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ABSTRACT

The accurate study of cha;aéteristics of the flow undér
gravity waves has become of prime importance due to the
growing demand for structural engineering designs in the
coastal environment. Although many investigations have
been carried out, the progress of fundamental research was
slow due to the lack of an adequate velocity measuring
instrument. However in recent years, the development of
the Laser Doppler Velocimeter has made it possible to obs-
erve the orbital velocity very close to a bed without dis-
turbing the flow. This technique was used in this invest-
igation, in which observations of the oscillatory flow

under gravity waves were carried out above smooth, two-

dimensional ahd three-dimensional rough beds.

For the smooth bed case it was found that the velocity
profile throughout the depth was well presented by the
Stokes second order shear wave equation, except that the
theoretical predictions underestimated the observed results,
and a linear relationship was obtained for the velocity co-
efficients between the two sets of values. As for mean
velocity the profile was in élose agreement with the Longuet-
Higgins conduction solution, and it was found to have a
negative value (in opposite direction to wave progression)
in the bulk of fluid and always positive values within the

boundary laver.
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The rough beds made little change to the flow in the
bulk of fluid. As for inside the boundary layer, the laminar
boundary layer was eliminated due to the large size of the
rough bed, but for a small size rough bed the flow became
laminar at the edge of the boundary layer, and a.perturbed
laminar boundary layer velocity profile was traceable. How-
ever, the two rough beds had similar influences on the flow
except for the roughness size and Reynolds number values.
Inside the roughness elements of the rough beds vortex form-

ation was clearly observed and the comprehensive range of

measurements of these formations are analysed and discussed.
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INTRODUCTION

The demand for knowledge of water waves and beach
profile during the second World War was the first major
turning point in the field of coastal engineering projects.
For Civil Engineers however, the growing demand of offshore
structure projects such as the oil platform§ in the North
Sea, the stabilization of submarine pipelines, or the in-
shore projects such as harbour design, sedimentétion in
large basins and beach profiles, yield the adaptation of
one particular wave theory or another, each of which forms
an integral part of many design predictions. Accurate fore-
casting of wave kinematics stems from a direct understand-

ing of fluid particle velocities and accelerations within

a wave motion.

Although many works have been carried out, during the

past few decades to examineﬁdifferent Qaveitheories under
different conditions, a major obstacle in conducting such
experiments has been the lack of satisfactory instrument-
ation‘to measure the unsteady velocities ofzthe fluid part-
jcles. This problem was an insurmountable one when the
ﬁarticle velocity was to be studied within the viscous
bouﬂdary layer thickness, consideriné the thickness is in
the order of a few milliﬁétres below laboratory gravity

waves Or over oscillatory beds.

By developing the 'Laser Doppler Velocimeter' (L.D.V.)



which has the advantages of measuring particle velocity at
almost any depth without entering and hence disturbing the
flow, and of high accuracy and fast response to an oscill-
atory flow (high or low speed), studying the flow has come
the nearest yet to true flow behaviour. L.D.V. has rapidly
become a standard tool in the measurement of fluid velocity,
and even though its use in this field is relatively new,
tests to obtain a satisfactory theory to support. observations
of laminar and turbulent oscillatory boundary layer flows,

as well as oscillatory flows in the bulk of a fluid are under-

way.

One of the most convenient, as well as effective, means
of predictihg surface waves and the orbital velocity in inter-
mediate water waves (for many civil engineering projects) is

the use of the Stokes second ordef theory, except for the
mass transport velocity where the practical evidence (Bagnold
(1947)) proved contrary Eo the theory, and instead the
Longuet-Higgins conductién solution has been used. However,
Beech (1978) showed that if the Stokes egquation can be used

in the form of a Fourier series at thg edge and outside the -
viscous boundary layer (Longuet-Higgins (1958)), then the

same procedure can be applied to the velocity profile inside
the viscous boundary layer over smooth and small-sized rough

beds.

As a continuation of Beech's work, the present study

used a glass plate bed as a hydraulically smooth bed, and



two beds of artificial roughnesses beds. One was a two
dimensional rough bed with. roughness heights all of 4.65 mm
and flat tops, and the other was made of hemispherically
shaped roughness elements of 18.95 mm height producing a
three dimensional rough bed. On these beds a series of

tests have been carried out, using the L.D.V. system, to

investigate the following points:-

(1) The validity of Stokes' second order equations

for surface wave and orbital velocities, as well as the

Longuet~Higgins conduction solution. for mass transport

velocity.

(ii) The relationship between Stokes' second order
equation and the modified equation proposed by Beech in

the form of a Fourier series for the laminar boundary layer

velocity.

(iii) The comparison‘of the Stokes second order
equation with the factors suggested by Sleath (1970) and
Kalkanis (1964) for the 2-D and 3-D rough beds turbulent

flow. This comparison enabled an equation for the prediction

of velocity profile above a roughbed.boundary'layer'to be

- proposed.

(iv) The nature of the eddy formation inside the

roughness elements of the beds.

(v) The influence of rough beds on orbital and mass

transport velocities throughout the whole water depths.



CHAPTER ONE

A REVIEW OF WAVE THEORIES

1.1 INTRODUCTION

An oscillatory boundary layer is formed under the

influence of oscillatory flow which can be generated by
gravity waves (unsteady free surface flow subjected to
gravitational forces). Wind waves, ship waves, tidal waves
all are part of the ocean waves which are cbmplicated ph-
enomena and difficult to describe in mathematical terms.
However all waves obey some sort of a wave theory. This
chapter does not include a full description of all existing
wave theories, for that several references are available
such as Weigel (1964), Silvester (1974), Le Mehaute (1976),
Lighthill (1978) and others, and.instead a few more rele-
vant theories with their limits of applicability, espec-
ially in reference to laboratory waves are discussed and

compared in this section.

