider range of allopolyploids since 

fertility between species is not required. 

Although sexually fertile somatic hybrids have been generated 

between sexually compatible species by somatic hybridisationt somatic 

hybrids between sexually incompatible species have so far proved 

sterile (Melchers et al., 1978; Poulsen et al., 1980; Power et al., 
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1980). Such plants also frequently display gross morphological 

abnormalities, which may be linked to chromosomal instability 

(Harms, 1983). 

For somatic hybrids to contribute to plant breeding, fertility 

is an essential requirement. The observation that chromosomal in- 

stability, and unidirectional chromosome loss may lead to plant re- 

generation has led to speculation that limited gene transfer might 

be a more realistic approach to the use of somatic hybridisation. If, 

following fusion gene transfer can occur between the two genomes, 

prior to the complete elimination of one of the genomes, valuable 

genetic heterogeneity may be retained, and the regenerated plants may 

well be fertile (Negrutui et al., 1984). For this reason, asymmetric 

hybrids, and hybrids in which complete unidirectional chromosome 

elimination has occurred may be of considerable interest. 

Somatic hybridisation does not always result in the formation 

of a hybrid nucleus. Recently the herbicide (atrazine) resistant 

chloroplasts from Brassica campestrisq and cytoplasmic male sterility 

(C. M. s. ) from Raphanus sativus have been combined with the nucleus of 

Brassica napus by protoplast fusion. This was achieved in two steps. 

Firstly B. napus protoplasts were fused with R. sativus protoplasts, 

and plants resembling B. napus but possessing male sterility were 

selected. C. M. S. is thought to be encoded by the mitochondrial genome 

(Galun et al., 1982). Protoplasts of the male sterile hybrid 

B. napus plants were then fused with protoplasts from B. campestris 

and ultimately. R. napus cybrid plants-possessing male sterility and 

atrazine resistance selected (Pelletier et al., 1983). Herbicide 

resistance and C. M. S. in these novel cybrids is of commercial interest 

in Brassica breeding programmes. 

Protoplast systems are so far only available in a few crop 
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species. For these to be used in attempts at somatic hybridisation, 

suitable selection schemes must be developed for the recovery of 

somatic hybrid colonies or plants. Although a commercial application 

for cybrids has been noted, somatic hybrids have yet to contribute to 

the improvement of crop plants. 

1.3.8 Somatic Hybridisation between N. tabacum (2n) and 

glutinosa (n) 

That the synthesis of novel triploid somatic hybrids may 

facilitate a limited gene transfer has recently been proposed and the 

combination of N. tabacum (2n) with N. glutinosa (n) was chosen to 

test this hypothesis (See the General Introduction - 1-1). Haploid 

protoplasts may be obtained from anther culture derived plants, or 

from tetrads, formed as a result of meiosis is pollen mother cells. 

Both sources were investigated. However, tetrad protoplasts would 

appear to offer certain advantages over haploid protoplasts isolated 

from anther culture derived haploid plants. 

Tetrad protoplasts are known to undergo fusion without the 

addition of specific fusogens (Bhojwani and Cocking, 1972). It has 

been proposed that the use of highly fusogenic Protoplasts might 

permit high fusion frequencies to be obtained, without causing 

excess damage or loss of viability (Boss et al., 1984). 

Haploid protoplasts isolated from anther culture derived 

N. tabacum plants are capable of sustained division (Caboche, 1980). 

Although the culture response of N. 
'glutinosa 

haploid protoplasts 

isolated in this way has not been reported, it is likely that these 

too will be capable of sustained division. If this is the case, 

selection against the haploid protoplasts must be developed. In 

contrast, tetrad protoplasts are not capable of sustained division 
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(Bhojwani and Cocking, 1972; Bajaj, 1974), and no selection is 

therefore required to eliminate them. 

Haploid plants from anther culture are only available for a few 

responsive species. In contrast, tetrads form in all fertile di- 

cotyledonous species. It is possible therefore, that tetrads will be 

a widely available source of haploid protoplasts for fusion studies. 

Somatic hybrids resulting from protoplast fusion experiments involving 

tetrad protoplasts have not been reported previously. Somatic hybrid- 

isation between tetrad protoplasts and leaf mesophyll protoplasts will 

be attempted in this study. 
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CHAPTER 

TISSUE CULTURE OF CYCLAMEN PERSICUM 

2.1 INTRODUCTION 

Cyclamen persicum is an attractive flowering plant grown 

horticulturally throughout Europe, and to a limited extent in North 

America. Originating from Palestine and the islands around the 

Aegean and eastern Mediterranean seas, Cyclamen was introduced into 

Europe in the 17th Century. 

Cyclamen species derived their name from the Greek Kyklos - or 

circle, apparently referring to the round shape of the corm. The 

taxonomy of the genus Cyclamen remains largely unresolved due to 

extensive heterogeneityv however, at least 15 species have been 

recognised (De Haan and Doorenbos, 1951). Of these, Cyclamen 

persicum is the only widely grown commercial variety. 

Cyclamen persicum is a herbaceous plant, with a cluster of 

blueish/green heart shaped ovate leaves, with silvery markings and 

dentate margins, on long petioles arising from flattened tubers or 

corms. Attractive sympetalous, five parted, strongly reflexed 

flowers are born above the leaf canopy on peduncles arising from the 

corm. Cyclamen is a pseudomonocot, in that only one cotyledon is 

found in the embryo. The cotyledon strongly resembles the true leaves 

(Widmer, 1980). In their native habitat, Cyclamen are dormant during 

the hot, dry summers, and new foliage develops in response to autumn 

rain and lower temperatures. Flowering follows, and continues until 

terminated by dry summer heat. 

Cyclamen persicum has been the subject of several tissue 
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culture studies. Early reports suggested that cultured explants, 

originating from the corm, were capable of giving rise to shoots and 

roots as well as sporadic plant regeneration (Mayer, 1956; Stichel, 

1959). Internal microbial contamination of the corm tissue was also 

noted, and antibiotics used to combat this problem (Stichel, 1959). 

Contamination has not always been successfully overcome with anti- 

biotics, and alternative treatments have been developed which include 

curing explants prior to culture with a minimal surface area in 

contact with the nutrient medium (Okumoto and Takabayashi, 1969). 

This approach also met with limited success. In spite of the problems 

associated with initiating contamination free cultures of corm tissue, 

the long term growth of callus derived from corm explants has been 

reported (Leowenberg, 1969). Even after six years, the callus retained 

its morphogenic capability, with sporadic organ formation occurring 

2-4 months after subculture. 

Microbial contamination can largely be avoided using explants 

from leaves and petioles. Plant regeneration from petiole explants 

has been reported, although incomplete details were given about the 

procedurep and the frequency with which this response was achieved 

(Morel, 1975). In a comparative study between the response of corm 

explants, and leaf and somatic anther tissues, corm explants were 

found to give a superior morphogenic response. Although shoot and 

root formation occurred on callus derived from all three sources, 

only the shoots formed on corm callus were directly associated with 

a root system. The frequency with which regenerated structures were 

observed was also higher with callus derived from corm explants 

(Geier, 1977). Somatic anther tissues were cultured, only after the 

failure to stimulate pollen embryogenesis. With the addition of 

hormones to the culture medium, only the somatic anther tissues were 
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found to proliferate (Geier, 1978). 

The regeneration of whole plants from Cyclamen tissue cultures 

led to speculation that Cyclamen might be multiplied by mass clonal 

propagation (Okumoto and Takabayashi, 1969; Morel, 1975; Fersing et 

al., 1982). The small number of plants obtained, and the overal1lack 

of control over morphogenesis has led to the conclusion that "mass 

clonal propagation by tissue culture such as is possible in other 

plants is however, not likely to be achieved in Cyclamen, at least in 

the near future" (Geier et al., 1979). 

Recently the regenerated structures obtained in Cyclamen tissue 

cultures have been examined histologically. It has been proposed that 

they all arise from a single embryogenic pathway. Embryogenesis may 

result in a normally formed bipolar corm. Alternatively, callusing 

may occur, resulting in a unipolar corm, which may have vascular 

connections with the surrounding callus tissue. If the developing 

embryo begins to callus before the development of a corm, shoots or 

roots may arise directly from the surrounding callus (Wicart et al., 

1984). The regenerated structures studied were found to occur 

throughout Cyclamen tissue cultures in an apparently random fusion, 

not determined by the hormone regime under which the explants and 

callus were grown. 

There would appear to be considerable variation in the reported 

response of Cyclamen tissues cultured. in vitro. Plant regeneration 

has been achieved (Morel, 1975; Geier, 1977; Fersing et al., 1982), 

but Cyclamen has also been described as an "object recalcitrant in 

morphogenic respects" (Kohlenbach, 1976). Seasonal variations in 

the response of cultured Cyclamen explants have been reported (Geier, 

1979). Different commercial varieties of Cyclamen have also been 

used for tissue culture studies, and it is likely that the genotype 
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of the experimental material also influences the reported response of 

explants in vitro. 

The purpose of this study. was to gain a better understanding 

of the culture response of explants from Cyclamen persicum cv. T. R. 

"mini". A knowledge of the culture requirements of somatic Cyclamen 

tissues may be useful in developing suitable media which will support 

the growth of pollen derived embryos or calli, obtained from anther 

culture. The response of Nicotiana tabacum and N. glutinosa tissues 

was also briefly assessed, since these species were also to be the 

subject of anther culture studies. 

The isolation and culture of protoplasts from Cyclamen leaf 

mesophyll and cell suspension tissues was also assessed. 
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2.2 MATERIALS AND METHODS 

2.2.1 Source of Plant Material 

Cyclamen persicum cv. T. R. "mini" seed and plants were origin- 

ally obtained from Thomas Rochford and Sons Ltd., Broxbourne, Herts. 

Seed was subsequently collected following open cross pollination in 

the greenhouse. 

Nicotiana tabacum cv. White Burley seed was originally obtained 

from Rothamsted Experimental Station, and N. glutinosa L. seed from 

the Botanical Gardens, University of Birmingham. Seed was subsequently 

collected following self-pollination of bagged flower heads. 

2.2.2 Growth of Plant Material 

Originally batches of 50-150 mature Cyclamen persicum, cv. T. R. 

"mini" plants, having 2-3 open flowers, were provided by Thomas 

Rochfords and Sons Ltd. The plants had been cultivated following 

standard commercial procedures, and were maintained on arrival in the 

controlled environment of a growth room (S. B. Refrigeration, U. K. ) at 

15 ± 20C with an 8 hour photoperiod. Light was provided by daylight 

fluorescent tubes (Thorne, U. K. ) at an intensity of 5,000-69000 lux, 

measured at shelf level. Young plants, 4-6 months old, with a corm 

1-2 cm in diameter and having 6-8 leaves were also provided by Thomas 

Rochford and Sons Ltd. This supply was augmented with plants grown 

from seed in Leavingtons soil-less compost (Fisons, U. K. ), and 

maintained in the greenhouse in 3ý' inch pots. Young plants were also 

transferred into the growth room after bud initiation. 

N. tabacum cv. White Burley, and N. glutinosa L. plants were 

also grown from seed in Leavingtons soil-less compost. Plants were 

grown in the greenhouse under a 16 hour photoperiod of approximately 
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10,000 lux (minimum), supplemented by daylight fluorescent tubes 

(Thorne, U. K. ) at 23-300C. 

2.2.3 Contamination Control 

Infestation of Cyclamen plants with red spider mites was 

prevented using 'Torque' a fenbutin oxide treatment (Albright and 

Wilson, U. K. ). Mushroom fly larvae were efficiently controlled 

using 'Basudin' granules containing diazinon (Ciba-Geigy9 U. K. ). 

Periodic infestation of N. tabacum and, N. glutinosa plants 

with whitefly and aphids was controlled using a permethrin (Mitchel 

and Cotts, U. K. ) and nicotine (Bentleys, U. K. ) spray. Fumigation of 

the greenhouses with 'Fumitel permethrin (Octavius Hunt, U. K. ) or 

nicotine (Bentleys, U. K. ) was also performed as required. 

All pesticides were applied following the manufacturers 

recommended dosages, and procedures. 

2.2.4 Media Preparation and Sterilisation 

Full details of media constituents are given in Appendix 1. 

Media based on M. S. (Murashige and Skoog, 1962) or B5 (Gamborg et al., 

1968) salts were made using commercially available preparations (Flow 

Labs., U. K. ). Other media were prepared from refrigerated stock 

solutions. Vitaminsq hormones, a carbon source, and any organic 

supplements were added as appropriate. The pH was adjusted to 5.8 

using 1M KOH or 1M HC1. For solid media 0.8% (w/v) agar (type IVp 

Sigma, U. K. ) was dissolved in the medium. 

Media were dispensed into appropriate containers and sterilised 

by autoclaving at 1210C with 15 psig nominal steam pressure for 15 

minutes, or 1150C with 10 psig nominal steam pressure for 10 minutes. 
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Alternatively, media containing heat labile components were prepared 

at double strength and filter-sterilised using a Millipore or 

Sartorius Isterilitest' filtration system with a pore size of 0.2 or 

0.45 jim. In this case agar solidified media were prepared by mixing 

equal proportions of 1.604 (w/v) sterile agar solidified water with 

double strength filter-sterilised media. 

2.2.5 Enzyme Preparation and Storage 

Enzyme solutions were prepared by mixing weighed quantities of 

the relevant enzymes with CPW salts (Frearson et al., 1973; See 

Appendix 1), with the addition of 9 or 13% (w/v) mannitol. For 

protoplast isolation from greenhouse material antibiotics (400 mg/L 

ampicillin, Boots, U. K.; 10 mg/L gentamycin, Sigma, U. K. and 10 mg/L 

tetracyclinet Sigma, U. K. ) were also added to the enzyme solution. 

The pH was adjusted to 5.8, and the enzyme solution filter-sterilised, 

as described previously (2.2.4). Sterile enzyme solutions were 

dispensed into appropriate sterile containers, and stored at -200C 

until use. 

2.2.6 Surface Sterilisation of Experimental Material 

a) Seeds 

Seeds were surface sterilised by immersion in 20% (v/v) 

'Domestos' (Lever Bros., U. K. ) for 20-30 minutes. Surface sterilis- 

ation was followed by four washes in sterile tap water. 

b) Leaves and Petioles 

Leaves and petioles from greenhouse grown material were 

surface sterilised in 8% (v/v) 'Domestos, for 20-25 minutes. Surface 

sterilisation was followed by four washes in sterile tap water. 
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'Domestost consists of 10.5% (V/V) commercial sodium hypo- 

chlorite, 10% (w/v) sodium chloride, 0.5% (w/v) sodium hydroxide, 

0.3% (w/v) sodium carbonate, and a patented thickener, made up to 

volume with softened water. 

2.2.7 Preparation of Explants 

a) Greenhouse Grown Material 

Leaves no longer than 50 mm, and their attached petioles were 

removed from flowering Cyclamen plants, maintained in the growth room 

as described previously (2.2.2). After surface sterilisation, petiole 

explants 10 mm long were cut, and cultured horizontally on the surface 

of the culture medium. Leaf explants, approximately 5 mm by 15 mm 

were cutq traversing the mid-vein of the leaf, following the methods 

of Geier, (1977). 

. Young fully expanded leaves of N. tabacum and N. glutinosa L. 

were surface sterilised and explants 10 mm by 20 mm cut and placed on 

the surface of the culture medium. 

b) In vitro Germinated Seedlings 

Surface sterilised seeds of Cyclamen persicum were placed on 

M. S-0 medium (See Appendix 1) and germinated in the dark at 

20 t 10C. Following germination, the seedlings were grown in the 

light (200 - 1,050 lux, 22 i 20C). Young seedlings were used as a 

source of explants after a further 6-8 weeks of growth. Fragments of 

the root system 10-15 mm in length, pieces of corm approximately 

3x3x5 mm, sections of petiole 10 mm in length, and leaf fragments 

approximately 5x 10 mm were used as explants. No attempt was made to 

distinguish between the cotyledon, and the true leaves. 

Germination of Cyclamen seeds was slow, taking 4-8 weeks. The 

effect of gibberellic acid on germination was assessed by imbibing 
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surface sterilised Cyclamen seed for 1 or 2 hours in a solution con- 

taining 200 mg/L gibberellic acid. 

2.2.8 Culture Preparation and Conditions 

A variety of different culture vessels were used, including 

30 ml universal bottles, and 2 oz or 6 oz powder jars (Beatson-Clark, 

U. K. ), which were filled with 10,25 or 50 ml of agar solidified media 

respectively. Single explants were cultured in universal bottles, 

whereas 3 or 4 explants were cultured in 2 oz or 6 oz powder jars. 

Cultures were generally maintained at 22 * 20C with constant 

illumination (200 - 1,050 lux), 25 * 20C with constant illumination 

(2,300 - 2,400 lux) or at 25 :k 20C in the dark. A range of other 

culture conditions were also tested (See Results). Illumination was 

provided by cool white fluorescent tubes (Thorne, U. K. ). 

The culture media were based on those previously used for 

tissue culture of Cyclamen persiqum, or were based on media used for 

callus initiation and morphogenesis of a wide range of other species. 

2.2.9 Culture Response and Subculture 

Cultured explants either died, or gave rise to a proliferation 

of callus tissue. Callus was classed as being either friable (f), in 

which case it was easily broken up with a spatula. Alternatively, 

dense callus (d) was obtained which had to be cut with a scalpel when 

subcultured. The callusing response of leaf and petiole explants from 

mature Cyclamen plants was assessed, on a variety of media, and under 

different culture conditions. Similarly the callusing response of 

root, corm, petiole and leaf explants of aseptically germinated 

Cyclamen seedlings was also assessed. 
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Callus derived from leaf and petiole explants of mature 

Cyclamen plants was subcultured by transferring 1-2 g fresh weight 

of callus to fresh medium, in 2 oz or 6 oz powder jars. The 

occurrence of dense nodular organised tissue (n) and the regeneration 

of shoots, roots or isolated leafy structures was noted. The response 

of friable callus derived from leaf explants to a variety of different 

media and hormone regimes was examined. Similarly the growth of 

callus derived from explants from aseptically germinated Cyclamen 

seedlings was also recorded. 

Care was taken when subculturing callus to avoid transferring 

any of the original explant material. 

Friable leaf callus was also used to initiate a cell suspension 

culture. Friable callus (5 9 fresh weight) was broken up and trans- 

ferred to 80 ml of liquid medium in a 250 ml erlenmeyer flask. 

Suspension cultures were maintained at 22 ± 20C in the light (1,300 - 

2,300 lux) on a rotary shaker (80 cycles/minuted). Suspensions, when 

established, were subcultured by transferring approximately 8-12 g 

fresh weight of cells to 70-80 ml of fresh liquid medium. This was 

performed every 7-10 days. 

2.2.10 Protoplast Isolation and Culture 

Fully expanded leaves from greenhouse grown young Cyclamen 

plants, were surface sterilised, and the lower epidermis removed by 

peeling. Peeled leaf pieces were plasmolysed for at least 90 minutes 

in CPW salt solution containing 13% (w/v) mannitol (CPW 13M - See 

Appendix 1). The CPW 13M was replaced with 10 ml of enzyme solution/ 

9 cm petri dish (Sterilin Ltd., U. K. ) (4 ml/5 cm petri dish CA/S Nunc, 

Kamstrup, Denmark]). Petri dishes were sealed with nescofilm 

(Nippon Shoji Kaisha Ltd., Japan) and incubated overnight (14-16 hours) 
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at 22 ± 20C on a rotary shaker (30 cycles/minuted) in the dark. 

Following incubation, leaf pieces were teased to release the 

protoplasts into the enzyme solution, which was then transferred to a 

screw top centrifuge tube, and centrifuged at 80 xg for 5 minutes. 

The supernatant was removed and replaced with CPW salt solution con- 

taining 21% (w/v) sucrose (CPW 21S). Following resuspension of the 

pellet, and centrifugation at 100 xg for 8 minutes, protoplasts were 

collected from the surface of the CPW 21S solution, and resuspended in 

a known volume of CPW 13M. The protoplast density was calculated 

using a haemocytometer (Hawksley U. K., Model number BS 748). 

Cell suspensions were also used for protoplast isolation. 

Cultures 3-4 days after subculture were left stationary to allow the 

cells to settle, and the medium removed using a pipette. 50 ml of 

CPW 13M was added to plasmolyse the cells, and was removed after 30-60 

minutes. 20 ml of enzyme solution was added and incubation carried 

out overnight (14-16 hours) at 22 t 20C on a rotary shaker (30 cycles/ 

minute) in the dark. 

Following incubation the enzyme was passed through a 250 pm 

sieve, followed by a 100 ýim sieve, before being transferred to a 

centrifuge tube. Suspension cell protoplasts were purified by 

flotation on CPW 21S solution as described for leaf mesophyll proto- 

plasts. 

Protoplasts isolated from leaf mesophyll tissue, and cell 

suspensions were cultured in liquid media, agar solidified media and 

also in agarose solidified media at a range of densities between 

1X 104 and 1x 105 protoplasts/ml medium. Protoplasts were 

cultured in 5 cm plastic petri dishes (A/S Nunc, Kamstrup, Denmark)9 

containing 4 ml of medium. Cultures were maintained at 25 :t 20C in 

the light (2,100 - 2,300 lux) or in the dark. 
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2.2.11 Fluorescein Diacetate (FDA) Staining of Isolated Protoplasts 

A stock solution of fluorescein diacetate (FDA, Sigma) was 

prepared by dissolving 5 mg in 1 ml of acetone. This solution was 

stored at -20*C in the dark, until used. Approximately 50 pl of this 

stock solution was added to 5 ml of CPW 13M and 1 drop of this 

solution was added to 1 drop of CPW 13M containing freshly isolated 

protoplasts. After five minutes at room temperature the protoplasts 

were observed using a Vickers M41 photoplan microscope (mercury vapour 

lamp HBO 200) fitted with suppressor filter GG 475 and a Balzer FITC 5 

exciter filter. FDA which enters the protoplasts is broken down to 

fluorescein by the action of esterases. In protoplasts with an intact 

plasma membrane, fluorescein accumulates, giving rise to a yellow 

green fluorescence when excited by U. V. light (Larkin, 1976). An 

intact plasma membrane is an indication of viability. 
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2.3 RESULTS 

2.3.1 Callus Initiation from Leaf and Petiole 

Flowering Cyclamen Plants 

Leaf and petiole explants were cultured 

jars as described, and the presence or absence 

recorded after 28 days. The number of explantý 

of callus growth produced was also noted. The 

Table 2.3.1 and 2.3.2. 

Explants of 

in 2 oz or 6 oz powder 

of callus growth 

s responding, and type 

results are present in 

Culture media based on full strength M. S. salts mostly failed 

to permit callus growth, with the exception of limited friable callus 

growth obtained on UM medium. The use of culture media based on M. S. 

salts at reduced strength was most successful for callus initiation. 

Failed explants were invariably blackened, and some degree of browning 

was also observed in most of the responding cultures. 

The frequency of explants giving rise to callus was similar in 

the light (2,300 - 2,400 lux) and the dark. However, cultured ex- 

Dlants incubated at 15 12 or 30 t 20C gave rise to callus less 

frequently than explants cultured at 22 12 or 25 1 20C. The degree 

of callus growth was similar under all conditions tested, and in all 

cases was very limited, however, the type of callus obtained varied. 

Friable callus, easily broken up with a spatula, proliferated from the 

cut edges of the explants. Friable callus was obtained more 

frequently when explants were cultured in the dark, and was always 

obtained on UM medium. Dense callus, also originating from the cut 

edges of the explants was also obtained. When subcultured, this 

type of callus could only be broken up by cutting with a scalpel. 

Dense callus developed more frequently when explants were cultured in 

the light, and was always obtained on MS-D and N69-D3 media. 
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Leaf and petiole explants showed a similar response in culture, 

although petiole explants gave rise to callus proliferation slightly 

less frequently than leaf explants. Dense and friable callus was 

obtained from both leaf and petiole explants. Leaf and petiole explants 

were taken from ten Cyclamen plants selected on the basis of their 

widely different flower colour and leaf shape. When cultured on MS-Al, 

MS-A2, MS-B, MS-C and MS-D media explants taken from the ten plants 

were found to respond quite differently. Explants from five of the ten 

plants tested failed to give rise to callus growth, and the frequency 

with which explants responded and the degree of callus growth obtained 

varied considerably for cultured explants taken from the other five 

plants. However, when repeated using the same ten plants, a very low 

frequency of callus initiation was obtained. Explants from only two 

plants gave rise to limited callus growth. Previously explants from 

these two plants had given a similar response, but at a higher 

frequency (8 and 6/16 as opposed to 3 and 4/16). 

2.3.2 Subculture and Maintenance of Callus Cultures Initiated from 

Leaf Explants of Flowering Cyclamen Plants 

Callus initiated from leaf explants after 28 days of culture was 

either transferred to fresh medium in 2 oz or 6 oz powder jars, or was 

left for a further 14-28 days under the same conditions. Cultures 

left in this way continued to grow, although severe browning of the 

callus and discolouration of the medium occurred. Occasional roots, 

shoots and isolated leafy structures arose from these cultures (see 

Fig. 2.3.1). The frequency with which regenerated structures were 

obtained was low. Shoots or isolated leafy structures were obtained 

in 3/25 cultures, roots in 5/25 cultures. Roots and shoots were 

occasionally found in the same culture, but were not usually connected. 

- 67 - 



Both roots and shoots occurred on MS-Al and MS-D media. Regenerated 

structures originated from areas of dense callus. No regenerated 

structures were observed to arise from areas of friable callus. 

Friable callus when subcultured onto MS-Al, MS-A2 and MS-D media 

continued to proliferate, but no regenerated structures were observed. 

Dense callus when subcultured continued to proliferate on MS-Al, 

MS--A21 MS-B and MS-D media. Both friable callus and dense callus was 

obtained. Occasional shoots and roots regenerated from areas of dense 

callus. Cultures were either subcultured regularly every 28 days, or 

were left to grow for 35-49 days before subculture. When frequently 

subcultured, the dense callus became friable and no regeneration was 

obtained. When cultures were left to grow for upto 49 dayst isolated 

roots, shoots and leafy structures were observed. When subcultured 

friable and dense sectors of callus proliferated. Further root and 

shoot regeneration was observed from dense callus after 28-49 days 

growth. Regenerated structures were obtained on all the media tested 

which supported the proliferation of dense callus (MS-Al, MS-A2 and 

MS-D). 

In all cases regenerated shoots were not directly connected 

with a root system. Shoots were transferred to MS-0, MS-R1 and MS-R2 

media in attempts to induce rooting. Although rooting occurred on 

MS-R1 all the shoots died. 

Friable callus derived from leaf explants was used to test the 

response of cultured Cyclamen tissues to a variety of culture media, 

different carbon sources and hormone regimes. Four replicate 2 oz 

powder jars each with one initial callus explant of approximately 0.25g 

fresh weight were used. Cultures were maintained at 22 1 20C in the 

light (200 - 1,050 lux). Callus growth was visually assessed after 

28 days, and the arbitrary scale of callus growth subsequently 
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quantified by weighing a minimum of 8 callus pieces for each size 

class. The results are presented in Fig. 2.3.3. 

Modified M. S. based media at reduced strength, and N69 salt 

based media proved most effective for Cyclamen callus growth. Callus 

growth was promoted more effectively by combinations of 1-naphthyl 

acetic acid (N. A. A. ) and 6-benzyl amino purine (B. A. P. ) than by 3-indole 

acetic acid (I. A. A. ) and 6-furfuryl-amino purine (kinetin). A combin- 

ation of 1.0 mg/L N. A. A. and 1.0 mg/L B. A. P. was found to be most 

effective at stimulating Cyclamen callus growth. The addition of 

adenine sulphate (75 mg/L) slightly enhanced. Cyclamen callus growth. 

Sucrose at 3% (w. v) was found to be more effective than glucose at 1,3 

and 5% (w/v) and sucrose at 1 and 5% (w/v), at promoting Cyclamen 

callus growth. 

2.3.3 Subculture and Maintenance of Callus Cultures Initiated from 

Petiole Explants of Flowering Cyclamen Plants 

When callus initiated from leaf explants after 28 days was 

either transferred to fresh medium, or was left for a further 14-28 

days under the same conditions, the response was much the same as that 

noted for leaf derived callus. When subcultured, friable callus pro- 

liferated as friable callus and no regeneration was observed. Dense 

callus gave rise to some dense, some friable sectors of callus. When 

preferentially subcultured the dense callus occasionally gave rise to 

regenerated shoots, roots and isolated leafy organs, after 28-49 days 

of culture. Shoots were not connected with a root system, and failed 

to root on MS-0, MS-R1 and MS-R2. 

The growth of dense callus was slow, when compared to friable 

callus, and frequently browning of the callus and discolouration of 

the medium occurred, although this did not affect the regeneration 
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capability of the callus. 

2.3.4 Establishing Cyclamen Cell Suspensions 

Friable leaf callus (10g fresh weight) was transferred from 

MS-Al and MS-A2 to 80 ml UM, MS-Al or MS-A2 liquid media, and actively 

growing cells (approximately 10g fresh weight) transferred to fresh 

medium every 7-10 days. In MS-Al and MS-A2 significant discolouration 

of the cell clumps occurred, and the cell cultures lost. In UM medium, 

similar discolouration occurred but pale actively growing clumps of 

cells were also observed, and preferentially transferred when sub- 

cultured. After 6 subcultures an actively growing pale yellow/brown 

cell suspension was achieved. The cells were in small clumps 2-6 mm 

in diameter. When transferred to solid UM media the cell clumps pro- 

liferated as friable callus. When transferred to solid MS-Al, MS-A2, 

MS-B9 MS-C and MS-D, the clumps of cells proliferated only on MS-Al, 

MS-A2 and MS-D media. The callus growth was friable and no regenerated 

structures were observed. 

2.3.5 Callus Initiation from Boot, Corm, Petiole and Leaf Explants 

of Axenically Grown Cyclamen Seedlings 

Root, com, petiole and leaf explants were prepared and 

cultured as described in the Materials and Methods. Callus initiation 

was assessed after 28 days as for leaf and petiole explants from 

I 
flowering Cyclamen plants, described previously. 10-12 explants in 

four replicate 2 oz jars were examined. The results are presented in 

Table 2.3.4. 

Root explants gave rise to friable callus which proliferated on 

MS-A2 and MS-D media. On subsequent transfers to these, and other 

media, no organised structures were observed, and the callus remained 
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friable, (see Table 2.3.5). Explants of corm tissue responded poorly 

in culture, with very little callus growth, and considerable dis- 

colouration of both explant and culture medium. When subcultured the 

callus failed to proliferate on MS-A2 medium. 

Explants of petiole and leaf tissue responded well in culture 

giving rise to prolific callus growth on MS-A2 medium. The callus 

consisted of friable and dense sectors and was pale red brown in 

colour, with occasional white or green sectors. The callus was trans- 

ferred to MS-Al, MS-A2, MS-BO MS-C, MS-D media but prolific callus 

growth only occurred on MS-Al, MS-A2 and MS-D media. Subsequently, re- 

generation of shoots and roots occurred on a variety of media tested 

including MS-Al, MS-A2, MS-D9 MS-E and MS-F. Although roots and 

shoots were occasionally found on the same callus, the shoots were not 

directly associated with a root system. Shoots failed to root when 

transferred to MS-0, MS-R1 and MS-R2 media. Regenerated structures 

were observed 28-42 days after subculture. 

As was found previously, the regenerated structures only arose 

from areas of dense callus. In some cases the dense callus was more 

organised, consisting of nodular tissue. No regeneration was observed 

from friable callus. 

