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Abstract

Within the bearing chamber of a gas turbine aero-engine, lubrication of the shaft and

other bearings is achieved by an oil �lm which may become signi�cantly disturbed by

interacting with a range of chamber geometries which protrude from the chamber wall.

Minimizing these disturbances and preventing possible dry areas is crucial in optimizing

a bearing chambers design. In addition, multiple obstructions may be located close

to one another, resulting in a more complex disturbed �lm pro�le than by individual

obstacles. Prediction of the disturbance of the �lm is an important aspect of bearing

chamber design.

For analysis of the �lm pro�le over or around a local obstacle, typical bearing chamber

�ows can be approximated as an incompressible thin �lm �ow down an inclined wall

driven by gravity. The Reynolds number of thin �lm �ows is often small, and for the bulk

of this thesis a Stokes �ow assumption is implemented. In addition, thin �lms are often

dominated by surface tension e�ects, which for accurate modelling require an accurate

representation of the free surface pro�le. Numerical techniques such as the volume of

�uid method fail to track the surface pro�le speci�cally, and inaccuracies will occur in

applying surface tension in this approach. A numerical scheme based on the boundary

element method tracks the free surface explicitly, alleviating this potential error source

and is applied throughout this thesis. The evaluation of free surface quantities, such

as unit normal and curvature is achieved by using a Hermitian radial basis function

interpolation. This hermite interpolation can also be used to incorporate the far �eld
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boundary conditions and to enable contact line conditions to be satis�ed for cases where

the obstacle penetrates the free surface.

Initial results consider a �lm �owing over an arbitrary hemispherical obstacle, fully

submerged by the �uid for a range of �ow con�gurations. Comparison is made with

previously published papers that assume the obstacle is small and / or the free surface

de�ection and disturbance velocity is small. Free surface pro�les for thin �lm �ows over

hemispherical obstacles that approach the �lm surface are also produced, and the e�ects

of near point singularities considered. All free surface pro�les indicate an upstream peak,

followed by a trough downstream of the obstacle with the peak decaying in a �horseshoe�

shaped surface deformation. Flow pro�les are governed by the plane inclination, the

Bond number and the obstacle geometry; e�ects of these key physical parameters on

�ow solutions are provided.

The disturbed �lm pro�les over multiple obstacles will di�er from the use of a single

obstacle analysis as their proximity decreases. An understanding of the local interaction

of individual obstacles is an important aspect of bearing chamber design. In this thesis

the single obstacle analysis is extended to the case of �ow over multiple hemispheres.

For obstacles that are separated by a su�ciently large distance the �ow pro�les are

identical to those for a single obstacle. However, for �ow over multiple obstacles with

small separation, variations from single obstacle solutions maybe signi�cant. For �ow

over two obstacles placed in-line with the incident �ow, variations with �ow parameters

are provided. To identify the �exibility of this approach, �ows over three obstacles are

modelled.

The calculation of �ows around obstacles provides a greater challenge. Notably, a static

contact line must be included such that the angle between the free surface and the

obstacle is introduced as an extra �ow parameter that will depend both on the �uid and

the obstacle surface characteristics. The numerical models used for �ow over hemispheres

can be developed to consider �lm �ow around circular cylinders. Numerical simulations
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are used to investigate �ow parameters and boundary conditions. Solutions are obtained

where steady �ow pro�les can be found both over and around a cylindrical obstacle

raising the awareness of possible multiple solutions.

Flow around multiple obstacles is also analyzed, with pro�les produced for �ow around

two cylinders placed in various locations relative to one another. As for �ow over two

hemispheres, for su�ciently large separations the �ow pro�les are identical to a single

obstacle analysis. For �ow around two obstacles spaced in the direction of the �ow,

e�ects of altering the four governing parameters; plane inclination angle, Bond number,

obstacle size, and static contact angle are examined. The analysis of �ow around three

cylinders in two con�gurations is �nally considered. In addition, for two obstacles spaced

in-line with the incident �ow, the numerical approaches for �ow over and �ow around are

combined to predict situations where �ow passes over an upstream cylinder, and then

around an identical downstream cylinder.

The �nal section of this thesis removes the basic assumption of Stokes �ow, through

solving the full Navier-Stokes equations at low Reynolds number and so incorporating

the need to solve nonlinear equations through the solution domain. An e�cient nu-

merical algorithm for including the inertia e�ects is developed and compared to more

conventional methods, such as the dual reciprocity method and particular integral tech-

niques for the case of a three-dimensional lid driven cavity. This approach is extended

to enable calculation of low Reynolds number �lm pro�les for both �ow over and around

a cylinder. Results are compared to the analysis from previous Stokes �ow solutions for

modest increases in the Reynolds number.
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Chapter 1

Introduction

A bearing chamber of a gas-turbine aero-engine is used to constrain and collect oil

injected to lubricate the shaft and other bearings. The oil is also required to cool the

chamber walls by convective transport of heat within the oil system. If the oil �lm

does not su�ciently cover the chamber wall then the reduced local cooling may result

in oil degradation, coking and potentially oil �res could occur. Thus for design, thermal

studies, and evaluation of oil quality, it is important to predict the �lm height and volume

�ux of oil at each point in the chamber. However computation of such �ows is made

di�cult because bearing chambers have complex geometries and can include obstacles

that locally signi�cantly a�ect the �lm behaviour.

Figure 1.1 illustrates a schematic of a simpli�ed aero-engine bearing chamber. A jet of

oil is introduced to the bearing through the injector block, and the air�ow within the

chamber, generated by a highly rotating central shaft, may cause the jet to break down

into small droplets which are incident on the chamber wall. On the chamber wall, the

droplets collect, forming a �lm, with the oil �nally removed from the bearing chamber

through oil collected at the scavenge at the bottom of the chamber.

A schematic from experimental observation for a �lm pro�le around an obstacle piercing

the free surface is shown in �gure 1.2. The �lm �ow is incident on the upstream edge of

the obstacle, and then passes around the obstruction. Behind the obstacle recirculation

is possible, with the �ow merging back to the inlet �ow pro�le further downstream.
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Chapter 1: Introduction

Figure 1.1: Schematic showing a typical bearing chamber con�guration.

Figure 1.2: Schematic showing a typical �lm pro�le around an obstacle.
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Chapter 1: Introduction

Experimental results from Eastwick et al. [1] have shown the possibility of �uctuating and

stable dry-out regions both upstream and downstream of the obstruction as indicated.

Due to its in�uence on the optimal design of commercial aero-engines, �ow behaviour in

a bearing chamber has been analyzed by many authors. Experimentally, Wittig et al. [2]

consider the �lm thickness and heat transfer characteristics for two-phase oil / air �ows.

Glahn and Wittig [3] used a high speed bearing chamber rig to experimentally measure

the oil �lm velocity pro�le, and compare results to a theoretical analysis outlined. For

�lm �ows obstructed by a typical chamber support, Eastwick et al. [1] experimentally

established the conditions for stable and �uctuating dry-out to occur both upstream and

downstream of an obstruction. Further, they plotted a regime map in terms of liquid and

gas Reynolds numbers to indicate where each dry-out regime occurs. Results included

measured �lm thicknesses for a range of liquid �ow rates at a �xed air �ow rate.

Numerically, Farrall et al. [4] considers the exit �ows within a bearing chamber, specif-

ically focusing on the composition of liquid and gas within these �ows. The split in oil

removal between the scavenge and vent was extensively considered for three shaft speeds.

By altering the vent design, so that it protrudes into the bearing chamber, the percent-

age of oil removed through the vent was found to be substantially lower than when using

a �ush vent design. Farrall et al. [5] numerically evaluated the motion of an oil �lm

within a bearing chamber along with the e�ects of various boundary conditions applied

at both the vent and scavenge of the chamber. Solutions are found to be sensitive to

the boundary conditions applied within the numerical model, and by comparison with

experimental data, the most physical boundary conditions are determined. Recently,

Farrall et al. [6] numerically examined the oil �lm behaviour and its generation from oil

droplets shed from the central shaft. Analysis indicates that the location at which the

oil is eventually deposited on the chamber wall is signi�cantly a�ected by the the initial

droplet size of the oil.
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Chapter 1: Introduction

Thesis Aims

The main aim of this thesis is to develop a numerical technique to analyze the interaction

of a thin �lm oil �ow with obstacles, similar to those found within the bearing chamber of

an aero-engine. The numerical approaches developed are to be used as a design tool for

bearing chambers, and thus e�ciency along with accuracy of the numerical algorithms

is all-important. In addition, many current simulations consider a two-dimensional ap-

proximation to the �ow problem, and in these cases the possibility of �ow around an

obstacle penetrating the �uid �lm is not possible. Thus, a three-dimensional analysis

will be implemented throughout this thesis.

Flows driven by gravity will be considered along with both fully submerged and pro-

truding obstacles in a range of con�gurations. In designing a bearing chamber, the �lm

disturbance for �ows over or around multiple obstacles is as important as the analysis

of a single obstruction. Flow pro�les will be examined locally to the obstacles under

consideration and the curvature of the bearing chamber wall will be neglected (i.e. the

�ow will be assumed down an inclined �at plane).

In summary, the objectives of this thesis are:

• Development of three-dimensional models for zero Reynolds number �ow (Stokes

�ow) down an inclined plane, driven by gravity and obstructed by both single and

multiple obstacles either fully submerged, or penetrating the �lm.

• Obtaining numerical solutions for

� �ow over hemispherical obstacles fully submerged by the �lm;

� �ow around circular cylinders penetrating the �lm.

• Development of the model to enable analysis of more complex chamber conditions

by incorporating inertial e�ects for �lm �ows over and around obstacles.
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Chapter 1: Introduction

1.1 Literature Overview

Free surface �lm �ows occur regularly during coating and cooling processes in a wide

range of industrial applications, and as such are considered extensively by a range of

authors. This literature review is divided into two sections, initially giving an overview

of experimental work, providing an understanding of the �uid dynamics, and the physical

e�ects with respect to the free surface and geometry within the �ow problem. The �nal

section of the literature review considers the numerical analysis of free surface �lm �ows,

relating the solutions obtained within the literature to the experimental results previously

discussed.

1.1.1 Physical Observation Of Film Flows

Experimental analysis give an important insight into the physical e�ects caused by �lm

�ows in a range of problems, with results allowing analysis of �ow solutions and the

validation of numerical solutions.

Film �ows over heterogeneously heated surfaces have been considered by a wide range of

authors, examining the e�ects of heat exchange between the wall and a �uid �lm. Kabov

[7] considered �lm �ow falling freely down a vertical plane over a local heat source of

two di�erent lengths. When the longer heated regions were considered, instabilities in

the �uid �lm were formed, and the potential for dry patches on the lower part of the

heater found. This analysis of gravity driven �lm �ow down a vertical plane and over a

local heating unit was extended by Kabov and Marchuk [8]. Temperature gradients on

the �lm surface were recorded, along with �lm disturbances caused by the heating unit.

The breakdown of the �lm is extensively analyzed for a range of Reynolds numbers,

with anything from one to three �horseshoe� shape �lm deformations formed for the

di�erent Reynolds numbers and heat �ux densities considered. Recently, Kabov et al.

[9] reconsidered the falling liquid �lm down a vertical, locally heated plane. Methods for
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Chapter 1: Introduction

measuring the surface velocity were introduced, and the `horseshoe� shape deformation

reconsidered. It was found that a stagnation point exists at the top of the �horseshoe�

deformation, a phenomenon predicted by earlier numerical analysis.

A closely related topic to �lm �ow over topographies is that of �lm �ow down a wavy

inclined plane with experimental research conducted by Shetty and Cerro [10] and Ar-

gyriadi et al. [11], amongst others. Shetty and Cerro [10] considers the spreading of a

�uid from a point source over a range of periodic surface corrugations on a vertical plane.

A �lm evolution equation is also derived and gives good agreement with experimental re-

sults for transverse corrugations. Further experimental analysis of periodic corrugations

was considered by Argyriadi et al. [11], who considered the corrugated wall at shallow

inclinations (< 15o). Variations in the ratio of corrugation height to length are tested

with the e�ects on the �ow pro�le reported.

Experimental analysis investigating the interaction of liquid �lms with obstacles has

been conducted by a range of authors. Flow pro�les over microscopic topography using

spin coating has been considered by both Stillwagon and Larson [12] and Peurrung and

Graves [13]. Stillwagon and Larson [12] experimentally consider �ow over a trench, com-

paring results to those predicted by lubrication theory and producing good quantitative

agreement, with the free surface shown to form a dip as the �lm passes over the trench.

In addition as the ratio of centrifugal to capillary forces is increased, the �lm pro�le

forms an upstream ridge as it enters the trench. Peurrung and Graves [13] continued the

spin coating experiments, analyzing �lm pro�les for �ow over an underlying substrate,

and again comparing results with lubrication theory.

Decré and Baret [14] generated full two-dimensional maps of the free-surface pro�le of a

water �lm on an inclined plane with topography. One-dimensional topographies of a step

up, step down and trenches were considered that cross the whole plate width, along with

�ow over four di�erent rectangular, and one square two-dimensional topography. The

case of �ow over a square is of particular interest, allowing qualitative comparison with
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Chapter 1: Introduction

numerical results considered in the following section. The �ow pro�le exhibits a typical

�horseshoe� disturbance of a large upstream peak before the obstacle, decaying around

the obstruction, and returning to the undisturbed �lm height further downstream.

The experimental study of the onset of dry-out in a �lm has been considered by Shiralkar

and Lahey [15] and Eastwick et al. [1] amongst others. Shiralkar and Lahey [15], con-

sidered two-phase air-water �ow to assess problems in nuclear reactors upstream of �ow

obstacles. Both rectangular and cylindrical obstructions were used in the experiment and

their e�ects discussed. More recently, Eastwick et al. [1] considered �lm �ows around

bearing chamber supports. This paper focused on the determination of the conditions

necessary for dry-out to occur, both upstream and downstream of an obstacle using a

water-glycerol liquid and shearing air �ow. Both studies [15] and [1] consider the e�ects

of varying the �ow rate of the shearing air �ow over the liquid �lm. Shiralkar and Lahey

[15] observed two types of dry-out, which they categorized as Type I and Type II. Type

I occur upstream of the obstacle, and Type II is located behind the obstacle. Eastwick

et al. [1] extended these de�nitions of Type I and Type II dry-out to cover both stable

and �uctuating dry-outs. This paper concluded with a regime map of dry-out condi-

tions for both the liquid and air Reynolds numbers. Although numerical formulations

presented in this thesis are not looking to capture the occurrence of dry-out, regions of

minimum �lm depth are identi�ed.

1.1.2 Numerical Simulation Of Film Flows

The industrial processes in which �lm �ows occur are often complex, with hostile en-

vironments, and thus the cost and time involved with obtaining accurate experimental

results is prohibitive. Numerical simulations of these complex �lm �ows are an important

design tool for optimization of industrial processes.

Numerical models are used to describe the dynamics of liquid �lms falling down a vertical

plane and under the action of gravity when subjected to a local heat source. Skotheim
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Chapter 1: Introduction

et al. [16] considered the stability of these �lm �ows with numerical results illustrating

an upstream ridge at the beginning of the heater as found in experimental investigations.

Whereas [16] considered �ow over a locally heated plate, Scheid et al. [17] considers the

case of �lm �ow over a plate of non-uniform temperature distribution.

Numerical simulation of �lm �ows down wavy or periodic inclines have been consid-

ered extensively by a wide range of authors. For example, Wang [18] determined the

velocity and �lm pro�les of low Reynolds number �ows down a wavy incline. It was

determined that the transport properties of the �lm �ow where e�ected by the presence

of wall corrugations, with �uid particles having a tendency to �ow in the direction of

the corrugations. The extent of this e�ect was found to depend on the geometry of

the corrugations, inclination of the wall and surface tension. Pozrikidis [19] used a two-

dimensional Stokes �ow formulation along with the corresponding boundary integrals

to formulate �lm �ow over a periodic wall. Free surface pro�les are found over both

a sinusoidal wall and a rectangular corrugated wall. Solutions found were dependent

on the �ow rate of the �lm, inclination angle of the wall, the wave amplitude of the

corrugations and the surface tension of the �uid. This work was extended by Pozrikidis

[20], analyzing the e�ects of surfactants on the �lm �ow. The formulation is again based

on Stokes equations, with solutions obtained numerically using a combined boundary

element / �nite volume scheme. Solutions found the surfactants to slightly exaggerate

deformations of the �lm �ow compared to earlier analysis. Malamataris and Bontozoglou

[21] used a �nite element method (FEM) to solve the full Navier-Stokes equations for

�lm �ow at a range of Reynolds numbers. For small amplitude undulations on the wavy

wall, the free surface was shown to resonate for Reynolds numbers Re ∼ 200.

Film �ow over two-dimensional obstructions have been modelled by an extensive range

of numerical methods. Generally, modelling and analysis is taken from approximate

governing equations based on either the thin �lm lubrication approximation, or the

equations of Stokes �ow (zero Reynolds number). Fewer numerical computations of thin

�lm �ows with obstacles have been reported utilizing a fully three-dimensional analysis;
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Chapter 1: Introduction

the majority implementing a boundary element method (BEM) for the solution of Stokes

�ows.

A lubrication approximation is implemented by Kalliadasis et al. [22] for a two-dimensional

viscous thin �lm �ow moving slowly over both trenches and mounds. By using the lubri-

cation approximation to describe the �ow, the �lm dynamics are shown to be governed

by feature depth, feature width and capillary scale. However, the paper notes the limita-

tions of a lubrication approximation in the vicinity of a sharp step where an alternative

formulation, such as Stokes �ow should be used. Mazouchi and Homsy [23] continue the

earlier work of [22] by addressing these limitations by implementing a Stokes �ow anal-

ysis for �ow over an obstacle (step or trench) under the action of gravity, or some other

body force. Solutions for Stokes �ow in [23] are sought by formulating the governing

�ow equations in terms of the stream function - vorticity variables and solving using the

boundary integral method (BIM).

Kalliadasis et al. [22] does not address issues with regards to the use of Stokes equations

and whether they would produce solely quantitative corrections to the solutions obtained

by the lubrication approximation or if fundamentally new features are produced. This

motivated the extended work by Mazouchi and Homsy [23] that shows that despite the

lubrication approximations lack of validity for steep features, when the capillary number

is small, the lubrication approximation in [22] gave good correlation with the Stokes

�ow analysis presented in [23]. This was despite the substrate not being the required

�small sloped topograph�. After an extensive analysis, Kalliadasis et al. [22] concluded

that thin �lms over topography are �most likely to rupture over corners or in advance

of a step-up�. The paper included two-dimensional pro�les of the free surface over both

trench and mound obstacles of various width.

The papers by Hansen [24, 25], analyze a Stokes �ow in two dimensions on an inclined

plane over a cylindrical obstacle of one or two ridges. The use of the boundary integral

equations (BIE) to solve Stokes �ow over an obstacle is widely regarded to have been

9
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pioneered in [24, 25]. The BIE is formulated in terms of the stream function and the

system solved for the free surface position and any unknown �eld variables. Free surface

pro�les are shown for a range of values of surface tension. For the case of the single

obstacle in [24] velocity on the free surface and tangential stress on the obstacle surface

are also shown.

The extended work of Hansen [25] also produced streamlines for �lm �ow over obstacle(s),

which for larger obstacles showed the formation of eddies either side of the obstruction.

As the obstacle size grew, a distinct asymmetry of the eddy sizes was found, with the

larger eddy upstream of the obstacle. When multiple obstacles are considered, the re-

gion between the obstacles is �lled by circulating �ow, and for large distances between

obstacles this region comprises of one eddy. For shorter distances two eddies occur,

stretching between the two obstacles, and located one above the other. The formation

of this second eddy as the obstacle separation is decreased is analogous to the case of

�ow over a cavity, where the cavities depth-to-width ratio is increased. For �ow over a

relatively wide, shallow rectangular cavity a single eddy is formed. As the aspect ratio is

increased, then progressively more eddies occur, and are located above each other within

the cavity region. It is noted that for cases of �ow over very shallow and wide cavities,

multiple eddies are also formed. However in these cases, the eddies occur in the corners

of the cavity. The paper by Hansen [25] does not show results corresponding to these

corner recirculations when considering obstacles with large separations.

The thesis of Shuaib [26] simulates thin �lm �ows in two-dimensions. Initially two

numerical methods are compared, namely a direct boundary integral formulation and

the volume of �uid method (VOF). This boundary integral formulation is based upon

the physical �ow variables, unlike the stream function - vorticity analysis of [23] and

the stream function analysis of [24, 25]. As volume based methods do not track the free

surface position explicitly, issues arise with the application of surface boundary conditions

such as surface tension forces. Shuaib shows that for cases where surface tension is

dominant, the VOF is inaccurate and the rest of the work presented is formulated around

10
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the BEM. The �ow was assumed to be governed by the two-dimensional Stokes �ow

equations. Constant shear stress has been applied to the thin �lm and results produced

for �lm �ow down an inclined plane, �ow over a rectangular cavity, and �ow into an

outlet. For more realistic calculations, variable shear stress was used to recalculate

results for some of the previous scenarios. Finally the dual reciprocity method (DRM)

was implemented to extend the Stokes approximation to include inertia e�ects.

A steady, three-dimensional thin viscous liquid �lm driven by gravity down an inclined

plane and over small topographies was considered by Hayes et al. [27] and Gaskell et al.

[28]. Both formulations are based on the lubrication approximation, with Hayes et al. [27]

deriving a single linear inhomogeneous evolution equation and obtaining the disturbed

free surface pro�le by formulating the appropriate Green's function. Hayes et al. [27]

consider an obstacle based on the dirac delta distribution, a point defect on the inclined

plane, despite the lubrication approximation not being directly applicable in this case

(as acknowledged by the authors). Results using this lubrication approximation are

reported to give qualitatively similar results to the Stokes �ow analysis of Pozrikidis

and Thoroddsen [29] for �ow over a spherical obstacle. The accuracy of modelling �lm

�ows over steep sided topographies using the lubrication approximation was considered

by Gaskell et al. [28] by comparison of results with solutions to the full Navier-Stokes

equations found using a �nite element method. Solutions produced by the two methods

reported good agreement. Thin �lm �ows over both single and multiple obstacles using

the lubrication approximation was considered by Lee et al. [30]. Film pro�les for a single

square, diamond and circular trench were all produced along with solution of the complex

multiple obstacle con�guration of a central diamond trench with two circular trenches

downstream and two circular struts upstream.

Due to the added complexity in solving the full three-dimensional �ow problem, restricted

approaches are available for analysis, with a lubrication approximation the most popular

technique. However, due to the additional simpli�cation, problems arise with validity of

this assumption where the �ow pro�les become steep. This problem is not present with

11
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a Stokes �ow analysis but such analysis are not yet well developed.

Several authors have considered a three-dimensional Stokes formulation for �lm �ows

driven by gravity down an inclined plane and over an obstacle. The use of a direct BIE

for solution of this Stokes �ow has been implemented by both Pozrikidis and Thoroddsen

[29] and Blyth and Pozrikidis [31]. Pozrikidis and Thoroddsen [29] considered �lm �ows

over spherical obstacles in the asymptotic limit where the obstacle size was much smaller

than the undisturbed �lm depth. Film pro�les are obtained by solution of the appropriate

BIEs using the BEM. Both Decré and Baret [14] and Hayes et al. [27] consider their

�lm deformations to be qualitatively similar to the numerical work by Pozrikidis and

Thoroddsen [29]

The formulation of Pozrikidis and Thoroddsen [29] includes an error in the jump con-

dition of the BIE, which is corrected in the later work of Blyth and Pozrikidis [31].

However, this error is shown to produce only a small e�ect on the free surface pro�le,

with the correct qualitative behaviour predicted. Blyth and Pozrikidis [31] extend the

work of Pozrikidis and Thoroddsen [29] by removing the constraint of asymptotically

small obstacles, and analyzing the e�ect of larger obstructions.

Both the simulations in [29, 31] simplify the numerical problem by linearizing the free

surface de�ection. Thus, even with the removal of the asymptotic constraint in [29], the

accuracy of the results in [31] for signi�cant deformations caused by large obstacles is

unknown. Comparison between the corrected asymptotic and complete obstacle analy-

sis is also presented, although problems in obtaining results for the complete obstacle

analysis in the asymptotic limit led to di�culties in �nding exact agreement.

Results from Pozrikidis and Thoroddsen [29], Blyth and Pozrikidis [31] along with the

disturbance produced by the dirac delta topography in Hayes et al. [27] all show sim-

ilar �ow features of a pronounced upstream peak, decaying in a �horseshoe� fashion,

with a trough formed immediately downstream of the obstacle, and decaying slowly.

Qualitatively, this is in agreement with the experimental results for �ow over a square

12



Chapter 1: Introduction

topography by Decré and Baret [14]. Interestingly, in [27] and the experimental work of

[14], a slight upstream dip is depicted before the formation of the substantial peak on

the free surface. This small dip does not feature in the Stokes �ow analysis of [29] and

[31].

Consideration of �lm �ows around obstacles has not been widely considered. Sellier

[32] and Sellier et al. [33] used the lubrication approximation to consider �ows around

obstructions. However, the lubrication theory makes it impossible to fully impose the

no-slip boundary condition, and instead zero �ux is speci�ed on the obstacle wall. Thus

results are expected to be more relevant in the far �eld. Sellier [32] consider �ows around

a circular cylinder with Sellier et al. [33] considering �ow around a range of geometrical

obstructions, including single and multiple circular cylinders.

1.2 Thesis Structure

Thin �lm �ows occur in a wide range of industrial processes, with this thesis focusing

on �ows within the bearing chambers of a gas turbine aero-engine. These thin �lms

can often be approximated as a Stokes �ow analysis and it is this approach that will

be initially implemented. Heat transfer e�ects from the bearing chamber wall to the

thin �lm will be neglected throughout this thesis. Using a Stokes �ow analysis, �lm

pro�les over or around a single obstacle may be modelled, with solutions considered for

variations in the �ow parameters. Results are produced numerically using the boundary

element method (BEM) and a radial basis function (RBF) interpolation for generation

of free surface parameters. However, within industrial processes, the �lm disturbance

in the presence of multiple obstacles is often as important as the �lm de�ection caused

by a single obstruction. Using the Stokes �ow analysis, �lm pro�les for �ows down an

inclined plane over and around up to three obstacles are considered. Finally, the case of

non-zero Reynolds numbers is considered, including inertia within the formulation, and

analyzing the e�ects on the �lm disturbance generated by single obstacles.

13
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This chapter has considered an overview of the literature discussing the physical be-

haviour of �lm �ows along with their numerical simulation, and below a detailed de-

scription of the following chapters of this thesis is presented.

Chapter 2 overviews the theory of viscous �ows, and the formulation of the corresponding

boundary integral equations (BIEs). The end of chapter 2 discusses solution of the

integral equations by the BEM, a numerical scheme. In addition, thin �lms are often

dominated by surface tension e�ects, and thus for accurate evaluation of these forces,

an accurate representation of the free surface and its derivatives are required. This is

achieved by using a radial basis function (RBF) interpolation and more details are given

in chapter 3. The extension of Stokes �ow analysis to the full Navier-Stokes solutions

for �ows at �nite Reynolds number is modelled in chapter 7 and also requires RBF

interpolations.

Chapter 4 considers Stokes �ow down an inclined plane, and driven by gravity over a sin-

gle obstacle. Duplication of the methods introduced in the publications of Pozrikidis and

Thoroddsen [29] and Blyth and Pozrikidis [31] provides an initial milestone to generate

numerical codes and provide a base case for later qualitative comparisons. Assumptions

of small free surface de�ections are implemented by both [29] and [31] with [29] also

imposing the constraint of asymptotically small obstacles. The small free surface de�ec-

tion assumption allows linearization of the unknown free surface location, and the �lm

pro�le can be found directly by the solution of a system of equations. Development of

the analysis from [31] is aimed at obtaining solution methods for modelling �ow over

more general obstacles and �ow conditions, with the model developed to relax the small

de�ection restrictions of the governing equations. The removal of the small free surface

de�ection requires solution of a non-linear problem, and an iterative solution technique

has been developed.

A further extension to �lm �ow over a single obstacle considers the �lm disturbance

for �ow over multiple obstacles located close to one another. The interaction between
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multiple obstacles fully submerged by the �lm is considered in chapter 5. Two and three

hemispheres in a range of relative locations are analyzed with the e�ects of the wake

from one obstacle, on the �lm deformation caused by a subsequent obstacle discussed.

In addition, e�ects of �ow parameters on the �lm disturbance are considered.

Thin �lm �ows around obstacles have been less widely considered in the literature, with

Sellier [32] and Sellier et al. [33] the only reported works. However in using the lubri-

cation theory, the no slip boundary condition on the obstacle wall is not fully imposed,

with no �ux speci�ed instead. By using a Stokes �ow analysis, �lm �ows around ob-

structions using the full no-slip boundary condition on the wetted obstacle surface can be

accurately modelled. The consideration of both single and multiple obstacles that pen-

etrate the free surface are considered in chapter 6. For this analysis the incorporation

of a contact line condition in the problem formulation is required. This is a non-trivial

extension to the �ow over analysis, and the contact angle at the contact line of the �lm

is constrained using the RBF interpolation of the free surface. Circular cylinders are

considered throughout, again with the relative positioning of obstacles assessed. The

incorporation of the additional contact line constraint yields the possibility of multiple

solutions. This is where for identical �ow parameters, and far �eld conditions, the pro�le

can exist both over, or around an identical obstacle.

The Reynolds number of thin �lm �ows is often small and the Stokes �ow assumption

implemented up until Chapter 6 is often an appropriate approximation. However, even

at low Reynolds numbers, the e�ects of inertia on the �lm pro�le may be signi�cant.

Chapter 7 considers the e�ects of the convective term from the Navier-Stokes equations

on the �lm pro�le. An e�cient numerical algorithm is developed for incorporating inertia

e�ects, with the case of a three-dimensional lid driven cavity used to benchmark the

algorithms. Incorporation of these numerical techniques into the �lm model allows the

e�ects of low, �nite Reynolds number to be considered.

In the �nal chapter, development of the theory and numerical aspects of this work are
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reviewed, along with a discussion of the key results obtained. A particularly important

aspect is the new insight into thin �lm �ows around obstacles. Future developments and

applications of this work are also discussed.
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Chapter 2

Viscous Flows

This chapter considers the development of Stokes �ow as an approximation to the Navier-

Stokes equations for viscous �uid �ow. The fundamental solution will be used to form the

boundary integral equation (BIE) that will be the basis of the numerical solver utilizing

the boundary element method (BEM). Initially, the Navier-Stokes equations are non-

dimensionalized, and used to obtain the governing equations of Stokes �ow (see § 2.1),

and similar derivations are shown in [34�37]. The use of a direct formulation of the BIEs

for Stokes �ow is then analyzed in § 2.3 with the BEM, a numerical technique used to

obtain solutions of the BIEs discussed in § 2.4

2.1 Introduction To Viscous Flows

The �ow of an incompressible Newtonian �uid under the in�uence of a body force is

governed by the Navier-Stokes equations, a vector equation for the conservation of

momentum (2.1.1), and the scalar continuity equation for the conservation of mass

(2.1.2). Although not presented here, full derivations of these equations can be found in

[34, 35, 38, 39]. For a �uid whose motion is dominated by viscous e�ects, the Navier-

Stokes equations can be approximated by the simpler Stokes equations using certain

assumptions which will be discussed in some detail.
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Non-dimensionalizing the Navier-Stokes equation allows simpli�cation by means of a

constraint on the non-dimensional quantity - the Reynolds number, Re. The Reynolds

number is a representative value of the ratio of inertia forces to viscous forces acting

within the �uid �ow, and for the case of low Re, i.e. Re � 1 �uid inertia forces are

negligible compared to the viscous forces. The viscous forces are balanced with the

remaining terms in the Navier-Stokes equations, i.e. pressure and external body forces.

The main bene�t of this simpli�cation is the removal of the non-linear term from (2.1.1)

and results in Stokes equation. The equation for mass conservation (2.1.2) is unaltered.

Typically, the Reynolds number is generally small when either the characteristic velocity

or length scale of the �ow is very small or the kinematic viscosity of the �uid is very

large. Correspondingly these �ows are also referred to as creeping �ows or slow �ows,

and are associated with the limit of the Reynolds number tending to zero.

Stokes Flow

Consider the �ow of an incompressible Newtonian �uid under the in�uence of a gravita-

tional body force ḡ, with velocity ū = (ū1, ū2, ū3) , pressure p̄, density ρ, and dynamic vis-

cosity µ. Over bars are used to denote dimensional quantities, with the non-dimensional

variables plain. The �uid �ow is governed by the Navier-Stokes equations (2.1.1) and

the continuity equation (2.1.2),

ρ

(
∂ū
∂t̄

+ ū · ∇̄ū
)

= −∇̄p̄+ µ∇̄2ū + ρḡ, (2.1.1)

∇̄ · ū = 0. (2.1.2)

Gravitational body forces are conservative, and thus the gravitational force can be rewrit-

ten as the gradient of a second function, i.e. ḡ = ∇̄Ḡ. As such the gravitational body

force can be combined with the pressure term from the Navier-Stokes equations, produc-

ing,

ρ

(
∂ū
∂t̄

+ ū · ∇̄ū
)

= −∇̄p̄mod + µ∇̄2ū (2.1.3)
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where p̄mod = p̄ − ρḠ. For a �uid whose motion is dominated by viscous e�ects, the

Navier-Stokes equations can be reduced to the simpler Stokes equations using certain

assumptions which will be discussed in some detail.

The equations for a Stokes �ow subject to gravitational body forces are obtained by

simplifying the full Navier-Stokes equations (2.1.3) for an incompressible �uid. The

derivation in this section recreates in full detail that presented in [34]. To proceed, �ow

quantities in equation (2.1.3) are non-dimensionalized based on representative values of

velocity U , length L and time T for the �ow. In cases of thin �lms the length scale L

is often taken as the characteristic thickness of the �lm. A representative pressure is

obtained by scaling the pressure term with the dominant viscous term in (2.1.3). Hence

the following dimensionless variables can now be de�ned,

u ≡ ū
U
, x ≡ x̄

L
, ∇ ≡ L∇̄, t ≡ t̄

T
, pmod ≡ p̄modL

µU
. (2.1.4)

Substituting expressions (2.1.4) into (2.1.3) yields the non-dimensional equations for

mass conservation and Navier-Stokes,

L2

Tν

∂u
∂t

+
LU

ν
u · ∇u = −∇pmod +∇2u, (2.1.5)

U

L
∇ · u = 0, (2.1.6)

where the kinematic viscosity is given by ν where (µ = νρ).

Two dimensionless parameters are now introduced. The �rst is the Reynolds number,

denoted Re, which expresses the ratio between inertia and viscous forces and is given by

Re =
LU

ν
. (2.1.7)

The next is the unsteadiness parameter and represents the ratio of inertial acceleration

body forces and the viscous forces. It is denoted by β and is expressed as,

β =
L2

νT
= Re

L

UT
, (2.1.8)

and in cases where the typical velocity, length and time scales are interlinked (i.e. U =

L
T ), β reduces to the Reynolds number Re.
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Using dimensionless parameters (2.1.7) - (2.1.8), (2.1.5) and (2.1.6) reduce to

β
∂u
∂t

+ Re u · ∇u = −∇p+∇G+∇2u, (2.1.9)

∇ · u = 0. (2.1.10)

For steady �ows, or �ows with a relatively long time scale, the frequency parameter β

is approximated by β � 1 and the time derivative term in (2.1.9) can be neglected,

resulting in the equations for steady Navier-Stokes �ow,

Re u · ∇u = −∇p+∇G+∇2u. (2.1.11)

In terms of the Reynolds number there are three broad cases,

• Re� 1 - Inertia forces are dominated by viscous forces and pressure forces.

• Re ∼ O(1) - Inertial, viscous and pressure forces are all of the same magnitude and

thus are all equally important to the motion of the �uid.

• Re � 1 - Viscous forces are dominated by inertia and pressure forces. Note for

consistency in this case, the assumed scaling for pressure would be changed to

balance the inertia terms.

Thus in the case of Re� 1, (2.1.11) simpli�es to the steady Stokes equation,

−∇p+∇G+∇2u = 0. (2.1.12)

2.2 An Overview Of The Boundary Integral Formulation

A wide range of engineering problems are governed by linear partial di�erential equations

(PDEs) which require solving. The governing equation can be re-written exactly as an

integral equation and is often referred to as the boundary integral equation (BIE). The
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BIE is obtained by using the corresponding Green's function appropriate for the case of

interest. This imposes restrictions due to the di�culty in �nding the Green's function

required for creating the BIE from the original PDE.

