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An CrPT) A rl'P 

In this thesis two general problems concerning goodness- 

01 f-fit statistics based on the empirical distribution are 

cI onsidered. The first concerns the problem of adapting 

Kolmogorov-Smirnov type statistics to test for discrete 

Populations. The significance points of the statistics 

are given and various power comparisons made. 

The. second problem concerns testing for goodness-of-fit 

with censored data using the Crame'r-von Mises type statistics. 

The small and large sample distrýbutions are given and the 

tests are modified so that they can be used to test for 

. 
the normal and the exponential. distributions. The asymptotic 

theory is developed. Percentage points for the statistics 

are given and various small sample and large sample power 

studies are made, for the various cases. 
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1.1 

§1. Introduction 

In much statistical inference and model building, there 

is a need to test the validity of assumptions made about -the 

underlying populations, from which observations have been 

drawn. In its simplest form, this problem can be stated 

as follows: a random sample of n observations is taken from 

a population with cumulative distribution function F(x), and 

it is wished to test the null hypothesis. 

11 : F(x) EF0 (x) 

where F0 (x) is a completely speqified distribution function. 

The classical solution to this problem is the test of 

. Karl Pearson, described in detail in Kendall and Stuart 

(1961,. p. 419). The criticisms of this test are that its 

small 'sample distribution is not tabulated and so is applicable 

only to large samples, and that if F(x) is assumed. not to be 

discrete then there is. a necessary loss of power in its use, 

, 
due to the fact that the observations have to be grouped. 

These two criticisms have been overcome by the introduction' 

of the Dn statistic by Kolmogorov (1933). The statistic 

is based on the empirical distribution function Fn (X), where 

FnW is defined for a random sample x 1'x2'**"xn of size n 

by 

FW= Proportion of observations (xll.... rx <x 
nn- 

The statistic Dn is given by 

Dn= SUPIF n 
(x)- F0 (x)1. 

This statistic is shoi%m to be distribution-free for 

continuous F (X) and Kolniogorov (1933) obtained its asy totic 
0 MP 

distribution: 
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l im P KnD 
n< 

x) =1+27G1 )'r exp (- 2r2 x2, )-1-2 exp (- 212 2,2 ) 

n-fC1D r=l 

He also gave rbcurrence relations for the probability for 

finitý n, which were used by Birnbaum (1952) to tabulate 

P(D 
n< 

k/n) for n= 1(l) 100 and k l(l) 15- Previously 

Massey (1950) had given these probabilities but for selected 

values of n and k. 

Since D is a two-sided statistic, one-sided versions have 
n 

been considered by Smirnov (1939) and Wald and Wolfowitz (1939), 

D+ '_- sup(P (x)- F W) 
n 11 0 x 

D_ = sup(F (X)- F (x)) 
n0n x 

Smirriov (1939) gives the asymptotic distribution of these 

statistics (they are distributed exactly the same): 

_X2 
lim P (Vn D+< X) =1- exp ( 'r 

So 4n(D+)2 has the distribution with two degree of freedom n 

asymptotically. Birnbaum and Tingey (1951) give the asymptotic 

points. D is known as the Kolmogorov statistic and D+ and D- nnn 

are kno-wn as the Kolmogorov-Smirnov statistics. 

Other statistics based on the empirical distribution 

function to be proposed have been of the form 
GD 

Vý =S (F (x) -F (x))2 * (F (x)) dF (x) 
-GD 

known as Crame'r-v on Mises (CVIM) type statistics, which are 
distribution-free for continuous F0 (x). The statistic with 
*(X) was investigated by Smirnov (1936): 

(30 

IV2 =nI (F (x) -F (X))2 dF (x) 
- QD 

-who found the asymptotic characteristic function of W2 
n 
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lim EFexp(itlv'? - F (2it 

n-4 aD LL sin( (2it 

This was inverted by Anderson and Darling (1952) to give the 

limiting distribution of W2 and selected significance points 
n 

were given. Marshall (1958) found the small sample distribution 

of V for n uPto 3 and showed the asymptotic points of n 
Anderson and Darling (1952)-to be adequate for n as small 

as 3. Approximations to the small sample distribution have 

been made by Pearson and Stephens (1962) and Tiku (1965). 

Stephens (1970) shows that the modified statistic 

UA = (VA -0.4/n+O. 6/n: 2 Y(l. 0+1 . 
'O/n) 

nn 

can be used w ith asymptotic significance points with very little 

error in the actual critical level for small n. 

Anderson and Darling (1952) introduced the CVM type 

1 
statistic with *(X) = (x(l-x))- 

GD 1 

, &2 = (F W-F (x»2 EF (x)(1-F WM- dF (x) 

_GD 
n000 

They found its characteristic function and gave significance 

points, Anderson and Darling (1954). These were shoim to be 

fairly accurate even for n=1 by Marshall (1958). 

The. K-S type and CVM type statistics were modified for 

tests of goodness-of-fit on the circle by Kuiper (1960) and 

Watson (1961). The tests have to be invariant of the origin 

chosen on the circle. Kuiper introduced the statistic 

VD++ D- 
nnn 

and Watson the statistic 
(ID (ID 

C=f [F (x)-F W-S (F (y)-F (y» dF (y)32 dF (x) 
n0n00 (ID - (ID 

Simple computing formulae and simplified significance points 

for the statistics V and Lý are given in Stephens (1970)- 
nn 
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The main criticisms of the statistics as they stand, is 

that they are dependent-upon the distribution of the null 
I 

hypothesis being a continuous population and the null hypothesis 

being simple. Darling (1955) tackled the latter problem where 

he gave the limiting distributions of the statistics when the 

null hypothesis is of the form 

H0: F (x) =- 

where F (x, Q) is a c-4-f- of specified functional form with 9 
01 

an unknown parameter.. Kacj Kiefer and Wolfowitz (1955) invest- 

igated the problem of testing for normality, when 11 and 02 

are to be estimated, using the statistic I$ The results 
n 

of both these papers have been extended by Stephens'(1973) 

and significance points given for large sample tests when 

testing for exponentiality and normality using the statistics 

W2, L12 and A2. The small sample distributions of the K-S 
nnn 

and CVM type statistics have been found by Monte Carlo methods 

by various people and the results summarized in Stephens (1970)- 

The problem of applying the K-S and CWI type goodness-of- 

fit statistics to discrete and grouped data is tackled by 

Illyasenko (1952) in the asymptotic case for D leaving the 
n 

c-d. f- as an integral -involving the distribution of the order 

statistics from ak multivariate normal distribution. Noether 

(1963) in a short note states the significance points of the 

Dn statistic will be conservative when used with discrete 

data. The asymptotic distributions of the K-S type statistics 

remain intractable, but are found by Monte Carlo methods. 

Also the small sample distributions of the statistics are 

found in this thesis and extensively tabulated. The power 

of the statistics is investigated both for small samples 

and large samples, the former by means of Monte Carlo methods 
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and the latter in two situations: the first where the 

significance level is kept constant and the second the 

significance level is allowed to go to 0 as the sample size 

increases. 

In. the second part of the thesis we look at the problem 

of adapting the CVM type statistics to use for goodness-of-fit 

tests with censored data. The statistics considered are of 

the type 

S2 
pn 

Sn 
pr -y 

(ID 

(F 
n 

(X)-F 
0 

(x»2 ý (F 
0 

(x) ) dF 
0 

(x) 

(x)-P (x»2 ý (F (x» dF (x) 

We take *(x) -= 1 and *(x) = (x(l-x))-', the former giving 

the I$ statistics and W2, and the latter the A2 statistics, prn 
A2 and A2. The small sample moments of the 1$ statistics 

pnrn 

are found and approximate percentage given by fitting a 

generalized Xý distribution to the distribution of We by 

equating the first three moments. 

The asymptotic theory of the statistics is given and a 

good approximation to the distribution of UP and A2 found. 

The asymptotic theory is also viven for W2 when used with 

doublely censored observations. Asymptotic percentage points 

are given when the censoring is symmetric. The asymptotic 

powers of the tests based on p 
IY2 an dP A2 and statistics derived 

from them are studied for scale shift of the exponential 

distribution, and location and variance shift of the normal 

distribution. The statistics are modified so that they can 

be used to test a composite hypothesis and the asymptotic 

theory given. In particular the asymptotic percentage points 
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of testing for normality and the exponential distribution 

with censored data are given for the I$ and A2 statistics. 

Results of MoiAe Carlo power studies are given to compare 

the power of the small sample tests. 

Finally, the statistic U2 is modified to test for 

censored data and the theory developed. 

f 
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Part I- Kolmogorov Smirnov Tn3e statistics for discrete data 

§2. Small-sample distribution of the statistics 

2!. l Introduction 

In this section, the exact distributions of D+, D and 
nn 

Vn are found, and the distributions are tabulated for the 

discrete uniform population (which can arise from grouping 

-n observations into-q mutually exclusive groups which are 

equally likely) on q points for n, 
-< 

30 and q.: ý 12. The 

tables are given in Appendix 1. The results of a power 

, study are also given comparing these statistics with the 

statistic and Davids Empty Cell test, see David (1950), 

. showing these latter statistics to be less powerful for 

certain alternatives. 

2.2. A result of Steck 

The method used is to apply a result of Steck (1971). He 

shows that if x(l)'x(2)' ..., x(n) are order statistics from a 

sample of n independent uniform. random variables then 

, 
Pr(uj.: ýx(j): ývjj i=1, ---, n) = det R, where 

R. j (v -u 3. i j-i+l 
ii 

= 1 +1 

and (X)+ = max(O, x). R is a matrix of Hessenberg form. 

This result can be stated in terms of the e. d. f. F (X) 

Pr (g (x) <F (X) <h (x) )=det (R) 

where g and h are non negative functions on (0,1)i with g 

continuous to the left and h continuous to the right, and 

ui, v are a. 
defined by u. = 3. 

11- 1 (i/ta) v 9- 
1 ((i-l)/n) 

i=1,..., n. 
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2-3. The distribution of Dn, Dn and Vn for discrete populations, 

using Steck's result 

Consider a random variable y to be distributed discretely 

with q(< aD) mass points bli < ... <bq Define z= G(y), where 

G is the. c. d; f. of y, then z is a discrete random variable with 

mass points 0< G(b 1)< 
G(b 2)<... 

G(b 
q-1 

)< G(b 
q)=1. 

Let 

ai= G(b )i=1,..., q, then Pr(z <a)=ai=l, ---, q- 

Consider now the e-d-f- Gn (y) of a random sample yl, .... Yn 

from the discrete population with c. d. f. G(y), Gn (Y) = 

Number of y i-: 
ý y Gn(y) will have discontinuities only at 

nt 

the points bl,..., b 
q, 

where it may have steps-of height equal 

-to multiples of I/n. Define 

number of z<z number of y,:: ýG -1 (Z) 
H ') =nn n 

(7 

where Q (z) = inffy: G(y)= z) and z. 
L 

Ck (Y 
i 

Then Hn (z) will be a step function having steps multiples 

of 1/n at the points a,.,... ta q* 
Now Gn (y)- G(y) =Hn (y)- H(y) 

so 

SUPIG n 
(y)- G(y)l suplH n 

W- H(z)j, 
yz 

and it is wished to find the distribution of 

suplH (z)- H(z)l = maxlH (a. )- If(a Now at the points 
nn3. 

a,, ... aHn (z) behaves like the e. d. f. of a sample of n 

independent uniform random variablesi i. e. nH (z) is 
n 

binomially distributed Bi(ai, n) at each a,, i= 19 ... 9q. 

So Pr(maxlH 
n 

(a 
3- 

H(a 
i 

)I < d) 
i 

Pr(maxlF 
n 

(ai)- ail < d) where F 
n(x) 

is the e. d. f. of n 
i 

independent uniform random variables xl, ... Ix n- 
Steck's 
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result can now be used to f ind Pr (maxI F' (a. a, I< d) and 
ni 

+ 
3. 

similarly for Dn Pr(tilax(F 
n 

(a 
i 

)- aM)< d). 

Define h(x) min(l, a i +d), a, 
_, 

:ýx<a 

where a0 and 
0 

9%x) max%'O, a d), a. <x<a. 3.0, q-1 
3. - 3. + 

then Pr(maxIF (a. )- ail < d) = Pr(g(x) <FW< h(x)) 
i, nin 

= det R 

'where R 
ij =(i Xv 

i-u i 
)+ j-i+1>0 

j-i+l 

=0 j-i+1<0 

where v. and u. are found by taking inverses of g and h. 
3. 

. 
Put n(a +d) and Yj i 

n(a. -d). = a and [a. ] 
3. i 3.3. 

Also if y,. > n then n, and if 5. <0 then 6 0. Yi 
3. 

Define ui 

a,, 2 

a 2' 

. -a ql' yq+ll ..., n 

a 2' 
612 

aq 
q-1 

+1,... 96 k 

q 

2.4. Distribution of Vn for certain values of n and. q 

If the values of n are restricted so they are multiples of 
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q, -then the only ossible values of D+ are D are multiples pnn 

of 1/n. We can then find, for example-, Pr(nD + 
:ýk, 1 nD - <k 

n n- 2 

by the above method by defining n(a 
I 

+k and 

ai n(a, -k 2 
Now the statistic Vn is defined to be 

VD+ +D-. 
nnn 

So the distribution. of Vn is just the convolution of 

D+ and D-. Thus 
nn 

Pr(nV < k) = Pr(nD ++ nD- < k) 
nn n- 

Now 

+k+ Pr(nD + nD- = k) = 7, Pr(nD = i, nD = k- i) 
n. n i=0 .nn 

So the p*. d. f. of V is obtained for this special case, since 
n 

Pr(nD += kj, nD- =k Pr(nD+< kl, nD-< k 
nn2n- n- 2 

Pr(nD+< k -1, nD-< k 
n- 1 n- 2 

Pr (nD +<k 
nD - <k -1), n- ii -2 

2-5. The tables of D, D+ and V 
n -- nn 

For the statistics D, D+, V the 
nnn 

Pr (nS :ý k) 

where S is D, D+ or V is given for values q up to J. 2 and n 
nnnn 

up to 30 so that q divides n. Note that for n=q the 

distribution of D and D+ is given by the continuous distribution 
nn 

free results. If DC denotes the statistic for continuous 
n 

populations and D 
n, q 

the one for discrete or grouped 

populations Ivith q mass points, then 
I 

Pr(nD c< k) = Pr(nDc< k) = Pr(nD < k) = Pr(nD < k- 1) 
n- n n, n n, n- 

This follows directly from Massey's argument (1950)- 

It will be seen from the tables, see Appendix, that 
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grouping has a large effect on the distribution of the- 

statistics. 

To note the effect of grouping on D, note that 

Pr(12-D 
12 12. 

ýý5) = . 02115, Pr(12. D 
2 6. ýý5) = . 01422 

, 1 , 

Pr (12. D 12,4 
ý' 5)ý* 013L15 

Pr(12 D 12112ýý4) = -10874 Pr(12 D 12,6.? ý4) = . 09064 

and Pr(12 D 12,4 
ýý4) ý -05974 

Pr(20 D >o6) = . 04307 Pr(20 D> 6) = -03273 20,20 20,10- 

Pr(20 D 2015 > 6) = . 02203 

Pr(20 P 20,202ý5) = -13763, Pr(20 D 20,10-ýý5) = *"0910 

Pr(20 D20,5.?: 5), = -07617 

Also from Stephens (1965), we have Pr(V < L) 
and the 

nn 

percentage points of the statistic Vn We see that the 

effect of grouping is much stronger. 

For n= 12, the 10% and 1% significance points are given: 

Pr(12 D 
12215 -24) = . 10 and Pr(12 V 

12 
> 6.48) 

we have Pr(12 V 12,12 
> 6) = -01131 Pr(12 V 

12,12> 7) = -0010 

Pr(12 Vl 
2,6 ýý6) = -001171 Pr(12 V12,6ý'7) = -0003 

Pr W2 V12,12oý5) ý -0738 

Pr (12 V12,62ý5) 2-* -0403- 

The values of det R were calculated using a single 

Precision program written in FORTRAN, using a method derived 

from Wilkinson (1965). The tables of Dn. ,Dn and V 
n. can be 

taken to be accurate to 5 significant figures for n< 25, 

but become inaccurate for larger values of n especially in 

the upper tail. 
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2.6. Power Study 

A power study was under-taken to compare the power of the 

I 
statistics D, D+ and V, when used correctly with discrete 

Innn 
data, with the power of the chi-squared statistic and Davids 

Empty Cell test. The null hypothesis tested, in terms of 

the multinomial distribution, was that the q sample points 

were equally likely (or in terms of grouped data, the q cells 

were equally likely). 

1 (2-1) Ho : Pl = P2 pq 
q 

The alternatives considered were. 

i (i) 
1. E-i=l, -. -, q, abbreviated as A (6) 

j=l q1 

i6 

j=l j -ý2L 

pj > 
j=l 2ý q 2, Ae (6 

I-C 

I+6 
q 

<R so pi q 
16 

A3(6 

It is to be noticed that all the statistics are discrete. 

The distributions of the first three statistics are tabulated 

here and Davids Empty Cell tabulated in David (1950)- For 

the chi-squared statistic, use was made of Kempthorne (1967), 
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where the exact moments of the statistic Xý are given for the 

equi-probable cell case. For given n and q, a Pearson curve 

was fitted to the first four moments of the statistic and 

percentage points obtained using interpolation of the tables 

of Johnson, Nixon, Amos and Pearson (1965). The actual chi- 

squared significant point used was the greatest even integer 

<a (P + 2n - -qaq 

where Pa is the Pearson curve approximation significant point, 

since X9 -cL 7, xý 2n + npi nIq 

and n and q were chosen so that 7, x2. takes only even values. 3- 
The actual significance of the test is not known, but is at 

least adlo in terms of the approximation, which is reasonably 

accurate, Kompthorne (1967)- 

The other statistics are discrete, so no exact value 

could be found. This problem was overcome by using the 

randomization tecluiique. If S denotes the statistic in 

quest-ion and it takes on integer values 0,1,2,..., then 

suppose su is the smallest integer such that 

Pr (S >s)< CL 
'r 

and s the largest integer such that L 

Pr(S >sL)> (x 

and Pr(S >'S 
uaU, 

Pr(S >sLa L' 

Then an cL% test is defined for the statistic S, if for a 

given value s of S we reject if s>sU and accept if s<s L* 

Also, reject or accept as U is <a or > (x, where U is a 

random variable distributed uniformly on (a 
uaL 

This can 

be applied to nD , nD + 
and nV since they take only integer 

nnn 

values. 
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2.7- Results of powen study 

The results of the power study are given in Tables 2.1 

and 2.2. For the alternatives which have been considered here, 
I 

which are systematic alternatives to the null, the Kolmogorov 

type statistics do well compared to Davids Empty Cell test (E) 

and the Chi-squared test (CH). For the alternatives A, and A3, 

which could be considered 'trend' alternatives, (since the 

pi. satisfy either the ordering p, ýS P2-: ý ... ýS pq or 

P1 > P2 >-> pq ) the statistics D and D! (Di refers to 

either D+, for alternatives of the second ordering, or D for 

alterna. tives of the first ordering) are the most powerful. 

Thus for trend alternatives it seems advantageous to use the 

. 
statistic D, D+ and D- rather than CH or E. 

For 'peaked' alternatives which we define to be 

1: 'I < P2 pr ?ý pr+l 2ý pq ' 
for some 1<r<q 

or conversely Itroughed' alternatives p, ? ýp2 > 

pr+l <<Pr for some 1 ' 'ý* < q' of which A2 is an example, 

V should be powerful and this is shown in the results for Ag. V 

was originally used for goodness-of-fit on the circle, see 

Kuiper (1960)t and so again V can be used for discrete or 

grouped data on the circle. 

For the alt, 

PrP 
r+l 

powerful than CH 

power of D in §3 

ernative A3, which is of the kind p, ý P2 ý* 

p the statistics D, D+, V are much more 

and E. A result concerning the asymptotic 

suggests that the power of Dn is optimal for 

this type of Idichotanised' alternative. 

I Thus for small sample sizes, the D, D+, V statistics 

are of importance when the alternatives of interest are 

systematic ones of the kind. considered. D and D+ are especially 

powerful against trend alternative. However it is Imoi%m that 
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both E and CH are invariant to the ordering of the pils, that 

is the powers of the tests will be the same for the 

alternative 

HI: p, =PIIP2 =PIS ... 9P PI 
qq 

aI=II..., p =DI as for Hi - p, =p U4 9 P2 p Cýe q (x 

where (al, 
... laq 

) is a permutation of For 

certain alternatives, the 
q) 

permutation was chosen 

so that 
i 

sup IE )I -I 
i j=i 'i q 

was am. inimum, thus (a', ---, aq ) was selected so that the power 

pf D, D+ was at a minimum, taken over q 
For these 

alternatives (see Table 2-39 called Af' (i = 1,2,3)), the 

powers of the statistics D, D+IV are reduced, but usually 

not by more than half, and often less. Of course the powers 

of the statistics E and CH remain the same, subject to 

sampling error. However for these alternatives CH is most 

powerful 

For the alternative Ax- D, V lose most power. However N, 

this is not surprising since of all the alternatives considered 

the statistics D, D are comparatively the best for the 

alternative A3. 



Alternative D D+ D- V E CH 

A CIO 64 89 + 61 58 71 

A1(. 8) 94 145 71 62 93 

Al(. 5) 433 570 349 199 399 

A (. 25) 910 960 858 555 923 

A (1.25) 65 118 73 65 82 

A (1.50) 150 259 95 88 106 

A, (2.00) 377 562 281 194 260 

Al(3.00) 806 929 707 484 655 

A (. 8) 2 74ý 64 68 58 82 

A2(*5) 178 155 296 165 263 

A2(. 25) 449 336 757 451 706 

A (. 1) 2 
698 521 978 822 968 

A2 (1.5) 48 44 131 90 119 

A2 (2.0) 54 79 296 09 253 

A2 (3.0) 160 180 700 466 600 

A (3.5) 
2 211 255 815 579 744 

A3(. 033) 77 143 76 64 77 

A3(. 066) 221 352 172 119 170 

A3(") 498 646 430 260 339 

(, 5)(1.6ý2.5.3.4) A 294 432 249 175 379 j 
A1 (2.0)(6., 1,5,2,493) 103 + 167 129 217 278 

A2(. 5)(3jl, 2,4j6,5) 85 85 120 135 255 

A* (3.0)(1,3,2,6,5,4) 2 147 177- 236 454 629 

A* 1)(1.4,295,3,6) 3 106 147 124 255 346 

Table 2.1 

Power of Statistics x 1000, ie number of rejections in 1000 

replications. denotes D+ (D7) statistic, Level of test 5% 

n- 12, q6 



Alternative D D+ 9D V E CH 
n nn n 

A1 (. 9) 82 125 + 78 59 70 
A (. 8) 146 214 105 74 97 

684 759 509 314 551 
A (. 25) 994 998 981 893 994 

A1 (1.2 5) 98 160 76 58 75 
A1 (1.50) 266 371 161 94 117 
A1 (2.00) 649 774. 475 234 266 
A1 (3.00) 983 992 ý922 633 627 

A2 (*8) 94 90 122 67 111 

2 (. 5) 270 237 537 299 456 
A2 (. 25) 793 591 984 882 974 
A2 (* 1 997 866 1000 1000 1000 

A2 (1.5) 5ý 80 225 ý106 116 
A2 (2.0» 112 151 582 249 276 
A2 (3.0) 379 417 969 637 652 
A 2 (3.5) 545 514 991 786 792 

A3 Gol) 105 157 88 73 83 
A3 (. o2) 333 444 247 97 143 
A3 (. 03) 709 796 606 239 275 

Table. 2.2 

Power of statistics, x 1000, ie. number, of rej6cti6tid in 1000 

replications. denotes D+(D-) statistic. Level of test 5% 

n- 20 ,q- 20 
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§3. AsYmptotic distribution of the statistics 

3-1 Introduction 

In this section, the asymptotic distributions of the 

s tatistics are given, but it is found they cannot be given 

explicitly. A Monte Carlo investigation is made to find them. 

3.2 Asymptotic distribution of the Statistics for fixed 

If n --> aD then the random variables fn(H 
n 

(a 
i 

)_1-1(a 
I 

(i li..., q-1) by the Multi-variate central- limit theorem, 

are distributed as Z= (Zj,... 'Zn_d where the Z is MU1ti7 

variate normal with NO =0 and cov(Z) =V where (V)ij - 

a (1-a i<j. Then 

lim Pr (V»n D+ Pr(tnax(Z�0) 
rr) m n, q-i 

. Pr(in D pr(max(Z, 
_i-Z i)< X) 

MM 

lim Pr(in V 
n, q 

<0= Pr'(max(Z, 10)+ max(Z, 10) 
Tr+ Co ii 

Hence the asymptotic distributions of the statistics 

involve the order statistics of the multivariate normal. With 

such a covariance matrix the problem appears unsolvable, so 

the asymptotic distributions have been simulated. For each 

value of q, the "i -qi=1,..., q- 1 and 10,000 independent 

values of the vector random variable Z were generated using 

the N. A. G. pseudo-random number generator, and the statistics 

on the right hand side of (3-1) calculated. The results are 

given in Tables 3-1-3-3 for D+, D, V respectively. 
nnn 

It is seen from Table (3-1) that the distributions of 

the statistics do not approach the distributions of'the 

/ 
statistics for the continuous case (q = OD) particularly fast, 
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for q --> co. Nor in fact do the distributions of the 

statistics for fixed q approach the asymptotic distributions 

for fixed q particularly fast. For example, from Table 3-1 

lim Pr(fn D*4' < . 821) -ý-90- 
nj5 

However from Appendix 1 we see that 

+4 Pr(D 30,5 : ýý-O-) = . 906 

Pr(V30 D+ < -730) = . 906 30,5 - 

so the 10% upper significance points are.. 821 and -730 for the 

asymptotic statistics ýn D+ and P+ respectively with 
n, q 30, q 

q 5. The approach of the asymptotic distributions of the- 

other statistics is no better for q5 and other values of 

. 



Vn D'I* ,q n 

q 5 6 7 8 9 10 11 00 

15% . 718 . 734 7.5,4 . 769 . 777 . 784 . 1,98 . 973 

10% . 821 . 837 . 855 . 873 . 882 . 884 . 898 1.073 

5% . 975 . 989 1.008 1.022 1.040 1.047 1.051 1.224 

21% 2 1.120 1.129 1.148 1.156 1.176 1.178 1.179 1.358 

1% 1.281 1.290 1.297 1.319 1.327 1.342 1.335 1.518 

D 

10 

15% . 885 . 906 . 917 . 938 . 941 . 947 . 957 1.138 

10% . 971 . 990 1.004 1.020 1.030 1.042 1.044 1.224 

5% 1.112 1.131 1.140 1.157 1.166 1.179 1.171 1.358 

2j% 1.244 1.254 1.264 1.289 1.287 1.311 1.296 1.480. 

1% 1.381 1.403 1.430 1.418 1.428 1.455 1.444 1.628 

Vn Vn q 

68 10 

15% 1.023 1.066 1.095 1.123 1.151 1.167 1.182 1.537 

10% 1.111 1.157 1.180 1.214 1.239 1.251 1.261 1.620 

52 1.250 1.292 1.310 1.341 1.360 1.381 1.394 1.747 

217. 1.371 1.399 1.434 1.456 1.471 1.504 1.511 1.862 

1% 1.510 1.560 1.577 1.598 1.644 1.643 1.650 2.001 

Table 3.1 

Asymptotic significance points of the statistics 
Vii J)"* q Vn Dn, q , 

Vn Vn, q . found by simulation n 
itsing 10,000 random samples. 
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A result concerning the as ymptotic power of the statistics 
for the significance level tendinj ta 0. 

4-1 Introductiýn 
ýhis 

section is based on an extension of the work of 

Hoeffding (1965). A test of the simple multinomial hypothesis 

H 
0, 

:p1=p 
ol'- P2 = Po2' '* *'Pq = Poq 

based on n observations, when q is fixed, is considered. 

. 
Hoeffding considers letting the significance level an tend 

to 0 as n ---> co, and considers the power of tests for testing 

H0'. when the alternative is not very near to the null. He shows 

that the likelihood ratio test (LR test) (actually log of the 

likelihood ratio) 

q 
LxI log(x 

i/Poi 

where xI is the number of observations falling in the i th 

category, is more powerful than the X2 test where 

q (x I -npo3. \2 

except at a particular set of alternatives. We find 

alternatives where the power of the Kolmogorov-Smirnov type 

statistics are equivalent to the LR test, and so much more 

powerful than the If test. 

4.2 A different formulation of the statistics 

Consider the statistics 

max 'E (xl-pl) 
ISIE niE 1-1 

, where n is a collection of non-empty proper subsets of the 

set (11 
.... q). The statistics D, D+ and V can be defined 

nnn 
by particular choice of 0. 
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(i) With TI 
i= 

((l,..., j), I<j q) then Z(x, p) 

gives the statistic D+ 
n 

max (x, -p, ) max (x 
i-pi 

METR i+M j i=l 

max n (G 
xi 

(a 
j 

)-a 
i i 

where G (a nx 

and a 

lfi th MI q), 1<j -ý q) this gives the 

statistic D-- 
n 

(iii) If MI. is MI defined in M and M). 
. is n defined in 

3.11 

(ii) then n... = 93. U M. 
. will give Z corresponding to D 

XXX 1 11 n 

(iv) Iii th M? iv 
(al ... Jig -it, ...? jig j, ...., q) for 

I<i<V<jI<j :ý q) 

will correspond to Vn It will be recalled that the 

statistic Vn is used for goodness-of-fit on the circle. It 

can be shown that*V is the value of max D, when D is 
I. -nnn 

calculated on the circle, the max being with respect to the 

choice of origin, Stephens (1965)- If the data is discrete 

and whenthe circle is transferred to (0,1) with 

aO9al, ---, a 
q 

(a 
0=0, aq= 1) as the mass points, choosing 

one of the mass points on the circle as origin. Then V 

will be given by 

Z(X, P) max (x 
i-Pi W. ffR... r(i)EM 1JL1 

where n 
13.3. 

is'. M given in (iii) for Dn, and r( ) is a cyclic 
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rotation of the points of M. Hence 0. consists of nj 
... and 

IV 3-11 

all the cyclic rotations of By a cyclic rotation of a 
3.3-1 

set M we mean that 

r(M) = (ils 
* **Iic) where iEj+a (modq) m=1,..., c. 

mm 

a an integer and 

mjc 

and ive define r(i r(j mm 
(v) if PD. contains all the subsets of (1,..., k) then 

WXIP) = 22' EiXi-Pil I 

see floeffding (1965)- 

- 4-3 Some extensions of theorems of Hoeffding 

First, some definitions from I-loeffding are quot'ed. Define 

q 
xi log(x 

i/pi) 

and f) to be the simplex 

n= «xil---IX ); x1 ýý 0'. 0. ' X>0, x1+... +X = 1), 

P 
() =( (xj_ 9 ... IX q 

); X, > Oi---lx 
q> 

01 X1+---+kq= 1) 

and 

n(p) =( (x 
] -9 

!..,: ýc 
q 

); xI=0 if pi = 

If A is a non-empty sub-set of 0, then 7k denotes the closure 

of the set A. 

