
��������	
�����	����	������	��������	����	���	������	
��	�����������	���������	���������	��	�������	����������	
��	 ��������!�	

����������	�
����������
�������

����	�������
�����
���"#$$�"���������������!�����%$��&��$�$&'(')&�"��

��������
�����������

*��	 ��������!	�������	�������	!�%��	����	+��%	��	�����������	��	���	����������	��	
 ��������!	����,��,�	�"��	������	�����	���	��,,�+���	�����������

*���	�����,�	��	!���	����,��,�	�����	���	 ����������	��	 ��������!	-��	���� 	,������	���	!��	
��	������	���������	��	���	����������	��	���	,�������		.��	!���	�����,�	���#	
���"#$$�"���������������!�����%$���/����/�����!����"��

.��	!���	�����!������	",����	�������	 �"�����0���������!�����%

Research into the Design of Distributed

Directory Services

by Steven David Benford, BSc. (Hons)

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy, October 1988.

I would like to thank my supervisor, Mr. Hugh Smith, for the valuable guidance he has pro-

vided throughout my career as a postgraduate student. His advice, comments and support

have been essential to the production of this thesis. In addition, I would like to thank him

for encouraging my work in other areas and enabling its publication and presentation.

I am also very grateful to Steve Kille, Julian Onions and Karl-Heinz Weiss for their advice

throughout my research. In addition, I would like to thank Penny Jewitt, Andy Cheese, Peter

Cowan and Graeme Lunt for their assistance in the production of this thesis. Finally, I

would like to thank all of my colleagues within the Computer Science Department for their

friendship over the past years.

This thesis is dedicated to my mother and my father for all the support and encouragement

they have given me.

-ü-

Contents

CONTENTS iii ...
ii

LIST OF FIGURES
...

ix

ABSTRACT
.. xi

PREFACE
... xii

CHAPTER 1

INTRODUCTION

1.1 The need for Directory services within the OSI environment ..
1

1.1.1 Trends within computer based communication ...
2

1.1.2 The information required for communication ..
4

1.1.3 The management of infonnation
..

7

1.2 A review of existing systems ..
9

1.2.1 The Clearinghouse
...

9

1.2.2 The Berkeley Internet Name Domain Server (BIND)
...

13

1.2.3 The CSNET Nameserver
..

17

1.2.4 Summary of existing nameservers ...
20

1.2.4.1 Salient features
...

20

1.2.4.2 Limitations
...

20

1.3 An introduction to naming ..
22

1.3.1 What is a name? ...
23

1.3.2 Requirements of naming ..
24

1.3.3 Graphical and hierarchical naming models
24

1.4 The ISO/CCITT X. 500 standard for Directory services ...
28

1.4.1 A brief history
... _.....................................

28

1.4.2 The position of X. 500 within OSI
..

29

1.4.3 Overview of X. 500
... 29

1.4.4 Issues requiring further study ... 38

1.5 The relationship of this thesis to the X. 500 standard ..
39

- 111 -

CHAPTER 2

A LAYERED DIRECTORY ARCHITECTURE

2.1 Classifying the Directory as a distributed database
..

41

2.2 Overview of the layered directory architecture ...
42

........................
2.2.1 Requirements of the directory architecture

43

2.2.2 The external layer
...

44

2.2.3 The global conceptual layer
...

45

2.2.4 The local conceptual layer
...

4b

2.2.5 The local internal layer
................................... ...

4b

2.3 Relationship to the functional model
47

2.4 Using the layered architecture to structure this thesis ...
48

CHAPTER 3

THE GLOBAL CONCEPTUAL LAYER

INFORMATION MODEL AND ABSTRACT OPERATIONS

3.1 Communication entities as entries and attributes ...
51

3.2 Naming communication entities ...
53

3.3 Abstract operations ..
59

3.3.1 Reading directory information
...

60

3.3.2 Browsing directory information
...

60

3.3.3 Modifying the contents of entries ..
62

3.3.4 Adding and deleting entries ...
63

3.3.5 Adding and deleting aliases ...
64

3.4 Suspending directory information
..

65

3.5 The role of user specified transaction control ...
67

CHAPTER 4

THE MANAGEMENT OF DIRECTORY INFORMATION

4.1 Mechanisms supporting the management of directory information
...............................

69

4.2 An access control mechanism for the Directory service ...
72

4.2.1 An overview of general access control .. 72

4.2.2 Requirements of the Directory access control mechanism
76

4.2.3 Reasons for choosing an ACi based mechanism ..
78

4.2.4 Extending the information model to include ACLs
.......................

79
......................

-
iv

-

4.2.5 The structure of ACLs: representing actions
82

4.2.6 The structure of ACLs: representing access groups. ...
84

4.2.7 Public access to information
..

87

4.2.8 The final structure of ACLs
..

87

4.2.9 Granting, revoking and managing access controls.. _ ...
88

4.2.10 Guaranteed access to information
...

89

4.3 A data integrity mechanism for the Directory service ..
90

4.3.1 Goals and motivations of the integrity mechanism. _ ...
90

4.3.2 Overview of the directory integrity mechanism ..
92

4.3.3 Attribute definitions
...

93

4.3.3.1 The structure of an attribute definition.
...

93

4.3.3.2 Examples of attribute definitions
...

94

4.3.3.3 Use of type and scope within attribute definitions
..................

95

4.3.3.4 The effect of attribute definitions on operanons
96

4.3.3.5 New operations to manage attribute definitions
.....................................

97

4.3.4 Entry definitions
.. _......................................

99

4.3.4.1 The structure of an entry definition
..

99

4.3.4.2 The effect of entry definitions on operations .. _.
101

4.3.4.3 New operations to manage entry definitions
.....

102

4.3.5 Scope and information management domains
.................

104
..................................

4.3.6 Dynamic management and attribute types
106

4.3.7 Summary and examples of the directory integrity mechanism
107

4.4 Review of the directory global conceptual model ..
110

CHAPTER 5

THE LOCAL CONCEPTUAL LAYER

KNOWLEDGE, NAVIGATION AND OPERATIONS

5.1 An overview of distribution
...

113

5.1.1 Functional model and general distributed operation..............
114

5.1.2 Major distribution issues
.. 115

5.1.3 Management issues within the local conceptual layer
.......................................

116

5.2 Partitioning the DIT, knowledge and navigation ..
117

5.2.1 Navigation
.. 117

5.2.2 Partitioning the Directory Information Tree
.. 119

5.2.3 Minimal knowledge
... 122

-V-

5.2.4 Navigation step algorithm .. 125

5.2.5 Opportune knowledge
.. 127

5.2.6 Summary of partitioning, knowledge and navigation ..
131

5.3 Knowledge management ... 132

5.3.1 The effects of directory reconfiguration ...
133

5.3.2 Management and consistency of minimal knowledge
.......................................

134

5.3.3 Management and consistency of opportune knowledge
.................................... 137

5.3.4 Summary of knowledge management ..
141

5.4 Distributed operation of the Directory
..

142

5.4.1 General structure and execution of distributed operations
143

5.4.2 Single entry operations ...
146

5.4.3 Multiple entry operations ...
150

5.4.4 Distributed management of entry and attribute definitions
................................

153

5.4.5 Summary of distributed operations ..
158

5.4.6 A comparison of chaining and referral ...
159

5.5 Summary of knowledge, navigation and distributed operations
161

CHAPTER 6

A DIRECTORY REPLICATION MODEL

6.1 An overview of replication issues
.................................

165

6.1.1 Why replicate within distributed databases?
..

165

6.1.2 Example uses of replication within the Directory service
166

6.1.3 General replication issues
..

166

6.1.4 Replication management issues
...

168

6.2 Update propagation and consistency ...
169

6.2.1 Single master update ..
170

6.2.2 Snapshots
..

172

6.2.3 Multiple master update ...
172

6.3 Overview of the directory replication model ..
175

6.4 DSA clusters and multiple mastership .. 178

6.4.1 Revised structure of minimal and opportune knowledge
....................

179

6.4.2 The execution of updating operations .. 181

6.5 Replication between DSA clusters .. 181

6.5.1 Granularity of replication 182

6.5.2 Statement of replication policy .. 183

-vi-

6.5.3 Replicated knowledge
..

184

6.5.4 Managing replication agreements .. 186

6.5.5 Summary of replication between clusters .. 191

6.6 Crash recovery .. 191

6.7 The impact of replication on distributed operations ...
193

6.8 Summary of the directory replication model ..
195

CHAPTER 7

THE LOCAL INTERNAL LAYER

A DIRECTORY IMPLEMENTATION

7.1 Background to implementation work ..
198

7.1.1 Motivations
..

198

7.1.2 Pragmatic constraints and their implications
...

198

7.1.3 Functionality of the prototype Directory
...

199

7.1.4 Tools supporting prototyping ...
200

7.2 Functional architectures of the DSA and DUA
...

203

7.2.1 Functional architecture of the DSA
...

203

7.2.2 Functional architecture of the DUA
...

205

7.3 Implementation of the DSA
..

206

7.3.1 Modules and DSA functions
..

206

7.3.2 The relational model representing directory information
..................................

209

7.3.3 Implementing knowledge and navigation ..
216

7.4 Implementation of DUAs
..

217

7.4.1 The libdua library
...

217

7.4.2 An interactive Directory User Agent
...

219

7.4.3 The AMIGO MHS+ Directory User Agents
..

219

7.5 Summary and conclusions of implementation work ...
223

7.5.1 Testing and refining the directory model ...
224

7.5.2 Use of software tools ..
224

7.5.3 Implications for production Directory services ...
225

- vii -

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Goals and motivations of this research ...
227

8.2 The management of directory information
...

228

8.2.1 The data access control mechanism ...
229

8.2.2 The data integrity mechanism ..
230

8.2.3 Final conclusions for information management ..
231

8.3 The operation and management of the Directory system ...
232

8.3.1 Knowledge and its management .. _..
232

8.3.2 The execution of distributed operations ...
234

8.3.3 Replication
... _...

235

8.3.4 Final conclusions for system operation and management
236

8.4 The implementation of a prototype Directory service
237

8.5 Implications of this research for X. 500
... _..

239

8.5.1 The approach of X. 500
... _..

239

8.5.2 Extensions to X. 500
.. _...

240

8.6 Unresolved issues
.. __ ..

242

8.6.1 Dynamic attribute syntax .. __..
242

8.6.2 Third party access control ... -..
243

8.6.3 Directory system access control ... _244
8.7 Future directions for Directory services .. _..

245

8.7.1 The relationship of the Directory to OSI management --..
245

8.7.2 Naming distributed objects ... _...
247

8.8 Final word .. _...
250

APPENDIX A

SPECIFICATION OF DIRECTORY PROTOCOLS
.. -.

251

BIBLIOGRAPHY
....................... _... _...

274

- viii -

List of Figures

1.1 An example Clearinghouse namespace ..
11

.................................
1.2 An example BIND namespace ..

14

1.3 Structure of a BIND resource record ...
15

1.4 Interaction between BIND resolvers and nameservers ...
17

1.5 The centralised architecture of the CSNET Nameserver
..

18

1.6 Absolute and relative naming ...
25

1.7 A typical name tree ...
27

1.8 Example directory entry ..
31

1.9 General structure of the DIT and entries ..
32

1.10 The relationship between the DIT, RDNs and DNs
...

33

1.11 The relationship between schemas and the DIT
..

36

1.12 The Directory provided by cooperating DUAs and DSAs
...

37

1.13 Different modes of DSA interaction
..

37

2.1 The layered architecture of the Directory service ...
44

2.2 Relationship between the directory architecture and the functional model
48

3.1 Example Directory Information Base
...

53

3.2 Example Directory Information Tree
..

55

3.3 Aliases in the Directory Information Tree
..

58

4.1 Many IMDs supported by the global security and integrity mechanisms
71

4.2 Example Authorisation Matrix
..

73

4.3 Splitting the Authorisation Matrix into Capabilities and ACLs
.....................................

74

4.4 Structure of an entry including ACLs
...

80

4.5 The overall structure of an Access Control List
...

81

4.6 Example Access Control List using access categories ..
84

4.7 Example Access Control List using Object Set Descriptors
...

88

4.8 Scope representing IMDs within the DIT
...

105

5.1 Elements of the directory functional model ..
114

- ix -

5.2 Navigation as a sequence of navigation steps ... 118

5.3 The DIT partitioned into fragments distributed between DSAs
...................................

120

5.4 Knowledge tree for DSA 3
.. 124

5.5 Opportune knowledge relieving a loaded DSA
..

129

5.6 Opportune knowledge - routing via major DSAs
...

130

5.7 A simple navigation loop
.. 134

5.8 Navigation and execution phases of an operation _.........
144

5.9 Navigation and execution phases of single entry operations ..
149

5.10 Worst case distributed execution of the List Subordinates operation
151

5.11 Distributed execution of the Search operation ...
153

5.12 Distributed execution of the Add Entry Def and Delete Eniry Def operations
156

6.1 Two conflicting writes ..
169

6.2 Conflicting read and write .. _.........
170

6.3 Directory replication using DSA clusters ... _.........
177

6.4 DSA clusters and the revised structure of minimal knowledge
....................................

180

6.5 Example Replication Knowledge Tree
...

185

7.1 Functional architecture of the DSA
.. _.........

2(}4

7.2 Functional architecture of the DUA
.. _.........

205

7.3 Program modules implementing the DSA
.. _.........

207

7.4 The structure of relations representing the DIT and entries ..
210

7.5 The structure of relations representing access controls --........
213

7.6 The structure of relations representing entry and attribute definitions
.........................

215

7.7 Libdua routines used in a Read Entry operation ...
218

7.8 Functional model of the AMIGO distribution list mechanism
221

9.1 The Directory system and service ...
252

-X-

Abstract

Distributed, computer based communication is becoming established within many working

environments. Furthermore, the near future is likely to see an increase in the scale, com-

plexity and usage of telecommunications services and distributed applications. As a result,

there is a critical need for a global Directory service to store and manage communication

information and therefore support the emerging world-wide telecommunications environ-

ment.

This thesis describes research into the design of distributed Directory services. It addresses a

number of Directory issues ranging from the abstract structure of information to the concrete

implementation of a prototype system. In particular, it examines a number of management

related issues concerning the management of communication information and the manage-

ment of the Directory service itself.

The following work develops models describing different aspects of Directory services.

These include data access control and data integrity control models concerning the abstract

structure and management of information as well as knowledge management, distributed

operation and replication models concerning the realisation of the Directory as a distributed

system.

In order to clarify the relationships between these models, a layered directory architecture is

proposed. This architecture provides a framework for the discussion of directory issues and

defines the overall structure of this thesis.

This thesis also describes the implementation of a prototype Directory service, supported by

software tools typical of those currently available within many environments. It should be

noted that, although this thesis emphasises the design of abstract directory models, develop-

ment of the prototype consumed a large amount of time and effort and prototyping activities

accounted for a substantial portion of this research.

Finally, this thesis reaches a number of conclusions which are applied to the emerging

ISO/CCITT X. 500 standard for Directory services, resulting in possible input for the

1988-92 study period.

-xi-

Abstract

Distributed, computer based communication is becoming established within many working

environments. Furthermore, the near future is likely to see an increase in the scale, com-

plexity and usage of telecommunications services and distributed applications. As a result,

there is a critical need for a global Directory service to store and manage communication

information and therefore support the emerging world-wide telecommunications environ-

ment.

This thesis describes research into the design of distributed Directory services. It addresses a

number of Directory issues ranging from the abstract structure of information to the concrete

implementation of a prototype system. In particular, it examines a number of management

related issues concerning the management of communication information and the manage-

ment of the Directory service itself.

The following work develops models describing different aspects of Directory services.

These include data access control and data integrity control models concerning the abstract

structure and management of information as well as knowledge management, distributed

operation and replication models concerning the realisation of the Directory as a distributed

system.

In order to clarify the relationships between these models, a layered directory architecture is

proposed. This architecture provides a framework for the discussion of directory issues and

defines the overall structure of this thesis.

This thesis also describes the implementation of a prototype Directory service, supported by

software tools typical of those currently available within many environments. It should be

noted that, although this thesis emphasises the design of abstract directory models, develop-

ment of the prototype consumed a large amount of time and effort and prototyping activities

accounted for a substantial portion of this research.

Finally, this thesis reaches a number of conclusions which are applied to the emerging

ISO/CCITT X. 500 standard for Directory services, resulting in possible input for the

1988-92 study period.

-xi-

Preface

The goals of this thesis

This thesis describes the specification and implementation of a prototype Directory Service

supporting computer based communication within an Open Systems environment. The

Directory service is a specialised, globally distributed, database providing humans and appli-

cations with the information required in order to communicate. In particular, it manages a

distributed, global name space for communication entities and supports the management of

communication information shared between many cooperating organisations and services.

This thesis explores a number of management issues relevant to the Directory service.

These issues concern the management of directory information and the management of the

Directory service itself.

The need for a global Directory service has been apparent within the electronic mail com-

munity for some time and is becoming critical as the community continues to expand rapidly

[SIRB84]. In addition, a Directory service is required to support other present day applica-

tions such as file transfer, remote login and remote job execution [SANT86]. Support is also

required for emerging applications in the area of Computer Supported Cooperative

Work(CSCW) such as group communication services and distribured office

systems [WILS88] as well as for many new applications in the future.

This obvious need for Directory services has been recognised by the International Standards

Organisation (ISO) and International Telegraph and Telephone Consultative

Committee (CCITT) standardisation bodies. As a result, 1988 will see the introduction of the

first joint ISO/CCITT X. 500 standard for Directory services [CCITT -X500]. This standard

should provide a basic service, sufficient to plug the current gap in communication require-

ments. However, many unresolved issues, particularly management issues, mean that 1988

X. 500 is unlikely to cope with a growing number of users and applications in the future.

Thus, 1988 marks a watershed for the study of Directory services when one can look back on

the culmination of previous work, in the form of 1988 X. 500, and also look forward to those

issues requiring solution as the standardisation process enters the 1988-1992 study period.

The publication of this thesis is therefore particularly relevant at the present time.

The urgent need for a global Directory service has provided the motivation for this research.

The overall goals of this work are defined below:

Rll-

1 The first goal is the specification of a distributed Directory service including mechan-
isms supporting the management of information and the management of the service

itself. This requires the development of abstract models describing issues such as

access control, data integrity, directory configuration and replication.

2 The second goal is the implementation of a prototype Directory service using these

models. Prototyping is an integral part of the overall design process and aims to refine

the results of specification work. Furthermore, the prototype explores the use of

several software tools, typical of those available within many organisations today, for

constructing Directory services.

It is important to note that this research has occurred in parallel with the development of

X. 500 during the years 1985-1988. This thesis assumes several past and present X. 500 con-

cepts and models as the basis for new ideas. However, this research has taken a different

slant to X. 500, adopting a more database oriented approach concentrating on management

and distribution issues beyond the scope of the standard. In contrast, the ISO and CCITT

work has required the specification of an immediately implementable model, resulting in

many of these more complex issues being postponed for future study.

The structure of this thesis

The goals of this thesis identify the need for both specification and implementation work

within my research. Specification work develops a number of abstract models and ideas

whereas implementation work concerns the realisation of these ideas using specific tools and

systems. In order to clearly present both these areas of work while preserving the separation

between the abstract specification and the concrete implementation, a layered directory

architecture is used to structure this thesis. The proposed architecture supports several

directory models at different levels of abstraction allowing a clear separation of issues. Con-

sequently, the structure of this thesis is not based on the chronological progression of my

research, where specification and implementation occurred in parallel, but is based on the

logical top-down structure of the layered architecture. I believe that this facilitates a more

coherent presentation.

The layered architecture views the Directory as a distributed database and is derived from

general database architectures including the ANSI/SPARC centralised database architecture

[ANSI75] and the distributed architecture of Dean et at as used in the PRECI* distributed

database system [DEEN82]. Each layer of the architecture describes issues at a different

level of abstraction. Layers are therefore, generally, independent with higher layers

representing abstract user and application views of information and lower layers being con-

cerned with distribution and storage issues.

- X111 -

The top-down approach adopted by this thesis begins by examining issues belonging to

higher layers, such as the information model, access controls and data integrity, and

proceeds to discuss lower layer issues, such as the management of distribution, replication

and finally the implementation of a prototype using a number of specific tools. Thus,

management issues are resolved within the early chapters and implementation work is left to

the later chapters.

The layered directory architecture and its relationship to subsequent chapters are described

in chapter 2. However, the following chapter descriptions should be sufficient to familiarise

the reader with the general structure of this thesis for the time being.

" Chapter 1 examines the requirements of the Directory service and reviews a number of

existing nameservers. It also provides an introduction to naming issues and an over-

view of the 1988 X. 500 Directory standard.

" Chapter 2 develops the specific layered directory architecture and explains its role in

structuring this thesis.

" Chapter 3 specifies the directory abstract information model and operations. These

form the basis of all later work.

" Chapter 4 examines the management of directory information and extends the basic

information model to include data access control and data integrity mechanisms.

" Chapter 5 discusses the distributed operation of the Directory service and specifies the

distribution of the abstract information model between a set of server applications

called Directory System Agents. It also develops a number of system management

mechanisms supporting navigation and distributed operations following system

reconfiguration.

" Chapter 6 concerns the use and management of replicated information within the dis-

tributed Directory system. It considers the management of replication and its impact

on the work of chapter 5.

" Chapter 7 describes a pilot directory implementation. It outlines the overall structure

of the implementation and the use of the RTI Ingres Relational Database Mangement

System and ISODE software tools in its construction. Although implementation work

is only considered within this chapter, the development of the prototype accounted for

a substantial part of the research leading to this thesis.

" Chapter 8 presents the conclusions of this thesis. In addition, it considers the implica-

tions of this work for the future development of X. 500 and examines the role of Direc-

tories within a future general distributed management framework.

- xiv -

Zs
BROC)N... N1,

.: LU1QS...

IF WE ALL Ob NUUSZSNSW
OF NAAES. l {AT UU (&M DO 0
T Cc DCl IO ? '.

7c

HOW ABOUT 3.1416?