1.2 THE CLASSIFICATION ' OF WAVES

Waves can be;differentiated in torsevéral groups and
looked upon- as eé;h separate family, but thébroadest cate-
gorization of waves is into long and sﬁort*wgves. For long
waves the vertical mbfion of particles (acceleration, vel-

ocity, displacement) are very small compared to horizontal

motions and for short waves the vertical motions are taken



into account. Mathematically using the ratio water depth (d)

to wave length L, which is called the relative depth, a

wave is said to be long when the relative depth is less

than 0.05 and short when the ratio is greater than 0.05.

Another group of waves are divided into shallow water
waves and deep water waves, the former when the relative

depth is less than 0.5 and the latter for relative depth of

greater than 0.5.

Combination of these two groups results in a third

classification which is more popular and that is dividing
the waves into three regions of shallow, intermediate and

deep water waves (Fig. 1l.l). (McCormic (1973))

l.2.1 Deep Water Waves

A deep water wave occurs when beyond that depth the

wave celerity (C) is not affected by depth and is there-
fore dependent upon wave length (L) and period (T). 1In
this case the water particle motion resulting from wave
action is circular and does‘not extend to the bottom

(Fig. l.2a). An approximation to this condition is given
by the relative depth of greater than 0.5, but according

to Silvester (1974), a specific ratio of 0.84 is given, but
between this value and 0.5 the changes are so slight that
the épproximation value of 0.5 is acceptable by engineers.

At the same time Kamphuis (1972) believes often more pract-

ical limits can be set at d4/L > 0.3.
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Fig. 1.1 Classification of Waves
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l1.2.2 Shallow Water Waves

Unlike the deep water, shallow water is the depth
within which the wave celerity depends solely upon depth
and is therefore independent of wave period. The water
particle path resulting from the wave action is elliptical
with the major axis of the ellipse independent of depth
(Fig. l.2c). For shallow water waves also different rela-
tive depths are suggested. Wiegel (1964) suggests a
0.04 value (1/25) whilst Eagleson and Dean (1966) has used

0.05 (1/20) for the maximum relative depth of shallow water

WaveS-JJV4scous,bounda:y”laye#féxists for shallow water too)

l.2.3 Intermediate Depth Water Waves

o
For this case the movement of water particle due to

wave action is elliptical, but unlike the shallow water
waves, the major and minor axes decrease exponentially with
depth and also very close to bed a region of viscous bound-

ary layer exists (Fig. l.2b). The intermediate water waves

exist when 0.05 < 4/L < 0.5.

l.3 WAVE THEORIES CLASSIFICATIONS

Gravity waves are so complicated mathematically that
not only a general solution does not exist, but for simp-
lest theories approximations must be made. In fact the
main difficulty in the study of water wave motions, is

that one of the boundaries (the free surface) - is one of

the unknowns.



However, the wave theories are generally classified,

by .the ratio of wave height (H) to wave length (L), as "the
small amplitude wave theories" and "the finite amplitude

wave theories". Some of the theories are reviewed and comp-

ared In the rest of this chapter.

A more comprehensive flowchart of the main character-

istics of water waves is presented in Appendix Al, which

originally is shown by Le Mehaute (1976).

1.4 LINEAR THEORY

The simplest wave theory is the linear theory which
was first presented by Airy (1845) and concerns the first
term of the wave series. The theory is based on certain

assumptions (Sorensen 1978) ;

—

1) The water is homogeneous and incompressible

and also surface tension is neglected (except

for wave with wavelength less than 30 mm).

2) " The flow 1s irrotational and therefore the

velocity potential ¢ must exist and satisfy

the Laplace equation:

2 2
3;t-l- _3._9 = 0 (1-1)
3 %2 3y2

where x and y are the two directions of flow.

3) The depth of water is uniform and there is no

movement at the bed due to wave motion.
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4) - The wave amplitude is small compared to

depth of water and wave length.

Linear theory is also known as 'small amplitude wave theory’

and 'Stokes first order theory'.

l.4.1 Progressive Waves

1:4.1.1. Vvelocity potential and surface
ordinate
Usingjthe iinear theory assumptions and with the help
of Bernoullis' full equation (Wood 1969), the velocity
potential for a progressive wave ﬁa‘wavewhich progresses
across the water surface so Ehat successive crests pass a

fixed point) can be written (Lamb 1932a) as;

o _ Pei(ﬁt—Kx) , | C(1.2)

where P is a function of y, K is wave number (27/L) and O

is the wave angular frequency (27/T). And the equation for

b

surface ordinate Y is;

- H - 1.3
Y, = 5 Cos (Kx-0ot) - ( )

Fig. 1.3 shows a surface wave moving with velocity C in

water deptﬁ d. Using the information that vertical Gélocity

(v) at bed (y =+Of is zero the real part of the equation 1.2



ll- p,

may be written as;

H Cosh K (z+d)

¢ = 55 Cosh K3 Sin (Kx-ot) (1.4)

where z is zero at surface and -d at bottom.

