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Abstract 
 
There are three prolyl hydroxylases (PHD1, 2 and 3) that regulate the 

hypoxia-inducible factors (HIFs), the master transcriptional regulators that 

respond to changes in intracellular O2 tension. In high O2 tension (normoxia) 

the PHDs hydroxylate HIFα subunits on 2 conserved proline residues 

inducing binding of the von-Hippel-Lindau (VHL) tumour suppressor, the 

recognition component of a multi-protein ubiquitin-ligase complex, initiating 

HIFα ubiquitylation and degradation by the 26S proteasome. However, it is 

not known whether PHDs and VHL act separately to exert their enzymatic 

activities on HIFα or as a multi-protein complex. In this thesis, data are 

presented that shows that the tumour suppressor protein LIMD1 acts as a 

molecular scaffold simultaneously binding the PHDs and pVHL into a 

normoxic protein complex (normoxiplex),  increasing their physical proximity 

in order to enable efficient and rapid sequential modifications and thus 

degradation of HIF1α. Data are presented which indicates that increased 

LIMD1 expression down regulates HIF transcriptional activity, by promoting 

HIF1α degradation via the oxygen dependent degradation domain in a 

manner dependent on hydroxylase and 26S proteasome activities. However, 

degradation of this domain is not wholly dependent on the well characterised 

proline residues subject to hydroxylation, suggesting that LIMD1 may alter 

proline hydroxylation specificity or modulate HIF via a different mechanism. 

Furthermore, endogenous depletion of LIMD1 results in the converse, 

leading to HIF1α stabilisation and accumulation, enhancing HIF 

transcriptional activity. Moreover, Limd1-/- MEFs show increased HIF 

transcriptional activity. One mechanism by which this is achieved involves the 

binding of PHD2 within the N-terminal portion of LIMD1 while allowing 

concurrent binding of VHL to the C-terminal zinc-finger LIM domains. 

However, the LIMD1 mediated mechanism regulating HIF1α independently of 

proline residues 402 and 564 is still unclear.  Finally, data are presented that  

show that the LIMD1 family member proteins Ajuba and WTIP all bind 

specifically to VHL but differentially to PHDs 1, 2 and 3 and thus these three 

LIM domain containing proteins represent a new group of hypoxic regulators. 
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1 
 

1. Introduction 
 

1.1 Identification and characterisation of the LIM domains containing 1 
gene product 

 
Interstitial gene deletions and loss of heterozygousity (LOH) of chromosome 

3p have been identified in a diverse array of tumours including breast, cervix, 

bladder, renal and small cell lung carcinomas (Imreh et al., 1997). PCR 

marker analysis from tumour cell lines revealed a commonly eliminated 

segment at 3p21.3 referred to as the commonly eliminated region (C3CER1). 

This identification instigated the large scale sequencing of the 3p21.3 

chromosomal region to map for genes with potential tumour suppressive 

functions. This led to the identification of a 5067bp cDNA containing an open 

reading frame found to encode a protein of 676 amino acids and a mass of 

72.2 kDa, comprising three C terminal LIM domains. This gene was 

subsequently termed the LIM Domain containing 1 gene (LIMD1) and its 

mouse ortholog, Limd1, found encoded on mouse chromosome 9, of which 

shares 79.5% homology (Kiss et al., 1999) 

 

 

1.2 LIM domain proteins 
 
The LIM domain family of proteins are a diverse group of multi-functional 

proteins, incorporating either a single or multiple homologous zinc finger 

structure known as the LIM domain. The LIM domain was first isolated from 

three homeodomain containing proteins as a novel cysteine rich motif: C-X2-

C-X17-19-H-X2-C-X2-C-X2-C-X7-11-(C)-X8-C, from the Caenorhabditis 

elegans gene lin-11 (Freyd et al., 1990) and mec-3 (Way and Chalfie, 1988) 

and rat isl-1 (Karlsson et al., 1990) and from which the acronym LIM is 

derived (for lin-11, isl-1, mec-3). The LIM domain proteins perform a 

spectrum of functions involved in cell identity, differentiation and growth 

control, via protein-protein associations involving the cysteine rich LIM 

homeodomain in addition to the interactions of other variable motifs 
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(Schmeichel and Beckerle, 1994; Kadrmas and Beckerle, 2004). LIM 

domains are zinc binding arrays of approximately fifty-five amino acids, 

whereby eight highly conserved cysteine or histidine residues coordinate two 

zinc atoms to form two tandemly repeated zinc fingers per LIM domain 

(Michelsen et al., 1993). These two zinc fingers exist as separate structural 

entities held together by hydrophobic interactions, elucidated by nuclear 

magnetic resonance (NMR) analysis of the LIM protein CRP-1 (Cysteine Rich 

Protein-1) (Michelsen et al., 1993). 

 

The protein-protein interface binding repertoire of LIM domain containing 

proteins is achieved both by varying the number of LIM domains (from 1-5) 

and varying the non-LIM domain associations of the specific protein. 

Furthermore, a  non-conserved amino acid sequence of X11-18 and X9-16 

lies at the peak of each zinc finger binding sub-domain which confers 

addition functional specificity and thus diversity between the different LIM 

domains (Kadrmas and Beckerle, 2004). The extent of the LIM domain as a 

key cellular protein-protein interacting motif is indicated by the prevalence of 

LIM proteins in eukaryotic cells (135 different encoding sequences have been 

identified in 58 human genes) whereby LIM protein sequence occurrence is 

comparable with the well characterised Src-homology-2 (SH2) and SH3 

domains (115 and 253 sequences respectively) (Pawson and Nash, 2003). 

Interestingly, the prevalence of LIM proteins in eukaryotes decreases with 

reduced organism complexity to the extent that LIM proteins are absent in 

prokaryotic organisms, which suggests their involvement in development in 

higher order organisms (Kadrmas and Beckerle, 2004). The structure of 

LIMD1 and the conserved sequence encoding the LIM domain are 

represented schematically in figure 1.2. 
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Figure 1.2 Schematic representation of LIMD1 (676 amino acids) and the 

structure of the LIM domain.  
LIMD1 contains an N terminal nuclear export signal (NES) within residues 1-134, a 

retinoblastoma (pRB) binding interface within residues 404-442 and 3 C-terminal 

LIM domains preceded by a proline/serine rich region. The LIM domain comprises 2 

tandem zinc finger structures, whereby 8 conserved cysteine and histidine residues 

coordinate 2 zinc atoms. [Modified from (Kadrmas and Beckerle, 2004; Michelsen et 

al., 1993)]. 
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LIM domains are found in a multitude of proteins of cytoplasmic and nuclear 

localisation, in addition to proteins which translocate between both 

intracellular compartments (Zheng and Zhao, 2007; Kadrmas and Beckerle, 

2004; Petit et al., 2000). One functional attribute which appears conserved 

upon most LIM proteins is the ability to interact with the actin cytoskeleton 

(Roof et al., 1997; Crawford et al., 1992). Coupled with the ability of many 

LIM proteins to shuttle into the nucleus, it is postulated that LIM proteins can 

associate with the actin cytoskeleton and focal adhesions and relay 

extracellular cues to the nucleus and the transcriptional machinery 

(Cattaruzza et al., 2004; Muller et al., 2002; Wang and Gilmore, 2003).      

 

 

1.3 Zyxin Family of LIM proteins 
 
LIM proteins are classified according to the sequence homologies of their 

LIM domains and their general structure (Dawid et al., 1998; Kadrmas and 

Beckerle, 2004). LIMD1 is categorised into Group 3 of LIM proteins due to 

the presence of C-terminal LIM domains associated with distinct N-terminal 

domains. All of the Group 3 LIM proteins are predominantly cytosolic with 

highly conserved LIM domains but divergent proline rich pre-LIM regions. 

Furthermore, within Group 3 of the LIM domain family of proteins, LIMD1 is 

categorised within a group of actin associated proteins named the Zyxin 

family of proteins also including Ajuba (Goyal et al., 1999), Trip6 (Yi and 

Beckerle, 1998), Zyxin (Crawford et al., 1992), LPP (Petit et al., 1996), WTIP 

(Srichai et al., 2004) and the more distantly related Migfilin (Tu et al., 2003).  

All of the Zyxin proteins comprise three highly conserved C-terminal LIM 

domains, associated with a non-conserved pre-LIM region containing 

additional non-catalytic domains.   

 

Zyxin remains the best characterised of the family, located at focal adhesions 

via its proline rich N-terminal (Nix et al., 2001), whereby it regulates actin 

cytoskeleton dynamics, cell movement and signal transduction (Fradelizi et 

al., 2001). Within the Zyxin family of LIM proteins, a distinct structural and 
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functional separation lies between Zyxin, LPP and Trip6 and the LAW 

(LIMD1, Ajuba and WTIP) proteins, forming two sub-families, illustrated by 

their phylogenetic relationships in figure 1.3. 

 

 

 

 
Figure 1.3 Phylogenetic analysis of the Zyxin family proteins. 
The Zyxin family of LIM proteins comprises 7 proteins, namely Zyxin, TRIP6, LPP, 

LIMD1, Ajuba, WTIP and Migfillin (not shown), all of which contain 3 C-terminal LIM 

domains. Phylogenetic sequence analysis demonstrates the sub-categorisation of 

the Zyxin family into two further groups which share structural and functional 

homology, including the LIMD1, Ajuba and WTIP (LAW) sub-family. 

 

 

As expected from their genetic homology, LPP (Lipoma-Prefered Partner) 

and Trip6 (Thyroid receptor-interacting protein 6) share similar functional 

attributes in cytoskeletal regulation as Zyxin. This is highlighted by the 

presence of multiple FPPPP binding motifs to recruit EVH1 (Ena/VASP 

homology domain 1) domains present in the actin regulatory proteins 

Ena/VASP, to the cell leading edge to influence actin assembly, which are 

not found in LIMD1 or Ajuba (Renfranz and Beckerle, 2002). Furthermore, 

LIMD1 and Ajuba lack α-actinin binding sites, present in the Zyxin sub-family 

(Li et al., 2003; Reinhard et al., 1999). 
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1.4 The LAW Sub-family of LIM proteins 
 
To date, Ajuba is the best characterised of the LAW sub-family and displays 

both similar and distinct functions to the other Zyxin LIM proteins. Ajuba was 

initially identified as a binding partner of the adapter protein Grb2 (Growth 

factor receptor-bound protein 2), that couples signals from cell surface 

receptors to the activation of Ras and subsequently MAP kinase activation. 

Ajuba was demonstrated to interact with Grb2 SH3 domains via the pre-LIM 

region. Goyal et al demonstrated that Ajuba enhances MAP kinase activity to 

promote downstream Xenopus oocyte meiotic maturation in a Ras and Grb2 

dependent manner (Goyal et al., 1999). One proposed functional trait 

distinguishing Ajuba from Zyxin is its cytoplasmic localisation and absence 

from focal adhesions (Goyal et al., 1999). However, there is disparity in this 

finding as more recent data reports the involvement of Ajuba in cytoskeletal 

regulation, modulating cell motility by recruitment of the adaptor protein 

p130Cas, to focal adhesions (Pratt et al., 2005). Ajuba null mice present 

impaired cell migration, believed to be due to defective p130Cas localisation 

to focal adhesions and the subsequent inability to activate Rac kinase (Pratt 

et al., 2005).  

 

Kanungo et al demonstrated that Ajuba localises to sites of cell-cell adhesion 

with the ability to translocate into the nucleus dictated by a nuclear 

localisation sequence (NLS) within the LIM domains and shuttle out via a pre-

LIM leucine-rich nuclear export sequence (NES) in a CRM1 (Chromosome 

region maintenance 1)-dependent manner (Kanungo et al., 2000).  As cell-

cell contact and adhesion to the extra-cellular matrix (ECM) regulate cell and 

tissue growth, it was postulated that Ajuba may relay extracellular cues to the 

nucleus influencing cell fate. This was demonstrated to be the case as 

ectopic expression of full length Ajuba increases proliferation, whilst an Ajuba 

LIM domain only construct that localises to the nucleus, spontaneously 

induced endodermal differentiation of P19 embryonal cells (Kanungo et al., 

2000). 
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Recent data increasingly implicates the Ajuba sub-family of the Zyxin 

proteins with a role in transcriptional co-repression.  LIMD1, Ajuba and WTIP 

all specifically interact with members of the Snail family transcriptional 

repressors via a conserved SNAG domain required for repressor complex 

assembly (Ayyanathan et al., 2007; Langer et al., 2008). The LAW proteins 

are believed to interact with Snail on endogenous E-cadherin promoters in 

the nucleus, serving as a platform for chromatin modifying factors such as 

the protein arginine methyltransferase 5 (PRMT5) (Hou et al., 2008) and 

histone deacetylases (HDAC) (Montoya-Durango et al., 2008) to repress E-

cadherin expression. E-cadherin down regulation is a characteristic of 

epithelial mesenchymal transition (EMT), as cells repress epithelial gene 

expression and up-regulate mesenchymal genes to lose cell adherence and 

increase invasion (Thiery and Sleeman, 2006). Langer et al demonstrated 

that Ajuba mediated co-repression of E-cadherin, promotes EMT in Xenopus, 

driving processes such as neural crest development (Langer et al., 2008).  

As Ajuba has been demonstrated to interact with α-catenin and F-actin at 

cadherin-dependent cell-cell contacts, this provides a plausible mechanism 

whereby Ajuba may relay cues from cell-cell contacts to nuclear E-cadherin 

expression to regulate cell migration and developmental fates (Marie et al., 

2003). 

 

1.5 LIMD1 is a novel tumour suppressor 
 
LIMD1 is encoded at chromosome 3p21.3, denoted the C3CER1 as it has 

been identified as one of the putative tumour suppressor regions by the 

elimination test; a test that identifies frequently deleted chromosome regions 

in microcell hybrid-derived SCID (Severe combined immunodeficient) 

tumours (Petursdottir et al., 2004; Kiss et al., 1999). Deletions in this 3p 

region are a common event in numerous solid malignancies including breast, 

gastric, colorectal, ovarian and renal (Petursdottir et al., 2004). Furthermore, 

LOH analysis of 576 tumours from 10 different tissue types, identified 

C3CER1 deletions in 83% of the tumours, exceeding the deletions in the well 
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characterised VHL (73%) and FHIT (Fragile histidine triad gene) (43%) 

regions of chromosome 3p (Petursdottir et al., 2004).  

 

The tumour suppressive role of LIMD1 was first revealed in human lung 

carcinomas. Ectopic expression of LIMD1 was found to inhibit cell 

proliferation and repress colony formation in the non-small cell lung cancer 

(NSCLC) A549 cell line (Sharp et al., 2004). Viable A549 cells stably 

expressing HA-LIMD1 transduced by lentiviral technology were injected into 

the tail veins of athymic nude mice. HA-LIMD1 expression significantly 

reduced the incidence of lung metastases in comparison to transduction of 

the lentivirus only (Sharp et al., 2004). These in vivo and in vitro data concur 

with a reduction of LIMD1 protein levels in 75% of human squamous cell 

carcinomas and 79% of adenocarcinomas respectively, arising from a 

combination of gene deletion, LOH and epigenetic silencing (Sharp et al., 

2008). Moreover, Limd1-/- mice predisposed to chemically-induced lung 

adenocarcinomas by administration of the carcinogen urethane, had an 

increased incidence of tumours compared to their wild type littermates (Sharp 

et al., 2008). Limd1-/- mice crossed with mice expressing a single copy of 

oncogenic K-RasG12D also had greatly increased tumour incidence which 

translated to an increased mortality over a 12-month period in comparison to 

the K-RasG12D mice (Sharp et al., 2008). 

 

In head and neck squamous cell carcinomas (HNSCC) early LIMD1 

alterations are also evident. In dysplastic lesions and HNSCC samples, 

LIMD1 showed high frequency promoter methylation, deletions and exhibited 

a reduction in mRNA expression (Ghosh et al., 2008).  

 

In comparison to the loss of LIMD1 observed in human lung and HNSCC, 

analysis of LIMD1 in breast carcinomas revealed that differential sub-cellular 

localisation correlated with the tumour type and patient prognosis (Spendlove 

et al., 2008).  LIMD1 is constantly shuttled between the nucleus and the 

cytoplasm via a CRM1-dependent nuclear export mechanism (Sharp et al., 

2004). However, the equilibrium favours nuclear export as LIMD1 is 

predominantly localised in the cytoplasm, with approximately 14% of U2OS 
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cells expressing nuclear LIMD1 (Sharp et al., 2004). Down regulation of 

LIMD1 expression in the nucleus of neoplastic breast carcinoma cells as 

determined by immunohistochemistry, strongly correlated with poor patient 

prognosis, aggressive forms of breast carcinoma and increased tumour size 

(Spendlove et al., 2008). However, LIMD1 is rarely found in the nucleus but 

not in the cytoplasm. Therefore, the observed loss of nuclear LIMD1 may 

reflect a general loss of LIMD1 in the cytoplasm, therefore favouring the 

equilibrium for nuclear export. In this case, either loss of nuclear LIMD1 or 

reduction in LIMD1 protein levels correlates with poor prognosis.  Both in 

lung and breast carcinomas, the expression level and localisation 

respectively, provide scope for the future therapeutic use of LIMD1 as a 

prognostic marker for early cancer development. 

 

One elucidated mechanism of LIMD1-mediated tumour suppression is via 

interactions with the archetypal tumour suppressor retinoblastoma protein 

(pRB) (Sharp et al., 2004). LIMD1 directly binds pRB via residues 404-442 

(Figure 1.2) and acts to co-repress E2F transcriptional activation of genes 

that facilitate G1/S phase transition, inhibiting cell proliferation which is 

fundamental in tumourigenesis. LIMD1 and pRB are believed to interact and 

regulate the transcriptional activation ability of the E2F family of transcription 

factors in a concentration dependent manner. This is in keeping with the 

previously reported role of the LAW proteins as transcriptional co-repressors 

(Ayyanathan et al., 2007; Langer et al., 2008; Hou et al., 2008; Montoya-

Durango et al., 2008). Interestingly, mutation analysis led to the identification 

of a synonymous single nucleotide polymorphism (SNP) in the pRB 

interacting region of LIMD1 (1068T→C) in 7% of HSNCC samples (Ghosh et 

al., 2008). Furthermore, pRB is not directly lost in the development of every 

lung cancer, and therefore LIMD1 down regulation may induce a pRB loss of 

function to a similar effect as direct pRB loss (Wistuba et al., 2000). 

 

As the LAW sub-family have conserved structural and functional attributes 

(Feng et al., 2007; Langer et al., 2008) it is plausible to hypothesise that 

Ajuba and WTIP may also have tumour suppressive functions. WTIP was 

first identified as an interacting protein for the zinc finger transcription factor 
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Wilms Tumour 1 (WT1) (Srichai et al., 2004). WT1 was originally identified as 

a tumour suppressor protein required for normal kidney nephrogenesis and 

podocyte differentiation, which was found inactivated in the development of 

Wilms tumours (or nephroblastomas) (Kreidberg et al., 1993). It has been 

proposed that WTIP acts in a scaffolding capacity within podocytes, visceral 

epithelial cells that form an essential component of the glomerular filtration 

barrier, to monitor the assembly of protein complexes regulating responses to 

slit diaphragm injury in order to modulate gene expression (Rico et al., 2005; 

Srichai et al., 2004). As WTIP interacts with the well characterised WT1 

tumour suppressor, it is a possibility that WTIP may perform a conserved 

tumour suppressive function. In keeping with this hypothesis, Kanungo et al 

have demonstrated that expression of the Ajuba LIM domains inhibits cell 

growth in P19 embryonal cells (Kanungo et al., 2000). However, the LAW 

sub-family have also been reported to promote EMT, a pro-tumourigenic 

process resulting in increased metastasis and invasion, by repression of E-

cadherin expression (Langer et al., 2008). Whether this represents the 

predominant LAW function is arguable and many factors need to be 

considered. These data apply within the context of the organism, in this case 

Xenopus, within which the research was performed. Furthermore, the LAW 

proteins (and particularly LIMD1) are principally localised in the cytoplasm 

(Sharp et al., 2004; Sharp et al., 2008), rather than in the nucleus where they 

may function to repress E-cadherin expression by interacting with the Snail 

family of transcriptional co-repressors, therefore, it is questionable whether 

this represents the predominant LAW function. As LIMD1 loss is observed in 

lung, head and neck carcinomas it appears that the overall phenotypic effect 

of LIMD1 is tumour suppressive. As to whether this translates to a conserved 

function of all the LAW proteins and how the dichotomic relationship between 

the involvement of LAW in EMT and tumour suppression lies, is yet to be fully 

understood. 

 

Interestingly, LIMD1 deletion mutants absent of the pRB binding region still 

maintain a proportion of transcriptional repressive activity (Sharp et al., 

2004). Furthermore, this is also the case in the pRB-/- human epithelial-like 

osteosarcoma SAOS2 (sarcoma osteogenic) cell line, whereby a degree of 
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LIMD1’s tumour suppressive ability is maintained (Sharp et al., 2004). This 

suggests that LIMD1 may function as a tumour suppressor via pRB 

dependent and independent mechanisms. A yeast-2-hybrid screen (Y2H) 

was performed to identify novel LIMD1 interacting partners that may 

represent this pRB independent function.  GAL4 DNA-binding domain LIMD1 

amino acids 1-363 (denoted ∆364-676) was screened against a HeLa cDNA 

library and obtained a cDNA encoding full length prolyl hydroxylase 1 (PHD1) 

(Figure 1.5). PHD1 is one of three prolyl hydroxylases which target the 

hypoxia inducible factor (HIF) transcription factors for oxygen dependent 

degradation by the 26S proteasome, further elaborated in section 2. Data in 

this thesis confirms this interaction between LIMD1 and PHD1, in addition to 

the PHD2 and PHD3 isoforms and examines whether LIMD1 via this 

interaction modulates HIF activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 LIMD1 interacts with PHD1 in a Y2H screen 
GAL4 DNA-binding domain (BD) LIMD1 (amino acids 1-363, i.e. ∆364-676) isolated 

a cDNA encoding full length PHD1 from a Y2H screen of a HeLa cDNA library. 

GAL4 BD-LIMD1 ∆364-676 and GAL4-activation domain (AD) -PHD1 were then co-

transformed into the yeast strain PJ69-4a in addition to negative controls (PHD1 

with pBD vector only and nuclear protein LaminC). Interaction was then assayed by 

prototrophy for histidine and adenine on medium lacking these amino acids.  
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1.6 HIF and the Intracellular Hypoxic Response 
 

The precise concentration of cellular oxygen is essential in order to maintain 

intracellular bioenergetics and correct metabolic functioning. Therefore, 

responses to alterations in cellular oxygen tension are controlled by a tightly 

regulated oxygen sensing mechanism which couples oxygen levels to gene 

expression. In hypoxia, defined as a reduction in oxygen levels, the cellular 

response revolves around a signalling cascade mediated by a family of 

transcription factors termed the hypoxia inducible factors (HIFs). This section 

will provide an insight into the discovery, role and regulation of the HIFs and 

specifically the implications in cancer.   

 

1.7 Early hypoxia biology research 
 

The earliest research into hypoxia in tumour biology dates back to the early 

20th century by Otto Warburg. Warburg observed that cancer cells 

experienced an ‘injury of respiration’ and a subsequent ‘increase of 

fermentation’ termed the Warburg effect (WARBURG, 1956). Warburg noted 

that cancer cells favoured anaerobic glycolysis independently of oxygen, 

postulating that chronic mitochondrial dysfunction could account for such a 

shift, following inducement of damage by treatment with carcinogenic x-rays. 

Warburg hypothesised that the increase in glycolysis is a major cause of 

cancer, a hypothesis which has more recently been superseded by the 

requirement for oncogene activation and down regulation of tumour 

suppressors, a process which most likely accounts for the Warburg effect 

itself rather than mitochondrial malfunction (Sherr, 2004).  

  

Early indications of the presence of hypoxic tumour cells were observed by 

Thomlinson and Gray in 1955. From analysis of human lung tumour sections 

they noted a necrotic core surrounded by a region of viable cells adjacent to 

blood capillary vessels (THOMLINSON and GRAY, 1955). In multiple tumour 

types they consistently observed this band of viable cells of 170µm in width, 

approximately the calculated diffusion distance of O2, suggesting this necrotic 
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region was due to insufficient O2 supply as the tumour rapidly expands and 

distances from the vasculature. They proposed that an O2 concentration 

gradient was present from the capillaries to the necrotic core and that on the 

edges of the necrotic region viable tumour cells existed.  

 

The first molecular discovery in hypoxia biology came in the 1980’s with the 

discovery of a number of genes stimulated by O2 deprivation. These included 

the glucose-regulated proteins (GRPs) (Sciandra et al., 1984) and O2-

regulated proteins (ORPs) (Heacock and Sutherland, 1990). It was later 

found that an 80kDa ORP and a 78kDa GRP were in fact identical, 

suggesting that glucose and oxygen deprivation may induce the same 

cellular process. The nature of cellular O2 sensing and how gene 

transcription was regulated in hypoxia were still to be elucidated.  In 1991 a 

key link between hypoxia and gene transcription was identified by Semenza 

et al, by systematic characterisation of the oxygen regulated expression of 

the haematopoietic growth factor erythropoietin (EPO) gene.  Semenza 

identified cis-acting DNA sequences approximately 120 base pairs 3’ of the 

polyadenylation site of the human erythropoietin gene that enhanced EPO 

expression (Semenza et al., 1991; Pugh et al., 1991; Beck et al., 1991). EPO 

is the primary regulator of erythrocyte production and therefore tissue oxygen 

delivery. As EPO expression had been demonstrated to increase hundred-

fold following hypoxic exposure (Schuster et al., 1989), this identified a 

hypoxia-inducible gene enhancer. 

 

1.8 Identification and characterisation of the hypoxia inducible factors 
 

In 1992, the trans-acting protein factor found able to regulate EPO gene 

expression was identified in Hep3B cells. Using a double stranded 

oligonucleotide probe encompassing key nucleotides in the EPO enhancer 

element, electrophoretic mobility shift assays (EMSA) were performed with 

Hep3B nuclear extracts exposed to normoxia and hypoxia (Semenza and 

Wang, 1992).  This identified a hypoxia inducible nuclear factor, capable of 

binding to the EPO enhancer and promoting EPO expression in O2 
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deprivation.  This nuclear factor was designated hypoxia-inducible factor 1 

(HIF1) and was further demonstrated to have a general role in the hypoxic 

activation of gene transcription in all mammalian cell lines tested, including 

both EPO and non-EPO producing cells (Wang and Semenza, 1993c). HIF1 

induction by hypoxia was initially demonstrated to induce genes encoding 

glycolytic enzymes such as aldolase A and phosphoglycerate kinase 1, all of 

which were found to contain a homologous HIF1 binding site erythropoietin 

enhancer, termed a hypoxia response element (HRE) (Semenza et al., 

1994). This HRE was restricted to a core motif of 5’-G/ACGTG-3’, currently 

believed to be associated with 100-200 genes regulating a diverse array of 

cellular processes including erythropoiesis, angiogenesis, autophagy and 

energy metabolism (Figure 1.8.1) (Kaelin, Jr. and Ratcliffe, 2008).  
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Figure 1.8.1 Direct transcriptional targets of HIFs. 
A small subset of hypoxia response genes. Many of the protein products of these 

genes are involved in tumour progression. Glut1; glucose transporter 1 (Ebert et al., 

1995), PDK1; pyruvate dehydrogenase kinase isozyme 1 (Kim et al., 2006), 

GAPDH; glyceraldehyde-3-phosphate dehydrogenase (Graven et al., 1999), c-MET; 

mesenchymal-epithelial transition factor (Pennacchietti et al., 2003), CXCR4; C-X-C 

chemokine receptor 4 (Schioppa et al., 2003),  WT1; wilms tumour suppressor 

(Wagner et al., 2003), EPO; erythropoietin (Semenza and Wang, 1992), NIP3; 

E1B/Bcl-2 19kDa interacting protein 3 and pro-apoptotic protein (Bruick, 2000),  

VEGFA; vascular endothelial growth factor A (Levy et al., 1995), Ang-2; angiopoietin 

2 (Oh et al., 1999), PDGF; platelet derived growth factor (Kourembanas et al., 

1990). 
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Purification of HIF1 from Hep3B cells using DNA affinity chromatography,  

identified HIF1 as a heterodimer comprising of a 120kDa HIF1α and 91-

94kDa HIF1β subunit (Wang and Semenza, 1995).  Both HIF1α and HIF1β 

are basic-helix-loop-helix (bHLH)-PAS proteins, due to high sequence 

similarity to the Drosophilla proteins period (Per) and single-minded (Sim) 

and the mammalian aryl hydrocarbon receptor (AHR) and aryl hydrocarbon 

receptor nuclear translocator (ARNT) of which all contain 200-350 amino 

acids that constitute the PAS (Per-ARNT-AHR-Sim) domain (Wang et al., 

1995). The oxygen sensitive regulation of HIF was found to be determined by 

a rapid redox dependent turnover of the HIF1α subunit under normoxic 

conditions and rapid stabilisation in hypoxic conditions (Huang et al., 1996). 

HIF1β, is found ubiquitously expressed independently of O2 availability and is 

identical to the previously identified bHLH-PAS protein ARNT, which is 

reported to mediate biological and toxicological effects of xenobiotics in 

association with AHR (Hankinson, 1995). 

 

HIF1α was found to be one of three closely related forms, each encoded by a 

distinct gene locus. HIF2α, previously termed HIF1α-like factor (HLF) (Ema et 

al., 1997), HIF-related factor (HRF) (Flamme et al., 1997), endothelial PAS 

domain protein 1 (EPAS-1) (Tian et al., 1997) and member of the PAS family 

2 (MOP2) (Hogenesch et al., 1997), has the highest degree of functional and 

structural homology with HIF1α, with an amino acid sequence homology of 

48% (O'Rourke et al., 1999). HIF3α or inhibitory PAS domain protein (IPAS) 

is less closely related to HIF1α and appears to demonstrate negative 

regulation of hypoxia dependent gene activation by forming transcriptional 

inactive heterodimers with HIF1α but not HIF1β (Makino et al., 2001). Due to 

the apparent general homology in HIF1α and HIF2α structure and function, 

they are commonly referred to as HIFα. The conserved structure of HIF1α, 

HIF2α and HIF1β are illustrated in figure 1.8.2. 



  Introduction | Chapter 1  

17 
 

 

 

 

 
 
Figure 1.8.2 Domain Structure of the hypoxia-inducible factors. 
HIFs comprise a basic helix-loop-helix (bHLH) domain required for DNA binding and 

two PAS domains of 100-120 amino acids which mediate HIF heterodimerisation. 

HIF1α and HIF2α contain an oxygen-dependent degradation domain (ODD) 

containing functionally important residues that convey oxygen responsiveness, 

proline 402 within an N-terminal (NODD) and 564 within a C-terminal oxygen-

dependent degradation (CODD) sub-domain. HIF1α and HIF2α also contain two 

transactivation domains, an N-terminal activation domain (NAD) and a C-terminal 

activation domain (CAD) which interact with the transcriptional co-activator 

p300/CBP. [This figure is modified from (Schofield and Ratcliffe, 2004; Simon and 

Keith, 2008)].  
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HIF1α is expressed ubiquitously, whereas HIF2α and HIF3α exhibit more 

restricted tissue distributions. HIF2α expression is restricted to vascular 

endothelium, liver parenchyma, lung type II pneumocytes and kidney 

epithelial cells (Tian et al., 1997; Jain et al., 1998; Wiesener et al., 2003; 

Flamme et al., 1997), whereas HIF3α is found primarily expressed in the 

thymus, kidney, cerebellar Purkinje cells and corneal epithelium of the eye 

(Makino et al., 2001; Gu et al., 1998).  

 

Under hypoxic conditions, stabilised HIFα translocates into the nucleus via a 

C-terminal nuclear localisation signal, where it heterodimerises with the 

stable constitutively nuclear protein HIF1β (Pollenz et al., 1994; Kallio et al., 

1998). HIFα and HIF1β heterodimerisation occurs both in vivo and in vitro in 

the absence of DNA, mediated by the N-terminal PAS domains. DNA binding 

of the HIFα-HIF1β heterodimer is conferred by the bHLH domains which 

interact with HREs within target genes via both DNA strands in the major 

groove to activate expression of hypoxia response genes (Jiang et al., 1996; 

Wang and Semenza, 1993a).  

 

HIF1α and HIF2α contain two transactivation domains in the C-terminal half 

of the protein, designated the N-terminal activation domain (NAD) and C-

terminal activation domain (CAD), [HIF1α aa481-603 and aa776-826, (Jiang 

et al., 1997; Pugh et al., 1997)] [HIF2α aa450-571 and 824-876, (Ema et al., 

1999)]. The CAD has been demonstrated to interact with the cysteine-

histidine rich (CH-1) domain of the homologous transcriptional adaptor 

proteins adenovirus E1A-binding p300 (p300) and Cyclic-AMP responsive 

element-binding protein (CBP) inducing recruitment of the basal 

transcriptional machinery (Arany et al., 1996; Ema et al., 1999). The 

interaction of p300/CBP with HIF1α and HIF2α is also subject to oxygen 

sensitive regulation via hydroxylation of asparagine 803 (further discussed in 

section 1.12). HIF heterodimerisation, DNA binding and p300/CBP 

association are depicted diagrammatically in figure 1.8.3. 
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Figure 1.8.3 Diagrammatic representation of HIF heterodimerisation and 

DNA binding properties.  
In hypoxic conditions HIFα translocates into the nucleus and heterodimerises with 

HIF1β mediated by the PAS domains, enabling the bHLH domains to bind to HRE 

elements of hypoxia response genes. The HIFα transactivation domain interacts 

with the p300/CBP transcriptional co-activator inducing recruitment of the basal 

transcriptional machinery to initiate gene expression. [Figure modified from (Simon 

and Keith, 2008)]. 
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1.9 Oxygen dependent regulation of HIFα stability 
 
Huang et al observed that HIFα had a rapid redox-dependent turnover in 

normoxia but became stabilised under hypoxic conditions (Huang et al., 

1996). Furthermore, Huang et al demonstrated that HIFα mRNA was 

unaffected by changes in oxygen tension, hypothesising that the likely 

mechanism of regulation occurred at the post-transcriptional level, altering 

the rate of translation or rate of protein degradation (Wenger et al., 1997; 

Kallio et al., 1997). In 1997, Salceda et al elaborated on this hypothesis by 

demonstrating that HIFα was regulated in normoxia by the addition of a 76 

amino acid polypeptide ubiquitin, which targeted the protein for degradation 

by the 26S proteasome, a multi-catalytic protease (Salceda and Caro, 1997). 

Mutation analysis of a Gal4-HIF1α fusion led to the identification of a 

ubiquitin-proteasome mediated, oxygen dependent degradation (ODD) 

domain between amino acids 401-603 (Huang et al., 1998). This domain 

conferred an extremely short normoxic half life of approximately 5 minutes to 

the full length protein and internal deletion of the ODD domain induced HIF 

stability, heterodimerisation and activation of HRE-luciferase reporter gene 

constructs (Huang et al., 1998). 

 

 

1.10 Von-Hippel Lindau Tumour Suppressor 
 
In 1999, Maxwell et al discovered a key link in the cellular oxygen sensing 

mechanism from observations of patients with von-Hippel Lindau (VHL) 

disease. VHL disease manifests in individuals with a germline mutation in the 

von-Hippel Lindau tumour suppressor. Somatic bi-allelic loss of the wild type 

VHL gene results in a striking up-regulation of angiogenesis and glucose 

metabolism, which consequently form highly vascularised tumours such as 

hemangioblastomas and renal clear cell carcinomas (Kaelin, Jr., 2002). 

Maxwell et al demonstrated that renal carcinoma cells absent of VHL, 

constitutively express HIFα and consequently multiple HIF response genes 

under normoxic conditions (Maxwell et al., 1999). Furthermore, Maxwell et al 
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showed that ectopic expression of VHL suppressed HRE-reporter activation 

and VHL re-introduction could restore normal hypoxic regulation of VHL 

inactive renal carcinoma cell lines. It was also revealed that VHL and HIFα 

interact and that VHL affects HIFα stability mediated via the ODD domain. 

However, the direct mechanism and link between VHL and HIFα 

ubiquitylation was still to be defined. This was achieved by Cockman et al in 

2000 who demonstrated evidence that VHL regulates HIFα by promoting 

ubiquitylation as a component of a ubiquitin ligase complex (Cockman et al., 

2000).  

 

VHL mRNA encodes two protein isoforms of 24-30kDa and 19kDa, as a 

result of an internal translation initiation ATG at codon 54 (Iliopoulos et al., 

1995; Iliopoulos et al., 1998). Therefore, the term pVHL is often used when 

generically referring to both isoforms. 

 

VHL associates with elongin C (14kDa) and elongin B (18kDa), two 

regulatory subunits of the trimeric transcription elongation factor, elongin, to 

form a trimeric VBC complex (Duan et al., 1995; Kibel et al., 1995) . It was 

further demonstrated that this VBC complex could interact with the additional 

proteins Cullin-2 (CUL-2), a homolog of Cdc53 in Saccharomyces cerevisiae 

(Pause et al., 1997) and Rbx1, an evolutionarily conserved protein that 

contains a RING-H2 finger-like motif that interacts with the Cullin proteins 

(Kamura et al., 1999). Cdc53 is a known putative E3 ubiquitin ligase with 

defined functions in the degradation of cell cycle control proteins and 

therefore, led to the hypothesis that the VBC-CUL-2 complex could target 

transcription factors for proteolysis to regulate hypoxia dependent gene 

expression. This hypothesis was further elaborated by Lonergan et al who 

led to the proposal of a model based on homology with the SCF (Skp-1-

Cdc53/Cullin-F-box) class of ubiquitin ligases (Lonergan et al., 1998). In 

addition to the homology between CUL-2 and Cdc53, elongin C shares 

homology with Skp-1 and elongin B sequence similarity to ubiquitin itself. 

This led to the conclusion that VHL as part of the VBC-CUL-2 complex forms 

an E3 ubiquitin ligase capable of targeting HIFα subunits for proteolytic 
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degradation in normoxic conditions. Structural homology of the VBC and SCF 

ubiquitin ligase complexes are depicted in figure 1.10. 

 

The structure of the VBC complex was solved by Stebbins et al in 1999. 

Stebbins demonstrated that pVHL comprises an α-domain (aa 155-192) 

which associates with elongin C and a β-domain containing a seven stranded 

β-sandwich (aa 63-154) and an α-helix (aa193-204) (Stebbins et al., 1999). 

The β-domain of both VHL isoforms (aa 63-154) was demonstrated to be 

capable of directly interacting with HIFα residues 549-582 and inducing poly-

ubiquitylation (Cockman et al., 2000; Ohh et al., 2000).  

 

The functional importance of VHL’s associations with elongin C and the HIFα 

subunit is emphasised by the fact that the majority of missense mutations 

that manifest into VHL disease, disrupt these interactions, thus providing a 

direct link between structure and function. VHL mutations can be classified 

into different types associated with the molecular defect and the resulting 

clinical manifestation (Kaelin, Jr., 2002). For example, the common type 2A 

mutations Y98H and Y112H within the VHL β-domain retain a significant 

residual ubiquitin ligase activity towards HIF1α in vitro, which translates to a 

low risk of renal cell carcinoma development (Knauth et al., 2006). However, 

type 2B mutations in the same residues, Y98N and Y112N, result in ablation 

of the interaction with HIF1α and therefore, VHL does not retain ubiquitin 

ligase activity, predisposing individuals to a high risk of renal cell carcinoma 

development (Knauth et al., 2006). 
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Figure 1.10 VBC Ubiquitin ligase complex.  
VHL forms a VBC complex with elongin C, elongin B and cullin-2. This complex 

structurally and functionally resembles the SCF-like (Skp-1-Cdc53/Cullin-F-box) 

ubiquitin ligases. Ubiquitin ligases, in conjunction with E1 and E2 enzymes, target 

proteins (such as HIFα subunits) for poly-ubiquitylation, which labels them for 

degradation by the 26S Proteasome. VHL interacts with elongin C via three C- 

terminal helices within the VHL α-domain which resembles an F-box motif. VHL β-

domain contains a substrate docking site capable of binding HIFα residues 549-582. 

[Figure adapted from (Kaelin, Jr., 2002)]. 
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1.11 HIF regulation by proline hydroxylation 
 

The precise oxygen sensing mechanism regulating the VHL-dependent 

degradation of the HIFα subunit was largely elucidated by the Ratcliffe, 

Kaelin and Lee groups in 2001. Previous evidence demonstrating the 

inhibition of HIFα degradation by the administration of iron chelators such as 

desferrioxamine and cobaltous ions suggested the involvement of an 

underlying oxygen-sensing ferroprotein (Wang and Semenza, 1993b; 

Goldberg et al., 1988).   

 

Mass spectrometric analyses revealed oxidation of a conserved proline 564 

residue within the ODD domain of the HIFα subunit. Synthetic production of a 

HIF peptide (556-574) incorporating a trans-4-hydroxy-S-proline residue was 

capable of out-competing the in vitro interaction of HIFα with pVHL 

confirming that the mechanism promoting HIFα ubiquitylation was dependent 

on the most common trans-4 proline hydroxylation by a HIFα-prolyl-4-

hydroxylase (Jaakkola et al., 2001; Ivan et al., 2001; Yu et al., 2001).  

 

It was subsequently identified that the HIF-prolyl hydroxylases comprised a 

family of 3 closely related enzymes encoded by individual genes (Epstein et 

al., 2001; Bruick and McKnight, 2001), who could preferentially hydroxylate 

two different, independent and non-redundant HIFα degradation domains, 

encompassing proline 402 and 564 in HIF1α (Masson et al., 2001). The HIF 

prolyl hydroxylase domain proteins are orthologues of the Caenorhabditis 

elegans Egl-9 gene and are interchangeably referred to as PHD1, 2 and 3, or 

EGLN 2, 1 and 3 proteins respectively (Epstein et al., 2001). The PHDs are 

members of the 2-oxoglutarate-dependent dioxygenase family related to the 

procollagen prolyl hydroxylases, localised in the endoplasmic reticulum and 

whom are believed to modify collagen as it matures along the exocytotic 

pathway (Kivirikko and Pihlajaniemi, 1998). The PHDs are iron and oxygen 

dependent non-haem ferroproteins, that consistent with previous findings 

may be inhibited by iron chelation or iron substitution by cobaltous ions 

(Kivirikko and Myllyharju, 1998). The PHDs absolute requirement for oxygen 

as a co-substrate led to a direct link between oxygen availability and the 
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regulation of hypoxia inducible genes via HIFα stability. Proline substrate 

residues P402 and P564 of HIF1α, P405 and P531 of HIF2α and P491 of 

HIF3α, all align to a conserved hydroxylation LXXLAP motif (Ivan et al., 2001; 

Jaakkola et al., 2001). 

 

The precise mechanism governing the selective recognition of HIFα via prolyl 

hydroxylation was further scrutinised by the Jones and Pavletich groups in 

2002, who examined the crystal structure of the HIFα peptide (aa560-577) 

bound to the VBC complex. The HIFα CODD peptide binds via two distinct 

binding sites, amino acids 560-567 and 571-577, with pVHL residues 67-117 

within the β-domain (Min et al., 2002; Hon et al., 2002). 560-567 represents 

the primary binding site, containing the hydroxyproline residue within the LAP 

motif, which is deeply buried within a hydrophobic core pocket containing 5 

residues capable of hydrogen bonding with the hydroxyproline 564 residue. 

