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Abstract

This thesis investigates the representation of a stochastic epidemic process as a directed

random graph; we use this representation to impute the missing information in �nal size

data to make Bayesian statistical inference about the model parameters using Markov

Chain Monte Carlo (MCMC) techniques.

The directed random graph representation is analysed, in particular its behaviour

under the condition that the epidemic has a given �nal size. This is used to construct

e�cient updates for MCMC algorithms.

The MCMC method is extended to include two-level mixing models and two-type

models, with a general framework given for an arbitrary number of levels and types.

Partially observed epidemics, that is, where the number of susceptibles is unknown or

where only a subset of the population is observed, are analysed. The method is applied

to several well known data sets and comparisons are made with previous results.

Finally, the method is applied to data of an outbreak of Equine In�uenza (H3N8)

at Newmarket in 2003, with a comparison to another analysis of the same data. Prac-

tical issues of implementing the method are discussed and are overcome using parallel

computing (GNU OpenMP) and arbitrary precision arithmetic (GNU MPFR).
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Chapter 1

Introduction

1.1 Overview

This thesis aims to develop methods for Bayesian statistical inference for stochastic

epidemic models, in particular, inference for �nal size data using a multi-level multi-

type model. The analysis of �nal size data presents challenges to inference techniques,

especially for more realistic models which are commonly of high dimensionality and

analytically di�cult. However, the need for proper statistical inference is paramount

to make informed and rigorous analysis.

The remainder of this chapter provides background theory, including de�nitions and

notation, that will be used later. Initially we de�ne an epidemic model, the stochastic

version is the focus of this thesis, two standard results for the stochastic model, the

threshold and �nal size equations, and several extensions to the simple model. Then

we outline Bayesian statistical inference and present the implementation of a technique

known as Markov Chain Monte Carlo, theoretical results on validity and convergence

are omitted. References to key papers are given in the appropriate sections, as well as

a brief review of recent work in the area of statistical inference for epidemic models.

Finally, an outline of the following chapters is given.
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1.2 Epidemic Models

There is a long history of applying mathematics to the study of infectious disease

data. It is thought to have originated with Bernoulli (1766), a study of the e�ect of

vaccination on smallpox mortality. Bailey (1975) provides a further discussion of the

early history and development of epidemic modelling.

Much of the following background is also presented in summary by Andersson and

Britton (2000). We reproduce the outline here but refer the reader back to the fuller

descriptions within that book and supplementary references.

We begin with a population of individuals, some of whom are initially infected with the

remainder susceptible to the disease. Individuals become infected after contact with an

infective individual, they will become an infective themselves. Infective individuals re-

main so for a time called their infectious period. At the end of an individuals infectious

period they recover or become immune and are called removed. Thus, removed indi-

viduals play no further part in the epidemic, this may represent immunity or mortality

depending on the disease being modelled.

Individuals are thus classi�ed as being in one of three states: susceptible, infective

or removed, and an individual has transitions between these states according to some

model. The simplest such model we shall consider is called the Susceptible-Infective-

Removed (SIR) model.

We consider only closed populations, where the total number of individuals is constant.

We shall use the following convention, unless noted otherwise, that the total population

size is N , of which n are initial susceptibles and a are initial infectives, i.e. n+ a = N .

This thesis will primarily be concerned with stochastic epidemic models, which we shall



1.2 Epidemic Models 3

de�ne in Section 1.2.1. However, for some di�usion results for continuous time epidemic

processes considered in Chapter 2, we shall need the deterministic model outlined in

Section 1.2.1.

1.2.1 Deterministic Susceptible-Infective-Removed Model

Early work on epidemics was focused on deterministic models, as they were better

understood and there existed known methods to analyse them. For example, the study

of HIV was initially conducted using deterministic models. For an overview of other

such examples and theoretical results see Anderson and May (1991).

The formal de�nition of the deterministic model was given by Kermack and McKendrick

(1927), known as the deterministic general epidemic. Let x(t), y(t) and z(t) denote the

number of susceptible, infectives and removed at time t respectively. The initial state

is (x(0), y(0), z(0)) = (n, a, 0) and x(t) + y(t) + z(t) = N for all t ≥ 0. The model is

de�ned by the following di�erential equations,

x′(t) = −αx(t)y(t)

y′(t) = αx(t)y(t)− βy(t)

z′(t) = βy(t),

where α and β denote the rate of new infections and removals respectively. The im-

portant term is the product of the number of susceptibles and infectives, x(t)y(t), this

is the so called mass action term, where the rate of new infections depends on the

product.

The deterministic model is generally valid for large populations only. In particular,

outcomes near the edge of the state space for small populations can be problematic
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since the deterministic solution is continuous.

1.2.2 Stochastic Susceptible-Infective-Removed Model

The stochastic model was presented around the same time as the deterministic by

McKendrick (1926), however it received much less attention. The focus at that time

was on discrete-time stochastic models, namely the chain-binomial model proposed by

Reed and Frost.

As before, we consider a population of N individuals with n initial susceptibles and

a initial infectives. The infectious periods of the infective individuals are independent

and identically distributed according to a random variable T with an arbitrary but

speci�ed distribution. While infectious, an individual makes contacts with each of the

N individuals in the population at times given by the points of a Poisson process of rate

λ/N If the contacted individual is susceptible, they immediately become an infective

and can immediately begin infecting other individuals for the length of their infectious

period. An individual is removed once their infectious period has ended. The epidemic

ends once there are no infective individuals remaining. Following Ball (1995), we refer

to this as the standard SIR epidemic model and denote the process by En,a(λ, T ). The

rate of contacting an individual is normalised by the total population in order to keep

the rate independent of the population size. The epidemic process is stochastic, thus

it is applicable to small populations where the deterministic approximation fails.

The infectious period, T , is a de�ned distribution with mean, E[T ] = ι and variance,

Var(T ) = σ2, we shall consider various infectious distributions, though they are often

parametric and of a form that gives rise to tractable expressions. The special case where

the infectious period is an exponential distribution is known as the general stochastic

epidemic, an unfortunate historical artifact. The exponential infectious period is com-
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monly used for mathematical ease, though many realistic biological disease infectious

periods are poorly approximated by such a model.

1.2.3 Threshold Results

Returning to the deterministic model, Kermack and McKendrick (1927) showed that

y, the number of infectives, is initially decreasing unless y(0)(αx(0)− β) > 0 or equiv-

alently x(0) > β/α, i.e. the ratio of the rate of removal to the rate of infection. The

model exhibits di�erent behaviour depending upon whether x(0) is greater than β/α

or not, this is said to be a threshold between the two behaviours and the inequality is

a threshold result.

For the stochastic case, Ball (1983) derives several threshold theorems, speci�cally for

the SIR model presented in Section 1.2.2, Theorem 7 states that a major epidemic

occurs with non-zero probability if and only if λι > 1 (using our notation).

We de�ne R0 as the basic reproductive number for the simple SIR model, which is

de�ned as the expected number of infections caused by a typical infective individual

in the early stages of the epidemic. For more complicated models care must be taken

to de�ne a typical individual. We call R0 a threshold parameter, since it determines

if a major outbreak is possible; if this is less than one, i.e. below threshold, then each

infective is at best producing a single new infective and the epidemic will quickly die

out.

Note that being above threshold does not mean a major outbreak will occur, only that

there is a possibility that it will. Since the process is stochastic, there is a non-zero

probability that the process will die out even if it is above threshold. Determining the

probability of a major outbreak given the process is above threshold is also of great
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interest in epidemic theory.

For the standard SIR epidemic model, the basic reproductive number is R0 = λι, where

λ is as de�ned in Section 1.2.2 and ι is the expected length of the infectious period.

The epidemic is above threshold if R0 > 1 and a majour outbreak is possible. For

details see Williams (1971) and Ball (1983).

1.2.4 Final Size Results

The SIR epidemic process ends when there are no more infective individuals, all that

remain are susceptible and removed individuals. The �nal size of an epidemic is com-

monly denoted Z and is de�ned to be the total number of initial susceptibles that

became infected during the course of the epidemic, i.e. Z = S(0) − S(∞). The �nal

size does not include the initial infectives and hence 0 ≤ Z ≤ n, where n is the number

of initial susceptibles.

For the deterministic model, we have that z(t) → z∞ < n as t → ∞, where z∞ is

the solution of z = n − x0 exp(−αz
β ), i.e. the �nal size is less than n, meaning not

everyone is infected. This is a very interesting result, that even for major outbreaks

we do not expect the entire population to become infected under the SIR model. In

the stochastic setting, there is a non-zero probability of all possible �nal sizes (for non-

degenerate parameter values), so more care must be taken for the �nal size behaviour;

this motivates our investigation in Chapter 2.

For the standard SIR epidemic model, denoted En,a(λ, T ), Ball (1986) derived the

probability of a �nal size k (0 ≤ k ≤ n), denoted Pnk , which satis�es the following set
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of triangular equations,

l∑
k=0

(
n−k
l−k
)
Pnk[

φ
(
λ(n−l)
n

)] =

(
n

l

)
, 0 ≤ l ≤ n,

where φ(s) = E[exp(−sT )] for s ≥ 0.

Using these equations we can theoretically calculate the �nal size probabilities, how-

ever there are issues of numerical stability in practice. In fact, the expressions become

unstable using standard double precision for populations in the range 50 < n < 100

(see Demiris (2004)), depending upon the parameter values and infectious period dis-

tribution.

Many limiting results have been derived for the �nal size of a stochastic epidemic as the

population size tends to in�nity, these account for a variety of models. The following

results are derived rigorously in Scalia-Tomba (1990), though we present them using

the form and notation of Andersson and Britton (2000).

For the standard SIR model, as de�ned in Section 1.2.2, there are two limiting results

depending on the form of the number of initial infectives. We present only the case

for a �xed number of initial infectives as the population size tends to in�nity. The

alternative, having the ratio of initial infectives to susceptibles tend to a constant will

not be presented (see Andersson and Britton (2000, Theorem 4.1)).

Theorem 1.1 (Andersson and Britton (2000, Theorem 4.2))

Consider a sequence of epidemic processes En,an(λ, T ). Assume that an = a for all n,

and de�ne ψ as the nontrivial solution to

1− exp(−λιψ) = ψ.

Also denote the �nal epidemic size by Zn and write Z ′
n = Zn + a.
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If λι ≤ 1 then Zn → Z almost surely, where P(Z <∞) = 1 and Z is the total progeny

in a continuous time branching process Ea(λ, T ), initiated by a ancestors, in which

individuals give birth at the rate λ during a lifetime distributed according to T .

If λι > 1 then Zn still converges to Z, but now P(Z < ∞) = qm, where qm is the

extinction probability of the branching process Ea(λ, T ). With probability 1 − qm, the

sequence
√
n(Z ′

n/n−ψ) converges to a normally distributed random variable with mean

0 and variance

ρ(1− ρ) + λ2σ2ψρ2

(1− λι)2
,

where ρ = 1− ψ.

From the result, it follows that the limiting �nal size behaviour is dependent upon

whether the process is above threshold. In the case where it is, there is still uncertainty

of a major outbreak. The probability of a major outbreak can be calculated using the

branching process approxmation to the early stages of an epidemic.

Theorem 1.1 derives an importanting limiting result for the �nal size of an epidemic, the

behaviour is dependent upon whether the process is above threshold and is inherently

stochastic. It is an important result in epidemic theory, much work has been done to

extend these results to alternative models. For example, Ball and Clancy (1993) derive

an asymptotic result for the �nal size of a multitype epidemic where individuals move

among a �xed number of groups; Ball et al. (1997) derive asymptotics for a population

of households with local and global contacts.
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1.2.5 Model Extensions

The general stochastic Susceptible-Infective-Removed model described so far has many

limitations, speci�cally for application to actual epidemic data. The model assump-

tions usually do not re�ect real-life diseases characteristics. The following selection of

extensions gives an overview of some of the progress made to adapt the simple SIR

model.

1.2.5.1 New States

Some diseases cannot be explained by the Susceptible-Infective-Removed sequence of

states. For example, for the common cold a more appropriate model is the Susceptible-

Infective-Susceptible (SIS), since the virus adapts quickly and so individuals do not

become immune. In such models the epidemic process will stop with probability one

since for stochastic models there is a non-zero probability of the process reaching the

state of having zero infectives. This is a so called absorbing state, though the time to

absorption may be in�nity. Thus, to consider the behaviour of SIS models it is common

to consider the quasi-stationary distribution of the epidemic, i.e. the distribution of the

number of infectives conditional on the process not being extinct.

As another extension, we can consider that individuals have a latent period between

being infected and becoming infectious. During this stage they are exposed but can-

not spread. This new exposed state can be added to form the Susceptible-Exposed-

Infective-Removed (SEIR) model. In fact, we can build arbitrary sequences of states

from among: susceptible, infective, removed and exposed; as well as others. These

become compartmental stochastic processes, with transitions between states according

to a given model.



1.2 Epidemic Models 10

The SEIR model, including a latent period is an important extension in biological

terms, since many real-life diseases have a latent period. Interestingly, if we restrict

our attention to the �nal size distribution of an SIR model, then the distribution is

invariant to the inclusion of a latent period, see Ludwig (1975) for details. Thus the

�nal size analysis of this thesis apply equally to SIR and SEIR models.

1.2.5.2 Two Level Mixing And Multiple Type Models

Thus far we have only considered homogeneous populations of homogeneously mixing

individuals. A natural extension is to relax these restrictions and allow multiple types

of individual to mix, i.e. make contacts, in more complicated ways.

Human populations generally exhibit a structure that is of importance when modelling

an epidemic. Within a population individuals will be grouped, the most obvious such

grouping is within households. It is reasonable to expect the disease to spread at a

di�erent rate between individuals within the same household compared to between

individuals in di�erent households.

In this example we have two levels of mixing, within household and between household.

Assigning each individual to a single household we then consider infectious contacts as

either global or local depending on if they originate outside or within the individuals

household respectively.

It is desirable to obtain threshold results for these models as for the simple SIR, see

Ball et al. (1997) and Ball and Neal (2002) for details. Firstly, the de�nition of the

basic reproductive number needs to be adjusted for this new setting. For the two level

mixing model Ball et al. (1997) de�nes R∗ as a generalisation of R0, such that a major

outbreak is possible only if R∗ > 1 (recall that all threshold results are derived in a
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limiting sense, for any �nite population a stochastic epidemic process has a non-zero

probability of any �nal size), where R∗ = RGµ, the product of the reproductive ratio

RG for global contacts and the mean size µ of local outbreaks. Thus R∗ is a clump-to-

clump reproductive ratio, the expected number of clumps contacted by a clump. For

clumps of size one, R∗ = R0.

Two-level mixing models can be investigated using an independent household model,

where individuals within a household are subject to a local epidemic process and a con-

stant global infection. Addy et al. (1991) consider maximum likelihood procedures to

estimate community infection rates from �nal size data under an independent house-

hold model. We shall apply our approach, where the household �nal sizes are not

independent, to the same data in Chapter 3.

For many diseases, there is a need to consider sub-populations that will have varying

characteristics, i.e. to consider non-homogeneous populations. The addition of multiple

types of infectives, where the mixing rate between types may di�er, requires an alter-

native threshold result and �nal size analysis, Ball and Clancy (1993) derive examples

of these using multi-type branching processes.

1.2.5.3 Epidemics On Random Graphs

In Chapter 2 we shall consider an epidemic process represented as a directed random

graph, and use this representation in Chapters 3 and 4 in our inference technique.

There is a di�erent area of epidemic modelling using random graphs to represent the

contact structure of the population, on which an epidemic process is then begun. This

is related to non-homogeneously mixing multi-level models as discussed by Ball and

Neal (2002), however the contact network is itself random.



1.2 Epidemic Models 12

Many interesting papers exist for such models, see Andersson (1997, 1999), Newman

(2002) and Kenah and Robins (2007). The random graph social networks have been

extended to include so called `casual contacts', equivalent to the homogeneous mixing

and two level mixing e�ects, see Ball and Neal (2008).

1.2.6 Final Size Data, Missing Data And Partially Observed

Consider a completely observed SIR epidemic model. For each individual, i, we observe

the time they are infected ti1 and their subsequent removal time ti2 , i.e. the length of

their infectious period is ti2 − ti1 . Also, we observe the individuals that are contacted

by individual i during its infectious period. From these complete data, we can make

inference about the infection and removal rates in the model using techniques such as

maximum likelihood (since the likelihood can be expressed given the complete data)

or using a Bayesian approach, for example O'Neill (2002) use Markov Chain Monte

Carlo (MCMC) (see Section 1.3.2) for the case of missing data, but their method

applies equally to complete data.

Complete data are generally not available for real diseases, partly due to the di�culty

in detecting the exact times of infection and removal biologically, also the e�ort to

record all the observations for a moderately large population is prohibitive.

Epidemic data usually consist of the times the disease was detected in an individual,

and the period over which symptoms (or a positive result for some medical test, for

example positive swabs for MRSA) were observed. As such, the actual infection and

removal times are unknown. The scale of the epidemic in time can also be an issue,

observations will usually be recorded as daily counts; if the disease cycle occurs on a

shorter time scale then such censoring will a�ect any inference.
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In the extreme case, for an epidemic we record only those individuals who were infected

during the course of the outbreak, i.e. the removed individuals in an SIR model, without

any further details of when they were infected or for how long. It is thus simple to

collate the detection times into a single time point, the end of the epidemic, and each

detected individual has been infected. We then have the �nal size of the outbreak. See

Longini et al. (1988) for an example of �nal size data.

For �nal size data, care must be taken as to when the epidemic has ended. Obviously,

�nal size data is not de�ned for a disease where individuals are not removed, i.e. SIS or

equivalent models, nor is it complete if the end of the epidemic cannot be determined

satisfactorily.

An epidemic is said to have missing data or be partially observed if the complete

information on each individual is not recorded. The type of missing data considered

so far concerns not observing all events for an individual. Alternatively, we may only

observe a subset of the population (which may also have missing data), i.e. there are

individuals who are completely unobserved. If the fraction of the population observed

is small, then any inference about the epidemic must take this into account.

1.3 Inference And Markov Chain Monte Carlo

Given data about an outbreak of a disease, we would like to develop an epidemic model

and then �t the model to data. The model will contain a number of parameters and

we wish to infer the parameter values from the data.

There are many approaches to inference, for example the commonly used maximum

likelihood method considers the likelihood function of the model parameters given the
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data and then maximises this likelihood over the parameter space.

For any inference technique, care must be taken that the model is appropriate. Inference

can be made even for a poor choice of model, but the applicability of the results is

questionable. Model choice is not considered in this thesis, see Berger (1993) and Kass

and Raftery (1995) for a discussion of topics in the �eld of model choice including Bayes

factors and model averaging. For an application to epidemics, see Neal and Roberts

(2004) and O'Neill and Marks (2005)

In the following sections we shall outline the Bayesian approach and methodologies

used. For a more detailed background see for example Bernardo and Smith (1994) or

Gelman et al. (2003).

1.3.1 Bayesian Inference

Bayesian inference is a modern statistical technique for parameter estimation for a

model given data. The model must permit a likelihood and the parameters require

prior distribution. The likelihood and prior distribution are combined, using Bayes'

theorem, to compute the posterior distribution of the parameters given the data.

We introduce the following notation to express the concepts in this and following sec-

tions, alternate notation will be used for the speci�c algorithms in Chapters 3 and 4.

Let θ denote the vector of parameters to the model, under the Bayesian framework the

model parameters are considered as random variables. Let X denote the outcome of

the model, itself a random variable. We may proceed given a realisation of X, namely

x, together with a likelihood of x given a parameter set, L(x|θ) (a common alternative

notation for the likelihood is π(x|θ)) and a prior density on the parameters, π(θ).



1.3 Inference And Markov Chain Monte Carlo 15

1.3.1.1 Bayes' Theorem

We wish to derive the posterior density of the parameters conditional on the data,

i.e. π(θ|x), which we obtain from the following relation

π(θ|x) = L(x|θ)π(θ)∫
θ L(x|θ)π(θ) dθ

∝ π(x|θ)π(θ).

This formula is known as Bayes' Theorem. The formula can be expressed up to propor-

tionality by ignoring the integral in the denominator, which is necessary to obtain the

correct normalising constant for equality. The expression is commonly stated crudely

in words as �The posterior is proportional to the likelihood times the prior�.

The integral may not permit a closed form in general. One technique to overcome

this problem is to choose an appropriate prior for the likelihood, a so called conjugate

prior. If such a prior cannot be found, then a numerical evaluation of the integral is

necessary, one such technique is Monte Carlo integration. Alternatively, Markov Chain

Monte Carlo (MCMC) is a technique that avoids the calculation of the integral and

gives an approximation to the posterior density.

1.3.1.2 Prior Distributions

The choice of prior is a matter of controversy even among proponents of the Bayesian

approach. Broadly there are two types of prior, non-informative and informative/elicit.

The former is chosen when we have no information concerning θ and wish the prior

to re�ect our lack of knowledge, i.e. not to favour one value of θ over another. The

latter are created using an expert's opinion, we shall not consider elicitation methods

any further in this thesis.
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As mentioned, priors are commonly chosen from parametric families for computational

convenience. In particular, if the distribution is conjugate to the likelihood, that is

the posterior density belongs to the same family as the prior, computation can be

made simpler. To avoid confusion, the parameters of a prior distribution are termed

hyperparameters.

Conjugate Prior Morris (1983) showed that exponential families, which are a com-

mon form of likelihoods, have conjugate priors. Bayesian inference techniques will work

for any prior, however for speed of computation conjugate priors can be preferable. For

example, consider observing x heads after n coin tosses, wanting to make inference

about the probability of a head. Here θ = p, the probability of a head. Thus the

likelihood is

L(x|p) =
(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.

If we choose a beta distribution for the prior on p, with the hyperparameters α and β,

thus p ∼ Beta(α, β)

π(p) =
1

B(α, β)
pα−1(1− p)β−1,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) . Then the posterior is of the form

π(p|x) =
1

B(α,β)

(
n
x

)
px(1− p)n−xpα−1(1− p)β−1∫ 1

q=0
1

B(α,β)

(
n
x

)
qx(1− q)n−xqα−1(1− q)β−1

=
px+α−1(1− p)n−x+β−1

B(x+ α, n− x+ β)
.

Thus the posterior density is again a beta distribution. We say the beta prior is

conjugate to a binomial likelihood.
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The hyperparameters of the prior are chosen to re�ect our knowledge of the parameter.

For particular families it is not always possible to form truely non-informative conjugate

priors.

Proper Non-informative Priors For non-informative priors, care must be taken to

ensure all expressions are well de�ned. If the parameter space is �nite, either discrete

or continuous, then a proper non-informative prior can be de�ned. In either case we

use the uniform distribution, for a �nite discrete parameter space, Θ = {θ1, . . . , θn},

π(θi) =
1

n
, i = 1, . . . , n.

Likewise in the case of a continuous bounded parameter space, Θ = [a, b] for −∞ <

a < b <∞,

π(θ) =
1

b− a
, θ ∈ Θ.

Both priors are non-informative, giving no preference to any value of θ in the parameter

space.

Improper Priors However, if the parameter space is unbounded then the prior may

become ill-de�ned. For example, if Θ = (−∞,∞) and we choose a prior of π(θ) = c

for all θ ∈ Θ, then clearly
∫
π(θ) dθ = ∞.

This is a so called improper prior. Inference is still possible given the additional con-

dition that
∫
π(x|θ) dθ = C <∞. In that case,

π(θ|x) = π(x|θ)c∫
π(x|θ)c dθ

=
π(x|θ)
C

,
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then we may proceed as for a proper prior.

1.3.1.3 Sequential Bayes'

An important part of Bayesian inference is the ability to combine the analysis of mul-

tiple data sets. If x1 and x2 are independent data samples, then

π(θ|x1, x2) ∝ L(x1, x2|θ)π(θ)

∝ L(x2|θ)L(x1|θ)π(θ)

∝ L(x2|θ)L(x1|θ)π(θ)

∝ L(x2|θ)π(θ|x1).

That is, we can obtain the full posterior of θ from x1 and x2 by �rst evaluating the

posterior density of θ on the �rst data set x1, π(θ|x1), then use it as the prior on θ for

the second data set x2. Given an arbitrary number of independent data sets we can

update the posterior for θ sequentially.

1.3.1.4 Posterior Estimation

Once the posterior distribution is obtained, we may plot the density function to rep-

resent the information about the parameters from the data. To summarise the density

there are two common approaches, point estimation and interval estimation.

Point estimation is a single summary statistic, usually the mean, median or mode of

π(θ|x). The appropriate measure to use, either the mean, mode or median, is dependent

upon whether the density is symmetric, multi-modal or heavy tailed.
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Interval estimation generally requires a numerical approach, for a given level α we

obtain a subset C of Θ such that

1− α ≤ P[C|x] =
∫
C
π(θ|x) dθ.

Such a subset C is not unique, a commonly used set is the highest posterior density

(HPD) de�ned as

CHPD = {θ ∈ Θ : π(θ|x) ≥ ξ(α)}

where ξ(α) is the largest constant satisfying P[C|x] ≥ 1 − α. Thus CHPD consists of

the most likely θ values.

An alternative simpler interval is the equal tail set. From π(θ|x) calculate the α/2 and

1− α/2 quantiles,

CET = {θ ∈ Θ : θα/2 ≤ θ ≤ θ1−α/2}.

The equal tail interval can be misleading for multi-modal non-symmetric posterior

densities. Clearly, CHPD = CET only for unimodal symmetric densities.

1.3.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are used to implement Bayesian infer-

ence by evaluating a Markov chain constructed such that its stationary distribution is

the posterior density of interest.

An MCMC algorithm is used to simulate approximate samples from the posterior dis-

tribution by generating a Markov chain. The foundations of MCMC were developed by
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Metropolis et al. (1953) and generalised by Hastings (1970). It was not until much later

that the approach appeared in the statistical community, with the paper by Gelfand

and Smith (1990). We shall now outline several MCMC algorithms. There is a vast

literature on Bayesian techniques and MCMC, for more details on the limiting theory

and other practical issues see for example Gilks et al. (1996) and Robert and Casella

(1999).

Let {Y0, Y1, . . . } = {Yt : t ≥ 0} be a sequence of random variables such that Yt+1

depends only on the current state, Yt. Associated with the sequence are the transition

probabilities, P[Yt+1|Yt]. Such a sequence is called a Markov chain.

We wish to construct a chain such that once it reaches equilibrium, after a burn in

period and regardless of the initial value Y0, then the chain draws samples from π(θ|x).

This is achieved by using an appropriate algorithm to sample the next element of the

chain.

1.3.2.1 Metropolis-Hastings (MH) Algorithm

The posterior density, π(θ|x), is known up to proportionality, which is due to the

normalising constant. We desire a method that does not require calculating the de-

nominator in Bayes' Theorem. The MH algorithm draws approximate samples from

the true posterior. The name is derived from Metropolis et al. (1953) and Hastings

(1970) who �rst proposed and developed the method.

At each time t with current state θ(t), the next state θ(t+1) is chosen by �rst sampling

a candidate φ from a proposal distribution q(·|θ(t)). The candidate is then accepted

with probability α(θ(t), φ) and then θ(t+1) = φ; else rejected and the state remains the

same, i.e. θ(t+1) = θ(t). The acceptance probability α is the minimum of one and a
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ratio of the posterior and proposal densities.

α(θ(t), φ) = min

{
1 ,

π(φ|x)q(θ(t)|φ)
π(θ(t)|x)q(φ|θ(t))

}
.

Thus the algorithm for a MH update is

Algorithm 1.1: Generic Metropolis-Hastings (MH) update for parameter vector
θ.

1 Propose φ ∼ q(·|θ(t));
2 Evaluate α(θ(t), φ);
3 Draw A ∼ U(0, 1);
4 if α < A then

5 θ(t+1) = φ
6 else

7 θ(t+1) = θ(t)

Recall θ may represent a vector of parameters, in this case there are several possible

updates. Firstly we can update all the parameters at the same time, thus all are

accepted or rejected. Secondly, each parameter can be updated in turn. Each step of

the chain consists of n updates, where n is the length of θ. Finally, the parameters can

be updated in blocks, each parameter belonging to a single block.

1.3.2.2 Gibbs Algorithm

The Gibbs algorithm is a special case of the Metropolis-Hastings algorithm, the name

is derived from Gibbs random �elds where it was �rst used by Geman and Geman

(1984).

Let θ be a vector of n parameters, θ1, . . . , θn and let θ−i denote the vector with the

element θi removed. Then πi(θi|θ−i, x) for i = 1, . . . , n are called the full conditional

distributions of π(θ|x).
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The Gibbs algorithm samples from the joint posterior distribution using the full con-

ditional distributions, by sampling each of the θi in turn. Thus the Gibbs algorithm is

Algorithm 1.2: Generic Gibbs update for parameter vector θ.

1 For θ(t);

2 Generate θ
(t+1)
1 from π(θ1|θ(t)−1, x);

3 Generate θ
(t+1)
2 from π(θ2|θ(t)−2, x);

4

...;

5 Generate θ
(t+1)
n from π(θn|θ(t)−n, x);

The Gibbs update is a special case of the Metropolis-Hastings with acceptance proba-

bility one. The proposal distribution is the full conditional distribution, i.e. q(θi|θ−1) =

πi(θi|θ−i). Let θ(t) = (θt1, . . . , θ
t
n) be the current state and φ = (θt+1

1 , . . . , θtn) be the

proposed state when updating θ1. Using the fact that

π1(θ1|θ2, . . . , θn) =
π(θ1, θ2, . . . , θn)

π(θ2, . . . , θn)
,

the acceptance probability of such an update is

α(θ(t), φ) = min

{
1 ,

π(φ)q(θ(t)|φ)
π(θ(t))q(φ|θ(t))

}

= min

{
1 ,

π(θt+1
1 , θt2, . . . , θ

t
n)π1(θ

t
1|θt2, . . . , θtn)

π(θt1, θ
t
2, . . . , θ

t
n)π1(θ

t+1
1 |θt2, . . . , θtn)

}
= min

{
1 ,

π(θt+1
1 , θt2, . . . , θ

t
n)π1(θ

t
1, θ

t
2, . . . , θ

t
n)π(θ

t
2, . . . , θ

t
n)

π(θt1, θ
t
2, . . . , θ

t
n)π1(θ

t+1
1 , θt2, . . . , θ

t
n)π(θ

t
2, . . . , θ

t
n)

}
= 1.

The bene�t of Gibbs updates is in no longer needing to calculate and tune an acceptance

probability, since all proposed samples are used. This can result in much shorter runs to
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obtain a suitable sample. It is possible to combine the Metropolis-Hastings and Gibbs

updates into the so called Metropolis within Gibbs, as well as other update methods;

see Gilks et al. (1996) for more details.

1.3.2.3 Proposal Distributions

The Gibbs algorithm is a special case of the Metropolis-Hastings using an appropriately

chosen proposal distribution and performing sequential updates on each parameter in

turn.

For the standard MH algorithm we are free to choose an arbitrary proposal distribution

provided it is reversible, i.e. q(θ(t)|φ) 6= 0.

The choice of proposal distribution directly a�ects the rate of convergence of the chain.

Often the proposal will have tunable parameters that are determined before the MCMC

algorithm is run. These tunable parameters, also known as scaling factors are vital to

optimal performance. The following are a selection of common proposals, for details

on convergence and performance see for example Sherlock et al. (2009)

Independence Sampler The simplest choice for a proposal distribution is one that

is independent of the current state,

q(φ|θ(t)) = q(φ).

This is called an independence sampler, as each proposal is independent of the chain.

Independence samplers will perform poorly if they do not cover the regions of the state

space with large posterior density, though as with many possible options in Bayesian

inference, there are situations in which it performs better. The acceptance probability



1.3 Inference And Markov Chain Monte Carlo 24

for an independence sampler is

α(θ(t), φ) = min

{
1 ,

π(φ)q(θ(t))

π(θ(t))q(φ)

}
.

Symmetric Random Walk Metropolis (RWM) The random walk is a popular

choice, with the symmetric case being common due to a simpler acceptance probability.

In this case the proposal distribution is

q(φ|θ(t)) = q(|φ− θ(t)|).

The acceptance probability is then simply the ratio of the likelihoods. Thus a proposal

with a higher likelihood is always accepted, which can cause problems with multi-modal

posteriors.

α(θ(t), φ) = min

{
1 ,

π(φ)

π(θ(t))

}
.

Commonly, the chosen symmetric density is a normal distribution centred at the current

state, with the variance σ2 as a tunable parameter, i.e. φ− θ(t) ∼ N(0, σ2). This is the

original case proposed by Metropolis et al. (1953). For vectors of parameters, we can

generalise to the multivariate normal distribution letting φ− θ(t) ∼ Nn(0,Σ), where Σ

is the n dimensional covariance matrix.

Multiplicative RWM For non-negative parameters, the additive nature of the ran-

dom walk requires special attention at the boundary. Instead, let the proposal be a

random multiple of the current state, φ = θ(t) exp(U) where U ∼ N(0, σ2). This avoids

the complication of checking for negative candidate values. The acceptance probability
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of a multiplicative RWM is

α(θ(t), φ) = min

{
1 ,

π(φ)φ

π(θ(t))θ(t)

}
.

1.3.2.4 Convergence, Burn In And Thinning

The theoretical justi�cation of MCMC states that the samples are approximately drawn

from the posterior density once the chain has reached its stationary distribution. That

is θ(t) as t→ ∞, is a sample from π(θ|x).

The speed at which this happens, known as the rate of convergence of the chain, may

not be possible to describe analytically. The proposal distribution will have a large

a�ect on the rate of convergence.

For example, consider a symmetric random walk metropolis with a normal distribution.

If the scale factor σ2 is too small the chain will accept many small jumps and it will

take a long time to explore any tails of the distribution. Similarly, if the scale factor is

too large, the chain will often reject large unlikely jumps and it will fail to move at all.

The acceptance probability determines how often the chain will move, and there has

been much work on determining optimal scaling to give the optimal rate of convergence

and mixing. Roberts et al. (1997) derived the often quoted value 0.234, that is the

optimal scaling factor results in an acceptance rate of 0.234. The acceptance rate is

the ratio of proposed candidates that are accepted. This result has received a great

deal of attention, and its validity in a wide number of situations has been tested.

Without an analytic result for the convergence of a chain, it is necessary to adopt a

more subjective measure. For a given component of θ, a trace plot shows the history
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Figure 1.1: Example trace plot, the dotted line indicated the end of the burn in
period. There after each iteration is a usable sample from the posterior
density.

of the parameter for each iteration of the chain. An example is shown in Figure 1.1,

there is a clear initial period where the parameter θ changes dramatically from its

initial value (an arbitrarily chosen point in the parameter space). Once this period has

�nished, the plot shows a more stable variation and the chain has reached its stationary

distribution as desired.

A burn in period is the number of the initial iterations that are not used as samples

to estimate the posterior density. The number of iterations to remove is generally

determined from looking at a trace plot of the parameters. Beyond the dotted line

in Figure 1.1, we claim the chain has converged. Iterations past this point are thus

approximate samples from the posterior density of interest.

We require independent samples from the posterior in order to generate a reasonable

approximation to the density. Since each iteration is dependent upon the previous one,

the chain does not draw truly independent samples. To overcome this, a process of

thinning is applied to the observations after convergence has been reached. An example
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of thinning would be to take only every �fth sample. The amount of thinning is based

on how dependent consecutive samples are (a result of the proposal distribution) and

the total number of available samples (less those removed in the burn in period).

We can inspect the independence of samples using the Auto Correlation Function

(ACF), a measure of the correlation of a process. Let {Xt : t ≥ 0} be a process,

then the ACF between two time points, s and t is given by

R(s, t) =
E [(Xt − µt)(Xs − µs)]

σs σt
,

where Xt has mean µt and variance σ2t .

If the process is second-order stationary, then the mean and variance are time inde-

pendent and we may approximate the ACF for a discrete �nite process. Note, the

computed ACF for a chain will vary depending on the amount of thinning and the

form of the proposal distributions.

Adaptive MCMC Commonly there will be no indication as to how to set the tunable

parameters or how to choose the initial value of the chain to minimise the burn in

period. An initial MCMC run can be performed to obtain a better estimate, but for

complicated models this can be impractical.

To overcome this issue Haario et al. (2001) developed an adaptive proposal scheme, the

theory of which is developed by Roberts and Rosenthal (2007). The proposal density

is adapted for optimal scaling as the chain converges.

Adaptive MCMC can perform poorly if the chain adapts to a region of the state space

away from the posterior mode. The chain can become `stuck', that is the chain remains

in a subset of the state space of low posterior density, so several runs are still required
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with varying initial conditions.

The adaptive proposals discussed are RWM using a normal distribution, for non-normal

proposals it would be necessary to check that the resulting adapted proposal conserved

the ergodicity of the Markov chain.

1.3.3 Non-Centred Parameterisations

To make inference possible for the epidemic models we shall impute some missing data,

otherwise the likelihood is intractable for the models we wish to consider. Thus we

augment the observed data set X with an imputed data set Y . Then the likelihood

for the parameters of interest is π(θ|x, y) and the posterior is the joint posterior of the

parameters of interest and the imputed data, i.e. π(θ, y|x).

The imputed data Y = y will naturally be dependent upon the parameters θ, and the

likelihood of the observed data X = x is in turn dependent upon the imputed data.

This natural framework is called Centred Parameterisation, as the imputed data y is

centred between the parameters and the observed data. This dependence can cause

poor mixing of the chain and very slow rates of convergence.

Non-centred parameterisations and partially non-centred parameterisations attempt to

make a new data set y′ that is independent of θ. The imputed data y is then some

function of y′ and θ. This can greatly improve the mixing properties of the Markov

chain.

It is not always possible to re-parameterise the augmented data, nor is the bene�t

guaranteed in all situations. For more details and a summary of non-centred methods

see Papaspiliopoulos et al. (2003), Neal and Roberts (2005), Kypraios (2007) and Jewell
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et al. (2009).

1.3.4 Approximate Bayesian Computation

The standard Bayesian approach requires the likelihood of the data x given a realisation

of the parameters θ, if the likelihood is intractable we may augment by incorporating

missing data y as additional parameters. The form of π(x|θ) or π(x|y, θ) is key to the

e�ciency of the algorithm. However, if the likelihood cannot be augmented or is still

intractable then another approach is necessary.

Beaumont et al. (2002) proposed a likelihood free method named Approximate Bayesian

Computation (ABC). Originally applied to population genetics, the method was ex-

panded and investigated further by Marjoram et al. (2003), Plagnol and Tavare (2004)

and Blum (2009). Interest in ABC is growing due to its simplicity over MCMC, in

terms of coding and complexity, see Toni et al. (2009) for examples applications.

To implement likelihood free methods, the underlying stochastic process must be easy

to simulate relative to the cost of computing the likelihood. Thus, for a given parameter

set θ we can generate an observation x′. As in MCMC, a proposal distribution is used

to generate a candidate parameter φ, we then simulate a realisation of the stochastic

process using the candidate parameter and update θ = φ if the outcome matches the

observed data, i.e. if x′ = x.

Algorithm 1.3: Approximate Bayesian Computation (ABC) using exact match

1 Draw φ ∼ π(θ);
2 Simulate x′ from process with parameter φ;
3 if x′ = x then
4 accept φ
5 else

6 reject φ
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Using an exact match between the observed data x and the simulated data is only

viable if the probability of the observed outcome is su�ciently large, i.e. P[x|θ] > α,

where α is equivalent to the acceptance probability for a Metropolis-Hastings update.

Thus if the process is highly variable or of high dimensionality, the simulated data

will rarely equal the observed. In this case we may consider not only exact matches

but those that are close as well. We de�ne a metric ρ between two outcomes of the

stochastic process, and a tunable distance parameter ε. The modi�ed algorithm is:

Algorithm 1.4: Approximate Bayesian Computation (ABC) using distance met-
ric

1 Draw φ ∼ π(θ);
2 Simulate x′ from process with parameter φ;
3 if ρ(x, x′) < ε then
4 accept φ
5 else

6 reject φ

Using ABC we obtain approximate samples from the posterior conditional on the dis-

tance. As ε → ∞ the samples are drawn from the proposal (to simplify the algorithm

an independence sampler is commonly used, the samples are then drawn from the prior

on θ). As ε→ 0 we obtain samples from π(θ|ρ(x, x′) < ε). The choice of ε is a balance

between accuracy and acceptance.

An appropriate distance metric may not be immediately obvious, instead it is common

to use summary statistics, S(x), de�ning a metric in terms of them, i.e. ρ(S(x), S(x′)).

Using su�cient statistics is related to the accuracy of the approximation, see Sousa

et al. (2009) for an example on a discussion on summary statistics for ABC.
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1.4 Previous Literature On Epidemic Models And Infer-

ence

The literature on mathematical modelling of epidemics is extensive, see Section 1.2 for

examples on the topics discussed. For a summary text, the books by Andersson and

Britton (2000) and Diekmann and Heesterbeek (2000) give background and a detailed

introduction to the area. The former discusses stochastic modelling and their statistical

analysis while the latter is focused on deterministic models.

Inference for stochastic epidemics, in particular Bayesian inference, has developed

rapidly in recent decades due to the increase in available computer power. An intro-

duction and summary of progress in the use of Markov Chain Monte Carlo (MCMC)

methods applied to SIR epidemic models is given by O'Neill (2002). In particular,

the work by Gibson and Renshaw (1998) and O'Neill and Roberts (1999) demonstrate

the �rst use of MCMC methods for epidemic inference. This was later expanded to

non-Markovian infectious periods by O'Neill et al. (2000) and to incorporate two-level

mixing models by Demiris and O'Neill (2005b).

Interest is not only restricted to the Markovian continuous time SIR model (and its

derivatives). For example, O'Neill and Becker (2001) return to a previously analysed

�nal size outbreak to consider varying susceptibility. O'Neill (2003) considers inference

for the discrete-time Reed-Frost model and Streftaris and Gibson (2004) consider infer-

ence for continuous time epidemic where infectious periods follow a Weibull distribution

using MCMC.

Modelling and inference of partially observed epidemics has also developed. Panaretos

(2007) considers a partially observed branching processes to model the early stages of

an epidemic, focusing on the probabilities of a minor or major outbreak conditioned
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on the observed process. Britton and O'Neill (2002) consider the contact structure (or

social network) underlying the epidemic to be a random graph with Bernoulli random

edges using MCMC. In addition to extending inference to multi-level mixing models,

Hayakawa et al. (2003) allowed for multi-type models where di�ering types have their

own infection rates. They also consider the case where the number of susceptibles is

unobserved, i.e. a partially observed epidemic.

Though MCMC methods are common in inference for epidemic models, there are a

variety of speci�c algorithms for speci�c problems. For example, the Approximate

Bayesian Computation (ABC) technique has been used by Blum and Tran (2008) to

make inference on the spread of HIV and Clancy and O'Neill (2007) use rejection

sampling algorithms instead of MCMC to obtain exact Bayesian inference and perform

model selection.

1.5 Thesis Outline

We begin in Chapter 2 studying a stochastic epidemic process using a representation

of the epidemic as a directed random graph. Properties of the representation are

investigated and various approaches to its analysis are considered and compared. The

representation removes the need for temporal analysis.

Using the directed random graph representation, an MCMC algorithm is constructed in

Chapter 3. We proceed to analyse a well known data set and compare results to previous

work for a one-type one-level model. The algorithm is adapted to include extensions

discussed in Section 1.2.5 and 1.2.6. Section 3.3 incorporates partially observed one-

type one-level models, which are extended to two-level mixing models. In Section 3.5

we extend the algorithm to accommodate an arbitrary number of levels and types,
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this general framework covers multi-type multi-level models. Section 3.6 applies the

algorithm to a previous study by Demiris and O'Neill (2005a). Finally, in Section 3.7 we

discuss practical issues of implementing the algorithm and techniques used to overcome

them.

Chapter 4 is a case study of an outbreak of Equine In�uenza (H3N8) at Newmarket

in 2003. The algorithms developed in Chapter 3 are implemented and we consider

approaches to overcome the practical di�culties, in particular the length of the MCMC

runs required.

Finally, Chapter 5 gives a summary of the results of the thesis, the methods and

algorithms developed and their application to the case study data sets.
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Chapter 2

Conditioned Epidemic Processes

2.1 Introduction And Motivation

When investigating the behaviour of a disease, it is common to have many unobserved

events. Normally the exact infection times of individuals are unobserved, typically

only their removal times are known. Given the relative timescale for some diseases the

removal times recorded may be inadequate in detail for temporal inference methods.

Instead of considering the temporal information, we can infer something about the

infection rates from the �nal size alone, i.e. the number of initially susceptible individ-

uals that are infected by the end of the epidemic. By considering only the end point

of the epidemic we are potentially losing a lot of information, indeed if more complete

temporal data is available or if analysis of temporal e�ects such as interventions are

desired then alternative methods are required.

The non-temporal representation of the epidemic process we consider is a directed

random graph. In this chapter we shall present the relationship between the �nal size

of an epidemic and a digraph, then investigate the properties of the directed random

graphs. In particular, we consider a random graph conditioned on having a certain

connectedness property, which corresponds to conditioning the epidemic on a particular

�nal size. Being able to sample from the set of such conditioned graphs leads in turn

to Equation (2.2). In general it is also of interest to understand the distribution of
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conditioned random graphs, since such information can be used to design better Markov

Chain Monte Carlo (MCMC) algorithms.

Section 2.2 de�nes a directed random graph and its relationship to a stochastic epidemic

process. The correspondence between connectedness and �nal size is explained and

notation for the following sections is presented.

We begin by studying small graphs with less than twenty nodes, which correspond

to small populations. The graphs are �rst characterised by their edges, Section 2.3

considers two approaches to calculate the probability of a given connectedness in terms

of edges. Each approach is presented as a counting procedure, with the two formulae

being derived in Sections 2.3.2 and 2.3.3. The graph is then characterised by rank in

Section 2.4, with comparison to the edge characterisation and counting methods. The

correspondence with epidemic processes with varying infectious periods is made and a

general framework for an arbitrary infectious period is presented in Section 2.4.4. This

allows for a speci�ed distribution for the infectious period, provided each individual's

infectious period is independent and the speci�ed expectation exists.

Numerical results are presented for the edge and generation representations, however

computational limits are reached for fairly small populations. Section 2.5 considers

discrete-time branching processes conditioned on their total progeny. These processes

can be used to approximate the connectedness of a directed random graph under certain

limiting conditions. Exact coupling of the two processes is not derived, instead, a

numerical investigation is used to demonstrate the limiting behaviour.
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2.2 Directed Random Graphs

2.2.1 De�nition Of A Directed Random Graph And C-Connectedness

A directed random graph is a mathematical structure from Graph Theory, which has its

own standard notation and de�nitions. In this section we shall restrict our discussion to

the directed graph only. In Section 2.2.2 corresponding terms for an epidemic process

as de�ned in Section 1.2 will also be used. For the remainder of this chapter several

epidemic and graph notations will be used interchangeably. For Chapters 3 and 4 the

epidemic de�nitions will be preferred.

The de�nitions and theory presented in this section are su�cient for this thesis. For a

more detailed investigation of Graph Theory, including concepts not related to epidemic

modelling, see Ore (1967) and Bollobás (1998). Also Harary et al. (1965) discusses the

theory and applications of directed graphs to structural models in the social sciences,

though not with regard to epidemic modelling.

Standard Graph Theory is concerned with �xed graphs, however we are interested in

those of varying characteristics, so called Random Graphs. Again we refer the reader

to more speci�c literature, Bollobás (1985) for example, to explore random graphs in

more detail. There are two types of graph, directed and undirected, the correspondence

to an epidemic requires the concept of one individual infecting another, i.e. a direction

for the infection to occur, hence we consider the directed random graphs.

De�ne a directed random graph, G, as a collection of N labelled vertices, 1, . . . , N (for

�nite N). Set a subset of the vertices as roots, let there be R roots (1 ≤ R ≤ N).

Without loss of generality we may assign root vertices the labels 1, . . . , R and non-root

vertices the labels R+ 1, . . . , N . For each ordered pair of distinct vertices (i, j), where
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1 ≤ i, j ≤ N , i 6= j, a directed edge from i to j occurs with a probability pi,j . If the

edge (i, j) exists, we say there is a path from i to j. There are N(N − 1) possible

directed edges between all pairs of distinct points, we do not consider parallel edges or

loops beginning and ending at the same vertex. Thus a directed random graph G is a

collection of N vertices and probabilities for the directed edges between all vertices.

The edge probabilities can take many forms. We shall initially consider independent

edges, i.e. letting P[(i, j)] be the probability of the edge (i, j) being present, then

P[(i, j), (i, k)] = P[(i, j)]P[(i, k)] for all 1 ≤ i, j, k ≤ N and i 6= j 6= k. More generally,

random graphs are de�ned in terms of the out-degree distribution of each vertex. Let

Vi be the out-degree distribution for vertex i. For independent edges, the out-degree

distribution is multinomial, though we shall initially consider the simpler case of a

binomial with parameters N − 1 and p, Vi ∼ bin(N − 1, p).

A directed path is a sequence of directed edges, (v1, v2), (v2, v3), . . . , (vn−1, vn). A non-

root vertex i is said to be directionally connected from the root vertices if there exists

a directed path from at least one root vertex to i, i.e. vn = i and 1 ≤ v1 ≤ R. The

graph G, is said to be directionally connected if each non-root vertex is (directionally)

connected to the root vertices. A random graph is said to be C-connected if exactly

C non-root vertices are directionally connected to the root vertices. If C = N −R the

graph is directionally connected.

The distance of vertex i to vertex j is equal to the number of edges in the shortest

directed path from i to j. Let dij denote the distance of i to j. By convention, dii = 0

and if there is no directed path from i to j then dij = ∞.

De�nition 2.1

The rank of an individual is its minimal distance from a root vertex, i.e. rank(i) =

min{dji : vertex j is a root}.
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If vertex i is not connected to the root vertices, then it has an in�nite distance from all

of them, hence an in�nite rank. For a given random directed graph, we can summarise

the ranks of all vertices into a rank chain. The rank chain counts the number of vertices

of a given rank. De�ne Xi to be the number of vertices of rank i in the digraph for

0 ≤ i ≤ N − R + 1. The zeroth rank contains the root vertices, i.e. X0 = R for all

digraphs, and hence the maximum �nite rank for a vertex is N −R, i.e. one vertex of

each rank. Thus we terminate the rank chain at rank N −R+ 1 so that XN−R+1 = 0

for all digraphs. Note that, X∞ = N −R−C, i.e. the number of vertices that are not

connected to the roots and are at in�nite distance.

For t = 0, 1, . . . let Yt =
∑t

i=0Xi, a cumulative total of the number of vertices and

de�ne Zt = (Xt, Yt). Then the rank chain for a digraph can be expressed as the vector

Z = (Z0, Z1, . . . , ZN−R+1).

The connectivity of a digraph can be written in terms of the ranks of its vertices, all

vertices of �nite non-zero rank are connected to the root vertices. The rank chain also

encapsulates the connectivity of the digraph it corresponds to. For a given digraph

G = g with the corresponding rank chain Z = z, its connectivity is

C =

N∑
i=1

I{0<rank(i)<∞} =

N−R+1∑
t=1

|{i : i ∈ g, rank(i) = t}| =
N−R∑
t=1

xt = yN−R − y0.

Where I{E} is the indicator function, equal to one if the condition E is true and zero

otherwise.