1.4.1.2 Wwave celerity/wave length relation

According to B.E.B. (1942) Ebport the relationship

between the wave celerity, the wave length and wave period

which is

L
C = 5 (1.5)

can be used as a definition for waves, though agreement with
this equation is not a confirmation of the dynamical theories
of waves. Also the relationship between wave velocity C and

wave length L is given by Lamb (1932) as;

%
C = [% (Tanh 31'1-.-‘;-)] (1.6)

From equations (1.5) and (1.6) the wave length/period rel-

ation results;

!
&
e
z
o
|

L 2rd , | (1.7)

This relation is shown graphically in Fig. 1.4 for differ-
ent values of d and Fig. 1.5 is the specific case of

d = 300 mm which was used during this investigation (know-
ing the period of the wave, the theoretical value of wave

length can be calculated from Fig. 1.5). Fig. 1.6 shows
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the variation of hyperbolic functions for different rela-

tive depth ratio. For deep water 4d/L is greater than 0.5

and hence Tanh 27d/L approaches unity so that equation 1.6

becomes

c= @ =Z& (1.8)

and for shallow water-% is less than 0.05 and Tanh 27d/L

approaches the value 2md/L and hence equation 1.6 changes to:

C = (gd)* | (1.9)

It can be noticed that equation 1.9 is independent of
wave length and wave period (see 1.2.2). For the transit-
ional or intermediate region fequiyvl.6:2n is unchanged. Also

Table 1.1 shows the limiting values of hyperbolic functions
for variation of tﬁe ratio d/L.

1.4.1.3 Particle motions and displacements
for progressive waves

The horizontal (63 and vertical (V3 components of water

parEicle velocity are given by~%%fand %$~respectivelywhere

¢ is given by equation 1l.4.

Thus:

— B . S — =N 1110
X o} Cosh Kd ( )

v = % - HEG_K W’ Sin (Kx-ot) (1.11)

L 3
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Description Intermediate Deep

1 1 1
20 ° 3 >3

%[exp(g%g)-exp(fa%g)]

!5 exXp (T

Table 1.1 The Limiting Values of Hyperbolic Functions.

L]
P
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For intermediate water waves substituting for K and o and

using equation 1.7, the velocity components would be:

’ __ TH Cosh 2w (z+d) /L X _ t
U T = sinn 2wa/L ] Cos 27 (f - ) (1.10a)
#_ TH ' Sinh 271 (z+d) /L X _t
\Y% N Sinh 27d/L ] Sin 27 (L T) | (1.1la)
H

where-—Tris known as the dimension, [ ] as the depth factor

and Cos or Sin as the phase. For deep water we therefore

have:
"= TH : x . Lt
U = —5 exp (27z/L) Cos 2m (3 T (1.10b)
v'= I exp (21z/1) Sin 21 (¥ - 5 (1.11b)

and for shallow water the velocity equations are:

% _
" - Hg ' x _t .
U » Cos 2T (L T) | (1.10c)
2d
/ H(z+d
V = _'i'%__)' Sin 2T (-,Jif- - -,%) (l1.11c)

(It is to be noted that equation (1.10c) is independent of

z and 1.1lc varies linearly with depth and inversely with

period).

Also the horizontal displacement is given as:

Cosh 2w (z_ + 4)/L X
- . O _o_ ¢t
E==3 Sinh 2w d/L sin 27 (5 T? (1.12a)

and vertical displacement as:
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Sinh 27 (zo+d)/L X

O t
Sinh 27 d4d/L Cos 2m (— 'E) (1.13a)

- H
n =3 L

o and zo.

Equation l.12a and 1.13a are for the intermediate depth wave

where 7 and n are either side of a mean position x

with £7and n representing an ellipse with major axis

Cosh 27 (zo+d)/L 1

H W and focal distance of Sinh 2wd/L°
For deep water the displacements are:
_-_H (2 L) i "o t (1 125)
C = - 5 exp (2mz_/ Sin 21 (— - %) .
= 3 exp (2mz /L) Cos 2 (fp_ - = (1.13b)
N =73 exp ‘0 s 2m il - 7) )

where the path is a circle with radius %H exp (2mz_/L) which

reduces ‘exponentially with depth. And for shallow water the

equations are:

% X
L = ZI—TZ-,; Sin 2T (12 — %) (l.12c)
T
H(z +d) X .
n = —5g— Cos 27 (-2 - -,’r-‘-) (1.13c)

The amplitude of horizontal motion is uniform throughout
the depth (HL/27d) and the vertical oscillation varies with

depth and is zero at bed.

l.4.2 standing Wave

1.4.2.1 Velocity potential and surface ordinate

The simplest description for the velocity potential of

standing waves (whose crests occur at certain fixed points
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at successive intervals) is that ¢ is a simple harmonic

function of horizontal displacement x. Therefore accord-

ing to Lamb (1932b) the function is in the form of:
¢ = (P Sin Kx)eiwt) (1.14)

where P is only function of y and the surface profile,

which is the production of two progressive waves travell-

ing in directly opposite directions, is given by:

Yo = -1-2{- Sin (Kx) Sin (ot) (1.15)

and the real part of equation 1l.14 can be written as the

potential function:

. Cosh K(z +d)

b = 5o ——GoTTT— Sin Kx Cos ot (1.16)

l.4.2.2 Particle motion and displacements

In the same way as for a progressive wave, the particle
motion equations may be derived from the potential function

(equation 1.16) as:

/ _1H Cosh 21 (z+d) /L

‘U = = SInh 27d/L Cos Kx Cos ot (1.17a)
"= _1_T_£‘I_ Sinh 217 (z+d) /L + 1.18a
\Y, = SInh 27d/L Sin Kx Cos o© ( )

The above equations can be simplified for deep water waves

asSse

+ mH
U = =

exp (2mz/L) cos Kx Cos ot (1.17b)
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.

exp (2nz/L) Sin Kx Cos ot (1.18b)

and for shallow water waves:

U = g%—-Cos Kx Cos. ot (1.17c)
’ H
\Y = T3 (z+d) Sin Kx Cos ot | (1.18c)

Similarly the displacements are given as:

Cosh 2w (zo+d)/L
Sinh 27 4d/L
Sin 27 (zo+d)/L

Sinh 2nd
L

which for deep water simplify to:

Cos Kxo Sin ot (1.19a)

Y
|
N N

Sin Kx0 sin ot (1.20a)

-
i

exp (2mz_/L) Cos Kx, Sin ot (1.19Db)

NTE- BN T+

exp (2ﬂZO/L) Sin Kx Sin ot (1.20Db)

and for shallow water

L = g%E:Cos Kgo Sin ot (1.19c¢)
n = %a(zo+d) Sin Kxo Sin ot ‘ (1.20c¢)

1.5 FINITE AMPLITUDE WAVES

l1.5.1 Stokes Second Order Theory

Gerstner (1802) was first to suggest a theory for deep
water waves on the assumption of vorticity and excluding

any = progressive movement of particles. Stokes (1847)

analysed the second order theory under no vorticity but
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accepting the wave current condition.