The pyrrolidine ring of the hydroxyproline makes multiple van der Waals 

contacts, whilst the 4-hydroxyl group forms hydrogen bonds with the N of 

histidine 115 and the OH group of serine 111. Without HIFα pro564 

hydroxylation, binding would result in the energetically unfavourable 

desolvation of His 115 and Ser 111 and therefore, these residues are 

believed to act as key determinants in the strict selectivity for hydroxylation of 

pro564.  
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1.12 Asparaginyl hydroxylation regulates HIF transcriptional activity  
 

As mentioned in section 1.8, in addition to prolyl hydroxylase mediated 

regulation of the HIFα ODD, transcriptional activation of the HIF C-terminal 

activation domain (CAD) is also negatively regulated by O2, independently of 

HIFα stability by means of asparaginyl hydroxylation.  Factor Inhibiting HIF-1 

(FIH) (alternatively termed HIF asparaginyl hydroxylase) was identified as a 

HIFα interacting protein (Mahon et al., 2001), subsequently identified as an 

additional 2-oxoglutarate-dependent dioxygenase that worked in a similar 

Fe(II) and oxygen dependent manner as the PHD proteins to hydroxylate a 

conserved asparagine residue in the HIFα CAD (Lando et al., 2002; 

Hewitson et al., 2002). The oxygen dependent hydroxylation of HIF1α 

asparagine 803 (HIF2α asparagine 851) inhibits the association of HIF with 

co-activators such as p300/CBP, abrogating the recruitment of the 

transcriptional machinery and the expression of hypoxia inducible genes, 

illustrated in figure 1.12.  It has further been demonstrated that hydroxylation 

occurs on the asparagine β-carbon which is part of an α-helix deeply buried 

within the molecular interface (McNeill et al., 2002; Freedman et al., 2002; 

Dames et al., 2002). It is hypothesised that the oxygen dependent 

hydroxylation may disrupt the hydrophobic interactions within the molecules 

and the α-helix, resulting in ablation of the interaction with the CH-1 domain 

of p300.  
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Figure 1.12 HIFα CAD regulation by asparaginyl hydroxylation.  
Normoxic silencing of the CAD by FIH-1-mediated hydroxylation. In normoxia, FIH 

hydroxylates the target asparagine residue within the HIFα CAD using the co-

substrates O2 and 2-oxoglutarate. This hydroxylation precludes the association of 

the essential co-activators CBP/p300, repressing the transcriptional activity of the 

CAD. During hypoxia, when oxygen is limiting, FIH is unable to efficiently catalyse 

the hydroxylation of the CAD, enabling binding of CBP/p300 to the non-hydroxylated 

CAD and transactivation of target genes (Lisy and Peet, 2008) 
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The precise relationship between HIF hydroxylase activity and O2 

concentration has been deduced from a number of studies, indicating a finely 

tuned response to change in oxygen tension. In vitro derived Km (Michaelis 

constant) values of the PHDs and FIH for oxygen (the concentration of 

oxygen that supports a half-maximal initial catalytic rate) using HIFα peptide 

substrates, indicate that the PHDs Km were in the range of 230-250 µM whilst 

FIH has a higher affinity for O2 with a Km of 90 µM (Hirsila et al., 2003; 

Koivunen et al., 2004). This may propose a model whereby the PHDs lose 

catalytic activity in higher O2 tensions than FIH, therefore generating a 

hypoxic window in which HIFα may accumulate but be largely 

transcriptionally inactive due to FIH mediated asparagine hydroxylation. 

However, it has been demonstrated that the second N terminal activation 

domain (NAD) can activate transcription and furthermore, certain HIF splice 

variants that lack the CAD can still activate the transcription of certain 

hypoxia inducible genes (Gothie et al., 2000). This may represent highly 

sensitive regulation of the transcription of specific hypoxia inducible genes in 

response to changes in oxygen tension.  It has however, more recently been 

proposed that a more physiological Km for the PHDs is approximately 100 µM 

(Koivunen et al., 2006; Ehrismann et al., 2007). As the typical tissue oxygen 

concentration is found to be 10-30 µM, significantly below the Km for the HIF 

hydroxylases, enzyme activity is anticipated to be modulated by oxygen over 

the entire physiological range. Interestingly, HIF2α in comparison to HIF1α 

appears relatively resistant to FIH mediated inactivation, due to a conserved 

amino acid substitution of the HIF1α residue immediately downstream of the 

FIH substrate asparagine 803, alanine 804 to valine in all HIF2α orthologues 

(Bracken et al., 2006).  
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1.13 Structure and function of the 2-oxoglutarate-dependent 
dioxygenases 

 
The PHD proteins are classified as 2-oxoglutarate-dependent dioxygenases 

due to their use of the citric-acid-cycle intermediate 2-oxoglutarate and due to 

the fact that they incorporate both oxygen atoms from molecular oxygen into 

their product. The first structural insight into 2-oxoglutarate-dependent 

dioxygenases came from X-ray crystallographic analysis of 

deacetoxycephalosporin C synthase (DAOCS), an enzyme involved in the 

biosynthesis of the β-lactam cephalosporin antibiotic (Valegard et al., 1998). 

In conjunction with the crystal structures of other 2-oxoglutarate-dependent 

dioxygenases, a core structure has been highlighted which can be applied to 

the PHD proteins due to sequence conservation and mutation analysis.  A 

common catalytic structure comprises of eight core β-strands which form a 

double-stranded β-helix motif (DSBH) , commonly termed a ‘jelly-roll’ motif, 

illustrated in figure 1.13 (Schofield and Zhang, 1999).  

 
Figure 1.13 Structure of the 2-oxoglutarate-dependent dioxygenases.  
(A) Schematic representation of the DSBH motif of the 2-oxoglutarate-dependent 

dioxygenases. Iron is coordinated by a two-histidine, one-carboxylate motif from 3 

residues often contributed from the second or seventh β-strand of the DSBH motif. 

(B) Active site of FIH, whereby histidine 279 and 199, and a carboxylate motif from 

aspartic acid 201 coordinate iron. 2-oxoglutarate analogue N-oxalylglycine is 

present within the active site which is in contact with iron. FIH iron coordinating 

residue aspartic acid 201, brings the target asparagine 803 into the active site for 

hydroxylation via a hydrogen bond. [Modified from Schofield and Ratcliffe (Schofield 

and Ratcliffe, 2004)]. 

A B
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The fundamental mechanism of 2-oxoglutarate-dependent dioxygenases 

appears to be conserved, comprising the enzyme-Fe2+ complex initially 

binding 2-oxoglutarate, then its substrate and then oxygen. The DBSH motif 

critically provides the structural platform for the HIF hydroxylases to 

coordinate Fe2+ via a two-histidine, one-carboxylate motif from 3 residues 

often contributed from the second or seventh β-strand within the active site of 

the enzyme. Fe2+ in turn coordinates 2-oxoglutarate and molecular oxygen 

forming a reactive intermediate that drives the oxidative process. During 

catalysis, molecular oxygen is split, coupling one oxygen atom to the 

hydroxylation of HIFα and one to the oxidative decarboxylation of 2-

oxoglutarate to succinate and CO2 (Schofield and Zhang, 1999; Hegg and 

Que, Jr., 1997; Elkins et al., 2003). The availability of essential cofactors 2-

oxoglutarate and Fe2+ in addition to oxygen, appear to be important 

determinants regulating the activity of the HIF hydroxylases, further 

discussed in section 1.18.  

 

 

 1.14 Structural differences between the PHDs 
 
PHD1 and PHD2 have a similar domain organisation with a C-terminal 

catalytic domain (DBSH) and an N-terminal extension, (Figure 1.14). PHD3 

shares the same conserved C-terminal catalytic domain but lacks the N-

terminal extension (Bruick and McKnight, 2001; Epstein et al., 2001). The 

other most significant structural difference between the PHDs is the presence 

of the N-terminal myeloid, nervy and DEAF-1 (MYND)-type zinc finger 

domain only found in PHD2. It has been suggested that this domain performs 

an auto-inhibitory role down regulating PHD2 catalytic activity. Deletion of 

this domain or chelation of zinc using TPEN (N,N,N’,N’-tetrakis [2-

pyridylmethyl] ethylenediamine) has been demonstrated to increase the 

catalytic activity of PHD2 and destabilise HIFα in vitro and in vivo (Choi et al., 

2005). The mechanism of inhibition still remains elusive, however it is not 

anticipated that the MYND domain inhibits by directly interacting with the 
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catalytic domain as no interaction can be detected by yeast-2-hybrid analysis 

(Choi et al., 2005). 

 
 

 
 
 
Figure 1.14 Schematic representation of the PHDs. 
The three PHDs contain a conserved double-stranded β-helix motif (DBSH), 

incorporating the catalytic core of 2-oxoglutarate and Fe(II)-dependent 

dioxygenases. PHD2 contains an N terminal zinc finger domain unique within the 

PHD enzymes, known as a myeloid, nervy and DEAF-1 (MYND) domain which 

consists of a cluster of cysteine and histidine residues, arranged with an invariant 

spacing to form a zinc binding motif.  

 

 

1.15 The multiple PHDs have differential functional attributes 
 
Although flies and worms only contain the single PHD (EGLN) family member 

Egl9, higher metazoans contain three paralogous PHD genes. All three 

PHDs have a conserved catalytic domain and display the ability to 

hydroxylate HIFα in vitro (Bruick and McKnight, 2001; Epstein et al., 2001). 

However, it is increasingly apparent that the three PHDs have differential 

characteristics and individual functional niche. 

 

All three genes are widely expressed, in particular PHD3 mRNA levels are 

elevated in the heart and PHD1 is exclusively expressed at high levels in the 

DBSHPHD2 426 aa

DBSHPHD1 407 aa

DBSHPHD3 239 aa

MYND
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testes (Lieb et al., 2002). PHD2 and PHD3 expression levels are elevated by 

hypoxia, which may represent a HIF-dependent auto-regulatory mechanism 

to limit HIFα induction in hypoxia or to accentuate the response to 

reoxygenation (Epstein et al., 2001; Berra et al., 2003). Conversely, PHD1 

mRNA expression may be suppressed by hypoxia, which potentially 

suggests a fundamentally different role for PHD1 in the hypoxic response 

(Tian et al., 2006). Furthermore, ChIP (chromatin immunoprecipitation) 

analysis revealed that PHD1 promoter sequences are capable of interacting 

with ARNT1 (HIF1β) in vivo (Erez et al., 2004). Therefore, implicating a 

mechanism whereby HIF activation propagates its own stabilisation by 

inhibiting PHD1 expression. 

 

GFP-tagged PHD proteins also appear to demonstrate distinct subcellular 

localisations. PHD1 has been demonstrated to be localised exclusively in the 

nucleus mediated by an importin-dependent mechanism, PHD2 in the 

cytoplasm and PHD3 in both the nucleus and the cytoplasm (Metzen et al., 

2003a; Steinhoff et al., 2009) . However, recent publications have revealed 

that endogenous PHD2 can accumulate in the nucleus and shuttle between 

both intracellular compartments via CRM1-dependent nuclear export 

mediated by a NES (amino acids 6-20) and predicted NLS (amino acids 51-

54 and 98-114) (Berchner-Pfannschmidt et al., 2008; Yasumoto et al., 2009). 

Whether the subcellular distribution of PHD2 alters HIFα turnover is unclear, 

as conflicting studies have shown that cytoplasmic PHD2 is required for HIFα 

ubiquitylation in RCC4 cells (Masson et al., 2001) but PHD activity of nuclear 

extracts is higher in human osteosarcoma cells (U2OS) (Berchner-

Pfannschmidt et al., 2008).  
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1.16 Differential regulation of HIFα by the PHDs 
 

The specific hydroxylase activity and contribution by each of the PHDs to the 

regulation of HIFα has been scrutinised. In vitro VHL capture assays, 

quantifying the amount of VHL interaction with a HIF1α minimal peptide 

incorporating proline 564, indicated an order of activity of PHD2 = 3 > 1 

(Tuckerman et al., 2004). However, a different study demonstrated that 

PHD2 alone has the highest relative activity, which may be due to the 

abundance and widespread expression of PHD2, significant because the 

PHDs are non-equilibrium enzymes (i.e. they do not catalyse the reverse 

reaction) and due to the fact that oxygen Km for each of the enzymes are 

equivalent (Appelhoff et al., 2004). 

 
An alternative approach of assessing the individual roles of the three PHDs 

was performed by the Pouyssegur group in 2003, analysing HIF stabilisation 

following PHD silencing by short interfering RNAs. This study demonstrated 

that silencing of PHD2 was sufficient to stabilise HIF1α in normoxia and 

activate transcription, whilst PHD1 and PHD3 down regulation had no 

pronounced effect on HIF1α protein levels (Berra et al., 2003). This 

corroborated in vitro findings regarding PHD2 hydroxylase activity, 

establishing PHD2 as the critical oxygen sensor responsible for the 

regulation of steady-state HIFα during normoxia. Other reports have 

suggested that all three PHDs contribute to the regulation of both HIF1α and 

HIF2α, however there is a significant bias whereby PHD3 regulates HIF2α 

more substantially than HIF1α (Appelhoff et al., 2004). 

 

 

In vivo data from PHD-/- mice substantiates the finding that PHD2 is the most 

critical of the prolyl hydroxylases. Takeda et al demonstrated that PHD2-/- 

mice are embryonically lethal due to heart and placental defects during 

development, whilst PHD1 and PHD3 null mice are viable and appear normal 

(Takeda et al., 2006). Moreover, more recent investigations show that 

conditional somatic inactivation of PHD2 in mice induces activation of a 

subset of HIF target genes including erythropoietin which manifested in 
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polycythemia (Takeda et al., 2008; Minamishima et al., 2008). Although, 

individual PHD1 and PHD3 null mice do not appear to develop any apparent 

abnormalities, double knock out mice (PHD1-/-;PHD3-/-) also manifest 

polycythemia. However, strikingly the polycythemic phenotype observed from 

the double knock out mice appears to arise in a different manner from the 

PHD2 null mice, via HIF2α activation and erythropoietin expression from the 

liver rather than from the kidney (Takeda et al., 2008). Recent metabolic 

analysis of PHD1-/- mice indicates reduced exercise tolerance and altered 

skeletal muscle metabolism arising from reduced glucose oxidation and 

enhanced glycolysis, which appears to be predominantly mediated by HIF2α 

activation (Aragones et al., 2008).  Furthermore, examination of PHD3-/- mice 

imply a specific role for PHD3 in neuronal apoptosis, whereby PHD3 loss 

reduces apoptosis in the superior cervical ganglion indicating the requirement 

of functional PHD3 for the correct anatomical and physiological integrity of 

the sympathoadrenal system (Bishop et al., 2008). 

 
 

1.17 Proline substrate specificity of the PHDs 
 

An additional level of HIF regulation is exhibited by the PHDs who appear to 

demonstrate different substrate specificities for hydroxylation of the N-

terminal and C-terminal proline residues within the ODD (proline 402 within 

the N-terminal ODD [NODD] and proline 564 within the C-terminal ODD 

[CODD] of HIF1α, Figure 1.8.2).  Although only the hydroxylation of one of 

the proline residues is deemed to be sufficient for VHL binding and 

ubiquitylation, the presence of two proline substrate sites suggests a 

mechanism of differential regulation (Masson et al., 2001). PHD3 does not 

interact with or hydroxylate the NODD (Landazuri et al., 2006; Hirsila et al., 

2003) whilst PHD1 displays less activity towards the NODD than the CODD 

relative to PHD2 (Hirsila et al., 2003). These differences may be accountable 

by non-conserved structures which may determine substrate specificity. As 

the catalytic domains are highly conserved (>80%) it is hypothesised that 

specificity is regulated by the binding affinity rather than the catalytic activity. 
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One plausible mechanism for distinguishing substrate preference may be due 

to a poorly conserved finger-like loop between β-strands 2 and 3, near the 

active site of the PHDs, distal to the iron centre (McDonough et al., 2006). 

Furthermore, swapping of this motif from PHD3 to PHD2 confers almost 

complete substrate specificity for the CODD (Flashman et al., 2008). An 

additional sequence, distinct from the catalytic site in the N-terminus of PHD2 

(amino acids 236-252) has also been proposed as a poorly conserved region 

capable of determining substrate specificity (Villar et al., 2007). The 

physiological consequence of hydroxylase specificity has not been fully 

elucidated. However, one theory demonstrates that specificity for NODD or 

CODD is dependent on oxygen levels. In normoxia, the CODD appears to be 

more preferentially hydroxylated than the NODD and for efficient NODD 

hydroxylation, prior hydroxylation of the CODD is necessary (Chan et al., 

2005). Furthermore, NODD hydroxylation appears more sensitive to oxygen 

than CODD hydroxylation under hypoxic conditions. These findings may 

represent a sensitive mechanism which closely controls HIFα stability in 

response to different levels of oxygenation. 

 

1.18 Regulation of prolyl hydroxylase activity  
 

As the PHDs execute such a finely tuned regulatory mechanism it is 

conceivable that they are subject to control by a number of interrelating 

factors in addition to O2 tension, which regulate at the level of expression, 

stability and modulate their hydroxylase activity.   

 

1.18.1 PHD stability 
 
It has been demonstrated that the stability of the PHD proteins may be 

underpinned by the Siah (mammalian homologs of Drosophila Seven in 

Absentia) family of RING E3 ubiquitin ligases. PHD1, PHD3 and recently FIH 

have been revealed as substrates of Siah2 and Siah1a and were found to be 

targeted for proteasome-mediated degradation, which in turn determines 

HIF1α stability in hypoxia (Nakayama et al., 2004; Fukuba et al., 2008; 
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Fukuba et al., 2007).  Furthermore, Siah-/- cells exhibit lower HIF1α protein 

levels than wild type cells during hypoxia (Nakayama et al., 2004). RNAi 

mediated suppression of PHD3 is sufficient to rescue hypoxic induced 

accumulation of HIF1α in Siah1a/2 double knock out mouse embryonic 

fibroblasts (Nakayama et al., 2004).  Moreover, Siah2 activity appears to be 

elevated upon exposure to mild hypoxia which insinuates a mechanism 

whereby Siah regulates PHD1/3 stability within a range of oxygen tensions 

whereby the PHDs are still active. Interestingly, PHD2 does not appear to be 

regulated by the Siah E3 ubiquitin ligases, emphasising a structural 

difference which may account for PHD2’s role as the predominant regulator 

of HIF1α levels in normoxia (Nakayama et al., 2004). 

 
A recent publication demonstrates a mechanism whereby the FK506-binding 

protein 38 (FKBP38) may regulate PHD2 but not PHD1 or PHD3 stability by 

interacting with its unique MYND like zinc finger domain. FKBP38 has been 

revealed to regulate PHD2 stability in an isomerase (PPIase) independent 

manner, by inducing ubiquitin-independent proteasomal degradation of PHD2 

(Barth et al., 2009; Barth et al., 2007). 

 
PHD3 is also believed to be a substrate for the cytosolic chaperone TriC 

(TCP-1 ring complex). 50-60kDa subunits of the chaperone were co-purified 

with PHD3 but not PHD1 or PHD2, indicating an additional plausible 

mechanism regulating PHD3 stability (Masson et al., 2004). 

 

A further level of control of PHD activity was revealed by the Gleadle group in 

2006, who demonstrated that PHD1 exists as two species (PHD1p43 and 

p40), due to an alternative initiation AUG encoding amino acid 34. The 

shorter isoform PHD1p40 has equivalent catalytic activity but has a rapidly 

reduced half life of around 50 minutes compared with 100 minutes for the 

larger isoform. Although both isoforms appear to be regulated by Siah E3 

ubiquitin ligases, the shorter PHD1 species demonstrates a preferential 

association with a stabilised RING finger domain mutant of Siah2, which may 

account for its reduced stability (Tian et al., 2006).  
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Interestingly, VHL activity is also subject to tight regulation at the level of 

protein stability. VHL has been reported to be ubiquitylated by the E2-

endemic pemphigues foliaceus (EPF) ubiquitin carrier protein (UCP), 

resulting in HIF1α stabilisation (Jung et al., 2006).  However an E3 ligase has 

yet to be identified. 

 

1.18.2 Cofactor availability  
 

The HIF hydroxylases have been demonstrated to be inhibited by numerous 

TCA (tricarboxylic acid) cycle intermediates, including citrate, isocitrate, 

succinate (Selak et al., 2005), fumarate (Isaacs et al., 2005), malate, 

oxaloacetate and pyruvate (Dalgard et al., 2004). The most consistent 

inhibitors of all three PHDs are succinate and pyruvate (Koivunen et al., 

2007), which competitively inhibit hydroxylase activity by competing with 2-

oxoglutarate as illustrated in figure 1.18  Genetic defects in the TCA cycle, 

notably defects that impair succinate dehydrogenase (Pollard et al., 2005; 

MacKenzie et al., 2007) and fumarate hydratase (Isaacs et al., 2005) activity 

have been demonstrated to elevate normoxic HIFα levels (‘pseudohypoxia’) 

due to impaired PHD activity, predisposing individuals to development of 

highly vascularised tumours including parangliomas (rare benign neoplasms 

of the abdomen, thorax, head and neck regions) and phaeochromocytomas 

(neuroendocrine tumours of the medulla of the adrenal glands that originate 

from chromaffin cells) . 
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Figure 1.18 Modulation of HIF signalling via TCA cycle intermediates. 
Loss of function mutations in succinate dehydrogenase and fumarate dehydratase 

lead to increased levels of the metabolites succinate and fumarate. These 

metabolites in turn competitively inhibit PHD hydroxylation of HIFα subunits by 

inhibiting the oxidative decarboxylation of 2-oxoglutarate to succinate. This results in 

elevated HIF levels and associated changes in gene expression leading to 

increased angiogenesis, which contributes to tumour development. [Modified from 

Esteban et al (Esteban and Maxwell, 2005)]. 
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1.18.3 Iron and Ascorbate 
 

The requirement for Fe(II) is well demonstrated by the classical 

characteristics of HIF induction by treatment with iron chelators such as 

desferrioxamine (DFO) or divalent cations capable of replacing Fe(II) in the 

active site of the hydroxylase. The HIF hydroxylases can also be stimulated 

in vitro by the addition of Fe(II) and also ascorbate (an ion of vitamin C) 

(Kivirikko and Myllyharju, 1998).  The precise role of ascorbate has yet to be 

fully elucidated, however, it is hypothesised that it may be involved in the 

reduction of Fe(III) to Fe(II) increasing the availability for the active site of the 

hydroxylase. Several lines of evidence also indicate that rapidly growing 

cancers are often associated with a cellular iron deficiency in the tumour 

mass (Le and Richardson, 2002). Furthermore, in cultured cells with 

activated oncogenic pathways, HIFα can accumulate under well oxygenated 

conditions (Chan et al., 2002). Addition of iron or ascorbate to these cells 

down regulates HIFα, posing the possibility that iron or ascorbate may be 

fundamental limiting factors (Knowles et al., 2003). An additional mechanism 

regulating HIF2α but not HIF1α may also confer iron responsiveness. HIF2α 

contains an iron response element in its 5’UTR, which has been proposed to 

restrict its expression during iron deficiency. As erythropoietin production is 

believed to be predominantly responsive to HIF2α, iron dependent 

expression is postulated to prevent unproductive erythropoietic drive in the 

absence of iron for haemoglobin (Sanchez et al., 2007). 
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1.18.4 Free radicals; Reactive Oxygen Species (ROS) and Nitric Oxide 
(NO) 

 
Reactive oxygen species include oxygen ions, free radicals and peroxides 

which are highly reactive ions due to the presence of unpaired valence shell 

electrons. One reported mechanism of ROS production is within intracellular 

organelles such as mitochondria, whereby during oxidative phosphorylation 

along the electron transport chain, oxygen is prematurely reduced to give the 

superoxide radical ·O2 -, which at physiological pH exists as hydrogen 

peroxide (H2O2).  It is increasingly apparent that ROS can affect the rate of 

HIFα hydroxylation. Addition of exogenous H2O2 to cells under normoxic 

conditions stabilises HIFα protein levels, indicating that ROS inhibit HIFα 

hydroxylation (Chandel et al., 2000). One hypothesis suggests that ROS 

reduce the availability of the cofactor Fe(II) required for PHD mediated HIF 

hydroxylation in cells absent of the transcription factor JunD, shown to 

protect cells from oxidative stress (Gerald et al., 2004). Furthermore, ROS 

levels have been demonstrated to increase in hypoxic conditions, thus PHD 

activity may be subject to regulation by limiting O2 levels and Fe(II) 

availability due to the action of ROS (Chandel et al., 1998).  

 
The G-protein-coupled receptor agonist angiotensin II (Ang II) has been 

shown to link the role of ROS with the requirement for ascorbate, by potently 

inducing HIF1 in vascular smooth muscle cells. Ang II has been 

demonstrated to regulate HIF1α stability by the increased generation of H2O2 

and a subsequent reduction of ascorbate, resulting in a reduction in PHD 

activity and HIF1α stabilisation (Page et al., 2008).  

 
The free radical nitric oxide (NO) has also been demonstrated to modulate 

HIFα stabilisation by mitochondrial dependent and independent mechanisms 

(Mateo et al., 2003). NO is biosynthesised from arginine and oxygen by nitric 

oxide synthase and acts as an important signalling molecule that performs a 

variety of biological processes. One mitochondrial independent mechanism 

of NO mediated HIF stabilisation may be due to S-nitrosation, the post-
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translational modification of HIFα cysteine thiol groups by interaction with 

NO, which has been demonstrated to impair HIFα-VHL binding and 

ubiquitylation (Metzen et al., 2003b). Alternatively, similarly to the reported 

effect of ROS, inhibition of the PHD enzymes may arise due to the reactive 

free radical nature of NO, interacting with and reducing the availability of 

Fe(II), thus impeding the ability of the PHDs to blunt HIF stabilisation (Gerald 

et al., 2004).  NO has also been demonstrated to promote HIFα degradation, 

via inhibition of cytochrome c-oxidase (complex IV) of the mitochondrial 

electron transport chain. It is hypothesised that NO mediated inhibition of 

mitochondrial respiration may redistribute oxygen towards other oxygen-

dependent systems, thus reactivating PHD activity (Hagen et al., 2003). 

 
 

1.18.5 Interacting Proteins 
 

To date the number of reported PHD interacting proteins has been fairly 

limited, divided into those that appear to regulate PHD stability (as described 

in section 1.18.1) and those that modulate hydroxylase activity.  

 

OS-9 (amplified in osteosarcoma), is a ubiquitously expressed protein 

previously implicated in the transport of proteins from the ER to the golgi, 

which has been reported to promote HIFα hydroxylation. OS-9 is reported to 

directly bind HIF1α, PHD2 and PHD3, whereby it is hypothesised to augment 

the interaction between the PHDs and HIF1α within a ternary complex, 

promoting HIF1α hydroxylation and degradation, thus inhibiting HIF mediated 

transcription (Baek et al., 2005). However, the finding that OS-9 is found over 

expressed in osteosarcomas appears contradictory to the role of OS-9 as a 

negative regulator of HIFα, as it is well documented that HIFα levels increase 

in the majority of human cancers including osteosarcomas (Yang et al., 

2007). Another protein reported to enhance PHD hydroxylase activity is 

Morg-1 (Mitogen-activated protein kinase organiser 1) via interacting with 

PHD3 (Hopfer et al., 2006).  Morg-1 expression represses HIF transcriptional 

activity and RNA silencing causes de-repression. The precise mechanism of 
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Morg-1 action is yet to be elucidated, however, it is postulated that Morg-1 

acts as a molecular scaffold acting to enhance PHD3 activity. The 

oncoprotein Mucin 1 (MUC1), found over expressed in most human 

carcinomas is also reported to regulate PHD3 (Yin et al., 2007). Yin et al 

have demonstrated that MUC1 acts to block and prevent hypoxia-induced 

increase in ROS, increase PHD3 expression and potentiate PHD mediated 

HIF1α suppression. Furthermore, MUC1 expression is reportedly increased 

by hypoxia in a human lung adenocarcinoma cell line (Mikami et al., 2009). 

The dichotomy of this oncogene inducing a reduction in HIF activity, still 

requires elucidation. 

 

The tumour suppressor protein, inhibitor of growth family member 4 (ING4), 

has been demonstrated to directly interact with PHD2 (Ozer et al., 2005). 

ING4 has previously been implicated as a repressor of angiogenesis and 

tumour growth through association with NF-κB (Nuclear factor kappa-light-

chain-enhancer of activated B cells). However, ING4 may also inhibit tumour 

growth by suppressing HIF target gene expression in hypoxia. Interestingly, it 

is believed that via association with PHD2, ING4 is recruited to HIF in 

hypoxia, to act as an adapter protein to recruit transcriptional repressors, 

independent of PHD hydroxylase activity (Ozer et al., 2005). There is 

however, already a precedent for a hydroxylase independent role for PHD2 in 

regulating HIF transcriptional activity. It has been demonstrated that over 

expression of a hydroxylase-deficient PHD2 mutant impaired the stimulating 

effect of hypoxia on the proliferation of cultured endothelial cells, without 

altering the abundance of HIF1α (Takeda and Fong, 2007).  Furthermore, 

this is corroborated by another study which demonstrated that forced PHD2 

expression in a VHL-deficient cell line also reduced HIF transcriptional 

activity without modulating its stability (To and Huang, 2005). These data 

introduce a further level of fine tuning in the control of HIF activity. 

 

Only one protein interaction is presently reported to directly attenuate PHD 

activity. MAGE-11 (Melanoma antigen-11) suppresses PHD2 activity without 

affecting protein levels, which is accompanied by stabilisation of endogenous 

HIF1α protein (Aprelikova et al., 2009). Mage-11 is one of a family of twelve 
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cancer-testis antigens expressed only in the testis and placenta. Due to the 

restricted expression pattern, MAGE-11 may represent a suitable therapeutic 

target to down regulate HIF in the future. 

 

 

1.19 PHD functions independent of HIFα 
 

The role of the HIF hydroxylases, in particular PHD1 and PHD3, in HIF-

independent functions is an area under current investigation. PHD3, but not 

the other PHDs can induce neuronal apoptosis, in sympathetic neuronal 

precursor cells. PHD3 promotes c-Jun-dependent apoptosis during normal 

development as nerve growth factor (NGF) becomes limiting (Lee et al., 

2005). PHD3 induced apoptosis requires PHD3 catalytic activity and is not 

recovered by production of stabilised HIF1α or HIF2α, suggesting a non-HIF 

target. Furthermore, PHD3-/- mice exhibit reduced apoptosis in superior 

cervical ganglion neurons, whilst the sympathoadrenal system appeared 

hypofunctional, reducing target tissue innervation (Bishop et al., 2008). This 

data implicates PHD3 in neuronal cell survival but also the anatomical and 

physiological integrity of the sympathoadrenal system. Apoptosis induction by 

PHD3 is not restricted to neuronal cells, as forced PHD3 expression induces 

aggresome formation and apoptosis induction in normoxia in HeLa cells 

(Rantanen et al., 2008). Interestingly, this phenotype required PHD3 

hydroxylase activity and was only observed in normoxia, suggesting PHD3 

acts to regulate protein aggregation in response to oxygen availability. 

 

Additionally, PHD3 has been shown to regulate the stability of activating 

transcription factor-4 (ATF-4) and myogenin. ATF-4 is induced under anoxia 

(a total decrease in O2 levels), mediates the endoplasmic reticulum (ER) 

stress response and is a critical regulator of cell fate. PHD3 is reported to 

interact and induce ATF-4 degradation via an oxygen dependent degradation 

domain in a prolyl hydroxylase dependent, but VHL independent mechanism 

(Koditz et al., 2007). Conversely, PHD3 interacts with and stabilises 

myogenin, a MyoD family bHLH transcription factor, which plays a role in 
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skeletal muscle differentiation (Fu et al., 2007). However, VHL association 

with myogenin has the opposite effect, acting to destabilise myogenin via the 

ubiquitin-proteasomal system. Therefore, it is postulated that the PHD3 

interaction may prevent myogenin degradation by inhibiting its association 

with VHL (Fu et al., 2007). 

 

PHD1 has also been demonstrated to perform non-HIF functions via 

modulation of NF-κB activity. The transcription factor NF-κB is activated by 

hypoxia, particularly during cancer progression, promoting tumour survival 

and growth by increasing the expression of genes that inhibit apoptosis and 

growth arrest. NF-κB is regulated by inhibitors of κB (IκB), a family of proteins 

containing ankyrin repeat domains (ARD), which act to mask NF-κB NLS, 

preventing translocation into the nucleus (Yamamoto and Gaynor, 2004). 

This inhibition is overcome by signal induced degradation of the IκB, 

mediated by phosphorylation by IκB kinase (IKK). Cummins et al confirmed 

that hypoxia induces NF-κB by phosphorylation-dependent degradation of 

IκBα, by increasing the pool and activation of the IKKβ subunit (Cummins et 

al., 2006). However, IKKβ undergoes negative regulation by PHD1, mediated 

by a proline residue within a conserved LXXLAP consensus motif for prolyl 

hydroxylation. PHD1 over expression decreases NF-κB activity, by inhibition 

of IKKβ and stabilisation of IκB (Cummins et al., 2006). As PHD1 expression 

is reduced in hypoxia, this is a plausible explanation for the observed 

increase in hypoxic NF-κB activity. Interestingly, to date no non-HIF 

substrates have been confirmed to be hydroxylated by either PHD1 or PHD3. 

 

ARD-containing proteins have also been identified as alternative FIH 

substrates, including several IκB (Cockman et al., 2006) and notch receptor 

family members (Coleman et al., 2007). As the human proteome contains 

200-300 ARD-containing proteins, of which the FIH target asparagine residue 

forms part of the ankyrin consensus, it is believed that many of these proteins 

will be hydroxylated (Cockman et al., 2009). The functional significance of 

ankyrin hydroxylation is currently still unclear. It has been demonstrated that 

ankyrin hydroxylation may stabilise the ankyrin fold (Kelly et al., 2009; Hardy 

et al., 2009). Furthermore, measurements indicate that FIH may interact with 
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ARDs with a higher affinity and have a lower oxygen Km for hydroxylation 

than for HIF1α (Wilkins et al., 2009). This suggests a mechanism whereby 

ARDs may compete with HIF1α for FIH hydroxylation and whereby the 

cellular pool of ARDs may restrict HIF1α asparaginyl hydroxylation (Zheng et 

al., 2008). 

 
 

1.20 PHD/VHL-independent HIF1α degradation mechanisms 
 
Novel mechanisms of HIF1α stabilisation and/or degradation, which act in an 

alternative fashion to the well characterised targeting of HIF1α for 

proteasomal degradation by hydroxylation and ubiquitylation, are rapidly 

emerging [Figure 1.20 and for review (Yee et al., 2008)]. These mechanisms 

occur via novel HIF1α interacting proteins and/or post-translational 

modifications which act as stimuli for HIF1α stabilisation or degradation.   

 

Numerous post-translational modifications have been reported to promote 

HIF1α degradation, including phosphorylation, sumoylation and acetylation. 

HIF1α lysine 532 acetylation by arrest-defective-1 (ARD1) N-

acetyltransferase, has been reported to facilitate recognition by VHL (Jeong 

et al., 2002), although there is some disparity in this finding as more recent 

research have disputed that ARD1 modulates HIF1α stability (Arnesen et al., 

2005; Bilton et al., 2005). The ability of VHL to interact with HIF1α is blocked 

by signal transducer and activator of transcription 3 (STAT3) (Jung et al., 

2008) and c-Jun, which interact with HIF1α masking the sites for 

ubiquitylation and consequently inhibiting degradation (Yu et al., 2009). 

STAT3 has also been demonstrated to positively modulate HIF activity at the 

transcriptional level, by interacting with HIF1 at VEGF promoters to enhance 

expression (Gray et al., 2005). VHL function is further regulated by 

spermidine/spermidine-N1-acetyltransferase 2 (SSAT2) demonstrated to 

stabilise the interaction between VHL and elongin C (Baek et al., 2007a). 

Another SSAT protein, SSAT1, also promotes HIF1α degradation, but 

through an entirely different mechanism, in an oxygen-independent fashion. 
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SSAT1 stabilises the RACK1-HIF1α interaction dependent on SSAT 

acetyltransferase activity (Baek et al., 2007b). Receptor of activated protein 

kinase C (RACK1) competes for binding with HIF1α amino terminal PAS-A 

with the molecular chaperone 90 kDa heat shock protein (HSP90) (Liu et al., 

2007). RACK1 recruits elongin C and other components of the VBC complex 

to HIF1α, leading to ubiquitylation and degradation, stimulated by HSP90 

inhibition, in a manner similar to but independent of VHL (Liu et al., 2007). 

RACK1 mediated HIF1α degradation is prevented by the septin family 

member GTP-binding cytoskeletal protein, SEPT9_v1, which has been 

reported to blockade the RACK1-HIF1α interaction (Amir et al., 2009). 

Furthermore, Kruppel-like factor 2 (KLF2), a protein found to potently inhibit 

angiogenesis, was identified to disrupt HIF1α interaction with HSP90, 

resulting in HIF1α depletion by allowing RACK1 facilitated degradation or by 

impairing HIF1α folding and maturation (Kawanami et al., 2009). 

 

Phosphorylation as a stimulus for HIF1α degradation has also been reported, 

however, its role in HIF regulation remains controversial. Over expression of 

glycogen synthase kinase 3 (GSK3), inactivated by the upstream 

Phosphoinositide 3-kinase (PI3K) signalling cascade, results in PHD- and 

VHL-independent HIF1α ubiquitylation and proteasomal degradation via 

GSK3 mediated HIF1α phosphorylation (Flugel et al., 2007). Conversely, 

sphingosine kinase 1 (Sphk1), an oncogenic lipid kinase which has been 

shown to be stimulated in hypoxia and mediated by the Akt/GSK3 signalling 

pathway, acts to prevent VHL-dependent HIF1α degradation (Ader et al., 

2008). Candidate E3-ubiquitin ligases for the VHL-independent HIF1α 

degradation, such as that promoted by phosphorylation, have been 

described. Non-VHL VBC complex E3 ubiquitin-ligases reported to regulate 

HIF1α include human double minute 2 (Hdm2) which induces p53 

degradation (Ravi et al., 2000) and hypoxia-associated factor (HAF) which 

ubiquitylates HIF1α but not HIF2α, promoting proteasomal degradation, 

independent of oxygen tension (Koh et al., 2008). Regulation of ubiquitylation 

of HIF1α is also achieved by de-ubiquitylation by the VHL interacting de-

ubiquitylating enzyme (VDU2), which acts in a VHL-dependent manner to 

salvage ubiquitylated HIF1α from degradation (Li et al., 2005). Interestingly, 
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VDU2 can be ubiquitylated by VHL and degraded itself (Li et al., 2002b). 

Furthermore, VDU2 interacts with VHL via the same region as HIF1α, of 

which commonly harbours mutations in VHL disease patients (Li et al., 

2002a). However, the precise interplay between VHL, VDU2 and HIF1α in 

cancer development remains to be determined. 

 

Interestingly, human renal HK-2 cells treated with 15-deoxy-delta(12,14)-

prostaglandin-J(2), accumulate HIF1α in lysosomes, demonstrating the 

possibility of a novel proteasome-independent lysosomal-mediated 

degradation mechanism (Olmos et al., 2009).  

 

One notable modification is the addition of a ubiquitin-like protein, the small 

ubiquitin-related modifier-1 (SUMO-1). Human SUMO-1 is a 101 amino acid 

polypeptide which shares 18% sequence homology with ubiquitin (Muller et 

al., 2001). The involvement of sumoylation in HIF regulation was first 

identified in 2004 when Shao et al observed an increase in SUMO-1 mRNA 

and protein levels in response to hypoxia and further demonstrated that 

following exposure to hypoxia SUMO-1 interacted with HIF1α in heart and 

brain tissue (Shao et al., 2004). However, whether HIF sumoylation promotes 

its stabilisation or degradation remains unclear. Bae et al demonstrated that 

the interaction between SUMO-1 and HIF1α was as a result of the covalent 

attachment of SUMO-1 (sumoylation) within the ODD at residues Lys391 and 

Lys477. Furthermore, Bae et al showed that ectopic SUMO-1 expression 

stabilises HIF1α protein, the converse effect to ODD ubiquitylation (Bae et 

al., 2004). Identification of the RWD-containing sumoylation enhancer 

(RSUME) further implies a role of sumoylation in HIF1α stabilisation (Carbia-

Nagashima et al., 2007). RSUME interacts with the SUMO E2 conjugating 

enzyme Ubc9, increasing the non-covalent interaction of SUMO-1 to Ubc9, 

inducing SUMO-1 polymerisation and activation for conjugation to substrate 

lysine side chains. siRNA mediated knock down of endogenous RSUME 

diminished HIF1α sumoylation and resulted in the inhibition of endogenous 

HIF1α stabilisation in hypoxia.    
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In contrast to previous research, Berta et al and Cheng et al proposed the 

role of sumoylation as a negative regulator of HIF function in 2007. Berta et 

al confirmed that HIF1α lysine residues 391 and 477 within the ODD are 

subject to sumoylation. By implementing siRNA targeted to endogenous 

HIF1α and re-introducing an siRNA resistant HIF1α construct with mutated 

lysine 391 and 477, Berta et al demonstrated that SUMO-deficient HIF1α has 

an identical half life to the wild type form, contradicting previous studies 

(Berta et al., 2007).  However, they elucidate that the consequence of 

sumoylation is a reduction of HIF transcriptional activity, as a 1.4-1.7 fold 

increase was observed by the SUMO-deficient HIF1α construct.  

 

More recent evidence corroborates findings that sumoylation plays a role in 

promoting HIF1α degradation. Hypoxia inducible sumoylation of HIF1α, can 

promote hydroxyproline-independent binding of the VHL VBC complex to 

HIF1α via sumoylation of lysine 391 and 477, leading to VHL mediated 

ubiquitylation and degradation by the proteasome (Cheng et al., 2007). 

Similarly to regulation of de-ubiquitylation enzymes, acting to salvage HIF1α 

from degradation, a nuclear SUMO protease SUMO1/sentrin specific 

peptidase 1 (SENP1) has been demonstrated to de-conjugate sumoylated 

HIF1α, enabling its escape from degradation. The physiological role of 

SENP1 in HIF regulation is substantiated by the finding that SENP1-/- mice 

embryos exhibit fetal anaemia, due to deficient erythropoietin production 

(Cheng et al., 2007) This PHD-independent VHL-dependent mechanism is a 

plausible mechanism to explain the finding of Andre et al, who demonstrated 

that HIF1α was sensitive to proline 402 and 564 independent degradation 

and notably a proline double mutant construct was only stabilised within short 

periods of hypoxic exposure (1-2 hours) (Andre and Pereira, 2008). 

 

These novel mechanisms of regulation may be required in order to cope with 

the physiological complexity of hypoxia. Alternatively, these mechanisms 

may provide a system which enables the control of HIF activity not only by O2 

tension but from other cellular stimuli which may necessitate the activity of 

HIF in promoting cell survival and proliferation. 