The BIE formulations can take two forms, direct and indirect. The indirect approach

formulates integral equations in terms of �ctitious sources with no physical meaning. The

integral equation is solved for these �ctitious source densities and physical variables can

be computed afterwards. The need to introduce the �ctitious densities can be eliminated

by use of a Direct approach which formulates the integral equations in terms of the

physical quantities (for example tractions and velocities). Solely the direct formulation

is focused on here and thus in future the distinction will not always be made.

For non-linear cases, the problem is formulated in terms of the boundary integrals cor-

responding to the linear case, with an additional domain integral incorporating the non-

linear term. Early works required the discretization of the full domain, eliminating one

of the major bene�ts of the boundary integral formulation. More recent work has con-

sidered methods of keeping the boundary-only nature of the formulation, and details are

presented in chapter 7.

The boundary element method (BEM) is a numerical computational method used to

solve the BIE, by applying the speci�ed boundary conditions and introducing three

approximations. Initially a geometric approximation is made, where the boundary is

discretized into a set of elements. The BIE is then re-written as the sum of the integrals

over each of the elements. The boundary distributions of the surface variables (i.e.

boundary tractions and velocities) are then approximated on each of the previously

de�ned boundary elements. Finally the integrals de�ned over each element are evaluated

by an appropriate numerical scheme. Values for the unknown surface variables can then

be found on the contours of the problem domain. Using the BIE and BEM again, these

surface values can be used to �nd the values for the variables anywhere within the �ow

domain.

21



Chapter 2: Viscous Flows

The major advantage of the BEM over volume-discretization methods such as the �nite

element method (FEM) or �nite volume method (FVM) is obvious, that only the bound-

ing surface requires discretization and the dimension of the solution space is reduced by

one when compared to the dimension of the physical variable space. For problems with

a solution domain with a large volume/surface ratio the BEM can o�er signi�cant per-

formance advantages over volume-meshing based solution methods. However, one disad-

vantage of the BEM is its formation of fully populated matrices. Memory requirements

for BEM problems grow with the square of the number of elements, whereas for a typical

FEM analysis, the matrix is banded and the growth relationship linear. Additionally, for

cases where surface properties (e.g. surface tension) are important, the BIE formulation

can o�er signi�cant improvement in accuracy when compared with the volume of �uid

(VOF) method, a more typical numerical scheme for �uid problems. More details in the

comparison of these two methods was conducted in the PhD Thesis by Shuaib [26].

The following section gives a detailed account of the formation of the BIE for Stokes �ow

using the direct formulation. This is followed by details of the BEM, describing typical

approximations that may be utilized in its application.

2.3 Direct Boundary Integral Equations For Stokes Flow

Formulation of the direct boundary integral equations (BIE) for Stokes �ow requires the

Lorentz reciprocal identity, calculation of the relevant Green's functions and formulation

of the governing integral equations. Derivations of the direct BIE are produced in many

texts, for example [34, 35, 37]. For consistency, notation wherever possible is kept the

same as [34], however, the derivation shown throughout is non-dimensional.
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2.3.1 Derivation Of The Lorentz Reciprocal Relation

Stokes �ow in the absence of gravitational body forces is given by (2.3.1)

−∇p+∇2u = 0. (2.3.1)

By de�ning the non-dimensional stress tensor σij as follows,

σij = −pδij +
(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.3.2)

the Stokes equation (2.3.1) can be rewritten as

∇ · σ = 0. (2.3.3)

Consider two solutions u, u′ corresponding to stress tensors σ, σ′ of a Stokes �ow

governed by (2.3.3) and (2.1.10). Taking the inner product of u′ and the divergence of

the stress tensor ∇ · σ, and substituting (2.3.2) for the stress tensor yields,

u′j
∂σij
∂xi

=
∂

∂xi
(u′jσij)−

(
−pδij +

(
∂ui
∂xj

+
∂uj
∂xi

))
∂u′j
∂xi

. (2.3.4)

By the standard properties of the Kronecker's delta function and noting that by mass

conservation
∂u′i
∂xi

= 0,

u′j
∂σij
∂xi

=
∂

∂xi
(u′jσij)−

(
∂ui
∂xj

+
∂uj
∂xi

)
∂u′j
∂xi

. (2.3.5)

Interchanging the �ow solutions, i.e. u′ ↔ u and σ′ ↔ σ the following identity is

obtained,

uj
∂σ′ij
∂xi

=
∂

∂xi
(ujσ′ij)−

(
∂u′i
∂xj

+
∂u′j
∂xi

)
∂uj
∂xi

. (2.3.6)

The penultimate step of the derivation involves subtracting (2.3.6) from (2.3.5). By

manipulating the indices of the viscous term on the right hand side of (2.3.6), it can be

shown to cancel with the corresponding term in (2.3.5) to give,

u′j
∂σij
∂xi
− uj

∂σ′ij
∂xi

=
∂

∂xi
(u′jσij − ujσ′ij). (2.3.7)
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By the initial statement that both �ows satisfy the equations of Stokes �ow,

∇ · σ′ ≡
∂σ′ij
∂xi

= 0, ∇ · σ ≡ ∂σij
∂xi

= 0, (2.3.8)

the expression (2.3.7) reduces to the Lorentz reciprocal relation,

∂

∂xi
(u′jσij − ujσ′ij) = 0, (2.3.9)

or in vector notation

∇ · (u′ · σ − u · σ′) = 0. (2.3.10)

2.3.2 Fundamental Solutions And Their Properties

The analysis of Stokes �ow involves two key terms, a fundamental solution and Green's

function. A fundamental solution of Stokes �ow is one that satis�es the singularly forced

Stokes equation (2.3.11) or (2.3.12) and the continuity equation (2.1.10). A Green's

function for Stokes �ow is a fundamental solution that also satis�es suitable boundary

conditions for the speci�c problem modelled. In three-dimensions, the singularly forced

Stokes equation is,

−∇p+∇2u + δ(x− x0)b = 0, (2.3.11)

or

∇ · σ + δ(x− x0)b = 0, (2.3.12)

where δ is Dirac's delta function, x0 is some arbitrary location of the singularity, x is

the �eld point, and b is some constant vector. The fundamental solutions of Stokes �ow

correspond to the solutions of (2.3.11) or (2.3.12) along with mass conservation (2.1.10)

and they describe the �ow caused by a point force (or pole) at x0, with orientation and

strength given by b .
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Solutions of (2.3.11) or (2.3.12) are conventionally written in the form (see [34, 37]),

ui(x) =
1

8π
Gij(x,x0)bj (2.3.13)

pi(x) =
1

8π
Pj(x,x0)bj (2.3.14)

σik(x) =
1

8π
Tijk(x,x0)bj (2.3.15)

Green's Function In Free-Space And Bounded Domains

The free-space Green's function (fundamental solution) for a three-dimensional Stokes

�ow are well known, e.g.[34, 37], and are,

Gij(x̂) =
δij
r

+
x̂ix̂j
r3

, (2.3.16)

Pj(x̂) = 2
x̂i
r3
, (2.3.17)

Tijk(x̂) = −6
x̂ix̂j x̂k
r5

, (2.3.18)

where

x̂ ≡ x− x0, r = |x̂|. (2.3.19)

The Green's function (2.3.16) corresponding to the velocity �eld (2.3.13) is also referred

to as the Stokeslet. The choice of Green's functions for bounded and periodic domains

may involve requirements on the domain boundaries. For example, if for a given problem,

a section of boundary requires the �uid velocity to be zero, then it is often convenient to

choose a Green's function that is also zero on this surface. The Lorentz-Blake Green's

functions can be used to model problems bounded by a plane wall with details given in

Appendix A.

Fundamental Solutions: Symmetry And Other Properties

Here the form of the fundamental solutions shown in equations (2.3.16) - (2.3.18) are

analyzed, with six symmetry relations or integral properties de�ned. Before proceeding
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Figure 2.1: Schematic of a typical domain for which the Green's functions are applied.

with the derivation of these properties an arbitrary control volume Vc , bounded by the

surface D is de�ned with the surface having unit normal vector n, pointing out of the

control volume Vc. For a detailed schematic see �gure 2.1

(i) Due to the inherent symmetry of the stress tensor (σik = σki - see equation (2.3.2))

it is obvious that the corresponding fundamental solution will also have the sym-

metry property,

Tijk = Tkji. (2.3.20)

(ii) The fundamental solution associated with the velocity �eld has symmetry property,

Gij(x,x0) = Gji(x0,x), (2.3.21)

and a proof is given in [37]. Hence a swap of the location of the �eld point and

pole in conjunction with an exchange in the order of the indices is allowed.

(iii) By mass conservation, equation (2.1.10) must be satis�ed and substituting from

(2.3.13) gives,

∇ ·G(x,x0) ≡ ∂Gij(x,x0)
∂xi

= 0. (2.3.22)

Integration of (2.3.22) over the control volume Vc yields,∫
Vc

∂Gij(x,x0)
∂xi

dV (x) = 0, (2.3.23)
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and by applying the divergence theorem becomes,∫
D

Gij(x,x0)ni(x)dS(x) = 0. (2.3.24)

(iv) Substituting equations (2.3.13) and (2.3.14) into (2.3.11) results in the relation,

− ∂

∂xi
(Pj(x,x0)bj) +

∂2

∂xk∂xk
(Gij(x,x0)bj) + 8πδ(x− x0)bi = 0. (2.3.25)

Introducing the Kronecker's delta function enables cancelling of the bj terms that

appear throughout the expression and yields the result,

−∂Pj(x,x0)
∂xi

+
∂2

∂xk∂xk
Gij(x,x0) + 8πδ(x− x0)δij = 0. (2.3.26)

(v) Substituting from (2.3.15) into (2.3.12) yields the relation,(
∂Tkji(x,x0)

∂xk

)
bj + 8πδ(x− x0)bi = 0. (2.3.27)

Switching the indices of the fundamental stress solution and repeating the previous

analysis by introducing the Kronecker's delta function and again cancelling the

terms bj , gives

∂Tijk(x,x0)
∂xk

+ 8πδ(x− x0)δij = 0. (2.3.28)

Integrating (2.3.28) over the control volume Vc, yields∫
Vc

∂Tijk(x,x0)
∂xk

dV (x) = −8πδij
∫
Vc

δ(x− x0)dV (x), (2.3.29)

and applying the divergence theorem to the integral on the left hand side of (2.3.29)

gives,

− 1
8π

∫
D

Tijk(x,x0)nk(x)dS(x) = δij

∫
Vc

δ(x− x0)dV (x). (2.3.30)

By the properties of Dirac's delta function, the right hand side integral in (2.3.30)

is unity if x0 is contained in Vc and zero if x0 is outside of Vc. If x0 lies on the

locally smooth surface D (bounding Vc), then the integral equals a half. For a

27



Chapter 2: Viscous Flows

brief explanation of the last result see Appendix B. Thus (2.3.30) can be written

piecewise as,

− 1
8π

∫
D

Tijk(x,x0)nk(x)dS(x) =


δij when x0 is inside D.

1
2δij when x0 is on D.

0 when x0 is outside D.

(2.3.31)

The piecewise relation (2.3.31) can be used to form an expression for integrals with

x0 taken interior and exterior to the domain Vc, denoted by a superscript (i) and

(e) above the integral symbol. Integrals for cases where x0 is contained exactly on

surface D are denoted by x0 ∈ D superscript to the integral symbol. Thus for an

integral with x0 external to the domain, (2.3.31) becomes,

− 1
8π

(e)∫
D

Tijk(x,x0)nk(x)dS(x) =

− 1
8π

x0∈D∫
D

Tijk(x,x0)nk(x)dS(x)− 1
2
δij ,

(2.3.32)

and for x0 internal to the domain,

− 1
8π

(i)∫
D

Tijk(x,x0)nk(x)dS(x) =

− 1
8π

x0∈D∫
D

Tijk(x,x0)nk(x)dS(x) +
1
2
δij .

(2.3.33)

The e�ect of a singular point occurring at a corner of a domain results in the slightly

di�erent form of equation in (2.3.31)

− 1
8π

∫
D

Tijk(x,x0)nk(x)dS(x) =


δij when x0 is inside D.

Ω
4π δij when x0 is at corner of D.

0 when x0 is outside D.

(2.3.34)

where Ω is the solid angle of the boundary corner. The solid angle is evaluated by

drawing a unit sphere around the singularity, and extending the shape of boundary

D in�nitely close to the corner out into free-space. The intersection of the two
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surfaces de�nes a contour on the sphere, whose area within the original domain

is the solid angle Ω. Note that Ω = 2π is e�ectively the earlier case of a locally

smooth boundary D, and Ω can take any value between 0 and 4π. The form of the

right hand side of (2.3.34) is also considered in Appendix B.

The corresponding equation to (2.3.32) when x0 is exterior to the domain D is,

− 1
8π

(e)∫
D

Tijk(x,x0)nk(x)dS(x) =

− 1
8π

x0∈D∫
D

Tijk(x,x0)nk(x)dS(x)− Ω
4π
δij ,

(2.3.35)

and when x0 is interior to the domain,

− 1
8π

(i)∫
D

Tijk(x,x0)nk(x)dS(x) =

− 1
8π

x0∈D∫
D

Tijk(x,x0)nk(x)dS(x) +
(

1− Ω
4π

)
δij ,

(2.3.36)

corresponding to (2.3.33) for a smooth boundary.

(vi) The fundamental solution T is related to the fundamental solution for pressure P,

and velocity G , by substituting (2.3.13) - (2.3.15) into (2.3.2) to give,

1
8π
Tijk(x,x0)bj = − 1

8π
Pj(x,x0)δikbj

+
1

8π

(
∂Gij(x,x0)

∂xk
+
∂Gkj(x,x0)

∂xi

)
bj .

(2.3.37)

Notice that for direct substitution, the indices j need to be changed to k in (2.3.2).

Cancelling wherever possible, the following relation (for which the symmetry con-

dition (i), clearly still holds) is obtained,

Tijk(x,x0) = −Pj(x,x0)δik +
∂Gij(x,x0)

∂xk
+
∂Gkj(x,x0)

∂xi
. (2.3.38)
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2.3.3 Derivation Of The Direct Boundary Integral Equations

The derivation of the direct BIEs for the velocity u of a three-dimensional Stokes �ow is

shown below. Consider a speci�c Stokes �ow of interest with velocity u and stress tensor

σ, satisfying (2.3.1) or (2.3.3), and de�ne the singularly forced Stokes �ow satisfying

(2.3.11) or (2.3.12) as having solutions of the form shown in (2.3.39) - (2.3.41),

u′i(x) =
1

8π
Gim(x,x0)bm, (2.3.39)

σ′ij(x) =
1

8π
Timj(x,x0)bm, (2.3.40)

∂σ′ij
∂xi

= −δ(x− x0)bj , (2.3.41)

where b is some arbitrary constant vector and (2.3.39) - (2.3.40) are of similar form to

(2.3.13) and (2.3.15).

By equation (2.3.7) of the derivation of the Lorentz reciprocal relation,

∂

∂xi
(u′jσij − ujσ′ij) = u′j

∂σij
∂xi
− uj

∂σ′ij
∂xi

. (2.3.42)

The solution of the speci�c Stokes �ow satis�es
∂σij
∂xi

= 0 and the scalar equation (2.3.42)

becomes,

∂

∂xi

(
1

8π
Gjm(x,x0)bmσij(x)− uj(x)

1
8π
Timj(x,x0)bm

)
= um(x)δ(x−x0)bm,

(2.3.43)

or as b is arbitrary,

um(x)δ(x− x0) =

∂

∂xi

(
1

8π
Gjm(x,x0)σij(x)− uj(x)

1
8π
Timj(x,x0)

)
.

(2.3.44)

Introduce a control volume Vc such as in �gure 2.1, that is bounded by a surface D

which has an outward unit normal vector n. Equation (2.3.44) can be integrated over

this volume and simpli�cation made as the integral on the right hand side reduces to a
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surface integral by the divergence theorem to give,∫
Vc

um(x)δ(x− x0)dV (x) =

∫
D

(
1

8π
Gjm(x,x0)σij(x)− uj(x)

1
8π
Timj(x,x0)

)
ni(x)dS(x).

(2.3.45)

By re-labelling the indices as

m→ j, j → i, i→ k, (2.3.46)

equation (2.3.45) becomes∫
Vc

uj(x)δ(x− x0)dV (x) =

1
8π

∫
D

Gij(x,x0)σik(x)nk(x)dS(x)

− 1
8π

∫
D

ui(x)Tijk(x,x0)nk(x)dS(x).

(2.3.47)

Note the use of the stress tensor and fundamental stress solution symmetry conditions.

By the properties of Dirac's delta function, if x0 is not contained in Vc, then the left

hand integral in (2.3.47) is zero, whereas when x0 is within Vc, the integral becomes

uj(x0). Introducing, the boundary traction f , given by,

fi(x) ≡ σik(x)nk(x), (2.3.48)

and by taking x0 inside Vc (2.3.47) becomes

uj(x0) =
1

8π

(i)∫
D

Gij(x,x0)fi(x)dS(x)

− 1
8π

(i)∫
D

ui(x)Tijk(x,x0)nk(x)dS(x),

(2.3.49)

where the superscript (i) to the integrals denotes x0 is interior to Vc.

The terms on the right hand side of (2.3.49) are referred to as the single-layer and

double-layer potential respectively, and are discussed in depth in [37]. The following two

subsections give a brief overview of each potential in the direct formulation of the BIE.
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Figure 2.2: An illustration of the modi�ed boundary including a hemisphere around

the location of singularity in the integrand of (2.3.50).

Single Layer Potential

Denote the single layer potential Vj as,

Vj =
1

8π

∫
D

Gij(x,x0)fi(x)dS(x), (2.3.50)

in a three-dimensional formulation with surface D. When the singular point x0 tends to

a �eld point x on a locally smooth surface D, then the velocity Green's function (and

hence the integrand of (2.3.50)) exhibits a singularity of the form 1/r, where r is de�ned

as in equation (2.3.19). For an example consider the free-space velocity Green's function

given by equation (2.3.16). The surface of integration D is distorted to include the point

x0 in a hemispherical shell, with radius γ, and the limit γ → 0 taken to recover the

original boundary - see Figure 2.2. Thus integration is now conducted over the surface

D − Dc (where Dc is the circular region de�ned by the contour where the hemisphere

intersects with D) and the surface of the hemisphere Dh.

In this limit the single layer potential (2.3.50) becomes

Vj =
1

8π
lim
γ→0

 ∫
D−Dc

Gij(x,x0)fi(x)dS(x) +
∫
Dh

Gij(x,x0)fi(x)dS(x)

 . (2.3.51)
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The �rst integral in (2.3.51) tends to the original integral (2.3.50) in the limit de�ned.

The second integral of (2.3.51) can be rewritten as,

lim
γ→0

∫
Dh

Gij(x,x0)fi(x)dS(x) = lim
γ→0

π
2∫

0

2π∫
0

Gij(x,x0)fi(x)γ2 sinφ dθdφ, (2.3.52)

where

Gij(x,x0) ∼ 1
γ
. (2.3.53)

Provided fi(x) is non-singular over the entire boundary, the integral in (2.3.52) can be

shown to tend to zero. Expression (2.3.51) becomes identical to (2.3.50) as x0 tends to

the surface, and the single-layer potential shows no discontinuity as x0 is moved onto

the boundary D. This result holds even for x0 placed at a corner of the boundary D,

although the analysis requires the hemisphere to be replaced by a portion of a sphere

dependent on the solid angle prescribed by the boundary shape at the corner.

Double Layer Potential

Consider the double-layer potential Wj from (2.3.49), with x0 interior to the domain,

Wj = − 1
8π

(i)∫
D

ui(x)Tijk(x,x0)nk(x)dS(x), (2.3.54)

which can be rewritten as

Wj = − 1
8π

(i)∫
D

[ui(x)− ui(x0)]Tijk(x,x0)nk(x)dS(x)

− 1
8π
ui(x0)

(i)∫
D

Tijk(x,x0)nk(x)dS(x),

(2.3.55)

and note that the integrand of the �rst integral in (2.3.55) is no longer singular (i.e.

the singularity of Tijk(x,x0)nk(x) is countered by its preceding term tending to zero).

Manipulating (2.3.55) and applying (2.3.33) (due to taking the singularity point initially
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within Vc and then moving to the boundary), allows expression (2.3.56) for the double-

layer potential to be derived when x0 lies directly on the locally smooth boundary D of

control volume Vc,

Wj = − 1
8π

x0∈D∫
D

[ui(x)− ui(x0)]Tijk(x,x0)nk(x)dS(x)

− 1
8π
ui(x0)

x0∈D∫
D

Tijk(x,x0)nk(x)dS(x) +
1
2
δijui(x0).

(2.3.56)

Rewriting (2.3.56) in the more convenient form using the standard properties of the

Kronecker delta yields

Wj = − 1
8π

x0∈D∫
D

ui(x)Tijk(x,x0)nk(x)dS(x)

+
1

8π

x0∈D∫
D

ui(x0)Tijk(x,x0)nk(x)dS(x)

+
1
2
uj(x0)− 1

8π

x0∈D∫
D

ui(x0)Tijk(x,x0)nk(x)dS(x),

(2.3.57)

and with x0 located on the boundary D, the middle and last integrals in (2.3.57) cancel

and the following important equation is obtained,

lim
x0→D

− 1
8π

(i)∫
D

ui(x)Tijk(x,x0)nk(x)dS(x)

 =

1
2
uj(x0)− 1

8π

x0∈D∫
D

ui(x)Tijk(x,x0)nk(x)dS(x).

(2.3.58)

The double-layer potential exhibits a discontinuity as the point x0 is moved onto the

boundary. The corresponding equation to (2.3.58) for the case of the singularity point

being located at a corner on the boundary D can be derived by similar means to those

shown. Using (2.3.36) in place of (2.3.33) in the above manipulation and following all
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the steps shown gives,

lim
x0→D

− 1
8π

(i)∫
D

ui(x)Tijk(x,x0)nk(x)dS(x)

 =

(
1− Ω

4π

)
uj(x0)− 1

8π

x0∈D∫
D

ui(x)Tijk(x,x0)nk(x)dS(x)

(2.3.59)

The case of Ω = 2π corresponds to x0 placed on a locally smooth boundary and equation

(2.3.59) reduces to (2.3.58)

Direct Boundary Integral Equations

A general form for the BIE is found by (2.3.49), and using the continuous and discontin-

uous properties of the single and double layer potentials as x0 approaches the surface,

cij(x0)ui(x0) =
1

8π

∫
D

Gij(x,x0)fi(x)dS(x)

− 1
8π

∫
D

ui(x)Tijk(x,x0)nk(x)dS(x),
(2.3.60)

where cij(x0) de�nes the jump condition and is given by

cij(x0) =


δij when x0 is inside D,

1
2δij when x0 is on D,

0 when x0 is outside D,

(2.3.61)

for a smooth surface, and

cij(x0) =


δij when x0 is inside D,

Ω
4π δij when x0 is on D,

0 when x0 is outside D,

(2.3.62)

at a corner point. Again, the case of Ω = 2π corresponds to x0 placed on a locally

smooth boundary and (2.3.62) reduces to (2.3.61).

The BIE (2.3.60) relates the governing boundary velocities and tractions for a Stokes �ow.

Solutions of the BIE require boundary conditions suitable for the �ow being analyzed.
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Three general possibilities of boundary conditions are described brie�y below. For more

details see [34, 37].

(i) If the boundary velocity u is speci�ed over D, then the BIE becomes an equation

for the surface traction f only. This is called a Fredholm integral equation of the

�rst kind.

(ii) If the surface traction f is speci�ed over D, then the BIE becomes an equation for

the boundary velocity u only. This is called a Fredholm integral equation of the

second kind.

(iii) A Fredholm integral equation of mixed type involves specifying the boundary velocity

u over a part of D and for the remainder of D specifying the surface traction f .

Each of the resulting BIE is then solved for the unknown values on each section of

the boundary.

2.4 The Boundary Element Method

The boundary integral equation (BIE) for a singularity x0, located on a smooth bound-

ary D was derived in § 2.3 and is given by equation (2.3.60). The boundary element

method (BEM) is used as a means to solving the BIE on the boundary by implement-

ing three approximations. For suitable boundary conditions, the boundary elements are

collocated, resulting in a matrix problem to be solved for unknown boundary tractions

fi or velocities ui. These approximations along with the collocation of the boundary el-

ements are discussed in this section. Finally an example BEM implementation utilizing

a constant boundary distribution is described.
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2.4.1 Approximation And Collocation

The aim of the BEM is to reduce the BIE (2.3.60) to a matrix problem which can be

solved. To do this, three approximations are implemented. First of all the boundary is

discretized into elements by means of a geometrical approximation. Then the physical

variables are approximated on each of the previously de�ned elements by a chosen bound-

ary distribution. Finally, using an integral approximation, the integrals over each element

are evaluated using an appropriate numerical technique. Finally the resulting equation

can be collocated over all boundary elements to produce a system of equations that can

be solved. Each of these three approximations along with the collocation technique are

discussed in turn below.

Geometric Approximation

The boundary D of domain Vc over which the integrals of (2.3.60) are to be evaluated

often have complex geometries. It is appropriate to discretize the boundary D into

geometrically simpler boundary elements, denoted by Eν , ν = 1, . . . , N . The integrals in

(2.3.60) can then be rewritten as the sum of the integrals over each boundary elements

as shown in (2.4.1).

1
2
uj(x0) =

1
8π

N∑
ν=1

∫
Eν

Gij(x,x0)fi(x)dS(x)

− 1
8π

N∑
ν=1

∫
Eν

ui(x)Tijk(x,x0)nk(x)dS(x).

(2.4.1)

Various forms of boundary discretization may be implemented, with the most common

cases comprising of either linear or quadratic triangular elements.
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Boundary Distribution

Values are required for the boundary traction fi and velocity ui on each of the bound-

ary elements Eν . The simplest approximation is to take the boundary tractions and

velocities constant over each element. However to improve accuracy, a variety of higher-

ordered polynomials, or other kinds of interpolation function can be used to represent

the boundary distributions.

Integral Approximation

The integrals in equation (2.4.1) need evaluating on each element that discretizes the

boundary. These integrals can be classi�ed as,

• Non-Singular : The element over which the integration is to be conducted does not

contain the singularity x0 and the integrands are non-singular in this case.

• Singular : The element over which the integration is to be conducted contains the

singularity x0 and the integrands are singular in this case.

In general the integrals will be evaluated using a range of numerical methods for both

non-singular and singular integrands. Non-singular integrands are evaluated numerically

using appropriate Gaussian quadrature techniques. For cases of near-point singularities,

re�nement of the integration is made by a combination of an adaptive Gaussian integra-

tion algorithm and an element subdivision approach. Further details of this method are

given in chapter 4. Singularities of the single layer potential are evaluated using polar

integration, with details omitted here but shown in [34]. Flat elements are considered

throughout this thesis, causing the singularity of the double layer potential to vanish

due to the tangent vector of a �at element always being perpendicular to the normal.
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Collocation Of Boundary Elements

When suitable boundary conditions are applied, which de�ne either the boundary trac-

tion fi or velocity ui on each element, then it is left for the BEM to calculate the unknown

values of fi or ui on each element. This is achieved by collocation of the discretized equa-

tion in a bid to generate the same number of equations as unknowns. A matrix problem

is formulated and solved for the unknown values associated with the Stokes �ow.

2.4.2 Implementation Of A Constant Boundary Distribution

This section considers the BEM formulation outlined above for a constant boundary dis-

tribution. Details of the geometrical approximation and the type of numerical techniques

used for the evaluation of the integrals are not required per se as they will have no e�ect

on the formulation shown below.

Consider a geometric approximation, used to discretize the boundary into N elements.

As described in the previous section, the integral (2.3.60) is simpli�ed to the sum of

the integrals over each element, as shown in (2.4.1). In addition a constant or uniform

boundary distribution implies a constant value for boundary traction fi and velocity ui

be de�ned over each element. These are written as fi|Eν and ui|Eν for element Eν . Also

note that from here on dS ≡ dS(x). Substituting these values into equation (2.4.1)

yields,

1
2
uj(x0) =

1
8π

N∑
ν=1

fi|Eν
∫
Eν

Gij(x,x0)dS

− 1
8π

N∑
ν=1

ui|Eν
∫
Eν

Tijk(x,x0)nk(x)dS.

(2.4.2)

Equation (2.4.2) can be rewritten such that the summation used for the evaluation of
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uj(x0) is via the multiplication of vectors,

1
2
uj(x0) =

1
8π

(
fi|Eν=1 , · · · , fi|Eν=N

)

∫
Eν=1Gij(x,x0)dS

...∫
Eν=N Gij(x,x0)dS



− 1
8π

(
ui|Eν=1 , · · · , ui|Eν=N

)

∫
Eν=1 Tijk(x,x0)nkdS

...∫
Eν=N Tijk(x,x0)nkdS

 .

(2.4.3)

By placing the singularity point x0 at the middle of element ζ, denoted xMζ and recalling

the values of fi and ui are taken constant over each element, the left hand side of (2.4.3)

becomes,

1
2
uj(xMζ ) =

1
2
uj |Eζ . (2.4.4)

By collocating over all the elements, (2.4.2) becomes a system of 3N equations comprising

of the 3 components of ui, fi on each of the N elements. Two 3N × 3N matrices are

formed, which can be thought of as N × N arrays where each component is the 3 × 3

matrix Gij or Tijknk (where i is the local row number and j is the local column number

of each component within the N × N array). Thus the collocated system of equations

determined by the BEM is given by.

1
2
Ud =

1
8π
FcAcd −

1
8π
UcBcd, (2.4.5)

where

Fc =
(
fi|Eν=1 · · · fi|Eν=N

)
, (2.4.6)

Uc =
(
ui|Eν=1 · · · ui|Eν=N

)
, (2.4.7)

Acd =


∫
Eν=1Gij(x,x

M
ζ=1)dS · · ·

∫
Eν=1Gij(x,x

M
ζ=N )dS

...
. . .

...∫
Eν=N Gij(x,x

M
ζ=1)dS · · ·

∫
Eν=N Gij(x,x

M
ζ=N )dS

 , (2.4.8)

Bcd =


∫
Eν=1 Tijk(x,x

M
ζ=1)nkdS · · ·

∫
Eν=1 Tijk(x,x

M
ζ=N )nkdS

...
. . .

...∫
Eν=N Tijk(x,x

M
ζ=1)nkdS · · ·

∫
Eν=N Tijk(x,x

M
ζ=N )nkdS

 , (2.4.9)
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for i, j, k = 1, . . . , 3, and ν, ζ = 1, . . . , N . Indices c and d take values c, d = 1, . . . , 3N

and are de�ned by.

c = 3(ν − 1) + i, (2.4.10)

d = 3(ζ − 1) + j. (2.4.11)

Rewritten (2.4.5) becomes

1
8π
FcAcd = Uc

(
1
2
δcd +

1
8π
Bcd

)
. (2.4.12)

The solution of (2.4.12) involves calculating the integrals of each element, and forming

the components of the two matrices. By specifying suitable boundary conditions the

system of equations is solved for unknown tractions and/or velocities.
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Radial Basis Functions

Solutions of �lm �ows down an inclined plane over and around obstacles require a range

of e�cient numerical techniques. These �lm pro�les are often dominated by surface forces

such as surface tension, and require an accurate representation of the free surface. The

evaluation of the free surface traction, incorporating these e�ects, is achieved by using a

radial basis function (RBF). In addition by using a Hermitian RBF, far �eld and contact

line constraints imposed on the free surface can also be included in the interpolation. A

RBF interpolation is also used in Chapter 7 when implementing numerical techniques to

extend a Stokes �ow formulation to the non-linear problem of �nite Reynolds number

�ows. This chapter considers an overview of RBFs, along with implementation of local

and global interpolations.

3.1 Introduction To Radial Basis Function Interpolations

The interpolation of a discrete set of data points, such as those obtained by mesh based

schemes, (e.g. the boundary element method (BEM)), is a common problem. Conven-

tional methods such as polynomial and spline interpolations have been applied to a wide

range of engineering problems. Alternatively a radial basis function (RBF) interpolation

can be used for such a purpose. An extensive study of interpolation methods available

at the time was conducted by Franke [40], and concluded that RBF interpolations were
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Generalized Thin Plate Spline (2D) r2m−2 log r

Generalized Thin Plate Spline (3D) rm (m odd)

Generalized Multiquadric
(
r2 + c2

)m
2 (m odd)

Gaussian exp
(
− r
c

)
Table 3.1: Common radial basis functions

the most accurate techniques evaluated.

The theory of RBFs originated as a means to provide a continuous interpolation of scat-

tered data values. However, in recent years RBFs have been extensively researched and

applied in a wider range of analysis. Partial di�erential equations (PDEs) have been

solved using RBFs with recent work in this �eld conducted by La Rocca et al. [41] and

La Rocca and Power [42]. The RBF interpolation has also been used in the implemen-

tation of the dual reciprocity method (DRM) (see Nardini and Brebbia [43]), a method

used to transform the domain integrals present in the boundary integral equations (BIEs)

for non-linear problems. In this thesis the original application of RBFs is used as a means

of interpolating the surface data for �lm �ow over or around an obstacle. In addition,

chapter 7 considers the non-linear problem of �lm �ows at �nite Reynolds number, using

a RBF interpolation within the numerical techniques implemented.

A RBF ψ(‖x − ξj‖) depends on the separation between a �eld point x and the data

centres ξj , for j = 1, . . . , N , and N data points. The interpolants are classed as radial

due to their spherical symmetry around centres ξj , with ‖x − ξj‖ the Euclidean norm.

The most popular RBFs are listed in table 3.1 where r = ‖x− ξj‖, m is an integer, and

c is a free parameter, often referred to as the shape parameter, to be speci�ed by the

user. In addition, for the multiquadric and the three-dimensional thin plate spline, only

odd values of m are permitted.

The inverse multiquadric (m < 0 in the generalized multiquadric) and Gaussian are

functions which form positive de�nite interpolation matrices, whilst the thin plate spline
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and multiquadric (m > 0 in the generalized multiquadric) are functions which generate

conditionally positive de�nite matrices of order m. By standard theory, positive de�-

nite matrices are never singular, and guarantee solution to the interpolation problem.

However, the conditionally positive de�nite matrices which are formed by RBFs such as

the thin plate spline may be singular for certain selections of data centres. These condi-

tionally positive de�nite matrices are conditionate of a polynomial of order m− 1 along

with homogeneous constraint condition. If these are included within the interpolation,

a positive de�nite matrix is formed, and solution to the interpolation is guaranteed. For

further details, see Golberg and Chen [44].

The shape parameter c within the Gaussian and multiquadric RBFs requires �ne tuning

and can dramatically alter the quality of the interpolation. Despite being considered

as optimal for interpolating multivariate data, Franke [40] found that the thin plate

spline was marginally outperformed by the multiquadric RBF with regards to the test

criteria. In fact Powell [45] indicated that the thin plate spline RBF only converges

linearly compared to the multiquadrics which converge exponentially, producing a min-

imal semi-norm error (see Madych and Nelson [46]). However, the multiquadric RBF

is disadvantaged by the presence of the shape parameter c whose choice signi�cantly

e�ects the interpolation. In addition, Schaback [47] states that numerical experiments

show that the condition number of the resulting interpolation matrix is large for smooth

interpolants such as the gaussian or multiquadric RBF when compared to non-smooth

functions such as thin plate splines for low m. Thus a thin plate spline RBF is used

throughout this thesis.

Typical interpolation problems involve taking the known data centres
(
ξj , F (ξj)

)
, for

j = 1, . . . , N of the unknown function F and interpolating it by the function f . Thus

for a conditionally positive de�nite function, the interpolation takes the form,

f(x) =
N∑
j=1

λjψ
(
‖x− ξj‖

)
+ Pm−1(x), (3.1.1)

and for arbitrary orderm, the polynomial Pm−1 containsNp terms and in two-dimensions
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has the expanded form

Pm−1(xi) = λN+1(xi1)m−1+λN+2(xi2)m−1 + λN+3(xi1)m−2xi2 + . . .

+ λN+Np−2x
i
1 + λN+Np−1x

i
2 + λN+Np .

(3.1.2)

Collocation of (3.1.1) over the N data centres yields N equations for the N + Np un-

knowns λj . The homogeneous constraint condition,

N∑
j=1

λjPk(xj) = 0, 1 ≤ k ≤ m− 1, (3.1.3)

gives another Np equations to close the system. Thus, by collocation over the data

centres, a matrix problem Aijλj = bi is formed, where Aij is de�ned by,

Aij =


ψ Pm−1

(Pm−1)T 0

 , (3.1.4)

and bi is given by,

bi =

(
F 0

)T
. (3.1.5)

The matrix problem can be solved for λj , and thus the function f(x) can be reconstructed

at any point by (3.1.1).