This work is based on the idea of large deviations and 

Sanov's (1961) work and is summarized in Hoeffding's theorem 

2.1. 

Let A be a proper sub-set of Define 

I(A, p) = inf(I(X, p); xE A) 

and I(A, p) = co if A ý0. 

Let nlj---jn 
q 

be the results of a multinoniial exI)e-riment 



4.4 

q 
with n observations, where n n. Define znI /n then 

Pr(Z )= Cn. '/(ni,..., n ')Ipllll..., p 
nq where (n) 7- z (n) qq 

(n) (n) 
z (n) z is a random variable distributed as a 

multinomial random variable with p= (pl,..., p ), and 
iq 

(n /n, .... n /n). ' z (n) =q1q 

Let A (n) denote the set of lattice points z(n) containing 

in A. We quote some of Hoeffdingl-, Theorems, his numbers 

preceded by an W. 
I 

Theorem H2.1. 

ife have 

For any set A C: 01 and any point pE0 

0 n- 
(q-li/2 

exp(-nI(A (n)")) < Px-(z (n) E A/p) 

n+q-1 :ý( q-1 
) 

exp (-nI (A (n) Ip 

where C0 is a constant not dependent on n. Hence 

Pr(Z (n) E, A/P) = exp(-nI(A (n)'p)) + 0(logn)) 

uniformly for AcP and pE0. 

Also 

Pr (Z 
(n) E A/p) < expf-nI(A, p) + O(logn» 

uniformly for A c: 0 and p 

This result gives an asymptotic expression for the 

logarithm of the probability Pr(Z (n) E A/p). This result 

is non-trivial if Z (n) is far from its mean p. Hence if A 

is taken as a critical region for some test this enables the 

power to be compared with the likelihood ratio test. 

We quote Lemmas 4.2 and 4-7 of Hoeffding. 

Lemma 114.2 Let A be a non-empty subset of 0. 

(a) Let pE no. There is at least one point y such that 

yEK, I(y, p) = I(A, p). (4-1. ) 

If pEA, then I(A, p) =0 and (4-1) is satisfied only with 
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y=p. If p (ý A, then I(Alp) >0 and any y which satisfies 

(4-1) is in the boundary of A. 

(b) Lot pr0, then I(A, p) < aD if and only if the 

intersection An P(p) is non-empty. If this is the case 

then I(A, p) = I(An r(p), p) and the statements of par t (a) 

are true with A replaced by An r(p). 

Lemma H4-Z Let A= (x 
i f(x) > 0) where the function 

f(x) is continuous in. P and max f(x) > 0. Let p be a point 

in () 
0. such that f(p) < 0. Suppose further that the 

derivatives f! (x) = bf(x)/bx. i 1,. -., q exist and are 3.3. 

continuous at all x in 00 for which f(x) = 0. 

Let y be any Point in X such that I(y, p) I(Ap). Then 

if yE f) 
0 

it is necessary that f(y) 0 and 

log(y /pi) =af! (Y)+ bi 11 ... Iq i 3. 

where a>0 and b are constants. 

Let pE and'O < E, < max Z(x, p 0 
Consider the 

X 
critical region A for testing the simple hypothesis 

H *. p=p1 'where 

A(G) = (x; q(x, p 0)> 
E) 

A(E) is the union of the sets Am (E) = {x; Dm (X, p 0)> 
i. e. 

A(E) U AM(E) 
MGTI 

We nowstate and prove a Theorem which follows Hoeffding's 

Theorem 

Theorem 4.1. Suppose that p0e00 and 0<E< max Z(x, p 0 X 
then y (: A(E) such that 

I(A(E), p 0 
I(y, po) 

and 

y i= 
apoi 

bp 
oi 
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where (y 
i-poi -Sý(Y, p0 

E+h* 1_h*_E 
a= h*' 

b= 
1_h* 

and I(Y, p 

where h* = F, p. 
iEM* Ol 

Proof By Lemma H4.2 we must have Wy, p 0 
El and let 

) where M* E TI. (4.2) jD (y, P0 (y 
i-Poi 

By lemma H4-71 Put f(. X) =. Z(X, P 0 
then f(y) =0 

'and so if I(y, p) = I(A(E), p) 

0iV, M* 
los(y /P S6 .+t where 6 (4-3) i oi 3- 3. 

s and t are constants and s> 0. 

The set M* may or may not be unique, however there is a 

unique point y defined by (4-2) and (4-3) given M*. 

ap oi 
iE M* 

Yi = 
bp 

oi 
iV m* 

where aeset and b=et Since s>0, a>b. 

We also have conditions T, yI and ý)(y, p These 

are equivalent to 

ah*+ b(l-h*) =I 

ah* - h* =E 

where h* FP- 
iE M* O: L 

So a=E +h* b I-G 
1- h-X- 

C We can now find I (y, p0) explicitly 
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k 
I(y, po) yi log(y i/poi 

yi 108(yi/Poi +yi log(yi/P 
0: 1. 

iEM* 

= h* a log a+ (1-h*)b log b 

J(1-1*), say. 

Now J(h*) (E+h*)log(l+ý2 + (I-E-h*)log(l- 
E 

h* 

E It E )2) EE )2) + O(C3) (E + h*) (-h'F- 
2 -11-7 + -h*) (-Y--h-7 1-h* 

E2 r -2 _E+ OW) 
h* 

E2 
+ O(Eý3) 

Now I(A(E), po) = min'I(A. 
W 52 1,1 

(G), po) 

min J (h 
m MEn 

min 
1.21 

hý71-hM)j MEn M 

min J (hý, ) 
ME SO 

-where J (bI) h., a log a+ (1-NI) b log b 

Now I 
h(l-h) has a unique minimum at h (0 <h < I)-. So the, 

set M* is chosen such t hat 

h* - h* -! 
12 

M 
M (4-4) 

Note that if p 
oi 

1/q i = 1,..., q, and I. M is chosen to 

correspond to D+M in §4.2), then there is ju st one set M* 
ni 

satisfying (4-4) (or t'Vo if q is odd). If TR is chosen to 

correspond to D OTI. then there are two sets M* satisfying n Iii 

(4-4) (or four if q is odd). If nl, corresponds to V then there n 
n 
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are ?, q sets M* satisfying (4-4) (or 4q if q is odd). 

Theorem 4.2 Let p0E rol pE f) 
0E>0, 

X)(p, p 0>E 
then 

a unique poýnt z such that zE 

I(AI(E), p) = I(z, p) 

The point z is given by 

aiEM+ 
log( 

.z 
i/pi) bi9, M+ 

with a' < bl constants and Z(z, p 0)=F+ 
(zi-pol 

ic- M 
To prove Theorem 4.2 Hooffding's Leimna 4.8 is needed. 

Lemma H4.8 If A is convex and Ann0 is not empty and 

.. L if PEP, p then there is exactly one point yEA such 0 
that I(y, p) = I(A, p). 

A lemma is needed. 

Lemma 4.1 The set AI(E), where 

A (E )= (x; ý) (x, p0)> E) 

is convex. 

Proof Let yE A' (E), i. e. 
ý)(y, 

p < E; let zG AI(E). 

Consider 0<a<1, and define x ay+ (1-a)z then for M6 T) 

S (x 
i-Poi 

)=Z (ay 
i +(1-a)z i-Poi) iEm iE m 

a (y. -p + -a) (z 
i-pod iEM I OýL iEm 

:ýaF, (y -p )+ (1-a) S (Z -p ) 
iEM, i oi iE4 i oi . 

where M, , 1,, h E 

and Z(Yip 
0 

(y -P 
iE Ai 

(Z, p0)=E (Z. -p .) ic4 ' 01 

since y, zE AI(E). 
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Hence E. (x 
i-poi <E for all MEP and so Qx, p) < E, 

iEM 

i. e. xE A'(Wand so AI(E) is convex. 

Proof of Theorem 412 'By Lemma H4.8 and Lemma 4.1, 

exactly one point Z which satisfies (4-5). By Lemma H4-7, Z 

must satisfy 

Z. 
log 

p+ 
t' st> 

where 6 
+ 

where M+ is chosen so that xZ(z, po) + 
(z 

i-pol E -%sri th 

iEM 
fW= (7 -E+ (z, p0)- 

iE M 

So icriting a' = t' st 

bl tv 

we have 

aiEM+ 
log(z i/pi) bi 1ý M+ 

with a' < bl since sl 

Now define 

B(E) = (x; I(x, p 0> 
I(A(E), p 0)) 

where A (E )= (x; Z (x, p>E) 0 (4-6) 
as before. Then let 

d(p, E) =I (13I(E), p) -I (A I (E), p) 

Note that A(E) is the critical region of the test based 

on and the logarithm of the significance level is given by 

I(A(G), p 0 
B(E) is the critical region*based on the likelihood 

ratio test, with the logarithm of the significance level given 

by I(B((), p 0 
), Hoeffding's Theorem 7-1. d(p, E) is the 

difference of the logarithm of the probabilities of the type II 

errors, when the alternative is p. Trivially from Lemma H4-7 
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I(B(E), p 0 
I(A(E), p 0 putting f(x) = I(x, p 0 

I(A(E, ), p 0); 

Hoeffding's Theorem 6-3 is needed before conditions 

for d(p, C) = O, are given, i. e. the powers of the test to be 

of the' same order. 

Theoreni H6.3 Let A and A be non-empty subsets of 

such that 0< I(A, A) < OD - Let 

B= (x; I(x, A) > I(A, A)) 

and for any p such that I(Al, p) < aD, let 

d(p) = I(B1, p) - I(, kl, p) 

M Always d(p) > 0; d(p) =0 if and only if 

. (x; I(X, p) < I(Bl, p)) c: A 

(ii) If d(p) =0 and 0 <. I(Bl, p) < cD then I(Blip) 

I(y, p) for some common boundary point of A and B. 

We now give the next theorem. 

Theorem 4.3 Lot po E00 and 0<E< max C(x, p 0 
then 

x 
d(p, E) >0 unless 

a il EM+) w-i th a> 
Pi -1 Poi 

i 9, M, 

and M+ C: TR 

Proof With the definitions of (4-6) of A, B and d by Theorem 

H6-3 with A= (p 
0 

), if d(p, E) =0 then there exists a common 

boundary point y of A(E) and B(E) such that I(y, p) = I(BI(E), p). 

By theorem 4.2 there exists a unique Z such that zG XI(E) 

and 

I(AI(E), p) = I(zip) and 

at iEM+ 
log(z i 

/P = 
bl M+ 

where Cý(z 
i, Po) = F, 

+ 
(z 

i-pol iEM 

If y is a boundary point of B(E) and I(y, p) = I(B'(E), p) then 
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by Lenima 1-14 -7 -wi th f (x) (x, p0+ I(A(E), p 0 

log(y 
i/P3. 

) 
= -elog(yi/PO3. +dc>0 (4-8) 

and i 

Also I(y, p 0 
I(A(E), p 0 

Si nee I(z, p) VAI(E), p) = I(BI(E), p) and z must, satisfy 

Eliminating zi from (4-7) and (4-8) with y=z, we have 

- logpi -c 1ýgp 
oi -d (1+c) (log p, +aI+6 (bl-al)) 

0iEM+ 

1i9, M, 

1+c at 

d/c e i. EM 
i. e. Pi p., ex-; 

L+cý 

eci !ý M+ 

Since c>0, (1+c)/c >0 and a' < b' then e- al(l+c)/c > 

e- 
bI (140/c 

. Hence 

iEM 
Pi =p oi xi9, 

M+ 

wi th a>p. 

Following Hoeffiding's Theorem 8.4, we can say that the 

likelihood ratio test 

test, unless d(p, E) 

to 0 fast enough. By 

that the ratio of the 

tends to 0 faster tha 

is 'considerably more powerfull than the 

0, when the size of the test an goes 

'considerably more powerful' we mean 

error probabilities of the two tests 

n any power of n. Stating this more 

precisely in a theorem. 

Theorem 4.4 Let pEC. ) and 0<E< max CI(x p 00nxno 
The size of the C-test, -which rejects the nufi hypothesis 

p=p0 if ZnEAn (E 
n)= 

(xnlý(xn, po) >E 
n) 

is given by 

Pr (A (E 
n)lpo) ,= exp f -nI (A (En)'Po) + O(lo8n)) 
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where I(A(C- 
n 

), p 0) 
is given in in Theorem 4.1. 

If pE0, nE ---> cD as n -> cD -then (4-9) 

P (Al(E 
n 

)lp) exp(-NI(A'((7 n 
), p) + O(logn)) 

I(A'((2 
n 

), p) is given in Theorem 

Remark From the asymptotic theory of the ý)-tests we know that 

Vn ý) has a non-trivial limiting distribution, hence 

- Pr (53 >G0 if nE (3D as n --> w, i. e. a nnn 
Theorem 4.4 (continued) 

Consider the likelihood ratio test which rejects the null 

hypothesis p=p0 if ZnEBn (E 
n)= 

(x 
n 

/I(X P0)>I (A (ýý 
n 

), P 0 
)+6 

n 

where the 6n=0 (log n/n) 16n >-O are such that the size of 

the test is given by 

Pr (B /P < Pr (A (E )1P. ) 

If the conditions (4-9) are satisfied, then 

Pr (BýI p) = exp (-na(p, C-n) + O(log nl (A (En) 
lpo»)X Pr(A'(En )ip) 

where d(pjE 
n 

if d(pE 
n 

Pr(B' 
nl, )) 

and the Cý-tes 

has the properties given in Theorem 4-3- 

0 then 

n Pr(AI(E )1p), ga constant, g>0, 
n 

t is as least as powerful as the likelihood 

ratio test for the alternatives p where d(p, G 
R)=0, 

siven in 

Theorem 4-3- 

Proof The proof follows Hoeffding's Theorem 8.4. 

4.4. So e examples of theprevious results 

From Iloeffding's Theorem 8.4 it is seen that the . 1$ test 

is as least as powerful as the LR test when the alternative 

is given by 

pj : -- 1-a+ ap 
0j, Pi = 'Poi i/j (4-10) 

<a<I and p oj ý' Po, min' 
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where p o, m3. n 
is the minimum Of (Poi). If there is more than 

one j such that pp then there is an alternative of 
Ojj o9min 

the form (4-10 corresponding to each j such that p Oli = Po, min., 

From Theorem 4.4, we see that the Z test is as least as 

pow-erful as the LR test when the alternative is given by 

(X iEI 
x Pi = Poi 

I-alý* m, 
1-h+ 

(4.11) 

where cx > 0, hP. and M+ C: MI. 
+ 01 

T he two alternatives (4-10 and (4 . 11) coincide if M+ 

where PP In this case we would exoect the X2 to be 
oj o, min 

more powerful than the El test. 

If we consider the case of grouping data into q equi- 

probable cells then p for i=1,..., q. There. are then' 
oi =q 

q alternatives of the form (4. iO). For the various sets T1 

corresponding to the various -! D statistics (see §4-2) the 

number of alternatives (4.11) varies. For example if 5R is 

defined as DR. then ID corresponds to D+ and there are (q-1) 
X 

alternatives of the form (4-11); if T, is defined to be n. 
13.1 

and ýD corresponds to. D then there are 2(q-1) alternatives of' 

the form (4-11). The Z tests will be more powerful than the 

XF test except when M+ of (4-11) is defined such that 11+ (j), 

Poj = Pom, 
11. 

More results involving the power of th'e statistics 

are given in the next section for this case when the 

significance level does not --> 0 or --> 1, with n 
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A Comparison of the asynij2totic povýrcrs of the X2 -test and 
D 

n,, q 
test with grouped data for a fixed significance levelt 

and a fixed number of cells. 

5-1- Introduction 

In this section we study the asymptotic powers of the 

J- ', /Z-test and the D es'll by use of two *approximate results. A niq 
For the test of. the multinomial hypothesis 

pI=p ol' 'P2 = Po2' *'*'Pq = Poql 

the distribution of the X"2 statistic when the alternative 

1. P1 -ý P111 P2 -ý P121 ... 'pq : - plq 

is true is that of a non-central I distribution with parameter 

q Cý 
), =z --L where -pli -p oi =ci /ýn 

i=i Poi 

and q- 1 degrees of freedom, see Kendall and Stuart (1973, 

§30.27)- Patnaik (1949) has tabulated the power of the X2 

statistic at the -05 significance level for various X and q. 

Use is made of these tables. 

5.2. Previous results 

, 
We found the asymptotic distribution of InD 

nq 
in 

so providing the asymptotic significance level Ind for 
a 

each q, say. Kendall and Stuart (1973, §30.60) provide a 

lower bound to the power of ;nDn for continuous dat ix: 

Poiver P> 1-W 
FO-FI +d 

.2F0 
-Fl -d 

(5-2) 
'(F, (1 - Fi ) /n} (F, (1-Fl ) 

where F0 and F, are given by the values of F0 (x 
S) and F, (x 

s 
respectively where A IF 

0 
(x 

s 
)-F, (X 

s suplF 
0 

(x)-Fl(x)l. 
x For the discrete case 

I 
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oi 

and F, (x) = '; Z 

r r-; -l 
for p oi ýý x<p oi 

r r+l 
for Poi <x< Poi 

The lower bound (5-2) can be used for the discrete case and 

it will provide an even better bound than for the continuous 

case. 

For this limited study, q was chosen to be equal to 10 

and the 5% significance level used. X, the non-central 

parameter, was chosen to give the X2 test a power of . 50 

and . 90. The alternatives considered were 

(_l ,91 10 VIn' 1,1-0 0 

xI and X= 10.90 
s lo 

+414 10 
Fn 

'1 -0 + Fn 
' 'I Uo - -ýn- lo- 'i 

Xs and X =ý 10.40 5 

(iii) R .1 such that 

-1 i-o + 

Pi =. 

1, 

10 

i= 1'... s5 

i= lo 

then x, = -2j- and X= 10.10 
s 

From . Patnaiks (1949) tables for 50% and 90% power we . 
have 

8.84 and 4 = 19-85 respectively. We then solve for y, 

and, find the lower bound to the power of Irn D' by using 
, niq 

(5-2). The value of da is found from the M. C. results and 

Table (3-1)- It is found that da=1.175 for q= 10. 

5.3. Results 

From the results, Table 5-1, it is seen that the power 
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of the )e test is exceeded for alternatives 2-and 3. by the D 

test. The lower bound to the power (LBP) of D for alternative 

1 is less than, the )(ý power and one intuitively feels that 

these, lower bounds-are fairly close to the actual powers. 

For alternatives of the form 

a 3- 
q' 

P-1 
Pi bq 

q 

where a and b are chosen so that 7, pi 1, we would expect 

the power of D to be much greater than that of provided 

q, is not too near I or q. This is the type of alternative 

for which, D was shoim to be as powerful as the likelihood 

test in §4, but under different circumstances. From the 

Monte Carlo results of §2.6, the results of §4, and the result s 

presented here we see that the D statistic (or D+ or D_ for 

the one-sided test) should have good power for this type 

of alternative, under varying circumstances of sample size 

and significance level. It must be noted that the power 

of the X2 statistic is invariant under orderings of the elements 

of the alternative 
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)ý power -50 8.84 

Alternative y LBP of D 

11 9y . 099 -17 

2 8y -1119 -52 

3 5y . 297 -73 

X'z power . 90 19-85 

Alternative 
-Y 

LBP of D 

1 9y . 1,19 -71 
2 8 -y . 223 

3 5y . 446 . 98 

Table 5.1 

Comparison of asymptotic power of XF-test with D test, with 

discrete data. Testing the null-hypothesis that 10 points 

are equally likely at the 5%, level. 
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Part II Goodness-of-fit for ccns 
' 
ored data using Cralne"r- 

Von Mises type statistics 

Introduction 

In some applications of goodness-of-fit it is necessary 

only to consider whether a certain proportion of the randoin 

sample fits the hypothesised distribution. This may arise 

in. various ways, but the most likely is through censoring of 

some kind. Statistics of the K-S type. were introduced by 

Renyi (1953) for this problem 

sup 
IF n 

(x)-F(X) 

a<F(x)<b 
F(x) 

FW-FW 
and . sup 

fn "I 

F(x)>a FW 

lie found the asymptotic distribution of these statistics for 

continuous F. Birnbaum and Lientz have-introduced inany 

RI enyi-type statistics (see their paper (1969) for a reviei, ýr). 

In particular they have found the exact finite and asymptotic 

distributions of the statistics 

sup F (x)-P (x) 
F (x)<a a 

sup 
JF. W-F. (Xýj 

F (x) <b 

In Part 11 the extension of the Renyi idea to the CVNI-type 

statistics for continuous F is considered and in particular 

the statistics below are studied 

F- 1 (p) 

p 
ive 

n. =nY0. (Fn(x)-FO (x))2 'dF 
0 

(X) 
OD 

le- 
n=, 

1'(r) �, 
n 

(x)-F 
0 

(X »2 dF 
0 

(x) (6.2) 
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F-I (P) 
At tr, (x)-F (x»2/(F (X)(1-P (x» dF 

r 
A2 

n=n 
jX(r) 

(F (x)-ri (x))2/(F (x)(1-F (x)) dF (x) 
-CD ,n0000 

to test the simple hypothesis H0-. F(x)*=- F0W. The theory 

is extended for the case of doubly censored data. An 

approximation is made to the distribution of le and I$ 
pnrn 

for small n. The asymptotic theory of 
p 

U-2 
n and r 

IV2 
n 

is 

given and the tests extended for a composite hypothesis. In 

particular tests for normality and the exponential 

distribution are developed, the*theory is given and asymptotic 

percentage points provided, which are checked against 

empirical percentage points for the statistics. The 

asymptotic distribution of 
p 

A2 
n and r 

A2 
n 

is found. and 

percentage points given. Also the asymptotic sample theory 

of testing composite hypotheses using A2 or A2 -is 
pnrn 

developed providing a test for normality with censored 

samples having good power. 

Various power studies are presented giving the (exact 

asymptotic) power of P 
I$ and p 

A2 for shifts of scale and 

location, and the small sample empirical power of the -tests 

based on r 
'W%- 

n and r 
A2 

n 
when t esting for normality. 

The W2 statistic for testin. S goodness-of-fit with 
censored data with a simple hypothesis 

6.1. Introduction 

In this section the moments of the statistics V and 
pn 

rVn and approximate significance points are found by 

fitting a distribution of the type of the random variable T, 

where 
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aC2 +b (6-3) 

and a, b and v are chosen so that the first three moments 
I 

of T. zýre equal to those of UP or 1-f 1 and C? has the Xz 
pnrnv 

distribution with v degrees of freedom. 

The statistics 1%ý (6-1) and (6-2) are applicable 
.pn 

to testing goodness-of-fit with censored data. The statistic 

IV2 is used with censo ring of Type I on the right, where the 
pn 

observations greater than F- I (p) are censored, and so the 
0 

number of observations observed is a randoin variable. The 

statistic is used with censoring of Type II an the right, 
rn 

where the values observed are the r smallest, and so the end 

point of i ntegration x (r) is a random variable. Obviously 

the statistics can'be used with censoring on the left. The 

statistics 
CJD 

(F W-F (x» dF (x) (6.4) 
n00 

0 
(IL-p) 

n., f 

x(S) 

(F 
n 

(x)-ri 
0 

(x»2 dF 
0 

(x) 

are distributed the same as W2 and V, where s=n-r+ pnrn 
The approxinia: tion'(6-3) is quite accurate for the upper-tail 

of the distributions of the statistics (see Tiku (1963), and 

Stephens and Maag (1968) for the application to but is 
n 

not applicable to the lower tail since, among other reasons, 

the value of 'a' in (6-3) does not coincide with the minimum 

value of the statistics and the distribution is adrift at the 

lower tail. Also found in this section, is the exact lower- 

tail distribution of the statistic Ive, for small n. Also 
pn 

the asymptotic theory of the statistics is found and accurate 
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percentage points provided. The asymptotic theory is extended 

so that the distribution of the statistics for doubly censored 

data, e. g. 
F-I (p) 

V=n Fn (x)-Fo(x))2 dF (X) 0<q<p< 
0 

p, q n -. 0 

0 
can be found. 

Also the asymptotic power is given when F (x) is considered 
0 

to be normal and shifts of scale and location are considered. 

6.2 Small sample properties of XV2 , U2 an d I$ 
pnrnq, p n 

6.2.1 Moments of IP- 
pn 

First consider the-statistic 1%*,. Upon the transformation 
pn 

tFW this statistic becomes 
0 

W2 =n 
fp (F (t)-t}2 dt (6.5) 

pn0n 

The moments 'of IV2 can be found from (6-5). For example 
pn 

EE 1, ý 1=n lp E[ (F (t)-t)2 1 dt 
pn 

t(I-t) dt 

23 (6-6) 

taking the expectation under the integral sign, and the second 

moment about the origin: 

. 
EC( V )' 3= n'fpfp E[(F (t)-t)2 (F (s)-s)21 dt ds 

pnnn 
00 

Now nF n 
(t) and nF 

n 
(s) are trinomial random variables. If 

t<s then by tedious expansion it it found that 

E[n2 (F 
n 

(t) - t? n2 (F 
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nt + 2n (n- 2) t -2 +n(n-3)st 

+ 5n(2-n)stý + n(2-n)sýt + n6n-Os2tý for t<s 
i 

Then upon'integrating and notiný that 
I 

jpfPf (s, t) ds dt = 21 
p 

Is f (s, t) dt ds 
ol 000 

for symmetric f(s, t) it is found that 

2P3 
+ (7n-17)p +( 2-ii)L3-p2 + n-2P3 

pnn 211 30 
(6-7) 

Note that if p=1 then 

EE vI=11 
1n 20 - 60n 

a nd so var ( U" )= 4'--3 
1n 180n 

in agreement with previous results an Ut. 
n 

Similarly we can find EC ( 1$ )3 3- This expression pn 

E[n2 fF (t)-t)2 n2 (F (s)-s)2 n2 (F (r)-r)2 3 (6.8) 

with r<s<t is used. By tedious algebra again it is found 

that (6-8) is given by 

nr + 2n(7n-8)r2 + 2n(5n-6)rs + n(n-3)rt 

+ 5n(2n2 -19n+18)3-2 s+ 2n(n2 -19n+20)r2 t+ n(22 -21n+18)rs2 

" n(2-n)rt? + n(n2 -27n+30)rst + 4n(3n2 +26n-24)x2 s2 

" 2n(-ne +12n-12)r2 t2 + 5n(6n2 +35n-42)r2 st 

" n(6n2 +35n-42)rs2 t+ n(-n? +17n-18)rstý 

" n(27112 -234n+216)r2 s2 t+ 5n(3n2 -26n+24)r-? st' 

" n(3n2 -26n+24)rs2 t2 + 5n(-3n2 +26n-24)r2 sý t2 

Upon integrating and noting that 

Y'y 
pypf(. 

r, s, t) dr ds dt = 4y 
pyyf 

(r, s, t) dr ds dt 
000000 

it is found that 
61)4 

EE( C1,3111-40 2n2 -19n+18 
n 
2 

n: 
' -6 o- P+ plý 24 6o 
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n2 -27n+30 + 
5112 -5811+53), )2 

3 
rl. 2 

-R(-'1-(3 -26+210 48 36 79 

6(n2 -12n+12) + 
13-(5n' 

-45n+42) + 
1(112 

-17n+18) 3-0 

7 
P4 On2 -26n+24) p S( 3r'2 -2611+24)3 (6.9) Z-0 1+2 

Thus the first three moments of V can be calculated using 
pn 

(6.6), (6-7) and (6-9). As can be seen from (6-9)-the c; xpression 

for the third moment Is quite tedious and higher moments 

were not ý-alculated- 

6-2.2 Mo., ments of 1$ 
rn 

We derive the moments of W2 by first taking conditional expectations rn 

given T (r) ýý P' Now the T (1), T (2)"" T IT p act like r-1 order 

statistics from a 13(o, p) distribution: 

f(t .. ýt 
n! 