 



  Introduction | Chapter 1  

49 
 

 
 
Figure 1.20 Diverse pathways involved in the regulation of HIFα stability.   
HIF1α is subject to both VHL and O2 dependent (a) and independent (b) 
degradation mechanisms. (a) The well characterised normoxic hydroxylation and 

ubiquitylation of HIF1α by the PHDs and VHL is facilitated by binding of OS-9 (i) 
which scaffolds PHD2 and 3 with HIF1α, whilst SSAT2 stabilises VHL and elongin C 

interaction (ii). Ubiquitylated-HIF1α can be salvaged from degradation by de-

ubiquitylation by VDU2 (iii). Furthermore, VHL is regulated by EPF UCP E2 

ubiquitylating enzyme which targets VHL for degradation (iv). In hypoxia, HIF1α can 

be sumoylated targeting it for VHL mediated degradation. This can be reversed by 

SENP1 de-sumoylation leading to HIF1α destabilisation (v). Conversely, RSUME 

has been reported to stabilise HIF1α by sumoylation (vi). (b) O2 and VHL 

independent mechanisms include GSK3 phosphorylation, regulated by the PI3K 

pathway (vii) and RACK1 recruitment of the E3 ligase complex (viii) which can be 

promoted by Hsp90 inhibition or inhibited by calcineurin A which prevents RACK1 

dimerisation. [Adapted from (Yee et al., 2008)] 
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1.21 HIFs, hypoxia and cancer 
 

Solid tumours often contain hypoxic regions either due to their chaotic 

architecture of blood vessels and altered tumour blood rheology, from their 

increased metabolic activity and/or from expansion from their existing blood 

supply.  Subsequently, from analysis of human cancer biopsy samples and 

experimental animal models it is increasingly clear that both HIF1α and 

HIF2α are commonly increased in a variety of tumours and thus play a 

crucial role in cancer progression. This section describes specific pathways 

that contribute to aberrant HIF signalling, HIF induced pro-tumourigenic 

processes and the therapeutic implications [for review (Kaelin, Jr. and 

Ratcliffe, 2008; Bertout et al., 2008; Rankin and Giaccia, 2008; Pouyssegur 

et al., 2006)]. 

 

1.21.1 HIF overexpresson in cancer 
 
HIFα is found over expressed in a broad range of human malignancies and is 

associated with poor patient survival. HIF1α accumulation has been 

associated with a range of tumours including cervical, breast, ovarian, 

endometrial, pancreatic, bladder, head and neck, colorectal and 

osteosarcomas (Talks et al., 2000). HIF2α expression correlates with poor 

patient prognosis in NSCLC, hepatocellular, melanoma and neuroblastomas 

(Talks et al., 2000). Interestingly, HIF1α expression gradually decreases in 

patients with VHL disease such as renal cell carcinomas (RCC), whereas 

HIF2α levels increase (Raval et al., 2005; Sowter et al., 2003). In fact, the 

effect of HIF1α on RCC tumour xenografts was shown to retard cancer 

growth suggesting that the effect of HIF is dependent on the tumour type and 

context (Raval et al., 2005). However, collectively these findings highlight that 

HIF activation and accumulation is a common event in cancer, either as a 

marker or a cause of malignant cell behaviour. 
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1.21.2 HIF activation in cancer 
 

HIF can be activated in tumours in normoxic conditions by genetic alterations 

in the oxygen-signalling pathway and/or cellular signal transduction pathways 

involving the mammalian target of rapamycin (mTOR) and PI3K. The most 

prevalent genetic alterations in the oxygen signalling pathway are VHL germ-

line mutations, which manifest in VHL disease, whereby VHL inactivation 

results in normoxic HIF stabilisation and constitutive hypoxic gene expression 

(Maxwell et al., 1999). This predisposes patients to the development of highly 

vascularised tumours, as a result of HIF induced VEGF expression, including 

hemangioblastomas, renal cell carcinomas and pheochromocytomas (Gnarra 

et al., 1994; Sprenger et al., 2001).  

 

mTOR is a serine/threonine kinase which orchestrates protein synthesis, 

promoting protein translation by phosphorylation of a series of substrates 

involved in protein translation including eukaryotic initiation factor 4E-binding 

protein-1 (4EBP1) (Guertin and Sabatini, 2005). Cancer associated 

inactivating mutations in mTOR negative regulators including PTEN 

(phosphatase and tensin homologue), which regulates upstream PI3K 

activity, and TSC2 (tumour suppressor complex), lead to activation of GTP-

Rheb which in turn activates mTOR, promoting HIF1α transcription and 

translation (Brugarolas et al., 2004). Other cellular oncogenes have also 

been reported to induce HIF accumulation by stabilising HIF1α in normoxic 

conditions.  Transfection of RasV12, v-Src and Akt rapidly augment HIFs 

transactivation ability of a HRE-luciferase reporter (Chan et al., 2002). Levels 

of non-hydroxylated HIF1α are detected suggesting that activated oncogenes 

inhibit proline hydroxylation. Ras activation increases intracellular ROS 

production, which is reported to inhibit prolyl hydroxylase activity (as 

described in section 1.18.4) and therefore this may account for increased HIF 

activity (Gerald et al., 2004). This indicates a direct link between oncogenic 

activity, HIF1α and tumour progression in normoxia.   
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1.21.3 HIF functions in cancer 
 

HIF promotes a number of alterations in cell physiology that contribute to the 

hallmarks of cancer; increasing proliferation, angiogenesis, invasion and 

metastasis (Hanahan and Weinberg, 2000). 

 

1.21.3.1 Angiogenesis 
 

Angiogenesis, the formation of new blood vessels upon a point whereby the 

tissues demand for oxygen and nutrients exceeds the ability of the existing 

vasculature and neovascularisation, the formation of functional microvascular 

networks with red blood cell perfusion are critical in tumour formation  

(Carmeliet and Jain, 2000). In many solid tumours, rapid cellular expansion 

distances cells from the existing vasculature, resulting in reduced oxygen and 

nutrient supply to tumour cells more than 100µm away from a blood vessel, a 

phenomena initially observed by Thomlinson and Gray in 1955. 

Consequently hypoxia induced accumulation of HIFα leads to expression of a 

range of hypoxia inducible genes which enable tumour cells to promote 

angiogenesis. 

 

Two key angiogenic factors which may be up-regulated by HIFs are the 

receptor ligands vascular endothelial growth factor (VEGF-A) (Ferrara et al., 

2003) and the endothelial specific angiopoietin 2 (Ang-2) (Maisonpierre et al., 

1997). VEGF-A contains a functional HRE and is induced and secreted in 

hypoxia, guiding sprouting neo-blood vessels into oxygen depleted regions of 

the tumour mass via a graded VEGF-A distribution (Hellstrom et al., 2007). 

VEGF-A expression is coupled with Ang-2 expression, which permits blood 

vessel remodelling by inhibition of the closely related Angiopoietin 1. 

Angiopoietin 1 induces blood capillary maturation, via activation of the 

NOTCH pathway, rendering the vessels quiescent and unable to respond to 

VEGF-A.  Angiopoietin 2 acts as an Angiopoietin 1 antagonist, preventing the 

ligand binding to its receptor thus preventing the concomitant maturation of 

blood vessels (Yancopoulos et al., 2000). Although Ang-2 is hypoxia 
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inducible it is uncertain whether it contains a functional HRE. However, it is 

possible that Ang-2 contains either an un-identified HRE or may be indirectly 

induced by transcription factors which themselves are HIF induced (Fong, 

2009). 

 

Recent research has analysed the role of the PHDs in angiogenesis.  

Inactivation of PHD2 stimulates angiogenesis (Milkiewicz et al., 2004; 

Takeda et al., 2007); however, recent data also implicates PHD2 in 

morphogenesis of blood vessel endothelial cell (EC) lining.  Morphogenesis 

of EC lining is often aberrant (‘non-productive angiogenesis’) in tumours as a 

result of excessive release of hypoxia induced angiogenic cytokines, 

resulting in malshaped endothelial lining of tumour blood vessels which limits 

oxygen supply (Jain, 2005). Reduced oxygen supply has implications in the 

ability of radio therapeutic and chemotherapeutic approaches to treat cancer. 

These areas of lowered oxygenation convey reduced sensitivity to both 

radiation therapy which requires O2 to form cytotoxic DNA breaks and 

chemotherapy which insists on proliferating cells for cytotoxicity (Graeber et 

al., 1996). Therefore, hypoxia augments malignant progression whilst 

reducing responsiveness to therapeutic measures. Interestingly, implanting 

tumours in haplodeficient PHD2+/- mice normalised the endothelial lining and 

promoted vessel maturation (Mazzone et al., 2009). This vessel 

normalisation tightened the endothelial barrier improving tumour oxygenation 

resulting in down regulation of hypoxia induced metastatic genes 

suppressing tumour invasion (Mazzone et al., 2009). Therefore, rather than 

increasing HIF induced pro-tumourigenic gene expression, the predominant 

result of decreased PHD activity in hypoxic conditions appears to aid tumour 

suppression, thus providing alternative therapeutic opportunities. 

  

1.21.3.2 Metastasis 
 

Metastasis, the process by which cancer spreads from the place at which it 

first arose as a primary tumour to distant locations in the body, is a critical 

step in tumour pathogenesis, involving tumour cell invasion, intravasation, 
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extravasation and proliferation. HIF activation can promote tumour 

metastasis through the regulation of key factors including E-cadherin and 

lysyl oxidase (LOX). E-cadherin, is a cellular adhesion molecule that 

represses cell growth via interactions with β-catenin. VHL inactivation in renal 

cell carcinomas and the subsequent HIF activation has been demonstrated to 

repress E-cadherin by up-regulating E-cadherin specific repressors Snail and 

Smad interacting protein 1 (SIP1) (Evans et al., 2007). HIF has also been 

shown to directly increase LOX expression, an amine oxidase, responsible 

for invasive properties of hypoxic tumour cells via focal adhesion kinase 

activity and cell to matrix adhesion (Erler et al., 2006). To this effect LOX 

inhibition results in elimination of metastasis in mice with orthotopically grown 

breast cancer tumours. 

 

1.21.3.3 Metabolism and Proliferation 
 
Observations of a metabolic shift from oxidative to glycolytic pathways in 

tumour cells (‘Warburg effect’) date back to over 70 years ago and it is well 

established that HIF directly promotes glycolytic metabolism by inducing 

expression of genes including glucose transporters and glycolytic enzymes 

(Semenza, 2007). However, HIF1 is also reported to promote glycolysis by 

negatively regulating mitochondrial biogenesis and mitochondrial oxygen 

consumption, demonstrated in VHL deficient RCC cells. This is mediated by 

inhibition of the transcription factor c-Myc via two mechanisms, by HIF1 

induced transcriptional activation of the c-Myc inhibitor MXI-1 and by 

promoting c-Myc proteasomal degradation (Zhang et al., 2007). However, c-

Myc activity is predominantly responsible for inducing the expression of 

genes involved in the pro-tumourigenic promotion of cell cycle proliferation, 

for example activating the expression of the cyclin proteins (Arabi et al., 

2005).  Fascinatingly, HIF2 unlike HIF1 promotes c-Myc activation of cyclin 

D2 and repression of cyclin kinase inhibitor p27 in RCC cells, augmenting 

proliferation (Gordan et al., 2007). The mechanism by which HIF1 and HIF2 

discriminate between c-Myc repression and activation respectively, remains 

unclear, but contributes to increased cancer metabolism and proliferation. 
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1.21.3.4 Therapeutic Implications 
 

These observations suggest that drugs that inhibit HIF or its critical 

downstream target genes may be advantageous in treating cancers. 

Numerous drugs targeting HIF have been reported including mTOR, HSP90 

and HDAC inhibitors (Kaelin, Jr., 2007). As previously mentioned (section 

1.18.3) ascorbate administration in culture can enhance PHD activity to down 

regulate HIFα in tumour cells which could be exploited therapeutically 

(Knowles et al., 2003). However to date, inhibiting transcription factor 

function with drugs has been difficult. Drugs that inhibit HIF target gene 

VEGF or its receptor (sorafenib and sunitinib), have been approved which 

demonstrate activity in patients with advanced kidney cancer. 

 

Alternatively, patients with anaemic and ischemic diseases, which result from 

inadequate tissue oxygenation, may benefit from stabilisation of HIFα to 

promote oxygen delivery. Numerous PHD inhibitors have been developed 

which act to stabilise HIFα, many of which are in clinical trials for treatment of 

ischemic diseases. However, whether chronic PHD inhibition for the 

treatment of ischemic diseases would promote tumour growth from stabilised 

HIFα is unknown. Initial tests from patients with familial erythrocytosis caused 

by a hypomorphic PHD2 mutation, indicate that this is not the case, as the 

level of HIF activity required for tumourigenesis exceed that required to 

promote processes such as erythropoiesis in anaemic/ischemic disorders 

(Percy et al., 2006). Treating such diseases without promoting tumour growth 

by inhibiting PHD activity will require careful strategic planning. 
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1.22 Aims and Objectives 
 

Recent data has indicated that LIMD1 is a novel tumour suppressor, which 

suppresses growth by co-repressing transcription of the E2F family of 

transcription factors with pRB. However, it has been demonstrated that 

deletion of the pRB binding interface within LIMD1 and expression of LIMD1 

in a pRB-/- cell line did not completely attenuate LIMD1 mediated tumour 

suppressive activity. Therefore, this led to the hypothesis that LIMD1 may 

perform multiple tumour suppressive functions. A Y2H screen of a HeLa 

cDNA library indicated that LIMD1 amino acids 1-363 interacted with PHD1, 

one of three critical oxygen sensing prolyl hydroxylases, responsible for the 

oxygen dependent targeting of HIFα for proteasomal degradation. HIF and its 

regulatory proteins have emerged as major therapeutic targets as HIF is 

responsible for the transcription of over 100 HRE containing genes, of which 

many of these gene products promote pro-tumourigenic events, including 

angiogenesis and metastasis. Therefore, at the start of this project, in 

keeping with the previously established tumour suppressive function of 

LIMD1 as a transcriptional repressor, it was hypothesised that LIMD1 may 

negatively regulate HIF activated transcription, by enhancing the activity of 

the PHDs. As LIMD1 and its family members Ajuba and WTIP share a high 

degree of structural and functional homology, it was investigated whether 

these LAW proteins represent a new family of hypoxic modulators, adding a 

further additional level of control to HIF regulation. 

 

Specifically, whether the observed interaction between LIMD1 and PHD1, 

identified from the Y2H screen, represented a conserved interaction between 

both LIMD1 family members (LAW) and all three PHD isoforms in vitro and in 

vivo was examined. As LIMD1 contains no intrinsic enzymatic activity and 

LIM proteins have been reported to often function as adaptor proteins, 

whether LIMD1 may regulate HIF in a similar way by scaffolding PHD activity 

with other components involved in promoting HIFα degradation was also 

investigated. To confirm that LIMD1 may promote HIFα degradation, the 

effect of LIMD1 ectopic expression on the stability of the ODD domain of 

HIF1α was analysed and whether this also led to repression of HIF driven 



  Introduction | Chapter 1  

57 
 

transcription using a HRE-luciferase reporter system was also examined. 

Additionally, it was addressed whether effects observed by ectopic LIMD1 

expression also translated to the same function as endogenous LIMD1. 

Therefore, the effects of LIMD1 depletion by RNAi and in Limd1-/- derived 

mouse embryonic fibroblasts (MEFs), on HIFα protein levels, HIF 

transcriptional activity and the effects on downstream HIF gene expression 

were also examined.  
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2. Materials and Methods 

2.1 Media and Antibiotics 

2.1.1 Media 

2.1.1.1 Bacterial Growth Media 

 
Luria Broth (LB): 2.5% (w/v) LB was dissolved in distilled water and 

autoclaved for 20 minutes at 121°c. After cooling, the appropriate dilution of 

antibiotic was added. (L3522-1KG, Sigma-Aldrich, Saint Louis, USA) 

 

LB-Agar: 3.5% (w/v) LB-Agar was dissolved in distilled water and 

autoclaved. After cooling, the appropriate dilution of antibiotic was added and 

the media was then poured into sterile plates. Plates were left to set at room 

temperature and then stored at 4°c for use within 4 weeks. (L2897-1KG, 

Sigma-Aldrich, Saint Louis, USA) 

 

2.1.1.2 Cell Culture Media 

 
Dulbecco’s Modified Eagle’s Medium (DMEM): 4500mg/Lglucose, 2mM L-

glutamine and 100mg/L sodium pyruvate. DMEM was supplemented with 

10% (v/v) Foetal calf serum (FCS) and 1% (v/v) penicillin/streptomycin. 

Media was stored at 4˚c. (D6429, Sigma-Aldrich, Saint Louis, USA) 

 
Opti-MEM®: Opti-MEM® media was aliquoted and stored at 4°c. (31985, 

GIBCO, N.Y. USA) 

 

1x Trypsin/EDTA Solution: 0.5g/100ml porcine trypsin, 0.2g/100ml EDTA, 

4Na per litre of Hanks' Balanced Salt Solution (HBSS) and phenol red. 

Trypsin/EDTA was kept at -30°c for long term storage and stored at 4˚c whilst 

in use. Trypsin/EDTA was warmed to 37°c in a water bath prior to use. 

(T3924, Sigma-Aldrich, Saint Louis, USA) 
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Fetal Bovine Serum (FBS): FBS was divided into 50ml aliquots and stored 

at -20˚C. Prior to use FBS was thawed at 37°c and then added to cell growth 

medium [10% (v/v) FBS/Medium] within a cell culture fume hood. (F9665, 

Sigma-Aldrich, Saint Louis, USA) 

 

2.1.2 Antibiotics 
  
Ampicillin: Ampicillin stock solutions were prepared by dissolving ampicillin 

sodium salt in distilled water to a concentration of 100mg/ml. The solution 

was then filter sterilised using a disposable 0.2µm filter and stored at -20°c. 

Ampicillin was typically used at a working concentration of 100µg/ml. (A2804-

50mg, Sigma-Aldrich, Saint Louis, USA) 

 

Kanamycin: Kanamycin stock solutions were prepared by dissolving 

Kanamycin monosulphate in distilled water to a concentration of 30mg/ml. 

The solution was then filter sterilised using a disposable 0.2µm filter and 

stored at -20°c. Kanamycin was typically used at a working concentration of 

30µg/ml.  Kanamycin is light sensitive and therefore was stored and utilised 

in a lightproof environment. (K1637-1G, Sigma-Aldrich, Saint Louis, USA) 

 

Puromycin: Puromycin stock solution of 100mg/ml concentration was stored 

at -20˚C. Puromycin was used at a final concentration of 3μg/ml. (ant-pr-1, 

InvivoGen, California, USA) 

 

G418/Geneticin: G418 stock solution of 50mg/ml in PBS was prepared in 

sterile cell culture conditions and was stored at -20˚C. Puromycin was used 

at a final concentration of 500μg/ml. (G0175, Melford, Suffolk, UK)  
 

Penicillin/Streptomycin: Containing 10,000 units of Penicillin and 10mg/ml 

Streptomycin in 0.9% NaCl. Penicillin/Streptomycin solution was kept at -30°c 

for long term storage and stored at 4˚c whilst in use. Penicillin/Streptomycin 

was routinely used at 1% (v/v) in growth medium (P0781, Sigma-Aldrich, 

Saint Louis, USA) 
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2.2 Buffers and Solutions 

2.2.1 Bacteriological Buffers and Solutions 
 
Transformation Buffer (TB): 55mM MnCl2, 15mM CaCl2, 250mM KCl and 

10mM PIPES pH 6.7 were mixed with HPLC water. The solution was then 

filter sterilised using a disposable 0.2µm filter and stored at -20°c. 
 

2.2.2 DNA Buffers 
 
1 x Tris-Acetate EDTA (TAE): 40mM Tris-acetate and 2mm EDTA pH 8.0 

were dissolved in distilled water and stored at room temperature. 

 

10 x Agarose Gel Sample Buffer: 0.25% (w/v) Bromophenol Blue and 30% 

(v/v) glycerol were dissolved in distilled water and stored at room 

temperature. 

 

2.2.3 Cell Lysis Buffers 
 
RIPA: 150mM NaCl, 1%(v/v) IGEPAL-630, 0.5% (w/v) sodium deoxycholate, 

0.1% (w/v) SDS and 50mM Tris pH 8, were dissolved in distilled water and 

stored at 4°c for use within 4 weeks. 

 

Low Salt: 1%(v/v) IGEPAL-630 and 50mM Tris pH 8 were dissolved in 

distilled water and stored at 4°c for use within 4 weeks. 

 

Nonidet P-40 (NP40/IGEPAL-630): 150mM NaCl, 1%(v/v) IGEPAL-630 and 

50mM Tris pH 8, were dissolved in distilled water and stored at 4°c for use 

within 4 weeks. 

 

High Salt: 500mM NaCl, 1% (v/v) IGEPAL-630 and 50mM Tris pH8, were 

dissolved in distilled water and stored at 4°c for use within 4 weeks. 
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Protease Inhibitors: One Complete™ Protease Inhibitor or Complete™ 

EDTA free Protease Inhibitor Cocktail tablet (Roche, Mannheim, Germany) 

was dissolved in either 25ml or 50ml of lysis buffer depending on the desired 

degree of protease inhibition required. Solutions were stored at 4°c for 2 

weeks. 
 
Phosphatase Inhibitors: One PhosSTOP™ Phosphatase Inhibitor Cocktail 

tablet (Roche, Mannheim, Germany) was added to 10ml of lysis buffer and 

stored at 4°c for 2 weeks. 

 

MG-132 Proteasome Inhibitor: MG-132 [Z-Leu-Leu-Leu-CHO] (PI102-0005, 

Biomol International, Enzo Life Sciences Ltd, UK). MG-132 is a potent, cell 

permeable inhibitor of the proteasome. MG-132 stock solution was prepared 

by dissolving in sterile DMSO (Dimethyl Sulfoxide, D2438, Sigma-Aldrich) in 

a tissue culture hood to a final concentration of 10mM.  The stock solution 

was stored at -80°c and used within 2 months at a working concentration 

between 10-50µM. 

 

2.2.4 Solutions for Sodium Dodecyl Sulphate-Polyacrylamide Gel 
Electrophoresis (SDS-PAGE) and Immunoblotting  

 
5 x SDS-PAGE Sample buffer: 250mM Tris-HCl pH 6.8, 50% (v/v) Glycerol, 

5%(w/v) SDS, 0.05%(w/v) Bromophenol Blue and 5%(v/v) β-

Mercaptoethanol were dissolved in distilled water in a fume hood. The 

solution was aliquoted and stored at -30°c. 

 

Phosphate Buffer Saline (PBS): Premixed 10x PBS (11666789001, Roche 

Diagnostics GmbH, Mannheim, Germany, [2.5mM KH2PO4, 25mM Na2HPO4, 

0.34 M NaCl, 6.75mM KCl, pH 7.4]) was diluted 10 fold in distilled water and 

stored at room temperature. 

 

PBS-Tween: 0.05%(v/v) Tween®20 (P2287-500ml, Sigma-Aldrich, Saint 

Louis, USA) was mixed in 1 x PBS and stored at room temperature.  
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Resolving Gel Buffer: A typical 10% acrylamide gel comprised 1.9ml of 

H2O, 1.7ml of 30% (w/v) Acrylamide solution (37.5:1 Acrylamide:Bis-

acrylamide, Severn Biotech Ltd, UK), 1.3ml of 1.5M Tris pH8.8 and 50µl of 

10% (w/v) SDS. To polymerise the acrylamide, 50µl of 10% (w/v) Ammonium 

Persulphate Solution (APS) and 2µl of N,N,N’,N’-tetramethylethylenediamine 

(TEMED) were added immediately before pouring. 

 
Stacking Gel Buffer: 5% acrylamide stacking gel solution contained 1.4ml of 

H2O, 330µl of 30% acrylamide solution, 250µl of 1.0M Tris pH 6.8 and 20µl 

of 10%(w/v) SDS per gel and was polymerised by the addition of 20µl of 10% 

(w/v) APS and 2µl of TEMED.  

 
SDS-PAGE Running Buffer: 250mM Tris, 2M Glycine and 10% (w/v) SDS 

were dissolved in distilled water. The solution was stored at room 

temperature and used within 8 weeks. 

 

Transfer Buffer: 10x Tris-Glycine transfer buffer solution (250mM Tris-HCl 

pH 7.5, 2M glycine, [93015, Fluka, Sigma-Aldrich, UK]) was diluted 10 fold in 

distilled water and 10% (v/v) methanol was added. The buffer was stored at 

4°c. 

 
Blocking Solution: 5%(w/v) Marvel dried skimmed milk powder was 

dissolved in 1 x PBS-Tween [0.05% (v/v) Tween 20]. Blocking solution was 

stored at 4°c overnight and made fresh for each experiment. 
 

Coomassie Blue Protein Stain:  0.12% [w/v] Coomassie Brilliant Blue R 

was dissolved into a 50% [v/v] Methanol, 20% [v/v] Glacial Acetic Acid 

solution. The solution was then filtered through filter paper and then stored at 

room temperature. 

 
Coomassie Blue De-staining solution: 10% (v/v) Methanol and 10% (v/v) 

Glacial Acetic Acid were mixed with distilled water and stored at room 

temperature. 
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Ponceau S Protein Stain: 0.1% [w/v] Ponceau S was dissolved into a 10% 

[v/v] Glacial Acetic Acid solution and stored at room temperature. 

 

2.2.5 Indirect Immunofluorescence Assay (IFA) Solutions 
 
Paraformaldehyde (PFA): Stock PFA was prepared by dissolving 20% (w/v) 

paraformaldehyde in 1 x PBS and was heated to 50°c on a heated plate 

within a fume hood until the solution became clear. pH was adjusted to 7.5 

using 1M HCl. 20% (w/v) PFA/PBS was then further diluted in 1 x PBS to a 

final working concentration of 4% (v/v). 

 

Permeabilisation Solution: 0.05% (v/v) Triton X-100 was mixed with 

distilled water and stored at room temperature. 

 
Blocking Solution: 3% (w/v) BSA, 1mM MgCl2 and 1mM CaCl2 were added 

to 1 x PBS. The blocking solution was stored on ice and made fresh for each 

IFA experiment. 

 

Washing Solution: The blocking solution was diluted 10 fold in 1 x PBS with 

an additional 1mM MgCl2 and 1mM CaCl2, (to a final concentration of 0.3% 

[w/v] BSA, 1mM MgCl2, 1mM CaCl2). The washing solution was stored on ice 

and made fresh for each IFA experiment. 

 

Mounting Media: Vectashield Mounting Medium with DAPI (Vector 

Laboratories Inc. CA, USA), stored at 4°c in the dark. 
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2.2.6 Dual-Luciferase Reporter Assay Solutions 
 
Dual-Luciferase Reporter Assay System: This kit compises of 5x Passive 

Lysis Buffer,  a Luciferase Assay Buffer and Stop & Glo® Reagent. 

Components were stored at -30°c and thawed for use at room temperature. 

(E1960, Promega, Madison,USA). 

 

Passive Lysis Buffer: 5 x Passive lysis buffer, stored at -30°c was thawed 

at room temperature and diluted to 1x with distilled water. Once used passive 

lysis buffer was stable for 6 hours at room temperature. 

 

2.2.7 Lentiviral Reagents 
 
Protamine Sulphate: A stock solution of protamine sulphate was prepared 

by dissolving salmon protamine sulphate salt in HPLC grade water to a 

concentration of 10mg/ml. The stock solution was diluted to a final working 

concentration in growth media of 10μg/ml. Protamine sulphate was utilised to 

enhance gene transfer by viral vectors. Store at -20˚C. (P3369, Sigma-

Aldrich, Saint Louis, USA) 
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Methods 

2.3 Bacterial Culture methods 

2.3.1 Preparation of Chemically-Competent Cells 

 

100ml of LB was inoculated with 100µl of a 10ml overnight culture of 

bacterial cells (DH5α). The cells were grown overnight at 20-22°c with 

vigorous shaking (200-220rpm) until an OD600 of 0.45-0.65 was reached 

monitored by spectrophotometric analysis. The cells were then chilled on ice 

for 15 minutes and then pelleted by centrifugation at 3500rpm at 4°c for 15 

minutes. The supernatant was discarded and the bacterial pellet was re-

suspended in 10ml of filter sterilised (0.2µm) transformation buffer (TB). Cells 

were chilled on ice for 10 minutes and then re-centrifuged at 3500rpm. The 

pellet was re-suspended in 2ml TB-DMSO (7% [v/v] DMSO in TB) and placed 

on ice for 10 minutes. Cells were aliquoted into eppendorf tubes and frozen 

immediately in liquid nitrogen before storing at -80°c. 

 

2.3.2 Transformation of Chemically Competent Cells 

 

50µl aliquots of chemically competent DH5α bacteria (section 2.3.1) were 

removed from -80°c and thawed on ice. 5µl of ligated DNA or 10ng of 

plasmid DNA was added to the cell suspension and gently agitated to mix 

before incubation on ice for 30 minutes. The cells were then heat shocked at 

42°c in a water bath for 90 seconds and then returned to ice for 5 minutes.  

1ml of Luria Broth (LB) was added to the cells which were then incubated at 

37°c with shaking at 200-220 rpm for 1 hour. 200µl and 800µl of cell 

suspension was then plated onto LB-agar plates containing plasmid-selective 

antibiotic and incubated at 37°c overnight. Positive colonies were picked from 

plates using a sterile autoclaved 200µl pipette tip and inoculated into a 10ml 

LB culture containing the vector appropriate antibiotic. 
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2.3.3 Propagation of Bacteria 
 
Typically 10ml or 50ml of LB containing plasmid-selective antibiotic was 

inoculated with a single bacterial colony picked from an LB-agar plate 

containing plasmid-selective antibiotic and grown with agitation at 37°c 

overnight. The cultures were then centrifuged at 4000rpm for 10 minutes to 

pellet the bacteria and the supernatant was discarded.  

 

2.4 Nucleic Acid Techniques 

2.4.1 Plasmid DNA Extraction from Bacteria 
 
Plasmid DNA from 10ml cultures was isolated using a modified alkaline-SDS 

lysis procedure (GenElute™ Plasmid Miniprep, Sigma-Aldrich, MO, USA-

Aldrich, UK). Harvested cells (2.3.3) were re-suspended in 200µl of re-

suspension solution containing RNase A by vortexing and were then 

transferred to a clean 1.5ml Eppendorf tube. Cells were lysed by the addition 

of 200µl of the lysis solution, gently mixed by inversion until the mixture 

became clear and viscous and incubated for 5 minutes. The cell debris was 

precipitated by addition of 350µl of the neutralisation/binding solution. Cells 

were gently inverted and then centrifuged at 13000 rpm for 10 minutes to 

pellet cell debris, proteins, lipids, SDS and chromosomal DNA. The 

GenElute™ Miniprep binding column was placed into a microcentrifuge tube 

and 500µl of Column Preparation solution was added to enhance binding of 

plasmid DNA to the silica membrane within the column. The column was 

centrifuged at 13000rpm for 1 minute and the flow-through solution 

discarded. The cleared bacterial lysate was transferred into the column and 

centrifuged at 13000rpm to enable binding of the plasmid DNA. Additional 

bacterial contaminants and residual salt were removed by the addition of 

500µl of the Optional Wash Solution and 750µl of the Wash Solution, which 

were centrifuged and the through-flow discarded after each wash. The 

column was centrifuged an additional time to ensure the removal of any 

remaining wash solution. The column was transferred to a new 

microcentrifuge tube and eluted by the addition of 100µl of HPLC grade 
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water. The column was centrifuged at 13000 rpm for 1 minute and the eluate 

containing the plasmid DNA was stored at -20°c for further use. 

 

For larger DNA yields, plasmid DNA was isolated from 50ml cultures using 

QIAGEN Plasmid Midi kits (12143, QIAGEN, Maryland, USA). Bacterial cells 

were harvested by centrifugation in 50ml poly-sulphonate centrifuge tubes at 

6000g for 15 minutes at 4°c. The bacterial pellet was re-suspended by 

vortexing in 4ml of Buffer P1 (50mM Tris-Cl pH 8.0, 10mM EDTA, 100µg/ml 

RNase A). The cells were lysed by the addition of 4ml of Buffer P2 (200mM 

NaOH, 1% w/v SDS). The cell suspension was gently inverted to mix and 

incubated at room temperature for 5 minutes. 4ml of ice-cold Buffer P3 (3.0M 

potassium acetate pH 5.5) was added to the lysate to precipitate genomic 

DNA, proteins and cell debris. The lysate was incubated on ice for 15 

minutes, prior to centrifugation at 20000g for 30 minutes at 4°c to pellet the 

cell debris. The supernatant was further centrifuged at 20000g for 15 minutes 

at 4°c to entirely remove suspended material for subsequent steps. A 

QIAGEN-tip 100 was equilibrated by applying 4ml of Buffer QBT (750mM 

NaCl, 50Mm MOPS pH 7.0, 15% [v/v] isopropanol, 0.15% [v/v] Triton X-100). 

The supernatant was then transferred to the QIAGEN-tip and allowed to pass 

through the resin by gravity flow. The DNA bound to the QIAGEN-tip resin 

was then washed twice with 10ml of Buffer QC (1.0M NaCl, 50mM Tris-Cl pH 

7.0, 15% [v/v] isopropanol) and then eluted into a polysulphonate centrifuge 

tube with 5ml of Buffer QF (1.25M NaCl, 50mM Tris-Cl pH 8.5, 15% [v/v] 

isopropanol). DNA was precipitated by adding 3.5ml of room temperature 

isopropanol, the eluate was mixed and immediately centrifuged at 15000g for 

30 minutes at 4°c. The supernatant was carefully decanted and discarded, 

and the DNA pellet was washed with 2ml of 70% (v/v) ethanol. The eluate 

was centrifuged at 15000g for 10 minutes. The supernatant was discarded 

and the DNA pellet left to air dry for 10 minutes. The DNA was carefully re-

suspended in 500µl of HPLC grade water and stored at -20°c for further use. 
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2.4.2 Determination of DNA concentration 
 
dsDNA concentration was determined using a NanoDrop® ND-1000 

spectrophotometer (NanoDrop Technologies, Inc. Wilmington USA). The 

upper and lower pedestals of the NanoDrop® were wiped cleaned with 100% 

(v/v) ethanol and nuclease free water prior to use. The NanoDrop® was 

initialised and then blanked to zero by the addition of 1.5µl of water. 1.5µl of 

DNA was then pipetted onto the lower pedestal and the concentration 

derived from the absorbance at 260nm (the maximum light absorption of 

nucleic acids). Protein absorbs light at 280nm, therefore the DNA/RNA purity 

can be determined by the ratio of OD260:OD280. Ratio values less than 1.8/2.0 

indicate protein or phenol contamination of the sample. The DNA 

concentration was measured twice and the average value was recorded. 
 

2.4.3 DNA sequencing 
 
All DNA sequencing was carried out by the Bipolymer Analysis and Synthesis 

Unit (School of Biomedical Sciences, University of Nottingham) using a 3130 

ABI PRISM Genetic Analyser.   

 

2.4.4 Restriction Endonuclease Digestion of DNA 
 
All DNA was digested using appropriate restriction enzymes (Promega, WI, 

USA) in the recommended compatible reaction buffer (ensured by utilising 

the online Promega Restriction Enzyme Resource). Digestions contained 10 

units of each restriction enzyme, 1x Bovine Serum Albumin (R396D, 

Promega, WI, USA), 1x reaction buffer and 0.2-1.5µg of DNA depending on 

whether the digestion is for analytical or preparative use. HPLC grade water 

was then added, typically to a final volume of 30µl. Restriction digests were 

performed at 37°c in a water bath for 1 hour. Restriction digests were 

terminated by the addition of 10x Agarose Gel Sample Buffer prior to DNA 

fragment isolation by agarose gel electrophoresis. 
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2.4.5 Agarose Gel Electrophoresis of DNA  
 
All electrophoresis of nucleic acids was performed using horizontal agarose 

gel electrophoresis equipment run with a constant voltage of 5V per cm 

between the electrodes.  Agarose gels were typically prepared by melting 

0.7-2% (w/v) agarose in 1x TAE buffer, dependent on the size of the DNA 

fragment and the required resolution. The agarose gel was then left to cool 

and Ethidium Bromide added at a concentration of 0.5µg/ml.  Smartladder 

(200bp-10kb, MW-1700-10, Eurogentec, Belgium) DNA ladder was used in 

order to estimate the size and approximate concentration of the DNA 

fragment. DNA gels were visualised by UV trans-illumination and a digital 

photograph was taken using a GENEgenius Bioimaging system (Syngene, 

Synoptics Ltd, Cambridge, UK) and GeneSnap software (Syngene). 

 

2.4.6 Extraction and Purification of DNA from Agarose 
 
The desired DNA bands to be purified were excised from the agarose gel 

using a sterile scalpel blade under UV trans-illumination. The DNA was 

extracted from the agarose gel using the GenElute™ Gel Extraction Kit 

(Sigma-Aldrich, MO, USA-Aldrich, UK). The excised gel was placed in an 

Eppendorf tube and the weight of the gel measured. Gel Solubilisation 

Solution was added (300µl for every 100mg) and the gel was heated in a 

water bath at 50°c for 10 minutes to dissolve the gel. 1 gel volume of 100% 

(v/v) isopropanol was added to the dissolved gel and mixed until 

homogenous. The solution was then transferred into a GenElute™ Binding 

Column G, previously washed with 500µl of Column Preparation Solution, 

and centrifuged at 13000rpm for 1 minute. The flow-through was discarded 

and 700µl of Wash Solution Concentrate G added, centrifuged again and the 

eluate discarded. The column was then left to air dry for 5 minutes to remove 

additional ethanol. The column was transferred to a new microcentrifuge tube 

and eluted with 50µl of HPLC water.  
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2.4.7 Ligation of Restriction Enzyme Digested DNA Fragment into a 
Linearised Vector 

 
All ligations performed were sticky-end ligations whereby DNA insert 

fragment and linearised plasmid vectors contained complementary DNA 

overhangs. Insert and vector DNA fragments were generated by restriction 

endonuclease digestion (section 2.4.4) and were then purified and isolated 

by agarose gel electrophoresis (section 2.4.5 and 2.4.6). Restriction 

endonuclease digestion of both the insert and vector using two specific 

endonucleases allowed the orientation specific ligation of the DNA insert and 

plasmid vector. All ligation reactions were set up with DNA insert: plasmid 

vector ratios of 1:1. 3:1 and 5:1 using 25-50ng of vector: The following 

calculation was used to calculate the appropriate ratio: 

 

 ng vector x insert size (Kb)     x       ratio   insert  =  ng insert 

  vector size (Kb)    vector 

 
Ligation reactions were typically performed in a total volume of 20µl, 

containing the appropriate amount of DNA insert and plasmid vector, 2µl of 

T4 DNA ligase (M1801, 6U/µl, Promega, WI, USA) and 2µl of 10x T4 DNA 

ligase buffer. Reactions were performed alongside a control reaction 

containing no DNA insert, in order to estimate the degree of re-annealment of 

the plasmid vector. Reactions were performed at 16°c overnight. 5µl of the 

ligation reaction mixture was then transformed into chemically competent 

bacteria (section 2.3.2).  

 

2.5 Polymerase Chain Reaction (PCR) 

2.5.1 Nucleic Acid Amplification by PCR 
 
Nucleic acid amplification was performed using PCR employing either the 

Expand High Fidelity PCR System comprising Taq DNA polymerase activity 

(3U/µl, 11 732 641 001, Roche, Mannheim, Germany) or PFU polymerase 

activity (3.5U/µl, M774A,  Promega, WI, USA). Reaction volumes were set up 
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in a final volume of 25µl containing 3U of Polymerase enzyme, 1 x PCR 

buffer, 1µl of deoxynucleotide mix (11 581 295 001, Roche, Mannheim, 

Germany) equating to a final concentration of 200µM of each dNTP and 

0.6µM of each specific forward and reverse primer. PCR was performed 

using a HYBAID PCR Authorised Thermal Cycler (HBSP05220, HYBAID Ltd, 

UK) using the following programme: 

 

Initial denaturation  5 min at 95˚c 

Denaturation   1 min at 95˚c 

Primer annealing  1 min at 50˚c 

DNA amplification  1 min at 72˚c 

Final extension  2 min at 72˚c 

 

All PCR reactions were held at 4°c once complete and PCR products were 

verified by agarose gel electrophoresis (section 2.4.5) and purified using the 

GenElute™ Gel Extraction Kit (Sigma-Aldrich, MO, USA-Aldrich, UK) (section 

2.4.6). 

 

2.5.2 PCR Amplification of GC-RICH DNA templates 
 
For amplification of difficult GC rich templates, the GC-RICH PCR System 

(12 140 306 001, Roche, Mannheim, Germany) was employed. The reaction 

was set up as for a standard PCR reaction using 2U of GC-RICH PCR 

System enzyme mix, 1 x GC-RICH PCR reaction buffer with DMSO and 1M 

of GC-RICH resolution solution in a final volume of 50µl. GC melt PCR was 

performed using the following PCR parameters: 

 

Initial denaturation  1 min at 95˚c 

Denaturation   30 sec at 94˚c 

Primer annealing  1 min at 50˚c 

DNA amplification  3 min at 68˚c 

Final extension  3 min at 68˚c 

30 Cycles 

35 Cycles 
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2.5.3 TA Cloning of PCR Products 
 
TA cloning® was used to quickly and efficiently clone purified PCR products 

into the pcDNA4/HisMax©-TOPO® plasmid vector using the 

pcDNA4/HisMax©-TOPO® TA Expression Kit (K864-20, Invitrogen, Carlsbad, 

USA). The PCR product is integrated within the linearised plasmid vector 

supplied with single 5’ thymidine overhangs. PCR products amplified by Taq 

polymerase contain a 3’ single deoxyadenosine due to the non-template 

dependent terminal transferase activity of the polymerase therefore allowing 

efficient insertion into the linearised pcDNA4/HisMax©-Topo® plasmid vector. 

Furthermore, the pcDNA4/HisMax©-Topo® vector is supplied with 

topoisomerase I from the Vaccinia virus covalently attached. The 

topoisomerase binds via tyrosine-274 after a specific 5’-CCCTT and cleaves 

the phosphodiester backbone of the vector. This phosphor-tyrosyl bond can 

then be attacked by the 5’hydroxyl of the original cleaved strand, reversing 

the reaction and forming a phosphodiester bond with the insert PCR product.  

 
TA cloning reactions were performed in a final volume of 5µl, containing 0.5-

4µl of fresh purified PCR product, 1µl of salt solution and 0.5µl of TOPO® 

vector. The reaction mixture was gently mixed and incubated at room 

temperature for 30 minutes. 2µl of the reaction mixture was then transformed 

into chemically competent cells (section 2.3.2). Reactions were performed in 

parallel to a vector only control, providing an estimation of vector re-

annealment.  

 

2.5.4 RNA extraction and Real-time quantitative reverse transcription 
PCR 

 
RNA was extracted from U2OS cells, seeded into a 24 well plate at a density 

of 4 x 104 and transfected with siRNA targeting LIMD1 or a non-specific 

scrambled control, using the RNAqueous micro kit (Ambion). RNA was 

extracted immediately with disruption with 100μl of lysis solution containing 

guanidinium thiocyanate which rapidly inactivates ribonucleases. 50μl of 
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100% (v/v) ethanol was added to the lysate and the lysate loaded onto a 

silica-based filter that selectively binds RNA. The filter was washed with 

180μl of wash solution 1 and then twice with 180μl of wash solution 2/3. The 

RNA was then eluted in 10μl of elution solution preheated to 75°c. RNA (1μg) 

pre-treated with DNase I (Invitrogen) was then reverse transcribed using 

oligo-dT primers and High Fidelity Reverse Transcriptase (Roche). To 

quantify the mRNA levels of HIF1α, BNIP3, VEGF, LIMD1 and β-tubulin 

quantitative real-time PCR was conducted using 1XTaqMan Power SYBR 

green Mastermix (Applied Biosystems), 0.4mM forward and reverse primers, 

2.5μl cDNA and dH2O to a final volume of 25μl, reactions were run on an 

ABI7000 instrument (Applied Biosystems).  