Hermitian Interpolations And Double Collocation

When the problem speci�es additional constraints (for example far �eld conditions), they

can be incorporated by use of a Hermite RBF interpolation. Consider the linear partial

di�erential operator Lx(f(x)) = G to be applied at n points which may or may not

correspond to locations used in the original interpolation (3.1.1). Then the Hermitian

interpolation takes the form

f(x) =
N∑
j=1

λjψ
(
‖x− ξj‖

)
+

N+n∑
j=N+1

λjLξψ
(
‖x− ξj‖

)
+ Pm−1(x), (3.1.6)

where Lξ is the di�erential operator de�ned above but acting on ξ.
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For the Hermite interpolation (3.1.6), a matrix problem Aijλj = bi is formed, where Aij

is now de�ned by,

Aij =



ψ Lξ(ψ) Pm−1

Lx(ψ) LxLξ(ψ) Lx(Pm−1)

(Pm−1)T (Lx(Pm−1))T 0


, (3.1.7)

and bi is given by,

bi =

(
F G 0

)T
. (3.1.8)

The matrix (3.1.7) is non-singular as long as ψ is chosen appropriately. For cases of

double collocation, ψ, Lx(ψ) and any further di�erential operators can be applied simul-

taneously at the same collocation points as long as they are linearly independent.

When modelling �lm �ow over an obstacle, an accurate method for generating the free

surface and deducing the unit normal and curvature is required. By supplying a discrete

set of data points (surface heights), a Hermitian RBF can be used to �nd a smooth

function through all of the points, allowing the derivative of the free surface and hence

the unit normal and mean curvature to be found.

3.2 Local And Global Interpolations

The radial basis function (RBF) interpolation outlined in section 3.1 is described in a

global sense. The interpolation matrix involves solving a system of equations that incor-

porate all data points. For anN×N interpolation matrix, this requires O(N3) operations

when using Gaussian elimination to solve the system of equations. For large systems the

amount of CPU time and RAM necessary can become prohibitive. In addition, as the

system becomes large, the resulting matrix becomes ill-conditioned. The local RBF can

o�er substantial improvements with regards to the CPU time and RAM requirements,
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Figure 3.1: A sketch indicating how the local elements are chosen.

and avoid this ill-conditioning problem. At each data point, a local approach involves

solving an interpolation matrix that only incorporates the collocation points within a

certain range of the data point under consideration. The upshot of this method is to

reduce computation time to O(NM3), whereM is theM×M local interpolation matrix,

and N is the number of global data points considered. Thus, for M su�ciently smaller

than N , this will o�er signi�cant bene�ts in terms of run-time and memory requirement.

In two-dimensions, the local points are found by drawing a circular region in the x1x2

plane of a chosen radius around each data point in turn, and recording the collocation

points that fall within this region. Obviously the more points chosen for the interpo-

lation, the more accurate it will be, although the CPU time and RAM required is also

increased. Care needs to be taken as to whether any of the points caught require deriva-

tive conditions to be applied (for example in the far �eld). This technique is illustrated

in Figure 3.1

The generation and solution of the local system is conducted by identical means to the

global approach outlined in section 3.1, and for a su�ciently large inclusion zone, the

results should be virtually identical. This is due to the ever decreasing e�ect data points
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will have on the interpolation further away from the point under consideration. The

e�ciency gains from using a local interpolation will be evaluated for each case imple-

mented. In general when interpolating the free surface, a global technique is optimum.

However, when considering the e�ects of inertia using the method of particular solutions

in chapter 7, a local approach is often bene�cial.
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Stokes Flow Over A Single Obstacle

Thin �lm �ows driven by gravity down an inclined plane and over an obstacle is an

important, well studied generic �ow problem. E�cient and accurate solution techniques

are developed in this chapter based on a Stokes �ow formulation. In § 1.1 a thorough

overview of published works in this �eld are considered, with this chapter starting by

considering the formulation and numerical schemes to be used in solving the problem,

outlined in § 4.1 and § 4.2 respectively. Finally, solutions for Stokes �ow over a single

obstacle are considered in § 4.3, validating results with those previously published by

other authors.

4.1 Mathematical Formulation

This section considers the Stokes �ow formulation of a thin �lm driven by gravity down

an inclined plane over an obstacle attached to the plane. The �ow variables are solved

for disturbance and undisturbed components in a manner similar to Blyth and Pozrikidis

[31]. Two subsections outline the simpli�cation of the formulation for consideration of

small free surface de�ections as in [31] and consideration of asymptotically small obstacles

as implemented by Pozrikidis and Thoroddsen [29].

A two-dimensional schematic of a typical �lm �ow of undisturbed thickness H, driven
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Figure 4.1: Two-dimensional cross section of a typical �lm pro�le.

Table 4.1: Reference Quantities

Reference Length H

Reference Velocity Us = H2ρg sinα
2µ

Reference Stress µUs
H

by a component of gravity g down an inclined plane at angle α and over an obstacle is

shown in Figure 4.1. The wetted obstacle surface is denoted Sp and is attached to the

inclined plane Sw. A �uid travels down the inclined plane, completely submerging the

obstacle, with free surface denoted Sf . The corresponding undisturbed �lm surface is

given by Sπ. The distance from the undisturbed �lm Sπ to the disturbed �lm surface

Sf is given by h, and the outward unit normal is denoted by n. A cartesian co-ordinate

system is aligned such that the undisturbed plane Sπ is de�ned by the x1x2-plane, with

x1 in the direction of the undisturbed �ow. Axis x3 is perpendicular to Sπ, pointing

away from the inclined wall Sw.

For mathematical convenience, physical variables are non-dimensionalized using the three
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reference quantities shown in table 4.1. The reference length is taken as the undisturbed

�lm height H, with reference velocity given by the free stream surface velocity Us for

�lm �ow down an inclined plane in the absence of an obstacle. Finally, a viscous scaling

is used for the reference stress. The associated Bond number is

Bo =
ρgH2 sinα

γ
, (4.1.1)

where γ is the surface tension, ρ the �uid density and g = |g| the acceleration due to

gravity.

The �lm �ow is governed by the standard incompressible equations for mass conservation

(4.1.2) and steady Stokes �ow (4.1.3)

∂ui
∂xi

= 0, (4.1.2)

− ∂p

∂xi
+
∂G

∂xi
+
∂2ui
∂x2

j

= 0, (4.1.3)

where G is de�ned by (4.1.4),

G = −2(x3 cotα− x1). (4.1.4)

Far �eld constraints involve the �ow velocity and pressure returning to values associated

with a gravity driven �lm �ow down an inclined plane in the absence of an obstacle,

and denoted by a superscript ∞. In addition, the free surface de�ection, along with the

gradient of the free surface should decay to zero. These conditions are shown in (4.1.5),

ui → u∞i

p→ p∞

h→ 0

∂h
∂x1
→ 0

∂h
∂x2
→ 0


as x→ ±∞. (4.1.5)

Several boundary conditions are also applied within the �ow domain. No slip (zero

velocity) is speci�ed on the inclined wall Sw, and wetted obstacle surface Sp, given by
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(4.1.6). In addition a dynamic (4.1.7) and kinematic (4.1.8) condition are applied on the

free surface Sf , and expressed as,

ui = 0 x ∈ Sw ∪ Sp, (4.1.6)

fi = σijnj = − 4
Bo

κni x ∈ Sf , (4.1.7)

∂h

∂t
= −u1

∂h

∂x1
− u2

∂h

∂x2
+ u3 x ∈ Sf , (4.1.8)

where fi is the boundary traction. The curvature of the free surface is denoted by κ,

σij is the stress tensor, and time is given by t. The curvature and the stress tensor are

expressed by (4.1.9) and (4.1.10):

κ =
1
2
∂ni
∂xi

, (4.1.9)

σij = −pδij +
(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.1.10)

In (4.1.9) and (4.1.10) ni is the components of the outward unit normal to the free surface

Sf . The outward unit normal ni of the free surface can be evaluated as,

n =
1√

1 +
(
∂h
∂x1

)2
+
(
∂h
∂x2

)2

(
− ∂h

∂x1
,− ∂h

∂x2
, 1
)
. (4.1.11)

The form of the curvature κ can also be expanded as,

κ =− 1
2

(
1 +

(
∂h

∂x1

)2

+
(
∂h

∂x2

)2
)− 3

2

×
[
∂2h

∂x2
1

(
1 +

(
∂h

∂x2

)2
)

+
∂2h

∂x2
2

(
1 +

(
∂h

∂x1

)2
)
− 2

∂2h

∂x1∂x2

∂h

∂x1

∂h

∂x2

]
.

(4.1.12)

Film Flow In The Absence Of Obstacles

The governing equations for �lm �ow in the absence of obstacles, is given by

∂u∞i
∂xi

= 0, (4.1.13)

−∂p
∞

∂xi
+
∂G

∂xi
+
∂2u∞i
∂x2

j

= 0, (4.1.14)
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where superscript ∞ on the �ow variables corresponds to the far �eld asymptotic case.

Solutions to the equations (4.1.13) and (4.1.14) can be readily shown to be,

p∞ = −2x3 cotα, (4.1.15)

u∞i = (1− x2
3)δi1. (4.1.16)

The expressions (4.1.15) and (4.1.16) satisfy the following boundary conditions for the

asymptotic �ow:

u∞i = 0 x ∈ Sw, (4.1.17)

f∞i = 0 x ∈ Sπ. (4.1.18)

The asymptotic boundary traction is given by f∞i = σij(p∞, u∞k )nj , and using (4.1.10)

becomes

f∞i = 2x3(cotαni − n3δi1 − n1δi3). (4.1.19)

Expressions for (4.1.15), (4.1.16) and (4.1.19) govern Stokes �ow down an inclined plane

in the absence of obstacles, corresponding to the asymptotic far �eld �ow con�guration

where obstacles are present. This �lm �ow is used as the basis for determining conditions

for a disturbance �ow due to the obstacle.

Disturbance Components For Film Flow Over An Obstacles

Disturbance �ow quantities are denoted by superscript δ, with velocities and pressures

related to the asymptotic and complete �ow variables by:

ui = uδi + u∞i , (4.1.20)

p = pδ + p∞. (4.1.21)

The governing equations for the disturbance regime are obtained by comparing (4.1.2) -

(4.1.3) with (4.1.13) - (4.1.14) and are

∂uδi
∂xi

= 0, (4.1.22)

−∂p
δ

∂xi
+
∂2uδi
∂x2

j

= 0. (4.1.23)
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Far �eld conditions for the disturbance regime require the variables to decay to zero, and

�ow velocity and pressure to return to the values associated with the asymptotic regime,

as seen in (4.1.5). Thus uδi and p
δ are subject to the following conditions in the far �eld:

uδi → 0

pδ → 0

 as x→ ±∞. (4.1.24)

No-slip boundary conditions for the disturbance velocity uδi can also be speci�ed on

the wall Sw and wetted obstacle boundary Sp by comparing (4.1.6) with (4.1.17) and

requires:

uδi = 0 x ∈ Sw, (4.1.25)

uδi = −u∞i x ∈ Sp. (4.1.26)

Finally an expression for the boundary traction associated with the disturbance �ow f δi

can be de�ned on the free surface Sf by comparing (4.1.7) and (4.1.19). The expression

for f δi is

f δi = − 4
Bo

κni − 2x3(cotαni − n3δi1 − n1δi3), (4.1.27)

where κ is the curvature associated with the disturbed free surface.

Boundary Integral Formulation For Flow Over An Obstacle

For the disturbance regime, the governing equations for Stokes �ow (4.1.22) - (4.1.23)

can be expressed exactly as a boundary integral equation (BIE) over the �uid domain

(4.1.28)

cij(x0)uδi (x0) =
1

8π

∫
Sf∪Sp

G∗ij(x,x0)f δi (x)dS(x)

− 1
8π

∫
Sf∪Sp

uδi (x)T ∗ijk(x,x0)nk(x)dS(x),
(4.1.28)

where x is the �eld point within the analysis, and x0 any collocation point. The Green's

functions G∗ij(x,x0), T ∗ijk(x,x0) in (4.1.28) are the Lorentz-Blake Green's function for
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velocity and stress respectively and details of their form are given in the appendix A.

The �ow is solved for disturbance components uδi , f
δ
i and due to f δi → 0 and uδi → 0 as

x → ±∞, it is possible to omit the edges of the �ow domain from the integrations in

(4.1.28). Finally, direct omission of the wall boundary Sw from the integral domains in

(4.1.28) is also justi�ed subject to the conditions,

G∗ij(x,x0) = 0

uδi = 0

x ∈ Sw. (4.1.29)

Thus by solving for disturbance components, the solution domain is considerably re-

duced. Finally within (4.1.28), the coe�cient cij(x0) is the jump parameter and de�ned

by

cij(x0) =


0 x0 outside the domain,

1
2δij x0 on the boundary of the domain,

δij x0 within the domain.

(4.1.30)

For the obstacle domain, enclosed by a section of Sw and the wetted surface Sp, the

Stokes �ow (4.1.13) - (4.1.14) associated with the asymptotic regime u∞i , f
∞
i +Gni can

be satis�ed by the BIE expression,

cij(x0)u∞i (x0) = − 1
8π

∫
Sp

G∗ij(x,x0)(f∞i (x) +Gni)dS(x)

+
1

8π

∫
Sp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x),
(4.1.31)

where the unit normal is de�ned outward of the �uid domain, i.e. inward to the obstacle

domain. Again the wall Sw is omitted by use of the Lorentz-Blake Green's functions

and u∞i = 0 for x ∈ Sw. Thus the disturbance and asymptotic �ow regimes are satis�ed

exactly by the two BIEs (4.1.28) and (4.1.31).

When the collocation point x0 lies outside of the obstacle domain and boundary (i.e.
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x0 /∈ Sp,Ωp ), (4.1.31) and (4.1.30) gives,

1
8π

∫
Sp

G∗ij(x,x0)(f∞i (x) +Gni)dS(x)

=
1

8π

∫
Sp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x).
(4.1.32)

The BIE (4.1.28) associated with the disturbance regime can be modi�ed by taking

collocation on the free surface (x0 ∈ Sf ), and applying (4.1.26), yielding

1
2
uδj(x0) =

1
8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x)

− 1
8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x)

1
8π

∫
Sp

G∗ij(x,x0)f δi (x)dS(x)

+
1

8π

∫
Sp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x).

(4.1.33)

Combining (4.1.32) and (4.1.33) gives a BIE with collocation over the free surface:

1
2
uδj(x0) +

1
8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x)

=
1

8π

∫
Sp

G∗ij(x,x0)f̃i(x)dS(x)

+
1

8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x) x0 ∈ Sf ,

(4.1.34)

where f̃i(x) = fi(x) +Gni.

Collocating the BIE for the asymptotic regime (4.1.31) at the wetted obstacle surface

x0 ∈ Sp yields,

1
2
u∞j (x0) = − 1

8π

∫
Sp

G∗ij(x,x0)f̃∞i (x)dS(x)

+
1

8π

∫
Sp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x),
(4.1.35)
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where f̃∞i (x) = f∞i (x) +Gni. The disturbance BIE (4.1.28) can be collocated over the

wetted obstacle surface x0 ∈ Sp, with the no slip condition (4.1.26) to form,

−1
2
u∞j (x0) =

1
8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x)

− 1
8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x)

+
1

8π

∫
Sp

G∗ij(x,x0)f δi (x)dS(x)

+
1

8π

∫
Sp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x).

(4.1.36)

Combining (4.1.35) and (4.1.36) yields (4.1.37), a BIE for collocation over the wetted

obstacle surface Sp:

1
8π

∫
Sp

G∗ij(x,x0)f̃i(x)dS(x)

= −u∞j (x0)− 1
8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x)

+
1

8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x) x0 ∈ Sp.

(4.1.37)

In summary the steady, gravity driven Stokes �ow down an inclined plane over an obstacle

is governed exactly by solutions satisfying the BIEs (4.1.37) and (4.1.34). The �ow

is subject to a kinematic condition (4.1.8), a dynamic condition (4.1.7), and far �eld

constraints (4.1.5). Flow over a single obstacle are governed by, plane inclination angle

α, the obstacle geometry, and the Bond number Bo.

4.1.1 Small Free Surface De�ections

Pozrikidis and Thoroddsen [29] and Blyth and Pozrikidis [31] simpli�ed �ow over a hemi-

sphere through the assumption of a small free surface de�ection. By assuming the free

surface disturbance remains small, when compared to the undisturbed �lm thickness, and
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the disturbance velocities at the free surface are small when compared to the undisturbed

�lm speed at the same point then

h� 1, uδi � 1, i = 1, 2, 3. (4.1.38)

Assuming asymptotically small disturbances, the unit normal on the free surface is ap-

proximated by

n = (0, 0, 1) +
(
− ∂h

∂x1
,− ∂h

∂x2
, 0
)
, (4.1.39)

where the components in the x1x2-plane are considered small. Thus,

∂ni
∂xi
≈ −∂

2h

∂x2
1

− ∂2h

∂x2
2

≡ −∇2
x1x2

h. (4.1.40)

The disturbance boundary traction (4.1.27) approximates to,

f δi = 2hδi1 +
(

2
Bo
∇2
x1x2

h− 2h cotα
)
δi3, (4.1.41)

at leading order. To the same order of approximation the kinematic condition (4.1.8)

becomes

∂h

∂t
= − ∂h

∂x1
+ uδi δi3. (4.1.42)

Finally the BIEs for �ow over an obstacle,(4.1.34) and (4.1.37) simplify to integrals over

the undisturbed surface Sπ (x3 = 0) and become,

1
2
uδj(x0)+

1
8π

∫
Sπ

uδi (x)T ∗ijk(x,x0)nk(x)dS(x)

=
1

8π

∫
Sp

G∗ij(x,x0)f̃i(x)dS(x)

+
1

8π

∫
Sπ

G∗ij(x,x0)f δi (x)dS(x) x0 ∈ Sπ,

(4.1.43)

and

1
8π

∫
Sp

G∗ij(x,x0)f̃i(x)dS(x)

= −u∞j (x0)− 1
8π

∫
Sπ

G∗ij(x,x0)f δi (x)dS(x)

+
1

8π

∫
Sπ

uδi (x)T ∗ijk(x,x0)nk(x)dS(x) x0 ∈ Sp.

(4.1.44)
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Pozrikidis and Thoroddsen [29] and Blyth and Pozrikidis [31] consider this small de-

�ection simpli�cation in combination with �nite di�erence approximations (FDAs) for

evaluating all derivatives. However, this assumption is not relevant for �nite free surface

de�ections as of interest here, with the small de�ection analysis used only for veri�cation

with the previously published work.

4.1.2 Flow Over Asymptotically Small Obstacles

A further simpli�cation to the boundary integral analysis can be made when the obstacle

is asymptotically small. Asymptotic analysis of the obstacle is conducted by following

Blyth and Pozrikidis [31] which reproduced the earlier work of Pozrikidis and Thoroddsen

[29]. A brief summary of the method is reproduced here, and the reader is referred to

[29, 31] for full details.

The aim of the asymptotic analysis is to produce an expression for the obstacle integral

Sp, in (4.1.43), eliminating the need for solving (4.1.44). This �rst term of the right

hand side of (4.1.43) can be rewritten using the symmetry property (2.3.21) as,

1
8π

∫
Sp

G∗ij(x,x0)f̃i(x)dS(x) =
1

8π

∫
Sp

G∗ji(x0,x)f̃i(x)dS(x). (4.1.45)

We consider a small spherical obstacle, with radius a and in contact with a plane wall

and assume that the obstacle is much smaller than the undisturbed, non-dimensionalized

�lm height, a� 1. Then it is possible to expand the velocity Green's function G∗ji using

a Taylor series with respect to d, where d = x3 − x3wall = x3 + 1 is the vertical distance

from the point x3 on the obstacle to the plane wall, and is illustrated in �gure 4.2. The

Lorentz-Blake Green's function are shown in appendix A (where h0 is equivalent to d

here), with the order of the indices and arguments shown in reverse to (4.1.45). The
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Figure 4.2: Two-dimensional cross section indicating the asymptotic formulation of

the �lm pro�le.

Taylor series is written as,

G∗ji(x0,x) ≈ G∗ji(x0,xp) + d
∂

∂x3

(
G∗ji(x0,x)

)∣∣∣∣
x=xp

+
d2

2
∂2

∂x2
3

(
G∗ji(x0,x)

)∣∣∣∣
x=xp

+ . . . ,

(4.1.46)

where the non-dimensional point xp is de�ned as

xp = (0, 0,−1). (4.1.47)

The case of i = 3 requires separate consideration to i = 1, 2 with the Taylor series shown

to give to leading order,

G∗jm(x0,x) ≈ dMjm(X̃) m = 1, 2, (4.1.48)

G∗j3(x0,x) ≈ d2Mj3(X̃), (4.1.49)

60



Chapter 4: Stokes Flow Over A Single Obstacle

where

X̃ = x0 − xp, (4.1.50)

Mjm(X̃) = 12
X̃mX̃jX̃3

|X̃|5
, m = 1, 2 (4.1.51)

Mj3(X̃) = −6X̃3

(
2X̃j

|X̃|5
+
δj3X̃3

|X̃|5
− 5X̃2

3X̃j

|X̃|7

)
. (4.1.52)

The integral (4.1.45) becomes

1
8π

∫
Sp

G∗ji(x0,x)f̃i(x)dS(x) ≈ 1
8π
Mjm(X̃)

∫
Sp

df̃m(x)dS(x)

+
1

8π
Mj3(X̃)

∫
Sp

d2f̃3(x)dS(x) m = 1, 2.
(4.1.53)

This is analogous to the work in [29] when the di�erence in the de�nition of the co-

ordinate axis is taken into account.

From [29], the following scalings are introduced,∫
Sp

df̃m(x)dS(x) = −8πa3cm
∂u∞x
∂x3

∣∣∣∣
x3=−1

, m = 1, 2 (4.1.54)

∫
Sp

d2f̃3(x)dS(x) = −8πa4c3
∂u∞x
∂x3

∣∣∣∣
x3=−1

, (4.1.55)

where the sign on the right hand side is generated from taking the outward unit normal

instead of inward as speci�ed in [29] resulting in an opposite sign for the boundary

traction f̃i. In (4.1.54) - (4.1.55), the distance d is taken to scale like the radius a, and

the traction f̃i, scales like the shear stress
∂u∞x
∂x3

∣∣∣
x3=−1

. Both of these are independent of

the integration, which as a result yields the surface area of a sphere 4πa2. For equality,

a constant vector 2c3 and 2cm, m = 1, 2 is required and depends on the geometry of the

obstacle. For the case of a spherical obstacle the terms of c are given by the work of

[29], which extracts them from O'Neill [48] and gives them to be,

c1 = −1
6

∞∫
0

A(s)
(

3− 8s coth s+ 7
s2

sinh2 s
− 2

s3

sinh2 s
coth s

)
ds, (4.1.56)

c2 = 0, (4.1.57)

c3 = 0, (4.1.58)
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where values of A(s) are tabulated in [48]. From [29], the constant c1 is given as 1.8.

However, when considering results produced using this asymptotic method, �ow pro�les

appear sensitive to small changes in the parameter c1. The value of c1 = 1.8 in Pozrikidis

and Thoroddsen [29] is likely to be rounded, and as a result the value of c1 has been

recalculated. The calculation involved truncating the domain of integration of (4.1.56)

and used the trapezium rule. Values for A(s) are tabulated in [48] where they were

obtained numerically. It is found here that,

c1 = 1.760677101. (4.1.59)

For an asymptotically small, spherical obstacle with non-dimensional radius a� 1, it is

clear that the right hand side of equation (4.1.55) is small compared to the corresponding

term in (4.1.54). In addition the values for c are de�ned in (4.1.57) - (4.1.59), and

equation (4.1.53) is approximated by,

1
8π

∫
Sp

G∗ji(x0,x)f̃i(x)dS(x) ≈ −Mj1(X̃)a3c1
∂u∞x
∂x3

∣∣∣∣
x3=−1

, (4.1.60)

with the derivative on the right hand side of (4.1.60) evaluated as,

∂u∞x
∂x3

∣∣∣∣
x3=−1

= 2, (4.1.61)

using (4.1.16). Therefore substituting back into the original BIE for collocation over the

free surface (4.1.43) yields,

1
2
uδj(x0) =− 2a3c1Mj1(x0 − xp)

+
1

8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x)

− 1
8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x) x0 ∈ Sf .

(4.1.62)

4.2 Numerical Schemes

This section considers the numerical schemes implemented to obtain solutions to the �ow

problem outlined in §4.1. The formulation of the �lm �ow takes three possible forms:
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(i) A �full� �lm pro�le analysis.

(ii) A small free surface de�ection approach.

(iii) An asymptotically small obstacle analysis using the small free surface de�ection

approach.

For case (i) the �ow problem is to be evaluated numerically for uδi on Sf and f̃i on

Sp. The necessary equations to be solved involve the kinematic and dynamic conditions

(4.1.8) and (4.1.7) on the free surface Sf , and the two boundary integral equations (BIEs)

(4.1.37) and (4.1.34) for �ow over a single obstacle. In addition the the far �eld boundary

conditions (4.1.5) are also required.

For case (ii) when the free surface de�ection is limited, a �nite di�erence approximation

(FDA) is used for evaluation of the free surface quantities [29, 31]. The numerical scheme

can be formulated into a completely closed system, to be solved once for the free surface

displacement h, disturbance velocity components uδ1, u
δ
2 and the obstacle tractions f̃i.

This is similar to Blyth and Pozrikidis [31], where the formulation generates two matrix

problems, one for solution of the free surface variables uδ1, u
δ
2 and h, the other for obstacle

tractions f̃i. The �nal solution can then be found by iterating between them.

When the free surface de�ection is limited, results analyzing the e�ects of an asymp-

totically small obstacle on the �lm pro�le can be found. In this case (iii) a limited free

surface de�ection analysis is implemented throughout, with the system of BIEs (4.1.43)

and (4.1.44) reduced by approximating the integral over the obstacle within the free

surface BIE (4.1.43) by an analytical expression (see (4.1.62)).

Unlike the linearized free surface �lm �ow problem, which can be solved once for all

unknowns, case (i) requires solution in a transient manner. A Hermitian radial basis

function (RBF) is introduced and evaluated for the surface quantities, with more details

given later. It is found that it is more e�cient to solve the coupled system of BIEs

iteratively, although they could be solved in one calculation for each time-step. The
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iterative sequence used was:

(i) Guess an initial �lm pro�le and disturbance velocities for the free surface.

(ii) Calculate the disturbance boundary traction using the dynamic condition (4.1.7).

(iii) Use the obstacle BIE (4.1.37) to calculate the boundary tractions on the obstacle,

f̃i.

(iv) Use the free surface BIE (4.1.34) to calculate a new set of disturbance velocities on

the �lm surface.

(v) Via the kinematic condition (4.1.8) and using a forward �nite di�erence, the free

surface position is iterated in time.

(vi) Repeat from step 2 using the new �lm pro�le and disturbance velocity pro�le for

the free surface, until the surface has reached a steady pro�le.

The BIEs were solved using a boundary element method (BEM) on the discretized sur-

faces and the implementation of this method is discussed below. In addition through the

remainder of this section, the use of FDAs and a Hermitian RBF for evaluating the free

surface curvature and outward unit normal are considered.

4.2.1 Surface Discretizations And The Boundary Element Method

For numerical solutions, the obstacle boundary and free surface require discretizing and

in this chapter, hemispherical and spherical objects were considered. The hemispherical

obstacle mesh is generated by a method of successive subdivision and consists of linear

triangular elements. Spherical obstacles were meshed by re�ective symmetry of the

hemispherical discretization. Figure 4.3 indicates typical meshes for the hemispherical

obstacles considered throughout this work.
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Figure 4.3: Typical mesh for a hemispherical obstacle of radius a = 0.9.

For the simplest case of small �lm de�ection, the free surface is discretized using a set of

uniform, linear rectangular elements. However, when the free surface requires discretizing

fully, rectangular elements are insu�cient for the mesh and linear triangular elements

are used. Triangular elements were formed by �rst subdividing the free surface domain

into a set of rectangular elements, and then for each element connecting the diagonal

vertices to form four sub-triangular linear elements. Free surface elements are referred to

as m× n, where for a rectangular mesh m is the number of elements in the x1 direction

and n the number of elements in the x2 direction. For a triangular mesh of m× n, the

free surface is �rst divided into a m/2× n/2 rectangular mesh and further subdivisions

to create the triangular elements are carried out as described above. A schematic of

typical free surface discretizations using rectangular and triangular elements are shown

in �gure 4.4.

The BEM was used to solve each of the BIEs within the problem. The velocity and

traction variables were assumed constant over each element, and values assigned at the
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Figure 4.4: Typical mesh for the free surface using (a) rectangular elements, and (b)

triangular elements.

midpoint of the elements. To avoid di�culty in the re-meshing of the surface with

every time-step the velocities and tractions were found at the element midpoints and

these midpoints are repositioned in the x3 direction at every time step. Movement

of the element nodal points was achieved by �tting a Hermitian RBF through the new

midpoints and �nding the corresponding new nodal locations for each element. It is noted

that the data point is displaced from the new linear elements midpoint and a small error

occurs within the BEM approximation. Globally the accurate midpoint heights are used

when evaluating the kinematic and dynamic boundary conditions, but the approximated

midpoint heights (from the linear element mesh) are used for collocation within the

BEM.

4.2.2 Integration Techniques And Near Point Singularities

Standard numerical integration regimes for the stress and velocity Green's functions over

the linear elements were conducted. A 4-point Gaussian quadrature scheme was used for

the rectangular elements and 3-point for the triangular elements. The velocity Green's
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function on singular elements was integrated using the polar integration rule. For larger

obstacles that approach the free surface, the BIEs eventually fail numerically due to

near-point singularities. This problem is common when modelling thin structures and

gaps using conventional BEMs. As outlined by Krishnasamy et al. [49], two di�culties

arise from the standard BIEs when considering thin bodies. These are,

(i) As the gap between two surfaces reduces, the BIEs tend to form an ill condition

coe�cient matrix.

(ii) The integrals become nearly singular and di�cult to evaluate accurately using

standard numerical integration schemes.

Krishnasamy et al. [49] notes that achieving a suitable integration technique to solve the

problem of nearly singular integrals allows limited success with thin shapes. For very

thin shapes, the ill conditioning eventually becomes too severe for the conventional BIE

to be applicable in solving the problem. However for the �lm �ows considered in this

paper, the severity of reduced thickness necessary to cause ill-conditioning e�ects are

physically unrealistic.

Several techniques are reported in the literature to deal with near-singular integration.

They include element subdivision Lachat and Watson [50], adaptive Gaussian integration

Hayami [51], variable transformation techniques and semi-analytical integration based

on series expansions and removal of singularities, Mi and Aliabadi [52], besides others.

In this work, the e�ects of ill conditioning are not considered and improvements in the

numerical integration scheme follow a method similar to that outlined in Cutanda et al.

[53], and consists of a combination of the adaptive Gaussian integration algorithm and

the element subdivision approach. The approach of Cutanda et al. [53] to deal with

near-singular integrals was chosen due to its simplicity of formulation, although it is

known that some other approaches, such as variable transformation and semi-analytical

integration, are numerically more e�cient.
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The distance, d, between the singular point and the linear triangular element of inte-

gration was �rst evaluated. Standard integration was conducted via a 3-point triangular

Gaussian quadrature method. Integration re�nement was used depending on the dis-

tance d and the successive threshold distances as shown in table 4.2. If the distance was

below a certain threshold, d1, then 6-point triangular Gaussian quadrature was used. If

the distance was less than d2, 9-point Gaussian integration was used and if the distance

was less than d3, 13-point Gaussian integration was used.

However, increasing the order of integration gives only limited improvement on the thin-

ness of gap that can be modelled [53]. Using the 13-point integration technique, a

method of subdivision is required. The method chosen followed a similar manner to the

geometrical successive sub-division used in discretizing the hemispherical and spherical

obstacles. If the distance between the integration element and singularity was less than

d4, then the element was split into four theoretical sub elements. The distance between

each sub element and the singularity was then tested and if less than a distance d5, then

the sub element is split into four theoretical sub-sub triangular elements. This method is

repeated for up to �ve consecutive sub divisions and if the whole element was discretized

to the maximum it would be sub-divided into 45 integration regions. This has the added

bene�t of only increasing the numerical computation in the required regions.

This approach requires �nding suitable values for the distances di where i = 1, . . . , 8 and

the values used are shown in table 4.2 after an extensive convergence analysis has been

conducted. The computational time associated with calculating the distance between

element and singularity and subsequent adjustments was not excessive on the compu-

tational run-time of the simulation and is signi�cantly advantageous over using a high

order integration technique applied for all elements.
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Bounding Point d1 d2 d3 d4 d5 d6 d7 d8

Bounding Value 0.6 0.45 0.3 0.2 0.15 0.1 0.0316 0.01

Table 4.2: Boundary values used to determine which numerical integration approach

to implement.

4.2.3 Finite Di�erence Approximations

The FDAs are used solely for the small free surface disturbance to describe the surface

derivatives needed for calculation of the unit normal and curvature. The FDAs utilized

are identical to those implemented in Blyth and Pozrikidis [31]. When calculating the

free surface curvature, (4.1.40) will be evaluated using a central di�erence about the

midpoint values and is given by

∇2
x1x2

(xi1, x
j
2) =

h(xi+1
1 , xj2)− 2h(xi1, x

j
2) + h(xi−1

1 , xj2)
(∆x1)2

+
h(xi1, x

j+1
2 )− 2h(xi1, x

j
2) + h(xi1, x

j−1
2 )

(∆x2)2
,

(4.2.1)

where superscripts i,j are associated with the x1,x2 distribution of the element midpoints.

The spacial derivative associated with (4.1.42) should be evaluated using a backward

di�erence to avoid spurious oscillations [31] and is

∂h(xi1, x
j
2)

∂x1
=
h(xi1, x

j
2)− h(xi−1

1 , xj2)
(∆x1)

. (4.2.2)

Special care is required for any midpoint height used outside the discretized domain.

Two options are available, implementing the far �eld condition for h from (4.1.5) will

take a value of zero for any imaginary node outside the domain, whereas implementing

conditions for ∂h
∂x1

and ∂h
∂x2

from (4.1.5), takes any node outside the domain to have the

same height as its image node within the domain.
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4.2.4 Finite Free Surface De�ections And Radial Basis Functions

For �nite free surface de�ections, accurate evaluation of the unit normal and curvature

as de�ned in equations (4.1.11) and (4.1.12) using FDAs is di�cult. Thus a RBF can

be used to interpolate a set of data points contained within a domain, and by use of a

Hermite RBF the boundary conditions also applied. At any point on the free surface, the

height is given by h(x1, x2), and takes values hi at data point i for a total of N points.

The surface can then be interpolated using the RBF ψ(‖x − ξj‖), where j = 1, . . . , N

and ξj are the x1, x2 co-ordinates of the data points hj .

A choice of thin plate splines was used for the RBF. The addition of a polynomial is

required to guarantee invertibility when using a thin plate spline since it is known that the

generalized thin plate spline of power (2m−2) is a conditionally positive de�nite function

of order m. Thus it requires the addition of a polynomial term of order m− 1, together

with a homogeneous constraint condition, in order to obtain an invertible interpolation

matrix. In our case, we are using m = 3 requiring a second order polynomial and the

thin plate spline RBF takes the form

ψ = r2m−2 log r, (4.2.3)

where

r = ‖x− ξ‖. (4.2.4)

A value of m = 3 avoids singularities at r = 0 for up to and including the third order

derivatives of ψ and as stated in La Rocca et al. [41] minimizes the interpolation matrix

becoming more ill-conditioned.

The values of ∂h
∂x1

and ∂h
∂x2

can be constrained at a selected set of n data points (such as

the far �eld locations where the gradients are set to zero), whilst still de�ning h on the

original N data points. A solution for h can be obtained using the di�erential operators

∂
∂x1

and ∂
∂x2

but acting on the thin plate splines second argument ξ, i.e. ∂
∂ξ1

and ∂
∂ξ2

. A
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representation for the surface displacement becomes,

h(xi1, x
i
2) =

N∑
j=1

λjψ +
n∑
j=1

λN+j
∂ψ

∂ξ1
+

n∑
j=1

λN+n+j
∂ψ

∂ξ2
+ P2(x), (4.2.5)

where ψ = ψ(‖xi − ξj‖) and

P2(xi) = λN+n+n+1(xi1)2+λN+n+n+2x
i
1x
i
2 + λN+n+n+3(xi2)2+

+ λN+n+n+4x
i
1 + λN+n+n+5x

i
2 + λN+n+n+6,

(4.2.6)

is a polynomial which also satis�es a homogeneous constraint condition.

The �rst order derivatives of h with respect to x1 and x2 are required for constraining

the far �eld conditions and given by

∂h

∂x1
=

N∑
j=1

λj
∂ψ

∂x1
+

n∑
j=1

λN+j
∂2ψ

∂ξ1∂x1

+
n∑
j=1

λN+n+j
∂2ψ

∂ξ2∂x1
+
∂P2(x)
∂x1

,

(4.2.7)

∂h

∂x2
=

N∑
j=1

λj
∂ψ

∂x2
+

n∑
j=1

λN+j
∂2ψ

∂ξ1∂x2

+
n∑
j=1

λN+n+j
∂2ψ

∂ξ2∂x2
+
∂P2(x)
∂x2

.

