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Abstract

Determining a scattering medium’s absorption and scattering coefficients from mea-

surements of the light reflected or transmitted from the medium is a common problem

in various fields. The aim of this thesis was to calculate the errors in the determined

coefficients using different combinations of light “metrics” such as reflectance and

mean flight time under realistic noise conditions, as a result of which the optimum

metric combination could be found.

This was investigated by the forward modelling of various metrics of detected

light from a semi-infinite, homogeneous medium using the Diffusion Approximation.

The normalised intensity and cumulants of the light’s temporal point spread function

(TPSF), were investigated as possible metrics and their form over a range of optical

coefficients corresponding to in vivo human tissue described fully. These metrics were

then used to provide simultaneous equations from which the medium’s scattering and

absorption coefficients could be calculated.

Errors in the metrics will propagate through to errors in the determined coefficients

and a general method to calculate the extent of this propagation was described. To
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simulate realistic metric errors, a typical streak camera (Hamamatsu C5680) was

modelled to determine its effect on the measurements of the metrics. Using this

model, “error maps” showing the expected error in each metric’s value over the range

of absorption and scattering coefficents were produced. These were then applied to

the general error analysis method. In full-field detection mode, it was shown that

the combination of normalised intensity and first cumulant gave the most accurate

answer for the medium’s coefficients, while for spatially resolved detection, various

combinations of reflectance and the mean time of flight were found to be the optimum

metric pairs under different conditions.

Finally, a method of using the known characteristics (either from modelling or

experiment) of a detector such as the streak camera to improve the accuracy of the

determined coefficients was described.
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Chapter 1

Introduction

1.1 Background

The characterisation of a scattering medium through optical methods has applications

in many fields such as medicine,1,2 pharmaceutical manufacturing3,4 and the food

industry.5,6 These methods involve measurements of the light reflected or transmitted

from a scattering medium, from which its optical properties (such as its absorption

and scattering coefficients and anisotropy factor) can be determined.

Characterisation of a scattering medium is difficult for two reasons. First, light

emerging from the medium will have travelled many different paths resulting in a mul-

titude of different flight times meaning that the relationship between the medium’s

absorption coefficient and the attenuation of light is therefore no longer linear. Sec-

ond, depending on the medium and detector geometries, an unknown amount of light

will be lost from the medium due to scattering processes without being detected. As

a result of these two effects, the determination of the medium’s optical properties is

1
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non-trivial.

Many forward models can be used which relate the optical coefficients to the

measured light. These can be analytical in nature, such as the Radiative Transport

Equation and Diffusion Approximation, or stochastic, such as Monte Carlo modelling.

As explained above, however, it is the inverse problem that is of interest: the deter-

mination of the medium’s optical properties from measurements of the light reflected

or transmitted from the medium.

Many solutions to this inverse problem have been described, and a summary of

some of these methods is given in Chapter 2. The common process between these

methods, however, is the measurement of certain properties (such as the absolute

intensity or the mean flight time) of the detected light, from which the optical coeffi-

cients of the medium are then determined. The purpose of this thesis is to investigate

what combination of these “metrics” will result in the most accurate characterisation

of the medium.

1.2 Scattering Media

A homogenous medium is one which is perfectly uniform in composition. A truly

homogeneous medium does not exist, however, resulting in small changes in the re-

fractive index throughout the medium. It is these changes that cause the scattering of

light: photons passing through the medium are refracted by the boundaries between

regions of different refractive indices, thus changing their direction of propagation.
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The behaviour of light travelling through scattering media depends on several

parameters. These are discussed in the following sections.

1.2.1 Scattering Coefficient

The scattering coefficient, denoted as µs, describes the number of scattering events

that each photon will experience on average within a certain distance. As such, its

units are given as the reciprocal of distance, or more specifically, in this thesis as

per micrometre (mm−1). The reciprocal of the scattering coefficient gives the average

distance travelled by each photon, and is known as the mean free path.

1.2.2 Absorption Coefficient

The absorption coefficient is denoted as µa and describes the number of absorption

events that photons experience on average over a certain distance. Its units are also

given as a reciprocal of distance, or more specifically, in this thesis as per millimetre

(mm−1).

Due to the quantum nature of photons, the result of an absorption event is the

termination of a photon’s propagation. However, the aggregate intensity of a large

number of photons in the presence of absorption can be described using the Beer–

Lambert law, as covered in §1.4.
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1.2.3 Anisotropy Factor

The anisotropy factor, g, defines the average angle of scattering experienced by pho-

tons at each scattering event. It is equal to the mean cosine of the angle, and thus

can take values between -1 and 1, where -1 results in the reversal of the photon’s

direction (completely backscattering) and 1 means that the photon’s direction is not

affected (completely forward scattering). A value of 0 means that the scattering angle

is evenly distributed, and the medium is isotropic.

1.2.4 Reduced Scattering Coefficient

The values of the scattering coefficient and the anisotropy parameter are often com-

bined (as in the case of the Diffusion Approximation) to give the reduced scattering

coefficient, defined as:

µ′
s = µs(1 − g) (1.2.1)

Its reciprocal is known as the transport mean free path or effective mean free path

and represents the distance that each photon will travel before its direction is totally

randomised.7

1.2.5 Medium Geometry

It is clear that a medium’s geometry will affect the propagation of photons, and thus

the properties of the light detected. For example, photons will, in general, undergo

longer pathlengths in a semi-infinite geometry in comparison to slab geometries.
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1.2.6 Wavelength

The scattering coefficient, absorption coefficient and anisotropy factor are all depen-

dent on the wavelength of light incident on the medium. The wavelength of light will

be assumed to be constant at 633nm throughout this thesis.

1.3 Temporal Point Spread Functions

Due to the scattering experienced within a scattering medium, photons will take dif-

ferent paths and diffuse throughout the medium, and each photon exiting the medium

will do so after a different period of time. This temporally resolved information is the

medium’s impulse response or temporal point spread function (TPSF).

From a quantum point of view, a TPSF consists of a set of photon flight times

– the length of time taken by each photon in reaching the detector. This can be

represented visually as an irregularly spaced Dirac comb, an example of which can

be seen for 50 photons in Figure 1.1.

This “quantum TPSF” can be transformed into a continuous distribution by the

summation of the number of photons within each of a set of temporal bins. This is

also shown in Figure 1.1.

The normalisation of the area under a TPSF to unity results in a probability

density function (PDF), which in this case represents the probability of a photon

being detected during a particular time interval. Note that a PDF formed from any
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Figure 1.1: A quantum TPSF consisting of 50 photons, as shown in blue, is coarsely
binned to produce the green TPSF. The red curve shows a TPSF formed under the
same conditions, but using more photons and finer binning.

realistic TPSF, whether binned or not, can only be considered as an estimate of

the true probability density function: an exact PDF can only be created from the

normalisation of a quantum TPSF containing an infinite number of photons.

1.4 Beer–Lambert Law

The attenuation of light passing through an absorbing medium is described using the

Beer–Lambert law, which is defined as:

I = I0 exp(−µad) (1.4.1)
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where I and I0 are the intensities of light received from and input to the medium

respectively, µa is the absorption coefficient described in §1.2.2, and d is the optical

pathlength.

As explained in §1.2.2, the quantum nature of photons means that it is impossible

for part of a photon to be absorbed: absorption is an all-or-nothing process. There-

fore, the question of how the Beer–Lambert law relates to a quantum TPSF can be

answered in one of two ways:

1. Light particles are not considered to be quantum photons, but light packets

whose energy can take on a continuous range of values. Thus light particles

with fractional values can be detected from an absorbing medium. This method

is used extensively in Monte Carlo modelling.

2. The exponential term, exp(−µad), can be considered as the probability of a

photon emerging from the absorbing medium. Thus for a µa value of zero,

the probability of a photon being detected is unity, regardless of the optical

pathlength.

Absorption can be added to a TPSF using the Beer–Lambert law by considering an

alternative form of Eq. (1.4.1):

I = I0 exp(−µavt) (1.4.2)

Here, it can be seen that the optical pathlength has been replaced by the product
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of the speed of the light in the medium, v, and the length of time spent within the

medium, t. Taking the intensity of the light at each time point of a TPSF to be

the initial value I0, multiplying by exp(−µavt) will give the resulting intensity due to

added absorption. This is known as the microscopic Beer–Lambert law.8,9 Applying

this over all of a TPSF’s time points, it can be seen that the macroscopic addition

of absorption to a TPSF is therefore achieved by its multiplication with a decaying

exponential of the form exp(−µavt).

Note that it is more beneficial to apply the microscopic Beer–Lambert law to a

quantum TPSF before binning for its distribution form, rather than afterwards. This

is because each photon’s contribution will be reduced according to its exact time of

arrival, rather than its binned time. One of the two assumptions discussed above must

be made when applying the microscopic Beer–Lambert law to a quantum TPSF.

1.5 Metrics

This section will introduce the concepts of probability density functions’ moments

and cumulants, which are metrics that can potentially be used to describe a TPSF,

and therefore the light detected from the medium. The methods used to calculate

the moments and cumulants will also be covered.
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1.5.1 Moments

A probability density function can be defined uniquely by its moment generating

function10 which is an infinite series of the PDF’s raw moments; from this point on,

these will just be referred to as the ‘moments’. The first moment of a PDF is equal

to the expected value of the distribution. Thus, for a normalised TPSF, the expected

value refers to the mean photon flight time, not the mean probability. Despite its

name, the expected value is not the most common value, or mode. In fact, in the

case of the PDF relating to a discrete quantity such as a number of people, it is likely

that the expected value will not be a whole number.

The nth moment of a normalised TPSF, s(t), is defined as:

mn =

∫ ∞

0

s(t)tn dt (1.5.1)

where t is a photon’s time of flight. The zeroth moment is therefore the area under

the normalised TPSF, which by definition is equal to unity. Note that the definition

of the nth moment for a general PDF calls for the integration to be performed between

−∞ and ∞. However, due to the causal nature of a TPSF, the lower integration limit

in this case can be made equal to zero.

In the case of a quantum TPSF, the nth moment is defined as:

mn =
Z
∑

z=1

tz
n (1.5.2)

where tz is the zth photon’s time of flight, and Z is the total number of photons
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detected. It is beneficial to calculate the moments from this discrete data, rather

than its PDF, as each photon then contributes to the moment’s value at its exact

time of arrival and not at an approximation.

From either of these definitions, it can be seen that as the orders of the moments

increase, so will the value of the exponent on the photons’ times of arrival. As such,

for higher-order moments, longer times will contribute more to the moment values

than for lower-order moments. Higher-order moments will therefore be more sensitive

to the TPSF’s tail.

Moments can also be obtained from the normalised TPSF using a PDF’s moment-

generating function (MGF), M , which is defined as:11

M =

∫ ∞

0

s(t) exp(xt) dt (1.5.3)

where x is an arbitrary variable used later in the moments’ calculation. Expanding

the exponential term as a power series, the MGF becomes:

M =

∫ ∞

0

s(t)

[

1 + xt +
(xt)2

2!
+

(xt)3

3!
+ · · ·

]

dt

=

∫ ∞

0

s(t) dt + x

∫ ∞

0

s(t)t dt +
x2

2!

∫ ∞

0

s(t)t2 dt +
x3

3!

∫ ∞

0

s(t)t3 dt + · · · (1.5.4)

The individual integrals in the above equation have the same form as Eq. (1.5.1),

and thus the MGF is an infinite series of the PDF’s moments:

M = 1 + xm1 +
x2

2!
m2 +

x3

3!
m3 + · · · (1.5.5)

=
∞
∑

n=0

xn

n!
mn (1.5.6)
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The nth moment can then be calculated by differentating the moment-generating

function n times with respect to x, and then setting x to zero:

mn =
dnM

dxn

∣

∣

∣

∣

x=0

(1.5.7)

This is demonstrated for m1 below:

m1 =
dM

dx

= m1 +
2x

2!
m2 +

3x2

3!
m3 + · · · (1.5.8)

It can be seen that setting x to zero in the above equation will result in the series

reducing to simply the m1 term.

It can be noted that by setting x to −µac, the subject of the integration in

Eq. (1.5.3) has the form of a TPSF with absorption added by the Beer–Lambert

law, as described in §1.4. The effect of setting x to zero is therefore to remove the

effects of this added absorption. However, this is not the same as removing absorption

from the TPSF altogether as the original TPSF, s(t), may have been measured or

calculated in the presence of a base level of absorption.

1.5.2 Cumulants

A normalised TPSF can also be defined by the infinite sum of its cumulants. These

are related to the moments using the following recursive formula:12

κn = mn −
n−1
∑

k=1

(n − 1)!κkmn−k

(k − 1)!(n − k)!
(1.5.9)
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The first three cumulants can therefore be defined as:

κ1 = m1 (1.5.10)

κ2 = m2 − m1
2 (1.5.11)

κ3 = m3 − 3m1m2 + 2m1
3 (1.5.12)

It can be seen from Eq. (1.5.10) that the first cumulant is equal to the first moment

and thus represents the mean photon flight time. The second cumulant is equal to the

variance of the distribution; this represents the spread of different pathlengths that

the photons took within the medium. None of the higher-order cumulants, however,

have intuitive meanings regarding the shape of the TPSF.

It has already been shown that higher-order moments are more sensitive to a

TPSF’s tail. The equations above show that, due to the cumulants’ dependence on

moments of the same order, this property will also apply to cumulants.

The cumulant-generating function (CGF), K, is the natural logarithm of the

moment-generating function given in Eq. (1.5.6):

K = ln

(

∞
∑

n=0

xn

n!
mn

)

= ln

(

1 +

[

xm1 +
x2

2!
m2 +

x3

3!
m3 + · · ·

])

(1.5.13)

Using the substitution

y = xm1 +
x2

2!
m2 +

x3

3!
m3 + · · · (1.5.14)



13

it can be seen that:

K = ln(1 + y) (1.5.15)

Expanding ln(1 + y) as a Taylor series:

ln(1 + y) =
∞
∑

n=1

−1n+1

n
yn

= y − y2

2
+

y3

3
− y4

4
+ · · · (1.5.16)

Substituting this series and collecting like-powered terms of x gives:

K = xm1 +
x2

2
(m2 − m1

2) +
x3

3!
(m3 − 3m1m2 + 2m1

3) + · · · (1.5.17)

Finally, replacing each set of brackets with its equivalent cumulant form from Eq.

(1.5.9), K becomes:

K = xκ1 +
x2

2
κ2 +

x3

3!
κ3 + · · · (1.5.18)

=
∞
∑

n=1

xn

n!
κn (1.5.19)

Note that the sum now begins at n = 1, as opposed to n = 0 for the MGF.

Like the MGF, the nth cumulant can be found by differentiating K n times with

respect to x, and then setting x to zero. The zeroth cumulant can therefore be shown

to be equal to zero by merely equating x to zero in the CGF.

1.5.3 Reflectance

The “reflectance” of a medium will be discussed throughout this thesis, and will be

derived for a semi-infinite medium with different detectors in the following section.
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Various meanings have been bestowed upon the term in previous years,13–15 making

it necessary to explicitly define the term’s intended meaning for the purposes of this

study.

The reflectance, R, is therefore defined as the energy of the detected emergent

light, ER, normalised by that of the incident light, EI , as follows:16,17

R =
ER

EI

(1.5.20)

1.6 Streak Cameras

A streak camera allows the measurement of sub-nanosecond events using a standard

CCD camera, by transforming the time axis of the TPSF into a spatial deflection. In

mechanical streak cameras, this deflection is achieved by a moving mirror or prism

setup ‘streaking’ the image over the surface of the detector.18 In optoelectronic streak

cameras, however, it is achieved by first converting the incident photons into electrons

and then using a pair of sweep electrodes to create an electric field to alter the

path of the electrons.19 Mechanical streak cameras, despite their relative simplicity,

are inherently limited by the speed at which the mechanical components can be

moved, and thus this thesis will concentrate on the more-complicated optoelectronic

instrument.
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1.7 Applications

One area in which optical methods are frequently used is the characterisation of

biological tissue, or more specifically, human skin, which can be useful in cancer

diagnosis20 and the determination of tissue blood oxygenation.21 One specific use

is the non-invasive monitoring of blood glucose levels in diabetic patients by the

measurement of a tissue’s reduced scattering coefficient. An increase in the blood

glucose level will cause an increase in the tissue’s extracellular fluid’s refractive index,

which in turn will cause the reduced scattering coefficient to decrease.22

There are significant advantages to the use of optical techniques over other meth-

ods. Firstly, the technique is non-invasive and so can be performed in vivo with

minimal discomfort to the patient. Secondly, optical radiation is non-ionising and

therefore can be applied in frequent doses without the risk of damaging healthy tis-

sue. As human skin is a complex structure and therefore difficult to model, this thesis

will focus on the characterisation of a single-layered scattering medium with optical

coefficients corresponding to the bulk optical properties of human skin.

The aim of this thesis is to improve the accuracy of the characterisation of human

skin by determining the optimum metrics that should be used in the process. This will

be achieved in this case for a streak camera detection system; however, the methods

presented can be applied to any characterisation method.
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1.8 Thesis Overview

This thesis describes research into the determination of a medium’s scattering and ab-

sorption coefficients, or more specifically the optimum metrics to use to minimise the

error in these coefficients’ values. This will be investigated by the forward modelling

of various metrics of detected light from a semi-infinite medium using the Diffusion

Approximation. These metrics can then be used to provide simultaneous equations

from which the medium’s scattering and absorption coefficients can be calculated.

However, as it is not possible to measure the metrics exactly, their “detection” by a

streak camera will be modelled to give an estimate of the errors in their measured val-

ues. With this knowledge, the optimum metrics in characterising a scattering medium

under realistic noise conditions can be determined.

A review of the literature relative to this thesis is therefore presented in Chapter 2,

thus enabling the methods used within thesis to be put into context with regard to

the existing research in this area.

Chapter 3 covers the derivation of the Diffusion Approximation equations used as

a forward model to calculate the values of the metrics.

The metrics of interest are chosen and justified in Chapter 4, and their dependence

on a medium’s optical properties described in detail. In order to do this, the ranges

of these properties are also defined by focusing on optical coefficients similar to the

bulk properties of human skin.



17

Chapter 5 achieves a comprehensive and novel model of a typical streak camera’s

noise sources, allowing the effect of a metric’s detection by the camera on its value

to be determined. This is achieved in several parts. Firstly, the configuration of

the streak camera, along with the associated noise at each of the camera’s stages

is thoroughly described. The effects of these noise sources on a typical TPSF are

then investigated. The model used to describe the streak camera is then detailed and

applied to a typical spatially resolved TPSF, and the effects on the metrics discussed

at each stage. The same model is then applied to the TPSFs over the entire parameter

range described in Chapter 4, allowing “error maps” of each metric to be created.

Equations that relate the errors in the metrics to the errors in the determined

scattering and absorption coefficients are derived in Chapter 6. These equations are

then applied to the metric surfaces described using the Diffusion Approximation, and

the error maps from Chapter 5. This is repeated for both full-field and spatially

resolved detection, and the optimum metrics for both detection regimes are deter-

mined for which the errors in the determined scattering and absorption coefficients

are minimised. A method for using the known characteristics (either by modelling or

experiment) of a detector such as the streak camera to improve the accuracy of the

determined coefficients is also described.

Finally, the findings of this thesis are summarised and discussed in Chapter 7 in

which areas suitable for future research are also highlighted.



Chapter 2

Literature Review

2.1 Introduction

This chapter will serve as a review of the literature concerning the characterisation of

scattering media. It provides background information on the current knowledge base

in this area, as well as explaining the reasoning for the novel work produced in this

thesis.

The review begins with a discussion on various models of photon propagation in

use in the optical analysis of scattering media. These are used to relate the value of

various quantities concerning the photons passing through a medium as a function

of the medium’s scattering and absorption coefficients. Numerous models have been

used previously, although this review will focus on two of them, the Diffusion Ap-

proximation and Monte Carlo modelling, as together these represent a large majority

of documented model use.

This is followed by a review of the various techniques used to determine the optical

18
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properties of a medium. These are divided into three types of system: constant in-

tensity, time resolved and frequency modulated. A brief description of the implemen-

tation of each system is given, followed by consideration the possible measurements

that can be made using each system. The relative advantages of these systems are

also covered.

Finally, a brief review is presented of the limited literature concerning the mod-

elling of a streak camera.

2.2 Photon Propagation Models

Photon propagation models are used to relate the properties of light passing through

a medium to its optical parameters. The accuracy and limitations of these models

are therefore of prime concern when used in the characterisation of scattering media.

As a detailed review of propagation models has already been published by Arridge

and Hebden,23 only a brief review of these models is provided here. Furthermore, a

full comparison of the two main models of interest, the Diffusion Approximation and

the Monte Carlo model, is provided by Flock et al.24

2.2.1 The Radiative Transport Equation

Due to the inhomogeneities in a scattering medium, it is beneficial to model the prop-

agation of light using transport theory rather than analytical solutions to Maxwell’s

equations. The fundamental equation used to define transport theory is the Radiative
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Transport Equation (RTE), which is equivalent to Boltzmann’s equation used in the

kinetic theory of gases and neutron transport theory.25 It is given by Contini et al.

as:26

1

v

∂

∂t
I(r, t, ŝ) + ŝ ·∇I(r, t, ŝ) = −(µa + µs)I(r, t, ŝ)

+
µa + µs

4π

∫

4π

p(̂s, ŝ′)I(r, t, ŝ′)dω′ + ε(r, t, ŝ) (2.2.1)

The equation describes the behaviour of the radiance or specific intensity of the light

in the medium, denoted by I(r, t, ŝ). This represents the average power flux density

at a point r in the direction of the unit vector ŝ, per unit time (t), within a unit solid

angle and a unit area perpendicular to ŝ. The speed of light in the medium is given by

v, and µa and µs are the medium’s absorption and scattering coefficients respectively.

The phase function, p(̂s, ŝ′), is the probability of a photon moving in the direction of

ŝ being scattered into the direction ŝ′. Finally, ε(r, t, ŝ) is the source term.

The left-hand side of this equation represents the change in the radiance with

respect to both time and space. The first term of the right-hand side equals the loss

of radiance due to absorption and the scattering of photons from the direction of

interest ŝ. The second term represents the gain in radiance caused by the scattering

of photons from any other direction ŝ′ into the direction ŝ. The third term is the

increase in the radiance due to the source.

Due to the complexity of the RTE, closed-form solutions do not exist for anything

other than very simple medium geometries. As such, approximations must be made
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about the nature of the photon propagation to simplify the problem. One such

approximation is discussed in the following section.

2.2.2 The Diffusion Approximation

One widely used approximation to the RTE is the Diffusion Approximation which

assumes that the scattering of the light within the medium is diffuse. This is valid

when the medium’s reduced scattering coefficient is much greater than the absorption

coefficient, i.e. µa ≪ µs(1 − g), and if the radiance is calculated far from the sources

or boundaries of the medium.27

Using these assumptions, Eq. (2.2.1) can be simplified greatly to give the diffusion

equation:26

(

1

v

∂

∂t
− D∇2

)

Ud(r, t) = Q(r, t) (2.2.2)

where Ud(r, t) is the average diffuse intensity and Q(r, t) is the isotropic source term.

D is the diffusion coefficient which can be dependent on the absorption coefficient,

scattering coefficient and anisotropy factor. Its correct form is the subject of much

debate, especially as regards the nature of its dependence on µa. This will be covered

in more detail in §3.3.1.

The relative simplicity of Eq. (2.2.2) over (2.2.1) allows analytical expressions

to be derived for various medium geometries, as demonstrated by Patterson et al.27

Contini et al. proposed alternative derivations taking into account the refractive in-

dex mismatch between the medium and its surroundings.26 These expressions are
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substantially more complicated than those of Patterson et al. but have been reported

to provide more accurate results.28,29

The main advantage of the Diffusion Approximation is the speed of calculations

that its closed-form expressions provide. However, the assumptions explained above

can limit its application.

2.2.3 Monte Carlo Modelling

One solution to modelling light propagation in regions where the Diffusion Approxi-

mation is invalid is to use a Monte Carlo model. This can be considered a conformity

to the RTE in that it satisfies the same theory of propagation, albeit in a numerical

fashion.

Monte Carlo modelling is a stochastic technique and so describes light propaga-

tion on a photon-by-photon basis. Each photon’s path is determined by drawing

random numbers from a specific probability distribution (which is related to the

medium’s scattering coefficient, or more precisely its mean free path) to ascertain the

pathlengths between scattering events. At each event, the photon’s new direction

is determined from a distribution usually based on Henyey-Greenstien30 or Mie the-

ory.31 This continues until the photon is scattered out of the medium, or if it reaches

a maximum pathlength, as described below.

It is beneficial to add absorption to each photon by the Beer–Lambert law after the

simulation, as this allows the results from media with different absorption coefficients
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to be determined without repeating the Monte Carlo model. The distance travelled

by each photon in the medium must therefore be recorded. Note that by adding

absorption in this way to individual photons, the “photons” must in fact be considered

as packets of light whose energy can take on a continuous range of values. It is

important, especially when modelling large media, to define a cut-off length for the

photons as this will prevent the occurrence of lengthy pathlengths that would be

absorbed even in low absorption conditions from greatly increasing the length of time

required to carry out the simulation.

The above method is repeated many times until the stochastic error in the resulting

distribution is low enough so that an accurate picture of the optical response of the

scattering medium has been determined. This can obviously be a time-consuming

process, especially if the simulation is to be repeated for several different scattering

parameters. One solution to this last problem, proposed by Kienle and Patterson32,

is the modelling of a single data set with an arbitrary scattering coefficient. Results

corresponding to any scattering coefficient can then be determined by the scaling of

this data set. As the dimensions of the medium are also scaled in this process, this

approach is suitable for infinite and semi-infinite geometries which are scale invariant.

However, in the case of infinite slab geometries, for example, scaling of the results

will cause the slab’s thickness to also change.

Despite its time-consuming nature, one advantage of Monte Carlo modelling is its
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ability to be applied to any geometry. Use of the Monte Carlo model is also considered

the “gold standard” in the modelling of light propagation in scattering media due to

its accordance with experimental results using phantoms.24

2.3 Methods of Examination

The various methods of optical examination of scattering media can be split into

the following three types of system: constant intensity, time resolved and frequency

modulated. The fundamental principles behind each of these systems will be discussed

below. It should be noted that the methodologies used in these three types of system

are all linked: integration of the time resolved method over time yields the constant

intensity method, while a frequency modulated system is its Fourier Transform.