The results of subculturing root, corm, petiole and leaf explants 

are presented in Table 2.3.5. 

2.3.6 Callus Initiation and Morphogenesis in Nicotiana tabacum 

and N. glutinosa 

Leaf explants taken from young greenhouse grown plants of 

N. tabacum: and N. glutinosa were cultured as described in the Materials 

and methodst and the response noted after 28 days growth. The results 

are presented in Table 2.3.6. 
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Prolific callus growth occurred from leaf explants of 

N. tabacum on MS-P1 , MS-D3, MS-D4 p MS-Al , MS-A2 p MS-B and MS-D media. 

Shoot regeneration also occurred on MS-D3, MS-D4, MS-ZO MS-Alt MS-B 

and MS-D media. Slight callusing and rooting occurred on MS-P2 and 

MS-C media. In contrast to the results obtained with cultured Cyclamen 

leaf explantsý all the cultured N. tabacum explants responded in 

culture, and the degree of callus growth obtained was very much greater. 

No discolouration of the explants or media was observed. 

Similarly, all the cultured N. glutinosa explants responded 

giving rise to varying degrees of callus growth. Prolific callusing 

occurred on MS-P1, whereas slight callusing occurred on MS-Z, MS-D3, 

MS-D4p MS-Alv MS-A2v MS-B and MS-D. Slight callusing and root 

regeneration occurred on MS-P2 and MS-C media, and slight callusing 

with some shoot regeneration occurred on UM medium. 

2.3.7 Cycl- amen Protoplast, Isolation and Culture 

A range of concentrations of meicelase P (Meiji Seika Kaisha 

Ltd., Japan) or Cellulase R10 (Yakult Honsha Ltd., Japan) were tested 

in combination with macerozyme R10 (Yakult Seika Kaisha Ltd., Japan) 

for their ability to release leaf mesophyll protoplasts from leaves 

taken from young Cyclamen plants. Peeled and plasmolysed leaf pieces 

were floated on 4 ml of enzyme solution in a5 cm petri dishq and 

incubated as described in the Materials and Methods section. To assess 

the efficiency with which the enzyme combinations were capable of 

releasing mesophyll protoplasts, the leaf tissue was gently teased to 

release the protoplasts into the enzyme solution. Protoplast release 

was assessed visually and ranked according to an arbitrary scale. The 

results of this assessment are presented in Table 2.3-7. 

An enzyme mixture consisting of 0.5% (W/V) Cellulase P10 and 
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0.05% (w/v) macerozyme R10 was chosen on the basis of the preliminary 

assessment for use in large scale protoplast isolation experiments. 

Using this enzyme combination the yield ranged between 4.4 and 104 

and 1.5 x 105 protoplasts/g leaf material. Protoplast viability varied 

independantly of yield, and was usually between 28-52% as determined 

by fluorescence in the presence of F. D. A. Leaf mesophyll protoplasts 

were cultured in MS-P19M, MS-A19Mv KM-8P and KP-8 media as described 

in the Materials and Methods. No protoplast division was observed. 

When cultured in the light (2,100 - 2,300 lux) the protoplasts became 

bleached within two days of culture. After six days protoplasts had 

collapsed, and when treated with F. D. A. no longer accumulated 

fluorescein, indicating that a loss of membrane integrity and thus 

viability had occurred. 

Protoplast isolation from Cyclamen cell suspensions was also 

investigated. A range of concentrations of pectolyase Y23 (Seishin 

Pharmaceutical Co. Ltd., Japan) in combination with Cellulase RS 

(Yakult Honsha Co. Ltd., Japan) or Cellulase R10 with the addition of 

2% (w/v) driselase (Kyowa-Hakko Kogyo Co. Ltd., Japan) or Cellulase 

R10 with the addition of 2% (w/v) rhozyme HP150 (Rohm and Haas, U. S. A. ) 

were tested. 2-3g wet weight of plasmolysed cell suspension cells were 

incubated in 4 ml enzyme/5 cm petri dish, as described in the Materials 

and Methods section. Following incubation, the cells were gently 

teased to release the protoplasts into the enzyme solution, and proto- 

plast release visually assessed according to an arbitrary scale. The 

results are presented in Table 2.3.8. 

A combination of 0.5% (w/v) pectolyase Y23 and 0.1% (w/v) 

Cellulase RS was chosen for larger scale protoplast isolations, as 

described in the Materials and Methods section. The protoplast yield 

was between 0.8 and 6.0 x 106 protoplasts/flask (approximately 
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5.7 x 104 - 4.3 x 105 protoplasts/g wet weight of cells). The 

protoplast viability was higher than found with Cyclamen mesophyll 

protoplasts, ranging between 35 and 65% as determined by F. D. A. When 

cultured in MS-P19M, MS-A19M, KM-8P and KP-8 as described in the 

Materials and Methods Section, no division was observed. Protoplasts 

remained spherical for up to 4 days, indicating no cell wall synthesis 

had occurredv but by 6 days of culture had collapsed, and were no 

longer viable as determined by F. D. A. 
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FIGURE 2.3.1 

Shoots and isolated leaf-like structures regenerating from leaf 

explants of mature Cyclamen plants. 

2.3.1 -A Isolated leaf-like structures arising from a leaf 

explant after 7 weeks culture on MS-A2 medium. Note 

the limited callus proliferation from the cut edge of 
the explant, which is still visfble, and green. 
(X1.4 ) 

2.3.1 -B Shoot regeneration from leaf callus subcultured on 

MS-D medium and grown for a further 6 weeks. Note 

the browning of the callus. 
(X1.5 ) 

2.3.1 -C: Shoot and root regeneration from leaf callus sub- 

cultured on MS-Al medium and grown for a further 

7 weeks. 

(X1.5 

2.3.1 -D: Shoot regeneration from a leaf explant after 7 weeks 

on MS-Al medium. 
(X2.0 ) 
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FIGURE 2.3.2 

Callus growth and shoot regeneration from cultured leaf and petiole 

explants of aseptically germinated Cyclamen seedlings. 

2.3.2 -A: Friable callus from a leaf explant after two passages 

on MS-Al medium. 
(X1.5 ) 

2.3.2 -B: Nodular callus from a leaf explant after two passages 

on MS-E medium. Note the apparent shoot formation on 

some of the nodular structures. 
(X1.5 ) 

2.3.2 -C Nodular callus from a petiole explant after three 

passages on MS-D medium. Again, note the apparent 

shoot or leaf regeneration from some of the nodular 

structures. 
(X1.5 ) 

2.3.2 -D Shoot regeneration from nodular leaf callus after 

three passages on MS-E medium. 
(X1.5 ) 
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Table 2.3.1 Callus initiation from leaf and petiole explants 
from flowering Cyclamen plants after 28 days of 

culture. 

a) 25 1 20C in the light (2,300 - 2,400 lux). 

Leaf Petiole 
Medium Response Frequency Type Response Frequency Type 

MS-0 - - 
MS-Pl - - 
MS-D3 - - 
MS-D4 - - 
UM 2/18 f 3/18 f 

N69-Pl + 2/12 d + 2/12 f 

N69-D3 + 1/12 d 

MS-Al + 4/12 d + 3/11 f 

MS-A2 + 5/12 d + 4/12 d 

MS-B 

MS-C + 2/12 f 

MS-D + 4/12 dj + 2/12 d 

b) 25 ± 20C in the dark 

Leaf Petiole 
Medium Response Frequency Type Response Frequency Type 

MS-0 - 
MS-Pl - 
MS-D3 - 
MS-D4 - 
UM 3/17 f 1/18 f 

N69-Pl + 3/12 f + 2/11 f 

N69-D3 + 1/12 d 

MS-Al + 4/12 f + 3/12 f 

MS-A2 + 4/12 f + 2/12 f 

MS-B 

MS-C 
MS-D + 3/12 

-- 
d + 

--- 
1 4/12 do j L- 
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Table 2.3.2 Callus initiation from leaf explants from flowering 

Cyclamen plants after 28 days of culture. 

Temperature(OC) 
Leaf - MS-A2 Leaf - MS-D 

Light intensity(lux) Response Frequency Type Response Frequency Type 

15 ±2 + 1/12 f + 2/12 f 

0 

22 ±2 + 5/12 f/d + 3/12 d 

0 

25 ±2 + 5/12 d + 2/12 d 

0 

30 ±2 

0 

22 2 + 4/12 d + 3/12 d 

200 1,050 

25 2 + 3/12 d + 2/12 d 

2,300 2,400 

30 3 + 1/12 d 

3v200 3,400 
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Table 2.3.3 The growth response of Cyclamen callus derived from 

cultured leaf explants from flowering Cyclamen plants. 

A) The effect of the media composition. 

Hormone Regime 
Medium A2 D 

MS (modified) 5,5,5t4 4,4,3,4 

MW 1221 3133 

B5 0111 1201 

N69 3445 3344 

L 12021 3012 

B) The effect of the hormone regime and combination, with and 

without the addition of adenine sulphate (75 mg/L). 

NAA (mg/L) 
+ Adenine sulphate 0.01 0.1 1.0 10.0 

0.01 1 1 1 1 

BAP (mg/L) 0.1 2 4 3 1 

1.0 2 4 5 1 

10.0 1 1 1 1 

NAA (mg/L) 
- Adenine sulphate 0.01 0.1 1.0 10.0 

0.01 0 1 1 1 

BAP (mg/L) 0.1 1 2 3 1 

1.0 1 3 5 1 

10.0 1 0 1 1 

(The result indicates the overall response when all four 

replicates were considered) 
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Table 2.3.3 : continued ... 

IAA (mg/L) 
+ Adenine sulphate 

0.01 0.1 1.0 10.0 

0.01 0 1 0 0 

Kinetin (mg/L) 0.1 1 1 2 1 

1.0 1 2 2 1 

10.0 1 2 1 1 

IAA (mg/L) 
- Adenine sulphate 

0.01 0.1 1.0 10.0 

0.01 0 0 0 0 

Kinetin (mg/L) 0.1 1 1 1 1 

1.0 1 1 2 1 

10.0 1 1 1 0 

C) The effect of the carbon source (callus growth on MS-A2). 

Carbon Source Concentration 
% W/v 

Growth Response 

Sucrose 1 1,3,2,1 

Sucrose 3 4o5,4P5 

Sucrose 5 4,3,394 

Glucose 1 2,1,2,2 

Glucose 3 3,3,4,4 

Glucose 5 392,3,2 

D) Key to the growth response. 

Code Mean Fresh Weight (9) S. D. 

1 0.3 0.1 

2 0.8 0.2 

3 1.3 0.3 

4 2.2 0.1 

1 4.0 0.2 
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Table 2.3.5 The response of root, com, petiole and leaf callus 
initiated on MS-Al media to subsequent subculture. 

a) Root Callus 

Medium 
Passage number 

MS-Al MS-B MS-C MS-D MS-E MS-F 

1 f 

2 f 

3 f f x f 
4 f f f 

5 f f f 

b) Corm 

Med ium 
Passage number 

MS-Al MS-B MS-C MS-D MS-E MS-F 

F x 

2 x 

C) Petiole 

Medium 
Passage number 

MS-Al MS-B MS-C MS-D MS-E MS-F 
d 

2 d/n 

3 6/1 n/l n/r n 
4 n/I n d n/l n/l 
5 n/r/l - n/s n/s/r n/s/r 
6 f/n/s - n/s/r n/s/r d/n/s/r 
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Table 2.3.5 continued 

d) Leaf 

Medium 
Passage number 

MS-Al MS-B MS-C MS-D MS-E MS-F 

d 

2 d f f d 
3 d f f d 

4 d m d n/r n/r 
5 d - d/s/r n/s/r d 

d/r - d/s/r n/s/1 n/s/1 

KEY 

Callus response f- friable 

d dense 
I 

n nodular 

x- no growth 

-- not tested 

s- shoots 

r roo ts 
1 isolated leafy 

structures 

Callus initiated on MS-Al medium was transferred to MS-B, 

MS-C and MS-D. Callus proliferating on MS-D was subsequently 
transferred to MS-E and MS-F. 
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Table 2.3.6 Callus initiation and morphogenesis in 
Nicotiana tabacum and N. glutinosa. 

N. tabacum N. gLutinosa 
Callus Morphogenesis Callus Morphogenesis 

MS-Pi 5 s 3 

MS-P2 2 r 2 r 
MS-D3 5 S 3 

MS-D4 5 S 3 

ms-Z 4 S 2 

Um 3 2 S 

MS-Al 4 S 3 
MS-A2 4 S 3 

MS-B 3 2 

ms-C 2 r 1 

MS-D 5 S 3 

KEY 

callus initiation 1 (minimum) o5 (maximum) 

morphogenesis s- shoots 

-. r- roo ts 
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Table 2.3.7 : 

KEY 

The effect of different enzyme combinations and 

concentrations on the release of Cyclamen leaf 

mesophyll protoplasts. 

Moicelase P% (w/v) 

0.5 1.0 2.0 3.0 

0.01 - + ++ + 
macerozyme R10 0.05 ++ ++ + 

% (w/v) 0.10 + ++ ++ +++ 

0.15 ++ ++ 

Cellulase R10 % (w/v) 

0.5 1.0 2.0 3.0 

macerozyme R10 0.01 + ++ ... ... 
% (w/v) 0.05 ++ +++ +++ +++ 

0.10 ++ ... ... ... 
0.15 ++ +++ +++ 

no protoplast release 

minimum 

maximum 

protoplast release 
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Table 2.3.8 The effect of different enzyme combinations and 

concentrations on the release of Cyclamen call 

suspension protoplasts. 

Pectolyase 
0.01 

Y23 
0.1 

% (w/v) 

0.5 

Cellulase RS 0.1 + ++ +++ 
% (W/V) o-5 + ++ +++ 

1.0 + ++ 

Cellulase R10 0.1 ++ ++ +2% (w/v) 

% (w/v) o-5 + ++ ++ driselase 

1.0 ++ ++ 

Cellulase R10 0.1 + + + +2% (w/v) 

% (w/v) o. 5 + + + rhozyme HP 

1.0 + + ++ 150 

KEY 

no protoplast release 

minimum 

protoplast release 

maximum 
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2.4 CONCLUSION 

Lear and petiole explants taken rrom r1owering Cyclamen plants 

responded poorly to tissue culture. The rrequency with which callus 

initiation was obtained was low, and the callus grew very slowly. 

Significant browning or the callus and discolouration or the medium 

was observed. Callus obtained from lear and petiole explants was 

either friable, and was not observed to undergo regenerationt or was 

dense, and regenerated shoots, roots and isolated lear-like organs at 

low frequency. There did not appear to be a close correlation between 

root or shoot regeneration and the hormone regime under which the 

callus was grown. Although roots and shoots were obtained from the 

same culture, the shoots were not directly associated with a root 

system, and attempts to root the shoots railed. 

Explants taken from axenically grown Cyclamen seedlings were 

more responsive in culture, giving rise to callus more frequently. 

The callus growth was raster, and the tendency to undergo browningg 

and for media discolouration to occur was much reduced. occasional 

roots and shoots were also regenerated, however, as was the case with 

explants from flowering Cyclamen plants. Shoots were not directly 

associated with a root system, and rooting was not successfully 

achieved. The callus growth was either friableg or dense, and the 

dense callus often gave rise to nodular organised tissue. 

All Cyclamen tissues were round to grow best in culture on 

media based on modified M. S. salts at reduced strength, or N69 medium. 

A cell suspension was successfully established Using liquid UM medium 

based on full strength M. S. salts. 

Cyclamen leaf mesophyll and cell suspension protoplasts were 

successfully isolated, but did not undergo division under the media 

and culture conditions tested. 
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CHAPTER 3 

ANTHER CULTURE OF CYCLAMEN PERSICUM9 

NICOTIANA TABACUM AND N. CLUTINOSA 

3.1 INTRODUCTION 

Anther culture is the most effective method by which normal 

pollen development can be disrupted, and pollen derived haploid plants 

recovered (Chih-Ching Chu, 1982). The advantage of using anther 

culture derived haploid and dihaploid plants in the production of a 

more uniform Cyclamen crop has been discussed in the General Intro- 

duction. In previous attempts at recovering haploid Cyclamen plants 

by anther culture, particular attention has been given to the compo- 

sition of the anther culture medium. However, no androgenetic response 

was observed (Geierg 1978). As an alternative approach in this study, 

emphasis was placed on stress treatments performed on excised buds 

prior to anther culture. Such stress pre-treatments are frequently 

reported in successful accounts of anther culture in other speciesp and 

usually take the form of low or high temperature incubation periods 

(see Chapter 1.2.3a). Many factors are thought to influence the 

response of anthers in culture. To assess the efficiency of the basic 

approach to Cyclamen anther culture, and the culture procedures and 

conditions employedq parallel experiments were performed using anthers 

from Nicotiana tabacum cv. White Burley. This variety was chosen since 

it is known to be highly responsive to anther culture, and the influence 

of bud pre-treatment and culture conditions on the recovery of pollen 

derived plants has been reported (Dunwell, 1979; Sunderland and 

Roberts, 1979). In N. tabacum, the stage of pollen development within 

the anthers prior to culture, or bud stress pre-treatments, is known to 
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influence the subsequent anther culture response (Dunwell, 1976; 

Sunderland and Roberts, 1979; see also Section 1.2.3b). Pollen de- 

velopment was therefore studied in Cyclamen and N. tabacum, in order 

that anthers containing pollen at a known developmental stage were 

cultured, or subjected to pre-treatments within the bud. 

The potential use of haploid protoplasts in somatic hybridisation 

was also discussed in the General Introduction. Although tetrad proto- 

plasts would appear to be ideal for protoplast fusion studies, they 

have not been shown to undergo sustained division, and no somatic hybrid 

plants have been reported using tetrad protoplasts, as one fusion partner. 

Attempts at recovering somatic hybrids between N. tabacum leaf mesophyll 

protoplasts (2n) and N. gýqtinosa tetrad protoplasts (n) will be dis- 

cussed in Chapter 5. Haploid N. glutinosa plants have been recovered 

by anther culture (Nitscht 1972; Nakamura and Itagaki, 1973; Nakamura 

et al., 1974; Tomes and Collins, 1976). For this reason anther 

culture was also attempted with N. glutinosa in order to recover haploid 

plants which may be suitable for protoplast Isolation. 
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3.2 MATERIALS AND METHODS 

3.2.1 Source and Growth of Plant Material 

Flowering, Cyclamen persicum cv. T. R. "mini" plants were grown 

from seed, or provided by Thomas Rockford and Sons Limited. The plants 

were grown and subsequently maintained in the controlled environment of 

a growth room as described in Chapter 2.2.2. 

3.2.2 Analysis of Pollen Development 

Pollen development was examined in Cyclamen, N. tabacum and 

N. glutinosa. Buds were removed and measured before the anthers were 

individually removed and gently squashed and stained in acetocarmine. 

The development stage of the pollen was assessed under bright field 

illumination of a Vickers M41 fotoplan microscope. The correlation 

between bud length and pollen developmental stage was assessed, and the 

synchrony of pollen development between the anthers from same bud 

noted. The time course of pollen development was estimated by 

measuring a minimum of eight buds over a number of days. The buds were 

initially chosen at the pollen mother cell or tetrad stage of develop- 

ment, as judged by the bud length. 

3.2.3 Preparation of Acetocarmine Stain 

A 2.5% solution of acetocamine stain was prepared by the 

addition of 2-5g carmine (B. D. H. ) to 100 ml of 45% (v/v) glacial acetic 

acid. This solution was thoroughly shaken and boiled for 90 minutes in 

a conical flask fitted with a reflux condensor. The stain solution was 

filtered through Whatman number 1-filter paper and stored at room 

temperature until use. Developing pollen grains were stained by gently 

squashing the anther contents into 2 drops of acetocarmine solution on 

a microscope slide. The pollen was observed after five minutes. 
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3.2.4 Media Preparation and Sterilisation 

Full details of media constituents are given in Appendix 1. 

Media based on M. S. salts (Murashige and Skoog, 1962) and Nitsch's 

medium IHI (Nitsch and Nitsch, 1969) were prepared using commercially 

available preparations (Flow Labs., U. K. ). Additional vitaminst 

hormones, a carbon source and activated charcoal (Sigmaq neutralised) 

were added as appropriate. The pH was adjusted, and media dispensed 

into 100 ml medical rlats, and sterilised as described in Chapter 

2.2.4. 

3.2.5 Bud Selection, Bud Pretreatment and Anther Culture Conditions 

Buds containing pollen at the appropriate stages of development 

for anther culture or bud pre-treatment were selected on the basis of 

bud length. The buds were harvested, measured, and grouped according 

to size prior to surface sterilisation in 10% domestos (Lever Bros. t 

U. K. ) for 20 minutes, followed by four washes in sterile tap water. 

The surface sterilised buds were either dissected, and the anthers 

cultured, or were placed intact in 9 cm petri dishes (Sterilin Ltd. 9 

U. K. ) 5-10 buds per dish. The dishes were carefully sealed with nesco- 

film (Nippon Shoji Kaisha Ltd., Japan) and incubated in the dark at the 

appropriate pre-treatment temperature for 4,8 and 12 days. For each 

experiment four replicates were usually initiated. Bud harvests were 

performed sequentially over a 16 day period such that a typical experi- 

ment would start with the selection of buds for 12 day pre-treatments 

on days 1-4. Buds for 8 day pre-treatments were selected on days 5-8 

and for 4 day pre-treatments on days 9-12. On days 13-16 buds were 

selected for direct anther culture, and these in addition to buds pre- 

treated for 4,8 and 12 days were dissected and the anthers cultured. 

In this way, over the 16 day period four replicate experiments were 

initiated such that all the anthers within each replicate were cultured 
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on the same day permitting Jirect comparison between the affect of 

different bud pre-treatment times. 

Anthers were cultured individually in the wells of plastic multi- 

well grids (5 x5 format 100 mm square) (Sterilin Ltd. 9 U. K. ) each 

well containing 2.5 ml of agar solidified medium. Initially anthers 

were cultured in the dark at 25 1 20C for 28 days, followed by a further 

28 days at 25 1 20C in the light (20100 - 2,300 lux). 

3.2.6 Data Collection and Recovery of Anther Culture Derived Plants 

After 28 days in the light, the cultured anthers were examined 

under a dissecting microscope for the presence of macroscopic embryos 

or plantlets. The number or anthers giving rise to embryos or plantlets 

was recorded, as was the actual number of embryos or plantlets emerging 

from each responding anther. Anthers which railed to respond in culture 

were sampled, and the anther contents stained in acetocarmine and 

examined microscopically. 

In the case of N. tabacum, a random sample of 100 emerging 

plantlets were individually transferred to solid MS-0 medium in 6 oz 

powder jars. These plantlets grew rapidly, and a number were examined 

cytologically to determine-their somatic chromosome complement. 

3.2.7 Cytological Observations 

Young plants derived from anther culture and maintained on MS-0 

medium under a constant illumination of 2,300 lux at 25 1 20C were 

examined. Under these conditions the plants developed a fine but 

rapidly growing root system. The uppermost 3-4 cm of these plants was 

aseptically removed, and transferred to fresh MS-0 medium, in which the 

cut stem rapidly grew a new root system. The remaining roots in the 

previous jar were carefully extracted from the agar and placed in 3 ml 
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of a solution consisting of 0.03% (w/v) 8-hydroxyquinoline (Sigma) and 

0.05% colchicine (Sigma). The roots were incubated in this solution 

at 150C for 5-6 hours, and then at 40C for a further 2 hours. The roots 

were subsequently fixed overnight in freshly prepared acetic ethanol 

0: 3). Fixed roots were hydrolysed for 6-8 minutes in 5M HU at room 

temperature, and were transferred to a small volume of feulgen solution. 

After 30-40 minutes the extreme 2 mm of the root tips, stained purple, 

were removed and placed on a microscope slide in two drops of aceto- 

carmine stain. A cover slip was placed on top of the root tips, and 

gentle pressure applied to spread the cells. The acetocarmine helped 

in the location of the root tip squashes when examined microscopically 

under bright field illumination. 

Chromosomes were stained purple as a result of the complexing of 

aldehyde groups (from hydrolysed DNA) with the feulgen reagent. The 

somatic chromosome number was determined by counting the number of 

chromosomes contained within the area of the cell. Several chromosome 

counts were made for each plant assessed, and where possible chromosome 

squashes photographed. 

3.2.8 Preparation of Feulgen Stain 

0.5 g of basic fuchsin (B. D. H. ) was added to 100 ml of boiling 

water, and stirred until dissolved. This solution was cooled to 50*C 

and 1.0 g of sodium metabisulphiteg and 10 ml of 1M HU were added. 

This solution was shaken and left to stand overnight in a loosely 

stoppered bottle. The following morning 1.0 g of activated charcoal was 

added, the solution shakenj and then filtered through Whatman number 1 

filter paper, giving a colourless liquid. The feulgen stain thus 

prepared was stored at 411C in the dark for up to 6 weeks. 
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3.3 RESULTS 

3.3.1 Pollen Development in 2yclamen persicumg Nicotiana tabacum 

and N. glutinosa 

Pollen development in Cyclamen, N. tabacum and N. glutinosa 

followed the typical pattern as described in the introduction (Chapter 

1.2.1). Meiosis occurred within the pollen mother cells with a very 

high degree of synchrony, and resulted in the formation of tetrads con- 

sisting of four haploid spores bound within a thick wall presumably 

composed of callose. In N. tabacum and N. glutinosa tetrad formation 

was highly uniform, and no aberrant structures were observed. In most 

of the Cyclamen buds examined at the tetrad stage, tetrad formation was 

also very uniform. However, aberrant structures were occasionally 

observed at high frequency within particular buds. Dyads$ consisting of 

apparently undreduced spores, and 'tetrads' containing additional micro- 

spores occurred (see Figure 3.3.1). All three species possess five 

anthers in each bud. At meiosis all five anthers were found to contain 

pollen mother cells at a similar stage of development. Where tetrads 

were observed, all five anthers were usually found to contain tetrads. 

N. tabacum and N. glutinosa tetrads were similar in size, between 

30-40 ý= in diameter. Cyclamen tetrads were somewhat smaller, at 

16-18 pm in diameter. 

The dissolution of the presumably callose wall of the tetrad 

resulted in the release of uninucleate microspores which initially 

lacked a vacuole. At this stage, Cyclamen microspores possessed a 

prominent centrally located nucleus. Vacuole formation causes the 

nucleus and most of the cytoplasm to be displaced to one pole of the 

developing microspore. In N. tabacum and N. glutinosa the microspore 

became oval in shapet and prominent sculpturing of the wall was 

observed. The uninucleate (stage 2-3) microspores stained poorly with 
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acetocamine. 

First pollen mitosis resulted in the formation of the generative 

and vegetative nuclei. This division was much less synchronous than 

meiosis, with uninucleate, early binucleate and mitotic microspores 

present within the same anther of Cyclamen and N. tabacum. Mitosis was 

not observed in N. glutinosa. The synchrony between the anthers within 

a Cyclamen bud was poor at this stage, whereas various stages of mitosis 

were usually observed in all five anthers within an N. tabacum bud. 

In. N. tabacum and N. glutinosa the early binucleate pollen grains 

(stage 5) were much more heavily stained with acetocarmine, and the 

presence of a degenerating vacuole, and two distinct nuclei could not 

always be observed. Similarly in Cyclamen, the increased staining and 

small size of the pollen made observation difficult. More mature bi- 

nucleate pollen grains (stage 6) were however, characterised by an 

apparently uniform densely stained cytoplasm. At this stage N. tabacum 

and N. glutinosa. pollen measured 32-36 tun in diameter, and Cyclamen 

pollen 15-16 ý= in diameter. Cyclamen pollen was found to be much more 

numeroust with each anther containing 1.0 - 1.4 x 106 pollen grains. 

N. tabacum and N. glutinosa anthers contained 3.8 - 4.2 X 104 pollen 

grains. 

The development of Cyclamen, N. tabacum and N. glutinosa pollen 

is illustrated in Figures 3.3.1,3.3.2,3.3.3 and 3.3.4. 

The correlation between bud lengthq and stage of pollen develop- 

ment was poor with Cyclamen. Buds measuring 12 mm in length contained 

pollen ranging from tetrads (stage 1) to early binucleate pollen 

(stage 5). In general, howevert buds measuring 6-12 mm were most likely 

to contain tetrads or early uninucleate microspores (stage 1), buds 

12-14 mm uninucleate pollen (stages 2-3) and buds 14-22 mm mitotic 

microspores, and binucleate Pollen (stages 4-6). Based on these 
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observations, and the growth of Cyclamen buds against time (see Figure 

3.3-5) the sequence of development from tetrads to binucleate pollen 

grains occurred in approximately 12 days. 

The correlation between bud length and stage of pollen develop- 

ment, was much more accurate in N. tabacum and N. glutinosa. In 

N. tabacum, tetrads were round in buds 11-13 mm longp uninucleate 

microspores in buds 14-17 mm long, and pollen at mitosis in buds 

18-19 m-n long. Early binucleate pollen was observed in buds 18-24 mm 

in length, and mature binucleate pollen in buds 23 mm and larger. The 

development from tetrads (stage 1) to binucleate pollen (stage 6) took 

approximately 4-5 days based on the growth of N. tabacum buds (see 

Figure 3.3.5). Similarly, N. glutinosa buds 13-15 mm in length con- 

tained tetrads, 15-17 mm in length uninucleate microsporesq 17-20 mm in 

length early binucleate microspres, and 19 mm and greater mature bi- 

nucleate pollen. The sequence of development from tetrads (stage 1) to 

binucleate pollen (stage 6) took approximately 5 days, again based on 

bud growth (Figure 3.3-5). 

3.3.2 Anther Culture of Nicotiana__tabac= 

Four replicate experiments were performed to assess the culture 

response of N. tabacum anthers following 0,4,8 and 12 day pre-treatments 

at 4-6.50C. Buds were selected on the basis of length, and two groups 

identified. The first, measuring 17.9 1 1.0 mm contained pollen at the 

uninucleate stage, or mitosis (stages 2-4). The second group, 

measuring 20.3 1 1.4 mm contained early binucleate pollen grains 

(stage 5). Anthers were cultured on solid NH medium as described in 

the Materials and Methods. 

After culture for 28 days in the dark, followed by 28 days in the 

light, the anthers were examined. The total number of plated anthers 
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(T. A. ). number of anthers responding in culture(T. R. ), and number of 

macroscopic embryos/plantlets emerging from each responding anther 

(T. E. )was recorded. From this information three values were calculated 

which describe the anther culture response : 

Induction Frequency (I. F. ) - The frequency with which 

anthers gave rise to a culture response, expressed as a 

percentage of the total number of plated anthers. 

2) Anther Productivity (A. P. )- The mean number of 

embryos/plantlets emerging from each responding anther. 

3) Efficiency (E) - The product of the induction 

frequency and anther productivity, gives an indication 

of the expected recovery of anther culture derived 

embryos/plantlets for 100 cultured anthers. 

The results of the four replicate experiments are presented in 

Table 3.3.1. Wide variation was observed between the four replicates. 

The values of the induction frequency, anther productivity and 

efficiency have also been calculated, based on the cumulative data of 

total antherst total responding anthers and total number of embryos/ 

plantlets. This information is also presented in Table 3.3.1, and 

graphically in Figure 3.3.6. 

From the results, it is clear that an anther culture response 

was achieved for both of the bud size classes chosen, with and without 

bud pre-treatment at 4- 6-50C for up to 12 days. The data obtained 

for each of the four replicates of an experimental treatment shows 

considerable variation, especially when the efficiency is considered. 