'- (1-t (r)) 
n-r 

Mlo (r) (n-r), 

I 
and f (t n. r-I (1-t n-r 

rr 
t(r) (r) (n-r5. 

tt (1) < t(2)< **"< (r)< 

so (t 
Now w2 IT (F (t)-t) 2 

cl t 
(r 

n (r) 
f0n 

= np 
fý 

(F 
n(tp) - tp) 

2 dt 

But F (tp) IT =p has the same distribution as El G (t) where m= r-l and 
n (r) nm 

is the e. d. f. of m observations from U(0,1), so W2 IT =p has the 
rn (r) 

same distribution as 

np ( 21 GM tp) 
2 dt 

fo 

nm 

(m G (t) 2z-mt) 2 dt. 
n 

f. 

mm 

Now mGm (t) is a Bi(t, m) random variable and so the moments of 

P- 2 
n 

(m C (t) mt) dt can be found. 
fo 

mm 



We find, with m M(M-1) .... (M-i), 

222n23 
EW 

IT 51 (1+2m) p- np + 3- P 
[r 

nr 
P] - 'n! 6 

W2 
2 [2 3 13 17 

p+m E 
[(r 

n] 

IT 

(r) =p1 18 -2 30 --ý-j 3-4 + 
1n2 

np3Z+m 
13 

+ .2m 
(m- 

29 -1' 15 12 

M- 'ý 
+ tr, 

13 
- n3 ý5 

2m 
+246, 24 -7- 30 _y p)9 19 

[23 
P] 6 wTp+ 'n r nj 

I 
(r) 

n3 

J"ý-5 
1612 -4 

10 

1667 913 2m 
-3 2520 +m 

-2 720 g+ 74-) 

m - 4 : 323 473 3 
4, - 27 +m+m -3 15 -2 iio +m j60 m 70 

np 

L 7 917 43 
5 

(ý-3 
54 -2 iö + M-1 i40 m + i80 

np 

6* ' 3 AO 7 271 47 5 (M 
-n p -2 

+ M-1 81 r5 +m T2 6 10 j +np 
[m 

14+m - 5 60 

58m*j! 
-2 -p 1-7 162 
, 91 

We now take expectations with respect to p=T (r)* 

From Sahran and Greenberg (1962, p. 14) we have 

E. n! (r+s-l)! [TS(r)] 
(n+s). (r-1). ' 

and so we replace ps by (6.10). We have explicitly 

E[ W2 
]1 r-I 

_Z_ + 
(r-1) 2r 

rInW -n n+l 3n- n+1 

2 r(r-1)(r+l) n r(r+l)(r+2) 
3 041) (n-ý +T (n+l) (n+2) (n+3) 

(6.10) 

and the other moments we leave in their implicit form. 

An approximation to the distribution of the statistics used 

is that of Tiku's (1965), see (6-3). This is a fairly good 
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approximation to the actual distribution (see Durbin and Knott 

(1972) who find the exact distribution of Vý and compare it 
n 

with this approximation given by Stephens and Maag (1968a), 

and show it to be good in the upper tail). Significance points 

are given in Table 6.1, for selected n, p and r. 

§6-3 Exact lower-tail distribution of the statistic p 

§6-3-1 ExPressions for calculating W2 and 141- from thi 
nrn 

The statistics (6.1) and (6-2) are easily calculai 

the data: 

np (F (t)-t))2dt 
pn0n 

R-1 [ti2 
(i+l) 

nZ n2 
iný +3 

i=o t (i) 

R2 
+t te 

P 
where t 

n-- 2n3 
It 

(R) 
(R) p t(R+l) 

R 
2i-1ý2 R( 112 2 = F, (t 

(i ) 2n /1 rlý +n Vn-2 -P n i=l 

n 

§6-3-1 ExPressions for calculating U' and U' from the data' nrn 

The statistics (6.1) and (6-2) are easily calculated from 

I$ is easily, calculated; put p=t and R= r- 1 in the rn (R) 

formula for W2 
pn 

2i 1,2 (r-l)[4( 

I 2W- 

)2 
-1 

'3 
t (r) n! 

t(r ) 
rn 

+" 
(r 

3 

If p=1 and so R=n in (6.11), Vý then reduces to V 
ipnn 

n22 
q=E (t 

(i)- p=l n i=l 2n + 1-2n 
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Obviously if r=n, W2 does not reduce to unless t 
rnn 

I 

which occurs with probability 0 for finite n. 

6-3.2'Maximum and Minimum values of 1) 
1$ 

It is easily seen that if all the observations are equal 

to 0 then F (t) =10<t<p and 

pw1 
=- (i-p)3) (6-13) 

This gives us the maximum value of U2 The minimum value 
pn 

of U"? is found by minimizing the term 
pn 

E 
2n i=l 

. 
This is done by putting t 2i-1 

and then this term 2n, 

is equal to 0. We then minimize the remaining part of U2 
p, n 

with respect to p. This is done if p and this value of p n 
2R-1 RI 

is compatible with t= -- The value of is (R) 2n npn 
then 

1ý2 =R p l2ný 

12n 

These formulations help to find the exact distribution of the 

statistic U12 in the lower tail. 
pn 

6-3-3 §opic previous results-of Stephens anq Llaa,, o; 
Stephens and Maag (1968a) find the lower tail distribution 

of the statistic 1$ Some of their results are given here. 
n C5 

If P is a random point in Rn and has sample space 

0< ti <t <1, thenPr(PE6-) =6 n! Then nvv 
PrOV2 < z) = n-'V where V is the volume of a spher eS inside n- 
the simplex T given by (o < tj < ... <tn< 1). If a= 1/2n, 
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the sphere S has centre (a, 3a,..., (2n-l)a) and y= 
Jz-ý2-n 

radius y. For small enough Z, S is completely insid6 the sinipl( 

T then 

I Pr (V < z) = n! 7c 
2y n/., (a+ 1) 

n-2 

where (6-15) is the volume of a hypersphere (see M. G. Kendall 

U961) P- 35, for example). The limits for z are 

I"z< n+3 
12n -1 2ný 

The lower limit is the minimum value of W2 and the upper value n 
is given by the largest value of y before the sphere S goes 

outside the simplex T; this occu: rs at the boundaries t, =0 

and t '= 1 when y=a, i. e. z= n+l 
n1 2-n2 

6-3-4 Stephens' and Maag's result applied to V 
n 

Now consider the statistic UP' , where pn =ki. e. Ipn 
k< pn < k+ 1, k an integer, 0<k<n. Now I$ if R=k 

p 
is given by 

k (t(: 
L)-2i-1 

2 
= r, ý+ 

-P- 2n 1 2n 

If R= 

kJ2+ 
-P 

n. -11ý4n i=l 2n 12n + 12 

and for R= k+ j, we change the sign of j in (6-17)- 

For R=k consider the hypersphere S in 1ý', with radius 

(z-p/12n) and centre (a, 3a,..., (2k-I)a), then 

nk/2 
k 

Pr( < zIR k) klný 
--y pn )iý'ITc /2+fT 

: Z-, j. e. <z< 3+pn an d0<y< 
ni -2n- n 12n 

It can be seen that for a similar formula to hold for 

k- 
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-P + 
4-3 

<z< -p- + 
It 

12n 122 riý I 2n ýn= + 1L2 n4 

For j>0V _j is an increasing function of j and it is 
I 

seen for j=1, z must satisfy z> 
P+3 

, so if R< k)pV 12-171- 11 

cannot attain a value in S. 

No-%, r when R=k+1 the minimum value of is p, and pn 12n 

this is achieved -%-Then t 
2i-1 i=1,..., k and (i) 2n 

t (k+l) : -' 1) * Consider now-a hypersphere S' in Fý, 
+, with centre 

(a, 3a,... t(2k-l)a, 
(2k+l)a ) and radius y= (z-p/12n) 

, with 

a restriction on the t k+l coordinate, t k+l -ýý 
1) So -we want 

the volume of hypersphere S' but 
. 

with tk+l <p as y increases. 

The volume of the hypersphere with no restrictions is: 

k+l 
2 k+l 

K+l I, ( T-+' 

Using a reslýlt Of Stepheii! s and Magg, with slight modification, 

the volume of the hypersphe re wi th t 
k+I ýý P is given by 

k+l 
a k+l 

2 k+l sin t dt 
(k+l) y k+l 

2 

where a= Cos-1(1/2ay) 

For R> k+ 11 the minumum, value of W2 exceeds n+ 
pn 12 

The hypersphere S' will meet more boundaries when > 1/2n 

3+pn 
i. e. z> -1 2n2 -. 

So 

k+l 

Pr <zIR=k+ 1) = (Ic+l) 'n2y k+l 
pn- 

OL 
sin 

k+l 
t dt 

0 
(h -+I 

for <z< 
3+pn ýj- 

1n-- l21ý4' 
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So finally we have 

Pr ( I$ < z) = Pr ( U12 <zIR= k) Pr (R = k) 
pnpn 

+ Pr( zIR r- k+ 1)Pr (R = Ic + 1) 

k 

(n 
pk(, __P)n 

k! -n Yr -k 
k 

2 

k+l 

+ 
(k+l) 'it 2y k+l 

sin 
(k+l) 

t dt 
r 0ý±-1-+-ir, )0 

2 

X( nl)pk+l( 1 
k+ 

where y (z-p/12n)2 

a= cos-1(1/2ay), np = k. 

Now consider the next range of values for z. This is when 

the hypersphere S only goes. outside the simplex at-two 

boundaries viz. t, =0 and tk" P' 

pollowing Stephens and Maag (1968a), it is seen that 

for R=k, the hypersphere S touches the boundaries of the 

simplex T, except at tj 0 and tk= Ps if y< 12/2n' i. e. if 

z< Thus 
12n 

3- (k-1) k 
Pr( IQ2 < zIR = k) = kj. X2 y 

pn- 

sin 
kt dt 

x 
f2 2 

so 
(6-20) 

k (k 

3+pn 6n for =<z< 
ýý,, n 

. The expression (6.20) is given basically 12n -- 12n 

by Stephens and Maag (1968a), where a= cos- 
1 (1/2ay), 

y= Vz - p/12n- 

pn+112. -j If R=R-j, the minimum value of We is i and 
pnI 2ný 
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so for > It IVO lics 
p 11 

For j 1, the inininium 

k-1 

pn 

outside the range of z in (6-20). 

value of U72 is pn+ 3 
and then 

pn 

pn+3 
ý-n) T-2-n-4-- 

Now consider they hypersphere S in Rk_l space, with 
I 

radius yl I= (z- (pn+3)/12n2 )2 and centre (a, 3a,..., (2k-3)a)- 

The first boundary the hypersphere S vq'ill meet as y increasc 

inside the simplex T' I= (0 < tj :ý--- :ý tk_l :ý p) is at 

t, 0. This will occur if Y'' >-l i. e. if z> n+6 
2n 

S will ineet, other boundaries if y> 12/2n, i-e if 

n+ pn+g 
z> P11+9 So for ýý-4 <z< the hypersphere S lies -2n-z-- 12n 

completely inside the simplex T''. Thus 

k-I 

Oc- i TE 
2 

Yk-I 
Pr( < zj R=k- 1) k (6-21) 

Pnr (-,, 
,2 

I 

where y'' = (z-(pn+3)/12n2)2 and 

for pn+3 <z< pn+9 
l2aill -I* 

Now we again consider the hypersphere SI when R=k+1. 

We noted before then R> k+ 1 the minimum value of q exceeds 

pn+60 
pn 

We now consider the volume of S' with t 
-V and 2n p 

0 

now is restricted by the simplex at the boundaries t, =0 

and tp with*yt >1 and. y' < V2/2n. This basically is k 2n 

the same situation as for R=k with hypersphere 

Now the total volume is 

k+l a k+l 
2 k+l 

To 
sin t dt 

TE y 

(k+l 
2+ 

OL r 
X 21 sin 

k+l t dt X2+ 
0 

k+l 
71 2 

(6-21A) 
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giving Pr (V<zR=k+ 1) - p 1. 

11+3 z< ForP, 1.2a 
n+6 we can combine results (6-20), 

(6-21. ) and (6-21A) in the way (6-18) was found, to obtain 

Pr ( I$ < z) 
pn 

Thus the lower-tail distribution of I$ could be found 
pn 

using (6-18) and (6-20), (6-21) and (6-21A). 

6-3-5 The statistics U2 and I$ 
-qpn. 

s, r n 

The small sample statistics corresponding to 
qp 

I$ ar e 

is, V and V. V i-s the same as W2 but we q, p n Sir n SIP n qsp nPn 

put the lower limit of the integral in (6-1) equal 

-F 
(q). corresponds to with the lower limit of 0 Sir nrn 

the integral put equal to x(, ý, in (6-2). Vf* is the 
sip n 

statistic for mixed censoring with the lower limit equal 

x(s) and the upper limit equal to F-1 (P) 
- We will -not 0 

consider this statistic further. 

The statiStics W2 and I$ can be calculated from 
q, p n s, r n 

the data 

I$ = We - I$ 
q, p npnqn 

R 2i-1 F. (t 
(i)_ 

)2 CR(4112 --I)- (S-1) (4 (S-1)2-ily 
i=S 2n 12n 

n(p 
I?. 

- p2 
R+ 2-) 

-n (qS2 -? 
§ý 

, SL) 
nl- n3 AT n3 

where the observations q<t (S) t(R) :ýp are 

available and the rest censored. We-is calculated by 
r, s, n 

substituting R= r- Is S= s+ 1, p= t(r ) and q= t(s) in 

the above formula. 

The first moment of can be calculated from 
q, p n 
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ýv r, 90 = I$ - Uý, e 
q, pnpnqn 

and other moments in a similar manner to the way the moments 

of V were calculated.. Similarly the moments of IIP c an 
pns, r n 

be calculated using 

ve I=E. E E, E W2 IT(. 
sir n qlp n 5) q, (r) P] 

and use a result quoted in Dairid (1970)*(§3.1): 

ECT aTb ((r-l+a)! (s-l+a+b)! nl) (r) (S) 

x 
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6.4 Theory of the clsymptotic distribution of the 

statistic S, W2 9 W2 and W2 
rnpn --qqp 

n 

Previous results for W2 
n 

It is -%-jell known that the empirical proces, -3 

.n (t) = I*n IF 
n 

(. t) - ti 

converges to the Gaussian process y(t) with mean zero, 

and covariance function given by P(sst), where 

P(sit) = E[y(s) y(t)] = min(sit)- st 0< sit <i 

The statistic W2 is shown, by Anderson and Darling (1952), 
n 

to converge to W2 where 

WZ y2 (t) dt 
0 

Anderson and Darling represent the statistic W2 by a 

weighted infinite sum of chiý-squared random 'variables 

with 1 degree of freedom: 

CD Zý 

W2 =EIZ 7C4 j 

where the Z. are i. i. d. standard normal random variables. 

This follows from the form of the characteristic 

function given by Smirnov (1936) 

lim EE exp Utw (2it) 
n4 OD 

sin( 2it))' 

This representation can also be derived by 

using the result of Anderson and Darling (1952) that 



j. 6 

OD 1 
E-Zf. (t) (6.23) 

j-1 
1% iii 

where the %Is and f's are the eigenvalues and 

orthonoiýmal eigenfunctions respectively of the 

integral equation: 

P(st) f(s) ds = NO (6.24) 

where P(slt) = min(s, t)- st 0< sit <i 

They show that 

CO 1 
P(slt) =EX. f (t) f (S) (6.25) 

j=l 

and then the characteristic function of W29 can 

b6 expressed in terms of the X 

CID (1- 
2it/% O(t) 17 

j=j 

and so the cumulants can be calculated from the X.: 

CD m 
Xm (M- 1) m 

j=l( 

Or alternatively, the cumulants of 
p 

W2 can be found 

from P(sjt) only: 

Y" m2 
M-1 (M-l)j YO 0 

M(s, s) ds 

1 
-where p (s 

I t) =Tp (s, u) D(ult) du 
m. 0 M-1 

PI(sit) = P(s, t) 

6.4.2. Previous results applied to W2 
-- P 

Firstlyq it is noted that since Type I and 

Typed II censoring become equivalent as n4ooý the 
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statistics W2 and W2 become equivalent and have the 
, -/ 

pnrn 

same distribution provided r/n. --> p. We denote by 

p 
W2 the asymptotic distribution of W2 or W2 

pnrn. 

Following Kae and Siegert (1947) and Darling 

(1957)o the asymptotic distribution of 
P 

W2 9 where 

W2 
p 

y2 (t) 
. 
dt 

p0 

(10 z is that of E 
--a 

(6.26) 
j=l li i 

-where the Z. are i. iod. standard normal random variables, 

the jIj are eigenvalues of the intiýgral equation: 

P(s., t) g(s) ds = g(t) 

which reduces to 

IL 9(t) + 91, W=0-0<t<p 

on differentiation. 

So by using Mercer's Theorem 

- OD I 
P(stt) =E-9 (s) gi(t) 0< sIt <p 

j=1 llj i 

(6.27) 

(6.28) 

where the lij are eigenvalues and the 9. (t) are orthonormal 

eigenfunctions of the integral equation (6.27). 

2 Consequently W2 is a weighted sum of Vj ran4om p 

variables and its characteristic function is given by 

(ID 

TI (1-2it/'ýLj) (6-30) 
j=j 

and the cumulants of 
p 

W2 given by 
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OD m 

m= 
21n- in- 1) 1. E 6- 31A (6-31) 

j=j i 

or by xm= 2n'- rn- Ippm (sts) ds 6-31B 
0 

where Pm (s, t) 
p 

PM-1 
(s, u) P(ult) du 

0 

pl(sgt) = p(sit) 

6.4.2. Solution of the integral equation for 
R 

W2 

We can solve the integral equation (6.27) or 

alternatively the differential equation (6.28) 

11 g(t) + g" (t) =00<t<p<1, 

A general solution of the differential equation is: 

itA 
g(t) = Ae + Be- 

(A+B) cos tii*ýF + i(A-B) sin tii 

The boundary conditions are that g(o) 0 thus 

A+B 0 

and the solution reduces to: 

s(t) =a sin tiiý 

To find the eigenvalues lit substitute the solution 

g(t) into the original integral equation: 

f (min(s, t)-st) 9(s) ds 
0 

Now writing ji = m2: 

M2 
p (min(s 

, t)- st) sins m ds 
0 

M2 
fs 

sin(sm) +m2tf sin(sm) ds - m2 tps sin(sm) ds 
0t, 0 
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[-ms 
cos(ms)+ sin(ms)]' + mt! 

F-co. 
(mt)]' L 

0t 

-tF-ms cos(ms) + sin(ms)lp L0 
sin(mt) + tý-m cos(mp) + mp cos(mp) -sin(mp) 

For the function g(t) = sin tIL2 to be an 

eigenfunction: 

-m cos mp + mp cos mp - sin mp =0 

Now g(p) ý 0 since P(P9p) 40 for p<1, 

consequently sin mp 0 is not a-sOlution for m. 

Consequently cos mp 0 is also not a solution, since 

this implies that sin mp = Ol so we have that sin mp 40 

and cos nip X 01 so the general solution is given by 

tan mp = -m(l-p) 

tan It p= -11 (1-P) 

Now since theyoots ji are p ositivel, ii P'Must lie in the 

second or fourth quadrant of the circleg i. e. 

2kn -6 where 0 k 

2 kn-6 2 
w 

so It p _k) 

for k= 1129*... 

Thus the normalized eigenfunctions are 

sinji 12coslj, '' (6-32) g2 sin li t/(p - 
Pi 

To check that the 8k (t) k are 

orthogonal, where 
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C sin (jiý t) 
kk 

( 2k-n-6 ]S) 
p 

"k is a solution of 

II 
tan ji2 p= -1-LN1-p) (6- 32A) kk 

for aýb and alb ý 0: 

p I... [sin(a-b)t sin(a+b)t P 
sin(at) sin(bt) dt 2 a-b a+i; -] 

00 

a4 -V La sin(bp) Cos (ap) -b sin(ap) Cos (bp) 

I 
)[a tan bp -b tan ap] Ta"-: -b" )cos(ap)cos(bp 

1F tan bp - tan ap (a4- '-)cos(ap)cos(bp)at LbaI 

ir tan, ý kP 
But k 

(t) m sin IL kt and - -U-P) 

thus j 
'gk 

(t) gý(t) dt =0 for jXk, 
0 

put ting ak9 b-= 

6.4. 
-3. 

solution of the integral equation for 

doubly censored data, 
, _p 

W2. 

We can. extend these results to the case of doubly 

censored data and solve the integral equation: 

g(t) = ii 
fp ýmin(s, 

t)- stj g(*s) ds 0<q<p 
q 

(6-33) 
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This again becomes on differentiation: 

jig (t)+glt(t) =0 

with the general solution: 

I 

g(t) =a cos (Ii 
i 

t) +b sin (IL 
i 

t) 

For g(t) to satisfy the integral equation (6-33)1 we 

find the conditions on a, b and Ii. Writing ji = m2, 

M, fp tmin(sit) 
- stj cos(ms) ds 

q 

Ems sin(ms) + cos (ms)]t +. m Fp tý sin trit] 

p 

ms sin(ms) + Cos(ms)]q 

= cos(mt) - mq sin (mq) - cos 9mq) 

tf m sin mp - mp sin njp + mq sin mq 

cos mq - cos mp 
I- 

cos mt + G1. + tH, 

where G, = -mq sin (mq) - cos mq and H, =m sin (mp) - nip sin mp 

+ mq sin mq + cos mq - cos m. P. 

Also 

m2 
Yp ýmin(s 

It) - stj sin (sm) ds 
q 

[-ms 
Cos ms + sin + mtF-Cos mt 

p 
ms 

IqL It 

-tl-ms Cos + sill ms] 
p 

q 
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sin mt + mq Cos mq - sin niq 

+ -111 Cos mp + mp Cos mp - sin mp 

I 
-mq Cos mq +I sin mqj 

sin(mt) + G2 +t H2 

where G2 and H2 are defined similarly. 

Thus for g(t) to be an eigenfunction 

F( t) aG, + at H, + bG2 +bt H2 =0 for all t: q<t<p 

If a and b are both non-zero then 

aGi + bG2 0 

and alll + bH2 0. 

a -G Now ýa2 = -H2 
b G, H, 

e. G, H2 G2 111 0 

Writing sin mp =s sin mq s9 cOs mp cv cos mq =c 
Ipqpq 

this reduces to 

(-M2 qsqcp +m2 pq sqc 
p- 

sp mq sq -m2 qý cqsq 

+ mq s2 -mcc +mp cc -s c -mq c2 +s c qpqpqpqqqq 

+W q' cs- m2q2s c +c2nlq-c mq c 
qpqqqpq 

Ms s +m ss -mqs2-C s +c s qppqpqqpq 

=0 

On simplification this becomes 

tan (p-q)m (6.34) 1+epq-m q 
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If q= 01 this reduces to the previous result 

, 
tan pm = 

and if p=1 

tan(l-q)m = -mq 

which is symmetric in p and 1- q. 

Therefore a general eigenfunction is 

g(t) =a Cos (mt) +b sin (mt) 

such that 

tan(p-q)m -m(l+q-p) (6-35) 
1-m' q(l-p) 

Now a -CI2 =a 

b GI H, 

mq-tanmq 
mq tan (mq)+l 

so the normalising factor is given by: 

cos (mt) + sin (mt) dt 

a2 
-2-b .4 

p- q+ -1 sin (p- q) MI 
tm 

+ *1 p-q- sin (p-q) MI 
m 

-Ia, 
ý 

cos 2pm - c*Os 2qm 2bl 
I 
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6.11-3 
_W2 as a quadratic form of normal random , rariables 

Alternatively 
p 

W2 can be expressed in terms of the 

eigenfunctions and eigenvalu6s of (6.23) and (6-24). It is 

well known that %i= TL2 j2 and fi (t) = V! 2 sin jnt (sbe Anderson 

and Darling (1952)) so 

Sp y2 (t) qt 

0 

yp 
CD 12 

j)2 
27 

jR 
Sin jnt Z dt 

0 i=l 

OD 
(p sin 2j7t 

= 7, - za. 
j=l. Jn 2jn 

ýi 

(ID OD 1 sizi(, i-k)TcT) 
_sin( 

+k. 
_)jtp + 7, F. -z 

j ýk jn. kn (j-k)n +k) 7r 
z 

Consequently 
pV can be considered as a quadratic form of 

infinite dimension: 

V= ZTAZ 
p (6-36) 

where Z (ZI 
IZ2 I-) 

T 
and 

(A) I (p sin(2jnp)l 
jj7,2j 7c 

6- 36A 

(A) I Isin( 
- 
i-k)7tp sin(j+3, c)7tp 

jk - jTc. k7i Q -k-) 
-n - -( j +1j: ) -71 j 

ilk = 1,21... 

The characteristic function of is then given by 
p 

ý(t) = II-2itAl-32 

where I is the infinit6 identity matrix (for example see Hogg 

and Craig (1970) . Consequently if' al , cx2 are the eigenvalues 
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of A, Vý has characteristic function P (1-2ita )-2, and 
p j=l 

then the cumulants of V are given by 
p 

M-1 in 
in 

2 (m-l). ' a in = 112,... (6-37) 

j=l 

The M- 
I 

$a 
-1 are identica Ily equal to the of (6-26). 

1 2' 

The eigenfunctions g(t) can be found in the form of sine 

Fourier series, by making use of the fact that the eigen- 

functions are orthogonal. Consider the infinite vector 

T 
f(t) (fl(Olf2(01-) 

, where fi (t) 12 sin (njt) j=1,2,... 

fi (t) is an eigenfunction of (6-24) i-rith eigenvalue X n2j2. 

The f (t) (j 1,2,,.. ) are known to be orthogonal, i. e. 

T 
f (t) f (t) dt =I 

0 

where I is the infinite identity matrix. 

Now let 

f(t) fT (t) dt B 
0 

then it is wished to find A(t) such that 

sg (t) A (t) dt =i 

and 
OD 

p(s, t) =E19i 
(S) 9i (t) 

j=l 
ýj 

I=AT 
(S) M- I 

A(t) where M is a diagonal 

matrix with (M) 
jj2:, Iij j 

By methods of linear algebra if B=P D9 where PTP =I 

and D is a diagonal matrix with entries the eigenvalues of B, 

then 
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2T Z(t) = D-j-P f(t) (6-39) 

provides an orthogonal vector: 

fP A(, t) 
T( TI 

z t) dt = 
Sp D-2P f (t) fI (t) PD-'ýý dt 

00 

-Aý T1 D 2P BPD-ýý 

-1 ,i 
D 2DD-2 

=I 

The eigenvalues corresponding to. Z(t) can be found si iice 

(M 1 
p (S, t, ) = 7, -f- (t) 

(s). A 

where A is a diagonal matrix with entries (A) n2 jz 

So 
T (s) A-' C(t) 

T (S)M- 1 

T ýý -1 -1 T f (s)PD-', --M D 2p f (t) 0<S, t. < 1) 

thus A- P D-2 M- D-IýP 

1TI 
ie. M= D-ýýP AP D-IT (6-4o) 

This agrees with the previous result since 'A A-ý B A-' 

Thus the eigenvalues it and the eigenfujic-tioris g'(t) 

corresponding to the integral equation (6-27) can be found 

giving the representation 

(ID 
y (t) = 7: ý' zM0<t<p p Tý, 7j -1 j j=1 i 

OD 
arid hence U2 

1 
Z2. 

p IL ii 
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Obviously it is easier to find the eigenvalues of the 

matrix A (6-36). This method leads to approximate eigenvalues, 

which are closle to the exact ones found by solving 

tan liff = IL2 (1-p 
p 

6-5 Moments and percentage points of P 
W2 and 

qp 
V 

6-5-1 Moments of 

The first three moments of UP were found from the 
p 

formulae for the moments of W2 1 be letting n -> aD. The 
pn 

moments are then given by: 

E[ W2 
2 (6-41) 

pf 
(3-2p) 

EE ( IV2 )2 1= 2r)4 -7 _p 
(12 

- ý) I 
p 24 30 

+ -L+ p +P>< (7-_ EE )3 1= 6p' [M 
30 20 p1- -5G 

eh4) 11 

The central moments derived using these formulae are given in 

Table 6.2. 

The alternative method to find higher moments of 
pV 

is to 

use the eigenvalues associated with the integral equation 

(6-24), and use (6-31)- 

The eigenvalues are solutions of 

tanG2p) = _IL2 (I-p) (6-41A) 

This equation was solved using the Newton-Raphson method of 

calculating roots with a tolerance of 10-5 in subsequent 

iterations. The eigenvalues, or more exactly the reciprocals 

of the roots of (6-41A) are given in Table 6.3- X4 Was 

calculated using them and is given with the smaller cumulants 

in Table 6.4. It is seen, comparing the approximations to 
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the first three cumulants u-ith the exact values given in 

Table 6.2, that they converge to the exact values, as the 

cumulants becoýme higher. The approximation to ;,. 3 differs 

by no more than 1 figure in the sixth significant figure 

from the exact value, and this only for the values of p near 

to -5. Thus using formula (6-31): 

OD ( ni 

all the higher cumulants of U2 can be found, using tile 
p 

knoim eigenvalues, to a very good approximation. 

Using the matrix approach to find the eigenvalues of the 

matrix A defined in (6-36A), good approximations to the 

eigenvalues can be found by solving (6-41A) for the dimension 

of A as small as 20. With dimension 45 the eigenvalues of 

A agree with the solutions of (6-41A) with occasional 

difference of one digit in ýhe sixth decimal place. For 

V, the matrix approach provides a quick way of generating p 
the eigenvalues, see Table 6-3- 

6-5.2 Imhof's method to approximate to the distribution of 

p 

We use the. exact eigenvalues found from solving (6-41A) 

to make a good approximation to the distribution of U2 over 
.P 

its whole range, by a method due to Imhof and developed by 

Durbin (1970) and Durbin and Knott (1972). The method is to 

approximate to the distribution of 
pV which has the same 

distribution as 

CD Z2. 

j=l I'j 
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where the Z. are i. i. d. standard normal random variables, by 

the random variable 11, 

Zý 
1+ aC2 Ili v 

where K is about 20, ji are the eigenvalues obtained from i 

solving the integral equation and tabulated in table 6-3, 

0 is a2 random variable with IvI degrees of freedom and 'a' 
vx 

is scalar. 'a and IvI are chosen so that 
p and 11 have the 

same mean and variance 
K 

ECH] 

(6-42) 
K-2 

var (H) 2 ýLj + 2a2 v 

Then Imhof (1961) gives the result. 