2.3.1 Constant Intensity Systems

In these systems, a constant intensity light source is used to illuminate the scattering

medium, while detection is limited to intensity measurements. Variation in these

measurements can therefore come from factors such as the wavelength of light used,

providing a spectral analysis of the medium.33–35 The light source used is therefore of

importance, with systems using either a filtered white source or sources of particular

wavelengths such as lasers or light emitting diodes.36 Alternatively, a white light

source can be used in conjunction with a grating spectrograph before the detector to

select the wavelength of light measured.37
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Variation in constant intensity measurements can also be observed by the use of

spatially resolved detection of the light emitted,38–40 or a combination of spectral and

spatial resolution.22,37 Further variations due to the angle of incidence of the source

can also be added to these systems.41

The geometry of the detector is also an important factor in the optical examination

of scattering media, with the systems referenced above all employing measurements

in reflection mode. Systems based on both reflection and transmission measurements

have been described,42,43 with some also using measurements of the collimated trans-

mittance to provide an estimate of the medium’s absorption coefficient.44,45 It is worth

noting, however, that the use of transmission measurements limits the geometries to

which the methods can be applied.

The main drawbacks of constant intensity systems occur due to their reliance on

measurements of absolute intensity which can be difficult to perform due to problems

such as source fluctuations and surface coupling. Despite their relative simplicity,

they are therefore often overlooked in favour of time resolved or frequency modulated

systems.

2.3.2 Time Resolved Systems

There are two detection schemes related to time resolved measurements. These both

revolve around the detection of the temporal point spread function (TPSF) resulting

from an ultrashort input pulse.
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In the first detection scheme, light is detected through the input slit of a streak

camera. The resulting one-dimensional line image is then “streaked” across the sur-

face of a two-dimensional detector such as a CCD array, thus converting the light’s

temporal information into a second spatial dimension. The study of streak cam-

eras forms a large proportion of this thesis, and as such, literature concerning the

modelling of the instrument will be covered in more detail in §2.4.

The second detection scheme is termed Time-Correlated Single Photon Counting

(TCSPC) in which photons are detected using a photomultiplier tube or avalanche

photodiode.46 In this method, the intensity of the light entering the instrument is

reduced (either by a reduction in the source intensity or with the use of an attenuating

stage) until the probability of detecting a single photon from each input pulse is very

low. The time of arrival of each photon is then measured using a time-to-amplitude

converter (TAC) effectively acting as a stopwatch: the input light pulse triggers its

start, while the stop event is triggered by the detection of a photon. As more photons

are detected through repetition of this process, the medium’s TPSF will be formed.

The key to this method is the low probability of the detection of a photon. As the

instrument will only record the time position of the first photon to reach the detector,

if more than one photon was received for an input pulse, the later photons would not

be registered. The reduction of light intensity therefore reduces the probability of

multiple photons being received for each input pulse.



27

The main advantage to a streak camera is its speed, as an accurate representation

of the TPSF can be recorded using one input pulse. However, the instrument can

be large and expensive as a consequence.36 In contrast, the TCSPC method is much

slower, requiring many thousands of input pulses to detect an adequate representation

of the TPSF. Its relative advantage, however, comes from one of the consequences

of its method of detection: the time resolution is not dependent on the width of the

detector’s impulse response. As a result, it can be implemented using smaller and

cheaper components.

The wealth of information stored in the TPSF has led to numerous methods of

determing a medium’s optical properties.36 These include methods which use the

TPSF’s tail, methods involving fitting the TPSF to known data, methods involving

time gating and methods using various parameters of the TPSF. Short summaries of

the literature relating to each of these are given below. Methods which only calculate

the change in absorption coefficient do not apply to this thesis and so are not covered

here.

Several methods have been described that rely on the knowledge that a TPSF’s tail

will become increasingly solely reliant on the absorption coefficient.27,47,48 As a result,

it was found that the asymptotic gradient of the logged tail could be directly related

to the medium’s absorption level. After solving for µa, the scattering coefficient can

then be calculated from the position of the TPSF’s peak in time. The inherent
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problem with this technique is that it relies on the measurement of parts of the TPSF

where the signal-to-noise ratio is much reduced. Wilson et al. demonstrated that by

measuring the gradient earlier on the TPSF, where this limitation was less relevant,

the absorption coefficient could still be determined with only a 10% error.49

A medium’s scattering and absorption coefficients may be determined by the fit-

ting of the TPSF to an analytical expression derived using the Diffusion Approxima-

tion.50–52 Similarly, approaches using equations derived from random walk theory53

and a database of Monte Carlo results54 have also been reported. The disadvantage

with these methods is that the fitting procedures can be time consuming and so are

not suitable for real-time analysis of scattering media.55

Using a similar premise as the methods that relate a TPSF’s tail to the absorption

level, the use of time-gating in transmission mode allows the isolation of early arrival

photons having undergone minimal scattering.56 This approach is limited by the

medium’s thickness, however, as the number of undeviated photons will decrease

sharply as the thickness increases. Techniques which separate early arrival photons

that are dependent on both scattering and absorption, and later photons that will

be predominantly dependent on absorption have also been described,57 although they

will suffer from signal-to-noise ratio limitations at longer pathlengths.

Methods involving the use of parameters describing a TPSF have been found to
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yield more accurate determination of optical coefficients than curve fitting.58 Solu-

tions to the optical coefficients are determined from measured values of the TPSF’s

parameters by known relationships between them. In this thesis, these parameters are

called “metrics”, although the terms “data types”58 and “analytic descriptors”59 have

also been used previously. There are an infinite number of metrics that can be derived

from a TPSF, and an extensive list of examples has been previously published.60

One of the most commonly used metrics is the photons’ mean time of flight,38,61

sometimes alongside the TPSF’s variance.55 Other examples of metrics include the

moments (which include the mean time of flight) and central moments (which include

the variance),58 the modal average,29 full width at half maximum (FWHM)62 and

normalised Laplace transforms.63

Finally, similar to continuous intensity systems, time resolved instruments can use

measurements over different wavelengths. This has been employed in both reflection64

and transmission.65

Time resolved systems have been shown to give the most accurate results for

a medium’s optical coefficients of the three types of system.66,67 This thesis will

therefore focus on the analysis of such a system.

2.3.3 Frequency Modulated Systems

In frequency modulated systems, the light incident on the medium’s surface is mod-

ulated, and detection involves the measurement of the resulting light’s phase shift
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relative to the source (φ), the ac amplitude (Iac), dc amplitude (Idc) and modulation

depth (M = Iac/Idc). Characterisation of the medium is then a matter of relating

a number of these parameters to the optical coefficients by a known relationship.

These relationships are usually analytical solutions to the Diffusion Approximation,68

although Monte Carlo modelling has also been used for small source–detector sepa-

rations where these solutions are invalid.69

Alternatively, frequency modulated measurements can be related to the cumulants

of a medium’s TPSF.70 In this method, the use of N measurements at different

frequencies will yield approximations of the first 2N cumulants. The accuracy of these

approximations, due to the truncation of an infinite series, is discussed in Ref. 71.

The simplest implementation of these systems involves the measurement of light at

one source–detector distance and one frequency,72 although multiple distance meth-

ods73 and multiple wavelength methods74 have also been demonstrated. Detection

using multiple distances or wavelengths can be used to probe different volumes of a

medium.75

One advantage of frequency modulated systems is their inherent ability to re-

ject non-correlated light sources such as background light, thus making them more

practical for use in clinical settings.76 However, these systems exhibit an increased

sensitivity to electromagnetic interference and measures to reduce the effects of this

can add to the instruments’ complexity.
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In general, however, frequency modulated systems are cheaper and faster to im-

plement than time domain systems, making them suitable for real-time analysis,

although it has been shown that they do not yield as accurate results as time domain

systems.66

2.4 Streak Camera Modelling

The development of streak cameras has a long history: the first streak camera was

demonstrated in 1882 and consisted of a film fixed to a rotating drum being rotated

past a slit.18 It is perhaps surprising, therefore, that little literature exists concerning

the statistics of noise within the instrument. This fact was acknowledged by Secroun

et al. in their 1998 conference paper, in which a forward model of a streak camera

was described.77 This model assumed that the input signal was Poisson-distributed

and that the sources of noise (namely the photocathode, phosphor screen and input

optics) could all be modelled as binomial distributions. Noise from the CCD was

initially measured as being negligible and so was ignored in the model. The output

signal was then approximated by a “cascade” of Poisson and Binomial laws to equal

a Poisson distribution with a mean defined by the product of the initial number of

photons in the signal and the probabilities of the noise sources’ Binomial distributions.

Experimental data was then used to confirm this model. The shot-noise limited nature

of the streak camera’s measurements was also found in papers characterising existing

streak cameras such as that by Donaldson et al.78 Meanwhile, characterisation of
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a different streak camera by Lerche et al. determined that CCD noise was far from

negligible and in fact was the major source of noise in the system.79 It is therefore

apparent that different streak cameras will present different noise characteristics.

The shot-noise limited nature of the streak camera’s measurements can bring into

question this thesis’ aim of presenting a detailed streak camera model. However,

when describing a streak camera’s effects on a TPSF’s metrics, rather than merely

on its intensity, such a simplistic view does not taken into account processes such as

truncation and binning and the effects of the streak camera’s noise floor. A detailed

model of the streak camera will therefore be necessary to determine the accuracy of a

TPSF’s metrics and thus the accuracy of a medium’s optical coefficients when using

such a system.

2.5 Summary

This chapter has presented a review of the literature related to the characterisation

of scattering media. First, two different models of photon propagation were reviewed:

the Diffusion Approximation and Monte Carlo modelling. One of these must be

used to relate the optical properties of a medium to the properties of light passing

through the medium, in order to allow for the characterisation of the medium. It is

clear that the use of Monte Carlo modelling will result in the determination of more

accurate optical coefficients. However, the methods involved in this thesis require the

modelling of numerous media of different scattering and absorption coefficients which
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will require a great number of Monte Carlo simulations. As the statistics of the TPSFs

are of prime concern, and not just its general form, the variance reduction method

proposed by Kienle and Patterson32 (as described in §2.2.3) is not applicable, as each

scaled TPSF would exhibit the same statistical properties. As a result, the length

of time required to carry out modelling of the entire data set using standard Monte

Carlo techniques will be prohibitive. The Diffusion Approximation must therefore be

used for its relative speed.

Second, a review of the constant intensity, time resolved and frequency modu-

lated systems that can be used to optically examine scattering media were presented.

Consideration was given to both the methodologies of each of these systems, and

the types of measurements that could be made using them to determine a medium’s

properties. Time resolved systems have been shown to provide the most accurate

results for a medium’s optical coefficients, and hence this thesis will focus on the use

of time-domain measurements. Modelling of a streak camera was then chosen over a

TCSPC system due to the streak camera’s increased speed of detection. This is an

important factor in the analysis of media such as human skin to prevent the addition

of motion artifacts to the measurements.

Finally, the lack of literature concerning the modelling of a streak camera was

investigated, and the need for a detailed streak camera model highlighted.



Chapter 3

The Diffusion Approximation

3.1 Introduction

In this chapter, the limitations of the Diffusion Approximation are discussed, and

its use in this thesis justified. The methods used to calculate a TPSF’s moments

and cumulants, as described in §1.5, are then applied to equations derived from the

Radiative Transport Equation using the Diffusion Approximation in order to produce

the necessary equations that will be used throughout this study. The appropriate form

of the diffusion coefficient is then discussed.

3.2 Limitations

The Diffusion Approximation is based on the fundamental Radiative Transfer Equa-

tion. It is an approximation, rather than a solution, of light transport due to the

assumptions fully described in Ref. 26. As such, there are limitations to its use, two

of which are:25,27

34
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1. The absorption coefficient must be much smaller than the reduced scattering

coefficient:

µa ≪ µs(1 − g) (3.2.1)

2. The point or region at which the reflectance is calculated must be far away from

both the source and boundaries.

It is therefore acknowledged that the Diffusion Approximation’s use within this thesis

is not flawless and that some of the calculated results infringe one or both of the above

limitations. However, the major advantage of using the Diffusion Approximation

over a stochastic method such as Monte Carlo modelling is its analytical nature,

allowing for the production of ideal, noiseless TPSFs to which the exact solutions of

the metrics described in §1.5 are known. This allows noise to be added to the TPSF

and the resulting effects on these metrics precisely calculated, as is the basis for the

methods used to characterise the effects of a streak camera in Chapter 5. In addition

to this, knowledge of the analytical forms of the metrics allows for more accurate

error analyses to be performed in Chapter 6. Finally, the extensive computer time

that would have been required to simulate the numerous results used throughout this

thesis by Monte Carlo modelling would have been severely limiting, thus making the

detail to which the metrics and errors are analysed in this thesis unfeasible.
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3.3 Diffusion Approximation Equations

In order to describe the light transport in a turbid medium, equations based on the

Diffusion Approximation were defined for both full-field (over all space) and spatially

resolved detection. As explained in §4.3, the geometry of interest is single-layered

and semi-infinite in nature.

Full-field Detection

The Diffusion Approximation equations used within this thesis are based on the equa-

tion published by Patterson et al. [27, Eq. 7]. This states that, for a semi-infinite

geometry, when one joule of light is input as a Dirac delta function to a medium, the

light reflected at a point with a source–detector separation, ρ, and after a time, t, is:

RPatterson(ρ, t) =
exp

(

−ρ2+z0
2

4Dvt
− µavt

)

z0

(4πDv)3/2t5/2
[Units: Wm−2] (3.3.1)

where µa is the medium’s absorption coefficient and D is the diffusion coefficient

which is dependent on the medium’s scattering coefficient, µs, and is discussed in

§3.3.1. The speed of light within the medium, v, is defined by:

v =
c

n
(3.3.2)

where c is the speed of light in a vacuum and n is the medium’s refractive index.

The z0 term is the effective mean free path, defined as:28

z0 =
1

µs(1 − g)
(3.3.3)
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Here it represents the depth at which all the incident photons are assumed to initially

scatter.

In order to obtain the equation for the full-field reflectance, Patterson’s equation

is modified to describe the light detected by an annulus with infinitesimal thickness

and a radius of ρ. This is achieved by multiplying the equation by the circumference

of the detector, 2πρ. The resulting equation is then integrated over all radii:

R(t) =

∫ ∞

0

RPatterson(ρ, t)2πρ dρ

=
exp

(

− z0
2

4Dvt
− µavt

)

z0

2
√

πDvt3/2
[Units: W] (3.3.4)

This equation describes the medium’s TPSF for full-field detection. The full-field

reflectance is then defined by integrating this over all time:

R =

∫ ∞

0

R(t) dt

= exp

(

−
√

µa

D
z0

)

[Units: J] (3.3.5)

The moment-generating function (MGF) can be calculated by first normalising

the area under Eq. (3.3.4) in order to give a probability density function, s(t). This

is done by dividing the equation through by Eq. (3.3.5):

s(t) =
R(t)

∫∞
0

R(t) dt

=
exp

(

− z0
2

4Dvt
− µavt + µa

D
z0

)

z0

2
√

πDvt3/2
(3.3.6)
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Multiplying s(t) by exp(xt) and integrating over all time then gives the MGF, M , as

explained in §1.5.1:

M =

∫ ∞

0

s(t) exp(xt) dt

= exp

(√
µav −√

µav − x√
Dv

z0

)

(3.3.7)

The first three moments calculated using Eq. (1.5.7) are therefore:

m1 =
z0

2v
√

Dµa

(3.3.8)

m2 =
z0(

√
Dµa + µaz0)

4v2Dµa
2

(3.3.9)

m3 =
Dz0(3D + z0[3

√
Dµa + µaz0])

8v3(Dµa)5/2
(3.3.10)

The cumulants can be calculated either by taking the natural logarithm of the

MGF to form the CGF, or by the recursive formula described in Eq. (1.5.9). By the

first method, the nth cumulant is derived as follows:

K = ln

[

exp

(√
µav −√

µav − x√
Dv

z0

)]

=

√
µav −√

µav − x√
Dv

z0 (3.3.11)

κn =
dnK

dxn

∣

∣

∣

∣

x=0

(3.3.12)
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The first three cumulants are therefore:

κ1 =
z0

2v
√

Dµa

(3.3.13)

κ2 =
z0

4v2
√

Dµa
3

(3.3.14)

κ3 =
3z0

8v3
√

Dµa
5

(3.3.15)

Spatially Resolved Detection

In order to define the TPSF for an annular detector with a finite width, it is neces-

sary to repeat the integration in Eq. (3.3.4). This time, however, the integration is

performed between the inner and outer radius of the detector, ρ1 and ρ2 respectively:

R(ρ1, ρ2, t) =

∫ ρ2

ρ1

RPatterson(ρ, t)2πρ dρ

=

(

exp(−ρ1
2+4Dv2µat2+z0

2

4Dvt
) − exp(−ρ2

2+4Dv2µat2+z0
2

4Dvt
)
)

z0

2
√

πDvt3/2
[Units: W]

(3.3.16)

The medium’s reflectance for an annular detector is then defined by integrating this

equation over all time:

R(ρ1, ρ2) =

∫ ∞

0

R(ρ1, ρ2, t) dt

=z0









exp

(

−
√

µa(z0
2+ρ1

2)
√

D

)

√

z0
2 + ρ1

2
−

exp

(

−
√

µa(z0
2+ρ2

2)
√

D

)

√

z0
2 + ρ2

2









[Units: J] (3.3.17)
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The moment-generating function, M , can then be derived as described for full-field

detection:

s(ρ1, ρ2, t) =
R(ρ1, ρ2, t)

∫∞
0

R(ρ1, ρ2, t) dt

M =

∫ ∞

0

s(ρ1, ρ2, t) exp(xt) dt

=
exp

(

(
√

vµa−
√
−x+vµa)(β1+β2)

β1β2

) [

exp
(√

−x+vµa

β2

)

β1 − exp
(√

−x+vµa

β1

)

β2

]

exp
(√

vµa

β2

)

β1 − exp
(√

vµa

β1

)

β2

(3.3.18)

where β1 and β2 are defined by:

βn =

√

vD

z0
2 + ρn

2
(3.3.19)

3.3.1 The Diffusion Coefficient

The Diffusion Approximation equations derived above all involve the diffusion coeffi-

cient, D, which is defined by the original Patterson et al. paper27 as:

D3 =
1

3µs(1 − g) + 3µa

(3.3.20)

There have been numerous papers published discussing the validity of this definition,

however, with several studies defending Patterson’s definition27,80 and many propos-

ing an alternative derivation excluding the absorption term,81,82 namely:

D0 =
1

3µs(1 − g)
(3.3.21)

In order to define the optimal diffusion coefficient, Morris [71, § 6.8] compared

the errors in the determination of a semi-infinite medium’s absorption and scattering
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coefficients using the first and second cumulants for both the above definitions. His

findings showed that for the first cumulant, the error was smaller when using D3.

Further to this, on solving the equations analytically for an infinite medium, he found

that for the first cumulant, the most accurate definition of the diffusion coefficient

was:

D4 =
1

3µs(1 − g) + 4µa

(3.3.22)

The appropriate value of the coefficient for the second cumulant was determined, also

by Morris, using results from an infinite medium. These results showed that in the

absence of scattering (µs = 0), the second cumulant tended to zero when using D0

and to a non-zero value for D3 [71, § 5.6.1]. In practice, photons in a scatter-free,

infinite medium are said to be ballistic and as such the TPSF would resemble a delta

function centred on the value of the first cumulant, the mean time of flight. All of

the cumulants higher than the first order of such a TPSF will be equal to zero; as

the second cumulant tended to zero when using D0, it can be inferred that this is

therefore the most appropriate value for the diffusion coefficient when calculating the

second cumulant.

It should be noted that these conclusions were drawn at low scattering levels when

the Diffusion Approximation is considered invalid. However, Morris demonstrated

that regardless of this fact, a TPSF created using those “hybrid” coefficients almost

exactly matched a TPSF generated using Monte Carlo data, whereas TPSFs formed
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using either D0 or D3 differed from it significantly.

The hybrid definition for the diffusion coefficient is based on an infinite geometry.

However, when applied to a semi-infinite geometry, Morris showed that this new

definition gave a smaller error in the determination of the absorption and scattering

coefficients than both D0 and D3.

The question remains, however, of which is the more correct definition to use when

calculating the third-order and higher cumulants. Using a similar approach to Morris

as the first and second cumulants, Figure 3.1 shows the values of the third, fourth and

fifth cumulants calculated using the Diffusion Approximation for an infinite geometry

by a detector 10mm from the source. The cumulant values are shown over a range

of both scattering and absorption coefficients, using both D0 and D3 as the diffusion

coefficient. As can be seen, all three cumulants tend to zero for low scattering when

using D0, while measurements using D3 at lower absorptions tend to a non-zero value.

As all the cumulants above the first should be zero for an infinite geometry in the

absence of scattering, it is inferred that D0 is the more appropriate definition of the

diffusion coefficient for κ3, κ4 and κ5. From this result, it will be assumed that the

more appropriate definition for all the cumulants of a higher-order than κ3 is D0.

Furthermore, although this assumption is based on the analysis of an infinite

geometry, it will be extended to define the diffusion coefficient for a semi-infinite

geometry as well. Therefore, the hybrid diffusion coefficient (D4 for κ1 and D0 for all
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Figure 3.1: The third, fourth and fifth cumulants as calculated using the Diffusion
Approximation for an infinite medium using two different diffusion coefficients. The
detector is 10mm from the source and the amount of absorption present is displayed
next to each plot.
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higher-order cumulants) will be used throughout this thesis.

3.3.1.1 Reflectance

The effect of using the hybrid diffusion coefficient in the calculation of a medium’s

reflectance can be shown to be a simple scaling factor. The relationship between the

reflectance calculated using the hybrid coefficient, Rhybrid, and that using D0, RD0 , is

defined in Appendix A as:

Rhybrid

RD0

= exp(−µav∆κ1) (3.3.23)

where ∆κ1 is defined as the change in the value of the first cumulant from using the

two different diffusion coefficients:

∆κ1 = κD4

1 − κD0

1 (3.3.24)

3.3.1.2 TPSFs

The effects of using the hybrid diffusion coefficient instead of D0 on an unnormalised

TPSF are changes in both its expected value and intensity. In order to produce

a TPSF using the hybrid definition, D0 should first be used to calculate an initial

TPSF. This can then be shifted in time by the difference between the first cumulants

as calculated using both D0 and D4, making the TPSF’s mean value equal to the first

cumulant calculated using D4 as the diffusion coefficient. By scaling the resulting

TPSF by the factor shown in Eq. (3.3.23), the TPSF’s intensity will also be equal

to that defined by the hybrid reflectance. Therefore, a hybrid TPSF, Rhybrid(t), is
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defined by:

Rhybrid(t) = exp(−µav∆κ1) RD0(t − ∆κ1) (3.3.25)

where RD0(t) is the initial TPSF calculated using D0 as the diffusion coefficient and

∆κ1 is defined in Eq. (3.3.24).

3.4 Summary

Throughout this thesis, the Diffusion Approximation will be used as a forward model,

describing the propagation of light through scattering media. In this chapter, the limi-

tations of this model were discussed briefly, and the model’s use in this study justified.

Equations describing the light reflected from a semi-infinite medium, dependent on

its scattering and absorption coefficients, were then derived for both full-field and

spatially resolved detection and for the metrics defined in §1.5.

These equations require the definition of a diffusion coefficent, the exact value of

which remains the subject of much debate. In this thesis, different values for the

coefficient are used for different cumulants, as suggested by Morris.71 TPSFs and

reflectances calculated using the Diffusion Approximation will also be affected by the

use of this “hybrid” coefficient. These effects were described analytically.



Chapter 4

System Metrics

4.1 Introduction

The moments, cumulants and reflectance described in the previous chapter are all

metrics from which the medium’s scattering and absorption coefficients can be poten-

tially determined. This chapter will describe the relative advantages of the moments

and cumulants and will therefore determine the metrics that will be studied in this

thesis.

The error analysis performed in Chapter 6, from which the optimum metrics can

be determined, requires the knowledge of these metrics’ dependence on both the

medium’s scattering and absorption coefficents. This dependence will therefore be

described graphically in this chapter for both full-field and spatially resolved detec-

tion. In order to do this, however, the range of skin parameters over which the metrics

will be modelled is considered.

46
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4.2 Potential Metrics

A TPSF is described by an infinite number of moments and cumulants, as well as its

reflectance – these were defined in §1.5. As analysing all of these possible metrics is

inherently impossible, it is necessary to limit the subject of this thesis to a smaller

number. The extent of these limitations will be discussed in this section.

4.2.1 Reflectance

The reflectance of a medium is the most intuitive and commonly used metric available

and requires only a modest hardware system for it to be measured. For these reasons,

it will be one of the metrics investigated in this thesis and will be used as a basis of

comparison against the many studies that have previously made use of it.

4.2.2 Moments and Cumulants

A medium’s absorption and scattering coefficients could feasibly be calculated using

both the infinite sets of the corresponding TPSF’s moments and cumulants. There

are certain mathematical advantages in using cumulants, however:

• The first and second cumulants of a probability density function equate to the

distribution’s expected value and variance respectively. In contrast, only the

first of the moments (which also represents the expected value) has an intuitive

meaning.
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• For a distribution, X, and a constant temporal shift, c:

κi[X + c] =







κ1[X] + c for i = 1,

κi[X] for i ≥ 2.
(4.2.1)

Thus the effect of the shift on the first cumulant is a simple addition, making

the first cumulant shift-equivariant, while the second-order and higher cumu-

lants are shift-invariant.83 This is essential in the calculation of the reflectance

and TPSF using a hybrid diffusion coefficient as explained in §3.3.1. Moments

greater than the first order, however, do not share this shift invariance.

• Cumulants are additive over convolution. This is important in removing the

effects of the shape of the input pulse on the resulting TPSF, as explained

later.

For these reasons, it was decided to analyse the cumulants rather than the mo-

ments as potential metrics.

4.2.3 Spatial Dependence

As light scatters randomly within a medium, it will exit at different points from the

tissue in relation to the position of the incident light. This spatial information can

be maintained by spatially binning the light on detection, thus splitting the full-field

TPSF into several smaller distributions. This has the advantage of increasing the

number of possible metrics. However, this increase also has its disadvantages: the

light received in each spatial bin can be significantly less than the amount detected in
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a full-field configuration, thus greatly reducing the measurables’ signal-to-noise ratios.

This could result in greater inaccuracies in the calculated absorption and scattering

coefficients. This thesis will therefore look at both full-field and spatially resolved

detection as possible regimes when choosing the most appropriate metric pair.

4.3 Tissue Model

The theory presented in Chapter 1 is applicable to any scattering medium. How-

ever, in order to discuss the metrics’ dependence on the medium’s properties – and

ultimately to decide on an optimum set of metrics to calculate their values – it is

necessary to define a range of values for the scattering and absorption coefficients

over which the metrics will be analysed.

The ability to characterise human skin has a number of potential applications as

mentioned in Chapter 1. This thesis will therefore focus on human tissue, and thus

the ranges of the µa and µs coefficients will be defined to match those found within

skin.

Human skin is a complex, heterogeneous tissue whose exact structure varies con-

siderably between people, as well as over each person’s body. However, it is often

modelled as consisting of homogeneous layers whose µs and µa parameters are a mea-

sure of the overall scattering and absorption present within each layer. The layers in

a simplified version of the model described by Cotton and Claridge84 are defined as

follows:
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1. The upper-most layer of the skin is the stratum corneum whose thickness varies

significantly depending on its position on the body – it is thickest in load-bearing

areas such as the soles of the feet. Cotton and Claridge make the assumption

that this layer has no scattering or absorption properties and merely acts as a

diffuser for the incident light.