 

qRT-PCR primers: 

 

BNIP3 (5’-3’): 

Forward: ATGTCGTCCCACCTAGTCGAG 

Reverse: CTCCACCCAGGAACTGTTGAG  

 

VEGF (5’-3’): 

Forward: ACCTCCACCATGCCAAGTG 

Reverse: TCTGATTGGATGGCAGTAG 

 

HIF1α (5’-3’): 

Forward: CCAGTTACGTTCCTTCGATCAGT 

Reverse: TTTGAGGACTTGCGCTTTCA 

 

LIMD1 (5’-3’): 

Forward: TGGGGAACCTCTACCATGAC 

Reverse: CACAAAACACTTTGCCGTTG 

 

β-Tubulin (5’-3’): 

Forward: ATACCTTGAGGCGAGCAAAA 

Reverse: CTGATCACCTCCCAGAACTTG 
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The data was normalised to the housekeeping gene β-tubulin and relative 

quantification was determined by the comparative Ct method (2–[delta][delta]Ct). 

(RNA extractions and qRT-PCR experiments were performed in collaboration 

with Dr Victoria James, School of Biomedical Sciences, University of 

Nottingham.) 

 

2.6 Cell Culture Methods 

2.6.1 Cell Maintenance and Passaging of Cells in Monolayer Culture 
 
Adherent human cell lines (U2OS, HeLa, HEK 293, HEK 293T) were 

maintained in monolayer culture, typically in 75cm2 flasks. Cells were 

cultured in Dulbecco’s modified Eagles medium supplemented with 10% (v/v) 

Foetal calf serum (FCS) and 1% (v/v) penicillin/streptomycin and incubated at 

37°c with 5% CO2. Cells were maintained at 80% confluency via 

trypsinization with (1x) Trypsin and EDTA.   

 

Cells were inspected using an inverted light microscope. Cells were 

passaged by trypsinization when cells reached 80% confluency. Medium was 

removed by aspiration and the cells washed with 10ml of 1 X sterile PBS. 

Cells were detached by addition of 2.5ml of 1x trypsin-EDTA and incubated 

at 37°c for 5 minutes. Each plate was then gently tapped to aid the 

detachment of cells and observed using a light microscope. Trypsin-EDTA 

was then neutralised by addition of 7.5ml of DMEM growth medium and cells 

were harvested by centrifugation at 1500rpm for 5 minutes. The remaining 

supernatant was aspirated off and the cells were then re-suspended in an 

appropriate volume of growth medium. Cells were then transferred into a new 

75cm2 flask typically at a 1:3 to 1:10 dilution. 10ml of growth medium was 

added to the flask, cells were dispersed evenly by gentle shaking and 

returned to incubate at 37°c.  
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2.6.2 Cell Freezing 
 
Cells were trypsinised and harvested by centrifugation (section 2.6.1) and 

then re-suspended in 10ml of cold PBS. Cells were pelleted by centrifugation 

at 1500rpm for 5 minutes and the supernatant removed by aspiration. Cells 

were re-suspended in 1ml of freezing media (90% (v/v) FCS, 10% (v/v) 

dimethyl sulfoxide [DMSO]) and transferred into cryovials. Cells were then 

immediately stored at -80°c overnight and then transferred into liquid nitrogen 

(-196°c) for long term storage. 

 

2.6.3 Cell Counting Using a Haemocytometer 
 
Cells were counted utilising an Improved Neubauer Haemocytometer 

(AC1000, Hawksley & Sons Ltd, Lancing, UK) to ensure reliable and 

consistent seeding of cells. Following trypsinization, cells were re-suspended 

evenly by pipetting up and down 5 times. With the coverslip in place, 10µl of 

the cell suspension was transferred to both chambers of the 

haemocytometer. Cells were counted using an inverted light microscope, 

counting all cells in the large 1mm corner squares. Typically at least 100 cells 

were counted, including cells touching the upper and left border but not the 

right or lower borders.  Each large square represents a total volume of 

0.1mm3 or 10-4 cm3 and as 1cm3 is approximately 1ml, the subsequent 

formula was used to determine the cell number per ml: 

 

Cells/ml = (Average count) x 104 

Total cells = (Cells/ml) x (original volume) 

 

 2.6.4 Hypoxic Treatment 
 
Cells were exposed to hypoxia for 4-72 hours at 37°c and 1% O2 maintained 

using a ProOx 110 (BioSpherix Ltd, New York, USA) controller and chamber. 

Following hypoxic treatment cells were rapidly lysed to prevent 

reoxygenation. 
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2.7 Nucleic Acid Transfection of Monolayer Cells in Culture 

2.7.1 GeneJuice® Transfection  
 
24 hours prior to transient transfection the desired cell lines were seeded into 

6 well plates at a density of 1 x 105 corresponding to approximately 50% 

confluency.  For each 6 well, 3µl of GeneJuice® (70967-6, Novagen®, 

Darmstadt, Germany) was directly added to 100µl of Opti-MEM® media into a 

sterile eppendorf tube. The solution was thoroughly agitated to mix and 

incubated at room temperature for 5 minutes. 1µg of DNA was added directly 

to the solution and incubated at room temperature for 30 minutes to enable 

the formation of a GeneJuice®-DNA complex. The reagent-DNA mixture was 

then added drop-wise to the cells in complete growth medium. The 6 well 

plate was gently rocked to ensure even distribution of the mixture. The cells 

were then incubated for 12-72 hours at 37°c and 5% CO2 prior to harvesting 

of cells for analysis. GeneJuice® was used for transfection of a variety of 

different size cell culture dishes, where the volume of GeneJuice® was 

maintained 3 times the volume of the DNA mass used (3µl :1µg). 

 

2.7.2 DharmaFECT® siRNA Transfection  
 
Cells were seeded into 12 well plates at a density of 5 x 104 and incubated in 

1ml of complete growth medium for 24 hours. siRNA was re-suspended in 1 

x siRNA buffer (Thermo Scientific Dharmacon®, Lafayette, USA) to a final 

concentration of 20µM. siRNA was typically used at 20nM, so in a total 

volume of 1ml per 12 well, 1µl of stock solution was used. Solution A was 

prepared by mixing 1µl of siRNA stock solution with 99µl of Opti-MEM® by 

pipetting, in a sterile microcentrifuge tube and incubated at room temperature 

for 5 minutes. Solution A was then mixed by pipetting with solution B 

comprising 1µl of DharmaFECT® Duo Transfection reagent (T-2010-03, 

Thermo Scientific Dharmacon®, Lafayette, USA) and 99µl of Opti-MEM®, and 

incubated for 20 minutes at room temperature.  Growth medium was 

aspirated off of the cells and cells were washed with 2ml of 1 x PBS. 800µl of 

complete growth medium was added onto the cells prior to the addition of 
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200µl of the siRNA-reagent mixture. Cells were incubated for 24-72 hours at 

37°c and 5% CO2 before harvesting and analysis.  

 

2.8 Stable LIMD1 knock down cell line production by the Lentiviral 
shRNA system 

 
Lentiviral vectors have the ability to integrate into the host cell DNA 

irreversibly and therefore, are suitable vectors for permanent genetic 

modification of cells. Stable LIMD1 knock down cell lines were produced by 

utilizing lentiviral-mediated gene transfer by simultaneously transfecting three 

plasmids; the pHR’-CMV-8.2ΔR (packaging), pCMV–VSV-G (envelope) and 

the pFLRu derived plasmid encoding short hairpin RNA’s (shRNA) targeting 

LIMD1 mRNA (Figure 2.8.1 and vector appendix for plasmid information).  
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Figure 2.8.1 Schematic Representation of Lentiviral mediated genetic 

modification. 
Lentivirus is produced by the transient co- transfection of HEK 293T cells with an 

envelop construct and packaging construct for viral generation and a transfer 

construct containing shRNA targeted for LIMD1 mRNA. Lentivirus was then 

collected and used to infect target cell lines to generate desired stable cell lines. 

 
 
 
 

U6 sH LIMD1 
targetted RNA IRES YFP/RNAi resistant 

LIMD1 rescue
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For lentivirus production, these three plasmids were co-transfected into the 

packaging HEK 293T cell line. HEK 293T cells were seeded into 10cm 

dishes at a density of 3x106.  20 minutes prior to transfection, cells were 

washed with room temperature 1 x PBS and 7.5ml of media was replaced. 

The three plasmids were mixed prior to transfection in a 0.5ml 

microcentrifuge tube containing 5μg of the pFLRu derived plasmid, 4.4μg of 

the pHR’8.2ΔR plasmid and 0.6μg of the pCMV-VSV-G plasmid.  The HEK 

293T cells were then transfected with the plasmid DNA mixture using 

GeneJuice® (as described in 2.7.1). 24 hours later an additional 7.5ml of 

complete growth media was added to the cells to a total of 15ml.  The 

transfected cells were allowed to culture for another 24 hours to accumulate 

virus. The efficiency of HEK 293T transfection and lentiviral production was 

monitored via visualisation of an IRES-YFP (Internal Ribosome Entry Site – 

Yellow Fluorescent Protein) construct (replaced with an RNAi resistant 

LIMD1 rescue in one of the constructs) by fluorescent microscopy. The 

supernatant containing virus was then removed, filtered using a 0.45μm filter 

and then stored at -80°c. 

 

Target cell lines were seeded in 10cm dishes at a density of 4x106 and 

cultured until they were 80% confluent. Cells were then washed in room 

temperature 1 x PBS and then 5ml of filtered lentivirus and 5ml of complete 

growth medium were added to the cells (10ml total volume). 24 hours 

following the initial viral transduction, cells were ‘super-infected’ by removing 

5ml of medium from the cells which was replaced by another 5ml of virus. 

Viral transduction was supplemented with protamine sulphate (Sigma-

Aldrich, MO, USA) added to the viral stock to the final concentration of 

10μg/ml, to enhance the efficiency of lentiviral infection. 24 hours following 

the second transduction the media was replaced with complete growth 

medium containing puromycin to a final concentration of 3μg/ml to select for 

the transduced cells. Cells were cultured with medium containing puromycin 

for 10 days to ensure survival of only lentiviral transduced cells. Viral 

transduction was then evaluated by visualisation of the IRES-YFP construct 

by fluorescent microscopy and SDS-PAGE and immunoblotting of cell lysates 

to evaluate levels of protein knock down (Figure 2.8.2). Lentiviral transduced 
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cell lines were then cultured at 37°c in complete growth media and a 

proportion frozen in freezing media and stored at -196°c in liquid nitrogen 

(section 2.6.2) for future use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.8.2 Western blot confirmation of lentiviral mediated LIMD1 knock 

down.  
U2OS cells stably expressing LIMD1 shRNA express reduced LIMD1 in comparison 

with the scrambled shRNA control. Rescue RNAi resistant LIMD1, expressed on top 

of a LIMD1 shRNA background, rescues expression with a Flag-His or YFP tag. 

Anti-β actin immunoblot was used as a protein loading control. 
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2.9 Standard Protein Techniques 

2.9.1 SDS-PAGE  
 
Protein samples were typically resolved on 8-12% SDS-PAGE gels (8cm x 

7.3cm x 0.75mm) using the Mini-PROTEAN® 3 system (Bio-Rad Laboratories 

UK).  Per gel, the 10% acrylamide solution contained 1.9ml of H2O, 1.7ml of 

30% (w/v) Acrylamide solution (37.5:1 Acrylamide:Bis-acrylamide, Severn 

Biotech Ltd, UK), 1.3ml of 1.5M Tris pH8.8 and 50µl of 10% (w/v) SDS. To 

polymerise the acrylamide, 50µl of 10% (w/v) Ammonium Persulphate 

Solution (APS) and 2µl of N,N,N’,N’-tetramethylethylenediamine (TEMED) 

were added, vortexed to mix and the gel was poured immediately. Gels were 

overlaid with ethanol to ensure an even surface and allowed to set for 30 

minutes. The 5% stacking gel solution contained 1.4ml of H2O, 330µl of 30% 

acrylamide solution, 250µl of 1.0M Tris pH 6.8 and 20µl of 10% (w/v) SDS 

and was polymerised by the addition of 20µl of 10% (w/v) APS and 2µl of 

TEMED. Either 10 or 15 well combs were inserted and the stacking gel 

allowed to set for 30 minutes before the gel was placed into the mini 

electrophoresis tank within the clamped electrode assembly apparatus. The 

tank was then filled with electrode buffer and the comb removed. 

 

Proteins were prepared by lysis in 5 x Sample Buffer and heated at 95°c for 5 

minutes. Samples were then loaded into each well using a 250µl gel loading 

pipette tip. 5µl of All Blue Precision Plus Protein™ Standards (Bio-Rad 

laboratories, UK) were loaded as a protein size marker. Gels were run at a 

constant 100 volts. 

 

2.9.2 Immunoblot detection of Protein 
 
Resolved proteins were transferred following SDS-PAGE onto Polyvinylidene 

Fluoride (PVDF) membrane (Roche Diagnostics, USA). PVDF membranes 

were equilibrated in 100ml of Methanol, 100ml of 50% (v/v) Methanol, 100ml 

of H2O and 100ml of Tris-glycine Transfer Buffer (25Mm Tris-HCl pH 8.3, 

200mM Glycine, 10% Methanol [Fluka, Sigma-Aldrich, UK]) for 5 minutes 

each with gently rocking. Proteins were transferred using a Trans-Blot Semi-
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Dry Electrophoretic Transfer Cell (Bio-Rad Laboratories, UK) at a constant 

voltage of 20V for approximately 90 minutes. The membranes were then 

incubated in Blocking Solution (5% [w/v] Marvel in PBS-Tween [0.05% (v/v) 

Tween 20]) for 1 hour at room temperature with gentle rotation. The 

membrane was then incubated in 5ml of primary antibody diluted 1:500-

1:5000 (primary antibody appendix) in Blocking Solution at 4°c overnight with 

gentle agitation. The membrane was then washed 3 times in PBS-Tween 

solution for 20 minutes per wash with agitation. Membranes were then 

probed with secondary antibody (Horseradish Peroxidase [HRP] conjugated 

Goat anti-mouse or Goat anti-rabbit, Dako, Denmark) at a concentration of 

1:5000 in Blocking solution, for 1 hour at room temperature. The membrane 

was then washed 3 further times with PBS-Tween. The membrane was then 

placed face up on cling film and incubated with Enhanced 

Chemiluminescence Reagent (ECL) Western Blotting Detection System 

(Amersham™, GE Healthcare, UK) for 5 minutes at room temperature to 

initiate a HRP-catalysed luminescent reaction. Excess ECL was poured away 

and the membrane placed in an autoradiography cassette. Under red light 

ECL Hyperfilm (Amersham™) was exposed to the membrane for 10 seconds 

to 1 hour dependent on the strength of the expected signal. The film was 

then hand developed in PQ Universal Paper Developer (Ilford, UK) and fixed 

in 2000RT fixer (Ilford) before being rinsed in water and allowed to air dry. 

 

2.9.3 Ponceau S Staining of Protein immobilised onto PVDF membrane 
 
Ponceau S solution (0.1% [w/v] Ponceau S, 10% [v/v] Glacial Acetic Acid) 

was utilised to determine the resolution of electrophoresis and the efficiency 

of protein transfer onto the PVDF membrane. Membranes were immersed in 

Ponceau S solution for 2 minutes and then the solution was discarded. The 

membrane was washed with distilled water until protein bands were visible by 

pink staining.  
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2.9.4 Antibody Stripping and Re-probing of PVDF Membrane 
 
Membranes were stripped in Antibody Stripping Buffer (Gene Bio-Application 

LTD, Israel) with agitation for 15 minutes at room temperature to remove both 

annealed primary and secondary antibodies. The membrane was then 

washed 5 times with 5ml of distilled water to remove the remaining buffer. 

Membranes were then re-blocked with Blocking Solution and re-probed with 

primary and secondary antibodies (section 2.9.2). 

 

2.9.5 Coomassie Blue Protein Staining 
 
Coomassie Blue Stain (50% [v/v] Methanol, 20% [v/v] Glacial Acetic Acid and 

0.12% [w/v] Coomassie Brilliant Blue R) was used to visualise proteins 

resolved by SDS-PAGE.  SDS-PAGE acrylamide gels were incubated for 1 

hour in Coomassie Blue Stain and then de-stained in destaining solution 

(10% [v/v] Methanol, 10% [v/v] Glacial Acetic Acid) overnight. 

 

2.10 Protein-Protein Interaction Assays 

2.10.1 Immunoprecipitation (IP) 
 
Immunoprecipitations were performed to analyse the specific in vivo protein-

protein interactions of a desired antigen within a cell lysate. Prior to 

harvesting of cells the IP antibody-IP matrix complex was formed. 40µl of 

suspended (25% [v/v]) IP matrix (For immunoprecipitation of antibodies 

raised in mice sc45042, raised in rabbit sc-45043,  Santa Cruz Biotech, CA, 

USA) was incubated with 1-5µg of IP antibody in 1ml of 1 x PBS and rotated 

for 4 hours at 4°c. 1 x 106 adherent cells were plated in 10cm2 dishes and 

transfected using GeneJuice® transfection reagent (section 2.7.1). 48 hours 

post-transfection, the cells were washed three times with ice-cold PBS and 

lysed by the addition of 750μl RIPA buffer (150 mM NaCl, 1% [v/v] IGEPAL-

630, 0.5% [w/v] sodium deoxycholate, 0.1% [w/v] SDS, 50mM Tris, pH 8) and 

cell scraping. Lysis was allowed to continue with vertical rotation for 30 

minutes at 4°c. The cell debris was then pelleted by centrifugation at 13,000 

rpm for 10 minutes. To reduce non-specific co-immunoprecipitation lysates 
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were pre-cleared before addition of the antibody using a slurry of 15µl of 

protein G agarose (P4691, Sigma-Aldrich, MO, USA) and 15µl of IgG 

sepharose™ (17-0969-01 GE healthcare, Uppsala, Sweden). In order to 

remove residual preservative ethanol, the protein G:IgG slurry was washed 

twice with 1ml of ice cold PBS and centrifuged at 2000 rpm for 1 minute prior 

to incubation with the lysates for 1 hour at 4°c with rotation. The lysates were 

then centrifuged to pellet the beads and the supernatant containing the 

cleared lysate retained. The IP antibody-IP matrix complex was washed twice 

by the addition of 1ml of 1 x PBS and centrifugation at 2000 rpm for 1 minute, 

to remove any free unbound antibody. 50µl of the cleared cell lysate was 

aliquoted as an input and the remaining lysate added to the IP antibody-IP 

matrix complex and incubated with rotation overnight at 4°c. The beads were 

then centrifuged at 2000 rpm for 1 minute and the supernatant discarded. 

1ml of lysis buffer was added and the beads washed for 5 minutes with 

rotation at 4°c. This wash was then repeated a further 2 times and then 

finally by the addition of 1ml of 1 x PBS. Following washing the remaining 

PBS was carefully removed by pipetting avoiding the removal of any of the 

beads. The beads were re-suspended in 40µl of 5 x SDS-PAGE sample 

buffer and heated at 95°c for 5 minutes before analysis by SDS-PAGE and 

immunoblotting (section 2.9.1 and 2.9.2).  

 

2.10.2 Endogenous Immunoprecipitation 
 
An IP antibody-IP matrix complex was formed (section 2.10.1) by the addition 

of 5µg of IP antibody and 80µl of IP matrix in 1ml of 1 x PBS. An 80% 

confluent 225cm2 flask of the desired cell line (U2OS, HEK-293) was lysed in 

4ml of RIPA buffer containing Complete™ Protease Inhibitor Cocktail 

(Roche, Mannheim, Germany) and PhosSTOP™ Phosphatase Inhibitor 

Cocktail (Roche, Mannheim, Germany). Lysis was allowed to continue with 

rotation for 30 minutes at 4°c and cell debris was pelleted by centrifugation at 

3,400 rpm for 10 minutes. 50µl inputs were taken and the lysates added to 

the washed IP antibody-IP matrix complex and incubated overnight at 4°c 
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with rotation. The beads were washed (as in section) with 4ml of lysis buffer 

and then finally re-suspended in 40µl of 5 x SDS-PAGE sample buffer. 

 

2.10.3 Nickel Affinity Capture of His-tagged proteins 
 
Nickel affinity capture of poly-His tagged proteins was employed as an assay 

to confirm protein-protein interactions in the absence of the heavy and light 

chains of antibodies encountered when immunoprecipitating. 48 hours post-

transfection; cells were washed three times with ice-cold PBS and lysed by 

scraping in 750µl of RIPA buffer plus 10-20mM of imidazole (from a 2M 

Imidazole stock, pH7.4, 56750, Fluka Chemika, Sigma-Aldrich, Switzerland). 

Imidazole is an organic compound which comprises the same aromatic 

heterocyclic ring as histidine and therefore acts to out-compete weak nickel 

binding proteins to prevent non-specific binding of His rich proteins to the 

Nickel affinity gel. RIPA buffer also contained Complete™ EDTA free 

Protease Inhibitors (1 tablet per 50ml of lysis buffer, 04 693 132 001, Roche, 

Mannheim, Germany). It is essential that the protease inhibitors used are 

EDTA free to ensure that Ni2+ ions are not chelated. Lysis was allowed to 

continue with vertical rotation for 30 minutes at 4°c prior to centrifugation at 

13,000 rpm for 5 minutes. The supernatant was then pre-cleared with 20µl of 

Protein G agarose (P4691, Sigma-Aldrich, MO, USA) prepared by washing 

twice in PBS, for 1 hour at 4°c. Lysates were separated from the protein G 

agarose by centrifugation at 2000 rpm and 50µl inputs aliquoted.  Ezview™ 

Red HIS-Select HC Nickel Affinity Gel (E-3528, Sigma-Aldrich, MO, USA) 

was prepared by washing twice in RIPA. Cleared lysates were then added to 

the washed Nickel Affinity beads to capture His-LIMD1 and was incubated 

with rotation overnight at 4°c.     

 

To remove non-specific and weakly bound proteins, the supernatant was 

removed and replaced with 1ml of cold RIPA containing 10-20mM of 

imidazole and rotated for 5 minutes. The beads were centrifuged at 2000 rpm 

and the supernatant discarded. This wash was repeated twice and then once 

additionally with cold 1 x PBS. Bound proteins were eluted from the Nickel 
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beads by the addition of 5 x SDS sample buffer and heated at 95°c prior to 

analysis by immunoblotting.  

 

2.10.4 Glutathione S-Transferase (GST) Gene Fusion System for 
Detection of Protein-Protein Interactions 

 
The Glutathione S-Transferase (GST) gene fusion system (Amersham 

Biosciences, GE Healthcare, Buckinghamshire, UK) enables the high level 

expression of native active gene fusions to the Schistosoma japonicum GST 

gene. GST fusions can then be purified from bacterial lysates using affinity 

chromatography by glutathione immobilised as glutathione sepharose. The 

GST gene fusion system was employed as a versatile system to detect 

protein-protein interactions between GST tagged proteins expressed in 

bacteria with mammalian cell lysates. 

 

2.10.4.1 Expression of Recombinant GST Fusion Proteins in Bacteria 
 
cDNA encoded within the pGEX 4T-1 plasmid (27-4580-01, Amersham 

Biosciences, GE Healthcare, Buckinghamshire, UK) was transformed into the 

chemically competent E.coli strain BL21(DE3), suitable for propagation and 

efficient protein expression (section 2.3.2), with ampicillin selection 

(100µg/ml). A single colony was picked and inoculated a 10ml LB/Ampicillin 

culture (100µg/ml Ampicillin) grown overnight at 37°c with shaking at 220 

rpm. The culture was then scaled up into a 50ml LB/Ampicillin culture at a 

ratio of 50:1 and incubated for a further 3 hours at 37°c with shaking.  The 

pGEX 4T-1 plasmid contains an isopropyl-beta-D-thiogalactopyranoside 

(IPTG) inducible promoter to induce high level expression of the desired GST 

fusion protein. 200µm IPTG was administered to the culture, which was 

grown for a further 3 hours at 37°c with gentle shaking. The cells were then 

collected by centrifugation at 4000 rpm for 15 minutes. The supernatant was 

discarded and the cells freeze/thawed overnight at -30°c to aid lysis. The 

cells were then thoroughly re-suspended in 1ml of 1 x PBS. The cells were 

maintained on ice and lysed by sonication. Cells were exposed to 5 x 15 
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second bursts at the highest intensity, with 15 second intervals between each 

burst. The lysates were then centrifuged at 13,000 rpm for 10 minutes to 

pellet the insoluble cell debris. The supernatant was retained and stored at -

20°c for future use. 

 

2.10.4.2 Purification of Recombinant GST Fusion Proteins from 
Bacterial Lysates 

 
GST fusion proteins can be purified from bacterial lysates due to the high 

affinity of the GST moiety for glutathione. Glutathione immobilised on 

sepharose (Glutathione Sepharose™ 4B, 17-0756-01, Amersham 

Biosciences, GE Healthcare, Buckinghamshire, UK) was stored at 4°c 

preserved in a 20% (v/v) ethanol solution. Prior to use the Glutathione 

Sepharose™ 4B was washed twice with 1ml of 1 x PBS to remove the 

ethanol solution. The appropriate amount of the bacterial lysate expressing 

the GST fusion alone (as a control) and the GST-tagged protein of interest 

was added to 30µl of washed glutathione sepharose and incubated in a total 

volume of 1ml, made up by 1 x PBS, for 20 minutes with rotation at 4°c. The 

beads were collected by centrifugation at 2000rpm for 1 minute and the 

supernatant containing the bacterial lysate was discarded. In order to remove 

proteins non-specifically bound to the Glutathione Sepharose™ 4B, the 

beads were washed twice with 1ml of RIPA buffer for 5 minutes followed by 

collection by centrifugation at 2000rpm. The GST fusion proteins may then 

be eluted from the Glutathione Sepharose™ 4B beads in denaturing 

conditions by the addition of 30µl of 5x SDS-PAGE sample buffer. Samples 

were then analysed by SDS-PAGE (section 2.9.1) and acrylamide gels were 

then coomassie stained (section 2.9.5) to quantify the GST fusion protein 

expression and purification. 
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2.10.4.3 GST fusion – Protein Interaction Assays 
 
GST fusions immobilised onto Glutathione Sepharose™ 4B were then 

subjected to prey interacting proteins from human cell lysates or proteins 

expressed in vitro in Rabbit Reticulocyte lysate.  The GST fusion proteins 

immobilised onto Glutathione Sepharose™ 4B beads were then blocked by 

incubation in 1ml of 5% (w/v) BSA in 1 x PBS for 1 hour at 4°c with rotation. 

This blocking step minimalises the amount of non-specific binding of the prey 

protein to the GST fusion, to the beads or to the eppendorf tube.  The beads 

were pelleted by centrifugation at 2000 rpm for 1 minute and the blocking 

solution removed.  The beads were then incubated with the prey protein, 

either expressed in vitro (prepared as described in section 2.10.4.4) or as 

human cell lysate overnight at 4°c with rotation. For in vitro transcribed and 

translated [35S]-methionine labelled proteins, 1-20µl of the reaction mixture 

was added to the beads in 1ml of 5% (w/v) BSA in 1 x PBS.  Human cell 

lysates were prepared as for immunoprecipitations (described in section 

2.10.1), lysed in 500µl of cold RIPA, and incubated with the glutathione 

immobilised GST fusions in an additional 500µl of 10% (w/v) BSA in 1 x PBS, 

so that the final concentration of BSA is maintained at 5%.  Prior to 

incubation of the prey protein to the beads, an appropriate input was 

aliquoted in order to evaluate the degree of protein interaction achieved by 

the assay. 

 

Following overnight incubation, the beads were pelleted by centrifugation at 

2000rpm for 1 minute and the supernatant discarded. The beads were 

washed 3 times for 5 minutes in 1ml of the incubation buffer (RIPA or PBS). 

The GST fusion proteins were eluted by re-suspension in 30µl of 5 x SDS 

sample buffer. The proteins were then resolved by SDS-PAGE and then 

stained using coomassie blue stain (section 2.9.5). Experiments utilising 

proteins expressed in vitro in rabbit reticulocytes, were analysed for protein 

interaction by drying of the polyacrylamide gel and then autoradiography to 

detect the [35S]-methionine label of the prey protein (section 2.10.4.5). For 

interaction assays using human cell lysates, the eluate was resolved by SDS-
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PAGE and then analysed by immunoblot for the presence of the interacting 

protein.  

 

2.10.4.4. In Vitro Transcription and Translation 
 
To evaluate whether a protein-protein interaction is direct in its nature, rather 

than indirect via an additional protein, GST fusion proteins were subjected to 

proteins expressed in vitro in rabbit Reticulocyte lysate. As Rabbit 

reticulocytes have minimal cellular proteins except those required for globin 

production, an indication regarding the nature of the protein-protein 

interaction can be deduced. The TNT® Coupled Reticulocyte Lysate System 

(Promega, WI, USA) was utilised to generate radio-labelled prey protein. The 

components of the system were removed from storage at -80°c. The TNT® 

T7 RNA polymerase was immediately placed on ice whilst the TNT® 

Reticulocyte lysate was thawed by hand and the other components were 

thawed at room temperature before incubation on ice. The following 

components for a standard TNT® lysate reaction were then assembled in a 

0.5ml eppendorf tube on ice: 

 

Component       Volume (µl) 

TNT® Rabbit Reticulocyte Lysate    27.5 

TNT® Reaction Buffer     2 

TNT® T7 RNA Polymerase     1 

Amino Acid Mixture, Minus Methionine, 1mM  1  

[35S] methionine (Ci/mmol)     2 

RNasin® Ribonuclease Inhibitor (40U/µl)   1 

DNA template (0.5µg/µl)     2 

HPLC grade H2O to a final volume of    50   

 

The reaction mixture was then mixed by vortexing and then incubated at 30°c 

for 90 minutes. The translation product was then either immediately used 

(section 2.10.4.3) or stored at -30°c for future use. 
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2.10.4.5 Gel drying and Auto-Radiography 
 
Coomassie Blue stained SDS-PAGE acrylamide gels were placed onto 

Whatman filter paper and overlaid with cling film. Gels were then dried using 

a BioRad Gel Dryer (model 583) for 2 hours. The cling film was then removed 

and the gels placed into a developing cassette. Under red light ECL 

Hyperfilm (Amersham™) was exposed to the gel and then incubated for 24-

72 hours at -80°c. The cassette was then allowed to thaw and the film was 

then hand developed. 

 

2.11 Dual-Luciferase® Reporter Assay 
 

The Dual-Luciferase® Reporter Assay System (E1960, Promega, WI, USA) 

was used to simultaneously measure the activity of two individual reporter 

enzymes (firefly [Photinus pyralis] and Renilla [Renilla reniformis]) 

sequentially within a single system. As Firefly and Renilla luciferases have 

distinct evolutionary origins their enzyme structures and substrate 

requirements are different.  Firefly luciferase uses luciferin in the presence of 

oxygen, ATP and magnesium to produce light, while Renilla luciferase 

requires only coelenterazine and oxygen. Firefly luciferase produces a 

greenish yellow light in the 550–570nm range. Renilla luciferase produces a 

blue light of 480nm. Therefore, these enzymes can be used in dual-reporter 

assays due to their differences in substrate requirements and light output. 

 

Cells were seeded at 5 x 104 into 12 well tissue culture plates and were 

transfected as described in section 2.7.1, with 50ng of the pGL3-HRE Firefly 

luciferase encoding reporter plasmid and 5ng of the Thymidine Kinase (TK)-

Renilla constitutive control reporter plasmid per well (10:1 Firefly to Renilla 

ratio). 24 hours post-transfection cells were washed once with room 

temperature 1 x PBS and then lysed in 200µl of 1 x Passive Lysis Buffer 

(from 5x Passive Lysis Buffer Stock, diluted with distilled water). Cells were 

then lysed by agitation for 15 minutes and then transferred into 1.5ml 

eppendorf tubes. Lysates were then freeze-thawed and then centrifuged at 

13,000 rpm at 4°c for 2 minutes to pellet insoluble cell debris. 20µl of the 
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supernatant was then loaded onto a 96 well plate for analysis. The Firefly 

activity was first measured by administration of 80µl per well of the 

Luciferase Assay Buffer-Substrate Solution (prepared by addition of 1 vial of 

lyophilized Luciferase Assay Substrate to 10ml of the Luciferase Assay 

Buffer II). The samples were then processed by a TopCount NXT™ 

Microplate Scintillation and Luminescence Counter (C384V00, Packard, 

Perkin Elmer, USA) after a 5-minute delay to reduce background 

luminescence. 80µl of the Stop & Glo® Buffer-Substrate Solution (prepared 

by addition of 200µl of Stop & Glo® substrate to 10ml of the Stop & Glo® 

buffer) was then added which quenches the Firefly Luciferase reaction while 

simultaneously activating the luminescent reaction of the control Renilla 

Luciferase. Data was then analysed using TopCount NXT™ Software 

Version 1.05 and Microsoft® Office 2002 Excel Software. 

 

 

2.12 Indirect Immunofluorescence Assay (IFA) 
 

Cells were seeded onto square glass cover slips within a 35mm well. Cover 

slips were stored in 100% (v/v) ethanol to ensure sterility. Cover slips were 

placed into the 35mm well and washed once with 1 x PBS to remove residual 

ethanol.  2 x 105 cells were seeded per well and incubated for 24 hours prior 

to transfection.  

 

48 hours following transfection the medium was removed and the cells were 

washed 3 times with ice-cold 1 x PBS. The cells were then fixed in cold 4% 

(v/v) Paraformaldehyde in PBS at room temperature for 5 minutes. The cells 

were washed 5 times with cold 1 x PBS and then permeabilised with 0.05% 

(v/v) Triton X-100 in PBS at room temperature with gentle agitation.  Cells 

were washed a further 3 times with PBS and then incubated in blocking 

buffer (3% [w/v] BSA, 1mM MgCl2, 1mM CaCl2 in 1 x PBS) for 1 hour at room 

temperature with gentle shaking. The blocking buffer was then removed and 

the cells were washed 3 times in washing solution (0.3% [w/v] BSA, 1mM 

MgCl2, 1mM CaCl2 in 1 x PBS). The cells were then incubated with primary 
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antibody diluted in washing buffer to the appropriate working concentration 

typically 1:200 to 1:1000 at room temperature for 1 hour with gentle agitation. 

The primary antibody was then removed and the cells washed 3 times with 

washing buffer. The appropriate complementary Alexafluor® (Invitrogen, 

Oregon, USA) dye conjugated secondary antibody (antibody appendix) was 

then added to the cells diluted 1:1000 in washing buffer and incubated for 1 

hour at room temperature with gentle agitation. Cells were washed a final 2 

times in washing buffer and once in 1 x PBS prior to mounting of the cover 

slips onto glass slides. A drop of Vectashield Mounting Medium with DAPI 

(Vector Laboratories Inc. CA, USA) was added onto the slide prior to 

mounting to enhance and retain fluorescence and enable visualisation of 

DNA. Slides were then stored at 4°c prior to analysis. 

 

2.13 Confocal Microscopy and Imaging Analysis 
 

Confocal microscopy was performed 48 hours post-transfection of the 

desired  cell line, using a Leica TCS-SP2  Spectral Confocal & Multiphoton 

System (D69120, Leica Microsystems Heidelberg, Germany). The Leica 

Confocal system  comprises a confocal imaging spectrophotometer system 

attached to a Leica DMIRE inverted fluorescence microscope, equipped with 

an argon laser, two HeNe lasers, an acousto-optic tuneable filter (AOTF) to 

attenuate individual visible laser lines and a tuneable acousto-optical beam 

splitter (AOBS).  

 

The slides were visualized using Leica Confocal Software (Version 2.61 Build 

1537) whereby a 63x/20x 1.32 oil-immersion objective was employed; the 

number of frames to average was defined at 20 and the number of xy- or xz-

sections was selected at 1. Illumination of the objective lens was set to Beam 

expand 6; the diameter of detection pinhole was set to Airy 1(≈115μm); the 

Photomultiplier Tube 1 (PMT1) was set as Smart Gain and the 

Photomultiplier Tube 2 (PMT2) was set as Smart Offset. 
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For Multi-Channel Confocal Microscopy, sequential scan mode was selected 

and the scanning mode was selected as between frames. Laser type and 

excitation line selection for suitable fluorescent dyes are listed as in Table 2.3 

 

 
  
 

 

 

 

 

 

 

 

 

 

Table 2.3 Fluorescent dyes and their excitation lines used in confocal 

microscopy. 

 

Laser Excitation lines Suitable fluorescent dyes 

Diode 20mW 405nm Alexa 405, DAPI, Hoechst

Ar 100mW 458nm Alexa 458, ECFP

476nm EGFP

488nm Alexa 488, FITC, EGFP

514nm Alexa 514, EYFP, mBanana

HeNe 1.5mW 543nm Alexa 568, TRITC, mTan

HeNe 10mW 633nm mTan, mChe, AsRed 
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3. LIMD1, PHD and VHL interactions and binding interfaces   
 

3.1 LIMD1 interacts with the Prolyl Hydroxylases 1, 2 and 3 in vivo  

 

Preliminary Yeast-2-Hybrid data indicated that LIMD1 interacted with PHD1 

(Figure 1.5). Therefore, the ability of LIMD1 to interact in vivo with PHD1 and 

additionally PHD2 and PHD3 whom share functional and structural homology 

was examined (Epstein et al., 2001). Co-immunoprecipitations were 

employed to investigate this hypothesis using the LIMD1 specific monoclonal 

antibody to immunoprecipitate exogenously expressed Xpress-tagged LIMD1 

with exogenous PHDs in U2OS cells (Figure 3.1.1 and 3.1.1.2).  

 

3.1.1 Optimisation of co-immunoprecipitations  
 

The conditions within which protein-protein interactions take place are highly 

specific and are sensitive to salt and detergent concentrations within the lysis 

buffer. Therefore lysis and binding conditions for co-immunoprecipitation 

reactions were optimised using low to high salt buffers (50-500mM Tris) in 

the absence and presence of detergents such as IGEPAL-130. Optimisations 

were initially performed whilst attempting to co-immunoprecipitate LIMD1 with 

PHD1, which exhibited an interaction in all lysis conditions (data not shown). 

Low stringency lysis buffers such as PBS absent of detergents, 

demonstrated a high degree of interaction, including lower molecular weight 

proteins, presumably PHD1 degradation products. Higher stringency lysis 

buffers such as RIPA maintained a more specific interaction of full length 

PHD1 (Figure 3.1.1). As RIPA has the greatest ability to disrupt cells and 

therefore, the greatest protein recovery, it was selected as the condition to 

perform future co-immunoprecipitation reactions. 

 

 

The ability to detect the PHDs following co-IP reactions proved problematic 

due to the molecular weights of PHD1 (44-47kDa), PHD2 (46kDa) and PHD3 

(27kDa) due to cross-reactivity of the heavy and light chains of the antibody 
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used for immunoprecipitations with the antibodies used to immunoblot to 

confirm the protein interaction. The amount of antibody used for 

immunoprecipitations (2.5-5µg) caused smearing of protein during 

immunoblotting which impaired the ability to clearly detect the presence of 

the PHD proteins (Figure 3.1.1).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1.1 Optimisation of LIMD1 co-immunoprecipitations with PHD1-3. 
(A) Xpress-tagged LIMD1 expressed in U2OS cells, was immunoprecipitated using 

2.5µg of LIMD1 mAb and 30µl of protein G agarose. 2% inputs were taken prior to 

addition of antibody (left side of panels). Representative blot indicates LIMD1 

immunoprecipitation (right right side of panels). (B/C/D) PHD1, PHD2 and PHD3 

were individually co-transfected with LIMD1 or vector only control (left side of 

panels). All three PHDs specifically interact with LIMD1.    
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The co-IP experiments were optimised by eluting proteins from the antibody-

bead complex utilising a more concentrated SDS sample buffer (5 x sample 

buffer rather than 2 x laemlli sample buffer) which improved protein 

denaturation and resolution by SDS-PAGE. Furthermore, rather than 

complexing the IP antibody with protein G (Sigma P4691) the Santa Cruz IP 

kit (ExactaCruz™ E: sc-45042) was used. This greatly reduced the degree of 

antibody cross reactivity, enabling a clear detection of PHD1 co-

immunoprecipitation with LIMD1 (Figure 3.1.1.2). 

 
Co-immunoprecipitations confirmed that LIMD1 interacted in vivo with all 

three PHDs when immunoprecipitated with a LIMD1 mAb, (Figure 3.1.1.2). 