His conclusions were that:

"The expression for the velocity of propagation
is independent of the height of the waves to a
second order approximation with respect to the
form of the waves, the elevations are no longer
similar to the depressions as is the case to a
first approximation, but the elevations are
narrower than the hollows, and the height of the

former exceeds the depth of the latter.

There is one result of a second approximation
which may possibly be of practical importance.
It appears that the forward motion of the part-
lcles is not aliogether compensated by their
backward motion; so that, in addition to their
motion of oscillation, the particles have a

progressive motion in the direction of propa-

gation of the waves."

l.5.1.1 Velocity potential and surface
ordinate

The velocity potential to the second approximation

is given by Stokes as:

. HL Cosh 2w (z+d) /L x
¢ = 57 Sinh 2nd/L Sin 2w {f = 7)



22.

+ igH -ggih—i%igiglé£~sln 4T (—'-'-) (1.21)
Sinh® 2vd/L

To the second approximation the equations of wave vel-

ocity and wave length are unchanged (C2=%%’Tanh 2nd/L,
2

='%%— Tanh 2wd/L) .

The surface profile is then given by:

2
Yg = -2}-1- Cos 2w (% - .%) + .'"_Ig_ﬁ Cosh 2TrdzI3: (2 + Cosh 47md/L)
Sinh~ 21d/L

. Cos 471 (&= - —= . (l1.22)

l.5.1.2 Particle motions and displacements

The components of water particle velocities at any

place x, y in the fluid is given by,

U = nH Cosh 2 (z + d) /L Cos 2T 6% __%)

Sinh 27d/L
N %,(1%) ) Cosh 4ﬂ (z + d)/L o an C— _,_) (1.23)
Sinh 2nwd/L

/ TH Sinh 21 (z+4d) /L .. X _ Lt
V' = 77 T sinh 21d/L >in 2m 37 Tx

+ 3 (1%) (___) M& Sin 47 (- — —) (1.24)
Sinh 21d/L

Also the equations for displacements are:

Cosh 21 (z _+d) /L X
= -5 =9 " gin 21 (—2 - )
2 Sinh 21d/L L 7T
.2 | 3Cosh 47 (z_+d) /L X
+ nH (1 - = 18in 47 (-2 - &)

8Lsinh22wd/L ZSinh2 21d/L
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'nH2 Cosh 4n (zo/d)/L >t

+ T ——— 1 55 (1.25)
Sinh™ 2vd/L

=.E.Sinh 2T (zo+d)/L - , 129._.5)

N = 2 T sinh 274/L OS T \=30 = 7
2 Sinh 471 (z _+44) /L X
H t

p3m T TR R0t cos an (2 - &

sinh? 27d/L

ﬂH2 Sinh 4w (zo+d)/L

Sinh™ 27rd/L

l.5.1.3 Mass Transport

The net movement fdrward.(orbéckward) each period T
at a given depth Z is given by the third term in equation
1.25 by substituting t = T and then dividing by T. This

result is known as the mass transport velocity which is

given by:

= _ 1 (IT_}.i.) (F_Ii{_) " Cosh 4T (zo+d)/L
2 T L

5 (1.27)
Sinh® 2nd/L

Stokes assumed that no net motion occurs throughout
the complete depth of water and therefore added a constant

to the right hand side of the above equation (Raudkivi 1976)

which becomes:

_ Cosh 47n(z +d4d)/L . 2
U = -2]= (-1,;—,-1:{-) (3—%) -——————-2—‘3—-— - -'g—g—a- Coth 21d/L (1.28)
Sinh™ 27d/L |

and for deep water waves

-

0, = '1%) (1%) (exp 41 z/L - L/4md) (1.29)

Equations 1.28 and 1.29 neglect the viscous effects and
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therefore are not applicable inside the viscous boundary

layer and _interior of fluid,

1.5.2 Stokes Third and Higher Order Theories

Stokes has developed the potential function linear
theory in the form of a series of terms cos 2mn 0%*—*%)
where n =1, 2, 3 .... . Since then it has been the work
of many investigators (Wilton (1914) , Hurt (1953),'De (1955),
Skyelbreia (1959)). For example the third approximation

to the surface profile is given as:

« 2
H
yo =5 Cos 21 (£ -5 + 7 £, cos 4n (F - D) |
2..3
4+ T H X _ t

where f, and f, are functions of d4/L (Wiegel 1964). And for

wave velocity the relationship is:

c? = 2% Tanh 27d/L (1 + 4L + C°Sh 8nd/L (1.31)
8 Sinh 2ﬂd/L

particle displacements and velocity equations are also given

by Wiegel.

For fourth order and so on the term Cos 87 (x/L = t/T)
and .... are added and more complicated wave velocity and other

dynamic equations are introduced (Kinsman (1965)).

Whatever be the order of approximation, as Stokes stated,

there is a common factor among these theories that:
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"The wave will be symmetrical with respect to

vertical planes through their ridges, as also

with respect to vertical planes through thelr

lowest points".