Pr (H < x) = -1 -IT 
(D 

sin Q(u)) 
du 

2 71 
0 

ur. (u) 

where 
IKI Q(U) =Z tan- (U/11. )+-Ixrtan-'(au)-Ixu 
2 i=l 3.2 2 

KI 
v/4 p (u) U+ ir' /jiý x (l + a2 u2 

Imhof shows that when the integral is truncated at U, noting 

that 

isinG(u), ,: c iu 1- 
UOCUY C, ZU7 

K 2 (u )12 
and p(u) > (au 

K+V K 
V/2 2 

au IT Ili 
i=l 
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I 
(3D -( 

K+V+l )KI 

then , sin Q (M 
d,,, < r'3c) a-vl 

2u 2 TI jiý du I 
up (9) i=l I 

I'' K( K+V 

a-V/2 IT 11 t[ -U 
22 

I K+V 

-v/2 
K1 

a +v- + +2: v: )l 

U was chosen so that the error was less than 10-5. 

It is found using this method that if K= 20 and using 

the eigenvalues ýL i= TL2 j2 i=1,..., K, that the significance 

points of V computed by this method agree with those given 

by Anderson and Darling (1952) to five significant figures. 

The integral was calculated using six point Gaussian 

quadrature and four point Gaussian quadrature with variable 

interval length until the two quadratures differed by zzio more 

than 10-5. 

The percentage points of 
p 

I$ are given in Table 6-5, 

obtained byfindingthe values of Pr(H < x) at 100 grid points 

in each of the upper and lower tails of 
p 

I$ and then using 

quartic inverse interpolation. 

6.5 -3 The statistic Ch RV 

The percentage points of 
q, p 

V can be similarly found. 

The mean and variance can be found by using formula (6-31B). 

We have 

Ec I$ jaZ 
(1- PI-) 

- qý 
(1- 

-cl q, p232 3) 

(6-49-A) 

44252362x4 
and var( U7, - )= P- 

- q3 p- -5--p +p q -RjX+ -42q _ýqs qsp 
1ý 

45 
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The eigenvalues can be found by solving (6-311). This was done 

on the computer using the Newton-Raphson method as for 
P 

1%ý 

for values of q and p symmetric about taking p=1-q. 

The first ten eigenvalues are given in Table 6-3A. The 

percentage points were found as for 
p 

'142 and these are given 

in Table 6-5A. 
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6.6 Asýnu]2totic power of W2 and its components against 
't, 

shifts in location and scale. 

6.6'. 1 Durbin and Kn6ttts results. 

We foýlow Durbin and Knott (1972) to obtain 
I 

the powers of thetests based on p 
W2 and its components 

against shifts. in location and scale for normal and 

exponential populations. Durbin and Knott (1972) show 

that if the test of the null hypothesis 

F(xO 
0) 

against 1ý :FaF (XI el ) 

where 61 =00 .+ yn and e is a vector, parameterl 

is considered than W2 under the alternative has 

. distribution that of 

OD 
E Zý /( j' 712 

j=l i 

where the Zi are independeýjt N(y T 
6jol) where 

V2 ju P sin (jnt)h(t) dt and 
0 

h(t) = 
-aF (x, -O) where t= F(x, O) be 

6.6.2 Extension Of Drevious results to W2 

r 

p- 
Now consider the Fourier component Z- for a P ni 

finite sample of the empirical process Yn(t): 

z- TjIj jp gj(t) y (t) dt 
p ni '0 

0n 

where gj(t) is the eigenfunction corresponding to 

n sin j 

wliere tan(flljp) = 
V"Ilj(l-p) and nj is the 
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normalizing constant 

sin TIP Cos 2ýj 
-IP 

5i 
2. n- P__ ,i 

V5 
i 

The 
pZnj are uncorrelated since 

E Z. z VTj -TL J, )Y. (s)]g. (t), v (s) dt ds EEp 
nj p nk 0- 

Ly. (t' 
.ik 

pp 
Jr (t)gk(s) dt ds '4k (min(st)- st) g VTjllk 

lYt)"Vt) dt lp 
Ilk 

=6 jk 

since gk(s) satisfies the integral equation (6-27) and 

the gj(t) are orthogonal on (olp) 

But E[p Znjl = fllj So g. (t) E[yn(t)] dt 

= 

So the Z are uncorrelated with variance 1. 
p nj 

p 
Also 

pz nj ni so sin (V-11 
i 

Oy 
n. 

W dt, 

NF3, 

pz nj COSV-u- tp 
so 

[Y,, (t) 

SO, 3 
co STTT- t 

p dyn(t) 

Cos TT tp cosv Tf 
.1t Y. (P) + Vn 

0 
dF 

n(t) 

p cosv-l, -_t 
- V-n S0 

VVL 
dt 
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r cos Co svll.! 

in 

sin Jlj 

(V Ti- ) 2. 

with r observations tjqt2, ... I-t, less than p. 

The first term in the last line immediately above, 

is a sum of i. i. d. random-variables and so is asymptotically 

normally distributed. 1"he second term is alpo asymptotically 

normally distributed with mean zero and variance 

P(I-P) COS2 0/11 and so Z is asymptotically normally pn 
distrib-dted. 

Now an Yn(t) no longer has expectation zero, 

but can be shown to have expectation such that 

IT 

with-the covariance function not changed from the null 

situations see'Durbin and Knott (1972). 

It can ýeasily be' shown that W2 can be expressed: pn 

Co Z2 W2 Epn 
n j=1 

11 

and so the limiting distribution of W2 on 1ý is that of pn 

W2 CD Z2 

j=l i 

where 
. 
the 

pZi are independent N(y IT Pj, l) where 
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5-j gj(t)h(t) dt 

th 
and g (t) is given by (6-37)1 with the j smallest 

eigenvalue, ýLjr satisfying the integral equat4on (6-27) 

Following Durbin and Knott (1972), approximate to the 

distribution of ( W211ý ) by 
.p 

K Z? 
W2A =Zp3+a c2 

j=l 9i vid2 

where the 
PZj=1,21 .. vK are independent N(y T 

I-) 

and C2 is a non-central chi-squared random Variable 

with v degrees of freedom and 

a and v are chosen so that W2. 
A 

as W2 on H (i. e. where the 

so that W has the same mean A 

(6.45) 

non-central parameter d2. 

has the same mean and variance 

pEi are N(0,1)) and d chosen 

ets W2 pn 1ý . Now 
.p 

mTT 
E[ W2 1 fý E I- + Y. Y 

p j=l 

E W2 IH 
y p0+ 

Ty 

j=l 

and a and v are determined by the original approximation 

to thedistributimof 
p 

W21 given by equations (6.42). Then 

d2 is determined by 

TT KY00. 
TPT Ejj -+ ad2 y So h(t)h (t) dt)y 

J=l 11 i 

6.6.3 The alternatives for W2 
p- 

To see what power is lost by iising the censored 

data rather than the complete sample scale and location 
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shifts viere considered under the alternative. The 

distributions chosen were normal for both kinds of shift 

and exponentialfor scale shift. The alternatives and. 

the corresponding function h(t) are given below 
I 

F is normal with location shift 

F(x) = y-i) 
n. 

where is the stdndard normal c. d. f. Then 

h(t) = where . P((t) (t) 
. 

F is normal with scale shift 

F(X) 
n 

then h(t) (t) PýWl--(-t)) 

F is exponential with scale shift 

F(x) =1- e-x/(' 
+ Yn-') 

then h(t) = (1- t)log(l- t) 

(See Dodgson (1972)9 viho considers the power of Durbin 

and Knott's components for scale shift of an exponential 

distribution) . 

(6.46) 

(6-47) 

(6.48) 

The power of the test, for the various alternatives, 

iz. -ýlcompared with the 2-sided test based on the best test 

for the simple I-sided alternative. 

For alternative (i) the best test is based on 1, for (ii) 

S2 and (iii) R again. In each case the statistics are 

asymptotically normally distributed: 

i) X N(y, 1) 

ii) S2 N (y 

iii) X N(y, 1) 
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y is chosen so that for a given significance 

level, the two-sided test based on the best test for 

the one-sided alternative has power equal to . 259-501 

. 75 and . 90. Note that if yi is the value of y for 

the alternative (i) then yii = V-2y. and y,,: L JL yi- 

Power 1% level level 

y y 

-25 1.9013 1-2855 

-50 2-5758 1.96oo 

-75 3-2503 2.6345 

. 90 3.8574 3.3416 

Figure 6.1 

Values of y for alternative 
(i) for various powers of two-sided 

test based on best one-sided test. 

For 1% significance level and 25% power y is 

found so that 

Pr( Z>2-5758-Y and Z<--2,5758-y) 

= . 25 

i e. 2-5758-y= 1.903-3 

The powers of the test based on best test and* 

for the complete sample W2 are considered so that 
P 

each test is based on the same number of observations, 

i. e. if the best test is based on n observations then 

PWZ is based on a complete sample of np- 
I 

observations. 

So if the new alternative 
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'91 =e0+ y(np)-ý 

are bonsidpred, the two tests will be based on the 

- ýk 
same number of observations. So if y is taken as yp It 

the two tests are based asymptotically on the same 

number of observations, rather than the two tests being 

based on complete samples of the same sizel. 

6.6.4 Results of calculations of Power for W2 
F 

The power of W2 for the various alternatives p 
is given by Pr(W2 > where V12, is the approximation A W(X A 

to 
P 

W2 on 1ý , and w. is the (X significance point taken 

from Table 6.5 for 
p 

W2 - Imhof Is method is used for 

inverting the characteristic function. 

K Zý 
If Ha C2 

V, d2 

where the Z. are independent N(6,, l) and C2 is a 3. v, d2 

chi-squared random variable with v degrees of freedom 

and non-central parameter d2 then 

Pr(H <x) = t- 11 (1) sin (Q (u) ) 
TC 

0 up(u) - du 

K 
where (U) t .,, -ý71 (u/-ýti) +v tan7 3- (au) " xu 

d2- au 
K 

+M u(i +u 
3.1 3. 
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KIv /4 
and p(u) + u2 X+ a2 u2 

K 
2U2 

2 U2 1; 3. 
'Ci 

I d2 a 
exp 2 -ýE 1+a2 u W, 

As in §6.6 the integration can be truncated at u and 

following Imhof it is found: 

CD -1 K 
sin a2 '9(u)l de <. - V) uup (U) K+v 

K U2 2 -V2 
exp I-z d2 a2 

112 1+ýL-2 U2 
+ý I+a 

Note that 

K 
'6.11-7 

2 112 
exp I 

,, 
lie 

U-1 
+ d2 a2 112 

177 U2 i=l 1+ 

+ ýd2 

expjýy2 Sph2 (t) dt + ýd2' 
0j 

The value of u was chosen so that the truncation 
4 

error was less than 107 

The results of the intergration are given in 

Table 6.6. Firstly, it is seen that W2 has good power 

with respect to the best test for alternative-ilbeing 

less than the power of the best test by no more than 20% 

for 25%power of the best test, for both significance levels. 
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The percentage loss of power, with respect to the 

best test, decreases as the power of the best test 

I 
increases. 

I 

It is seen that W2 has little power against 

normal scale shift but has reasonable power against 

exponential scale shift. The percentage loss in 

power being about 33% at the . 25 best test power 

and 1% significance. The percentage, loss of power 

of W2 decreases as the power increases. 

The power of P, 
W2 with p= .9 for the alternatives 

and (iii) is fractionally less than the power of 

W2. However, for alternative (ii) 
p 

W2 is slightly more 

powerful. 

With p= -5, the power for alternatives W and 

is reduced. The reduction from the power of W2 for (j) 

is no more than 10% for alternative W but is greater 

for alternative (iii), the reduction there being about 

30% at most at-the 5% significance level, and greater 

at the 1% significance level. Thus for normal location shift 

the reduction in power is not very much compared with 

Wý based on the full sample. For a cOmpar ison, the 

power of the test based on the median, which would be 

a feasible alternative if we had a proportion p= .5 

of the sample, has been calculated for the significance 

level and y giving powers of the best test equal to 
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1 
. 25, -50, . 75 and . 90, and given in Figure 6.2. The 

statistic based on the knedian, VnX- 
n, 

has asymptotic 

distribution N(y, 2E), 
so the power is easily calculated. 2 

Asymptotic power of median for location 

shift of normal population, at 5% 

significance level 

Power of 'best' test . 25 . 50 . 75 . 90 
Power of median -175 . ý46 . 556 -760 
Power of W2 -199 -397 . 627 . 826 

.5 

Figure 6.2 

In Figure 6.2 the power of 
.5 

10 is also given, 

taken from Table 6.6. It is seen that W2 has better 
.5 

power than the median for all four powers of the 

best test considered. 

We suppose also that 
p 

W2 Will have power for 

location shift for symmetric distributions similar 

to that for the normal distributiqn location shift. 
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§6-6-5 The power of the components of 

In this section the power of the components 
pZi 

is found 

for the case of simultaneous location and variance shift for 

the normal population. For this case the 
pZi 

are N(y 
T 

Pill) 

where the P is given by (6.115) and now 
II -i F(x) ý((x-yjn -2)(l+y2n-2) 2) 

T 
So yßi=Y, ßij + YZ ß 

2j 

= y12ji sayi 

p 
w-here ß 

ij = 
fiL 

i-09i 
(t)h 

3- 
(t) dt (6-49) 

and hi (t) = 

h2 (t)= -21 e- 1 (t) hl (t) 

Thus if the two-sided test based on 
pZi 

is considered, 'then at 

the a significance level, the power of the test is 

p 
12j ý1-e (7, 

a-y12j 
)+1 -- e (7, 

a+'yl 2j 
) 

ýi 

where ý(Zd =1- 
E 

-If the values of yj and y2 are chosen so that the power of Z. 
pi 

remains constant at k,, say then y, 2j is chosen so that 

p 12j =k0 

Thus if the power of Z is plotted in the (y, 
, y2 ) plane, then pi 

P 
12j =kP, a constant, will be a straight line. 

The only component of interest (against location and 

variance shift) is the first component, 
pzV 

For p=1.0, 

zI has no power against variance shift since P2=0. However 

as p --> 0, -the coefficient P2. increases, and so 
pZ1 

has 

power against scale shift. In Figure 6-3, the lines 
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ylpll+ y2p2l = y, a constant 

are dra-wn, -where the constant, y, is chosen so that 
pZ1 

has 

50% pourer against a shift of (yl, y, ) in location and variance, /0 

at the 5% level, for the 2-sided test. For this situation 

from Figure 6.1, it is seen that y=1.96. The values of 

P11 and P 21 are given below in Figure 6.41 Also in Figure 6-3, 

are the isodynes for 
pZ 2* 

These are given by 

p+ y2p , 1.96 12 22 'ý 

for 50%/ power, where ý12' P22 are given in Figure 6.4. 

It is seen that Z has vir. tually no power against P2 

locati6n shift (i. e. changes in values of y, ) since P 12 

is or near zero for 

The isodynes for 90'14o power can be found by taking the 

lines 

ylý12'i' Y2ý22 :, -- 3,3416 

where 3-3416 i. given by Figure 6.1. These are the 50% 

isod'vnes rescaled. 

p 
Pil 1 021 012 2 P22 

1.0 -. 9118 0.000 0.000 . 525 

.9 -. 946 008 --007 . 510 

-8 --935 -038 -. 018 . 476 

-7 --919 -083 -. 019 . 441 

.6 --897 -139 -. 009 -397 
5 868 -199 --007 -354 

Figure 6.4. Values of p ij 
(see (6.49 )) for the first 2 

components 
pZ1 and 

pZ2 of 
p 

1ý8 for 1ýcation and variance 

shift of the normal distribution. 
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Also included in Figure 6.3 is the isodyne for the test based 

on the statistic 

[flý(R_, L)32 + -5[ln(S2 -c52 
)]2 

which is the likelihood ratio test, see Kendall and Stuart 
ý1973,524-7)- 

It is shownthere, that 1ý has asymptotic 

distribution yi under the null hypothesis. If the null 

hypothesis is 

H: 14 = 0, (52 =1 0 
then it is shoiNm there that underthe alternative 

I. L y n-2 2 

Iý has thenon-central chi-squared distribution with 2 degrees 

of freedom and non-central parameter 

+5 

If the test is carried out at the 5% level, with . 05 then 

the value of c such that Pr(,, i2 >c 
a e, ý2 aa 

is given bY 5-991, 

from Pearson and Hartley (1966). It is found using Imhof's 

method to find the distribution of non-central )(22 62 that 

2 
5,991) ý *5 if 4-94 Pr ()ý 

2,6 2 

and 

2 Pr (y, 
2,62 

> 5-991) = -9 if 5' 12-65 

Thus the ellipse 

+ 4-94- 

in Figure 
. 
6-3, gives the values of (*yi y2 ) such that the 

power of the LR test based on 1ý is . 50, and so for all values 

inside the ellipse the power of the test based on L2 is no 

more than -50 

Similarly the ellipse 

-el + . 5-ý2 = 12.65 

gives the isodyne of power . 90; the intercepts on the two 
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axes of this ellipse are draim in Figure 6-3. 

Similarly the LR test based on the MLE's for a 

proportion p of the original sample, can be found. 

if ý2) Following Kendall and Stuart (19739 §24-7) 

I 
are the maximum likelihood estimates of (Iija 2) then 

asymptotically the LR test is given by 

2 -2 n(IL (I- I-tlcr -cT )V-'(It 
0- 

where V is the 
p 

a sample singly 

of the original 

has the )i dist: 

inverse of the information matrix for 

censored at an end so that a proportion p 

sample remains. On the null, L2 
p 

2), ribution and on-the alternative (ItIrT, 

22 L has the )(2 distribution with non-central parameter 
F 
62 given by 

62=(, Lo_ 2- C1 2 )V-1 
0- 

2-a2 )T III IG 01p0 

2 Consequently with (11 
0a0 

(0,1) and 

(yln- 2,1+4ý2n-fiq the non-c-entral parameter is given by 

S 

62 = n- 
1 (Yj 

192, 
)V- 1 (YI Y-2 )T 

p 

Since V_ 1 is of order nj the non-central parameter is of 

order 1. 

For p= v5'it is found that the 501 isodyne is 

given by 

22 
. 81831Y. 

-I - . 39894Y., Y.. '2 +. 25y2 = 4.94 

Figure 6-3 can be extended over the whole (Y. 19Y. 2) 

plane by completing the ellipse and drawing lines 

YJ N 1+ Y2 P2 I= 

corresponding to the lines 
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f Yj Pi I+ Y2 P2 1 -= Y 

It is seen from Figure 6-3 that the components 

Z, (p < JL. 0) have good power for values of yj and V2 

1 having different sign, but poor power for yj and Y2 

of the same sign. 

Under this alternative y(t) has expectation: 

G E [y(t) yj hl (t) + Y2 h2 (t) 

where hI (t) (I = 192) is defined by (6.49). 

Now since hl(t) is symmetric about . 59and' h2(t) is 

not 9but 
I h2 ( t) I is symmetric ab out -59f or given values 

of yj and Y2 either 
I Ct 

y 
(t) I 

will be large in (0-5) and 

small in (. 5,, l) or 
IG 

y 
Wiwill be large in (. 5,1) and 

small in (Ot-5)i The larger IG 
y 

Wj is in (01p) then 
. 

'the greater the powerl, of the tests based on 
p 

W2 and 

p 
Z, will be, Tbus the powers of the tests based on 

.pW? 
- and 

p 
Z, for this alternative are 1-sided in the 

sense that the power for the alternative 
(yjqY2) is 

different from the power- for (-YI IY2 

The component P 
Z, for p. = -5 is seen to have 

good power for shifts of (YI 9Y2), * and is better than 

the LR test for values of yjjyZ in the neighbourhood 

of Y2 = 0. Also 
p 

Z? 
- 

f9r p .5 has good power for shifts 

of y2 and is better than the LR test for yj9y2 in the 

neighbourhood of yj = 0. Consequently the components Z, and p 

p 
Z2 still retain the characteristics of Zj and Z2 for 

p=1.01 except that as P --> -51 p 
ZI has more power against 

variance shift, with some loss of power'against location 

shift. Thus a test with power against location and 

A 
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variance shi ft Ifill be given by the statistic pB2 wh or e 

B2 Z2 I+pZ 22 

which has theX2 distributiong with non-central parameter 

62= (YI PI I +Y2 P2 1)2+ (YI PI 2 +Y2 P2 2)2 

on the alternative hypothesis. 

C1 In Figure 6-5 the isodynes for 50) power, at 

the 5,0 significance level, are drawn for the LR tests 

with p=1.0 and p= .5 and also the tests based on 

22 
p 

Z, +p Z2 for p=0.5(-l) 1-0- It is seen there is 

very little difference between IL2, IB2 and B2 
9 

little is lost using either. L2 and B2 are 
.855 

similar except that 5L2 has slightly more power against 

variance shiftq and 5 Eý slightly more power against 
location shift. 

Using Stephens' idea Of the area enclosed by the 

isodyne to measure-hoif good a test is, we have the area 

of the ellipse 

given by 

A 

+ bxy + cy 

Ir d 

These areas are given in Figure 6.6. We see that 

the tests 
P 

B2 compare favourably urith 
-P 

L2 . 

4 



co 
C-1 
un 

ui 

C? 

LC 

C-1 

L'Y7ý 
LY, 1 

Q 

c lll 
cn 

Cr) 
1 

(D 
CD 

Y2 

Cl 

GG I. SGG Soo 2.500 FDOO 

Y1 

Figure 6.5 

50% Isodynes at the 5% level for components of W2 
P 

Curve 1 Likelihood ratio test L2P1.0 

Curve 8 Likelihood ratio test L2P5 
P 

22 Curves 2-7 Test b ased on PzI+Pz2p= . 9(. 1). 5 respectively. 

2 
Testing for the normal distribution with p=0 and a=1, with the 

alternative p n-1. a2+ yn-'. 
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Figure 6.6. Areas enclosed by isodynes 

22 based on 
p 

ZI +. 
p 

Zj and 
pL. 

Statistic Area 

L2 21.95 
P=l 

z2+ zi p= 1.0 31.20 

p= .9 32.19 

p= .8 34.93 

p= -7 38.48 

p= .6 43.69 

P= .5 50-81 

L2 38.23 
p -5 

.f 

a 



TABLE 6.1 

Approximate Percentage Points of Vý and V? 2 Using the t C Pn xn h +b v 
approximation. 

P ýý 09 or r= . 9n 
% 

n= 1() Point n 20 30 

W2 V12 W2 W2 rnPnrn W2 W2 pn 
50 

rnpn 
#0962 . 1129 

o1032 -1-104 -* '1050 
-1095 85 

-2456 . 2816 
. 2644 . 2BI5 

-. 2704 *2813 
I'll 

9.0 000, . 3419 
-, 3233 -3439 -3311 -3445 95 

, 3956 . 4473 
. 4263 -4535 -4377 . 4557 

97.5 
. 4936 . 5545 

#5320 . 5638 
#5468 -5695 99 

-6250 . 
6981 

#6738 -7166 #6941 -7229 

P . 75 Or r -75n 
% 

n Point n 16 
Vý W2 2 

20 
2 n 32 

W TnPn 11 pn - 
Xw n W2 v? 

50 
@0680 . 0965 ', 0789 -0933 

Pn 

*0814 #0927 

rn Pn 

85 
. 1998 . 2497 

. 2194 . 2492 
. 2247 . 2492 

-0851 . 0918 

90 
. 2522 . 3044 

. 2735 -3066 , 2794 . 3070 
-. 2333 . 2492 

95 
. 3467 

. 3995 
. 
3700 . 4070 

-376ý . 4084 
2893 -3075 

97.5 
. 4454 

-4961 . 4696 
. 5098 

. 4774 
. 5124 

3883 
. . 4105 

99 
. 5792 . 

6253 
. 6048 . 6480 

4906 
. 5164 

- ý614.0 . 6515 629ý2 . 6585 

P5 or r= -5n % ]I = 10 20 Point n 30 
w2 V12 W2 2 

npn ;' W2 2 
rn n W rnpn 

50 . 0314 -0507 0373 . 05o6 
. 040'1' . 0505 85 

. 1374 
-1492 . 1357 

. 1504 
. 1172 

-1508 go 
. 1865 

-1873 #1822 . 1888 1822 189ý 95 . 2791. . 2554 2704 . 2573 . 2670 . 2579 97.5 
. 3792 

. 3260 
#3661 . 3283 

. ý588 
. 3289 99 

. 5186 -4220 *5002 . 4245 -487T . 4254 



TABmp 6.2 

Exqpt moment s of p 
VI 2: derived using the formulae (6-41) 

for the moments of W2 about the origin. p 

p I-L e 113 X 103 
1B, 1.00 

. 166667 . 022222 8.46561 6.531 

. 99 . 166617 . 022222 8.46543 6.531 

. 95 . 165458 . 022173 8.44383 6.541 

. 90 . 162000 . 021B70 6.30060 6.587 

. 85 . 156542 . 021170 7.95207 6.665 

. 80 . 149333 . 020025 7.36778 6.760 

. 75 . 140625 . 018457 6.56825 6.861 

. 70 -130667 ol6540 5.61229 6.961 

. 65 -119708 . 014360 4.57980 7.054 

#60 . 108000 . 012096 '3.55474 7-3-40 

. 55 -095792 . 009812 2.61091 7.217 

. 50 . 083333 -007639 1.80225 7.287 



TABLE 6.2A 

Exact mean and variance of C19P 
W2 derived using formulae 

(6-42A), taking q=I-p 

p ýL 

. 95 16425 

. 90 -15733 

-85 14642 

. 80 . 13200 

. 75 -11458 

. 70 -09467 

. 65 . 07275 

. 6o . 04933 

. 55 . 02492 

. le 

. 022147 

. 021680 

. 020581 

. 018752 

. 016211 

. 013078 

-009562 

. 005952 

. 002615 



I 

TAB iE 

V?. Column(l): eigenvalues of the matrix A defined in (6-36A) 
p 

with dimension 20. Column(2): solutions of the integral equation 

(6.27) found by solving tanji Fý 
p 

1- 
ýt2( 1-P) 

1, 

=9 p 5 p . 90 P -5 (1) (2) (1) (2) (1) (2) 

. 101239 . 100686 -9 . 060740 -1 

#025251 . 024780 -1 -010355 -7 

-011184 . 010803 -4 -003926 -7 

. 006264 - . 005964 . 002033 -4 

-003990 -1 -003754 -5 . 001237 -9 

. 002758 - . 002571 - . 000830 -2 

. 002017 - ool866 -7 -000594 -77 

-001537 -8 -001415 - -000446 ý-9 

. 001209 -10 . 001108 -9 -000346 -50 

-000976 - . 00089i -2 . 000272 .. -80 

Exact eigenvalues for p= . 6(. 1). 8, as column (2) above. 

p .8 .7 .6 

. 096865 . 88564 . 076126 

. 022326 . 018557 -. 014379 

. 009284 . 007407 . 005571 

. 004981 oo3go6 . 002906 

. 003083 '. 002397 . 001775 

. 002089 oo1616 . 001194 

. 0015o6 . 001162 . 000857 
1 . 001137 . 000875 . 000645 

. 000888 OC0683 -000503 

. 000712. . 000547 . 000403 

indicates a change in least significant digit(s) 

from value in Column (1). 



TAB i-E 6.3,, 1 

Eigenvalues of the equation (6-35), found by 

Newton-Raphson method, for the statistic 7? 
q9p 

with symmetric censoring, q 1-p. Values of lix 10. 

p . 95 . 90 . 60 . 75 

1.0116 1.0005 .. 9216 . 8444 

. 2517 . 2422 . 1903 . 1516 

. 1111 . 1033 -0717 . 0533 

. 0620 . 0558 . 0360 0259 

. 0393 . 0345 . 0212 -0151 

. 0270 . 0232 . 0139 . 0098 

. 0197 o166 . 0098 oo6g 

. 01449 . 0125 . 0073 . 0051 

-0117 . -0097 . 0056 -0039 

. 0094 . 0077 . 0044 . 0031 



TABLE 6.4 

Cu=alants of p 
1,712: calculatod using twenty-five eigenvalues 

-I found by solving tanji'p 

tp 

. 99 

. 95 

. 90 

. 80 

. 70 

. 6o 

. 50 

ýt 

. 164414 

. 163343 

. 159996 

. 147552 

. 129108 

. 106664 

. 082220 

cr 
2 113 x, 03 

. 022222' 8.46543 

. 022173 8.44383 

. 021870 8.30060 

. 020025 7.36777 

. 0165401 5.61228 

. 012096 3.55473 

. 007639 1.80224 

x4x 104 pi 

50-7923 6.531 

50.6270 6.541 

49-5242 6.589 

42-3815 6.76o 

29-5889 6.961 

16.1413 7.140 

6.53931 7.287 

02 

10.286 

10.296 

10-354 

10-569 

io. 816 

11-032 

11.207 
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TABLý 6.5A 

Percentage points of W2, for symmetric double censoringp 
qjP 

found by Imhof's method using the available eigenvalues found by 

solving (6-35). 

p q 

Percentage 
-95 . 90 .8 -75 Point 

1 #0221 . 0176 . 0113 . 0083 

2.5 . 0278 . 0227 . 0149 . 0112 

5 . 0342 . 0288 . 0192 . 0147 

10 . 0438 . 0381 . 0260 . 0202 

15 90521 . 0462 . 0322 . 0254 

50 . 1166 . 1102 . 0862 . 07-18 

85 . 2814 2733 '. 2369 . 2084 

go . 3445 . 3358 2956 2621 

95 . 4584 . 4484 -4018 . 3592 

97.5 . 5775 . 5661 . 5131 . 4612 

99 -7401 . 7269 .. 
6665 . 6028 



TAmE. 6.6 

Vý Asymptotic power of for scale and location shifts for 
p 

given popDlations. In paren theses, pow er based on alternativ eyp2 

55 significant level 

Power of 'best' test . 25 . 50 -75 . 90 

p Alternative 

i Normal, location 
. 228 . 457 -703 . 887. 

shift 
1.0 ii Normal scale o63 . 085 . 129 . 213 

shift 

iii Expoiiential. scale 
. 191 . 382 . 