To our knowledge, this is the first identified protein (excluding HIFα) to 

interact with all three PHD proteins. In addition, the ability of LIMD1 to 

interact with an EGFP-HA-tagged FIH construct was also examined. FIH also 

exhibited specific binding to LIMD1 in vivo. However, FIH co-

immunoprecipitated with LIMD1 to a lesser extent relative to PHD1, 2 and 3 

in comparison with their respective inputs and could only be determined by a 

longer film exposure (Figure 3.1.1.2). To control for specificity of interactions, 

co-immunoprecipitations were performed with LIMD1 and prey proteins alone 

with the representative vector only control and in the presence of both LIMD1 

and PHD/FIH. Interactions were only observed in the presence of both 

LIMD1 and PHD/FIH (Figure 3.1.1.2)  

 

 

As all three PHD proteins specifically interacted with full length LIMD1 this is 

indicative that LIMD1 may bind to this family of dioxygenases via their shared 

C-terminal catalytic oxygenase/hydroxylase domain. As FIH does not bind to 

the same extent this may be indicative of an indirect protein-protein 

interaction. Alternatively, LIMD1 may interact with FIH with a much lower 

affinity. 
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Figure 3.1.1.2 LIMD1 co-immunoprecipitations in vivo with PHD1-3. 
Xpress-tagged LIMD1 was co-transfected with PHD1-3 and EGFP-HA-tagged FIH in 

U2OS cells. LIMD1 was immunoprecipitated using 2.5µg of LIMD1 mAb using the 

Santa Cruz IP Kit. (A) PHD1, (B) PHD2, (C) PHD3, and (D) FIH all co-

immunoprecipitated with a LIMD1 mAb, only in the presence of LIMD1 highlighting 

the specificity of the interaction. FIH interacts with LIMD1 to a lesser extent, 

demonstrated by a longer exposure time of the film to the ECL reagent. 2% inputs 

loaded indicate protein levels prior to addition of the IP antibody. 
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3.1.2 Nickel-Histidine capture assays confirm LIMD1-PHD2 interaction 
 

Nickel bead pulldown assays were employed as an approach to further 

confirm LIMD1’s interaction with PHD2. Utilisation of this technique allows 

analysis of interacting partners via immunoblotting in the absence of the light 

and heavy chains of antibodies used when performing co-

immunoprecipitations. pcDNA4-His/Max-Topo LIMD1 incorporates an N-

terminal hexa-His tag which confers a high affinity to bind nickel conjugated 

to beads. However, endogenous histidine containing proteins or the substrate 

for the binding assay may also bind to the beads undesirably. Therefore, 

addition of the organic compound imidazole which comprises the same 

aromatic heterocyclic ring as histidine, acts to out compete weak nickel 

binding proteins. The amount of imidazole added to the lysis buffer and 

subsequent wash buffers was optimised from 10mM to 30mM, with hexa-His 

LIMD1 as the binding substrate, (Figure 3.1.2). Using 10mM imidazole, 

PHD2 was pulled down in both the presence of the vector only control and 

hexa-His LIMD1. However, increasing the imidazole concentration to 15-

30mM imidazole resulted in only the specific capture of PHD2 in the 

presence of hexa-His LIMD1 immobilisation by the nickel beads (Figure 

3.1.2). The results of this assay further corroborate the specificity of the 

LIMD1-PHD2 interaction.  
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Figure 3.1.2 PHD2 interacts with LIMD1 captured by nickel-histidine capture 

assays.  
pcDNA4-His/Max-Topo Vector only and hexa-His LIMD1 were co-transfected with 

PHD2 into U2OS cells. Lysates were incubated with nickel beads in the presence of 

imidazole. Imidazole concentration was optimised from 10mM (A) to 30mM (B). At 

10mM imidazole PHD2 non-specifically bound to the nickel beads (arrow, A). At 15 

and 30mM imidazole, PHD2 specifically interacted with hexa-His LIMD1. 2% inputs 

indicate protein levels prior to nickel bead capture. 
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3.1.3 LIMD1 interacts with endogenous PHD2 in vivo 
 
To detect if in vivo co-IPs of ectopically expressed LIMD1 and PHD2 were 

physiologically relevant, endogenous co-IPs of LIMD1 and PHD2 were 

performed. Focus was directed towards whether LIMD1 could co-IP 

endogenous PHD2, as it is believed that PHD2 exhibits the predominant HIF 

hydroxylase activity in vivo (Berra et al., 2003). Endogenous co-

immunoprecipitations were performed using complete protease and 

phosphatase inhibitors. PHD2 was immunoprecipitated using a rabbit 

polyclonal antibody. PHD2 was chosen rather than LIMD1 for 

immunoprecipitation as cross reactivity of the rabbit PHD2 antibody with the 

heavy chain of the IP antibody during immunoblot, impairs the ability to 

clearly detect the presence of PHD2.  As LIMD1 is 72kDa in molecular weight 

and detected by an antibody raised in mouse, it resolves further from the 

heavy chain and does not cross react with the IP antibody raised in rabbit, 

therefore, it was easier to evaluate whether endogenous LIMD1 interacts in 

vivo with PHD2. An isotype control rabbit polyclonal Ab (anti- hemagglutinin 

[HA], Sigma H6908) was used as a negative control, to ensure for specificity 

of the interaction of LIMD1 with PHD2. Increased amounts of LIMD1 co-

immunoprecipitated with PHD2 than with the isotype control antibody (Figure 

3.1.3). This demonstrated that endogenous LIMD1 and PHD2 bind in vivo, 

indicating a physiologically relevant interaction. Furthermore, this highlights 

the validity of the binding assays previously performed with ectopically 

expressed proteins.  
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Figure 3.1.3 Endogenous LIMD1 interacts with endogenous PHD2 in vivo. 
U2OS cells were lysed with RIPA buffer and PHD2 immunoprecipitated using 5µg of 

rabbit polyclonal anti-PHD2. PHD2 immunoprecipitated by the antibody is indicated 

by arrows, and runs just below the IP antibody heavy chain. Endogenous LIMD1 

interacted with endogenous-PHD2 but did not co-IP with the HA isotype control 

antibody. 2% inputs loaded indicate protein levels prior to addition of the IP 

antibody. 

 

3.1.4 LIMD1 interacts with PHD1, 2 and 3 in vitro 

 
To further verify that LIMD1 interacts with the PHDs, binding assays were 

performed with GST-LIMD1 fusion proteins and [35S]-methionine labelled 

PHDs expressed in rabbit reticulocyte lysates in vitro. To maximise globin 

production, rabbit reticulocyte lysates contain minimal cellular proteins except 

for proteins involved in the transcriptional and translational machinery. 

Therefore, reticulocyte lysates provide a model environment to indicate 

whether the nature of a protein-protein interaction may be direct or indirect 

via an additional protein or macromolecule. 
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GST-LIMD1 and a GST vector only control, propagated in E.coli and induced 

by IPTG administration were immobilised onto glutathione sepharose beads 

prior to incubation with reticulocyte lysate containing the radiolabelled PHD 

protein. The beads were pre-blocked and binding assays performed in 5% 

(w/v) BSA in 1 x PBS to increase specificity and prevent non-specific binding 

of the radiolabelled protein to the GST fusion protein, the glutathione 

sepharose or the microcentrifuge tube. To further ensure specificity of the 

interaction, an excess of the GST vector only protein was used in the assay, 

demonstrated by a representative coomassie stained acrylamide gel (Figure 

3.1.4).  

 
 
Figure 3.1.4 LIMD1 interacts with PHD1-3 in vitro. 
Recombinant GST-LIMD1 was immobilised onto glutathione sepharose 4B and 

incubated with radiolabelled [35S]-PHDs and EGFP-HA-tagged-FIH synthesised in 

vitro using a TNT coupled reticulocyte lysate system. (A) GST-LIMD1 specifically 

and directly binds to PHD1-3 in comparison to the GST only control, detected by 

autoradiography. 5% of the in vitro transcription and translation reaction mixture 

used in the assay was loaded to confirm the correct molecular weight and estimate 

the affinity of protein-protein interaction. FIH does not interact with GST-LIMD1 in 

vitro. (B) Representative coomassie stained acrylamide gel, demonstrating loading 

of GST only and GST-LIMD1 eluted from glutathione sepharose 4B. 
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PHD1, 2 and 3 all specifically interact with GST-LIMD1 (Figure 3.1.4). This is 

indicative that the interaction is via a direct protein-protein binding event. 

Whether the closely related asparaginyl hydroxylase FIH interacted with 

GST-LIMD1 in a similar fashion in vitro was further examined. In vitro 

transcribed and translated EGFP-HA-tagged-FIH did not interact with GST-

LIMD1, indicating that the observed weak interaction via co-

immunoprecipitation (Figure 3.1.1.2) may be an indirect protein interaction. 

This further emphasises the specificity of the direct interaction between 

LIMD1 with the PHDs. 

 
 

3.1.5 Mapping of the LIMD1-PHD2 binding interface 
 
The binding interface on LIMD1 within which it interacts with PHD2, the 

predominant physiological HIF-hydroxylase (Tuckerman et al., 2004; 

Appelhoff et al., 2004; Berra et al., 2003) was next examined. Constructs 

encoding Xpress-tagged full length LIMD1, pre-LIM and LIM domains, 

(Figure 3.1.5 B), were co-transfected with PHD2 to isolate the PHD2 binding 

region.  The LIMD1 proteins were then immunoprecipitated using an Xpress 

antibody and binding eluates were immunoblotted for the presence of PHD2 

co-immunoprecipitation (Figure 3.1.5 A).  

 

The PHD2-LIMD1 interaction was maintained upon deletion of the LIM 

domains, whilst no co-immunoprecipitation of PHD2 was observed with the 

LIM domains alone. Therefore, PHD2 specifically interacts with the pre-LIM 

region of LIMD1 but not the LIM domains alone. The pre-LIM region is not 

highly conserved amongst other LIM proteins including those within the Zyxin 

family of LIM proteins. Therefore, this may represent a unique LIMD1-PHD2 

binding interface. 
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Figure 3.1.5 LIMD1 interacts with PHD2 via the pre-LIM region. 
(A) Xpress-tagged full length LIMD1 (amino acids 1-676), pre-LIM (∆472-676) and 

LIM only (∆1-467), (illustrated schematically in B), were co-transfected with PHD2 

into U2OS cells and immunoprecipitated using an Xpress antibody. The correct pre-

LIM protein is indicated by the presence of an arrow. Pre-LIM lower molecular 

weight proteins may represent degradation products. The nature of the higher 

molecular weight proteins detected is unknown. PHD2 specifically co-

immunoprecipitated with the pre-LIM (LIMD1 ∆472-676) construct but not with the 

LIM domains only construct (LIMD1 ∆1-467). 2% inputs indicate protein levels prior 

to antibody addition. 
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3.1.6 The Zyxin family of proteins differentially interact with the PHDs 
 
The ability of the PHDs to interact with the closely related Zyxin LIM proteins, 

of which all comprise 3 C-terminal LIM domains (Figure 3.1.6.1) was next 

investigated. Xpress-tagged LIM proteins were co-transfected with each 

PHD, immunoprecipitated using anti-Xpress and then immunoblotted for the 

presence of PHD co-immunoprecipitation. 

 

 

 

 
Figure 3.1.6.1 Zyxin family of LIM proteins. 
Schematical representation of the Zyxin family of LIM proteins. The Zyxin family all 

comprise 3 C-terminal LIM domains, but have non-conserved pre-LIM regions 

containing an array of non-catalytic associated domains. 

 
 
Co-IP experiments demonstrated that PHD2 only interacts with LIMD1 and 

not with the other Zyxin family proteins (Figure 3.1.6.2). This further 

emphasises the specificity of the interaction. This also corroborates the 

finding that PHD2 interacts with the non-conserved pre-LIM region of LIMD1 

(Figure 3.1.6.2), indicating that this binding domain may be unique to LIMD1 

within this family of proteins.  
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Figure 3.1.6.2 PHD2 only interacts with LIMD1 of the Zyxin LIM proteins in 

vivo. 
Xpress-tagged Zyxin family LIM proteins were co-transfected with PHD2 into U2OS 

cells and immunoprecipitated using an Xpress antibody. PHD2 only interacted with 

LIMD1. 2% inputs indicate protein levels prior to antibody addition. 

 
 
 
Whether PHD1 and PHD3 interact with multiple Zyxin proteins was next 

examined.  PHD1 interacted with all of the LAW sub-family of Zyxin proteins 

(LIMD1, Ajuba and WTIP) in addition to TRIP6 (Figure 3.1.6.3). Interestingly, 

TRIP6 appeared to induce a modification of PHD1, resulting in a higher 

molecular weight form detected by the PHD1 antibody, (Figure 3.1.6.3, 

arrows). Furthermore, TRIP6 only interacted with this heavier PHD1 form and 

not the wild type protein (Figure 3.1.6.3, arrows). The nature of this 

modification and interaction are yet to be elucidated.  
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Figure 3.1.6.3 PHD1 interacts with multiple Zyxin LIM proteins in vivo. 
Xpress-tagged Zyxin family LIM proteins were co-transfected with PHD1 into U2OS 

cells and immunoprecipitated using an Xpress antibody. PHD1 interacted with 

LIMD1, Ajuba and WTIP. TRIP6 induced a PHD1 modification, indicated by arrows, 

shown in the PHD1 input, and interacted with this higher molecular weight PHD1 

form. 2% inputs indicate protein levels prior to antibody addition. 
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PHD3 also interacted with all three of the LAW proteins (LIMD1, Ajuba and 

WTIP) but not the other Zyxin family proteins (LPP, TRIP6 and Zyxin) (Figure 

3.1.6.4). Therefore, these data indicate that the PHDs interact differentially 

with the LAW sub-family of proteins and therefore, presumably via different 

binding interfaces. It is possible that PHD1 and PHD3 interact with the LAW 

proteins via a conserved domain. There is a precedent for the LAW sub-

family to share interacting partners via their highly conserved LIM domains, 

as all three proteins have been demonstrated to interact with a set of 

Snail/Slug transcriptional corepressors (introduction section 1.4) (Langer et 

al., 2008)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.6.4 PHD3 interacts with LIMD1, Ajuba and WTIP in vivo. 
Xpress-tagged Zyxin family LIM proteins were co-transfected into U2OS cells with 

PHD3 and immunoprecipitated using an Xpress antibody. PHD3 co-

immunoprecipitates with all three LAW proteins but not Zyxin, LPP or TRIP6. 2% 

inputs indicate protein levels prior to antibody addition. 
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3.2 LIMD1 (and LAW) interact with VHL in vivo 

3.2.1 LIMD1 interacts with VHL in vivo 
 
As LIMD1 (and the LAW proteins) interacted with the PHD enzymes it was 

next examined whether LIMD1 could also interact with VHL, the recognition 

component of an E3 ubiquitin ligase complex responsible for HIF1α 

ubiquitylation in response to proline 402 and 564 hydroxylation (as described 

in introduction section 1.10). 

 

Xpress-tagged LIMD1 was co-transfected with V5-tagged VHL in U2OS cells. 

48 hours post-transfection, the cells were harvested in RIPA buffer and 

LIMD1 immunoprecipitated with a LIMD1 mAb. VHL specifically interacted 

with LIMD1 (Figure 3.2.1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.1 LIMD1 interacts with VHL in vivo. 
Xpress-tagged LIMD1 was co-transfected with VHL in U2OS cells. LIMD1 was 

immunoprecipitated with a LIMD1 mAb. VHL specifically interacts with LIMD1. 2% 

inputs indicate protein levels prior to antibody addition. 
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3.2.2 Nickel-Histidine capture assays confirm LIMD1-VHL interaction 
 

Nickel bead pulldowns were employed to confirm the interaction between 

LIMD1 and VHL. The amount of imidazole was again optimised to observe 

an optimal interaction without non-specific binding. At 2mM imidazole both 

endogenous (in the vector only control) and exogenous hexa-His-LIMD1 

were captured by the nickel beads and therefore, VHL was pulled down in 

the negative vector only control (Figure 3.2.2). At 5 and 10mM imidazole, 

endogenous LIMD1 was not captured by the nickel beads and V5-VHL 

interaction was only observed upon hexa-His-LIMD1 expression. This further 

confirms that LIMD1 and VHL interact in vivo. 
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Figure 3.2.2 VHL interacts with LIMD1 captured by nickel-histidine capture 

assays.  
pcDNA4-His/Max-Topo vector only and hexa-His LIMD1 were co-transfected with 

VHL into U2OS cells. Lysates were incubated with nickel beads in the presence of 

imidazole. VHL specifically interacted with hexa-His LIMD1 at 5 and 10mM 

imidazole concentrations. 2% inputs indicate protein levels prior to nickel bead 

capture. 
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3.2.3 Mapping of the LIMD1-VHL binding interface 
 
The specific VHL binding region of LIMD1 was analysed by 

immunoprecipitating the pre-LIM and LIM only mutants in the presence of 

VHL (Figure 3.2.3). Deletion of the LIM domains completely ablated the 

interaction between LIMD1 and VHL, whilst the LIM domains alone are 

necessary and sufficient for the interaction (Figure 3.2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2.3 LIMD1 interacts with VHL via the LIM domains. 
(A) Xpress-tagged LIMD1, pre-LIM and LIM only, (illustrated schematically in B), 

were co-transfected with VHL into U2OS cells and immunoprecipitated using an 

Xpress antibody. VHL specifically co-immunoprecipitated with the LIM domains 

alone (LIMD1 ∆1-467) construct and not to the pre-LIM region (LIMD1 ∆472-676). 

2% inputs indicate protein levels prior to antibody addition. 
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As VHL and PHD2 interacted with LIMD1 via the LIM domains and pre-LIM 

respectively, this indicated that LIMD1 may act as a scaffold to link both 

enzymatic activities. LIM and pre-LIM regions in general have unique non-

overlapping binding partners and therefore, commonly act as scaffolding 

proteins able to link distinct proteins and functions (Feng and Longmore, 

2005; Kadrmas and Beckerle, 2004). Therefore, it was postulated whether 

LIMD1 may interact with both the PHDs and VHL, representing a novel 

LIMD1 mediated functional complex, bridging an association between PHD 

and VHL, thus enhancing their function by increasing their physical proximity. 

Moreover, there is a precedent for the requirement of protein scaffolds which 

bridge associations between HIFα and the PHDs (Baek et al., 2005), and 

HIFα and VHL (Jeong et al., 2002). However, no adaptor proteins have been 

described able to simultaneously interact with the PHDs and VHL. Whether 

LIMD1 is able to fulfil such a function was further examined (section 3.2.6).  
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3.2.4 The LAW sub-family of Zyxin proteins interact with VHL in vivo 
 
As LIMD1 interacts with VHL via the highly conserved LIM domains region, 

the ability of the other LAW proteins, Ajuba and WTIP to interact with VHL 

was next examined. Xpress-tagged Zyxin family proteins were all co-

transfected into U2OS with VHL and immunoprecipitated using an anti-

Xpress mAb (Figure 3.2.4). VHL co-immunoprecipitated with all three LAW 

proteins, but not with LPP or Zyxin. Trip6 appeared to demonstrate a weak 

interaction with VHL (Figure 3.2.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.4 VHL interacts with LIMD1, Ajuba and WTIP in vivo. 
Xpress-tagged Zyxin family LIM proteins were co-transfected into U2OS cells with 

PHD3 and immunoprecipitated using an anti-Xpress antibody. VHL co-

immunoprecipitated with all three LAW proteins but not LPP or TRIP6. Trip6 

demonstrated a weak binding affinity interaction. 2% inputs indicate protein levels 

prior to antibody addition. 
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The conserved function of the LAW proteins to interact with VHL and 

differentially interact with the PHDs indicates a cooperative mechanism 

where by the LAW proteins may link PHD/VHL enzymatic activities. TRIP6 

interacted with a higher molecular weight form of PHD1 and arguably 

interacted to a degree with VHL but to a much lesser degree than the LAW 

proteins. Whether the ability of LAW to interact with the PHDs and VHL 

translates to a regulatory effect on HIF1 function was next examined. 

 

 

3.2.5 The LIMD1-VHL interaction cannot be detected by in vitro binding 
assays. 

 
In vitro binding assays were performed in order to evaluate whether LIMD1 

interacts directly with VHL. The assay was performed as described for the 

PHD binding assays  (section 3.1.3), immobilising GST-LIMD1 and GST only 

onto glutathione sepharose beads prior to incubation with radiolabelled [35S]-

VHL expressed in vitro in rabbit reticulocyte lysate (Figure 3.2.5.1). 

 

The expression level of the radiolabelled VHL transcribed and translated in 

vitro, detected by autoradiography was markedly less than the expression 

detected with the PHD proteins (Figure 3.2.5.1). Increasing the quantity of 

plasmid DNA into the in vitro transcription and translation reaction did not 

significantly increase the levels of VHL expression. Therefore, it was not 

possible to evaluate whether the observed in vivo interaction with LIMD1 via 

co-immunoprecipitation is direct or indirect, due to the low expression level 

and therefore quantity of VHL in the binding assay.  Proteins have been 

identified that have proven problematic to express in vitro, particularly those 

in excess of 100kDa or smaller than 15kDa in molecular weight. VHL 

isoforms are relatively small in molecular weight ranging between 18-24kDa, 

which may account for the low expression level as it is believed that small 

proteins are degraded by a ubiquitin-dependent pathway within the rabbit 

reticulocyte lysate. Optimisation of the potassium and magnesium 
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concentrations of the reaction buffer of the in vitro rabbit reticulocyte 

transcription and translation reaction has been reported to modulate in vitro 

expression levels (Craig et al., 1992) and the use of protease and 

proteasome inhibitors should be considered for future research.  

 

 
 
 
 
 
 
 
 
 
Figure 3.2.5.1 In vitro LIMD1-VHL interaction assay.  
Recombinant GST-LIMD1 was immobilised onto glutathione sepharose 4B beads 

and incubated with radiolabelled [35S]-VHL synthesised in vitro using a TNT coupled 

reticulocyte system. 5% of the in vitro transcription and translation reaction mixture 

used in the assay was loaded to confirm the correct molecular weight and estimate 

the affinity of protein-protein interaction. No VHL interaction with GST-LIMD1 can be 

observed by autoradiography. 

 
 
VHL is the recognition component of the ubiquitin ligase complex comprising 

elongin B and C, Cullin2 and the ring finger protein Rbx. To identify whether 

Cullin2 also interacts with LIMD1 and may potentially bridge the interaction 

between LIMD1 and VHL, an in vitro GST-LIMD1 pulldown assay was 

performed with U2OS cell extracts ectopically expressing V5-Cullin2 

alongside a positive control pulldown with V5-VHL (Figure 3.2.5.2). These 

assays corroborate the binding of VHL to LIMD1 but demonstrate that LIMD1 

does not interact with Cullin2 and therefore, Cullin2 does not facilitate the 

LIMD1-VHL interaction. This suggests that association of LIMD1 with VHL 

may be mediated by another protein in the multi-protein complex such as the 

elongin proteins or may be a direct protein-protein interaction.    
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Figure 3.2.5.2 LIMD1 does not interact with Cullin2. 
Recombinant GST-LIMD1 was immobilised onto glutathione sepharose 4B beads 

and incubated with U2OS extract ectopically expressing V5-tagged VHL and Cullin2. 

5% of the lysate used in the assay was loaded to confirm the correct molecular 

weight and estimate the affinity of protein-protein interaction. Immunoblot 

demonstrates that VHL interacts with GST-LIMD1 in U2OS cell extracts, however 

this interaction is not mediated by Cullin2 as no interaction can be observed with 

GST-LIMD1. 
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3.2.6 LIMD1 simultaneously interacts with PHD2 and VHL 
 
As LIMD1 is able to interact with both PHD2 and VHL via different binding 

interfaces it was postulated that LIMD1 may simultaneously scaffold both 

proteins, to increase their local concentration and therefore augment HIF1α 

degradation. This hypothesis was tested by co-transfecting all three proteins to 

see whether LIMD1 could simultaneously co-immunoprecipitate both PHD2 

and VHL. This was indeed the case, LIMD1 interacted with both proteins 

individually and when co-transfected together, indicating an ability to 

simultaneously interact with PHD2 and VHL (Figure 3.2.6.1). Notably, binding 

of both proteins to LIMD1 does not impair the ability of either to interact with 

LIMD1 (Figure 3.2.6.1).  

 

This result may have been due to LIMD1 simultaneously interacting with PHD2 

and VHL (Figure 3.2.6.1 C), however it may reflect two distinct populations of 

LIMD1 binding PHD2 and VHL individually (Figure 3.2.6.1 D). Therefore, the 

ability of LIMD1 to scaffold both proteins, thus enabling an interaction between 

VHL and PHD2 was examined. All three proteins were co-transfected, and V5-

VHL was immunoprecipitated with a V5 mAb. A barely detectable degree of 

interaction was observed between PHD2 and VHL in the absence of ectopic 

LIMD1 expression, which may have been due to the scaffolding action of 

endogenous LIMD1 (Figure 3.2.6.2). However, co-transfection of LIMD1, 

resulted in a significant increase in co-IP of PHD2 with VHL, corroborating our 

hypothesis that LIMD1 acts as an adaptor forming a ‘normoxic protein complex’ 

(normoxiplex) (Figure 3.2.6.2). To our knowledge this is the first report of a 

protein that can bind all three PHDs in addition to simultaneously binding 

PHD2 and pVHL, and is the first demonstration that these two HIF1α post-

translational modifiers may exist within the same protein complex. 
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Figure 3.2.6.1 LIMD1 interacts with PHD2 and VHL in vivo. 
Xpress-tagged LIMD1 was co-transfected into U2OS cells with V5-VHL and PHD2. 

LIMD1 was immunoprecipitated using a LIMD1 mAb. (A) 2% inputs indicate protein 

levels prior to antibody addition. (B) LIMD1 interacted with both VHL and PHD2 

simultaneously. Furthermore, simultaneous binding of both proteins to LIMD1 does 

not impair the others ability to bind to LIMD1. (C) Schematic representation, 

indicating immunoprecipitation of LIMD1 and the simultaneous binding of PHD2 to 

the pre-LIM and VHL to the LIM domains. (D) Schema representing the possibility 

that distinct populations of LIMD1 individually binding PHD2 and VHL may exist. 
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Figure 3.2.6.2 LIMD1 acts as a scaffold, simultaneously binding PHD2 and 

VHL in vivo. 
V5-VHL was co-transfected with PHD2 and LIMD1. V5-VHL was 

immunoprecipitated using a V5 mAb. (A) 2% inputs indicate protein levels prior to 

antibody addition. (B) LIMD1 significantly increased the interaction between VHL 

and PHD2. In the absence of LIMD1 only a small degree of binding can be 

observed. (C) Schematic representation, indicating immunoprecipitation of V5-VHL, 

and the ability of LIMD1 to scaffold PHD2 within a protein complex.   
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3.3. LIMD1 does not interact with HIF1α 

3.3.1 LIMD1 does not interact with HIF1α in normoxia or hypoxia 
 
The ability of LIMD1 to simultaneously interact with PHD2 and VHL 

suggested that LIMD1 may form a complex with HIF1α to enhance its 

degradation and thus induce subsequent attenuation of HIF specific gene 

transcription. Therefore, whether LIMD1 was able to also interact with HIF1α 

was next investigated.  

 

Firstly, in vitro binding assays of [35S]-HIF1α with GST-LIMD1 were utilised. 

However, these pulldown assays did not conclusively show whether LIMD1 

interacts with HIF1α, due to a high background binding of labelled HIF1α to 

the GST only control (Figure 3.3.1). 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1 In vitro GST-LIMD1 binding assays are inconclusive with 

regards to the LIMD1-HIF1α interaction. 
Recombinant GST-LIMD1 was immobilised onto glutathione sepharose 4B beads 

and incubated with radiolabelled [35S]-HIF1α synthesised in vitro using a TNT 

coupled reticulocyte system. 5% of the in vitro transcription and translation reaction 

mixture used in the assay was loaded to confirm the correct molecular weight and 

estimate the affinity of protein-protein interaction demonstrated by autoradiography. 

HIF1α interacted non-specifically with the GST alone; therefore, it is inconclusive 

whether LIMD1 and HIF1α interact in vitro. 
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Therefore, in vivo co-IP experiments with ectopically expressed HIF-1α and 

LIMD1 were performed. Due to the instability of HIF1α in normoxia, co-IP 

reactions were performed with hypoxic cell lysates or normoxic cell lysates 

treated with proteasome inhibitor MG-132 upon lysis. Under both normoxic 

and hypoxic conditions, no in vivo interaction between HIF1α and LIMD1 was 

observed (Figure 3.3.1.1).  

 

 

 

Figure 3.3.1.1 LIMD1 does not co-immunoprecipitate with HIF1α in vivo.  
Xpress-tagged LIMD1 was co-transfected into U2OS cells with V5-HIF1α and 

immunoprecipitated using a LIMD1 mAb. (A) Cells were incubated for 16 hours at 

normoxia (20% O2) or (B) hypoxia (1% O2). Cells were lysed with 10µM MG-132 to 

prevent 26-proteasomal mediated HIF1α degradation. Lysates were incubated with 

antibody-protein G conjugates for 4 hours to minimise HIF1α degradation. No co-IP 

of LIMD1 with HIF1α in either normoxia or hypoxia could be observed. 2% inputs 

indicate protein levels prior to antibody addition. 
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3.3.2 LIMD1 does not interact with the amino, carboxyl or ODD domains 
of HIF1α in vivo 

 

Although no co-IP could be detected between LIMD1 and full length HIF1α, it 

is possible that LIMD1 may interact with a concealed binding interface. 

Therefore, to detect if LIMD1 binds to a hidden binding domain in the full 

length HIF-1α protein, HIF1α mutants which dissect the proteins into three 

domains were used in co-IP experiments with LIMD1, immunoprecipitating 

LIMD1 with a LIMD1 mAb. LIMD1 was co-transfected into U2OS with the 

stable N-terminal domain (aa30-389), C-terminal domain (aa630-826), and 

the oxygen dependent degradation domain (ODD aa390-652) of which is 

sensitive to PHD/VHL mediated degradation (Huang et al., 1998) (Figure 

3.3.2 B). 32 hours post-transfection, cells were incubated for 16 hours at 1% 

O2 to accumulate the ODD domain sensitive to oxygen dependent 

degradation.  LIMD1 did not bind any of the three domains of HIF1α (Figure 

3.3.2).  

 
This therefore, indicated that LIMD1 does not directly interact with HIF1α. 

However, if LIMD1 acts to scaffold PHD and VHL, increasing their efficiency 

in targeting HIF1α for degradation then it may be difficult to capture the 

transient LIMD1-PHD-VHL-HIF1α ternary complex. Although no co-IP could 

be observed, the protein levels of the ODD domain were markedly reduced 

upon co-transfection with LIMD1 (Figure 3.3.2, arrows). This indicated that 

LIMD1 may augment degradation of the ODD domain, fitting with the 

hypothesis that LIMD1 acts to bridge the hydroxylase and ubiquitylation 

activities. The specific effects of LIMD1 (and LAW) on the ODD domain were 

next examined. 
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Figure 3.3.2 LIMD1 does not co-immunoprecipitate with the amino, carboxyl 

or ODD domains of HIF1α in isolation.  
(A) Xpress-tagged LIMD1 was co-transfected into U2OS cells with EGFP-HA tagged 

HIF1α N-terminal (aa30-389), ODD (aa390-652) and C-terminal (aa630-826) 

domains and LIMD1 was immunoprecipitated with a mAb. To stabilise sufficient 

HIF1α ODD domain protein and evaluate the co-immunoprecipitated complex, cells 

were incubated for 16 hours at 1% O2. Cells were lysed with 10µM MG-132 to 

prevent 26-proteasomal HIF1α degradation. Lysates were incubated with antibody-

protein G conjugates for 4 hours to minimise HIF1α degradation. No co-IP of LIMD1 

with any of the HIF1α domains was observed. However, LIMD1 expression results 

in reduced ODD protein levels, indicated by arrows. 2% inputs indicate protein levels 

prior to antibody addition. (B) Schematic depiction of the HIF1α domain structure. 
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3.4 Summary 
 
In this chapter, the preliminary work which indicated an interaction between 

PHD1 and LIMD1 observed from a Y2H screen was validated. Furthermore, 

LIMD1 and closely related LIM proteins of the LAW subfamily differentially 

interact with all three of the PHDs in vivo.  In vitro binding assays indicate 

that LIMD1 interacts with all three PHDs via a direct protein-protein binding 

event.  Furthermore, VHL also interacts with the LAW proteins. Moreover, 

LIMD1 simultaneously interacts with PHD2 via its pre-LIM N-terminal region 

and VHL via its LIM domains, scaffolding the proteins within a normoxic 

protein complex (normoxiplex). 
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4. LIMD1 induces HIF1α protein degradation 

4.1 LIMD1 induces specific degradation of the HIF1α ODD domain  

 

Data presented in the previous chapter demonstrates that LIMD1 does not 

co-immunoprecipitate in vivo with full length HIF1α or when HIF1α is 

dissected into 3 domains; the N-terminal domain (aa30-389), the ODD 

domain (aa390-652) or the C-terminal domain (aa630-826) (Figure 3.3.2). 

However, upon analysis of this experiment it was observed that ectopic 

LIMD1 expression induced a specific reduction in ODD domain protein levels, 

notably the domain sensitive to O2 dependent, PHD and pVHL mediated 

degradation (Huang et al., 1998). This supports the hypothesis that LIMD1 

(and LAW) scaffolds PHD2 and VHL to enhance HIF1α degradation. Further 

experiments were performed to verify whether this effect was specific and 

consistent. The experiment was performed following 16 hour hypoxic (1% O2) 

incubation in order to impair PHD/VHL mediated degradation of the ODD and 

therefore allow analysis of the effect of the LIM proteins LIMD1 and TRIP6 on 

ODD stability. The LIM protein TRIP6, which interacts with PHD1 but not VHL 

was also used to evaluate whether regulation of ODD protein levels require 

VHL binding/activity. LIMD1 specifically induced ODD degradation, whilst N 

and C-terminal domains were stable and unaffected by LIMD1 expression 

levels (Figure 4.1). TRIP6 did not induce ODD degradation and thus 

indicates that the ability to interact with both PHD and VHL proteins, rather 

than just PHD1, is required in order to modulate ODD stability. Therefore, this 

is indicative that TRIP6 does not enhance PHD1 hydroxylation of HIF1α, but 

may modulate a non-HIF dependent PHD1 function. One such reported 

example is the role of PHD1 in modulating NF-κB activity by binding and 

inhibiting IKKβ (Cummins et al., 2006).  
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Figure 4.1 LIMD1 expression induces a specific reduction in HIF1α ODD 

protein levels.   
U2OS cells were co-transfected with the HA-tagged-HIF1α ODD (aa390-652), N 

terminal (aa30-389) or C terminal (aa630-826) domains with the pcDNA4 His/Max 

vector only, Xpress-tagged LIMD1 or negative control TRIP6. 32hrs following 

transfection, cells were incubated at 1% O2 for 16hrs before they were lysed with 

RIPA supplemented with protease, phosphatase and proteasome inhibitors (10µM 

MG132) and immunoblotted for protein levels. LIMD1, but not TRIP6 expression 

specifically reduced protein levels of the ODD but not the N or C terminal HIF1α 

domains. Anti-β actin immunoblot was used as a protein loading control. 
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4.1.1 LAW induce ODD degradation 
 
As LIMD1 is closely related to Ajuba and WTIP, which share both structural 

and functional homology, the ability of the LAW proteins to induce ODD 

degradation was therefore next examined. Furthermore, since the LAW 

proteins interact with VHL and differentially bind to the PHDs it was 

hypothesised that all three proteins may regulate ODD protein levels.  

 

When co-transfected with the HIF1α-ODD domain, the LAW proteins all 

induced specific degradation of the domain in comparison with the vector 

only control and negative control LIM protein TRIP6 (Figure 4.1.1 A). 

Furthermore, PHD2 was co-transfected with the ODD as a positive control 

and induced degradation of the domain to the same extent as exogenous 

expression of the LAW proteins. Interestingly, TRIP6 expresses as multiple 

higher molecular weight forms. However, the nature and specificity of these 

higher molecular weight forms is unknown. 
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Figure 4.1.1 LAW induce a specific reduction in HIF1α ODD protein levels, in 

a proteasome and prolyl hydroxylase dependent but proline 402/564 

independent manner. 
(A) U2OS cells were co-transfected with the HIF1α HA-tagged-ODD (aa390-652) or 

HA-ODD P402A/P564A mutant (B), with 250ng of Xpress vector only, Xpress-

LIMD1, Ajuba, WTIP, negative control TRIP6 or positive control PHD2. 32hrs 

following transfection, cells were incubated at 1% O2 (with 8 and 10 µM MG-132 [C] 
and 1mM DMOG [D] administration) for 16hrs before they were lysed with RIPA 

supplemented with protease, phosphatase and proteasome inhibitors (10µM 

MG132) and immunoblotted for protein levels. LIMD1, Ajuba, WTIP (LAW) and 

PHD2, but not TRIP6 expression specifically reduced protein levels of HIF1α ODD. 

(B) LIMD1, Ajuba and WTIP (LAW), but not TRIP6 expression specifically reduced 

protein levels of HIF1α ODD P402A/P564A. Xpress-PHD2 induced degradation was 

ablated upon P402/P564 mutation. (C) MG-132 inhibited both LIMD1 and PHD2’s 

ability to induce ODD degradation. (D) DMOG inhibited the ability of the LAW 

proteins and PHD2 to induce ODD degradation. Anti-β actin immunoblot was used 

as a protein loading control. 
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4.1.2 LAW induced ODD degradation is independent of proline 402/564 
hydroxylation 

 
In keeping with the hypothesis of LAW as PHD/VHL scaffolding proteins, it 

was anticipated that LAW would induce ODD degradation by enhancing 

hydroxylation of the well characterised proline 402 and 564 residues. To 

address this question, an ODD construct with both critical proline 402 and 

564 residues substituted to alanines (ODD P402A/P564A) was utilised. Once 

again, PHD2 was incorporated into the assay this time as a negative control. 

As PHD2 specifically targets HIF1α proline 402 and 564 for hydroxylation, 

PHD2 mediated ODD degradation should be attenuated upon their mutation.  

 

Co-transfection of PHD2 with the ODD P402A/P564A mutant attenuated 

PHD2 induced ODD degradation. Surprisingly, LIMD1, Ajuba and WTIP still 

maintained the ability to induce degradation of the ODD mutant in a proline 

402/564 independent manner (Figure 4.1.1 B). LIMD1 family member TRIP6 

served as a negative control with no effect on either the ODD or the ODD 

proline mutant compared to the vector only control. This is indicative that the 

LAW proteins can mediate HIF1α degradation independently of proline 

402/564 residues or alternatively perform multiple proline dependent and 

independent functions. Interestingly, a proportion of ODD P402A/P564A co-

transfected with LIMD1 but not Ajuba or WTIP appeared stabilised in 

comparison with the wild type ODD construct. This may indicate that LIMD1 

has both proline 402/564 dependent and independent functions and that the 

LAW proteins may regulate HIF1α via differential mechanisms. As LIMD1 is 

able to scaffold PHD2 and VHL, it may be plausible that LIMD1 alters target 

proline residue specificity for hydroxylation or changes the consensus 

sequence recognised by the PHDs. Alternatively, numerous mechanisms 

have been reported to regulate HIF1α independently of proline 402/564 

hydroxylation including hypoxia specific sumoylation (Cheng et al., 2007), via 

the receptor of activated protein kinase C (RACK1) (Liu et al., 2007) and by 

GSK3 mediated phosphorylation (Flugel et al., 2007). It will be interesting to 

elucidate whether the LAW proteins play a role in any of these mechanisms. 
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4.1.3 LAW induced ODD degradation is proteasome dependent 
 
The next question that was addressed, was whether LIMD1 mediated 

degradation of the ODD via a mechanism dependent on the 26S-

proteasome, as both proteasomal (PHD-VHL) and proteasome-independent 

(Olmos et al., 2009) degradation mechanisms have been reported. The 

stability of the ODD following co-transfection with Xpress-tagged LIMD1 and 

positive control PHD2 was examined (as described in section 4.1.2), using 

the cell permeable proteasome inhibitor MG-132. MG-132 was administered 

to the U2OS cells 32 hours following transfection, for 16 hours, during which 

cells were incubated in 1% O2.  

 

Proteasomal inhibition attenuated LIMD1 mediated degradation of the ODD 

to a similar effect as positive control PHD2 (Figure 4.1.1 C). This therefore 

suggests that LIMD1 and potentially LAW mediate HIF1α regulation in a 26S-

proteasome dependent manner, in keeping with the well characterised 

PHD/VHL degradation mechanism. 

 

4.1.4 LAW induced ODD degradation is dependent on prolyl 
hydroxylase activity 

 
As LAW induced degradation appeared to occur in a proline independent but 

proteasomal dependent manner, the dependency on hydroxylase activity was 

next examined.  Therefore, the effect of LAW on the ODD following treatment 

with the competitive proly-4-hydroxylase inhibitor dimethyloxaloylglycine 

(DMOG) was analysed. The stability of the ODD when co-transfected with 

the LAW proteins was investigated in the presence of 1mM DMOG for 16 

hours before lysis of cells and immunoblotting. DMOG treatment inhibited 

LAW and PHD2 induced ODD degradation (Figure 4.1.1.D). Therefore, LAW 

regulate the HIF1α ODD domain in a proteasomal, prolyl hydroxylase 

dependent manner but independently of proline 402 and 564 residues. 
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4.1.5 Mutation of LIMD1 impairs LIMD1 mediated ODD degradation 
 
To further investigate the structure-function relationship of LIMD1 and its 

ability to induce ODD degradation, the effect of co-transfection of the ODD 

with a series of LIMD1 deletion mutants was examined (Figure 4.1.5). 

Deletion mutants were previously generated by QuikChange® (Stratagene, 

CA, USA) site directed mutagenesis by the incorporation of premature C-

terminal stop codons (Figure 4.1.5 B). 

 

Mutants were used which deleted each LIM domain of LIMD1 from the C-

terminus. Deletion of the most C-terminal LIM domain (LIM 3, denoted ∆597-

676) did not impair LIMD1 mediated degradation of the ODD (Figure 4.1.5 A). 

Interestingly, deletion of both LIM 3 and LIM 2 domains (∆535-676) did result 

in impaired LIMD1 function and stabilised the ODD.  However, deletion of all 

3 LIM domains (∆472-676) did not reproduce the same effect observed from 

the LIM2 and LIM3 deletion mutant as no loss of LIMD1 function was 

exhibited. This may suggest a mechanism whereby the LIM 2 domain is 

required for ODD degradation. Alternatively, this may indicate that upon 

deletion of the LIM 2 and LIM 3 domains, the conformation of LIMD1 may be 

altered to a non-physiological state that impairs normal function. Another 

possible explanation is that in isolation the LIM 1 domain may perform an 

auto-inhibitory function. 

 

Deletion of the N-terminal pre-LIM region of LIMD1 (∆364-676 and ∆224-676) 

resulted in impaired ODD degradation (Figure 4.1.5 A). These data indicate 

that the critical region for HIF regulation may lie within amino acids 364-597, 

a region overlapping the LIM domains and the immediate pre-LIM region. 

This region could feasibly represent the PHD2 and VHL pre-LIM and LIM 

binding interfaces respectively. Furthermore, this region also incorporates a 

pre-LIM coiled-coil domain (aa444-463). Whether this coiled-coil domain is 

necessary for LIMD1 to induce ODD degradation function is currently 

unknown. 
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Intriguingly, expression of the three LIM domains independently, consistently 

demonstrated an ability to induce ODD degradation. This suggests that the 

interaction between LIMD1 and VHL is sufficient to induce ODD degradation. 

However, we currently do not know whether PHD1 or PHD3 interact with the 

LIM domains, which could contribute to the effect observed. Furthermore, 

WTIP has been recently demonstrated to homodimerise via interactions with 

its LIM domains (van Wijk et al., 2009). As the LIM domains are highly 

conserved between the LAW proteins, it is conceivable that the LIM domains 

may also homo- and/or heterodimerise with one another. Therefore, it may 

be possible that the LIMD1 LIM domains are able to still bridge PHD and VHL 

by interacting with other LAW proteins. At present the precise mechanism 

regulating this function is unknown. 
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Figure 4.1.5 LIMD1 ODD degradation is dependent upon a region 

encompassing amino acids 364-597. 
(A) ODD stability was examined in U2OS cells as in figure 4.1 with a series of C-

terminal LIMD1 deletion mutants. Deletion of the C-terminal portion of LIMD1 from 

aa364-676 attenuates LIMD1’s ability to induce ODD degradation. Anti-β actin 

immunoblot was used as a protein loading control. (B) Schematic representation of 

mutant structure and tabular representation of their ability to induce ODD 

degradation. 
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4.1.6 Depletion of endogenous LIMD1 by RNAi causes ODD protein 
stabilisation  

 

Further investigation into the stability of the ODD in U2OS cell lines utilising 

lentiviral shRNA technology to stably deplete LIMD1 expression using RNAi 

was performed (materials and methods section 2.8). The HIF1α N-terminal, 

C-terminal and ODD domains were transiently transfected into U2OS cells 

stably expressing lentiviral mediated shRNA targeting sequences (scrambled 

control, two LIMD1 targeting shRNA and LIMD1 knock down with concurrent 

re-expression of an RNAi resistant rescue LIMD1 construct via an IRES). 32 

hours following transfection, cells were incubated in 1% O2 for 16 hours, 

lysed and protein levels were then analysed. Cell lines with functional LIMD1 

knock down exhibited elevated ODD protein levels relative to the scramble 

shRNA control (Figure 4.1.6), thus exhibiting the reciprocal effect of 

exogenous LIMD1 expression. LIMD1 knock down and concurrent re-

expression of an RNAi resistant LIMD1 construct reversed this phenotype, 

reducing ODD protein levels. This result indicates that the increase in ODD 

stability induced by RNAi mediated depletion of LIMD1 was not due to off-

target effects of the shRNA. The protein levels of the N- and C-terminal 

domains were not significantly affected by LIMD1 down-regulation, 

highlighting the specificity for the ODD domain. 
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Figure 4.1.6 LIMD1 knock down induces stabilisation of HIF1α ODD protein 

levels.   
U2OS cells constitutively expressing shRNA targeting LIMD1 (A:3-UTR and B: 5’), a 

negative control scrambled shRNA and LIMD1 shRNA with concurrent re-

expression of an RNAi resistant LIMD1 expression construct,  were transfected with 

the HIF1α HA-tagged ODD (aa390-652), N-terminal (aa30-389) or C-terminal (630-

826) domains. 32hrs following transfection, cells were incubated at 1% O2 for 16hrs 

before they were lysed and immunoblotted for protein levels. LIMD1 loss of function 

induced stabilisation of ODD protein (indicated by arrows) but not the N or C 

terminal HIF1α domains. Re-expression of LIMD1 attenuated ODD stabilisation. 