(4.2.8)

Expressions (4.2.5) - (4.2.8) can be used to formulate a matrix representation h̃i = Aijλj

given by,

Aij =



ψ ∂ψ
∂ξ1

∂ψ
∂ξ2

P2

∂ψ
∂x1

∂2ψ
∂ξ1∂x1

∂2ψ
∂ξ2∂x1

∂P2
∂x1

∂ψ
∂x2

∂2ψ
∂ξ1∂x2

∂2ψ
∂ξ2∂x2

∂P2
∂x2

(P2)T (∂P2
∂x1

)T (∂P2
∂x2

)T 0


(4.2.9)

where h̃i is given by,

h̃i =

(
h ∂h

∂x1

∂h
∂x2

0

)T
. (4.2.10)
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This system must be solved to �nd the vector λj .

Once the system has been solved for λj , the RBF can be evaluated for the outward

unit normal and mean curvature of the free surface. Evaluation of the unit normal will

require derivatives ∂h
∂x1

and ∂h
∂x2

, with the mean curvature needing in addition, ∂
2h
∂x2

1
, ∂

2h
∂x2

2
,

and ∂2h
∂x1∂x2

on the surface. The evaluation of these derivatives simply involve the �nding

of speci�c derivatives of ψ. The values of h, ∂h
∂x1

and ∂h
∂x2

are determined by (4.2.5) -

(4.2.8). The corresponding second order derivatives are given by

∂2h

∂x2
1

=
N∑
j=1

λj
∂2ψ

∂x2
1

+
n∑
j=1

λN+j
∂3ψ

∂ξ1∂x2
1

+
n∑
j=1

λN+n+j
∂3ψ

∂ξ2∂x2
1

+
∂2P2(x)
∂x2

1

,

(4.2.11)

∂2h

∂x2
2

=
N∑
j=1

λj
∂2ψ

∂x2
1

+
n∑
j=1

λN+j
∂3ψ

∂ξ1∂x2
2

+
n∑
j=1

λN+n+j
∂3ψ

∂ξ2∂x2
2

+
∂2P2(x)
∂x2

2

,

(4.2.12)

∂2h

∂x1∂x2
=

N∑
j=1

λj
∂2ψ

∂x1∂x2
+

n∑
j=1

λN+j
∂3ψ

∂ξ1∂x1∂x2

+
n∑
j=1

λN+n+j
∂3ψ

∂ξ2∂x1∂x2
+
∂2P2(x)
∂x1∂x2

.

(4.2.13)

When implementing the thin plate spline RBF (4.2.3) for the interpolation of the free

surface, the following derivatives of ψ are required

∂ψ

∂ξ1
= −r2(2 log (r2) + 1)(x1 − ξ1), (4.2.14)

∂ψ

∂ξ2
= −r2(2 log (r2) + 1)(x2 − ξ2), (4.2.15)

∂ψ

∂x1
= r2(2 log (r2) + 1)(x1 − ξ1), (4.2.16)

∂ψ

∂x2
= r2(2 log (r2) + 1)(x2 − ξ2), (4.2.17)

∂2ψ

∂ξ1∂x1
= −(x1 − ξ1)2(4 log (r2) + 6)− r2(2 log (r2) + 1), (4.2.18)
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∂2ψ

∂ξ2∂x1
= −(x1 − ξ1)(x2 − ξ2)(4 log (r2) + 6), (4.2.19)

∂2ψ

∂ξ1∂x2
= −(x1 − ξ1)(x2 − ξ2)(4 log (r2) + 6), (4.2.20)

∂2ψ

∂ξ2∂x2
= −(x2 − ξ2)2(4 log (r2) + 6)− r2(2 log (r2) + 1), (4.2.21)

∂2ψ

∂x2
1

= r2(2 log (r2) + 1) + (x1 − ξ1)2(4 log (r2) + 6), (4.2.22)

∂2ψ

∂x2
2

= r2(2 log (r2) + 1) + (x2 − ξ2)2(4 log (r2) + 6), (4.2.23)

∂2ψ

∂x1∂x2
= (x2 − ξ2)(x1 − ξ1)(4 log (r2) + 6), (4.2.24)

∂3ψ

∂ξ1∂x2
1

= −3(x1 − ξ1)(4 log (r2) + 6)− 8
(x1 − ξ1)3

r2
, (4.2.25)

∂3ψ

∂ξ2∂x2
1

= −(x2 − ξ2)
(

4 log (r2) + 6 + 8
(x1 − ξ1)2

r2

)
, (4.2.26)

∂3ψ

∂ξ1∂x2
2

= −(x1 − ξ1)
(

4 log (r2) + 6 + 8
(x2 − ξ2)2

r2

)
, (4.2.27)

∂3ψ

∂ξ2∂x2
2

= −3(x2 − ξ2)(4 log (r2) + 6)− 8
(x2 − ξ2)3

r2
, (4.2.28)

∂3ψ

∂ξ1∂x1∂x2
= −(x2 − ξ2)

(
4 log (r2) + 6 + 8

(x1 − ξ1)2

r2

)
, (4.2.29)

∂3ψ

∂ξ2∂x1∂x2
= −(x1 − ξ1)

(
4 log (r2) + 6 + 8

(x2 − ξ2)2

r2

)
. (4.2.30)

4.3 Solution Pro�les For Flow Over An Obstacle

Simulations of �ow computations over single obstacles and corresponding numerical de-

tails are described in this section, each identifying di�erent aspects of the numerical

method.

Results are initially produced illustrating the e�ects of implementing a Hermitian radial

basis function (RBF) for the free surface compared with the �nite di�erence approxima-

tions (FDAs) used in [29, 31]. Blyth and Pozrikidis [31] produced �gures for an inverse
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Bond number B, related to Bo by

Bo =
sin1/3 α

B
, (4.3.1)

and to allow comparison of results, appropriate solutions are given in terms of the inverse

Bond number B. Results are also reproduced from Blyth and Pozrikidis [31], using a

global RBF with the limitation of a small amplitude free surface de�ection and the

asymptotic obstacle analysis where appropriate. Consistency of results is found between

the full obstacle and asymptotic analysis.

The assumption of small free surface de�ection is then removed and results for the

�nite de�ection approach presented for signi�cant �lm deformations generated by large

hemispherical obstacles. An example of particular interest is where the �uid �lm can

fully contain an obstacle that is taller than the undisturbed �lm height.

4.3.1 Small Free Surface De�ections

This section considers implementation of a global Hermitian RBF for �nding the unit

normal and curvature of the free surface. Comparisons are made with the FDAs used

in the published work by Pozrikidis and Thoroddsen [29] and Blyth and Pozrikidis [31].

Flow down an inclined plane over a hemispherical obstacle is considered using the small

free surface de�ection restriction. The RBF analysis is to be solved transiently, to con-

verge to a steady state pro�le. For illustration, calculation is taken for �ow over hemi-

spherical obstacles of radius a = 0.2, a Bond number of Bo = 0.89, (B = 1) and the

plane is inclined at α = 45o. A suitable choice for the size of the free surface domain

is required such that the far �eld conditions (4.1.5) are accurately represented on the

edges of the domain. The choice of free surface domain was made by initially solving

the problem for large far �eld distances, and progressively reducing these truncation

points. The optimum free surface domain was one that minimized the area that required

discretization, whilst maintaining accurate representation of the free surface pro�le. For

this �ow problem, it was found that the free surface should be solved within the domain
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−6 ≤ x1 ≤ 8, −6 ≤ x2 ≤ 6. Similar analysis are conducted to �nd suitable far �eld

truncation values when other �ow parameters are chosen. The hemispherical obstacle

was discretized using 256 linear triangular elements in all cases, with the level of free

surface discretization varied between results. The far �eld boundary condition of zero

gradients was imposed throughout. For consistency with the FDAs, the far �eld condi-

tion was applied at the element midpoints within the RBF of any element containing a

boundary node. This implementation will be improved for later results. Solutions are

interpolated to the centre line using a cubic spline for the FDA implementation and the

global RBF interpolation when implemented for the normal and curvature. A 4-point

Gaussian quadrature is used for the numerical integration over rectangular elements,

with a 3-point scheme implemented over triangular elements.

Figure 4.5a illustrates the centre line solutions for a free surface mesh resolution of 56×48.

The solutions are produced using both a RBF and FDA analysis for the free surface

normal and curvature. The main di�erence between the RBF and FDA solution is the

di�erence in peak height and trough depth. In addition, there is a marginal shift of the

centre line pro�le downstream when using the RBF interpolation. Figure 4.5b illustrates

the di�erence in surface position along the centre line for two free surface rectangular

mesh resolutions, 56 × 48 and 28 × 24. The solutions for the two RBF meshes seem to

compare more favourably than the corresponding solutions found when implementing

FDAs. The RBF interpolation predicts the surface almost identically (especially in the

far �eld), regardless of which resolution of mesh is used for the BIEs. The FDA solution

seems to exhibit a marginal shift downstream with increase in mesh resolution, with the

peak slightly higher.

Corresponding to Figure 4.5, a full three-dimensional pro�le for the RBF solution of

�ow over a hemisphere using the more re�ned mesh of 56 × 48 elements is shown in

Figure 4.6. As expected the �ow pro�le is symmetric, producing a large upstream peak,

which collapses into a shallow trough downstream of the obstacle. The peak decays in a

�horseshoe� shape fashion.
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Figure 4.5: Centre line solutions produced by the small de�ection assumption for the

free surface comparing (a) results for the RBF interpolation compared

with a FDA approximation for a 56× 48 mesh and (b) the relative errors

between using a 56× 48 and a 28× 24 for the free surface mesh.
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Figure 4.6: The full three-dimensional �ow pro�le for �lm �ow over a hemisphere of

radius a = 0.2. The �ow has a Bond number of Bo = 0.89, (B = 1) and

the plane is inclined at α = 45o.

Results corresponding to Blyth and Pozrikidis [31] (their Fig 10 and Fig 8) are shown in

the centre line solutions (x2 = 0) of �gures 4.7 - 4.9 utilizing a free surface discretized

by 49 × 49 elements for the domain −8 ≤ x1 ≤ 10 and −9 ≤ x2 ≤ 9. The free

surface pro�les are smoothed by the RBF interpolation implemented for the free surface

curvature and unit normal. Solution variations caused by the obstacle mesh were found

to be su�ciently eliminated after four successive subdivisions, resulting in 256 elements

for the hemispherical obstacle and 512 for the spherical obstacle. This is identical to

the number of quadratic elements used by Blyth and Pozrikidis [31]. Again, the far �eld

condition of zero gradients was imposed throughout at the element midpoints within the

RBF.
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Figure 4.7: Centre line solutions for a selection of inverse Bond numbers, using the

assumption of small free surface de�ection. The plane is inclined at 45o

and the hemispherical obstacle has radius a = 0.2.

Figure 4.7 allows comparison with Blyth and Pozrikidis [31] (their Fig 10a) for �ow down

an inclined plane at 45o over a hemisphere of radius a = 0.2. As the inverse Bond number

is increased, surface tension forces are increased in comparison to the gravitational forces

and acts to �atten any surface deformation. With this increase in the value of B the peak

of the �ow appears to migrate slightly upstream. A comparison to the results of Blyth

and Pozrikidis [31] (their Fig 10a) shows that, although the qualitative behaviour is the

same, current results exhibit a larger peak. Taking B = 1, the percentage di�erence of

peak heights between the FDA and RBF models is approximately 24% as estimated from

the FDA solution presented in [31]. It is thought that this di�erence in the �lm pro�le

is caused by the di�ering far �eld conditions used within the FDA of [31] and the RBF

analysis presented in this Thesis. Within [31] the zero de�ection far �eld condition is

implemented, which can cause irregularities of the �lm pro�le at the far �eld truncation
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Figure 4.8: Centre line solutions for a selection of wall inclinations, using the assump-

tion of small free surface de�ection. The �ow has an inverse Bond number

B = 1 and the hemispherical obstacle has radius a = 0.2.

point if the condition is not su�ciently satis�ed. This problem is eliminated by using

the zero derivative condition within the RBF analysis, which o�ers a more consistent

approximation in the far �eld. Implementing the zero derivative far �eld condition within

both the FDA and RBF method, yields more consistent results as can be seen in �gure

4.5a.

Figure 4.8 illustrates solutions for a selection of inclination angles for a �ow with an

inverse Bond number B = 1 and hemispherical obstacle of radius a = 0.2. Increasing the

inclination angle has the e�ect of increasing the peak size and decreasing the trough size

behind the obstacle. Although the peak location is relatively una�ected by the inclination

angles, the downstream trough is seen to migrate upstream as the angle is reduced. This

is in agreement with Blyth and Pozrikidis [31] (their Fig10b) as a direct comparison with

this work. Again it is seen that results in �gure 4.8 using the RBF interpolation exhibit
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Figure 4.9: Centre line solutions for a selection of hemisphere radii, using the as-

sumption of small free surface de�ection. The �ow has an inverse Bond

number B = 1 and is along an inclined plane at 45o.

a larger peak then those in [31]. The percentage di�erence of peak heights for α = 90o

between the RBF and FDA models is approximately 18%, obtained by estimation of the

FDA �lm pro�le from [31]. As for �gure 4.7, these di�erences are likely to be caused

by the di�erent far �eld conditions implemented in [31] and this Thesis. In particular,

where the zero de�ection approximation is used [31], possible irregularities in the �lm

pro�le can occur in the far �eld. These irregularities are not seen when using the zero

derivative far �eld constraint as used within the RBF interpolation.

Figure 4.9 illustrates solutions for small to large obstacle sizes for a �ow with an inverse

Bond number B = 1 on an inclined plane at an angle of 45o. Here, as expected, a larger

obstacle will generate a larger deformation. Again results are in direct comparison with

the plot by Blyth and Pozrikidis [31] (their Fig 8). The peaks of the RBF analysis appear

larger than those using FDAs, and the percentage di�erence of peak height between the
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RBF and FDA results is approximately 19% for a = 0.6, as estimated from the FDA

solution in [31]. As discussed previously, these di�erences are likely to be caused by the

di�erent far �eld conditions implemented, and speci�cally irregularities in the �lm pro�le

caused by the zero de�ection condition implemented in [31]. For �ow over an obstacle of

radius a = 0.6, the RBF analysis shown in �gure 4.9 has a smooth continuation in the

far �eld, unlike that displayed at the downstream truncation point for the FDA analysis

of [31]. This arises due to use of a zero gradient far �eld condition compared to the zero

de�ection far �eld implemented in [31].

To quantify the di�erence between the FDA and global RBF analysis, �gure 4.10 shows

the centre line values for ∂h
∂x1

and curvature by both the FDA and global RBF evaluations

for a 56 × 48 mesh. The slight upstream shift of the FDA free surface relative to the

RBF pro�le is caused by the use of a backward di�erence FDA, utilized by the ∂h
∂x1

term

present in the kinematic condition. Values of ∂h
∂x1

along the centre line of the free surface

are shown in �gure 4.10a. Figure 4.10b shows the comparison in curvature between

the FDA and global RBF interpolation. Due to the higher peaks and lower troughs of

the RBF interpolation, these regions are more compacted and thus require a more rapid

change of direction of the free surface for a given horizontal displacement as illustrated by

the higher magnitudes of curvature at these locations for the RBF interpolation. These

di�erences yield the larger peak-height-to-trough-depth for �ow pro�les generated using

the RBF interpolation when compared to a FDA analysis. These trends have been seen

in �gure 4.5a, and through the comparisons of �gures 4.7 - 4.9 with results in Blyth and

Pozrikidis [31].

Comparison can be made with results obtained from numerically and asymptotically

modelling a spherical obstacle. The work in Blyth and Pozrikidis [31] found di�culties

in comparing free surface pro�les as they were unable to obtain results for spherical

obstacles with radius less than a = 0.05. The case shown in Blyth and Pozrikidis [31]

(their Fig 9a) has been calculated and is shown in Figure 4.11. The free surface was

discretized identically to Blyth and Pozrikidis [31] using a mesh of 47×47 square elements
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Figure 4.10: Centre line solutions comparing (a) ∂h
∂x1

and (b) the curvature κ, for the

�ow pro�les with a 56 × 48 mesh as shown in �gure 4.5. Both cases

utilize the small free surface de�ection assumption.
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for the asymptotic results and 49× 49 square elements for the complete analysis over a

truncated domain of −8 ≤ x1 ≤ 10, −9 ≤ x2 ≤ 9. Again the midpoint values of surface

height are interpolated using the RBF implemented for the free surface curvature and

unit normal to produce a smooth curve. The zero gradient far �eld condition was used

throughout.

The �ow is solved for a plane inclination angle of 45o with inverse Bond number B = 1.

Figure 4.11 compares centre line results for a radius of a = 0.05. As in Blyth and

Pozrikidis [31] the asymptotic solution is found to over-predict the maximum displace-

ment compared to the solution obtained by numerical analysis of the sphere. However

the larger peak heights found from the current approach provides a closer �t between

the asymptotic and numerical results. The centre lines of the asymptotic solutions us-

ing a RBF interpolation still over-predict the published results in Blyth and Pozrikidis

[31] (their Fig 9a) utilizing FDAs, although the di�erences appear smaller than those

for numerical results obtained. It is also noted that no limitations on the size of a are

present for our numerical model. Figure 4.12 illustrates centre line solution for a = 0.001

with the asymptotic and numerical solutions giving near identical results. A small 1.5%

di�erence in peak heights along the centre line is found, indicating consistency between

the two models.

4.3.2 Large Free Surface De�ections

Results generated by removing the small amplitude free surface de�ection approximation

from Blyth and Pozrikidis [31] are produced in this section. A global RBF scheme is used

for calculation of the free surface parameters, and implements the zero derivative far �eld

conditions applied at the element nodes on the boundary of the domain. When using a

large free surface de�ection analysis, the free surface is meshed using triangular elements

in preference to the rectangular elements used for the small free surface de�ections. Mesh

re�nements are considered for a domain of −6 ≤ x1 ≤ 8 and −6 ≤ x2 ≤ 6 discretized
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Figure 4.11: Centre line surface pro�les using the assumption of small free surface

de�ection for �ow over a sphere of radius a = 0.05 using an asymptotic

and numerical analysis for the sphere.

by both 28 × 24 and 56 × 48 elements. A small hemispherical obstacle of radius 0.2

is considered and the �ow is down a plane inclined at α = 45o with an inverse Bond

number B = 1. Centre line solutions indicating the pro�le for the 56× 48 mesh, and the

error between this and the coarser mesh are shown in �gure 4.13.

The validity of the small free surface de�ection assumption is analyzed by direct com-

parisons of results for large and small de�ections, caused by large and small obstacles

respectively. Again, a domain of −6 ≤ x1 ≤ 8 and −6 ≤ x2 ≤ 6 is considered for the

free surface, discretized by 28× 24 elements as found su�cient above. The small hemi-

spherical obstacle has a radius of 0.2 and the large hemisphere a radius of 0.9. Both are

discretized by successive subdivision into 256 geometrically linear elements. The �ow is

down a plane inclined at α = 45o with an inverse Bond number B = 1. For direct com-

parison with earlier results, the near point singularity analysis is omitted, with numerical
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Figure 4.12: Centre line surface pro�les using the assumption of small free surface

de�ection for �ow over a sphere of radius a = 0.001 using an asymptotic

and numerical analysis for the sphere. Both methods show near identical

solutions.

integrations conducted via the 3-point Gaussian quadrature scheme for triangles.

Figure 4.14 shows the centre line solutions (x2 = 0) for a small (a = 0.2) hemisphere.

Results using the small de�ection assumption are almost identical when compared to

the complete analysis and as such it is a valid approximation for the �ow pro�les caused

by small obstacles. The slight di�erences in solutions are found to completely disappear

when the mesh resolutions are increased to 56× 48.

Figure 4.15 illustrates the centre line solutions for a hemisphere of radius 0.9. The

resulting free surface de�ection is signi�cant relative to the undisturbed �lm thickness

and as such the limitation of a small free surface de�ection is not appropriate, with

noticeable di�erence between the two solutions produced. The approximated de�ection
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Figure 4.13: A centre line solution for �ow over a hemispherical obstacle of radius

a = 0.2, B = 1 and α = 45o, indicating the e�ects of mesh resolution on

the �lm disturbance.

is shown to lag the full solution with both the peak height and trough depth under-

estimated. Again, when the mesh was re�ned to 56 × 48 elements, the general pro�les

shown were reproduced. The small de�ection model produced no noticeable change

in pro�le, whereas the full model introduced a minor (3%) reduction in peak height

along the centre line, although the rest of the pro�le was identical. In the interests of

computational time, the coarser mesh will be used throughout in the knowledge that the

solution is su�ciently accurate.

Figure 4.16 shows the full free surface for �ow over a hemisphere of radius a = 0.9,

inverse Bond number B = 1 and plane inclination angle 45o. The contours of the free

surface deformation are also shown. This �gure illustrates how a relatively large peak

directly before the obstacle decays in a �horseshoe� shape with a shallow trough decaying

slowly behind the obstacle.
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Figure 4.14: Comparison of centre line solutions for �ow over a hemispherical obstacle

with and without the small free surface de�ection assumption. Flow

parameters are a = 0.2, B = 1 and α = 45o.

Figure 4.17 illustrates the streamlines for �ow over a hemisphere attached to an inclined

plane at 45o. The hemisphere has a radius of a = 0.9 and the �ow has an inverse Bond

number of B = 1. The two innermost streamlines move both outward, as well as over

the hemisphere and streamline de�ection reduces considerably further from the obstacle.

It is noted that solutions show symmetry in the plane x2 = 0.

Following Blyth and Pozrikidis [31], comparisons of the centre line solutions for a pa-

rameter analysis of the inverse Bond number and plane inclination angle is conducted.

The obstacle is a hemisphere of radius a = 0.9 and discretized by 256 elements. A �ow

domain of −8 ≤ x1 ≤ 10 and −8 ≤ x2 ≤ 8 is considered with free surface meshes

consisting of element distributions of 36 × 32. Again integration omits the near point

singularity analysis and a 3-point Gaussian quadrature scheme is used.
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Figure 4.15: Comparison of centre line solutions for �ow over a hemispherical obstacle

with and without the small free surface de�ection assumption. Flow

parameters are a = 0.9, B = 1 and α = 45o.

Figure 4.18a indicates solutions for a range of inverse Bond numbers B and is comparable

to the small de�ection results of �gure 4.7. Flow is down a 45o plane and as expected

increasing the inverse Bond number results in a �attening and smoothing of the inter-

face. The peak is also seen to migrate slightly upstream. Within �gure 4.18a, the far

�eld condition appears not to be satis�ed and this is a direct consequence of the size of

the truncated domain used for calculation and the extended distances required for high

surface tension �ows to return fully to the undisturbed pro�le. However, the implemen-

tation of the zero derivative boundary condition helps retain consistent results without

signi�cant de�ections caused by forcing an unrealistic far �eld condition. Figure 4.18b

indicates the correlation between the maximum and minimum �lm height and inverse

Bond number B corresponding to the results of �gure 4.18a. Clearly the magnitude of

the de�ection from zero is reduced in both cases as B is increased, appearing to tend

towards constant values for the maximum and minimum de�ection. Peak height is af-
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Figure 4.16: Three-dimensional solution pro�le for �ow over a large hemisphere of

radius a = 0.9. The plane is inclined at 45o, and the inverse Bond

number is 1.

fected more severely by the inverse Bond number when compared to the trough depth

due to the sharper pro�le shape around the peak and larger value of curvature in this

region.

Figure 4.19a indicates solutions for a range of plane inclination angles α and is compa-

rable to the small de�ection results in �gure 4.8. Flow is for an inverse Bond number

B = 1 and it is seen that increasing the inclination angle has the e�ect of increasing the

peak size and decreasing the trough size behind the obstacle. The location of both the

peak and trough is seen to migrate upstream as the angle is reduced, although the move-

ment of the trough is most signi�cant. Figure 4.19b indicates the correlation between
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Figure 4.17: Pattern of streamlines starting at x3 = −0.5 and upstream of the hemi-

sphere for a range of x2 locations. Flow is over a hemispherical obstacle

of radius a = 0.9, on an inclined plane at α = 45o. The inverse Bond

number of the �ow is B = 1.

the maximum and minimum �lm height and the plane inclination angle α for solutions

given in �gure 4.19a. Both the peak and trough heights increase as the plane inclination

angle is increased. Values of minimum �lm height increase slowly, and approximately

linearly with plane angle. Initially, the maximum �lm height increases rapidly for small

α. As the angle increases the maximum �lm height is seen to continue increasing, but

at a progressively slower rate.

Typical solution pro�les show how it is possible for obstacles larger than the undisturbed

�lm to be contained fully within the �uid. The maximum possible obstacle size allowed
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Figure 4.18: Solutions for �ow over a large hemisphere of radius a = 0.9 attached

to a plane inclined at 45o showing a selection of inverse Bond numbers.

Part (a) illustrates centre line solutions and (b) values of maximum and

minimum �lm de�ection as inverse Bond number changes.
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Figure 4.19: Solutions for �ow over a large hemisphere of radius a = 0.9 showing a

selection of wall inclinations. Part (a) illustrates centre line solutions

and (b) values of maximum and minimum �lm de�ection for changes in

wall inclination. The �ow has an inverse Bond number B = 1.
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within the �uid is dependent on the inclination angle of the plane. Two cases are consid-

ered here, �ow over large hemispherical obstacles on a shallow plane inclined at 5o and

a steep plane inclined at 90o. For this analysis the hemispheres are discretized by 256

linear triangular elements. A �ow domain of −10 ≤ x1 ≤ 10 and −8 ≤ x2 ≤ 8 is taken

with free surface meshes consisting of an element distribution of 40 × 32. Numerical

integration is conducted using the near point singularity approach outlined in § 4.2 and

the zero derivative far �eld conditions are again applied within the global RBF analy-

sis. Results are obtained by a simple parameter continuation analysis. A �ow pro�le is

found for an obstacle contained within the �uid. The obstacle is then increased in size

(so that it is still within the �uid) and the new pro�le found from the starting point of

the previous solution. This is continued until the obstacle is arbitrarily close to the free

surface.

For �ow down a plane inclined at 5o the largest hemispherical obstacle containable within

the Stokes �ow has a radius a = 1.028. At this point intersection is imminent on the

back edge of the obstacle where the �lm pro�le collapses towards its trough. A centre

line pro�le for this obstacle size is shown in �gure 4.20a, for a �ow with a Bond number

Bo = 1.

For �ow down a plane inclined at 90o the largest hemispherical obstacle containable

within the �lm �ow has a radius of a = 1.92. Interestingly unlike the case for a shallow

plane this limitation is not caused by intersection of the obstacle and free surface, but

rather by limitations on convergence of the model. This may be caused by the ill-

conditioning e�ects present in the BIE due to the presence of near point singularities.

These e�ects are more prevalent here than in the shallow plane analysis due to the

extended region of near-point e�ects. Figure 4.20b illustrates the centre line solutions

for this obstacle on a vertical plane (α = 90o) for �ow with a Bond number Bo = 1.
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Figure 4.20: The centre line solution for �ow over a large hemispherical obstacle

contained fully within the Stokes �ow down a (a) shallow plane inclined

at 5o where (a = 1.028) and (b) steep plane inclined at 90o, where

(a = 1.92). The Bond number of the �ow is Bo = 1.0 in both cases.
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Stokes Flow Over Multiple

Obstacles

The consideration of Stokes �ow over multiple obstacles is a natural extension to the

work outlined in Chapter 4, with § 5.1 modifying the single obstacle formulation to �ow

over an arbitrary number of obstacles. The numerical schemes used for solution of the

formulation are identical to those given in § 4.2 using a radial basis function (RBF)

analysis of the full free surface de�ection. Modi�cation is made to the free surface

mesh, which is developed such that a re�ned region is present in the location of greatest

de�ection; details are speci�ed in § 5.2. Solutions corresponding to �ow over two and

three hemispheres for a range of relative locations and �ow parameters are presented in

§ 5.3.

5.1 Modi�cation To Mathematical Formulation

This section considers the mathematical formulation for a thin �lm Stokes �ow driven

by gravity down an inclined plane over multiple obstacles attached to the plane. As in §

4.1 the �ow variables are solved for disturbance and undisturbed components, yielding

two boundary integral equations (BIEs) for solution over the obstacle and free surface.
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Figure 5.1: Two-dimensional cross section of a typical �lm pro�le over multiple ob-

stacles.

A two-dimensional schematic for �ow over N obstacles is shown in �gure 5.1, where the

disturbed free surface is denoted Sf and the wall is denoted Sw, and the wetted obstacle

surface of the lth obstacle is denoted Slp. The formulation of the governing equations

follows that presented in § 4.1, although the no slip condition (4.1.6) is modi�ed for each

wetted obstacles surface, i.e.

ui = 0 x ∈ Sw ∪ S1
p ∪ S2

p ∪ . . . ∪ SNp , (5.1.1)

uδi = −u∞i x ∈ S1
p ∪ S2

p ∪ . . . ∪ SNp . (5.1.2)

The BIE formulation is similar to earlier, except in this case extended to boundaries cor-

responding to multiple obstacles. The Stokes �ow equations for the disturbance regime

(equivalent to (4.1.28) for a single obstacle) can be represented exactly as the BIE given
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in (5.1.3) over the �uid domain. This gives

cij(x0)uδi (x0) =
1

8π

∫
Sf∪S1

p∪...∪SNp

G∗ij(x,x0)f δi (x)dS(x)

− 1
8π

∫
Sf∪S1

p∪...∪SNp

uδi (x)T ∗ijk(x,x0)nk(x)dS(x),
(5.1.3)

where x is the �eld point, and x0 any collocation point and the coe�cient cij(x0) is given

by (4.1.30). For the N obstacle domains Slp, l = 1, . . . , N the undisturbed quantities

satisfy the N BIEs

cij(x0)u∞i (x0) = − 1
8π

∫
Slp

G∗ij(x,x0)(f∞i (x) +Gni)dS(x)

+
1

8π

∫
Slp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x),
(5.1.4)

for l = 1, . . . , N , and is equivalent to (4.1.31) for N = 1.

The equivalent BIE to (4.1.34) for collocation over the free surface, is obtained by an

identical procedure to § 4.1, yielding,

1
2
uδj(x0) +

1
8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x)

=
1

8π

∫
S1
p∪...∪SNp

G∗ij(x,x0)f̃i(x)dS(x)

+
1

8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x) x0 ∈ Sf .

(5.1.5)

Collocation over a speci�c wetted obstacle surface x0 ∈ Skp for the BIE (5.1.4) has two

possibilities; BIE (5.1.6) is applicable for l = 1, . . . , k − 1, k + 1, . . . , N ,

1
8π

∫
Slp

G∗ij(x,x0)(f∞i (x) +Gni)dS(x)

=
1

8π

∫
Slp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x),
(5.1.6)
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and (5.1.7) is used for l = k,

1
2
u∞j (x0) = − 1

8π

∫
Slp

G∗ij(x,x0)(f∞i (x) +Gni)dS(x)

=
1

8π

∫
Slp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x).
(5.1.7)

The BIE (5.1.3) is applied on the obstacle Skp , with the no slip conditions (5.1.2) imposed

to obtain

−1
2
u∞j (x0) =

1
8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x)

− 1
8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x)

+
1

8π

∫
S1
p∪...∪SNp

G∗ij(x,x0)f δi (x)dS(x)

+
1

8π

∫
S1
p∪...∪SNp

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x).

(5.1.8)

Combining BIEs (5.1.6) - (5.1.8) yields a BIE for collocation over the obstacle Skp as

1
8π

∫
Skp

G∗ij(x,x0)f̃i(x)dS(x)

+
1

8π

∫
S1
p∪...∪S

k−1
p ∪Sk+1

p ∪...∪SNp

G∗ij(x,x0)f̃i(x)dS(x)

= −u∞j (x0)− 1
8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x)

+
1

8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x) x0 ∈ Skp ,

(5.1.9)

with this BIE holding for each Skp , k = 1, . . . , N .

5.2 Modi�cation Of Numerical Schemes

This section considers modi�cations to the numerical schemes used for a single obstacle

Stokes �ow analysis as outlined in § 4.2 for a multiple obstacle analysis. The solution
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procedure follows the process outlined for the single obstacle model. Di�erences in the

numerical scheme are limited to the implementation of the multiple obstacle boundary

integral equations (BIEs), and improvements in the manner in which the free surface is

meshed.

The numerical procedure for solving Stokes �ow over multiple obstacles is similar to that

for a single obstacle analysis (see § 4.2). The main di�erence occurs when implementing

the obstacle BIEs (5.1.9). In this case, collocation takes place over all wetted obstacle

surfaces Slp, l = 1, . . . , N , and the resulting matrix problem is solved for all obstacles

tractions f̃i.

For �ow over or around a single obstacle located at (0, 0), appropriate far �eld con-

ditions, were speci�ed in chapter 4. For multiple obstacles, with centres separated by

(x1sep , x2sep), the far �eld conditions are extended to x1min −
x1sep

2 ≤ x1 ≤ x1max + x1sep

2

and x2min −
x2sep

2 ≤ x2 ≤ x2max + x2sep

2 .

Another modi�cation of the earlier work is to implement a more re�ned free surface mesh

in regions of large deformations instead of the uniform distribution used so far. In § 4.3,

the free surface mesh was found su�cient to obtain solutions of reasonable accuracy. The

mesh used was generated by �rst subdividing the �ow domain into rectangular (ideally

square) elements and then subdividing each of these by connection of their vertices into

four triangular elements. However this mesh was also shown to produce 3% error in peak

height when compared to a more re�ned mesh generated by the same technique.

Free surface meshes used in this chapter are re�ned in the region of the hemispheres.

The mesh is initially discretized by rectangular elements de�ned by an inner element and

outer element size. The outer square element is as found su�cient in § 4.3 and of size

1.0×1.0. The inner element is sized as the more re�ned mesh in section § 4.3 and of size

0.5 × 0.5. The transition region between the inner and outer uniform meshes involves

a more complicated analysis. Input parameters involve the number of elements used to

extend from the inner to the outer mesh and the scaling of these elements, so that they

99



Chapter 5: Stokes Flow Over Multiple Obstacles

−10 −8 −6 −4 −2 0 2 4 6 8 10 12
−10

−8

−6

−4

−2

0

2

4

6

8

10

x1

x
2

Figure 5.2: Typical free surface mesh for �ow over an array of hemispheres.

can be biased towards the inner mesh. These parameters are chosen to give a reasonable

conversion from the smaller, inner element size to the larger outer element size.

The size and shape of the inner mesh is also analyzed. The inner region is chosen to

span the obstacles centres, and extend beyond this by a selected number of elements.

However, to keep the transitional mesh of reasonable quality, the inner region should

not become too long and thin and as such the ratio of x1 coordinate mesh length to x2

coordinate mesh length is tested and forced between 5
4 and 4

5 by adding more elements

where necessary. Figure 5.2 illustrates a typical free surface mesh for �ow over an array

of hemispheres contained within −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. The inner mesh is

extended for 2 elements in both the x1 and x2 direction beyond the centres of these

obstacles.

For comparisons with �ow over a single hemisphere, a similar mesh re�nement process

is conducted and results reproduced where necessary. In this case the obstacle is centred

at (0, 0) and the inner mesh spans a set distance in the ±x1 and ±x2 direction.

100



Chapter 5: Stokes Flow Over Multiple Obstacles

5.3 Solution Pro�les For Flow Over Multiple Obstacles

Flow pro�les over two and three hemispheres are considered in each of the following

subsections. For �ow over two hemispheres, a range of relative obstacle locations are

investigated. For two hemispheres located in-line with the �ow direction, a parameter

analysis is considered, where e�ects of changing the inverse Bond number (4.3.1), plane

inclination angle α, and hemisphere radius a are investigated. Hemispheres of a size that

approach the free surface are also considered, and an analysis is made of how the gap

between the free surface and obstacle is reduced by interaction of a wake on the �ow

over a downstream hemisphere.

5.3.1 Solutions For Flow Over Two Hemispheres

Flow over two hemispheres spaced symmetrically to the axis by a distance (x1sep , x2sep)

are considered, with the hemisphere centres located at x1 = ±x1sep

2 and x2 = ±x2sep

2 .

Flow is �xed with a Bond number Bo = 1.0 and is down a plane inclined at α = 45o,

with the two attached hemispheres having radius a = 0.9. Flow over a single obstacle

located at (0, 0) required far �eld locations −6 ≤ x1 ≤ 8 and −6 ≤ x2 ≤ 6 and for

each dual obstacle analysis the far �eld is extended from these values as outlined in the

previous section.