We shall condition the random graph on its connectedness property in order to inves-

tigate its behaviour in comparison to the unconditioned structure.
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2.2.2 Epidemic Model And Its Relation To G

Recall the de�nition of the standard SIR (susceptible→infective→removed) stochastic

epidemic model from Chapter 1. Consider a population of N individuals, of which R

are initially (i.e. at t = 0) infective and N − R are susceptible. An infective individ-

ual remains so for a period of time TI , the infectious period, a non-negative random

variable. The infectious periods of di�erent individuals are independent. For this chap-

ter we shall initially let TI be a point mass distribution, i.e. TI = c for some c > 0.

While infectious an individual has potential contacts with other individuals within the

population at times given by the points of a Poisson process of rate λ
N > 0. Each

such contact with another infective has no e�ect, while a contact with a susceptible

individual immediately makes the susceptible an infective. At the end of its infec-

tious period an infective no longer makes any contacts and is said to be removed, it

is no longer involved in the epidemic. Let St and It be the number of susceptibles

and infectives at time t ≥ 0, respectively. The epidemic continues until there are no

more infectives remaining, so Iτ = 0 where τ is the stopping time of the epidemic,

i.e. τ = inf{t ≥ 0 : It = 0}. The �nal size of the epidemic is the number of susceptibles

who became infected, S0 − Sτ = N −R− Sτ .

The relation between the directed random graph G de�ned in Section 2.2.1 and the

epidemic model is as follows (see, for example, Andersson and Britton (2000), chap-

ter 7). The R root vertices correspond to the initial infective individuals, and the

remaining vertices correspond to the initially susceptible individuals. By settting

p = 1 − exp(− λ
N TI), an edge represents an infectious contact, since the probability

of a susceptible avoiding infection from a single infective is exp(− λ
N TI). The (random)

set of vertices that are directionally connected to the root vertices has the same distri-

bution as the set of individuals who become infected in the epidemic. Thus the number

of directionally non-root connected vertices has the same distribution as the �nal size
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of the epidemic.

The result is based on Ludwig (1974) (presented separately in Ludwig (1975)), which

state that for every epidemic process there is a corresponding Markov Chain which has

the same �nal size distribution. We construct such a Markov chain, which determines

the size of the next generation based only on current generation, this Markov chain

allows us to construct the directed random graph and study its connectedness.

2.3 Random Directed Graphs Characterised By Edges

Denote by GRN the set of all random directed graphs on N labelled vertices of which R

are roots as de�ned in Section 2.2.1 with out-degree distribution V . Let g be a speci�c

directed graph from the set of all possible graphs. There are 2N(N−1) directed graphs

on N labelled vertices if we characterise the graphs by edges, since each edge is either

present or not. Let χRN (C) be the subset of GRN containing graphs that are C-connected.

We now consider the problem of calculating P[G = g |G ∈ χRN (C)], where g ∈ GRN and

0 ≤ C ≤ N −R. In other words, we are interested in the distribution of G conditioned

upon its being C-connected. It is not immediately obvious how best to describe an

arbitrary graph. A natural approach is to characterise G by the number of edges it

contains.

Henceforth we shall restrict attention to random digraphs with independent edges and

set pi,j = p for all 1 ≤ i, j ≤ N , i 6= j. Then for two speci�c digraphs g and g′ both

with l edges (0 ≤ l ≤ N(N − 1)), we have

P[G = g] = P[G = g′] = pl(1− p)N(N−1)−l for 0 ≤ l ≤ N(N − 1). (2.1)
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The probability of a given digraph is a function of its number of edges and total number

of vertices, and all digraphs with l independent edges on N vertices are equally likely.

In particular, this means that a natural way to calculate P[G = g|G ∈ χRN (C)] is to

evaluate P[L(G) = l|G ∈ χRN (C)], where L(G) denotes the number of edges in G. In

the sequel we will usually write L instead of L(G) for simplicity. Note, that Equation

(2.1) is only true if each edge is independent and occurs with probability p. It is simple

to generalise to vertex-dependent edge probabilities if all edges are still independent.

Speci�cally, if the probability of an edge emanating from vertex i is pi, and if l1, . . . , lN

are the number of edges emanating from vertices 1, 2, . . . , N in g respectively, then

P[G = g] =

N∏
i=1

plii (1− pi)
N(N−1)−li . (2.2)

We shall not consider di�erent edge probabilities here, since our results in this section

can not easily be extended to this situation. Theorems 2.10 and 2.12 are derived assum-

ing interchangeable edges, reducing two isomorphic digraphs to the same case. If the

edge probabilities were di�erent per vertex the digraphs may no longer be isomorphic

in general. In epidemic terms, di�erent edge probabilities correspond to di�erent types

of individuals. We shall consider multi-type epidemics from an inference view point in

Chapter 3, extending the results of Section 2.4.

Returning to the single edge probability, since all random digraphs with l edges are

equally probable, we shall need to count the number of digraphs that satisfy the C-

connectedness property of interest. For a given N and l there are
(N(N−1)

l

)
digraphs.

However not all will be in the set χRN (C) for a given 0 ≤ C ≤ N −R.

De�nition 2.2

Let ARN (C, l) be the number of digraphs on N labelled vertices of which R are roots,

with l edges and that are C-connected.
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A digraph g ∈ GRN consists of N labelled vertices and a set of edges each denoted (i, j),

1 ≤ i, j ≤ N . A subset of the vertices are roots. Given the set of root vertices and the

distance between two vertices we have de�ned the rank of each vertex in Section 2.2.1.

We now introduce edge types depending upon the rank or connectivity of each vertex

at the end of the directed edge. For g ∈ χRN (C), de�ne g + (i, j) to be the digraph g

with the edge (i, j) added, for 1 ≤ i, j ≤ N . Similarly g − (i, j) is the digraph g with

the edge (i, j) removed.

De�nition 2.3

An edge (i, j) is called Free if adding the edge to the digraph g ∈ χRN (C) does not change

its connectivity, i.e. g + (i, j) ∈ χRN (C).

De�nition 2.4

An edge (i, j) is called Backward if the rank of vertex i is greater than or equal to the

rank of vertex j, i.e. rank(i) ≥ rank(j).

All Backward edges are Free, though not all free edges are backward. If rank(i) < ∞,

then both vertices are connected and adding an edge between them will not a�ect the

connectivity of the digraph (it will also have no e�ect on the rank of either vertex).

If rank(i) = ∞, then vertex i is not connected to the root vertices. Since the edge is

directed, from vertex i to vertex j, adding it will not connect vertex i nor will it a�ect

the rank of vertex j (the edge adds another path from the root vertices to vertex j

of distance in�nity). Strictly Backward edges are those where rank(i) > rank(j) and

Equal Backward edges are between vertices of the same rank, i.e. rank(i) = rank(j).

De�nition 2.5

An edge (i, j) is called Forward if the the rank of vertex j is greater than the rank of

vertex i and rank(i) <∞.

De�nition 2.6

An edge (i, j) is called Required if it is a Forward edge and removing that edge will

increase the rank of vertex j, i.e. rank(j) > rank(i) + 1 in the digraph g − (i, j).
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By the de�nition of rank, once a forward edge is added from vertex i to vertex j, the rank

of vertex j is exactly greater than the rank of vertex i by one, i.e. rank(j) = rank(i)+1

in the digraph g + (i, j). With a digraph g, each edge is either forward or backward.

These de�nitions will be helpful in explaining the results of Sections 2.3.2 and 2.3.3.

In these sections we shall give two methods for calculating ARN (C, l). Section 2.3.2

describes how to decompose the possible digraphs into simpler basis digraphs, while

Section 2.3.3 de�nes a recursive algorithm. The methods have many similar aspects,

the latter is simpler to implement practically and the former gives more information

about the underlying structure of the problem. Example output is presented in Section

2.3.4 for both approaches.

2.3.1 Digraph Connectedness Probability Mass Function On The Num-

ber Of Edges

We now consider combining the calculation of ARN (C, l), the number of digraphs on

N vertices of which R are roots such that C are connected using l edges, with the

probability of a given digraph as given in Equation (2.1).

Since the values of ARN (C, l) for varying C and l are counts of the number of digraphs,

and we know the total number of possible digraphs, the counts correspond to a partition

of digraphs into equivalent classes de�ned by their number of edges and connectedness.

Speci�cally, for �xed N , 0 ≤ R ≤ N and 0 ≤ l ≤ N(N − 1),

N−R∑
C=0

ARN (C, l) =

(
N(N − 1)

l

)
, (2.3)
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and,

N(N−1)∑
l=0

N−R∑
C=0

ARN (C, l) =

N(N−1)∑
l=0

(
N(N − 1)

l

)
= 2N(N−1), (2.4)

using the identity

a∑
b=0

(
a

b

)
= 2a.

We will use Equations (2.3) and (2.4) to provide a practical check of our results in

Section 2.3.4.

There are 2N(N−1) possible directed graphs on N labelled vertices, each of the N(N−1)

possible edges is either present or not. We can partition these into sets speci�ed by

their connectedness and number of edges. Extending the notation of Section 2.3, denote

the set of digraphs on N vertices of which R are roots with C connected (not including

the roots) and with l edges as χRN (C, l). Then,

|χRN (C, l)| = ARN (C, l) for

N ∈ N,

0 ≤ R ≤ N,

0 ≤ C ≤ N −R,

0 ≤ l ≤ N(N − 1),

and

|χRN (C)| =
N(N−1)∑
l=0

ARN (C, l).

Following from Section 2.3, we assume each edge is present independently with prob-

ability p. Thus the number of edges present in a random digraph is distributed bi-
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nomially, i.e. L ∼ Bin(N(N − 1), p). For a digraph G ∈ GRN we are interested in

P[L(G) = l|G ∈ χRN (C) ⊂ GRN ].

Given L = l, all digraphs are equally likely, so

P[G = g ∈ χRN (C)|L = l] =
ARN (C, l)(N(N−1)

l

) ,
and

P[L = l] =

(
N(N − 1)

l

)
pl(1− p)N(N−1)−l,

whence

P[G ∈ χRN (C)] =

N(N−1)∑
l=0

ARN (C, l)p
l(1− p)N(N−1)−l. (2.5)

Using Bayes' Theorem we have

P[L = l|G ∈ χRN (C) ⊂ GRN ] =

=
P[G ∈ χRN (C)|L = l]P[L = l]

P[G ∈ χRN (C)]

=
P[G ∈ χRN (C)|L = l]P[L = l]∑N(N−1)

k=0 P[∈ χRN (C)|L = k]P[L = k]
,

=


AR

N (C,l) pl (1−p)N(N−1)−lPN(N−1)
k=0 AR

N (C,k) pk (1−p)N(N−1)−k
C≤ l ≤N(N−1)−(C+R)(N−(C+R)),

0 otherwise.

(2.6)

The range of l given in Equation (2.6) is derived in Theorem 2.12 in Section 2.3.3.
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In the special case when p = 1/2, Equation (2.6) reduces to a ratio of digraph counts,

P[L = l|g ∈ χRN (C), p = 1/2] =
ARN (C, l)∑N(N−1)

k=0 ARN (C, k)
.

2.3.2 Counting C-Connected Digraphs Using Basis Digraphs

In order to partition the set of all possible digraphs according to their connectedness,

we shall use the underlying structure of such a partition. Each partition can be reduced

to a set of minimal digraphs which form the basis of all other digraphs in the partition.

If g ∈ χRN (C), then there may exist other digraphs g′ ∈ χRN (C) which comprise of all

the edges of g with additional free edges added, i.e. g′ = g + (i1, j1) + · · ·+ (in, jn) for

some n and vertex pairs i, j where (i, j) is a free edge. Note that both g and g′ are

both C-connected as the additional edges are free.

De�nition 2.7

A digraph g ∈ χRN (C) is a basis if there are no backward edges in g, i.e. there are only

forward edges. It is a minimal basis if there are no free edges and a maximal basis if

all free edges are present.

Consider the three digraphs below. the middle digraph can be seen as a minimal basis

for the ones either side. The two outer digraphs consist of the middle digraph with two

additional backward edges.
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In fact it is a minimal basis for three-connected digraphs on four vertices of which one

if a root.

The digraph g has labelled vertices, however, since all edge probabilities are equal and

we are characterising the digraph by its number of edges, we can consider two digraphs

g and g′ to be isomorphic if one is obtained by permuting the vertex labelling of the

other.

To count the number of C-connected digraphs with l edges, i.e.ARN (C, l), we will �nd the

set of C-connected bases. Then �nd the number of digraphs that have l edges in total

on each basis. This amounts to decomposing the ARN (C, l) into a sum with binomial

coe�cients, one per basis and accounting for the number of isomorphic digraphs.

We shall consider a simple example �rst, then a more complex example and �nally

present a general theorem for decomposing all possible digraphs characterised by their

connectedness and edges into bases.

Example (N,R) = (4, 3)

Let us consider the case where N = 4 and R = 3, i.e. four vertices of which three are

roots. There are 24(4−1) = 212 = 4096 possible digraphs in this case. There are two

possible classes of digraph, 0-connected or 1-connected, since 0 ≤ C ≤ N−R = 4−3 =

1.

Figure 2.1 shows all the basis digraphs (for zero and one connected digraphs) up to

isomorphism, since we arbitrarily label the vertices. For example, consider Figure

2.1(b), by relabelling the root vertices from 1, 2 and 3 (reading from left to right) to

1, 3 and 2, the two digraphs are the same in terms of their edge structure.
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(a) Only Basis for C = 0 (b) First Basis for C = 1
with one forward edge

(c) Second Basis for C = 1
with two forward edges

(d) Third Basis for C = 1
with three forward edges

Figure 2.1: All basis digraphs up to isomorphism of four vertices with three roots,
covering both C = 0 and C = 1 (connectedness). The four vertices are
labelled, however this is not all possible digraphs.

Let us consider A3
4(0, l), the number of digraphs with l edges that are 0-connected. For

such graphs there can be no edge from a root vertex to the single non-root vertex. This

discounts 3 edges, i.e. (1, 4), (2, 4) and (3, 4), where (i, j) denotes an edge from vertex

i to vertex j, from the total number of possible edges, 4(4− 1) = 12. In this case the

remaining 9 edges cannot a�ect the connectivity of the digraph. This is easy to check

by looking at Figure 2.1(a), since adding any edge apart from the three excluded means

vertex 4 cannot become connected. These 9 edges are backward, they emanate from

a vertex of rank greater than or equal to the one they go to and thus do not a�ect

connectivity of the digraph.

If we specify that there are l edges, then l ≤ 9 otherwise the digraph will not be 0-

connected. We have nine possible edge locations from which to choose the l speci�ed,
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i.e. choosing l from among the 9 backward edges. Thus,

A3
4(0, l) =

(
9

l

)
for 0 ≤ l ≤ 12, (2.7)

where we use the convention that for integers a ≥ 0, b,

(
a

b

)
=


0 if b > a or b < 0,

a!
(a−b)!b! otherwise.

(2.8)

Moving on to A3
4(1, l), i.e. the number of digraphs with l edges that are 1-connected,

we must have at least one edge from a root vertex to vertex 4. However, we must take

care to account for all such digraphs. The three edges (1, 4), (2, 4) and (3, 4) are of

special importance, they are forward edges. From these we can deduce the three basis

digraphs shown in Figures 2.1(b), 2.1(c) and 2.1(d). Each of these three basis digraphs

has one required edge, to connect vertex 4 to the root vertices.

The �rst, Figure 2.1(b), has only one forward edge which is required. Thus the �rst

digraph is the minimal 1-connected basis. The second, Figure 2.1(c), has two forward

edges either of which can be removed without e�ecting the connectivity, i.e. one of

the two edges is free. Figure 2.1(d) has three forward edges between rank zero and

rank one, any two of which are free. All three of these bases have the same number of

potential backward edges, they di�er in the number of forward edges that are used.

For a given basis graph we again wish to �nd the binomial coe�cient formed of the

number of potential backward edges and the number of these to choose, which is l less

the number used as forward edges in the basis. Finally we must �nd the number of

digraphs isomorphic to a given basis, which is a product of binomial coe�cients we

shall collectively call the isomorphism coe�cient.
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C \ L 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 9 36 84 126 126 84 36 9 1
1 3 30 136 369 666 840 756 486 219 66 12 1

Total 1 12 66 220 495 792 924 792 495 220 66 12 1
Table 2.1: Values of A3

4(C, l) using basis decomposition. Zero values are left blank
for clarity.

In this case we obtain,

A3
4(1, l) = 3

(
9

l − 1

)
+ 3

(
9

l − 2

)
+

(
9

l − 3

)
for 0 ≤ l ≤ 12. (2.9)

Each of the terms corresponds to a basis digraph in Figure 2.1. Consider the �rst term,

3
(

9
l−1

)
(Figure 2.1(b)). The factor of three accounts for the three sets of isomorphic

digraphs. The nine backward edges that cannot a�ect connectivity are the same as for

the 0-connected case, but for this basis we need one forward edge to be assigned. This

forward edge is in addition to the nine backward edges, so we obtain the term l− 1 in

the binomial coe�cient, i.e. we can assign one to ten edges in total, one forward and

nine backward. A similar argument yields the terms in (2.9) relating to the other two

basis digraphs.

Equations (2.7) and (2.9) are expanded fully in Table 2.1. The bases decompose the

digraphs into isomorphic digraphs with forward and backward edges, which can then

be combined as binomial coe�cients representing the choice of l less the forward edges

from among the backward edges. For l > 9 there are not enough backward edges on

the 0-connected basis, so no such digraphs exist. Similarly, if l = 0 then there are not

enough edges to attain a 1-connected digraph.

It is simple to check Equation (2.3) for the decomposition using the relation

(
a

b

)
=

(
a− 1

b− 1

)
+

(
a− 1

b

)
.
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Applying the relation iteratively,

1∑
C=0

A3
4(C, l) =

(
9

l

)
+ 3

(
9

l − 1

)
+ 3

(
9

l − 2

)
+

(
9

l − 3

)
=

[(
9

l

)
+

(
9

l − 1

)]
+ 2

[(
9

l − 1

)
+

(
9

l − 2

)]
+

[(
9

l − 2

)
+

(
9

l − 3

)]
=

(
10

l

)
+ 2

(
10

l − 1

)
+

(
10

l − 2

)
=

(
11

l

)
+

(
11

l − 1

)
=

(
12

l

)
,

satisfying Equation (2.3).

Example (N,R) = (4, 1)

Now consider a single root vertex and three non-root vertices, so that the possible values

of connectedness, C are 0, 1, 2 and 3. We shall use the terms forward and backward

to describe edges as before, as well as using a concept of distance between vertices to

de�ne rank.

For the 0-connected basis, we proceed as before. From Figure 2.2(a), there are no

forward edges and nine backward edges. Recall, all backward edges are free, i.e. it can

be added or removed and not a�ect the connectivity and is to a vertex of less than or

equal rank than from where it emanated. Thus,

A1
4(0, l) =

(
9

l

)
for 0 ≤ l ≤ 12. (2.10)

Now suppose we add the edge (1, 2) to Figure 2.2(a), giving a 1-connected basis. Clearly

there is only one such basis up to to isomorphism. We can select (1, 3) or (1, 4) instead,

hence the isomorphism coe�cient is three.
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(a) Only Basis for C = 0 (b) Basis with maximum
distance for C = 2

Figure 2.2: Two basis digraphs up to isomorphism of four vertices with one root.
Only one of the two basis digraphs for C = 2 is shown.

In this case there are only seven backward edges. Assume without loss of generality

(1, 2) is the forward edge, other choices are accounted for up to isomorphism. Then

vertices 3 and 4 are not connected and have in�nite rank. Hence, from vertex 2 there is

only one backward edge, i.e. (2, 1). There are three backward edges from both vertices

3 and 4, giving the total of seven backward edges. The edges (2, 3) and (2, 4) would

be forward edges if added, they would alter the connectivity of the digraph making it

a di�erent basis for a higher connectedness. Thus for the 1-connected basis,

A1
4(1, l) = 3

(
7

l − 1

)
for 0 ≤ l ≤ 12. (2.11)

For 2-connectedness we must take care to de�ne the bases correctly. In Section 2.2.1

the rank chain was de�ned, this sequence counts the number of vertices of a given �nite

rank. The total number of vertices of non-zero �nite rank is the number of connected

vertices. The bases can be summarised by a rank chain, which characterises the forward

edges used.

To be 2-connected, both vertices can have rank one, or a single vertex of rank one then

a single vertex of rank two. No other rank chains are possible, for example if both

vertices are rank two, there must exist a rank one vertex which is a contradiction since
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the other vertices are rank zero and in�nity respectively.

The latter case is shown in Figure 2.2(b), with the rank chain Z = (1, 1, 1, 0). The

isomorphism coe�cient is the product of binomial coe�cients for choosing individuals

to be of each rank. The rank one vertex has
(
3
1

)
choices and the rank two vertex has(

2
1

)
, giving

(
3
1

)(
2
1

)
= 6. For this basis, the number of backward edges is six: (4, 1),

(4, 2), (4, 3), (3, 1), (3, 2) and (2, 1).

For the other 2-connected basis, with rank chain Z = (1, 2, 0), we can augment Figure

2.2(a) by adding the edges (1, 2) and (1, 3). There are three such isomorphic digraphs

having seven backward edges. We combine the possible digraphs by adding the totals

from each basis. Hence,

A1
4(2, l) = 6

(
6

l − 2

)
+ 3

(
7

l − 2

)
for 0 ≤ l ≤ 12. (2.12)

Note in both 2-connected bases we had two forward edges, both of which were required

making these minimal bases. In order to have l edges, two must be assigned as the

forward edges leaving l − 2 edges to be chosen from among the backward edges.

Finally we consider 3-connectedness, there are �ve basis digraphs as shown in Figure

2.3. Figures 2.3(a), 2.3(b) and 2.3(c) correspond to the rank chains (1, 3, 0), (1, 1, 1, 1, 0)

and (1, 1, 2, 0) respectively, the basis shown in each �gure is minimal and so consist

entirely of required edges.

Bases 2.3(d) and 2.3(e) have the same rank chain, i.e. (1, 2, 1, 0). They di�er in the

number of forward edges between the �rst and second rank. Both are basis digraphs,

as they contain no backward edges. Figure 2.3(d) is the minimal basis for the rank

chain (1, 2, 1, 0) whereas Figure 2.3(e) is the maximal basis, it contains every potential

forward edge.
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(a) (b) (c)

(d) (e)

Figure 2.3: All basis digraphs up to isomorphism of four vertices with one root
which are three-connected.

Given the �ve basis digraphs, we can count the number of backward edges on each, for

the choice of forward edges write down the isomorphism coe�cient and combine all the

terms. For the bases 2.3(a)� 2.3(e) respectively,

A1
4(3, l) =

(
3

3

)(
9

l − 3

)
+

(
3

1

)(
2

1

)(
1

1

)(
6

l − 3

)
+

(
3

1

)(
2

2

)(
7

l − 3

)
+

(
3

2

)(
2

1

)(
1

1

)(
7

l − 3

)
+

(
3

2

)(
1

1

)(
7

l − 4

)

collecting terms gives,

=

(
9

l − 3

)
+ 6

(
6

l − 3

)
+ 9

(
7

l − 3

)
+ 3

(
7

l − 4

)
for 0 ≤ l ≤ 12. (2.13)
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Again we can check Equation (2.3), that the sum for a given l is as expected,

3∑
c=0

A1
4(c, l) =

(
12

l

)
for 0 ≤ l ≤ 12.

General Basis Decomposition

We now derive a general form for the decomposition of a digraph into component bases

that will yield ARN (C,L). We begin by stating several lemmas that will be required for

Theorem 2.10.

For c-connectedness, excluding non-connected vertices the largest attainable rank is

c. This corresponds to the rank chain Z = (R, x1, . . . , xC , 0) = (R, 1, . . . , 1, 0), where

xi = 1 for 1 ≤ i ≤ c. If we remove the zeroth rank and the terminating rank, c + 1,

then we have a sequence of integers of length k that sum to c ∈ Z+. This is a partition

of c into k parts.

Lemma 2.8

For c ∈ N, there are
(
c−1
k−1

)
partitions of c into 1 ≤ k ≤ c parts and 2c−1 partitions in

total.

A basis is characterised by its rank chain and the number of forward edges. A forward

edge, (i, j) for vertices i, j in g, is such that vertex j has rank one greater than vertex i.

By the de�nition of a forward edge, vertex j has a greater rank than vertex i, however

by the de�nition of rank, if the edge (i, j) is present then the rank of vertex j can be

at most one greater than that of vertex i. From the rank chain we can �nd the number

of vertices of two consecutive ranks, then all bases on this rank chain will assign edges

between the minimal and maximal number possible. The Inclusion-Exclusion Principle

can be used to �nd the number of possible forward edges.
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Lemma 2.9

Let u and x denote two consecutive ranks in a rank chain. The number of potential

forward edges is ux. The number of ways to assign e edges from among the potential

forward edges such that all x vertices are connected is

(
ux

e

)
−

x∑
j=1

(−1)j−1

(
x

j

)(
u(x− j)

e

)
,

which is zero if e > ux or e < x (since at least x edges are needed to connect x vertices).

Proof

Denote by R the set of all assignments of e edges from u vertices to x vertices. Then

clearly

|R| =
(
ux

e

)
.

R may include assignments that do not connect all x vertices. Label the x vertices

1, 2, . . . , x and let Ri denote the set of assignments where vertex i is not connected, for

1 ≤ i ≤ x. The number of valid assignments, such that all x vertices are connected is,

|R| − |R1 ∪ · · · ∪ Rx|.

Using the Inclusion-Exclusion Principle we can express the size of the union of sets as

a sum of sizes of intersections,

|R1 ∪ · · · ∪ Rx| =
∑

1≤i1≤x
|Ri1 | −

∑
1≤i1<i2≤x

|Ri1 ∩Ri2 |+ · · ·+ (−1)x−1|R1 ∩ · · · ∩ Rx|.

It is possible to express these terms in closed form. The set Ri is all assignments where

vertex i is not connected, which is equivalent to all the possible assignments without

vertex i being present, i.e. |Ri| =
(
u(x−1)

e

)
. The summation is equivalent to selecting



2.3 Random Directed Graphs Characterised By Edges 57

one vertex from the x to remove. Thus

∑
1≤i1≤x

|Ri1 | =
(
x

1

)(
u(x− 1)

e

)
.

Similarly, for |Ri1 ∩ Ri2 | we can consider all assignments where vertices i1 and i2 are

removed. The summation, over all i1 and i2 such that 1 ≤ i1 < i2 ≤ x is equivalent to

choosing two vertices to remove from the x. Thus,

∑
1≤i1<i2≤x

|Ri1 ∩Ri2 | =
(
x

2

)(
u(x− 2)

e

)
.

Continuing for all terms of the expansion, we obtain the following,

|R| − |R1 ∪ · · · ∪ Rx| =
(
ux

e

)
−

(
x∑
l=1

(−1)l−1

(
x

l

)(
u(x− l)

e

))
.

For the �nal term in the summation, l = x, the assignment binomial coe�cient becomes(
u(x−x)

e

)
=
(
0
e

)
, which using the de�nition of (2.8) is zero if e > 0. This is consistent

with our de�nition, as R1 ∩ · · · ∩ Rr is the set of all ways to assign e edges from u

vertices to no vertices (all excluded) which is zero if e > 0, so we can reduce the range

of l to, 1 ≤ l ≤ x− 1. �

Figure 2.4 shows an example of Lemma 2.9 where u = 2, x = 3 and e = 3. The grey

boxes denote removed vertices for the inclusion-exclusion calculation. In full we have

the total number of valid assignments as,

(
2(3)

3

)
−
((

3

1

)(
2(3− 1)

3

)
−
(
3

2

)(
2(3− 2)

3

))
=20− (3(4)− 3(0)) = 8.
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Figure 2.4: Example of Lemma 2.9 using the Inclusion-Exclusion Principle to de-
termine the number of valid edge assignments when u = 2, x = 3 and
e = 3. The �rst �gure shows the case of interest, assigning edges that
fail to connect the three target vertices, the second shows the number
of ways to do this by excluding one of the target vertices, and the �nal
�gure excludes two vertices.

The three terms above are illustrated in Figure 2.4, �rstly the unrestricted assignment,

then having removed one vertex and �nally removing two. It is impossible to assign

three edges in the third case since there are only two potential, hence the zero for the

�nal term. It is easy to verify the eight possible assignments explicitly.

We can now derive a general expression decomposing any C-connectedness on g ∈ GRN

into components corresponding to basis digraphs.

Theorem 2.10 (Digraph Bases Formula)

Let ARN (C, l) be the number of digraphs on N vertices of which R are roots with l edges

such that C non-root vertices are directionally connected to at least one root vertex.

Then,

ARN (C, l) =
∑

{Z(m):1≤m≤2C−1}

[
k∏
i=1

(
N − yi−1

xi

)]
×

×
x0x1∑
e1=x1

· · ·
xk−1xk∑
ek=xk

(∑k
j=1 xj(yj − 1)

l −
∑k

j=1 ej

) k∏
i=1

(
xi−1xi
ei

)
−

xi∑
j=1

(−1)j−1

(
xi
j

)(
xi−1(xi − j)

ei

)

0 ≤ C ≤ N −R and 0 ≤ l ≤ N(N − 1). (2.14)
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Here Z(m) is the mth partition of C into parts with the zeroth position set to R and

a running total, i.e. Z(m) = (R,Z1, . . . , Zk) for some 1 ≤ k ≤ C, Zi = (xi, yi) and

yi =
∑i

t=1 xt.

Proof

Firstly, we notice that all bases can be classi�ed depending upon their rank chain, Z

and the number of forward edges. Thus the �rst summation is over all possible rank

chains. By Lemma 2.8 there are 2C−1 possible partitions which correspond to rank

chains with suitably amended vectors (adding x0 = R and xk+1 = 0 for partitions of

length k). The sum is indexed by the mth partition.

Given a rank chain, we must assign the labelled vertices to each rank. This comprises

part of the isomorphism coe�cient, relating to the choice of vertices. The number of

ways to assign the vertices is

k∏
i=1

(
N − yi−1

xi

)
,

where k is the length of the current partition and y0 = x0 = R, since for each rank we

must choose xi vertices from those that remain, i.e. N − yi−1.

For a given partition, corresponding to a rank chain, bases are characterised by the

number of forward edges connecting each rank with the next. Let ei denote the number

of edges assigned to connect the xi vertices of rank i from rank i− 1 consisting of xi−1

vertices. The minimal number of edges, i.e. the number of required edges is xi. The

maximal number of edges is xi−1xi, every possible edge from rank i− 1 to rank i. The

k summations for each rank determine the number of forward edges to assign, having

the form

x0x1∑
e1=x1

· · ·
xk−1xk∑
ek=xk
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for a partition of length k. Note the amended vector, including x0 = R is required.

For the current partition, once the total number of forward edges is chosen, i.e.
∑k

i=1 ei,

we can write the binomial coe�cient corresponding to the number of ways to assign the

l less the number of forward edges among the potential backward edges. The number

of backward edges from rank i is all the edges among vertices of rank i and to vertices

of lower rank. There are xi(xi− 1) edges among the rank i vertices and xi(yi−1) edges

to vertices of lower ranks. Hence the binomial coe�cient for the bases with partition

Z and e1, e2, . . . , ek forward edges is

(∑
i xiyi−1 + xi(xi − 1)

l −
∑

i ei

)
=

(∑
i xi(yi − 1)

l −
∑

i ei

)
,

since by de�nition, yi = xi + yi−1.

Lastly, the other component of the isomorphism coe�cient accounts for isomorphic

assignments of the forward edges. In this case, the number of ways to assign the ei

edges between each rank. Using Lemma 2.9 and taking the product over all the ranks

completes the proof. �

2.3.3 Counting C-Connected Digraphs Using A Recursive Approach

Theorem 2.10 provides a constructive approach to calculating ARN (C, l), the number of

digraphs that have N labelled vertices of which R are roots and have L edges resulting

in being C-connected. However, though mathematically acceptable the approach is not

simple to implement as the decomposition must consider the entire problem at once.

Speci�cally, the partitions become very large for moderate N , making explicit basis

decompositions di�cult to express.



2.3 Random Directed Graphs Characterised By Edges 61

Instead of determining the basis digraphs we can consider a recursive approach. Roughly

speaking, by adding edges we then reduce the problem to one on a sub-digraph with

fewer edges and vertices to consider. This continues until we reach a trivial assignment

of edges. At each step we consider vertices of the next rank until C vertices have been

connected.

Of interest is the number of digraphs characterised by the number of edges, so the

number of edges l, and the connectedness C are �xed constants in the recursive formula

(as well as N and R). For each rank, we track the number of edges assigned from the

initial l and the number of vertices connected so far. The edges assigned at each rank

will be either backward or forward in type.

For Theorem 2.10 we considered the total number of forward and backward edges to

obtain the binomial coe�cients, instead we shall now choose these at each rank. The

two approaches are di�erent formulations of the same problem.

For a given rank t for 0 ≤ t ≤ C + 1, we write k to denote the number of vertices

of rank t, n to denote the number of already connected vertices (not including the k

vertices of rank t) and m to denote the number of unconnected vertices.

We can relate these variables to the rank chain of the digraph, i.e. k = xt, n = yt−1

and m = N − yt. The recursive approach is a way to count the number of digraphs

without having to consider the whole rank chain at once, thus we shall avoid using the

notation of rank chains but still use the de�nition of rank.

For each rank the total number of vertices is clearly constant, i.e. k +m+ n = N . At

rank t, a number of edges will be assigned (both forward and backward) from the �xed

total l, leaving l̃ unassigned edges. When l̃ = 0 we want to have connected C vertices

to the roots, leaving m = (N −R)− C unconnected.
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At each rank, we calculate the number of digraphs that have k root vertices andm non-

root vertices that connect C − n− k of the m vertices using l edges. The l edges must

emanate from the current k roots and must connect the required number of vertices

from the m non-roots. The l edges may also link with the n already connected vertices.

De�nition 2.11

Let BC [k,m, n, l] be number of ways of assigning l edges from the k roots such that

C − n− k of the m non-root vertices are connected.

Then ARN (C, l) is the sum of all the possibles sub-digraphs from rank 1, each of which is

a sum of possible sub-digraphs from rank 2 and so on recursively, ending at a trivial sub-

digraph. A trivial sub-digraph is one for which we have a closed form for BC [k,m, n, l].

To illustrate the recursive algorithm, consider Figure 2.5(a) where N = 8 and R = 1,

with the aim to calculate A1
8(4, l) for 0 ≤ l ≤ N(N − 1). The following presents

the concept of the counting method without explaining the edge assignment in detail.

We begin by considering the initial root vertices, i.e. rank 0. There are no previously

connected vertices, so (k,m, n) = (1, 7, 0).

For example, select two vertices to be of rank 1. Assign a number of forward and

backward edges, j to connect the two vertices leaving l unassigned edges of the �xed

initial number l, i.e. l̃ = l − j. Then, we consider rank 1 to be the roots of a sub-

digraph, with fewer vertices and fewer edges to assign. In this example, the rank 1

sub-digraph has two root vertices, �ve non-root vertices and one already connected,

i.e. (k,m, n) = (2, 5, 1). The problem is now reduced to a smaller digraph, and we

continue by setting the number of rank 2 vertices as two say. These then become roots

of a new sub-digraph at rank 2 where (k,m, n) = (2, 3, 3). At this point the recursion

stops, we have connected 4 vertices as speci�ed.
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(a) Example (k,m, n) Sequence: (1, 7, 0), (2, 5, 1), (2, 3, 3)

(b) Example (k,m, n) Sequence: (1, 7, 0), (1, 6, 1), (3, 3, 2)

Figure 2.5: Example recursive steps to calculate A1
8(4, l), showing the root vertices

of successive sub-digraphs. The shaded group of vertices are the current
root set, the unshaded group are those vertices that have already been
connected.

We have not yet discussed the details of choosing the number of vertices in the next

rank or the number of edges to assign, they will be discussed in the proof of Theorem

2.12.

The rank of a vertex is always de�ned with respect to the original digraph, thus the

roots of a sub-digraph will have a non-zero rank.

Returning to our example, choose a single vertex to be of rank 1 and three vertices for

rank 2 as shown in Figure 2.5(b). The diagrams for choosing one or two vertices at

the rank 2 are not shown, in fact there are eight possible paths resulting in di�erent
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Figure 2.6: Tree diagram showing all choices of rank for calculating A1
8(4, L). The

grey circles denote trivial sub-digraphs and are the end points for the
recursion. The black triangle and star mark the sequences shown in
Figures 2.5(a) and 2.5(b) respectively.

choices at each rank.

The example is to calculate A1
8(4, l), from Lemma 2.8 there are 24−1 = 8 corresponding

rank chains. Unlike the basis approach, we do not consider all chains at once, but

search them recursively by choosing the number of vertices in each rank successively.

This search is shown in Figure 2.6. The grey circles denote trivial sub-digraphs, where

the desired connectivity has been reached leaving only backward edges to be assigned.

The choices at each rank for Figures 2.5(a) and 2.5(b) can be traced in Figure 2.6,

along with all the other possibilities.
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Theorem 2.12 (Digraph Recursive Formula)

Let ARN (C, l̃) be the number of digraphs on N vertices of which R are roots with l̃ edges

such that C non-root vertices are directionally connected to at least one root vertex.

Then,

ARN (C, l̃) =


BC [R,N −R, 0, l̃] for

0 ≤ C ≤ N −R,

C ≤ l̃ ≤ N(N − 1)− (C +R)((N −R)− C),

0 otherwise.

(2.15)

If m = (N −R)− C, then

BC [k,m, n, l] =

(
m2 + (k +m)(k + n− 1)

l

)
for

1 ≤ k ≤ C,

0 ≤ m ≤ N −R,

0 ≤ n ≤ N,

0 ≤ l ≤ N(N − 1),

(2.16)

otherwise,

BC [k,m, n, l] =

m−((N−R)−C)∑
r=1

(
m

r

)
min(l,k(k+n−1+r))∑

j=max(r,l−m(k+m+n−1))

BC [r,m− r, k + n, l − j] α(k, n, r, j)

 ,

(2.17)

where

α(k, n, r, j) =

min(j,kr)∑
w=max(r,j−k(k+n−1))

(
k(k − 1 + n)

j − w

){(
kr

w

)
−

r−1∑
l=1

(−1)l−1

(
r

l

)(
k(r − l)

w

)}
. (2.18)
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Proof

We obtain Equation (2.15) from the de�nition of BC [k,m, n, l], the sub-digraph count.

The initial digraph has R roots giving k = R; there are N −R non-root vertices which

are initially unconnected, so m = N − R; there are no previously connected vertices

initially, so n = 0 and we wish to assign l̃ edges, l = l̃.

The count is zero if l̃ < C, i.e. if there are not enough edges to connect C vertices.

Likewise, conditioned on C-connectedness, there are edges that cannot be assigned. In

particular, there cannot be any edges from the R+C vertices that are to be connected

to the (N−R)−C which must remain unconnected, in total (R+C)((N−R)−C). Thus

if the number of edges to assign is greater than the total number less these forbidden

edges, i.e. l̃ > N(N − 1) − (R + C)((N − R) − C), then some of these edges must be

assigned, connecting at least one of the vertices that is to be left unconnected, violating

the C-connectedness.

The stopping conditions of the recursion are the trivial sub-digraphs, which are reached

once we have connected the required C vertices, i.e. when m = (N − R) − C. Also

l = 0 is a stopping condition, but if this occurs before connecting C vertices the valid

sub-digraph count would be zero (in fact, we shall select the sub-digraphs such that

this does not occur).

When m = N − (C +R) and we are conditioning on C-connectedness we do not want

to connect any more vertices. Thus we must assign all remaining edges as backward

edges, i.e. those that connect to a vertex of equal or lower rank. The number of ways

to do this is a binomial coe�cient, choosing the l edges left to assign from among all

possible backward edges from the rank that triggered the stopping of the recursion.

The backward edges are the following: m(m − 1) edges between the m unconnected

vertices; k(k − 1) between the k vertices of the stopping rank; m(k + n) edges from
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the m unconnected to the k+n connected vertices (since these are directed edges they

will not connect any of the m vertices to the roots) and �nally the kn edges from the

k vertices of the stopping rank to the previously connected vertices. Adding the totals

for the four types of backward edge together gives

m(m− 1) + k(k − 1) +m(k + n) + k(n) = m2 + (k +m)(k + n− 1)

potential backward edges, from which the l remaining edges must be assigned, giving

Equation (2.16).

For m > (N − R)− C there is no simple closed form for the number of sub-digraphs.

However, given a (sub-)digraph with k root vertices, m unconnected vertices and n pre-

viously connected, then BC [k,m, n, l] denotes the number of such (sub-)digraphs that

have l edges assigned resulting in the original digraph being C-connected. By choosing

the number of vertices of the next rank we can reduce to this sub-digraph (denoted by

prime) and count the number of possible digraphs of that form, i.e. B′
C [k

′,m′, n′, l′].

Hence BC [k,m, n, l] is the sum over all possible sub-digraph counts. Denote by B and

B′ the digraph and a particular sub-digraph.

We shall now explain the details of Equation (2.17) (Figures 2.5 and 2.6 show an

example that we shall refer to). Firstly, select the number of vertices of the next rank,

k′, for clarity we shall relabel this as r. If we are not at a stopping point then r > 0

and r ≤ m − ((N − R) − C)) by the C-connectedness condition, otherwise we would

connect too few or too many vertices. There are
(
m
r

)
ways to choose the r vertices from

the m unconnected (this is the number of unconnected vertices in the digraph B, we

select the new root vertices for the sub-digraph B′ from the m unconnected vertices in

B).

Given the set of vertices in the next rank, it remains to select the number of edges to
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assign from the current vertices to those in the next rank. These j edges will connect

the k root vertices of B to the k′ = r root vertices of B′, and may also include backward

edges. If we assign j edges to link B to B′ (i.e. connect the root vertices of B′ to B's

roots) plus backward edges, then we carry forward l − j edges to the sub-digraph B′,

i.e. l′ = l − j. Denote by α(k, n, r, j) the number of ways to assign the j edges among

the potential forward and backward edges.

We have now reduced to a smaller sub-digraph by choosing k′ = r and l′ = l − j, the

k roots of B become part of the set of previously connected vertices thus n′ = n + k

and since the total number of vertices is constant m′ = m − r. Without considering

the limits of indices, we have Equation (2.17) roughly as,

BC [k,m, n, l] =
∑
k′

(
m

r

)∑
j

α(k, n, k′, j) B′
C [k

′,m′, n′, l′]

=
∑
r

(
m

r

)∑
j

α(k, n, r, j) BC [r,m− r, n+ k, l − j].

The number of digraphs of the form of B is the sum of all possible sub-digraphs B′ for

all choices of r and j, with coe�cients
(
m
r

)
and α(k, n, r, j) accounting for the number

of ways to choose the new roots and assign the edges respectively.

The range of root vertices for B′, given that the sub-digraph B was not a stopping point

of the recursion, i.e. Equation (2.16), is 1 ≤ r ≤ m− ((N − R)− C). The range for j

is more complicated, since it must account for the number of edges required to achieve

C-connectedness and the number of potential edges in subsequent sub-digraphs. It is

not strictly necessary, since any speci�cation which cannot achieve C-connectedness

would have a count of zero, however specifying the range on the indices exactly leads

to much faster implementation on a computer.
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In the sub-digraph B′ the total number of potential edges of any type is,

k′(k′ − 1) + k′(m′ + n′) +m′(m′ − 1) +m′(k′ + n′) = (k′ +m′)(k′ +m′ + n′ − 1),

ignoring any connectedness condition (the total edges from the k′ roots and m′ un-

connected vertices to all other vertices, not allowing any loops). Thus l′ must be less

than this, otherwise there would be too many edges to assign and not enough possible

places. Hence,

l′ ≤ (k′ +m′)(k′ +m′ + n′ − 1),

and substituting l′ = l − j, k′ = r, m′ = m− r and n′ = n+ k,

l − j ≤ (r +m− r)(r +m− r + k + n− 1)

j ≥ l −m(k +m+ n− 1).

Also, j must be at least r to connect the r vertices to the roots of B. Combining these

two bounds, we have

j ≥ max(r, l −m(k +m+ n− 1)).

For the upper bound, j is trivially bounded above by l, the total number of edges

available. However, there is also a limit to the number of edges that can be added to

link B to B′. Speci�cally, k(k− 1) within the roots of B, there are k(r) forward edges

from the roots of B to the roots of B′ and �nally k(n) possible edges form the roots of
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B to previously connected vertices. Again, combining these two bounds we have

j ≤ min(l, k(k + n− 1 + r)),

which completes the derivation of Equation (2.17).

Finally we consider the coe�cient α(k, n, r, j), the number of ways to assign the j edges

linking digraph B to B′. The j edges must connect the chosen r root vertices of the

next rank and they must not connect any of the other m − r vertices (otherwise it

would violate the choice of r).

The number of ways to assign the j edges must �rst determine the number of those

edges that are to be forward edges, connecting the k root vertices of B to the k′ = r

root vertices of B′. Let w be the number of forward edges assigned, leaving j − w to

be chosen from among the potential backward edges.

The number of potential backward edges is k(k − 1) + kn, from the k root vertices to

the k root vertices of B and to the previously connected vertices. Thus the number of

ways to assign the j − w is
(
k(k−1+n)
j−w

)
.

The forward edges are those that ensure the r vertices are connected. They are chosen

from all the edges between the k and r vertices, i.e. there are kr possible edges of which

we choose w. Using Lemma 2.9, the number of valid assignments is

(
kr

w

)
−

(
r∑
l=1

(−1)l−1

(
r

l

)(
k(r − l)

w

))
.

Hence α(k, n, r, j) is the sum of the number of ways to assign the j−w backward edges

and w forward edges over all values of w.
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It remains only to place limits on the range of w. The upper limit is the smaller of

either the number of edges to assign on B, i.e. j and the number of potential edges,

kr, giving

w ≤ min(j, kr).

The lower limits is the greater of r (since there must be at least r edges to connect the r

vertices) and j−k(k−1+n). The latter limit is so there are not more backward edges,

j − w, left to assign than potential backward edges, of which there are k(k − 1 + n),

i.e. j − w < k(k − 1 + n). Thus

w ≥ max(r, j − k(k + n− 1)),

completing the derivation of Equation (2.18). �

Corollary 2.13

If C = N −R, that is the digraph is totally connected, then

ARN (C, l) = ARN (N −R, l) =

(
N(N − 1)

l

)
for l > (N − 1)2. (2.19)

Proof

There are N(N −1) total potential edges on a digraph with N vertices. For a vertex to

be unconnected, assuming every other vertex is connected, we must not assign any of

the N − 1 edges from a connected vertex. Hence to have a single unconnected vertex,

there are N(N−1)−(N−1) = (N−1)2 potential edges. If l > (N−1)2 then the vertex

will be connected, hence C = N −R. So ARN (C, l) = 0 for C < N −R if l > (N − 1)2.
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C \ L 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 9 36 84 126 126 84 36 9 1
1 3 21 63 105 105 63 21 3
2 9 57 153 225 195 99 27 3
3 16 111 336 582 636 456 216 66 12 1

Sum 1 12 66 220 495 792 924 792 495 220 66 12 1
Table 2.2: Generated A1

4(C,L) values using Theorem 2.12. Zero values are left blank
for clarity.

Then,

ARN (N −R, l) =

N−R∑
c=0

ARN (c, l) =

(
N(N − 1)

l

)
�

2.3.4 Numerical Examples

Theorems 2.10 and 2.12 give two di�erent methods to compute ARN (C,L), the number

of digraphs on N vertices of which R are roots that are C-connected with L edges.

The bases give an insight into the underlying structure of the partitions, as a sum of

isomorphic minimal digraphs, whereas the recursive theorem provided bounds on the

number of edges.

For computation, an algorithm derived from Theorem 2.12 is easier to implement, since

the recursive function is simple to implement.

Table 2.2 gives the number of digraphs in each subset χRN (c, l) of GRN for N = 4 and R =

1, listing all values of A1
4(C,L) for 0 ≤ C ≤ 3 and 0 ≤ L ≤ 12. These were computed

using both methods, �rstly using the basis decompositions given by Equations (2.10),

(2.11), (2.12) and (2.13). Secondly the recursive algorithm was implemented, the two

methods give identical results.

Table 2.2 gives the values of A1
4(C,L) for all appropriate C and L as given in Theorem
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C \ L 0 1 2 3 4 5 6

0 1 4 6 4 1
1 2 6 6 2
2 3 10 12 6 1

Total 1 6 15 20 15 6 1
Table 2.3: Generated A1

3(C,L) values using Theorem 2.12. Zero values are left blank
for clarity.

2.12. The number of subsets χRN (C,L) is of order O(N3), accounting for the N(N − 1)

edges choices for each of the N − R possible connectedness properties. This does

not fully account for the number of recursive iterations that are required, for larger

connectedness the computation will be longer.

The bases decomposition of Theorem 2.10 also becomes computationally expensive for

large N . For all connected values there are 2C−1 possible minimal bases, in total there

are 2N−R+1−1 bases to consider (there is a single minimal basis, up to isomorphism, for

each rank chain). So the computation is of order O(2N ), accounting for the recursion

along each rank chain.

Tables 2.3 and 2.2 demonstrate Corollary 2.13 and the bounds for l derived in Theorem

2.12. For (N,R) = (4, 1) in Table 2.2 we see that for l > (N−1)2 = 9 all counts are zero

except for C = 3 (i.e. total connectedness). The connectedness that is exceeded with

minimal edges is cf = N−2R
2 = 1 where f(cf ) = f(1) = 8, i.e. if l > 8 the digraph cannot

be 1-connected. Similarly, the connectedness that is impossible without su�cient edges

is ch = f(ch) = 3. Hence for 3 ≤ l ≤ 8 all values of connectedness are possible.

The recursive algorithm was implemented in a program that computed the size of

all the subsets of GRN . Using the exact summation limits derived in Theorem 2.12

prevents searching zero count iterations. Also, by storing the sub-digraph counts,

BC [k, n,m, j] they will be reused in the recursion. For example, consider the parti-

tion (N,R,C,L) = (4, 1, 3, 6) which from B[1, 3, 0, 6] will consider the sub-digraphs
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R\C 0 1 2 3 4 5 6 7

1 5s 9s 19s 55s 2m51 10m14 31m33 1h41
2 8s 24s 56s 1m41 3m08 10m37 50m06 -
3 8s 50s 2m25 6m38 17m37 45m06 - -

Table 2.4: Computation times for AR
8 (C, ·) values using Theorem 2.12, where m and

s denote minutes and seconds respectively.

B[2, 1, 1, 3] → B[1, 0, 3, 2] on one recursion and B[2, 1, 1, 4] → B[1, 0, 3, 2] on another,

thus by storing B[1, 0, 3, 2] on the �rst pass we will not have to calculate it again. This

example is rather trivial as the stored step is also a stopping condition, for larger N

and C this will result in a greater improvement by storing intermediate sub-digraphs.

Using these two improvements, the recursive algorithm was able to calculate the com-

plete table of subset counts for N < 15 within a period of hours. For 15 ≤ N ≤ 18 the

algorithm required several days, larger N were not considered.