2. The second layer of skin is the epidermis which, relative to the stratum corneum,

has a comparatively constant thickness. It has been shown by Anderson & Par-

rish85 that scattering within the epidermis is either negligible or highly forward

in nature. They also found that the absorption within the epidermis was pre-

dominantly due to the layer’s melanin content.

3. Below the epidermis is the papillary dermis which consists mainly of blood cap-

illaries and a fine “network” of collagen fibres. These fibres make the papillary

dermis highly scattering in nature.

4. The lowest layer of interest within human skin is the reticular dermis, consisting

of thicker arterial and venous vascular structures, as well as thicker bundles of

collagen fibres. As these bundles are large compared to the wavelength of the

light, the light will experience highly forward scattering to such an extent that

it is assumed that no light will be returned from the reticular dermis. It is

therefore unnecessary to investigate the structure of skin below this layer.
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Cotton and Claridge later refined their model to separate the papillary dermis

into four distinct layers depending on the presence of melanin within the dermis.86

However, this is not covered here.

The problem with this model, however, is that with each layer having its own

scattering and absorption properties, the number of unknowns within the model would

be too great to investigate initially. Therefore, a single-layered model was used whose

parameters approximated the overall scattering and absorptive effects of human skin.

The model used within this thesis was therefore a semi-infinite, single-layered, ab-

sorbing medium containing scattering particles with an anisotropy factor, g, assumed

to be constant at a value of 0.9, as stated by Meglinskĭı and Matcher.87 A refractive

index, n, of 1.4 was modelled indirectly by defining the speed of the light within the

medium according to Eq. (3.3.2).

Skin is a complex tissue, and there are large variations in its structure and thick-

ness. This therefore means that it can possess a large range of potential absorption

and scattering coefficients, which should be completely covered by the simulations.

The findings of several papers87–89 were therefore compared to find the extent of this

range. Simpson et al.43 found the skin’s absorption coefficient to reach as low as

0.01mm−1, whereas Anderson & Parrish90 stated that it can be as high as 2mm−1.

Meanwhile, Jacques91 recorded a sample of skin’s scattering coefficient to be as low

as 18.7mm−1, and Anderson & Parrish90 again found the upper limit to be 140mm−1.
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The ranges for the model’s scattering and absorption coefficients are therefore shown

below:

15mm−1 ≤ µs ≤ 150mm−1 (4.3.1)

0.01mm−1 ≤ µa ≤ 2mm−1 (4.3.2)

In the case of spatially resolved detection, it is also necessary to determine the

maximum source-detector distance, ρmax, up to which the metrics will be investigated.

This was achieved by studying the relationship between ρ and the detected intensity

– the spatial distribution. As a decrease in the intensity of detected light corresponds

to a decrease in the signal-to-noise ratio, the maximum distance can be chosen as

the distance beyond which the intensity drops below a threshold level – it would be

unlikely that sufficient light would be detected below this threshold to enable accu-

rate measurements of the TPSF’s metrics. However, as the spatial distribution is

dependent on both the medium’s scattering and absorption, this maximum distance

will vary for different µs and µa values. Therefore, in order to maximise the useful

range of source-detector distances, the value of ρmax should be defined for the dis-

tribution that minimises the drop in intensity as ρ increases. The lowest absorption

coefficient of interest, defined in Eq. (4.3.2) as 0.01mm−1, should therefore be used

to produce this distribution. The relevant scattering coefficient is less immediately

obvious, however, and so Figure 4.1 shows four spatial distributions over the range of

scattering coefficients set in Eq. (4.3.1). The reflectances shown are calculated for a
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Figure 4.1: The spatial distribution of light reflected from a semi-infinite medium with
an absorption coefficient of 0.01mm−1 for various scattering coefficients. The value of
the scattering coefficient is displayed next to each curve. The reflectances shown are
calculated for a detector size of 0.1mm2, independent of the source–detector distance.

detector size of 0.1mm2, independent of the source–detector distance.

The variation of the reflectance with source–detector distance will be described

fully in §4.4. However, it can be seen from Figure 4.1 that beyond a source–detector

distance of 1mm the reflectance decreases as the scattering coefficient, µs, increases.

The increased scattering causes more photons to be scattered out of the medium near

to the source. As well as this, the photons exiting the medium far from the source

will have travelled a much longer pathlength, and so will be more affected by the
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medium’s absorption. In this case, the back-scattered light is therefore maximised

(for source–detector distances over 1mm) for the smallest scattering coefficient in

Eq. (4.3.1), 15mm−1.

The maximum source–detector distance was therefore chosen to be 10mm, at

which point the maximum reflectance over the range of scattering and absorption

coefficients defined in Eqs. (4.3.1) and (4.3.2) had dropped to around 4 × 10−5 %.

4.4 Metric Dependence on Scattering, Absorption

and Source–Detector Distance

It is now known which metrics are to be examined in this thesis and the ranges of

variables over which they will be modelled over. However, before the measurables are

investigated for their suitability in determining a medium’s absorption and scatter-

ing coefficients, it is useful to demonstrate how these metrics vary over the chosen

scattering, absorption and, in the case of spatially resolved detection, source–detector

distance ranges. This section will therefore describe the metrics’ dependence on these

parameters.

4.4.1 Full-field Detection

The reflectance and first three cumulants are described for full-field detection using

the Diffusion Approximation by Eq. (3.3.5) and Eqs. (3.3.13) to (3.3.15). Substituting

the hybrid definition of the diffusion coefficient (D4 for κ1 and D0 for all higher-order
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cumulants – as explained in §3.3.1) and the definition of z0 from Eq. (3.3.3) into

these equations, as well as taking into account the corresponding scaling factor for

the reflectance (§3.3.1.1), the equations become:

R = exp

(

−
√

3µaµ′
s +
√

(3µ′
s + 4µa)µa

2µ′
s

)

(4.4.1)

κ1 =

√

4 + 3µ′

s

µa

2vµ′
s

(4.4.2)

κ2 =

√
3

4v2
√

µa
3µ′

s

(4.4.3)

κ3 =
3
√

3

8v3
√

µa
5µ′

s

(4.4.4)

where µ′
s is the reduced scattering coefficient, defined as:

µ′
s = µs(1 − g) (4.4.5)

The equation for the TPSF shown in Eq. (3.3.4) can also be altered to use the

hybrid definition of the diffusion coefficient – as demonstrated in Eq. (3.3.25) – to

give:

R(t) =

(

√

6

π

) vµ′
s exp

(

− 3µa

2
(√

3µaµ′

s−
√

µa(3µ′

s+4µa)+2vµaµ′

st
) − µavt

)

(√
3µaµ′

s−
√

µa(3µ′

s+4µa)+2vµaµ′

st

µa

)3/2
(4.4.6)

The metrics’ dependence on the absorption coefficient will be investigated first,

with Figure 4.2 showing the effects of the absorption coefficient’s value on a TPSF.

The TPSFs are shown in terms of power rather than energy as this removes the

need to specify a size of time bin. It has been shown in §1.4 that absorption can
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be added to a TPSF by its multiplication with a decaying exponential of the form

exp(−µavt). The attenuation is greater at larger time values as photons arriving later

in the TPSF will have travelled further in the medium and so will be more affected by

the additional absorption. This has the effect of reducing the TPSF’s intensity, width

and mean photon flight time. These effects can be seen in more detail in Figure 4.3,

which shows the variation of the reflectance and first three cumulants with absorption

coefficient for several values of scattering coefficient.

As demonstrated by the TPSFs, Figure 4.3 shows the reflectance decreasing with

increasing absorption, with the rate of change being much higher for low values of µa:

once the TPSF’s tail has been attenuated by a small amount of absorption, further

increases in absorption will have less effect on the TPSF’s overall intensity. This trend

is more pronounced for the first cumulant. Despite the tail’s relatively low intensity,

its photons’ long flight times will have a marked influence on the mean flight time. A

small increase in the absorption will cause these photons to be strongly attenuated in

comparison to the photons arriving earlier in the TPSF, reducing their contribution

to the mean time of flight and thus causing the first cumulant to rapidly decrease.

In other words, an increase in absorption will reduce the probability of photons with

longer pathlengths being detected, and so the mean flight time will reduce.

An increase in absorption has the effect of making a TPSF narrower, as shown

in Figure 4.2. The corresponding reduction in probability of photons with longer
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Figure 4.2: The effect of the absorption coefficient’s value on a TPSF. The TPSFs
shown were calculated using the Diffusion Approximation for full-field detection, using
a scattering coefficient of 15mm−1.
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Figure 4.3: Plots of the reflectance and first three cumulants against the absorption
coefficient, as calculated using the Diffusion Approximation for full-field detection.
The legend shows the value of scattering coefficient for each plot and corresponds
to all four graphs. Note that the second and third cumulants are displayed over a
smaller range of µa values for clarity.
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pathlengths results in a smaller range of pathlengths being detected, which in turn

causes a reduction in the second cumulant, the variance. Taking this to an extreme,

for a very high level of absorption, only photons that are scattered quickly out of the

medium will be detected, resulting in a very small variance in photon flight times. The

shapes of the second cumulant’s plots in Figure 4.3 are determined by the metric’s

proportionality to µ
−3/2
a as defined in Eq. (4.4.3). Higher-order cumulants follow a

similar form, with the power of the absorption coefficient decreasing by one each time,

thus giving:

κn ∝ µa

1

2
−n for n ≥ 2 (4.4.7)

The gradients of the higher-order cumulants against the absorption coefficient there-

fore become steeper as the order of the cumulant increases. This is because higher-

order cumulants are more dependent on the TPSF’s tail, which in turn is more sus-

ceptible to attenuation by absorption.

The effect of the value of the scattering coefficient on a TPSF is shown in Fig-

ure 4.4. As µs increases, photons will be scattered out of the medium sooner due

to the increased frequency of the scattering events. The decrease in the length of

time each photon spends within the medium means that they will be less attenuated

due to absorption, thus causing the intensity of light reflected from the medium to

increase. As a result of these effects, the TPSF will become narrower and its intensity

will increase with increasing scattering.
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Figure 4.4: The effect of the scattering coefficient’s value on a TPSF. The TPSFs
shown were calculated using the Diffusion Approximation for full-field detection, using
an absorption coefficient of 0.001mm−1.
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Figure 4.5: Plots of the reflectance and first three cumulants against the scattering
coefficient, as calculated using the Diffusion Approximation for full-field detection.
The legend shows the value of absorption coefficient for each plot and corresponds to
all four graphs. For completeness, a larger range of scattering coefficients than will
be used within this thesis is discussed here.
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These effects can be seen in more detail in Figure 4.5 which shows a larger range

of scattering coefficients than will be used within this thesis, in order to present a

complete picture of the metrics’ variations with µs. The rate of change of the first

cumulant, the mean photon flight time, can be seen to be much greater at lower

scattering levels than for higher values. The effect can be thought of as obeying the

law of diminishing returns: as the scattering level increases, the number of photons

not scattered straight out of the medium will decrease, and thus there will be fewer

photons remaining that can be affected by further increases in µs. The rate of change

in the reflectance is steeper for lower scattering levels for similar reasons, except for at

high absorption levels: as can be seen by the TPSFs in Figure 4.4, at low scattering

levels the eventually back-scattered photons will spend longer in the medium, and so

in the case of high absorption will be heavily attenuated.

The second cumulant can be seen to decrease with increasing scattering: the

decrease in the probability of photons with longer flight times being detected leads

to a decrease in the range of flight times and thus the variance. The third cumulant

also follows this form. In fact, in can be seen from Eqs. (4.4.3) and (4.4.4) that all

cumulants above the first order are proportional to µ
−1/2
s , with only the constant of

proportionality changing between orders. Again, this fits with higher-order cumulants

relying more heavily on the TPSF’s tail which can be seen to decrease with increasing

scattering.
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As the value of the scattering coefficient tends to zero, the photons entering the

medium will experience minimal scattering and so will spend a long time in the

medium. As a result, the width of the TPSF, and thus the cumulants, will tend to

infinity. The light that is detected will be heavily affected by the medium’s absorption

and so the reflectance will tend to zero.

Note that in the extreme case of a scatter-free medium, photons will never leave

the sample due to its semi-infinite nature. Therefore, the reflectance and cumulants

will equal zero.

4.4.2 Spatially Resolved Detection

The TPSF and reflectance of a medium for spatially resolved detection are described

using the Diffusion Approximation by Eqs. (3.3.16) and (3.3.17), while the moment

generating function is given in Eq. (3.3.18).

The effect of absorption will not be discussed in detail in relation to spatially

resolved detection as this has been fully covered during the analysis of the full-field

regime; its effects on a TPSF, and therefore the TPSF’s metrics, is considered rela-

tively intuitive.

The effect of the scattering coefficient on a TPSF for spatially resolved detection

is shown in Figure 4.6 for an annular detector with radius 2.9–3.0mm centred on the

source. At low scattering levels, scattering events will occur relatively infrequently,

and so photons will spend a long time in the medium. As a result, the corresponding
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TPSF will have a relatively low amplitude, due to the increased effect of the medium’s

absorption, and a high variance due to the large range of flight times of the detected

photons. At high scattering levels, photons will undergo frequent scattering events

and so will be scattered out of the medium closer to the source. Photons that remain

in the medium will also take longer to reach the detection point due to the increased

scattering and so will be more susceptible to the medium’s absorption. The resulting

TPSF will therefore also have a low intensity and high variance, while its mean time

of flight will be greatly increased.

For scattering levels between these two values, there is a trade-off between the two

effects on the photon transport in the medium. It follows that for any spatial bin off-

axis from the source, there should be an optimum level of scattering which will cause

the most photons to be scattered sufficiently to reach the point of detection without

overly increasing the pathlength and causing excess attenuation by the medium’s

absorption. (The mid-scattering level in Figure 4.6 does not represent the optimum

value of scattering coefficient, merely the middle point between the low and high

scattering levels. However, it still shows a large increase in the intensity compared to

the low and high scattering level TPSFs.)

The optimum scattering levels can be seen in the reflectance plots in Figure 4.7

for the two more distant spatial bins. The furthest spatial bin shown in the plots

corresponds to the TPSF in Figure 4.6, and so by looking at the reflectance plot, it
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Figure 4.6: The effect of the scattering coefficient’s value on a TPSF for spatially
resolved detection. The TPSFs shown were calculated using the Diffusion Approx-
imation using an absorption coefficient of 0.001mm−1 and an annular detector with
radius 2.9–3mm centred on the source. For completeness, the range of scattering
coefficients discussed here extends below that which will be used within this thesis.

µs (mm−1)

R
efl

ec
ta

n
ce

0 20 40
0

0.01

0.02

0.03

 

 

2.9-3mm

1.5-1.6mm

0-0.1mm

κ
1
(s

)

µs (mm−1)

0 20 40

×10−10

0

0.5

1

µs (mm−1)

κ
2
(s

2
)

0 20 40

×10−20

0

0.5

1

1.5

µs (mm−1)

κ
3
(s

3
)

0 20 40

×10−30

0

2

4

6

8

Figure 4.7: Plots of the reflectance and first three cumulants against the scattering
coefficient, as calculated using the Diffusion Approximation for spatially resolved
detection using an absorption coefficient of 0.001mm−1. The legend shows the inner
and outer radii of the annular detector centred on the source and corresponds to
all four graphs. For completeness, the range of scattering coefficients discussed here
extends below that which will be used within this thesis.
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can be seen that the optimum scattering level for the TPSF is around 5mm−1. An

optimum level can similarly be seen for the annular detector with radii 1.5–1.6mm.

For on-axis (0–0.1mm) detection, however, no such optimum can be seen. In this case,

an increase in the scattering levels will merely cause more photons to be scattered

out of the medium nearer the source, thereby minimising the time spent within the

medium and therefore the attenuation due to the medium’s absorption. This will

therefore maximise the reflectance on-axis.

In Figure 4.7, both the photons’ mean flight time and flight time variance can be

seen to tend to infinity as the scattering level tends to zero, regardless of the spatial

binning used. This was explained, along with the extreme case of a scatter-free

medium at the end of §4.4.1.

As the scattering levels increase, the mean and variance can be seen to increase for

off-axis spatial detection as the photons that are not absorbed take longer to scatter

out of the medium, and will take a greater range of pathlengths, thus increasing the

variance. However, this is not observed for on-axis detection: for high scattering

levels, the mean photon flight time will decrease as photons are scattered out of

the medium nearer the source. This will also lead to a smaller range of photon

pathlengths, thus reducing the variance.

The effect of the source–detector distance on a TPSF can be seen in Figure 4.8.

As the radii of the annular detector increase, the photons detected will travel further
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Figure 4.8: The effect of the source–detector distance on a TPSF. The TPSFs shown
were calculated using the Diffusion Approximation, using an absorption coefficient
of 0.001mm−1 and a scattering coefficient of 15mm−1. Note that the full range of
source–detector distances used in this thesis are not displayed here for purposes of
clarity.
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Figure 4.9: Plots of the reflectance and first three cumulants against the source–
detector distance, as calculated using the Diffusion Approximation using an absorp-
tion coefficient of 0.001mm−1. The legend shows the value of scattering coefficient
for each plot and corresponds to all four graphs. Note that the full range of source–
detector distances used in this thesis are not displayed here for purposes of clarity.
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in the medium and will take a greater range of pathlengths, causing both the peak of

the TPSF to be shifted later in time and its width to increase. This corresponds to

an increase in both the mean photon flight time and the variance. The change in the

reflectance, however, can be seen to be more complex. For a constant detector size,

the spatial distribution can be seen to follow the plots in Figure 4.1 on page 53. For

a constant level of scattering, the reflectance will naturally decrease as the source–

detector distance increases: photons are more likely to scatter out of the medium

closer to the source, and photons detected further away will have travelled further in

the medium and so will have been attenuated more by the absorption. An increase

in scattering will lead to an increase in the number of photons leaving the medium

nearer the source, resulting in increased reflectance for low source–detector distances

and decreased reflectance for higher values of ρ, which explains the crossing of the

plots for different scattering levels near the source.

However, when using annular detectors of a constant width, the areas of the

detectors will vary: an annular detector with smaller radii will have a smaller area

and so the number of photons it detects will be reduced. This effect can be seen

in Figure 4.9 in which the metrics have been calculated against the source–detector

distance using an annular detector with a constant width (the distance between the

inner and outer radii) of 5µm at each spatial point. The plots of reflectance, although

reducing with increasing spatial distance as expected, can be seen to also reduce at
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low source–detector distances – this is the effect of the smaller detector area at this

distance. Thus, the TPSF for on-axis detection (0–0.005mm) in Figure 4.8 can be

seen to be much smaller than that at 1.5mm from the source.

The spatial position of the peak reflectance, below which the detector’s smaller size

becomes a limiting factor, can be seen to reduce as the scattering level increases. This

is because the area over which the majority of the photons are reflected will reduce as

the scattering increases and photons are scattered out of the medium sooner. This can

be seen by the flattening of the plots at low source–detector distances in Figure 4.1 on

page 53. The point below which the rate of change in reflectance begins to decrease for

decreasing source–detector distance is approximately the point below which the effect

of the reduced detector area will have a marked effect on the reflectance. Therefore,

this point will decrease in distance from the source for increased scattering.

As explained for the corresponding TPSFs, the mean photon flight time and vari-

ance will increase with both increasing scattering and spatial distance as photons

travel further in the medium before being scattered out. It can be seen in Figure 4.9

however, that at small source–detector distances, the first cumulant decreases as µs

increases. This was demonstrated in Figure 4.7.

4.5 Summary

In this chapter, the metrics that will be analysed in this thesis were determined.

The medium’s reflectance was chosen for its prevalence in existing characterisation
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methods, while the cumulants’ intuitive meanings and useful mathematical properties

(such as shift-invariance and additivity over convolution) resulted in their choice over

the moments. The chapter then described the relative advantages of full-field detec-

tion (higher signal-to-noise ratios) and spatially resolved detection (more potential

metrics), from which the analysis of both regimes was justified.

The range of scattering and absorption coefficients which the thesis will investigate

was determined by focussing on the study of human skin. Possible ranges of the optical

coefficients were then determined from existing literature.

Finally, to increase understanding of the results of the error analysis in Chapter 6,

the dependence of the metrics in question on a medium’s scattering and absorption

coefficents were investigated graphically.



Chapter 5

The Streak Camera

5.1 Introduction

After choosing the metrics of interest for the determination of a medium’s scattering

and absorption properties, the next stage is to investigate how these metrics may be

measured using a time resolved system. This comes with its own challenges: since a

typical TPSF lasts in the order of nanoseconds, it is essential to record the arrival

times of photons with a picosecond resolution, far less than the maximum frame

rates associated with a typical CCD camera. One such instrument capable of this

high resolution is a streak camera, which this chapter will focus on.

The purpose of this chapter is to ascertain the noise characteristics of a typical

streak camera and calculate the effect these will have on the metrics of interest. Using

this information, measurements under realistic noise conditions can be modelled. This

will be achieved by the analysis of the noise sources within a streak camera. This

sequence of noises will then be modelled, allowing its effects on a typical TPSF to be

69
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Figure 5.1: The configuration of a standard optoelectronic streak camera.19 Image
reproduced with permission of Hamamatsu Photonics K. K.

investigated. The effects of using a streak camera to attain the potential metrics over

the entire parameter range can then be calculated.

The structure of this chapter is as follows. The configuration of a typical streak

camera is described in §5.2, and its sources of noise identified. The sources of noise

outside the streak camera such as the light source and losses due to scattering and

absorption in the medium are also considered here. The generalised effects of each

type of noise on TPSFs are covered in §5.5.2. The methods used to model the streak

camera are then described in §5.5.3, along with the effects of a typical TPSF’s “detec-

tion” by the camera on its metrics. This model is then applied to the entire optical

coefficient ranges in §5.5.4, to produce a map of errors against the scattering and

absorption coefficients for each metric.

5.2 Configuration of a Streak Camera

The configuration of a standard optoelectronic streak camera is described in both

Figures 5.1 and 5.2, with the latter also showing the noise distributions for each stage
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Figure 5.2: The configuration of a standard optoelectronic streak camera in flowchart
form, along with the type of noise added at each stage. The first two stages are shown
in grey as they occur outside the streak camera.
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which will be discussed in §5.5.1. Light first travels through the streak camera’s

input optics. These consist of a slit, which allows a 1-dimensional line image of the

light input to be taken, and a lens to focus these photons onto a photocathode at

one end of a streak tube. The photocathode, according to the photoelectric effect,

converts the photons to electrons which are then accelerated along the tube by an

electrically-charged accelerating electrode.

The accelerated electrons then pass through a pair of sweep electrodes. Variation

of the voltage across these plates, and thus the electric field, over time will cause

the electrons passing through the electrodes to be deflected by different amounts.

Therefore, the application of a linear voltage ramp across the electrodes will cause a

deflection linearly proportional to the arrival time of the electrons, thereby sweeping

the electrons over one of the CCD’s axes.

Before reaching the end of the streak tube, the electrons pass through a microchan-

nel plate (MCP). This electron multiplier increases the number of electrons passing

through it via a process which will be explained later. The MCP’s gain is dependent

on the strength of the electric field applied across it. The electrons emitted from the

MCP are then converted back to photons by a phosphor screen. These photons are

then focussed onto the surface of a CCD camera.

The result is a two-dimensional image of a one-dimensional line input, with the

second dimension containing the temporal information of the detected light. Due



73

to the finite number of pixels on the CCD, the image will be binned in both the

spatial (horizontal) and temporal (vertical) axes, with the resolution of each of the

axes dependent on the number of pixels in each direction on the CCD. The result is

a binned TPSF for each of the image’s spatial bins.

5.3 The Complete System

In order to fully understand the methods used to analyse scattering media, it is

necessary to describe the use of the streak camera described above in a complete

system. This requires a description of two of the system components, namely the

light source and the component used to deliver the emitted light from the surface of

the medium to the detector.

Light Source

The light source used in this hypothetical system is modelled as a 633nm laser. It

will be shown that the laser must be capable of providing 16nJ pulses (§5.5.3.1 on

page 106) within a space of time less than 20% of the shortest streak camera sweep

time (§5.5.1). This gives a minimum pulse length of 40ps, giving the laser a power

rating of 400W.

Light Delivery Component

It is necessary to consider how to detect light emitted from a medium using a streak

camera considering the latter’s slit input. In the case of full-field detection, a lens can
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be used to focus the incoming light into the streak camera’s slit. This will, however,

attenuate the light due to the lens’ imperfect spectral transmittance: a measure of the

intensity of light transmitted through the lens relative to the intensity of incident light

as a function of the wavelength of the light. As modern lenses have transmittances

of over 95%, this attenutation effect is not considered in this thesis.92

The ability to take spatially resolved measurements from a medium using a streak

camera is more complicated, however. The simplest method would be to take a radial

measurement directly using the streak camera’s slit input, as shown in Figure 5.3a.

The recorded data could then be split into spatial bins and normalised for area. The

simplicity of this method, however, would be outweighed by the relatively small area

of the medium’s surface “imaged”, resulting in low levels of light received by the

camera.

It is therefore better to employ annular detection, with which more of the light

emitted from the medium’s surface can be captured. This can be achieved using a

circular bundle of optical fibres placed just above the surface of the medium. The

opposite ends of fibres forming an annulus at the medium’s surface can then be

grouped together and be used to form a linear, spatial bin in the streak camera’s

slit, as demonstrated in Figure 5.3b. Note that in this figure, only one incomplete

set of fibres is shown for simplicity. This method does not come without limitations

however: not all emitted light will be accepted into the fibres due to their limited
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Figure 5.3: Two methods of light detection using a streak camera. In both figures,
the surface of the medium is on the same plane as the paper; the thick black rect-
angle represents the camera’s slit input; and the red dot signifies the position of the
light input to the medium. In (a), radial detection is implemented directly into the
streak camera’s slit, whereas (b) demonstrates the more-complicated case of annular
detection. In this latter case, optical fibres are used to deliver the light into the streak
camera’s slit. In this figure, only a small number of fibres are shown for simplicity.



76

acceptance angles, and light that is accepted will be attenuated inside the fibres.

The use of fibres, and their attenuating effect on the light emitted from the

medium, can be avoided using a mask for each required annular detection. Such

a mask would absorb the light emitted from the medium except for in an annular

“window”. Light passing through this window can then be focussed into the streak

camera’s slit input using a lens, as for full-field detection. The disadvantages to this

method are the time and number of masks required to detect light from each of the

annuli. Determination of a small number of annuli of interest, however, as is achieved

in this thesis, can limit the extent of these issues.

In order to avoid the complications introduced by the use of optical fibres, this

hypothetical system is designed around the use of the mask apparatus as described

above.