1.5.3 Introduction and Significance of Ursell Parameter

The linear theory is valid for waves of small amplitude
and small wave steepness. But ocean waves are not small in
amplitude for deep region and the wave steepness is distorted
in shallow water. Stokes pqinted out that for the linear

theory to be valid, in addition to the conditions of small

2 3

wave steepness, the. ratio L“H/2d~ must be small too. This

ratio is the result of the amplitudes of the two terms of

equation 1.21. After simple calculations the ratio of the

amplitude of second order term to the amplitude of the first

order term becomes

3 1

3

H L
r (3

The non linearity of the waves, is measured by the para-

meter known as Ursell parameter (Chakrabarti (1980)):

_H L3 |
U, = ¢ (3) (1.32)

The Ursell number of less than 1 describes the deep
water waves, thg Ursell number of greater than 20 is for
shallow water waves. But in principle more and more terms

of the power series would be required in order to keep the

same relative accuracy as the Ursell parameter increases.
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1.6 CNOIDAL WAVES

Keulegan (1950) and De (1955) argued that Stokes
theories are valid for deep water (when 4/L > 1/8), but for
shallower water the cnoidal wave theory appears to be more
satisfactory. The theor?“%irst developed by Korteweg and
De Vries (1895) and since it has attracted many investigators
(Keller (1948), Wehausen (1963)). The computations are

based upon the equation for a stationary wave;

2
b/2 (dy_/dx)=y_ (a-y.) (K+y,) (1.33)

_ (= here y-axis moves with the wave)
where b and K are constants and a represents the vertical

height of crest above trough, then Yo and x are the vertical
and horizontal coordinates of water surface (Fig. 1.7).

Where the origin is situated at the level of the wave trough,

then the surface wave equation becomes:

2 (K+a)§x (1.34)

y.=ac.? ]
S (ab)

n
Where C_(u) denotes the Jacobian elliptic function of

U and modulus here being a%/(a+K)%. This theory has been

fully covered in Wiegel togefher”with the particle velocity

equations and displacements. Also higher order theories for

cnoidal wave representation are discussed by Laitone (1960)

and Silvester (1974).
l.7 SOLITARY WAVE

A solitary wave is the special case of a cnoidal wave
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when the wave length becomes infinite and the trough
becomes asymptotic to still water level (S.W.L.). A sol-
itary wave is a progressive wave relative to the body of
water, whose motion is unaffected.by preceding of following

crests. The general surface equation is given by:

2

Y, = a Sech x/2b (1.35)

where a is the crest height above S.W.L. and b is given by:

_ d + a s
b =d ( =) - (1.36)
Also the celerity of the wave is given by:
C = g% (d + a)!5 (1.37)

The velocity functions and displacement equations are

given by Wiegel, Silvester and Wood (1969).

1.8 TROCHOIDAL WAVE THEORY

The trochoidal wave theory for deep water waves was
developed by Gerstner (1802). The surface of the wave is

the path of a point on a disc whose circumference rotates

along a stralght line (Fig. 1.8). For an angle of rotat-

ion 6, the surface profile below crest level is:
Yo = H/2 (l-cos 60) - (1.38)

and the horizontal distance from the origin at a crest is

given by:

= -9 H_
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With the positions of crest and trough from S.W.L. as:

H/2 + TH2/4L )
, ) . (1.40)
H/2 - TH®/4L )

height of crest

depth of trough

The wave velocity equation for deep water is equivalent to

that for Airy wave:

C2 = gL/2m

and the water particles, for deep water waves, describe
circular orbits while for éhallow*water the particles have

elliptical orbits. A full summary of trochoidal theory is

given by B.E.B. (1942) and Wiegel (1964).

1.9 COMPARISON OF THE WAVE THEORIES

One of the basic assumptions in this sort of investig-
ation is the application of a suitable analytical wave
theory. The theories have been briefly presented abqve:

each has practical limitations,_advantageé and disadvantages,
and is suitable for special conditions (as dictated by the

wave amplitude to water depth ratio (H/d) which classifies

the finite or infinite amplitude wave or by the water depth

to wavelength ratio (d/L) which defines the wave classifications)

The trochoidal theory is an example which is used by
engineers because of its exactness (Wiegel). While cnoidal

theory is suitable in place of Stokes theories for shallower

water and greater wave period (T > 6 sec), the Stokes second.
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and third order predict the mass transport, as well as

being a good approximation to practical cases of small

period, finite amplitude and intermediate water waves.

In a theoretical comparison of progressive waves(see p.122)
Dean (1970) concludes that linear theory and cnoidal first -
are good approximations for shallow water while linear and
 Stokes third order theories are more suitable for inter-
mediate and deep water regions. O©On the practical side, the
tests carried out by Le Mehaute et al. (1968) suggest that
for waves in deep and shallow water, linear theory predicts
velocities at the bed with good accuracy and at still water
level cnoidal first is a better approximation in shallower
water. Tests by Chakrabarti (1980) prove that for waves
between 1.4 sec. and 3.25 sec. period the best estimate is
Stokes third while the linear theory also compares well

for waves of up to 3.5 sec. period. 1Isaacson (1978) has

shown that both Stokes and cnoidal wave -theories will pred-
ict the mass transport velocity near the sea bed, but the
cnoidal theory is a better fit when
3/2
H/d > 350 (d/gT?) (1.41)
and H/d is limited by wave breaking.