XZ.
c"t"1,

ý. iýt ýa a.. tsf

A

IDMiiatOfJ_IHAVE A C-ERa16

WO
AUTCDEBE Yý'RK{ýDpfAC3AýNýA, m

LC)

Chapter 1

Introduction

This chapter provides the background to this thesis and aims to familiarise the reader with

the general concepts and ideas emerging from previous work in this area.

" Section 1.1 considers the role of the Directory service in supporting computer based

communication In particular, it examines the characteristics of communication within

an Open Systems environment and demonstrates the need for a distributed Directory

service to store and manage the communication information required by cooperating

distributed applications and their users.

" Section 1.2 places this research into historical perspective by reviewing existing sys-

tems partially fulfilling the role of Directory services. It analyses their strengths and

weaknesses and indicates their limitations, particularly the lack of support for informa-

tion and system management.

" Section 1.3 provides an introduction to the critical issue of distributed naming and

reviews previous work in this area. It discusses human oriented naming, compares

absolute and relative naming schemes and concludes by describing hierarchical nam-

ing, used as a basis for the Directory service.

" Section 1.4 reviews the 1988 X. 500 standard and informally introduces some of the

basic terminology and models adopted by this research. In addition, it lists some fun-

damental limitations of the standard.

" Section 1.5 clarifies the relationship between this thesis and the X-500 standard. In

particular, it indicates where current and previous X. 500 concepts have been used as a

basis for this research.

1.1. The need for Directory services within the OSI environment

Successful communication is a fundamental requirement for the achievement of human tasks

and goals. The availability of computer networks has opened the door on a new era where

humans use computers to communicate in ways not previously possible. Electronic com-

munication via computer networks is well established and accepted within the computer

-1-

science academic environment and many institutions support electronic mail, news and con-

ferencing facilities. This usage is being extended to the business environment where, along

with document creation and storage facilities, computer based communication will constitute

a major part of the office systems of the future [PRIN87].

Humans require information before communication can occur. They need to know the

names and capabilities of the entities with whom they wish to communicate. They also wish

to locate services to help achieve tasks. For example, they wish to know the name of a new

contact within another organisation, the names of bulletin boards on a certain subject or the

joining procedure for a specific distribution list. Applications also require information if

they are to provide communication services. In particular, they need to map the names of

entities onto application specific addresses.

The Directory Service is a globally distributed database for telecommunications services

fulfilling two main roles in supporting communication:

" It acts as an it
.
formation provider, allowing both humans and applications to access

the information required for communication.

" It acts as an information manager, maintaining communication information in the face

of changes to users, networks, organisations and services.

The following sections observe trends within computer based communication (section 1.1.1)

and explain the need for a Directory service to play the two roles described above (sections

1.1.2 and 1.1.3).

1.1.1. Trends within computer based communication

An increasing number of people are using distributed computer services to communicate and

achieve tasks within their working environment The following are examples of user activi-

ties involving distributed computer services.

" Inter-personal communication via electronic mail.

" Subscription to a bulletin board or news service.

" Participation in a real time conference.

Each of these activities might involve the use of several cooperating distributed services or

applications. For example, subscription to a bulletin board might employ the electronic mail

service to carry new messages to the board, involve a document storage service in maintain-

ing the messages on the board and might employ an authentication service to verify the iden-

tity of subscribers.

-2-

The following are examples of commonly available services*:

Examples of today's communication services
Generic service Examples

Electronic mail X. 400, RFC-822
File transfer FTAM, Arpanet FTP
Document storage ECMA FRS
Remote login Telnet, X. 29
Remote job execution JTMP
Real time conferencing/conversation UNIX Talk/Write
News/Bulletin Board USENET News

In addition to the services available today, several research groups are studying mechanisms

for integrating individual services into office systems environments and group communica-

tion frameworks [ISO-DOA88, SMIT88, PANK87, WILB88]. In fact, a general model of

future communication is evolving where humans achieve tasks via the structured coordina-

tion of many communication services within their distributed environment. This work is

closely related to the topic of Computer Supported Cooperative Work (CSCW)

[CSCW86, WILS88]. One example group communication architecture, proposed by Bogen

and Weiss, illustrates the point. Under this model, users are supported by many services

which, in turn, are themselves supported by other services [BOG88].

The number and variety of communications services is also increasing and this trend is

likely to accelerate with the introduction of new technologies such as ISDN [END88].

Not only are the number and complexity of communications services increasing, but net-

work communities are rapidly expanding and communication already occurs on a global

scale. The number of communicating entities may reach billions as is presently the case

with the telephone network and communication will span international, cultural and organi-

sational barriers.

Much future communication may occur within an Open Systems framework allowing the

interconnection of information processing systems of different makes, sizes and ages show-

ing a high degree of autonomy in operation and management [ISO-OSI84]. The Open Sys-

tems philosophy allows autonomous organisations to co-exist and cooperate in providing

network services. Thus, the different services employed by a user might operate under dif-

ferent managements, use different software and run on a variety of hardware.

*References are included in the bibliography.

-3-

In summary, one can observe the following trends in computer based communication:

" The size of communities is very large and expanding.

" Communication occurs on a global scale spanning international and cultural barriers.

" Tasks may be achieved via the structured coordination of many cooperating services.

" The "users" of a service might be humans or other applications acting on the behalf of

humans.

" The number and variety of services and service providers is increasing.

" Communication often occurs within an Open Systems framework of different

machines and applications under autonomous management.

1.1.2. The information required for communication

Communication using distributed services requires information concerning the names, loca-

tions, environments and capabilities of communicating entities and services. The volume

and diversity of this information will be very large for communication in the environment

described above. This point is illustrated by considering the information required to use the

telephone service and extending to the case where a number of more complex services are

supporting communication tasks.

The information required to use the telephone service

The telephone service is the best established telecommunication service available today and

has billions of subscribers distributed throughout the world. If one considers the use of the

telephone service, one observes the following requirements for information:

0 The initiator of a telephone call must know the telephone number of the intended red-

pient. In many cases, this number is not known to the initiator and can be obtained

from an information service (the White Pages Telephone Directory). The information

service requires that the initiator identify the recipient by supplying enough informa-

tion to distinguish them from all other possible recipients.

0 The telephone network requires information in order to provide the service. It needs to

know the telephone numbers of callers so that the network circuit switches can estab-

lish a connection between them.

" Use of the telephone service increases if subscribers are able to advertise themselves.

Users of the telephone service can query the Yellow Pages Directory to obtain the tele-

phone numbers of subscribers grouped under generic descriptions (e. g. Plumbers,

Electricians
..

). This generic information is not strictly necessary for the telephone

-4-

service to function but clearly encourages use of the service and allows users to iden-

tify the people with whom they wish to communicate. The yellow pages service

benefits both the users of the telephone service and the providers of the telephone ser-

vice.

The information required for computer based communication

The following paragraphs abstract these observations and apply them to general computer

based communication as described above. The following are generally true:

0 The user of a service requires information necessary to communicate via the service.

The names of other users are examples of this type of information.

" The services themselves require information in order to function. The addresses (net-

work locations) of subscribers are examples of this type of information.

" Information advertising the capabilities of the service and listing subscribers to the ser-

vice will increase its usage and benefit both service providers and users.

For example, use of a distribution list requires that subscribers know of its existence, know

the address of the list and understand its purpose. The application implementing the distri-

bution list requires information to determine whether an entity is allowed to use the list and

to determine the names and addresses of the list members for distribution purposes. The

managers of the list will wish to advertise its presence to the intended audience and further-

more, information describing the purpose of the list will encourage its correct usage and

therefore benefit the subscribers.

The diversity and volume of the information required for future communication within an

Open Systems environment can be expected to be far greater than for the telephone service

alone. This is because of the greater number and complexity of the services involved. The

following paragraphs demonstrate the nature and diversity of this communication informa-

tion.

A communication entity can be thought of as any entity involved in a communication pro-

cess. This might include humans, application entities, groups and services. The table below

gives a few examples of communication entities and their communication information

-5-

Communication entities and information
Entity Information

persons names, addresses, titles, responsibilities
groups of persons names, addresses, members
hosts names, addresses, capabilities
roles names, conventions
organisations names, addresses, descriptions

mailboxes addresses, capabilities

For example, a distribution list might be represented by a group of entities associated with

the following information, required by a mail or bulletin board service:

Example distribution list information

Name of the group
Names of members of the group
Description of the purpose of the group
Name of the person maintaining mbership of the group

In its role as an information provider, the Directory service must provide users with informa-

tion concerning the above kinds of communication entities.

Naming

Fundamental to the role of the Directory as an information provider, is the issue of naming

[WHIT84, SHOC78].

The name of each communication entity is of major importance. Names allow the

identification of entities and provide the basic handle to access their information. Without

the names of communication partners, communication would be impossible. For example,

sending an inter-personal message requires the name of the recipient. Subscribing to a bul-

letin board requires the name of the particular board. Consequently, the provision of a glo-

bal communication entity name space is a primary goal of the Directory service. This is dis-

cussed in section 1.3.

In summary, computer based communication requires information to ensure that users can

use the service, that the service can function and to advertise the service and its subscribers

thus increasing use of the service.

There will be a large volume and diversity of this information due to the existence of many

different services having complex functionality. Furthermore, services will have a large

number of subscribers. One role of the Directory service is to provide its users with this

-6-

information. In particular, this involves the provision of a global name space for communi-

cation entities.

1.13. The management of information

The second major role of the Directory service concerns the management of communication
information.

Communication information reflects the state of real world communication entities and is

vital to successful communication as described above. The management of communication

information describes its consistent update to reflect changes to real world entities. For

example, changing the address of a host, the name of a person or the administrator of a dis-

tribution list. Without its correct, consistent update, this information would soon become

invalid and communication would break down.

To understand the nature of the management problem, consider current approaches to the

storage and management of communication information. At the present time, the informa-

tion utilised by a service is usually stored in a specific service information base. Individual

information bases vary in size, distribution and complexity and are usually maintained on an

organisational basis by a small group of administrators. For example, at Nottingham, the

mmdf mail service [KING84] relies on routing tables, maintained in individual message

transfer agents, and the remote login service [DDN-TELNET] utilises host information

stored in local textfiles.

There are many problems with this approach to the maintenance of communication informa-

tion. One problem concerns the general lack of support for information management within

the individual information bases themselves. Solutions based on editing textfiles and tables

exhibit the following drawbacks:

" They do not scale to large volumes of information.

" They do not provide access control and data integrity mechanisms, recognised as

essential for supporting the correct update of information within general purpose data-

base systems [DATE77].

A second major problem concerns the lack of cooperation between different service infor-

mation bases. In an environment where many services cooperate to achieve tasks, a single

update to information may affect many information bases. For example, changing a person's

name may affect a mail service, bulletin board service and real-time conference service. The

lack of cooperation between information bases results in the following specific problems:

0 Services do not share common information and cooperation is therefore impeded.

-7-

" There is no mechanism ensuring that an update to one information base is consistently

propagated to all other affected information bases.

" Each information base supports its own access protocol with similar functions being

reproduced many times. This is a waste of effort.

The classes of problem described above may be summarised by the phrases: lack of

scale and lack of coordination. These issues will become critical as the size of the user com-

munity and number of services grows.

The Directory service provides the solution to these problems by maintaining a globally

unified information base accessed by many services. The management of communication

information within a single Directory service solves the problem of coordination. Further-

more, the Directory should be designed to operate on a global scale. In order to facilitate the

global management of communication information, the Directory should support the follow-

ing:

"A data access control mechanism controlling the legality of updates.

"A data integrity mechanism controlling the validity of updates.

" The definition of management policies reflecting real world policies.

Support for the management of information is a major goal of this thesis and these issues

will be defined and discussed in later chapters.

In summary, the consistent management of communication information is vital to the opera-

tion of communication services. At the present time, management is typically achieved by

ad-hoc methods within a variety of service information bases. This results in problems of

scale and coordination.

A major role of the Directory service is to unify these discrete service information bases into

a single, global Directory Information Base. This requires mechanisms supporting the con-

sistent management of communication information on a global scale.

The previous sections have described two major roles of the Directory service in supporting

computer based communication. The first is that of an information provider, allowing com-

munication entities to retrieve the information necessary to establish and support communi-

cation. The second is that of an information manager, facilitating the distributed manage-

ment of communication information on a global scale. The following section demonstrates

that previous work in this area generally ignores this second role. Consequently, the

management of communication information will form a major aspect of this thesis.

-8-

1.2. A review of existing systems

The need for a global Directory service has been recognised for several years, particularly

within the electronic mail community where user friendly naming and the management of

name spaces have been important issues [WHIT84, SIRB&4). The development of electronic

mail has required the evolution of naming techniques and the expansion of naming schemes

to global proportions. The growth of naming schemes has encouraged the development of

simple Directory systems called nameservers which, as the name implies, are primarily con-

cerned with the naming (and addressing) of mail users and other mail entities in a distributed

environment. The following list of nameservers and Directory servers includes many still in

use today.

Nameservers

Grapevine [BIR81]
Clearinghouse [OPP81]
BIND [TER84a]
The CSNET Nameserver [LAN83]
The NRS [LAR82a]
ECMA TR-32* [ECMA-TR32]
Thom [KIL87a]
QUIPU [KIL88b, KIL88c]
Hesiod [DYER87]

The following sections briefly describe and compare three of the above nameservers and

conclude by drawing together their common and important features. The three nameservers

are the Clearinghouse, BIND and the CSNET Nameserver. Although intended to solve the

naming problem within different environments, these three exhibit several common features

as described below.

The purpose of these reviews is to to place this research in a familiar context and introduce

the reader to fundamental concepts. Terminology will be formally defined in later chapters.

1.2.1. The Clearinghouse

The Clearinghouse nameserver was developed by the Xerox corporation in the early 1980s

to solve the problem of naming and locating objects in a distributed environment [OPP81].

The nameserver is intended to support several applications, including electronic mail, and

*71iis is really a specification of which there may be many implemeautioes.

-9-

has to deal with a variety of information concerning different types of object. Examples of

objects are machines, workstations, fileservers and people as well as groups of these,

represented by distribution lists.

Each object has a name, distinguishing it from all other objects, which may be used to

access the information stored about the object. Names are distinct from addresses describ-

ing the physical location of objects. The name to address mapping is a fundamental Clear-

inghouse service. However, the Clearinghouse also allows objects to be located and

accessed via generic groupings such as printer or workstation. The service is implemented

by a set of physically distributed servers and the Clearinghouse design specifies methods of

locating and replicating information in a globally distributed environment. The following

sections describe specific aspects of the Clearinghouse design in greater detail.

Naming

All Clearinghouse objects are named under the same convention regardless of type and thus

share a common namespace. The namespace describes a three level hierarchy where the

world of objects is divided into organisations and then subdivided into domains and finally

local names. These divisions are logical and do not reflect the physical or geographical loca-

tions of objects. Each object has a distinguished name consisting of a character string of the

form L D@O, where L is the local name, D the domain name and 0 the organisation

name. An example name space is shown in figure 1.1 below. Distinguished names are

unique and unambiguous. This means that each object has exactly one distinguished name

and each distinguished name describes exactly one object. In addition to its distinguished

name, an object may have one or more aliases providing alternative, but still unambiguous,

names for the object. Aliases are syntactically identical to distinguished names.

-10-

O
LUCL

Nou QMC

D CS CS

L Steve Julian

(Steve@CS. Nott) (Julian@CSNott)

Figure 1.1: An example Clearinghouse namespace.

The Clearinghouse is capable of locating an object given its distinguished name, one of its

aliases or a partial name match which can be expanded to a full three level name.

Properties and Operations

In addition to its name, a Clearinghouse object contains a set of properties representing its

physical characteristics such as addresses, capabilities, passwords and descriptions. A pro-

perty is an ordered tuple consisting of a name, type and value. For example, a "person"

object might have the property, <Password, individual, bananas> representing their real

world password. There are two possible values of the property type: individual, indicating

that the property value is atomic (i. e. an uninterpreted block of data), or group, indicating

that the value is to be interpreted as a set of names. An object may possess an arbitrary

number of properties including several properties with the same name. The following exam-

ple shows a possible "person" object.

Steve@CS@Nottingham -> {

<Title, individual, "postgraduate student">

<Password, individual, "bananas">

<File server name, individual
,
"sheriff@CS@Nottingham">

<Printer names, group, "beth@CS@Nottingham", "anadex@CS@Nottingham"> }

-11-

The basic functionality of the Clearinghouse is to map names to sets of properties. In addi-

tion, the Clearinghouse allows clients to create and manipulate names and aliases, retrieve

and manipulate individual properties of a named object and manipulate names in group pro-

perties. Set operations allow a client to determine whether a name belongs to a set of names

and to add and delete themselves (or other names) to and from sets.

The Clearinghouse provides searching facilities allowing a client to retrieve the names of

those objects containing specified properties. Searching implements a set of properties to set

of names mapping, loosely described as generic naming (i. e. naming generic sets of objects

by specifying common properties).

Enumerate operations allow clients to explore the name space by returning the names of all

objects belong to a named domain or all domains belonging to an organisation.

Access Control

The functionality described above is supported by the Clearinghouse access control mechan-

ism governing which users may perform which operations. This mechanism preserves the

integrity of information by ensuring that all updates are legal and that only permitted clients

can perform operations. The access control mechanism recognises two classes of user:

domain system administrators and general users. Administrators have the ability to explore

the name space, creating and deleting new names, aliases and properties. General users have

more restricted abilities to read and manipulate individual properties and members of sets of

names.

The access control mechanism is implemented by Access Control Lists (ACLs) stored within

the properties of objects. An ACL associates a set of names with some named operations. It

is interpreted as giving permission for any of the named objects (typically persons) to per-

form any of the specified operations on the property.

Distributed Operation

The Clearinghouse name space is partitioned among a set of physically distributed server

applications known as clearinghouse servers. There are three types of clearinghouse server

called organisation, domain and local servers. These are responsible for subsets of organi-

sation, domain and local names respectively.

A clearinghouse server is able to perform those operations accessing names for which it is

responsible. In addition, it may supply clients with the names of more responsible clearing-

house servers. The routing of operations requires that servers know of each others existence

and responsibilities. Clearinghouse servers are arranged so that they can always route

- 12 -

queries hierarchically. This is possible if each server knows the name of its parent and each
domain or organisation server knows the responsibilities of all its siblings. This arrange-

ment means that a client need contact a maximum of four Clearinghouse servers during the

execution of an operation.

More than one clearinghouse server may be responsible for an object, leading to the possibil-

ity of conflicting updates when the name or properties of an object are simultaneously

modified at different servers. The Clearinghouse supports an update mechanism resolving

conflicts by the use of timestamps. This mechanism guarantees to bring eventual consistency

to Clearinghouse information although transient inconsistency, where different versions of

an object temporarily exist at different servers, is possible and is considered acceptable.

1.2.2. The Berkeley Internet Name Domain Server (BIND)

The Berkeley Internet Name Domain Server (BIND Nameserver) was developed at Berke-

y, University of California, to provide a uniform means of naming and locating resources

in the UNIX' internet community with the aim of providing a more transparent and less

troublesome computing environment [TER84a]. The protocols and information structure

utilised by the BIND nameserver are specified in the RFC 882 [MOCK83a] and RFC

883 [MOCK83b] Request For Comment documents and the BIND software has been widely

adopted throughout the Arpanet to implement a large scale distributed name service. Due to

the size and age of the Arpanet, BIND is perhaps the most established and tested nameserver

available. In addition, several projects have considered its extension to support greater func-

tionality [DYER87].

The resources managed by BIND include named objects such as hosts, user mailboxes and

server ports occupying a common, hierarchical namespace. Users are provided with opera-

tions to interrogate the name service. These support the mapping of names to properties and

also the completion of partially specified names. Some versions of BIND support operations

for the remote maintenance of information. However, this is generally left as a local matter.

BIND does not support a dynamic, user level access control mechanism.

Responsibility for the management of the namespace is divided between a set of distributed

server entities called nameservers. These cooperate to resolve queries and provide the user

service. Like the Clearinghouse, BIND is therefore a distributed system.

The following sections describe specific aspects of the BIND nameserver in greater detail.

t UNIX is a trademark of Bell Laboratories.

- 13 -

Naming

The BIND nameserver maintains a hierarchical, tree structured name space. A node of the

tree represents a domain responsible for naming its immediate children (sub-domains). Leaf

nodes of the tree represent resources as described above. Each node is identified by a label

and the name of a domain is therefore the concatenation of the domain labels from the root

of the tree to the named domain. These labels are written from right to left and separated by

dots. Labels must be unique within the same domain ensuring that each name unambigu-

ously denotes just one node of the naming tree.

Unlike the Clearinghouse which supports a three level naming hierarchy, BIND allows its

naming tree to be of unlimited depth. This is shown in figure 1.2.

(Julian. AMIGO. CS Nott. GB)

Figure 1.2: An example BIND namespace.

Nodes of the naming tree are grouped into Zones representing administrative boundaries and

authorities for the namespace. Zones also affect the physical distribution of information as

will be described later.

-14-

(Steve. AMIGO. CS. Nott. GB)

BIND supports a basic name to resource mapping. In addition, some versions include the

functionality to complete partially specified narnzs and map resource information to names (

Inverse Queries) although this is not generally supported.

Resource records and Queries

The characteristics of a resource are represented by a set of resource records fulfilling the

role of Clearinghouse properties. A resource record has the following structure:

Owner Type Class Value

Figure 1.3: Structure of a BIND resource record

The owner specifies the name of the resource to which the record belongs. The type

specifies the generic type of information represented by the resource record. For example,

host address (A), mail destination (MD) or authoritative name server (NS). The class

specifies which of two formats the record takes. The possible formats are Arpa Internet (IN)

and Computer Science Network (CSNET). Class is a historical anomaly supporting the dif-

ferent information syntaxes of the two major networks served by BIND. The value

represents the value of this information type for this specific resource. In addition to the

above, each resource record may be associated with information specifying its length and

"time to live". The following example shows a set of resource records associated with a

specific resource from figure 1.2.