Table 2.4 lists the times to compute AR8 (C, ·) for pairs (R,C), calculating the counts

for all 0 ≤ l ≤ N(N − 1). Obviously if there are more root vertices, the maximum

connectedness C is reduced (i.e. the maximum value of C, total connectedness is when

all vertices are connected, C = N − R). The relationship between computation time

and (N,R,C) is not linear, and hidden in Table 2.4 is the dependence on L for the

individual calculations (whose range of valid values is also in�uenced by the triplet

(N,R,C)).

2.4 Random Digraphs Characterised By Rank Chains

In the previous section we derived a method for computing the probability of a partic-

ular directed graph, conditioned on it being C-connected, by enumerating all possible

locations of edges and counting those that were C-connected. We wish to investigate

conditioned random directed graphs as a method of data imputation for inference on
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epidemic processes with �nal size data.

The methods of Section 2.3 consider the directed edges of the graph. We have studied

their properties, conditioned on a connectedness property of the digraph which will

correspond to the �nal size of an epidemic process. If we impute the edges, we hope to

make the inference of the epidemic process tractable.

During the derivation of Theorems 2.10 and 2.12 we used the concept of a rank chain to

encode some information about the digraph. The rank chain includes the connectedness

of the digraph, but omits details of the edges within the digraph. In this section we

shall investigate the rank chain as an alternative way to encode the digraph, with the

aim of using this information in the data imputation step of our inference.

Primarily, the di�erence is the amount of information about the digraph being stored.

Section 2.3 investigates the information the edges give about the digraph. We now

consider whether the rank chain provides su�cient information for our purpose.

The theorems given in Section 2.3 are valid for independent random edges, which cor-

responds to epidemics with �xed infectious periods. In Section 2.4.3 we will express the

rank chain equivalent for �xed infectious periods, and then consider di�erent infectious

periods and rank chain models. We will then simulate rank chain representations of

digraphs, which are representations of an epidemic process.

2.4.1 Rank Chain/Path Notation And De�nition

In Section 2.3.3 we counted the number of C-connected digraphs by using a recursive

method, which involved reducing the desired digraph into sub-digraphs with fewer

vertices and edges. We will consider stepping along the rank chain in a similar recursive
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manner.

The term rank is used in Ludwig (1975) to couple the �nal size of the epidemic process to

a Markov chain, the term generation will also be used as an equivalent name. However,

they are not the same in an epidemiological sense, see Pellis et al. (2008) for a discussion

of the two de�nitions. It is possible for two individuals to be of the same rank, but

di�erent generations, if the timing of the infectious contacts is considered. Since the

actual times of infectious contacts are the missing data we are attempting to avoid the

need to impute, rank and generation shall be equivalent in our case.

The edge information is no longer important when considering the rank chain, there is

no explicit information about the edges being recorded. We consider instead knowing

only the rank of each connected vertex. It is possible to construct another recursive

method to calculate the probability of a digraph being C-connected, omitting edges

there are fewer variables to account for and hence fewer recursive steps. The results

characterising the number of edges cannot be directly related to the rank methods,

as the latter does not store the necessary information about the edges required to

reconstruct the exact digraph. The rank method cannot produce output as in Table

2.2, but it can compute the rank chain probabilities.

Recall, a single rank chain corresponds to several bases in Theorem 2.10. Covering all

the possibilities from the minimal basis to the maximal basis, in terms of the number of

forward edges assigned at each rank. Under the rank chain method we no longer track

the edges, thus we have reduced to considering the rank chain as all bases at once.

Brie�y we restate the de�nitions given in Section 2.2.1. Let r and s denote the initial

number of root and non-root vertices, with a total of n = r + s vertices. Let Pr,s[E]

be the probability of event E given r roots and s non-roots. Denote the rank chain as

the vector Z = (Z1, Z2, . . . ) where Zt = (Xt, Yt). The number of vertices of rank t is
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Xt and the total number connected including rank t is Yt, i.e. Yt =
∑t

k=0Xt. Since

the cumulative totals, Yt are a function of the size of each rank, we shall often write

the rank chain as Z = (X0, X1, X2, . . . ) for clarity. The number of vertices is �nite

and for the chain to continue there must be at least one vertex in each rank, it is

su�cient to consider only ranks 0 ≤ t ≤ n − r + 1. As Xn−r+1 = 0, then Xt = 0 for

all n− r + 1 < t < ∞. We shall use the term rank t to denote a vector Zt or Xt, and

(rank) chain to denote Z.

We will condition on the digraph being D-connected (to emphasise the di�erence be-

tween the edge and rank methods we shall use D instead of C). So D = d corresponds

to the �nal component of Z being Yn−r+1 = r + d for 0 ≤ r ≤ n and 0 ≤ d ≤ n − r.

Let τ denote the length of each chain such that τ = min{t : Xt+1 = 0}, i.e. τ is the

last rank of non-zero size.

For example, the two diagrams in Figure 2.5 (p63) show two possible rank chains that

connect four vertices, d = 4 from among seven non-root vertices, s = 7 with a single

root vertex, r = 1. By Lemma 2.8 there are 2d−1 = 23 = 8 rank chains. Figures 2.5(a)

and 2.5(b) show the rank chains Z = (1, 2, 2, 0) and Z = (1, 1, 3, 0) respectively, both

having τ = 2. The remaining six rank chains can be deduced from Figure 2.6.

Relating the above to an Susceptible-Infective-Removed (SIR) epidemic process as de-

�ned in Section 1.2, the initial number of susceptibles and infectives are S0 = s and

I0 = r respectively in a �xed population of size n = St + It + Rt (where t denotes

continuous time). The �nal size of an epidemic is the number of initial susceptibles

that ultimately become infected, corresponding to the connectedness of the digraph,

i.e. S0 − S∞ = d.

The space of all possible chains Z is a subset of Zn−r+1
+ . To di�erentiate an epidemic

process from a digraph we shall call such rank chains paths, though both rank chains
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and paths are interchangeable due to the equivalence stated in Section 2.2.2. The

path Z for the epidemic gives the sequence of infected individuals, terminating when

there are no individuals subsequently infected. The following method will calculate the

probability of a given path.

Each path consists of elements Zt = (xt, yt), the number of individuals infected in rank

t and the total number infected so far, in the following sections we shall calculate the

probability of moving from one such state to another, which we shall term the step

probability.

For a given �nal size d, it is possible to calculate the number of possible paths. By

de�nition Z0 = (a, a) for all paths, and the d individuals are assigned to the generations

such that there are yτ = a + d. Then by Lemma 2.8, there are 2d−1 possible paths,

which is the sum of the number of paths for each length, 1, . . . , d.

Note that we use τ as the length of the path, not the stopping time of the epidemic as

is typical, since we are not interested in temporal data. Though not identical, there is a

relation between the stopping time of an epidemic and the length of the corresponding

rank chain, the latter can be used to give an approximate scale of the former.

2.4.2 Conditioned Path Probabilities

We now present an analogous set of results for paths as given for edge characterised

digraphs in Section 2.3.1, noting that the two are not directly comparable.

The set of conditioned paths can be listed as the partitions of the connectedness into
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integer components. Hence the probability of a path being D-connected is,

P[D = d] =
∑

{z(m):1≤m≤2d−1}

Pr,s[Z = z(m)],

where m indexes the integer partitions.

Instead of considering the entire path at once, we apply the recursive approach of

Theorem 2.12. The probability of a path can be considered as the product of the

probability of each rank. The probability of a rank being of a given size depends only

on the size of the previous rank, corresponding to the potential forward edges. For

a random digraph we know the probability of an edge, p, which we assume are all

independent for the moment. Thus for a given rank, only those edges emanating from

the previous rank determine the probabilities. This reduces the path into independent

steps,

Pr,s[Z = (z0, z1, . . . , zd)] =

d∏
t=1

Pr,s[Zt+1 = zt+1|Zt = zt]. (2.20)

For the recursive approach we must search valid paths given the condition of being

D-connected. Let Z+1(u, v) denote the set of valid (i.e. having a non-zero probability)

states at rank t + 1 from a given origin state Zt = (u, v), we shall call these states

targets and Z+1 the target set. Then

Z+1(u, v) = {(x, y) : 0 ≤ x ≤ n− v, y = v + x}.

Similarly, de�ne the origins of Zt = (x, y) to be valid t− 1 ranks,

Z−1(x, y) = {(u, v) : v = y − x, 1 ≤ u ≤ y − x}.
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In general Zi(u, v) is the set of states (x, y) that are i ranks further along the path

than (u, v) such that Pr,s[Zt+i = (x, y)|Zt = (u, v)] > 0. It is not possible to express

a general form for the set Zi for |i| > 1, hence we will require a recursive method to

search the paths.

Since (0, y) ∈ Z+1(x, y) for all x and y, in particular for y < r + d, i.e. the path

terminates before achieving the desired connectedness, we cannot consider all individual

steps without care. Instead we consider only paths that result in D-connectedness and

weight the probabilities accordingly of individual steps.

If we condition on D = d (0 ≤ d ≤ s), then for a general rank t (0 ≤ t ≤ τ = d + 1)

we derive the probability of rank t+1 conditioned on the path being d-connected. For

0 < t ≤ τ : 0 ≤ u ≤ s, r ≤ v ≤ r + s, 0 ≤ x ≤ s and y = v + x,

Pr,s[Zt+1 = (x, y)|Zt = (u, v), D = d]

=Pr,s[Zt+1 = (x, y)|Zt = (u, v), Zd+1 = (0, d+ r)]

=
Pr,s[Zt+1 = (x, y)|Zt = (u, v)]Pr,s[Zd+1 = (0, d+ r)|Zt+1 = (x, y), Zt = (u, v)]

Pr,s[Zd+1 = (0, d+ r)|Zt = (u, v)]

=
Pr,s[Zt+1 = (x, y)|Zt = (u, v)]Px,r+s−y[Zd+r−y+1 = (0, d+ r − y + x)]

Pu,r+s−v[Zd+r−v+1 = (0, d+ r − v + u)]
. (2.21)

The �nal rearrangement is a similar idea to the recursive method of reducing to a

smaller sub-digraph, i.e. given a rank t and desired d-connectedness, we can reduce to

a sub-digraph on fewer vertices with n− yt vertices of which xt are roots and consider

paths of the sub-digraph. Speci�cally,

Pr,s[Zd+1 = (0, d+ r)|Zt = (x, y)] = Px,s−(y−r)[D = d− (y − r)]

= Px,r+s−y[Zd+r−y+1 = (0, d+ r − y + x)].
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For t > τ , there are no vertices of rank τ + 1 by the de�nition of τ , then Z+i(0, yτ ) =

{(0, yτ )} for all i ∈ Z+. Thus it is su�cient to consider paths of length τ ≤ d + 1, as

the longest possible path with D = d has xt = 1 and yt = t for 1 ≤ t ≤ d.

For expression (2.21) we need Pr,s[Zd+1 = (0, d+r)], which is calculated using the total

probability relation

Pr,s[Zt+1 = (x, y)] =

=
∑

(u,v)∈Z−1(x,y)

Pr,s[Zt = (u, v)]Pr,s[Zt+1 = (x, y)|Zt = (u, v)]

=
∑

0≤u≤(y−x)

Pr,s[Zt = (u, y − x)]Pr,s[Zt+1 = (x, y)|Zt = (u, y − x)],

which must be applied recursively until the origin set consists of the initial conditions,

i.e. Z−1 = {(r, r)}. This backward search from rank t+1 can be approached in reverse,

instead perform a forward search from the initial conditions and consider the paths

contained in the sequence of target sets, Z1(r, r),Z2(r, r), . . . such that (0, r + d) ∈

Zd+1(r, r). We shall consider methods of performing this search in Section 2.4.7.

2.4.3 Fixed Infectious Period

The equations derived in the Section 2.4.2 are independent of the form of Pr,s[Zt+1 =

(x, y)|Zt = (u, v)], which is the basic component required to calculated the chain prob-

abilities. We describe the exact form of this component.

We begin in the simple case where all edges in the random digraph are independent,

which corresponds to the class of epidemics with �xed infectious periods. Recall that TI

is the infectious period distribution for an infected individual. We consider the special

case when TI = c, a constant. We now derive the dynamics of the path Z, i.e. step
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probabilities.

Denote the probability of an edge occurring as p. In terms of an epidemic, an edge

corresponds to an infectious contact which occur at times given by the points of a

Poisson process of rate λ/n during the infectious period TI . Hence in the special case

of �xed infectious periods, the probability of a contact is one minus that of avoiding

infection, i.e. p = 1− exp(−λ
nc).

We have that for 0 ≤ t ≤ τ

Pr,s[Zt+1 = (x, y)|Zt = (u, v)] = ((r+s)−v
x )(1− (1− p)u)x((1− p)u)(r+s−v)−x (2.22)

r > 0, s ≥ 0

0 ≤ u ≤ max(r, s), r ≤ v ≤ r + s

0 ≤ x ≤ r + s− v,max(r, v) ≥ y = u+ x,

which follows from the fact that the size of the next rank is a binomial distribution

given independent edges,

(Xt+1|Xt, Yt) ∼ Bin(n− Yt, 1− (1− p)Xt).

In other words, Xt+1 lies between zero and the number of susceptibles remaining, n−Yt,

and the probability of each such susceptible being infected is one minus the probability

that they avoid infection from all the infectives in rank t, which is (1 − p)Xt by the

independence.
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2.4.4 General TI Distributions

In general for arbitrary infectious period distributions, TI , the edges of the digraph

from a given vertex will not be independent. That is for a vertex i, the probability of

the edges (i, j) and (i, k) (j 6= k) will be dependent.

As mentioned in Section 2.4.3, the probability of a path (either conditioned or not) can

be expressed in terms of the basic component

PTr,s[Zt+1 = (x, y)|Zt = (u, v)].

Here each individual has an infectious period TI drawn from a common distribution T

with (vector) parameter ϑ, TI ∼ T .

In general we have the following,

Pr,s[Zt+1 = (x, y)|Zt = (u, v)]

=ET [Pr,s[Zt+1 = (x, y)|Zt = (u, v), Ti1 + · · ·+ Tiu = Tt]]

where Tij is the infectious period of individual j in rank t, ij being the individuals

label.

=E

[(
r + s− v

x

)
(1− exp(−λ

n
Tt))

x(exp(−λ
n
Tt))

r+s−(v+x)

]
=

(
r + s− v

x

)
E

[
x∑
k=0

(−1)x−k
(
x

k

)
exp(−λ

n
Tt(r + s− v − k))

]

=

(
r + s− v

x

) x∑
k=0

(−1)x−k
(
x

k

)
E

[
exp(−λ

n
Tt(r + s− v − k))

]
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by the independence of the infectious periods

=

(
r + s− v

x

) x∑
k=0

(−1)x−k
(
x

k

)
E

[
exp(−λ

n
TI(r + s− v − k))

]u
. (2.23)

Equation (2.23) can in principle be evaluated numerically for any TI which has a

moment generating function. In some cases a closed form solution is available, and we

now brie�y describe two such choices of TI .

In the constant infectious period case, if TI = c for an individual, then for a generation

of u such individuals we have,

Pr,s[Zt+1 = (x, y)|Zt = (u, v)] =(
(r + s)− v

x

) x∑
k=0

(−1)x−k
(
x

k

)
exp

(
−λ
n
c(r + s− v − k)

)u
. (2.24)

It can be easily checked that Equation (2.24) is equivalent to Equation (2.22) by setting

p = 1− exp(−λ
nc).

Similarly for an exponential infectious period with rate γ, i.e. TI ∼ Exp(γ), after some

manipulation we obtain,

Pr,s[Zt+1 = (x, y)|Zt = (u, v)] =(
(r + s)− v

x

) x∑
k=0

(−1)x−k
(
x

k

)(
γ

λ
n(r + s− v − k) + γ

)u
. (2.25)

It is common to consider Gamma infectious periods with shape parameter α and rate

β, i.e. if TI ∼ Γ(α, β) the TI has probability density function

fTI (x) =
βα

Γ(α)
xα−1e−βx, x > 0,
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where

Γ(z) =

∫ ∞

t=0
tz−1e−t dt, z > 0.

For positive integer z, Γ(z) = (z − 1)!. Thus, for a Gamma infectious period,

Pr,s[Zt+1 = (x, y)|Zt = (u, v)] =(
(r + s)− v

x

) x∑
k=0

(−1)x−k
(
x

k

)(
β

λ
n(r + s− v − k) + β

)αu
. (2.26)

The edge counting method assumes independent edges, therefore there is no analogous

result in Section 2.3.1 for Equation (2.25). It is impossible to construct such a result

using only the number of edges present within a digraph due to the dependence between

edges from the same vertex.

2.4.5 Step Distributions

For paths considered so far we have considered a given infectious period distribution,

TI , to determine the probability of rank t+1 given rank t. We have de�ned this to be

the step probability,

Pr,s[Zt+h = (x, y)|Zt = (u, v)] for
r, s, t, h, u, v ∈ Z+,

0 ≤ x ≤ r + s− v − h− 1, v ≤ y ≤ r + s.

Since each step is independent, using the rank representation we can express the prob-

ability of a given path as the product of 1-steps.

For a given choice of infectious distribution we have a step distribution from each state
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Zt = (u, v), denote this distribution by H. Speci�cally, de�ne

Hh
r,s,u,v,t(x) = Pr,s[Zt+h = (x, y)|Zt = (u, v)] for 0 ≤ x ≤ r + s− v − h− 1,

so that

r+s−v−h−1∑
x=0

Hh
r,s,u,v,t(x) = 1,

where the distribution depends on the initial conditions r and s, the rank t of the

current state Zt = (u, v), and the step length h. The distribution H is discrete on the

�nite set of integers, 0, 1, . . . , r+s−v. Step lengths greater than one will not generally

be considered, since the expressions for longer steps are more complicated and they are

combinations of 1-steps; hence we shall set H = H1.

Instead of focusing on the infectious period TI , it is also possible to consider a step

distribution directly. For example,

Hr,s,u,v,t(x) =


1

r+s−v+1 for 0 ≤ x ≤ r + s− v,

0 otherwise.

This uniform distribution on all the possible target states from Zt = (u, v) is clearly

di�erent from Equations (2.24) and (2.25), though it can be used to calculate path

probabilities using the expressions in Section 2.4.2.

However, though an arbitrary step distribution is mathematically valid it is di�cult to

relate to an epidemic process. For the uniform example given it is not possible to �nd

an infectious period distribution TI such that Equation (2.23) will yield the distribution

H.
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Given the complex form of Equation (2.23) for an infectious period distribution where

a closed form is not available, it may be advantageous to approximate using a simpler

step distribution H. Depending upon the numerical properties of the full step distri-

bution, an approximation may be more appropriate. Estimating the error between the

approximate and true distributions is not easy, as the recursive method will compound

any error, hence we do not consider this idea any further.

2.4.6 Summary Of The Path

Since yt =
∑t

k=0 xk, is a function of xi, 0 ≤ i ≤ t, it is su�cient to store a path as the

vector X = (X0, . . . , Xs+1). The paths are high dimensional vectors and are di�cult

to adequately summarise. We shall consider the path of the average, the component

wise expectation of each generation, as a summary. That is

E[Z|D = d] =
(
(r, r) , (E[Z1|D = d],E[Z2|D = d]) , . . . , (E[Zd|D = d]) , (0, r + d)

)
,

where Z0 = (r, r) and Zd+1 = (0, r + d) by de�nition. We treat each rank individually

to obtain the following,

E[Zt+1|Zn−r = (0, d+ r)] (2.27)

= E
[
E [Zt+1|Zt, Zn−r = (0, d+ r)]

]

taking expectation conditioned on rank t

= E

 ∑
(x,y)∈Z+1(Zt)

(x, y) P [Zt+1 = (x, y)|Zt, Zn−r = (0, d+ r)]
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then taking expectation to remove the rank t conditioning

=
∑

(u,v)∈Z+t(r,r)

∑
(x,y)∈Z+1(u,v)

(x, y) ×

×P[Zt+1 = (x, y)|Zt = (u, v), Zn−r = (0, d+ r)]P[Zt = (u, v)|Zn−r = (0, d+ r)],

(2.28)

which contains terms we can calculate using the expressions in Section 2.4.2.

The summations in Equation (2.28) are not easily evaluated, the outer summation is

over all states (u, v) ∈ Z+t(r, r), i.e. all the states that are t ranks from rank zero

(Z0 = (r, r) uniquely, if i > 0 then xi < yi). As previously mentioned, there is no

simple description of this set, the most e�cient way to obtain it is by a forward search

from rank zero, recursively considering all possible paths. However, since this search is

also required to compute the conditioned probabilities in Equation (2.28) there is no

additional cost.

We can similarly calculate the variance of each rank as

Var(Zt) = E[Z ′
tZt]− E[Z ′

t]E[Zt],

where Z ′
t is the transpose of Zt. The form is as in Equation (2.28), so we do not give

the expression in full.

The covariance between two ranks can also be computed in the standard way,

Cov(Zi, Zj) = E[Z ′
iZj ]− E[Z ′

i]E[Zj ],

for ranks i and j.
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2.4.7 Simulated And Exact Conditioned Path Probabilities

To obtain exact conditioned path probabilities, in terms of conditioned steps, we must

�rst calculate the probability of the path being d-connected, where d is the connected-

ness we wish to condition on, i.e. Pr,s[D = d] = Pr,s[Zd+1 = (0, r + d)].

In this section we discuss several methods to compute the exact conditioned step prob-

abilities and an approximation using rejection sampling. We initially derive exact

algebraic expressions by hand for small digraphs, then three exact numerical methods,

either a brute force listing of all possible paths, a stepwise forward search or applying

the Forward-Backward Algorithm.

2.4.7.1 Exact Algebraic

Using Section 2.4.2 it is possible to form algebraic expressions for the conditioned

step probabilities. For example, if (r, s, d) = (1, 2, 2) with a constant infectious period

TI = c (i.e. q = exp(− λ
r+sc), the probability of avoiding an infectious contact), thus

the probability of an edge is p = 1− q. Using Equation (2.21) for the �rst rank

P1,2[Z1 = (0, 1)|Z0 = (1, 1)] = q2

P1,2[Z1 = (1, 2)|Z0 = (1, 1)] =

(
2

1

)
[q − q2]

P1,2[Z1 = (2, 3)|Z0 = (1, 1)] =

(
2

2

)
[1− 2q + q2],
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and for the subsequent ranks

P1,2[Z2 = (0, 2)|Z1 = (1, 2)] = q

P1,2[Z2 = (1, 3)|Z1 = (1, 2)] =

(
1

1

)
[1− q]

P1,2[Z2 = (0, 3)|Z1 = (2, 3)] = 1

P1,2[Z3 = (0, 3)|Z2 = (1, 3)] = 1.

These expressions combine to give,

P1,2[Z2 = (0, 2)] = P1,2[Z2 = (0, 2)|Z1 = (1, 2)] .P1,2[Z1 = (1, 2)|Z0 = (1, 1)]

= q .

(
2

1

)
[q − q2],

and

P1,2[Z3 = (0, 3)]

= P1,2[Z3 = (0, 3)|Z2 = (1, 3)] .P1,2[Z2 = (1, 3)|Z1 = (1, 2)] .P1,2[Z1 = (1, 2)|Z0 = (1, 1)]

+ P1,2[Z3 = (0, 3)|Z2 = (0, 3)] .P1,2[Z2 = (0, 3)|Z1 = (2, 3)] .P1,2[Z1 = (2, 3)|Z0 = (1, 1)]

= 1 . (1− q) . 2q(1− q) + 1 . 1 . (1− q)2 = (1− q)2(2q + 1).

The d-connectedness probabilities derived so far are not su�cient to apply Equation

(2.21). The approach includes reducing to a smaller sub-digraph and considering its

connectivity. Thus we also needed to compute the following,

P1,1[D = 0] = P[Z1 = (0, 1)|Z0 = (1, 1)] = p

P1,1[D = 1] = P[Z1 = (1, 2)|Z0 = (1, 1)] = 1− p.
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Given the probabilities of being d-connected on the original and sub-digraphs, we can

use Equation (2.21) to obtain the conditioned step probabilities. For example,

P1,2[Z1 = (1, 2)|Z0 = (1, 1), D = 2] = P1,2[Z1 = (1, 2)|Z0 = (1, 1)]
P1,1[D = 1]

P1,2[D = 2]

= 2q(1− q)
1− q

(1− q)2(2q + 1)
=

2q

2q + 1
=

2(1− p)

3− 2p
,

similarly

P1,2[Z2 = (1, 3)|Z1 = (1, 2), D = 2] = 1,

P1,2[Z1 = (2, 3)|Z0 = (1, 1), D = 2] =
1

3− 2p
,

P1,2[Z2 = (0, 3)|Z1 = (2, 3), D = 2] = 1.

2.4.7.2 Numerical Brute Force

Since we can enumerate all such paths as the integer partitions of d, it is possible to

calculate this by brute force,

Pr,s[D = d] =
∑

{z(m):1≤m≤2d−1}

Pr,s[Z = z(m)].

Alternatively, as discussed in Section 2.4.2, we can consider an algorithm to search all

possible paths that are d-connected. This avoids having to enumerate the partitions

explicitly, this equivalent method is more intuitive to program as an algorithm.

Deriving the exact algebraic expressions by hand becomes di�cult and the expressions

become unwieldy for d > 5. For example, Figure 2.6 shows the eight paths (ending

with grey circles) that are required to calculate P1,s[D = 4], becoming impractical by

algebraic methods.
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To achieve results for any n of interest it is possible to compute these step probabilities

numerically using a given value of p. Unfortunately to compare for a di�erent edge

probability p′ would require recalculating all the step probabilities. For large n this

repeated computation can become excessive, the balance between �nding the exact

algebraic expressions and computing for each p will depend upon the situation.

Using target sets Zi(x, y), i.e. the possible states reachable from (x, y) in i steps, we

can program an algorithm to search from the initial state, Z0 = (r, r) to compute all

path probabilities.

Considering the path in steps allows some optimisation techniques that are discussed

in Section 2.4.8.

2.4.7.3 Forward-Backward Algorithm For Hidden Markov Model

The Forward-Backward Algorithm (FBA) was derived by Baum as a technique to solve

optimisation problems of functions of a Markov processes. The algorithm is de�ned

in Baum et al. (1970) and Baum (1972) and applied to biological examples. The

original descriptions consider probabilistic functions of a Markov process, the term

Hidden Markov Model (HMM) was de�ned later. Hidden Markov Models have many

applications and have been researched considerably with the increase of computing

power. For an introduction to modern HMMs see MacDonald and Zucchini (1997). The

tutorial by Rabiner (1989), intended for an audience interested in speech recognition,

shall form the basis of our notation in this section.

For t = 0, 1, . . . let Ot and Qt be the observed and hidden state at time t. We de�ne

an HMM such that there is a hidden Markov process {Qt : t ≥ 0} and for each time t

the observed state Ot follows a distribution de�ned by the hidden state.
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Returning to the epidemic process, the steps along the path z are a Markov process

on the enumerated states Si = (x, y), where x is the size of the rank and y is the

running total, indexed by i. The state space is �nite, as 0 ≤ x ≤ s and r ≤ y ≤ r + s.

The transitions are the step probabilities between two states, where many transition

probabilities will be zero. If we assume these states are unobserved, instead we observe

whether the connectedness is d or not, then we can consider the epidemic process as

a Hidden Markov Model and appeal to the Forward-Backward Algorithm to �nd the

probability of observing d-connectedness.

De�ne L, E and G to be the events that yt is less than r+d, equal to r+d and greater

than r + d respectively. Assume the actual steps along the path are hidden, at each

step we only observe one of the three events: L, E or G. In a probabilistic HMM the

events would have a probability distribution dependent upon the hidden state Si, in

our case each distribution is a point mass at the appropriate event.

We can relate this to evaluating the probability of a �nal size as follows. If we observe

the sequence, O = (L,L,L,E,E), this corresponds to observing a d-connectedness path

of length four, but we do not observe the exact path. The two consecutive observations

of the event E, i.e. that y3 = d + r and y4 = d + r, imply the path has terminated

since this can only occur if x3 = 0. Thus we can rephrase the probability of all

paths of length four that are d connected as the probability of observing the sequence

O = (L,L,L,E,E).

The Forward-Backward procedure is de�ned as follows. Let Oi be the ith observed

event and qi be the ith hidden state, with O and Q being the complete sequences

respectively. De�ne the set of transition probabilities from a hidden state i to another

hidden state j to be the matrix A = (aij) and the probability of an observation given the

hidden state i as bi(O) in the matrix B (accounting for all possible observed and hidden
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state combinations), �nally de�ne the initial state distribution as π; let λ = (A,B, π)

for convenience.

For the epidemic process, the observation probabilities are point masses on the events

L, E or G and the initial state will be a point mass corresponding to (r, r).

We wish to compute

P[O] =
∑
all Q

P[O|Q]P[Q|λ],

but since P[O|Q] is an indicator function, the hidden process will either match the

observation or not, this reduces to the brute force approach in Section 2.4.7.2. The

Forward-Backward Algorithm makes this calculation more e�cient. De�ne the forward

variable

αt(i) = P[O1, O2, O3, . . . , Ot, qt = Si|λ],

that is, the probability of the observed partial sequence from 1 to t and the tth hidden

state being Si given the parameters λ. We can calculate αi(t) recursively.

We initialise as,

α1(i) = πibi(O1), 1 ≤ i ≤ N.

Here there are N possible hidden states, i.e. an ordered list of the pairs (x, y) cor-

responding to states of the epidemic process, the initial state distribution is π =

(π1, . . . , πN ), which will be a point mass at the state corresponding to (r, r) in the list.

Finally, bi(O) is the probability of observing O if the hidden process is in state i, which

is an indicator function for state i as Si = (x, y) with conditioned d-connectedness,
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then

bi(L) =


1 if y < r + d

0 otherwise

bi(E) =


1 if y = r + d

0 otherwise

bi(G) =


1 if y > r + d

0 otherwise

.

Induction on each step is performed as,

αt+1(j) =

(
N∑
i=1

αt(i)aij

)
bj(Ot+1)

1 ≤ t ≤ T − 1

1 ≤ j ≤ N,

where aij is the transition probability from state i to state j from the matrix A and T

is the length of the observed sequence.

The induction terminates with the �nal step,

P[O|λ] =
N∑
i=1

αT (i).

By the de�nition of the forward variable α, we have at each step t found the probability

of observing the partial sequence up to step t and being in the state Si. The terminating

step sums over all the forward variables to give the probability of the observed sequence.

The Forward procedure as stated here is not a great improvement on the brute force

method, since the observable states are indicator functions and the transition matrix

A contains many zeroes. In cases where the number of observable states is larger and

not point mass distributions the algorithm is a great improvement over the standard

forward search. If there are N hidden states and T observed states, the brute force

search is of order O(TNT ) where as the forward procedure is of order O(N2T ).

This is only the forward part of the algorithm, the backward part can be de�ned in a
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similar way, using a the probability

βt(i) = P[Ot+1, Ot+2, . . . , OT |qt = Si, λ],

which is the probability of the hidden state being Si at time t given the observed states

from time t+1 until the end of the process. This can be used to make inference about

the parameters of λ, which is the problem we are motivated to solve. The techniques

are described in Rabiner (1989) and MacDonald and Zucchini (1997) are Expectation

Maximisation (EM). We shall consider a Bayesian approach in Chapter 3, namely

MCMC.

2.4.7.4 Monte Carlo Approximations

Finally we consider a method to calculate an approximation to the conditioned step

probabilities. The method of Rejection Sampling will be outlined and a comparison

made with the exact methods in Section 2.4.7.5.

Given the initial condition Z0 = (r, r), corresponding to r initial infectives and using

Equation (2.21) to calculate the probabilities of the next rank for all possible sizes, we

sample from that distribution, then repeating for subsequent ranks, we can simulate

an entire path until xt = 0 for some rank t. Once a path ends its connectedness can be

checked and if it matches, then it is kept, otherwise discarded, i.e. we reject samples

that do not conform to the required condition.

This process will be extremely quick, since we can construct an unconditioned tree,

exactly as in Figure 2.6, for each branching point we can enumerate all the branches.

We need only calculate branch probabilities as they are required. Also, we can terminate

samples that will fail to be d-connected before they achieve the stopping condition, i.e. if
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yt > r + d for any t we do not need to continue as this path will be rejected.

However, unconditioned simulation and then checking connectedness will become inef-

�cient for large n or for p which do not match the desired connectedness. By match

we mean the probability of observing the d-connectedness given edge probability p is

very low.

2.4.7.5 Comparison Of Exact And Approximate Methods

If we consider rejection sampling as another method to compute the conditioned path

probabilities, then considering when it is appropriate to use each method would require

further investigation. We omit such considerations since we are primarily interested

in inferring the value of p given the d-connectedness condition, whereas the methods

presented in Sections 2.4.7.1, 2.4.7.3 and 2.4.7.4 calculate the path probabilities given

p. We are investigating the behaviour of these path probabilities to gain insight into

the Markov Chain Monte Carlo (MCMC) algorithms presented in Chapters 3 and 4.

Two programs were implemented in the C programming language, the �rst initially

performs a complete forward search from rank zero of all possible paths and computes

the conditioned step probabilities which depend upon the infectious period speci�ed;

from this paths could be simulated if desired but the exact probabilities are available

(for the examples considered the forward step search was used, though the brute force

method and Forward-Backward Algorithm give identical results). The second program

simulated paths unconditioned, using the step distribution speci�ed, from which only

those achieving the desired connectedness were stored. The rejection sampling is based

on a �xed step distribution, hence there is no inference made directly for a given set of

parameters.
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For (r, s) = (1, 20) the �rst program took two days to compute the probabilities of

all possible paths for all degrees of connectedness. Clearly, the number of paths for

d = 1 is far fewer d = 10, hence the time to compute all paths for large and small

connectedness is relatively quick. Over half the time was spent computing paths of

length eight to twelve. Part of the issue is numerical accuracy, the probability of any

given path decreases for large numbers of vertices. So for larger digraphs, there are

more paths to consider and each path's probability takes longer to compute to su�cient

accuracy (see the discussion of GNU MPFR in Section 3.7.2). Exact results, such that

the sum of all non-zero probability paths equalled one, required accuracy to over thirty

decimal places; reducing the precision dramatically reduces computation time at the

cost of the total sum of probabilities not being one. For (r, s) = (1, 9) computing the

probabilities was completed in �fteen minutes. Note that, as a consequence of the

complete forward search we have the probabilities of any connectedness 0 ≤ d ≤ s.

Table 2.5 compared the path of the average using the exact probabilities and the rejec-

tion sampling method for (r, s, d) = (1, 2, 2). The expected exact path was calculated

using the expressions derived in Section 2.4.7.1. The simulated values, X̂ are the aver-

age of the accepted runs for each rank. For each simulation K runs are performed and

Kα are accepted, the kth simulated path is denoted Z(k). Then

E[X̂t] =

∑K
k=1 Z

(k)
t I{y(k)τ =d+r}∑K

k=1 I{y(k)τ =d+r}

==

∑K
k=1 Z

(k)
t I{y(k)τ =d+r}

Kα
.

Since the zeroth rank is �xed, X̂0 = X0 and given the D = d condition, Ŷd+1 = Yd+1

for all simulated paths that are accepted, hence in the table Ŷ2 = 3 exactly.

Table 2.5 demonstrates the issue with rejection sampling if the event observed is very

unlikely. Even for this small example, the number of runs required to obtain estimates
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Theoretical Simulated

p X0 E[X1] E[X2] Y2 E[X̂1] E[X̂2] Ŷ2 K Kα/K

1.0 1 2.0 0.0 3 2.0 0.0 3 104 1.000

0.6 1 1.5 0.4 3 1.55848 0.44152 3 104 0.6315

0.4 1 1.45 0.54 3 1.4583 0.5417 3 105 0.3502
0.01 1 1.3355 . . . 0.6644 . . . 3 1.3348 0.6652 3 107 2.978e−4
Table 2.5: Comparison of the path of the average for (r, s, d) = (1, 2, 2) between the

exact probabilities and rejection sampling for various edge probabilities
given independent edges.

that are close to the exact values is growing in orders of magnitude for increasingly

unlikely edge probabilities. For the example presented, the simulations were completed

in under a minute, we use this example only to illustrate the problem of the acceptance

rate Kα/K.

2.4.8 Algorithm Implementation And Optimisation

The recursive method presented in Section 2.4.2 considers each rank of the path by

reducing the problem to small paths. The states that form each path Z are used to

calculate step probabilities, which combine to give the path probability (each rank is

independent, thus the path probability is the product of step probabilities).

The calculation of the path probabilities can be greatly optimised by noting two obser-

vations. First, the step probability distribution may be independent of rank. This is

true for the examples given so far: constant and exponential infectious periods, though

this does not have to be the case in general. Speci�cally,

Pr,s [Zt+1 = (x, y)|Zt = (u, v)] = Pr,s [Z1 = (x, y)|Z0 = (u, v)] ∀t ≥ 0. (2.29)

Thus storing the computed step probabilities will reduce the number of calculations

required.
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Secondly, storing intermediate probabilities for the probability of a given rank being

a given size will reduce duplicate calculations. Denote these probabilities by qt(x, y),

where

qt(x, y) = Pr,s[Zt = (x, y)|Zd+1 = (0, d), Z0 = (r, r)]

0 ≤ t ≤ d+ 1,

0 ≤ x ≤ d+ 1− t,

t ≤ y ≤ d.

When calculating the probability of a path, �rst check if the probability of reaching

any part of the path has already been calculated. Then,

P[Z0 = z0, Z1 = z1, . . . , Zt = zt, Zt+1 = zt+1, . . . , Zs = zs]

= qt(x, y)P[Zt+1 = zt+1, . . . , Zs = zs].

If using a rejection simulation approach, these intermediate probabilities will be ap-

proximations to the true values after K simulations, i.e. q̂
(K)
t (x, y), which can be used

to estimate the summary path. In the limit,

q̂
(K)
t (x, y) → qt(x, y) as K → ∞.

The intermediate probabilities, qt(x, y) are comparable to the forward and backward

variables of the Forward-Backward Algorithm described in Section 2.4.7.3.

Finally, there are practical issues relating to the implementation of the algorithms. In

particular, for large d the number of paths is large and the probability of an individual

path becomes very small. As the probability become small, it will cause bu�er un-

der�ow on a computer, i.e. the numerical value will be smaller than the minimum the

computer can store. There are two approaches to solve this problem, the �rst is to use
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high precision code. We shall discuss this in more depth in Section 3.7.2, though the

principle is to increase the accuracy by storing more decimal places in the calculations.

The second approach is to restructure the problem to make computation easier, the

optimisations discussed can be considered part of this restructuring. Though mathe-

matically identical, re-writing a problem can greatly a�ect computation. It may reduce

the number of calculations required, as the Forward-Backward Algorithm does or it may

make the calculations for numerically stable, see Section 3.7.1 for more details. For the

Forward-Backward Algorithm a technique of scaling the probabilities can be used, see

Devijver (1985), which attempts to prevent under�ow by scaling the probabilities up

such that the normalising constant will cancel.

It will be more bene�cial to restructure a problem than to simply increase the computa-

tional precision, though in some cases this may be the only option. Also, restructuring

for numerical stability may involve more calculations, so there is a trade o� between

higher precision and complexity.

2.4.9 Dependence Of The Number Of Additional Non-root Vertices

On Conditioned Probabilities

We have considered several step distributions in previous sections, either derived from a

given infectious distribution (determining edge probabilities) or from a speci�ed distri-

bution (without any comparable infectious distribution). For all the step distributions

we can condition on a connectedness to derive a new distribution, H|D = d, using the

expressions in Section 2.4.2 (H is de�ned in Section 2.4.5).

In the special case when edges from a vertex are independent of every other edge, the

digraph can be reduced to a sub-digraph consisting of only the vertices that are to be
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connected. Since the edges are independent, every connected vertex will independently

avoid connecting with the additional non-connected vertices. These two independent

events that can be treated separately.

Following from Section 2.4.7, again letting p = 1− exp(−λc
n ) we can express the prob-

ability of a path that we will condition to be d-connected on a digraph with r roots

and d + s non-root vertices in terms of a smaller digraph (note we use s to represent

the number of additional non-root vertices, i.e. s ≥ 0). The sub-digraph consisting of

only those vertices that are connected, i.e. r roots and d non-roots.

Pr,d+s[Z = z] = P[r + d vertices do not connect to the s vertices]Pr,d[Z = z]

Pr,d+s[Z = z] =

(
d+ s

s

)
(pr+d)sPr,d[Z = z].

The binomial coe�cient accounts for selecting which of the non-root vertices are to be

connected. The next term accounts for all the edges from the d+ r connected vertices

that must not connect to the s vertices. Finally the probability of the sub-digraph.

This is only possible for independent edges (and in this case all edges are independent

and identically Bernoulli trials).

Since the path is composed of independent steps, we can expand the expressions for
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the digraph and sub-digraph and equate terms as follows,

Pr,d+s[Z = z] =

d∏
t=0

Pr,d+s[Zt+1 = zt+1|Zt = zt]

=

d∏
t=0

(
r + d+ s− yt

xt+1

)
(pxt)xt+1(1− pxt)r+d+s−yt−xt+1 (2.30)

Pr,d[Z = z] =

d∏
t=0

Pr,d[Zt+1 = zt+1|Zt = zt]

=

d∏
t=0

(
r + d− yt
xt+1

)
(pxt)xt+1(1− pxt)r+d−yt−xt+1 . (2.31)

Recall that the generations are related by,

yt+1 = yt + xt+1 and
d∑
i=0

xi = yd = r + d,

then equating Equations (2.30) and (2.31) we have,

Pr,d+s[Zt+1|Zt] = (pxt)s
r + d− yt + 1

r + d− yt+1 + 1
. . .

r + d− yt + s

r + d− yt+1 + s
Pr,d[Zt+1|Zt],

for s > 0, which combine to give the probability of a path Z as

Pr,d+s[Z] = (pr+d)s
∏ r + d− yt + 1

r + d− yt+1 + 1
. . .

r + d− yt + s

r + d− yt+1 + s
Pr,d[Zt+1|Zt].

= (pr+d)s
r + d− y0 + 1

r + d− yd+1 + 1
. . .

r + d− y0 + s

r + d− yd+1 + s

∏
Pr,d[Zt+1|Zt],
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and since the sub-digraph is to be totally connected, i.e. y0 = r and yd+1 = d+ r,

Pr,d+s[Z = z] = (pr+d)s
d+ 1

1
. . .

d+ s

s

∏
Pr,d[Zt+1 = zt+1|Zt = zt]

= (pr+d)s
(
d+ s

s

) ∏
Pr,d[Zt+1 = zt+1|Zt = zt]

= (pr+d)s
(
d+ s

s

) ∏(
r + d− yt
xt+1

)
(pxt)xt+1(1− pxt)r+d−yt−xt+1 .

This is the relationship between the path probabilities on the digraph and sub-digraph.

The product of binomial coe�cients can be combined,

Pr,d+s[Z = z] = (pr+d)s
(
d+ s

s

) (
d

x1, x2, . . . , xd

)∏
(pxt)xt+1(1− pxt)r+d−yt−xt+1 ,

(2.32)

where the multinomial coe�cient is de�ned as,

(
n

k1, k2, . . . , km

)
=

n!

k1! k2! . . . km!
where

m∑
i=1

ki = n.

Apart from the implicit dependence of λ on the number of non-root vertices, Equation

(2.32) shows that for edges that are independent Bernoulli trials with probability p of an

edge being absent, then the number of non-root vertices can be reduced to only those

that are to be connected and the probabilities adjusted for any additional non-root

vertices.

In terms of the conditioned probabilities, the number of additional non-root vertices is

conditioned out (except the implicit dependence). Since,

Pr,d+s[Z = z] =

(
d+ s

s

)
(pr+d)sPr,d[Z = z]
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and

Pr,d+s[Zd+1 = (0, r + d)] =
∑

{z:yd=yd+1=r+d}

Pr,d+s[Z = z].

Then applying these relations to the conditional step expression,

Pr,d+s[Zt+1 = (x, y)|Zt = (u, v), Zd+1 = (0, d+ r)] =

=
Pr,d+s[Zt+1 = (x, y)|Zt = (u, v)]Px,r+d+s−y[Zd+r−y+1 = (0, d+ r − y + x)]

Pu,r+d+s−v[Zd+r−v+1 = (0, d+ r − v + u)]

=(pu)s
(r + d− v + 1) . . . (r + d− v + s)

(r + d− y + 1) . . . (r + d− y + s)
Pr,d[Zt+1 = (x, y)|Zt = (u, v)]×

×
∑(

r+d−y+s
s

)
(px+r+d−y)sPx,r+d−y[Z]∑(

r+d−v+s
s

)
(pu+r+d−v)sPu,r+d−v[Z]

=(pu)s
(r + d− v + 1) . . . (r + d− v + s)

(r + d− y + 1) . . . (r + d− y + s)

(
r+d−y+s

s

)
(px+r+d−y)s(

r+d−v+s
s

)
(pu+r+d−v)s

×

× Pr,d[Zt+1 = (x, y)|Zt = (u, v), Zd+1 = (0, d+ r)]

=Pr,d[Zt+1 = (x, y)|Zt = (u, v), Zd+1 = (0, d+ r)].

Cancelling the binomial coe�cients and recalling that x + v = y, we see that the

additional non-root vertices, s ≥ 0, have no e�ect on the conditioned step probabilities.

This is not true if the edges are not independent and identically distributed, for example

an exponential infectious period or the uniform step distribution.
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2.5 Branching Process Conditioned On Total Progeny

As descibed in Ball (1983), the early stages of an epidemic process can be approximated

by a suitable constructed branching process, de�ned in Section 2.5.2. For minor out-

breaks, the entire process may be approximated by a branching process. This motivates

us to investigate branching processes conditioned on their total progeny, i.e. the total

number of o�spring not including the initial ancestors. For a thorough background on

branching processes see Mode (1971) and Jagers (1975), both derive many key results

for continuous and discrete processes.

In Section 2.5.1 we present the Galton-Watson Process and de�ne notation analogous

to the random digraph. Using an expression for the probability of a given progeny in

Section 2.5.3 we then derive four example step distributions in Section 2.5.4.

The example distributions are investigated numerically in Section 2.5.6. Finally, the

approximation is related to the epidemic and digraph.

2.5.1 Branching Process

We shall consider only the case of discrete time generations, commonly referred to as a

Galton-Watson process. The theorems of Ball (1983) require continuous time branching

processes, see Jagers (1975) for further details.

A Galton-Watson Process is a stochastic process, {Xt : t ≥ 0} which obeys the recur-

rence relation,

X0 = 1 and Xt+1 =

Xt∑
j=1

ξ
(t)
j ,
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where
(
ξ
(t)
j

)
is a sequence of independent and identically distributed random variables

on Z+.

The branching process will be used as an approximation to the rank chains on a di-

graph as presented in Section 2.4. Thus we de�ne an analogous set of notation, let

W = (W0,W1, . . . ) denote a sequence of generation sizes of a branching process. Each

individual, i in generation, t, has a number of o�spring according to a given distri-

bution; denote by ξ
(i)
t the random variable of the number of o�spring. Let a be the

number of initial ancestors of the branching process, which is equivalent to a indepen-

dent copies of the branching process. As for the random digraph, let Wt = (xt, yt),

where xt is the number of individuals in generation t and yt =
∑

i≤t xi.

Similarly, let Pa[E] be the probability of an event E in a branching process with a

initial ancestors. Let T denote the total progeny of the branching process, i.e. the

total number of individuals ever born, excluding the initial ancestors, when the process

becomes extinct. We will be interested in the behaviour of the branching process

conditioned upon T = k, for some �xed k.

For unconditioned branching processes, the extinction probability is de�ned as,

Pext = lim
n→∞

P[Xn = 0].

If E[ξ1] ≤ 1 then Pext = 1, otherwise if E[ξ1] > 1 then 0 ≤ θ < 1.

Conditioning on a speci�c �nite total progeny requires the process to become extinct

once that progeny has been reached, i.e. Pext = 1 regardless of the o�spring distribution.

The sequence of generation sizes is directly analogous to the rank chains of the random

digraph, we shall call both paths. As for the digraph we consider step probabilities to
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describe the branching process. Each step is from one generation to the next, each of

which is independent given the initial size of the starting generation.

We derive a set of expressions as in Section 2.4.2,

Pa[Wt+1 = (x, y)|Wt = (u, v), T = k]

=
Pa[Wt+1 = (x, y)|Wt = (u, v)] Pa[T = k|Wt+1 = (x, y),Wt = (u, v)]

Pa[T = k|Wt = (u, v)]

=Pa[Wt+1 = (x, y)|Wt = (u, v)]
Px[T = k + a− y]

Pu[T = k + a− v]
for a, k, u, v, x, y, t ∈ Z+.

(2.33)

Recall the total progeny does not include the initial ancestors (as the connectedness

does not include the initial root vertices). Hence the event {T = k} is equivalent to

Wk+1 = (0, k+a), by the same reasoning as for the digraph. This reduces to considering

the step probabilities,

Pa[Wt+1 = (x, y)|Wt = (u, v)].

2.5.2 Epidemic Model And Its Branching Process Approximation

We appeal to the results of Ball (1983) and Ball and Donnelly (1995). We shall brie�y

explain the approximation of a closed population stochastic epidemic by a branching

process described in these papers, omitting the proofs of any results.

We match an epidemic to a branching process as described in Ball (1983), namely the

initial a ancestors of the branching process are matched to the r initial infectives of

the epidemic. The epidemic process is as de�ned in Section 1.2.2, denoted ZN (ω) and
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a continuous time branching process, denoted Z(ω), with a given o�spring distribution

(ω is a member Ω from a suitably constructed probability space). Each new o�spring

is matched to a labelled individual in the population. If the individual was already

infected, then the o�spring is a ghost, it and all of its subsequent o�spring are ignored.

We shall now present several theorems that, given this construction, prove the corre-

spondence between the two processes. Let Z̃N (ω) be the epidemic process relabelled

and ZN (ω, t), Z̃N (ω, t) and Z(ω, t) be the epidemic process, relabelled process and

branching process restricted to the interval [0, t].

Theorem 2.14 (Ball (1983) Theorem 3)

For any �xed t > 0 and any metric on the space of sample paths {Z(ω, t), ω ∈ Ω},

Z̃N (ω, t)
a.s.−→ Z(ω, t) as N → ∞.

Thus the epidemic process, as the population size tends to in�nity, converges to the

corresponding branching process. This result is also known as Kendall's approximation

and was stated in Kendall (1956).

Let TN (ω) and T (ω) be the number of individuals born in ZN (ω) and Z(ω) respectively,

for all ω ∈ Ω (as de�ned in Ball (1983)). Then,

Theorem 2.15 (Ball (1983) Theorem 4)

TN (ω)
a.s.→ T (ω) as N → ∞.

The �nal size of the epidemic converges to the total progeny of the branching process,
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note that T (ω) may be in�nite.

Theorem 2.14 is presented again in Ball and Donnelly (1995) using similar notation

and further details of the approximation.

Theorem 2.16 (Ball and Donnelly (1995) Theorem 2.1)

There is a probability space (Ω,F ,P) on which are de�ned a sequence of epidemic mod-

els indexed by N (the initial number of susceptibles) and the approximating branching

process, with the following properties.

Denote by A the set on which the branching process Z(·) becomes extinct,

A = {ω ∈ Ω : lim
t→∞

Z(ω, t) = 0}. Then, as N → ∞,

sup
0≤t<∞

|ZN (t)− Z(t)| → 0 for P− almost all ω ∈ A.