5.4 Noise on the Initial TPSF

In order to rigorously characterise the errors introduced when using the streak camera,

it will be necessary to investigate two potential sources of noise in the signal before

it reaches the camera system: the light source and the sample being analysed. These

are both shown in Figure 5.2.
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Light Source

There will be a distribution in the number of photons emitted by the source of light

used to illuminate the sample. Its intensity can therefore be characterised by shot

noise.

Note that there is no requirement for the light pulses to be an approximation to a

Dirac delta function, as required by the Diffusion Approximation27 – it can be shown

that the effect of the shape of the input pulse on the resulting TPSF (and therefore

its cumulants) can be negated by a subtraction of the pulse’s cumulants.93 The limit

to the width of the pulses therefore comes from the streak camera’s selected sweep

time.

Sample Attenuation

Light entering the sample from the source is subject to both scattering and absorption

losses. Scattering losses occur when photons leave the medium in a different position

to the detector, thereby escaping detection, whereas absorption losses are dependent

on the path length of the light through the medium, as described by the Beer–Lambert

Law. The effect of these losses is that, even for an ideal light source, the TPSF emitted

from the sample will not vary smoothly over time. The corresponding noise can be

determined by looking at each of these losses in turn.

As a result of scattering losses, each photon travelling through an absorption-

free medium will have a certain probability, p, of reaching the detector, making it



78

a Bernoulli trial. As this probability does not change between successive photons,

and each trial is independent, a sequence of more than one trial can be considered a

Bernoulli process. As such, the number of photons detected is given by a binomial

distribution, where n, the number of photons entering the sample, is determined for

each light pulse by the light source’s shot noise. Therefore, the probability of detecting

k photons, Pr(k), when n photons are incident on the sample is:

Pr(k) =

(

n

k

)

pk(1 − p)n−k (5.4.1)

where p is the probability of success in each individual trial and

(

n

k

)

=
n!

k!(n − k)!
(5.4.2)

otherwise known as the binomial coefficent.

In order to validate this assumption, 10,000 Monte Carlo simulations, each of 2000

photons, were performed for a scattering, absorption-free, medium. The number of

photons detected in each simulation was recorded and the mean of these values used

to calculate p for the medium simulated:

p =
mean number of photons detected

n
(5.4.3)

where n is the number of photons input to the sample.

Figure 5.4 shows a clear match between the distribution of photons detected from

the Monte Carlo simulations and a binomial distribution created using the parameters

defined above.
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Figure 5.4: A histogram showing the number of photons reflected from a purely
scattering, semi-infinite medium over 10,000 simulations of 2000 photons each. A
circular detector was modelled in reflection mode with a width of 1000 mean free
paths. A binomial distribution using parameters derived in Eq. (5.4.3) is also shown
in red.

In order to add noise to an ideal TPSF, the total number of photons in the TPSF

was chosen from a binomial distribution, as the same number of photons would not

be detected each time. The temporal bin in which each photon appeared was then

selected by first converting the ideal TPSF into a cumulative distribution function

(CDF). The time of arrival for each photon was then found by selecting a uniformly

distributed value between the values of zero and one, and applying this as a probability

on the CDF, as can be seen in Figure 5.5. This was repeated for each photon and
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Figure 5.5: A cumulative distribution function in blue, as calculated from a TPSF in
green. The red lines show the selection of a uniformly distributed random probability
to give a time of arrival for each photon.

the resulting times binned to create a TPSF with noise due to scattering losses.

Absorption can then be added to the TPSF by means of a decaying exponen-

tial as explained in §1.4. This attenuation is proportional to the exponential of the

pathlength of each photon in the medium. One could presume, therefore, that the

absorption process may add further noise to the TPSF, as the attenuation applied to

each photon will not be constant. However, the attenuation will reduce the level of

both the noise and the signal in equal proportions as shown in Figure 5.6.
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Figure 5.6: A demonstration of the effect of absorption on a typical TPSF. The
blue curve shows a TPSF formed under the presence of scattering losses, while the
red curve shows the same TPSF with absorption added in the form of a decaying
exponential.

5.5 Errors Due to a Streak Camera

At each stage of the streak camera, a different source of error will be added to the

incoming TPSF. The modelling of these errors allows the effects of the streak camera

on some of the metrics that can be potentially used to calculate the turbid medium’s

characteristics to be investigated. This section will therefore firstly look at each of

the streak camera’s different error sources in turn and how each type of noise will

affect the metrics. A commercially available streak camera will then be modelled
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numerically and its effects on each of the metrics calculated. Finally, this process will

be repeated over the entire parameter range. This will eventually allow the optimum

pair of metrics in the determination of the absorption and scattering coefficients of a

turbid medium to be selected in the case where a streak camera is used.

5.5.1 Sources of Noise

In this section, the sources of noise are described for each stage of a typical streak

camera. A summary of the streak camera stages, along with the types of noise caused

by each, can be seen in Figure 5.2.

Input Optics

The input optics in a streak camera consist of a slit section and a lens. As well as

altering the path of the incoming photons, the lens will have a spectral transmittance.

Due to the discrete nature of photons, this transmittance can be considered to be the

probability of any single photon passing through the lens. Similar to the effect of the

sample attenuation as discussed earlier, this means that each photon is undergoing

a Bernoulli trial, and so the number of photons succesfully passing through the lens

can be modelled using a binomial distribution, with the binomial parameter p equal

to the transmittance at the photons’ wavelength.

However, unlike the case of the sample’s attenuation, the input optics have no

effect on the photons’ position in time. The successful transmission of each photon can

therefore be treated as independent of each other, and as such, the number of photons
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in each temporal bin can be decided according to its own binomial distribution defined

by the lens’ transmittance.

Photocathode: quantum efficiency

The photocathode converts incident photons into electrons via the photoelectric effect.

Within this process, photons incident on the cathode are absorbed and their energies

passed onto the electrons within the medium. If the energy of a photon (which is

dependent on the wavelength of the light) is enough to overcome the corresponding

electron’s work function – the minimum energy required to free the electron from the

medium – it will be ejected from the cathode. This process is called photoemission.94

However, not every photon above the threshold frequency incident on the photo-

cathode will cause an electron to be emitted, giving rise to the cathode’s quantum

efficiency. This is defined by the Spicer Three-Step model95 as the product of three

probabilities:

QE = PαPT PE × 100% (5.5.1)

where Pα is the probability that a photon will successfully yield a free electron from

the cathode, PT the probability that this free electron will reach the surface with

sufficient energy to escape and PE the probability that it will escape. The model is

presented here merely as an explanation of the mechanisms behind the photocathode’s

quantum efficiency; in practice, the properties of the photocathode are not published
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in sufficient detail to enable its use. The photocathode’s quantum efficiency is in-

stead published as a single probability and so the emission of each photon must be

considered as a Bernoulli trial. The number of successful photoemissions is therefore

given by a binomial distribution.

Note that the quantum efficiency is sometimes quoted as the radiant sensitivity,

which is a measure of the current produced by the escaping electrons per watt of

incident power on the cathode. It is related to the quantum efficiency by the following

equation:96

QE =
1.24 RS

λ
× 100% (5.5.2)

where RS is the radiant sensitivity in mAW−1 and λ is the wavelength of the incident

light in nm.

Photocathode: dark current

Even in the total absence of light, a photocathode will still emit electrons due to

the ever-present thermal energy overcoming the cathode’s low work function. Dark

current can be given in the standard units of current (amperes) or in the number of

electrons (counts) per second – the count rate.

Microchannel Plate

The microchannel plate (MCP) is a bundle of long, thin, glass capillaries, the internal

surface of each is coated with a secondary electron emitting material. A high voltage

is placed across the length of the MCP. After an electron, already accelerated towards
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the MCP by electrodes in the photomultiplier tube, enters one of these “channels”

it will inevitably strike the inner wall due to each capillary’s small diameter. The

accelerated electron will contain enough energy to induce the emission of several

secondary electrons in a process known as secondary emission. Due to the high voltage

across the MCP, these secondary electrons will be accelerated down the channel,

producing further collisions with the walls, causing further electrons to be emitted.

As the number of electrons emitted during each collision is dependent on the speed

of the primary electron in each secondary-emission process, the overall gain can be

controlled by the strength of the potential across the MCP.

Due to the random nature of the collisions within the MCP, the overall gain will

be different for each primary electron, leading to a distribution in the number of

electrons exiting the MCP. This distribution is dependent on the statistics of each

of the secondary emission events which in turn are dependent on factors such as the

energy of the incident electron and the secondary electron emitting material used,

making the final distribution very difficult to deduce. The assumption is often made

that the number of electrons emitted from the MCP will follow a Poisson distribu-

tion.97–99 However, it has been shown that the gain has the form of an exponential

distribution,100–102 defined by:

f(x) =











1

µg

exp

(

− x

µg

)

, x ≥ 0,

0, x < 0.

(5.5.3)

where µg is the mean gain value. Due to the negative term within the brackets, this
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equation is often described as the negative exponential distribution.

Note that this distribution defines the number of photons emitted from the mi-

crochannel plate as a result of a single photon input. The distribution of the total

number of photons emitted from the MCP after an input of n photons is therefore

a sum of n exponential distributions. This is equal to a gamma distribution103 with

shape parameter n and scale parameter µg. The exponential distribution is in fact a

special case of the gamma distribution with a shape parameter n = 1.

The output of the MCP will therefore be modelled as a Gamma distribution.

Temporal Dispersion

An impulse of light incident on a streak camera will not correspond to a single point

on the camera’s phosphor screen: the temporal pulse will spread out as it travels

through the instrument. This is due to several reasons:104,105

• Photons entering the streak camera will be diffracted by differing (albeit small)

amounts by the input slit. This will cause the photons to travel different dis-

tances between the slit and the system’s photocathode which will introduce a

distribution of flight times for the individual photons.

• Electrons leaving the photocathode are accelerated along the streak tube by

an electrode. However, due to their differing initial speeds on emission from

the photocathode, the electrons will take different times to reach the system’s

microchannel plate.
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• The electron bunch emitted from the photocathode will broaden due to the

Coulomb repulsion experienced between electrons.

• The streak camera’s microchannel plate will have a finite temporal response.

• A single electron will not result in a point of light emitted by the streak camera’s

phosphor screen due to the screen’s finite spatial response.

The temporal resolution of the streak camera can therefore be modelled as a

Gaussian distribution whose variance is defined by the combination of the effects

listed above.104,106,107

Trigger Jitter

While discussing the temporal resolution of the streak camera, it is also appropriate

to mention the system’s other temporal effects: each time an event is repeated and

recorded by the streak camera, its image will appear in a slightly different position

on the phosphor screen. This is due to slight variations in the timing systems used

in the streak camera, such as the sweep circuit, and is known as the trigger jitter.

One solution to this problem is to split the input pulse of light into a reference

pulse and a diagnostic pulse.56,108 The reference pulse is delivered straight to the

camera, bypassing the sample with an adjustable time delay, while the diagnostic

pulse is incident on the sample as usual. Both pulses then appear on the streak

image, with the reference pulse’s delay adjusted to make it sufficiently close to the
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diagnostic pulse to maximise the image’s temporal resolution, but not so close as to

affect the shape of the diagnostic pulse. The position of the diagnostic pulse is then

known relative to the position of the reference pulse, meaning that by performing

cross-correlation on the reference pulse portion of the streak images, the effects of

jitter can be ignored for all the moments and hence cumulants.

It will therefore be assumed that this method is used during streak camera detec-

tion. This will inherently mean that a proportion of the CCD will be used to image

the reference pulse, thus decreasing the number of bins, and therefore temporal reso-

lution, available to the resulting TPSF. However, the length of time required for the

reference pulse on the CCD is dependent on the shapes of the reference and diag-

nostic pulses, both of which will vary greatly according to the experimental setup.

Therefore, a further assumption will be made that 20% of the streak camera’s image

will be “lost” in imaging the reference pulse.

Phosphor Screen

The emission of photons from a phosphor screen is the product of three stages:109

1. The absorption of an incident electron within the phosphor material

2. The production of photons due to the energy absorbed from absorbed electrons

3. The escape of the photons from the phosphor material
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The variation within these stages will result in a distribution in the number of

photons output by the phosphor screen per incident electron. It has been shown that

for a phosphor screen of flawless crystals, the variance of this distribution is equal to

the mean number of emitted photons, thus making the distribution Poissonian.110

Truncation and Binning

The truncation and binning of a TPSF are inherent processes of a streak camera and

occur as a result of the system’s CCD detector’s finite size and resolution.

Truncation of a TPSF has the effect of removing the contribution of the photons

beyond the truncation point to the TPSF’s cumulants and reflectance. This will affect

higher-order cumulants more than lower-order ones, due to higher-order cumulants’

increased reliance on the TPSF’s tail rather than on the bulk of its mass at the

peak. It would therefore be reasonable to assume that longer truncation lengths

would always lead to more accurate cumulants. However, in the presence of noise

which is independent of the signal level, the tail of a TPSF can be dominated by this

noise source, leading to inaccurate results. Therefore, in a noisy system, there is a

compromise between maximising the number of photons detected whilst minimising

the noise included with the signal.

The binning of a TPSF involves the summation of the number of photons arriving

within a certain period of time – a “bin”. This has the effect of quantising each

photon’s time of arrival, giving rise to an error in each photon’s contribution to



90

the TPSF’s cumulants. This error in contribution is proportional to the difference

between the actual and quantised times of arrival, raised to the power of the order of

the cumulant. Larger bins will therefore cause bigger errors due to a greater average

correction in the time of arrival, and thus the errors can be minimised by using smaller

bins.

However, in the case of a streak camera, the truncation length and bin sizes are

inextricably linked, with the number of bins remaining constant over the camera’s

several possible sweep times. Smaller bins will cause smaller quantisation errors, but

will result in the omission of more photons due to the smaller truncation length.

Conversely, maximising the truncation length will cause greater quantisation errors

due to the larger bins, but will minimise truncation errors due to the inclusion of

more photons.

CCD: quantum efficiency

The CCD detector relies on the photoelectric effect of silicon to convert incident

photons to electrons in a similar fashion to the streak camera’s photocathode. Wells

on the CCD then collect the resulting charges before transferring them to a charge

amplifier where they are converted to an output voltage.

Due to several losses in the above process,111 CCD detectors are unable to convert

all the photons incident on the screen into electrons, leading to a quantum efficiency.

As explained earlier, the discrete nature of the photons gives rise to binomial statistics,
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with the quantum efficiency defining the probability of each photon being successfully

converted to an electron.

CCD: dark current

Similar to the photocathode, a CCD will still “detect” impulses in the total absence of

light. This is due to thermal energy within the CCD’s lattice creating free electrons,

which are then detected as impulses identical to those caused by incident photons.

For this reason, CCD detectors are often cooled in order to reduce the thermal energy

present and decrease the number of dark electrons created. The dark count rate is

defined by the mean number of impulses detected per second in the absence of light.

CCD: readout noise

The free electrons created by either photons incident on the CCD or the detector’s

dark current must be converted to a voltage before being converted by an analogue-

to-digital converter into a pixel’s intensity value. This electron-to-voltage conversion

is performed by a charge amplifier which acts as a capacitor according to the following

equation:

V =
Q

C
(5.5.4)

where V is the resulting voltage as a function of the charge on the electron, Q, and

the effective capacitance of the amplifier, C.

Due to the non-ideal nature of the amplifier, noise will be added to each pixel’s

final value. Despite the output of the charge amplifier being a voltage, this readout
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noise is measured in terms of the standard deviation in the number of equivalent

electrons measured per pixel per second and is modelled as a Gaussian distribution.

For small signal levels, it is possible for the resulting signal to be negative.

CCD: quantisation

As well as adding readout noise to the TPSF, the CCD’s analogue-to-digital converter

will add further noise by its quantisation of the TPSF’s level. Due to the converter’s

limited bit-depth, the signal level will be approximated by one of 2N discrete levels,

where N is the number of bits. The difference between the signal’s true level and its

approximation is known as the quantisation noise. The analogue-to-digital converter

is assumed to truncate negative analogue signals.

5.5.1.1 Noise on the Input Pulse

In order to measure the reflectance or transmission of a sample, it is necessary to

measure the intensity of both the input and output pulses. In practice, this means that

the input pulse will also have to pass through the streak camera, thus experiencing

the same gain, attenuation and noise transformations as the output signal. The gain

and attenuation transformations are essential so as to retain the input pulse’s level

relative to that of the output pulse. In order to avoid an extra level of complexity

within the error calculations, however, the intensity of the input pulse was assumed

to be noiseless. This assumption was justified by the following reasons:
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• Although the errors due to the streak camera are generally applied on a bin-by-

bin basis, the intensity of a pulse is calculated as the sum of the values of all

the bins, thereby combining the errors. Due to the symmetrical nature of the

majority of the error distributions, the magnitude of the summed error will be

smaller than the errors experienced by the individual bins.

• The number of photons in the input pulse will be much larger than in the output

pulse due to the lack of sample attenuation. Therefore, the effects of the errors

on the input will be greatly reduced compared with those on the output pulse.

An alternative approach, which is not considered here, is the use of a separate

time-independent detector to measure the overall intensity of the input and output

pulses. Although this would still be a source of error, its relative simplicity would

not only result in smaller errors, but also a simpler model in which the effect of the

errors on the input pulse could be more-readily calculated.

5.5.2 Generalised Effects of Noise

In this section, the effects of the various different types of noise found in a streak cam-

era are considered on a TPSF. Knowledge of these effects will assist in the explanation

of the errors on a typical TPSF’s metric calculated in §5.5.3.
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Figure 5.7: The effects of binomially distributed (or gamma-distributed) noise of an
arbitrary amplitude on a TPSF. The solid curve shows the original TPSF, while the
shaded area and error bars show the noise’s standard deviation.

5.5.2.1 Binomially Distributed Noise

The shape of the binomial distribution is dependent on the probability of a photon

or electron being output from the stage of the streak camera, p, and the number

of photons or electrons input, n. The standard deviation of the distribution, σ, is

defined as:

σ =
√

np(1 − p) (5.5.5)
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With the stage’s probability remaining constant throughout its operation, the stan-

dard deviation of the distribution is therefore proportional to
√

n. This can be seen

in Figure 5.7, in which the standard deviation of the error is larger at the peak of the

TPSF, rather than the tail, as this corresponds to a larger value of n.

The signal-to-noise ratio (SNR) due to binomially distributed noise is given by:

SNR =
n

√

np(1 − p)
(5.5.6)

It can therefore be seen that the SNR will be low for the TPSF’s tail where the value

of n is small. As higher-order cumulants rely more on the tail, it is these metrics that

will be affected more by binomially distributed noise.

When calculating the noise’s effect on the overall reflectance, n is equal to the total

number of photons contained in the TPSF. As this number is significantly larger than

the number of photons in the TPSF’s individual temporal bins, the SNR will be much

increased, and thus the effect of binomially distributed noise on the reflectance will

be relatively small.

5.5.2.2 Dark Current

Dark current is the addition of photons or electrons to an existing signal and thus

can only increase the signal level, as can be seen in Figure 5.8.

The level of the dark current is constant over the whole TPSF and therefore it will

have more of an effect on the TPSF’s head and tail where it is larger relative to the

signal level. The head’s contribution to the cumulants is insignificant, however, not
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Figure 5.8: The effects of dark current of an arbitrary probability on a TPSF. The
solid curve shows the original TPSF, while the shaded area and error bars show the
noise’s standard deviation.

only due to its small signal level compared to the TPSF’s body, but also due to its

early times of arrival – the cumulants are increasingly sensitive to longer pathlengths.

As a result, the effect of the noise on the TPSF’s head on the cumulants will be

insignificant.

This does not apply to the TPSF’s tail, however. Higher-order cumulants are

much more sensitive to the TPSF’s tail and so will be increasingly affected by the

corresponding dark current.

Dark current will serve as to increase the sample’s reflectance by increasing the
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TPSF’s overall intensity.

5.5.2.3 Gamma-distributed Noise

The variance of a gamma distribution is given as:112

σ = nµg
2 (5.5.7)

where n is the initial number of photons input to the stage of the streak camera and

µg is the mean gain for each of the photons. The standard deviation is therefore

proportional to
√

n, and so the effects of Gamma-distributed noise on the reflectance

and cumulants of a TPSF will follow those of binomially distributed noise.

5.5.2.4 Temporal Dispersion

Temporal dispersion within a streak camera is modelled by convolving the TPSF with

a Gaussian distribution. This has the effect of widening the TPSF, as can be seen

in Figure 5.9. As the area under a convolution is equal to the product of the two

original areas, this widening must also correspond to a drop in the peak amplitude of

the TPSF. The overall intensity is unchanged, however, meaning that the reflectance

will be unaffected.

It can be shown that the cumulants of two distributions are summed by their

convolution.93,113,114 A Gaussian distribution has only two non-zero cumulants – its

expected value and its variance. However, the distribution used to model the streak

camera’s dispersion has an expected value of zero and as a result, only the TPSF’s
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distribution.

second cumulant will be affected by the temporal dispersion.

5.5.2.5 Poisson-distributed Noise

Poisson-distributed noise has the same form as that due to a binomial distribution,

except that its standard deviation is equal to (not proportional to, as in the case of

the binomial distribution)
√

n, the square root of the number of photons or electrons.

This is shown in Figure 5.10. The relative effects of Poisson-distributed noise on a

TPSF’s cumulants and reflectance will therefore follow those of binomially distributed

noise.
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Figure 5.10: The effects of Poisson-distributed noise on a TPSF. The solid curve shows
the original TPSF, while the shaded area and error bars show the noise’s standard
deviation.

5.5.2.6 Readout Noise

As the output from the CCD’s charge amplifier is in the form of a voltage, the readout

noise corresponds to the addition or subtraction of an equivalent number of electrons

from the signal recorded by the camera. This number of electrons is defined by a

Gaussian distribution. As a result of the signal’s voltage form, the signal can at

times be negative at this stage of the streak camera. This can clearly be seen at the

beginning of the TPSF shown in Figure 5.11.

As the standard deviation of the readout noise is constant over the whole TPSF,
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Figure 5.11: The effects of readout noise on a TPSF. The solid curve shows the original
TPSF, while the shaded area and error bars show the noise’s standard deviation.

the noise will have more of an effect on the TPSF’s head and tail, where the noise

levels are larger in proportion to the signal level. As for the dark current, therefore,

higher-order cumulants will be affected more by readout noise than lower ones.

The reflectance will be largely unaffected by readout noise for the same reasons

as binomially distributed noise.

5.5.2.7 Quantisation Noise

Quantisation noise is the approximation of the TPSF by a limited number of signal

levels as defined by the CCD’s bit-depth. This effect can be seen in Figure 5.12. As
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Figure 5.12: The effects of quantisation noise on a TPSF. The blue curve shows the
original TPSF, while the red curve shows the TPSF after quantisation.

the levels are linearly spaced, the maximum error due to quantisation is unrelated

to the original signal level and so will have a greater effect on the TPSF’s head

and tail due to their small signal level in comparison with the noise. Quantisation

will therefore have a greater effect on higher-order cumulants due to their increasing

reliance on the TPSF’s tail.

Due to the large number of temporal bins, the overall effect of the summed errors

will be much reduced compared to those of the original errors. Therefore, the sample’s

reflectance will be largely unaffected by quantisation.
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However, it should be noted that if the signal to be quantised contains negative

values (as will be shown to be possible for a streak camera), these will be truncated by

the quantisation process. In this case, the overall level of the TPSF will be increased,

increasing the values of both the reflectance and the cumulants. As the TPSF’s head

and tail are more likely to contain negative values, this effect will be more apparent

on higher-order cumulants.

5.5.3 Model of Errors on Metrics for a Typical TPSF

In order to simulate the effects of using a streak camera to record a TPSF, a model

of the streak camera was produced. The model was based on a Hamamatsu C5680

streak camera with A1976-01 input optics, an N5716 streak tube and an M5676 fast

single sweep unit.

In this section, the parameters and methods used to model this specific streak

camera will be described. The model will then be applied to a typical TPSF calculated

for a medium representing human skin, and the effects of each stage of the streak

camera on its metrics discussed.

5.5.3.1 Model Stages

The structure of the streak camera model can be seen in Figure 5.13. The parameters

used in the model are summarised in Table 5.1.
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TPSF from Diffusion Approximation

Truncation & Binning

Sample Attenuation

Input Optics (binomial distribution)

Photocathode: quantum efficiency (binomial distribution)

Microchannel Plate (gamma distribution)
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CCD: quantum efficiency (binomial distribution)
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Figure 5.13: Structure of the streak camera model.
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Table 5.1: Streak camera model parameters

Parameter Value

Source
Wavelength 633nm
Spot size 10µm
Pulse length 100ps

Sample

Absorption coefficient, µa 0.05mm−1

Scattering coefficient, µs 50mm−1

Anisotropy factor, g 0.9
Refractive index, n 1.4
Sample geometry semi-infinite
Annular detector range, ρ 1–1.1mm
Detector geometry reflection

TPSF
Truncation length 0.27ns
No. of bins 554

Streak Camera

Input optics transmittance 68%
Photocathode quantum efficiency 4.6%
Photocathode dark current negligible
MCP gain unity
Temporal dispersion 2ps FWHM
CCD quantum efficiency 71%
CCD dark current negligible
CCD readout noise 6 electrons r.m.s.
CCD bit-depth 12 bits
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Initial TPSF

Rather than use a Monte Carlo simulation to produce the initial TPSF, an analytical,

noiseless TPSF was created using the Diffusion Approximation equations derived in

§3.3, to which noise was then added – the method behind this step is decribed in detail

in §5.5.3.1. The analytical form of the TPSF meant that exact, analytical solutions

to its cumulants could be found, allowing an accurate comparison of the effects of the

streak camera to the actual cumulants.

It should also be noted that the equations used to produce the TPSF are correct

for a point source – an unrealistic condition in practice. However, no analytical

solutions exist for the cumulants of a TPSF created using a source with an intensity

profile.71

The parameters used with the Diffusion Approximation equations to produce the

initial TPSF are shown in Table 5.1.

Input Levels

In order to numerically model the streak camera’s effects on the initial TPSF, it

is necessary to define the TPSF’s absolute level in terms of the number of photons

within it.

It is beneficial to keep the signal level of the TPSF as high as possible, as the

effect of any errors will therefore be minimised. However, there is a practical limit

to the amount of incident light on human skin. This limit comes in the form of
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the Maximum Permissible Exposure (MPE) of skin to laser radiation as defined by

the International Electrotechnical Commission and approved by the British Standard

Institution. The relevant standard115 states that the MPE of skin to a 633nm laser

for a pulse duration of between 1ns and 1ms is 200Jm−2. Assuming a laser spot size

of 10µm, the MPE can therefore be calculated to be around 16nJ. As the Diffusion

Approximation equations used to produce the model’s initial TPSF assume26 an input

of 1J, the TPSF must therefore be scaled down to meet the level of the MPE.

Although the MPE could be increased by using either a larger spot size or a

longer pulse length, the spot size must be minimised to best match the Diffusion

Approximation equations derived for a point source, and the pulse length must allow

for a fast repetition rate in order to use averaging, as discussed later.