BIND resource records
CS. NOTT. GB MD IN CS. NOTT. GB
CS. NOTT. GB MF IN COSMOS. CS. NOTT. GB
CS. NOTT. GB A IN 10.1.0.32

The most advanced implementations of BIND support three types of query for the retrieval

of resource information.

"A standard query allows a user to specify the owner, type and class of some resource

records and returns those records matching the query. This corresponds to a name to

set of properties mapping.

-15-

An inverse query allows the user to specify a resource record and returns the names of
those resources containing the record. This corresponds to a property to name map-

ping, sometimes referred to as generic naming.

"A completion query allows a user to specify a partial domain name and returns the set

of resource records matching the completed name. Completion queries provide users

with the ability to search the name tree.

Some versions of BIND support operations facilitating the update of information. However,

most versions maintain information via local protocols accessing text files of resource

records at a given host. These files are loaded into a nameserver during initialisation.

Distributed operation

The realisation of the BIND name service is divided between two classes of entity:

"A nameserver is a database application at a host, responsible for a portion of the name

space.

"A resolver presents the BIND interface to a user and manages their dialogue with the

name service.

Thus, the complete BIND service is realised as a set of nameservers, collectively storing the

entire naming tree, and a set of resolvers representing BIND clients.

The name tree is divided into zones, distributed between nameservers so that each name

server is authoritative (responsible) for one or more zones. In addition, a zone can be held

by more than one nameserver.

There is one primary name server maintaining the master copy of each zone. All other

name servers containing the zone are secondary name servers for that zone (they may be

primary servers for other zones). The division between primary and secondary name servers

supports a single master update procedure for the information belonging to each zone.

Name servers are organised hierarchically so that a name server, not authoratitive for a

query, may use the hierarchy to return the name and address of another name server which

might be authoratitive. Thus, queries are navigated in a distributed fashion.

A resolver is responsible for managing the distributed navigation of a query until it reaches

an authoratitive nameserver. Resolvers manage navigation via several name servers which

either return the results of the query or the name of another nameserver. Thus nameservers

do not interact directly to resolve user queries. However, they might interact to circulate

updated zone information. The interaction between resolvers and nameservers is shown in

figure 1.4.

-16-

Local host Remote hose

1

Master Name I
Resolver files Server

2

1 queries
31

2 responses
: Foreign

3 maintenance " Name

queries
4 Server

4 maintenance
responses '

Figure 1.4: Interaction between BIND resolvers and nameservers.

1.23. The CSNET Nameserver

The CSNET has been developed to provide network services to research groups throughout

the USA. It allows users to connect to the Arpanet, Telenet or Phonenet networks and com-

municate via the US Department of Defence TCP and IP standard protocols [DDN-TCP].

The CSNET Nameserver has been developed at the university of Wisconsin to aid users in

locating resources and sending electronic mail via the CSNET [LAN83]. The use of dif-

ferent naming and addressing conventions in each of the CSNET's constituent networks is a

major hurdle to effective communication and the CSNET Nameserver is intended to free

users from the complexities of mail addressing under these different schemes.

The CSNET Nameserver provides a registry of information holding entries for all registered

CSNET users. These entries contain descriptions of user's names, addresses and a number

of descriptive keywords such as mail addresses, phone numbers and passwords. The registry

is stored on a single host computer and interacts with users via an agent program resident at

their local host. Thus, unlike both BIND and the Clearinghouse, the CSNET Nameserver is

a centralised system.

- 17 -

Each agent manages dialogue with the registry via a remote access protocol and provides the

user with additional functionality such as a local nickname space. Users may also interact

with the central registry via the electronic mail service. The centralised architecture of the

CSNET nameserver is shown in figure 1.5 below.

CSNET
Central Server

CHNET
Host

X
L

ost

Interfaces

Non Non
CSNET CSNET

Host Database Host

Figure 1.5: The centralised architecture of the CSNET Nameserver.

The following sections describe specific aspects of the CSNET Nameserver in greater detail

Naming

In order to identify a specific entry within a nameserver query, a user specifies a set of key-

words matching the information stored within the registry. This set of keywords is divided

into mandatory and optional keywords, interpreted in the following way:

" An entry matches the name if it contains all of the specified mandatory keywords.

" If more than one entry satisfies this criterion, the best match is the one also containing

the maximum number of optional keywords.

For example, the following list of keywords might name a registry entry:

mandatory: Benford Nottingham

optional: Computer Science

- 18 -

J

Keywords describe a flat namespace and sets of keywords may easily be ambiguous. How-

ever, the registry unambiguously denotes each entry by a unique identifier. Identifiers are

machine oriented and are not intended for human use.

Once a user has identified an entry via a set of keywords, they may bind a nickname to the

entry for use in future queries. Nicknames are local to each user and are maintained in tables

within their agents.

Fields, operations and access control

Each CSNET Nameserver entry is structured as a set of fields from the table below. Fields

are specified within the nameserver design and it is not possible for users to define new types

of fields.

Nameserver entry fields

UNIQUE ID Key uniquely identifying the entry
ACCOUNT CSNET account name for entry (userhost. site)
MBOX CSNET electronic mail address of entry owner
CSNPASS Password for changes to entry from other than home host
FULL NAME Full name of entry owner
ADDRESS Post Office address of entry owner
PHONE Phone numbers of entry owner
MISC Miscellaneous information about the entry owner

A user may read and manipulate these fields by the following operations, providing general

read and update functionality for registry entries.

Major nameserver operations
WHOIS Initiate nameserver query
REGISTER Add a new entry
UMREG Remove an entry
FETCH Return a copy of an entry
UPDATE Change a database entry

All entries within the registry are publically available for reading. However, there is a lim-

ited access control mechanism affecting the update of entries. The CSNET Nameserver

recognises three classes of entity for update purposes: The owner of an entry may register,

unregister or update the entry, the host administrator may maintain all entries registered for

a specific host and the site administrator may maintain all entries registered for a site.

-19-

J

1.2.4. Summary of existing nameservers

The previous sections have described three nameservers responsible for the naming and

location of resources in a distributed environment. This section identifies the salient features

of these systems and concludes by considering the shortcomings rendering them unsuitable

for the expanding communications environment of the future.

1.2.4.1. Salient features

The basic function of a nameserver is to map the names of objects or resources onto sets of

their properties. The following features are common among existing nameservers.

0 Objects of different types (e. g. users and hosts) are named under the same convention

and therefore inhabit the same namespace.

0 The namespace is often structured to facilitate the distribution and management of

naming. A tree structured namespace is the most common.

0 Each object has a unique and unambiguous distinguished name. In addition, an object

may often have a number of alternative names called aliases.

0 It is often possible to map from the properties of objects to their names (this is called

generic naming).

" Several systems allow the on-line update of information and a few support this with an

access control mechanism.

Both the Clearinghouse and Bind are distributed nameservers. The following are notable

features of their distributed operation.

" Responsibility for information is divided between a set of servers.

" Servers are arranged in a hierarchical fashion reflecting the namespace.

" Servers exhibit a high degree of autonomy for the maintenance of information.

" Servers may supply clients with hints as to which other servers can perform operations.

Servers may also interact directly for administrative purposes.

1.2.4.2. Limitations

The following paragraphs describe areas in which existing nameservers are limited. Many

of these limitations, particularly those concerning information management, become critical

as the communications environment expands.

-20-

Lack of scalability

Those nameservers relying on flat or limited depth hierarchical namespaces are unlikely to

cope with the complex global naming environment of the future. There is an argument that

a three level hierarchy is sufficient to unambiguously name communication entities on a glo-

bal scale. However, a successful naming scheme should facilitate the natural management

of names. In particular, it should support naming based on organisational structure. A three

level hierarchy, like many other fixed schemes, is not flexible enough to describe many such

structures and will therefore result in unnatural naming conventions.

Lack of interconnection

Communication between entities from different environments might require the interconnec-

tion of different types of nameserver. Currently, there is no interconnection between exist-

ing nameservers. Strictly speaking, this is not a criticism of any particular existing system.

However, the current situation indicates a clear need for interconnection to achieve a global

Directory service. This is the intention of the X. 500 standard.

Lack of information management facilitates

Existing systems generally lack mechanisms supporting the management of information. In

particular, there is a lack of support for sophisticated access control and data integrity

mechanisms.

Lack of sophisticated access control

Many existing nameservers do not support an access control mechanism. Those

that do implement a fairly coarse system of control. A sophisticated access control

mechanism is required allowing users to dynamically define flexible access con-

trols.

Lack of data integrity control

None of the systems described above support the on-line definition of new classes

of property or resource record. Furthermore, there are no mechanisms allowing

users to define constraints on the structure and contents of information thus facili-

tating its consistent update. Without these integrity mechanisms, successful infor-

mation management on a global scale is virtually impossible.

-21-

Lack of system management facilities

Existing nameservers provide little support for nameserver reconfiguration as the communi-

cations environment changes. For example, tools are needed to facilitate the introduction

and removal of server entities from the distributed system and to manage replicated informa-

tion. In particular, both BIND and the Clearinghouse specify mechanisms for distributed

query navigation. However, there is little support for the management of the knowledge

information describing the responsibilities of server entities. This information is vital to dis-

tributed navigation and requires correct maintenance as the configuration of sernvers changes.

It is clear from the above that existing nameservers are especially limited in the areas of

information and system management. Consequently, this research will consider both the

management of communication information and the management of the Directory service

itself in detail.

1.3. An introduction to naming

The traditional nameserver role of naming resources in a distributed environment is central

to the operation of the Directory service. The Directory provides information about named

communication entities and resources. Names provide the handle by which communication

information is obtained and communication is possible provided communicating partners

know each others names.

Naming has been studied within the general context of filestores and operating systems and a

great deal of work exists describing the principles of naming objects within these environ-

ments [TER84b, DEM82]. Recent years have seen many attempts to solve the problem of

distributed naming, including those forming the basis for the nameservers described in the

previous section [WHIT84, SHOC78, SIRB84, SOLL87, MOCK84].

This section identi fies those naming issues pertinent to Directory services and outlines a gen-

eral approach to naming communication entities, based on a global, hierarchical namespace.

In particular, it considers support for human oriented naming and the global management of

names. However, before discussing different naming mechanisms, it is first necessary to

define what we mean by a name.

-22-

1.3.1. What is a name?

The following paragraphs give a number of different definitions of the term name.

"A name is a linguistic object that singles out a particular entity from among a collec-

tion of entities [WHIT84].

"A name is a [usually human readable] symbol identifying some resource or set of

resources [SHOC78].

"A name is a linguistic object which singles out a particular object from among all

other objects. A name must be unambiguous (i. e. denote just one object) but need not

be unique (the only name that unambiguously denotes the object) [CCITT-XDS86].

"A name is a binding of a higher level semantic construct to a lower level semantic con-

struct [SALT78].

"A name is an object that can be associated with another object and has an equality

operation that is reflexive, transitive and symmetric. It has two uses. First, it may pro-

vide access to the object with which it has been associated. Second, it may act as a

place holder for the object with which it has been associated [SOLL85].

Each of the above definitions describes a particular property of names. It is clear from the

first three definitions that the basic function of a name is to identify an object in human

terms so that the name can be used to reference the object from among the set of all objects.

This property is summarised by saying that a name is unambiguous.

The last two definitions describe the idea of a mapping or binding between names and

objects and introduce the concept of different semantic levels of binding. Shoch illustrates

this concept by considering the differences between routes, addresses and names. A route

indicates how to get to an object. An address indicates the location of an object in some sys-

tem but does not tell us how to reach the object. The address may be mapped onto several

routes and can be seen as being at a higher (more abstract) semantic level. A name is at a

higher level still because it is used to identify the object without describing its location.

Names may be mapped onto addresses.

The separation of names from addresses and routes provides the user of a name with an

important level of indirection whereby objects can change positions (addresses) tran-

sparently from the user point of view. This is known as location transparency and is a use-

ful and important property of naming.

This thesis will use the term name to refer to a linguistic object, identifying an entity in an

unambiguous, but not necessarily unique, manner. In addition, names should exist at a

higher semantic level than addresses and routes.

-23-

The following sections describe further requirements of names which may be used for the

comparison of different naming schemes.

1.3.2. Requirements of naming

Names should meet several requirements for use within computer based communication.

Firstly, they should be user friendly so that humans can use and remember them. Secondly,

they should be suitable for manipulation by computers, mapping them onto sets of objects.

Several authors have identified important aspects of human naming including White and

Sohns who separately describe the following particularly relevant issues.

" Names must be shareable between communicating partners.

" Names must reflect the naming patterns of different individuals and groups.

" There should be a multiplicity of names for an object. This means than an object may

have several names valid within different contexts.

" The name of an object should have some human meaning. This means that the name

should reflect relevant properties of the object in order to facilitate understanding and

memory.

There has been much discussion of the design of naming mechanisms facilitating user

friendly naming. It has been argued that names should be designed to make them instantly

guessable by human beings. For example, White describes the following properties of user

friendliness [WHIT84]:

"A human should be able to guess an entities name from the information he or

she naturally possesses. "

"When an entity's name is guessed incorrectly the environment should realise

this rather than misinterpreting the guess as the name of another entity. "

In addition, it is important to realise the role of dialogue between entities (humans or com-

puters) in establishing names for objects. The use of dialogue, gradually establishing a name

between a human and the naming system, will be crucial to the realisation of user friendly

naming. Dialogue might allow the user to search the name space and allow the system to

offer choices and ask questions to resolve ambiguities.

133. Graphical and hierarchical naming models

This section outlines the design of several distributed naming mechanisms attempting to

meet the above requirements.

-24-

The objects to be named within a distributed system can be viewed as the vertices of a graph
[OPP81]. There are several possible methods of labeling this graph in order to name these

vertices.

One could assign a unique label to each vertex thus generating a flat or unstructured

namespace. In a flat namespace, the name of each object is the same whatever the user's

viewpoint. This is known as absolute naming.

Alternatively, one could assign a label to each arc joining two vertices. The name of an

object, relative to another object, can be constructed by concatenating the labels on the

sequence of arcs joining the two vertices. In this scheme, each name starts at an initial node

defining a naming context. This is known as relative naming because the names of objects

vary, relative to the initial context chosen. Furthermore, each object may have many dif-

ferent names within each context.

Absolute and relative naming are shown in figure 1.6 below.

Absolute Naming Relative Naming

®L1
v2 L2 vl

L2
v2

L1
5

v3 L3 v4 L4 v5 L5 v3 v4
L9

V5

L3 '

L6

L7

vS L6 v7 L7 v v7

Vi = vertex i
Li=label i

Figure 1.6: Absolute and relative naming

Consider the vertex vl in figure 1.6. Under the absolute naming scheme it has the dis-

tinguished name Ll but under the relative naming scheme it may have several names such

as L7, L8 or L6, L3, Ll from v7 and LS, L2 from vS.

-25-

Absolute naming has the advantage of simplicity. The naming convention is easily under-

stood and provides globally unique names for those applications requiring them. However, a
flat namespace becomes difficult to search and manage as the number of named objects

increases. It is particularly difficult to assign user friendly names, not conflicting with other

names, when the namespace is large.

Relative naming eases the problem of assigning globally unique names in a large namespace

at the cost of a more complex model. Applications searching a relative name space may

encounter many difficult problems such as naming loops.

Both the absolute and relative naming conventions have advantages and disadvantages. In

general, neither is obviously superior to the other.

A third possibility, hierarchical naming, combines relative and absolute naming to produce

a scheme which is simple and also facilitates the mangement of a large namespace.

Hierarchical naming schemes represent objects as the vertices of a tree, usually called the

naming tree. The arcs joining parent vertices to their children are labelled with the relative

names of the children. Consequently, a globally unique distinguished name may be formed

by concatenating the sequence of labels on the path from the root of the tree to that node. A

typical name tree is shown in figure 1.7.

-26-

vi
L L2

V2 V3

L3 L4
5

V4 V5 V6

7
L8

V7 V8 V9

Vi = vertex i
Li = label i

Figure 1.7: A typical name tree

Consider the vertex v9 in figure 1.7. It has the distinguished name L2, LS, L8. Similarly the

vertex W has the distinguished name Ll, L3.

Hierarchical naming has the following advantages:

0 Objects have absolute distinguished names and can therefore be unambiguously

identified.

0 The structure of the name space facilitates the management of names and the assign-

went of new names, even when the name space is very large.

0 The naming tree can still support relative naming from some nodes to other nodes (e. g.

from parents to children).

The hierarchy of the naming tree reflects the hierarchical relationships between many

objects (e. g. the relationship between a person, their department and the organisation to

which they belong).

This last point is perhaps the most important. The key to successful hierarchical naming is

its reflection of real world naming conventions. Real world entities generally belong to

organisational structures based on a hierarchy. For example, people within a group, groups

-27-

within a department, departments within a division and divisions within a company. This

point is eloquently made by Pirsig in Zen and the Art of Motorcycle Maintenance [PIR74]:

of... This structure of concepts is formally called a hierarchy and since ancient

times has been a structure for all Western knowledge. Kingdoms, empires,

churches, armies have all been structured into hierarchies. Modem businesses

are so structured. "

It should be noted that the hierarchy does not always perfectly fit the real world. For exam-

ple, a person may belong to two organisations. However, in the majority of cases, it

represents a natural and manageable way of naming. Furthermore, limited support for non-

hierarchical naming may be achieved by aliasing mechanisms as described later.

In conclusion, hierarchical naming seems the most suitable of the schemes described above

for naming communication entities in a globally distributed environment. This is borne out

by its use within several existing nameservers (i. e. the Clearinghouse and BIND) and its

inclusion within the X. 500 Directory standard. This thesis will also adopt a hierarchical

namespace for naming communication entities. This is formally described within chapter 3.

1.4. The ISO/CCITT X. 500 standard for Directory services

This section presents an overview of the first joint ISO/CCITT X. 500 standard for Directory

services, due to be ratified in 1988.

1.4.1. A brief history

The urgent need for a global Directory service has been recognised for some time. As the

ISO's Open Systems Interconnection (OSI) model for computer networks [ISO-OSI84] is

widely adopted in the near future along with various communications standards, such as

X. 400 for electronic mail [CCITT-X400], this need will become critical.

The general view is that the global Directory will be realised by an interconnection of Direc-

tory services provided by a combination of the national PTTs and private organisations.

Both the International Standards Organisation (ISO) and the International Telegraph and

Telephone Consultative Committee (CCITT) recognised the need for an international Direc-

tory standard to specify this interconnection and initiated standardisation work in the early

1980s. The early work of these committees was strongly influenced by ideas emerging from

the European Computer Manufacturers Association (ECMA) [ECMA-TR32] and the Inter-

national Federation for Information Processing - working group 6. S (IFIP 6.5) [IFIP-DS83]

-28-

who, in turn, were influenced by existing systems such as the Clearinghouse. Consequently,

early standards output resembled the Clearinghouse model and the output of the ISO and
CCITT were similar. As a result, the ISO and CCITT merged their work in 1986 [CCITT-

XDS86] and have cooperated since that date to produce a joint standard. This standard is

called X. 500.

Due to the demanding timescale and the complexity of many directory issues, it appears that

the 1988 version of X. 500 will specify a fairly simple interconnection supporting the

retrieval and limited modification of directory information. Issues concerning the manage-

ment of information and the management of the service itself will be left open for the next

study period.

1.4.2. The position of X. 500 within OSI

Section 1.1.1 described the future integration of many different services to provide a general

communications framework. The Directory service will play a vital role in this integration

and it is worth outlining its position within the OSI model and its relationship to other ser-

vices.

The Directory service resides within the application layer (layer 7) of the OSI model and

may utilise the supporting OSI stack for its internal operation and interaction with other ser-

vices. More specifically, the distributed operation of the Directory may utilise the Remote

Operations Service [ISO-ROS87, CCITT-ROS86] and a number of presentation layer stan-

dards such as ASN. 1 [ISO-ASN86]. In addition, the Directory may need to interact with

other future application services such as an authentication service [MILL87, BRY88].

The interaction of the Directory with other services has been studied by a number of groups,

including the ISO, who are producing a general model for Distributed Office

Applications [ISO-DOA88], and the European Community COST 11-TER funded AMIGO

project who have produced a distributed group communication model [BOG88]. These

models portray the Directory as a supporting service for a number of other services, interact-

ing on a client-server basis.

1.43. Overview of X. 500

The following pages summarise the major features of the X. 500 standard in its present form.

It should be noted that, although the standard appears to have achieved a stable state, it may

be subject to future revision.

The terms Directory or Directory service refer to the X. 500 Directory service for the

remainder of this section.

-29-

Scope of X. 500

The X. 500 standard is described within an Open Systems environment allowing the inter-

connection of systems:

0 From different manufacturers,

" Under different managements,

" Of different levels of complexity,

" Of different ages.

The Directory service is intended as an information service for OSI applications and is not a

general purpose database system. The Directory has different operational requirements from

such systems. For example, the rate of updates to information is expected to be far lower

than the rate of retrievals.

For reasons of scale and management, the Directory is a distributed service provided by a

number of physically separated application entities called Directory System Agents, each of

which knows a part of the total directory information. However, from the user point of

view, the logical results of directory operations are usually independent of their location.

The 1988 X. 500 Directory service supports the following basic functionality:

" Read functionality. This includes the name to attributes mapping.

" Search functionality. This involves an attributes to set of names mapping.

" Modify functionality. This allows the limited update of information.

The X. 500 standard is divided into several sections describing its information model,

protocols and distributed operations as well several other issues. These are outlined in the

following sections.

Information model

The directory information model [CCITT-X501] specifies the abstract structure of directory

information. The Directory stores information about communication entities which are the

humans, groups and application entities taking part in communication. Each communication

entity is represented by an entry containing the information known about the entity. The set

of all entries defines the total information stored by the Directory and is called the Directory

Information Base (DIB).

Each entry consists of a set of attributes representing specific known facts about the entity.

For example, an attribute might represent a mail address, a member of a distribution list or a

textual description. Each attribute has an attribute type, indicating the type of information

represented, and a value, containing the information. An entry may contain more than one

-30-

attribute of a given type. Attribute types are globally unique, being represented by ASN. 1

object identifiers. * A number of standard attribute types are defined in [CCITT-X520].