Further, for any c1 < (2α)−1 and c2 > (2α)−1, as N → ∞,

sup
0≤t≤c1 logN

|ZN (t)− Z(t)| → 0 and sup
0≤t≤c2 logN

|ZN (t)− Z(t)| → ∞,

for P− almost all ω ∈ Ω\A.

Thus for a minor epidemic, for su�ciently large N , the process behaves like a branching

process. For major outbreaks, where the corresponding branching process does not go

extinct, the epidemic grows like a branching process until about
√
N individuals have

been infected.

We are interested in the total progeny approximation of the �nal size, which for suf-

�ciently large population size N approximates the �nal size of the corresponding epi-

demic by Theorem 2.15. From Ball (1986), if the infectious period is a constant,

i.e. Ti = c then a branching process with a Poisson o�spring distribution approximates

such an epidemic. Since during an individual's infectious period they have a contacts at
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the times of a Poisson process. All contacts result in an infection under the branching

process approximation, thus the number of o�spring must be the count of the Poisson

process, i.e. a Poisson distribution of rate λc. For a Negative binomial o�spring distri-

bution, the corresponding epidemic process has gamma infectious periods, with integer

value shape parameter.

We shall consider these two cases in Section 2.5.4, giving total progeny probabilities

as in Ball et al. (2002). We also consider two other o�spring distributions that do not

match an explicit infectious period.

2.5.3 Conditioned Probabilities Of An Entire Path

As for the digraph, there are 2k−1 possible sequences of generations that result in a

total progeny of k. So to calculate the conditioned probabilities we must again either

calculate them exactly or use rejection sampling to generate approximate solutions.

For the digraph, to obtain an exact probability required all the possible 2d−1 paths, in

terms of the branching process then

Pa[T = k] =
∑

{w|T=k}

P[W = w] =
∑

{w|T=k}

∏
0≤t≤τ

P[Wt+1 = wt+1|Wt = wt].

However, for a Galton-Watson Process we can use Theorem 2.17, presented by Dwass

(1969) in terms of branching processes based on Good (1949).

Theorem 2.17 (Dwass (1969))

For a simple Galton-Watson Process we have the following relation,

Pa[T = k] =
a

k + a
P[ξ1 + ξ2 + · · ·+ ξk+a = k] (k = 0, 1, . . . ) (2.34)
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where
∑

k≥0 Pa[T = k] = 1.

Instead of calculating the total probability of all 2k−1 paths, we now need only calculate

a single probability, namely P[ξ1+ξ2+· · ·+ξk+a = k]. Theorem 2.17 is of particular use

when the right hand side can be evaluated analytically for a given o�spring distribution,

ξ.

In the following section we present four example o�spring distributions that yield closed

forms for Equation (2.34), these will be related to their corresponding epidemic process

in Section 2.5.6.

2.5.4 Example O�spring Distributions With Algebraic Conditioned

Probabilities

Poisson Distribution

Each individual has a random number of o�spring with a Poisson distribution, i.e. ξ ∼

Pois(λ). Let Sn = ξ1 + · · · + ξn, then Sn ∼ Pois(λn). Hence using Theorem 2.17 we

have,

Pa[T = k] =
a

k + a
P[ξ1 + · · ·+ ξk+a = k]

=
a

k + a
P[Sk+a = k]

=
a

k + a

(λ(k + a))k

k!
exp(−λ(k + a)) a > 0, k ≥ 0.

Given Poisson o�spring, the step probabilities are given by

Pa[Wi+1 = (x, y)|Wi = (u, v)] = P[Su = x] =
(λu)x

x!
exp(−λu).
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Combining these expressions as in Equation (2.33) gives,

Pa [Wi+1 = (x, y)|Wi = (u, v), T = k] =

=Pa[Wi+1 = (x, y)|Wi = (u, v)]
Px[T = k + a− y]

Pu[T = k + a− v]

=
(λu)x

x!
exp(−λu)

x
k+a−y+x

(λ(k+a−y+x))k+a−y

(k+a−y)! exp(−λ(k + a− y + x))

u
k+a−v+u

(λ(k+a−v+u))k+a−v

(k+a−v)! exp(−λ(k + a− v + u))

=

[(x
u

)(k + a+ u− v

k + a+ x− y

)](
k + a− v

x

)(
u

k + a+ x− y

)x(k + a+ x− y

k + a+ u− v

)k+a−v
.

It is interesting to note that the rate of the Poisson o�spring distribution, λ, does

not appear in the conditioned step probability for any step. We will return to this

observation in Section 2.5.5.

Geometric Distribution

For a geometric distribution, ξ ∼ Geo(p), we note that the sum of n geometric random

variables is a negative binomial, i.e. Sn ∼ NegBin(n, p).

P[ξ = x] = p(1− p)x and P[ξ1 + · · ·+ ξn = Sn = k] =

(
k + n− 1

k

)
pn(1− p)k.

Hence the progeny distribution is

Pa[T = k] =
a

k + a

(
k + (k + a)− 1

(k + a)− 1

)
p(k+a)(1− p)k k = 0, 1, 2, . . . ,
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giving the step probabilities,

Pa [Wi+1 = (x, y)|Wi = (u, v), T = k]

=

[(x
u

)(k + a+ u− v

k + a+ x− y

)](
x+ u− 1

u− 1

)
(
(k + a− y) + (k + a− y + x)− 1

(k + a− y + x)− 1

)
(
(k + a− v) + (k + a− v + u)− 1

(k + a− v + u)− 1

)
 .

As for the Poisson case, the conditioned step probabilities are independent of the geo-

metric o�spring parameter, p.

Binomial Distribution

For a binomial distribution, ξ ∼ Bin(m, p), and the sum of independent and identically

distributed (i.i.d.) binomials is a binomial, i.e. Sn ∼ Bin(nm, p).

P[ξ = x] =

(
m

x

)
px(1− p)m−x and P[ξ1 + · · ·+ ξn = Sn = k] =

(
nm

k

)
pk(1− p)nm−k.

Hence the progeny distribution is

Pa[T = k] =
a

k + a

(
(k + a)m

k

)
pk(1− p)(k+a)m−k k = 0, 1, 2, . . . ,

giving the step probabilities

Pa [Wi+1 = (x, y)|Wi = (u, v), T = k]

=

[(x
u

)(k + a− v + u

k + a− y + x

)](
um

x

)
(
(k + a− y + x)m

k + a− y

)
(
(k + a− v + u)m

k + a− v

)
 .
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Unlike the Poisson and geometric cases, the conditioned step probabilities for a bino-

mial o�spring distribution are dependent on the parameters, though only on m, the

maximum number of o�spring an individual may have. This is not that surprising,

since the m limits the number of valid paths, which may now be less than 2k−1. For

the �rst step, x0 = y0 = a,

Pa [W1 = (x, y)|W0 = (a, a), T = k] =

[(x
a

)(k + a

k

)](
am

x

)
(
km

k − x

)
(
(k + a)m

k

)
 ,

which is zero for x > am. So if k > am the path W = (a, k, 0) is not valid. In the

most extreme case m = 1, each individual has either zero or one o�spring and if a = 1

there is only one valid path, i.e. x0 = x1 = · · · = xk = 1 and xk+1 = 0.

Despite the dependence on m, the shape parameter, p, does not appear in the condi-

tioned step probability.

Uniform Distribution

The �nal example is included as a comparison to the uniform step distribution on the

random digraph in Section 2.4.4. Obviously, for a uniform to be valid there we need

to induce an upper limit, the range of the uniform is a parameter, as for a branching

process there is no limit to the population as for the �nite digraph. For the digraph

equivalent, each step was limited by the number of unconnected vertices remaining, so

there was no explicit parameter.

We need the following lemma to obtain a closed form for Theorem 2.17, for a proof see

Uspensky (1937, p23�24).
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Lemma 2.18 (Uspensky (1937))

The probability of obtaining a total of p on n s-sided dice requires the number of ways

to achieve this total. This is the coe�cient of xp in (x+ x2 + · · ·+ xs)n, divided by the

total number of outcomes sn. Thus

P[p, n, s] =
1

sn

b(p−n)/sc∑
l=0

(−1)l
(
n

l

)(
p− sl − 1

n− 1

)
.

where bxc is the �oor function, giving the integer part of x (rounding down).

Let ξ ∼ Uni[0,m], then we can express the sum of n such random variables as,

P[ξ1 + · · ·+ ξn = Sn = k] =
1

(m+ 1)n

b k
m+1

c∑
l=0

(−1)l
(
n

l

)(
k + n+ (m+ 1)l − 1

n− 1

)
k = 0, 1, . . . ,

Which follows from Lemma 2.18, consider the dice as the number of o�spring (0, . . . ,m)

o�set by one (1, . . . ,m+ 1) and requiring a total of p plus the n o�set (one per dice),

i.e. s = m+ 1 and p = k + n.

As before we can then write

P[T = k] =
a

k + a

(
1

m+ 1

)k+a b k
m+1

c∑
l=0

(−1)l
(
k + a

l

)(
k + (m+ 1)l + k + a− 1

k + a− 1

)
k = 0, 1, . . . ,
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giving the step probabilities

Pa [Wi+1 = (x, y)|Wi = (u, v), T = k]

=

[(x
u

)(k + a+ u− v

k + a+ x− y

)]
∑b x

m+1
c

l=0 (−1)l
(
u
l

)(
x+u−1−(m+1)l

u−1

)∑b k+a−y
m+1

c
j=0 (−1)j

(
k+a+x−y

j

)(2(k+a−y)+x−1−(m+1)j
k+a+x−y−1

)
∑b k+a−v

m+1
c

n=0 (−1)n
(
k+a+u−v

n

)(2(k+a−v)+u−1−(m+1)n
k+a+u−v−1

)
 .

Though this step probability is not elegant, it is a closed expression for a conditioned

step probability. For the equivalent digraph step, a recursive search of all valid paths

is required to �nd a conditioned step probability. For similar reasons to the binomial

o�spring distribution, the uniform parameter m remains in the conditioned expression.

2.5.5 Parameter Invariance Of Conditioned Step Probabilities

In the previous section we observed that for the Poisson and Geometric o�spring dis-

tribution, the conditioned step probabilities are invariant of the respective parameter

(i.e. the Poisson rate λ or geometric probability p). We now explain the invariance and

relate the example distributions.

First consider the Poisson case. We have conditioned the branching process to a �xed

number of o�spring, k. We use the following standard result of Theorem 2.19, the

distribution of waiting times for a Poisson process conditioned on the number of points

in a �xed time are uniformly distributed (see p139�141 Parzen, 1964).

Theorem 2.19 (Parzen (1964))

Let {N(t) : t ≥ 0} be a Poisson process with intensity ν. Under the condition N(T ) = k,

the k times τ1 < τ2 < · · · < τk in the interval 0 to T that the events occur have the

same distribution as the order statistics corresponding to k independent uniform random
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variables on the interval [0, T ].

Using Theorem 2.17, conditioned on k o�spring we can consider all the lifetimes to-

gether. That is we conditioned on there being k points in a Poisson Process of length

(k+a)c with rate λ(k+a). By Theorem 2.17, these k points are distributed uniformly

at random on [0, k + a], and in particular their distribution is independent of λ. For

example, in the diagram below we have one initial ancestor, a = 1, and condition

on a total progeny of �ve, k = 5. So there are six intervals corresponding to all the

individuals and the grey circles are points of the Poisson Process.

The k points will occur in an interval corresponding to a speci�c individual. There

is the issue of assembling the individuals and their o�spring counts (number of points

in their interval) into a valid Galton-Watson Process, though this is combinatoric in

nature and does not a�ect the current discussion.

In the example given, individuals 4 and 6 cannot be the initial ancestor (as they have

no o�spring). A valid path would be W = (1, 2, 2, 1) where W0 = {c3}, W1 = {c1, c5},

W2 = {c2, c6} and W3 = {c4}. There are many other valid Galton-Watson processes

that can be constructed from the diagram, though they only depend on the counts in

each interval.

By Theorem 2.19, each point is uniformly distributed over an interval, the interval

counts do not depend on λ. Hence, the conditioned process is a combinatoric problem

on the interval counts that are independent of the rate. Finally, the conditioned step
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probabilities are a function of the entire conditioned path, which we have shown is λ

invariant.

For the Geometric o�spring, the sum of k + a i.i.d. geometric random variables is a

negative binomial distribution, NegBin(k+ a, p). The geometric is a discrete analogue

to the exponential, so the negative binomial is related to the Poisson process.

Theorem 2.20

Let X be a negative binomial random variable, X ∼ NegBin(r, p). Under the condition

X = T , the r successes at the points t1 < t2 < · · · < tr, where ti ∈ {1, 2, . . . , T + r} for

each success i, tr = T + r and ti 6= tj for i 6= j, have the same distribution as the order

statistics corresponding to k uniform draws from the set {1, 2, . . . , T + r − 1} without

replacement.

Proof

The proof follows that of Theorem 2.19 in Parzen (1964).

Denote the times of the r − 1 successes (the rth success always occurs at tr = T + r

by the de�nition of the negative binomial) as Ui and the ordered version as U(i). Let f

denote the joint density of the r − 1 draws. Then

f(u(1), u(2), . . . , u(r−1)) =
1

T + r − 1

1

T + r − 2
. . .

1

T
=

T !

(T + r − 1)!
.

The probability of successes at t1, . . . , tr and failures everywhere else given T failures

is

P[(t1, . . . , tr)|X = T ] =
pr(1− p)T(

T+r−1
r−1

)
pr(1− p)T

=
T !(r − 1)!

(T + r − 1)!
.

There are (r − 1)! permutations of the r − 1 unordered uniform draws, hence

f(u(1), . . . , u(r)) = (r − 1)! f(u1, . . . , ur) = f(t1, . . . , tr|X = T ). �
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By a similar reasoning to the Poisson case, using Theorem 2.20 the Geometric con-

ditioned step probabilities are invariant of the success probability p. The binomial

step probability is equivalent to a conditioned negative binomial except for the limiting

parameter n, the maximum number of o�spring. Under suitable conditions,

Bin(n, p) → Pois(1/p) as n→ ∞,

so without formal justi�cation, we expect a similar p-invariance as observed, but there

to be a dependence on n.

2.5.6 Numerical Results

We present some numerical results relating to the expressions derived in the previous

section. As established in Section 2.3, we display the results graphically by considering

the path of the average for each generation.

The averages are over a number of simulated paths, typically 105, each generation

average can then be calculated as well as an approximate of the 95% interval. The

interval approximation is based on ordering the generation sizes and de�ning the range

covering 95% of the sample paths.

Under the branching process approximation to the random digraph there is no recur-

sive component. Neither is there any implicit dependence on the population size, as

discussed for random digraphs in Section 2.4.9 in terms of vertices. For small total

progeny the time to compute the probabilities is the same as for the equivalent epi-

demic process. However for large �nal sizes the digraph approach is unfeasible (the

recursive path searching becomes too costly), which is not the case for the branching

process method.
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Recall the total number of valid paths of total progeny is 2k−1, so even though we can

calculate a conditioned path probability in one pass, to calculate exact expectations

for large k is still too computationally intensive. For example, if k = 30 it would take

several decades to compute all the possible paths if we could evaluate one per second.

Since this is so impractical, we use the exact conditioned step probabilities to estimate

the expected generation size using simulated paths. We do not reject any samples,

as we did in Section 2.4.7.5, as all paths are simulated from the exact conditioned

probabilities.

As with the digraph calculations, we can store intermediate steps to speed our calcu-

lations. Which is a greater saving for the branching process step probabilities that are

parameter invariant.

Poisson O�spring

We start by considering the Poisson o�spring distribution derived in Section 2.5.4.

Since the step probabilities are invariant of the rate parameter λ, these results are

valid for all Poisson o�spring distributions.

Estimating by simulation the path of the average, as de�ned in Section 2.4.6, we can

compare across di�erent numbers of ancestors, a and the total progeny we condition

on, k.

Figure 2.7 shows the path of the average generation size for a = 1 and varying k. The

total progenies shown are: 10, 20, 40, 60, 80, 100, 200, 500 and 1000. To meaningfully

compare the plots, in Figure 2.7(a) the generation and average size of the generation

have been scaled by k, the conditioned total progeny, i.e. plot t/k against E[Xt]/k.
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Since x0 = a for all paths, on the scaled plot the expected size of the zeroth generation

will tend to zero. There seems to be a limiting behaviour when scaled by the conditioned

total progeny.

Figure 2.7(b) shows the same average paths as Figure 2.7(a), except the generation and

expected generation size are scaled by the square root of the conditioned total progeny,

i.e. plot t/
√
k against E[Xt]/

√
k. This rescaled process hints at a limiting distribution

as the conditioned total progeny tends to in�nity.

This
√
k scaling is related to results in Drmota and Gittenberger (1997) and Gitten-

berger (1998); speci�cally let (Ln(t), t ≥ 0) be a Galton-Watson process conditioned

on a total progeny of n, where Ln(t) is the size of the t-th generation. For a sequence

of positive numbers, (cn, n ≥ 0) such that cn → ∞ and cn = o(
√
n), then the scaled

process,

ln =
1

cn
Ln(cnt), t ≥ 0,

weakly converges to the local time of a three-dimensional Bessel process. If the scale

factor is cn =
√
n, the limit process obtained is Brownian excursion local time.

From Gittenberger (1998), the average extinction time of a branching process condi-

tioned on the total progeny n is proportional to
√
n.

This provides a limiting result for the conditioned Galton-Watson processes considered.

Further, the maximum generation size also has a limiting distribution. For uncondi-

tioned branching processes results for the maximum are given by Lindvall (1976) and

Weiner (1984), these results are extended to conditioned branching processes under

�niteness constraints on the o�spring distribution by Kerbashev (1999) and �nally the

expectation of the maximum generation size conditioned on total progeny is derived
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Figure 2.7: Scaled path of the average for a Poisson o�spring distribution with one
initial ancestor, a = 1 and varying conditioned total progeny, k. The
generation and estimated expected generation size are normalised by k
and

√
k to facilitate comparison
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Figure 2.8: Four selected sample paths from Poisson o�spring distribution a = 1
and k = 100 chosen from 10 simulated paths. Normal approximation
95% intervals are shown as dotted curves and the expected number of
generations is shown as a dotted vertical line.

by Bondarenko and Topchi�� (2001).

Figure 2.7 shows the estimated expected size of each generation, which we have called

the average path. Despite the smooth nature of the average path, there is a great deal

of variability in speci�c realisations of a path.

This variability in sample paths of the conditioned branching process is illustrated in

Figure 2.8, which shows four realisations in the Poisson o�spring case. The paths were

selected from 10 simulated runs and chosen to display the variability not captured in

the path of the average graphs, i.e. they have been chosen to look di�erent. The dotted

lines are an approximate 95% interval over the generation sizes. The vertical dotted

line corresponds to the expected number of generations, i.e. E[τ ] where τ = min{t :

xt+1 = 0}.
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The interval is approximated assuming the generation sizes are normal distributed, this

is clearly inaccuracte near the boundaries as the interval will not be symmetric and

the assumption of normality is not theoretically derived. As a �rst approximation the

interval for each generation, i is given by X̄i± 1.96
√

Var(Xi). These are the mean and

variance of samples of the i-th generation, assuming the average size of a generation

is normally distributed with mean E[Xi] and variance Var(Xi). This leads to intervals

with negative lower bounds and upper bounds that exceed the maximum attainable

generation size, i.e. k in a branching process conditioned on having total progeny equal

to k. Alternatively, we can consider the interval of the empirical quantiles as a measure

of the variability of the average path, i.e. ordering the samples for the i-th generation

and taking the 2.5% and 97.5% quantiles.

Figure 2.9 compares the average generation sizes, normal approximated con�dence and

quantile interval obtained from 6× 104 sample paths with a Poisson o�spring distribu-

tion conditioned on k = 100 with a single initial ancestor. The normal approximation

intervals are shown as dotted lines, clearly becoming negative for some generations.

The thicker solid line is the average path, included as a reference to Figure 2.7. Fi-

nally, the empirical quantiles are shown as solid lines. Approximating the distribution

of the expected generation size as normal seems fairly adequate, setting any negative

lower bound to zero.

As noted in Figure 2.7(a), considering the limiting behaviour of the average path as

k → ∞ for a �xed number of initial ancestors will cause the zeroth generation to tend

to zero, x0 = a
k → 0 as k → ∞. Figure 2.10 shows the average path when the ratio

a
k is kept constant, the generation size is scaled by k to ensure the zeroth generations

coincide, though this may not be the optimal scaling. The lines are for conditioned

progeny's of 10, 50, 100 and 200 with the ratio a
k = 0.1. The average paths are

calculated from 105 simulated conditioned paths.
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Figure 2.9: Comparison of generation sizes obtained from a normal approximation
and empirical quantiles for a branching process with one ancestor condi-
tioned on a total progeny of a hundred with Poisson o�spring, i.e. a = 1
and k = 100 paths. The normal approximation and empirical 95% in-
tervals are shown as dotted and solid lines respectively. The average
path is a thick solid line.

Figure 2.11 shows the approximate and empirical intervals for the corresponding �xed

ratio when there are twenty initial ancestors and a total progeny of two hundred. The

approximate intervals still closely match the empirical.

Finally we consider the variance of each generation size, i.e. Var(Xi) for 0 ≤ i ≤ k+1.

Since x0 = a and xk+1 = 0 for all paths, clearly Var(X0) = Var(Xk+1) = 0. Figure

2.12 shows the estimated variances for each generation conditioned on various total

progenies. The generation is scaled by the square root of the conditioned total progeny,

i.e. i√
k
and the variance is scaled by the progeny, i.e. Var(Xi)

k . It is clear from Figure

2.12 that there is a limiting behaviour being observed.
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Figure 2.10: Path of the average for a Poisson o�spring distribution for values of k,
maintaining the ratio of a/k = 0.1 Both the generation number and
generation size are normalised by

√
k to facilitate comparison

Alternate O�spring Distributions

So far we have considered only the Poisson o�spring case, this corresponds to an epi-

demic with �xed infectious periods. For �xed periods, in the directed random graph

all edges are independent which greatly simpli�es calculations.

Though we consider three alternative o�spring distributions, we expect them to behave

in a similar manner. A negative binomial distribution with parameters r and p =

r/λ+ r tends to a Poisson distribution with parameter λ as r tends to in�nity. For

su�ciently large r we may approximate using the Poisson case. For a gamma infectious

period, Γ(a, b) with integer shape parameter, the corresponding approximate o�spring

distribution is a negative binomial, NegBin(a, b). We considered the case where a = 1,

i.e. an exponential giving a geometric o�spring. Since our conditioned geometric step

probabilities do not depend on the probability, we can make the approximation to the
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Figure 2.11: Comparison of generation intervals for a Poisson o�spring branching
process with a = 20 and k = 200. The normal approximation and
empirical 95% intervals are shown as dotted and solid lines respectively.
The average path is a thick solid line.

Poisson arbitrarily good. Hence we expect the negative binomial and Poisson o�spring

cases to be similar.

Similarly, the binomial distribution converges to the Poisson distribution as the number

of trials goes to in�nity while the product np remains �xed. Since p may be arbitrary,

we need only consider the number of trials. If n > 20 with su�ciently small p, we may

approximate the Binomial by a Poisson distribution with parameter np. For su�ciently

large n, we expect the binomial and Poisson o�spring cases to be similar.

The uniform case does not tend to a Poisson, so we expect the average path to be

di�erent.

We compare the average path for four branching processes conditioned on a total

progeny of one hundred with a single initial ancestor. We set the parameters of each
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Figure 2.12: Comparison of generation variances for Poisson o�spring branching
process conditioned on various total progenies. The generation is
scaled by

√
k and the variance by k. All have a single ancestor

distribution to be equivalent in a sense, so that the comparison is meaningful. For the

Poisson o�spring we do not need to specify a rate, since in the conditioned process it

is an invariant parameter. We consider the negative binomial with ten success events,

though we only derived the result for a single success, i.e. a geometric, the result is sim-

ple to generalise. For the binomial and (discrete) uniform we set n = 10, the maximum

o�spring from each individual.

Figure 2.13 shows the average paths estimated from 106 simulated conditioned branch-

ing processes for the four o�spring distributions derived in Section 2.5.4. As expected,

the Poisson, binomial and negative binomial appear very similar and the uniform ex-

hibits a di�erent behaviour. The parameters of each distribution have been chosen to

have similar characteristics.

Finally we consider the variance of the path, the separate generation variances esti-
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Figure 2.13: Comparing scaled o�spring distributions, with a = 1 and k = 100,
of the empirical expected size of each generation for the distributions:
Pois(1), NegBin(10,1), Bin(10,1) and Uni(10)

mated from simulations. Figure 2.14 compare the four o�spring distributions of Figure

2.13, plotting the variance for each generation. The generation and variance are scaled

as in Figure 2.13 to facilitate comparison. The behaviour is similar for the Poisson,

Negative Binomial and Binomial. The Uniform is clearly distinct, as expected.
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Figure 2.14: Comparing scaled o�spring distributions, with a = 1 and k = 100, of
the empirical variance in each generation for the distributions: Pois(1),
NegBin(10,1), Bin(10,1) and Uni(10)
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2.5.7 Branching Process Approximation To Finite Random Digraph

In Section 2.5.5 we showed the Poisson o�spring branching process is invariant to the

rate of the Poisson distribution. As described in Section 2.5.2, a branching process with

Poisson o�spring can be used to approximate an epidemic with �xed infectious periods

in the early stages. We now investigate this approximation using the random digraph

representation to give a relationship between the rank chain of the digraph and path

of the branching process.

The random digraph conditioned on connectedness and the branching process condi-

tioned on its total progeny are both tools to consider the �nal size of an epidemic.

Since the branching process approximation assumes a large population, it would seem

that increasing s, the number of susceptibles in the �nite graph, should a�ect how close

the two processes are. In particular, the random digraph is λ-dependent whereas the

branching process is not.

For the random digraph, consider the constant infectious period case, let c = 1 without

loss of generality. Figure 2.15 shows the e�ect of varying λ at various values of s, given

one root node and a conditioned connectedness of �ve, on the expected size of the �rst

generation, X1. The graph was produced using the expression derived in Section 2.4.4

for the digraph simulations.

In Figure 2.15 a horizontal line has been added to represent the equivalent branching

process, with a single ancestor and conditioned total progeny of �ve, i.e. a = 1 and

k = 5. The line is horizontal as the path probabilities, and hence the expectations, are

invariant to λ. The line corresponds to the digraph letting the population be in�nite

in size, i.e. letting s→ ∞.

It is interesting to note that the lowest non-horizontal line in Figure 2.15 corresponds to
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Figure 2.15: Comparing the expected size of the �rst generation in a conditioned
random digraph and a conditioned Poisson branching process. With a
single root and ancestor, r = a = 1 and conditioned on d = k = 5 while
varying λ. The digraphs have di�erent number of initial susceptibles
s.

seventy �ve susceptibles, s = 75 which is not particularly large. The approximation is

fairly good even for small populations. Conversely, for the smallest population shown,

s = 5, the approximation is very poor.

Finally, the limiting behaviour illustrated in Figure 2.15 can be shown algebraically

with the following example. The step probabilities of a conditioned random digraph

are s-invariant for suitable λ, see Section 2.4.9. Though the number of susceptibles,

s is implicit in the de�nition of λ. Using the example derived in Section 2.4.7.1, for
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(r, s, d) = (1, s, 2) and letting s→ ∞ we have,

P1,s[Z1 = (1, 2)|Z0 = (1, 1), D = 2] =
2e−

λc
r+s

1 + 2e−
λc
r+s

→ 2

3
as s→ ∞

= P1[W1 = (1, 2)|W0 = (1, 1), T = 2].

That is, the probability tends to the conditioned step probability of the equivalent

conditioned branching process, with a Poisson o�spring corresponding to the �xed

infectious period.

Since the digraph step probabilities cannot be expressed in an easily obtainable alge-

braic form, we cannot generalise this for any such step probability. Though, by the

de�nition of the branching process approximation, we expect this to be true.
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Chapter 3

Inference For Final Size Data Using Markov

Chain Monte Carlo Methods

3.1 Introduction And Motivation

We are motivated by the need to analyse epidemic data, speci�cally �nal size data, to

gain insight from previous outbreaks. As discussed in Sections 1.2.6 and 2.1, obser-

vations of epidemics are often incomplete in regard to each individual as well as only

covering a subset of the population.

In this chapter we consider the following problem. Given �nal size data and a stochastic

epidemic model, what can be inferred about the parameters of this model from the data,

what insight can be gained?

The �nal size data will consist only of counts of the number of susceptibles infected

at the end of the epidemic. We shall use the stochastic Susceptible-Infective-Removed

(SIR) epidemic model de�ned in Section 1.2.2, using the directed random graph rep-

resentation investigated in Chapter 2. To make statistical inference about parameters

of the model given the data we use Markov Chain Monte Carlo (MCMC) methods as

outlined in Section 1.3.2, we shall present update algorithms speci�c to the �nal size

data.
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For �nal size data, the likelihood under the simple SIR model is intractable, since the

only information from the data is the state of the population at the end and beginning

of the epidemic. There is no explicit information about the start of the epidemic,

speci�cally the number of initial infectives is unknown and at �rst we shall assume a

single initial infective, later this will be considered another unknown parameter. To

proceed we must augment the likelihood with su�cient information about the course

of the epidemic to obtain a tractable expression. The imputed course of the epidemic

will be the representations investigated in Chapter 2, �rstly we shall consider the edge

representation and then the generation representation.

Using MCMC we will make inference for the infection rates of the SIR model. Without

more detailed temporal information, it is not possible to make inference about the in-

fectious period directly. For the �xed infectious period case, it is impossible to separate

the infection rate and infectious period, the two parameters are indistinguishable. For

this chapter we shall only consider a �xed infectious period, that will be considered a

known constant of the model.

In Section 3.2 we consider the simple SIR epidemic model, with a single type of indi-

vidual with the course of the epidemic as missing data that we impute. Imputation of

edges has been investigated by Demiris and O'Neill (2005a), we present this approach

and the generation representation developed in Chapter 2. Both methods are compared

using sample data sets.

We de�ne an epidemic with missing data to include all types of data that are obser-

vations of a process omitting some detail, e.g. the exact infection and removal times.

Final size data can then be viewed as an example of missing data, where the infection

times, removal times and which individuals infect each other are unknown. Partially

observed epidemics are de�ned to be those where the data only represent a subset of
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the population, i.e. a speci�ed fraction of the total population. In Section 3.3 we extend

the algorithm to enable the analysis of such data.

Including unobserved individuals naturally leads to incorporating multiple types of

individuals, some of which may be unobserved. We brie�y expand the algorithm in

Section 3.4, though we present a more complete general framework in Section 3.5,

allowing individuals to have multiple levels of mixing. Thus, the general framework

allows for arbitrary types of individuals and an arbitrary number of levels of mixing,

together with a general form for the rates of contacts among individuals. There are

limits to the type of model that can be �tted, namely no temporal e�ects can be

included, e.g. weekday-weekend cycles. Also, the data may be too sparse to implement

the complicated general model, which may lead to over�tting or poorly converging

Markov Chain Monte Carlo algorithms.

The multi-type multi-level algorithm is applied to the household data presented in

Longini et al. (1988), and comparisons are made to the edge imputation methods by

O'Neill (2009) on the same data set.

Finally, in Section 3.7 we consider practical considerations of implementing the MCMC

algorithms. In particular the use of parallel computing using GNU OpenMP and the

need for arbitrary precision using GNU MPFR. To implement the MCMC algorithm

in the C programming language we have also used the GNU Scienti�c Library (GSL),

see Galassi et al. (2003) for further details.
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3.2 MCMC Algorithms For Simple SIR Epidemic Model

In this section we consider an SIR model, as de�ned in Section 1.2.2, with homoge-

neously mixing and homogeneous population of N individuals, which we shall denote

a one-type one-level (1t1l) model, with a �xed infectious period, i.e. I = c for some

constant c ≥ 0 and ι = E[I] = c. An infectious individual has infectious contacts with

another given individual at the points of a Poisson process with rate λ
N over some inter-

val I, where N is the size of the population of which n are initially susceptible and a are

initially infective. Initially we set the number of initial infectives to be one, i.e. a = 1,

without any explicit information it seems a reasonable assumption that the epidemic is

initiated by a single external infection to an individual at random. All individuals are

labelled by an index i from the set {1, 2, . . . , N}. Let κ denote the set of indicies of the

initial infectives, for a single initial infective we abuse the notation and let κ denote the

index of the single initial infective. Since the population is homogeneous and we are

restricting attention to the case a = 1, we may set κ = {1} without loss of generality.

We wish to make inference for λ, the infection rate, given the �nal size of an outbreak in

the population. Let d be the number of initial susceptibles that are ultimately infected,

not including the initial a infectives, out of the initial n susceptibles. Let N = a + n

and D = a + d be the total population size and total number of individuals who are

ever infective respectively. The data may be summarised as the vectors

θ = (a, n, d) for

a ∈ Z+

n ∈ Z+

0 ≤ d ≤ n

(3.1)



3.2 MCMC Algorithms For Simple SIR Epidemic Model 139

or

ψ = (N,D) for
N ∈ Z+

0 ≤ D ≤ N
, (3.2)

depending on the assumption on the initial number of infectives. We shall initially

consider the case where a = 1 and use the θ notation. Thus we wish to �nd the

posterior density π(λ|θ), using Bayes' Theorem we have

π(λ|θ) ∝ L(θ|λ)π(λ).

The likelihood can be derived for any population size, speci�cally Ball (1986) derive a

general expression to compute the distribution of the �nal size given the rate λ. How-

ever, these equations to compute the likelihood of θ given only λ become numerically

intractable for large populations, even with the assumptions of a �xed infectious period

and single initial infective we cannot derive an expression for the likelihood that is ef-

�ciently computable. To obtain such an expression, dependent only upon the infection

rate λ, we must integrate out all other dependencies. In particular, it is di�cult to

integrate over all possible paths to achieve a �nal size of d, the approach of Ball (1986)

using a set of recursive triangular equations. It is not impossible though, to obtain a

numerical result for the likelihood using arbitrary precision computing as by Demiris

(2004), we shall return to this in Section 3.7.2. However, MCMC methods rely on

repeated iterations of the chain that require evaluation of the likelihood, if the compu-

tational cost (usually time) to evaluate the likelihood is too large then the method will

be infeasible.

The likelihood of λ given all the information from the data and the model (e.g. �xed



3.2 MCMC Algorithms For Simple SIR Epidemic Model 140

infectious period and a single initial infective)

π(λ|θ, I, κ) ∝ L(θ|λ, I, κ)π(λ),

is still intractable, despite additional parameters being �xed in the model. To apply

MCMCmethods we require a computable form for L(θ|·, λ). To achieve this we augment

the likelihood with additional data, that we consider to be a new parameter, giving a

joint posterior density of λ and the imputed data.

In Section 3.2.1 we reproduce the results of Demiris and O'Neill (2005a), wherein the

likelihood is augmented with a random digraph characterised by its edges, following

Section 2.2.2 we use the relationship of the digraph to the �nal size of the epidemic to

compute the likelihood of the �nal size d given the imputed course of the epidemic and

the infection rate.

Two edge methods are reviewed, both of which require detailed information on each

individual in the population. In fact, it is possible to only consider those individuals

who are ultimately infected, as discussed in Section 2.4.9, since there is no need to

explicitly account for contacts between those who remain susceptible for the entire

epidemic.

In Section 3.2.2 we augment the likelihood with a digraph characterised by generations,

which contains less detail on individuals within the population. The update steps for

an MCMC algorithm are explained in detail, de�ning notation that will be extended

in subsequent sections.

The two augmentation methods are compared in Section 3.2.3, with particular attention

to the convergence properties of the generation representation under various tunable

parameters.
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3.2.1 Imputing Edge Representation

Following Demiris and O'Neill (2005a), though using our notation de�ned in Sec-

tions 2.3 and 3.2, let G denote a random digraph on N vertices of which a are roots and

edges are present with probability p = 1 − exp(− λ
N c), where c is the �xed infectious

period and λ is the infection rate. Then, the connectedness of the digraph is equal in

distribution to the �nal size of the matched SIR epidemic.

We shall consider two forms of representing the digraph G, either as a connectivity

matrix or as contact lists, the latter yields a more e�cient MCMC update step using

a Gibbs update.

For a given digraph, G, the likelihood of θ = (a, n, d) is an indicator variable, either

the digraph is d-connected or it is not. By Bayes' Theorem we have,

π(G,λ|θ, I, κ) ∝ L(θ|G,λ, I, κ)π(G,λ|I, κ)

∝ L(θ|G,λ, I, κ)π(G|λ, I, κ)π(λ|I, κ)

∝ L(θ|G,λ, I, κ)π(G|λ, I, κ)π(λ),

since we assume the infectious period, infection rate and seed infective index are inde-

pendent a priori, then

π(G,λ|θ, I, κ) ∝ I{θ|G,κ} π(G|λ, I, κ) π(λ).

Where I{θ|G,κ} is the indicator variable, one if the imputed digraph matches the �nal

size data and seed infectives, otherwise zero. The digraph has edges with probability

p as de�ned, thus π(G|λ, I, κ) is the probability of the imputed digraph. Finally,

π(λ) is the prior density on λ, which is assumed independent of the other parameters.
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The prior will be an exponential distribution with a hyperparameter of µ, i.e. π(λ) =

µ exp(−µλ) ∝ exp(−µλ) (note that the prior is on λ, not the scaled rate λ
N ). Let

µ be su�ciently small to induce a fairly �at non-informative proper prior, since the

expectation of an exponential is µ−1.

To implement an MCMC algorithm, we must establish an update step for the infection

rate λ and the imputed digraph G, once the chain has converged it will draw samples

from the joint density. We are primarily interested in λ, so we may compute the

marginal density by considering all samples and ignoring G. This is only valid if

the chain has converged and care must be taken to ensure the correlation between

the infection rate and imputed digraph does not distort the marginal density. We

shall update the parameters one at a time, e�ectively in two blocks, as discussed in

Section 1.3.2.

Care must also be taken in selecting the initial state of the parameters. An initial short

run of the MCMC algorithm may yield clues as to suitable initial values for the infection

rate λ, however the digraph G is a high dimensional object that must be summarised.

The appropriate summary is considered, it must be su�cient to determine convergence,

but also minimal to reduce the quantity of output of the algorithm. Hence, there may

not be an obvious `good' initial digraph, or a method to construct it.

The update steps for the digraph and infection rate depend on the form of G, we

present the intuitive form �rst using a connectivity matrix and symmetric Random

Walk Metropolis. However, a more e�cient update is possible using a Poisson repre-

sentation of contact lists and a Gibbs update.
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3.2.1.1 Connectivity Matrix

The following method is as implemented by Demiris and O'Neill (2005a), we present

the approach in detail for comparison with the generation method that we develop in

Section 3.2.2. A digraph G consists of a set of vertices and edges, we may represent G as

a matrix indicating the presence of edges on the graph. Label the vertices 1, . . . , a, a+

1, . . . , a+ d, a+ d+ 1, . . . , N , such that the �rst a vertices are the roots and the next

d vertices are those that are ultimately infected. Let G be an N × N matrix such

that gij = 1 if there is an edge from vertex i to vertex j, for i 6= j. Since this is a

directed graph, the matrix G need not be symmetric, i.e. gij 6= gji in general. The

correspondence to the epidemic is as before.

De�ne the update for λ to be a symmetric Random Walk Metropolis (RWM) as de�ned

in Section 1.3.2.3, the candidate value is λ′ = λ+ l, where l ∼ N(0, σ2l ). The candidate

must be non-negative, thus if λ′ < 0 we reject the proposal immediately and do not

have to calculate the acceptance probability, since π(λ) = 0 for λ < 0. The variance,

σ2l is a tunable hyperparameter that must be speci�ed beforehand, commonly a trial

MCMC run will be performed to tune the hyperparameters. Following Section 1.3.2.3,

the acceptance probability for the symmetric proposal q(·|λ) is

α(λ, λ′) = min

{
1 ,

π(G,λ′|θ, I, κ)q(λ|λ′)
π(G,λ|θ, I, κ)q(λ′|λ)

}
= min

{
1 ,

π(G|λ′, I, κ)π(λ′)
π(G|λ, I, κ)π(λ)

}
.

Since the proposal is constructed to be symmetric in that the proposal probabilities

are equal, i.e. q(λ′|λ) = q(λ|λ′), they cancel from the acceptance probability. Also, for

the λ update the digraph G is unchanged for the candidate, the term π(θ|G,λ, I, κ) is

independent of the value of λ, i.e. π(θ|G,λ, I, κ) = π(θ|G,λ′, I, κ).
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Though we desire a non-informative prior on the infection rate λ, the chosen proper

prior is not truly non-informative. If it were, then all values for λ would be equally

likely and the ratio of the candidate to current prior would be one. However, since the

exponential is being used, the prior density contributes to the acceptance probability.

Namely, since π(λ) = µ exp(−µλ), then

π(λ′)

π(λ)
= exp

(
−µ(λ′ − λ)

)
. (3.3)

The digraph G is a parameter in the model, we must search the space of digraphs using

an update step to obtain the joint density of λ and G. The vertices and their labels are

�xed, without loss of generality we have set κ = {1, . . . , a} and we shall assume a = 1

for the present discussion. Thus, the space of digraphs is concerned with the random

edges, each of which is independent of all other edges and present with probability

p = 1− exp(− λ
N c), where c is �xed and λ is a constant during the update of G as we

are updating the parameters independently.

First, we must de�ne a proposal distribution to generate a candidate digraph. We can

either add or remove an edge from G to generate a candidate digraph G′. The simplest

scheme would be to select an element of the matrix G at random and invert the entry,

if the edge is present remove it or if it is absent add it, i.e. g′ij = gij +1 mod 2. There

are N2 − N possible edges, self edges are excluded, thus we choose all edges equally.

The acceptance probability is then

α(G,G′) = min

{
1 ,

I{θ|G′,κ} π(G
′|λ, I, κ)

I{θ|G,κ} π(G|λ, I, κ)

}
.

The chain should begin in a valid state, thus there should be no need to check the term

I{θ|G,κ} as the current state should always be a valid digraph. However, it is necessary

to check I{θ|G′,κ} for both additions and removals.
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It is possible to reduce the digraph G to only those individuals who ultimately become

infected, this invariance is shown in Section 2.4.9. If reduce to the sub-digraph on D

vertices, then is it no longer necessary to check validity after adding an edge, since

any additional edges cannot increase the connectivity. It is important to still account

for the remaining N −D vertices, as they will have a great a�ect on the likelihood of

di�erent infection rates.

To check whether the digraph is valid, a recursive search can be performed beginning

at the root vertex. Let v be an N length vector, and initialise it such that vi = 1

for i ∈ κ and zero otherwise. Beginning at the root vertices, travel along each edge

away from the roots, to the set of vertices comprising the �rst generation. For each

visited vertex i, set vi = 1. Then visit all connected vertices from the �rst generation,

i.e. the second generation, during the recursive search set the ith component to one

if vertex i is visited. It is possible to make this search more e�cient, if a search

meets a vertex that has already been visited, then that speci�c recursive search can

be terminated. Then the digraph is valid if the required number components of v are

one, i.e.
∑N

i=1 vi = a+ d. There seems no more e�cient method to check connectivity.

For small populations this recursive search is su�cient. However, as D increases the

search becomes more costly and the amount of information stored grows by order N2,

which means the MCMC algorithm must move about the large space of G and check

connectivity for each iteration that requires I{θ|G,κ}.

Since each edge is present independently with probability p, where the probability is

constant for both current and candidate digraphs, the probability of a digraph G is

π(G|λ, I, κ) = p|G|(1− p)N(N−1)−|G|,

where |G| =
∑

i

∑
j gij , i.e. the number of edges in the digraph G.
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Finally, the form of the starting digraph must be speci�ed. For simplicity, and to

guarantee a valid initial digraph, let g1j = 1 for 2 ≤ j ≤ a+ d, gij = 0 for i, j > a+ d

and i = j. Thus there are no self edges, the required d individuals are connected to an

initial infected and there are no contacts to the remaining susceptibles.

3.2.1.2 Poisson Representation

The following representation by O'Neill (2009) demonstrates a key issue in MCMC,

that an appropriate form of the likelihood can lead to a more e�cient algorithm. By

considering the digraph as a set of contact lists, it is possible to form a Gibbs update

step for both the infection rate and digraph, though it is still necessary to check that

the digraph is compatible with the observed �nal size data.

Let X be a D = a+ d length vector, X = (x1, x2, . . . , xD), where xi is the number of

contacts individual i makes during its infectious period, including repeat contacts. Let

Ci be a vector of the individuals i contacts, i.e. ci1 is the �rst individual contacted by

individual i, where the length of Ci is xi. As mentioned, we restrict to the sub-digraph

consisting of only those individuals that are ultimately infected.

Recall, an infectious individual makes contacts with a given individual, uniformly se-

lected from the population, at the points of a Poisson process of rate λ
N , over a period

of length c. Thus xi is the count of the corresponding Poisson processes. Note, al-

though we restrict attention to the sub-digraph on D individuals, the infection rate is

still normalised by the total population size N . The contacts are made uniformly with

the population, since we are considering a homogeneously mixing population, thus each

individual is equally likely, i.e. P(cij = k) = 1/N for all k ∈ {1, . . . , N}. De�ne the

digraph G to be the vector of Poisson process counts and the collection of contact lists

for each individual, i.e. G = {X1, C1, . . . , XD, CD}. Giving the probability of a digraph
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G as,

π(G|λ, I, κ) =
D∏
i=1

(
λ

N
c

)xi exp (− λ
N c
)

xi!

(
1

N

)xi
=

(
λ

N
c

)P
i xi

exp(− λ

N
cD)

(
1

N

)P
i xi 1∏

i xi!
. (3.4)

Then the joint posterior density is,

π(G,λ|θ, I, κ) ∝ π(θ|G,λ, I, κ)π(G|λ, I, κ)π(λ)

∝ I{θ|G,κ} (λc)
P

i xi exp(−λcD) exp(−µλ)

∝ I{θ|G,κ} (λ)
P

i xi exp (−λ(cD + µ)) , (3.5)

up to proportionality, and ignoring constant factors that will cancel out in the accep-

tance probability.

Following Section 1.3.2.2, we select the proposal distribution for the infection rate

as the full conditional distribution, i.e. π(λ|G, θ, I, κ). From Equation (3.5), if the

proposal is a gamma distribution with shape parameter 1 +
∑D

i=1 xi and rate param-

eter Dc + µ, then such a proposal is the full conditional distribution, i.e. q(λ′|λ) ∼

Γ
(
1 +

∑D
i=1 xi, Dc+ µ

)
. It is simple to check the resulting update is a Gibbs step and

has an acceptance probability of one.

To update the digraph G, we see from Equation (3.4) and by the construction of the

digraph, that the number of contacts for each individual has a Poisson distribution,

independent of all other individuals. Thus, choosing an individual at random (from

among those that are ultimately infected), proposing a new number of contacts X ′
i

according to a Poisson distribution of mean λ
N c and uniformly assigning these contacts

among the population to propose a candidate, C ′
i, is the full conditional distribution,
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π(G|λ, θ, I, κ). It follows immediately that the acceptance probability is one, provided

the candidate digraph G′ is compatible with the observed data θ.

For the seed digraph, to ensure a valid starting con�guration, set xi = 1 for 1 ≤ i ≤

D−1 and zero otherwise, with ci1 = i+1. This is a minimal tree, with a single branch

including all the vertices. That is, each generation consists of a single individual who

has a single contact during their infectious period. This contact is with a susceptible,

who becomes the single infective in the next generation.

Hence using the Poisson representation of the digraph it is possible to form Gibbs

updates for the infection rate and for the imputed digraph is also a Gibbs step, provided

the candidate digraph is valid with respect to the �nal size data.

The algorithms presented, using the connectivity matrix or Poisson representation,

both require a method to check the validity of a candidate digraph. A simple recursive

approach was presented in Section 3.2.1.1, which is applicable to any population size.

Using the Gibbs updates results in a more e�cient algorithm, in terms of computation

time, since all proposals are accepted removing the computational cost of evaluating

an acceptance probability.

3.2.2 Imputing Generation Representation

In Chapter 2 we began by investigating directed random graphs characterised by their

edges and then proceeded to consider representing the digraph in terms of its gener-

ations. The generations approach reduces the amount of information recorded about

the digraph, speci�cally the details of each individuals contacts are no longer known.

However, in terms of our MCMC approach, this loss of information is about the im-

puted data. Our aim is to augment the parameter space with the minimal information
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necessary to form a likelihood, thus we now consider the generations representation as

a su�cient and more e�cient augmentation.

Another bene�t of the generation representation is the simpli�cation of checking the

imputed digraph corresponds to the observed data. For the edge representations a

recursive search technique was necessary to check connectivity. Thus there is a saving

in computation for the generations approach, however there is no proposal distribution

giving rise to a Gibbs update, which is a bene�t of the Poisson representation. There

is a balance between these bene�ts for di�erent situations.

3.2.2.1 Notation And De�nitions

The generation representation is as described in Section 2.4, there are N individuals

of which a are initial infectives and n are initial susceptibles, a + n = N . Initial

infectives are members of the zeroth generation, those they directly infect are the

�rst generation and so on for each successive generation. Recall, we use the term

generation as equivalent to rank, though this is not the case for the temporal de�nitions.

Similarly, we shall use the term path instead of rank chain to emphasis the application

to epidemics. Denote the observed data, i.e. the population and �nal size, as either

Expression (3.1) using the vector θ = (a, n, d) or Expression (3.2) using the vector

ψ = (N,D).

Let Z be the random variable denoting the path of an epidemic, Z is a vector of two

dimensional vectors (e�ectively a matrix), i.e. Z = (Z0, Z1, . . . , Zd, Zd+1) consisting of

the vectors Zt = (Xt, Yt) for 0 ≤ t ≤ d+ 1. The random variable Xt is the number of

individuals of rank t, and Yt =
∑t

i=0Xi is the cumulative sum. It is su�cient to specify

only the size of each generation, the cumulative sum is used to simplify expressions and

in a practical sense can be stored to aid computation and as a rapid checking tool.
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Since we restrict attention to digraphs that are valid and d connected, the largest

attainable rank is d. For a given path Z = z, denote by τ the last non-zero generation,

i.e. τ = max{t : Xt > 0}.

From Section 2.4.4, using the notation Pθ[E] to denote the probability of an event E

given θ = (a, n, d), i.e. a initial infectives, n initial susceptibles and a �nal outcome of

d. From Equation (2.20), the probability of a given digraph is

Pθ[Z = z] =

τ∏
t=0

Pθ[Zt+1 = (xt+1, yt+1)|Zt = (xt, yt)], (3.6)

and by Equation (2.24) for a �xed infectious period I = c,

Pθ[Zt+1 = (x, y)|Zt = (u, v)]

=

(
(r + s)− v

x

)(
1− exp(− λ

N
c)u
)x(

exp(− λ

N
c)u
)r+s−y

=

(
(r + s)− v

x

) x∑
k=0

(−1)x−k
(
x

k

)
exp

(
− λ

N
c(r + s− v − k)

)u
. (3.7)

Using the path Z as a representation of the course of the epidemic, we can augment the

likelihood as before, to obtain the joint posterior density of the path and infection rate

as the product of an indicator function, the likelihood of a given path and the prior.