From the cumulative results given in Figure 3.3.6 it would 

appear that anthers containing uninucleate or mitotic microspores gave 

a culture response superior to that obtained with anthers containing 
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early binucleate pollen, when the anthers were directly cultured, or 

pre-treated for 12 days. However, the reverse was true when the 

anthers were cultured after 4 or 8 days pre-treatment. Anthers con- 

taining binucleate pollen when pre-treated for 8 days at 4-6.50C gave 

an efficiency which was almost twice the value obtained for anthers con- 

taining uninucleate or mitotic microspores under the same conditions. 

The majority of responding anthers gave rise to 1-10 embryoso as can be 

seen from the frequency histogram (Figure 3.3.7). 

To clarify the effect of the stage of pollen development on the 

induction frequency, anther productivity and efficiency after 8 days 

Pre-treatment at 4-6.50C a wider range of bud sizes were selected for 

culture. A minimum of ten anthers for each size class were floated on 

the surface of 2.5 ml of liquid NH medium individually in the wells of 

plastic multiwell grids, and were cultured as described in the Materials 

and Methods. Liquid culture medium was chosen, since it enabled the 

number of embryos/plantlets to be counted more easily. Using this 

method embryos of various stages of development could be identified 

after 28 days of culture in the dark (see Figure 3.3.9 A, B and C). 

After a further 28 days in the light, the cultures were examinedt and 

the number of anthers responding and embryos/plantlets per responding 

anther noted. The results are presented in Table 3.3.2, and Figure 

3.3-8. 

The greatest induction frequency was achieved for buds 

25.0 t 1.0 = in length, and highest yield for buds 20.8 1 1.1 = in 

length. When the efficiency is considered, a very sharp peak in the 

response was observed for buds 20.8 1 1.1 mm in length, corresponding 

to early binucleate pollen. 
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3.3.3 Characterisation of the Plantlets Derived from N. tabacum 

Anther Culture 

100 small plantlets were randomly selected from the N. tabacum 

anther cultures, and individually grown on solid MS-0 medium in 6 oz 

powder jars. or these, 44 were examined cytologically. 43 were found 

to possess the allodihaploid somatic chromosome number of 

n= 2x = 24. One plant was found to possess the normal allotetraploid 

somatic chromosome number of 2n = 4x = 48 (See Figure 3.3.10). 

10 of the allodihaploid plants were selected at random and 

transferred to soil-less compost in 31 inch pots, and were maintained 

in a mist propagator for 7 days prior to being grown to maturity in the 

open greenhouse. The 10 plants flowered, but no seed set was observedg 

and no functional pollen was produced. When compared to normal allo- 

tetraploid N. tabacum cv. White Burley plants, the allodihaploids were 

found to vary in a number of ways. When flowering plants were compared 

the allodihaploids were considerably shorter, measuirng 84-95 cm, as 

compared to 108-116 cm for the normal allotetraploids (see Figure 

3.3.9 E). The flowers were also smaller, measuring 4.9 ! 0.2 cm and 

6.1 1 0.1 cm respectively. However, the flower colour was the same 

(Royal Horticultural Society colour chart number 62 A), and the flower 

corolla width/flower length ratio was very similar (0.16 1 0.02 and 

0.15 1 0.01 for the allodihaploid and allotetraploid plants respectively). 

The leaf shape of the allodihaploids was quite different to the allo- 

tetraploids, being much more narrow (width/length ratio of 0.35 t 0.02 

as compared to 0.55 1 0.06 for the allotetraploid). 

After flowering, the plants were cut back and repotted to en- 

courage side shoot development. When the plants again came to 

flowering, one of the flowering shoots was found to be fertile, and 

set seed. 
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3.3.4 Anther Culture in Cyclamen persicum 

Four replicate experiments were performed to test the culture 

response of Cyclamen anthers following 0,4j 8 and 12 days pre-treat- 

ment at a temperature of 4-6.50C. Due to the poor correlation be- 

tween bud size and the stage of pollen development within the bud, one 

size group was chosen. Buds measuring between 12 and 16 mm were 

selected since buds of this size group were most likely to contain 

pollen between the uninucleate and early binucleate stages of develop- 

ment (2-5). Anthers were cultured on solid NH medium, or solid NH 

medium with the addition of 1.0% (w/v) activated charcoal (Sigmat 

neutralised), or solid MS-R1 medium, as described in the Materials and 

Methods. 

Four replicate experiments were also performed to test the 

culture response of Cyclamen anthers following 0,49 8 and 12 days of 

pre-treament at a temperature of 15 t 20 C and also 25 t 20C. Buds 

selected for culture also measured between 12 and 16 mm, and the 

anthers were cultured on solid MS-R1 medium. 

After 28 days of culture in the dark, followed by 28 days 

culture in the light, the anthers were examined for evidence of macro- 

scopic embryos/plantlets. A random selection of five anthers which 

showed no culture response was made, and the anther contents gently 

squashed into acetocarmine, and examined microscopically. 

The results of this investigation are presented in Table 3.3.3. 

Data for all four replicates has been combined. 

No macroscopic embryos or plantlets were observed emerging from 

the cultured Cyclamen anthers. Many of the cultured anthers were 

brown, and discolouration of the medium frequently occurred. The 

addition of activated charcoal (1.0% (w/v)) to the medium reduced the 

browning, but did not permit any anther culture response. When the 
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anther contents of five randomly selected anthers was examined, no 

microscopic embryo-like structures were observed. Only dead pollen, 

devoid or internal structure was observed. This was true for all of 

the experimental treatments applied. 

3.3.5 Anther Culture of Nicotiana glutinosa 

Two replicate experiments were performed to test the culture 

response of N. glutinosa anthers following 0,4 and 8 days of pre- 

treatment at 4-6.50C. Buds were selected on the basis of bud lengthp 

and were grouped as follows : 

1) Bud length 14.4 ± 1.9 mm; Stage 1 

2) Bud length 15.8 ± 1.4 mm; Stage 2-3 

3) Bud length 17.3 ± 1.2 =; Stage 5 

4) Bud length 21.2 ± 2.1 mm; Stage 5-6 

Anthers were cultured on solid NH medium, solid NH medium with 

the addition of 1.0% (w/v) activated charcoal, or solid NH medium with 

the addition of 0.1 mg/L 2t4-dichlorophenoxyacetic acid (2,4-d). 

Anthers were cultured as described in the Materials and Methods. After 

four weeks culture in the light followed by four weeks culture in the 

dark, the anthers were examined for evidence of macroscopic embryos/ 

plantlets. 

The results are presented in Table 3.3.4. The data for the two 

replicate experiments has been combined. 

out of a total of 2,954 Cultured anthers only one gave rise to 

macroscopic plantlets. Two such plantlets were emerging from the antherl 

and were transferred to solid MS-0 medium in a6 oz powder jar. When 

those anthers which failed to respond were further examinedo by gently 

squeezing the anther contents into a drop of acetocarmine on a 
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microscope slide, and the anther contents examined microscopicallyq 

only dead pollen grains devoid of internal structure were observed. No 

multinucleate pollen grains, or small developing embryos were detected. 

The responding anther was from a bud pre-treated at 4-6.50C 

for 4 days, and was cultured on the surface of solid NH medium with 

the addition of 1.0% (w/v) activated charcoal. 

3.3.6 Characterisation of the Plantlets Derived from N. Clutinosa 

Anther Culture 

The two plantlets transferred to the surface of solid MS-0 

medium were examined cytologically. Both were found to possess the 

expected haploid somatic chromosome number of n=x= 12 (see Figure 

3.3.10). The plants were multiplied in culture, and eventually 

transferred to the greenhouse, as described for the N. tabacum anther 

culture derived plants. Two plants derived from each of the original 

plantlets were grown to flowering. The haploid plants were sterilet 

failing to set seed or produced viable pollen. The haploid plants 

differed from diploid N. glutinosa plants in a number of ways. The 

flowering haploid N. glutinosa plants measured 28-34 cm compared to 

60-68 cm, for the diploid plants. Similarly, the largest leaf of the 

haploid plant was smaller than that of the diploid plant measuring 

6.5 cm long and 5.8 cm widej as compared to 10.0 cm long and 9.6 cm 

wide. The leaf width/length ratio was extremely variable, ranging 

between 0.76 and 1.20 for the diploid and 0.47 - 0.89 for the haploid 

N. glutinosa plants. Flowers were also smaller on the haploid plantsp 

with a maximum length of 2.5 CM compared to 3.8 cm. for the diploid 

plants. The flower width/length ratio was similar, being 0.40 t 0.03 

for the diploid, and 0.45 1 0.05 for the haploid plants (see 

Figure 3.3-11). 
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FIGURE 3.3.1 

Meiosis and tetrad formation in Cyclamen persicum. 

3.3.1 - A-D Meiosis in Cyclamen pollen mother cells. 
(X 1300 ) 

3.3.1 - Ej Tetrads formed as a result of meiosis in the 

pollen mother cells. Note the presence of 

anomalous structures containing less or more 
than 4 spores, presumably resulting from 

abnormal reduction divisions. 

(X 700 ) 
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FIGURE 3.3.2 

Pollen development in Cyclamen persicum. 

3.3.2 -A Uninucleate microspores of Cyclamen released from 

the tetrad by gentle pressure on the cover slip of 
the stained tetrad preparation. 
(X 1400 ) 

3.3.2 -B Uninucleate microspores of Cyclamen - before 

vacuole formation. Note the presence of a larger 

microspore (centre), probably arising from an un- 

reduced gamete (see E and F). 

(X 1400 ) 

3.3.2 -C: Uninucleate microspore with the fomation of a 

vacuole. 
(X 1500 ) 

3.3.2 -DA mixture of uninucleate microspores, and binucleate 

pollen, resulting from poor synchronisation in the 

timing of the first pollen mitosis between the uni- 

nucleate microspores. 
(X 1400 ) 

3.3.2 -E and F: 

Haploid and diploid metaphase plates at first pollen 

mitosis. The diploid pollen grain presumably results 

from unreduced gametes due to abnormalities at meiosis. 

The haploid (n= 24 ) and diploid ( 2n = 48 ) chromo- 

some complement is clearly visable. 
(X 1600 ) 
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FIGURE 3.3.3 

Pollen development in N. tabacum. 

3.3.3 -A: Tetrad (Stage 1-2). 

3.3.3 - BI: Uninucleate microspore (Stage 1-2). 

3.3.3 - CI: Uninucleate microspore following vacuole 
formation (Stage 3). 

3.3.3 -D: First pollen mitosis (Stage 4). 

3.3.3 - E.: Early binucleate pollen grain. Note the de- 

generating vacuole (Stage 5). 

3.3.3 -F Late binucleate pollen grain. The vacuole is no 

longer present (Stage 6). 

( all X 1400 ) 
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FIGURE 3.3.4 

Pollen development in N. glutinosa. 

3.3.4 -A: Tetrad (Stage 1-2). 

3.3.4 -B: Uninucleate microspore (Stage 1-2). 

3.3.4 -C Uninucleate microspore following vacuole 
formation (Stage 3). 

3.3.4 -D Early binucleate pollen grain. Note the two 

nuclei and degenerating vacuole (Stage 5). 

3.3.4 -E Late binucleate pollen grain. The vacuole is 

completely absent (Stage 6). 

3.3.4 -F Mature pollen grain. Note the intense 

staining of the cytoplasm. 

( all X 1400 ) 
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FIGURE 3.3.5 

The growth of N. tabacum, N. glutinosa and Cyclamen persicum 
buds against time. 

The length of a minimum of 8 buds initially 
judged to contain pollen at the pollen mother cell or tetrad 

stage of development were measured, and their growth followed 

over a 12 day period. Bars indicate the range of bud lengths 

observed. 

3.3.5 -A: N. tabacum 

3.3.5 -B: N. glutinosa 

3.3.5 -C: Cyclamen persicum 
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Table 3.3.1.: Anther culture in Nicotiana tabacum arter bud pro- 
treatment at 4-6.511C for 0,49 8 and 12 days. 

a) Uninucleate and mitotic microspores (stages 2-4) 

Bud size 17.9 t 1.0 mm 

T. A. T. R. T. E. A. P. I. F. E 

0 days 1 109 30 342 11.4 27.5 314 

2 75 11 98 8.9 14.7 131 
3 50 5 23 4.6 10.0 46 

4 50 6 1 65 10.8 1 12.0 130 

Total 284 52 
1 

528 10.21 18.3 187 

4 days 1 - - - - - - 
2 55 8 51 6.4 14.5 93 

3 25 1 3 3.0 4.0 12 

4 75 21 17 8.51 2.7 23 

Total 155 11 71 6.51 7.1 46 

8 days 1 39 14 142 10.1 35.9 363 

2 49 10 61 6.1 20.4 124 
3 25 5 31 6.2 20.0 124 
4 74 27 345 12.81 36.5 467 

Total 187 56 576 10.3 29.9 308 

12 days 1 75 17 
-ý 

127 
wmýwý 

7.5 22.7 170 
2 75 23 118 5.1 30.7 157 

3 25 12 171 14.3 48.0 686 

4 75 21 151 7.2 28.0 202 

Total 250 73 567 7.8 29.2 228 
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Table 3.3.1 continued 

b) Binucleate pollen (stage 

Bud size 20.3 ± 1.4 mm 

T. A. 
1 

T. R. T. E. A. P. I. F. E 

0 days 1 63 17 103 6.1 27.0 165 

2 75 14 74 5.3 18.7 99 

3 50 1 7 7.0 2.0 14 

4 50 1 10 10.0 2.0 20 

Total 238 33 194 5.9 13.9 82 

4 days 1 - - - - - - 
2 45 8 64 8.0 17.8 142 

3 48 2 24 12.0 4.2 50 

4 25 6 76 12-71 24.0 305 

Total 118 16 164 10.3 13.6 140 

8 days 1 55 31 307 9.9 

=mmzc===2= 

56.4 558 

2 

3 25 11 239 21.7 44.0 955 
4 25 

-- 
!5 13 100 1 7.7 1 52.0 400 

Total. 105 55 646 
1 

11.7 52.4 613 

12 days 1 - - - - - 
2 

3 25 8 47 5.9 32.0 189 

4 75 
1 

19 46 2.4 25.3 61 

Total 100 27 93 3.4 27.0 92 
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FIGURE 3.3.6 

The anther culture response of N. tabacum cv. White Burley after 

09 49 8 and 12 days of bud pretreatment at 4.0 - 6-50C. Anthers 

were cultured on solid NH medium. 

3.3.6 - Al: The induction frequency (percentage of cultured 

anthers responding) against bud pretreatment 
duration. 

3.3.6 - BI: The anther productivity (mean number of embryos/ 

plantlets per responding anther) against bud pre- 
treatment duration. 

3.3.6 -C The anther culture efficiency (the product of 
the induction frequency and anther productivity) 

against the pretreatment duration. This 

indicates the expected recovery of embryos/ 

plantlets from 100 cultured anthers. 

o open circles - uninucleate microspores 

Closed circles - early binucleate microspores 
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FIGURE 3.3.7 

Frequency distribution of anther productivity values obtained 
following N. tabacum cv. White Burley anther culture. 

The combined results from anther culture on solid 
NH medium following bud pretreatment at 4.0 - 6.50C for 0,4, 

8 and 12 days duration are presented. The frequency histogram 

indicates the distribution of individual anther productivity 

values in the size classes indicated. Over 70% of the responding 

anthers gave rise to only 1-10 embryos/plantlets. 
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Table 3.3.2 The effect of initial bud size on the subsequent 

response of cultured N. tabacum anthers after 

8 days bud pre-treatment at 4-6.50C. 

Bud Size 

Mean S. D. 
I. F. A. P. E 

13.6 0.5 0 0 0 

15.5 0.5 50 10.4 520 

17.3 0.5 78 11.7 889 

20.8 1.1 86 88.9 7,645 

25.0 i.. o 100 21.4 20140 

30.0 1.2 63 7.3 460 

39.0 0.8 0 0 0 

47.7 3.6 0 0 0 
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FIGURE 3.3.9 

Stages in the recovery of allodihaploid plants following N. tabacum 

cv. White Burley anther culture. 

3.3.9 -A Pollen derived globular embryo. 
(X 20 ) 

3.3.9 -B Pollen derived torpedo stage embryo. 
(X 20 ) 

3.3.9 -C Macroscopic pollen derived embryo. 
(X 20 ) 

3.3.9 -D Small pollen derived plantlets emerging from 

anthers cultured individually in the wells of a 

5x5 multiwell culture plate. (x 0.5) 

3.3.9 -E Allodihaploid plant (left) derived from anther 

culture, and an allotetraploid plant (right) grown 

from seed and grown to maturity under the same 

conditions. 
(X0.06 ) 

Figures A-C result from anthers floated on liquid NH medium, and 

Figure D and the allodihaploid plant in Figure E result from 

anthers cultured on solid NH medium. 
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Table 3.3.3 Anther culture in Cyclamen persicum. 
onam 

a) After bud pre-treatment at 4-6.50C for 0,49 8 and 12 days. 

Medium 
Pre-treatment duration 

(days) T. A. T. R. T. E. 

NH 0 99 0 0 
4 98 0 0 
8 100 0 0 

12 100 0 0 

NH 0 98 0 0 

+ 1% Activated 4 98 0 0 
Charcoal 8 99 0 0 

12 100 0 0 

MS-R1 0 105 0 0 
4 100 0 0 
8 97 0 0 

12 99 0 0 

b) After bud pre-treatment at 15 ± 20C for 0,4,8 and 12 days. 

Medium 
Pre-treatment duration 

(days) 
T. A. T. R. T. E. 

MS-Rl 0 100 0 0 

4 99 0 0 

8 92 0 0 

12 95 10 10 

C) After bud pre-treatment at 25 ± 20C for 0,49 8 and 12 days. 

Medium 
Pre-treatment duration 

(days) T. A. T. R. T. E. 

MS-Rl 0 88 0 0 

4 105 0 0 
8 110 0 0 

12 94 0 0 
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Table 3.3.4 Anther culture in Nicotiana glutinos-a__af_ter bud pre- 

treatment at 4-6.5*C for 0,4 and 8 days. 

a) Anthers cultured on solid NH medium. 

Pre-treatment duration 
(days) Bud size T. A. T. R. T. E. 

0 1 75 0 0 

2 74 0 0 

3 100 0 0 

4 75 0 0 

4 1 175 0 0 

2 180 0 0 

3 170 0 0 

4 125 0 0 

8 1 120 0 0 

2 155 0 0 

3 135 0 0 

4 65 0 0 

b) Anthers cultured on solid NH medium with the addition of 

1.0% (w/v) activated charcoal. 

Pre-treatment duration 
(days) Bud size T. A. T. R. T. E. 

0 1 25 0 0 

2 25 0 0 

3 25 0 0 

4 25 0 0 

4 1 100 0 0 

2 95 0 0 

3 105 0 0 

4 130 1 2 

8 1 25 0 0 

2 25 0 0 
3 25 0 0 

4 25 0 0 

- 117 - 



Table 3.3.4 continued 

C) Anthers cultured on solid NH medium with the addition of 

0.1 mg/L 2,4-D. 

Pre-treatment duration 
(days) Bud size T. A. T. R. T. E. 

0 1 50 0 0 

2 25 0 0 

3 50 0 0 

4 50 0 0 

4 1 50 0 0 

2 75 0 0 

3 75 0 0 

4 50 0 0 

8 1 100 0 0 

2 125 0 0 

3 125 0 0 

4 100 0 
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FIGURE 3.3.10 
A 

Cytological observations on seed grown and anther culture derived 

plants of N. tabacum cv. White Burley, and N. glutinosa. 

3.3.10 -A Allotetraploid N. tabacum cv. White Burley 

(2n = 4x 48) grown from seed. 
(x 1000 

3.3.10 - C, and E: 

Allodihaploid N. tabacum plants (n 2x = 24) 

recovered from anther culture. 
(X 1200 and 1000 respectively 

3.3.10 -B Diploid N. glutinosa (2n = 2x = 24) grown from 

seed. 
(x 1000 

3.3.10 - D, and F: 

Haploid N. glutinosa plants (n =x= 12) recovered 

from anther culture. 
(X 12000 ) 

The chromosome preparations are metaphase spreads of actively 

dividing root tip cells stained in feulgen. 
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FIGURE 3.3.11 

Comparative leaf and floral morphology of haploid and diploid 
N. glutinosa plants. 

3.3.11 -A Haploid N. glutinosa plant (n =x= 12) recovered 
from anther culture. 
(X0.5 ) 

3.3.11 -B Morphology of flowers from haploid (upper) and 
diploid (lower) N. glutinosa plants. 
(X0.5 ) 

3.3.11 -C Morphology of leaves from haploid (upper) and 
diploid (lower) N. glutinosa plants. 
(X0.5 ) 
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3.4 CONCLUSION 

The pattern of pollen development was similar in N. tabacum, 

N. glutinosa and Cyclamen persicum, and followed the standard pattern 

described in the introduction. No abnormalities were observed in 

the development of N. tabacum and N. glutinosa pollen. However, 

tetrads containing additional spores, as well as diads were found in 

Cyclamen persicumq and presumably resulted from abnormal reduction 

divisions. This may have accounted for the occurrence of occasional 

diploid pollen grains. 

In N. tabacum cv. White Burley pollen embryogenesis could be 

induced in the cultured anthers. When directly cultured on solid NH 

medium anthers containing pollen as the uninucleate stage of develop- 

ment, but possessing a vacuole, gave a response superior to that ob- 

tained with anthers containing early binucleate pollen, with respect 

to the induction frequency and anther productivity. However, the 

overall efficiency was low, and could be dramatically increased when 

the buds were pretreated at 4.0 - 6.50C. The optimum duration of 

the bud pretreatment was 8 days, and under these conditions anthers 

containing early binucleate pollen gave the maximum response. The 

stage of pollen development was found to significantly influence the 

anther culture response. The culture efficiency was low, or no 

response was achieved with pollen before the uninucleate vacuolated 

stage just prior to mitosis, or beyond the early binucleate stage. 

Most of the plants recovered from N. tabacum. anther cultures were 

found to be allodihaploid (n = 2x = 24), and a sample grown to 

maturity were found to be shorter than their allotetraploid 

(2n = 4x = 48) counterparts. The allodihaploid plants also had 

smaller, more narrow leaves, and smaller flowers. They were complete- 

ly sterile. 
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Under the conditions tested, no macroscopic embryos or 

emerging plantlets were recovered from Cultured, Cyclamen anthers. 

It must be concluded that either conditions under which Cyclamen 

pollen can be induced to undergo embryogenesis have not been found, 

or that Cyclamen persicum is entirely recalcitrant to anther culture. 

N. glutinosa anther culture was successful, although the re- 

covery of plantlets was very low, only two plantlets were recovered 

from one responding anther out of a total of 2,954 anthers cultured. 

The responding anther contained early-late binucleate pollen, and 

was cultured on solid NH medium containing 1.0% (w/v) activated char- 

coal following bud pretreatment at 4.0 - 6.50C for 4 days. The two 

plantlets were found to possess the haploid chromosome complement 

(n =x= 12). When grown to maturity the plants were found to be 

shorter than their diploid counterpart, and also possessed narrower 

leaves and smaller flowers. The plants were sterile. 
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CHAPTER 4 

ISOLATION AND CULTURE OF HAPLOID PROTOPLASTS 

SUITABLE FOR SOMATIC HYBRIDISATION STUDIES 

4.1 INTRODUCTION 

For successful somatic hybridisation a source of large'numbers 

of protoplasts must be provided, and selection schemes designed to 

eliminate homokaryons or unfused protoplasts permitting the recovery 

of the small number of heterokaryon derived colonies or plants. The 

potential advantages of fusing haploid protoplasts of a wild type 

species with diploid protoplasts of a crop species in facilitating 

limited gene transfer have been discussed in the General Introduction. 

The choice of combining diploid protoplasts from nitrate reductase 

deficient N. tabacum plants with haploid N. glutinosa protoplasts 

requires the development of a haploid N. glutinosa protoplast system. 

Mesophyll protoplasts have previously been isolated from anther 

culture derived haploid plants, and have proved useful in the recovery 

of mutant plants and cell lines in several species including 

N. tabacum (Muller and Grafe, 1978; Caboche, 1980; Muller et al., 

1985), N. plumbaginifolia (Negrutui et al., 1985) and myoscyamus 

muticus (Straus et al., 1981; Gebhardt et al., 1981). Protoplasts 

isolated from non-allelic light sensitive mutant allodihaploid 

N. tabacum plants have been fused, and intraspecific hybrids recovered 

which grew dark green (Melchers and Labib, 1974). Haploid plants of 

N. glutinosa (n =x= 12) were recovered from anther culture experiments 

(Chapter 3). The isolation and culture of mesophyll protoplasts from 

these plants was assessed to determine their suitability for fusion 

studies. Protoplasts were also isolated from allodihaploid N. tabacum 
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cv. White Burley plantsq also derived from anther culture experiments 

(Chapter 3). 

An alternative source of haploid protoplasts was also investi- 

gated. Tetrads formed as a result of meiosis in the pollen mother 

cells consist of four haploid spores bound within a thick callose 

wall. Tetrad protoplast isolation has been reported in a range of 

species including N. tabacum, N. sylvestris, Petunia hybrida (Bhojwani 

and Cocking, 1972),. Lycopersicon esculentum, Cajanus cajan and Zea mays 

(Deka et al., 1974). Tetrad protoplasts have been reported to undergo 

spontaneous fusion (Bjojwani and Cocking, 1972) suggesting that they 

may be highly fusogenic. It has been suggested that the use of highly 

fusogenic protoplasts might permit high fusion frequencies to be 

obtained using fusion inducing treatments which cause less damage to 

the protoplasts (Boss et al., 1984). Tetrad protoplasts have not been 

reported to undergo sustained division, eliminating the need for 

selection schemes to be developed against tetrad protoplasts if used in 

fusion experiments. The isolation and culture of tetrad protoplasts 

from N. glutinosa was therefore examined. Tetrad protoplasts, were also 

introduced into nitrate reductase deficient N. tabacum nia-130 and 

albino Petunia hybrida nurse cultures in attempts to recover tetrad 

protoplast derived colonies. The nitrate reductase deficient 

N. tabacum mutant system is discussed in detail in Chapter 5. 
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4.2 MATERIALS AND METHODS 

4.2.1 Source and Growth of Plant Material 

Allodihaploid Nicotiana tabacum cv. White Burley (n = 2x = 24) 

and haploid N. glutinosa (n =x= 12) plants generated from anther 

culture experiments (Chapter 3) were transferred from culture to 31 

inch pots containing Levingtons soil-less compost (Fisons, U. K. ) and 

maintained initially in a mist propagator before being transferred to 

the greenhouse at 180C (minimum) with a 16 hour photoperiod supple- 

mented with daylight fluorescent tubes (Thorne, U. K. ) at an intensity 

of 4,000 5,000 lux (minimum). Diploid N. glutinosa plants 

(2n = 2x 24) were grown to flowering under the same conditions. 

Seeds of Nicotiana tabacum mutant line nia-130 were originally 

obtained from Dr. A. Muller, Zeutralinstitut fUr Genetic Und 

Kulturpflanzenforschung, Gatersleben, GDR. Seed was subsequently 

obtained following self-pollination of bagged flower heads. Small 

seedlings of nia-130 were pricked out into vacapots (H. Smith Plastics 

Ltd., Wickford, U. K. ) and were maintained in the controlled environment 

of a growth room (S. B. Refridgeration Ltd., U. K. ) at 220C (day) and 

180C (night) with a 16 hour photoperiod. Light was provided by day- 

light fluorescent tubes (Thorne, U. K. ) at an intensity of 3,000 - 

4,000 lux at bench level. Small plants 10-15 cm high were removed from 

the vacapots and transferred to hydroponic tanks. The hydroponic tanks 

were constructed using 13L plastic aquaria, painted black to prevent 

algal growth. The compost was carefully washed from the roots of the 

plants, and the stem inserted through holes (1-5 cm, diameter) in the 

lid of the hydroponic tank. 4-6 plants were established in each tank. 

The tanks were filled with tap water supplemented with 5 ml of 

Bentleys Liquid Growmore compound fertiliser (7-7-7) (J. Bentley Ltd., 

Barrow-on-Humbert U. K. ). 10 ml of a stock solution of 250 g/L 
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ammonium nitrate was also added to each tank. The nutrient solution 

was aerated to encourage rooting and prevent decay of the submerged 

plant parts, and was replaced every 2-3 weeks. The tanks were located 

in a greenhouse maintained at 200C (minimum) with a 16 hour photo- 

period supplemented with daylight fluorescent tubes (Thorne, U. K. ) at 

5,000 lux (minimum). 

An albino cell suspension of Petunia hybrida cv. Comanche was 

provided by Dr. J. B. Power, who isolated this mutant in this 

laboratory several years ago. 

4.2.2 Contamination Control 

Routine greenhouse contamination control was carried out as 

described in Chapter 2.2.3. 

4.2.3 Media and Enzyme Preparationg Sterilisation and Storage 

Media and enzyme solutions were prepared, sterilised and stored 

as described in Chapter 2.2.4 and 2.2-5. Full details of media 

composition are given in Appendix 1. 

4.2.4 Mesophyll Protoplast Isolation 

Young fully expanded leaves were removed from greenhouse grown 

haploid N. glutinosa, allodihaploid N. tabacum cv. White Burley and 

also from N. tabacum nia-130 plants grown in hydroponics. The leaves 

were surface sterilised by immersion in 7.5% (v/v) Domestos (Lever 

Bros. Ltd., U. K. ), followed by four washes in sterile tap water. When 

possible the lower epidermis of the leaves was removed by peeling with 

fine forceps, and the peeled leaf fragments floated on the surface of 

10 ml CPW 13M in a9 cm petri dish (Sterilin Ltd., U. K. ). When the 

leaves proved difficult to peel, they were chopped into thin slices and 

also placed into 10 ml CPW 13M solution. After 1-2 hours the CPW 13M 
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was removed and replaced with 10 ml of enzyme solution containing 

1.5% (W. V) meicelase P (Meiji Seika KaiSha Ltd. l Japan) and 0.5% (w. v) 

macerozyme R10 (Yakult Honsha Co. Ltd., Japan). The leaf pieces were 

incubated in enzyme solution overnight (13-16 hours) at 22 t 20C on 

a rotary shaker (30 cycles/minute) in the dark. Following incubation 

the protoplasts were released into the enzyme solution and recovered 

following flotation on CPW 21S as described in Chapter 2.2.10. 

4.2.5 Albino Petunia hybrida Protoplast Isolation 

An albino Petunia hybrida cv. Comanche cell suspension was 

maintained in liquid UM medium on a rotary shaker (80 cycles/minute) 

at 22 ± 20C in the light (1,300-29300 lux). Suspensions were sub- 

cultured every 7 days by transferring 10 ml of cell suspension to 70 ml 

of fresh medium in a 250 ml erlenmeyer flask. Protoplasts were 

isolated 3 or 4 days after subculture. The cells were allowed to 

settle and the medium removed with a pasteur pipette. 20 ml of 

enzyme solution containing 2% (w/v) rhozyme HP 150 (Rohm and Haas Co., 

U. S. A. ) 2% (w/v) meiceloLsOP (Meiji Seika Kaisha Ltd., Japan) and 

0.3% (w/v) macerozyme R10 (Yakult Honsha Co. Ltd., Japan) was added, 

and the cells incubated at 22 1 20C overnight (13-16 hours) on a 

rotary shaker (30 cycles/minute). Subsequently the enzyme solution 

wassepassed through a 64 jim sieve, and the protoplasts recovered 

following flotation on CPW 21S as described in Chapter 2.2.10. 