612 . 817 
shift 

i *227(. 247) . 455(. 495) . 700(. 746) . 864(. 915) 

0.9 11 . 061(. 063) . 083. (. 085) . 119(. 130) . 2.92(. 218) 

iii . 188(. 203) . 374(. 409) . 
601(. 647) 

. 807(. 846) 

i . 199(. 350) . 397(. 672) . 
627(. 899) . 826(. 984) 

0.5 ii . 068(. 088) -095(. 146) . 136(. 240) . 197(. 378) 

iii *131(. 216) . 243(. 433) . 396(. 675) 
. 580(. 666) 

1% significant level 

1 . 219 -447 . 
695 

. 662 

. 1., ýO ii . 015 * . 023 . 037 . 064 

. 166 . 349 . 579 . 767 

2'17(. 247) -444(. 496) . 691(. 747) . 859(. 899) 

.9 . 015(. 016) . 021(. 023) . 033(. 038) . 055(. 066) 

. 161(. 184) . 339(. 363) . 564(. 622) -753(. 606) 

-177(. 405) . 367(. 722) . 598(. 922) . 781(. 985) 
0.5 ii . 024(. 041) . 038(. 080) . 061(. 145) . 091(. 233) 

iii . 088(. 201) Ial(. 413) . 316(. 657) . 469(. 833) 
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The U12 statistic with censored data for a compositc 
hXpothe. sis 

7-1 Introduction 

In this section we consider the composite hypothesis 

in goodness-of-fit. The null hypothesis: 

H0: F (x) =- 

is tested, where P( Q) is a c. d. f. of known form, but 
0 

contains a parameter, ý which is unknown. For example, 

( G) may be of exponential form that is 
0 

P (x, Q) = 1- e- 
X (X-00 

IIx>a 0 

where Q 

and (X, oL) is unknown, or a is known and X unknown. If 

censoring has taken place then Q can still be estimated bY 

say. The statistics 

P 
nP (x)-r- (x, Zý dFo (x, ýb (7-2) 

pnn0 -n -n 

where F (x 

and 

V=nr 
x(r 

.-FI 
(x)-F (x, Q^)lS2dFo(x, 

-, 
1 (7-3) 

Irn 
(ID 

can be constructed as before for the simple hypotheýis, 

corresponding to censoring of types I and II respectively. 

In this case, however, p^ is a random variable dependent upon 

QI estimating p=P (x Q) where 0 is the actu al value -n 0p 1-0 r-'O 
of .0 when the Population has c. d. f. F 

The small sample distributions of these statistics 

appear completely intractable. For the asymptotic distribution, 

we follow the work of Darling (1955), who studied the 
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asymptotic distribution of 

9D 

=n 1* F W-F (x, Z) dF 
(ID 

he omits the cap from He showed that V converges in 
n 

distribution to a random variable which is distributed as 

43D Z2. 

7, --1 -1 (7-4) 
j=l 

where the Z. are i. i. d. standard normal random variables and 

the Xi are -weights obtained from the solution of an integral 

equation. 

In this section we show that ýýA 
and both converge 

pnrn 

-to a random variable which is also distributed as a p 

weighted sum of 1/ýj random variables. For testing fox, 

normality and exponentiality, the eigenvalues Xi are found, 

the exact *mean and variance for 
pV 

calculated by quadrature 

and the significance points of 
p 

ýIf found by Imhof's method. 
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7.2 The asym2totic form of the empirical process 

7.2-1 Single censoring and a scalar parameter 0 

We first consider the stochastic process 

fn(F W-F (x, G (7-5) Yn n-0, -n 

"ere t=F0Q, t 
n 

), and bn is estimated by an efficient 

method from the sample when Types I or II censoring have 

taken place. The likelihood for Type I censoring is 

nj 
_E, (x Q) Nr 

N. ' pf 
(xi (7-6) 

where 3ý values )<x are observed and N values >x 

. 
are censored, with a potential sample of size n= r+ n, if no 

censoring takes place. For Type 11, the likelihood is 

Nr 
1-F(x f(x., Q) NJI 

[I 

where the smallest r values (x 
1'***' xr) are observed and x(r) 

is the maximum observed value. N observations are censored 

of a potential 
/- 

sample size n=N +r. 

Suppose now Gis scalar valued and Q is estimated by a 

regular efficient unbiased estimator 9n based on the 

observations (x xr The empirical process with Q 

unspecified is then defined by 

(t) In F W-F(x, Q) (7-8) Yn n 

V"n[ Fn (x)-F(x, g) +Tn[F(x, Q)-F(x, 'Q')] 

=Zn (t)- fn[F(x, Q)-F(x, W I 

where t F(x, Q) and zn (t) = fn[F 
n 

(X)-F(X, Q) (7-9) 

Now following Darling [23, we write 
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in P(x, W-F(x, Q) fn(Q 
-G)6 F(x, o)+ 6 (7-10) II=n 

69 n 

expanding by Taylor Series where 6 
n. ---> 0 with probability 1. 

befine 

Tn= Vn(G 
-Q) 

and Y(t) =6 (X, G) with t tQ-F 

then 

Yn zn (0- Tn y(t)+ 6n 

The covariance function pn (s, t-) of y, (t) is given by 

pn (s, t) = E[z 
n 

(t)z 
n 

(S) I. 
- ^y(s)E[z 

n 
(t)T 

n] 

)I(t)E[z 
n 

(s)T 
n] 

+ E[, Ie. ]Y(t) 
Y(S) 

Now, it is well known that 

E[zn(t)zn(s)] = min (st) - st 

and if v2 nE62 logL 
{I 

-b-Z 7 

then E[12] = k2l since 9 is efficient. nn 

Define 

hn (t) = E[z 
n 

(t) T 
n] 

(7-11 ) 

then 

Pn(s, t) = min(s, t)- st- y(s) h 
n(t)- y(t) hn (S) + V2 y (t)y(s). 

Now follow Darling (1955) and express z n(t) 
in terms of 

the indicator function: 

s<t 

s> 

Then 
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n 
In Z ýýt(F(XjQ))-t 

j=l 

Suppose ac (1,2,..., n), then 

n 
h (t) = 

Vn E[-; '; ( Z tt(F(Xjlg))-t T 
nn j=l 

)I 
n] 

= 'in E[T 
net 

(F (Xal Q» 
]- Vn t ECT 

n1 

t E[T 1F (Xcýc, 0) < t] - 
Vn t EET 3 

n1n 

and hM= ýn ETIF (X In E ET I 
n[nn 

f 

These results are Darling's [21, his lemma 3-3, with a 

Now if p= F(x 
p 

g) for Type I censoring and p= F(x(r)'Q) 

for Type II censoring, then we have the following Lemma: 

Lemma 7.1. hn (t), defined by (7-11) satisfies 

h (p) for p<t 

Proof By integration, 

E[T 
n 

ýF(Xa, 9) < t] = 
itýE[T 

n1F 
(X 

OL 
< p] + «t-p E [T 1F (Xa, Q)(- (p, t)-ýl 

Thus 

n 
(t) = 'In p E[T 

n 
IF(X(x, G) < p] 

+ fn (t-p) E[T 
nIF 

(X(X, 0) r- (p, t) ] 

Vnp E[T 
ýI 

V-n (t-p) ECT 
nI 

hn (p) + Tn (t-P) f 
ECT 

nI 
F(X 

a 
G)E: (p, t)]-E[T 

n 

Now since Tn is based on the observed variables X such 

that F(X,, Q) < p, 'hen E[TrJjF(XCx, Q)'(p, t) I= ECT 
n 

1, since Tn 

is independent of X 
(X 

if F(X 
ix . 

Q) E (p, t) Thus hn (t) =hn (p) 

since EET I=0. 
n 
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Let. us now consider the form of h (t) for t<p. lie 

consider the function hn (t) for Type I censoring only, since 

the two types of censoring are asymptotically equivalent. 

We have variables (X,,..., X <x which are observed and 

variables (X 
r+l '... 'X n)>xP 

which are not observed, and r 

is a random variable. Let (X',..., Xl) be a randomization of 1n 

(XII .... xrIx 
r+l"*"Xn)' 

From (7.6) we have 

(xi 19 4» 

Now since L is a p. d. f. then S Ldx = 11 where C is the sample 

space, and so E[ 6 log L] = 0. Now since it is assu med b is 
n 

efficient then: 

log L ?Q bo 

i. e. ' T=V, log L. 
n Tn- 

Thus hI (t) = v2 E[ 
6 

logLjF(XajQ) =t 
I- 

V2 B[ logg L] 
-n 

60, 

Now Lemma 7-2: 

Lemma 7.2. If L is given by (7-6) and t= F(x(t), G) 

E[ 6 log LI F. (Xml 9) =t=6 log f (X(t) 
I g) for t bQ 

I 
bG 

for t 

Proof Now 

II bý 
bF0 (x rb 

log L= -N 
bQ 

+S -logfo(x, 10) öQ 
. 

1-F 
O(x p 

ü) 
i=i bo 

bF 
13 Now'p =F (xip) and write -=ýF (X 

, g) 
0 bQ ' bQ 0p 
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E -bOlogf(x., Q) =S ý-Qlogf(x!, 0)- 71 -log £(x , Q) 

pnr 
ýQ h Thus log L= -N + TQlogf(x!, Q)- F, -L f (xi., Q) 

bQ 1-P 3. i=r+l 
60 

We have for t<p 

E[- 
bQ logLIF(X,,, G) 

= _N 
bF 

p+ b log f (x(t), 0) 
1-p bQ bo 

- E[ F, F. ýog wl 
i=r+l bQ -i 

where t=F, (X(t), Q), and t<p. 

Since E6 log f W, 9) 0, the ,-.., XI being equivalent 
16G 

J. 
Xi 

n 
to a complete random sample of size n from the population with 

c. d. f. F(x, Q), all that remains is to evaluate 

EI r, ig log f (X 
1 . 

Q) 1- 

Sine e F, [ log L] =0 we have 

-N 
1-P 

log f (xi, 0) 

-N p log f (x + E[ log f (X!, G, 1-P 60 3. 
T Q) 

i=r+l 

But the second term is 0, so 

N bp 
log f (xi, 0) - 

12 [i=r+I 
bQ 

11-p 
�', % 0' 
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Thus Eý6 log LIF(X,,, G) =t 

-6 log f Wt), 0) 

where' t= F(x(t), Q) 

For t>p 

log LI F(X(x, 0) = t] = E[-Llog L 
bQ b9 

1 

= 

A similar result holds for Type II censoring, but now 

p=F (x (r), 0) However as n -> PD X(r) --> xp where p n 

with probability 1. From Darling (1955) 

Y, (t) 
hn'(t) 

-: 11--f (x IQ) = -ýL log f (x, 9) = dt bQ bQV 

and since hn(O) =0 (zn(O) is 0 with probability 1) 
h1(t) 

Y(t) 
n We can now give the covariance function 
VZ 

P(Sst) of the limit of the proces sYn (t), as n --> co. 

Theorem 7.1 

The process ynW de. fined by (7-8) converges in distribution 

to a Gaussian process ^(t) with mean y0 and covariance 

-V'Y(S)Y(t) .0<S, t<p 

+V, Y(S)Y(t) -0<s<P :ýt<I P (s, t) = min (s, t) - st 

-vZ Y(S)Y(P) - V2 Y(t)Y(p) 

+V2 y(s)-y(t) P<S, t<0. 

Proof The proof follows from Lemma 7-2- 

We note that the covariance function ? 11(s, t) is not 

symmetric over the interval (0,1), but it is over (O, p), an 

important result we use later. 
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7.2-2. Extension of results to vector parameter 9 and doubly 

censored data 

We can extend Theorem 7.2 to cover the case where 9 is a 

q-valued vector parameter (9 
l'Q2"'*'Qq 

), and where the sample 

is doubly censored. We follow closely the results of Sukhatme 

(1972) and Stephens (1973) for the complete sample. 

If Q is an efficient estimator of 0 then 

Q011 og 
--o n bg ... 

where (V-l) 
j= -E 

62 

I 
and 

blo& is a column vector with 
bloSL 

bQ 

FollowinS (7-9) 

i. ý-F (X) - F. (X)l = vn (-Q. - Q) TI bF (x, g)i +b 

where 6n -> 0 with probability 1, and 

ý-4-r, wl Lbýý 
,11 

Defining zn (t) as before (7-10) then 

(t) -T Y(t) +6 Yn zn nn 

where T J'n(Q 
-Q) , -n ýn - 

where t=F (x, Q). 
0 

The covariance function rn (s, t) = Elyn(s)yn(t)] is given by 

(S, t) 
ý'(t)] n yi, 

= EI Z (sk (t) ý_ T (s)E z WT 
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-Ez (s)TT-' Y( i+yT (s)E[T TT 
ly (t) [n 

nJ, 

T 
where E[: E T V-ý 

As before we study the vector fuliction 

h (t) = E[ z (t)T 
n] 

We have that 

-n rln. ý 

1 blogL 

n 
-. tlvfb log L 

Thus hn (t) = E[n t 
(F(XiIQ))-. 

n 

and so V-lh (t) = -t 
6 log IF(X < t] 

n 

- tE[{b1_&}] 

and V- 1 h'(t) =E 
blo 

-n 
4 JF(X G) =t CL 

If we look at the i th 
element of the RHS, we see by referring 

to Lemma 7.2 that this is equal to logf(x(t), Q) where 

x(t) = F(x(t), G) and t<p. Thus we have Theorem 7-4- 

Theorem 7.4 

The process yn (t) defined (7-8) converges in distribution 

to a. Gaussian process y(t) with mean 0 and covariance 
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-Y 
T (S) v0<S, t<p 

-Y(t) 

4ýZl 
T (S) Vý-Y(t) -, I 

T (S) VýY(P) 

T 
p(s, t) min(s, t. )- st -Y (P) VýY(t) 0<s<pt<1 

T 
+, y (S) VýY(t) 

2Z 
T (P) VýY(P) 0<t<I 

If we now consider doubly censored samples, we have the 

likelihood 

Nr [F(x Mx ii f (xi , Q) x 1-F (X ,9 

where n=M+r 

For Type I censoring x and x are fixed, for Type II. censorinv- qP 

X x(l) and xp = NO Asymptotically the two types'of 
q 

. censoring are the'same. We take q 
L' 

and I- 
N 

in the 
nPn 

limit. Lemma 7ý1, can be extended: 

Leirana 7_. hn (t) defined by (7-11) satisfies 

(t) 
hn0<t< 

hn (P), p<t 

Also Lemma 7.2 can be extended for this case. Consider the 

random variables (X 
1 '... 'X r 

), xq<XI'... 'X <x whic h are 

observed and random variables (Yll..., Y and (Z,,..., Z MN 

which are not observed, where Ylj..., Y M<x and Z 1'*'*'Zn > Np* 

The consider (X .. I, Xl) which is a randomization of in 

(X,,..., x 
r -Yll..., 

YM , zil ... Iz N 
), we then have Leninia 7.6. 

Lemma 7.6 For doubly censored data, where L is given by (7-110 

log f (x(t)Q) for q :ýt< 
E[- 6 log LI F (Xcc, Q) 

]=Q: L 

0t>q, t<p 

where t 
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Proof The proof follows Lemma 7.2- 

Finally, 

Theorem 7-7 

The process ý (t) defined by (7-8) converges in Yn 

distribution to a Gaussian process -y(t) with mean 0 and 

covariance given by ýP(s, t): 

(s, t) = min (s, t) - st 

yT (s) Vy(t) 2y 
T (q) Vy(q) 

yT (S) vy(t) yT vy(q) 

-. y 
T VY(t) 

-Y 
T (S) V-y(! %") qI Si t< 

one major practical problein in the above analysis is 

that we have assumed the existence of an efficient estimator 

0n of Q. However, following Darling (1955) and Sukhatme (1972), 

the maximum likelihood estimator, which is asymptotically 

efficient, when used to estimate Q in F(x, Q), will provide 

a function hn (t) which will converge, with probability one, 

b log L 
to V Chernoff e't al (1967) present estimators which 

are linear combinations of function of the order statistics 

of the sample and are asymptotically efficient. Linear 

estimators are also given by Plackett (1958) and shown to 

be asymptotically efficient. We have, then, various methods 

of estimation which are satisfactory in large samples. The 

bias of these estimators , is usually 0(1) or less, but this 
n 

bias can be reduced by various methods. 

Sarhan and Greenberg (1962) present linear unbiased 

estimators which are minimum variance. In the circumstances 

0<S, t 

0< SI q<tI 

it seems that these are best for small samples. 
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A 

7.3 The weighted X2 representation of W2 
P 

7-3-1- Extension of the theory to 
PW 

Darling (1955) shows that W2, when estimating one 

parameter efficientlyl has the same distribution as 

a) 
E 

j=j 

where the Zjj 

random variablesl and the 

Zý 

j. 

are i. i. d. standard normal 

%Is are the eigenvalues of the 

integral equation 

A 

f (t) p(sst) f(s) ds (7-15) 
0 

where p(s, t) is given by Darlingts Lemma 4.1 or by 

Theorem 7.8 with p=1. 

. Recently Sukhatne (1972) has extended Darling's 

work to include the case of when q parameters are- 

estimated efficiently. She shows that if the covariance 

function p(s, t) can be written in symmetric form: 

q 
p(stt) = min(s, t)- st -E 0i (S) 0 

i(t) 
(7-16) 

then the eigenvalues of the integral equation (7-15), but 

with ý(sjt) given by (7-16), are given by the solution p 

of DM = 01 where D(X) is defined by: 

DW = d(%)&(%) (7-17) 

- where &(X) is the determinant of the symmetric matrix 

PM = (p 
ij 

(%), where 

Pii (x) =i +x' T a2 /(i-x/% i) j=I ij 

Co 
Ea ik a jk 

/(1-%/% 
k k=l 
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where a ij 00i 
(S)f 

i 
(s) ds i= 19 o. qq 

and d(%) is thq Fredholm determinant of the integral 

equation with 

p(sit) = min(sit)- st. 

and 
CD 

d 17 (1-%/% 
i) j=1 

Now, when q parameters are estimated by an asymptotically 

efficient method, -ure have, by Theorem 7.4 with p= 11 

0% T 
P(sjt) = P(Slt) (S)- v y(t) (7-19) 

Now V is the covariance matrix, so since V is non- 

. ý; ingular we. can diagonalise this matrix: 

V=RT WR 

where W is a diagonal matrix and R an orthogonal matrix. 

Thus by writing: 

ý (S) = W'Iý, R Z, (t) (7-20) 

we have 

T (s)R T WR (S)v 

T 0 (S) O(t) 

0i (S) Oi(t) 

-and so the covariance function can always be written in 

the required form* 

We now extend this theory to the case where there 

are observations censored to (op), and then have to find 

the eigenvalues of the integral equation 

p(st) g(s) ds 
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where 'P(s, t) is given by Theorem 7.4 and g(t) i's 

given by (6-32), then: 

OD 
W2 

Follo-wing Sukhatme (1972), these eigenvalues can be 

found by solving D(10 -vrhere-D(. ) is given by (7-17) and (7-18)9 

where W9 the XiIs are replaced by the ILIs, where the 

it i 
Is are given by (6-32A)g the eigenvalues of the 

integral equation 

g (t) I-L P(Sjt) g(s) ds. 
0 

and UJO, the a, 
_j 

are redefined by: 

a ij=f 
p0i 

(S) (s) ds i It2q.. jq 

lt2j... 

where the 0i (s) is given by (7.20) and Theorem 7-4- 

Then 0 is solved to find the eigenvalues 

ILjI l12tpoo a 

"" 2 7-3.2. The matrix approach to 
-P 

W 

Alternatively, from §6 we have that p(sit), where 

p(s, t) = min(st)- st, 

can be represented by a sum of orthogonal functions 

(see 6-38) 

P(ý;, t) =T 'g(t) 
0 

where YP 9 
T(S)S( 

s) ds = 11 the infinite identity matrix 
0 

and M is given by (6.40), g(t) by (6-39)- 
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Now when q parameters are estimated: 

T 
P(s, t) = p(s, t) -y (5) vy(t) 

Since theg(t) are a complete orthonormal system of 

functions on (o9p) we can express Y(t) as a generalized 

Fourier series in the functions g(t) thus: 

Y(t) G g(t') where 

p 
ds i= 11 ... lq 

0 
= 112, ... i 

'h en Y (S) vY (t) =- g (S) C, VG g(t) 

1-G Tv GI g(t) 0<S, t< and p(slt) gT(s) 
ýM- 

P 

(7.21) 

Now let A M- I-GT VQ and suppose A can be 

diagonalized by finding its eigenvectors and eigenvalues: 

TT -1 AEQ where I and E is a 

diagonal matrix with entries F-ItF-29... Then p(sqt) 

can be expressed as a sum of orthogonal functions h(t) 

where 

h(t) 

and 

*Msit) = 
J(t)Eh(t) 

p 

Co 1 
=Echi (s)h 

i 
(t), 0< sit <p 

j=l i 

Nov, following Darling (1955) we can represent the 

Gaussian process Y(t) thus 
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co 
Y^ t) =E1h. (, t)Zj 0<t<p (7.22) 

j=l ýeij 

where the Z are i. i. d. normal random variablesl and 
M Zý 

W2 is, distributed as E --I , with probability 1. 
p j=1 ci 
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7.4. Testing for norma lity with p 
W2 

7.4.1. The covariance function for' W02. 

Given a random sample X1, ... IX r which 

singly censoredl by either type I or II met', 

it may be required to test the observations 

for normality. We can estimate the unknown 

has been 

hods, then 

XIIOOOX r 

li and a2 

by the maximum likelihood method. Following Cohen (1961), 

these estimates are found to be complicated and require 
A 

an auxiliary function %I which he tabulates, These 

estimates are given by: 

A Type I censoring: 11 7C- x 

A 2 S2 )2 CT + %GC-x 
p 

7.26 
Type 11 censoring: 11 X- %(X-X(r)) 

G2 S2 +I(X-X(r))2 

where x /n, S2 /n 
i JL 

These estimates are biased for li and al and corrections 

for the bias are g3. ven by Saw (1961). These are of the 

form 

A 

II. C 
B( ji qp 

A 
B(alp) 

n+l 

where-p = r/n. The bias is considerable for small samples. 

For example with p= -59 

B(IL) = -. 960 

B(a) = -1-762 
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Other methods of estimating ji and a which are linear 

estimates are summarized in David (1970 §6-3)'and Sahren 

and Greenberg (1962)o However asymptotically these methods 

are equivalent, since the maximum likelihood estimates 

of ji and a are asymptotically linears (see Plackett (1958)). 

The covariance matrix for the estimates (7-26) is 

given by the computation of (7-11). This was found by 

Cohen (1961) and given in David (19709 p114). If V- 1=W 

then 

ml, ý p(B(A-+y)+l) 

w12 = p(B[l+y(A-+y)]) (7.27) 

w22 = (2p+YW12) 

where y= Cl(p)q A- = 0(y)/p, B -P A- 
1-P, 

Here Vil corresponds to the variance of ý, etc. 

The distribution of 
'2 

pW can be found now by. the- 

methods of §7-3. The function X(t) defined in (7-10) 

is given by: 

*a § (2jL) 

where t 
NIL) 

.. 

and ý(z) is the standard normal c. d. f. and O(z) 

b 
and y2 (t) = 7C7 

1 

-11) 
Making the substitution t ý(2jR)l we find 

yl (t) = exPL 

Y2 (t) = ý-'(t) x Y, (t) 

(7.28) 
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A 

The cumulants of W2 can be calculated by 
p 

quadrature using formula (6-31) but with 
4p(s, t) given 

by (7-19) and y(t) by (7.28). The first two cumulants 

are given in Table 7#2 for selected values of 

2 
7.4.2. The eigenvalues of Y by solving the integral 

equation. 

The eigenvalues of 
p 

(ý2 can be found by solving the 

integral equationg and this is shown in §7.3 to be 

equivalent to solving the equation A(ji) = 01 where &(Ii) 

is the determinant of the matrix defined in (7-18). 

Following Sukhatme (1972), we note if we write 

rýv, 2(vl I V2 2) 

then yT (t) vy (S) = IV 
T (t) * (S) 

where VII (1_r2 )i Y, (t) 

(7.29) 
and *2 (t) rV*vl I YI (t) + TV2 

2 Y2 (t) 

p2 then PI 1 (11) P2 2 12 (11) (7.29A) 

OD 
where P 

ii 
(it) =1+ IL a2i /(1-11/li 

OL i 

for i=1,2 and 

p 
a ij 0i 

(t) dt i= 192 

j= 19 29 o 

where is given by (7-29) and gj(t) is given by (6-32) 

00 
and P, It E alja 2j 

/, (l-TL/TLj) 
j=l 

We note that, for p< 11 the a ij 
X01= 192; j= 1129.. 

and so none of the standardeigenvalues lij are roots of 
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D(11) where D(JI) = d(II) A (11) and 

co 

j=l 

To solve 6(11) = Ot it is necessary to truncate 

the summations involved in the P... 1he-se were truncated 
ýL j 

at about 20 terms, exactly where depending on the number 

of 11 kno-%, qn for each p. This method- gives very accurate 

approximation to the eigenvalues, as shown in Stephens (1973)- 

M-ie eigenvalues obtained by this method are given in 

Table 7.3 and they are seen to give reasonable 

approximations to the first two cumulants. Percentage 

points were then obtained by utilizing the known eigenvalues 

by Imhof's method as for W2 in §6-5- The percentage p 

points are given in Table 7-5 and agree well with the 

Monte Carlo distribution W2. Given that the eigenvalues rn 

used are the exact values, then the percentage points 

are accurate to the number of significant figures given. 

Also included are the percentage points of P=lW2, 
that is 

the case of the complete sample, computed using Stephens' 

eigenvalues. 

§7-4-3- The matrix aP2roach to find distribution of W2 
p- 

We can follow the matrix approach to find the 

AT 
distribution of P 

W2 by finding the matrix A= M-1- G VG 

as defined (7-21), and calculating its eigenvalues. 

Howevor, this method does not seem to provide very accurate 

values of the eigenvalues of p 
W2. For example, with p -5 
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the matrix A is taken to have dimension 18, since for higher 

dimension the evaliiation of the elements Wij of A becomes 

impractical (it involves the quadrature of highly oscillatory 

functions over (o, p) of the form sin(ill)sin(jn)--ý For this 

example the eigenvalues of the matrix A were 

-00767 ooo46 . 00014 

-00445 . 00036 . 00012 

. 00815 . 00029 . 00011 

. 00131 . 00024 . 00009 
xooft . 00020 . 00006 

. 00062 -oool6 - . 0001-5 

The negative eigenvalues appears as a result of the 

inaccuracies in the calculation of the elements of A. The 

first 17 values give a mean of . 01896 and a variance of 

. 00017. When these sigenvalues are compared with those in 

Table 7.3, it is seen there is a considerable difference 

between the values. I 

. 
§7.4-4 Power Study 

A-Ismall Monte Carlo power study was carried out 

to compare the powers of W2 and A2 with -5t rnrnn 

.9 and 1.0, when testing for normality. The alternatives 

considered gave a variety of values of Asymmetric 

distributions (p, 0) were censored on the left and on 

the right, and the powers of W2 and A2 comouted. The 
pp 

Table 7.6 gives the number of rejections of the nýll 

Ifypothesis, 'with 5% riski under the null in, 1000 random 

samples draim from the given population. The percentage 

points of the statistics were found by Monte Carlo 

introduced in 
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simulation of the Statistics using 25tOOO random samples. 

Also computed was the 'power correlation' matrix 

R (i, j)o 
We let i refer to statistic Si and j, to statistic 

Sjj then R(i, j) records the number of times SI and S 

were found significant for that particular sample. We 

give below in Figure 7-1 the matrix for the null situation. 

n = 4o 

A2r =36 (p = -9) 
A2 r = 20 (p = -5) 

WIr = 36 (p = -9) 
10 r = 20 (p = -5) 

A2 Full Sample 

Full Sample 

51 16 14 16 37 40 

52 11 42 13 12 

49 12 36 42 

53 14 13 

54 46 

52 

5% Significance Points for Statistics 

A2, r = 36 . 605 

A2r = 20 . 277 

A2r 4o . 732 

W2 r= 36 

W2 r= 20 

W2 r= 40 

. 112 

. 0113 

. 127 

Obtained from Monte Carlo empirical distribution using 

25,000 samples. 

Obtained from Professor M. A 
* 

Stephens' modified test 

Statistics in a private communication 'Goodness-of-fit 

tests based on the empirical distribution function, 

and tests for uniformity 

Figure 7.1 'Power correlation matrix' for null situationg 
1000 random samples. 



7.25 

We can see from figure 7 .1 -that the statistics 

based on the full sample and a proportion .9 of the 

sample are highly correlated, in that the number of 

samples being rejected by two of the tests taken together, 

is near to the expected number of 50 out of 1000 rejections. 

However the tests W2 and A2 based on -5 of the sample 

although highly correlated with one another, are not 

highly correlated with the tests based on .9 of the 

sample and the full sample. This indicates that V 

and A2, with p= . 5, are telling us something different 

about the sample from that which W2 and A2, based on .9 

of the sample and the full sample tell us. 
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7-5. Testing for the exponential distribution in life 

testing with p 
W2 

2 7.5-1. The mean and variance of W 
RI 

If we consider single censoring to the right 

of observations from an exponential distribiton with p. d. f. 

G(x, Q) = 0- 1 
exp(-X/Q)l X>0 

then the maximum likelihood estimate of 0 is given by: 

xi +Nx 
) Ir 

p 

for Type I censoring and 

xi +Nx (r 

for Type 11 censoring. The MLE in this case is the 

best linear unbiased estimate (B. L. U. E) (see Sarhan and 

Greenberg (1962l §118.2)). 

The variance of the estimate is given by 
ýEý 6 

log L (0) ý-1= 
02 /r = 02 /np (7-30) L6 

By following the previous sectiong the asymptotic 

d istribution of P 
W2 can be found when 0 is estimated. 