Figure 5.3 illustrates the centre line (x2 = 0) pro�les of the free surface in the direction of

the upstream �ow over two hemispheres in-line with the incident �ow and with spacings

x1sep = 2, 4, 6, 8. Dashed pro�les indicate the equivalent �ow over a single hemisphere at

(±x1sep

2 , 0). For all cases of obstacle separation, the deformation caused by the upstream

hemisphere appears to reproduce closely the corresponding pro�le for a single obstacle.

When the separation is large, the downstream hemisphere of the twin obstacle case

reproduces closely the deformation caused by a single obstacle. This is because the wake

decays after the upstream obstacle and the incident �ow con�guration to the downstream
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obstacle approximates an undisturbed �ow. As the obstacles are moved closer together

the pro�le over the rear hemisphere is distorted more, with the peak decreasing and the

trough increasing in amplitude. For x1sep ≥ 4, the �ow over the rear obstacle appears as

a complete pro�le, rising from around the undisturbed �ow height towards a peak and

decaying behind the obstacle. For x1sep = 2, the pro�le fundamentally changes, and the

�ow over the rear obstacle begins during the collapse of the peak caused by the upstream

obstacle. As such the peaks appear to be joined, with a small step down as �ow passes

between obstacles. A single, larger trough is formed downstream of the last obstacle,

instead of behind each hemisphere in turn. This is con�rmed by the contour plot in

�gure 5.6 for x1sep = 2, x2sep = 0.

Figure 5.4 shows the axis line (x1 = 0) pro�les of the free surface for �ow over two hemi-

spheres spaced perpendicular to the incoming �ow direction. Dashed pro�les correspond

to �ow over a single hemisphere at (0,±x2sep

2 ). The obstacle spacing and thus the �ow

pro�le is symmetric in each case about the line x2 = 0. For large separations, the pro�les

over the two obstacles appear identical to that for a single obstacle. As the obstacles

are moved closer, the outer regions of the �ow pro�les remain consistent with the corre-

sponding single obstacle solution. For x2sep ≥ 4, the inner region of the pro�les merge,

with the lowest surface point between hemispheres increasing from the undisturbed �lm

height. In these cases the peak height above each hemisphere is of similar magnitude

to the single hemisphere case. For x2sep = 2, the two pro�les merge producing a single

peak, much taller than that created for a single obstacle. The resultant cross-section �ow

pro�le appears as if the �ow is interacting with a single larger obstacle. The contour

plot in �gure 5.6 for x1sep = 0, x2sep = 2 con�rms this.

Figure 5.5 indicates the obstacle and �lm surface for the analysis of �ow over two hemi-

spheres separated by x1sep = x2sep = 2 and with centres located at (−1,−1) and (1, 1).

The �ow is incident to the leading hemisphere, and as the peak splits into a typical

horseshoe shape, one of the raised ridges is incident to the downstream hemisphere.

This thicker �lm region causes the peak over the rear hemisphere to be even taller, be-
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Figure 5.3: Centre line pro�les for hemisphere separation distances x1sep
= 2, 4, 6,

and 8 in line with the �ow. Flow is over hemispheres of radius a = 0.9

and down a plane inclined at α = 45o. The Bond number of the �ow is

Bo = 1.0.
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Figure 5.4: Centre line pro�les for hemisphere separation distances x2sep = 2, 4, 6, and

8 perpendicular to the �ow. Flow is over hemispheres of radius a = 0.9

and down a plane inclined at α = 45o. The Bond number of the �ow is

Bo = 1.0.

104



Chapter 5: Stokes Flow Over Multiple Obstacles

Figure 5.5: Three-dimensional solution pro�le for two hemispheres of radius a = 0.9,

separated by x1sep
= 2, x2sep

= 2. The �ow has a Bond number of

Bo = 1.0, and is down a plane inclined at α = 45o

fore decaying in a typical fashion. The close proximity of the two obstacles allows most

of the peaks to merge, with only the tips of the two de�ections left independent. This is

illustrated further by the contour plot in �gure 5.6 for x1sep = 2, x2sep = 2.

Figure 5.6 shows three comparison contour plots for the obstacle con�gurations corre-

sponding to �gures 5.3, 5.4 and 5.5. Clearly, for x1sep = 2, x2sep = 0 the �ow is symmetric

in x2 = 0 and the highest point on the free surface occurs just prior to the leading hemi-

sphere. The peak is continued over the rear hemisphere and then collapses rapidly into

a trough around x1 = 1.5. This can also be seen in the centre line plot in �gure 5.3. The

contour plot for x1sep = 0, x2sep = 2 again illustrates the symmetry in x2 = 0, with just a
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single, wide peak occurring over x2 = 0. This is also seen in �gure 5.4. The peak decays

rapidly into the trough just behind the line of the obstacles. However, the contour lines

are disturbed downstream slightly along x2 = 0 during the formation of the trough. In

this case the �ow is forced between the obstacles extending the peak region slightly. The

contour plot for the two o�set hemispheres of �gure 5.5 does not show symmetry in the

line x2 = 0. In this case the peaks that occur due to the two obstacles can be clearly

seen, with the downstream peak slightly larger. The rear hemisphere is clearly seen to

lie in the decaying peak of the �ow pro�le about the upstream hemisphere causing an

extension to the distance that the raised ridge is noticed downstream.

A parameter investigation is conducted for �ow over two hemispheres aligned with the

incident �ow and separated by x1sep = 2. The e�ects of changed inverse Bond number B,

plane inclination angle α, and di�erential obstacle radii a is considered. Default values

for the �ow parameters include an inverse Bond number of B = 1, a plane inclination

angle of α = 45o, and hemispheres of radii a = 0.9. In each case two parameters are

chosen from above and the e�ects of altering the third analyzed.

Figure 5.7 illustrates the centre line (x2 = 0) solutions for variations of inverse Bond

number B. The increase in B, associated with an increase in surface tension forces, result

in the �attening and smoothing of the pro�les. For B = 1, the centre line pro�les appear

to oscillate as they pass from the �rst to the second hemisphere, forming two local peaks

and a trough. The increase in B acts to smooth these local peaks which subsequently

merge to form a single ridge that spans across the two obstacles. Consistent with the

single obstacle analysis in § 4.3, the increase in inverse Bond number causes the height

of the peak to reduce and for the disturbance to span a greater region upstream in the

x1 direction.

Figure 5.8 illustrates centre line (x2 = 0) solutions for a range of plane inclination angles

α with two local peaks occuring over each obstacle for all plane angles. The trough

appears to shift slightly upstream, towards the back edge of the second hemisphere as
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Figure 5.6: Contour plots for (x1sep , x2sep) = (2, 0), (0, 2), (2, 2). Flow is over two

hemispheres of radius a = 0.9, attached to a plane inclined at α = 45o.

The �ow has a Bond number of Bo = 1.0.
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Figure 5.7: Centre line solution pro�les for two hemispheres of radius a = 0.9, at-

tached to a plane inclined at α = 45o and separated by x1sep = 2. Results

indicate the e�ect of varying the inverse Bond number B.

the plane angle is reduced. Consistent with the single obstacle case, the steeper the

plane wall, the larger the peak that is formed.

Figure 5.9 gives the centre line (x2 = 0) pro�les for �ow over two hemispheres separated

by x1sep = 2 and with three di�erential radii; a = 0.5, 1.3, a = 0.9, 0.9, and a = 1.3, 0.5.

When the obstacles are the same size (a = 0.9, 0.9), the �ow exhibits two local peaks

and a trough as the �ow passes from the leading to the rear hemisphere. For the case

of a small obstacle followed by a large obstacle (a = 0.5, 1.3) the �ow appears to climb

relatively slowly to a single peak over the downstream obstacle. For the case of a large

obstacle followed by a small obstacle (a = 1.3, 0.5) the �ow exhibits a large peak over

the leading obstacle. However, in this case the formation of the trough shows a small

kink over the rear obstacle. Interestingly the maximum peak heights for both cases of

di�erent sized hemispheres are approximately equal, and signi�cantly greater than the
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Figure 5.8: Centre line solution pro�les for two hemispheres of radius a = 0.9 sep-

arated by x1sep = 2, showing the e�ect of varying the plane inclination

angle α. The �ow has an inverse Bond number of B = 1.0.

Shallow (α = 5o) plane with a = 1.05 Steep (α = 90o) plane with a = 1.60

Single 0.0486 0.337

Double 0.0465 0.220

Table 5.1: Near point values (3.s.f.) for large hemispheres on shallow and steep planes.

case of equal hemisphere size; this suggests the peak height is strongly dependent on

the maximum hemisphere radius. The corresponding �lm height for �ow over a single

hemisphere of radius a = 1.3 is provided allowing comparison with the dual hemisphere

solutions. When the large hemisphere precedes the small hemisphere, �ow over this

obstacle shows negligible discrepancy to the single case. When the large hemisphere is

the rear obstacle, a small di�erence to the single obstacle solution is present.

In § 4.3 it was found that the largest possible hemisphere containable within the �uid �lm

was strongly dependent on the inclination of the plane. Pro�les have been compared for
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Figure 5.9: Centre line solution pro�les for two hemispheres separated by x1sep
= 2,

indicating the e�ect of varying the two obstacles radii a. Flow is down a

plane inclined at α = 45o, with an inverse Bond number B = 1.0. Dotted

lines indicate a single hemisphere of radius a = 1.3.

a Bond number Bo = 1, and obstacle separation x1sep = 4, x2sep = 0. Table 5.1 indicates

the smallest distance between the interpolated free surface and the obstacle for both a

single and dual hemisphere con�guration. Results on both the shallow and steep plane

show this minimum distance is reduced when two obstacles are considered. For the

shallow plane, hemispheres of radius a = 1.05 are modelled and only a minor reduction

is noticed, as shown in �gure 5.10a. For the steep plane, hemispheres of radius a = 1.60

are modelled and a signi�cant reduction in the free surface/obstacle gap is found, as

shown in �gure 5.10b. It is noted that the results in § 4.3 are found using a di�erent

mesh for the same �ow parameters as the results here, and this accounts for the small

di�erences in solutions.

Centre line pro�les for �ow down a shallow plane corresponding to table 5.1 are shown
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Figure 5.10: Centre line solution for �ow over large hemispheres of radius (a) a = 1.05

attached to a shallow plane at α = 5o (b) a = 1.60 attached to a steep

plane at α = 90o. The Bond number of the �ow in both cases is Bo = 1.0.

Comparison is shown with a single hemisphere for both �gures.
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Figure 5.11: Three-dimensional solution pro�le for three hemispheres located at

(−2,−2), (−2, 2), (2, 0). The �ow has a Bond number of Bo = 1.0,

is down a plane inclined at α = 45o, and the hemispheres each have a

radius of a = 0.9.

in �gure 5.10a. Flow is down a plane inclined at α = 5o, and a minor reduction in the

gap between the obstacle and free surface is found behind the rear hemisphere when

compared with a single obstacle analysis. Centre line solutions for �ow down a steep

plane corresponding to the information in table 5.1 are shown in �gure 5.10b. Flow is

down a plane inclined at α = 90o, and a signi�cant reduction in the near point values

between the obstacle and free surface is found behind the rear hemispherical obstacle

when compared with a single obstacle analysis.
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Figure 5.12: Three-dimensional solution pro�le for three hemispheres located at

(−2, 0), (2,−2), (2, 2). The �ow has a Bond number of Bo = 1.0, is

down a plane inclined at α = 45o, and the hemispheres each have a

radius of a = 0.9.

5.3.2 Solutions For Flow Over Three Hemispheres

Illustration of �ow over three hemispheres is now given for two obstacle con�gurations.

Flow has a Bond number Bo = 1, all hemispheres have a radius of a = 0.9 and the

plane is inclined at α = 45o. Obstacles are positioned in a symmetrical triangular array,

with either a twin or single leading hemisphere con�guration considered. A twin leading

con�guration is illustrated in �gure 5.11 and consists of the upstream �ow incident on

two obstacles spaced perpendicularly to the �ow direction with centres (−2,−2), (−2, 2).

This is followed by a trailing hemisphere centered at (2, 0). The con�guration shown in
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�gure 5.12 consists of the upstream �ow incident on one obstacle centered at (−2, 0)

followed by two downstream hemispheres spaced perpendicularly to the �ow direction

with centres at (2,−2), (2, 2). In both cases, three peaks are clearly seen just prior to

each obstacle.
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Stokes Flow Around Obstacles

Flow pro�les for thin �lm Stokes �ow down an inclined plane over multiple obstacles

in a range of con�gurations are considered. When these obstacles are increased in size

they will eventually penetrate the �lm surface, leading to �lm �ows around obstacles

and adding another layer of complexity to the model. A contact angle constraint is

imposed at the contact line within the radial basis function (RBF) interpolation, and the

boundary integral equation (BIE) over the obstacle domain requires closing by addition

of a top to the obstacle. Further details of the mathematical formulation are given in

§ 6.1. In addition, the obstacle requires re-meshing at each iteration, and a mesh must

be generated for the top of the obstacle. Details of the numerical schemes implemented

are given in § 6.2. Solution pro�les for �ow around single and multiple obstacles are

produced in § 6.3, and the possibility of multiple solutions examined. These occur when

a �ow with �xed parameters may pass over or around an obstacle, and the resultant

pro�le is dependent on the initial conditions. Multiple solutions are also examined in

the case of two obstacles, to consider �ow over then around an identical obstacle. All

results shown in this chapter are for circular cylinders.
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6.1 Mathematical Formulation

Stokes �ow around obstacles adds an extra level of complexity to solving �lm �ow prob-

lems compared to cases where the obstacles are fully submerged. Formulations in this

section are developed from the consideration of �ow over multiple obstacles in § 5.1. Mod-

i�cations to the formulation involve the speci�cation of an additional boundary condition

imposing a contact angle at the free surface/obstacle intersections. In addition, solution

of the integral equations for the undisturbed �ow over the obstacle domains requires

those domains to be closed. This is done by inclusion of an additional surface as the top

of the obstacle.

For �ow over N obstacles, no slip is imposed on each obstacle's wetted surface Slp,

l = 1, . . . , N as de�ned in (5.1.1). In addition, a contact angle θ between the free

surface and the obstacle boundary must be speci�ed, which depends on the �uid/obstacle

properties.

In two-dimensions, the contact angle at the point of intersection between two curves is

well de�ned, and determined by the dot product between their corresponding tangent

vectors. On the other hand, in three-dimensions the de�nition of the contact angle at a

point on the contact curve of two intersecting surfaces is not uniquely speci�ed since its

value depends on how the contact point is approached from each surface. In some cases

it is common to de�ne the contact angle as a function of the unique angle between the

normal vectors at a contact point.

In this work, as in the recent work by Sellier et al. [33], the following condition is imposed

along the contact line at the obstacle surface

∂h

∂xi
ñi = tan

(π
2
− θ
)
, (6.1.1)

where ñi is the outward unit normal of the obstacle and summation convention is applied.

Condition (6.1.1) is suitable to describe the contact line along the wall of a cylindrical
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Figure 6.1: Schematic showing the two-dimensional de�nition of the contact angle.

obstacle with constant cross section, and located perpendicular to the undisturbed �lm

pro�le, i.e. ñ3 = 0. This condition is an extension to three-dimensions of the two-

dimensional de�nition of the contact angle between a free surface and vertical wall, where

the slope of the curve describing the free surface at the contact point is dh
dx1

= tan(α) =

cot(θ), and α = π
2 − θ. The dot product of the normal vectors is cos(ϕ) = cos(π − θ) =

− dh
dx1

/

√(
dh
dx1

)2
+ 1, where the angle between the normal vectors is ϕ = π

2 + α, and

therefore sin(ϕ) = 1/

√(
dh
dx1

)2
+ 1. A schematic for the two-dimensional de�nition of

the contact angle condition is shown in �gure 6.1. Consequently, equation (6.1.1) gives

the slope of the curve de�ned by the intersection between a normal plane to the cylinder,

εijkñjδk3, and the free surface, at a contact point along the cylinder wall, i.e. the contact

angle is a measure from the cylindrical wall to the free surface along a normal plane to

the cylinder wall.

For �ow around an obstacle, the integral formulation remains largely unchanged, but

two additional terms are present in the boundary integral equations (BIEs). Figure 6.2

indicates a schematic of the nomenclature used for �ow around a cylinder. The free

surface is still labeled Sf along with the wetted obstacle surfaces Slp l = 1, . . . , N . The

obstacle domain is no longer closed solely by the wall Sw and the wetted obstacle surfaces
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Figure 6.2: Schematic showing nomenclature for �ow around the lth cylinder.

Slp l = 1, . . . , N , and thus virtual surfaces are introduced and labeled S̃lf .

To maintain the BIE formulation, (5.1.4) is modi�ed to include integrals for the virtual

surfaces S̃lf ,

cij(x0)u∞i (x0) = − 1
8π

∫
Slp∪S̃lf

G∗ij(x,x0)(f∞i (x) +Gni(x))dS(x)

+
1

8π

∫
Slp∪S̃lf

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x).
(6.1.2)

The BIE formulation for the disturbance variables over the �uid domain (5.1.3) is un-

changed as the �uid �lm is not bounded by the virtual surfaces.

The term �virtual surface� is introduced as only the obstacle/�uid boundary Slp causes the

�lm �ow to deform. The resulting �lm pro�le is physically independent of the geometry

of the virtual surface. The obstacle in all cases is bounded by the wall, the obstacle/�uid

surface Slp, de�ned between the wall and the �uid/obstacle contact line, and the the

virtual surface S̃lf . By similar derivations to those previously given in § 4.1 and § 5.1,

two BIEs are derived, one collocated over the free surface Sf and one over the wetted

obstacle surfaces Slp. The BIE used for collocating over the free surface (equivalent to
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(5.1.5)) is

1
2
uδj(x0)+

1
8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x)

=
1

8π

∫
S1
p∪...∪SNp

G∗ij(x,x0)f̃i(x)dS(x)

+
1

8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x)

+
1

8π

∫
S̃1
f∪...∪S̃

N
f

G∗ij(x,x0) (f∞i (x) +Gni(x)) dS(x)

− 1
8π

∫
S̃1
f∪...∪S̃

N
f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x) x0 ∈ Sf .

(6.1.3)

For collocation of the obstacle surface a BIE (equivalent to (5.1.9)) is derived as

1
8π

∫
Skp

G∗ij(x,x0)f̃i(x)dS(x) +
1

8π

∫
S1
p∪...∪S

k−1
p ∪Sk+1

p ∪...∪SNp

G∗ij(x,x0)f̃i(x)dS(x)

= −u∞j (x0)− 1
8π

∫
Sf

G∗ij(x,x0)f δi (x)dS(x)

+
1

8π

∫
Sf

uδi (x)T ∗ijk(x,x0)nk(x)dS(x)

− 1
8π

∫
S̃1
f∪...∪S̃

N
f

G∗ij(x,x0) (f∞i (x) +Gni(x)) dS(x)

+
1

8π

∫
S̃1
f∪...∪S̃

N
f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x) x0 ∈ Sp.

(6.1.4)

In summary the steady, gravity driven Stokes �ow down an inclined plane and around an

obstacle is governed by solutions satisfying the BIEs (6.1.3) and (6.1.4), the kinematic

condition (4.1.8) and the dynamic condition (4.1.7), along with the far �eld equations

(4.1.5). As the obstacle protrudes through the free surface a contact line is present and

the contact angle condition (6.1.1) is also required. Flows around obstacles are governed

by: plane inclination angle α, the obstacle geometry, Bond number Bo and the contact

angle θ.
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6.2 Numerical Schemes

This section considers modi�cations to the numerical schemes used for a multiple ob-

stacle Stokes �ow analysis as outlined in § 5.2 for �lm �ows around multiple obstacles.

Developments in the numerical schemes involve meshing the circular cylindrical obsta-

cles and free surface, along with incorporation of the contact angle constraint within

the RBF interpolation of the free surface. Both of these are detailed later in respective

subsections.

The iterative procedure for �nding solutions to �ow around multiple obstacles di�ers

from that outlined for �ow over an obstacle in § 4.2. The procedure used to obtain

solutions in the present case of �ow around multiple obstacles is de�ned below, with the

unknown integral densities uδi on Sf , and f̃i on S
1
p ∪ . . . ∪ SNp obtained.

(i) Initially at the free surface elements mid-points xm = (xm1 , x
m
2 ), a �lm pro�le is

de�ned by heights h with corresponding disturbance velocities uδi .

(ii) The free surface heights h are interpolated using a radial basis function (RBF),

incorporating the far �eld and contact angle condition, and used to �nd:

(a) the heights at the nodal points of each free surface element xn = (xn1 , x
n
2 );

(b) the outward unit normal of the free surface at the element mid-points, xm;

(c) the curvature of the free surface at the element mid-points, xm.

(iii) The contact line is found, and the wetted obstacle surface Slp is meshed from the

wall Sw to the contact line. In addition a mesh for the top of the obstacle S̃lf is

also generated.

(iv) The disturbance boundary traction at the free surface element mid-points xm is

calculated by use of the dynamic condition (4.1.27).

(v) The obstacle boundary integral equations (BIEs) (6.1.4) are collocated over all
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obstacles/�uid surfaces Skp , k = 1, . . . , N for tractions f̃i. Solutions are obtained by

using the boundary element method (BEM).

(vi) The free surface BIE (6.1.3) is collocated over Sf for the free surface disturbance

velocities at each elements mid-points. It is noted that the height of the element

mid-points are approximated within this BEM formulation by the average of the

nodal point heights.

(vii) The kinematic condition (4.1.8) is applied with the current values of h and the

calculated values of uδi at element mid-points xm, to �nd an updated set of h

de�ning the free surface.

(viii) The process is repeated from step 2 using the new �lm pro�le.

As outlined in chapter 4 for �ow over an obstacle, the only place that the free surface

height is approximated within the iterative solution procedure is for collocation over

the free surface within the BEM. In all other calculations, the height at any mid ele-

ment location is associated with the interpolated surface. This limitation is caused by

implementing �at triangular elements within the BEM.

The numerical schemes required to solve the problem are now discussed. This includes

forms for the meshes used for the free surface, and obstacle (including the wetted sur-

face and the top of the obstacle), and the implementation of the RBF to evaluate the

free surface position and various quantities such as curvature and unit normal, whilst

constraining the contact angle (6.1.1). The BEM and near point integration schemes are

implemented as described in § 4.2

6.2.1 Surface Discretizations

The obstacle/�uid boundaries, free surface, and virtual obstacle tops all require dis-

cretization. Circular cylinders are modelled throughout, satisfying the contact angle
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constraint (6.1.1).

For circular cylindrical obstacles, the top edge of the cylinder was �rst considered with

the circular perimeter of the cylinder discretized by a polygon of speci�ed resolution and

vertical lines subtended down its sides. In addition the height of the cylinder at each

polygonal vertex was split evenly into a number of slices. The intersections of these

two divisions form rectangular elements which were subdivided again into 4 triangular

elements by connection of the diagonal vertices. Illustration of typical meshes for cylin-

drical cylinders are shown in �gure 6.3. In cases for �ow over and around a circular

cylinder a form for the mesh on the top surface is required. The x1x2 element distri-

bution of the top of the cylinder is generated by successive subdivision. This is slightly

more complicated than the case of a hemisphere as it is only the outermost element sides

that require translating onto the edge of the circle at each subdivision. At the end of the

subdivision process the vertical position is de�ned depending on the case analyzed. For

�ow over a cylinder, each node is translated onto the sloped top of the cylinder, de�ned

by its height at the upstream location x1 = −a and the downstream location x1 = a.

The height varies linearly in the x1 direction between these two points. An example

mesh for the cylinder in this case is shown in �gure 6.3a. For �ow around a cylinder, the

top is de�ned by a RBF interpolation that also holds the normal gradients as zero on the

outer edge of the cylinder. The functional values that require evaluation on the surface

S̃f are calculated using an inward pointing normal as de�ned by the RBF interpolation.

An example mesh for a cylinder with an interpolated top is shown in �gure 6.3b.

Free surface meshes are modi�ed from the earlier work considering �ow over obstacles

to allow the obstacle to penetrate the free surface. Formation of the meshes for both a

single and multiple cylinder array is discussed below. In the case of a single cylinder the

mesh is formed in a similar fashion to that outlined for the re�ned multiple hemisphere

analysis in § 5.2. However, in the present case, there is no inner mesh and the transitional

mesh is instead used to �t the discretized pro�le for the cylinder's contact line to the

outer mesh. Again the outer mesh is constructed from elements of the size 1.0× 1.0 as
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Figure 6.3: Typical mesh for a cylindrical obstacle, with (a) a truncated top and (b)

an interpolated top.

found su�cient in earlier analysis. In each case the transitional mesh is formed by the

input parameters of the number of elements used to extend from the cylinder wall to the

outer mesh and the scaling of these elements. The choice of these parameters is made to

give a reasonable conversion from the smaller, cylinder element size to the larger outer

element size. A typical free surface mesh is shown in �gure 6.4.

Free surface meshes for �ow around multiple cylinders use alternative methods depending

on the separation distance between the cylinders. If the cylinders are su�ciently far apart

the mesh is formed by identical means to that outlined above, �tting the transitional

meshes locally within the global outer mesh. However, if the transition meshes from

each cylinder to the outer mesh overlap, then modi�cation of this technique is required.

An intermediate mesh with smaller element size than the outer mesh is de�ned. The

cylinders are �tted to the intermediate mesh, and the intermediate mesh is then extended

to the outer mesh in a similar way to the mesh formation for multiple hemispheres. Figure

6.5 indicates a typical free surface mesh for the case where �ow is around 3 cylinders
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Figure 6.4: Typical free surface mesh for �ow around a single cylinder of radius a =

1.0.

close to one another.

6.2.2 Radial Basis Function For Flow Around Cylinders

As for the case of �ow over obstacles, a global Hermitian RBF interpolation of the �uid

free surface is implemented. The RBF ψ(‖x − ξ‖) allows incorporation of the far �eld

derivative conditions and also the contact line condition for each obstacle that penetrates

the free surface. As before the surface is interpolated using a thin plate spline RBF of the

form ψ = r4 log r, where r = ‖x− ξ‖, and is chosen to remove singularities of ψ at r = 0

for up to and including its third derivative. To guarantee invertibility, an additional

polynomial of order 2 is required along with a homogeneous constraint condition.

The RBF can be used to constrain the free surface gradient at n far �eld points and ncl

contact line points. Surface displacements and derivatives ∂h
∂x1

and ∂h
∂x2

are represented
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Figure 6.5: Typical free surface mesh for �ow around multiple cylinder of radius a =

1.0.

by

h(x1, x2) =
N∑
j=1

λjψ +
n∑
j=1

λN+j
∂ψ

∂ξ1
+

n∑
j=1

λN+n+j
∂ψ

∂ξ2

+
ncl∑
j=1

λN+n+n+j

(
ñξ1

∂ψ

∂ξ1
+ ñξ2

∂ψ

∂ξ2

)
+ P2(x),

(6.2.1)

∂h

∂x1
=

N∑
j=1

λj
∂ψ

∂x1
+

n∑
j=1

λN+j
∂2ψ

∂ξ1∂x1
+

n∑
j=1

λN+n+j
∂2ψ

∂ξ2∂x1

+
ncl∑
j=1

λN+n+n+j

(
ñξ1

∂2ψ

∂ξ1∂x1
+ ñξ2

∂2ψ

∂ξ2∂x1

)
+
∂P2(x)
∂x1

,

(6.2.2)

∂h

∂x2
=

N∑
j=1

λj
∂ψ

∂x2
+

n∑
j=1

λN+j
∂2ψ

∂ξ1∂x2
+

n∑
j=1

λN+n+j
∂2ψ

∂ξ2∂x2

+
ncl∑
j=1

λN+n+n+j

(
ñξ1

∂2ψ

∂ξ1∂x2
+ ñξ2

∂2ψ

∂ξ2∂x2

)
+
∂P2(x)
∂x2

.

(6.2.3)

The RBF interpolation forms a matrix representation h̃i = Aijλj to be solved for the
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unknowns λj . Matrix Aij is given by,

Aij =



ψ ∂ψ
∂ξ1

∂ψ
∂ξ2

ñξ1
∂ψ
∂ξ1

+ ñξ2
∂ψ
∂ξ2

P2

∂ψ
∂x1

∂2ψ
∂ξ1∂x1

∂2ψ
∂ξ2∂x1

ñξ1
∂2ψ

∂ξ1∂x1
+ ñξ2

∂2ψ
∂ξ2∂x1

∂P2
∂x1

∂ψ
∂x2

∂2ψ
∂ξ1∂x2

∂2ψ
∂ξ2∂x2

ñξ1
∂2ψ

∂ξ1∂x2
+ ñξ2

∂2ψ
∂ξ2∂x2

∂P2
∂x2

A1 A2 A3 A4 A5

(P2)T (∂P2
∂x1

)T (∂P2
∂x2

)T (A5)T 0



, (6.2.4)

where terms A1 - A5 are given by,

A1 = ñx1

∂ψ

∂x1
+ ñx2

∂ψ

∂x2
, (6.2.5)

A2 = ñx1

∂2ψ

∂ξ1∂x1
+ ñx2

∂2ψ

∂ξ1∂x2
, (6.2.6)

A3 = ñx1

∂2ψ

∂ξ2∂x1
+ ñx2

∂2ψ

∂ξ2∂x2
, (6.2.7)

A4 = ñx1

(
ñξ1

∂2ψ

∂ξ1∂x1
+ ñξ2

∂2ψ

∂ξ2∂x1

)
+ ñx2

(
ñξ1

∂2ψ

∂ξ1∂x2
+ ñξ2

∂2ψ

∂ξ2∂x2

)
, (6.2.8)

A5 = ñx1

∂P2

∂x1
+ ñx2

∂P2

∂x2
. (6.2.9)

The obstacles unit normal at the point xj is given by ñxj = (ñ
xj1
, ñ

xj2
) , and the vector

h̃i constructed from,

h̃i =

(
h ∂h

∂x1

∂h
∂x2

tan
(
π
2 − θ

)
0

)T
. (6.2.10)

The RBF yields the position of the element nodal points, the outward unit normal and

the curvature.

A virtual top is generated to the obstacle that �ow passes around, and this is also

interpolated using a RBF. In this case the RBF is de�ned in terms of the contact line

points, with the added constraint that the normal gradient of the cylinder around the

contact line is zero. This analysis is a reduced version of the above problem (omitting

the far �eld conditions, etc.) and no further details are presented. This interpolation
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allows the inward unit normal to be found, necessary for evaluating the traction values

on this surface, as used in BIEs (6.1.3) and (6.1.4).

6.3 Solution Pro�les For Flow Around Obstacles

In this section results for �ow around cylindrical obstacles on an inclined plane are

presented. Results are initially shown for �ow around a single cylinder on an inclined

plane, with the possibility of solutions where both �ow around and �ow over an obstacle is

valid, satisfying all requirements and demonstrating the possibilities of multiple solutions.

Results for �ow around multiple cylinders, and also the possibility of �ow over, then

around identical cylinders spaced in the direction of the incoming �ow are presented.

6.3.1 Solutions For Flow Around Single Obstacles

Before results are produced, a mesh analysis was conducted on a free surface in the

domain −8 ≤ x1 ≤ 10 and −8 ≤ x2 ≤ 8. The outer free surface mesh was based

on 1.0 × 1.0 elements, found to be su�cient to describe large free surface deformations

in chapter 4. Mesh considerations involve the number of vertical discretizations of the

cylinder wall, and the resolution of the transitional mesh of the free surface connecting

the cylinder to the outer meshes.

The obstacle discretization is governed by two key parameters, the circumferential dis-

cretization and the vertical discretization. Circumferentially, the cylinder is discretized

32 times, identical to that found optimal for the base of a hemisphere in earlier sections.

Vertically, the cylinder was discretized into segments and pro�les changed nominally

with selection. Five vertical discretizations are used for the cylinder mesh, producing

solutions which appear invariant to further re�nement, and also helping to maintain the

regularity of the mesh when large displacements are found between the upstream and
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Figure 6.6: Centre line solution at the upstream edge of the cylinder indicating the

transitional mesh resolutions described in table 6.1 for �ow around a

cylinder of radius a = 0.5.

downstream contact position on the obstacle.

The transitional mesh of the free surface involves a more complicated analysis. Input

parameters involve the number of elements used to extend from the cylinder wall to

the outer mesh and the scaling of these elements, so that they can be biased towards

the cylinder wall. Four cases were considered with the number of elements and scaling

values for each analysis shown in table 6.1. Solutions for these four transitional mesh

resolutions are shown in �gure 6.6.

All transitional mesh regimes are found to give accurate portrayals of the global �ow

pro�le. However, the e�ects of the contact line condition on the �ow pro�le local to

the cylinder is marginally a�ected by the transitional mesh resolutions used, especially

for the case of an unre�ned transitional discretization. As the mesh is progressively

re�ned the solutions tend towards a converged solution. However, it is found that use of
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Number of Elements Transitional Element Scaling Factor

Unre�ned 4 0.60

Satisfactory 5 0.60

Re�ned 6 0.65

Very Re�ned 7 0.70

Table 6.1: Transitional free surface mesh regimes.

the �re�ned� mesh (see table 6.1 and �gure 6.6) is adequate to accurately represent the

�ow regime around the cylinder and it is this transitional mesh resolution that is used

throughout for cylinders of radius a = 0.5. For larger cylinders, the transitional mesh

is changed but each time analyzed to maintain a similar resolution of elements as found

su�cient for the a = 0.5 case considered here. For some results, the far �eld is extended

to help maintain convergence and su�cient decay of the free surface disturbance.

Figure 6.7 shows the full free surface for �ow around a cylinder of radius a = 2.0. The

�ow was down a plane inclined at α = 45o and the �lm has a Bond number Bo = 0.89

corresponding to an inverse Bond number of 1 as de�ned in (4.3.1) and used by Blyth

and Pozrikidis [31]. The contact angle at the cylinder walls was constrained to θ = 90o.

A typical obstacle mesh can be seen in �gure 6.3.

Figure 6.8 shows the streamlines for �ow around a circular cylinder attached to a plane

inclined at 45o. The cylinder has a radius of a = 0.5 with a contact angle condition of

θ = 90o speci�ed on the cylinder wall. The �ow has an inverse Bond number of B = 1.

Streamlines close to the cylinder are de�ected upwards, as well as around the cylinder.

In addition, as with the �lm pro�les, solutions show symmetry about the plane x2 = 0.

Figure 6.9a illustrates solutions for a range of inverse Bond numbers B. Flow is down

a plane inclined at α = 45o around a cylindrical obstacle of radius a = 0.5. The free

surface/obstacle interface was modelled by a contact angle of θ = 90o. Increasing the

inverse Bond number (i.e. raising the ratio of surface tension forces to gravitational
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Figure 6.7: Three-dimensional solution pro�le for �ow around a large cylinder of ra-

dius a = 2.0. The plane is inclined at α = 45o, the contact angle is set to

θ = 90o and the inverse Bond number is B = 1.

forces) results in a �attening of the centre line pro�les. The far �eld truncation is

extended for large B due to the large distances required for the free surface to return

to a completely �at pro�le in these cases. In addition the deepest point behind the

obstacle moves from the cylinder wall further downstream for the cases of large B. This

is due to the relatively large upstream peak forcing �uid on the downstream edge of the

obstacle up the cylinder wall due to the strength of the surface tension. Values of the

maximum and minimum �lm de�ection are given in �gure 6.9b for a �xed geometry and

indicate the dependence of �lm de�ection on inverse Bond number B, corresponding to

the results in �gure 6.9a. Results show a similar trend to �ow over a hemisphere, as

shown in �gure 4.18. As the the inverse Bond number increases, the amplitude of both
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Figure 6.8: Pattern of streamlines starting at x3 = −0.5 upstream of the cylinder and

for a range of x2 locations. Flow is around a circular cylinder of radius

a = 0.5, on a plane inclined at α = 45o. The �ow has an inverse Bond

number of B = 1 and the contact angle is θ = 90o.

the peak and trough de�ection decrease. The peak heights are a�ected more severely due

to the higher curvature values in this region of the free surface. In addition, values for

peak height and trough depth appear to tend towards constant values as B is increased.

Figure 6.10 shows the contact line pro�le around the cylinder wall for the range of inverse

Bond numbers B depicted in �gure 6.9. Raising the inverse Bond number �attens the

�ow pro�les around the cylinder wall. Intersection of the contact line pro�les occurs

over a relatively small range of angular positions along the cylinder, between 0.67− 1.06

radians upstream of the position x1 = a.
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Figure 6.9: Solutions for �ow at various inverse Bond number B, down an inclined

plane at α = 45o around a cylinder of radius a = 0.5 and contact angle

θ = 90o. Part (a) shows centre line free surface elevations and (b) values

of maximum and minimum de�ection as inverse Bond number changes.
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Figure 6.10: Contact line solutions for free surface de�ections on a plane inclined at

α = 45o around a cylinder of radius a = 0.5. The �ow has various values

for inverse Bond number B. The contact angle at the cylinder wall is

θ = 90o.