Entries are grouped into object classes specifying generic groupings based on the type of

communication entity they represent (e. g. organisational person or group of names). Each

entry contains a special attribute of type object class indicating to which object class the

entry belongs. A number of standard object classes are defined in [CCITT-X521].

Figure 1.8 shows an example entry representing the organisational person Steve Benford.

Attribute type Attribute value
common name Steve Benford
surname Ben-ford

object class organisational person
telephone number +44 602 506101 x3595
user password bananas
title research student

Figure 1.8: Example directory entry

The general structure of entries is shown as part of figure 1.9 below.

Naming

The Directory service employs a hierarchical naming scheme for entries. Entries are

arranged into a tree structure reflecting the organisational relationships between the com-

munication entities they represent. This tree structure is called the Directory Information

Tree (DIT) and is responsible for determining the Directory naming policy.

Each vertex of the DIT is an entry, labeled with a relative distinguished name unambigu-

ously identifying it among its siblings. The relative distinguished name (RDN) is composed

of a subset of the entry's attributes called distinguished attributes. An entry's RDN is

assigned by its naming authority, represented by its parent entry in the DIT. Thus, the

responsibility for managing names is distributed throughout the DIT.

Each entry has a globally unique and unambiguous distinguished name, composed of the

ordered sequence of RDNs encountered on the path from the root of the DIT to the entry.

Distinguished names provide the basic handle on entries and their contents.

*Character strings are usually used in documentation for reasons of legibility.

-31 -

The relationship between the DIT and entries is shown in figure 1.9 and the relationship
between the DIT, relative distinguished names and distinguished names is shown in figure

1.10.

DIT

------------------- ------------ Entry

00

----------- ----------------------

Type Value(s)

Attribute

Figure 1.9: General structure of the DIT and entries

Relative distinguished names, and hence distinguished names, are generally chosen to be

stable over long periods of time and also to be user friendly where possible. This requires the

use of human guessable distinguished attributes.

A distinguished name need not be the only name for an entry. An alternative name, or alias,

may be supported by the use of special pointer entries called alias entries. Alias entries do

not contain any attributes other then their relative distinguished names and may only be leaf

entries in the DIT.

A directory user names an entry by supplying an ordered set of purported attributes. These

are mapped into the desired entry by the process of name verification, performing a distri-

buted tree-walk through the DIT. Name verification provides the basic directory name to

attribute mapping and indicates whether a name is valid or erroneous. A single name

-32-

verification may dereference several aliases during its tree walk. Dereferencing replaces the

attributes of the purported name matching an alias with those forming the name of the

aliased entry.

DIT RDN
Distinguished

Name

c=cB c=GB

0 O=BT C=GB, O=BT

C=GB, O=BT,
OU=Sales

O OU=Sales,
L--Ipswich

I=Ipswich

C=GB, O=BT

OU=Sales,
CN=Smith

L--Ipswich,

C=Smith

Figure 1.10: The relationship between the DIT, RDNs and DNs

The Abstract Service Definition

The directory Abstract Service Definition [CCITT-X5111 specifies the user functionality of

the Directory service in terms of a set of abstract ports and operations. The operations form

the Directory Access Protocol (DAP) and provide the user with the functionality to retrieve,

search and modify information. The ports and operations defined by the Abstract Service

Definition are listed below and briefly described by the following paragraphs.

-33-

Abstract ports and operations
port operation

Read Read
Compare
Abandon

Search List
Search

Modify Modify Entry
Add Entry
Remove Entry
Modify RDN

General read functionality is achieved via the Read port, supporting three operations.

0 The Read operation returns the values of specified attributes from a single named

entry.

0 The Compare operation returns an indication of whether a named entry contains a

specified attribute type/value pair.

. The Abandon operation allows the termination of those operations interrogating the

Directory.

General browsing of directory information is achieved via the Search port, supporting two

operations.

0 The List operation returns the names of the children of a named entry.

0 The Search operation supports the searching of DIT subtrees for entries matching

specific patterns of attributes. The user names a subtree of the DIT, specifies some tar-

get attribute types and formulates an expression combining a number of attributes

using the logical and, or and not operators. This expression is called a filter. The

operation returns the values of the target attributes from those entries in the named

subtree, matching the filter.

The limited modification of information is achieved via the Modify port.

0 The Modify Entry operation adds, replaces or removes a number of attributes within a

named entry.

0 The Add Entry operation creates a new leaf entry within the DIT.

0 The Remove Entry operation deletes a leaf entry from the DIT.

0 The Modify Relative Distinguished Name operation alters the RDN of a named leaf

entry.

-34-

It is important to note that the latter three operations only apply to entries which will remain

as DIT leaves. They do not provide a general facility for building and manipulating the DIT.

Schemas

The structure of the Directory Information Base is governed by a set of rules called sche-

mas. These are integrity constraints ensuring that directory information conforms to well

defined formats. Schemas specify rules for the following:

0 The structure of names and hence the DIT.

" The contents of entries in terms of the attributes they contain.

" Permissible attribute types.

" The syntaxes of attribute values and rules for comparing them.

Each attribute in the Directory is governed by a rule assigning it a unique Object Identifier

and specifying its syntax. In addition, this rule states the mechanism by which attributes of

this type are compared with one another.

Each entry in the DIT belongs to an object class, governed by a schema. This schema

specifies mandatory and optional attributes for entries of this class. Schemas may be

nested, allowing more complex object classes to be constructed from a few basic ones.

Naming rules govern which object classes may be children of which others in the DIT and

therefore determine possible name forms.

Standard attribute types and object classes are defined in [CCITT-X520] and [CCITT-

X5211 respectively and any directory operation attempting to violate these rules will fail.

The relationship between schemas and the directory information framework is shown in

figure 1.11.

-35-

Schemas rules for - DIT elements

DIT Structure go. DIT

Object Class Entries

(AUn9e Type Attributes

Attribute Syntax Values

Figure 1.11: The relationship between schemas and the DIT

Functional model and distributed operation

As mentioned above, the global Directory will be a distributed service. The procedures for

its distributed operation are specified in [CCM-X518].

The information constituting the Directory Information Base will be shared between a

number of application entities called Directory System Agents (DSAs). These cooperate to

perform operations, with each DSA knowing a fraction of the total directory information.

DSAs can be viewed as a combination of local database functionality and remote interface to

users and other DSAs. DSAs may cooperate in order to execute operations. Cooperation

may take several forms and requires the navigation of operations through the distributed sys-

tem. The set of all DSAs forms the Directory system.

A user accesses the Directory via an application entity called a Directory User Agent (DUA).

DUAs manage associations with DSAs and present various interfaces to directory users

(human or application). The provision of the Directory service by DUA and DSA functional

entities is shown in figure 1.12.

-36-

Figure 1.12: The Directory provided by cooperating DUAs and DSAs

Chaining

DSA

DUA DSA

DSA

SA referralMulticasting

DSA

DUA DSA

DSA

Figure 1.13: Different modes of DSA interaction

-37-

A user requests operations via their DUA. These operations are navigated through the
Directory system until a set of DSAs is found which can perform them and return the results

to the user.

DSAs may utilise several modes of interaction. These are chaining, referrals (DUA or DSA

based) and multicasting as shown by figure 1.13

Chaining occurs when DSAs recursively pass the operation to other DSAs which may be

able to satisfy the request. The process of locating these responsible DSAs is called naviga-

tion. Once a satisfactory DSA is found, the operation is performed and the results are

returned along the chain.

DUA referral involves a DUA contacting a sequence of DSAs to navigate the operation. The

result of each contact is either the results and errors associated with the operation or the

name and location of another DSA to be contacted (a referral).

DSA referral is similar to DUA referral except that a single DSA is responsible for handling

referrals instead of a DUA. DSA interactions may also involve multicasting where a query

is decomposed into subqueries which are transmitted to several DSAs simultaneously. The

results are then collected and merged before being returned to the user.

The standard allows DSAs to choose among these methods of interaction depending on con-

ditions, their capabilities and policies.

A detailed description of the distributed operation of the Directory can be found in part 4 of

the X. 500 standard [CCITT-X518].

1.4.4. Issues requiring further study

The Directory service, specified by the 1988 X. 500 standard and outlined in the preceding

section, offers what is fundamentally a read only service with some limited support for the

update of information. Many important issues are left unresolved by the 1988 version of

X. 500, particularly those concerning information and system management. These will

become critical as a global Directory service emerges within the next few years.

The following is a non-exhaustive list of the limitations of the 1988 X. 500 Directory stan-

dard.

" X. 500 does not allow the arbitrary creation and removal of non-leaf entries in the DIT.

Thus, the general construction and manipulation of the DIT is not possible via the

Directory Access Protocol and must be achieved by local methods.

" X. 500 does not support a universal access control mechanism. Instead, access control

is left as a local matter although it is briefly discussed in an annex to part 2 [CCITT-

X501] of the standard. The lack of support for access controls within the Directory

-38-

service represents a severe limitation on information management.

" X. 500 does not allow the dynamic definition and management of attribute types, nam-
ing rules and schemas as part of the Directory Access Protocol. Instead, new schemas

are defined via the standardisation process or during the specification of new applica-

tions. This lack of support for dynamic typing is another severe constraint on informa-

tion management.

" Although part 4 of the standard specifies a knowledge model describing the responsi-
bilities of DSAs, there is no support for the management of knowledge as the

configuration of the Directory system alters. Knowledge management is a vital aspect

of a globally distributed Directory service.

0 X. 500 does not support the replication of information between DSAs and the mainte-

nance of replicated information. Instead, replication is left as a local matter. Replica-

tion is vital for improving the robustness and efficiency of the Directory service and is

likely to require some standardised support.

It should be noted that some of these issues were discussed within earlier versions of the

standard but were dropped, presumably due to the pressing timescale. It is therefore likely

that they may reappear within the next study period.

1.5. The relationship of this thesis to the X. 500 standard

This thesis describes the specification and implementation of a distributed Directory service

with particular emphasis on the issues of information and system management. This work

has occurred in parallel with the development of the X. 500 standard in the years 1985-88.

However, this research has a different emphasis to that of X. 500. In particular, the following

work is often oriented towards supporting non-standardised and human Directory usage in

contrast to X. 500 which primarily supports other communication standards such as X. 400.

Furthermore, this thesis considers the Directory in terms of a distributed database. This

approach differs from that of X. 500 which is more concerned with protocols for communica-

tion.

X. 500 will form an international standard moulding the shape of future work in this area. As

such, it has been sensible for this research to track the developing standard and to adopt its

basic ideas where possible, thus making the results of this thesis directly applicable to the

X. 500 model. This policy is chosen to increase the relevance of this work to future Direc-

tory implementations. In particular, this thesis uses the following X. 500 concepts:

-39-

" The basic directory information model (i. e. the DIT, entries, attributes and names).

" Those abstract operations reading and searching information.

" The functional model of DUAs and cooperating DSAs.

In addition, the access control model of chapter 4 is based on a model proposed within an

earlier version of X. 500 [CCITT-XDS86] which is extended and completed. This work
includes several contributions to the ISO/CCITT Egham meeting made by the author in

cooperation with Alfons Wanting from the GMD, West Germany [BENF86a, BENF86b].

Finally, it should be noted that tracking X. 500 has meant following a moving target. Conse-

quently, the basic models used by this thesis are not identical to those within X. 500 and

often use their own terminology to avoid confusion. Having noted its use of X. 500 for basic

input, the reader is advised to treat this thesis as self-contained. Its conclusions may then be

independently applied to the X. 500 standard.

This introductory chapter has demonstrated the need for a global Directory service to sup-

port computer based communication and has outlined the roles of the Directory as both

information provider and information manager. It has also reviewed the development of

Directory services, starting with existing nameservers, and culminating with the proposed

ISO/CCITT X. 500 Directory standard.

The following chapter begins the specification process by proposing a directory architecture

providing a framework for the remainder of the thesis.

-40-

Chapter 2

A Layered Directory Architecture

In order to systematically attack the task of specifying and implementing a distributed Direc-

tory service, a conceptual framework is required upon which later chapters can build. This

chapter develops the necessary framework which is then used to structure the remainder of

this thesis. Sections 2.1 to 2.3 describe the framework in terms of a layered directory archi-

tecture. Section 2.4 describes the structure of this thesis in terms of the layered architecture

and outlines the major issues relevant to each of the following chapters.

The Directory service can be viewed as a specialised distributed database described in terms

of a layered architecture. The role of the directory architecture is to provide a framework

describing general directory principles independently of specific implementations and to

support recognised database ideals such as data transparency, location transparency, repli-

cation transparency and nodal autonomy as described below.

2.1. Classifying the Directory as a distributed database

The following layered directory architecture has been derived from the ANSI/SPARC archi-

tecture describing a general framework for centralised database systems [ANSI75] and the

PRECI* architecture describing general distributed database systems [DEEN82]. The pro-

posed architecture falls somewhere between the two in complexity and is specifically

oriented towards describing the Directory service.

C. J. Date loosely defines a distributed database by the following:

"A distributed database is a database which is not stored in its entirety at a single

physical location, but rather is spread across a network of locations that are geo-

graphically dispersed and connected via communication links" [DATE77].

Distributed databases may be classified by a number of characteristics of which the Direc-

tory service exhibits the following:

" The Directory is a multi-level distributed database, meaning that it represents a logical

collection of data from a number of inter-linked databases resident at a number of

nodes in a computer network. Each node of a multi-level database has an independent

-41-

control system, in contrast to a single-level database utilising a single, global control
system.

The Directory is a canonical distributed database, meaning that it includes a unified
global information model (canonical information model) capable of supporting many
external user views of directory information. This canonical information model may be

mapped into different internal models within individual nodal sub-databases.

" The Directory is a decentralised distributed database, meaning that each node holds a
copy of the control information governing its interaction with other nodes. This is in

contrast to centralised systems which are controlled by a single node.

The classification of the Directory as multi-level, canonical and. decentralised results from

the characteristics of the Open Systems environment within which it operates and the many

applications it must support.

" The Open Systems environment means that the Directory service is provided by an
interconnection of cooperating, autonomous organisational Directories. Control is

therefore multi-level and distributed.

" On the other hand, users of the Directory may need to access information from any-

where within the distributed system and different applications will see the same infor-

mation framework independently of their location. Thus, the Directory supports a

canonical information model.

2.2. Overview of the layered directory architecture

The directory architecture is divided into four distinct layers describing the structure of

information at different levels of abstraction ranging from the highly abstract user view to

the more concrete local storage view. Each layer concerns different issues and is subject to

different requirements, with user functionality issues belonging to the upper layers and

implementation and distribution issues belonging to the lower layers.

Before discussing the nature of each layer in greater detail, it is necessary to describe some

important properties of general distributed databases, also relevant to the directory architec-

ture.

-42-

2.2.1. Requirements of the directory architecture

Data independence

Data independence requires that the user view of directory information is immune to

changes in the underlying storage structures and access strategies of supporting software.
This means that users should have an abstract view of information, independent of specific
implementation tools, and that it should be possible to alter storage mechanisms without
having to rewrite applications accessing the Directory.

Location transparency

An extension to the concept of data independence is that of location transparency requiring

that users are unaware of the physical location of information within the distributed system

and are thus shielded from changes to network topology. This is particularly important in an

Open Systems environment where no one person has control over the configuration of the

network and the partitioning of information between nodes.

Replication transparency

The distributed Directory will store information at a number of nodes and, in the interests of

speed and robustness, some information may be stored at more than one node. This is

referred to as the replication of information. Replication transparency requires that a user

sees information as if there were only one copy within the entire Directory and is not con-

cerned with problems of updating and accessing multiple copies.

The combined effect of data independence, location transparency and replication tran-

sparency is that, in general, the Directory should appear to the user as if it were an abstract

information system at a single, virtual host.

Nodal autonomy

Nodal autonomy requires that each node of the distributed system is responsible for its own

local information and that overall control of the system is distributed between its nodes.

Nodal autonomy generally increases the robustness of a distributed system by removing the

dependency on a single, centralised control node.

The following sections discuss the purpose of each layer of the directory architecture.

Layers are specified in such a way as to meet the above requirements. The overall architec-

ture is shown in figure 2.1.

-43-

Users

External External
Model Model

External Layer

Global Conceptual
7

Global Conceptual
Model Layer

Local Local I"oc_
Conceptual Conceptual Conceptual

Local Conceptual

Model Model Model
Layer

Local Local Local
Internal Internal Internal

Local Internal

Model Model Model
Layer

Figure 2.1: The layered architecture of the Directory service

2.2.2. The external layer

The external layer is the one closest to the directory users and concerns the different ways in

which specific individuals and applications view directory information. Each user may only

be interested in a subset of the total information available and may describe this information

using their own specific terms of reference. Furthermore, the way in which users perceive

information may be highly abstract when compared to the structure of physical storage.

-44-

It is important to note that this thesis applies the term user to both the humans and applica-

tions accessing the Directory service. For example, a directory user could be the human

Steve Benford or alternatively, could be an X. 400 MTA using the Directory to route a mes-

sage on behalf of Steve Benford.

In general, a number of users may share a view of the Directory defining the structure of

their information and their actions on this information in their own terms. Such a view is

called an external model. The external layer may contain many different external models

corresponding to different types of users. For example, a distribution list application such as

the AMIGO Distribution List service [BENF87] might define an external model in terms of

entities called distribution lists and actions such as add member and create list. On the other

hand, a mail application might define an external model in terms such as mail user and name

to address mapping. Furthermore, each individual user may see many external models

depending upon the context in which they use the Directory.

The structure of information in each external model is specified by its external schema

representing information in a manner supporting data independence and location/replication

transparency. In general, the term model refers to a total view of information and actions

whereas the term schema only refers to the meta-information defining the structure of infor-

mation within a particular modeL

2.23. The global conceptual layer

The global conceptual layer supports a single global conceptual model. This is a description

of the entire information content of the Directory in an abstract form independent of external

models, the distribution of the system and underlying storage and access methods. The glo-

bal conceptual model is supposed to represent directory information "as it really is". The

structure of this information is specified by the global conceptual schema supporting data

independence and location/replication transparency.

In addition to the global conceptual schema, the global conceptual model includes authorisa-

tion checks, access policies and integrity constraints on information. It is these rules and

constraints that define each user's view of information and therefore partially specify their

external model. Access control mechanisms and integrity constraints are an important part

of any large database system and will play a major role in the operation of the global Direc-

tory service.

The design of the global conceptual model requires modelling the structure and naming of

directory information as well as specifying data access and integrity controls.

-45-

2.2.4. The local conceptual layer

The Directory service is a distributed database and, in reality, the information from the glo-
bal conceptual layer is distributed between a number of distinct database nodes. Each node

of the distributed Directory supports a local conceptual model describing the information

stored and managed by that node as well as information concerning the distribution of the

system and the names and responsibilities of other nodes.

Each local conceptual model still views information in the abstract form defined by the glo-
bal conceptual model. However, only a subset of the entire information is present and the

model includes additional knowledge information describing the configuration of the system

and the partitioning of directory information. This knowledge is used during the navigation

of operations to a node or set of nodes able to execute them.

At this level, both location and replication transparency are lost due to the presence of

knowledge information. However, the abstract representation of information means that

data independence is still preserved.

The local conceptual layer must support nodal autonomy. The modelling of the distributed

system should therefore allow decentralised operation.

The design of the local conceptual model requires the partitioning of directory information

and the specification of nodal interactions based on local knowledge. Mechanisms for

reconfiguring the nodes of the system and managing the subsequent changes to knowledge

must also be considered.

2.2.5. The local internal layer

Each node of the distributed Directory must store information and knowledge within some

storage system. The choice of local storage systems belongs to local implementors and each

node may support its own storage model. For example, relational [CODD70], IMS

[DATE77], or CODASYL [CODA71] databases might be chosen as storage systems, each

supporting its own view of the stored information. The internal layer is therefore the level at

which data independence is finally lost. The storage system's view of directory information

and knowledge defines the local internal model for each node.

The design of the local internal layer requires the choice of suitable storage systems and the

mapping of the local conceptual model to the local internal model at each node.

-46-

2.3. Relationship to the functional model

This section explores the relationship between the layered directory architecture, providing a
number of models for directory information, and the directory functional model, describing

the entities providing the Directory service and the various ways in which they interact.

This thesis assumes the functional model specified by X. 500 and reviewed by section 1.4.3.

This model defines two classes of entity responsible for implementing the Directory service.

"A Directory System Agent (DSA) is responsible for maintaining a local portion of the

total directory information and interacting with other DSAs to resolve queries. The set

of all DSAs forms the Directory system and collectively stores and manages all direc-

tory information, called the Directory Information Base (DIB).

"A Directory User Agent(DUA) provides the interface between the Directory and the

user (human or application) and manages the user's association with the Directory sys-

tem.

A DSA therefore represents a node within the layered architecture and contains a local con-

ceptual model, a local internal model and the mapping between them. The Directory system

collectively holds the global conceptual model which is dispersed among its DSAs.

The DUA provides the user interface and therefore presents an external model to the user. It

maps this external model into the abstract operations representing actions within the global

conceptual model. Figure 2.2 shows the functional model superimposed on the layered

architecture indicating the relationship between the information structure, DUAs and DSAs.

The directory functional model defines the Directory Access Protocol (DAP) and Directory

System Protocol (DSP) specifying DUA-DSA and DSA-DSA interactions respectively. In

terms of the layered architecture, the DAP describes the abstract actions performed on direc-

tory information and therefore defines part of the global conceptual model. The DSP sup-

ports the mapping from the global conceptual layer to the local conceptual layer.

-47-

DUA DUA

external external
model model

r--------------- ------ ---------------

global conceptual
model

,

,

DSA DSA
,
,

local conc local conc
model model

,

internal internal

model model

" Directory system "
L

Figure 2.2: Relationship between the directory

architecture and functional model

2.4. Using the layered architecture to structure this thesis

The motivation for specifying the layered directory architecture was to provide a framework

for structuring this thesis. This section considers the major research issues relevant to each

layer of the architecture and explains where they are covered within subsequent chapters.