4.2.6 N. glutinosa Tetrad Protoplast Isolation 

Buds were selected on the basis of length so as to contain 

pollen at the tetrad stage of development. Based on the results of 

Chapter 3, buds measuring 14 mm in length were selected. The buds 

were surface sterilised in 10% (v/v) Domestos (Lever Bros. Ltd., U. K. ) 

followed by four washes in sterile tap water. 25 buds were placed 
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individually in the wells of a sterile multiwell dish (100 mm square 

with 25 wells) (Sterilin Ltd., U. K. ) and one anther from each bud 

removed to determine the stage of pollen development. The remaining 

anthers in those buds determined to contain tetrads were removed, and 

divided into six groups. The anthers were crushed in 2 ml of one of 

six enzyme solutions testedg 1 or 2% helicase (Reactifs IBF, France), 

1 or 2% cellulase R10 (Yakult Honsha Co. Ltd., Japan) or 1 or 2% drise- 

lase (Kyowa - Hakko Kogyo Co. Ltd. 0 Japan) in CPW 9M. The remaining 

anther debri was removed and the tetrads incubated in 3 cm petri dishes 

(A/C Nunc, Kamstrup, Denmark) at 250C for two hours, in the dark. 

Tetrad protoplasts were subsequently isolated in 2% (w/v) 

driselase. Protoplasts were centrifuged at 80 xg for 5 minutes, and 

resuspended in CPW 9M. 

4.2.7 Viability Determination 

Protoplast Viability was determined on the basis of fluorescence 

following treatment with fluorescein diacetate, as described in 

Chapter 2.2.11. 

4.2.8 Leaf Mesophyll Protoplast Culture 

Leaf mesophyll protoplasts isolated from haploid N. glutinosa 

and allodihaploid N. tabacum plants were cultured in liquid MS-P19M 

KMP8 and AAP 19M media. The protoplasts were suspended at 2.5 x 104, 

5.0 x 104 and 1.0 x 105 protoplasts/ml of medium, and cultured in 5 cm 

petri dishes (A/S Nunc, Kamstrup, Denmark), 4 m. 1 medium/dish at 

25 ± 20C in the dark, or with continuous illumination at 2,100-2,300 

lux provided by cool white fluorescent tubes (Thorne, U. K. ). 
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4.2.9 N. glutinosa Tetrad Protoplast Cultures 

N. glutinosa tetrad protoplasts were also cultured as described 

in 4.2.8, except 1.5 ml of medium was cultured in 3 cm petri dishes. 

N. glutinosa tetrad protoplasts were also introduced to albino 

Petunia hybrida cv. Comanche and N. tabacum nia-130 nurse protoplast 

cultures. Albino P. hybrida cell suspension protoplasts were cultured 

at a density of 5.0 x 104 protoplasts/ml KMP8 media, 8 ml per 9 cm 

petri dish and were maintained at 25 ± 20C in the dark for 1 or 2 days 

before 1-2x 105 N. glutinosa tetrad protoplasts in 0.5 ml CPW 9M 

were introduced. The cultures were maintained for a further 14 days, 

and the osmoticum reduced by dilution of the colonies with KM8 medium. 

After a further 28 days growth at 25 ± 20C with continuous illumination 

(2t1OO - 2,300 lux). The cultures were examined for green or pale green 

colonies. 

N. tabacum nia-130 leaf mesophyll protoplasts were cultured at a 

density of 5.0 x 104 /ml liquid AA-P19M medium at 25 ± 20C in the dark 

for two days before 1-2x 105 tetrad protoplasts were introduced Into 

the culture as for P. hybrida nurse cultures. After a further 21 days 

the colonies were transferred to selection medium, MSNO 
3 
4.5 M, and 

cultured at 25 ± 2*C with continuous illumination for a further 4-6 

weeks. The cultures were examined for actively growing green or pale 

green colonies. 

All protoplast isolation and culture experiments were performed 
I 

a minimum of four times. 
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4.3 RESULTS 

4.3.1 Isolation and Culture of Haploid N. glutinosa, and 

Allodihaploid N. tabacum Mesophyll Protoplasts 

Mesophyll protoplasts were successfully isolated from the leaves 

of haploid'N. glutinosa, and allodihaploid N. tabacum plants, derived 

from anther culture (see Figure 4.3.1 A and B). In the case of 

N. tabacum, the lower epidermis was readily removed by peeling, and the 

protoplast yield varied between 2.7 and 4.5 x 10s protoplast/g leaf 

tissue. The viability of the protoplasts as determined by fluorescence 

following treatment with F. D. A. was between 38 and 72%. When cultured, 

protoplast division was infrequent. Occasional divisions were observed 

after 12 days of culture in MS-P19M, KMP8 and AA-P19M media, when the 

protoplasts were suspended at a density of 5x 104 or 1x 105 proto- 

plasts/ml, maintained at 25 ± 20C in the dark. 

The lower epidermis of leaves from haploid N. glutinosa plants 

proved difficult to remove by peeling, and these leaves were usually 

cut into fine slices. The protoplast yield was lower than that 

obtained for allodihaploid N. tabacum leaves, ranging between 5.8 x 104 

and 1.4 x 105 protoplasts/g. The sliced leaf pieces were poorly 

digested in the enzyme solution leaf tissue. The viability as determined 

by fluoresence following treatment with F. D. A. was however similar, 

being between 34 and 76%. When haploid N. glutinosa leaf mesophyll 

protoplasts were cultured in MS-P19M, AA-P19M and KMP8 media, no proto- 

plast division was observed. The protoplasts remained spherical after 

2 days, but subsequently lost their shape, and degenerated. 

4.3.2 Isolation and Culture of N. glutinosa Tetrad Protoplasts 

When buds measuring 14 mm in length were selected, and one 

anther from each of 25 buds examined to determine the stage of pollen 
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development, usually between 6 and 12/25 buds were found to contain 

tetrads. When the tetrads were released into the enzymes tested, and 

observed after 2 hours incubation at 250C in the dark tetrad proto- 

plasts were observed in 1 and 2% driselase, and 1 and 2% helicase (see 

Figure 4.1 C). Only partial dissolution of the tetrad occurred in 1 

and 2% cellulase R10, resulting in the occurrence of some tetrad proto- 

plasts, and some partly digested or wholly complete tetrads. Using 

driselase and helicase, 90-100% conversion of tetrads to isolated 

tetrad protoplasts occurred. Tetrad protoplasts were small (approxi- 

mately 12 ti in diameter) and spherical. Each anther gave rise to 

approximately 4x 104 tetrad protoplasts, and 20 anthers from a total 

of five buds gave a yield of over 5x 105 tetrad protoplasts. 

Tetrad protoplasts isolated with 2% driselase were cultured in 

MS-P19M, KMP8 and AA-P19M media. No division was observedo although 

the protoplasts remained spherical after 6 days in culture. However, 

the protoplasts were observed to agglutinate into small clumps. 

Tetrad protoplasts isolated with 2% driselase were also intro- 

duced into albino Petunia hybrida cv. Comanche, and nitrate reductase 

deficient N. tabacum nia-130 mutant nurse cultures. The cultures were 

maintained as described, and later examined for the growth of either 

green or pale green colonies amongst the pale albino P. hybrida proto- 

plasts, or for actively growing colonies among those small colonies in- 

capable of growth on a medium containing nitrate as sole nitrogen 

source, in the case of the N. tabacum nia-130 nurse cultures. Following 

this procedure no colonies were recovered. 
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FIGURE 4.3.1 

Mesophyll protoplasts isolated from allodihaploid N. tabacum cv. 

White Burley, and haploid N. glutinosa plants, and haploid tetrad 

protoplasts isolated from diploid N. glutinosa plants. 

4.3.1 -A: Mesophyll protoplasts isolated from allodihaploid 

N. tabacum plants. 
(X 300 ) 

4.3.1 -B: Mesophyll protoplasts isolated from haploid 

N. glutinosa plants. 
(X 300 ) 

4.3.1 -C Tetrad protoplasts isolated from diploid 

N. glutinosa plants. 
(X 300 ) 
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4.4 CONCLUSION 

Leaf mesophyll protoplasts can be isolated from haploid 

, 
N. glutinosa and allodihaploid N. tabacum plants obtained following 

anther culture. The yield of protoplasts from allodihaploid N. tabacum 

leaves is similar to that reported for normal allotetraploid N. tabacum 

plants (Pental et al., 1982). The yield of protoplasts from haploid 

N. glutinosa leaves was low, however the leaves were difficult to peel, 

and the chopped leaf slices were poorly digested in the enzyme solution 

tested. 

Protoplasts isolated from leaves of allodihaploid N. tabacum 

plants divided infrequently in the media tested, and no protoplast 

division was observed among cultured haploid N. glutinosa protoplasts. 

N. glutinosa tetrad protoplasts were readily isolated. Sufficient 

tetrad containing anthers for the isolation of over 5x 105 tetrad 

protoplasts were generally obtained following the selection of 25 buds 

measuring approximately 14 mm in length. Tetrad protoplasts were 

readily released from the callose wall of the tetrad following incu- 

bation in either driselase or helicase, at a concentration of 1 or 2%. 

2% driselase was selected for further tetrad protoplast isolation 

experiments. Tetrad protoplasts were cultured in MS-P19M, KM8P and 

AA-P19M media, but were not observed to undergo division. The proto- 

plasts were frequently clumped in masses after 4-6 days of culture. 

When introduced to nurse cultures of albino Petunia hybrida and 

nitrate reductase deficient N. tabacum protoplastst which had been 

cultured for 1 or 2 days, no colonies derived from tetrad protoplasts 

were recovered. Tetrad protoplasts can therefore be isolated from 

N. glutinosa plants in suitable numbers for somatic hybridisation 

attempts. 
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CHAPTER 

SOMATIC HYBRIDISATION BETWEEN NITRATE REDUCTASE DEFICIENT 

NICOTIANA TABACUM LEAF MESOPHYLL PROTOPLASTS (2n) 

AND N. CLUTINOSA TETRAD PROTOPLASTS (n) 

5.1 INTRODUCTION 

Tetrad protoplasts can be isolated from a wide range of species, 

and the potential advantages of using tetrad protoplasts in fusion 

studies have been discussed in the General Introduction. As has been 

noted, tetrad protoplast fusion can be brought about (Deka et al., 

1977), but no somatic hybrid plants or tissues obtained. This may 

reflect a lack of research activity in this area, a lack of suitable 

systems with which to fully test the potential of tetrad protoplasts, 

or some biological reason may exist, preventing the formation and/or 

the development of heterokaryons formed following fusions involving 

tetrad protoplasts. The isolation of N. glutinosa tetrad protoplasts 

can readily be achieved, as detailed in Chapter 4. 

Nitrate reductase deficient mutants of Nicotiana tabacum have 

been recovered following selection for resistance to Chlorate. Chlorate 

an analogue of nitrate, is reduced to chlorite by the nitrate reductase 

enzyme. Chlorite is toxic to plant cells (Muller and Grafe, 1978). 

Plant regeneration was subsequently reported from the nitrate reductase 

deficient cell lines, and the mutant plants well characterised 

genetically (Mullert 1983). The nia-130 mutant plant line is homo- 

zygous for two unlinked recessive nuclear mutations, which are 

structural loci for the nitrate reductase apoprotein. The plants were 

found to possess the normal somatic chromosome complement of 

2n = 4x = 48, and set seed following self-pollination. The growth of 
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the nia-130 mutant plants, and isolation and culture of leaf mesophyll 

protoplasts from these plants ha3 been studied in detail (Pental et al., 

1982). Leaf mesophyll protoplasts isolated from the nia-130 mutant 

were developed for somatic hybridisation and transformation studies. 

The yield of nia-130 protoplasts is high, close to that obtained for 

wild type N. tabacum plants, and the cultured protoplasts have a high 

plating efficiency and grow rapidly in a medium containing an organic 

nitrogp, n-source. Colonies derived from dividing nia-130 protoplasts 

have a high regeneration capacity. In reconstruction experiments 

designed to mimick the result of somatic hybridisation, it was found 

to be possible to recover small numbers of protoplast derived colonies 

of wild type origin following the introduction of a small number of 

wild type protoplasts, and selection of the colonies on a medium con- 

taining nitrate as sole source of nitrogen. In control experiments no 

revertant colonies were obtained when nia-130 colonies alone were 

placed on selection medium. The nitrate reductase deficient N. tabacum 

nia-130 mutant is therefore ideal for use as half selection in somatic 

hybridisation studies. 

Somatic hybrids have previously been recovered between N. tabacum 

nia-130 leaf mesophyll protoplasts, and N. glutinosa cell suspension 

protoplasts (Cooper-Bland et al., 1985a). Selection of hybrids-was based 

on nitrate reductase proficiency, and the green colour and regeneration 

potential of the recovered colonies. Colonies derived from unfused or 

homokaryon N. glutinosa cell suspension protoplasts were pale green and 

failed to regenerate on a medium which permitted the regeneration of 

nia-130 protoplast derived colonies. This species combination was 

chosen to determine if N. glutinosa tetrad protoplasts could be fused 

with nia-130 leaf mesophyll protoplasts, and somatic hybrid colonies 

and plants recovered. Such hybrids might be expected to possess a 
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functionally triploid chromosome number of 3n = 5x = 60 and may there- 

fore be useful in studies designed to achieve limited gene transfer 

from N. glutinosa into N. tabacum preceding N. glutinosa chromosome 

elimination as discussed in the General Introduction. 

The selection scheme is detailed in Figure 5.1 .1 gand relies on 

the observed lack of division of tetrad protoplasts, when cultured 

alone, or in nia-130 nurse cultures (Chapter 4). Following fusion it 

is anticipated that only unfused and homokaryon nia-130 protoplasts, 

and heterokaryons formed between nia-130 protoplasts and N. glutinosa 

tetrad protoplasts will be capable of division in a medium supplemented 

with a reduced nitrogen source ( AA-P1 9M) . Subsequently only colonies 

derived from heterokaryons will be capable of continued growth when 

small colonies derived from fusion treated protoplasts are transferred 

to a selection medium containing nitrate as sole nitrogen source. 
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FIGURE 5.1.1 

Diagram explaining the selection scheme designed to recover 

somatic hybrids between N. tabacum nia-130 leaf mesophyll 

protoplasts, and N. glutinosa tetrad protoplasts. 
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5.2 MATERIALS AND METHODS 

5.2.1 Source and Growth of Plant Material 

Seeds of Nicotiana tabacum cv. Gatersleben, and the nitrate 

reductase deficient mutant line nia-130 (2n = 4x = 48) were originally 

obtained from Dr. A. Muller, Zentralinstitut fdr Genetik und Kultur- 

pflanzenforschungo Gatersleben, G. D. R. Seed was subsequently obtained 

following self-pollination of bagged flower heads. The nia-130 mutant 

plants were grown as described in Chapter 4.2.1. 

N. tabacum cv. Gatersleben and N. glutinosa plants were grown 

as previously described for N. glutinosa in Chapters 2 and 3. Routine 

greenhouse pest control was performed as described in Chapter 2. 

5.2.2 Media and Enzyme Preparation, Sterilisation and Storage 

Media and enzyme solutions were preparedw sterilised and stored 

as described in Chapter 2. Full details of media composition are given 

in Appendix 1. 

5.2.3 N. tabacum nia-130 Mesophyll Protoplast Isolation 

Young fully expanded leaves were removed from nia-130 plants 

established in hydroponics. Leaves were surface sterilised in 7.5% 

(v/v) Domestos (Lever Bros. Ltd., U. K. ) followed by four washes in 

sterile tap water. The lower epidermis was frequently difficult to 

remove by peeling with fine forceps, so the leaves were usually cut 

into fine slices 1-2 mm. thick, and leaf pieces floated on the surface 

of 10 ml CPW 13M (see Appendix 1) in 9 cm petri dishes (Sterilin Ltd., 

U. K. ). After 1-2 hours the CPW 13M was removed and replaced with 

10 ml of enzyme solution containing 1.5% (w/v) meicelase P (Meiji 

Seika Kaisha Ltd-ý Japan) and 0.5% (w/v) macerozyme R10 (Yakult Honsha 

Co. Ltd., Japan). The leaf pieces were incubated in enzyme solution 
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overnight (13-16 hours) at 22 1 20C on a rotary shaker (30 cycles/ 

minute) in the dark. Following incubation the protoplasts were 

released into the enzyme solution and recovered following flotation on 

CPW 21S as described in Chapter 2.2.10. 

5.2.4 N. glutinosa Tetrad Protoplast Isolation 

Buds were selected on the basis of length so as to contain 

pollen at the tetrad stage of development. Based on the results of 

Chapter 3, buds measuring approximately 14 mm in length were selected. 

The buds were surface sterilised for 20 minutes in 10% (v/v) Domestos 

(Lever Bros. Ltd., U. K. ) followed by four washes in sterile tap water. 

25 buds were placed individually in the wells of a sterile plastic 25 

well grid (100 mm square) (Sterilin Ltd., U. K. ), and one anther from 

each bud removed and examined to determine the stage of poilen develop- 

ment. The remaining anthers in those buds determined to contain 

tetrads were gently crushed in 4 ml of 2% (w/v) driselase (Kyowa-Hakko 

Kogyo Co. Ltd., Japan) in CPW 9M. The tetrad suspension was passed 

through a 64 pm sieve to remove debri, and incubated at 250C in darkness 

for 2 hours. 

5.2.5 Protoplast Fusion and Culture 

5x 105 N. tabacum nia-130 leaf mesophyll protoplasts in 6 ml 

of CPW 13M were mixed with an equal number of N. glutinosa tetrad 

protoplasts still in 4 ml of enzyme solution. After centrifugation 

(80 x g, 5 minutes), the supernatant was removed and replaced with 10 ml 

of high pH/Ca 2+ fusogen without disturbing the pellet. High pH/Ca 2+ 

fusogen was prepared by dissolving 0.05 M CaC12.2H20 in 0.05 M glycine - 

NaOH buffer pH 10.4, with the addition of 10% (w/v) mannitol. After 

incubation at 300C for 30 minutes the supernatant was removed and re- 

placed with 10 ml CPW 13M without disturbing the pellet. The 
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CPW 13M was removed and the pellet finally resuspended in AA-P19M to 

give a final density of 5x 104 mesophyll protoplasts/ml medium. 

Fusion treated protoplasts were cultured in 5 cm petri dishes (A/S 

Nunc, Kamstrup, Denmark), 4 ml medium/dish, and maintained at 25 ± 20C 

in the dark. After 21 days small colonies were transferred to 

selection medium MS N03 4.5 M by gently pelleting the colonies in a 

centrifuge tube (80 x g, 3 minutes), removing the supernatant, and re- 

suspending the colonies in selection medium at a density of approxi- 

mately 1X 103 colonies/ml. The colonies were cultured in 9 cm petri 

dishes (Sterilin Ltd., U. K. ), 8 ml medium/dish at 25 ± 20C with con- 

tinuous illumination provided by cool white fluorescent tubes (Thorn, 

U. K. ) at an intensity of 2,100-2,300 lux. After a further 6-8 weeks 

any actively growing green colonies were transferred to regeneration 

medium (MS-D3) and regenerated shoots subsequently rooted in MS-0 

medium. Putative somatic hybrids were transferred to 3j inch pots con- 

taining Levingtons soil-less compost (Fisons Ltd., U. K. ) in a mist 

propagator for 7 days, before being grown to maturity in the green- 

house. 

5.2.6 Morphological and Cytological Analysis of Putative 

Somatic Hybrid Plants 

Putative somatic hybrid plants were grown to maturity together 

with N. glutinosa and N. tabacum cv. Catersleben. All comparisons 

between the putative somatic hybrids, and their fusion partners were 

carried out when the plants were flowering. The plant height, 

dimensions of the largest leaves and flowers, and also the mean value 

for leaf width/length ratio and flower width/length ratio (based on a 

minimum of six measurements) were recorded. The flower colour was 

also noted based on the Royal Horticultural Societies flower colour 

charts. 
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The somatic chromosome number of the putative somatic hybrids 

and of N. tabacum and N. glutinosa were determined following the 

methods in Chapter 3.2-7. 

5.2.7 Biochemical Analysis of Putative Somatic Hybrid Plant'! 5. 

a) Nitrate Reductase Assay 

Nitrat& reductase activity was measured following the methods 

of Jaworski (1971). This method consists of incubating a known amount 

of tissue sample in a buffer consisting of 0.1 M sodium phosphate 

buffer, pH 7.5 containing 40 mM KN03,4% (v/v) n-propanol, 1 mg/ml 

streptomycin sulphate (Sigma) and 50 gg/ml Cycloheximide (Sigma). A 

callus sample of 200 mg was incubated in 2 ml of buffer for 90 minutes 

at 27'C in the dark. Nitrite was detected in the buffer solution 

following incubation by the addition of 0.5 ml of 1% (w/v) sulphanilic 

acid and 0.5 ml of 0.3% (w/v) a -naphthylamine, both dissolved in 

30% (v/v) acetic acid. After 30 minutes the samples were centrifuged 

(2,000 x g, 10 minutes) and absorbance measured at 540 nm using a 

Unicam SP 600 spectrophotometer. Readings were calibrated against a 

standard curve of absorbance against nitrite concentration (see 

Appendix 2). Activity was expressed as N Moles NO-2 POO mg tissue/ 

hour. 

b) Extraction of Soluble Proteins from Leaves, and Leaf Callus 

for Isoenzyme and Fraction 1 Protein Analysis 

Soluble proteins were extracted from fully expanded leaves from 

the upper part of the plant, ground in an ice cold mortar in ice cold 

extraction buffer (2 ml extraction buffer/g fresh weight of leaf 

tissue). A little sand was added to aid homogenisation. The slurry 

was passed through two layers of gauze and 0.1 g/ml sephadex G25-80 

added. The extracts were kept on ice, and then centrifuged at 
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11,500 xg for five minutes in an M. S. E. micro centaur centrifuge. The 

supernatant was used as a source of soluble proteins. 

Soluble proteins were also extracted from callus in the same way 

except 1 ml extraction buffer/g callus tissue was used. Callus was 

grown on MSP1 medium in the case of N. tabacum cv. Gatersleben, 

N. glutinosa, and the putative somatic hybrids, and AA medium in the 

case of nia-130 callus. Cultures were maintained at 25 1 20C with 

constant illumination of 2,100-2,300 lux. 

For isoenzyme analysis the extraction buffer consisted of 0.1 M 

Tris-HC1, pH 6.8,30% (v/v) glycerol, 40 mM dithiothreitol, 4.0 mM 

MgC12 and 20 ýiM leupeptin (Sigma). This was used at half strength for 

leaf extractionst and at full strength for leaf callus extractions. 

For Fraction 1 protein analysis the extraction buffer consisted 

of 0.05M Tris-HC1, pH 6.8,18% (W/v) glycerol, 0.5% (V/V) B- 

mercaptoethanol, 2.0 mM MgC12 and 10 ýiM leupeptin. Fraction 1 protein 

was only extracted from leaf tissue. 

Extracts for isoenzyme analysis were either used immediately, 

or stored at -20*C until use. Extracts for Fraction 1 protein analysis 

were freshly prepared. 

Protein Assay 

The soluble protein content of leaf and callus extracts was 

determined spectrophotometrically by measuring the level of absorption 

of light at 500 m following the complexing of alkaline copper treated 

protein with Folin phenol reagent (Lowry et al., 1951). 

The protein standard, or sample to be tested was made up to 

1.2 ml with distilled water. 6 ml of freshly prepared alkaline copper 

solution was added with immediate mixing. After 10 minutes at room 

temperature 0.3 ml of Folin and Ciocalteus phenol reagent (2 normal 
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stock, Sigma) was added, with immediate mixing. Transmission at 500 nm 

was measured after a further 30 minutes using a Unicam SP 600 spectro- 

photometer. Bovine serum albumen (Sigma) was used as a standard. The 

calibration curve is given in Appendix 2. 

Alkaline copper solution was prepared by adding, in order, 

1 ml 1% (w/v) copper sulphate (CUS04.5H20) and 1 ml 2% (w/v) sodium 

tartrate solution to 98 ml of a freshly prepared solution of 2% (w/v) 

sodium carbonate (Na2 C03) in 0.1 M sodium hydroxide. 

d) Isoenzyme Analysis Following Isoelectric Focusing of 

Soluble Protein Extracts 

Isoelectric focusing (IEF) of soluble proteins was carried out 

using pre-cast LKB Ampholine PAG plates, on an LKB multiphor flat bed 

electrophoresis unit, model 2117. The unit was connected to the water 

pump of a Gallenkamp water bath fitted with a Grant cooling unit main- 

taining the flat bed temperature at 100C. It was not necessary to 

pre-focus the IEF gels prior to the application of the protein samples. 

The gels were run at a constant current of 25 milliamps until the power 

rose to 25 watts, and subsequently at a constant power of 25 watts 

until a running voltage of 1,400 volts was attained. The gels were 

run at a constant 1,400 volts for 1j -2 hours. Power was provided by 

a Camlab EC 500 power pack (E. C. apparatus, U. S. A. ). 

20-40 pl of soluble protein extract from the leaves of 

N. tabacum cv. Gatersleben, N. glutinosa and putative somatic hybrids 

was loaded onto filter paper wicks 2 cm from the cathode using a pH 

range 3.5 - 9.5 LKB PAG-plate. The anode was 1M H3PO4 and cathode 

1M NaOH. Following isoelectric focusing, leaf esterases were 

visualised by staining the gel in 100 ml of a solution consisting of 

0.05 M Tris HU pH 7.0 and 0.2% (w/v) Fast Blue RR salt (Sigma) to 

which was added 3 ml of 2% (w/v) a naphthyl acetate in 60% (v/v) 
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acetone solutiong immediately prior to use (Smith et al., 1970). The 

gel was incubated at room temperature for 40-60 minutes, after which 

time the reactions were terminated by transferring the gel to 8% (v/v) 

acetic acid, which also served as a destaining solution. 

15-30 pl of soluble proteins extracted from leaf callus tissue 

was also loaded onto paper wicks 2 cm. from the cathode, but using a pH 

range 4.0 - 6.5 LKB PAG-plate. The Anode was 0-5 M HSP04 and cathode 

0.1 M0 alanine. Leaf callus peroxidases were visualised following 

isoelectric focusing by staining the gel in 100 ml of a solution con- 

sisting of 0.05 M Tris-HC1 pH 7.29 0.02 M NaCl, 0.05% (w/v) 4-chloro- 

1-Naphthol (Sigma) in 20% (v/v) ethanol. 3 ml Of H202 was added 

immediately before use (Pental et al., 1985). The gel was incubated 

at room temperature for 20 minutes, and then the reactions terminated 

by transferring the gel to 8% (v/v) acetic acid. 

The isoelectric focusing point (pI) of prominent bands specific 

to either N. tabacum or N. glutinosa was noted, based on information 

provided by the manufacturers of the PAG-plates (LKB) (see Appendix 2). 

e) Fraction 1 Protein Analysis 

Isoelectric focusing of the subunit polypeptides of Fraction 1 

protein (ribulose bisphosphate carboxylase/oxygenase, E. C. 41139) was 

performed following a method based on that of Cammeart and Jacobs 

(1980). 

Fraction 1 protein was first purified following discontinuous 

polyacrylamide gel electrophoresis (Disc-PAGE) (Davis, 1964) in which 

a separating gel, 10 cm deep was overlayed by a stacking gel 5 cm 

deep. A vertical slab gel electrophoresis unit (LKB model number 2001) 

was used, cooled by circulating tap water (8-140C). A stock solution 

of 30% (w/v) acrylamide (BDH-electran) and 0.8% (w/v) NN methylene 
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bisacrylamide (BDH - electran) was prepared, and filtered through 

Whatman No. 1 filter paper. This solution was stored over 1% amberlite 

MB-3 ion exchange resin (to remove acrylic acid) at 40C in the dark 

for up to 8 weeks. By suitable dilutions, gels of different acrylamide 

concentrations could be prepared from this stock solution. 

The separation gel consisted of 6% (w/v) acrylamide, 0.16 (w/v) 

NN methylene bisacrylamide, 0.075 M Tris-HC1 pH 8.4 and 10% (v/v) 

glycerol. The stacking gel consisted of 3% (w/v) acrylamide, 0.017 M 

Tris-HC1 pH 6.8 and 10% (v/v) glycerol. This was layered above the 

polymerised separating gel. A plastic well former was inserted into 

the stacking gel before it polymerised, giving 10 wells of approximately 

500 ý11 volume. 

The gels were de-aerated under vacuum and polymerised by the 

addition of 1 ýil/ml TEMED (N, N, N, INI - tetramethylethylene diamine) and 

0.02% (w/v) ammonium persulphate (from a freshly made stock solution of 

140 mg ammonium persulphate in 5 ml H20)- Polymerisation took 40-50 

minutes at room temperature. 

The gels were loaded with 100 ýil of soluble protein extract 

per well, and were run for 19 hours at a constant current of 10__milli- 

amps. Power was supplied by a coral instruments power pack (F. Copley 

and Co. Ltd., U. K. ). The anode and cathode running buffers consisted 

of 0.025 M Tris-HC1 pH 8.3 with 0.129 M glycine. 

Fraction 1 protein was identified following staining of the gels 

for total protein for 2-3 minutes in 0.1% (w/v) PAGE Blue 183 (BDH) 

50% (v/v) methanol, and 10% (v/v) acetic acid, followed by destaining 

in a solution of 5% (v/v) methanol and 10% (v/v) acetic acid, for 2-3 

minutes. The position of Fraction 1 protein was assumed on the basis 

of its slow migration and high staining intensity. Once located the 

Fraction 1 protein bands were cut out in acrylamide blocks 
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6 mm x3 mm x 1.4 mm and placed individually in ependorph tubes con- 

taining 1 ml of a freshly prepared solution of 1.5% (v/v) Ampholine pH 

range 5-8 (L. K. B. ), 5% sucrose, 8M urea and 0.1% (w/v) dithiothreitol 

(DTT). Nitrogen gas was passed through this solution to de-oxygenate 

it prior to use. The eppendoq tubes were sealed and kept at 40C 

until the blocks sank, usually 20-25 minutes. The blocks were used 

immediately. 

Isoelectric focusing of the Fraction 1 protein subunit poly- 

peptides was performed using 1.5 mm thick slab gels on an LKB multiphor 

flat bed electrophoresis unit as described for isoenzyme analysis. 

Gels were prepared from a stock solution of 24-25% (w/v) acrylamide, 

and 0.75% (w/v) NN methylene bisacrylamide prepared and stored as 

described for Disc. PAGE. The gel contained a final concentration of 

5% (w/v) acrylamidet 0.15% (w/v) NN methylene bisacrylamide, 8M urea 

and 1.5% Ampholine (LKB) pH range 3-10 (prepared by mixing one part 

LKB Ampholine pH range 3-10 with two parts LKB Ampholine pH range 5-8). 

The gel was polymerised as described for Disc. PAGE, and was cast be- 

tween glass and perspex plates with 1.5 mm thick spacers, and with a 

polyester backing film covering the glass plate. 
/Once 

polymerisation 

was complete the gel was transferred to the multiphor unit, and pre- 

focused at a constant current of 15 milliamps for two hours. The flat 

bed temperature was maintained at 15*C. Once pre-focused, the gel was 

loaded 2 cm from the cathode with the acrylamide blocks containing 

the dissociated Fraction 1 protein. The gel was run at a constant 

current of 15 milli-amps until a running voltage of 1,200 volts was 

attained. The gel was run for five hours at a constant 1,400 volts. 