π(z, λ|θ, I, κ) ∝ π(θ|z, λ, I, κ)π(z, λ|I, κ)

∝ π(θ|z, λ, I, κ)π(z|λ, I, κ)π(λ|I, κ)

∝ I{θ|z,κ} π(z|λ, I, κ) π(λ). (3.8)

This is the density we explore using our MCMC algorithm, drawing approximate sam-

ples to estimate the marginal posterior density of the infection rate λ, the parameter

of interest. In the following two sections we discuss the proposal distributions for the
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two parameters, λ and z, describing their update algorithms in detail.

The data used for parameter inference is only the length two vector ψ = (N,D), if we

consider a an unknown parameter, or the length three vector θ = (a, n, d), from which

we are attempting to estimate the joint density of λ, κ and z (which will include the

imputed value of a if this is treated as an unknown). Attempting to make inference on

so many correlated parameters from two or three numbers is clearly rather optimistic.

3.2.2.2 λ Update Steps

For the infection rate λ we use a proper prior, an exponential with rate parameter

µ and a symmetric Random Walk Metropolis proposal for new values using a normal

distribution, i.e. λ′ ∼ N(λ, σ2); rejecting any negative proposals to ensure the candidate

is non-negative, i.e. π(λ) = 0 for λ < 0. The proposal variance σ2 is a tunable

hyperparameter.

The acceptance probability for the candidate λ′ is the minimum of one and the ratio of

the likelihoods and probability of the candidate and current state under the proposal

distribution, as de�ned in Section 1.3.2.1, thus

α(λ, λ′) = min

{
1 ,

π(z, λ′|θ, I, κ)q(λ|λ′)
π(z, λ|θ, I, κ)q(λ′|λ)

}
= min

{
1 ,

π(z|λ′, I, κ)π(λ′)
π(z|λ, I, κ)π(λ)

}
.

Where π(λ) is the prior distribution, an exponential with rate µ and π(z|λ, I, κ) is

the likelihood of the current path give the infection rate, given by Equations (3.6) and

(3.7). The full infection rate update is shown in Algorithm 3.1.

For a suitable seed value for the infection rate, it is common to perform a short trial run
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Algorithm 3.1: λ-update for one-type one-level model

1 Propose λ′ ∼ N(λ, σ2);
2 if λ′ < 0 then
3 reject
4 Calculate acceptance probability α(λ, λ′);
5 Draw A ∼ U(0, 1);
6 if α < A then

7 reject λ′

8 else

9 accept λ′

of the MCMC algorithm to obtain an estimate if there is no speci�c guidance otherwise,

though this is generally unnecessary.

3.2.2.3 Z Update Steps

Using the edge representation of Section 3.2.1 there was a natural method to update the

digraph, adding and removing edges. For the generation representation, we no longer

retain speci�c information on an individual, only the generation in which it appears.

Hence, the natural update is to alter the generation an individual belongs to. As stated

in Section 2.4.1, there are 2d−1 possible valid paths of �nal size d, and it is not feasible

to integrate out the path parameter, Z, to obtain the posterior density of the infection

rate alone, hence we are using an augmented MCMC algorithm to estimate the joint

posterior density.

The structure of Z, an epidemic path conditioned on a �nal size of d was investigated in

Section 2.4, we shall use that information to form the initial seed path and to motivate

the update techniques that follow. Our motivation for imputing the path over edges is

use the minimal information necessary, in particular speci�c details of each individual

are no longer recorded. Thus, we no longer label the individuals explicitly and only

know the size of each generation, not which individuals comprise it.
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m ABC z m ABC z

0 000 (4) 4 100 (1,3)
1 001 (3,1) 5 101 (1,2,1)
2 010 (2,2) 6 110 (1,1,2)
3 011 (2,1,1) 7 111 (1,1,1,1)

Table 3.1: Example correspondence between path index and path using binary rep-
resentation

Since the cumulative totals are a function of the generation sizes, we can consider

the a path as a vector denoted (x0|x1, . . . , xτ , xτ+1), where x0 = a and xτ+1 = 0 by

de�nition. The bar (|) is used to separate the zeroth generation to emphasis that it is

�xed. We wish to propose a new candidate path, z′, in such a way that we can explore

the space of all possible paths and consider candidates that are in some sense close to

the current path.

Independence Sampler An obvious proposal would be an independence sampler.

Speci�cally, we can enumerate the set of all possible paths, {z(m) : 0 ≤ m ≤ 2d−1 − 1},

then select a new path uniformly. To derive the mth path for 0 ≤ m ≤ 2d−1 − 1 we

can convert from a binary representation of the index to a path. To illustrate the

correspondence between a path index m and z(m), consider the following example. Let

d = 4, so there are 8 possible paths, then consider the four individuals in a row with the

three spaces between them. Label these spaces A, B and C. Then we relate the binary

representation of the index to the presence of dividing lines in these spaces. Scan from

left to right along the line of objects, we move to the next generation when we meet

a dividing line. Such a correspondence is shown in Table 3.1 for the case d = 4. The

proposal is simple to implement and the resulting acceptance probability is reduced

to the ratio of the densities, as the proposal is a uniform distribution, i.e. q(z′|z) =

q(z|z′) = 1
2d−1 . However for moderate d, the space of valid paths is large but only a

small subset have a high (marginal) posterior density. Thus many proposed candidates

will be rejected and the chain will mix poorly.
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Using the path index as described, it is di�cult to consider paths that are `close', in

order to achieve a higher acceptance rate. For example, if d = 8 then z(64) = (1, 7) and

paths that are `close' in terms of index are z(63) = (2, 1, 1, 1, 1, 1, 1) and z(65) = (1, 6, 1),

which have very di�erent likelihoods for a given infection rate.

We have not yet properly de�ned when two paths are `close'. If we consider all paths as

vectors of length d, then we can de�ne the Euclidean norm as the distance ∆, between

two paths zj = (x1, . . . , xd) as

∆(z1, z2) = ||z1 − z2||2 =

√√√√ d∑
i=1

(x1i − x2i )
2.

Where || · ||2 is the L2-norm. From the index of a path it is not immediately possible

to determine its distance from another path. When the space of paths is large there

is no direct method to obtain the set of paths within a given distance of the current

path in terms of their index, i.e. for the path indexed by m and a distance ε, the set

of indicies {i : ∆(z(m), z(i)) ≤ ε}. It would be necessary to compute ∆(z(i), z(j)) for all

0 ≤ i, j ≤ 2d−1 − 1 before running the MCMC algorithm. How to specify the distance

ε is also uncertain, as the relationship of ∆(z, z′) to the ratio of the marginal posterior

densities π(z′|·)
π(z|·) , is complex. Given the shape of the state space, consisting of all valid

paths, {z(m) : 0 ≤ m ≤ 2d−1 − 1} ⊂ Zd+, it is not clear that such a distance is well

suited to selecting candidate paths, in fact the state space is an integer simplex, since∑
i xi = d for all paths, and this structure should also be taken into account.

K-jump Proposal Instead we consider a candidate that di�ers from the current

state by a single individual, who has been moved from its current generation to a

di�erent one. Such a candidate will always di�er in two generations, thus the distance

will be ∆(z, z′) =
√
2, which is the minimal distance any two distinct valid paths can
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di�er by.

We shall term our proposal a K-jump, where K determines the number of generations

an individual is moved. Given K = k, we determine the generations that contain

individuals that can be moved k generations, this is done to ensure the candidate is

a valid path. Alternatively, it would be possible to select the length of jump, move

an individual and then check if the path was still valid. This alternative procedure is

su�cient for the one-type SIR model, but not for the two-level mixing model we shall

discuss in Section 3.5. In particular, the rejection rate due to proposing an invalid path

becomes prohibitively high. Thus we outline the more complex method for the simple

one-type one-level model �rst, to introduce the notation and approach.

The update is performed as follows. We determine the range for K such that there

is at least one individual who can move for each value. A speci�c K = k is then

chosen uniformly from this range. The current path is scanned to �nd generations

with individuals that can be moved k, the total number of possible moves is counted

and denoted by Jk. One such move is chosen uniformly from among the Jk and an

individual is moved, forming the candidate path, z′. The proposal distribution is a

product of uniform random variables determined by the origin path. The proposal is

guaranteed to be reversible, since the individual moved can be returned with a jump

of the same length.

For the K-jump we introduce the hyperparameter Kmax ≥ 1, this limits the range of K,

that is the furthest an individual can be moved in a single K-jump. For the one-type

one-level model, the value of Kmax primarily e�ects the length of the burn in period.

It is introduced as a tunable hyperparameter to increase the acceptance rate in the

two-type model.

We assume the initial number of infectives a is �xed, so we must take care with the
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shortest valid path z(0) = (a|d, 0). For this path, the length is τ (0) = 1 and this is the

unique path of length one. The only possible jump is of length one, moving an individual

from the �rst to the second generation. Thus for τ = 1 we have K ∼ Uni[1, 1], i.e. there

is only one choice.

For paths of length greater than one, z = (a|x1, . . . , xτ , 0), then an individual can

always be moved from τ th to the 1st generation, a jump of k = τ − 1 generations. This

may result in the length of the candidate being di�erent to the current path, i.e. if

xτ = 1 then moving the single individual will result in a shorter path. Conversely, if

x1 > 1 then it is possible to move an individual from the 1st to the (τ+1)th generation,

a jump of k = τ , which will result in a longer candidate path. It is important to note

that the jump of length τ only results in a valid candidate path if the �rst generation has

more than one individual, otherwise the move will result in z′ = (a|0, x2, . . . , xτ , 1, 0)

which is an invalid path.

Thus to determine the range of possible jumps we must consider the length of the

current path and the size of the �rst generation, combining the above we have 1 ≤ k ≤

K = min{(τ − 1 + I{x1>1}),Kmax}. There is no reason to prefer any jump length, thus

we propose the length from a discrete uniform, i.e. K ∼ Uni[1;K].

It is important to note that, so far we have not determined how many possible jumps

there are for K = k. Only that there is at least one such jump resulting in a valid

candidate path, since if an individual can be moved k generations then is could be

moved k − 1 generations; if x1 > 1 and for 1 ≤ k ≤ K, then an individual can always

be moved from the �rst generation forward k generations. Intuitively, there will be

more valid moves for smaller k. Also, we have not yet determined the exact method to

construct the candidate path.

Let K = k and suppose that for a given path z in generation t there are xt individuals.
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We wish to move an individual to a new generation. This can either be to an earlier or

later part of the path which we shall term backward and forward jumps respectively.

For generation t, a backward k-jump is possible if the candidate path z′, constructed

such that x′t = xt−1 and x′t−k = xt−k+1, is a valid path. Similarly, a forward k-jump is

possible if the candidate path z′, constructed such that x′t = xt−1 and x′t+k = xt+k+1,

is a valid path.

There are criteria to determine if a backward or forward k-jump is possible for each

generation 1 ≤ t ≤ τ , and we de�ne the function Jk(xt) as an indicator of this. Let

Jk(xt) be 0, 1, −1 or 2 corresponding to none, only forward, only backward or both

k-jumps are possible for generation t. Let Jk(z) = (Jk(x0)|Jk(x1), . . . , Jk(xτ ), 0) be the

function applied to the entire path. The criteria are:

Jk(xt) =



−1


if xt > 1 and k < t < τ,

if t = τ and k < τ,

1 if xt > 1 and t+ k ≤ τ + 1,

2 if both,

0 otherwise,

(3.9)

where 1 ≤ t ≤ τ and 1 ≤ k ≤ K = min{(τ − 1 + I{x1>1}),Kmax}. Recall that the

possible ranges of t and k have been derived earlier. The criteria for a forward k-jump

require that the target generation t + k not be beyond τ + 1, otherwise the path will

not be valid. In addition, the origin generation, t, must have more than one individual,

otherwise moving them will result in a zero generation part way through the path.

Similarly, for the backward k-jump, we cannot move to a generation before the �rst (we

assume the zeroth generation is �xed), thus k < t < τ and again the origin generation

must have more than one individual, i.e. xt > 1. The special case when t = τ is needed
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since we can always move an individual from the τ th generation backwards, which may

result in a shorter path, though we must still check that k < t = τ since the range

of valid k can include τ (in the case when a forward jump from the 1st to (τ + 1)th

generation is valid).

Equation (3.9) will be implemented in our MCMC algorithm to determine and construct

candidate paths. We de�ned Jk to be the total number of possible k-jumps for the

path z, hence

Jk =
τ∑
t=1

|Jk(xt)|. (3.10)

We shall select one of the possible k-jumps uniformly, so let g be the index of the

chosen jump, g ∼ Uni[1;Jk]. Once a jump g is selected, it is necessary to determine

the corresponding generation and direction. This is done by scanning the vector Jk(z)

and determining the gth entry. The origin generation tO is de�ned by,

tO = min

{
t : g ≤

t∑
i=1

|Jk(xi)|

}
.

The direction δ of the move is either backwards (δ = −1) or forwards (δ = 1), care

must be taken to account for the generations where both backward and forward moves

are valid.

δ =


Jk(xtO) if Jk(xtO) = ±1

1 if Jk(xtO) = 2 and g −
∑tO

i=1 Jk(xi) = 0

−1 if Jk(xtO) = 2 and g −
∑tO

i=1 Jk(xi) = −1

.

The de�nitions of the origin generation, tO and the direction δ, are in terms of the

counting function Jk and presented in an algorithmic form. This obscures the simple

principle behind the K-jump update, thus we shall present an example shortly.
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As mentioned above, the procedure is overly complicated for the one-type one-level

model we are considering. In particular the need to scan the path twice, �rst to

determine the number of valid k-jumps, Jk, and then to determine the origin generation

tO, and direction δ, requires many additional calculations. The procedure is designed

to construct valid candidate paths, since in contrast, proposing arbitrary k-jumps and

then checking whether the path is valid becomes less e�cient for the extensions to the

model in Section 3.3, in particular see Section 3.3.6.3.

Finally, we construct the candidate path z′ as,

x′tO = xtO − 1

x′tO+δk = xtO+δk + 1.

For a given k, there are Jk possible candidate paths which are all unique. In total there

are J =
∑

Jk, where the sum is over the range of valid k. All such paths are unique

and consist of all the paths whose distance from the current path is
√
2, i.e. they di�er

from the current path by moving a single individual.

Not all J candidate paths are proposed with equal probability, larger jumps are more

likely to be proposed. We determine the length of jump k before considering the

number of possible candidate paths, though by the construction of the range of k

there exists at least one such valid candidate. Clearly, J1 ≥ J2 ≥ · · · ≥ JK where

K = min{(τ − 1 + I{x1>1}),Kmax}, since the criteria reduce the number of potential

generations where a k-jump is possible to k < t ≤ τ and if a generation is k-jumpable

then it is (k − 1)-jumpable, i.e. Jk(xt) ≤ Jk−1(xt).

Assume we propose z′ from z using a K-jump, so there is a unique 1 ≤ k ≤ K and a
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unique 1 ≤ g ≤ Jk corresponding to the proposal, thus the proposal probability is

q(z′|z) = 1

K
1

Jk
.

The proposal distribution is not in general symmetric between candidate and current

paths, i.e. q(z′|z) 6= q(z|z′). Importantly, Jk depends on the k chosen so candidates of

di�erent lengths have di�erent probabilities of being proposed.

The acceptance probability can only be calculated after the �rst stage of the proposal

is determined, i.e. when the length k is chosen.

α(z, z′) = min

{
1 ,

π(z′, λ|θ, I, κ)q(z|z′)
π(z, λ|θ, I, κ)q(z′|z)

}
= min

{
1 ,

I{θ|z′,κ}π(z′|λ, I, κ) 1
K′

1
J ′
k

I{θ|z,κ}π(z|λ, I, κ) 1
K

1
Jk

}

= min

{
1 ,

π(z′|λ, I, κ) K Jk
π(z|λ, I, κ) K′ J ′

k

}
.

By construction, the candidate is always a valid path and so I{θ|z′,κ} = I{θ|z,κ} = 1. If

the origin and target generation do not include the �rst or last generation, then K′ = K

since the length of the candidate and current path are the same. However, even for this

case, in general J ′
k 6= Jk. The complete K-jump update is summarised in Algorithm

3.2.

Example Of K-jump We present the following example to clarify the K-jump up-

date, the proposal distribution and the construction of a candidate path. Using an

example of θ = (a, n, d) = (1, n, 5), that is a single initial infective and a �nal size of

�ve. The size of the population need not be speci�ed since it is not required for the

proposal and construction. The population size is accounted for in the likelihood of

the path z, where the number of initial susceptibles that escape infection, n− d.
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Algorithm 3.2: Z-update using a K-jump for one-type one-level model

1 Let K = min{(τ − 1 + I{x1>1}),Kmax};
2 Sample k ∼ Uni[1,K];
3 Calculate the vector Jk(z) = (Jk(x0)|Jk(x1), . . . , Jk(xτ ));
4 Calculate Jk =

∑τ
i=1 |Jk(xi)|;

5 Sample g ∼ Uni[1,Jk];
6 Determine the origin tO, and direction δ corresponding to g;
7 Construct the candidate path z′;
8 Calculate acceptance probability α;
9 Draw A ∼ U(0, 1);

10 if α < A then

11 reject z′

12 else

13 accept z′

Let the current path be z = (1|2, 2, 1, 0) where τ = 3. For clarity, we shall re-write

the path as the transpose of this row vector, include the length τ as a subscript, and

exclude the (τ + 1)th generation. Then the path z is expressed as the column vector,

z =



1

2

2

1


3

.

First we determine the valid range of k. Let Kmax = ∞ for this example, since the

�nal size is so small and the number of candidate paths are easy to manage. Since

larger jumps are more likely to be proposed, the tunable parameter Kmax can be used

to ensure that the probability of small jumps is not too small, we shall return to this

in Section 3.3. Using the path z we have

K = min{(τ − 1 + I{x1>1}),Kmax} = min{(3− 1 + 1),∞} = 3.

Instead of selecting a speci�c K = k, 1 ≤ k ≤ 3, we shall construct all the possible
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candidate paths and their probabilities. Using the transpose notation for Jk(z) we

have,

z =



1

2

2

1


3



if k = 1, J1(z) =



0

1

2

−1


,J1 = 4

if k = 2, J2(z) =



0

1

1

−1


,J2 = 3

if k = 3, J3(z) =



0

1

0

0


,J3 = 1

Thus there are eight possible candidate paths, J =
∑

k Jk = 8. Each is uniquely

indexed by the pair (k, g), where k is the length of jump and 1 ≤ g ≤ Jk. Below are

shown all eight possible paths,

(1, 1) =



1

1

3

1


3

(1, 2) =



1

3

1

1


3

(1, 3) =



1

2

1

2


3

(1, 4) =


1

2

3


2

(2, 1) =



1

1

2

2


3

(2, 2) =



1

2

1

1

1


4

(2, 3) =


1

3

2


2

(3, 1) =



1

1

2

1

1


4

.
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The probability of proposing a speci�c 1, 2 or 3 jump is 1
3
1
4 = 1

12 ,
1
3
1
3 = 1

9 and 1
3
1
1 = 1

3

respectively.

The unequal candidate probabilities at �rst seems a problem, given our concept of two

paths being `close', such an imbalance would seem to move around the state space in an

odd manner, especially compared to the independence sampler. However, our distance

metric does not account for the epidemic process that the path represents.

For example, moving an individual from the last to the �rst generation has the follow-

ing e�ect. The second generation is infected by one more individual, then it and every

subsequent generation must fail to infect one less individual. Since originally the moved

individual was in the last generation, it avoided infection by all but the penultimate

generation of infectives. This will cause a great e�ect on the likelihood for the candi-

date. If however, the individual was moved only a single generation the e�ect is much

less. Hence, longer jumps are proposed more often but may have a lower acceptance

probability, whereas shorter jumps are proposed less often but are more likely to be

accepted. Together the likelihood and unequal proposal probabilities counteract each

other to a certain degree. To in�uence this balance we introduce the tunable parameter

Kmax.

3.2.2.4 Algorithm

The generation representation is used to augment the likelihood, we have presented

the update steps for the infection rate parameter λ using a symmetric Random Walk

Metropolis and the imputed path Z using a speci�ed proposal distribution, in order to

obtain an estimate for the joint posterior density π(Z, λ|θ, I, κ).

For the generation approach there are two tunable hyperparameters, namely the vari-
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ance of the proposal distribution for λ and the maximum jump length of the K-jump

update of Z. Both updates require the calculation of an acceptance probability, com-

pared to the Gibbs updates of the Poisson representation.

Each parameter is updated independently, though we expect there to be a correlation

between the infection rate and the path in the joint posterior. This may a�ect the

mixing of the algorithm and we investigate this in the following section.

Since the space of all possible paths is large, it is reasonable to perform multiple Z-

updates between λ-updates. This is a common strategy to aid mixing in MCMC

algorithms, particular for imputed data since we are only interested in the marginal

posterior density for λ. Hence for each iteration we obtain a single approximate sample

from π(λ|·).

3.2.3 Results And Comparison To Estimates In The Literature

We shall consider two data sets, the �rst of which is commonly cited in the epidemic

literature. The methods used to estimate the infection rate vary, and care must be

taken to make direct comparison between various methods. Secondly, we consider

the example data sets in Demiris and O'Neill (2005a), speci�cally the application to

single-type homogeneously mixing data. Demiris and O'Neill (2005a) use a random

directed graph to augment the likelihood in their MCMC algorithm, speci�cally the

edge representation in Section 3.2.1.1. It is then a fair comparison between the estimates

from the edge and generation methods.
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Gaussian Method Generation Method

mean 1.177 1.183

median 1.165 1.171

s.d. 0.211 0.217

Table 3.2: Comparison of estimates for the infection rate λ, reported as R0 = 4.1λ,
between the Gaussian method of Demiris (2004) and the generation
method of Section 3.2.2. On θ1 = (1, 119, 29) using a �xed infectious
period of 4.1 days.

3.2.3.1 Comparison To Classical Data And Gaussian Method

The �rst data set we consider consists of a total population of N = 120, in which we

observe a total of D = a+ d = 30 or D = 60 individuals who were infected. Following

our assumptions, let a = 1 and hence θ1 = (a, n, d) = (1, 119, 29) and θ2 = (1, 119, 59).

The infectious period is a constant, I = c, that must be speci�ed prior to the MCMC.

To compare to results in the literature we let c = 4.1, to give an infectious period of 4.1

days. Though we make inference for the infection rate λ, we report the reproductive

number R0. For the one-type one-level model, R0 = E[I]λ = cλ, given a �xed infectious

period of length c. Recall that R is a threshold, such that the �nal size in an in�nite

population is �nite almost surely for R ≤ 1.

For the data augmentation approach, either using edges or generations, we do not

condition on R > 1, i.e. we do not assume the epidemic is above threshold. For many

classical inference results such an assumption is necessary to derive the estimators for

λ, for example the martingale approach derived in Becker (1989). Demiris (2004) (see

also Demiris and O'Neill (2005b)) use a �nal size approximation, using the Gaussian

�nal size result in Section 1.2.4, in an MCMC algorithm. The estimates are taken

from Demiris (2004), and compared to the generation algorithm in Tables 3.2 and 3.3
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Gaussian Method Generation Method

mean 1.424 1.429

median 1.413 1.421

s.d. 0.182 0.186

Table 3.3: Comparison of estimates for the infection rate λ, reported as R0 = 4.1λ,
between the Gaussian method of Demiris (2004) and the generation
method of Section 3.2.2. On θ2 = (1, 119, 59) using a �xed infectious
period of 4.1 days.

corresponding to the data θ1 and θ2 respectively. The mean, median and standard

deviation are calculated from the marginal posterior of λ.

The estimates agree for both data sets, the di�erences are expected from using the

MCMC approximation and the di�erent posterior densities. The generation method

draws samples from the full posterior, π(λ, z|θ, I, κ), from which we obtain the marginal

posterior density π(λ|z, θ, I, κ); where as the Gaussian method estimates the posterior

density π(λ|θ, I).

As mentioned, many classical inference techniques assume R0 > 1, for example Becker

(1989) (p.153) estimate R0 = 1.10 using a martingale approach. The restriction to

an epidemic above threshold can cause artifacts in the estimates, in particular, it is

common for con�dence intervals to have their lower bound below one, despite the

method conditioning on R > 1.

3.2.3.2 Comparison To Edge Representation

Demiris and O'Neill (2005a) consider three sample data sets, each with a population

of N = 100 and D as 25, 50 and 75. We express these as three vectors, while assuming

a = 1, i.e. θ3 = (1, 99, 24), θ4 = (1, 99, 49) and θ5 = (1, 99, 74). They consider a
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θ Edge Method Generation Method
Mean (Standard Deviation) Mean (Standard Deviation)

(1, 99, 24) 1.16 (0.23) 1.17 (0.24)

(1, 99, 49) 1.42 (0.21) 1.42 (0.21)

(1, 99, 74) 1.86 (0.21) 1.88 (0.23)

Table 3.4: Comparison of estimates for the infection rate λ, reported as R0 = ιλ,
between the Poisson method of Demiris and O'Neill (2005a) and the
generation method of Section 3.2.2. On θ3 = (1, 99, 24), θ4 = (1, 99, 49)
and θ5 = (1, 99, 74) using a �xed infectious period of 1 day.

�xed infectious period with c = 1, since the infection rate and infectious period are

indistinguishable it is an arbitrary decision. Setting an infectious period gives a scale

to the epidemic, in terms of the temporal behaviour, thus the observed �nal size data

θ can not be used for inference on this scale.

The reproductive number, R0 = ιλ, where ι = E[I] = 1, accounts for the infectious pe-

riod, thus it is consistent between the two examples, despite the previous case using an

infectious period of 4.1 days. Since the case of θ1 and θ3 are approximately equivalent,

we expect similar results. From Tables 3.2 and 3.4, the estimated mean reproductive

numbers are 1.18 and 1.17 respectively.

The results of Demiris and O'Neill (2005a) are compared to the generation algorithm

in Table 3.4. As expected, for larger �nal sizes the estimates for the reproductive num-

ber increase. The generation method produces estimates consistent with the Poisson

method. The results are directly comparable, both use an exponential prior on the

infection rate, π(λ), with rate µ = 10−6 and the models are identical. In particular

the infectious period is constant and assumed to be one, c = 1 and the infection rate is

normalised by the size of the population, i.e. λ
N . Care must be taken when comparing

models to ensure they are equivalent, since normalising the infection rate is not done for
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all models. In fact in Section 3.5, where we introduce multi-level models, the infection

rates may be scaled in di�erent ways.

3.2.3.3 E�ect Of Seed And Tuning Hyperparameters On Burn In, Conver-

gence And Mixing

The generation algorithm used to produce Tables 3.2, 3.3 and 3.4 was implemented in

the C programming language. Each chain was run for 106 iterations and completed in

5 minutes. As discussed in Section 1.3.2.4, for the samples to be valid estimates of the

joint posterior density the chain must converge to its stationary distribution.

The path z is a vector of length d, and it is di�cult to determine suitable criteria in

terms of z to test if the Markov Chain Monte Carlo has converged. For the infection

rate λ we can qualitatively determine a burn in period from the trace plot.

One quick summary of a path z is its length, τ . Since there is no exact mapping

between the number of generations and the length of the epidemic in real time, there

is no speci�c interpretation to τ . However, as we showed in Section 2.5.6 using a

discrete branching processes as an approximation to the generation representation, for

a given �nal size d there is a limiting form to the average path as the population tends

to in�nity. Hence, there is a limiting value for the expected number of generations as

N → ∞, assuming such a result is valid then the expected value of τ should converge to

this limit. Hence we shall use a trace plot of τ to determine if the chain has converged.

For the one-type one-level model, the length of the path may be su�cient to summarise

z, but it cannot convey the form of z. We shall return to this in Section 4.6.3, to de�ne

further summaries of the path in the general multi-type multi-level model.

The seed path, i.e. where the MCMC algorithm is initialised, will have no e�ect on
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the �nal estimate of the joint posterior density, as it is estimated from the samples

after the chain has converged. However, if the chain is started at a position of low

posterior density it may take a long time to escape the region and converge. Thus, the

seed will have an e�ect on the burn in period, i.e. the number of iterations that are

ignored up to the point the chain has (approximately) converged. From Section 2.5.6,

we expect the length of the path to be approximately 2
√
d, using Figure 2.7 and

the `kink' in the variance shown in Figure 2.12. To demonstrate the e�ect of the

initial seed we shall consider the two extreme paths, the unique path of maximal and

minimal length, i.e. zmax = (1|1, 1, 1, . . . , 1, 0) and zmin = (1|d, 0) where τzmax = d and

τzmin = 1 respectively (in terms of the enumeration of all possible paths, using the

binary representation of each path, the extreme paths are z(2
29−1−1) and z(0)).

Using the path length, τ , as our indicator for convergence of the Markov chain we have

the trace plots for four runs in Figures 3.1 and 3.2. All four runs consider the same

data, θ1 = (1, 119, 29), using a �xed infectious period of 4.1 days and an exponential

prior on λ with rate µ = 10−6. The λ-update is a symmetric Random Walk Metropolis

as described in Section 3.2.2.2, the seed infection rate it set at 0.1. In each �gure the

two extreme seeds are used, with di�ering hyperparameter Kmax, the largest K-jump

allowed.

The simplest update is to move an individual a single generation, this would propose

very likely candidate paths, and would seem a reasonable update. Thus, lettingKmax =

1, we run an MCMC chain using the two extreme seeds and show the trace plots of

τ in Figure 3.1. We clearly see the slow convergence of the length to the estimate,

E[τ ] = 10.30 (estimated from the second pair of runs using samples after convergence).

The two chains in Figure 3.1 have not yet converged, since neither have crossed as of

the 3000th iteration. In particular, the slow rate of convergence from the maximal path

is evident.
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Figure 3.1: Comparison of burn in period between two seed paths with respect to
the length of the path, τ , for the case θ1 = (1, 119, 29) with a constant
infectious period of 4.1 days. The K-jump tunable parameter is set to
one, i.e. Kmax = 1

In comparison, Figure 3.2 uses the same seed paths, but with the maximum K-jump

set to Kmax = 15. This has been chosen to be approximately 3
√
d = 3

√
29 = 16.2. The

rate of convergence is much faster, from either seed path we reach the target region

within 1000 iterations.

Using the chains from Figure 3.2 we can plot the marginal posterior density of τ , as

shown in Figure 3.3. The MCMC algorithm, after convergence at the 1000th iteration,

draws approximate samples from π(z, λ|θ, I, κ). Since the path length is a function of z,

we can compute its density from the samples, considering all samples drawn regardless

of the value of λ gives the marginal posterior density.

The estimated mean is from the branching process approximation, which is independent
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Figure 3.2: Comparison of burn in period between two seed paths with respect to
the length of the path, τ , for the case θ1 = (1, 119, 29) with a constant
infectious period of 4.1 days. The K-jump tunable parameter is set to
�fteen, i.e. Kmax = 15

of the infection rate λ and valid for large populations. The estimate of 2
√
d = 10.78

gives a guide to suitable seed paths.

Instead of using the minimal or maximal path, we can use the estimate of the mean

length to construct a seed path as follows. Let the generations be equal in size to d12
√
de,

where d e denotes the ceiling function, until the d individuals have been assigned to

a generation. The bene�t of such a construction is to generate a seed path near the

region of convergence.

The reason the latter chains converge quickly is in regard to how often the candidate

path is of a di�erent length to the current path. Recall, for a given k all jumps are

equally likely. Thus if we limit to jumps of length one, i.e. Kmax = 1, then for the
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Figure 3.3: Marginal posterior density of the path length τ , for the case θ1 =
(1, 119, 29) with a constant infectious period of 4.1 days. The poste-
rior mean is shown, as well as the estimate of 2

√
d.

path to reduce in length there is only one possibility. The �nal generation must be of

size one, then the probability of proposing a shorter path is J −1
1 . However, if we let

Kmax = 2 (assuming the path is at least length three so that a backward 2-jump is

valid from the last generation) and xτ = 1, then the probability of proposing a shorter

path is

1

2

1

J2
+

1

2

1

J1
≥ 1

2

1

J1
+

1

2

1

J1

=
1

J1
.

Hence we are more likely to propose the candidate path that is shorter, meaning the

length of the path has the potential to change more rapidly. A similar argument applies

to increasing the length of the path, a larger Kmax means there are more potential

individuals that can be moved to the (τ + 1)th generation.
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Figure 3.4: Plot of the counts of proposed k value for all k-jump update steps and
the number accepted, for the case θ1 = (1, 119, 29) with constant infec-
tious period of 4.1 days and Kmax = 15.

For the one-type one-level model, using the branching process approximation in Fig-

ure 2.12, the range of path lengths seems to vary between
√
d and 3

√
d. Hence, setting

Kmax = 3
√
d is a logical choice for the hyperparameter. For the models in the following

sections, we must revert to the method used to tune the variance hyperparameter for

the λ-update proposal distribution. Namely, a small trial run is performed to better

gauge the mixing of the chain.

Setting Kmax = 15 and running our MCMC algorithm we obtain Figure 3.4, the counts

of proposals of length k separated into those that are accepted and rejected. The chain

was run for 2 × 105 iterations, within each iteration there were two updates to the

path z and one update to the infection rate λ, of which the initial 103 iterations where

classed as the burn in period.

Comparing the marginal posterior density of τ in Figure 3.3 to the proposal counts for

k-jumps in Figure 3.4, we clearly see that jumps of length 7 or greater are proposed less
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often. This results from the derivation of the range of k, depending on the length of the

current path. Thus, since the posterior mean length is 10.3, we expect the number of

15-jumps to be far fewer than 5-jumps for example. It would seem tempting to reduce

the upper limit, however the longer length jumps enable the chain to rapidly move

around the space of paths. Also, from the bar plot we see than the proposed candidate

is accepted approximately 50% of the time, independent of the length of jump. In fact,

longer jumps are accepted slightly more often as the likelihood drives the chain towards

the highest posterior density of the shorter paths.

The non-centred methods discussed in Section 1.3.3 are of interest if the relationship

between the imputed data and the parameters of interest causes high rejection rates,

adversely a�ect the mixing of the Markov chain. In Figure 3.5 we plot the joint posterior

density of the path length τ and the infection rate λ using a kernel density estimate

from the samples drawn. The λ and z updates make perpendicular moves on this plot,

which may con�ict with the shape of the posterior density. In fact, the posterior is

unimodal and regular in shape giving no cause to consider more involved techniques.

3.2.4 Extending The Generation Representation

The model described by Demiris and O'Neill (2005a) has two aspects not yet considered

for the generation representation, namely non-constant infectious period distributions

and varying the individual chosen as the initial infective. We shall also consider re-

moving the assumption of a single initial infective.
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Figure 3.5: Joint posterior density of the infection rate λ and the path length τ for
the case θ1 = (1, 119, 29) with constant infectious period of 4.1 days and
Kmax = 15.

3.2.4.1 Updating Label Of Initial Infective

The population is �xed to be N individuals, of which a are initially infective and n are

initially susceptible, such that a+n = N . All individuals are labelled, i, for 1 ≤ i ≤ N ,

and the set κ consists of the labels of individuals who are initially infective. Assuming

a = 1, we have let κ = {1} in the generation algorithm, a �xed parameter of the model.

Demiris and O'Neill (2005a) consider allowing the index of the initial susceptible to be

an unknown parameter. Thus the posterior is now the joint posterior of the imputed

path, z, the infection rate, λ, and the label of the initial infective κ. Therefore the joint

posterior is

π(z, λ, κ|θ, I) ∝ π(θ|z, λ, κ, I)π(z, λ, κ|I)

∝ π(θ|z, λ, κ, I)π(z|λ, κ, I)π(λ, κ|I)

∝ I{θ|z,κ} π(z|λ, I, κ) π(λ) π(κ). (3.11)
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Here π(κ) is the prior density on the label of the initial susceptible (for the current

discussion we assume a = 1) and the infectious period and set of initial infectives are

assumed independent a priori. It seems reasonable to assume a proper uniform prior

for κ, i.e. π(κ) = 1/N .

For the edge presentation, each individual is labelled and their edges recorded in order to

determine if the digraph is consistent with θ. However, for the generation presentation

we do not note which individuals are in each generation. Thus the labelling is arbitrary,

and during a K-jump there is no accounting for which individual is moved where. This

reduction in information is the motivation for the generation method, reducing to the

minimal information required to augment the likelihood. In a homogeneous population,

it is reasonable to remove the accounting of which individual is in a given generation

since all are equally likely.

Hence, updating κ for the edge method will result in a new root set, which can then

be checked for consistency with θ and the likelihood calculated for the candidate. For

the generation method, updating κ properly is impossible. It would require knowing

the generation of each individual and who infected who, this is necessary to construct

the candidate path.

For example, consider the case θ = (1, n, 4) with the current path as z = (1|2, 2, 0),

where x1 = 2 consisting of individuals {2, 3}, x2 = 2 consisting of individuals {4, 5}

and κ = {1} (implying x0 is the individual labelled 1). If we propose κ′ = {2}, it

is impossible to construct the resulting candidate path z′ from the information given.

Since we do not know who from generation one infected who in generation two, the

possibilities for the candidate �rst generation are: {4, 5}, {4}, {5} or ∅; without knowing

the edges we cannot determine which is correct (note the �nal option results in a path

that is no longer valid). More obviously, to which generation does individual 1 belong in



3.2 MCMC Algorithms For Simple SIR Epidemic Model 177

the candidate path? Without detailed edge information, we cannot begin to determine

into which generation the individual should be placed, or even if they are connected

to another generation (using terminology from Section 2.3, if there were no backward

edges to the current root vertex, then it could not be directionally connected to the

candidate root vertex).

In fact, the updating of κ in the generation representation is equivalent to proposing a

new path by a mechanism we cannot describe, i.e. we cannot construct the candidate

path, z′. Viewing a κ-update as simply proposing a new path means we can say that

the update is implicitly performed as a �nite sequence of 1-jumps (since the number

of initial infectives remains constant, any path can be transformed into another by

repeatedly moving a single individual).

So, a κ-update is another type of Z-update. An algorithm that performed both κ-

updates and K-updates would potentially mix better and may converge quicker (allow-

ing for occasional large jumps in the space of paths). Not performing any κ-updates

does not then a�ect the marginal posterior density of λ or z. Since κ is an arbitrary

label, there is no bene�t in knowing the marginal posterior density of κ, thus we can

safely ignore the parameter in homogeneous populations.

3.2.4.2 Updating Number Of Initial Infectives

Given an outbreak within a closed population, it is reasonable to assume the epidemic

was initiated by a single outside infection. This is the reasoning on assuming there is

always a single initial infective, i.e. a = 1.

We have introduced the notation θ = (a, n, d) to denote the �nal size data. However, in

reality we are given the total population size, N , and the total number of individuals
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who were infective at any time during the epidemic, including the initial infectives,

i.e. a + d. We have used the notation D = a + d, thus the actual data are usually

reported as the vector ψ = (N,D), where a ∈ Z+ is unknown. De�ne the function

ψ(a) as the map ψ → θ by ψ(a) = (a,N − a,D − a).

Considering a as an unknown parameter gives the joint posterior conditioned on ψ as,

π(z, λ, κ, a|ψ, I) ∝ π(ψ|z, λ, κ, a, I)π(z, λ, κ, a|I)

∝ π(ψ|z, λ, κ, a, I)π(z|λ, κ, a, I)π(λ, κ, a|I)

∝ I{θ|z,κ} π(z|λ, I, κ) π(λ|κ, a, I) π(κ, a|I)

∝ I{θ|z,κ} π(z|λ, I, κ) π(λ) π(κ|a) π(a),

where π(κ, a) is the prior density on the number of initial susceptibles and the set of

individuals, obviously κ depends on a, thus we let π(a) be the prior density on the

number of initial infectives and π(κ|a) be the density of the set κ given its size a.

There are several ways to perform a-updates, we shall consider two. The �rst is to

adapt the K-jump as de�ned in Section 3.2.2.3, allowing jumps from and to the zeroth

generation. The algorithm already checks to ensure the origin generation is not reduced

to zero individuals, thus the only adjustment is to the range of valid k. The maximum

jump length including the zeroth generation is

Ka = min{(τ + I{x0>1}),Kmax},

as the last generation can always be τ -jumped back to the zeroth and if x0 > 1, then

an individual can be (τ + 1)-jumped from the the 0th to the (τ + 1)th generation.

Alternatively, we can update by adding or removing an individual from the zeroth

generation, this requires removing or adding an individual at random from the path
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respectively. We shall give details of this method in Section 3.3.6 and 3.3.8, in particular

we shall present d-updates and n-updates that can be adapted to perform a-updates.

Care must be taken with the a-update, as the prior density on a will have a great e�ect

on the joint posterior density of z, λ and a. The issue is the strong dependence between

the parameters, i.e. the number of initial infectives will determine the form of z which

in turn will determine λ. The di�culty in estimating λ and a at the same time is due

to non-identi�ability within the model, as outlined above.

For example, the degenerate case when a = D, i.e. z = (D|0), implies that λ = 0 is

a valid value for the parameter. In fact, if a = D then π(λ|θ) = π(λ), since the data

contain no information to update λ. A uniform prior on a would be an unreasonable

choice, as it would give a signi�cant weight to the degenerate case in the joint posterior

density. A better choice would be to restrict the range of a, or a prior with the

majority of probability near a = 1. For this reason the MCMC mixing bene�ts from

an informative prior on the a parameter.

A small study of a-update steps, using a full non-informative prior and restricted uni-

form prior were performed. Ultimately, the marginal posterior density of a had su�cient

density at a = 1 to question the need for the added complexity. For the remainder we

shall assume a = 1 to simplify the inference.

3.2.4.3 Alternative Infectious Period Distributions

Finally, Demiris and O'Neill (2005a) compare the �xed infectious period to an ex-

ponential and gamma infectious period. We consider two approaches to extend the

generation method to enable varying infectious period distributions.
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Thus far, for a point mass distribution, the infectious period of each individual has

been equal, i.e. Ii = c for each individual i, 1 ≤ i ≤ N , where Ii is the random variable

denoting the infectious period of the ith individual. If we consider alternate infectious

periods, for example a gamma distribution with shape hyperparameter αI and rate

hyperparameter βI , i.e. I ∼ Γ(αI , βI), then each individual has a random infectious

period denoted by Ii, which are independent and identically distributed (i.i.d.) copies

of I. We write Ii
d
= I to indicate that Ii is equal in distribution to I. Finally, each Ii

will take a speci�c value denoted ζi.

Integrate Out The Infectious Period Our �rst approach is to integrate out the

infectious period from the likelihood. Recall from Section 2.4.4,

L(z|λ, I, κ) = Pθ[Z = z] =

τ∏
t=0

Pθ[Zt+1 = zt+1|Zt = zt].

In order to integrate out the infectious period we can take the expectation with respect

to I,

Pθ[Zt+1 = zt+1|Zt = zt] = EI

[
Pθ[zt+1 = (x, y)|zt = (u, v)]

∣∣∣∣It = (ζ(1), . . . , ζ(u))

]
,

where I(j) = ζ(j) is the realisation of the jth individual's infectious period and It =

(ζ(1), . . . , ζ(u)) is the vector of infectious periods of individuals in the tth generation.

Note, for the vector It the individuals are indexed by j for 1 ≤ j ≤ xt, i.e. by the number

of individuals in generation t. Each individual has a unique label i, for 1 ≤ i ≤ N ,

however it is not necessary to know the exact labels of individuals within a generation,

only the number of them when integrating out the infectious periods.

We shall restate Equation (2.23) from Section 2.4.4 in order to highlight taking expec-

tations for the simple one-type one-level model. Assuming all infectious periods are
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independent and identically distributed, i.e. Ii
d
= I for all individuals i in the popu-

lation. More speci�cally, I(j)
d
= I, for all individuals j in the generation. Then, the

probability of a single step (all steps being independent), is as follows

PIθ[zt+1 = (x, y)|zt = (u, v)]

=EI

[
Pθ[zt+1 = (x, y)|zt = (u, v)]

∣∣∣∣It = (ζ(1), . . . , ζ(u))

]

=EI

[(
a+ n− v

x

)1− exp

− λ

N

u∑
j=1

ζ(j)

x

exp

− λ

N

u∑
j=1

ζ(j)

a+n−(v+x) ]
. (3.12)

We can rewrite the product in order to extract the expectation with respect to I as,

=

(
N − v

x

)
EI

 x∑
k=0

(−1)x−k
(
x

k

)
exp

− λ

N

u∑
j=1

ζ(j)

(N−v−k)


=

(
N − v

x

) x∑
k=0

(−1)x−k
(
x

k

)
EI

exp
− λ

N
(N − v − k)

u∑
j=1

ζ(j)


=

(
N − v

x

) x∑
k=0

(−1)x−k
(
x

k

)
EI

 u∏
j=1

exp

(
− λ

N
(N − v − k) ζ(j)

) ,
since the infectious periods are i.i.d. we have,

=

(
N − v

x

) x∑
k=0

(−1)x−k
(
x

k

) u∏
j=1

EI

[
exp

(
− λ

N
(N − v − k) ζ(j)

)]

=

(
N − v

x

) x∑
k=0

(−1)x−k
(
x

k

)
EI

[
exp

(
− λ

N
(N − v − k) ζ

)]u
. (3.13)

For the �nal step, there is no superscript on ζ, since all individual's infectious periods

are i.i.d.. By taking the expectation, the infectious period is integrated out from the
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expression.

Hence, Equation (3.13) is the likelihood of a single step and the likelihood of a path z

is the product of steps along the generations. Having integrated the infectious period

out of the likelihood, it does not appear as a parameter in joint posterior likelihood nor

is there a prior. We condition on knowing the infectious period distribution for each

individual and are assuming they are independent and identically distributed.

Unfortunately, the alternating sum in Equation (3.13) is numerically unstable when

the generation sizes are large. Also, if the expectation

EI

[
exp

(
− λ

N
(N − v − k) ζ

)]

is costly to compute then the calculation of the likelihood, which is needed for z-updates

and λ-updates, will be slow and cause the MCMC algorithm to take longer to generate

a su�cient number of samples.

Let I Be An Additional Parameter The alternative method, used by Demiris

and O'Neill (2005a), is to consider the vector of infectious periods for all individuals as

a parameter, i.e. I = (ζ1, ζ2, . . . , ζN ). It is necessary to know the labels of individuals

that comprise each generation, as was the case for κ-updates. However, it is possible to

use this approach with the generation representation, whereas κ-updates are impossible.

For each generations t, there are xt individuals in that generation and we require the set

Xt which contains the labels of the xt individuals, i.e. Xt ⊂ {1, . . . , N}. Only D of the

N individuals are ever included in the digraph at anytime, and since the population is

homogeneous it su�ces to reduce I to a D-length vector, the permutation of individuals

is accounted for in the binomial coe�cient in Equation (3.12). Hence we may reduce
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to Xt ⊂ {1, . . . , D}. To maintain a valid path the following must be true, Xs ∩ Xt = ∅

for 0 ≤ s 6= t ≤ τ and ∪τt=0Xt = {1, . . . , a, a+ 1, . . . , a+ d} = {1, . . . , D}.

Then the posterior density becomes (ignoring κ and reverting to the case of a �xed

initial number of infectives for clarity),

π(z, λ, ζ|θ) ∝ π(θ|z, λ, ζ)π(z, λ|ζ)

∝ π(θ|z, λ, ζ)π(z|λ, ζ)π(λ, ζ)

∝ π(θ|z, λ, ζ)π(z|λ, ζ)π(λ)π(ζ), (3.14)

where ζ is the D-length vector of infectious periods for all individuals and π(ζ) is the

prior density of that vector, assuming a priori that the infectious period and infection

rate are independent.

Thus, for the likelihood component of Equation (3.14) we can use the probability of a

step in the path as Expression (3.12). Since ζ is a vector of constants under the the

likelihood, the expectation in Equation (3.12) is ignored and we only require the sum

of infectious periods of individuals in generation t, hence why we must now specify the

sets of labels, Xt.

It is necessary to then include an I-update step in the MCMC algorithm. The prior will

be a vector of D independent copies of the infectious period under consideration. Since

we are making no inference for I, as it follows the preset distribution according to the

prior, we will only consider the marginal posterior density π(z, λ|·). Let the proposal

distribution be equal to the infectious period distribution, i.e. q(I ′i|Ii) = q(I ′i) ∼ I, for

each infectious period independently. Let I(−t) be the vector of infectious periods I,

less the individuals in generation t, i.e. It = I\I(−t). Then the acceptance probability
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for proposing a new vector of infectious periods for generation t is,

α(It, I
′
t) = min

{
1 ,

π(z, λ, I(−t), I
′
t|θ)q(It|I ′t)

π(z, λ, I(−t), It|θ)q(I ′t|It)

}
= min

{
1 ,

π(θ|z, λ, I(−t), I ′t)π(z|λ, I(−t), I ′t)π(λ)π(I ′t)q(It)
π(θ|z, λ, I(−t), It)π(z|λ, I(−t), It)π(λ)π(It)q(I ′t)

}
= min

{
1 ,

π(z|λ, I(−t), I ′t)
π(z|λ, I(−t), It)

}
.

Where q(It) is set to be equal to π(It) =
∏xt
j=1 P[I

(j) = ζ(j)]. Since the likelihood of

the path is a product of independent steps between generations, there will be further

cancellations possible in calculating α.

For the edge representation, it is a trivial matter to assign a variable for each individ-

ual's infectious period. There is no need to amend any of the update steps. However,

for the generation method we must amend the K-jump (and any other updates that

a�ect the path z). In this case, when an origin generation is selected, a speci�c indi-

vidual within that generation must be chosen and moved and the corresponding origin

and target label sets, XO and XO+δk, updated.

For large �nal sizes, updating all the infectious periods at once would lead to low

acceptance probabilities. Thus it is more e�cient to update them in blocks. The

generation representation provides a natural partition, and this is how the acceptance

probability is stated above, i.e. perform an I-update on each Xt in turn. However, any

blocking structure could be used, for example by type, level or class (see Section 3.5.1.2

for these de�ntions).

The I-update and modi�ed K-jump are presented in Algorithms 3.3 and 3.4 respec-

tively. The λ-update is una�ected with respect to its method, only requiring the use
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Algorithm 3.3: I-update of the infectious period vector I = (ζ1, . . . , ζD) for
one-type one-level model

1 Sample t ∼ Uni[0, τ ];
2 Sample I ′i ∼ I for each i ∈ Xt;
3 Calculate acceptance probability α;
4 Draw A ∼ U(0, 1);
5 if α < A then

6 reject I ′t
7 else

8 accept I ′t

of the modi�ed likelihood including the vector of infectious periods. For the K-jump,

the proposal distribution also needs to be amended, since we now select a speci�c in-

dividual to be moved from among those in the origin generation. Then the proposal is

in three parts,

q(z′|z) = 1

K
1

Jk
1

xtO
.

Where Jk depends on the k value selected and xtO is the size of the origin generation

(from the point of view of the current path). Conversely,

q(z|z′) = 1

K′
1

J ′
k

1

x′tO
,

where by construction, x′tO = xtO+δk + 1.

Choosing To Integrate Or Incorporate I The choice between integrating out the

infectious periods or incorporating them as additional parameters is a balance between

computational cost and adequate mixing in the parameter space.