Anti-β actin immunoblot was used as a protein loading control. 
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4.2. LIMD1 protein levels are unaffected by hypoxia. 
 

To evaluate whether LIMD1 protein levels were altered in hypoxia, U2OS 

cells were incubated at either 20% (normoxia) or 1% (hypoxia) O2 for 16, 24 

and 48 hours in duplicate, 24 hours following seeding. Cell lysates were 

harvested, resolved by SDS-PAGE and immunoblotted with a LIMD1 mAb to 

detect endogenous LIMD1 protein levels from normoxic and hypoxic cell 

extracts (Figure 4.2). Blots were probed with an anti-HIF1α mAb to confirm 

hypoxic response. No significant changes were observed in LIMD1 protein 

level upon hypoxic exposure, indicating that LIMD1 expression is not 

modulated by O2 tension. 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 LIMD1 protein levels are not altered by hypoxia. 
Immunoblot of duplicate U2OS cell lysates following hypoxic incubation (1% O2, 

denoted as ‘H’) for 16, 24 and 48 hours compared to U2OS cells incubated for the 

same time point in normoxia (denoted ‘N’). Anti-LIMD1 immunoblot shows that 

LIMD1 protein levels remain constant following hypoxic exposure. Anti-HIF1α 

immunoblot confirms hypoxic response. Anti-β Actin immunoblot was used as a 

protein loading control.  
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4.3 GFP-LIMD1 expression induces endogenous HIF1α degradation 
 

Hypoxic incubation of U2OS cells induces endogenous HIF1α stabilisation 

detectable by immunofluorescence (Figure 4.3.1).  It has previously been 

established that the function of PHD activity on HIF1α can be evaluated by 

visualising their effects on endogenous HIF1α expression and nuclear 

localisation via an immunofluorescence assay (Metzen et al., 2003a). 

Therefore, a similar assay to assess whether LIMD1’s ability to 

simultaneously interact with the PHDs and VHL and to reduce ODD protein 

levels represents an ability to reduce endogenous HIF1α protein levels in 

vivo was employed. U2OS cells were transiently transfected with GFP vector 

only, GFP-PHD2, GFP-FIH, GFP-LIMD1 and GFP-Zyxin (Figure 4.3.2). 44 

hours post-transfection cells were subjected to hypoxia (1% O2 for 4 hours) 

prior to being fixed with 4% (v/v) PFA/PBS and stained for endogenous 

HIF1α. Exposure of U2OS cells to hypoxia induced stabilisation and 

localisation of HIF1α to the nucleus. Expression of GFP-LIMD1 resulted in 

reduced HIF1α protein levels and inhibited the nuclear accumulation of 

HIF1α to the same effect as GFP-PHD2 expression. However, expression of 

GFP vector only, FIH [which negatively regulates HIF via the recruitment of 

the p300 co-activator rather than protein stability (Lando et al., 2002)] and 

LIMD1 family member Zyxin had no effect on HIF1α expression level or 

localisation.  
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Figure 4.3.1 Hypoxia induces nuclear accumulation and stabilisation of 

HIF1α. 
U2OS cells were exposed to 20% (normoxia) or 1% (hypoxia) O2 for 4 hours. Cells were 

then fixed using 4% (v/v) PFA/PBS and immunostained for endogenous HIF1α and 

nuclear stained using DAPI. Hypoxic exposure impairs HIF1α degradation, resulting in 

its nuclear accumulation. (Scale = 40µm). 
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Figure 4.3.2 LIMD1 expression inhibits the nuclear accumulation of HIF1α. 
U2OS cells were transiently transfected with GFP vector only, GFP-PHD2, GFP-FIH, 

GFP-LIMD1 and GFP-ZYXIN. 44hr following transfection cells were exposed to 1% O2 

for 4 hours. Cells were then fixed using 4% (v/v) PFA/PBS and immunostained for 

endogenous HIF1α and nuclear stained using DAPI. Expression of LIMD1 reduced 

HIF1α expression levels and inhibited its nuclear accumulation. (Scale = 20µm). 
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4.4 siRNA mediated LIMD1 knock down impairs the degradation of 
endogenous HIF1α   

 

Previous data presented in this chapter demonstrates that exogenous 

expression of LIMD1 promotes the degradation of and inhibits the nuclear 

accumulation of HIF1α. Furthermore, shRNA mediated LIMD1 knock down 

induces stabilisation of the ODD domain. Therefore, to corroborate these 

findings, the effect of transient LIMD1 depletion by siRNA on full length 

endogenous HIF1α stability was examined. U2OS and HEK 293 cells were 

transfected with siRNA targeting LIMD1, PHD2 or a scrambled non-specific 

negative control siRNA and the lysates were then analysed by 

immunoblotting for endogenous HIF1α protein levels. PHD2 down regulation 

has been demonstrated to increase protein levels of endogenous HIF1α 

(Berra et al., 2003) and thus served as a positive control. 

 

4.4.1 Optimisation of siRNA mediated LIMD1 knock down 
 

The concentration of siRNA (Figure 4.4.1.2 and 4.4.1.3), and the degree of 

protease, phosphatase and proteasomal inhibition required within the lysis 

buffer (Figure 4.4.1.1) were all optimised respectively. LIMD1 knock down 

resulted in an accumulation of endogenous HIF1α, consistent across all lysis 

buffer optimisation conditions (Figure 4.4.1.1, arrows). RIPA supplemented 

with Complete Protease Inhibitor Cocktail (Roche) and Phosphatase 

Inhibitors (PhosSTOP, Roche) was identified as the optimal lysis condition 

and was maintained for further experiments utilising siRNA.  

 

 

 

 

 

 

 



  Results | Chapter 4  

145 
 

 
 
Figure 4.4.1.1 Optimisation of siRNA mediated LIMD1 knock down. 
U2OS cells were treated with 20nM siRNA targeting LIMD1, PHD2 and a scrambled 

negative control. 48 hours post-transfection cells were lysed with RIPA buffer 

containing Complete Protease Inhibitor Cocktail (Roche), Phosphatase Inhibitors 

(Phos), and Proteasome Inhibitors (MG132). Lysates were then analysed by SDS-

PAGE and immunoblotting. (A) Anti-HIF1α immunoblot. Arrows indicate increased 

HIF1α protein levels following LIMD1 knock down in each of the four lysis 

conditions. Hypoxic cell extract from U2OS cells exposed to 1% O2 for 16 hours 

confirmed correct molecular weight of HIF1α detection. (B) Anti-β-Actin immunoblot 

was used as a loading control. (C) Representative anti-LIMD1 immunoblot indicating 

LIMD1 knock down. (D) Representative anti-PHD2 immunoblot indicating PHD2 

knock down.  
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Down regulation of LIMD1 consistently induced an elevation in HIF1α protein 

levels in U2OS cells (Figure 4.4.1.2) and HEK293 cells (Figure 4.4.1.3). It 

was observed that administration of negative control scrambled siRNA at low 

concentrations (20nM) generated an increase in HIF1α protein levels in both 

U2OS and HEK293, which was not observed using higher siRNA 

concentrations (80nM). Therefore, 80nM siRNA was administered in further 

experiments.  

 

Knock down of PHD2 in U2OS cells (Figure 4.4.1.2) did not stimulate the 

anticipated increase in HIF1α protein levels, observed in HEK293 (Figure 

4.4.1.3), as previously reported by Applehoff et al using 20nM of PHD2 

siRNA (Appelhoff et al., 2004).  One possible reason for this may be due to 

HIF1 induced negative feedback. Initial PHD2 knock down may act to 

stabilise HIF1α protein levels, which is reported to result in increased PHD2 

expression (Epstein et al., 2001; Berra et al., 2003). Therefore, HIF1α 

increase may result in increased PHD2 activity and subsequent HIF1α 

reduction. However, PHD2 protein levels at the point of lysis appeared 

significantly depleted in comparison with the scrambled and LIMD1 controls 

which suggests this theory is unlikely to account for this observed effect. 

Alternatively, this may reflect the contribution of PHD1 and PHD3 in U2OS 

cells which may provide the predominant hydroxylation activity or 

compensate for PHD2 loss of function. The reported induction of PHD2 

expression in hypoxia was further verified in figure 4.4.1.4. 
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Figure 4.4.1.2 Immunoblot analysis of siRNA mediated LIMD1 and PHD2 

knock down in U2OS cells. 
U2OS cells were treated with 20 or 80nM of siRNA targeting LIMD1, PHD2 and a 

scrambled negative control. 48 hours post-transfection, cells were lysed with RIPA 

buffer containing Complete Protease Inhibitor Cocktail and Phosphatase Inhibitors. 

Lysates were then analysed by SDS-PAGE and immunoblotting. Arrows indicate 

increased HIF1α protein levels with LIMD1 knock down at both siRNA 

concentrations. Anti-LIMD1 and anti-PHD2 immunoblots demonstrate knock down 

achieved by siRNA. Anti-β-Actin immunoblot was used as a loading control.  
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In HEK293 cells, PHD2 knock down stimulated an increase in HIF1α protein 

levels following administration of siRNA at 20 and 80nM in comparison with 

the scrambled siRNA. The increase in HIF1α generated by LIMD1 knock 

down by 20nM of siRNA was less than that induced by PHD2 at the same 

siRNA concentration. However, at 80nM LIMD1 had as pronounced an effect 

on HIF1α protein levels as PHD2, emphasising the importance of the in vivo 

role of LIMD1 in HIF1α regulation (Figure 4.4.1.3). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.1.3 Immunoblot analysis of siRNA mediated LIMD1 and PHD2 

knock down in HEK293 cells. 
HEK293 cells were treated with 20 or 80nM of siRNA targeting LIMD1, PHD2 and a 

scrambled negative control. 48 hours post-transfection cells were lysed with RIPA 

buffer containing Complete Protease Inhibitor Cocktail and Phosphatase Inhibitors. 

Lysates were then analysed by SDS-PAGE and immunoblotting. Arrows indicate 

increased HIF1α protein levels with LIMD1 knock down at both siRNA 

concentrations consistent with the affect achieved by PHD2 knock down. Anti-

LIMD1 and anti-PHD2 immunoblots demonstrate knock down achieved. Anti-β-Actin 

immunoblot was used as a loading control.  
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The effect of LIMD1 knock down was further examined in U2OS cells 

exposed to hypoxia, in order to evaluate whether LIMD1 was required to 

regulate HIF1α in both normoxia and hypoxia. 32 hours following siRNA 

administration U2OS cells were incubated at 1% O2 or retained in normoxia 

for 16 hours prior to lysis and lysates were analysed by SDS-PAGE and 

immunoblotting. LIMD1 knock down induced an increase in HIF1α protein 

levels in both normoxia and hypoxia (Figure 4.4.1.4). However, stabilisation 

of HIF1α induced by LIMD1 knock down was markedly more pronounced in 

hypoxia than normoxia. Moreover, HIF1α from hypoxic cell extracts appeared 

to resolve as a larger molecular weight form than from normoxic cell extracts, 

which maybe a result of increased post-translational modification. This was 

also observed between HEK293 and U2OS cells, whereby HIF1α resolved 

as different molecular weight forms between the two cell lines in normoxia 

(Figure 4.4.1.2 and 4.4.1.3). 

 

Furthermore, the effect of LIMD1 knock down on the stability of the stable O2 

independent component of the HIF heterodimer, HIF1β (ARNT) was 

analysed.  HIF1β protein levels did not change upon LIMD1 knock down, 

highlighting the specificity of HIF1α stabilisation induced by LIMD1 depletion 

(Figure 4.4.1.4). 

 
It has been demonstrated that PHD activity may be regulated at the level of 

their own stability, underpinned by the Siah ubiquitin ligases (Nakayama et 

al., 2004) and the peptidyl prolyl cis/trans isomerase FK506-binding protein 

38 (FKBP38) (Barth et al., 2007; Barth et al., 2009). Therefore, whether the 

stabilisation of HIF1α protein following LIMD1 depletion arises not only due to 

LIMD1 scaffolding PHD and VHL activities, but also by increasing the stability 

of the PHDs was examined. siRNA mediated LIMD1 knock down did not 

effect the protein levels of the predominant prolyl hydroxylase PHD2 (Figure 

4.4.1.4).  However, an increase in PHD2 expression in hypoxia was observed 

as previously reported (Berra et al., 2003; Epstein et al., 2001).  
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Figure 4.4.1.4 LIMD1 knock down induces an increase in HIF1α protein 

levels in normoxia and hypoxia.  
U2OS cells were treated with 80nM of siRNA targeting LIMD1 and a scrambled 

negative control. 32 hours post-transfection, cells were incubated in normoxia or 

hypoxia for 16 hours prior to lysis with RIPA buffer containing Complete Protease 

Inhibitor Cocktail and phosphatase inhibitors. Lysates were then analysed by SDS-

PAGE and immunoblotting. HIF1α protein levels increased significantly with LIMD1 

knock down in both normoxia and hypoxia. Anti-LIMD1 immunoblot demonstrates 

knock down achieved.  HIF1β and PHD2 protein levels do not change upon LIMD1 

depletion in normoxia or hypoxia, emphasising the specificity for HIF1α. Anti-β-Actin 

immunoblot was used as a loading control.   
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4.4.2 Reoxygenation of cells following hypoxia reduces HIF1α protein 
accumulation induced by LIMD1 depletion.  

 
Hypoxic exposure of cells treated with LIMD1 siRNA induced a marked 

increase in HIF1α protein levels (Figure 4.4.1.4). To confirm that this 

increase in HIF1α protein levels was due to the limiting O2 tension, the effect 

on HIF1α protein levels upon reoxygenation of cells from hypoxia to 

normoxia was evaluated (Figure 4.4.2). Increasing time periods of 

reoxygenation from hypoxia, resulted in reduced HIF1α protein levels over 

time. At 30 minutes of reoxygenation in normoxia, HIF1α migrated on SDS-

PAGE as the lower weight molecular form as detected in normoxic cell 

lysates. Thus, reoxygenation restored HIF1α protein levels in both the 

scrambled and LIMD1 siRNA treated cells to that observed in normoxic cell 

lysates. This indicates that upon limiting O2 tensions, the function of LIMD1 

may become increasingly critical, which can be recovered by increasing the 

oxygen tension. 
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 Figure 4.4.2 Reoxygenation of cells following hypoxia reduces the levels of 

accumulated HIF1α protein induced by RNAi mediated LIMD1 depletion.  
U2OS cells were treated with 80nM of siRNA targeting LIMD1 (denoted ‘+’) and a 

scrambled negative control (denoted ‘-’). 32 hours post-transfection, cells were 

incubated in normoxia or hypoxia for 16 hours. Hypoxic cell extracts (1%O2) were 

reoxygenated in normoxia (20% O2) for differing periods of time prior to lysis with 

RIPA buffer containing Complete Protease Inhibitor Cocktail and phosphatase 

inhibitors. Lysates were then analysed by SDS-PAGE and immunoblotting. Hypoxic 

HIF1α protein levels returned to those observed from normoxic cell extracts 

following reoxygenation in normoxia. Anti-LIMD1 immunoblot demonstrates knock 

down achieved. Anti-β-Actin immunoblot was used as a loading control.   
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4.5 Summary 
 
LIMD1 induced degradation of the ODD domain of HIF1α, the domain 

sensitive to O2 dependent PHD/VHL and proteasomal mediated degradation. 

The N- and C- terminal domains were not affected by ectopic LIMD1 

expression. Conversely, shRNA mediated knock down of LIMD1 resulted in 

increased stability of the ODD domain specifically. Zyxin family member 

proteins Ajuba and WTIP also conserve the ability of LIMD1 to enhance ODD 

degradation to a similar effect as exogenous PHD2 expression. This function 

is dependent on prolyl hydroxylase activity and the 26S-proteasome, 

however is independent of proline 402 and 564 hydroxylation. LIMD1 protein 

levels are not modulated by hypoxia. The ability of LIMD1 to induce 

degradation of the ODD domain also translates to an effect on full length 

endogenous HIF1α. Expression of GFP-LIMD1 in U2OS cells induces 

degradation of endogenous HIF1α whilst LIMD1 depletion by siRNA results 

in accumulation of HIF1α in both U2OS and HEK 293 cells. Additionally, 

HIF1β protein levels and PHD2 stability was not altered by LIMD1 depletion. 

These findings further support the hypothesis that LIMD1 (and LAW) 

positively regulates PHD and VHL function to enhance the degradation of 

HIF1α.  
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5. LIMD1 represses transcriptional activation from a Hypoxia 
Response Element  
 

When stable HIF1α heterodimerises with HIF1β to form an active 

transcription factor complex, it is able to bind DNA at hypoxia response 

elements originally identified in the erythropoietin gene, containing a core 

RCGTG sequence (Semenza et al., 1994). Whether the ability of LIMD1 to 

specifically interact with the PHDs and VHL in vivo, reduce ODD protein 

levels and inhibit HIF1α nuclear accumulation translated to regulation of the 

hypoxic response using Hypoxia Response Element (HRE) -luciferase 

reporter system functional assays was next examined.   

 

5.1 LIMD1 represses HRE activation in normoxia and hypoxia 
 

To examine whether LIMD1 was able to repress HIF transcriptional activity, 

U2OS cells were co-transfected with 50ng of a pGL3-HRE-(firefly) luciferase 

construct and 5ng of pGL4-TK-Renilla luciferase construct. As the Renilla 

construct is constitutively expressed it was used to normalise the HRE-

luciferase value, thus acting as a control for multiple steps within the assay 

including the transfection efficiency, lysis and the luminescence detection. 

The individual detection of Firefly and Renilla luminescence was possible due 

to the different individual substrate and co-factor requirements of the two 

enzymes. The experiment was performed in both normoxic and hypoxic 

conditions to evaluate whether LIMD1 performs a repressive effect 

independently of oxygen tension. HIF1α was ectopically expressed to induce 

HRE activation and co-transfected with LIMD1. 20 hours following 

transfection, cells were incubated for 4 hours in 1% or 20% O2 prior to 

passive lysis. Firefly and Renilla luciferase values were then measured using 

a luminometer. 

 

HRE activation was observed by ectopic HIF1α expression (32 fold induction) 

and by incubation in hypoxia (45 fold induction) (Figure 5.1). Ectopic 

expression of LIMD1 repressed HRE activation in both normoxia and hypoxia 
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by 54% and 44% respectively (Figure 5.1). This indicates that LIMD1 

mediated regulation of HIF1 activity is maintained and not attenuated in 

hypoxia. As LIMD1 is believed to exhibit no intrinsic catalytic activity 

(Kadrmas and Beckerle, 2004) and functions independently of O2 tension, 

this supports the hypothesis that LIMD1 regulates HIF1α by scaffolding the 

PHDs and VHL into a protein complex. 

 

 

 

Figure 5.1 LIMD1 represses HRE transcriptional activation in normoxia and 

hypoxia. 
U2OS cells were co-transfected with 50ng of pGL3-HRE-luc, 5ng of pGL4-TK-

Renilla, 100ng of pcDNA3-HIF1α and 100ng of pcDNA4His/Max-LIMD1. Total DNA 

concentration was maintained by transfection of pcDNA4 vector only. 20 hours post-

transfection, cells were incubated for 4 hours in 1% or 20% O2, prior to passive lysis. 

Lysates were then added to firefly and Renilla substrate reagents and luminescence 

was measured. LIMD1 significantly repressed HRE activation at both 1% and 20% 

O2.  * p values less than 0.005.  
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5.1.2 LIMD1 represses HRE activation in a concentration dependent 
manner 

 

To further examine the ability of LIMD1 to repress HRE activity, the 

concentration of ectopically expressed LIMD1 was titrated.  25, 100, 200 and 

400ng of pcDNA4-LIMD1 was co-transfected with pGL3-HRE, pGL4-TK-

Renilla and pcDNA3-HIF1α as in figure 5.1. Cells were incubated at 20% O2. 

LIMD1 repressed HRE activation dependent on concentration. Transfection 

of 25ng of LIMD1 repressed the HRE by 23.6% which increased to a 

repression of 51% achieved by 400ng (Figure 5.1.2). As repression of HIF1 

transcriptional activity appears to be coupled with LIMD1 expression levels, 

this may indicate that the reported loss of LIMD1 observed in lung (Sharp et 

al., 2004; Sharp et al., 2008) and head and neck carcinomas (Ghosh et al., 

2008) may contribute to the increased pro-tumourigenic HIF1 target gene 

transcription. Experimentally, whether RNAi mediated loss of LIMD1 results 

in an increase in HIF1 transcriptional activity was next evaluated in figure 

5.2.1.  

 

In addition, the effect of the family member protein LPP was also examined.  

LPP does not interact with the PHDs or VHL. Therefore, it was anticipated 

that LPP would have no effect on HRE activity. This proved to be the case; 

LPP had no repressive affect on HRE induction at similar expression levels 

as LIMD1 and thus represents a good negative control for non-specific 

affects from ectopic over-expression (Figure 5.1.2). Conversely, LPP appears 

to increase activation of HRE transcription. This may represent a positive and 

negative regulatory system performed by the Zyxin family of proteins.  
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Figure 5.1.2 LIMD1 represses HRE transcriptional activation in a 

concentration dependent manner. 
U2OS cells were co-transfected with 50ng of pGL3-HRE, 5ng of pGL4-TK-Renilla, 

100ng of pcDNA3-HIF1α and titrating amounts of pcDNA4-LIMD1. Total DNA 

concentration was maintained by transfection of pcDNA4 vector only. 24 hours post-

transfection; cells were lysed and added to firefly and Renilla substrate reagents and 

luminescence measured. LIMD1 significantly represses HRE activation in a 

concentration dependent manner. Family member protein LPP had no repressive 

effect on HRE and thus serves as a good negative control. * p value less than 0.005. 

 
 

5.1.3 LIMD1 enhances PHD2 mediated repression of HRE activity 
 

As LIMD1 interacts with the PHDs the effect of co-transfection of LIMD1 with 

the predominant hydroxylase PHD2 on HRE activity was examined. A sub-

limiting amount of PHD2 (i.e. an amount which performs a sub-optimum 

repression of HRE activity, established as 1ng of pcDNA3 PHD2 per 12 well, 

data not shown) and LIMD1 (25ng, as identified in Figure 5.1.2) were co-

transfected with HIF1α in order to assess whether LIMD1 aided PHD2 in 
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repressing HIF transcription. LIMD1 expression with PHD2 promoted further 

repression of HRE transcription by an additional 42% in comparison to when 

LIMD1 and PHD2 were expressed individually. Furthermore, co-transfection 

of LPP with PHD2 demonstrated no effect on PHD2 mediated HRE 

repression (Figure 5.1.3).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5.1.3 LIMD1 enhances PHD2 mediated repression of HRE activity. 
U2OS cells were co-transfected with 50ng of pGL3-HRE, 5ng of pGL4-TK-Renilla, 

100ng of pcDNA3-HIF1α and sub-limiting amounts of LIMD1 and LPP (25ng) with 

PHD2 (1ng). Total DNA concentration was maintained by transfection of pcDNA4 

vector only. 24 hours post-transfection; cells were lysed and added to firefly and 

Renilla substrate reagents and luminescence measured. Sub-limiting co-transfection 

of LIMD1 with PHD2 further repressed PHD2 mediated repression of HRE 

activation.  Co-transfection of LPP had no effect on PHD2 mediated repression of 

the HRE. * p value less than 0.0005. 
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5.1.4 LIMD1 represses HRE activation via a mechanism both dependent 
and independent of proline 402/564 residues 

 
In section 4.1.2, data demonstrates that the ability of LIMD1 (and LAW) to 

induce ODD degradation may be independent of the well characterised 

substrates for prolyl hydroxylation P402 and P564 (Figure 4.1.1B). Therefore, 

whether LIMD1 may also repress HRE activation induced from the 

expression of full length HIF1α with these two proline residues substituted to 

alanines (PDM-proline double mutant) was examined. LIMD1 was co-

transfected with the wild type and the HIF1α-PDM constructs and HRE-

luciferase reporter assays performed as in section 5.1. 

 
In this assay a 61% repression of HRE-luc activity was achieved by the co-

transfection of LIMD1 with wild type HIF1α (Figure 5.1.4). Transfection of the 

HIF1α-PDM resulted in an increase in HRE activation in comparison with 

expression of the wild type HIF1α construct, due to the increased stability of 

the protein (Figure 5.1.4). However, upon co-transfection of LIMD1 with the 

HIF1α-PDM, 40% repression was still achieved (Figure 5.1.4). This finding is 

consistent with the ability of LIMD1 to maintain the degradation of the HIF1α 

ODD P402A/P564A mutant. Therefore, this indicates that LIMD1 can repress 

HIF1 transcriptional activity in the absence of these proline residues. This 

suggests that LIMD1 performs both proline 402/564 dependent (21%) and 

independent (40%) HIF1 repressive functions. As the ability to induce ODD 

degradation was inhibited by DMOG inhibition of 2-oxoglutarate-dependent 

dioxygenase (i.e. hydroxylase) activity (Figure 4.1.4), a plausible hypothesis 

may be that LIMD1 shifts hydroxylation to other proline residues within the 

ODD domain that are still able to be recognised by VHL. 
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Figure 5.1.4 LIMD1 represses HRE activity in a proline 402/564 dependent 

and independent manner. 
(A) U2OS cells were co-transfected with 50ng of pGL3-HRE, 5ng of pGL4-TK-

Renilla, 100ng of pcDNA3-HIF1α or pcDNA3-HIF1α P402A/P564A (PDM-proline 

double mutant) and 100ng of pcDNA4-LIMD1. Total DNA concentration was 

maintained by transfection of pcDNA4 vector only. 24 hours post-transfection; cells 

were lysed and added to firefly and Renilla substrate reagents and luminescence 

measured. LIMD1 was able to repress HRE activity induced by the WT and PDM 

HIF1α expression. (B) HIF1α and HIF1α-PDM HRE-luc activation normalised to 1, in 

order to comparatively analyse the proline 402 and 564 dependent and independent 

activities of LIMD1. * p value less than 0.005. 
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5.2.1 Stable lentiviral mediated knock down of LIMD1 induces a de-
repression of HRE activity. 

 
To corroborate these data showing that LIMD1 represses HIF transcriptional 

activity, the effect of LIMD1 depletion on HRE transcription was analysed. As 

transient siRNA mediated LIMD1 knock down induced a stabilisation of 

HIF1α protein, it was anticipated that this would correlate to an increase in 

HRE activation. Endogenous knock down of LIMD1 was achieved in U2OS 

cells by stable expression of two different shRNA constructs (as described in 

materials and methods section 2.8 and utilised in Figure 4.1.6), confirmed by 

western blot (Figure 5.2.1B). Compared to cells transduced with a scrambled 

shRNA control, LIMD1 knock down induced a de-repression in HRE activity 

both in normoxic (4.3 fold increase) and hypoxic (2.3 fold increase) 

conditions (Figure 5.2.1A). Furthermore, of the 2 different LIMD1 targeting 

shRNA constructs used, one achieved a greater degree of LIMD1 depletion. 

This resulted in a larger increase in HRE activity, further indicating the 

correlation between HIF transcriptional activity and LIMD1 expression level. 

 

To control for off-target effects of the shRNA which may contribute to the 

observed phenotype, an RNAi resistant LIMD1 construct was re-expressed 

from an IRES following shRNA depletion of endogenous LIMD1. LIMD1 re-

expression reversed the observed de-repression in both normoxia and 

hypoxia (89.5% and 90.8% repression in comparison with the HRE-luc 

activation from the cells transduced with LIMD1 shRNA B in normoxia and 

hypoxia respectively), thus reverting the phenotype (Figure 5.2.1A). Thus, the 

HRE increase observed upon LIMD1 depletion is highly specific and not due 

to off-target effects of the shRNA.  Furthermore, re-expression of the RNAi 

resistant LIMD1 construct which expressed LIMD1 at a higher level than 

endogenous LIMD1, repressed the HRE activity from the scrambled control 

in both normoxia and hypoxia (by 54.5% and 78.7% respectively) (Figure 

5.2.1A). This corroborates the finding that ectopic LIMD1 expression 

represses HIF transcriptional activity (Figure 5.1 and 5.1.2). As previous data 

showed that LIMD1 depletion stabilises HIF1α, whilst ectopic expression of 
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LIMD1 reduces HIF1α protein levels, this indicates that LIMD1 modulates 

HRE transcriptional activity via regulation of HIF1α at the protein level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.1 shRNA mediated depletion of LIMD1 induces de-repression of 

HRE activity. 
(A) U2OS cells constitutively expressing shRNA targeting LIMD1 (A:3-UTR and B: 

5’), a negative control scrambled shRNA and LIMD1 shRNA with concurrent re-

expression of an RNAi resistant LIMD1 expression construct,  were co-transfected 

with 50ng of pGL3-HRE and 5ng of pGL4-TK-Renilla. 20 hours post-transfection; 

cells were incubated in hypoxia or normoxia for 4 hours, lysed and added to firefly 

and Renilla substrate reagents and luminescence measured. (B) LIMD1 protein 

levels following shRNA depletion detected by immunoblot. β-actin acts as a loading 

control. LIMD1 knock down resulted in an increase in HRE activation in both 

normoxia and hypoxia, which was reverted by re-expression of an RNAi resistant 

LIMD1 construct. P values * less than 0.005 and ** less than 0.05. 

0

10

20

30

40

50

60

70

80

Scrambled 
shRNA

LIMD1 shRNA 
A

LIMD1 shRNA 
B

Rescue RNAi 
resistant LIMD1

R
el

at
iv

e 
Lu

ci
fe

ra
se

 A
ct

iv
ity

20%O2
1%O2

A

**

*

Anti-LIMD1

Anti-β-Actin

B



  Results | Chapter 5 

164 
 

5.2.2 LIMD1-/- Mouse Embryonic Fibroblasts (MEFs) exhibit elevated 
HRE activity in comparison to WT MEFs 

 
To further demonstrate the ability of LIMD1 to attenuate HRE activation, the 

HRE activity in wild-type and Limd1-/- derived mouse embryonic fibroblasts 

(MEFs) was examined. Limd1-/- MEFs generated by Professor GD Longmore 

(Haematology division, Department of Cell Biology and Physiology, 

Washington University) (Feng et al., 2007) were co-transfected with pGL3-

HRE-luciferase and pGL4-TK-Renilla. 20 hours post-transfection, the MEFS 

were incubated in normoxia or hypoxia for 4 hours.  Limd1-/- MEFs 

demonstrated a small increase in HRE activity in normoxia compared to the 

WT MEFs. However, after 4 hours of hypoxic exposure a significant induction 

of HRE activation (3.2 fold) was observed in the Limd1-/- mouse embryonic 

fibroblasts in comparison to the wild-type MEFs (Figure 5.2.2). These data 

further implicate LIMD1 in the functional regulation of HIF driven HRE 

transcription and that the role of LIMD1 in HIF1 regulation is conserved 

between human and mouse.  

 
 
 
 
 
 
 
 
 
 
Figure 5.2.2 Limd1-/- MEFs demonstrate elevated HRE activation in hypoxia 

in comparison to the wild type MEFs. 

WT and Limd1-/- MEFs were co-transfected with 50ng of pGL3-HRE and 5ng of 

pGL4-TK-Renilla. 20 hours post-transfection cells were incubated in hypoxia or 

normoxia, lysed and added to firefly and Renilla substrate reagents and 

luminescence measured. Limd1-/- MEFs demonstrated a significantly elevated HRE 

activity in hypoxia. P values * less than 0.05. 
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5.3 LIMD1 depletion induces an increase in endogenous HIF response 
gene expression 

 

qRT-PCR was used to examine whether the role of LIMD1 in regulating 

HIF1α stability and HIF1 transcriptional activity resulted in an increase in 

downstream HIF response gene expression. mRNA levels of established HIF 

response genes containing functional HRE’s encoding pro-apoptotic protein 

BNIP3 (E1B/Bcl-2 19kDa interacting protein 3) (Bruick, 2000) and vascular 

endothelial growth factor (VEGF) (Levy et al., 1995) were determined (in 

collaboration with Dr Victoria James, School of Biomedical Sciences, 

University of Nottingham) relative to housekeeping gene β-tubulin, following 

administration of scrambled and LIMD1 siRNA and following 8 hours of 

hypoxic incubation. The cyanine dye SYBR green, which upon binding 

double stranded DNA emits luminescence, was used for detection and 

quantification of PCR products in real time. qRT-PCR was performed to 

quantify the degree of LIMD1 depletion achieved by the RNAi. A significant 

average knock down of 91.1% and 58.5% was achieved by the LIMD1 

targeting siRNA in U2OS cells, incubated in normoxia and hypoxia 

respectively, in comparison to the non-specific scrambled siRNA control 

(Figure 5.3 A).  As anticipated, BNIP3 mRNA levels were elevated following 8 

hours of incubation at 1% O2 (Figure 5.3 B). Transient RNAi mediated 

depletion of LIMD1 resulted in a significant elevation in the endogenous 

transcript level of BNIP3 following 8 hours of hypoxic exposure in comparison 

to the scrambled siRNA control (Figure 5.3 B). However, no significant 

change was observed in the BNIP3 mRNA levels in normoxia. This is in 

keeping with the HRE activity observed from Limd1-/- MEFs whereby an 

increase was only observed upon hypoxic incubation (Figure 5.2.2). 

 

VEGF induction by HIFs in hypoxia has been well characterised to induce 

key processes such as angiogenesis and neovascularisation (Fong, 2009). 

LIMD1 depletion induced a significant increase in normoxic VEGF transcript 

levels in comparison to the scrambled siRNA control (Figure 5.3 C, p=0.03). 

This preliminary data also demonstrated that there was a trend towards 
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significance following 8 hours hypoxic incubation, whereby, LIMD1 depletion 

induced an increase in VEGF mRNA levels in comparison to the scrambled 

control (Figure 5.3 C). Although this was a consistent finding this data was 

part of a larger optimisation, whereby each condition was only performed in 

duplicate, thus accounting for the statistical insignificance. Therefore, further 

work is required to provide confirmation that LIMD1 depletion results in 

increased VEGF transcript levels.    

 

Furthermore, qRT-PCR analysis demonstrated that the induction of HIF1α 

protein was not due to an effect of LIMD1 siRNA on HIF1α mRNA levels 

(Figure 5.3 D). Therefore, this confirms that LIMD1 modulates HIF1α protein 

stability at the post-translational level rather than altering its gene expression. 

Therefore, this indicates that LIMD1 depletion may have a physiological 

effect on downstream biological processes of HIF including survival and 

angiogenesis.  
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Figure 5.3 RNAi mediated LIMD1 depletion induces an increase in BNIP3 

and VEGF mRNA levels. 
U2OS cells were transfected with 80nM of scrambled control and LIMD1 siRNA. 40 

hours post-transfection, cells were incubated in normoxia (20% O2) or hypoxia (1% 

O2) for 8 hours. Cells were lysed and RNA extracted using the RNAqueous micro 

RNA extraction kit (Ambion). qRT-PCR was performed using gene specific primers 

spanning an exon boundary and SYBR I green. Data was normalised to the 

housekeeping gene β-tubulin and analysed using the relative quantification method 

delta-delta Ct. (A) LIMD1 mRNA levels were quantified to confirm RNAi mediated 

depletion. LIMD1 mRNA levels were significantly reduced (in both normoxia and 

hypoxia) following LIMD1 siRNA transfection relative to cells transfected with the 

scrambled siRNA control.  (B) LIMD1 depletion caused a significant elevation in 

hypoxic BNIP3 mRNA levels in comparison with the scrambled control, however no 

change in BNIP3 mRNA levels was observed in normoxia. (C) LIMD1 depletion 

induced an increase in both normoxic and hypoxic VEGF mRNA levels. (D) HIF1α 

mRNA levels were unaffected by LIMD1 depletion, in normoxia and hypoxia.  
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5.4 Summary 
 
LIMD1 repressed transcription from a HRE-luciferase reporter, in both 

normoxia and hypoxia, in a concentration dependent manner. Zyxin family 

member protein LPP exhibited no repressive effect on HRE activation even 

at high concentrations. LIMD1 also enhanced PHD2 mediated repression of 

HRE activity upon co-expression. Substitution of the conserved PHD 

substrate residues P402/P564 did not completely impair LIMD1’s ability to 

repress HIF transcriptional activity. This concurs with previous data 

highlighting the ability of LIMD1 to induce degradation of an ODD proline 

mutant. shRNA mediated LIMD1 knock down resulted in an increase in HRE 

activity in both normoxia and hypoxia, which could be reverted by re-

expression of an RNAi resistant LIMD1 construct. Additionally, Limd1-/- MEFs 

exhibited a significantly increased HRE activity in comparison to WT MEFs 

following 4 hours of hypoxic exposure. LIMD1 mediated regulation of HRE 

activity also translated to an effect on the expression of HRE containing HIF 

response genes BNIP3 and VEGF. RNAi mediated depletion of LIMD1 

resulted in an increase in the mRNA levels of both BNIP3 and VEGF 

following hypoxic incubation. This indicates that LIMD1has a physiological 

role in the regulation of HIF transcription. Furthermore, LIMD1 depletion did 

not alter HIF1α mRNA levels, confirming that LIMD1 modulates HIF1α by 

regulating its protein stability. These data indicate that LIMD1 modulates HIF 

transcriptional activity, presumably by scaffolding PHD and VHL activities into 

a protein complex. 
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6. Discussion 
 
 
The novel tumour suppressor protein LIMD1 was identified in 1999 from the 

analysis of the C3CER1 region of chromosome 3, found commonly deleted in 

numerous solid malignancies (Kiss et al., 1999).  Although a preliminary 

understanding of LIMD1 has been achieved, the functions of LIMD1 are 

largely still unknown. One possible mechanism of LIMD1 mediated tumour 

suppressive activity that has been reported is by co-repression of the E2F 

family of transcription factors with the archetypal tumour suppressor pRB 

(Sharp et al., 2004). However, deletion of the pRB binding interface within 

LIMD1 does not completely attenuate its transcriptional repressive or tumour 

suppressive activity (Sharp et al., 2004). Therefore, at the beginning of this 

project, research focussed on unveiling novel protein-protein interactions that 

may underpin these pRB-independent tumour suppressive activities. A 

Yeast-2-hybrid screen using LIMD1 amino acids 1-363 identified prolyl 

hydroxylase 1 (PHD1) as a specific interacting partner.  Therefore, whether 

LIMD1 interacts with and modulates the function of the PHDs, in order to 

regulate HIF1 transcription was examined. 

 

 

6.1 LIMD1 and LAW differentially interact with the PHDs 
 
In order to confirm the interaction identified in the Y2H (Figure 1.5) and 

control for false positive interactions, co-IP reactions were performed in 

U2OS cells. PHD1 is one of three isoforms, with a high degree of conserved 

structure and function, all of which are capable of hydroxylating HIFα 

subunits (Epstein et al., 2001; Bruick and McKnight, 2001). Therefore, 

investigations were undertaken to analyse whether LIMD1 could interact with 

all three PHDs. LIMD1 interacted with all three PHDs, confirmed both in vivo 

(Figure 3.1.1.2) and in vitro (Figure 3.1.4). PHD1 and PHD2 are highly 

homologous in their structure, with a shared C-terminal DBSH catalytic and 

oxygenase domain with an N-terminal extension (Epstein et al., 2001; Bruick 

and McKnight, 2001). PHD3 comprises just the C-terminal DBSH domain (as 
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depicted in Figure 1.14). Therefore, as LIMD1 interacts with all three PHDs 

this may indicate that LIMD1 interacts with the PHDs via their homologous C-

terminal DBSH domain. To our knowledge, this is the first report of any 

protein (except for HIFα) that is capable of interacting with all three PHDs 

and therefore highlights the novelty and potential importance of this work in 

hypoxia biology. 

 

Comparative analysis was then performed to identify whether the other Zyxin 

LIM proteins conserve the ability to interact with the PHDs. Interestingly,  

LIMD1, Ajuba and WTIP (LAW) displayed differential abilities to co-IP the 

PHDs, LIMD1 interacted with all three, whilst Ajuba and WTIP interacted with 

both PHD1 and PHD3 but not PHD2 (section 3.1.6). LPP and Zyxin did not 

interact with any of the PHDs and thus served as good negative controls 

highlighting the specificity of the observed interactions. Surprisingly, co-

transfection of TRIP6 with PHD1 induced a modification of PHD1, resulting in 

the detection of a higher molecular weight form, approximately 2-3 kDa larger 

than the predominant PHD1 protein detected (Figure 3.1.6.3). Moreover, 

Xpress-TRIP6 interacted with this higher molecular weight form specifically 

and not the wild type form. The precise nature of this modification and 

whether this recruits or dictates a subsequent interaction with TRIP6 are 

unknown. Isolation of PHD1 by performing a large scale Xpress-TRIP6 

immunoprecipitation, purification by SDS-PAGE and then analysis by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) may unveil 

whether this does represent a PHD1 post-translational modification. 

Increasing evidence suggests a role for PHD1 in non-HIF functions, including 

negative regulation of NF-κB (Cummins et al., 2006). Furthermore, PHD1 has 

distinct attributes in comparison to PHD2 and PHD3, including nuclear 

localisation (Metzen et al., 2003a), down-regulation by hypoxia (Tian et al., 

2006) and the lowest reported in vitro hydroxylase activity for HIFα peptides 

(Tuckerman et al., 2004) and therefore there is a precedent that PHD1 may 

exhibit novel functions independent of HIF. Whether this TRIP6 induced 

modification represents a HIF or non-HIF function of PHD1 will be of future 

interest.  Additionally, 14% of U2OS cells examined exhibit nuclear LIMD1 
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localisation (Sharp et al., 2004). Therefore, the interaction between LIMD1 

and PHD1 may represent a nuclear LIMD1 function. 

 

6.2 LIMD1 bridges the association between PHD2 and VHL 
 

As an interaction was observed between LIMD1 and all three PHDs, 

research was focussed on LIMD1 and how LIMD1 may modulate PHD 

function. Scaffolding proteins have been described which increase the 

physical proximity of PHD2 and PHD3 with HIF1α (OS-9) (Baek et al., 2005), 

and between VHL and elongin C (SSAT2) (Baek et al., 2007a). Therefore, as 

LIM proteins often perform as adaptor proteins, whether LIMD1 may interact 

with other proteins reported to regulate HIFα in a scaffolding manner was 

investigated.  Interestingly, all of the LAW proteins interacted with the E3 

ubiquitin ligase VHL in vivo (Figure 3.2.4). The prolyl hydroxylation and 

ubiquitylation of HIFα had previously been conceived as two spatially and 

temporally separate processes. However, the identification of a family of 

proteins capable of interacting with both components prompted us to 

examine whether LIMD1 could simultaneously interact with both the PHDs 

and VHL, thus bridging an association between the post-translational 

modifiers. Co-IPs confirmed that LIMD1 interacted with PHD2 and VHL via 

different binding interfaces, within the pre-LIM and LIM domains respectively 

(Figure 3.1.5 and 3.2.3). This was in keeping with the Y2H data which first 

identified PHD1 as an interacting partner of the LIMD1 pre-LIM amino acids 

1-363. As PHD2 and VHL were found to bind to LIMD1 via non-overlapping 

binding interfaces, this further suggested the possibility that LIMD1 may 

simultaneously bind to both proteins. This indeed was found to be the case 

as LIMD1 bound to both PHD2 and VHL simultaneously, with neither PHD2 

nor VHL compromising one another’s binding to LIMD1 (Figure 3.2.6.1). 