A further limit to the level of the TPSF originates in the streak camera: the CCD’s

full well capacity. This is the maximum number of electrons that can be collected by

a single pixel on the CCD. To maximise the temporal resolution of the camera, each

pixel corresponds to a single time bin. However, depending on the number and size of

the spatial bins being measured from the medium, one spatial bin may correspond to

several pixels on the CCD. The number of CCD pixels, n, that therefore correspond

to each of the medium’s spatial bins is:

n =
Bi

B
N (5.5.8)

where Bi is the size of the medium’s spatial bin, B is the complete spatial range that
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will be analysed by the streak camera, and N is the number of pixels in the spatial

orientation of the CCD.

The CCD (model C4742-95-12ER) used within the Hamamatsu C5680 system

has a full well capacity of 18,000 electrons, and a total of 1344 bins in the spatial

orientation.116 The initial TPSF was created for an annular detector with an inner

and outer radius of 1mm and 1.1mm respectively, while in theory the camera would

be detecting light up to a radius of 10mm. According to Eq. (5.5.8), a total of 13

CCD bins would therefore be used to capture the signal in each TPSF bin. Thus, the

maximum value in any TPSF bin at the point of the detection by the CCD would be

234,000 electrons. This corresponds to a maximum value at the streak camera’s input

– using the gain and attenuation values as detailed in Table 5.1 for each stage of the

system – of approximately 10.5 million photons. If the peak of the TPSF is higher

than this value, then the level of the TPSF would need to be reduced accordingly,

corresponding to a reduction of the source intensity.

Truncation vs. Binning vs. Noise Floor

Although the truncation and binning of the light input occurs in the final stages

of a streak camera system, it is necessary within the modelling process for them to

be considered at the beginning of the sequence of errors: it would be unfeasible to

carry out the entire model of the streak camera on the billions of individual photons

in a TPSF. By binning the TPSF at the beginning, however, the photons can be
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considered collectively in bins. Likewise, it is necessary to truncate the infinitely long

TPSF produced using the Diffusion Approximation.

Even in a noiseless system, the point at which to truncate a TPSF is not immedi-

ately obvious. As the streak camera’s CCD has a limited number of bins over which

the truncated TPSF must be recorded, truncating after an excessive time period will

cause the majority of the TPSF to fall within a small number of bins, leading to errors

in the measured cumulants. Likewise, truncating after too small a period will mean

that the values of higher-order cumulants will be inaccurate due to their increasing

dependence on the TPSF’s tail.

Figure 5.14 shows the effect of truncation of an arbitrary TPSF over a small range

of time periods on the values of the TPSF’s metrics. The reflectance and lower-order

cumulants quickly reach their correct values as they rely more heavily on the body

of the TPSF. As the order of the cumulant increases, however, more of the TPSF

is required for the measured cumulant to match the analytical solution; even when

almost 100% of the TPSF is being used, the fourth cumulant has still not reached its

correct value.

Note that at the maximum truncation length shown here, none of the metrics

show any sign of diverging from their correct value again: the size of the bins – a

consequence of the truncation length used – has not yet become a limiting factor.
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Figure 5.14: The effect of truncation and binning on a TPSF’s metrics. The top
diagram shows a typical TPSF in blue, as well as its cumulative equivalent in green.
The diagrams below then demonstrate the variation in some of the TPSF’s metrics
against the amount of TPSF used: the height of the curves at each time point repre-
sents a metric’s value on truncation of the TPSF at that time. The red, dotted lines
mark the analytical solution for each of the metrics.
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Figure 5.15 therefore shows a similar set of diagrams over a much longer set of trun-

cation lengths, in which a breakdown in the metrics due to excessive bin size can be

clearly seen.

Due to the integration within the bins of a streak camera, the reflectance does

not rely on how finely the TPSF is binned and so will vary little once the truncation

length is long enough to include almost all of the TPSF’s weight. This is easily

achieved with the truncation lengths displayed in Figure 5.15, thus the reflectance is

seen to stay constant at the analytically correct level.

The variations in the first cumulant, the mean time of flight, can be explained

by Figure 5.16 which shows the bins used at the beginning of the same TPSF as

shown in Figure 5.15 for different truncation lengths. The alternating grey and white

areas represent the time bins. With a truncation period of 5ns, the TPSF is sampled

sufficiently and the first cumulant is measured as equal to its correct, analytical value.

However, after the truncation length increases beyond a certain value, the majority of

the TPSF’s weight will fall within the first bin, and thus its contribution will appear

at the centre of this bin. As the first cumulant is heavily dependent on the position

in time of the bulk of the TPSF, it is clear that it will now be heavily dependent on

the position of the centre of this first bin. Therefore, at 40ns, when the centre of the

first bin is earlier in time than the TPSF’s true mean, a slight drop can be seen in

the value of the first cumulant. Note there is still a contribution to this value from
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Figure 5.16.
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the second bin, which contains the majority of the rest of the TPSF’s weight. This

will serve as to increase the value of the first cumulant slightly.

At 60ns the combination of the contributions from the first two bins cause the

calculated value of the first cumulant to approximately match the analytical solution.

Beyond this point, further increases in the truncation length will increase the first

cumulant’s dependence on the centre position of the first bin: more of the TPSF’s

weight will continue to fall within the first bin, increasing its contribution to the

value of the first cumulant over that of the second bin. When almost 100% of the

TPSF’s weight falls in the first temporal bin, the value of the first cumulant can

be assumed to rely completely on the centre position of this bin. Therefore, as the

relationship between the truncation length and the centre of the first bin is linear, at

later truncation lengths the first cumulant can be seen to be varying linearly against

the truncation length.

Having considered the effect of truncation length on the metrics, the point at

which to truncate a TPSF can be seen to be unclear. However, the addition of a

noise floor in the streak camera model can help in defining the most appropriate

truncation length for a TPSF, since once the signal drops below the noise floor it is

no longer possible to distinguish between the signal and noise. Therefore, truncating

the TPSF as it reaches this value would maximise the amount of TPSF that can be

analysed without introducing spurious noise to the calculations.
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The system’s noise floor is defined as the signal level recorded by the camera when

no light is input, and therefore is made up from the following sources:

• The dark current emitted by the photocathode.

• The dark current emitted by the CCD.

• The readout noise from the CCD.
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The noise levels given by the first two sources will be shown to be dominated by

that of the CCD’s readout noise and so will be ignored in deriving a TPSF’s optimal

truncation point.

The readout noise from the CCD will be modelled later as a Gaussian distribution

with a standard deviation of 6 electrons per pixel, as published by Hamamatsu.116

It can be shown using the empirical rule that over 99.99% of electrons created due

to the readout noise will fall within 4 standard deviations of this distribution.117 A

noise floor of 24 electrons per pixel was therefore used within this analysis. This is the

noise floor at the stage of the CCD detector; using this figure along with the streak

camera’s gain and attenuation stages, as given in Table 5.1 gives a noise floor at the

input to the camera of 1080 electrons per pixel.

As multiple pixels are used for each temporal bin of the TPSF, as explained in

§5.5.3.1 on page 107, multiple measurements of the TPSF are made and then averaged.

As all these TPSFs are subject to the noise floor calculated above, the effect of this

averaging on its level must be considered. In this case, 13 pixels are used and so

13 times the readout noise is measured and then averaged, giving an overall readout

noise level. The standard deviation of this level can be calculated using the standard

error of the mean, σtotal, defined as:118

σtotal =
σoriginal√

N
(5.5.9)

where σoriginal is the original standard deviation of the noise floor and N is the number
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of measurements averaged. Therefore, the averaged standard deviation of the noise

floor is 1080/
√

13 which gives a value of around 300 electrons. This is further reduced,

however, due to the averaging of groups of 1000 TPSFs, as explained in §5.5.3.2, to

give a value of 300/
√

1000 ≈ 10 photons. This value was therefore used as the streak

camera’s noise floor.

Figure 5.17 shows the position of the most appropriate truncation point for a

typical TPSF under exaggerated noise floor conditions. However, it is unlikely that

the truncation of the TPSF will be able to be performed at this point: as the streak

camera being modelled is only capable of sweeping the input signal over certain pre-

determined time periods, the appropriate truncation point will likely fall between two

of the camera’s possible sweep times – this eventuality is also shown in the figure.

In order to choose a feasible truncation length, it is necessary to follow one of

three methods:

1. Select the sweep time below the appropriate truncation length

2. Select the sweep time above the appropriate truncation length

3. Select the sweep time above the appropriate truncation length, but then discard

all the bins beyond the truncation point.

The first two methods have the disadvantages of not considering valid parts of

the TPSF, and adding noise to the measurements, respectively, as well as depending
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Figure 5.17: The most appropriate truncation length of a TPSF in blue in relation to
the system’s noise floor in red. The level of the noise floor has been exaggerated for
clarity. The green dashed lines show two of the streak camera’s possible sweep times.

heavily on the position of the appropriate truncation point between the two sweep

times: the errors caused by the first method would be greatly reduced if the truncation

length was very close to the lower sweep time.

The third method, however, allows the amount of TPSF used to be maximised

whilst minimising the noise added to the signal. The disadvantage, however, is that

the number of bins used to record the TPSF may be greatly reduced. The position of

the appropriate truncation length within the two sweep times has an obvious effect on

the extent of this reduction, with the greatest decrease occuring when the appropriate
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truncation length falls infinitesimally above the lower sweep time. The values of the

streak camera’s pre-determined sweep times mean that, in the worst case, there will be

a factor of 2.5 between the two sweep times (for example, 0.2ns and 0.5ns), resulting

in only 40% of the available bins being used. However, it can be seen in Figure 5.18

that the number of bins required with which to record a TPSF is quite small to

minimise errors in the values of the TPSF’s metrics: the maximum number of bins

shown, 100, corresponds to around 10% of the number of available bins.

Using this method, the appropriate truncation length below any of the streak

camera’s sweep times can be found. However, different sweep times will result in

different truncation lengths: the difference in bin size between sweep times will affect

the TPSF’s overall level while the level of the noise floor will stay the same, thus

changing the appropriate truncation length. This is shown in Figure 5.19: the blue

curve shows a TPSF measured using a sweep time of 0.5ns, while the green curve

shows the same TPSF modelled for a sweep time of 1ns. The green TPSF will have

bins twice as wide as the blue, and so its intensity will be twice as large, thus giving

it a different appropriate truncation length in relation to the noise floor shown in red.

This approach results in a number of possible truncation points for the TPSF using

the streak camera’s different sweep times. The appropriate length is that for which

the noise added by a streak camera has the least effect on the TPSF’s cumulants.

However, the noise added is dependent not only on the TPSF’s truncation length
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Figure 5.19: An arbitrary TPSF measured using two different sweep times, the value
of which is marked by the corresponding dashed, vertical line. The noise floor, the
level of which has been exaggerated for clarity, is shown in red.

but also the number of bins used to measure it and its signal level, all of which are

inextricably linked. Therefore, using the streak camera model, it is very difficult

to determine the appropriate truncation length without modelling all the possible

options, which would be prohibitively time-consuming. Furthermore, this would be

an unrealistic approach in practice as the true values of the metrics would not be

known, and so it would be impossible to know which truncation length gave the best

results.

Therefore, for the purposes of this thesis, the following method was used to decide
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the appropriate truncation point:

1. Find the best truncation point for each of the streak camera’s sweep times.

2. For each of these times, calculate the following ratio:

Truncation length

No. of bins used

3. Rejecting any truncation points that result in fewer than 100 bins being used to

capture the TPSF, use the truncation point with the smallest length:bins ratio.

4. If no truncation points using more than 100 bins exist, use the truncation point

with the smallest ratio, regardless of the number of bins.

Note that a TPSF’s susceptiblity to noise due to its signal level is not considered in

this method.

Using the method above, and the parameters set out in Table 5.1, an appropriate

truncation length of 390ps was calculated. This corresponded to a sweep time of

500ps; 798 out of the streak camera’s 1024 possible time bins116 were therefore used

to model the TPSF.

Sample Attenuation

Noise was to be added to the TPSF via a binomial distribution and a cumulative

density function, as explained in §5.4 on page 79.
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However, the small p values that can result from a small detector, and the large n

values given out by light sources in practice, can mean that selecting a binomially dis-

tributed number becomes very computationally intensive. It was therefore necessary

to determine a quick and accurate approximation to the binomial distribution.

It is known that for large values of n, a good approximation to a binomial dis-

tribution is given by a normal distribution. The smallest value of n for which this

approximation still holds is entirely dependent on how close a match between the two

distributions is required, but one “rule of thumb” states that the approximation is

valid when:119

np(1 − p) > 9 (5.5.10)

Use of the parameters listed in Table 5.1 gives the values of n and p for the sample

attenuation as 3 × 1010 and 0.0132 respectively, giving a np(1 − p) value of around

1.3 × 108. In this case, therefore, the approximation should easily hold.

This can be demonstrated by first defining the mean, µ, and variance, σ2, of a

binomial distribution:

µ = np (5.5.11)

σ2 = np(1 − p) (5.5.12)

It can then be seen in Figure 5.20 that a normal distribution with these parameters,

and with its values rounded to make it discrete, is a good approximation to the

binomial distribution.
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Figure 5.20: The blue curve shows the binomial distribution required to calculate the
number of photons exiting the sample. The red stars also show a normal distribution
created from the parameters derived in Eqs. (5.5.11) and (5.5.12).

A normal distribution was therefore used in place of the binomial to find the

number of photons output from a sample, making the calculations much simpler and

quicker.

Input Optics

The A1976-01 input optics used in the streak camera have a transmittance of 68%.120

Noise from this attenuation could therefore be added by the production of a new

TPSF in which each bin’s new value was chosen from a binomial distribution with an

n parameter equal to the number of photons previously in that bin, and a p value of
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0.68.

However, much like the noise caused by the sample attenuation, this would re-

quire many computationally intensive binomial distribution calculations, and so the

use of normal distribution approximations would be preferable. This was further

complicated by the fact that unlike in the case of the sample attenuation, a different

distribution was required for each of the TPSF’s bins. Due to the different bin’s inten-

sity values, this would mean that some of the bins would not satisfy the criterion for

the normally distributed approximation as set out in Eq. (5.5.10). Thus, a mixture

of the two distributions was used: bins that fulfilled the criterion were approximated

using a normal distribution, whereas those that did not were processed using the ex-

act binomial distribution. This meant that binomial distributions were not used for

bins containing a large number of photons, where their calculation became unwieldy.

The worst approximation is therefore found at the limit of the the criterion in

Eq. (5.5.10). With a p value of 0.68, this occurs for an n value of 42. The ap-

proximation at these values can be compared to the actual binomial distribution in

Figure 5.21.

Photocathode: quantum efficiency

The photocathode’s quantum efficiency is given in the datasheet120 as a radiant sen-

sitivity of around 23,500µAW−1 which corresponds to a quantum efficiency of 4.6%.

A p value of 0.046 was therefore used.
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Figure 5.21: The blue curve shows the binomial distribution at the limit of the ap-
proximation criterion in Eq. (5.5.10) for the attenuation due to the input optics. The
red stars show the normal distribution approximation.

A similar combination of binomial distributions and normal distribution approx-

imations as for the input optics was used to model this attenuation. For the pho-

tocathode’s p value, the worst approximation occurred at an n value of 206. This

approximation can be seen in Figure 5.22.

Photocathode: dark current

The S20 photocathode used in the C5680 streak camera121 has a dark count rating122

of 1500s−1cm−2. In the case of a binned signal, this rate is converted into the prob-

ability of one or more electrons being added to that bin. As the streak camera’s



125

N
o.

of
in

st
an

ce
s

No. of photons
0 5 10 15 20

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 5.22: The blue curve shows the binomial distribution at the limit of the ap-
proximation criterion in Eq. (5.5.10) for the attenuation due to the photocathode.
The red stars show the normal distribution approximation.

photocathode size is given120 as 0.15mm × 5.4mm, the dark count rate can be cal-

culated to be around 6 × 10−13 electrons per bin. It was therefore decided that the

photocathode’s dark current could be ignored within this model.

Microchannel Plate

The gain of the microchannel plate (MCP) can be varied120 up to a value of 3× 103.

This gain is used to maximise the intensity of the TPSF before it reaches the phosphor

screen and CCD in order to minimise the effects of the noise added to the signal by

these two components. Therefore, for any TPSF with a peak value not close to the
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CCD’s full well capacity, the MCP’s gain was adjusted until the CCD was close to

saturation. Although the gain can only be changed in discrete steps, it was therefore

necessary to assume that it can be altered smoothly to provide the exact gain required.

Due to the level of the TPSF produced using the parameters in Table 5.1, no gain

was necessary in this numerical model. In practice, however, the MCP will have a

natural attenuation when it is switched off: electrons will still be lost in collisions with

the material. Therefore, a small gain to overcome this attenuation will be required

to keep the overall gain at unity. As this level of attenuation is unknown, this effect

was ignored for the current TPSF and the gain was set for the specified parameters

to be unity. The TPSF entering the stage was therefore replaced with a TPSF with

bin values selected from a gamma distribution with a mean gain of unity.

Temporal Dispersion

The effect of the streak camera’s temporal dispersion on the TPSF due to the streak

camera was achieved by its convolution with a Gaussian distribution. The streak

camera is stated120 to have a temporal resolution of 2ps which is defined by the

full width at half maximum of the resulting signal from an input pulse with an

infinitesimal temporal width.19 This was converted to give the distribution’s standard

deviation, σ, by the following equation:

σ =
FWHM

2
√

2 ln 2
(5.5.13)
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Phosphor Screen

The temporal response of the P43 phosphor screen used in the C5680 streak camera

system is poorly documented, although a typical decay time123 to 1% of the max-

imum intensity is given to be around 3ms. Furthermore, the absolute number of

photons that this percentage relates to is dependent on the energy of the incident

electrons,124 ranging from 185 to 550 photons per electron. It is therefore difficult

to ascertain the number of photons emitted per incident electron over a particular

length of time. However, it is desirable to keep the CCD exposure time as short

as possible to reduce the contribution from the CCD’s dark current. Therefore, by

using the CCD’s minimum exposure time116 10µs it will be assumed that the average

number of photons emitted by the screen in this time will be equal to the number of

incident electrons. The phosphor screen, therefore, does not provide any gain within

the system, although it will still add noise to the signal. This was modelled by the

production of a TPSF with bin values selected from Poisson distributions according

to the previous TPSF’s intensities.

CCD: quantum efficiency

A P43 phosphor screen has been shown124 to emit the majority of its light at around

545nm. The CCD’s quantum efficiency is given116 at this wavelength as 71%. The

effect of this attenuation was modelled using a combination of binomial distributions

and normal distribution approximations as for the input optics and photocathode’s
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Figure 5.23: The blue curve shows the binomial distribution at the limit of the ap-
proximation criterion in Eq. (5.5.10) for the attenuation due to the CCD’s quanutm
efficiency. The red stars show the normal distribution approximation.

quantum efficiency. For a p value of 0.71, the worst normal approximation occurs for

n = 44. The match of this approximation to the binomial distribution can be seen in

Figure 5.23.

CCD: dark current

The dark current of the CCD is rated116 as 0.1 pixel−1s−1. As stated in §5.5.3.1 on

page 107, 13 bins were used to capture each of the TPSF’s bins. Using the CCD’s

minimum exposure time of 10µs, the total dark current can be calculated as 1.3×10−5

electrons per bin. The CCD’s dark current was therefore also ignored within this
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model.

CCD: readout noise

The CCD’s readout noise has a typical value of 6 electrons r.m.s.,116 which is equal to

the standard deviation of the signal. Each bin of the TPSF therefore had a randomly

selected value from a Gaussian distribution with a standard deviation of 6 either

added to or subtracted from its original value.

CCD: quantisation

The CCD has a bit depth of 12 bits,116 which corresponds to 4096 different signal

levels. With a full well capacity of 18,000 electrons, this will result in a maximum

error in each bin of around 2 electrons.

5.5.3.2 Modelling Method

The methodology used in modelling the streak camera can be seen in Figure 5.13.

The sample parameters defined in Table 5.1 were applied to the Diffusion Approx-

imation equations derived in §3.3 to create a noiseless TPSF. This TPSF was then

truncated and binned, and its amplitude decreased if it exceeded the maximum value

determined in §5.5.3.1. Noise due to the sample attenuation was then added to the

TPSF, firstly using a binomial distribution (or more specifically a normal distribution

approximation) to determine the total number of photons in the noisy TPSF, and

secondly using the noiseless, binned TPSF as a cumulative distribution function from
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which the photons’ arrival times were chosen, as also described in §5.5.3.1. This was

repeated several times to create a group of TPSFs. In this case, a group of 1000

TPSFs was used, each of which was then passed through the other error steps shown

in Figure 5.13.

After the final step, the TPSFs in the group were averaged by summing them and

dividing by the number of TPSFs in the group. The reflectance and cumulants were

then calculated from the averaged TPSF, the cumulants being determined from the

moments using both Eqs. (1.5.1) and (1.5.9). The values of these metrics could then

be compared to the analytical solutions calculated using the same sample parameters.

Likewise, the intermediate errors in the metrics at any point in the model could be

determined by the averaging of the group of TPSFs at that point, as shown in red in

Figure 5.13.

A complete progression of a group of TPSFs through the error model was termed

a pass. The errors in the metrics calculated were different after each pass due to

the random nature of the model’s noise. Therefore, in order to determine the overall

distribution of the resulting errors, many passes were repeated so the mean and

variances of the errors could be calculated. In this case, 5000 passes of the model were

performed – this allowed the mean and variances of both the final and intermediate

errors to stabilise.
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5.5.3.3 Stage-by-stage Errors

A typical TPSF was passed through the model to simulate the effects of its “detection”

by a streak camera, as described in §5.5.3.2. In order to identify the limiting steps

within the instrument, it is useful to look at the distributions of the intermediate

errors in the detected metrics due to each error step. Each distribution is defined

by its mean and coefficient of variation, the latter of which is equal to the standard

deviation of the distribution, σ, scaled by its mean, µ, as shown by:

CV =
σ

µ
(5.5.14)

The coefficient of variation is equal to the inverse of the signal-to-noise ratio and is

used here due to its scale invariance, as explained below.

Firstly, it is important to note that the intermediate errors calculated here are

the changes in each metric when compared to its value calculated after the model’s

previous step (the differential errors), and not the errors compared to the initial

analytical solutions to the metrics (the cumulative errors). These two methods are

shown in Eqs. (5.5.15) and (5.5.16) respectively:

Differential errors: δMj =
Mj − Mj−1

Mj−1

× 100% (5.5.15)

Cumulative errors: δMj =
Mj − M0

M0

× 100% (5.5.16)

where Mj is the value of an arbitrary metric after step j in the model and M0 is the

original analytical solution to the metric. δMj represents the error in the metric.
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In order to clarify this distinction, consider the effect of a two-stage error process

on a TPSF. In this hypothetical process, the first stage, on average, decreases the

value of the TPSF’s first cumulant by 10%, whereas the second stage then increases

the value by 5% on average. For an original mean time of flight of 100ps, for example,

the average change in the first cumulant over the course of the two-stage process can

therefore be shown to be:

100ps −→ 90ps −→ 94.5ps

The cumulative errors in the first cumulant at each step, calculated using Eq. (5.5.16),

are:

0% −→ −10% −→ −5.5%

The effect of the first error step can be seen to be a reduction of the value by 10%

(shown as a negative error) as expected, but the value of the second error on the

first cumulant (+5%) is not immediately obvious using this method. However, by

comparing the values of the first cumulant in the model with the values from the

previous step as in Eq. (5.5.15), the differential errors are calculated as:

0% −→ −10% −→ +5%

In this case, the effect of increasing the value of the first cumulant by 5% can be clearly

seen. The differential errors will therefore be used to analyse the streak camera’s

performance.
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Figure 5.24: An arbitrary distribution of signal intensity is shown in blue. When
used as input to a hypothetical error stage that precisely doubles the intensity, the
distribution shown in red is produced.

Secondly, the merit of using the coefficient of variation (instead of the distribu-

tion’s standard deviation or variance) when displaying the differential errors can be

seen by considering a model containing a step which precisely doubles the intensity of

the signal applied to it. If, over the course of several passes, the intensity of the signal

input to this step and the resulting output are measured, their distributions can be

plotted. An example input distribution formed using arbitrary data can be seen in

Figure 5.24, along with the corresponding output distribution from the gain stage. It

can be seen that both the mean and variance of the distribution have been doubled by
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the stage in the model. However, as the variance will not have changed relative to the

mean, the distribution’s signal-to-noise ratio will have remained constant. Thus, ob-

serving the doubling of the variance separate from the mean is potentially misleading

as noise has not been added to the signal. The coefficient of variation, however, due

to its dependence on both the distribution’s mean and variance will have remained

constant. It is more intuitive, therefore, to use the coefficient of variation as its scale

invariance determines that it will remain fixed for noise-free gain stages.

The mean and coefficient of variation were therefore used to describe the distribu-

tions of the differential errors at each stage of the streak camera model. The equations

used were thus:

δµj =
µj − µj−1

µj−1

× 100% (5.5.17)

δCVj = (CVj − CVj−1) × 100% (5.5.18)

where µj and CVj are the mean and coefficient of variation respectively of a metric’s

error distribution after step j in the model, as calculated over several passes. By

definition, µ0 is the original analytical solution to the metric, and CV0 is zero. δµj

and δCVj represent the changes in these variables when compared to the previous

step’s calculated values.

Note that δCVj is calculated as a change in percentage, rather than a percentage

change, due to its lack of denominator. This enables the change from zero to a finite

value to be calculated as a finite percentage, rather than infinity.
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Figure 5.25: The initial noiseless TPSF, calculated using the Diffusion Approxima-
tion, which was used to analyse the streak camera model. The TPSF was truncated
at approximately 390ps.

The initial noiseless TPSF calculated from the Diffusion Approximation using the

parameters in Table 5.1 is shown in Figure 5.25. It was passed through the model

in 5000 groups of 1000 TPSFs. The resulting differential errors are shown for the

reflectance and first ten cumulants in Figures 5.26 and 5.27. The mean error, δµj,

is marked by a cross for each metric, while the error bars show the coefficient of

variation, δCVj, above and below the mean. The figures are discussed below.
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Figure 5.26: The mean and coefficient of variation (marked by the cross and error
bars respectively) of the distribution of errors due to the first five stages of the streak
camera.
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Figure 5.27: The mean and coefficient of variation (marked by the cross and error
bars respectively) of the distribution of errors due to the second five stages of the
streak camera.
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Truncation and Binning

The first stage of the streak camera model is the truncation and binning of the TPSF.

As discussed using Figure 5.18, the effect of binning is negligible because this TPSF

has been sampled using a sufficient number of bins (798). However, truncation of

the TPSF has the effect of completely removing the contribution of photons arriving

beyond a certain time. Lower-order cumulants and the reflectance rely on these

contributions less than higher-order cumulants and so will be relatively unaffected by

this step. As the order of the cumulant increases, however, so does the cumulants’

reliance on the TPSF’s tail, resulting in a gradual increase in the magnitude of the

error. This effect can be seen most clearly with the tenth cumulant, for which the bulk

of the non-truncated contributions from the tail have been removed by the truncation,

resulting in an error of almost -100%. The errors in this stage will all be negative by

definition, as contributions to the cumulants’ values have been removed, not added,

by the truncation.