The overall structure of this thesis moves from the upper to the lower layers and therefore

presents a top-down description of the design and implementation of a Directory service. It

is worth restating that this does not always follow the chronological progression of my

-48-

research where specification and implementation work often occurred in parallel.

The external layer

The external layer concerns the use of the Directory service by specific applications.
Research issues relevant to this layer include examining different uses of the Directory,

specifying external models and mapping them to the global conceptual model. These issues

generally fall outside the scope of this research and there is no chapter dealing solely with
the external layer. However, my involvement with the AMIGO MHS+ project has included

the specification and implementation of a distribution list protocol including its use of the
Directory service [BENF88a]. This is briefly described in chapter 7 when discussing the
implementation of a number of Directory User Agents.

The global conceptual layer

The global conceptual layer concerns the design of the directory information model. The fol-

lowing issues are relevant to this work:

" Specifying the abstract structure of directory information.

" Describing the abstract actions applied to directory information.

" Specifying access controls and integrity constraints for directory information.

Chapter 3 covers the first two of these issues. It describes the basic directory information

framework in terms of entries, attributes, the Directory Information Tree and a set of abstract

operations. This provides the ground work for subsequent chapters.

Chapter 4 examines the issue of information management as applied to the global conceptual

model. In particular, it extends the model of chapter 3 to include access controls and

integrity constraints supporting the dynamic and flexible management of directory informa-

tion.

The local conceptual layer

The local conceptual layer concerns the distribution of the global conceptual model between

a set of DSAs. The following issues are relevant to this work:

0 Partitioning the Directory Information Tree between a set of DSAs and specifying the

structure of knowledge.

0 The management of knowledge following system reconfiguration.

0 The distributed execution of directory operations.

-49-

" Supporting replication within the Directory system.

The management issues relevant to the local conceptual layer concern the management of

the Directory system itself as opposed to the management of information covered by chapter

4.

Chapter 5 covers the first three of the above issues. It describes the partitioning of the DIT

and specifies the structure of knowledge information. It also examines the distributed execu-

tion of operations in some detail and describes the distributed support required for the access

control and integrity mechanisms. The management of knowledge is also explored within

this chapter.

Chapter 6 extends the model of chapter 5 to include the replication of information. It pro-

poses a general directory replication model and examines the support this requires.

The local internal layer

The local internal layer concerns the design and implementation of specific DSAs. This

thesis describes the implementation of a DSA based on the RTI Ingres database management

system and the ISO Development Environment (ISODE).

The following are the major issues relevant to this work:

" Specifying a DSA internal architecture integrating Ingres and ISODE.

" Mapping the local conceptual schema to the relational data model.

" Implementing distributed navigation and loop control mechanisms.

These issues are covered by chapter 7 of this thesis.

-50-

Chapter 3

The Global Conceptual Layer:

Information Model and Abstract Operations

This chapter specifies the directory information model and abstract operations forming the

basis of the global conceptual model described previously. The information model fulfils

the role of the global conceptual schema by defining the structure of directory information.

The set of abstract operations describe the actions performed on directory information.

The specification of the information model and abstract operations requires the following

three steps:

0 Representing communication entities in terms of directory entries (section 3.1).

0 Specifying a global naming scheme for communication entities (section 3.2).

" Describing operations to read, search and manipulate directory information (section

3.3).

Chapter 4 extends this basic model to include access control and integrity mechanisms sup-

porting the management of directory information.

The model described by this chapter closely resembles that of X. 500 in terms of the Direc-

tory Information Tree and some abstract operations. However, there are differences between

the two models. In particular, this thesis specifies several new operations. A thorough grasp

of this work is essential to understanding later chapters and, for this reason, the basic direc-

tory information model is fully described below. Furthermore, this chapter defines its own

names for operations in order to avoid confusion with those of X. 500 which, although simi-

lar, exhibit a number of important differences.

3.1. Communication entities as entries and attributes

The role of the Directory service is to store and manage information about communication

entities which are the humans, applications and devices taking part in communication. Each

communication entity is viewed as a distinct real world object and is represented in the

Directory by a single, named entry. Examples of communication entities are Steve

Benford (person), Beth (laser printer) and Amigo Group (distribution list).

-51-

Each communication entity may exhibit a number of properties, represented by a set of attri-
butes within its entry. An attribute has a type, identifying a generic class of property, and a

value, containing a specific instance of that property. An entry may contain more than one

attribute of the same type except where constraints specifically limit an attribute type to hav-

ing a single value. For example, an entry representing a person might contain attributes of

type common name and mail address and an entry representing a distribution list might con-

tain attributes of type member and moderator.

Attribute types and values are generally depicted by character strings throughout this work

for reasons of legibility. Their exact structure is described in chapter 4.

In its most unstructured form, the directory information model can therefore be viewed as

sets of entries containing sets of attributes each of which has a type and value. The set of all

directory entries is called the Directory Information Base(DIB) and figure 3.1 shows an

example part of a DIB.

Entries may be divided into generic groupings called object classes where each object class

represents a distinct type of real world communication entity. Examples of object classes

might be person, device, application entity or distribution list. The object class of an entry

is represented by an attribute of type class.

-52-

entry for person "Steve" entry for list "Social" entry for entity "Nott Mta"

class person

office 1302

phone 3595

mail sdb@cs. noa

title research student

entry for device "Beth"

class printer

name Beth

location room 1101

owner admin

serial no 12547896

auditor sdb@cs. nou

member jpo@cs. nott

member hugh@cs. nott

member dave@cs. nott

member sdb@cs. nou

class list

entry for organisation "Nou"

label Noa. Uni

class org

phone 484848

location Nottingham

class MTA

mail cs. notLac. uk

owner admin

de: a X. 400 MTA

entry for person "Hugh"

class person

office 1301

phone 3647

phone 3595

mail hugh@cs. nott

title lecturer

Figure 3.1: Example Directory Information Base

3.2. Naming communication entities

The DIB outlined above loosely resembles a relational style data model. However, in order

to support the global management of names, a hierarchical naming structure is superimposed

on this basic entry and attribute model. The reasons for adopting a hierarchical naming

scheme were discussed in section 1.3 and the following points briefly summarise the

approach of this thesis to the naming problem.

Human naming is a complex process and is reliant on a number of factors such as context

and dialogue. This research does not address the problem of supporting general human

oriented naming in distributed systems but considers the following more limited goals con-

stituting a step in this direction.

1 Allow the naming of communication entities such that the responsibility for managing

names is distributed in a natural way.

-53-

2 Support globally unambiguous names which may be manipulated by computer sys-
tems.

3 Support the separation of names from addresses and routes.

4 Provide a single, unified naming scheme freeing users from accessing many different,

idiosyncratic application naming schemes.

5 Support limited dialogue and searching facilities so that users may resolve names by a

combination of information they possess and hints from the system.

The following section begins by specifying an abstract, hierarchical naming scheme satisfy-

ing goals 1-4 and deals with goal 5 via a combination of browsing and searching facilities

described later.

The Directory Information Tree

Each directory entry represents a unique real world object and should therefore have at least

one unambiguous name by which humans and the system refer to it. It is likely that the

responsibility for naming will be distributed along the lines of organisational hierarchy and

this is reflected in the directory naming scheme.

The entries of the Directory Information Base can be arranged into a tree structure called the

Directory Information Tree (DIT) where each vertex of the tree represents a communication

entity or a naming authority. Examples of naming authorities are countries,

organisations and organisational units and these typically form non-leaf vertices of the DIT

responsible for allocating the names of their immediate children. This separation of naming

authorities ensures that the responsibility for naming is distributed throughout the global

Directory service thus making possible the allocation and management of globally unambi-

guous names.

Each entry in the DIT has a relative distinguished name (RDN) consisting of a specially

marked set of its attributes called naming attributes. These are chosen by the parent naming

authority so that the entry's RDN is unambiguous among all of its siblings, thus allowing

the children of a naming authority to be distinguished from each other.

A globally unique and unambiguous name may be constructed for each entry by forming the

ordered sequence of RDNs on the path from the root of the DIT to the named entry. This

sequence is called the entry's distinguished name (DN). Each entry has exactly one dis-

tinguished name.

Figure 3.2 shows an example Directory Information Tree indicating naming authorities,

RDNs and DNs. It also indicates that the naming attributes for each child of a naming

authority need not have the same attribute types (e. g. the children of /C=GB /0= Nott. Uni/).

-54-

(Root)

C=DE C=GB
(example naming

authority)

0=GMD

IL
O=Nott. Uni OUCL

L=Berlin

RDN: /O=GMD/L=Berlin/

DN: /C=DE/O--GMD/L. =Berlin/

L=Sutton OU=CS OU=CS

OU = Agriculture

RDN: /OURS/

DN: /C-=GB/O=UCLOU=CS/

CN = Hugh Smith CN = Steve Bonford

RDN: /CN=Hugh Smith/

DN: /C-GB/O=Nott. Uni/OU=CS/CN=Hugh Smith/

Figure 3.2: Example Directory Information Tree

The remainder of this thesis adopts the following notation for representing directory names

within text. Distinguished names and relative distinguished names are ordered sequences of

attributes and can be represented by ordered character strings with "1' symbols separating

attributes shown as type = value sub-strings. For example, the distinguished name of the

entry representing Steve Benford in figure 3.2 is /C=GB /O=Nott. Uni /OU=CS /CN=Steve

Benfordl.

-55-

This notation is summarised by the following B. N. F description:

<coded name> :: = <attribute sequence> '1'

<attribute sequence> :: = <attribute> <attribute sequence> I <attribute>
<attribute> :: = "1' <type> "_" <value>
<type> :: = sequence of any ASCII characters
<value> :: = sequence of any ASCII characters

The above diagram and the remainder of this chapter use the following abbreviations for

attribute types:

Key to attribute types
C Country
O Organisation
OU Organisational Unit
L Location
CN Common Name

The Directory service defines a one-to-one mapping between the set of distinguished names

and the set of directory entries. The process of mapping from a name to the named entry is

called name verification and is perhaps the most fundamental action of the Directory, occur-

ring at least once during every abstract operation. Name verification takes a purported

name, specified by a user as an ordered set of possible attributes, and performs a distributed

tree walk, starting at the root of the DIT, in an attempt to locate an entry matching the name.
This process may either identify the purported name as being valid or erroneous.

Aliases

In addition to its distinguished name an entry may be identified by a number of alternative

names called aliases. An alias is the distinguished name of a special pointer entry in the DIT

containing the name of a referenced entry called the aliased object. An alias may point at

any DIT entry and an alias entry is empty except for the attributes forming its relative dis-

tinguished name.

The name verification procedure may dereference a number of aliases during a tree walk to

resolve a purported name. For each alias encountered, the procedure jumps to the referenced

aliased object entry and continues verifying the purported name as before. Abstract opera-

tions manipulating aliases may turn off dereferencing during name verification in order to

access the alias entry itself instead of the aliased object entry.

The proposed naming scheme does not inherently support alias back pointers. This means

that the aliased object entry need not necessarily contain the names of its aliases. The

justification for this decision is that once a user has gained access to a name it is their choice

-56-

as to how they use it and specifically, whether they set aliases for that name. Consequently,

the use of aliases may be a personal matter and they need not be visible from the aliased

object entry. Furthermore, the maintenance of back-pointers might impose a large overhead

on directory implementations.

It should be noted that aliases may point to other aliases. This might provide a useful level

of indirection during the naming process. For example, a local alias might point to the chair-

man of a comittee. This, in turn, could be an alias pointing at the current person occupying

the position of chairman In this case, the local alias would automatically map to the current

chairman at any given time.

On the other hand, the aliasing of aliases introduces the problem of alias loops. For exam-

ple, two aliases might point at each other resulting in an infinite loop during name

verification. However, unlike X. 500, this thesis does not forbid the aliasing of aliases.

0 Firstly, disallowing aliases for aliases is an unnecessarily restrictive convention,

removing potentially useful functionality.

" Secondly, it does not solve the problem of alias loops as they can still occur by other

means (see section 3.4).

Instead, the problem of alias loops is better addressed by mechanisms within the Directory

system. This is discussed within chapter 5

Figure 3.3 shows aliases in the Directory Information Tree.

-57-

Figure 3.3: Aliases in the Directory Information Tree

If we consider figure 3.3 the purported name /C=DE /O=GMD /L=Berlin /CN=Hugh/

would be mapped to the entry having the distinguished name /C=GB /O=Nott. Uni /OU=CS/

CN=Hugh Smiths. Another example maps the purported name /C=UK /O=Nott. Uni

IOU=CS/ to the entry having the distinguished name /C=GB /O=Nott. Uni IOU=CSI.

The uniqueness of distinguished names allows the Directory to determine whether any two

aliases describe the same entry by resolving them and syntactically matching the resulting

DNs.

-58-

3.3. Abstract operations

The previous sections have described the abstract structure of directory information in terms

of the Directory Information Tree, entries and attributes. This section describes the actions

which read, search and manipulate these structures by specifying a number of abstract

operations. Abstract operations form the interface to the global conceptual model and hence

define the protocol between the DUA and DSA elements of the Directory as shown in figure

2.2. This protocol is called the Directory Access Protocol (DAP) and is supported by the

Remote Operations Service (ROS) [ISO-ROS87, CCITT-ROS86], a Remote Procedure Call

like mechanism allowing a client application to request operations at a server application

during an association between the two. Each of these abstract operations may have an argu-

ment set supplied by the client and return either a result set or error set depending upon the

actions of the server.

This work and the remainder of this thesis specify the arguments, results and errors of

abstract operations in terms of the Abstract Syntax Notation One (ASN. 1) [ISO-ASN86].

This notation is extensively used throughout this thesis to describe general structures and

operations.

The following sections describe the abstract operations listed in the table below and indicate

the steps taken by the Directory to perform each operation as well as the ASN. 1 structures

involved.

Basic Abstract Operations

Read Entry*
List Subordinates*

Search*
Modify Entry*

Add Entry*
Delete Entry*

Add Alias
Delete Alias

Suspend Entry
Reinstate Entry

Reset Alias
Bind*

Unbind*

''These operations have similar counterparts in X. 500.

-59-

3.3.1. Reading directory information

The Directory service provides the white pages name to attributes mapping via the Read

Entry operation. This takes a purported name and a list of target attribute types and returns

the values of the requested attributes from the named entry. The Directory must first verify

the purported name and then read the attributes from the located entry. These are returned to

the user along with the distinguished name of the entry. Errors might arise from an errone-

ous name or from the specification of non-existent attribute types and it is possible for the

Read Entry operation to return a combination of results and errors (e. g. when some of the

requested attributes are present and others are missing).

The following ASN. 1 definition outlines the arguments, results and errors relevant to the

Read Entry operation. This operation will be enhanced by later chapters and a full

specification of all structures is given in Appendix A.

ReadEntry:: = ABSTRACT-OPERATION
ARGUMENT ReadArgument
RESULT ReadResult
ERRORS (NameError, AttributeElror)

ReadArgument :: = SET {

entry [0] Name,

types [1] SET OF AttributeType }

ReadResult :: = SET {
[0] Entrylnformation OPTIONAL,
[1] SET OF ReadError)

EntryInformation :. = SET {

name [0] DistinguishedName,

attributes [1] SET OF AttributeInformation }

Attributelnformation :: = SET {

type [0] AttributeType,

values [1] SET OF AttnbuteValue)

3.31. Browsing directory information

Users may wish to browse the Directory, exploring the structure of the Directory Informa-

tion Tree and searching portions of the tree for entries matching specific patterns of attri-

butes. These facilities are provided by a combination of the List Subordinates and Search

abstract operations respectively.

List Subordinates takes the name of an entry and returns the names of its immediate subordi-

nate entries (i. e. its children) and can therefore be used for stepwise exploration of the DIT.

-60-

ListSubordinates :: = ABSTRACT-OPERATION
ARGUMENT ListArgument
RESULT ListResult
ERRORS (NameError)

ListArgument :: = Name

ListResult :: = SET OF DistinguishedName

The Search operation provides the yellow pages attributes to names mapping. It allows the

user to supply a search expression based on combinations of attributes, determines the names

of the entries matching the expression and reads a list of target attributes from these entries.

The search expression or filter is a set of patterns of the form type = value specifying attri-

butes contained within matching entries. These patterns may be recursively combined by

the logical AND, OR and NOT operators giving a powerful selection mechanism. Filters are

also discussed in section 4.2 of this thesis.

The search operation also allows the user to constrain the scope of the search to a specific

portion of the DIT by naming a subtree where searching will occur. Further constraints may

be applied limiting the search to a specified depth within this subtree.

Search :: = ABSTRACT-OPERATION
ARGUMENT SearchArgument
RESULT SearchResult
ERRORS (NameError, AttributeError)

SearchArgument :: = SET

subtree [0] Name,
level [1] CHOICE (

fixed [0] INTEGER,

unlimited [1] NULL DEFAULT),

filter [2] Filter OPTIONAL,

targets [3] SET OF AttributeType)

Filter :: = CHOICE (

item [0] SEQUENCE
AttributeType,
AttributeValue),

and [1] SET OF Filter,

or [2] SET OF Filter,

not [3] Filter)

SearchResult :: = SET

entries [0] SET OF Entrylnformation,

errors [1] SET OF ReadError)

As an example use of the Search operation, consider searching for the entries of all "profes-

sors" at '"The University of Nottingham". This would require a fully recursive search of the

subtree with root /C=GB/ O=Nott. Uni/ matching the expression class = person AND title =

-61-

professor. This Search operation can be viewed as an extended Read Entry operation, read-

ing from sets of entries as opposed to individual entries.

3.3.3. Modifying the contents of entries

It will be necessary to modify the attributes within existing entries to reflect changes in the

real world communication entities they represent. These modifications may require the

addition of new attributes to an entry, the replacement of old attribute values with new attri-

bute values or the removal of attributes from an entry. All of these functions are subsumed

by a single Modify Entry operation allowing users to perform several modifications to a sin-

gle, named entry. Modify Entry is supplied with the name of the entry to be modified and a

number of modifications specifying new attributes, replacement attributes and attributes to

be deleted. The Directory locates the named entry and implements the modifications subject

to the following constraints:

" Attributes forming the relative distinguished name of the entry may not be modified.

" Attributes constrained to be single valued must remain so.

This operation either returns the NULL result indicating success or a number of possible

errors indicating failure.

ModifyEntry:: = ABSTRACT-OPERATION
ARGUMENT ModifyArgument
RESULT ModifyResult
ERRORS (NameError, AttributeError, ModifyError)

ModifyArgument :. = SET

entry [0] Name,

modifications [1] SET OF Modification)

Modification :: = SEQUENCE {

type AttributeType,

CHOICE (

add [0] AttnbuteValue,

delete [1] AttnbuteValue,

replace [2] SEQUENCE (

oldvalue AttributeValue,

newvalue AttributeValue)))

ModifyResult :: = NULL

The Modify Entry operation groups several logical modifications into a single operation for

two main reasons:

0 Firstly, name verification occurs only once thus improving efficiency.

-62-

0 Secondly, the user might wish to view the modifications as a single logical unit or

atomic transaction.

The latter suggests the need for a directory "transaction control policy" [KOH81] allowing

logical modifications to be grouped into indivisible transactions. In general, the Directory

must react consistently when a single operation results in a mixture of errors and successful

updates. For example, what should be the result of attempting to add two values for an attri-

bute constrained to be single valued?

This thesis proposes that each abstract operation is viewed as an atomic transaction and that

the Directory assumes a one out - all out transaction control policy whereby if any single

modification fails then all modifications within the operation fail. This solution has the

advantage of simplicity and consistency and is assumed for all operations modifying the

Directory Information Base in any way. The need for higher level, user specified transaction

control is discussed in section 3.5 below.

3.3.4. Adding and deleting entries

The Add Entry and Delete Entry operations are responsible for creating and removing direc-

tory entries.

Add Entry creates a leaf node in the DIT complete with an initial set of attributes. The

operation is supplied with the name of the parent entry, the proposed RDN for the new entry

and the initial attributes for the entry. The new entry is created subject to the following con-

ditions:

" The proposed RDN for the new entry must be unique among its siblings.

" Attributes constrained to be single valued must remain so.

It is important to note that the new entry may represent a naming authority and hence need

not always remain as a leaf of the DIT. Thus, the Add Entry operation allows general DIT

construction.

Transaction control applies to the entire operation on a one out - all out basis.

AddEntry:: = ABSTRACT-OPERATION
ARGUMENT AddEntryArgument
RESULT AddEntryResult
ERRORS { NameError, RDNError, AttributeEror)

AddEntryArgument :. = SET {

parent [0] Name,

rdn [1] SET OF Attribute,

initial-info [2) SET OF Attribute)

AddEntryResult :: = NULL

-63-

The Delete Entry operation removes a leaf entry from the DIT. This operation is supplied

with the name of the entry to be deleted and the Directory is responsible for deleting all attri-
butes associated with the entry. The problem of removing or resetting aliases associated

with the entry to be deleted is addressed by section 3.4.

DeleteEntry:: = ABSTRACT-OPERATION
ARGUMENT DeleteEntryArgument
RESULT DeleteEntryResult
ERRORS { NameError }

DeleteEntryArgument :: = Name

DeleteEntryResult :: = NULL

3.3.5. Adding and deleting aliases

Aliases may be created and removed via the Add Alias and Delete Alias operations.

Add Alias is supplied with the name of the parent of the alias entry, the RDN of the new

alias entry and the name of the aliased object entry. An alias entry is created and associated

with the distinguished name of the aliased object entry subject to the following conditions:

" The proposed RDN for the alias entry must be unique among its siblings.

" The name of the aliased object must designate a valid entry in the DIT.

The Delete Alias operation deletes a named alias entry from the DIT. This requires that

dereferencing does not occur during verification of the supplied alias name so that the Direc-

tory may manipulate the alias entry and not the aliased object entry.