The function y(t) is given by: 

y (t) =6 wo 

109 (1-t) when F(2S) is 

of exponential form. 
k 
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We can find the mean and variance of P 
iý2 by using 

formula (6-31) (with p(sqt) defined with y(t) given by 

(7-31)) and these upon integration become: 

11 ( 
ý2 )= 11 - (1+o)+w2 /2))/(27p) wV 2(1-qý (7.32 

CT2 ( 
ýW2 

cr2 - (8s-4a2 )/p+ 2d2 (7-33) 
pp 

where for IL: 

q= 1-p 

W= -3 log q 

11 is the mean of. p 
W2 

and f or (T 

(1- q2 (1+ 2f X 5/144 

-I(U-qý (1+4f))/16 +y3j7(1-4ý (1+4f (1+2f. )))) 

(1- e (1+ 5f x 1/ 25 +3 (1- q7 (1+ 5f x 9 

(1+ 2.5f ))) 2/125) 

where f=- 10. cal- q and' 

^2 )I dp IV -, 11 
p 

C2 is the variance of W2. 
p 

The values of the mean and variance are given in 

Table 7.7* 

7.5.2. The asymptotic distribution of _W2 
A 

To find the eigenvalues associated with W21 We 
p 

follow the method of 07-3 and solve the equation AN) =0 

where now 
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A(It) = P(11) and 
(ID . (10 + I-L E aý/ (1-ji/ji 

j=l J 
p 

where ai=fv Y(t) gi (t) dtl 

mrh er e v2 =p -1 and given by (7-30)9 

y(t) is given by (7-31). 

and the Iij are solutions of (6-32A). 

We find none of the ai Is are zero so no standard 

eigenvalue IL i is a solution of D(ji). 

The summation in NIL) was truncated at about the 

20 th term, the actual pointdepending on the number of 

eigenvalues for the particular valýxe of p and solvedfor IL. 

These values, or rather it -1 
9 are given in Table 7.81 and in 

Table 7-9 the cumulants calculated using these values* 

One seesl that as beforej this approximation to the 

variance, is quite accurate, so indicating the accuracy 

of the eigenvalues calculated by solving P(IL) = 0. 

Percentage points have been calculated, as before, using 

Imhof's method. These are given in Table 7-10, and 

should be accuratq to at least three decimal places, 

7.5. 
_3. 

An alternative method for testing for goodness 

of f it. 

A simpler way perhaps to test for the exponential 

distribution, when censored, is to make use of the well 

Imown fact that if XiqX2j ... IX n are i. i. d. exponential 

random variables, then the random variables Yr, r= 2$..,.. In 
I 

defined by 

(n-r+l) (X 
(r')-X(r-1))' 

with X0 
0 

are also i. i. d. exponential random variables with 
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the same parameter 0 as the X's. Consequently if only the 

observations X(, ), X(, 
+, ), ... , X(t) are availableg 

1<s<t< nj due to censoring of some kind, then t- s 

random variables Yr can be generated from the observed 

X's. 

y 
r-s = (n-r+l)(X (r)-X(r-1)) 9r= s+ llo**, to 

We can then test the Yl,,,, Y 
t-s as being (t-s) independent 

observations from an exponential distribution, and use 

the methods of Seshadril Csorgo and Stephens (1969) 

or Stephens (1973). However this method does not make 

use of the actual number of observations censored, and 

may lose power for small samples, in a similar way that 

we would lose efficiency if we estimated Q by using the Y Is 
r 

i. e. we effectively lose one observation. 

N 



^ 2* Empirical distribution of twn when testing for- normality 

using Cohen's estimates of 11 and CF for Type II single censoring, 

with'5000 samples. 

A2 
Significance points of W, , where r= pn Tn 

p= .5 
n 50% 8 5ýb 9 W. 955 99% 

20 . 0164 . 0282 -0320 -0385 . 0549 

40 . 0168' . 0298 . 0338 . 0414 . 0589 

60 . 0171 . 0316 . 0365 . 0442 -0585 
80 . 0167 . 0322 . 0368, -0444 . 0622 

100 . 0170 . 0323 . 0377 -0454 . 0657 

Estimated 
standard . 0002 -0004 -0004 . 0008 
error 

p= .9 
n 50% 85% 90. 95% 991ý 

20 ; 0456 -0807 0923 #1122 -1554 
40 -0459 . 0831 . 00147 . 1140 . 1587 

60 ý0447 -0815 . 0935 . 1141 . 1651 

80 . 0454 . 0810 . 0922 . 1124 . 1617 

100 . 0451 0812 . 0943 . 1152 . 1631 
Estimated 
standaxd 
error . 0004 . 0009 . 0011 . 0023 



TAB IF, 7.2 

Mean and variance of p 
W2, testing for normality, 

found by quadrature. 

X 10 

1.00 5.946 

. 95 5.6852 

. 90 5.3283 

. 85 4-926a 

. 80 4.5022 

. 75 4.0687 

. 70 3.6359 

. 65 3.2102 

o6o 2-7966 

. 55 2.3991 

. 50 2.0224 

02 x 104 

11.6b9 

10.986 

9.858 

8.646 

7.394 

6.177 

5.042 

4.015 

3.113 

2.341 

1.700 

I 



TABLE 7.3 
42 

Eigenvalues for 
pW 

testing for normality. with mean and 

variance unknown, found by solving &(ýL) =0 as defined in (7.29A). 

2 
Values of x 10 . 

p 1.0 . 95 . 90 . 80 . 70 . 6o . 50 

1.834 1.797 1.723 1.494 1,201 . 881 . 580 

1.344 1.272 1.190 1.009 . 814 . 618 . 434 

. 535 . 518 . 486 . 402 . 307 . 217 . 145 

. 436 . 409 . 382 . 316 . 248 -184 . 127 

. 252 . 242 . 224 . 181 -136 . 096 . 065 

. 216 . 201 . 186 . 153* . 118 . 085 -059 

. 146 . 139 . 128 . 102 . 076 . 054 . 039 

. 129 . 121 . 111 '1090 . 048 . 050 . 034 

. 095 . 090 . 082 o65 . 034 . 035 

. 085 . 080 . 073 . 045 . 025 . 032 



TABLE 7.4 

Cumulants calculated from the eigenvalues in Table 7.3 

p 

. 95 

. 90 

. 80 

-. 70 

. 6o 

. 50 

. 05080 

. 04044 

. 03968 

-03050 

. 02243 

. 01970 

x, 05 X106 ;t 2 3 

10.986 64.8 

9.407 55.4 

7.192 35.8 

4.613 16.6 

2.523 7.49 

1.450 2-73 



TAB ME 

42 Asymptotib percentage points Of W, testing for 
p 

normality with mean and variance unknown, found by Imho'Lls method. 

Pexcentage p 
Point --5 .6 .7- .8 .9 . 95 1.00 

1.0 -0037 . 0049 -0071 -0103 -0133 -0147 . 0161 

2.5 . 0047 . 0063 . 0090 . 0127 ol6l -0177 . 0188 

5.0 -0058 . 0079 . 0111 -0151 . 0190 . 0207 . 0219 

10.0 -0073 . 0102 -0141 . 0166 . 0229 . 0249 . 0262 

15.0 . 0086 . 0121 o164 . 0213 .0 261 . 0282 . 0296 

50-0 . 0170 . 0238 -0311 . 0383 -0454 . 0486 . 0509 

85-0 -. 0324 -0445 . 0569 . 0695 -0815 . 0867 . 0905 

90.0 -0373 . 0510 . 0653 . 0799 *. 0936 . 0933 . 1036 

95-0 0457 . 0621 -0797 -0978 -1143 . 1211 . 1261 

97.5 . 0539 . 0731 . 0943 -1159 . 1353 -1431 . 1487 

99.0 o648 . 0877 . 1137 -1401 . 1633 -1725 . 1789 



TABLE 7.6 

Empirical power of 5ýo tests for normality, with mean and 

variance unknown, Based on the number of rejections in 1000 

random samples. R denotes censoring on the right, L denotes 

censoring on the left, for asymmetric distributions. Uncensored 

samples of all size 40. 

Alternative 
P l ti 

)r% 02 A 
V 
n 

-2 
w 

9 
w2 

4 

A2 12 -X2 
opu a on nn . 5n n n . 9n n 5n n 

U(091) 0.0 1,8 -37 . 25 . 33 -51 . 36 . 39 

x2R 2 2.0 9.0 . 97 -93 . 6o . 99 . 96 . 66 

L . 97 . 82 -34 . 99 -84 . 35 

X2R 4 1.414 6.0 . 74 . 64 . 29 . 81 -71 . 30 

L -76 -56 . 23 . 83 . 57 . 23 

x2R 6 1.155. 5.0 . 56 . 44 . 21 . 64 . 49 . 20 

L . 54 . 36 
.. 
20 . 64 -38 20 

Cauchy . 98 -94 . 91 -99 -94 -. 91 

Student's t 

,2d. o. f. . 75 -54 -54 -78 -57 . 57 

4 d. o. f. 0- . 32 . 22 . 22 36 . 24 . 24 

6 d.. o. f 06 . 15 . 09 . 15 . 19 . 13 . 15 

10 d. o. f 04 . 08 -07 . 10 . 10 . 08 

* The A2n statistics axe introruced in 
.§8 



TABLE 7.7 

112 Exact Mean and variance of pW 
testing for exponentiality 

censored on the right, using formulae-(7-33) and (7-34) 

p x 10 2 
G2 x 103 

. 99 9.1803 4.2871 

. 95 8.7977 3.9813 

ego 8.2310 3.5481 

. 85 7.6127 3.0920 

. 80 6.9669. 2.6405 

. 75 6.3167 2.2114 

. 50 3.2250 . 64338 



TABIE 7.8 

Values Of 11 -1 x 10 2 foiind by solving 0 as 

defined in §7-49 when p 
V? is used for testing for the 

exponential distribution with scale parameter unknown and 

censored on the right. 

p 1.0 . 95 . 90 . 50 

4.202 4.022 3.804 1.658 

1.712 1.632 1.532 . 593 

. 815 . 775 . 722 . 262 

. 509 . 482 . 448 . 155 

. 333 . 315 . 291 . 099 

. 242 . 228 . 211 -070 

. 179 e169 . 155 -051 

. 141 . 132 . 122 -039 

. 112 . 105 . 096 . 031 

. 092 . 071 -079 025 

TAB LE 7.9 

First two cumulants calculated from the eigenvaýues. 

p Xi 103 It'2 x 

-95 -08070 3.978 

. 90 -07655 3-546 

. 50 -03079 .. 
643 



TABL 3 7.10 

Percentage points of 
p 

for the exponential distribution, 
censoxed-on the right. Found by Imhofts method. 

p 5 
.9 Percentage 

Point 

1.0 -0058 -0173 
2-5 -0071 P0206 
5.0 -0085 . 0243 

10.0 
-0105 . 0296 

15.0 . 0122 
*0341 

50.0 . 0247 
. 0652 

85.0 -0531 *0-1321 
90.0 

. 0635 
-1561 

95-10 
. 0821 

. 1986 
97-5 

-1015 . 2433 
99.0 

*1279 P3033 

. 95 

-0134 

-0174 

. 0217 

. 0281 

-0335 

-0700 

--1444 

-1701 

. 2155 

, 2626 

-3251 
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ý8. The Anderson___Da'rlinq statistic for censored data 

8.1 Introduction 

Anderson and Darling (1952) introduced the statistic 

cn 
dF A2 

n 
00 

This statistic can be modified to test goodness-of-fit with 

censored data in a similar manner to W2 in §6. For the two 
n 

types of censoring we have 

F- 1 (P) 

A2 =n0S 
n(x) -Fa (x) 2 

dF (x) (8.2) 
pn 

J-CD 

V-F (-X-)Tl- -F (X) )0 

and 

A2 =n 
n dF (x) (8-3) S- 

rn 17 0 
0 

The small sample distributions of the statistics A2 
p. n 

and A2 seem intractable as the small-sample distribution 
rn 

of A2 is for n. > 3- However it is well known that the 
n 

distribution of A2 converges very quickly to its asymptotic n 

distribution; the asymptotic distribution being reasonable 

even*for n=3, see Lewis (1961). The asymptotic 

distributions of 
p 

A2 
n 

and 
r 

A2 
n1 

which are denoted 'by 

A2 since the statistics both converge to the same asymptotic 
p 

distribution with p= lim !ý for A2, can be approximated to, 
nrn 

n-4(D 
in a similar manner as W2 

p 

The statistics can be computed in a similar method as 

A2 . It is found upon integration tlut 
n 
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R 
A2 =Z 

)Flog(l-t. )- log(t 
pnLI 

R 
log(I-t 

RR 
+ n[I 1] lo g(I-p) + -R2 log p- pn nn 

where R observations are less than F -1 (p) and tF 
00 

r 
A2 

n 
is given by t he above formula but substituting R r- 

and p=F o(x(r))* 
I 

8.2' Exact moments of A2 42 and A2 
p-n-L rn 

We have following §6.2 

p fF n 
(t)-t 

2- E[PA2 
n] = nj, .E dt IV -tt Tl---tT 

ip t (. -L- t) dt 
o t(i-t 

= 

and E. A2 )2 ,2 J' 
pp 

Eý 
-F n 

(t) -t2fF n(S) - S) 2 
dtds 

ýp 
n0 

so 

-t 7(j -- s) 

(8-5) 

2 jp,. s I 
0j0 

7t-jf_ -t) t) s 
[nt + 2n (n- 2) t2 +n (n-3) st s 

+ 5, i(2-n)St2 +n(2-n)s2t+: -t(3n-6)S2t2] ds dt (8.6) 
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which upon itegration will produce analytically 

unintegrable functions such as log(l-s)/s, which need 

to be expressed as infinite series in powers of s for 

an explicit representation. In view of the complexity 

of EC A2 )2 1 and that the small sample distribution 
pn 

converges quickly to 
p 

A2, the integral (8.6) has not 

been calculated. 

The mean of A2 can be easily foundt 
rn 

EC A2 E A2 lp 
rntPn 

= Ect (r) 3 

r from (6.10) 
n+l 

The mean of p 
A2 is given by (8-5), however the 

variance can be calculated using (6-31) 

K2 4f 
pft S2 (3L-t)2 

ds dt 
oo s(l-s)t(l-t) 

P (: L- t) -4so -t Et + log(l-t) I d-t 

132 + 2p + (1-p) log(I-p) + lo'g(J-p) 3. og p 2 

+2 
.2+T. -3 + 

(U-P), (1-01 
+ 

(1-p 
- 
)3_ 

+ 2.2 3.3 
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2+ 
2p + (1-p) log(I-P) + 109(1-p) 109(p) 

2 

712 (J-P)2- (1-p)3 
T+ [(I-P) + 2.2 + 3-. 3 + (8-7) 

Putting p=1, this becomes 

K2 (p=lA2 )= g3Tc2 - 

in agreement with Anderson and Darling (1955). The 

variance (%2 ) of A2 is given in Table 8.1 calculat. ed 
p 

from formula (8-7) truncating the series at the r 
th term 

+ 
(I-P)2 

+ 
(1-p)3_ 

+ 2.2 3.3 

(1-P) r where the term was less than 1078. When the series 

was truncated at the r 
th term so that this term was less 

than 10-6 then, the variance so calculated was in agreement 

up to 5 significant figures, there being an error of no 

more than 5 digits. in the 6 th 
significant figure. 

P 
The integral, Jo 

t 
dt which equals the series 

+ 
(I-p)2 

+ 
(1-p) 3+ 

2.2 3.3 

log t 
found by integrating the series expansion of 1_t I MS 

X 
knoi,, n in the form dx as the Debye function, and is 

o Ir? x 

described in Abrawowitz and S egun (1965)(§27- 1.1. ) It is 

tabulated, but the tables would need interpolation for the 

Values of y= log(l-p), so it is easier to compute the 

function of truncating the series directly on the computer. 
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§8-3 Asymptotic distribution of A2, A" 
P-n 

8.3.1. Previous results 

We now consider the new stochastic process 

Yn (t) :, - 
VnIF 

n(t) -t 1- t) 

This is easily shown to converge to a Gaussian process 

y(t) with mean zero and covariance 

p(s, t) = 
min(s, t)- st < S, t<1. (8.9' 
(; (1- S) ia:: iO 0 

and the statistic A2 can be shown to converge in distribution 
n* 

to 

A2 dt. 
0 

y2 (t) 

Similarly we can show A2, A2 converge to 
rnpn 

p 
A2 = Ip y. 2 (t) dt.. 

A well known representation A2, see Andersoft and Darling 

(1952)lis 

CD Z2. 

A2. =EII 
j=l 

where the Z. are i. i. d. standard normal random variables 

This follows from the representation of y(t): 

CO 

y(t) =E1Z. f. (t) j=1 JJ 

where now and f. (t) are the eigenvalues and 

corresponding eigenfunctions of the integral equation 
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XSO p(sit)f(s). ds f(t) 0<t<1 (8.1o) 
I 

where p(s, t) is given by 

§8.3-2. The distributi n of A2 

The theory of §6.4 follows to give a similar representation 

of A2 
P 

CD I 
A2 Z 

j=l IL i 

where the are eigenvalues of 

p 
ýLjo p(s, t)g(-s) ds = g(t) 0<t<p 

The matrix approach could be used to find the 11's. It 

is well known that the %j, fi (t) of (8-10) are given by 

jQ+l) i 

and 
f (t) 2+1 Pl. (2t-1) 

i ji 
Pil 

+11) 1- 

where P1. (X) is thd associated Legendre polynomial i 

of the first order: 

d P1. (X) 
= 

(1 
- X2 )2 

dx pW 
ii 

and PW is a series solution of order j in x of the 

differential equation. 

1_ X2 )d2 gxAy+ j(j + J)y 0 
d dx 

(see Whittaker and Watson (1962)). 

(8.11) 

(8.12) 
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§8.3.3. A series solution to the integral equation. 

We can try to solve the integral equation 

Remembering that with p=1, the eigenfunctions of (8-11) are 

P1. (2t-1), we try a series solution i 

tr 
'o" 

On substitution into (8-11) this gives 

r 
aax r0r, 

pnd 

co r+l P-2 ap 
4T 

-p+ 2- 4 
r= r 

(8.13) 

Or substituting for ar must satisfy 

(1 2 CD 
pr+, 

( (8.14 
p+2 r+l 

(3L 

r=l 

Co 
Consequently if the series F, a rt 

r is to truncate 
r=O 

to a finite series then for some rr (r + 1) 
000 

Consequently p must satisfy the polynomial of degree roe 

r -1 0r 
P+pl p r+l 

(r 
0 

+1) 

r (r +1) 2 
(rl+l 

- -r+2)( Tr(r+l) 
00 r=l 

r0(r +JL) 
2.1 

for r>2 and r 00 

r' = 1: i-p+=0 je (P-1)2 
= 0, 2 
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For r2p+ -2p2 02 

ie 4p3 - gp2 + 6p -I=0 

ie (P-1)2 (4p-l) =0 
i ie p=I or &. 

We note p=I is, of course always, a root of (8.15). 

Thus for arbitrary p, 0<p<1 there will not be a 
ro * r t finite series solution Vt(I-tT since p will. not in 

r=O 
general be a solution of (8.15) for finite r0 

§8.3.11. The normaljquadrý! tip form . approach to 
p 

A2 

Following §6.4 we have 
p CD 2 

A2 =E 
s- P1 2 t- 1) dt 

p0 j=l V -T q -jq -j+ --IT 3 

(D to iT27i + J+f-R2k+IT 
=ZZ- 

ALI 

.i ri j=I k=l 
Ajk 

xvhere for k 

A 
(-l- cl, )I 

cnýplf- Pipet] jk k(k+l) Q+l) jjk x=q 

=A a2 -7- p pý dx Pk ('x) p2 =dx Ic(x) 

and 

q= 2p - 1. 

For the elements A.. we have to use the explicit series 

representation of PiW: 
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i (j )(2j-2m) 
x 

j-2m 
P (x) Z (_ 1) in 

12n m=O 

where J= 

After integr; ation 

Aýj GG Q-2n)Q-20 

n=l r=l n+l r+l 

I 

2j-2n-2r-l( 
1, X2 --, x=q 

x ý2j-2n-2r:: Yl 2j-2n-2r-l)Jx= -1 

and C-1 .3 . 5- 
-- -- 

GGIx 
(j-2r+l) (j-2r+2) 

r+l. r 2r(2j-2r+l) 

The eigenvalues of then*atrix 

'eT AX 

V-2 -i+ 1 where M are then identically equal to 

ý-j j 

8.4 Significance poillts of A2 

(8.16) 

8.1t. l. Ei envalues of' the inte_gnal fquation 

The eigenvalues of the integral equation (8.11) were 

obtained by using the condition (8-14) on V1. This 

condition involves an infinite sum, and for solution, 

the sum is truncated at K, say, and the following polynomial 

in 11 solved 
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K 
r+l I 

p 
(T: 

+1 r=l 
2)(1 2.1 

It was found that the sum on the right of (8-17) with 

K= 50 differed from the sum with K= 80 only in the 

seventh significant figure for 11 < 1000 and p 51 

and so K was taken equal to 50 and (8-17) -solved for 11. 

The eigenvalues obtained by solving (8-17) are given in 

Table 8.2., and the first. two cumulants calculated using 

them. It is seen that the second cumulant calculated from 

the eigenvalues is very close to the accurate value given 

in Table 8.1--1 

The matrix approach to the problem was tried by 

finding the eigenvalues. of the matrix (8.16). However 

this riethod did not lead to satisfactory results giving 

eigenvalues Jý-' idiich were negative or greater 'than I. 

However, the values of 1171 < -5 were close*to th. - -values 

given by solving (8-17). 

Perc . entage, points of p 
A2 were, then found by Imhof's 

method as in §6, using the eigenvalues found by solving 

(8-17), which numbered about 15. The percentage point -slin'Atble 8 

are believed to be accurate to the number of places given. 

8-5 
-AsYmptotic Power of A2 against shifts in location and 
scale. p 

8.5 1. I)ie power of A2 
F 

We can follow section §6.6 to obtain the asymptotic 

powers of 
p 

A2 against shifts of scale and location. 
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ýr, (t) is taken as the process defined by (8-8) and 9 

is given by: 

K 
g (t) =n (t(l-t))-- F, a ts 

S=O 

where as (11 
i) is given by (8-15) ni -the normalizing 

constant and If the corresponding eigenvalue and K= 50 

as in (8-17). Then the components 
p 

Z-, j are defined: 

zp fT so 9i (t) Y (t) dt. 
in 

(8.18) 

Once again the Z. z are uncorrelated and with variance p nj'p nk 

since the g (t) is an eigenfunction of the integral 

equation (8-11). However the expectation of Yn(t) 's 

changed on the alternative: 

E[yn( t) 3 =. yTh (t) (t (1- t) )-ý 
.. 

Consequently the limiting disicribution of A2 on 1ý is 

that of 
OD Zýj 

A2 =E p j=l 

where the Z. are independent N (YTp 
jil) and 

TýL g Wh(t) (t(l-t) )-ý dt. ifo i 

Similarly we approximate to the exact distribution of 

p 
A2 /1-ý ) by 

AA 
K Zý 
7- --J- +aC 

j=l 11 iFv, d2 

(8 . i') 

Mere the Zi are independent N(y T Qj, l) and C is a. non- 

central chi-squared random variable ivith v degrees of 
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freedom, and non-centrality parameter d2, a and v are 

chosen as in and d2 is chosen so that A2 has mean A 

as A2 on 1ý - 

OD TT z 1+y pjpj y 

E[ A2 /1-ý j 

p 

TT 
00 yY 

Ec 
p 

A2 /H 
0 

1. +E 
j=l 

So 

TT Ky010i Tj ýP h Wh T (t) 
y+ ad2 yt (1- t) dtj 

j=l 0 

We choose y, as before, in §6.6, so that the powers 

of the best tests are . 25, -50, . 75 and '90, we have the same 

alternatives also. The probabilities vere calculated 

using the same approximation as in §6.6, 
and given in Table 8.3 

For alternative (i), 
p 

A2 has the same powejý 

characteristics, as W2, except that A2 is more powerful 
pP 

for p 1.0 and 0.9. For p . 5, A2 and IV2 h ave 

approximately equal power over all significant levels 

and values of 

For alternative (ii), A2 is not very poweý, ful-. * 
p 

However for p=1.0 the power of p 
A2 is much great, thazi 

that of p 
W2. At the 1.3% significant level, 

p 
A2 do es have 



8.13 

power . 218 and . 421 against 'best' test powers of 

-75 and . 90 which is an improvement on the 

power of p 
W2. However the power drops for the smaller 

significant level, 1%, to less than half of the power 

at the 5% significant level. For p= .9 the power 

is reduced, but for p= .5 the pow-er is not less than 

for p= .9 in some cases is more. However for all , 

situations there is little power for 
p 

A2 agýinst this 

alternative, but the power of A2- is considerably better 
P. 

than that of W2. 
P 

For alternative iii and p -- 1.0, A2 achieves 

good powers with an improvement over However as P 

p becomes smaller the difference between the powers 

of 
p 

W2 an dp A2 becomes less, for p= . 9, 
P 

W2 is more 

powerful than 
P 

A2 

Is we base the alternatives on YiTi then the-power 

of A2 increases as before with W2 The power of A2 PPP 

with p= .9 and-. 5 exceeds the power of the best test 

f cr alternative 

§8.5.2 The power of the components of A2.. 
p 

We can follow §6.6-5 and find the power of P 
2ý 

and P 
Z2 Of P 

A2 for shifts of location and variance of 

the normal distribution. The coefficients (8-19) were 

determined by quadrature using the fun'ction gj'(t) 

defined in (3-18) and h(t) given in (6.49) and defined as 
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h, (t) =-A§-l(t)) 

h2 (t) = JC 1 (t) h, (t) 

for normal location and variance shift. 

The values of are given in Figure 8.1. Isody-nes 

for ZI and Z2 against location and variance shift are drawn 
PP 

in Figure 8.2, corresponding to Figure 6.3 for 
P 

W2. The 

50% isodynes are drawn. A comparison of Figure 6-3 with 

Figure 8.2 reveals that components based on p 
A2 have 

better power than those based on p 
For p -5, However 

there isnegligible difference be tween the powers of p 
2ý 

based on P 
A2 and p 

W2 

Also considered, is the power of the statistic 

ZI + Zj for A2 . The ellipses which are the isodynes for 
PPp 

p 
Z? + 

p 
Zý are drawn in 

given in Figure 8.4. 

enclosed by them, of 

Figure 6.6 and Figure 

Ue the area enclosed 

Figure 8--ý, and areas enclosed by them 

Comparing the isodynes, and areas 
W2 2 

I with those of A, we see from p. P 
8.4 that 

p A2 has better power 

by the isodyne is smaller) than 

p 
N2 for values of p= . 

6(. 1)1.0. However for -p = -51 

p 
W2 is marginally better than A2. 
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Z, i=2, Z2 

Location Variance Location - Variance 

p oil 021 012 P22 

1.0 -977 0 0 . 616 

.9 968 . 034 oo4 -575 

.8 . 961 . 099 . 009 . 528 

-7 . 931 -150 - 036 M5 

. 6' -- 903 . 209 . 0611 . 427 

-5 
___ 

-- 868 
I . 268 - 072 . 372 

ý_ I -. - -.. ___j 

Figure 8.1 Values of Pj for the first two 

components 
PZI 9P Z2 for location and 

variance shift for the normal population. 
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L"? 
cr? 
C) 

(D 

Y2 
Cý 

1ý 

-3,500 -1.500 500 2.500 4.500 

Y 
Figure 8.3 

2 
50% Isodynes at the 5% level for components of A 

p 

Curve i Likelihood ratio test L2P=1.0 
P. 

2 
Curve 8 Likelihood ratio-test Lp= 

Curves 2-7 Test based on Z 
2* 

+z2p . 9(. 1). 5 respectively. 
pIp2 

Testing for the normal distribution with p=0 and a2=1, with the 

alternative V yln a2+ y2n 
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Statistic- 

L2 (p=1.0) 

Area 

21.99 

zi + Zý p= 1.0 25-79 
p p 

p= .9 27-89 

p= .8 30.611 

P= -7 34-79 

p= .6 41-70 

p= .5 51-12 

L2 (p - 5) 38.23 

Figure 8.11 Areas enclosed by isodynes based on 

p 
;? ý2 +p Z22 and p 

4 
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8.6 Testing for normality sing A2 

The theory follows closely that of §7.4 but 

with the covariance kernel given by 

ý (s, t) =(min (s, t)-st- ý, (S) *1 (t) - ý2 (S) V12 (t) (8-29) 

1 
S) t U-t) ) 'I 

0<S, t 

The first two cumulants can be calculated by quadrature 

and are given in Table 8-5- We can use approximate 

eigenfunctions of the form 

IK 
gj(t) (t(l-t)Pý Ea 

sts S=O 

where aS is given by (8.1.7)'. K is found by trial and 

error so that an increase in its value makes no 

appreciable difference to gj(t). K was taken to 
. 
be 50, 

following the calcul ation pf ýL i from (8-10. The 

normalizing constant is found by integrating gj(t) over 

(o, p), We can find the approximate Fredholm determinant 

following (7.14), but with'the eigenfunctions given' 

by (8. ýI) and t) by ( 8.20) 
. We can then solve the 

appro3dmate Fredholm determinant &(ji) and obtain the 

eigenvalues VL. These are given in Table 8.6 for 

P= 1-0, -95, -9 (.. l) . 5. As p becomes smaller then 

there is a problem to obtain the eigenvalues due to a lack of 

eigenvalues from the standard ca. se and an apparent lack of 

6 
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convergence of the approximate Fredholm determinant 

to the limiting value having infinite terms. The 

eigenvalues obtained, appear to give percentage 

points displayed in Table 8.7 in good agreement with 

the Monte Carlo results given in Table 8.4. 