The truncation step is not random by nature, and so will have the same effect on

the noiseless TPSF for each of its passes through the streak camera. As a result, the

coefficients of variation of the error distributions for this step are equal to zero.

Sample Attenuation

The total number of photons in each instance of the noisy TPSF was chosen from a

normal distribution. The reflectance will therefore vary around its analytical solution
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(the distribution’s mean) with a standard deviation, σtotal, equal to the standard de-

viation of the normal distribution, σnormal, adjusted to take into account the averaging

over each group of TPSFs. This adjustment can be defined by the standard error, as

explained in §5.5.3.1 on page 115, as:

σtotal =
σnormal√

1000
(5.5.19)

The mean and the standard deviation of the normal distribution used to select the

number of photons in this case were approximately 3.96 × 108 and 2 × 104 photons

respectively. Using Eqs. 5.5.14 and 5.5.19, the coefficient of variation can therefore

be calculated as:

CV =
σ

µ
≈

(

2 × 104

√
1000

)

3.96 × 108

≈ 1.6 × 10−6 (5.5.20)

As the coefficient of variation from the truncation and binning step was equal to zero,

δCV for this step is therefore approximately 1.6 × 10−4 %. The error bar for the

reflectance is therefore insignificant.

The errors’ coefficients of variation can be seen to increase as the order of the

cumulant increases. This is due to the temporal bins for the TPSF’s tail – on which

higher-order cumulants are more reliant – having less signal level than the bins for

the body of the TPSF. As such, a variation in the number of photons detected in the

bin will have a larger effect on the bin’s final value, thus leading to a larger coefficient
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of variation over several passes through the streak camera.

Input Optics & Photocathode: quantum efficiency

The error steps due to the streak camera’s input optics and its photocathode’s quan-

tum efficiency are both governed by binomially distributed noise. As this has the

effect of scaling the TPSF’s bins approximately equally, the shape of the TPSF will

not be greatly affected and so all of the metrics will vary about their initial values,

resulting in the mean errors of the metrics being close to zero. Note that the means

will only be equal to zero for an infinite number of passes through the streak camera.

Therefore, any small deviations around zero are the result of the limited number of

passes carried out.

In the case of the sample attenuation, one binomial distribution was used to find

the total number of photons in the TPSF. The large number of photons used in this

distribution resulted in a small standard deviation which was then decreased further

by the process of averaging, thus resulting in a very small coefficient of variation in

the error distribution. In the cases of the input optics and photocathode, however,

the reflectance is found as the sum of the binomially distributed numbers from each

temporal bin. It is known that the sum of a set of N binomial distributions with

equal probability, p, is equal to a binomial distribution with the same probability and

with the number of trials, n, equal to the sum of the numbers of trials in the original
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set:125

N
∑

i=1

Binomial(ni, p) = Binomial

(

N
∑

i=1

ni, p

)

(5.5.21)

Therefore, the combined distribution resulting from the separate temporal bins will

be equivalent to a single distribution corresponding to the total number of photons.

As a result, the coefficient of variation in the reflectance’s distribution will – as in the

case of the sample attenuation – remain small due to the small standard deviation

from the binomial distributions used, and the effect of averaging over each group of

TPSFs.

The above two effects are common to many of the streak camera’s error steps:

the gamma, poisson and gaussian distributions also have little effect on the TPSF’s

shape, as well as sharing the binomial distribution’s summation property. Therefore,

only effects on the mean errors and the reflectance’s coefficient of variation that are

not due to these processes will be covered in the rest of this section.

The coefficient of variation of each of the cumulants’ error distributions will depend

upon the coefficients of variation of the binomial distributions used on each temporal

bin which are defined using Eqs. (5.5.11) and (5.5.12) as:

CV =
σ

µ
=

√

np(1 − p)

np
(5.5.22)

where n is the initial number of photons and p the probabilities of each photon either

being transmitted through the input optics or being converted to a photoelectron by

the photocathode. As a result, the coefficient of variation is related to the initial
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number of photons by:

CV ∝ 1√
n

(5.5.23)

The coefficient of variation is therefore bigger for smaller values of n. As higher-order

cumulants are increasingly dependent on the TPSF’s tail, which in turn decreases in

values of n as the time of arrival increases, higher-order cumulants’ distributions will

therefore suffer from increasingly large values of coefficient of variation.

The coefficients of variation for the photocathode stage are larger than for the

input optics. This is for two reasons. Firstly, the different values of p for each

stage will give rise to larger values of CV for the photocathode stage, according to

Eq. (5.5.22). Secondly, as the input optics reduce the number of photons in the

signal, the values of n will therefore be smaller for the photocathode stage, resulting

in bigger coefficients of variation. This reduction in signal level will also increase the

noise effect of individual photons, as explained for the sample attenuation.

Microchannel Plate

The microchannel plate has the effect of adding gamma-distributed noise to the TPSF.

The coefficient of variation for this distribution can be calculated using Ref. 112 as:

CV =
σ

µ
=

√
nµg

nµg

=
1√
n

(5.5.24)

where n is the initial number of photons in each temporal bin and µg is the mean gain

per photon. The change in the coefficients of variation as the order of the cumulant
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increase will therefore follow that of the input optics and photocathode. The drop in

signal level due to the photocathode’s attenuation will result in smaller values of n.

This will cause a further drop in the sizes of the coefficients of variation for the same

reasons as the photocathode.

Temporal Dispersion

As explained in §5.5.2.4 on page 97, the modelling of the streak camera’s temporal

dispersion by the convolution of the TPSF with a gaussian distribution will only affect

the TPSF’s variance. As this effect is the summing of the gaussian distribution’s

variance to that of the TPSF, the error due to this step will be positive for the second

cumulant. Also, as the gaussian distribution’s variance is constant, the coefficient of

variation of this error will be zero.

Phosphor Screen

The errors on the metrics due to the phosphor screen are governed by poisson-

distributed noise. The coefficient of variation for this distribution is given as:

CV =
σ

µ
=

√
n

n
=

1√
n

(5.5.25)

The coefficient of variation of each of the cumulants’ error distributions will therefore

follow the form of the binomially distributed noise of the input optics and photocath-

ode. As such, the error distributions’ coefficients of variation can be seen to increase

for higher-order cumulants.
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Although the overall signal level output from the phosphor screen will be roughly

equal to that input to the microchannel plate, the photons will have been temporally

dispersed by their convolution with a gaussian in the previous stage. As a result,

the TPSF will consist of a greater number of temporal bins, each containing fewer

photons. Due to the nature of the coefficient of variation’s dependence on n, namely

the square root, this will reduce the coefficients’ values compared to the microchannel

plate. As the dispersion of the photons due to the streak camera is very slight, so is

this reduction.

CCD: quantum efficiency

The CCD’s quantum efficiency is subject to binomially distributed noise. As a result,

it will also follow the form of the binomially distributed noise of the input optics

and photocathode. The different p value will result in the coefficients’ smaller values

compared to the phosphor screen’s.

CCD: readout

Readout noise is added to the TPSF via the addition or subtraction of a number

of photons selected from a gaussian distribution. With a standard deviation of 6

electrons, the magnitude of the noise selected from the gaussian distribution has the

potential to be large in comparison with later temporal bins’ initial values, therefore

leading to significant errors. This can be seen especially for higher-order cumulants

where the effect will be greatest due to their reliance on the TPSF’s tail.
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CCD: quantisation

In order to explain the effects of the CCD’s quantisation process on the metrics, it

is first necessary to consider the output of the previous stage. As photons reach the

CCD, they are converted to electrons according to the detector’s quantum efficiency.

These electrons are then converted to a voltage by a charge amplifier, the non-ideal

nature of which adds noise to this voltage. As a result, for pixels containing small

numbers of electrons, the final voltage may be a negative value. The quantisation

of this signal, however, using an analogue-to-digital converter, does not allow for

negative values which will therefore be truncated.

As a result of this, the overall level of the signal will be increased by the quantisa-

tion step and there will therefore be an increase in the TPSF’s reflectance. The error

in the reflectance in Figure 5.27 is approximately 8× 10−3 %. This appears relatively

small, but note that the tail, which is more susceptible to this effect due to its small

signal levels, only makes a small contribution to the reflectance in comparison with

the main body of the TPSF. The cumulants will also be affected similarly, with the

error increasing as the order of the cumulant increases due to its increasing reliance

on the TPSF’s tail.

Although the quantisation process is not random by nature, its effects on the

TPSF will vary due to the variation in the values of the input signal’s temporal bins.

As a result, the coefficient of variation of the signal will increase. This can be seen
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especially for higher-order cumulants, as the tail’s small signal level will be more

affected by its rounding to the nearest discrete level.

5.5.3.4 Final Errors

As well as looking at the error effects of each stage of the model, it is useful to look at

the final error in each metric as a result of the entire model. As the errors therefore

need to be considered cumulatively, the standard deviations of the error distributions

are used instead of the coefficients of variation.

Figure 5.28 therefore shows the final distribution of the errors in the metrics after

their “detection” by the streak camera model. As expected, the mean of each error

distribution will increase in magnitude for increasing cumulants due to the effects of

the TPSF’s truncation.

The standard deviations, however, do not increase as the order of the cumulant

increases, as was the general trend for the coefficients of variation for each error stage.

Instead, they can be seen to peak at the fifth cumulant, after which they decrease

in magnitude. This is due to the loss of contribution to higher-order cumulants as a

result of the TPSF’s truncation. In general, as the order of the cumulant increases

and its value relies more on the TPSF’s tail, there will be an increase in standard

deviation due to the decrease in signal level. However, this is the standard deviation

in the remaining contribution to the cumulant after truncation. As this contribution

is much smaller than its analytical solution, due to the truncation, the calculated
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Figure 5.28: The mean and standard deviation (marked by the blue cross and error
bars respectively) of the final distribution of the errors in the metrics after their
“detection” by the streak camera model. The red error bars show the standard
deviations increased by a factor of 50 to allow their levels relative to each other to be
seen more clearly.

standard deviation will also be smaller. The form of the standard deviations in

Figure 5.28 can therefore be explained by a trade-off between these two effects. Note

that this trade-off was not seen in the stage-by-stage errors as the effect of the loss of

the signal by truncation was separated from the following errors.
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5.5.4 Errors on Metrics over the Entire Parameter Range

Having investigated the errors due to a streak camera for a particular TPSF, the

camera model was then applied over the entire range of scattering, absorption and,

in the case of spatially resolved detection, source–detector distance parameters, as

defined in §4.3. This enabled a map of the total errors in the metrics over the

parameter ranges to be produced, which could then be used to determine the optimum

metrics for the characterisation of a scattering medium as explained in Chapter 6.

5.5.4.1 Parameter Resolution

The equations derived from the Diffusion Approximation in §3.3 allow for the re-

flectance and cumulants of a medium to be plotted as a continuous range. However,

due to the numerical nature of the streak camera model, the errors must be calculated

for discrete values of the input parameters. The question is therefore how finely to

sample the input parameters over their respective ranges. A finer resolution would

result in a more detailed picture of the errors from a streak camera, but would also

require more instances of the model to be carried out. As implementation of the

model can be time-intensive, it was therefore necessary to minimise the number of

different discrete sets of parameter values.

With this in mind, it was decided to increase the scattering coefficient in steps of

15mm−1 resulting in ten discrete µs sample points within the chosen range. Likewise,

spatial bin widths of 1mm were used, giving ten discrete spatial bins.
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It had been observed in preliminary simulations that a medium’s reflectance

changed very sharply for absorption coefficients less than 0.3mm−1, whereas values

above this figure resulted in relatively gradual changes. In order to minimise the num-

ber of simulations required for the Monte Carlo method and to allow the initial sharp

change in reflectance to be modelled accurately, it was therefore decided to increase

the absorption coefficient in steps of around 0.015mm−1 for values below 0.3mm−1

(21 points), and around 0.1mm−1 for values above (17 points).

In total, these resolutions result in 380 parameter pairs for full-field detection, and

3800 parameter triplets for spatially resolved detection.

5.5.4.2 Convergence of the Model

An important factor in the modelling of the errors for these parameter sets was the

number of passes through the model that should be performed. This number should

be sufficient for the values of the final errors in the metrics to have converged to their

mean values. Although this was true of the 5000 passes used for in §5.5.3.3, using this

number for every one of the parameter sets would result in the modelling requiring

an unfeasible length of time to complete.

Figure 5.29 therefore shows the variation in the final percentage errors in the

reflectance and first four metrics against the number of passes through the model.

Note that the number of TPSFs in each group was kept constant at 1000. As can be

seen, each error converges to its limit as the number of passes increases, with the mean
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Figure 5.29: The variation in the final percentage errors in the reflectance and first
four metrics against the number of passes through the streak camera model. The
shaded area shows the size of a standard deviation around each error’s mean value,
marked by the dark line.
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error value remaining consistent after around 500 passes. At 200 passes, however, the

mean values of the errors can be seen to be close enough to their limits to give a

sufficiently precise error. Therefore, 200 passes will be used for each parameter set.

5.5.4.3 Truncation Length & Signal Level

The method described in §5.5.3.1 was used to define the appropriate truncation length

for each of the TPSFs produced. The truncation length will therefore depend on both

the intensity and shape of the TPSF, whose variation with the input parameters were

fully covered in §4.4. The truncation length for each parameter pair using full-field

detection can be seen in Figure 5.30. The black lines mark the boundaries between

parameter pairs over which the change in this length resulted in the use of a different

sweep time on the streak camera. The value of the truncation length will have a

significant influence on the total intensity of the TPSF that will be measured by the

streak camera.

The total intensity for each parameter pair is therefore shown in Figure 5.31. The

shape of this figure can be explained by looking at the change in both the truncation

length and total intensity with µa for a constant scattering coefficient of 15mm−1 as

shown in Figure 5.32. As the absorption increases, both the width and intensity of

the TPSF will decrease, as demonstrated in Figure 4.2 on page 57. As a result, the

TPSF will reach the noise floor earlier and the truncation length will decrease.

As a general trend, the reduction in truncation length will cause the total intensity
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Figure 5.30: The truncation lengths used for each scattering and absorption coefficient
pair using full-field detection. The black lines mark the boundaries between parameter
pairs over which the change in truncation length resulted in the use of a different sweep
time on the streak camera. The figure uses a logarithmic colour axis for clarity.
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Figure 5.31: The overall intensity of the noiseless TPSFs created for each scattering
and absorption coefficient pair using full-field detection. The figure uses a logarithmic
colour axis for clarity.
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Figure 5.32: The blue lines show the variation of the truncation length of a TPSF
(solid line) and the sweep time used to measure it (dashed line) for different values
of the absorption coefficient using a constant scattering coefficient of 15mm−1. The
variation in the TPSF’s total intensity is shown in green.

of the TPSF to decrease: not only will the TPSF’s peak intensity decrease, but so

will the amount of TPSF that is used. However, by looking at the variation in the

streak camera’s sweep time as determined using the method described in §5.5.3.1, it

can be seen that each time the sweep time reduces there is a corresponding increase

in the TPSF’s total intensity. In cases where the TPSF’s peak value is not large

enough to saturate the streak camera’s CCD, this effect would not be seen: changing

the sweep time, and therefore the binning, would have no effect on the TPSF’s overall
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intensity. However, the increased intensity due to lack of spatial binning in this case

means that the TPSF’s peak intensity will be limited to prevent it from saturating the

streak camera’s CCD. A decrease in sweep time will therefore result in finer temporal

bins being used to measure the TPSF, meaning that the peak bin will contain fewer

photons. The scaling on the TPSF will therefore be smaller, resulting in a higher

overall intensity level.

Figures 5.33 and 5.34 show the truncation length and total intensity for each

parameter pair for spatially resolved detection, and demonstrate the case in which

a change in the sweep time does not lead to an increase in the reflectance. Due to

the spatial binning and the distance of the detector from the light source, insufficient

light will be detected to saturate the CCD. The TPSF is therefore not peak-limited

and so the reflectance in Figure 5.34 will be relatively unaffected by the change in

bin width.

These figures also demonstrate an underlying problem due to the streak camera’s

noise floor. For large source–detector distances and large scattering and absorption

levels, the TPSF’s peak light levels will be smaller than the system’s noise floor.

These TPSFs can therefore not be measured by the streak camera and so they are

not plotted here. The consequences of this will be covered in more detail in Chapter 6.
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Figure 5.33: The truncation lengths used for each scattering and absorption coefficient
pair for an annular detector with radii 3–4mm. The black lines mark the boundaries
between parameter pairs over which the change in truncation length results in the use
of a different sweep time on the streak camera. The figure uses a logarithmic colour
axis for clarity.
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Figure 5.34: The overall intensity of the noiseless TPSFs created for each scattering
and absorption coefficient pair for an annular detector with radii 3–4mm. The figure
uses a logarithmic colour axis for clarity.
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5.5.4.4 Final Error Maps

The mean magnitude (µ) and standard deviation (σ) of the errors in the reflectance

and first three cumulants due to the streak camera for full-field detection are shown as

“error maps” in Figure 5.35. As the values of the scattering and absorption coefficients

and the source–detector distance vary, so will the shape of the TPSF. This will, in

turn, affect the following:

1. The truncation length

2. The temporal binning

3. The overall intensity of the TPSF

4. The initial values of the TPSF’s metrics

As these are all factors in the distribution of the errors in the metrics due to the

streak camera model, the changes in the errors as the input parameters vary are

quite complex. However, the general trends will still be discussed here.

The forms of the error maps in Figure 5.35 can be mostly explained by a combi-

nation of two effects. Firstly, in general, the TPSF’s magnitude will decrease as the

absorption increases due to the Beer–Lambert law. This decrease in the number of

photons will cause an increase in the effect of noise – the change in the number of

photons will have more effect on a small signal level due to its reduced signal-to-noise

ratio. As a result of this, the sudden increase in the magnitude of the TPSF caused
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Figure 5.35: The mean magnitude (µ) and standard deviation (σ) of the errors in the
reflectance and first three cumulants (shown as a percentage of the analytical metric
value) due to the streak camera for full-field detection. The figures use logarithmic
colour axes and absolute values of data for clarity.
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Figure 5.36: The effect of the value of the absorption coefficient (shown in the legend)
on the truncation error. The red, dashed line shows the streak camera’s noise floor,
at which level the TPSFs are truncated.

by a change in the streak camera’s sweep time, as demonstrated in Figure 5.32, will

therefore cause a sharp decrease in the magnitude of the error. This results in the

discontinuities in the error maps for the first cumulant’s mean error and the lower-

order metrics’ standard deviations, which can be seen to correlate with the changes

in sweep time shown in Figure 5.30.

Secondly, a change in the value of a medium’s absorption coefficient can be seen

to have a large effect on the error due to truncation. This can be explained using

Figure 5.36. At low absorption levels, the resulting TPSF has a longer tail than at
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high absorption levels. This means that the TPSF will cross the level of the noise

floor at a shallower angle than the TPSF with high absorption and as a result, a

larger proportion of the tail will be lost due to truncation. This effect can be seen

in the plot of the mean error in the third cumulant. Higher-order cumulants follow

this trend, with the magnitude of the errors increasing as the order increases and the

cumulant relies more heavily on the TPSF’s tail.

The “valleys” in the mean errors of the first and second cumulant can be explained

by the method of presentation of the data. As the plots’ colour axes are logarithmic

in nature, it is not possible to show negative values and so the values shown are

merely the errors’ magnitudes. Each valley therefore marks the point at which the

errors turn from negative to positive as the absorption increases. In the case of the

second cumulant (the variance), this effect is due to the streak camera’s temporal

dispersion which is modelled by convolving the TPSF with a gaussian distribution,

and therefore has the effect of increasing the value of the TPSF’s second cumulant. At

lower absorption levels, the second cumulant will be reduced heavily by the truncation,

as explained above. In this case, the increase in the variance due to the convolution

will not be large enough to overcome the truncation’s effect and so will merely make

the error in the cumulant less negative. As the absorption level increases, however,

the error due to truncation will decrease sufficiently for the convolution to first cancel

out the error, and then overcompensate by making the error more positive.
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Figure 5.37: The standard deviation (σ) of the errors in the fourth to seventh cumu-
lants (shown as a percentage of the analytical metric value) due to the streak camera
for full-field detection. The figures use logarithmic colour axes for clarity.

The standard deviations of the errors in the third order and higher cumulants

do not follow the same trend as those of the lower-order cumulants: as the order of

the cumulant increases, the standard deviation in the error can be seen to be greater

when the mean error is lower. This is shown in Figure 5.37 and is due to a similar

effect as seen in Figure 5.28. As the mean error in higher-order cumulants is due

to the TPSF’s truncation, a large mean error will be the result of the removal of a

large proportion of the cumulant’s contribution. As such, any noise on this reduced

contribution will have a small effect when compared to its cumulant’s true, larger
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analytical value.

These error maps are an essential part of the determination of the optimum metrics

for the characterisation of scattering media and so will be integral in the methods

used in the following chapter.

5.6 Model Validation

Having described this novel model of a streak camera, it is important to consider how

it could be validated. The foundation of this process is the input of a characterised

signal to the streak camera and the measurement of the camera’s output. The known

characteristics of the input signal allow an identical signal to be applied theoretically

to the model and its output calculated. Comparison of the outputs from both the

physical camera and the model allow the accuracy of the model in representing the

camera to be ascertained.

The question, therefore, is one of the production of a characterised input pulse.

Firstly, it would be inappropriate for this pulse to be a TPSF emitted from a tis-

sue sample, as would be the case when taking measurements with the camera – the

addition of a tissue sample into the light path would only serve to increase the uncer-

tainty about the input pulse, not only as a result of the model used to describe the

light emitted from the tissue sample but also as the sample’s optical characteristics

used within the model could not be known with 100% accuracy. The input pulse can

therefore be that of the system’s laser. As a result of the omission of the sample, the
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laser should be used at low power levels to simulate the light levels expected from the

tissue sample. The laser pulses can be characterised by a technique such as interfero-

metric autocorrelation,126 although the characteristics must be averaged over a large

number of pulses in order to take into account the variation between pulses due to

the laser.

Once characterisation of the laser has been completed, the pulses can be applied

to both the camera and its model. In both cases, due to the stochastic nature of the

camera and its model, this must be averaged over many laser pulses to reduce the

uncertainty in the comparison of the camera’s and model’s outputs. Validation is then

achieved by a direct comparison of the resulting TPSFs’ cumulants and reflectance,

as these are the metrics used in this thesis to ascertain a medium’s scattering and

absorption properties. The model’s accuracy can then be calculated for individual

metrics or for a combination. This should be repeated for varying power levels in

order to fully validate the streak camera model.

5.7 Summary

Presented in this chapter was a complete model of a streak camera. The configuration

of a typical streak camera was discussed, and its sources of noise identified. The noise

on the TPSF emerging from the sample due to both the light source and scattering

and absorption in the medium were also considered. The effects of the relevant types

of noise on a TPSF were then investigated.
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This knowledge was then used to produce a model which could be used to simulate

the detection of a TPSF by a streak camera. Particular consideration was given to

two aspects of this detection. Firstly, the maximum light levels that could safely

be used to illuminate human skin were investigated and the resulting intensity of

the detected TPSF calculated. Secondly, particular attention was paid to the streak

camera’s sweep time, as this would determine both the time at which the detected

TPSF was truncated, and how finely it was binned. It was found that the TPSF’s

truncation length had a much larger effect on its calculated metrics than the resolution

of its temporal binning, and thus priority was given to calculating the appropriate

truncation length. This was determined using the camera’s noise floor: once the TPSF

dropped below this level, it could no longer be measured accurately. The level of the

noise floor was found to be almost entirely dependent on the CCD’s readout noise,

although it could be significantly reduced by averaging the TPSFs. The camera’s

sweep time was therefore decided from the TPSF’s appropriate truncation length.

A typical TPSF was then “detected” using the streak camera model, and the

relative and absolute effects of each of the camera’s stages on the TPSF’s metrics

investigated. It was found that the truncation and quantisation of the TPSF had the

largest effect on the metrics’ values.

Finally, the streak camera model was applied to TPSFs over the ranges of opti-

cal parameters corresponding to human skin, as determined in Chapter 4. From the
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results, plots of the errors in each metric measured using the streak camera could be

plotted. These “error maps” will be used in the following chapter to determine the ac-

curacy to which a medium’s absorption and scattering coefficients can be determined

using a streak camera.



Chapter 6

Determination of the Optimum

Metrics

6.1 Introduction

In Chapter 4, the dependence of the metrics used within this thesis on a medium’s

parameters were described. The expected error in the measurement of these metrics

due to a streak camera were then discussed in Chapter 5. Using this knowledge, it

is now possible to ascertain which of these metrics will allow the determination of a

medium’s scattering and absorption coefficients with the least errors. These are the

optimum metrics for the characterisation of a scattering medium.

In order to determine these optimum metrics, it is first necessary to define how

they will be used to characterise the medium. There are two unknowns in the system,

namely the medium’s scattering and absorption coefficients. (The anisotropy factor

is assumed to be constant, as explained in §4.3.) Pairs of metrics must therefore be

used to solve for these two unknowns.

165



166

The properties that make these metric pairs more suitable for characterisation will

be ascertained. Error analysis equations that quantify this suitability are then derived

and applied to the values of the metrics and their expected errors. This allows the

errors in the calculated values of a medium’s scattering and absorption coefficients to

be determined for each metric pair, from which the optimum pairing can be selected.

The methods described here for the determination of the optimum metrics can

be applied to any system where the errors in the metrics are known. In this case,

however, the methods will be used to calculate the optimum metrics for the specific

streak camera described in Chapter 5.

6.2 Method of Media Characterisation

In order to determine which are the optimum metrics for the characterisation of a

scattering medium, it is necessary to detail the method used in the process. First,

consider a noiseless, full-field system with which the reflectance and cumulants of

an unknown semi-infinite medium can be measured exactly. Ignoring the inaccura-

cies that come from using the Diffusion Approximation, these metrics are known to

vary with a medium’s properties as described by the equations derived in Chapter 3.

The reflectance and first cumulant can therefore be seen to vary over the range of

absorption and scattering values of interest as shown in Figure 6.1.

The contours on each of the surfaces represent the values of two measurements

made with the hypothetical noiseless system. They mark the values of µs and µa that
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Figure 6.1: The variation of the full-field reflectance and first cumulant with the scat-
tering and absorption coefficients of a semi-infinite medium according to the Diffusion
Approximation. The two contours show the positions of an arbitrary measurement
on each of the surfaces. The figures use a logarithmic colour axis for clarity.
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correspond with each of the measurements. Finding the exact value of the medium’s

scattering and absorption parameters is therefore a case of finding the position where

these contours cross – this is the solution of the two simultaneous equations for the

two contours. If the surfaces have been produced analytically, as in this case, these

equations are also known analytically. However, if the surfaces have been created

either using Monte Carlo modelling or by experiment, curve fitting will have to be

applied to each of the contours first to determine their forms.