The polypeptides of Fraction 1 protein subunits were visualised 

following overnight fixation of the gel in 12% (w/v) trichloro acetic 

acid and 3.5% (w/v) sulphasalicylic acid by staining in 0.15% (w1V) 
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PAGE Blue (83 (BDH) in 2.5% (v/v) ethanol and 8% acetic acid at 600C 

for 10 minutes. The gels were destained over several days in several 

changes of 25% (v/v) ethanol and 8% (v/v) acetic acid. 
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5.3 RESULTS 

5.3.1 Protoplast Isolation and Culture 

Young fully expanded leaves from N. tabacum 

grown in hydroponics yielded between 2.2 and 5.6 x 

plasts/g leaf tissue. Sustained protoplast divisii 

(diluted to AA-P14.5 M after 14 days) gave rise to 

which regenerated shoots when transferred to solid 

Figure 5.3 As C and E). 

nia-130 plants 

105 mesophyll proto- 

on in AA-P19M medium 

colonies 46/50 of 

AA-D3 medium (see 

Tetrad protoplasts were readily obtained following incubation 

of N. glutinosa tetrads in 2% (w/v) driselase (see Figure 5.3 B). A 

90-100% conversion of tetrads to tetrad protoplasts occurred, and as 

detailed in Chapter 4,20 anthers from five buds were sufficient for 

the isolation of over 5.0 x 105 tetrad protoplasts. The lack of 

N. glutinosa tetrad division in AA-P19M, and in nia-130 nurse proto- 

plast cultures was reported in Chapter 4. 

5.3.2 Protoplast Fusion, Culture and Selection of Putative 

Somatic Hybrids 

In preliminary fusion experiments it was not possible to 

visualise heterokaryons between nia-130 leaf mesophyll protoplasts, and 

N. glutinosa tetrad protoplasts, based on the merging or the chloro- 

plast containing mesophyll protoplast cytoplasm, with the chloroplast 

free tetrad protoplast cytoplasm. The use of fluorescent marker dyes 

such as fluorescein isothiocyanate (FITC) to label the tetrad proto- 

plast cytoplasm also failed to permit the unequivocal detection of 

heterokaryons visually. 

A fusion experiment was performed between 5x 105 nia-130 leaf 

mesophyll protoplasts, and approximately 5x 10s N. glutinosa tetrad 

protoplasts. Following fusion the mesophyll protoplasts were observed 
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to undergo division in AA-P19M medium giving rise to small colonies. 

After 21 days the colonies were transferred to selection medium 

(MS N03 4.5 M). Following selection, two actively growing green 

colonies were detected in the fusion treated protoplast derived colonies 

(see Fig. 5-3-2 D). No green colonies were observed in an unfused 

nia-130 control. 

The two colonies were transferred to regeneration medium (MSD-3). 

One colony regenerated six shoots, five of which were successfully 

established in the greenhouse. The second colony was lost due to 

bacterial contamination. 

5.3.3 Morphological and Cytological Examination of the Putative 

Somatic Hybrids and their Fusion Partners 

The five putative somatic hybrids, N. tabacum cv. Gatersleben, 

diploid N. glutinosa and haploid N. glutinosa plant (derived from 

anther culture, Chapter 3) were grown to maturity (see Fig. 5.3.2) and 

the morphology of the plants examined as described in the Materials 

and Methods. The results are presented in Table 5.3.1. 

The flowering putative somatic hybrids measured between 57 and 

62 cm in height, compared with 113 cm for N. tabacum, 62 cm for the 

diploid and 32 cm for the haploid N. tabacum plants. The leaf and 

floral morphology of N. tabacum and N. glutinosa differed quite 

considerably. N. glutinosa leaves were petiolate, and almost as wide 

as their length. N. tabacum leaves were larger, lacked a petiole and 

were twice as long as their width. The putative somatic hybrid leaves 

were similar to N. tabacum leaves in shape, but were slightly petiolatet 

and were smaller than either N. tabacum or diploid N. glutinosa leaves. 

The putative somatic hybrid leaves were however lar, 3er than those of 

the haplbid N. glutinosa plant (see Figure 5.3.3 A). 
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N. glutinosa flowers possessed a distinctive bilateral symmetry; 

and were more intensively coloured than the larger N. tabacum flowers. 

The flowers of N. Rlutinosa had a wider corolla tube, reflected in the 

flower width/length ratio. The putative somatic hybrids possessed 

flowers which were larger than those of haploid and diploid N. glutinosa 

plants, but smaller than those of N. tabacum. The leaf width/length 

ratio of the putative somatic hybrid flowers was intermediate between 

that of the two fusion partners(See Table 5.3.1 and Figure 5.3.3 B). 

The five putative somatic hybrids were found to possess the 

expected allopentaploid but functionally triploid somatic chromosome 

complement of 3n = 5x = 60, which is the summation of that of 

N. tabacum (2n = 4x = 48) and the haploid N. glutinosa chromosome com- 

plement (n =x= 12) (see Figure 5.3.4). 

5.3.4 Biochemical Characterisation of the Putative Somatic Hybrids, 

and their Fusion Partners 

a) Nitrate Reductase Activity 

The nitrate reductase activity of callus of the five putative 

somatic hybridso and of diploid N. glutinosa grown on solid MS N03 

mediumq and of nia-130 callus grown on solid AA medium was measured as 

described in the Materials and Methods. Although the value measured 

was found to vary considerably for callus samples from the same 

cultureq the five putative somatic hybrids were found to possess a 

nitrate reductase activity of between 350-580 nM N07 produced/hour/ 

100 mg callus. N. glutinosa was found to possess between 420 and 560 

nM N02 produced/hour/100 mg callus, and nia-130 callus between 0 and 

15 nM N03 produced/hour/100 mg callus. The nitrate reductase 

proficiency of the five putative somatic hybrids was confirmed by the 

ability of callus cultures initiated from leaf explants to proliferate 
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MS N03 medium in which nitrate is the sole nitrogen source. 

Isoenzyme Analysis 

Soluble protein extracts from leaves of the five putative somatic 

hybrids, and their fusion partners were found to contain between 

7.0 - 12.5 pg protein/pl. 20-40 jil of soluble protein extract was 

applied to each channel on an LKB pH 3.5 - 9.5 PACE plate, and the 

proteins separated by isoelectric focusing. Leaf esterases were visual- 

ised as described in the Materials and Methods. The leaf esterase 

zymogram is presented in Fig. 5.3-5 A. Two prominent N. tabacum 

specific esterase bands at pI 6.0 and 6.9, and three prominent 

N. glutinosa specific esterase bands at PI 5.1,5.6 and 7.2 are in- 

dicated. The putative somatic hybrids were found to possess all five 

esterase bands. 

Soluble protein extracts from leaf callus of the putative somatic 

hybrids and their fusion partners were found to contain 3.9 - 7.4 jig 

protein/pl. 15-30 pl of soluble protein extract was applied to each 

channel on an LKB pH 4.0 - 6.5 PAG plate, and the proteins separated 

by isoelectric focusing. Leaf callus peroxidases were visualised as 

described in the Materials and Methods. The leaf callus peroxidase 

zymogram is presented in Fig. 5.3.5 B. Three prominent N.. tabacum 

specific peroxidase bands, at pI 3.99 4.3 and 5.0, and one prominent 

N. glutinosa specific peroxidase band at pI 4.2 were observed. The 

putative somatic hybrids were found to possess all four prominent 

peroxidase bands. 

No prominent esterase or peroxidase bands were present in the 

putative somatic hybrids which did not correspond to bands present in 

either one or both of the fusion partners. 
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C) Fraction 1 Protein Analysis 

Fraction 1 protein was initially purified following Disc PACE 

of total soluble protein extracts from leaves of the five putative 

somatic hybrids and their fusion partners. 100 pl of soluble protein 

extract containing 390-740 pg protein was loaded per channel. The 

Fraction 1 protein bands were visualised as described in the Materials 

and Methods, and acrylamide blocks containing Fraction 1 protein 

placed in a solution containing 8M urea, dissociating the Fraction 1 

protein subunit polypeptides. These were subsequently separated by 

isoelectric focusing, and visualised as described in the Materials and 

Methods. The result is presented in Fig. 5.3.6. The cytoplasmically 

encoded large subunit polypeptides located in the alkaline region of 

the gelp and nuclear encoded small subunit polypeptides located in the 

acid region of the gel were positioned differently for N. tabacum and 

N. glutinosa. The five putative somatic hybrids possessed the cyto- 

plasmically encoded large subunit polypeptide pattern of, N. tabacum, 

and a nuclear encoded small subunit polypeptide pattern which was the 

summation of that found for both N. tabacum and N. glutinosa. 
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FIGURE 5.3.1 

N. tabacum nia-130 leaf mesophyll, and N. glutinosa tetrad proto- Z--- --- _-- - 
plasts, protoplast division, selection and regeneration from a 

protoplast derived colony. 

5-3-1A Leaf mesophyll protoplasts from N. tabacum nia-130 plants 

grown in hydroponics (X 250 ). 

5.3.1B N. glutinosa tetrad protoplasts (X 250 ). 

5.3.1C Dividing N. tabacum protoplast derived cell X 250 

5-3.1D Selection for putative somatic hybrids on a medium 

containing nitrate as sole nitrogen source. 

N. tabacum nia-130 protoplast derived colonies (left) 

are brown and fail to proliferate. Two actively 

growing green colonies are indicated in the N. tabacum 

nia-130 and N. glutinosa tetrad protoplast fusion dish 

(right) (X0.47 ). 

5.3.1E, Shoot regeneration from an N. tabacum nia-130 protoplast 

derived colony on solid AA-D3 medium (X1.4 ). 
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FIGURE 5.3.2 

Flowering putative somatic hybrid plants, and their fusion partners. 

5.3.2A Diploid N. glutinosa (left), a putative somatic hybrid 

(centre) and N. tabacum cv. Gatersleben (right) (X0.13 ). 

5.3.2B All five putative somatic hybrid plants successfully 

transferred to the greenhouse (X0.13 ). 

One plant (second from left) failed to grow normally 

initially, but subsequently flowered and was 

morphologically the same as the other four putative somatic 

hybrids (X0.13 ). 
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FIGURE 5.3.3 

Leaf and floral morphology of a putative somatic hybrid, and its 

fusion partners. 

5.3.3A Leaf morphology. N. tabacum cv. Gatersleben (left), 

putative somatic hybrid (centre), haploid N. glutinosa 

(right upper) and diploid N. glutinosa (right lower) 

(X0.28 ). 

5.3.3B Flower morphology. N. tabacum cv. Gatersleben (left), 

putative somatic hybrid (centre), haploid N. glutinosa 

(right upper) and diploid N. glutinosa (right lower) 

(X0.73 ). 
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FIGURE 5.3.4 

Somatic chromosome complement of N. tabacum cv. Gatersleben, 

and four of the five putative somatic hybrids, and meiosis in a 

pollen mother cell of N. glutinosa. 

5.3.4A Metaphase spread of N. tabacum cv, Gatersleben 

(2n = 4x = 48). (X1,200 ) 

5-3.4B Meiosis in a pollen mother cell of N. glutinosa, showing 

the haploid chromosome complement (n =x= 12). (X 900 ) 

5.3.4C -F Metaphase spread of four of the five putative 

somatic hybrids, showing a somatic chromosome complement 

of 60. (X1 p200 ) 
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FIGURE 5.3.5 

Isoelectric focusing of leaf esterases, and leaf callus 

peroxidases, of the five putative somatic hybrids, and their 

fusion partners. 

5.3-5A Leaf esterase zymogram. Channel 1, physical mix (1: 1) 

of proteins from N. tabacum nia-130, and N. glutinosa; 

Channel 3 and 9, N. tabacum nia-130; Channels 4-8, 

putative somatic hybrids. 

Prominent N. glutinosa specific bands are indicated at 

pI 5.1,5.6 and 7.2ý and N. tabacum specific bands at 

pI 6.0 and 6.9. 

5. -3.5B Leaf callus peroxidase zymogram. Channel 1, physical 

mix (1: 1) of proteins from N. tabacum nia-130 and 

ji. glutinosa; Channel 2 and 10, N. glutinosa; 

Channels 3 and 9, N. tabacum nia-130; Channels 4-8, 

putative somatic hybrids. 

Prominent N. tabacum specific bands are indicated at 

pI 3.9,4.3 and 5.0, and on N. glutinosa specific band 

at pI 4.2. 

- 158 - 



Z 

dob e. 

Alb 

7.2 
6-9-0m2 -0- fb Z . mý 

&0 --0-0 -lw> ýÄ 

5-6-0"''* -0- 

5-1 Aw> "lb . 48- 

10 

Aft dw dw 

AN 

1 10 
B 
- 

5-0 -10'4000%' -O> «4NN» 4*4* "'%b dow6 4dom% dooop 

^ 

"W*aw F40V -OrAlb. domill. don%" '00W 

4-3-01, 

4- 2 -01419^ 4190 -0- 4w 4*0 domb dm dmo 
go 

aft 

3-9-01441A -01 4ft 410 4m dodo 



FIGURE 5.3.6 

Isoelectric focusing of the Fraction 1 protein subunit 

polypeptides of the five putative somatic hybrids, and their 

fusion partners. 

Channels 1-5, putative somatic hybrids; Channel 6, N. glutinosa; 

Channel 7 N. tabacum cv. Gatersleben, and Channel 8, physical 

mix of Fraction 1 protein from N. tabacum and N. glutinosa (1: 1). 

The position of the small subunit (nuclear encoded) polypeptides 

(S) and large subunit polypeptides (L) is indicated. 
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5.4 CONCLUSION 

teroqkKagons could not be unequivocally Ident_ified v. isv 
-aW 

among fusion treated N. tabacum nia-130 leaf mesopý_ykl, 
_protoplasts 

and N. glutinosa tetrad_p-mtoplasts. Following fusion between 5x 105 

nia-130 protoplasts, and an equal number of N. Elutinosa tetrad proto- 

plasts, the mesophyll protoplasts underwent division giving rise to 

small colonies in AA-P19M medium. When these were transferred to a 

selection medium containing nitrate as sole nitrogen source, two 

actively growing green colonies were recovered, one of which regener- 

ated giving rise to six shoots, rive of which were successfully 

established in the greenhouse. The second colony was lost due to 

bacterial contamination. The rive putative somatic hybrids possessed 

a number of morphological features characteristic or either N. tabacum 

or N. glutinosa. The putative somatic hybrids possess a somatic 

chromosome complement of 60, which is the summation of that of 

N. tabacum, (2n 4x = 48) and the haploid chromosome complement of 

N. glutinosa (n x= 12). 

Biochemical characterisation of the five putative somatic 

hybrids revealed that they possess a leaf esterase and leaf callus 

peroxidase zymogram which is the summation of that found for N. tabacum 

and N. glutinosa. In both cases, the putative somatic hybrids were 

found to possess bands unique to both N. tabacum and N. glutinosa. 

Fraction 1 protein analysis revealed that the five putative somatic 

hybrids possess the cytoplasmically encoded large subunit polypeptide 

pattern of N. tabacum, and nuclear encoded small subunit polypeptides 

of both N. tabacum and N. glutinosa. 

Based on this evidence the five putative somatic hybrids were 

established to be true somatic hybrids between Nicotiana tabacum and 

N. glutinosa. The hybrids appear to contain the expected pentaploidp 
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but functionally triploid somatic chromosome complement of 

3n = 5x = 60. This result demonstrates that tetrad protoplasts, 

unable to undergo sustained division can be induced to fuse with 

leaf mesophyll protoplasts, and somatic hybrid plants recovered. 
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CHAPTER 

EXAMINATION OF THE FERTILITY 

OF THE FIVE TRIPLOID SOMATIC HYBRIDS 

BETWEEN N. TABACUM (2n) AND N. CLUTINOSA (n) 

AND CHARACTERISATION OF THE-FIRST BACKCROSS PROGENY 

BETWEEN THE SOMATIC HYBRIDSv AND N. TABACUM 

6.1 INTRODUCTION 

For somatic hybrid plants to be of value in the improvement of 

crop plants propagated by seed, the somatic hybrids must possess some 

degree of fertility (Gleba and Evans, 1983). The self fertility of 

somatic hybrid plants can be assessed over a number of generations. 

Hybrids between N. tabacum and N. rustica were found to increase in 

fertility over two generations of inbreeding, selecting for the most 

fertile individuals in the progeny (Hamill et al., 1985). However, it 

is in backcrossing to the crop plant that gene flow between a wild 

type species and a crop species might be brought about, following 

somatic hybridisation. The predicted behaviour of a triploid somatic 

hybrid between diploid protoplasts of a crop species, and haploid 

protoplasts of a wild type species has been discussed in the Intro- 

duction (see also Pental and Cocking, 1985). Random and uneven segre- 

gation of the haploid set of chromosomes at meiosis may result in 

progeny possessing a variable number of chromosomes from the haploid 

chromosome set following backcrosses of the triploid somatic hybrid 

with its diploid fusion partner. However, for this to be achieved the 

somatic hybrid must be fertile. 

Somatic hybrids between N. tabacum (2n) and N. glutinosa (2n) 

have varied in their fertility, from being completely sterile (Horn 
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et al., 1983) to being cross compatible with both N. tabacum and 

N. glutinosa (Uchimaya et al., 1984). In this Chapter, the fertility 

of the triploid somatic hybrids between N. tabacum (2n) and 

N. glutinosa (n) will be assessed, and the progeny resulting from the 

first backcross between the somatic hybrid, and N. tabacum character- 

ised morphologically and biochemically. 
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6.2 MATERIALS AND METHODS 

6.2.1 Source and Growth of Plant Material 

N. tabacum cv. Gaterslebent and N. glutinosa were obtained and 

maintained as described previously (see Chapter 5). The five somatic 

hybrids labelled NGT1,2,4,5 and 6 were recovered following fusions 

between N. tabacum leaf mesophyll protoplasts (2n) and N. glutinosa 

tetrad protoplasts (n). They all possess the expected pentaploid, but 

functionally triploid chromosome complement of 3n = 5x = 60. The 

somatic hybrids, their progeny and the fusion partners, a. tabacum and 

N. glutinosa were grown together under the same conditions as des- 

cribed in Chapter 5.2.1. 

6.2.2 Pollen Development and Viability Determination 

Anthers containing pollen mother cells undergoing meiosis were 

squashed in acetocarmine on a slide and were examined microscopically 

after five minutes. 

Pollen viability was determined by placing freshly dehisced 

pollen from anthers of a number of different flowers in acetocamine 

solution. After five minutes the pollen was observed microscopically. 

Viable pollen grains were deeply stained with acetocarmine, whereas non 

viable pollen grains were not. The validity of this procedure was 

verified by comparing the germination of pollen grains in 10% (w/v) 

sucrose solution after 2 hours at 270C with the viability as determined 

by staining in acetocarmine. A minimum of 300-350 pollen grains were 

examined. 

The size of the pollen grains was also measured using an eye 

piece graticule. A minimum of 20 viable pollen grains were measured. 
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6.2.3 Sexual Crosses 

Sexual crosses were performed by introducing pollen of the 

desired parent to the Stigma of an emasculated flower. Flowers were 

carefully emasculated before they opened, and before the anthers had 

dehisced. The emasculated flowers were individually bagged with self 

sealing polythene bags (90 x 57 mm), and labelled. The stigma was 

usually receptive 2-3 days after emasculation, indicated by a sticky 

surface secretion. Following pollination the bage was replaced until 

the stigma withered (usually 5-6 days) when the bags were removed. 

Labelled seed pods were harvested when ripe, and the seed stored dry 

at room temperature. 

6.2.4 Seed Set and Viability Determinations 

Seed set following crosses involving the five somatic hybrids, 

was compared to that obtained following self pollination of N. tabacum 

and N. glutinosa. 

Viability was determined following germination on solid MS-0 

medium at 25 ± 20C with constant illumination (2,100-2,300 lux). A 

minimum of 200 seeds were tested for each cross, and germination was 

assessed after 14 days. 

6.2.5 Tentoxin Sensitivity Tests 

The sensitivity of germinating seedlings to the fungal toxin 

tentoxin was assessed following the methods Durbin and Uchytil (1977). 

Single 5.5 cm filter papers (Whatman No. 1) in 5 cm petri dishes (A/C 

Nunc, Kamstrup, Denmark) were soaked with either 0.8 ml of a solution 

containing 20 4g/ml tentoxin (Sigma) or distilled water as a control. 

A minimum of 100 seeds were sprinkled onto the filter paper and 

germinated at 25 ± 20C with constant illumination (2,100-2,300 lux). 
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After 10-14 days the seedlings were examined and scored as being 

either green (tentoxin resistant) or bleached (tentoxin sensitive). 

6.2.6 Morphological Characterisation of the Progeny of Backcrosses 
Between the Somatic Hybrid Plants, and N. tabacum 

The progeny of reciprocal crosses between two of the five 

somatic hybrid plants (NGT 2 and 6) and N. tabacum cv. Gatersleben were 

grown to maturity as described previously (6.2.1). The progeny of 

NGT 29xN. tabacum 6 and NGT 69xN. tabacum 6 were studied in 

detail, and the following morphological features recorded : 

1- Days from gemination to opening of the first flower. 

2- Plant height at flowering. 

3- Flower colour (based on the Royal Horticultural Society 

flower charts). 

4- Flower length and corolla tube diameter. 

Mean flower corolla tube diameter/flower length ratio (based on 
a minimum of 3 flower measurements). 

Stigma length (longer or shorter than the corolla tube). 

Largest leaf dimensions, and leaf width/length ratio based on 
the largest leaf dimension. 

6.2.7 Biochemical Characterisation of the Progeny of Backcrosses 

Between the Somatic Hybrids and N. tabacum 

Five of the progeny of crosses between NGT 29xN. tabacum 6 

and NGT 6TxN. tabacum 6 were further characterised for their leaf 

esterase zymogram. 

Soluble protein extracts (20-40 pl) were applied to LKB pH 
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range 3.5 - 9.5 PAG plates, and proteins separated by isoelectric 

focusing. Leaf esterases were visualised by staining the gel as 

described in Chapter 5. 

To achieve a better separation of the prominent esterase bands 

characteristic of either N. tabacum or N. glutinosa, leaf esterases 

were also visualised following isoelectric focusing of soluble leaf 

proteins on an LKB pH range 5.5 - 8.5 PAC plate. The anode for this 

gel was 0.4 M HEPES, and cathode 0.1 M NaOH. All other conditions 

were as described previously for pH range 4-6.5 and 3.5 - 9.5 gels. 

The pl of prominent N. tabacum or N. glutinosa specific bands 

was estimated from information supplied by the manufacturer of the 

gels (LKB) (see Appendix 2). 
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6.3 RESULTS 

6.3.1 Pollen Development, Viability and Size 

At meiosis the reduction division in the somatic hybrid plants 

was found to be atypicalp in that at telophase II chromosomes not 

associated with the newly forming haploid nuclei were observed (see 

Figure 6.3.1). Accurate chromosome counts were only occasionally 

possible and 27,28 and 30 chromosomes were observed in newly forming 

haploid nuclei at telophase II, in separate pollen mother cells. 

Pollen viability varied between 45 and 75% in the somatic 

hybrids as compared to 99 and 95% respectively for N. glutinosa and 

N. tabacum. The pollen from the somatic hybrids was found to be 

slightly larger and more variable in size than that from either of the 

fusion partners (see Table 6.3.1). 

6.3.2 Seed Set and Viability Following Reciprocal Crosses Between 

the Five Somatic Bybrids, and N. tabacum 

Viable seed was recovered following reciprocal crosses between 

the five somatic hybrids, and N. tabacum cv. Gatersleben. Following 

self pollination N. tabacum seed pods contained approximately 1,150 - 

1,750 seeds. N., glutinosa seed pods were somewhat smaller, containing 

approximately 850-1,050 seeds. Seed pods collected from the five 

somatic hybrids following pollination with N. tabacum, contained 

approximately 150-350 seeds, and in the reciprocal crosses approximately 

450-600 seeds. 

The viability of the seed recovered from self pollination of 

N. tabacum and N. glutinosa was very high, being 98-99%. The viability 

of seed recovered following reciprocal crosses between the five 

somatic hybrids, and N. tabacum ranged between 33 and 66% (see Table 

6.3.1). 
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Pods containing approximately 850-1,050 seeds were recovered 

following pollination of N. tabacum cv. Catersleben with N. glutinosa. 

The viability was found to be 17%. 

6.3.3 Tentoxin Sensibility Tests 

Tentoxin sensitivity tests were performed on germinating seeds 

as described in the Materials and Methods. N. tabacum cv. Gatersleben 

was found to be resistant to tentoxin. All the germinating seedlings 

were green. N. glutinosa was found to be tentoxin sensitiveg and all 

the germinating seedlings were bleached in the presence of tentoxin, 

but grew green in controls in the absence of tentoxin. All the germ- 

inating seedlings resulting from reciprocal crosses between the somatic 

hybrids and N. tabacum were also found to be tentoxin resistant (see 

Figure 6.3.2). 

6.3.4 Morphology of the Backcross Progeny between Somatic Hybrids 

NGT 2 and NGT 69 and N. tabacum 6 

A random sample of 25 plants from crosses between somatic 

hybrids NGT 2 and NGT 6 (? ) and N. tabacum (6) were grown to maturity 

and examined as described in the Materials and Methods. The results 

are presented in Tables 6.3.2 and 6.3.3, and illustrated in Fig. 6.3.3. 

Overall considerable variation was observed among the back- 

crossed progeny of the two somatic hybrid plants. The height of the 

flowering plants ranged between 78 and 135 cm. The original hybrids 

were more uniform in their height, as were N. tabacum and N. glutinosa. 

The offspring of the somatic hybrids were all taller than the somatic 

hybrids themselves. The time from gemination to flowering was also 

more variable among the hybrid progeny than was found for either 

N. tabacum or N. glutinosa. 
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The flowers of the hybrid progeny were generally longer than 

the original hybrids, being more like N. tabacum flowers in shape. The 

flower colour varied, with a wide range of different flower colours 

being observed (see Fig. 6.3.3). Overallp flower colours were more 

similar to N. tabacum than the original hybrids, or N. glutinosa. The 

leaves of the hybrid offspring were larger than the original hybridst 

and frequently lacked the small winged petiole found on the original 

hybrids. 

6.3.5 Morphology of the Sexual Hybrid between N. tabacum 

and N. glutinosa (6) 

The sexual hybrids between N. tabacum and N. glutinosa were 

found to be similar in many ways to the somatic hybrids. The flowering 

plants measured 92-112 cm in height, and all possessed flowers which 

were identical in colour (51 C of the Royal Horticultural Society's 

colour chart). The flowers were similar in size and shape to those 

found on the somatic hybrids, having maximum dimensions of 47 x 12 mm 

(a flower width/length ratio of 0.26). The leaves of the sexual 

hybrids were larger than those of the somatic hybrids, having a maxi- 

mum size of 200 x 150 mm (a leaf width/length ratio of 0.75). The 

sexual hybrids between N. tabacum and N. glutinosa were completely 

sterile. 

6.3.6 Biochemical Characterisation of the Backcross Progeny between 

NGT 2 and NGT 6, and N. tabacum 

Leaf esterase zymograms for N. tabacum, N. glutinosa, the 

parent somatic hybrid plants and the examples of the first backcross 

progeny, are presented in Figures 6.3.4 and 6.3-5. 

Originally the leaf esterase zymogram was visualised following 
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separation of soluble leaf proteins on an LKB pH range 3.5 - 9.5 PAG 

plate(Fig. 6.3.4). A prominent N. glutinosa specific band at pI 7.2 

was identified in the somatic hybrid plants, but only in five of the 

ten backcross progeny (plants 2-1,2-4,2-59 6-1 and 6-5). Two other 

prominent N. glutinosa bands at PI 5.1 and 5.6 were not clearly 

resolved on this gel, but the presence of the N. glutinosa specific 

band at pI 5.1 appeared to coincide with the presence of the 

N. glutinosa specific band at pI 7.2. 

In an attempt to further clarify the leaf esterase zymogram, 

soluble leaf protein extracts were also separated on an LKB pH range 

5.5 - 8.5 PAG plate and leaf esterases visualised as described 

previously. The zymogram is presented in Fig.. 6.3-5. As found pre- 

viously an N. glutinosa, specific esterase band at pI 7.2 was found in 

the somatic hybrids, and five of the ten backcross progeny (plants 

2-19 2-49 2-59 6-1 and 6-5). The same backcross progeny plants were 

also found to possess a second prominent N. glutinosa specific band at 

pI 5.6. 

In all cases, the somatic hybrids and the progeny of crosses 

between the somatic hybrids and N. tabacum possessed two prominent 

N. tabacum specific bands at pI 6.0 and 6.9. 

No difference was found in the leaf esterase zymogram between 

haploid and diploid N. glutinosa plants. The sexual hybrid between 

N. tabacum and N. glutinosa possessed a leaf esterase pattern which 

was the summation of the parental leaf esterase zymogram patterns. 
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TABLE 6.3.1 

Pollen viability and size, and seed viability of N. tabacum, 

N. glutinosa, and the five somatic hybrids 

Pollen Pollen Diameter ýim Seed Viability %* 
Plant Viability % Mean S. D. Nt 9 Nt 

N. tabacum 
cv. Gatersleben 

95 31.9 0.9 98 98 

N. glutinosa 99 32.8 0.9 17 - 

NGT 1 74 33.1 2.0 66 54 

NGT 2 69 35.0 3.0 52 48 

NGT 4 45 34.3 3.5 53 - 

NGT 5 64 35.1 2.2 60 47 

NGT 6 50 36.3 3.0 66 33 

Seed viability following crosses involving N. tabacum cv. Gaters- 

leben as maternal partner (Nt 9) or paternal partner (Nt 6) 

'a. 
glutinosa seed recovered following self pollination had a 

viability of 99-100%. 
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FIGURE 6.3.2 

Tentoxin sensitivity tests on germinating seeds of N. tabacum 

cv. Gatersleben, N. glutinosa and somatic hybrid NGT 2 

Top N. tabacum cv. Gatersleben seeds recovered following 

self pollination and germinated in the presence (left) 

and absence (right) of tentoxin. 

Centre N. glutinosa seeds recovered following self 

pollination and germinated in the presence (left) 

and absence (right) of tentoxin. 

Bottom Seeds recovered following crosses between somatic 

hybrid NGT 2 (? ) and N. tabacum cv. Gatersleben (6) 

germinated in the presence (left) and absence (right) 

of tentoxin. 

N. tabacum and all five hybrids were found to be resistant to 

tentoxin, whereas N. glutinosa was found to be sensitive to 

tentoxin. 
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FIGURE 6.3.3 

Morphological characterisation of the progeny obtained 

following crosses between somatic hybrid NGT 2 and 
N. tabacum cv. Gatersleben (6) 

6.3.3A - The range of flower colours obtained. Each 

flower is from a different plant, and the 

flowers on a given plant were all similar in 

colour. 

Centre top is most like the original somatic hybrids, 

and centre bottom like N. tabacum (x1.0 ). 