However, this could have reflected a population of immunoprecipitated 

LIMD1 interacting with PHD2 and another population of LIMD1 with VHL 

(Figure 3.2.6.1 D). Therefore, V5 tagged VHL was immunoprecipitated with a 

V5 antibody with PHD2 in the absence and presence of LIMD1, to confirm 

that LIMD1 simultaneously interacts with both proteins in a scaffolding 
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manner. LIMD1 expression facilitates an interaction between VHL and PHD2 

within a protein complex denoted the normoxic protein complex 

(‘normoxiplex’), confirming this hypothesis (Figure 3.2.6.2). To our knowledge 

this is the first report of an association between VHL and PHD2, unveiling an 

additional level of HIF regulation. Furthermore, as the LAW proteins interact 

differentially with the PHD proteins, and all bind VHL, presumably via their 

highly conserved LIM domains, it is plausible that they also scaffold PHD and 

VHL activities. The precise protein components of the normoxiplex and 

whether LAW share conserved binding interfaces for interacting with the 

PHDs and VHL within this complex need to be further investigated, which is 

further described in section 7.2. 

 

 

6.3 LIMD1 and LAW regulate HIF1α by inducing ODD degradation 
 
As LIMD1 was able to scaffold PHD2 and VHL, it was proposed that this 

would enhance their enzymatic activities and therefore, LIMD1 would 

promote degradation of HIF1α via the ODD domain sensitive to PHD/VHL 

mediated degradation. This was indeed the case as LIMD1 ectopic 

expression resulted in reduced ODD protein levels, but had no effect on the 

levels of the N- or C-terminal domains (Figure 4.1), consistent with the effect 

of LIMD1 depletion by shRNA which stabilised only the ODD domain (Figure 

4.1.6). Interestingly, this was first deduced by co-IP of LIMD1 with these 

domains to detect an interaction. No interaction between full length HIF1α or 

its three domains in isolation were observed (Figures 3.3.1.1 and 3.3.2). This 

may be due to the pro-degradative effect of LIMD1, thus capturing a LIMD1-

PHD-VHL-HIF1α ternary complex may be difficult. However, even in the 

presence of the proteasome inhibitor MG-132, no co-IP could be detected. 

This may suggest that LIMD1 scaffolds PHD and VHL which in turn interact 

with HIF1α, with LIMD1 more distant within a protein complex. In order to 

completely confirm that LIMD1 does not interact with HIF1α, a positive 

control for binding (VHL or PHD2) should be performed in parallel in the 

future. 
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LAW proteins Ajuba and WTIP were also demonstrated to induce a reduction 

in ODD protein levels, to the same effect as ectopic PHD2 expression (Figure 

4.1.1 A). However, TRIP6, which interacted with PHD1 but not VHL, did not 

promote ODD degradation. This indicated that TRIP6 may modulate a non-

HIF PHD1 function. Moreover, this may imply that VHL binding is a 

requirement for LAW function, supporting the hypothesis that LAW act to 

bridge the PHDs with VHL. The dependency on VHL was further 

substantiated by investigation of the effect of a series of LIMD1 deletion 

mutants on the stability of the ODD (Figure 4.1.5). Notably, deletion of the 

LIM domains, wherein the VHL binding interface lies, ablates LIMD1 induced 

ODD degradation. Furthermore, the LIM domains alone are sufficient to 

induce ODD degradation (Figure 4.1.5). The implications of this finding 

suggest that binding to PHD2 via the pre-LIM is not necessary to induce 

ODD degradation. However, the dependency on prolyl hydroxylase function 

was confirmed by treatment with the 2-oxoglutarate-dependent dioxygenase 

inhibitor DMOG, which inhibited LAW mediated ODD degradation (Figure 

4.1.1 D). One plausible explanation to account for this finding is the 

possibility that LAW homo- and heterodimerise, as recently suggested with 

regards to WTIP (van Wijk et al., 2009). Therefore, ectopically expressed LIM 

domains alone may interact with VHL and endogenous LAW proteins, which 

in turn may interact with PHDs, thus maintaining the bridging function. 

Alternatively, the binding interfaces of PHD1 and PHD3 with LIMD1 have not 

been established. As all of the LAW proteins bind to PHD1 and PHD3, but 

only LIMD1 binds to PHD2, this may suggest that the binding regions differ. 

Therefore, it is possible that the LAW proteins interact with PHD1 and PHD3 

via their conserved LIM domains, enabling the bridging function to be 

maintained. 

 

Both proteasomal (Figure 4.1.1 C) and prolyl hydroxylase (Figure 4.1.1 D) 

activities were demonstrated to be required for LAW induced ODD 

degradation, which is in keeping with the well characterised PHD and VHL 

mediated HIFα regulation mechanism. However, mutation of the proline 402 

and 564 residues hydroxylated by the PHDs, did not totally ablate LAW 
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mediated ODD degradation, although impairing the ability of PHD2 to 

degrade the ODD (Figure 4.1.1 B). This finding was corroborated by HRE-

luciferase reporter assays, which demonstrated that LIMD1 was able to 

repress HRE transcriptional activation induced by a proline double mutant 

construct (Figure 5.1.4). Therefore, these data suggest that LAW work in a 

prolyl hydroxylase dependent manner independently of proline 402 and 564. 

However, LIMD1 only achieved a 40% repression of the HRE activity induced 

by the HIF1α proline double mutant, in comparison to 61% repression with 

wild-type HIF1α (Figure 5.1.4). Therefore, this suggests that a degree of 

LIMD1 induced ODD degradation is lost upon P402A/P564A substitution. 

Therefore, LIMD1 may perform both proline 402 and 564 dependent and 

independent mechanisms. One speculative hypothesis may be that LAW act 

to alter the specificity of the PHDs to hydroxylate different motifs within the 

ODD. Alternatively, LAW may recruit different post-translational modifications 

that still require prolyl hydroxylase function. Approaches to deduce the 

precise mechanism are further discussed in section 7.3. 

 
 

6.4 RNAi mediated LIMD1 depletion stabilises HIF1α protein  
 

To confirm that LIMD1 regulated endogenous HIF1α protein levels in vivo, 

the effect of LIMD1 depletion mediated by RNAi was analysed. Lentiviral 

mediated LIMD1 depletion by shRNA induced stabilisation of ectopically 

expressed ODD, which could be reverted by expression of an RNAi resistant 

LIMD1 construct (Figure 4.1.6). This indicated that endogenous LIMD1 

expression levels were coupled with HIF1α stability. The accumulation of the 

ODD with LIMD1 depletion was shown to be valid, as transient siRNA 

mediated depletion of LIMD1 had the same effect with full length endogenous 

HIF1α, in both U2OS (Figure 4.4.1.2) and HEK293 (Figure 4.4.1.3) cells in 

normoxia. PHD2 siRNA was used as a positive control, as multiple groups 

have demonstrated that PHD2 depletion induces stabilisation of HIF1α. This 

finding was corroborated in HEK293 cells, whereby at 80nM siRNA LIMD1 

had the same pronounced effect as PHD2 on HIF1α protein levels (Figure 
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4.4.1.3). However, in U2OS cells PHD2 depletion did not induce the 

anticipated accumulation of HIF1α (Figure 4.4.1.2). The precise explanation 

for this observation is unknown. However, this could be due to the time point 

of lysis post-siRNA administration. As PHD2 expression is inducible by 

hypoxia (Epstein et al., 2001; Berra et al., 2003), it is feasible that HIF1α 

accumulation as a result of PHD2 depletion led to the subsequent increase in 

PHD2 expression in a negative feedback manner, acting to reduce HIF1α 

protein levels. Therefore, at earlier time points of lysis HIF1α stabilisation 

may become apparent. Alternatively, this may reflect a predominant 

contribution by PHD1 and PHD3 in the steady state regulation of HIF1α 

stability in normoxia in U2OS cells. However, PHD2 ectopic expression 

significantly attenuates activation of a HRE reporter in U2OS, even upon 

transfection of a sub-limiting amount (1ng, Figure 5.1.3). This therefore, 

increases the likelihood of the former argument. 

 

 

6.5 LIMD1 regulates HIF1 transcriptional activity  
 

As LIMD1 ectopic expression promoted HIF1α degradation and LIMD1 

depletion induced HIF1α stabilisation, it was proposed that LIMD1 expression 

would modulate HIF1 transcriptional ability. Therefore, a HRE-luciferase 

reporter was utilised to quantify HIF1 transcriptional activity with both ectopic 

LIMD1 expression and with LIMD1 depleted by shRNA. LIMD1 ectopic 

expression repressed HRE activation in a concentration dependent manner 

in both normoxia and hypoxia (Figure 5.1 and 5.1.2), whilst Zyxin protein LPP 

had no repressive effect. Arguably LPP may act to enhance HRE activity, 

thus indicating the possibility of a family of proteins which positively and 

negatively regulate HIF1. Furthermore, expression of a sub-limiting amount 

of LIMD1 with 1ng of PHD2 aided PHD2 mediated HRE repression by a 

further 42% (Figure 5.1.3). This implies that LIMD1 and PHD2 work 

cooperatively to negatively regulate HIF1; substantiating our hypothesis that 

LIMD1 acts as a scaffolding protein. 
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In keeping with the repressive effect on HRE activity induced by ectopic 

expression of LIMD1, LIMD1 depletion mediated by shRNA caused a de-

repression of HRE transcriptional activation (Figure 5.2.1). Furthermore, re-

expression of an RNAi resistant LIMD1 construct following endogenous 

LIMD1 depletion by shRNA, reverted the phenotype, repressing HRE 

activation (Figure 5.2.1). This highlighted that the specificity of the observed 

effect on HRE activity was dependent on LIMD1 protein levels and not due to 

off-target effects of the RNAi. Limd1-/- derived MEFs also exhibited a similar 

phenotype, whereby upon 4 hours of hypoxic incubation they demonstrated a 

marked increase in HRE activity in comparison to the wild type MEFs (Figure 

5.2.2). This suggests that the role of LIMD1 is conserved between human 

and mouse and between multiple different cell types.  

 

qRT-PCR was performed to examine whether LIMD1 mediated regulation of 

HIF transcriptional activity altered the expression level of endogenous HIF 

response genes (Figure 5.3). LIMD1 depletion by siRNA induced an increase 

in the mRNA levels of two HIF response genes containing functional HREs, 

BNIP3 and VEGF, following 8 hours exposure to hypoxia. This indicates that 

loss of LIMD1 may have a physiological role in the regulation of HIF 

responsive gene expression. Furthermore, HIF1α mRNA levels did not 

significantly change following LIMD1 depletion (Figure 5.3). This confirms 

that the observed increase in HIF1α protein levels following LIMD1 depletion 

is due to altered post-translational regulation not an increase in gene 

expression. 

 

Therefore, the data presented in this thesis indicates that LIMD1 (and LAW) 

bridges an association between PHD2 and VHL, to enhance their enzymatic 

activities and augment HIF1α degradation, repressing HIF1 transcriptional 

activity. This data introduces a new family of hypoxic regulators and may also 

represent an additional novel tumour suppressive mechanism of LIMD1. 
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This following section contains preliminary experimental data which provides 

interesting scope for potential directions for future work that will improve our 

understanding of the role of LIMD1 and LAW in the regulation of HIF.  

 

6.6 Confirm that LIMD1 enhances hydroxylation and ubiquitylation of 
HIF1α 

 

In this thesis, it has been shown that LIMD1 (and LAW) promotes HIF1α 

degradation and that this is most likely achieved by bridging the association 

between the PHDs and VHL. Therefore, this hypothesis suggests that LIMD1 

would act to promote the enzymatic activities of these two proteins. Future 

work is required in order to specifically confirm this hypothesis. In order to 

measure hydroxylation, numerous different techniques have been described 

including in vitro quantification of O2 consumption or the CO2 release from 2-

oxoglutarate during oxidative decarboxylation [for review (Hewitson et al., 

2007)]. However, a more direct approach relies on the hydroxylation 

dependent binding of VHL to HIF1α or a minimal peptide encompassing the 

conserved proline residues used in a procedure termed a VHL capture assay 

(Hewitson et al., 2007). This assay involves immunoprecipitating HIF1α or 

the ODD component of HIF1α capable of interacting with VHL following 

proline hydroxylation. HIF1α is then incubated with in vitro transcribed and 

translated radiolabelled [35S]-VHL. The amount of [35S]-VHL captured is then 

assessed by autoradiography and can be quantified (Marxsen et al., 2004). 

[35S]-VHL capture by HIF1α is indicative of the degree of HIF1α 

hydroxylation. Therefore, whether ectopic LIMD1 expression or LIMD1 

depletion by siRNA would alter the degree of VHL capture would indicate that 

LIMD1 modulates PHD hydroxylase activity.  

 

Similarly, ubiquitylation can also be monitored, often by transfection of a 

eukaryotic expression vector encoding a tagged-ubiquitin construct. Whether 

LIMD1 depletion, in the presence of the proteasome inhibitor MG-132, would 

result in a reduction of ubiquitylated HIF1α, could be identified by 

immunoblotting for ubiquitin. Alternatively, to increase specificity, tagged-
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ubiquitin could be isolated from these lysates treated with MG-132 by 

immunoprecipitation and if LIMD1 promotes HIF1α ubiquitylation then it 

would be anticipated that in the presence of LIMD1 more HIF1α co-IPs due 

to the covalent attachment to ubiquitin.  

 

6.7 Analysis of the components of the normoxiplex and identification of 
protein binding interfaces 

 
As the LAW proteins are able to differentially interact with the PHDs and VHL 

it was hypothesised that this may represent a normoxic protein complex 

which acts to enhance enzymatic activities by increasing their physical 

proximity.  In keeping with this hypothesis, there is a precedent for the PHDs 

to be found within higher molecular weight complexes. This was initially 

identified in 2002, when Ivan et al demonstrated that HIF prolyl hydroxylase 

activity was observed in rabbit reticulocyte lysate elutes with an apparent 

molecular weight of 320-440 kDa on size exclusion columns (Ivan et al., 

2002). These data were supported by research by Nakayama et al, who 

demonstrated that PHD2 and PHD3 were able to homodimerise, and that 

PHD3 can heterodimerise with PHD1 and PHD2 (Nakayama et al., 2007). 

Moreover, size fractionation of endogenous PHD3-containing complexes 

from HeLa cells were found over a range of molecular masses from 30 kDa 

(monomeric form) to 2000 kDa, whereby hypoxia acted to shift the 

distribution of PHD3 into fractions of higher molecular mass. Interestingly, 

PHD3 distributed in lower molecular weight complexes maintained a higher 

HIF hydroxylase activity, however, also maintained an interaction with the 

ubiquitin ligase Siah2 which targets PHD3 for degradation (Nakayama et al., 

2007). Therefore, the lower molecular mass forms of PHD3 have a higher 

activity, but reduced stability. Interestingly, preliminary data whereby LIMD1 

is co-transfected into U2OS cells with PHD2 and VHL indicates that LIMD1 

expression appears to induce higher molecular weight forms which are not 

present upon co-transfection with the vector only control (Figure 7.2.1). VHL 

has been reported to be ubiquitylated by the E2-EPF (Jung et al., 2006) and 
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it is therefore plausible that LIMD1 promotes this process. However, LIMD1 

expression does not induce degradation of VHL and therefore if this higher 

molecular weight form is ubiquitylated-VHL it may represent ubiquitylation as 

a signalling molecule. The PHD2 higher molecular weight form is of 

approximately 25 kDa larger than the monomeric form (Figure 6.7.1). The 

nature of this PHD2 form is unknown and to our knowledge no PHD2 

modifications have been reported. Isolation and LC-MS/MS analysis may 

identify the nature of these higher molecular weight forms. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7.1 LIMD1 expression induces higher molecular weight forms of 

PHD2 and VHL. 
pcDNA4 LIMD1 and a VO control were co-transfected into U2OS cells with PHD2 

and VHL. 48 hours post-transfection cells were lysed with RIPA supplemented with 

protease and phosphatase inhibitors and LIMD1 was immunoprecipitated with a 

LIMD1 mAb. Samples were immunoblotted for LIMD1, PHD2 and V5-VHL. LIMD1 

expression induces higher molecular weight forms of PHD2 and VHL indicated by 

arrows.  

 
 
 

100
75

37

25

50

37

BLOT: LIMD1

BLOT: V5-VHL

BLOT:PHD2

50

75

75

kDa



  Discussion | Chapter 6 

181 
 

Furthermore, as previously mentioned, recent evidence also suggests that 

the LAW proteins are able to multimerise, as WTIP has been demonstrated 

to homodimerise via interactions between the highly conserved LIM domains 

(van Wijk et al., 2009). As the LIM domains are so highly conserved between 

the LAW proteins it is possible that the other LAW proteins both homo and 

heterodimerise. The differential binding of the LAW proteins with the PHDs 

and VHL, in addition to PHD and LAW multimerisation suggests the presence 

of a highly complex group of proteins, of which the precise components will 

require careful dissection. Numerous strategies could be performed to 

deduce the specific components of this protein complex, including the use of 

non-denaturing electrospray mass spectrometry which enables the 

identification of non-covalent complexes often involving mutimeric proteins. 

Alternatively, tandem affinity purification could be used, involving two 

subsequent affinity purification steps of tagged recombinant proteins to 

identify specific interacting partners by SDS-PAGE. In addition, size 

fractionation and non-denaturing native SDS-PAGE could be employed to 

identify whether LIMD1 is present in higher molecular weight complexes and 

whether these correspond to the same molecular weights as PHD3 

containing complexes. 

 

To complement these studies and determine the specific components of this 

LIMD1 containing protein complex, mapping of the specific protein-protein 

interfaces of LIMD1 with these other components will be required. There are 

currently 25 LIMD1 amino and carboxyl terminal expression mutants 

currently in use in our laboratory, in addition to a series of internal deletion 

mutants. Interestingly, the LAW proteins have six highly homologous motifs 

within their pre-LIM region, which may represent the PHD1 or PHD3 binding 

interfaces. These conserved regions have been deleted by site-directed 

mutagenesis and therefore protein interaction assays with these mutants 

would shed light on whether LAW interact via a conserved binding interface 

to the PHDs. Initial data using C-terminal mutants indicates the first LIM 

domain as the VHL interaction domain (Figure 6.7.2). However, arguably the 

LIMD1 mutants demonstrating a loss of VHL co-IP are immunoprecipitated 

less abundantly and therefore this requires confirmation. Furthermore, the lab 
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is in possession of eukaryotic expression vectors encoding LIMD1 with 

internal deletions of the three LIMD1 LIM domains (kindly donated by 

Professor GD Longmore, Haematology division, Department of Cell Biology 

and Physiology, Washington University) and therefore, mapping of the 

specific VHL binding interface may be confirmed. Whether these internal 

deletion mutants correlate with a loss of function in negatively regulating HIF 

transcription or ODD stability would be of great interest. 
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Figure 6.7.2 LIMD1 interacts with VHL via a binding interface within the LIM 

1 domain. 
(A) Xpress-LIMD1 deletion mutants and V5-VHL were co-transfected into U2OS 

cells. 48 hours post-transfection cells were lysed with RIPA supplemented with 

protease and phosphatase inhibitors and LIMD1 was immunoprecipitated with an 

Xpress mAb. Samples were immunoblotted for Xpress-LIMD1 and V5-VHL. IgG 

heavy chain is indicated by an arrow. Loss of VHL interaction occurs upon deletion 

of all three LIM domains, however a degree of binding remains after loss of LIM 2 

and 3, indicating binding occurs via LIM 1. (B) Schematic representation of LIMD1 

deletion mutants used in the co-IP. 
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Upon identification of the specific LIMD1 and LAW binding interfaces with the 

PHDs and VHL, an additional elegant approach that could be under taken 

would be to use the knockdown-rescue lentivirus system to remove 

endogenous LIMD1 (LAW) and then re-express specific deletion mutants 

through an IRES. This would enable the dissection of the different protein 

interfaces (for example LIMD1-PHD2 verses LIMD1-PHD1/3 interfaces) and 

subsequent effects on the ability of LIMD1 mutants to regulate HIFs and the 

HRE. Furthermore, definition of the specific amino acids required for 

simultaneous PHD2 and VHL binding and examination of how by mutating 

these residues LIMD1 functions in regulating the HIF activity and thus the 

hypoxic response pathway would be of great interest. Alongside these 

experiments further efforts will be required in order to define the endogenous 

interactions of LAW with PHD1-3 and VHL. 

 
 

To further dissect which components of this protein complex LIMD1 requires 

in order to facilitate HIF regulation, a genetic approach could be used. 

Analysis of the ability of LIMD1 to regulate HIF1 following siRNA or shRNA-

knockdown of specific components of the normoxiplex (PHDs and VHL) in 

vivo, would reveal the critical components of the normoxiplex required to 

transduce LIMD1’s affects. In addition, utilisation of MEFs derived from wild-

type and LIMD1-/- mice to functionally analyse effects of LIMD1 loss on the 

composition and activity of the normoxiplex would provide further insight.  

 
 
An important issue to address is whether LIMD1 regulates HIF2α as well as 

HIF1α. Initial experiments to identify whether LIMD1 depletion by siRNA 

performed in U2OS, led to an accumulation of HIF2α were unsuccessful 

(data not shown). This may be due to the restricted tissue distribution of 

HIF2α in comparison to the universally expressed HIF1α, as no hypoxia 

induced accumulation could be detected (Tian et al., 1997). Alternatively, this 

could be due to the poor signal detection of the antibody used (HIF2α rabbit 

polyclonal, NB100-480, Novus Biologicals, Littleton, CO, USA). A concerted 

effort is required in order to establish whether LIMD1 is a general regulator of 
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HIF function. Moreover, it has been suggested that PHD3 favours 

hydroxylation of HIF2α over HIF1α (Appelhoff et al., 2004). As all three LAW 

proteins interact with PHD3 this may indicate that LIMD1 may modulate HIF2 

function. 

 

6.8 Determine the precise LIMD1 induced post-translational HIF1α 
modification  

 

The ability of LIMD1 and LAW to bind with the PHDs and induce degradation 

of the ODD in a manner dependent on prolyl hydroxylase activity would 

suggest degradation is via P402/P564 hydroxylation. However, data 

presented shows that LAW induced ODD degradation can occur 

independently of these residues. This therefore, raises the question as to the 

necessity for LIMD1 to bind to the PHDs as well as VHL. Currently it is 

unknown how LIMD1 specifically induces post-translational modifications of 

HIF1α, what these modifications are and how these ultimately lead to HIF1α 

proteasome-dependent degradation? Therefore, systematic examination is 

required to identify which of the known HIFα modifications the expression of 

LIMD1 may induce, including hydroxylation, ubiquitylation and sumoylation. 

One approach would be to perform in vitro hydroxylation assays. These could 

be performed in vivo or in vitro using recombinant HIF1α ODD and ODD 

P402A/P564A (GST- or V5-tagged) as a substrate for prolyl hydroxylation, 

detected by LC-MS/MS as was used for the analysis of ankyrin hydroxylation 

(Coleman et al., 2007). Whether ectopic expression of LIMD1 or RNAi 

mediated depletion of LIMD1 modulated prolyl hydroxylation, in terms of the 

kinetics of the enzymatic reaction or altering the substrate proline residues 

would be examined. Post-translational modifications could also be examined 

in the context of the full length protein using full length eukaryotic expression 

vectors encoding V5-tagged-HIF1α and V5-HIF1α P402A/P564A. It may be 

plausible that only upon the deletion of these proline residues LIMD1 acts to 

induce an additional mechanism or alters the specificity of the PHDs to 

hydroxylate alternative proline residues. The ODD domain contains 

numerous proline residues (Figure 6.8.1), many of which share similarity to 
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the conserved LXXLAP hydroxylation motif. LC-MS/MS analysis may reveal 

whether LIMD1 is capable of altering proline hydroxylase residue specificity. 

 

 
 
 

390KKEPDALTLLAPAAGDTIISLDFGSNDTETDDQQLEEVPLYNDVMLP

SPNEKLQNINLAMSPLPTAETPKPLRSSADPALNQEVALKLEPNPESLE

LSFTMPQIQDQTPSPSDGSTRQSSPEPNSPSEYCFYVDSDMVNEFKLEL

VEKLFAEDTEAKNPFSTQDTDLDLEMLAPYIPMDDDFQLRSFDQLSPLE

SSSASPESASPQSTVTVFQQTQIQEPTANATTTTATTDELKTVTKDRME

DIKILIASPSPTHIHKETT652 

 

 

Figure 6.8.1 HIF1α ODD domain is a proline rich sequence. 
The HIF1α ODD domain (amino acids 390-652) contains numerous proline residues 

(highlighted), many of which are highly similar to the well characterised proline 402 

and 564 hydroxylation sites, within LXXLAP motifs (underlined).  
 

 

 

Recent data has increasingly implicated the role of other non-prolyl 

hydroxylase post-translational modifications in the regulation of HIFα protein 

stability (Brahimi-Horn et al., 2005). One reported mechanism which occurs 

independently of proline 402/564 hydroxylation, but is dependent on VHL 

activity is sumoylation. However, there have been conflicting reports as to 

whether sumoylation promotes HIFα stabilisation (Carbia-Nagashima et al., 

2007; Bae et al., 2004) or degradation (Cheng et al., 2007; Berta et al., 

2007). Most recent publications suggest that sumoylation predominantly 

induces degradation. Therefore, LIMD1 in addition to PHD dependent ODD 

degradation may also promote HIFα sumoylation at lysine 391 and 477, 
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accounting for the observed proline 402/564 independent ODD degradative 

function. Therefore, in order to investigate this hypothesis, As-RED LIMD1 

was co-transfected into U2OS cells with an EGFP-SUMO1 construct (kindly 

donated by Dr Simon Dawson, School of Biomedical Sciences, University of 

Nottingham) to examine whether a co-localisation could be observed. 

Preliminary data indicated that LIMD1 did indeed co-localise with EGFP-

SUMO1 in bodies in the peri-nuclear region of the cytoplasm (Figure 6.8.2). 

However, this needs to be complemented with AsRED and EGFP vector 

controls and thus only provides an indication that these proteins co-localise in 

vivo.  

 

 

 

Figure 6.8.2 LIMD1 co-localises with SUMO1 in U2OS cells in vivo. 
U2OS cells were transiently co-transfected with AsRED-LIMD1 and EGFP-SUMO1.  

48 hours post-transfection cells were then fixed using 4% PFA and fluorescent 

fusion proteins visualised using confocal microscopy. Nuclear staining achieved 

using DAPI incorporated into the mounting media (Vectashield, Vector Laboratories 

Inc. CA, USA). 
 

 

Further work is required to investigate the possibility that LIMD1 may regulate 

HIF by modulating sumoylation. Therefore, similarly to in vitro ubiquitination 

assays, in vitro sumoylation assays are required, to investigate whether 

ectopic expression of LIMD1 or RNAi mediated depletion alters the degree of 

HIFα sumoylation. To distinguish whether LIMD1 may mediate prolyl-

hydroxylase independent HIFα degradation via sumoylation; this assay may 
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be repeated by the use of the hydroxylation resistant HIF1α or ODD 

construct (P402A/P564A).  

 

6.9 In vivo analysis of the role of LIMD1 in physiological hypoxic 
responses  

 
RNAi mediated LIMD1 depletion induced an increase in the endogenous 

mRNA levels of the HIF response genes VEGF and BNIP3. Therefore, to 

complement these data and confirm that the role of LIMD1 regulation has a 

physiological effect in vivo, a primary study analysing a downstream 

haematological parameter of HIF transcription was performed. Polycythemia 

or erythrocytosis (increased red blood cell numbers) has been shown to be 

associated with defective oxygen sensing in organs/cells producing the 

hypoxia response gene product erythropoietin (Semenza, 2009). 

Furthermore, a familial polycythemic condition has been linked to a 

heterozygous mutation in PHD2 that reduces hydroxylase activity (Percy et 

al., 2006). Moreover, conditional Phd2-/- or Phd1-/-;Phd3-/- mice exhibit 

increased serum EPO levels and erythrocytosis (Takeda et al., 2008). Of the 

LAW proteins, only LIMD1 is significantly expressed in bone marrow cells 

(both haematopoietic and mesenchymal) (Luderer et al., 2008). Therefore, an 

initial investigation was performed to analyse whether the loss of LIMD1 

contributed to a polycythemic phenotype due to aberrant HIF regulation. The 

hematocrit or packed cell volume is the proportion of total blood volume that 

is occupied by red blood cells. As red blood cell production (erythropoiesis) is 

regulated by the HIF response gene erythropoietin, it acts as a direct 

parameter for measuring the downstream physiological effect of HIF 

transcription. In collaboration with Professor GD Longmore (University of 

Washington) a pilot study was performed to evaluate whether the increased 

HRE activity observed in the Limd1-/- MEFs (Figure 5.2.2) translated to an 

increase in hematocrit in Limd1-/- mice in comparison to their WT littermate 

mice. Adult mice were incubated in normoxia (20% O2) or hypoxia (10% O2) 

for 16 hours before peripheral blood samples were collected via the inferior 

vena cava immediately after they were euthanized. Blood samples were 
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immediately mixed with EDTA and blood counts were measured using an 

Advia 2120 (Bayer, Pittsburgh, PA).  Preliminary data indicated that Limd1-/- 

mice were moderately polycythemic, as the Limd1-/- mice exhibited an 

increased hematocrit in comparison to the WT mice following hypoxic 

exposure (Figure 6.9). This is in keeping with previous data which 

demonstrated that Limd1-/- MEFs exhibited an elevated HRE activation 

following hypoxic exposure (Figure 5.2.2). However, the WT mice do not 

exhibit an increase in hematocrit upon 16 hours hypoxic incubation which 

may suggest that this time period is insufficient to see the effects of 

erythropoietic drive. Future work, optimising this experiment over a range of 

time points will shed further light into the physiological consequences of 

LIMD1 loss. As the different PHD isoforms have been demonstrated to 

differentially regulate HIF1α stability in the liver and kidney and suppress 

erythropoiesis through distinct mechanisms (Takeda et al., 2008), the effect 

of LIMD1 loss may give further insights into the dichotomy of its function with 

the different PHD isoforms. 
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Figure 6.9 Limd1-/- mice exhibit elevated hematocrit following exposure to 

hypoxia. 
Adult WT and Limd1-/- mice (n given in bracket) were incubated at 20% and 10% O2 

for 16 hours.  Peripheral blood samples were collected via the inferior vena cava 

immediately after they were euthanized. Blood samples were immediately mixed 

with EDTA and blood counts were measured using an Advia 2120 (Bayer, 

Pittsburgh, PA).  Limd1-/- mice incubated in 10% O2 for 16 hours demonstrated an 

elevated hematocrit in comparison to the normoxic Limd1-/- mice and their WT 

littermates. 

 

 

In addition, future work incorporating a full haematological and serological 

analysis on these Limd1-/- mice compared to WT mice as controls may be 

undertaken to examine in situ effects on hypoxic response due to Limd1 loss. 

Such analysis could include complete blood count profiles of peripheral 

blood, serum EPO levels as well as hepatic and renal mRNA EPO levels in 

conjunction with red blood cell numbers (i.e., hematocrit). Flow cytometry 

analysis of bone marrow haematopoietic progenitors may also be performed, 

as polycythemia is often caused by excessive differentiation and proliferation 

of Ter119+ erythroid progenitors, which are known to express EPO receptors 

at high levels (Richmond et al., 2005).  
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Bone osteoblast cells express VEGF which in an autocrine manner has been 

shown to influence bone osteoblast differentiation and mineralization (Midy 

and Plouet, 1994). Interestingly, international collaborators have recently 

shown that Limd1 is a negative regulator of osteoblast differentiation and 

function (Luderer et al., 2008).  Primary osteoblast precursor cells isolated 

from the bones of Limd1-/- mice gave rise to more osteoblast cells and 

exhibited increased mineralization in ex vivo cultures. Furthermore, they have 

also established immortalized osteoblast progenitor cell lines from WT and 

Limd1-/- mice.  These cell lines behave exactly as primary cells in culture, 

with increased differentiation and mineralization compared to WT cells. 

However, the precise cellular or molecular mechanism whereby Limd1 

negatively regulates osteoblastogenesis is not known. With the identification 

of Limd1 as a regulator of the hypoxia response this makes its role in VEGF 

secretion by osteoclast or osteoblast precursor cells and subsequent 

autocrine response to VEGF a compelling hypothesis. Future work to test this 

hypothesis in primary WT and Limd1-/- osteoblasts isolated from the calvarial 

bones of newborn mice and adult bone marrow mesenchymal progenitors is 

required. Analysis of secreted VEGF (ELISA) and VEGF mRNA levels (qRT-

PCR) are required to establish whether Limd1 regulates osteoblastogenesis 

via VEGF. In addition, cultures of Limd1-/- progenitors will be treated with 

VEGF-neutralizing soluble receptor.  If the absence of Limd1 leads to 

increased VEGF secretion and thus increased osteoblast differentiation 

(autocrine stimulation by VEGF) or osteoblast colony formation from 

mesenchymal progenitors then this treatment should inhibit these (Luderer et 

al., 2008). 

 

6.10 In vivo analysis of the role of LIMD1 in the regulation of HIF in 
cancer 

 

LIMD1 is encoded on C3CER1, a region of human chromosome 3, which 

harbours deletions in 83% of 576 tumours analysed (Petursdottir et al., 

2004). LIMD1 has been demonstrated to be lost in human lung cancers in 

75% and 79% of squamous and adenocarcinomas respectively (Sharp et al., 
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2008). Furthermore, Limd1-/- mice challenged with carcinogenic urethane 

formed a higher incidence of tumours of increased size in comparison to their 

WT littermates. Solid tumours often contain hypoxic regions and both HIF1α 

and HIF2α are widely found over expressed in a broad range of malignancies 

(Talks et al., 2000). Therefore, it would be of interest to analyse whether 

LIMD1 loss contributes to increased HIFα levels in cancer. 

Immunohistochemistry of different human cancers could be used to quantify 

protein levels from cancer sections in order to evaluate whether LIMD1 and 

HIFα are inversely correlated. In particular, evaluation of lung cancer models 

whereby LIMD1 has been demonstrated to be down regulated and HIF1α 

over-expressed (Shyu et al., 2007) would be interesting. This could initially 

be achieved by analysis of the 48 matched lung tumour and normal samples 

used to evaluate LIMD1 loss and epigenetic silencing (Sharp et al., 2008). 

The role of LIMD1 in VHL inactive renal cell carcinomas which constitutively 

over-express HIF2α would also be of interest (Maxwell et al., 1999; Raval et 

al., 2005). Whether LIMD1 loss would further promote HIFα accumulation in 

VHL inactive renal cell carcinomas is arguable, depending on whether LIMD1 

activity is dependent or independent of VHL activity. Furthermore, in vivo and 

ex vivo analysis of these renal cell carcinomas would shed further light onto 

the precise mechanism of LIMD1’s regulation of HIF. 

 

Another subject to address is whether and to what degree LIMD1 performs 

tumour suppressive activity via negative regulation of HIF with the PHDs in 

comparison to negative regulation of E2F transcription with pRB. One 

approach would be to perform in vitro experiments such as colony formation 

assays in both pRB-/- SAOS2 and VHL inactive renal cell carcinoma cell 

lines. In addition, following the identification of the precise PHD and VHL 

binding interfaces within LIMD1, colony formation assays could be performed 

with LIMD1 mutants with these binding regions internally deleted.  This may 

provide an insight into whether binding to the PHDs and/or VHL is required 

for tumour suppressive LIMD1 function.  Alternatively, LIMD1 mediated ODD 

degradation is attenuated by treatment of the PHD inhibitor DMOG. 

Therefore, to what degree LIMD1 still enables growth suppression following 

DMOG administration would be interesting. In combination with other in vitro 
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analysis, to dissect LIMD1’s multiple different functions and to understand 

their physiological contribution to cancer formation would be of great interest. 

 

There are possible therapeutic implications of the increasing evidence that 

LIMD1 may perform as a critical tumour suppressor. The most accessible 

therapeutic use is probably the loss of LIMD1 as an early onset marker for 

tumourigenesis. LIMD1 loss occurs early in tumour formation and therefore, 

LIMD1 expression could be used as a marker for early stage tumour 

development. Additionally, LIMD1 nuclear localisation in breast cancer 

correlates with good prognosis and therefore LIMD1 distribution could also 

be monitored (Spendlove et al., 2008). LIMD1 has been demonstrated to be 

regulated by epigenetic silencing. Of 48 matched lung cancer samples 

analysed, 26% exhibited promoter methylation, and of the tumours which 

showed increased methylation 86% had reduced LIMD1 expression levels 

determined by qRT-PCR (Sharp et al., 2008). Administration of the DNA 

methylation inhibitor 5-Aza-2′-deoxycytidine in the MB435 cell line which do 

not express LIMD1 however, contain the LIMD1 gene, induces re-expression 

of LIMD1 (Sharp et al., 2008). This provides scope for the re-expression of 

LIMD1 in human cancers to retain tumour suppressive activity by treatment 

with 5-Aza-2′-deoxycytidine which has already been demonstrated to exhibit 

an anti-neoplastic effect on human breast carcinoma cells (Primeau et al., 

2003). However, similarly to the potential inhibition of PHD activity to promote 

HIF activity in anaemic and ischemic disorders which may contribute to HIF 

induced tumour formation, the effect of LIMD1 re-expression which may 

promote ischemia would require careful consideration. 

 

6.11 Regulation of LIMD1 by phosphorylation 
 
The addition and removal of phosphate groups to proteins (phosphorylation 

and de-phosphorylation respectively) acts as a key molecular switch that 

regulates numerous cellular processes. LIMD1 is serine, threonine and 

tyrosine phosphorylated (Figure 6.11.1) which was confirmed by Huggins et 

al in 2008 (Huggins and Andrulis, 2008). Therefore, it was hypothesised that 
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phosphorylation status may determine LIMD1 function, thus providing a 

mechanism whereby functions with pRB and PHD/VHL may be distinguished. 

A primary investigation indicated that phospho-threonine LIMD1 interacts 

with PHD2 but not phospho-serine or phospho-tyrosine (Figure 6.11.2). 

LIMD1 interacted with PHD2 immunoprecipitated using a rabbit polyclonal 

antibody, thus verifying previous co-IPs whereby LIMD1 was 

immunoprecipitated using a LIMD1 mAb (Figure 3.1.1.2). Interestingly, 

immunoblotting with phospho-specific antibodies detected only the presence 

of phospho-threonine LIMD1 as a PHD2 interacting partner (Figure 6.11.2). 

This indicates that PHD2 only interacts with threonine phosphorylated (or 

non-phosphorylated) LIMD1. Therefore, this may suggest that the LIMD1-

PHD2 interaction is dependent on phosphorylation and provides a 

mechanism whereby LIMD1 may interact with PHDs in response to cellular 

signalling cues. However, this experiment requires repetition for verification. 

Further research into whether alkaline phosphatase treatment impairs 

LIMD1-PHD binding and which kinase phosphorylates LIMD1 in response to 

which signalling cascades is required. It is plausible that phosphorylation 

status may regulate the ability of all of the LAW proteins to determine their 

differential interactions with PHD1, 2 and 3. Whether LIMD1 is also 

phosphorylated in response to hypoxia is also a consideration. The effect of 

RNAi mediated LIMD1 depletion resulted in a marked increase in the stability 

of HIF1α in hypoxia than in normoxia (Figure 4.4.1.4). As LIMD1 protein 

levels were not modulated by oxygen tension (Figure 4.2), phosphorylation 

may act in a way to enhance PHD function via LIMD1 and also a mechanism 

to distinguish LIMD1 functions. This is in keeping with the hypothesis that 

LIMD1 bridges PHD and VHL activities, where there may be an increased 

necessity for LIMD1 function in enhancing HIF1α hydroxylation, when 

hydroxylase activity is limited by reduced oxygen availability. Therefore, 

cellular signalling pathways stimulated by hypoxia may result in LIMD1 

phosphorylation, augmenting the LIMD1-PHD2 interaction and thus providing 

a negative feedback loop to regulate HIF1 activity.  
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Figure 6.11.1 LIMD1 is serine, threonine and tyrosine phosphorylated. 
Xpress-LIMD1 and vector only (VO) control were transfected into U2OS cells. 48 

hours post-transfection cells were lysed with RIPA supplemented with protease and 

phosphatase inhibitors and LIMD1 was immunoprecipitated with a LIMD1 mAb. 

Samples were immunoblotted for LIMD1 IP and for phospho-serine, phospho-

serine/threonine or phospho-tyrosine. Immunoblotting was performed using 5% 

(w/v) BSA/PBS-T rather than 5% marvel/PBS-T LIMD1, to prevent detection of 

phospho-casein. LIMD1 is detected by all three phospho antibodies, indicating 

phosphorylation. 
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Figure 6.11.2 PHD2 specifically interacts with phospho-threonine LIMD1. 
VO and PHD2 were co-transfected with LIMD1 into U2OS cells. 48 hours post-

transfection cells were lysed with RIPA supplemented with protease and 

phosphatase inhibitors and PHD2 was immunoprecipitated with a polyclonal 

antibody. Samples were immunoblotted to detect whether LIMD1 co-IPs with PHD2 

and whether specific phospho-LIMD1 forms could be detected. Immunoblotting was 

performed using 5% (w/v) BSA/PBS-T rather than 5% marvel/PBS-T LIMD1, to 

prevent detection of phospho-casein. Phospho-serine/threonine LIMD1 specifically 

interacts with PHD2 but not phospho-serine or phospho-tyrosine. This is therefore 

indicative that PHD2 specifically interacts with phospho-threonine LIMD1. 
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6.12 LIMD1 as a possible substrate for prolyl hydroxylation 

 
One plausible hypothesis worth future consideration is the possibility that 

LIMD1 is a substrate for PHD mediated prolyl hydroxylation. The pre-LIM 

region of LIMD1 is highly proline rich (11.9% proline), with numerous regions 

with varying degrees of homology to the conserved proline hydroxylation 

consensus sequence ‘LXXLAP’ (Figure 6.12). Notably, immediately N-

terminal to a pre-LIM structured coiled-coil domain there are 7 proline 

residues within a 21 amino acid region. It may be feasible that LIMD1 is 

hydroxylated, in turn inducing recruitment of VHL within the normoxic protein 

complex. There is a precedent for the related collagen prolyl-4-hydroxylases 

to hydroxylate non-collagen substrates including the human argonaute 2 

protein involved in RNA-induced silencing complexes (Qi et al., 2008). 

However, although the ankyrin repeat domain containing proteins have been 

identified as FIH substrates, to date no novel non-HIF prolyl hydroxylase 

substrates have been confirmed (Kaelin, Jr. and Ratcliffe, 2008). To our 

knowledge, LIMD1 is the only protein to interact with all three PHDs except 

for the substrate HIFα, which may suggest that LIMD1 is a substrate. 