A tabulated comparison of the above six theories is
shown in Table 1.2. .-For this study, however, Stokes second
order has been chosen as the suitable thedry; and the comp-

arison of the theory with data is presented in Chapter 5.
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CHAPTER TWO

REVIEW OF THE OSCILLATORY BOUNDARY LAYER

2.1 INTRODUCTION

A comprehensive study and comparison of different wave
theories, together with the equations for surface wave pro-
file and orbital paths has been made in Chapter One. How-
ever,becaﬁse for wave theories the assumption is zero vis-
cosity, the orbital velocity equations would be acceptable
up to a depth close to the bed where the influeﬁce of vis-
cosity becomes effective. Theﬂpresent chapter contains a
review to this layer (better known as oscillatoryboundary
layer), which includes the boundary layer thickness defin-
ition, laminar and turbulence'for oscillatory flow with the
relevant Reynolds nuﬁber values suggested by previous works,
the velocity equations for smooth and rough beds, the mass
transport equation, separation at boundary layer, shear
stresses on the bed due to surface wave, the effect of

roughness in the boundary layer theories and Reynolds number

values and definitions.
2.2 STOKES SHEAR WAVE EQUATION

Stokes (1851) in his memoir on pendulums pioneered the
problem of an oscillating plane boundary.in an infinite
fluid known as the "Shear Wave" solution, which. later was

extended by Lord Rayleigh (1911).
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Among many others to investigate the above problem
was Lamb (1932), who approached the problem for an infinite
and semi infinite plane, the latter being closely related
to the oscillatory boundary layer problem. By choosing
suitable axes, Lamb (1932 c)'Obtained that because the
plate has infinite length (or fluid is extended to infinity)

the derivatives of velocity with respect to the axes para-

du

llel to plate movement (x direction) must be zero (5% = O)
av _ : ou , v _
hence T = 0 from the continuity equation (5% +'§§ = 0),

and also v is zero at the boundary. Now with having con-
stant pressure everywhere the Navier-Stokes equation can be

written as;

ou _ J u
=V | (2.1)

where v is the kinematic viscosity of the fluid.

Equation 2.1 is.alinear equation with the plate oscill-
ating in its own plane (simple harmonic motion). Assuming
i(ot+e) 2T

where 0 = /— (T is the period) and

a time factor of e -

boundary conditions of

Uu=0aty=w )
Y ) | (2.2)
)

u = uo(t) at y =0

The solution to equation 2.1 is
u =‘Ae(l+i)6y + Be-(l+i)BY (2.3)

where B is the boundary layer parameters and;
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B = (%;,—);5 (2.4)

Solving equation 2.1 for a fluid which is bounded by
a fixed rigid plane (y = d) and under a horizontal force
acting uniformly on the mass of water with. the boundary

conditions of:

U=0aty =0 )
| ) (2.5)
U=1U_ Cos(ot) at y =6d)

where § is the thickness of viscous boundary layer and

suffix "o" represents the flow just outside the boundary
layer and taking only the real part of the equation, the

solution (for equation 2.1l) will be (Lamb 1932 c);
U = U_[Cos(ot) - e-BYCOS(Ut-By)] (2.6)

while equation 2.6 is for horizontél velocity in a viscous

boundary layer above a fixed bed and under oscillating

fluid (or gravity wave), for an oscillating plate the

equation can be obtained (Schlichting 1968) as;
U = er-By Cos(ot-Bvy) ' . (2.7)
where U, is the maximum velocity of the plate.

Figs. 2.1 and 2.2 represent the two equations (2.6 and

2.7) for eight equal intervals in one period.
2.3 BOUNDARY LAYER THICKNESS

Obviously the thickness of the boundary layer depends
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BY

6.0

5.0

4.0

.25 =1.0

Fig. 2.1. Laminar Boundary Layer Velocity dist-
ribution under gravity waves (Egq. 2.6).
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_ J,2X
.25 <1.0 -0.75 -0.5 -0.25 0.25 0.5 0.75 1.0 1.2
U/8 |

Fig. 2.2 Laminar Boundary Layer Velocity dist-
ribution above an - oscillatory bed.
(Eg. 2.7).
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on the influence of viscosity from the bed. Examining
equations 2.6 and 2.7 the influence of e-By is rapidly
decreasing with increasing of By and it reduces to one
percent when By = 4.6. Taking the limit of y as 6 (the

boundary layer thickness) we will have;

BS = 4.6
_ 4.6 _ 4.6 _ Vi %
or § = & = ——— = 6.5 (0) (2.8)

.(0/2\:)!5

This equation is accepted by many investigators as
viscous boundary layer thickness (L.i (1954), Manohar (1955),
Brebner et al. (1966)). While some others (Eagleson (1959),
Lamb (1932)) believe that one wave-length (27/B) is a more
propexr definition for £he vertical range of boundary laver
thickness, for which the effect of.bed shear is then red-
uced to 0.2 per cent. However Jonsson (1966) argues that
for the velocity inside boundary layer to have the same
value as the velocity outside the boundary layer it requires
that By be .equal to /2 and in this case the boundary layer
thickness becomes 7/2B8. Fig. 2.3 shows the maximum velocity
profile in the boundary and Fig. 2.4 shows the velocity:
phase variation for maximum velocity within the boundary

layer.

It is conclusive that the boundary layer thickness 1is

proportional only to (wave periodyﬂfrom.equation 2.8,

6

6 = 2.59(vT)%). Taking a value of 10 m2/s for kinematic
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viscosity of water the boundary layer thickness varies
between 2 mm and 500 mm for wave periods of 1 second to
12 hours (which is a tidal wave). The laboratory waves

of up to 10 sec. period produce a boundary layer thickness

of up to 10 mm.

From Fig. 2.3 it appears that equation 2.8 is an ade-
quate definition for boundary layer thickness and this will

be used throughout this thesis.

2.4 BOUNDARY LAYER EQUATIONS UNDER LAMINAR AND TURBULENT
CONDITIONS

2.4.1 Laminar and Turbulent Flow in Oscillatory Flow

To discuss the boundary layer equations under laminar
and turbulent conditions, the first step would be to under-

stand what is meant by these terms.