6.3.3B - Examples of the first backcross progeny showing the 

wide range of growth habit and plant height. (X0.1). 
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TABLES 6.3.2 and 6.3.3 

Morphological characterisation of the progeny obtained 
following crosses between so atic hybrids NGT 2 and NGT 6 

and N. tabacum cv. Gatersleben (6). 
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FIGURE 6.3.4 

Leaf esterase zymogram visualised following separation of 
soluble leaf proteins by isoelectric focusing on an LKB pH 
range 3.5 - 9.5 PAG plate 

1 6.5 
2 6.4 

3 6.3 
4 6.2 

5 6.1 

NGT 6 

7 2.5 
8 2.4 
9 2.3 

10 2.2 
11 2.1 

12 NGT 2 

backcross progeny 

backcross progeny 

13 N. tabacum x N. glutinosa F1 (sexual hybrid) 

14 N. glutinosa (diploid) 

15 N. glutinosa (haploid) 

16 physical mix (1: 1) of proteins from N. tabacum and 
N. glutinosa 

17 N. tabacum cv. Gatersleben 

18 Somatic hybrid 10a x N. tabacum (sexual hybrid) 

19 Somatic hybrid 10a 

20 Somatic hybrid Al x N. tabacum (sexual hybrid) 

21 Somatic hybrid Al 

Prominent N. glutinosa specific esterase bands at pI 5.1 

5.6 and 7.2 and N. tabacum specific bands at pI 6.0 and 
6.9 are indicated. 
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FIGURE 6.3.5 

Leaf esterase zymogram visualised following separation of 
solubleleaf proteins by isoelectric focusing on an LKB pH 
range 5.5 - 8.5 PAG plate 

1 6.5 
2 6.4 

3 6.3 
4 6.2 
5 6.1 
6 NGT 6 
7 N. glutinosa (haploid) 

8 N. tabacum 
9 physical mix (1: 1)of proteins from N. tabacum and 

N. glutinosa 
10 2.5 
11 2.4 
12 2.3 

13 2.2 

14 2.1 

15 NGT 2 

16 N. glutinosa (haploid) 

17 N. tabacum 

18 physical mix (1: 1) of proteins from N. tabacum, and 
N. glutinosa 

19 N. glutinosa (diploid) 

20 N. tabacum x N. glutinosa F1 (sexual hyrid) 

21 physical mix (1: 1) of proteins from N. tabacum, and 
N. glutinosa 

22 N. tabacum, 

Prominent N. glutinosa specific esterase bands at pI 5.1,5.6 

and 7.2 and N. tabacum specific bands at pI 6.0 and 6.9 

are indicated. 
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6.4 CONCLUSION 

The five allopentaploid (functionally triploid) somatic 

hybrids between N. tabacum (2n) and N. glutinosa (n) produced viable 

pollen, although chromosomes not associated with the newly forming 

haploid nuclei were observed during meiosis in the pollen mother 

cells. The somatic hybrids were found to be fertile and set seed 

following reciprocal crosses with N. tabacum cv. Gatersleben. The 

results of tentoxin sensitivity tests performed on germinating seed 

from crossed between the somatic hybrids (9) and N. tabacum (43) con- 

firm previous findings of Fraction 1 protein analysis (Chapter 5), 

that the hybrids possess the large subunit (chloroplast encoded) of 

N. tabacum (see Discussion). 

Considerable morphological variation was observed among the 

first backcross progeny of the somatic hybrids to N. tabacum. Flower 

colours and flower shape varied from being much the same as the 

original somatic hybrids, to being similar to N. tabacum. The plants 

were variable in height but mostly taller than the original somatic 

hybrids, and also possessed longer, wider leaves. 

Analysis of the leaf esterase zymogram of a sample of the first 

backcross progeny indicated the loss of N. glutinosa specific bands 

in some of the plants. No N. tabacum specific isoenzyme bands were 

missing. 

Based on the cytological observations of chromosome behaviour 

at meiosis, and the morphological and biochemical analysis of the 

backcross progeny, it would appear that random segregaýion or elimin- 

ation of chromosomes of the haploid N. glutinosa set at meiosis has 

resulted in the somatic hybrids possessing gametes with a reduced 

complement of N. glutinosa chromosomes. The progeny resulting from 

backcrosses to N. tabacum therefore contain a reduced, and variable 
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number of N. glutinosa chromosomes which may contribute to the 

observed morphological variation. 
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CHAPTER 

GENERAL DISCUSSION 

Since the experimental results in the different chapters are 

interrelated, a detailed discussion is not presented at the end of 

each chapter. Instead the experimental results have been briefly 

summarised to highlight the conclusions of each chapter. 

7.1 TISSUE CULTURE OF CYCLAMEN PERSICUM 

Tissue culture studies were carried out, for two reasons, on 

somatic tissues of Cyclamen persicum cv. T. R. "mini". Firstly, it was 

desirable to obtain a better understanding of the culture requirements 

of Cyclameng since this information may be of direct relevance in the 

development of suitable media and cultural conditions for the main- 

tenance of pollen derived embryos, or calli, following anther culture. 

Secondly, should anther culture generate haploid calli, regeneration 

of plants from these calli would be necessary. A knowledge of the 

conditions under which regeneration can be brought about in somatic 

tissue cultures may be applicable to the regeneration of haploid 

plants from haploid tissue cultures. 

The earliest studies performed on Cyclamen tissue cultures 

used explants from the corm (Mayer, 1956; Stichel, 1959). However, 

problems were encountered due to systemic microbial contamination of 

the corm tissue. This was to some extent overcome by the use of anti- 

biotics (Stichel, 1959; Geier, 1977), or by complicated procedures 

involving curing (drying in sterile air) the explants prior to culture 

(Okumoto and Takabayashi, 1969). However, the problem of contamination 

plant material was avoided by Morel (1975) who used petiole explantsp 
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and achieved shoot regeneration. The shoots were subsequently trans- 

ferred successfully to the greenhouse. Similarly Geier (1977)9 and 

Geier et al. (1979) obtained shoot regeneration from leaf explantsp 

but in contrast to the results of Morel (1975), petiole explants gave 

rise to callus which did not give rise to shoot regeneration. 

In the present study the response of cultured leaf and petiole 

explants taken from mature Cyclamen plants was assessed. The plants 
I 

were maintained in the controlled environment of a growth cabinett and 

explants cultured on a variety of different media and hormone regimest 

coupled with different culture environments. A range of media based 

on full strength M. S. salts (Murashige and Skoog, 1962)t which have 

previously been found to support callus initiation, growth and morpho- 

genesis in many plant speciesq failed to support the growth of callus 

tissue from cultured Cyclamen explants. However, consistent with the 

findings of Leowenberg (1969)9 Cyclamen callus tissue proliferated 

from leaf and petiole explants cultured on a medium based on M. S. salts 

at reduced strength. When compared to members of the Nicotianat which 

are well known to be highly responsive to tissue culture, the 

frequency with which successful callus initiation occurred was very 

low. At best, less than half of the cultured explants gave rise to 

callust whereas all the cultured N. tabacum and N. glutinosa explants 

cultured in this study gave rise to callus growth on suitable media. 

Failed Cyclamen explants were usually blackened, possibly as a result 

of the action of copper containing oxidase enzymes such as polyphenol 

oxidase, and tyrosinaset which are released or synthesised, and 

presented with oxidative conditions when tissues are wounded (Lercht 

1981). The polyphenols released are known to be toxic to plant cellso 

possibly due to binding with proteins by hydrogen bonds. In addition 

to blackened explantst severe browning of sectors of the callus 

initiated was also noted. 
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The type of callus proliferating from the explants was 

variable. In some cases friable callus was produced. This callus 

failed to give rise to adventitious roots or shoots. In contrast 

extremely compactr dens, e callus'which could only be cut with a 

scalpel upon subculturing was capable of giving rise to occasional 

adventitious roots and shoots, and leaf like structures. No apparent 

correlation was noted between the culture medium on which the callus 

was obtainedv and the frequency or type of regeneration observed. 

In the present study the time between subculture and shoot or 

root regeneration was usually 6-8 weeks. A similar response has been 

noted in long term callus cultures, derived from corm explants. 

Sporadic shoot regeneration was observed 4-6 months after subculturing 

the callus on a medium which supported its growth (Leowenberg, 1969). 

Similarly, Okumoto and Takabayashi (1969) maintained corm derived 

callus explants on the same medium for over 3 months before occasional 

adventitious root and shoot regeneration occurred. 

The apparent lack of control over the pattern of development in 

Cyclamen callus cultures has also been noted previously. Wicart et al. 

(1984) described the regeneration of unipolar and bipolar com line 

structures bearing either roots, or shoots, or both, as occurring in a 

random fashion. Similar results led to Geier et al. (1979) to conclude 

that it is not possible to direct regeneration in Cyclamen callus 

cultures by altering the hormone regime under which they are maintained. 

The reason for some species being recalcitrant in culture when others 

are not is not fully understood. The Cyclamen callus tissue may not 

be receptive to the plant hormones tested, or may contain endogenous 

hormone levels which mask the effect of the in vitro culture environ- 

ment. Limitations may exist on the degree of totipotency possessed 

by the explant material. The culture response of recalcitrant species 
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is usually investigated by empirical research methods, and until a 

better understanding of the molecular events underlying the differ- 

entiation of disorganised callus cells into organised shoot meristems 

is achieved. This will remain the only approach. 

While greenhouse grown plant material is most frequently 

utilised in tissue culture studies, aseptically germinated seedlings 

have considerable advantages over such material. Once establishedo 

they provide a source of explants free from microbial contamination. 

Microbial contamination is known to be a problem in Cyclamen tissue 

culture, especially when corm explants. are to be cultured. In addition 

a seasonal variation in the response of Cyclamen explants, in tissue 

culture has been reported (Geier et al., 1979). Although the experi- 

ments reported in Chapter 2 did not allow this to be assessed in the 

present study, the use of aseptically germinated seedlings would over- 

come any seasonal variation since the seedlings could be germinated 

and maintained under controlled conditions. 

The callusing response of leaf and petiole explants from 

aseptically germinated Cyclamen seedlings was superior to that 

obtained from leaf and petiole explants from mature Cyclamen plants. 

Up to 100% of cultured explants gave rise to a proliferation of callus 

tissue. The browning observed in callus tissue derived from leaf and 

petiole explants from mature plants, was much reduced or absent in 

callus obtained from leaf and petiole explants from aseptically 

germinated Cyclamen seedlings. Similarly Pistacia shoot tips 

derived from young aseptically germinated plants were also found to be 

less susceptible to browning than greenhouse grown material (Alderson 

and Borghchi, 1982). In contrast to leaf and petiole explants, corm 

explants from aseptically germinated Cyclamen seedlings responded 

poorly in culture, with only 30% of explants giving rise to some 
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callus growth. 

In subsequent subculture passages on media containing a range 

of hormone regimes designed to induce adventitious root or shoot re- 

generation, callus initiated from the four tissue types was found to 

respond in different ways. Root explants initially gave rise to 

friable callus, which remained as such in subsequent transfers. 

Similar to the results obtained from friable leaf and petiole callus 

derived from mature Cyclamen plants, this friable callus failed to 

regenerate any adventitious roots or shoots under the conditions 

tested. Corm explants initially gave rise to a limited proliferation 

of friable callus which was severely blackened, possibly due to poly- 

phenols, discussed previously. On subsequent transfers, the callus 

failed to grow. The prolific callus growth from petiole and leaf ex- 

plants consisted of friable and compact dense sectors. In subsequent 

transfers, friable callus remained as such, and no adventitious roots 

or shoots were recovered. However, the dense compact callus 

proliferated and gave rise to some friable callus sectors, from which 

regeneration was never observed, as well as dense callus sectors. The 

dense callus occasionally gave rise to apparently organised nodular 

tissue (see Figure 2.3-2, Chapter 2). The occurrence of nodular 

protocorm-like structures has been observed by Wicart et al. (1984). 

Histological structures revealed that the protocorm-like structures 

had an organisation almost identical to that of seed grown com 

tissue (Wicart et al., 1984). Although the nodular tissue observed 

in the present study would appear to closely resemble the protocorm- 

like structurest histological examination would be necessary to 

confirm this. 

Occasional adventitious roots and shoots regenerated from 

sectors of dense, or nodular callus tissue. Occasional isolated leaf- 
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like structures were also recovered. Although shoots and roots 

occasionally arose from the same explant, shoots were never found 

to be directly associated with a root system, and attempts were made 

to root the shoots, to permit their transfer and further development 

in the greenhouse. The procedures tested to stimulate rooting of the 

shoots were limited by the in vitro tissue supply. Shoots obtained 

from leaf and petiole of both mature plants and aseptically germinated 

Cyclamen seedlings were utilised. When successful, rooting was 

achieved, but this was at the expense of the shoots, which either be- 

gan to re-callus or senescede. Hence no shoots were successfully 

transferred to the greenhouse. A similar problem was reported by 

Geier et al. (1979) who suggested that the conditions necessary for 

root initiation and shoot survival were mutually exclusive. Advent- 

itious shoots directly associated with a root system have been re- 

generated from corm callus and can be readily transferred to the 

greenhouse (Geier, 1977; Geier et al., 1979). However, in the 

present study, the corm explants did not give rise to callus capable 

of growth and morphogenesist and this approach could not therefore be 

tested. 

During the production of this thesis, 

(1985) have reported on the tissue culture of explants from aseptic- 

ally germinated Cyclamen seedlings. Shoot regeneration was reported 

from cotyledon, petiole, corn and root explants, with cotyledons 

giving rise to the highest recovery of adventitious shoots (75% of 

explants). This is in contrast to the infrequent shoot regeneration 

reported in the present study. Cyclamen is a pseudomonocot, for 

which only one of the cotyledons develops in the embryo. The single 

cotyledon strongly resembles a true leaf, (Widmer, 1980) and for 

this reason no attempt was made to distinguish between the cotyledon 
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and five or six true leaves present on the Cyclamen seedlings used 

for culture. Following the findings of Harwood and Wainwright 

(1985), of the superior frequency of shoot regeneration obtained from 

cotyledon explants, it may be advantageous to make the distinction 

between the true leaves, and the cotyledon in future studies. 

In conclusion, media based on M. S. salts (Murashige and Skoog, 

1962) and containing NAA and BAP were found most suitable for the 

maintenance of growth of somatic Cyclamen tissues, and such media 

may be useful in anther culture studies. The failure to obtain 

reliable and high frequency shoot regeneration from Cyclamen somatic 

tissues suggests that similar problems may be encountered with haploid 

tissues which may be derived from anther culture experiments. It 

would therefore be advantageous if regeneration could be avoided in 

anther culture studies, by encouraging direct pollen embryogenesis. 
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7.2 CYCLAMEN ANTHER CULTURE 

Cyclamen persicum is propagated commercially by seed. Seed 

production is usually brought about following open cross pollinationt 

resulting in a highly heterozygous condition. There is a commercial 

need therefore, to improve the degree of uniformity found within the 

Cyclamen crop. Although the production of almost genetically uniform 

F1 hybrids has been achieved (Asma, 1973), the seed is expensive and 

germination slow and non-uniform (Heydecker and Wainwright, 1976). In 

addition, the genetic uniformity of the F1 hybrids depends on the 

parents homozygosityq and presumably the hybrids result from crosses 

between inbred Cyclamen plants. Inbreeding depression prevents the 

direct exploitation of inbred lines of Cyclamen, and may limit the 

availability of homozygous parents for F1 hybrid seed production. How- 

ever, the use of anther culture may permit the production of true 

breeding lines of, Cyclamen which may be used directly, or contribute 

to F1 hybrid seed production. It was this possibility which initiated 

the cyclamen anther culture work presented in Chapter 3. 

Anther culture in Cyclamen persicum has been attempted 

previously (Geier, 1977), but without success. In the previous studyt 

emphasis Was placed on optimising the culture media, and 32 different 

media compositions were assessed (Geier, 1977). 

Anther culture can be divided into two distinct phases. In- 

duction and maintenance. In the induction phase, pollen grains are 

switched from their normal sporophytic path of development, and in- 

duced to become embryogenically competent. In the maintenance phasep 

conditions must be such that the Pollen grains can express their 

embryogenic competence (Sunderlando 1980). Since no success was 

achieved bY Geier (1977) in manipulating the maintenance phase, an 

alternative approach was assessed in this study- Bud stress pre- 
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treatments designed to induce embryogenically competent pollen grains 

were applied. 

Embryogenically competent pollen grains can be identified at an 

early stage of anther culture in N. tabacum being slightly smaller, 

and staining less intensively with acetocarmine (Sunderland and 

Wicks, 1971; Wernick et al., 1978). Pollen dimorphism in vivo 

clearly parallels the formation of embryogenically competent pollen 

grains in cultured anthers, and are visually distinct from normal 

pollen grains (Dale, 1975; Horner and Street, 1978). A strong corre- 

lation exists between the degree of pollen dimorphism, and the anther 

culture response (Sunderlandq 1980). However, not all species which 

respond to anther culture exhibit pollen dimorphism and apparently 

normal pollen grains have been observed to undergo additional divisions 

which may lead to pollen derived embryos (Sunderland and Evans, 1980). 

It would appear that while some embryogenically competent pollen grains 

are morphologically distinct from normal pollen grains, this is not 

exclusively the case. 

Cyclamen pollen is relatively small, measuring less than 20 11M 

in diameter, less than half the size of N. tabacum and, N. glutinosa 

pollen. The pollen grains are also numerous, up to 1.2 x 106 pollen 

grains per anther. No pollen dimorphism of the type described by Dale 

(1975) or Horner and Street (1978) was observed in Cyclamen pollen, 

although anomalous pollen grains resulting from abnormal reduction 

divisions were occasionally observed. Such abnormalities are common, 

particularly in the genus Datural where the frequency of occurrence is 

known to increase with plant age (Collins et al., 1974). 

For these reasons, the Pollen was not examined cytologically 

after bud stress pretreatments and/or anther culture, since no morpho- 

logical feature may exist in Cyclamen pollen enabling the detection 
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of a successful anther culture response. Even if embryogenically 

competent pollen grains were visually distinct they may be so in- 

frequent, that, among the large number of small pollen grains they may 

go undetected. For these reasons, anthers were cultured and examined 

for the emergence of macroscopic calli, embryos or plantlets. 

The culture medium used was based on M. S. salts at reduced 

strength, a modification known to permit the proliferation of somatic 

callus tissue from previous reports (Leowenberg, 1969) as well as this 

study. The regeneration of Cyclamen plants from somatic tissue 

cultures proved unreliable as was discussed earlier. The addition of 

hormones to the anther culture medium is known to cause somatic callus 

to proliferate from the anther wall in Cyclamen anther cultures, 

(Geier, 1977). Such callus may compete with and mask the emergence of 

pollen derived calli or embryos. In Nicotiana anther cultures pollen 

derived embryos are frequently lost due to callusing in an anther 

culture medium containing hormones, whereas in a hormone free medium 

normal embryo development can often continue. For these reasonst 

hormones were excluded from the Cyclamen anther culture media, in an 

attempt to achieve direct pollen embryogenesis. Activated charcoal 

was also added to the culture medium, since this has been reported to 

enhance the anther culture response (Wernick and Kohlenbach, 1976; 

Johansson, 1983). 

No response was observed frOm, CYClamen anthers in culture in- 

dicating a successful anther culture response. No macroscopic 

structures were obtained, and the anthers were frequently blackened 

after a few weeks in culturev Possibly resulting from copper contain- 

ing oxidases liberated as a result of anther excision or senescence, 

and discussed earlier. The pollen within the anthers was found to be 

non-viable as determined by its Poor staining with acetocarmine, and 
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lack of internal organisation. 

Failure to achieve an anther culture response in Cyclamen may 

be due to a number of factors. Throughout these experiments, the 

plant material used was Cyclamen persicum cv. T. R. "mini". This is 

highly heterozygous plant material, and each plant can effectively be 

regarded as an individual genotype. The genotype is known to be one 

of the prime factors influencing the response of cultured anthers 

(Feroughi-Weir et al., 1982; Bullock et al., 1982; Lazar et al., 

1984). It is possible that only a few individuals among the Cyclamen 

population possess a genotype which would permit a successful anther 

culture response under the appropriate conditions. Given that only a 

limited number of buds were available, it was not possible to assess 

the effect of bad pretreatments on the subsequent anther culture 

response for each individual plant. Instead, the anthers from several 

plants were pooled, and this may well have reduced the chances of 

success in the anther culture experiments. The number of buds avail- 

able from a given genotype could have been increased by vegetatively 

propagating the Cyclamen plants, but the number of individuals obtain- 

able within the time of this study would still be low, and this was 

not attempted. F1 hybrid seed, if produced from homozygous parents 

would be genetically uniformq and has recently been used in Cyclamen 

tissue culture studies (Wainwright and Harwood, 1985). However, with- 

in the constraints of commercially sponsored research this possibility 

could not be investigated. 

The poor correlation between the bud size, and the stage of 

pollen development may have further reduced the potential pool of 

embryogenically competent pollen grains exposed to anther culture. A 

very low frequency of responding anthers may not have been detected 

given the number of anthers cultured in the present investigation. 
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Cyclamen pollen is small and numerous, preventing cytological 

observation through the stages of bud pretreatment, and anther culture. 

A successful initiation of pollen embryogenesis which failed to give 

rise to developing macroscopic embryos due to deficiencies in the 

culture media or conditions employed may have occurred, and gone un- 

detected. 

In conclusion, failure to obtain an anther culture response in 

Cyclamen persicum was due to two factors. Firstly, we lack adequate 

knowledge of the basic requirements for a successful anther culture 

response. There is no valid explanation at present to explain the 

lack of response in some species, and high frequency of pollen embryo- 

genesis achieved in others. Secondly, the Cyclamen plant material 

was poor for anther culture studies, for several reasons. The 

material was genetically heterozygous, and the size and development of 

the pollen unsuitable for systematic studies to be performed. In 

addition, the apparent recalcitrance of the somatic Cyclamen tissues 

in vitro suggests that Cyclamen persicum may not be responsive to 

other tissue culture manipulations, including anther culture. 
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7.3 ALTERNATIVE APPROACHES TO UNIFORMITY IN CYCLAMEN 
ýmmwmý 

Anther culture although being the most widely used method# is 

not the only method by which haploid plants can be generated. The 

culture of unpollinated ovaries or ovules was first demonstrated to 

give rise to maternal haploids by San Noeum (1976) in Hordeum 

vulgare. Subsequently haploids have been obtainedg using this method$ 

in a number of other species, including Triticum aestivum and 

N. tabacum (Zhu and Wu, 1979) Oryza sativa We Beaville, 1980; Zhou 

and Yang, 1980) and Petunia axillaris We Verna and Collinsq 1985). 

The induction of plants from unpollinated ovaries or ovules in vitro 

is even less well understood than anther culture (Yang and Zhou, 1982). 

Large numbers of haploids have also been recovered following 

interspecific hybridization between Hordeum species. Following the 

cross between Hordeum vulgare and Hordeum bulbosum, specific chromo- 

some elimination occurst resulting in the loss of the complete 

Hordeum bulbosum chromosome complement (Symko, 1969; Kasha and Kao, 

1970; Subrahmanyam, and Kasha, 1973). 

Both of these techniques were considered to be outside the 

scope of this thesis. 

Clonal propagation Of. CyClamen through tissue culture has been 

proposed as an alternative approach to uniformity (Okumoto and 

Takabayashi, 1969; Morel, 1975 and Fersing et al., 1982; Wainwright 

and Harwood, 1985). However the conclusion of Geier et al. (1979)that mass 

clonal propagation of Cyclamen is not likely to be achieved, at least 

in the near future, would appear to remain valid, since as yet, no 

reliable method for the in vitro propagation of large numbers of 

Cyclamen plants within a short time span exists. 

The production of Fl hybrid seed (Asma, 1973) remains the 
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most reliable method by which more uniform Cyclamen plants can be 

obtained, although the degree of uniformity will depend on the homo- 

zygosity of the parents involved, and problems still occur due to the 

slow non-uniform gemination of the seed, and its high production 

cost (Hedecker and Wainwright, 1976). 
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7.4 ANTHER CULTURE IN NICOTIANA SPECIES 

Anther culture experiments were carried out on N. tabacum cv. 

White Burley, and N. glutinosa. N. tabacum cv. White Burley anther 

culture was chosen as a model system with which to assess the effect- 

iveness of the culture methods and conditions used in the attempts at 

inducing an anther-culture response in Cyclamen. The effect of bud 

pretreatments and the stage of pollen development prior to bud pre- 

treatments was assessed using this system. Failure to obtain an 

anther culture response for such a responsive species would have in- 

dicated a fault in the basic culture protocol. Howeverg no such 

fault was detected. 

The culture response of N. tabacum cv. White Burley has been 

well characterised in previous reports (Dunwell, 1976; Sunderland and 

Roberts, 1979), and can be quantified according to three parameters : 

1) 

2) 

3) 

Induction Frequency (I. F. ). The frequency with which 

anthers gave rise to a culture response, expressed as a 

percentage of plated anthers. 

Anther Productivity (A. P. ). The mean number of embryos 

/plantlets emerging from each responding anther. 

Efficiency The product of the induction frequency 

and anther productivity; this gives an indication of 

the expected recovery of anther culture derived embryos/ 

plantlets for 100 cultured anthers. 

Under the conditions usedg the maximum induction frequency and 

anther productivity obtained for direct anther culture was 13.9% and 

5.9 respectively. This compares very favourably with the value of 

22% and 16.4 obtained by Dunwell (1979) using similar culture 

conditions. Howevert it was previously found that a significant im- 
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provement could be achieved In both parameters, by increasing the 

volume of the culture vessel while maintaining the same volume of 

culture medium (Dunwell, 1979). In the present study, the culture 

conditions were not altered, however a very significant increase in 

the induction frequency up to 52.4% was achieved when the buds were 

pretreated at 4-6.5*C for 8 days prior to anther culture. Under 

these conditions, the anther productivity was also increased to 11.7. 

When the buds were pretreated at 4-6.50C, the greatest anther culture 

response was achieved when the pollen was at the early binucleate 

stage (stage 5- Sunderland (1974)) or pollen development at the start 

of the experiment. A similar finding was reported by Sunderland and 

Roberts (1979). The results presented in Chapter 3 indicate a very 

sharp increase in the induction frequency and anther productivity 

around this stage of development, falling orr very sharply for pollen 

at an earlier or later stage of development. This is most clearly re- 

flected in the results of the culture efficiency (E) presented in 

Figure 3.3.8. These results although based on a single experi- 

ment do indicate the importance of the stage of pollen development 

prior to bud pretreatment and anther culture. 

Extreme variation was observed between replicates of experi- 

mental treatments, preventing meaningful statistical analysis of the 

results. Such extreme batch to batch variation in the anther culture 

response has also been noted by Sunderland and Roberts (1979) who 

ascribed it to ever changing growth conditions of plants maintained in 

the greenhouse. It seems likely that the excision of buds over the 16- 

day harvesting period used in the present study may also influence the 

physiological status of the donor plant further contributing the 

variation observed. For this reasong the data for the replicate 

experiments was finally combined as was the data reported previously 
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by Sunderland and Roberts (19T9). 

In contrast to N. tabacum anther cultures from which large 

numbers of anther culture derived plants could readily be generated# 

N. glutinosa anther cultures were much less successful. Only two 

plantlets were recovered from a total of 2,954 cultured N. Slutinosa 

anthers. N. glutinosa anther culture was attempted in order that 

haploid plants might be generated and would be available for the 

isolation of haploid protoplasts for subsequent fusion studies using 

haploid systems (see 7-7). 

The production of haploid N. glutinosa plants has been reported 

previously (Nitsche 1972; Nakamura and Itagaki, 1973; Nakamura et 

al., 1974; Tomes and Collins, 1976). Response has ranged from com- 

plete failure (Nitsch 1969; Hlasnikova, 1977) to, in a few cases, the 

production of a few plants, some of which were haploid, and some 

diploid (Tomes and Collins, 1976). Reproducible plant production with 

an induction frequency of 11.9% and anther productivity of 2.4 can 

also be achieved (Nakamura et al., 1974). 

The two plants recovered in the present study resulted from 

anthers cultured on a medium containing 1.0% activated charcoal, 

following bud pretreatment at 4.5 - 6. OOC for 4 days. The buds con- 

tained pollen at the early to late binucleate stage of development 

(stages 5-6). Successful anther culture in N. glutinosa as reported 

by Nakamura et al. (1974) was also achieved on a medium containing 

activated charcoal. Activated charcoal may be effective in stimulat- 

ing an anther culture response either by removing substances contained 

within the culture medium which are inhibitory to a culture response 

(Johansson, 1983), or by removing substances emanating from the 

anther itself, which may also prevent a culture response (Tyagi et 

al., 1980; Johansson, 1983). 
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The switch from a gametophytic to a sporophytic path of de- 

velopment is not clearly understood. Two distinct possibilities 

exist. A pre-existing pool of embryogenically competent pollen may 

exist within the anther, and the bud pretreatments, and anther culture 

conditions may permit the expression of this latent potential. In 

support of this, it has been shown that the conditions under which 

the donor plants are maintainedo even before meiosis can influence the 

subsequent anther culture response (Heberle-Bors, 1982b). Sunderland 

and Roberts (1979) have suggested that the role of the cold pretreat- 

ment of the bud prior to anther culture is to delay the senescence of 

the somatic anther tissues, while enabling the embryogenically com- 

petent pollen grains to express their full potential. 

Alternatively, it has been suggested that the bud stress pre- 

treatments redirect the course of development of previously normal 

pollen grains such that they are capable of undergoing embryogenesis. 

Although a larger number of equal first pollen mitoses have been 

observed following temperature stress bud pretreatments (Nitsch, 1974)9 

the effect must also extend beyond the first pollen mitosis since in 

the present study temperature stress bud pretreatments were effective 

at increasing the induction frequency and anther productivity even 

when N. tabacum buds containing early binucleate pollen were selected. 

These results confirm the findings of Sunderland and Roberts (1979). 

A random selection of the N. tabacum cv. White Burley plantlets 

obtained from anther culture in this study were examined cytologicallyt 

and 98% of the plants were found to possess the allodihaploid somatic 

chromosome complement of n= 2x = 24. Both of the N. glutinosa 

plants obtained from anther culture were found to possess the haploid 

chromosome complement of n=x= 12. These results are consistent 

with previous findings indicating that the majority of plants derived 
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from anther culture within the Nicotiana are haploid (Sunderland, 

1971; Shama et al. , 1983). 

When grown to maturity the allodihaploid N. tabacum and haploid 

N. glutinosa plants resembled their parents closely, but were between 

1/ 3 and 1 /2 the size of their allotetraploid and diploid parents. 

The leaves were more narrow for the allodihaploid N. tabacuin plants. 

All the haploid plants were found to be sterile, as would be expected. 

Howeverg after several months growth, and following cutting back of 

the allodihaploid N. tabacum plants one fertile shoot was observed, 

presumably the result of endomitosis causing a doubling of the chromo- 

some complement. Doubling the chromosome number of haploid plants to 

achieve fertile homozygous plants would have been necessary if haploid 

Cyclamen plants had been generated. This can be readily achieved in 

Nicotiana species using colchicine treatments either of the developing 

inflorescence (Nakamura et al., 1974) or young anther derived plantlets 

(Chowdhary, 1984). 

Failure to obtain a high frequency of haploid plants from 

N. glutinosa anthers may reflect differences in the culture require- 

ments of N. tabacum and N. glutinosa specifically for the maintenance 

of embryogenic pollen grains. It may also be due to a failure to 

induce a fraction of embryogenically competent pollen grains. 

N. glutinosa anther culture was attempted to generate haploid plants 

for the isolation of haploid protoplasts. Large numbers of individual 

haploid plants were not necessary, since the two haploid plantlets 

recovered could be rapidly multiplied in vitro before transfer to the 

greenhouse. 
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7.5 HAPLOID PROTOPLAST ISOLATION AND CULTURE 

Allodihaploid N. tabacum cv. White Burley and haploid 

N. 
'glutinosa 

plants produced via anther culture were grown in the 

greenhouse, and leaves removed for mesophyll protoplast isolation ex- 

periments. Mesophyll protoplasts were successfully isolated from allo- 

dihaploid N. tabacum plants, and occasionally underwent division. 