 

One approach to confirm whether this is the case is to use LC-MS/MS. 

Recombinant LIMD1 purified in vivo or from an in vitro hydroxylation assay, 

could be trypsinised and then analysed for post-translational modifications 

including hydroxylation by LC-MS/MS. If LIMD1 was indeed a target for 

hydroxylation, mutagenesis of the proline substrate to analyse the functional 

significance of this modification would be required. 
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MDKYDDLGLEASKFIEDLNMYEASKDGLFRVDKGAGNNPEFEETRRVFATKMAKIHL

QQQQQQLLQEETLPRGSRGPVNGGGRLGPQARWEVVGSKLTVDGAAKPPLAASTGAP

GAVTTLAAGQPPYPPQEQRSRPYLHGTRHGSQDCGSRESLATSEMSAFHQPGPCEDP

SCLTHGDYYDNLSLASPKWGDKPGVSPSIGLSVGSGWPSSPGSDPPLPKPCGDHPLN

HRQLSLSSSRSSEGSLGGQNSGIGGRSSEKPTGLWSTASSQRVSPGLPSPNLENGAP

AVGPVQPRTPSVSAPLALSCPRQGGLPRSNSGLGGEVSGVMSKPNVDPQPWFQDGPK

SYLSSSAPSSSPAGLDGSQQGAVPGLGPKPGCTDLGTGPKLSPTSLVHPVMSTLPEL

SCKEGPLGWSSDGSLGSVLLDSPSSPRVRLPCQPLVPGPELRPSAAELKLEALTQRL

EREMDAHPKADYFGACVKCSKGVFGAGQACQAMGNLYHDTCFTCAACSRKLRGKAFY

FVNGKVFCEEDFLYSGFQQSADRCFLCGHLIMDMILQALGKSYHPGCFRCVICNECL

DGVPFTVDSENKIYCVRDYHKVLAPKCAACGLPILPPEGSDETIRVVSMDRDYHVEC

YHCEDCGLELNDEDGHRCYPLEDHLFCHSCHVKRLEKRPSSTALHQHHF 

 
Figure 6.12 The proline rich nature of the LIMD1 amino acid sequence. 
LIMD1 amino acid sequence, (proline residues, highlighted). LIMD1 is proline rich 

(9.5% proline, 11.9% proline in pre-LIM region) and therefore may be a candidate 

PHD substrate. LIM domains and pre-LIM coiled coil domain are designated. 
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6.13 Conclusion 
 

Data presented in this thesis, demonstrate that LIMD1 and the LAW proteins 

represent novel proteins in the regulation of HIF function. Such is the scale 

and diversity of the genes responsive to the HIF transcription factors that it is 

becoming increasingly apparent that the regulatory networks that control their 

activity are similarly complex in their nature. Recent findings have described 

proteins that may interact with different components of the HIF regulatory 

system; however none to date have been demonstrated to interact with all 

three PHD proteins and VHL. The mode of action of LIMD1 occurs by its 

bridging of an association between PHD2 and VHL (shown schematically in 

Figure 7.8), introducing the concept that the enzymatic activities of the PHDs 

and VHL are exerted within a functional protein complex, rather than the 

current dogma whereby they are thought of as two separate subsequent 

processes. Furthermore, evidence for a proteasome and prolyl hydroxylase 

dependent, proline 402 and 564 independent mechanism has been provided. 

Whether LIMD1 may alter the substrate proline residues for hydroxylation or 

recruit additional post-translational modifiers to the normoxiplex that may act 

independently of these two residues, is currently unknown. Exciting current 

research is revealing novel functions of the PHDs, whether LAW act to 

influence these functions in a tissue specific, redundant or non-redundant 

manner is unknown, but provides a fascinating base for future research into 

the specific role of this newly identified family of hypoxic regulators. 
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Figure 6.13 LIMD1/LAW mediate degradation of HIF1α by bridging an 

association between the PHDs and VHL. 
LIMD1 interacts with PHD2 via its pre-LIM region and VHL via the LIM domains to 

scaffold the proteins into one protein complex. Thus, LIMD1 and LAW promote 

HIF1α degradation by the proteasome, by increasing the physical proximity of the 

enzymatic components responsible for hydroxylation and ubiquitylation. LIMD1 

facilitates degradation of the ODD even upon deletion of the well characterised 

proline 402 and 564 residues, and therefore it is plausible that LIMD1 acts to recruit 

other post-translational modifiers to modulate HIFα stability. For simplicity other 

proteins reportedly involved in regulating HIFα stability have not been depicted in 

this model, including elongin B,C and Cullin2 within the VBC complex, OS-9, 

RACK1, SSAT1 and SSAT2, Morg-1, MUC1, MAGE-11, ARD1, HAF, Hdm2, VDU2. 

The interplay between LIMD1/LAW and these proteins is of future interest. 
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7.1 Generation of Xpress-tagged recombinant prolyl hydroxylases 
 

Untagged pcDNA3-PHD1, PHD2 and PHD3 constructs were kindly donated 

by Professor Peter Ratcliffe (Nuffield Department of Clinical Medicine, The 

Henry Wellcome Building for Molecular Physiology, University of Oxford). In 

order to comparatively analyse the PHDs with the Xpress-tagged Zyxin family 

proteins, PHDs were TA cloned into the pcDNA4His/Max-TOPO vector 

(Invitrogen) incorporating an Xpress-tag. Furthermore, for future analysis 

PHDs were TA cloned into pcDNA4His/Max-TOPO vector in order to sub-

clone into pEGFP (EGFP tag, Clontech) and pGEX 4T-1 (GST tag, 

Amersham).  PHD1, PHD2 and PHD3 were amplified by PCR incorporating 

flanking BamH1 and EcoR1 restriction enzyme sites for sub-cloning. In order 

to keep PHD coding regions in frame upon sub-cloning into pEGFP and 

pGEX 4T-1, separate PCR primers were designed with differing numbers of 

base pairs between the 5’ flanking restriction site and the PHD start codon. 

  

BamH1 and EcoR1 sites were incorporated using the following primers: 

 

PHD1 (pEGFP–C1+1) forward:  
5’-GGGGGGATCCTGATGGACAGCCCGTGCCAGCCGCAGCCC-3’ 

PHD1 (pGEX 4T-1) forward: 
5’-GGGGGATCCATGGACAGCCCGTGCCAGCCGCAGCCC-3’ 

PHD1 (pEGFP–C1+1 and pGEX 4T-1) reverse: 
5’GGGGAATTCCTAGGTGGGCGTAGGCGGCTGTGATAC-3’ 

 

PHD2 (pEGFP–C1+1) forward: 
5’-GGGGGGATCCTGATGGCCAATGACAGCGGCGGGCCCGGCGGGCCG-3’ 

PHD2 (pGEX 4T-1) forward: 
5’-GGGGGATCCATGGCCAATGACAGCGGCGGGCCCGGCGGGCCG-3’ 

PHD2 (pEGFP–C1+1 and pGEX 4T-1) reverse: 
5’-GGGGAATTCCTAGAAGACGTATTTACCGACCGAATCTGAAGG-3’ 
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PHD3 (pEGFP–C1+1) forward: 
5’-GGGGAGATCTGCATGCCCCTGGGACACATCATGAGGCTGGACCTGGAG-

3’ 

PHD3 (pGEX 4T-1) forward: 
5’-GGGAGATCTATGCCCCTGGGACACATCATGAGGCTGGACCTGGAG-3’ 

PHD3 (pEGFP–C1+1 and pGEX 4T-1) reverse: 
5’-GGGGAATTCTCAGTCTTCAGTGAGGGCAGATTCAGTTTTCCT-3’ 

 

The PCR reactions were set up as indicated in materials and methods 

chapter 2.5.1. The PCR cycle for the amplification of 100ng of PHD1 and 

PHD3 template DNA were as follows: 

 

Initial denaturation  5 min at 95˚c 

Denaturation   1 min at 95˚c 

Primer annealing  1 min at 50˚c 

DNA amplification  1 min at 72˚c 

Final extension   2 min at 72˚c 

 
Due to the GC rich nature of PHD2 GC melt PCR was performed (materials 

and methods chapter 2.5.2) using the following PCR parameters: 

 

Initial denaturation  1 min at 95˚c 

Denaturation   30 sec at 94˚c 

Primer annealing  1 min at 50˚c 

DNA amplification  3 min at 68˚c 

Final extension   3 min at 68˚c 

 

 

Following the PCR reaction, PCR products were excised, solubilised and 

purified (section 2.4.6) and verified by agarose gel electrophoresis (Figure 

7.1.1). 

 
 

35 Cycles 

30 Cycles 
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Figure 7.1.1 PCR amplification of PHD1, PHD2 and PHD3 for TA cloning 

into the pCDNA4/HisMax expression vector. 
(A) Agarose (1% w/v) gel electrophoresis of PCR amplified product of PHD1 cDNA 

of 1220 bp. PCR performed twice incorporating restriction enzyme sites in different 

frames specific for sub-cloning into pEGFP-C1+1 and pGEX 4T-1. (B) PCR 

products representing PHD2 cDNA of 1280 bp and (C) PHD3 cDNA of 720 bp.  

 

 

The PCR product was then TA cloned as described in section 2.5.3 into the 

pcDNA4His/Max-TOPO vector (Figure 7.1.2). The TA cloning reaction 

product was then transformed into competent DH5α and selected for growth 

in media containing ampicillin (section 2.3). The recombinant vectors were 

then mini-prep purified from the bacterial culture (section 2.4.1) and digested 

using BamH1 and EcoRI restriction sites incorporated by PCR to verify the 

presence of cDNA insert (Figure 7.1.3). pcDNA4His/Max-TOPO-PHD3 

contains an internal BamHI restriction site and was therefore cut with BglII 

which shares a compatible restriction digest site. However, this digestion 

resulted in generation of multiple bands, the smallest representing PHD3 

cDNA. Correct incorporation of PHD3 cDNA was confirmed by sequence 

analysis. Sequence analysis using an Xpress forward primer (5’ 

TATGGCTAGCATGACTGGT 3’) confirmed the correct full length, in frame 

insertion of the PHDs in the correct 5’ to 3’ orientation (Figure 7.1.4). 
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Figure 7.1.2 pcDNA4His/Max-TOPO expression vector.  
(A) pcDNA4His/Max-TOPO vector map and schematic representation of the 

topoisomerase I mediated cloning reaction. (B) pcDNA4His/Max-TOPO multiple 

cloning site, illustrating the region of insertion of the PCR product.  
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Figure 7.1.3 Restriction digest verification of TA cloning of PHD cDNA into 

the pCDNA4/HisMax vector. 
pCDNA4/HisMax vectors were digested with BamH1/EcoRI ([A] PHD1 and  [B] 
PHD2) and BglII/EcoRI ([C] PHD3) to confirm the presence of PHD cDNA inserted 

within the vector by TA cloning. PHD3 contains an internal BamH1 restriction site. 

Therefore, a BglII site was incorporated by PCR instead, capable of ligating with a 

restricted BamHI site. However, pCDNA4/HisMax contains multiple BglII sites 

creating multiple bands upon digestion, which became problematic upon vector 

digest to verify PHD3 insert presence. Therefore all vectors were sequenced using a 

5’ pCDNA4/HisMax primer.  
 
 
 
 
 
 
 

PHD1 1223 bp

pCDNA4/HisMax-TOPO PHD1 (pEGFP)  pCDNA4/HisMax-TOPO PHD1 (pGEX 4T-1)

pCDNA4/HisMax-TOPO PHD2 (pEGFP)  pCDNA4/HisMax-TOPO PHD2 (pGEX 4T-1)

PHD2 1280 bp

pCDNA4/HisMax-TOPO PHD3 (pEGFP)  pCDNA4/HisMax-TOPO PHD3 (pGEX 4T-1)

PHD3 719 bp
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BamH1 site

PHD1 cDNA

A: pCDNA4His/Max-PHD1 (pEGFP)

 
 
 
 
GGTCGGGGACTGTACGACGATGACGATAAGGTACAGGCCCTTGGGGGGATCCTGATG
GACAGCCCGTGCCAGCCGCAGCCCCTAAGTCAGGCTCTCCCTCAGTTACCAGGGTCT
TCGTCAGAGCCCTTGGAGCCTGAGCCTGGCCGGGCCAGGATGGGAGTGGAGAGTTAC
CTGCCCTGTCCCCTGCTCCCCTCCTACCACTGTCCAGGAGTGCCTAGTGAGGCCTCG
GCAGGGAGTGGGACCCCCAGAGCCACAGCCACCTCTACCACTGCCAGCCCTCTTCGG
GACGGTTTTGGCGGGCAGGATGGTGGTGAGCTGCGGCCGCTGCAGAGTGAAGGCGCT
GCAGCGCTGGTCACCAAGGGGTGCCAGCGATTGGCAGCCCAGGGCGCACGGCCTGAG
GCCCCCAAACGGAAATGGGCCGAGGATGGTGGGGATGCCCCTTCACCCAGCAAACGG
CCCTGGGCCAGGCAAGAGAACCAGGAGGCAGAGCGGGAGGGTGGCATGAGCTGCAGC
TGCAGCAGTGGCAGTGGTGAGGCCAGTGCTGGGCTGATGGAGGAGGCGCTGCCCTCT
GCGCCCGAGCGCCTGGCCCTGGACTATATCGTGCCCTGCATGCGGTACTACGGCATC
TGCGTCAAGGACAGCTTCCTGGGGGCAGCACTGGGCGGTCGCGTGCTGGCCGAGGTG
GAGGCCCTCAAACGGGGTGGGCGCCTGCGAGACGGGCAGCTAGTGAGCCAGAGGGCG
ATCCCGCCGCGCAGCATCCGTGGGGACCAGATTGCCTGGGTGGAAGGCCATGAACCA
GGCTGTCGAAGCATTGGTGCCCTCATGGCCCATGTGGACGCCGTCATCCGCCACTGC
GCAGGGCGGCTGGGCAGCTATGTCATCAACGGGCGCACCAAGGCCATGGTGGCGTGT
TACCCAGGCAACGGGCTCGGGTACGTAAGGCACGTTGACATCCCCACGGCGATGGGC
GCTGCATCAACTGTATCTATTACCTGATCAGACCTGGACGTAGTGCATGCGCTGCTG
CAGATCTCCCTGAAGGGCGACCCGTGCTAGCCACATCGAGTCCACTCAGACTGAGCT
CATTACTGACTGACCGACGAACCTCCACGAGGTTA 
 
 
 
 
 
 
 
 
 

B 



  Appendix 

208 
 

BamH1 site

PHD1 cDNA

C: pCDNA4His/Max-PHD1 (pGEX4T-1)

 
 
 
 
CTATGGTACTGTCGACGATGACGATAAGGTACAGGCCCTTGGGGGATCCATGGACAG
CCCGTGCCAGCCGCAGCCCCTAAGTCAGGCTCTCCCTCAGTTACCAGGGTCTTCGTC
AGAGCCCTTGGAGCCTGAGCCTGGCCGGGCCAGGATGGGAGTGGAGAGTTACCTGCC
CTGTCCCCTGCTCCCCTCCTACCACTGTCCAGGAGTGCCTAGTGAGGCCTCGGCAGG
GAGTGGGACCCCCAGAGCCACAGCCACCTCTACCACTGCCAGCCCTCTTCGGGACGG
TTTTGGCGGGCAGGATGGTGGTGAGCTGCGGCCGCTGCAGAGTGAAGGCGCTGCAGC
GCTGGTCACCAAGGGGTGCCAGCGATTGGCAGCCCAGGGCGCACGGCCTGAGGCCCC
CAAACGGAAATGGGCCGAGGATGGTGGGGATGCCCCTTCACCCAGCAAACGGCCCTG
GGCCAGGCAAGAGAACCAGGAGGCAGAGCGGGAGGGTGGCATGAGCTGCAGCTGCAG
CAGTGGCAGTGGTGAGGCCAGTGCTGGGCTGATGGAGGAGGCGCTGCCCTCTGCGCC
CGAGCGCCTGGCCCTGGACTATATCGTGCCCTGCATGCGGTACTACGGCATCTGCGT
CAAGGACAGCTTCCTGGGGGCAGCACTGGGCGGTCGCGTGCTGGCCGAGGTGGAGGC
CCTCAAACGGGGTGGGCGCCTGCGAGACGGGCAGCTAGTGAGCCAGAGGGCGATCCC
GCCGCGCAGCATCCGTGGGGACCAGATTGCCTGGGTGGAAGGCCATGAACCAGGCTG
TCGAAGCATTGGTGCCCTCATGGCCCATGTGGACGCCGTCATCCGCCACTGCGCAGG
GCGGCTGGGCAGCTATGTCATCAACGGGCGCACCAAGGCCATGGTGGCGTGTTACCC
AGGCAACGGGCTCGGGTACGTAAGGCACGTTGACAATCCCCACGGCGATGGGCGCTG
CATCACCTGTATCTATTACCTGAATCAGAACTGGGACGTTAAGTGCATGGCGGCCTG
CTGCAGATCTTCCTGAGGGTCGGCCCGTGGTAGCACATCGAGCCACTCTTTGACGGA
TGCTCATTTTCTGGTCTGACGCGATCCCTCCACGAGTGAGCAGCCTAATGGCACAGT
ACGCCATTCACTGTCTGGATTGAATGACAAGGACCGGTCAGCCAGCCCAATGGCACA
AG 
 
 
 
 
 

D 
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BamH1 site

PHD2 cDNA

E: pCDNA4His/Max-PHD2 (pEGFP)

 
 
 
 
GGGGCGGGGGGACTGTCGACGATGACGATAAGGTACAGGCCCTTGGGGGGATCCTGA
TGGCCAATGACAGCGGCGGGCCCGGCGGGCCGAGCCCGAGCGAGCGAGACCGGCAGT
ACTGCGAGCTGTGCGGGAAGATGGAGAACCTGCTGCGCTGCAGCCGCTGCCGCAGCT
CCTTCTACTGCTGCAAGGAGCACCAGCGTCAGGACTGGAAGAAGCACAAGCTCGTGT
GCCAGGGCAGCGAGGGCGCCCTCGGCCACGGAGTGGGCCCACACCAGCATTCCGGCC
CCGCGCCGCCGGCTGCAGTGCCGCCGCCCAGGGCCGGGGCCCGGGAGCCCAGGAAGG
CAGCGGCGCGCCGGGACAACGCCTCCGGGGACGCGGCCAAGGGAAAAGTAAAGGCCA
AGCCCCCGGCCGACCCAGCGGCGGCCGCGTCGCCGTGTCGTGCGGCCGCCGGCGGCC
AGGGCTCGGCGGTGGCTGCCGAAGCCGAGCCCGGCAAGGAGGAGCCGCCGGCCCGCT
CATCGCTGTTCCAGGAGAAGGCGAACCTGTACCCCCCAAGCAACACGCCCGGGGATG
CGCTGAGCCCCGGCGGCGGCCTGCGGCCCAACGGGCAGACGAAGCCCCTGCCGGCGC
TGAAGCTGGCGCTCGAGTACATCGTGCCGTGCATGAACAAGCACGGCATCTGTGTGG
TGGACGACTTCCTCGGCAAGGAGACCGGACAGCAGATCGGCGACGAGGTGCGCGCCC
TGCACGACACCGGGAAGTTCACGGACGGGCAGCTGGTCAGCCAGAAGAATGACTCGT
CCAAGGACATCCGAGGCGATAAGATCACCTGGATCGAGGGCAAGGAGCCCGGCTGCG
AAACCATTGGGCTGCTCATGAGCAGCATGGACGACCTGATACGCCACTGTAACGGGA
AGCTGGGCAGCTACAAAATCAATGGCCGGACGAAAGCCATGGTCGCTTGTTATCCGG
CAATGGAACGGGTTATGTACGTCATGTGATATCCAATGAGATGGAAGATGTGTGACA
TGTATATATTATCTTAATAAGACTGGCATGGCAGTAGTGAGCTACCTCGATTTCAGA
AGGCAAGTCAGTGCTGACTTGAACAAATGATGACTGCGTTTTCTGGTCTGGC 
 
 
 
 
 
 
 
 
 
 

F 
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BamH1 site

PHD2 cDNA

G: pCDNA4His/Max-PHD2 (pGEX4T-1)

 
 
 
CTGATTGGGGACTGTACGACGATGACGATAAGGTACAGGCCCTTGGGGGATCCATGG
CCAATGACAGCGGCGGGCCCGGCGGGCCGAGCCCGAGCGAGCGAGACCGGCAGTACT
GCGAGCTGTGCGGGAAGATGGAGAACCTGCTGCGCTGCAGCCGCTGCCGCAGCTCCT
TCTACCGCTGCAAGGAGCACCAGCGTCAGGACTGGAAGAAGCACAAGCTCGTGTGCC
AGGGCAGCGAGGGCGCCCTCGGCCACGGAGTGGGCCCACACCAGCATTCCGGCCCCG
CGCCGCCGGCTGCAGTGCCGCCGCCCAGGGCCGGGGCCCGGGAGCCCGGGAAGGCAG
CGGCGCGCCGGGACAACGCCTCCGGGGACGCGGCCAAGGGAAAAGTAAAGGCCAAGC
CCCCGGCCGACCCAGCGGCGGCCGCGTCGCCGTGTCGTGCGGCCGCCGGCGGCTAGG
GCTCGGCGGTGGCTGCCGAAGCCGAGCCCGGCAAGGAGGAGCCGCCGGCCCGCTCAT
CGCTGTTCCAGGAGAAGGCGAACCTGTACCCCCCAAGCAACACGCCCGGGGATGCGC
TGAGCCCCGGCGGCGGCCTGCGGCCCAACGGGCAGACGAAGCCCCTGCCGGCGCTGA
AGCTGGCGCTCGAGTACATCGTGCCGTGCATGAACAAGCACGGCATCTGTGTGGTGG
ACGACTTCCTCGGCAAGGAGACCGGACAGCAGATCGGCGACGAGGTGCGCGCCCTGC
ACGACACCGGGAAGTTCACGGACGGGCAGCTGGTCAGCCAGAAGAGTGACTCGTCCA
AGGACATCCGAGGCGATAAGATCACCTGGATCGAGGGCAAGGAGCCCGGCTGCGAAA
CCATTGGGCTGCTCATGAGCAGCATGGACGACCTGATACGCCACTGTAACGGGAAGC
TGGGCAGCTACAAAATCAATGGCCGGACGAAAGCCATGGTCGCTTGTTATCCGGGCA
ATGGAACGGGTTATGTACGTCATGTTGATAATCCAAGTGGAGATGGAAGATGTGTGA
CATGTATATATTATCTTAATAAGACTGGGATGCCCAAGGTAAGTGGAGGTATACTTC
GAAATTTTTCAGAGCAAGCCCAGTTTGCTGACATTTGACCAAATTGATAGAACTGCT
ATTTTCTGGTCTGAACCGTCGCATCCCTCAATGAAGGTTACAACCCAGGCCAAATAT
AATTGC 
 
 
 
 
 
 
 
 
 

H 
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I: pCDNA4His/Max-PHD3 (pEGFP)

BglII site

PHD3 cDNA

 
 
 
GGACGGGACTGTCGACGATGACGATAAGGTACAGGCCCTTGGGGAGATCTGCATGCC
CCTGGGACACATCATGAGGCTGGACCTGGAGAAAATTGCCCTGGAGTACATCGTGCC
CTGTCTGCACGAGGTGGGCTTCTGCTACCTGGACAACTTCCTGGGCGAGGTGGTGGG
CGACTGCGTCCTGGAGCGCGTCAAGCAGCTGCACTGCACCGGGGCCCTGCGGGACGG
CCAGCTGGCGGGGCCGCGCGCCGGCGTCTCCAAGCGACACCTGCGGGGCGACCAGAT
CACGTGGATCGGGGGCAACGAGGAGGGCTGCGAGGCCATCAGCTTCCTCCTGTCCCT
CATCGACAGGCTGGTCCTCTACTGCGGGAGCCGGCTGGGCAAATACTACGTCAAGGA
GAGGTCTAAGGCAATGGTGGCTTGCTATCCGGGAAATGGAACAGGTTATGTTCGCCA
CGTGGACAACCCCAACGGTGATGGTCGCTGCATCACCTGCATCTACTATCTGAACAA
GAATTGGGATGCCAAGCTACATGGTGGGATCCTGCGGATATTTCCAGAGGGGAAATC
ATTCATAGCAGATGTGGAGCCCATTTTTGACAGACTCCTGTTCTTCTGGTCAGATCG
TAGGAACCCACACGAAGTGCAGCCCTCTTACGCAACCAGATATGCTATGACTGTCTG
GTACTTTGATGCTGAAGAAAGGGCAGAAGCCAAAAAGAAATTCAGGAATTTAACTAG
GAAAACTGAATCTGCCCTCACTGAAGACTGAGAATTCCCCAAGGGCCTGTACCTAGG
ATCCAGTGTGGTGGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGTCTAG
AGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATC
TGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGT
CCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTTA
TTCTGGGGGGGTGGGTGGGGCAGACAGCAGGGGGAGATGGGCAGACATAGCAGCATG
CTGGGGAATGCGGTGGCTCTATGCTTCTGAGGGCGGAAGACAGCTTGGGCTCTAGGC
GATACCACTCGGCTGTAACCGGGCCAATAAAGCGTGCCGA 
 
 
 
 
 
 
 
 
 
 
 
 

J 
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BglII site

PHD3 cDNA

K: pCDNA4His/Max-PHD3 (pGEX4T-1)

 
 
 
 
GGCCGGGGGACTGGTCGACGATGACGATAAGGTACAGGCCCTTGGGAGATCTATGCC
CCTGGGACACATCATGAGGCTGGACCTGGAGAAAATTGCCCTGGAGTACATCGTGCC
CTGTCTGCACGAGGTGGGCTTCTGCTACCTGGACAACTTCCTGGGCGAGGTGGTGGG
CGACTGCGTCCTGGAGCGCGTCAAGCAGCTGCACTGCACCGGGGCCCTGCGGGACGG
CCAGCTGGCGGGGCCGCGCGCCGGCGTCTCCAAGCGACACCTGCGGGGCGACCAGAT
CACGTGGATCGGGGGCAACGAGGAGGGCTGCGAGGCCATCAGCTTCCTCCTGTCCCT
CATCGACAGGCTGGTCCTCTACTGCGGGAGCCGGCTGGGCAAATACTACGTCAAGGA
GAGGTCTAAGGCAATGGTGGCTTGCTATCCGGGAAATGGAACAGGTTATGTTCGCCA
CGTGGACAACCCCAACGGTGATGGTCGCTGCATCACCTGCATCTACTATCTGAACAA
GAATTGGGATGCCAAGCTACATGGTGGGATCCTGCGGATATTTCCAGAGGGGAAATC
ATTCATAGCAGATGTGGAGCCCATTTCCCATTTTTGACAGACTCCTGTTCTTCTGGT
CAGATCGTAGGAACCCACACGAAGTGCAGCCCTCTTACGCAACCAGATATGCTATGA
CTGTCTGGTACTTTGATGCTGAAGAAAGGGCAGAAGCCAAAAAGAAATTCAGGAATT
TAACTAGGAAAACTGAATCTGCCCTCACTGAAGACTGAGAATTCCCCAAGGGCCTGT
ACCTAGGATCCAGTGTGGTGGAATTTCTGCAGATATCCAGCACAGTGGCGGCCCGCT
CGAGTCTAGAGGGCCCGTTTAAACCGCTGATCAGCCTCGACTGTGCTTCTAGTGCCA
GCCATCTGGTGGTTGCCCCTTCCCCCGTGCTTGTGACCTGAGTGCCACCTCCCACTG
TCTTTCCTATAATGAGAATGCATCGCATGCTGATAGTGTCATCATTCTGGGGTGGGT
TGCAGTACGCAAGCCCAGACTGGGAGACATGCAG 
 
 
 
 
Figure 7.1.4 Sequence analysis of pcDNA4 His/Max-PHD constructs. 
Chromatograph and sequence for pcDNA4 His/Max PHD1 for pEGFP (A and B), for 

pGEX 4T-1 (C and D), PHD2 for pEGFP (E and F), for pGEX 4T-1 (G and H), PHD3 

for pEGFP (I and J), for pGEX 4T-1 (K and L). 5’ flanking restriction site and start 

codon denoted.     

     

L 
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pcDNA4His/Max-PHDs containing the correct insert cDNA verified by 

sequence analysis, were transfected into U2OS cells in order to confirm the 

correct expression. 48 hours post-transfection cells were lysed and 

immunoblotted to confirm that the PHDs expressed at the correct size and 

were detected by both the Xpress mAb and individual PHD antibodies. Un-

tagged pcDNA3.1 PHDs and a pcDNA4His/Max empty vector (VO) were also 

transfected and immunoblotted as controls. The PHDs were all detected by 

both the Xpress mAb and PHD polyclonal antibody (Figure 7.1.5). The 

Xpress/His tag expressed in the pcDNA4His/Max vector add approximately 

3.9 kDa in comparison to the un-tagged protein.  

 

 

 
Figure 7.1.5 Immunoblot of the Xpress-tagged PHD recombinant proteins. 
pcDNA3.1-PHDs and pcDNA4His/Max-PHDs were transfected into U2OS. 48 hours 

post-transfection cells were lysed and immunoblotted. (A) pcDNA4His/Max-PHDs 

(Xpress-PHDs) were detected by each PHD antibody, detected as a larger 

molecular weight form than the un-tagged PHD protein due to the addition of the 

Xpress/poly-his tag. (B) Xpress-PHDs were also detected by the Xpress mAb at the 

correct size.  
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7.2 Sub-cloning of pcDNA4His/Max-PHDs into pEGFP–C1+1  
 

pcDNA4His/Max-PHDs were sub-cloned into pEGFP–C1+1 in order to 

visualise intracellular PHD expression by fluorescence. PHD1 and PHD2 

cDNA were excised from pcDNA4His/Max using BamHI and EcoRI restriction 

sites incorporated 5’ and 3’ of the cDNA during PCR amplification. PHD3 

cDNA was excised from pcDNA4His/Max using BglII and EcoRI sites. BglII 

was chosen as PHD3 has an intrinsic BamHI site. However, BglII and BamHI 

digestions are compatible for ligation. pEGFP-C1+1 was linearised by 

digestion with BglII and EcoRI. Linearised cDNA fragments were solubilised, 

purified and eluted and the complementary pEGFP-C1+1 and PHD restriction 

fragments were ligated overnight at 16˚c. Ligates were transformed into 

competent DH5α and selected for kanamycin resistance. Validation of PHD 

integration within pEGFP-C1+1 was performed by BglII and EcoRI digestion 

of PHD3 and BsrGI and EcoRI digestion of PHD1 and PHD2, as the BamHI-

BglII ligation forms a site unable to restrict by each of the restriction enzymes 

that created the original restriction digest (Figure 7.2.1). pEGFP-C1+1-PHDs 

were transfected into U2OS cells, which were lysed 48 hours later and 

immunoblotted with anti-GFP and anti-PHD antibodies to confirm the correct 

expression of the recombinant protein (Figure 7.2.2).  pEGFP-C1+1-PHD2 

was utilised in figure 4.3.2, whereby it was detected in the cytoplasm [as 

previously reported (Metzen et al., 2003a)]  by laser scanning confocal 

microscopy. 
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Figure 7.2.1 Restriction digest verification of correct insertion of PHD cDNA 

into pEGFP-C1+1 vector. 
Agarose (1% w/v) gel electrophoresis of BglII/BsrGI and EcoRI digestion of pEGFP-

C1+1-PHD constructs. Digest confirms cDNA presence of the correct size (PHD1 

1220bp, PHD2 1280bp and PHD3 720bp) and the correct sized pEGFP-C1+1 vector 

backbone (4700bp). 
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Figure 7.2.2 Immunoblot of the pEGFP-PHD recombinant proteins. 
pEGFP-PHDs and the pEGFP–C1+1 vector only control were transfected into 

U2OS. 48 hours post-transfection cells were lysed and immunoblotted. EGFP-PHDs 

were detected by each PHD antibody (A) EGFP-PHD1, (B) EGFP-PHD2, (C) 
EGFP-PHD3) and the GFP antibody. Recombinant proteins express at the correct 

molecular weight (PHD1 45kDa, PHD2 46kDa and PHD3 28kDa in addition to the 

molecular weight of the EGFP (27 kDa) tag. As the proteins are recognised by both 

EGFP and PHD antibodies this confirms that they express as an intact recombinant 

fusion protein.  
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7.3 Sub-cloning of pcDNA4His/Max-LIMD1 into pEGFP–C1+1  
 

In order to visualise the intracellular localisation of LIMD1 in U2OS cells 

LIMD1 was sub-cloned from the pCDNA4HisMax vector into a pEGFP-C1+1 

vector, enabling expression of an EGFP-LIMD1 fusion protein. LIMD1 was 

excised from the pCDNA4His/Max vector via flanking EcoRI and SalI 

restriction enzyme sites, previously incorporated by PCR. The pEGFP-C1+1 

vector was linearised at EcoRI and SalI sites in order to enable LIMD1 

integration (Figure 7.3.1). EcoRI and SalI restriction of the pCDNA4HisMax 

vector results in the production of 3 digest products (Figure 8.3.1 A, arrows), 

due to the presence of a SalI restriction site in the vector. The middle of the 3 

DNA fragments is the LIMD1 cDNA digest product of 2031bp. The linearised 

pEGFP–C1+1 and LIMD1 cDNA were excised from the agarose gel, purified 

and then resolved by agarose gel electrophoresis to verify the isolation of the 

desired restriction fragments (Figure 7.3.1B). The restricted LIMD1 fragments 

and the linearised pEGFP-C1+1 were then ligated into the complementary 

sequences generated by the EcoRI/SalI restriction using DNA ligase. Ligation 

reactions were then transformed and positive kanamycin colonies picked. 

Plasmid DNA was then re-digested with EcoRI/SalI to confirm correct ligation 

and presence of LIMD1 cDNA (Figure 7.3.1C). Sequence analysis using a 5’ 

GFP primer (5’ AGCAAAGACCCCAACGAGAAG 3’) was performed to 

validate the correct size of the inserted LIMD1 fragment, the correct fusion 

and to confirm the methionine start codon (ATG) was in frame for correct 

expression (Figure 7.3.1D). 
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Figure 7.3.1 Sub-cloning of LIMD1 into the pEGFP C1+1 vector. 
(A) Agarose (1%) gel electrophoresis of EcoRI/SalI restriction digests of the pEGFP-

C1+1 vector only fragment and pCDNA4/HisMax-LIMD1 digest products. EcoRI/SalI 

digestion of the pCDNA4/HisMax vector results in the production of multiple digest 

products (indicated by arrows), due to an internal SalI site. LIMD1 cDNA (2031bp) 

resolves as the middle band. (B) pEGFP vector only and LIMD1 cDNA linearised 

digest fragments were excised, purified and verified by agarose (1%) gel 

electrophoresis.  Correct vector-insert in frame fusion sequence, size and nature of 

the recombinant were established via sequence analysis via a primer designed to 

anneal to a region of the pEGFP gene sequence upstream of the desired fusion 

region (D) and by EcoRI/SalI digestion (C).  
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pEGFP-C1+1-LIMD1 was transfected into U2OS and immunoblotted with 

LIMD1 mAb and the GFP rabbit polyclonal antibody, in order to confirm the 

correct expression of the fusion protein (Figure 7.3.2). The immunoblots 

confirm the correct identity of the expressed fusion protein detectable by both 

anti-GFP and anti-LIMD1. The anti-LIMD1 immunoblot also identifies 

endogenous LIMD1 of an approximate molecular weight of 72kDa. 

Furthermore, the anti-GFP immunoblot detects the molecular weight of EGFP 

as 27kDa. Therefore as the pEGFP-LIMD1 WT fusion migrated to 

approximately 100kDa, this indicates the correct expression of the fusion 

protein. pEGFP-LIMD1 was utilised in figure 4.3.2, detected by laser 

scanning confocal microscopy.   

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.3.2 Immunoblot of the EGFP-LIMD1 fusion protein. 
(A) Immunoblot of EGFP VO and EGFP-LIMD1 expressed in U2OS cells. Anti-GFP 

immunoblot detects both the EGFP vector only and the EGFP-LIMD1 fusion, at 

approximately 100kDa, the correct fusion protein molecular weight (LIMD1 72kDa 

and EGFP 27kDa). (B) This fusion protein is also detected by immunoblot with a 

LIMD1 mAb at the same molecular weight. Endogenous LIMD1 can also be 

detected at 72kDa. 
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7.4 Primary Antibodies 
 
Antigen Concentration 

used for 
Immunoblotting 

Host 
Species 

Molecular 
Weight 
(kDa) 

Company Catalogue 
Number 

LIMD1 1:500 Mouse 72 N/A N/A 

HIF1α 1:500 Mouse 120 
BD Transduction 

Laboratories™ 
610959 

HIF1β 1:500 Rabbit 116 Cell Signalling #3718S 

PHD1 1:1500 Rabbit 45-50 Abcam AB5156 

PHD2 1:1500 Rabbit 46 Abcam AB4561 

PHD3 1:3000 Rabbit 27 Novus Biologicals 
NB100-

303A2 

VHL 1:400 Mouse 21-30 BD 536347 

β-Actin 1:10000 Mouse 42 Sigma-Aldrich A1978 

GFP 1:5000 Rabbit 27 Abcam AB290 

V5 1:2000 Mouse N/A Ab-Serotec  

Xpress 1:5000 Mouse N/A Invitrogen 46-0528 

HA 1:1000 Rabbit N/A Sigma-Aldrich H6908 

P-Ser 1:250 Mouse N/A BD 612546 

P-

Ser/Thr 
1:250 Mouse N/A BD 612548 

P-Tyr 1:1000 Mouse N/A Sigma-Aldrich P5872 

 

7.5 Secondary Antibodies 
Antigen Concentra

tion 
Host Company Catalogue 

Number 

Mouse  1:5000  Goat DAKO  P0447 

Rabbit  1:5000  Goat DAKO  P0448 

      

Alexafluor Rabbit 568 1:1000 Goat Invitrogen  A11036 

Alexafluor Mouse 568 1:1000 Goat Invitrogen  A11004 

Alexafluor Rabbit 488 1:1000 Goat Invitrogen  A11008 

Alexafluor Mouse 488 1:1000 Goat Invitrogen  A11001 

Alexafluor Mouse 350 1:1000 Goat Invitrogen  A11045 
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7.6 Vectors 

 
Vector Type: Mammalian 

Viral/Non-viral: Nonviral 

Stable/Transient: Transient 

Constitutive/Inducible: Constitutive 

Promoter: CMV 

Expression Level: High 

Backbone Size (bp): 5015 

Sequencing Primer: T7 Fwd 

Sequencing Primer Sequence: 5'd[TAATACGACTCACTATAGGG]3' 

Tag: V5 tag[GGTAAGCCTATCCCTAACCCTCT 

CCTCGGTCTCGATTCTAGC] inserted within 

NheI and KpnI RE sites within the MCS  

Bacteria Resistance: Ampicillin 

Mammalian Selection: Zeocin 
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pcDNA4-His-max TOPO
5258bp

 

Vendor: Invitrogen 

Vector Type: Mammalian 

Viral/Non-viral: Nonviral 

Stable/Transient: Transient 

Constitutive/Inducible: Constitutive 

Promoter: CMV 

Expression Level: High 

Backbone Size (bp): 5258 

Sequencing Primer: T7 Fwd 

Sequencing Primer Sequence: 5'd[TAATACGACTCACTATAGGG]3' 

Tag: 6X His, Xpress 

Bacteria Resistance: Ampicillin 

Mammalian Selection: Zeocin 
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Vendor: Promega 

Vector Type: Mammalian 

Viral/Non-viral: Nonviral 

Backbone Size (bp): 4818 

Sequencing Primer: RVprimer3 

Sequencing Primer Sequence: CTAGCAAAATAGGCTGTCCC 

Bacteria Resistance: Ampicillin 

Catalogue number: E1751 
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pAsRed1-N1
4712bp

 

Vendor: Clontech 

Vector Type: Mammalian 

Viral/Non-viral: Nonviral 

Stable/Transient: Stable (transfected) 

Constitutive/Inducible: Constitutive 

Promoter: CMV 

Backbone Size (bp): 4700 

Tag: AsRed1 (Cterm) 

Bacteria Resistance: Kanamycin 

Mammalian Selection: Neomycin 
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pEGFP-C1+1
4732bp

 

Vendor: Clontech 

Vector Type: Mammalian 

Viral/Non-viral: Nonviral 

Stable/Transient: Stable (transfected) 

Constitutive/Inducible: Constitutive 

Promoter: CMV 

Backbone Size (bp): 4700 

Sequencing Primer: EGFP-C 

Sequencing Primer Sequence: 5'd[CATGGTCCTGCTGGAGTTCGTG] 

Tag: EGFP (Nterm) 
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pCMV-VSV-G
6363bp

 

Lenti-viral Plasmid: Envelop Construct 

Insert size (bp): Unknown 

Vector backbone: N/A   

Type of vector: Mammalian expression 

Backbone size (bp): 6363 

5' Sequencing primer: T7   

Bacteria resistance: Ampicillin 

High or low copy: High Copy 

Grow in standard E. coli @ 37C: Yes 

Plasmid Provided In: DH5a 
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pHR’-CMV-8.2 deltaR
13457bp

 

 

Lenti-viral Plasmid: Packaging Construct 

Insert size (bp): Unknown 

Vector backbone: N/A 

Type of vector: Mammalian expression,Lentiviral 

Backbone size (bp): Unknown 

5' Sequencing primer: CMV Forward   

Bacteria resistance: Ampicillin 

High or low copy: High Copy 

Grow in standard E. coli @ 37C: Yes 

Plasmid Provided In: DH5a 
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Vendor: Amersham 

Vector Type: Bacterial 

Viral/Non-viral: Nonviral 

Stable/Transient: Transient 

Constitutive/Inducible: Constitutive 

Promoter: Tac 

Expression Level: High (Activate with IPTG) 

Backbone Size (bp): 4900 

Sequencing Primer: pGEX Fwd 

Sequencing Primer Sequence: 5'd[GGGCTGGCAAGCCACGTTTGGTG]3' 

Tag: GST (Nterm) 

Bacteria Resistance: Ampicillin 
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Further acknowledgments for the donation of the following plasmids: 

 

Dr Thilo Hagen, Department of Biochemistry, National University of 
Singapore: 
 

pcDNA3.1 V5-VHL 

pcDNA3.1 V5-HIF1α 

 pcDNA3.1 V5-HIF1α-P402A/P564A 

pcDNA3.1 HA-HIF1α-30-389 

pcDNA3.1 HA-HIF1α-390-652/ P402A,P564A 

pcDNA3.1 HA-HIF1α-630-826 

pcDNA3.1 V5-CUL2 

pcDNA3.1 EGFP-HA-FIH 

pGL3-HRE 

 
Professor Peter Ratcliffe, Nuffield Department of Clinical Medicine, The 
Henry Wellcome Building for Molecular Physiology, University of 
Oxford: 
 
pcDNA3.1 PHD1 

pcDNA3.1 PHD2 

pcDNA3.1 PHD3 

 
Professor Greg Longmore, Haematology division, Department of Cell 
Biology and Physiology, Washington University: 
 

Lentiviral plasmids: pCMV-VSVG, pHR ∆8.2, pFLRu-Scrambled/LIMD1 

shRNA   

 

Dr Simon Dawson, School of Biomedical Sciences, University of 
Nottingham: 
 
pEGFP-SUMO1 
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