Figure 6.11a illustrates solutions for a range of plane inclination angles α. Flow is for an

inverse Bond number B = 1 and around a cylindrical obstacle of radius a = 0.5. The free

surface/obstacle interface was modelled by a contact angle of θ = 90o. Increasing the

inclination angle results in a raising of the peak before the obstacle. The trough depth

behind the obstacle varies depending on the wall angle used. This is in comparison with

the earlier results for �ow over hemispheres where a steeper plane inclination resulted

in a shallower trough behind the obstacle. The peak location in front of the obstacle

is una�ected by a decrease in plane angle. Figure 6.11b illustrates the dependence of

maximum and minimum �lm height on plane inclination angle, α, as seen in �gure

6.11a. The values of peak �lm height follow a similar trend to the results for �ow over

a hemisphere as shown in �gure 4.19. As the plane angle is increased the maximum �lm

height increases, but at a progressively slower rate. The minimum �lm height does not
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follow the monotonic trend of �gure 4.19; the trough is seen to initially deepen as the

plane inclination is raised, before becoming progressively less shallow.

Figure 6.12 illustrates the contact line pro�le around the cylinder wall for the range of

inclination angles depicted in �gure 6.11. The steep planes cause a raise in the contact

height upstream of the obstacle.

Figure 6.13a shows the smoothed centre line solutions for �ow around a range of cylinders

with varying radii. Flow is for an inverse Bond number B = 1 and down a plane inclined

at α = 45o. The obstacle was chosen to be neutrally wetting, (i.e. the contact angle

was θ = 90o). Increasing the cylinder radius results in a raising of the peak before the

obstacle and a deepening of the trough behind it. This is a similar trend to that found

earlier, and shown in �gure 4.9. Figure 6.13b shows values of maximum and minimum

�lm de�ection for solutions shown in �gure 6.13a, indicating the dependence of �lm

de�ection on cylinder radius, a. There is an approximately linear dependence for both

cases, with the maximum �lm height increasing and the minimum �lm height decreasing,

with cylinder radius.

Figure 6.14 illustrates the contact line pro�le around the cylinder wall for the range of

cylinder radii depicted in �gure 6.13. The large cylinders cause a rise in the contact height

upstream of the obstacle and a lowering of the contact height downstream. Interestingly,

intersection of the contact line pro�les occurs at an approximately �xed angular position

along the cylinder, between 0.94−0.98 radians upstream of the position x1 = a. Further

re�nement of the mesh around the cylinder may cause this range of angular position to

diminish.

Figure 6.15a shows the smoothed centre line solutions for �ow around a cylinder of

radius 0.5. Flow is for an inverse Bond number B = 1 and down a plane inclined at

α = 45o. The solutions show a range of wetting and non-wetting �ow con�gurations

corresponding to a range of contact angles θ. Decreasing the contact angle results in

a raising of both the peak height before the obstacle and the trough behind it. In
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Figure 6.11: Solutions for �ow around a cylinder of radius a = 0.5 and contact angle

θ = 90o with an inverse Bond number B = 1 and down a plane of various

inclinations. Part (a) indicates the centre line solutions and (b) values

of maximum and minimum de�ection as the plane inclination changes.
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Figure 6.12: Contact line solutions for free surface de�ections for �ow down a plane

at various inclination angles and around a cylinder of radius a = 0.5.

The �ow has an inverse Bond number of B = 1 and the contact angle

at the cylinder wall is θ = 90o.

addition for wetting obstacles, maximum peak height occurs on the cylinder wall instead

of a small distance from the cylinder. In contrast the non-wetting obstacles cause the

minimum of the trough to occur at the cylinder instead of a small distance downstream

of the obstacle. Figure 6.15b shows the trend of maximum and minimum �lm height for

contact angle θ, with values corresponding to the results in �gure 6.15a. Results show

that for θ ≤ 90o, the maximum heights decrease approximately linearly with increasing

θ, and corresponds to �lm pro�les where the peak occurs at the cylinder wall. Maximum

heights for θ > 90o decrease at a slower rate, corresponding to peak �lm heights occurring

away from the cylinder wall. For θ < 90o but increasing, the trough depth decreases at a

slow rate, corresponding to cases where the �lm minimum occurs away from the cylinder

wall. For θ ≥ 90o, minimum heights decrease more quickly, and approximately linearly

with increasing θ, corresponding to results where the �lm minimum occurs against the
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Figure 6.13: Solutions for �ow around a cylinder of varying radius, with inverse Bond

number B = 1, plane inclination of α = 45o and contact angle of θ = 90o.

Part (a) indicates the centre line solutions and (b) values of maximum

and minimum de�ection as cylinder radius changes.

137



Chapter 6: Stokes Flow Around Obstacles

0 1 2 3 4 5 6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Angular Position On Cylinder

x
3

a = 0.5
a = 1.0
a = 1.5
a = 2.0

Figure 6.14: Contact line solutions for free surface de�ections around a cylinder of

varying radius, with inverse Bond number B = 1 and down a plane

inclined at α = 45o. The contact angle at the cylinder wall is θ = 90o.

cylinder wall.

Figure 6.16 shows the contact line pro�les around the cylinder wall for the range of con-

tact angles depicted in �gure 6.15. As the contact angle is raised, the contact line pro�le

becomes sharper due to its greater e�ect downstream than upstream of the cylinder.

6.3.2 Multiple Solutions

The existence of multiple solutions for �ow down a vertical plane will be demonstrated.

Multiple solutions occur, when for the same �ow parameters (i.e. Bond number, plane

angle and obstacle geometry), �ow can either exist completely submerging the obstacle

or �owing around the obstacle. Take α = 90o, Bo = 1 and a cylinder radius a = 0.5,

and for �ow around a cylinder the static contact line angle is set at θ = 105o. The

138



Chapter 6: Stokes Flow Around Obstacles

−8 −6 −4 −2 0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
(a)

x1(x2 = 0)

x
3

θ = 50o

θ = 70o

θ = 90o

θ = 110o

θ = 130o

50 60 70 80 90 100 110 120 130
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
(b)

θ

x
3

Maximum
Minimum

Figure 6.15: Solutions for various contact angles applied at the cylinder of radius

a = 0.5 attached to a plane inclined at α = 45o. The �ow has an inverse

Bond number B = 1. Part (a) indicates the centre line solutions and (b)

values of maximum and minimum de�ection for various contact angles.
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Figure 6.16: Contact line solutions for various contact angles at the cylinder wall.

The free surface de�ections are around a cylinder of radius a = 0.5 on

an inclined plane at α = 45o and the �ow has an inverse Bond number

B = 1.

free surface was solved in the domain −8 ≤ x1 ≤ 10 and −8 ≤ x2 ≤ 8 with the zero

gradient far �eld conditions implemented. For the outer mesh, and for the complete �ow-

over mesh the surface was discretized into 36× 32 elements (neglecting an inner re�ned

region for the �ow-over discretization). The previous transitional mesh for �ow around

the cylinder was retained, utilizing 6 elements with scaling factor 0.65. The cylinder

was discretized by splitting the walls into �ve rows of elements, and the circumferential

mesh (and top) of the cylinder was generated by four successive subdivisions. For �ow

over the cylinder, a parameter continuation method is adopted as for the case of large

hemispherical obstacles already considered. This allows the cylinder to be increased

above the undisturbed �lm height, allowing multiple solutions to be found.

Figure 6.17 indicates that the �ow pro�le around a cylinder is below the top of the

truncated cylinder used to obtain �ows over a cylinder. The truncated cylinder varies
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Figure 6.17: Comparison of the sloped cylinder top between x3 = 0.42 and x3 = 0.12,

and contact line for �ow around the cylinder of radius a = 0.5. The �ow

is down a vertical plane (α = 90o), with a Bond number Bo = 1.0, and

a contact angle of θ = 105o.

linearly between x3 = 0.42 and x3 = 0.12. Thus multiple solutions exist for this set of

�ow parameters. Figure 6.18 indicates the corresponding centre line solutions for x2 = 0

and x1 = 0. The �ow intersected by the obstacle is subject to a 105o contact angle,

and as such it is clearly seen that any more severely non-wetting obstacle can exhibit

multiple solutions in this scenario.

For �ow over or around a given cylinder, the existence of multiple solutions for varying

�ow parameters can be examined. Analysis is conducted for a cylinder of radius a = 0.5

with top sloped linearly in the x1 direction between heights x3 = 0.3 and x3 = 0.0. The

cylinder geometry is �xed and possible multiple solutions obtained for variations in the

inverse Bond number B, and plane inclination angle α. For �ow around the cylinder,

three contact angles are analyzed, θ = 90o, 105o, 120o. Possible multiple solutions are
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Figure 6.18: Centre line solutions in the (a) x1 and (b) x2 direction for �ow over

and around a cylinder of radius a = 0.5 and top sloped linearly between

x3 = 0.42 and x3 = 0.12. The �ow is down a vertical plane (α = 90o),

with a Bond number Bo = 1.0 and the contact angle is θ = 105o.
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characterized by the maximum �lm height of the �uid �ow.

Figure 6.19 provides a map of solutions, characterized by maximum �lm height, for �ow

over or around the prescribed cylinder for variations in the inverse Bond number B.

The plane inclination is �xed at α = 90o. Black lines indicate results for �ow over the

cylinder, and coloured lines results for �ow around the cylinder for the three selected

contact angles. Results are produced for the values of B indicated in the �gure. For

�ow over the cylinder, an inverse Bond number of B = 1 is considered, and progressively

increased. Numerical simulations are successful up to and including B = 1.6, with the

numerical method found to fail within the region 1.6 < B ≤ 2. This is indicated in

the �gure by | → and is a consequence of the free surface impinging on the top of the

truncated cylinder. For �ow around the cylinder, results are obtained for B = 5, and the

inverse Bond number is progressively reduced until the �ow no longer remains below the

top edge of the cylinder with failure indicated in the �gure by ← |. For θ = 90o results

are obtained for B ≥ 3.5, with failure in the region 3 ≤ B < 3.5 and for θ = 105o results

are found for B ≥ 1.6, with failure in the region 1.2 ≤ B < 1.6. When a contact angle

of θ = 120o is used, results are obtained for all B considered. For values of B ≤ 1.6, two

distinct solution are possible corresponding to both �ow over and �ow around a circular

cylinder of �nite height. In all cases the regions of failure can be re�ned by evaluation

of the �ow at a greater number of inverse Bond numbers.

Figure 6.20 indicates the existence of possible twin solutions, characterized by maximum

�lm height, for �ow over or around the prescribed cylinder for variations in the plane

inclination angle α. The inverse Bond number of the �ow is constrained to B = 1. A

black line indicates results obtained for �ow over the cylinder, and coloured lines results

for �ow around the cylinder with the three di�erent contact angles prescribed. Results

are produced for the values of α indicated in the �gure. When �ow is over the cylinder,

a plane inclination of α = 90o is considered, and progressively reduced. Numerical

simulations are successful for plane angles down to and including α = 54o, with failure

of the numerical method in the region 45o ≤ α < 54o. This is indicated in the �gure
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Figure 6.19: Map of possible solutions for �ow down a vertical plane (α = 90o), over

and around a cylinder of radius a = 0.5 with top sloped between x3 = 0.3

and x3 = 0.0. Results are illustrated by maximum �lm height, hmax at

a given inverse Bond number B for three di�erent contact angles.

by ← | and is a consequence of the free surface impinging on the top of the truncated

cylinder. For �ow around the cylinder, results are obtained for α = 9o, and the plane

is progressively steepened until the �ow no longer remains below the top edge of the

cylinder, with failure indicated in the �gure by | →. For θ = 90o results are obtained for

α ≤ 18o with failure in the region 18o < α ≤ 27o and for θ = 105o results are produced

for α ≤ 36o with failure within 36o < α ≤ 45o. When a contact angle of θ = 120o is

used, results are obtained for all plane angles considered. For values of α ≥ 54o both

solution for �ow around and over the cylinder are obtained, identifying the possibility

of multiple solutions. Re�nement of the failure regions can be achieved by evaluation of

�ows at a greater number of plane inclination angles.

Failure to produce solutions in the cases considered in �gures 6.19 and 6.20 corresponds
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Figure 6.20: Map of possible solutions for �ow with an inverse Bond number of B =

1.0, over and around a cylinder of radius a = 0.5 with top sloped between

x3 = 0.3 and x3 = 0.0. Results illustrate maximum �lm height, hmax at

a given plane inclination angle α, for three di�erent contact angles.

to non-convergence of the iterative approach when �nding the position of the contact line.

As commented before, in the case of �ow over the cylinder the solution breaks down when

the free surface approaches the top surface of the cylinder given that in its formulation no

contact condition is considered. On the other hand, the case of �ow around the cylinder

is more complex since as the �lm thickness grows the contact line can move from the

cylinder wall to its top surface, with the possibility that the wall and part of the top are

simultaneously wetted. The numerical formulation for �ow around obstacles presented

in this chapter, only considers cases where the contact line is de�ned along the cylinder

wall (see comments given after equation (6.1.1)), and therefore the wetting of the top

surface of the cylinder cannot be predicted. It appears that in the cases considered for

�ow around the cylinder, the breakdown of the solution occurs when the �ow condition

is such that the �uid tends to overcome the obstacle, partially wetting the top of the
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cylinder (dry spot). The results reported in �gures 6.19 and 6.20 are consistent with this

condition; in the case of θ = 90o the maximum �lm height is found at the contact line

and consequently failure is expected when the maximum �lm height approaches the top

of the cylinder, i.e. hmax
∼= 0.3, while in cases when θ > 90o (non-wetting condition) the

maximum �lm height is found inside the �uid domain, in front of the cylinder, with a

smaller value at the contact line (see �gures 6.15 and 6.16). Therefore, as reported in

�gures 6.19 and 6.20 for non-wetting conditions, it is possible to have a maximum �lm

height larger than the cylinder height without submerging it.

The most signi�cant feature observed in these results is the possibility of having multiple

solutions, i.e. �ow over and around the cylinder, given the same asymptotic upstream

�ow conditions when the cylinder wall has a non-wetting contact condition (θ > 90o)

applied.

6.3.3 Solutions For Flow Around Two And Three Cylinders

This section considers the �ow pro�les for Stokes �ow around two and three cylinders

in a range of con�gurations. For �ow around two cylinders, a range of relative obsta-

cle locations are considered. For two cylinders lying in-line with the �ow direction, a

parameter analysis is considered, where e�ects of changing the inverse Bond number B,

plane inclination angle α, cylinder radius a, and contact angle θ are investigated.

Comparison of �ow around two cylinders, of equal radius a = 1.0 and spaced symmetri-

cally with respect to the axis by (x1sep , x2sep) are considered with the cylinders centred

on (±x1sep

2 ,±x2sep

2 ). Flow in each case has a Bond number Bo = 1.0 and is down a plane

inclined at α = 45o. A contact angle condition of θ = 90o is prescribed. Flow around a

single cylinder located at (0, 0) has far �eld locations −8 ≤ x1 ≤ 13 and −8 ≤ x2 ≤ 8

and this is extended similarly to that described in the previous chapter for �ow over two

hemispheres.
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Figure 6.21 illustrates the centre line (x2 = 0) pro�les of surface elevation for �ow

around two cylinders in-line with the incident �ow and with various spacings. Compar-

ison pro�les are given for �ow around a single cylinder at (±x1sep

2 , 0). For all cases of

obstacle separation, the �ow pro�le generated by the upstream cylinder appears to be

close to the pro�le for a single cylinder. When the separation is increased, �ow around

the downstream cylinder approximates more closely the deformation caused by a single

obstacle. As the separation increases the wake decays after the leading cylinder and

the incident �ow con�guration to the rear obstacle approaches that of an undisturbed

�ow. As the obstacles are moved closer together the peak height incident on the cylinder

wall decreases. For x1sep ≥ 6, the �ow around the rear obstacle stems from the same

location on the back edge of the upstream cylinder. The �ow height on the back edge of

the downstream cylinder is slightly reduced as the obstacles are brought closer together,

although any changes are small. For x1sep = 4, the pro�le fundamentally changes, with

the �lm height on the back edge of the upstream cylinder raised signi�cantly, and the

�lm height at the upstream edge of the rear cylinder lowered. The �ow pro�le in this

case is shown as a contour plot in �gure 6.24, for x1sep = 4 and x2sep = 0.

Figure 6.22 shows the centre line (x1 = 0) pro�les for �ow around two cylinders symmet-

rically positioned perpendicular to the incoming �ow direction. Dashed pro�les indicate

the �ow pro�les around a single cylinder at (0,±x2sep

2 ). For large separations (x2sep ≥ 6),

the pro�les around the double obstacle are accurately approximated by the �ow pro�les

for two single obstacles, with the outer regions of the �ow pro�les remaining consistent

with the corresponding single obstacle solution. The lowest free surface height in the

merged inner region of the �ow slowly increases from the undisturbed �lm height as the

cylinders are brought closer together. For x2sep = 4, the outer regions of the �ow pro�le

di�er from the corresponding single obstacle analysis, with a raised contact point on the

cylinder wall. The �lm height of the inner region is raised signi�cantly as the �ow is

forced through the small gap between the cylinders. A contour plot of this pro�le is

shown in �gure 6.24, for x1sep = 0 and x2sep = 4.
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Figure 6.21: Centre line pro�les for various cylinder separations x1sep
in line with the

�ow. The �ow has a Bond number of Bo = 1.0, is down a plane inclined

at α = 45o, and the cylinder has a radius of a = 1.0, and contact angle

of θ = 90o.
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Figure 6.22: Centre line pro�les for various cylinder separation distances x2sep per-

pendicular to the �ow. The �ow has a Bond number of Bo = 1.0, is down

a plane inclined at α = 45o, and the cylinder has a radius of a = 1.0

and contact angle of θ = 90o.
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Figure 6.23: Three-dimensional solution pro�le for two cylinders separated by x1sep =

4, x2sep
= 4. Flow parameters are; Bo = 1.0, a = 1.0, α = 45o, and

θ = 90o.

Figure 6.23 shows the full free surface for the analysis of �ow around two o�-set cylinders

separated by x1sep = x2sep = 4. The �ow is incident to the �rst cylinder, and as the

�ow peak splits around the obstacle, one of these raised ridges is incident onto the

downstream cylinder. This thicker �lm region causes the peak formed around the rear

cylinder to increase, before decaying with a typical wake structure for a single cylinder.

The individual pro�les around each cylinder are su�ciently close to exhibit interaction

with each other as is illustrated by the associated contour plot in �gure 6.24.

Figure 6.24 illustrates three contour plots for the obstacle con�gurations corresponding

to �gures 6.21, 6.22 and 6.23. Taking x1sep = 4, x2sep = 0 the �ow is symmetric about
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x2 = 0 and the highest points on the free surface occur on the upstream edge of the

two cylinders. The rapid rise in �lm height is shown between the two cylinders as the

trough from the leading cylinder develops into the peak of the downstream obstacle.

The centre line plot for this �ow can also be seen in �gure 6.21. The contour plot for

the case x1sep = 0, x2sep = 4 illustrates just a single, wide peak occurring and covering

the leading edges of the two cylinders. The peak decays into a trough just behind

each of the cylinders, with the raised �ow forced between the cylinders decaying to the

undisturbed �lm height further downstream. The contour plot for the non-symmetric

case x1sep = 4, x2sep = 4 shows the contours of �ow around two o�-set cylinders with the

downstream cylinder generating a slightly larger peak. The rear cylinder is seen to lie

in the decaying peak of the upstream cylinder causing the range of this peak to extend

further downstream.

A parameter analysis is conducted demonstrating the e�ects of altering the inverse Bond

number B, plane inclination angle α, obstacle radii a, and contact angle θ. An inline

con�guration with x1sep = 8 is taken. Default values for the �ow parameters include an

inverse Bond number of B = 1, a plane inclination angle of α = 45o, circular cylinders of

radius a = 1.0, and a contact angle condition of θ = 90o. In each case, three parameters

are chosen from above and the e�ects of altering the fourth analyzed.

Figure 6.25 illustrates the surface elevation along the centre line (x2 = 0) for variations

in inverse Bond number, with an increase in B showing a �attening and smoothing of

the pro�les associated with an increase in surface tension. For B = 1, the centre line

pro�les undergo large variations in �lm height. The e�ects of increasing B is to raise the

lowest points and lower the highest points of the �lm, minimizing the deformation of the

free surface. In common with the single obstacle analysis shown in �gure 6.9 and the

earlier dual hemisphere analysis, the inverse Bond number causes the �lm disturbance

to span a greater region upstream in the x1 direction.

Figure 6.26 illustrates the centre line (x2 = 0) surface elevations for changes in the plane
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Figure 6.24: Contour plots for (x1sep
, x2sep

) = (4, 0), (0, 4), (4, 4), for �ow around

cylinders of radius a = 1.0. Other �ow parameters are; Bo = 1.0,

α = 45o, and θ = 90o.
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Figure 6.25: Centre line solution pro�les for two cylinders separated by x1sep = 8,

indicating the e�ects of varying the inverse Bond number B. The plane

is inclined at α = 45o. The cylinder radius is a = 1.0, and a contact

angle of θ = 90o is used.

inclination angles α. It is noted that the steeper the plane wall, the larger the peak

that is formed on the cylinders. Interestingly the larger cylinders analyzed here when

compared to results shown in �gure 6.11 show the �lm height on the downstream edge

of the cylinder to be raised as the plane angle is decreased. This is in contrast to the

single cylinder results which showed the downstream location to be close for all plane

angles and not monotonic.

Figure 6.27 shows the centre line (x2 = 0) pro�les for variations in cylinder radius.

Larger cylinders cause greater deformations of the free surface, with increasing peak

and decreasing trough heights around the upstream cylinder. In addition, the trough of

the downstream cylinder is lowered with increasing cylinder radius. The corresponding

peak at the downstream cylinder for successive heights a = 0.5, 1.0, 1.5 is increased,
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Figure 6.26: Centre line solution pro�les for two cylinders separated by x1sep
= 8,

indicating the e�ects of varying the plane inclination angle α. The �ow

has an inverse Bond number of B = 1.0, and the cylinder radii are

a = 1.0. The cylinder contact angle is θ = 90o.

however the peak height on the centre line associated with a = 2.0 is actually lower than

the corresponding height for a = 1.5. In this latter case the deeper trough behind the

upstream cylinder, associated with a = 2.0, forces the peak at the downstream cylinder

to be reduced due to the large variation in �lm height necessary.

Figure 6.28 shows the centre line (x2 = 0) pro�les for variations in the contact angle

at the cylinder/free surface interface. Results show the pro�les are altered signi�cantly

depending on whether a wetting or non-wetting condition is applied at the cylinder.

It is interesting to note the global e�ect of this local parameter variation. When a

wetting condition is applied i.e. θ < 90o, the peaks maximize at the cylinder wall, and

the minimum �ow height is found a small distance from the cylinder. For non-wetting

cylinders i.e. θ > 90o, the peak heights occur away from the cylinder wall and the �ow
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Figure 6.27: Centre line solution pro�les for two cylinders separated by x1sep
= 8,

indicating the e�ects of varying the cylinders radii a. The �ows inverse

Bond number is B = 1.0, and the plane is inclined at α = 45o. The

contact angle at the contact line is θ = 90o.

height minimizes at the point of contact. These results are consistent with the case of a

single cylinder (see �gure 6.15).

The �ow around three cylinders in two geometrical con�gurations is considered. Flow

is taken down a plane inclined at α = 45o and has a Bond number Bo = 1. Flow is

around circular cylinders of radius a = 1.0, with a contact angle condition of θ = 90o

applied. Cylinders are positioned in a symmetrical triangular array, with either a twin

or single leading cylinder considered. A twin leading con�guration is illustrated in �gure

6.29 and consists of the upstream �ow incident on two cylinders spaced perpendicularly

to the �ow direction at centres (−2,−2), (−2, 2). This is followed by a trailing cylinder

centered at (2, 0). The con�guration shown in �gure 6.30 consists of the upstream �ow

incident on one obstacle centered at (−2, 0) followed by two downstream cylinders spaced
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Figure 6.28: Centre line solution pro�les for two cylinders separated by x1sep
= 8,

indicating the e�ects of varying the static contact line angle θ. The

inverse Bond number is B = 1.0, the plane is inclined at α = 45o and

the cylinder radii is a = 1.0.

perpendicularly to the �ow direction with centres at (2,−2), (2, 2). For both cases, three

peaks are clearly seen incident to the upstream edges of each cylinder.

6.3.4 Flow Over Then Around Identical Cylinders

The capability of the numerical method is demonstrated by considering the �ow con�gu-

ration of two identical cylinders, aligned in the direction of the �ow, where the �lm passes

over the leading cylinder, but due to the surface depression from its wake passes around

the downstream cylinder. Flow is down a plane inclined at α = 90o, the cylinder radii is

a = 1.0 and the �ow has a Bond number of Bo = 1.0. For the rear cylinder, a contact

angle is prescribed and minimized whilst still maintaining the �ow to pass around the

prescribed cylinder. The upstream cylinder top is sloped linearly in the direction of the
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Figure 6.29: Three-dimensional solution pro�le for three cylinders located at (−2, 2),

(−2,−2), (2, 0). The Bond number of the �ow is Bo = 1.0, the plane is

inclined at α = 45o, and the cylinder radii and contact angle are a = 1.0

and θ = 90o respectively.

�ow and meshed as described earlier in this chapter.

This is an extension of the multiple solution work presented earlier. If the cylinders sep-

aration approaches ∞ in the x1 direction, then the �ow will fully return to its upstream

form and the two pro�les (over and around the cylinder) can be formed. As the obstacles

are brought closer together the e�ects of the wake behind the upstream cylinder will act

to relax the constraining contact angle condition necessary at the downstream cylinder.

A cylinder with a sloped top between x3 = 0.6 at the upstream edge and x3 = 0.0 at

the downstream edge is considered. Flow pro�les over and around a single cylinder,
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Figure 6.30: Three-dimensional solution pro�le for three cylinders located at (−2, 2),

(−2,−2), (2, 0). The Bond number of the �ow is Bo = 1.0, and the plane

is inclined at α = 45o. The cylinder radii are a = 1.0, and a contact

angle of θ = 90o is applied at each contact line.

corresponding to the theoretical case of in�nitely spaced cylinders, and double obstacle

solutions with spacings x1sep = 8 and x1sep = 4 are produced. In each case the contact

angle θ is minimized whilst maintaining �ow around the prescribed cylinder. Table

6.2 indicates the necessary minimum contact angle required to force �ow around the

downstream cylinder.

Figure 6.31 shows four solutions, the �rst two indicate the centre line solutions for a

single obstacle analysis for �ow over, and around the prescribed cylinder. For multiple

solutions to be produced, the contact angle at the cylinder wall is constrained to θ ≥ 111o.

The �nal two centre lines indicate multiple solutions for �ow over then around identical
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Figure 6.31: Centre line pro�les for �ow over and around a single cylinder and over

then around two cylinders at �nite separations. The contact angle is

minimized whilst maintaining �ow around the cylinder. Flow parame-

ters are; Bo = 1.0, α = 90o, and a = 1.0.
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x1sep Minimum Contact Angle θ

∞ 111o

8 104o

4 100o

Table 6.2: Minimum contact angles required for �ow to pass around the downstream

cylinder, of radius a = 1.0 and top sloped linearly in the x1 direction

between x3 = 0.6 and x3 = 0.0
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Figure 6.32: Contact line solutions for �ow around each of the cylinders in �gure

6.31, con�rming that �ow is always below the top of a cylinder of radius

a = 1.0 with top sloped between x3 = 0.6 and x3 = 0.0. The �ow has a

Bond number of Bo = 1.0, and the plane is vertical (α = 90o).
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cylinders spaced by �nite separations x1sep = 8 and 4. As the cylinders are moved closer

the pro�les over each obstacle interact more severely and the contact angle condition

necessary at the downstream cylinder is reduced.

Figure 6.32 illustrates the contact lines and cylinder top for the three scenarios for �ow

around a cylinder depicted in �gure 6.31. Clearly in each case the �ow pro�les remain

below the cylinder top, and in general as the cylinders are brought closer together, a

�attening of the highest region of the pro�les occurs.
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Chapter 7

Small Inertial E�ects Of Flow Over

And Around Obstacles

Film pro�les so far have been modelled using a Stokes �ow approximation, and although

typical �lm �ows within a bearing chamber often have low Reynolds number, the e�ects of

the convective term may still be relevant regarding the free surface and velocity pro�les.

This chapter considers small inertial e�ects for �lm �ows both over and around circular

cylinders.

Section 7.1 overviews existing literature for the analysis of �ows at low Reynolds num-

ber. Within this literature, the validation of numerical schemes is usually conducted

for �ow in a lid-driven cavity. Due to the size of the three-dimensional �lm domain,

an e�cient numerical algorithm for evaluation of the convective term within the Navier

Stokes equations is required. Section 7.2 considers �ow in a three-dimensional lid-driven

cavity for analysis of a computationally e�cient numerical algorithm used to evaluate

low Reynolds number �ows. Solutions to the Navier-Stokes equations are found via the

boundary element method (BEM) using an iterative technique. Conventional methods

linearly approximate the convective term and solve for domain velocities and unknown

boundary variables together. An alternative, more e�cient approach where the convec-

tive term is evaluated directly from a previous estimate is considered, and the homoge-

neous and particular components of the �ow are solved separately. In addition, to further
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reduce the computational requirements of the �ow problem, a local mass conservative in-

terpolation for the velocity �eld is implemented. Section 7.3 considers the inertia e�ects

for �lm �ows over and around circular cylindrical obstacles, using the e�cient numerical

algorithms developed for the case of a lid-driven cavity.

7.1 Literature Review

The boundary element method (BEM) is a well established technique for solving Stokes

�ow problems. However di�culties occur when extending the formulation to the non-

linear problem of �nite Reynolds number �ows. In these cases the integral representations

contain domain integrals caused by the convective term, and the evaluation of these

integrals is a major aspect of current research.

The domain integrals within the formulation can be solved e�ectively using techniques

such as �nite di�erence approximations (FDAs) and the �nite element method (FEM).

However these methods result in the loss of the boundary-only nature of the formu-

lation. Methods have been developed which transform these domain integrals to the

boundary, for example the dual reciprocity method (DRM) and the particular integrals

technique (PIT) as developed by Nardini and Brebbia [43] and Ahmad and Banerjee [54]

respectively. In the latter method, solutions are decomposed into a homogeneous and

particular component satisfying the corresponding homogeneous and non-homogeneous

partial di�erential equations (PDE). The particular solution fails to satisfy the bound-

ary conditions of the problem, and thus the boundary conditions of the homogeneous

PDE are modi�ed to retain the original boundary conditions. The homogeneous PDE is

solved by the corresponding integral equation with these new boundary conditions ap-

plied. This particular solution concept is used within the DRM but instead of solving for

homogeneous and particular components separately, the domain integral is converted to

boundary integrals by use of the divergence theorem. As the non-homogeneous convective

term is unknown for this analysis, both the PIT and DRM approaches are numerically
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equivalent.

The later work by Power and Botte [55] used a particular solution technique (PST)

to solve low Reynolds number �ow in a lid driven cavity. The formulation is based

on the PIT approach, with the numerical procedure solving for the homogeneous and

particular components separately. In addition an indirect BEM is used for solution of

the homogeneous component. This PST method o�ered substantial bene�ts to the DRM

and PIT models, reducing the computational cost of the numerical procedures.

When solving the Navier-Stokes equations, the nonlinear convective term requires accu-

rate values for the derivatives of the velocity �eld. Conventional methods use a standard

interpolation for the velocities, from which the derivatives can be found. However, these

methods do not satisfy mass conservation causing inaccuracies, especially in regions of

coarse mesh, or high velocity gradients. Use of a mass conservative interpolation was

introduced by Florez and Power [56], and will be implemented throughout this chapter.

Solution of the Navier-Stokes equations using the DRM or other similar approaches often

results in numerical schemes that require excessive computational requirements. Specif-

ically, in cases where a mass conservative interpolation of the velocity �eld is used, both

RAM and CPU time necessary to conduct the global radial basis function (RBF) in-

terpolation may become prohibitive. Thus a local mass conservative RBF interpolation

may be considered, with the possibility of signi�cantly reducing the computational re-

quirements. Local interpolations are discussed brie�y in chapter 3, and Yamada et al.

[57] show that despite the RBF interpolation being globally de�ned, it exhibits local

behaviour when reconstructing the approximated function.

Reducing the computational requirements necessary for �nding �ow pro�les at low

Reynolds number is a priority. Thus, for the case of three-dimensional �lm �ows at

low Reynolds number, the PST approach is implemented. The following section de-

velops the method for �ow within a three-dimensional lid driven cavity with solutions

produced in an iterative fashion. Initially a global mass conservative RBF interpolation
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Figure 7.1: Schematic showing �ow in a three-dimensional lid driven cavity.

is implemented. The particular solutions and BEM are solved together (as in the PIT)

and separately (as in PST) at each iteration, and the e�ects on computational require-

ment reported. In the case of the PST solutions, a local RBF for the mass conservative

velocity interpolation has also been implemented to further reduce the computational

requirements of the problem.

7.2 Formulation And Numerical Schemes

For a large three-dimensional problem, conventional methods for extending Stokes �ows

solved using the boundary element method (BEM) to incorporate inertia e�ects can

require prohibitively large computational resources. As a result, an e�cient numerical

algorithm for including the e�ects of low Reynolds number is developed, with validation

considered for the case of a three-dimensional lid driven cavity.

Figure 7.1 illustrates a schematic of a three-dimensional lid driven cavity. The domain

Vc is bounded by the surface D = DT ∪ DR, where the top of the domain DT has

a prescribed velocity of unit speed in the x1 direction. The edges of the domain are

de�ned by x1 = ±0.5, x2 = ±0.5, and x3 = ±0.5.
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Flow within the cavity is governed by the usual incompressible equations for mass con-

tinuity (7.2.1) and Navier-Stokes (7.2.2),

∂ui
∂xi

= 0, (7.2.1)

− ∂p

∂xi
+
∂2ui
∂x2

j

= Re uj
∂ui
∂xj

, (7.2.2)

subject to the no slip boundary conditions

ui = δi1 x ∈ DT , (7.2.3)

ui = 0 x ∈ DR. (7.2.4)

The inclusion of the convective term within a boundary integral formulation can take

two forms, the dual reciprocity method [43] is �rst considered in the following subsection.

The alternative homogeneous and particular solution approach [54] is then considered.

7.2.1 The Dual Reciprocity Method

The dual reciprocity method (DRM) as developed by Nardini and Brebbia [43] involves

formulating the integral equations for the Navier-Stokes equations, and converting the

domain integral for the convective term into boundary integrals. From the Lorentz

reciprocal relation in chapter 2

u′j
∂σij
∂xi
− uj

∂σ′ij
∂xi

=
∂

∂xi
(u′jσij − ujσ′ij). (7.2.5)

Set,

ui(x) =
1

8π
Gim(x,x0)bm, (7.2.6)

σik(x) =
1

8π
Timj(x,x0)bm, (7.2.7)

as in chapter 2, but in this case

∂σij
∂xi

= Bj = Re uk
∂uj
∂xk

, (7.2.8)
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instead of zero as for Stokes �ow. Proceeding as before for Stokes �ow, and substituting

(7.2.6) - (7.2.8) into (7.2.5) yields

∂

∂xi

(
1

8π
Gjm(x,x0)bmσij − uj(x)

1
8π
Timj(x,x0)bm

)
=

1
8π
Gjm(x,x0)bmBj − uj(x) (−δ(x− x0)δjmbm) .

(7.2.9)

Dividing through by bm and integrating over the domain Vc yields∫
Vc

um(x)δ(x− x0)dV (x) +
1

8π

∫
Vc

Gjm(x,x0)BjdV (x)

=
∫
D

(
1

8π
Gij(x,x0)σij −

1
8π
uj(x)Timj(x,x0)

)
ni(x)dS(x).

(7.2.10)

Exchanging the variables such that m→ j, j → i and i→ k, and noting the symmetry

properties of the stress tensor and greens function, yields the integral form for the full

Navier-Stokes equations,

uj(x0)+
1

8π

∫
Vc

Gij(x,x0)BidV (x)

=
1

8π

∫
D

Gij(x,x0)fi(x)dS(x)− 1
8π

∫
D

ui(x)Tijk(x,x0)nk(x)dS(x).
(7.2.11)

This is identical to the Stokes integral equation, but for the additional domain inte-

gral, generated by the non-zero convective term in the governing equations. Accurate

evaluation of this domain integral is necessary, and early methods involved a volume

discretization of the domain. However, this loses the boundary only nature of the prob-

lem and a more attractive method is to convert the domain integral into corresponding

boundary integrals.