In practice, it is impossible to take noiseless readings, leading to a small error in

the measured value of each metric. This will have the effect of changing the contour

of interest on each surface, and thus their crossing point. As a result, there will be an

error in the calculated value of the medium’s scattering and absorption parameters.

This error is an inevitable consequence of noise – it is the magnitude of this error,

however, that is of interest.

6.3 Noise Resilience

The optimum metrics can therefore be defined as those that are most resilient to

noise, or in other words, those whose surfaces result in the least error in the measured

scattering and absorption parameters in the presence of noise. Note that this is a

property of metric pairs, as it takes two contours to characterise the medium. This

will be discussed in more detail in §6.3.2.
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6.3.1 Error Analysis

In order to calculate a metric pair’s resilience to noise, the change in each of the two

metrics, δm1 and δm2, is defined in terms of a change in both the medium’s scattering

and absorption parameters, δµs and δµa respectively:127

δm1 = δµs
∂m1

∂µs

+ δµa
∂m1

∂µa

(6.3.1)

δm2 = δµs
∂m2

∂µs

+ δµa
∂m2

∂µa

(6.3.2)

The partial derivative terms represent the gradients of each metric surface with the

scattering and absorption coefficients and can be calculated either analytically or

numerically. However, use of the latter method brings further complications which

will be explained in §6.6. Solving Eqs. (6.3.1) and (6.3.2) simultaneously for δµs and

δµa gives:

δµs =

δm1
∂m2

∂µa

− δm2
∂m1

∂µa

−J
(6.3.3)

δµa =

δm1
∂m2

∂µs

− δm2
∂m1

∂µs

J
(6.3.4)

where J is the Jacobian determinant:

J =
∂m1

∂µa

∂m2

∂µs

− ∂m1

∂µs

∂m2

∂µa

(6.3.5)

This is discussed in §6.3.2.

The equations shown in (6.3.3) and (6.3.4) represent the error in the medium’s
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calculated scattering or absorption coefficient in terms of an error in the measured

value of each metric, and as such, show the metric pair’s resilience to noise.

Note that the equations are also resilient to scaling, as scaling factors on either,

or both, of the metrics will appear on both the numerator and denominator and

therefore will have no effect on the error in µs or µa. As scaling factors do not affect

a metric’s signal-to-noise ratio, this is the desired behaviour of the error analysis

equations. This is an important feature, as it also allows metric pairs of different

units to be compared.

6.3.2 The Jacobian Determinant

As explained earlier, the resilience of a metric pair to noise is a property of the metric

pair and not the individual metrics. The Jacobian determinant is a measure of this

resilience, and describes the transformation of data between two parameter spaces.

In this case, the transformation is from metric (m1-m2) space to coefficient (µs-µa)

space. Rather than considering two surfaces of m1 and m2 varying with µs and µa

as in Figure 6.1, this can be visualised as two separate co-ordinate systems, with

every point in the m1-m2 system mapping to a point in the µs-µa system. This is

demonstrated in Figure 6.2, with arbitrary examples of mappings shown in red.

The figure also shows an area, Am, in m1-m2 space which is defined by the vectors

dm1 and dm2. This will map onto µs-µa space as the area Aµ defined by the vectors

dµs and dµa. Vectors dm1 and dm2 can be defined in µs-µa space as the following
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Figure 6.2: A demonstration of the mapping (in red) of points in m1-m2 space to
µs-µa space. As a result, areas can also be mapped between the spaces, as shown by
Am and Aµ. This allows the Jacobian determinant to be derived.

vectors:

dm1 = dm1 m̂1 =

(

∂m1

∂µs

dµs

)

µ̂s +

(

∂m1

∂µa

dµa

)

µ̂a (6.3.6)

dm2 = dm2 m̂2 =

(

∂m2

∂µs

dµs

)

µ̂s +

(

∂m2

∂µa

dµa

)

µ̂a (6.3.7)

where the terms marked with carets are unit vectors in the direction of the relevant

variable.

These can then be used to relate the two areas, Am and Aµ, as follows. Note that

as the vectors defining the areas are not necessarily perpendicular, the areas must

be thought of as parallelograms, rather than rectangles. The sizes of the areas are

therefore calculated using the magnitude of the cross product, as follows. For the two
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vectors:

a = a1ı̂ + a2̂ (6.3.8)

b = b1ı̂ + b2̂ (6.3.9)

where ı̂ and ̂ are two arbitrary unit vectors, the cross product is defined as:

|a × b| = a1b2 − a2b1 (6.3.10)

The result is equal to the area of the parallelogram defined by the two vectors.128

The area Am can therefore be calculated as:

Am = |dm1 × dm2|

=

∣

∣

∣

∣

[(
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dµs

)
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(
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dµa
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]
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|dµs × dµa|

= JAµ (6.3.11)

The Jacobian determinant therefore relates the two areas, Am and Aµ, as follows:

J =
∂m1

∂µa

∂m2

∂µs

− ∂m1

∂µs

∂m2

∂µa

(6.3.12)

=
Am

Aµ

(6.3.13)

The relevance of this result can be seen by defining the lengths of vectors dm1

and dm2 as the magnitude of the errors in each of the metrics. As a result, Am and
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Aµ represent the relative sizes of errors in each co-ordinate system. It can therefore

be seen that a large Jacobian determinant will minimise the errors in a medium’s

calculated scattering and absorption coefficients.

A metric pair’s resilience to noise is therefore dependent on the magnitude of

their Jacobian determinant. An estimate of this magnitude can be made visually by

calculating the Jacobian determinant using a different definition of the cross product

as follows. For two vectors, a and b, the magnitude of their cross product can be

defined as:

|a × b| = |a||b| sin θ (6.3.14)

where θ is the angle between the two vectors. Defining two metric surfaces’ gradients

as the vectors ∇m1 and ∇m2:

∇m1 =
∂m1

∂µs

µ̂s +
∂m1

∂µa

µ̂a (6.3.15)

∇m2 =
∂m2

∂µs

µ̂s +
∂m2

∂µa

µ̂a (6.3.16)

the Jacobian determinant can be calculated using Eq. (6.3.14) as:

J = |∇m1 ×∇m2| = |∇m1||∇m2| sin θ (6.3.17)

which is equal to Eq. (6.3.12). It can therefore be seen that the Jacobian determinant

is large when the gradients are large and orthogonal. The relevance of this can be

seen by considering the contour plots of the two metric surfaces in Figure 6.1. In

this form, the magnitude of the gradients can be determined from the proximity of
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Figure 6.3: The Jacobian determinant surface for the metrics shown in Figure 6.1.
The figure uses a logarithmic colour axis for clarity.

consecutive contours. As contours are perpendicular to a surface’s gradient, their

orthogonality is equal to the orthogonality of the gradients.

The resulting Jacobian determinant surface from these two metric surfaces is

shown in Figure 6.3. It is greatest in the bottom left quadrant as the corresponding

contours are close together and orthogonal. As a result, a small change in one of

the metrics in Figure 6.1 will have a minimal effect on the position of the crossing

point and therefore the corresponding values of µs and µa. The top left and top right

regions, however, are limited by near-parallel and shallow gradients respectively, and

so a small change in the value of a metric will result in a large error in the coefficients,

leading to a smaller value of the Jacobian determinant.
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m1m1

m2m2

+40◦ −40◦

Figure 6.4: Two gradient vectors (as solid lines) for two metrics at two different
points. The corresponding contours are shown as dashed lines. The vectors, and
therefore the gradients) are chosen to be co-planar for clarity.

6.3.2.1 Solution Uniqueness

Another important factor in determining the optimum metric pair is the uniqueness

of the solution to the medium’s scattering and absorption coefficients over the range

of metric values: a metric pair is unsuitable if there exists a pair of measurements

that corresponds to multiple solutions to the medium’s coefficients. As a coefficient

solution occurs at the crossing point of two surfaces’ contours, multiple solutions will

therefore occur if any contour pair between the two surfaces cross more than once.

This can be determined using the sign of the Jacobian determinant, as it is a

measure of the direction of the surfaces’ gradients (or contours) relative to each other

at each point on the metric surfaces. As an example, Figure 6.4 shows two gradient

vectors (as solid lines) for two metrics at two different points. The corresponding

contours are shown as dashed lines. The vectors (and therefore the gradients) are
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chosen to be co-planar for clarity. It can be seen that m2 has reversed its horizontal

direction relative to m1 between the two points of interest. As a result, the contour

corresponding to m2 crosses the contour for m1 twice. This change in direction is

marked by a change of sign on the angle between the two vectors, and thus a change

of sign on the Jacobian determinant. This change of sign is therefore an indication

that unique solutions do not exist for such a metric pair.129

6.3.2.2 Resilience to Scaling Factors

In contrast to the error analysis equations, it can be seen from Eq. (6.3.12) that the

Jacobian determinant is not resilient to scaling factors, and thus cannot be compared

for metrics of different units. As it is not analysed in isolation from the error analysis

in this thesis, this feature is unimportant. However, if the Jacobian determinant is to

be analysed in more detail, this resilience can be achieved, with no effect on the final

calculated error, by performing the error analysis on the logarithm of each metric, as

shown in Appendix B.

6.4 Optimum Metrics for Full-field Detection

The error analysis equations defined in Eqs. (6.3.3) and (6.3.4) can now be applied to

the case of full-field detection using the streak camera described in Chapter 5. This

will result in values for the errors in the scattering and absorption coefficients over the

range of the medium’s “true” coefficient values. The metric pair’s suitability for the
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characterisation of a medium is dependent on the error values over the entire range,

as will be discussed later.

As explained in §5.5.4.1, it was necessary to calculate the errors in the metric

values for discrete values of the medium’s coefficients. Therefore, the errors in the

coefficients calculated using the error analysis equations are also at discrete points

over the surface.

Before calculating the errors in the medium’s characterisation, it is first necessary

to define the metrics’ analytical solutions over the parameter ranges. This was done

using the Diffusion Approximation equations from §3.3 to give the metric surfaces

shown in Figure 6.5. The forms of these surfaces were discussed in detail in §4.4.

Only the reflectance and first five cumulants are used in this error analysis as it

will be shown that these are sufficient to determine the optimum metrics. This also

allowed the forms of the metrics and the results of the error analysis to be shown

and analysed comprehensively. The six metrics therefore led to a total of 15 metric

pair combinations (calculated in combinatorial mathematics using 6C2). All these

pairs passed the test for uniqueness using the Jacobian determinant as described in

§6.3.2.1.

6.4.1 Errors in the Absorption Coefficient

It is possible for each metric pair to give very different results for the errors in the

scattering and absorption coefficents of a medium. As specific applications of media
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Figure 6.5: Analytical solutions to the metrics of interest as calculated using the
Diffusion Approximation for full-field detection. The figures use a logarithmic colour
axis for clarity.
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characterisation may require varying precisions for these coefficients, it is useful to

consider the errors separately. This section will therefore deal with the error in the

absorption coefficient.

The errors in the metrics for each metric pair (δm1 and δm2 in the error analysis

equations) were calculated using the streak camera error maps shown in Figure 5.35.

These maps are defined by their mean (µ) and standard deviation (σ) and so the

errors used for each metric were calculated as (µ + σ) and (µ − σ). For each metric

pair there are therefore four different combinations of errors:

δm1 = µ1 + σ1, δm2 = µ2 + σ2

δm1 = µ1 + σ1, δm2 = µ2 − σ2

δm1 = µ1 − σ1, δm2 = µ2 + σ2

δm1 = µ1 − σ1, δm2 = µ2 − σ2 (6.4.1)

Each of these four combinations was applied to the error analysis equation, and the

worst resultant error in the absorption coefficient used for each point in the parameter

space.

The values of the partial derivatives in the error analysis equations were calculated

analytically from the Diffusion Approximation equations in §3.3.

The errors in the absorption coefficient for the 15 metric pairs are therefore shown

in Figures 6.6 and 6.7. It can be seen that these surfaces do not follow the forms of

the metric surfaces in Figure 6.5 as it is the differentials of these surfaces that are
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Figure 6.6: The errors in the absorption coefficient determined using the errors in
metrics due to a streak camera for eight metric pairs using full-field detection. The
figures use a logarithmic colour axis for clarity.
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Figure 6.7: The errors in the absorption coefficient determined using the errors in
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tion. The figures use a logarithmic colour axis for clarity.
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relevant to the error analysis. The plots can instead be described due to three effects.

Firstly, the surfaces contain characteristics of the streak camera error maps shown

in Figure 5.35. More specifically, each metric pair surface has the characteristics of

the error map relating to the metric of the pair with the largest error. Thus the

Reflectance–κ1 surface contains the “valleys” from the error map for the first cumulant

as its error map generally has larger values than that of the reflectance.

Secondly, the errors will be much higher in the top right quadrant of the surfaces.

This is because, in this region, the Jacobian determinant will be very small due to

the shallow gradients of the metric surfaces in Figure 6.5. An example of this can be

seen in Figure 6.3. This effect will be more prominent on the Jacobian determinant

surfaces of metric pairs that do not involve the reflectance, as the gradients will also

lack orthogonality in the top right quadrant.

Thirdly, the error in µa is proportional to the differentials of both metrics with µs.

From the metric surfaces shown in Figure 6.5, the metric pair error surfaces containing

the reflectance will therefore show a larger error in the absorption coefficient in the

bottom right quadrant. The metric pair error surfaces are therefore explained by a

combination of these effects.

In order to determine which of the metric pairs is the optimum over the chosen

parameter range, it is necessary to look at the errors over the entirety of each metric

pair surface shown in Figures 6.6 and 6.7. This can be done using a histogram of each
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surface’s errors, as shown in Figures 6.8 and 6.9. The mean error for each metric pair

is shown in the top-right corner of the corresponding histogram. It can be seen that

different metric pairs result in different error distribution shapes. The Reflectance–κ2

pairing, for instance, has the bulk of its errors close to one value, with small numbers

of instances with a significantly larger error. The Reflectance–κ3 surface, on the other

hand, has a much more even spread of error values with no significant outliers. This

can be an important factor in the selection of an optimum pair, as will be discussed

in more detail for the errors in scattering coefficient in §6.4.2.

In this case, however, it is clear that the Reflectance–κ1 pairing gives both the

smallest mean (0.005mm−1) and maximum (0.044mm−1) errors out of all the surfaces,

thus making the spread of its values less relevant. This is therefore the optimum

metric pair for the determination of the absorption coefficient in full-field detection

mode using the streak camera described in Chapter 5.

The significance of this result can be assessed by considering an application of this

characterisation. One such application is the differentiation of healthy and malignant

breast tissues, for which Nair et al.130 estimated the absorption coefficients of the

healthy and malignant tissue to be 0.063mm−1 and 0.06mm−1 respectively. It is

therefore clear that the mean error given by this optimum metric using full-field

detection is not small enough to distinguish these two types of tissue, and therefore

this approach is inadequate for such an application.
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Figure 6.8: Histograms of the errors in the absorption coefficient over each of the
metric pair surfaces in Figure 6.6. The limit of the x-axis represents the maximum
error for each metric pair. The mean error for each metric pair is shown in the
top-right corner of the pair’s histogram.
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Figure 6.9: Histograms of the errors in the absorption coefficient over each of the
metric pair surfaces in Figure 6.7. The limit of the x-axis represents the maximum
error for each metric pair. The mean error for each metric pair is shown in the
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Reflectance measurements can be difficult to perform, however, as they require

an exact measurement of the amount of light that physically enters the medium, as

opposed to the amount of light merely incident on its surface, as well as measure-

ments of absolute intensity which can be difficult to perform due to problems such as

source fluctuations and surface coupling.60 Therefore, if this metric was discounted

for reasons of feasibility, the optimum metric pair would be κ1–κ3, with a mean er-

ror of approximately 0.05mm−1. As this error is ten times worse than that of the

Reflectance–κ1 pairing, it is possible that steps taken to retain the ability to perform

reflectance measurements may be well justified.

Perhaps surprising is the resilience to noise exhibited by the metric pairs contain-

ing higher-order cumulants. In general, the error in the absorption coefficient will

increase as higher-order cumulants are used, with the κ1–κ5 pairing giving a mean

error of approximately 0.09mm−1, less than double that of the κ1–κ3 metric pair.

The exception to this rule, however, is the second cumulant which is heavily af-

fected by the streak camera’s temporal dispersion. At high absorption and scattering

levels, the error in this metric is significant, as can be seen in Figure 5.35. As a result,

any pairing containing this metric will contain outliers corresponding to this region

with high values of error in the absorption coefficient.
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6.4.2 Errors in the Scattering Coefficient

The errors in the scattering coefficient for the same 15 metric pairs are shown in Fig-

ures 6.10 and 6.11. Their forms can be described by the same three effects as the error

in the absorption coefficent. However, in this case, the error result is proportional to

the differentials of both metrics with µa. As a result, it can be seen from the metric

surfaces shown in Figure 6.5, that the metric pair error surfaces will therefore show a

larger error in the scattering coefficient on the left hand region of the surface where

the metric gradients are larger. This is especially true of the cumulants, due to their

significant variation with µa at low absorption levels. This explains the large increase

in error that can be seen on the very left of the Reflectance–κ3, Reflectance–κ4 and

Reflectance–κ5 surfaces.

The higher order metric pairs (κ2–κ3 and above) can also be seen to exhibit sharp

dips in their errors at low absorption levels. This is, in fact, merely the error in the

scattering coefficient changing from positive to negative (as the absorption increases)

– due to the logarithmic colour axes, it was necessary to work with the absolute values

of the errors.

The histogram of each surface’s errors are shown in Figures 6.12 and 6.13. In this

case, it can be seen that the shape of the error distributions are particularly relevant

in determining the optimum metric pair: the Reflectance–κ1 pairing gives an error

of less than 10mm−1 over 95% of the surface. However, there is also a possibility of
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Figure 6.10: The errors in the scattering coefficient determined using the errors in
metrics due to a streak camera for eight metric pairs using full-field detection. The
figures use a logarithmic colour axis for clarity.
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Figure 6.11: The errors in the scattering coefficient determined using the errors in
metrics due to a streak camera for a further seven metric pairs using full-field detec-
tion. The figures use a logarithmic colour axis for clarity.
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Figure 6.12: Histograms of the errors in the scattering coefficient over each of the
metric pair surfaces in Figure 6.10. The limit of the x-axis represents the maximum
error for each metric pair. The mean error for each metric pair is shown in the
top-right corner of the pair’s histogram.



191

¯δµs = 17.7

δµs (mm−1)

F
re

q
u
en

cy
κ1–κ5

0 50 100 150
0

5

10

¯δµs = 90.3

δµs (mm−1)

F
re

q
u
en

cy

κ2–κ3

0 200 400 600
0

5

10

15

20

¯δµs = 75.0

δµs (mm−1)

F
re

q
u
en

cy

κ2–κ4

0 100 200 300 400
0

5

10

15
¯δµs = 69.1

δµs (mm−1)

F
re

q
u
en

cy

κ2–κ5

0 100 200 300 400
0

5

10

15

20

25

¯δµs = 43.0

δµs (mm−1)

F
re

q
u
en

cy

κ3–κ4

0 50 100 150 200
0

5

10
¯δµs = 44.3

δµs (mm−1)

F
re

q
u
en

cy

κ3–κ5

0 50 100 150 200
0

5

10

¯δµs = 55.4

δµs (mm−1)

F
re

q
u
en

cy

κ4–κ5

0 50 100 150 200 250
0

5

10

Figure 6.13: Histograms of the errors in the scattering coefficient over each of the
metric pair surfaces in Figure 6.11. The limit of the x-axis represents the maximum
error for each metric pair. The mean error for each metric pair is shown in the
top-right corner of the pair’s histogram.
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the error being as high as around 310mm−1. The κ1–κ5 pairing, meanwhile, gives an

error of under 50mm−1 over a large majority of the surface, but can give a maximum

error of just 170mm−1. The selection of the “optimum” metric pair is therefore

a question of application, and whether a larger average error can be tolerated in

exchange for a smaller maximum error. In the absence of such an upper limit on

the error, it can be seen that once again, the optimum pair for the determination of

the scattering coefficient is the Reflectance–κ1 pairing, with a mean error of around

7mm−1. However, for the application considered earlier – the differentiation of healthy

and malignant breast tissue – it can be seen that none of the possible pairings provide

enough accuracy: the scattering coefficients of these two tissues, estimated by Nair

et al.130 at 2.3mm−1 and 2.8mm−1 respectively, cannot be distinguished using any of

the possible pairings in full-field detection.

In contrast to the error in the absorption coefficient, metric pairs involving the

second cumulant do not produce a large increase in the error in the scattering coef-

ficient: it can be seen from the second cumulant’s error map in Figure 5.35 that the

error in the metric due to the streak camera is large when both the absorption and

scattering levels are high. However, the change in the second cumulant with the ab-

sorption coefficient (∂κ2

∂µa
), to which the calculation of the error in µs is proportional, is

small in this region, as can be seen in Figure 6.5. This therefore limits the maximum

error in the scattering coefficient.
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It should be noted that if an estimate of the medium’s characteristics is already

known by an alternative analysis method or a priori information, this analysis can be

performed on an appropriate region of the metric pair error surfaces, rather than over

the entire parameter range. This will result in different histograms, and potentially

a different optimum metric pair. As an example of this, consider the δµs surfaces in

Figures 6.10 and 6.11. If the absorption coefficient is known to be less than 0.5mm−1,

the error analysis equations therefore need only to be applied to the left hand sides

of the surfaces to produce the histograms in Figures 6.14 and 6.15. As above, the

Reflectance–κ1 pairing gives the smallest mean error, but gives a small probability of

an error of 310mm−1. However, in this case, the κ2–κ3 metric pair gives a maximum

error of only 120mm−1, less than half that of the same metric pair without the use of

a priori information.

6.5 Optimum Metrics for Spatially Resolved De-

tection

The methods used in the previous section can now be applied to the case of spatially

resolved detection. This raises two issues. Firstly, as demonstrated in Figure 5.34,

for large scattering and absorption levels, the TPSF’s peak light levels will be smaller

than the system’s noise floor and as a result, the TPSF will not be detected by

the streak camera. This effect will become more substantial as the source–detector

distance increases. This is demonstrated by Figure 6.16: the regions in which the
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Figure 6.14: Histograms of the errors in the scattering coefficient over the left hand
region of each of the metric pair surfaces in Figure 6.10. The limit of the x-axis
represents the maximum error for each metric pair. The mean error for each metric
pair is shown in the top-right corner of the pair’s histogram.
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Figure 6.15: Histograms of the errors in the scattering coefficient over the left hand
region of each of the metric pair surfaces in Figure 6.11. The limit of the x-axis
represents the maximum error for each metric pair. The mean error for each metric
pair is shown in the top-right corner of the pair’s histogram.
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TPSF can not be detected are shown in white for each of the ten annular detector

regimes used in this study.

The consequence of this effect is that an assumption can be made about the range

of a medium’s optical properties as the result of its detection or non-detection using a

particular annular detector. Put simply, for each annular detector range, if no TPSF

is detected then it can be assumed that the medium’s properties fall outside that

annular detector’s valid range shown in Figure 6.16. The validity of this assumption

is dependent on the accuracy of the model used to produce these ranges.

Without an assumption as to the possible range of a medium’s optical properties,

it is clear from Figure 6.16 that spatially resolved measurements above ρ1 could

potentially lead to an inability to characterise the medium, as the medium’s optical

coefficients may lie outside that detector’s valid range. An assumption about the

range of the medium’s optical properties, however, allows the use of spatially resolved

measurements up to that source–detector distance. For example, the error analysis

results for an annular detector of radii 5–6mm (ρ6) may be compared to those of

lower source–detector distances by the truncation of these results to match the valid

range of ρ6 shown in Figure 6.16. This approach cannot be applied the other way

round, however: the full valid range of the ρ2 error analysis cannot be compared to

those of larger source–detector distances as they do not contain enough information.

Due to the different parameter ranges for each possible assumption, it is therefore
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Figure 6.16: Maps of light detection for each annular detector. The regions in white
mark the optical coefficients which result in TPSFs which can not be detected over
the streak camera’s noise floor.
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necessary to perform a different error analysis for the valid parameter range of each

source–detector distance.

The second issue that arises from the use of spatially resolved detection is the

ten-fold increase in the metrics available with which the medium may potentially be

characterised. The pairing of the metrics, combined with the need for multiple sets of

error analyses as explained above, results in an unwieldy number of metric pair error

surfaces to analyse graphically as carried out for full-field detection. The mean error

will therefore be used in this case to determine the optimum error pair.

6.5.1 Errors in the Absorption Coefficient

The same methods were used here as for full-field detection: errors on the metrics

were calculated using the streak camera model and then propagated through to give

an error in the absorption coefficient. In this case, numerous metric pairs failed the

test of uniqueness described in §6.3.2.1 and so were discarded as potential optimum

pairs.

As previously explained, it is necessary to perform a different error analysis for

each of the parameter ranges shown in Figure 6.16. (As ρ1 and ρ2 are both valid over

the entire metric parameter range, they are considered together.) The results of this

are shown in Table 6.1. It can be seen that, with no assumption about the medium’s

optical properties, the optimum metric pair to determine the absorption coefficient is

the reflectance and first cumulant, both measured on-axis.
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Table 6.1: Optimum metric pairs for the determination of µa

Assumed parameter range
(see Fig. 6.16)

Optimum Metric Pair Mean Error in µa (mm−1)

ρ1 or ρ2 Ref. (ρ1) – κ1 (ρ1) 0.00469
ρ3 Ref. (ρ1) – κ1 (ρ1) 0.00460
ρ4 Ref. (ρ1) – Ref. (ρ2) 0.00306
ρ5 Ref. (ρ1) – Ref. (ρ2) 0.00231
ρ6 Ref. (ρ1) – Ref. (ρ2) 0.00187
ρ7 Ref. (ρ1) – Ref. (ρ3) 0.00125
ρ8 Ref. (ρ1) – Ref. (ρ3) 0.00080
ρ9 Ref. (ρ3) – κ1 (ρ3) 0.00057
ρ10 Ref. (ρ3) – κ1 (ρ3) 0.00032

By making an assumption based on the ability of a particular annular detector’s

ability to detect the TPSF, however, this error can be reduced by the use of two

reflectance measurements or reflectance and first cumulant measurements further from

the source. The reduction in error in the determined coefficient as the assumption

becomes more specific can be explained by the loss of those regions that result in

larger errors.