AddAlias :: = ABSTRACT-OPERATION
ARGUMENT AddAliasArgument
RESULT AddAliasResult
ERRORS (NameError, RDNError, AliasError }

AddAliasArgument :: = SET {

parent [0] Name,

rdn [1] SET OF Attribute,

aliased-object [2] Name)

AddAliasResult :: = NULL

DeleteAlias :: = ABSTRACT-OPERATION
ARGUMENT DeleteAliasArgument

RESULT DeleteAliasResult
ERRORS (NameError)

DeleteAliasArgument :: = Name

DeleteAliasResult :: = NULL

-64-

3.4. Suspending directory information

The structure of the Directory Information Tree reflects the hierarchical structure of organi-

sations and users are typically named on an organisational basis. Although relative dis-

tinguished names should be chosen to be stable over long periods of time it is clear that they

will change as people migrate between jobs and organisations. Many human relationships

will survive migration and communicating partners will need to be informed of name

changes so that they are still able to communicate. One symptom of this problem is that

aliases may need to be reset following name changes. However, the Add Entry and Delete

Entry operations do not support the functionality to do this. In particular, the deletion of an

entry and its subsequent replacement by an alias of the same name might result in an alias

loop. This demonstrates that alias loops might occur, following changes to the DIT, even if

aliases may not initially point at other aliases.

Present day communications services such as paper mail often advertise changes of name

and address by extra-directory mechanisms such as the distribution of special messages to

close associates. However, these mechanisms depend on the efforts of the individual and

tend to be unreliable. It is also traditional to leave a forwarding address at a previous loca-

tion and this has been introduced into the telephone service where recorded messages may

inform callers of a change in number for a subsequent period of time. There is a parallel

between these lower layer services and a requirement for the Directory service to gracefully

accommodate name changes.

The Directory service could support the migration of communication entities and their sub-

sequent name changes by allowing the suspension of names. Suspension can be viewed as

the phasing out of information over a period of time. Instead of being deleted from the

Directory Information Tree an entry could be marked as suspended and could be associated

with a new name. References to the suspended entry would result in a name error, returning

the new name of the communication entity to the user who would be free to retry the opera-

tion if they wished. If the error resulted from the use of an alias, the user might choose to

reset the alias to point at the new name. After a suitable period of time the suspended entry

could be permanently deleted, after which future references to it would generate the usual

name errors.

It would be possible to build a Directory service to recognise suspended information and

automatically reset aliases and restart operations without consulting the user. This would be

undesirable for two main reasons:

-65-

"A user should be informed of a change of name because it has human meaning, unlike

a change of system address of which users should be unaware.

"A user may not wish to continue communication following a change in name and

should be free to delete aliases instead of resetting them.

The suspension of entries means that there will be a gradual transition from use of an old

name to use of a new name and that users will adapt to name changes in a natural way as

they encounter them during communication. In addition, suspension allows aliases to be

reset before an entry is deleted thus preventing alias loops from accidently occurring.

It should also be possible to reinstate a suspended entry without deleting it and its contents.

Only leaf entries of the DIT may be suspended and reinstated.

The suspension and reinstatement of entries and the resetting of aliases can be supported by

the following three abstract operations: Suspend Entry takes the name of an old entry, the

name of a new entry and a deletion date. It marks the entry as suspended and associates it

with the new name without deleting its contents. The Directory then deletes the marked

entry on the specified date. Reinstate Entry returns the named suspended entry to active

status. The Reset Alias operation takes an alias name and the name of a non-alias entry in

the DIT and resets the alias to point at the new entry.

SuspendEntry:: = ABSTRACT-OPERATION

ARGUMENT SuspendEntryArgument

RESULT SuspendEntryResult

ERRORS (NameError, SuspendError)

SuspendEntryArgument:: = SET'

entry [0] Name,

new-name [1] DistinguishedName,

date [2) GeneralisedTime)

ReinstateEntry :: = ABSTRACT-OPERATION
ARGUMENT ReinstateEntryArgument
RESULT ReinstateEntryResult
ERRORS (NameError, SuspendError }

ReinstateEntryArgument :: = Name

ResetAlias :: = ABSTRACT-OPERATION
ARGUMENT ResetAliasArgument

RESULT ResetAliasResult
ERRORS (NameError, AliasError }

ResetAliasArgument :: = SET (

alias [0] Name,

newobject [1] DistinguishedName)

SuspendEntryResult :: = NULL

-66-

ReinatateEntryResult :: = NULL
ResetAliasResult :: = NULL

3.5. The role of user specified transaction control

The abstract operations specified above describe the fundamental actions applied to directory
information and are subject to the one out - all out transaction control policy specified in

section 3.3.3. However, actions within a user's external model may appear to be quite dif-
ferent from those within the global conceptual model (i. e. the abstract operations). In partic-

ular, it is possible that, as more complex applications are developed, external actions may
involve complex sequences of interlinked abstract operations. This idea is familiar from

general database systems where users construct arbitrarily complex queries from database

query languages such as SQL [IBM81]. In order to allow user actions to appear as indivisi-

ble units, these languages include statements supporting user specified transaction controls.

An important issue is whether the Directory Access Protocol should support user specified

transaction control instead of the one out - all out policy described above. User specified

transaction control would allow the logical grouping of sequences of abstract operations to
form higher level functions. However, the implementation of such a mechanism within the

highly autonomous distributed environment of the Directory service would be extremely
difficult due to problems of maintaining consistency*. It is therefore unlikely that a globally
distributed Directory, using current technology, would be able to support such functionality

except on a limited scale. Consequently, this thesis proposes that the Directory service

should not support user specified transaction controls.

It is important to realise that this decision places a limitation on the ability of the Directory

to support arbitrarily complex usage and that applications requiring sophisticated data mani-

pulation tools may need the support of other distributed information services. The designers

of distributed applications using the Directory should be aware of its limitations in this area.

This concludes the specification of the fundamental directory global conceptual model. The

following chapter discusses the issue of information management as applied to this model.

*Consistent distributed updates are discussed in chapter 6.

-67-

Chapter 4

The Management of Directory Information

The management of communication information has been identified as a major goal of the

Directory service (section 1.1.3). This chapter extends the basic global conceptual model of

chapter 3 to include access control and integrity mechanisms supporting the flexible

management of directory information.

The abstract operations specified in chapter 3 provide the functionality to update directory

information. However, without effective information management they will not support the

cohesive maintenance of information on a global scale and their unchecked use would soon

result in chaos. Management is therefore concerned with the update of information within a

management framework, defining policies and constraints which ensure that updates are

correct and meaningful. The goal of this chapter is to specify the required management

framework.

0 Section 4.1 provides an overview of information management in terms of data access

control and data integrity. It explains how the Directory can support many different

management frameworks based on global access control and integrity mechanisms.

" Section 4.2 specifies a data access control mechanism to be included within the global

conceptual model. It uses existing access control theory to derive a directory access

control mechanism.

" Section 4.3 specifies a directory data integrity mechanism supporting the dynamic

specification of rules constraining the structure of directory information.

" Finally, section 4.4 presents a brief summary of the directory global conceptual layer

as specified in chapters 3 and 4.

It should be noted that the management of directory information described by this chapter is

a different issue to the management of the Directory service itself addressed by chapters 5

and 6.

-68-

4.1. Mechanisms supporting the management of directory information

The management of information is a complex topic covering a wide range of issues such as

access control, authorisation, security and integrity. Many of these issues have been

explored within the context of general databases and operating systems [CCITT-

X518, TAN87, DATE77]. This thesis examines two particular aspects of information

management as applied to the Directory service. Broadly speaking, it considers information

management in terms of the twin issues of access control and data integrity although it

recognises that these are just two facets of the overall management problem.

The terms "access control" and "data integrity" may have different meanings in various con-

texts. This chapter loosely defines them in the following way:

0 Access control concerns the protection of information against "unauthorised disclo-

sure, alteration or destruction" [DATE77]. More specifically, access controls specify

administrative policies for information in terms of which users may take which actions

on what information.

" Data integrity is concerned with maintaining the correctness of information. Integrity

mechanisms attempt to ensure that information is accurate and meaningful at all times

according to explicitly specified rules or policies.

In general, access control mechanisms protect against the illegal alteration or destruction of

information by ensuring that only trusted users may perform updates whereas integrity

mechanisms protect against the invalid alteration or destruction of information by enforcing

rules governing its structure and contents.

The work in this chapter is strongly influenced by two major factors affecting the design of

both the access control and integrity mechanisms. These may be summarised by the terms

dynamic management and Information Management Domains and are explained by the fol-

lowing paragraphs.

Dynamic management

The Directory service operates in a dynamic environment of many organisations and appli-

cations. This environment will be continually evolving and, consequently, directory infor-

mation management policies will be constantly changing. Directory management mechan-

isms must therefore support the dynamic management of information by allowing the

dynamic definition of new access controls and data integrity constraints. In particular, the

process of defining new policies should be explicitly supported by the Directory Access Pro-

tocol.

-69-

Information Management Domains

Due to the global scale of the Directory service and its provision by many autonomous

organisations, a single directory information management framework is not feasible.

Instead, the management of directory information can be considered in terms of a number of

autonomous Information Management Domains (IMDs) each of which supports it own

management framework of access control and integrity policies. Information Management

Domains reflect logical administrative boundaries, typically corresponding to organisational

boundaries. For example, the University of Nottingham might be represented by an IMD

defining local security and integrity constraints closely following its specific organisational

structure.

IMDs belong to the external layer of the directory architecture and are not explicitly

represented within the directory global conceptual layer. However, the management

mechanisms belonging to the global conceptual model must be flexible enough to simultane-

ously support many different external IMDs.

Figure 4.1 shows how operations updating directory information are subject to the manage-

ment policies of different Information Management Domains which are themselves mapped

onto the access control and integrity mechanisms belonging to the global conceptual model.

-70-

Figure 4.1: Many Information Management Domains supported

by the global security and integrity mechanisms

It should be noted that Information Management Domains are not equivalent to Directory

Management Domains (DMDs) as defined by X. 500 [CCITT-X501]. IMDs represent logical

boundaries for information management whereas DMDs represent boundaries for Directory

system management. These need not be the same, although they may often be related.

This section has noted that the management of information is a complex subject and has

defined the interests of this thesis in terms of the specific issues of access control and data

integrity. It has also described the concepts of dynamic management and Information

Management Domains affecting the design of the access control and data integrity mechan-

isms. The following section turns its attention to the problem of access controL

-71-

update update

4.2. An access control mechanism for the Directory service

This section describes a data access control mechanism for the Directory service. An over-

view of general access control theory is presented in section 4.2.1 followed by the specific

requirements of directory access controls in section 4.2.2. These are used to specify a direc-

tory access control mechanism based on Access Control Lists (sections 4.2.4 to 4.2.10) pay-

ing particular attention to the flexible description of actions and groups of directory users.

The overall security of directory information may involve a number of issues ranging from

the physical security of buildings containing computing equipment to the security of under-

lying storage and communication services. An annex to part X. 518 of X500 (Authentica-

tion Framework) describes a number of issues relating to directory security such as data

confidentiality, non-repudiation and access control. This section considers the last of these,

namely, controlling access to directory information at the global conceptual layer. This

requires the specification of an access control mechanism controlling the use of abstract

operations to read and manipulate the Directory Information Tree. Two major motivations

for providing this access control mechanism are as follows:

" The need for organisations and individuals to make only a subset of their directory

information available to other users. This requires constraints on who can read,

browse, or even know of information.

" The need for the Directory service to reflect the update policies of different Informa-

tion Management Domains. This requires constraints on who may add, delete or

modify directory information.

These motivations may be summarised by the words privacy and administration.

Access control mechanisms have been the topic of extensive study within the context of gen-

eral databases and operating systems [DEM78, SIR86, FER81, TAN87, DATE77] and the

following section provides an overview of this work in order to identify the major problems

to be addressed by the directory access control mechanism.

4.2.1. An overview of general access control

Access controls are rules governing which entities may perform which operations on what

information or resources. They therefore represent a binding between users, objects

(information/resources) and operations. This binding may be expressed as a matrix called

the Authorisation Matrix in which rows correspond to users, columns correspond to objects

and elements contain descriptions of operations. An example Authorisation Matrix is shown

in figure 4.2.

-72-

object 1 object 2
... object j ... object n

user 1

user 2

F1 LTL
J

:::::: :::::
:::::: ::::::

ii

.
user i ii

Read

Add, De l i
' L ------ ------- ----------- ----

L ------ ------ - ------- ------- :I Read
m user

Read, Mod Mod

Figure 4.2: Example Authorisation Matrix

The element A[ij] of the Authorisation Matrix represents the operations which user i may

perform on object j. A user action may be described by a set of requests of the form R[i j]

indicating the operations to be performed by the user (i) on an object j. For each request, a

system process called the Arbiter checks the Authorisation Matrix and determines whether

the operations R[i j] are included in A[ij]. If they are, access permission is granted; if not, it

is denied. Denial may have several consequences ranging from returning a suitable message

to the user to logging the user off and informing the relevant authorities.

Access Rights may be granted and revoked by altering the Authorisation Matrix. This also

occurs subject to access control thus requiring the matrix itself to be an object in the system.

Large systems often contain many users and objects with each user having access to only a

relatively small number of objects. The resulting Authorisation Matrix is therefore large and

sparse and it may be inconvenient to store or view it as a whole. It is also difficult for a dis-

tributed system to implement a single Authorisation Matrix which would either require a

centralised access control mechanism resulting in a loss of nodal-autonomy or many copies

of the matrix at different nodes generating consistency problems.

As a result, the Authorisation Matrix is often split up and the resulting fragments distributed

around the system. Splitting generally occurs in one of the following ways:

0 The matrix may be split row-wise into a number of elements representing the access

rights of specific users in terms of operations and objects. Each row is a user's Capa-

bility List and each element of a row is a Capability granting certain types of access to

-73-

a named object.

The matrix may be split column-wise into a number of elements representing all access
rights granted for specific objects. Each column is an Access Control List (ACL) for an
object and each element of a column is an Access Control List Element granting cer-
tain types of access to a named user or group of users.

Although Capabilities and Access Control Lists contain the same functionality, they have
different side effects on the systems implementing them, resulting in significantly different
flavours of access control. Both ACL and capability based systems are in use today with the
UNIX operating system being an example of the former [WAL85] and the Amoeba operat-
ing system being an example of the latter [MUL87]. The splitting of the Authorisation

Matrix is shown in figure 4.3. Capabilities and ACLs are described in more detail in the fol-

lowing sections.

..
01 02 : ...

Oj : ... : on 01 02
...

Oj
... On

U1 U1

U2 R U2 R

RJR Ui Ui
R. A
D

HmI D
R. M Um

D

Figure 4.3: Splitting the Authorisation Matrix into Capabilities and ACLs

Capabilities

Capability mechanisms represent access control information by Capability Lists associated

with each user. Capabilities can be viewed as tickets, presented to the Arbiter for checking

whenever a user wishes to operate on some information. Capabilities are granted to users by

a capability server and need to be encrypted for security reasons. However, once granted,

the Capabilities may confer the right for the user to transfer or copy them to other users. If

-74-

properly controlled this is a useful feature of a capability system.

A distributed system requires that the capability server is itself distributed and, furthermore,

a user's Capabilities are often stored at the node holding the user's information, as opposed
to the node holding the information to be accessed. It follows that all of the access controls

relevant to a piece of information may be stored at many nodes in the system making it
difficult for the owner of information to determine which users have access to it. Conse-

quently, it is difficult to support the selective revoking of access rights using a distributed,

capability based access control mechanism (although the blanket revoking of all access

rights for an object is possible).

A capability mechanism in a large distributed system may require each user to have a large

Capability List (even with a sparse mapping from users to objects) and in order to make
these lists manageable a mechanism to concisely describe sets of information is required.

A further, important feature of Capabilities is that it is not strictly necessary for a user to

give their name when performing an operation so long as the system is able to determine that

the Capability is valid. Thus, it is possible for a user to retain anonymity when using the

system. This may be viewed as useful or dangerous depending on the ethics of system users

and providers.

In general, it can be seen that capability based access control mechanisms shift the balance

of power from administrators to users. Once Capabilities have been issued, it is difficult to

selectively revoke them and to trace the actions of their owners who are therefore entrusted

with greater responsibility.

Access Control Lists

Access Control List (ACL) based mechanisms represent access control information in the

form of lists of users and operations associated with each piece of information. In requesting

an operation the user supplies some identification (usually their name) which is then com-

pared with the relevant ACL to determine whether they have the necessary access rights.

In a distributed system, ACLs are usually stored at the same node as the information they

protect making it easy for the information owner to determine which users possess which

rights for the information, and to selectively revoke rights if necessary. The transfer of

access rights from one user to another requires the modification of ACLs. This means that

Access Control Lists are susceptible to user name changes which may invalidate them result-

ing in a loss of all of rights for the user concerned.

In a system with large numbers of users the access control mechanism requires a method of

concisely describing groups of users in order to facilitate the management of AC Ls.

-75-

Furthermore, a method describing groups of users in generic terms may accommodate name

changes more easily. For example, an ACL conferring access rights to all members of an

organisation would be unaffected by a user name change provided the user remained within

that organisation.

In general, ACL based mechanisms concentrate power in the hands of the information own-

ers and administrators who know which users have which rights and are able to selectively

grant and revoke rights.

Authentication

Authentication is the process of identifying a user to the satisfaction of another user or sys-

tem and is required if an access control mechanism is to operate successfully. The capability

based mechanism requires that the capability server is able to authenticate a user before

granting Capabilities and the ACL based system requires that the Arbiter authenticates a user

before checking their access rights against an ACL.

Authentication and access control can be seen as orthogonal issues. Authentication in an

Open Systems environment has been tackled by other work [CCITT-X518] and is beyond

the scope of this thesis. The remainder of this chapter assumes the existence of a separate

Authentication service, called by the Directory service to authenticate users at will.

4.2.2. Requirements of the directory access control mechanism

This section begins the specification of the directory access control mechanism by describ-

ing its major requirements. The Directory service is a specialised distributed database

operating under a set of constraints strongly influencing its design. Consequently, the direc-

tory access control mechanism may differ from mechanisms within more general database or

operating systems.

Flexibility to support different Information Management Domains

Section 4.1 described the role of Information Management Domains in representing dif-

ferent access control and data integrity policies. Access control policies may vary greatly

and the directory access control mechanism must be flexible enough to support a wide range

of approaches at the external level For example, one PAD might define simple access con-

trols in terms of two classes of user, a directory administrator having rights to all informa-

tion and other users having read and browse rights only. Alternatively, a second BAD might

allow all users to create information, and then the information creator to control who could

read and update the information.

-76-

The flexibility required of the directory access control mechanism manifests itself in three

main areas:

High granularity of information

Access controls should apply at a high granularity of directory information. If

necessary, the Directory should support separate access controls for individual

attributes within an entry.

High granularity of actions

Directory abstract operations such as Modify Entry may include a number of logi-

cal sub-operations at any one time. These sub-operations should be protected by

different access rights to provide sufficient flexibility in describing actions. This

may lead to a more complex global conceptual modeL However, simplification

may occur at the external layer.

Describing groups of users

Unlike many databases, the Directory operates on a world wide scale and the nam-

ing of users is of prime importance. The directory access control mechanism must

control large numbers of users and therefore requires a concise, flexible method for

representing groups of names. This method should allow the assignment of access

rights reflecting natural organisational access groupings and it should also be pos-

sible to group users by generic properties such as titles and roles.

There are three other major requirements for the directory access control mechanism:

Support both hidden and forbidden information

The denial of access to information could take two general forms: the Arbiter may inform

the user that they do not have access permission for the requested information or, alterna-

tively, it may act as if the information did not exist at all. In the first case, the information is

forbidden and the user is aware that it exists but is unable to access it. In the second case,

the information is hidden and the user cannot tell whether it exists at all. The directory

access control mechanism should support both hidden and forbidden information depending

on the security policy in force.

-77-

Dynamic update of access controls

It should be possible to dynamically alter access control information, via the Directory

Access Protocol, to reflect new access policies and therefore support dynamic management

as described above. This implies that the Directory must provide access controls for its

access control information.

Guaranteed access

The access control mechanism must prevent situations where information is in a state of
deadlock because no user has permission to alter or delete it. This requirement does not

present an obvious problem with centralised systems where it is easy to keep track of users.
However, in the case of the globally distributed Directory it may be difficult to determine

whether access controls allow any access at all.

4.2.3. Reasons for choosing an ACL based mechanism

Section 4.2.1 above provided an overview of both capability and ACL based access control

mechanisms. Each approach has its advantages and both may be applicable to the Directory

service in the long terns. However, the immediate future favours the ACL based approach
for the following reasons:

0 Capabilities may require greater support from a general distributed security frame-

work. For example, they require the use of encryption services to prevent the creation

of fake capabilities. At the present time, the necessary security framework remains the

subject of basic research and is therefore not generally available. It should be noted

that the adoption of an ACL based access control mechanism does not escape the need

for encryption techniques. However, under the ACL approach, encryption is required

within the authentication service, not necessarily within the Directory itself.

" In the short term, the Directory will be provided by a small number of powerful organi-

sations such as the national PTFs. These organisations will most likely wish to retain

tight control over information and administrative power will therefore be in the hands

of information providers as opposed to users.

In the long term, a capability based mechanism may prove to be equally, or even more,

applicable to the Directory Service. One important reason for this may be the anonymity

which capabilities can provide for directory users.

The directory access control mechanism specified by this thesis is based on Access Control

Lists as opposed to Capabilities due to their short term suitability. However, it should be

noted that this mechanism alone may not provide the only long term solution.

-78-

The remainder of section 4.2 describes the extension of the directory information model and
abstract operations to support an access control mechanism, based on Access Control Lists,

meeting the requirements of section 4.2.2. Section 4.2.4 provides an overview of the direc-

tory access control mechanism. Sections 4.2.5 and 4.2.6 describe the structure of ACLs in

detail. Finally, sections 4.2.7 to 4.2.10 consider public directory access, avoiding access
deadlock and manipulating ACLs via directory operations.

4.2.4. Extending the information model to include ACLs

This thesis specifies a directory access control mechanism using Access Control Lists

(ACLs) to protect information. This work is based on a model from the ISO/CCITF Mel-

bourne X. ds output [CCITT-XDS86] which is extended to provide a detailed and flexible

solution.