Consider the interpolation of the convective term by a thin plate spline radial basis

function (RBF), ψ(x, ξ)

Bi =
n∑

m=1

βlmψ(x, ξm)δil, (7.2.12)

and the domain integral becomes∫
Vc

Gij(x,x0)BidV (x) =
n∑

m=1

βlm

∫
Vc

Gij(x,x0)ψ(x, ξm)δildV (x). (7.2.13)
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An auxiliary �ow �eld
(
ûli(x, ξm), p̂l(x, ξm)

)
is de�ned by

∂ûli(x, ξm)
∂xi

= 0, (7.2.14)

−∂p̂
l(x, ξm)
∂xi

+
∂2ûli(x, ξm)

∂x2
j

= ψ(x, ξm)δil, (7.2.15)

where solutions for
(
ûli(x, ξm), p̂l(x, ξm)

)
can be found from the corresponding inter-

polant ψ(x, ξm). The auxiliary traction is de�ned by

f̂ li (x, ξm) = σij

(
ûli(x, ξm), p̂l(x, ξm)

)
nj(x), (7.2.16)

with the stress tensor de�ned as in (2.3.2).

The integral equation for the auxiliary �ow �eld is

ûli(x0, ξm) +
1

8π

∫
Vc

Gij(x,x0)ψ(x, ξm)dV (x)

=
1

8π

∫
D

Gij(x,x0)f̂ li (x, ξm)dS(x)− 1
8π

∫
D

ûli(x, ξm)Tijk(x,x0)nk(x)dS(x).
(7.2.17)

By using the interpolation (7.2.12) to represent the body term Bi, it follows that each

component of the volume integral of its series representations is identical to those of

(7.2.17), and can be eliminated to form an equation solely in terms of boundary integrals,

cij(x0)ui(x0)

=
1

8π

∫
D

Gij(x,x0)fi(x)dS(x)− 1
8π

∫
D

ui(x)Tijk(x,x0)nk(x)dS(x)

+
n∑

m=1

βlm

cij(x0)ûli(x0, ξm)− 1
8π

∫
D

Gij(x,x0)f̂ li (x, ξm)dS(x)

1
8π

∫
D

ûli(x, ξm)Tijk(x,x0)nk(x)dS(x)

 ,

(7.2.18)

where cij(x0) is the jump parameter. For solution of (7.2.18), expressions for the auxil-

iary �ow �eld
(
ûli(x, ξm), p̂l(x, ξm)

)
(which can be found analytically) and the interpo-

lation coe�cients βlm are required.
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7.2.2 Homogeneous And Particular Solutions

An alternative approach to formulating the Navier-Stokes equations in terms of a bound-

ary only integral equation takes the form of considering homogeneous and particular

solutions as in Ahmad and Banerjee [54]. This derivation can be used to obtain an

identical governing equation to (7.2.18) for the DRM approach.

To proceed the solution variables are decomposed into homogeneous (superscript h) and

particular (superscript p) components,

ui = uhi + upi , (7.2.19)

p = ph + pp, (7.2.20)

fi = fhi + fpi . (7.2.21)

Using (7.2.19) and (7.2.20), the governing equations and boundary conditions (7.2.1)

- (7.2.4) are written in terms of homogeneous and particular components, with their

solutions discussed below.

The homogeneous governing equations are,

∂uhi
∂xi

= 0, (7.2.22)

−∂p
h

∂xi
+
∂2uhi
∂x2

j

= 0, (7.2.23)

representing Stokes �ow within the cavity. By standard techniques for a direct formula-

tion (7.2.22) - (7.2.23) can be rewritten exactly as a boundary integral equation (BIE)

for the homogeneous velocities and tractions

cij(x0)uhi (x0)

=
1

8π

∫
D

Gij(x,x0)fhi (x)dS(x)− 1
8π

∫
D

uhi (x)Tijk(x,x0)nk(x)dS(x),
(7.2.24)

where the coe�cient cij(x0) is the jump parameter. The boundary conditions applied
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when solving the BIE (7.2.24) are

uhi = δi1 − upi x ∈ DT , (7.2.25)

uhi = −upi x ∈ DR, (7.2.26)

as the particular solution fails to satisfy any boundary condition.

The particular variables satisfy the governing equations,

∂upi
∂xi

= 0, (7.2.27)

−∂p
p

∂xi
+
∂2upi
∂x2

j

= Re uj
∂ui
∂xj

, (7.2.28)

and the convective term can be interpolated as in (7.2.12), with the auxiliary �ow �eld(
ûli(x, ξm), p̂l(x, ξm)

)
de�ned by (7.2.14) and (7.2.15). Particular solutions for the �ow

�eld can be evaluated if the auxiliary solution
(
ûli(x, ξm), p̂l(x, ξm)

)
and the coe�cients

βlm (given from Bi) are known and take the form,

upi =
n∑

m=1

βlmû
l
i(x, ξm), (7.2.29)

pp =
n∑

m=1

βlmp̂
l(x, ξm), (7.2.30)

fpi =
n∑

m=1

βlmf̂
l
i (x, ξm). (7.2.31)

The integral equation (7.2.18) for the DRM approach is obtained by substituting the

homogeneous components in (7.2.24) for full and particular variables.

7.2.3 Construction Of The Convective Term And Auxiliary Flow Fields

Both of the above methods require the corresponding auxiliary solution for the RBF

used to interpolate the convective term. In addition values for the convective term are

also required. This can be achieved by using a mass conservative RBF interpolation for

the velocities.
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The convective term Bi is represented by interpolating the domain velocities with a RBF,

and then using this interpolation to evaluate the derivatives of the velocity �eld. The

interpolation is further constrained to satisfy mass conservation, as considered by Florez

and Power [56]. A thin plate spline RBF of the form

ψ(x, ξ) = r3, (7.2.32)

is chosen, where r =‖ x− ξ ‖, and in this case a second order polynomial of the form

P2 = αP1 +αP2 x1 + αP3 x2 + αP4 x3 + αP5 x1x2

αP6 x1x3 + αP7 x2x3 + αP8 x
2
1 + αP9 x

2
2 + αP10x

2
3,

(7.2.33)

is required to guarantee invertibility, along with the appropriate homogeneous constraint

condition.

The velocity �eld is represented by the Hermitian interpolation shown below

u1 =
n∑

m=1

α1
mψ(x, ξm) +

n∑
m=1

α4
m

∂ψ(x, ξm)
∂ξ1

+ P 1
2 , (7.2.34)

u2 =
n∑

m=1

α2
mψ(x, ξm) +

n∑
m=1

α4
m

∂ψ(x, ξm)
∂ξ2

+ P 2
2 , (7.2.35)

u3 =
n∑

m=1

α3
mψ(x, ξm) +

n∑
m=1

α4
m

∂ψ(x, ξm)
∂ξ3

+ P 3
2 . (7.2.36)

Corresponding derivatives of the velocity �eld are found by,

∂ui
∂xj

=
n∑

m=1

αim
∂ψ(x, ξm)

∂xj
+

n∑
m=1

α4
m

∂ψ(x, ξm)
∂ξi∂xj

+
∂P i2
∂xj

. (7.2.37)

The mass conservative formulation forms the matrix problem W3ijxj = bi, where the

�rst three rows of the matrix W3ij in (7.2.38) consists of the velocity interpolations u1,

u2 and u3 as given by (7.2.34) - (7.2.36), collocated over n data points. The fourth

row satis�es ∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

= 0, corresponding to mass conservation and applied over

the same n data points as the velocity interpolation. The �nal three rows describe the

homogeneous constraint condition, required to guarantee invertibility of the interpolation
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matrix. Thus, the matrix W3ij takes the form of

W3ij =



ψ 0 0 ∂ψ
∂ξ1

P 1
2 0 0

0 ψ 0 ∂ψ
∂ξ2

0 P 2
2 0

0 0 ψ ∂ψ
∂ξ3

0 0 P 3
2

∂ψ
∂x1

∂ψ
∂x2

∂ψ
∂x3

∂ψ
∂xk∂ξk

∂P 1
2

∂x1

∂P 2
2

∂x2

∂P 3
2

∂x3(
P 1

2

)T 0 0
(
∂P 1

2
∂x1

)T
0 0 0

0
(
P 2

2

)T 0
(
∂P 2

2
∂x2

)T
0 0 0

0 0
(
P 3

2

)T (
∂P 3

2
∂x3

)T
0 0 0



, (7.2.38)

which is of size (4n+ 30)× (4n+ 30), and summation convention is applied to the term

∂ψ
∂xk∂ξk

. The vector xj takes the form

xj =

(
α1 α2 α3 α4 αP

1
αP

2
αP

3

)T
, (7.2.39)

and vector bi the form

bi =

(
u1 u2 u3

∂uk
∂xk

0 0 0

)T
, (7.2.40)

where ∂uk
∂xk

= 0. Solution of this system allows the values of each velocity component to

be found anywhere within the domain.

The auxiliary �ow �eld is obtained by interpolating the convective term, and �nding

an analytical expression for the auxiliary velocity, pressure and traction from the inter-

polant. For interpolating the convective term (7.2.12), a thin plate spline RBF is used

of the form

ψ(x, ξ) = r, (7.2.41)

and again r =‖ x− ξ ‖. An additional �rst order polynomial

P1 = β1 + β2x1 + β3x2 + β4x3, (7.2.42)
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along with a homogeneous constraint condition is necessary to guarantee invertibility

of the system. This interpolation of the convective term requires the solution of the

matrix-vector problem W1ijβ = b̂i where the matrix W1ij is given by

W1ij =


ψ P1

(P1)T 0

 , (7.2.43)

of size (n+ 4)× (n+ 4), and the vector b̂i is

b̂i =

(
B 0

)T
. (7.2.44)

The auxiliary solutions to (7.2.14)and (7.2.15) are found by �rst representing the solution

in terms of the potential φ(r),

ûli(x, ξm) =
∂2φ(r)
∂x2

k

δil −
∂2φ(r)
∂xi∂xl

, (7.2.45)

which can be shown to satisfy conservation of mass (7.2.14). Substituting the expression

(7.2.45) for ûli(x, ξm) into (7.2.15) yields

−∂p̂
l(x, ξm)
∂xi

+
∂4φ(r)
∂x4

k

δil −
∂4φ(r)

∂xi∂xl∂x
2
k

= ψ(x, ξm)δil. (7.2.46)

The potential φ(r) is chosen to satisfy the non-homogeneous bi-harmonic equation

∂4φ(r)
∂x4

k

= ψ(r), (7.2.47)

as the RBF can be written in terms of the radial distance, r. Correspondingly, the

auxiliary pressure is given by

p̂l(x, ξm) = − ∂
3φ(r)

∂xl∂x
2
k

, (7.2.48)

and the traction is found by (7.2.16).

The potential φ(r) is found from equation (7.2.47), and the auxiliary velocity, pressure

and traction can be found from (7.2.45), (7.2.48) and (7.2.16) respectively. The potential
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and auxiliary �ow �eld is also required for the �rst order polynomial (7.2.42). In this

case, the data centre ξj is not relevant, and solutions are a function of the collocation

node xi only.

The auxiliary variables ûli, p̂
l, and f̂ li corresponding to ψ = r, ψ = 1, ψ = x1, ψ = x2,

and ψ = x3 are presented in Appendix C. It should be noted that although both ûli and

f̂ li are required for �lm �ow analysis, when considering a lid driven cavity, it is solely the

velocity �eld which is of interest. As such, the particular pressures and tractions of the

�ow �eld are not required.

7.2.4 Numerical Techniques For Solving Low Reynolds Flow In A Lid

Driven Cavity

Solution of the above formulations for the low Reynolds number �ow in a lid driven

cavity can take a range of iterative procedures. The conventional PIT approach involves

writing the problem in a boundary only integral representation. The velocity �eld from

the previous iteration is used to linearize the convective term and the numerical scheme

forms a large matrix problem, solved at each iteration for the velocity �eld within the

domain, and unknown values on the domain boundary (in this case boundary tractions).

Details of the formulation are shown later.

Alternatively, the convective term can be approximated entirely from the previous it-

eration, and the particular solution evaluated explicitly. The boundary conditions of

the integral equation for the homogeneous components can be updated and the homoge-

neous solution found throughout the domain. Although this particular solution technique

(PST) as used by Power and Botte [55] is generally less convergent than the more tra-

ditional PIT, it is appealing due to the signi�cant reduction in computational resources

required. In addition, due to the simpli�cation in explicitly �nding the particular solu-

tion, it is possible to reduce the computational requirements of the mass conservative

interpolation of the velocities further by means of a local interpolation. Details of this
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Bounding Point d1 d2 d3 d4 d5 d6 d7 d8

Bounding Value 0.7 0.3 0.2 0.15 0.1 0.05 0.02 0.01

Table 7.1: Boundary values used to determine which numerical integration approach

to implement for the case of a lid driven cavity.

method are also considered.

For all numerical schemes, the BEM is implemented with constant elements. In addition,

re�nement of the numerical integration in cases with near-point singularities consists of

a combination of the adaptive Gaussian integration algorithm and element subdivision

approach outlined in chapter 4, with bounding values modi�ed to those shown in table

7.1

Conventional Particular Integral Technique (PIT)

Within the PIT, the homogeneous BIE can be written in terms of the full velocity

variables (7.2.19), yielding

cij(x0)ui(x0)

=
1

8π

∫
D

Gij(x,x0)fhi (x)dS(x)− 1
8π

∫
D

ui(x)Tijk(x,x0)nk(x)dS(x)

+
n∑

m=1

βlm

cij(x0)ûli(x0, ξm) +
1

8π

∫
D

ûli(x, ξm)Tijk(x,x0)nk(x)dS(x)

 ,
(7.2.49)

in terms of the auxiliary velocities and it is left to �nd an approximation for βlm.

The matrix vector notation for the coe�cients β is

β = W−1
1 B, (7.2.50)

where W1 is the interpolation matrix of the RBF (7.2.43). In addition the matrix vector

notation for the mass conservative velocity interpolation is

u = W3α, (7.2.51)
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where W3 is the interpolation matrix (7.2.38) and the derivatives of the velocity are

de�ned by,

∂u
∂xj

=
∂W3

∂xj
α. (7.2.52)

Using expression (7.2.52) coe�cients β are de�ned by,

β = W−1
1 Ũj

∂W3

∂xj
W−1

3 u, (7.2.53)

where the term Ũj is a matrix with jth velocity component from the previous iteration on

the leading diagonal. Clearly in solving the BIE (7.2.49), a large system of equations is

produced covering all boundary and domain points, and requires solving at each iteration.

E�cient Implementation Of Particular Solution Techniques (PST)

Alternatively to the PIT method outlined above, a more computationally e�cient PST

approach can be developed by evaluating the particular solutions based entirely on the

data from the previous iteration. The process is described in the following bullet points.

(i) Make an initial guess for the velocities within the domain, e.g. Stokes �ow.

(ii) Calculate the mass conservative RBF interpolation for the domain velocities (7.2.38)

to �nd the coe�cients α.

(iii) Using (7.2.37) �nd the derivatives of the velocity �eld and evaluate the convective

term B.

(iv) Using the convective term, interpolate using (7.2.12) to �nd βlm.

(v) Particular velocities within the domain can be found and are given by (7.2.29).

(vi) The boundary conditions to the homogeneous solution are updated using the par-

ticular solutions.
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(vii) The homogeneous solution is found using the BIE (7.2.24) for unknown boundary

values.

(viii) The BIE is then implemented to �nd the homogeneous velocities within the domain.

(ix) The homogeneous and particular velocities are combined, convergence is tested and

the procedure is repeated from step (ii) if necessary.

The advantage of the PST over the conventional PIT is the reduction in computational

requirements. In the PIT a large system of equations is generated during each iter-

ation which then require solving. In this analysis a smaller system (based on either

the unknown boundary quantities or domain points) is formed. In addition, the ma-

trix components of this system are unchanged throughout the iterations. Thus a LUD

decomposition can be generated initially, and then used at each iteration to obtain the

solution with a modi�ed right-hand-side to the matrix vector problem.

The computational requirements associated with the evaluation of the mass conservative

velocity interpolation (7.2.38) can be further reduced. The matrix is large and of size

(4n+ 30)× (4n+ 30), where n is the number of interpolation points within the domain.

By using a local RBF interpolation, the problem can be reduced to n matrices of size

(4nl + 30)× (4nl + 30), where nl is the number of local interpolation points and nl � n.

Typically nl ∼ 30 for this analysis and the RBF interpolation is constructed from the

closest nl data points to the global point of interest. Further details of local RBF

interpolations are given in chapter 3

7.2.5 Flow Pro�les For A Lid Driven Cavity

This subsection considers solutions for �ow in a three-dimensional lid driven cavity at a

selection of Reynolds numbers. As the boundary velocities to the domain are known, a

regular array of interpolation points are used throughout the domain and boundary for
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the mass conservative velocity, and inertia interpolations. These interpolations are used

to �nd the particular velocities at the collocation points of the BEM and the internal do-

main points. In all test cases 3456 triangular boundary elements and 2197 interpolation

points are used. Initially comparison of the PIT using a global mass conservative inter-

polation and the PST using both the global and local mass conservative interpolations

is made. Analysis for both the computational time and peak RAM requirements of the

formulations is conducted. The use of a local interpolation introduces an additional ap-

proximation in the analysis, and the accuracy of the local interpolation and the choice of

nl is considered. Following this analysis, results are presented for the three-dimensional

lid driven cavity, giving good agreement with previously published results.

Comparison Of Methods

The computational performance of the three numerical methods are compared when

solving for the velocity �eld in a lid driven cavity at Re = 100. In all cases the iterative

loop requires an under-relaxation factor for convergence. For the PIT an under-relaxation

factor of 0.8 was found optimum; for the global PST, a value of 0.5 was used and for

the local PST, 0.6 was required. In each case the under-relaxation value was found

optimum to the nearest tenth. For the local interpolation, the number of points used

was minimized, whilst avoiding a singular interpolation matrix, and in this case 27 points

was found as the minimum. Figure 7.2 indicates the computational requirements of peak

RAM and run time for each numerical method. Clearly using the global PST over the

PIT produces signi�cant advantages in terms of computational resources required. The

RAM required reduces from 6.5GB to 4GB, and the run time is over 20 times faster.

Moving to the local RBF interpolation gives further reduction in computational resources

required. Peak RAM reduces to under 3.5GB, and the simulation time is halved again

from the global PST. Clearly a signi�cant reduction in the computational requirements

of the problem is made when adopting the PST over a more conventional PIT approach.

178



Chapter 7: Small Inertial Effects Of Flow Over And Around Obstacles

PIT Global PST Global PST Local (27 pts)
0

500

1000

1500

2000

2500

3000

3500

Numerical Scheme

R
un

T
im

e
(s

)

PIT Global PST Global PST Local (27 pts)
0

1

2

3

4

5

6

7

P
ea

k
R
A

M
(G

b)

Figure 7.2: Comparison of computational performance of the numerical schemes for

�ow in a lid driven cavity at Re = 100.

Although the global forms of the PIT and PST approaches solve identical systems of

equations (albeit by di�erent means), the local mass conservative velocity interpolation

introduces an additional approximation into the formulation. The accuracy of this ap-

proximation can be improved by increasing the number of local points used, however

this increases the computational requirements, acting to negate the advantage gained

by using this interpolation. Figure 7.3 illustrates the maximum L2 norm over all data

points in the velocity �eld for the di�erence between the PIT velocity vector and those

obtained by the PST. The global PST method solves an identical system of equations to

the global PIT approach, and as predicted the solution is identical. The introduction of

the local mass conservative RBF interpolation introduces an additional approximation,

whose accuracy is shown to increase with increasing size of the local domain. However,

this is at the expense of computational speed, and eventually the solution run time will

become greater than that for the global approach.
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Figure 7.3: Results of the accuracy attained by a local RBF interpolation, for �ow in

a lid driven cavity at Re = 100.

Solutions At A Range Of Reynolds Numbers

Solutions for the vector �elds within the cavity are shown at Re = 0, Re = 100 and

Re = 200 using the local RBF interpolation for 32 points. Figure 7.4 illustrates the

velocity �eld on the centre plane (x2 = 0) for Stokes �ow and a low Reynolds number

�ow (Re = 100) in a three-dimensional lid driven cavity. Qualitatively, these pro�les are

as expected from previous studies and an increase in Reynolds number moves the vortex

towards the right hand corner of the cavity.

However for quantitative analysis, Figure 7.5 is produced, presenting the centre line

solution for the velocity component ux1 in the x3 direction (x1 = x2 = 0) and velocity

component ux3 in the x1 direction (x2 = x3 = 0) for Re = 0, Re = 100 and Re = 200.

Comparison of these pro�les can be made with published results, for example Yang

et al. [58]. Figure 7.5a for ux1 in the x3 direction illustrates excellent agreement with

previously published results at Re = 100. Figure 7.5b produces a small discrepancy from
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Figure 7.4: Centre plane solution of �ow in a three-dimensional lid driven cavity for

(a) Stokes �ow (Re = 0) and (b) Re = 100.
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published results for ux3 in the x1 direction at Re = 100. Here the prediction for the

vertical velocity is slightly greater between −0.2 < x1 < 0.4 than the equivalent pro�le

in [58].

7.3 Low Reynolds Number Film Flows

This section considers the inertial e�ects on �ows over and around circular cylinders

at low Reynolds number. An overview of the mathematical formulation for the case of

�lm �ow at �nite Reynolds number is initially presented. Following this, a numerical

approach is developed based on the optimal scheme developed for a three-dimensional lid

driven cavity in § 7.2. Finally results are presented indicating the e�ects of low Reynolds

number on the �lm pro�le generated.

7.3.1 Formulation Of Low Reynolds Number Film Flows

The mathematical formulation is presented for �lm �ow down an inclined plane and

around an obstacle at �nite Reynolds number. However, the formulation can be reduced

to �ow over a single cylinder by omission of the contact line condition and the �dry� top

of the cylinder S̃f . Figure 7.6 indicates a schematic for �ow around a cylinder. This is

similar to that presented in �gure 6.2, with the edges of the domain now marked as Se.

The �ow is governed by mass continuity (7.3.1) and Navier-Stokes equation (7.3.2),

∂ui
∂xi

= 0, (7.3.1)

− ∂p

∂xi
+
∂G

∂xi
+
∂2ui
∂x2

j

= Re uj
∂ui
∂xj

, (7.3.2)

where G = −2(x3 cotα − x1) is the gravitational driving components as in the Stokes

case considered previously. A summary of the various surfaces de�ned in �gure 7.6 are

given in table 7.2. By using the characteristic scales de�ned in table 4.1, the following
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Figure 7.5: Centre line solution at Re = 0, Re = 100 and Re = 200 for �ow in a

three-dimensional lid driven cavity showing (a) velocity component ux1

in the x3 direction (x1 = x2 = 0) and (b) velocity component ux3 in the

x1 direction (x2 = x3 = 0).
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Figure 7.6: Schematic showing nomenclature for �ow around a cylinder at �nite

Reynolds number. In this case the edges of the domain are denoted Se.

Sf Free surface

S̃f Cylinder top

Sp Wetted cylinder surface

Se Edges to the domain

Sw Wall

Table 7.2: De�nition of surface nomenclature.

expression for the Reynolds number can be found,

Re =
H3g sinα

2ν2
. (7.3.3)

The �lm �ow is subject to the following boundary conditions

ui = 0 x ∈ Sw, Sp, (7.3.4)

∂xi
∂t

ni = ujnj x ∈ Sf , (7.3.5)

fi = − 4
Bo

κni x ∈ Sf , (7.3.6)

∂h

∂xi
ni = tan

(π
2
− θ
)

x ∈ Sf ∩ Sp. (7.3.7)

No slip on the wall and wetted obstacle surface is de�ned by (7.3.4), the kinematic and

dynamic condition are de�ned by (7.3.5) - (7.3.6) respectively and applied on the free

surface. Finally, (7.3.7) is the contact line constraint.
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As for Stokes �ow analysis, the solution variables are decomposed into disturbance (su-

perscript δ) and an asymptotic regime (superscript ∞),

ui = uδi + u∞i , (7.3.8)

p = pδ + p∞, (7.3.9)

fi = f δi + f∞i . (7.3.10)

The undisturbed governing equations are (7.3.11) - (7.3.12)

∂u∞i
∂xi

= 0, (7.3.11)

−∂p
∞

∂xi
+
∂G

∂xi
+
∂2u∞i
∂x2

j

= 0, (7.3.12)

where (p∞, u∞i ) is the �ow �eld associated with Stokes �ow down an inclined plane in

the absence of obstacles. As in earlier analysis, the solutions for the asymptotic �ow

�eld are,

u∞i = (1− x2
3)δi1, (7.3.13)

p∞ = −2x3 cotα, (7.3.14)

f∞i = 2x3(ni cotα− n3δi1 − n1δi3). (7.3.15)

It is also noted that this solution of u∞i satis�es u∞j
∂u∞i
∂xj

= 0, and (p∞, u∞i ) is also the

solution of the full Navier-Stokes equations for �ow down an inclined plane in the absence

of obstructions.

The far �eld conditions for the �ow problem require the free surface disturbance to tend

to zero far from the obstacle, and the �lm velocity, pressure and boundary tractions to

return to those of an undisturbed �lm. Thus the far �eld constraints are:

h,
∂h

∂x1
,
∂h

∂x2
→ 0 x→ ±∞, (7.3.16)

ui → u∞i x→ ±∞, (7.3.17)

p → p∞ x→ ±∞, (7.3.18)

fi → f∞i x→ ±∞. (7.3.19)

185



Chapter 7: Small Inertial Effects Of Flow Over And Around Obstacles

The disturbance governing equations are (7.3.20) - (7.3.21)

∂uδi
∂xi

= 0, (7.3.20)

−∂p
δ

∂xi
+
∂2uδi
∂x2

j

= Re uj
∂ui
∂xj

, (7.3.21)

subject to the following boundary and far �eld conditions

uδi = 0 x ∈ Sw, (7.3.22)

uδi = −u∞i x ∈ Sp, (7.3.23)

f δi = fi − f∞i x ∈ Sf , (7.3.24)

uδi = 0 x ∈ Se, (7.3.25)

f δi = 0 x ∈ Se, (7.3.26)

For solution, the disturbance regime is decomposed further into a homogeneous (super-

script h) and particular (superscript p) components,

uδi = uhδi + upδi , (7.3.27)

pδ = phδ + ppδ, (7.3.28)

f δi = fhδi + fpδi , (7.3.29)

The homogeneous solutions are governed by the following expressions for mass conser-

vation and Stokes equation

∂uhδi
∂xi

= 0, (7.3.30)

−∂p
hδ

∂xi
+
∂2uhδi
∂x2

j

= 0, (7.3.31)

and the particular solutions satis�es

∂upδi
∂xi

= 0, (7.3.32)

−∂p
pδ

∂xi
+
∂2upδi
∂x2

j

= Re uj
∂ui
∂xj

. (7.3.33)
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The particular solutions fails to satisfy any boundary conditions. As such the boundary

conditions for the homogeneous components of the disturbance regime are modi�ed to

account for the particular solution. Thus the homogeneous disturbance regime is solved

for the boundary conditions

uhδi = −upδi x ∈ Sw, (7.3.34)

uhδi = −upδi − u∞i x ∈ Sp, (7.3.35)

fhδi = fi − fpδi − f∞i x ∈ Sf , (7.3.36)

uhδi = −upδi x ∈ Se, (7.3.37)

fhδi = −fpδi x ∈ Se. (7.3.38)

Hence, terms on the wall and at the edges of the domain that were identically zero for

the Stokes �ow analysis now require evaluation.

The Boundary Integral Equations

A boundary integral equation (BIE) for the asymptotic �ow quantities inside the obstacle

domain is,

cij(x0)u∞i (x0) = − 1
8π

∫
Sp∪S̃f∪Sw

G∗ij(x,x0)f̃∞i (x)dS(x)

+
1

8π

∫
Sp∪S̃f∪Sw

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x),
(7.3.39)

where the unit normal is taken to point out of the �uid, and thus into the obstacle

domain and f̃∞i (x) = f∞i (x) + Gni . Correspondingly the BIE for the homogeneous

disturbance quantities over the �uid domain is,

cij(x0)uhδi (x0) =
1

8π

∫
Sf∪Sp∪Sw∪Se

G∗ij(x,x0)fhδi (x)dS(x)

− 1
8π

∫
Sf∪Sp∪Sw∪Se

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x).
(7.3.40)
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The Lorentz-Blake Green's functions yield G∗ij(x,x0) = 0 x ∈ Sw and also for the

asymptotic solution u∞i = 0 x ∈ Sw. Thus equations (7.3.39) and (7.3.40) become

cij(x0)u∞i (x0) = − 1
8π

∫
Sp∪S̃f

G∗ij(x,x0)f̃∞i (x)dS(x)

+
1

8π

∫
Sp∪S̃f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x),
(7.3.41)

and

cij(x0)uhδi (x0) =
1

8π

∫
Sf∪Sp∪Se

G∗ij(x,x0)fhδi (x)dS(x)

− 1
8π

∫
Sf∪Sp∪Sw∪Se

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x),
(7.3.42)

respectively.

Collocation Over The Free Surface

When collocating over the free surface, the BIE for the asymptotic �ow regime within

the obstacle becomes

1
8π

∫
Sp∪S̃f

G∗ij(x,x0)f̃∞i (x)dS(x)

=
1

8π

∫
Sp∪S̃f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x),
(7.3.43)

and the disturbance BIE becomes

1
2
uhδj (x0) +

1
8π

∫
Sf

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x)

=
1

8π

∫
Sf

G∗ij(x,x0)fhδi (x)dS(x) +
1

8π

∫
Sp∪Se

G∗ij(x,x0)fhδi (x)dS(x)

− 1
8π

∫
Sp∪Sw∪Se

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x).

(7.3.44)
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Combining the BIEs (7.3.43) and (7.3.44) yields,

1
2
uhδj (x0) +

1
8π

∫
Sf

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x)

=
1

8π

∫
Sf

G∗ij(x,x0)fhδi (x)dS(x) +
1

8π

∫
Se

G∗ij(x,x0)fhδi (x)dS(x)

− 1
8π

∫
Se

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x) +
1

8π

∫
S̃f

G∗ij(x,x0)f̃∞i (x)dS(x)

− 1
8π

∫
S̃f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x)− 1
8π

∫
Sw

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x)

+
1

8π

∫
Sp

G∗ij(x,x0)
(
f̃∞i (x) + fhδi (x)

)
dS(x)

− 1
8π

∫
Sp

(u∞i (x) + uhδi (x))T ∗ijk(x,x0)nk(x)dS(x),

(7.3.45)

and using the prescribed boundary conditions this becomes

1
2
uhδj (x0) +

1
8π

∫
Sf

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x)

=
1

8π

∫
Sf

G∗ij(x,x0)fhδi (x)dS(x)− 1
8π

∫
Se

G∗ij(x,x0)fpδi (x)dS(x)

+
1

8π

∫
Se

upδi (x)T ∗ijk(x,x0)nk(x)dS(x) +
1

8π

∫
S̃f

G∗ij(x,x0)f̃∞i (x)dS(x)

− 1
8π

∫
S̃f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x) +
1

8π

∫
Sw

upδi (x)T ∗ijk(x,x0)nk(x)dS(x)

+
1

8π

∫
Sp

G∗ij(x,x0)f̂i(x)dS(x) +
1

8π

∫
Sp

upδi (x)T ∗ijk(x,x0)nk(x)dS(x),

(7.3.46)

for collocation over the free surface Sf , where f̂i(x) = f̃∞i (x)+fhδi (x). Equation (7.3.46)

de�nes unknown velocities uhδi at the free surface for given particular (upδi , p
pδ), and far

�eld (u∞i , p
∞) solutions along with surface tractions on the wetted surface of the obstacle.
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Collocation Over The Wetted Obstacle Surface

For collocation over the wetted obstacle surface, the BIE corresponding to the asymptotic

regime over the obstacle domain takes the form

1
2
u∞j (x0) = − 1

8π

∫
Sp∪S̃f

G∗ij(x,x0)f̃∞i (x)dS(x)

+
1

8π

∫
Sp∪S̃f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x),
(7.3.47)

and the disturbance BIE the form

1
2
uhδj (x0) =

1
8π

∫
Sf

G∗ij(x,x0)fhδi (x)dS(x)

− 1
8π

∫
Sf

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x) +
1

8π

∫
Sp∪Se

G∗ij(x,x0)fhδi (x)dS(x)

− 1
8π

∫
Sp∪Sw∪Se

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x).

(7.3.48)

Rearranging (7.3.47) and (7.3.48) for the obstacle tractions, and combining yields

1
8π

∫
Sp

G∗ij(x,x0)
(
f̃∞i (x) + fhδi (x)

)
dS(x) =

1
2
uhδj (x0)− 1

2
u∞j (x0)

− 1
8π

∫
Sf

G∗ij(x,x0)fhδi (x)dS(x) +
1

8π

∫
Sf

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x)

− 1
8π

∫
Se

G∗ij(x,x0)fhδi (x)dS(x) +
1

8π

∫
Se

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x)

− 1
8π

∫
S̃f

G∗ij(x,x0)f̃∞i (x)dS(x) +
1

8π

∫
S̃f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x)

+
1

8π

∫
Sw

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x)

+
1

8π

∫
Sp

(uhδi (x) + u∞i (x))T ∗ijk(x,x0)nk(x)dS(x),

(7.3.49)
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and using the prescribed boundary conditions this BIE becomes

1
8π

∫
Sp

G∗ij(x,x0)f̂i(x)dS(x) = −1
2
upδj (x0)− u∞j (x0)

− 1
8π

∫
Sf

G∗ij(x,x0)fhδi (x)dS(x) +
1

8π

∫
Sf

uhδi (x)T ∗ijk(x,x0)nk(x)dS(x)

+
1

8π

∫
Se

G∗ij(x,x0)fpδi (x)dS(x)− 1
8π

∫
Se

upδi (x)T ∗ijk(x,x0)nk(x)dS(x)

− 1
8π

∫
S̃f

G∗ij(x,x0)f̃∞i (x)dS(x) +
1

8π

∫
S̃f

u∞i (x)T ∗ijk(x,x0)nk(x)dS(x)

− 1
8π

∫
Sw

upδi (x)T ∗ijk(x,x0)nk(x)dS(x)

− 1
8π

∫
Sp

upδi (x)T ∗ijk(x,x0)nk(x)dS(x),

(7.3.50)

for collocation over the wetted obstacle surface Sp. Equation (7.3.50) de�nes the un-

known boundary tractions f̂i on the wetted obstacle surface for given particular (upδi , p
pδ),

and far �eld (u∞i , p
∞) solutions along with free surface velocities given by the previous

BIE (7.3.46).

Alternatively, the solutions can be found by considering the homogeneous and particular

components �rst, then solving for the disturbance and undisturbed homogeneous com-

ponents. Using this method, results produced by the numerical scheme are identical to

those generated by the above formulation.

7.3.2 Solution Techniques For Low Reynolds Number Film Flows

This subsection considers the numerical techniques used to solve the �lm �ow problem

outlined above. An iterative approach is used to solve the governing equations at each

free surface position. In addition an accurate numerical model is required to evaluate

the particular solutions, and this is based on the particular solution techniques (PST)

outlined in § 7.2.
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Iterative Technique

The iterative technique used to solve the governing equations for a three-dimensional lid

driven cavity as considered in § 7.2 is developed for the case of �nite Reynolds number

�lm �ow. The method uses the PST model, solving for homogeneous and particular

solutions independently, and iterating to convergence. Clearly this iterative model is

evaluated for each free surface location, which itself is progressively iterated towards a

steady state pro�le, emphasizing the need for an e�cient technique.

The following indicates the iterative solution technique for the full �lm �ow problem.

(i) Produce an initial guess for the �lm pro�le heights h of the free surface, and the

domain velocity pro�le (usually use velocities from a Stokes �ow analysis).

(ii) Use a Hermitian radial basis function (RBF) interpolation to generate values for

the free surface curvature and outward unit normal.

(a) Using the guessed velocity pro�le, implement a mass conservative RBF inter-

polation to obtain the inertia component.

(b) Interpolate the inertia component using a RBF to �nd the corresponding coef-

�cients.

(c) Find the corresponding particular solutions to the disturbance �ow regime.

(d) Solve the BIEs (together) for the boundary traction on the wetted obstacle

surface Sp, and homogeneous disturbance velocities on the free surface Sf .

(e) Using the BIE, �nd the homogeneous component of the disturbance velocities

within the domain.

(f) Combine homogeneous and particular solutions of the disturbance regime and

the asymptotic velocities to obtain the full velocity pro�le throughout the do-

main.

(g) Repeat from (a) as required until convergence is reached.
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(iii) Use the converged velocity pro�le to update the free surface pro�le.

(iv) If the movement of the free surface is su�ciently small, then a steady-state pro�le

is found, alternative repeat from step (ii), using the new free surface location. In

addition, the initial guess for the domain velocities is made by a mass conservative

velocity interpolation, based on the converged velocities at the end of the previous

free surface iteration.