Equation (3.13) is numerically unstable, it requires a high degree of precision to accu-

rately calculate the likelihood. We shall discuss how we overcame this problem using
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Algorithm 3.4: Z-update using K-jump with infectious period vector I =
(ζ1, . . . , ζD) for one-type one-level model

1 Let K = min{(τ − 1 + I{x1>1}),Kmax};
2 Sample k ∼ Uni[1,K];
3 Calculate the vector Jk(z) = (Jk(z0)|Jk(z1), . . . , Jk(zτ ));
4 Calculate Jk =

∑τ
i=1 |Jk(zi)|;

5 Sample g ∼ Uni[1,Jk];
6 Determine the origin tO, and direction δ corresponding to g;
7 Select an individual i at random from XtO ;
8 Construct the candidate path z′;
9 Update the label sets;

10 Calculate acceptance probability α;
11 Draw A ∼ U(0, 1);
12 if α < A then

13 reject z′

14 else

15 accept z′

GNU MPFR in Section 3.7.2, though essentially we increase the number of bytes used

to represent each number in memory. This dramatically increases the time to compute

the likelihood, and thus slows down the MCMC algorithm.

Conversely, letting the infectious periods be additional parameters allows quick evalu-

ation of the likelihood at the cost of having to explicitly explore the space of infectious

periods. Care must be taken to ensure the marginal posterior density, π(z, λ|·), ade-

quately covers the space of I for all D individuals.

Results And Comparison Returning to the data sets analysed by Demiris and

O'Neill (2005a) for the one-type one-level model, e.g. θ3 = (1, 99, 24), ignoring κ for

the reasons discussed in Section 3.2.4.1 and considering the case of a �xed single initial

infective, a = 1, we compare the infectious distributions considered by Demiris and

O'Neill (2005a) on the same sample data. Namely, a �xed period, exponential and

gamma all with mean one, ι = E[I] = 1, and with variances 0, 1 and 10 respectively,
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θ I Edge Method Generation Method
Mean (sd) Mean (sd)

(1, 99, 24) I = c 1.16 (0.23) 1.17 (0.24)
I ∼ Exp(1) 1.27 (0.37) 1.28 (0.40)
I ∼ Γ(0.1, 0.1) 1.37 (0.50) 1.36 (0.53)

(1, 99, 49) I = c 1.42 (0.21) 1.42 (0.21)
I ∼ Exp(1) 1.49 (0.27) 1.49 (0.28)
I ∼ Γ(0.1, 0.1) 1.55 (0.36) 1.51 (0.33)

(1, 99, 74) I = c 1.86 (0.21) 1.88 (0.23)
I ∼ Exp(1) 1.96 (0.27) 1.99 (0.28)
I ∼ Γ(0.1, 0.1) 2.04 (0.37) 1.99 (0.35)

Table 3.5: Comparison of estimates for the infection rate λ, reported as R0 = ιλ, be-
tween the edge method of Demiris and O'Neill (2005a) and the generation
method of Section 3.2.2 incorporating the infectious periods I for three
distributions. On θ3 = (1, 99, 24), θ4 = (1, 99, 49) and θ5 = (1, 99, 74).

i.e. I = 1, I ∼ Exp(1) and I ∼ Γ(0.1, 0.1).

In Table 3.5 we reproduce the values from Demiris and O'Neill (2005a) and present our

results for the generation representation using the method of including the infectious

periods as parameters, the estimates are in general agreement with respect to the

standard deviations.

3.3 Partially Observed Epidemics

3.3.1 De�nition And Notation

As discussed in Section 1.2.6, we di�erentiated between missing data and a partially

observed epidemic. The former accounts for incomplete information about individuals

(perhaps of varying degree), e.g. unknown time of infection or unknown time of removal.
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Population

Observed

Figure 3.6: Diagram of an example partially observed setting. Black circles indicate
individuals who became infected during the course of the epidemic. The
shaded region denotes the observed subset of the population. In this
example, the complete data can be summarised as ψ = (N,D) = (41, 17)
of which we only observe ψob = (10, 4).

The latter accounts for when only a subset of the population are observed, i.e. for some

individuals no information is known.

For example, consider Figure 3.6, assuming a closed population, an epidemic has oc-

curred within the population. However, we only observe a subset of the population

(shaded grey on the diagram) and thus we have no information about the unobserved

component. Let N denote the total population size including all individuals, with

Nob and Nun being the number of individuals observed and unobserved respectively,

i.e. N = Nob+Nun. Similarly, de�ne Dob and Dun to be the total number of infectives

in the observed and unobserved components respectively (we shall consider the number

of initial infectives, a, shortly).

There are two types of partially observed epidemic we shall consider, models with

unknown number of infectives and unknown number of susceptibles . In both cases

there is an observed component, ψob = (Nob, Dob), which is the constant data in our
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model. The two types di�er in the additional information that is known, both shall be

considered and update algorithms presented.

For an unknown number of infectives, the size of the unobserved component is known,

i.e. Nun. Such data are usually described by saying that the total population size, N ,

is known and a proportion, η, is observed. Then, ηN = Nob, and only the number of

unobserved infectives, Dun, is uncertain. Alternatively, with an unknown number of

susceptibles we assume there are no unobserved infectives, i.e. Dun = 0, and only the

number of unobserved susceptibles is uncertain, Nun.

Unknown Nun is common when there may not be a closed population, or there is a

potential for part of the population to be immune, i.e. they are not susceptible to

the disease and should not be included. The case of unknown Dun occurs when the

population is large and only a small part can be (randomly) sampled.

For this section we shall again consider the one-type one-level model, though even with

such a model it is important to consider how the subset was selected. For multi-type

multi-level models, a bias in the subset observed would a�ect the inference. For the

unknown Dun, we assume individuals are observed at random in the one-level model,

implying no bias in the subset and the proportion of infected individuals in the observed

component is similar to the population as a whole. For the two-level model, including

households, then we would assume households are observed at random. Observing

individuals at random in a two-level model is a very di�erent assumption. In Bayesian

analysis, it is possible to alter these assumptions by placing informative priors on the

parameter of interest, and we shall consider this for the case of unknown Nun.
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3.3.2 Previous Literature

Demiris (2004) (see also Demiris and O'Neill (2005b)) consider the case of partially

observed populations with unknown Dun using an augmented psuedolikelihood based

on the total severity of the epidemic to estimate the posterior using MCMC . Their

approach assumes the epidemic is above threshold, as do many classical approximations

and limiting results. The generation method gives an exact likelihood to generate the

posterior density and makes no assumption on the epidemic being above threshold.

Hayakawa et al. (2003) consider the case of unknown Nun, i.e. the number of susceptible

individuals is uncertain. They again use MCMC, imputing the times of infection with

known removal times (a missing data problem) using the approach outlined in O'Neill

and Roberts (1999).

Both Hayakawa et al. (2003) and Demiris and O'Neill (2005b) investigate the case ψob =

(120, 30), a standard example in the epidemics literature. The full data set consists

of temporal information, thus it has been considered by many authors, using many

inference techniques, for example Bailey (1975), Becker (1989), O'Neill and Roberts

(1999), Hayakawa et al. (2003), Demiris (2004) and O'Neill (2009).

3.3.3 Outline For Partially Observed Model

First, we wish to make inference for the case of unknown Dun, i.e. given the total

population size N and the observed subset ψob = (Nob, Dob), where Nun = N−Nob and

Dun is unknown. We shall denote by η the ratio of the number of observed individuals

to the total population, i.e. η = Nob
N . Thus η = 1 reduces to the case considered

in Section 3.2 and as η → 0 the subset observed is a negligible fraction of the total

population.
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In Section 3.3.5 we shall discuss adapting the edge method to account for a partially

observed population. The algorithm requires only a few amendments, whereas in Sec-

tion 3.3.6 we adapt the generation representation and introduce a new update that is

required for the MCMC algorithm. The di�erence between the two approaches, edge

or generation, is in the amount of information needed to obtain the posterior den-

sity. The edge representation is required to store a much larger imputed data set. As

the observed proportion, η, grows small this becomes a prohibitive issue, in terms of

algorithm run-time.

The methods for unknown Nun using the generation representation require only minor

modi�cation to the methods in Section 3.2.2. The outline for the edge method is

discussed in Section 3.3.7 and details for the generation method in Section 3.3.8.

We do not implement the edge methods, instead citing results from papers using equiv-

alent or comparable methods in order to verify the generation method. In Section 3.3.9

we apply the generation approach to several test data sets. First, with a �xed observed

component and varying η, i.e. an increasing total population size N . Second, we con-

sider a �xed total population and observe a varying sized subset. In each case we use

a �xed infectious period of 4.1 days and report the reproductive number R0.

3.3.4 Posterior Density

As discussed in Section 3.2.4.2, we shall assume there is a single initial infective. How-

ever, we must consider if the initial infective is in the observed component or not, since
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a = aob+aun = 1. For simplicity, assume the initial infective is observed, which implies

θob = ψob(1) = (1, Nob − 1, Dob − 1)

θun = ψun(0) = (0, Nun, Dun).

For the case of an unknown number of infectives, we wish to make inference on the

joint posterior density of λ and z (note that Dun is encoded in z) given the data

ψob = (Nob, Dob) and N . Then the posterior density is

π(z, λ|θob, N, I) ∝ π(θob|z, λ,N, I)π(z, λ|N, I)

∝ π(θob|z, λ,N, I)π(z|λ,N, I)π(λ)

∝ I{θob|z}π(z|λ,N, I)π(λ). (3.15)

For the case of an unknown number of susceptibles, we wish to make inference on the

joint posterior density of z, λ and Nun given the data ψob = (Nob, Dob) and Dun. Note

that Nun must be explicitly included, since it is not encoded in z. Then the posterior

density is

π(z, λ,Nun|θob, Dun, I) ∝ π(θob, Dun|z, λ,Nun, I)π(z, λ,Nun|I)

∝ I{θob,Dun|z}π(z|λ,Nun, I)π(λ)π(Nun), (3.16)

where π(Nun) is the prior on the number of unobserved susceptibles. Assuming the

infection rate and number of unobserved susceptibles are independent a priori. The

indicator term ensures the imputed path z is consistent with the observed data. Com-

monly, Dun = 0 and Nob = Dob, i.e. there are no unobserved infections and there

are su�cient individuals to support the observed data. It is not clear what prior to



3.3 Partially Observed Epidemics 193

use for the unknown number of susceptibles, Nun, where the parameter is unbounded,

i.e. Nun ≥ 0.

3.3.5 Edge Representation For Unknown Number Of Infectives

The edge method described in Section 3.2.1 is unchanged for the partially observed data.

For each individual in the population we must record its edges, we cannot restrict our

attention to a smaller sub-digraph in this case. Using the edges of all individuals, it

is possible to perform a recursive connectivity check as before to ensure the imputed

digraph is consistent with the observed data, i.e. I{θob|z}. The check will also calculate

the number of individuals connected in the unobserved component, Dun.

Hence, when adding or removing an edge from the digraph we may increase or decrease

Dun. The e�ect of altering the number of unobserved infectives on the acceptance

probability is two fold, �rstly in the likelihood of the digraph and secondly in the prior

density on Dun.

The digraph is de�ned on N vertices and the MCMC updates are as in Section 3.2.1,

namely a symmetric Random Walk Metropolis for the λ-updates and adding or remov-

ing edges from G for the G-updates. The connectivity check is required to determine

if the digraph G is consistent with ψob and to determine Dun.

It is necessary to store all the edges for all the individuals in the population, that is the

size of the stored digraph is of order N2. Whereas, for the generation method the path

is a vector with size of order N . Thus, if the number of individuals is increased the edge

methods su�er in terms of computation costs. For example, returning to Figure 3.6,

consider the number of edges that need to be imputed. Care must also be taken to

ensure the chain is properly mixing in the space of all imputed unobserved components.
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3.3.6 Generation Representation For Unknown Number Of Infectives

We can extend the one-type one-level representation of Section 3.2.2 to account for

having observed and unobserved individuals. The population is still homogeneous

and homogeneously mixing, with a single infection rate parameter λ we wish to make

inference given ψob = (Nob, Dob) and N (implying Nun = N −Nob).

For simplicity, assume there is a single observed initial infective and there are no un-

observed initial infectives, we shall return to this assumption shortly. Also, assume the

infectious period is a �xed time c. Hence, we do not need to consider integrating out

or including a vector of the infectious periods. Importantly, we do not need to account

for which individuals constitute each generation.

3.3.6.1 Extending Generation Notation

The epidemic process can still be represented as a path, consisting of a sequence of

generations, where each generation may have observed and unobserved individuals.

Therefore, we may naturally extend the notation and de�nitions of Section 3.2.2.1.

Let xob,t and xun,t be the number of observed and unobserved individuals in generation

t respectively. Then, the total number in generation t is xt = xob,t + xun,t. Similarly,

de�ne the cumulative totals yob,t, and the combined cumulative total yt = yob,t+ yun,t.

The de�nition of the length of a path z remains unchanged, i.e. τ = max{t : xt > 0}.

In addition, we can deduce the generation where the �rst observed and unobserved

individual occurs. Let rob = min{t : xt > 0} and sob = max{t : xt > 0}, similarly

for run and sun. By assumption, rob = 0, since xob,0 = aob = 1 and by de�nition

τ = max{sob, sun}.



3.3 Partially Observed Epidemics 195

We may represent the path, z, as the matrix consisting of the sizes of each generation

split into observed and unobserved counts. Recall, we need only specify xt for clarity,

since the cumulative totals yt are a function of the generation totals.

Also for clarity, we use the column vector notation introduced in Section 3.2.2.3. For

example, consider the case where dob = 4 and dun = 2, then an example path can be

expressed as,

z =



1 0

2 0

1 1

1 0

0 1


4

.

Where the left column is the observed component and the right is the unobserved.

Note, each column need not be a valid epidemic path when taken on its own. In

the example presented, the unobserved path (using the row vector notation) is zun =

(0|0, 1, 0, 1, 0), which is clearly not a valid path since there are zero generations before

the desired total number of infectives is reached.

The density of interest is the joint posterior of λ, z andDun as shown in Equation (3.15).

Thus we must consider how to perform updates for all three parameters for the MCMC

algorithm.

3.3.6.2 λ-update

The λ-update can be performed exactly as described by Algorithm 3.1 in Section 3.2.2.2.

The proposal remains a symmetric Random Walk Metropolis and the acceptance prob-
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ability is unchanged, using the generation totals. For clarity, given the example path

above we can explicitly state the generation totals as,

z =



ob un Total

1 0 1

2 0 2

1 1 2

1 0 1

0 1 1


4

.

3.3.6.3 Z-update Using K-jump

For the path z, we are conditioning on the total number of infectives in each column

(using the column notation above). Hence, an individual is restricted to a given column,

but may be moved to any (valid) generation within the path. Therefore we may apply

Algorithm 3.2, the K-jump, as the Z-update for �xed dun.

De�ne Jk(z) to apply the Equation (3.9) to the matrix z instead of the vector z.

Calculate the range of valid k using the path length τ . The total number of k jumps is

the sum over all observed and unobserved generations. Note, the check to see if a move

is valid still uses xt > 1, i.e. the generation total across both observed and unobserved.

For example, given the path z above, it has length τ = 4. Assuming a �xed number of

initial infectives, the range of valid k is

1 ≤ k ≤ K = min{(τ − 1 + I{x1>1}),Kmax}

= min{(4− 1 + 1),Kmax} = min{4,Kmax}.
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Applying the function Jk(z) for each 1 ≤ k ≤ 4 we have,

z =



1 0

2 0

1 1

1 0

0 1


4

J1(z) =



0 0

1 0

2 2

0 0

0 −1


⇒ J1 = 6 J2(z) =



0 0

1 0

1 1

0 0

0 −1


⇒ J2 = 4

J3(z) =



0 0

1 0

1 1

0 0

0 −1


⇒ J3 = 4 J4(z) =



0 0

1 0

0 0

0 0

0 0


⇒ J4 = 1.

Since x3 = 1 and τ = 4, i.e. the third generation is not the last generation and is only

a single individual, then Jk(zt) = 0 for 1 ≤ k ≤ 4, where zt = (xob,t, xun,t). We assume

a �xed number of initial infectives, i.e. Jk(z0) = (0, 0) for 1 ≤ k ≤ 4.

Justifying The K-jump As an aside, we now justify the choice of the complex

K-jump over the simple Z independence sampler discussed in Section 3.2.2.3.

Essentially, whereas it was simple to enumerate all possible paths for the one-type one-

level model, for the partially observed case, this is not so. In particular, for 0 ≤ m ≤

2d−1 − 1, it was possible to construct the path z(m) using the binary decomposition.

For the partially observed case, it is not trivial to calculate the number of valid

paths, which is necessary before we can enumerate them. To show this we �rst need

Lemma 3.1.
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Lemma 3.1

Let (n, k) denote the number of ways to place n objects into k boxes, n, k ∈ Z+. Then

(n, k) =

(
n+ k − 1

n

)
=

(
n+ k − 1

k − 1

)
.

We place bounds on the number of valid paths consisting of an observed and unobserved

component. It is possible to form a recursive algorithm to search all possible paths,

but it must exhaustively search all such paths.

Lemma 3.2

Let M be the number of paths consisting of dob and dun individuals. Then

2d−1 ≤ M ≤
(
dob + d− 1

dob

)(
dun + d− 1

dun

)
,

where d = dob + dun.

Proof

The lower bound follows immediately from Lemma 2.8, there are d individuals in total

and thus there are 2d−1 valid paths in terms of the generation totals, xt.

However, there will be more possible paths since each generation total can be made by

various combinations of observed and unobserved individuals. For example, if xt = 2

it could be either zt = (2, 0), zt = (1, 1) or zt = (0, 2) (assuming dob, dun ≥ 2).

As a crude estimate, the maximum length of a valid path is d. Thus, we assign the

observed individuals to the d generations in a number of ways derived in Lemma 3.1.

Similarly for the unobserved. Hence the crude upper bound of
(
dob+d−1
dob

)(
dun+d−1
dun

)
. �

From Lemma 3.2 it is clear we cannot easily enumerate the set of valid paths, thus it
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is much harder to construct an e�cient independence sampler in this case.

For the example path of this section, dob = 4 and dun = 2, the possible number of

valid paths lies between 32 ≤M ≤ 2646. This is a large range, the upper bound is an

especially crude approximation. Consider a completely observed epidemic, i.e. dun = 0,

then the number of possible paths for d = 6 according to Lemma 3.2 is 32 ≤M ≤ 462;

in this case equality holds with the lower bound and M = 32.

3.3.6.4 Dun-update

Finally, we must update the number of unobserved infectives. Clearly, since 0 ≤ Dun ≤

Nun there is a �nite range and we can use proper priors for Dun. Also, by assumption

aun = 0 implying dun = Dun.

The path z represents the sizes of each generation as a matrix, such that the column

totals are the �nal sizes of the observed and unobserved components. Increasing or

decreasing dun is represented as adding or removing individuals from the unobserved

column of z. Thus the dun-update is another type of Z-update.

Additions may be made to any generation in the unobserved component up to the

(τ + 1)th generation.

For removals, we extend Equation (3.9) to include the case k = 0, representing whether

an individual can be removed from generation t. Correspondingly, J0 is twice the total

number of removals, this is done to be consistent with the de�nition of Jk for k > 0, see

Equation (3.10). De�ne xi,t to be the number of individuals in component i ∈ {ob,un}
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for generation t. Then,

J0(xi,t) =


2


if xi,t > 0 and xt > 1

if xi,t > 0 and t = τ

0 otherwise

for
i ∈ {ob,un}

1 ≤ t ≤ τ.
(3.17)

Note Equations (3.9) and (3.17) are only de�ned for t > 0, since we consider the zeroth

generation as �xed.

As stated, we count twice the number of possible moves to maintain the relation,

J0 ≥ J1 ≥ J2 ≥ · · · ≥ JK, assuming the entire population can be removed. For the

partially observed case we apply J0 only to zun. Continuing with our example path,

we can count the number of possible removals as,

z =



1 0

2 0

1 1

1 0

0 1


4

J0(z) =



0 0

2 0

2 2

0 0

0 2


⇒ J0 = 8 ≥ 6 = J1

J0(zun) =



0

0

2

0

2


⇒ J0(zun) = 4.

Note, for the partially observed setting we do not wish to alter the observed component.
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Thus we only wish to �nd the partial sum of

J0(zun) =

τ∑
i=1

J0(xun,i).

The origin generation, tO, corresponding to a speci�c choice of g in the range 1 ≤ g ≤
1
2J0(xun,i), is de�ned as

tO = min{t : g =
1

2

t∑
i=1

J0(xun,i)}.

Using an identical scanning technique as for the origin of the K-jump.

We propose adding or removing an individual with equal probability. For an addition,

we propose the target generation at random from the entire length of the path plus

one, so that

q(z′|z) = 1

2

1

τ + 1
.

Conversely for removals, we must calculate J0(zun), and select a generation at random

to remove an individual from, so that

q(z′|z) = 1

2

1
J0(zun)

2

=
1

J0(zun)
.
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The acceptance probability of a dun-update is

α(dun, d
′
un) = min

{
1 ,

π(z′, λ, |θob, N, I)q(z|z′)
π(z, λ, |θob, N, I)q(z′|z)

}
= min

{
1 ,

I{θob|z}π(z
′|λ,N, I)π(λ)π(d′un)q(z|z′)

I{θob|z}π(z|λ,N, I)π(λ)π(dun)q(z′|z)

}
= min

{
1 ,

π(z′|λ,N, I)π(d′un)q(z|z′)
π(z|λ,N, I)π(dun)q(z′|z)

}
.

Notice the proposal density is in terms of the path z, since updating dun causes a new

candidate path, z′. The update is summarised in Algorithm 3.5.

Algorithm 3.5: dun-update within Z for partially observed one-type one-level
model

1 Choose Add or Remove, P[Add] = P[Rem] = 1
2 ;

2 if Add then

3 Sample g ∼ U[1, τ + 1];
4 Construct z′ by x′un,g = xun,g + 1;

5 Let q(z′|z) = 1
2

1
τ+1 and q(z|z′) = 1

2
1

τ ′+1 ;

6 else

7 Calculate the matrix J0(z) and J0(xun,i);

8 Sample g ∼ Uni[1,
J0(xun,i)

2 ];
9 Determine the origin generation tO corresponding to g;

10 Construct z′ by x′un,tO = xun,tO − 1;

11 Let q(z′|z) = 1
J0(xun,i)

and q(z|z′) = 1
J ′
0(xun,i)

;

12 Calculate acceptance probability α;
13 Draw A ∼ U(0, 1);
14 if α < A then

15 reject z′

16 else

17 accept z′

Unlike the K-jump update to Z, there are no tunable parameters for the d-update.

We can adjust the frequency of d-updates in the MCMC algorithm. For a given value

of dun, it seems reasonable to give the chain a period to explore the distribution of λ

and z. Hence we perform a d-update every �fth iteration of the chain, coupled with

performing two K-jumps within each iteration we explore the path space adequately.
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Adapting To An a-update The dun-update described will only add or remove

individuals from the unobserved component, excluding the zeroth generation. However,

it is a simple matter to amend the algorithm into an a-update.

Once we have chosen the component in which we wish to update the number of initial

infectives, then increasing or decreasing a requires removing or adding to d, since for

an a-update we treat D = a+ d as a constant.

Thus we can use the function J0(z), de�ned in Equation (3.17), except alter the con-

dition that i = un to the component we wish to alter the number of initial infectives.

3.3.7 Edge Representation For Unknown Number Of Susceptibles

In contrast to the case of unknown number of infectives, the edge representation now

requires a new type of update, we must add or remove vertices from the digraph as a

whole.

Note, removing a vertex is not the same as deleting all edges into and out of it. Instead,

the removed vertex has no part in the digraph. Select a vertex at random to remove,

then check the candidate digraph is consistent with the observed data. Adding a vertex

does not require a connectivity check. We omit further details, though such updates

will follow a similar form of those in previous sections.

3.3.8 Generation Representation For Unknown Number Of Suscep-

tibles

Hayakawa et al. (2003) address the case of an unknown number of susceptibles using

a temporal approach and MCMC. Our generation approach cannot make inference for
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the infectious periods as is done by the authors as has been discussed previously. Thus,

we use a �xed infectious period of speci�ed length.

As an interesting point, to adapt the edge representation for an unknown number of

infectives was trivial, yet to adapt the generation representation required a new d-

update to be developed. Conversely, for an unknown number of susceptibles, the edge

method requires adding extra vertices to the digraph, whereas the generation method

requires a trivial change. This di�erence is not explored further, however it suggests

there may be some bene�t to either method in certain situations.

The path representation, z, is una�ected by altering Nun. The number of unobserved

susceptibles is accounted for in the likelihood of the path z given the infection rate

λ, the observed component ψob and the unobserved component ψun. The likelihood is

presented as Equation 3.12, where there is dependence upon N , the total population

size.

Unlike the case of an unknown number of infectives, for an unknown number of sus-

ceptibles there is no upper bound for the range of Nun. Hence, the posterior density

may be driven mainly by the prior density and not the data; since the data provide no

information directly about the number of unobserved susceptibles.

Since we assume aun = 0, then Nun = nun. If we choose to propose a candidate

nun according to the prior distribution, i.e. q(n′un|nun) = π(nun), then the acceptance

probability becomes the ratio of the likelihoods,

α(nun, n
′
un) = min

{
1 ,

π(z, λ, n′un|θob, Dun, I)q(nun|n′un)
π(z, λ, nun|θob, Dun, I)q(n′un|nun)

}
= min

{
1 ,

π(z|λ, n′un, I)
π(z|λ, nun, I)

}
.
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Algorithm 3.6 summarises the update when using the prior density as the proposal

distribution. Though a valid algorithm, if the prior distribution is very sparse, then the

proposals may have a very low acceptance probability since they will di�er drastically

from the current value, e.g. nun ∼ U[0, 106] is an extreme example. This is an issue

due to the high correlation of the infection rate λ to the number of susceptibles N .

Algorithm 3.6: n-update for partially observed one-type one-level model

1 Propose n′un ∼ π(nun);
2 Calculate acceptance probability α(nun, n

′
un);

3 Draw A ∼ U(0, 1);
4 if α < A then

5 reject n′un
6 else

7 accept n′un

3.3.9 Results

We have not implemented the edge or Poisson representations for the partially observed

model. So we cannot make direct comparisons between properties of the MCMC,

e.g. rate of convergence, mixing or parameter correlations. However, for the partially

observed model using the Poisson representation with η = 0.1, i.e. observing 10% of the

total population, using the data for an outbreak of in�uenze in Tecumseh, Michigan

(see Table 3.9), O'Neill (2009) report run-times of several days. We have not performed

an analysis on that data using the partially observed generation method. However, for

the one-type one-level model, the run-times were of the order of several minutes to an

hour. The reduction of the unobserved component to a single vector, as opposed to

the entire digraph, gives a great improvement in computation time for the partially

observed models.

We compare the generation representation to results from various authors, using dif-
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ferent techniques and assumptions. The results are comparable, in their estimates and

reported cost of computation. Following previous literature, we report the estimate

for the infection rate as the basic reproductive number, R0 = ιλ, to enable compar-

ison of various infectious periods. However, for the present case we only consider a

�xed infectious period since it has the best convergence properties and minimal cost to

compute.

Table 3.6 is for the case of an unknown number of infectives, with a �xed observed

component and varying total population size. The point estimates for the reproductive

number are comparable. The chains were run for 106 iterations, performing two K-

jump Z-updates every iteration and a dun-update every �ve iterations. Thus, for the

larger populations the number of iterations may need to be increased to allow the chain

to explore the larger path space.

The important observations are still evident despite the anomaly. Namely, for decreas-

ing η the standard deviation of the estimate decreases as does the interval estimate for

the epidemic being below threshold. As discussed in Demiris and O'Neill (2005b), the

decreasing standard deviation seems counter intuitive, as we are observing a smaller

proportion of the population we expect our uncertainty to increase. However, as the

observed component is kept constant, we are actually assuming more about the un-

observed component. Since the only information is contained in ψob, hence we are

implicitly assuming a major outbreak has occurred. This is illustrated by the reducing

probability of the epidemic being below threshold.

As a more fair comparison, in Table 3.7 we assume the total population is �xed as

ψ = (1200, 300), then reduce η resulting in smaller observed components. We assume

the observed component is exact, i.e. the proportion of individuals that are infected

to those that avoid infection is the same. Contrasting η = 1 and η = 0.01, we see



3.4 Multi-type Epidemics 207

that the reproductive number is higher and the probability of being below threshold

is larger for the smaller observed component. Since we are inferring the behaviour

of the entire population of 1200 individuals from a sample of 12, it is unsurprising

that the standard deviation of the estimate is larger, as we are less sure about the

point estimate. This is re�ected in the interval estimate of R0 being less than one,

showing a greater uncertainty of the epidemic. It could be, the 12 individuals sampled

by chance include the only infectives in the population, i.e. there was only a minor

outbreak. Our method allows this possibility, and this is apparent in the probability

of the epidemic being below threshold. Conversely the estimate for R0 does increase

for smaller observed components, since by the reverse reasoning the epidemic could be

a major outbreak.

The uncertainty in the reproductive number is linked to the uncertainty of the �nal

size, not knowing the total number of infectives. Table 3.8 shows the estimates and

95% intervals (as de�ned in Section 1.3.1.4) for D corresponding to the epidemics in

Table 3.7. Again, contrasting η = 1 and η = 0.01, we see the interval in the latter

case is very wide. This corresponds to the uncertainty on the outbreak within the total

population, by chance we may under or over sample the number of infected individuals

in such a small sub-sample, this is re�ected in the wide interval for dun. The correlation

between R0 = λc and dun is estimated to be 0.711 and a plot is shown in Figure 3.7,

as expected the parameters are clearly correlated.

3.4 Multi-type Epidemics

In the previous section we have introduced the concept of observed and unobserved

individuals within the epidemic. To accommodate this in the generation representation

an additional column was added to the representation of the path z. The unobserved
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(Nob, Dob) η N R0 (sd) P[R0 ≤ 1]

(120, 30) 1 120 1.1826 (0.2165) 0.2016

0.5 240 1.1493 (0.1491) 0.1599

0.2 600 1.1577 (0.1010) 0.0609

0.1 1200 1.1603 (0.0749) 0.0205

Table 3.6: Estimates for λ, reported as R0 = ιλ for a �xed infectious period of 4.1
days, observing a single initial infective with 119 initial susceptibles con-
ditioned on Dob = 30, with an unobserved component of the population
of size 1−η

η Nob.

(N,D) η (Nob, Dob) R0 (sd) P[R0 ≤ 1]

(1200, 300) 1 (1200, 300) 1.1574 (0.066969) 0.00801

0.75 (900, 225) 1.1590 (0.067398) 0.00649

0.5 (600, 150) 1.1605 (0.067590) 0.00618

0.1 (120, 30) 1.1652 (0.071719) 0.00931

0.01 (12, 3) 1.1680 (0.110924) 0.07427

Table 3.7: Estimates for λ, reported as R0 = ιλ for a �xed infectious period of
4.1 days, observing a varying fraction of the total population, where
ψ = (N,D) = (1200, 300). We assume the sub-population has the same
proportion of infected individuals as the total population and a single
initial infective is is the observed component.
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Figure 3.7: Plot of R0 = λc against dun for the case of a �xed population ψ =
(N,D) = (1200, 300) and η = 0.01, with a �xed infectious period of
4.1 days. The plot shows the high correlation of 0.711 between the two
parameters, as well as the increasing uncertainty in λ for smaller dun.
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(N,D) η (Nob, Dob) dun D 95% highest posterior
density region for D

(1200, 300) 1 (1200, 300) 0 300 (300,300)

0.75 (900, 225) 75.287 300.287 (284,318)

0.5 (600, 150) 151.312 301.312 (273,332)

0.1 (120, 30) 281.904 311.905 (203,367)

0.01 (12, 3) 282.280 285.280 (63,526)

Table 3.8: Estimates for dun and D = Dob+dun for the partially observed epidemics
in Table 3.7, giving point estimate and highest posterior density region.

individuals were then subject to one of two new updates, either the d-update or the

n-update for unknown numbers of infectives or susceptibles respectively; as well as the

modi�ed K-jump and λ-update.

Implicitly, we have two types of individual in the model, observed and unobserved.

If we do not perform the d-update or n-update, then the two types are completely

observed, instead we can adjust the model to include new infection rate parameters.

Thus, we have two types of individual who can di�er in infectivity within the model.

We shall now present the details of extending the generation model to include multiple

types of individuals. Using the framework developed for partially observed models, the

modi�cation is primarily to the likelihood and λ-update. This section will be an outline

of the amendments, as we shall combine multi-type and multi-level models together in

Section 3.5.

In Section 3.4.1 we derive the path step probability for a �xed infectious period, the

product of step probabilities along a path is the likelihood of z. Section 3.4.3 considers

the form of Λ, the matrix of infection rates, as well as the MCMC update.
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3.4.1 Multiple Infection Rates For Fixed Infectious Periods

Denote the type of an individuals by i, and for the moment consider a two-type model

where i ∈ {1, 2}. In the most general case, we consider the infection rate between each

combination of individuals that can occur, i.e. let Λ be the matrix of infection rates λij

from an individual of type i to type j. For the two-type case we have,

Λ =

 λ11 λ12

λ21 λ22

 .

The infection rates need to be interpreted with care, they represent the rate of the

Poisson process that determines the contacts an individual has during their infectious

period.

Recall, for the one-type one-level model there were potential problems in attempting

to make inference for many correlated parameters: the infection rate λ, the number of

initial infectives a, the indicies of the initial infectives κ and the imputed path z, using

only two or three numbers. We now introduce further, potentially highly correlated,

parameters that may a�ect the inference. Care must be taken not to over�t the model

if the data do not support the estimation of so many parameters.

Multi-type Likelihood

Generation t now consists of x1,t individuals of type 1 and x2,t individuals of type 2. A

path z is still the product of independent step probabilities, where we must now modify
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to consider the case of di�erent types of individual. Therefore the step probability is,

PIθ

zt+1 =

 x1,t+1 x2,t+1

y1,t+1 y2,t+1

 ∣∣∣∣zt =
 x1,t x2,t

y1,t y2,t


 ,

where we currently assume all individuals have independent and identically distributed

infectious periods equal in distribution to I, i.e. for individual i, Ii
d
= I. We assume for

simplicity that the infectious period has the same distribution across multiple types of

individual. This is reasonable to assume in many situation. Initially, we shall assume

a �xed infectious period of all individuals, i.e. I = c. However, we shall return to

this assumption and relax both the restriction to a �xed period and the need for all

individuals to have an identical infectious period distribution in Chapter 4.

Hence, the step probability can be expressed in terms of the probability of avoiding

infection from the previous generation, exactly as was the case for the one-type model.

The probability of an individual of type 1 avoiding infection in generation t+ 1, given

x1,t and x2,t, is

exp

(
−λ11
N

(
ζ(1) + · · ·+ ζ(x1,t)

))
exp

(
−λ21
N

(
ζ(1) + · · ·+ ζ(x2,t)

))
= exp

(
−

2∑
i=1

λi1
N

xi,t∑
k=1

ζ(k)

)

= exp

(
−

2∑
i=1

λi1
N

xi,t c

)

That is, the product of avoiding an infectious contact with all infectives of type 1

in generation t and all infectives of type 2 in generation t. The probability of being

infected is thus one minus this probability. Since we assume Ii = c, we can simplify

the sum of infectious periods, ζ(k), as shown.
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In full, the step probability for a two-type model is

PIθ

zt+1 =

 x1,t+1 x2,t+1

y1,t+1 y2,t+1

 ∣∣∣∣zt =
 x1,t x2,t

y1,t y2,t




=

(
N1 − y1,t
x1,t+1

)
(1− exp (−A1))

x1,t+1 (exp (−A1))
N1−y1,t+1

×
(
N2 − y2,t
x2,t+1

)
(1− exp (−A2))

x2,t+1 (exp (−A2))
N2−y2,t+1

=

2∏
j=1

(
Nj − yj,t
xj,t+1

)
(1− exp (−Aj))xj,t+1 (exp (−Aj))Nj−yj,t+1 , (3.18)

where

Aj =

2∑
i=1

λij
N

xi,t c, j = 1, 2.

From Equation (3.18), it is simple to extend to an arbitrary number of types of in-

dividuals. Each new type will contribute an additional term to the Aj sums and an

additional term in the product.

3.4.2 Varying The Form Of The Infection Rate Matrix

The current model is for individuals mixing homogeneously within the population. The

addition of the infection matrix, Λ, allows us to model varying infectivity within the

population.

However, we can determine di�erent forms of the infection matrix Λ, i.e. impose addi-

tional constraints on the entries in the matrix. Obviously we can choose to set certain

rates to zero in the model, corresponding to a type of individual being unable to infect

another. Such a model is uncommon for the multi-type setting, though will be more
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relevant for the multi-level model. For example, in a three-type model we might sup-

pose that only type 2 and 3 individuals can infect type 3, giving an infection matrix of

the form,

Λ =


λ11 λ12 0

λ21 λ22 λ23

λ31 λ32 λ33

 .

For the most general model, consisting of H types of individual, there are H2 infection

rates to make inference for. The data will consist of 2H pieces of information, the total

number Ni, and how many ultimately became infected Di, for each type 1 ≤ i ≤ H,

during the epidemic (we currently consider a fully observed epidemic).

Thus, the model will over �t the data with a large number of types. Determining

whether parameters are identi�able given �nal size data has been investigated by Brit-

ton (1998), who considers whether infectivity can be estimated given equal suscepti-

bility. To account for this it is common to place further constraints upon the infection

matrix Λ. These constraints will determine the model for which we are making in-

ference. There are four common models for the infection matrix Λ in the literature.

In the following we consider the multi-type one-level model with H distinct types of

individual. These forms for Λ will be adapted for a multi-level model in Section 3.5.
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General Model As mentioned, the general model has H2 infection rates without

any further constraints. That is,

Λgen =



λ11 λ12 · · · λ1H

λ21 λ22
...

. . .

λH1 λHH


. (3.19)

The general model su�ers from highly correlated parameters, partly due to over �t-

ting the data. For �nal size data, the correlation adversely a�ects the mixing and

convergence of the MCMC chains.

Product Model The product model, considered by Britton (1998) in terms of esti-

mating parameters, is a reduction of the general model into only 2H infection rates,

where Λ is the product for two H length vectors, i.e. Λ = βαT , for β = (β1, . . . , βH) and

α = (α1, . . . , αH). The infection rate between two types of individual is the product of

their separate rates, i.e. λij = βiαj ,

Λprod =



β1α1 β1α2 · · · β1αH

β2α1 β2α2

...
. . .

βHα1 βHαH


. (3.20)

Reducing to H parameters greatly reduces the correlation within Λ and is a more

justi�able number of rates to make inference from. For the general model there are
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more infection parameters than data points for H > 2. The constraint of symmetric

infection rates may not be biologically accurate.

Susceptibility Model Again we reduce to only H parameters, one per type of in-

dividual, however the form of Λ is very di�erent to the product model.

We consider the rate λ to encapsulate the susceptibility of an individual to being

infected, instead of the infectivity. That is, the rate from type i to type j depends

only on the target type j (the susceptible), i.e. λij = λj , thus we consider λj to be the

susceptibility of type j to infection.

Λsus =



λ1 λ2 · · · λH

λ1 λ2 λH
...

...
...

λ1 λH


. (3.21)

Infectivity Model The opposite to the susceptibility model is the infectivity model,

where the rate between two types depends only on the origin type (the infector),

i.e. λij = λi.

Λinf =



λ1 λ1 · · · λ1

λ2 λ2 · · · λ2
...

λH λH · · · λH


. (3.22)

It is important to note that the inferred parameters for the susceptibility and infectivity
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model will be very di�erent, despite both being a H length vector, i.e. (λ1, · · · , λH).

The notation used is slightly misleading, Λsus is not simply the transpose of Λinf.

3.4.3 Λ-update

The posterior density of interest now includes the matrix of infection rates Λ, which may

itself be a function of sub-parameters, i.e. π(Λ, z|θ, I). Using the modi�ed likelihood

from the previous section, it is su�cient to replace the single infection rate λ by the

matrix Λ in all expressions for the posterior density considered so far.

For the prior we may use independent exponentials of rate µ as before, with a su�ciently

small rate to form a relatively �at prior. We may assume independent priors for each

component of Λ. Thus

π(Λ) =

H∏
i=1

H∏
j=1

π(λij).

Where there are H types of individual under the general model for Λ. If we consider

an alternate form of Λ, the prior will be H independent distributions,

π(Λ) =

H∏
i=1

π(λi).

We shall assume there are H infection rate parameters, i.e. Λ is of the form of Equation

(3.20), (3.21) or (3.22).

For the proposal distribution, we use a multivariate normal with covariance matrix Σ.

This allows us to propose correlated candidate parameters, which may lead to higher
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acceptance rates. Let Λ = (λ1, . . . , λH), the H length row vector of parameters, then

q(Λ′|Λ) ∼ NH(Λ,Σ).

For a two-type model it is convenient to update both λ1 and λ2 simultaneously. How-

ever, for larger numbers of parameters it may be more e�cient to use block updates as

discussed in Section 1.3.2, or perhaps update each parameter individually.

The acceptance probability is similar to that derived in Section 3.2.2.2, however using

the multi-type likelihood derived in Equation 3.18, the multivariate normal proposal

distribution and independent priors for each parameter.

3.4.4 Z-update

Each type of individual will be a separate column in the representation of the path z.

The total of each column is conditioned to be di for type 1 ≤ i ≤ H.

Assuming a fully observed epidemic, then we need only perform K-jumps as modi�ed

for the partially observed setting in Section 3.3.6.3.

However, there is an issue concerning the initial infective. If we assume a = 1, where

a = a1 + · · · + aH , then the type of the initial infective could have an e�ect on the

inference. Whereas for the partially observed one-type case we could assume a single

observed initial infective without loss of generality, we must now allow for the type to

vary.

To alter the type of the initial infective, the current path must be altered in two ways,

�rst adapting the function J0(·), we determine all generations that contain individuals
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that can be moved, excluding the type of the current initial infective. To emphasis the

di�erent we denote this function J(i)(z), where i denotes the type of the current initial

infective. Unlike the k-jump search, J(i) =
∑

t

∑
j J(i)(xj,t) can be zero, i.e. there may

not be any free individuals.

J(i)(xj,t) =


1


if j 6= i, xj,t > 0 and xt > 1

if j 6= i, xj,t > 0 and t = τ

0 otherwise

for
1 ≤ i, j ≤ H

1 ≤ t ≤ τ.

Then, select an individual to move and place them in the zeroth generation. The

current initial infective is then moved to a generation at random (within their own

type).

The proposal distribution is composed of the product of the two independent steps,

determining a free individual to become the new initial infective and removing the

current initial infective.

q(z′|z) = 1

J(i)

1

τ + 1
.

The proposal is reversible, since the original initial infective must be free (it is either

added to a valid generation or at the end of the path) and the candidate initial infective

can be returned to its origin generation. The a-update is summarised in Algorithm 3.7.

3.4.5 Partially Observed Multi-type Model

The multi-type model was developed from the partially observed case having two types

of individual. The unobserved individuals were special only in that they were subject
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Algorithm 3.7: a-update within Z for multi-type model with �xed a

1 Determine the type of the current initial infective, i;
2 Calculate J(i)(z) and J(i);

3 Sample g ∼ Uni[1,J(i)];

4 Determine the origin generation tO and type iO corresponding to g;
5 Sample t ∼ U[1, τ + 1];
6 Construct z′ by;
7 x′i,0 = xi,0 − 1 = 0;

8 x′i,t = xi,t + 1;

9 x′iO,tO = xiO,tO − 1;

10 x′iO,0 = xiO,0 + 1 = 1;

11 Calculate acceptance probability α;
12 Draw A ∼ U(0, 1);
13 if α < A then

14 reject z′

15 else

16 accept z′

to d-updates or n-updates.

For any of the Λ models described there are several additional constraints that can be

commonly applied. The �rst, already mentioned, is to set a rate to zero prior to the

MCMC run. It may be only a single entry in the infection matrix, or all locations of

that parameter. Obviously, setting a parameter to zero in the product model means

that type cannot be infected nor infect any other type, which is not sensible.

Secondly, we can set several parameters to be equal, thus considering the two types

to be the same. Then, we can consider one of the equal types to by an unobserved

component, performing d-updates or n-updates are desired (perhaps both on di�erent

types).

Combining everything together, we have developed a model to make inference for par-

tially observed multi-type models with both unknown numbers of susceptibles and

infectives of di�erent types (we cannot have an unknown number of susceptibles and
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infectives of the same type for obvious reasons).

3.4.6 Types: De�nition And Notation

If we consider partially observed multi-type epidemics, it is unwieldy to consider H

types, where some types have unobserved components and others not. Instead, we

decompose a type into a set of covariates. Consider the example where each individual

is classed as either an adult, child or infant, and is either observed or unobserved.

Let the type of an individual be de�ned by W mutually exclusive covariates, e.g. age

and component. De�ne the set Hw to be all possible values of the wth covariate, for

1 ≤ w ≤ W . Thus there are Hw = |Hw| values of each covariate, with each individual

having a speci�c value. For an individual i, de�ne the function Hw(i) be the value

of the w covariate, which we shall denote by hw. We can enumerate the set Hw such

that, 1 ≤ Hw(i) ≤ Hw for 1 ≤ w ≤ W . De�ne H(i) to be the vector of covariates of

individual i and H to be the set of all possible W -tuples of H1 × · · · × HW . Then in

total there are H = |H| = H1 × · · · × HW possible types of individual, though there

need not be an individual that exhibits every possible set of covariates.

Returning to our example, a partially observed three-type epidemic consisting of adults,

children and infants that have both an observed and unobserved component. There

are two covariates age and component, i.e. W = 2. For age there are three values

of individual and each individual is in one of the two components, i.e. H1 = 3 and

H2 = 2. Using meaningful labels, instead of numbers, h1 ∈ H1 = {adult, child, infant}

and h2 ∈ H2 = {ob, un}. Then, for each individual i, H(i) is a length two vector in the
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following set,

H(i) = (h1, h2) ∈ H =

{
(adult, ob), (child, ob), (infant, ob),

(adult, un), (child, un), (infant, un)

}
for all 1 ≤ i ≤ N.

By considering the type of an individual as a set of disjoint covariates, we can more

easily express the relationship between individuals. Clearly, considering the above as

a single list of six types of individual is equivalent, though perhaps more confusing

notation wise. In this thesis we only consider models with two covariates, one being a

type of individual and the other being observed or unobserved.

The infection matrix Λ, is now an H×H sized matrix in general. Thus it is appropriate

to use a model with additional constraints in order to reduce the number of parameters

that we make inference for.

3.5 Multi-type Multi-level Epidemics

In Section 3.2 we began with a simple one-type one-level model for a homogeneous

and homogeneously mixing population. By extending the generation representation in

Sections 3.3 and 3.4 we have a general framework for multi-type models allowing for

partially observed populations (a special type of individual).

For the multi-type model we can consider varying infectious period distributions, either

as additional parameters or integrated out of the likelihood using expectations. We have

not shown this explicitly for the multi-type case, a more complete derivation will be

presented in Chapter 4.
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Our �nal extension to the generation representation is to allow for multiple levels of

mixing, as introduced in Section 1.2.5.2. Speci�cally, the inclusion of households where

individuals are able to make local infections within their household and global infections

with the population are di�ering rates.

The addition of multiple levels is similar to multiple types, in Section 3.5.1 we introduce

the de�nition and notation of levels. We present a general framework for an arbitrary

number of types and levels.

As was discussed in Section 3.4.1, a model with arbitrary numbers of types and levels

will over �t the available data. Therefore we present suitable constrained forms for the

infection matrix Λ in Section 3.5.2.

For this chapter we have mainly focused on a �xed infectious period, for simplicity

and computational ease. Continuing in this vein, we present the multi-type multi-level

model likelihood for �xed infectious periods in Section 3.5.3.

Before applying the generation method to a data set in Section 3.6, Section 3.5.4

summarises the MCMC update algorithms developed.

3.5.1 General Framework For Multi-type Multi-level Models

Returning to the case of a fully observed epidemic with a homogeneous population,

i.e. one-type, we now address the need to account for non-homogeneous mixing that

real populations exhibit.

As discussed in Section 1.2.5.2, initial work has focused on a two-level mixing model,

where individuals are members of households, see for example Ball et al. (1997).
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3.5.1.1 Multi-level Notation

Let V denote the number of levels of mixing, so for the household model we have

V = 2. For the �rst level of mixing, we consider all individuals able to mix with all

others at some rate, termed global contacts. Each individual is a member of a single

household (for the current discussion), then the second level consists of all possible

households. Within a household, individuals make contacts at a di�erent, typically

larger, rate called local.

Hence, we can introduce a label for each individual determining their relationship to

other individuals, similarly as we did for the di�erent covariates that comprise an

individuals type in Section 3.4.6.

Let Lv be the number of groups within the vth level and Lv be the set of such groups

(commonly given numerical labels) for 1 ≤ v ≤ V . Similarly, for an individual i in the

population, de�ne the function Lv(i) to be the group individual i belongs to in level v,

the value of which we shall often denote by lv. Finally, let L(i) be the vector of groups

individual i belongs to, such that

L(i) = (L1(i), . . . ,LV (i)) = (l1, . . . , lV ) ∈ L = L1 × · · · × LV .

Consider the example setting of Figure 3.8, consisting of individuals that have two

levels of mixing, within the entire population and within their own group. In this case,

V = 2 and (L1, L2) = (1, 4) and each individual is a member of a distinct level set.

In this case, there are only four such combinations of levels, i.e. determining to which

group an individual belongs.

As for the multi-type model, we encode the varying rates between levels in terms of
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Figure 3.8: Diagram of an example one-type two-level setting with four groups
(commonly called households), i.e. V = 2 and (L1, L2) = (1, 4). Filled
circles indicate individuals who were infective during the course of the
epidemic.

the infection matrix Λ. In the most general model, we consider the matrix to have L2

unique rates, where L = |L|. We shall consider the form of Λ in Section 3.5.2, for now

consider each entry λij as a rate from an individual in group set i to an individual in

group set j, for i, j ∈ L.

For a �xed infectious period, the likelihood of the path can be decomposed into in-

dependent step probabilities as for the multi-type case. Again, we omit varying the

infectious period until Chapter 4.

Thus, for the path z we have a column for individuals for each unique level set. Im-

portantly, the model does not allow for migration of individuals between groups during

the epidemic, it is assumed such events do not occur.

For the infection rates thus far we have always normalised by the total population

size N . For multi-level epidemics it is common to normalise by di�erent constants for

di�erent levels of mixing. For example, in the two-level household model the local rate
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is usually not normalised.

Since the entry λij in the infection matrix will be for a prescribed form, as discussed

in Section 3.5.2, we shall include the normalising constants within λ. Hence, in the

following expressions consider λij to be a function of other parameters.

Then using the example case of Figure 3.8, the probability an individual in group 1

avoids infection from all individuals in generation t is,

exp
(
−λ11

(
ζ(1) + · · ·+ ζ(x1,t)

))
exp

(
−λ21

(
ζ(1) + · · ·+ ζ(x2,t)

))
exp

(
−λ31

(
ζ(1) + · · ·+ ζ(x3,t)

))
exp

(
−λ41

(
ζ(1) + · · ·+ ζ(x4,t)

))
,

where ζ is the infectious period of an individual (we index the individuals within each

generation, hence the parenthesis around the superscript), and xi,t is the number of

individuals of groups i in generation t. Since we are considering a �xed infectious

period, i.e. ζ = c for all individuals, then the above product reduces to

exp

(
−

4∑
i=1

λi1 c xi,t

)
,

and the probability of being infected is one minus the avoidance probability.