While the definition of the terms 'laminar' and 'turb-
ulent' havgbeen made descriptively and by observation on
dye introduced into the flow (Reynolds (1883)), these
terms can also be defined mathematically by consideration

of the ratio of inertia to viscous forces known as "Rey-

nolds Number".

Though many books and reports have been published 1inv-
estigating the states of laminar and turbulent flows for
oscillatory flow cases still the question of how and under

what condition transition from laminar to turbulent occurs
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remains one of considerable dispute, especially when the

problem of hydraulically rough surface is added.

Li (1954) reports that,

"Two different types of mechanisms exist. (1) Suff-
iciently large disturbance which break down into

individual eddies, and (2) a discontinuity becomes
unstable and rolls up into individual eddies.

While the first case is similar to the breakdown

of a surface wave, the second case can be demon-
strated by the unstable character of a vortex-sheet

of ideal flow".

(The latter statement means that in a plane vortex-sheet
with a small sinusoidal disturbance vorticity occurs which
becomes more and more concentrated in the rolled-up portion,

and then breaks down to small eddies). He adds,

"on the other hand the formation of the eddies
does not necessarily represent the beginning

of turbulence. Flow becomes turbulent only

when the eddies move away from the location of

origin®.

Manohar's (1955) description of laminar and turbulent

flow is that;
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"In laminar flow, the entire region of flow
1s divided into an orderly series of fluid
laminar or layers conforming generally to the.
configuration of the boundary, and turbulence
is a random of fluid masses which mix contin-

uwally with other similar fluid masses in the

same fluig®.

This view is also shared by Kalkanis (1957) that in a
turbulent case the molecular exchange of momentum gives
way to momentum or vorticity exchange of large masses of

fluid which move temporarily as a unit and then mix with

other masses.

Visual observation has been widely used by many other
investigators to define the flow, but as Sleath (1970, 1974a)
point out, the disturbance of the dye cloud, might be caused

by the formation of vortices around individual roughness ele-

ment, and does not necessarily mean the start of transitional
flow. So the next section examines the critical Reynolds
number for the occurrence of laminar. and turbulent flow.

2.4.2 Critical Reynolds Number and. the Effect of

Rouohness

The transition from laminar to turbulent boundary layer
occurs on the increasing of the inertia forces relative to
friction forces. Reynolds number which is the ratio of these

forces can be used to represent the laminar and. turbulent
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boundary layer characterisation. For a representative Re,
the kinematic viscosity of water (V) is easily found by
knowing the temperature (from the empirical Poiseulle eg-
uation), but for a characteristic length and velocity diff-

erent views exist. According*to Einstein (1972);

"The characteristic values must be chosen by logical
arguments, but if too many variables of the same
dimension are involved it may become necessary to
determine the proper variable empirically. The

critical value of the Reynolds number must always

be found by experiment".

Li (1954) using an oscillating plate for his experiment

suggests that for a smooth boundary the critical Reynolds

number at which the transition takgs place is 800 providing;

(- also_see Table 2.1)

where w 1s the angular velocity and d, is the éotal dis-

1
placement of the oscillatory plate in feet, and v is the

Kinematic viscosity (ftz/sec.). For a rough boundary'the

Reynolds number is found from:

( mdlK (2.10)
Re|) = .
)Rl V -

where Kk is the roughness height. For two dimensional

roughness, Li suggests that;when_%fis less than 2.6 the bed

S
K
is hydraulically smooth. While for three dimensional rough-

behaves hydraulically rough and for — greater than 6.8 it

ness when'%-is less than 18.5 it is taken as hydraulically
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rough and for %rgreater than 30 it is smooth, where ¢ is

the height of laminar boundary layer.

Manohar (1955) also suggests that the ratio of § to
the height of the element for roughness (k) has three cases.

First when 6>>>kwhich then the Reynolds number is defined

asiggi‘when U, 1s the maximum velocity of oscillatory bottom,
or;
% ’
 YRe)= _w_vg_ - (2.11)

where a' is the length of semi major axis of the orbit
of water particle near or at bottom and w is the angular
velocity of the water particles in its orbital motion.

Second case is when 6>>k then the Reynolds number will
|

wa K
V

K is replaced by a function of K3;

be

 and thirdly when 6>k which for Reynolds number

_wa'f(x)
(Re)R-i- ____V (2 -12)

‘and Zf(K) is to be determined experimentally. Manohar using
an oscillatory plate found that the critical value of Re

in the smooth case is 400, for 3-D roughness is 104 and for

. . 0.
- _fullyzxturbulent is 1.78 x 104 providing f£(k) is equal to K :

and verifying Li's results (Note that .for f(k) = <*% the
Re would not be dimensionless anymore i.e.. not Reynolds

number anymore but just a ratio).

‘Vincent (1957) using the ratio given by Li (eq. 2.10)



44 .

found a constant Re for each roughness. The results for

transiton or "Setting Off", Re values are found to be

a fifth of the values suggested by Li for rough beds. He

also found that for §-> 30 the bed still behaves as the

rough beds. However Vincent used a wave channel instead
of the oscillating plate used by Li and Manohar, where

in this case w is %ﬂq T being the wave period and dl is

the total travel of a fluid particle in the immediate vic-

.H
Sinh 2th/L

wave height and h and L are water depth and wave length

inity of thebed'(or d, = ; in which H 1is the

respectively).