A key di�erence to the Stokes �ow analysis in earlier chapters, is that the BIEs are

solved together during the PST iteration, where previously the two BIEs have been

solved separately. This improves the convergence of the PST method.

The Boundary Element Method

The boundary element method (BEM) is applied similarly to the Stokes �ow case to

evaluate the boundary integrals in (7.3.46) and (7.3.50), using constant functional, �at

triangular elements throughout. However, four extra integrals are present when com-

pared to the Stokes case. These are,

(i) The double-layer potential over the wetted obstacle surface Sp.

(ii) The double-layer potential over the wall (external to the obstacle) Sw.

(iii) The single-layer potential over the edges of the domain Se.

(iv) The double-layer potential over the edges of the domain Se.

Point (i) above is simple to incorporate as the obstacle mesh is already discretized to

evaluate the single-layer potential. However, point (ii) above requires a mesh for the

wall, outside of the obstacle footprint, and points (iii) - (iv) need a mesh for the edges

of the domain. The x1x2 distribution of elements for the wall discretization are identical

193



Chapter 7: Small Inertial Effects Of Flow Over And Around Obstacles

to the free surface analysis for �ow around a cylinder, but with x3 = −1. The far �eld

element on both the free surface and wall meshes match, and are connected using a

column of elements. These are generated similarly to the side elements of cylindrical

obstacles, with �rst quadrilateral elements being formed, and then each of these being

divided further into four triangular elements. Typical meshes for �ow over a cylinder are

shown in �gure 7.7. Figure 7.7a indicates the meshes that were previously used for the

Stokes analysis (Sf , Sp), and �gure 7.7b shows the additional meshes required for the

�nite Reynolds number analysis (Sw, Se).

Particular Solution

The particular solution is obtained using a particular solution technique (PST) as out-

lined in § 7.2. Both global and local mass conservative velocity interpolations are used

to evaluate the convective term throughout the domain.

When interpolating the convective term to evaluate the particular solutions, it is noted

that the �ow �eld in the far �eld (x1, x2 →∞) should return to the asymptotic regime

p → p∞ and ui → u∞i , satisfying uj
∂ui
∂xj

= 0. The edges of the domain are a truncation

of the full far �eld condition, and to help accuracy in implementing this condition, addi-

tional points are taken just outside of the discretized �ow domain where the convective

term is set to 0. The convective term is then interpolated over all domain and additional

points.

It is also possible to decompose the convective term into its component disturbance and

asymptotic parts,

Bi = uδj
∂u∞i
∂xj

+ u∞j
∂uδi
∂xj

+ uδj
∂uδi
∂xj

, u∞j
∂u∞i
∂xj

= 0. (7.3.51)

Expressions for the asymptotic velocity �eld are known analytically, and a mass conser-

vative interpolation of the disturbance velocities is required to �nd the derivative
∂uδi
∂xj

.

However, in practice it is found optimum to interpolate the full velocities and evaluate
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Figure 7.7: Typical meshes required for a �nite Reynolds number model, where (a)

indicates the meshes used previously for a Stokes �ow analysis for �lm

�ow over a cylinder, and (b) the additional meshes required due to the

more complex formulation for non-zero Re.
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Bi directly.

Using the numerical schemes and formulation outlined, solution pro�les for �lm �ow over

and around circular cylinders at �nite Reynolds number are produced and shown in the

following subsection.

7.3.3 Low Reynolds Film Pro�les Obstructed By Obstacles

This subsection considers �lm �ow down an inclined plane both over and around cylin-

drical obstacles. Examination of the full three-dimensional �lm pro�le for both �ow

over and around an obstacle, along with comparison with Stokes �ow solutions is con-

sidered. Solutions are produced using the numerical techniques outlined earlier in this

chapter, with results initially generated with a global mass conservative RBF interpola-

tion of the velocities. This subsection of results concludes by considering a local velocity

interpolation and comparing its accuracy with the global analysis.

Flow over a circular cylindrical obstacle is considered for an inverse Bond number of

B = 1, and down an inclined plane at α = 45o. The cylinder has a radius of a = 0.5

with a �at top at x3 = −0.1. Figure 7.8 indicates the full three-dimensional �lm pro�les

at a Reynolds number Re = 3. Results indicate a pro�le similar to that of Stokes �ow

over a cylinder, with a large upstream peak being formed above the obstacle, collapsing

downstream into a shallow trough. The peak is seen to decay in a typical �horseshoe�

fashion, illustrated further by the contours of the �lm pro�le as shown on the inclined

wall. As expected, �gure 7.8 also illustrates a symmetric solution in the plane x2 = 0.

For �ow over a cylinder, comparison is made for solutions at a range of Reynolds num-

ber. Figure 7.9 illustrates the centre line solutions (x2 = 0) for �lm �ow with identical

parameters to those outlined for �gure 7.8, namely B = 1, α = 45o, a = 0.5 with cylinder

top located at x3 = −0.1. Solutions are produced for Stokes �ow (Re = 0), Re = 1.5

and Re = 3. All of the centre line pro�les are similar, with an upstream peak and a
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Figure 7.8: Three-dimensional pro�le for �lm �ow down an inclined plane at α = 45o,

and over a cylinder of radius a = 0.5 with �at top at x3 = −0.1. The �ow

has non-dimensional parameters B = 1 and Re = 3.

shallow downstream trough. Clearly as the Reynolds number is increased, the height of

the peak is increased, with the trough behind the obstacle becoming slightly deeper. For

Re > 3, solutions become numerical unstable, with the PST method failing to converge,

and thus it is not possible to �nd �lm pro�les at greater Reynolds numbers.

Flow around a circular cylindrical obstacle is considered for an inverse Bond number of

B = 1, and down an inclined plane at α = 45o. The cylinder has a radius of a = 0.5,

with a contact angle of θ = 90o applied along the contact line of the �ow. Figure 7.10

shows the full three-dimensional �lm pro�le at a Re = 3 for the above set of parameters.

As expected, the resulting �lm pro�le is symmetric. A large peak is formed at the
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Figure 7.9: Centre line solutions comparing �lm �ow down an inclined plane at α =

45o, and over a cylinder of radius a = 0.5 with �at top at x3 = −0.1 for

a range of Reynolds numbers. The �ow has an inverse bond number of

B = 1.

upstream edge of the cylinder, decaying around the obstacle and forming a trough on the

downstream edge of the cylinder. Contours on the inclined wall illustrate the �horseshoe�

shape of the decaying �lm pro�le.

A comparison of centre line solutions for �lm �ow around a cylinder and at a range of

Reynolds number is shown in �gure 7.11. Flow parameters are identical to those used

for �gure 7.10, with B = 1, α = 45o, a = 0.5 and θ = 90o. Solutions are presented for

three Reynolds number, Re = 0, Re = 1.5, and Re = 3. Results indicate an increase

in the peak height and a deepening of the trough as the Reynolds number is increased.

As for �ow over a cylinder, for Re > 3, the PST method is unstable, and �lm pro�les

cannot be found at greater Reynolds numbers.

Results so far have been produced using a global mass conservative velocity interpolation.
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Figure 7.10: Three-dimensional pro�le for �lm �ow down an inclined plane at α =

45o, and around a cylinder of radius a = 0.5 with contact angle θ = 90o.

The �ow has non-dimensional parameters B = 1 and Re = 3.

As for the case of a lid driven cavity in § 7.2, reductions in both the CPU time and RAM

requirements necessary for the global analysis may be found by implementing a local

interpolation with a suitable number of points. A comparison between the global and

local schemes is considered for �ow with an inverse Bond number B = 1, and down

a plane inclined at α = 45o with an attached circular cylinder of radius a = 0.5. For

the �ow over analysis, the cylinder is truncated at x3 = −0.1, and for the �ow around

analysis a contact angle constraint of θ = 90o implemented. All results are found at a

Reynolds number of Re = 3.

When implementing a local interpolation, less computational resources are required when
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Figure 7.11: Centre line solutions comparing �lm �ow down an inclined plane at

α = 45o, around a cylinder of radius a = 0.5 with contact angle θ = 90o

for a range of Reynolds numbers. The �ow has an inverse bond number

of B = 1.

fewer local points are chosen. However, when insu�cient points are used in the local

interpolation, several problems may be experienced with the numerical schemes. If the

number of local points is reduced too severely, then the rate of convergence of the free

surface pro�le is found to reduce, resulting in signi�cantly more iterations and the pos-

sibility of longer overall run-times. Alternatively, the PST method can fail completely,

with no �ow solution obtained. Therefore, care needs to be taken in choosing an opti-

mum number of local interpolation points, and simulations using both 45 and 51 points

have been considered throughout the following analysis.

Table 7.3 lists the computational performance of global and local schemes (using 45

and 51 points) for both �ow over and �ow around a circular cylinder. Solutions are

iterated from an undisturbed free surface, with a Stokes �ow velocity pro�le assumed.
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Flow Over Av. Film Iteration (s) # Iterations Peak Ram (Gb)

Global 31.9 789 3.7

Local (51 pts) 34.6 788 3.4

Local (45 pts) 30.4 821 3.1

Flow Around Av. Film Iteration (s) # Iterations Peak Ram (Gb)

Global 40.0 1408 4.3

Local (51 pts) 41.9 1264 3.9

Local (45 pts) Simulation Fails, PST Diverges

Table 7.3: Average free surface iteration time and peak ram requirements for both a

global and local velocity interpolation.

The domain interpolation use approximately 1200 points for the �ow over analysis and

1300 points for the �ow around analysis (with exact numbers depending on the �lm

pro�le at any iteration). For this number of domain points, the use of 51 local points

slightly increases the average run-time of a free surface iteration, and decreases the peak

RAM requirements of the simulation when compared to a global scheme. In future,

as computational resources are increased the number of domain points may also be

increased, and the use of a local interpolation with 51 points should o�er signi�cant

bene�ts. The models have also been evaluated using 45 local interpolation points. For

�ow over, the simulation converges but requires additional iterations to a global and 51

point local scheme. For �ow around, no solution is found with the PST diverging during

the analysis. Di�erence in the success of the two models at 45 local points is due to the

di�ering representation of the domain points throughout the �uid.

Figure 7.12 indicates the centre line solutions for �ow down an inclined plane both over

and around a circular cylinder corresponding to the �ow parameters used in table 7.3.

Comparison is made between the global mass conservative velocity interpolation and

a local interpolation using 51 points. Flow over solutions are illustrated in �gure 7.12a

with �ow around solutions in �gure 7.12b. In both cases, results show minimal di�erence

between the global and local interpolation.
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Figure 7.12: Comparison of a global and local (51 points) velocity interpolation for

�lm �ow obstructed by a cylinder of radius a = 0.5, with B = 1, α =

45o and Re = 3. Part (a) indicates �ow over the cylinder with top at

x3 = −0.1 and (b) �ow around the cylinder with contact angle θ = 90o.

202



Chapter 8

Summary And Conclusions

Oil �lms are used in aero-engine bearing chambers to cool and transport heat away

from bearings and walls within the oil system. If there is insu�cient thickness of oil

on the chamber wall, then oil degradation, coking and potentially oil �res can occur.

Prediction of �lm behaviour is impaired as bearing chambers include complex geometries

such as obstacles that can signi�cantly a�ect the local behaviour of the oil �lm. The

bearing chamber is a hostile environment for experimental analysis and measurement

of the oil �lms interaction with obstructions is di�cult. This thesis has considered the

numerical modelling of the interaction of thin �lms with obstacles. Methods and results

are provided for single or multiple obstacles which may or may not penetrate the free

surface.

Numerical solutions for three-dimensional Stokes �ow down an inclined plane over and

around multiple obstacles have been developed and solutions found by the boundary

element method (BEM). Initially chapter 4 considers �ow pro�les using the small free

surface de�ection by Blyth and Pozrikidis [31]. A global radial basis function (RBF) is

used throughout to better evaluate the reduced form of the free surface curvature and

outward unit normal. Comparisons are made to the �nite di�erence approximations

(FDA) used by [31], with results indicating a reduction in mesh dependency for the

RBF approach. For �ow over an obstacle, the �lm pro�le is governed by three parame-

ters; inverse Bond number, plane inclination angle, and hemisphere radius. A parameter
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analysis for each of these quantities is also produced using the small free surface de�ec-

tion assumption. Flow pro�les over asymptotically small obstacles, such as considered

by Pozrikidis and Thoroddsen [29], have been reproduced and shown to give excellent

agreement with simulations incorporating the full obstacle.

Chapter 4 also extends the small free surface de�ection assumption by Blyth and Pozrikidis

[31] by using a global RBF interpolation to accurately determine free surface quantities

such as curvature and unit normal for larger surface de�ections. Comparisons with the

small free surface de�ection assumption indicate consistency of results for small distur-

bances generated by small hemispheres (a ∼ 20% of �lm height). For larger deformations

generated by larger obstacles, solutions using the small de�ection assumption become

inconsistent with the full analysis. This illustrates the need for removing this restriction

for more general, large obstructions. Streamlines and a parameter analysis for variations

in inverse Bond number and plane inclination are also conducted using this full analysis.

For large hemispheres fully contained within the �uid, it is found that the Stokes �ow

can support obstacles larger than the undisturbed free surface. The maximum size of

hemisphere is strongly dependent on the inclination of the plane.

The single obstacle analysis is extended to a more general formulation for �ow over

arbitrary multiple obstacles in chapter 5. Flows over two, large hemispheres have been

analyzed, with variations in the obstacle locations considered. The e�ects of separating

the obstacles in-line with the �ow has been illustrated, and �ow pro�les shown to return

to those associated with a single obstacle in the case of large separations. In addition

obstacles spaced perpendicular to the incoming �ow have been modelled. In this case,

when the obstacles are located close to one another, the �ow reacts to the obstacle

as if there is one large obstruction to the �ow. A signi�cantly larger peak is formed,

spanning both obstacles when compared to the cases of moderate and large separations.

Finally two hemispheres spaced diagonally to each other are considered, situating the

downstream hemisphere in the decaying peak of the upstream obstacle, illustrating a

non-symmetric solution. For obstacles aligned in the direction of the �ow, a parameter
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study was conducted to investigate the e�ects of varying the inverse Bond number, plane

inclination angle and hemisphere radius. Flow over two hemispheres that approach the

�lm surface have also been modelled, and the e�ects of placing the downstream obstacle

in the wake of the upstream hemisphere considered. The wake from the upstream obstacle

on both a shallow and a steep plane is shown to reduce the minimum gap between

the free surface and obstacle when compared to a sole obstruction. Finally, �ows over

three hemispheres were modelled, with solutions obtained for two obstacle con�gurations

based on a triangular array. Restrictions on obtaining �ow over more obstacles is due to

computational resources.

Chapter 6 extends the formulation further to consider �ow around single and multiple

circular cylinders. The incorporation of a contact angle condition within the RBF was

required. For �ow around a single cylinder streamline plots are produced along with a

parameter study. For �ow around obstacles, there are four governing parameters; inverse

Bond number, plane inclination angle, cylinder radius and contact angle. A comparison

of �ow over and around a truncated cylinder indicates the possibility of dual solutions and

indicates the steady state �ow pro�le in this case is dependent on the initial conditions

prescribed and not uniquely by the parameters of the �ow �eld. Finally, the possibility of

multiple solutions occurring for variations in the underlying �ow parameters is con�rmed,

with results characterized by the maximum �lm height. It is shown that for a su�ciently

large contact angle, results can be forced around a truncated cylinder for a chosen set of

�ow parameters, resulting in dual solutions.

Flows around multiple circular cylinders are also considered in chapter 6. Flow around

two circular cylinders, with various obstacle locations were analyzed. As for �ow over

multiple hemispheres, the e�ects of separating the obstacles in line with the �ow have

been illustrated, and �ow pro�les shown to return to those associated with a single obsta-

cle in the case of large separations. For obstacles spaced perpendicular to the incoming

�ow and in close proximity, the �lm pro�le between the cylinders becomes signi�cantly

raised when compared to cylinders at greater separation distances. Finally the non-
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symmetric situation of two cylinders spaced diagonally to each other was modelled, with

the downstream cylinder situated in the decaying peak of the upstream obstacle. When

the cylinders were aligned in the direction of the �ow, a parameter study was conducted

to investigate the e�ects of varying the inverse Bond number, plane inclination angle,

cylinder radius and contact angle. Flow solutions around three cylinders were also con-

sidered, with two obstacle con�gurations based on the triangular array with di�erent

symmetrical orientations to the �ow direction. Finally, the versatility of the numerical

approach is demonstrated with the analysis of �ow over then around two identical cylin-

ders spaced in the direction of the �ow. The e�ect of the wake caused by the upstream

cylinder was also considered, and shown to allow the contact angle at the downstream

cylinder to be relaxed. As the obstacles are moved closer, the e�ects of the wake are

strengthened and the contact angle condition can be lowered further.

The above formulations utilize a Stokes �ow approximation for the analysis of free surface

�lm �ows over and around obstacles. The e�ects of inertia in these �ow problems may be

signi�cant, particularly for dry-out, and the incorporation of the convective term of the

Navier-Stokes equations was considered in chapter 7. However, the �lms �ows have awk-

ward geometries which require very e�cient numerical algorithms to e�ectively include

the convective term into the integral formulation used for the earlier analysis. Devel-

opment of these e�cient numerical algorithms was �rst conducted for the common test

problem of �ow in a three-dimensional lid driven cavity. This thesis evaluates a formu-

lation for low Reynolds number �ows using the BEM to solve the homogeneous solution,

whilst formulating a particular solution using a RBF interpolation. Unlike conventional

formulations such as the particular integral technique (PIT), which linearize the convec-

tive term and solves for domain velocities and unknown boundary tractions together, a

method which solves the particular and homogeneous components separately, called the

particular solution technique (PST) has been implemented. In addition, a local mass

conservative interpolation for the velocity �eld has been introduced to further reduce the

necessary computational resources. This local interpolation is an approximation to the
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global analysis, with the accuracy of this method also considered. Solutions for Re = 0,

Re = 100 and Re = 200 are produced by this PST approach using a fraction of the

computational resources that would be required by the conventional PIT.

Chapter 7 uses the optimized numerical scheme developed for the lid-driven cavity test

case and modest computational resources to evaluate low Reynolds number �ows over

and around cylindrical obstacles. Solutions are produced using both a global and local

mass conservative interpolation for the velocity �eld. Results are obtained for Reynolds

number up to Re = 3, beyond which di�culties with convergence of the numerical

schemes was found. However, at Re = 3, changes in the �lm pro�le were observed, with

the �lm peak increasing, just before the obstacle, and the trough decreasing behind the

obstruction.

8.1 Future Work

The following possible areas of future work are of particular interest:

• The need remains for extended numerical analysis of �ow over and around ob-

stacles, and stems from oil �lm �ows within bearing chambers, and the complex

support structures which exist. Bearing chambers also include sump regions, and

numerical analysis of �ow over three-dimensional trenches and dips would be of

interest.

• In a bearing chamber, the oil �lm is driven by surface shear forces as well as gravity.

The e�ects of including surface shear from the air �ow could be considered.

• The e�ects of perturbations to the free surface pro�le could be analyzed. This

would be of particular relevance to the multiple solution analysis, determining

which of the two possible solutions (over or around) is most prevalent when sub-

jected to perturbations to the incoming �ow.
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• The oil �lm within the bearing chamber is used to cool the chamber wall. The

e�ects of heat transfer from the wall to the thin oil �lm could also be considered.

• The analysis could be extended to consider the curvature of a realistic bearing

chamber geometry, instead of a localized �ow down an inclined plane.

• In chapter 7 the method outlined for incorporating the inertia e�ects is convergent

for low Reynolds number. Further development and modi�cation to the numerical

schemes implemented, and increased computational resources may allow conver-

gence for higher Reynolds number.
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Appendix A

Lorentz-Blake Greens Functions

The Lorentz-Blake Greens functions for �ow bounded by an in�nite plane at x3 = w

are reproduced for our co-ordinate system from Blyth and Pozrikidis [31] and shown

below. The �eld point is given by x = (x1, x2, x3) and the singularity point by x0 =

(x01 , x02 , x03).

A.1 Lorentz-Blake Velocity Greens Function

The Lorentz-Blake Velocity Greens function, G∗ij(x,x0) is given by,

G∗ij(x,x0) = GSTij (x̂)−GSTij (X̂) + 2h2
0G

D
ij (X̂)− 2h0G

SD
ij (X̂), (A.1.1)

where GSTij is the free-space velocity Greens function or Stokeslet, and

GSTij (x) =
δij
|x| +

xixj
|x|3 , (A.1.2)

GDij (x) = ±
(
δij
|x|3 − 3

xixj
|x|5

)
, (A.1.3)

GSDij (x) = x3G
D
ij (x)± δj3xi − δi3xj

|x|3 , (A.1.4)

where a minus corresponds to j = 3 and a plus for j = 1, 2. Also,

h0 = x03 − w, (A.1.5)

x̂ = x− x0, (A.1.6)

X̂ = x− xIM0 , (A.1.7)
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Appendix A: Lorentz-Blake Greens Functions

xIM0 = (x01 , x02 , 2w − x03). (A.1.8)

A.2 Lorentz-Blake Pressure Greens Function

The Lorentz-Blake Pressure Greens function, P ∗i (x,x0) is given by,

P ∗i (x,x0) = −2
[
Xi

|X|3 +
Yi
|Y|3 2Yi

(
− 1
|Y|3 + 3

Y 2
3

|Y|5
)

2h
(
− δi3
|Y|3 + 3

Y3Yi
|Y|5

)]
, (A.2.1)

where

h = x3 − w, (A.2.2)

X = x0 − x, (A.2.3)

Y = x0 − xIM , (A.2.4)

xIM = (x1, x2, 2w − x3). (A.2.5)

A.3 Lorentz-Blake Stress Greens Function

The Lorentz-Blake Stress Greens function, T ∗ijk(x,x0) is given by,

T ∗ijk(x,x0) = TSTijk (x̂)− TSTijk (X̂) + 2h2
0T

D
ijk(X̂)− 2h0T

SD
ijk (X̂), (A.3.1)

where TSTijk is the free-space stress Greens function, and

TSTijk (x) = 6
xixjxk
|x|5 , (A.3.2)

TDijk(x) = ±6
(
−δikxj + δijxk + δkjxi

|x|5 + 5
xixjxk
|x|7

)
, (A.3.3)

TSDijk (x) = x3T
D
ijk(x)± 6

(
δikxjx3 − δj3xixk

|x|5
)
, (A.3.4)

where a minus corresponds to j = 3 and a plus for j = 1, 2. Also h0, x̂, X̂, xIM0 are

de�ned by (A.1.5) - (A.1.8) respectively.
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Appendix B

Integrating Dirac's Delta Function

B.1 Integrating Over A Hemisphere

It is known from the standard properties of Dirac's delta function that its integral over a

domain that contains the singularity (see Figure B.1) will result in 1, whilst its integral

over a domain that omits the singularity will result in 0.

The scenario when the point x0 lies directly upon the bounding smooth surface D of the

arbitrary control volume Vc is considered. First, however we note how the delta function

has a radial argument and that its value is zero everywhere except at the singularity,

where it is in�nite. Consider two spheres, drawn with radius a and b respectively and

Figure B.1: Two illustrations indicating a control volume and singularity, (a) inside

the control volume and (b) outside the control volume.
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Appendix B: Integrating Dirac's Delta Function

Figure B.2: Illustration indicating the e�ect of integrating the Dirac delta function

centred on two spheres of di�erent radii. The smaller sphere has radius

b and the larger sphere radius a.

with a > b > 0, centred about the singularity point. It is clear that integrating the delta

function over the larger sphere will have the same result as integrating over the smaller

sphere, however small the radius b of this smaller sphere becomes - see Figure B.2.

If the singularity point is now considered to coincide with an arbitrarily shaped smooth

boundary D that describes the control volume Vc, then by drawing a sphere of radius

γ � 1 centred on the singularity it is intuitively obvious that the part of the boundary

D within the sphere will tend to a �at plane in the limit of γ tending to zero.

Any �at plane that intersects a sphere, whilst passing through its centre, will split the

sphere into two equal hemispheres. As contributions to the integral from Dirac's delta

function are only dependent on radius then the orientation of the bisecting plane becomes

insigni�cant and, ∫
SPHERE

δ(x− x0)dV (x) = 2
∫

HEMISPHERE

δ(x− x0)dV (x)

= 1.

(B.1.1)
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Appendix B: Integrating Dirac's Delta Function

Giving the �nal result,∫
Vc

δ(x− x0)dV (x) =
∫

HEMISPHERE

δ(x− x0)dV (x)

=
1
2
,

(B.1.2)

as required.

B.2 Integrating Over A Boundary Corner

The case of a singularity placed at a corner of the boundary D is considered, with Dirac's

delta function integrated over the control volume Vc contained by D. As shown in section

B.1, the value of the integral is solely dependent on the shape of the boundary in�nitely

close to the singularity. Extending this local boundary shape into free-space allows the

calculation of the solid angle of the boundary corner. Drawing a unit sphere around the

singularity will result in an intersection of the extended local boundary shape and the

sphere. This contour will map out a surface area on the sphere, Ω, known as the solid

angle. The solid angle takes values between 0 and 4π, with a value of 2π representing the

hemisphere in the above analysis and 4π representing the entire surface of the sphere.

The units of solid angle is steradians.

From an extension of the previous argument, the integral over a proportion of a spheres

surface (e.g. Ω/4π) is equal to the same proportion multiplied by the integral over the

whole sphere. Thus the integral over a control volume bounded by D , which has the

singularity located at a boundary corner with solid angle Ω, has value∫
Vc

δ(x− x0)dV (x) =
Ω
4π

∫
SPHERE

δ(x− x0)dV (x)

=
Ω
4π
.

(B.2.1)
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Appendix C

Auxiliary Solutions To A Thin Plate

Spline Radial Basis Function

When using the dual reciprocity method (DRM) to solve �ows at �nite Reynolds number,

the convective term may be incorporated into the analysis by use of a radial basis function

(RBF) interpolation. For a given choice of RBF, auxiliary solutions for the velocity ûli,

pressure p̂l, and traction f̂ li are required and can be found analytically. The method for

obtaining these solutions is outlined in Chapter 7, and results for the thin plate spline

RBF ψ(x, ξ) = r along with additional �rst order polynomial P1 = β1+β2x1+β3x2+β4x3

are shown below.

ψ = r, r =‖ x− ξ ‖, (C.0.1)

ûli =
5
72
r3δil −

1
24
r(xi − ξi)(xl − ξl), (C.0.2)

p̂l = −1
4
r(xl − ξl), (C.0.3)

f̂ li =
[

1
6
r(xj − ξj)δil +

1
6
r(xi − ξi)δjl +

1
6
r(xl − ξl)δij

− 1
24r

(xi − ξi)(xj − ξj)(xl − ξl)
]
nj(x).

(C.0.4)
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Function

ψ = x1, (C.0.5)

ûli =
1
10
(
x3

1 + x2
2x1 + x2

3x1

)
δil

− 1
280

(
4x3

1 [5δ1iδ1l + δ2iδ2l + δ3iδ3l]

+ 4x3
2 [δ1iδ2l + δ2iδ1l] + 4x2

3 [δ1iδ3l + δ3iδ1l]

+ 12x2
1x2 [δ1iδ2l + δ2iδ1l] + 12x2

1x3 [δ1iδ3l + δ3iδ1l]

+ 4x2
2x1 [3δ2iδ2l + 3δ1iδ1l + δ3iδ3l] + 4x2

3x1 [3δ3iδ3l + 3δ1iδ1l + δ2iδ2l]

+ 4x2
2x3 [δ1iδ3l + δ3iδ1l] + 4x2

3x2 [δ1iδ2l + δ2iδ1l]

+8x1x2x3 [δ3iδ2l + δ2iδ3l]) ,

(C.0.6)

p̂l = − 1
10
[
3x2

1δ1l + x2
2δ1l + x2

3δ1l + 2x2x1δ2l + 2x3x1δ3l

]
, (C.0.7)

f̂ li =
[

1
10
(
3x2

1δ1l + x2
2δ1l + x2

3δ1l + 2x2x1δ2l + 2x3x1δ3l

)
δij

+
1
10
(
3x2

1δ1j + x2
2δ1j + x2

3δ1j + 2x2x1δ2j + 2x3x1δ3j

)
δil

+
1
10
(
3x2

1δ1i + x2
2δ1i + x2

3δ1i + 2x2x1δ2i + 2x3x1δ3i

)
δjl

− 12
140

x2
1 [5δ1iδ1jδ1l + δ2iδ1jδ2l + δ3iδ1jδ3l

+δ1iδ2jδ2l + δ2iδ2jδ1l + δ3iδ3jδ1l + δ1iδ3jδ3l]

− 4
140

x2
2 [3δ1iδ2jδ2l + 3δ2iδ2jδ1l + 3δ2iδ1jδ2l

+3δ1iδ1jδ1l + δ1iδ3jδ3l + δ3iδ3jδ1l + δ3iδ1jδ3l]

− 4
140

x2
3 [3δ3iδ1jδ3l + 3δ3iδ3jδ1l + 3δ1iδ3jδ3l

+3δ1iδ1jδ1l + δ2iδ1jδ2l + δ2iδ2jδ1l + δ1iδ2jδ2l]

− 8
140

x1x2 [3δ1iδ1jδ2l + 3δ1iδ2jδ1l + 3δ2iδ2jδ2l

+3δ2iδ1jδ1l + δ2iδ3jδ3l + δ3iδ3jδ2l + δ3iδ2jδ3l]

− 8
140

x1x3 [3δ1iδ3jδ1l + 3δ1iδ1jδ3l + 3δ3iδ3jδ3l

+3δ3iδ1jδ1l + δ3iδ2jδ2l + δ2iδ3jδ2l + δ2iδ2jδ3l]

− 8
140

x2x3 [δ2iδ3jδ1l + δ2iδ1jδ3l + δ3iδ2jδ1l

+δ3iδ1jδ2l + δ1iδ3jδ2l + δ1iδ2jδ3l]
]
nj(x).

(C.0.8)
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Function

ψ = x2, (C.0.9)

ûli =
1
10
(
x3

2 + x2
1x2 + x2

3x2

)
δil

− 1
280

(
4x3

2 [5δ2iδ2l + δ1iδ1l + δ3iδ3l]

+ 4x3
1 [δ2iδ1l + δ1iδ2l] + 4x2

3 [δ2iδ3l + δ3iδ2l]

+ 12x2
2x1 [δ2iδ1l + δ1iδ2l] + 12x2

2x3 [δ2iδ3l + δ3iδ2l]

+ 4x2
1x2 [3δ1iδ1l + 3δ2iδ2l + δ3iδ3l] + 4x2

3x2 [3δ3iδ3l + 3δ2iδ2l + δ1iδ1l]

+ 4x2
1x3 [δ2iδ3l + δ3iδ2l] + 4x2

3x1 [δ2iδ1l + δ1iδ2l]

+8x2x1x3 [δ3iδ1l + δ1iδ3l]) ,

(C.0.10)

p̂l = − 1
10
[
3x2

2δ2l + x2
1δ2l + x2

3δ2l + 2x1x2δ1l + 2x3x2δ3l

]
, (C.0.11)

f̂ li =
[

1
10
(
3x2

2δ2l + x2
1δ2l + x2

3δ2l + 2x1x2δ1l + 2x3x2δ3l

)
δij

+
1
10
(
3x2

2δ2j + x2
1δ2j + x2

3δ2j + 2x1x2δ1j + 2x3x2δ3j

)
δil

+
1
10
(
3x2

2δ2i + x2
1δ2i + x2

3δ2i + 2x1x2δ1i + 2x3x2δ3i

)
δjl

− 12
140

x2
2 [5δ2iδ2jδ2l + δ1iδ2jδ1l + δ3iδ2jδ3l

+δ2iδ1jδ1l + δ1iδ1jδ2l + δ3iδ3jδ2l + δ2iδ3jδ3l]

− 4
140

x2
1 [3δ2iδ1jδ1l + 3δ1iδ1jδ2l + 3δ1iδ2jδ1l

+3δ2iδ2jδ2l + δ2iδ3jδ3l + δ3iδ3jδ2l + δ3iδ2jδ3l]

− 4
140

x2
3 [3δ3iδ2jδ3l + 3δ3iδ3jδ2l + 3δ2iδ3jδ3l

+3δ2iδ2jδ2l + δ1iδ2jδ1l + δ1iδ1jδ2l + δ2iδ1jδ1l]

− 8
140

x2x1 [3δ2iδ2jδ1l + 3δ2iδ1jδ2l + 3δ1iδ1jδ1l

+3δ1iδ2jδ2l + δ1iδ3jδ3l + δ3iδ3jδ1l + δ3iδ1jδ3l]

− 8
140

x2x3 [3δ2iδ3jδ2l + 3δ2iδ2jδ3l + 3δ3iδ3jδ3l

+3δ3iδ2jδ2l + δ3iδ1jδ1l + δ1iδ3jδ1l + δ1iδ1jδ3l]

− 8
140

x1x3 [δ1iδ3jδ2l + δ1iδ2jδ3l + δ3iδ1jδ2l

+δ3iδ2jδ1l + δ2iδ3jδ1l + δ2iδ1jδ3l]
]
nj(x).

(C.0.12)
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Function

ψ = x3, (C.0.13)

ûli =
1
10
(
x3

3 + x2
2x3 + x2

1x3

)
δil

− 1
280

(
4x3

3 [5δ3iδ3l + δ2iδ2l + δ1iδ1l]

+ 4x3
2 [δ3iδ2l + δ2iδ3l] + 4x2

1 [δ3iδ1l + δ1iδ3l]

+ 12x2
3x2 [δ3iδ2l + δ2iδ3l] + 12x2

3x1 [δ3iδ1l + δ1iδ3l]

+ 4x2
2x3 [3δ2iδ2l + 3δ3iδ3l + δ1iδ1l] + 4x2

1x3 [3δ1iδ1l + 3δ3iδ3l + δ2iδ2l]

+ 4x2
2x1 [δ3iδ1l + δ1iδ3l] + 4x2

1x2 [δ3iδ2l + δ2iδ3l]

+8x3x2x1 [δ1iδ2l + δ2iδ1l]) ,

(C.0.14)

p̂l = − 1
10
[
3x2

3δ3l + x2
2δ3l + x2

1δ3l + 2x2x3δ2l + 2x1x3δ1l

]
, (C.0.15)

f̂ li =
[

1
10
(
3x2

3δ3l + x2
2δ3l + x2

1δ3l + 2x2x3δ2l + 2x1x3δ1l

)
δij

+
1
10
(
3x2

3δ3j + x2
2δ3j + x2

1δ3j + 2x2x3δ2j + 2x1x3δ1j

)
δil

+
1
10
(
3x2

3δ3i + x2
2δ3i + x2

1δ3i + 2x2x3δ2i + 2x1x3δ1i

)
δjl

− 12
140

x2
3 [5δ3iδ3jδ3l + δ2iδ3jδ2l + δ1iδ3jδ1l

+δ3iδ2jδ2l + δ2iδ2jδ3l + δ1iδ1jδ3l + δ3iδ1jδ1l]

− 4
140

x2
2 [3δ3iδ2jδ2l + 3δ2iδ2jδ3l + 3δ2iδ3jδ2l

+3δ3iδ3jδ3l + δ3iδ1jδ1l + δ1iδ1jδ3l + δ1iδ3jδ1l]

− 4
140

x2
1 [3δ1iδ3jδ1l + 3δ1iδ1jδ3l + 3δ3iδ1jδ1l

+3δ3iδ3jδ3l + δ2iδ3jδ2l + δ2iδ2jδ3l + δ3iδ2jδ2l]

− 8
140

x3x2 [3δ3iδ3jδ2l + 3δ3iδ2jδ3l + 3δ2iδ2jδ2l

+3δ2iδ3jδ3l + δ2iδ1jδ1l + δ1iδ1jδ2l + δ1iδ2jδ1l]

− 8
140

x3x1 [3δ3iδ1jδ3l + 3δ3iδ3jδ1l + 3δ1iδ1jδ1l

+3δ1iδ3jδ3l + δ1iδ2jδ2l + δ2iδ1jδ2l + δ2iδ2jδ1l]

− 8
140

x2x1 [δ2iδ1jδ3l + δ2iδ3jδ1l + δ1iδ2jδ3l

+δ1iδ3jδ2l + δ3iδ1jδ2l + δ3iδ2jδ1l]
]
nj(x).

(C.0.16)
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Function

ψ = 1, r =‖ x ‖, (C.0.17)

ûli =
2
15
r2δil −

1
15
xixl, (C.0.18)

p̂l = −1
3
xl, (C.0.19)

f̂ li =
[

1
5
xiδjl +

1
5
xjδil +

1
5
xlδij

]
nj(x). (C.0.20)
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