A Monte Carlo power study on A2 was carried rn 

out and the results have been given in Table 7.6 

and described in §7-4. The overall impression is 

that A2 seems to be more powerful than W2 for the various 

alternatives considered. 

k 



Tab Ie8.1 

Exact mean and variance of pA2: a2 calculated using formula (8.7) 

E[pt, 2] 
a2 

1.00 . 57974 

. 99 . 57891 

. 95 . 56668 

. 90 . 53989 

. 85 . 50560 

. 80 . 46673 

. 75 . 42517 

. 7o . 38228 

. 65 . 33908 

. 6o . 29641 

. 55 . 25494 

. 50 . 21526 

9 



Table 8.2 

Eigenvalues for 
pA2, 

found by solving (8.18) and cunulants calculated 

using them. 

p 1.0 . 95 . 90 . 80 . 7o . 6o . 5o 

. 50000 . 49680 . 48766 . 45810 . 41778 . 37003 . 31676 

. 16667 . 16238 . 15365 . 13329 . 11290 . 09358 . 07549 

. 08889 . 07902 . 07242 . 06011 . 04950 . 04023 . 03199 

. 05000 . 04614 . 04139 . 03362 . 02737 . 02208 . 01746 

. 03333 . 03002 . 02657 . 02134 . 01727 . 01389 . 01093 

. 02381 . 02101 . 01843 . 01470 . 01187 . 00952 . 00750 

. 01786 . 01550 . 01350 . 01073 . 00865 . 00693 . 00546 

. 01389 . 01188 . 01031 . 00317 . 00658 . 00527 . 00414 

. 01111 . 00937 . 00812 . 00643 . 00517 . 00414 . 00126 

. 00909 . 00755 . 00656 . 00518 . 00416 . 00325 . 00262 

p . 95 . 90 . 80 . 7o . 6o . 5o 

- . 88408 . 83861 . 75167 . 66125 . 56892 . 4-7561 
.1 

'C . 56572 . 53964 . 46657 . 38207 . 29624 . 21520 
-2 



Seble 8.3 Percentage poInts of pA2, 
found by Imhof's method. 

P 

Percentage point 1.0 . 95 . 90 . 80 . 7o . 6o . 5o 

1.0 . 201 . 169 . 152 . 125 . 103 . 084 . 067 
2.5 . 241 . 208 . 186 . 154 . 127 io4 . 083 

5. o . 284 . 249 . 223 . 186 . 154 . 126 . 101 

10.0 . 346 . 308 . 280 . 234 . 194 . 160 . 128 

15.0 . 399 . 359 . 327 . 275 . 230 . 190 . 153 

50.0 . 774 . 724 . 676 . 587 . 504 . 425 . 349 

85.0 1.621 1.562 1.494 1.346 1.190 1.029 . 864 

90.0 1.934 1.872 1.798 1.632 1.451 1.260 1.062 

95.0 2.492 2.428 2.344 2.146 1.920 1.676 1.419 

97.5 3.077 3.009 2.915 2.684 2.412 2.112 1.792 

99.0 3.878 3.804 3.698 3.419 3.083 2.707 2.301 

Calculated using 20 eigenvalues, + 



Table 8.3A Asymptotic powers of pA2 
for scale and location shifts 

.C for a given population. In parentheses, power based on alternative 

-1 2 YP 

5% significance level. 

Power of 'best' test. . 25 . 50 . 75 . 90 

p Alternative 

i Normal, location shift . 236 . 475 . 722 . 889 

1.0 ii Normal, scale shift . 079 . 137 . 251 . 439 

iii Exponential . 203 . 410 . 652 . 852 

i . 233(. 254). . 467(. 508) . 715(. 760) . 895(. 923) 

.9 ii . 073(. 076) . 116(. 126) . 200(. 225) . 349(. 396) 

. 191(. 207) . 383(. 418) . 614(. 660) . 819(. 858) 

.5 . 198(. 349) . 395(. 670) . 626(. 899) . 826(. 984) 

. 084(. 121) . 134(. 232) . 212(. 401) . 326(. 612) 

iii . 123(. 200) . 225(. 402) . 369(. 639) . 545(. 840) 

17. significance level 

i . 235 . 475 . 724 . 883 

1.0 ii . 026 . 054 . 121 . 235 

. 187 . 392 . 635 . 818 

. 228(. 259) . 463(. 517) . 712(. 768) . 875(. 912) 

.9 . 021(. 023) . 039(. 045) . 081(. 098) . 155(. 191) 

. 167(. 190) . 352(. 398) . 55-83(. 642) . 772(. 823) 

. 177(. 404) . 367(. 722) . 598(. 923) . 732(. 985) 

.5 . 037(. 076) . 069(. 164) . 121(. 309) . 191(. 481) 

. 080(. 179) . 161(. 375) . 286, '. 613) . 427(. 798) 



Table 8.4 Empirical distribution of r 
ý2 

n when testing for normality, 

using Cohen's estimates of V and a for Type II single censoring, 

With. 5000 samples. 

rercentage points of A2 , where r= pn r n 

.5 

n 50% 85% 90% 95% 99% 

20 . 1220 . 1954 . 2174 . 2552 . 3486 

40 . 1221 . 2052 . 2316 . 2753 .. 3750 

60 . 1212 . 2132 . 2403 . 2852 . 393C 

80 . 1236 . 2132 . 2432 . 2920 . 4092 

Estimated 
. 0011 . 0020 . 0026 . 0036 

Standard error 

p= .9 

n 50% 85% 90% 95% 99% 

20 . 2698 . 4517 . 5055 . 6100 . 8365 

40 . 2678 . 4489 . 5068 . 6050 . 8400 

60 . 2661 . 4519 . 5179- . 6236 . 8880 

CIO . 2690 . 4518 . 5106 . 6210 . 8725 

Estimated 
. 0025 . 0047 . 0057 . 0084 

Standard error 



Table 8.5 Exact mean and variance of pA2_ testing for normality# 

found by quadrature. 

p MEAN VARIAHCE 

a2x 10 

1.00 . 38445 . 36208- 

. 95 . 33980 . 31272 

. 90 . 30728 . 26593 

. 85 . 27998 . 22675 

. 8o . 25580 . 19348 

. 75 . 23379 . 16480 

. 7o . 21341 . 13901 

. 65 . 19427 . 11784 

. 60* . 17613 . 09846 

. 55 . 15878 . 08131 

. 50 . 14216 . 06619 



Tab Ie 8.6 -2 tor 
pA -' fOr normality 

mean and variance unknot,, n. Values x 10. 

1.0 
.. 95 

. 90 
. 80 7o . . 6o 

. 50 

. 9836 
. 9358 

. 8703 
. 7448 6264 

. 7206 
. 6621 

. 6083 5111 
. . 5084 

. 3927 

. 3593 
. 3257 2938 

. . 4325 
. 3557 

ý2845 

. 2897 
. 2574 

. 
2310 

. 2406 
-1953 . 1542 

. 1182 

. 1810 
. 1640 

. 
1475 

. 1423 
. 1553 

. 1255 
. 0990 

J584 1381 
. . 1135 

. 0934 . 0736 
. 0567 

1148 
. -1106 -0720 . 0791 . 0635 

. 0498 . . 0990 *0835 . 0657 
. 0545 . 0430 

. 1002 
. 0884 

. 0667 
. 0487 0476 

. 0777 
. 0700 

. 0548 0434 
. . 0377 

. 0592 
. 0621 0431 

. . 0381 . 0319 
. . 0342 



2 Table 8.7 Asymptotic percentage points of pA, 
testing for 

normality with unknown mean and variance, found using Imhof's 

method. 

Percentage 
Point 

p 

1.0 . 95 . 90 . 80 . 70 . 6o . 5o 

1.0 . 129 . 109 . 094 . 069 o4q . 035 . 027 

2.5 . 148 . 125 . 110 x84 . 061 . 046 x36 

5.0 . 167 . 141 . 125 . 098 . 074 . 056 . 045 

10.0 . 194 . 165 . 146 . 118 . 091 . 071 . 057 

15.0 . 215 . 183 . 163 . 133 . 104 . 083 . 067 

50.0 . 341 . 298 . 268 . 223 . 182 . 151 . 125 

85.0 . 560 . 502 . 456 . 382 . 316 . 264 . 219 

90.0 . 631 . 568 . 517 . 434 . 360 . 300 . 248 

95.0 . 752 . 682 . 623 . 524 . 436 . 362 . 297 

97.5 . 873 . 796 . 729 . 615 . 512 . 424 . 346 

99.0 1.035 . 949 . 871 . 736 . 614 . 507 . 411 
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_PART 
III 

§9 Practical Application of the tests given in 

Parts I and II 

§ 9.1 Introduction 

In this section we show how to use the tests 

presented in this thesisa There are two sections, 

the first considering the statistics introduced in Part I, 

and the second those statistics introduced in Part 11. 

9.2 The statistics DID+tv- Three hypothetical 
n, q niq n, q 

examples, two small samplesand one large sample. 

9.3 The statistics W2 and A2. 
pp 

9.2 Mle statistics DD+ and V introduced 

in Part 1. 
q 

These statistics were introduced to test the. 

goodness-of-fit of grouped or discrete data. Percentage 

points of the statistics are tabulated so that tests 

of the null hypothesis 

H 
0: Pi 

can be made, that 
where pi is the probability .' an observation comes from 

th the i category. The null hypothesis is that all 

categories are equally likely. The one-sided statistic 

+i D and the two-sided statistic D will be 'powerful 
n, q niq 

against alternatives of the type 

P, + 11 ... 91 k 

'pi Y j+j, 
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where j6 - (k-j)Y =0 Vn, 
q 

is designed to test 

grouped or discrete data which arises from 

observations on a circle. Vn is powerful against 

alternatives similar to (9.1), but where p, 

refer to j adjacent categories or mass points on the 

circle. 

To illustrate the use of DD+ and V 
n, q n, q n, q 

Example 
_1. 

We uses3me hypothetical data in Siegel (1956 p49) 

Each subject is presented with five photos of himself 

varying in tone (grades 1-5) and asked to choose 

the photo he likes best. Ten subjects are chosen and the 

hypothesis tested is that there is no overall preference' 

for any tone, thus if the hypothesis is true each grade 

of tone is equally likely to be chosen. 

Grade of tone of photo chosen I 

Number choosing that grade, x0 

FW1 
01 

n 
(x) 

D+= 01 D«-= -5 ,D= 
34 

,V5 10 10 -lo 

5 

pr(JO D-> 5) = 0.0000 10,5 

pr(IO D10,5 5) = 0.0001 

pr(10 V10,5 > 5) =0 . 0002 

Thus there is very strong evidence -to suggest that the 

hypothesis is not true. 

2 34 

0 5 
3 4 

' ý7 5 

- 
1 
- 

6 
0 f 0 fo 

1 
-1 

2 
o lo lo 
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It would not be practical in this situation 

to use the X2 statistic, since the small sample 

distribution is not known exactly, without using Kempthrone's 

(1967) first foýir moments of X2 and fitting, for examples 

a Pearson curve. 

Naively if we use X2,, then we. have a value of 

X2 = 11 for the data, which has significance of about 

2.5. using Y, 2,,. Using Kempthornets moments and a 

Pearson curve fit this probability is conservative, 

i. e. the significance is > P. 5ý. * 

Thus the D statistics and V show the significance 

of the data much more plainly than does X?: D giving 

a significance of . 001% and V . 002% against which is 

> 2.5% 

EXAMPLE 2 

Here We use V only, in its role to test'goodness-of-fit n, q 

on the circle. lVenty four pigeons were released from a 

cage, six watcherswere employed and the circle divided 

up. into six equal sectors of 600 each. .A watcherwas 

assigned to each sector and told to Count the number 

of pigeons flying off in his sector. The data is given 

below: 
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It is wished to test the null hypothesis that the 

pigeons have no preferential direction of flying off. 

Under this hypothesis each sector is equally likely. 

Sector I 

Number of 9 
pigeons 

FW4 
21 

FW 
n 21 

F0 (x) -FnW .1 
2 

2 
22T 

2 3 4 5 

3 1 2 3 

8 
24 

12 
-2 T 

16 
-2T 

20 
-2-'T 

12 

. 2T 
13 
-2-T 

19 
-27 

18 
W2 

-4 
24 

:-1 -4 2! -1 -2-T 
2 

-2T 

D7= so V A 
-2k 

From the tables we have Pr (24 V>7 . 96574 

. 034n6 

Using the X2 statistict we have X2 = 10, and from. the 

tables, we have Pr(X2 > 10) = . 075211. 
5 

EXAMPLE 

Consider an example to use D, D+ or V for large 
nnn 

samples. A computer program is supposed to generate 

random digits 0,1,..., 9 . 11000 digits were generated 

and one test for randomness was to compare the number 

of times each digit occured with its expected frequ ency. 

Digit 123 4 5 67 89 

Number of 91 . 90 94 105 105 110 107 104 101 93 
occurrences 

F W 
.1 .2 -3 -5 .6 .7*A .91.0 0 

F (X) 
. 091 --181 . 275 . 380 -485 -595 . 702 . 806 -907 1.0 x 

D+ = . 025, Ei- -007 

So D = . 025 and V -032 
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Here we use th e tables of the asymptotic 

distributions of the statistics, which are in terms 

of AD etc. A= 31.62, so AD= 
-791 and AV=1.012 

From the Table 3.1, these tables are not significant 

at the 15% level. However from more extensive tables 

we have Pr(fn D> -791) -, . 30 and Pr(V'n V>1.012) o%j -29o 

The value of the statistic X2 for this data is 4.82 

and from the tables PrO(2 >4 . 82) . 85. Thus the 9 

KS-type statistics give an indication of some non- 

randomness of the program, whereas'the X2 statistic gives 

none. 

9.3 The statistics W2 and A2 introduced in Part II. 
. rr 1.1 

In this section we use W2 and A2 to test goodness- 

of-fit with censored data. We give hypothetical examples 

testing simple and composite hypotheses, and an example 

from the literature. 

EXAMPLE 1 Testing a simple hypothesis 

It is found that bids made for tender of a contract 

by firms in a certain magufacturing industry are uniform 

for part of their range. For. a. certain contract it is 

hypothesized that the upper 90% of the distribution is 

uniform over(l. 1,2.0)- Thirty bids were made for the 

contract; they were: 
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. 68, . 88, 
, 
i. ol, 1.24, 1.27 1 1 . 29, 1.29, 

1.32, 1.34, 1.34, 1.4o, 1.45, 1-57P 1.67, 

1.69, 1.701 1.74, 1.75, 1-789 1.85, 1.87, 

1.89, 1.909 1.91, 1.92, 1.92t' 1.93, 1-94, 

1.95, 1.96. 

We test the observations in (1.1,2.0) for uniformity. 

We first transform the observations to the interval (0,1)o 

Here 

x(. 9) for xE (1-1t2.0) 

= 1.0 

We transform the 27 observations in 

(0,1), by putting t=F (x) - We then hav 

. 24, . 27t . 299 . 29, . 32, . 34, . 349 . 
40, 

. 67, . 69, . 70, . 74t -759 -78t . 85, -87, 

. 92, . 92, . 93, 
.. 

94, -95, . 96* 

(1-1,2.0) to 

45, 
-57 

*89, ogot*glt 

In this situation we have censoring of type I on the 

left. We restrict ourselves to observations greater then 

F -1 (. 1). To use formulae (6-11) and (8-4) to construct 
0 
W2 and A2 respectively, we require censoring on the 

pnpn 

right rather than left. If we make the transformation 

t' = 1- t to the observations alone then the't 

observations will be censored on the right at F-1(1- -1). 0 
We can use formulae (6-11) and (8.4) with the t' values 

with R= 27 and p. . 9. We find upon calculation that 



9.7 

w2 = . 489 and A2 = 2.95 
np rl 

From the )(2 approximation to the small sample 

distribution of W2 with percentage points given 
rn 

in Table 6.1, we see that the 5% point is . 448 and the 

2-1% is . 560, so our value lies between 5 and 211% 2 

significant. 

From the asymptotic percentage point of p 
A2 in 

Table 8.3 we see that the 2j% point is 2.92 and the 1% 

point is 3.70, so our value of A2 is about rn 

significant., 

Thus the evidence from the statistics W2 and rn 

A2 suggests the data h, as deviated from the hypothesised 
rn 
distribution. 

EXAMPLE 2 Testing for normality 

An experiment is set up to test the current gains 

(IG) of certain transistors. It is known that ln (IG) 

has the normal distribution. Forty measurements were 

to be made, however after taking the twenty smallest 

values the equipment brokedown and the experimentlwas 

unable to continue.. It is wished to test the hypothesis 

that the twenty available observations can be considered 

to be log-normally distributed. Values of the logarithms 

of the twenty observations are given below 



9.8 

- . 2671, ol42, . 2547, . 4237% . 491.9, . 4923, . 7o65, 

1.0047, 1.0317, 1.0598, 1.1647, 1.1759, 1.2130, 1.3446, 

1.3448, 1.5620, 1.7712, 1.7756, 1.9o14, 1.95oo. (9-1) 

The mean and standard deviation of the normal 

population N(II, c? ) which these twenty observations 

were assumedto be drawn from, were estimated using 

Cohen's (1959) tables for the MLE's of 4 and a-. 

It was found that 

2.0834 1.1022 

The bias of these estimates was reduced to order n- 
2 

using Saw's (1961) corrections 

+ . 96 ac =a+1.762 c n+l n+l 

. 0576 = 1.1496 

The observations (9-1 ) are then transformed to*(O, J) 

We define tt. (x. where is the 
3.1 

standard normal c. d. f. These values are given below 

. 0273v . 04671 . 0710, 

. 2073, . 2141, . 2213, 

. 3016, . 3703, . 4408, 

. 0923, -10359 

. 2494, . 2525, 

. 4423, . 4512, 

. 10369 . 1412 

. 2629, . 3015 

. 5027- 

A We now Calculate the statistics 
ý2 

and rA 
21 the 

rnn 

statistics for type II censoring, which is the situation 

here. We use formula (6-12) to calculate ý2, using the 
rn 

and find that, -0141 with R= 19. rn 
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We now calculate A2 using formula 
rn 

but with R= 19 and p Mx 11 )/cT We find 20)- cc 
A2 . 0947- 

rn 

Comparing these values with asyjnptotic percentage 

n 
is about 80% points we see that the value of W 

rn 

significant from Table 7.59 and X2 about 60% 
rn 

significant, so indicating that we can accept the 

hypothesis of normality. 

EXAMPLE 3 TestinS for normality 

Gupta (19$2) presents the following data, showing 

the number xI of days to death of the first 7 in a 

sample of 10 mice after inoculation with a uniform 

culture of human tuberculosis: 

X1 41 44 46 54 55 58 6o 

x= logxI 1.613 1.644 1.663 1-732 1-740 1.763 1.778 

Gupta takes log XI -to be normally distributed. David 

(19701 §6-3, ýxample 6.3-1) finds estimates of 11 and 

using Cohen's (1959) MLE and Sarhan and Greenberg's 

(1962, p222) best linear unbiased estimates. David 

finds 

0 M. L. E. 1-742 

-079 

ii)-- B. L. U. E. 1-746 

. 091 

Using Saw's (1961) corrections to the MLE estimates 

to reduce the bias to 0 ýn 
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cr 

IL c= Il n+l 

CTC =a n+l 
Bp( cr) 

For p= . 7, Bp Op) =- . 342 

B1 . 193 

which gives corrected estimatesq 

ýtc =1 -744 

cc = . 0875 

Using the corrected MLE's it is found that 
p 

W*2 . 0230 

with the observations transformed to (Oil) using 

t (x - 1,1 rT ) giving 
C/4c 

. o672, . 12659 . 1773, -4455ý . 4818, . 5860, . 6512 

With the B. L. U. E's the observations -transform to 

. 1,719, . 1213, . 1809, . 
4389, 

. 
4737, 

-5741, . 6375 

AA 
giving W2 = . 0198. These two. values of W2 are quite 

.pp 
close, their difference arising from the differing - 

values of a and Ct The values of W2 are about Cp 

70% significant, suggesting normality of the logxl 

observations and that or (VL Cy provide. good 

estimates of 4L, 
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§10 Related and further work 

10.1 Introduction 

In this final section 'we consider a statistic closely 

related to V and A2, Watson's statistic U2, introduced 
nnn 

in Watson (1961) to test goodness-of-fit on the circle. 

The theory of IJ2 adapted for censored data is given in 

. 

In §10-3 and §10.4, we consider further work related 

to the content of this thesis. In §10-3 the statistic 

pV 
is extended for the 2-sample problem and the bivariate 

Sample. 

In §10.4 an alternative way of testing for normality 

with censored data is suggested. 

10.2 The statistic L9 

10-2.1 Watson's statistic U2 
n 

Related to the A2 and V statistic is the Lf- statistic 

introduced by Watson (1961) to test gOodness-of-fit on the 

circle. It is a version of W2 defined by 
2 

T-12 =nI 
(ID fFW 

-F 
(X) 

- 
J"D [Fn(y)-po 

(y) ]dF (y) I 
dF 

0 
(X) 

-(D -OD 
0 

Watson considers the process 

zn (t) = VnfF 
n 

(t )-t-T 
1EFn 

(u)-u]dul 

0 

and shows that 

EEZ (t)] =0 and 
n 

E[Z WZ (s)] min(s, t)-. L(s+t)+ 10<S, t 
nn22 S- t+ T2- 1 

He finds the asymptotic distribution of U2 by finding the 
n 

eigenvalues and eigenfunctions of the integral equation 
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I 
c)(s, t)h(s)ds = h(t), 0<t<1 

0 

where P(s't) = "m ECZn(t)Zn(s)] 

n4 aD 

§10.2.. 2 Stel2hens' modification of Uý for censored data 

Professor M. A. Stephens in a private communication has 

considered the LIZ statistic for censored data. The process n 

(t) =Y (t) rp Y (U)du 
nnpjn 0 

where Y (t) = V'n(F 
n 

(t)-t)l 

is considered. Then UZ is defined as 
pn 

U2 (Qn(t))z dt 
pn0 

With this development of U2, the covariance function of (t) 
pnn 

can be found. 

Ecy M sp Y (u)dul =, jPp 
(min(u, t)-ut)du 

n10nI '1 0 

U(l-t)du+ Y t(l-u)du 
0t 

t2 2 Z, 

1 (1-t) + t(P-pD - t(t--ý) ý22 

22 

I Also E[SP Yn (u) du SpYn (v) dv] = SPIP (min (u, v) -uv) du dv 
0000 

3- 4 

Finally 

E[Qn(t)Qn(s)] = E[yn (S)y 
n 

(t)] 

- EI Y (s)! sY (U)du 
np0n1 
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-EY (t )l Sp Y 
11 

(u)du] 
np0 

+ E[I J'p Y (u)du 
pY 

(v)dv 
P0nP0n 

S2 
min(s, t) - st -s+ 2 

t+ 
tp 

+ 
t2 

+ R- 12 
2 2p 34 

Denote the covariance of Qn(t) by pn (s, t). 

Following the previous representation of p and p 
Aýj 

the asymptotic distribution of 1ý is given by 
pn 

CO ZZ. 

p j=1 ýl i 

where IL i are eigenvalues of the integral equation 

jilp r)(s, t)g(s)ds = g(t), 0<t<p 
0 

where p(s, t) = E[Qn(t)Qn(s)] given by (10-1). As for 
p 

I$ 

we differentiate and find the general solution 

g(t)-= A sin (mt) +B cos(mt) , 

where ný = 11, to the differential equation. To find the eigen- 

values, g(t) is substituted back into the integral equation. 

It is found upon integration that 

(t) =- A sin mt + At (-m cos mp + mp cos mp - sin mp) 

At (1-p/2)m(l - cos mp) +A (em/2p) (1 - cos mp) 

+ (A/2p)(-mp2 cos nip+ 2p sin nip + 2/m(cos mp-1)) 

-A (1-p/2)(-mp cos nip +sin nip) +Ani(P/3 -pz AM -COS MP) 

+ B(cos mt -1+ mt sin mp 7- mt p sin mp +t-t cos mp) 

(B/2p) (mp2 sin mp + 2p cos mp 2/m sin mp) 

B(I-p/2) (nip sin mp + cos mp -ý+B (e /2p)m sin mp 
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-B (1-p/2) tin sin nip + 13 (P/3-p' Oin sin nip, 

For this to hold the coefficients of the t and t2 ternis must 

be equal to 0. 

For the coofficient of the tz term, 

A (1 - cos mp) +B sin mp =0 

Thealetting k m/2 and provided sinkp /0 

Asinkp+Bcoskp 0 (10-2)' 

The coefficient of the t term is: 

A (mp/2 cos mp - sin mp -m+ mp/2) 

+ B(-mp/2 sin mp +1- cos mp) 

which ive note is zero if sinkp = 0. So now assume sinkp 

and substitute for A and B from (10-2) and set equal to 0: 

- kp cos kp (1 - 2sin2 kp) + 2coS3 kp sin kp 

+m cos kp - kp cos kp - 2kp sin2 Icp cos kp + 2sin3 kp =0 

i. e. sin kp +k (1 -p ) co s kp =0 

Thus the eigenvalues are given by solving either 

sin(kp) =0 

or sin(kp) + k(l-j? )cos kp = 0. 

With these conditions on m (or k) the constant term should 

equal 0 for these values of m to be eigenvalues. The constant 

term is 

(A/2p) (--mp2 Cos mp + 2p sin mp + (2/m) (co sm p-1) 

- Aft-p/2) (-m-, o Cos mp + sin mp) 

+ Am(P/3-P2 Cos MP) 

+ (B/2p) (mp2 sin mp + 2p Cos mp -2/m sin mp) 

- B(l-p/2) (mp sin mp + Cos mp 

+ B(P/3-P2 /4)m sin mp 

If sinkp =0 then sinmp = Oand cosmp = 1. The constant 

term is then: 
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(A/2p) (-ml32 A(l-p/2) (-mp) 

(13/2p)(2p) 

i. e. -Amr)+Amp-! 
LII'2+B 

22 

or B 
'mp(, 

+p) 2 

Thus A and B are determined if sinkp 0 and so g(t) is 

determined, up to normalization, i. e. 

g( t) a sin nit - 
MT-) (1+p ) co s mp 2 

with m= 2k, and k determined by sinkp = 0. 

If the eigenvalues are given by sin kp + k(l-p)cos kp =0 

then (10-2) holds since sinkp /Oand coskp /09 so A, B/O. 

Thus substituting for A and B, the constant term is 

co s kp/ 2p ) (-mpý co s mp + 2p sin mp + r 

+ coskp(1-p/2) (-mp cos mp + sinmp)- sinkp 

+ (sin kp)/2p (mp2 sin mp + 2p cos mp) 

sin kp (1-p/2) (mp sin mp + cos mp 

i. e. p(-kcos kp +kp coskp - sinkp) 

But sinkp+k(I-p)coskp = 01 so the constant term is 0, and 

g(t) is given by 

g(t) a- cos kp sin 2kt + sin kp cos 2kt 

wher ek satisfies: 

tan kp -k (1-p) 

Thus the asymptotic distribution of U2 can be found by finding 

the two sets of eigenvalues (ii 
i) found by solving 

U) sinkp =0 

or (ii) sin kp +k (1-p) cos kp = 01 

u, here k2 

The first set corresponding to solving U) are given by 

kip1,2.... 
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or 
42 

and the second set, found by solving (ii), correspond to 

four times the eigenvalues of 
pV, 

found in 66-4-2. The 

eigenvalues of 
pW 

are given by solutions of 

sin mp + m(I-p)cos mp 

where m= 112 

Thus, since k= -2L 112 1 one set of eigenvalues of 
p 

U2 is given 

by four times the set of eigenvalues of 1$. 
p 

The distribution of can be found in the usual way P 

with these eigenvalues, noting that we can find the 

cumulants of U2 from I$ and Use 
Pp 

M-1 
(ID m 

2 (M-1)! E 
(-: l. ) 

tn j-1 ITL i 

C 

and denote by li* the eigenvalues of 
pW 

an d -ýL + the eigenvalues 

of W (i. e. ýi+ =-n2j2). 

CD 
(M-1) -in Then %m(p U2 2m- . 

j=l 
ýL 

iI. 