An ACL is a structure associating sets of actions with groups of users and is interpreted as

allowing the users to perform the actions. The term access rights is used throughout the

remainder of this chapter to refer to the actions permitted to a group of users by an ACL.

Each entry in the Directory Information Base may be protected by an entry level ACL

assigning access rights for those actions affecting the entry as a whole such as deletion or

suspension. Each attribute type within an entry may be protected by its own attribute level

ACL assigning access rights for attribute specific actions such as addition or modification of

a value.

Both entry and attribute level ACLs are optional, with the entry level ACL acting as the

default for all attributes not having their own attribute level ACLs. This default rule

increases the efficiency of the mechanism by allowing entry level ACL to describe general

access rights for the entry as a whole but allowing them to be overridden by specific attribute

level ACLs when necessary. An entry without an entry level ACL (i. e. an empty entry level

ACL) is considered public (see section 4.2.7) except for those attributes specifically pro-

tected.

The extended structure of an entry supporting ACLs is shown in figure 4.4.

-79-

Figure 4.4: Structure of an entry including ACLs

The overall operation of the directory access control mechanism is as follows. Each opera-

tion includes the name of the user requesting it. The operation may access several attributes

and entries simultaneously and can be broken down into a set of logical requests accessing

individual entries or attributes. For each such request, the access control mechanism finds

the relevant ACL (using the default rule for attributes) and checks whether it assigns the

necessary access rights to the user. If so, access is granted. If not, it is denied. The check-

ing of ACLs for access rights is summarised by the following procedure.

For each entry specified within the operation (

Return a name error if the entry level ACL

"hides" the entry.

Deny access if the entry level ACL does not give permission

for actions affecting the whole entry

Otherwise, grant general access to the entry

For each attribute to be operated on (

Use the attribute level ACL if it exists. Otherwise

use the entry level ACL (default rule).

Indicate an attribute error if the ACL "hides" the

-80-

attribute.

Deny access to this attribute if the ACL does not
give permission for the requested actions

Otherwise, grant access to the attribute

Denial of access has different effects for different operations. Generally, read operations

return a combination of results and errors corresponding to information for which they were

granted or denied access. However, due to the one out - all out transaction control policy
(see section 3.3.3), update operations abort and return an error at the first point where they

are denied access.

The previous paragraphs have broadly outlined the operation of the access control mechan-
ism in terms of entry and attribute level ACLs. In order to further specify the directory

access control mechanism, it is necessary to examine the structure of ACLs in greater detail

and, in particular, how they represent actions and users.

An ACL can be modelled as a set of Access Control List Elements (ACL Elements) each of

which assigns a set of access rights to one particular group of users. The remainder of this

chapter refers to a group of users, assigned some access rights, as an access group. The basic

structure of an ACL is shown in figure 4.5.

access access
access access ACI.

rights group
rights group Element

(actions) (users)

Figure 4.5: The overall structure of an Access Control List

The following sections discuss the structure of ACLs in greater detail concentrating on the

following issues:

How access rights are represented within ACL Elements (section 4.2.5).

How access groups are represented within ACL Elements (section 4.2.6).

81-

4.2.5. The structure of ACLs: representing actions

This section specifies a flexible mechanism for representing access rights within ACL Ele-

ments.

Each ACL Element must be able to represent the full range of logical actions which can be

applied to the protected item of information. A first approach might be to represent actions
by the names of abstract operations. Each ACL Element would then associate a list of

operations with a specific access group. For example an ACL might consist of two elements

assigning the access rights (Read Entry, Modify Entry, Delete Entry) to one access group

and the access rights (Read Entry, Search) to another. However, simply listing the names of

operations is subject to the following problems:

"A single abstract operation may group together a number of logical operations for rea-

sons of efficiency and transaction control. A good example is a Modify Entry opera-

tion, simultaneously adding a new attribute, deleting an old attribute and replacing a

third attribute value. Describing actions by the names of abstract operations gives too

coarse a granularity of access control.

" Describing actions by the names of abstract operations does not allow the access con-

trol mechanism to distinguish between hidden and forbidden information.

A better approach is to describe actions in terms of access categories referring to the lower

level logical actions applying to information. Permission to perform an operation might

require a number of different access categories. Access categories must distinguish between

permission to know of and read information; permission to add, delete and replace attributes;

permission to add and delete entries and aliases; permission to suspend and reinstate entries

and finally permission to modify ACLs themselves.

The table below lists an initial set of access categories and outlines their purpose. This set

will expand as new abstract operations are introduced in later work.

-82-

Access categories

category meaning
detect Allows knowledge of the existence of information
read Allows attributes to be read

add value Allows a new attribute value to be added
delete value Allows an attribute value to be deleted
replace-value Allows an attribute value to be altered

add-entry Allows a new (child) entry to be created
delete-entry Allows an entry to be deleted, suspended

or reinstated

alias Allows a new alias to be created
reset alias Allows an alias to be reset

read_ACL Allows Access Control Lists to be read
re lace ACL Allows the modification of an ACL

The following comments apply to this table:

" The detect access category is used to distinguish between hidden and forbidden infor-

mation. If the detect category is not granted the Directory behaves as if the specified

entry or attribute did not exist and returns name or attribute errors. Lack of other

access categories results in access control errors being returned to the user.

" There are no specific access categories dedicated to the creation and deletion of ACLs

because these actions are achieved by the creation and deletion of attributes or entries

and are therefore governed by existing access categories.

0 The access control mechanism distinguishes between creating entries and aliases by

the add entry and add alias categories at the relevant naming authority. However,

once created, only a single delete_entry category is required at the target entry or alias.

" Suspending an entry involves its eventual deletion and is therefore covered by the

delete_entry access category.

The table below shows the access categories required during the course of each operation.

-83-

Access catego ries required by each operation
operation categories

Read Entry detect, read, read_ACL
List Children detect
Search detect, read, read_ACL
Modify Entry detect, add_value, delete_value,

replace value, replace_ACL
Add Entry detect, add-entry
Delete Entry detect, delete-entry
Add Alias detect, add-alias
Delete Alias detect, delete-entry
Suspend Entry detect, delete-entry
Reinstate Entry detect, delete_entry
Reset Alias detect, reset alias

In summary, we can represent actions within ACLs by combinations of access categories

representing logical operations on information. An example ACL using access categories is

shown in figure 4.6

detect, mad detect

add value
acres: access

add entry
ACL

-
replace _Value

group - group
add-value

Element

Figure 4.6: Example Access Control List using access categories

4.2.6. The structure of ACLs: representing access groups

This section completes the structure of ACLs by specifying a mechanism for representing

access groups (groups of users).

The simplest method of describing groups of users would be to list their distinguished

names. However, this suffers from the following drawbacks:

0 Lists of names may become long and unmanageable in a global Directory service.

" Lists of names describe a flat user space and fail to exploit natural access groups occur-

ring within the real world.

" Lists of names are static and do not easily accommodate changes to the Directory

Information Tree. This is a general problem with access control mechanisms based on

ACLs where a user name change may invalidate many ACLs throughout the system.

-84-

These problems highlight the requirement for a concise, flexible method of describing access

groups within ACLs. Before specifying a solution to these problems, it is necessary to make

an observation concerning likely access groups within the real world.

Directory access groups are determined by the security policies of different Infor-

mation Management Domains. Although these may vary, the following work

assumes that IMDs generally reflect organisational structure and that access

groups are often based on organisational hierarchy. This is really an extension of

the assumption made when developing the Directory Information Tree. Exam-

ples of hierarchical access groups are the members of an organisation, depart-

ment, project, working group or office.

Representing users by Object Set Descriptors

The following sections describe a structure called the Object Set Descriptor (OSD) used to

represent sets of distinguished names. OSDs are adopted to represent access groups within
ACLs.

The set of names described by an OSD is called its object set. Two logical operations may
be applied to an OSD:

" Enumeration maps from the Object Set Descriptor to its object set.

" Verification determines whether a specified name belongs to the object set of an OSD.

An Object Set Descriptor consists of two parts: a subtree reflecting an organisational access

group and a filter further refining the access group. The use of subtrees and filters is

described below.

Use of subtrees

The Directory Information Tree represents organisational hierarchy and, under the above

assumption, represents natural user access groups. It follows that groups of users can be

represented by subtrees of the DIT. Subtrees form the basis of Object Set Descriptors.

In addition, it is useful to limit the depth of subtrees representing access groups. Object Set

Descriptors therefore allow subtrees to have a specified depth in terms of a number of levels.

Unlimited depth is assumed when unspecified.

Subtrees may be represented by the distinguished names of their root entries. For example,

we could represent all members of Nottingham University by an Object Set Descriptor

specifying the subtree with root IC=GB /O=Nott. Uni/ and with unlimited depth. It should

be noted that a list of users' distinguished names is a trivial case of a list of subtrees.

-85-

Use of filters

Access groups based on subtrees of the DIT give a useful, but coarse, method of assigning

access rights to users. Access controls may also be granted on the basis of specific user

characteristics such as roles, titles and status. For example, one may wish to assign certain

access rights to system administrators or employees of a specified grade. These generic

access groups may be represented by a filter as described in section 3.3.2. A filter is an

expression based on logical combinations of attributes which are matched against entries in

the DIT. Thus, entries representing system administrators might match the filter class = per-

son AND role = system administrator. An Object Set Descriptor may therefore include a

filter further constraining the entries in a directory subtree.

The final structure of an OSD is given by a distinguished name representing a DIT subtree,

constrained to be of a certain depth, associated with a filter describing specific properties of

entries in the object set. This structure is described by the following ASN. I code.

ObjectSetDescriptor :: = SET (

subtree [0] DistinguishedNarne,
level [1] CHOICE {

fixed [0] INTEGER,

unlimited [1] NULL DEFAULT),
filter [2] Filter OPTIONAL)

The use of Object Set Descriptors reduces the problems associated with flat lists of names in

the following ways:

0 Naming a subtree is more concise than listing all the names in a subtree.

0 OSDs represent natural access groups by a combination of subtrees and filters.

" OSDs may be unaffected by minor name changes so long as a user remains within the

specified subtree and continues to satisfy the filter. This reduces the chances that

ACLs will be invalidated by name changes.

The following are examples of Object Set Descriptors representing access groups.

All postgraduate students within the department of Computer Science at Notting-

ham might be represented by the OSD with subtree /C=GB/ O=Nott. Uni

IOU=CSI (unlimited depth) matching the filter title = postgraduate student.

The managing directors of the company "Widget International" could be

represented by the OSD with subtree /C=USA /O=Widget International/ (unlim-

ited depth) matching the filter title = managing director.

Object Set Descriptors are similar to the arguments of Search operations. A search can be

viewed as the enumeration of OSDs whereas checking access controls requires the

-86-

verification that an entry satisfies an OSD.

The use of OSDs provides a flexible method of describing access groups. However, it does

not allow public access to directory information. An extension to support this functionality

is considered in the next section.

4.2.7. Public access to information

One implication of the use of OSDs for describing access groups is that users of the Direc-

tory service must be explicitly represented within the DIT. However, there may be occa-

sions when non-registered users wish to use the service or when registered users wish to act

anonymously. In the first case, a user does not have a directory name and in the second case

they do not wish to supply one. This may be supported by introducing the concept of public

directory access. A special public dummy access group may be introduced including any

entity accessing the Directory. This access group may be assigned access rights just as any

other, enabling the Directory to give limited public access to information on a flexible basis.

For example, an ACL might assign the detect and read rights to the public access group.

The Directory must also act when information is unprotected due to the absence of both

entry and attribute level ACLs. A sensible approach is to assume default access controls

allowing the public to read and browse but not to update information (i. e. assume detect and

read access categories for everyone).

4.2.8. 'Iahe final structure of ACLs

The previous sections have specified a directory access control mechanism based on the use

of Access Control Lists to protect entries and attributes within the DIT. This section briefly

summarises this work.

ACLs specify which actions may be applied to directory information by which groups of

users. Actions are referred to as access rights and groups of users are referred to as access

groups. ACLs may be associated with entries and attributes and a default rule applies

between these two levels. Each ACL consists of a set of elements assigning access rights to

different access groups where:

" Access rights are described by sets of access categories.

" Access groups are described by Object Set Descriptors.

"A special public access group allows anonymous users to have limited access to direc-

tory information.

Access categories provide great flexibility in describing actions and Object Set Descriptors

are a concise and dynamic way of reflecting real world access groupings. Access Control

-87-

Lists are defined by the following ASN. 1 description:

AccessControlList :: = SET OF AccessControlUstElement

AccessControlListElernent :: = SEQUENCE

categories BIT STRING (detect(O), read(1), etc.),

accessgroup CHOICE (

public [0] NULL,

users [1] ObjectSetDescriptor }

The final structure of Access Control Lists is indicated by figure 4.7 below. This shows an

example ACL assigning detect and read rights to the public and detect, read, add value and

replace-value rights to all administrators within Nottingham University.

detect, read IC==GB / =Noa. Uni/

detect, read PUBLIC add value (unlimited depth)

replace value title = administrator

Figure 4.7: An example Access Control List using Object Set Descriptors

The following sections discuss two remaining issues concerning access controls. The first

considers the problem of dynamically manipulating ACLs and the second examines the

problem of avoiding deadlock due to invalid or meaningless ACLs.

4.2.9. Granting, revoking and managing access controls

The previous sections have specified the structure of Access Control Lists for the protection

of directory information. In order to support dynamic management, the Directory must

allow the dynamic creation, update and removal of ACLs enabling access permissions to be

granted or revoked as users and policies change. This can be achieved by extending the

abstract operations specified in section 3.3 in the following ways:

" The ACLs belonging to an entry may be retrieved along with its attributes by extend-

ing the Read Entry and Search operations to include an optional flag requesting the

return of ACLs.

0 The addition of ACLs occurs with the addition of new entries and attributes. Thus,

ACL addition can be supported by extending the Add Entry and Modify Entry opera-

Lions to include ACLs within their arguments.

-88-

" The modification of ACLs can be achieved using an extended Modify Entry operation
specifying replacement ACLs as well as replacement attributes.

" An ACL is deleted by replacing it with an empty ACL. This uses the extended Modify

Entry operation described above.

In general, permission to read an ACL requires the read_ACL access category and permis-

sion to replace an ACL requires the replace ACL access category, both within the target
ACL.

The above extensions to the Directory Access Protocol supporting the retrieval, creation and

maintenance of ACLs are fully specified in ASN. 1 form in appendix A of this thesis.

4.2.10. Guaranteed access to information

In order to avoid access deadlock, at least one entity must be guaranteed access to each piece

of information. The problem of deadlock due to invalid access control is particularly

relevant to the Directory because of its large user name space. To illustrate the problem,

consider an entry level ACL assigning update rights to users represented by an Object Set

Descriptor. Over a period of time these users may be deleted from the DIT rendering its

object set empty. At this point there will be no entity who can satisfy the ACL and therefore

delete the protected entry. Consequently, no one will be able to delete any of its superior

entries because only leaf entries can be deleted. This deadlock situation is highly undesir-

able.

There are two approaches to solving this problem:

1. Ensure that every ACL in the Directory always assigns rights to at least one valid user

and prevent the DIT from being altered to contradict this.

2. Designate privileged directory super-users with the power to remove information, thus

breaking any access deadlock.

The first of these solutions is not practicable due to the size and distributed nature of the

DIT. It would require checking that all directory ACLs would remain valid before an entry

could be deleted. It would also require the enumeration of ACLs whenever they were

altered. This would be ridiculously expensive.

The second solution is feasible although great care has to be taken that a directory superuser

does not represent a security loophole. This thesis adopts the second solution and proposes

that each DSA in the Directory system supports a DSA administrator who has super-user

powers for all information stored by that DSA. The DSA administrator is local to a single

DSA and is not visible to the users of the Directory. In addition, they do not have any distri-

buted access to information. This increases security because the lack of superuser network

-89-

access between DSAs makes the system harder to break and limits the damage which can
occur if it is broken.

This concludes the specification of the directory access control mechanism. The remainder
of this chapter specifies an integrity mechanism supporting the integrity aspect of informa-

tion management.

4.3. A data integrity mechanism for the Directory service

The goal of this section is to specify a directory data integrity mechanism. This mechanism
facilitates the correct and meaningful update of information by allowing the definition of
integrity rules, enforced during update operations. The structure of directory integrity rules
is specified as well as new abstract operations supporting their dynamic definition and hence

the ideal of dynamic management. The integrity mechanism also reflects the concept of
Information Management Domains.

" Section 4.3.1 presents the motivations for the directory data integrity mechanism.

" Section 4.3.2 gives a brief overview of the integrity mechanism and describes the role

of entry and attribute definitions.

" Section 4.3.3 specifies the structure of attribute definitions.

" Section 4.3.4 specifies the structure of entry definitions.

" Section 4.3.5 examines support for Information Management Domains.

" Section 4.3.6 examines support for dynamic management.

" Section 4.3.7 presents a summary of the integrity mechanism and some examples of its

use.

Finally, section 4.4 closes chapter 4 with a review of the directory global conceptual schema

and its extension to include access control and data integrity mechanisms supporting the

management of information.

4.3.1. Goals and motivations of the integrity mechanism

Integrity is concerned with maintaining the correctness of information against invalid altera-

tion or destruction and is supported by a data integrity mechanism allowing users to define

rules governing both the structure and contents of information. The integrity mechanism

then ensures that these rules are adhered to during updates.

-90-

The following paragraphs describe two major motivations for specifying a directory integrity

mechanism.

Defining the structure of information

The first motivation concerns the structure of information. Many applications using the

Directory expect to find information in a well known state and cannot function otherwise.

They require that names adhere to well defined forms, that entries contain certain attributes

and that attributes have sensible values. For example, a distribution list application might

expect distribution list entries to contain the attributes submitting member, receiving

member and moderator and would expect the values of these attributes to be the names of

communication entities as opposed to numbers or bit strings.

The directory integrity mechanism must therefore allow users to specify the structures of

name-forms, entries and attributes and must ensure that these structures are preserved as

information is updated.

Supporting forms based user interfaces

The second motivation concerns support for user interfaces.

Humans often make direct use of the Directory service. They may wish to obtain informa-

tion describing services and other communication entities or they may be acting in an

administrative role and maintaining information. In either case, they require extensive sup-

port from a user interface so that they can effectively search and manipulate the Directory

Information Tree. For example, the creation of a directory entry might be aided by a form

prompting the user for the values of suitable attributes.

Another important example is the support required for user friendly naming. Section 1.3.2.

made the point that user friendly naming will probably involve dialogue between humans

and the Directory. This dialogue may take the form of the user interface suggesting possible

naming attributes to the user who responds with suitable values in an attempt to gradually

resolve a name.

Both of these examples could be supported by a Query by Example style interface [ZL075]

where the user interacts with the Directory through a series of templates for names, entries

and attributes. In order to support such an interface, the DUA itself must understand the

structure of directory information. This requires the presence of meta-information defining

the directory information structure and therefore provides another motivation for the direc-

tory integrity mechanism. This example indicates that, by defining the structure of directory

information, the integrity mechanism is defining the global conceptual schema.

-91-

In addition to the general aims of supporting the correct update of information and sophisti-

cated user interfaces, the data integrity mechanism should satisfy the following specific

requirements.

0 It should support the dynamic definition and management of integrity rules as part of

the Directory Access Protocol. This means that it should be possible to create and

remove integrity rules using abstract operations and not via some extra-directory

mechanism.

0 The integrity mechanism should allow different Information Management Domains to

specify their own integrity rules according to local policies. This suggests the need for

integrity rules to have a scope constraining their effect to specific areas of the DIT

representing the boundaries of IMDs.

" The integrity mechanism should support the inheritance of integrity rules between

IMDs. It should allow the local modification of rules while still remaining compatible

with more global definitions.

The following sections specify a directory integrity mechanism to meet the goals described

above. This mechanism supports the dynamic definition of directory name-forms, entries

and attributes. It pays particular attention to the concept of scope for integrity rules.

4.3.2. Overview of the directory integrity mechanism

This section provides an overview of the proposed data integrity mechanism. Later sections

describe specific aspects of this mechanism in greater detail.

The data integrity mechanism defines the structure and contents of names, entries and attri-

butes via two mechanisms called attribute definitions and entry definitions.

" Attribute definitions define the abstract structure of attributes by assigning attribute

types, specifying the basic structure of values and placing constraints on values.

" Entry definitions define the abstract structure of entries and specify possible directory

name-forms. They describe the attributes which are mandatory or optional within a

class of entry and may specify default values and access controls for these attributes.

Entry definitions also constrain the hierarchical relationships between entries and

hence describe possible directory name-forms.

The integrity mechanism includes new abstract operations for creating and removing attri-

bute and entry definitions and specifies extensions to the directory access control mechanism

to control their use. The mechanism also expresses the effects of attribute and entry

definitions on the existing abstract operations in terms of the conditions they must obey.

-92-

Each attribute and entry definition is declared within a scope limiting its area of effect to a
specified subtree in the DIT. The concept of scope allows the integrity mechanism to support
the policies of different external Information Management Domains.

Attribute definitions are fully specified by section 4.3.3 and entry definitions are specified by

section 4.3.4.

4.3.3. Attribute definitions

An attribute definition declares the abstract structure of a type of attribute to the Directory.
Each attribute within the Directory must correspond to an attribute definition specifying its

name, scope and structure as well as placing constraints on its values. An attribute definition

therefore describes a class of attributes adhering to it. This is called an attribute class.

4.33.1. The structure of an attribute definition

The ASN. 1 structure below specifies an attribute definition. The elements of this structure

are described in the following paragraphs.

AttributeDefinition :: = SET {

type [0] PrintableString,

scope [1] DistinguishedName,

recurring [2] BOOLEAN,

structure [3] AttributeStructure (see below) }

The type has the function of an attribute type as used throughout the previous chapters. It is

the handle by which most directory users refer to an attribute and is structured as a human

readable character string. * Examples of attribute types are title, common name or modera-

tor.