In full, the step probability for a two-level model with four distinct level sets and a

�xed infectious period is

PIθ

zt+1 =

 x1,t+1 x2,t+1 x3,t+1 x4,t+1

y1,t+1 y2,t+1 y3,t+1 y4,t+1

 ∣∣∣∣∣zt =
 x1,t x2,t x3,t x4,t

y1,t y2,t y3,t y4,t




=

4∏
j=1

(
Nj − yj,t
xj,t+1

)
(1− exp (−Aj))xj,t+1 (exp (−Aj))Nj−yj,t+1 , (3.23)
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where

Aj =

4∑
i=1

λij xi,t c, j = 1, 2, 3, 4.

The data in the matrix is either

ψ =

 N1 N2 N3 N4

D1 D2 D3 D4

 or θ =


a1 a2 a3 a4

n1 n2 n3 n4

d1 d2 d3 d4

 ,

depending on whether the number of initial infectives is assumed known.

3.5.1.2 Combining Multi-type and Multi-level Models

The likelihood for the multi-type and multi-level models given by Equations (3.18) and

(3.23) respectively are almost identical in form.

De�nition 3.3

An individual has a type de�ned in terms of it's covariates and a level set that de�ne

its relation to all other individuals. We call the combined covariates and levels of an

individual its class, which we shall denote by ω. That is for every individual i, for

1 ≤ i ≤ N ,

ω = (H(i),L(i)) = S(i) ∈ S,

where S = H × L and S = |S| =
∏W
w=1Hw

∏V
v=1 Lv. The function S applied to an

individual i gives the class of that individual.
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Figure 3.9: Diagram of an example multi-type multi-level setting with two types
of individuals: circles and triangles; and four levels of mixing: global,
within town, within households and within workplace.

Then the step probability for a multi-type multi-level �xed infectious period is

PIθ

zt+1 =

 xω1,t+1 · · · xωS ,t+1

yω1,t+1 · · · yωS ,t+1

 ∣∣∣∣zt =
 xω1,t · · · xωS ,t

yω1,t · · · yωS ,t




=
∏
ωj∈S

(
Nωj − yωj ,t

xωj ,t+1

)exp

−
∑
ωi∈S

λωiωj xωi,t c

Nωj−yωj,t+1

×

1− exp

−
∑
ωi∈S

λωiωj xωi,t c

xωj,t+1

. (3.24)

Where ωi and ωj denote two classes of individual and λωiωj is the entry in the infection

matrix Λ corresponding to the rate between these two classes.

Example Setting We present a complicated example setting, with a highly struc-

tured population in Figure 3.9. The total population size is small, N = 25, therefore

we would not attempt to �t such a complex model in practice, we only use this as a

demonstration.
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The population has one characteristic of gender for each individual, male (triangle, 4)

and female (circle, ◦), i.e. W = 1, H1 = H = 2 and H = {4, ◦}. There are four

levels (V = 4) of mixing: within population (L1 = 1), within the two towns A and

B (L2 = 2), within each household (L3 = 9) and within an individuals place of work

(L4 = 2). Note that the within workplace level has two groups, those that work in

the factory and those that do not; it is important to include a void group in each level

so that every individual belongs to a group. Hence there are S classes of individual,

where

S =

W∏
w=1

Hw

V∏
v=1

Lv = (2)× (1)(2)(9)(2) = 72.

The general infection matrix Λ would require 722 separate parameters, which is clearly

inappropriate. Thus we consider constrained forms of Λ shortly.

The data matrix ψ has S columns, one for each class of individual. We can summarise

the ψ based on any characteristic or level by counting the number of individuals desired.

For example, the number of males is

N4 = |{i : H(i) = 4, 1 ≤ i ≤ N}| =
N∑
i=1

I{H(i)=4}.

Similarly for any other identi�er, or group of identi�ers, for example the number of

males in town B,

N4,B = |{i : H(i) = 4 and L2(i) = B, 1 ≤ i ≤ N}| =
N∑
i=1

I{H(i)=4} I{L(i)=B}.

Recall, since there is no temporal information in the generation representation the

infection rates must be interpreted with care. For example, the rate between individuals
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in the factory could implicitly model the factory not being open all day.

3.5.1.3 Types Or Levels

Mathematically, types and levels are equivalent and there is no reason to di�erentiate

between them. In fact, in terms of the likelihood they contribute the same terms. Thus

we could rephrase types as levels or vice versa.

The mechanism they di�er by is in the form of the infection matrix entries. Recall,

we consider the entry λωiωj to be a function of some other set of parameters we have

not yet de�ned. Returning to the three-type one-level partially observed model, it

would be equivalent to consider this as a model with six types of individual. Using

a more structured notation is useful for clarity of expressions and when implementing

algorithms. For example, using the observed or unobserved covariate, we know only to

apply d-updates or n-updates to unobserved classes. The interface is clearer and easily

extended.

Also, though there may be a large number of classes, some of them may be empty,

i.e. there are no individuals matching the speci�c combination of covariates and levels.

The additional notation has been introduced to account for the most general case, for

real life data sets a more speci�c notation may be more appropriate.

3.5.2 Models under consideration

We shall now restrict our attention to models with a single characteristic that consists

of multiple-types and two levels of mixing: within population and within group (which

we shall call households).
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As mentioned, the full general infection matrix contains too many parameters for proper

inference, thus we reduce the model by introducing a new set of parameters, with Λ

being a function of these sub-parameters. Let Λψ(·) be used to emphasis that the

infection rate matrix is a function of these sub-parameters and the data ψ.

In Section 3.4.2 we presented the product model (3.20), susceptibility model (3.21) and

infectivity model (3.22) for the multi-type one-level case. We now present the Product

Model (PM) again, in terms of classes of individuals.

We present two speci�c models for the two-type two-level case, namely the Global-

Local-Susceptibility (GLS) and Global-Susceptibility (GS). We shall use these in Sec-

tion 3.6 to make comparison with the results of Demiris and O'Neill (2005a). Thus,

there is one characteristic W = 1, with two types H = {1, 2} and there are two

levels V = 2 a global population mixing and local mixing within the households,

i.e. L = {(1, 1), . . . , (1, L2)} where there are L2 households. For clarity we shall re-

label the level sets as L = {1, . . . , L} where there are L households.

Thus, the class of an individual can be expressed as ω = (il) for a type 1 ≤ i ≤ 2 and

a household 1 ≤ l ≤ L. Then we write the rate from class ω to class υ for ω, υ ∈ S, as

λωυ = λ(il)(jm)

Where λ(il)(jm) is the rate from an individual of type i in household l to an individual

of type j in household m.

Recall, we have included the normalising constants in the function λωiωj . Thus in the

following models for Λ we shall also specify the normalising constant, usually a function

of the current data ψ, speci�cally the total number, Nω, of a class ω. Note, we say

current since altering ψ is possible via n-updates.
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Global-Local-Susceptibility Model The Global-Local-Susceptibility model is an

adaption of the susceptibility model to the case of global and local mixing. The rates

depend only on the type of the target individual, i.e. the susceptible, thus the model

accounts for varying susceptibility to the disease among di�erent types of individual.

There are two rates, global and local, to account for the two-levels of mixing and both

depend only on the type of the target individual.

Therefore we reduce to the following sub-parameters, a vector of local rates ΛL =

(λL1 , λ
L
2 ), a vector of global rates Λ

G = (λG1 , λ
G
2 ) and ψ, i.e. four infection rate parame-

ters instead of the 4L2 or 2L under the general and product models respectively. Then

the infection rate matrix is a function

Λψ(λ
G
1 , λ

G
2 , λ

L
1 , λ

L
2 ).

We de�ne the additive Global-Local-Susceptibility model as

λ(il)(jm) =


λGj
N for l 6= m

λLj +
λGj
N for l = m,

note that we do not normalise the local infection rates, only the global. This is a

reasonable model for small households of relatively uniform size.

For complicated models there will be some additive levels of mixing and some not. For

the example in Figure 3.9, it would be reasonable to assume that the within workplace

rate was additive with the within household rate, although the within town might not

be additive with the within workplace. Any such model is valid.
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Global-Susceptibility Model The Global-Susceptibility model is similar to the

Global-Local-Susceptibility, except the model allows di�erent rates depending on origin

and target type within a household, i.e. local infections, but global infections still only

depend on the target type. That is

Λψ(λ
G
1 , λ

G
2 , λ

L
11, λ

L
12, λ

L
21, λ

L
22),

and the entries are

λ(il)(jm) =


λGj
N for l 6= m

λLij +
λGj
N for l = m.

3.5.3 Likelihood

The likelihood of a path z for a �xed infectious period is the product of step probabilities

derived in Equation (3.24). Together with a form for the infection rate matrix Λ and

θ.

In Chapter 4 we shall consider the likelihood of an arbitrary infectious period. How-

ever, the �xed period gives similar point estimates of the parameters, with varying

uncertainty.

In Section 3.7 we shall discuss practical issues concerning computing the likelihood. For

an MCMC algorithm, the likelihood must be computed for every Metropolis-Hastings

update, i.e. all updates described for the generation representation.
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3.5.4 Summary Of Update Algorithms And Seeds For Multi-type

Multi-level Model

In Sections 3.2, 3.3 and 3.5 we have presented update algorithms for an MCMC scheme.

Many of them require minor adaption to the the general setting or to a speci�c model.

3.5.4.1 Λ-update

The Λ-update is speci�c to the form of the infection matrix. However, given the set of

sub-parameters used to determine the entries of Λ, the update for the sub-parameters

can be done using a symmetric Random Walk Metropolis with a multivariate normal

proposal distribution, as in Section 3.4.3.

Seed And Tunable Hyperparameters There are no general guidelines for seed

values of the sub-parameters nor the covariance matrix Σ for the multivariate normal

proposal. A small sample chain must be run to obtain estimates, though this will only

be necessary if the number of sub-parameters is large. For the case studies that follow

arbitrary seed values were sucessfully used.

3.5.4.2 Z-update

The path z is now a high dimensional matrix, consisting of a column for each unique

class of individual. We have developed several Z-updates, each with a speci�c purpose.

The K-jump, with tunable hyperparameter Kmax, is the primary Z-update. In general

we shall perform multiple independent K-jumps sequentially within a single iteration.

For all of the MCMC runs performed we compute two K-jumps per iteration, this
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seems to give reasonable mixing characteristics.

There are two possible a-updates, the �rst is a modi�cation to the K-jump allowing

jumps to and from the zeroth generation. Then the total number of initial infectives

may vary. The second maintains a �xed number of initial infectives, commonly a = 1,

and updates which class (Algorithm 3.7 is in terms of types, but it is simple to adapt

to classes) the initial infectives are.

The d-updates and n-updates are for unobserved classes with an unknown number of

infectives or susceptibles respectively. Both updates are easily extended to the case of

classes of individuals where the number of classes is �xed.

Seed And Tunable Hyperparameters The seed path is non-trivial to construct

for the multi-type multi-level case. We desire to seed near to the posterior modal path

to minimise the burn in period. From Section 3.2 and the investigation on Chapter 2

we determined that the approximate length is 2
√
d, where d is the total �nal size across

all classes.

Thus to construct the seed path, begin with the �rst class, ω, and let each generation

be of size one, i.e. xω,1 = · · · = xω,dω = 1 and sω = dω. Then, for the second class,

υ, begin in the generation after the �rst class ended, i.e. rυ = sω + 1, again letting

each generation be of size one. Once the length has reached 2
√
d, reset to the �rst

generation. For classes with an initial infective, begin in the �rst generation to ensure

a reasonable likelihood.

For example, consider a model with 15 classes, each with a �nal size of two, i.e. Dω = 2

for all ω, and a single initial infective in the fourth class. Then d = 29, giving an initial
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seed length of 2
√
29 ≈ 11. Then we construct the seed path as below,

z =

t ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15

0 1

1 1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1

6 1 1

7 1 1

8 1 1

9 1 1

10 1 1

11 1 1

12 1 1

.

Instead of a single individual we could stack them to reduce the length of each class,

but still reset to the �rst generation upon crossing the 2
√
d
th

generation.

The only tunable parameter for the Z-updates is Kmax. Our investigation indicates

the length of the path to vary between
√
d and 3

√
d. Thus, setting Kmax = 3

√
d

would allow jumps of the appropriate length. These results are based on the one-type

one-level case and experience with partially observed epidemics.
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3.5.4.3 Unknown Number Of Classes

We now present two new updates for the multi-type multi-level model, though the �rst is

only presented for completeness. We do not implement the case of an unknown number

of classes. The second is a new type of Z-update to aid mixing of high dimensional

paths.

So far we have always considered the number of columns in the path z to be �xed,

i.e. the number of classes is �xed.

This is primarily of interest for partially observed multi-level epidemics. For the one-

level case altering the number of unobserved infectives or susceptibles required updating

a single column in the path z. Whereas if we introduce an unknown number of house-

holds, then we do not know how many classes there are (since each household de�nes

its own class).

To avoid this issue, we may assume the unobserved population has households exactly in

proportion to the observed component. Then the number of classes is known. However,

this is only valid if we assume the total population size is known, i.e. we are considering

an unknown number of infectives.

For the case of an unknown number of susceptibles, we may add or remove susceptibles

from known classes, but we may also wish to add or remove households as a whole.

This requires adding or removing a column from the path z.

To add a new column, we must propose a new data vector for the class to be added,

θω(a, n, d), then add the d individuals to the current path in some manner. A sensible

proposal for θω would be from the distribution of observed classes.
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Removing a class is simpler, since we can set θ = (0, 0, 0) and the column then has

no contribution to the likelihood. It is more e�cient to zero a column than remove it

entirely, since when adding a new column we can reuse the removed class. This last

point is for computational e�ciency.

We do not implement the adding and removing of entire households, though the method

outlined above would be relatively straightforward to program, there are issues on

mixing and convergence that are unresolved.

3.5.4.4 Slip-update

If there is a large number of non-empty classes, with a relatively small �nal size, dω

and the epidemic is locally driven, i.e. λL >> λG; then the path z will consist of many

small clusters of local outbreaks.

Since each local outbreak will generally progress in consecutive generations, for a given

class ω we would expect rω and sω to be close, relative to the size of dω. We de�ned r

and s in Section 3.3.6.1, where rω = min{t : xω,t > 0} and sω = max{t : xω,t > 0}.

For a locally driven epidemic, where each household outbreak will be initiated by a

single outside infection, we may consider the household outbreak in isolation. This is

commonly assumed to derive limiting results and for other theoretical work.

Thus we expect the length of each class to be in proportion to twice the square root of

the �nal size, that is

sω − rω ≈ 2
√
dω,

following the reasoning as for the seed path.
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If the epidemic is locally driven, then proposing a long K-jump on an individual to a

generation away from the others of its class will lead to a low acceptance probability.

In particular, the class would then have two global infections into it at separate points.

Thus it will take a number of shorter K-jumps to shift all individuals of a class within

the path. Hence, we introduce the slip-update to enable quick movement of an entire

class.

First, we must determine if all individuals within a class can be moved. De�ne the

function Js(zω) to be one if the class ω can all be moved, zero otherwise. Let Js =∑
ω∈S Js(zω), that is the total number of slip-able classes. The slip indicator function

is de�ned as,

Js(zω) =


1 if xt − xω,t > 0 for 0 ≤ t ≤ τ−ω

and if xτ − xω,τ = 0 for τ−ω < t ≤ τ

0 otherwise,

where τ−ω is the largest end generation excluding class ω. Namely,

τ = max{sυ : υ ∈ S}

τ−ω = max{sυ : υ ∈ S\ω},

The special attention needed for the �nal generation is such that a slip can reduce τ in

the candidate path.

We then propose to move the class to a new starting generation at random in the path

excluding the current generation so as not to propose a path identical to the current

one, i.e. r′ω ∼ U[1, τ−ω + 1] not letting r′ω = rω. To sample a new starting generation,

choose uniformly from [1, τ ] and if rω is chosen, set r′ω = τ−ω + 1.
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Hence, the proposal distribution is

q(z′|z) = 1

Js
1

τ−ω
.

We summarise the slip-update in Algorithm 3.8.

Algorithm 3.8: Slip-update within Z for multi-type multi-level model with �xed
a

1 Calculate Js(z) and Js;
2 Sample g ∼ Uni[1,Js];
3 Determine the class to be slipped, ω corresponding to g;
4 Calculate rω, sω and τ−ω;
5 Sample h ∼ U[1, τ−ω];
6 if h = rω then
7 r′ω = τ−ω + 1
8 else

9 r′ω = h
10 Construct z′ by moving class ω to new starting generation;
11 Calculate acceptance probability α;
12 Draw A ∼ U(0, 1);
13 if α < A then

14 reject z′

15 else

16 accept z′

Example Of Slip-update Consider the path,

z =



ω1 ω2 ω3 xt

1 0 0 1

0 0 1 1

1 1 0 2

0 1 1 2

1 0 0 1


removing second column z =



ω1 ω2 ω3 xt

1 0 0 1

0 0 1 1

1 0 0 1

0 0 1 1

1 0 0 1


.



3.5 Multi-type Multi-level Epidemics 241

Only the second column is free to slip, since if we remove the second column the path

remains valid.

Then there are four valid candidate paths,



1 0 0

0 1 1

1 1 0

0 0 1

1 0 0





1 0 0

0 0 1

1 0 0

0 1 1

1 1 0





1 0 0

0 0 1

1 0 0

0 0 1

1 1 0

0 1 0





1 0 0

0 0 1

1 0 0

0 0 1

1 0 0

0 1 0

0 1 0



.

All the candidate paths have the ω2 as a slip-able class, thus the slip-update is reversible.

We use this simple example to justify the slip-update, clearly a slip-update is equiv-

alent to a sequence of K-jumps applied to the same class. However, each K-jump is

performed and accepted independently in sequence, hence the intermediate paths may

have a very low likelihood. Whereas, a slip performs multiple K-jumps in parallel,

which will lead to higher acceptance probabilities.

The slip-update is a method to increase mixing within the path z, as for the d-update,

it is best to have a number of iterations between each slip-update.

The slip-update performs well for one-type multi-level models, but only when there are a

large number of small classes in a locally driven epidemic. However if there are multiple

types, the columns are slipped separately, thus we will separate local individuals and

the acceptance probability will decrease. Instead we can slip sets of columns matching

a given level set, say a household.
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3.6 Case Study

In this section we apply the general framework developed in Section 3.5 to two speci�c

data sets. The �rst is a one-type two-level case and the second is a two-type two-level

case.

Both data sets contain a moderate number of individuals, combined with the additional

structure within the data means we test the ability of the general framework to handle

such structured data. For the moment, we still restrict attention to a �xed infectious

period which is identical for all individuals in the population.

The two data sets were presented in Longini et al. (1988), who consider an approach

using independent households to investigate the community level infection. We compare

our results to those of Demiris and O'Neill (2005a), though they use a gamma infectious

period for the one-type case with shape parameter 2 and rate 1/2.05, we shall make a

comparison with a �xed infectious period of 4.1 days. For the two-type case Demiris

and O'Neill (2005a) use a �xed period of 4.1 days, thus direct comparison is possible.

3.6.1 Data

The �rst data set, ψ(1), is presented in Table 3.9, consisting of individuals of one type

that are grouped into households. The table lists the number of households that contain

Nω individuals of which Dω were infective during the course of the epidemic.

Using the notation of Section 3.5.1 we have, (W,V ) = (1, 2) with H1 = 1, L1 = 1 and

L2 = 287. That is there are 287 groups, which in this case represent households. The

data summarise an outbreak of in�uenza A(H3N2) in Tecumseh, Michigan in the period

1980�1981, see Haber et al. (1988) for details, the data are summarised in Table 3.9.
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Number in House, Nω

1 2 3 4 5 6 7

N
u
m
b
er

In
fe
ct
ed
,
D
ω 0 44 62 47 38 9 3 2

1 10 13 8 11 5 3
2 9 2 7 3
3 3 5 1
4 1 0
5 1
6
7

Total 54 84 60 62 19 6 2 287

Table 3.9: Data for one-type two-level case, ψ(1), an outbreak of in�uenza A(H3N2)
in Tecumseh, Michigan in 1980�1981. Counts for the number of house-
holds matching a given con�guration, ψω = (Nω, Dω), are given. Repro-
duced from Demiris (2004).

We can convert into the form required for our path, i.e. θ = (a, n, d), since we have

the �nal numbers infected in the population on a per household basis and shall assume

a single initial infective. We have reduced Table 3.9 to counts of identical household

con�gurations for clarity, instead of listing each household separately.

The second data set, ψ(2), contains information about two types of individual, depend-

ing on the antibody titre level, which is termed low (type 1) or high (type 2). We can

readily apply the method to the data, since we have the number of individuals and

how many of them became infected on a per household basis. The complete data are

presented in Table 3.10, reproduced from Longini et al. (1988) which contains further

details on the collection and typing of individuals.

There is a single characteristic with two types, i.e. H1 = 2, corresponding to low (1)

and high (2) titre levels. Each individual belongs to one of the 567 groups (households).

In 13 of the household con�gurations (†) we do not know the �nal outcome, also for a

further 9 (‡) con�gurations are unreported. Hence we consider only the 545 households
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for which we have data, i.e. L2 = 545.

The two-type data set is actually from two separate periods, 1965�1971 and 1976�1981,

though this is not important in illustrating the generation method. More importantly,

the study is a random sample of all households, accounting for 10% of the total popu-

lation. Hence, for a full analysis we should include an unobserved component for the

remaining 90%. However, we must decide how to impute the unobserved households,

either randomly or as nine exact copies of the observed component. For our results we

assume η = 1, similar to the analysis by Demiris and O'Neill (2005a), this simpli�es the

analysis at the cost of not fully modelling the data and underestimating the uncertainty

in our parameter estimates.

3.6.2 Results

For ψ(1) we determine the infection matrix using two sub-parameters, i.e. Λψ(1)(λL, λG),

using the additive form de�ned in Section 3.5.2.

For the two-type data, we apply both the Global-Local-Susceptibility and Global-

Susceptibility additive models as de�ned in Section 3.5.2. Hence there are four and

six sub-parameters respectively,

Λψ(2)(λL1 , λ
L
2 , λ

G
1 , λ

G
2 ) and Λψ(2)(λL1 , λ

L
2 , λ

L
3 , λ

L
4 , λ

G
1 , λ

G
2 ).

Since the two types are based on low or high antibody titre levels, it seems reasonable

to use the susceptibility model.

We implemented the algorithm as outlined in Section 3.5.4, using computational meth-

ods we shall discuss in Section 3.7. Speci�cally, for ψ(1) and ψ(2) we perform an update
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N1 N2 D1 D2 Observed

1 0 0 0 45
1 0 18

0 1 0 0 65
0 1 5

2 0 0 0 52
1 0 11
2 0 8

1 1 0 0 52
0 1 2
1 0 8
1 1 4

0 2 0 0 45
0 1 6
0 2 1

3 0 0 0 17
1 0 4
2 0 3
3 0 5

2 1 0 0 28
0 1 1
1 0 6
1 1 0
2 0 2
2 1 2

1 2 0 0 16
0 1 6
0 2 0
1 0 2
1 1 1
1 2 0

0 3 0 0 11
0 1 4
0 2 0
0 3 0

4 0 0 0 16
1 0 4
2 0 6
3 0 0
4 0 2

N1 N2 D1 D2 Observed

3 1 0 0 13
0 1 0
1 0 6
1 1 1
2 0 1
2 1 0
3 0 5
3 1 0

2 2 0 0 11
0 1 0
0 2 1
1 0 1
1 1 3
1 2 1
2 0 3
2 1 0
2 2 0

1 3 0 0 10
0 1 5
0 2 0
0 3 0
1 0 2
1 1 1
1 2 2
1 3 0

0 4 0 0 10
0 1 2
0 2 0
0 3 0
0 4 0

5 0 0 0 3
other 3 †

4 1 0 0 2
other 4 †

2 3 0 0 4
other 6 †

3 2 other 4 ‡
1 4 other 2 ‡
0 5 other 3 ‡

Table 3.10: Data for two-type two-level case, ψ(2), combined outbreaks of in-
�uenza A(H3N2) in Tecumseh, Michigan in 1965�1971 and 1976�1981.
Counts for the number of households matching a given con�guration,
ψ = (N1, N2, D1, D2), are given. Reproduced from Longini et al. (1988)
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Edge Method Generation Method
λL λG λL λG

Mean 0.050 0.193 0.048 0.189

Median 0.049 0.192 0.047 0.188

Standard deviation 0.010 0.025 0.008 0.021

95% highest posterior
density region

(0.032,0.072) (0.15,0.25) (0.032,0.065) (0.15,0.23)

Table 3.11: Comparison of results for one-type two-level data set, ψ(1), between
Demiris and O'Neill (2005a) and generation method. The edge method
assumes a gamma infectious period and the generation a �xed infectious
period, both with mean E[I] = ι = 4.1 days.

of the Λ sub-parameters every iteration and two K-jump updates every iteration.

We compare our estimates for the sub-parameters in each model with those of Demiris

and O'Neill (2005a), Tables 3.11 and Table 3.12 compare the one and two type cases

respectively. Note, for the one-type case the comparison is not direct as a di�erent

infectious period distribution is used.

Given the posterior means and standard deviations in Table 3.12, it is interesting to

consider the relationship between the four sub-parameters. We update the parame-

ters all at once using a multivariate normal with a de�ned covariance matrix Σ, for

the current case set to a diagonal matrix, implying independent components. If two

parameters are highly dependent then the MCMC chain may mix poorly.

Figure 3.10 shows the pairwise plots for each parameter, using every 100th iteration

after the burn in period. The corresponding correlations are in the diagonally opposite

position.

As expected, the local and global rates are negatively correlated within the same type.

Since if we increase the local susceptibility we must balance the corresponding global
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Figure 3.10: Pairwise plots of infection rate parameters using every 100th iteration.
The correlations are given in diagonally opposite position
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Global-Local-Susceptibility Model

Edge ΛL
(

0.0817 (0.013) 0.0124 (0.0073)
0.0817 (0.013) 0.0124 (0.0073)

)

ΛG
(

0.143 (0.014) 0.0576 (0.0090)
0.143 (0.014) 0.0576 (0.0090)

)

Generation ΛL
(

0.0842 (0.013) 0.0182 (0.0084)
0.0842 (0.013) 0.0182 (0.0084)

)

ΛG
(

0.142 (0.014) 0.0564 (0.0090)
0.142 (0.014) 0.0564 (0.0090)

)
Table 3.12: Comparison of results for two-type two-level data set, ψ(2), using the

Global-Local-Susceptibility model and a �xed infectious period of 4.1
days for all individuals. The edge results are reproduced from Demiris
and O'Neill (2005a)

susceptibility, the balance is due to the conditioned �nal outcome of the path, to match

the observed data.

Given the correlation between the parameters, we investigate the mixing of the MCMC

algorithm using the Auto Correlation Function (ACF). Figure 3.11 shows the ACF

for the four sub-parameters of Λ, the two local and two global rates. We can partially

explain the large auto-correlation of λL2 if we examine the two-type data, ψ(2). There

are 18 households that consist of only type 2 individuals where a non-zero number of

them become infected, out of 545 households in total. Thus the amount of information

directly related to the local susceptibility of type 2 individuals is limited. We must

also consider the high dependence between the Λ parameters, especially between local

and global rates, which will reduce the information about λL2 in households containing

both types of individual.



3.6 Case Study 249

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

λ1
L

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

λ2
L

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

λ1
G

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

λ2
G

Figure 3.11: ACF Plots for Λ sub-parameters under the GLS Model from the gen-
eration method, using every 50th iteration
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3.7 A Note On Computation And Parallel Computing

Markov Chain Monte Carlo methods using Metropolis-Hastings update steps require

the calculation of the acceptance probability, consisting of the posterior and proposal

distribution, at each step. For the method to be viable we need to calculate the

acceptance probability accurately and e�ciently.

In Section 3.7.1 we present several optimisations to the acceptance probability calcu-

lations, each reduces the number of computer operations, increasing the speed of each

iteration. These optimisations may have a secondary e�ect on accuracy, removing un-

necessary error. However, eventually the limits of standard computer accuracy will be

met and the calculations will become invalid. In Section 3.7.2 we discuss the issue of

accuracy. Finally, we consider parallel computing techniques in Section 3.7.3. As the

data sets become larger, the time to generate a su�cient number of iterations becomes

prohibitive. Parallel computing can help to tackle such issues.

Other practical concerns exist, though we shall not consider them further. For example,

the amount of memory available to hold a large data set, not only must we store θ but

also the whole path z (as well as temporary candidate versions, θ′ and z′). For the

actual �nal size data, the memory required is very small, but the imputed path may

be a very high dimensional object.

The amount of output generated by an MCMC algorithm can be unmanageable. We

have used the moments of the path z as a summary, reducing the amount of data

output for each generation to four values. If instead we recorded the actual path z

at each iteration we would generate a lot more output. For example, assume each

iteration produces 1 kilobyte of output (in terms of computer �le sizes), then running

106 iterations will produce log �les of approximately 1 gigabyte in size.
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Optimisation is a balance between e�ciency and complexity. Reducing an iteration

from 0.2 seconds to 0.15 seconds will reduce the time for 106 iterations from 2 days and

8 hours to 1 day and 18 hours, a reduction of fourteen hours run-time. Whether such a

reduction is worthwile depends on the e�ort required to optimise the 0.05 seconds per

iteration.

3.7.1 Computational E�ciency

Naive evaluation of the likelihood will in general be an ine�cient operation. For each

update algorithm, the acceptance probability must be analysed to �nd cancellations

and unnecessary terms that can be optimised.

For example, when performing an update of Λ the likelihood must be evaluated, as in

Equation (3.24). However, the binomial coe�cients depend on θ which is unchanged

between the current and candidate Λ′. The coe�cients will be identical in the denom-

inator and numerator, hence we need not waste computer operations in calculating

them.

Likewise, a K-jump alters a single class in z from the origin generation to the target

generation, e�ecting an additional generation either side. Assume tO < tO+δk, i.e. a

forward jump, then the candidate path z′ is identical to the current path z up until

generation tO − 1 and from generation tO+δk + 1 to τ . Since the likelihood of a path z

is the product of independent step probabilities, the identical steps will cancel.

In fact for the K-jump we can go further, since only the binomial coe�cients associated

with the updated class will di�er we can ignore the binomial coe�cients of all other

classes.



3.7 A Note On Computation And Parallel Computing 252

Using temporary variables to hold intermediate results can greatly increase e�ciency.

For example, the two exponential terms in Equation (3.24) are the same, we need only

calculate this once and reuse the value.

For Λ-updates, if we store the contribution of the current state to the acceptance prob-

ability, i.e. the denominator, should the proposed candidate be rejected and the path

not alter in the Z-updates between Λ-updates, we may reuse the denominator value.

Since an acceptance rate of 0.234 is optimal (see Section 1.3.2.4), if the hyperparame-

ters are tuned to achieve this acceptance rate then the probability of the Λ-update and

two subsequent K-updates being rejected is (1− 0.234)3 = 0.45 or 45%. This saving

on forty-�ve percent of 106 iteration updates could have a signi�cant e�ect if the cost

of computing the likelihood is high.

3.7.2 Computational Accuracy And GNU MPFR

Accuracy is dependent upon practical issues, theoretically any mathematical expression

given can be numerically evaluated, however physical limits may cause inaccuracy.

Consider the binomial coe�cient,

(
a

b

)
=

a!

(a− b)! b!
,

a common term in the likelihood of a path z. The formula is valid for any a ∈ Z+ and

0 ≤ b ≤ a, giving an integer number of ways to choose b objects from among a objects.

If we consider a naive function to calculate the binomial coe�cient, we de�ne

f(x) = x! = (x)(x− 1)(x− 2) · · · (2)(1),



3.7 A Note On Computation And Parallel Computing 253

then the binomial coe�cient is calculated as

(
a

b

)
=

f(a)

f(a− b)f(b)
.

However, a computer stores integers in �xed amounts of memory, that is an integer is

represented as a binary number of �xed length. For a 32-bit computer the standard

unsigned integer type is 32 bits, i.e. it can store an integer up to 232 − 1. Thus, if

any of the factorials exceed this limit we have an error called bu�er over�ow, i.e. the

computer is attempting to store a number larger than the maximum it can represent.

The naive approach fails for a ≈ 20, since the factorial of 20 causes a bu�er over�ow

in the numerator, despite the fact that
(
20
b

)
is easily represented by a standard integer

for all values of b.

The problem is the intermediate calculations, principally the numerator, causing a

bu�er over�ow. A solution is to express the binomial coe�cient in an alternate way,

(
a

b

)
=

a!

(a− b)! b!
=

(a)(a− 1) · · · (a− (b− 1))

(b)(b− 1) · · · (1)
=

b∏
i=1

a+ 1− i

i
.

Thus each intermediate value is the ratio of two smaller numbers. Obviously, the ratio

is not in general an integer until the entire product is taken. Using this ratio will

stop a bu�er over�ow of the standard �oat type (the C programming language stores

non-integers as �oating point numbers).

A product propagates any inaccuracy in the terms, since we take a product of rationals

the computer needs to store these internally as base two (binary) numbers. Again, a

computer has a �xed size to store any number, meaning rounding error may occur.

Instead, we can take natural logarithms of the product to give a sum of �oating point
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values, taking the exponential of the sum to give the binomial coe�cient,

(
a

b

)
=

b∏
i=1

a+ 1− i

i
= exp

(
b∑
i=1

log(a+ 1− i)− log(i)

)
.

Note that the �nal answer may not be an integer due to rounding and representation

errors. However, using this form to calculate the binomial coe�cient we can attain

accurate results for a ≈ 90.

As an aside on e�ciency, for the sum of logs expression there are b terms to calculate.

The binomial coe�cient obeys the identity,

(
a

b

)
=

(
a

a− b

)
.

Hence, if 2b > a then calculating
(
a
a−b
)
instead will be quicker.

For larger coe�cients, there are basic types of variable that are stored using more bytes,

the so-called double is equivalent to the size of two �oats, allowing much larger numbers

to be stored. Eventually, there is an upper bound using standard data types, though

this will vary depending upon the programming language used and the architecture

(e.g. x86 32-bit, x86 64-bit, PowerPC, etc.) of the machine used.

The GNU MP (Multi-Precision) library is an extension to the C programming language

allowing integers (and rationals) of arbitrary size to be stored. It uses a custom variable

type that the user can specify the number of bytes of storage. The GNU MPFR (Multi-

Precision Float) is based on GNU MP, allowing �oating point numbers of arbitrary

precision. Hence, we may de�ne a variable to use su�cient memory to calculate any

binomial coe�cient desired.

For acceptance probabilities, we have the opposite problem, attempting to store num-
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bers that are too small. This is called bu�er under�ow, a problem brie�y mention in

Section 2.4.7.3 on the Forward-Backward Algorithm (FBA).

This was also a problem when calculating the probability of a certain connectedness

of a digraph using a brute force path search in Section 2.4.7.2. That is, some paths

resulting in the correct connectedness are highly unlikely, contributing a small but

signi�cant amount to the total probability when summing over all such unlikely paths.

Increasing the precision dramatically a�ects computation time, so it is always more

e�cient to rewrite an expression cancelling terms and removing products before using

GNU MPFR.

For example, using a �xed infectious period we have the likelihood of a path z as the

product of independent step probabilities. This is very numerically unstable, hence if

we consider the logarithm of the likelihood the product becomes a sum. Additionally,

each step is is fact a product of avoidance and infection terms which itself will become

a sum of logs. For the �xed infectious period, standard data types are su�cient to

perform MCMC. However, for alternate infectious periods that are integrated out in

large populations we must resort to using higher precision arithmetic.

3.7.3 Parallel Computing Using GNU OpenMP

An MCMC algorithm must be run for a large enough number of iterations to �rst

converge and then give a su�cient sample to estimate the posterior density.

Using e�cient methods of calculation and removing unnecessary computations is within

the ability of casual programmers, requiring the ability to manipulate the mathematical

expressions.
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Code optimisation is another skill entirely. In the C programming language for example,

the architecture will determine if post or pre incrementing variables is quicker in loops.

Such low level optimisation usually performed by the compiler and is beyond the scope

of this thesis.

There are two further options for decreasing the run-time of our MCMC algorithm.

Using a faster processor, i.e. performing more operations per second, will generally

reduce the run-time. Though other factors play a part. The second option is to use

parallel computing, that is perform disjoint operations in parallel to reduce the overall

run-time.

Recently multi-core processors have become more readily available, these single pro-

cessor chips contain multiple cores that can run their own processes and share access

to the common computer memory. To use this functionality we use GNU OpenMP, a

library that allows simple modi�cation of existing code to a multi-core environment.

OpenMP (Open Multi-Processor) uses a shared memory model for the program, where

all processors share access to the same memory space and are thus all located on the

same physical machine. For details of OpenMP in the C programming language see for

example Chapman et al. (2007).

A separate technology called MPI (Message Passing Interface) is used for running a

program across multiple machines that are connected via a data network. Thus each

machine, called a node, is a separate unit, with no direct access to the memory of

another node in the cluster (the collection of all nodes). To facilitate parallel com-

putation, each node must exchange data over the network linking the cluster, called

message passing.

See Quinn (2004) for a discussion of the two approaches and details of their implementa-

tion, possibly combining both technologies in the same application. When to use either
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technology is dependent upon the speci�c program, data structures and calculations

required. As a guide, MPI is more suited to lengthy calculations on small fragments of

the entire data. Whereas OpenMP is more suited to many short calculations, requiring

repeated reference to the entire data structure.

As an additional consideration, to use MPI the program should be designed for that

purpose from the start. The mechanism of message passing requires careful planning

of functions and access to speci�c data and variables. Conversely, it is far simpler to

convert an existing program to use OpenMP. The shared memory aspect of OpenMP

can cause so-called race conditions, where two processors attempt to read and write

the same variable giving unpredictable results; care must be taken to avoid such errors.

For our MCMC algorithm, OpenMP is the more appropriate technology. The accep-

tance probability is a function of two large data structures, the current and candidate

paths, thus it is reasonable to use the shared memory model with each processor cal-

culating a disjoint part of the likelihood. For an MPI approach, we would need to pass

the entire path to all nodes. As discussed, the path is a sequence of independent step

probabilities each of which can be calculated in parallel and then combined. This is

the primary used of parallel computing in our algorithm, we omit speci�c details of

implementing the parallel code.

OpenMP is relatively easy to implement, requiring minor alterations in existing code.

However, this does not always give the best improvement. Figure 3.12 shows the

run-time ratios (relative to a single processor) for the two-type two-level and one-type

two-level models. Each test used a sample run of 104 iterations and limited the number

of processors as indicated on the x-axis. The theoretical ratio is also plotted, it is clear

that the actual speedup is far below that in theory.

There are many reasons for the less than optimal speedup, many are technical in nature
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Figure 3.12: Run-Time Ratios for the one-type two-level and two-type two-level
algorithms using OpenMP running on a twin quad core machine using
various numbers of processors.

and are to do with computer architectures including: memory access, processor cache

sizes and number of cores on each chip (in this case we use two quad-core processors).

Two other issues can also be easily identi�ed, the algorithm logic and job scheduling.

OpenMP is designed to be added to existing programs, however it is sometimes bet-

ter to rewrite the entire code to accommodate more possibilities for parallel sections.

Scheduling is how parallel sections of code are divided among the available processors,

there are several schemes built into OpenMP and selecting which to use for the best

gain in e�ciency is not trivial. The Computer Science literature contains more on

this and related topics, see for example Ayguad et al. (2003) on OpenMP scheduling.

These issues are beyond the scope of this thesis, thus we must accept sub-optimal

improvements.



259

Chapter 4

Equine In�uenza

4.1 Introduction And Motivation

In Chapter 3 we developed a general framework to analyse multi-type multi-level �nal

size data given that all individuals have an independent and identically distributed

(i.i.d.) infectious period, speci�cally a constant period, i.e. I = c, and a speci�ed

infection matrix, Λ, in terms of a set of sub-parameters that we wish to make inference

for using Markov Chain Monte Carlo (MCMC). A variety of MCMC updates were

considered, including the ability to model partially observed epidemics. In this chapter

we extend the framework of Chapter 3 and use this to analyse �nal size data for an

outbreak of Equine In�uenza (H3N8) at Newmarket in 2003.

In Section 4.2 we shall adapt our generation method to accommodate an arbitrary

infectious period for each class of individual, subject to conditions upon its moment

generating function. The population may be partitioned into subsets, which we de�ne

as classes in Section 3.5, based on group membership, e.g. households or place of work,

and a set of covariates that describe each individual, e.g. gender, age or observed.

The study of equine in�uenza within racehorse populations has received attention in the

veterinary literature, though applied examples in the epidemics literature are lacking.

We follow the analysis of Baguelin et al. (2009), who apply standard results from

epidemic modelling and use Approximate Bayesian Computation (ABC) to estimate
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parameters in a standard one-type two-level mixing model. We shall present the data

and model in Sections 4.4 and 4.5 respectively, then compare the results of Baguelin

et al. (2009) with our MCMC algorithm in Section 4.6.

The estimates obtained using the two techniques, ABC and MCMC, are noticeably

di�erent, more so than can be explained by the variance of the estimators. To in-

vestigate this further we perform a simulation study, which allows us to demonstrate

the behaviour of the epidemic given the di�ering parameter estimates. Ultimately, the

estimates di�er because they are based on di�erent likelihoods and assumptions.

4.2 General Infectious Period

Before considering the Newmarket outbreak data, we expand upon the general model

for �xed infectious periods described in Section 3.5.1 and incorporate general infectious

period distributions into the likelihood of Section 3.5.3. Further, we allow each class

to have its own speci�ed infectious period distribution.

Using the notation for the general model in Section 3.5, we now de�ne the infectious

period distribution of the class ω to be Iω, for ω ∈ S. As before, the population is

closed without migration between groups, that is the class of an individual i, denoted

S(i) = ω, is �xed for the duration of the epidemic. Then an individual i is a member

of the class ω and has an infectious period distributed according to Iω which we shall

denote Iiω, i.e. I
i
ω

d
= Iω, and a realisation of this random variable shall be denoted ζi.

It is not necessary to include a class subscript on ζi since the individual's label i gives

this implicitly, though it may be included for clarity. Then, the vector of infectious
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periods is

I =
(
IS(1), IS(2), . . . , IS(N)

)
.

Recall, we can reduce the vector to only those individuals that are ultimately in-

fected, i.e. a length D vector. For a path z, let xt and xω,t denote the total number

of individuals and the number of individuals of class ω in generation t respectively,

i.e.
∑

ω∈S xω,t = xt. Let It be the vector of infectious periods of individuals in genera-

tion t. For clarity, we relabel individuals within It using the index j, for 1 ≤ j ≤ xt,

such that j corresponds to the label of an individual i in the population. In this case it

is necessary to indicate the class of individual j in generation t, speci�cally ωj . Then

we de�ne Ijωj and ζ
j
ωj as the infectious period and a realisation for individual j in gen-

eration t. Finally, we denote the N length vectors of independent infectious period

distributions as I and a realisation as ζ, similarly we de�ne It and ζt to be the Xt

length vectors of the infectious period distributions of individuals in generation t.

This construction allows for a large variety of models using di�erent infectious period

distributions for di�erent classes of individuals. We may include parameters from the

infectious period distributions into our MCMC algorithm, though these parameters

may be unidenti�able. This is the case for a �xed infectious period in the one-type

one-level model, where the length I = c and rate λ always appear as a product in the

likelihood, hence we cannot identify both in the model and must specify the length

of the infectious period prior to making inference. Given the issues of identi�ability

we shall only consider fully speci�ed infectious period distributions. Note, the issue of

identi�ability is non-trivial for complicated models with highly correlated parameters,

being dependent upon the data and model.
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We wish to calculate the likelihood of the path z. Then, as before we have

P[Z = z|I = ζ]

=P[Z = (z0, z1, . . . , zτ , zτ+1)|I = (ζ1, . . . , ζN )]

=

τ∏
t=0

P[Zt+1 = zt+1|Zt = zt, It = ζt]

=

τ∏
t=0

P[Zt+1 = zt+1|Zt = zt, It = (ζ1ω1
, . . . , ζxtωxt

)]

=

τ∏
t=0

P[Zt+1 = zt+1|Zt = zt, It = (ζ1ω1
, . . . , ζ

xω1,t
ω1 , ζ1ω2

, . . . , ζ
xω2,t
ω2 , · · · , ζ1ωS

, . . . , ζ
xωS,t
ωS )].

(4.1)

Here we have listed individuals in generation t by their class. In general not all S classes

will appear in each generation, this notation is convenient in the following expression

of the general step probability.

As discussed in Section 3.2.4.3, there are two approaches to non-constant infectious

periods. We may include the infectious periods as new parameters in the MCMC

algorithm adding more imputed data, this would require the individuals to be labelled

within each generation such that we can associated a speci�c infectious period with each

individual. Then path updates moving individuals between generations must take the

correct infectious period associated with that individual to the new generation. This

adds extra book keeping to the algorithm and increases the size of the imputed state

space, which must be explored by the MCMC algorithm to insure adequate mixing over

the parameters of interest, i.e. the infectious rates. Alternatively, we may integrate

the infectious periods out of the likelihood. This creates a more complicated and

computationally costly likelihood, but has the bene�t of removing the need to impute

parameters that are of no interest and may cause problems with mixing.
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Using the notation of Equation (4.1), following the derivation and form of Equa-

tion (3.24), the probability of an individual of class ω1 avoiding infection from gen-

eration t is

exp
(
− λω1ω1(ζ

1
ω1

+ · · ·+ ζ
xω1,t
ω1 )− λω2ω1(ζ

1
ω2

+ · · ·+ ζ
xω2,t
ω2 )

− · · · − λωSω1(ζ
1
ωS

+ · · ·+ ζ
xωS,t
ωS )

)
=exp

(
−
∑
ωi∈S

λωiω1(ζ
1
ωi

+ · · ·+ ζ
xωi,t
ωi )

)
,

and probability of infection is one minus the probability of avoidance. Note we need

the total infectious time of individuals of each class ωi ∈ S in generation t, i.e. the

infectious pressure.

Thus the step probability given the infectious period vector is,

P[Zt+1 = zt+1|Zt = zt, It = ζt] =∏
ωj∈S

(
Nωj − yωj ,t

xωj ,t+1

)
exp

(
−
∑
ωi∈S

λωiωj (ζ
1
ωi

+ · · ·+ ζ
xωi,t
ωi )

)Nωj−yωj,t+1

(
1− exp

(
−
∑
ωi∈S

λωiωj (ζ
1
ωi

+ · · ·+ ζ
xωi,t
ωi )

))xωj,t+1

. (4.2)

Equation (4.2) is a product over each class of individual. A class contributes three

terms to the product: a binomial coe�cient for the number of ways to select the next

generation; the probability of avoiding those not chosen and the probability of infecting

the next generation.

If we include the infectious periods as additional parameters in the MCMC algorithm

we may use Equation (4.2) to calculate the likelihood. Alternatively, if we wish to

integrate out the infectious period parameters, we must take the expectation with
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respect to I. Using the following relation,

(1− x)n =

n∑
k=0

(−1)n−k
(
n

k

)
xn−k,

we can rewrite Equation (4.2) as,

P[Zt+1 = zt+1|Zt = zt, It = ζt] =∏
ωi∈S

{(
Nωi − yωi,t

xωi,t+1

)
exp

(
−
∑
ωj∈S

λωjωi(ζ
1
ωj

+ · · ·+ ζ
xωj,t

ωj )
)Nωi−yωi,t+1

xωi,t+1∑
k=0

(−1)xωi,t+1−k
(
xωi,t+1

k

)
exp

(
−
∑
ωj∈S

λωjωi(ζ
1
ωj

+ · · ·+ ζ
xωj,t

ωj )
)xωi,t+1−k

}
.

Then combining the exponential terms and using the expansion,

N∏
n=1

(
δn∑
k=0

An,k

)
=

δ1∑
k1=0

· · ·
δN∑

kN=0

A1,k1 . . . AN,kN ,

we obtain the expression,

P[Zt+1 = zt+1|Zt = zt, It = ζt] =

{ ∏
ωi∈S

(
Nωi − yωi,t

xωi,t+1

)}
xω1,t+1∑
kω1=0

· · ·
xωS,t+1∑
kωS

=0

[ ∏
ωi∈S

(−1)xωi,t+1−kωi

(
xωi,t+1

kωi

)

exp
(
− (Nωi − kωi − yωi,t)

∑
ωj∈S

λωjωi(ζ
1
ωj

+ · · ·+ ζ
xωj,t

ωj )
)]
.

Rearranging we obtain (note by de�nition yω,t+1 = yωt +xω,t+1 as used to combine the
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exponential terms),

P[Zt+1 = zt+1|Zt = zt, It = ζt] =

{ ∏
ωi∈S

(
Nωi − yωi,t

xωi,t+1

)}
×

xω1,t+1∑
kω1=0

· · ·
xωS,t+1∑
kωS

=0

[( ∏
ωi∈S

(−1)xωi,t+1−kωi

(
xωi,t+1

kωi

))
( ∏
ωi∈S

∏
ωj∈S

exp
(
− (Nωi − kωi − yωi,t)λωjωi(ζ

1
ωj

+ · · ·+ ζ
xωj,t

ωj )
))]

,

then altering the order of the products gives,

P[Zt+1 = zt+1|Zt = zt, It = ζt] =

{ ∏
ωi∈S

(
Nωi − yωi,t

xωi,t+1

)}
×

xω1,t+1∑
kω1=0

· · ·
xωS,t+1∑
kωS

=0

[( ∏
ωi∈S

(−1)xωi,t+1−kωi

(
xωi,t+1

kωi

))
( ∏
ωj∈S

exp
(
− (ζ1ωj

+ · · ·+ ζ
xωj,t

ωj )
∑
ωi∈S

(Nωi − kωi − yωi,t)λωjωi

))]
.

De�ne φω to be the moment generating function of Iω, so that

φω[s] = EIω [e
−sIω ], s ≥ 0. (4.3)

Then taking the expectation with respect to the infectious periods, and since all infec-
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tious periods are independent (though not necessary identically distributed),

EI [P [Zt+1 = zt+1|Zt = zt, It]]

= P[Zt+1 = zt+1|Zt = zt] =

{ ∏
ωi∈S

(
Nωi − yωi,t

xωi,t+1

)}
×

xω1,t+1∑
kω1=0

· · ·
xωS,t+1∑
kωS

=0

∏
ωi∈S

(−1)xωi,t+1−kωi

∏
ωi∈S

(
xωi,t+1

kωi

)
∏
ωj∈S

φωj

∑
ωi∈S

λωjωi(Nωi − kωi − yωi,t)

xωj,t
 .

Thus we can specify an arbitrary infectious period distribution of each class ω ∈ S,

provided the generating function in Equation 4.3 can be evaluated.

We now have the multi-type multi-level generation probability for any infectious period

distribution and any infection matrix Λ. In the case of �xed infectious period, Iω = c,

for all ω ∈ S we have φω(s) = exp(−cs) and expression (4.2) reduces to that given in

Section 3.5.3.