M-1 ý (D (iM (- ) 
411 

(+ (P-)M x (1%9 ) mp4m 

The values of hm(PIA ) (m = 1,2,3) are given in §6 in Table 6.2 

and the values of 71, (We ) are well known (see Anderson and m 

Darling (1952) for example). 
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§10.2-3 Ali alternative statistic for the circle 

A criticism of St ephens' definition of 
p 

Lý keeping in 

mind that L9 was introduced to test observations on the circle, 

is that if we consider the statistic 

,u 
q, q+p 

12 = 
Sq+p FF (t)dt- 

q 

where It(t) is now defined by 

.I q+p 
R(t) = Y(t)- - Y(s)dst 

Pq 

and that the choice of origin on the circle was arbitrary, 

we should like the distribution of 
qq+p 

LP to be the same as 

O)p 
L? (i. e. 

p 
L2), and for a given set of data, on the circle, 

q, q+p 
q= 

OIP 
LIZ. Consider the covariance of R(t); this is 

given by: 

. EER(t)R(s)] min(s, t) - st 

t(p+q)+qý (p+q)2 
p{2 

fs(p+q)+qe S- (p+q)2 
22 

P+03 (p+q)4 
_ qý (p+q)2 +cý (p+q) 3-4 

13 41 
1. q 34 

The distribution of 
qqq+p 

U2 is given b. y 

(3D 

j=l 

where Zi are i. i. d. standard normal random variables and the ji 

are eigenvalues of the integral equation: 
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q+p 
r(s, t)g(s)ds g(t) 

q 

where ýi(s, t) = ECR(s)R(t)] (see 10-3). Now this integral 

equation can be written, by a change of origin, 

ji Sp r(s+q, t+q)g(s+q)ds g(t+q) 
0 

Consequently if 
q, q+p 

L? is to have the same distribution as 

p 
Lýthen the eigenvalues and eigenfunctions of the respective 

integral equations must be identical, i-e- T(s+q, t+q) = P(s, t), 

where p(s, t) is given by (10-1). Hourever this is easily seen 

not to be true and so 
q, q+PUZ 

and 
P 

TJ2 are not identically 

distributed. There is the practical criticism of not being 

able to construct the stati 
. 
stic 

q, q+p 
L9 when only censored 

observations are available on the circle. Suppose we have 

observations, in radians, censored so that they lie in the 

interval (0,2np) equivalent to (O, p) on the line and we 

construct the statistic If by transforming the observations p 

to (O, p). Then with another*choice of origin, say'2n(I-q) 

radians on the previous scale, we now have observations in 

the interval (2nq, ý! n(q+p)) and try to construct 
q, p+q 

U2 by 

transforming the observations to (q, q+p). However we 

cannot construct ' U2, since we do not know how many q, p+q 

observations lie in (0,2nq) or equivalently in (O, q) and 

F 
ri 

(t) cannot be known in (2. Tcq, . 2n(q+p)) or equivalently 

(q, q+l-)). Thus If only has meaning when all observations qjp+q 

are available. However if all observations are available, 

then it would be better to use the statistic - 

cpI (Y (t) Y (s)ds)2 dt 
pnn 00 

for it is seen that cO 
and c 

where p q, q+p 
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Cr q+p 12 

q, q+p . li qYn 
(t) -1 Yn Wds I 

dt 

have identical distributions, by following Watson's argument 

in his (1961) paper, and also that for a given set of data 

on the circle cU2 -%.; ill be identical to CO 
with the 

p q, q+p 

origin now at 2n(l-q); so cLJ2 is effectively origin free. 
p 

-The distribution of 
CU2 

can be found in a similar way as the 
p 

distribution of Lý was found. Now 

Cis Ip 
p -a 

Z2 (t)dt 

where the covariance function of Z(t) is given by (10-3), so 

cTJ2 has asymptotic dist ribution that of 
p 

OD 

j=l 

where the Z. are i. i. d. 
i 

and the ji are eigenvalu 

Z2. 

standard normal random variables 

es of the integral equation 

11 jp (s, t) g(s)ds 

0 

vrhere p(s, t) = E[Zit)Z(S)l 

21 min (s, t) (s+t)+-! (s-t) + f2- 2 (10-5) 

given by W atson (1961). 

If this equations is differentiz&edand the differential 

equation solved then the general solution is 
I 

g(t) =A sin nit +B cos mt, where m= 112. 

Substituting g(t) into UO-4) we have an expression similar 

to that for 
p 

U2. The t2 coefficient. is given by: 

mm 

Aý (I -cos mp +s In mp I 2 
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thus with m/0, for g(t) to be an eigenfunction 

A(l - cosmp) +B sin mp =0 

or with 2k = m, then if Sinkp ý0ý 
1- -1 

A sin kp +B cos kp =0 

as before for JJ2 
p 

The t coefficient is given by 

Am cos mp + mp cos mp - sin mp - 
m] [- 

22 

+B 
[12 

mp sin mp - mp sin mp +I- coS mp 
I 

which upon simplification substituting for A and B, and assuming 

sin kp ý 0, we have that 

m sin mp cosmp (1-2p) +2 cos mp(l - cosmp) +mp sill mp =0 (lo. 6) 

The constant term is given by 

A[-mp2 cos mp + 2p. sin mp +1, (Cos mp + mp cos mp - sin mp] M 

+ B[-2 + mp2 sin mp + 2p cos mp -2 sin mp mp sin mp - co s mp + m 

which upon substitution for A and B gives 

m sin mp (p-1) +2 (cos mp 0 

provided sinkp /0 and p/0. 

If we try and solve (10-6) and (10-7) simultaneously 

for (mp), it is found. that sinm'p =O is the only solution. 

However this solution is included in sinkp = 0. We express 

(lo. 6) and (10-7) in terms of kp rather than mp, and find 

that kp must satisfy 

(1-p) (sin kp + 1) (1 -2 sin2 kp) =- 2p sin3 kp 

. 11 

for g(t) to be an eigenfunction. 

Consequently the eigenvalues of the integral equation 

(10.4) are given by 

i. e. kp jn i 1,2, 
sin kp 0 

2d7týa 0.0.. 8) 
i. e. 11 j( 1, p 
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and 

(1-p) (sin kp + 1) (1 -2 sin2 kp) =-- 2p sin3 Icp (10-9) 

One set of eigenvalues is common to U2 , and the other set 
ýp 

found by solving (10-9) for k is a new set. 

t 
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§10-3 Goodness-of-fit statistics for the 2-sample problem 
and the bivariate sample with c'eilsorecl data 

10-3-1 Introduction 

In this section we extend the 
PV 

statistic for the 

problem of testing 2 samples given in 10-3-21 and in 10-3-3 

1%, 2 is extended for the bivariate sample. 

10-3.2 The 2-sample problem 

The asymptotic theory of the censored statistics can 

be applied to the 2-sample problem. Suppose' initially we have 

2 random samples both censored on the right so that we have 

observations x I"**'Xr 
<aP from a continuous population 

with c. d. f. F(x) and y1..., ys <a from 6 continuous 

population with c. d. f. G(y), where the censored x observations 

number n- r, and the censored y observations number m- s. 

The c. d. f. 's can be constructed for both the x and y samples: 

14 bservations 
n 

(x) = ýI', 0 
-n 

(Y) observations <, 
_y mm 

We can then construct the 2-sample statistic 

a 

_Mn 
P IFII(X)-GM(X)I? 

dH (X) 
n, m In+n 

ý-GD 
nim 

where 
nF 

n 
(x)+mG (x) 

n, m M+n 

and p is defined by H 
n, m 

(a 
p)=P. 

for x<a 
-- 

for y<a 

Then under the null hypothesis H0 F(x) G(X) it is easy to 

show that I$ UP as n, tn ---> cD in some way, fI ollowing p n, m p 

Kiefer (1959). 
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The 2-sample 
p 

A2 and p 
U2 can be constructed in similar 

ways, and the doubly censored statistics also constructed. 

§10-3-3 The bivariate sample problem 

The censored statistics can also be constructed to test 

the bivariate distribution for (a) independence, and (b) 

goodness-of-fit, and discuss here the fqrmer problem. 

Blu m, Kiefer and Rosenblatt (1961) considered statistics 

to test for independence. First define Fn (x, y) for the 

bivariate sample by Fn (x, y) = r/n when exactly r of the n 

observations (x 
ilyi 

) satisfy x, :ý xt y, :ýy, or in terms of 

the indibator function 

In 
n 

(X, Y) nE 
vlx(xi)Vl y 

(yi 

s<t 
wh ere Vtt(s) 

0s>t 

Then they considered statistics based on the proces. s 

n 
(x, y) =Fn (x, y)- Gn Wil 

n 
(Y) 

where Gn W-is the-e-d-f. for the observations (x 
1'***'Xn) only 

and 11 
n 

(y) is the e-d-f- for the observations (y only. 

One such s. tatistic is the CVM type statistic 

lý =n 11 (T (x, y) )2 dFn (x, y) 
n 

Obviously such statistics can be adapted for use with censored 

data: 

X(r) Y(r) 
uý =nf1 fT (x, y»2dF (x, y) , rn- IM -OD nn 

where X(r)' Y(r ) are the r 
th 

order statistics of the respective 

samples. The asymptotic distribution of B2 is then found 
rn 

by solving the integral equation 
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C(s, t; u, v)f(u, v)dudv = f(s, t) OLO-10) 
00 

where r/n --> p and C(s, t; u, v) is the covariance function of 

the bivariate process Tn (x, y) when transformed to (Oil) when 

the null hypothesis is true. Under these conditions 

C(s, t; u, v) = (min(s, u)-su)(min(t, v)-tv) 

0<s, t, u, v < 0. 

The eigenvalues of the -integral equation (10.10)withp=l are given 

by X. = (TEj )2 (nk)2 and so B2 is asymptotically distributed 
jk n. 

as 

(ID 
.E 

jlk=l 

where the Z jk are i. i. d. standard normal j, k 

Similarly if -ýt i are the eigenvalues associated with W2 

(see 6-32A), i. e., the ji i are eigenvalues of the integral 

equation 

p 
lij (min(sit)-st)f(s)ds = f(t) 

0 

then 1ý has asymptotic distribution given by Eý where rnP 

OD Z2 
Z --jk BZ = 

jjk=1 
11 j Ilk 

So the distribution of 
p 

13? can be found by the method that 

the distribution of V* was found. 
p 

Blum, Kiefer and Rosenblatt (1961) extended the-theory 

of Eý upto m dimensions, so as to test the joint independence 
n 

of an m-dimensional random variable. The theory is straight- 

forward if Tn (x 
Ix2..., X 

M) 
is defined so that the asymptotic 

covariance function can be factored: 
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ECT 
n(xl"*"Xin 

)T 
n 

(y 

=F tmin(xigyi)-x 
iyi 

)1 

so enabling the corresponding integral equation to be solved. 

Blum, Keifer and Rosenblatt (1961) show how Tn is defined 

for m=3, and consequently the 3-dimensional statistic 

Lý has asymptotic distribution that of 
n 

z 
jke 

/(Tcj -nk TEX Y 
e 

where the Z jke are i. i. d. standard normal (j, k,, e 

Consequently 
p 

B? has distribution 

T, Z. ke 
/ ("L 

i 110. e) 
j, k, ej 

where the 11 i are defined in (6-32A). 

Rothman (1971) considers the version of If for observations n 

on a circle. He considers the new process 

(x, y) = (x, + ff T (x, y) dF (x, y) -fT (x, y) dQ (x) 

-IT n 
(x, y) dH 

n 
(y), 

and shows that the statistic, 

c2 =n 
11 f Z* (x, y) )2 dF 

is asymptotically distributed as 

Tz 
ik 

Ai 
j, k=1 

where the X 
jk are eigenvalues of the integral equi 

; tion 

1 
AT C (s, t; u, v) f (u, v) du dv =f (s, t) 

00 

and C(s, t; u, v) is the asymptotic covariance f. unction of the 
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process Zn (x, y), given by 

C (s, t; u, v) = (min (s, u-I (s +u) +1 (s-u)2 + 22 12 

x (min (t, v) (t+v) +1 (t-u)2 + 2 12 

So once again the covariance kernel factors and the X 
jk 

are given by X'xx where the X are eigenvalucs for jk "ý iki 

Watson's statistic TJ2 (see 610.2-1). Similarly we can 

extend Cý for the case of censoring and find the eigenvalues 
n 

lljk = 't i 11 k where the ar e eigenvalues for 
p 

02 given by 

(10-7) and (10.8). 

§10.4 An alternative method of testing for normality with 
censored data 

An alternative method for testing for normality not 

dependent on the c. d. f. is the Shaprio-Wilk statistic W, 

introduced in Shapiro and Wilk (1965). W is the quotient o: ý 

the best linear unbiased estimate of a, say Acý, and the 

maximum likelihood estimate of a, say upto a constan't 

term: 
TV 

wa W- 
CL 

For the full sample 

n 
CT 

vaix 

where the (a 
i) are given by Sarhen and Greenberg (1956), §10 

under the best linear unbiased coefficients for cr of the 

normal distribution. 

Also 

=1r, , IL 

Similarly we could construct-a W statistic based on 

C 

censored data 
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uhere 

avb i1xa) i=S 

the (b 
i) are again given by Sahren and Greenberg (1956, §10 

when the available observations are (x(S)"**'X(r))' The 

maximum likelihood estimate &L is given by Cohen (1959), 

for singly censored observations only. 

An alternative approach is that indicated by Lindgren 

(1968, §6-4) who approximates to V2 by the cross- correlation 

coefficient of the order statistics (x( 
1 ), )) and 

the expected values of the order statistics (m 11 ) from 

an N(0,1) population. 

1 
w'ý' -r (x, ni) ý 

vy, -(x w`ý Y E(M i _MY 

where m= ECY WI where YI- N(Otl) 

EX(i)mi 

r(x, m) a VE(X(i)_5t Y 

since F. mi= 

A good app roximation to the coefficients (a 
i) is 

2m. 
JL 3- 

So W and r(x, m) are equivalent upto this approximation. 

Similarly we could construct the statistic r(A, m) for 
I- 

censored data. However, Plackett (1958) shows that the 

best linear unbiased estimate av of 6 and the maximum like- 
A 

lihood estimate of a are equivalent asymptotically, and av 

is given by Ymi x(, ) upto a multiplying constarit,, thus 
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-->I with probability 1, as n aD Consequently 

the asymptotic distribution of Wk Scy is given by the 
v 

constant 1 with probability I. 

However this type of statistic does not lead to analytic 

results and the whole distribution theory rests on Monte- 

Carlo sampling. 

Although the K-S and CVM statistics have been much 

maligned in recent years (Shapiro and Wilk (1965), Shapiro, 

Wilk and Chen (1968), who use the statistics in the wrong 

context), the CVM statistics do appear to be powerful omnibus 

statistics with simple computational formulae and elegant 

asymptotic theory (which is not irrelevant in practice since 

the statistics are quickly convergent to their asymptotic 

, 
distributions). 

§10.5 Conclusion 

In conclusions we hope that the goodness-of-fit 

statistics investigated here will'be a help to the more 

efficient analysis. of data. 
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rendix 

Distribution of the statistics nD 
+, 

nD, nV for discrete data with 

n obsenrations, under the null hypothesis that q points (or categories) 

are equally likely, found using the method of §2 with q= 3(l) 10,12 and 

na multiple of q and n ý< 30. The probabilities are accurate to Cte 

number of significant points given; a digit in parentheses indicate. q 

some doubt about its accuracy. 



t Pr (ND +< 

N 3 6 9 12 

k0 . 59259 . 51852 . 48412 . 46342 

1 . 96296 . 84225 . 76762 . 71694 

2 1.00000 . 98217 . 93817 . 89528 

3 . 99863 . 99172 . 97503 

4 1.00000 . 99903 . 99614 

5 . 99995 . 99946 

6 1.00000 . 99995 

N 15. 18 21 24 

k0 . 44928 . 43885 . 43076 . 42426 

1 . 67993 . 65149 . 62881 . 61024 

2 . 85774 . 82553 . 79786 . 77396 

3 . 95408 . 93210 . 91051 . 89013 

4 . 98955 . 98007 . 96848 . 95618 

5 . 99819 . 99564 . 99125 . 9860 

6 . 99971 . 99923 . 99799 . 9954 

7 . 99996 . 99968 . 99938 1.00 

N 27 30 

k0 . 4190 . 4156 

1 . 5949 . 5844 

2 . 7541 . 7354 

3 . 8721 . 8675 

4 . 9496 . 946 

5 . 9892 . 98(9) 

6 . 9983 . 99(2) 



k 

k 

k 

D 

N 

N 

N 

0 

1 

2 

3 

4 

5 
6 

7 

Q=3 Pr (ND s k) 

3 6 9 12 

. 22222 . 12346 . 08535 . 06520 

. 92593 . 68587 . 53986 . 44423 

1.00000 . 96433 . 87639 . 79085 

. 99726 . 98344 . 95006 

1.00000 . 99807 . 99229 

. 99990 . 99891 

1.00000 . 99991 

. 99995 

15 18 21 24 

. 05274 . 04428 . 03815 . 03351 

. 37713 . 32755 . 28944 . 25926 

. 71627 . 65272 . 59863 . 55232 

. 90819 . 86421 . 82115 . 78031 

. 97911 . 95995 . 93692 . 91176 

. 99639 . 99098 . 98240 . 97103 

. 99943 . 99830 . 99598 . 99208 

. 99993 . 99937 . 99925 . 99787 

. 99990 

27 30 

. 02988 . 02696 

. 2348 . 2145 

. 5124 . 4777 

. 7422 . 7068 

. 8857 . 8594 

. 9575 . 9429 

. 9865 . 9799 

. 9941 



V 

N 

k0 

1 

2 

3 

4 

5 

6 

7 

N 

N 

Q=3 

3 

. 88889 

1.00000 

15 

. 31644 

. 64920 

. 87527 

. 96970 

. 99458 

. 99914 

. 99991 

. 99999 

27 

. 19125 

. 43917 

. 67779 

. 84735 

. 94049 

. 98079 

. 99473 

. 9987 

. 9998 

Pr (N V 

6 

. 61728 

. 94650 

. 99588 

1 . 00000 

18 

. 27198 

. 58100 

. 82045 

. 94345 

. 98669 

. 99744 

. 99956 

. 99993 

30 

. 17402 

. 40575 

. 63868 

. 81496 

. 92035 

. 97111 

. 99103 

12 

. 46944 . 37816 

. 83432 . 73285 

. 97516 . 92957 

. 99710 . 98843 

. 99985 . 99837 

1.00000 . 99986 

. 99999 

21 24 

. 23844 . 21226 

. 52497 . 47839 

. 76866 . 72105 

. 91285 . 88029 

. 97455 . 95885 

. 99403 . 98849 

. 99878 . 99726 

. 99978 . 99941 

. 99997 . 99992 



k 

k 

4 Pr (ND+ < k) 

N 4 8 12 16 

0 . 48828 . 41524 . 38277 . 36365 

1 . 90625 . 75032 . 66442 . 60933 

3 1.00000 . 99243 . 97013 . 93693 

4 . 99962 . 99442 . 98350 

5 . 99998 . 99938 . 99646 

6 . 99997 . 99946 

7 1.00000 . 99993 

N 

0 

: j. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

20 

. 35075 

. 57052 

. 76930 

. 90196 

. 96700 

. 99082 

. 99779 

. 99942 

. 99987 

24 

. 34133 

. 54143 

. 7iOU 

. 86874 

. 94747 

. 98252 

. 99505 

. 99923 

1.00000 

28 

. 33408 

. 51872 

. 69801 

. 83821 

. 92650 

. 97459 

. 99305 



Pr (ND < k) 

N8 12 16 

k0 . 09375 . 03845 . 02203 . 01468 

1 . 81250 . 50842 . 35248 . 26214 

2 . 99219 . 89209 . 75296 . 63672 

3 1.00000 . 98486 . 94026 . 87389 

4 . 99924 . 98885 . 96701 

5 . 99997 . 99876 . 99294 

6 . 99993 . 99894 

7 . 99999 . 99989 

N 20 24 28 

0 . 01067 . 00820 . 00656 

1 . 20461 . 16539 . 13725 

2 . 54442 . 47115 . 41235 

3 . 80414 . 73813 . 69805 

4 . 93402 . 89481 . 85319 

5 . 98173 . 96474 . 94312 

6 . 99576 . 98986 . 98089 

7 . 99926 . 99762 

8 . 99996 . 99947 

9 1.00000 



N 

N 

V Q=4 Pr (NV <, k) 

k0 4 8 12 16 

1 . 70313 . 38025 . 24508 . 17443 
2 . 98438 . 81818 . 63567 . 50333 
3 1.00000 . 97199 . 89518 . 79556 
4 . 99847 . 97921 . 94045 
5 1.00000 . 99760 . 98670 
6 . 99985 . 99795 

7 . 99999 . 99998 

20 24 28 

k0 
1 . 13220 . 10462 . 08545 
2 . 40889 . 33983 . 28787 
3 . 70081 . 61823 . 54817 
4 . 88654 . 82687 . 76734 

5 . 96633 . 93700 . 90148 
6 . 99193 . 98099 . 96488 

7 . 99854 . 99522 . 98927 
8 . 99981 . 99905 . 99721 
9 . 99998 . 99985 . 99941 

10 1.00000 . 99998 



Pr 

N 5 10 15 

k0 . 41472 . 34598 . 31630 

1 . 84544 . 67113 . 58223 
2 . 98496 . 90064 . 81223 

3 . 99968 . 97919 . 93839 

4 1.00000 . 99762 . 98399 

5 . 99982 . 99708 

6 1.00000 . 99962 

7 . 99995 

N 20 25 30 

k0 . 29905 . 28752 . 27922 

1 . 52730 . 48948 . 46189 

2 . 74384 . 69114 . 65053 

3 . 89027 . 84470 . 80377 

4 . 96190 . 93466 . 90555 

5 . 98898 . 97648 . 95840 

6 . 99746 . 99270 . 98490 

7 . 99944 . 99808 

8 . 99977 . 99926 

It 



D Q=5 

k 

k 

N 

0 

I 

2 

3 

4 

5 

6 

7 

8 

N 

0 

1 

2 

3 
4 

5 

6 

7 

8 

9 

Pr (nD it k) 

5 10 15 

. 03840 . 01161 . 00551 

. 69120 . 36535 . 22302 

. 96992 . 80135 . 62698 

. 99936 . 95838 . 87678 

1.00000 . 99523 . 96798 

. 99965 . 99416 

. 99999 . 99924 

. 99992 

20 25 30 

. 00320 . 00209 . 00147 

. 14988 . 10754 . 08089 

. 49665 . 40086 . 32943 

. 78083 . 69051 . 61098 

. 92383 . 86917 . 81129 

. 97797 . 95283 . 92076 

. 99504 . 98544 . 97072 

. 99913 . 99632 . 99057 

. 99984 . 99943 



V Q=5 r WTAj 

N 5 10 15 
k0 

1 51840 . 21805 . 11917 
2 . 93440 . 65673 . 44608 
3 . 99840 . 91435 . 77200 
4 1.00000 . 98888 . 93296 
5 . 99914 . 98668 
6 . 99998 . 99982 

1.00000 . 99999 

1.00000 

N 20 25 30 

k0 

. 07497 . 05148 . 03752 

2 . 31761 . 23639 . 18239 

3 . 63102 . 51683 
. 427b2 

4 . 85085 . 76028 . 67381 

5 . 95285 . 90379 . 84588 

6 . 98867 . 96818 . 93826 

7 . 99792 . 99148 . 97895 

8 . 99970 . 99814 . 99394 

9 . 99997 . 99967 . 99852 

10 1.00000 



D Q=6 

Pr (ND + <ý k) 

N 6 12 18 

0 . 36023 . 29641 . 26941 

1 . 78712 . 60472 
. 51670 

2 . 96721 . 85256 . 75207 

3 . 99811 . 95968 . 90117 

4 . 99998 . 99289 . 9678(3) 

5 1.00000 . 99913 . 9920(l) 

6 . 99994 . 998(5) 

7 1.00000 . 999(8) 

N 24 30 

k0 

1 

3 

4 

5 

6 

7 

8 

. 25387 

. 46373 

. 67901 

. 8414(6) 

. 934(2) 

. 976(9) 

. 993(7) 

. 999(l) 

1.00000 

. 24354 

. 4278(2) 

. 6246 

. 7884 

. 8968 

. 97 



k 

k 

D 

N 

0 

1 

2 

3 

4 

5 

6 

7 

N 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Q=6 Pr (ND, <k) 

6 12 18 

. 01543 . 00344 . 00135 

. 57656 . 25740 . 13833 

. 93441 . 70572 . 51169 

. 99623 . 91936 . 80247 

. 99996 . 98578 . 93565 
1.00000 . 99827 . 98401 

. 99988 . 99692 

. 99955 

24 30 

. 00069 . 00040 

. 08399 . 05540 

. 37967 . 28926 

. 68400 . 58114 

. 86797 . 79391 

. 95305 . 91164 

. 98625 . 96683 

. 99665 

. 99964 



k 

k 

Pr (NV, <k) 

12 18 

V 

N 

. 36651 . 12009 . 05569 

. 85391 . 50056 . 29690 

. 98958 . 82748 . 63159 

. 99987 . 96420 . 85855 
1.00000 . 99526 . 96040 

. 99966 . 99176 

. 99998 . 99871 

0 
1 
2 
3 
4 
5 
6 
7 

24 30 N 

0 
1 
2 
3 
4 
5 
6 
7 
8 

. 03o99 

. 19011 

. 47398 

. 73533 

. 89337 

. 96574 

. 99112 

. 99812 

. 01928 

. 12968 

. 36046 

. 61930 

. 81252 

. 92232 

. 97296 

. 99204 



D+ Q=7 Pr (nD + 
nu 

N 

k 0 

1 

2 

3 

4 

5 

6 

7 

N 

k0 

1 

2 

3 

4 

5 

6 

14 

. 31831 . 25921 

. 73357 . 54913 

. 94469 . 80536 

. 99456 . 93571 

. 99980 . 98502 
1.00000 . 99745 

. 99971 

. 99997 

21 28 

. 23460 . 22053 

. 46376 
. 41337 

. 69760 . 62272 

. 86196 . 7937 

. 94719 . 9024 

. 98377 . 959(6) 

. 9959 . 986 

. 999 . 996 
1.000 . 998 



DnQ-7 Pr(nD. e: k) 

N 7 14 

k0 . 00612 . 00100 
1 . 47446 . 17888 
2 . 88937 . 61294 

3 . 98911 . 87144 
4 . 99960 . 97004 
5 1.00000 . 99489 
6 . 99942 
7 . 99995 

N 21 28 

k0 . 00033 . 00014 
1 . 08461 . 04642 

2 . 41184 . 28623 

3 . 72452 . 59090 

4 . 89440 . 80498 

5 . 96758 . 91953 
6 . 99193 . 97172 

7 . 99837 
. 99152 

8 . 99964 . 99771 



vn Q=7 Pr(n V <, k) 

N 7 14 

k1 . 25245 . 06453 

2 . 75581 . 36810 

3 . 96881 . 72439 

4 . 99868 . 92206 

5 . 99999 . 98504 

6 1.00000 . 99815 

7 . 99985 

N 21 2B 

k1 . 2542 . 01251 

2 . 19077 . 10991 

3 . 49814 . 34259 

4 . 91664 . 81373 

6 . 97699 . 92644 

7 . 99502 . 97585 

8 . 99917 . 99335 

9 . 99847 



Dn Pr (nD 
n* 

N 8 16 24 

k0 . 00240 . 00029 . 00008 
1 . 38659 . 12307 . 05124 
2 . 83842 . 52698 . 32811 
3 . 97741 . 81816 . 64753 

4 . 99849 . 94834 . 84717 
5 . 99996 . 98878 . 94523 
6 

. 99823 . 98359 
7 

. 99980 . 9959 
8 

. 9992 



Q=8 vnPr (IN 
n : ýk) 

k 

N 

1 

2 

3 

8 16 24 

. 17093 . 03413 . 01142 

. 65232 . 
ý6390 

. 11960 

. 93472 . 61747 . 38205 

. 99475 . 86465 . 66473 

. 99986 . 96602 . 85771 

1.00000 . 99405 . 95176 

. 99926 . 98681 

. 99711 



Q=9 

D+ Pr (nD + 
<, k) 

nn 

N 9 18 27 

k0 . 25812 . 20716 . 18638 
1 . 64198 . 46246 . 38411 
2 . 89215 . 71917 . 60583 
3 . 98061 . 88100 . 7852 
4 . 99808 . 96080 . 8981 
5 . 99991 . 98979 . 9588 
6 1.0000 . 99796 . 9856 
7 

. 99993 . 9957 
8 

. 9990 

Dn Pr (nD 
n 

*k) 

N9 18 27 

k0 . 00094 . 00008 . 00002 
1 . 31261 . 08402 . 03079 
2 . 78442 . 44956 . 25938 
3 . 96121 . 76234 . 57422 
4 . 99615 . 92160 . 79648 
5 . 99982 . 97957 . 91790 
6 1.00000 . 99593 . 97169 
7 

. 99938 . 9917 
8 . 99998 . 9978 

. 9955 



k 

Q-9 iý r (nU :Z -t. - ý v 
n r. 

N 9 19 27 

0 

1 . 11439 . 01786 . 00508 

2 . 55206 . 18572 . 07368 

3 . 88869 . 51537 . 28689 

4 . 98637 . 79641 . 56507 

5 . 99926 . 93733 . 78818 

6 
. 99999 . 98586 . 91591 

7 1.00000 . 99764 . 97248 

8 
. 99972 . 99257 

9 
. 9983 

10 
. 9997 



10 

D+ Pr(nD + <, k) 
nn 

k 

D 
n 

k 

N 10 20 30 
0 . 23579 

. 18824 . 16900 
1 . 60324 

. 42826 
. 35M 

2 
. 86454 

. 68096 . 56748 
3 . 97051 

. 85259 . 74958 
4 . 99611 

. 94544 . 87200 
5 

. 99972 . 98361 . 9433 
6 

. 99999 
. 99610 . 9789 

7 
. 9992(5) . 995 

Pr (nD <k) 

N 10 20 30 

0 . 00036 . 00002 . 00000 
1 . 25128 . 05701 . 01839 
2 . 72946 . 38118 . 20380 
3 . 94101 . 70602 . 50608 
4 . 99222 . 89091 . 74433 
5 . 99943 . 96723 . 88667 
6 . 99998 . 99219 . 95635 
7 

. 99852 . 9854 
8 

. 996 



10 v Pr(nVn A) 

N 10 20 30 

k 1 . 07591 . 00927 . 00224 

2 . 46008 . 12890 . 04480 

3 . 83353 . 42303 . 21193 

4 . 97236 72221 . 47216 

5 . 99763 . 89951 . 71292 

6 . 99991 . 97249 . 87078 

7 1.00000 . 99424 . 95125 

8 499909 . 98454 
9 . 99586 



Q= 12 

D+ (Pr(nDý 
n 

N 12 24 N 12 24 

k0 . 20100 . 15916 . 00005 . 00000 

1 . 53729 . 37277 . 16014 . 02589 
2 . 81007 . 61387 . 62209 . 27022 

3 . 94563 . 79699 . 89126 . 59711 

4 . 98943 . 91084 . 97885 . 82180 

5 . 99866 . 96721 . 99732 . 93402 

6 . 99990 . 9898 . 99979 . 97968 
7 . 99999 . 9977 . 99999 . 9948 
8 . 999 

Vn Pr(nVn < k) 

N 12 24 

k1 . 03285 . 00246 

2 . 30887 . 06029 

3 . 70834 . 27449 

4 . 92617 . 57180 

5 . 98869 . 80342 

6 . 99899 . 9286 

7 . 99995 . 9792 

8 
. 995 

9 
. 999 