Haploid N. glutinosa mesophyll protoplasts railed to divide. Conditions 

have previously been described which enable the culture of allodi- 

haploid N. tabacum mesophyll protoplasts (Caboche, 1982). The low 

frequency of division in cultured allodihaploid N. tabacum mesophyll 

protoplastsp and complete lack of division in haploid N. Slutinosa 

mesophyll protoplasts observed in this study, may be due to the growth 

condition or the plant material. In both cases, the original plant 

material was close to flowering at the beginning of the protoplast 

isolation experiments. The physiological status of the donor plant is 

known to influence the subsequent yield and viability of protoplasts 

(Cassels and Cockerv 1982; Davey, 1983). A more reliable source of 

plant material for protoplast isolation might be shoot cultures, as 

used by Caboche, (1982). Alternatively, cell suspensions or callus 

cultures initiated from haploid plant tissues could be used, although 

care would be necessary to ensure the maintenance of a predominantly 

haploid population or cells. 

Anther culture is only successful in a limited number of plant 

species. Tetrads formed as a result Of meiosis in the pollen mother 

cells, and consisting of four haploid spores bound within a thick 

callose matrix, are found throughout fertile flowering plants. 

N. glutinosa tetrad protoplasts were readily obtainedq following in- 

cubation of the tetrads in 2% Driselase. The tetrad protoplasts were 

small, measuring approximately 12 jim in diameter, compared with 
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40-50 jim diameter for N. tabacum leaf mesophyll protoplasts. The 

tetrad protoplasts did not possess a vacuole, and failed to divide in 

any of the culture media, or under any of the culture conditions 

tested. Tetrad protoplast isolation has been reported in a wide range 

of species, including Cajanus cajan, Lycopersicon esculentum, Nicotiana 

tabacum, N. sylvestris, Petunia hybrida, Triticum aestivum and Zea mays 

(Bhojwani and Cocking, 1972; Bajaj, 1974; Deka et al. $ 1977). In 

all previous studies, tetrad protoplasts failed to undergo sustained 

division. 

In most previous reports concerning the isolation and culture 

of haploid protoplasts, the systems have primarily been developed for 

the ultimate recovery of mutant cell lines and plants. For example, 

using such systems naphthaleneacetic acid tolerant mutants of 

N. tabacum (Muller et al., 1985), amino acid auxotrophs of 

N. plumbaginifolia (Negrutiu et al., 1985), and nitrate reductase de- 

ficient auxotrophs (Straus et al., 1981) and temperature sensitive 

mutants of Hyocyamus muticus (Gebhardt et al., 1981) have been re- 

covered. Such studies require a system in which protoplast division 

and plant regeneration occurs at high frequency. In contrast, in the 

present study haploid protoplasts were investigated as a delivery 

system for the haploid genome of a wild type species in somatic 

hybridisation with diploid protoplasts of a crop species. The observed 

lack of division in, N. glutinosa haploid leaf mesophyll protoplastsi 

and tetrad protoplasts could be advantageous in that counter selection 

against the haploid protoplasts is not necessary following protoplast 

fusion. This simplifies the subsequent recovery of heterokaryon 

derived cell colonies. 

Lack of division has been extensively exploited in somatic 

hybridisation studies involving diploid protoplasts of cultured cell 
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or leaf mesophyll origin. Somatic hybrid call lines have been re- 

covered following fusion between Petunia hybrida and Parthenocissus 

tricuspidata protoplasts. The Parthenocissus tricuspidata protoplasts 

were derived from a hormone independant tumerous cell line, and only 

occasionally underwent one or two divisions. Somatic hybrid colonies 

were recovered on the basis of hormone independant growth or the 

heterokaryon derived colonies (Power et al., 1976). Similarly, the 

knowledge that protoplasts from the sexual hybrid between Petunia 

hybrida and Petunia parodii were capable of sustained division on a 

medium which only permitted limited development of the P. parodii 

protoplastsq and which failed to support P. hybrida protoplast 

division has been used in the recovery of somatic hybrids between these 

two species (Power et al., 1977). The observed lack of division in 

some wild type protoplast systems has been exploited in combination 

with albino mutant systems capable of sustained division, enabling 

green somatic hybrid colonies to be selected as a result of complement- 

ation between the normal pigmentation of the wild type protoplast 

system and division capability of the albino protoplast system. In 

this way, somatic hybrids have been recovered between a nuclear albino 

Daucus carota mutant and a wild type Aegipodium podagraria (Dudits at 

al., 1979) and between a nuclear albino N. tabacum, and wild type 

N. glauca (Evans et al., 1980). 

Where the protoplast systems naturally undergo wall regeneration 

and cell division under the chosen culture conditions, it has been 

suggested that differences in the sensitivity of the fusion partners 

to amino acid analogues, growth substances or other drugs might be 

employed in selection schemes (Cocking et al., 1974). The inhibition 

of division in cultured Petunia hybrida protoplasts by actinomycin D 

at a concentration which does not affect the growth of P. parodii 
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protoplasts has enabled the recovery or somatic hybrids between theso 

two species (Power et al., 1977). However, a naturally occurring 

differential sensitivity to such compounds cannot always be detected, 

and a number of alternative treatments have been developed which 

specifically inhibit division in one or both of the fusion partners. 

For example, Petunia hybrida protoplasts treated with iodoacetatep and 

Solanum nigrum, protoplasts treated with diethyl pyrocarbonate have been 

fused, and a somatic hybrid cell line recovered. The rusion partners 

were incapable of division (Nehls, 1978). Similarly iodoacetate 

treated protoplasts of a streptomycin resistant N. tabacum mutant 

have been fused with, N. sylvestris protoplasts, and somatic hybrids 

recovered on the basis of sustained cell division, and resistance to 

streptomycin (Medgyesy et al., 1980). 

In addition to chemical treatments which prevent subsequent 

cell division, k or y irradiation has also been used at a level which 

causes complete inhibition of cell division. Somatic hybrids have 

been recovered between iodoacetate treated N. tabacum protoplasts, 

and x irradiated N. plumbaginifolia protoplasts. The inactivation of 

cell division in a wild type fusion partner by irradiation has been 

used in combination with albino, or auxotrophic mutant systems. Thus 

somatic hybrids have been recovered following protoplast fusion be- 

tween a nuclear albino Daucus carota, and x irradiated Petroselinum 

hortensev (Dudits et al., 1980). Similarly somatic hybrids have been 

recovered following fusion between nitrate reductase deficient 

N. tabacum protoplastsl and x irradiated Datura innoxia, and also x 

irradiated Physalis minima protoplasts. In this case selection was 

based on nitrate reductase proficiency and sustained cell division 

(Gupta et al., 1983). Using the same selection scheme, somatic 

hybrids have also been recovered between a nitrate reductase deficient 

N. tabacum and wild type N. glutinosa following irradiation of the 
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N. glutinosa protoplasts prior to fusion (Cooper-Bland at al., 1985b). 

Irradiation may cause fragmentation of the chromosomes resulting in 

the loss of some of the genetic material from the irradiated fusion 

partner (Itoh and Futsuhara, 1983). Strong selection for cytoplas- 

mically encoded characters of the irradiated protoplast has enabled 

the recovery of cybrids which do not possess any of the nuclear en- 

coded characteristics of the irradiated fusion partner (Fluhr at al., 

1984). The use of irradiation as a means of preventing call division 

of one of the fusion partners in attempts at producing a balanced 

somatic hybrid possessing the amphiploid chromosome numbert would 

therefore appear to be unsuitable. 

The lack of division observed in cultured tetrad protoplasts 

in this study, and reported previously would not therefore exclude 

such protoplasts from use in attempts at somatic hybridisation. It is 

clear from the preceding discussion that non-dividing protoplasts can 

form viable heterokaryons which are capable of sustained division. In 

contrast to the difficulty encountered with recovering haploid 

N. glutinosa plants via anther culturej from which haploid leaf meso- 

phyll protoplasts could be isolatedq tetrads were readily available, 

and tetrad protoplasts easily liberated. In principal tetrad proto- 

plast isolation should be possible for all fertile flowering plant 

species. This wide availability clearly makes tetrad protoplasts 

superior to haploid protoplasts from anther culture derived haploid 

plants. 

Tetrad protoplasts differ from normal somatic protoplasts in a 

number of ways. Tetrad protoplasts are smaller, and do not possess 

a vacuole. During meiosis cytoplasmic changes occur which result in 

the dedifferentiation of the chloroPlasts and mitochondria. This may 

influence the retention or segregation Of these organelles during the 
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subsequent development of heterokaryon derived colonies. Tetrad 

protoplasts isolated from homozygous species would be genetically 

identical. However, random segregation and recombination during 

meiosis in a heterozygous species will result in a genetically hater- 

ogenous population of tetrad protoplasts. A range of phenotypes might 

therefore be expected among somatic hybrids recovered following 

fusions involving tetrad protoplasts from heterozygous species. 

Somatic hybridisation describes the recovery of novel hybrid 

plants following fusions between protoplasts isolated from somatic 

cells. Tetrads are not somatic cells, since they consist or four 

haploid spores. We have proposed that hybrids generated as a result 

of fusions between somatic protoplasts and tetrad (gametic) proto- 

plasts should be described as gametosomatic hybrids to indicate their 

true origin (Pirrie and Power, 1985). This terminology will be used 

in the following discussion. 

Tetrad protoplasts have not previously been used in the 

recovery of gametosomatic hybrid plants or cell lines. In an attempt 

to generate novel triploid gametosomatic hybrids between N. tabacum 

(2n) and N., glutinosa (n), N. glutinosa tetrad protoplasts were 

chosen for gametosomatic hybridisation experiments. 
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7.6 GAMETOSOMATIC HYBRIDISATION BETWEEN N. TABACUM (2n) AND 

N. GLUTINOSA (n) : PROTOPLAST FUSION AND THE RECOVERY OF 

PUTATIVE GAMETOSOMATIC HYBRID PLANTS 

Gametosomatic hybrids have not been reported previously. This 

may reflect a lack of research activity into the use of tetrad proto- 

plasts, or a lack of suitable systems with which to ruily test the 

potential of tetrad protoplasts in attempts at gametosomatic hybrid- 

isation. Alternatively some biological incompatibility may exist 

preventing the formation and/or development of heterokaryons following 

fusions involving tetrad protoplasts. 

In the present study fusion experiments were performed between 

leaf mesophyll protoplasts from nitrate reductase deficient N. tabacum 

plantsl and tetrad protoplasts from N. glutinosa plants. The nitrate 

reductase deficient mutant was recovered following selection for 

resistance to chlorate in allodihaploid N. tabacum cell suspensions 

(Muller and Grafe, 1978). Chlorate, an analogue of nitrate is re- 

duced to chlorite by the nitrate reductase enzyme. Chlorite is toxic 

to plant cells. The mutant plant used in this study (nia-130) has 

been well characterised geneticallys and is homozygous for two un- 

linked recessive nuclear mutations, which are structural loci for the 

nitrate reductase apoprotein. The plants were found to possess the 

normal allotetraploid somatic chromosome complement of 2n = 4x = 489 

and set seed following self pollination. The growth of the nia-130 

mutant plants and isolation and culture of leaf mesophyll protoplasts 

has been reported in detail (Pental et al., 1982). The yield of 

nia-130 leaf mesophyll protoplasts is close to that of wild type 

tobacco plants, and the cultured protOplasts have a high plating 

efficiencyv and grow rapidly in a medium containing an organic nitrogen 

source. Colonies derived from dividing nia-130 protoplasts have a 
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high regeneration capacity. In reconstruction experiments designed 

to mimick the result of somatic hybridisation, it was found to be 

possible to recover small numbers of protoplast derived colonies of 

wild type origin following the introduction or a small number of wild 

type protoplasts, and selection of the colonies on a medium containing 

nitrate as sole source of nitrogen. In control experiments no revert- 

ant colonies were obtained when nia-130 colonies alone were placed on 

selection medium. The nitrate reductase deficient N. tabacum nia-130 

mutant is therefore ideal for use as half selection in somatic 

hybridisation studies. 

Somatic hybrids have been recovered between the nitrate re- 

ductase deficient N. tabacum nia-130 mutant and N. glutinosa. 

(Cooper-Bland et al., 1985a). Selection was based on nitrate reductase 

proficiency, green colour and regeneration capacity of the hetero- 

karyon derived calli. In the present study the lack of division will 

further simplify the selection of putative somatic hybrid colonies, 

since only heterokaryon derived colonies will be capable of sustained 

growth on a medium containing nitrate as sole nitrogen source. 

Somatic hybrids have previously been recovered between 

N. tabacum and'N. glutinosa using a number of different methods. Nagao 

(1979) observed that calli derived from N. tabacum protoplasts were 

bright green whereas calli derived from N. glutinosa protoplasts were 

colourless. The somatic hybrid calli were selected on the basis of 

their intermediate pale green colour. Using an alternative approach 

Uchimaya (1982) screened a number of plants regenerated following 

fusions between N. tabacum and N. glutinosa suspension cell protoplastst 

analysing their Fraction 1 protein profiles, and detected a somatic 

hybrid. Horn et al. (1984) used protoplasts isolated from a 5- 

methyltryptophan resistant non-regenerable cell suspension of 
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N. tabacum in fusions with N. glutinosa mesophyll protoplasts, and 

recovered somatic hybrids based on selection for S-methyltryptophan 

resistance, and regeneration potential. The somatic hybrids re- 

covered previously have been found to possess either the chloroplasts 

of N. glutinosa (Uchimaya, 1982; Horn et al., 1984; Cooper-Bland Ot 

al., 1985a) or the chloroplasts of N. tabacum (Cooper-Bland et al., 

1985a), suggesting that no incompatibilities exist which exclude 

either nuclear cytoplasmic combination between these two species. 

Protoplast fusion experiments were performed between N. tabacum 

nia-130 leaf mesophyll protoplasts, and N. glutinosa tetrad proto- 

plasts using a modified high pH/Ca2+ fusion protocol (Keller and 

Melchers, 1973) adopted following the observations of Deka et al., 

(1977). Mesophyll protoplasts have been reported to be sensitive to 

fusion treatments (Kao and Michayluk, 1974) and the survival or only 

heterokaryons, and protoplasts from cell suspension cells has been 

reported following fusions between leaf mesophyll protoplasts, and 

cell suspension protoplasts (Hamill, 1983). A balance must exist be- 

tween the severity of the fusion treatment employed, which may in- 

crease the number of heterokaryons, but reduce the subsequent post 

fusion viability of the heterokaryons (Keller and Melchers, 1973; 

Wallin et al., 1974; Kao and Michayluk, 1974; Ward et al., 1979). 

It has recently been proposed that higher fusion frequencies could be 

obtained if naturally fusogenic protoplasts were used in fusion ex- 

periments (Boss et al., 1984). Tetrad protoplasts have been reported 

to undergo spontaneous fusion (Bhojwani and Cocking, 1972; Ito and 

Maeda, 1973) and may well be naturally fusogenic. However, following 

fusion between N. tabacum nia-130 leaf mesophyll protoplasts and 

N. glutinosa tetrad protoplasts heterokaryons could not be un- 

equivocally identified by visual means. Previously heterokaryons 
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have been detected by the merging of the chloroplasts of the 

mesophyll protoplast component, with the chloroplast free, dense 

cytoplasm of the cell suspension protoplast component in hetero- 

karyons (Kao and Michayluk, 1974; Cocking et al., 1977). Hetero- 

karyon detection has been aided by labelling the suspension cell 

cytoplasm with non toxic fluorescence agents such as fluorescein iso- 

thiocyanate (FITC) and rhodamine isothiocyanate (RITC) (Galbraith and 

Mauch, 1980). Fluorescein and chlorophyll 8 share the same wavelength 

of excitation, but fluorescein emits green light, and chlorophyll B 

red light. Thus heterokaryons between mesophyll protoplasts and cell 

suspension protoplasts labelled with FITC fluoresce both red and 

green under appropriate U. V. excitation, facilitating their identifi- 

cation (Patnaik et al., 1982). In the present study, neither the 

merging of the mesophyll. and tetrad protoplast cytoplasm, nor label- 

ling the tetrad protoplast cytoplasm with FIX permitted the un- 

equivocal identification of heterokaryons, possibly due to the 

relatively small volume of the tetrad protoplasts. For this reason, 

fusion frequencies could not be directly assessed. However, because 

of the efficiency of the selection procedure employed for the re- 

covery of putative gametosomatic hybrid colonies, this was not 

necessary. Assuming that no biological incompatibilities exist pre- 

venting their further developmentg heterokaryons formed as a result 

of fusion between the mesophyll and tetrad protoplasts should give 

rise to colonies which would be recovered following selection of 

nitrate reductase proficient Colonies. 

Following selectiont two Putative gametosomatic hybrid colon- 

ies were recoveredo one of which gave rise to six shoots, five of 

which were successfully transferred to the greenhouse. The five 

gametosomatic hybrids were therefore the result of the same hybrid 

event. 
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7.7 GAMETOSOMATIC HYBRIDISATION BETWEEN N. TABACUM (2n) AND 

N. GLUTINOSA (n) : MORPHOLOGICAL, CYTOLOGICAL AND BIOCHEMICAL 

CHARACTERISATION OF THE FIVE PUTATIVE GAMETOSOMATIC HYBRID 

PLANTS 

The five putative gametosomatic hybrid plants were grown to 

maturity in the greenhouse, together with N. tabacum cv. Gaterslebent 

haploid and diploid N. glutinosa and the sexual hybrid between 

N. tabacum (9) and N. glutinosa (6). N. tabacum cv. Gater3leben was 

used throughout the comparative studies since this represents the 

wild type of the nia-130 mutant. 

The five putative gametosomatic hybrids were round to possess 

morphological features present in both rusion partners. The inter- 

mediate leaf and floral morphology, and flower colour were similar to 

that found in the sexual hybridt and previously reported somatic 

hybrids between N. tabacum and N. glutinosa (Nagao, 1979; Uchimaya, 

1982; Horn et al., 1984; Cooper-Bland et al., 1985a). 

The somatic chromosome Complement of the five gametosomatic 

hybrids was found to be the expected pentaploid, but functionally 

triploid complement of 3n = 5x = 60, which is the summation of the 

N. tabacum chromosome complement of 2n 4x = 48 and the haploid 

N. glutinosa chromosome complement of nx= 12. Considerable vari- 

tion in the chromosome complement of somatic hybrids between 

N. tabacum and N. glutinosa has been reported. Nagao (1979) found 

five somatic hybrids which Possessed the expected amphiploid comple- 

ment of 72, whereas the remaining 28 somatic hybrids were aneuploids, 

possessing 50-88 chromosomes. The single somatic hybrid reported by 

Uchimaya (1982) also possessed 72 chromosomes* The four somatic 

hybrids reported by Horn et al. (1984) were found to be aneuploids 

ranging between 30 and 60 chromosomes. 
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Variations from the expected amphiploid somatic chromosome 

complement resulting from the addition of the chromosome complements 

of the two fusion partners can occur for a variety of different 

reasons. Variations may arise prior to fusion treatments if cultured 

cells are used as a source or protoplasts. Most long-term cell 

cultures contain a mixture of diploid, polyploid and anueploid cells 

(Balyliss, 1980). The aneuploid somatic hybrids between N. tabacum 

and N. glutinosa reported by Horn et al. (1984) resulted from fusions 

in which the N. tabacum protoplasts were isolated from a long term 

suspension culture. This culture was found to be aneuploid with a 

mean chromosome number of 47 and standard deviation of 7.9 (based on 

25 chromosome counts). It is likely that the use of protoplasts 

isolated from this culture contributed to the variation in chromosome 

numbers observed in the resulting somatic hybrids. However, in the 

present study the protoplasts used in fusions resulting in the pro- 

duction of the gametosomatic hybrids were isolated directly from the 

plant, and were not therefore subject to any tissue culture effect 

prior to fusion. Multiple fusions may occur and these would result 

in a higher than expected chromosome complement. Following fusion 

variation may arise during the tissue culture phase prior to the re- 

generation of the somatic or gametOsOmatic hybrid plants, in much the 

same way as variation occurs in other cell cultures. During the 

tissue culture phase chromosome elimination may occur. Such elimin- 

ations may occur at randomq or may be unidirectional. Unidirectional 

chromosome elimination has been reported for somatic hybrids between 

Datura innoxia and Atropa belladonnat which only possess a few 

chromosomes from Atropa belladonnat but a full complement of Datura 

innoxia chromosomes (Krumbiegal and Schieder, 1981 ). Similarly, the 

gradual loss of N. glauca chromosomes from somatic hybrid cell lines 

between Glycine max and N. glauca (Kao, 1977; Wetter and Kao, 1980) 
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and also of N. tabacum chromosomes from somatic hybrid cell lines be- 

tween Glycine max and N. tabacum (Chien et al., 1982) has been re- 

ported. Leaf mesophyll protoplasts are usually in a pro-replicative 

stage (G1 or GO) of the cell cycle (Galbraith et al., 1981) and proto- 

plasts isolated from actively growing cell suspensions may be at any 

stage of the cell cycle. It has been reported that fusions between 

protoplasts at different stages of the cell cycle can result in prem- 

ature chromosome condensations breakage and ultimately elimination 

(Szabados and Duditsq 1980). Again, this may have contributed to the 

variation observed in the somatic hybrids between N. tabacum cell 

suspension protoplasts and N. 
'glutinosa 

mesophyll protoplasts reported 

by Horn et al. (1983). Howeverlin the present study tetrad protoplasts 

also in a pre-replicative stage of the cell cycle (GO or Gl)(Sunder- 

land, 1974) were fused with leaf mesophyll protoplasts, and therefore 

chromosome elimination, for this reason, would not be expected. Uni- 

directional chromosome elimination may occur as a result (if inherent 

biological incompatibilities between the fusion partners. Chromosome 

instability and unidirectional elimination is known to occur in 

certain interspecific crosses between Nicotiana species (Gengedevi et 

al., 1982) and between Hordeum bulbosium and H. vulgaris discussed 

earlier. In the combination of N. tabacum, and N. glutinosa previous 

reports of somatic hybrids which possess the expected amphiploid 

chromosome complement of 72, and also of stable sexual hybrids suggest 

that inherent biological incompatibilities causing chromosome in- 

stability and loss are not present in this species combination. The 

recovery of amphipentaploid, but functionally triploid gametosomatic 

hybrids in this study may well be due therefore to a combination of 

factors. Inherent biological incompatibilities do not exclude the 

recovery of stable amphiploid somatict gametosomatic and sexual 

hybrids in this species combinations and the use of protoplasts 

- 212 - 



directly isolated from the plant, and being in the same stage of the 

cell cycle may have contributed to the recovery or the amphipenta- 

ploid gametosomatic hybrids. However, since the five plants originate 

from the same hybrid event, further studies would need to be performed 

to see to what extent these factors would result in the production of 

stable amphiploids among a population of gametosomatic hybrids. 

Although the gametosomatic hybrids possessed an apparently 

intermediate morphology between that of their fusion partners, and 

had the expected chromosome complement resulting from the summation 

of the allotetraploid N. tabacum. and haploid N. glutinosa chromosome 

complementsp the N. tabacum and N. glutinosa chromosomes were in- 

destinguishable from each other, and so further evidence of hybridity 

was sought. 

Although the gametosomatic hybrids were selected on a medium 

containing nitrate as sole nitrogen source, and that leaf callus from 

the five gametosomatic hybrids was capable of growing on the same 

mediumt the nitrate reductase enzyme activity of the gametosomatic 

hybrids was also measured. The gametosomatic hybrids were found to 

possess a nitrate reductase enzyme activity close to that of diploid 

N. glutinosa callus, despite possessing a single nitrate reductase 

enzyme gene. This would be expectedo since the level of nitrate re- 

ductase activity has previously been found to be independant of the 

number of genes present, indicating complete compensation for gene 

dosage effects by regulatory mechanisms (Muller, 1983). 

The hybrid nature of cell lines and plants has frequently been 
0 

confirmed by isoenzyme analysis. Isoenzymes are Multiple molecular 

forms of an enzyme which exhibit similar substrate specificities 

(Scandalios, 1969). This does notj however, imply that the enzymes 

share the same physiological function (Smith et al., 1970). Species 
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specific banding patterns are often present following electro- 

phoretic separation of the isoenzymes in polyacrylamide or starch 

gels, and visualisation of the position of the functional isoenzymes 

by appropriate staining techniques. Somatic hybrids may be represented 

by the summation of the parental banding patterns (Carlson et al. 0 

1972; Power et al., 1976), or as a summation of the parental banding 

patterns with addition of novel hybrid bands not present in either 

parent (Maliga et al., 1978; Gleba and Hoffman, 1978,1979). Chromo- 

some loss may be indicated by the loss of specific isoenzyme bands. 

Leaf esterase and leaf callus peroxidase isoenzyme patterns 

visualised after isoelectric focusing of soluble protein extracts, 

displayed both N. tabacum and N. glutinosa specific bands. The 

putative gametosomatic hybrids were found to possess a banding pattern 

which was the summation of the parental banding patterns, confirming 

the hybridity of the gametosomatic hybrids. A similar hybrid iso- 

enzyme pattern was found for leaf esterases of a sexual hybrid be- 

tween N. tabacum (9) and N. glutinosa (6). No difference was found 

between the leaf esterase zymogram of haploid and diploid N. glutinosa 

plants, as would be expected for a homozygous inbred line. 

Fraction 1 protein (ribulose bisphosphate carboxylase/oxygenase 

EX. 4 11 39) is the major soluble protein in the leaves or higher 

plants, and has a molecular weight of approximately 520,000 (Kawashima 

and Wildman, 1970). The protein is composed of a large subunit, en- 

coded by the Chloroplast genome, maternally inherited in the genus 

Nicotiana (Chan and Wildman, 1972), and a small subunit coded for by 

nuclear genes, and inherited in a mendelian fusion (Kawashima and 

Wildman, 1972). The polypeptide composition of the subunits of 

purified carboxymethylated Fraction 1 protein has been determined by 

isoelectric focusing in 8M urea (Kung et al., 1974). The large sub- 
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unit characteristically possesses three polypeptides which have their 

isoelectric focusing point in the alkaline region of the gel. The 

position of the polypeptides is frequently obscurred by artifact 

bands which are largely due to oxidation of thiol groups during dis- 

sociation of the protein in 8M urea, and also to cyanate (derived 

from urea) interacting with amino acid side chains or the polypeptides. 

Gels are normally interpreted by locating the most densely stained 

band and regarding it, and the bands immediately above and below as 

being the characteristic pattern of the chloroplast encoded large sub- 

unit polypeptides Mung et al., 1974; Kumar et al., 1981; Li et al., 

1983). The small subunit may possess a number of polypeptides which 

have their isoelectric focusing points in the acid region of the gel, 

and is not subject to as many artifact bands as found with the large 

subunit polypeptides. Species specific differences in the location 

of the large and small subunit polypeptides makes the analysis or the 

Fraction 1 protein subunit polypeptides useful in determining the 

nuclear and cytoplasmic composition of putative somatic and gameto- 

somatic hybrids. 

Analysis of Fraction 1 protein isolated from somatic hybrids 

between N. glauca and, N. langsdorffij (Carlson et al., 1972) indi- 

cated the presence of the small subunit polypeptides (nuclear encoded) 

from both species, and large subunit Polypeptides (chloroplast en- 

coded) from N. langsdorffii Mung et al., 1975). The segregation of 

chloroplast types indicated by Fraction 1 protein analysis has been 

reported for a number of somatic hybrid combinations, including 

Petunia parodii and P. parviflora (Power et al., 1980), N. tabacum and 

N. rustica (Douglas et al., 1980; 

and N. glutinosa (Uchimaya, 1982; 

Hamill et al., 1984) and N. tabacum 

Cooper-Bland et al., 1985a). 

Fraction 1 protein analysis relies on gene expression, and may not 
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detect a mixed chloroplast condition if one chloroplast type only 

represents 10-15% of the total population(Fluhr, 1983). Chloroplast 

DNA restriction analysis provides a muchmore precise tool for the 

analysis of cytoplasmic inheritance following somatic hybridisation. 

Chloroplast DNA restriction analysis has confirmed the segregation 

of chloroplast types in somatic hybrids, indicated by Fraction 1 

protein analysis in a number of combinations, including Petunia 

parodii and P. parviflora (Kumar et al., 1981,1982). and N. tabacum 

and N. glutinosa (Uchimaya, 1982; Uchimaya et al., 1984). 

Somatic hybrids recovered between N. tabacum and N. glutinosa 

have been found to possess either the N. tabacum chloroplast type 

(Cooper-Bland et al., 1985a) or the N. glutinosa chloroplast type 

(Uchimaya 1982; Horn et al., 1983; Cooper-Bland et al., 1985a). 

The results of Fraction 1 protein analysis indicate that the five 

gametosomatic hybrids recovered in this study possess the chloroplasts 

of N. tabacum. Many factors are thought to influence the sorting out 

of chloroplast types following protoplast fusion, including the 

physiological status of the donor protoplasts, the relative contri- 

bution from each protoplast type, as well as inherent biological in- 

compatibilities which may favour the retention of one chloroplast type 

(Fluhr, 1983). Since somatic hybrids between N. tabacum and 

N. glutinosa have been recovered which contain either chloroplast 

type, biological incompatibilities would not appear to limit the 

nuclear cytoplasmic combinations that can result from somatic hybrid- 

isation. Cytoplasmic changes occurring during meiosis result in the 

dedifferentiation of both mitochondria and chloroplasts in the 

pollen mother cells (Heslop-Harrison, 1977). It might have been pre- 

dicted that this would favour the retention of the chloroplasts 

donated from the tetrad protoplast in the gametosomatic hybrids re- 
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ported in this study. However, this was not the case. Tetrad proto- 

plasts are considerably smaller in diameter than N. tabacum mesophyll 

protoplasts. Based on electron microscopical studies of sections of 

plant cells and protoplasts, and on measurements or tetrad proto- 

plasts, it would appear that the tetrad protoplast contains only 

I the volume of cytoplasm of the mesophyll protoplast (Ms. A. Gowlandt 

Pers. Comm. ). The relatively smaller cytoplasmic contribution from 

the tetrad protoplast may therefore influence the subsequent pattern 

of chloroplast segregation. However, no data is available on the 

relative number of proplastids present in the cytoplasm of the tetrad 

protoplast, and this may also be an important factor when considering 

the subsequent chloroplast segregation pattern. It should be em- 

phasised that the five gametosomatic hybrids were derived from a 

single fusion event, and it remains to be seen what pattern of chloro- 

plast segregation will be obtained in a large population of gameto- 

somatic hybrids. 

The five gametosomatic hybrids were found to possess the small 

subunits (nuclear encoded) of both N. tabacum and N. glutinosa, con- 

sistent with their hybrid nature. 

Based on the morphological, cytological and biochemical analy- 

sis the five plants recovered following fusions between N. tabacum 

nia-130 leaf mesophyll protoplasts (2n) and N. glutinosa tetrad 

protoplasts (n) were confirmed to be gametosomatic hybrids. 
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7.8 GAMETOSOMATIC HYBRIDISATION BETWEEN N. TABACUM (2n) AND 

N. GLUTINOSA (n) : ANALYSIS OF THE FERTILITY AND PROGENY OF 

THE GAMETOSOMATIC HYBRID PLANTS 

N. tabacum and N. glutinosa are sexually compatible species, 

although some difficulty may be encountered in sexual hybridisation 

with particular N. tabacum cultivars. The diploid F1 (2n = 3x = 36) 

is completely sterilet and fertility is restored only upon chromosome 

doubling to give the amphiploid 4n = 6x = 72 (Clausen and Goodspeed, 

1925). By backcrossing the amphiploid sexual hybrid (4n = 6x = 72) 

between N. tabacum. and N. glutinosa to N. tabacum, it is possible to 

generate allopentaploid but functionally triploid plants which posses 

a chromosome compliment corresponding to that of the gametosomatic 

hybrids. The fertility of the sexually produced allopentaploid (but 

functionally triploidl hybrids has been studied. At meiosis normal 

pairing of the 24 pairs of N. tabacum chromosomes occurred. The 12 

N. glutinosa chromosomes did not appear to associate with the 

N. tabacum chromosomes although limited trivalent formation may have 

occurred. In subsequent backcrosses to N. tabacum the N. glutinosa 

chromosome complement was rapidly eliminated (Clausen and Cameron, 

1957). 