It can be seen that without any assumption about a medium’s optical properties,

the mean error here is similar to that in the case of full-field detection, and thus there

would be no advantage in using spatially resolved detection. However, the advantage

of this latter detection regime lies in the use of the different annular detectors to first

make assumptions about the medium’s optical properties, allowing the mean error in
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Table 6.2: Optimum metric pairs for the determination of µs

Assumed parameter range
(see Fig. 6.16)

Optimum Metric Pair Mean Error in µs (mm−1)

ρ1 or ρ2 Ref. (ρ1) – Ref. (ρ2) 1.42
ρ3 Ref. (ρ1) – Ref. (ρ2) 0.00139
ρ4 Ref. (ρ3) – κ1 (ρ3) 0.93
ρ5 Ref. (ρ3) – κ1 (ρ3) 0.78
ρ6 Ref. (ρ3) – κ1 (ρ3) 0.67
ρ7 Ref. (ρ2) – κ1 (ρ3) 0.49
ρ8 Ref. (ρ2) – κ1 (ρ3) 0.31
ρ9 Ref. (ρ4) – κ1 (ρ3) 0.18
ρ10 Ref. (ρ4) – κ1 (ρ3) 0.10

determining the medium’s absorption coefficient to be reduced. This can be demon-

strated using the application previously mentioned of the differentiation of healthy

and malignant breast tissue. Nair et al.130 estimated that the absorption coefficients

of both these tissues lay below 0.1mm−1, in which case the tissues would fall within

one of the higher parameter ranges in Table 6.1. The mean error in the absorption

coefficient would therefore be reduced sufficiently to allow the differentiation of the

two tissues – Nair et al. estimated there was a 0.003mm−1 difference between healthy

and malignant breast tissue.

6.5.2 Errors in the Scattering Coefficient

The optimum metrics for the determination of a medium’s scattering coefficient can

be calculated in a similar fashion to those for the absorption coefficient, and the

results of the multiple error analyses are shown in Table 6.2. In this case, it can
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be seen that multiple reflectance measurements provide the most accurate determi-

nation of the scattering coefficient in the absence of a prior assumption about the

medium’s properties. Off-axis reflectance and first cumulant measurements are then

the optimum pairs for smaller assumed parameter ranges.

In the case of the determination of the scattering coefficient, it can be seen that

even without any assumptions about a medium’s optical properties, the mean error is

still reduced by the use of spatially resolved detection over the full-field regime. This

reduction is still not enough to differentiate between healthy and malignant breast

tissue, however, which Nair et al.130 estimated to have a difference of 0.5mm−1. Like in

the case of the determination of the absorption coefficient, the mean error is reduced

by the use of assumptions made from the different annular detectors, although in this

case, the tissue would have to be found to lie in one of the highest parameter ranges

for the error to be reduced sufficiently to allow the tissue types to be differentiated.

6.6 Measurement Calibration

If the noise characteristics of a streak camera are known, the measured values of the

recorded TPSF’s metrics can be calibrated to take into account the known effects

of their “detection” by a streak camera. This will have the effect of reducing the

errors on the metrics, therefore reducing the error in the determined scattering and

absorption coefficients. Due to the random nature of the processes within the camera,

the errors in the metrics will have a finite distribution and so can not be calibrated
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out exactly. However, the mean of these errors can be removed, leaving the errors on

the metrics to be defined purely by their variation about the mean.

In practice, the actual errors in the metrics obtained using a streak camera can

be estimated using either a comprehensive model of the camera, as in Chapter 5, or

by the characterisation of the camera by performing measurements on test samples

of known scattering and absorption parameters to produce the streak camera error

maps.

The calibration process is demonstrated here using the streak camera model de-

scribed in Chapter 5 in full-field detection mode. Part of the calculated errors were

used to simulate the known, deterministic errors, found through either modelling or

sample testing as explained above, while the rest were used as the unknown, stochas-

tic errors added to the metrics by the streak camera in experimental use. In this case,

the deterministic errors were those due to the truncation of the TPSF. This error is

one of the biggest contributions to the errors in the streak camera model, as shown in

§5.5.3.3, and so should also provide a large reduction in the errors in the determined

scattering and absorption coefficients.

Two problems arise in the calibration process. Firstly, addition of the determin-

istic errors to the metric surfaces will change the surfaces’ contours, thus potentially

reducing the number of metric pairs that satisfy the uniqueness criteria described in



203

§6.3.2.1. Secondly, if the metric surfaces are defined using the Diffusion Approxima-

tion, their analytical form is lost by the calibration. The partial differentials of the

metrics (∂m1

∂µa
etc.) must therefore be defined numerically. This can lead to large in-

accuracies if the resolution of the µs-µa sample points used is low, as the differentials

must then be calculated over large ranges of absorption and scattering coefficients

(as shown in Figure 6.17) which is inappropriate in regions where the value of the

metric changes sharply. One solution to this problem is demonstrated in Figure 6.18

which shows the calculation of each metric and deterministic error at four sub-points

around each µs-µa sample point. This method enables more accurate estimates of the

differentials to be calculated, although it requires an increased number of simulations

or measurements.

The two problems explained above are made worse when the map of the determin-

istic errors contains discontinuities, like those seen in Figure 5.35 due to the change in

the streak camera’s sweep time. The lack of smooth form decreases the likelihood of a

metric pair giving unique solutions, and the differentials will decrease in accuracy due

to the sudden changes in the values of the calibrated metric between adjacent µs-µa

sample points. In order to combat these effects, the streak camera will be modelled

with a constant sweep time of 200ps in this demonstration of the calibration process.

The error maps of the deterministic truncation errors are therefore shown in Fig-

ure 6.19. It can be seen that the error increases significantly at low absorption values,
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the resolution of the µs-µa sample points used is low, the differentials must be defined
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Figure 6.18: One solution involves the calculation of each metric and deterministic
error at four sub-points around each µs-µa sample point.



205

 

 
% error

µa(mm−1)
µ

s
(m

m
−

1
)

Reflectance

0.5 1 1.5 2

4.54 × 10−5

6.74 × 10−3

1.00

50

100

150

 

 
% error

µa(mm−1)

µ
s
(m

m
−

1
)

κ1

0.5 1 1.5 2

4.54 × 10−5

6.74 × 10−3

1.00

50

100

150

 

 
% error

µa(mm−1)

µ
s
(m

m
−

1
)

κ2

0.5 1 1.5 2

2.48 × 10−3

1.83 × 10−2

1.35 × 10−1

1.00

7.39

54.60

50

100

150

 

 
% error

µa(mm−1)

µ
s
(m

m
−

1
)

κ3

0.5 1 1.5 2

2.48 × 10−3

1.83 × 10−2

1.35 × 10−1

1.00

7.39

54.60

50

100

150

Figure 6.19: The magnitudes of the deterministic errors in the reflectance and first
three cumulants (shown as a percentage of the analytical metric value) due to the
streak camera for full-field detection. The figures use logarithmic colour axes for
clarity.
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Figure 6.20: The mean magnitude (µ) and standard deviation (σ) of the stochastic
errors in the reflectance and first three cumulants (shown as a percentage of the
analytical metric value) due to the streak camera for full-field detection. The figures
use logarithmic colour axes for clarity.
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where the optimum truncation point would normally dictate a much longer sweep

time. The perceived “dips” in the error values for the first and second cumulant

merely mark the places where the errors change sign. Calibration of the actual mea-

surements was then simulated by applying these error maps to the metric surfaces in

Figure 6.5.

Maps of the remaining, stochastic errors are also shown in Figure 6.20. These can

be seen to roughly follow the same form as the final error maps for the uncalibrated

streak camera in Figure 5.35, but with a region of low error at low absorption levels.

This is because in this region, the large intensity of the TPSF makes it less suscep-

tible to the remaining stochastic errors when separated from the large error due to

truncation.

The error analyis equations can then be used to calculate the error in the scattering

coefficient as in §6.4.2. In this case, however, the error in each metric (δm1 and δm2)

are calculated from the stochastic error maps, while the differentials of the metrics

(∂m1

∂µa
etc.) are calculated numerically from the calibrated metric surfaces.

The resulting metric pair error surfaces for the errors in the scattering coefficient

are shown in Figures 6.21 and 6.22. As expected, each metric pair surface has the

characteristics of the error map relating to the metric of the pair with the largest error.

These surfaces are the calibrated equivalent of the those shown in Figures 6.10 and

6.11, from which it can be seen that the errors in the scattering coefficient have been
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Figure 6.21: The errors in the scattering coefficient determined using measurement
calibration for eight metric pairs using full-field detection. The figures use a logarith-
mic colour axis for clarity.
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Figure 6.22: The errors in the scattering coefficient determined using measurement
calibration for a further seven metric pairs using full-field detection. The figures use
a logarithmic colour axis for clarity.



210

greatly reduced by the calibration process. This is further shown by considering the

relevant histograms shown in Figures 6.23 and 6.24. These show that the mean error

in the scattering coefficient for the optimum metric pair (Reflectance–κ1) has dropped

to around 1.2mm−1 from an original value of 6.6mm−1 due to the calibration process,

and the maximum has dropped to less than 8mm−1 from an original value of 300mm−1.

In the case of the differentiation of healthy and breast tissue, as mentioned earlier,

this drop is not sufficient to enable calibrated full-field detection to perform such a

differentiation. However, due to the magnitudes of these reductions in the errors, it is

thought that the application of this calibration method to spatially resolved detection

would result in a robust characterisation system, especially considering the current

capabilities of the non-calibrated spatially resolved system.

6.7 Summary

Presented in this chapter was a method of determining the optimum metrics for

use in the characterisation of a scattering medium. Equations that relate errors

on the metrics to error on the medium’s optical properties were described. These

equations require the knowledge of each metric’s dependence on the scattering and

absorption coefficients which can be calculated both analytically and numerically.

The significance of the Jacobian determinant, on which these equations are based,

was also highlighted, as well as its role in determining the uniqueness of the coefficient

solution.



211

¯δµs = 1.2

δµs (mm−1)

F
re

q
u
en

cy
Ref.–κ1

0 2 4 6
0

5

10

15

20

25
¯δµs = 8.4

δµs (mm−1)

F
re

q
u
en

cy

Ref.–κ2

0 10 20 30 40 50
0

5

10

15

20

¯δµs = 7.2

δµs (mm−1)

F
re

q
u
en

cy

Ref.–κ3

0 5 10 15 20 25
0

5

10
¯δµs = 8.6

δµs (mm−1)

F
re

q
u
en

cy

Ref.–κ4

0 5 10 15 20 25
0

5

10

¯δµs = 8.9

δµs (mm−1)

F
re

q
u
en

cy

Ref.–κ5

0 5 10 15 20
0

5

10
¯δµs = 9.5

δµs (mm−1)

F
re

q
u
en

cy

κ1–κ2

0 10 20 30 40 50 60
0

5

10

15

20

25

¯δµs = 7.8

δµs (mm−1)

F
re

q
u
en

cy

κ1–κ3

0 5 10 15 20 25
0

5

10

¯δµs = 8.8

δµs (mm−1)

F
re

q
u
en

cy

κ1–κ4

0 5 10 15 20 25
0

2

4

6

8

Figure 6.23: Histograms of the errors in the scattering coefficient over each of the
metric pair surfaces in Figure 6.21. The limit of the x-axis represents the maximum
error for each metric pair.
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This method was then applied to the errors in the metrics calculated using the

streak camera model in Chapter 5 to determine the resulting errors on the medium’s

optical properties. Due to the small number of metrics in the case of full-field de-

tection, the analysis could be performed graphically. It was determined that the

reflectance and first cumulant metric pair were the optimum metrics for this system.

The method was then applied to spatially resolved detection, and the optimum

metric pair determined by the mean error in each of the optical coefficients. Due

to the lower light levels measured in this detection regime, the streak camera would

be unable to detect TPSFs over its noise floor for media with higher scattering and

absorption levels, and for off-axis detection. Providing the model of the detection

system is accurate, however, this knowledge could be used to narrow down the range

of the medium’s optical properties. The error analysis was therefore repeated for the

ranges of properties defined by each of the source–detector distances to determine

the optimum metric pair to be used for each assumption. The optimum pairings fea-

tured the reflectance and first cumulant measurements at a variety of source-detector

distances.

Finally, a system of calibrating measurements according to the known noise char-

acteristics of the detector was described. This was applied to the streak camera model

measurements, resulting in a significant decrease in the errors in the determined op-

tical coefficients.



Chapter 7

Conclusions & Future Work

7.1 Summary

This thesis has been concerned with the characterisation of scattering media or, more

specifically, the errors in this process. The research was carried out with the aim of

improving the accuracy of the optical coefficients ascertained by non-invasive, optical

means.

Characterisation relies on a forward model which relates a medium’s properties to

the properties of the light’s propagation through it. Measurements of some of these

properties, or “metrics”, can then be related back to the medium’s optical coefficients,

thus allowing the medium to be characterised. However, experimental errors on these

measurements will also propagate back through the model to cause inaccuracies in

the determined coefficients. It is the resilience of these metrics to this propagation

that is of interest here. As there are two unknowns in the system (the scattering and

absorption coefficients), this resilience is a product of the metric pairs that must be

214



215

used to characterise the medium.

In Chapter 1, a medium’s temporal point spread function (TPSF) was described.

This distribution is formed due to the scattering effects of the medium, and contains a

large amount of information about the propagation of the light through the medium,

such as its mean time of flight. The Beer–Lambert law, which can be used to add

the effects of absorption onto the TPSF was also described. Two examples of metric

series that can be calculated from the TPSF are the moments and cumulants, which

were covered in detail. The latter of these two series is an established mathematical

topic that has only recently begun to be applied to the field of scattering media, and

more specfically TPSFs. Certainly, the error analysis performed on the cumulants in

this thesis has not been undertaken previously.

Equations describing these metrics were then derived from the Diffusion Approxi-

mation to act as a forward model in Chapter 3. This involved an investigation into the

most appropriate definition of the diffusion coefficient, from which a novel derivation

of the reflectance using a hybrid coefficient value was produced.

In Chapter 4, the mathematical advantages of using the cumulants of the TPSF

over the moments were described and it was decided that the applicability of these

metrics to the characterisation of scattering media would be researched. The re-

flectance was also analysed due to its common use in current characterisation meth-

ods. Although the methods described in this thesis could be applied to any sort of
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scattering media, this study focused on a semi-infinite medium with optical coeffi-

cients corresponding to the bulk properties of human skin. The dependence of the

metrics of interest on these coefficients was then described, as knowledge of this de-

pendence was integral to understanding the extent of the metrics’ resilence to noise

later in the thesis.

In order to fully quantify the magnitude of the errors on the determined coefficients

of scattering media, it was necessary to ascertain the accuracy to which the metrics

used in the characterisation can be measured. In order to achieve this, a typical streak

camera was modelled by first identifying its sources of noise. With this knowledge, a

model was produced which seeked to precisely simulate the detection of light. This

model was much more detailed than any previously described, which have tended

to conclude that streak cameras were merely shot-noise limited. As a result of this

model, it was then possible to determine the effects of a TPSF’s “detection” by the

camera, and thus the effects on the metrics in question. It was shown that the

truncation of a TPSF by the streak camera is one of the greatest sources of noise due

to the streak camera and so particular consideration was given to determining the

most appropriate point at which to truncate. Ultimately, this is dependent on the

streak camera’s noise floor, although this can be reduced by the effects of averaging.

Once the effects of the streak camera on a typical TPSF had been described,

the model was applied to TPSFs formed under the scattering and absorption levels
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found in human tissue. Maps of the errors in each of the metrics as a function of the

medium’s optical properties were therefore calculated.

In Chapter 6, equations were described which could be used to relate the error on

the metrics to an error on the determined optical properties of the medium. Using

the knowledge of the metrics’ dependence on the medium’s scattering and absorption

coefficients from Chapter 4, and the values of the metric errors due to their detection

by a streak camera from Chapter 5, it was then possible to calculate which metric

pair would result in the smallest error in the optical properties of the medium being

characterised.

In the case of full-field detection, measurements of the reflectance and first cumu-

lant provided the optimum metric pair, although it was shown that even using this

pairing, the accuracy of the measurements using the streak camera was not sufficient

for differentiating between healthy and malignant breast tissue, as an example. It

was also shown that the omission of reflectance measurements for reasons of feasib-

lity would have severely detrimental effects on the accuracy to which a medium could

be characterised.

For spatially resolved detection, the ability of different annular detectors to detect

a TPSF over the streak camera’s noise floor could be used to make assumptions

about a medium’s optical properties. More specific assumptions led to more accurate

measurements of the medium’s optical properties, to the point where such a system
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could feasibly be used in the the differentiation of healthy and malignant breast tissue.

Finally, a method for reducing the errors in the determined coefficients by using

knowledge of the noise characteristics of the detection system was described. This

was then applied to the streak camera model in full-field detection mode, resulting

in a substantial decrease in the error in the characterisation of the medium. It is

assumed that application of this calibration method to the case of spatially resolved

detection would lead to a significantly more robust characterisation system.

This thesis made use of several simplifying assumptions, namely the use of a semi-

infinite geometry, a single wavelength, and fixed values of the media’s anisotropy

factor and refractive index. It is therefore necessary to consider the effects of these

assumptions on the completed work. Put simply, a change in any of these assumptions

would result in a change in both the reflectance and TPSFs produced by the Diffusion

Approximation. As a result, the values of the metrics calculated from these will

change, also affecting their propagation through the streak camera model and the

errors produced therein. It is therefore clear that the results of the error analysis will

certainly change quantitatively, although how much this will affect the ordering of the

metric pairs is unclear. Use of the current assumptions, however, allows estimates

of how robust certain metric pairs are in comparison with each other to be made.

It should also be noted that the model of the streak camera and the error analysis

methods, which form the bulk of this thesis, will be unaffected by changes in these
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assumptions, and so these can be applied regardless of what assumptions are made.

7.2 Future Work

There are numerous opportunities for further work related to this thesis. Firstly,

the streak camera model presented in Chapter 5 would benefit from being validated

experimentally. This would require the measurement of a known time distribution

using the Hamamatsu streak camera on which the model is based, as explained in §5.6.

In order to fully validate the system’s modelled noise characteristics, this would need

to be repeated for a range of input intensities. The calibration of the measurements

described in §6.6 could also be tested using this setup. The calibration method should

be applied to the case of spatially resolved detection, and these results also validated

using the same method.

The methods used in this thesis made extensive use of the Diffusion Approximation

as the analytical expressions allowed for quick calculations of the TPSFs and their

metrics. One obvious opportunity for future work is therefore the use of Monte

Carlo modelling in place of the Diffusion Approximation, as this would reduce the

inaccuracies associated with the assumptions made in the approximation’s derivation.

This step should not be undertaken lightly however, as the intensity of the light

simulated as being input to the medium is, at a wavelength of 633nm, the equivalent

of over 50 billion photons for each TPSF.

It is speculated that the use of more than two metrics can be used to determine
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a medium’s optical coefficients with an increase in the accuracy of the determined

values. This problem is said to be overdetermined as there are more metrics than

unknowns. If three metrics are used, for example, the solution to the medium’s optical

coefficients is now given by the point of intersection of three contours. It is clear that,

in the presence of noise, it is unlikely that there will be a shared crossing point for all

three contours, in which case the solution is now given by the point which minimises

the errors in the three metric equations.

Finally, it would be interesting to produce similar models of frequency modulated

and TCSPC systems, as this would allow a direct comparison of all three systems’ per-

formance for the characterisation of a scattering medium using a TPSF’s cumulants

and reflectance.



Appendix A

Reflectance using a Hybrid

Diffusion Coefficient

A.1 Derivation

The hybrid diffusion coefficients discussed in §3.3.1 (D4 for κ1 and D0 for all higher-

order cumulants) would suggest that the use of a single definition in the calculation of

the reflectance will lead to inaccurate results. However, it is also possible to determine

the reflectance using the hybrid coefficients. Firstly, a medium’s attenuation, A, is

defined in terms of its reflectance, R, and by the use of Eq. (1.5.20):

A = − ln(R) = − ln

(

ER

EI

)

(A.1.1)

where ER and EI are the energies of the emergent and incident light respectively.

This total attenuation can then be split into two parts: the attenuations caused by

the medium’s scattering and absorption processes, As and Aa:

A = As + Aa (A.1.2)
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The attenuation due to scattering is simply a measure of the loss of signal brought

about by photons leaving the medium in a different position to the detector. It can

be defined using the reflectance of the medium calculated with no absorption, Rµa=0:

As = − ln(Rµa=0) = − ln

(

Eµa=0

EI

)

(A.1.3)

where Eµa=0 is the energy of the light after scattering losses. By definition, the input

intensity, EI, for the Diffusion Approximation is one joule. Note that as As is cal-

culated in the absence of absorption, it is unaffected by a change in the absorption

contribution within the diffusion coefficient: as the diffusion coefficients under inves-

tigation in this case vary solely in their contributions from the medium’s absorption,

it is irrelevant which coefficient is used to calculate As.

The attenuation due to absorption in Eq. (A.1.4), Aa, can then be defined in terms

of the emergent light from the medium, ER, and Eµa=0:

Aa = − ln

(

ER

Eµa=0

)

(A.1.4)

If the TPSF of the medium in the absence of absorption is given as S(t), then Eµa=0

can be defined as:

Eµa=0 =

∫ ∞

0

S(t) dt (A.1.5)

Absorption can be added to this TPSF using the Beer–Lambert law, as explained in

§1.4:

ER =

∫ ∞

0

S(t) exp(−µact) dt (A.1.6)
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Substituting Eqs. (A.1.5) and (A.1.6) into Eq. (A.1.4):

Aa = − ln

(

∫∞
0

S(t) exp(−µact) dt
∫∞

0
S(t) dt

)

= − ln

(∫ ∞

0

s(t) exp(−µact) dt

)

(A.1.7)

where s(t) is the normalised TPSF. Aa is therefore related to the natural logarithm

of a moment-generating function, as shown in Eq. (1.5.3), and so has the form of a

cumulant-generating function with x = −µac:

Aa = −K = −
∞
∑

n=1

xn

n!
κn

=µacκ1 −
(µac)

2

2
κ2 + . . . (A.1.8)

It is therefore possible to define Aa as an infinite sum of scaled cumulants. As a

result, the hybrid diffusion coefficients can be used to define the reflectance as follows.

Firstly, using D0 as the diffusion coefficient, the attenuation due to absorption is cal-

culated analytically using Eq. (A.1.4), where ER and Eµa=0 can be determined using

the analytical solutions to the reflectance in the presence and absence of absorption

respectively. In other words, using Eqs. (A.1.1) and (A.1.3), and the knowledge that

by definition, the input intensity, EI, for the Diffusion Approximation is equal to one

joule:

R = ER (A.1.9)

Rµa=0 = Eµa=0 (A.1.10)



224

The resulting attenuation formed using D0 as the diffusion coefficient, AD0

a , is

equal to an infinite sum of its cumulants. If the first cumulant is then calculated

using D0 (denoted by κD0

1 ), its contribution can be subtracted from the attenuation

and replaced by the contribution of the first cumulant calculated using D4 (shown as

κD4

1 ). The resulting attenuation, Ahybrid
a , is therefore the attenuation calculated using

the hybrid diffusion coefficients:

Ahybrid
a = AD0

a − µacκ
D0

1 + µacκ
D4

1 (A.1.11)

The hybrid reflectance, Rhybrid, can then be calculated using Eqs. (A.1.1) and (A.1.2):

Ahybrid =As + Ahybrid
a (A.1.12)

Rhybrid = exp(−Ahybrid) (A.1.13)

A.2 Overall Effect

The calculation of Rhybrid shown above is a long process. However, the overall effect

of using a hybrid diffusion coefficient in the calculation of a medium’s reflectance can

be shown to be a simple scaling factor, as demonstrated below.

Substituting Eq. (A.1.11) into (A.1.12):

Ahybrid =As + AD0

a − µacκ
D0

1 + µacκ
D4

1

=As + AD0

a + µac∆κ1 (A.2.1)
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where ∆κ1 is the change in the value of the first cumulant from using the two different

diffusion coefficients:

∆κ1 = κD4

1 − κD0

1 (A.2.2)

Substituting Eq. (A.2.1) into (A.1.13):

Rhybrid = exp(−As − AD0

a − µac∆κ1)

= exp(−As) exp(−AD0

a ) exp(−µac∆κ1) (A.2.3)

Finally, comparing the reflectance calculated using the hybrid diffusion coefficients,

Rhybrid, and the original reflectance, RD0 :

Rhybrid

RD0

=
exp(−As) exp(−AD0

a ) exp(−µac∆κ1)

exp(−As) exp(−AD0

a )

= exp(−µac∆κ1) (A.2.4)

The change in reflectance due to the use of hybrid diffusion coefficients is therefore a

scaling factor of the form exp(−µac∆κ1), where ∆κ1 is defined in Eq. (A.2.2).



Appendix B

Logged Error Analysis

By performing the error analysis described in Eqs. (6.3.3) and (6.3.4) on the logarithm

of two metrics, the Jacobian determinant can be made resilient to scaling factors. This

can be useful when analysing the determinant in isolation from the error analysis

equations.

B.1 Effect on the Jacobian Determinant

Taking the logarithms of two metrics, m1 and m2, Eqs. (6.3.3) and (6.3.4) become:

δµs =

δ(ln m1)
∂(ln m2)

∂µa

− δ(ln m2)
∂(ln m1)

∂µa

−Jlog

(B.1.1)

δµa =

δ(ln m1)
∂(ln m2)

∂µs

− δ(ln m2)
∂(ln m1)

∂µs

Jlog

(B.1.2)

where:

Jlog =
∂(ln m1)

∂µa

∂(ln m2)

∂µs

− ∂(ln m1)

∂µs

∂(ln m2)

∂µa

(B.1.3)
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From the chain rule:

∂(ln m)

∂µ
=

(

∂m
∂µ

)

m
(B.1.4)

Using this identity, Eq. (B.1.3) becomes:

Jlog =

(

∂m1

∂µa

)

m1

(

∂m2

∂µs

)

m2

−

(

∂m1

∂µs

)

m1

(

∂m2

∂µa

)

m2

(B.1.5)

It can therefore be seen that the logged Jacobian determinant is resilient to scaling

factors, and thus can be compared for metrics of different units.

B.2 Effect on the Calculated Error

Eqs. (B.1.1) and (B.1.2) require the error in a logged metric, δ(ln m). However, due

to the natural logarithm’s lack of additivity, it is not possible to separate the error,

δm, from the original value, m:

ln(m + δm) 6= ln(m) + ln(δm) (B.2.1)

However, using the chain rule, it can be shown that:

δ(ln m) =
δm

m
(B.2.2)

Therefore, the error in a logged metric is simply defined as its error divided by its

error-free value.
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Substituting Eqs. (B.2.2) and (B.1.5), Eq. (B.1.1) becomes:

δµs =

δm1

m1

(

∂m2

∂µa

)

m2

− δm2

m2

(

∂m1

∂µa

)

m1

−

(

∂m1

∂µa

)

m1

(

∂m2

∂µs

)

m2

+

(

∂m1

∂µs

)

m1

(

∂m2

∂µa

)

m2

(B.2.3)

By removing common factors, this equation can be seen to be identical to Eq. (6.3.3).

Therefore, performing the error analysis on logged metrics has no effect on the cal-

culated error and yet provides a Jacobian that is resilient to scaling factors.
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