The scope defines a subtree of the DIT in which this attribute definition is valid. This means

that attributes for this definition can only exist within this subtree. The scope is represented

by the distinguished name of the root entry of the specified subtree. Scope defines the locus

of effect of an attribute definition and its purpose is discussed in section 4.3.5.

The recurring flag indicates whether an instance of this attribute may have more than one

value within a specific entry. This basic integrity check ensures that some attributes such as

passwords or serial numbers are guaranteed to be single valued.

* 1is is different to the structure of attribute types within X300

-93-

The structure describes the syntax of the attribute value and may place some constraints on
its contents. An attribute value may be structured as one of several basic data types or as a
directory name. The basic data types are derived from the primative data types specified in
ASN. I and are integer, real, lASstring, bitstring, octetstring, boolean and generalised time.

Numeric values may be constrained by a maximum and minimum value. Furthermore,

numeric and character string attributes may have their values limited to a specified range.

The following ASN. 1 code indicates the possible structures of attribute values.

AttributeStructure :: = CHOICE (
integer [0] IntegerConstraint,

real [11 RealConstraint,

characterstring [2] CharConstraint,

name [3] NameConstraint,
bitstring [4] NULL,

octetstring [5] NULL,

boolean [6] NULL,

time [7] NULL)

IntegeiConstraint :: = SEQUENCE (

minimum INTEGER OPTIONAL,

maximum INTEGER OPTIONAL,

range SET OF INTEGER)

RealConstraint :: = SEQUENCE (

minimum REAL OPTIONAL,,

maximum REAL OPTIONAL,

range SET OF REAL)

ChaiConstraint :: = SET OF IA5String

NameConstraint :: = SET OF Name

The requirement for a flexible method of defining a wider range of attribute structures is dis-

cussed in section 8.6 of this thesis.

433.2. Examples of attribute definitions

The following examples illustrate some possible uses of attribute definitions.

The University of Nottingham might define an attribute called title for use within its entries.

A person's title represents their position within the department and is specified by the

definition below.

type = "tide"

scope =)C--GB IO=NottUni/

recurring = FALSE

structure = PrintableString

range = ("professor". "savior lecturer". "junior lecturer".

-94-

"research assistant", "technical staff", "secretary",
"postgraduate

student",
"undergraduate

student")

This definition shows that a person may only have one title which is a printable string
chosen from a limited range of values.

Another example is the following definition of a distribution list member.

type = "member"

scope = (root)

recuning = TRUE

structure = Name

This definition has global scope and allows an instance of a member attribute to have many

values which are directory names.

4.3.3.3. Use of type and scope within attribute definitions

The previous sections have discussed the purpose and structure of attribute definitions and
have introduced the concept of scope to limit the area of the DIT in which they are valid.
The scope of attribute and entry definitions is important in supporting the management of
information. This is fully discussed in section 4.3.5. However, the following paragraphs

make some immediate observations concerning the relationship between attribute types and

scopes.

0 An attribute type may be ambiguous within the DIT. This means that a user might use

the same type to refer to different classes of attribute within different contexts. For

example, the attribute role might have different meanings within different classes of

entry. This is a natural reflection of the way attributes are identified in the real world.

The Directory is responsible for mapping from a user specified type to the correct

definition.

" The combination of type and scope is unambiguous for an attribute definition. This

means that there may not be two attribute definitions of the same type with exactly the

same scope. However, there may be two attributes of the same type with nested scopes

(i. e. nested subtrees). It follows that an attribute definition may be precisely identified

by specifying its type and its scope.

" Although attributes corresponding to a given definition can only be created within its

scope, they may be read by users who are not within this scope. For example, a user

from the organisation /C=USA /0= MITI can read an attribute defined within the

scope of the organisation /C=GB/ O=Notf. Uni/. This may require retrieval of the attri-

bute definition along with the attribute value to aid interpretation.

-95-

The conclusion of these points is that attribute types should be chosen by humans to reflect
real world conventions. The choice of type is a critical one, but is not constrained to be an
unambiguous one provided that the context (scope) of the definition is also specified.

The structure and purpose of attribute definitions have now been defined. The following

sections discuss the effects of attribute definitions on the existing abstract operations as well

as the introduction of new abstract operations to manage the definitions themselves.

4.33.4. The effect of attribute definitions on operations

Attribute definitions declare attributes within the Directory and specify constraints on the

structure and contents of their values. These declarations and constraints must be observed
during operations updating directory information. The abstract operations affected are
Modify Entry and Add Entry which must check attribute definitions during the creation of a

new attribute or the addition or replacement of an attribute value. Modifications are now per-
formed subject to the following additional conditions.

"A new attribute may only be added if it is within the scope of an existing definition of

the correct type.

" An attribute value may not be added if it would break a recurring constraint specified

within the relevant attribute definition.

"A new or replacement attribute value must conform to the structure specified by the

relevant attribute definition.

"A new or replacement attribute value must belong to any range and must fall between

any maximum and minimum values specified by the relevant attribute definition.

The previous section noted that directory users outside of the scope of an attribute definition

would need to retrieve the definition in order to interpret the relevant attribute values. This

can be achieved by extending the Read Entry operation to return attribute definitions when

indicated by a flag, set in its argument. The Results to Read Entry have now been extended

to include both Access Control Lists and attribute definitions and this is shown by the fol-

lowing extension to the ASN. 1 definition given in section 3.3.1

ReadResult :: = SET (
[0] EntryInfosmitio i OPTIONAL,
[1] SET OF ReadEnw)

Entrylnformation :: = SET

entry [0] DistinguishedName,

entrylevelacl [1] AccessControlList OPTIONAL,

types [2) SET OF Attnýutelnformation)

-96-

Attributelnformation :: = SET (

type [0] AttnäuteType,
definition [1] AttributeDefinition OPTIONAL,

attributelevelacl [2] AccessControlList OPTIONAL,

values [3] SET OF AttributeValue)

43.3.5. New operations to manage attribute definitions

An important requirement of the directory integrity mechanism is that it should support the

dynamic management of integrity controls. This requires extending the Directory Access

Protocol to include operations allowing the creation and removal of attribute definitions.

This section defines the Add Attribute Def, Delete Attribute Def, Suspend Attribute Defand

Reinstate Attribute Def abstract operations for this purpose. In addition, it defines the Read

Attribute Def operation allowing the general retrieval of attribute definitions. The introduc-

tion of new access categories to control these operations is also considered.

The Add Attribute Def operation adds the specified attribute definition to the Directory. It

must ensure that there is no other definition with the same combination of type and scope.

The ASN. 1 specification of this operation is given below.

AddAttributeDef :: = ABSTRACT OPERATION

ARGUMENT AddAttributeDefArgument

RESULT AddAttributeDefResult

ERRORS (NameError, AttnbuteDetError)

AddAttributeDefArgummt :: = Atari'buteDefinidan

AddAttributeDefResult :: = NULL

The Delete Attribute Def operation deletes an attribute definition identified by a combina-

tion of type and scope. Deletion can only occur if this definition is not "in use" within the

Directory. The term "in use" implies that there should be no existing attribute instances

corresponding to the definition and that it should not be referenced by an existing entry

definition as described later. The ASN. 1 specification of this operation is given below.

DeleteAttnbuteDef :: = ABSTRACT OPERATION

ARGUMENT DeleteAttributeDefArgument

RESULT DeleteAunbuteDefResult

ERRORS (NameError, AtmbuteDefEiror)

DeleteAttn'buteDefArgument :: = SET (

type [0] PrintableString,

scope [1] Name)

DeleteAtmbuteDefResult :: = NULL

-97-

Section 3.4 described the suspension of directory entries in order to support the phasing out

of information. The same technique can be applied to definitions belonging to the directory

integrity mechanism. An attribute definition may be marked as "suspended", therefore disal-

lowing the creation of any new attributes of its class. Already existing attributes will then be

deleted over a period of time after which the attribute definition itself can be deleted. It

should also be possible to reinstate an attribute definition. These techniques require the

introduction of the Suspend Attribute Def and Reinstate Attribute Def operations. Their

arguments and results have similar structures to Delete Attribute Def and are fully specified

in appendix A.

Finally, it should be possible to retrieve attribute definitions. This is supported by the

extended Read Entry operation, and also by the new Read Attribute Def operation, returning

the attribute definition with the specified type and scope. In addition, the type may be omit-

ted, in which case this operation returns all definitions with the specified scope. The ASN. 1

specification of this operation is given below.

ReadAttributeDef :: = ABSTRACT OPERATION

ARGUMENT ReadAttributeDefArgument
RESULT ReadAttnbuteDefResult

ERRORS (NameError, AttributeDefError)

ReadAttributeDefArgument :: = SET (

type [0] PrintableString OPTIONAL,

scope [1] Name)

ReadAttnbuteDefResult :: = SET OF AttributeDefinition

The introduction of these operations requires the extension of the access control model to

control their use. The retrieval and manipulation of attribute definitions is protected by the

entry level ACL associated with their scope. Permission to perform the above operations

requires the following access categories: read definition allows an attribute definition to be

retrieved. add definition allows a new attribute definition to be created. delete definition

allows an attribute definition to be deleted, suspended and reinstated. The Detect right also

applies to attribute definitions and allows them to be hidden if necessary.

Summary of attribute definitions

Attribute definitions specify the structure and contents of attributes. They may also place

constraints on attribute values. Each attribute definition defines a specific attribute class

within a specific scope. Scopes are represented by the subtrees of the DIT and define the

space in which attributes of that class may exist.

-98-

The Add Entry and Modify Entry operations must ensure that the integrity constraints

specified by attribute definitions are not broken. Finally, new abstract operations have been

defined allowing the creation, suspension, deletion and retrieval of attribute definitions.

The following section uses attribute definitions as a basis for the entry definition defining the

structures of entries and name-forms. The structure of entry definitions is described and

further extensions to the Directory Access Protocol are specified allowing the dynamic

management of entry definitions.

43.4. Entry definitions

This section describes entry definitions specifying the structures of entries and name-forms

within the directory global conceptual model.

Section 3.1. mentioned that directory entries can be grouped into object classes where the

entries of an object class are of the same type and have roughly the same structure. Exam-

ples of object classes might be distribution list, person and device. An entry definition

declares the abstract structure of an object class and assigns it a type and a scope. It

describes how entries are named and how they are structured in terms of mandatory or

optional attributes. It may also specify default access controls and attribute values for

entries belonging to an object class.

4.3.4.1. The structure of an entry definition

An entry definition is defined by the following ASN. 1 structure.

EntryDefinition :. = SET {

type [0] PrintableString,

scope [1] DistinguishedName,

contains [2] ObjectClass OPTIONAL,

superiors [3] SET OF ObjectClass,

rdntypes [4] SET OF AttnbuteTemplate,

mandatory [5] SET OF AttributeTemplate OPTIONAL,

optional [6] SET OF AttnbuteTemplate OPTIONAL,

defaultacl [7] AccessControlList OPTIONAL,

acl [8] AccessControlList OPTIONAL)

This relies on two further structures. An object class is a combination of type and scope

unambiguously identifying an entry definition and hence a class of entries. An attribute tem-

plate unambiguously identifies an attribute definition by a combination of type and scope

and may also specify default access controls and values. These structures are defined below.

ObjectClass :: = SEQUENCE (

type PrintableStnng.

-99-

scope DistinguishedName)

AttributeTemplate :: = SEQUENCE

type PrintableString,

scope DistinguishedName,
defaultvalue AttributeValue OPTIONAL,
defaultacl AccessControlList OPTIONAL

The following paragraphs describe the role of each element in an entry definition.

The type is the handle by which users refer to the entry definition. It is also the label by

which users refer to the object class of entries it defines. For example, person, distribution

list and organisation are all types of entry definition and therefore classes of entry.

The scope defines the subtree of the DIT in which this entry definition is valid. This means

that entries belonging to this object class can only exist within this scope. The scope of an

entry definition plays the same role as that of an attribute definition and the combination of

type and scope is therefore unique.

The superiors element defines the object classes which may be immediately superior to this

class in the DIT. The rdntypes element lists the possible attribute classes used in forming

the relative distinguished name of an entry of this class. The recursive combination of these

two elements determines possible structures of distinguished names for entries of this class.

Thus, entry definitions are used to define possible directory name-forms in terms of the

structures of relative distinguished names and the hierarchical relationships between object

classes (i. e. a name form is specified by a superior name form and a naming attribute).

It is important to note that, whenever an entry definition refers to an attribute, it specifies

both its type and scope in order to unambiguously identify the relevant attribute definition.

The mandatory element describes those attributes which must be present in all entries of this

class. It also suggests default ACLs and values for these attributes.

The optional element describes all other attributes which may be present in entries of this

class along with default ACLs and values.

The defaultacl suggests a default entry level ACL for entries of this class.

The acl is the access control list controlling access to the entry definition itself.

Finally, the contains element may identify an entry definition contained within this one.

This facility allows local refinement of more global definitions. It is illegal for an entry

definition and a contained definition to conflict with each other and any number of levels of

nesting are allowed. Containment requires that the following conditions are applied recur-

sively.

- 100 -

0 The scope of the new definition is the same or within the scope of the contained
definition.

0 Attributes described in an entry definition may not have overlapping types with those
in its contained definition.

" Suggested Access Control Lists in an entry definition override those in its contained
definition.

In summary, an entry definition is identified by a combination of type and scope in the same

way as an attribute definition. Entry definitions describe the structure of entries by specify-

ing mandatory and optional attributes including default access controls and values. They

specify directory name-forms in terms of the attributes forming relative distinguished names

and the permitted parent-child relationships between different object classes. Entry

definitions may also be nested.

The following section describes the effect of entry definitions on the abstract operations used

to update information. This is followed by the specification of new abstract operations to

manage entry definitions themselves.

Examples of entry definitions are given in section 4.3.7

4.3.4.2. The effect of entry definitions on operations

Entry definitions declare and constrain the structure of entries and names within the Direc-

tory. These constraints must be observed during those operations manipulating the Direc-

tory Information Tree and the contents of entries. The operations affected by these con-

straints are Add Entry and Modify Entry.

Each entry is added to the Directory by an Add Entry operation and must conform to a valid

entry definition at the time of its creation. This implies the following constraints for the Add

Entry operation.

" The new entry must have an object class identifying an existing entry definition.

" The new entry must be within the scope of the relevant entry definition.

" The proposed parent of the new entry must have an object class listed in the superiors

element of its entry definition.

" The relative distinguished name of the new entry must be composed of attributes from

the rdntypes element of its entry definition.

" All mandatory attributes must be present in the new entry.

" Any other attributes in the new entry must be optional within its definition.

-101-

In addition, the operation can utilise any default attribute values and ACLs specified by the

entry definition.

Once an entry has been added to the Directory, it must continue to obey the definition of its

object class. This has the following implications for the Modify Entry operation.

"A mandatory attribute cannot be deleted.

" An attribute cannot be added which is not mandatory or optional.

All of the above conditions apply recursively with the constraints specified in nested

definitions.

4.3.4.3. New operations to manage entry definitions

This section extends the Directory Access Protocol to include abstract operations for creat-

ing, deleting, suspending and reading entry definitions in order to support the dynamic

management of directory integrity constraints. These operations are similar to those reading

and manipulating attribute definitions and, consequently, this section only describes their

major features. The abstract operations concerned with entry definitions are listed in the

table below and briefly described in the following paragraphs.

operations for entry definitions

Add Entry Def
Delete Entry Def
Read Entry Def

Suspend Entry Def
Reinstate Entry Def

The Add Entry Def operation adds the specified entry definition to the Directory. In order to

successfully add a new entry definition, the following conditions must be satisfied.

" There should be no other entry definition with the same type and scope.

" The object classes listed as possible superiors should be valid and the new definition

must fall within their scopes.

" Any immediately contained entry definition must exist and the new definition must be

within its scope.

" This definition must not conflict with any contained definition.

" All referenced attribute definitions should be valid and the new entry definition must

be within their scopes.

-102-

The Delete Entry Def operation is used to remove entry definitions from the Directory.
Before deleting an entry definition it must ensure that no entries exist belonging to this
object class and that no other entry definitions contain this object class or specify it as a pos-
sible superior.

The phasing out of entry definitions is also supported by use of the Suspend Entry Def

operation which marks them as "suspended" and disallows them from being used in the crea-

tion of new entries or definitions. Suspended entry definitions may be reinstated by the
Reinstate Entry Def operation. Suspension may also give the effect of modification for

definitions. A definition may be suspended and a new definition may be created with the

same type and scope to replace it. This enables effective modification of a definition without

causing conflict with existing information.

Finally, it is possible to retrieve entry definitions by the Read Entry Def operation taking a

type and scope as its argument. The type may be omitted allowing the retrieval of all entry
definitions with a given scope.

These operations are controlled by the directory access control mechanism using the same

access categories as for attribute definitions. In order to add a new entry definition it is

necessary to possess the add definition access right at the entry representing its scope.

Deletion and suspension require the delete_definition access category within the entry

definition's ACL and retrieval requires the read definition category, also within this ACL.

Summary of entry definitions

Entry definitions define the structure of entries and name-forms within the Directory. The

structure of entries is specified in terms of mandatory or optional attributes and default

values and ACLs. Permitted name-forms are determined by the attributes allowed within

relative distinguished names and constraints on hierarchical relationships between object

classes in the DIT.

Each entry definition is valid within a specified subtree of the DIT called its scope. An entry

definition may also contain other recursively nested definitions allowing the local

modification of more global integrity constraints.

This section has outlined the effect of entry definitions on those abstract operations updating

directory information. It has also extended the Directory Access Protocol to include new

operations to read and manipulate the entry definitions themselves.

The next section discusses the issue of scope in greater detail and explains how it supports

the concept of Information Management Domains.

-103-

4.3.5. Scope and Information Management Domains

Scope is a crucial aspect of the directory integrity mechanism. This section describes the

role of scope in representing the policies of different Information Management Domains and

explains how the Directory maps possibly ambiguous attribute types to unique entry and

attribute definitions.

The management of directory information requires that different Information Management

Domains can define their own integrity policies. Scope limits the effects of definitions to

DIT subtrees representing natural IMD boundaries based on organisational hierarchy. Each

IMD can therefore define its own integrity constraints in terms of entry and attribute

definitions with local scope. The use of scope in this way has several interesting conse-

quences.

0 Separate IMDs can support different definitions with the same types. For example,

two IMDs might choose to define the structure of distribution list entries differently.

" There may be some inheritance of definitions and hence policy between hierarchical

IMDs. For example, the root of the DIT can be seen as representing an IMD defining

global policies which might be inherited, refined or redefined by other IMDs.

" The refinement of policies between hierarchical IMDs is supported by the nesting of

contained entry and attribute definitions.

The use of scope to represent external IMDs within the DIT is shown by figure 4.8.

-104-

C=GB ---

,
IMD1

attribute defs

common name

member

entry defs

person
distribution list

O=UCL .' O=Nott. Uni ---

IIMD2

OU = Iviachs

IMD 3

IMD1=/C=GB/
IMD 2= /C=GB/O=NotLUni/
IMD 3= /CAB/O=NotLUni/

OU=CS/

attribute deh

title

grade

entry defy

staff

student

---- ----'

OU=CS ---

'OOON

attribute defy

auditor

moderator

distribution list

entry ds

Figure 4.8 Scope representing IMDs within the DIT

The figure shows a number of IMDs (dashed lines) superimposed on a portion of the Direc-

tory Information Tree. Each of the three IMDs shown defines local integrity policies via

attribute and entry definitions whose scope is the root of the IMD subtree. In general, the

policies of an IMD are inherited by all inferior IMDs, although they may also be redefined.

For example, IMD 3 inherits the "person" entry definition and redefines the "distribution list"

entry definition from LMD 1.

These points have shown the use of scope in reflecting the boundaries of Information

Management Domains. Without the ability to limit the scopes of definitions, the integrity

mechanism would soon become unmanageable and, consequently, so would directory infor-

mation. Scope is therefore fundamental to the management of integrity constraints. It

should be noted that X. 500 does not support the dynamic management of its integrity rules

(schemas) and does not allow the scoping of schemas which would make this possible. This

issue is explored further in section 8.5.

- 105 -

The introduction of scope means that types may be ambiguous. Most users will refer to

attributes and object classes by type alone and it is therefore necessary to specify how the
Directory resolves ambiguous types to unique definitions. Resolution works in the following

way.

" Whenever a user manipulates an existing attribute or entry the Directory can map the
supplied entry name to its entry definition which can then be inspected to obtain the
types and scopes of relevant attribute definitions.

0 Whenever the user creates a new entry or entry definition they have the choice of iden-

tifying any relevant definitions by supplying both type and scope themselves or by sup-

plying the type alone and allowing the Directory to resolve to the definition with the

closest scope (i. e. the most local definition).

Resolving to the definition with closest scope

The closest scope is the most local, valid scope from the user's point of reference. The fol-

lowing example shows how the Directory uses the closest scope rule to resolve ambiguous
types.

Consider two entry definitions having the type person with scopes /C=GB/ and /C=GB

/O=Nott. Uni /OU=CS/respectively. If a user wished to create the entry /C=GB

/O=Nott. Uni /OU=CS /CN=Steve/ of type person, the closest scope rule would resolve to

the second definition, whereas, if they wished to create the entry /C=GB /CN=Stevel of type

person, it would resolve to the first definition.

In conclusion, a user may refer to definitions by type alone, in which case the Directory finds

the most local definition. Alternatively, the user may override this rule by supplying both

the type and scope of a definition themselves.

43.6. Dynamic management and attribute types

A major goal of the data integrity mechanism is support for dynamic management. This is

provided by new abstract operations to read and manipulate entry and attribute definitions.

These operations, in turn, are supported by the inclusion of human readable attribute types

within the directory information model.

The dynamic definition of new attribute types implies that user interfaces must cope grace-

fully with previously unseen attribute types (for example, a newly defined attribute type in a

remote part of the DIT). This is a particular problem for human interfaces where new types

must be presented in a human readable form. This problem is eased by the inclusion of

human readable attribute types within attribute definitions so that they may be retrieved by

-106-