It has recently been proposed that a similar situation may 

arise at meiosis in a triploid somatic or gametosomatic hybrid be- 

tween diploid protoplasts of a crop species, and haploid protoplasts 

of a wild type species (see General Introduction, and Pental and 

cocking, 1935). The random segregation of the unpaired chromosomes 

from the haploid set would eventually result in their complete elimin- 

ation following backcrosses to the diploid fusion partner. The re- 

sulting progeny would need to be assessed for the introgression of 

characteristics from the wild type (haploid) chromosome set. 
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As a first step towards testing thist allopentaploid (but 

functionally triploid) gametosomatic hybrids were generated between 

N. tabacum (2n) and N. glutinosa (n). For such gametosomatic hybrids 

to be of value in studies designed to examine the introgression of 

characteristics from the eliminated haploid chromosome set, the 

gametosomatic hybrids must be fertile. 

During meiosis in the pollen mother cells of the gametosomatic 

hybridsp chromosomes not associated with the newly forming haploid 

nuclei were observed at telophase II. However, viable pollen grains 

were formed, and these were found to be slightly larger than those of 

either fusion partner, which may be significant since it has been 

observed that the pollen size of closely related species correlates 

directly to the nuclear DNA content. The gametosomatic hybrids set 

seed in reciprocal crosses with N. tabacum cv. Gatersleben. Seed set 

and viability was slightly lower than that of either fusion partner, 

but was still sufficient to generate many hundreds of viable seeds. 

Tentoxin sensitivity tests were performed on germinating seed 

obtained following crosses between the gametosomatic hybrids (9) and 

N. Tabacum (6). All the progeny were found to be insenstive to 

tentoxin. Tentoxin is a cyclic tetrapeptide (cyclo - (L leucyl -N- 

methyl - (Z) - dehydro - phenyl - alanyl - glYcyl -N- methyl -L- 

alanyl - )] produced by the fungus Alternaria tenuis. It results in 

chlorosis in many plant species due to a disruption of chloroplast 

development (Schadler et al. 9 1976). Some members of the Nicotiana, 

including N. tabacum are insensitive to tentoxin, whereas others, in- 

cluding E. glutinosa are sensitive to tentoxin (Durbin and Uchytil, 

1977). Tentoxin sensitivity is therefore a useful indication of the 

chloroplast type present in the progeny of somatic or gametosomatic 

hybrids between tentoxin sensitive and insensitive species (Aviv et 
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al., 1980; Flick and Evans, 1982). The insensitivity to tentoxin of 

seedlings recovered from the crosses between the gametosomatic hybrids 

(9) and N. tabacum. (6) confirmed the earlier results of Fraction 1 

protein analysis. which indicated that the gametosomatic hvbrids 

Dossess the N. tabacum. chloroplast type. 

A sample of 50 plants derived from backcrosses between two of 

the gametosomatic hybrids (9) and N. tabacum were grown to maturity, 

and the morphology of these plants was examined. The height, leaf 

and flower shape and flower colour varied from being similar to that 

of the original gametosomatic hybrids, to being more similar to 

N. tabacum. Since N. tabacum and N. glutinosa chromosomes could not 

be visually distinguished from each other, cytological analysis of 

these plants was not performed. However, analysis of the leaf ester- 

ase zymogram clearly indicated the loss of N. glutinosa. specific iso- 

enzyme bands in some of the gametosomatic hybrid backcross progeny. 

No N. tabacum specific bands were lost. This evidence combined with 

the morphological study, and the observed chromosome behaviour at 

meiosis suggests the loss of N. glutinosa. chromosomes in the first 

backcross progeny of the gametosomatic hybrids. Further backcroSSes 

would be necessary to completely eliminate the remaining N. glutinosa 

chromosomes. 

Morphological variation has previously been reported among the 

progeny of a somatic hybrid between N. tabacum and N. glutinosa back- 

crossed twice to N. glutinosa. The chromosome number was found to 

vary between 34 and 38, and the morphological variation was attrib- 

uted to the plants possessing a variable number of N. tabacum, chromo- 

somes. Elimination of N. glutinosa specific nuclear markers was also 

observed after backcrossing the same somatic hybrid to N. tabacum 

(Uchimaya et al., 1984). 
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Similar findings have been reported following self-pollination 

of allotriploid plants generated between wheat and rye (O'Hara, 1940). 

The allotriploid plants had a complete wheat diploid chromosome set, 

but only a haploid chromosome set from rye. The progeny were found 

to contain a variable number of rye chromosomes. After several gen- 

erations of self pollination a series of alien monosomic addition 

lines were created, which differed from each other for many morpho- 

logical features. Unidirectional chromosome elimination and the 

creation of alien addition lines may be useful in studies designed to 

assign characteristics to specific chromosomes. In human cell biology, 

specific chromosome elimination in human and mouse somatic hybrid cell 

lines has proved invaluable for mapping human chromosomes (Ruddleg 

1972; Goss, 1978). 

Monosomic addition lines have also proved useful in plant im- 

provement. Rust resistance was incorporated into wheat following 

irradiation of an alien monosomic addition line of wheat, containing 

a single Aegilops umbellata, chromosome carrying the rust resistance 

factor (Sears, 1956). Similar transfers have been made from 

Lgropyron elongatum. to wheat (Knott, 1961 Sharma and Knott, 1966), 

from Agropyron intermedium to wheat (Wienhues, 1966), and from rye in- 

to wheat (Driscol and Jenson, 1964). 

In conclusion the fertile gametosomatic hybrids between 

N. tabacum (2n) and N. glutinosa (n) would appear to be ideal start- 

ing material for the development of monosomic addition lines, as well 

as for studies which necessitate the complete elimination of all the 

chromosomes of the haploid fusion partner. 
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7.9 POSSIBLE LIMITATIONS TO THE APPLICATION OF SOMATIC AND 

GAMETOSOMATIC HYBRIDISATION TO PLANT BREEDING 

In the present study gametosomatic hybrids were recovered be- 

tween N. tabacum and N. glutinosa, two sexually compatible species. 

This species combination was chosen as a model system, with which to 

resolve the use of tetrad protoplasts in cell fusion and ultimately 

gametosomatic hybridisation. Somatic hybrids have previously been 

recovered between these species, using a similar selection scheme. 

Failure to recover gametosomatic hybrids, in this study, would there- 

fore have been almost certainly due to the use of tetrad protoplasts, 

instead of somatic cell protoplasts, and not the parent species. 

The demonstration that somatic hybrid plants can be recovered 

between sexually incompatible species (Melchers. et al., 1978) led to 

speculation that somatic hybridisation would significantly contribute 

to traditional plant breeding techniques by permitting a free exchange 

of genetic information between crop species, unhindered by sexual in- 

compatibility considerations. However, this has so far failed to be 

achieved. 

For somatic hybridisation to be attempted, at least one of the 

fusion partners must be capable of efficient and reproducible plant 

regeneration from protoplasts. This requirement has only been met for 

a limited number of crop species, and their wild relatives, and current- 

ly this may significantly limit the potential application of somatic 

and gametosomatic hybridisation. 

Heterokaryons can be formed by protoplast fusion between widely 

divergent species. For examplej heterokaryon formation and nuclear 

fusion has been observed between Daucus carota and Hordeum vulgare 

(Dudits et al., 1976). Despite this, and reports of heterokaryon 

derived cell division following protoplast fusion between widely 
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divergent species, few interspecific somatic hybrids between sexually 

incompatible species have been reported. This apparent discrepancy 

has led to speculation that mechanisms may act during the development 

of the somatic hybrid cell line to prevent the recovery of some somatic 

hybrid plants. Such somatic incompatibility mechanisms (Hams, 1983b) 

could operate at a number of levels. Somatic and gametosomatic hybrids 

are likely to be subject to similar somatic incompatibility mechanisms, 

which may be active processes requiring intracellular recognition 

mechanisms, or passive processes resulting from basic differences in 

the physiology of the fusion partners. 

Constabel et al. (1980) have reported the precipitation of 

granular material in fused cell sap vacuoles within heterokaryons, 

which may affect the viability of these heterokaryons. Following 

nuclear fusion, which has been observed to occur prior to mitosis in 

plant heterokaryons, there must be a synchronisation between the cell 

cycles of the two contributing chromosome sets. As already discussed, 

premature condensation may occur when nuclei at different stages of the 

cell cycle are brought together in heterokaryons. This may lead to 

chromosome fragmentation and elimination (Szabados and Dudits, 1980). 

Chromosome instability has been reported in vertibrate somatic 

hybrid cell lines. In fusion products between closely related rodent 

species, chromosome elimination occurs in an apparently random fusion. 

Howeverg human-rodent cell lines tend to preferentially lose human 

chromosomes, and this has been extensively exploited in studies to 

assign human characters to specific chromosomes (Ruddle, 1972; Goss, 

1978). The mechanism for chromosome elimination is not fully under- 

stood, but would appear to reflect a somatic incompatibility mechanism 

(Harms, 1983b). 

Similarly, in plants, chromosome eliminations Possibly the 
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result of somatic incompatibility are known to occur. Interspecific 

hybrids between Hordeum vulgare and H. bulbosum exhibit a preferential 

loss of the H. bulbosum chromosome complement (Symko, 1969; Kasha and 

Kao, 1970); a similar situation occurring in some interspecific 

Nicotiana crosses (Gengeverdi et al., 1982). The reported aneuploid 

chromosome complement of many somatic hybrids may also be the result 

of somatic incompatibility. However, a number of other factors could 

contribute to the observed variations from the expected addative chromo- 

some number. As already discussed, the use of protoplasts isolated from 

long-term cell cultures known to contain diploid, polyploid and aneu- 

ploid cells (Bayliss, 1980), may contribute to the observed variation 

in chromosome numbers of somatic hybrids. In addition, variation could 

arise during the tissue culture phase of the developing somatic hybrid. 

Chromosome eliminationt whether due to somatic incompatibility 

or not, may well be advantageous. Many of the characters which a given 

crop plant or wild type species might possess will be undesirable, and 

may be lost due to chromosome elimination. The ability to direct 

chromosome elimination by irradiating one of the fusion partners 

(Hams, 1983a) may be useful in generating asymmetric or partial hybrids, 

which would need to be assessed to determine exactly what contribution 

the irradiated fusion partner had made to the hybrid plant (Pental and 

Cocking, 1985). 

Irradiation has also been used to overcome somatic incompatibility 

Gupta et al. (1984) found that somatic hybridisation between Datura 

innoxia and irradiated Physalis minima was successful whereas sexual 

hybridisation, and somatic hybridisation without irradiating either 

fusion partner failed. Chromosome elimination may also be necessary 

before plant regeneration can occur in some distant interspecific 

somatic hybrids. The somatic hybrid cell line between N. tabacum and 
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Petunia hybrida only underwent shoot regeneration after the progressive 

loss of N. tabacum specific peroxidase isoenzyme bands. The regenerated 

shoots also lacked N. tabacum. genes for ribosomal RNA and the small sub- 

unit of Fraction 1 protein, indicating extensive unilateral chromosome 

elimination (Pental et al., 1985). 

The apparent chromosome restructuring observed in tissue culture 

cells (Murata and Orton, 1983) may also prove advantageous in somatic 

and gametosomatic hybridisation. Interchange between sections of 

Petunia parodii and P. parviflora chromosomes has been reported in the 

somatic hybrid between these two species (White and Rees, 1985). In 

addition to large changes in chromosome structure, less dramatic 

structural changes may occur (Evans et al., 1984) and such changes may 

include recombination between the chromosomes of the fusion partners in 

somatic and gametosomatic hybrid cell lines. By passing an allotriploid 

hybrid embryo, produced by sexually crossing diploid Lolium perenne with 

tetraploid L. multiflorum, through a tissue culture phase, and regen- 

erating over 2,000 plants from this material, a wide range of different 

phenotypes were obtained, and this variation was perpetuated through 

seed progeny. Some of the variants represented combinations of 

characteristics which were agronomically important, and had not been 

obtained in hybrids not passed through such a tissue culture phase 

(Larkin and Scowcroft, 1981). The tissue culture phase, an integral 

part of somatic and gametosomatic hybridisation, may therefore facili- 

tate a greater degree of genetic recombination than otherwise might be 

obtained through conventional sexual hybridisation, even if it were 

possible. 

Fertile amphiploid sexual hybrids between N. tabacum and 

N. glutinosa possessing 4n = 6x = 72 chromosomes, can be backcrossed 

to N. tabacumq generating amphipentaploid (but functionally triploid) 
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hybrids similar to the gametosomatic hybrids reported in this study. 

This system may therefore provide an ideal opportunity to compare the 

introgression of N. glutinosa traits into N. tabacum with and without 

the intervention of a tissue culture phase. 

Somatic incompatibility does not prevent the recovery of amphi- 

ploid somatic hybrids in all species combinations; such hybrids have 

been recovered in the interspecific sexually incompatible combination 

of Petunia parodii and P. parviflora (Power et al., 1980). 

Somatic hybrids between sexually incompatible species have so 

far proved sterile, and this may reflect a final effect of somatic 

incompatibility, a failure to coordinate reproductive development in 

the somatic hybrid plant. The value of protoplast fusion for the im- 

provement ofseed propagated species will not be realised until a large 

population of fertile somatic or gametosomatic hybrid plants possessing 

agronomically useful traits are integrated into conventional breeding 

programs and the progeny evaluated under field conditions (Evans et 

al., 1983). It will not be until a large number of somatic and game- 

tosomatic hybrids are produced and between a large range of sexually 

compatible and incompatible species that the full effect of somatic 

incompatibilities can be fully assessed. This in turn will only be 

possible if progress in regenerating protoplast systems for a wide 

range of species is forthcoming. 
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7.10 FUTURE RESEARCH AREAS ARISING FROM THIS PRESENT STUDY 

This study is the first to show that tetrad protoplasts can be 

successfully used in protoplast fusion experiments, and that gameto- 

somatic hybrid plants be recovered. It proved impossible to assess 

fusion frequency since heterokaryons could not be visually identified. 

it would be interesting to develop methods by which heterokaryons 

between leaf mesophyll and tetrad protoplasts could be visualised, so 

as to compare the throughput from heterokaryon to somatic and gameto- 

somatic hybrid plant in this species combination. The ability to 

closely follow electro-fusion as it occurs may permit the eventual 

identification of such heterokaryons facilitating such a study. 

Tetrad protoplasts differ from normal somatic protoplasts in 

that during meiosis changes in the cytoplasm have resulted in the de- 

differentiation of the chloroplasts and mitochondria. In addition the 

volume of the tetrad cytoplasm is less than that of a typical leaf 

mesophyll protoplast, and will therefore be a minor component in the 

heterokaryon. Both considerations may influence the pattern of cyto- 

plasmic inheritance in the resulting gametosomatic hybrid plants. 

Evidence obtained in this study showed that the chloroplasts of the 

diploid leaf mesophyll protoplast fusion partner were retained in the 

gametosomatic hybrids and this may indicate a general trend. However, 

since all five gametosomatic hybrids were derived from the same fusion 

event, it would be unwise to draw any conclusion. In the future it 

would be of interest to assess the distribution of chloroplast types 

among a large number of gametosomatic hybrids. Such a study will be 

possible since the recovery of gametosomatic hybrids between N. tabacum 

and N. glutinosa has proved reproducible following chemical and electro- 

fusion (R. Sotakq pers. comm. ). In additionj mitochondrial DNA 

restriction analysis may reveal differences in the mitochondrial re- 
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combination events which occur in somatic hybrids, and may also 

occur in gametosomatic hybrids. 

Tetrad protoplasts have not been shown to undergo sustained 

division, therefore there is no need to develop counter-selection 

against the tetrad protoplast parent species. It is therefore 

possible to immediately attempt gametosomatic hybridisation using any 

auxotrophic mutant such as the nitrate reductase deficient N. tabacum 

used in this study and any other species as tetrad protoplast donor. 

In this way it should be possible to rapidly assess the limitations of 

gametosomatic hybridisation due to somatic incompatibility. 

In this study the morphological and biochemical analysis of the 

first backcross progeny between the gametosomatic hybrids and N. tabacum 

suggested incomplete elimination of the N. glutinosa genome. Further 

backcrosses must be attempted and these would almost certainly result 

in the complete elimination of the N. glutinosa chromosome set. The 

resulting plants would need to be assessed cytologically, morpho- 

logically and biochemically for the introgression of N. glutinosa 

characters. In addition self-pollination of the gametosomatic hybrids 

may result in the recovery of a range of alien monosomic addition 

lines. Twelve such lines should in theory be recovered, responding to 

the addition of each of the twelve chromosomes of the haploid 

N. glutinosa chromosome set. By combining cytological, morphological 

and biochemical studies on these addition lines it should also be 

possible to assign N. glutinosa characters to a particular chromosome, 

in much the same way as has been achieved in human cell genetics. 

Even though tetrad protoplasts have not been shown to be 

capable of sustained division, the nucleus must be totipotent since 

it contributes to the zygote and results in the development of a full 

organism. In addition pollen embryogenesis clearly demonstrates the 
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potential totipotency of the tetrad protoplast. While the observed 

lack of division in tetrad protoplasts has proved useful in this 

study, in simplifying the recovery of putative gametosomatic hybrids, 

it seeM3 likely that conditions will be found in which tetrad proto- 

plasts will undergo sustained division and plant regeneration in their 

own right. In monocotyledonous species where the totipotency of 

somatic cells would appear to be severely limited, future research in- 

to tetrad protoplast culture might be rewarding. 

In conclusion it would appear that the potential advantages of 

tetrad protoplasts have only just begun to be realised. There is, 

however, a growing body of opinion of the view that somatic hybridisation 

of plants can not be extended beyond sexually incompatible species 

because of insurmountable problems of infertility. It is only by 

thorough investigation of a large numebr of species combinations that 

the limitations of somatic and gametosomatic hybridisation can be 

assessed, and tetrad protoplasts may provide a means by which such an 

assessment can be performed. 

It therefore remains to be seen to what extent cell fusion will 

contribute to plant breeding programmes. 
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APPENDIX 

MEDIA FORMULATIONS 

1.1.1 Media based on Murashige and Skoog (1962) saltsq and 

modified M. S. salts at reduced strength. 

Concentration (mg/L) 
Nutrient 

MS Salts Modified MS, Salts 

KN03 1900 950 

CaC12.2H20 440 220 
MgS04-7H20 370 785 

NH4 N03 1650 825 

KH2 P04 170 85 

KI 0.83 0.83 
COC12.6H20 0.025 0.025 
H3 B03 6.2 0.62 
Na2 M004.2H20 0.25 0.25 
Mn S04.4H20 22.3 2,2.3 
CU S04-5H20 0.025 0.025 

Zn S04.5H2O 8.6 8.6 

Fe S04.7H20 27-85 27-85 

Na EDTA 37.25 37.25 

Glycine 2.0 2.0 

Nicotinic acid 0.5 0.5 

Pyridoxine HU 0.5 0.5 

Thiamine HU 0.1 5.0 

Myo - inositol 100.0 100.0 

Sucrose 30000 30000 

The components of full strength M. S. salts (without sucrose) can be 

obtained commercially in dried packet form (Flow Labs. Ltd. ). 
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1.1.2 Additions to media based on full strength M. S. salts. 

Medium Code Additional Components * 

MS-0 

MS-Pl 2.0 NAA 

0.5 BAP 

MS-P19M 2.0 NAA 

0.5 BAP 

9.0% W/V Mannitol 

MS-P2 0.1 NAA 

MS-D3 2.0 IAA 

1.0 BAP 

MS-D4 0.05 NAA 

0.5 BAP 

MS-Z 1.0 Zeatin 

um 2.0 2,4-D 

0.25 Kinetin 

9.9 Thiamine HU 

9.5 Pyridoxine HU 

4.5 Nicotinic acid 
2.0 g/L Casein hydrolysate 

* mg/L unless otherwise indicated. 

For all solid media 0.8% (w/v) agar (Sigma type IV) was melted into 

the medium. All media were adjusted to pH 5-8. 
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1.1.3 Additions to media based on modified M. S. salts at 

reduced strength. 

Medium Code Additional Components 

MS-Al 2.0 NAA 

1.0 BAP 

75.0 Adenine Sulphate 

MS-A19M 2.0 NAA 

1.0 BAP 

75.0 Adenine Sulphate 

9.0% (W/V) Mannitol) 

MS-A2 2.0 NAA 

1.0 BAP 

MS-B 0.2 NAA 

0.1 BAP 

ms-C 2.0 NAA 

0.1 BAP 

MS-D 0.2 NAA 

1.0 BAP 

MS-E 0.5 NAA 

2.5 BAP 

MS-F 0.1 NAA 

2.5 BAP 

MS-Rl 

MS-R2 0.1 NAA 

* mg/L unless otherwise stated. 
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1.2.1 Media based on a modified Whites medium (MW) (Whiteg 1954). 

Nutrient Concentration (mg/L) 

Ca(N03)2.4H20 208.5 
MgS04.7H20 720 
Na2 S04 200 
KN03 80 

CU S04-5H20 0.001 

Fe Na EDTA 4.59 
H3 B03 1.5 

KC1 65.0 

KI 0.75 

Mn S04.4H20 7.0 

MO 03 0.0001 

Na H2 P04.2H20 18.7 

Zn S04-7H20 3.0 

Nicotinic acid 0.5 
Thiamine HC1 0.1 
Pyridoxine HC1 0.1 
Glycine 3.0 

Sucrose 30jOOO 

1.2.2 Additions to media based on modified Whites medium. 

Medium Code Additional Component (mg/L) 

MW-A2 2.0 NAA 

1.0 BAP 

MW-D 0.2 NAA 

1.0 BAP 

- 256 - 



1.3.1 Media based on Gamborgs B5 medium (Gamborg et al., 1968). 

Nutrient Concentration (mg/L) 

KNO3 2,, 500 

CaC12 . 2H2 0 150 
Mg S04-7H20 250 
(NH4 )2 S04 134 
Na H2 P04 , H2 0 150 

KI 0.75 
H3 B03 3.0 
Mn S04 10.0 

Zn S04 -7H2 0 2.0 
Na2 M004.2H20 0.25 
CU S04-5H20 0.025 
COC12*6H20 0.025 
Na2 EDTA 37.3 
Fe S04.7H20 27.8 

Inositol 100 
Pyridoxin HC1 1.0 
Thiamine HU 10.0 
Nicotinic acid 1.0 

Sucrose 30,000 

1.3.2 Additions to media based on Gamborgs B5 medium. 

Medium Code Additional Component (mg/L) 

B5-A2 2.0 NAA 

1.0 BAP 

B5-D 0.2 NAA 
1.0 BAP 
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1.4.1 Media based on Nitsch's medium N69 from Nitzsche and 
Wenzel (1978) . 

Nutrient Concentration (mg/L) 

KN03 10000 

KH2 P04 300 

NH4 N03 19000 

Ca(N03)2.4H20 499 

KC1 65 

Mg S04-7H20 71.6 

Mn S04 4HzO 6.5 

Zn S04-7H20 2.75 
Na Fe EDTA 32 

KI 0.83 
H3 B03 1.6 

Glycine 2.0 

Thiamine HU 0.1 

Pyridoxine HC1 0.1 

Nicotinic acid 0.5 

Sucrose 309000 

1.4.2 Additions to media based on Nitsch's N69 medium. 

Medium Code Additional Component (mg/L) 

N69-Pl 2.0 NAA 

0.5 BAP 

N69-D3 2.0 IAA 

0.5 BAP 

N69-A2 2.0 NAA 
1.0 BAP 

N69-D 0.2 NAA 

1.0 BAP 
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1.5.1 Media based on that of Leowenberg (1969). 

Nutrient Concentration (mg/L) 

Ca(N03)2.4HzO 216 

NH4 N03 600 

KN03 120 

Mg S04-7H20 72 
KH2 P04 38 

KC1 65 

KI 0.75 

Mn S04AH20 6.5 

Zn S04-7H20 2.7 

H3 B03 1.6 

(NH4)10 M07024.4H20 0.006 

Na Fe EDTA 25 

L-asparagine 66 

L-glutamic acid 73.5 

Myo inositol 100 

Calcium pantothenate 0.5 

Choline chloride 0.5 

Pyridoxine HU 0.5 

Thiamine HU 0.2 

Nicotinic acid 0.5 

1.5.2 Additions to media based on that of Leowenberg (1969). 

Medium Code Additional Component (mg/L) 

L-AZ 2.0 NAA 

1.0 BAP 

L-D 0.2 NAA 

1.0 BAP 
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1.6.1 Media based on that of Kao and Michayluk (1975). 

Nutrient Concentration (mg/L) 

NH4 N03 600 

KN03 11900 
Ca C12.2H20 600 

Mg S04-7H20 300 

KH2 P04 170 

KC1 300 

Sequestrene 28 

KI 0.75 
H3 B03 3.0 

Mn S04. H20 10.0 

Zn S04-7H20 2.0 

Ma Mo 04-5H20 0.25 

Co C12 6H20 0.025 

Cu S04.5H20 0.025 

- 260 - 



1.6.2 Supplement to KM-8P, and K-P8. 

Concentration (mg/L) 
Component K-P8 KM-8P 

Inositol 100 100 

Nicotinamide 1.0 1.0 

Pyrodixine HCl 1.0 1.0 

Thiamine HU 1.0 1.0 

D-Ca Pantothenate 0.5 1.0 

Folic acid 0.2 0.4 

P-ABA 0.01 0.02 

Biotin 0.005 0.01 

Choline chloride 0.5 1.0 

Riboflavin 0.1 0.2 

Ascorbic acid 1.0 2.0 

Vitamin A 0.005 0.01 

Vitamin D3 0.005 0.01 
Vitamin B12 0.01 0.02 
Na Pyruvate 5.0 20.0 

Citric acid 10.0 40.0 

Malic acid 10.0 40.0 

Fumaric acid 10.0 40.0 

Fructose 125 250 

Ribose 125 250 

Xylose 125 250 

Mannose 125 250 

Rhamnose 125 250 

Cellobiose 125 250 

Sorbitol 125 250 

Mannitol 125 250 

Vitamin free casamino acids 125 250 

Coconut milk 10 ml/L 20 ml/L 

2,4-D 0.2 0.2 

Zeatin 0.5 0.5 

NAA 1.0 1.0 

Sucrose 250 250 

Glucose 1009000 100,000 
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1.7 Composition of Caboche's medium (Ca-9M) (Caboche, 1980). 

Nutrient Concentration (mg/L) 

NH4 N03 400 

Ca C12.2H. 0 293 
Mg S04-7H20 246 

KH2 P04 68 

Fe S04-7H20 27 
Na2 EDTA 37 
H3 B03 6.2 
Mn S04. H20 0.17 

Zn S04.7H20 0.28 
CO C12.6H20 0.024 
CU S04-5H20 0.025 

Na2 Mo 04.2H20 0.024 

Inositol 180 
Pyridoxine 0.5 

NAA 0.1 

BAP 1.0 

Sucrose 30,000 

Mannitol 901000 

2 mM Glutamine was added to the medium immediately before use. 
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Amino acid media for nitrate reductase deficient cells and 

tissues (Muller and Grafe, 1978). 

Nutrient Concentration (mg/L) 

KC1 2,940 

Ca C12.2H20 440 

KH2 P04 170 
Mg S04-7H20 370 

KI 0.83 

CO C12.6H20 0.025 
H3 B03 6.2 

Na2 MO 04.2H20 0.25 

Mn S04.4H20 22.3 

CU S04.5H20 0.025 

Zn S04.7H20 8.6 

Fe S04.7H20 27.85 

Na2 EDTA 37.25 

Myo Inositol 100 

Nicotinic acid 0.5 

Pyridoxine HU 0.1 

Thiamine HU 0.5 

L-glutamine 877 

L-glycine 75 

L-aspartic acid 266 

L-arganine 228 

1.8.2 Additions to amino acid media. 

Medium Code Additional Component (mg/L) 

AA-P19M 2.0 NAA 

0.5 BAP 

AA 1.0 2,4-D 

0.2 Kinetin 

0.1 Ga3 
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1.9 Selection medium for the recovery of colonies able to 

utilize nitrate as sole nitrogen source (MS-NO3) 

(Pental et al., 1982). 

Nutrient Concentration (mg/L) 

KNO 3 3,970 
Ca Cl2,2H2O 440 

KH 2 PO 4 170 

Mg SO 4*7H2 
0 370 

KI 0.83 

Co Cl2*6H20 0.025 
H3 B03 6.2 

Na2 Mo 04' 2H 20 0.25 

Mn SO 4* 4H 20 22.3 
CU S04-5H20 0.025 
Zn S04*7H20 8.6 

Fe S04*7H 20 27-85 

Na2 EDTA 37.25 

Inositol 100 

Nicotinic acid 0.5 

Thiamine HU 0.5 

Pyridoxine HU 0.1 

Sucrose 30,000 

NAA 0.1 

BAP 0.5 

Mannitol was also added at 9.0% (w/v) (MS-N03 9M) or 4.5% (w/v) 

(MS-N03 4.5M). 
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1.10 Cell and protoplast washing medium (CPW) 

(Frearson et al., 1973). 

Component Concentration (mg/L) 

KH2 P04 27.2 
KN03 101 

Ca C12.2H20 1,480 
Mg S04-7H20 246 
KI 0.16 

Cu S04.5H20 0.025 

The following additions were made : 

CPW 9m 

CPW 13M 

CPW 21 S 

9% W/V mannitol 
13% w/v mannitol 
21% w/v sucrose 

lp 
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1.11 Nitsches medium IHI (Nitsch, 1969). 

Component Concentration (mg/L) 

KNOý 950 

NH4 N03 720 
Mg S04-7H20 185 
Ca C12 166 
KH2 P04 68 
Mn S04.4H20 25 
H3 B03 10 

Zn S04.7H20 10 
Na M004.2H20 0.25 
CU S04-5H20 0.025 

Na2 EDTA 37.25 

Fe S04-7H20 2.8 

Myo, Inositol 100 

Glycine 2 

Nicotinic acid 5 

Pyridoxine HU 0.5 

Thiamine HU 0.5 

Follic acid 0.5 

Biotin 0.05 

Sucrose 20pQOOO 
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APPENDIX 

CALIBRATION CURVES 
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2.1 A Calibration curve for protein determination by the 

method of Lowry et al. (1951) 

Transmission of light at 500 nM and 700 nM was 

recorded. 

2.1 B Calibration curve for the nitrate reductase activity 

assay of Jaworski (1971) 

Absorption of light at 540 M was recorded. 
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2.2 Typical pH gradients formed in LKB PAG-Plates used for 
isoelectric focusing of protein extracts in isoenzyme 

analysis 

The pI of prominent isoenzyme bands was determined from 

these calibration curves. Reproduced from information 

provided by the manufacturer (LKB). 

2.2 A pH 3.5 - 9.5 

2.2 B pH 4.0 - 6.5 

2.2 C PH 5.5 - 8.5 
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