4.3 Model And Optimisation

In this chapter we shall consider an infectious period determined by a discrete empirical

distribution, thus φ(s) is a �nite sum, which requires careful evaluation to keep rea-

sonable run-times. For simplicity, as well as computational e�ciency, we shall assume

all classes of individual have the same infectious period distribution, i.e. Iω
d
= I for all

ω ∈ S, returning to the case of i.i.d. infectious periods.

As discussed in Section 3.5.2, Equation (4.2) is for the general infection matrix Λ.
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However, we shall impose a restricted model for the infection matrix Λ in terms of

sub-parameters.

4.3.1 Form Of Infection Matrix

Recall the Global-Local-Susceptibility (GLS) Model as de�ned in Section 3.5.2, which

consists of an H length vector of Global rates, λG and an H length vector of Local

rates, λL; a local and global susceptibility for each type. An individual's type is the

collection of values it takes for each covariate used to describe the population. Then

the infection matrix, Λ = (λij), giving the susceptibility of a type j individual to an

infection from a type i individual, is a function of these sub-parameter,

Λψ(λ
L
1 , . . . , λ

L
H , λ

G
1 , . . . , λ

G
H).

For the household data considered in Chapter 3 the size of each household was small

in comparison to the population size. Also, the distribution of household sizes, and

corresponding �nal sizes, was relatively narrow in the range from zero to seven. Hence

the local rate was unnormalised, resulting in no variation between households.

For the Newmarket data, the number of horses in each yard varies considerably, the

minimum and maximum yard sizes are 6 and 190, with a mean of 43.45 and a median of

31. Thus we include the size of each yard as a normalising factor in the local infection

rate. Hence the GLS model is de�ned as,

λij =


λGH(j)

N for L(i) 6= L(j)
λLH(j)

NH(j)
+
λGH(j)

N for L(i) = L(j),
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giving the rate from an individual of type i to an individual of type j. Where NH(j) is

the number of individuals of the same type as individual j. Recall from Section 3.5, for

an individual j in the population, j ∈ {1, . . . , N}, then H(j) is the type of individual

j in terms of the vector of covariates. Similarly, L(j) is the level of individual j as the

vector of groups to which it belongs.

For the Newmarket outbreak we have complete data for a single type of infective with

two levels of mixing, which reduces to only two sub-parameters, i.e. a local and global

rate λL and λG respectively. Hence the class of an individual i, denoted ω is simply

the yard to which that individual belongs.

4.3.2 Optimisation Of Likelihood

As discussed in Section 3.7.1, it is important to analyse the likelihood and �nd any

cancellations or re-usable terms to prevent unnecessary calculations. For the one-type

two-level GLS model with i.i.d. infectious periods, it is possible to store intermediate

evaluations of the generating function φ(s). If the function can be expressed in a simple

analytical form the saving may not be that great. However, if φ must be evaluated

numerically then we may save many calculations.

Let ω and ν be two classes of individual, e.g. two yards, then consider the generation

function in Equation (4.2),

φω

[∑
ν∈S

λων(Nν − kν − yν,t)
]
.
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If we partition the sum into local and global rates, we have

φω

[∑
ν∈S

λων(Nν − kν − yν,t)
]

= φω

[ λL
Nω

(Nω − kω − yω,t) +
∑
ν∈S

λG

N
(Nν − kν − yν,t)

]
= φω

[ λL
Nω

(Nω − kω − yω,t) +
λG

N

∑
ν∈S

(Nν − kν − yν,t)
]

= φω

[ λL
Nω

(Nω − kω − yω,t) +
λG

N
(N − yt −

∑
ν∈S

kν)
]
.

Where φω is a function of kω and the sum of all k's. Equation (4.2) includes a cascading

sum over sets of k's. Therefore, if we store the values of φω for a given set of k's we can

reuse the value for combinations with the same total, i.e.
∑

ν∈S kν , and kω. For large

generation sizes across multiple classes, the values will be reused a number of times

saving the cost of repeatedly evaluating the generating function.

4.4 Data

We thank Marc Baguelin and Nikos Demiris for providing the data for the outbreak of

Equine In�uenza (H3N8) at Newmarket in 2003. The outbreak is described by Newton

et al. (2006), though the full data set is not included. Though the outbreak obviously

occurred over a period of time, it was not recorded in su�cient detail to permit temporal

modelling; speci�cally, the times of infection and removal are missing. Only the time

of detection of the �rst case is recorded for each yard and the overall length of the

outbreak, which is insu�cient to reliably use temporal inference techniques. However,

there was a de�ned end point to the outbreak, which progressed over the period March

to May 2003. Thus, we can apply our �nal size analysis based on the available counts

of infected horses in each yard.
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To apply our method we require the number of horses in each yard and the number that

were infected during the course of the epidemic. This detail is not present in Baguelin

et al. (2009), but was provided by the authors. However, the data provided for the

outbreak is not exactly as described by Newton et al. (2006) or analysed by Baguelin

et al. (2009). Speci�cally, these papers discuss the twenty-one yards that were infected

during the outbreak, but Table 4.1 only includes twenty yards with cases. The data

are compiled from several sources, including trainer surveys and other mis-matched

sources, hence it is unsurprising that di�erent versions exist. Also, we shall assume a

single initial infective in a given yard, corresponding to the yard where the outbreak

was �rst detected, it is uncertain whether Baguelin et al. (2009) are using the same seed

yard, speci�cally yard 13 in Table 4.1. Our brief investigation of the placement of the

initial infective in Chapter 3 determined there was little e�ect, though in that case the

household sizes were small and relatively uniform, which is not the case for the yards.

For the purpose of illustrating our method these di�erences are unimportant, though

for the comparison of the parameter estimates these discrepancies must be considered.

Investigations into the factors associated with risk of infection have been reported by

Barquero et al. (2007). In particular, there is a compulsory vaccination program for

horses that attend race events. However, the e�ect of the vaccine is variable due to

factors such as antigentic drift and characteristics of each horse, e.g. vaccine type and

administration schedule. Such detail is unavailable in the data provided, though small

numbers of horses were tested for immunity in each yard, the results of these tests

should be used with caution since it is di�cult to accurately determine immunity (see

Park et al. (2004) for a discussion of the two common strains for Equine In�uenza).

Also, we do not have break downs of yards into male and female horses, a factor that

Barquero et al. (2007) �nd signi�cant in the risk of infection. In the latter part of their

paper, Baguelin et al. (2009) consider vaccination e�ects and interventions, so-called
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vaccination in the face of an outbreak. Our non-temporal method cannot accommodate

such interventions, hence we do not consider this further.

The latent and infectious periods of equine in�uenza were investigated in a study by

Park et al. (2004) on a sample of 24 horses. The distributions are estimated by an

empirical distribution and are used by Baguelin et al. (2009), hence we also adopt

these values. Recall that, for �nal size analysis, the Susceptible-Exposed-Infective-

Removed (SEIR) model which includes a latent period (see Section 1.2.5.1) has the same

�nal size distribution as for the Susceptible-Infective-Removed (SIR) model. Hence we

apply our method using only the empirical infectious period as de�ned in Table 4.2.

For comparison we use a �xed infectious period with mean equal to the empirical

mean of 31
3 days. However, Baguelin et al. (2009) use an exponential infectious period

and the empirical distribution. As discussed in Demiris and O'Neill (2005a), di�ering

infectious period distributions give similar point estimates of the rate parameters, thus

it is reasonable to compare a �xed period with an exponential.

The complete �nal outcome data for all 58 yards is given in Table 4.1. For each yard i

we have the total number of horses and the detected �nal size, Ni and Di respectively.

Thus the total population is
∑

iNi = 2520 and the total �nal size is
∑

iDi = 617.

For a subset of the yards, a sample of horses were tested using an anti-body level

test, checking for immunity. These are reported as the total tested and the number of

those tested that were found to be immune. This additional information is included

for reference and to motivate further work. Due to the uncertainty over the testing

procedure, the de�nition of immune and other unknown factors we do not consider this

additional information.

A reduced data set, consisting of only ten yards, is presented in Table 4.3. The reduction

is motivated by Baguelin et al. (2009) to enable to computation of parameter estimates,
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a similar bene�t in run-time is obtain for our MCMC algorithms and so we also analyse

this smaller data set. These ten yards are identical to those in Baguelin et al. (2009),

being provided by the authors. However, the ten yards are not an exact subset of

Table 4.1, there is no corresponding entry for some of the rows in Table 4.3. The third

yard is indicated to contain the single initial infective, this is after matching with the

equivalent yard in the raw data provided, this matching may be incorrect. Lacking

a one-to-one correspondence between the two data sets, we cannot include any of the

additional immunity information.

As a �nal consideration, as indicated by Baguelin et al. (2009), the reported �nal sizes

are actually from a sample of each yard. Thus, within a yard of size Ni, a number

of horses, Ñi, were tested for the disease of which Di were found to be positive. The

actual number tested within each yard is unknown, but the sampling was performed

at random.

4.5 Model

As discussed in Newton et al. (2006) and Baguelin et al. (2009), the horses are moved

along paths between yards and training areas, with horses passing close enough to

permit infection. Thus it is reasonable to assume a one-type two-level mixing model,

having a within yard and a global mixing rate. Though spatial data is available for

the yards, there is no biological motivation for adding a more complex model than the

two-level mixing.

For our MCMC method, de�ne Λ as in Section 4.3.1 and let there be a �xed single

initial infective in the indicated yard, i.e. 13 and 3 for the 58 and 10 yards respectively.

We consider a �xed infectious period of 31
3 days and the empirical infectious period
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Yard Ni Di Tested Immune Yard Ni Di Tested Immune

01 13 0 30 11 0
02 14 0 31 14 0
03 89 0 32 19 17 17 15
04 27 0 33 97 0
05 30 2 34 43 0
06 67 0 35 24 0
07 32 16 8 4 36 10 0
08 83 39 80 67 37 45 0
09 18 0 38 18 2 16 16
10 6 0 39 67 0 56 20
11 23 0 40 19 16 17 15
12 18 0 41 20 0
13 † 103 78 78 45 42 39 0
14 7 0 43 82 0
15 18 0 44 23 0
16 141 74 124 84 45 9 0
17 17 0 46 65 0 26 26
18 7 0 47 190 134 159 137
19 35 0 48 32 29 34 30
20 110 33 49 62 0
21 20 0 50 16 0
22 13 0 51 49 0
23 17 0 52 41 17 31 25
24 47 47 53 37 12
25 70 13 62 51 54 59 0
26 36 0 33 18 55 25 19 24 16
27 29 0 56 25 13
28 103 25 57 70 9
29 46 0 43 2 58 70 22

Table 4.1: Data for the outbreak of equine in�uenza at Newmarket in 2003, ψ(3).
Giving the size, Ni, and the reported �nal outcome, Di, of each yard i;
the �rst detected yard is indicated by †. Also, tests for immunity within
selected yards where a number of horses were randomly tested.
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Number of Days Infectious 0 1 2 3 4 5 6 7

Frequency 0 7 1 4 2 9 1 0

Table 4.2: Empirical infectious periods for a study of 24 horses that were heterol-
ogously vaccinated. Each horse was infected and observed to determine
the latent period (not shown) and the infectious period, estimated as
the number of days between the virus �rst being detected and the last
detectable symptom, see Park et al. (2004) for further details.

Yard Ni Di

1 60 18
2 83 78
3 103 80 †
4 141 78
5 36 6
6 25 19
7 19 16
8 190 139
9 32 30
10 41 21∑10

i=1Ni = 730
∑10

i=1Di = 485

Table 4.3: Reducing the full data set to 10 yards, ψ(4), to ease computation of the
parameter estimates. The single initial infective is assumed to be in the
third yard, †, i.e. D3 = 80, a3 = 1 and d3 = 79. Note, the yards do not
match exactly with those in Table 4.1, thus we do not have immunity
data.
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distribution of Table 4.2. Baguelin et al. (2009) analyse the same model, though using

di�erent techniques and an exponential infectious period with mean 31
3 days instead of

a �xed period.

Baguelin et al. (2009) also consider the issue of initially immune individuals, that is a

proportion of horses begin in the removed state of the SIR epidemic, which our non-

temporal �nal size inference can accommodate. The proportions of truly susceptible

horses in each yard are estimated using a risk parameter derived from a sample of 400

horses in 10 yards. These 10 yards are not those of Table 4.3 (the total number of

horses do not match), so we cannot reproduce this part of the model. In the following

section, it is assumed the entire population is susceptible, i.e. a homogeneous one-type

model, for the MCMC method and also for the results of Baguelin et al. (2009) unless

otherwise stated.

4.6 Results

Given the data and model, we make inference on the parameters of interest, i.e. λL

and λG. In Section 4.6.1 we present the results of Baguelin et al. (2009) and discuss

the methods used to obtain these estimates. The description of these methods is

from interpreting the published paper (and a preprint). At times the exact method

is unclear and we have made assumptions on the authors method and analysis. To

maintain consistency within the thesis, the methods are translated into our notation.

Section 4.6.2 gives the posterior estimates from our MCMC generation method. As

always, it must be checked that the MCMC chain has indeed converged and a technique

to check is outlined in Section 4.6.3. The immunity of horses is brie�y discussed in

Section 4.6.4, with potential future work considered.
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Data Infectious Period λL λG

Full Exponential 1.03 0.015

Empirical 0.7 0.015

10 Yards Exponential 0.78 0.017

Empirical 0.69 0.016

Table 4.4: Summary of results presented by Baguelin et al. (2009), obtain using a
method similar to Approximate Bayesian Computation for the outbreak
of equine in�uenza at Newmarket in 2003. Both infectious period distri-
butions have a mean of 3 1

3 days.

Finally, since the estimates di�er between the methodologies, this di�erence is inves-

tigated by performing a simulation study in Section 4.6.5 and explanations of the

simulations are given.

4.6.1 Published Results And Methods

The results of Baguelin et al. (2009) are summarised in Table 4.4, namely the point

estimates of the local and global infection rate for both data sets using an exponential

and empirical infectious period. We now discuss the methods used to obtain these

estimates. Unfortunately, the variance of these estimates are not explicitly stated.

Baguelin et al. (2009) consider two methods to estimate the parameters, the �rst is

applied to the 58 yard data set, the second to the reduced 10 yard data. In this

section we reproduce these methods, as stated in Baguelin et al. (2009), though several

issues are noted, the comparison between methods and estimates in deferred until

Section 4.6.5.
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4.6.1.1 First Method

Using the full data set, Baguelin et al. (2009) implement an ABC rejection algorithm,

as de�ned in Section 1.3.4. There is a growing literature for ABC, in particular in

population genetics where the method was originally applied, see for example Beaumont

et al. (2002), Sousa et al. (2009) and Toni et al. (2009).

Recall, the data described by Baguelin et al. (2009) is not the same as presented in

Table 4.1, an additional yard has infections detected in it, i.e. twenty-one yards instead

of the twenty in Table 4.1. However, more importantly the total number of yards

in their analysis is unknown, i.e. additional yards that were not infected during the

outbreak. Clearly, yards that avoid infection are a source of information on the global

rate, λG. Newton et al. (2006) describe the outbreak as occurring in twenty-one yards

involving over 1300 horses, from Table 4.1, the total number of horses in the twenty

yards that are infected is 1185. Further, the map of the yards at Newmarket in Newton

et al. (2006) contains 68 yards. From now on, we shall assume the estimates in Table 4.4

are based on the data in Table 4.1 (though this is clearly not the case).

ABC is a technique to obtain samples from a posterior distribution using an approxi-

mation to the likelihood. This is achieved by generating realisations of a process using

a set of parameters, then de�ning a metric to determine if the realisation is close to

the observed data. If it is close, then the parameter values used to generate it are a

sample from the approximate posterior.

Formally, let λL and λG be the parameters of interest. Given N = (N1, . . . , N58) and

a = (0, . . . , 1, . . . , 0) (a single initial infective in the 13th yard), Baguelin et al. (2009)

generate a realisation of the continuous time SEIR epidemic. Details of the simulation

method are not given, in particular for the empirical infectious period distribution the
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process is no longer Markovian. Let fB(D|λL, λG, N, a) denote the likelihood of a �nal

size vector D = (D1, . . . , D58) given the rates and yard sizes, then generate the ith

realisation as D[i] ∼ fB(D|λL, λG, N, a).

For the distance metric, Baguelin et al. (2009) consider the total �nal size and the

number of yards infected, speci�cally the �nal size must be between 24% and 25% of

the population, i.e. 612 ≤
∑

kDk ≤ 638 and twenty yards must be infected (though

not necessarily the twenty yards in the observed data). The �nal size restriction is

applied on its own, then together with the required number of yards. Formally, we

can express this as the following, for the ith realisation, let ∆B1 and ∆B2 denote the

distances between a realisation and the observed �nal size vector, D = (D1, . . . , D58),

then

∆B1(D,D
[i]) =

(
1− I

(
612 ≤

58∑
k=1

D
[i]
k ≤ 638

))
, (4.4)

and

∆B2(D,D
[i]) =

∣∣∣∣∣1− I

(
612 ≤

58∑
k=1

D
[i]
k ≤ 638

)∣∣∣∣∣+
∣∣∣∣∣20−

58∑
k=1

I
(
D

[i]
k > 0

)∣∣∣∣∣ , (4.5)

where I (E) is the indicator function for event E. Note, we must de�ne the distances

as in Equations (4.4) and (4.5) such that, for two arbitrary �nal size vectors of length

K, i.e. D[i] = (D
[i]
1 , . . . , D

[i]
K) and D[j] = (D

[j]
1 , . . . , D

[j]
K ), the ∆B2-distance is

∆B2(D
[i], D[j]) =

∣∣∣∣∣I
(
612 ≤

K∑
k=1

D
[i]
k ≤ 638

)
− I

(
612 ≤

K∑
k=1

D
[j]
k ≤ 638

)∣∣∣∣∣+∣∣∣∣∣
K∑
k=1

I
(
D

[i]
k > 0

)
− I
(
D

[j]
k > 0

)∣∣∣∣∣ ,
then ∆B(D

[i], D[j]) is a well de�ned metric on the space of valid �nal size vectors,
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satisfying,

∆B(D
[i], D[i]) = 0,

∆B(D
[i], D[j]) > 0,

∆B(D
[i], D[j]) = ∆B(D

[j], D[i]),

∆B(D
[i], D[l]) ≤ ∆B(D

[i], D[j]) + ∆B(D
[j], D[l]),

for all �nal size vectors, i, j and l.

For a Bayesian approach, there must be a prior distribution on the parameters; Baguelin

et al. (2009) perform a brute force grid search, for 6400 pairs (λL, λG), they perform

5000 ABC iterations per pair, this is e�ectively a uniform prior, though its range is

not stated. Using the distances de�ned in Equations (4.4) and (4.5), with an iteration

being accepted only if the distance is zero. Note, that despite having a distance of zero,

these samples are not exact since we are using summary statistics.

The results using the empirical infectious period are plotted in Baguelin et al. (2009)

(see Figure 1); note the axes are on the log scale. Using the accepted sample pairs,

point estimates for the rates are calculated and reproduced in Table 4.4. This is a

Monte Carlo Maximum Likelihood approach, see Diggle and Gratton (1984).

4.6.1.2 Second Method

For the second method, Baguelin et al. (2009) include an additional parameter into the

model, namely the susceptibility of each yard, αi. Assuming this is given, as well as

Ni and Di, they assume each yard has a single external infection, approximating the

epidemic using the independent households model (see for example Addy et al. (1991)).

Due to computation issues, presumably the run-time, the reduced data set of 10 yards
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(see Table 4.3) is introduced.

The susceptibility is estimated for each yard as follows, using the estimate of λL from

the �rst method and assuming the �nal proportion of infected animals is γ = 0.7287

for each yard, then Baguelin et al. (2009) propose,

αi ≈
γi

1− exp(−γi λ
L

gi
)
,

where γi = γ for all yards and gi is the removal rate for yard i, i.e. for an expo-

nential infectious period the removal rate is gi. This forumla is derived by algebraic

manipulation of the �nal size limiting result, see Theorem 1.1.

Given the αi's, then for yard i, (1−αi)Ni horses are completely immune and removed

from the epidemic, such that the initial state of the SEIR model for each yard i is:

Si(0) = αiNi, Ei(0) = 0, Ii(0) = 0 and Ri(0) = (1− αi)Ni.

Given the modi�ed number of initial susceptibles, i.e. Ni and αi, for a given local

rate, λL, it is possible to calculate the probability of a given �nal size, Di, for each

yard assuming a single initial infective, i.e. P[Di|Ni, αi, λ
L]. Thus, if each yard is

independent, then

P[D|N,α = (α1, . . . , αK), λL] =

K∏
i=1

P[Di|Ni, αi, λ
L].

It is well known that the �nal size probabilities are di�cult to calculate explicitly. A

set of triangular equations were derived by Ball (1986) (see also Andersson and Britton

(2000)). However, these are numerically unstable for large populations. Arbitrary

precision computing, as described in Section 3.7.2, has been used by Demiris (2004),

though Baguelin et al. (2009) report that this was too costly to compute. Instead, they

approximate the �nal size probabilities using simulations; further details are not given.
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The local rate is then estimated by performing simulations for a range of values of λL,

the details are not given in the published paper. However, a preprint provided by the

authors gives the number of simulations as 2 × 106 and 2 × 105 for the exponential

and empirical distributions respectively, using the 10 yard data set of Table 4.3. These

simulations are used to approximate the probability of the observed outbreak within

each yard, P̃[D|N,α, λ[i]] for values of λL, indexed by i, i.e. λ[i], and the approximate

probability of the overall outbreak is the product of the independent yards. Then, the

estimate for the local rate is given by the weighted mean,

λLest =

∫∞
0 λP[D|N,α, λ]dλ∫∞
0 P[D|N,α, λ]dλ

(4.6)

≈
∑

i λ
[i]P̃[D|N,α, λ[i]]∑
i P̃[D|N,α, λ[i]]

. (4.7)

Equation (4.6) is as stated by Baguelin et al. (2009), using our notation. Equation (4.7)

is our intepretation of their estimator, in terms of their simulations.

Given the estimated local rate, λLest, Baguelin et al. (2009) then estimate the global

rate using simulations of the full model. We assume the estimate is through rejection

sampling, using the distance ∆B1 , i.e. such that the �nal size is between 24% and 25%

of the total population. Details in a preprint from the authors, state an unspeci�ed

range of values for λG were each simulated 4000 times, using the accepted samples a

point estimate for λG was calculated, using a similar estimator to Equation (4.7).

4.6.1.3 Further Results

As mentioned, the remaining sections of Baguelin et al. (2009) consider vaccination,

based on the local and global rates estimated using the second method described in

Section 4.6.1.2. We do not consider vaccination, though further investigation would be
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of interest, see Section 4.6.4.

We draw attention to a single section, on quantifying the impact of the size of the seed-

ing yard (Baguelin et al., 2009, see Section 2.4.1), that we will discuss in Section 4.6.5,

namely that the yard with the single initial infective has a large e�ect on the �nal size

distribution of the epidemic.

4.6.2 Results From MCMC Method

The multi-type multi-level algorithm derived in Chapter 3, using the arbitrary infec-

tious period integrated likelihood derived in Section 4.2, was applied to the two data

sets in Tables 4.1 and 4.3, using the GLS model de�ned in Section 4.3.1, i.e. a one-type

two-level model, for both a �xed infectious period and an empirical form de�ned in

Table 4.2.

Assume a single initial infective, which we place in the �rst yard to record an infected

horse, yard 13 or 3 respectively (this is yard one in the description given by Newton

et al. (2006)). We consider this to be �xed and do not perform any a-updates on the

path.

Our results are presented in Table 4.5, giving the point estimates and standard devia-

tions. We check convergence of the chains in the following section.

4.6.3 Checking Convergence Of MCMC Chains

In Chapter 3 we use the length, τ , of the imputed path z, to gauge if the chain has

converged. Recall z may be a high dimensional object, consisting of the size of each

class for every generation, thus the summary by a single number does not always
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Data Infectious Period λL λG

Full Fixed 0.466 (0.0367) 0.0446 (0.0331)

Empirical 0.585 (0.0509) 0.0501 (0.0424)

10 Yards Fixed 0.425 (0.0486) 0.0514 (0.0422)

Empirical 0.473 (0.0549) 0.0841 (0.0411)

Table 4.5: Summary of results using generation method for the outbreak of equine
in�uenza at Newmarket in 2003, posterior means and standard deviations
in parentheses. Both infectious period distributions have a mean of 3 1

3
days.

capture enough detail. For the household data in Section 3.6 each group was small

in comparison to the total population size. Hence the mixing of individuals within a

given class of z was su�ciently summarised by the overall length of the path.

For the yard data, individual yards represent a larger proportion of the population and

corresponding �nal size, for example in the ten yard data set, ψ(4), the eighth yard is

(N8, D8) = (190, 139), which accounts for 26% of the population and 29% of the total

�nal size. Thus, if the epidemic is locally driven, the column of z corresponding to the

eighth class will resemble the one-type epidemics of Section 3.2. For many consecutive

K-jumps the path length may not alter, yet the chain is mixing within the space of all

paths.

To overcome this, we consider �ve new summary statistics of the path z at each itera-

tion, in addition to the length τ . Consider the generation totals of z, denoted xt such

that

xt =
∑
ω∈S

xω,t.

For the ith iteration of the MCMC algorithm, the path z may be summarised by the



4.6 Results 284

vector of generation totals,

z[i] = (x0, x1, . . . , xτ ).

Consider the vector of generation totals to be a set of values, then we can compute

the moments of this set. Speci�cally the �rst four standard centred moments: mean,

µ = E[z]; variance, σ2 = E[(z − µ)2]; skew, γ1 = µ3
σ3 and kurtosis γ2 = µ4

σ4 − 4. Where

we de�ne µn = E[(z−µ)n]. Note that the mean of z and the path length τ are related,

µ = E[z] =
1

τ + 1

τ∑
t=0

xt =
D

τ + 1
,

since D is a constant the two statistics are the scaled inverse of each other. Finally,

we consider the maximum generation size, i.e. xmax = max{xt : 0 ≤ t ≤ τ}, as another

summary of the path.

Figure 4.1 shows the six summary statistics for the start of a speci�c MCMC run,

for the 10 yard data set using a �xed infectious period of 31
3 days. The �rst 2 × 105

iterations are shown, these are clearly part of the burn in period, i.e. the chain has yet

to converge. In contrast, Figure 4.2 is the same MCMC run, showing all the iterations

after convergence. The relation of the mean, µ, and the length, τ , of the path, z, is

clearly seen.

Whereas the length of the path, has a reasonable interpretation, the higher moments

are purely for checking the chain has converged. For example, the variance of z has no

direct meaning to the epidemic. The posterior mean of the length is 19.6 generations

for a �xed infectious period of 31
3 days. Thus, crudely the epidemic has a duration of

33 days, which is comparable to the recorded length of the outbreak, from March to

May. Note this is a crude approximation to the actual temporal length of the outbreak,

since a generation does not represent a known period of time nor are individuals in a
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generation infected at the same time. Similarly, Figures 4.3 and 4.4 show the trace

plots, for the same MCMC run as above, of the infection rate parameters, λL and λG,

during the burn in period and after convergence respectively.

Similar plots were generated for the 10 yard data using the empirical infectious period

and the 58 yard data, using both infectious periods. These are not included, though

all showed a similar convergence after a burn in period of approximately the same

length. Recall, the number of iterations for the burn in period is dependent upon the

initial seed of the path z, see Section 3.2.3.3, several short MCMC chains were run to

determine an appropriate seed path.
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Figure 4.1: Trace plots for the moments of the imputed path z for the 10 yard data
set, ψ(4), using a �xed infectious period of 3.3 days. The plots show the
start of the burn in period, i.e. before convergence.
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Figure 4.2: Trace plots for the moments of the imputed path z for the 10 yard data
set, ψ(4), using a �xed infectious period of 3.3 days. The plots show the
chain after the burn in period.
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Figure 4.3: Trace plots for the local and global infection rates for the 10 yard data
set, ψ(4), using a �xed infectious period of 3.3 days. The plots show the
start of the burn in period, i.e. before convergence.
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Figure 4.4: Trace plots for the local and global infection rates for the 10 yard data
set, ψ(4), using a �xed infectious period of 3.3 days. The plots show the
chain after the burn in period.
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4.6.4 Partially Observed Extension

The time to obtain the 107 iterations for an MCMC run using the full data set, as-

suming a fully observed epidemic, was several days for the constant infectious period

and up to two weeks for the empirical distribution. This is after using GNU OpenMP

on eight processors to achieve a signi�cant decrease in computation time. The em-

pirical distribution required longer runs due to the increased computation time when

using GNU MPFR to ensure accurate acceptance probabilities. These long run times

motivated us to use the reduced data set of only ten yards, from among the full set

of �fty eight. Baguelin et al. (2009) also reduce to the smaller number of yards for

computational reasons. By reducing to the 10 yards, we are e�ectively only partially

observing the epidemic. We do not account for the unoberved yards, since the aim is

to reduce the complexity of the problem in order to reduce the algorithm run-times.

The issue of immunity is emphasised by the study of Park et al. (2004) and the analysis

of Barquero et al. (2007). In particular, by observing the immunity information of

Table 4.1, there is cause to believe that di�erent yards have varying susceptibility due

to the horses immunity. The variability in the administration of a vaccine, due to

di�erent trainers using varying types and dosages, implies that we are not accounting

for an important factor in modelling the outbreak.

Baguelin et al. (2009) attempt to make inference for the yard level immunity, as

discussed in Section 4.6.1. For our generation method, having an unknown number

of horses initially immune (where immunity gives complete protection from the dis-

ease) corresponds to having an unknown number of susceptibles, i.e. for each yard i,

Ni = Ni,ob + Ni,un, as discussed in Section 3.3.8. In that case, the immunity data in

Table 4.1 could be used to form informed prior distributions for each Ni,un. However,

given the increased number of iterations required for adequate mixing when consider-
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ing a partially observed epidemic, it was infeasible to consider an uncertain number of

susceptibles. Hence the immunity testing data was not incorporated as a random e�ect

in our model. It would be interesting to attempt such analysis, though the run-times

would be particularly long.

Further, as brie�y mentioned in Section 4.4, the reported �nal sizes are actually from

random samples of each yard. This means there is actually an unknown number of

infectives in each yard, as well as an unknown number of susceptibles. However, the

number of susceptibles is bounded above and the number of infectives is bounded below,

meaning the problem is at least well de�ned; though such a model is unlikely to yield

reliable estimates given data as in Table 4.1.

In fact, there is also uncertainty on the e�ect of the vaccine, speci�cally a vaccinated

horse is not necessarily completely protected from the disease. Hence, incorporating

an unknown number of susceptibles is not an accurate model, instead the vaccine may

e�ect the susceptibility of a horse to infection, altering the model for the infection

matrix, Λ.

4.6.5 Comparison Of Results

Inspection of Tables 4.4 and 4.5 immediately reveals very di�erent estimates for the

infection rate parameters. Baguelin et al. (2009) do not state the standard deviation

of their estimates, hence we cannot compare the variability. Though for the generation

method, as expected the empirical distribution has a greater variance than the �xed

period for both data sets in Table 4.5.

Our estimates give a lower local infection rate than the methods used by Baguelin

et al. (2009). However, to compensate the estimated global rate is larger, as we expect,
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since the global and local rate are in general negatively correlated for two-level mixing

models.

In Section 4.6.5.1 we compare the parameter estimates in terms of a threshold result,

and determine they are in some sense equivalent. Then in Section 4.6.5.2 we simulate

realisations of the model for a �xed infectious period given the estimates. Finally, in

Section 4.6.5.3, we make some concluding remarks.

4.6.5.1 Calculating R∗

As discussed in Section 1.2.3, the value of the threshold parameter, R0 = ιλ, in the

one-type one-level model is an indicator of the behaviour of the epidemic process.

Speci�cally, if R0 > 1, then there is a non-zero probability that there is a major

outbreak, as the population size tends to in�nity. Also, for a given scaling of the

infectious period and the inverse scaling of the infection rate, the threshold parameter

is invariant. For the one-type two-level model a similar threshold parameter is derived

by Ball et al. (1997), termed R∗

Theorem 4.1 (Ball et al. (1997))

For a two-level mixing model with unequal households, with local rate λL and global rate

λG, and all individuals having an i.i.d. infectious period, I. Let the total number of

households be m, of which mn are of size n, i.e. m =
∑∞

n=1mn, and the total population

is
∑∞

n=1 nmn. Then

R∗ = λG E[I]
1∑∞

n=1 nhn

∞∑
n=1

(1 + µ1,n−1)nhn,

where hn = lim
m→∞

mn
m and µ1,n−1 is the expected �nal size, not including the single initial

infective, of an epidemic with rate λL and n− 1 susceptibles.
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To calculate R∗ requires the expected �nal size of an epidemic within each yard, which

may be obtained by solving a recursive set of equations; expressed in terms of the

Gontcharo� polynomials. However, as noted in Baguelin et al. (2009), the solutions

are numerically unstable for the given yard sizes, speci�cally the yards containing more

than 80 horses.

Instead of exact solutions, we may estimate the expected �nal size in a yard using

simulations. Note that, Baguelin et al. (2009) use such simulation of a continuous

time epidemic process for inference, namely using rejection sampling on a likelihood

approximated by the distance metric, whereas our simulations are to investigate the

reported parameter estimates.

Hence, for a �xed infectious period, c = 31
3 days, we can use Equation (3.24) to simulate

epidemic paths for a given infection matrix, which in this case is a function of the sub-

parameters, i.e. Λ(λL, λG). Note that, in Equation (3.24) the exponential term is a

function of the class, ω and the generation t, de�ne

Aω,t =
∑
ν∈S

λνω xν,t c.

To simulate generation t+ 1, given generation t, we can determine each class indepen-

dently. Thus, for each class ω ∈ S,

P
[
Zω,t+1 = zω,t+1

∣∣Zω,t = zω,t
]
=

(
Nω − yω,t
xω,t+1

)(
e−Aω,t

)(Nω−yω,t+1) (
1− e−Aω,t

)xω,t+1
.

Then, we may calculate the probability of Xω,t+1 = x for x = 0, 1, 2, . . . , (Nω − yω,t)

and sample from this distribution. Recall, the size of the next generation for class ω is

only dependent upon the total infectious pressure from all individuals in generation t,

i.e. Aω,t.
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The simulations were very quick, requiring less than an hour per yard on average.

Computing R∗ was only done for the 10 yard estimates, not only due to the time to

compute the simulations (since it would require a few days at most for the 58 yards),

but because of the unknown full data set used by Baguelin et al. (2009). During

approximately an hour of run-time, 2× 106 epidemics were simulated for a single yard,

given a single initial infective and the appropriate rate parameters. This was then

repeated for each of the 10 yards; in fact it was possible to run eight yards in parallel

using our eight core machine, further reducing the time to compute R∗.

The expected �nal sizes are shown in Table 4.6, as well as R∗ computed as in Theo-

rem 4.1. Speci�cally, all the yards are of di�erent sizes, thus

hn =


1
10 n ∈ {19, 25, 32, 36, 41, 60, 83, 103, 141, 190}

0 otherwise,

which gives an of R∗ = 5.18 from the estimates of Baguelin et al. (2009) and R∗ = 5.12

from our MCMC estimates.

The estimated threshold parameters are very similar. Note that, for the 10 yard data

set all yards are infected, thus there is very little information in the data directly

relating to the global rate λG. That is, we cannot easily distinguish between a very

high global rate with near zero local rate (e�ectively a globally driven epidemic) and a

very small global rate with large local rate. There are issues of identi�ability, however

the threshold parameter is invariant, being a function of both λL and λG.

Thus, given the data's lack of information directly relating to the global rate, the

posterior density surface will exhibit a ridge, showing the negative correlation between

the two parameters. This can be seen in Figure 4.5, which shows a scatter plot for the

MCMC run using a �xed infectious period on the 10 yard data set. Note the strong
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Yard Expected Final Size, µ1,n−1

(0.78, 0.017) (0.425, 0.0514)

1 48.51 16.73
2 67.39 22.37
3 83.76 27.31
4 114.88 36.90
5 28.79 10.88
6 19.77 8.16
7 14.86 6.64
8 155.01 49.57
9 25.51 9.90
10 32.91 12.11

R∗ 5.18 5.12

Table 4.6: Estimating R∗ using 2×106 simulations of epidemics in each yard, giving
the expected �nal sizes shown, and using Theorem 4.1.

negative correlation of −0.709 between the parameters.

As described in Section 4.6.1.2, Baguelin et al. (2009) use a three step process to

obtain their estimates for the 10 yard data set. First, using estimates from the full

data, they calculate the proportion of susceptible individuals in each yard, αi, based

on the estimates from the rejection ABC algorithm. These ABC estimates are discussed

further in Section 4.6.5.2, there are doubts to the validity of the assumptions underlying

the approximation. Second, using an independent households approach, the local rate

is estimated using the modi�ed 10 yards. Third, in a separate step, given the estimated

local rate, λLest, the global rate is then estimated, λGest.

Thus, there is a dependence of the second method estimates on the �rst method, which

is itself a potentially poor approximation. Also, the second method estimates the global

rate conditional upon the local rate. That is, the second method gives the following
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Figure 4.5: Scatter plot for local and global rate from MCMC run using a �xed
infectious period of 3 1

3 days on the 10 yard data set, with a correlation
of −0.709.

posteriors

π(λL|independent yards, α) and π(λG|λL, independent yards, α),

which is not a joint posterior as given by our MCMC method, namely

π(λL, λG, z|θ).

Hence we explain the very low global infection rate as a consequence of conditioning

upon the high local rate, which itself is conditional upon the αi's, which were derived

from an approximation giving a high local infection rate. Given the invariance of

R∗, it is unsurprising to discover the two methods give similar estimated threshold

parameters. Since the conditional estimation of λG|λL would tend to scale the estimate

appropriately.
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Finally, the range of likely pairs, (λL, λG), can be seen in the increased standard devia-

tions of the estimates between the full data and the 10 yards, Table 4.5, from the high

negative correlation between the parameters due to the lack of yards avoiding infection.

4.6.5.2 Simulations Of Final Size

Using the generation representation of an epidemic it is e�cient to simulate reali-

sations of an epidemic given parameter values. Using the procedure, as outlined in

Section 4.6.5.1, though including multiple yards, we can generate paths very quickly

for the �xed infectious period case.

To continue the comparison between the estimates of Baguelin et al. (2009) and our

generation method, we generated 107 simulations using our generation representation.

For the parameter values, we use the �xed parameters (1.03, 0.015) from Baguelin et al.

(2009) and draws from the posterior distribution from our MCMC. The full data set,

ψ(3) in Table 4.1 took approximately eight hours to simulate. Also, we generated 107

simulations of the 10 yard data set, ψ(4) in Table 4.3, taking approximately three hours.

Again, we use the �xed parameters (0.78, 0.017) from Baguelin et al. (2009) and draws

from the posterior distribution from our MCMC.

Note, these simulations are of epidemic paths, i.e. the generation structure. The sim-

ulations performed by Baguelin et al. (2009) for their ABC algorithm were continuous

time SEIR models. For the purpose of �nal size analysis, simulating paths is quicker

and equivalent in terms of the �nal size distribution.

However, we are not making a fair comparison, �rstly the underlying models used for

inference are di�erent. More importantly, by only using a point estimate we are under

estimating the variability of the Baguelin et al. (2009) estimates.
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Using our notation, the total �nal size of an epidemic,
∑

kDk, is plotted for the full

and 10 yard comparison in Figures 4.6 and 4.8 respectively. In both cases, the plot has

been broken at a �nal size of 50, with both parts then scaled to highlight the features of

interest. For our MCMC estimates, the �nal size distributions are as expected, a mass

at zero representing all minor epidemics and an approximately normal peak on the

right-hand side. The Baguelin et al. (2009) plots are more interesting (the upper plots

in both �gures). Beyond the cut point of 50, there is a small peak, following by several

other peaks which reduce in size. The large local infection rate means that the epidemic

is likely to take o� within the yard containing the initial infective. However, the low

global rate means the epidemic may not spread to other yards, giving the �rst peak.

The smaller peaks are when the epidemic spreads to one of the smaller yards, then fails

to spread to a third or fourth yard. In all cases, the observed �nal size (indicated by a

vertical line) has a low probability of occurring. Finally, when an epidemic does take

o�, the �nal size is larger given the estimates by Baguelin et al. (2009).

For the latter sections of their paper, Baguelin et al. (2009) use the infection rates esti-

mated using their second method, i.e. the 10 yard results in Table 4.4. It is noted that

the �nal size distribution is dependent upon the location of the initial infective. Given

the very low global infection rate, this is unsurprising, the behaviour being exhibited

in Figures 4.6 and 4.8. Our MCMC algorithm did not perform any a-updates, i.e. the

initial infective was assumed �xed, thus further investigation would be interesting.

One of the criteria to accept or reject a simulated epidemic is the number of yards

that are infected during the outbreak. For the full data, twenty of the �fty-eight yards

were infected. For the ten yard data, all the yards were infected, which a�ects the

estimation of the parameters. Thus, for our 107 simulations, we have recorded the

number of yards that are infected. Figures 4.7 and 4.9 consist of two columns, one for

each pair of parameters for the 58 and 10 yard data respectively. The �rst row plots the
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�nal size, labelled D in an abuse of notation, against the number of yards infected in

that simulation. The second row gives the distribution of the number of yards infected.

For Figure 4.7, the full data, we see that the MCMC estimates produce a �nal size

distribution that is `closer' to the observed, i.e. D = 617, but the number of infected

yards is very di�erent to the twenty observed. Conversely, the ABC estimates give a

`closer' infected yard distribution, but a wider spread of �nal sizes. It is also clear that

the MCMC estimates produce a greater number of minor outbreaks that do not take

o�.

The two rows are repeated in Figure 4.9 for the 10 yard data and corresponding esti-

mates. The most striking plot is the number of infected yards for the MCMC estimates,

though given the relative global rates between the two estimates this is not surprising.

Approximate Bayesian Computation requires a distance metric to determine if a realisa-

tion is `close' to the observed value. We have de�ned ∆B1 and ∆B2 as in Baguelin et al.

(2009). However, for comparison we de�ne a third metric as follows. For the observed

�nal size vector and the ith realisation, D = (D1, . . . , DK) and D[i] = (D
[i]
1 , . . . , D

[i]
K)

respectively, de�ne the distance ∆M as,

∆M (D,D[i]) =

√√√√ K∑
k=1

(Dk −D
[i]
k )2,

the Euclidean distance, also known as the L2-norm.

For each simulation, we calculate the ∆M -distance from the observed �nal size vector

and these are plotted on the third row of Figures 4.7 and 4.9. In both cases, the

MCMC estimates generate a larger proportion of `close' realisations. The peaks at

certain distances are easily explain, consider an epidemic that immediately goes extinct,
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i.e. D(0) = a = (0, . . . 0, 1, 0 . . . , 0), then for the data sets,

∆M (Dψ(3) , D(0)) = 195.7 and ∆M (Dψ(4) , D(0)) = 200.4.
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Figure 4.6: Total �nal size for 107 simulations of an epidemic on the 58 yards data

set, ψ(3), using a constant infectious period of 3 1
3 days. The upper plot

is for the �xed parameter values (λL, λG) = (1.03, 0.015) from Baguelin
et al. (2009) and the lower uses posterior samples from our MCMC
algorithm. The vertical line corresponds to the observed total �nal size,
i.e. D = 617.
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Figure 4.7: Summary plots for 107 simulations of an epidemic on the 58 yards data
set, ψ(3), using a constant infectious period of 3 1

3 days. The left plots are
for the �xed parameter values (λL, λG) = (1.03, 0.015) from Baguelin
et al. (2009) and the right uses posterior samples from our MCMC
algorithm.
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Figure 4.8: Total �nal size for 107 simulations of an epidemic on the 10 yards data

set, ψ(4), using a constant infectious period of 3 1
3 days. The upper plot

is for the �xed parameter values (λL, λG) = (0.78, 0.017) from Baguelin
et al. (2009) and the lower uses posterior samples from our MCMC
algorithm (as shown in Figure 4.5). The vertical line corresponds to the
observed total �nal size, i.e. D = 485.
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Figure 4.9: Summary plots for 107 simulations of an epidemic on the 10 yards data
set, ψ(4), using a constant infectious period of 3 1

3 days. The left plots are
for the �xed parameter values (λL, λG) = (0.78, 0.017) from Baguelin
et al. (2009) and the right are posterior samples from our MCMC algo-
rithm (as shown in Figure 4.5).
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4.6.5.3 Remarks

For the full data set, ignoring any e�ect from potential di�erences with Table 4.1,

the estimates from Baguelin et al. (2009) using simple rejection Approximate Bayesian

Computation (ABC) are di�erent to our generation Markov Chain Monte Carlo (MCMC)

method since they are drawing samples from di�erent likelihoods.

Denote the imputed epidemic as z, i.e. the continuous time process or the generation

path, then the marginal posterior density of the infection rates is estimated in Baguelin

et al. (2009) by drawing samples from,

π
(
λL, λG, z | ∆B2

(
D,D[i]

)
= 0 ,M

)
,

whereas the MCMC chain draws samples from,

π
(
λL, λG, z | θ, M

)
.

Here M denotes the one-type two-level model, with speci�ced infectious period, I, and

infection rate matrix, Λ(λL, λG).

This can be most clearly seen in the second row of Figure 4.7, where the ABC esti-

mates generate realisations that infect a number of yards similar to the observed data,

i.e. twenty infected yards, whereas the MCMC estimates do not. The choice of metric

to use in an ABC algorithm is very important, in particular the ∆B2-distance does not

capture the same structure of the observed data and hence produces estimates that are

inconsistent with the MCMC method.

However, analysing the MCMC estimates shows that they too poorly re�ect the ob-

served data, in terms of the ∆M -distance. It is clear from Table 4.1 and the literature
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that the e�ect of vaccination must be accounted for in the model. As such, the MCMC

estimates are probably more accurate, given the model M, though this does not re�ect

the data.

The second analysis of Baguelin et al. (2009), as interpreted from their paper, is based

on the ABC estimates and an unreasonable assumption. The aim in applying a two-

level mixing model is to account for the interaction of global and local infections, thus

to assume all ten yards are independent and seeded by a single initial infective is

questionable in light of our estimate for the global infection rate. Further, estimating

the local infection rate and then the global rate, conditional upon the local rate, in

such a highly correlated setting is prone to erroneous results.
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Chapter 5

Discussion And Further Work

In this thesis we have presented and applied a general approach to making Bayesian

statistical inference, using Markov Chain Monte Carlo (MCMC), for �nal size data

under the standard Susceptible-Infective-Removed (SIR) model; and any model whose

�nal size is equal in distribution to the SIR model. Several extensions to the simple

SIR model have been explicitly investigated, namely partially observed populations,

multiple types of individuals and multiple levels of mixing within the population.

In Chapter 1 we introduced standard results and background theory for the stochastic

SIR epidemic model of interest and the Bayesian paradigm for statistical inference.

Extensions to the simple epidemic model are presented, which are subsequently incor-

porated into our approach. A general outline of MCMC is given, as well as a brief

review of several adaptions.

Our approach is to use a representation of the epidemic process, its generation structure,

to augments the parameter space. Imputing these additional unknown parameters, the

size of each generation, allows us to form a likelihood that can be e�ciently com-

puted given the additional imputed data. This enables us to design e�cient MCMC

algorithms to make inference on the parameter models of interest. The form of the

imputed data is investigated in Chapter 2, namely the generation representation of an

epidemic process. Using generations, we impute the minimal information su�cient to

represent the epidemic process in terms of �nal size analysis.
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Using the generation representation, throughout Chapter 3 we develop a series of

MCMC algorithms to perform analysis of �nal size data. We begin with the sim-

plest case, consisting of a homogeneous population that is homogeneously mixing. Our

approach is compared to standard estimates in the literature. The simple model is ex-

tended to include partially observed epidemics and we produce results comparable to

Demiris and O'Neill (2005b). The representation is suited to such inference problems

due to its characteristics, in that the MCMC algorithms run e�ciently and quickly.

The series of algorithms conclude with a multi-type multi-level framework for �xed

infectious periods. The algorithm is successfully applied to make parameter estimates

for an outbreak of In�uenza A (H3N2), presented by Longini et al. (1988), using a two-

type two-level model with �xed infectious periods. The approach makes no assumptions

on whether the epidemic process is above threshold nor does it use any approximations

in the likelihood; the posterior density is approximated from the MCMC samples after

convergence.

The MCMC algorithm uses the exact likelihood of a given epidemic path, thus for large

�nal sizes the computational cost becomes greater. Conversely, approximate methods

such as the Gaussian approximation to the �nal size distribution, see Demiris (2004),

do not increase as greatly in time to compute. To overcome this, so that a large

enough sample of the posterior may be taken in a reasonable time, we employ parallel

computing and careful optimisation of the likelihood for each update step to improve

e�ciency.

The algorithms developed perform well, in terms of mixing and convergence of the

MCMC chain, and the estimates are in agreement when compared to previous tech-

niques in the literature. The run-time, using optimised likelihoods and parallel comput-

ing, is of a reasonable scale such that a su�cient number of samples from the posterior
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can be generated in a reasonable time scale; from a few minutes for the simplest one-

type one-level model up to a few hours for the Haber et al. (1988) and Longini et al.

(1988) data sets (Tables 3.9 and 3.10), using �xed infectious periods.

Finally, we derive the likelihood for an arbitrary infectious period for each class of

individual. Expressions are given in Chapter 4 for including the infectious periods

as additional variables, to augment the parameter space further, or to integrate the

infectious periods out from the likelihood. The latter approach is taken in applying

the method to an outbreak of Equine In�uenza (H3N8) at Newmarket (Table 4.1 and

4.3). The parameter estimates are compared to those of Baguelin et al. (2009), who

analyse the same data using a type of Approximate Bayesian Computation (ABC), an

alternative inference technique using an approximation to the likelihood brie�y outlined

in Section 1.3.4, for parameter inference.

For the Equine data set, the parameter estimates using our MCMC algorithm are

substantially di�erent to the estimates by Baguelin et al. (2009), our approach deter-

mining the outbreak was more globally driven. The parameter estimates for the local

and global rates are negatively correlated, as is expected, thus given the higher global

rate we estimate a correspondingly lower local infection rate. The disparity in esti-

mates is explained in terms of the likelihoods being approximated. The method used

by Baguelin et al. (2009) is a form of ABC and it would be interesting to investigate

this method and the disparity in estimates further.

The non-temporal nature of �nal size data means it is di�cult to make inference for

certain extensions. In particular, our imputed generation representation does not sup-

port temporal information. For example, we cannot include explicit seasonally varying

infectivity or susceptibility, population migration or threshold triggered interventions,

e.g. vaccination or isolation of individuals at time of detection. However, the generation
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method is well suited to models for partially observed �nal size epidemics, due to the

minimal imputed information for the likelihood. The MCMC algorithms perform very

well for these models, in terms of run-time, convergence and exploring the parameter

space. Further investigation and applications would be interesting. For example, apply-

ing the partially observed generation method to the one and two type household data

of Section 3.6, where the data are actually only a sample of the population. Also, as

discussed in Section 4.6.4, a more suitable model is needed for the outbreak of Equine

In�uenza at Newmarket, many ideas are suggested and these could be investigated

further.

In summary, the MCMC algorithms developed using the generation representation are

a viable approach to inference for �nal size data. There are no restrictive assumptions

to the inference, except the type of non-temporal models that can be �tted and some

practical concerns for implementation of elaborate models in terms of their run-time.
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