Eagleson (1959) obtained that the laminar boundary

layer exists at least up to a value of 3 x 104 for Re

where:

u_°r

) ,
(Béx= Av

By taking the boundary layer thickness (1/B8) as the

characteristic length for Reynolds number, Brebner and

Collins (1961) rewfite'Re as;

L. oy (2.13)
2 VR T¢SinhKd

from which turbulence will occur when;

. % S
( 2 > Re Vy * sinh Kd
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while Kalkanis (1964) believes that,

"in a practical application it is not important
to know the exact value of the Re ., as to be

able to predict with sufficient confidence that
under the existing conditions the flow regime in

the boundary is not laminar and consequently that

the theoretical laminar solution is no more applic-

able. This type of information can be obtained by

experimental methods".

His results of Recrit number for turbulent flow are different

to those of Li and Manochar, and states;

"Re as defined for the transition regime may

crit
well be extended to cover the rough. case too. This
implies that in Li's and Manohar's experiments the

flow in this region was already unstable before it

could be established as such from observations".

Johnsson's (1980) conclusions are different to his
earlier statements (1966). For smooth bed case he suggests

that a Reynold number of about ten times higher than his
Previous estimated value is to be taken for a fully developed
turbulence. As for rough beds he suggests the limits are
still vague and for present Sleath's (Table 2.1) and Kajuira's

results are more appropriate for practical uses.
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_Where Jonsson (1966) using a wave channel found that for

el

smooth turbulence Recrit is 250 and for a rough turbulent
the value is 500. __UFG I
(Re = 2, & = L)
v /2

Brebner et al. (iésé)_éoﬁéleting'the work of Brebner

and Collins (1961l) found that when %-approaching zero the
U 6
oo K

crit (—3—) is 160, and forﬂg approach-

ing unity the bed is hydraulically rough and critical
U K

(Re (—-g—-) is 110. So for O < -g- <1 the bed could behave
|

hydraulically rough or smooth. It is concluded that when

bed is smooth and Re

Re is greater than 160 the flow is tufbulent and below 110
1
g -

it is laminar (6 =

Results from the oscillatory plate work of Einstein

(1972), he suggests that the Rec for smooth bed is

5

rit

pA
1.7 x 10 where(Bé%=ézw/v, w and a being the angular vel-
ocity and amplitude of the moving plate. For two dimensional
4
and three dimensional roughness the critical(gé)(ﬁ%g, K
RI

is the Roughness element) are 640 and 104 providing

( 266 for 2-D roughness
< |
(

/
a
K

1630 for 3-D roughness

all other cases behave hydraulically smooth.

Riedel et al. (1972) using a wave tunnel concluded

that for a smooth boundary the critical Reynold No.
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Umam

(—— + where a_ is the orbital amplitude just outside the
boundary layer) for transition is between 9 x 103 and

6 X 105.

While most of the critical Reynold numbers given have
been evaluated visually by the effect of dye, Sleath (1974a)
explains that the onset of mixing of dye with fluid does
not necessarily mean the occurrence of the turbulence
especially when it comes to roughnesses such as grains,
for sometimes on the lee of larger grains a wake of dye
appears which could be mistaken for transition. For large
scale roughness (-E, = 5) he found that for Reynolds number(lc' = %1'[)
(E%f-where 2 is the bed roughness wavelength) of 800, the

first signs of vortex formation appears and when it is
4000 the vortex is fully mixed throughout the .-cycle. 1In
the case of small scale roughness k%v= 0.3), however, he
states that at high Re the flow is unstable and with
decféasing Re the flow changes gradually to one in which
the fluid moves in closed recirculating cells ﬁith neglig-
ible mixing from one cell to the next. Bf introducing the

] 5 U_«’
two ratios of E;(where K’=—EQ and

(where w is the
angular frequency of water waves) a fully developed mixing

curve for two dimensional roughness (some three dimensional

roughness as well) is introduced in the form of

U K
m —i; * B -1.29 k
& = 1007 (3) (2.14)

where 0.03 < £ < 5. Equation 2.14 well agrees with the
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work of previous investigators (Li, Manohar, Vincent).

Knight (1978) rewrites equation 2.14 in the form;

u _ 241 J
o5 ;)02 (2.15)

where D is the mean grain size (which is equivalent to

the roughness*waveléngth) with the limits of 0.19 < BD < 31l.
Sleath (1975), by assuming 5 per cent fluctuations of

root mean square of velocity as the transition state to

*turbulent from laminar, introduced a new relationship

—-— g eI

U L 1.16 1.16

h - ah _ o " (2.16)
[(—;—-)(L) 108.2] 75, 0.042)= 0.58
UL, 1.16
which tends towar #s (%)J (%) 1.16 at large -—\,—-(%)

(for large BL) and vice versa (small BL).

Meanwhile George and Sleath (1978) conclude that,

"For oscillatory flow over a rough bed there is

a range of Reynolds numbers for which the flow
remains laminar, in the strict sense of that term,
but in which the velocity profile is significantly
different from that over a smooth bed. It has
usually been assumed in the past that the flow
regime at the sea bed is either fully developed
turbulence or that the velocity distribution for
laminar flow over a smooth bed applies. It is
clear from the present work that a third regime

which may be called "rough laminar” may also be

important."”
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The state of transition, as presented by the authors

mentioned above, has been interpreted differently in mathe-
matical forms. But that which all of the statements have
in common 1is that the conditions of transition is very
complicated and dependent on the tyﬁe of roughness. There
is the problem of different types of two dimensional rough-
ness as well as the problem of 2-D and 3-D roughness. Also
the value of Re is defined by different physical parameters
as well as the different results which have been obtained.

However in the case of a smooth boundary it seems that
U 6

(Re)3= -—‘3— is more popular and logical, whilst in the case of

rough boundary the height of roughness would be a gQod char-
U_K

acteristic length for Reynolds number, of the form.—;— .

Also the ratio of roughness height to the roughness wave-
length should be taken into account. Again Vincent suggests
that the reéults from oscillatory plate and wave channel
have some discrepancies, while Sleath believe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>